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INTRODUCTION TO INFORMATION THEORY

{ch:intro_info}

This chapter introduces some of the basic concepts of information theory, as well
as the definitions and notations of probabilities that will be used throughout
the book. The notion of entropy, which is fundamental to the whole topic of
this book, is introduced here. We also present the main questions of information
theory, data compression and error correction, and state Shannon’s theorems.

1.1 Random variables

The main object of this book will be the behavior of large sets of discrete
random variables. A discrete random variable X is completely defined1 by
the set of values it can take, X , which we assume to be a finite set, and its
probability distribution {pX(x)}x∈X . The value pX(x) is the probability that
the random variable X takes the value x. The probability distribution pX : X →
[0, 1] must satisfy the normalization condition

∑

x∈X

pX(x) = 1 . (1.1) {proba_norm}

We shall denote by P(A) the probability of an event A ⊆ X , so that pX(x) =
P(X = x). To lighten notations, when there is no ambiguity, we use p(x) to
denote pX(x).

If f(X) is a real valued function of the random variable X, the expectation
value of f(X), which we shall also call the average of f , is denoted by:

E f =
∑

x∈X

pX(x)f(x) . (1.2)

While our main focus will be on random variables taking values in finite
spaces, we shall sometimes make use of continuous random variables taking
values in R

d or in some smooth finite-dimensional manifold. The probability
measure for an ‘infinitesimal element’ dx will be denoted by dpX(x). Each time
pX admits a density (with respect to the Lebesgue measure), we shall use the
notation pX(x) for the value of this density at the point x. The total probability
P(X ∈ A) that the variable X takes value in some (Borel) set A ⊆ X is given
by the integral:

1In probabilistic jargon (which we shall avoid hereafter), we take the probability space
(X , P(X ), pX) where P(X ) is the σ-field of the parts of X and pX =

P

x∈X pX(x) δx.
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2 INTRODUCTION TO INFORMATION THEORY

P(X ∈ A) =

∫

x∈A

dpX(x) =

∫

I(x ∈ A) dpX(x) , (1.3)

where the second form uses the indicator function I(s) of a logical statement
s,which is defined to be equal to 1 if the statement s is true, and equal to 0 if
the statement is false.

The expectation value of a real valued function f(x) is given by the integral
on X :

E f(X) =

∫

f(x) dpX(x) . (1.4)

Sometimes we may write EXf(X) for specifying the variable to be integrated
over. We shall often use the shorthand pdf for the probability density func-
tion pX(x).

Example 1.1 A fair dice with M faces has X = {1, 2, ...,M} and p(i) = 1/M
for all i ∈ {1, ...,M}. The average of x is EX = (1 + ...+M)/M = (M + 1)/2.

Example 1.2 Gaussian variable: a continuous variable X ∈ R has a Gaussian
distribution of mean m and variance σ2 if its probability density is

p(x) =
1√
2πσ

exp

(

− [x−m]2

2σ2

)

. (1.5)

One has EX = m and E(X −m)2 = σ2.

The notations of this chapter mainly deal with discrete variables. Most of the
expressions can be transposed to the case of continuous variables by replacing
sums

∑

x by integrals and interpreting p(x) as a probability density.

Exercise 1.1 Jensen’s inequality. Let X be a random variable taking value
in a set X ⊆ R and f a convex function (i.e. a function such that ∀x, y and
∀α ∈ [0, 1]: f(αx+ (1 − αy)) ≤ αf(x) + (1 − α)f(y)). Then

Ef(X) ≥ f(EX) . (1.6){eq:Jensen}

Supposing for simplicity that X is a finite set with |X | = n, prove this equality
by recursion on n.

1.2 Entropy
{se:entropy}

The entropy HX of a discrete random variable X with probability distribution
p(x) is defined as

HX ≡ −
∑

x∈X

p(x) log2 p(x) = E log2

[
1

p(X)

]

, (1.7){S_def}
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where we define by continuity 0 log2 0 = 0. We shall also use the notation H(p)
whenever we want to stress the dependence of the entropy upon the probability
distribution of X.

In this Chapter we use the logarithm to the base 2, which is well adapted
to digital communication, and the entropy is then expressed in bits. In other
contexts one rather uses the natural logarithm (to base e ≈ 2.7182818). It is
sometimes said that, in this case, entropy is measured in nats. In fact, the two
definitions differ by a global multiplicative constant, which amounts to a change
of units. When there is no ambiguity we use H instead of HX .

Intuitively, the entropy gives a measure of the uncertainty of the random
variable. It is sometimes called the missing information: the larger the entropy,
the less a priori information one has on the value of the random variable. This
measure is roughly speaking the logarithm of the number of typical values that
the variable can take, as the following examples show.

Example 1.3 A fair coin has two values with equal probability. Its entropy is
1 bit.

Example 1.4 Imagine throwing M fair coins: the number of all possible out-
comes is 2M . The entropy equals M bits.

Example 1.5 A fair dice with M faces has entropy log2M .

Example 1.6 Bernouilli process. A random variable X can take values 0, 1
with probabilities p(0) = q, p(1) = 1 − q. Its entropy is

HX = −q log2 q − (1 − q) log2(1 − q) , (1.8) {S_bern}

it is plotted as a function of q in fig.1.1. This entropy vanishes when q = 0
or q = 1 because the outcome is certain, it is maximal at q = 1/2 when the
uncertainty on the outcome is maximal.

Since Bernoulli variables are ubiquitous, it is convenient to introduce the
function H(q) ≡ −q log q − (1 − q) log(1 − q), for their entropy.

Exercise 1.2 An unfair dice with four faces and p(1) = 1/2, p(2) =
1/4, p(3) = p(4) = 1/8 has entropy H = 7/4, smaller than the one of the
corresponding fair dice.
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Fig. 1.1. The entropy H(q) of a binary variable with p(X = 0) = q,
p(X = 1) = 1 − q, plotted versus q {fig_bernouilli}

Exercise 1.3 DNA is built from a sequence of bases which are of four types,
A,T,G,C. In natural DNA of primates, the four bases have nearly the same
frequency, and the entropy per base, if one makes the simplifying assumptions
of independence of the various bases, is H = − log2(1/4) = 2. In some genus of
bacteria, one can have big differences in concentrations: p(G) = p(C) = 0.38,
p(A) = p(T ) = 0.12, giving a smaller entropy H ≈ 1.79.

Exercise 1.4 In some intuitive way, the entropy of a random variable is related
to the ‘risk’ or ‘surprise’ which are associated to it. In this example we discuss
a simple possibility for making these notions more precise.

Consider a gambler who bets on a sequence of bernouilli random variables
Xt ∈ {0, 1}, t ∈ {0, 1, 2, . . . } with mean EXt = p. Imagine he knows the
distribution of the Xt’s and, at time t he bets a fraction w(1) = p of his money
on 1 and a fraction w(0) = (1−p) on 0. He looses whatever is put on the wrong
number, while he doubles whatever has been put on the right one. Define the
average doubling rate of his wealth at time t as

Wt =
1

t
E log2

{
t∏

t′=1

2w(Xt′)

}

. (1.9)

It is easy to prove that the expected doubling rate EWt is related to the entropy
of Xt: EWt = 1 − H(p). In other words, it is easier to make money out of
predictable events.

Another notion that is directly related to entropy is the Kullback-Leibler
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(KL) divergence between two probability distributions p(x) and q(x) over the
same finite space X . This is defined as:

D(q||p) ≡
∑

x∈X

q(x) log
q(x)

p(x)
(1.10)

where we adopt the conventions 0 log 0 = 0, 0 log(0/0) = 0. It is easy to show
that: (i) D(q||p) is convex in q(x); (ii) D(q||p) ≥ 0; (iii) D(q||p) > 0 unless
q(x) ≡ p(x). The last two properties derive from the concavity of the logarithm
(i.e. the fact that the function − log x is convex) and Jensen’s inequality (1.6):
if E denotes expectation with respect to the distribution q(x), then −D(q||p) =
E log[p(x)/q(x)] ≤ log E[p(x)/q(x)] = 0. The KL divergence D(q||p) thus looks
like a distance between the probability distributions q and p, although it is not
symmetric.

The importance of the entropy, and its use as a measure of information,
derives from the following properties:

1. HX ≥ 0.

2. HX = 0 if and only if the random variable X is certain, which means that
X takes one value with probability one.

3. Among all probability distributions on a set X with M elements, H is
maximum when all events x are equiprobable, with p(x) = 1/M . The
entropy is then HX = log2M .

Notice in fact that, if X has M elements, then the KL divergence D(p||p)
between p(x) and the uniform distribution p(x) = 1/M is D(p||p) =
log2M − H(p). The thesis follows from the properties of the KL diver-
gence mentioned above.

4. IfX and Y are two independent random variables, meaning that pX,Y (x, y) =
pX(x)pY (y), the total entropy of the pair X,Y is equal to HX +HY :

HX,Y = −
∑

x,y

p(x, y) log2 pX,Y (x, y) =

= −
∑

x,y

pX(x)pY (y) (log2 pX(x) + log2 pY (y)) = HX +HY(1.11)

5. For any pair of random variables, one has in general HX,Y ≤ HX + HY ,
and this result is immediately generalizable to n variables. (The proof can ⋆
be obtained by using the positivity of the KL divergence D(p1||p2), where
p1 = pX,Y and p2 = pXpY ).

6. Additivity for composite events. Take a finite set of events X , and decom-
pose it into X = X1 ∪ X2, where X1 ∩ X2 = ∅. Call q1 =

∑

x∈X1
p(x)

the probability of X1, and q2 the probability of X2. For each x ∈ X1,
define as usual the conditional probability of x, given that x ∈ X1, by
r1(x) = p(x)/q1 and define similarly r2(x) as the conditional probability
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of x, given that x ∈ X2. Then the total entropy can be written as the sum
of two contributions HX = −∑x∈X p(x) log2 p(x) = H(q) +H(r), where:

H(q) = −q1 log2 q1 − q2 log2 q2 (1.12)

H(r) = −q1
∑

x∈X1

r1(x) log2 r1(x) − q2
∑

x∈X1

r2(x) log2 r2(x) (1.13)

The proof is obvious by just substituting the laws r1 and r2 by their ex-⋆
panded definitions. This property is interpreted as the fact that the average
information associated to the choice of an event x is additive, being the
sum of the relative information H(q) associated to a choice of subset, and
the information H(r) associated to the choice of the event inside the sub-
sets (weighted by the probability of the subsetss). It is the main property
of the entropy, which justifies its use as a measure of information. In fact,
this is a simple example of the so called chain rule for conditional entropy,
which will be further illustrated in Sec. 1.4.

Conversely, these properties together with some hypotheses of continuity and
monotonicity can be used to define axiomatically the entropy.

1.3 Sequences of random variables and entropy rate
{sec:RandomVarSequences}

In many situations of interest one deals with a random process which generates
sequences of random variables {Xt}t∈N, each of them taking values in the
same finite space X . We denote by PN (x1, . . . , xN ) the joint probability dis-
tribution of the first N variables. If A ⊂ {1, . . . , N} is a subset of indices, we
shall denote by A its complement A = {1, . . . , N} \ A and use the notations
xA = {xi, i ∈ A} and xA = {xi, i ∈ A}. The marginal distribution of the
variables in A is obtained by summing PN on the variables in A:

PA(xA) =
∑

xA

PN (x1, . . . , xN ) . (1.14)

Example 1.7 The simplest case is when the Xt’s are independent. This
means that PN (x1, . . . , xN ) = p1(x1)p2(x2) . . . pN (xN ). If all the distributions
pi are identical, equal to p, the variables are independent identically dis-
tributed, which will be abbreviated as iid. The joint distribution is

PN (x1, . . . , xN ) =

N∏

t=1

p(xi) . (1.15)
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Example 1.8 The sequence {Xt}t∈N is said to be a Markov chain if

PN (x1, . . . , xN ) = p1(x1)
N−1∏

t=1

w(xt → xt+1) . (1.16)

Here {p1(x)}x∈X is called the initial state, and {w(x → y)}x,y∈X are the
transition probabilities of the chain. The transition probabilities must be
non-negative and normalized:

∑

y∈X

w(x→ y) = 1 , for any y ∈ X . (1.17)

When we have a sequence of random variables generated by a certain process,
it is intuitively clear that the entropy grows with the number N of variables. This
intuition suggests to define the entropy rate of a sequence {Xt}t∈N as

hX = lim
N→∞

HXN
/N , (1.18)

if the limit exists. The following examples should convince the reader that the
above definition is meaningful.

Example 1.9 If the Xt’s are i.i.d. random variables with distribution
{p(x)}x∈X , the additivity of entropy implies

hX = H(p) = −
∑

x∈X

p(x) log p(x) . (1.19)
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Example 1.10 Let {Xt}t∈N be a Markov chain with initial state {p1(x)}x∈X
and transition probabilities {w(x → y)}x,y∈X . Call {pt(x)}x∈X the marginal
distribution of Xt and assume the following limit to exist independently of the
initial condition:

p∗(x) = lim
t→∞

pt(x) . (1.20)

As we shall see in chapter 4, this turns indeed to be true under quite mild
hypotheses on the transition probabilities {w(x→ y)}x,y∈X . Then it is easy to
show that

hX = −
∑

x,y∈X

p∗(x)w(x→ y) logw(x→ y) . (1.21)

If you imagine for instance that a text in English is generated by picking letters
randomly in the alphabet X , with empirically determined transition probabil-
ities w(x→ y), then Eq. (1.21) gives a first estimate of the entropy of English.
But if you want to generate a text which looks like English, you need a more
general process, for instance one which will generate a new letter xt+1 given the
value of the k previous letters xt, xt−1, ..., xt−k+1, through transition probabil-
ities w(xt, xt−1, ..., xt−k+1 → xt+1). Computing the corresponding entropy
rate is easy. For k = 4 one gets an entropy of 2.8 bits per letter, much smaller
than the trivial upper bound log2 27 (there are 26 letters, plus the space sym-
bols), but many words so generated are still not correct English words. Some
better estimates of the entropy of English, through guessing experiments, give
a number around 1.3.

1.4 Correlated variables and mutual entropy
{se:CorrelatedVariables}

Given two random variables X and Y , taking values in X and Y, we denote their
joint probability distribution as pX,Y (x, y), which is abbreviated as p(x, y), and
the conditional probability distribution for the variable y given x as pY |X(y|x),
abbreviated as p(y|x). The reader should be familiar with Bayes’ classical theo-
rem:

p(y|x) = p(x, y)/p(x) . (1.22)

When the random variablesX and Y are independent, p(y|x) is x-independent.
When the variables are dependent, it is interesting to have a measure on their
degree of dependence: how much information does one obtain on the value of y
if one knows x? The notions of conditional entropy and mutual entropy will be
useful in this respect.

Let us define the conditional entropy HY |X as the entropy of the law
p(y|x), averaged over x:

HY |X ≡ −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log2 p(y|x) . (1.23){Scond_def}
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The total entropy HX,Y ≡ −∑x∈X ,y∈Y p(x, y) log2 p(x, y) of the pair of variables
x, y can be written as the entropy of x plus the conditional entropy of y given x:

HX,Y = HX +HY |X . (1.24)

In the simple case where the two variables are independent, HY |X = HY ,
and HX,Y = HX +HY . One way to measure the correlation of the two variables
is the mutual entropy IX,Y which is defined as:

IX,Y ≡
∑

x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1.25) {Smut_def}

It is related to the conditional entropies by:

IX,Y = HY −HY |X = HX −HX|Y , (1.26)

which shows that IX,Y measures the reduction in the uncertainty of x due to the
knowledge of y, and is symmetric in x, y.

Proposition 1.11 IX,Y ≥ 0. Moreover IX,Y = 0 if and only if X and Y are
independent variables.

Proof: Write −IX,Y = Ex,y log2
p(x)p(y)
p(x,y) . Consider the random variable u =

(x, y) with probability distribution p(x, y). As the logarithm is a concave function
(i.e. -log is a convex function), one and applies Jensen’s inequality (1.6). This
gives the result IX,Y ≥ 0 �

Exercise 1.5 A large group of friends plays the following game (telephone
without cables). The guy number zero chooses a number X0 ∈ {0, 1} with
equal probability and communicates it to the first one without letting the
others hear, and so on. The first guy communicates the number to the second
one, without letting anyone else hear. Call Xn the number communicated from
the n-th to the (n+1)-th guy. Assume that, at each step a guy gets confused and
communicates the wrong number with probability p. How much information
does the n-th person have about the choice of the first one?

We can quantify this information through IX0,Xn
≡ In. A simple calculation

shows that In = 1−H(pn) with pn given by 1− 2pn = (1− 2p)n. In particular,
as n→ ∞

In =
(1 − 2p)2n

2 log 2

[
1 +O((1 − 2p)2n)

]
. (1.27)

The ‘knowledge’ about the original choice decreases exponentially along the
chain.

The mutual entropy gets degraded when data is transmitted or processed.
This is quantified by:
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Proposition 1.12 Data processing inequality.
Consider a Markov chain X → Y → Z (so that the joint probability of the

three varaibles can be written as p1(x)w2(x→ y)w3(y → z)). Then: IX,Z ≤ IX,Y .
In particular, if we apply this result to the case where Z is a function of Y ,
Z = f(Y ), we find that applying f degrades the information: IX,f(Y ) ≤ IX,Y .

Proof: Let us introduce, in general, the mutual entropy of two varaibles con-
ditioned to a third one: IX,Y |Z = HX|Z − HX,(Y Z). The mutual information
between a variable X and a pair of varaibles (Y Z) can be decomposed in a sort
of chain rule: IX,(Y Z) = IX,Z + IX,Y |Z = IX,Y + IX,Z|Y . If we have a Markov
chain X → Y → Z, X and Z are independent when one conditions on the value
of Y , therefore IX,Z|Y = 0. The result follows from the fact that IX,Y |Z ≥ 0. �

1.5 Data compression

Imagine an information source which generates a sequence of symbols X =
{X1, . . . ,XN} taking values in a finite alphabet X . Let us assume a probabilistic
model for the source: this means that the Xi’s are taken to be random variables.
We want to store the information contained in a given realization x = {x1 . . . xN}
of the source in the most compact way.

This is the basic problem of source coding. Apart from being an issue of
utmost practical interest, it is a very instructive subject. It allows in fact to
formalize in a concrete fashion the intuitions of ‘information’ and ‘uncertainty’
which are associated to the definition of entropy. Since entropy will play a crucial
role throughout the book, we present here a little detour into source coding.

1.5.1 Codewords

We first need to formalize what is meant by “storing the information”. We define2

therefore a source code for the random variable X to be a mapping w which
associates to any possible information sequence in XN a string in a reference
alphabet which we shall assume to be {0, 1}:

w : XN→ {0, 1}∗
x 7→ w(x) . (1.28)

Here we used the convention of denoting by {0, 1}∗ the set of binary strings
of arbitrary length. Any binary string which is in the image of w is called a
codeword.

Often the sequence of symbols X1 . . . XN is a part of a longer stream. The
compression of this stream is realized in three steps. First the stream is broken
into blocks of length N . Then each block is encoded separately using w. Finally
the codewords are glued to form a new (hopefully more compact) stream. If
the original stream consisted in the blocks x(1), x(2), . . . , x(r), the output of the

2The expert will notice that here we are restricting our attention to “fixed-to-variable”
codes.
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encoding process will be the concatenation of w(x(1)), . . . , w(x(r)). In general
there is more than one way of parsing this concatenation into codewords, which
may cause troubles to any one willing to recover the compressed data. We shall
therefore require the code w to be such that any concatenation of codewords can
be parsed unambiguously. The mappings w satisfying this property are called
uniquely decodable codes.

Unique decodability is surely satisfied if, for any pair x, x′ ∈ XN , w(x) is
not a prefix of w(x′). If this stronger condition is verified, the code is said to be
instantaneous (see Fig. 1.2). Hereafter we shall focus on instantaneous codes,
since they are both practical and (slightly) simpler to analyze.

Now that we precised how to store information, namely using a source code,
it is useful to introduce some figure of merit for source codes. If lw(x) is the
length of the string w(x), the average length of the code is:

L(w) =
∑

x∈XN

p(x) lw(x) . (1.29) {avlength}

Example 1.13 Take N = 1 and consider a random variable X which takes
values in X = {1, 2, . . . , 8} with probabilities p(1) = 1/2, p(2) = 1/4, p(3) =
1/8, p(4) = 1/16, p(5) = 1/32, p(6) = 1/64, p(7) = 1/128, p(8) = 1/128.
Consider the two codes w1 and w2 defined by the table below

x p(x) w1(x) w2(x)
1 1/2 000 0
2 1/4 001 10
3 1/8 010 110
4 1/16 011 1110
5 1/32 100 11110
6 1/64 101 111110
7 1/128 110 1111110
8 1/128 111 11111110

(1.30)

These two codes are instantaneous. For instance looking at the code w2, the
encoded string 10001101110010 can be parsed in only one way since each symbol
0 ends a codeword. It thus corresponds to the sequence x1 = 2, x2 = 1, x3 =
1, x4 = 3, x5 = 4, x6 = 1, x7 = 2. The average length of code w1 is L(w1) = 3,
the average length of code w2 is L(w2) = 247/128. Notice that w2 achieves a
shorter average length because it assigns the shortest codeword (namely 0) to
the most probable symbol (i.e. 1).
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Fig. 1.2. An instantaneous source code: each codeword is assigned to a node in
a binary tree in such a way that no one among them is the ancestor of another
one. Here the four codewords are framed. {fig_kraft}

Example 1.14 A useful graphical representation of source code is obtained by
drawing a binary tree and associating each codeword to the corresponding node
in the tree. In Fig. 1.2 we represent in this way a source code with |XN | =
4. It is quite easy to recognize that the code is indeed instantaneous. The
codewords, which are framed, are such that no codeword is the ancestor of
any other codeword in the tree. Given a sequence of codewords, parsing is
immediate. For instance the sequence 00111000101001 can be parsed only in
001, 11, 000, 101, 001

1.5.2 Optimal compression and entropy

Suppose to have a ‘complete probabilistic characterization’ of the source you
want to compress. What is the ‘best code’ w for this source? What is the shortest
achievable average length?

This problem was solved (up to minor refinements) by Shannon in his cel-
ebrated 1948 paper, by connecting the best achievable average length to the
entropy of the source. Following Shannon we assume to know the probability
distribution of the source p(x) (this is what ‘complete probabilistic character-
ization’ means). Moreover we interpret ‘best’ as ‘having the shortest average
length’.

{theorem:ShannonSource}
Theorem 1.15 Let L∗N the shortest average length achievable by an instanta-
neous code for X = {X1, . . . ,XN}, and HX the entropy of the same variable.
Then

1. For any N ≥ 1:
HX ≤ L∗N ≤ HX + 1 . (1.31){Shcomp1}

2. If the source has a finite entropy rate h = limN→∞HX/N , then

lim
N→∞

1

N
L∗N = h . (1.32){Shcomp2}

Proof: The basic idea in the proof of Eq. (1.31) is that, if the codewords
were too short, the code wouldn’t be instantaneous. ‘Kraft’s inequality’ makes
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this simple remark more precise. For any instantaneous code w, the lengths lw(x)
satisfy:

∑

x∈XN

2−lw(x) ≤ 1 . (1.33) {kraft}

This fact is easily proved by representing the set of codewords as a set of leaves
on a binary tree (see fig.1.2). Let LM be the length of the longest codeword.
Consider the set of all the 2LM possible vertices in the binary tree which are
at the generation LM , let us call them the ’descendants’. If the information x
is associated with a codeword at generation l (i.e. lw(x) = l), there can be no
other codewords in the branch of the tree rooted on this codeword, because the
code is instantaneous. We ’erase’ the corresponding 2LM−l descendants which
cannot be codewords. The subsets of erased descendants associated with each
codeword are not overlapping. Therefore the total number of erased descendants,
∑

x 2LM−lw(x), must be smaller or equal to the total number of descendants, 2LM .
This establishes Kraft’s inequality.

Conversely, for any set of lengths {l(x)}x∈XN which satisfies the inequality
(1.33) there exist at least a code, whose codewords have the lengths {l(x)}x∈XN .
A possible construction is obtained as follows. Consider the smallest length l(x)
and take the first allowed binary sequence of length l(x) to be the codeword for
x. Repeat this operation with the next shortest length, and so on until you have
exhausted all the codewords. It is easy to show that this procedure is successful
if Eq. (1.33) is satisfied.

The problem is therefore reduced to finding the set of codeword lengths l(x) =
l∗(x) which minimize the average length L =

∑

x p(x)l(x) subject to Kraft’s

inequality (1.33). Supposing first that l(x) are real numbers, this is easily done
with Lagrange multipliers, and leads to l(x) = − log2 p(x). This set of optimal
lengths, which in general cannot be realized because some of the l(x) are not
integers, gives an average length equal to the entropy HX . This gives the lower
bound in (1.31). In order to build a real code with integer lengths, we use

l∗(x) = ⌈− log2 p(x)⌉ . (1.34)

Such a code satisfies Kraft’s inequality, and its average length is less or equal
than HX + 1, proving the upper bound in (1.31).

The second part of the theorem is a straightforward consequence of the first
one. �

The code we have constructed in the proof is often called a Shannon code.
For long strings (N ≫ 1), it gets close to optimal. However it has no reason to be
optimal in general. For instance if only one p(x) is very small, it will code it on
a very long codeword, while shorter codewords are available. It is interesting to
know that, for a given source {X1, . . . ,XN}, there exists an explicit construction
of the optimal code, called Huffman’s code.

At first sight, it may appear that Theorem 1.15, together with the construc-
tion of Shannon codes, completely solves the source coding problem. But this is
far from true, as the following arguments show.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

14 INTRODUCTION TO INFORMATION THEORY

From a computational point of view, the encoding procedure described above
is unpractical. One can build the code once for all, and store it somewhere, but
this requires O(|X |N ) memory. On the other hand, one could reconstruct the
code each time a string requires to be encoded, but this takes O(|X |N ) time.
One can use the same code and be a bit smarter in the encoding procedure, but
this does not improve things dramatically.

From a practical point of view, the construction of a Shannon code requires
an accurate knowledge of the probabilistic law of the source. Suppose now you
want to compress the complete works of Shakespeare. It is exceedingly difficult
to construct a good model for the source ‘Shakespeare’. Even worse: when you
will finally have such a model, it will be of little use to compress Dante or Racine.

Happily, source coding has made tremendous progresses in both directions in
the last half century.

1.6 Data transmission{sec:DataTransmission}

In the previous pages we considered the problem of encoding some information
in a string of symbols (we used bits, but any finite alphabet is equally good).
Suppose now we want to communicate this string. When the string is transmit-
ted, it may be corrupted by some noise, which depends on the physical device
used in the transmission. One can reduce this problem by adding redundancy to
the string. The redundancy is to be used to correct (some) transmission errors, in
the same way as redundancy in the English language can be used to correct some
of the typos in this book. This is the field of channel coding. A central result
in information theory, again due to Shannon’s pioneering work in 1948, relates
the level of redundancy to the maximal level of noise that can be tolerated for
error-free transmission. The entropy again plays a key role in this result. This
is not surprising in view of the symmetry between the two problems. In data
compression, one wants to reduce the redundancy of the data, and the entropy
gives a measure of the ultimate possible reduction. In data transmission, one
wants to add some well tailored redundancy to the data.

1.6.1 Communication channels

The typical flowchart of a communication system is shown in Fig. 1.3. It applies
to situations as diverse as communication between the earth and a satellite, the
cellular phones, or storage within the hard disk of your computer. Alice wants
to send a message m to Bob. Let us assume that m is a M bit sequence. This
message is first encoded into a longer one, a N bit message denoted by x with
N > M , where the added bits will provide the redundancy used to correct for
transmission errors. The encoder is a map from {0, 1}M to {0, 1}N . The encoded
message is sent through the communication channel. The output of the channel
is a message y. In a noiseless channel, one would simply have y = x. In a realistic
channel, y is in general a string of symbols different from x. Notice that y is
not even necessarily a string of bits. The channel will be described by the
transition probability Q(y|x). This is the probability that the received signal is
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Encoder Decoder
Channel

Transmission

m x y m’

Original 
message
M bits

message
Received Encoded

message
N bits

Estimate of the
original message

M bits

Fig. 1.3. Typical flowchart of a communication device. {fig_channel}

y, conditional to the transmitted signal being x. Different physical channels will
be described by different Q(y|x) functions. The decoder takes the message y and
deduces from it an estimate m′ of the sent message.

Exercise 1.6 Consider the following example of a channel with insertions.
When a bit x is fed into the channel, either x or x0 are received with equal
probability 1/2. Suppose that you send the string 111110. The string 1111100

will be received with probability 2 · 1/64 (the same output can be produced by
an error either on the 5th or on the 6th digit). Notice that the output of this
channel is a bit string which is always longer or equal to the transmitted one.

A simple code for this channel is easily constructed: use the string 100 for
each 0 in the original message and 1100 for each 1. Then for instance you have
the encoding

01101 7→ 100110011001001100 . (1.35)

The reader is invited to define a decoding algorithm and verify its effectiveness.

Hereafter we shall consider memoryless channels. In this case, for any input
x = (x1, ..., xN ), the output message is a string of N letters, y = (y1, ..., yN ), from
an alphabet Y ∋ yi (not necessarily binary). In memoryless channels, the noise
acts independently on each bit of the input. This means that the conditional
probability Q(y|x) factorizes:

Q(y|x) =

N∏

i=1

Q(yi|xi) , (1.36)

and the transition probability Q(yi|xi) is i independent.

Example 1.16 Binary symmetric channel (BSC). The input xi and the
output yi are both in {0, 1}. The channel is characterized by one number, the
probability p that an input bit is transmitted as the opposite bit. It is customary
to represent it by the diagram of Fig. 1.4.
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Fig. 1.4. Three communication channels. Left: the binary symmetric channel.
An error in the transmission, in which the output bit is the opposite of the input
one, occurs with probability p. Middle: the binary erasure channel. An error in
the transmission, signaled by the output e, occurs with probability p. Right: the
Z channel. An error occurs with probability p whenever a 1 is transmitted. {fig_bsc}

Example 1.17 Binary erasure channel (BEC). In this case some of the
input bits are erased instead of being corrupted: xi is still in {0, 1}, but yi
now belongs to {0, 1, e}, where e means erased. In the symmetric case, this
channel is described by a single number, the probability p that a bit is erased,
see Fig. 1.4.

Example 1.18 Z channel. In this case the output alphabet is again {0, 1}.
Moreover, a 0 is always transmitted correctly, while a 1 becomes a 0 with
probability p. The name of this channel come from its graphical representation,
see Fig. 1.4.

A very important characteristics of a channel is the channel capacity C. It
is defined in terms of the mutual entropy IXY of the variables X (the bit which
was sent) and Y (the signal which was received), through:

C = max
p(x)

IXY = max
p(x)

∑

x∈X ,y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
(1.37){capadef}

We recall that I measures the reduction on the uncertainty of x due to the
knowledge of y. The capacity C gives a measure of how faithful a channel can
be: If the output of the channel is pure noise, x and y are uncorrelated and
C = 0. At the other extreme if y = f(x) is known for sure, given x, then
C = max{p(x)}H(p) = 1 bit. The interest of the capacity will become clear in
section 1.6.3 with Shannon’s coding theorem which shows that C characterizes
the amount of information which can be transmitted faithfully in a channel.
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Example 1.19 Consider a binary symmetric channel with flip probability p.
Let us call q the probability that the source sends x = 0, and 1 − q the prob-
ability of x = 1. It is easy to show that the mutual information in Eq. (1.37)
is maximized when zeros and ones are transmitted with equal probability (i.e.
when q = 1/2).

Using the expression (1.37), we get, C = 1 −H(p) bits, where H(p) is the
entropy of Bernouilli’s process with parameter p (plotted in Fig. 1.1).

Example 1.20 Consider now the binary erasure channel with error probabil-
ity p. The same argument as above applies. It is therefore easy to get C = 1−p.

Exercise 1.7 Compute the capacity of the Z channel.

1.6.2 Error correcting codes
{sec:ECC}

The only ingredient which we still need to specify in order to have a complete
definition of the channel coding problem, is the behavior of the information
source. We shall assume it to produce a sequence of uncorrelated unbiased bits.
This may seem at first a very crude model for any real information source.
Surprisingly, Shannon’s source-channel separation theorem assures that there is
indeed no loss of generality in treating this case.

The sequence of bits produced by the source is divided in blocksm1,m2,m3, . . .
of length M . The encoding is a mapping from {0, 1}M ∋ m to {0, 1}N , with
N ≥M . Each possible M -bit message m is mapped to a codeword x(m) which
is a point in the N -dimensional unit hypercube. The codeword length N is also
called the blocklength. There are 2M codewords, and the set of all possible
codewords is called the codebook. When the message is transmitted, the code-
word x is corrupted to y ∈ YN with probability Q(y|x) =

∏N
i=1Q(yi|xi). The

output alphabet Y depends on the channel. The decoding is a mapping from
YN to {0, 1}M which takes the received message y ∈ YN and maps it to one of

the possible original messages m′ = d(y) ∈ {0, 1}M .
An error correcting code is defined by the set of two functions, the encod-

ing x(m) and the decoding d(y). The ratio

R =
M

N
(1.38)

of the original number of bits to the transmitted number of bits is called the rate
of the code. The rate is a measure of the redundancy of the code. The smaller
the rate, the more redundancy is added to the code, and the more errors one
should be able to correct.

The block error probability of a code on the input message m, denoted
by PB(m), is given by the probability that the decoded messages differs from the
one which was sent:
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PB(m) =
∑

y

Q(y|x(m)) I(d(y) 6= m) . (1.39)

Knowing thee probability for each possible transmitted message is an exceedingly
detailed characterization of the code performances. One can therefore introduce
a maximal block error probability as

Pmax
B ≡ max

m∈{0,1}M
PB(m) . (1.40)

This corresponds to characterizing the code by its ‘worst case’ performances.
A more optimistic point of view consists in averaging over the input messages.
Since we assumed all of them to be equiprobable, we introduce the average
block error probability as

Pav
B ≡ 1

2M

∑

m∈{0,1}M

PB(m) . (1.41)

Since this is a very common figure of merit for error correcting codes, we shall call
it block error probability and use the symbol PB without further specification
hereafter.
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Example 1.21 Repetition code. Consider a BSC which transmits a wrong
bit with probability p. A simple code consists in repeating k times each bit,
with k odd. Formally we have M = 1, N = k and

x(0) = 000 . . . 00
︸ ︷︷ ︸

k

, (1.42)

x(1) = 111 . . . 11
︸ ︷︷ ︸

k

(1.43)

For instance with k = 3, the original stream 0110001 is encoded as
00011111100000 0000111. A possible decoder consists in parsing the received
sequence in groups of k bits, and finding the message m′ from a majority
rule among the k bits. In our example with k = 3, if the received group
of three bits is 111 or 110 or any permutation, the corresponding bit is as-
signed to 1, otherwise it is assigned to 0. For instance if the channel output is
000101111011000010111, the decoding gives 0111001.

This k = 3 repetition code has rate R = M/N = 1/3. It is a simple exercise
to see that the block error probability is PB = p3 + 3p2(1 − p) independently
of the information bit.

Clearly the k = 3 repetition code is able to correct mistakes induced from
the transmission only when there is at most one mistake per group of three
bits. Therefore the block error probability stays finite at any nonzero value of
the noise. In order to improve the performances of these codes, k must increase.
The error probability for a general k is

PB =

k∑

r=⌈k/2⌉

(
k
r

)

(1 − p)k−rpr . (1.44)

Notice that for any finite k, p > 0 it stays finite. In order to have PB → 0
we must consider k → ∞. Since the rate is R = 1/k, the price to pay for a
vanishing block error probability is a vanishing communication rate!

Happily enough much better codes exist as we will see below.

1.6.3 The channel coding theorem
{sec:channeltheorem}

Consider a communication device in which the channel capacity (1.37) is C. In
his seminal 1948 paper, Shannon proved the following theorem.

{theorem:Shannon_channel}
Theorem 1.22 For every rate R < C, there exists a sequence of codes {CN},
of blocklength N , rate RN , and block error probability PB,N , such that RN → R
and PB,N → 0 as N → ∞. Conversely, if for a sequence of codes {CN}, one has
RN → R and PB,N → 0 as N → ∞, then R < C.

In practice, for long messages (i.e. largeN), reliable communication is possible
if and only if the communication rate stays below capacity. We shall not give the
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proof here but differ it to Chapters 6 and ???. Here we keep to some qualitative
comments and provide the intuitive idea underlying this result.

First of all, the result is rather surprising when one meets it for the first
time. As we saw on the example of repetition codes above, simple minded codes
typically have a finite error probability, for any non-vanishing noise strength.
Shannon’s theorem establishes that it is possible to achieve zero error probability,
while keeping the communication rate finite.

One can get an intuitive understanding of the role of the capacity through a
qualitative reasoning, which uses the fact that a random variable with entropy
H ‘typically’ takes 2H values. For a given codeword x(m) ∈ {0, 1}N , the channel
output y is a random variable with an entropy Hy|x = NHy|x. There exist of

order 2NHy|x such outputs. For a perfect decoding, one needs a decoding function
d(y) that maps each of them to the original message m. Globally, the typical

number of possible outputs is 2NHy , therefore one can send at most 2N(Hy−Hy|x)

codewords. In order to have zero maximal error probability, one needs to be able
to send all the 2M = 2NR codewords. This is possible only if R < Hy−Hy|x < C.

Notes

There are many textbooks introducing to probability and to information theory.
A standard probability textbook is the one of Feller (Feller, 1968). The original
Shannon paper (Shannon, 1948) is universally recognized as the foundation of
information theory. A very nice modern introduction to the subject is the book
by Cover and Thomas (Cover and Thomas, 1991). The reader may find there a
description of Huffman codes which did not treat in the present Chapter, as well
as more advanced topics in source coding.

We did not show that the six properties listed in Sec. 1.2 provide in fact an
alternative (axiomatic) definition of entropy. The interested reader is referred to
(Csiszár and Körner, 1981). An advanced information theory book with much
space devoted to coding theory is (Gallager, 1968). The recent (and very rich)
book by MacKay (MacKay, 2002) discusses the relations with statistical inference
and machine learning.

The information-theoretic definition of entropy has been used in many con-
texts. It can be taken as a founding concept in statistical mechanics. Such an
approach is discussed in (Balian, 1992).
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{chap:StatisticalPhysicsIntroduction

One of the greatest achievement of science has been to realize that matter is
made out of a small number of simple elementary components. This result seems
to be in striking contrast with our experience. Both at a simply perceptual level
and with more refined scientific experience, we come in touch with an ever-
growing variety of states of the matter with disparate properties. The ambitious
purpose of statistical physics (and, more generally, of a large branch of condensed
matter physics) is to understand this variety. It aims at explaining how complex
behaviors can emerge when large numbers of identical elementary components
are allowed to interact.

We have, for instance, experience of water in three different states (solid,
liquid and gaseous). Water molecules and their interactions do not change when
passing from one state to the other. Understanding how the same interactions
can result in qualitatively different macroscopic states, and what rules the change
of state, is a central topic of statistical physics.

The foundations of statistical physics rely on two important steps. The first
one consists in passing form the deterministic laws of physics, like Newton’s law,
to a probabilistic description. The idea is that a precise knowledge of the motion
of each molecule in a macroscopic system is inessential to the understanding of
the system as a whole: instead, one can postulate that the microscopic dynam-
ics, because of its chaoticity, allows for a purely probabilistic description. The
detailed justification of this basic step has been achieved only in a small num-
ber of concrete cases. Here we shall bypass any attempt at such a justification:
we directly adopt a purely probabilistic point of view, as a basic postulate of
statistical physics.

The second step starts from the probabilistic description and recovers deter-
minism at a macroscopic level by some sort of law of large numbers. We all know
that water boils at 100o Celsius (at atmospheric pressure) or that its density
(at 25o Celsius and atmospheric pressures) is 1 gr/cm3. The regularity of these
phenomena is not related to the deterministic laws which rule the motions of
water molecule. It is instead the consequence of the fact that, because of the
large number of particles involved in any macroscopic system, the fluctuations
are “averaged out”. We shall discuss this kind of phenomena in Sec. 2.4 and,
more mathematically, in Ch. 4.

The purpose of this Chapter is to introduce the most basic concepts of this
discipline, for an audience of non-physicists with a mathematical background.
We adopt a somewhat restrictive point of view, which keeps to classical (as
opposed to quantum) statistical physics, and basically describes it as a branch

21
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of probability theory (Secs. 2.1 to 2.3). In Section 2.4 we focus on large systems,
and stress that the statistical physics approach becomes particularly meaningful
in this regime. Theoretical statistical physics often deal with highly idealized
mathematical models of real materials. The most interesting (and challenging)
task is in fact to understand the qualitative behavior of such systems. With this
aim, one can discard any “irrelevant” microscopic detail from the mathematical
description of the model. This modelization procedure is exemplified on the case
study of ferromagnetism through the introduction of the Ising model in Sec. 2.5.
It is fair to say that the theoretical understanding of Ising ferromagnets is quite
advanced. The situation is by far more challenging when Ising spin glasses are
considered. Section 2.6 presents a rapid preview of this fascinating subject.

2.1 The Boltzmann distribution{se:Boltzmann}

The basic ingredients for a probabilistic description of a physical system are:

• A space of configurations X . One should think of x ∈ X as giving
a complete microscopic determination of the state of the system under
consideration. We are not interested in defining the most general mathe-
matical structure for X such that a statistical physics formalism can be
constructed. Throughout this book we will in fact consider only two very
simple types of configuration spaces: (i) finite sets, and (ii) smooth, com-
pact, finite-dimensional manifolds. If the system contains N ‘particles’, the
configuration space is a product space:

XN = X × · · · × X
︸ ︷︷ ︸

N

. (2.1)

The configuration of the system has the form x = (x1, . . . , xN ). Each co-
ordinate xi ∈ X is meant to represent the state (position, orientation, etc)
of one of the particles.
But for a few examples, we shall focus on configuration spaces of type (i).
We will therefore adopt a discrete-space notation for X . The generaliza-
tion to continuous configuration spaces is in most cases intuitively clear
(although it may present some technical difficulties).

• A set of observables, which are real-valued functions on the configuration
space O : x 7→ O(x). If X is a manifold, we shall limit ourselves to observ-
ables which are smooth functions of the configuration x. Observables are
physical quantities which can be measured through an experiment (at least
in principle).

• Among all the observables, a special role is played by the energy function
E(x). When the system is a N particle system, the energy function gen-
erally takes the form of sums of terms involving few particles. An energy
function of the form:

E(x) =

N∑

i=1

Ei(xi) (2.2)
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corresponds to a non-interacting system. An energy of the form

E(x) =
∑

i1,..,ik

Ei1,..,ik(xi1 , ..., xik) (2.3)

is called a k-body interaction. In general, the energy will contain some
pieces involving k-body interactions, with k ∈ {1, 2, ...,K}. An important
feature of real physical systems is that K is never a large number (usually
K = 2 or 3), even when the number of particles N is very large. The same
property holds for all measurable observables. However, for the general
mathematical formulation which we will use here, the energy can be any
real valued function on X .

Once the configuration space X and the energy function are fixed, the prob-
ability pβ(x) for the system to be found in the configuration x is given by the
Boltzmann distribution:

pβ(x) =
1

Z(β)
e−βE(x) ; Z(β) =

∑

x∈X

e−βE(x) . (2.4)

The real parameter T = 1/β is the temperature (and one refers to β as the
inverse temperature)3. The normalization constant Z(β) is called the partition
function. Notice that Eq. (2.4) defines indeed the density of the Boltzmann
distribution with respect to some reference measure. The reference measure is
usually the counting measure if X is discrete or the Lebesgue measure if X
is continuous. It is customary to denote the expectation value with respect to
Boltzmann’s measure by brackets: the expectation value 〈O(x)〉 of an observable
O(x), also called its Boltzmann average is given by:

〈O〉 =
∑

x∈X

pβ(x)O(x) =
1

Z(β)

∑

x∈X

e−βE(x)O(x) . (2.5)

3In most books of statistical physics, the temperature is defined as T = 1/(kBβ) where
kB is a constant called Boltzmann’s constant, whose value is determined by historical reasons.
Here we adopt the simple choice kB = 1 which amounts to a special choice of the temperature
scale
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Example 2.1 One intrinsic property of elementary particles is their spin. For
‘spin 1/2’ particles, the spin σ takes only two values: σ = ±1. A localized spin
1/2 particle, in which the only degree of freedom is the spin, is described by
X = {+1,−1}, and is called an Ising spin. The energy of the spin in the state
σ ∈ X in a magnetic field B is

E(σ) = −B σ (2.6) {eq:Ising_energy_1spin}

Boltzmann’s probability of finding the spin in the state σ is

pβ(σ) =
1

Z(β)
e−βE(σ) Z(β) = e−βB + eβB = 2 cosh(βB) . (2.7) {eq:boltz_spin}

The average value of the spin, called the magnetization is

〈σ〉 =
∑

σ∈{1,−1}

pβ(σ) σ = tanh(βB) . (2.8) {eq:mag_tanh_beta_B}

At high temperatures, T ≫ |B|, the magnetization is small. At low temper-
atures, the magnetization its close to its maximal value, 〈σ〉 = 1 if B > 0.
Section 2.5 will discuss the behaviors of many Ising spins, with some more
complicated energy functions.

Example 2.2 Some spin variables can have a larger space of possible values.
For instance a Potts spin with q states takes values in X = {1, 2, ..., q}. In
presence of a magnetic field of intensity h pointing in direction r ∈ {1, .., q},
the energy of the Potts spin is

E(σ) = −B δσ,r . (2.9)

In this case, the average value of the spin in the direction of the field is

〈δσ,r〉 =
exp(βB)

exp(βB) + (q − 1)
. (2.10)
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Example 2.3 Let us consider a single water molecule inside a closed container,
for instance, inside a bottle. A water molecule H2O is already a complicated
object. In a first approximation, we can neglect its structure and model the
molecule as a point inside the bottle. The space of configurations reduces then
to:

X = BOTTLE ⊂ R
3 , (2.11)

where we denoted by BOTTLE the region of R
3 delimited by the container. Notice

that this description is not very accurate at a microscopic level.
The description of the precise form of the bottle can be quite complex. On

the other hand, it is a good approximation to assume that all positions of the
molecule are equiprobable: the energy is independent of the particle’s position
x ∈ BOTTLE. One has then:

p(x) =
1

Z
, Z = |X | , (2.12)

and the Boltzmann average of the particle’s position, 〈x〉, is the barycentre of
the bottle.
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Example 2.4 In assuming that all the configurations of the previous example
are equiprobable, we neglected the effect of gravity on the water molecule. In
the presence of gravity our water molecule at position x has an energy:

E(x) = w he(x) , (2.13)

where he(x) is the height corresponding to the position x and w is a positive
constant, determined by terrestrial attraction, which is proportional to the
mass of the molecule. Given two positions x and y in the bottle, the ratio of
the probabilities to find the particle at these positions is

pβ(x)

pβ(y)
= exp{−βw[he(x) − he(y)]} (2.14)

For a water molecule at a room temperature of 20 degrees Celsius (T = 293
degrees Kelvin), one has βw ≈ 7×10−5 m−1. Given a point x at the bottom of
the bottle and y at a height of 20 cm, the probability to find a water molecule
‘near’ x is approximatively 1.000014 times larger than the probability to find it
‘near’ y. For a tobacco-mosaic virus, which is about 2× 106 times heavier than
a water molecule, the ratio is pβ(x)/pβ(y) ≈ 1.4× 1012 which is very large. For
a grain of sand the ratio is so large that one never observes it floating around y.
Notice that, while these ratios of probability densities are easy to compute, the
partition function and therefore the absolute values of the probability densities
can be much more complicated to estimate, depending on the shape of the
bottle.

Example 2.5 In many important cases, we are given the space of configura-
tions X and a stochastic dynamics defined on it. The most interesting probabil-
ity distribution for such a system is the stationary state pst(x) (we assume that
it is unique). For sake of simplicity, we can consider a finite space X and a dis-
crete time Markov chain with transition probabilities {w(x→ y)} (in Chapter
4 we shall recall some basic definitions concerning Markov chains). It happens
sometimes that the transition rates satisfy, for any couple of configurations
x, y ∈ X , the relation

f(x)w(x→ y) = f(y)w(y → x) , (2.15)

for some positive function f(x). As we shall see in Chapter 4, when this condi-
tion, called the detailed balance, is satisfied (together with a couple of other
technical conditions), the stationary state has the Boltzmann form (2.4) with
e−βE(x) = f(x).
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Exercise 2.1 As a particular realization of the above example, consider an
8 × 8 chessboard and a special piece sitting on it. At any time step the piece
will stay still (with probability 1/2) or move randomly to one of the neighboring
positions (with probability 1/2). Does this process satisfy the condition (2.15)?
Which positions on the chessboard have lower (higher) “energy”? Compute the
partition function.

From a purely probabilistic point of view, one can wonder why one bothers
to decompose the distribution pβ(x) into the two factors e−βE(x) and 1/Z(β). Of
course the motivations for writing the Boltzmann factor e−βE(x) in exponential
form come essentially from physics, where one knows (either exactly or within
some level of approximation) the form of the energy. This also justifies the use
of the inverse temperature β (after all, one could always redefine the energy
function in such a way to set β = 1).

However, it is important to stress that, even if we adopt a mathematical view-
point, and if we are interested in a particular distribution p(x) which corresponds
to a particular value of the temperature, it is often illuminating to embed it into
a one-parameter family as is done in the Boltzmann expression (2.4). Indeed,
(2.4) interpolates smoothly between several interesting situations. As β → 0
(high-temperature limit), one recovers the flat probability distribution

lim
β→0

pβ(x) =
1

|X | . (2.16)

Both the probabilities pβ(x) and the observables expectation values 〈O(x)〉 can
be expressed as convergent Taylor expansions around β = 0. For small β the
Boltzmann distribution can be thought as a “softening” of the original one.

In the limit β → ∞ (low-temperature limit), the Boltzmann distribution
concentrates over the global maxima of the original one. More precisely, one says
x0 ∈ X to be a ground state if E(x) ≥ E(x0) for any x ∈ X . The minimum
value of the energy E0 = E(x0) is called the ground state energy. We will
denote the set of ground states as X0. It is elementary to show that

lim
β→∞

pβ(x) =
1

|X0|
I(x ∈ X0) , (2.17)

where I(x ∈ X0) = 1 if x ∈ X0 and I(x ∈ X0) = 0 otherwise. The above behavior
is summarized in physicists jargon by saying that, at low temperature, “low
energy configurations dominate” the behavior of the system.

2.2 Thermodynamic potentials
{se:Potentials}

Several properties of the Boltzmann distribution (2.4) are conveniently summa-
rized through the thermodynamic potentials. These are functions of the temper-
ature 1/β and of the various parameters defining the energy E(x). The most
important thermodynamic potential is the free energy:
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F (β) = − 1

β
logZ(β) , (2.18)

where Z(β) is the partition function already defined in Eq. (2.4). The factor −1/β
in Eq. (2.18) is due essentially to historical reasons. In calculations it is sometimes
more convenient to use the free entropy4 Φ(β) = −βF (β) = logZ(β).

Two more thermodynamic potentials are derived from the free energy: the
internal energy U(β) and the canonical entropy S(β):

U(β) =
∂

∂β
(βF (β)) , S(β) = β2 ∂F (β)

∂β
. (2.19)

By direct computation one obtains the following identities concerning the po-
tentials defined so far:

F (β) = U(β) − 1

β
S(β) = − 1

β
Φ(β) , (2.20)

U(β) = 〈E(x)〉 , (2.21)

S(β) = −
∑

x

pβ(x) log pβ(x) , (2.22)

−∂
2

∂β2
(βF (β)) = 〈E(x)2〉 − 〈E(x)〉2 . (2.23)

Equation (2.22) can be rephrased by saying that the canonical entropy is the
Shannon entropy of the Boltzmann distribution, as we defined it in Ch. 1. It
implies that S(β) ≥ 0. Equation (2.23) implies that the free entropy is a con-
vex function of the temperature. Finally, Eq. (2.21) justifies the name “internal
energy” for U(β).

In order to have some intuition of the content of these definitions, let us
reconsider the high- and low-temperature limits already treated in the previous
Section. In the high-temperature limit, β → 0, one finds

F (β) = − 1

β
log |X | + 〈E(x)〉0 + Θ(β) , (2.24)

U(β) = 〈E(x)〉0 + Θ(β) , (2.25)

S(β) = log |X | + Θ(β) . (2.26)

(The symbol Θ means ’of the order of’; the precise definition is given in Appendix
). The interpretation of these formulae is straightforward. At high temperature{ch:Notation}
the system can be found in any possible configuration with similar probabilities
(the probabilities being exactly equal when β = 0). The entropy counts the
number of possible configurations. The internal energy is just the average value
of the energy over the configurations with flat probability distribution.

4Unlike the other potentials, there is no universally accepted name for Φ(β); because this
potential is very useful, we adopt for it the name ‘free entropy’
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Fig. 2.1. Thermodynamic potentials for a two-level system with ǫ1 = −1,
ǫ2 = +1 as a function of the temperature T = 1/β. {fig:twolevel}

While the high temperature expansions (2.24)–(2.26) have the same form
both for a discrete and a continuous configuration space X , in the low tempera-
ture case, we must be more careful. If X is finite we can meaningfully define the
energy gap ∆E > 0 as follows (recall that we denoted by E0 the ground-state
energy)

∆E = min{E(y) − E0 : y ∈ X\X0} . (2.27)

With this definition we get

F (β) = E0 −
1

β
log |X0| + Θ(e−β∆E) , (2.28)

E(β) = E0 + Θ(e−β∆E) , (2.29)

S(β) = log |X0| + Θ(e−β∆E) . (2.30)

The interpretation is that, at low temperature, the system is found with equal
probability in any of the ground states, and nowhere else. Once again the entropy
counts the number of available configurations and the internal energy is the
average of their energies (which coincide with the ground state).
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Exercise 2.2 A two level system. This is the simplest non-trivial example:
X = {1, 2}, E(1) = ǫ1, E(2) = ǫ2. Without loss of generality we assume
ǫ1 < ǫ2. It can be used as a mathematical model for many physical systems,
like the spin 1/2 particle discussed above.

Derive the following results for the thermodynamic potentials (∆ = ǫ2 − ǫ1
is the energy gap):

F (β) = ǫ1 −
1

β
log(1 + e−β∆) , (2.31)

U(β) = ǫ1 +
e−β∆

1 + e−β∆
∆ , (2.32)

S(β) =
e−β∆

1 + e−β∆
β∆ + log(1 + e−β∆) . (2.33)

The behavior of these functions is presented in Fig. 2.1. The reader can work
out the asymptotics, and check the general high and low temperature behaviors
given above.
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Exercise 2.3 We come back to the example of the previous section: one water
molecule, modeled as a point, in a bottle. Moreover, we consider the case of a
cylindric bottle of base B ⊂ R

2 (surface |B|) and height d.
Using the energy function (2.13), derive the following explicit expressions

for the thermodynamic potentials:

F (β) = − 1

β
log |B| − 1

β
log

1 − e−βwd

βw
, (2.34)

U(β) =
1

β
− wd

eβwd − 1
, (2.35)

S(β) = log |Bd| + 1 − βwd

eβwd − 1
− log

(
βwd

1 − e−βwd

)

. (2.36)

Notice that the internal energy formula can be used to compute the average
height of the molecule 〈he(x)〉 = U(β)/w. This is a consequence of the defini-
tion of the energy, cf. Eq. (2.13) and of Eq. (2.21). Plugging in the correct w
constant, one may find that the average height descends below 49.99% of the
bottle height d = 20 cm only when the temperature is below 3.2oK.

Using the expressions (2.34)–(2.36) one obtains the low-temperature expan-
sions for the same quantities:

F (β) = − 1

β
log

( |B|
βw

)

+ Θ(e−βwd) , (2.37)

U(β) =
1

β
+ Θ(e−βwd) , (2.38)

S(β) = log

( |B|e
βw

)

+ Θ(e−βwd) . (2.39)

In this case X is continuous, and the energy has no gap. But these results
can be understood as follows: at low temperature the molecule is confined to
a layer of height of order 1/(βw) above the bottom of the bottle. It occupies
therefore a volume of size |B|/(βw). Its entropy is approximatively given by
the logarithm of such a volume.
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Exercise 2.4 Let us reconsider the above example and assume the bottle to
have a different shape, for instance a sphere of radius R. In this case it is
difficult to compute explicit expressions for the thermodynamic potentials but
one can easily compute the low-temperature expansions. For the entropy one
gets at large β:

S(β) = log

(
2πe2R

β2w2

)

+ Θ(1/β) . (2.40)

The reader should try understand the difference between this result and Eq.
(2.39) and provide an intuitive explanation as in the previous example. Physi-
cists say that the low-temperature thermodynamic potentials reveal the “low-
energy structure” of the system.

2.3 The fluctuation dissipation relations{se:free_energy}
It often happens that the energy function depends smoothly upon some real
parameters. They can be related to the experimental conditions under which
a physical system is studied, or to some fundamental physical quantity. For
instance, the energy of a water molecule in the gravitational field, cf. Eq. (2.13),
depends upon the weight w of the molecule itself. Although this is a constant
number in the physical world, it is useful, in the theoretical treatment, to consider
it as an adjustable parameter.

It is therefore interesting to consider an energy function Eλ(x) which depends
smoothly upon some parameter λ and admit the following Taylor expansion in
the neighborhood of λ = λ0:

Eλ(x) = Eλ0
(x) + (λ− λ0)

∂E

∂λ

∣
∣
∣
∣
λ0

(x) +O((λ− λ0)
2) . (2.41)

The dependence of the free energy and of other thermodynamic potentials
upon λ in the neighborhood of λ0 is easily related to the explicit dependence of
the energy function itself. Let us consider the partition function, and expand it
to first order in λ− λ0:

Z(λ) =
∑

x

exp

(

−β
[

Eλ0
(x) + (λ− λ0)

∂E

∂λ

∣
∣
∣
∣
λ0

(x) +O((λ− λ0)
2)

])

= Z(λ0)

[

1 − β(λ− λ0)〈
∂E

∂λ

∣
∣
∣
∣
λ0

〉0 +O((λ− λ0)
2)

]

(2.42)

where we denoted by 〈·〉0 the expectation with respect to the Boltzmann distri-
bution at λ = λ0.

This shows that the free entropy behaves as:

∂Φ

∂λ

∣
∣
∣
∣
λ0

= −β 〈 ∂E

∂λ

∣
∣
∣
∣
λ0

〉0 , (2.43)
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One can also consider the λ dependence of the expectation value of a generic
observable A(x). Using again the Taylor expansion one finds that

∂〈A〉λ
∂λ

∣
∣
∣
∣
λ0

= −β 〈A ;
∂E

∂λ

∣
∣
∣
∣
λ0

〉0 . (2.44)

where we denoted by 〈A;B〉 the connected correlation function: 〈A;B〉 =
〈AB〉 − 〈A〉〈B〉. A particular example of this relation was given in Eq. (2.23).

The result (2.44) has important practical consequences and many general-
izations. Imagine you have an experimental apparatus that allows you to tune
some parameter λ (for instance the pressure of a gas, or the magnetic or electric
field acting on some material) and to monitor the value of the observable A(x)
(the volume of the gas, the polarization or magnetization of the material). The
quantity on the left-hand side of Eq. (2.44) is the response of the system to an
infinitesimal variation of the tunable parameter. On the right-hand side, we find
some correlation function within the “unperturbed” system. One possible appli-
cation is to measure correlations within a system by monitoring its response to
an external perturbation. Such a relation between a correlation and a response
is called a fluctuation dissipation relation.

2.4 The thermodynamic limit
{se:Thermodynamic}

The main purpose of statistical physics is to understand the macroscopic be-
havior of a large number, N ≫ 1, of simple components (atoms, molecules, etc)
when they are brought together.

To be concrete, let us consider a few drops of water in a bottle. A configuration
of the system is given by the positions and orientations of all the H2O molecules
inside the bottle. In this case X is the set of positions and orientations of a single
molecule, and N is typically of order 1023 (more precisely 18 gr of water contain
approximatively 6 ·1023 molecules). The sheer magnitude of such a number leads
physicists to focus on the N → ∞ limit, also called the thermodynamic limit.

As shown by the examples below, for large N the thermodynamic potentials
are often proportional to N . One is thus lead to introduce the intensive ther-
modynamic potentials as follows. Let us denote by FN (β), UN (β), SN (β) the
free energy, internal energy and canonical entropy for a system withN ‘particles’.
The free energy density is defined by

f(β) = lim
N→∞

FN (β)/N , (2.45)

if the limit exists 5. One defines analogously the energy density u(β) and the
entropy density s(β).

The free energy FN (β), is, quite generally, an analytic function of β in a
neighborhood of the real β axis. This is a consequence of the fact that Z(β)

5The limit usually exist, at least if the forces between particles decrease fast enough at large
inter-particle distances
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is analytic throughout the entire β plane, and strictly positive for real β’s. A
question of great interest is whether analyticity is preserved in the thermody-
namic limit (2.45), under the assumption that the limit exists. Whenever the free
energy density f(β) is non-analytic, one says that a phase transition occurs.
Since the free entropy density φ(β) = −βf(β) is convex, the free energy density
is necessarily continuous whenever it exists.

In the simplest cases the non-analyticities occur at isolated points. Let βc be
such a point. Two particular type of singularities occur frequently:

• The free energy density is continuous, but its derivative with respect to
β is discontinuous at βc. This singularity is named a first order phase
transition.

• The free energy and its first derivative are continuous, but the second
derivative is discontinuous at βc. This is called a second order phase
transition.

Higher order phase transitions can be defined as well on the same line.
Apart from being interesting mathematical phenomena, phase transitions

correspond to qualitative changes in the underlying physical system. For instance
the transition from water to vapor at 100oC at normal atmospheric pressure is
modeled mathematically as a first order phase transition in the above sense. A
great part of this book will be devoted to the study of phase transitions in many
different systems, where the interacting ‘particles’ can be very diverse objects
like information bits or occupation numbers on the vertices of a graph.

WhenN grows, the volume of the configuration space increases exponentially:
|XN | = |X |N . Of course, not all the configurations are equally important under
the Boltzmann distribution: lowest energy configurations have greater proba-
bility. What is important is therefore the number of configurations at a given
energy. This information is encoded in the energy spectrum of the system:

N∆(E) = |Ω∆(E)| ; Ω∆(E) ≡ {x ∈ XN : E ≤ E(x) < E + ∆} . (2.46)

In many systems of interest, the energy spectrum diverges exponentially as N →
∞, if the energy is scaled linearly with N . More precisely, there exist a function
s(e) such that, given two fixed numbers e and δ > 0,

lim
N→∞

1

N
logNNδ(Ne) = sup

e′∈[e,e+δ]

s(e′) . (2.47)

The function s(e) is called microcanonical entropy density. The statement
(2.47) is often rewritten in the more compact form:

N∆(E)
.
=N exp

[

Ns

(
E

N

)]

. (2.48)

The notation AN
.
=N BN is used throughout the book to denote that two quan-

tities AN and BN , which normally behave exponentially in N , are equal to lead-
ing exponential order whenN is large, meaning: limN→∞(1/N) log(AN/BN ) =
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0. We often use
.
= without index when there is no ambiguity on what the large

variable N is.
The microcanonical entropy density s(e) conveys a great amount of infor-

mation about the system. Furthermore it is directly related to the intensive
thermodynamic potentials through a fundamental relation:

{prop:micro_cano}
Proposition 2.6 If the microcanonical entropy density (2.47) exists for any e
and if the limit in (2.47) uniform in e, then the free entropy density (2.45) exists
and is given by:

φ(β) = max
e

[s(e) − βe] . (2.49)

If the maximum of the s(e)−βe is unique, then the internal energy density equals
arg max[s(e) − βe].

Proof: For a rigorous proof of this statement, we refer the reader to (Galavotti,
1999; Ruelle, 1999). The basic idea is to write the partition function as follows

ZN (β)
.
=

∞∑

k=−∞

N∆(k∆) e−β∆ .
=

∫

de exp{Ns(e) −Nβe} , (2.50)

and to evaluate the last integral by saddle point. �.

Example 2.7 Let us considerN identical two-level systems: XN = X×· · ·×X ,
with X = {1, 2}. We take the energy to be the sum of single-systems energies:
E(x) = Esingle(x1) + · · ·+Esingle(xN ), with xi ∈ X . As in the previous Section
we set Esingle(1) = ǫ1, and Esingle(2) = ǫ2 > ǫ1 and ∆ = ǫ2 − ǫ1.

The energy spectrum of this model is quite simple. For any energy E =
Nǫ1 +n∆, there are

(
N
n

)
configurations x with E(x) = E. Therefore, using the

definition (2.47), we get

s(e) = H
(
e− ǫ1

∆

)

. (2.51)

Equation (2.49) can now be used to get

f(β) = ǫ1 −
1

β
log(1 + e−β∆) , (2.52)

which agrees with the result obtained directly from the definition (2.18).

The great attention paid by physicists to the thermodynamic limit is ex-
tremely well justified by the huge number of degrees of freedom involved in a
macroscopic piece of matter. Let us stress that the interest of the thermodynamic
limit is more general than these huge numbers might suggest. First of all, it often
happens that fairly small systems are well approximated by the thermodynamic
limit. This is extremely important for numerical simulations of physical systems:
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Fig. 2.2. A configuration of a two dimensional Ising model with L = 5. There
is an Ising spin σi on each vertex i, shown by an arrow pointing up if σi = +1,
pointing down if σi = −1. The energy (2.53) is given by the sum of two types of
contributions: (i) A term −σiσj for each edge (ij) of the graph, such that the
energy is minimized when the two neighboring spins σi and σj point in the same
direction; (ii) A term −Bσi for each site i, due to the coupling to an external
magnetic field. The configuration depicted here has energy −8 + 9B{fig:ising_def}

one cannot of course simulate 1023 molecules on a computer! Even the cases in
which the thermodynamic limit is not a good approximation are often fruitfully
analyzed as violations of this limit. Finally, the insight gained in analyzing the
N → ∞ limit is always crucial in understanding moderate-size systems.

2.5 Ferromagnets and Ising models
{se:ising}

Magnetic materials contain molecules with a magnetic moment, a three-dimensional
vector which tends to align with the magnetic field felt by the molecule. More-
over, the magnetic moments of two distinct molecules interact with each other.
Quantum mechanics plays an important role in magnetism. Because of its effects,
the space of possible configurations of a magnetic moment becomes discrete. It
is also at the origin of the so-called exchange interaction between magnetic mo-
ments. In many materials, the effect of the exchange interactions are such that
the energy is lower when two moments align. While the behavior of a single
magnetic moment in an external field is qualitatively simple, when we consider a
bunch of interacting moments, the problem is much richer, and exhibits remark-
able collective phenomena.

A simple mathematical model for such materials is the Ising model. It de-
scribes the magnetic moments by Ising spins localized at the vertices of a certain
region of the d-dimensional cubic lattice. To keep things simple, let us consider
a region L which is a cube of side L: L = {1, . . . , L}d. On each site i ∈ L there
is an Ising spin σi ∈ {+1,−1}.
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A configuration σ = (σ1 . . . σN ) of the system is given by assigning the
values of all the spins in the system. Therefore the space of configurations
XN = {+1,−1}L has the form (2.1) with X = {+1,−1} and N = Ld.

The definition of ferromagnetic Ising models is completed by the definition
of the energy function. A configuration σ has an energy:

E(σ) = −
∑

(ij)

σiσj −B
∑

i∈L

σi , (2.53)

where the sum over (ij) runs over all the (unordered) couples of sites i, j ∈ L

which are nearest neighbors. The real number B measures the applied external
magnetic field.

Determining the free energy density f(β) in the thermodynamic limit for
this model is a non-trivial task. The model was invented by Wilhem Lenz in the
early twenties, who assigned the task of analyzing it to his student Ernst Ising.
In his dissertation thesis (1924) Ising solved the d = 1 case and showed the
absence of phase transitions. In 1948, Lars Onsager brilliantly solved the d = 2
case, exhibiting the first soluble “finite-dimensional” model with a second order
phase transition. In higher dimensions the problem is unsolved although many
important features of the solution are well understood.

Before embarking in any calculation, let us discuss what we expect to be
the qualitative properties of this model. Two limiting cases are easily under-
stood. At infinite temperature, β = 0, the energy (2.53) no longer matters and
the Boltzmann distribution weights all the configurations with the same factor
2−N . We have therefore an assembly of completely independent spins. At zero
temperature, β → ∞, the Boltzmann distribution concentrates onto the ground
state(s). If there is no magnetic field, h = 0, there are two degenerate ground
states: the configurations σ(+) with all the spins pointing up, σi = +1, and the
configuration σ(−) with all the spins pointing down, σi = −1. If the magnetic
field is set to some non-zero value, one of the two configuration dominates: σ(+)

for h > 0 and σ(−) for h < 0.
Notice that the reaction of the system to the external magnetic field h is

quite different in the two cases. To see this fact, define a “rescaled” magnetic
field x = βh and take the limits β → 0 or β → ∞ keeping x fixed. The expected
value of any spin in L, in the two limits, is:

〈σi〉 =

{
tanh(x) for β → 0
tanh(Nx) for β → ∞ . (2.54)

Each spin reacts independently for β → 0. On the contrary, they react as a whole
as β → ∞: one says that the response is cooperative.

A useful quantity for describing the response of the system to the external
field is the average magnetization:

MN (β,B) =
1

N

∑

i∈L

〈σi〉 . (2.55)
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Because of the symmetry between the up and down directions, MN (β,B) is an
odd function of B. In particular MN (β, 0) = 0. A cooperative response can be
evidenced by considering the spontaneous magnetization

M+(β) = lim
B→0+

lim
N→∞

MN (β,B) . (2.56)

It is important to understand that a non-zero spontaneous magnetization can
appear only in an infinite system: the order of the limits in Eq. (2.56) is crucial.
Our analysis so far has shown that the spontaneous magnetization exists at β =
∞: M+(∞) = 1. On the other hand M+(0) = 0. It can be shown that actually
the spontaneous magnetization M(β) is always zero in a high temperature phase
β < βc(d) (such a phase is called paramagnetic). In one dimension (d = 1), we
will show below that βc(1) = ∞. The spontaneous magnetization is always zero,
except at zero temperature (β = ∞): one speaks of a zero temperature phase
transition. In dimensions d ≥ 2, βc(d) is finite, and M(β) becomes non zero in
the so called ferromagnetic phase β > βc: a phase transition takes place at
β = βc. The temperature Tc = 1/βc is called the critical temperature. In the
following we shall discuss the d = 1 case, and a variant of the model, called the
Curie Weiss model, where each spin interacts with all the other spins: this is a
solvable model which exhibits a finite temperature phase transition.

2.5.1 The one-dimensional case{sec:OneDimensionalIsing}

The d = 1 case has the advantage of being simple to solve. We want to com-
pute the partition function (2.4) for a system of N spins with energy E(σ) =

−∑N−1
i=1 σiσi+1 − B

∑N
i=1 σi. We will use a method called the transfer matrix

method, which belongs to the general ‘dynamic programming’ strategy familiar
to computer scientists.

We introduce the partial partition function where the configurations of all
spins σ1,. . . , σp have been summed over, at fixed σp+1:

zp(β,B, σp+1) ≡
∑

σ1,...,σp

exp

[

β

p
∑

i=1

σiσi+1 + βB

p
∑

i=1

σi

]

. (2.57)

The partition function (2.4) is given by ZN (β,B) =
∑

σN
zN−1(β,B, σN ) exp(βBσN ).

Obviously zp satisfies the recursion relation

zp(β,B, σp+1) =
∑

σp=±1

T (σp+1, σp)zp−1(β,B, σp) (2.58)

where we define the so-called transfer matrix T (σ, σ′) = exp [βσσ′ + βBσ′],
which is a 2 × 2 matrix:

T =

(
eβ+βB e−β−βB

e−β+βB eβ−βB

)

(2.59)
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Introducing the two component vectors ψL =

(
exp(βB)

exp(−βB)

)

and ψR =

(
1
1

)

,

and the standard scalar product between such vectors (a, b) = a1b1 + a2b2, the
partition function can be written in matrix form:

ZN (β,B) = (ψL, T
N−1ψR) . (2.60)

Let us call λ1, λ2 the eigenvalues of T , and ψ1, ψ2 the corresponding eigenvectors.
Since ψ1, ψ2 can be chosen to be linearly independent, ψR can be decomposed
as ψR = u1ψ1 + u2ψ2. The partition function is then expressed as:

ZN (β,B) = u1 (ψL, ψ1) λ
N−1
1 + u2 (ψL, ψ2) λ

N−1
2 . (2.61)

The diagonalization of the matrix T gives:

λ1,2 = eβ cosh(βB) ±
√

e2β sinh2 βB + e−2β . (2.62)

For β finite, in the large N limit, the partition function is dominated by the
largest eigenvalue λ1, and the free entropy density is given by φ = log λ1.

φ(β,B) = log

[

eβ cosh(βB) +

√

e2β sinh2 βB + e−2β

]

. (2.63)

Using the same transfer matrix technique we can compute expectation values
of observables. For instance the expected value of a given spin is

〈σi〉 =
1

ZN (β,B)
(ψL, T

i−1σ̂TN−iψR) , (2.64)

where σ̂ is the following matrix:

σ̂ =

(
1 0
0 −1

)

. (2.65)

Averaging over the position i, one can compute the average magnetizationMN (β,B).
In the thermodynamic limit we get

lim
N→∞

MN (β,B) =
sinhβB

√

sinh2 βh+ e−4β
=

1

β

∂φ

∂B
(β,B) . (2.66)

Both the free energy and the average magnetization turn out to be analytic
functions of β and h for β < ∞. In particular the spontaneous magnetization
vanishes at any non-zero temperature:

M+(β) = 0 , ∀β <∞ . (2.67)

In Fig. 2.3 we plot the average magnetization M(β,B) ≡ limN→∞MN (β,B) as
a function of the applied magnetic field h for various values of the temperature
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Fig. 2.3. The average magnetization of the one dimensional Ising model, as a
function of the magnetic field B, at inverse temperatures β = 0.5, 1, 1.5, 2 (from
bottom to top) {fig:ising1d_mag}

β. The curves become steeper and steeper as β increases. This statement can
be made more quantitative by computing the susceptibility associated to the
average magnetization:

χM (β) =
∂M

∂h
(β, 0) = β e2β . (2.68)

This result can be interpreted as follows. A single spin in a field has sus-
ceptibility χ(β) = β. If we consider N spins constrained to take the the same
value, the corresponding susceptibility will be Nβ, as in Eq (2.54). In the present
case the system behaves as if the spins were blocked into groups of χ(β)/β spins
each. The spins in each group are constrained to take the same value, while spins
belonging to different blocks are independent.

This qualitative interpretation receives further support by computing a cor-
relation function. For h = 0 and δN < i < j < (1 − δ)N , one finds, at large
N:⋆

〈σiσj〉 = e−|i−j|/ξ(β) + Θ(e−αN ) , (2.69)

with ξ(β) = −1/ log tanhβ. Notice that ξ(β) gives the typical distance below
which two spins in the system are well correlated. For this reason it is usually
called the correlation length of the model. This correlation length increases
when the temperature decreases: spins become correlated at larger and larger
distances. The result (2.69) is clearly consistent with our interpretation of the
susceptibility. In particular, as β → ∞, ξ(β) ≈ e2β/2 and χ(β) ≈ 2βξ(β).

The connection between correlation length and susceptibility is very general
and can be understood as a consequence of the fluctuation-dissipation theorem
(2.44):
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χM (β) = βN

〈(

1

N

N∑

i=1

σi

)

;

(

1

N

N∑

i=1

σi

)〉

=
β

N

N∑

i,j=1

〈σi ; σj〉 =
β

N

N∑

i,j=1

〈σiσj〉 , (2.70)

where the last equality comes from the fact that 〈σi〉 = 0 when B = 0. Using
(2.69), we get

χM (β) = β
+∞∑

i=−∞

e−|i|/ξ(β) + Θ(e−αN ) . (2.71)

It is therefore evident that a large susceptibility must correspond to a large
correlation length.

2.5.2 The Curie-Weiss model {se:CurieWeiss}

The exact solution of the one-dimensional model, lead Ising to think that there
couldn’t be a phase transition in any dimension. Some thirty years earlier a
qualitative theory of ferromagnetism had been put forward by Pierre Curie. Such
a theory assumed the existence of a phase transition at non-zero temperature Tc

(the so-called the “Curie point”) and a non-vanishing spontaneous magnetization
for T < Tc. The dilemma was eventually solved by Onsager solution of the two-
dimensional model.

Curie theory is realized exactly within a rather abstract model: the so-called
Curie-Weiss model. We shall present it here as one of the simplest solvable
models with a finite temperature phase transition. Once again we have N Ising
spins σi ∈ {±1} and a configuration is given by σ = (σ1, . . . , σN ). However the
spins no longer sits on a d-dimensional lattice: they all interact in pairs. The
energy function, in presence of a magnetic field B, is given by:

E(σ) = − 1

N

∑

(ij)

σiσj −B

N∑

i=1

σi , (2.72)

where the sum on (ij) runs over all the couples of spins. Notice the peculiar 1/N
scaling in front of the exchange term. The exact solution presented below shows
that this is the only choice which yields a non-trivial free-energy density in the
thermodynamic limit. This can be easily understood intuitively as follows. The
sum over (ij) involves O(N2) terms of order O(1). In order to get an energy
function scaling as N , we need to put a 1/N coefficient in front.

In adopting the energy function (2.72), we gave up the description of any
finite-dimensional geometrical structure. This is a severe simplification, but has
the advantage of making the model exactly soluble. The Curie-Weiss model is
the first example of a large family: the so-called mean-field models. We will
explore many instances of this family throughout the book.
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A possible approach to the computation of the partition function consists in
observing that the energy function can be written in terms of a simple observable,
the instantaneous magnetization:

m(σ) =
1

N

N∑

i=1

σi . (2.73)

Notice that this is a function of the configuration σ, and shouldn’t be confused
with its expected value, the average magnetization, cf. Eq. (2.55). It is a “simple”
observable because it is equal to the sum of observables depending upon a single
spin.

We can write the energy of a configuration in terms of its instantaneous
magnetization:

E(σ) =
1

2
N − 1

2
N m(σ)2 −NBm(σ) . (2.74)

This implies the following formula for the partition function

ZN (β,B) = e−Nβ/2
∑

m

NN (m) exp

{
Nβ

2
m2 +NβBm

}

, (2.75)

where the sum over m runs over all the possible instantaneous magnetizations of
N Ising spins: m = −1+2k/N with 0 ≤ k ≤ N an integer number, and NN (m) is
the number of configurations having a given instantaneous magnetization. This
is given by a binomial coefficient whose large N behavior is given in terms of the
entropy function of a Bernoulli process:

NN (m) =

(
N

N 1+m
2

)

.
= exp

[

N H
(

1 +m

2

)]

. (2.76)

To leading exponential order in N , the partition function can thus be written
as:

ZN (β,B)
.
=

∫ +1

−1

dm eNφmf (m;β,B) (2.77)

where we have defined

φmf(m;β,B) = −β
2

(1 −m2) + βBm+ H
(

1 +m

2

)

. (2.78)

The integral in (2.77) is easily evaluated by Laplace method, to get the final
result for the free-energy density

φ(β,B) = max
m∈[−1,+1]

φmf(m;β,B) . (2.79)
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Fig. 2.4. Left: the function φmf(m;β,B = 0) is plotted versus m, for
β = .7, .9, 1.1, 1.3 (from top to bottom). For β < βc = 1 there is a unique
maximum at m = 0, for β < βc = 1 there are two degenerate maxima at two
symmetric values ±m+(β).Right: values of m which maximize φmf(m;β,B = 0)
are plotted versus β. The phase transition at βc = 1 is signaled by the bifurcation. {fig:phiCW}

One can see that the maximum is obtained away from the boundary points, so
that the corresponding m must be a stationary point of φmf(m;β,B), which
satisfies the saddle-point equation ∂φmf(m;β,B)/∂m = 0:

m∗ = tanh(βm∗ + βB) . (2.80)

In the above derivation we were slightly sloppy at two steps: substituting the
binomial coefficient with its asymptotic form and changing the sum over m into
an integral. The mathematically minded reader is invited to show that these
passages are indeed correct. ⋆

With a bit more work the above method can be extended to expectation
values of observables. Let us consider for instance the average magnetization
M(β,B). It can be easily shown that, whenever the maximum of φmf(m;β,B) ⋆
over m is non-degenerate,

M(β,B) ≡ lim
N→∞

〈m(σ)〉 = m∗(β,B) ≡ arg max
m

φmf(m;β,B) , (2.81)

We can now examine the implications that can be drawn from Eqs. (2.79)
and (2.80). Let us first consider the B = 0 case (see Fig.2.4). The function
φmf(m;β, 0) is symmetric in m. For 0 ≤ β ≤ 1 ≡ βc, it is also concave and
achieves its unique maximum in m∗(β) = 0. For β > 1, m = 0 remains a
stationary point but becomes a local minimum, and the function develops two
degenerate global maxima at m±(β) with m+(β) = −m−(β) > 0. These two
maxima bifurcate continuously from m = 0 at β = βc.

A phase transition takes place at βc. Its meaning can be understood by com-
puting the expectation value of the spins. Notice that the energy function (2.72)
is symmetric a spin-flip transformation which maps σi → −σi for all i’s. There-
fore 〈σi〉 = 〈(−σi)〉 = 0 and the average magnetization vanishes M(β, 0) = 0.
On the other hand, the spontaneous magnetization, defined in (2.56), is zero
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in the paramagnetic phase β < βc, and equal to m+(β) in the ferromagnetic
phase β > βc. The physical interpretation of this phase is the following: for any
finite N the pdf of the instantaneous magnetization m(σ) has two symmetric
peaks, at m±(β), which become sharper and sharper as N increases. Any exter-
nal perturbation which breaks the symmetry between the peaks, for instance a
small positive magnetic field B, favors one peak with respect to the other one,
and therefore the system develops a spontaneous magnetization. Notice that, in
mathematical terms, the phase transition is a property of systems in the ther-
modynamic limit N → ∞.

In physical magnets the symmetry breaking can come for instance from im-
purities, subtle effects of dipolar interactions together with the shape of the
magnet, or an external magnetic field. The result is that at low enough temper-
atures some systems, the ferromagnets develop a spontaneous magnetization. If
you heat a magnet made of iron, its magnetization disappears at a critical tem-
perature Tc = 1/βc = 770 degrees Celsius. The Curie Weiss model is a simple
solvable case exhibiting the phase transition.

Exercise 2.5 Compute the expansion of m+(β) and of φ(β,B = 0) near
β = βc, and show that the transition is of second order. Compute the low
temperature behavior of the spontaneous magnetization.

{ex:Ising_inhom}
Exercise 2.6 Inhomogeneous Ising chain. The one dimensional Ising problem
does not have a finite temperature phase transition, as long as the interactions
are short range and translational invariant. But when the couplings in the Ising
chain grow fast enough at large distance, one can have a phase transition. This
is not a very realistic model from the point of view of physics, but it is useful
as a solvable example of phase transition.

Consider a chain of Ising spins σ0, σ1, . . . , σN with energy E(σ) =

−∑N−1
n=0 Jnσnσn+1. Suppose that the coupling constants Jn form a positive,

monotonously increasing sequence, growing logarithmically. More precisely, we
assume that limn→∞Jn/ log n = 1 . Denote by 〈.〉+ (resp. 〈.〉−) the expectation
value with respect to Boltzmann’s probability distribution when the spin σN
is fixed to σN = +1 (resp. fixed to σN = −1).

(i) Show that , for any n ∈ {0. . . . , N − 1}, the magnetization is 〈σn〉± =
∏N−1
p=n tanh(βJp)

(ii) Show that the critical inverse temperature βc = 1/2 separates two
regimes, such that: for β < βc, one has limN→∞〈σn〉+ = limN→∞〈σn〉− =
0; for β > βc, one has limN→∞〈σn〉± = ±M(β), and M(β) > 0.

Notice that in this case, the role of the symmetry breaking field is played by
the choice of boundary condition.
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Fig. 2.5. A configuration of a two dimensional Edwards-Anderson model with
L = 5. Spins are coupled by two types of interactions: ferromagnetic (Jij = +1),
indicated by a continuous line, and antiferromagnetic (Jij = −1), indicated by
a dashed line. The energy of the configuration shown here is −14 − 7h. {fig:ea_def}

2.6 The Ising spin glass
{sec:SpinGlass}

In real magnetic materials, localized magnetic moments are subject to several
sources of interactions. Apart from the exchange interaction mentioned in the
previous Section, they may interact through intermediate conduction electrons,
etc... As a result, depending on the material which one considers, their interaction
can be either ferromagnetic (their energy is minimized when they are parallel)
or antiferromagnetic (their energy is minimized when they point opposite to
each other ). Spin glasses are a family of materials whose magnetic properties
are particularly complex. They can be produced by diluting a small fraction of
a ‘transition magnetic metal’ like manganese into a ‘noble metal’ like copper in
a ratio 1 : 100. In such an alloy, magnetic moments are localized at manganese
atoms, which are placed at random positions in a copper background. Depend-
ing on the distance of two manganese atoms, the net interaction between their
magnetic moments can be either ferromagnetic or antiferromagnetic.

The Edwards-Anderson model is a widely accepted mathematical ab-
straction of these physical systems. Once again, the basic degrees of freedom are
Ising spins σi ∈ {−1,+1} sitting at the corners of a d-dimensional cubic lattice
L = {1, . . . , L}d, i ∈ L. The configuration space is therefore {−1,+1}L. As in
the Ising model, the energy function reads

E(σ) = −
∑

(ij)

Jijσiσj −B
∑

i∈L

σi , (2.82)

where
∑

(ij) runs over each edge of the lattice. Unlike in the Ising ferromagnet,

a different coupling constant Jij is now associated to each edge (ij), and its
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Fig. 2.6. Four configurations of a small Edwards-Anderson model: continuous
lines indicate ferromagnetic interactions (Jij = +1), while dashed lines are for
antiferromagnetic interactions (Jij = −1). In zero magnetic field (h = 0), the
four configurations are degenerate and have energy E = −2. The bars indicate
the unsatisfied interaction. Notice that there is no configuration with lower en-
ergy. This system is frustrated since it is impossible to satisfy simultaneously all
constraints.{fig:frustr}

sign can be positive or negative. The interaction between spins σi and σj is
ferromagnetic if Jij > 0 and antiferromagnetic if Jij < 0.

A pictorial representation of this energy function is given in Fig. 2.5. The
Boltzmann distribution is given by

pβ(σ) =
1

Z(β)
exp






β
∑

(ij)

Jijσiσj + βB
∑

i∈L

σi






, (2.83)

Z(β) =
∑

σ

exp






β
∑

(ij)

Jijσiσj + βB
∑

i∈L

σi






. (2.84)

It is important to notice that the couplings {Jij} play a completely different role
from the spins {σi}. The couplings are just parameters involved in the definition
of the energy function, as the magnetic field B, and they are not summed over
when computing the partition function. In principle, for any particular sample
of a magnetic material, one should estimate experimentally the values of the
Jij ’s, and then compute the partition function. We could have made explicit
the dependence of the partition function and of the Boltzmann distribution on
the couplings by using notations such as Z(β,B; {Jij}), pβ,B;{Jij}(σ). However,
when it is not necessary, we prefer to keep to lighter notations.

The present understanding of the Edwards-Anderson model is much poorer
than for the ferromagnetic models introduced in the previous Section. The basic
reason of this difference is frustration and is illustrated in Fig. 2.6 on an L = 2,
d = 2 model (a model consisting of just 4 spins). A spin glass is frustrated
whenever there exist local constraints that are in conflict, meaning that it is not
possible to all of them satisfy simultaneously. In the Edwards Anderson model,
a plaquette is a group of four neighbouring spins building a square. A plaquette
is frustrated if and only if the product of the Jij along all four edges of the
plaquette is negative. As shown in Fig. 2.6, it is then impossible to minimize
simultaneously all the four local energy terms associated with each edge. In a
spin glass, the presence of a finite density of frustrated plaquettes generates a
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very complicated energy landscape. The resulting effect of all the interactions
is not obtained by ‘summing’ the effects of each of them separately, but is is
the outcome of a complex interplay. The ground state spin configuration (the
one satisfying the largest possible number of interactions) is difficult to find: it
cannot be guessed on symmetry grounds. It is also frequent to find in a spin glass
a configuration which is very different form the ground state but has an energy
very close to the ground state energy. We shall explore these and related issues
throughout the book.

Notes

There are many good introductory textbooks on statistical physics and thermo-
dynamics, for instance the books by Reif (Reif, 1965) or Huang (Huang, 1987).
Going towards more advanced texts, one can suggest the books by Ma (Ma,
1985) and Parisi (Parisi, 1998b). A more mathematically minded presentation
can be found in the books by Gallavotti (Galavotti, 1999) and Ruelle (Ruelle,
1999).

The two dimensional Ising model at vanishing external field can also be solved
by a transfer matrix technique, see for instance (Baxter, 1982). The transfer
matrix, which passes from a column of the lattice to the next, is a 2L × 2L

matrix, and its dimension diverges exponentially with the lattice size L. Finding
its largest eigenvalue is therefore a complicated task. Nobody has found the
solution so far for B 6= 0.

Spin glasses will be a recurring theme in this book, and more will be said
about them in the next Chapters. An introduction to this subject from a physicist
point of view is provided by the book of Fischer and Hertz (Fischer and Hetz,
1993) or the review by Binder and Young (Binder and Young, 1986). The concept
of frustration was introduced in a beautiful paper by Gerard Toulouse (Toulouse,
1977).
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INTRODUCTION TO COMBINATORIAL OPTIMIZATION

{ch:intro_optim}

This Chapter provides an elementary introduction to some basic concepts in
theoretical computer science. Which computational tasks can/cannot be accom-
plished efficiently by a computer? How much resources (time, memory, etc.) are
needed for solving a specific problem? What are the performances of a spe-
cific solution method (an algorithm), and, whenever more than one method is
available, which one is preferable? Are some problems intrinsically harder than
others? This are some of the questions one would like to answer.

One large family of computational problems is formed by combinatorial op-
timization problems. These consist in finding a member of a finite set which
maximizes (or minimizes) an easy-to-evaluate objective function. Several fea-
tures make such problems particularly interesting. First of all, most of the time
they can be converted into decision problems (questions which require a YES/NO
answer), which are the simplest problems allowing for a rich theory of computa-
tional complexity. Second, optimization problems are ubiquitous both in appli-
cations and in pure sciences. In particular, there exist some evident connections
both with statistical mechanics and with coding theory. Finally, they form a very
large and well studied family, and therefore an ideal context for understanding
some advanced issues. One should however keep in mind that computation is
more than just combinatorial optimization. A distinct (and in some sense larger)
family consists of counting problems. In this case one is asked to count how many
elements of a finite set have some easy-to-check property. We shall say something
about such problems in later Chapters. Another large family on which we will
say basically nothing consists of continuous optimization problems.

This Chapter is organized as follows. The study of combinatorial optimization
is introduced in Sec. 3.1 through a simple example. This section also contains
the basic definition of graph theory that we use throughout the book. General
definitions and terminology are given in Sec. 3.2. These definitions are further
illustrated in Sec. 3.3 through several additional examples. Section 3.4 provides
an informal introduction to some basic concepts in computational complexity.
As mentioned above, combinatorial optimization problems often appear in pure
sciences and applications. The examples of statistical physics and coding are
briefly discussed in Secs. 3.5 and 3.6.

3.1 A first example: minimum spanning tree
{sec:MST}

The minimum spanning tree problem is easily stated and may appear in many
practical applications. Suppose for instance you have a bunch of computers in a

48
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Fig. 3.1. This graph has 7 vertices (labeled a to g) and 10 edges. The ‘cost’ of
each edge is indicated next to it. In the Minimum Spanning Tree problem, one
seeks a subgraph connecting all vertices, without any loop, of minimum cost. {fig:MSTree}

building. You may want to connect them pairwise in such a way that the resulting
network is completely connected and the amount of cable used is minimum.

3.1.1 Definition of the problem and basics of graph theory

A mathematical abstraction of the above practical problem requires us to first
define basic graph theoretic definitions. A graph is a set V of vertices, labeled
by {1, 2, . . . , |V|} and a set E of edges connecting them: G = (V, E). The ver-
tex set can be any finite set but one often takes the set of the first |V| inte-
gers: V = {1, 2, . . . , |V|}. The edges are simply unordered couples of distinct
vertices E ⊆ V × V. For instance an edge joining vertices i and j is identi-
fied as e = (i, j). A weighted graph is a graph where a cost (a real num-
ber) is associated with every edge. The degree of a vertex is the number of
edges connected to it. A path between two vertices i and j is a set of edges
{(j, i2), (i2, i3), (i3, i4), . . . , (ir−1, ir), (ir, j). A graph is connected if, for every
pair of vertices, there is a path which connects them. A completely con-
nected graph, or complete graph, also called a clique, is a graph where all the
|V|(|V| − 1)/2 edges are present. A cycle is a path starting and ending on the
same vertex. A tree is a connected graph without a cycle.

Consider the graph in Fig. 3.1. You are asked to find a tree (a subset of the
edges buiding a cycle-free subgraph) such that any two vertices are connected
by exactly one path (in this case the tree is said to be spanning). To find such
a subgraph is an easy task. The edges {(a, b); (b, c); (c, d); (b, g); (d, e)}, for in-
stance, do the job. However in our problem a cost is associated with each edge.
The cost of a subgraph is assumed to be equal to the sum of the costs of its
edges. Your problem is to find the spanning tree with minimum cost. This is a
non-trivial problem.

In general, an instance of the minimum spanning tree (MST) problem is
given by a connected weighted graph (each edge e has a cost w(e) ∈ R). The
optimization problem consists in finding a spanning tree with minimum cost.
What one seeks is an algorithm which, given an instance of the MST problem,
outputs the spanning tree with lowest cost.
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3.1.2 An efficient algorithm for the minimum spanning tree problem
{sec:efficient}

The simple minded approach would consist in enumerating all the spanning
trees for the given graph, and comparing their weights. However the number of
spanning trees grows very rapidly with the size of the graph. Consider, as an
example, the complete graph on N vertices. The number of spanning trees of
such a graph is, according to the Cayley formula, NN−2. Even if the cost of any
such tree were evaluated in 10−3 sec, it would take 2 years to find the MST of
a N = 12 graph, and half a century for N = 13. At the other extreme, if the
graph is very simple, it may contain a small number of spanning trees, a single
one in the extreme case where the graph is itself a tree. Nevertheless, in most
interesting examples the situation is nearly as dramatic as in the complete graph
case.

A much better algorithm can be obtained from the following theorem:
{thm:MSTtheorem}

Theorem 3.1 Let U ⊂ V be a proper subset of the vertex set V (such that neither
U nor V\U are empty). Let us consider the subset F of edges which connect a
vertex in U to a vertex in V\U , and let e ∈ F be an edge of lowest cost in this
subset: w(e) ≤ w(e′) for any e′ ∈ F . If there are several such edges, e can be any
of them. Then there exists a minimum spanning tree which contains e.

Proof: Consider a MST T , and suppose that it does not contain the edge e.
This edge is such that e = (i, j) with i ∈ U and j ∈ V\U . The spanning tree
T must contain a path between i and j. This path contains at least one edge
f connecting a vertex in U to a vertex in V\U , and f is distinct from e. Now
consider the subgraph T ′ built from T by removing the edge f and adding the
edge e. We leave to the reader the exercise of showing that T ′ is a spanning tree.
Moreover E(T ′) = E(T ) + w(e) − w(f). Since T is a MST, E(T ′) ≥ E(T ). On
the other hand e has minimum cost within F , hence w(e) ≤ w(f). Therefore
w(e) = w(f) and T ′ is a MST containing e. �

This result allows to construct a minimum spanning tree of a graph incre-
mentally. One starts from a single vertex. At each step a new edge can be added
to the tree, whose cost is minimum among all the ones connecting the already
existing tree with the remaining vertices. After N − 1 iterations, the tree will be
spanning.

MST algorithm ((Prim, 1957))

Input: A non-empty connected graph G = (V, E), and a weight function w :
E → R+.

Output: A minimum spanning tree T and its cost E(T ).

1. Set U := {1}, T := ∅ and E = 0.

2. While V\U is not empty

2.1 Let F := {e = (ij) ∈ E such that i ∈ U , j ∈ V\U}.

2.2 Find e∗ := arg mine∈F{w(e)}. Let e∗ := (i∗, j∗) with i∗ ∈ U,
j∗ ∈ V\U.

2.3 Set U := U ∪ i∗, T := T ∪ e∗, and E := E + w(e∗).

3. Output the spanning tree T and its cost E.
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Fig. 3.2. A minimum spanning tree for the graph defined in Fig. 3.1. The cost
of this tree is E = 17. {fig:MSTree_sol}

Figure 3.2 gives the MST for the problem described in Fig. 3.1. It is easy to
obtain it by applying the above algorithm. ⋆

Exercise 3.1 Show explicitly that the algorithm MST always outputs a mini-
mum spanning tree.

Theorem 3.1 establishes that, for any U ⊂ V, and any lowest cost edge e
among the ones connecting U to V\U , there exists a MST containing e. This
does not guarantee that, when two different sets U1 and U2, and the correspond-
ing lowest cost edges e1 and e2 are considered, there exists a MST containing
both e1 and e2. The above algorithm works by constructing a sequence of such
U ’s and adding to the tree the corresponding lowest weight edges. It is therefore
not obvious a priori that it will output a MST (unless this is unique).

Let us analyze the number of elementary operations required by the algorithm
to construct a spanning tree on an N nodes graph. By ‘elementary operation’
we mean comparisons, sums, multiplications, etc, all of them counting as one.
Of course, the number of such operations depends on the graph, but we can
find a simple upper bound by considering the completely connected graph. Most
of the operations in the above algorithm are comparisons among edge weights
for finding e∗ in step 2.2. In order to identify e∗, one has to scan at most
|U| × |V\U| = |U| × (N − |U|) edges connecting U to V\U . Since |U| = 1 at the
beginning and is augmented of one element at each iteration of the cycle 2.1-2.3,
the number of comparisons is upper bounded by

∑N
U=0 U(N − U) ≤ N3/66.

This is an example of a polynomial algorithm, whose computing time grows like
a power law of the number of vertices. The insight gained from the theorem
provides an algorithm which is much better than the naive one, at least when N
gets large.

3.2 General definitions {sec:gendef}

MST is an example of a combinatorial optimization problem. This is defined
by a set of possible instances. An instance of MST is defined by a connected

6The algorithm can be easily improved by keeping an ordered list of the edges already
encountered
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weighted graph. In general, an instance of a combinatorial optimization problem
is described by a finite set X of allowed configurations and a cost function E
defined on this set and taking values in R. The optimization problem consists in
finding the optimal configuration C ∈ X , namely the one with the smallest cost
E(C). Any set of such instances defines a combinatorial optimization problem.
For a particular instance of MST, the space of configurations is simply the set of
spanning trees on the given graph, while the cost function associated with each
spanning tree is the sum of the costs of its edges.

We shall say that an algorithm solves an optimization problem if, for every
instance of the optimization problem, it gives the optimal configuration, or if it
computes its cost. In all the problems which we shall discuss, there is a ‘natural’
measure of the size of the problem N (typically a number of variables used
to define a configuration, like the number of edges of the graph in MST), and
the number of configurations scales, at large N like cN , or in some cases even
faster, e. g. like N ! or NN . Notice that, quite generally, evaluating the cost
function on a particular configuration is an easy task. The difficulty of solving
the combinatorial optimization problem comes therefore essentially from the size
of the configuration space.

It is a generally accepted practice to estimate the complexity of an algorithm
as the number of ‘elementary operations’ required to solve the problem. Usually
one focuses onto the asymptotic behavior of this quantity as N → ∞. It is
obviously of great practical interest to construct algorithms whose complexity is
as small as possible.

One can solve a combinatorial optimization problem at several levels of re-
finement. Usually one distinguishes three types of problems:

• The optimization problem: Find an optimal configuration C∗.

• The evaluation problem: Determine the cost E(C∗) of an optimal config-
uration.

• The decision problem: Answer to the question: “Is there a configuration
of cost less than a given value E0?”

3.3 More examples
{sec:Examples}

The general setting described in the previous Section includes a large variety of
problems having both practical and theoretical interest. In the following we shall
provide a few selected examples.

3.3.1 Eulerian circuit

One of the oldest documented examples goes back to the 18th century. The
old city of Königsberg had seven bridges (see Fig. 3.3), and its habitants were
wondering whether it was possible to cross once each of this bridges and get back
home. This can be generalized and translated in graph-theoretic language as the
following decision problem. Define a multigraph exactly as a graph but for the
fact that two given vertices can be connected by several edges. The problem
consists in finding whether there is there a circuit which goes through all edges
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Fig. 3.3. Left: a map of the old city of Königsberg, with its seven bridges, as
drawn in Euler’s paper of 1736. The problem is whether one can walk along the
city, crossing each bridge exactly once and getting back home. Right: a graph
summarizing the problem. The vertices A,B,C,D are the various parts of lands
separated by a river, an edge exists between two vertices whenever there is a
bridge. The problem is to make a closed circuit on this graph, going exactly once
through every edge. {fig:seven-bridges}

of the graph only once, and returns to its starting point. Such a circuit is now
called a Eulerian circuit, because this problem was solved by Euler in 1736,
when he proved the following nice theorem. As for ordinary graphs, we define
the degree of a vertex as the number of edges which have the vertex as an
end-point.

Theorem 3.2 Given a connected multigraph, there exists an Eulerian circuit if
and only if every vertex has an even degree.

{th:euler}
This theorem automatically provides an algorithm for the decision problem
whose complexity grows linearly with the number of vertices of the graph: just
go through all the vertices of the graph and check their degree.

Exercise 3.2 Show that, if an Eulerian circuit exists the degrees are necessar-
ily even.

Proving the inverse implication is slightly more difficult. A possible ap-
proach consists in showing the following slightly stronger result. If all the ver-
tices of a connected graph G have even degree but i and j, then there exists a
path from i to j that visits once each edge in G. This can be proved by induc-
tion on the number of vertices. [Hint: Stat from i and make a step along the
edge (i, i′). Show that it is possible to choose i′ in such a way that the residual
graph G\(i, i′) is connected.]

3.3.2 Hamiltonian cycle

More than a century after Euler’s theorem, the great scientist sir William Hamil-
ton introduced in 1859 a game called the icosian game. In its generalized form,
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it basically asks whether there exists, in a graph, a Hamiltonian cycle, which
is a path going once through every vertex of the graph, and getting back to its
starting point. This is another decision problem, and, at a first look, it seems
very similar to the Eulerian circuit. However it turns out to be much more com-
plicated. The best existing algorithms for determining the existence of an Hamil-
tonian cycle on a given graph run in a time which grows exponentially with the
number of vertices N . Moreover, the theory of computational complexity, which
we shall describe later in this Chapter, strongly suggests that this problem is in
fact intrinsically difficult.

3.3.3 Traveling salesman

Given a complete graph with N points, and the distances dij between all pairs
of points 1 ≤ i < j ≤ N , the famous traveling salesman problem (TSP) is an
optimization problem: find a Hamiltonian cycle of minimum total length. One
can consider the case where the points are in a portion of the plane, and the
distances are Euclidean distances (we then speak of a Euclidean TSP), but of
course the problem can be stated more generally, with dij representing general
costs, which are not necessarily distances. As for the Hamiltonian cycle prob-
lem, the best algorithms known so far for the TSP have a running time which
grows exponentially with N at large N . Nevertheless Euclidean problems with
thousands of points can be solved.

3.3.4 Assignment

Given N persons and N jobs, and a matrix Cij giving the affinity of person i for
job j, the assignment problem consists in finding the assignment of the jobs
to the persons (an exact one-to-one correspondence between jobs and persons)
which maximizes the total affinity. A configuration is characterized by a permu-
tation of the N indices (there are thus N ! configurations), and the cost of the
permutation π is

∑

i Ciπ(i). This is an example of a polynomial problem: there
exists an algorithm solving it in a time growing like N3.

3.3.5 Satisfiability

In the satisfiability problem one has to find the values of N Boolean variables
xi ∈ {T, F} which satisfy a set of logical constraints. Since each variable can be
either true or false, the space of configurations has size |X | = 2N . Each logical
constraint, called in this context a clause, takes a special form: it is the logical
OR (for which we use the symbol ∨) of some variables or their negations. For
instance x1 ∨ x2 is a 2-clause (2-clause means a clause of length 2, i.e. which
involves exactly 2 variables), which is satisfied if either x1 = T , or x2 = F , or
both. x1∨x2∨x3 is a 3-clause, which is satisfied by all configurations of the three
variables except x1 = x2 = T , x3 = F . The problem is to determine whether
there exists a configuration which satisfies all constraints (decision problem), or
to find the configuration which minimizes the number of violated constraints
(optimization problem). The decision problem is easy when all the clauses have
length smaller or equal to 2: there exists an algorithm running in a time growing
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linearly with N . In other cases, all known algorithms solving the satisfiability
decision problem run in a time which grows exponentially with N .

3.3.6 Coloring and vertex covering

Given a graph and an integer q, the famous q-coloring problem asks if it is
possible to color the vertices of the graph using q colors, in such a way that
two vertices connected by an edge have different colors. In the same spirit, the
vertex-cover problem asks to cover the vertices with ‘pebbles’, using the small-
est possible number of pebbles, in such a way that every edge of the graph has
at least one of its two endpoints covered by a pebble.

3.3.7 Number partitioning

Number partitioning is an example which does not come from graph theory.
An instance is a set S ofN integers S = {x1, .., xN}. A configuration is a partition
of these numbers into two groups A and S \ A . Is there a partition such that
∑

i∈A xi =
∑

i∈S\A xi?

3.4 Elements of the theory of computational complexity
{sec:Complexity}

One main branch of theoretical computer science aims at constructing an intrinsic
theory of computational complexity. One would like, for instance, to establish
which problems are harder than others. By ‘harder problem’, we mean a problem
that takes a longer running time to be solved. In order to discuss rigorously
the computational complexity of a problem, we would need to define a precise
model of computation (introducing, for instance, Turing machines). This would
take us too far. We will instead evaluate the running time of an algorithm in
terms of ‘elementary operations’: comparisons, sums, multiplications, etc. This
informal approach is essentially correct as long as the size of the operands remains
uniformly bounded.

3.4.1 The worst case scenario

As we already mentioned in Sec. 3.2, a combinatorial optimization problem,
is defined by the set of its possible instances. Given an algorithm solving the
problem, its running time will vary from instance to instance, even if the instance
‘size’ is fixed. How should we quantify the overall hardness of the problem? A
crucial choice of computational complexity theory consists in considering the
‘worst’ (i.e. the one which takes longer time to be solved) instance among all the
ones having the same size.

This choice has two advantages: (i) It allows to construct a ‘universal’ theory.
(ii) Once the worst case running time of a given algorithm is estimated, this
provides a performance guarantee on any instance of the problem.

3.4.2 Polynomial or not?

A second crucial choice consists in classifying algorithms in two classes: (i) Poly-
nomial, if the running time is upper bounded by a fixed polynomial in the size
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of the instance. In mathematical terms, let TN the number of operations required
for solving an instance of size N in the worst case. The algorithm is polynomial
when there exist a constant k such that TN = O(Nk). (ii) Super-polynomial,
if no such upper bound exists. This is for instance the case if the time grows
exponentially with the size of the instance (we shall call algorithms of this type
exponential), i.e. TN = Θ(kN ) for some constant k.

Example 3.3 In 3.1.2, we were able to show that the running time of the
MST algorithm is upper bounded by N3, with N the number of vertices tin the
graph. This implies that such an algorithm is polynomial.

Notice that we did not give a precise definition of the ‘size’ of a problem.
One may wonder whether, changing the definition, a particular problem can be
classified both as polynomial an as super-polynomial. Consider, for instance, the
assignment problem with 2N points. One can define the size as being N , or 2N ,
or even N2 which is the number of possible person-job pairs. The last definition
would be relevant if one would work for instance with occupation numbers nij ∈
{0, 1}, the number nij being one if and only if the job i is assigned to person j.
However, any two of these ‘natural’ definitions of size are a polynomial function
one of the other. Therefore they do not affect the classification of an algorithm
as polynomial or super-polynomial. We will discard other definitions (such as eN

or N !) as ‘unnatural’, without any further ado. The reader can convince himself
on each of the examples of the previous Section.

3.4.3 Optimization, evaluation, decision

In order to get a feeling of their relative levels of difficulty, let us come back for a
while to the three types of optimization problems defined in Sec. 3.2, and study
which one is the hardest.

Clearly, if the cost of any configuration can be computed in polynomial time,
the evaluation problem is not harder than the optimization problem: if one can
find the optimal configuration in polynomial time, one can compute its cost also
in polynomial time. The decision problem (deciding whether there exists a con-
figuration of cost smaller than a given E0) is not harder than the evaluation
problem. So the order of increasing difficulty is: decision, evaluation, optimiza-
tion.

But actually, in many cases where the costs take discrete values, the evalu-
ation problem is not harder than the decision problem, in the following sense.
Suppose that we have a polynomial algorithm solving the decision problem, and
that the costs of all configurations can be scaled to be integers in an interval
[0, Emax] of length Emax = exp{O(Nk)} for some k > 0. An algorithm solving
the decision problem can be used to solve the evaluation problem by dichotomy:
one first takes E0 = Emax/2. If there exists a configuration of energy smaller
than E0, one iterates with E0 the center of the interval [0, Emax/2]. In the oppo-
site case, one iterates with E0 the center of the interval [Emax/2, Emax]. Clearly
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this procedure finds the cost of the optimal configuration(s) in a time which is
also polynomial.

3.4.4 Polynomial reduction
{sub:polred}

One would like to compare the levels of difficulty of various decision problems.
The notion of polynomial reduction formalizes the sentence “not harder than”
which we used so far, and helps to get a classification of decision problems.

Roughly speaking, we say that a problem B is not harder than A if any effi-
cient algorithm for A (if such an algorithm existed) could be used as a subroutine
of an algorithm solving efficiently B. More precisely, given two decision problems
A and B, one says that B is polynomially reducible to A if the following
conditions hold:

1. There exists a mapping R which transforms any instance I of problem B
into an instance R(I) of problem A, such that the solution (yes/no) of the
instance R(I) of A gives the solution (yes/no) of the instance I of B.

2. The mapping I 7→ R(I) can be computed in a time which is polynomial in
the size of I.

3. The size of R(I) is polynomial in the size of I. This is in fact a consequence
of the previous assumptions but there is no harm in stating it explicitly.

A mapping R satisfying the above requirements is called a polynomial reduc-
tion. Constructing a polynomial reduction among two problems is an important
achievement since it effectively reduces their study to the study of just one of
them. Suppose for instance to have a polynomial algorithm AlgA for solving A.
Then a polynomial reduction of B to A can be used for constructing a poly-
nomial algorithm for solving B. Given an instance I of B, the algorithm just
compute R(I), feeds it into the AlgA, and outputs the output of AlgA. Since the
size of R(I) is polynomial in the size of I, the resulting algorithm for B is still
polynomial.

For concreteness, we will work out an explicit example. We will show that the
problem of existence of a Hamiltonian cycle in a graph is polynomially reducible
to the satisfiability problem.
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Example 3.4 An instance of the Hamiltonian cycle problem is a graph with
N vertices, labeled by i ∈ {1, ..., N}. If there exists a Hamiltonian cycle in the
graph, it can be characterized by N2 Boolean variables xri ∈ {0, 1}, where
xri = 1 if vertex number i is the r’th vertex in the cycle, and xri = 0 otherwise
(one can take for instance x11 = 1). We shall now write a number of constraints
that the variables xri must satisfy in order for a Hamiltonian cycle to exist,
and we shall ensure that these constraints take the forms of the clauses used
in the satisfiability problem (identifying x = 1 as true, x = 0 as false):

• Each vertex i ∈ {1, ..., N} must belong to the cycle: this can be written
as the clause x1i ∨ x2i ∨ ....∨ xNi, which is satisfied only if at least one of
the numbers x1i, x2i, ..., xNi equals one.

• For every r ∈ {1, ..., N}, one vertex must be the r’th visited vertex in the
cycle: xr1 ∨ xr2 ∨ ... ∨ xrN

• Each vertex i ∈ {1, ..., N} must be visited only once. This can be imple-
mented through the N(N − 1)/2 clauses x̄rj ∨ x̄sj , for 1 ≤ r < s ≤ N .

• For every r ∈ {1, ..., N}, there must be only one r’th visited vertex in the
cycle; This can be implemented through the N(N−1)/2 clauses xri∨xrj ,
for 1 ≤ i < j ≤ N .

• For every pair of vertices i < j which are not connected by an edge of
the graph, these vertices should not appear consecutively in the list of
vertices of the cycle. Therefore we add, for every such pair and for every
r ∈ {1, ..., N},the clauses xri ∨x(r+1)j and xrj ∨x(r+1)i (with the ‘cyclic’
convention N + 1 = 1).

It is straightforward to show that the size of the satisfiability problem con-
structed in this way is polynomial in the size of the Hamiltonian cycle prob-
lem. We leave as an exercise to show that the set of all above clauses is a
sufficient set: if the N2 variables satisfy all the above constraints, they describe
a Hamiltonian cycle.

3.4.5 Complexity classes

Let us continue to focus onto decision problems. The classification of these prob-
lems with respect to polynomiality is as follows:

• Class P: These are the polynomial problems, for which there exists an
algorithm running in polynomial time. An example, cf. Sec. 3.1, is the
decision version of the minimum spanning tree (which asks for a yes/no
answer to the question: given a graph with costs on the edges, and a number
E0, is there a spanning tree with total cost less than E0?).

• Class NP: This is the class of non-deterministic polynomial problems,
which can be solved in polynomial time by a ‘non deterministic’ algorithm.
Roughly speaking, such an algorithm can run in parallel on an arbitrarily
large number of processors. We shall not explain this notion in detail here,
but rather use an alternative and equivalent characterization. We say that a
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problem is in the class NP if there exists a ‘short’ certificate which allows to
check a ‘yes’ answer to the problem. A short certificate means a certificate
that can be checked in polynomial time.

A polynomial problem like the minimum spanning tree describes above
is automatically in NP so P ⊆ NP. The decision version of the TSP is
also in NP: if there is a TSP tour with cost smaller than E0, the short
certificate is simple: just give the tour, and its cost will be computed in
linear time, allowing to check that it is smaller than E0. Satisfiability also
belongs to NP: a certificate is obtained from the assignment of variables
satisfying all clauses. Checking that all clauses are satisfied is linear in
the number of clauses, taken here as the size of the system. In fact there
are many important problems in the class NP, with a broad spectrum of
applications ranging from routing to scheduling, to chip verification, or to
protein folding. . .

• Class NP-complete: These are the hardest problem in the NP class. A
problem is NP-complete if: (i) it is in NP, (ii) any other problem in NP
can be polynomially reduced to it, using the notion of polynomial reduction
defined in Sec. 3.4.4. If A is NP-complete, then: for any other problem B
in NP, there is a polynomial reduction mapping B to A. So if we had a
polynomial algorithm to solve A, then all the problems in the broad class
NP would be solved in polynomial time.

It is not a priori obvious whether there exist any NP-complete problem. A major
achievement of the theory of computational complexity is the following theorem,
obtained by Cook in 1971.

Theorem 3.5 The satisfiability problem is NP-complete

We shall not give here the proof of the theorem. Let us just mention that the
satisfiability problem has a very universal structure (an example of which was
shown above, in the polynomial reduction of the Hamiltonian cycle problem to
satisfiability). A clause is built as the logical OR (denoted by ∨) of some variables,
or their negations. A set of several clauses, to be satisfied simultaneously, is the
logical AND (denoted by ∧) of the clauses. Therefore a satisfiability problem is
written in general in the form (a1∨a2∨ ...)∧(b1∨b2∨ ...)∧ ...., where the ai, bi are
‘literals’, i.e. any of the original variables or their negations. This form is called
a conjunctive normal form (CNF), and it is easy to see that any logical
statement between Boolean variables can be written as a CNF. This universal
decomposition gives some idea of why the satisfiability problem can play a central
role.

3.4.6 P=NP ?

When a NP-complete problem A is known, one can relatively easily find other
NP-complete problems: if there exists a polynomial reduction from A to another
problem B ∈ NP, then B is also NP-complete. In fact, whenever RA←P is a
polynomial reduction from a problem P to A and RB←A is a polynomial reduc-
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Fig. 3.4. Classification of some famous decision problems. If P 6= NP, the classes
P andNP -complete are disjoint. If it happened that P = NP , all the problems in
NP, and in particular all those mentioned here, would be solvable in polynomial
time.

tion from A to B, then RB←A ◦ RA←P is a polynomial reduction from P to B.
Starting from satisfiability, it has been possible to find, with this method, thou-
sands of NP-complete problems. To quote a few of them, among the problems
we have encountered so far, Hamiltonian circuit, TSP, and 3-satisfiability (i.e.
satisfiability with clauses of length 3 only) are NP-complete. Actually most of
NP problems can be classified either as being in P, or being NP-complete. The
precise status of some NP problems, like graph isomorphism, is still unknown.

Finally, those problems which, not being in NP are at least as hard as NP-
complete problems, are usually called NP-hard. These includes both decision
problems for which a short certificate does not exist, and non-decision problems.
For instance the optimization and evaluation versions of TSP are NP-hard. How-
ever, in such cases, we shall chose among the expressions ‘TSP is NP-complete’
or ‘TSP is NP-hard’ rather freely.

One major open problem in the theory of computational complexity is whether
the classes P and NP are distinct or not. It might be that P=NP=NP-complete:
this would be the case if someone found a polynomial algorithm for one NP-
complete problem. This would imply that no problem in the broad NP-class
could be solved in polynomial time.

It is a widespread conjecture that there exist no polynomial algorithm for
NP-complete problems. Then the classes P and NP-complete would be disjoint.
In fact it is known that, if P 6= NP, then there are NP problems which are neither
in P nor in NP-complete.

3.4.7 Other complexity classes

Notice the fundamental asymmetry in the definition of the NP class: the exis-
tence of a short certificate is requested only for the yes answers. To understand
the meaning of this asymmetry, consider the problem of unsatisfiability (which
is the complement of the satisfiability problem) formulated as: “given a set of
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clauses, is the problem unsatisfiable?”. It is not clear if there exists a short cer-
tificate allowing to check a yes answer: it is very difficult to prove that a problem
cannot be satisfied without checking an exponentially large number of possible
configurations. So it is not at all obvious that unsatisfiability is in NP. Problems
which are complements of those in NP define the class of co-NP problems, ans
it is not known whether NP=co-NP or not, although it is widely believed that
co-NP is different from NP. This consideration opens a Pandora box with many
other classes of complexities, but we shall immediately close it since it would
carry us too far.

3.5 Optimization and statistical physics
{sec:OptimizationPhysics}

3.5.1 General relation

There exists a natural mapping from optimization to statistical physics. Consider
an optimization problem defined by a finite set X of allowed configurations, and a
cost function E defined on this set with values in R. While optimization consists
in finding the configuration C ∈ X with the smallest cost, one can introduce a
probability measure of the Boltzmann type on the space of configurations: For
any β, each C is assigned a probability 7

pβ(C) =
1

Z(β)
e−βE(C) ; Z(β) =

∑

C∈X

e−βE(C) . (3.1) {eq:boltzmann_optim}

The positive parameter β plays the role of an inverse temperature. In the limit
β → ∞, the probability distribution pβ concentrates on the configurations of
minimum energy (ground states in the statistical physics jargon). This is the
relevant limit for optimization problems. In the statistical physics approach one
generalizes the problem to study properties of the distribution pβ at finite β. In
many cases it is useful to follow pβ when β increases (for instance by monitoring
the thermodynamic properties: internal energy, the entropy, and the specific
heat). This may be particularly useful, both for analytical and for algorithmic
purpose, when the thermodynamic properties evolve smoothly. An example of
practical application is the simulated annealing method, which actually samples
the configuration space at larger and larger values of β until it finds a ground
state. It will be described in Chap. 4. Of course the existence of phase transitions
pose major challenges to this kind of strategies, as we will see.

3.5.2 Spin glasses and maximum cuts

To give a concrete example, let us go back to the spin glass problem of Sec. 2.6.
This involves N Ising spins σ1, . . . , σN in {±1}, located on the vertices of a
graph, and the energy function is:

7Notice that there exist alternatives to the straightforward generalization (3.1). In some
problems the configuration space involves hard constraints, which can also be relaxed in a
finite temperature version.
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E(σ) = −
∑

(ij)

Jijσiσj , (3.2)

where the sum
∑

(ij) runs over all edges of the graph and the Jij variables are
exchange couplings which can be either positive or negative. Given the graph and
the exchange couplings, what is the ground state of the corresponding spin glass?
This is a typical optimization problem. In fact, it very well known in computer
science in a slightly different form.

Each spin configuration partitions the set of vertices into two complementary
subsets: V± = {i |σi = ±1}. Let us call γ(V+) the set of edges with one endpoint
in V+, the other in V−. The energy of the configuration can be written as:

E(σ) = −C + 2
∑

(ij)∈γ(V+)

Jij , (3.3)

where C =
∑

(ij) Jij . Finding the ground state of the spin glass is thus equivalent

to finding a partition of the vertices, V = V+ ∪ V−, such that
∑

(ij)∈γ(V+) cij is
maximum, where cij ≡ −Jij . This problem is known as the maximum cut
problem (MAX-CUT): the set of edges γ(V+) is a cut, each cut is assigned a
weight

∑

(ij)∈γ(V+) cij , and one seeks the cut with maximal weight.
Standard results on max-cut immediately apply: In general this is an NP-hard

problem, but there are some categories of graphs for which it is polynomially
solvable. In particular the max-cut of a planar graph can be found in polynomial
time, providing an efficient method to obtain the ground state of a spin glass
on a square lattice in two dimensions. The three dimensional spin glass problem
falls into the general NP-hard class, but nice ‘branch and bound’ methods, based
on its max-cut formulation, have been developed for it in recent years.

Another well known application of optimization to physics is the random
field Ising model, which is a system of Ising spins with ferromagnetic couplings
(all Jij are positive), but with a magnetic field hi which varies from site to site
taking positive and negative values. Its ground state can be found in polynomial
time thanks to its equivalence with the problem of finding a maximal flow in a
graph.

3.6 Optimization and coding
{sec:OptimizationCoding}

Computational complexity issues are also crucial in all problems of information
theory. We will see it recurrently in this book, but let us just give here some
small examples in order to fix ideas.

Consider the error correcting code problem of Chapter 1. We have a code,
which maps an original message to a codeword x, which is a point in the N -
dimensional hypercube {0, 1}N . There are 2M codewords (with M < N), which
we assume to be a priori equiprobable. When the message is transmitted, the
codeword x is corrupted to -say- a vector y with probabilityQ(y|x). The decoding
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maps the received message y to one of the possible original codewords x′ = d(y).
As we saw, a measure of performance is the average block error probability:

Pav
B ≡ 1

2M

∑

x

∑

y

Q(y|x) I(d(y) 6= x) (3.4)

A simple decoding algorithm would be the following: for each received message
y, consider all the 2N codewords, and determine the most likely one: d(y) =
arg maxxQ(y|x). It is clear that this algorithm minimizes the average block error
probability.

For a general code, there is no better way for maximizing Q(y|x) than going
through all codewords and computing their likelihood one by one. This takes a
time of order 2M , which is definitely too large. Recall in fact that, to achieve
reliable communication, M and N have to be large (in data transmission appli-
cation one may use N as large as 105). One may object that ‘decoding a general
code’ is too a general optimization problem. Just for specifying a single instance
we would need to specify all the codewords, which takes N 2M bits. Therefore,
the complexity of decoding could be a trivial consequence of the fact that even
reading the input takes a huge time. However, it can be proved that also decod-
ing codes possessing a concise (polynomial in the blocklength) specification is
NP-hard. Examples of such codes will be given in the following chapters.

Notes

We have left aside most algorithmic issues in this chapter. In particular many
optimization algorithms are based on linear programming. There exist nice the-
oretical frameworks, and very efficient algorithms, for solving continuous opti-
mization problems in which the cost function, and the constraints, are linear
functions of the variables. These tools can be successfully exploited for address-
ing optimization problems with discrete variables. The idea is to relax the integer
constraints. For instance, in the MAX-CUT problem, one should assign a value
xe ∈ {0, 1} to an edge e, saying whether e is in the cut. If ce is the cost of the
edge, one needs to maximize

∑

e xece over all feasible cuts. A first step consists
in relaxing the integer constraints xe ∈ {0, 1} to xe ∈ [0, 1], enlarging the space
search. One then solves the continuous problem using linear programming. If the
maximum is achieved over integer xe’s, this yields the solution of the original
discrete problem. In the opposite case one can add extra constraints in order
to reduce again the space search until the a real MAX-CUT will be found. A
general introduction to combinatorial optimization, including all these aspects,
is provided by (Papadimitriou and Steiglitz, 1998).

A complete treatment of computational complexity theory can be found in
(Garey and Johnson, 1979), or in the more recent (Papadimitriou, 1994). The
seminal theorem by Cook was independently rediscovered by Levin in 1973. The
reader can find its proof in one of the above books.

Euler discussed the Könisberg’s 7 bridges problem in (Euler, 1736).
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The TSP, which is simple to state, difficult to solve, and lends itself to nice
pictorial representations, has attracted lots of works. The interested reader can
find many references, pictures of TSP’s optimal tours with thousands of vertices,
including tours among the main cities in various countries, applets, etc.. on the
web, starting from instance from (Applegate, Bixby, Chvátal and Cook, ).

The book (Hartmann and Rieger, 2002) focuses on the use of optimization al-
gorithms for solving some problems in statistical physics. In particular it explains
the determination of the ground state of a random field Ising model with a max-
imum flow algorithm. A recent volume edited by these same authors (Hartmann
and Rieger, 2004) addresses several algorithmic issues connecting optimization
and physics; in particular chapter 4 by Liers, Jünger, Reinelt and Rinaldi de-
scribes the branch-and-cut approach to the maximum cut problem used for spin
glass studies.

An overview classical computational problems from coding theory is the re-
view by Barg (Barg, 1998). Some more recent issues are addressed by Spielman
(Spielman, 1997). Finally, the first proof of NP-completeness for a decoding
problem was obtained by Berlekamp, McEliecee and van Tilborg (Berlekamp,
McEliecee and van Tilborg, 1978).
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{ch:Bridges}

The three fields that form the subject of this book, all deal with large sets of
random variables. Not surprisingly, they possess common underlying structures
and techniques. This Chapter describes some of them, insisting on the mathe-
matical structures, large deviations on one hand, and Markov chains for Monte
Carlo computations on the other hand. These tools will reappear several times
in the following Chapters.

Since this Chapter is more technical than the previous ones, we devote the
entire Section 4.1 to a qualitative introduction to the subject. In Sec. 4.2 we
consider the large deviation properties of simple functions of many independent
random variables. In this case many explicit results can be easily obtained. We
present a few general tools for correlated random variables in Sec. 4.3 and the
idea of Gibbs free energy in Sec. 4.4. Section 4.5 provide a simple introduction to
the Monte Carlo Markov chain method for sampling configurations from a given
probability distribution. Finally, in Sec. 4.6 we show how sinulated annealing
exploits Monte Carlo techniques for solving optimization problems.

4.1 Many random variables: a qualitative preview
{sec:Preview}

Consider a set of random variables x = (x1, x2, . . . , xN ), with xi ∈ X and an N
dependent probability distribution

PN (x) = PN (x1, . . . , xN ) . (4.1)

This could be for instance the Boltzmann distribution for a physical system with
N degrees of freedom. The entropy of this law is HN = −E logPN (x). It often
happens that this entropy grows linearly with N at large N . This means that
the entropy per variable hN = HN/N has a finite limit limN→∞ hN = h. It is
then natural to characterize any particular realization of the random variables
(x1, . . . , xN ) by computing the quantity

f(x) =
1

N
log

[
1

PN (x)

]

, (4.2) {eq:Deff}

which measures how probable the event (x1, . . . , xN ) is.. The expectation of f
is Ef(x) = hN . One may wonder if f(x) fluctuates a lot, or if its distribution
is strongly peaked around f = hN . The latter hypothesis turns out to be the
correct one in many cases: When N ≫ 1, it often happens that the probability
distribution of f , QN (f) behaves exponentially:

65
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QN (f)
.
= e−NI(f) . (4.3) {eq:larged_ex}

where I(f) has a non-degenerate minimum at f = h, and I(h) = 0. This means
that, with large probability, a randomly chosen configuration x has f(x) ‘close
to’ h, and, because of the definition (4.2) its probability is approximatively
exp(−Nh). Since the total probability of realizations x such that f(x) ≈ h
is close to one, their number must behave as N .

= exp(Nh). In other words,
the whole probability is carried by a small fraction of all configurations (since
their number, exp(Nh), is in general exponentially smaller than |X |N ), and these
configurations all have the same probability. When such a property (often called
‘asymptotic equipartition’) holds, it has important consequences.

Suppose for instance one is interested in compressing the information con-
tained in the variables (x1, . . . , xN ), which is a sequence of symbols produced by
an information source. Clearly, one should focus on those ‘typical’ sequences x
such that f(x) is close to h, because all the other sequences have vanishing small
probability. Since there are exp(Nh) such typical sequences, one must be able to
encode them in Nh/ log 2 bits by simply numbering them.

Another very general problem consists in sampling from the probability distri-
bution PN (x). With r realizations x1, . . . , xr drawn independently from PN (x),
one can estimate an expectation values EO(x) =

∑

x PN (x)O(x) as EO(x) ≈
1
r

∑r
k=1 O(xk) without summing over |X |N terms, and the precision usually im-

proves like 1/
√
r at large r. A naive sampling algorithm could be the follow-

ing. First ‘propose’ a configuration x from the uniform probability distribution
P unif
N (x) = 1/|X |N : this is simple to be sampled8. Then ‘accept’ the configuration

with probability PN (x). Such an algorithm is totally unefficient: It is clear that,
for the expectation values of ‘well behaved’ observables, we seek configurations
x such that f(x) is close to h. However, such configurations are exponentially
rare, and the above algorithm will require a time of order exp[N(log |X |− h)] to
find just one of them. The Monte Carlo method will provide a better alternative.

4.2 Large deviations for independent variables
{sec:LargedevIID}

A behavior of the type (4.3) is an example of a large deviation principle. One often
encounters systems with this property, and it can also hold with more general
functions f(x). The simplest case where such behaviors are found, and the case
where all properties can be controlled in great details, is that of independent
random variables. We study this case in the present section.

4.2.1 How typical is a series of observations?

Suppose that you are given given the values s1, . . . , sN of N i.i.d. random vari-
ables drawn from a finite space X according to a known probability distribution

8Here we are assuming that we have access to a source of randomness: ⌈N log2 |X |⌉ unbiased
random bits are sufficient to sample from Punif

N
(x). In practice one replaces the source of

randomness by a pseudorandom generator.
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{p(s)}s∈X . The si’s could be produced for instance by an information source, or
by some repeated measurements on a physical system. You would like to know
if the sequence s = (s1, . . . , sN ) is a typical one, or if you found a rare event.
If N is large, one can expect that the number of appearances of a given x ∈ X
in a typical sequence should be close to Np(x). The method of types allows to
quantify this statement.

The type qs(x) of the sequence s is the frequency of appearance of symbol
x in the sequence:

qs(x) =
1

N

N∑

i=1

δx,si
, (4.4)

where δ is the Kronecker symbol, such that δx,y = 1 if x = y and 0 otherwise.
For any observation s, the type qs(x), considered as a function of x, has the
properties of a probability distribution over X : q(x) ≥ 0 for any x ∈ X and
∑

x q(x) = 1. In the following we shall denote by M(X ) the space of probability
distributions over X : M(X ) ≡ {q ∈ R

X s.t. q(x) ≥ 0 ,
∑

x q(x) = 1}. Therefore
qs ∈ M(X ).

The expectation of the type qs(x) coincides with the original probability
distribution:

E qs(x) = p(x) . (4.5)

Sanov’s theorem estimates the probability that the type of the sequence differs
from p(x).

{thm:Sanov}
Theorem 4.1. (Sanov) Let x1, . . . , xN ∈ X be N i.i.d.’s random variables
drawn from the probability distribution p(x), and K ⊂ M(X ) a compact set
of probability distributions over X . If q is the type of (x1, . . . , xN ), then

Prob [q ∈ K]
.
= exp[−ND(q∗||p)] , (4.6)

where q∗ = arg minq∈K D(q||p), and D(q||p) is the KL divergence defined in
Eq. (1.10) .

Basically this theorem means that the probability of finding a sequence with
type q behaves at large N like exp[−ND(q||p)]. Therefore, for large N , typical
sequences have a type q(x) = p(x), and those with a different type are exponen-
tially rare. The proof of the theorem is a straightforward application of Stirling’s
formula and is left as an exercise for the reader. In Appendix 4.7 we give a ⋆
derivation using a ‘field theoretical’ method as used in physics. It may be an
instructive simple example for the reader who wants to get used to these kinds
of techniques, frequently used by physicists.
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Example 4.2 Let the xi’s be the outcome of a biased coin: X = {head, tail},
with p(head) = 1− p(tail) = 0.8. What is the probability of getting 50 heads
and 50 tails in 100 throws of the coin? Using the expression (4.6) and (1.10) with
N = 100 and q(head) = q(tail) = 0.5, we get Prob[50 tails] ≈ 2.04 · 10−10.

Example 4.3 Let us consider the reverse case: we take a fair coin (p(head) =
p(tail) = 0.5) and ask what is the probability of getting 80 heads and 20 tails.
Sanov theorem provides the estimate Prob[80 heads] ≈ 4.27 · 10−9, which is
much higher than the one computed in the previous example.
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Example 4.4 A simple model of a column of the atmosphere consists in
studying N particles in the earth gravitational field. The state of particle
i ∈ {1, . . . , N} is given by a single coordinate zi ≥ 0 which measures its height
with respect to earth level. For the sake of simplicity, we assume zi’s to be in-
teger numbers. We can, for instance, imagine to discretize the heights in terms
of some small unit length (e.g. millimeters). The N -particles energy function
reads, in properly chosen units:

E =
N∑

i=1

zi . (4.7)

The type of a configuration {x1, . . . , xN} can be interpreted as the density
profile ρ(z)of the configuration:

ρ(z) =
1

N

N∑

i=1

δz,zi
. (4.8)

Using the Boltzmann probability distribution (2.4), it is simple to compute the
expected density profile, which is usually called the ‘equilibrium’ profile:

ρeq(z) ≡ 〈ρ(z)〉 = (1 − e−β) e−βz . (4.9)

If we take a snapshot of the N particles at a given instant, their density will
present some deviations with respect to ρeq(z). The probability of seeing a
density profile ρ(z) is given by Eq. (4.6) with p(z) = ρeq(z) and q(z) = ρ(z). For
instance, we can compute the probability of observing an exponential density
profile, like (4.9) with a different parameter λ: ρλ(x) = (1 − e−λ) e−λx. Using
Eq. (1.10) we get:

D(ρλ||ρeq) = log

(
1 − e−λ

1 − e−β

)

+
β − λ

eλ − 1
. (4.10)

The function Iβ(λ) ≡ D(ρλ||ρeq) is depicted in Fig. 4.1.

Exercise 4.1 The previous example is easily generalized to the density profile
of N particles in an arbitrary potential V (x). Show that the Kullback-Leibler
divergence takes the form

D(ρ||ρeq) = β
∑

x

V (x)ρ(x) −
∑

x

ρ(x) log ρ(x) + log z(β) . (4.11)
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Fig. 4.1. Example 3: In an atmosphere where the equilibrium density profile is
ρeq(z) ∝ e−βz, the probability of observing an atypical profile ρ(z) ∝ e−λz is, for
a large number of particles N , exp[−NIβ(λ)]. The curves Iβ(λ), plotted here,
show that small values of λ are very rare. {fig:profilefluc}

4.2.2 How typical is an empirical average?

The result (4.6) contains a detailed information concerning the large fluctua-
tions of the random variables {xi}. Often one is interested in monitoring the
fluctuations of the empirical average of a measurement, which is a real number
f(x):

f ≡ 1

N

N∑

i=1

f(xi) . (4.12)

Of course f , will be “close” to E f(x) with high probability. The following result
quantifies the probability of rare fluctuations.

{thm:EmpiricalAverage}
Corollary 4.5 Let x1, . . . , xN be N i.i.d.’s random variables drawn from the
probability distribution p(x). Let f : X → R be a real valued function and f be
its empirical average. If A ⊂ R is a closed interval of the real axis

Prob [f ∈ A]
.
= exp[−NI(A)] , (4.13)

where

I(A) = min
q

[

D(q||p)
∣
∣
∣
∣
∣

∑

x∈X

q(x)f(x) ∈ A

]

. (4.14)

Proof: We apply Theorem 4.1 with the compact set

K = {q ∈ M(X ) |
∑

x∈X

q(x)f(x) ∈ A} . (4.15)
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Fig. 4.2. Probability of an atypical average height for N particles with energy
function (4.7). {fig:heightfluc}

This implies straightforwardly Eq. (4.13) with

I(ϕ) = min

[

D(q||p)
∣
∣
∣
∣
∣

∑

x∈X

q(x)f(x) = ϕ

]

. (4.16)

The minimum in the above equation can be found by Lagrange multipliers
method, yielding Eq. (4.14). �

Example 4.6 We look again at N particles in a gravitational field, as in Ex-
ample 3, and consider the average height of the particles:

z =
1

N

N∑

i=1

zi . (4.17)

The expected value of this quantity is E(z) = zeq = (eβ − 1)−1. The prob-
ability of a fluctuation of z is easily computed using the above Corollary. For
z > zeq, one gets P [z > z]

.
= exp[−N I(z)], with

I(z) = (1 + z) log

(
1 + zeq
1 + z

)

+ z log

(
z

zeq

)

. (4.18)

Analogously, for z < zeq, P [z < z]
.
= exp[−N I(z)], with the same rate function

I(z). The function I(z) is depicted in Fig. 4.2.
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Exercise 4.2 One can construct a thermometer using the system of N par-
ticles with the energy function (4.7). Whenever the temperature is required,
you take a snapshot of the N particles, compute x and estimate the inverse
temperature βest using the formula (eβest −1)−1 = x. What is (for N ≫ 1) the
probability of getting a result βest 6= β?

4.2.3 Asymptotic equipartition
{subsec:AEQ}

The above tools can also be used for counting the number of configurations
s = (s1, . . . , sN ) with either a given type q(x) or a given empirical average of
some observable f . One finds for instance:

Proposition 4.7 The number NK,N of sequences s which have a type belonging
to the compact K ⊂ M(X ) behaves as NK,N

.
= exp{NH(q∗)}, where q∗ =

arg max{H(q) | q ∈ K}.{prop:counting}

This result can be stated informally by saying that “there are approximately
eNH(q) sequences with type q”.

Proof:The idea is to apply Sanov’s theorem, taking the “reference” distribu-
tion p(x) to be the flat probability distribution pflat(x) = 1/|X |. Using Eq. (4.6),
we get

NK,N = |X |NProbflat[q ∈ K]
.
= exp{N log |X |−ND(q∗||pflat)} = exp{NH(q∗)} .

(4.19)
�

We now get back to a generic sequence s = (s1, . . . , sN ) ofN iid variables with
a probability distribution p(x). As a consequence of Sanov’s theorem, we know
that the most probable type is p(x) itself, and that deviations are exponentially
rare in N . We expect that almost all the probability is concentrated on sequences
having a type in some sense close to p(x). On the other hand, because of the
above proposition, the number of such sequences is exponentially smaller than
the total number of possible sequences |X |N .

These remarks can be made more precise by defining what is meant by a
sequence having a type ‘close to p(x)’. Given the sequence s, we introduce the
quantity

r(s) ≡ − 1

N
logPN (s) = − 1

N

N∑

i=1

log p(xi) . (4.20)

Clearly, E r(s) = H(p). The sequence s is said to be ε-typical if and only if
|r(s)−H(p)| ≤ ε. Let TN,ε be the set of ε-typical sequences. It has the following
properties:

Theorem 4.8 (i) limN→∞ Prob[s ∈ TN,ε] = 1.

(ii) For N large enough, eN [H(p)−ε] ≤ |TN,ε| ≤ eN [H(p)+ε].

(iii) For any s ∈ TN,ε, e
−N [H(p)+ε] ≤ PN (s) ≤ e−N [H(p)−ε].

Proof:Since r( s) is an empirical average, we can apply Corollary 4.5. This allows
to estimate the probability of not being typical as Prob[ s /∈ TN,ε]

.
= exp(−NI).
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The exponent is given by I = minqD(q||p), the minimum being taken over all
probability distributions q(x) such that

∣
∣
∑

x∈X q(x) log[1/q(x)] −H(p)
∣
∣ ≥ ε.

But D(q||p) > 0 unless q = p, and p does not belong to the of minimization.
Therefore I > 0 and limN→∞ Prob[ s /∈ TN,ε] = 0, which proves (i).

The condition for q(x) to be the type of a ε-typical sequence can be rewritten
as |D(q||p) +H(q) −H(p)| ≤ ε. Therefore, for any ε-typical sequence, |H(q) −H(p)| ≤
ε and Proposition 4.7 leads to (ii). Finally, (iii) is a direct consequence of the
definition of ε-typical sequences. �

The behavior described in this proposition is usually denoted as asymptotic
equipartition property. Although we proved it for i.i.d. random variables, this
is not the only context in which it is expected to hold. In fact it will be found in
many interesting systems throughout the book.

4.3 Correlated variables {sec:CorrelatedVariables}

In the case of independent random variables on finite spaces, the probability of
a large fluctuation is easily computed by combinatorics. It would be nice to have
some general result for large deviations of non-independent random variables. In
this Section we want to describe the use of Legendre transforms and saddle point
methods to study the general case. As it often happens, this method corresponds
to a precise mathematical statement: the Gärtner-Ellis theorem. We first describe
the approach informally and apply it to a few of examples. Then we will state
the theorem and discuss it.

4.3.1 Legendre transformation

To be concrete, we consider a set of random variables x = (x1, . . . , xN ), with
xi ∈ X and an N dependent probability distribution

PN (x) = PN (x1, . . . , xN ) . (4.21)

Let f : X → R be a real valued function. We are interested in estimating, at
large N , the probability distribution of its empirical average

f(x) =
1

N

N∑

i=1

f(xi) . (4.22)

In the previous Section, we studied the particular case in which the xi’s are
i.i.d. random variables. We proved that, quite generally, a finite fluctuation of
f(x) is exponentially unlikely. It is natural to expect that the same statement
holds true if the xi’s are “weakly correlated”. Whenever PN (x) is the Gibbs-
Boltzmann distribution for some physical system, this expectation is supported
by physical intuition. We can think of the xi’s as the microscopic degrees of
freedom composing the system and of f(x) as a macroscopic observable (pressure,
magnetization, etc.). It is a common observation that the relative fluctuations of
macroscopic observables are very small.
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Let us thus assume that the distribution of f follows a large deviation
principle, meaning that the asymptotic behavior of the distribution at large N
is:

PN (f)
.
= exp[−NI(f)] , (4.23)

with a rate function I(f) ≥ 0.
In order to determine I(f), a useful method consists in “tilting” the measure

PN (·) in such a way that the rare events responsible for O(1) fluctuations of f
become likely. In practice we define the (logarithmic) moment generating
function of f as follows

ψN (t) =
1

N
log
(

E eNtf(x)
)

, t ∈ R . (4.24)

When the property (4.23) holds, we can evaluate the large N limit of ψN (t) using
the saddle point method:

lim
N→∞

ψN (t) = lim
N→∞

1

N
log

{∫

eNtf−NI(f)df

}

= ψ(t) , (4.25)

with

ψ(t) = sup
f∈R

[
tf − I(f)

]
. (4.26)

ψ(t) is the Legendre transform of I(f), and it is a convex function of t by con-
struction (this is proved by differentiating twice Eq. (4.24)). It is therefore natural
to invert the Legendre transform (4.26) as follows:

Iψ(f) = sup
t∈R

[
tf − ψ(t)

]
, (4.27)

and we expect Iψ(f) to coincide with the convex envelope of I(f). This procedure
is useful whenever computing ψ(t) is easier than directly estimate the probability
distribution PN (f).

4.3.2 Examples

It is useful to gain some insight by considering a few examples.
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Example 4.9 Consider the one-dimensional Ising model, without external
magnetic field, cf. Sec. 2.5.1. To be precise we have xi = σi ∈ {+1,−1}, and
PN (σ) = exp[−βE(σ)]/Z the Boltzmann distribution with energy function

E(σ) = −
N−1∑

i=1

σiσi+1 . (4.28)

We want to compute the large deviation properties of the magnetization

m(σ) =
1

N

N∑

i=1

σi . (4.29)

We know from Sec. 2.5.1, and from the symmetry of the energy function under
spin reversal (σi → −σi) that 〈m(σ)〉 = 0. In order to compute the probability
of a large fluctuation of m, we apply the method described above. A little
thought shows that ψ(t) = φ(β, t/β)− φ(β, 0) where φ(β,B) is the free energy
density of the model in an external magnetic field B, found in (2.63). We thus
get

ψ(t) = log

(

cosh t+
√

sinh2 t+ e−4β

1 + e−2β

)

. (4.30)

One sees that ψ(t) is convex and analytic for any β < ∞. We can apply
Eq. (4.27) in order to obtain the rate function Iψ(m). In Fig. 4.3 we report
the resulting function for several temperatures β. Notice that Iψ(m) is analytic
and has strictly positive second derivative for any m and β < ∞, so that we
expect I(m) = Iψ(m). This expectation is confirmed by Theorem 4.12 below.
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Fig. 4.3. Rate function for the magnetization of the one-dimensional Ising
model. Notice that, as the temperature is lowered (β increased) the probabil-
ity of large fluctuations increases.{fig:largedev1dIsing}

Example 4.10 Consider a Markov chain X0,X1, . . . ,Xi, . . . taking values in
a finite state space X , as in the Example 2 of Sec. 1.3, and assume all the
elements of the transition matrix w(x→ y) to be strictly positive. Let us study
the large deviation properties of the empirical average 1

N

∑

i f(Xi).
One can show that the limit moment generating function ψ(t), cf. Eq. (4.24)

exists, and can be computed using the following recipe. Define the ‘tilted’ tran-
sition probabilities as wt(x→ y) = w(x→ y) exp[t f(y)]. Let λ(t) be the largest
solution of the eigenvalue problem

∑

x∈X

φlt(x) wt(x→ y) = λ(t) φlt(y) . (4.31)

The moment generating function is simply given by ψ(t) = log λ(t) (which is
unique and positive because of Perron-Frobenius theorem).

Notice that Eq. (4.31) resembles the stationarity condition for a Markov
chain with transition probabilities wt(x → y). Unhappily the rates wt(x → y)
are not properly normalized (

∑

y wt(x→ y) 6= 1). This point can be overcome
as follows. Call φrt (x) the right eigenvector of wt(x → y) with eigenvalue λ(t)
and define:

wt(x→ y) ≡ 1

λ(t)φrt (x)
wt(x→ y)φrt (y) . (4.32)

We leave to the reader the exercise of showing that: (i) These rates are prop-
erly normalized; (ii) Eq. (4.31) is indeed the stationarity condition for the
distribution pt(x) ∝ φlt(x)φ

r
t (x) with respect to the rates wt(x→ y).
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Example 4.11 Consider now the Curie-Weiss model without external field,
cf. Sec. 2.5.2. As in Example 1, we take xi = σi ∈ {+1,−1} and PN (σ) =
exp[−βE(σ)]/Z, and we are interested in the large fluctuations of the global
magnetization (4.29). The energy function is

E(σ) = − 1

N

∑

(ij)

σiσj . (4.33)

By repeating the arguments of Sec. 2.5.2, it is easy to show that, for any
−1 ≤ m1 < m2 ≤ 1:

PN{m(σ) ∈ [m1,m2]} .
=

1

ZN (β)

∫ m2

m1

dm eNφmf (m;β) , (4.34)

where φmf(m;β) = β
2m

2− log[2 cosh(βm)]. The large deviation property (4.23)
holds, with:

I(m) = φmf(m
∗;β) − φmf(m;β) . (4.35)

and m∗(β) is the largest solution of the Curie Weiss equation m = tanh(βm).
The function I(m) is represented in Fig. 4.4, left frame, for several values of
the inverse temperature β. For β < βc = 1, I(m) is convex and has its unique
minimum in m = 0.

A new and interesting situation appears when β > βc. The function I(m)
is non convex, with two degenerate minima at m = ±m∗(β). In words, the
system can be found in either of two well-distinguished ‘states’: the positive
and negative magnetization states. There is no longer a unique typical value
of the magnetization such that large fluctuations away from this value are
exponentially rare.

Let us now look at what happens if the generating function approach is
adopted. It is easy to realize that the limit (4.24) exists and is given by

ψ(t) = sup
m∈[−1,1]

[mt− I(m)] . (4.36)

While at high temperature β < 1, ψ(t) is convex and analytic, for β > 1 it devel-
ops a singularity at t = 0. In particular one has ψ′(0+) = m∗(β) = −ψ′(0−).
Compute now Iψ(m) using Eq. (4.27). A little thought shows that, for any
m ∈ [−m∗(β),m∗(β)] the supremum is achieved for t = 0, which yields
Iψ(m) = 0. Outside this interval, the supremum is achieved at the unique
solution of ψ′(t) = m, and Iψ(m). As anticipated, Iψ(m) is the convex enve-
lope of I(m). In the range (−m∗(β),m∗(β)), an estimate of the magnetization
fluctuations through the function

.
= exp(−NIψ(m)) would overestimate the

fluctuations.
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4.3.3 The Gärtner-Ellis theorem

The Gärtner-Ellis theorem has several formulations which usually require some
technical definitions beforehand. Here we shall state it in a simplified (and some-
what weakened) form. We need only the definition of an exposed point: x ∈ R

is an exposed point of the function F : R → R if there exists t ∈ R such that
ty − F (y) > tx − F (x) for any y 6= x. If, for instance, F is convex, a sufficient
condition for x to be an exposed point is that F is twice differentiable at x with
F ′′(x) > 0.

{thm:GE}
Theorem 4.12. (Gärtner-Ellis) Consider a function f(x) (not necessarily of
the form (4.22)) and assume that the moment generating function ψN (t) defined
in (4.24) exists and has a finite limit ψ(t) = limN→∞ ψN (t) for any t ∈ R.
Define Iψ(·) as the inverse Legendre transform of Eq. (4.27) and let E be the set
of exposed points of Iψ(·).

1. For any closed set F ∈ R:

lim sup
N→∞

1

N
logPN (f ∈ F ) ≤ − inf

f∈F
Iψ(f) . (4.37)

2. For any open set G ∈ R:

lim sup
N→∞

1

N
logPN (f ∈ G) ≥ − inf

f∈G∩E
Iψ(f) . (4.38)

3. If moreover ψ(t) is differentiable for any t ∈ R, then the last statement
holds true with the inf being taken over the whole set G (rather than over
G ∩ E).

Informally, the inverse Legendre transform (4.27) generically yields an upper
bound on the probability of a large fluctuation of the macroscopic observable.
This upper bound is tight unless a ‘first order phase transition’ occurs, corre-
sponding to a discontinuity in the first derivative of ψ(t).

It is worth mentioning that ψ(t) can be non-analytic at a point t∗ while its
first derivative is continuous at t∗. This correspondsm in the statistical mechanics
jargon, to a ‘higher order’ phase transition. As we shall see in the following
Chapters, such phenomena have interesting probabilistic interpretations too.

4.3.4 Typical sequences

Let us get back to the concept of typical sequences, introduced in Section 4.2.
More precisely, we want to investigate the large deviation of the probability itself,
measured by r(x) = − 1

N logP (x). For independent random variables, the study
of sect. 4.2.3 led to the concept of ε-typical sequences. What can one say about
general sequences?

Let us compute the corresponding moment generating function (4.24):

ψN (t) =
1

N
log







∑

x

PN (x)1−t






. (4.39)
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Without loss of generality, we can assume PN (x) to have the Boltzmann form:

PN (x) =
1

ZN (β)
exp{−βEN (x)} , (4.40)

with energy function EN (x). Inserting this into Eq. (4.39), we get

ψN (t) = βfN (β) − βfN (β(1 − t)) , (4.41)

where fN (β) = −(1/N) logZN (β) is the free energy density of the system with
energy function EN (x) at inverse temperature β. Let us assume that the ther-
modynamic limit f(β) = limN→∞ fN (β) exists and is finite. It follows that the
limiting generating function ψ(t) exists and we can apply the Gärtner-Ellis the-
orem to compute the probability of a large fluctuation of r(x). As long as f(β)
is analytic, large fluctuations are exponentially depressed and the asymptotic
equipartition property of independent random variables is essentially recovered.
On the other hand, if there is a phase transition at β = βc, where the first
derivative of f(β) is discontinuous, then the likelihood r(x) may take several
distinct values with a non-vanishing probability. This is what happened with the
magnetization in Example 3 above.

4.4 Gibbs free energy
{sec:Gibbs}

In the introduction to statistical physics of chapter 2, we assumed that the
probability distribution of the configurations of a physical system is Boltzmann’s
distribution. It turns out that this distribution can be obtained from a variational
principle. This is interesting, both as a matter of principle and in order to find
approximation schemes.

Consider a system with a configuration space X , and a real valued energy
function E(x) defined on this space. The Boltzmann distribution is Pβ(x) =
exp[−β(E(x)−F (β))], where F (β), the ‘free energy’, is a function of the inverse
temperature β defined by the fact that

∑

x∈X Pβ(x) = 1. Let us define the
Gibbs free energy G[P ] (not to be confused with F (β)), which is a real valued
functional over the space of probability distributions P (x) on X :

G[P ] =
∑

x∈X

P (x)E(x) +
1

β

∑

x∈X

P (x) logP (x) . (4.42)

It is easy to rewrite the Gibbs free energy in terms of the KL divergence between
P (x) and the Boltzmann distribution Pβ(x):

G[P ] =
1

β
D(P ||Pβ) + F (β) , (4.43)

This representation implies straightforwardly the following proposition (Gibbs
variational principle):
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Proposition 4.13 The Gibbs free energy G[P ] is a convex functional of P (x),
and it achieves its unique minimum on the Boltzmann distribution P (x) = Pβ(x).
Moreover G[Pβ ] = F (β), where F (β) is the free energy.

When the partition function of a system cannot be computed exactly, the above
result suggests a general line of approach for estimating the free energy: one can
minimize the Gibbs free energy in some restricted subspace of “trial probability
distributions” P (x). These trial distributions should be simple enough that G[P ]
can be computed, but the restricted subspace should also contain distributions
which are able to give a good approximation to the true behavior of the physical
system. For each new physical system one will thus need to find a good restricted
subspace.

Example 4.14 Consider a system with space of configurations X = R and
energy:

E(x) =
1

2
t x2 +

1

4
x4 , (4.44)

with t ∈ R. We ask the question of computing its free energy at temperature
β = 1 as a function of t. With a slight abuse of notation, we are interested in

F (t) = − log

(∫

dx e−E(x)

)

. (4.45)

The above integral cannot be computed in closed form and so we recur to the
Gibbs variational principle. We consider the following family of trial probability
distributions:

Qa(x) =
1√
2πa

e−x
2/2a . (4.46)

It is easy to compute the corresponding Gibbs free energy for β = 1:

G[Qa] =
1

2
ta+

3

4
a2 − 1

2
(1 + log 2πa) ≡ G(a, t) . (4.47)

The Gibbs principle implies that F (t) ≤ minaG(a, t). In Fig. 4.5 we plot the
optimal value of a, aopt(t) = arg minaG(a, t) and the corresponding estimate
Gopt(t) = G(aopt(t), t).
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Fig. 4.4. The rate function for large fluctuations of the magnetization in the
Curie-Weiss model (left) and the corresponding generating function (right).{fig:largedevCW}

Example 4.15 Consider the same problem as above and the family of trials
distributions:

Qa(x) =
1√
2π
e−(x−a)2/2 . (4.48)

We leave as an exercise for the reader the determination of the optimal value
of aopt, and the corresponding upper bound on F (t), cf. Fig. 4.5. Notice the
peculiar phenomenon going on at tcr = −3. For t > tcr, we have aopt(t) = 0,
while G[Qa] has two degenerate local minima a = ±aopt(t) for t ≤ tcr.
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Example 4.16 Consider the Ising model on a d-dimensional lattice L of linear
size L (i.e. L = [L]d), cf. Sec. 2.5. The energy function is (notice the change of
normalization with respect to Sec. 2.5)

E(σ) = −
∑

(ij)

σiσj −B
∑

i∈L

σi . (4.49)

For the sake of simplicity we assume periodic boundary conditions.
This means that two sites i = (i1, . . . , id) and j = (j1, . . . , jd) are considered
nearest neighbors if, for some l ∈ {1, . . . , d}, il−jl = ±1 ( mod L) and il′ = jl′

for any l′ 6= l. The sum over (ij) in Eq. (4.49) runs over all nearest neighbors
pairs in L.

In order to obtain a variational estimate of the free energy F (β) at in-
verse temperature β, we evaluate the Gibbs free energy on the following trial
distribution:

Qm(σ) =
∏

i∈L

qm(σi) , (4.50)

with qm(+) = (1 + m)/2 and qm(−) = (1 − m)/2 and m ∈ [−1,+1]. Notice
that, under Qm(σ), the σi’s are i.i.d. random variables with expectation m.

It is easy to evaluate the Gibbs free energy on this distribution. If we define
the per-site Gibbs free energy g(m;β,B) ≡ G[Qm]/Ld, we get

g(m;β,B) = −1

2
m2 −Bm+

1

β
H((1 +m)/2) . (4.51)

Gibbs variational principle implies an upper bound on the free energy density
f(β) ≤ infm g(m;β, h). Notice that, apart from an additive constant, this ex-
pression (4.51) has the same form as the solution of the Curie-Weiss model, cf.
Eq. (2.79). We refer therefore to Sec. 2.5.2 for a discussion of the optimization
over m. This implies the following inequality:

fd(β, h) ≤ fCW(β, h) − 1

2
. (4.52)

The relation between Gibbs free energy and Kullback-Leibler divergence in
Eq. (4.43) implies a simple probabilistic interpretation of Gibbs variational prin-
ciple. Imagine to prepare a large number N of copies of the same physical system.
Each copy is described by the same energy function E(x). Now consider the em-
pirical distribution P (x) of the N copies. Typically P (x) will be close to the
Bolzmann distribution Pβ(x). Sanov’s theorem implies that the probability of
an ‘atypical’ distribution is exponentially small in N :

P[P ]
.
= exp[−N (G[P ] − F (β))] . (4.53)
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An illustration of this remark is provided by Exercise 4 of Sec. 4.2.

4.5 The Monte Carlo method {sec:MonteCarlo}

The Monte Carlo method is an important generic tool which is common to
probability theory, statistical physics and combinatorial optimization. In all of
these fields, we are often confronted with the problem of sampling a configuration
x ∈ XN (here we assume X to be a finite space) from a given distribution
P (x). This can be quite difficult when N is large, because there are too many
configurations, because the typical configurations are exponentially rare and/or
because the distribution P (x) is specified by the Boltzmann formula with an
unknown normalization (the partition function).

A general approach consists in constructing a Markov chain which is guaran-
teed to converge to the desired P (x) and then simulating it on a computer. The
computer is of course assumed to have access to some source of randomness: in
practice pseudo-random number generators are used. If the chain is simulated
for a long enough time, the final configuration has a distribution ‘close’ to P (x).
In practice, the Markov chain is defined by a set of transition rates w(x → y)

with x, y ∈ XN which satisfy the following conditions.

1. The chain is irreducible, i.e. for any couple of configurations x and y,
there exists a path (x0, x1, . . . xn) of length n, connecting x to y with non-
zero probability. This means that x0 = x, xn = y and w(xi → xi+1) > 0
for i = 0 . . . n− 1.

2. The chain is aperiodic: for any couple x and y, there exists a positive
integer n(x, y) such that, for any n ≥ n(x, y) there exists a path of length
n connecting x to y with non-zero probability. Notice that, for an irre-
ducible chain, aperiodicity is easily enforced by allowing the configuration
to remain unchanged with non-zero probability: w(x→ x) > 0.

3. The distribution P (x) is stationary with respect to the probabilities
w(x→ y):

∑

x

P (x) w(x→ y) = P (y) . (4.54)

Sometimes a stronger condition (implying stationarity) is satisfied by the
transition probabilities. For each couple of configurations x, y such that
either w(x→ y) > 0 or w(y → x) > 0, one has

P (x)w(x→ y) = P (y)w(y → x) . (4.55)

This condition is referred to as reversibility or detailed balance.

The strategy of designing and simulating such a process in order to sample
from P (x) goes under the name of dynamic Monte Carlo method or Monte
Carlo Markov chain method (hereafter we shall refer to it simply as Monte
Carlo method). The theoretical basis for such an approach is provided by two
classic theorems which we collect below.
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{thm:AsymptoticMarkov}

Theorem 4.17 Assume the rates w(x→ y) to satisfy the hypotheses 1-3 above.
Let X0,X1, . . . ,Xt, . . . be random variables distributed according to the Markov
chain with rates w(x → y) and initial condition X0 = x0. Let f : XN → R be
any real valued function. Then

1. The probability distribution of Xt converges to the stationary one:

lim
t→∞

P[Xt = x] = P (x) . (4.56)

2. Time averages converge to averages over the stationary distribution

lim
t→∞

1

t

t∑

s=1

f(Xs) =
∑

x

P (x)f(x) almost surely. (4.57)

The proof of this Theorem can be found in any textbook on Markov processes.
Here we will illustrate it by considering two simple Monte Carlo algorithms which
are frequently used in statistical mechanics (although they are by no means the
most efficient ones).
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Example 4.18 Consider a system of N Ising spins σ = (σ1 . . . σN ) with en-
ergy function E(σ) and inverse temperature β. We are interested in sampling
the Boltzmann distribution Pβ . The Metropolis algorithm with random up-
datings is defined as follows. Call σ(i) the configuration which coincides with

σ but for the site i (σ
(i)
i = −σi), and let ∆Ei(σ) ≡ E(σ(i)) − E(σ). At each

step, an integer i ∈ [N ] is chosen randomly with flat probability distribution
and the spin σi is flipped with probability

wi(σ) = exp{−βmax[∆Ei(σ), 0]} . (4.58)

In formulae, the transition probabilities are given by

w(σ → τ) =
1

N

N∑

i=1

wi(σ) δ(τ , σ(i)) +

[

1 − 1

N

N∑

i=1

wi(σ)

]

δ(τ , σ) , (4.59)

where δ(σ, τ) = 1 if σ ≡ τ , and = 0 otherwise. It is easy to check that this
definition satisfies both the irreducibility and the stationarity conditions for
any energy function E(σ) and inverse temperature β < 1. Furthermore, the
chain satisfies the detailed balance condition:

Pβ(σ)wi(σ) = Pβ(σ
(i))wi(σ

(i)) . (4.60)

Whether the condition of aperiodicity is fulfilled depends on the energy. It is
easy to construct systems for which it does not hold. Take for instance a single
spin, N = 1, and let E(σ) = 0: the spin is flipped at each step and there is no
way to have a transition from σ = +1 to σ = −1 in an even number of steps.
(But this kind of pathology is easily cured modifying the algorithm as follows.
At each step, with probability 1−ε a site i is chosen and a spin flip is proposed
as above. With probability ε nothing is done, i.e. a null transition σ → σ is
realized.)

Exercise 4.3 Variants of this chain can be obtained by changing the flipping
probabilities (4.58). A popular choice consists in the heath bath algorithm
(also referred to as Glauber dynamics):

wi(σ) =
1

2

[

1 − tanh

(
β∆Ei(σ)

2

)]

. (4.61)

Prove irreducibility, aperiodicity and stationarity for these transition probabil-
ities.

One of the reason of interest of the heath bath algorithm is that it can be
easily generalized to any system whose configuration space has the form XN . In
this algorithm one chooses a variable index i, fixes all the others variables, and
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assign a new value to the i-th one according to its conditional distribution. A
more precise description is provided by the following pseudocode. Recall that,
given a vector x ∈ XN , we denote by x∼i, the N−1-dimensional vector obtained
by removing the i-th component of x.

Heat bath algorithm()

Input: A probability distribution P (x) on the configuration space XN,

and the number r of iterations.

Output: a sequence x(0), x(1), . . . , x(r)

1. Generate x(0) uniformly at random in XN.

2. For t = 1 to t = r:

2.1 Draw a uniformly random integer i ∈ {1, . . . , N}

2.2 For each z ∈ X, compute

P (Xi = z|X
∼i = x

(t−1)
∼i y) =

P (Xi = z, X
∼i = x

(t−1)
∼i )

P

z′∈X
P (Xi = z′, X

∼i = x
(t−1)
∼i )

.

(4.62)

2.3 Set x
(t)
j = x

(t−1)
j for each j 6= i, and x

(t)
i = z where z is drawn

from the distribution P (Xi = z|X
∼i = x

(t−1)
∼i y).

Let us stress that this algorithm does only require to compute the probability
P (x) up to a multiplicative constant. If, for instance, P (x) is given by Boltz-
mann law, cf. Sec. 2.1, it is enough to be able to compute the energy E(x) of
a configuration, and is instead not necessary to compute the partition function
Z(β).

This is a very general method for defining a Markov chain with the desired
property. The proof is left as exercise.

Exercise 4.4 Assuming for simplicity that ∀x, P (x) > 0, prove irreducibility,
aperiodicity and stationarity for the heat bath algorithm.

Theorem 4.17 confirms that the Monte Carlo method is indeed a viable
approach for sampling from a given probability distribution. However, it does
not provide any information concerning its computational efficiency. In order to
discuss such an issue, it is convenient to assume that simulating a single step
Xt → Xt+1 of the Markov chain has a unitary time-cost. This assumption is a
good one as long as sampling a new configuration requires a finite (fixed) number
of computations and updating a finite (and N -independent) number of variables.
This is the case in the two examples provided above, and we shall stick here to
this simple scenario.

Computational efficiency reduces therefore to the question: how many step
of the Markov chain should be simulated? Of course there is no unique answer
to such a generic question. We shall limit ourselves to introduce two important
figures of merit. The first concerns the following problem: how many steps should
be simulated in order to produce a single configuration x which is distributed
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approximately according to P (x)? In order to precise what is meant by “approx-
imately” we have to introduce a notion distance among distributions P1(·) and
P2(·) on XN . A widespread definition is given by the variation distance:

||P1 − P2|| =
1

2

∑

x∈XN

|P1(x) − P2(x)| . (4.63)

Consider now a Markov chain satisfying the hypotheses 1-3 above with respect to
a stationary distribution P (x) and call Pt(x|x0) the distribution ofXt conditional
to the initial condition X0 = x0. Let dx

0
(t) = ||Pt(·|x0) − P (·)|| be the distance

from the stationary distribution. The mixing time (or variation threshold
time) is defined as

τeq(ε) = min{t > 0 : sup
x
0

dx0
(t) ≤ ε} . (4.64)

In this book we shall often refer informally to this quantity (or to some close
relative) as the equilibration time. The number ε can be chosen arbitrarily, a
change in ε implying usually a simple multiplicative change in in τeq(ε). Because
of this reason the convention ε = 1/e is sometimes adopted.

Rather than producing a single configuration with the prescribed distribution,
one is often interested in computing the expectation value of some observable
O(x). In principle this can be done by averaging over many steps of the Markov
chain as suggested by Eq. (4.57). It is therefore natural to pose the following
question. Assume the initial condition X0 is distributed according to the sta-
tionary distribution P (x). This can be obtained by simulating τeq(ε) steps of the
chain in a preliminary (equilibration) phase. We shall denote by 〈·〉 the expec-
tation with respect to the Markov chain with this initial condition. How many
steps should we average over in order to get expectation values within some
prescribed accuracy? In other words, we estimate

∑
P (x)O(x) ≡ EPO by

OT ≡ 1

T

T−1∑

t=0

O(Xt) . (4.65)

It is clear that 〈OT 〉 =
∑
P (x)O(x). Let us compute the variance of this esti-

mator:

Var(OT ) =
1

T 2

T−1∑

s,t=0

〈Os;Ot〉 =
1

T 2

T−1∑

t=0

(T − t)〈O0;Ot〉 , (4.66)

where we used the notation Ot ≡ O(Xt). Let us introduce the autocorrelation

function CO(t − s) ≡ 〈Os;Ot〉
〈O0;O0〉

, so that Var(OT ) = 〈O0;O0〉
T 2

∑T−1
t=0 (T − t)CO(t).

General results on Markov chain on finite state spaces imply that CO(t) decreases
exponentially as t→ ∞. Therefore, for large T , we have
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Fig. 4.5. Variational estimates of the free energy of the model (4.44). We use
the trial distributions (4.46) on the left and (4.48) on the right.{fig:variational_anh}

Var(OT ) =
τOint

T
[EPO2 − (EPO)2] +O(T−2) . (4.67)

The integrated autocorrelation time τOint is given by

τOint ≡
∞∑

t=0

CO(t) , (4.68)

and provides a reference for estimating how long the Monte Carlo simulation
should be run in order to get some prescribed accuracy. Equation (4.67) can
be interpreted by saying that one statistically independent estimate of EPO is
obtained every τOint iterations.

Example 4.19 Consider the Curie-Weiss model, cf. Sec. 2.5.2, at inverse tem-
perature β, and use the heath-bath algorithm of Example 2 in order to sample
from the Boltzmann distribution. In Fig. ?? we reproduce the evolution of the
global magnetizationm(σ) during three different simulations at inverse temper-
atures β = 0.8, 1.0, 1.2 for a model of N = 150 spin. In all cases we initialized
the Markov chain by extracting a random configuration with flat probability.

A spectacular effect occurs at the lowest temperature, β = 1.2. Although
the Boltzmann average of the global magnetization vanishes, 〈m(σ)〉 = 0, the
sign of the magnetization remains unchanged over extremely long time scales.
It is clear that the equilibration time is at least as large as these scales. An
order-of-magnitude estimate would be τeq > 105. Furthermore this equilibra-
tion time diverges exponentially at large N . Sampling from the Boltzmann
distribution using the present algorithm becomes exceedingly difficult at low
temperature.

4.6 Simulated annealing{sec:SimulAnn}
As we mentioned in Sec. 3.5, any optimization problem can be ‘embedded’ in a
statistical mechanics problem. The idea is to interpret the cost function E(x), x ∈
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XN as the energy of a statistical mechanics system and consider the Boltzmann
distribution pβ(x) = exp[−βE(x)]/Z. In the low temperature limit β → ∞, the
distribution concentrates over the minima of E(x), and the original optimization
setting is recovered.

Since the Monte Carlo method provides a general technique for sampling
from the Boltzmann distribution, one may wonder whether it can be used, in
the β → ∞ limit, as an optimization technique. A simple minded approach would
be to take β = ∞ at the outset. Such a straegy is generally referred to as quench
in statistical physics and greedy search in combinatorial optimization, and is
often bound to fail. Consider in fact the stationarity condition (4.54) and rewrite
it using the Boltzmann formula

∑

x

e−β [E(x)−E(y)] w(x→ y) = 1 . (4.69)

Since all the terms on the left hand side are positive, any of them cannot be larger
than one. This implies 0 ≤ w(x → y) ≤ exp{−β [E(y) − E(x)]}. Therefore, for
any couple of configurations x, y, such that E(y) > E(x) we have w(x→ y) → 0
in the β → ∞ limit. In other words, the energy is always non-increasing along
the trajectories of a zero-temperature Monte Carlo algorithm. As a consequence,
the corresponding Markov chain is not irreducible, although it is irreducible at
any β < ∞, and is not guaranteed to converge to the equilibrium distribution,
i.e. to find a global minimum of E(x).

Another simple minded approach would be to set β to some large but finite
value. Although the Boltzmann distribution gives some weight to near-optimal
configurations, the algorithm will visit, from time to time, also optimal config-
uratons which are the most probable one. How large should be β? How much
time shall we wait before an optimal configuration is visited? We can assume
without loss of generality that the minimum of the cost function (the ground
state energy) is zero: E0 = 0. A meaningful quantity to look at is the probability
for E(x) = 0 under the Boltzmann distribution at inverse temperature β. We
can easily compute the logarithmic moment generating function of the energy:

ψN (t) =
1

N
log




∑

x

pβ(x) e
tE(x)



 =
1

N
log

[∑

x e
−(β−t)E(x)

∑

x e
−βE(x)

]

. (4.70)

This is given by ψN (t) = φN (β − t) − φN (β), where φN (β) is the free entropy
density at inverse temperature β. Clearly pβ [E(x) = 0] = exp[NψN (−∞)] =
exp{N [φN (∞)−φN (β)]}, and the average time to wait before visiting the optimal
configuration is 1/pβ [E(x) = 0] = exp[−NψN (−∞)].
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Exercise 4.5 Assume that the cost function takes integer values E =
0, 1, 2 . . . and call XE the set of cofigurations x such that E(x) = E. You
want the Monte Carlo trajectories to spend a fraction (1 − ε) of the time on
optimal solutions. Show that the temperature must be chosen such that

β = log

( |X1|
ε|X0|

)

+ Θ(ε) . (4.71)

In Section 2.4 we argued that, for many statistical mechanics models, the free
entropy density has a finite thermodynamic limit φ(β) = limN→∞ φN (β). In the
following Chapters we will show that this is the case also for several interesting
optimization problems. This implies that pβ [E(x) = 0] vanishes in the N → ∞
limit. In order to have a non-negligibile probability of hitting a solution of the
optimization problem, β must be scaled with N in such a waythat β → ∞ as
N → ∞. On the other hand, letting β → ∞ we are going to face the reducibility
problem mentioned above. Althouch the Markov chain is formally irreducible,
its equilibration time will diverge as β → ∞.

The idea of simulated annealing consists in letting β vary with time. More
precisely one decides an annealing schedule {(β1, n1); (β2, n2); . . . (βL, nL)},
with inverse temperatures βi ∈ [0,∞] and integers ni > 0. The algorithm is ini-
tialized on a configutation x0 and executes n1 Monte Carlo steps at temperature
β1, n2 at temperature β2, . . . , nL at temperature βL. The final configuration of
each cycle i (with i = 1, . . . , L − 1) is used as initial configuration of the next
cycle. Mathematically, such a process is a time-dependent Markov chain.
The common wisdom about the simulated annealing algorithm is that varying
the temperature with time should help avoiding the two problems encountered
above. Usually one takes the βi’s to be an increasing sequence. In the first stages
a small β should help equilibrating across the space of configurations XN . As the
themperature is lowered the probability distribution concentrates on the lowest
energy regions of this space. Finally, in the late stages, a large β forces the sys-
tem to fix the few wrong details, and to find solution. Of course, this image is
very simplistic. In the following Chapter we shall try to refine it by considering
the application of simulated annealing to a variety of problems.

4.7 Appendix: A physicist’s approach to Sanov’s theorem
{app_sanov_ft}

Let us show how the formulas of Sanov’s theorem can be obtained using the type
of ‘field theoretic’ approach used in statistical physics. The theorem is easy to
prove, the aim of this section is not so much to give a proof, but rather to show
on a simple example a type of approach that is very common in physics, and
which can be powerful. We shall not aim at a rigorous derivation.

The probability that the type of the sequence x1, · · · , xN be equal to q(x)
can be written as:
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P[q(x)] = E

{
∏

x∈X

I

(

q(x) =
1

N

N∑

i=1

δx,xi

)}

=
∑

x1···xN

p(x1) · · · p(xN ) I

(

q(x) =
1

N

N∑

i=1

δx,xi

)

. (4.72)

A typical approach in field theory is to introduce some auxiliary variables in
order to enforce the constraint that q(x) = 1

N

∑N
i=1 δx,xi

. For each x ∈ X , one
introduces a variable λ(x), and uses the ‘integral representation’ of the constraint
in the form:

I

(

q(x) =
1

N

N∑

i=1

δx,xi

)

=

∫ 2π

0

dλ(x)

2π
exp

[

iλ(x)

(

Nq(x) −
N∑

i=1

δx,xi

)]

.

(4.73)
Dropping q-independent factors, we get:

P[q(x)] = C

∫
∏

x∈X

dλ(x) exp{NS[λ]} ,

where C is a normalization constant, and the action S is given by:

S[λ] = i
∑

x

λ(x)q(x) + log

[
∑

x

p(x)e−iλ(x)

]

(4.74)

In the large N limit, the integral in (4.74) can be evaluated with a saddle point
method. The saddle point λ(x) = λ∗(x) is found by solving the stationarity
equations ∂S/∂λ(x) = 0 for any x ∈ X . One gets a family of solutions −iλ(x) =
C+log(q(x)/p(x)) with C arbitrary. The freedom in the choice of C comes from
the fact that

∑

x(
∑

i δx,xi
) = N for any configuration x1 . . . xN , and therefore

one of the constraints is in fact useless. This freedom can be fixed arbitrarily:
regardless of this choice, the action on the saddle point is

S[λ∗] = S0 −
∑

x

q(x) log
q(x)

p(x)
, (4.75)

where S0 is a q independent constant. One thus gets P [q(x)]
.
= exp[−ND(q||p)].

The reader who has never encountered this type of reasoning may wonder why
use such an indirect approach. It turns out that it is a very common formalism
in statistical physics, where similar methods are also applied, under the name
‘field theory’, to continuous X spaces (some implicit discretization is then usually
assumed at intermediate steps, and the correct definition of a continuum limit is
often not obvious). In particular the reader interested in the statistical physics
approach to optimizations problems or information theory will often find this
type of formalism in research papers. One of the advantages of this approach is
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that it provides a formal solution to a large variety of problems. The quantity to
be computed is expressed in an integral form as in (4.74). In problems having a
‘mean field’ structure, the dimension of the space over which the integration is
performed does not depend upon N . Therefore its leading exponential behavior
at large N can be obtained by saddle point methods. The reader who wants
to get some practice of this approach is invited to ‘derive’ in the same way the
various theorems and corollaries of this chapter.

Notes

The theory of large deviations is exposed in the book of Dembo and Zeitouni
(Dembo and Zeitouni, 1998), and its use in statistical physics can be found in
Ellis’s book (Ellis, 1985).

Markov chains on discrete state spaces are treated by Norris (Norris, 1997)
A nice introduction to Monte Carlo methods in statistical physics is given in the
lecture notes by Krauth (Krauth, 1998) and by Sokal (Sokal, 1996).

Simulated annealing was introduced by Kirkpatrick, Gelatt and Vecchi 1983
(Kirkpatrick, C. D. Gelatt and Vecchi, 1983). It is a completely “universal”
optimization algorithm: it can be defined without reference to any particular
problem. Beacause of this reason it ofteen overlooks important structures that
may help solving the problem itself.



5

THE RANDOM ENERGY MODEL

{ch:rem}

The random energy model (REM) is probably the simplest statistical physics
model of a disordered system which exhibits a phase transition. It is not supposed
to give a realistic description of any physical system, but it provides a workable
example on which various concepts and methods can be studied in full details.
Moreover, due the its simplicity, the same mathematical structure appears in a
large number of contexts. This is witnessed by the examples from information
theory and combinatorial optimization presented in the next two chapters. The
model is defined in Sec. 5.1 and its thermodynamic properties are studied in
Sec. 5.2. The simple approach developed in these section turns out to be useful in
a large varety of problems. A more detailed (and also more involved) study of the
low temperature phase is given in Sec. 5.3. Section 5.4 provides an introduction to
the so-called annealed approximation, which will be useful in more complicated
models.

5.1 Definition of the model {se:rem_def}

A statistical mechanics model is defined by a set of configurations and an energy
function defined on this space. In the REM there are M = 2N configurations
(like in a system of N Ising spins) to be denoted by indices i, j, · · · ∈ {1, . . . , 2N}.
The REM is a disordered model: the energy is not a deterministic function but
rather a stochastic process. A particular realization of such a process is usually
called a sample (or instance). In the REM, one makes the simplest possible
choice for this process: the energies {Ei} are i.i.d. random variables (the energy
of a configuration is also called an energy level). For definiteness we shall keep
here to the case where they have Gaussian distribution with zero mean and
variance N/2, but other distributions could be studied as well9. The pdf for the
energy Ei of the state i is thus given by

P (E) =
1√
πN

e−E
2/N , (5.1) {eq:pde_rem}

Given an instance of the REM, which consists of the 2N real numbers Ej
drawn from the pdf (5.1), one assigns to each configuration i a Boltzmann prob-
ability pi in the usual way:

pj =
1

Z
exp (−βEj) (5.2) {eq:bolt_rem}

9The scaling with N of the distribution should be chosen in such a way that thermodynamic
potentials are extensive
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where β = 1/T is the inverse of the temperature, and the normalization factor
Z (the partition function) equals:

Z =

2N∑

j=1

exp (−βEj) . (5.3) {eq:rem_zdef}

Notice that Z depends upon the temperature β, the ‘sample size’ N , and the
particular realization of the energy levels E1 . . . EM . We dropped all these de-
pendecies in the above formula.

It is important not to be confused by the existence of two levels of probabili-
ties in the REM, as in all disordered systems. We are interested in the properties
of a probability distribution, the Boltzmann distribution (5.2), which is itself a
random object because the energy levels are random variables.

Physically, a particular realization of the energy function corresponds to a
given sample of some substance whose microscopic features cannot be controlled
experimentally. This is what happens, for instance, in a metallic alloy: only the
proportions of the various components can be controlled. The precise positions
of the atoms of each species are described as random variables. The expectation
value with respect to the sample realization will be denoted in the following by
E(·). For a given sample, Boltzmann’s law (5.2) gives the probability of occupying
the various possible configurations, according to their energies. The average with
respect to Boltzmann distribution will be denoted by 〈·〉. In experiments one
deals with a single (or a few) sample(s) of a given disordered material. One
could therefore be interested in computing the various thermodynamic potential
(free energy FN , internal energy UN , or entropy SN ) for this given sample.
This is an extremely difficult task. However, we shall see that, as N → ∞,
the probability distributions of intensive thermodynamic potentials concentrate
around their expected values:

lim
N→∞

P

[∣∣∣∣
XN

N
− E

(
XN

N

)∣∣∣∣ ≥ θ

]
= 0 (5.4)

for any potential X (X = F, S, U, . . . ) and any tolerance θ > 0. The quantity X
is then said to be self-averaging. This essential property can be summarized
plainly by saying that almost all large samples “behave” in the same way 10.
Often the convergence is exponentially fast in N (this happens for instance in
the REM): this means that the expected value EXN provide a good description
of the system already at moderate sizes.

5.2 Thermodynamics of the REM
{se:thermo_rem}

In this Section we compute the thermodynamic potentials of the REM in the
thermodynamic limit N → ∞. Our strategy consists first in estimating the

10This is the reason why different samples of alloys with the same chemical composition have
the same thermodynamic properties
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microcanonical entropy density, which has been introduced in Sec. 2.4. This
knowledge is then used for computing the partition function Z to exponential
accuracy at large N .

5.2.1 Direct evaluation of the entropy
{se:MicroREM}

Let us consider an interval of energies I = [Nε,N(ε + δ)], and call N (ε, ε + δ)
the number of configurations i such that Ei ∈ I. Each energy ‘level’ Ei belongs
to I independently with probability:

PI =

√
N

π

∫ ε+δ

ε

e−Nx
2/2 dx . (5.5)

Therefore N (ε, ε + δ) is a binomial random variable, and its expectation and
variance are given by:

EN (ε, ε+ δ) = 2N PI , VarN (ε, ε+ δ) = 2N PI [1 − PI ] , (5.6)

Because of the appropriate scaling with N of the interval I, the probability PI
depends exponentially upon N . To exponential accuracy we thus have

EN (ε, ε+ δ)
.
= exp

{
N max
x∈[ε,ε+δ]

sa(x)

}
, (5.7)

VarN (ε, ε+ δ)

[EN (ε, ε+ δ)]2
.
= exp

{
−N max

x∈[ε,ε+δ]
sa(x)

}
(5.8)

where sa(x) ≡ log 2− x2. Notice that sa(x) ≥ 0 if and only if x ∈ [−ε∗, ε∗], with
ε∗ =

√
log 2.

The intuitive content of these equalities is the following: When ε is outside
the interval [−ε∗, ε∗], the typical density of energy levels is exponentially small
in N : for a generic sample there is no configuration at energy Ei ≈ Nε. On the
contrary, when ε ∈] − ε∗, ε∗[, there is an exponentially large density of levels,
and the fluctuations of this density are very small. This result is illustrated by
a small numerical experiment in Fig. 5.1. We now give a more formal version of
this statement.

Proposition 5.1 Define the entropy function {propo:REMdos}

s(ε) =

{
sa(ε) = log 2 − ε2 if |ε| ≤ ε∗,
−∞ if |ε| > ε∗.

(5.9)

Then, for any couple ε and δ, with probability one:

lim
N→∞

1

N
logN (ε, ε+ δ) = sup

x∈[ε,ε+δ]

s(x) . (5.10)

Proof: The proof makes a simple use of the two moments of the number of
energy levels in I, found in (5.7,5.8).
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Fig. 5.1. Histogram of the energy levels for three samples of the random energy
model with increasing sizes: from left to right N = 10, 15 and 20. Here we plot
N−1 logN (ε, ε+ δ) versus ε, with δ = 0.05. The dashed curve gives the N → ∞
analytical prediction (5.9).{fig:remexp}

Let us first assume that the interval [ε, ε+ δ] is disjoint from [−ε∗, ε∗]. Then
EN (ε, ε + δ)

.
= e−AN , with A = − supx∈[ε,ε+δ] sa(x) > 0. As N (ε, ε + δ) is an

integer, we have the simple inequality

P[N (ε, ε+ δ) > 0] ≤ EN (ε, ε+ δ)
.
= e−AN . (5.11)

In words, the probability of having an energy level in any fixed interval outside
[−ε∗, ε∗] is exponentially small in N . The inequality of the form (5.11) goes under
the name of Markov inequality, and the general strategy is sometimes called
the first moment method. A general introduction to this approach is provided
in App. ???.

Assume now that the intersection between [ε, ε + δ] and [−ε∗, ε∗] is a finite
length interval. In this case N (ε, ε+ δ) is tightly concentrated around its expec-
tation EN (ε, ε+ δ) as can be shown using Chebyshev inequality. For any fixed
C > 0 one has

P

{∣∣∣∣
N (ε, ε+ δ)

EN (ε, ε+ δ)
− 1

∣∣∣∣ > C

}
≤ VarN (ε, ε+ δ)2

C2[EN (ε, ε+ δ)]2
.
= e−BN , (5.12)

with B = supx∈[ε,ε+δ] sa(x) > 0. A slight variation of the above reasoning is often
referred to as the second moment method, and will be further discussed in
App. ????.

Finally, the statement (5.10) follows from the previous estimates through a
straightfoward application of Borel-Cantelli Lemma. �

Exercise 5.1 Large deviations: let Nout(δ) be the total number of configu-
rations j such that |Ej | > N(ε∗ + δ), with δ > 0. Use Markov inequality to
show that the fraction of samples in which there exist such configurations is
exponentially small.

Besides being an interesting mathematical statement, Proposition 5.1 pro-
vides a good quantitative estimate. As shown in Fig. 5.1, already at N = 20, the
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outcome of a numerical experiment is quite close to the asymptotic prediction.
Notice that, for energies in the interval ]− ε∗, ε∗[, most of the discrepancy is due
to the fact that we dropped subexponential factors in EN (ε, ε + δ). It is easy ⋆
to show that this produces corrections of order Θ(logN/N) to the asymptotic
behavior (5.10). The contribution due to fluctuations of N (ε, ε + δ) around its
average is instead exponentially small in N .

5.2.2 Thermodynamics and phase transition

From the previous result on the microcanonical entropy density, we now com-

pute the partition function ZN (β) =
∑2N

i=1 exp(−βEi). In particular, we are
interested in intensive thermodynamic potentials like the free entropy density
φ(β) = limN→∞[logZN (β)]/N . We start with a fast (and loose) argument, using
the general approach outlined in Sec. 2.4. It amounts to discretizing the energy
axis using some step δ, and counting the energy levels in each interval with
(5.10). Taking in the end the limit δ → 0 (after the limit N → ∞), one expects
to get, to leading exponential order:

ZN (β)
.
=

∫ ε∗

−ε∗
dε exp [N (sa(ε) − βε)] . (5.13) {eq:rem_zcanon}

The rigorous formulation of the result can be obtained in analogy11 with the
general equivalence relation stated in Proposition 2.6. We find the free entropy
density:

φ(β) = max
ε∈[−ε∗,ε∗]

[sa(ε) − βε] , (5.14)

Notice that although every sample of the REM is a new statistical physics system,
which might have its own thermodynamic potentials, we have found that almost
all samples have the same free entropy density (5.14), and thus the same energy
,entropy, and free energy densities. More precisely, for any fixed tolerance θ > 0,
we have |(1/N) logZN (β)−φ(β)| < θ with probability approaching one as N →
∞.

Let us now discuss the physical content of the result (5.14). The optimization
problem on the right-hand side can be solved through the geometrical construc-
tion illustrated in Fig. 5.2. One has to find a tangent to the curve sa(ε) = log 2−ε2
with slope β ≥ 0. Call εa(β) = −β/2 the abscissa of the tangent point. If
εa(β) ∈ [−ε∗, ε∗], then the max in Eq. (5.14) is realized in εa(β). In the other
case εa(β) < −ε∗ (because β ≥ 0) and the max is realized in −ε∗. Therefore:

Proposition 5.2 The free energy of the REM, f(β) = −φ(β)/β, is equal to:

f(β) =

{
− 1

4β − log 2/β if β ≤ βc ,
−√

log 2 if β > βc ,
where βc = 2

√
log 2 . (5.15)

11The task is however more difficult here, because the density of energy levels N (ε, ε + δ) is
a random function whose fluctuations must be controlled.
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Fig. 5.2. The ‘annealed’ entropy density sa(ε) of the REM as a function of
the energy density ε, see Eq. (5.14). The canonical entropy density s(β) is the
ordinate of the point with slope dsa/dε = β when this point lies within the in-
terval [−ε∗, ε∗] (this is for instance the case at ε = ε1 in the plot), and s(β) = 0
otherwise. This gives rise to a phase transition at βc = 2

√
log 2. In the ‘an-

nealed’ approximation, the phase transition is not seen, and the sa(ε) < 0 part
of the curve is explored, due to the contribution of rare samples to the partition
function, see Sec. 5.4. {fig:rem_sde}

This shows that a phase transition (i.e. a non-analyticity of the free energy den-
sity) takes place at the inverse critical temperature βc = 1/Tc = 2

√
log 2. It is

a second order phase transition in the sense that the derivative of f(β) is con-
tinuous, but because of the condensation phenomenon which we will discuss in
Sec. 5.3 it is often called a ‘random first order’ transition. The other thermody-
namic potentials are obtained through the usual formulas, cf. Sec. 2.2. They are
plotted in Fig. 5.3.

The two temperature regimes -or ‘phases’- , β ≤ or > βc, have distinct quali-
tative properties which are most easily characterized through the thermodynamic
potentials.

• In the high temperature phase T ≥ Tc (or, equivalently, β ≤ βc), the
energy and entropy densities are given by: u(β) = −β/2 and s(β) = log 2−
β2/4. the configurations which are relevant in Boltzmann’s measure are
those with energy Ei ≈ −Nβ/2. There is an exponentially large number of
configurations having such an energy density (the microcanonical entropy
density s(ε) is strictly positive at ε = −β/2), and the Boltzmann measure
is roughly equidistributed among such configurations.

In the high temperature limit T → ∞ (β → 0) Boltzmann’s measure
becomes uniform, and one finds as expected u(β) → 0 (because nearly all
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Fig. 5.3. Thermodynamics of the REM: the free energy density (full line),
the energy density (dashed line) and the entropy density (dotted line) are
plotted versus temperature T = 1/β. The phase transition takes place at
Tc = 1/(2

√
log 2) ≈ 0.6005612.{fig:rem_thermo}

configurations have an energy Ei/N close to 0) and s→ log 2.

• In the low temperature phase T < Tc (β > βc), the thermodynamic poten-
tials are constant: u(β) = −ε∗ and s(β) = 0. The relevant configurations
are the ones with the lowest energy density, namely with Ei/N ≈ −ε∗. The
thermodynamics becomes dominated by a relatively small set of configura-
tions, which is not exponentially large in N (the entropy density vanishes).

Exercise 5.2 From the original motivation of the REM as a simple version
of a spin glass, one can define a generalization of the REM in the presence of
a magnetic field B. The 2N configurations are divided in N + 1 groups. Each
group is labelled by its ‘magnetization’ M ∈ {−N,−N +2, . . . , N − 2, N}, and

includes

(
N

(N +M)/2

)
configurations. Their energies {Ej} are indipendent

Gaussian variables with variance
√
N/2 as in (5.1), and mean EEj = −MB

which depends upon the group j belongs to. Show that there exists a phase
transition line βc(B) in the plane β,B such that:

1

N
EM =

{
tanh [βB] when β ≤ βc(B) ,
tanh [βc(B)B] when β > βc(B) ,

(5.16)

and plot the magnetic susceptibility dM
dB

∣∣
B

= 0 versus T = 1/β.
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Exercise 5.3 Consider a generalization of the REM where the pdf of energies,
instead of being Gaussian, is P (E) ∝ exp

[
−C|E|δ

]
, where δ > 0. Show that,

in order to have extensive thermodynamic potentials, one should scale C as
C = N1−δĈ (i.e. the thermodynamic limit N → ∞ should be taken at fixed

Ĉ). Compute the critical temperature and the ground state energy density.
What is the qualitative difference between the cases δ > 1 and δ < 1?

5.3 The condensation phenomenon
{se:rem_cond}

In the low temperature phase a smaller-than-exponential set of configurations
dominates Boltzmann’s measure: we say that the measure condensates onto
these configurations. This is a scenario that we will encounter again in some
other glass phases 12, and it usually leads to many difficulties in finding the
relevant configurations. In order to quantify the condensation, one can compute
a participation ratio YN (β) defined from Boltzmann’s weights (5.2) as:

YN (β) ≡
2N∑

j=1

p2
j =




∑

j

e−2βEj








∑

j

e−βEj




−2

. (5.17){eq:rem_Ydef}

One can think of 1/YN (β) as giving some estimate of the ‘effective’ number of
configurations which contribute to the measure. If the measure were equidis-
tributed on r levels, one would have YN (β) = 1/r.

The participation ratio can be expressed as YN (β) = ZN (2β)/ZN (β)2, where
ZN (β) is the partition function at inverse temperature β. The analysis in the
previous Section showed that ZN (β)

.
= exp[N(log 2 + β2/4)] with very small

fluctuations (see discussion at the end of Sec. 5.2.1) when β < βc, while ZN (β)
.
=

exp[Nβ
√

log 2] when β > βc. This indicates that YN (β) is exponentially small
in N for almost all samples in the high temperature phase β < βc, in agreement
with the fact that the measure is not condensed at high temperatures. In the
low temperature phase, on the contrary, we shall see that YN (β) is finite and
fluctuates from sample to sample.

The computation of EY (we drop hereafter its arguments N and β) in the
low temperature phase is slightly involved. It requires having a fine control of
the energy levels Ei with Ei/N ≈ −ε∗. We sketch here the main lines of com-
putation, and leave the details to the reader as an exercise. Using the integral⋆
representation 1/Z2 =

∫∞
0
dt t exp(−tZ), one gets (with M = 2N ):

EY = M E

∫ ∞

0

dt t exp [−2βE1] exp

[
−t

M∑

i=1

e−βEi

]
= (5.18)

= M

∫ ∞

0

dt t a(t) [1 − b(t)]M−1 , (5.19)

12We also call the low temperature phase of the REM a glass phase, by analogy with similar
situations that we will encounter later on
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where

a(t) ≡
∫
dP (E) exp

[
−2βE − te−βE

]
(5.20)

b(t) ≡
∫
dP (E) [1 − exp(−te−βE)] , (5.21)

and P (E) is the Gaussian distribution (5.1). For large N the leading contribu-
tions to EY come from the regions E = −Nε0 +u and t = θ exp(−Nβε0), where
u and θ are finite as N → ∞, and we defined

ε0 = ε∗ −
1

2ε∗
log

√
πN . (5.22)

Notice that ε0 has been fixed by the condition 2NP (−Nε0) = 1 and can be
thought as a refined estimate for the energy density of the lowest energy config-
uration. In the region E = −Nε0 + u, the function P (E) can be substituted by
2−Neβcu. One gets:

a(t) ≈ 1

M
e2Nβε0

∫ +∞

−∞
du eβcu−2βu−ze−βu

=
e2Nβε0

Mβ
zβc/β−2 Γ(2 − βc/β) ,

b(t) ≈ 1

M

∫ +∞

−∞
du eβcu [1 − exp(−ze−βu)] = − 1

Mβ
zβc/β Γ(−βc/β) , (5.23)

where Γ(x) is Euler’s Gamma function. Notice that the substitution of 2−Neβcu

to P (E) is harmless because the resulting integrals (5.23) and (5.23) converge at
large u.

At large N , the expression [1 − b(t)]M−1 in (5.19) can be approximated by
e−Mb(t), and one finally obtains:

EY = M

∫ ∞

0

dt t a(t) e−Mb(t) = (5.24)

=
1

β
Γ

(
2 − βc

β

)∫ ∞

0

dz zβc/β−1 exp

[
1

β
Γ

(
−βc

β

)
zβc/β

]
= 1 − βc/β ,

where we used the approximate expressions (5.23), (5.23) and equalities are un-
derstood to hold up to corrections which vanish as N → ∞.

We obtain therefore the following:
{prop:condensation_rem}

Proposition 5.3 In the REM, the expectation value of the participation ratio
is:

EY =

{
0 when T > Tc ,
1 − T/Tc when T ≤ Tc .

(5.25)

This gives a quantitative measure of the degree of condensation of Boltzmann’s
measure: when T decreases, the condensation starts at the phase transition Tc
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temperature. At lower temperatures the participation ratio Y increases, meaning
that the measure concentrates onto fewer and fewer configurations, until at T = 0
only one configuration contributes and Y = 1.

With the participation ratio we have a first qualitative and quantitative char-
acterization of the low temperature phase. Actually the energies of the relevant
configurations in this phase have many interesting probabilistic properties, to
which we shall return in Chapter ??.

5.4 A comment on quenched and annealed averages
{se:rem_ann}

In the previous section we have found that the self-averaging property holds in
the REM, which allowed us to discuss the thermodynamics of a generic sample.

Self-averaging of the thermodynamic potentials is a very frequent property,
but in more complicated systems it is often difficult to compute them exactly.
We discuss here an approximation which is frequently used in such cases, the
so-called annealed average. When the free energy density is self averaging, the
value of fN is roughly the same for almost all samples and can be computed as
its expectation, called the quenched average fN,q:

fN,q = E fN = − T

N
E logZN (5.26)

Since fN is proportional to the logarithm of the partition function, this average
is in general hard to compute and a much easier task is to compute the annealed
average:

fN,a = − T

N
log(EZ) (5.27)

Let us compute it for the REM. Starting from the partition function (8.1), we
find:

EZN = E

2N∑

i=1

e−βEi = 2NE e−βE = 2NeNβ
2/4 , (5.28)

yielding fN,a(β) = −β/4 − log 2/β.
Let us compare this with the correct free energy density found in (5.15).

The annealed free energy density fa(β) is always smaller than the correct one,
as it should because of Jensen inequality (remember that the logarithm is a
concave function). In the REM, and a few other particularly simple problems,
it gives the correct result in the high temperature phase T > Tc, but fails to
identify the phase transition, and predicts wrongly a free energy density in the
low temperature phase which is the analytic prolongation of the one at T > Tc.
In particular, it finds a negative entropy density sa(β) = log 2− β2/4 for T < Tc

(see Fig. 5.2).
A negative entropy is impossible in a system with finite configuration space,

as can be seen from the definition of entropy. It thus signals a failure, and the
reason is easily understood. For a given sample with free energy density f , the
partition function behaves as ZN = exp(−βNfN ). Self-averaging means that fN
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has small sample to sample fluctuations. However these fluctuations exist and are
amplified in the partition function because of the factor N in the exponent. This
implies that the annealed average of the partition function can be dominated by
some very rare samples (those with an anomalously low value of fN ). Consider
for instance the low temperature limit. We already know that in almost all
samples the configuration with the lowest energy density is found at Ei ≈ −Nε∗.
However, there exist exceptional samples with one configuration with a smaller
minimum Ei = −Nε, ε > ε∗. These samples are exponentially rare (they occur

with a probability
.
= 2Ne−Nε

2

), they are irrelevant as far as the quenched average
is concerned, but they dominate the annealed average.

Let us add a short semantic note. The terms ‘quenched’ and ‘annealed’ orig-
inate in the thermal processing of materials used for instance in metallurgy of
alloys: a quench corresponds to preparing a sample by bringing it suddenly from
high to low temperatures. Then the position of the atoms do not move: a given
sample is built from atoms at some random positions (apart from some small
vibrations). On the contrary in an annealing process one gradually cools down
the alloy, and the various atoms will find favorable positions. In the REM, the
energy levels Ei are quenched: for each given sample, they take certain fixed
values (like the positions of atoms in a quenched alloy). In the annealed approx-
imation, one treats the configurations i and the energies Ei on the same footing:
they adopt a joint probability distribution which is given by Boltzmann’s dis-
tribution. One says that the Ei variables are thermalized (like the positions of
atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the
free energy in any system with finite configuration space. Useful results can be
obtained for instance using the two simple relations, valid for all temperatures
T = 1/β and sizes N :

fN,q(T ) ≥ fN,a(T ) ;
dfN,q(T )

dT
≤ 0 . (5.29) {eq:IneqAnnealed}

The first one follows from Jensen as mentioned above, while the second can be
obtained from the positivity of canonical entropy, cf. Eq. (2.22), after averaging
over the quenched disorder.

In particular, if one is interested in optimization problems (i.e. in the limit
of vanishing temperature), the annealed average provides the general bound:

{propo:annealed_bound}
Proposition 5.4 The ground state energy density

uN (T = 0) ≡ 1

N
E

[
min
x∈XN

E(x)

]
. (5.30)

satisfies the bound uN (0) ≥ maxT∈[0,∞] fN,a(T )

Proof: Consider the annealed free energy density fN,a(T ) as a function of the
temperature T = 1/β. For any given sample, the free energy is a concave function
of T because of the general relation (2.23). It is easy to show that the same



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

104 THE RANDOM ENERGY MODEL

property holds for the annealed average. Let T∗ be the temperature at which
fN,a(T ) achieves its maximum, and f∗N,a be its maximum value. If T∗ = 0, then
uN (0) = fN,q(0) ≥ f∗N,a. It T∗ > 0, then

uN (0) = fN,q(0) ≥ fN,q(T∗) ≥ fa(T∗) (5.31)

where we used the two inequalities (5.29). �

In the REM, this result immediately implies that u(0) ≥ maxβ [−β/4 −
log 2/β] = −√

log 2, which is actually a tight bound.

5.5 Notes

Notes

The REM was invented by Derrida in 1980 (Derrida, 1980), as an extreme case
of some spin glass system. Here we have followed his original solution which
makes use of the microcanonical entropy. Many more detailed computations can
be found in (Derrida, 1981), including the solution to Exercise 2.

The condensation formula (5.3) appears first in (Gross and Mézard, 1984) as
an application of replica computations which we shall discuss in Chapter ??. The
direct estimate of the participation ratio presented here and its fluctuations were
developed in (Mézard, Parisi and Virasoro, 1985) and (Derrida and Toulouse,
1985). We shall return to some fascinating (and more detailed) properties of the
condensed phase in Chapter ??.

Exercise 3 shows a phase transition which goes from second order for δ > 1
to first order when δ < 1. Its solution can be found in (Bouchaud and Mézard,
1997).

As a final remark, let us notice that in most of the physics litterature, peo-
ple don’t explicitely write down all the rigorous mathematical steps leading for
instance to Eq. (5.13), preferring a smoother presentation which focuses on the
basic ideas. In much more complicated models it may be very difficult to fill the
corresponding mathematical gaps. The recent book by Talagrand (Talagrand,
2003) adopts a fully rigorous point of view, and it starts with a presentation of
the REM which nicely complements the one given here and in Chapter ??.
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RANDOM CODE ENSEMBLE

{ch:RandomCodeEnsemble}

As already explained in Sec. 1.6, one of the basic problem of information theory
consists in communicating reliably through an unreliable communication chan-
nel. Error correcting codes achieve this task by systematically introducing some
form of redundancy in the message to be transmitted. One of the major break-
through accomplished by Claude Shannon was to understand the importance
of codes ensembles. He realized that it is much easier to construct ensembles
of codes which have good properties with high probability, rather than exhibit
explicit examples achieving the same performances. In a nutshell: ‘stochastic’
design is much easier than ‘deterministic’ design.

At the same time he defined and analyzed the simplest of such ensembles,
which has been named thereafter the random code ensemble (or, sometimes,
Shannon ensemble). Despite its great simplicity, the random code ensemble has
very interesting properties, and in particular it achieves optimal error correcting
performances. It provides therefore a prove of the ‘direct’ part of the channel
coding theorem: it is possible to communicate with vanishing error probability
as long as the communication rate is smaller than the channel capacity. Fur-
thermore, it is the prototype of a code based on a random construction. In the
following Chapters we shall explore several examples of this approach, and the
random code ensemble will serve as a reference.

We introduce the idea of code ensembles and define the random code ensemble
in 6.1. Some properties of this ensemble are described in Sec. 6.2, while its
performances over the BSC are worked out in Sec. 6.3. We generalize these
results to a general discrete memoryless channel in Sec. 6.4. Finally, in Sec. 6.5
we show that the random code ensemble is optimal by a simple sphere-packing
argument.

6.1 Code ensembles {se:CodeEnsembles}

An error correcting code is defined as a couple of encoding and decoding maps.
The encoding map is applied to the information sequence to get an encoded
message which is transmitted through the channel. The decoding map is ap-
plied to the (noisy) channel output. For the sake of simplicity, we shall assume
throughout this Chapter that the message to be encoded is given as a sequence
of M bits and that encoding produces a redundant sequence N > M of bits.
The possible codewords (i.e. the 2M points in the space {0, 1}N which are all the
possible outputs of the encoding map) form the codebook CN . On the other
hand, we denote by Y the output alphabet of the communication channel. We
use the notations

105
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x : {0, 1}M → {0, 1}N encoding map , (6.1)

xd : YN → {0, 1}N decoding map . (6.2)

Notice that the definition of the decoding map is slightly different from the
one given in Sec. 1.6. Here we consider only the difficult part of the decoding
procedure, namely how to reconstruct from the received message the codeword
which was sent. To complete the decoding as defined in Sec. 1.6, one should get
back the original message knowing the codeword, but this is supposed to be an
easy task (encoding is assumed to be injective).

The customary recipe for designing a code ensemble is the following: (i)
Define a subset of the space of encoding maps (6.1); (ii) Endow this set with
a probability distribution; (iii) Finally, for each encoding map in the ensemble,
define the associated decoding map. In practice, this last step is accomplished
by declaring that one among a few general ‘decoding strategies’ is adopted. We
shall introduce a couple of such strategies below.

Our first example is the random code ensemble (RCE). Notice that there

exist 2N2M

possible encoding maps of the type (6.1): one must specify N bits
for each of the 2M codewords. In the RCE, any of these encoding maps is picked
with uniform probability. The code is therefore constructed as follows. For each
of the possible information messages m ∈ {0, 1}M , we obtain the corresponding

codeword x(m) = (x
(m)
1 , x

(m)
2 , . . . , x

(m)
N ) by throwing N times an unbiased coin:

the i-th outcome is assigned to the i-th coordinate x
(m)
i .

Exercise 6.1 Notice that, with this definition the code is not necessarily in-
jective: there could be two information messages m1 6= m2 with the same
codeword: x(m1) = x(m2). This is an annoying property for an error correcting
code: each time that we send either of the messages m1 or m2, the receiver will
not be able to distinguish between them, even in the absence of noise. Happily
enough these unfortunate coincidences occur rarely, i.e. their number is much
smaller than the total number of codewords 2M . What is the expected number
of couples m1, m2 such that x(m1) = x(m2)? What is the probability that all
the codewords are distinct?

Let us now turn to the definition of the decoding map. We shall introduce here
two among the most important decoding schemes: word MAP (MAP stands here
for maximum a posteriori probability) and symbol MAP decoding, which can be
applied to most codes. In both cases it is useful to introduce the probability
distribution P (x|y) for x to be the channel input conditional to the received
message y. For a memoryless channel with transition probability Q(y|x), this
probability has an explicit expression as a consequence of Bayes rule:

P (x|y) =
1

Z(y)

N∏

i=1

Q(yi|xi)P0(x) . (6.3)
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Here Z(y) is fixed by the normalization condition
∑
x P (x|y) = 1, and P0(x) is

the a priori probability for x to be the transmitted message. Throughout this
book, we shall assume that the sender choses the codeword to be transmitted
with uniform probability. Therefore P0(x) = 1/2M if x ∈ CN and P0(x) = 0
otherwise. In formulas

P0(x) =
1

|CN | I(x ∈ CN ) . (6.4)

It is also useful to define the marginal distribution P (i)(xi|y) of the i-th bit of the
transmitted message conditional to the output message. This is obtained from
the distribution (6.3) by marginalizing over all the bits xj with j 6= i:

P (i)(xi|y) =
∑

x\i

P (x|y) , (6.5)

where we introduced the shorthand x\i ≡ {xj : j 6= i}. Word MAP decod-

ing outputs the most probable transmitted codeword, i.e. it maximizes13 the
distribution (6.3)

xw(y) = arg max
x

P (x|y) . (6.6)

A strongly related decoding strategy is maximum-likelihood decoding. In this
case one maximize Q(y|x) over x ∈ CN . This coincide with word MAP decoding
whenever the a priori distribution over the transmitted codeword P0(x) is taken
to be uniform as in Eq. (6.4).

Symbol (or bit) MAP decoding outputs the sequence of most probable
transmitted bits, i.e. it maximizes the marginal distribution (6.5):

xb(y) =

(
arg max

x1

P (1)(x1|y) , . . . , arg max
xN

P (N)(xN |y)
)
. (6.7)

Exercise 6.2 Consider a code of block-length N = 3, and codebook size |C| =
4, with codewords x(1) = 001, x(1) = 101, x(1) = 110, x(1) = 111. What
is the code rate? This code is used to communicate over a binary symmetric
channel (BSC) with flip probability p < 0.5. Suppose that the channel output
is y = 000. Show that the word MAP decoding finds the codeword 001. Now
apply symbol MAP decoding to decode the first bit x1: Show that the result
coincides with the one of word MAP decoding only when p is small enough.

It is important to notice that each of the above decoding schemes is optimal
with respect a different criterion. Word MAP decoding minimizes the average

13We do not specify what to do in case of ties (i.e. if the maximum is degenerate), since
this is irrelevant for all the coding problems that we shall consider. The scrupulous reader can
chose his own convention in such cases.
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block error probability PB already defined in Sec. 1.6.2. This is the probability,
with respect to the channel distributionQ(y|x), that the decoded codeword xd(y)
is different from the transmitted one, averaged over the transmitted codeword:

PB ≡ 1

|C|
∑

x∈C

P[xd(y) 6= x] . (6.8)

Bit MAP decoding minimizes the bit error probability, or bit error rate
(BER) Pb. This is the fraction of incorrect bits, averaged over the transmitted
codeword:

Pb ≡ 1

|C|
∑

x∈C

1

N

N∑

i=1

P[xd
i (y) 6= xi] . (6.9)

We leave to the reader the easy exercise to show that word MAP and symbol⋆
MAP decoding are indeed optimal with respect to the above criteria.

6.2 Geometry of the Random Code Ensemble
{se:GeometryRCE}

We begin our study of the random code ensemble by first working out some of its
geometrical properties. A code from this ensemble is defined by the codebook, a
set CN of 2M points (all the codewords) in the Hamming space {0, 1}N . Each
one of these points is drawn with uniform probability over the Hamming space.
The simplest question one may ask on CN is the following. Suppose you sit on
one of the codewords and look around you. How many other codewords are there
at a given Hamming distance14?

This question is addressed through the distance enumerator Nx0
(d) with

respect to a codeword x0 ∈ CN , defined as the number of codewords in x ∈ CN
whose Hamming distance from x0 is equal to d: d(x, x0) = d.

We shall now compute the typical properties of the weight enumerator for
a random code. The simplest quantity to look at is the average distance enu-
merator ENx0

(d), the average being taken over the code ensemble. In general
one should further specify which one of the codewords is x0. Since in the RCE
all codewords are drawn independently, and each one with uniform probability
over the Hamming space, such a specification is irrelevant and we can in fact
fix x0 to be the all zeros codeword, x0 = 000 · · · 00. Therefore we are asking
the following question: take 2M − 1 point at random with uniform probability in
the Hamming space {0, 1}N ; what is the average number of points at distance d
form the 00 · · · 0 corner? This is simply the number of points (2M −1), times the
fraction of the Hamming space ‘volume’ at a distance d from 000 · · · 0 (2−N

(
N
d

)
):

ENx0
(d) = (2M − 1) 2−N

(
N

d

)
.
= 2N [R−1+H2(δ)] . (6.10)

14The Hamming distance of two points x, y ∈ {0, 1}N is the number of coordinates in
which they differ.
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Fig. 6.1. Growth rate of the distance enumerator for the random code ensemble
with rate R = 1/2 as a function of the Hamming distance d = Nδ.{fig:RCEWeightEnumerator}

In the second expression we introduced the fractional distance δ ≡ d/N and
the rate R ≡ M/N , and considered the N → ∞ asymptotics with these two
quantities kept fixed. In Figure 6.1 we plot the function R − 1 + H2(δ) (which
is sometimes called the growth rate of the distance enumerator). For δ small
enough, δ < δGV , the growth rate is negative: the average number of codewords
at small distance from x0 vanishes exponentially with N . By Markov inequality,
the probability of having any codeword at all at such a short distance vanishes as
N → ∞. The distance δGV(R), called the Gilbert Varshamov distance, is the
smallest root of R−1+H2(δ) = 0. For instance we have δGV(1/2) ≈ 0.110278644.

Above the Gilbert Varshamov distance, δ > δGV, the average number of
codewords is exponentially large, with the maximum occurring at δ = 1/2:
ENx0

(N/2)
.
= 2NR = 2M . It is easy to show that the weight enumerator Nx0

(d)
is sharply concentrated around its average in this whole regime δGV < δ <
1 − δGV, using arguments similar to those developed in Sec.5.2 for the random ⋆
energy model (REM configurations become codewords in the present context
and the role of energy is played by Hamming distance; finally, the Gaussian dis-
tribution of the energy levels is replaced here by the binomial distribution). A
pictorial interpretation of the above result is shown in Fig. 6.2 (notice that it is
often misleading to interpret phenomena occurring in spaces with a large num-
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δGV

codewords

x (0)

Fig. 6.2. A pictorial view of a typical code from the random code ensemble. The
codewords are random points in the Hamming space. If we pick a codeword at
random from the code and consider a ball of radius Nδ around it, the ball will not
contain any other codeword as long as δ < δGV(R), it will contain exponentially
many codewords when δ > δGV(R){fig:RCEHammingSpace}

ber of dimensions using finite dimensional images: such images must be handled
with care!).

Exercise 6.3 The random code ensemble can be easily generalized to other
(non binary) alphabets. Consider for instance a q-ary alphabet, i.e. an alphabet
with letters {0, 1, 2, . . . , q− 1} ≡ A. A code CN is constructed by taking 2M

codewords with uniform probability in AN . We can define the distance between
any two codewords dq(x, y) to be the number of positions in which the sequence
x, y differ. The reader will easily show that the average distance enumerator is
now

ENx0
(d)

.
= 2N [R−log2 q+δ log2(q−1)+H2(δ)] , (6.11)

with δ ≡ d/N and R ≡M/N . The maximum of the above function is no longer
at δ = 1/2. How can we explain this phenomenon in simple terms?

6.3 Communicating over the Binary Symmetric Channel
{se:RCEBSC}

We shall now analyze the performances of the RCE when used for communicating
over the binary symmetric channel (BSC) already defined in Fig. 1.4. We start by
considering a word MAP (or, equivalently, maximum likelihood) decoder, and we
analyze the slightly more complicated symbol MAP decoder afterwards. Finally,
we introduce another generalized decoding strategy inspired by the statistical
physics analogy.
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Fig. 6.3. A pictorial view of word MAP decoding for the BSC. A codeword
x0 is chosen and transmitted through a noisy channel. The channel output is y.
If the distance between x0 and y is small enough (left frame), the transmitted
message can be safely reconstructed by looking for the closest codeword to y. In
the opposite case (right frame), the closest codeword x1 does not coincide with
the transmitted one. {fig:RCEMaxLikelihood}

6.3.1 Word MAP decoding

For a BSC, both the channel input x and output y are sequences of bits of length
N . The probability for the codeword x to be the channel input conditional to
the output y, defined in Eqs. (6.3) and (6.4), depends uniquely on the Ham-
ming distance d(x, y) between these two vectors. Denoting by p the channel flip
probability, we have

P (x|y) =
1

C
pd(x,y)(1 − p)N−d(x,y)

I(x ∈ CN ) , (6.12)

C being a normalization constant which depends uniquely upon y. Without loss
of generality, we can assume p < 1/2. Therefore word MAP decoding, which
prescribes to maximize P (x|y) with respect to x, outputs the codeword which is
the closest to the channel output.

We have obtained a purely geometrical formulation of the original commu-
nication problem. A random set of points CN is drawn in the Hamming space
{0, 1}N and one of them (let us call it x0) is chosen for communicating. The
noise perturbs this vector yielding a new point y. Decoding consists in finding
the closest to y among all the points in CN and fails every time this is not x0.
The block error probability is simply the probability for such an event to occur.
This formulation is illustrated in Fig. 6.3.

This description should make immediately clear that the block error proba-
bility vanishes (in the N → ∞ limit) as soon as p is below some finite threshold.
In the previous Section we saw that, with high probability, the closest code-
word x′ ∈ CN\x0 to x0 lies at a distance d(x′, x0) ≃ NδGV(R). On the other
hand y is obtained from x0 by flipping each bit independently with probability
p, therefore d(y, x0) ≃ Np with high probability. By the triangle inequality x0
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is surely the closest codeword to y (and therefore word MAP decoding is suc-
cessful) if d(x0, y) < d(x0, x

′)/2. If p < δGV(R)/2, this happens with probability
approaching one as N → ∞, and therefore the block error probability vanishes.

However the above argument overestimates the effect of noise. Although
about NδGV(R)/2 incorrect bits may cause an unsuccessful decoding, they must
occur in the appropriate positions for y to be closer to x′ than to x0. If they
occur at uniformly random positions (as it happens in the BSC) they will be
probably harmless. The difference between the two situations is most significant
in large-dimensional spaces, as shown by the analysis provided below.

The distance between x(0) and y is the sum of N i.i.d. Bernoulli variables
of parameter p (each bit gets flipped with probability p). By the central limit
theorem, N(p − ε) < d(x(0), y) < N(p+ ε) with probability approaching one in

the N → ∞ limit, for any ε > 0. As for the remaining 2M−1 codewords, they are

completely uncorrelated with x(0) and, therefore, with y: {y, x(1), · · · , x(2M−1)}
are 2M iid random points drawn from the uniform distribution over {0, 1}N . The
analysis of the previous section shows that with probability approaching one as

N → ∞, none of the codewords {x(1), · · · , x(2M−1)} lies within a ball of radius
Nδ centered on y, when δ < δGV(R). In the opposite case, if δ > δGV(R), there
is an exponential (in N) number of these codewords within a ball of radius Nδ.

The performance of the RCE is easily deduced (see Fig. 6.4) : If p < δGV(R),
the transmitted codeword x(0) lies at a shorter distance than all the other ones
from the received message y: decoding is successful. At a larger noise level,
p > δGV(R) there is an exponential number of codewords closer to y than the
transmitted one: decoding is unsuccessful. Note that the condition p < δGV(R)
can be rewritten as R < CBSC(p), where CBSC(p) = 1−H2(p) is the capacity of
a BSC with flip probability p.

6.3.2 Symbol MAP decoding

In symbol MAP decoding, the i-th bit is decoded by first computing the marginal
P (i)(xi|y) and then maximizing it with respect to xi. Using Eq. (6.12) we get

P (i)(xi|y) =
∑

x\i

P (x|y) =
1

Z

∑

x\i

exp{−2B d(x, y)} , (6.13)

where we introduced the parameter

B ≡ 1

2
log

(
1 − p

p

)
, (6.14)

and the normalization constant

Z ≡
∑

x∈CN

exp{−2B d(x, y)} . (6.15)

Equation (6.13) shows that the marginal distribution P (xi|y) gets contributions
from all the codewords, not only from the one closest to y. This makes the
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Fig. 6.4. Logarithm of the distance enumerator N̂y(d) (counting the number of

codewords at a distance d = Nδ from the received message) divided by the block-
-length N . Here the rate is R = 1/2. We also show the distance of the transmitted
codeword for two different noise levels: p = 0.03 < δGV(1/2) ≈ 0.110278644 (left)
and p = 0.3 > δGV(R) (right). The tangent lines with slope 2B = log[(1 − p)/p]
determine which codewords dominate the symbol MAP decoder.{fig:RCEMicroCanonical}

analysis of symbol MAP decoding slightly more involved than the word MAP
decoding case.

Let us start by estimating the normalization constant Z. It is convenient to
separate the contribution coming from the transmitted codeword x(0) from the

one of the incorrect codewords x(1), . . . , x(2M−1) :

Z = e−2Bd(x(0),y) +
N∑

d=0

N̂y(d) e
−2Bd ≡ Zcorr + Zerr , (6.16)

where we denoted by N̂y(d) the number of incorrect codewords at a distance d

from the vector y. The contribution of x(0) in the above expression is easily esti-

mated. By the central limit theorem d(x(0), y) ≃ Np and therefore Zcorr is close

to e−2NBp with high probability. More precisely, for any ε > 0, e−N(2Bp+ε) ≤
Zcorr ≤ e−N(2Bp−ε) with probability approaching one in the N → ∞ limit.

As for Zerr, one proceeds in two steps: first compute the distance enumerator
N̂y(d), and then sum over d. The distance enumerator was already computed
in Sec. 6.2. As in the word MAP decoding analysis, the fact that the distances
are measured with respect to the channel output y and not with respect to a
codeword does not change the result, because y is independent from the incorrect

codewords x(1) · · ·x(2M−1). Therefore N̂y(d) is exponentially large in the interval

δGV(R) < δ ≡ d/N < 1−δGV(R), while it vanishes with high probability outside



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

114 RANDOM CODE ENSEMBLE

the same interval. Moreover, if δGV(R) < δ < 1 − δGV(R), N̂y(d) is tightly

concentrated around its mean given by Eq. (6.10). The summation over d in
Eq. (6.16) can then be evaluated by the saddle point method. This calculation
is very similar to the estimation of the free energy of the random energy model,
cf. Sec. 5.2. Roughly speaking, we have

Zerr =

N∑

d=0

N̂y(d) e
−2Bd ≃ N

∫ 1−δGV

δGV

eN [(R−1) log 2+H(δ)2Bδ] dδ
.
= eNφerr ,(6.17)

where

φerr ≡ max
δ∈[δGV,1−δGV]

[ (R− 1) log 2 + H(δ) − 2Bδ ] . (6.18)

The reader will easily complete the mathematical details of the above derivation⋆
along the lines of Sec. 5.2. The bottom-line is that Zerr is close to eNφerr with
high probability as N → ∞.

Let us examine the resulting expression (6.18) (see Fig. 6.4). If the maximum
is achieved on the interior of [δGV, 1− δGV], its location δ∗ is determined by the
stationarity condition H′(δ∗) = 2B, which implies δ∗ = p. In the opposite case,
it must be realized at δ∗ = δGV (remember that B > 0). Evaluating the right
hand side of Eq. (6.18) in these two cases, we get

φerr =

{
−δGV(R) log

(
1−p
p

)
if p < δGV,

(R− 1) log 2 − log(1 − p) otherwise.
(6.19)

We can now compare Zcorr and Zerr. At low noise level (small p), the trans-
mitted codeword x(0) is close enough to the received one y to dominate the sum
in Eq. (6.16). At higher noise level, the exponentially more numerous incorrect
codewords overcome the term due to x(0). More precisely, with high probability
we have

Z =

{
Zcorr[1 + e−Θ(N)] if p < δGV,
Zerr[1 + e−Θ(N)] otherwise,

(6.20)

where the Θ(N) exponents are understood to be positive.
We consider now Eq. (6.13), and once again separate the contribution of the

transmitted codeword:

P (i)(xi|y) =
1

Z
[Zcorr I(xi = x

(0)
i ) + Zerr,xi

] , (6.21)

where we have introduced the quantity

Zerr,xi
=

∑

z∈CN\x(0)

e−2Bd(z,y)
I(zi = xi) . (6.22)

Notice that Zerr,xi
≤ Zerr. Together with Eq. (6.20), this implies, if p < δGV(R):

P (i)(xi = x
(0)
i |y) = 1 − e−Θ(N) and P (i)(xi 6= x

(0)
i |y) = e−Θ(N). In this low p
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situation the symbol MAP decoder correctly outputs the transmitted bit x
(0)
i .

It is important to stress that this result holds with probability approaching one
as N → ∞. Concretely, there exists bad choices of the code CN and particularly

unfavorable channel realizations y such that P (i)(xi = x
(0)
i |y) < 1/2 and the

decoder fails. However the probability of such an event (i.e. the bit-error rate
Pb) vanishes as N → ∞.

What happens for p > δGV(R)? Arguing as for the normalization constant
Z, it is easy to show that the contribution of incorrect codewords dominates the
marginal distribution (6.21). Intuitively, this suggests that the decoder fails. A
more detailed computation, sketched below, shows that the bit error rate in the
N → ∞ limit is:

Pb =

{
0 if p < δGV(R),
p if δGV(R) < p < 1/2.

(6.23)

Notice that, above the threshold δGV(R), the bit error rate is the same as if
the information message were transmitted without coding through the BSC: the
code is useless.

A complete calculation of the bit error rate Pb in the regime p > δGV(R) is
rather lengthy (at least using the approach developed in this Chapter). We shall
provide here an heuristic, albeit essentially correct, justification, and leave the
rigorous proof as the exercise below. As already stressed, the contribution Zcorr of
the transmitted codeword can be safely neglected in Eq. (6.21). Assume, without

loss of generality, that x
(0)
i = 0. The decoder will be successful if Zerr,0 > Zerr,1

and fail in the opposite case. Two cases must be considered: either yi = 0 (this
happens with probability 1 − p), or yi = 1 (probability p). In the first case we
have

Zerr,0 =
∑

z∈CN\x(0)

I(zi = 0) e−2Bdi(y,z)

Zerr,1 = e−2B
∑

z∈CN\x(0)

I(zi = 1) e−2Bdi(y,z) , (6.24)

where we denoted by di(x, y) the number of of positions j, distinct form i, such
that xj 6= yj . The sums in the above expressions are independent identically
distributed random variables. Moreover they are tightly concentrated around
their mean. Since B > 0, this implies Zerr,0 > Zerr,1 with high probability.
Therefore the decoder is successful in the case yi = 0. Analogously, the decoder
fails with high probability if yi = 1, and hence the bit error rate converges to
Pb = p for p > δGV(R).
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Exercise 6.4 From a rigorous point of view, the weak point of the above
argument is the lack of any estimate of the fluctuations of Zerr,0/1. The reader
may complete the derivation along the following lines:

• Define X0 ≡ Zerr,0 and X1 ≡ e2B Zerr,1. Prove that X0 and X1 are inde-
pendent and identically distributed.

• Define the correct distance enumerators N0/1(d) such that a representa-
tion of the form X0/1 =

∑
dN0/1(d) exp(−2Bd) holds.

• Show that a significant fluctuation of N0/1(d) from its average is highly
(more than exponentially) improbable (within an appropriate range of
d).

• Deduce that a significant fluctuation of X0/1 is highly improbable (the
last two points can be treated along the lines already discussed for the
random energy model in Chap. 5).

6.3.3 Finite-temperature decoding
se:FiniteTemperatureDecoder}

The expression (6.13) for the marginal P (xi|y) is strongly reminiscent of a
Boltzmann average. This analogy suggests a generalization which interpolates
between the two ‘classical’ MAP decoding strategies discussed so far: finite-
temperature decoding. We first define this new decoding strategy in the con-
text of the BSC context. Let β be a non-negative number playing the role of an
inverse temperature, and y ∈ {0, 1}N the channel output. Define the probability
distribution Pβ(x) to be given by

Pβ(x) =
1

Z(β)
e−2βBd(y,x)

I(x ∈ CN ) , Z(β) ≡
∑

x∈CN

e−2βBd(x,y) , (6.25)

where B is always related to the noise level p through Eq. (6.14). This distri-
bution depends upon the channel output y: for each received message y, the
finite-temperature decoder constructs the appropriate distribution Pβ(x). For

the sake of simplicity we don’t write this dependence explicitly. Let P
(i)
β (xi) be

the marginal distribution of xi when x is distributed according to Pβ(x). The
new decoder outputs

xβ =

(
arg max

x1

P
(1)
β (x1) , . . . , arg max

xN

P
(N)
β (xN )

)
. (6.26)

As in the previous Sections, the reader is free to choose her favorite convention

in the case of ties (i.e. for those i’s such that P
(i)
β (0) = P

(i)
β (1)).

Two values of β are particularly interesting: β = 1 and β = ∞. If β = 1 the
distribution Pβ(x) coincides with the distribution P (x|y) of the channel input
conditional to the output, see Eq. (6.12). Therefore, for any y, symbol MAP

decoding coincides with finite-temperature decoding at β = 1: xβ=1
i = xb.
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Fig. 6.5. Phase diagram for the rate 1/2 random code ensemble under finite
temperature decoding. Word MAP and bit MAP decoding correspond (respec-
tively) to 1/β = 0 and 1/β = 1. Notice that the phase boundary of the error-free
(ordered) phase is vertical in this interval of temperatures.{fig:BSCPhases}

If β = ∞, the distribution (6.25) concentrates over those codewords which
are the closest to y. In particular, if there is a unique closest codeword to y, finite-

temperature decoding at β = ∞ coincides with word MAP decoding: xβ=∞ =
xw.

The performances of finite-temperature decoding for the RCE at any β, in
the large N limit, can be analyzed using the approach developed in the previous
Section . The results are summarized in Fig. 6.5 which give the finite-temperature ⋆
decoding phase diagram. There exist three regimes which are distinct phases with
very different behaviors.

1. A ‘completely ordered’ phase at low noise (p < δGV(R)) and low temper-
ature (large enough β). In this regime the decoder works: the probability
distribution Pβ(x) is dominated by the transmitted codeword x(0). More
precisely Pβ(x

(0)) = 1−exp{−Θ(N)}. The bit and block error rates vanish
as N → ∞.

2. A ‘glassy’ phase at higher noise (p > δGV(R)) and low temperature (large
enough β). The transmitted codeword has a negligible weight Pβ(x

(0)) =
exp{−Θ(N)}. The bit error rate is bounded away from 0, and the block er-
ror rate converges to 1 as N → ∞. The measure Pβ(x) is dominated by the
closest codewords to the received message y (which are disctinct from the
correct one). Its Shannon entropy H(Pβ) is sub-linear in N . This situation
is closely related to the ‘measure condensation’ phenomenon occurring in
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the low-temperature phase of the random energy model.

3. An ‘entropy dominated’ (paramagnetic) phase at high temperature (small
enough β). The bit and block error rates behave as in the glassy phase, and
Pβ(x

(0)) = exp{−Θ(N)}. However the measure Pβ(x) is now dominated
by codewords whose distance d ≃ Nδ∗ from the received message is larger
than the minimal one: δ∗ = pβ/[pβ + (1 − p)β ]. In particular δ∗ = p if
β = 1, and δ∗ = 1/2 if β = 0. In the first case we recover the result
already obtained for symbol MAP decoding. In the second one, Pβ=0(x)
is the uniform distribution over the codewords and the distance from the
received message under this distribution is, with high probability, close to
N/2. In this regime, the Shannon entropy H(Pβ) is linear in N .

The definition of finite-temperature decoding is easily generalized to
other channel models. Let P (x|y) be the distribution of the transmitted mes-
sage conditional to the channel output, given explicitly in Eq. (6.3). For β > 0,
we define the distribution15

Pβ(x) =
1

Z(β)
P (x|y)β , Z(β) ≡

∑

x

P (x|y)β . (6.27)

Once more, the decoder decision for the i-th bit is taken according to the rule
(6.26). The distribution Pβ(x) is a ‘deformation’ of the conditional distribution
P (x|y). At large β, more weight is given to highly probable transmitted messages.
At small β the most numerous codewords dominate the sum. A little thought
shows that, as for the BSC, the cases β = 1 and β = ∞ correspond, respectively,⋆
to symbol MAP and word MAP decoding. The qualitative features of the finite-
temperature decoding phase diagram are easily generalized to any memoryless
channel. In particular, the three phases described above can be found in such a
general context. Decoding is successful in low noise-level, large β phase.

6.4 Error-free communication with random codes{se:RCEGeneral}

As we have seen, the block error rate PB for communicating over a BSC with
a random code and word MAP decoding vanishes in the large blocklength limit
as long as R < CBSC(p), with CBSC(p) = 1 − H2(p) the channel capacity. This
establishes the ‘direct’ part of Shannon’s channel coding theorem for the BSC
case: error-free communication is possible at rates below the channel capacity.
This result is in fact much more general. We describe here a proof for general
memoryless channels, always based on random codes.

For the sake of simplicity we shall restrict ourselves to memoryless chan-
nels with binary input and discrete output. These are defined by a transition
probability Q(y|x), x ∈ {0, 1} and y ∈ Y with Y a finite alphabet. In order to
handle this case, we must generalize the RCE: each codeword x(m) ∈ {0, 1}N ,

15Notice that the partition function Z(β) defined here differs by a multiplicative constant
from the one defined in Eq. (6.25) for the BSC.
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m = 0, . . . , 2M − 1, is again constructed independently as a sequence of N i.i.d.

bits x
(m)
1 · · ·x(m)

N . But x
(m)
i is now drawn from an arbitrary distribution P (x),

x ∈ {0, 1} instead of being uniformly distributed. It is important to distinguish
P (x) (which is an arbitrary single bit distribution defining the code ensemble
and will be chosen at our convenience for optimizing it) and the a priori source
distribution P0(x), cf. Eq. (6.3) (which is a distribution over the codewords and
models the information source behavior). As in the previous Sections, we shall
assume the source distribution to be uniform over the codewords, cf. Eq. (6.4).
On the other hand, the codewords themselves have been constructed using the
single-bit distribution P (x).

We shall first analyze the RCE for a generic distribution P (x), under word
MAP decoding. The main result is:

{thm:GeneralDirectShannon_lemma
Theorem 6.1 Consider communication over a binary input discrete memory-
less channel with transition probability Q(y|x), using a code from the RCE with
input bit distribution P (x) and word MAP decoding. If the code rate is smaller
than the mutual information IX,Y between two random variables X,Y with joint
distribution P (x)Q(y|x), then the block error rate vanishes in the large block-
length limit.

Using this result, one can optimize the ensemble performances over the choice
of the distribution P (·). More precisely, we maximixe the maximum achievable
rate for error-free communication: IX,Y . The corresponding optimal distribution
P ∗(·) depends upon the channel and can be thought as adapted to the channel.
Since the channel capacity is in fact defined as the maximum mutual information
between channel input and channel output, cf. Eq. (1.37), the RCE with input
bit distribution P ∗(·) allows to communicate error-free up to channel capacity.
The above Theorem implies therefore the ‘direct part’ of Shannon’s theorem ??.

Proof: Assume that the codeword x(0) is transmitted through the channel
and the message y ∈ YN is received. The decoder constructs the probability for
x to be the channel input, conditional to the output y, see Eq. (6.3). Word MAP
decoding consists in minimizing the cost function

E(x) = −
N∑

i=1

log2Q(yi|xi) (6.28)

over the codewords x ∈ CN (note that we use here natural logarithms). Decod-
ing will be successful if and only if the minimum of E(x) is realized over the
transmitted codeword x(0). The problem consists therefore in understanding the

behavior of the 2M random variables E(x(0)), . . . , E(x(2M−1)).
Once more, it is necessary to single out E(x(0)). This is the sum of N iid

random variables − logQ(yi|x(0)
i ), and it is therefore well approximated by its

mean

EE(x(0)) = −N
∑

x,y

P (x)Q(y|x) log2Q(y|x) = NHY |X . (6.29)
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In particular (1 − ε)NHY |X < E(x(0)) < (1 + ε)NHY |X with probability ap-
proaching one as N → ∞.

As for the 2M − 1 incorrect codewords, the corresponding log-likelihoods

E(x(1)), . . . , E(x(2M−1)) are iid random variables. We can therefore estimate the
smallest among them by following the approach developed for the REM and
already applied to the RCE on the BSC. In Appendix 6.7, we prove the following
large deviation result on the distribution of these variables:

{lem:SH_rce}
Lemma 6.2 Let εi = E(x(i))/N . Then ε1, . . . , ε2M−1 are iid random variables
and their distribution satisfy a large deviation principle of the form P (ε)

.
=

2−Nψ(ε). The rate function is given by:

ψ(ε) ≡ min
{py(·)}∈Pε

[
∑

y

Q(y)D(py||P )

]
, (6.30)

where the minimum is taken over the set of probability distributions {py(·), y ∈
Y} in the subspace Pε defined by the constraint:

ε = −
∑

xy

Q(y)py(x) log2Q(y|x) , (6.31){eq:GeneralChannelRate}

and we defined Q(y) ≡∑xQ(y|x)P (x).

The solution of the minimization problem formulated in this lemma is obtained
through a standard Lagrange multiplier technique:

py(x) =
1

z(y)
P (x)Q(y|x)γ , (6.32)

where the (ε dependent) constants z(y) and γ are chosen in order to verify the
normalizations ∀y :

∑
x py(x) = 1, and the constraint (6.31).

The rate function ψ(ε) is convex with a global minimum (corresponding
to γ = 0) at ε∗ = −∑x,y P (x)Q(y) log2Q(y|x) where its value is ψ(ε∗) = 0.
This implies that, with high probability all incorrect codewords will have costs
E(x(i)) = Nε in the range εmin ≤ ε ≤ εmax, εmin and εmax being the two solutions
of ψ(ε) = R. Moreover, for any ε inside the interval, the number of codewords
with E(x(i)) ≃ Nε is exponentially large (and indeed close to 2NR−Nψ(ε)). The
incorrect codeword with minimum cost has a cost close to Nεmin (with high
probability). Since the correct codeword has cost close to NHY |X , maximum
likelihood decoding will find it with high probability if and only if HY |X < εmin.

The condition HY |X < εmin is in fact equivalent to R < IX,Y , as it can
be shown as follows. A simple calculation shows that the value ε = HY |X is
obtained using γ = 1 in Eq. (6.32) and therefore py(x) = P (x)Q(y|x)/Q(y). The
corresponding value of the rate function is ψ(ε = HY |X) = [HY −HY |X ] = IY |X .
The condition for error free communication, HY |X < εmin, can thus be rewritten
as R < ψ(HY |X), or R < IX,Y . �
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Example 6.3 Reconsider the BSC with flip probability p. We have

E(x) = −(N − d(x, y)) log(1 − p) − d(x, y) log p . (6.33)

Up to a rescaling the cost coincides with the Hamming distance from the re-
ceived message. If we take P (0) = P (1) = 1/2, the optimal types are, cf.
Eq. (6.32),

p0(1) = 1 − p0(0) =
pγ

(1 − p)γ + pγ
, (6.34)

and analogously for p1(x). The corresponding cost is

ε = −(1 − δ) log(1 − p) − δ log p , (6.35)

where we defined δ = pγ/[(1 − p)γ + pγ ]. The large deviations rate function is
given, parametrically, by ψ(ε) = log 2 −H(δ). The reader will easily recognize
the results already obtained in the previous Section.

Exercise 6.5 Consider communication over a discrete memoryless channel
with finite input output alphabets X , and Y, and transition probability Q(y|x),
x ∈ X , y ∈ Y. Check that the above proof remains valid in this context.

6.5 Geometry again: sphere packing
{se:Packing}

Coding has a lot to do with the optimal packing of spheres, which is a general
problem of considerable interest in various branches of science. Consider for in-
stance the communication over a BSC with flip probability p. A code of rate

R and blocklength N consists of 2NR points {x(1) · · ·x(2NR)} in the hypercube
{0, 1}N . To each possible channel output y ∈ {0, 1}N , the decoder associates

one of the codewords x(i). Therefore we can think of the decoder as realizing a
partition of the Hamming space in 2NR decision regions D(i), i ∈ {1 . . . 2NR},
each one associated to a distinct codeword. If we require each decision region
{D(i)} to contain a sphere of radius ρ, the resulting code is guaranteed to cor-
rect any error pattern such that less than ρ bits are flipped. One often defines
the minimum distance of a code as the smallest distance between any two
codewords16. If a code has minimal distance d, the Hamming spheres of radius
ρ = ⌊(d − 1)/2⌋ don’t overlap and the code can correct ρ errors, whatever are
their positions.

We are thus led to consider the general problem of sphere packing on the
hypercube {0, 1}N . A (Hamming) sphere of center x0 and radius r is defined
as the set of points x ∈ {0, 1}N , such that d(x, x0) ≤ r. A packing of spheres

16This should not be confused with the minimal distance from one given codewords to all
the other ones
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of radius r and cardinality NS is specified by a set of centers x1, . . . , xNS
∈

{0, 1}N , such that the spheres of radius r centered in these points are disjoint.
Let Nmax

N (δ) be the maximum cardinality of a packing of spheres of radius Nδ in
{0, 1}N . We define the corresponding rate as Rmax

N (δ) ≡ N−1 log2 Nmax
N (δ) and

would like to compute this quantity in the infinite-dimensional limit

Rmax(δ) ≡ lim sup
N→∞

Rmax
N (δ) . (6.36)

The problem of determining the function Rmax(δ) is open: only upper and lower
bounds are known. Here we shall derive the simplest of these bounds:

{pro:spheres}
Proposition 6.4

1 −H2(2δ) ≤ Rmax(δ) ≤ 1 −H2(δ) (6.37){eq:spack_propo}

The lower bound is often called the Gilbert-Varshamov bound, the upper bound
is called the Hamming bound.

Proof: Lower bounds can be proved by analyzing good packing strategies. A
simple such strategy consists in taking the sphere centers as 2NR random points
with uniform probability in the Hamming space. The minimum distance between
any couple of points must be larger than 2Nδ. It can be estimated by defining
the distance enumerator M2(d) which counts how many couples of points have
distance d. It is straightforward to show that, if d = 2Nδ and δ is kept fixed as
N → ∞:

EM2(d) =

(
2NR

2

)
2−N

(
N

d

)
.
= 2N [2R−1+H2(2δ)] . (6.38)

As long as R < [1−H2(2δ)]/2, the exponent in the above expression is negative.
Therefore, by Markov inequality, the probability of having any couple of centers
ar a distance smaller than 2δ is exponentially small in the size. This implies that

Rmax(δ) ≥ 1

2
[1 −H2(2δ)] . (6.39)

A better lower bound can be obtained by a closer examination of the above
(random) packing strategy. In Sec. 6.2 we derived the following result. If 2NR

points are chosen from the uniform distribution in the Hamming space {0, 1}N ,
and one of them is considered, with high probability its closest neighbour is
at a Hamming distance close to NδGV(R). In other words, if we draw around
each point a sphere of radius δ, with δ < δGV(R)/2, and one of the spheres is
selected randomly, with high probability it will not intersect any other sphere.
This remark suggests the following trick (sometimes called expurgation in cod-
ing theory). Go through all the spheres one by one and check if it intersects any
other one. If the answer is positive, simply eliminate the sphere. This reduces the
cardinality of the packing, but only by a fraction approaching 0 as N → ∞: the
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Fig. 6.6. Upper and lower bounds on the maximum packing rate Rmax(δ) of
Hamming spheres of radius Nδ. Random packing and expurgated random pack-
ing provide lower bounds. The Hamming and linear programming bounds are
upper bounds. {fig:HammingSpheres}

packing rate is thus unchanged. As δGV(R) is defined by R = 1 −H2(δGV(R)),
this proves the lower bound in (6.37).

The upper bound can be obtained from the fact that the total volume occu-
pied by the spheres is not larger than the volume of the hypercube. If we denote
by ΛN (δ) the volume of an N -dimensional Hamming sphere of radius Nδ, we
get NS ΛN (δ) ≤ 2N . Since ΛN (δ)

.
= 2NH2(δ), this implies the upper bound in

(6.37). �

Better upper bounds can be derived using more sophisticated mathematical
tools. An important result of this type is the so-called linear programming bound:

Rmax(δ) ≤ H2(1/2 −
√

2δ(1 − 2δ)) , (6.40)

whose proof goes beyond our scope. On the other hand, no better lower bound
than the Gilbert-Varshamov result is known. It is a widespread conjecture that
this bound is indeed tight: in high dimension there is no better way to pack
spheres than placing them randomly and expurgating the small fraction of them
that are ‘squeezed’. The various bounds are shown in Fig. 6.6.
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Exercise 6.6 Derive two simple alternative proofs of the Gilbert-Varshamov
bound using the following hints:

1. Given a constant δ, let’s look at all the ‘dangerous’ couples of points
whose distance is smaller than 2Nδ. For each dangerous couple, we can
expurgate one of its two points. The number of points expurgated is
smaller or equal than the number of dangerous couples, which can be
bounded using EM2(d). What is the largest value of δ such that this
expurgation procedure does not reduce the rate?

2. Construct a packing x1 . . . xN as follows. The first center x1 can be placed
anywhere in {0, 1}N . The second one is everywhere outside a sphere of
radius 2Nδ centered in x0. In general the i-th center xi can be at any
point outside the spheres centered in x1 . . . xi−1. This procedures stops
when the spheres of radius 2Nδ cover all the space {0, 1}N , giving a
packing of cardinality N equal to the number of steps and radius Nδ.

Let us now see the consequences of Proposition 6.4 for coding over the BSC.
If the transmitted codeword in x(i), the channel output will be (with high prob-
ability) at a distance close to Np from x(i). Clearly R ≤ Rmax(p) is a necessary
and sufficient condition for existence of a code for the BSC which corrects any
error pattern such that less than Np bits are flipped. Notice that this correction
criterion is much stronger than requiring a vanishing (bit or block) error rate.
The direct part of Shannon theorem shows the existence of codes with a vanish-
ing (at N → ∞) block error probability for R < 1−H2(p) = CBSC(p). As shown
by the linear programming bound in Fig. 6.6 CBSC(p) lies above Rmax(p) for
large enough p. Therefore, for such values of p, there is a non-vanishing interval
of rates Rmax(p) < R < CBSC(p) such that one can correct Np errors with high
probability but one cannot correct any error pattern involving that many bits.

Let us show, for the BSC case, that the condition R < 1−H2(p) is actually a
necessary one for achieving zero block error probability (this is nothing but the
converse part of Shannon channel coding theorem ??).

Define PB(k) the block error probability under the condition that k bits
are flipped by the channel. If the codeword x(i) is transmitted, the channel
output lies on the border of a Hamming sphere of radius k centered in x(i):
∂Bi(k) ≡ {z : d(z, x(i)) = k}. Therefore

PB(k) =
1

2NR

2NR∑

i=1

[
1 − |∂Bi(k) ∩ D(i)|

|∂Bi(k)|

]
≥ (6.41)

≥ 1 − 1

2NR

2NR∑

i=1

|D(i)|
|∂Bi(k)|

. (6.42)

Since {D(i)} is a partition of {0, 1}N ,
∑
i |D(i)| = 2N . Moreover, for a typical

channel realization k is close to Np, and |∂Bi(Np)| .= 2NH2(p). We deduce that,
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for any ε > 0, and large enough N :

PB ≥ 1 − 2N(1−R−H2(p)+ε) , (6.43)

and thus reliable communication is possible only if R ≤ 1 −H2(p).

6.6 Other random codes

A major drawback of the random code ensemble is that specifying a particular
code (an element of the ensemble) requiresN2NR bits. This information has to be
stored somewhere when the code is used in practice and the memory requirement
is soon beyond the hardware capabilities. A much more compact specification is
possible for the random linear code (RLC) ensemble. In this case encoding is
required to be a linear map, and any such map is equiprobable. Concretely, the
code is fully specified by a N ×M binary matrix G = {Gij} (the generating
matrix) and encoding is left multiplication by G:

x : {0, 1}M → {0, 1}N , (6.44)

z 7→ G z , (6.45)

where the multiplication has to be carried modulo 2. Endowing the set of linear
codes with uniform probability distribution is equivalent to assuming the entries
of G to be i.i.d. random variables, with Gij = 0 or 1 with probability 1/2. Notice
that only MN bits are required for specifying an element of this ensemble.

Exercise 6.7 Consider a linear code with N = 4 and |C| = 8 defined by

C = {(z1 ⊕ z2, z2 ⊕ z3, z1 ⊕ z3, z1 ⊕ z2 ⊕ z3) | z1, z2, z3 ∈ {0, 1}} , (6.46)

where we denoted by ⊕ the sum modulo 2. For instance (0110) ∈ C because
we can take z1 = 1, z2 = 1 and z3 = 0, but (0010) 6∈ C. Compute the distance
enumerator for x0 = (0110).

It turns out that the RLC has extremely good performances. As the original
Shannon ensemble, it allows to communicate error-free below capacity. Moreover,
the rate at which the block error probability PB vanishes is faster for the RLC
than for the RCE. This justifies the considerable effort devoted so far to the
design and analysis of specific ensembles of linear codes satisfying additional
computational requirements. We shall discuss some among the best ones in the
following Chapters.

6.7 A remark on coding theory and disordered systems
{se:RCEConsiderations}

We would like to stress here the fundamental similarity between the analysis
of random code ensembles and the statistical physics of disordered systems. As
should be already clear, there are several sources of randomness in coding:
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• First of all, the code used is chosen randomly from an ensemble. This was
the original idea used by Shannon to prove the channel coding theorem.

• The codeword to be transmitted is chosen with uniform probability from
the code. This hypothesis is supported by the source-channel separation
theorem.

• The channel output is distributed, once the transmitted codeword is fixed,
according to a probabilistic process which accounts for the channel noise.

• Once all the above elements are given, one is left with the decoding prob-
lem. As we have seen in Sec. 6.3.3, both classical MAP decoding strategies
and finite-temperature decoding can be defined in a unified frame. The de-
coder constructs a probability distribution Pβ(x) over the possible channel

inputs, and estimates its single bit marginals P
(i)
β (xi). The decision on the

i-th bit depends upon the distribution P
(i)
β (xi).

The analysis of a particular coding system can therefore be regarded as the anal-
ysis of the properties of the distribution Pβ(x) when the code, the transmitted
codeword and the noise realization are distributed as explained above.

In other words, we are distinguishing two levels of randomness17: on the first
level we deal with the first three sources of randomness, and on the second level
we use the distribution Pβ(x). The deep analogy with the theory of disordered
system should be clear at this point. The code, channel input, and noise real-
ization play the role of quenched disorder (the sample), while the distribution
Pβ(x) is the analogous of the Boltzmann distribution. In both cases the problem
consists in studying the properties of a probability distribution which is itself a
random object.

Notes

The random code ensemble dates back to Shannon (Shannon, 1948) who used it
(somehow implicitely) in his proof of the channel coding thorem. A more explicit
(and complete) proof was provided by Gallager in (Gallager, 1965). The reader
can find alternative proofs in standard textbooks such as (Cover and Thomas,
1991; Csiszár and Körner, 1981; Gallager, 1968).

The distance enumerator is a feature extensively investigated in coding the-
ory. We refer for instance to (Csiszár and Körner, 1981; Gallager, 1968). A treat-
ment of the random code ensemble in analogy with the random energy model
was presented in (Montanari, 2001). More detailed results in the same spirit can
be found in (Barg and G. David Forney, 2002). The analogy between coding the-
ory and the statistical physics of disordered systems was put forward by Sourlas
(Sourlas, 1989). Finite temperature decoding has been introduced in (Rujan,
1993).

17Further refinements of this point of view are possible. One could for instance argue that the
code is not likely to be changed at each channel use, while the codeword and noise realization
surely change. This remark is important, for instance, when dealing with finite-length effects
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A key ingredient of our analysis was the assumption, already mentioned in
Sec. 1.6.2, that any codeword is a priori equiprobable. The fundamental motiva-
tion for such an assumption is the source-channel separation theorem. In simple
terms: one does not loose anything in constructing an encoding system in two
blocks. First a source code compresses the data produced by the information
source and outputs a sequence of i.i.d. unbiased bits. Then a channel code adds
redundancy to this sequence in order to contrast the noise on the channel. The
theory of error correcting codes (as well as the present Chapter) focuses on the
design and analysis of this second block, leaving the first one to source coding.
The interested reader may find a proofs of the separation theorem in (Cover and
Thomas, 1991; Csiszár and Körner, 1981; Gallager, 1968).

Sphere packing is a classical problem in mathematics, with applications in
various branches of science. The book by Conway and Sloane (Conway and
Sloane, 1998) provides both a very good introduction and some far reaching
results on this problem and its connections, in particular to coding theory. Find-
ing the densest packing of spheres in R

n is an open problem when n ≥ 4.

Appendix: Proof of Lemma 6.2
{se:apShannon1}

We estimate (to the leading exponential order in the large N limit) the prob-
ability PN (ε) for one of the incorrect codewords, x, to have cost E(x) = Nε.
The channel output y = (y1 · · · yN ) is a sequence of N i.i.d. symbols distributed
according to

Q(y) ≡
∑

x

Q(y|x)P (x) , (6.47)

and the cost can be rewritten as:

E(x) ≡ −
N∑

i=1

logQ(yi|xi) = −N
∑

x,y

Q(y) logQ(y|x) 1

NQ(y)

N∑

i=1

I(xi = x, yi = y) .(6.48)

There are approximatively NQ(y) positions i such that yi = y, for y ∈ Y. We
assume that there are exactlyNQ(y) such positions, and thatNQ(y) is an integer
(of course this hypothesis is in general false: it is a routine exercise, left to the
reader , to show that it can be avoided with a small technical etour). Furthermore ⋆
we introduce

py(x) ≡
1

NQ(y)

N∑

i=1

I(xi = x, yi = y) . (6.49)

Under the above assumptions the function py(x) is a probability distribution
over x ∈ {0, 1} for each y ∈ Y. Looking at the subsequence of positions i such
that yi = y, it counts the fraction of the xi’s such that xi = x. In other words
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py(·) is the type of the subsequence {xi|yi = y}. Because of Eq. (6.48), the cost
is written in terms of these types as follows

E(x) = −N
∑

xy

Q(y)py(x) logQ(y|x) . (6.50)

Therefore E(x) depends upon x uniquely through the types {py(·) : y ∈ Y},
and this dependence is linear in py(x). Moreover, according to our definition
of the RCE, x1, . . . , xN are i.i.d. random variables with distribution P (x). The
probability P (ε) that E(x)/N = ε can therefore be deduced from the Corollary
4.5. To the leading exponential order, we get

P (ε)
.
= exp{−Nψ(ε) log 2} , (6.51)

ψ(ε) ≡ min
py(·)

[
∑

y

Q(y)D(py||P ) s.t. ε = −
∑

xy

Q(y)py(x) log2Q(y|x)
]
.(6.52)
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NUMBER PARTITIONING

{ch:number_part}

Number partitioning is one of the most basic optimization problems. It is very
easy to state: “Given the values of N assets, is there a fair partition of them into
two sets?”. Nevertheless it is very difficult to solve: it belongs to the NP-complete
category, and the known heuristics are often not very good. It is also a problem
with practical applications, for instance in multiprocessor scheduling.

In this Chapter, we shall pay special attention to the partitioning of a list
of iid random numbers. It turns out that most heuristics perform poorly on
this ensemble of instances. This motivates their use as a benchmark for new
algorithms, as well as their analysis. On the other hand, it is relatively easy to
characterize analytically the structure of random instances. The main result is
that low cost configurations (the ones with a small unbalance between the two
sets) can be seen as independent energy levels: the model behaves pretty much
like the random energy model of Chap. 5.

7.1 A fair distribution into two groups?
{se:num_part_intro}

An instance of the number partitioning problem is a set of N positive integers
S = {a1, . . . , aN} indexed by i ∈ [N ] ≡ {1, . . . , N}. One would like to partition
the integers in two subsets {ai : i ∈ A} and {ai : i ∈ B ≡ [N ]\A} in such a way
as to minimize the discrepancy among the sums of elements in the two subsets.
In other words, a configuration is given by A ⊆ [N ], and its cost is defined as

EA =

∣∣∣∣∣

(
∑

i∈A
ai

)
−
(
∑

i∈B
ai

)∣∣∣∣∣ . (7.1) {eq:numparcost}

A perfect partition is such that the total number in each subset equilibrate,
which means EA ≤ 1 (actually EA = 0 if

∑
i ai is even, or EA = 1 if

∑
i ai is

odd). As usual, one can define several versions of the problem, among which: i)
The decision problem: Does there exist a perfect partition? ii) The optimization
problem: Find a partition of lowest cost.

There are also several variants of the problem. So far we have left free the
size of A. This is called the unconstrained version. On the other hand one can
study a constrained version where one imposes that the cardinality difference
|A| − |B| of the two subsets is fixed to some number D. Here for simplicity we
shall mainly keep to the unconstrained case.

129
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{ex:8_warmup}
Exercise 7.1 As a small warm-up, the reader can show that (maybe writing
a simple exhaustive search program):

The set S1 = {10, 13, 23, 6, 20} has a perfect partition.
The set S2 = {6, 4, 9, 14, 12, 3, 15, 15} has a perfect balanced partition.
In the set S3 = {93, 58, 141, 209, 179, 48, 225, 228}, the lowest possible cost

is 5.
In the set S4 = {2474, 1129, 1388, 3752, 821, 2082, 201, 739}, the lowest pos-

sible cost is 48.

7.2 Algorithmic issues

7.2.1 An NP-complete problem

In order to understand the complexity of the problem, one must first measure its
size. This is in turn given by the number of characters required for specifying a
particular instance. In number partitioning, this depends crucially on how large
the integers can be. Imagine that we restrict ourselves to the case:

ai ∈ {1, . . . , 2M} ∀ i ∈ {1, . . . , N} (7.2){eq:np_sizedef}

so that each of the N integers can be encoded with M bits. Then the entire
instance can be encoded inN M bits. It turns out that no known algorithm solves
the number partitioning problem in a time upper bounded by a power of N M .
Exhaustive search obviously finds a solution in 2N operations for unbounded
numbers (any M). For bounded numbers there is a simple algorithm running in
a time of order N2 2M (hint: look at all the integers between 1 and N 2M and⋆
find recursively which of them can be obtained by summing the k first numbers
in the set). In fact, number partitioning belongs to the class of NP-complete
problems and is even considered as a fundamental problem in this class.

7.2.2 A simple heuristic and a complete algorithm
{se:np_KKalgo}

There is no good algorithm for the number partitioning problem. One of the
best heuristics, due to Karmarkar and Karp (KK), uses the following idea. We
start from a list a1, . . . , aN which coincides with the original set of integers, and
reduce it by erasing two elements ai and aj in the list, and replacing them by the
difference |ai − aj |, if this difference is non-zero. This substitution means that a
decision has been made to place ai and aj in two different subsets (but without
fixing in which subset they are). One then iterates this procedure as long as the
list contains two or more elements. If in the end one finds either an empty list
or the list {1}, then there exists a perfect partitioning. In the opposite case,
the remaining integer is the cost of a particular partitioning, but the problem
could have better solutions. Of course, there is a lot of flexibility and ingenuity
involved in the best choice of the elements ai and aj selected at each step. In
the KK algorithm one picks up the two largest numbers.
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Fig. 7.1. A complete search algorithm: Starting from a list, one erases the two
largest numbers ai and aj and generate two new lists: the left one contains
|ai − aj |, the right one contains ai + aj . At the bottom of the tree, every leaf
contains the cost of a valid partition. In the search for a perfect partition the tree
can be pruned at the dashed leaves because the largest number is bigger than
the sum of others: the dash-dotted lists are not generated. The KK heuristics
picks up only the left branch. In this example it is successful and finds the unique
perfect partition. {fig:numpart_ex}

Example 7.1 Let us see how it works on the first list of exercise 7.1:
{10, 13, 23, 6, 20}. At the first iteration we substitute 23 and 20 by 3, giving
the list {10, 13, 6, 3}. The next step gives {3, 6, 3}, then {3, 3}, then ∅, showing
that there exists a perfect partition. The reader can find out how to systemat-
ically reconstruct the partition.

A modification due to Korf transforms the KK heuristic into a complete
algorithm, which will return the best partitioning (eventually in exponential
time). Each time one eliminates two elements ai and aj , two new lists are built:
a ‘left’ list which contains |ai−aj | (it corresponds to placing ai and aj in different
groups) and a right one which contains ai + aj (it corresponds to placing ai and
aj in the same group). Iterating in this way one constructs a tree with 2N−1

terminal nodes, containing each the cost of a valid partition. Vice-versa, the cost
of each possible partition is reported at one of the terminal nodes (notice that
each of the 2N possible partitions A is equivalent to its complement [N ] \ A). If
one is interested only in the decision: ‘is there a perfect partition?’, the tree can
be pruned as follows. Each time one encounters a list whose largest element is
larger than the sum of all other elements plus 1, this list cannot lead to a perfect
partition. One can therefore avoid to construct the sub-tree whose root is such
a list. Figure 7.1 shows a simple example of application of this algorithm.
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Fig. 7.2. Numerical study of randomly generated sets, where ai are uniformly
distributed in {1, . . . 2M}, with

∑
i ai even. The fraction of samples with a perfect

balanced partition is plotted versus N (left plot: from left to right M = 8, 16, 24),
and versus κ = M/N (right plot). In the limit N → ∞ at fixed κ, it turns out
that the probability becomes a step function, equal to 1 for κ < 1, to 0 for κ > 1
(see also Fig. 7.4).{fig:nump_stat1}

7.3 Partition of a random list: experiments
{se:numpart_rand_exp}

A natural way to generate random instances of number partitioning is to choose
the N input numbers ai as iid. Here we will be interested in the case where they
are uniformly distributed in the set {1, . . . , 2M}. As we discussed in Chap. 3,
one can use these random instances in order to test typical performances of
algorithms, but we will also be interested in natural probabilistic issues, like the
distribution of the optimal cost, in the limits where N and M go to ∞.

It is useful to first get an intuitive feeling of the respective roles of N (size of
the set) and M (number of digits of each ai - in base 2). Consider the instances
S2,S3,S4 of example 1. Each of them contains N = 8 random numbers, but
they are randomly generated with M = 4,M = 8,M = 16 respectively. Clearly,
the larger M , the larger is the typical value of the ai’s, and the more difficult
it is to distribute them fairly. Consider the costs of all possible partitions: it is
reasonable to expect that in about half of the partitions, the most significant bit
of the cost is 0. Among these, about one half should have the second significant
bit equal to 0. The number of partitions is 2N−1, this qualitative argument can
thus be iterated roughly N times. This leads one to expect that, in a random
instance with large N , there will be a significant chance of having a perfect
partition if N > M . On the contrary, for N < M , the typical cost of the best
partition should behave like 2M−N .

This intuitive reasoning turns out to be essentially correct, as far as the
leading exponential behavior in N and M is concerned. Here we first provide
some numerical evidence, obtained with the complete algorithm of Sec. 7.2.2 for
relatively small systems. In the next Section, we shall validate our conclusions
by a sharper analytical argument.

Figure 7.2 shows a numerical estimate of the probability pperf(N,M) that a
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Fig. 7.3. Left plot: average of log2R, where R is the size of the search tree.
The three curves correspond to M = 8, 16, 24 (from left to right). The size grows
exponentially with N , and reaches a maximum for N ≈ M . Right plot: the
average of log2R/(N − 1) is plotted versus κ = M/N . {fig:nump_stat1bis}

randomly generated instance has a perfect partition, plotted versus N . This has
been obtained by sampling nstat instances of the problem for each considered
pair N ,M (here nstat = 10000, 1000, 100 when M = 8, 16, 24 respectively), and
solving each instance by simple enumeration. The probability pperf(N,M) was
estimated as the fraction of the sampled instances for which a perfect partitioning
was found. The standard deviation of such an estimate is

√
pperf(1 − pperf)/nstat.

For a fixed value of M , pperf(N,M) crosses over from a value close to 0 at
small N to a value close to 1 at large N . The typical values of N where the
crossover takes place seem to grow proportionally to M . It is useful to look at
the same data from a slightly different perspective by defining the ratio

κ =
M

N
, (7.3) {eq:np_kappa_def}

and considering pperf as a function of N and κ. The plot of pperf(κ,N) versus κ
at fixed N shows a very interesting behavior, cf. Fig. 7.2, right frame. A careful
analysis of the numerical data 18 indicates that limN→∞ pperf(κ,N) = 1 for
κ < 1, and = 0 for κ > 1. We stress that the limit N → ∞ is taken with κ
kept fixed (and therefore letting M → ∞ proportionally to N). As we shall see
in the following, we face here a typical example of a phase transition, in the
sense introduced in Chap. 2. The behavior of a generic large instance changes
completely when the control parameter κ crosses a critical value κc ≡ 1. For
κ < 1 almost all instances of the problem have a perfect partition (in the large
N limit), for κ > 1 almost none of them can be partitioned perfectly. This
phenomenon has important consequences on the computational difficulty of the
problem. A good measure of the performance of Korf’s complete algorithm is
the number R of lists generated in the tree before finding the optimal partition.

18In order to perform this analysis, guidance from the random cost model or from the exact
results of the next sections is very useful.
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In Fig. 7.3 we plot the quantity log2R averaged on the same instances which
we had used for the estimation of pperf in Fig. 7.2. The size of the search tree
first grows exponentially with N and then reaches a maximum around N ≈M .
Plotted as a function of κ, one sees a clear peak of log2R, somewhere around
κ = κc = 1: problems close to the critical point are the hardest ones for the
algorithm considered. A similar behavior is found with other algorithms, and in
fact we will encounter it in many other decision problems like e.g. satisfiability
or coloring. When a class of random instances presents a phase transition as a
function of one parameter, it is generally the case that the most difficult instances
are found in the neighborhood of the phase transition.

7.4 The random cost model{se:numpart_rand_th}

7.4.1 Definition of the model

Consider as before the probability space of random instances constructed by
taking the numbers aj to be iid uniformly distributed in {1, . . . , 2M}. For a given
partition A, the cost EA is a random variable with a probability distribution PA.
Obviously, the costs of two partitions A and A′ are correlated random variables.
The random cost approximation consists in neglecting these correlations. Such
an approximation can be applied to any kind of problem, but it is not always a
good one. Remarkably, as discovered by Mertens, the random cost approximation
turns out to be ‘essentially exact’ for the partitioning of iid random numbers.

In order to state precisely the above mentioned approximation, one defines
a random cost model (RCM), which is similar to the REM of Chapter 5. A
sample is defined by the costs of all the 2N−1 ‘partitions’ (here we identify the
two complementary partitions A and [N ]\A). The costs are supposed to be iid
random variables drawn from the probability distribution P. In order to mimic
the random number partitioning problem, P is taken to be the same as the
distribution of the cost of a random partition A in the original problem:

P ≡ 1

2N−1

∑

A
PA . (7.4)

Here PA is the distribution of the cost of partition A in the original number
partitioning problem.

Let us analyze the behavior of P for large N . We notice that the cost of a
randomly chosen partition in the original problem is given by |∑i σiai|, where σi
are iid variables taking value ±1 with probability 1/2. For large N , the distribu-
tion of

∑
i σiai is characterized by the central limit theorem, and P is obtained

by restricting it to the positive domain. In particular, the cost of a partition will
be, with high probability, of order

√
Nα2

M , where

α2
M ≡ E a2 =

1

3
22M +

1

2
2M +

1

6
. (7.5)

Moreover, for any 0 ≤ x1 < x2:
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P
(

E√
Nα2

M

∈ [x1, x2]

)
≃
√

2

π

∫ x2

x1

e−x
2/2 dx .

Finally, the probability of a perfect partition P(E = 0) is just the probability
of return to the origin of a random walk with steps σiai ∈ {−2M , . . . ,−1} ∪
{1, . . . , 2M}. Assuming for simplicity that

∑
i ai is even, we get:

P(0) ≃ 2
1√

2πNα2
M

≃
√

6

πN
2−M , (7.6)

where 1/
√

2πNα2
M is the density of a normal random variable of mean 0 and

variance Nα2
M near the origin, and the extra factor of 2 comes from the fact that

the random walk is on even integers only.
As we will show in the next Sections, the RCM is a good approximation for

the original number partitioning problem. Some intuition for this property can
be found in the exercise below.

{ex:8_remlike}
Exercise 7.2 Consider two random, uniformly distributed, independent parti-
tions A and A′. Let P(E,E′) denote the joint probability of their energies when
the numbers {ai} are iid and uniformly distributed over {1, . . . , 2M}. Show that
P(E,E′) = P(E)P(E′)[1 + o(1)] in the large N,M limit, if E,E′ < C 2M for
some fixed C.

7.4.2 Phase transition

We can now proceed with the analysis of the RCM. We shall first determine the
phase transition, then study the phase κ > 1 where typically no perfect partition
can be found, and finally study the phase κ < 1 where an exponential number
of perfect partitions exist.

Consider a random instance of the RCM. The probability that no perfect
partition exist is just the probability that each partition has a strictly positive
cost. Since, within the RCM, the 2N−1 partitions have iid costs with distribution
P, we have:

1 − pperf(κ,N) = [1 − P(0)]
2N−1

. (7.7)

In the large N limit with fixed κ, the zero cost probability is given by Eq. (7.6).
In particular P(0) ≪ 1. Therefore:

pperf(κ,N) = 1− exp[−2N−1P(0)] + o(1) = 1− exp

[
−
√

3

2πN
2N (1−κ)

]
+ o(1) .

(7.8) {eq:pperf_pred}

This expression predicts a phase transition for the RCM at κc = 1. Notice in fact
that limN→∞ pperf(κ,N) = 1 if κ < 1, and = 0 if κ > 1. Moreover, it describes
the precise behavior of pperf(κ,N) around the critical point κc for finite N : Let
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Fig. 7.4. The data of Fig. 7.2 is replotted, showing the (estimated)
probability of perfect partition pperf(N,M) versus the rescaled variable
x = N(κ − κc) + (1/2) log2N . The agreement with the theoretical prediction
(7.9) is very good.{fig:nump_stat3}

us define the variable x = N(κ − κc) + (1/2) log2N . In the limit N → ∞ and
κ→ κc at fixed x, one finds the crossover behavior:

lim
N→∞
κ→κc

pperf(κ,N) = 1 − exp

[
−
√

3

2π
2−x

]
. (7.9) {eq:NPfss}

This is an example of finite-size scaling behavior.
In order to compare the above prediction with our numerical results for the

original number partitioning problem, we plot in Fig. 7.4 pperf(κ,N) versus the
scaling variable x. Here we use the same data presented in Fig. 7.2, just changing
the horizontal axis fromN to x. The good collapse of the curves for various values
of M provides evidence for the claim that the number partitioning problem is
indeed asymptotically equivalent to the RCM and presents a phase transition at
κ = 1.

{ex:8_oddeven}
Exercise 7.3 Notice that the argument before assume that

∑
i ai is even. This

is the condition was imposed in the simulation whose results are presented
in Fig. 7.4. How should one modify the estimate of P(0) in Eq. (7.6) when∑
i ai is odd? Show that, in this case, if one keeps the definition x = N(κ −

κc) + (1/2) log2N , the scaling function becomes 1− exp
[
−2
√

3
2π 2−x

]
. Run a

simulation to check this prediction.

7.4.3 Study of the two phases

Let us now study the minimum cost in the phase κ > 1. The probability that all
configurations have a cost larger than E is:
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P(∀A : EA > E) =

(
1 −

E∑

E′=0

P(E′)

)2N−1

. (7.10){eq:FiniteNGroundState}

This probability is non trivial (i.e. different form 0 or 1) if
∑E
E′=0 P(E′) =

O(2−N ). It is easy to show that this sum can be estimated by substituting19

P(E′) → P(0), which gives the condition E ∼ 1/(P(0)2N−1) ∼ 2M−N √
N We

therefore get, from Eq. (7.10):

lim
N→∞

P

(
∀A : EA >

ε

P(0)2N−1

)
= e−ε I(ε ≥ 0) . (7.11)

In particular the mean of the distribution on the right hand side is equal to 1.
This implies that the expectation of the lowest cost in the problem is EEgs =√

2πN
3 2N(κ−1). These predictions also fit the numerical results for number par-

titioning very well.

{ex:8_extreme}
Exercise 7.4 Show that the probability density of the k-th lowest cost con-
figuration, in the rescaled variable ε, is εk−1/(k− 1)! exp(−ε) I(ε > 0). This is
a typical case of extreme value statistics for bounded iid variables.

In the phase κ < 1 we already know that, for almost all samples, there exists
at least one configuration with zero cost. It is instructive to count the number
of zero cost configurations. Since each configuration has zero cost independently
with probability P(0), the number Z of zero cost configurations is a binomial
random variable with distribution

P (Z) =

(
2N−1

Z

)
P(0)Z [1 − P(0)]

2N−1−Z
. (7.12) {eq:RCMdegeneracy}

In particular, for largeN , Z concentrates around its average value Zav
.
= 2N(1−κ).

One can define an entropy density of the ground state as:

sgs =
1

N
log2 Z . (7.13) {eq:rcm_entrop}

The RCM result (7.12) predicts that for κ < 1 the entropy density is close 1− κ
with high probability. Once again, numerical simulations on the original number
partitioning problem confirm this expectation.

19As the resulting value of E is much smaller than the scale over which P(E) varies signifi-
cantly, cf. Eq. (7.6), the substitution of P(0) to P(E′) is indeed consistent
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{ex:8_integlog}
Exercise 7.5 Using the integral representation of the logarithm:

log2 x =

∫ ∞

0

dt

t

(
e−t log 2 − e−tx

)
, (7.14) {eq:log_int_rep}

compute E sgs directly. It will be useful to notice that the t integral is dominated
by very small values of t, of order 1/(2N−1P(0)). Then one easily finds E sgs ≃
(1/N) log2(2

N−1P(0)) ≃ 1 − κ.

7.5 Partition of a random list: rigorous results
{se:nump_exact}

A detailed rigorous characterization of the phase diagram in the partitioning
of random numbers has been obtained by Borgs, Chayes and Pittel. Basically it
confirms the predictions of the RCM. We shall first state some of the exact results
known for the balanced partitioning of N numbers. For definiteness we keep as
before to the case where ai are iid uniformly distributed in {1, . . . , 2M}, and

both N and
∑N
i=1 ai are even. The following results hold in the ‘thermodynamic

limit’ N,M → ∞ with fixed κ = M/N ,
{nump_th1}

Theorem 7.2 There is a phase transition at κ = 1. For κ < 1, with high
probability, a randomly chosen instance has a perfect balanced partition. For
κ > 1, with high probability, a randomly chosen instance does not have a perfect
balanced partition.

{nump_th2}
Theorem 7.3 In the phase κ < 1, the entropy density (7.13) of the number of
perfect balanced partitions converges in probability to s = 1 − κ.

{nump_th3}
Theorem 7.4 Define E = 2N(κ−1)

√
2πN/3 and let E1 ≤ · · · ≤ Ek be the

k lowest costs, with k fixed. Then the k-uple
(
ε1 = E1/E, . . . , εk = Ek/E

)
con-

verges in distribution to (W1,W1+W2, . . . ,W1+. . .Wk), where Wi are iid random
variables with distribution P (Wi) = e−Wi I(Wi ≥ 0). In particular the (rescaled)
optimal cost distribution converges to P (ε1) = e−ε1 I(ε1 ≥ 0).

Note that these results all agree with the RCM. In particular, Theorem 7.4 states
that, for fixed k and N → ∞, the lowest k costs are iid variables, as assumed in
the RCM. This explains why the random cost approximation is so good.

The proofs of these theorems (and of more detailed results concerning the
scaling in the neighborhood of the phase transition point κ = 1), are all based
on the analysis of an integral representation for the number of partitions with a
given cost which we will derive below. We shall then outline the general strategy
by proving the existence of a phase transition, cf. Theorem 7.2, and we refer the
reader to the original literature for the other proofs.

7.5.1 Integral representation

For simplicity we keep to the case where
∑
i ai is even, similar results can be

obtained in the case of an odd sum (but the lowest cost is then equal to 1).
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Proposition 7.5 Given a set S = {a1, . . . , aN} with
∑
i ai even, the number Z

of partitions with cost E = 0 can be written as:

Z = 2N−1

∫ π

−π

dx

2π

N∏

j=1

cos(ajx) . (7.15){eq:np_intrep}

Proof: We represent the partition A by writing σi = 1 if i ∈ A, and σi = −1

if i ∈ B = [N ] \ A. One can write: Z = 1
2

∑
σ1,...,σN

I

(∑N
j=1 σjaj = 0

)
, where

the factor 1/2 comes from the A − B symmetry (the same partition is repre-
sented by the sequence σ1, . . . , σN and by −σ1, . . . ,−σN ). We use the integral
representations valid for any integer number a:

I(a = 0) =

∫ π

−π

dx

2π
eixa , (7.16)

which gives:

Z =
1

2

∑

σ1,...,σN

∫ π

−π

dx

2π
eix(

P
j σjaj) . (7.17)

The sum over σi’s gives the announced integral representation (7.15) �

{ex:8_highercost}
Exercise 7.6 Show that a similar representation holds for the number of par-
tition with cost E ≥ 1, with an extra factor 2 cos(Ex) in the integrand. For the
case of balanced partitions, find a similar representation with a two-dimensional
integral.

The integrand of (7.15) is typically exponential in N and oscillates wildly.
It is thus tempting to compute the integral by the method of steepest descent.
This strategy yields correct results in the phase κ ≤ 1, but it is not easy to
control it rigorously. Hereafter we use simple first and second moment estimates
of the integral which are powerful enough to derive the main features of the
phase diagram. Finer control gives more accurate predictions which go beyond
this presentation.

7.5.2 Moment estimates

We start by evaluating the first two moments of the number of perfect partitions
Z. {propo:np_1}

Proposition 7.6 In the thermodynamic limit the first moment of Z behaves as:

EZ = 2N(1−κ)
√

3

2πN
(1 + Θ(1/N)) (7.18) {eq:np_mom1_res}

Proof: The expectation value is taken over choices of ai where
∑
i ai is even.

Let us use a modified expectation, denoted by Ei, over all choices of a1, . . . , aN ,
without any parity constraint, so that ai are iid. Clearly EiZ = (1/2)EZ, because
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a perfect partition can be obtained only in the case where
∑
i ai is even, and this

happens with probability 1/2.
Because of the independence of the ai in the expectation Ei, one gets from

(7.15)

EZ = 2EiZ = 2N
∫ π

−π

dx

2π
[Ei cos(a1x)]

N
. (7.19) {eq:np_m1_1}

The expectation of the cosine is:

Ei cos(a1x) = 2−M cos
(x

2
(2M + 1)

) sin(2Mx/2)

sin(x/2)
≡ g(x) . (7.20){eq:np_m1_2}

A little thought shows that the integral in (7.19) is dominated in the thermo-
dynamic limit by values of x very near to 0. Precisely we rescale the variable
as x = x̂/(2M

√
N). Then one has g(x) = 1 − x̂2/(6N) + Θ(1/N2). The leading

behavior of the integral (7.20) at large N is thus given by:

EZ = 2N−M 1√
N

∫ ∞

−∞

dx̂

2π
exp

(
− x̂

2

6

)
= 2N−M

√
3

2πN
, (7.21)

up to corrections of order 1/N . �

{ex:8_thermod2}
Exercise 7.7 Show that, for E even, with E ≤ C2M , for a fixed C, the number
of partitions with cost E is also given by (7.18) in the thermodynamic limit.

{propo:np_2}
Proposition 7.7 When κ < 1, the second moment of Z behaves in the thermo-
dynamic limit as:

EZ2 = [EZ]
2

(1 + Θ(1/N)) . (7.22){eq:np_mom2_res}

Proof: We again release the constraint of an even
∑
i ai, so that:

EZ2 = 22N−1

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π
[E cos(a1x1) cos(a1x2)]

N
(7.23)

The expectation of the product of the two cosines is:

E cos(a1x1) cos(a1x2) =
1

2
[g(x+) + g(x−)] , (7.24){eq:np_m2_2}

where x± = x1±x2. In order to find out which regions of the integration domain
are important in the thermodynamic limit, one must be careful because the
function g(x) is 2π periodic. The double integral is performed in the square
[−π,+π]2. The region of this square where g can be very close to 1 are the ‘center’
where x1, x2 = Θ(1/(2M

√
N)), and the four corners, close to (±π,±π), obtained

from the center by a ±2π shift in x+ or in x−. Because of the periodicity of g(x),
the total contribution of the four corners equals that of the center. Therefore
one can first compute the integral near the center, using the change of variables
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x1(2) = x̂1(2)/(2
M
√
N). The correct value of EZ2 is equal to twice the result

of this integral. The remaining part of the computation is straightforward, and
gives indeed EZ2 ≃ 22N(1−κ) 3

2πN .
In order for this argument to be correct, one must show that the contributions

from outside the center are negligible in the thermodynamic limit. The leading
correction comes from regions where x+ = Θ(1/(2M

√
N)) while x− is arbitrary.

One can explicitly evaluate the integral in such a region by using the saddle point
approximation. The result is of order Θ(2N(1−κ)/N). Therefore, for κ < 1 the
relative contributions from outside the center (or the corners) are exponentially
small in N . A careful analysis of the above two-dimensional integral can be found
in the literature. �

Propositions 7.6 and 7.7 above have the following important implications.
For κ > 1, EZ is exponentially small in N . Since Z is a non-negative integer,
this implies (first moment method) that, in most of the instances Z is indeed 0.
For κ < 1, EZ is exponentially large. Moreover, the normalized random variable
Z/EZ has a small second moment, and therefore small fluctuations. The second
moment method then shows that Z is positive with high probability. We have
thus proved the existence of a phase transition at κc = 1, i.e. Theorem 7.2.

Exercise 7.8 Define as usual the partition function at inverse temperature β
as Z(β) =

∑
A e

−βEA . Using the integral representation

e−|U | =

∫ ∞

−∞

dx

π

1

1 + x2
e−ixU , (7.25)

and the relation
∑
k∈Z

1/(1+x2k2) = π/(x tanh(π/x)), show that the ‘annealed
average’ for iid numbers ai is

Ei(Z) = 2N(1−κ)
√

3

2πN

1

tanh(β/2)
(1 + Θ(1/N)) (7.26)

Notes

A nice elementary introduction to number partitioning is the paper by Hayes
(Hayes, 2002). The NP-complete nature of the problem is a classical result which
can be found in textbooks like (Papadimitriou, 1994; Garey and Johnson, 1979).
The Karmarkar Karp algorithm was introduced in the technical report (Kar-
markar and Karp, 1982). Korf’s complete algorithm is in (Korf, 1998).

There has been a lot of work on the partitioning of random iid numbers.
In particular, the large κ limit, after a rescaling of the costs by a factor 2−M ,
deals with the case where ai are real random numbers, iid on [0, 1]. The scaling
of the cost of the optimal solution in this case was studied as soon as 1986 by
Karmarkar, Karp, Lueker and Odlyzko (Karmarkar, Karp, Lueker and Odlyzko,
1986). On the algorithmic side this is a very challenging problem. As we have
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seen the optimal partition has a cost O(
√
N2−N ; however all known heuristics

perform badly on this problem. For instance the KK heuristics finds solution with
a cost O(exp

[
−.72(logN)2

]
which is very far from the optimal scaling (Yakir,

1996).
The phase transition was identified numerically by Gent and Walsh (Gent and

Walsh, 1998), and studied through statistical physics methods by Ferreira and
Fontanari (Ferreira and Fontanari, 1998) and Mertens (Mertens, 1998), who also
introduced the random cost model (Mertens, 2000). His review paper (Mertens,
2001) provides a good summary of these works, and helps to solve the Exercises
7.2,7.4, and 7.7. The parity questions discussed in exercise 7.3 have been studied
in (Bauke, 2002).

Elaborating on these statistical mechanics treatments, Borgs, Chayes and
Pittel were able to establish very detailed rigorous results on the unconstrained
problem (Borgs, Chayes and Pittel, 2001), and more recently, together with
Mertens, on the constrained case (Borgs, Chayes, Mertens and Pittel, 2003).
These result go much beyond the Theorems which we have stated here, and the
interested reader is encouraged to study these papers. She will also find there all
the technical details needed to fully control the integral representation used in
Section 7.5, and the solutions to Exercises 7.5 and 7.6.
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INTRODUCTION TO REPLICA THEORY

{ch:replicas_intro}

In the past 25 years the replica method has evolved into a rather sophisticated
tool for attacking theoretical problems as diverse as spin glasses, protein folding,
vortices in superconductors, combinatorial optimization, etc. In this book we
adopt a different (but equivalent and, in our view, more concrete) approach: the
so-called ‘cavity method’. In fact, the reader can skip this Chapter without great
harm concerning her understanding of the rest of this book.

It can be nevertheless instructive to have some knowledge of replicas: the
replica method is an amazing construction which is incredibly powerful. It is
not yet a rigorous method: it involves some formal manipulations, and a few
prescriptions which may appear arbitrary. Nevertheless these prescriptions are
fully specified, and the method can be regarded as an ‘essentially automatic’
analytic tool. Moreover, several of its most important predictions have been
confirmed rigorously through alternative approaches. Among its most interesting
aspects is the role played by ‘overlaps’ among replicas. It turns out that the subtle
probabilistic structure of the systems under study are often most easily phrased
in terms of such variables.

Here we shall take advantage of the simplicity of the Random Energy Model
(REM) defined in Chapter 5 to introduce replicas. This is the topic of Sec. 8.1. A
more complicated spin model is introduced and discussed in Sec. 8.2. In Sec. 8.3
we discuss the relationship between the simplest replica symmetry breaking
scheme and the extreme value statistics. Finally, in the Appendix we briefly
explain how to perform a local stability analysis in replica space. This is one of
the most commonly used consistency checks in the replica method.

8.1 Replica solution of the Random Energy Model
{se:ReplicaREM}

As we saw in Sec. 5.1, a sample (or instance) of the REM is given by the values
of 2N energy levels Ej , with j ∈ {1, . . . , 2N}. The energy levels are iid Gaussian
random variables with mean 0 and variance N/2. A configuration of the REM
is just the index j of one energy level. The partition function for a sample with
energy levels {E1 . . . , E2N } is

Z =

2N∑

j=1

exp (−βEj) , (8.1) {eq:rem_zdef}

and is itself a random variable (in the physicist language ‘Z fluctuates from sam-
ple to sample’). In Chapter 5 we argued that intensive thermodynamic potentials

143
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are self-averaging, meaning that their distribution is sharply concentrated around
the mean value in the large-N limit. Among these quantities, a prominent role
is played by the free energy density f = −1/(βN) logZ. Other potentials can in
fact be computed from derivatives of the free energy. Unlike these quantities, the
partition function has a broad distribution even for large sizes. In particular, its
average is dominated (in the low temperature phase) by extremely rare samples.
In order to have a fair description of the system, one has to compute the average
of the log-partition function, E logZ, which, up to a constant, yields the average
free energy density.

It turns out that computing integer moments of the partition function EZn,
with n ∈ N, is much easier than computing the average log-partition function
E logZ. This happens because Z is the sum of a large number of ‘simple’ terms.

If, on the other hand, we were able to compute EZn for any real n (or, at
least, for n small enough), the average log-partition function could be determined
using, for instance, the relation

E logZ = lim
n→0

1

n
log(EZn) . (8.2){eq:replicalimit}

The idea is to carry out the calculation of EZn ‘as if’ n were an integer. At a
certain point (after having obtained a manageable enough expression), we shall
‘remember’ that n has indeed to be a real number and take this into account.
As we shall see this whole line of approach has some flavor of an analytic con-
tinuation but in fact it has quite a few extra grains of salt...

The first step consists in noticing that Zn can be written as an n-fold sum

Zn =

2N∑

i1...in=1

exp (−βEi1 − · · · − βEin) . (8.3){eq:Zngen}

This expression can be interpreted as the partition function of a new system.
A configuration of this system is given by the n-uple (i1, . . . , in), with ia ∈
{1, . . . , 2N}, and its energy is Ei1...in = Ei1 + · · ·+Ein . In other words, the new
system is formed of n statistically independent (in the physicist language: non-
interacting) copies of the original one. We shall refer to such copies as replicas.

In order to evaluate the average of Eq. (8.3), it is useful to first rewrite it as:

Zn =

2N∑

i1...in=1

2N∏

j=1

exp

[
−βEj

(
n∑

a=1

I(ia = j)

)]
. (8.4)

Exploiting the linearity of expectation, the independence of the Ej ’s, and their
Gaussian distribution, one easily gets:

EZn =

2N∑

i1...in=1

exp



β
2N

4

n∑

a,b=1

I(ia = ib)



 . (8.5){eq:AverageReplicated}
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EZn can also be interpreted as the partition function of a new ‘replicated’ sys-
tem. As before, a configuration is given by the n-uple (i1, . . . , in), but now its
energy is Ei1...in = −Nβ/4∑n

a,b=1 I(ia = ib).
This replicated system has several interesting properties. First of all, it is no

longer a disordered system: the energy is a deterministic function of the config-
uration. Second, replicas do interact: the energy function cannot be written as
a sum of single replica terms. The interaction amounts to an attraction between
different replicas. In particular, the lowest energy configurations are obtained
by setting i1 = · · · = in. Their energy is Ei1...in = −Nβn2/4. Third: the energy
depends itself upon the temperature, although in a very simple fashion. Its effect
will be stronger at low temperature.

The origin of the interaction among replicas is easily understood. For one
given sample of the original problem, the Boltzmann distribution concentrates
at low temperature (β ≫ 1) on the lowest energy levels: all the replicas will
tend to be in the same configuration with large probability. When averaging
over the distribution of samples, we do not see any longer which configuration
i ∈ {1 . . . 2N} has the lowest energy, but we still see that the replicas prefer
to stay in the same state. There is no mystery in these remarks. The elements
of the n-uple (i1 . . . in) are independent conditional on the sample, that is on
realization of the energy levels Ej , j ∈ {1 . . . 2N}. If we do not condition on the
realization, (i1 . . . in) become dependent.

Given the replicas configurations (i1 . . . in), it is convenient to introduce the
n × n matrix Qab = I(ia = ib), with elements in {0, 1}. We shall refer to this
matrix as the overlap matrix. The summand in Eq. (8.5) depends upon the
configuration (i1 . . . in) only through the overlap matrix. We can therefore rewrite
the sum over configurations as:

EZn =
∑

Q

NN (Q) exp



Nβ
2

4

n∑

a,b=1

Qab



 . (8.6)

Here NN (Q) denotes the number of configurations (i1 . . . in) whose overlap ma-
trix is Q = {Qab}, and the sum

∑
Q runs over the symmetric {0, 1} matrices

with ones on the diagonal. The number of such matrices is 2n(n−1)/2, while the
number of configurations of the replicated system is 2Nn. It is therefore natural
to guess that the number of configurations with a given overlap matrix satisfies
a large deviation principle of the form NN (Q)

.
= exp(Ns(Q)):

Exercise 8.1 Show that the overlap matrix always has the following form:
There exists a partition G1, G2, . . . , Gng

of the n replicas (this means that
G1∪G2∪· · ·∪Gng

= {1 . . . n} and Gi∩Gj = ∅) into ng groups such that Qab = 1
if a and b belong to the same group, and Qab = 0 otherwise. Prove that NN (Q)
satisfies the large deviation principle described above, with s(Q) = ng log 2.
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Using this form of NN (Q), the replicated partition function can be written
as:

EZn
.
=
∑

Q

exp (Ng(Q)) ; g(Q) ≡ β2

4

n∑

a,b=1

Qab + s(Q) . (8.7) {eq:ReplicatedPartitionFunction

The strategy of the replica method is to estimate the above sum using the saddle
point method20. The ‘extrapolation’ to non-integer values of n is discussed after-
ward. Let us notice that this program is completely analogous to the treatment
of the Curie-Weiss model in Sec. 2.5.2 (see also Sec. 4.3 for related background),
with the extra step of extrapolating to non-integer n.

8.1.1 Replica symmetric saddle point
{se:ReplicaSymmetricREM}

The function g(Q) is symmetric under permutation of replicas: Let π ∈ Sn be
a permutation of n objects, and denote by Qπ the matrix with elements Qπab =
Qπ(a)π(b). Then g(Qπ) = g(Q). This is a simple consequence of the fact that
the n replicas were equivalent from the beginning. This symmetry is called the
replica symmetry, and is a completely generic feature of the replica method.

When the dominant saddle point possesses this symmetry (i.e. when Qπ = Q
for any permutation π) one says that the system is replica symmetric (RS).
In the opposite case replica symmetry is spontaneously broken in the large N
limit, in the same sense as we discussed in chapter 2 (see Sec. 2.5.2).

In view of this permutation symmetry, the simplest idea is to seek a replica
symmetric saddle point. If Q is invariant under permutation, then necessarily
Qaa = 1, and Qab = q0 for any couple a 6= b. We are left with two possibilities:

• The matrix QRS,0 is defined by q0 = 0. In this case NN (QRS,0) = 2N (2N −
1) . . . (2N−n+1), which yields s(QRS,0) = n log 2 and g(QRS,0) = n

(
β2/4 + log 2

)
.

• The matrix QRS,1 is defined by q0 = 1. This means that i1 = · · · = in.
There are of course NN (QRS,1) = 2N choices of the n-uple (i1 . . . in) com-
patible with this constraint, which yields s(QRS,1) = log 2 and g(QRS,1) =
n2β2/4 + log 2.

Keeping for the moment to these RS saddle points, one needs to find which one
dominates the sum. In Figure 8.1 we plot the functions g0(n, β) ≡ g(QRS,0) and
g1(n, β) ≡ g(QRS,1) for n = 3 and n = 0.5 as a functions of T = 1/β. Notice
that the expressions we obtained for g0(n, β) and g1(n, β) are polynomials in n,
which we can plot for non-integer values of n.

When n > 1, the situation is always qualitatively the same as the one shown in
the n = 3 case. If we let βc(n) =

√
4 log 2/n, we have g1(β, n) > g0(β, n) for β >

βc(n), while g1(β, n) < g0(β, n) for β < βc(n). Assuming for the moment that
the sum in Eq. (8.7) is dominated by replica symmetric terms, we have EZn

.
=

20Speaking of ‘saddle points’ is a bit sloppy in this case, since we are dealing with a discrete

sum. By this, we mean that we aim at estimating the sum in Eq. (8.7) through a single
‘dominant’ term.
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Fig. 8.1. Rate function g(Q) for the REM, cf. Eq. (8.7) versus temperature.
g(Q) is evaluated here on the two replica-symmetric saddle points QRS,0 (con-
tinuous curves) and QRS,1 (dashed curves), in the cases n = 3 and n = 0.5.{fig:RemRSSaddlePoints}

exp{N max[g0(β, n), g1(β, n)]}. The point βc(n) can therefore be interpreted as
a phase transition in the n replicas system. At high temperatures (β < βc(n))
the q0 = 0 saddle point dominates the sum: replicas are essentially independent.
At low temperature the partition function is dominated by q0 = 1: replicas are
locked together. This fits nicely within our qualitative discussion of the replicated
system in the previous Section.

The problems appear when considering the n < 1 situation. In this case
we still have a phase transition at βc(n) =

√
4 log 2/n, but the high and low

temperature regimes exchange their roles. At low temperature (β > βc(n))
one has g1(β, n) < g0(β, n), and at high temperature (β < βc(n)) one has
g1(β, n) > g0(β, n). If we applied the usual prescription and pick up the saddle
point which maximizes g(Q), we would obtain a nonsense, physically (replicas
become independent at low temperatures, and correlated at high temperatures,
contrarily to our general discussion) as well as mathematically (for n → 0, the
function EZn does not go to one, because g1(β, n) is not linear in n at small n). ⋆
As a matter of fact, the replica method prescribes that, in this regime n < 1, one
must estimate the sum (8.7) using the minimum of g(Q)! There is no mathemat-
ical justification of this prescription in the present context. In the next example
and the following Chapters we shall outline some of the arguments employed by
physicists in order to rationalize this choice.
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Example 8.1 In order to get some understanding of this claim, consider the
following toy problem. We want to apply the replica recipe to the quantity
Ztoy(n) = (2π/N)n(n−1)/4 (for a generic real n). For n integer, we have the
following integral representation:

Ztoy(n) =

∫
e−

N
2

P
(ab)Q

2
ab

∏

(ab)

dQab ≡
∫
eNg(Q)

∏

(ab)

dQab , (8.8)

where (ab) runs over all the un-ordered couples of indices a, b ∈ {1 . . . n} with
a 6= b, and the integrals over Qab run over the real line. Now we try to evaluate
the above integral by the saddle point method, and begin with the assumption
that is dominated by a replica symmetric point Q∗

ab = q0 for any a 6= b, yielding
g(Q∗) = −n(n − 1)q20/2. Next, we have to fix the value of q0 ∈ R. It is clear
that the correct result is recovered by setting q0 = 0, which yields Ztoy(n)

.
= 1.

Moreover this is the unique choice such that g(Q∗) is stationary. However, for
n < 1, q0 = 0 corresponds to a minimum, rather than to a maximum of g(Q∗).
A formal explanation of this odd behavior is that the number of degrees of
freedom, the matrix elements Qab with a 6= b, becomes negative for n < 1.

This is one of the strangest aspects of the replica method, but it is unavoid-
able. Another puzzle which we shall discuss later concerns the exchange of order
of the N → ∞ and n→ 0 limits.

Let us therefore select the saddle point q0 = 0, and use the trick (8.2) to
evaluate the free energy density. Assuming that the N → ∞ and n → 0 limits
commute, we get the RS free energy:

−βf ≡ lim
N→∞

1

N
E logZ = lim

N→∞
lim
n→0

1

Nn
log(EZn) = lim

n→0

1

n
g0(n, β) =

β2

4
+log 2 .

(8.9){eq:ReplicaSymmetricREM}

Comparing to the correct free energy density, cf. Eq. (5.15), we see that the
RS result is correct, but only in the high temperature phase β < βc = 2

√
log 2.

It misses the phase transition. Within the RS framework, there is no way to get
the correct solution for β > βc.

8.1.2 One step replica symmetry breaking saddle point

For β > βc, the sum (8.7) is dominated by matrices Q which are not replica
symmetric. The problem is to find these new saddle points, and they must make
sense in the n → 0 limit. In order to improve over the RS result, one may try
to enlarge the subspace of matrices to be optimized over (i.e. to weaken the
requirement of replica symmetry). The replica symmetry breaking (RSB)
scheme initially proposed by Parisi in the more complicated case of spin glass
mean field theory, prescribes a recursive procedure for defining larger and larger
spaces of Q matrices where to search for saddle points.
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Fig. 8.2. The rate function g(Q), cf. Eq. (8.7), evaluated on the one-step replica
symmetry breaking point, as a function of the replica-symmetry breaking param-
eter m.{fig:RemRSB}

The first step of this procedure, is called one step replica symmetry
breaking (1RSB). In order to describe it, let us suppose that n is a multiple
of m, and divide the n replicas into n/m groups of m elements each, and set:

Qaa = 1 ,

Qab = q1 if a and b are in the same group, (8.10)

Qab = q0 if a and b are in different groups.

Since in the case of the REM the matrix elements are in {0, 1}, this Ansatz is
distinct from the RS one only if q1 = 1 and q0 = 0. This corresponds, after an
eventual relabeling of the replica indices, to i1 = · · · = im, im+1 = · · · = i2m, etc.
The number of choices of (i1, . . . in) which satisfy these constraints is NN (Q) =
2N (2N − 1) · · · (2N − n/m + 1), and therefore we get s(Q) = (n/m) log 2. The
rate function in Eq. (8.7) is given by g(QRSB) = gRSB(β, n,m):

gRSB(β, n,m) =
β2

4
nm+

n

m
log 2 . (8.11) {eq:REMReplicaSymmetryBroken}

Following the discussion in the previous Section, we should minimize gRSB(β, n,m)
with respect to m, and then take the n→ 0 limit. Notice that Eq. (8.11) can be
interpreted as an analytic function both in n and in m 6= 0. We shall therefore
forget hereafter that n and m are integers with n a multiple of m. The first
derivative of gRSB(β, n,m) with respect to m, vanishes if m = ms(β), where

ms(β) ≡ 2
√

log 2

β
=
βc

β
. (8.12)

Substituting in Eq. (8.11), and assuming again that we can commute the limits
n→ 0 and N → ∞, we get
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−βf = lim
n→0

1

n
min
m

gRSB(β, n,m) = β
√

log 2 , (8.13)

which is the correct result for β > βc: f = −√
log 2. In fact we can recover the

correct free energy of the REM in the whole temperature range if we accept that
the inequality 1 ≤ m ≤ n, valid for n,m integers, becomes n = 0 ≤ m ≤ 1 in the
limit n→ 0 (we shall see later on other arguments supporting this prescription).
If the minimization is constrained to m ∈ [0, 1], we get a fully consistent answer:
m = βc/β is the correct saddle point in the phase β > βc, while for β < βc

the parameter m sticks to the value m = 1. In Fig. 8.2 we sketch the function
gRSB(β, n,m)/n for a few values of the temperature β.

8.1.3 Comments on the replica solution

One might think that the replica method is just a fancy way of reconstructing a
probability distribution from its integer moments. We know how to compute the
integer moments of the partition function EZn, and we would like to infer the
full distribution of Z, and in particular the value of E logZ. This is a standard
topic in probability theory: the probability distribution can be reconstructed
if its integer moments don’t grow too fast as n → ∞. A typical result is the
following.

Theorem 8.2. (Carleman) Let X be a real random variable with moments
µn = EXn such that

∞∑

n=1

µ
−1/2n
2n = ∞ . (8.14)

Then any variable with the same moments is distributed identically to X.

For instance, if the moments don’t grow faster than exponentially, EXn ∼ eαn,
their knowledge completely determines the distribution of X.

Let us try to apply the above result to the REM case treated in the previous
pages. The replica symmetric calculation of Sec. 8.1.1 is easily turned into a
lower bound:

EZn ≥ eng(QRS,0) ≥ eNβ
2n2/4 . (8.15)

Therefore the sum in Eq. (8.14) converges and the distribution of Z is not nec-
essarily fixed by its integer moments.

Exercise 8.2 Assume Z = e−F , with F a Gaussian random variable, with
probability density

p(F ) =
1√
2π

e−F
2/2 . (8.16)

Compute the integer moments of Z. Do they verify the hypothesis of Carleman
Theorem? Show that the moments are unchanged if p(F ) is replaced by the
density pa(F ) = p(F )[1 + a sin(2πF )], with |a| < 1 (from (Feller, 1968)).
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In our replica approach, there exist several possible analytic continuations to
non-integer n’s, and the whole issue is to find the correct one. Parisi’s Ansatz
(and its generalization to higher order RSB that we will discuss below) gives a
well defined class of analytic continuations, which turns out to be the correct
one in many different problems.

The suspicious reader will notice that the moments of the REM partition
function would not grow that rapidly if the energy levels had a distribution
with bounded support. If for instance, we considered Ei to be Gaussian random
variables conditioned to Ei ∈ [−Emax, Emax], the partition function would be
upper bounded by the constant Zmax = 2NeβEmax . Consequently, we would have
EZn ≤ Znmax, and the whole distribution of Z could be recovered from its integer
moments. In order to achieve such a goal, we would however need to know exactly
all the moments 1 ≤ n < ∞ at fixed N (the system size). What we are instead
able to compute, in general, is the large N behavior at any fixed n. In most cases,
this information is insufficient to insure a unique continuation to n→ 0.

In fact, one can think of the replica method as a procedure for computing
the quantity

ψ(n) = lim
N→∞

1

N
log EZn , (8.17)

whenever the limit exist. In the frequent case where f = − logZ/(βN) satisfies
a large deviation principle of the form PN (f)

.
= exp[−NI(f)], then we have

EZn
.
=

∫
df exp[−NI(f) −Nβnf ]

.
= exp{−N inf[I(f) + βnf ]} . (8.18)

Therefore ψ(n) = − inf[I(f)+βnf ]. In turns, the large deviation properties of fN
can be inferred from ψ(n) through the Gärtner-Ellis theorem 4.12. The typical
value of the free energy density is given by the location of the absolute minimum
of I(f). In order to compute it, one must in general use values of n which go to
0, and one cannot infer it from the integer values of n.

8.1.4 Condensation {se:reprem_cond}

As we discussed in Chapter 5, the appearance of a low temperature ‘glass’ phase is
associated with a condensation of the probability measure on few configurations.
We described quantitatively this phenomenon by the participation ratio Y . For
the REM we obtained limN→∞ EY = 1 − βc/β for any β > βc (see proposition
5.3). Let us see how this result can be recovered in just a few lines from a replica
computation.

The participation ratio is defined by Y =
∑2N

j=1 p
2
j , where pj = e−βEj/Z is

Boltzmann’s probability of the j’th energy level. Therefore:
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EY = lim
n→0

E



Zn−2
2N∑

i=1

e−2βEi



 [Definition of Y ]

= lim
n→0

E




∑

i1...in−2

e−β(Ei1
+···+Ein−2

)
2N∑

i=1

e−2βEi



 [Assume n ∈ N]

= lim
n→0

E

[
∑

i1...in

e−β(Ei1
+···+Ein )

I(in−1 = in)

]

= lim
n→0

1

n(n− 1)

∑

a6=b
E

[
∑

i1...in

e−β(Ei1
+···+Ein )

I(ia = ib)

]
[Symmetrize]

= lim
n→0

1

n(n− 1)

∑

a6=b

E

[ ∑
i1...in

e−β(Ei1
+···+Ein )

I(ia = ib)

]

E

[ ∑
i1...in

e−β(Ei1
+···+Ein )

] [Denom. → 1]

= lim
n→0

1

n(n− 1)

∑

a6=b
〈Qab〉n , (8.19)

where the sums over the replica indices a, b run over a, b ∈ {1, . . . , n}, while
the configuration indices ia are summed over {1, . . . , 2N}. In the last step we
introduced the notation

〈f(Q)〉n ≡
∑
Q f(Q) NN (Q)e

Nβ2

4

P
a,b Qab

∑
QNN (Q)e

Nβ2

4

P
a,b Qab

, (8.20)eq:ExpectationReplicated}

and noticed that the sum over i1, . . . , in can be split into a sum over the overlap
matrices Q and a sum over the n-uples i1 . . . in having overlap matrix Q. Notice
that 〈·〉n can be interpreted as an expectation in the ‘replicated system’.

In the large N limit NN (Q)
.
= eNs(Q), and the expectation value (8.20) is

given by a dominant21 (saddle point) term: 〈f(Q)〉n ≃ f(Q∗). As argued in the
previous Sections, in the low temperature phase β > βc, the saddle point matrix
is given by the 1RSB expression (8.10).

21If the dominant term corresponds to a non-replica symmetric matrix Q∗, all the terms
obtained by permuting the replica indices contribute with an equal weight. Because of this
fact, it is a good idea to compute averages of symmetric functions f(Q) = f(Qπ). This is what
we have done in Eq. (8.19).
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EY = lim
n→0

1

n(n− 1)

∑

a6=b
Q1RSB
ab [Saddle point]

= lim
n→0

1

n(n− 1)
n[(n−m)q0 + (m− 1)q1] [Eq. (8.10)]

= 1 −m = 1 − βc

β
[q0 = 0, q1 = 1] .(8.21)

This is exactly the result we found in proposition 5.3, using a direct combina-
torial approach. It also confirms that the 1RSB Ansatz (8.10) makes sense only
provided 0 ≤ m ≤ 1 (the participation ratio Y is positive by definition). Com-
pared to the computation in Sec. 5.3, the simplicity of the replica derivation is
striking.

At first look, the manipulations in Eq. (8.19) seem to require new assumptions
with respect to the free energy computation in the previous Sections. Replicas
are introduced in order to write the Z−2 factor in the participation ratio, as the
analytic continuation of a positive power Zn−2. It turns out that this calculation
is in fact equivalent to the one in (8.2). This follows from the basic observation
that expectation values can be obtained as derivatives of logZ with respect to
some parameters.

{ex:rem1}
Exercise 8.3 Using the replica method, show that, for T < Tc:

E




2N∑

j=1

prj



 =
Γ(r −m)

Γ(r)Γ(1 −m)
=

(r − 1 −m)(r − 2 −m) . . . (1 −m)

(r − 1)(r − 2) . . . (1)
, (8.22)

where Γ(x) denotes Euler’s Gamma function.

Exercise 8.4 Using the replica method, show that, for T < Tc:

E
(
Y 2
)

=
3 − 5m+ 2m2

3
. (8.23)

8.2 The fully connected p-spin glass model
{se:PspinReplicas}

The replica method provides a compact and efficient way to compute –in a
non rigorous way– the free energy density of the REM. The result proves to be
exact, once replica symmetry breaking is used in the low temperature phase.
However, its power can be better appreciated on more complicated problems
which cannot be solved by direct combinatorial approaches. In this Section we
shall apply the replica method to the so-called ‘p-spin glass’ model. This model
has been invented in the theoretical study of spin glasses. Its distinguishing
feature are interactions which involve groups p spins, with p ≥ 2. It generalizes
ordinary spin glass models, cf. Sec. 2.6, in which interactions involve couples of
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spins (i.e. p = 2). This provides an additional degree of freedom, the value of p,
and different physical scenarios appear whether p = 2 or p ≥ 3. Moreover, some
pleasing simplifications show up for large p.

In the p-spin model, one considers the space of 2N configurations of N Ising
spins. The energy of a configuration σ = {σ1, . . . , σN} is defined as:

E(σ) = −
∑

i1<i2<...ip

Ji1...ipσi1 · · ·σip (8.24){eq:pspin_enedef}

where σi ∈ {±1}. This is a disordered system: a sample is characterized by the
set of all couplings Ji1...ip , with 1 ≤ i1 < · · · < ip ≤ N . These are taken as iid
Gaussian random variables with zero mean and variance EJ2

i1...ip
= p!/(2Np−1).

Their probability density reads:

P (J) =

√
πp!

Np−1
exp

(
−N

p−1

p!
J2

)
; (8.25){eq:pspin_jdist}

The p-spin model is a so-called infinite range interaction model: there is no
notion of Euclidean distance between the positions of the spins. It is also called
a fully connected model since each spin interacts directly with all the others.
The last feature is at the origin of the special scaling of the variance of the J
distribution in (8.25). A simple criterion for arguing that the proposed scaling
is the correct one consists in requiring that a flip of a single spin generates an
energy change of order 1 (i.e. finite when N → ∞). More precisely, let σ(i) the
configuration obtained from σ by reversing the spin i and define ∆i ≡ [E(σ(i))−
E(σ)]/2. It is easy to see that ∆i =

∑
i2...ip

Jii1...ipσiσi1 · · ·σip . The sum is over

Θ(Np−1) terms, and, if σ is a random configuration, the product σiσi1 · · ·σip in
each term is +1 or −1 with probability 1/2. The scaling in (8.25) insures that
∆i is finite as N → ∞ (in contrast, the p! factor is just a matter of convention).

Why is it important that the ∆i are of order 1? The intuition is that ∆i

estimates the interaction between a spin and the rest of the system. If ∆i were
much larger than 1, the spin σi would be completely frozen in the direction which
makes ∆i positive, and temperature wouldn’t have any role. On the other hand,
if ∆i were much smaller than one, the spin i would be effectively independent
from the others.

Exercise 8.5 An alternative argument can be obtained as follows. Show that,
at high temperature β ≪ 1: Z = 2N [1+2−1 β2

∑
i1<···<ip J

2
i1..ip

+O(β3)]. This

implies N−1
E logZ = log 2 + CNβ

2/2 + O(β3), with CN = 1. What would
happen with a different scaling of the variance? Which scaling is required in
order for CN to have a finite N → ∞ limit?

The special case of p = 2 is the closest to the original spin glass problem and
is known as the Sherrington-Kirkpatrick (or SK) model.
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8.2.1 The replica calculation

Let us start by writing Zn as the partition function for n non-interacting replicas
σai , with i ∈ {1, . . . , N}, a ∈ {1, . . . , n}:

Zn =
∑

{σa
i }

∏

i1<···<ip
exp

(
βJi1...ip

n∑

a=1

σai1 . . . σ
a
ip

)
. (8.26)

The average over the couplings Ji1..ip is easily done by using their independence
and the well known identity

E eλX = e
1
2∆λ2

, (8.27) {eq:HubbardStrat}

holding for a Gaussian random variable X with zero mean and variance EX2 =
∆. One gets:

EZn =
∑

{σa
i }

exp



β
2

4

p !

Np−1

∑

i1<···<ip

∑

a,b

σai1σ
b
i1 σ

a
i2σ

b
i2 · · ·σaipσbip





.
=
∑

{σa
i }

exp



β
2

4

1

Np−1

∑

a,b

(
∑

i

σai σ
b
i

)p

 (8.28) {eq:ReplicatedPspin}

where we have neglected corrections due to coincident indices il = ik in the first
term, since they are irrelevant to the leading exponential order. We introduce
for each a < b the variables λab and Qab by using the identity

1 =

∫
dQab δ

(
Qab −

1

N

N∑

i=1

σai σ
b
i

)
= N

∫
dQab

∫
dλab
2π

e
−iλab

„
NQab−

P
i

σa
i σ

b
i

«

,

(8.29)
with all the integrals running over the real line. Using it in Eq. (8.28), we get

EZn
.
=

∫ ∏

a<b

dQab
∑

{σa
i }

exp

(
Nβ2

4
n+

Nβ2

2

∑

a<b

Qpab

)
δ

(
Qab −

1

N

N∑

i=1

σai σ
b
i

)

.
=

∫ ∏

a<b

(dQab dλab) e
−NG(Q,λ) (8.30) {eq:pspin_sp}

where we have introduced the function:

G(Q,λ) = −nβ
2

4
− β2

2

∑

a<b

Qpab +
∑

a<b

iλabQab − log




∑

{σa}
e

P
a<b

iλabσaσb



 , (8.31) {eq:PspinAction}

which depends upon the n(n−1)/2+n(n−1)/2 variables Qab, λab, 1 ≤ a < b ≤ n.
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Fig. 8.3. Graphical solution of the RS equations for the p-spin model, with
p = 2 (SK model, left) and p = 3 (right). The various curves correspond to
inverse temperatures β = 4, 3, 2, 1.5, 1, 0.5 (from top to bottom).{fig:PspinRS}

{AlternativeAction}
Exercise 8.6 An alternative route consists in noticing that the right hand
side of Eq. (8.28) depends upon the spin configuration only through the overlap
matrix Qab = N−1

∑
i σ

a
i σ

b
i , with a < b. The sum can be therefore decomposed

into a sum over the overlap matrices and a sum over configurations with a given
overlap matrix:

EZn
.
=
∑

Q

NN (Q) exp

(
Nβ2

4
n+

Nβ2

2

∑

a<b

Qpab

)
. (8.32)

Here NN (Q) is the number of spin configurations with a given overlap matrix
Q. In analogy to the REM case, it is natural to guess a large deviations principle
of the form NN (Q)

.
= exp[Ns(Q)]. Use the Gärtner-Ellis theorem 4.12 to obtain

an expression for the ‘entropic’ factor s(Q). Compare the resulting formula for
EZn with Eq. (8.28).

Following our general approach, we shall estimate the integral (8.30) at large
N by the saddle point method. The stationarity conditions of G are most easily
written in terms of the variables µab = iλab. By differentiating Eq. (8.31) with
respect to its arguments, we get ∀a < b

µab =
1

2
pβ2 Qp−1

ab , Qab = 〈σaσb〉n , (8.33){eq:pspin_speq}

where we have introduced the average within the replicated system

〈f(σ)〉n ≡ 1

z(µ)

∑

{σa}
f(σ) exp

(
∑

a<b

µabσaσb

)
, z(µ) ≡

∑

{σa}
exp

(
∑

a<b

µab σaσb

)
,

(8.34){eq:rep_onesitez}

for any function f(σ) = f(σ1 . . . σn).



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

THE FULLY CONNECTED P -SPIN GLASS MODEL 157

We start by considering a RS saddle point: Qab = q ; µab = µ for any a 6= b.
Using the Gaussian identity (8.27), one finds that the saddle point equations
(8.33) become:

µ =
1

2
pβ2 qp−1 , q = Ez tanh2 (z

√
µ) , (8.35){eq:ps_speq_rs}

where Ez denotes the expectation with respect to a Gaussian random variable
z of zero mean and unit variance. Eliminating µ, we obtain an equation for the
overlap parameter: q = r(q), with r(q) ≡ Ez tanh2(z

√
pβ2 qp−1/2). In Fig. 8.3

we plot the function r(q) for p = 2, 3 and various temperatures. The equations
(8.35) always admit the solution q = µ = 0. Substituting into Eq. (8.31), and
using the trick (8.2) this solution would yield a free energy density

fRS = lim
n→0

1

βn
G(QRS, λRS) = −β/4 − (1/β) log 2 . (8.36)

At low enough temperature, other RS solutions appear. For p = 2, a single
such solution departs continuously from 0 at βc = 1, cf. Fig. 8.3, left frame. For
p ≥ 3 a couple of non-vanishing solutions appear discontinuously for β ≥ β∗(p)
and merge as β ↓ β∗(p), cf. Fig. 8.3, right frame. However two arguments allow
to discard these saddle points:

• Stability argument: One can compute the Taylor expansion of G(Q,λ)
around such RS saddle points. The saddle point method can be applied
only if the matrix of second derivatives has a defined sign. As discussed
in the Appendix, this condition does not hold for the non-vanishing RS
saddle points.

• Positivity of the entropy: As explained in Chap. 2, because of the positivity
of the entropy, the free energy of a physical system with discrete degrees
of freedom must be a decreasing function of the temperature. Once again,
one can show that this condition is not satisfied by the non-vanishing RS
saddle points.

On the other hand, the q = 0 saddle point also violates this condition at
low enough temperature (as the reader can show from Eq. (8.36)). ⋆

The above arguments are very general. The second condition, in particular, is
straightforward to be checked and must always be satisfied by the correct saddle
point. The conclusion is that none of the RS saddle points is correct at low
temperatures. This motivates us to look for 1RSB saddle points. We partition
the set of n replicas into n/m groups of m replicas each and seek a saddle point
of the following 1RSB form:

Qab = q1 , µab = µ1 , if a and b belong to the same group,

Qab = q0 , µab = µ0 , if a and b belong to different groups. (8.37) {eq:1RSBAnsatzPspin}
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Fig. 8.4. Structure of the Qab matrix when replica symmetry is broken. Left:
1RSB Ansatz. The n(n− 1)/2 values of Qab are the non diagonal elements of a
symmetric n × n matrix. The n replicas are divided into n/m blocks of size m.
When a and b are in the same block, Qab = q1, otherwise Qab = q0. Right: 2RSB
Ansatz: an example with n/m1 = 3 and m1/m2 = 2. {fig:pspin_1rsb_Ansatz}

In practice one can relabel the replicas in such a way that the groups are
formed by successive indices {1 . . .m}, {m + 1 . . . 2m}, . . . , {n − m + 1 . . . n}
(see Fig. 8.4)22.

The computation of G(Q,λ) on this saddle point makes repeated use of the
identity (8.27) and is left as an exercise.One gets:⋆

G(Q1RSB, λ1RSB) = −nβ
2

4
+ n

β2

4
[(1 −m)qp1 +mqp0 ] − n

2
[(1 −m)q1µ1 +mq0µ0]

+
n

2
µ1 − log

{
Ez0

[
Ez1(2 cosh(

√
µ0 z0 +

√
µ1 − µ0 z1))

m
]n/m}

(8.38){eq:1RSBFreeEnergy}

where Ez0 and Ez1 denote expectations with respect to the independent Gaussian
random variables z0 and z1 with zero mean and unit variance.

22Some of the other labellings of the replicas give distinct 1RSB saddle points with the same
value of G(Q, λ). This is a general feature of RSB saddle points, that we already encountered
when studying the REM, cf. Sec. 8.1.4.
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Exercise 8.7 Show that the limit G1RSB(q, µ;m) =
limn→0 n

−1G(Q1RSB, λ1RSB) exists, and compute the function G1RSB(q, µ;m).
Determine the stationarity condition for the parameters q1, q0, µ1, µ0 and
m by computing the partial derivatives of G1RSB(q, µ;m) with respect to
its arguments and setting them to 0. Show that these equations are always
consistent with q0 = µ0 = 0, and that

G1RSB|q0,µ0=0 = − 1

4
β2[1 − (1 −m)qp1 ] +

1

2
µ1[1 − (1 −m)q1]

− 1

m
log Ez [(2 cosh(

√
µ1 z))

m] . (8.39)

Picking up the solution q0 = µ0 = 0, the stationarity conditions23 for the
remaining parameters q1 and µ1 read

µ1 =
1

2
pβ2 qp−1

1 , q1 =
Ez

[
(2 cosh(

√
µ1 z))

m(tanh(
√
µ1 z))

2
]

Ez

[
(2 cosh(

√
µ1 z))m

] . (8.40)

These equations always admit the solution q1 = µ1 = 0: this choice reduces in
fact to a replica symmetric Ansatz, as can be seen from Eq. (8.37). Let us now
consider the p ≥ 3 case. At low enough temperature two non-vanishing solutions
appear. A local stability analysis shows that the largest one, let us call it musp

1 ,
qsp1 , must be chosen.

The next step consists in optimizing G1RSB(qsp, µsp;m) with respect to m ∈
[0, 1] (notice that G1RSB depends on m both explicitly and through qsp, µsp). It
turns out that a unique stationary point ms(β) exists, but ms(β) ∈ [0, 1] only
at low enough temperature β > βc(p). We refer to the literature for an explicit
characterization of βc(p). At the transition temperature βc(p), the free energy
of the 1RSB solution becomes equal to that of the RS one. There is a phase
transition from a RS phase for β < βc(p) to a 1RSB phase for β > βc(p).

These calculations are greatly simplified (and can be carried out analytically)
in the large p limit. The leading terms in a large p expansion are:

βc(p) = 2
√

log 2 + e−Θ(p) , ms(β) =
βc(p)

β
+ e−Θ(p) , q1 = 1 − e−Θ(p) .(8.41)

The corresponding free energy density is constant in the whole low temperature
phase, equal to −√

log 2. The reader will notice that several features of the REM
are recovered in this large p limit. One can get a hint that this should be the
case from the following exercise:

23They are most easily obtained by differentiating Eq. (8.39) with respect to q1 and µ1.
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Exercise 8.8 Consider a p-spin glass problem, and take an arbitrary configu-
ration σ = {σ1, . . . , σN}. Let Pσ(E) denote the probability that this configura-
tion has energy E, when a sample (i.e. a choice of couplings Ji1...ip) is chosen
at random with distribution (8.25). Show that Pσ(E) is independent of σ, and
is a Gaussian distribution of mean 0 and variance N/2. Now take two con-
figurations σ and σ′, and show that the joint probability distribution of their
energies, respectively E and E′, in a randomly chosen sample, is:

Pσ,σ′(E,E′) = C exp

[
− (E + E′)2

2N(1 + xp)
− (E − E′)2

2N(1 − xp)

]
(8.42)

where x = (1/N)
∑
i σiσ

′
i, and C is a normalization constant. When |x| < 1

the energies of the two configurations become uncorrelated as p → ∞, (i.e.
limp→∞ Pσ,σ′(E,E′) = Pσ(E)Pσ′(E′)), suggesting a REM-like behavior.

In order to know if the 1RSB solution which we have just found is the correct
one, one should first check its stability by verifying that the eigenvalues of the
Hessian (i.e. the matrix of second derivatives of G(Q,λ) with respect to its
arguments) have the correct sign. Although straightforward in principle, this
computation becomes rather cumbersome and we shall just give the result, due
Elizabeth Gardner. The 1RSB solution is stable only in some intermediate phase
βc(p) < β < βu(p). At the inverse temperature βu(p) there is a second transition
to a new phase which involves a more complex replica symmetry breaking scheme.

The 1RSB solution was generalized by Parisi to higher orders of RSB. His
construction is a hierarchical one. In order to define the structure of the Qab
matrix with two steps of replica symmetry breaking (2RSB), one starts from the
1RSB matrix of Fig. 8.4 (left panel). The off diagonal blocks with matrix elements
q0 are left unchanged. The diagonal blocks are changed: take any diagonal block
of size m1 ×m1 (we now call m = m1). In the 1RSB case all its matrix elements
are equal to q1. In the 2RSB case the m1 replicas are split into m1/m2 blocks of
m2 replicas each. The matrix elements in the off diagonal blocks remain equal
to q1. The ones in the diagonal blocks become equal to a new number q2 (see
Fig. 8.4, right panel). The matrix is parametrized by 5 numbers: q0, q1, q2,m1,m2.
This construction can obviously be generalized by splitting the diagonal blocks
again, grouping m2 replicas into m2/m3 groups of m3 replicas. The so-called
full replica symmetry breaking Ansatz (FRSB) Ansatz corresponds to
iterating this procedure R times, and eventually taking R to infinity. Notice
that, while the construction makes sense, for n integer, only when n ≥ m1 ≥
m2 ≥ · · · ≥ mR ≥ 1, in the n→ 0 limit this order is reversed to 0 ≤ m1 ≤ m2 ≤
· · · ≤ mR < 1. Once one assumes a R-RSB Ansatz, computing the rate function
G and solving the saddle point equations is a matter of calculus (special tricks
have been developed for R → ∞). It turns out that, in order to find a stable
solution in the phase β > βu(p), a FRSB Ansatz is required. This same situation
is also encountered in the case of the SK model, in the whole phase β > 1, but
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its description would take us too far.

8.2.2 Overlap distribution
{se:Overlap_distribution}

Replica symmetry breaking appeared in the previous Sections as a formal trick
for computing certain partition functions. One of the fascinating features of spin-
glass theory is that RSB has a very concrete physical (as well as probabilistic)
interpretation. One of the main characteristics of a system displaying RSB is
the existence, in a typical sample, of some spin configurations which are very
different from the lowest energy (ground state) configuration, but are very close
to it in energy. One gets a measure of this property through the distribution of
overlaps between configurations. Given two spin configurations σ = {σ1, . . . , σN}
and σ′ = {σ′

1, . . . , σ
′
N}, the overlap between σ and σ′ is:

qσσ′ =
1

N

N∑

i=1

σiσ
′
i , (8.43)

so that N(1 − qσσ′)/2 is the Hamming distance between σ and σ′. For a given
sample of the p-spin glass model, which we denote by J , the overlap distribu-
tion PJ(q) is the probability density that two configuration, randomly chosen
with the Boltzmann distribution, have overlap q:

∫ q

−1

PJ(q′) dq′ =
1

Z2

∑

σ,σ′

exp [−βE(σ) − βE(σ′)] I (qσσ′ ≤ q) (8.44)

Let us compute the expectation of PJ(q) in the thermodynamic limit:

P (q) ≡ lim
N→∞

EPJ (q) (8.45)

using replicas. One finds:

∫ q

−1

P (q′) dq′ = lim
n→0

∑

σ1...σn

E

[
exp

(
−β
∑

a

E(σa

)]
I (qσ1σ2 ≤ q) (8.46)

The calculation is very similar to the one of E (Zn), the only difference is that
now the overlap between replicas 1 and 2 is fixed to be ≤ q. Following the same
steps as before, one obtains the expression of P (q) in terms of the saddle point
matrix Qsp

ab. The only delicate point is that there may be several RSB saddle
points related by a permutation of the replica indices. If Q = {Qab} is a saddle
point, any matrix (Qπ)ab = Qπ(a),π(b) (with π a permutation in Sn) is also a
saddle point, with the same weight: G(Qπ) = G(Q). When computing P (q), we
need to sum up over all the equivalent distinct saddle points, which gives in the
end: ∫ q

−1

P (q′) dq′ = lim
n→0

1

n (n− 1)

∑

a6=b
I (Qsp

ab ≤ q) . (8.47)
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In case of a RS solution one has:
∫ q

−1

P (q′) dq′ = I
(
qRS ≤ q

)
, (8.48)

with qRS the solution of the saddle point equations (8.35). In words: if two
configurations σ and σ′ are drawn according to the Boltzmann distribution,
their overlap will be qRS with high probability. Since the overlap is the sum of
many ‘simple’ terms, the fact that its distribution concentrates around a typical
value is somehow expected.

In a 1RSB phase characterized by the numbers q0, q1, λ0, λ1,m, one finds:
∫ q

−1

P (q′) dq′ = (1 −m) I (q1 ≤ q) +m I (q0 ≤ q) . (8.49)

The overlap can take with finite probability two values: q0 or q1. This has a
very nice geometrical interpretation. When sampling configurations randomly
chosen with the Boltzmann probability, at an inverse temperature β > βc(p),
the configurations will typically be grouped into clusters, such that any two
configurations in the same cluster have an overlap q1, while configurations in
different clusters have an overlap q0 < q1, and thus a larger Hamming distance.
When picking at random two configurations, the probability that they fall in the
same cluster is equal to 1 − m. The clustering property is a rather non-trivial
one: it would have been difficult to anticipate it without a detailed calculation.
We shall encounter later several other models where it also occurs. Although the
replica derivation presented here is non rigorous, the clustering phenomenon can
be proved rigorously.

In a solution with higher order RSB the P (q) function develops new peaks.
The geometrical interpretation is that clusters contain some sub-clusters, which
themselves contain sub-clusters etc. . . this hierarchical structure leads to the
property of ultrametricity. Consider the triangle formed by three indepen-
dent configurations drawn from the Boltzmann distribution, and let the lengths
of its sides be measured using to the Hamming distance. With high probability,
such a triangle will be either equilateral, or isosceles with the two equal sides
larger than the third one. In the case of full RSB, P (q) has a continuous part,
showing that the clustering property is not as sharp, because clusters are no
longer well separated; but ultrametricity still holds.

{ex:Yuniversal}
Exercise 8.9 For a given sample of a p-spin glass in its 1RSB phase, define Y
as the probability that two configurations fall into the same cluster. More pre-

cisely: Y =
∫ 1

q
PJ(q′) dq′, where q0 < q < q1. The previous analysis shows that

limN→∞ EY = 1 −m. Show that, in the large N limit, E
(
Y 2
)

= 3−5m+2m2

3 ,
as in the REM. Show that all moments of Y are identical to those of the REM.
The result depends only on the 1RSB structure of the saddle point, not on any
of its details.
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8.3 Extreme value statistics and the REM{se:ReplicaExtreme}

Exercise 8.9 suggests that there exist universal properties which hold in the glass
phase, independently of the details of the model.

In systems with a 1RSB phase, this universality is related to the universality
of extreme value statistics. In order to clarify this point, we shall consider in
this Section a slightly generalized version of the REM. Here we assume the
energy levels to be M = 2N iid random variables admitting a probability density
function (pdf) P (E) with the following properties:

1. P (E) is continuous.

2. P (E) is strictly positive on a semi-infinite domain −∞ < E ≤ E0.

3. In the E → −∞ limit, P (E) vanishes more rapidly than any power law.
We shall keep here to the simple case in which

P (E) ≃ A exp
(
−B|E|δ

)
as E → −∞ , (8.50) {eq:gumbel_hyp}

for some positive constants A,B, δ.

We allow for such a general probability distribution because we want to check
which properties of the corresponding REM are universal.

As we have seen in Chap. 5, the low temperature phase of the REM is con-
trolled by a few low-energy levels. Let us therefore begin by computing the dis-
tribution of the lowest energy level among E1, . . . , EM (we call it Egs). Clearly,

P[Egs > E] =

[∫ ∞

E

P (x) dx

]M
. (8.51)

Let E∗(M) be the value of E such that P[Ei < E] = 1/M for one of the energy
levels Ei. For M → ∞, one gets

|E∗(M)|δ =
logM

B
+O(log logM) . (8.52)

Let’s focus on energies close to E∗(M), such that E = E∗(M)+ε/(Bδ|E∗(M)|δ−1),
and consider the limit M → ∞ with ε fixed. Then:

P[Ei > E] = 1 − A

Bδ|E|δ−1
e−B|E|δ [1 + o(1)] =

= 1 − 1

M
eε [1 + o(1)] . (8.53)

Therefore, if we define the rescaled ground state energy through Egs = E∗(M)+
εgs/(Bδ|E∗(M)|δ−1), we get

lim
N→∞

P[εgs > ε] = exp (−eε) . (8.54)

In other words, the pdf of the rescaled ground state energy converges to P1(ε) =
exp(ε−eε). This limit distribution, known as Gumbel’s distribution, is universal.
The form of the energy level distribution P (E) only enters in the values of the
shift and the scale, but not in the form of P1(ε). The following exercises show
that several other properties of the glass phase in the REM are also universal.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

164 INTRODUCTION TO REPLICA THEORY

Exercise 8.10 Let E1 ≤ E2 ≤ · · · ≤ Ek be the k lowest energies. Show that
universality also applies to the joint distribution of these energies, in the limit
M → ∞ at fixed k. More precisely, define the rescaled energies ε1 ≤ · · · ≤
εk through Ei = E∗(M) + εi

Bδ|E∗(M)|δ−1 . Prove that the joint distribution of

ε1, . . . , εk admits a density which converges (as M → ∞) to

Pk(ε1, . . . , εk) = exp (ε1 + · · · + εk − eεk) I (ε1 ≤ · · · ≤ εk) . (8.55)

Exercise 8.11 Consider a REM where the pdf of the energies satisfies the
hypotheses 1-3 above, and M = 2N . Show that, in order for the ground state
energy to be extensive (i.e. E1 ∼ N in the large N limit), one must have B ∼
N1−δ. Show that the system has a phase transition at the critical temperature
Tc = δ (log 2)(δ−1)/δ.

Define the participation ratios Yr ≡
∑2N

j=1 p
r
j . Prove that, for T < Tc, these

quantities signal a condensation phenomenon. More precisely:

lim
N→∞

EYr =
Γ(r −m)

Γ(r)Γ(1 −m)
, (8.56)

where m = (T/Tc) min{δ, 1}, as in the standard REM (see Sec. 8.3). (Hint:
One can prove this equality by direct probabilistic means using the methods
of Sec. 5.3. For δ > 1, one can also use the replica approach of Sec. 8.1.4).

In the condensed phase only the configurations with low energies count, and
because of the universality of their distribution, the moments of the Boltzmann
probabilities pj are universal. These universal properties are also captured by
the 1RSB approach. This explains the success of this 1RSB in many systems
with a glass phase.

A natural (and fascinating) hypothesis is that higher orders of RSB corre-
spond to different universality classes of extreme values statistics for correlated
variables. The mathematical definition of these universality classes have not yet
been studied in the mathematical literature, to our knowledge.

8.4 Appendix: Stability of the RS saddle point{se:repli_app}
In order to establish if a replica saddle point is correct, one widely used criterion
is its local stability. In order to explain the basic idea, let us move a step backward
and express the replicated free energy as an integral over uniquely the overlap
parameters

EZn
.
=
∑

Q

eN
bG(Q) . (8.57)

Such an expression can either be obtained from Eq. (8.30) by integrating over
{λab}, or as described in Exercise 8.6. Following the last approach, we get
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Ĝ(Q) = −nβ
2

4
− β2

2

∑

a<b

Qpab − s(Q) , (8.58)

where

s(Q) = −
∑

a<b

µabQab + ψ(µ)

∣∣∣∣∣
µ=µ∗(Q)

, ψ(µ) = log




∑

{σa}
e

P
a<b

µabσaσb



 ,(8.59)

and µ∗(Q) solves the equation Qab = ∂ψ(µ)
∂µab

. In other words s(Q) is the Legendre

transform of ψ(µ) (apart from an overall minus sign). An explicit expression of
s(Q) is not available but we shall only need the following well known property
of Legendre transforms

∂2s(Q)

∂Qab∂Qcd
= −C−1

(ab)(cd) , C(ab)(cd) ≡
∂2ψ(µ)

∂µab∂µcd

∣∣∣∣
µ=µ∗(Q)

, (8.60)

where C−1 is the inverse of C in matrix sense. The right hand side is in turn easily
written down in terms of averages over the replicated system, cf. Eq. (8.34):

C(ab)(cd) = 〈σaσbσcσd〉n − 〈σaσb〉n〈σcσd〉n . (8.61)

Assume now that (Qsp, λsp) is a stationary point ofG(Q,λ). This is equivalent

to say that Qsp is a stationary point of Ĝ(Q) (the corresponding value of µ coin-

cides with iλsp). We would like to estimate the sum (8.57) as EZn
.
= eN

bG(Qsp). A
necessary condition for this to be correct is that the matrix of second derivatives
of Ĝ(Q) is positive semidefinite at Q = Qsp. This is referred to as the local
stability condition. Using Eqs. (8.58) and (8.61), we get the explicit condition

M(ab)(cd) ≡
[
−1

2
β2p(p− 1)Qp−2

ab δ(ab),(cd) + C−1
(ab)(cd)

]
� 0 , (8.62)

where we use the symbol A � 0 to denote that the matrix A is positive semidef-
inite.

In this technical appendix we sketch this computation in two simple cases:
the stability of the RS saddle point for the general p-spin glass in zero magnetic
field, and the SK model in a field.

We consider first the RS saddle point Qab = 0, λab = 0 in the p-spin glass.
In this case

〈f(σ)〉n =
1

2n

∑

{σa}
f(σ) . (8.63)

It is then easy to show that M(ab)(cd) = δ(ab),(cd) for p ≥ 3 and M(ab)(cd) =
(1− β2)δ(ab),(cd) for p = 2. The situations for p = 2 and p ≥ 3 are very different:
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• If p = 2 (the SK model) the RS solution is stable for β < 1, and unstable
for β > 1.

• When p ≥ 3, the RS solution is always stable.

Let us now look at the SK model in a magnetic field. This is the p = 2 case but
with an extra term −B∑i σi added to the energy (8.24). It is straightforward to
repeat all the replica computations with this extra term. The results are formally⋆
identical if the average within the replicated system (8.34) is changed to:

〈f(σ)〉n,B ≡ 1

z(µ)

∑

{σa}
f(σ) exp

(
∑

a<b

µab σaσb + βB
∑

a

σa

)
(8.64)

z(µ) ≡
∑

{σa}
exp

(
∑

a<b

µab σaσb + βB
∑

a

σa

)
. (8.65)

The RS saddle point equations (8.35) are changed to:

µ = β2 q , q = Ez tanh2 (z
√
µ+ βB) . (8.66){eq:sk_speq_rs}

and the values of q, µ are non-zero at any positive β, when B 6= 0. This compli-
cates the stability analysis.

Since p = 2, we have M(ab)(cd) = −β2δ(ab)(cd) + C−1
(ab)(cd). Let {λj} be the

eigenvalues of C(ab)(cd). Since C � 0, the condition M � 0 is in fact equivalent
to 1 − β2λj ≥ 0, for all the eigenvalues λj .

The matrix elements C(ab)(cd) take three different forms, depending on the
number of common indices in the two pairs (ab), (cd):

C(ab)(ab) = 1 −
[
Ez tanh2 (z

√
µ+ βB)

]2 ≡ U

C(ab)(ac) = Ez tanh2 (z
√
µ+ βB) −

[
Ez tanh2 (z

√
µ+ βB)

]2 ≡ V

C(ab)(cd) = Ez tanh4 (z
√
µ+ βB) −

[
Ez tanh2 (z

√
µ+ βB)

]2 ≡W ,

where b 6= c is assumed in the second line, and all indices are distinct in the last
line. We want to solve the eigenvalue equation

∑
(cd) C(ab)(cd)xcd = λx(ab).

A first eigenvector is the uniform vector x(ab) = x. Its eigenvalue is λ1 =
U +2(n−2)V +(n−2)(n−3)/2W . Next we consider eigenvectors which depend
on one special value θ of the replica index in the form: x(ab) = x if a = θ or
b = θ, and x(ab) = y in all other cases. Orthogonality to the uniform vector
is enforced by choosing x = (1 − n/2)y, and one finds the eigenvalue λ2 =
U + (n − 4)V + (3 − n)W . This eigenvalue has degeneracy n − 1. Finally we
consider eigenvectors which depend on two special values θ, ν of the replica index:
x(θ,ν) = x, x(θ,a) = x(ν,a) = y, x(ab) = z, where a and b are distinct form
θ, ν. Orthogonality to the previously found eigenvectors imposes x = (2 − n)y
and y = [(3 − n)/2]z. Plugging this into the eigenvalue equation, one gets the
eigenvalue λ3 = U − 2V +W , with degeneracy n(n− 3)/2.
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In the limit n → 0, the matrix C has two distinct eigenvalues: λ1 = λ2 =
U−4V +3W and λ3 = U−2V +W . Since V ≥W , the most dangerous eigenvalue
is λ3 (called the replicon eigenvalue). This implies that the RS solution of the
SK model is locally stable if and only if

Ez

[
1 − tanh2 (z

√
µ+ βB)

]2 ≤ T 2 (8.67)

The inequality is saturated on line in the plane T,B, called the AT line. which

behaves like T = 1−
(

3
4

)2/3
B2/3 + o(B2/3) for B → 0 and like T ≃ 4

3
√

2π
e−B

2/2

for B ≫ 1.

{ex:SK_J0}
Exercise 8.12 The reader who wants to test her understanding of these
replica computations computation can study the SK model in zero field
(B = 0), but in the case where the couplings have a ferromagnetic bias: Jij are
iid Gaussian distributed, with mean J0/N and variance 1/N .

(i) Show that the RS equations (8.35) are modified to:

µ = β2 q ; q = Ez tanh2 (z
√
µ+ βJ0m) ; m = Ez tanh (z

√
µ+ βJ0m)

(8.68) {eq:SK_J0_RS_SP}

(ii) Solve numerically these equations. Notice that, depending on the values
of T and J0, three types of solutions can be found: (1) a paramagnetic
solution m = 0, q = 0, (2) a ferromagnetic solution m > 0, q > 0, (3) a
spin glass solution m = 0, q > 0.

(iii) Show that the AT stability condition becomes:

Ez

[
1 − tanh2 (z

√
µ+ βJ0m)

]2
< T 2 (8.69) {eq:SK_J0_RS_AT}

and deduce that the RS solution found in (i), (ii) is stable only in the
paramagnetic phase and in a part of the ferromagnetic phase.

Notes

The replica solution of the REM was derived in the original work of Derrida
introducing the model (Derrida, 1980; Derrida, 1981). His motivation for intro-
ducing the REM came actually from the large p limit of p-spin glasses.

The problem of moments is studied for instance in (Shohat and Tamarkin,
1943).

The first universally accepted model of spin glasses was introduced by Ed-
wards and Anderson (Edwards and Anderson, 1975). The mean field theory
was defined by Sherrington and Kirkpatrick (Sherrington and Kirkpatrick, 1975;
Kirkpatrick and Sherrington, 1978), who considered the RS solution. The insta-
bility of this solution in the p = 2 case was found by de Almeida and Thouless
(de Almeida and Thouless, 1978), who first computed the location of the AT line.
The solution to exercise (8.12) can be found in (Kirkpatrick and Sherrington,
1978; de Almeida and Thouless, 1978).
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Parisi’s Ansatz was introduced in a couple of very inspired works starting in
1979 (Parisi, 1979; Parisi, 1980b; Parisi, 1980a). His original motivation came
from his reflection on the meaning of the permutation group Sn when n < 1,
and particularly in the n→ 0 limit. Unfortunately there has not been any math-
ematical developments along these lines. The replica method, in the presence of
RSB, is still waiting for a proper mathematical framework. On the other hand it
is a very well defined computational scheme, which applies to a wide variety of
problems. The physical interpretation of RSB in terms of condensation was found
by Parisi (Parisi, 1983), and developed in (Mézard, Parisi, Sourlas, Toulouse and
Virasoro, 1985), which discussed the distribution of weights in the glass phase
and its ultrametric organization. The p-spin model has been analyzed at large p
with replicas in (Gross and Mézard, 1984). The clustering phenomenon has been
discovered in this work. The finite p case was later studied in (Gardner, 1985).
A rigorous treatment of the clustering effect in the p-spin glass model was devel-
oped by Talagrand (Talagrand, 2000) and can be found in his book (Talagrand,
2003).

The connection between 1RSB and Gumbel’s statistics of extremes is dis-
cussed in (Bouchaud and Mézard, 1997). A more detailed presentation of the
replica method, together with some reprints of most of these papers, can be
found in (Mézard, Parisi and Virasoro, 1987).



9

FACTOR GRAPHS AND GRAPH ENSEMBLES

{ch:Graphs}

Systems involving a large number of simple variables with mutual dependencies
(or constraints, or interactions) appear recurrently in several fields of science.
It is often the case that such dependencies can be ‘factorized’ in a non-trivial
way, and distinct variables interact only ‘locally’. In statistical physics, the fun-
damental origin of such a property can be traced back to the locality of physical
interactions. In computer vision it is due to the two dimensional character of
the retina and the locality of reconstruction rules. In coding theory it is a useful
property for designing a system with fast encoding/decoding algorithms. This
important structural property plays a crucial role in many interesting problems.

There exist several possibilities for expressing graphically the structure of de-
pendencies among random variables: undirected (or directed) graphical models,
Bayesian networks, dependency graphs, normal realizations, etc. We adopt here
the factor graph language, because of its simplicity and flexibility.

As argumented in the previous Chapters, we are particularly interested in
ensembles of probability distributions. These may emerge either from ensembles
of error correcting codes, or in the study of disordered materials, or, finally,
when studying random combinatorial optimization problems. Problems drawn
from these ensembles are represented by factor graphs which are themselves
random. The most common examples are random hyper-graphs, which are a
simple generalization of the well known random graphs.

Section 9.1 introduces factor graphs and provides a few examples of their
utility. In Sec. 9.2 we define some standard ensembles of random graphs and
hyper-graphs. We summarize some of their important properties in Sec. 9.3. One
of the most surprising phenomena in random graph ensembles, is the sudden
appearance of a ‘giant’ connected component as the number of edges crosses a
threshold. This is the subject of Sec. 9.4. Finally, in Sec. 9.5 we describe the local
structure of large random factor graphs.

9.1 Factor graphs
{se:FactorGeneral}

9.1.1 Definitions and general properties
{se:FactorDefinition}

We begin with a toy example.

Example 9.1 A country elects its president among two candidates {A,B} ac-
cording to the following peculiar system. The country is divided into four regions
{1, 2, 3, 4}, grouped in two states: North (regions 1 and 2), and South (3 and 4).
Each of the regions chooses its favorites candidate according to popular vote: we
call him xi ∈ {A,B}, with i ∈ {1, 2, 3, 4}. Then a North candidate yN, and a

169



170 FACTOR GRAPHS AND GRAPH ENSEMBLES

z

yy

x x x x

f

f f

p p p p

1 2 3 4

1 2 3 4

N S

Fig. 9.1. Factor graph representation of the electoral process described in Ex-
ample 1.{fig:ElectionFactor}

South candidate yS are decided according to the following rule. If the preferences
x1 and x2 in regions 1 and 2 agree, then yN takes this same value. In they don’t
agree yN is decided according to a fair coin trial. The same procedure is adopted
for the choice of yS, given x3, x4. Finally, the president z ∈ {A,B} is decided on
the basis of the choices yN and yS in the two states using the same rule as inside
each state.

A polling institute has obtained fairly good estimates of the probabilities
pi(xi) for the popular vote in each region i to favor the candidate xi. They ask
you to calculate the odds for each of the candidates to become the president.

It is clear that the electoral procedure described above has important ‘fac-
torization’ properties. More precisely, the probability distribution for a given
realization of the random variables {xi}, {yj}, z has the form:

P ({xi}, {yj}, z) = f(z, yN, yS) f(yN, x1, x2) f(yS, x3, x4)

4∏

i=1

pi(xi) . (9.1)

We invite the reader to write explicit forms for the function f . The election pro-⋆
cess, as well as the above probability distribution, can be represented graphically
as in Fig. 9.1. Can this particular structure be exploited when computing the
chances for each candidate to become president?

Abstracting from the previous example, let us consider a set of N variables
x1, . . . , xN taking values in a finite alphabet X . We assume that their joint
probability distribution takes the form

P (x) =
1

Z

M∏

a=1

ψa(x∂a) . (9.2)

Here we use the shorthands x ≡ {x1, . . . , xN}, and x∂a ≡ {xi | i ∈ ∂a}, where
∂a ⊆ [N ]. The set of indices ∂a, with a ∈ [M ], has size ka ≡ |∂a|. When necessary,
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Fig. 9.2. A generic factor graph is formed by several connected components.
Variables belonging to distinct components (for instance x3 and x15 in the graph
above) are statistically independent. {fig:DisconnectedFactor}

we shall use the notation {ia1 , . . . , iaka
} ≡ ∂a to denote the variable indices which

correspond to the factor a, and xia
1 ,...,ia

ka

≡ x∂a for the corresponding variables.

The compatibility functions ψa : X ka → R are non-negative, and Z is a
positive constant. In order to completely determine the form (9.2), we should
precise both the functions ψa(·), and an ordering among the indices in ∂a. In
practice this last specification will be always clear from the context.

Factor graphs provide a graphical representations of distributions of the
form (9.2). The factor graph for the distribution (9.2) contains two types of
nodes: N variable nodes, each one associated with a variable xi (represented
by circles);M function nodes, each one associated with a function ψa (squares).
An edge joins the variable node i and the function node a if the variable xi is
among the arguments of ψa(x∂a) (in other words if i ∈ ∂a). The set of function
nodes that are adjacent to (share an edge with) the variable node i, is denoted
as ∂i. The graph is bipartite: an edge always joins a variable node to a function
nodes. The reader will easily check that the graph in Fig. 9.1 is indeed the factor ⋆
graph corresponding to the factorized form (9.1). The degree of a variable node
(defined as in usual graphs by the number of edges which are incident on it) is
arbitrary, but the degree of a function node is always ≥ 1.

The basic property of the probability distribution (9.2) encoded in its factor
graph, is that two ‘well separated’ variables interact uniquely through those vari-
ables which are interposed between them. A precise formulation of this intuition
is given by the following observation, named the global Markov property:

{propo:GlobalMarkov}
Proposition 9.2 Let A,B, S ⊆ [N ] be three disjoint subsets of the variable
nodes, and denote by xA, xB and xS denote the corresponding sets of variables.
If S ‘separates’ A and B (i.e., if there is no path on the factor graph joining a
node of A to a node of B without passing through S) then

P (xA, xB |xS) = P (xA|xS)P (xB |xS) . (9.3)

In such a case the variables xA, xB are said to be conditionally independent.
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x3

x1

x6

x5

x4

x2

x1

x6

x5

x4

x2

a b

c

d

b

c

d

a

Fig. 9.3. The action of conditioning on the factor graph.
The probability distribution on the left has the form
P (x1...6) ∝ fa(x1...4)fb(x3,4,5)fc(x1,3,5,6)fd(x5). After conditioning on x3,
we get P (x1...6|x3 = x∗) ∝ f ′a(x1,2,4)f

′
b(x4,5)f

′
c(x1,5,6)fd(x5). Notice that the

functions f ′a(·), f ′b(·), f ′c(·) (gray nodes on the right) are distinct from fa(·),
fb(·), fc(·) and depend upon the value of x∗. {fig:ConditionFactor}

Proof: It is easy to provide a ‘graphical’ proof of this statement. Notice that, if
the factor graph is disconnected, then variables belonging to distinct components
are independent, cf. Fig. 9.2. Conditioning upon a variable xi is equivalent to
eliminating the corresponding variable node from the graph and modifying the
adjacent function nodes accordingly, cf. Fig. 9.3. Finally, when conditioning upon
xS as in Eq. (9.3), the factor graph gets split in such a way that A and B belong
to distinct components. We leave to the reader the exercise of filling the details.⋆
�

It is natural to wonder whether any probability distribution which is ‘globally
Markov’ with respect to a given graph can be written in the form (9.2). In general,
the answer is negative, as can be shown on a simple example. Consider the
small factor graph in Fig. (9.4). The global Markov property has a non trivial
content only for the following choice of subsets: A = {1}, B = {2, 3}, S =
{4}. The most general probability distribution such that x1 is independent from
{x2, x3} conditionally to x4 is of the type fa(x1, x2)fb(x2, x3, x3). The probability
distribution encoded by the factor graph is a special case where fb(x2, x3, x4) =
fc(x2, x3)fd(x, x4)fe(x4, x2).

The factor graph of our counterexample, Fig. 9.4, has a peculiar property:
it contains a subgraph (the one with variables {x2, x3, x4}) such that, for any
pair of variable nodes, there is a function node adjacent to both of them. We
call any factor subgraph possessing this property a clique24. It turns out that,
once one gets rid of cliques, the converse of Proposition 9.2 can be proved. We
shall ‘get rid’ of cliques by completing the factor graph. Given a factor graph F ,
its completion F is obtained by adding one factor node for each clique in the

24In usual graph theory, the word clique refers to graph (recall that a graph is defined by a
set of nodes and a set of edges which join node pairs), rather than to factor graphs. Here we
use the same word in a slightly extended sense.
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x
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x

2

3

4x1

Fig. 9.4. A factor graph with four variables. {x1} and {x2, x3} are independent
conditionally to x4. The set of variables {x2, x3, x4} and the three function nodes
connecting two points in this set form a clique.{fig:FactorClique}

graph and connecting it to each variable node in the clique and to no other node
(if such a node does not already exist).

Theorem 9.3. (Hammersley-Clifford) Let P (·) be a strictly positive prob-
ability distributions over the variables x = (x1, . . . , xN ) ∈ XN , satisfying the
global Markov property (9.3) with respect to a factor graph F . Then P can be
written in the factorized form (9.2), with respect to the completed graph F .

Roughly speaking: the only assumption behind the factorized form (9.2) is the
rather weak notion of locality encoded by the global Markov property. This may
serve as a general justification for studying probability distributions having a
factorized form. Notice that the positivity hypothesis P (x1, . . . , xN ) > 0 is not
just a technical assumption: there exist counterexamples to the Hammersley-
Clifford theorem if P is allowed to vanish.

9.1.2 Examples
{se:FactorExamples}

Let us look at a few examples

Example 9.4 The random variablesX1, . . . ,XN taking values in the finite state
space X form a Markov chain of order r (with r < N) if

P (x1 . . . xN ) = P0(x1 . . . xr)

N−1∏

t=r

w(xt−r+1 . . . xt → xt+1) , (9.4)

for some non-negative transition probabilities {w(x−r . . . x−1 → x0)}, and initial
condition P0(x1 . . . xr), satisfying the normalization conditions

∑

x1...xr

P0(x1 . . . xr) = 1 ,
∑

x0

w(x−r . . . x−1 → x0) = 1 . (9.5)

The parameter r is the ‘memory range’ of the chain. Ordinary Markov chains
have r = 1. Higher order Markov chains allow to model more complex phe-
nomena. For instance, in order to get a reasonable probabilistic model of the
English language with the usual alphabet X = {a,b,. . . z, blank} as state space,
a memory of the typical size of words (r ≥ 6) is probably required.
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Fig. 9.5. On the left: factor graph for a Markov chain of length N = 6 and
memory range r = 2. On the right: by adding auxiliary variables, the same
probability distribution can be written as a Markov chain with memory range
r = 1. {fig:FactorMarkov}

It is clear that Eq. (9.4) is a particular case of the factorized form (9.2). The
corresponding factor graph includes N variable nodes, one for each variable xi,
N − r function nodes for each of the factors w(·), and one function node for the
initial condition P0(·). In Fig. 9.5 we present a small example with N = 6 and
r = 2.

Notice that a Markov chain with memory r and state space X can always be
rewritten as a Markov chain with memory 1 and state space X r. The transition
probabilities ŵ of the new chain are given in terms of the original ones

ŵ(~x→ ~y) =

{
w(x1, . . . , xr → yr) if x2 = y1, x3 = y2, . . . xr = yr−1 ,
0 otherwise,

(9.6)

where we used the shorthands ~x ≡ (x1, . . . , xr) and ~y = (y1, . . . , yr). Figure 9.5
shows the reduction to an order 1 Markov chain in the factor graph language.

What is the content of the global Markov property for Markov chains? Let
us start from the case of order 1 chains. Without loss of generality we can choose
S as containing one single variable node (let’s say the i-th) while A and B are,
respectively the nodes on the left and on the right of i: A = {1, . . . , r − 1} and
B = {r + 1, . . . , N}. The global Markov property reads

P (x1 . . . xN |xi) = P (x1 . . . xi−1|xi)P (xi+1 . . . xN |xi) , (9.7)

which is just a rephrasing of the usual Markov condition: Xi+1 . . . XN depend
upon X1 . . . Xi uniquely through Xi. We invite the reader to discuss the global⋆
Markov property for order r Markov chains.

{ex:FirstLinearCode}
Example 9.5 Consider the code C of block-length N = 7 defined by the code-
book:

C = {(x1, x2, x3, x4) ∈ {0, 1}4 | x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0 , (9.8)

x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0 , x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0} .

Let P0(x) be the uniform probability distribution over the codewords: as dis-
cussed in Chap. 6, it is reasonable to assume that encoding produces codewords
according to such a distribution. Then:



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

FACTOR GRAPHS 175

x

x

x

x

xx

x

1

5
7

3

4

6

2
x

x

x

x

xx

x

1

5
7

3

4

6

2

Fig. 9.6. Left: factor graph for the uniform distribution over the code defined
in Eq. (9.8). Right: factor graph for the distribution of the transmitted message
conditional to the channel output. Gray function nodes encode the information
carried by the channel output.{fig:FactorHamming}

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
�����

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

Fig. 9.7. Factor graph for an Edwards-Anderson model with size L = 4 in d = 2
dimensions. Full squares correspond to pairwise interaction terms −Jijσiσj .
Hatched squares denote magnetic field terms −Bσi. {fig:FactorIsing}

P0(x) =
1

Z0
I(x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0) I(x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0) · (9.9)

· I(x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0) ,

where Z0 = 16 is a normalization constant. This distribution has the form (9.2)
and the corresponding factor graph is reproduced in Fig. 9.6.

Suppose that a codeword in C is transmitted through a binary memoryless
channel, and that the message (y1, y2, . . . y7) is received. As argued in Chap. 6,
it is useful to consider the probability distribution of the transmitted message
conditional to the channel output, cf. Eq. (6.3). Show that the factor graph ⋆
representation for this distribution is the one given in Fig. 9.6, right-hand frame.
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Example 9.6 In Sec. 2.6 we introduced the Edwards-Anderson model, a sta-
tistical mechanics model for spin glasses, whose energy function reads: E(σ) =
−∑(ij) Jijσiσj −B

∑
i σi. The Boltzmann distribution can be written as

pβ(σ) =
1

Z

∏

(ij)

eβJijσiσj

∏

i

eβBσi , (9.10)

with i runs over the sites of a d-dimensional cubic lattice of side L: i ∈ [L]d, and
(ij) over the couples of nearest neighbors in the lattice. Once again, this distri-
bution admits a factor graph representation, as shown in Fig. 9.7. This graph
includes two types of function nodes. Nodes corresponding to pairwise interac-
tion terms −Jijσiσj in the energy function are connected to two neighboring
variable nodes. Nodes representing magnetic field terms −Bσi are connected to
a unique variable.

{ex:SatFactor}
Example 9.7 Satisfiability is a decision problem introduced in Chap. 3. Given
N boolean variables x1, . . . , xN ∈ {T, F} and a bunch ofM logical clauses among
them, one is asked to find a truth assignment verifying all of the clauses. The
logical AND of the M clauses is usually called a formula. As an example, consider
the following formula over N = 7 variables:

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x4 ∨ x5) ∧ (x5 ∨ x7 ∨ x6) . (9.11)

For a given satisfiability formula, it is quite natural to consider the uniform
probability distribution Psat(x1, . . . , xN ) over the truth assignments which satisfy
(9.11)(whenever such an assignment exist). A little thought shows that such a
distribution can be written in the factorized form (9.2). For instance, the formula
(9.11) yields

Psat(x1, . . . , x7) =
1

Zsat
I(x1 ∨ x2 ∨ x4) I(x2 ∨ x3 ∨ x5)) I(x4 ∨ x5) ·

·I(x5 ∨ x7 ∨ x6) , (9.12)

where Zsat is the number of distinct truth assignment which satisfy Eq. (9.11).
We invite the reader to draw the corresponding factor graph.⋆

Exercise 9.1 Consider the problem of coloring a graph G with q colors, already
encountered in Sec. 3.3. Build a factor graph representation for this problem,
and write the associated compatibility functions. [Hint: in the simplest such
representation the number of function nodes is equal to the number of edges
of G, and every function node has degree 2.]{ex:factor_colouring}

9.2 Ensembles of factor graphs: definitions
{se:EnsemblesDefinition}

We shall be generically interested in understanding the properties of ensembles
of probability distributions taking the factorized form (9.2). We introduce here
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a few useful ensembles of factor graphs. In the simple case where every function
node has degree 2, factor graphs are in one to one correspondence with usual
graphs, and we are just treating random graph ensembles, as first studied by
Erdös and Renyi. The case of arbitrary factor graphs is in many cases a simple
generalization. From the graph theoretical point of view they can be regarded
either as hyper-graphs (by associating a vertex to each variable node and an
hyper-edge to each function node), or as bipartite graphs (variable and function
nodes are both associated to vertices in this case).

For any integer k ≥ 1, the random k-factor graph with M function nodes
and N variables nodes is denoted by GN (k,M), and is defined as follows. For
each function node a ∈ {1 . . .M}, the k-uple ∂a is chosen uniformly at random
among the

(
N
k

)
k-uples in {1 . . . N}.

Sometimes, one may encounter variations of this basic distribution. For in-
stance, it can be useful to prevent any two function nodes to have the same
neighborhood (in other words, to impose the condition ∂a 6= ∂b for any a 6= b).
This can be done in a natural way through the ensemble GN (k, α) defined as fol-
lows. For each of the

(
N
k

)
k-uples of variables nodes, a function node is added to

the factor graph independently with probability α/
(
N
k

)
, and all of the variables

in the k-uple are connected to it. The total number M of function nodes in the
graph is a random variable, with expectation Mav = αN .

In the following we shall often be interested in large graphs (N → ∞) with a
finite density of function nodes. In GN (k,M) this means that M → ∞, with the
ratio M/N kept fixed. In GN (k, α), the large N limit is taken at α fixed. The
exercises below suggests that, for some properties, the distinction between the
two graph ensembles does not matter in this limit.

Exercise 9.2 Consider a factor graph from the ensemble GN (k,M). What is
the probability pdist that for any couple of function nodes, the corresponding
neighborhoods are distinct? Show that, in the limit N → ∞, M → ∞ with
M/N ≡ α and k fixed

pdist =






Θ(e−
1
2 α2N ) if k = 1 ,

e−α2

[1 + Θ(N−1)] if k = 2 ,
1 + Θ(N−k+2) if k ≥ 3 .

(9.13)
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Exercise 9.3 Consider a random factor graph from the ensemble GN (k, α),
in the large N limit. Show that the probability of getting a number of function
nodes M different from its expectation αN by an ‘extensive’ number (i.e. a
number of order N) is exponentially small. In mathematical terms: there exist
a constant A > 0 such that, for any ε > 0,

P [|M −Mav| > Nε] ≤ e−ANε2

. (9.14)

Consider the distribution of a GN (k, α) random graph conditioned on the num-
ber of function nodes being M . Show that this is the same as the distribution
of a GN (k,M) random graph conditioned on all the function nodes having
distinct neighborhoods.

An important local property of a factor graph is its degree profile. Given
a graph, we denote by Λi (by Pi) the fraction of variable nodes (function nodes)
of degree i. Notice that Λ ≡ {Λn : n ≥ 0} and P ≡ {Pn : n ≥ 0} are in fact two
distributions over the non-negative integers (they are both non-negative and
normalized). Moreover, they have non-vanishing weight only on a finite num-
ber of degrees (at most N for Λ and M for P ). We shall refer to the couple
(Λ, P ) as to the degree profile of the graph F . A practical representation of
the degree profile is provided by the generating functions Λ(x) =

∑
n≥0 Λn x

n

and P (x) =
∑

n≥0 Pn x
n. Because of the above remarks, both Λ(x) and P (x)

are in fact finite polynomials with non-negative coefficients. The average vari-
able node (resp. function node) degree is given by

∑
n≥0 Λn n = Λ′(1) (resp.∑

n≥0 Pn n = P ′(1))
If the graph is randomly generated, its degree profile is a random variable. For

instance, in the random k-factor graph ensemble GN (k,M) defined above, the
variable node degree Λ depends upon the graph realization: we shall investigate
some of its properties below. In contrast, its function node profile Pn = I(n = k)
is deterministic.

It is convenient to consider ensembles of factor graphs with a prescribed
degree profile. We therefore introduce the ensemble of degree constrained
factor graphs DN (Λ, P ) by endowing the set of graphs with degree profile
(Λ, P ) with the uniform probability distribution. Notice that the number M of
function nodes is fixed by the relationMP ′(1) = NΛ′(1). Moreover, the ensemble
is non-empty only if NΛn and MPn are integers for any n ≥ 0. Even if these
conditions are satisfied, it is not obvious how to construct efficiently a graph in
DN (Λ, P ). Since this ensemble plays a crucial role in the theory of sparse graph
codes, we postpone this issue to Chap. 11. A special case which is important in
this context is that of random regular graphs in which the degrees of variable
nodes is fixed, as well as the degree of function nodes. In a (k, l) random regular
graph, each variable node has degree l and each function node has degree k,
corresponding to Λ(x) = xl and P (x) = xk.
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9.3 Random factor graphs: basic properties
{se:EnsemblesProperties}

In this Section and the next ones, we derive some simple properties of random
factor graphs.

For the sake of simplicity, we shall study here only the ensemble GN (k,M)
with k ≥ 2. Generalizations to graphs in DN (Λ, P ) will be mentioned in Sec. 9.5.1
and further developed in Chap. 11. We study the asymptotic limit of large graphs
N → ∞ with M/N = α and k fixed.

9.3.1 Degree profile
{subsec:DegreeRandom}

The variable node degree profile {Λn : n ≥ 0} is a random variable. By linearity
of expectation E Λn = P[degi = n], where degi is the degree of the node i. Let
p be the probability that a uniformly chosen k-uple in {1, . . . , N} contains i.
It is clear that degi is a binomial random variable with parameters M and p.
Furthermore, since p does not depend upon the site i, it is equal to the probability
that a randomly chosen site belongs to a fixed k-uple. In formulae

P[degi = n] =

(
M

n

)
pn(1 − p)M−n , p =

k

N
. (9.15)

If we consider the large graph limit, with n fixed, we get

lim
N→∞

P [degi = n] = lim
N→∞

E Λn = e−kα (kα)n

n!
. (9.16)

The degree of site i is asymptotically a Poisson random variable.
How correlated are the degrees of the variable nodes? By a simple generaliza-

tion of the above calculation, we can compute the joint probability distribution of
degi and degj , with i 6= j. Think of constructing the graph by choosing a k-uple
of variable nodes at a time and adding the corresponding function node to the
graph. Each node can have one of four possible ‘fates’: it connects to both nodes
i and j (with probability p2); it connects only to i or only to j (each case has
probability p1); it connects neither to i nor to j (probability p0 ≡ 1− 2p1 − p2).
A little thought shows that p2 = k(k − 1)/N(N − 1), p1 = k(N − k)/N(N − 1)
and

P[degi = n, degj = m] =

min(n,m)∑

l=0

(
M

n− l, m− l, l

)
pl
2p

n+m−2l
1 pM−n−m+l

0 (9.17)

where l is the number of function nodes which connect both to i and to j and
we used the standard notation for multinomial coefficients (see Appendix A).

Once again, it is illuminating to look at the large graphs limit N → ∞ with
n and m fixed. It is clear that the l = 0 term dominates the sum (9.17). In fact,
the multinomial coefficient is of order Θ(Nn+m−l) and the various probabilities
are of order p0 = Θ(1), p1 = Θ(N−1), p2 = Θ(N−2). Therefore the l-th term of
the sum is of order Θ(N−l). Elementary calculus then shows that
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P[degi = n, degj = m] = P[degi = n] P[degj = m] + Θ(N−1) . (9.18)

This shows that the nodes’ degrees are (asymptotically) pairwise independent
Poisson random variables. This fact can be used to show that the degree profile
{Λn : n ≥ 0} is, for large graphs, close to its expectation. In fact

E

[
(Λn − EΛn)

2
]

=
1

N2

N∑

i,j=1

{
P[degi = n, degj = n] − P[degi = n]P[degj = n]

}

= Θ(N−1) , (9.19)

which implies (via Chebyshev inequality) P[|Λn − EΛn| ≥ δ EΛn] = Θ(N−1) for
any δ > 0.

The pairwise independence expressed in Eq. (9.18) is essentially a conse-
quence of the fact that, given two distinct variable nodes i and j the probability
that they are connected to the same function node is of order Θ(N−1). It is
easy to see that the same property holds when we consider any finite number of
variable nodes. Suppose now that we look at a factor graph from the ensemble
GN (k,M) conditioned to the function node a being connected to variable nodes
i1, . . . , ik. What is the distribution of the residual degrees deg′i1 , . . . , deg′ik

(by
residual degree deg′i, we mean the degree of node i once the function node a has
been pruned from the graph)? It is clear that the residual graph is distributed
according to the ensemble GN (k,M − 1). Therefore the residual degrees are (in
the large graph limit) independent Poisson random variables with mean kα. We
can formalize these simple observations as follows.

{PoissonPropo}
Proposition 9.8 Let i1, . . . , in ∈ {1, . . . , N} be n distinct variable nodes, and G
a random graph from GN (k,M) conditioned to the neighborhoods of m function
nodes a1, . . . , am being ∂a1, . . . , ∂am. Denote by deg′i the degree of variable node
i once a1, . . . , am have been pruned from the graph. In the limit of large graphs
N → ∞ with M/N ≡ α, k, n and m fixed, the residual degrees deg′i1 , . . . , deg′in

converge in distribution to independent Poisson random variables with mean kα.

This property is particularly useful when investigating the local properties of a
GN (k,Nα) random graph. In particular, it suggests that these local properties
are close to the ones of the ensemble DN (Λ, P ), where P (x) = xk and Λ(x) =
exp[kα(x− 1)].

A remark: in the above discussion we have focused on the probability of
finding a node with some constant degree n in the asymptotic limit N → ∞.
One may wonder whether, in a typical graph G ∈ GN (k,M) there may exist
some variable nodes with exceptionally large degrees. The exercise below shows
that this is not the case.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

RANDOM FACTOR GRAPHS: BASIC PROPERTIES 181

Fig. 9.8. A factor graph from the GN (k,M) with k = 3, N = 23 and M = 8. It
contains Zisol = 2 isolated function nodes, Zcoupl = 1 isolated couples of function
nodes and Zcycle,3 = 1 cycle of length 3. The remaining 3 variable nodes have
degree 0. {fig:RandomFactor}

Exercise 9.4 We want to investigate the typical properties of the maximum
variable node degree ∆(G) in a random graph G from GN (k,M).

(i) Let nmax be the smallest value of n > kα such that NP[degi = n] ≤ 1.
Show that ∆(G) ≤ nmax with probability approaching one in the large
graph limit. [Hints: Show that NP[degi = nmax + 1] → 0 at large N ;
Apply the first moment method to Zl, the number of nodes of degree l.]

(ii) Show that the following asymptotic form holds for nmax:

nmax

kαe
=

z

log(z/ log z)

[
1 + Θ

(
log log z

(log z)2

)]
, (9.20)

where z ≡ (logN)/(kαe).

(iii) Let nmax be the largest value of n such that NP[degi = n] ≥ 1. Show
that ∆(G) ≥ nmax with probability approaching one in the large graph
limit. [Hints: Show that NP[degi = nmax − 1] → ∞ at large N ; Apply
the second moment method to Zl.]

(iv) What is the asymptotic behavior of nmax? How does it compare to nmax?

9.3.2 Small subgraphs
{SmallSection}

The next simplest question one may ask concerning a random graph, is the
occurrence in it of a given small subgraph. We shall not give a general treatment
of the problem here, but rather work out a few simple examples.

Let’s begin by considering a fixed k-uple of variable nodes i1, . . . , ik and ask
for the probability p that they are connected by a function node in a graph
G ∈ GN (k,M). In fact, it is easier to compute the probability that they are not
connected:
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1 − p =

[
1 −

(
N

k

)−1
]M

. (9.21)

The quantity in brackets is the probability that a given function node is not a
neighbor of i1, . . . , ik. It is raised to the power M because the M function nodes
are independent in the model GN (k,M). In the large graph limit, we get

p =
αk!

Nk−1
[1 + Θ(N−1)] . (9.22)

This confirms an observation of the previous Section: for any fixed (finite) set of
nodes, the probability that a function node connects any two of them vanishes
in the large graph limit.

As a first example, let’s ask how many isolated function nodes appear in
a graph G ∈ GN (k,M). We say that a node is isolated if all the neighboring
variable nodes have degree one. Call the number of such function nodes Zisol. It
is easy to compute the expectation of this quantity

EZisol = M

[(
N

k

)−1(
N − k

k

)]M−1

. (9.23)

The factorM is due to the fact that each of theM function nodes can be isolated.
Consider one such node a and its neighbors i1, . . . , ik. The factor in

(
N
k

)−1(N−k
k

)

is the probability that a function node b 6= a is not incident on any of the nodes
i1, . . . , ik. This must be counted for any b 6= a, hence the exponent M − 1. Once
again, things become more transparent in the large graph limit:

EZisol = Nαe−k2α[1 + Θ(N−1)] . (9.24)

So there is a non-vanishing ‘density’ of isolated function nodes. This density
approaches 0 at small α (because there are few function nodes at all) and at
large α (because function nodes are unlikely to be isolated). A more refined
analysis shows that indeed Zisol is tightly concentrated around its expectation:
the probability of an order N fluctuation vanishes exponentially as N → ∞.

There is a way of getting the asymptotic behavior (9.24) without going
through the exact formula (9.23). We notice that EZisol is equal to the number
of function nodes (M = Nα) times the probability that the neighboring variable
nodes i1, . . . , ik have degree 0 in the residual graph. Because of Proposition 9.8,
the degrees deg′i1 , . . . , deg′ik

are approximatively i.i.d. Poisson random variables
with mean kα. Therefore the probability for all of them to vanish is close to
(e−kα)k = e−k2α.

Of course this last type of argument becomes extremely convenient when
considering small structures which involve more than one function node. As a
second example, let us compute the number Zisol,2 of couples of function nodes
which have exactly one variable node in common and are isolated from the rest
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of the factor graph (for instance in the graph of Fig. 9.8, we have Zisol,2 = 1).
One gets

EZisol,2 =

(
N

2k − 1

)
· k
2

(
2k − 1

k

)
·
(

αk!

Nk−1

)2

· (e−kα)2k−1

[
1 + Θ

(
1

N

)]
.(9.25)

The first factor counts the ways of choosing the 2k − 1 variable nodes which
support the structure. Then we count the number of way of connecting two
function nodes to (2k− 1) variable nodes in such a way that they have only one
variable in common. The third factor is the probability that the two function
nodes are indeed present (see Eq. (9.22)). Finally we have to require that the
residual graph of all the (2k − 1) variable nodes is 0, which gives the factor
(e−kα)2k−1. The above expression is easily rewritten as

EZisol,2 = N · 1

2
(kα)2 e−k(2k−1)α [1 + Θ(1/N)] . (9.26)

With some more work one can prove again that Zisol,2 is in fact concentrated
around its expected value: a random factor graph contains a finite density of
isolated couples of function nodes.

Let us consider, in general, the number of small subgraphs of some definite
type. Its most important property is how it scales with N in the large N limit.
This is easily found. For instance let’s have another look at Eq. (9.25): N enters
only in counting the (2k−1)-uples of variable nodes which can support the chosen
structure, and in the probability of having two function nodes in the desired
positions. In general, if we consider a small subgraph with v variable nodes and
f function nodes, the number Zv,f of such structures has an expectation which
scales as:

EZv,f ∼ Nv−(k−1)f . (9.27)

This scaling has important consequences on the nature of small structures which
appear in a large random graph. For discussing such structures, it is useful to
introduce the notions of ‘connected (sub-)graph’, of ‘tree’, of ‘path’ in a factor
graphs exactly in the same way as in usual graphs, identifying both variable nodes
and function nodes to vertices (see Chap. 3). We further define a component
of the factor graph G as a subgraph C which is is connected and isolated, in the
sense that there is no path between a node of C and a node of G\C

Consider a factor graph with v variable nodes and f function nodes, all of
them having degree k.This graph is a tree if and only if v = (k − 1)f + 1. Call ⋆
Ztree,v the number of isolated trees over v variable nodes which are contained in a
GN (k,M) random graph. Because of Eq. (9.27), we have EZtree,v ∼ N : a random
graph contains a finite density (when N → ∞) of trees of any finite size. On the
other hand, all the subgraphs which are not trees must have v < (k − 1)f + 1,
and Eq. (9.27) shows that their number does not grow with N . In other words,
almost all finite components of a random factor graph are trees.
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Exercise 9.5 Consider the largest component in the graph of Fig. 9.8 (the one
with three function nodes), and let Zcycle,3 be the number of times it occurs
as a component of a GN (k,M) random graph. Compute EZcycle,3 in the large
graph limit.

Exercise 9.6 A factor graph is said to be unicyclic if it contains a unique (up
to shifts) closed, non reversing path ω0, ω1, . . . , ωℓ = ω0 satisfying the condition
ωt 6= ωs for any t, s ∈ {0 . . . ℓ− 1}, with t 6= s.

(i) Show that a factor graph with v variable nodes and f function nodes, all
of them having degree k is unicyclic if and only if v = (k − 1)f .

(ii) Let Zcycle,v(N) be the number of unicyclic components over v nodes in
a GN (k,M) random graph. Use Eq. (9.27) to show that Zcycle,v is finite
with high probability in the large graph limit. More precisely, show that
limn→∞ limN→∞ PGN

[Zcycle,v ≥ n] = 0.

9.4 Random factor graphs: The giant component
{GiantSection}

While we have just argued that most components of any fixed (as N → ∞) size
of a GN (k,M) factor graph are trees, we shall now see that there is much more
than just finite size trees in a large GN (k,M) factor graph. We always consider
the limit N → ∞,M → ∞ taken at fixed α = M/N . It turns out that when
α becomes larger than a threshold value, a ‘giant component’ appears in the
graph. This is a connected component containing an extensive (proportional to
N) number of variable nodes, with many cycles.

9.4.1 Nodes in finite trees

We want to estimate which fraction of a random graph from the GN (k,M)
ensemble is covered by finite size trees. This fraction is defined as:

xtr(α, k) ≡ lim
s→∞

lim
N→∞

1

N
ENtrees,s , (9.28)

where Ntrees,s is the number of sites contained in trees of size not larger than
s. In order to compute ENtrees,s, we use the number of trees of size equal to
s, which we denote by Ztrees,s. Using the approach discussed in the previous
Section, we get

ENtrees,s =

s∑

v=0

v · EZtrees,v = (9.29){eq:NumberOfTrees}

=

s∑

v=0

v

(
N

v

)
· Tk(v) ·

(
αk!

Nk−1

) v−1
k−1

· (e−kα)v

[
1 + Θ

(
1

N

)]
=

= N(αk!)−1/(k−1)
s∑

v=0

1

(v − 1)!
Tk(v)

[
(αk!)

1
k−1 e−kα

]v
,
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Fig. 9.9. Left: graphical representation of Eq. (9.32) for the fraction of nodes
of a GN (k,M) random factor graph that belong to finite-size tree components.
The curves refer to k = 3 and (from top to bottom) α = 0.05, 0.15, 0.25, 0.35,
0.45. Right: typical size of the giant component. {fig:Giant}

where Tk(v) is the number of trees which can be built out of v distinct variable
nodes and f = (v − 1)/(k − 1) function nodes of degree k. The computation
of Tk(v) is a classical piece of enumerative combinatorics which is developed in
Sec. 9.4.3 below. The result is

Tk(v) =
(v − 1)! vf−1

(k − 1)!ff !
, (9.30)

and the generating function T̂k(z) =
∑∞

v=1 Tk(v)zv/(v − 1)!, which we need in
order to compute ENtrees,s from (9.29), is found to satisfy the self consistency
equation:

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
. (9.31)

It is a simple exercise to see that, for any z ≥ 0, this equation has two solutions ⋆
such that T̂k(z) ≥ 0, the relevant one being the smallest of the two (this is a

consequence of the fact that T̂k(z) has a regular Taylor expansion around z = 0).

Using this characterization of T̂k(z), one can show that xtr(α, k) is the smallest
positive solution of the equation

xtr = exp
(
−kα+ kαxk−1

tr

)
. (9.32)

This equation is solved graphically in Fig. 9.9, left frame. In the range α ≤ αp ≡
1/(k(k − 1)), the only non-negative solution is xtr = 1: almost all sites belong
to finite size trees. When α > αp, the solution has 0 < xtr < 1: the fraction of
nodes in finite trees is strictly smaller than one.

9.4.2 Size of the giant component

This result is somewhat surprising. For α > αp, a finite fraction of variable nodes
does not belong to any finite tree. On the other hand, we saw in the previous
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Section that finite components with cycles contain a vanishing fraction of nodes.
Where are all the other nodes (there are about N(1 − xtr) of them)? It turns
out that, roughly speaking, they belong to a unique connected component, the
so-called giant component which is not a tree. One basic result describing this
phenomenon is the following.

Theorem 9.9 Let X1 be the size of the largest connected component in a GN (k,M)
random graph with M = N [α + oN (1)], and xG(α, k) = 1 − xtr(α, k) where
xtr(α, k) is defined as the smallest solution of (9.32). Then, for any positive ε,

|X1 −NxG(α, k)| ≤ Nε , (9.33)

with high probability.

Furthermore, the giant component contains many loops. Let us define the cyclic
number c of a factor graph containing v vertices and f function nodes of degree
k, as c = v − (k − 1)f − 1. Then the cyclic number of the giant component is
c = Θ(N) with high probability.

Exercise 9.7 Convince yourself that there cannot be more than one compo-
nent of size Θ(N). Here is a possible route. Consider the event of having two
connected components of sizes ⌊Ns1⌋ and ⌊Ns2⌋ for two fixed positive num-
bers s1 and s2 in a GN (k,M) random graph with M = N [α + oN (1)] (with
α ≥ s1+s2). In order to estimate the probability of such an event, imagine con-
structing the GN (k,M) graph by adding one function node at a time. Which
condition must hold when the number of function nodes is M − ∆M? What
can happen to the last ∆M nodes? Now take ∆M = ⌊N δ⌋ with 0 < δ < 1.

The appearance of a giant component is sometimes referred to as percola-
tion on the complete graph and is one of the simplest instance of a phase
transition. We shall now give a simple heuristic argument which predicts cor-
rectly the typical size of the giant component. This argument can be seen as the
simplest example of the ‘cavity method’ that we will develop in the next Chap-
ters. We first notice that, by linearity of expectation, EX1 = NxG, where xG

is the probability that a given variable node i belongs to the giant component.
In the large graph limit, site i is connected to l(k − 1) distinct variable nodes, l
being a Poisson random variable of mean kα (see Sec. 9.3.1). The node i belongs
to the giant component if any of its l(k−1) neighbors does. If we assume that the
l(k−1) neighbors belong to the giant component independently with probability
xG, then we get

xG = El[1 − (1 − xG)l(k−1)] . (9.34)

where l is Poisson distributed with mean kα. Taking the expectation, we get

xG = 1 − exp[−kα+ kα(1 − xG)k−1] , (9.35)

which coincides with Eq. (9.32) if we set xG = 1 − xtr.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

RANDOM FACTOR GRAPHS: THE GIANT COMPONENT 187

Tree
Tree

Tree

Tree =

root
root(1)

root(2)

root(n)

Fig. 9.10. A rooted tree G on v+1 vertices can be decomposed into a root and
the union of n rooted trees G1, . . . , Gn, respectively on v1, . . . , vn vertices. {fig:CayleyRec}

The above argument has several flaws but only one of them is serious. In
writing Eq. (9.34), we assumed that the probability that none of l randomly
chosen variable nodes belongs to the giant component is just the product of the
probabilities that each of them does not. In the present case it is not difficult to
fix the problem, but in subsequent Chapters we shall see several examples of the
same type of heuristic reasoning where the solution is less straightforward.

9.4.3 Counting trees {se:tkdev}
This paragraph is a technical annex where we compute Tk(v), the number of
trees with v variable nodes, when function nodes have degree k. Let us begin by
considering the case k = 2. Notice that, if k = 2, we can uniquely associate to any
factor graph F an ordinary graph G obtained by replacing each function node by
an edge joining the neighboring variables (for basic definitions on graphs we refer
to Chap. 3). In principle G may contain multiple edges but this does not concern
us as long as we stick to F being a tree. Therefore T2(v) is just the number of
ordinary (non-factor) trees on v distinct vertices. Rather than computing T2(v)
we shall compute the number T ∗

2 (v) of rooted trees on v distinct vertices. Recall
that a rooted graph is just a couple (G, i∗) where G is a graph and i∗ is a
distinguished node in G. Of course we have the relation T ∗

2 (v) = vT2(v).
Consider now a rooted tree on v + 1 vertices, and assume that the root has

degree n (of course 1 ≤ n ≤ v). Erase the root together with its edges and mark
the n vertices that were connected to the root. One is left with n rooted trees of
sizes v1, . . . , vn such that v1 + · · ·+ vn = v. This naturally leads to the recursion

T ∗
2 (v + 1) = (v + 1)

v∑

n=1

1

n!

∑

v1...vn>0
v1+···+vn=v

(
v

v1, · · · , vn

)
T ∗

2 (v1) · · ·T ∗
2 (vn) , (9.36)

which holds for any v ≥ 1. Together with the initial condition T ∗
2 (1) = 1, this

relation allows to determine recursively T ∗
2 (v) for any v > 0. This recursion is

depicted in Fig. 9.10.
The recursion is most easily solved by introducing the generating function

T̂ (z) =
∑

v>0 T
∗
2 (v) zv/v!. Using this definition in Eq. (9.36), we get

T̂ (z) = z exp{T̂ (z)} , (9.37)
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which is closely related to the definition of Lambert’sW function (usually written

as W (z) exp(W (z)) = z). One has in fact the identity T̂ (z) = −W (−z). The

expansion of T̂ (z) in powers of z can be obtained through Lagrange inversion
method (see Exercise below). We get T ∗

2 (v) = vv−1, and therefore T2(v) = vv−2.
This result is known as Cayley formula and is one of the most famous results
in enumerative combinatorics.

Exercise 9.8 Assume that the generating function A(z) =
∑

n>0Anz
n is so-

lution of the equation z = f(A(z)), with f an analytic function such that
f(0) = 0 and f ′(0) = 1. Use Cauchy formula An =

∮
dz
2πi z

−n−1A(z) to show
that

An = coeff
{
f ′(x) (x/f(x))n+1; xn−1

}
. (9.38)

Use this result, known as ‘Lagrange inversion method’, to compute the power
expansion of T̂ (z) and prove Cayley formula T2(v) = vv−2.

Let us now return to the generic k case. The reasoning is similar to the k = 2
case. One finds that the generating function T̂k(z) ≡ ∑v>0 T

∗
k (v)zv/v! satisfies

the equation :⋆

T̂k(z) = z exp

{
T̂k(z)k−1

(k − 1)!

}
, (9.39)

from which one deduces the number of trees with v variable nodes:

T ∗
k (v) =

v! vf−1

(k − 1)!ff !
. (9.40)

In this expression the number of function nodes f is fixed by v = (k − 1)f + 1.

9.5 The local tree-like structure in random graphs
{LocalSection}

9.5.1 Neighborhood of a node
{se:Neighborhood}

There exists a natural notion of distance between variable nodes of a factor
graph. Given a path (ω0, . . . , ωℓ) on the factor graph, we define its length as the
number of function nodes in it. Then the distance between two variable nodes
is defined as the length of the shortest path connecting them (by convention it
is set to +∞ when the nodes belong to distinct connected components). We also
define the neighborhood of radius r of a variable node i, denoted by Bi,r(F )
as the subgraph of F including all the variable nodes at distance at most r from
i, and all the function nodes connected only to these variable nodes.

What does the neighborhood of a typical node look like in a random graph?
It is convenient to step back for a moment from the GN (k,M) ensemble and
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consider a degree-constrained factor graph F
d
= DN (Λ, P ). We furthermore de-

fine the edge perspective degree profiles as λ(x) ≡ Λ′(x)/Λ′(1) and ρ(x) ≡
P ′(x)/P ′(1). These are polynomials

λ(x) =

lmax∑

l=1

λl x
l−1 , ρ(x) =

kmax∑

k=1

ρk x
k−1 , (9.41)

where λl (respectively ρk) is the probability that a randomly chosen edge in the
graph is adjacent to a variable node (resp. function node) of degree l (degree k).
The explicit formulae

λl =
lΛl∑
l′ l

′Λl′
, ρk =

kPk∑
k′ k′Pk′

, (9.42)

are derived by noticing that the graph F contains nlΛl (resp. mkPk) edges
adjacent to variable nodes of degree l (resp. function nodes of degree k).

Imagine constructing the neighborhoods of a node i of increasing radius r.
Given Bi,r(F ), let i1, . . . , iL be the nodes at distance r from i, and deg′i1 , . . . , deg′iL

their degrees in the residual graph25. Arguments analogous to the ones leading
to Proposition 9.8 imply that deg′i1 , . . . , deg′iL

are asymptotically i.i.d. random
variables with deg′in

= ln − 1, and ln distributed according to λln . An analogous
result holds for function nodes (just invert the roles of variable and function
nodes).

This motivates the following definition of an r-generations tree ensemble
Tr(Λ, P ). If r = 0 there is a unique element in the ensemble: a single isolated
node, which is attributed the generation number 0. If r > 0, first generate a tree
from the Tr−1(Λ, P ) ensemble. Then for each variable-node i of generation r− 1
draw an independent integer li ≥ 1 distributed according to λli and add to the
graph li − 1 function nodes connected to the variable i (unless r = 1, in which
case li function nodes are added, with li distributed according to Λli). Next, for
each of the newly added function nodes {a}, draw an independent integer ka ≥ 1
distributed according to ρk and add to the graph ka−1 variable nodes connected
to the function a. Finally, the new variable nodes are attributed the generation
number r. The case of uniformly chosen random graphs where function nodes
have a fixed degree, k, corresponds to the tree-ensemble Tr(e

kα(x−1), xk). (In this
case, it is easy to checkthat the degrees in the residual graph have a Poisson dis- ⋆
tribution with mean kα, in agreement with proposition 9.8 ) With a slight abuse
of notation, we shall use the shorthand Tr(k, α) to denote this tree ensemble.

It is not unexpected that Tr(Λ, P ) constitutes a good model for r-neighborhoods
in the degree-constrained ensemble. Analogously, Tr(k, α) is a good model for
r-neighborhoods in the GN (k,M) ensemble when M ≃ Nα. This is made more
precise below.

25By this we mean F minus the subgraph Bi,r(F ).
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Theorem 9.10 Let F be a random factor graph in the DN (Λ, P ) ensemble (re-
spectively in the GN (k,M) ensemble), i a uniformly random variable node in F ,
and r a non-negative integer. Then Bi,r(F ) converges in distribution to Tr(Λ, P )
(resp. to Tr(k, α)) as N → ∞ with Λ, P fixed (α, k fixed).

In other words, the factor graph F looks locally like a random tree from the
ensemble Tr(Λ, P ).

9.5.2 Loops

We have seen that in the large graph limit, a factor graph F
d
= GN (k,M)

converges locally to a tree. Furthermore, it has been shown in Sec. 9.3.2 that
the number of ‘small’ cycles in such a graph is only Θ(1) an N → ∞. It is
therefore natural to wonder at which distance from any given node loops start
playing a role.

More precisely, let i be a uniformly random site in F . We would like to know
what is the typical length of the shortest loop through i. Of course, this question
has a trivial answer if k(k − 1)α < 1, since in this case most of the variable
nodes belong to small tree components, cf. Sec. 9.4. We shall hereafter consider
k(k − 1)α > 1.

A heuristic guess of the size of this loop can be obtained as follows. Assume
that the neighborhood Bi,r(F ) is a tree. Each function node has k − 1 adjacent
variable nodes at the successive generation. Each variable node has a Poisson
number adjacent function nodes at the successive generation, with mean kα.
Therefore the average number of variable nodes at a given generation is [k(k−1)α]
times the number at the previous generation. The total number of nodes in
Bi,r(F ) is about [k(k− 1)α]r, and loops will appear when this quantity becomes
comparable with the total number of nodes in the system. This yields [k(k −
1)α]r = Θ(N), or r = logN/ log[k(k − 1)α]. This is of course a very crude
argument, but it is also a very robust one: one can for instance change N with
N1±ε affecting uniquely the prefactor. It turns out that the result is correct, and
can be generalized to the DN (Λ, P ) ensemble:

Proposition 9.11 Let F be a random factor graph in the DN (Λ, P ) ensemble
(in the GN (k,M) ensemble), i a uniformly chosen random variable node in F ,
and ℓi the length of the shortest loop in F through i. Assume that c = λ′(1)ρ′(1) >
1 (c = k(k − 1)α > 1). Then, with high probability,

ℓi =
logN

log c
[1 + o(1)] . (9.43)

We shall refer the reader to the literature for the proof, the following exercise
gives a slightly more precise, but still heuristic, version of the previous argument.
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Exercise 9.9 Assume that the neighborhood Bi,r(F ) is a tree and that it
includes n ‘internal’ variables nodes (i.e. nodes whose distance from i is smaller
than r), nl ‘boundary’ variable nodes (whose distance from i is equal to r), and
m function nodes. Let Fr be the residual graph, i.e. F minus the subgraph

Bi,r(F ). It is clear that Fr
d
= GN−n(k,M −m). Show that the probability, pr,

that a function node of Fr connects two of the variable nodes on the boundary
of Bi,r(F ) is

pr = 1 −
[
(1 − q)

k
+ k (1 − q)

k−1
q
]M−m

, (9.44)

where q ≡ nl/(N − n). As a first estimate of pr, we can substitute in this
expression nl, n, m, with their expectations (in the tree ensemble) and call pr

the corresponding estimate. Assuming that r = ρ log N
log[k(k−1)α] , show that

pr = 1 − exp

{
−1

2
k(k − 1)αN2ρ−1

}
[1 +O(N−2+3ρ)] . (9.45)

If ρ > 1/2, this indicates that, under the assumption that there is no loop of
length 2r or smaller through i, there is, with high probability, a loop of length
2r + 1. If, on the other hand, ρ < 1/2, it indicates that there is no loop of
length 2r + 1 or smaller through i. This argument suggests that the length of
the shortest loop through i is about log N

log[k(k−1)α] .

Notes

A nice introduction to factor graphs is the paper (Kschischang, Frey and Loeliger,
2001), see also (Aji and McEliece, 2000). They are also related to graphical
models (Jordan, 1998), to Bayesian networks (Pearl, 1988), and to Tanner graphs
in coding (Tanner, 1981). Among the alternatives to factor graphs, it is worth
recalling ‘normal realizations’ discussed by Forney in (Forney, 2001).

The proof of the Hammersley-Clifford theorem (initially motivated by the
probabilistic modeling of some physical problems) goes back to 1971. A proof,
more detailed references and some historical comments can be found in (Clifford,
1990).

The theory of random graphs has been pioneered by Erdös and Renyi (Erdös
and Rényi, 1960). The emergence of a giant component in a random graph is a
classic result which goes back to their work. Two standard textbooks on random
graphs like (Bollobás, 2001) and (Janson, Luczak and Ruciński, 2000) provide
in particular a detailed study of the phase transition. Graphs with constrained
degree profiles were studied in (Bender and Canfield, 1978). A convenient ‘con-
figuration mode’ for analyzing them was introduced in (Bollobás, 1980) and
allowed for the location of the phase transition in (Molloy and Reed, 1995). Fi-
nally, (Wormald, 1999) provides a useful survey (including short loop properties)
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of degree constrained ensembles.
For general background on hyper-graphs, see (Duchet, 1995). The threshold

for the emergence of a giant component in a random hyper-graph with edges of
fixed size k (corresponding to the factor graph ensemble GN (k,M)) is discussed
in (Schmidt-Pruzan and Shamir, 1985). The neighborhood of the threshold is
analyzed in (Karoński and Luczak, 2002) and references therein.

Ensembles with hyper-edges of different sizes were considered recently in com-
binatorics (Darling and Norris, 2005), as well as in coding theory (as code ensem-
bles). Our definitions and notations for degree profiles and degree constrained
ensembles follows the coding literature (Luby, Mitzenmacher, Shokrollahi, Spiel-
man and Stemann, 1997; Richardson and Urbanke, 2001a).

The local structure of random graphs, and of more complex random objects
(in particular random labeled graphs) is the object of the theory of local weak con-
vergence (Aldous and Steele, 2003). The results in Section 9.5.1 can be phrased
in this framework, cf. for instance ???.
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SATISFIABILITY

{ch:sat}

Because of Cook’s theorem, see Chapter 3, satisfiability lies at the heart of com-
putational complexity theory: this fact has motivated an intense research activity
on this problem. This Chapter will not be a comprehensive introduction to such a
vast topic, but rather present some selected research directions. In particular, we
shall pay special attention to the definition and analysis of ensembles of random
satisfiability instances. There are various motivations for studying random in-
stances. For testing and improving algorithms that solve satisfiability, it is highly
desirable to have an automatic generator of ‘hard’ instances at hand. As we shall
see, properly ‘tuned’ ensembles provide such a generator. Also, the analysis of
ensembles has revealed a rich structure and induced fruitful contacts with other
disciplines. We shall come back to satisfiability, using methods inspired from
statistical physics, in Chapter ??.

Section 10.1 recalls the definition of satisfiability and introduces some stan-
dard terminology. A basic, and widely adopted, strategy for solving decision
problems consists in exploring exhaustively the tree of possible assignments of
the problem’s variables. In Section 10.2 we present a simple implementation of
this strategy for solving satisfiability. In Section 10.3 we introduce some impor-
tant ensembles of random instances. The hardness of satisfiability depends on
the maximum clause length. When clauses have length 2, the decision problem is
solvable in polynomial time. This is the topic of section 10.4. Finally, in Section
10.5 we discuss the existence of a phase transition for random K-satisfiability
with K ≥ 3, when the density of clauses is varied, and derive some rigorous
bounds on the location of this transition.

10.1 The satisfiability problem
{se:sat_intro}

10.1.1 SAT and UNSAT formulas

An instance of the satisfiability problem is defined in terms of N Boolean vari-
ables, and a set of M constraints between them, where each constraint takes
the special form of a clause. A clause is the logical OR of some variables or their
negations. Here we shall adopt the following representation: a variable xi, with
i ∈ {1, . . . , N}, takes values in {0, 1}, 1 corresponding to ‘true’, and 0 to ‘false’;
the negation of xi is xi ≡ 1 − xi. A variable or its negation is called a literal,
and we shall denote it zi , with i ∈ {1, . . . , N} (therefore zi denotes any of xi,
xi). A clause a, with a ∈ {1, ...,M}, involving Ka variables is a constraint which
forbids exactly one among the 2Ka possible assignments to these Ka variables.
It is written as the logical OR (denoted by ∨) function of some variables or their

193
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Fig. 10.1. Factor graph representation of the formula
(x1 ∨ x2 ∨ x4)∧(x1 ∨ x2)∧(x2 ∨ x4 ∨ x5)∧(x1 ∨ x2 ∨ x5)∧(x1 ∨ x3 ∨ x5).{fig:facgraphsatex}

negations. For instance the clause x2 ∨ x12 ∨ x37 ∨ x41 is satisfied by all the vari-
ables’ assignments except those where x2 = 0, x12 = 1, x37 = 0, x41 = 1. When
it is not satisfied, a clause is said to be violated.

We denote by ∂a the subset {ia1 , . . . , iaKa
} ⊂ {1, . . . , N} containing the indices

of the Ka = |∂a| variables involved in clause a. Then clause a is written as Ca =
zia

1
∨zia

2
∨· · ·∨zia

Ka
. An instance of the satisfiability problem can be summarized

as the logical formula (called a conjunctive normal form (CNF)):

F = C1 ∧ C2 ∧ · · · ∧ CM . (10.1)

As we have seen in Chapter 9, Example 9.7, there exists 26 a simple and natural
representation of a satisfiability formula as a factor graph associated with the
indicator function I(x satisfies F ). Actually, it is often useful to use a slightly
more elaborate factor graph using two types of edges: A full edge is drawn be-
tween a variable vertex i and a clause vertex a whenever xi appears in a, and a
dashed edge is drawn whenever xi appears in a. In this way there is a one to one
correspondence between a CNF formula and its graph. An example is shown in
Fig. 10.1.

Given the formula F , the question is whether there exists an assignment of
the variables xi to {0, 1} (among the 2N possible assignments), such that the
formula F is true. An algorithm solving the satisfiability problem must be able,
given a formula F , to either answer ‘YES’ (the formula is then said to be SAT),
and provide such an assignment, called a SAT-assignment, or to answer ‘NO’,
in which case the formula is called UNSAT. The restriction of the satisfiability
problem obtained by requiring that all the clauses in F have the same length
Ka = K, is called the K-satisfiability (or K-SAT) problem.

As usual, an optimization problem is naturally associated to the decision
version of satisfiability: Given a formula F , one is asked to find an assignment

26It may happen that there does not exist any assignment satisfying F , so that one cannot
use this indicator function to build a probability measure. However one can still characterize
the local structure of I(x satisfies F ) by the factor graph
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which violates the smallest number of clauses. This is called the MAX-SAT
problem.

{ex:2-satex1}
Exercise 10.1 Consider the 2-SAT instance defined by the formula F1 = (x1∨
x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3). Show that this
formula is SAT and write a SAT-assignment. [Hint: assign for instance x1 = 1;
the clause x4∨x1 is then reduced to x4, this is a unit clause which fixes x4 = 1;
the chain of ‘unit clause propagation’ either leads to a SAT assignment, or to
a contradiction.]

{ex:2-satex2}
Exercise 10.2 Consider the 2-SAT formula F2 = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x2 ∨
x4) ∧ (x4 ∨ x1) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3). Show that this formula is UNSAT by
using the same method as in the previous Exercise.

{ex:3-satex1}
Exercise 10.3 Consider the 3-SAT formula F3 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨
x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨
x3 ∨ x4)∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4). Show that it is UNSAT. [Hint: try to
generalize the previous method by using a decision tree, cf. Sec. 10.2.2 below,
or list the 16 possible assignments and cross out which one is eliminated by
each clause.]

As we already mentioned, satisfiability was the first problem to be proved
NP-complete. The restriction defined by requiring Ka ≤ 2 for each clause a, is
polynomial. However, if one relaxes this condition to Ka ≤ K, with K = 3 or
more, the resulting problem is NP-complete. For instance 3-SAT is NP-complete
while 2-SAT is polynomial. It is intuitively clear that MAX-SAT is “at least as
hard” as SAT: an instance is SAT if and only if the minimum number of violated
clauses (that is the output of MAX-SAT) vanishes. It is less obvious that MAX-
SAT can be “much harder” than SAT. For instance, MAX-2-SAT is NP-hard,
while as said above, its decision counterpart is in P.

The study of applications is not the aim of this book, but one should keep
in mind that satisfiability is related to a myriad of other problems, some of
which have enormous practical relevance. It is a problem of direct importance
to the fields of mathematical logic, computing theory and artificial intelligence.
Applications range from integrated circuit design (modeling, placement, routing,
testing,. . . ) to computer architecture design (compiler optimization, scheduling
and task partitioning,. . . ) and to computer graphics, image processing etc. . .

10.2 Algorithms {se:sat_algo}
10.2.1 A simple case: 2-SAT {se:2satalgo}
The reader who worked out Exercises 10.1 and 10.2 has already a feeling that
2-SAT is an easy problem. The main tool for solving it is the so-called unit
clause propagation (UCP) procedure. If we start from a 2-clause C = z1 ∨ z2
and fix the literal z1, two things may happen:



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

196 SATISFIABILITY

• If we fix z1 = 1 the clause is satisfied and disappears from the formula

• If we fix z1 = 0 the clause is transformed into the unit clause z2 which
implies that z2 = 1.

Given a 2-SAT formula, one can start from a variable xi, i ∈ {1, . . . , N} and
fix, for instance xi = 0. Then apply the reduction rule described above to all
the clauses in which xi or xi appears. Finally, fix recursively in the same way
all the literals which appear in unit clauses. This procedure may halt for one of
the following reasons: (i) the formula does not contain any unit clause; (ii) the
formula contains the unit clause zj together with its negation zj .

In the first case, a partial SAT assignment (i.e. an assignment of a subset of
the variables such that no clause is violated) has been found. We will prove below
that such a partial assignment can be extended to a complete SAT assignment
if and only if the formula is SAT. One therefore repeats the procedure by fixing
a not-yet-assigned variable xj .

In the second case, the partial assignment cannot be extended to a SAT as-
signment. One proceeds by changing the initial choice and setting xi = 1. Once
again, if the procedure stops because of reason (i), then the formula can be effec-
tively reduced and the already-fixed variables do not need to be reconsidered in
the following. If on the other hand, also the choice xi = 1 leads to a contradiction
(i.e. the procedure stops because of (ii)), then it is immediate to show that the⋆
formula is necessarily UNSAT.

It is clear that the algorithm defined in this way is very efficient. Its complex-
ity can be measured by the number of variable-fixing operations that it involves.
Since each variable is considered at most twice, this number is at most 2N .

For proving the correctness of this algorithm, we still have to show the fol-
lowing fact: if the formula is SAT and UCP stops because of reason (i), then the
resulting partial assignment can be extended to a global SAT assignment (The
implication in the reverse direction is obvious). The key point is that the residual
formula is formed by a subset R of the variables (the ones which have not yet
been fixed) together with a subset of the original clauses (those which involve
uniquely variables in R). If a SAT assignment exists, its restriction to R satis-
fies the residual formula and constitutes an extension of the partial assignment
generated by UCP.

Exercise 10.4 Write a code for solving 2-SAT using the algorithm described
above.
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Fig. 10.2. Factor graph representation of the 2SAT formula
F = (x1 ∨ x2)∧(x1 ∨ x3)∧(x2 ∨ x3) (left) and corresponding directed graph
D(F ) (right).{fig:DirectedGraph}

{ex:2sat-directed}
Exercise 10.5 A nice way of understanding UCP, and why it is so effective
for 2-SAT, consists in associating to the formula F a directed graph D(F ) (not
to be confused with the factor graph!) as follows. Associate a vertex to each
of the 2N literals (for instance we have one vertex for x1 and one vertex for
x1). Whenever a clause like e.g. x1 ∨ x2 appears in the formula, we have two
implications: if x1 = 1 then x2 = 1; if x2 = 0 then x1 = 0. Represent them
graphically by drawing an oriented edge from the vertex x1 toward x2, and an
oriented edge from x2 to x1. Prove that the F is UNSAT if and only if there
exists a variable index i ∈ {1, . . . , N} such that: D(F ) contains a directed
path from xi to xi, and a directed path from xi to xi. [Hint: Consider the UCP
procedure described above and rephrase it in terms of the directed graph D(F ).
Show that it can be regarded as an algorithm for finding a pair of paths from
xi to xi and vice-versa in D(F ).]

Let us finally notice that the procedure described above does not give any
clue about an efficient solution of MAX-2SAT, apart from determining whether
the minimum number of violated clauses vanishes or not. As already mentioned
MAX-2SAT is NP-hard.

10.2.2 A general complete algorithm
{se:dpll}

As soon as we allow an unbounded number of clauses of length 3 or larger, sat-
isfiability becomes an NP-complete problem. Exercise 10.3 shows how the UCP
strategy fails: fixing a variable in a 3-clause may leave a 2-clause. As a conse-
quence, UCP may halt without contradictions and produce a residual formula
containing clauses which were not present in the original formula. Therefore, it
can be that the partial assignment produced by UCP cannot be extended to a
global SAT assignment even if the original formula is SAT. Once a contradiction
is found, it may be necessary to change any of the choices made so far in order
to find a SAT assignment (as opposite to 2SAT where only the last choice had
to be changed). The exploration of all such possibilities is most conveniently
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described through a decision tree. Each time that a contradiction is found, the
search algorithm backtracks to the last choice for which both possibilities were
not explored.

The most widely used complete algorithms (i.e. algorithms which are able
to either find a satisfying assignment, or prove that there is no such assignment)
rely on this idea. They are known under the name DPLL, from the initials of
their inventors, Davis, Putnam, Logemann and Loveland. The basic recursive
process is best explained on an example, as in Fig. 10.3. Its structure can be
summarized in few lines:

DPLL

Input: A CNF formula F.

Output: A SAT assignment, or a message ‘F is UNSAT’.

1. Initialize n = 0, and G(0) = F.

2. If G(n) contains no clauses, return the assignment xi = 0 for

each i present in G(n) and stop.

3. If G contains the empty clause return the message ‘F is UNSAT’

and stop.

4. Select a variable index i among those which have not yet been fixed.

5. Let G(n + 1) be the formula obtained from G(n) by fixing xi =
1.

6. Set n← n + 1 and go to 2.

7. Set n← n− 1. (No SAT assignment was found such that xi = 1.)

8. Let G(n + 1) be the formula obtained from G(n) by fixing xi =
0.

9. Set n← n + 1 and go to 2.

The algorithm keeps track of the current satisfiability formula as G(n). As shown
in Fig. 10.3 the algorithm state can be represented as a node in the decision tree.
The index n corresponds to the current depth in this tree.

It is understood that, whenever a variable is fixed (instructions 5 and 8

above), all the clauses in which that variable appears are reduced. More precisely,
suppose that the literal xi appears in a clause: the clause is eliminated if one fixes
xi = 1, and it is shortened (by elimination of xi) if one fixes xi = 0. Vice-versa, if
the literal xi is present, the clause is eliminated if one fixes xi = 0 and shortened
in the opposite case.

In the above pseudo-code, we did not specify how to select the next variable
to be fixed in step 4. Various versions of the DPLL algorithm differ in the order
in which the variables are taken in consideration and the branching process is
performed. Unit clause propagation can be rephrased in the present setting as
the following rule: whenever the formula G(n) contains clauses of length 1, xi

must be chosen among the variables appearing in such clauses. In such a case,
no real branching takes place. For instance, if the literal xi appears in a unit
clause, setting xi = 0 immediately leads to an empty clause and therefore to a
stop of the process: one is obviously forced to set xi = 1.
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Apart from the case of unit clauses, deciding on which variable the next
branching will be done is an art, and can result in very different performances.
For instance, it is a good idea to branch on a variable which appears in many
clauses, but other criteria, like the number of UCP that a branching will generate,
can also be used. It is customary to characterize the performances of this class of
algorithms by the number of branching points it generates. This does not count
the actual number of operations executed, which may depend on the heuristic.
However, for any reasonable heuristics, the actual number of operations is within
a polynomial factor (in the instance size) from the number of branchings and
such a factor does not affect the leading exponential behavior.

Whenever the DPLL procedure does not return a SAT assignment, the for-
mula is UNSAT: a representation of the explored search tree provides a proof.
This is sometimes also called an UNSAT certificate. Notice that the length of
an UNSAT certificate is (in general) larger than polynomial in the input size.
This is at variance with a SAT certificate, which is provided, for instance, by a
particular SAT assignment.

Exercise 10.6 Resolution and DPLL.

(i) A powerful approach to proving that a formula is UNSAT relies on the
idea of the resolution proof. Imagine that F contains two clauses: xj∨A,
and xj ∨B, where A and B are subclauses. Show that these two clauses
automatically imply the resolvent on xj , that is the clause A ∨B.

(ii) A resolution proof is constructed by adding resolvent clauses to F . Show
that, if this process produces an empty clause, then the original formula
is necessarily UNSAT. An UNSAT certificate is simply given by the se-
quence of resolvents leading to the empty clause.

(iii) Although this may look different from DPLL, any DPLL tree is an exam-
ple of resolution proof. To see this proceed as follows. Label each ‘UNSAT’
leave of the DPLL tree by the resolution of a pair of clauses of the origi-
nal formula which are shown to be contradictory on this branch (e.g. the
leftmost such leaf in Fig. 10.3 corresponds to the pair of initial clauses
x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3, so that it can be labeled by the resolvent
of these two clauses on x3, namely x1 ∨ x2). Show that each branching
point of the DPLL tree can be labeled by a clause which is a resolvent of
the two clauses labeling its children, and that this process, when carried
on an UNSAT formula, produces a root (the top node of the tree) which
is an empty clause.

10.2.3 Incomplete search
{se:Schoning}

As we have seen above, proving that a formula is SAT is much easier than
proving that it is UNSAT: one ‘just’ needs to exhibit an assignment that satisfies
all the clauses. One can therefore relax the initial objective, and look for an
algorithm that only tries to deal with the first task. This is often referred to
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Fig. 10.3. A sketch of the DPLL algorithm, acting on the formula
(x1 ∨ x2 ∨ x3)∧(x1 ∨ x3 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x4)∧(x2 ∨ x3 ∨ x4)∧
(x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2 ∨ x4). In order to get a more readable
figure, the notation has been simplified: a clause like (x1 ∨ x2 ∨ x4) is denoted
here as (1̄ 2 4). One fixes a first variable, here x1 = 0. The problem is then
reduced: clauses containing x1 are eliminated, and clauses containing x1 are
shortened by eliminating the literal x1. Then one proceeds by fixing a second
variable, etc. . . At each step, if a unit clause is present, the next variable to be
fixed is chosen among the those appearing in unit clauses. This corresponds
to the unit clause propagation (UCP) rule. When the algorithm finds a con-
tradiction (two unit clauses fixing a variable simultaneously to 0 and to 1), it
backtracks to the last not-yet-completed branching point and explores another
choice for the corresponding variable. In this case for instance, the algorithm
first fixes x1 = 0, then it fixes x2 = 0, which implies through UCP that x3 = 0
and x3 = 1. This is a contradiction, and therefore the algorithm backtracks to
the last choice, which was x2 = 0, and tries instead the other choice: x2 = 1,
etc. . . Here we have taken the naive rule of branching in the fixed order given by
the clause index.{fig:DPL_example}

as an incomplete search algorithm. Such an algorithm can either return a
satisfying assignment or just say ‘I do not know’ whenever it is unable to find
one (or to prove that the formula is UNSAT).

A simple incomplete algorithm, due to Schöning, is based on the simple ran-
dom walk routine:

Walk( F )

Input: A CNF formula F.

Output: A SAT assignment, or a message ‘I do not know’.
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1. Assign to each variable a random value 0 or 1 with probability

1/2.

2. Repeat 3N times:

3. If the current assignment satisfies F return it and stop.

4. Choose an unsatisfied clause uniformly at random.

5. Choose a variable xi uniformly at random among the ones belonging

to this clause.

6. Flip it (i.e. set it to 0 if it was 1 and vice-versa).

For this algorithm one can obtain a guarantee of performance:

Proposition 10.1 Denote by p(F ) the probability that this routine, when ex-
ecuted on a formula F , returns a satisfying assignment. If F is SAT, then
p(F ) ≥ pN where

pN =
2

3

(
K

2(K − 1)

)N

. (10.2)

One can therefore run the routine many times (with independent random num-
bers each time) in order to increase the probability of finding a solution. Suppose
that the formula is SAT. If the routine is run 20/pN times, the probability of
not finding any solution is (1 − pN )20/pN ≤ e−20. While this is of course not a
proof of unsatisfiability, it is very close to it. In general, the time required for
this procedure to reduce the error probability below any fixed ε grows as

τN
.
=

(
2(K − 1)

K

)N

. (10.3)

This simple randomized algorithm achieves an exponential improvement over the
naive exhaustive search which takes about 2N operations.

Proof: Let us now prove the lower bound (10.2) on the probability of finding
a satisfying assignment during a single run of the routine Walk( · ). Since, by
assumption, F is SAT, we can consider a particular SAT assignment, let us say
x∗. Let xt be the assignment produced by Walk( · ) after t spin flips, and dt be
the Hamming distance between x∗ and xt. Obviously, at time 0 we have

P{d0 = d} =
1

2N

(
N

d

)
. (10.4)

Since x∗ satisfies F , each clause is satisfied by at least one variable as assigned
in x∗. Mark exactly one such variable per clause. Each time Walk( · ) chooses a
violated clause, it flips a marked variable with probability 1/K, reducing the
Hamming distance by one. Of course, the Hamming distance can decrease also
when another variable is flipped (if more than one variable satisfies that clauses

in x∗). In order to get a bound we introduce an auxiliary integer variable d̂t

which decreases by one each time a marked variable is selected, and increases
by one (the maximum possible increase in Hamming distance due to a single
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flip) otherwise. If we choose the initial condition d̂0 = d0, it follows from the

previous observations that dt ≤ d̂t for any t ≥ 0. We can therefore upper bound
the probability that Walk( · ) finds a solution by the probability that d̂t = 0 for

some 0 ≤ t ≤ 3N . But the random process d̂t = 0 is simply a biased random
walk on the half-line with initial condition (10.4): at each time step it moves to
the right with probability 1/K and to the right with probability 1 − 1/K. The
probability of hitting the origin can then be estimated as in Eq. (10.2), as shown
in the following exercise.

Exercise 10.7 Analysis of the biased random walk d̂t.

(i) Show that the probability for d̂t to start at position d at t = 0 and be at
the origin at time t is

P
{
d̂0 = d ; d̂t = 0

}
=

1

2N

(
N

d

)
1

Kt

(
t

t−d
2

)
(K − 1)

t−d
2 (10.5)

for t+ d even, and vanishes otherwise.

(ii) Use Stirling’s formula to derive an approximation of this probability to

the leading exponential order: P
{
d̂0 = d ; d̂t = 0

} .
= exp{−NΨ(θ, δ)},

where θ = t/N and δ = d/N .

(iii) Minimize Ψ(θ, δ) with respect to θ ∈ [0, 3] and δ ∈ [0, 1], and show
that the minimum value is Ψ∗ = log[2(K − 1)/K]. Argue that pN

.
=

exp{−NΨ∗} to the leading exponential order.

�

Notice that the above algorithm applies a very noisy strategy. While ‘fo-
cusing’ on unsatisfied clauses, it makes essentially random steps. The opposite
philosophy would be that of making greedy steps. An example of ‘greedy’ step
is the following: flip a variable which will lead to the largest positive increase in
the number of satisfied clause.

There exist several refinements of the simple random walk algorithm. One of
the greatest improvement consists in applying a mixed strategy: With probability
p, pick an unsatisfied clause, and flip a randomly chosen variable in this clause
(as in Walk); With probability 1 − p, perform a ‘greedy’ step as defined above.

This strategy works reasonably well if p is properly optimized. The greedy
steps drive the assignment toward ‘quasi-solutions’, while the noise term allows
to escape from local minima.

10.3 Random K-satisfiability ensembles
{se:sat_random_intro}

Satisfiability is NP-complete. One thus expects a complete algorithm to take
exponential time in the worst case. However empirical studies have shown that
many formulas are very easy to solve. A natural research direction is therefore
to characterize ensembles of problems which are easy, separating them from
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those that are hard. Such ensembles can be defined by introducing a probability
measure over the space of instances.

One of the most interesting family of ensembles is random K-SAT. An
instance of random K-SAT contains only clauses of length K. The ensemble is
further characterized by the number of variables N , and the number of clauses
M , and denoted as SATN (K,M). A formula in SATN (K,M) is generated by se-
lecting M clauses of size K uniformly at random among the

(
N
K

)
2K such clauses.

Notice that the factor graph associated to a random K-SAT formula from the
SATN (K,M) ensemble is in fact a random GN (K,M) factor graph.

It turns out that a crucial parameter characterizing the random K-SAT en-
semble is the clause density α ≡ M/N . We shall define the ‘thermodynamic’
limit as M → ∞, N → ∞, with fixed density α. In this limit, several important
properties of random formulas concentrate in probability around their typical
values.

As in the case of random graphs, it is sometimes useful to consider slight
variants of the above definition. One such variant is the SATN (K,α) ensemble.
A random instance from this ensemble is generated by including in the formula
each of the

(
N
K

)
2K possible clauses independently with probability αN2−K/

(
N
K

)
.

Once again, the corresponding factor graph will be distributed according to the
GN (K,α) ensemble introduced in Chapter 9. For many properties, differences
between such variants vanish in the thermodynamic limit (this is analogous to
the equivalence of different factor graph ensembles).

10.3.1 Numerical experiments

Using the DPLL algorithm, one can investigate the properties of typical instances
of the random K-SAT ensemble SATN (K,M). Figure 10.4 shows the probability
PN (K,α) that a randomly generated formula is satisfiable, for K = 2 and K = 3.
For fixed K and N , this is a decreasing function of α, which goes to 1 in the
α → 0 limit and goes to 0 in the α → ∞ limit. One interesting feature in
these simulations is the fact that the crossover from high to low probability
becomes sharper and sharper when N increases. This numerical result points
at the existence of a phase transition at a finite value αc(K): for α < αc(K)
(α > αc(K)) a random K-SAT formula is SAT (respectively, UNSAT) with
probability approaching 1 as N → ∞.

The conjectured phase transition in random satisfiability problems with K ≥
3 has drawn considerable attention. One important reason comes from the study
of the computational effort needed to solve the problem. Figure 10.5 shows the
typical number of branching nodes in the DPLL tree required to solve a typical
random 3-SAT formula. One may notice two important features: For a given value
of the number of variables N , the computational effort has a peak in the region
of clause density where a phase transition seems to occur (compare to Fig. 10.4).
In this region it also increases rapidly with N . Looking carefully at the datas
one can distinguish qualitatively three different regions: at low α the solution is
‘easily’ found and the computer time grows polynomially; at intermediate α, in
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Fig. 10.4. Probability that a formula generated from the random K-SAT en-
semble is satisfied, plotted versus the clause density α. Left: K = 2, right: K = 3.
The curves have been generated using a DPLL algorithm. Each point is the re-
sult of averaging over 104 random formulas. The curves for K = 2 correspond to
formulas of size N = 50, 100, 200, 400 (from right to left). In the case K = 3 the
curves correspond to N = 50 (full line), N = 100 (dashed), N = 200 (dotted).
The transition between satisfiable and unsatisfiable formulas becomes sharper as
N increases. {fig:alphac_SAT_num}

the phase transition region, the problem becomes typically very hard and the
computer time grows exponentially. At larger α, in the region where a random
formula is almost always UNSAT, the problem becomes easier, although the size
of the DPLL tree still grows exponentially with N .

The hypothetical phase transition region is therefore the one where the hard-
est instances of random 3-SAT are located. This makes such a region particularly
interesting, both from the point of view of computational complexity and from
that of statistical physics.

10.4 Random 2-SAT{se:2sat}

From the point of view of computational complexity, 2-SAT is polynomial while
K-SAT is NP-complete for K ≥ 3. It turns out that random 2-SAT is also much
simpler to analyze than the other cases. One important reason is the existence
of the polynomial decision algorithm described in Sec. 10.2.1 (see in particular
Exercise 10.5). This can be analyzed in details using the representation of a 2-
SAT formula as a directed graph whose vertices are associated to literals. One
can then use the mathematical theory of random directed graphs. In particular,
the existence of a phase transition at critical clause density αc(2) = 1 can be
established.

Theorem 10.2 Let PN (K = 2, α) the probability for a SATN (K = 2,M) ran-
dom formula to be SAT. Then

lim
N→∞

PN (K = 2, α) =

{
1 if α < 1 ,
0 if α > 1 .

(10.6)

{thm:2sat_threshold}
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Fig. 10.5. Computational effort of our DPLL algorithm applied to random
3-SAT formulas. Plotted is the average (over 104 instances) of the logarithm of
the number of branching nodes in the search tree, versus the clause density α.
From bottom to top: N = 50, 100, 150, 200.{fig:algoperf_3SAT_num}

Proof: Here we shall prove that a formula is almost surely SAT for α < 1. The
result for α > 1 is a consequence of theorem 10.5 below. We use the directed
graph representation defined in Ex. 10.5. In this graph, define a bicycle of length s
as a path (u,w1, w2, . . . , ws, v), where the wi are literals on s distinct variables,
and u, v ∈ {w1, . . . , ws, w1, . . . , ws}. As we saw in Ex. 10.5, if a formula F is
UNSAT, its directed graph D(F ) has a cycle containing the two literals xi and
xi for some i. From such a cycle one easily builds a bicycle. Therefore:

P(F is UNSAT) ≤ P(D(F )has a bicycle) ≤
N∑

s=2

Ns2s(2s)2Ms+1

(
1

4
(
N
2

)

)s+1

.

(10.7) {eq:proof2sat1}

The sum is over the size s of the bicycle; Ns is an upper bound to
(
N
s

)
, the

number of ways one can choose the s variables; 2s is the choice of literals, given
the variables; (2s)2 is the choice of u, v; Ms+1 is an upper bound to

(
M

s+1

)
, the

choices of the clauses involved in the bicycle; the last factor is the probability
that each of the chosen clauses of the bicycle appears in the random formula. A
direct summation of the series in 10.7 shows that, in the large N limit, the result
behaves as C/N with a fixed C whenever M/(N − 1) < 1. �

10.5 Phase transition in random K(≥ 3)-SAT
{se:Ksat_intro}

10.5.1 Satisfiability threshold conjecture

As noticed above, numerical studies suggest that random K-SAT undergoes a
phase transition between a SAT phase and an UNSAT phase, for any K ≥ 2.
There is a widespread belief that this is indeed true, as formalized by the following
conjecture:
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Conjecture 10.3 For any K ≥ 2, there exists a threshold αc(K) such that:

lim
N→∞

PN (K,α) =

{
1 if α < αc(K) ,
0 if α > αc(K) .

(10.8)

{conj:sat_threshold}

As discussed in the previous Section, this Conjecture is proved in the case K = 2.
The existence of a phase transition is still an open mathematical problem for
larger K, although the following theorem gives some strong support:

{thm:Friedgut}
Theorem 10.4 (Friedgut) Let PN (K,α) the probability for a random formula
from the SATN (K,M) ensemble to be satisfiable, and assume K ≥ 2. Then there

exists a sequence of α
(N)
c (K) such that, for any ε > 0,

lim
N→∞

PN (K,α) =

{
1 if α < α

(N)
c (K) − ε ,

0 if α > α
(N)
c (K) + ε ,

(10.9)

In other words, the crossover from SAT to UNSAT becomes sharper and sharper
as N increases. For N large enough, it takes place in a window smaller than
any fixed width ε. The ‘only’ missing piece to prove the satisfiability threshold

conjecture is the convergence of α
(N)
c (K) to some value αc(K) as N → ∞.

10.5.2 Upper bounds
{sec:UpperBoundSat}

Rigorous studies have allowed to establish bounds on the satisfiability threshold

α
(N)
c (K) in the large N limit. Upper bounds are obtained by using the first

moment method. The general strategy is to introduce a function U(F ) acting on
formulas, with values in N, such that:

U(F ) =

{
0 if F is UNSAT,
≥ 1 otherwise.

(10.10){eq:satUBcond}

Therefore, if F is a random K-SAT formula

P {F is SAT} ≤ EU(F ) . (10.11){eq:sat1mom}

The inequality becomes an equality if U(F ) = I(F is SAT). Of course, we do
not know how to compute the expectation in this case. The idea is to find some
function U(F ) which is simple enough that EU(F ) can be computed, and with
an expectation value that goes to zero as N → ∞, for large enough α.

The simplest such choice is U(F ) = Z(F ), the number of SAT assignments
(this is the analogous of a “zero-temperature” partition function). The expec-
tation EZ(F ) is equal to the number of assignments, 2N , times the probability
that an assignment is SAT (which does not depend on the assignment). Consider
for instance the all zeros assignment xi = 0, i = 1, . . . , N . The probability that
it is SAT is equal to the product of the probabilities that is satisfies each of
the M clauses. The probability that the all zeros assignment satisfies a clause
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is (1 − 2−K) because a K-clause excludes one among the 2K assignments of
variables which appear in it. Therefore

EZ(F ) = 2N (1 − 2−K)M = exp
[
N
(
log 2 + α log(1 − 2−K)

)]
. (10.12){eq:satZann}

This result shows that, for α > αUB,1(K), where

αUB,1(K) ≡ − log 2/ log(1 − 2−K) , (10.13){eq:alphaub1sat}

EZ(F ) is exponentially small at large N . Equation (10.11) implies that the
probability of a formula being SAT also vanishes at large N for such an α:

{thm:satupb1}
Theorem 10.5 If α > αUB,1(K), then limN→∞ P{F is SAT} = 0. Therefore

α
(N)
c (K) < αUB,1(K) + δ for any δ > 0 and N large enough.

One should not expect this bound to be tight. The reason is that, in the
SAT phase, Z(F ) takes exponentially large values, and its fluctuations tend to
be exponential in the number of variables.
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Example 10.6 As a simple illustration consider a toy example: the random
1-SAT ensemble SATN (1, α). A formula is generated by including each of the
2N literals as a clause independently with probability α/2 (we assume of course
α ≤ 2). In order for the formula to be SAT, for each of the N variables, at
most 1 of the corresponding literals must be included. We have therefore

PN (K = 1, α) = (1 − α2/4)N . (10.14)

In other words, the probability for a random formula to be SAT goes exponen-
tially fast to 0 for any α > 0: αc(K = 1) = 0 (while αUB,1(K) = 1). Consider
now the distribution of Z(F ). If F is SAT, then Z(F ) = 2n, where n is the
number of clauses such that none of the corresponding literals is included in
F . One has:

P {Z(F ) = 2n} =

(
N

n

) (
1 − α

2

)2n [
α
(
1 − α

2

)]N−n

, (10.15)

for any n ≥ 0. We shall now use this expression to compute EZ(F ) in a
slightly indirect but instructive fashion. First, notice that Eq. (10.15) implies
the following large deviation principle for n > 0:

P
{
Z(F ) = 2Nν

} .
= exp{−N Iα(ν)} (10.16)

Iα(ν) ≡ −H(ν) − (1 + ν) log(1 − α/2) − (1 − ν) logα .(10.17)

We now compute the expectation of Z(F ) via the saddle point approximation

EZ(F )
.
=

∫
e−NIα(ν)+Nν log 2dν

.
= exp

{
N max

ν
[−Iα(ν) + ν log 2]

}
.(10.18)

The maximum is achieved at ν∗ = 1−α/2. One finds Iα(ν∗) = log(1−α/2) +
(α/2) log 2 > 0: the probability of having Z(F )

.
= 2Nν∗

is exponentially small.
On the other hand −Iα(ν∗) + ν∗ log 2 = log(2 − α) > 0 for α < 1, the factor
2Nν∗

overcomes the exponentially small probability of having such a large Z(F ),
resulting in an exponentially large EZ(F ).

Exercise 10.8 Repeat the derivation of Theorem 10.5 for the SATN (K,α)
ensemble (i.e. compute EZ(F ) for this ensemble and find for which values of α
this expectation is exponentially small). Show that the upper bound obtained
in this case is α = 2K log 2. This is worse than the previous upper bound
αUB,1(K), although one expects the threshold to be the same. Why? [Hint: The
number of clauses M in a SATN (K,α) formula has binomial distribution with
parameters N , and α. What values of M provide the dominant contribution to
EZ(F )?]

In order to improve upon Theorem 10.5 using the first moment method, one
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needs a better (but still simple) choice of the function U(F ). A possible strategy
consists in defining some small subclass of ‘special’ SAT assignments, such that
if a SAT assignment exists, then a special SAT assignment exists too. If the
subclass is small enough, one can hope to reduce the fluctuations in U(F ) and
sharpen the bound.

One choice of such a subclass consists in ‘locally maximal’ SAT assignments.
Given a formula F , an assignment x for this formula is said to be a locally
maximal SAT assignment if and only if: (1) It is a SAT assignment, (2) for any
i such that xi = 0, the assignment obtained by flipping the i-th variable from 0
to 1 is UNSAT. Define U(F ) as the number of locally maximal SAT assignments
and apply the first moment method to this function. This gives:

{thm:satupb2}
Theorem 10.7 For any K ≥ 2, let αUB,2(K) be the unique positive solution of
the equation:

α log(1 − 2−K) + log

[
2 − exp

(
− Kα

2K − 1

)]
= 0 . (10.19) {eq:alphaub2sat}

Then α
(N)
c (K) ≤ αUB,2(K) for large enough N .

The proof is left as the following exercise:

Exercise 10.9 Consider an assignment x where exactly L variables are set to
0, the remaining N −L ones being set to 1. Without loss of generality, assume
x1, . . . , xL to be the variables set to zero.

(i) Let p be the probability that a clause constrains the variable x1, given
that the clause is satisfied by the assignment x (By a clause constraining
x1, we mean that the clause becomes unsatisfied if x1 is flipped from 0
to 1). Show that p =

(
N−1
K−1

)
[(2K − 1)

(
N
K

)
]−1.

(ii) Show that the probability that variable x1 is constrained by at least one of
the M clauses, given that all these clauses are satisfied by the assignment
x, is equal to q = 1 − (1 − p)

M

(iii) Let Ci be the event that xi is constrained by at least one of the M clauses.
If C1, . . . , CL were independent events, under the condition that x satisfies
F , the probability that x1, . . . xL are constrained would be equal qL. Of
course C1, . . . , CL are not independent. Find an heuristic argument to
show that they are anti-correlated and their joint probability is at most
qL (consider for instance the case L = 2).

(iv) Show that E [U(F )] = (1− 2−K)M
∑N

L=0

(
N
L

)
qL = (1− 2−K)M [1 + q]

N

and finish the proof by working out the large N asymptotics of this
formula (with α = M/N fixed).

In Table 10.1 we report the numerical values of the upper bounds αUB,1(K)
and αUB,2(K) for a few values of K. These results can be slightly improved
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upon by pursuing the same strategy. For instance, one may strengthen the con-
dition of maximality to flipping 2 or more variables. However the quantitative
improvement in the bound is rather small.

10.5.3 Lower bounds

Two main strategies have been used to derive lower bounds of α
(N)
c (K) in the

large N limit. In both cases one takes advantage of Theorem 10.4: In order to

show that α
(N)
c (K) ≥ α∗, it is sufficient to prove that a random SATN (K,M)

formula, with M = αN , is SAT with non vanishing probability in the N → ∞
limit.

The first approach consists in analyzing explicit heuristic algorithms for find-
ing SAT assignments. The idea is to prove that a particular algorithm finds a
SAT assignment with finite probability as N → ∞ when α is smaller than some
value.

One of the simplest such bounds is obtained by considering unit clause prop-
agation. Whenever there exist unit clauses, assign one of the variables appearing
in these clauses in order to satisfy it, and proceed recursively. Otherwise, chose
a variable uniformly at random among those which are not yet fixed assign it to
0 or 1 with probability 1/2. The algorithm halts if it finds a contradiction (i.e. a
couple of opposite unit clauses) or if all the variables have been assigned. In the
latter case, the found assignment satisfies the formula.

This algorithm is then applied to a random K-SAT formula with clause den-
sity α. It can be shown that a SAT assignment is found with positive probability

for α small enough: this gives the lower bound α
(N)
c (K) ≥ 1

2

(
K−1
K−2

)K−2
2K

K in

the N → ∞ limit. In the Exercise below we give the main steps of the reasoning
for the case K = 3, referring to the literature for more detailed proofs.
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{ex:UCPAnalysis}
Exercise 10.10 After T iterations, the formula will contain 3-clauses, as well
as 2-clauses and 1-clauses. Denote by Cs(T ) the set of s-clauses, s = 1, 2, 3, and
by Cs(T ) ≡ |Cs(T )| its size. Let V(T ) be the set of variables which have not yet
been fixed, and L(T ) the set of literals on the variables of V(T ) (obviously we
have |L(T )| = 2|V(T )| = 2(N − T )). Finally, if a contradiction is encountered
after Thalt steps, we adopt the convention that the formula remains unchanged
for all T ∈ {Thalt, . . . , N}.

(i) Show that, for any T ∈ {1, . . . , N}, each clause in Cs(T ) is uniformly
distributed among the s-clauses over the literals in L(T ).

(ii) Show that the expected change in the number of 3- and 2-clauses is

given by E [C3(T + 1) − C3(T )] = − 3C3(T )
N−T and E [C2(T + 1) − C2(T )] =

3C3(T )
2(N−T ) −

2C2(T )
N−T .

(iii) Show that, conditional on C1(T ), C2(T ), and C3(T ), the change in the

number of 1-clauses is distributed as follows: C1(T + 1) − C1(T )
d
=

−I(C1(T ) > 0) + B
(
C2(T ), 1

N−T

)
. (We recall that B(n, p) denotes a

binomial random variable of parameters n, and p (cf. App. A)).

(iv) It can be shown that, as N → ∞ at fixed t = T/N , the variables
C2/3(T )/N concentrate around their expectation values, and these con-
verge to smooth functions cs(t). Argue that these functions must solve
the ordinary differential equations: dc3

dt = − 3
1−tc3(t);

dc2

dt = 3
2(1−t)c3(t) −

2
1−tc2(t). Check that the solutions of these equations are: c3(t) = α(1−t)3,
c2(t) = (3α/2)t(1 − t)2.

(v) Show that the number of unit clauses is a Markov process described by

C1(0) = 0, C1(T + 1) − C1(T )
d
= −I(C1(T ) > 0) + η(T ), where η(T )

is a Poisson distributed random variable with mean c2(t)/(1 − t), where
t = T/N . Given C1 and a time T , show that the probability that there
is no contradiction generated by the unit clause algorithm up to time T

is
∏T

τ=1 (1 − 1/(2(N − τ)))
[C1(τ)−1]I(C1(τ≥1)

.

(vi) Let ρ(T ) be the probability that there is no contradiction up to
time T . Consider T = N(1 − ǫ); show that ρ(N(1 − ǫ)) ≥ (1 −
1/(2Nǫ))AN+B P(

∑N(1−ǫ)
τ=1 C1(τ) ≤ AN + B). Assume that α is such

that, ∀t ∈ [0, 1 − ǫ] : c2(t)/(1 − t) < 1. Show that there exists A,B

such that limN→∞ P(
∑N(1−ǫ)

τ=1 C1(τ) ≤ AN + B) is finite. Deduce that
in the large N limit, there is a finite probability that, at time N(1 − ǫ),
the unit clause algorithm has not produced any contradiction so far, and
C1(N(1 − ǫ)) = 0.

(vii) Conditionnaly to the fact that the algorithm has not produced any con-
tradiction and C1(N(1 − ǫ)) = 0, consider the problem that remains at
time T = N(1 − ǫ). Transform each 3-clause into a 2-clause by removing
from it a uniformly random variable. Show that one obtains, for ǫ small
enough, a random 2-SAT problem with a small clause density ≤ 3ǫ2/2,
so that this is a satisfiable instance.

(viii) Deduce that, for α < 8/3, the unit clause propagation algorithm finds a
solution with a finite probability
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More refined heuristics have been analyzed using this type of method and

lead to better lower bounds on α
(N)
c (K). We shall not elaborate on this here, but

rather present a second strategy, based on a structural analysis of the problem.
The idea is to use the second moment method. More precisely, we consider a
function U(F ) of the SAT formula F , such that U(F ) = 0 whenever F is UNSAT
and U(F ) > 0 otherwise. We then make use of the following inequality:

P{F is SAT} = P{U(F ) > 0} ≥ [E U(F )]2

E[U(F )2]
. (10.20){eq:sat2mom}

The present strategy is more delicate to implement than the first moment method,

used in Sec. 10.5.2 to derive upper bounds on α
(N)
c (K). For instance, the sim-

ple choice U(F ) = Z(F ) does not give any result: It turns out that the ratio⋆
[EZ(F )]2/E[Z(F )2] is exponentially small in N for any non vanishing value of
α, so that the inequality (10.20) is useless. Again one needs to find a function
U(F ) whose fluctuations are smaller than the number Z(F ) of SAT assignments.
More precisely, one needs the ratio [EU(F )]2/E[U(F )2] to be non vanishing in
the N → ∞ limit.

A successful idea uses a weighted sum of SAT assignments:

U(F ) =
∑

x

M∏

a=1

W (x, a) . (10.21)

Here the sum is over all the 2N assignments, and W (x, a) is a weight associated
with clause a. This weight must be such that W (x, a) = 0 when the assignment
x does not satisfy clause a, and W (x, a) > 0 otherwise. Let us choose a weight
which depends on the number r(x, a) of variables which satisfy clause a in the
assignment x:

W (x, a) =

{
ϕ(r(x, a)) if r(x, a) ≥ 1,
0 otherwise.

(10.22)

It is then easy to compute the first two moments of U(F ):

EU(F ) = 2N

[
2−K

K∑

r=1

(
K

r

)
ϕ(r)

]M

, (10.23)

E
[
U(F )2

]
= 2N

N∑

L=0

(
N

L

)
[gϕ(N,L)]

M
. (10.24)

Here gϕ(N,L) is the expectation value of the product W (x, a)W (y, a) when a
clause a is chosen uniformly at random, given that x and y are two assignments
of N variables which agree on exactly L of them.

In order to compute gϕ(N,L), it is convenient to introduce two binary vectors
~u,~v ∈ {0, 1}K . They encode the following information: Consider a clause a, fix
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us = 1 if in the assignment x the s-th variable of clause a satisfies the clause,
and us = 0 otherwise. The components of ~v are defined similarly but with the
assignment y. Furthermore, we denote by d(~u,~v) the Hamming distance between
these vectors, and by w(~u), w(~v) their Hamming weights (number of non zero
components). Then

gϕ(N,L) = 2−K
∑

~u,~v

′ ϕ (w(~u))ϕ (w(~v))

(
L

N

)d(~u,~v)(
1 − L

N

)K−d(~u,~v)

. (10.25)

Here the sum
∑′

runs over K-component vectors ~u, ~v with at least one non zero
component. A particularly simple case is ϕ(r) = λr. Denoting z = L/N , one
finds:

gw(N,L) = 2−K
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
.

(10.26)
The first two moments can be evaluated from Eqs. (10.23), (10.24):

EU(F )
.
= exp{Nh1(λ, α)} , E [U(F )2]

.
= exp{N max

z
h2(λ, α, z)} , (10.27)

where the maximum is taken over z ∈ [0, 1] and

h1(λ, α) ≡ log 2 − αK log 2 + α log
[
(1 + λ)K − 1

]
, (10.28)

h2(λ, α, z) ≡ log 2 − z log z − (1 − z) log(1 − z) − αK log 2 + (10.29)

+α log
([

(λ2 + 1)z + 2λ(1 − z)
]K − 2 [z + λ(1 − z)]

K
+ zk

)
.

Evaluating the above expression for z = 1/2 one finds h2(λ, α, 1/2) = 2h1(λ, α).
The interpretation is as follows. Setting z = 1/2 amounts to assuming that the
second moment of U(F ) is dominated by completely uncorrelated assignments
(two uniformly random assignments agree on about half of the variables). This
results in the factorization of the expectation E [U(F )2] ≈ [EU(F )]2.

Two cases are possible: either the maximum of h2(λ, α, z) over z ∈ [0, 1] is
achieved only at z = 1/2 or not.

(i) In the latter case maxz h2(λ, α, z) > 2h1(λ, α) strictly, and therefore the
ratio [EU(F )]2/E[U(F )2] is exponentially small in N , the second moment
inequality (10.20) is useless.

(ii) If on the other hand the maximum of h2(λ, α, z) is achieved only at z = 1/2,
then the ratio [EU(F )]2/E[U(F )2] is 1 to the leading exponential order.
It is not difficult to work out the precise asymptotic behavior (i.e. to com-
pute the prefactor of the exponential). One finds that [EU(F )]2/E[U(F )2]

remains finite when N → ∞. As a consequence α ≤ α
(N)
c (K) for N large

enough.
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Table 10.1 Satisfiability thresholds for random K-SAT. We report the lower
bound from Theorem (10.8) and the upper bounds from Eqs. (10.13) and (10.19).

K 3 4 5 6 7 8 9 10

αLB(K) 2.548 7.314 17.62 39.03 82.63 170.6 347.4 701.5
αUB,1(K) 5.191 10.74 21.83 44.01 88.38 177.1 354.5 709.4
αUB,2(K) 4.666 10.22 21.32 43.51 87.87 176.6 354.0 708.9

{tab:alphabounds}

A necessary condition for the second case to occur is that z = 1/2 is a local
maximum of h2(λ, α, z). This implies that λmust be the (unique) strictly positive
root of:

(1 + λ)K−1 =
1

1 − λ
. (10.30) {eq:lambdadef}

We have thus proved that:
{thm:KSAT_lowerbound}

Theorem 10.8 Let λ be the positive root of Eq. (10.30), and the function h2( · )
be defined as in Eq. (10.29). Assume that h2(λ, α, z) achieves its maximum, as a
function of z ∈ [0, 1] only at z = 1/2. Then a random SATN (K,α) is SAT with
probability approaching one as N → ∞.

Let αLB(K) be the largest value of α such that the hypotheses of this Theorem
are satisfied. The Theorem implies an explicit lower bound on the satisfiability

threshold: α
(N)
c (K) ≥ αLB(K) in the N → ∞ limit. Table 10.1 summarizes some

of the values of the upper and lower bounds found in this Section for a few values
of K. In the large K limit the following asymptotic behaviors can be shown to
hold:

αLB(K) = 2K log 2 − 2(K + 1) log 2 − 1 + o(1) , (10.31)

αUB,1(K) = 2K log 2 − 1

2
log 2 + o(1) . (10.32)

In other words, the simple methods exposed in this Chapter allow to determine
the satisfiability threshold with a relative error behaving as 2−K in the large
K limit. More sophisticated tools, to be discussed in the next Chapters, are
necessary for obtaining sharp results at finite K.

{ex:SecondMoment}
Exercise 10.11 [Research problem] Show that the choice of weight ϕ(r) = λr

is optimal: all other choices for ϕ(r) give a worse lower bound. What strategy
could be followed to improve the bound further?

Notes

The review paper (Gu, Purdom, Franco and Wah, 2000) is a rather comprehen-
sive source of information on the algorithmic aspects of satisfiability. The reader
interested in applications will also find there a detailed and referenced list.

Davis and Putnam first studied an algorithm for satisfiability in (Davis and
Putnam, 1960). This was based on a systematic application of the resolution
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rule. The backtracking algorithm discussed in the main text was introduced in
(Davis, Logemann and Loveland, 1962).

Other ensembles of random CNF formulas have been studied, but it turns
out it is not so easy to find hard formulas. For instance take N variables, and
generate M clauses independently according to the following rule. In a clause
a, each of the variables appears as xi or xi with the same probability p ≤ 1/2,
and does not appear with probability 1− 2p. The reader is invited to study this
ensemble; an introduction and guide to the corresponding literature can be found ⋆
in (Franco, 2000). Another useful ensemble is the “2 + p” SAT problem which
interpolates between K = 2 and K = 3 by picking pM 3-clauses and (1 − p)M
2-clauses, see (Monasson, Zecchina, Kirkpatrick, Selman and Troyansky, 1999)

The polynomial nature of 2-SAT is discussed in (Cook, 1971). MAX-2SAT
was shown to be NP-complete in (Garey, Johnson and Stockmeyer, 1976).

Schöning’s algorithm was introduced in (Schöning, 1999) and further dis-
cussed in (Schöning, 2002). More general random walk strategies for SAT are
treated in (Papadimitriou, 1991; Selman and Kautz, 1993; Selman, Kautz and
Cohen, 1994).

The threshold αc = 1 for random 2-SAT was proved in (Chvátal and Reed,
1992), (Goerdt, 1996) and (de la Vega, 1992), but see also (de la Vega, 2001).
The scaling behavior near to the threshold has been analyzed through graph
theoretical methods in (Bollobas, Borgs, Chayes, Kim and Wilson, 2001).

The numerical identification of the phase transition in random 3-SAT, and
the observation that difficult formulas are found near to the phase transition,
are due to Kikpatrick and Selman (Kirkpatrick and Selman, 1994; Selman and
Kirkpatrick, 1996). See also (Selman, Mitchell and Levesque, 1996).

Friedgut’s theorem is proved in (Friedgut, 1999).
Upper bounds on the threshold are discussed in (Dubois and Boufkhad, 1997;

Kirousis, Kranakis, Krizanc and Stamatiou, 1998). Lower bounds for the thresh-
old in random K-SAT based on the analysis of some algorithms were pioneered
by Chao and Franco. The paper (Chao and Franco, 1986) corresponds to Ex-
ercise 10.10, and a generalization can be found in (Chao and Franco, 1990).
A review of this type of methods is provided by (Achlioptas, 2001). (Cocco,
Monasson, Montanari and Semerjian, 2003) gives a survey of the analysis of al-
gorithms based on physical methods. The idea of deriving a lower bound with
the weighted second moment method was discussed in (Achlioptas and Moore,
2005). The lower bound which we discuss here is derived in (Achlioptas and
Peres, 2004); this paper also solves the first question of Exercise 10.11. A sim-
ple introduction to the second moment method in various constraint satisfaction
problems is (Achlioptas, Naor and Peres, 2005), see also (Gomes and Selman,
2005).
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LOW-DENSITY PARITY-CHECK CODES

{ch:LDPC}

Low-density parity-check (LDPC) error correcting codes were introduced in 1963
by Robert Gallager in his Ph.D. thesis. The basic motivation came from the ob-
servation that random linear codes, cf. Section ??, had excellent theoretical per-
formances but were unpractical. In particular, no efficient algorithm was known
for decoding. In retrospect, this is not surprising, since it was later shown that
decoding for linear codes is an NP-hard problem.

The idea was then to restrict the RLC ensemble. If the resulting codes had
enough structure, one could exploit it for constructing some efficient decoding
algorithm. This came of course with a price: restricting the ensemble could spoil
its performances. Gallager’s proposal was simple and successful (but ahead of
times): LDPC codes are among the most efficient codes around.

In this Chapter we introduce one of the most important families of LDPC en-
sembles and derive some of their basic properties. As for any code, one can take
two quite different points of view. The first is to study the code performances27

under optimal decoding. In particular, no constraint is imposed on the computa-
tional complexity of decoding procedure (for instance decoding through a scan
of the whole, exponentially large, codebook is allowed). The second approach
consists in analyzing the code performance under some specific, efficient, decod-
ing algorithm. Depending on the specific application, one can be interested in
algorithms of polynomial complexity, or even require the complexity to be linear
in the block-length.

Here we will focus on performances under optimal decoding. We will derive
rigorous bounds, showing that appropriately chosen LDPC ensembles allow to
communicate reliably at rates close to Shannon’s capacity. However, the main
interest of LDPC codes is that they can be decoded efficiently, and we will discuss
a simple example of decoding algorithm running in linear time. The full-fledged
study of LDPC codes under optimal decoding is deferred to Chapters ??. A more
sophisticated decoding algorithm will be presented and analyzed in Chapter ??.

After defining LDPC codes and LDPC code ensembles in Section 11.1, we
discuss some geometric properties of their codebooks in Section 11.2. In Sec-
tion 11.3 we use these properties to a lower bound on the threshold for reliable
communication. An upper bound follows from information-theoretic considera-

27Several performance parameters (e.g. the bit or block error rates, the information capacity,
etc.) can be of interest. Correspondingly, the ‘optimal’ decoding strategy can vary (for instance
symbol MAP, word MAP, etc.). To a first approximation, the choice of the performance criterion
is not crucial, and we will keep the discussion general as far as possible.

216
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tions. Section 11.4 discusses a simple-minded decoding algorithm, which is shown
to correct a finite fraction of errors.

11.1 Definitions {se:DefLDPC}

11.1.1 Boolean linear algebra

Remember that a code is characterized by its codebook C, which is a subset of
{0, 1}N . LDPC codes are linear codes, which means that the codebook is a
linear subspace of {0, 1}N . In practice such a subspace can be specified through
an M×N matrix H, with binary entries Hij ∈ {0, 1}, and M < N . The codebook
is defined as the kernel of H:

C = {x ∈ {0, 1}N : Hx = 0 } . (11.1)

Here and in all this chapter, the multiplications and sums involved in Hx are
understood as being computed modulo 2. The matrix H is called the parity
check matrix of the code. The size of the codebook is 2N−rank(H), where rank(H)
denotes the rank of the matrix H (number of linearly independent rows). As
rank(H) ≤M , the size of the codebook is |C| ≥ 2N−M . With a slight modification
with respect to the notation of Chapter 1, we let L ≡ N −M . The rate R of the
code verifies therefore R ≥ L/N , equality being obtained when all the rows of H

are linearly independent.
Given such a code, encoding can always be implemented as a linear operation.

There exists a N × L binary matrix G (the generating matrix) such that the
codebook is the image of G: C = {x = Gz , where z ∈ {0, 1}L}. Encoding is
therefore realized as the mapping z 7→ x = Gz. (Notice that the product H G is
a M × L ‘null’ matrix with all entries equal to zero).

11.1.2 Factor graph

In Example 9.5 we described the factor graph associated with one particular
linear code (a Hamming code). The recipe to build the factor graph, knowing
H, is as follows. Let us denote by ia1 , . . . , i

a
k(a) ∈ {1, . . . , N} the column indices

such that H has a matrix element equal to 1 at row a and column iaj . Then the
a-th coordinate of the vector Hx is equal to xia

1
⊕ · · · ⊕ xia

k(a)
. Let PH(x) be the

uniform distribution over all codewords of the code H (hereafter we shall often
identify a code with its parity check matrix). It is given by:

PH(x) =
1

Z

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0) . (11.2)

Therefore, the factor graph associated with PH(x) (or with H) includesN variable
nodes, one for each column of H, and M function nodes (also called, in this
context, check nodes), one for each row. A factor node and a variable node are
joined by an edge if the corresponding entry in H is non-vanishing. Clearly this
procedure can be inverted: to any factor graph with N variable nodes and M
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function nodes, we can associate an M × N binary matrix H, the adjacency
matrix of the graph, whose non-zero entries correspond to the edges of the
graph.

11.1.3 Ensembles with given degree profiles
{se:LDPCegdp}

In Chapter 9 we introduced the ensembles of factor graphs DN (Λ, P ). These
have N variable nodes, and the two polynomials Λ(x) =

∑∞
n=0 Λnx

n, P (x) =∑∞
n=0 Pnx

n define the degree profiles: Λn is the probability that a randomly
chosen variable node has degree n, Pn is the probability that a randomly cho-
sen function node has degree n. We always assume that variable nodes have
degrees ≥ 1, and function nodes have degrees ≥ 2, in order to eliminate triv-
ial cases. The numbers of parity check and variable nodes satisfy the relation
M = NΛ′(1)/P ′(1).

We define the ensemble LDPCN (Λ, P ) to be the ensemble of LDPC codes
whose parity check matrix is the adjacency matrix of a random graph from the
DN (Λ, P ) ensemble. (We will be interested in the limit N → ∞ while keeping the
degree profiles fixed. Therefore each vertex typically connects to a vanishingly
small fraction of other vertices, hence the qualification ‘low density’). The ratio
L/N = (N −M)/N = 1−Λ′(1)/P ′(1), which is a lower bound to the actual rate
R, is called the design rate Rdes of the code (or, of the ensemble). The actual
rate of a code from the LDPCN (Λ, P ) ensemble is of course a random variable,
but we will see below that it is in general sharply concentrated ‘near’ Rdes.

A special case which is often considered is the one of ‘regular’ graphs with
fixed degrees: all variable nodes have degree l and all functions nodes have degree
k, (i.e. P (x) = xk and Λ(x) = xl). The corresponding code ensemble is usually
simply denoted as LDPCN (l, k), or, more synthetically as (l, k). It has design
rate Rdes = 1 − l

k .
Generating a uniformly random graph from the DN (Λ, P ) ensemble is not a

trivial task. The simplest way to by-pass such a problem consists in substituting
the uniformly random ensemble with a slightly different one which has a simple
algorithmic description. One can proceed for instance as follows. First separate
the set of variable nodes uniformly at random into subsets of sizes NΛ0, NΛ1,
. . . , NΛlmax

, and attribute 0 ‘sockets’ to the nodes in the first subset, one socket
to each of the nodes in the second, and so on. Analogously, separate the set of
check nodes into subsets of size MP0, MP1, . . . , MPkmax

and attribute to nodes
in each subset 0, 1, . . . , kmax socket. At this point the variable nodes have NΛ′(1)
sockets, and so have the check nodes. Draw a uniformly random permutation over
NΛ′(1) objects and connect the sockets on the two sides accordingly.

Exercise 11.1 In order to sample a graph as described above, one needs two
routines. The first one separates a set of N objects uniformly into subsets of
prescribed sizes. The second one samples a random permutation over a NΛ′(1).
Show that both of these tasks can be accomplished with O(N) operations
(having at our disposal a random number generator).
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This procedure has two flaws: (i) it does not sample uniformly DN (Λ, P ),
because two distinct factor graphs may correspond to a different number of
permutations. (ii) it may generate multiple edges joining the same couple of
nodes in the graph.

In order to cure the last problem, we shall agree that each time n edges join
any two nodes, they must be erased if n is even, and they must be replaced
by a single edge if n is odd. Of course the resulting graph does not necessarily
have the prescribed degree profile (Λ, P ), and even if we condition on this to be
the case, its distribution is not uniform. We shall nevertheless insist in denoting
the ensemble as LDPCN (Λ, P ). The intuition is that, for large N , the degree
profile is ‘close’ to the prescribed one and the distribution is ‘almost uniform’,
for all our purposes. Moreover, what is really important is the ensemble that is
implemented in practice.

Exercise 11.2 This exercise aims at proving that, for large N , the degree
profile produced by the explicit construction is close to the prescribed one.

(i) Let m be the number of multiple edges appearing in the graph and com-
pute its expectation. Show that Em = O(1) as N → ∞ with Λ and P
fixed.

(ii) Let (Λ′, P ′) be the degree profile produced by the above procedure. De-
note by

d ≡
∑

l

|Λl − Λ′
l| +

∑

k

|Pk − P ′
k| , (11.3)

the ‘distance’ between the prescribed and the actual degree profiles.
Derive an upper bound on d in terms of m and show that it implies
E d = O(1/N).

11.2 Geometry of the codebook
{se:WELDPC}

As we saw in Sec. 6.2, a classical approach to the analysis of error correcting codes
consists in studying the ‘geometric’ properties of the corresponding codebooks.
An important example of such properties is the distance enumerator Nx0

(d),
giving the number of codewords at Hamming distance d from x0. In the case
of linear codes, the distance enumerator does not depend upon the reference
codeword x0 (the reader is invited to prove this simple statement).It is therefore ⋆
customary to take the all-zeros codeword as the reference, and to use the denom-
ination weight enumerator: N (w) = Nx0

(d = w) is the number of codewords
having weight (the number of ones in the codeword) equal to w.

In this section we want to estimate the expected weight enumerator N (w) ≡
EN (w), for a random code in the LDPCN (Λ, P ) ensemble. In general one ex-
pects, as for the random code ensemble of Sec. 6.2, that N (w) grows exponen-
tially in the block-length N , and that most of the codewords have a weight
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w = Nω growing linearly with N . We will in fact compute the exponential
growth rate φ(ω) defined by

N (w = Nω)
.
= eNφ(ω) . (11.4) {eq:weightphidef}

Notice that this number is an ‘annealed average’, in the terminology of dis-
ordered systems: in other words, it can be dominated by rare instances in the
ensemble. On the other hand, one expects logN (w) to be tightly concentrated
around its typical value Nφq(ω). The typical exponent φq(ω) can be computed
through a quenched calculation, for instance considering limN→∞N−1E log [1 + N (w)].
Of course φq(ω) ≤ φ(ω) because of the concavity of the logarithm. In this Chap-
ter we keep to the annealed calculation, which is much easier and gives an upper
bound. Quenched calculations will be the object of Chapter ???.

Let x ∈ {0, 1}N be a binary word of length N and weight w. Notice that
Hx = 0 mod 2 if and only if the corresponding factor graph has the following
property. Consider all variable nodes i such that xi = 1, and color in red all
edges incident on these nodes. Color in blue all the other edges. Then all the
check nodes must have an even number of incident red edges. A little thought
shows that N (w) is the number of ‘colored’ factor graphs having this property,
divided by the total number of factor graphs in the ensemble. We shall compute
this number first for a graph with fixed degrees, associated with a code in the
LDPCN (l, k) ensemble, and then we shall generalize to arbitrary degree profiles.

11.2.1 Weight enumerator: fixed degrees

In the fixed degree case we have N variables nodes of degree l, M function nodes
of degree k. We denote by F = Mk = Nl the total number of edges. A valid
colored graph must have E = wl red edges. It can be constructed as follows. First
choose w variable nodes, which can be done in

(
N
w

)
ways. Assign to each node in

this set l red sockets, and to each node outside the set l blue sockets. Then, for
each of the M function nodes, color in red an even subset of its sockets in such
a way that the total number of red sockets is E = wl. Let mr be the number of
function nodes with r red sockets. The numbers mr can be non-zero only when
r is even, and they are constrained by

∑k
r=0mr = M and

∑k
r=0 rmr = lw. The

number of ways one can color the sockets of the function nodes is thus:

C(k,M,w) =
∑

m0,...,mk

(e)
(

M

m0, . . . ,mk

) ∏

r

(
k

r

)mr

I

( k∑

r=0

mr = M
)

I

( k∑

r=0

rmr = lw
)
,

(11.5){eq:colsock}

where the sum
∑(e)

means that non-zero mr appear only for r even. Finally
we join the variable node and check node sockets in such a way that colors are
matched. There are (lw)!(F − lw)! such matchings out of the total number of F !
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corresponding to different element in the ensemble. Putting everything together,
we get the final formula:

N (w) =
(lw)!(F − lw)!

F !

(
N

w

)
C(k,M,w) . (11.6)

In order to compute the function φ(ω) in (11.4), one needs to work out
the asymptotic behavior of this formula when N → ∞ at fixed ω = w/N .
Assuming that mr = xrM = xrNl/k, one can expand the multinomial factors
using Stirling’s formula. This gives:

φ(ω) = max
{xr}

∗

[
(1 − l)H(ω) +

l

k

∑

r

(
−xr log xr + xr log

(
k

r

))]
, (11.7) {eq:weightphires1}

where the max∗ is taken over all choices of x0, x2, x4, . . . in [0, 1], subject to
the two constraints

∑
r xr = 1 and

∑
r rxr = kω. The maximization can be

done by imposing these constraints via two Lagrange multipliers. One gets xr =
Czr

(
k
r

)
I(r even), where C and z are two constants fixed by the constraints:

C =
2

(1 + z)k + (1 − z)k
(11.8)

ω = z
(1 + z)k−1 − (1 − z)k−1

(1 + z)k + (1 − z)k
(11.9)

Plugging back the resulting xr into the expression (11.10) of φ, this gives finally:

φ(ω) = (1 − l)H(ω) +
l

k
log

(1 + z)k + (1 − z)k

2
− ωl log z , (11.10) {eq:weightphires1}

where z is the function of ω defined in (11.9).
We shall see in the next sections how to use this result, but let us first explain

how it can be generalized.

11.2.2 Weight enumerator: general case

We shall compute the leading exponential behavior N (w)
.
= exp[Nφ(ω)] of the

expected weight enumerator for a general LDPCN (Λ, P ) code. The idea of the
approach is the same as the one we have just used for the case of regular en-
sembles, but the computation becomes somewhat heavier. It is therefore useful
to adopt more compact notations. Altogether this section is more technical than
the others: the reader who is not interested in the details can skip it and go to
the results.

We want to build a valid colored graph, let us denote by E its number of
red edges (which is no longer fixed by w). There are coeff[

∏
l(1+xyl)NΛl , xwyE ]

ways of choosing the w variable nodes in such a way that their degrees add up to
E 28. As before, for each of the M function nodes, we color in red an even subset

28We denote by coeff[f(x), xn] the coefficient of xn in the formal power series f(x).
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Fig. 11.1. Modulus of the function z−3ξ q4(z)
3/4 for ξ = 1/3.{fig:SaddleWE}

of its sockets in such a way that the total number of red sockets is E. This can
be done in coeff[

∏
k qk(z)MPk , zE ] ways, where qk(z) ≡ 1

2 (1 + z)k + 1
2 (1 − z)k.

The numbers of ways one can match the red sockets in variable and function
nodes is still E!(F − E)!, where F = NΛ′(1) = MP ′(1) is the total number of
edges in the graph. This gives the exact result

N (w) =

F∑

E=0

E!(F − E)!

F !

coeff

[
lmax∏

l=1

(1 + xyl)NΛl , xwyE

]
coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
. (11.11){eq:WELeading1}

In order to estimate the leading exponential behavior at large N , when w =
Nω, we set E = Fξ = NΛ′(1)ξ. The asymptotic behaviors of the coeff[. . . , . . . ]
terms can be estimated using the saddle point method. Here we sketch the idea
for the second of these terms. By Cauchy theorem

coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
=

∮
1

zNΛ′(1)ξ+1

kmax∏

k=2

qk(z)MPk
dz

2πi
≡
∮
f(z)N

z

dz

2πi
,

(11.12)

where the integral runs over any path encircling the origin in the complex z
plane, and

f(z) ≡ 1

zΛ′(1)ξ

kmax∏

k=2

qk(z)Λ
′(1)Pk/P ′(1) . (11.13)
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In Fig. 11.1 we plot the modulus of the function f(z) for degree distributions
Λ(x) = x3, P (x) = x4 and ξ = 1/3. The function has a saddle point, whose
location z∗ = z∗(ξ) ∈ R+ solves the equation f ′(z) = 0, which can also be
written as

ξ =

kmax∑

k=2

ρk z
(1 + z)k−1 − (1 − z)k−1

(1 + z)k + (1 − z)k
, (11.14)

where we used the notation ρk ≡ kPk/P
′(1) already introduced in Sec. 9.5

(analogously, we shall write λl ≡ lΛl/Λ
′(1)). This equation generalizes (11.9). If

we take the integration contour in Eq. (11.12) to be the circle of radius z∗, the
integral is dominated by the saddle point at z∗ (together with the symmetric
point −z∗). We get therefore

coeff

[
kmax∏

k=2

qk(z)MPk , zE

]
.
= exp

{
N

[
−Λ′(1)ξ log z∗ +

Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z∗)

]}
.

Proceeding analogously with the second coeff[. . . , . . . ] term in Eq. (11.11),
we get N (w = Nω)

.
= exp{Nφ(ω)}. The function φ is given by

φ(ω) = sup
ξ

inf
x,y,z

{
−Λ′(1)H(ξ) − ω log x− Λ′(1)ξ log(yz) +

+

lmax∑

l=2

Λl log(1 + xyl) +
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z)

}
, (11.15)

where the minimization over x, y, z is understood to be taken over the positive
real axis while ξ ∈ [0, 1]. The stationarity condition with respect to variations of
z is given by Eq. (11.14). Stationarity with respect to ξ, x, y yields, respectively

ξ =
yz

1 + yz
, ω =

lmax∑

l=1

Λl
xyl

1 + xyl
, ξ =

lmax∑

l=1

λl
xyl

1 + xyl
. (11.16)

If we use the first of these equations to eliminate ξ, we obtain the final parametric
representation (in the parameter x ∈ [0,∞[) of φ(ω):

φ(ω) = −ω log x− Λ′(1) log(1 + yz) +

lmax∑

l=1

Λl log(1 + xyl) + (11.17)

+
Λ′(1)

P ′(1)

kmax∑

k=2

Pk log qk(z) ,

ω =

lmax∑

l=1

Λl
xyl

1 + xyl
, (11.18)
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with y = y(x) and z = z(x) solutions of the coupled equations

y =

∑kmax

k=2 ρk p
−
k (z)

∑kmax

k=2 ρk p
+
k (z)

, z =

∑lmax

l=1 λlxy
l−1/(1 + xyl)

∑lmax

l=1 λl/(1 + xyl) ,
(11.19)

where we defined p±k (z) ≡ (1+z)k−1±(1−z)k−1

(1+z)k+(1−z)k .

Exercise 11.3 The numerical solution of Eqs. (11.18) and (11.19) can be quite
tricky. Here is a simple iterative procedure which seems to work reasonably well
(at least, in all the cases explored by the authors). The reader is invited to try
it with her favorite degree distributions Λ, P .

First, solve Eq. (11.18) for x at given y ∈ [0,∞[ and ω ∈ [0, 1], using a
bisection method. Next, substitute this value of x in Eq. (11.19), and write the
resulting equations as y = f(z) and z = g(y, ω). Define Fω(y) ≡ f(g(y, ω)).
Solve the equation y = Fω(y) by iteration of the map yn+1 = Fω(yn) Once the
fixed point y∗ is found, the other parameters are computed as z∗ = g(y∗, ω) and
x∗ is the solution of Eq. (11.18) for y = y∗. Finally x∗, y∗, z∗ are substituted in
Eq. (11.17) to obtain φ(ω).

Examples of functions φ(ω) are shown in Figures 11.2, 11.3, 11.4. We shall
discuss these results in the next section, paying special attention to the region
of small ω.

11.2.3 Short distance properties

In the low noise limit, the performance of a code depends a lot on the existence
of codewords at short distance from the transmitted one. For linear codes and
symmetric communication channels, we can assume without loss of generality
that the all zeros codeword has been transmitted. Here we will work out the
short distance (i.e. small weight ω) behavior of φ(ω) for several LDPC ensembles.
These properties will be used to characterize the code performances in Section
11.3.

As ω → 0, solving Eqs. (11.18) and (11.19) yields y, z → 0. By Taylor expan-
sion of these equations, we get

y ≃ ρ′(1)z , z ≃ λlmin
xylmin−1 , ω ≃ Λlmin

xylmin , (11.20)

where we neglected higher order terms in y, z. At this point we must distinguish
whether lmin = 1, lmin = 2 or lmin ≥ 3.

We start with the case lmin = 1. Then x, y, z all scale like
√
ω, and a short

computation shows that

φ(ω) = −1

2
ω log

(
ω/Λ2

1

)
+O(ω) . (11.21)

In particular φ(ω) is strictly positive for ω sufficiently small. The expected num-
ber of codewords within a small (but Θ(N)) Hamming distance from a given
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Fig. 11.2. Logarithm of the expected weight enumerator, φ(ω), plotted versus
the reduced weight ω = w/N , for the ensemble LDPCN ( 1

4x + 1
4x

2 + 1
2x

3, x6).
Inset: small weight region. φ(ω) is positive near to the origin, and in fact its
derivative diverges as ω → 0: each codeword is surrounded by a large number of
very close other codewords. This makes it a very bad error correcting code.{fig:WEIRR1}

codeword is exponential in N . Furthermore, Eq. (11.21) is reminiscent of the
behavior in absence of any parity check. In this case φ(ω) = H(ω) ≃ −ω logω.

Exercise 11.4 In order to check Eq. (11.21), compute the weight enumerator
for the regular LDPCN (l = 1, k) ensemble. Notice that, in this case the weight
enumerator does not depend on the code realization and admits the simple
representation N (w) = coeff[qk(z)N/k, zw].

An example of weight enumerator for an irregular code with lmin = 1 is shown
in Fig. 11.2. The behavior (11.21) is quite bad for an error correcting code. In
order to understand why, let us for a moment forget that this result was obtained
by taking ω → 0 after N → ∞, and apply it in the regime N → ∞ at w = Nω
fixed. We get

N (w) ∼
(
N

w

) 1
2 w

. (11.22)

It turns out that this result holds not only in average but for most codes in the
ensemble. In other words, already at Hamming distance 2 from any given code-
word there are Θ(N) other codewords. It is intuitively clear that discriminating
between two codewords at Θ(1) Hamming distance, given a noisy observation, is
in most of the cases impossible. Because of these remarks, one usually discards
lmin = 1 ensembles for error correcting purposes.

Consider now the case lmin = 2. From Eq. (11.20), we get

φ(ω) ≃ Aω , A ≡ log

[
P ′′(1)

P ′(1)

2Λ2

Λ′(1)

]
= log [ρ′(1)λ′(0)] . (11.23)
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Fig. 11.3. Logarithm of the expected weight enumerator for the LDPCN (2, 4)
ensemble: Λ(x) = x2, meaning that all variable nodes have degree 2, and
P (x) = 4, meaning that all function nodes have degree 4. Inset: small weight
region. The constant A is positive, so there exist codewords at short distances{fig:WE24}

The code ensemble has significantly different properties depending on the sign
of A. If A > 0, the expected number of codewords within a small (but Θ(N))
Hamming distance from any given codeword is exponential in the block-length.
The situation seems similar to the lmin = 1 case. Notice however that φ(ω) goes
much more quickly to 0 as ω → 0 in the present case. Assuming again that
(11.23) holds beyond the asymptotic regime in which it was derived, we get

N (w) ∼ eAw . (11.24)

In other words the number of codewords around any particular one is o(N)
until we reach a Hamming distance d∗ ≃ logN/A. For many purposes d∗ plays
the role of an ‘effective’ minimum distance. The example of the regular code
LDPCN (2, 4), for which A = log 3, is shown in Fig. 11.3

If on the other hand A < 0, then φ(ω) < 0 in some interval ω ∈]0, ω∗[. The
first moment method then shows that there are no codewords of weight ‘close
to’ Nω for any ω in this range.

A similar conclusion is reached if lmin ≥ 3, where one finds:

φ(ω) ≃
(
lmin − 2

2

)
ω log

(
ω

Λlmin

)
, (11.25)

An example of weight enumerator exponent for a code with good short distance
properties, the LDPCN (3, 6) code, is given in Fig. 11.4.

This discussion can be summarized as:

Proposition 11.1 Consider a random linear code from the LDPCN (Λ, P ) en-

semble with lmin ≥ 2 and assume P ′′(1)
P ′(1)

2Λ2

Λ′(1) < 1. Let ω∗ ∈]0, 1/2[ be the first

non-trivial zero of φ(ω), and consider any interval [ω1, ω2] ⊂]0, ω∗[. With high
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ensemble. Inset: small weight region. φ(ω) < 0 for ω < ω∗ ∼ .02. There are no
codewords except from the ‘all-zeros’ one in the region ω < ω∗. {fig:WE36}

probability, there does not exist any pair of codewords with distance belonging to
this interval.

Notice that our study only deals with weights w = ωN which grow linearly
with N . The proposition excludes the existence of codewords of arbitrarily small
ω, but it does not tell anything about possible codewords of sub-linear weight:
w = o(N) (for instance, with w finite as N → ∞). It turns out that, if lmin ≥ 3,
the code has with high probability no such codewords, and its minimum distance
is at least Nω∗. If on the other hand lmin = 2, the code has typically codewords
of finite weight. However (if A < 0), they can be eliminated without changing
the code rate by an ‘expurgation’ procedure.

11.2.4 Rate

The weight enumerator can also be used to obtain a precise characterization of
the rate of a LDPCN (Λ, P ) code. For ω = 1/2, x = y = z = 1 satisfy Eqs. (11.18)
and (11.19); this gives:

φ(ω = 1/2) =

(
1 − Λ′(1)

P ′(1)

)
log 2 = Rdes log 2 . (11.26)

It turns out that, in most29 of the cases of practical interest, the curve φ(ω) has
its maximum at ω = 1/2 (see for instance the figures 11.2, 11.3, 11.4). In such
cases the result (11.26) shows that the rate equals the design rate:

{prop:Rate}
Proposition 11.2 Let R be the rate of a code from the LDPCN (Λ, P )ensemble,
Rdes = 1 − Λ′(1)/P ′(1) the associated design rate and φ(ω) the function defined
in Eqs. (11.17) to (11.19). Assume that φ(ω) achieves its absolute maximum

29There exist exceptions though (see the Notes section for references).
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over the interval [0, 1] at ω = 1/2. Then, for any δ > 0, there exists a positive
N -independent constant C1(δ) such that

P{|R−Rdes| ≥ δ} ≤ C1(δ) 2−Nδ/2 . (11.27)

Proof: Since we already established that R ≥ Rdes, we only need to prove an
upper bound on R. The rate is defined as R ≡ (log2 N )/N , where N is the total
number of codewords. Markov’s inequality gives:

P{R ≥ Rdes + δ} = P{N ≥ 2N(Rdes+δ)} ≤ 2−N(Rdes+δ) EN . (11.28)

The expectation of the number of codewords is EN (w)
.
= exp{Nφ(w/N)}, and

there are only N + 1 possible values of the weight w, therefore:

EN .
= exp{N sup

ω∈[0,1]

φ(ω)} , (11.29)

As supφ(ω) = φ(1/2) = Rdes log 2 by hypothesis, there exists a constant C1(δ)
such that, for any N , EN ≤ C1(δ)2

N(Rdes+δ/2) for any N . Plugging this into
Eq. (11.28), we get

P{R ≥ Rdes + δ} ≤ C1(δ) 2Nδ/2 . (11.30)

�

11.3 Capacity of LDPC codes for the binary symmetric channel
{se:BoundsLDPC}

Our study of the weight enumerator has shown that codes from the LDPCN (Λ, P )
ensemble with lmin ≥ 3 have a good short distance behavior. The absence of
codewords within an extensive distance Nω∗ from the transmitted one, guar-
antees that any error (even introduced by an adversarial channel) changing a
fraction of the bits smaller than ω∗/2 can be corrected. Here we want to study
the performance of these codes in correcting typical errors introduced from a
given (probabilistic) channel. We will focus on the BSC(p) which flips each bit
independently with probability p < 1/2. Supposing as usual that the all-zero
codeword x(0) = 0 has been transmitted, let us call y = (y1 . . . yN ) the received
message. Its components are iid random variables taking value 0 with probability
1 − p, value 1 with probability p. The decoding strategy which minimizes the
block error rate is word MAP decoding30, which outputs the codeword closest to
the channel output y. As already mentioned, we don’t bother about the practical
implementation of this strategy and its computational complexity.

The block error probability for a code C, denoted by PB(C), is the probability
that there exists a ‘wrong’ codeword, distinct from 0, whose distance to y is
smaller than d(0, y). Its expectation value over the code ensemble, PB = E PB(C),

30Since all the codewords are a priori equiprobable, this coincides with maximum likelihood
decoding.
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is an important indicator of ensemble performances. We will show that in the
large N limit, codes with lmin ≥ 3 undergo a phase transition, separating a low
noise phase, p < pML, in which the limit of PB is zero, from a high noise phase,
p > pML, where it is not. While the computation of pML is deferred to Chapter
??, we derive here some rigorous bounds which indicate that some LDPC codes
have very good (i.e. close to Shannon’s bound) performances under ML decoding.

11.3.1 Lower bound {se:LBLDPC}

We start by deriving a general bound on the block error probability PB(C) on
the BSC(p) channel, valid for any linear code. Let N = 2NR be the size of the
codebook C. By union bound:

PB(C) = P

{
∃α 6= 0 s.t. d(x(α), y) ≤ d(0, y)

}

≤
N−1∑

α=1

P

{
d(x(α), y) ≤ d(0, y)

}
. (11.31)

As the components of y are iid Bernoulli variables, the probability P{d(x(α), y) ≤
d(0, y)} depends on x(α) only through its weight. Let x(w) be the vector formed
by w ones followed by N−w zeroes, and denote by N (w) the weight enumerator
of the code C. Then

PB(C) ≤
N∑

w=1

N (w) P
{
d(x(w), y) ≤ d(0, y)

}
. (11.32)

The probability P
{
d(x(w), y) ≤ d(0, y)

}
can be written as

∑
u

(
w
u

)
pu(1−p)w−uI(u ≥

w/2), where u is the number of yi = 1 in the first w components. A good bound
is provided by a standard Chernov estimate. For any λ > 0:

P
{
d(x(w), y) ≤ d(0, y)

}
≤ Eeλ[d(0,y)−d(x(w),y)] = [(1 − p) e−λ + p eλ]w .

The best bound is obtained for λ = 1
2 log(1−p

p ) > 0, and gives

PB(C) ≤
N∑

w=1

N (w) e−γw . (11.33)

where γ ≡ − log
√

4p(1 − p) ≥ 0. The quantity
√

4p(1 − p) is sometimes referred
to as Bhattacharya parameter.
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Exercise 11.5 Consider the case of a general binary memoryless symmetric
channel with transition probability Q(y|x), x ∈ {0, 1} y ∈ Y ⊆ R. First show
that Eq. (11.31) remains valid if the Hamming distance d(x, y) is replaced by
the log-likelihood

dQ(x|y) = −
N∑

i=1

logQ(yi|xi) . (11.34)

[Hint: remember the general expressions (6.3), (6.4) for the probability P (x|y)
that the transmitted codeword was x, given that the received message is y].
Then repeat the derivation from Eq. (11.31) to Eq. (11.33). The final expression
involves γ = − logBQ, where the Bhattacharya parameter is defined as BQ =∑

y

√
Q(y|1)Q(y|0).

Equation (11.33) shows that the block error probability depends on two fac-
tors: one is the weight enumerator, the second one, exp(−γw) is a channel-
dependent term: as the weight of the codewords increases, their contribution is
scaled down by an exponential factor because it is less likely that the received
message y will be closer to a codeword of large weight than to the all-zero code-
word.

So far the discussion is valid for any given code. Let us now consider the
average over LDPCN (Λ, P ) code ensembles. A direct averaging gives the bound:

PB ≡ ECPB(C) ≤
N∑

w=1

N (w) e−γw .
= exp

{
N sup

ω∈]0,1]

[φ(ω) − γω]

}
. (11.35)

As such, this expression is useless, because the supω[φ(ω) − γω], being larger or
equal than the value at ω = 0, is positive. However, if we restrict to codes with
lmin ≥ 3, we know that, with probability going to one in the large N limit, there
exists no wrong codeword in the ω interval ]0, ω∗[. In such cases, the maximization
over ω in (11.35) can be performed in the interval [ω∗, 1] instead of ]0, 1]. (By

Markov inequality, this can be proved whenever N
∑Nω∗−1

w=1 N (w) → 0 as N →
∞). The bound becomes useful whenever the supremum supω∈[ω∗,1][φ(ω)−γω] <
0: then PB vanishes in the large N limit. We have thus obtained:

{propo:LDPCUnionBound}
Proposition 11.3 Consider the average block error rate PB for a random code
in the LDPCN (Λ, P ) ensemble, with lmin ≥ 3, used over a BSC(p) channel, with
p < 1/2. Let γ ≡ − log

√
4p(1 − p) and let φ(ω) be the the weight enumerator

exponent, defined in (11.4) [φ(ω) can be computed using Eqs. (11.17), (11.18),
and (11.19)]. If φ(ω) < γω for any ω ∈ (0, 1] such that φ(ω) ≥ 0, then PB → 0
in the large block-length limit.

This result has a pleasing geometric interpretation which is illustrated in
Fig. 11.5 for the (3, 6) regular ensemble. As p increases from 0 to 1/2, γ decreases
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Fig. 11.5. Geometric construction yielding the lower bound on the threshold
for reliable communication for the LDPCN (3, 6) ensemble used over the binary
symmetric channel. In this case pLB ≈ 0.0438737. The other two lines refer to
p = 0.01 < pLB and p = 0.10 > pLB.{fig:UnionBound36}

from +∞ to 0. The condition φ(ω) < γω can be rephrased by saying that the
weight enumerator exponent φ(ω) must lie below the straight line of slope γ
through the origin. Let us call pLB the smallest value of p such that the line γω
touches φ(ω).

The geometric construction implies pLB > 0. Furthermore, for p large enough
Shannon’s Theorem implies that PB is bounded away from 0 for any non-
vanishing rate R > 0. The ML threshold pML for the ensemble LDPCN (Λ, P )
can be defined as the largest (or, more precisely, the supremum) value of p such
that limN→∞ PB = 0. This definition has a very concrete practical meaning: for
any p < pML one can communicate with an arbitrarily small error probability,
by using a code from the LDPCN (Λ, P ) ensemble provided N is large enough.
Proposition 11.3 then implies:

pML ≥ pLB . (11.36)

In general one expects limN→∞ PB to exist (and to be strictly positive) for
p > pML. However, there exists no proof of this statement.

It is interesting to notice that, at p = pLB, our upper bound on PB is domi-
nated by codewords of weight w ≈ Nω̃, where ω̃ > 0 is the value where φ(ω)−γω
is maximum (which is larger than ω∗). This suggests that, each time an error
occurs, a finite fraction of the bits are decoded incorrectly and this fraction fluc-
tuates little from transmission to transmission (or, from code to code in the
ensemble). The geometric construction also suggests the less obvious (but essen-
tially correct) guess that this fraction jumps discontinuously from 0 to a finite
value when p crosses the critical value pML.
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Exercise 11.6 Let us study the case lmin = 2. Proposition 11.3 is no longer
valid, but we can still apply Eq. (11.35). (i) Consider the (2, 4) ensemble whose
weight enumerator exponent is plotted in Fig. 11.3, the small weight behavior
being given by Eq. (11.24). At small enough p, it is reasonable to assume that
the block error rate is dominated by small weight codewords. Estimate PB

using Eq. (11.35) under this assumption. (ii) Show that the assumption breaks
down for p ≥ ploc, where ploc ≤ 1/2 solves the equation 3

√
4p(1 − p) = 1. (iii)

Discuss the case of a general code ensemble with lmin = 2, and φ(ω) concave
for ω ∈ [0, 1]. (iv) Draw a weight enumerator exponent φ(ω) such that the
assumption of low-weight codewords dominance breaks down before ploc. (v)
What do you expect of the average bit error rate Pb for p < ploc? And for
p > ploc?

Exercise 11.7 Discuss the qualitative behavior of the block error rate for the
cases where lmin = 1.

11.3.2 Upper bound
{se:UBLDPC}

Let us consider as before the communication over a BSC(p), but restrict for
simplicity to regular codes LDPCN (l, k). Gallager has proved the following upper
bound:{thm:GallUB}

Theorem 11.4 Let pML be the threshold for reliable communication over the
binary symmetric channel using codes from the LDPCN (l, k), with design rate
Rdes = 1 − k/l. Then pML ≤ pUB, where pUB ≤ 1/2 is the solution of

H(p) = (1 −Rdes)H
(

1 − (1 − 2p)k

2

)
, (11.37)

We shall not give a full proof of this result, but we show in this section a sequence
of heuristic arguments which can be turned into a proof. The details can be found
in the original literature.

Assume that the all-zero codeword 0 has been transmitted and that a noisy
vector y has been received. The receiver will look for a vector x at Hamming
distance about Np from y, and satisfying all the parity check equations. In other

words, let us denote by z = Hx, z ∈ {0, 1}M , (here H is the parity check matrix
and multiplication is performed modulo 2), the syndrome. This is a vector
with M components. If x is a codeword, all parity checks are satisfied, and we
have z = 0. There is at least one vector x fulfilling these conditions (namely
d(x, y) ≈ Np, and z = 0): the transmitted codeword 0. Decoding is successful
only if it is the unique such vector.

The number of vectors x whose Hamming distance from y is close to Np is

approximatively 2NH(p). Let us now estimate the number of distinct syndromes
z = Hx, when x is on the sphere d(x, y) ≈ Np. Writing x = y ⊕ x′, this is
equivalent to counting the number of distinct vectors z′ = Hx′ when the weight
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Table 11.1 Bounds on the threshold for reliable communication over the BSC(p)
channel using LDPCN (l, k) ensembles. The third column is the rate of the code,
the fourth and fifth columns are, respectively, the lower bound of Proposition 11.3
and the upper bound of Theorem 11.4. The sixth column is an improved lower
bound by Gallager, and the last one is the Shannon limit.

l k Rdes LB of Sec. 11.3.1 Gallager UB Gallager LB Shannon limit
3 4 1/4 0.1333161 0.2109164 0.2050273 0.2145018
3 5 2/5 0.0704762 0.1397479 0.1298318 0.1461024
3 6 1/2 0.0438737 0.1024544 0.0914755 0.1100279
4 6 1/3 0.1642459 0.1726268 0.1709876 0.1739524
5 10 1/2 0.0448857 0.1091612 0.1081884 0.1100279 {TableLDPCBSC}

of x′ is about Np. It is convenient to think of x′ as a vector of N iid Bernoulli
variables of mean p: we are then interested in the number of distinct typical
vectors z′. Notice that, since the code is regular, each entry z′i is a Bernoulli
variable of parameter

pk =

k∑

n odd

(
k

n

)
pn(1 − p)k−n =

1 − (1 − 2p)k

2
. (11.38)

If the bits of z′ were independent, the number of typical vectors z′ would be
2N(1−Rdes)H(pk) (the dimension of z′ being M = N(1 −Rdes)). It turns out that
correlations between the bits decrease this number, so we can use the iid estimate
to get an upper bound.

Let us now assume that for each z in this set, the number of reciprocal
images (i.e. of vectors x such that z = Hx) is approximatively the same. If
2NH(p) ≫ 2N(1−Rdes)H(pk), for each z there is an exponential number of vectors
x, such that z = Hx. This will be true, in particular, for z = 0: the received
message is therefore not uniquely decodable. In the alternative situation most of
the vectors z correspond to (at most) a single x. This will be the case for z = 0:
decoding can be successful.

11.3.3 Summary of the bounds

In Table 11.1 we consider a few regular LDPCN (Λ, P ) ensembles over the BSC(p)
channel. We show the window of possible values of the noise threshold pML, using
the lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. In
most cases, the comparison is not satisfactory (the gap from capacity is close to a
factor 2). A much smaller uncertainty is achieved using an improved lower bound
again derived by Gallager, based on a refinement of the arguments in the previous
Section. However, as we shall see in next Chapters, neither of the bounds is tight.
Note that these codes get rather close to Shannon’s limit, especially when k, l
increase.
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Fig. 11.6. Performances of the bit-flipping decoding algorithm on random codes
from the (5, 10) regular LDPC ensemble, used over the BCS(p) channel. On the
left: block error rate. On the right residual number of unsatisfied parity checks
after the algorithm halted. Statistical error bars are smaller than symbols.{fig:Flip510}

Exercise 11.8 Let pSh be the upper bound on pML provided by Shannon
channel coding Theorem. Explicitly pSh ≤ 1/2 is the solution of H(p) = 1−R.
Prove that, if R = Rdes (as is the case with high probability for LDPCN (l, k)
ensembles) pUB < pSh.

11.4 A simple decoder: bit flipping
{se:BitFlippingLDPC}

So far we have analyzed the behavior of LDPC ensembles under the optimal
(ML) decoding strategy. However there is no known way of implementing this
decoding with a fast algorithm. The naive algorithm goes through each codeword
x(α), α = 0, . . . 2NR − 1 and finds the one of greatest likelihood Q(y|x(α)) (since
all the codeword are a priori equiprobable, this is in fact the same as word
MAP decoding). However this approach takes a time which grows exponentially
with the block-length N . For large N (which is the regime where the error rate
becomes close to optimal), this is unpractical.

LDPC codes are interesting because there exist fast sub-optimal decoding
algorithms with performances close to the theoretical optimal performance, and
therefore close to Shannon’s limit. Here we show one example of a very sim-
ple decoding method, called the bit flipping algorithm. We have received the
message y and try to find the sent codeword x by:

Bit-flipping decoder

0. Set x(0) = y.

1. Find a bit belonging to more unsatisfied than satisfied parity checks.

2. If such a bit exists, flip it: xi(t+1) = xi(t)⊕1. Keep the other bits:

xj(t+1) = xj(t) for all j 6= i. If there is no such bit, return x(t) and

halt.
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3. Repeat steps 2 and 3.

The bit to be flipped is usually chosen uniformly at random among the ones
satisfying the condition at step 1. However this is irrelevant in the analysis below.

Exercise 11.9 Consider a code from the (l, k) regular LDPC ensemble (with
l ≥ 3). Assume that the received message differs from the transmitted one only
in one position. Show that the bit-flipping algorithm always corrects such an
error.

Exercise 11.10 Assume now that the channel has introduced two errors.
Draw the factor graph of a regular (l, k) code for which the bit-flipping al-
gorithm is unable to recover such an error event. What can you say of the
probability of this type of graphs in the ensemble?

In order to monitor the bit-flipping algorithm, it is useful to introduce the
‘energy’:

E(t) ≡ Number of parity check equations not satisfied by x(t) . (11.39)

This is a non-negative integer, and if E(t) = 0 the algorithm is halted and its
output is x(t). Furthermore E(t) cannot be larger than the number of parity
checks M and decreases (by at least one) at each cycle. Therefore, the algorithm
complexity is O(N) (this is a commonly regarded as the ultimate goal for many
communication problems).

It remains to be seen if the output of the bit-flipping algorithm is related
to the transmitted codeword. In Fig. 11.6 we present the results of a numerical
experiment. We considered the (5, 10) regular ensemble and generated about 1000
random code and channel realizations for each value of the noise in some mesh.
Then, we applied the above algorithm and traced the fraction of successfully
decoded blocks, as well as the residual energy E∗ = E(t∗), where t∗ is the
total number of iterations of the algorithm. The data suggests that bit-flipping
is able to overcome a finite noise level: it recovers the original message with
high probability when less than about 2.5% of the bits are corrupted by the
channel. Furthermore, the curves for Pbf

B under bit-flipping decoding become
steeper and steeper as the system size is increased. It is natural to conjecture
that asymptotically, a phase transition takes place at a well defined noise level
pbf : Pbf

B → 0 for p < pbf and Pbf
B → 1 for p > pbf . Numerically pbf = 0.025±0.005.

This threshold can be compared with the one for ML decoding: The re-
sults in Table 11.1 imply 0.108188 ≤ pML ≤ 0.109161 for the (5, 10) ensemble.
Bit-flipping is significantly sub-optimal, but is still surprisingly good, given the
extreme simplicity of the algorithm.

Can we provide any guarantee on the performances of the bit-flipping de-
coder? One possible approach consists in using the expansion properties of the
underlying factor graph. Consider a graph from the (l, k) ensemble. We say that
it is an (ε, δ)-expander if, for any set U of variable nodes such that |U | ≤ Nε,
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the set |D| of neighboring check nodes has size |D| ≥ δ|U |. Roughly speaking, if
the factor graph is an expander with a large expansion constant δ, any small
set of corrupted bits induces a large number of unsatisfied parity checks. The
bit-flipping algorithm can exploit these checks to successfully correct the errors.

It turns out that random graphs are very good expanders. This can be under-
stood as follows. Consider a fixed subset U . As long as U is small, the subgraph
induced by U and the neighboring factor nodes D is a tree with high probability.
If this is the case, elementary counting shows that |D| = (l − 1)|U | + 1. This
would suggest that one can achieve an expansion factor (close to) l−1, for small
enough ε. Of course this argument have several flaws. First of all, the subgraph
induced by U is a tree only if U has sub-linear size, but we are interested in all
subsets U with |U | ≤ εN for some fixed N . Then, while most of the small subsets
U are trees, we need to be sure that all subsets expand well. Nevertheless, one
can prove that the heuristic expansion factor is essentially correct:

Proposition 11.5 Consider a random factor graph F from the (l, k) ensemble.
Then, for any δ < l− 1, there exists a constant ε = ε(δ; l, k) > 0, such that F is
a (ε, δ) expander with probability approaching 1 as N → ∞.

In particular, this implies that, for l ≥ 5, a random (l, k) regular factor graph
is, with high probability a (ε, 3

4 l) expander. In fact, this is enough to assure that
the code will perform well at low noise level:

Theorem 11.6 Consider a regular (l, k) LDPC code C, and assume that the cor-
responding factor graph is an (ε, 3

4 l) expander. Then, the bit-flipping algorithm
is able to correct any pattern of less then Nε/2 errors produced by a binary sym-
metric channel. In particular PB(C) → 0 for communication over a BSC(p) with
p < ε/2.

Proof: As usual, we assume the channel input to be the all-zeros codeword 0.
We denote by w = w(t) the weight of x(t) (the current configuration of the bit-
flipping algorithm), and by E = E(t) the number of unsatisfied parity checks, as
in Eq. (11.39). Finally, we call F the number of satisfied parity checks among the
ones which are neighbors of at least one corrupted bit in x(t) (a bit is ‘corrupted’
if it takes value 1).

Assume first that 0 < w(t) ≤ Nε at some time t. Because of the expansion
property of the factor graph, we have E + F > 3

4 l w. On the other hand, every
unsatisfied parity check is the neighbor of at least one corrupted bit, and every
satisfied check which is the neighbor of some corrupted bit must involve at least
two of them. Therefore E+2F ≤ l w. Eliminating F from the above inequalities,
we deduce that E(t) > 1

2 l w(t). Let Ei(t) be the number of unsatisfied checks
involving bit xi. Then:

∑

i:xi(t)=1

Ei(t) ≥ E(t) >
1

2
l w(t) . (11.40)

Therefore, there must be at least one bit having more unsatisfied than satisfied
neighbors, and the algorithm does not halt.
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Let us now start the algorithm with w(0) ≤ Nε/2. It must halt at some
time t∗, either with E(t∗) = w(t∗) = 0 (and therefore decoding is successful),
or with w(t∗) ≥ Nε. In this second case, as the weight of x(t) changes by one
at each step, we have w(t∗) = Nε. The above inequalities imply E(t∗) > Nlε/2
and E(0) ≤ lw(0) ≤ Nlε/2. This contradicts the fact that E(t) is a strictly
decreasing function of t. Therefore the algorithm, started with w(0) ≤ Nε/2
ends up in the w = 0, E = 0 state. �

The approach based on expansion of the graph has the virtue of pointing
out one important mechanism for the good performance of LDPC codes, namely
the local tree-like structure of the factor graph. It also provides explicit lower
bounds on the critical noise level pbf for bit-flipping. However, these bounds turn
out to be quite pessimistic. For instance, in the case of the (5, 10) ensemble, it
has been proved that a typical factor graph is an (ε, 3

4 l) = (ε, 15
4 ) expander for

ε < ε∗ ≈ 10−12. On the other hand, numerical simulations, cf. Fig. 11.6, show
that the bit flipping algorithm performs well up noise levels much larger than
ε∗/2.

Notes

Modern (post-Cook Theorem) complexity theory was first applied to coding
by (Berlekamp, McEliecee and van Tilborg, 1978) who showed that maximum
likelihood decoding of linear codes is NP-hard.

LDPC codes were first introduced by Gallager in his Ph.D. thesis (Gallager,
1963; Gallager, 1962), which is indeed older than these complexity results. See
also (Gallager, 1968) for an extensive account of earlier results. An excellent de-
tailed account of modern developments is provided by (Richardson and Urbanke,
2006).

Gallager proposal did not receive enough consideration at the time. One
possible explanation is the lack of computational power for simulating large
codes in the sixties. The rediscovery of LDPC codes in the nineties (MacKay,
1999), was (at least in part) a consequence of the invention of Turbo codes by
(Berrou and Glavieux, 1996). Both these classes of codes were soon recognized
to be prototypes of a larger family: codes on graphs.

The major technical advance after this rediscovery has been the introduc-
tion of irregular ensembles (Luby, Mitzenmacher, Shokrollahi, Spielman and
Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spielman, 1998). There
exist no formal proof of the ‘equivalence’ (whatever this means) of the various
ensembles in the large block-length limit. But as we will see in Chapter ??, the
main property that enters in the analysis of LDPC ensembles is the local tree-
like structure of the factor graph as described in Sec. 9.5.1; and this property is
rather robust with respect to a change of the ensemble.

Gallager (Gallager, 1963) was the first to compute the expected weight enu-
merator for regular ensembles, and to use it in order to bound the threshold for
reliable communication. The general case ensembles was considered in (Litsyn
and Shevelev, 2003; Burshtein and Miller, 2004; Di, Richardson and Urbanke,
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2004). It turns out that the expected weight enumerator coincides with the typ-
ical one to leading exponential order for regular ensembles (in statistical physics
jargon: the annealed computation coincides with the quenched one). This is not
the case for irregular ensembles, as pointed out in (Di, Montanari and Urbanke,
2004).

Proposition 11.2 is essentially known since (Gallager, 1963). The formulation
quoted here is from (Méasson, Montanari and Urbanke, 2005a). This paper con-
tains some examples of ‘exotic’ LDPC ensembles such that the maximum of the
expected weight enumerator is at weight w = Nω∗, with ω∗ 6= 1/2.

A proof of the upper bound 11.4 can be found in (Gallager, 1963). For some
recent refinements, see (Burshtein, Krivelevich, Litsyn and Miller, 2002).

Bit-flipping algorithms played an important role in the revival of LDPC codes,
especially following the work of Sipser and Spielman (Sipser and Spielman, 1996).
These authors focused on explicit code construction based on expander graph.
They also provide bounds on the expansion of random LDPCN (l, k) codes. The
lower bound on the expansion mentioned in Sec. 11.4 is taken from (Richardson
and Urbanke, 2006).
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SPIN GLASSES

{chap:MagneticSystems}

We have already encountered several examples of spin glasses in Chapters 2 and
8. Like most problems in equilibrium statistical physics, they can be formulated
in the general framework of factor graphs. Spin glasses are disordered systems,
whose magnetic properties are dominated by randomly placed impurities. The
theory aims at describing the behavior of a typical sample of such materials.
This motivates the definition and study of spin glass ensembles.

In this chapter we shall explore the glass phase of these models. It is not easy
to define this phase and its distinctive properties, especially in terms of purely
static quantities. We provide here some criteria which have proved effective so
far. We also present a classification of the two types of spin glass transitions
that have been encountered in exactly soluble ‘mean field models’. In contrast to
these soluble cases, it must be stressed that very little is known (let alone proven)
for realistic models. Even the existence of a spin glass phase is not established
rigorously in the last case.

We first discuss in Section 12.1 how Ising models and their generalizations can
be formulated in terms of factor graphs, and introduce several ensembles of these
models. Frustration is a crucial feature of spin glasses. In Section 12.2 we discuss
it in conjunction with gauge transformations. This section also explains how to
derive some exact results with the sole use of gauge transformations. Section 12.3
describes the spin glass phase and the main approaches to its characterization.
Finally, the phase diagram of a spin glass model with several glassy phases is
traced in Section 12.4.

12.1 Spin glasses and factor graphs
{se:magFG}

12.1.1 Generalized Ising models

Let us recall the main ingredients of magnetic systems with interacting Ising
spins. The variables areN Ising spins σ = {σ1, . . . , σN} taking values in {+1,−1}.
These are jointly distributed according to Boltzmann law for the energy function:

E(σ) = −
pmax∑

p=1

∑

i1<···<ip

Ji1...ip
σi1 · · ·σip

. (12.1) {eq:GeneralMagnetic}

The index p gives the order of the interaction. One body terms (p = 1) are also
referred to as external field interactions, and will be sometimes written as −Biσi.
If Ji1...ip

≥ 0, for any i1 . . . ip, and p ≥ 2, the model is said to be a ferromagnet.
If Ji1...ip

≤ 0, it is an anti-ferromagnet. Finally, if both positive and negative
couplings are present for p ≥ 2, the model is a spin glass.

239
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Fig. 12.1. Factor graph representation of the SK model with N = 4 (left), and
the fully-connected 3-spin model with N = 4 (right). The squares denote the
interactions between the spins.

{Fig:ising_fg}

The energy function can be rewritten asE(σ) =
∑

aEa(σ∂a), where Ea(σ∂a) ≡
−Jaσia

1
· · ·σia

pa
. Each interaction term a involves the spins contained in a subset

σ∂a = {σia
1
, . . . , σia

pa
}, of size pa. We then introduce a factor graph in which each

interaction term is represented by a square vertex and each spin is represented
by a circular vertex. Edges are drawn between the interaction vertex a and the
variable vertex i whenever the spin σi appears in σ∂a. We have already seen in
Fig. 9.7 the factor graph of a ‘usual’ two-dimensional spin glass, where the en-
ergy contains terms with p = 1 and p = 2. Figure 12.1.1 shows the factor graphs
of some small samples of the SK model in zero magnetic field (p = 2 only) and
the 3-spin model.

The energy function (12.1) can be straightforwardly interpreted as a model
for a magnetic system. We used so far the language inherited from this appli-
cation: the spins {σi} are ‘rotational’ degrees of freedom associated to magnetic
particle, their average is the magnetization etc. In this context, the most relevant
interaction between distinct degrees of freedom is pairwise: −Jijσiσj .

Higher order terms naturally arise in other applications, one of the simplest
one being lattice particle systems. These are used to model the liquid-to-gas,
liquid-to-solid, and similar phase transitions. One normally starts by considering
some base graph G over N vertices, which is often taken to be a portion of Zd

(to model a real physical system the dimension of choice is of course d = 3).
Each vertex in the graph can be either occupied by a particle, which we shall
assume indistinguishable from the others, or empty. The particles are assumed
indistinguishable from each other, and a configuration is characterized by occu-
pation variables ni = {0, 1}. The energy is a function E(n) of the occupancies
n = {n1, . . . , nN}, which takes into account local interaction among neighboring
particles. Usually it can be rewritten in the form (12.1), with an N independent
pmax using the mapping σi = 1 − 2ni. We give a few examples in the exercises
below.
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Exercise 12.1 Consider an empty box which is free to exchange particles with
a reservoir, and assume that particles do not interact with each other (except
for the fact that they cannot superimpose). This can be modeled by taking G
to be a cube of side L in Zd, and establishing that each particle in the system
contributes by a constant amount −µ to the energy: E(n) = −µ∑i ni. This is
a model for what is usually called an ideal gas.

Compute the partition function. Rewrite the energy function in terms of
spin variables and draw the corresponding factor graph.

Exercise 12.2 In the same problem, imagine that particles attract each other
at short distance: whenever two neighboring vertices i and j are occupied, the
system gains an energy −ǫ. This is a model for the liquid-gas phase transition.

Write the corresponding energy function both in terms of occupancy vari-
ables {ni} and spin variables {σi}. Draw the corresponding factor graph. Based
on the phase diagram of the Ising model, cf. Sec. 2.5, discuss the behavior of
this particle system. What physical quantity corresponds to the magnetization
of the Ising model?

Exercise 12.3 In some system molecules cannot be packed in a regular lattice
at high density, and this may result in amorphous solid materials. In order to
model this phenomenon, one may modify the energy function of the previous
Exercises as follows. Each time that a particle (i.e. an occupied vertex) is
surrounded by more than k other particles in the neighboring vertices, a penalty
+δ is added to the energy.

Write the corresponding energy function (both in terms of {ni} and {σi})
and draw the factor graph associated with it.

12.1.2 Spin glass ensembles
{se:SGensembles}

A sample (or an instance) of a spin glass is defined by:

• Its factor graph, which specifies the subsets of spins which interact;

• The value of the coupling constant Ja ∈ R for each function node in the
factor graph.

An ensemble is defined by a probability distribution over the space of samples.
In all cases which we shall consider here, the couplings are assumed to be iid
random variables, independent of the factor graph. The most studied cases are
Gaussian Ja’s, or Ja taking values {+1,−1} with equal probability (in jargon
this is called the ±J model). More generally, we shall denote by P(J) the pdf of
Ja.

One can distinguish two large families of spin glass ensembles which have
attracted the attention of physicists: ‘realistic’ and ‘mean field’ ones. While in
the first case the focus is on modeling actual physical systems, one hopes that
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mean field models can be treated analytically, and that this understanding offers
some clues of the physical behavior of real materials.

Physical spin glasses are real three-dimensional (or, in some cases, two-
dimensional) systems. The main feature of realistic ensembles is that they retain
this geometric structure: a position x in d dimensions can be associated with
each spin. The interaction strength (the absolute value of the coupling J) de-
cays rapidly with the distance among the positions of the associated spins. The
Edwards-Anderson model is a prototype (and arguably the most studied ex-
ample) of this family. The spins are located on the vertices of a d-dimensional
hyper-cubic lattice. Neighboring spins interact, through two-body interactions
(i.e. pmax = 2 in Eq. (12.1)). The corresponding factor graph is therefore non-
random: we refer to Fig. 9.7 for an example with d = 2. The only source of
disorder are the random couplings Jij distributed according to P(J). It is cus-
tomary to add a uniform magnetic field (i.e. a p = 1 term with Ji non-random).
Very little is known about these models when d ≥ 2, and most of our knowledge
comes from numerical simulations. They suggest the existence of a glass phase
when d ≥ 3 but this is not proven yet.

There exists no general mathematical definition of mean field models. Fun-
damentally, they are models in which one expects to be able obtain exact ex-
pressions for the asymptotic (N → ∞) free energy density, by optimizing some
sort of large deviation rate function (in N). The distinctive feature allowing for a
solution in this form, is the lack of any finite-dimensional geometrical structure.

The p-spin glass model discussed in Sec. 8.2 (and in particular the p = 2 case,
which is the SK model) is a mean field model. Also in this case the factor graph
is non-random, and the disorder enters only in the random couplings. The factor
graph is a regular bipartite graph. It contains

(
N
p

)
function nodes, one for each

p-uple of spins; for this reason it is called fully connected. Each function node
has degree p, each variable node has degree

(
N−1
p−1

)
. Since the degree diverges

with N , the coupling distribution P(J) must be scaled appropriately with N , cf.
Eq. (8.25).

Fully connected models are among the best understood in the mean field
family. They can be studied either via the replica method, as in Chapter 8, or
via the cavity method that we shall develop in the next Chapters. Some of the
predictions from these two heuristic approaches have been confirmed rigorously.

One unrealistic feature of fully connected models is that each spin interacts
with a diverging number of other spins (the degree of a spin variable in the
factor graph diverges in the thermodynamic limit). In order to eliminate this
feature, one can study spin glass models on Erdös-Rényi random graphs with
finite average degree. Spins are associated with vertices in the graph and p = 2
interactions (with couplings that are iid random variables drawn from P(J)) are
associated with edges in the graph. The generalization to p-spin interactions is
immediate. The corresponding spin glass models will be named diluted spin
glasses (DSG). We define the ensemble DSGN (p,M,P) as follows:

• Generate a factor graph from the GN (p,M) ensemble;
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• For every function node a in the graph, connecting spins ia1 , . . . , i
a
p, draw

a random coupling Jia
1 ,...,ia

p
from the distribution P(J), and introduce an

energy term;
Ea(σ∂a) = −Jia

1 ,...,ia
p
σia

1
· · ·σia

p
; (12.2)

• The final energy is E(σ) =
∑M

a=1Ea(σ∂a).

The thermodynamic limit is taken by letting N → ∞ at fixed α = M/N .
As in the case of random graphs, one can introduce some variants of this def-

inition. In the ensemble DSG(p, α,P), the factor graph is drawn from GN (p, α):
each p-uple of variable nodes is connected by a function node independently
with probability α/

(
N
p

)
. As we shall see, the ensembles DSGN (p,M,P) and

DSGN (p, α, P ) have the same free energy per spin in the thermodynamic limit (as
well as several other thermodynamic properties in common). One basic reason
of this phenomenon is that any finite neighborhood (in the sense of Sec. 9.5.1)
of a random site i has the same asymptotic distribution in the two ensembles.

Obviously, any ensemble of random graphs can be turned into an ensem-
ble of spin glasses by the same procedure. Some of these ensembles have been
considered in the literature. Mimicking the notation defined in Section 9.2, we
shall introduce general diluted spin glasses with constrained degree profiles, to
be denoted by DSGN (Λ, P,P), as the ensemble derived from the random graphs
in DN (Λ, P ).

Diluted spin glasses are a very interesting class of systems, which are in-
timately related to sparse graph codes and to random satisfiability problems,
among others. Our understanding of DSGs is intermediate between fully con-
nected models and realistic ones. It is believed that both the replica and cavity
methods allow to compute exactly many thermodynamic properties for most of
these models. However the number of these exact results is still rather small, and
only a fraction of these have been proved rigorously.

12.2 Spin glasses: Constraints and frustration
{se:SGgauge}

Spin glasses at zero temperature can be seen as constraint satisfaction problems.
Consider for instance a model with two-body interactions

E(σ) = −
∑

(i,j)∈E

Jijσiσj , (12.3) {eq:ESGdef}

where the sum is over the edge set E of a graph G (the corresponding factor
graph is obtained by associating a function node a to each edge (ij) ∈ E). At
zero temperature the Boltzmann distribution is concentrated on those configura-
tions which minimize the energy. Each edge (i, j) induces therefore a constraint
between the spins σi and σj : they should be aligned if Jij > 0, or anti-aligned
if Jij < 0. If there exists a spin configuration which satisfies all the constraint,
the ground state energy is Egs = −∑(i,j)∈E |Jij | and the sample is said to be

unfrustrated (see Chapter 2.6). Otherwise it is frustrated: a ground state is a
spin configuration which violates the minimum possible number of constraints.
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As shown in the Exercise below, there are several methods to check whether
an energy function of the form (12.3) is frustrated.

Exercise 12.4 Define a ‘plaquette’ of the graph as a circuit i1, i2, . . . , iL, i1
such that no shortcut exists: ∀r, s ∈ {1, . . . , L}, the edge (ir, is) is absent from
the graph whenever r 6= s ± 1 (mod L). Show that a spin glass sample is
unfrustrated if and only if the product of the couplings along every plaquette
of the graph is positive.

Exercise 12.5 Consider a spin glass of the form (12.3), and define the Boolean
variables xi = (1 − σi)/2. Show that the spin glass constraint satisfaction
problem can be transformed into an instance of the 2-satisfiability problem.
[Hint: Write the constraint Jijσiσj > 0 in Boolean form using xi and xj .]

Since 2-SAT is in P, and because of the equivalence explained in the last
exercise, one can check in polynomial time whether the energy function (12.3)
is frustrated or not. This approach becomes inefficient to p ≥ 3 because K-SAT
is NP-complete for K ≥ 3. However, as we shall see in Chapter ??, checking
whether a spin glass energy function is frustrated remains a polynomial problem
for any p.

12.2.1 Gauge transformation
{se:gauge_sg}

When a spin glass sample has some negative couplings but is unfrustrated, one
is in fact dealing with a ‘disguised ferromagnet’. By this we mean that, through
a change of variables, the problem of computing the partition function for such
a system can be reduced to the one of computing the partition function of a
ferromagnet. Indeed, by assumption, there exists a ground state spin configu-
ration σ∗

i such that ∀(i, j) ∈ E Jijσ
∗
i σ

∗
j > 0. Given a configuration σ, define

τi = σiσ
∗
i , and notice that τi ∈ {+1,−1}. Then the energy of the configuration

is E(σ) = E∗(τ) ≡ −∑(i,j)∈E |Jij |τiτj . Obviously the partition function for the

system with energy function E∗( · ) (which is a ferromagnet since |Jij | > 0) is
the same as for the original system.

Such a change of variables is an example of a gauge transformation. In
general, such a transformation amounts to changing all spins and simultaneously
all couplings according to:

σi 7→ σ
(s)
i = σisi , Jij 7→ J

(s)
ij = Jijsisj , (12.4){eq:gauge_sg}

where s = {s1, . . . , sN} is an arbitrary configuration in {−1, 1}N . If we regard the
partition function as a function of the coupling constants J = {Jij : (ij) ∈ E}:

Z[J ] =
∑

{σi}

exp



β
∑

(ij)∈E

Jijσiσj



 , (12.5){eq:gaugeZdef}
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then we have

Z[J ] = Z[J (s)] . (12.6)

The system with coupling constants J (s) is sometimes called the ‘gauge trans-
formed system’.

Exercise 12.6 Consider adding a uniform magnetic field (i.e. a linear term of
the form −B∑i σi) to the energy function (12.3), and apply a generic gauge
transformation to such a system. How must the uniform magnetic field be
changed in order to keep the partition function unchanged? Is the new magnetic
field term still uniform?

Exercise 12.7 Generalize the above discussion of frustration and gauge trans-
formations to the ±J 3-spin glass (i.e. a model of the type (12.1) involving only
terms with p = 3).

12.2.2 The Nishimori temperature. . .
{se:Nishimori}

In many spin glass ensembles, there exists a special temperature (called the
Nishimori temperature) at which some thermodynamic quantities, such as
the internal energy, can be computed exactly. This nice property is particularly
useful in the study of inference problems (a particular instance being symbol
MAP decoding of error correcting codes), since the Nishimori temperature natu-
rally arises in these context. There are in fact two ways of deriving it: either as an
application of gauge transformations (this is how it was discovered in physics),
or by mapping the system onto an inference problem.

Let us begin by taking the first point of view. Consider, for the sake of
simplicity, the model (12.3). The underlying graph G = (V, E) can be arbitrary,
but we assume that the couplings Jij on all the edges (ij) ∈ E are iid random
variables taking values Jij = +1 with probability 1 − p and Jij = −1 with
probability p. We denote by E the expectation with respect to this distribution.

The Nishimori temperature for this system is given by TN = 1/βN, where

βN = 1
2 log (1−p)

p . It is chosen in such a way that the coupling constant distribu-

tion P(J) satisfies the condition:

P(J) = e−2βN J P(−J) . (12.7) {eq:NishimoriCondition}

An equivalent way of stating the same condition consists in writing

P(J) =
eβN J

2 cosh(βNJ)
Q(|J |) . (12.8) {eq:gasgsym}

where Q(|J |) denotes the distribution of the absolute values of the couplings (in
the present example, this is a Dirac’s delta on |J | = 1).
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Let us now turn to the computation of the average internal energy31 U ≡
E〈E(σ)〉. More explicitly

U = E





1

Z[J ]

∑

σ

(
−
∑

(kl)

Jklσkσl

)
eβ

P

(ij) Jijσiσj




 , (12.9) {eq:gasgU}

In general, it is very difficult to compute U . It turns out that at the Nishimori
temperature, the gauge invariance allows for an easy computation. The average
internal energy U can be expressed as U = E{ZU [J ]/Z[J ]}, where ZU [J ] =
−∑σ

∑
(kl) Jklσkσl

∏
(ij) e

βNJijσiσj .

Let s ∈ {−1, 1}N . By an obvious generalization of the principle (12.6), we

have ZU [J (s)] = ZU [J ], and therefore

U = 2−N
∑

s

E{ZU [J (s)]/Z[J (s)]} . (12.10)eq:InternalEnergyAvGauge}

If the coupling constants Jij are iid with distribution (12.8), then the gauge

transformed constants J ′
ij = J

(s)
ij are equally independent but with distribution

Ps(Jij) =
eβNJijsisj

2 coshβN
. (12.11){eq:ChangeOfMeasure}

Equation (12.10) can therefore be written as U = 2−N
∑

s Es{ZU [J ]/Z[J ]},
where Es denotes expectation with respect to the modified measure Ps(Jij).
Using Eq. (12.11), and denoting by E0 the expectation with respect to the uni-
form measure over Jij ∈ {±1}, we get

U = 2−N
∑

s

E0





∏

(ij)

eβNJijsisj

coshβN

ZU [J ]

Z[J ]




 = (12.12)

= 2−N (coshβN)−|E|E0





∑

s

eβN

P

(ij) Jijsisj
ZU [J ]

Z[J ]




 = (12.13)

= 2−N (coshβN)−|E|E0 {ZU [J ]} . (12.14)

It is easy to compute E0ZU [J ] = −2N (coshβN)|E|−1 sinhβN. This implies our
final result for the average energy at the Nishimori temperature:

U = −|E| tanh(βN) . (12.15)

Notice that this simple result holds for any choice of the underlying graph. Fur-
thermore, it is easy to generalize it to other choices of the coupling distribution
satisfying Eq. (12.8) and to models with multi-spin interactions of the form
(12.1). An even wider generalization is treated below.

31The same symbol U was used in Chapter 2 to denote the internal energy 〈E(σ)〉 (instead
of its average). There should be no confusion with the present use.
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12.2.3 . . . and its relation with probability

The calculation of the internal energy in the previous Section is straightforward
but somehow mysterious. It is hard to grasp what is the fundamental reason
that make things simpler at the Nishimori temperature. Here we discuss a more
general derivation, in a slightly more abstract setting, which is related to the
connection with inference mentioned above.

Consider the following process. A configuration σ ∈ {±1} is chosen uniformly
at random, we call P0(σ) the corresponding distribution. Next a set of coupling
constants J = {Ja} is chosen according to the conditional distribution

P(J |σ) = e−βEJ (σ) Q0(J) . (12.16)

Here EJ(σ) is an energy function with coupling constants J , and Q0(J) is some
reference measure (that can be chosen in such a way that the resulting P(J |σ)
is normalized). This can be interpreted as a communication process. The infor-
mation source produces the message σ uniformly at random, and the receiver
observes the couplings J .

The joint distribution of J and σ is P(J, σ) = e−βEJ (σ) Q0(J)P0(σ) We shall
denote expectation with respect to the joint distribution by Av in order to dis-
tinguish it from the thermal and quenched averages.

We assume that this process enjoys a gauge symmetry (this defines the
Nishimori temperature in general). By this we mean that, given s ∈ {±1}N ,

there exists an invertible mapping J → J (s) such that Q0(J
(s)) = Q0(J) and

EJ(s)(σ(s)) = EJ (σ). Then it is clear that the joint probability distribution of
the coupling and the spins, and the conditional one, enjoy the same symmetry

P(σ(s), J (s)) = P(σ, J) ; P(J (s)|σ(s)) = P(J |σ) . (12.17)

Let us introduce the quantity

U(J) = Av(EJ (σ)|J) =
∑

σ

P(σ|J)EJ (σ) . (12.18)

and denote by U(σ0) =
∑

J P(J |σ0)U(J). This is nothing but the average in-

ternal energy for a disordered system with energy function EJ(σ) and coupling
distribution P(J |σ0). For instance, if we take σ0 as the ‘all-plus’ configuration,
Q0(J) proportional to the uniform measure over {±1}E , and EJ (σ) as given
by Eq. (12.3), then U(σ0) is exactly the quantity U that we computed in the
previous Section.

Gauge invariance implies that U(J) = U(J (s)) for any s, and U(σ0) does not
depend upon σ0. We can therefore compute U = U(σ0) by averaging over σ0.
We obtain

U =
∑

σ0

P0(σ0)
∑

J

P(J |σ0)
∑

σ

P(σ|J)EJ (σ)

=
∑

σ,J

P(σ, J)EJ (σ) =
∑

J

P(J |σ0)EJ (σ) , (12.19)
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where we used gauge invariance, once more, in the last step. The final expression
is generally easy to evaluate since the coublings Ja are generically independent
under P(J |σ0) In particular, it is straightforward to recover Eq. (12.15) for the
case treated in the last Section.

{ex:Nishimori_gen}
Exercise 12.8 Consider a spin glass model on an arbitrary graph, with en-
ergy given by (12.3), and iid random couplings on the edges, drawn from
the distribution P(J) = P0(|J |)eaJ . Show that the Nishimori inverse tem-
perature is βN = a, and that the internal energy at this point is given by:
U = −|E|∑J P0(|J |) J sinh(βNJ). In the case where P is a Gaussian distri-
bution of mean J0, show that U = −|E|J0.

12.3 What is a glass phase?
{se:SGphasedef}

12.3.1 Spontaneous local magnetizations
{sec:LocalMagnetization}

In physics, a ‘glass’ is defined through its dynamical properties. For classical spin
models such as the ones we are considering here, one can define several types
of physically meaningful dynamics. For definiteness we use the single spin flip
Glauber dynamics defined in Section 4.5, but the main features of our discussion
should be robust with respect to this choice. Consider a system at equilibrium
at time 0 (i.e., assume σ(0) to be distributed according to the Boltzmann distri-
bution) and denote by 〈 · 〉σ(0) the expectation with respect to Glauber dynamics
conditional to the initial configuration. Within a ‘solid’ 32 phase, spins are cor-
related with their initial value on long time scales:

lim
t→∞

lim
N→∞

〈σi(t)〉σ(0) ≡ mi,σ(0) 6= 〈σi〉 . (12.20)

In other words, on arbitrary long but finite (in the system size) time scales, the
system converges to a ‘quasi-equilibrium’ state (for brevity ‘quasi-state’) with
local magnetizations mi,σ(0) depending on the initial condition.

The condition (12.20) is for instance satisfied by a d ≥ 2 Ising ferromagnet
in zero external field, at temperatures below the ferromagnetic phase transition.
In this case we have either mi,σ(0) = M(β), or mi,σ(0) = −M(β) depending
on the initial condition (here M(β) is the spontaneous magnetization of the
system). There are two quasi-states, invariant by translation and related by a
simple symmetry transformation. If the different quasi-states are not periodic,
nor related by any such transformation, one may speak of a glass phase.

We shall discuss in greater detail the dynamical definition of quasi-states
in Chapter ??. It is however very important to characterize the glass phase
at the level of equilibrium statistical mechanics, without introducing a specific
dynamics. For the case of ferromagnets we have already seen the solution of
this problem in Chapter 2. Let 〈 . 〉B denote expectation with respect to the

32The name comes from the fact that in a solid the preferred position of the atoms are time
independent, for instance in a crystal they are the vertices of a periodic lattice
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Boltzmann measure for the energy function (12.1), after a uniform magnetic
field has been added. One then defines the two quasi-states by:

mi,± ≡ lim
B→0±

lim
N→∞

〈σi〉B . (12.21)

A natural generalization to glasses consists in adding a small magnetic field
which is not uniform. Let us add to the energy function (12.1) a term of the form
−ǫ∑i siσi where s ∈ {±1}N is an arbitrary configuration. Denote by 〈 · 〉ǫ,s the
expectation with respect to the corresponding Boltzmann distribution and let

mi,s ≡ lim
ǫ→0±

lim
N→∞

〈σi〉ǫ,s . (12.22)

The Edwards-Anderson order parameter, defined as

qEA ≡ lim
ǫ→0±

lim
N→∞

1

N

∑

i

〈σi〉2ǫ,s , (12.23)

where s is an equilibrium configuration, then signals the onset of the spin glass
phase.

The careful reader will notice that the Eq. (12.20) is not really completely
defined: How should we take the N → ∞ limit? Do the limits exist, how does
the result depend on σ? These are subtle questions. They underly the problem of
defining properly the pure states (extremal Gibbs states) in disordered systems.
In spite of many interesting efforts, there is no completely satisfactory definition
of pure states in spin glasses.

Instead, all the operational definitions of the glass phase rely on the idea
of comparing several equilibrated (i.e. drawn from the Boltzmann distribution)
configurations of the system: one can then use one configuration as defining the
direction of the polarizing field. This is probably the main idea underlying the
success of the replica method. We shall explain below two distinct criteria, based
on this idea, which can be used to define a glass phase. But we will first discuss
a criterion of stability of the high temperature phase.

12.3.2 Spin glass susceptibility
{se:SGsusceptibility}

Take a spin glass sample, with energy (12.1), and add to it a local magnetic field
on site i, Bi. The magnetic susceptibility of spin j with respect to the field Bi

is defined as the rate of change of mj = 〈σj〉Bi
with respect to Bi:

χji ≡
dmj

dBi

∣∣∣∣
Bi=0

= β(〈σiσj〉 − 〈σi〉〈σj〉) , (12.24)

where we used the fluctuation dissipation relation (2.44).
The uniform (ferromagnetic) susceptibility defined in Sec. 2.5.1 gives the

rate of change of the average magnetization with respect to an infinitesimal
global uniform field: χ = 1

N

∑
i,j χji. Consider a ferromagnetic Ising model as
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introduced in Sec. 2.5. Within the ferromagnetic phase (i.e. at zero external field
and below the critical temperature) χ diverges with the system size N . One way
to understand this divergence is the following. If we denote by m(B) the infinite
volume magnetization in a magnetic field B, then

χ = lim
B→0

1

2B
[m(B) −m(−B)] = lim

B→0+
M/B = ∞ , (12.25)

within the ferromagnetic phase.
The above argument relates the susceptibility divergence with the existence

of two distinct pure states of the system (‘plus’ and ‘minus’). What is the ap-
propriate susceptibility to detect a spin glass ordering? Following our previous
discussion, we should consider the addition of a small non-uniform field Bi = siǫ.
The local magnetizations are given by

〈σi〉ǫ,s = 〈σi〉0 + ǫ
∑

j

χijsj +O(ǫ2) . (12.26)

As suggested by Eq. (12.25) we compare the local magnetization obtained by
perturbing the system in two different directions s and s′

〈σi〉ǫ,s − 〈σi〉ǫ,s′ = ǫ
∑

j

χij(sj − s′j) +O(ǫ2) . (12.27)

How should we choose s and s′? A simple choice takes them independent and
uniformly random in {±1}N ; let us denote by Es the expectation with respect
to this distribution. The above difference becomes therefore a random variable
with zero mean. Its second moment allows to define spin glass susceptibility
(sometimes called non-linear susceptibility):

χSG ≡ lim
ǫ→0

1

2Nǫ2

∑

i

Es

(
〈σi〉ǫ,s − 〈σi〉ǫ,s′

)2
(12.28)

This is somehow the equivalent of Eq. (12.25) for the spin glass case. Using
Eq. (12.27) one gets the expression χSG = 1

N

∑
ij(χij)

2, that is, thanks to the
fluctuation dissipation relation

χSG =
β2

N

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2 . (12.29){eq:chiSGdef}

A necessary condition for the system to be in a ‘normal’ paramagnetic phase 33

is that χSG remain finite when N → ∞. We shall see below that this necessary
condition of local stability is not always sufficient.

33One could construct models with ‘exotic’ paramagnetic phases, and a divergent spin glass
susceptibility if (for instance) coupling distribution has infinite second moment. We disregard
such situations.
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Exercise 12.9 Another natural choice would consist in choosing s and s′ as
independent configurations drawn from Boltzmann’s distribution. Show that
with such a choice one would get χSG = (1/N)

∑
i,j,k χijχjkχki. This suscep-

tibility has not been studied in the literature, but it is reasonable to expect
that it will lead generically to the same criterion of stability as the usual one
(12.29).

12.3.3 The overlap distribution function P (q)

One of the main indicators of a glass phase is the overlap distribution, which we
defined in Section 8.2.2, and discussed on some specific examples. Given a general
magnetic model of the type (12.1), one generates two independent configurations
σ and σ′ from the associated Boltzmann distribution and consider their overlap
q(σ, σ′) = N−1

∑
i σiσ

′
i. The overlap distribution P (q) is the distribution of

q(σ, σ′) when the couplings and the underlying factor graph are taken randomly
from their ensemble. Its moments are given by34:

∫
P (q)qr dq = E

{ 1

Nr

∑

i1,...,ir

〈σi1 . . . σir
〉2
}
. (12.30)

In particular, the first moment
∫
P (q) q dq = N−1

∑
im

2
i is the expected overlap

and the variance Var(q) ≡
∫
P (q) q2 dq−

[∫
P (q) q dq

]2
is related to the spin glass

susceptibility:

Var(q) = E

{ 1

N2

∑

i,j

[〈σiσj〉 − 〈σi〉〈σj〉]2
}

=
1

N
χSG . (12.31) {eq:Pdeq2ndmom}

How is a glass phase detected through the behavior of the overlap distribution
P (q)? We will discuss here some of the features emerging from the solution of
mean field models. In the next Section we will see that the overlap distribution is
in fact related to the idea, discussed in Section 12.3.1, of perturbing the system
in order to explore its quasi-states.

Generically35, at small β, a system of the type (12.1) is found in a ‘para-
magnetic’ or ‘liquid’ phase. In this regime P (q) concentrates as N → ∞ on a
single (deterministic) value q(β). With high probability, two independent config-
urations σ and σ′ have overlap q(β). In fact, in such a phase, the spin glass χSG

susceptibility is finite, and the variance of P (q) vanishes therefore as 1/N .
For β larger than a critical value βc, the distribution P (q) may acquire some

structure, in the sense that several values of the overlap have non-zero probability

34Notice that, unlike in Section 8.2.2, we denote here by P (q) the overlap distribution for a
finite system of size N , instead of its N → ∞ limit.

35This expression should be interpreted as ‘in most model of interest studied until now’ and
subsumes a series of hypotheses. We assume, for instance, that the coupling distribution P(J)
has finite second moment.
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T0 Tc

P
q

q q

P

P

Fig. 12.2. Typical behavior of the order parameter P (q) (overlap distribution
at a continuous-FRSB glass transition. Vertical arrows denote Dirac’s delta func-
tion. {fig:pdeq_continu}

in the N → ∞ limit. The temperature Tc = 1/βc is called the static (or
equilibrium) glass transition temperature. For β > βc the system is in an
equilibrium glass phase.

How does P (q) look like at β > βc? Let us focus here on its asymptotic
(N → ∞) limit. Generically, the transition falls into one of the following two
categories, the names of which come from the corresponding replica symmetry
breaking pattern found in the replica approach:

(i) Continuous (“Full replica symmetry breaking -FRSB”) glass transition.
In Fig. 12.2 we sketch the behavior of the thermodynamic limit of P (q)
in this case. The delta function present at β < βc ‘broadens’ for β > βc,
giving rise to a distribution with support in some interval [q0(β), q1(β)]. The
width q1(β) − q0(β) vanishes continuously when β ↓ βc. Furthermore, the
asymptotic distribution has a continuous density which is strictly positive
in (q0(β), q1(β)) and two discrete (delta) contributions at q0(β) and q1(β).

This type of transition has a ‘precursor’. If we consider the N → ∞ limit
of the spin glass susceptibility, this diverges as β ↑ βc. This phenomenon
is quite important for identifying the critical temperature experimentally,
numerically and analytically.

(ii) Discontinuous (“1RSB”) glass transition. Again, the asymptotic limit of
P (q) acquires a non trivial structure in the glass phase, but the scenario
is different. When β increases above βc, the δ-peak at q(β), which had
unit mass at β ≤ βc, becomes a peak at q0(β), with a mass 1 − x(β) < 1.
Simultaneously, a second δ-peak appears at a value of the overlap q1(β) >
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T0 Tc

P
q

q q
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P

Td

Glass phase
Trivial P(q)

Fig. 12.3. Typical behavior of the order parameter P (q) (overlap distribution)
in a discontinuous-1RSB glass transition. Vertical arrows denote Dirac’s delta
function. {fig:pdeq_1step}

q0(β) with mass x(β). As β ↓ βc, q0(β) → q(βc) and x(β) → 0. Unlike
in a continuous transition, the width q1(β) − q0(β) does not vanish as
β ↓ βc and the open interval ]q0(β), q1(β)[ has vanishing probability in the
N → ∞ limit. Furthermore, the thermodynamic limit of the spin glass
susceptibility, χSG has a finite limit as β ↑ βc. This type of transition has
no ‘simple’ precursor (but we shall describe below a more subtle indicator).

The two-peaks structure of P (q) in a discontinuous transition has a partic-
ularly simple geometrical interpretation. When two configurations σ and σ′ are
chosen independently with the Boltzmann measure, their overlap is (with high
probability) either approximately equal to q0 or to q1. In other words, their
Hamming distance is either N(1 − q1)/2 or N(1 − q0)/2. This means that the
Boltzmann measure p(σ) is concentrated in some regions of the Hamming space
(clusters). With high probability, two independent random configurations in
the same cluster have distance (close to) N(1− q1)/2, and two configurations in
distinct clusters have distance (close to) N(1 − q0)/2. In other words, while the
overlap does not concentrate in probability when σ and σ′ are drawn from the
Boltzmann measure, it does when this measure is restricted to one cluster. In a
more formal (but still imprecise) way, we might write

p(σ) ≈
∑

α

Wαpα(σ) , (12.32)
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where the pα( · ) are probability distributions concentrated onto a single cluster,
and Wα are the weights attributed by the Boltzmann distribution to each cluster.

According to this interpretation, x(β) = E
∑

αW
2
α. Notice that, since x(β) >

0 for β > βc, the weights are sizeable only for a finite number of clusters (if
there were R clusters, all with the same weight Wα = 1/R, one would have
x(β) = 1/R). This is what we found already in the REM, as well as in the
replica solution of the completely connected p-spin model, cf. Sec. 8.2.

Generically, clusters exist already in some region of temperatures above Tc,
but the measure is not yet condensed on a finite number of them. In order to
detect the existence of clusters in this intermediate temperature region, one needs
some of the other tools described below.

There is no clear criterion that allows to distinguish a priori between systems
undergoing one or the other type of transition. The experience gained on models
solved via the replica or cavity methods indicated that a continuous transition
typically occurs in standard spin glasses with p = 2-body interactions, but also,
for instance, in the vertex-cover problem. A discontinuous transition is instead
found in structural glasses, generalized spin glasses with p ≥ 3, random satisfia-
bility and coloring. To complicate things, both types of transitions may occur in
the same system at different temperatures (or varying some other parameter).
This may lead to a rich phase diagram with several glass phases of different
nature.

It is natural to wonder whether gauge transformations may give some in-
formation on P (q). Unfortunately, it turns out that the Nishimori temperature
never enters a spin glass phase: the overlap distribution at TN is concentrated
on a single value, as suggested in the next exercise.

{ex:pdeqNishim}
Exercise 12.10 Using the gauge transformation of Sec. 12.2.1, show that,
at the Nishimori temperature, the overlap distribution P (q) is equal to the
distribution of the magnetization per spin m(σ) ≡ N−1

∑
i σi. (In many spin

glass models one expects that this distribution of magnetization per spin obeys
a large deviation principle, and that it concentrates onto a single value as
N → ∞.)

12.3.4 From the overlap distribution to the ǫ-coupling method

The overlap distribution is in fact related to the idea of quasi-states introduced in
Sec. 12.3.1. Let us again use a perturbation of the Boltzmann distribution which
adds to the energy a magnetic field term −ǫ∑i siσi, where s = (s1, . . . , sN ) is a
generic configuration. We introduce the ǫ-perturbed energy of a configuration σ
as

Eǫ,s(σ) = E(σ) − ǫ
N∑

i=1

siσi . (12.33){eq:PerturbedEnergy}

Is is important to realize that both the original energy E(σ) and the new term
−ǫ∑i siσi are extensive, i.e. they grow proportionally toN asN → ∞. Therefore
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in this limit the presence of the perturbation can be relevant. The ǫ-perturbed
Boltzmann measure is

pǫ,s(σ) =
1

Zǫ,s
e−βEǫ,s(σ) . (12.34)

In order to quantify the effect of the perturbation, let us measure the expected
distance between σ and s

d(s, ǫ) ≡ 1

N

N∑

i=1

1

2
(1 − si〈σi〉s,ǫ) (12.35)

(notice that
∑

i(1 − siσi)/2 is just the number of positions in which σ and s
differ). For ǫ > 0 the coupling between σ and s is attractive, for ǫ < 0 it is
repulsive. In fact it is easy to show that d(s, ǫ) is a decreasing function of ǫ. ⋆

In the ǫ-coupling method, s is taken as a random variable, drawn from the
(unperturbed) Boltzmann distribution. The rationale for this choice is that in
this way s will point in the directions corresponding to quasi-states. The average
distance induced by the ǫ-perturbation is then obtained, after averaging over s
and over the choice of sample:

d(ǫ) ≡ E

{∑

s

1

Z
e−βE(s) d(s, ǫ)

}
. (12.36)

There are two important differences between the ǫ-coupling method computation
of the overlap distribution P (q): (i) When computing P (q), the two copies of
the system are treated on equal footing: they are independent and distributed
according to the Boltzmann law. In the ǫ-coupling method, one of the copies
is distributed according to Boltzmann law, while the other follows a perturbed
distribution depending on the first one. (ii) In the ǫ-coupling method the N → ∞
limit is taken at fixed ǫ. Therefore, the sum in Eq. (12.36) can be dominaded by
values of the overlap q(s, σ) which would have been exponentially unlikely for the
original (unperturbed) measure. In the N → ∞ limit of P (q), such values of the
overlap are given a vanishing weight. The two approaches provide complementary
informations.

Within a paramagnetic phase d(ǫ) remains a smooth function of ǫ in the
N → ∞ limit: perturbing the system does not have any dramatic effect. But in
a glass phase d(ǫ) becomes singular. Of particular interest are discontinuities at
ǫ = 0, that can be detected by defining

∆ = lim
ǫ→0+

lim
N→∞

d(ǫ) − lim
ǫ→0−

lim
N→∞

d(ǫ) . (12.37)

Notice that the limit N → ∞ is taken first: for finite N there cannot be any
discontinuity.

One expects ∆ to be non-zero if and only if the system is in a ‘solid’ phase.
One can think the process of adding a positive ǫ coupling and then letting it to
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0 as a physical process. The system is first forced in an energetically favorable
configuration (given by s). The forcing is then gradually removed and one checks
whether any memory of the preparation is retained (∆ > 0), or, vice-versa, the
system ‘liquefies’ (∆ = 0).

The advantage of the ǫ-coupling method with respect to the overlap distri-
bution P (q) is twofold:

• In some cases the dominant contribution to the Boltzmann measure comes
from several distinct clusters, but a single one dominates over the others.
More precisely, it may happen that the weights for sub-dominant clusters
scales as Wα = exp[−Θ(Nθ)], with θ ∈]0, 1[. In this case, the thermody-
namic limit of P (q) is a delta function and does not allow to distinguish
from a purely paramagnetic phase. However, the ǫ-coupling method iden-
tifies the phase transition through a singularity of d(ǫ) at ǫ = 0.

• One can use it to analyze a system undergoing a discontinuous transition,
when it is in a glass phase but in the T > Tc regime. In this case, the
existence of clusters cannot be detected from P (q) because the Boltzmann
measure is spread among an exponential number of them. This situation
will be the object of the next Section.

12.3.5 Clustered phase of 1RSB systems and the potential
{se:1rsbqualit}

The 1RSB equilibrium glass phase corresponds to a condensation of the mea-
sure on a small number of clusters of configurations. However, the most striking
phenomenon is the appearance of clusters themselves. In the next Chapters we
will argue that this has important consequences on Monte Carlo dynamics as
well as on other algorithmic approaches to these systems. It turns out that the
Boltzmann measure splits into clusters at a distinct temperature Td > Tc. In
the region of temperatures [Tc, Td] we will say that the system is in a clustered
phase (or, sometimes, dynamical glass phase). The phase transition at Td

will be referred to as clustering or dynamical transition. In this regime, an
exponential number of clusters N .

= eNΣ carry a roughly equal weight. The rate
of growth Σ is called complexity36 or configurational entropy.

The thermodynamic limit of the overlap distribution P (q) does not show
any signature of the clustered phase. In order to understand this point, it is
useful to work out an toy example. Assume that the Boltzmann measure is
entirely supported onto exactly eNΣ sets of configurations in {±1}N (each set is a
clusters), denoted by α = 1, . . . , eNΣ and that the Boltzmann probability of each
of these sets is w = e−NΣ. Assume furthermore that, for any two configurations
belonging to the same cluster σ, σ′ ∈ α, their overlap is q(σ, σ′) = q1, while if they
belong to different clusters σ ∈ α, σ′ ∈ α′, α 6= α′ their overlap is q(σ, σ′) = q0 <
q1. Although it might be actually difficult to construct such a measure, we shall
neglect this for a moment, and compute the overlap distribution. The probability

36This use of the term ‘complexity’, which is customary in statistical physics, should not be
confused with its use in theoretical computer science.
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that two independent configurations fall in the same cluster is eNΣw2 = e−NΣ.
Therefore, we have

P (q) = (1 − e−NΣ) δ(q − q0) + e−NΣ δ(q − q1) , (12.38)

which converges to δ(q − q0) as N → ∞: a single delta function as in the para-
magnetic phase.

A first signature of the clustered phase is provided by the ǫ-coupling method
described in the previous Section. The reason is very clear if we look at Eq. (12.33):
the epsilon coupling ‘tilts’ the Boltzmann distribution in such a way that un-
likely values of the overlap acquire a finite probability. It is easy to compute the
thermodynamic limit d∗(ǫ) ≡ limN→∞ d(ǫ). We get

d∗(ǫ) =

{
(1 − q0)/2 for ǫ < ǫc,
(1 − q1)/2 for ǫ > ǫc,

(12.39)

where ǫc = Σ/β(q1−q0). As T ↓ Tc, clusters becomes less and less numerous and
Σ → 0. Correspondingly, ǫc ↓ 0 as the equilibrium glass transition is approached.

The picture provided by this toy example is essentially correct, with the
caveats that the properties of clusters will hold only within some accuracy and
with high probability. Nevertheless, one expects d∗(ǫ) to have a discontinuity at
some ǫc > 0 for all temperatures in an interval ]Tc, T

′
d]. Furthermore ǫc ↓ 0 as

T ↓ Tc.
In general, the temperature T ′

d computed through the ǫ-coupling method
does not coincide with the clustering transition. The reason is easily understood.
As illustrated by the above example, we are estimating the exponentially small
probability P(q|s, J) that an equilibrated configuration σ has overlap q with the
reference configuration s, in a sample J . In order to do this we compute the
distance d(ǫ) which can be expressed by taking the expectation with respect
to s and J of a rational function of P(q|s, J). As shown several times since
Chapter 5, exponentially small (or large) quantities, usually do not concentrate
in probability, and d(ǫ) may be dominated by exponentially rare samples. We
also learnt the cure for this problem: take logarithms! We therefore define37 the
potential

V (q) = − lim
N→∞

1

Nβ
Es,J {log P(q|s, J)} . (12.40)

Here (as in the ǫ-coupling method) the reference configuration is drawn from the
Boltzmann distribution. In other words

Es,J( · · · ) = EJ

{ 1

ZJ

∑

s

e−βEJ (s)( · · · )
}
. (12.41)

If, as expected, log P(q|s, J) concentrates in probability, one has P(q|s, J)
.
=

e−NV (q)

37One should introduce a resolution, so that the overlap is actually constrained in some
window around q. The width of this window can be let to 0 after N → ∞.
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Fig. 12.4. Qualitative shapes of the potential V (q) at various temperatures.
When the temperature is very high (not shown) V (q) is convex. Below T = Td,
it develops a secondary minimum. The height difference between the two minima
is V (q1) − V (q0) = TΣ. In the case shown here q0 = 0 is independent of the
temperature.{fig:pot_qualit}

{exercise:RandomSigma}
Exercise 12.11 Consider the following refined version of the
toy model (12.38): P(q|s, J) = (1 − e−NΣ(s,J))Gq0(s,J);b0/Nβ(q) +

e−NΣ(s,J))Gq1(s,J);b1/Nβ(q), where Ga,b is a Gaussian distribution of
mean a and variance b. We suppose that b0, b1 are constants, but
Σ(s, J), q0(s, J), q1(s, J) fluctuate as follows: when J and s are distributed ac-
cording to the correct joint distribution (12.41), then Σ(s, J), q0(s, J), q1(s, J)
are independent Gaussian random variable of means respectively Σ, q0, q1 and
variances δΣ2/N, δq20/N, δq

2
1/N .

Assuming for simplicity that δΣ2 < 2Σ, compute P (q) and d(ǫ) for this
model. Show that the potential V (q) is given by two arcs of parabolas:

V (q) = min

{
(q − q0)

2

2b0
,

(q − q1)
2

2b1
+

1

β
Σ

}
(12.42)

The potential V (q) has been computed exactly, using the replica method,
only in a small number of cases, mainly fully connected p-spin glasses. Here
we shall just mention the qualitative behavior that is expected on the basis of
these computations. The result is summarized in Fig. 12.4. At small enough β
the potential is convex. Increasing β one first encounters a value β∗ where V (q)
stops to be convex. When β > βd = 1/Td, V (q) develops a secondary minimum,
at q = q1(β) > q0(β). This secondary minimum is in fact an indication of the
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existence of an exponential number of clusters, such that two configurations in
the same cluster typically have overlap q1, while two configurations in distinct
clusters have overlap q0. A little thought shows that the difference between the
value of the potential at the two minima gives the complexity: V (q1) − V (q0) =
TΣ.

In models in which the potential has been computed exactly, the temperature
Td computed in this way has been shown to coincide with a dramatic slowing
down of the dynamics. More precisely, a properly defined relaxation time for
Glauber-type dynamics is finite for T > Td and diverges exponentially in the
system size for T < Td.

12.3.6 Cloning and the complexity function

When the various clusters don’t have all the same weight, the system is most
appropriately described through a complexity function. Consider a cluster of
configurations, called α. Its free energy Fα can be defined by restricting the parti-
tion function to configurations in cluster α. One way of imposing this restriction
is to chose a reference configuration σ0 ∈ α, and restricting the Boltzmann sum
to those configurations σ whose distance from σ0 is smaller than Nδ. In order
to correctly identify clusters, one has to take (1 − q1)/2 < δ < (1 − q0)/2.

Let Nβ(f) be the number of clusters such that Fα = Nf (more precisely, this
is an un-normalized measure attributing unit weight to the points Fα/N). We
expect it to satisfy a large deviations principle of the form

Nβ(f)
.
= exp{NΣ(β, f)} . (12.43)

The rate function Σ(β, f) is the complexity function. If clusters are defined as
above, with the cut-off δ in the appropriate interval, they are expected to be
disjoint up to a subset of configurations of exponentially small Boltzmann weight.
Therefore the total partition function is given by:

Z =
∑

α

e−βFα
.
=

∫
eN [Σ(β,f)−βf ] df

.
= eN [Σ(β,f∗)−βf∗] , (12.44)

where we applied the saddle point method as in standard statistical mechan-
ics calculations, cf. Sec. 2.4. Here f∗ = f∗(β) solves the saddle point equation
∂Σ/∂f = β.

For several reasons, it is interesting to determine the full complexity func-
tion Σ(β, f), as a function of f for a given inverse temperature β. The cloning
method is a particularly efficient (although non-rigorous) way to do this com-
putation. Here we sketch the basic idea: several applications will be discussed in
the next Chapters. One begins by introducing m identical ‘clones’ of the initial
system. These are non-interacting except for the fact that they are constrained
to be in the same cluster. In practice one can constrain all their pairwise Ham-
ming distances to be smaller than Nδ, where (1 − q1)/2 < δ < (1 − q0)/2. The
partition function for the m clones systems is therefore



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

260 SPIN GLASSES

Zm =
∑

σ(1),...,σ(m)

′ exp
{
− βE(σ(1)) · · · − βE(σ(m))

}
. (12.45)

where the prime reminds us that σ(1), . . .σ(m) stay in the same cluster. By
splitting the sum over the various clusters we have

Zm =
∑

α

∑

σ(1)...σ(m)∈α

e−βE(σ(1))···−βE(σ(m)) =
∑

α

(∑

σ∈α

e−βE(σ)
)m

. (12.46)

At this point we can proceed as for the calculation of the usual partition function
and obtain

Zm =
∑

α

e−βmFα
.
=

∫
eN [Σ(β,f)−βmf ] df

.
= eN [Σ(β,f̂)−βmf̂ ] , (12.47){eq:SaddlePointCloned}

where f̂ = f̂(β,m) solves the saddle point equation ∂Σ/∂f = βm.
The free energy density per clone of the cloned system is defined as

Φ(β,m) = − lim
N→∞

1

βmN
logZm . (12.48)

The saddle point estimate (12.47) implies that Φ(β,m) is related to Σ(β, f)
through a Legendre transform:

Φ(β,m) = f − 1

βm
Σ(β, f) ;

∂Σ

∂f
= βm . (12.49)

If we forget that m is an integer, and admit that Φ(β,m) can be ‘continued’
to non-integer m, the complexity Σ(β, f) can be computed from Φ(β,m) by
inverting this Legendre transform38.

38The similarity to the procedure used in the replica method is not fortuitous. Notice however
that replicas are introduced to deal with quenched disorder, while cloning is more general
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Exercise 12.12 In the REM, the natural definition of overlap between two
configurations i, j ∈ {1, . . . , 2N} is Q(i, j) = δij . Taking a configuration j0 as
reference, the ǫ-perturbed energy of a configuration j is E′(ǫ, j) = Ej −Nǫδj,j0 .
(Note the extra N multiplying ǫ, introduced in order to ensure that the new
ǫ-coupling term is typically extensive).

(i) Consider the high temperature phase where β < βc = 2
√

log 2. Show that
the ǫ-perturbed system has a phase transition at ǫ = log 2

β − β
4 .

(ii) In the low temperature phase β > βc, show that the phase transition
takes place at ǫ = 0.

Therefore in the REM the clusters exist at any β, and every cluster is reduced to
one single configuration: one must have Σ(β, f) = log 2−f2 independently of β.
Show that this is compatible with the cloning approach, through a computation
of the potential Φ(β,m):

Φ(β,m) =

{
− log 2

βm − βm
4 for m < βc

β

−√
log 2 for m > βc

β

(12.50)

12.4 An example: the phase diagram of the SK model
{sec:PhaseDiag}

Several mean field models have been solved using the replica method. Some-
times a model may present two or more glass phases with different properties.
Determining the phase diagram can be particularly challenging in these cases.

A classical example is provided by the SK model with ferromagnetically bi-
ased couplings. As in the other examples of this Chapter, this is a model for N
Ising spins σ = (σ1, . . . , σN ). The energy function is

E(σ) = −
∑

(i,j)

Jijσiσj , (12.51)

where (i, j) are un-ordered couples, and the couplings Jij are iid Gaussian ran-
dom variables with mean J0/N and variance 1/N . The model somehow inter-
polates between the Curie-Weiss model treated in Sec. 2.5.2, corresponding to
J0 → ∞, and the unbiased Sherrington-Kirkpatrick model, considered in Chap-
ter 8, for J0 = 0.

The phase diagram is plotted in terms of two parameters: the ferromagnetic
bias J0, and the temperature T . Depending on their values, the system is found in
one of four phases, cf. Fig. 12.5: paramagnetic (P), ferromagnetic (F), symmetric
spin glass (SG) and mixed ferromagnetic spin glass (F-SG). A simple character-
ization of these four phases is obtained in terms of two quantities: the average
magnetization and overlap. In order to define them, we must first observe that,
since E(σ) = E(−σ), in the present model 〈σi〉 = 0 identically for all values of
J0, and T . In order to break this symmetry, we may add a magnetic field term
−B∑i σi and let B → 0 after the thermodynamic limit. We then define
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Fig. 12.5. Phase diagram of the SK model in zero magnetic field. When the
temperature T and the ferromagnetic bias J0 are varied, there exist four possible
phases: paramagnetic (P), ferromagnetic (F), spin glass (SG) and mixed ferro-
magnetic-spin glass (F-SG). The full lines separate these various phases. The
dashed line is the location of the Nishimori temperature. {fig:sk_phasediag}

m = lim
B→0+

lim
N→∞

E〈σi〉B , q = lim
B→0+

lim
N→∞

E(〈σi〉2B) , (12.52)

(which don’t depend on i because the coupling distribution is invariant under a
permutation of the sites). In the P phase one has m = 0, q = 0; in the SG phase
m = 0, q > 0, and in the F and F-SG phases one has m > 0, q > 0.

A more complete description is obtained in terms of the overlap distribu-
tion P (q). Because of the symmetry under spin inversion mentioned above,
P (q) = P (−q) identically. The qualitative shape of P (q) in the thermodynamic
limit is shown in Fig. 12.6. In the P phase it consists of a single δ function with
unit weight at q = 0: two independent configurations drawn from the Boltzmann
distribution have, with high probability, overlap close to 0. In the F phase, it
is concentrated on two symmetric values q(J0, T ) > 0 and −q(J0, T ) < 0, each
carrying weight one half. We can summarize this behavior by saying that a ran-
dom configuration drawn from the Boltzmann distribution is found, with equal
probability, in one of two different states. In the first one the local magnetiza-
tions are {mi}, in the second one they are {−mi}. If one draws two independent
configurations, they fall in the same state (corresponding to the overlap value
q(J0, T ) = N−1

∑
im

2
i ) or in opposite states (overlap −q(J0, T )) with probability

1/2. In the SG phase the support of P (q) is a symmetric interval [−qmax, qmax],
with qmax = qmax(J0, T ). Finally, in the F-SG phase the support is the union of
two intervals [−qmax,−qmin] and [qmin, qmax]. Both in the SG and F-SG phases,
the presence of a whole range of overlap values carrying non-vanishing probabil-
ity, suggests the existence of a multitude of quasi-states (in the sense discussed
in the previous Section).

In order to remove the degeneracy due to the symmetry under spin inversion,
one sometimes define an asymmetric overlap distribution by adding a magnetic
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Fig. 12.6. The typical shape of the P (q) function in each of the four phases of
the SK model ferromagnetically biased couplings.{fig:pdeq_SK}

field terms, and taking the thermodynamic limit as in Eq. (12.52):

P+(q) = lim
B→0+

lim
N→∞

PB(q) . (12.53)

Somewhat surprisingly, it turns out that P+(q) = 0 for q < 0, while P+(q) =
2P (q) for q > 0. In other words P+(q) is equal to the distribution of the absolute
value of the overlap.

Exercise 12.13 Consider the Curie-Weiss model in a magnetic field, cf.
Sec. 2.5.2. Draw the phase diagram and compute the asymptotic overlap distri-
bution. Discuss its qualitative features for different values of the temperature
and magnetic field.

A few words for the reader interested in how one derives this diagram: Some
of the phase boundaries were already derived using the replica method in Exer-
cise 8.12. The boundary P-F is obtained by solving the RS equation (8.68) for
q, µ, m. The P-SG and F-M lines are obtained by the AT stability condition
(8.69). Deriving the phase boundary between the SG and F-SG phases is much
more challenging, because it separates glassy phases, therefore it cannot be de-
rived within the RS solution. It is known to be approximately vertical, but there
is no simple expression for it. The Nishimori temperature is deduced from the
condition (12.7): TN = 1/J0, and the line T = 1/J0 is usually called ‘Nishimori
line’. The internal energy per spin on this line is U/N = −J0/2. Notice that the
line does not enter any of the glass phases, as we know from general arguments.

An important aspect of the SK model is that the appearance of the glass
phase on the lines separating P from SG on the one hand, and F from F-SG
on the other hand is a continuous transition. Therefore it is associated with the
divergence of the non-linear susceptibility χSG. The following exercise, reserved
to the replica aficionados, sketches the main lines of the argument showing this.
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Exercise 12.14 Let us see how to compute the non-linear susceptibility of the

SK model, χSG = β2

N

∑
i6=j (〈σiσj〉 − 〈σi〉〈σj〉)2, with the replica method Show

that:

χSG = lim
n→0

β2

N

∑

i6=j




(
n

2

)−1∑

(ab)

〈σa
i σ

b
iσ

a
j σ

b
j〉 −

(
n

3

)−1 ∑

(abc)

〈σa
i σ

b
iσ

a
j σ

c
j〉

+

(
n

4

)−1 ∑

(abcd)

〈σa
i σ

b
iσ

c
jσ

d
j 〉





= N lim
n→0

∫ ∏

(ab)

(dQabdλab)e
−NG(Q,λ)A(Q) , (12.54)

where we follow the notations of (8.30), the sum over (a1a2 . . . ak) is understood
to run over all the k-uples of distinct replica indices, and

A(Q) ≡
(
n

2

)−1∑

(ab)

Q2
ab −

(
n

3

)−1 ∑

(abc)

QabQac +

(
n

4

)−1 ∑

(abcd)

QabQcd .(12.55)

Analyze the divergence of χSG along the following lines: The leading contribu-
tion to (12.54) should come from the saddle point and be given, in the high
temperature phase, by A(Qab = q) where Qab = q is the RS saddle point. How-
ever this contribution clearly vanishes when one takes the n → 0 limit. One
must thus consider the fluctuations around the saddle point. Each of the term
like QabQcd in A(Q) gives a factor 1

N time the appropriate matrix element of
the inverse of the Hessian matrix. When this Hessian matrix is non-singular,
these elements are all finite and one obtains a finite result (The 1/N cancels
the factor N in (12.54)). But when one reaches the AT instability line, the
elements of the inverse of the Hessian matrix diverge, and therefore χSG also
diverges.

Notes

A review on the simulations of the Edwards Anderson model can be found in
(Marinari, Parisi and Ruiz-Lorenzo, 1997).

Mathematical results on mean field spin glasses are found in the book (Tala-
grand, 2003). A short recent survey is provided by (Guerra, 2005).

Diluted spin glasses were introduced in (Viana and Bray, 1988).
The implications of the gauge transformation were derived by Hidetoshi

Nishimori and his coworkers, and are explained in details in his book (Nishi-
mori, 2001).

The notion of pure states in phase transitions, and the decomposition of Gibbs
measures into superposition of pure states, is discussed in the book (Georgii,
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1988).
The divergence of the spin glass susceptibility is specially relevant because

this susceptibility can be measured in zero field. The experiments of (Monod and
Bouchiat, 1982) present evidence of a divergence, which support the existence
of a finite spin glass transition in real (three dimensional) spin glasses in zero
magnetic field.

The existence of two transition temperatures Tc < Td was first discussed
by Kirkpatrick, Thirumalai and Wolynes (Kirkpatrick and Wolynes, 1987; Kirk-
patrick and Thirumalai, 1987), who pointed out the relevance to the theory
of structural glasses. In particular, (Kirkpatrick and Thirumalai, 1987) discusses
the case of the p-spin glass. A review of this line of approach to structural glasses,
and particularly its relevance to dynamical effects, is (Bouchaud, Cugliandolo,
Kurchan and Mézard, 1997).

The ǫ-coupling method was introduced in (Caracciolo, Parisi, Patarnello and
Sourlas, 1990). The idea of cloning in order to study the complexity function
is due to Monasson (Monasson, 1995). The potential method was introduced in
(Franz and Parisi, 1995).
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BRIDGES

{ch:inference}

We have seen in the last three Chapters how some problems with very different
origins can be cast into the unifying framework of factor graph representations.
The underlying mathematical structure, namely the locality of probabilistic de-
pendencies between variables, is also present in many problems of probabilistic
inference, which provides another unifying view of the field. On the other hand,
locality is an important ingredient that allows sampling from complex distribu-
tions using the Monte Carlo technique.

In Section 13.1 we present some basic terminology and simple examples of
statistical inference problems. Statistical inference is an interesting field in it-
self with many important applications (ranging from artificial intelligence, to
modeling and statistics). Here we emphasize the possibility of considering cod-
ing theory, statistical mechanics and combinatorial optimization, as inference
problems.

Section 13.2 develops a very general tool in all these problems, the Monte
Carlo Markov Chain (MCMC) technique, already introduced in Sec. 4.5. This
is often a very powerful approach. Furthermore, Monte Carlo sampling can be
regarded as a statistical inference method, and the Monte Carlo dynamics is a
simple prototype of the local search strategies introduced in Secs. 10.2.3 and
11.4. Many of the difficulties encountered in decoding, in constraint satisfaction
problems, or in glassy phases, are connected to a dramatic slowing down of the
MCMC dynamics. We present the results of simple numerical experiments on
some examples, and identify regions in the phase diagram where the MCMC
slowdown implies poor performances as a sampling/inference algorithm. Finally,
in Section 13.3 we explain a rather general argument to estimate the amount
of time MCMC has to be run in order to produce roughly independent samples
with the desired distribution.

13.1 Statistical inference{sec:Inference}

13.1.1 Bayesian networks

It is common practice in artificial intelligence and statistics, to formulate infer-
ence problems in terms of Bayesian networks. Although any such problem can
also be represented in terms of a factor graph, it is worth to briefly introduce
this alternative language. A famous toy example is the ‘rain–sprinkler’ network.

266
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cloudy

rain sprinkler

wet

 

p(r|c) \ c 0 1
r = 0 0.8 0.3
r = 1 0.2 0.7

p(s|c) \ c 0 1
s = 0 0.1 0.7
s = 1 0.9 0.3

p(w|r, s) \ r, s 0, 0 0, 1 1, 0 1, 1
w = 0 0.1 0.2 0.2 0.1
w = 1 0.9 0.8 0.8 0.9

Fig. 13.1. The rain-sprinkler Bayesian network.{fig:SprinklerRain}

Example 13.1 During a walk to the park, a statistician notices that the grass
is wet. There are two possible reasons for that: either it rained during the night,
or the sprinkler was activated in the morning to irrigate the lawn. Both events
are in turn correlated with the weather condition in the last 24 hours.

After a little thought, the statistician formalizes these considerations as
the probabilistic model depicted in Fig. 13.1. The model includes four random
variables: cloudy, rain, sprinkler, wet, taking values in {0, 1} (respectively, false
or true). The variables are organized as the vertices of an oriented graph.
A directed edge corresponds intuitively to a relation of causality. The joint
probability distribution of the four variables is given in terms of conditional
probabilities associated to the edges. Explicitly (variables are indicated by their
initials):

p(c, s, r,w) = p(c) p(s|c) p(r|c) p(w|s, r) . (13.1)

The three conditional probabilities in this formula are given by the Tables in
Fig. 13.1. A ‘uniform prior’ is assumed on the event that the day was cloudy:
p(c = 0) = p(c = 1) = 1/2.

Assuming that wet grass was observed, we may want to know whether the
most likely cause was the rain or the sprinkler. This amount to computing the
marginal probabilities

p(s|w = 1) =

∑
c,r p(c, s, r,w = 1)

∑
c,r,s′ p(c, s

′, r,w = 1)
, (13.2)

p(r|w = 1) =

∑
c,s p(c, s, r,w = 1)

∑
c,r,s′ p(c, s

′, r,w = 1)
. (13.3)

Using the numbers in Fig. 13.1, we get p(s = 1|w = 1) ≈ 0.40 and p(r = 1|w =
1) ≈ 0.54: the most likely cause of the wet grass is rain.

In Fig. 13.2 we show the factor graph representation of (13.1), and the one
corresponding to the conditional distribution p(c, s, r|w = 1). As is clear from
the factor graph representation, the observation w = 1 induces some further
dependency among the variables s and r, beyond the one induced by their
relation with c. The reader is invited to draw the factor graph associated to
the marginal distribution p(c, s, r).
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cloudy

sprinklerrain

wet

cloudy

sprinklerrain

Fig. 13.2. Left: Factor graph corresponding to the sprinkler-rain Bayesian net-
work, represented in Fig. 13.1. Right: factor graph for the same network under
the observation of the variable w.{fig:FactorSprinklerRain}

d1 d2 d3 d4 d5

f1 f2 f3 f4 f5 f6 f7 f8

Fig. 13.3. Left: toy example of QMR-DT Bayesian network. Right: factor graph
representation of the conditional distribution of the diseases d1, . . . d5, given the
findings f1, . . . f8.{fig:BayesFactor}

In general, a Bayesian network is an acyclic directed graph G = (V,E)
defining a probability distribution for variables at the vertices of the graph. A
directed graph is an ordinary graph with a direction (i.e. an ordering of the
adjacent vertices) chosen on each of its edges, and no cycle. In such a graph,
we say that a vertex u ∈ V is a parent of v, and write u ∈ π(v), if (u, v) is
a (directed) edge of G. A random variable Xv is associated with each vertex v
of the graph (for simplicity we assume all the variables to take values in the
same finite set X ). The joint distribution of {Xv, v ∈ V } is determined by the
conditional probability distributions {p(xv|xπ(v))}, where π(v) denotes the set
of parents of vertex v, and xπ(v) = {xu : u ∈ π(v)}:

p(x) =
∏

v∈π(G)

p(xv)
∏

v∈G\π(G)

p(xv|xπ(v)) , (13.4)

where π(G) denotes the set of vertices that have no parent in G.
A general class of statistical inference problems is formulated as follows. One

is given a Bayesian network, i.e. a directed graph G plus the associated condi-
tional probability distributions, {p(xv|xπ(v))}. A subset O ⊆ V of the variables
is observed and takes values xO. The problem is to compute marginals of the
conditional distribution p(xV \O|xO).
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Given a Bayesian network G and a set of observed variable O, it is easy to
obtain a factor graph representation of the conditional distribution p(xV \O|xO),
by a generalization of the procedure that we applied in Fig. 13.2. The general
rule is as follows: (i) associate a variable node with each non-observed variable
(i.e. each variable in xV \O); (ii) for each variable in π(G)\O, add a degree 1
function node connected uniquely to that variable; (iii) for each non observed
vertex v which is not in π(G), add a function node and connect it to v and to all
the parents of v; (iv) finally, for each observed variable u, add a function node
and connect it to all the parents of u.

Here is an example showing the practical utility of Bayesian networks.

Example 13.2 The Quick Medical Reference–Decision Theoretic (QMR-DT)
network is a two level Bayesian network developed for automatic medical diag-
nostic. A schematic example is shown in Fig. 13.3. Variables in the top level,
denoted by d1, . . . , dN , are associated with diseases. Variables in the bottom
level, denoted by f1, . . . , fM , are associated with symptoms or findings. Both
diseases and findings are described by binary variables. An edge connects the
disease di to the finding fa whenever such a disease may be a cause for that
finding. Such networks of implications are constructed on the basis of accumu-
lated medical experience.

The network is completed with two types of probability distributions. For
each disease di we are given an a priori occurrence probability P (di). Fur-
thermore, for each finding we have a conditional probability distribution for
that finding given a certain disease pattern. This usually takes the so called
‘noisy-OR’ form:

P (fa = 0|d) =
1

za
exp

{
−

N∑

i=1

θiadi

}
. (13.5)

This network is to be used for diagnostic purposes. The findings are set to values
determined by the observation of a patient. Given this pattern of symptoms,
one would like to compute the marginal probability that any given disease is
indeed present.

13.1.2 Inference in coding, statistical physics and combinatorial optimization

Several of the problems encountered so far in this book can be recast in an
inference language.

Let us start with the decoding of error correcting codes. As discussed in
Chapter 6, in order to implement symbol-MAP decoding, one has to compute
the marginal distribution of input symbols, given the channel output. In the
case of LDPC (and related) code ensembles, dependencies between input sym-
bols are induced by the parity check constraints. The joint probability distri-
bution to be marginalized has a natural graphical representation (although we
used factor graphs rather than Bayesian networks). Also, the introduction of
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finite–temperature decoding, allows to view word MAP decoding as the zero
temperature limit case of a one-parameter family of inference problems.

In statistical mechanics models one is mainly interested in the expectations
and covariances of local observables with respect to the Boltzmann measure.
For instance, the paramagnetic to ferromagnetic transition in an Ising ferromag-
net, cf. Sec. 2.5, can be located using the magnetization MN (β,B) = 〈σi〉β,B .
The computation of covariances, such as the correlation function Cij(β,B) =
〈σi;σj〉β,B , is a natural generalization of the simple inference problem discussed
so far.

Let us finally consider the case of combinatorial optimization. Assume, for
the sake of definiteness, that a feasible solution is an assignment of the variables
x = (x1, x2, . . . , xN ) ∈ XN and that its cost E(x) can be written as the sum of
‘local’ terms:

E(x) =
∑

a

Ea(xa) . (13.6)

Here xa denotes a subset of the variables (x1, x2, . . . , xN ). Let p∗(x) denote
the uniform distribution over optimal solutions. The minimum energy can be
computed as a sum of expectation with respect to this distribution: E∗ =∑

a[
∑

x p∗(x)Ea(xa)]. Of course the distribution p∗(x) does not necessarily have
a simple representation, and therefore the computation of E∗ can be significantly
harder than simple inference39.

This problem can be overcome by ‘softening’ the distribution p∗(x). One pos-
sibility is to introduce a finite temperature and define pβ(x) = exp[−βE(x)]/Z
as already done in Sec. 4.6: if β is large enough, this distribution concentrates
on optimal solutions. At the same time it has an explicit representation (apart
from the value of the normalization constant Z) at any value of β.

How large should β be in order to get a good estimate of E∗? The Exercise
below, gives the answer under some rather general assumptions.

Exercise 13.1 Assume that the cost function E(x) takes integer values and
let U(β) = 〈E(x)〉β . Due to the form (13.6) the computation of U(β) is es-
sentially equivalent to statistical inference. Assume, furthermore that ∆max =
max[E(x) − E∗] is bounded by a polynomial in N . Show that

0 ≤ ∂U

∂T
≤ 1

T 2
∆2

max |X |Ne−1/T . (13.7)

where T = 1/β. Deduce that, by taking T = Θ(1/N), one can obtain |U(β) −
E∗| ≤ ε for any fixed ε > 0.

39Consider, for instance, the MAX-SAT problem, and let E(x) be the number of unsatisfied
clauses under the assignment x. If the formula under study is satisfiable, then p∗(x) is propor-
tional to the product of characteristic functions associated to the clauses, cf. Example 9.7. In
the opposite case, no explicit representation is known.
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In fact a much larger temperature (smaller β) can be used in many important
cases. We refer to Chapter 2 for examples in which U(β) = E∗ + E1(N) e−β +
O(e−2β) with E1(N) growing polynomially in N . In such cases one expects β =
Θ(logN) to be large enough.

13.2 Monte Carlo method: inference via sampling
{sec:MonteCarloInference}

Consider the statistical inference problem of computing the marginal probability
p(xi = x) from a joint distribution p(x), x = (x1, x2, . . . , xN ) ∈ XN . Given
L i.i.d. samples {x(1), . . . , x(L)} drawn from the distribution p(x), the desired
marginal p(xi = x) can be estimated as the the fraction of such samples for
which xi = x.

‘Almost i.i.d.’ samples from p(x) can be produced, in principle, using the
Monte Carlo Markov Chain (MCMC) method of Sec. 4.5. Therefore MCMC can
be viewed as a general-purpose inference strategy which can be applied in a
variety of contexts.

Notice that the locality of the interactions, expressed by the factor graph, is
very useful since it allows to generate easily ‘local’ changes in x (e.g. changing
only one xi, or a small number of them). This will40 in fact typically change
the value of just a few compatibility functions and hence produce only a small
change in p(x) (i.e., in physical terms, in the energy of x). The possibility of
generating, given x, a new configuration close in energy is in fact important for
MCMC to work. In fact, moves increasing the system energy by a large amount
are typically rejected within MCMC rules .

One should also be aware that sampling, for instance by MCMC, only allows
to estimate marginals or expectations which involve a small subset of variables.
It would be very hard for instance to estimate the probability of a particular
configuration x through the number L(x) of its occurrences in the samples. The
reason is that at least 1/p(x) samples would be required to have any accuracy,
and this is typically a number exponentially large in N .

13.2.1 LDPC codes

Consider a code C from one of the LDPC ensembles introduced in Chapter 11,
and assume it has been used to communicate over a binary input memoryless
symmetric channel with transition probability Q(y|x). As shown in Chapter 6,
cf. Eq. (6.3), the conditional distribution of the channel input x, given the output
y, reads

P (x|y) =
1

Z(y)
I(x ∈ C)

N∏

i=1

Q(yi|xi) . (13.8)

We can use the explicit representation of the code membership function to write

40We do not claim here that this is the case always, but just in many examples of interest.
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P (x|y) =
1

Z(y)

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k
= 0)

N∏

i=1

Q(yi|xi) . (13.9)

in order to implement symbol MAP decoding, we must compute the marginals
P (i)(xi|y) of this distribution. Let us see how this can be done in an approximate
way via MCMC sampling.

Unfortunately, the simple MCMC algorithms introduced in Sec. 4.5 (single
bit flip with acceptance test satisfying detailed balance) cannot be applied in
the present case. In any reasonable LDPC code, each variable xi is involved
into at least one parity check constraint. Suppose that we start the MCMC
algorithm from a random configuration x distributed according to Eq. (13.9).
Since x has non-vanishing probability, it satisfies all the parity check constraints.
If we propose a new configuration where bit xi is flipped, this configuration will
violate all the parity check constraints involving xi. As a consequence, such a
move will be rejected by any rule satisfying detailed balance. The Markov chain
is therefore reducible (each codeword forms a separate ergodic component), and
useless for sampling purposes.

In good codes, this problem is not easily cured by allowing for moves that
flip more than a single bit. As we saw in Sec. 11.2, if C is drawn from an LDPC
ensemble with minimum variable degree equal to 2 (respectively, at least 3),
its minimum distance diverges logarithmically (respectively, linearly) with the
block-length. In order to avoid the problem described above, a number of bits
equal or larger than the minimum distance must be flipped simultaneously. On
the other hand, large moves of this type are likely to be rejected, because they
imply a large and uncontrolled variation in the likelihood

∏N
i=1Q(yi|xi).

A way out of this dilemma consists in ‘softening’ the parity check constraint
by introducing a ‘parity check temperature’ γ and the associated distribution

Pγ(x|y) =
1

Z(y, γ)

M∏

a=1

e
−γEa(xia

1
...xia

k
)

N∏

i=1

Q(yi|xi) . (13.10)

Here the energy term Ea(xia
1
. . . xia

k
) takes values 0 if xia

1
⊕ · · · ⊕ xia

k
= 0 and 2

otherwise. In the limit γ → ∞, the distribution (13.10) reduces to (13.9). The

idea is now to estimate the marginals of (13.10), P
(i)
γ (xi|y) via MCMC sampling

and then to use the decoding rule

x
(γ)
i ≡ arg max

xi

P (i)
γ (xi|y) . (13.11)

For any finite γ, this prescription is surely sub-optimal with respect to symbol
MAP decoding. In particular, the distribution (13.10) gives non-zero weight to
words x which do not belong to the codebook C. On the other hand, one may
hope that for γ large enough, the above prescription achieves a close-to-optimal
bit error rate.
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Fig. 13.4. Decoding LDPC codes from the (3, 6) ensemble, used over the BSC
channel with flip probability p, using MCMC sampling. The bit error rate is
plotted versus p. The block-length is fixed to N = 2000, the number of sweeps
is 2L. Left: For L = 100, several values of the effective inverse temperature γ.
Right: improvement of the performance as the number of sweeps increases at
fixed γ = 1.5.{fig:LDPCMC}

We can simplify further the above strategy by giving up the objective of

approximating the marginal P
(i)
γ (xi|y) within any prescribed accuracy. We shall

rather run the Glauber single bit flip MCMC algorithm for a fixed computer time

and extract an estimate of P
(i)
γ (xi|y) from this run. Fig 13.4 shows the results

of Glauber dynamics executed for 2LN steps starting from a uniformly random
configuration. At each step a bit is chosen uniformly at random and flipped with
probability (here x(i) is the configuration obtained from x, by flipping the i-th
bit)

wi(x) =
Pγ(x(i)|y)

Pγ(x(i)|y) + Pγ(x|y) . (13.12)

The reader is invited to derive an explicit expression for wi(x), and to show that ⋆
this probability can be computed with a number of operations independent of
the block-length. In this context, one often refer to a sequence of N successive
updates, as a sweep (on average, one flip is proposed at each bit in a sweep).
The value of xi is recorded at each of the last L sweeps, and the decoder output
is xi = 0 or xi = 1 depending on which value occurs more often in this record.

The data in Fig. 13.4 refers to communication over a binary symmetric chan-
nel (BSC) with flip probability p. In the left frame, we fix L = 100 and use several
values of γ. At small γ, the resulting bit error rate is almost indistinguishable
from the one in absence of coding, namely Pb = p. As γ increases, parity checks
are enforced more and more strictly and the error correcting capabilities im-
prove at low noise. The behavior is qualitatively different for larger noise levels:
for p & 0.05, the bit error rate increases with γ. The reason of this change is
essentially dynamical. The Markov chain used for sampling from the distribution
(13.10) decorrelates more and more slowly from its initial condition. Since the
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initial condition is uniformly random, thus yielding Pb = 1/2, the bit error rate
obtained through our algorithm approaches 1/2 at large γ (and above a certain
threshold in p). This interpretation is confirmed by the data in the right frame
of the same figure.

We shall see in Chapter ?? that in the large blocklength limit, the threshold
for error-less bit MAP decoding in this case is predicted to be pc ≈ 0.101.
Unfortunately, because of its slow dynamics, our MCMC decoder cannot be
used in practice if the channel noise is close to this threshold.

The sluggish dynamics of our single spin-flip MCMC for the distribution
(13.10) is partially related to its reducibility for the model with hard constraints
(13.9). A first intuitive picture is as follows. At large γ, codewords correspond
to isolated ‘lumps’ of probability with Pγ(x|y) = Θ(1), separated by unprobable

regions such that Pγ(x|y) = Θ(e−2γ) or smaller. In order to decorrelate, the
Markov chain must spend a long time (at least of the order of the code minimum
distance) in an unprobable region, and this happens only very rarely. This rough
explanation is neither complete nor entirely correct, but we shall refine it in the
next Chapters.

13.2.2 Ising model

Some of the basic mechanisms responsible for the slowing down of Glauber dy-
namics can be understood on simple statistical mechanics models. In this Section
we consider the ferromagnetic Ising model with energy function

E(σ) = −
∑

(ij)∈G

σiσj . (13.13)

Here G is an ordinary graph on N vertices, whose precise structure will depend
on the particular example. The Monte Carlo method is applied to the problem
of sampling from the Boltzmann distribution pβ(σ) at inverse temperature β.

As in the previous Section, we focus on Glauber (or heath bath) dynamics,
but rescale time: in an infinitesimal interval dt a flip is proposed with probability
Ndt at a uniformly random site i. The flip is accepted with the usual heath bath
probability (here σ is the current configuration and σ(i) is the configuration
obtained by flipping the spin σi):

wi(σ) =
pβ(σ(i))

pβ(σ) + pβ(σ(i))
. (13.14)

Let us consider first equilibrium dynamics. We assume therefore that the
initial configuration σ(0) is sampled from the equilibrium distribution pβ( · )
and ask how many Monte Carlo steps must be performed (in other words, how
much time must be waited) in order to obtain an effectively independent random
configuration. A convenient way of monitoring the equilibrium dynamics, consists
in computing the time correlation function



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

MONTE CARLO METHOD: INFERENCE VIA SAMPLING 275

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64

C
(t

)

t

L=3
L=5
L=7
L=9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
(t

)

t

L=3
L=4
L=7
L=9

Fig. 13.5. Equilibrium correlation function for the Ising model on the two di-
mensional grid of side L. Left: high temperature, T = 3. Right: low temperature,
T = 2. {fig:2dMC}

CN (t) ≡ 1

N

N∑

i=1

〈σi(0)σi(t)〉 . (13.15)

Here the average 〈 · 〉 is taken with respect to the realization of the Monte Carlo
dynamics, as well as the initial state σ(0). Notice that (1−C(t))/2 is the average
fraction of spins with differ in the configurations σ(0) and σ(t). One expects
therefore C(t) to decrease with t, asymptotically reaching 0 when σ(0) and σ(t)
are well decorrelated41.

The reader may wonder how can one sample σ(0) from the equilibrium (Boltz-
mann) distribution? As already suggested in Sec. 4.5, within the Monte Carlo
approach one can obtain an ‘almost’ equilibrium configuration by starting from
an arbitrary one and running the Markov chain for sufficiently many steps. In
practice we initialize our chain from a uniformly random configuration (i.e. an
infinite temperature equilibrium configuration) and run the dynamics for tw
sweeps. We call σ(0) the configuration obtained after this process and run for t
more sweeps in order to measure C(t). The choice of tw is of course crucial: in
general the above procedure will produce a configuration σ(0), whose distribu-
tion is not the equilibrium one, and depends on tw. The measured correlation
function will also depend on tw. Determining how large tw should be in order to
obtain a good enough approximation of C(t) is a subject of intense theoretical
work. A simple empirical rule consists in measuring C(t) for a given large tw,
then double it and check that nothing has changed. With these instructions, the
reader is invited to write a code of MCMC for the Ising model on a general graph ⋆
and reproduce the following data.

41Notice that each spin is equally likely to take values +1 or −1 under the Boltzmann
distribution with energy function (13.13.)
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Fig. 13.6. Equilibrium correlation function for the Ising model on random
graphs from the GN (2,M) ensemble, with M = 2N . Left: high temperature,
T = 5. Right: low temperature, T = 2.{fig:RGraphMC}

{ex:2dSimul}
Example 13.3 We begin by considering the Ising model on a two-dimensional
grid of side L, with periodic boundary conditions. The vertex set is {(x1, x2) :
1 ≤ xa ≤ L}. Edges join any two vertices at (Euclidean) distance one, plus
the vertices (L, x2) to (1, x2), and (x1, L) to (x1, 1). We denote by CL(t) the
correlation function for such a graph.

In Chapter 2 we saw that this model undergoes a phase transition at the
critical temperature Tc = 2/ log(1+

√
2) ≈ 2.269185. The correlation functions

plotted in Fig. 13.5 are representative of the qualitative behavior in the high
temperature (left) and low temperature (right) phases. At high temperature
CL(t) depends only mildly on the linear size of the system L. As L increases,
the correlation functions approaches rapidly a limit curve C(t) which decreases
from 1 to 0 in a finite time scale42.

At low temperature, there exists no limiting curve C(t) decreasing from 1
to 0, such that CL(t) → C(t) as L→ ∞. The time required for the correlation
function CL(t) to get close to 0 is much larger than in the high-temperature
phase. More importantly, it depends strongly on the system size. This suggests
that strong cooperative effects are responsible for the slowing down of the
dynamics.

{ex:RGraphSimul}
Example 13.4 Take G as a random graph from the GN (2,M) ensemble, with
M = Nα. As we shall see in Chapter ???, this model undergoes a phase
transition when N → ∞ at a critical temperature βc, satisfying the equa-
tion 2α tanhβ = 1. In Fig. 13.6 we present numerical data for a few values of
N , and α = 2 (corresponding to a critical temperature Tc ≈ 3.915230).

The curves presented here are representative of the high temperature and
low temperature phases. As in the previous example, the relaxation time scale
strongly depends on the system size at low temperature.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

MONTE CARLO METHOD: INFERENCE VIA SAMPLING 277

Fig. 13.7. A rooted ternary tree with n = 4 generations and N = 40 vertices.{fig:TernaryTree}
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Fig. 13.8. Equilibrium correlation function for the ferromagnetic Ising model
on a regular ternary tree. Left: high temperature, T = 2. Right: low temperature,
T = 1.25.{fig:TreeMC}

{ex:TreeSimul}
Example 13.5 Take G as a rooted ternary tree, with n generations, cf.
Fig. 13.7. Of course G contains N = (3n − 1)/(3 − 1) vertices and N − 1
edges. As we will see in Chapter ???, this model undergoes a phase transition
at a critical temperature βc, which satisfies the equation 3(tanhβ)2 = 1. We
get therefore Tc ≈ 1.528651. In this case the dynamics of spin depends strongly
upon its distance to the root. In particular leaf spins are much less constrained
than the others. In order to single out the ‘bulk’ behavior, we modify the def-
inition of the correlation function (13.15) by averaging only over the spins σi

in the first n = 3 generations. We keep n fixed as n→ ∞.
As in the previous examples, CN (t) has a well defined n → ∞ limit in the

high temperature phase, and is strongly size-dependent at low temperature.

We summarize the last three examples by comparing the size dependence of
the relaxation time scale in the respective low temperature phases. A simple way
to define such a time scale consists in looking for the smallest time such that
C(t) decreases below some given threshold:

τ(δ;N) = min{ t > 0 s.t. CN (t) ≤ δ} . (13.16)

In Fig. 13.9 we plot the estimates obtained from the data presented in the pre-
vious examples, using δ = 0.2, and keeping to the data in the low-temperature
(ferromagnetic) phase. The size dependence of τ(δ;N) is very clear. However,
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Fig. 13.9. Size dependence of the relaxation time in the ferromagnetic Ising
model in its low temperature phase. Different symbols refer to the different fam-
ilies of graphs considered in Examples 13.3 to 13.5. {fig:Time}
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Fig. 13.10. Minimization of the number of unsatisfied clauses in random 3-SAT
formulae via Glauber dynamics. Here the number of variables N = 1000 is kept
fixed. Left: T = 0.25 and, from top to bottom L = 2.5 · 103, 5 · 103, 104, 2 · 104,
4 · 104, 8 · 104 iterations. Right: L = 4 · 104 and (from top to bottom at large α)
T = 0.15, 0.20, 0.25, 0.30, 0.35. The insets show the small α regime in greater
detail.{fig:MCKSAT}

it is much stronger for the random graph and square grid cases (and, in par-
ticular, in the former) than on the tree. In fact, it can be shown that, in the
ferromagnetic phase:

τ(δ;N) =






exp{Θ(N)} random graph,

exp{Θ(
√
N)} square lattice,

exp{Θ(logN)} tree.
(13.17)

Section 13.3 will explain the origins of these different behaviors.
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13.2.3 MAX-SAT

Given a satisfiability formula over N boolean variables (x1, . . . , xN ) = x, xi ∈
{0, 1}, the MAX-SAT optimization problem requires to find a truth assignment
which satisfies the largest number of clauses. We denote by xa the set of variables
involved in the a-th clause and by Ea(xa) a function of the truth assignment
taking value 0, if the clause is satisfied, and 2 otherwise. With this definitions,
the MAX-SAT problem can be rephrased as the problem of minimizing an energy
function of the form E(x) =

∑
aEa(xa), and we can therefore apply the general

approach discussed after Eq. (13.6).
We thus consider the Boltzmann distribution pβ(x) = exp[−βE(x)]/Z and

try to sample a configuration from pβ(x) at large enough β using MCMC. The
assignment x ∈ {0, 1}N is initialized uniformly at random. At each time step a
variable index i is chosen uniformly at random and the corresponding variable
is flipped according to the heath bath rule

wi(x) =
pβ(x(i))

pβ(x) + pβ(x(i))
. (13.18)

As above x(i) denotes the assignment obtained from x by flipping the i-th vari-
able. The algorithm is stopped after LN steps (i.e. L sweeps), and one puts in
memory the current assignment x∗ (and the corresponding cost E∗ = E(x∗)).

In Fig. 13.10 we present the outcomes of such an algorithm, when applied to
random 3-SAT formulae from the ensemble SATN (3,M) with α = M/N . Here
we focus on the mean cost 〈E∗〉 of the returned assignment. One expects that, as
N → ∞ with fixed L, the cost scales as 〈E∗〉 = Θ(N), and orderN fluctuations of
E∗ away from the mean are exponentially unlikely. At low enough temperature,
the behavior depends dramatically on the value of α. For small α, E∗/N is small
and grows rather slowly with α. Furthermore, it seems to decrease to 0 ad β
increases. Our strategy is essentially successful and finds an (almost) satisfying
assignment. Above α ≈ 2 ÷ 3, E∗/N starts to grow more rapidly with α, and
doesn’t show signs of vanishing as β → ∞. Even more striking is the behavior as
the number of sweeps L increases. In the small α regime, E∗/N rapidly decreases
to some, roughly L independent saturation value, already reached after about
103 sweeps. At large α there seems also to be an asymptotic value but this is
reached much more slowly, and even after 105 sweeps there is still space from
improvement.

13.3 Free energy barriers
{se:arrhenius}

These examples show that the time scale required for a Monte Carlo algorithm
to produce (approximately) statistically independent configurations may vary
wildly depending on the particular problem at hand. The same is true if we
consider the time required to generating a configuration (approximately) dis-
tributed according to the equilibrium distribution, starting from an arbitrary
initial condition.
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x0

E(x)

E
gs

∆E

Fig. 13.11. Random walk in a double-well energy landscape. After how many
steps the walker is (approximatively) distributed according to the equilibrium
distribution? {fig:WellWalk}

There exist various sophisticated techniques for estimating these time scales
analytically, at least in the case of unfrustrated problems. In this Section we
discuss a simple argument which is widely used in statistical physics as well as
in probability theory, that of free-energy barriers. The basic intuition can be
conveyed by simple examples.
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1

+1
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2

Fig. 13.12. How much time does a random walk need to explore this graph? {fig:DoubleGraph}

{ex:WalkWell}
Example 13.6 Consider a particle moving on the integer line, and denote its
position as x ∈ Z. Each point x on the line has an energy E(x) ≥ Egs associated
to it, as depicted in Fig. 13.11. At each time step, the particle attempts to
move to one of the adjacent positions (either to the right or to the left) with
probability 1/2. If we denote by x′ the position the particle is trying to move
to, the move is accepted according to Metropolis rule

w(x→ x′) = min
{
e−β[E(x′)−E(x)], 1

}
. (13.19)

The equilibrium distribution is of course given by Boltzmann law Pβ(x) =
exp[−βE(x)]/Z(β).

Suppose we start with, say x = 10. How many steps should we wait for x
to be distributed according to Pβ(x)? It is intuitively clear that, in order to
equilibrate, the particle must spend some amount of time both in the right and
in the left well, and therefore it must visit the x = 0 site. At equilibrium this
is visited on average a fraction Pβ(0) of the times. Therefore, in order to see a
jump, we must wait about

τ ≈ 1

Pβ(0)
, (13.20)

steps.
One is often interested in the low temperature limit of τ . Assuming E(x)

diverges fast enough as |x| → ∞, the leading exponential behavior of Z is
Z(β)

.
= e−βEgs , and therefore τ

.
= exp{β∆E}, where ∆E = E(0) − Egs is

the energy barrier to be crossed in order to pass from one well to the others.
A low temperature asymptotics of the type τ

.
= exp{β∆E} is referred to as

Arrhenius law.
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{ex:WalkGraph}
Exercise 13.2 Consider a random walk on the graph of Fig. 13.12 (two cliques
with n + 1 vertices, joined by a k-fold degenerate edge). At each time step,
the walker chooses one of the adjacent edges uniformly at random and moves
through it to the next node. What is the stationary distribution Peq(x), x ∈
{1, . . . 2n}? Show that the probability to be at node 1 is 1

2
k+n−1

n2+k−n .
Suppose we start with a walker distributed according to Peq(x). Using an

argument similar to that in the previous example, estimate the number of time
steps τ that one should wait in order to obtain an approximatively independent
value of x. Show that τ ≃ 2n when n ≫ k and interpret this result. In this
case the k-fold degenerate edge joining the two cliques is called a bottleneck,
and one speaks of an entropy barrier.

In order to obtain a precise mathematical formulation of the intuition gained
in the last examples, we must define what we mean by ‘relaxation time’. We will
focus here on ergodic continuous-time Markov chains on a finite state space X .
Such a chain is described by its transition rates w(x→ y). If at time t, the chain
is in state x(t) = x ∈ X , then, for any y 6= x, the probability that the chain is in
state y, ‘just after’ time t is

P {x(t+ dt) = y | x(t) = x} = w(x→ y)dt . (13.21)

Exercise 13.3 Consider a discrete time Markov chain and modify it as fol-
lows. Instead of waiting a unit time ∆t between successive steps, wait an ex-
ponentially distributed random time (i.e. ∆t is a random variable with pdf
p(∆t) = exp(−∆t)). Show that the resulting process is a continuous time
Markov chain. What are the corresponding transition rates?

Let x 7→ O(x) an observable (a function of the state), define the shorthand
O(t) = O(x(t)), and assume x(0) to be drawn from the stationary distribution. If
the chain satisfies the detailed balance43 condition, one can show that the correla-⋆
tion function CO(t) = 〈O(0)O(t)〉− 〈O(0)〉〈O(t)〉 is non negative, monotonously
decreasing and that CO(t) → 0 as t→ ∞. The exponential autocorrelation time
for the observable O, τO,exp, is defined by

1

τO,exp
= − lim

t→∞

1

t
logCO(t) . (13.22)

The time τO,exp depends on the observable and tells how fast its autocor-
relation function decays to 0: CO(t) ∼ exp(−t/τO,exp). It is meaningful to look
for the ‘slowest’ observable and define the exponential autocorrelation time

43A continuous time Markov chains satisfies the detailed balance condition (is ‘reversible’)
with respect to the stationary distribution P (x), if, for any x 6= y, P (x)w(x → y) = P (y)w(y →
x).
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(also called inverse spectral gap, or, for brevity relaxation time) of the
Markov chain as

τexp = sup
O

{ τO,exp } . (13.23)

The idea of a bottleneck, and its relationship to the relaxation time, is clarified
by the following theorem:

{thm:Cut}
Theorem 13.7 Consider an ergodic continuous time Markov chain with state
space X , and transition rates {w(x→ y)} satisfying detailed balance with respect
to the stationary distribution P (x). Given any two disjoint sets of states A,B ⊂
X , define the probability flux between them as W (A → B) =

∑
x∈A, y∈B P (x)w(x→

y). Then

τexp ≥ P (x ∈ A)P (x 6∈ A)

W (A → X\A)
. (13.24)

In other words, a lower bound on the correlation time can be constructed by
looking for ‘bottlenecks’ in the Markov chain, i.e. partitions of the configuration
space into two subsets. The lower bound will be good (and the Markov chain
will be slow) if each of the subsets carries a reasonably large probability at
equilibrium, but jumping from one to the other is unlikely.

Example 13.8 Consider the random walk in the double well energy landscape
of Fig. 13.11, where we confine the random walk to some big interval [−M : M ]
in order to have a finite state space. Let us apply Theorem 13.7, by taking
A = {x ≥ 0}. We have W (A → X\A) = Pβ(0)/2 and, by symmetry Pβ(x ∈
A) = 1

2 (1 + Pβ(0)). The inequality (13.24) yields

τexp ≥ 1 − Pβ(0)2

2Pβ(0)
. (13.25)

Expanding the right hand side in the low temperature limit, we get τexp ≥
2 eβ∆E (1 + Θ(e−cβ)).

Exercise 13.4 Apply Theorem 13.7 to a random walk in the asymmetric dou-
ble well energy landscape of Fig. 13.13. Does Arrhenius law τexp ∼ exp(β∆E)
apply to this case? What is the relevant energy barrier ∆E?

Exercise 13.5 Apply Theorem 13.7 to estimate the relaxation time of the
random walk on the graph in Exercise (13.2).
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E(x)

Fig. 13.13. Random walk in an asymmetric double well. {fig:AsWell}

Example 13.9 Consider Glauber dynamics for the Ising model on a two di-
mensional L×L grid, with periodic boundary conditions, already discussed in
Example 13.3. In the ferromagnetic phase, the distribution of the total magne-
tization M(σ) ≡∑i σi, N = L2 is concentrated around the values ±N M+(β),
where M+(β) is the spontaneous magnetization. It is natural to expect that
the bottleneck will correspond to the global magnetization changing sign. As-
suming for instance that L is odd, let us define

A = {σ : M(σ) ≥ 1} ; Ā = X\A = {σ : M(σ) ≤ −1} (13.26)

Using the symmetry under spin reversal, Theorem 13.7 yields

τexp ≥ 4
∑

σ :M(σ)=1

∑

i :σi=1

Pβ(σ) w(σ → σ(i)) . (13.27)

A good estimate of this sum can be obtained by noticing that, for any σ,
w(σ → σ(i)) ≥ w(β) ≡ 1

2 (1 − tanh 4β). Moreover, for any σ entering the
sum, there are exactly (L2 + 1)/2 sites i such that σi = +1. We get therefore
τexp ≥ 2L2w(β)

∑
σ :M(σ)=1 Pβ(σ) One suggestive way of writing this lower

bound, consists in defining a constrained free energy as follows

FL(m;β) ≡ − 1

β
log





∑

σ : M(σ)=m

exp[−βE(σ)]




 , (13.28)

If we denote by FL(β) the usual (unconstrained) free energy, our lower bound
can be written as

τexp ≥ 2L2w(β) exp{β[FL(1;β) − FL(β)]} . (13.29)

Apart from the pre-exponential factors, this expression has the same form as
Arrhenius law, the energy barrier ∆E, being replaced by a ‘free energy barrier’
∆FL(β) ≡ FL(1;β) − FL(β).
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Fig. 13.14. Ferromagnetic Ising model on a 9 × 9 grid with periodic boundary
conditions. Open circles correspond to σi = +1, and filled circles to σi = −1.
The configuration shown here has energy E(σ) = −122 and magnetization
M(σ) = +1. {fig:IsingZeroMagn}

We are left with the task of estimating ∆FL(β). Let us start by considering
the β → ∞ limit. In this regime, FL(β) is dominated by the all plus and all
minus configurations, with energy Egs = −2L2. Analogously, FL(1;β) is domi-
nated by the lowest energy configurations satisfying the constraint M(σ) = 1.
An example of such configurations is the one in Fig. 13.14, whose energy is
E(σ) = −2L2 + 2(2L+ 2). Of course, all configurations obtained from the one
in Fig. 13.14, through a translation, rotation or spin inversion have the same
energy. We find therefore ∆FL(β) = 2(2L+ 2) + Θ(1/β)

It is reasonable to guess (and it can be proved rigorously) that the size
dependence of ∆FL(β) remains unchanged through the whole low temperature
phase:

∆FL(β) ≃ 2γ(β)L , (13.30)

where the surface tension γ(β) is strictly positive at any β > βc, and vanishes
as β ↓ βc. This in turns implies the following lower bound on the correlation
time

τexp ≥ exp{2βγ(β)L+ o(L)} . (13.31)

This bound matches the numerical simulations in the previous Section and can
be proved to give the correct asymptotic size-dependence.
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Exercise 13.6 Consider the ferromagnetic Ising model on a random graph
from GN (2,M) that we studied in Example 13.4, and assume, for definiteness,
N even. Arguing as above, show that

τexp ≥ CN (β) exp{β[FN (0;β) − FN (β)]} . (13.32)

Here CN (β) is a constants which grows (with high probability) slower than
exponentially with N ; FN (m;β) is the free energy of the model constrained to
M(σ) = m, and FN (β) is the unconstrained partition function.

For a graph G, let δ(G) be the minimum number of bicolored edges if we
color half of the vertices red, and half blue. Show that

FN (0;β) − FN (β) = 2δ(GN ) + Θ(1/β) . (13.33)

The problem of computing δ(G) for a given graph G is referred to as balanced
minimum cut (or graph partitioning) problem, and is known to be NP-
complete. For a random graph in GN (2,M), it is known that δ(GN ) = Θ(N)
with high probability in the limit N → ∞,M → ∞, with α = M/N fixed and
α > 1/2 (Notice that, if α < 1/2 the graph does not contain a giant component
and obviously δ(G) = o(N)).

This claim can be substantiated through the following calculation. Given a
spin configuration σ = (σ1, . . . , σN ) with

∑
i σi = 0 let ∆G(σ) be the number

of edges in (i, j) in G such that σi 6= σj . Then

P {δ(G) ≤ n} = P {∃σ such that ∆G(σ) ≤ n} ≤
n∑

m=0

ENG,m , (13.34)

where NG,m denotes the number of spin configurations with ∆G(σ) = m. Show
that

ENG,m =

(
N

N/2

)(
N

2

)−M (
M

m

)(
N2

4

)m [(
N/2

2

)
− N2

4

]M−m

.(13.35)

Estimate this expression for large N , M with α = M/N fixed and show that
it implies δ(G) ≥ c(α)N+ with high probability, where c(α) > 0 for α > 1/2.

In Chapter ???, we will argue that the FN (0;β)−FN (β) = Θ(N) for all β’s
large enough.
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{ex:TreeBarrier}
Exercise 13.7 Repeat the same arguments as above for the case of a reg-
ular ternary tree described in example 13.5, and derive a bound of the
form (13.32). Show that, at low temperature, the Arrhenius law holds, i.e.
τexp ≥ exp{β∆EN + o(β)}. How does ∆EN behave for large N?

[Hint: an upper bound can be obtained by constructing a sequence of con-
figurations from the all plus to the all minus ground state, such that any two
consecutive configurations differ in a single spin flip.]

Notes

For introductions to Bayesian networks, see (Jordan, 1998; Jensen, 1996). Bayesian
inference was proved to be NP-hard by Cooper. Dagun and Luby showed that
approximate Bayesian inference remains NP-hard. On the other hand, it becomes
polynomial if the number of observed variables is fixed.

Decoding of LDPC codes via Glauber dynamics was considered in (Franz,
Leone, Montanari and Ricci-Tersenghi, 2002). Satisfiability problems were con-
sidered in (Svenson and Nordahl, 1999).

Arrhenius law and the concept of energy barrier (or ‘activation energy’) were
discovered by the Swedish chemist Svante Arrhenius in 1889, in his study of
chemical kinetics. An introduction to the analysis of Monte Carlo Markov Chain
methods (with special emphasis on enumeration problems), and their equilibra-
tion/convergence rate can be found in (Jerrum and Sinclair, 1996; Sinclair, 1997).
The book in preparation by Aldous and Fill (Aldous and Fill, 2005) provides a
complete exposition of the subject from a probabilistic point of view. For a math-
ematical physics perspective, we refer to the lectures of Martinelli (Martinelli,
1999).

For an early treatment of the Glauber dynamics of the Ising model on a tree,
see (Henley, 1986). This paper contains a partial answer to Exercise 13.7.



14

Belief propagation

Consider the ubiquitous problem of computing marginals of a graphical model with N
variables x = (x1, . . . , xN ) taking values in a finite alphabet X . The naive algorithm,
which sums over all configurations, takes a time of order |X |N . The complexity can
be reduced dramatically when the underlying factor graph has some special structure.
One extreme case is that of tree factor graphs. On trees, marginals can be computed
in a number of operations which grows linearly with N . This can be done through
a ‘dynamic programming’ procedure that recursively sums over all variables, starting
from the leaves and progressing towards the ‘centre’ of the tree.

Remarkably, such a recursive procedure can be recast as a distributed ‘message-
passing’ algorithm. Message-passing algorithms operate on ‘messages’ associated with
edges of the factor graph, and update them recursively through local computations
done at the vertices of the graph. The update rules that yield exact marginals on trees
have been discovered independently in several different contexts: statistical physics
(under the name ‘Bethe–Peierls approximation’), coding theory (the ‘sum–product’
algorithm), and artificial intelligence (‘belief propagation’, BP). Here we shall adopt
the artificial-intelligence terminology.

This chapter gives a detailed presentation of BP and, more generally, message-
passing procedures, which provide one of the main building blocks that we shall use
throughout the rest of the book. It is therefore important that the reader has a good
understanding of BP.

It is straightforward to prove that BP computes marginals exactly on tree fac-
tor graphs. However, it was found only recently that it can be extremely effective on
loopy graphs as well. One of the basic intuitions behind this success is that BP, being
a local algorithm, should be successful whenever the underlying graph is ‘locally’ a
tree. Such factor graphs appear frequently, for instance in error-correcting codes, and
BP turns out to be very powerful in this context. However, even in such cases, its
application is limited to distributions such that far-apart variables become approxi-
mately uncorrelated. The onset of long-range correlations, typical of the occurrence of
a phase transition, leads generically to poor performance of BP. We shall see several
applications of this idea in the following chapters.

We introduce the basic ideas in Section 14.1 by working out two simple examples.
The general BP equations are stated in Section 14.2, which also shows how they provide
exact results on tree factor graphs. Section 14.3 describes an alternative message-
passing procedure, the max-product (or, equivalently, min-sum) algorithm, which can
be used in optimization problems. In Section 14.4, we discuss the use of BP in graphs
with loops. In the study of random constraint satisfaction problems, BP messages
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Fig. 14.1 Top: the factor graph of a one-dimensional Ising model in an external field. Bottom:

the three messages arriving at site j describe the contributions to the probability distribution

of σj due to the left chain (bν→j), the right chain (bνj←), and the external field B.

become random variables. The study of their distribution provides a large amount of
information about such instances and can be used to characterize the corresponding
phase diagram. The time evolution of these distributions is known under the name
of ‘density evolution’, and the fixed-point analysis of them is done by the replica-
symmetric cavity method. Both are explained in Section 14.6.

14.1 Two examples

14.1.1 Example 1: Ising chain

Consider the ferromagnetic Ising model on a line. The variables are Ising spins (σ1, . . . ,
σN ) = σ, with σi ∈ {+1,−1}, and their joint distribution takes the Boltzmann form

µβ(σ) =
1

Z
e−βE(σ) , E(σ) = −

N−1∑

i=1

σiσi+1 −B
N∑

i=1

σi . (14.1)

The corresponding factor graph is shown in Figure 14.1.
Let us now compute the marginal probability distribution µ(σj) of spin σj . We

shall introduce three ‘messages’ arriving at spin j, representing the contributions to
µ(σj) from each of the function nodes which are connected to i. More precisely, we
define

ν̂→j(σj) =
1

Z→j

∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
,

ν̂j←(σj) =
1

Zj←

∑

σj+1...σN

exp




β
N−1∑

i=j

σiσi+1 + βB
N∑

i=j+1

σi




 . (14.2)

Messages are understood to be probability distributions and thus to be normalized.
In the present case, the constants Z→j , Zj← are set by the conditions ν̂→j(+1) +
ν̂→j(−1) = 1, and ν̂j←(+1) + ν̂j←(−1) = 1. In the following, when dealing with
normalized distributions, we shall avoid writing the normalization constants explicitly
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and instead use the symbol ∼= to denote ‘equality up to a normalization’. With this
notation, the first of the above equations can be rewritten as

ν̂→j(σj) ∼=
∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
. (14.3)

By rearranging the summation over spins σi, i 6= j, the marginal µ(σj) can be
written as

µ(σj) ∼= ν̂→j(σj) eβBσj ν̂j←(σj) . (14.4)

In this expression, we can interpret each of the three factors as a ‘message’ sent to
j from one of the three function nodes connected to the variable j. Each message
coincides with the marginal distribution of σj in a modified graphical model. For
instance, ν̂→j(σj) is the distribution of σj in the graphical model obtained by removing
all of the factor nodes adjacent to j except for the one on its left (see Fig. 14.1).

This decomposition is interesting because the various messages can be computed
iteratively. Consider, for instance, ν̂→i+1. It is expressed in terms of ν̂→i as

ν̂→i+1(σ) ∼=
∑

σ′

ν̂→i(σ
′) eβσ′σ+βBσ′

. (14.5)

Furthermore, ν̂→1 is the uniform distribution over {+1,−1}: ν̂→1(σ) = 1
2 for σ = ±1.

Equation (14.5) allows one to compute all of the messages ν̂→i, i ∈ {1, . . . , N}, in O(N)
operations. A similar procedure yields ν̂i←, by starting from the uniform distribution
ν̂N← and computing ν̂i−1← from ν̂i← recursively. Finally, eqn (14.4) can be used to
compute all of the marginals µ(σj) in linear time.

All of the messages are distributions over binary variables and can thus be param-
eterized by a single real number. One popular choice for such a parameterization is to
use the log-likelihood ratio1

u→i ≡
1

2β
log

ν̂→i(+1)

ν̂→i(−1)
. (14.6)

In statistical-physics terms, u→i is an ‘effective (or local) magnetic field’: ν̂→i(σ) ∼=
eβu→iσ. Using this definition (and noticing that it implies ν̂→i(σ) = 1

2 (1+
σ tanh(βu→i))), eqn (14.5) becomes

u→i+1 = f (u→i +B) , (14.7)

where the function f(x) is defined as

f(x) =
1

β
atanh [tanh(β) tanh(βx)] . (14.8)

The mapping u 7→ f(u + B) is differentiable, with its derivative bounded by
tanhβ < 1. Therefore the fixed-point equation u = f(u + B) has a unique solu-
tion u∗, and u→i goes to u∗ when i → ∞. Consider a very long chain, and a node

1Note that our definition differs by a factor 1/2β from the standard definition of the log-likelihood
in statistics. This factor is introduced to make contact with statistical-physics definitions.
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Fig. 14.2 Left: a simple parity check code with seven variables and three checks. Right: the

factor graph corresponding to the problem of finding the sent codeword, given a received

message.

in the bulk j ∈ [εN, (1 − ε)N ]. Then, as N → ∞, both u→j and uj← converge
to u∗, so that 〈σj〉 → tanh[β(2u∗ + B)]. This is the bulk magnetization. If, on the
other hand, we consider a spin on the boundary, we get a smaller magnetization
〈σ1〉 = 〈σN 〉 → tanh[β(u∗ +B)].

Exercise 14.1 Use the recursion (14.7) to show that, when N and j go to infinity, 〈σj〉 =
M + O(λj , λN−j), where M = tanh(2u∗ + B) and λ = f ′(u∗ + B). Compare this with the
treatment of the one-dimensional Ising model in Section 2.5.

The above method can be generalized to the computation of joint distributions of
two or more variables. Consider, for instance, the joint distribution µ(σj , σk), for k > j.
Since we already know how to compute the marginal µ(σj), it is sufficient to consider
the conditional distribution µ(σk|σj). For each of the two values of σj , the conditional
distribution of σj+1, . . . , σN takes a form analogous to eqn (14.1) but with σj fixed.
Therefore, the marginal µ(σk|σj) can be computed through the same algorithm as
before. The only difference is in the initial condition, which becomes ν̂→j(+1) = 1,
ν̂→j(−1) = 0 (if we condition on σj = +1) and ν̂→j(+1) = 0, ν̂→j(−1) = 1 (if we
condition on σj = −1).

Exercise 14.2 Compute the correlation function 〈σjσk〉, when j, k ∈ [Nε,N(1 − ε)] and

N → ∞. Check that when B = 0, 〈σjσk〉 = (tanhβ)|j−k|. Find a simpler derivation of this
last result.
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14.1.2 Example 2: A tree-parity-check code

Our second example deals with a decoding problem. Consider the simple linear code
whose factor graph is reproduced in the left frame of Fig. 14.2. It has a block length
N = 7, and the codewords satisfy the three parity check equations

x0 ⊕ x1 ⊕ x2 = 0 , (14.9)

x0 ⊕ x3 ⊕ x4 = 0 , (14.10)

x0 ⊕ x5 ⊕ x6 = 0 . (14.11)

One of the codewords is sent through a channel of the type BSC(p), defined earlier.
Assume that the received message is y = (1, 0, 0, 0, 0, 1, 0). The conditional distribution
for x to be the transmitted codeword, given the received message y, takes the usual
form µy(x) = P(x|y):

µy(x) ∼= I(x0 ⊕ x1 ⊕ x2 = 0)I(x0 ⊕ x3 ⊕ x4 = 0)I(x0 ⊕ x5 ⊕ x6 = 0)

6∏

i=0

Q(yi|xi) ,

where Q(0|0) = Q(1|1) = 1 − p and Q(1|0) = Q(0|1) = p. The corresponding factor
graph is drawn in the right frame of Fig. 14.2.

In order to implement symbol MAP decoding, (see Chapter 6), we need to compute
the marginal distribution of each bit. The computation is straightforward, but it is
illuminating to recast it as a message-passing procedure similar to that in the Ising
chain example. Consider, for instance, bit x0. We start from the boundary. In the
absence of the check a, the marginal of x1 would be ν1→a = (1 − p, p) (we use here
the convention of writing distributions ν(x) over a binary variable as two-dimensional
vectors (ν(0), ν(1))). This is interpreted as a message sent from variable 1 to check a.

Variable 2 sends an analogous message ν2→a to a (in the present example, this
happens to be equal to ν1→a). Knowing these two messages, we can compute the
contribution to the marginal probability distribution of variable x0 arising from the
part of the factor graph containing the whole branch connected to x0 through the
check a:

ν̂a→0(x0) ∼=
∑

x1,x2

I(x0 ⊕ x1 ⊕ x2 = 0) ν1→a(x1)ν2→a(x2) . (14.12)

Clearly, ν̂a→0(x0) is the marginal distribution of x0 in a modified factor graph that
does not include either of the factor nodes b or c, and in which the received symbol
y0 has been erased. This is analogous to the messages ν̂→j(σj) used in the Ising chain
example. The main difference is that the underlying factor graph is no longer a line,
but a tree. As a consequence, the recursion (14.12) is no longer linear in the incoming
messages. Using the rule (14.12), and analogous ones for ν̂b→0(x0) and ν̂c→0(x0), we
obtain

ν̂a→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂b→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂c→0 = (2p(1− p), p2 + (1− p)2) .
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The marginal probability distribution of the variable x0 is finally obtained by taking
into account the contributions of each subtree, together with the channel output for
bit x0:

µ(x0) ∼= Q(y0|x0) ν̂a→0(x0)ν̂b→0(x0)ν̂c→0(x0)
∼=
(
2p2(1− p)[p2 + (1− p)2]2, 4p2(1− p)3[p2 + (1− p)2]

)
.

In particular, the MAP decoding of the symbol x0 is always x0 = 0 in this case, for
any p < 1/2.

An important fact emerges from this simple calculation. Instead of performing a
summation over 27 = 128 configurations, we were able to compute the marginal at x0

by doing six summations (one for every factor node a, b, c and for every value of x0),
each one over two summands (see eqn (14.12)). Such complexity reduction was achieved
by merely rearranging the order of sums and multiplications in the computation of the
marginal.

Exercise 14.3 Show that the message ν0→a(x0) is equal to (1/2, 1/2), and deduce that
µ(x1) ∼= ((1 − p), p).

14.2 Belief propagation on tree graphs

We shall now define belief propagation and analyse it in the simplest possible setting:
tree-graphical models. In this case, it solves several computational problems in an
efficient and distributed fashion.

14.2.1 Three problems

Let us consider a graphical model such that the associated factor graph is a tree (we call
this model a tree-graphical model). We use the same notation as in Section 9.1.1.
The model describes N random variables (x1, . . . , xN ) ≡ x taking values in a finite
alphabet X , whose joint probability distribution has the form

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) , (14.13)

where x∂a ≡ {xi | i ∈ ∂a}. The set ∂a ⊆ [N ], of size |∂a|, contains all variables involved
in constraint a. We shall always use indices i, j, k, . . . for the variables and a, b, c, . . .
for the function nodes. The set of indices ∂i involves all function nodes a connected
to i.

When the factor graph has no loops, the following are among the basic problems
that can be solved efficiently with a message-passing procedure:

1. Compute the marginal distributions of one variable, µ(xi), or the joint distribution
of a small number of variables.

2. Sample from µ(x), i.e. draw independent random configurations x with a distri-
bution µ(x).
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3. Compute the partition function Z or, equivalently, in statistical-physics language,

the free entropy logZ.

These three tasks can be accomplished using belief propagation, which is an obvious
generalization of the procedure exemplified in the previous section.

14.2.2 The BP equations

Belief propagation is an iterative ‘message-passing’ algorithm. The basic variables on
which it acts are messages associated with directed edges on the factor graph. For each
edge (i, a) (where i is a variable node and a a function node) there exist, at the t-th

iteration, two messages ν
(t)
i→a and ν̂

(t)
a→i. Messages take values in the space of probability

distributions over the single-variable space X . For instance, ν
(t)
i→a = {ν(t)

i→a(xi) : xi ∈
X}, with ν

(t)
i→a(xi) ≥ 0 and

∑
xi
ν

(t)
i→a(xi) = 1.

In tree-graphical models, the messages converge when t→∞ to fixed-point values
(see Theorem 14.1). These coincide with single-variable marginals in modified graphical

models, as we saw in the two examples in the previous section. More precisely, ν
(∞)
i→a(xi)

is the marginal distribution of variable xi in a modified graphical model which does not
include the factor a (i.e. the product in eqn (14.13) does not include a). Analogously,

ν̂
(∞)
a→i(xi) is the distribution of xi in a graphical model where all factors in ∂i except a

have been erased.
Messages are updated through local computations at the nodes of the factor graph.

By local we mean that a given node updates the outgoing messages on the basis of
incoming ones at previous iterations. This is a characteristic feature of message-passing
algorithms; the various algorithms in this family differ in the precise form of the update
equations. The belief propagation (BP), or sum–product, update rules are

ν
(t+1)
j→a (xj) ∼=

∏

b∈∂j\a

ν̂
(t)
b→j(xj) , (14.14)

ν̂
(t)
a→j(xj) ∼=

∑

x∂a\j

ψa(x∂a)
∏

k∈∂a\j

ν
(t)
k→a(xk) . (14.15)

It is understood that, when ∂j \ a is an empty set, νj→a(xj) is the uniform distribu-
tion. Similarly, if ∂a \ j is empty, then ν̂a→j(xj) = ψa(xj). A pictorial illustration of
these rules is provided in Fig. 14.3. A BP fixed point is a set of t-independent mes-

sages ν
(t)
i→a = νi→a, ν̂

(t)
a→i = ν̂a→i which satisfy eqns (14.14) and (14.15). From these,

one obtains 2|E| equations (one equation for each directed edge of the factor graph)
relating 2|E| messages. We shall often refer to these fixed-point conditions as the BP
equations.

After t iterations, one can estimate the marginal distribution µ(xi) of variable i
using the set of all incoming messages. The BP estimate is:

ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.16)

In writing the update rules, we have assumed that the update is done in parallel at all
the variable nodes, then in parallel at all function nodes, and so on. Clearly, in this
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b

k

j

aj

a

Fig. 14.3 Left: the portion of the factor graph involved in the computation of ν
(t+1)
j→a (xj).

This message is a function of the ‘incoming messages’ bν(t)
b→j(xj), with b 6= a. Right: the portion

of the factor graph involved in the computation of bν(t)
a→j(xj). This message is a function of

the ‘incoming messages’ ν
(t)
k→a(xk), with k 6= j.

case, the iteration number must be incremented either at variable nodes or at factor
nodes, but not necessarily at both. This is what happens in eqns (14.14) and (14.15).
Other update schedules are possible and sometimes useful. For the sake of simplicity,
however, we shall stick to the parallel schedule.

In order to fully define the algorithm, we need to specify an initial condition. It is
a widespread practice to set initial messages to the uniform distribution over X (i.e.

ν
(0)
i→a(xi) = 1/|X |). On the other hand, it can be useful to explore several distinct

(random) initial conditions. This can be done by defining some probability measure
P over the space M(X ) of distributions over X (i.e. the |X |-dimensional simplex) and

taking ν
(0)
i→a( · ) as i.i.d. random variables with distribution P.

The BP algorithm can be applied to any graphical model, irrespective of whether
the factor graph is a tree or not. One possible version of the algorithm is as follows.

BP (graphical model (G,ψ), accuracy ǫ, iterations tmax)
1: Initialize BP messages as i.i.d. random variables with distribution P;
2: For t ∈ {0, . . . , tmax}
3: For each (j, a) ∈ E
4: Compute the new value of ν̂a→j using eqn (14.15);
5: For each (j, a) ∈ E
6: Compute the new value of νj→a using eqn (14.14);
7: Let ∆ be the maximum message change;
8: If ∆ < ǫ return current messages;
9: End-For;
10: Return ‘Not Converged’;
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Among all message-passing algorithms, BP is uniquely characterized by the prop-

erty of computing exact marginals on tree-graphical models.

Theorem 14.1. (BP is exact on trees) Consider a
tree-graphical model with diameter t∗ (which means that t∗ is the maximum distance
between any two variable nodes). Then:

1. Irrespective of the initial condition, the BP update equations (14.14) and (14.15)
converge after at most t∗ iterations. In other words, for any edge (ia), and any

t > t∗, ν
(t)
i→a = ν∗i→a, ν̂

(t)
a→i = ν̂∗a→i.

2. The fixed-point messages provide the exact marginals: for any variable node i, and

any t > t∗, ν
(t)
i (xi) = µ(xi).

Proof As exemplified in the previous section, on tree factor graphs BP is just a clever
way to organize the sum over configurations to compute marginals. In this sense, the
theorem is obvious.

We shall sketch a formal proof here, leaving a few details to the reader. Given a
directed edge i → a between a variable i and a factor node a, we define T(i → a) as
the subtree rooted on this edge. This is the subtree containing all nodes w which can
be connected to i by a non-reversing path2 which does not include the edge (i, a). Let
t∗(i→ a) be the depth of T(i→ a) (the maximal distance from a leaf to i).

We can show that, for any number of iterations t > t∗(i → a), the message ν
(t)
i→a

coincides with the marginal distribution of the root variable with respect to the graph-
ical model T(i→ a). In other words, for tree graphs, the interpretation of BP messages
in terms of modified marginals is correct.

This claim is proved by induction on the tree depth t∗(i→ a). The base step of the
induction is trivial: T(i→ a) is the graph formed by the unique node i. By definition,

for any t ≥ 1, ν
(t)
i→a(xi) = 1/|X | is the uniform distribution, which coincides with the

marginal of the trivial graphical model associated with T(i→ a).
The induction step is easy as well. Assuming the claim to be true for t∗(i→ a) ≤ τ ,

we have to show that it holds when t∗(i→ a) = τ + 1. To this end, take any t > τ + 1

and compute ν
(t+1)
i→a (xi) using eqns (14.14) and (14.15) in terms of messages ν

(t)
j→b(xj)

in the subtrees for b ∈ ∂i \ a and j ∈ ∂b \ i. By the induction hypothesis, and since

the depth of the subtree T (j → b) is at most τ , ν
(t)
j→b(xj) is the root marginal in such

a subtree. It turns out that by combining the marginals at the roots of the subtrees
T(j → b) using eqns (14.14) and (14.15), we can obtain the marginal at the root of
T(i→ a). This proves the claim. �

14.2.3 Correlations and energy

The use of BP is not limited to computing one-variable marginals. Suppose we want
to compute the joint probability distribution µ(xi, xj) of two variables xi and xj .
Since BP already enables to compute µ(xi), this task is equivalent to computing the

2A non-reversing path on a graph G is a sequence of vertices ω = (j0, j1, . . . , jn) such that
(js, js+1) is an edge for any s ∈ {0, . . . , n− 1}, and js−1 6= js+1 for s ∈ {1, . . . , n− 1}.



300 Belief propagation

conditional distribution µ(xj | xi). Given a model that factorizes as in eqn (14.13),
the conditional distribution of x = (x1, . . . , xN ) given xi = x takes the form

µ(x|xi = x) ∼=
M∏

a=1

ψa(x∂a) I(xi = x) . (14.17)

In other words, it is sufficient to add to the original graph a new function node of
degree 1 connected to variable node i, which fixes xi = x. One can then run BP on

the modified factor graph and obtain estimates ν
(t)
j (xj |xi = x) for the conditional

marginal of xj .
This strategy is easily generalized to the joint distribution of any number m of

variables. The complexity, however, grows exponentially in the number of variables
involved, since we have to condition over |X |m−1 possible assignments.

Happily, for tree-graphical models, the marginal distribution of any number of
variables admits an explicit expression in terms of messages. Let FR be a subset
of function nodes, let VR be the subset of variable nodes adjacent to FR, let R be
the induced subgraph, and let xR be the corresponding variables. Without loss of
generality, we shall assume R to be connected. Further, we denote by ∂R the subset
of function nodes that are not in FR but are adjacent to a variable node in VR.

Then, for a ∈ ∂R, there exists a unique i ∈ ∂a ∩ VR, which we denote by i(a).
It then follows immediately from Theorem 14.1, and its characterization of messages,
that the joint distribution of variables in R is

µ(xR) =
1

ZR

∏

a∈FR

ψa(x∂a)
∏

a∈∂R

ν̂∗a→i(a)(xi(a)) , (14.18)

where ν̂∗a→i( · ) are the fixed-point BP messages.

Exercise 14.4 Let us use the above result to write the joint distribution of the vari-
ables along a path in a tree factor graph. Consider two variable nodes i, j, and let
R = (VR, FR, ER) be the subgraph induced by the nodes along the path between i and j. For
any function node a ∈ R, denote by i(a) and j(a) the variable nodes in R that are adjacent
to a. Show that the joint distribution of the variables along this path, xR = {xl : l ∈ VR},
takes the form

µ(xR) =
1

ZR

Y

a∈FR

ψ̃a(xi(a), xj(a))
Y

l∈VR

ψ̃l(xl) . (14.19)

In other words, µ(xR) factorizes according to the subgraph R. Write expressions for the

compatibility functions ψ̃a( · , · ), ψ̃l( · ) in terms of the original compatibility functions and
the messages going from ∂R to VR.

A particularly useful case arises in the computation of the internal energy. In
physics problems, the compatibility functions in eqn (14.13) take the form ψa(x∂a) =
e−βEa(x∂a), where β is the inverse temperature and Ea(x∂a) is the energy function
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characterizing constraint a. Of course, any graphical model can be written in this
form (allowing for the possibility of Ea(x∂a) = +∞ in the case of hard constraints),
adopting for instance the convention β = 1, which we shall use from now on. The
internal energy U is the expectation value of the total energy:

U = −
∑

x

µ(x)

M∑

a=1

logψa(x∂a) . (14.20)

This can be computed in terms of BP messages using eqn (14.18) with FR = {a}. If,
further, we use eqn (14.14) to express products of check-to-variable messages in terms
of variable-to-check ones, we get

U = −
M∑

a=1

1

Za

∑

x∂a

(
ψa(x∂a) logψa(x∂a)

∏

i∈∂a

ν∗i→a(xj)

)
, (14.21)

where Za ≡
∑

x∂a
ψa(x∂a)

∏
i∈∂a ν

∗
i→a(xj). Notice that in this expression the internal

energy is a sum of ‘local’ terms, one for each compatibility function.
On a loopy graph, eqns (14.18) and (14.21) are no longer valid, and, indeed, BP

does not necessarily converge to fixed-point messages {ν∗i→a, ν̂
∗
a→i}. However, one can

replace fixed-point messages with BP messages after any number t of iterations and
take these as definitions of the BP estimates of the corresponding quantities. From
eqn (14.18), one obtains an estimate of the joint distribution of a subset of variables,
which we shall call ν(t)(xR), and from (14.21), an estimate of the internal energy.

14.2.4 Entropy

Remember that the entropy of a distribution µ over X V is defined as H[µ] =
−∑x µ(x) log µ(x). In a tree-graphical model, the entropy, like the internal energy,
has a simple expression in terms of local quantities. This follows from an important
decomposition property. Let us denote by µa(x∂a) the marginal probability distribu-
tion of all the variables involved in the compatibility function a, and by µi(xi) the
marginal probability distribution of variable xi.

Theorem 14.2 In a tree-graphical model, the joint probability distribution µ(x) of all
of the variables can be written in terms of the marginals µa(x∂a) and µi(xi) as

µ(x) =
∏

a∈F

µa(x∂a)
∏

i∈V

µi(xi)
1−|∂i| . (14.22)

Proof The proof is by induction on the number M of factors. Equation (14.22) holds
for M = 1 (since the degrees |∂i| are all equal to 1). Assume that it is valid for any
factor graph with up to M factors, and consider a specific factor graph G with M + 1
factors. Since G is a tree, it contains at least one factor node such that all its adjacent
variable nodes have degree 1, except for at most one of them. Call such a factor node a,
and let i be the only neighbour with degree larger than one (the case in which no such
neighbour exists is treated analogously). Further, let x∼ be the vector of variables in
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G that are not in ∂a \ i. Then (writing Pµ( · ) for a probability under the distribution
µ), the Markov property together with the Bayes rule yields

Pµ(x) = Pµ(x∼)Pµ(x|x∼) = Pµ(x∼)Pµ(x∂a\i|xi) = Pµ(x∼)µa(x∂a)µi(xi)
−1 .

(14.23)

The probability Pµ(x∼) can be written as P(x∼) ∼= ψ̃a(xi)
∏

b∈F\a ψb(x∂b), where

ψ̃a(xi) =
∑

x∂a\i
ψa(x∂a). As the factor ψ̃a has degree one, it can be erased and

incorporated into another factor as follows: take one of the other factors connected to
i, c ∈ ∂i \ a, and change it to ψ̃c(x∂c) = ψc(x∂c)ψ̃a(xi). In the reduced factor graph,
the degree of i is smaller by one and the number of factors is M . Using the induction
hypothesis, we get

Pµ(x∼) = µi(xi)
2−|∂i|

∏

b∈F\a

µb(x∂b)
∏

j∈V \i

µj(xj)
1−|∂j| . (14.24)

The proof is completed by putting together eqns (14.23) and (14.24). �

As an immediate consequence of eqn (14.22), the entropy of a tree-graphical model
can be expressed as sums of local terms:

H[µ] = −
∑

a∈F

µa(x∂a) log µa(x∂a)−
∑

i∈V

(1− |∂i|)µi(xi) log µi(xi) . (14.25)

It is also easy to express the free entropy Φ = logZ in terms of local quantities.
Recalling that Φ = H[µ]−U [µ] (where U [µ] is the internal energy given by eqn (14.21)),
we get Φ = F[µ], where

F[µ] = −
∑

a∈F

µa(x∂a) log

{
µa(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|)µi(xi) log µi(xi) . (14.26)

Expressing local marginals in terms of messages, via eqn (14.18), we can in turn
write the free entropy as a function of the fixed-point messages. We introduce the func-
tion F∗(ν), which yields the free entropy in terms of 2|E|messages ν = {νi→a( · ), ν̂a→i( · )}:

F∗(ν) =
∑

a∈F

Fa(ν) +
∑

i∈V

Fi(ν)−
∑

(ia)∈E

Fia(ν) , (14.27)

where

Fa(ν) = log




∑

x∂a

ψa(x∂a)
∏

i∈∂a

νi→a(xi)



 , Fi(ν) = log

[
∑

xi

∏

b∈∂i

ν̂b→i(xi)

]
,

Fai(ν) = log

[
∑

xi

νi→a(xi)ν̂a→i(xi)

]
. (14.28)

It is not hard to show that, by evaluating this functional at the BP fixed point ν∗,
one gets F∗(ν

∗) = F[µ] = Φ, thus recovering the correct free entropy. The function
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Fig. 14.4 Left: the factor graph of a small instance of the satisfiability problem with five

variables and five clauses. A dashed line means that the variable appears negated in the

adjacent clause. Right: the set of fixed-point BP messages for the uniform measure over

solutions of this instance. All messages are normalized, and we show their weights for the

value True. For any edge (a, i) (a being the clause and i the variable), the weight corresponding

to the message bνa→i is shown above the edge, and the weight corresponding to νi→a below

the edge.

F∗(ν) defined in eqn (14.27) is known as the Bethe free entropy (when multiplied
by a factor −1/β, it is called the Bethe free energy). The above observations are
important enough to be highlighted in a theorem.

Theorem 14.3. (the Bethe free entropy is exact on trees) Consider a tree-graphical
model. Let {µa, µi} denote its local marginals, and let ν∗ = {ν∗i→a, ν̂

∗
a→i} be the fixed-

point BP messages. Then Φ = logZ = F[µ] = F∗(ν
∗).

Notice that in the above statement, we have used the correct local marginals in F[ · ]
and the fixed-point messages in F∗( · ). In Section 14.4 we shall reconsider the Bethe
free entropy for more general graphical models, and regard it as a function over the
space of all ‘possible’ marginals/messages.

Exercise 14.5 Consider the instance of the satisfiability problem shown in Fig. 14.4,
left. Show by exhaustive enumeration that it has only two satisfying assignments, x =
(0, 1, 1, 1, 0) and (0, 1, 1, 1, 1). Rederive this result using BP. Namely, compute the entropy
of the uniform measure over satisfying assignments, and check that its value is indeed log 2.
The BP fixed point is shown in Fig. 14.4, right.

Exercise 14.6 In many systems some of the function nodes have degree 1 and amount
to a local redefinition of the reference measure over X . It is then convenient to single out
these factors. Let us write µ(x) ∼=

Q
a∈F ψa(x∂a)

Q
i∈V ψi(xi), where the second product

runs over degree-1 function nodes (indexed by the adjacent variable node), and the factors
ψa have degree at least 2. In the computation of F∗, the introduction of ψi adds N extra
factor nodes and subtracts N extra ‘edge’ terms corresponding to the edge between the
variable node i and the function node corresponding to ψi.
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Show that these two effects cancel, and that the net effect is to replace the variable-node
contribution in eqn (14.27) with

Fi(ν) = log

"
X

xi

ψi(xi)
Y

a∈∂i

bνa→i(xi)

#
. (14.29)

The problem of sampling from the distribution µ(x) over the large-dimensional
space XN reduces to that of computing one-variable marginals of µ(x), conditional on
a subset of the other variables. In other words, if we have a black box that computes
µ(xi|xU ) for any subset U ⊆ V , it can be used to sample a random configuration x.
The standard procedure for doing this is called sequential importance sampling.
We can describe this procedureby the following algorithm in the case of tree-graphical
models, using BP to implement such a ‘black box’.

BP-Guided Sampling (fraphical model (G,ψ))
1: initialize BP messages;
2: initialize U = ∅;
3: for t = 1, . . . , N :
4: run BP until convergence;
5: choose i ∈ V \ U ;
6: compute the BP marginal νi(xi);
7: choose x∗i distributed according to νi;
8: fix xi = x∗i and set U ← U ∪ {i};
9: add a factor I(xi = x∗i ) to the graphical model;
10: end
11: return x∗.

14.2.5 Pairwise models

Pairwise graphical models, i.e. graphical models such that all factor nodes have degree
2, form an important class. A pairwise model can be conveniently represented as an
ordinary graph G = (V,E) over variable nodes. An edge joins two variables each
time they are the arguments of the same compatibility function. The corresponding
probability distribution reads

µ(x) =
1

Z

∏

(ij)∈E

ψij(xi, xj) . (14.30)

Function nodes can be identified with edges (ij) ∈ E.
In this case belief propagation can be described as operating directly on G. Further,

one of the two types of messages can be easily eliminated: here we shall work uniquely

with variable-to-function messages, which we will denote by ν
(t)
i→j(xi), a shortcut for

ν
(t)
i→(ij)(xi). The BP updates then read
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ν

(t+1)
i→j (xi) ∼=

∏

l∈∂i\j

∑

xl

ψil(xi, xl) ν
(t)
l→i(xl) . (14.31)

Simplified expressions can be derived in this case for the joint distribution of several
variables (see eqn (14.18)), as well as for the free entropy.

Exercise 14.7 Show that, for pairwise models, the free entropy given in eqn (14.27) can
be written as F∗(ν) =

P
i∈V Fi(ν) −

P
(ij)∈E F(ij)(ν), where

Fi(ν) = log

2
4X

xi

Y

j∈∂i

0
@X

xj

ψij(xi, xj)νj→i(xj)

1
A
3
5 ,

F(ij)(ν) = log

2
4X

xi,xj

νi→j(xi)ψij(xi, xj)νj→i(xj)

3
5 . (14.32)

14.3 Optimization: Max-product and min-sum

Message-passing algorithms are not limited to computing marginals. Imagine that you
are given a probability distribution µ( · ) as in eqn (14.13), and you are asked to find
a configuration x which maximizes the probability µ(x). Such a configuration is called
a mode of µ( · ). This task is important in many applications, ranging from MAP
estimation (e.g. in image reconstruction) to word MAP decoding.

It is not hard to devise a message-passing algorithm adapted to this task, which
correctly solves the problem on trees.

14.3.1 Max-marginals

The role of marginal probabilities is played here by the max-marginals

Mi(x
∗
i ) = max

x
{µ(x) : xi = x∗i } . (14.33)

In the same way as the tasks of sampling and of computing partition functions can
be reduced to computing marginals, optimization can be reduced to computing max-
marginals. In other words, given a black box that computes max-marginals, optimiza-
tion can be performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate,
i.e., for each i ∈ V , there exists an x∗i such that Mi(x

∗
i ) > Mi(xi) (strictly) for any

xi 6= x∗i . The unique maximizing configuration is then given by x∗ = (x∗1, . . . , x
∗
N ).

In the general case, the following ‘decimation’ procedure, which is closely related
to the BP-guided sampling algorithm of Section 14.2.4, returns one of the maximizing
configurations. Choose an ordering of the variables, say (1, . . . , N). Compute M1(x1),
and let x∗1 be one of the values maximizing it: x∗ ∈ arg maxM1(x1). Fix x1 to take this
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value, i.e. modify the graphical model by introducing the factor I(x1 = x∗1) (this corre-
sponds to considering the conditional distribution µ(x|x1 = x∗1)). Compute M2(x2) for
the new model, fix x2 to one value x∗2 ∈ arg maxM2(x2), and iterate this procedure,
fixing all the xi’s sequentially.

14.3.2 Message passing

It is clear from the above that max-marginals need only to be computed up to a
multiplicative normalization. We shall therefore stick to our convention of denoting
equality between max-marginals up to an overall normalization by ∼=. Adapting the
message-passing update rules to the computation of max-marginals is not hard: it is
sufficient to replace sums with maximizations. This yields the following max-product
update rules:

ν
(t+1)
i→a (xi) ∼=

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (14.34)

ν̂
(t)
a→i(xi) ∼= max

x∂a\i




ψa(x∂a)
∏

j∈∂a\i

ν
(t)
j→a(xj)




 . (14.35)

The fixed-point conditions for this recursion are called the max-product equations.
As in BP, it is understood that, when ∂j \ a is an empty set, νj→a(xj) ∼= 1 is the
uniform distribution. Similarly, if ∂a \ j is empty, then ν̂a→j(xj) ∼= ψa(xj). After any
number of iterations, an estimate of the max-marginals is obtained as follows:

ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.36)

As in the case of BP, the main motivation for the above updates comes from the
analysis of graphical models on trees.

Theorem 14.4. (the max-product algorithm is exact on trees) Consider a tree-
graphical model with diameter t∗. Then:

1. Irrespective of the initialization, the max-product updates (14.34) and (14.35) con-
verge after at most t∗ iterations. In other words, for any edge (i, a) and any t > t∗,

ν
(t)
i→a = ν∗i→a and ν̂

(t)
a→i = ν̂∗a→i.

2. The max-marginals are estimated correctly, i.e., for any variable node i and any

t > t∗, ν
(t)
i (xi) = Mi(xi).

The proof follows closely that of Theorem 14.1, and is left as an exercise for the reader.



Optimization: Max-product and min-sum 307
Exercise 14.8 The crucial property used in both Theorem 14.1 and Theorem 14.4 is the
distributive property of the sum and the maximum with respect to the product. Consider,
for instance, a function of the form f(x1, x2, x3) = ψ1(x1, x2)ψ2(x1, x3). Then one can
decompose the sum and maximum as follows:

X

x1,x2,x3

f(x1, x2, x3) =
X

x1

" 
X

x2

ψ1(x1, x2)

! 
X

x3

ψ2(x1, x3)

!#
, (14.37)

max
x1,x2,x3

f(x1, x2, x3) = max
x1

»„
max

x2

ψ1(x1, x2)

«„
max

x3

ψ2(x1, x3)

«–
. (14.38)

Formulate a general ‘marginalization’ problem (with the ordinary sum and product substi-
tuted by general operations with a distributive property) and describe a message-passing
algorithm that solves it on trees.

The max-product messages ν
(t)
i→a( · ) and ν̂

(t)
a→i( · ) admit an interpretation which is

analogous to that of sum–product messages. For instance, ν
(t)
i→a( · ) is an estimate of

the max-marginal of variable xi with respect to the modified graphical model in which
factor node a is removed from the graph. Along with the proof of Theorem 14.4, it is
easy to show that, in a tree-graphical model, fixed-point messages do indeed coincide
with the max-marginals of such modified graphical models.

The problem of finding the mode of a distribution that factorizes as in eqn (14.13)
has an alternative formulation, namely as minimizing a cost (energy) function that
can be written as a sum of local terms:

E(x) =
∑

a∈F

Ea(x∂a) . (14.39)

The problems are mapped onto each other by writing ψa(x∂a) = e−βEa(x∂a) (with β
some positive constant). A set of message-passing rules that is better adapted to the
latter formulation is obtained by taking the logarithm of eqns (14.34) and (14.35).
This version of the algorithm is known as the min-sum algorithm:

E
(t+1)
i→a (xi) =

∑

b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a , (14.40)

Ê
(t)
a→i(xi) = min

x∂a\i



Ea(x∂a) +
∑

j∈∂a\i

E
(t)
j→a(xj)



+ Ĉ
(t)
a→i . (14.41)

The corresponding fixed-point equations are also known in statistical physics as the
energetic cavity equations. Notice that, since the max-product marginals are rel-
evant only up to a multiplicative constant, the min-sum messages are defined up to

an overall additive constant. In the following, we shall choose the constants C
(t)
i→a

and Ĉ
(t)
a→i such that minxi

E
(t+1)
i→a (xi) = 0 and minxi

Ê
(t)
a→i(xi) = 0, respectively. The
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analogue of the max-marginal estimate in eqn (14.36) is provided by the following
log-max-marginal:

E
(t)
i (xi) =

∑

a∈∂i

Ê
(t−1)
a→i (xi) + C

(t)
i . (14.42)

In the case of tree-graphical models, the minimum energy U∗ = minxE(x) can be

immediately written in terms of the fixed-point messages {E∗i→a, Ê
∗
i→a}. We obtain,

in fact,

U∗ =
∑

a

Ea(x∗∂a) , (14.43)

x∗∂a = arg min
x∂a

{
Ea(x∂a) +

∑

i∈∂a

Ê∗i→a(xi)

}
. (14.44)

In the case of non-tree graphs, this can be taken as a prescription to obtain a max-

product estimate U
(t)
∗ of the minimum energy. One just needs to replace the fixed-

point messages in eqn (14.44) with the messages obtained after t iterations. Finally,
a minimizing configuration x∗ can be obtained through the decimation procedure
described in the previous subsection.

Exercise 14.9 Show that U∗ is also given by U∗ =
P

a∈F ǫa+
P

i∈V ǫi−
P

(ia)∈E ǫia, where

ǫa = min
x∂a

2
4Ea(x∂a) +

X

j∈∂a

E∗j→a(xj)

3
5 , ǫi = min

xi

"
X

a∈∂i

bE∗a→i(xi)

#
,

ǫia = min
xi

h
E∗i→a(xi) + bE∗a→i(xi)

i
. (14.45)

[Hints: (i) Define x∗i (a) = arg min
h
bE∗a→i(xi) + E∗i→a(xi)

i
, and show that the minima in

eqn (14.45) are achieved at xi = x∗i (a) (for ǫi and ǫai) and at x∗∂a = {x∗i (a)}i∈∂a (for ǫa).

(ii) Show that
P

(ia)
bE∗a→i(x

∗
i (a)) =

P
i ǫi.]

14.3.3 Warning propagation

A frequently encountered case is that of constraint satisfaction problems, where the
energy function just counts the number of violated constraints:

Ea(x∂a) =

{
0 if constraint a is satisfied,
1 otherwise.

(14.46)

The structure of messages can be simplified considerably in this case. More precisely,

if the messages are initialized in such a way that Ê
(0)
a→i ∈ {0, 1}, this condition is

preserved by the min-sum updates (14.40) and (14.41) at any subsequent time. Let us
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prove this statement by induction. Suppose it holds up to time t−1. From eqn (14.40),

it follows that E
(t)
i→a(xi) is a non-negative integer. Now consider eqn (14.41). Since both

E
(t)
j→a(xj) and Ea(x∂a) are integers, it follows that Ê

(t)
a→i(xi), the minimum of the right-

hand side, is a non-negative integer as well. Further, since for each j ∈ ∂a \ i there

exists an x∗j such that E
(t)
j→a(x∗j ) = 0, the minimum in eqn (14.41) is at most 1, which

proves our claim.
This argument also shows that the outcome of the minimization in eqn (14.41)

depends only on which entries of the messages E
(t)
j→a( · ) vanish. If there exists an

assignment x∗j such that E
(t)
j→a(x∗j ) = 0 for each j ∈ ∂a \ i, and Ea(xi, x

∗
∂a\i) = 0, then

the value of the minimum is 0. Otherwise, it is 1.
In other words, instead of keeping track of the messages Ei→a( · ), one can use their

‘projections’
Ei→a(xi) = min {1, Ei→a(xi)} . (14.47)

Proposition 14.5 Consider an optimization problem with a cost function of the form
(14.39) with Ea(x∂a) ∈ {0, 1}, and assume the min-sum algorithm to be initialized

with Êa→i(xi) ∈ {0, 1} for all edges (i, a). Then, after any number of iterations, the
function-node-to-variable-node messages coincide with those computed using the fol-
lowing update rules:

E
(t+1)
i→a (xi) = min




1,
∑

b∈∂i\a

Ê
(t)
b→i(xi) + C

(t)
i→a




 , (14.48)

Ê
(t)
a→i(xi) = min

x∂a\i




Ea(x∂a) +
∑

j∈∂a\i

E
(t)
j→a(xj)




+ Ĉ
(t)
a→i , (14.49)

where C
(t)
i→a, Ĉ

(t)
a→i are normalization constants determined by minxi

Êa→i(xi) = 0 and
minxi

Ei→a(xi) = 0.
Finally, the ground state energy takes the same form as eqn. (14.45), with Ei→a( · )

replacing Ei→a( · ).

We call the simplified min-sum algorithm with the update equations (14.49) and
(14.48) the warning propagation algorithm.

The name is due to the fact that the messages Ei→a( · ) can be interpreted as the
following warnings:

Ei→a(xi) = 1 → ‘according to the set of constraints b ∈ ∂i \ a, the i-th variable
should not take the value xi’.

Ei→a(xi) = 0 → ‘according to the set of constraints b ∈ ∂i \ a, the i-th variable
can take the value xi’.

Warning propagation provides a procedure for finding all direct implications of a par-
tial assignment of the variables in a constraint satisfaction problem. For instance, in
the case of the satisfiability problem, it finds all implications found by unit clause
propagation (see Section 10.2).
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14.4 Loopy BP

We have seen how message-passing algorithms can be used efficiently in tree-graphical
models. In particular, they allow one to exactly sample distributions that factorize
according to tree factor graphs and to compute marginals, partition functions, and
modes of such distributions. It would be very useful in a number of applications to
be able to accomplish the same tasks when the underlying factor graph is no longer a
tree.

It is tempting to use the BP equations in this more general context, hoping to
get approximate results for large graphical models. Often, we shall be dealing with
problems that are NP-hard even to approximate, and it is difficult to provide general
guarantees of performance. Indeed, an important unsolved challenge is to identify
classes of graphical models where the following questions can be answered:

1. Is there any set of messages {ν∗i→a, ν̂
∗
a→i} that reproduces the local marginals of

µ( · ) by use of eqn (14.18), within some prescribed accuracy?

2. Do such messages correspond to an (approximate) fixed point of the BP update
rules (14.14) and (14.15)?

3. Do the BP update rules have at least one (approximate) fixed point? Is it unique?

4. Does such a fixed point have a non-empty ‘basin of attraction’ with respect to
eqns (14.14) and (14.15)? Does this basin of attraction include all possible (or all
‘reasonable’) initializations?

We shall not treat these questions in depth, as a general theory is lacking. We shall,
rather, describe the sophisticated picture that has emerged, building on a mixture of
physical intuition, physical methods, empirical observations, and rigorous proofs.

Exercise 14.10 Consider a ferromagnetic Ising model on a two-dimensional grid with
periodic boundary conditions (i.e. ‘wrapped’ around a torus), as defined in Section 9.1.2
(see Fig. 9.7). Ising spins σi, i ∈ V , are associated with the vertices of the grid, and interact
along the edges:

µ(σ) =
1

Z
eβ

P
(ij)∈E σiσj . (14.50)

(a) Describe the associated factor graph.

(b) Write the BP equations.

(c) Look for a solution that is invariant under translation, i.e. νi→a(σi) = ν(σi), bνa→i(σi) =
bν(σi): write down the equations satisfied by ν( · ), bν( · ).

(d) Parameterize ν(σ) in terms of the log-likelihood h = (1/2β) log(ν(+1)/ν(−1)) and
show that h satisfies the equation tanh(βh) = tanh(β) tanh(3βh).

(e) Study this equation and show that, for 3 tanhβ > 1, it has three distinct solutions
corresponding to three BP fixed points.

(f) Consider the iteration of the BP updates starting from a translation-invariant initial
condition. Does the iteration converge to a fixed point? Which one?
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(g) Discuss the appearance of three BP fixed points in relation to the structure of the

distribution µ(σ) and the paramagnetic–ferromagnetic transition. What is the approx-
imate value of the critical temperature obtained from BP? Compare with the exact
value βc = 1

2
log(1 +

√
2).

(h) What results does one obtain for an Ising model on a d-dimensional (instead of two-
dimensional) grid?

14.4.1 The Bethe free entropy

As we saw in Section 14.2.4, the free entropy of a tree-graphical model has a simple
expression in terms of local marginals (see eqn (14.26)). We can use it in graphs with
loops with the hope that it provides a good estimate of the actual free entropy. In
spirit, this approach is similar to the ‘mean-field’ free entropy introduced in Chapter 2,
although it differs from it in several respects.

In order to define precisely the Bethe free entropy, we must first describe a space
of ‘possible’ local marginals. A minimalistic approach is to restrict ourselves to the
‘locally consistent marginals’. A set of locally consistent marginals is a collection
of distributions bi( · ) over X for each i ∈ V , and ba( · ) over X |∂a| for each a ∈ F .
Being distributions, they must be non-negative, i.e. bi(xi) ≥ 0 and ba(x∂a) ≥ 0, and
they must satisfy the normalization conditions

∑

xi

bi(xi) = 1 ∀i ∈ V ,
∑

x∂a

ba(x∂a) = 1 ∀a ∈ F . (14.51)

To be ‘locally consistent’, they must satisfy the marginalization condition

∑

x∂a\i

ba(x∂a) = bi(xi) ∀a ∈ F , ∀i ∈ ∂a . (14.52)

Given a factor graph G, we shall denote the set of locally consistent marginals by
LOC(G), and the Bethe free entropy will be defined as a real-valued function on this
space.

It is important to stress that, although the marginals of any probability distribution
µ(x) over x = (x1, . . . , xN ) must be locally consistent, the converse is not true: one can
find sets of locally consistent marginals that do not correspond to any distribution.
In order to emphasize this point, locally consistent marginals are sometimes called
‘beliefs’.

Exercise 14.11 Consider the graphical model shown in Fig. 14.5, on binary variables
(x1, x2, x3), xi ∈ {0, 1}. The figure also gives a set of beliefs in the vector/matrix form

bi =

»
bi(0)
bi(1)

–
, bij =

»
bij(00) bij(01)
bij(10) bij(11)

–
. (14.53)

Check that this set of beliefs is locally consistent, but that they cannot be the marginals of
any distribution µ(x1, x2, x3).
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b1 =

[
0.5
0.5

]

b3 =

[
0.5
0.5

]
b2 =

[
0.5
0.5

]

b12 =

[
0.49 0.01
0.01 0.49

]

b31 =

[
0.01 0.49
0.49 0.01

]

b23 =

[
0.49 0.01
0.01 0.49

]

Fig. 14.5 A set of locally consistent marginals, ‘beliefs’, that cannot arise as the marginals

of any global distribution.

Given a set of locally consistent marginals b = {ba, bi}, we associate a Bethe free
entropy with it exactly as in eqn (14.26):

F[b] = −
∑

a∈F

ba(x∂a) log

{
ba(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|) bi(xi) log bi(xi) . (14.54)

The analogy with the naive mean-field approach suggests that stationary points (and,
in particular, maxima) of the Bethe free entropy should play an important role. This
is partially confirmed by the following result.

Proposition 14.6 Assume ψa(x∂a) > 0 for every a and x∂a. Then the stationary
points of the Bethe free entropy F[b] are in one-to-one correspondence with the fixed
points of the BP algorithm.

As will become apparent from the proof, the correspondence between BP fixed points
and stationary points of F[b] is completely explicit.

Proof We want to check stationarity with respect to variations of b within the set
LOC(G), which is defined by the constraints (14.51) and (14.52), as well as ba(x∂a) ≥ 0,
bi(xi) ≥ 0. We thus introduce a set of Lagrange multipliers λ = {λi, i ∈ V ;
λai(xi), (a, i) ∈ E, xi ∈ X}, where λi corresponds to the normalization of bi( · ) and
λai(xi) corresponds to the marginal of ba coinciding with bi. We then define the La-
grangian

L(b, λ) = F[b]−
∑

a∈F

λi

[
∑

xi

bi(xi)− 1

]
−
∑

(ia),xi

λai(xi)




∑

x∂a\i

ba(x∂a)− bi(xi)



 .

(14.55)

Notice that we have not introduced a Lagrange multiplier for the normalization of
ba(x∂a), as this follows from the two constraints already enforced. The stationarity
conditions with respect to bi and ba imply

bi(xi) ∼= e−1/(|∂i|−1)
∑

a∈∂i

λai(xi) , ba(x∂a) ∼= ψa(x∂a) e−
P

i∈∂a λai(xi) . (14.56)
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The Lagrange multipliers must be chosen in such a way that eqn (14.52) is fulfilled.
Any such set of Lagrange multipliers yields a stationary point of F[b]. Once the λai(xj)
have been found, the computation of the normalization constants in these expressions
fixes λi. Conversely, any stationary point corresponds to a set of Lagrange multipliers
satisfying the stated condition.

It remains to show that sets of Lagrange multipliers such that
∑

x∂a\i
ba(x∂a) =

bi(xi) are in one-to-one correspondence with BP fixed points. In order to see this, we
define the messages

νi→a(xi) ∼= e−λai(xi) , ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a) e−
P

j∈∂a\i λaj(xj) . (14.57)

It is clear from the definition that such messages satisfy

ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

νi→a(xi) . (14.58)

Further, using the second equation of eqns (14.56) together with eqn. (14.57), we get∑
x∂a\i

ba(x∂a) ∼= νi→a(xi)ν̂a→i(xi). On the other hand, from the first of eqns (14.56)

together with eqn (14.57), we get bi(xi) ∼=
∏

b νi→b(xi)
1/(|∂i|−1). The marginalization

condition thus implies
∏

b∈∂i

νi→b(xi)
1/(|∂i|−1) ∼= νi→a(xi)ν̂a→i(xi) . (14.59)

Taking the product of these equalities for a ∈ ∂i \ b, and eliminating
∏

a∈∂i\b νi→a(xi)

from the resulting equation (which is possible if ψa(x∂a) > 0), we get

νi→b(xi) ∼=
∏

a∈∂i\b

ν̂a→i(xi) . (14.60)

At this point we recognize in eqns (14.58) and (14.60) the fixed-point condition for
BP (see eqns (14.14) and (14.15)). Conversely, given any solution of eqns (14.58) and
(14.60), one can define a set of Lagrange multipliers using the first of eqns (14.57).
It follows from the-fixed point condition that the second of eqns (14.57) is fulfilled as
well, and that the marginalization condition holds. �

An important consequence of this proposition is the existence of BP fixed points.

Corollary 14.7 Assume ψa(xa) > 0 for every a and x∂a. The BP algorithm then has
at least one fixed point.

Proof Since F[b] is bounded and continuous in LOC(G) (which is closed), it takes
its maximum at some point b∗ ∈ LOC(G). Using the condition ψa(xa) > 0, it is easy
to see that such a maximum is reached in the relative interior of LOC(G), i.e. that
b∗a(x∂a) > 0, b∗i (xi) > 0 strictly. As a consequence, b∗ must be a stationary point and
therefore, by Proposition 14.6, there is a BP fixed point associated with it. �

The ‘variational principle’ provided by Proposition 14.6 is particularly suggestive
as it is analogous to naive mean-field bounds. For practical applications, it is sometimes
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xi xi

xj xj

xl xl

Fig. 14.6 Left: neighbourhood of a node i in a pairwise graphical model. Right: the modified

graphical model used to define the message νi→j(xi).

more convenient to use the free-entropy functional F∗(ν) of eqn (14.27). This can be

regarded as a function from the space of messages to reals F : M(X )|
~E| → R (remember

that M(X ) denotes the set of measures over X , and ~E is the set of directed edges in
the factor graph).3 It satisfies the following variational principle.

Proposition 14.8 The stationary points of the Bethe free entropy F∗(ν) are fixed
points of belief propagation. Conversely, any fixed point ν of belief propagation such
that F∗(ν) is finite, is also a stationary point of F∗(ν).

The proof is simple calculus and is left to the reader.
It turns out that for tree graphs and unicyclic graphs, F[b] is convex, and the above

results then prove the existence and uniqueness of BP fixed points. But, for general
graphs, F[b] is non-convex and may have multiple stationary points.

14.4.2 Correlations

What is the origin of the error made when BP is used in an arbitrary graph with loops,
and under what conditions can it be small? In order to understand this point, let us
consider for notational simplicity a pairwise graphical model (see eqn (14.2.5)). The
generalization to other models is straightforward. Taking seriously the probabilistic
interpretation of messages, we want to compute the marginal distribution νi→j(xi)
of xi in a modified graphical model that does not include the factor ψij(xi, xj) (see
Fig. 14.6). We denote by µ∂i\j(x∂i\j) the joint distribution of all variables in ∂i \ j in
the model where all the factors ψil(xi, xl), l ∈ ∂i, have been removed. Then,

νi→j(xi) ∼=
∑

x∂i\j

∏

l∈∂i\j

ψil(xi, xl)µ∂i\j(x∂i\j) . (14.61)

Comparing this expression with the BP equations (see eqn (14.31)), we deduce that
the messages {νi→j} solve these equations if

3On a tree, F∗(ν) is (up to a change of variables) the Lagrangian dual of F(b).
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xi xi

xj xj

xl xl

Fig. 14.7 Left: modified graphical model used to define νl→i(xl). Right: modified graphical

model corresponding to the cavity distribution of the neighbours of i, µ∂i\j(x∂i\j).

µ∂i\j(x∂i\j) =
∏

l∈∂i\j

νl→i(xl) . (14.62)

We can expect this to happen when two conditions are fulfilled:

1. Under µ∂i\j( · ), the variables {xl : l ∈ ∂i \ j} are independent: µ∂i\j(x∂i\j) =∏
l∈∂i\j µ∂i\j(xl).

2. The marginal of each of these variables under µ∂i\j( · ) is equal to the corre-
sponding message νl→i(xl). In other words, the two graphical models obtained
by removing all the compatibility functions that involve xi (namely, the model
µ∂i\j( · )) and by removing only ψil(xi, xl) must have the same marginal for the
variable xl; see Fig. 14.7.

These two conditions are obviously fulfilled for tree-graphical models. They are
also approximately fulfilled if the correlations among the variables {xl : l ∈ ∂i} are
‘small’ under µ∂i\j( · ). As we have seen, in many cases of practical interest (LDPC
codes, random K-SAT, etc.) the factor graph is locally tree-like. In other words, when
node i is removed, the variables {xl : l ∈ ∂i} are, with high probability, far apart
from each other. This suggests that, in such models, the two conditions above may
indeed hold in the large-size limit, provided far-apart variables are weakly correlated. A
simple illustration of this phenomenon is provided in the exercises below. The following
chapters will investigate this property further and discuss how to cope with cases in
which it does not hold.

Exercise 14.12 Consider an antiferromagnetic Ising model on a ring, with variables
(σ1, . . . , σN ) ≡ σ, σi ∈ {+1,−1} and distribution

µ(σ) =
1

Z
e−β

PN
i=1 σiσi+1 , (14.63)

where σN+1 ≡ σ1. This is a pairwise graphical model whose graph G is a ring over N
vertices.
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(a) Write the BP update rules for this model (see Section 14.2.5).

(b) Express the update rules in terms of the log-likelihoods h
(t)
i→ ≡

1
2

log((ν
(t)
i→i+1(+1))/(ν

(t)
i→i+1(−1))), and h

(t)
←i ≡ 1

2
log((ν

(t)
i→i−1(+1))/(ν

(t)
i→i−1(−1))).

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to the
unique fixed point h←i = hi→ = 0 for all i.

(d) Assume that β = +∞ and N is even. Show that any set of log-likelihoods of the form
hi→ = (−1)ia, h←i = (−1)ib, with a, b ∈ [−1, 1], is a fixed point.

(e) Consider now the case where β = ∞ and N is odd, and show that the only fixed
point is h←i = hi→ = 0. Find an initialization of the messages such that BP does not
converge to this fixed point.

Exercise 14.13 Consider a ferromagnetic Ising model on a ring with a magnetic field.
This is defined through the distribution

µ(σ) =
1

Z
eβ

PN
i=1 σiσi+1+B

PN
i=1 σi , (14.64)

where σN+1 ≡ σ1. Notice that, with respect to the previous exercise, we have changed a
sign in the exponent.

(a, b) As in the previous exercise.

(c) Show that, for any β ∈ [0,∞), and any initialization, the BP updates converge to
the unique fixed point h←i = hi→ = h∗(β,B) for all i.

(d) Let 〈σi〉 be the expectation of spin σi with respect to the measure µ( · ), and let
〈σi〉BP be the corresponding BP estimate. Show that |〈σi〉 − 〈σi〉BP| = O(λN ) for
some λ ∈ (0, 1).

14.5 General message-passing algorithms

Both the sum–product and the max-product (or min-sum) algorithm are instances of
a more general class of message-passing algorithms. All of the algorithms in this
family share some common features, which we now highlight.

Given a factor graph, a message-passing algorithm is defined by the following in-
gredients:

1. An alphabet of messages M. This can be either continuous or discrete. The algo-

rithm operates on messages ν
(t)
i→a, ν̂

(t)
a→i ∈ M associated with the directed edges in

the factor graph.

2. Update functions Ψi→a : M|∂i\a| → M and Φa→i : M|∂a\i| → M that describe how
to update messages.

3. An initialization, i.e. a mapping from the directed edges in the factor graph to

M (this can be a random mapping). We shall denote by ν
(0)
i→a, ν̂

(0)
a→i the image of

such a mapping.

4. A decision rule, i.e. a local function from messages to a space of ‘decisions’ from
which we are interested in making a choice. Since we shall be interested mostly
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in computing marginals (or max-marginals), we shall assume the decision rule to

be given by a family of functions Ψ̂i : M|∂i| →M(X ).

Notice the characteristic feature of message-passing algorithms: messages going out
from a node are functions of messages coming into the same node through the other
edges.

Given these ingredients, a message-passing algorithm with parallel updating may

be defined as follows. Assign the values of initial messages ν
(0)
i→a, ν̂

(0)
a→i according to an

initialization rule. Then, for any t ≥ 0, update the messages through local operations
at variable/check nodes as follows:

ν
(t+1)
i→a = Ψi→a({ν̂(t)

b→i : b ∈ ∂i \ a}) , (14.65)

ν̂
(t)
a→i = Φa→i({ν(t)

j→a : j ∈ ∂a \ i}) . (14.66)

Finally, after a pre-established number of iterations t, take the decision using the rules
Ψ̂i; namely, return

ν
(t)
i (xi) = Ψ̂i({ν̂(t−1)

b→i : b ∈ ∂i})(xi) . (14.67)

Many variants are possible concerning the update schedule. For instance, in the case of
sequential updating one can pick out a directed edge uniformly at random and compute
the corresponding message. Another possibility is to generate a random permutation
of the edges and update the messages according to this permutation. We shall not
discuss these ‘details’, but the reader should be aware that they can be important in
practice: some update schemes may converge better than others.

Exercise 14.14 Recast the sum–product and min-sum algorithms in the general message-
passing framework. In particular, specify the alphabet of the messages, and the update and
decision rules.

14.6 Probabilistic analysis

In the following chapters, we shall repeatedly be concerned with the analysis of
message-passing algorithms on random graphical models. In this context, messages
become random variables, and their distribution can be characterized in the large-
system limit, as we shall now see.

14.6.1 Assumptions

Before proceeding, it is necessary to formulate a few technical assumptions under which
our approach works. The basic idea is that, in a ‘random graphical model’, distinct
nodes should be essentially independent. Specifically, we shall consider below a setting
which already includes many cases of interest; it is easy to extend our analysis to even
more general situations.
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A random graphical model is a (random) probability distribution on x =
(x1, . . . , xN ) of the form4

µ(x) ∼=
∏

a∈F

ψa(x∂a)
∏

i∈V

ψi(xi) , (14.68)

where the factor graphG = (V, F,E) (with variable nodes V , factor nodes F , and edges
E) and the various factors ψa, ψi are independent random variables. More precisely,
we assume that the factor graph is distributed according to one of the ensembles
GN (K,α) or DN (Λ, P ) (see Chapter 9).

The random factors are assumed to be distributed as follows. For any given degree
k, we are given a list of possible factors ψ(k)(x1, . . . , xk; Ĵ), indexed by a ‘label’ Ĵ ∈ J,

and a distribution P
(k)
bJ over the set of possible labels J. For each function node a ∈ F

of degree |∂a| = k, a label Ĵa is drawn with distribution P
(k)
bJ , and the function ψa( · )

is taken to be equal to ψ(k)( · ; Ĵa). Analogously, the factors ψi are drawn from a list
of possible {ψ( · ;J)}, indexed by a label J which is drawn from a distribution PJ .
The random graphical model is fully characterized by the graph ensemble, the set of

distributions P
(k)
bJ , PJ , and the lists of factors {ψ(k)( · ; Ĵ)}, {ψ( · ;J)}.

We need to make some assumptions about the message update rules. Specifically,
we assume that the variable-to-function-node update rules Ψi→a depend on i→ a only
through |∂i| and Ji, and the function-to-variable-node update rules Φa→i depend on

a→ i only through |∂a| and Ĵa. With a slight misuse of notation, we shall denote the
update functions by

Ψi→a({ν̂b→i : b ∈ ∂i \ a}) = Ψl(ν̂1, . . . , ν̂l;Ji) , (14.69)

Φa→i({νj→a : j ∈ ∂a \ i}) = Φk(ν1, . . . , νk; Ĵa) , (14.70)

where l ≡ |∂i| − 1, k ≡ |∂a| − 1, {ν̂1, . . . , ν̂l} ≡ {ν̂b→i : b ∈ ∂i \ a}, and {ν1, . . . , νk} ≡
{νj→a : j ∈ ∂a \ i}. A similar notation will be used for the decision rule Ψ̂.

Exercise 14.15 Let G = (V,E) be a uniformly random graph with M = Nα edges over
N vertices, and let λi, i ∈ V , be i.i.d. random variables uniform in [0, λ̄]. Recall that an
independent set for G is a subset of the vertices S ⊆ V such that if i, j ∈ S, then (ij) is
not an edge. Consider the following weighted measure over independent sets:

µ(S) =
1

Z
I(S is an independent set)

Y

i∈S

λi . (14.71)

4Note that the factors ψi, i ∈ V , could have been included as degree-1 function nodes, as we
did in eqn (14.13); including them explicitly yields a description of density evolution which is more
symmetric between variables and factors, and applies more directly to decoding.
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i

a

Fig. 14.8 A radius-2 directed neighbourhood Bi→a,2(F ).

(a) Write the distribution µ(S) as a graphical model with binary variables, and define the
corresponding factor graph.

(b) Describe the BP algorithm to compute its marginals.

(c) Show that this model is a random graphical model in the sense defined above.

14.6.2 Density evolution equations

Consider a random graphical model, with factor graph G = (V, F,E), and let (i, a)

be a uniformly random edge in G. Let ν
(t)
i→a be the message sent by the BP algorithm

in iteration t along edge (i, a). We assume that the initial messages ν
(0)
i→a, ν̂

(0)
a→i are

i.i.d. random variables, with distributions independent of N . A considerable amount

of information is contained in the distributions of ν
(t)
i→a and ν̂

(t)
a→i with respect to the

realization of the model. We are interested in characterizing these distributions in the
large-system limit N →∞. Our analysis will assume that both the message alphabet
M and the node label alphabet J are subsets of R

d for some fixed d, and that the
update functions Ψi→a, Φa→i are continuous with respect to the usual topology of R

d.
It is convenient to introduce the directed neighbourhood of radius t of a directed

edge i→ a, denoted by: Bi→a,t(G). This is defined as the subgraph of G that includes
all of the variable nodes which can be reached from i by a non-reversing path of length
at most t, whose first step is not the edge (i, a). It includes, as well, all of the function
nodes connected only to those variable nodes; see Fig. 14.8. For illustrative reasons,
we shall occasionally add a ‘root edge’, such as i→ a in Fig. 14.8. Let us consider, to
be definite, the case where G is a random factor graph from the ensemble DN (Λ, P ).
In this case, Bi→a,t(F ) converges in distribution, when N → ∞, to the random tree
ensemble Tt(Λ, P ) defined in Section 9.5.1.

Exercise 14.16 Consider a random graph from the regular ensemble DN (Λ, P )
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i

a

i

a

i

a

(A) (B) (C)

Fig. 14.9 The three possible radius-1 directed neighbourhoods in a random factor graph

from the regular graph ensemble DN (2, 3).

with Λ2 = 1 and P3 = 1 (each variable node has degree 2 and each function node degree 3).
The three possible radius-1 directed neighbourhoods appearing in such factor graphs are
depicted in Fig. 14.9.

(a) Show that the probability that a given edge (i, a) has neighbourhoods as in (B) or (C)
in the figure is O(1/N).

(b) Deduce that Bi→a,1(F )
d→ T1, where T1 is distributed according to the tree model

T1(2, 3) (i.e. it is the tree in Fig. 14.9, labelled (A)).

(c) Discuss the case of a radius-t neighbourhood.

For our purposes, it is necessary to include in the description of the neighbourhood
Bi→a,t(F ) the value of the labels Ji, Ĵb for function nodes b in this neighbourhood. It is
understood that the tree model Tt(Λ, P ) includes labels as well: these have to be drawn
as i.i.d. random variables independent of the tree and with the same distribution as
in the original graphical model.

Now consider the message ν
(t)
i→a. This is a function of the factor graph G, of the

labels {Jj}, {Ĵb}, and of the initial condition {ν(0)
j→b}. However, a moment of thought

shows that its dependence on G and on the labels occurs only through the radius-(t+1)
directed neighbourhood Bi→a,t+1(F ). Its dependence on the initial condition is only

through the messages ν
(0)
j→b for j, b ∈ Bi→a,t(F ).

In view of the above discussion, let us pretend for a moment that the neighbourhood
of (i, a) is a random tree Tt+1 with distribution Tt+1(Λ, P ). We define ν(t) to be the
message passed through the root edge of such a random neighbourhood after tmessage-
passing iterations. Since Bi→a,t+1(F ) converges in distribution to the tree Tt+1, we

find that5 ν
(t)
i→a

d→ ν(t) as N →∞.

We have shown that, as N → ∞, the distribution of ν
(t)
i→a converges to that of a

well-defined (N -independent) random variable ν(t). The next step is to find a recursive
characterization of ν(t). Consider a random tree from the ensemble Tr(Λ, P ) and let

5The mathematically suspicious reader may wonder about the topology we are assuming for the

message space. In fact, no assumption is necessary if the distribution of labels Ji, bJa is independent
of N . If it is N -dependent but converges, then the topology must be such that the message updates
are continuous with respect to it.
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j → b be an edge directed towards the root, at a distance d from it. The directed
subtree rooted at j → b is distributed according to Tr−d(Λ, P ). Therefore the message
passed through it after r − d − 1 (or more) iterations is distributed as ν(r−d−1). The
degree of the root variable node i (including the root edge) has a distribution λl.
Each check node connected to i has a number of other neighbours (distinct from i)
which is a random variable distributed according to ρk. These facts imply the following
distributional equations for ν(t) and ν̂(t):

ν(t+1) d
= Ψl(ν̂

(t)
1 , . . . , ν̂

(t)
l ;J) , ν̂(t) d

= Φk(ν
(t)
1 , . . . , ν

(t)
k ; Ĵ) . (14.72)

Here ν̂
(t)
b , b ∈ {1, . . . , l−1}, are independent copies of ν̂(t), and ν

(t)
j , j ∈ {1, . . . , k−1},

are independent copies of ν(t). As for l and k, these are independent random integers

distributed according to λl and ρk, respectively; Ĵ is distributed as P
(k)
bJ , and J is

distributed as PJ . It is understood that the recursion is initiated with ν(0) d
= ν

(0)
i→a,

ν̂(0) d
= ν̂

(0)
a→i.

In coding theory, the equations (14.72) are referred to as density evolution;
sometimes, this term is also applied to the sequence of random variables {ν(t), ν̂(t)}.
In probabilistic combinatorics, they are also called recursive distributional equa-
tions. We have proved the following characterization of the distribution of messages.

Proposition 14.9 Consider a random graphical model satisfying the assumptions in
Section 14.6.1. Let t ≥ 0 and let (ia) be a uniformly random edge in the factor graph.

Then, as N →∞, the messages ν
(t)
i→a and ν̂

(t)
i→a converge in distribution to the random

variables ν(t) and ν̂(t), respectively, defined through the density evolution equations
(14.72).

We shall discuss several applications of the idea of density evolution in the following
chapters. Here we shall just mention that it allows one to compute the asymptotic
distribution of message-passing decisions at a uniformly random site i. Recall that the
general message-passing decision after t iterations is taken using the rule (14.67), with

Ψ̂i({ν̂b}) = Ψ̂l(ν̂1, . . . , ν̂l;Ji) (where l ≡ |∂i|). Arguing as in the previous paragraphs,

it is easy to show that in the large-N limit, ν
(t)
i

d→ ν(t), where the random variable
ν(t) is distributed according to

ν(t) d
= Ψ̂l(ν̂

(t−1)
1 , . . . , ν̂

(t−1)
l ;J) . (14.73)

As above, ν̂
(t−1)
1 , . . . , ν̂

(t−1)
l are i.i.d. copies of ν̂(t−1), J is an independent copy of the

variable-node label Ji, and l is a random integer distributed according to Λl.

14.6.3 The replica-symmetric cavity method

The replica-symmetric (RS) cavity method of statistical mechanics adopts a point of
view which is very close to the previous one, but less algorithmic. Instead of considering
the BP update rules as an iterative message-passing rule, it focuses on the fixed-point
BP equations themselves.
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The idea is to compute the partition function recursively, by adding one variable
node at a time. Equivalently, one may think of taking one variable node out of the
system and computing the change in the partition function. The name of the method
comes exactly from this image: one digs a ‘cavity’ in the system.

As an example, take the original factor graph, and delete the factor node a and
all the edges incident on it. If the graph is a tree, this procedure separates it into |∂a|
disconnected trees. Consider now the tree-graphical model described by the connected
component containing the variable j ∈ ∂a. Denote the corresponding partition func-
tion, when the variable j is fixed to the value xj , by Zj→a(xj). This partial partition
function can be computed iteratively as

Zj→a(xj) =
∏

b∈∂j\a




∑

x∂b\j

ψb(x∂b)
∏

k∈∂b\j

Zk→b(xk)



 . (14.74)

The equations obtained by letting j → b be a generic directed edge in G are called the
cavity equations, or Bethe equations.

The cavity equations are mathematically identical to the BP equations, but with
two important conceptual differences: (i) one is naturally led to think that the equa-
tions (14.74) must have a fixed point, and to give special importance to it; (ii) the
partial partition functions are unnormalized messages, and, as we shall see in Chapter
19, their normalization provides useful information. The relation between BP messages
and partial partition functions is

νj→a(xj) =
Zj→a(xj)∑
y Zj→a(y)

. (14.75)

In the cavity approach, the replica symmetry assumption consists in pretending
that, for random graphical models of the kind introduced above, and in the large-N
limit, the following conditions apply:

1. There exists a solution (or quasi-solution6) to these equations.

2. This solution provides good approximations to the marginals of the graphical
model.

3. The messages in this solution are distributed according to a density evolution
fixed point.

The last statement amounts to assuming that the normalized variable-to-factor mes-
sages νi→a (see eqn (14.75)), converge in distribution to a random variable ν that
solves the following distributional equations:

ν
d
= Ψ(ν̂1, . . . , ν̂k−1;J) , ν̂

d
= Φ(ν1, . . . , νl−1; Ĵ) . (14.76)

Here we have used the same notation as in eqn (14.72): ν̂b, b ∈ {1, . . . , l − 1}, are

independent copies of ν̂(t); ν
(t)
j , j ∈ {1, . . . , k − 1}, are independent copies of ν(t); l

6A quasi-solution is a set of messages νj→a such that the average difference between the left- and
right-hand sides of the BP equations goes to zero in the large-N limit.
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and k are independent random integers distributed according to λl and ρk respectively;
and J and Ĵ are distributed as the variable and function node labels Ji and Ĵa.

Using the distributions of ν and ν̂, the expected Bethe free entropy per variable
F/N can be computed by taking the expectation of eqn (14.27). The result is

fRS = fRS
v + nf f

RS
f − nef

RS
e , (14.77)

where nf is the average number of function nodes per variable, and ne is the average
number of edges per variable. In the ensemble DN (Λ, P ) we have nf = Λ′(1)/P ′(1)
and ne = Λ′(1); in the ensemble GN (K,α), nf = α and ne = Kα. The contributions
of the variable nodes fRS

v , function nodes fRS
f , and edges fRS

e are

fRS
v = El,J,{bν} log

[
∑

x

ψ(x;J) ν̂1(x) · · · ν̂l(x)

]
,

fRS
f = Ek, bJ,{ν} log

[
∑

x1,...,xk

ψ(k)(x1, . . . , xk; Ĵ) ν1(x1) · · · νk(xk)

]
,

fRS
e = Eν,bν log

[
∑

x

ν(x)ν̂(x)

]
. (14.78)

In these expressions, E denotes the expectation with respect to the random variables
given in subscript. For instance, ifG is distributed according to the ensemble DN (Λ, P ),
El,J,{bν} implies that l is drawn from the distribution Λ, J is drawn from PJ , and
ν̂1, . . . , ν̂l are l independent copies of the random variable ν̂.

Instead of estimating the partition function, the cavity method can be used to
compute the ground state energy. One then uses min-sum-like messages instead of
those in eqn (14.74). The method is then called the ‘energetic cavity method’; we
leave to the reader the task of writing the corresponding average ground state energy
per variable.

14.6.4 Numerical methods

Generically, the RS cavity equations (14.76), as well as the density evolution equations
(14.72), cannot be solved in closed form, and one must use numerical methods to
estimate the distribution of the random variables ν, ν̂. Here we limit ourselves to
describing a stochastic approach that has the advantage of being extremely versatile
and simple to implement. It has been used in coding theory under the name of ‘sampled
density evolution’ or the ‘Monte Carlo method’, and is known in statistical physics as
population dynamics, a name which we shall adopt in the following.

The idea is to approximate the distribution of ν (or ν̂) through a sample of (ideally)
N i.i.d. copies of ν (or ν̂, respectively). As N becomes large, the empirical distribution
of such a sample should converge to the actual distribution of ν (or ν̂). We shall call
the sample {νi} ≡ {ν1, . . . , νN} (or {ν̂i} ≡ {ν̂1, . . . , ν̂N}) a population.

The algorithm is described by the pseudocode below. As inputs, it requires the pop-
ulation size N , the maximum number of iterations T , and a specification of the ensem-
ble of (random) graphical models. The latter is a description of the (edge-perspective)
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degree distributions λ and ρ, the variable node labels PJ , and the factor node labels

P
(k)
bJ .

Population dynamics (model ensemble, size N , iterations T )

1: Initialize {ν(0)
i };

2: for t = 1, . . . , T :
3: for i = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P

(k)
bJ ;

7: Set ν̂
(t)
i = Φk(ν

(t−1)
i(1) , . . . , ν

(t−1)
i(k−1); Ĵ);

8: end;
9: for i = 1, . . . , N :
10: Draw an integer l with distribution λ;
11: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
12: Draw J with distribution PJ ;

13: Set ν
(t)
i = Ψl(ν̂

(t)
i(1), . . . , ν̂

(t)
i(l−1);J);

14: end;
15: end;

16: return {ν(T )
i } and {ν̂(T )

i }.

In step 1, the initialization is done by drawing ν
(0)
1 , . . . , ν

(0)
N independently with the

same distribution P that was used for the initialization of the BP algorithm.

It is not hard to show that, for any fixed T , the empirical distribution of {ν(T )
i }

(or {ν̂(T )
i }) converges, as N →∞, to the distribution of the density evolution random

variable ν(t) (or ν̂(t)). The limit T →∞ is trickier. Let us assume first that the density
evolution has a unique fixed point, and ν(t), ν̂(t) converge to this fixed point. We then

expect the empirical distribution of {ν(T )
i } also to converge to this fixed point if the

N → ∞ limit is taken after T → ∞. When the density evolution has more than one
fixed point, which is probably the most interesting case, the situation is more subtle.

The population {ν(T )
i } evolves according to a large but finite-dimensional Markov

chain. Therefore (under some technical conditions) the distribution of the population
is expected to converge to the unique fixed point of this Markov chain. This seems to
imply that population dynamics cannot describe the multiple fixed points of density
evolution. Luckily, the convergence of the population dynamics algorithm to its unique
fixed point appears to happen on a time scale that increases very rapidly with N . For
large N and on moderate time scales T , it converges instead to one of several ‘quasi-
fixed points’ that correspond to the fixed points of the density evolution algorithm.

In practice, one can monitor the effective convergence of the algorithm by comput-
ing, after any number of iterations t, averages of the form
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〈ϕ〉t ≡

1

N

N∑

i=1

ϕ(ν
(t)
i ) , (14.79)

for a smooth function ϕ : M(X )→ R. If these averages are well settled (up to statistical
fluctuations of order 1/

√
N), this is interpreted as a signal that the iteration has

converged to a ‘quasi-fixed point.’
The populations produced by the above algorithm can be used to to estimate

expectations with respect to the density-evolution random variables ν, ν̂. For instance,
the expression in eqn (14.79) is an estimate for E{ϕ(ν)}. When ϕ = ϕ(ν1, . . . , νl) is a
function of l i.i.d. copies of ν, the above formula is modified to

〈ϕ〉t ≡
1

R

R∑

n=1

ϕ(ν
(t)
in(1), . . . , ν

(t)
in(l)) . (14.80)

Here R is a large number (typically of the same order as N), and in(1), . . . , in(l) are
i.i.d. indices in {1, . . . , N}. Of course such estimates will be reasonable only if l≪ N .

A particularly important example is the computation of the free entropy (14.77).
Each of the terms fRS

v , fRS
f and fRS

e can be estimated as in eqn (14.80). The precision of
these estimates can be improved by repeating the computation for several iterations
and averaging the result.

Notes

The belief propagation equations have been rediscovered several times. They were de-
veloped by Pearl (1988) as an exact algorithm for probabilistic inference in acyclic
Bayesian networks. In the early 1960s, Gallager had introduced them as an itera-
tive procedure for decoding low-density-parity-check codes (Gallager, 1963). Gallager
described several message-passing procedures, among them being the sum–product
algorithm. In the field of coding theory, the basic idea of this algorithm was redis-
covered in several works in the 1990s, in particular by Berrou and Glavieux (1996).
In the physics context, the history is even longer. In 1935, Bethe used a free-energy
functional written in terms of pseudo-marginals to approximate the partition function
of the ferromagnetic Ising model (Bethe, 1935). Bethe’s equations were of the simple
form discussed in Exercise 14.10, because of the homogeneity (translation invariance)
of the underlying model. Their generalization to inhomogeneous systems, which has
a natural algorithmic interpretation, waited until the application of Bethe’s method
to spin glasses (Thouless et al., 1977; Klein et al., 1979; Katsura et al., 1979; Morita,
1979; Nakanishi, 1981).

The review paper by Kschischang et al. (2001) gives a general overview of belief
propagation in the framework of factor graphs. The role of the distributive property,
mentioned in Exercise 14.8, was emphasized by Aji and McEliece (2000). On tree
graphs, belief propagation can be regarded as an instance of the junction–tree algo-
rithm (Lauritzen, 1996). This algorithm constructs a tree from the graphical model
under study by grouping some of its variables. Belief propagation is then applied to
this tree.
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Although implicit in these earlier works, the equivalence between BP, the Bethe
approximation, and the sum–product algorithm was only recognized in the 1990s. The
turbodecoding and the sum–product algorithms were shown to be instances of BP
by McEliece et al. (1998). A variational derivation of the turbo decoding algorithm
was proposed by Montanari and Sourlas (2000). The equivalence between BP and the
Bethe approximation was first put forward by Kabashima and Saad (1998) and, in a
more general setting, by Yedidia et al. (2001) and Yedidia et al. (2005).

The last of these papers proved, in particular, the variational formulation in Propo-
sition 14.8. This suggests that one should look for fixed points of BP by seeking sta-
tionary points of the Bethe free entropy directly, without iterating the BP equations.
An efficient such procedure, based on the observation that the Bethe free entropy can
be written as a difference between a convex and a concave function, was proposed by
Yuille (2002). An alternative approach consists in constructing convex surrogates of
the Bethe free energy (Wainwright et al., 2005 a,b) which allow one to define provably
convergent message-passing procedures.

The Bethe approximation can also be regarded as the first step in a hierarchy
of variational methods describing larger and larger clusters of variables exactly. This
point of view was first developed by Kikuchi (1951), leading to the ‘cluster varia-
tional method’ in physics. The algorithmic version of this approach is referred to as
‘generalized BP’, and is described in detail by Yedidia et al. (2005).

The analysis of iterative message-passing algorithms on random graphical models
dates back to Gallager (1963). These ideas were developed into a systematic method,
thanks also to efficient numerical techniques, by Richardson and Urbanke (2001 b),
who coined the name ‘density evolution’. The point of view taken in this book, however,
is closer to that of ‘local weak convergence’ (Aldous and Steele, 2003).

In physics, the replica-symmetric cavity method for sparse random graphical mod-
els was first discussed by Mézard and Parisi (1987). The use of population dynamics
first appeared in Abou-Chacra et al. (1973) and was developed further for spin glasses
by Mézard and Parisi (2001), but that paper deals mainly with RSB effects, which
will be the subject of Chapter 19.
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DECODING WITH BELIEF PROPAGATION

As we have seen in Section 6.1, symbol MAP decoding of error correcting codes
can be regarded as a statistical inference problem. If p(x|y) denotes the con-
ditional distribution of the channel input x, given the output y, one aims at
computing its single bit marginals p(xi|y). It is a very natural idea to accom-
plish this task using belief propagation (BP).

However, it is not hard to realize that an error correcting code cannot achieve
good performances unless the associated factor graph has loops. As a conse-
quence, belief propagation has to be regarded only as an approximate inference
algorithm in this context. A major concern of the theory is to establish conditions
for its optimality, and, more generally, the relation between message passing and
optimal (exact symbol MAP) decoding.

In this Chapter we discuss belief propagation decoding of the LDPC ensem-
bles introduced in Chapter 11. The message passing approach can be generalized
to several other applications within information and communications theory:
other code ensembles, source coding, channels with memory, etc. . . . Here we
shall keep to the ‘canonical’ example of channel coding as most of the theory has
been developed in this context.

BP decoding is defined in Section 15.1. One of the main tools in the analysis
is the ‘density evolution’ method that we discuss in Section 15.2. This allows
to determine the threshold for reliable communication under BP decoding, and
to optimize accordingly the code ensemble. The whole process is considerably
simpler for the erasure channel, which is treated in Section 15.3. Finally, Section
15.4 explains the relation between optimal (MAP) decoding and BP decoding in
the large block-length limit: the two approaches can be considered in the same
unified framework of the Bethe free energy.

15.1 BP decoding: the algorithm
{sec:DefinitionBPDecoding}

In this chapter, we shall consider communication over a binary input output
symmetric memoryless channel (BMS). This is a channel in which the
transmitted codeword is binary, x ∈ {0, 1}N , and the output y is a sequence of

N letters yi from an alphabet51 Y ⊂ R. The probability of receiving letter y
when bit x is sent, Q(y|x), enjoys the symmetry property Q(y|0) = Q(−y|1).

Let us suppose that a LDPC error correcting code is used in this communica-
tion. The conditional probability for the channel input being x ∈ {0, 1}N given
the output y is

51The case of a general output alphabet Y reduces in fact to this one.

325
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p(x|y) =
1

Z(y)

N∏

i=1

Q(yi|xi)

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) , (15.1)

The factor graph associated with this distribution is the same as for the code
membership function, cf. Fig. 9.6 in Chapter 9. An edge joins a variable node
i to a check node a whenever the variable xi appears in the a-th parity check
equation.

Messages νi→a(xi), ν̂a→i(xi), are exchanged along the edges. We shall assume
a parallel updating of BP messages, as introduced in Section 14.2:

ν
(t+1)
i→a (xi) ∼= Q(yi|xi)

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (15.2)

ν̂
(t)
a→i(xi) ∼=

∑

{xj}

I(xi ⊕ xj1 ⊕ · · · ⊕ xjk−1
= 0)

∏

j∈∂a\i

ν
(t)
j→a(xj) , (15.3)

where we used the notation ∂a ≡ {i, j1, . . . , jk−1}, and the symbol ∼= denotes as
usual ‘equality up to a normalization constant’. We expect that the asymptotic
performances (for instance, the asymptotic bit error rate) of such BP decoding
should be not sensitive to the precise update schedule. On the other hand, this
schedule can have an important influence on the speed of convergence, and on
performances at moderate N . Here we shall not address these issues.

The BP estimate for the marginal distribution at node i at time t, also called
‘belief’ or ’soft decision’, is

µ
(t)
i (xi) ∼= Q(yi|xi)

∏

b∈∂i

ν̂
(t−1)
b→i (xi) . (15.4)

Based on this estimate, the optimal BP decision for bit i at time t (sometimes
called ‘hard decision’) is

x̂
(t)
i = arg max

xi

µ
(t)
i (xi) . (15.5)

In order to completely specify the algorithm, one should address two more issues:
(1) How are the messages initialized, and (2) After how many iterations t, does
one make the hard decision (15.5).

In practice, one usually initializes the messages to ν
(0)
i→a(0) = ν

(0)
i→a(1) = 1/2.

One alternative choice, that is sometimes useful for theoretical reasons, is to take

the messages ν
(0)
i→a( · ) as independent random variables, for instance by choosing

ν
(0)
i→a(0) uniformly on [0, 1].

As for the number of iterations, one would like to have a stopping criterion.
In practice, a convenient criterion is to check whether x̂(t) is a codeword, and to
stop if this is the case. If this condition is not fulfilled, the algorithm is stopped
after a fixed number of iterations tmax. On the other hand, for analysis purposes,
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j

b

i

a

ub→jhi→a

Fig. 15.1. Factor graph of a (2,3) regular LDPC code, and notation for the
belief propagation messages.{fig:FactorMess}

we shall rather fix tmax and assume that belief propagation is run always for tmax

iterations, regardless whether a valid codeword is reached at an earlier stage.
Since the messages are distributions over binary valued variables, we describe

them as in (??) by the log-likelihoods:

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)
. (15.6)

We further introduce the a-priori log-likelihood for bit i, given the received mes-
sage yi:

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

. (15.7)

For instance in a BSC channel with flip probability p, one has Bi = 1
2 log 1−p

p

on variable nodes which have received yi = 0, and Bi = − 1
2 log 1−p

p on those

with yi = 1. The BP update equations (15.2), (15.3) read in this notation (see
Fig. 15.1):

h
(t+1)
i→a = Bi +

∑

b∈∂i\a

u
(t)
b→i , u

(t)
a→i = atanh

{ ∏

j∈∂a\i

tanhh
(t)
j→a

}
. (15.8)

The hard-decision decoding rule depends on the over-all BP log-likelihood

h
(t+1)
i = Bi +

∑

b∈∂i\a

u
(t)
b→i , (15.9)

and is given by (using for definiteness a fair coin outcome in case of a tie):

x̂
(t)
i (y) =





0 if h
(t)
i > 0,

1 if h
(t)
i < 0,

0 or 1 with probability 1/2 if h
(t)
i = 0.

(15.10)

15.2 Analysis: density evolution
{sec:DensityEvolutionDecoding

In this section we consider BP decoding of random codes from the LDPCN (Λ, P )
ensemble in the large block-length limit. The code ensemble is specified by the
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degree distributions of variable nodes Λ = {Λl} and of check nodes, P = {Pk}.
We assume for simplicity that messages are initialized to u

(0)
a→i = 0.

Because of the symmetry of the channel, under the above hypotheses, the
bit (or block) error probability is independent of the transmitted codeword. The
explicit derivation of this fact is outlined in Exercise 15.1 below. This is also
true for any other meaningful performance measures. We shall use this freedom
to assume that the all-zero codeword has been transmitted. We shall first write
the density evolution recursion as a special case of the one written in Section
??. It turns out that this recursion can be analyzed in quite some detail, and in
particular one can show that the decoding performance improves as t increases.
The analysis hinges on two important properties of BP decoding and density
evolution, related to the notions of ‘symmetry’ and ‘physical degradation’.

{ex:cw_indep}
Exercise 15.1 Independence of the transmitted codeword. Assume the code-

word x has been transmitted and let Bi(x), u
(t)
a→i(x), h

(t)
i→a(x) be the corre-

sponding channel log-likelihoods and messages. These are regarded as random
variables (because of the randomness in the channel realization). Let further-
more σi = σi(x) = +1 if xi = 0, and = −1 otherwise.

(a) Prove that the distribution of σiBi is independent of x.

(b) Use the equations (15.8) to prove by induction over t that the (joint)

distribution of {σih
(t)
i→a, σiu

(t)
a→i} is independent of x.

(c) Use Eq. (15.9) to show that the distribution of {σiH
(t)
i } is independent

of x for any t ≥ 0. Finally, prove that the distribution of the ‘error vector’
z(t) ≡ x ⊕ x̂(t)(y) is independent of x as well. Write the bit and block

error rate in terms of the distribution of z(t).

15.2.1 Density evolution equations

Let us consider the distribution of messages after a fixed number t of iterations.
As we saw in Section ??, in the large N limit, the directed neighborhood of any
given edge is with high probability a tree. This implies the following recursive
distributional characterization for h(t) and u(t):

h(t+1) d
= B +

l−1∑

b=1

u
(t)
b , u(t) d

= atanh
{ k−1∏

j=1

tanhh
(t)
j

}
. (15.11)

Here u
(t)
b , b ∈ {1, . . . , l−1} are independent copies of u(t), h

(t)
j , j ∈ {1, . . . , k−1}

are independent copies of h(t), l and k are independent random integers dis-

tributed, respectively, according to λl and ρk. Finally, B = 1
2 log Q(y|0)

Q(y|1) where y

is independently distributed according to Q(y|0). The recursion is initiated with
u(0) = 0.

Let us finally consider the BP log-likelihood at site i. The same arguments

as above imply h
(t)
i

d→ h
(t)
∗ , where the distribution of h

(t)
∗ is defined by
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h
(t+1)
∗

d
= B +

l∑

b=1

u
(t)
b , (15.12)

with l a random integer distributed according to Λl. In particular, if we let P
(N,t)
b

be the expected (over a LDPCN (Λ, P ) ensemble) bit error rate for the decoding
rule (15.10), then:

lim
N→∞

P
(N,t)
b = P

{
h

(t)
∗ < 0

}
+

1

2
P
{
h

(t)
∗ = 0

}
. (15.13)

The suspicious reader will notice that this statement is non-trivial, because
f(x) = I(x < 0) + 1

2 I(x = 0) is not a continuous function. We shall prove it

below using the symmetry property of the distribution of h
(t)
i ,which allows to

write the bit error rate as the expectation of a continuous function (cf. Exercise
15.2).

15.2.2 Basic properties: 1. Symmetry
{sec:Symmetry}

A real random variable Z (or, equivalently, its distribution) is said to be sym-
metric if

E {f(−Z)} = E
{
e−2Zf(Z)

}
. (15.14)

for any function f such that one of the expectations exists. If Z has a density
p(z), then the above condition is equivalent to p(−z) = e−2zp(z).

Symmetric variables appear quite naturally in the description of BMS chan-
nels: {propo:channel_sym}

Proposition 15.1 Consider a BMS channel with transition probability Q(y|x).
Let Y be the channel output conditional to input 0 (this is a random variable with

distribution Q(y|0)), and let B ≡ 1
2 log Q(Y |0)

Q(Y |1) . Then B is a symmetric random

variable.
Conversely, if Z is a symmetric random variable, there exists a BMS channel

whose log-likelihood ratio, conditioned on the input being 0 is distributed as Z.

Proof: To avoid technicalities, we prove this claim when the output alphabet Y
is a discrete subset of R. Then, using channel symmetry in the form Q(y|0) =
Q(−y|1), we get

E {f(−B)} =
∑

y

Q(y|0) f
(

1

2
log

Q(y|1)
Q(y|0)

)
=
∑

y

Q(y|1) f
(

1

2
log

Q(y|0)
Q(y|1)

)
=

=
∑

y

Q(y|0) Q(y|1)
Q(y|0) f

(
1

2
log

Q(y|0)
Q(y|1)

)
= E

{
e−2Bf(B)

}
. (15.15)

We now prove the converse. Let Z be a symmetric random variable. We
build a channel with output alphabet R as follows: Under input 0, the output is
distributed as Z, and under input 1, it is distributed as −Z. In terms of densities
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Q(z|0) = p(z) , Q(z|1) = p(−z) . (15.16)

This is a BMS channel with the desired property. Of course this construction is
not unique. �

Example 15.2 Consider the binary erasure channel BEC(ǫ). If the channel
input is 0, then Y can take two values, either 0 (with probability 1 − ǫ) or ∗
(probability ǫ). The distribution of B, PB = (1− ǫ) δ∞+ ǫ δ0 , is symmetric. In
particular, this is true for the two extreme cases: ǫ = 0 (a noiseless channel)
and ǫ = 1 (a completely noisy channel: PB = δ0).

Example 15.3 Consider a binary symmetric channel BSC(p). The log-
likelihood B can take two values, either b0 = 1

2 log 1−p
p (input 0 and output 0)

or −b0 (input 0 and output 1). Its distribution, PB = (1 − p) δb0 + p δ−b0 is
symmetric.

Example 15.4 Finally consider the binary white noise additive Gaussian
channel BAWGN(σ2). If the channel input is 0, the output Y has probabil-
ity density

q(y) =
1√

2πσ2
exp

{
− (y − 1)2

2σ2

}
, (15.17)

i.e. it is a Gaussian of mean 1 and variance σ2. The output density upon
input 1 is determined by the channel symmetry (i.e. a Gaussian of mean −1
and variance σ2). The log-likelihood under output y is easily checked to be
b = y/σ2. Therefore B also has a symmetric Gaussian density, namely:

p(b) =

√
σ2

2π
exp

{
−σ

2

2

(
b− 1

σ2

)2
}
. (15.18)

The variables appearing in density evolution are symmetric as well. The ar-
gument is based on the symmetry of the channel log-likelihood, and the fact that
symmetry is preserved by the operations in BP evolution: If Z1 and Z2 are two in-
dependent symmetric random variables (not necessarily identically distributed),
it is straightforward to show that Z = Z1 +Z2, and Z ′ = atanh[tanhZ1 tanhZ2]⋆
are both symmetric.

Consider now communication of the all-zero codeword over a BMS channel
using a LDPC code, but let us first assume that the factor graph associated
with the code is a tree. We apply BP decoding with a symmetric random initial

condition like e.g. u
(0)
a→i = 0. The messages passed during the decoding procedure

can be regarded as random variables, because of the random received symbols
yi (which yield random log-likelihoods Bi). Furthermore, messages incoming at



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

ANALYSIS: DENSITY EVOLUTION 331

a given node are independent since they are functions of Bi’s (and of initial
conditions) on disjoint subtrees. From the above remarks, and looking at the BP

equations (15.8) it follows that the messages u
(t)
a→i, and h

(t)
i→a, as well as the overall

log-likelihoods h
(t)
i are symmetric random variables at all t ≥ 0. Therefore:

{propo:SymmetryBP}
Proposition 15.5 Consider BP decoding of an LDPC code under the above

assumptions. If Bi→a,t+1(F ) is a tree, then h
(t)
i→a is a symmetric random variable.

Analogously, if Bi,t+1(F ) is a tree, then H
(t)
i is a symmetric random variable.

{propo:SymmetryDE}

Proposition 15.6 The density evolution random variables {h(t), u(t),H
(t)
∗ } are

symmetric.

{ex:SymmetryBER}
Exercise 15.2 Using Proposition 15.5, and the fact that, for any finite t
Bi→a,t+1(F ) is a tree with high probability as N →∞, show that

lim
N→∞

P
(N,t)
b = lim

N→∞
E

{
1

N

N∑

i=1

f(h
(t)
i )

}
, (15.19)

where f(x) = 1/2 for x ≤ 0 and f(x) = e−2x/2 otherwise.

The symmetry property is a generalization of the Nishimori condition that we
encountered in spin glasses. As can be recognized from Eq. (12.7) this condition
is satisfied if and only if for each coupling constant J , βJ is a symmetric random
variable. While in spin glasses symmetry occurs only at very special values of
the temperature, it is a natural property in the decoding problem. Further it
does not hold uniquely for the BP log-likelihood, but also for the actual (MAP)
log-likelihood of a bit, as shown in the exercise below.
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{ex:MAPSymmetric}
Exercise 15.3 Consider the actual (MAP) log-likelihood for bit i (as opposed
to its BP approximation). This is defined as

hi =
1

2
log

P{xi = 0|y}
P{xi = 1|y} . (15.20)

If we condition on the all-zero codeword being transmitted, then the random
variable hi is symmetric. This can be shown as follows.

(a) Show that hi = 1
2 log Q(yi|0)

Q(yi|1)
+ gi where gi depends on

y1, . . . , yi−1, yi+1, . . . , yN , but not on yi. Suppose that a codeword
z 6= 0 has been transmitted, and let hi(z) be the corresponding log-

likelihood for bit xi. Show that hi(z)
d
= hi if zi = 0, and hi(z)

d
= −hi if

zi = 1.

(b) Consider the following process. A bit zi is chosen uniformly at random.
Then a codeword z is chosen uniformly at random conditioned on the
value of zi, and transmitted through a BMS channel, yielding an output
y. Finally, the log-likelihood hi(z) is computed. Hiding the intermediate
steps in a black box, this can be seen as a communication channel: zi →
hi(z). Show this is a BMS channel.

(c) Show that hi is a symmetric random variable.

15.2.3 Basic properties: 2. Physical degradation

It turns out that BP decoding gets better when the number of iterations t in-
creases (although it does not necessarily converge to the correct values). This is
an extremely useful result, which does not hold when BP is applied to a general
inference problems. A precise formulation of this statement is provided by the
notion of physical degradation. This notion is first defined in terms of BMS chan-
nels, and then extended to symmetric random variables. This allows to apply it
to the random variables encountered in BP decoding and density evolution.

Let us start with the case of BMS channels. Consider two such channels,
denoted as BMS(1) and BMS(2), denote by {Q1(y|x)}, {Q2(y|x)} their transition
matrices and by Y1, Y2 the corresponding output alphabets. We say that BMS(2)
is physically degraded with respect to BMS(1) if there exists a third channel
C with input alphabet Y1 and output Y2 such that BMS(2) can be regarded as
the concatenation of BMS(1) and C. By this we mean that passing a bit through
BMS(1) and then feeding the output to C is statistically equivalent to passing
the bit through BMS(2). If the transition matrix of C is {R(y2|y1)}, this can be
written in formulae as

Q2(y2|x) =
∑

y1∈Y1

R(y2|y1)Q1(y1|x) , (15.21)

where, to simplify the notation, we assumed Y1 to be discrete. A pictorial repre-
sentation of this relationship is provided by Fig. 15.2. A formal way of expressing
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BMS(2)

BMS(1) C

x y2

x y1 y2

Fig. 15.2. The channel BMS(2) (top) is said to be physically degraded with
respect to BMS(1) if it is equivalent to the concatenation of BMS(1) with a
second channel C.{fig:PhysDegr}

the same idea is that there exists a Markov chain X → Y1 → Y2.
Whenever BMS(2) is physically degraded with respect to BMS(1) we shall

write BMS(1) � BMS(2) (which is read as: BMS(1) is ‘less noisy than’ BMS(2)).
Physical degradation is a partial ordering: If BMS(1) � BMS(2) and BMS(2) � ⋆
BMS(3), then BMS(1) � BMS(3). Furthermore, if BMS(1) � BMS(2) and
BMS(2) � BMS(1), then BMS(1) = BMS(2). However, given two binary mem-
oryless symmetric channels, they are not necessarily ordered by physical degra-
dation (i.e. it can be that neither BMS(1) � BMS(2) nor BMS(2) � BMS(1)).

Here are a few examples of channel pairs ordered by physical degradation.

Example 15.7 Let ǫ1, ǫ2 ∈ [0, 1] with ǫ1 ≤ ǫ2. Then the corresponding erasure
channels are ordered by physical degradation, namely BEC(ǫ1) � BEC(ǫ2).

Consider in fact a channel C that has input and output alphabet Y =
{0, 1, ∗} (the symbol ∗ representing an erasure). On inputs 0, 1, it transmits
the input unchanged with probability 1 − x and erases it with probability x.
On input ∗ it outputs an erasure. If we concatenate this channel at the output
of BEC(ǫ1), we obtain a channel BEC(ǫ), with ǫ = 1 − (1 − x)(1 − ǫ) (the
probability that a bit is not erased is the product of the probability that it is
not erased by each of the component channels). The claim is thus proved by
taking x = (ǫ2− ǫ1)/(1− ǫ1) (without loss of generality we can assume ǫ1 < 1).

Exercise 15.4 If p1, p2 ∈ [0, 1/2] with p1 ≤ p2, then BSC(p1) � BSC(p2). This
can be proved by showing that BSC(p2) is equivalent to the concatenation of
BSC(p1) with a second binary symmetric channel BSC(x). What value of the
crossover probability x should one take?

Exercise 15.5 If σ2
1 , σ

2
2 ∈ [0,∞) with σ2

1 ≤ σ2
2 , show that BAWGN(σ2

1) �
BAWGN(σ2

2).
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If BMS(1) � BMS(2), most measures of the channel ‘reliability’ are ordered
accordingly. Let us discuss here two important such measures: (1) conditional
entropy and (2) bit error rate.

(1): Let Y1 and Y2 be the outputs of passing a uniformly random bit, respec-
tively, through channels BMS(1) and BMS(2). Then H(X|Y1) ≤ H(X|Y2) (the
uncertainty on the transmitted is larger for the ‘noisier’ channel). This follows
immediately from the fact that X → Y1 → Y2 is a Markov chain by applying the
data processing inequality, cf. Sec. ??.

(2) Assume the outputs of channels BMS(1), BMS(2) are y1 and y2. The
MAP decision rule for x knowing ya is x̂a(ya) = arg maxx P{X = x|Ya = ya},
with a = 1, 2. The corresponding bit error rate is P

(a)
b = P{x̂a(ya) 6= x}. Let

us show that P
(1)
b ≤ P

(2)
b . As BMS(1) � BMS(2), there is a channel C be the

channel such that BMS(1) concatenated with C is equivalent to BMS(2). Then

P
(2)
b can be regarded as the bit error rate for a non-MAP decision rule given y1.

The rule is: transmit y1 through C, denote by y2 the output, and then compute
x̂2(y2). This non-MAP decision rule cannot be better than the MAP rule applied
directly to y1.

Since symmetric random variables can be associated with BMS channels (see
Proposition 15.1), the notion of physical degradation of channels can be extended
to symmetric random variables. Let Z1, Z2 be two symmetric random variables
and BMS(1), BMS(2) the associated BMS channels, constructed as in the proof
of proposition 15.1. We say that Z2 is physically degraded with respect to Z1 (and
we write Z1 � Z2) if BMS(2) is physically degraded with respect to BMS(1). It
can be proved that this definition is in fact independent of the choice of BMS(1),
BMS(2) within the family of BMS channels associated to Z1, Z2.

The interesting result is that BP decoding behaves in the intuitively most
natural way with respect to physical degradation. As above, we fix a particular
LDPC code and look at BP message as random variables due to the randomness
in the received vector y.

{propo:PhysDegr}
Proposition 15.8 Consider communication over a BMS channel using an LDPC
code under the all-zero codeword assumption, and BP decoding with standard ini-

tial condition X = 0. If Bi,r(F ) is a tree, then h
(0)
i � h

(1)
i � · · · � h

(t−1)
i � h

(t)
i

for any t ≤ r− 1. Analogously, if Bi→a,r(F ) is a tree, then h
(0)
i→a � h

(1)
i→a � · · · �

h
(t−1)
i→a � h

(t)
i→a for any t ≤ r − 1.

We shall not prove this proposition in full generality here, but rather prove
its most useful consequence for our purpose, namely the fact that the bit error
rate is monotonously decreasing with t.

Proof: Under the all-zero codeword assumption, the bit error rate is P{x̂(t)
i =

1} = P{h(t)
i < 0} (for the sake of simplicity we neglect here the case h

(t)
i = 0).

Assume Bi,r(F ) to be a tree and fix t ≤ r − 1. Then we want to show that

P{h(t)
i < 0} ≤ P{h(t−1)

i < 0}. The BP log-likelihood after T iterations on the

original graph, h
(t)
i , is equal to the actual (MAP) log-likelihood for the reduced
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model defined on the tree Bi,t+1(F ). More precisely, let us call Ci,t the LDPC
code associated to the factor graph Bi,t+1(F ), and imagine the following process.
A uniformly random codeword in Ci,t is transmitted through the BMS channel
yielding output y

t
. Define the log-likelihood ratio for bit xi

ĥ
(t)
i =

1

2
log

{
P(xi = 0|y

t
)

P(xi = 1|y
t
)

}
, (15.22)

and denote the map estimate for xi and x̂i. It is not hard to show that h
(t)
i is

distributed as ĥ
(t)
i under the condition xi = 0. In particular, P{x̂i = 1|xi = 0} =

P{h(t)
i < 0}.
In the above example, instead of MAP decoding one can imagine to scratch all

the received symbols at distance t from i, and then performing MAP decoding on
the reduced information. Call x̂′i the resulting estimate. The vector of non-erased
symbols is y

t−1
. The corresponding log-likelihood is clearly the BP log-likelihood

after t−1 iterations. Therefore P{x̂′i = 1|xi = 0} = P{h(t−1)
i < 0}. By optimality

of the MAP decision rule P{x̂i 6= xi} ≤ P{x̂′i 6= xi}, which proves our claim. �

In the case of random LDPC codes Bi,r(F ) is a tree with high probability
for any fixed r, in the large block length limit. Therefore Proposition 15.8 has
an immediate consequence in the asymptotic setting.

{propo:PhysDegrDE}
Proposition 15.9 The density evolution random variables are ordered by phys-
ical degradation. Namely, h(0) � h(1) � · · · � h(t−1) � h(t) � · · · . Analogously

h
(0)
∗ � h

(1)
∗ � · · · � h

(t−1)
∗ � h

(t)
∗ � · · · . As a consequence, the asymptotic bit

error rate after a fixed number t of iterations P
(t)
b ≡ limN→∞ P

(N,t)
b is monoton-

ically decreasing with t.

Exercise 15.6 An alternative measure of the reliability of h
(t)
i is provided

by the conditional entropy. Assuming that a uniformly random codeword is

transmitted, this is given by Hi(t) = H(Xi|h(t)
i ).

(a) Prove that, if Bi,r(F ) is a tree, then Hi(t) is monotonically decreasing
with t for t ≤ r − 1.

(b) Assume that, under the all-zero codeword assumption h
(t)
i has density

pt(.). Show that Hi(t) =
∫

log(1 + e−2z) dpt(z) . (Hint: remember that
pt(.) is a symmetric distribution).

15.2.4 Numerical implementation and threshold

Density evolution is a useful tool because it can be simulated efficiently. One
can estimate numerically the distributions of the density evolution variables

{h(t), u(t)}, as well as {h(t)
∗ }. As we have seen this gives access to the prop-

erties of BP decoding in the large block-length limit, such as the bit error rate

P
(t)
b after t iterations.
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Fig. 15.3. Predicted performances of two LDPC ensembles on a BSC chan-
nel. The curves have been obtained through a numerical solution of den-
sity evolution, using population dynamics algorithm with population size
5 · 105. On the left, the (3, 6) regular ensemble. On the right, an opti-
mized irregular ensemble with the same design rate Rdes = 1/2. Its degree
distribution pair is Λ(x) = 0.4871x2 + 0.3128x3 + 0.0421x4 + 0.1580x10,
P (x) = 0.6797x7 + 0.3203x8. Dotted curves give the bit error rate obtained
after t = 1, 2, 3, 6, 11, 21, 51 iterations (from top to bottom), and bold con-
tinuous lines to the limit t → ∞. In the inset we plot the expected conditional
entropy EH(Xi|Y ). {fig:DE}

A possible approach52 consists in representing the distributions by samples
of some fixed size. This leads to the population dynamics algorithm discussed
in Section 14.6.2. In Fig. 15.3 we report the results of population dynamics
computations for two different LDPC ensembles used on a BSC channel with
crossover probability p. We consider two performance measures: the bit error

rate P
(t)
b and the conditional entropy H(t). As follows from proposition 15.9,

they are monotonically decreasing functions of the number of iterations. One

can also show that they are monotonically increasing functions of p. As P
(t)
b is

non-negative and decreasing in t, it has a finite limit PBP
b ≡ limt→∞ P

(t)
b , which

is itself non-decreasing in p (the limit curve PBP
b is estimated in Fig. 15.3 by

choosing t large enough so that P
(t)
b is independent of t within the numerical

accuracy). One defines the BP threshold as

pd ≡ sup
{
p ∈ [0, 1/2] : PBP

b (p) = 0
}
. (15.23)

Analogous definitions can be provided for other channel families such as the
erasure BEC(ǫ) or Gaussian BAWGN(σ2) channels. In general, the definition

52An alternative approach is as follows. Both maps (15.11) can be regarded as convolu-
tions of probability densities for an appropriate choice of the message variables. The first
one is immediate in terms of log-likelihoods. For the second map, one can use variables
r(t) = (signh(t), log | tanhh(t)|), s(t) = (signu(t), log | tanh y(t)|)). By using fast Fourier trans-
form to implement convolutions, this can result in a significant speedup of the calculation.
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{TableBPThresholds}
l k Rdes pd Shannon limit
3 4 1/4 0.1669(2) 0.2145018
3 5 2/5 0.1138(2) 0.1461024
3 6 1/2 0.0840(2) 0.1100279
4 6 1/3 0.1169(2) 0.1739524

Table 15.1 Belief propagation thresholds for the BSC channel, for a few regular
LDPC ensembles. The third column is the design rate 1− l/k.

(15.23) can be extended to any family of BMS channels BMS(p) indexed by a
real parameter p which orders the channels in terms of physical degradation.

Numerical simulation of density evolution allows to determine the BP thresh-
old pd with good accuracy. In Table 15.2.4 we report the results of a few such
results. Let us stress that the threshold pd has an important practical meaning.
For any p < pd one can achieve arbitrarily small bit error rate with high probabil-
ity by just picking one random code from the ensemble LDPCN (Λ, P ) with large
N and decoding it using BP with a large enough (but independent of N) number
of iterations. For p > pd the bit error rate is asymptotically lower bounded by
PBP

b (p) > 0 for any fixed number of iterations (in practice it turns out that doing
more iterations, say na, does not help). The value of pd is therefore a primary
measure of the performance of a code.

The design of good LDPC codes thus involves a choice of the degree distri-
bution pair (Λ, P ) with the largest BP threshold pd, given a certain design rate
Rdes = 1−P ′(1)/Λ′(1). For general BMS channels, this can be done numerically.
One computes the threshold noise level for a given degree distribution pair using
density evolution, and maximizes it by a local search procedure. As we shall see
in Section 15.3, the optimization can be carried out analytically for the BEC.
Figure 15.3 shows the example of an optimized irregular ensemble with rate 1/2,
including variable nodes of degrees 2, 3, 4 and 10 and check nodes of degree 7
and 8. Its threshold is pd ≈ 0.097 (while Shannon’s limit is 0.110).

Note that this ensemble has a finite fraction of variable nodes of degree 2. We
can use the analysis in Chapter 11 to compute its weight enumerator function.
It turns out that the parameter of A in Eq. (11.23) is positive. This optimized
ensemble has a large number of codewords with small weight. It is surprising,
and not very intuitive, that a code where there exist many codewords close to
the one which is sent has nevertheless a large BP threshold pd. It turns out that
this phenomenon is pretty general: the code ensembles that approach Shannon
capacity turn out to have bad distance properties, without any gap at short
distance in the weight enumerator function. The low-weight codewords are not
harmless. They degrade the code performances at moderate block-length N ,
below the threshold pd. Further they prevent the block error probability from
vanishing as N goes to infinity (in each codeword a fraction 1/N of the bits is
decoded incorrectly). This phenomenon is referred to as the error floor.
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Exercise 15.7 while the BP threshold (15.23) was defined in terms of the
bit error rate, any other ‘reasonable’ measure of error on the decoding of a
single bit would give the same result. This can be shown as follows. Let Z be a
symmetric random variable and Pb ≡ P{Z < 0}+ 1

2P{Z = 0}. Show that, for
any ∆ > 0, P{Z < ∆} ≤ (2 + e2∆)Pb.

Consider then a sequence of symmetric random variables {Z(t)}, such that

the sequence of P
(t)
b → 0 defined as before goes to 0. Show that the distribution

of Z(t) becomes a Dirac delta at plus infinity as t→∞.

15.2.5 Local stability

Beside numerical computation, it is useful to derive simple analytical bounds on
the BP threshold. One of the most interesting is provided by a local stability
analysis. It applies to any BMS channel, and the result depends on the specific
channel only through its Bhattacharya parameter B ≡∑y

√
Q(y|0)Q(y|1). This

parameter B ≤ 1, that we already encountered in Chap.11, is a measure of the
channel noise level. It preserves the ordering by physical degradation (i.e. the
Bhattacharya parameters of two channels BMS(1) � BMS(2) satisfy B(1) ≤
B(2)), as can be checked by explicit computation.⋆

The local stability condition depends on the LDPC code through the fraction

of vertices with degree 2, Λ2 = λ′(0), and the value of ρ′(1) =
P

k Pkk(k−1)P
k Pkk . It is

expressed as:
{thm:LocalStability}

Theorem 15.10 Consider communication over a binary memoryless symmet-
ric channel with Bhattacharyia parameter B, using random elements from the
ensemble LDPCN (Λ, P ) and belief propagation decoding with an arbitrary sym-

metric initial condition X (by this we mean a couple (X(0),X(1))). Let P
(t,N)
b

be the bit error rate after t iterations, and P
(t)
b = limN→∞ P

(t,N)
b .

1. If λ′(0)ρ′(1)B < 1, then there exists ξ > 0 such that, if P
(t)
b < ξ for some

ξ, then P
(t)
b → 0 as t→∞.

2. If λ′(0)ρ′(1)B > 1, then there exists ξ > 0 such that P
(t)
b > ξ for any t.

Corollary 15.11 Define the local stability threshold ploc as

ploc = inf
{
p | λ′(0)ρ′(1)B(p) > 1

}
. (15.24)

The BP threshold pd for decoding a communication over an ordered channel
family BMS(p) using random codes from the LDPCN (Λ, P ) ensemble satisfies:

pd ≤ ploc .

We shall not give the full proof of the theorem, but will explain the stability
argument that underlies it. If the minimum variable node degree is 2 or larger, the

density evolution recursions (15.11) have as a fixed point h, u
d
= Z∞, where Z∞ is
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the random variable that takes value +∞ with probability 1. The BP threshold
pd is the largest value of the channel parameter such that {h(t), u(t)} converge
to this fixed point as t→∞. It is then quite natural to ask what happens if the
density evolution recursion is initiated with some random initial condition that
is ‘close enough’ to Z∞. To this end, we consider the initial condition

X =

{
0 with probability ǫ,
+∞ with probability 1− ǫ. (15.25)

This is nothing but the log-likelihood distribution for a bit revealed through a
binary erasure channel, with erasure probability ǫ.

Let us now apply the density evolution recursions (15.11) with initial condi-

tion u(0) d
= X. At the first step we have h(1) d

= B +
∑l−1

b=1Xb, where {Xb} are
iid copies of X. Therefore h(1) = +∞ unless X1 = · · · = Xl−1 = 0, in which case

h(1) d
= B. We have therefore

With probability λl : h(1) =

{
B with prob. ǫl−1,
+∞ with prob. 1− ǫl−1.

(15.26)

where B is distributed as the channel log-likelihood. Since we are interested in
the behavior ‘close’ to the fixed point Z∞, we linearize in ǫ, thus getting

h(1) =





B with prob. λ2ǫ+O(ǫ2),
+∞ with prob. 1− λ2ǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.27)

The last line is absent here, but it will become necessary at next iterations. It
signals that h(1) could take some other value with a negligible probability.

Next consider the first iteration at check node side: u(1) = atanh{∏k−1
j=1 tanhh

(1)
j }.

At first order in ǫ, we have to consider only two cases. Either h
(1)
1 = · · · = h

(1)
k−1 =

+∞ (this happens with probability 1 − (k − 1)λ2ǫ + O(ǫ2)), or one of the log-
likelihoods is distributed like B (with probability (k−1)λ2ǫ+O(ǫ2)). Averaging
over the distribution of k, we get

u(1) =





B with prob. λ2ρ
′(1)ǫ+O(ǫ2),

+∞ with prob. 1− λ2ρ
′(1)ǫ+O(ǫ2),

· · · with prob. O(ǫ2).
(15.28)

Repeating the argument t times (and recalling that λ2 = λ′(0)), we get

h(t) =





B1 + · · ·+Bt with prob. (λ′(0)ρ′(1))tǫ+O(ǫ2),
+∞ with prob. 1− (λ′(0)ρ′(1))tǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.29)

The bit error rate vanishes if and only P(t; ǫ) = P
{
h(t) ≤ 0

}
goes to 0 as t→∞.

The above calculation shows that
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P(t; ǫ) = ǫ(λ′(0)ρ′(1))tP
{
B1 + · · ·+ Bt ≤ 0

}
+ O(ǫ2) . (15.30)

The probability of B1 + · · · + Bt ≤ 0 is computed, to leading exponential
order, using the large deviations estimates of Section 4.2. In particular

P
{
B1 + · · ·+Bt ≤ 0

} .
=

{
inf
z≥0

E [e−zB ]

}t

. (15.31)

We leave to the reader the exerciseof showing that, sinceB is a symmetric random⋆
variable, E e−zB is minimized for z = 1, thus yielding

P
{
B1 + · · ·+Bt ≤ 0

} .
= Bt . (15.32)

As a consequence, the order ǫ coefficient In Eq. (15.30) behaves, to leading
exponential order, as (λ′(0)ρ′(1)B)t. Depending whether λ′(0)ρ′(1)B < 1 or
λ′(0)ρ′(1)B > 1 density evolution converges or not to the error-free fixed point
if initiated sufficiently close to it. The full proof relies on these ideas, but it
requires to control the terms of higher order in ǫ, and other initial conditions as
well.

15.3 BP decoding of the erasure channel
{sec:ErasureCodes}

In this Section we focus on the channel BEC(ǫ). The analysis can be greatly
simplified in this case: the BP decoding algorithm has a simple interpretation,
and the density evolution equations can be studied analytically. This allows to
construct capacity achieving ensembles.

15.3.1 BP, peeling and stopping sets

We consider BP decoding, with initial condition u
(0)
a→i = 0. As can be seen from

Eq. (15.7), the channel log likelihood Bi can take three values: +∞ (if a 0 has
been received at position i), −∞ (if a 1 has been received at position i), 0 (if an
erasure occurred at position i).

It follows from the update equations (15.8) that the messages exchanged
at any subsequent time take values in {−∞, 0,+∞} as well. Consider first the

equation at check nodes. If one of the incoming messages h
(t)
j→a is 0, then u

(t)
a→i =

0 as well. If on the other hand h
(t)
j→a = ±∞ for all incoming messages, then

u
(t)
a→i = ±∞ (the sign being the product of the incoming signs). Next consider

the update equation at variable nodes. If u
(t)
b→i = 0 for all the incoming messages,

and Bi = 0 as well, then of course h
(t+1)
i→a = 0. If on the other hand some of the

incoming messages, or the received value Bi take value ±∞, then h
(t+1)
i→a takes

the same value. Notice that there can never be contradicting messages (i.e. both
+∞ and −∞) incoming at a variable node.

Exercise 15.8 Show that, if contradicting messages were sent to the same
variable node, this would imply that the transmitted message was not a code-
word.
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The meaning of the three possible messages ±∞ and 0, and of the update

equations is very clear in this case. Each time the message h
(t)
i→a, or u

(t)
a→i is

+∞ (respectively, −∞), this means that the bit xi is 0 (respectively 1) in all
codewords that coincide with the channel output on the non-erased positions:

the value of xi is perfectly known. Vice-versa, if, h
(t)
i→a = 0 (or u

(t)
a→i = 0) the bit

xi is currently considered equally likely to be 0 or 1.
The algorithm is very simple: each message changes value at most one time,

either from 0 to +∞, or from 0 to −∞.

Exercise 15.9 To show this, consider the first time, t1 at which a message

h
(t)
i→a changes from +∞ to 0. Find out what has happened at time t1 − 1.

Therefore a fixed point is reached after a number of updates smaller or equal
to the number of edges NΛ′(1). There is also a clear stopping criterion: if in one

update round no progress is made (i.e. if h
(t)
i→a = h

(t+1)
i→a for all directed edges

i→ a) then no progress will be made at successive rounds.
An alternative decoding formulation of BP decoding is the so-called peeling

algorithm. The idea is to view decoding as a linear algebra problem. The code
is defined through a linear system over Z2, of the form Hx = 0. The output of
an erasure channel fixes a fraction of the bits in the vector x (the non-erased
ones). One is left with a linear system L over the remaining erased bits (not
necessarily an homogeneous one). Decoding amounts to using this new linear
system to determine the bits erased by the channel. If an equation in L contains
a single variable xi with non vanishing coefficient, it can be used to determine xi,
and replace it everywhere. One can then repeat this operation recursively until
either all the variables have been fixed (in which case decoding is successful), or
the residual linear systems includes only equations over two or more variables
(in which case the decoder gets stuck).

Exercise 15.10 An explicit characterization of the fixed points of the peeling
algorithm can be given in terms of stopping sets (or 2-cores). A stopping
set is a subset S of variable nodes in the factor graph such that each check has
a number of neighbors in S which is either zero, or at least 2.

(a) Let S be the subset of undetermined bits when the peeling algorithm
stops. Show that S is a stopping set.

(b) Show that the union of two stopping sets is a stopping set. Deduce that,
given a subset of variable nodes U , there exists a unique ‘largest’ stopping
set contained in U that contains any other stopping set in U .

(c) Let U be the set of erased bits. Show that S is the largest stopping set
contained in U .
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Fig. 15.4. Density evolution for the (3, 6) LDPC ensemble over the era-
sure channel BEC(ǫ), for two values of ǫ below and above the BP threshold
ǫd = 0.4294.{fig:DEBEC}

Exercise 15.11 Let us prove that the peeling algorithm is indeed equivalent
to BP decoding. As in the previous exercise, we denote by S the largest stopping
set contained in the erased set U .

(a) Prove that, for any edge (i, a) with i ∈ S, u
(t)
a→i = h

(t)
a→i = 0 at all times.

(b) Vice-versa, let S′ be the set of bits that are undetermined by BP after a
fixed point is reached. Show that S′ is a stopping set.

(c) Deduce that S′ = S (use the maximality property of S).

15.3.2 Density evolution

Consider BP decoding of an LDPCN (Λ, P ) code after communication through
a binary erasure channel. Under the assumption that the all-zero codeword has
been transmitted, messages will take values in {0,+∞}, and their distribution
can be parameterized by a single real number. We let zt denote the probability
that h(t) = 0, and by ẑt the probability that u(t) = 0. The density evolution
recursions (15.11) translate into the following recursion on {zt, ẑt}:

zt+1 = ǫλ(ẑt) , ẑt = 1− ρ(1− zt) . (15.33)

We can also eliminate ẑt from this recursion to get zt+1 = Fǫ(zt), where we
defined Fǫ(z) ≡ ǫλ(1− ρ(1− z)). The bit error rate after t iterations in the large

block-length limit is P
(t)
b = ǫΛ(ẑt).

In Fig. 15.4 we show as an illustration the recursion zt+1 = Fǫ(zt) for the (3, 6)
regular ensemble. The edge perspective degree distributions are λ(z) = z2 and
ρ(z) = z5, so that Fǫ(z) = ǫ[1− (1− z)2]5. Notice that Fǫ(z) is a monotonously
increasing function with Fǫ(0) = 0 (if the minimum variable node degree is at
least 2), and Fǫ(1) = ǫ < 1. As a consequence the sequence {zt} is decreasing
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Fig. 15.5. The bit error rate under belief propagation decoding for the (3, 6)
(left) and (2, 4) (right) ensembles. The prediction of density evolution (bold lines)
is compared to numerical simulations (averaged over 10 code/channel realizations
with block-length N = 104). For the (3, 6) ensemble ǫBP ≈ 0.4294 < ǫloc = ∞,
the transition is discontinuous. For the (2, 4) ensemble ǫBP = ǫloc = 1/4, the
transition is continuous. {fig:36vs24bec}

and converges at large t to the largest fixed point of Fǫ. In particular zt → 0
(and consequently PBP

b = 0) if and only if Fǫ(z) < z for all z ∈ (0, 1]. This yields
the following explicit characterization of the BP threshold:

ǫd = inf

{
z

λ(1− ρ(1− z)) : z ∈ (0, 1]

}
. (15.34)

It is instructive to compare this characterization with the local stability
threshold that in this case reads ǫloc = 1/λ′(0)ρ′(1). It is obvious that ǫd ≤ ǫloc,
since ǫloc = limz→0 z/λ(1− ρ(1− z)).

Two cases are possible, as illustrated in Fig. 15.5: either ǫd = ǫloc or ǫd < ǫloc.
Each one corresponds to a different behavior of the bit error rate. If ǫd = ǫloc,
then, generically53, PBP

b (ǫ) is a continuous function of ǫ at ǫd with PBP
b (ǫd +δ) =

Cδ + O(δ2) just above threshold. If on the other hand ǫd < ǫloc, then PBP
b (ǫ) is

discontinuous at ǫd with PBP
b (ǫd+δ) = PBP,∗

b +Cδ1/2+O(δ) just above threshold.

Exercise 15.12 Consider communication over the binary erasure channel us-
ing random elements from the regular (k, l) ensemble, in the limit k, l → ∞,
with a fixed rate R = 1 − l/k. Prove that the BP threshold ǫd tends to 0 in
this limit.

15.3.3 Ensemble optimization

The explicit characterization (15.34) of the BP threshold for the binary erasure
channel opens the way to the optimization of the code ensemble.

53Other behaviors are possible but they are not ‘robust’ with respect to a perturbation of
the degree sequences.
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A possible setup is the following. Fix an erasure probability ǫ ∈ (0, 1): this
is the estimated noise level on the channel that we are going to use. For a given
degree sequence pair (λ, ρ), let ǫd(λ, ρ) denote the corresponding BP threshold,

and R(λ, ρ) = 1 −
P

k ρk/kP
l λl/l be the design rate. Our objective is to maximize

the rate, while keeping ǫd(λ, ρ) ≤ ǫ. Let us assume that the check node degree
distribution ρ is given. Finding the optimal variable node degree distribution can
then be recast as a (infinite dimensional) linear programming problem:





maximize
∑

l λl/l ,

subject to
∑

l λl = 1
λl ≥ 0 ∀ l ,
ǫλ(1− ρ(1− z)) ≤ z ∀ z ∈ (0, 1] .

(15.35)

Notice that the constraint ǫλ(1−ρ(1−z)) ≤ z is conflicting with the require-
ment of maximizing

∑
l λl/l, since both are increasing functions in each of the

variables λl. As usual with linear programming, one can show that the objective
function is maximized when the constraints saturate i.e. ǫλ(1− ρ(1− z)) = z for
all z ∈ (0, 1]. This ‘saturation condition’ allows to derive λ, for a given ρ.

We shall do this in the simple case where the check nodes have uniform degree

k, i.e. ρ(z) = zk−1. The saturation condition implies λ(z) = 1
ǫ [1 − (1 − z) 1

k−1 ].
By Taylor expanding this expression we get, for l ≥ 2

λl =
(−1)l

ǫ

Γ
(

1
k−1 + 1

)

Γ(l) Γ
(

1
k−1 − l + 2

) . (15.36)

In particular λ2 = 1
(k−1)ǫ , λ3 = (k−2)

2(k−1)2ǫ , and λl ≃ λ∞l
−k/(k−1) as l → ∞.

Unhappily this degree sequence does not satisfy the normalization condition in
(15.35). In fact

∑
l λl = λ(1) = 1/ǫ. This problem can however be overcome

by truncating the series and letting k → ∞, as shown in the exercise below.
The final result is that a sequence of LDPC ensembles can be found that allows
for reliable communication under BP decoding, at a rate that asymptotically
achieved the channel capacity C(ǫ) = 1− ǫ. This is stated more formally below.

Theorem 15.12 Let ǫ ∈ (0, 1). Then there exists a sequence of degree distribu-
tion pairs {(λ(k), ρ(k))}k, with ρ(k)(x) = xk−1 such that ǫd(λ(k), ρ(k)) > ǫ and
R(λ(k), ρ(k))→ 1− ǫ.

The precise construction of the sequence (λ(k), ρ(k)) is outlined in the next
exercise. In Fig. 15.6 we show the BP error probability curves for this sequence
of ensembles.
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Fig. 15.6. Belief propagation bit error rate for LDPCN (Λ, P ) ensembles from
the capacity achieving sequence (λ(k), ρ(k)) defined in the main text. The se-
quence is constructed in such a way to achieve capacity at the noise level ǫ = 0.5
(the corresponding capacity is C(ǫ) = 1 − ǫ = 0.5). The 5 ensembles consid-
ered here have design rates Rdes = 0.42253, 0.48097, 0.49594, 0.49894, 0.49976
(respectively for k = 4, 6, 8, 10, 12).{fig:CapacityAchieving}

Exercise 15.13 Let ρ(k)(z) = zk−1, λ̂(k)(z) = 1
ǫ [1− (1− z)1/(k−1)], and zL =

∑L
l=2 λ̂

(k)
l . Define L(k, ǫ) as the smallest value of L such that zL ≥ 1. Finally,

set λ
(k)
l = λ̂

(k)
l /zL(k,ǫ) if l ≤ L(k, ǫ) and λ

(k)
l = 0 otherwise.

(a) Show that ǫλ(k)(1−ρ(k)(1−z)) < z for all z ∈ (0, 1], and, as a consequence
ǫd(λ(k), ρ(k)) > ǫ. [Hint: Use the fact that the coefficients λl in Eq. (15.36)

are non-negative and hence λ(k)(x) ≤ λ̂(k)(z)/zL(k,ǫ).]

(b) Show that, for any sequence l(k), λ̂
(k)
l(k) → 0 as k → ∞. Deduce that

L(k, ǫ)→∞ and zL(k,ǫ) → 1 as k →∞.

(b) Prove that limk→∞R(λ(k), ρ(k)) = limk→∞ 1− ǫzL(k,ǫ) = 1− ǫ.

15.4 Bethe free energy and optimal decoding
{sec:OptimalVSBP}

So far we have studied the performance of LDPCN (Λ, P ) ensembles under BP
message passing decoding, in the large block-length limit. Remarkably, sharp
asymptotic predictions can be obtained for optimal decoding as well, and they
involve the same mathematical objects, namely messages distributions. We shall
focus here on symbol MAP decoding for a channel family {BMS(p)} ordered
by physical degradation. Analogously to Chapter 11, we can define a threshold
pMAP depending on the LDPC ensemble, such that MAP decoding allows to
communicate reliably at all noise levels below pMAP. We shall now compute
pMAP using the Bethe free energy.
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Let us consider the entropy density hN = (1/N) EHN (X|Y ), averaged over
the code ensemble. Intuitively speaking, this quantity allows to estimate the
typical number of inputs with non-negligible probability for a given channel
output. If hN is bounded away from 0 as N → ∞, the typical channel output
is likely to correspond to an exponential number of inputs. If on the other hand
hN → 0, the correct input has to be searched among a sub-exponential number
of candidates. A precise relation with the error probability is provided by Fano’s
inequality:

Proposition 15.13 Let PN
b the symbol error probability for communication us-

ing a code of block-length N . Then

H(PN
b ) ≥ HN (X|Y )

N
.

In particular, if the entropy density HN (X|Y )/N is bounded away from 0, so is
PN

b .

Although this gives only a bound, it suggests to identify the MAP threshold as
the largest noise level such that hN → 0 as N →∞:

pMAP ≡ sup
{
p : lim

N→∞
hN = 0

}
. (15.37)

The conditional entropy HN (X|Y ) is directly related to the free entropy of
the model defined in (15.1). More precisely we have

HN (X|Y ) = Ey log2 Z(y)−N
∑

y

Q(y|0) log2Q(y|0) , (15.38)

where Ey denotes expectation with respect to the output vector y. In order to

derive this expression, we first use the entropy chain rule to write (dropping the
subscript N)

H(X|Y ) = H(Y |X) +H(X)−H(Y ) . (15.39)

Since the input message is uniform over the code H(X) = NR. Further, since the
channel is memoryless and symmetric H(Y |X) =

∑
iH(Yi|Xi) = NH(Yi|Xi =

0) = −N∑y Q(y|0) log2Q(y|0). Finally, rewriting the distribution (15.1) as

p(x|y) =
|C|
Z(y)

p(y, x) , (15.40)

we can identify (by Bayes theorem) Z(y) = |C| p(y). The expression (15.38)
follows by putting together these contributions.
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The free-entropy Ey log2 Z(y) is the non-trivial term in Eq. (15.38). For LDPC
codes, in the large N limit, it is natural to compute it using the Bethe approxi-
mation of Section 14.2.4. Suppose u = {ua→i}, h = {hi→a} is a set of messages
which solves the BP equations

hi→a = Bi +
∑

b∈∂i\a

ub→i , ua→i = atanh




∏

j∈∂a\i

tanhhj→a



 . (15.41)

Then the corresponding Bethe free-entropy follows from Eq. (14.28):

Φ(u, h) = −
∑

(ia)∈E

log2

[
∑

xi

Pua→i
(xi)Phi→a

(xi)

]
(15.42)

+

N∑

i=1

log2

[
∑

xi

Q(yi|xi)
∏

a∈∂i

Pua→i
(xi)

]
+

M∑

a=1

log2



∑

xa

Ia(x)
∏

i∈∂a

Phi→a
(xi)


 .

where we denote by Pu(x) the distribution of a bit x whose log likelihood ratio
is u, given by: Pu(0) = 1/(1 + e−2u), Pu(1) = e−2u/(1 + e−2u).

We are interested in the expectation of this quantity with respect to the code
and channel realization, in the N → ∞ limit. We assume that messages are

asymptotically identically distributed ua→i
d
= u, hi→a

d
= u, and that messages

incoming in the same node along distinct edges are asymptotically independent.
Under these hypotheses we get:

lim
N→∞

1

N
Ey Φ(m̂, h) = φ−

∑

y

Q(y|0) log2Q(y|0) , (15.43)

where

φ = −Λ′(1) Eu,h log2

[
∑

x

Pu(x)Ph(x)

]
+ ElEyE{ul} log2

[
∑

x

Q(y|x)
Q(y, 0)

l∏

i=1

Pul
(x)

]
−

+
Λ′(1)

P ′(1)
EkE{hi} log2

[
∑

x1...xk

Ia(x)

k∏

i=1

Phi
(xi)

]
. (15.44)

Here k and l are distributed according to Pk and Λl respectively, and u1, u2, . . .
(respectively h1, h2, . . . ) are i.i.d.’s and distributed as u (respectively as h).

If the Bethe free energy is correct, φ should give the conditional entropy hN .
It turns out that this guess can be turned into a rigorous inequality:

Theorem 15.14 If u, h are symmetric random variables satisfying the distri-

butional identity u
d
= atanh

{∏k−1
i=1 tanhhi

}
, then

lim
N→∞

hN ≥ φu,h . (15.45)
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{TableMAPThresholds}
l k Rdes pd pMAP Shannon limit
3 4 1/4 0.1669(2) 0.2101(1) 0.2145018
3 5 2/5 0.1138(2) 0.1384(1) 0.1461024
3 6 1/2 0.0840(2) 0.1010(2) 0.1100279
4 6 1/3 0.1169(2) 0.1726(1) 0.1739524

Table 15.2 MAP thresholds for the BSC channel are compared to the BP de-
coding thresholds, for a few regular LDPC ensembles

It is natural to conjecture that the correct limit is obtained by optimizing
the above lower bound, i.e.

lim
N→∞

hN = sup
u,h

φu,h , (15.46)

where, once again the sup is taken over the couples of symmetric random vari-

ables u, h satisfying u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua.

This conjecture has indeed been proved in the case of communication over
the binary erasure channel for a large class of LDPC ensembles (including, for
instance, regular ones).

The above expression is interesting because it establishes a bridge between
BP and MAP decoding. For instance, it is immediate to show that it implies
pBP ≤ pMAP:

Exercise 15.14 (a) Recall that u, h = +∞ constitute a density evolution
fixed point for any noise level. Show that φh,u = 0 on such a fixed point.

(b) Use ordering by physical degradation to show that, if any other fixed
point exists, then density evolution converges to it.

(c) Deduce that pBP ≤ pMAP.

Evaluating the expression (15.46) implies an a priori infinite dimensional
optimization problem. In practice good approximations can be obtained through
the following procedure:

1. Initialize h, u to a couple of symmetric random variables h(0), u(0).

2. Implement numerically the density evolution recursion (15.11) and iterate
it until an approximate fixed point is attained.

3. Evaluate the functional φu,h on such a fixed point, after enforcing u
d
=

atanh
{∏k−1

i=1 tanhhi

}
exactly.

The above procedure can be repeated for several different initializations u(0), h(0).
The largest of the corresponding values of φu,v is then picked as an estimate for
limN→∞ hN .

While this procedure is not guaranteed to exhaust all the possible density
evolution fixed points, it allows to compute a sequence of lower bounds to the
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conditional entropy density. Further, in analogy with exactly solvable cases (such
as the binary erasure channel) one expects a small finite number of density
evolution fixed points. In particular, for regular ensembles and p > pBP, a unique
(stable) fixed point is expected to exist apart from the no-error one u, h = +∞.
In Table 15.4 we present the corresponding MAP thresholds for a few regular
ensembles.

Notes

Belief propagation was first applied to the decoding problem by Robert Gallager
in his Ph. D. thesis (Gallager, 1963), and denoted there as the ‘sum-product’
algorithm. Several low-complexity alternative message-passing approaches were
introduced in the same work, along with the basic ideas of their analysis.

The analysis of iterative decoding of irregular ensembles over the erasure
channel was pioneered by Luby and co-workers in (Luby, Mitzenmacher, Shokrol-
lahi, Spielman and Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spiel-
man, 1998; Luby, Mitzenmacher, Shokrollahi and Spielman, 2001a; Luby, Mitzen-
macher, Shokrollahi and Spielman, 2001b). These papers also presented the first
examples of capacity achieving sequences.

Density evolution for general binary memoryless symmetric channels was in-
troduced in (Richardson and Urbanke, 2001b). The whole subject is surveyed in
the review (Richardson and Urbanke, 2001a) as well as in the upcoming book
(Richardson and Urbanke, 2006). One important property we left out is ‘con-
centration:’ the error probability under message passing decoding is, for most of
the codes, close to its ensemble average, that is predicted by density evolution.

The design of capacity approaching LDPC ensembles for general BMS chan-
nels is discussed in (Chung, G. David Forney, Richardson and Urbanke, 2001;
Richardson, Shokrollahi and Urbanke, 2001).

Since message passing allows for efficient decoding, one may wonder whether
encoding (whose complexity is, a priori, O(N2)) might become the bottleneck.
Efficient encoding schemes are discussed in (Richardson and Urbanke, 2001c).

Tight bounds for the threshold under MAP decoding were first proved in
(Montanari, 2005), and subsequently generalized in (Macris, 2005). An alterna-
tive proof technique uses the so-called area theorem and the related ‘Maxwell
construction’ (Méasson, Montanari, Richardson and Urbanke, 2005b). Tightness
of these bounds for the erasure channel was proved in (Méasson, Montanari and
Urbanke, 2005a).

The analysis we describe in this Chapter is valid in the large block-length
limit N → ∞. In practical applications a large block-length translates into a
corresponding communication delay. This has motivated a number of works that
aims at estimating and optimizing LDPC codes at moderate block-lengths. Some
pointers to this large literature can be found in (Di, Proietti, Richardson, Telatar
and Urbanke, 2002; Amraoui, Montanari, Richardson and Urbanke, 2004; Am-
raoui, Montanari and Urbanke, 2007; Wang, Kulkarni and Poor, 2006; Kötter
and Vontobel, 2003; Stepanov, Chernyak, Chertkov and Vasic, 2005).
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THE ASSIGNMENT PROBLEM

Consider N ‘agents’ and N ‘jobs’, and suppose you are given the N ×N matrix
{Eij}, where Eij is the cost for having job j executed by agent i. Finding an
assignment of agents to jobs that minimizes the cost is one of the most classical
combinatorial optimization problems.

The minimum cost (also referred to as ‘maximum weight’) assignment prob-
lem is important both because of its many applications and because it can be
solved in polynomial time. This motivated a number theoretical developments,
both from the algorithms and the probability viewpoints.

Here we will study it as an application domain for message passing techniques.
The assignment problem is in fact a success story of this approach. Given a
generic instance of the assignment problem, the associated factor graph is not
locally tree like. Nevertheless, the Min-Sum algorithm can be proved to converge
to an optimal solution in polynomial time. Belief propagation (Sum-Product
algorithm) can also be used for computing weighted sums over assignments,
although much weaker guarantees exist in this case. A significant amount of
work has been devoted to the study of random instances, mostly in the case
where the costs Eij are iid random variables. Typical properties (such as the
cost of the optimal assignment) can be computed heuristically within the replica
symmetric cavity method. It turns out that these calculations can be made fully
rigorous.

In spite of this success of the replica symmetric cavity method, one must be
warned that apparently harmless modifications of the problem can spoil it. One
instance is the generalization of minimal cost assignment to multi-indices (say
matching agents with jobs and houses). Even random instances of this problem
are not described by the replica symmetric scenario. The more sophisticated
replica symmetry breaking ideas, described in the next chapters, are required.

After defining the problem in Sec. 16.1, in Sec. 16.2 we compute the asymp-
totic optimal cost for random instances using the cavity method. In order to do
this we write the Min-Sum equations. In Sec. 16.3 we prove convergence of the
Min-Sum iteration to the optimal assignment. Section 16.4 contains a combinato-
rial proof that confirm the cavity result and provides sharper estimates. In sect.
16.5 we discuss a generalization of the assignment problem to a multi-assignment
case.

16.1 Assignment and random assignment ensembles
{se:assign_def}

An instance of the assignment problem is determined by a cost matrix {Eij},
indexed by i ∈ A (the ‘agents’ set) and j ∈ B (the ‘jobs’ set), with |A| =

350
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Fig. 16.1. Left: graphical representation of a small assignment problem with 3
agents and 3 jobs. Each edge carries a cost (not shown), the problem is to find
a perfect matching, i.e. a set of 3 edges which are vertex disjoint, of minimal
cost. Right: The factor graph corresponding to the representation (16.2) of this
problem. Dashed squares are the function nodes associate with edge weights.

{fig:assignment_def}

|B| = N . We shall often identify A and B with the set {1, . . . , N} and use
indifferently the terms cost or energy in the following. An assignment is a one-
to-one mapping of agents to jobs, that is a permutation π of {1, . . . , N}. The cost

of an assignment π is E(π) =
∑N

i=1Eiπ(i). The optimization problem consists in
finding a permutation that minimizes E(π).

We shall often use a graphical description of the problem as a weighted com-
plete bipartite graph over vertices sets A and B. Each of the N2 edges (i, j)
carries a weight Eij . The problem is to find a perfect matching in this graph (a
subset M of edges such that every vertex is adjacent to exactly one edge in M),
of minimal weight (see Fig. 16.1).

In the following we shall be interested in two types of questions. The first
is to understand whether a minimum cost assignment for a given instance can
be found efficiently through a message passing strategy. The second will be to
analyze the typical properties of ensembles of random instances where the N2

costs Eij are iid random variables drawn from a distribution with density ρ(E).
One particularly convenient choice is that of exponentially distributed variables
with probability density function ρ(E) = e−E

I(E ≥ 0). Although the cavity
method allows to tackle more general distribution, assuming exponential costs
greatly simplifies the combinatorial approach.
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16.2 Message passing and its probabilistic analysis
{se:cavity_assign}

16.2.1 Statistical physics formulation and counting

Following the general statistical physics approach, it is of interest to relax the
optimization problem by introducing a finite inverse temperature β. The corre-
sponding computational problem associates a weight to each possible matching,
as follows.

Consider the complete bipartite graph over vertices sets A (agents), B (jobs).
To any edge (i, j), i ∈ A, j ∈ B, we associate a variable which is an ‘occupation
number’ nij ∈ {0, 1} encoding membership of edge (ij) in the matching: nij = 1
means that job j is done by agent i. We impose that the subset of edges (i, j)
with nij = 1 be a matching of the complete bipartite graph:

∑

j∈B

nij ≤ 1 ∀i ∈ A ,
∑

i∈A

nij ≤ 1 ∀j ∈ B . (16.1){eq:matching_constraints}

Let us denote by n = {nij : i ∈ Aj ∈ B} the matrix of occupation numbers,
and define the probability distribution

p(n) =
1

Z

∏

i∈A

I



∑

j∈B

nij ≤ 1



∏

j∈B

I

(
∑

i∈A

nij ≤ 1

)
∏

(ij)

e−βnij(Eij−2γ) .(16.2)

The support of p(n) corresponds to matchings, thanks to the ‘hard constraints’

enforcing conditions (16.1). The factor exp
(
2βγ

∑
(ij) nij

)
can be interpreted as

a ‘soft constraint’: as γ →∞, the distribution concentrates on perfect matchings
(the factor 2 is introduced here for future convenience). On the other hand,
in the limit β → ∞, the distribution (16.2) concentrates on the minimal cost
assignments. The optimization problem is thus recovered in the double limit
γ →∞ followed by β →∞.

There is a large degree of arbitrariness in the choice of which constraint should
be ‘softened’ and how. The present one makes the whole problem most similar
to the general class of graphical models that we study in this book. The factor
graph obtained from (16.2) has the following structure (see Fig.16.1). It contains
N2 variable nodes, each associated with an edge (i, j) in the complete bipartite
graph over vertices sets A, B. It also includes N2 function nodes of degree one,
one for each variable node, and 2N function nodes of degree N , associated with
the vertices in A and B. The variable node (i, j), i ∈ A, j ∈ B is connected to the
two function nodes corresponding to i and j, as well as to the one corresponding
to edge (i, j). The first two enforce the hard constraints (16.1); the third one
corresponds to the weight exp [−β(Eij − 2γ)nij ].

In the case of random instances, we will be particularly interested in the
thermodynamic limit N → ∞. In order for this limit to be non-trivial the dis-
tribution (16.2) must be dominated neither by energy nor by entropy. Consider
the case of iid costs Eij ≥ 0 with exponential density ρ(E) = e−E . One can then
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argue that low energy assignments have, with high probability, energy of order
O(1) as N → ∞. The hand-waving reason is that for a given agent i ∈ A, and
any fixed k, the k lowest costs among the ones of jobs that can be assigned to
him (namely among {Eij : j ∈ B}) are of order O(1/N). The exercise below
sketches a more formal proof. Since the entropy54 is linear in N , we need to
re-scale the costs for the two contributions to be of the same order.

To summarize, throughout our cavity analysis, we shall assume the edge cost
to be drawn according to the ‘rescaled pdf’ ρ̂(E) = 1

N exp(−E/N). This choice
ensures that the occupied edges in the best assignment have finite cost in the
large N limit.

Exercise 16.1 Assume the energies Eij to be iid exponential variables of mean
η. Consider the ‘greedy mapping’ obtained by mapping each vertex i ∈ A
to that j = π1(i) ∈ B that minimizes Eij , and call E1 =

∑
iEi,π1(i) the

corresponding energy.

(a) Show that EE1 = η.

(b) Of course π1 is not necessary injective and therefore not a valid matching.
Let C be the number of collisions (i.e. the number of vertices j ∈ B such
that there exist several i with π1(i) = j). Show that EC = N(1− 2/e) +
O(1), and that C is tightly concentrated around its expectation.

(c) Consider the following ‘fix’. Construct π1 in the greedy fashion described
above, and let π2(i) = π1(i) whenever i is the unique vertex mapped to
π1(i). For each collision vertex j ∈ B, and each i ∈ A such that π1(i) = j,
let j′ be the vertex in B such that Eij′ takes the smallest value among
the vertices still un-matched. What is the expectation of the resulting
energy E2 =

∑
iEi,π2(i)? What is the number of residual collisions?

(d) How can this construction be continued?

16.2.2 The belief propagation equations

The BP equations for this problem are a particular instantiation of the general
ones in (14.14,14.15). We will generically denote by i (respectively, j) a vertex
in the set A (respectively, in B), in the complete bipartite graph, cf. Fig. 16.1

To be definite, let us write explicitly the equation for updating messages
flowing from right to left (from vertices j ∈ B to i ∈ A) in the graph of Fig. 16.1:

νij→i(nij) ∼= ν̂j→ij(nij) e
−βnij(Eij−2γ) , (16.3)

ν̂j→ij(nij) ∼=
∑

{nkj}

I

[
nij +

∑

k∈A\i

nkj ≤ 1
] ∏

k∈A\i

νkj→j(nkj) . (16.4)

The equations for messages moving from A to B, νij→j and ν̂i→ij , are obtained
by inverting the role of the two sets.

54The total number of assignments is N ! which would imply an entropy of order N logN .
However, if we limit the choices of π(i) to those j ∈ B such that the cost Eij is comparable
with the optimal one, the entropy becomes O(N).
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Since the variables nij take values in {0, 1}, messages can be parameterized
by a single real number, as usual. In the present case it is convenient to introduce
rescaled log-likelihood ratios as follows:

xL
j→i ≡ γ +

1

β
log

{
ν̂j→ij(1)

ν̂j→ij(0)

}
, xR

i→j ≡ γ +
1

β
log

{
ν̂i→ij(1)

ν̂i→ij(0)

}
, (16.5){eq:BP_assignmentLLRDef}

Variable-to-function node messages do not enter this definition, but they are
easily expressed in terms of the quantities xL

i→j , x
R
i→j using Eq. (16.3). The BP

equations (16.3), (16.4) can be written as:

xL
j→i = − 1

β
log
{
e−βγ +

∑

k∈A\i

e−βEkj+βxR
k→j

}
,

xR
i→j = − 1

β
log
{
e−βγ +

∑

k∈B\j

e−βEik+βxL
k→i

}
.

(16.6){eq:BP_assignmentLLR}

Notice that the factor graph representation in Fig. 16.1, right frame, was help-
ful in writing down these equations. However, any reference to the factor graph
disappeared in the latter, simplified form. This can be regarded as a a mes-
sage passing procedure operating on the original complete bipartite graph, cf.
Fig. 16.1, left frame.

{ex:marginals_assign}
Exercise 16.2 [Marginals] Consider the expectation value of nij with respect
to the measure (16.2). Show that its BP estimate is tij/(1 + tij), where tij ≡
eβ(xL

j→i+xR
i→j−Eij)

The Bethe free-entropy F(ν) can be computed using the general formu-
lae (14.27), (14.28). Writing it in terms of the log-likelihood ratio messages
{xR

i→j , x
L
j→i} is straightforward but tedious. The resulting BP estimate for the

free-entropy logZ is:

F(x) = 2Nβγ −
∑

i∈A,j∈B

log
[
1 + e−β(Eij−xR

i→j−xL
j→i)

]
+

+
∑

i∈A

log


e−βγ +

∑

j

e−β(Eij−xL
j→i)


+

∑

j∈B

log

[
e−βγ +

∑

i

e−β(Eij−xR
i→j)

]
.

(16.7)eq:free_entropy_assignment}

The exercise below provides a few guidelines for this computation.
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Exercise 16.3 Consider the Bethe free-entropy (14.27) for the model (16.2).

(a) Show that it contains three types of function node terms, one type of
variable node term, and three types of mixed (edge) terms.

(b) Show that the function node term associated with the weight
e−βnij(Eij−2γ) exactly cancels with the mixed term involving this same
factor node and the variable node (i, j).

(c) Write explicitly each of the remaining terms, express it in terms of the
messages messages {xR

i→j , x
L
j→i}, and derive the result (16.7).

[Hint: The calculation can be simplified by recalling that the expression
(14.27) does not change value if each message is independently rescaled]

16.2.3 Zero temperature: The Min-Sum algorithm {sec:MinSumAssignment}
The BP equations (16.6) simplify in the double limit γ →∞ followed by β →∞
which is relevant for the minimum cost assignment problem. Assuming that
{xR

i→j , x
L
j→i} remain finite in this limit, we get:

xL
j→i = min

k∈A\i

(
Ekj − xR

k→j

)
, xR

i→j = min
k∈B\j

(
Eik − xL

k→i

)
. (16.8) {eq:BP_assignment_T0}

Alternatively, the same equations can be obtained directly as the Min-Sum up-
date rules. This derivation is outlined in the exercise below.

Exercise 16.4 Consider the Min-Sum equations (14.39), (14.40), applied to
the graphical model (16.2).

(a) Show that the message arriving on variable node (ij) from the adjacent
degree-1 factor node is equal to nij(Eij − 2γ).

(b) Write the update equations for the other messages and eliminate the
variable-to-function node messages Jij→i(nij), Jij→j(nij), in favor of the
function-to-variable ones. Show that the resulting equations for function-
to-variable messages read (cf. Fig. 16.1):

Ĵi→ij(1) =
∑

k∈B\j

Ĵk→ik(0) ,

Ĵi→ij(0) =
∑

k∈B\j

Ĵk→ik(0) + min {0;Tij}

Tij = min
l∈B\j

{
Ĵl→il(1)− Ĵl→il(0) + Eil − 2γ

}
.

(c) Define xR
i→j = Ĵi→ij(0) − Ĵi→ij(1) + γ, and analogously xL

i→j =

Ĵj→ij(0)− Ĵj→ij(1) + γ. Write the above Min-Sum equations in terms of
{xR

i→j , x
L
j→i}.

(d) Show that, in the large γ limit, the update equations for the x-messages
coincide with Eq. (16.8).
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The Bethe estimate for the ground state energy (the cost of the optimal
assignment) can be obtained by taking the γ, β → ∞ limit of the free energy
−F(x)/β, whereby F(x) is the Bethe approximation for the log-partition function
logZ, cf. Eq. (16.7). Alternatively, we can use the fact that Min-Sum estimates
the max-marginals of the graphical model (16.2). More precisely, for each pair
(i, j), i ∈ A, j ∈ B, we define

Jij(nij) ≡ nij(Eij − 2γ) + Ĵi→ij(nij) + Ĵj→ij(nij) , (16.9)

n∗ij ≡ arg min
n∈{0,1}

Jij(n) . (16.10)

The interpretation of these quantities is that e−Jij(n) is the message passing
estimate for the max-marginal nij with respect to the distribution (16.2). Let us
neglect the case of multiple optimal assignment (in particular, the probability of
such an event vanishes for the random ensembles we shall consider). Under the
assumption that message passing estimates are accurate, nij necessarily take the
value n∗ij in the optimal assignment, see Section 14.3. The resulting ground state
energy estimate is Egs =

∑
ij n
∗
ijEij .

In the limit γ →∞, Eq. (16.10) reduces to a simple ‘inclusion principle’:
an edge ij is present in the optimal assignment (i.e. n∗ij = 1) if and only if

Eij ≤ xR
i→j + xL

j→i. We invite the reader to compare this fact to the result of
Exercise 16.2.

16.2.4 Distributional fixed point and ζ(2)
{sec:AssignmentDE}

Let us now consider random instances of the assignment problem. For the sake of
simplicity we assume that the edge costs Eij are iid exponential random variables
with mean N . We want to use the general density evolution technique of Section
14.6.2, to analyze Min-Sum message passing, cf. Eqs. (16.8).

The skeptical reader might notice that the assignment problem does not fit
the general framework for density evolution, since the associated graph (the com-
plete bipartite graph) is not locally tree like. Density evolution can nevertheless
justified, through the following limiting procedure. Remove from the factor graph
all the variables (ij), i ∈ A, j ∈ B such that Eij > Emax, and the edges attached
to them. Remembering that typical edge costs are of order Θ(N), it is easy to
check that the resulting graph is a sparse factor graph and therefore density⋆
evolution applies. On the other hand, one can prove that the error made in in-
troducing a finite cutoff Emax is bounded uniformly in N by a quantity that
vanishes as Emax → ∞, which justifies the use of density evolution. In the fol-
lowing we shall take the shortcut of writing density evolution equations for finite
N without any cut-off and formally take the N →∞ limit on them.

Since the Min-Sum equations (16.8) involve minima, it is convenient to in-

troduce the distribution function AN,t(x) = P{x(t)
i→j ≥ x}, where t indicates

the iteration number, and x(t) refer to right moving messages (going from A to
B) when t is even, and to left moving messages when t is odd. Then, density
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evolution reads AN,t+1(x) = [1 − E AN,t(E − x)]N−1, where E denotes expec-
tation with respect to E (that is an exponential random variable of mean N).
Within the cavity method, one seeks fixed points of this recursion. These are the
distributions that solve

AN (x) = [1− E AN (E − x)]N−1 . (16.11) {eq:FixPointFiniteN}

We want now to take the N → ∞ limit. Assuming the fixed point AN (x) has a
(weak) limit A(x) we have

E AN (E − x) =
1

N

∫ ∞

−x

AN (y) e−(x+y)/Ndy =
1

N

∫ ∞

−x

A(y) dy + o(1/N) .(16.12)

It follows from Eq. (16.11) that the limit message distribution must satisfy the
equation

A(x) = exp

{
−
∫ ∞

−x

A(y) dy

}
. (16.13) {eq:FixPointDEMatching}

This equation has the unique solution A(x) = 1/(1 + ex) corresponding to the
density a(x) = A′(x) = 1/[4 cosh2(x)]. It can be shown that density evolution
does indeed converge to this fixed point.

Within the hypothesis of replica symmetry, cf. Sec. 14.6.3, we can use the
above fixed point distribution to compute the asymptotic ground state energy
(minimum cost). The most direct method is to use the inclusion principle: an
edge (ij) is present in the optimal assignment if and only if Eij < xR

i→j + xL
j→i.

Therefore the conditional probability for (ij) to be in the optimal assignment,
given its energy Eij = E is given by:

q(E) =

∫
I(x1 + x2 ≥ E) a(x1)a(x2) dx1dx2 =

1 + (E − 1)eE

(eE − 1)2
(16.14) {eq:rs_assignment2}

The expected cost E∗ of the optimal assignment is equal to the number of edges,
N2, times the expectation of the edge cost, times the probability that the edge
is in the optimal assignment. Asymptotically we have E∗ = N2

E{Eq(E)}:

E∗ = N2

∫ ∞

0

E N−1e−E/N q(E) dE + o(N)

= N

∫ ∞

0

E
1 + (E − 1)eE

(eE − 1)2
dE + o(N) = Nζ(2) + o(N) ,

where

ζ(2) ≡
∞∑

n=1

1

n2
=
π2

6
≈ 1.64493406684823 . (16.15)

Recall that this result holds when the edge weights are exponential random
variables of mean N . If we reconsider the case of exponential random variables
of mean 1, we get E∗ = ζ(2) + o(1).
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The reader can verify that the above derivation does not depend on the
full distribution of the edges costs, but only on its behavior near E = 0. More
precisely, for any edge costs distribution with a density ρ(E) such that ρ(0) = 1,
the cost of the optimal assignment converges to ζ(2).

Exercise 16.5 Suppose that the pdf of the costs ρ(E) has support R+, and
that ρ(E) ≃ Er, for some r > 0, when E ↓ 0.

(a) Show that, in order to have an optimal weight of order N , the edge costs

must be rescaled by letting Eij = Nr/r+1Ẽij where Ẽij have density ρ
(i.e. typical costs must be of order Nr/r+1).

(b) Show that, within the replica symmetric cavity method, the asymptotic
(N →∞) message distribution satisfies the following distributional equa-
tion

A(x) = exp

{
−
∫ ∞

−x

(x+ y)r A(y) dy

}
(16.16){eq:Gdef_rqcq}

(c) Assume that the solution A(x) to Eq. (16.16) is unique and that replica
symmetry holds. Show that the expected ground state energy (in the
problem with rescaled edge costs) is E∗ = Nǫr + o(N), where ǫr ≡∫

A(x) log 1
A(x) dx. As a consequence the optimal cost in the initial prob-

lem is Nr/(r+1)er(1 + o(1)).

(d) Equation (16.16) can be solved numerically with the population dynamics
algorithm of Section 14.6.3. Write the corresponding program and show
that the costs of the optimal matching for r = 1, 2 are: e1 ≈ 0.8086,
e2 ≈ 0.6382.

16.2.5 Non-zero temperature and stability analysis
sec:TemperatureStabilityMatching}

The reader may wonder whether the heuristic discussion of the previous sections
can be justified. While a rigorous justification would lead us too far, we want to
discuss, still at a heuristic level, the consistency of the approach. In particular
we want to argue that BP provides good approximations to the marginals of
the distribution (16.2), and that density evolution can be used to analyze its
behavior on random instances.

Intuitively, two conditions should be verified for the approach to be valid:
(i) The underlying factor graph should be locally tree-like; (ii) The correlation
between two variables nij , nkl should decay rapidly with the distance between
edges (ij) and (kl) on such a graph.

At first sight it looks that condition (i) is far from holding, since our fac-
tor graph is constructed from a complete bipartite graph. As mentioned in the
previous Section, the locally tree like structure emerges if one notices that only
edges with cost of order 1 are relevant (as above we are assuming that edge
costs have been rescaled or, equivalently, drawn with probability density func-
tion ρ̂(E) = N−1 exp(−E/N)). In order to further investigate this point, we
modify the model (16.2) by pruning from the original graph all edges with cost
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Fig. 16.2. Left frame: Estimate of the probability distribution of the messages
xi→j obtained by population dynamics. Here we consider the modified ensemble
in which costly edges (with Eij > 2γ) have been removed. The three curves,
from top to bottom, correspond to: (β = 1, γ = 5), (β = 1, γ = 60),and
(β = 10, γ = 60). The last curve is indistinguishable from the analytical re-
sult for (β = ∞, γ = ∞): a(x) = 1/[4 cosh2(x/2)], also shown. The curves with
larger γ are indistinguishable from the curve γ = 60 on this scale. The algorithm
uses a population of size 105, and the whole population is updated 100 times.
Right: Free energy versus temperature T = 1/β, computed using Eq. (16.18).
The messages distribution was obtained as above with γ = 40. {fig:assign_pdex}

larger than 2γ. In the large β limit this modification will become irrelevant since
the Boltzmann weight (16.2) ensures that these ‘costly’ edges of the original
problem are not occupied. In the modified problem, the degree of any vertex in
the graph converges (as N → ∞) to a Poisson random variable with mean 2γ.
The costs of ‘surviving’ edges converge to iid uniform random variables in the
interval [0, 2γ].

For fixed β and γ, the asymptotic message distribution can be computed from
the RS cavity method. The corresponding fixed point equation reads

x
d
= − 1

β
log

[
e−βγ +

k∑

r=1

e−β(Er−xr)

]
, (16.17) {eq:rsd_assign}

where k is a Poisson random variable with mean 2γ, Er are iid uniformly dis-
tributed on [0, 2γ], and xr are iid with the same distribution as x. The fixed point
distribution can be estimated easily using the population dynamics algorithm of
Sec. 14.6.3. Results are shown in Fig. 16.2. For large β, γ the density estimated
by this algorithm converges rapidly to the analytical result for β = γ = ∞,
namely a(x) = 1/[4 cosh2(x/2)].

The messages distribution can be used to compute the expected Bethe free-
entropy. Assuming that the messages entering in Eq. (16.7) are independent, we
get E F(x) = −Nβf(β, γ) + o(N) where
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Fig. 16.3. Part of the factor graph used to compute the correlation between xr
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{fig:assignment_stab}

f(β, γ) = −2γ− 2

β
E log


e−βγ +

k∑

j=1

e−β(Ej−xj)


+

2γ

β
E log

[
1 + e−β(E1−x1−x2)

]

(16.18) {eq:rs_free_energy_assignment

Having a locally tree-like structure is only a necessary condition for BP to
provide good approximations of the marginals. An additional condition is that
correlations of distinct variables nij , nkl decay rapidly enough with the distance
between nodes (ij), (kl) in the factor graph. Let us discuss here one particular
measure of these correlations, namely the spin glass susceptibility defined in
Sec. 12.3.2. In the present case it can be written as

χSG ≡
1

N

∑

e,f

(〈nenf 〉 − 〈ne〉〈nf 〉)2 , (16.19)

where the sum runs over all pairs of variable nodes e = (i, j), f = (k, l) in the
factor graph (equivalently, over all pairs of edges in the original bipartite graph
with vertex sets A, B).

If correlations decay fast enough χSG should remain bounded as N →∞. The
intuitive explanation goes as follows: From the fluctuation dissipation relation
of Sec. 2.3, 〈nenf 〉 − 〈ne〉〈nf 〉 is proportional to the change in 〈nf 〉 when the
cost of edge e is perturbed. The sign of such a change will depend upon f , and
therefore the resulting change in the expected matching size

∑
f 〈nf 〉 (namely∑

f (〈nenf 〉 − 〈ne〉〈nf 〉)) can be either positive or negative. Assuming that this
sum obeys a central limit theorem, its typical size is given by the square root of∑

f (〈nenf 〉 − 〈ne〉〈nf 〉)2. Averaging over the perturbed edge, we see that χSG

measures the decay of correlations.
We shall thus estimate χSG using the same RS cavity assumption that we

used in our computation of the expectations 〈ne〉. If the resulting χSG is infinite,
such an assumption is falsified. In the opposite case, although nothing definite
can be said, the assumption is said ‘consistent’, and the RS-solution is called
‘locally stable’ (since it is stable to small perturbations).
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In order for the susceptibility to be finite, only couples of variable nodes
(e, f) whose distance r in the factor graph is bounded should give a significant
contribution to the susceptibility. We can then compute

χ
(r)
SG ≡

1

N

∑

e,f : d(e,f)=r

(〈nenf 〉 − 〈ne〉〈nf 〉)2 (16.20)

for fixed r in the N →∞ limit, and then sum the result over r. For any given r
and large N , there is (with high probability) a unique path of length r joining e
to f , all the others being of length Θ(logN). Denote by (j1, j2, . . . , jr) variable
nodes, and by (a2, . . . , ar) the function nodes on this path (with e = j1, f = jr),
see Fig. 16.2.5.

Consider a fixed point of BP and denote by xn the (log-likelihood) message
passed from an to jn. The BP fixed point equations (16.6) allow to compute xr

as a function of the message x1 arriving on j1, and of all the messages incoming
on the path {a2, . . . , ar} from edges outside this path, call them {yn,p}:

x2 = − 1

β
log
{
e−βγ + e−β(E1−x1) +

k2∑

p=1

e−β(E2,p−y2,p)
}
,

. . . . . . . . .

. . . . . . . . .

xr = − 1

β
log
{
e−βγ + e−β(Er−xr) +

kr∑

p=1

e−β(Er,p−yr,p)
}
. (16.21)

In a random instance, the kn are iid Poisson random variables with mean 2γ,
the En and En,p variables are iid uniform on [0, 2γ], and the yn,p are iid random
variables with the same distribution as the solution of Eq. (16.17). We shall
denote below by Eout the expectation with respect to all of these variables outside
the path. Keeping them fixed, a small change δx1 of the message x1 leads to a
change δxr = ∂xr

∂x1
δx1 = ∂x2

∂x1

∂x3

∂x2
. . . ∂xr

∂xr−1
δx1 of xr. We leave it as an exercise to

the reader to show that the correlation function ⋆

〈nenf 〉 − 〈ne〉〈nf 〉 = C
∂xr

∂x1
= C

r∏

n=2

∂xn

∂xn−1
(16.22)

where the proportionality constant C is r-independent. Recalling that the ex-
pected number of variable nodes f such that d(e, f) = r grows as (2γ)r, and

using Eq. (16.20), we have Eχ
(r)
SG = C ′ eλrr, where

λr(β, γ) = log(2γ) +
1

r
log

{
Eout

r∏

n=2

(
∂xn

∂xn−1

)2
}
. (16.23) {eq:assign_stab}

Therefore, a sufficient condition for the expectation of χSG to be finite is to
have λr(β, γ) negative and bounded away from 0 for large enough r (when this

happens, Eχ
(r)
SG decays exponentially with r).
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Fig. 16.4. Stability parameter λr, defined in Eq. (16.23), plotted versus r, for
inverse temperatures β = 10, 5, 2, 1 (from bottom to top). Lines are guides to
the eye. A negative asymptotic value of λr at large r shows that the spin glass
susceptibility is finite. Data obtained from a population dynamics simulation
with a population of 106, for γ = 20.

{fig:assign_stab_dat}

The exponent λr(β, γ) can be computed numerically through population dy-
namics: the population allows to sample iid messages yn,p from the fixed point
message density, and the costs En, En,p are sampled uniformly in [0, 2γ]. The
expectation (16.23) can be estimated through a numerical average over large
enough populations. Notice that the quantity we are taking expectation of de-
pends exponentially on r. As a consequence, its expectation becomes more diffi-
cult to compute as r grows.

In Fig. 16.2.5 we present some estimates of λr obtained through this ap-
proach. Since λr depends very weakly on r, we expect that λ∞ can be safely
estimated from these data. The data are compatible with the following scenario:
λ∞(β, γ) is negative at all finite β temperatures and vanishes as 1/β as β →∞.
This indicates that χSG is finite, so that the replica symmetry assumption is
consistent.

16.3 A polynomial message passing algorithm{se:BP_assign}
Remarkably, the Min-Sum message passing algorithm introduced in Section 16.2.3,
can be proved to return the minimum cost assignment on any instance for which
the minimum is unique. Let us state again the Min-Sum update equations of
Eq. (16.8), writing the iteration number explicitly:

xL
j→i(t+ 1) = min

k∈A\i

(
Ekj − xR

k→j(t)
)
, xR

i→j(t) = min
k∈B\j

(
Eik − xL

k→i(t)
)
.

(16.24){eq:BPiter_assign}

Here, as before, A and B (with |A| = |B| = N) are the two vertices sets to be
matched, and we keep denoting by i (respectively j) a generic vertex in A (resp.
in B).
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The algorithm runs as follows:

Min-Sum assignment (Cost matrix E, Iterations t∗)
1: Set xL

j→i(0) = xR
i→j(0) = 0 for any i ∈ A, j ∈ B

2: For all t ∈ {0, 1, . . . , t∗}:
3: Compute the messages at time t+ 1 using Eq. (16.24)
4: Set π(i) = arg minj∈B

(
Eij − xL

j→i(t∗)
)

for each i ∈ A;
5: Output the permutation π ;

This algorithm finds the correct result if the optimal assignment is unique
after a large enough number of iterations, as stated in the theorem below.

{th:assign_BP_conv}
Theorem 16.1 Let W ≡ maxij |Eij | and ǫ be the gap between the cost E∗ of
the optimal assignment, π∗, and the next best cost: ǫ ≡ minπ( 6=π∗)(E(π) − E∗),
where E(π) ≡∑N

i=1Eiπ(i). Then, for any t∗ ≥ 2NW/ǫ, the Min-Sum algorithm
above returns the optimal assignment π∗.

The proof is given in the Sec. 16.3.2, and is based on the notion of computation
tree explained in the present context in Sec. 16.3.1.

For practical application of the algorithm to cases where one does not know
the gap in advance, it is important to have a stopping criterion for the the
algorithm. This can be obtained by noticing that, after convergence, the messages
become ‘periodic-up-to-a-drift’ functions of t. More precisely there exists a period
τ and a drift C > 0 such that for any t > 2NW/ǫ, and any i ∈ A, xR

i→j(t+ τ) =
xR

i→j(t) + C if j = arg mink∈B(Eik + xL
k→i(t)), and xR

i→j(t + τ) = xR
i→j(t) − C

otherwise. If this happens, we shall write xR(t+ τ) = xR(t) + C.
It turns out that: (i) If for some time t0, period τ and constant C > 0, one

has xR(t0 + τ) = xR(t0) + C, then xR(t + τ) = xR(t) + C for any t ≥ t0; (ii)
Under the same condition, the permutation returned by the Min-Sum algorithm
is independent of t∗ for any t∗ ≥ t0. We leave the proof of these statement as a
(research level) exercise for the reader. It is immediate to see that they imply a ⋆
clear stopping criterion: After any number of iterations t, check whether there
exists t0 < t and C > 0, such that xR(t) = xR(t0) + C. If this is the case halt
the message passing updates and return the resulting permutation as in point 4
of the above pseudocode.

16.3.1 The computation tree
{se:minsum_computree}

As we saw in Fig. 16.1, an instance of the assignment problem is characterized
by the complete weighted bipartite graph GN over vertices sets A, B, with |A| =
|B| = N . The analysis of the Min Sum algorithm described above uses in a
crucial way the notion of computation tree.

Given a vertex i0 ∈ A (the case i0 ∈ B is completely symmetric) the corre-
sponding computation tree of depth t, T

t
i0

is a weighted rooted tree of depth t
and degree N , that is constructed recursively as follows. First introduce the root
î0 that is in correspondence with i0 ∈ A. For any j ∈ B, add a corresponding
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vertex ĵ in T
t
i0

and connect it to î0. The weight of such an edge is taken to be

Eî0,ĵ ≡ Ei0,j . At any subsequent generation, if î ∈ T
t
i0

corresponds to i ∈ A, and

its direct ancestor is ĵ that corresponds to j ∈ B, add N − 1 direct descendants
of î in T

t
i0

. Each one of such descendants k̂, corresponds to a distinct vertex
k ∈ B \ j, and the corresponding weight is Ek̂ĵ = Ekj .

A more compact description of the computation tree T
t
i0

consists in saying
that it is the tree of non-reversing walks55 rooted at i0.

Imagine iterating the Min-Sum equations (16.24) on the computation tree
T

t
i0

(starting from initial condition xî→ĵ(0) = 0). Since T
t
i0

has the same local

structure as GN , for any s ≤ t the messages incoming to the root î0 coincide with
the ones along the corresponding edges in the original graph GN : xĵ→î0

(s) =
xj→i0(s).

In the proof of Theorem 16.1, we will use the basic fact that the Min-Sum
algorithm correctly finds the ground state on trees (see theorem 14.4). More
precisely, let us define an internal matching of a tree to be a subset of the
edges such that each non-leaf vertex has one adjacent edge in the subset. In view
of the above remark, we have the following property.

{lemma:assign_algo1}
Lemma 16.2 Define, for any i ∈ A, πt(i) = argminj∈B

(
Ei,j − xL

j→i(t)
)
. Let î

denote the root in the computation tree T
t
i, and ĵ the direct descendant of î that

corresponds to πt(i).
Then the edge (̂i, ĵ) belongs to the internal matching with lowest cost in T

t
i

(assuming this is unique).

Although it follows from general principles, it is a useful exercise to re-derive
this result explicitly.

Exercise 16.6 Let r be an internal (non-leaf) vertex in the computation T
t
i,

distinct from the root. Denote by Sr the set of its direct descendants (hence
|Sr| = N − 1), Tr the tree of all its descendants. We define a ‘cavity internal
matching’ in Tr as a set of edges where all vertices which are distinct from
the root r and are not leaves. Denote by Ar the cost of the optimal cavity
internal matching when vertex r is not matched, and Br its cost when vertex
r is matched. Show that:

Ar =
∑

q∈Sr

Bq ; Br = min
q∈Sr


Aq + Erq +

∑

q′∈Sr\{q}

Bq′


 (16.25)

Show that xr = Br − Ar satisfies the same equations as (16.24), and prove
Lemma 16.2.

55A ‘non-reversing walk’ on a graph G is a sequence of vertices ω = (i0, i1, . . . , in), such that
(is, is+1) is an edge for any s ∈ {0, . . . , n− 1}, and is−1 6= is+1 for s ∈ {1, . . . , n− 1}.
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16.3.2 Proof of convergence of the Min-Sum algorithm
{se:minsum_assign_proof}

We can now prove Theorem 16.1. It will be convenient to represent assignments
as matchings, i.e. subsets of the edges such that each vertex is incident to exactly
one edge in the subset. In particular we denote the optimal matching on G as
M∗. If π∗ is the optimal assignment then M∗ ≡ {(i, π∗(i)) : i ∈ A}. We denote
by π the mapping returned by the Min-Sum algorithm. It is not necessarily
injective, therefore the subset of edges M = {(i, π(i)) : i ∈ A} is not necessarily
a matching.

The proof is by contradiction. Assume that π 6= π∗. Then there exists at
least one vertex in A, call it i0, such that π(i0) 6= π∗(i0). Consider the depth-t

computation tree of i0, T
t
i0

, call î0 its root, and denote by M̂ the optimal internal

matching in this graph. Finally, denote by M̂∗ the internal matching on T
t
i0

which

is obtained by projection of the optimal one, M∗. Let j = π(i0) ∈ B, and ĵ ∈ T
t
i0

be the neighbor of î0 whose projection on G is j. By Lemma 16.2 (̂i0, ĵ) ∈ M̂.

On the other hand, since π(i0) 6= π∗(i0), (̂i0, ĵ) 6∈ M̂∗. The idea is to construct a

new internal matching M̂′ on T
t
i0

, such that: (i) (̂i0, ĵ) 6∈ M̂′; (ii) The cost of M̂′

is strictly smaller than the one M̂, thus leading to a contradiction.
Intuitively, the improved matching M̂′ is constructed by modifying M̂ in such a

way as to ‘get closer’ to M̂∗. In order to formalize the idea, consider the symmetric
difference of M̂ and M̂∗, P̂′ = M̂△ M̂∗, i.e. the set of edges which are either in
M̂ or in M̂∗ but not in both. The edge (̂i0, ĵ) belongs to P̂′. We can therefore

consider the connected component of P̂′ that contains (̂i0, ĵ), call it P̂. A moment

of thought reveals that P̂ is a path on T
t
i0

with end-points on its leaves (see

Fig. 16.3.2). Furthermore, its 2t edges alternate between edges in M̂ and in M̂∗.

We can then define M̂′ = M̂△ P̂ (so that M̂′ is obtained from M̂ by deleting the

edges in P̂ ∩ M̂ and adding those in P̂ ∩ M̂∗). We shall now show that, if t is

large enough, the cost of M̂′ is smaller than that of M̂, in contradiction with the
hypothesis.

Consider the projection of P̂ onto the original complete bipartite graph G,
call it P ≡ ϕ(P̂) (see Fig. 16.3.2). This is a non-reversing path of length 2t on G.
As such, it can be decomposed into m simple cycles56 {C1, . . . ,Cm} (eventually
with repetitions) and at most one even length path Q, whose lengths add up to
2N . Furthermore, the length of Q is at most 2N − 2, and the length of each of
the cycles at most 2N . As a consequence m > t/N .

Consider now a particular cycle, say Cs. Its edges alternate between edges
belonging to the optimal matching M∗ and edges not in it. As we assumed that
the second best matching in G has cost at least ǫ above the best one, the total
cost of edges in Cs \M∗ is at least ǫ above the total cost of edges in Cs ∩M∗.

As for the path Q, it is again alternating between edges belonging to M∗ and
edges outside of M∗. We can order the edges in Q in such a way that the first

56A simple cycle is a cycle that does not visit the same vertex twice.
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Fig. 16.5. Top left: an instance G of an assignment problem with 2N = 6 ver-
tices (costs are not shown). The optimal π∗ is composed of the thick edges. Right:
the computation tree T

2
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. The matching π∗ is ‘lifted’ to an internal matching
in T

2
l1

composed of the thick edges. Notice that one edge in the original graph
has many images in the unwrapped graph. The dashed edges are those of the
optimal internal matching in T

2
l1

, and the alternating path P is circled (dashed).
Bottom left: the projection of P on the original graph; here it consists of a single
cycle.

{fig:unwrapped}

one is in M∗ and the last one is not. By changing the last step, we can transform
it into an alternating cycle, to which the same analysis as above applies. This
swapping changes the cost of edges not in Q by at most 2W . Therefore the cost
of the edges in Q \M∗ is at least the cost of edges in Q ∩M∗ plus ǫ− 2|W |.

Let ET(M̂) denote the cost of matching M̂ on T
t
i0

. By summing the cost

differences of the m cycles {C1, . . . ,Cm} and the path Q, we found that ET(M̂) ≥
ET(M̂′) + (m + 1)ǫ − 2W . Therefore, for t > 2NW/ǫ, ET(M̂) > ET(M̂′), in
contradiction with our hypothesis.�

16.3.3 A few remarks

The alert reader might be puzzled by the following observation. Consider a ran-
dom instance of the assignment problem with iid edge weights, e.g. exponentially
distributed. In Section 16.2.4 we analyzed the Min-Sum algorithm through den-
sity evolution and showed that the only fixed point is given by the x-message
density a(x) = 1

4 cosh2(x/2). A little more work shows that, when initiated with
x = 0 messages density evolution does indeed converge to such a fixed point.

On the other hand, for such a random instance the maximum weight W
and the gap between the two best assignments are almost surely finite, so the
hypotheses of Thm 16.1 apply. The proof in the last Section implies that the
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Min-Sum messages diverge: the messages xi→π∗(i) diverge to +∞, while other
ones diverge to −∞ (indeed Min-Sum messages are just the difference between
the cost of optimal matching on the computation tree and the cost of the optimal
matching that does not include the root).

How can these two behaviors be compatible? The conundrum is that density
evolution correctly predicts the messages distribution as long as the number of
iterations is kept bounded as N → ∞. On the other hand, the typical scale
for messages divergence discussed in the previous Section is NW/ǫ. If the edge
weights are exponentials of mean N , the typical gap is ǫ = Θ(1), while W =
Θ(N logN). Therefore the divergence sets in after t∗ = Θ(N2 logN) iterations.
The two analyses therefore describe completely distinct regimes.

16.4 Combinatorial results {se:assign_combi}

It turns out that a direct combinatorial analysis allows to prove several non-
asymptotic results for ensembles of random assignment problems. Although the
techniques are quite specific, the final results are so elegant that they deserve
being presented. As an offspring, they also provide rigorous proofs of some of
our previous results, like the optimal cost ζ(2) found in (16.15).

We will consider here the case of edge weights given by iid exponential random
variables with rate 1. Let us remind that an exponential random variable X
with rate α has density ρ(x) = α e−αx for x ≥ 0, and therefore its expectation is
E[X] = 1/α. Equivalently, the distribution of X is given by P{X ≥ x} = e−αx

for x ≥ 0.
Exponential random variables have several special properties that make them

particularly convenient in the present context. The most important is that the
minimum of two independent exponential random variables is again exponential.
We shall use the following refined version of this statement:

{lemma:exponential_var}
Lemma 16.3 Let X1, . . . ,Xn be n independent exponential random variables
with respective rates α1, . . . , αn. Then:

1. The random variable X = min{X1, . . . ,Xn} is exponential with rate α ≡∑n
i=1 αi.

2. The random variable I = arg miniXi is independent of X, and has distri-
bution P{I = i} = αi/α.

Proof: First notice that the minimum of {X1, . . . ,Xn} is almost surely achieved
by only one of the variables, and therefore the index I in point 2 is well defined.
An explicit computation yields, for any x ≥ 0 and i ∈ {1, . . . , n}

P{I = i, X ≥ x} =

∫ ∞

x

αi e
−αiz

∏

j( 6=i)

P{Xj ≥ z} dz

=

∫ ∞

x

αi e
−αz dz =

αi

α
e−αx . (16.26)

By summing over i = 1, . . . , n, we get P{X ≥ x} = e−αx which proves point 1.
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By taking x = 0 in the above expression we get P{I = i} = αi/α. Using these
two results, Eq. (16.26) can be rewritten as P{I = i, X ≥ x} = P{I = i}P{X ≥
x}, which imply that X and I are independent. �

16.4.1 The Coppersmith-Sorkin and Parisi formulae

The combinatorial approach is based on a recursion on the size of the problem. It
is therefore natural to generalize the assignment problem by allowing for partial
matching between two sets of unequal size as follows. Given a set of agents A
and a set of jobs B (with |A| = M and |B| = N), consider the complete bipartite
graph G over vertex sets A and B. A k-assignment between A and B is defined as
a subset of k edges of G that has size k and such that each vertex is adjacent to at
most one edge. Given edge costs {Eij : i ∈ A j ∈ B} the optimal k-assignment
is the one that minimizes the sum of costs over edges in the matching. The
assignment problem considered so far is recovered by setting k = M = N . Below
we shall assume, without loss of generality, k ≤M ≤ N :

{thm:CS_conj}
Theorem 16.4. (Coppersmith-Sorkin formula) Assume the edge costs {Eij :
i ∈ A, j ∈ B} to be iid exponential random variables of rate 1, with |A| = M ,
|B| = N , and let Ck,M,N denote the expected cost of the optimal k-assignment.
Then:

Ck,M,N =
k−1∑

i,j=0

I(i+ j < k)
1

(M − i)(N − j) . (16.27){eq:CSMatching}

This result, that we shall prove in the next sections, yields, as a special case,
the expected cost CN of the complete matching over a bipartite graph with 2N
vertices:{coro:Parisi_conj}

Corollary 16.5. (Parisi formula) Let CN ≡ CN,N,N be the expected cost of
the optimal complete matching among vertices sets A, B with |A| = |B| = N ,
assuming iid, exponential, rate 1, edge weights. Then

CN =
N∑

i=1

1

i2
. (16.28)

In particular, the expected cost of the optimal assignment when N →∞ is ζ(2).

Proof: By Theorem 16.4 we have CN =
∑N−1

i,j=0 I(i+j < N) (N− i)−1(N−j)−1.
Simplifying equal terms, the difference CN+1 − CN can be written as

N∑

j=0

1

(N + 1)(N + 1− j) +

N∑

i=1

1

(N + 1− i)(N + 1)
−

N∑

r=1

1

(N + 1− r)r . (16.29)

Applying the identity 1
(N+1−r)r = 1

(N+1)r + 1
(N+1−r)(N+1) , this implies CN+1 −

CN = 1/N2, which establishes Parisi’s formula. �
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16.4.2 From k-assignment to k + 1-assignment

The proof of Theorem 16.4 relies on two Lemmas which relate properties of the
optimal k-assignment to those of the optimal (k + 1)-assignment. Let us denote
by Mk the optimal k-assignment.

The first Lemma applies to any realization of the edge costs, provided that
no two subsets of the edges have equal cost (this happens with probability 1
within our random cost model).

{lemma:nesting}
Lemma 16.6. (Nesting lemma) Let k < M ≤ N and assume that no lin-
ear combination of the edge costs {Eij : i ∈ A, j ∈ B} with coefficients in
{+1, 0,−1} vanishes. Then every vertex that belongs to Mk also belongs to Mk+1.

The matching Mk consists of k edges which are incident on the vertices i1, . . . , ik
in set A, and on j1, . . . , jk in set B. Call Ak the k × k matrix which is the
restriction of E to the lines i1, . . . , ik and the columns j1, . . . , jk. The nesting
lemma insures that Ak+1 is obtained from Ak by adding one line (ik+1) and one
column (jk+1). Therefore we have a sequence of nested matrices E(1) ⊂ E(2) · · · ⊂
E(M) = E containing the sequence of optimal assignments M1,M2, . . . ,MM .

Proof: Color in red all the edges in Mk, in blue all the edges in Mk+1, and
denote by Gk+ the bipartite graph induced by edges in Mk ∪Mk+1. Clearly the
maximum degree of Gk+ is at most 2, and therefore its connected components
are either cycles or paths.

We first notice that no component of Gk+ can be a cycle. Assume by con-
tradiction that edges {u1, v1, u2, v2, . . . , up, vp} ⊆ Gk+ form such a cycle, with
{u1, . . . , up} ⊆ Mk and {v1, . . . , vp} ⊆ Mk+1. Since Mk is the optimal k-assignment
Eu1

+ · · · + Eup
≤ Ev1

+ · · · + Evp
(in the opposite case we could decrease its

cost by replacing the edges {u1, . . . , up} with {v1, . . . , vp}, without changing its
size). On the other hand, since Mk+1 is the optimal (k+1)-assignment, the same
argument implies Eu1

+ · · ·+Eup
≥ Ev1

+ · · ·+Evp
. These two inequalities imply

Eu1
+ · · · + Eup

= Ev1
+ · · · + Evp

, which is impossible by the non-degeneracy
hypothesis.

So far we have proved that Gk+ consists of a collection of disjoint simple
paths, made of alternating blue and red edges. Along such paths all vertices
have degree 2 except for the two endpoints which have degree 1. Since each path
alternates between red and blue edges, the difference in their number is in at
most 1 in absolute value. We will show that indeed there can exist only one such
path, with one more blue than red edges, thus proving the thesis.

We first notice that Gk+ cannot contain even paths, with as many red as blue
edges. This can be shown using the same argument that we explained above in
the case of cycles: either the cost of blue edges along the path is lower than the
cost of red ones, which would imply that Mk is not optimal, or vice-versa, the
cost of red edges is lower, which would imply that Mk+1 is not optimal.

We now exclude the existence of a path P of odd length with one more red
edge than blue edges. Since the total number of blue edges is larger than the total
number of red edges, there should exist at least one path P′ with odd length, with
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one more blue edge than red edges. We can then consider the double path P∪P′,
which contains as many red as blue edges and apply to it the same argument as
for cycles and even paths.

We thus conclude that the symmetric difference of Mk and Mk+1 is a path of
odd length, with one endpoint i ∈ A and one j ∈ B. These are the only vertices
that are in Mk+1 but not in Mk. Reciprocally, there is no vertex that is Mk but
not in Mk+1. �

{lemma:cost_nesting}
Lemma 16.7 Let {ui : i ∈ A} and {vj : j ∈ B} be two collections of pos-
itive real numbers and assume that the edges costs {Eij : i ∈ A, j ∈ B} are
independent exponential random variables, the rate of Eij being uivj. Denote by
Ak = {i1, . . . , ik} ⊆ A, and Bk = {j1, . . . , jk} ⊆ B, the sets of vertices appearing
in the optimal k-assignment Mk. Let Ik+1 = Ak+1 \ Ak and Jk+1 = Bk+1 \ Bk

be the extra vertices which are added in Mk+1. Then the conditional distribution
of Ik+1 and Jk+1 is P {Ik+1 = i, Jk+1 = j|Ak, Bk} = Qi,j, where

Qij =
uivj(∑

i′∈A\Ak
ui′

) (∑
j′∈B\Bk

vj′

) . (16.30)

Proof: Because of the nesting lemma, one of the following must be true: Either
the matching Mk+1 contains edges (Ik+1, jb), and (ia, Jk+1) for some ia ∈ Ak,
jb ∈ Bk, or it contains the edge (Ik+1, Jk+1).

Let us fix ia and jb and condition on the first event

E1(ia, jb) ≡ {Ak, Bk, (Ik+1, jb), (ia, Jk+1) ∈ Mk+1} .

Then necessarily EIk+1,jb
= min{Eijb

: i ∈ A \Ak} (because otherwise we could
decrease the cost of Mk+1 by making a different choice for Ik+1). Analogously
Eia,Jk+1

= min{EiAj : j ∈ B \ Bk}. Since the two minima are taken over
independent random variables, Ik+1 and Jk+1 are independent as well. Further,
by Lemma 16.3,

P {Ik+1 = i, Jk+1 = j | E1(ia, jb)} =
uivjb∑

i′∈A\Ak
ui′vjb

uia
vj∑

j′∈B\Bk
uia

vj′

= Qij .

If we instead condition on the second event

E2 ≡ {Ak, Bk, (Ik+1, Jk+1) ∈ Mk+1} ,

then EIk+1,Jk+1
= min{Eij : i ∈ A \Ak j ∈ B \Bk} (because otherwise we could

decrease the cost of Mk+1). By applying again Lemma 16.3 we get

P {Ik+1 = i, Jk+1 = j | E2} =
uivj∑

i′∈A\Ak,j′∈B\Bk
ui′vj′

= Qij .

Since the resulting probability is Qij irrespective of the conditioning, it remains
the same when we condition on the union of the events {∪a,bE1(ia, jb)} ∪ E2 =
{Ak, Bk}. �
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16.4.3 Proof of Theorem 16.4

In order to prove the Coppersmith-Sorkin (C-S) formula (16.27), we will consider
the difference Dk,M,N ≡ Ck,M,N−Ck−1,M,N−1, and establish in this section that:

Dk,M,N =
1

N

(
1

M
+

1

M − 1
+ · · ·+ 1

M − k + 1

)
. (16.31){eq:CS_formula_recursion}

This immediately leads to the C-S formula, by recursion using as a base step
the identity C1,M,N−k+1 = 1

M(N−k+1) (which follows from the fact that it is the

minimum of M(N − k + 1) iid exponential random variables with rate 1).
Consider a random instance of the problem over vertex sets A and B with

|A| = M and |B| = N , whose edge costs {Eij : i ∈ A, j ∈ B} are iid exponential
random variables with rate 1. Let X be the cost of its optimal k-assignment.
Let Y be the cost of the optimal (k− 1)-assignment for the new problem that is
obtained by removing one fixed vertex, say the last one, from B. Our aim is to
estimate the expectation value Dk,M,N = E(X − Y ),

We shall use an intermediate problem with a cost matrix F of size (M+1)×N
constructed as follows. The first M lines of F are identical to those of E. The
matrix element in its last line are N iid exponential random variables of rate λ,
independent from E. Denote by W the cost of the edge (M + 1, N), and let us
call E the event “the optimal k-assignment in F uses the edge (M + 1, N)”.

We claim that, as λ→ 0, P(E) = λE[X − Y ] +O(λ2). First notice that, if E
is true, then W + Y < X, and therefore

P(E) ≤ P{W + Y < X} = E
[
1− e−λ(X−Y )

]
= λE[X − Y ] +O(λ2)(16.32)

Conversely, if W < X − Y , and all the edges from the vertex M + 1 in A to
B \ {N} have cost at least X, then the optimal k-assignment in F uses the edge
(M + 1, N). Therefore, using the independence of the edge costs

P(E) ≥ P{W < X − Y ; EM+1,j ≥ X for j ≤ N − 1} =

= E

{
P{W < X − Y | X,Y }

N−1∏

j=1

P{EM+1,j ≥ X|X}
}

= E

{
P{W < X − Y | X,Y } e−(N−1)λX

}
=

= E

{(
1− e−λ(X−Y )

)
e−(N−1)λX

}
= λE[X − Y ] +O(λ2) . (16.33)

We now turn to the evaluation of P(E), and show that

P(E) =
1

N

[
1−

k−1∏

r=0

M − r
M − r + λ

]
. (16.34) {eq:plemmaCSPf}

Let us denote by α the M + 1-th vertex in A. By Lemma 16.7, conditional to
α /∈ Mk−1, the probability that α ∈ Mk is λ/(M − (k − 1) + λ). By recursion,
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this shows that the probability that α /∈ Mk−1 is
∏k−1

r=0
M−r

M−r+λ . Since all the N
edges incident on α are statistically equivalent, we get (16.34).

Expanding Eq. (16.34) as λ → 0, we get P(E) = λ
N

∑k−1
r=0

1
M−r + O(λ2).

Since, as shown above, E[X − Y ] = limλ→0 P(E)/λ, this proves Eq. (16.31),
which establishes the C-S formula.�

16.5 An exercise: multi-index assignment
{se:multi_assign}

In Section 16.2.4 we computed the asymptotic minimum cost for random in-
stances of the assignment problem using the cavity method under the replica
symmetric (RS) assumption. The result, namely that the cost converges to ζ(2)
for exponential edge weights with mean 1, was confirmed by the combinatorial
analysis of Section 16.4. This suggests that the RS assumption is probably cor-
rect for this ensemble, an intuition that is further confirmed by the fact that
Min-Sum finds the optimal assignment.

Statistical physicists conjecture that there exists a broad class of random
combinatorial problems which satisfy the RS assumption. On the other hand,
many problems are thought not to satisfy it: the techniques developed for deal-
ing with such problems will be presented in the next chapters. In any case, it
is important to have a feeling of the line separating RS from non-RS problems.
This is a rather subtle point, here we want to illustrate it by considering a gen-
eralization of random assignment: the multi-index random assignment (MIRA)
problem. We propose to study the MIRA using the RS cavity method and de-
tect the inconsistency of this approach. Since the present Section is essentially
an application of the methods developed above for the assignment, we will skip
all technical details. The reader may consider it as a long guided exercise.

One instance of the multi-index assignment problem consists of d sets A1,. . . ,
Ad, of N vertices, and a cost Ea for every d-uplet a = (a1, . . . , ad) ∈ A1×· · ·×Ad.
A ‘hyper-edge’ a can be occupied (na = 1) or empty (na = 0). A matching is a
set of hyper-edges which are vertex disjoint (formally:

∑
a: i∈a na ≤ 1 for each r

and each i ∈ Ar). The cost of a matching is the sum of the costs of the hyper-
edges that it occupies. The problem is to find a perfect matching (i.e. a matching
with N occupied hyper-edges) with minimal total cost.

In order to define a random ensemble of multi-index assignment instances,
we proceed as for the assignment problem, and assume that the edge costs Ei are
iid exponential random variables with mean Nd−1. Thus the costs have density

ρ(E) = N−d+1 e−E/Nd−1

I(E ≥ 0) . (16.35)

The reader is invited to check that under this scaling of the edge costs, the typical
optimal cost is extensive, i.e. Θ(N). The simple random assignment problem
considered before corresponds to d = 2.

We introduce the probability distribution on matchings that naturally gen-
eralizes Eq. (16.2):



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

AN EXERCISE: MULTI-INDEX ASSIGNMENT 373

p(n) =
1

Z

∏

a∈∪rAr

I

( ∑

i: a∈i

ni ≤ 1
)
e−β

P
i ni(Ei−2γ) . (16.36)

The associated factor graph has Nd variable nodes, each of degree d, corre-
sponding to the original hyper-edges, and dN factor nodes, each of degree N ,
corresponding to the vertices in F ≡ A1 ∪ · · · ∪Ad. As usual i, j, · · · ∈ V denote
the variable nodes in the factor graph and a, b, · · · ∈ F the function nodes coding
for hard constraints.

Using a parameterization analogous to the one for the assignment problem,
one finds that the BP equations for this model take the form:

hi→a =
∑

b∈∂i\a

xb→i ,

xa→i = − 1

β
log
{
e−βγ +

∑

j∈∂a\i

e−β(Ej−hj→a)
}
.

(16.37) {eq:recrs}

In the large β, γ limit they become:

hi→a =
∑

b∈∂i\a

xb→i , xa→i = min
j∈∂a\i

(Ej − hj→a)). (16.38)

Finally, the Bethe free-entropy can be written in terms of x-messages yielding:

F[x] =Ndβγ +
∑

a∈F

log
{
e−βγ +

∑

i∈∂a

e−β(Ei−
P

b∈∂i\a xb→i)
}

− (d− 1)
∑

i∈V

log
{

1 + e−β(Ei−
P

a∈∂i xj→a))
}
.

(16.39) {eq:BetheMIRA}

Using the RS cavity method, one obtains the following equation for the dis-
tribution of x messages in the N →∞ limit:

A(x) = exp



−

∫ (
x+

d−1∑

j=1

tj

)
I

(
x+

d−1∑

j=1

tj ≥ 0
) d−1∏

j=1

dA(tj)



 . (16.40)

This reduces to Eq. (16.13) in the case of simple assignment. Under the RS
assumption the cost of the optimal assignment is E0 = Ne0 + o(N), where

e0 =
1

2

∫ ( d∑

j=1

xj

)2

I

(∑

j

xj > 0
) d∏

j=1

dA(xj) . (16.41) {eq:energyinclusion}

These equations can be solved numerically to high precision and allow to
derive several consequences of the RS assumption. However the resulting predic-
tions (in particular, the cost of the optimal assignment) are wrong for d ≥ 3.
There are two observations showing that the RS assumption is inconsistent:
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1. Using the Bethe free-entropy expression (16.39) we can compute the asymp-
totic free energy density as f(T ) = −F/(Nβ), for a finite β = 1/T . The
resulting expression can be estimated numerically via population dynamics,
for instance for d = 3. It turns out that the entropy density s(T ) = −df/dT
becomes negative for T < Tcr ≈ 2.43. This is impossible: we are dealing
with a statistical mechanics model with a finite state space, thus the en-
tropy must be non-negative.

2. A local stability analysis can be performed analogously to what is done in
Section 16.2.5. It turns out that , for d = 3, the stability coefficient λ∞,
cf. Eq. (16.23), becomes positive for T . 1.6, indicating an instability of
the putative RS solution to small perturbations.

The same findings are generic for d ≥ 3. A more satisfying set of predictions
for such problems can be developed using the RSB cavity method that will be
treated in Chap. ??.

Notes

Rigorous upper bounds on the cost of the optimal random assignment go back
to (Walkup, 1979) and (Karp, 1987). The ζ(2) result for the cost was first ob-
tained in 1985 by (Mézard and Parisi, 1985) using the replica method. The
cavity method solution was then found in (Mézard and Parisi, 1986; Krauth and
Mézard, 1989), but the presentation in Sec. 16.2 is closer to (Martin, Mézard and
Rivoire, 2005). This last paper deals the multi-index assignment and contains
answers to the exercise in Sec. 16.5, as well as a proper solution of the problem
using the RSB cavity method).

The first rigorous proof of the ζ(2) result was derived in (Aldous, 2001), using
a method which can be regarded as a rigorous version of the cavity method. An
essential step in elaborating this proof was the establishment of the existence
of the limit, and its description as a minimum cost matching on an infinite
tree (Aldous, 1992). An extended review on the ‘objective method’ on which
this convergence result is based can be found in (Aldous and Steele, 2003). A
survey of recursive distributional equations like (16.17) occurring in the replica
symmetric cavity method is found in (Aldous and Bandyopadhyay, 2005).

On the algorithmic side, the assignment problem is a very well studied prob-
lem for many years (Papadimitriou and Steiglitz, 1998), and there exist efficient
algorithms based on network flow ideas. The first BP algorithm was found in
(Bayati, Shah and Sharma, 2005), it was then simplified in (Bayati, Shah and
Sharma, 2006) into the O(N3) algorithm presented in Sec. 16.3. This paper also
shows that the BP algorithm is basically equivalent to Bertsekas’ auction al-
gorithm (Bertsekas, 1988). The periodic-up-to-a-shift stopping criterion is due
to (Sportiello, 2004), and the understanding of the existence of diverging time
scales for the onset of the drift was found in (Grosso, 2004)

Combinatorial studies of random assignments were initiated by Parisi’s con-
jecture (Parisi, 1998a). This was generalized to the Coppersmith-Sorkin conjec-
ture in (Coppersmith and Sorkin, 1999). The same paper also provides a nice
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LINEAR EQUATIONS WITH BOOLEAN VARIABLES

Solving a system of linear equations over a finite field F is arguably one of
the most fundamental operations in mathematics. Several algorithms have been
devised to accomplish such a task in polynomial time. The best known is Gauss
elimination, that has O(N3) complexity (here N is number of variables in the
linear system, and we assume the number of equations to be M = Θ(N)). As a
matter of fact, one can improve over Gaussian elimination, and the best existing
algorithm for general systems has complexity O(N2.376...). Faster methods do
also exist for special classes of instances.

The set of solutions of a linear system is an affine subspace of FN . Despite
this apparent simplicity, the geometry of affine or linear subspaces of FN can
be surprisingly rich. This observation is systematically exploited in coding the-
ory. Linear codes are just linear spaces over finite fields. Nevertheless, they are
known to achieve Shannon capacity on memoryless symmetric channels, and
their structure is far from trivial, as we already saw in Ch. 11.

From a different point of view, linear systems are a particular example of
constraint satisfaction problems. We can associate with a linear system a decision
problem (establishing whether it has a solution), a counting problem (counting
the number of solutions), an optimization problem (minimize the number of
violated equations). While the first two are polynomial, the latter is known to
be NP-hard.

In this chapter we consider a specific ensemble of random linear systems over
Z2 (the field of integers modulo 2), and discuss the structure of its set of solutions.
The ensemble definition is mainly motivated by its analogy with other random
constraint satisfaction problems, which also explains the name XOR-satisfiability
(XORSAT).

In the next section we provide the precise definition of the XORSAT ensemble
and recall a few elementary properties of linear algebra. We also introduce one
of the main objects of study of this chapter: the SAT-UNSAT threshold. Section
18.2 takes a detour into the properties of belief propagation for XORSAT. These
are shown to be related to the correlation structure of the uniform measure
over solutions and, in Sec. 18.3, to the appearance of a 2-core in the associated
factor graph. Sections 18.4 and 18.5 build on these results to compute the SAT-
UNSAT threshold and characterize the structure of the solution space. While
many results can be derived rigorously, XORSAT offers an ideal playground for
understanding the non-rigorous cavity method that will be further developed in
the next chapters. This is the object of Sec. 18.6.

407



408 LINEAR EQUATIONS WITH BOOLEAN VARIABLES

18.1 Definitions and general remarks

18.1.1 Linear systems

Let H be a M × N matrix with entries Hai ∈ {0, 1}, a ∈ {1, . . . , M}, i ∈
{1, . . . , N}, and let b be a M -component vector with binary entries ba ∈ {0, 1}.
An instance of the XORSAT problem is given by a couple (H, b). The decision
problem requires to find a N -component vector x with binary entries xi ∈ {0, 1}
which solves the linear system Hx = b mod 2, or to show that the system has
no solution. The name XORSAT comes from the fact that sum modulo 2 is
equivalent to the ‘exclusive OR’ operation: the problem is whether there exists
an assignment of the variables x which satisfies a set of XOR clauses. We shall
thus say that the instance is SAT (resp. UNSAT) whenever the linear system
has (resp. doesn’t have) a solution.

We shall furthermore be interested in the set of solutions, to be denoted by
S, in its size Z = |S|, and in the properties of the uniform measure over S. This
is defined by

µ(x) =
1

Z
I( Hx = b mod 2 ) =

1

Z

M∏

a=1

ψa(x∂a) , (18.1)

where ∂a = (ia(1), . . . , ia(K)) is the set of non-vanishing entries in the a-th row
of H, and ψa(x∂a) is the characteristic function for the a-th equation in the linear
system (explicitly ψa(x∂a) = I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba), where we denote as
usual by ⊕ the sum modulo 2). In the following we shall omit to specify that
operations are carried mod 2 when clear from the context.

When H has row weigth p (i.e. each row has p non-vanishing entries), the
problem is related to a p-spin glass model. Writing σi = 1−2xi and Ja = 1−2ba,
we can associate to the XORSAT instance the energy function

E(σ) =
M∑

a=1

(
1 − Ja

∏

j∈∂a

σj

)
, (18.2)

which counts (twice) the number of violated equations. This can be regarded
as a p-spin glass energy function with binary couplings. The decision XORSAT
problem asks whether there exists a spin configuration σ with zero energy or,
in physical jargon, whether the above energy function is ‘unfrustrated.’ If there
exists such a configuration, log Z is the ground state entropy of the model.

A natural generalization is the MAX-XORSAT problem. This requires to find
a configuration which maximizes the number of satisfied equations, i.e. minimizes
E(σ). In the following we shall use the language of XORSAT but of course all
statements have their direct counterpart in p-spin glasses.

Let us recall a few well known facts of linear algebra that will be useful in
the following:

(i) The image of H is a vector space of dimension rank(H) (rank(H) is the
number of independent lines in H); the kernel of H (the set S0 of x which
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solve the homogeneous system Hx = 0) is a vector space of dimension
N − rank(H).

(ii) As a consequence, if M ≤ N and H has rank M (all of its lines are inde-
pendent), then the linear system Hx = b has a solution for any choice of
b.

(iii) Conversely, if rank(H) < M , the linear system has a solution if and only if
b is in the image of H.

If the linear system has at least one solution x∗, then the set of solutions
S is an affine space of dimension N − rank(H): one has S = x∗ + S0, and
Z = 2N−rank(H). We shall denote by µ0( · ) the uniform measure over the set S0

of solutions of the homogeneous linear system:

µ0(x) =
1

Z0
I( Hx = 0 mod 2 ) =

1

Z0

M∏

a=1

ψ0
a(x∂a) (18.3)

where ψ0
a has the same expression as ψa but with ba = 0. Notice that µ0 is always

well defined as a probability distribution, because the homogeneous systems has
at least the solution x = 0, while µ is well defined only for SAT instances. The
linear structure has several important consequences.

• If y is a solution of the inhomogeneous system, and if x is a uniformly
random solution of the homogeneous linear system (with distribution µ0),
then x′ = x ⊕ y is a uniformly random solution of the inhomogeneous
system (its probability distribution is µ).

• Under the measure µ0, there exist only two sorts of variables xi, those
which are ‘frozen to 0,’ (i.e. take value 0 in all of the solutions) and those
which are ‘free’ (taking value 0 or 1 in one half of the solutions). Under
the measure µ (when it exists), a bit can be frozen to 0, frozen to 1, or
free. These facts are proved in the next exercise.

Exercise 18.1 Let f : {0, 1}N → {0, 1} be a linear function (explicitly, f(x)
is the sum of a subset xi(1), . . . , xi(n) of the bits, mod 2).

(a) If x is drawn from the distribution µ0, f(x) becomes a random variable
taking values in {0, 1}. Show that, if there exists a configuration x with
µ0(x) > 0 and f(x) = 1, then P{f(x) = 0} = P{f(x) = 1} = 1/2. In the
opposite case, P{f(x) = 0} = 1.

(b) Suppose that there exists at least one solution to the system Hx = b, so
that µ exists. Consider the random variable f(x) obtained by drawing x
from the distribution µ. Show that one of the following three cases occurs:
P{f(x) = 0} = 1, P{f(x) = 0} = 1/2, or P{f(x) = 0} = 0.

These results apply in particular to the marginal of bit i, using f(x) = xi.
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Fig. 18.1. Factor graph for a 3-XORSAT instance with N = 6, M = 6.

Exercise 18.2 Show that:

(a) If the number of solutions of the homogeneous system is Z0 = 2N−M , then
the inhomogeneous system is satisfiable (SAT), and has 2N−M solutions,
for any b.

(b) Conversely, if the number of solutions of the homogeneous system is Z0 >
2N−M , then the inhomogeneous one is SAT only for a fraction 2N−M/Z0

of the b’s.

The distribution µ admits a natural factor graph representation: variable
nodes are associated to variables and factor nodes to linear equations, cf. Fig. 18.1.
Given a XORSAT formula F (i.e. a pair H, b), we denote by G(F ) the associ-
ated factor graph. It is remarkable that one can identify sub-graphs of G(F )
that serve as witnesses of satisfiability or unsatisfiability of F . By this we mean
that the existence of such sub-graphs implies satisfiability/unsatisfiability of F .
The existence of a simple witness for unsatisfiability is intimately related to the
polynomial nature of XORSAT. Such a witness is obtained as follows. Given a
subset L of the clauses, draw the factor graph including all the clauses in L, all
the adjacent variable nodes, and the edges between them. If this subgraph has
even degree at each of the variable nodes, and if ⊕a∈Lba = 1, then L is a witness
for unsatisfiability. Such a subgraph is sometimes called a frustrated hyper-loop
(in analogy with frustrated loops appearing in spin glasses, where function nodes
have degree 2).
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Exercise 18.3 Consider a 3-XORSAT instance defined through the 6× 6 ma-
trix

H =





0 1 0 1 1 0
1 0 0 1 0 1
0 1 0 0 1 1
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 1 0




(18.4)

(a) Compute the rank(H) and list the solutions of the homogeneous linear
system.

(b) Show that the linear system Hb = 0 has a solution if and only if b1⊕ b4⊕
b5 ⊕ b6 = 0. How many solution does it have in this case?

(b) Consider the factor graph associated to this linear system, cf. Fig. 18.1.
Show that each solution of the homogeneous system must correspond to
a subset U of variable nodes with the following property. The sub-graph
induced by U and including all of the adjacent function nodes, has even
degree at the function nodes. Find one sub-graph with this property.

18.1.2 Random XORSAT

The random K-XORSAT ensemble is defined by taking b uniformly at random
in {0, 1}M , and H uniformly at random among the N ×M matrices with entries
in {0, 1} which have exactly K non-vanishing elements per row. Each equation
thus involves K distinct variables chosen uniformly among the

(N
K

)
K-uples, and

the resulting factor graph is distributed according to the GN (K, M) ensemble.
A slightly different ensemble is defined by including each of the

(N
K

)
possi-

ble lines with K non-zero entries independently with probability p = Nα/
(N
K

)
.

The corresponding factor graph is then distributed according to the GN (K,α)
ensemble.

Given the relation between homogeneous and inhomogeneous systems de-
scribed above, it is quite natural to introduce an ensemble of homogeneous linear
systems. This is defined by taking H distributed as above, but with b = 0. Since
an homogeneous linear system has always at least one solution, this ensemble
is sometimes referred to as SAT K-XORSAT or, in its spin interpretation, as
the ferromagnetic K-spin model. Given a K-XORSAT formula F , we shall
denote by F0 the formula corresponding to the homogeneous system.

We are interested in the limit of large systems N , M → ∞ with α = M/N
fixed. By applying Friedgut’s Theorem, cf. Sec. 10.5, it is possible to show
that, for K ≥ 3, the probability for a random formula F to be SAT has

a sharp threshold. More precisely, there exists α(N)
s (K) such that for α >

(1 + δ)α(N)
s (K) (respectively α < (1 − δ)α(N)

s (K)), P{F is SAT} → 0 (respec-
tively P{F is SAT} → 1) as N →∞.
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A moment of thought reveals that α(N)
s (K) = Θ(1). Let us give two simple

bounds to convince the reader of this statement.
Upper bound: The relation between the homogeneous and the original linear

system derived in Exercise 18.2 implies that P{F is SAT} = 2N−ME{1/Z0}. As

Z0 ≥ 1, we get P{F is SAT} ≤ 2−N(α−1) and therefore α(N)
s (K) ≤ 1.

Lower bound: For α < 1/K(K − 1) the factor graph associated with F is
formed, with high probability, by finite trees and uni-cyclic components. This
corresponds to the matrix H being decomposable into blocks, each one corre-
sponding to a connected component. The reader can show that, for K ≥ 3
both a tree formula and a uni-cyclic component correspond to a linear system
of full rank. Since each block has full rank, H has full rank as well. Therefore

α(N)
s (K) ≥ 1/K(K − 1).

Exercise 18.4 There is no sharp threshold for K = 2.

(a) Let c(G) be the cyclic number of the factor graph G (number of edges
minus vertices, plus number of connected components) of a random 2-
XORSAT formula. Show that P{F is SAT} = E 2−c(G).

(b) Argue that this implies that P{F is SAT} is bounded away from 1 for
any α > 0.

(c) Show that P{F is SAT} is bounded away from 0 for any α < 1/2.

[Hint: remember the geometrical properties of G discussed in Secs. 9.3.2, 9.4.]

In the next sections we shall show that α(N)
s (K) has a limit αc(K) and

compute it explicitly. Before dwelling into this, it is instructive to derive two
improved bounds.

Exercise 18.5 In order to obtain a better upper bound on α(N)
s (K) proceed

as follows:

(a) Assume that, for any α, Z0 ≥ 2NfK(α) with probability larger than some

ε > 0 at large N . Show that α(N)
s (K) ≤ α∗(K), where α∗(K) is the

smallest value of α such that 1 − α − fK(α) ≤ 0.
(b) Show that the above assumption holds with fK(α) = e−Kα, and that

this yields α∗(3) ≈ 0.941. What is the asymptotic behavior of α∗(K) for
large K? How can you improve the exponent fK(α)?
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Exercise 18.6 A better lower bound on α(N)
s (K) can be obtained through a

first moment calculation. In order to simplify the calculations we consider here
a modified ensemble in which the K variables entering in equation a are chosen
independently and uniformly at random (they do not need to be distinct). The
scrupulous reader can check at the end that returning to the original ensemble
brings only little changes.

(a) Show that for a positive random variable Z, (EZ)(E[1/Z]) ≥ 1. Deduce
that P{F is SAT} ≥ 2N−M/E ZF0 .

(b) Prove that

E ZF0 =
N∑

w=0

(
N

w

) [
1

2

(
1 +

(
1 − 2w

N

)K
)]M

. (18.5)

(c) Let gK(x) = H(x) + α log
[

1
2

(
1 + (1 − 2x)K

)]
and define α∗(K) to be

the largest value of α such that the maximum of gK(x) is achieved at

x = 1/2. Show that α(N)
s (K) ≥ α∗(K). One finds α∗(3) ≈ 0.889.

18.2 Belief propagation

18.2.1 BP messages and density evolution

Equation (18.1) provides a representation of the uniform measure over solutions
of a XORSAT instance as a graphical model. This suggests to apply message
passing techniques. We will describe here belief propagation and analyze its
behavior. While this may seem at first sight a detour from the objective of

computing α(N)
s (K), it will instead provide some important insight.

Let us assume that the linear system Hx = b admits at least one solution,
so that the model (18.1) is well defined. We shall first study the homogeneous
version Hx = 0, i.e. the measure µ0, and then pass to µ. Applying the general def-
initions of Ch. 14, the BP update equations (14.14), (14.15) for the homogeneous
problem read

ν(t+1)
i→a (xi) ∼=

∏

b∈∂i\a

ν̂(t)
b→i(xi) , ν̂(t)

a→i(xi) ∼=
∑

x∂a\i

ψ0
a(x∂a)

∏

j∈∂a\i

ν(t)
j→a(xj) .

(18.6)

These equations can be considerably simplified using the linear structure. We
have seen that under µ0,there are two types of variables, those ‘frozen to 0’ (i.e.
equal to 0 in all solutions), and those which are ‘free’ (equally likely to be 0
or 1). BP aims at determining whether any single bit belongs to one class or
the other. Consider now BP messages, which are also distributions over {0, 1}.
Suppose that at time t = 0 they also take one of the two possible values that
we denote as ∗ (corresponding to the uniform distribution) and 0 (distribution
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Fig. 18.2. Density evolution for the fraction of 0 messages for 3-XORSAT. On
the left: the mapping F (Q) = 1 − exp(−KαQK−1) below, at and above the
critical point αd(K = 3) ≈ 0.818468. On the right: evolution of Qt for (from
bottom to top) α = 0.75, 0.8, 0.81, 0.814, 0.818468.

entirely supported on 0). Then, it is not hard to show that this remains true
at all subsequent times. The BP update equations (18.6) simplify under this
initialization (they reduce to the erasure decoder of Sect. 15.3):

• At a variable node the outgoing message is 0 unless all the incoming are ∗.
• At a function node the outgoing message is ∗ unless all the incoming are
0.

(The message coming out of a degree-1 variable node is always ∗).
These rules preserve a natural partial ordering. Given two sets of messages

ν = {νi→a}, ν̃ = {ν̃i→a}, let us say that ν(t) , ν̃(t) if for each directed edge i → a

where the message ν̃(t)
i→a = 0, then ν(t)

i→a = 0 as well. It follows immediately from
the update rules that, if for some time t the messages are ordered as ν(t) , ν̃(t),
then this order is preserved at all later times: ν(s) , ν̃(s) for all s > t.

This partial ordering suggests to pay special attention to the two ‘extremal’

initial conditions, namely ν(0)
i→a = ∗ for all directed edges i → a, or ν(0)

i→a = 0
for all i → a. The fraction of edges Qt that carry a message 0 at time t is a
deterministic quantity in the N →∞ limit. It satisfies the recursion:

Qt+1 = 1 − exp{−KαQK−1
t } , (18.7)

with Q0 = 1 (respectively Q0 = 0) for the 0 initial condition (resp. the ∗ initial
condition). The density evolution recursion (18.7) is represented pictorially in
Fig. 18.2.

Under the ∗ initial condition, we have Qt = 0 at all times t. In fact the all
∗ message configuration is always a fixed point of BP. On the other hand, when
Q0 = 1, one finds two possible asymptotic behaviors: Qt → 0 for α < αd(K),
while Qt → Q > 0 for α > αd(K). Here Q > 0 is the largest positive solution of
Q = 1 − exp{−KαQK−1}. The critical value αd(K) of the density of equations
α = M/N separating these two regimes is:
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αd(K) = sup
{

α such that ∀x ∈]0, 1] : x < 1 − e−KαxK−1 }
. (18.8)

We get for instance αd(K) ≈ 0.818469, 0.772280, 0.701780 for, respectively,
K = 3, 4, 5 and αd(K) = log K/K[1 + o(1)] as K →∞.

We therefore found two regimes for the homogeneous random XORSAT prob-
lem in the large-N limit. For α < αd(K) there is a unique BP fixed point with
all messages25 equal to ∗. The BP prediction for single bit marginals that corre-
sponds to this fixed point is νi(xi = 0) = νi(xi = 1) = 1/2.

For α > αd(K) there exists more than one BP fixed points. We have found two
of them: the all-∗ one, and one with density of ∗’s equal to Q. Other fixed points of
the inhomogeneous problem can be constructed as follows for α ∈]αd(K), αs(K)[.
Let x(∗) be a solution of the inhomogeneous problem, and ν, ν̂ be a BP fixed point
in the homogeneous case. Then the messages ν(∗), ν̂(∗) defined by:

ν(∗)
j→a(xj = 0) = ν(∗)

j→a(xj = 1) = 1/2 if νj→a = ∗,

ν(∗)
j→a(xj) = I(xj = x(∗)

j ) if νj→a = 0, (18.9)

(and similarly for ν̂(∗)) are a BP fixed point for the inhomogeneous problem.
For α < αd(K), the inhomogeneous problem admits, with high probability,

a unique BP fixed point. This is a consequence of the exercise:

Exercise 18.7 Consider a BP fixed point ν(∗), ν̂(∗) for the inhomogeneous

problem, and assume all the messages to be of one of three types: ν(∗)
j→a(xj =

0) = 1, ν(∗)
j→a(xj = 0) = 1/2, ν(∗)

j→a(xj = 0) = 0. Assume furthermore that
messages are not ‘contradictory,’ i.e. that there exists no variable node i such

that ν̂(∗)
a→i(xi = 0) = 1 and ν̂(∗)

b→i(xi = 0) = 0.
Construct a non-trivial BP fixed point for the homogeneous problem.

18.2.2 Correlation decay

The BP prediction is that for α < αd(K) the marginal distribution of any bit xi

is uniform under either of the measures µ0, µ. The fact that the BP estimates do
not depend on the initialization is an indication that the prediction is correct. Let
us prove that this is indeed the case. To be definite we consider the homogeneous
problem (i.e. µ0). The inhomogeneous case follows, using the general remarks in
Sec. 18.1.1.

We start from an alternative interpretation of Qt. Let i ∈ {1, . . . , N} be a
uniformly random variable index and consider the ball of radius t around i in the
factor graph G: Bi,t(G). Set to xj = 0 all the variables xj outside this ball, and let

Q(N)
t be the probability that, under this condition, all the solutions of the linear

system Hx = 0 have xi = 0. Then the convergence of Bi,t(G) to the tree model

25While a vanishing fraction of messages νi→a = 0 is not excluded by our argument, it can
be ruled out by a slightly lenghtier calculation.
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0

Fig. 18.3. Factor graph for a 3-XORSAT instance with the depth t = 1 neigh-
borhood of vertex i, Bi,t(G) indicated. Fixing to 0 all the variables outside
Bi,t(G) does not imply that xi must be 0 in order to satisfy the homogeneous
linear system.

T(K,α) discussed in Sec. 9.5 implies that, for any given t, limN→∞ Q(N)
t = Qt.

It also determines the initial condition to Q0 = 1.
Consider now the marginal distribution µ0(xi). If xi = 0 in all the solutions

of Hx = 0, then, a fortiori xi = 0 in all the solutions that fulfill the additional

condition xj = 0 for j .∈ Bi,t(G). Therefore we have P {µ0(xi = 0) = 1} ≤ Q(N)
t .

By taking the N →∞ limit we get

lim
N→∞

P {µ0(xi = 0) = 1} ≤ lim
N→∞

Q(N)
t = Qt . (18.10)

Letting t →∞ and noticing that the left hand side does not depend on t we get
P {µ0(xi = 0) = 1} → 0 as N → ∞. In other words, all but a vanishing fraction
of the bits are free for α < αd(K).

The number Qt also has another interpretation, which generalizes to the in-
homogeneous problem. Choose a solution x(∗) of the homogeneous linear system
and, instead of fixing the variables outside the ball of radius t to 0, let’s fix them

to xj = x(∗)
j , j .∈ Bi,t(G). Then Q(N)

t is the probability that xi = x(∗)
i , under this

condition. The same argument holds in the inhomogeneous problem, with the
measure µ: if x(∗) is a solution of Hx = b and we fix the variables outside Bi,t(G)

to xj = x(∗)
j , the probability that xi = x(∗)

i under this condition is again Q(N)
t .

The fact that limt→∞ Qt = 0 when α < αd(K) thus means that a spin decorre-
lates from the whole set of variables at distance larger than t, when t is large.
This formulation of correlation decay is rather specific to XORSAT, because it
relies on the dichotomous nature of this problem: Either the ‘far away’ variables
completely determine xi, or they have no influence on it and it is uniformly ran-
dom. A more generic formulation of correlation decay, which generalizes to other
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x(1) x(2)

xi xi

t t

Fig. 18.4. A thought experiment: fix variables ‘far’ from i to two different as-
signments and check the influence on xi. For α < αd there is no influence

problems which don’t have this dichotomy property, consists in comparing two
different choices x(1), x(2) of the reference solution (cf. Fig. 18.4). For α < αd(K)
the correlations decay even in the worst case:

lim
N→∞

E

{
sup

x(1),x(2)

|µ(xi|x(1)
∼i,t)− µ(xi|x(2)

∼i,t)|
}

= Qt → 0 , (18.11)

as t → ∞. In Ch. 22 we will discuss weaker (non worst-case) definitions of
correlation decay, and their relation to phase transitions.

18.3 Core percolation and BP

18.3.1 2-core and peeling

What happens for α > αd(K)? A first hint is provided by the instance in

Fig. 18.1. In this case, the configuration of messages ν(t)
i→a = 0 on all directed

edges i → a is a fixed point of the BP update for the homogeneous system. A
moment of thought shows that this happens because G has the property that
each variable node has degree at least 2. We shall now see that, for α > αd(K),
G has with high probability a subgraph (called 2-core) with the same property.

We already encountered similar structures in Sec. 15.3, where we identified
them as responsible for errors in iterative decoding of LDPC codes over the
erasure channel. Let us recall the relevant points26 from that discussion. Given
a factor graph G, a stopping set is a subset of the function nodes such that all
the variables have degree larger or equal to 2 in the induced sub-graph. The
2-core is the largest stopping set. It is unique and can be found by the peeling
algorithm, which amounts to iterating the following procedure: find a variable
node of degree 0 or 1 (a “leaf”), erase it together with the factor node adjacent to
it, if there is one. The resulting subgraph, the 2-core, will be denoted as K2(G).

The peeling algorithm is of direct use for solving the linear system: if a
variable has degree 1, the unique equation where it appears allows to express it

26Notice that the structure causing decoding errors was the 2-core of the dual factor graph
that is obtained by exchanging variable and function nodes.
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in terms of other variables. It can thus be eliminated from the problem. The 2-
core of G is the factor graph associated to the linear system obtained by iterating
this procedure, which we shall refer to as the “core system”. The original system
has a solution if and only if the core does. We shall refer to solutions of the core
system as to core solutions.

18.3.2 Clusters

Core solutions play an important role as the set of solutions can be partitioned
according to their core values. Given an assignment x, denote by π∗(x) its pro-
jection onto the core, i.e. the vector of those entries in x that corresponds to
vertices in the core. Suppose that the factor graph has a non-trivial 2-core, and
let x(∗) be a core solution. We define the cluster associated with x(∗) as the set
of solutions to the linear system such that π∗(x) =
ux(∗) (the reason for the name cluster will become clear in Sec. 18.5). If the core
of G is empty, we shall adopt the convention that the entire set of solutions forms
a unique cluster.

Given a solution x(∗) of the core linear system, we shall denote the corre-
sponding cluster as S(x(∗)). One can obtain the solutions in S(x(∗)) by running
the peeling algorithm in the reverse direction, starting from x(∗). In this pro-
cess one finds variable which are uniquely determined by x(∗), they form what
is called the ‘backbone’ of the graph. More precisely, we define the backbone
B(G) as the sub-graph of G that is obtained augmenting K2(G) as follows. Set
B0(G) = K2(G). For any t ≥ 0, pick a function node a which is not in Bt(G)
and which has at least K − 1 of its neighboring variable nodes in Bt(G), and
build Bt+1(G) by adding a (and its neighborhing variables) to Bt(G). If no such
function node exists, set B(G) = Bt(G) and halt the procedure. This definition
of B(G) does not depend on the order in which function nodes are added. The
backbone contains the 2-core, and is such that any two solutions of the linear
system which belong to the same cluster, coincide on the backbone.

We have thus found that the variables in a linear system naturally divide into
three possible types: The variables in the 2-core K2(G), those in B(G) \ K2(G)
which are not in the core but are fixed by the core solution, and the variables
which are not uniquely determined by x(∗). This distinction is based on the
geometry of the factor graph, i.e. it depends only the matrix H, and not on the
value of the right hand side b in the linear system. We shall now see how BP
finds these structures.

18.3.3 Core, backbone, and belief propagation

Consider the homogeneous linear system Hx = 0, and run BP with initial con-

dition ν(0)
i→a = 0. Denote by νi→a, ν̂a→i the fixed point reached by BP (with

measure µ0) under this initialization (the reader is invited to show that such a
fixed point is indeed reached after a number of iterations at most equal to the
number of messages).

The fixed point messages νi→a, ν̂a→i can be exploited to find the 2-core
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Fig. 18.5. The factor graph of a XORSAT problem, its core (central dash-dotted
part) and its backbone (adding one function node and one variable on the
right - dashed zone)

K2(G), using the following properties (which can be proved by induction over
t): (i) νi→a = ν̂a→i = 0 for each edge (i, a) in K2(G). (ii) A variable i belongs
to the core K2(G) if and only if it receives messages ν̂a→i = 0 from at least two
of the neighboring function nodes a ∈ ∂i. (iii) If a function node a ∈ {1, . . . , M}
has νi→a = 0 for all the neighboring variable nodes i ∈ ∂a, then a ∈ K2(G).

The fixed point BP messages also contain information on the backbone: a
variable i belongs to the backbone B(G) if and only if it receives at least one
message ν̂a→i = 0 from its neighboring function nodes a ∈ ∂i.

Exercise 18.8 Consider a XORSAT problem described by the factor graph of
Fig. 18.5.

(a) Using the peeling and backbone construction algorithms, check that the
core and backbone are those described in the caption.

(b) Compute the BP messages found for the homogeneous problem as a fixed
point of BP iteration starting from the all 0 configuration. Check the core
and backbone that you obtain from these messages.

(c) Consider the general inhomogeneous linear system with the same factor
graph. Show that there exist two solutions to the core system: x1 =
0, x2 = bb ⊕ bc, x3 = ba ⊕ bb ⊕ bc, x4 = ba ⊕ bb and x1 = 0, x2 = bb ⊕ bc ⊕
1, x3 = ba⊕bb⊕bc, x4 = ba⊕bb⊕1. Identify the two clusters of solutions.

18.4 The SAT-UNSAT threshold in random XORSAT

We shall now see how a sharp characterization of the core size in random linear
systems provides the clue to the determination of the satisfiability threshold.
Remarkably, this characterization can again be achieved through an analysis of
BP.
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18.4.1 The size of the core

Consider an homogeneous linear system over N variables drawn from the random

K-XORSAT ensemble, and let {ν(t)
i→a} denote the BP messages obtained from

the initialization ν(0)
i→a = 0. The density evolution analysis of Sec. 18.2.1 implies

that the fraction of edges carrying a message 0 at time t, (we called it Qt) satisfies
the recursion equation (18.7). This recursion holds for any given t asymptotically
as N →∞.

It follows from the same analysis that, in the large N limit, the messages

ν̂(t)
a→i entering a variable node i are i.i.d. with P{ν̂(t)

a→i = 0} = Q̂t ≡ QK−1
t . Let

us for a moment assume that the limits t → ∞ and N → ∞ can be exchanged
without much harm. This means that the fixed point messages ν̂a→i entering a
variable node i are asymptotically i.i.d. with P{ν̂a→i = 0} = Q̂ ≡ QK−1, where
Q is the largest solution of the fixed point equation:

Q = 1 − exp{−KαQ̂} , Q̂ = QK−1 . (18.12)

The number of incoming messages with ν̂a→i = 0 converges therefore to a Poisson
random variable with mean KαQ̂. The expected number of variable nodes in the
core will be E|K2(G)| = NV (α, K) + o(N), where V (α, K) is the probability
that such a Poisson random variable is larger or equal to 2, that is

V (α, K) = 1 − e−Kα bQ −KαQ̂ e−Kα bQ . (18.13)

In Fig. 18.6 we plot V (α) as a function of α. For α < αd(K) the peeling algorithm
erases the whole graph, there is no core. The size of the core jumps to some finite
value at αd(K) and when α →∞ the core is the full graph.

Is K2(G) a random factor graph or does it have any particular structure?
By construction it cannot contain variable nodes of degree zero or one. Its ex-
pected degree profile (expected fraction of nodes of any given degree) will be
asymptotically Λ̂ ≡ {Λ̂l}, where Λ̂l is the probability that a Poisson random
variable of parameter KαQ̂, conditioned to be at least 2, is equal to l. Explicitly
Λ̂0 = Λ̂1 = 0, and

Λ̂l =
1

eKα bQ − 1 −KαQ̂

1

l!
(KαQ̂)l for l ≥ 2. (18.14)

Somewhat surprisingly K2(G) does not have any more structure than the one
determined by its degree profile. This fact is stated more formally in the following
theorem.

Theorem 18.1 Consider a factor graph G from the GN(K, Nα) ensemble with
K ≥ 3. Then

(i) K2(G) = ∅ with high probability for α < αd(K).
(ii) For α > αd(K), |K2(G)| = NV (α, K) + o(N) with high probability.

(iii) The fraction of vertices of degree l in K2(G) is between Λ̂l − ε and Λ̂l + ε
with probability greater than 1 − e−Θ(N).
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Fig. 18.6. The core of random 3-XORSAT formulae contains NV (α) variables,
and NC(α) equations. These numbers are plotted versus the number of equa-
tions per variable of the original formula α. The number of solutions to the
XORSAT linear system is Σ(α) = V (α)−C(α). The core appears for α ≥ αd,
and the system becomes UNSAT for α > αs, where αs is determined by
Σ(αs) = 0.

(iv) Conditionally on the number of variable nodes n = |K2(G)|, the degree
profile being Λ̂, K2(G) is distributed according to the Dn(Λ̂, xK) ensemble.

We will not provide the proof of this theorem. The main ideas have already
been presented in the previous pages, except for one important mathematical
point: how to exchange the limits N → ∞ and t → ∞. The basic idea is to run
BP for a large but fixed number of steps t. At this point the resulting graph is
‘almost’ a 2-core, and one can show that a sequential peeling procedure stops in
less than Nε steps.

In Fig. 18.7 we compare the statement in this Theorem with numerical sim-
ulations. The probability that G contains a 2 core Pcore(α) increases from 0 to 1
as α ranges from 0 to ∞, with a threshold becoming sharper and sharper as the
size N increases. The threshold behavior can be accurately described using finite
size scaling. Setting α = αd(K) + β(K) z N−1/2 + δ(K)N−2/3 (with properly
chosen β(K) and δ(K)) one can show that Pcore(α) approaches a K-independent
non-trivial limit that depends smoothly on z.

18.4.2 The threshold

Knowing that the core is a random graph with degree distribution Λ̂l, we can
compute the expected number of equations in the core. This is given by the num-
ber of vertices times their average degree, divided by K, which yields NC(α, K)+
o(N) where



422 LINEAR EQUATIONS WITH BOOLEAN VARIABLES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

100
200
300
400
600

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

100
200
300
400
600

zα

Pcore Pcore

Fig. 18.7. Probability that a random graph from the GN(K,α) ensemble with
K = 3 (equivalently, the factor graph of a random 3-XORSAT formula) con-
tains a 2 core. On the left, the outcome of numerical simulations is compared
with the asymptotic threshold αd(K). On the right, scaling plot (see text).

C(α, K) = αQ̂(1 − e−Kα bQ) . (18.15)

In Fig. 18.6 we plot C(α, K) versus α. If α < αd(K) there is no core. For
α ∈]αd, αs[ the number of equations in the core is smaller than the number of
variables V (α, K). Above αc there are more equations than variables.

A linear system has a solution if and only if the associated core problem
has a solution. In a large random XORSAT instance, the core system involves
approximately NC(α, K) equations between NV (α, K) variables. We shall show
that these equations are, with high probability, linearly independent as long as
C(α, K) < V (α, K), which implies the following result

Theorem 18.2. (XORSAT satisfiability threshold.) For K ≥ 3, let

Σ(K,α) = V (K,α) − C(K,α) = Q− αQ̂(1 + (K − 1)(1 −Q)) , (18.16)

where Q, Q̂ are the largest solution of Eq. (18.12). Let αs(K) = inf{α : Σ(K,α) <
0}. Consider a random K-XORSAT linear system with N variables and Nα
equations. The following results hold with a probability going to 1 in the large N
limit:

(i) The system has a solution when α < αs(K).
(ii) It has no solution when α > αs(K).
(iii) For α < αs(K) the number of solutions is 2N(1−α)+o(N), and the number

of clusters is 2NΣ(K,α)+o(N).

Notice that the the last expression in Eq. (18.16) is obtained from Eqs. (18.13)
and (18.15) using the fixed point condition (18.12).

The prediction of this theorem is compared with numerical simulations in
Fig. 18.8, while Fig. 18.9 summarizes the results on the thresholds for XORSAT.
Proof: We shall convey the basic ideas of the proof and refer to the literature
for technical details.
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Fig. 18.8. Probability that a random 3-XORSAT formula with N variables and
Nα equations is SAT, estimated numerically by generating 103÷104 random
instances.

K 3 4 5
αd 0.81847 0.77228 0.70178
αs 0.91794 0.97677 0.99244

0 αd αs

Fig. 18.9. Left: A pictorial view of the phase transitions in random XORSAT
systems. The satisfiability threshold is αs. In the ‘Easy-SAT’ phase α < αd

there is a single cluster of solutions. In the ‘Hard-SAT’ phase αd < α < αs

the solutions of the linear system are grouped in well separated clusters.
Right: The thresholds αd, αs for various values of K. At large K one has:
αd(K) 1 log K/K and αs(K) = 1 − e−K + O(e−2K).

Let us start by proving (ii), namely that for α > αs(K) random XORSAT
instances are with high probability UNSAT. This follows from a linear algebra
argument. Let H∗ denote the 0−1 matrix associated with the core, i.e. the matrix
including those rows/columns such that the associated function/variable nodes
belong to K2(G). Notice that if a given row is included in H∗ then all the columns
corresponding to non-zero entries of that row are also in H∗. As a consequence,
a necessary condition for the rows of H to be independent is that the rows of H∗
are independent. This is in turn impossible if the number of columns in H∗ is
smaller than its number of rows.

Quantitatively, one can show that M − rank(H) ≥ rows(H∗)− cols(H∗) (with
the obvious meanings of rows( · ) and cols( · )). In large random XORSAT sys-
tems, Theorem 18.1 implies that rows(H∗)−cols(H∗) = −NΣ(K,α)+o(N) with
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Fig. 18.10. Adding a function nodes involving a variable node of degree one.
The corresponding linear equation is independent from the other ones.

high probability. According to our discussion in Sec. 18.1.1, among the 2M pos-
sible choices of the right-hand side vector b, only 2rank(H) are in the image of H

and thus lead to a solvable system. In other words, conditional on H, the prob-
ability that random XORSAT is solvable is 2rank(H)−M . By the above argument
this is, with high probability, smaller than 2NΣ(K,α)+o(N). Since Σ(K,α) < 0 for
α > αs(K), it follows that the system is UNSAT with high probability.

In order to show that a random system is satisfiable with high probability
when α < αs(K), one has to prove the following facts: (i) if the core matrix H∗
has maximum rank, then H has maximum rank as well; (ii) if α < αs(K), then
H∗ has maximum rank with high probability. As a byproduct, the number of
solutions is 2N−rank(H) = 2N−M .

(i) The first step follows from the observation that G can be constructed from
K2(G) through an inverse peeling procedure. At each step one adds a function
node which involves at least a degree one variable (see Fig. 18.10). Obviously this
newly added equation is linearly independent of the previous ones, and therefore
rank(H) = rank(H∗) + M − rows(H∗).

(ii) Let n = cols(H∗) be the number of variable nodes and m = rows(H∗) the
number of function nodes in the core K2(G). Let us consider the homogeneous
system on the core, H∗x = 0, and denote by Z∗ the number of solutions to this
system. We will show that with high probability this number is equal to 2n−m.
This means that the dimension of the kernel of H∗ is n − m and therefore H∗
has full rank.

We know from linear algebra that Z∗ ≥ 2n−m. To prove the reverse inequal-
ity we use a first moment method. According to Theorem 18.1, the core is a
uniformly random factor graph with n = NV (K,α) + o(N) variables and de-
gree profile Λ = Λ̂ + o(1). Denote by E the expectation value with respect to
this ensemble. We shall use below a first moment analysis to show that, when
α < αc(K):

E {Z∗} = 2n−m[1 + oN (1)] . (18.17)
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Fig. 18.11. The exponential rate φ(ω) of the weight enumerator of the core of
a random 3-XORSAT formula. From top to bottom α = αd(3) ≈ 0.818469,
0.85, 0.88, 0.91, and 0.94 (recall that αs(3) ≈ 0.917935). Inset: blow up of
the small ω region.

Then Markov inequality P{Z∗ > 2n−m} ≤ 2−n+mE{Z∗} implies the bound.
The surprise is that Eq. (18.17) holds, and thus a simple first moment esti-

mate allows to establish that H∗ has full rank. We saw in Exercise 18.6 that the
same approach, when applied directly to the original linear system, fails above
some α∗(K) which is strictly smaller than αs(K). Reducing the original graph to
its two-core has drastically reduced the fluctuations of the number of solutions,
thus allowing for a successful application of the first moment method.

We now turn to the proof of Eq. (18.17), and we shall limit ourselves to the
computation of E{Z∗} to the leading exponential order, when the core size and
degree profiles take their typical values n = NV (K,α), Λ = Λ̂ and P (x) = xK .
This problem is equivalent to computing the expected number of codewords in
the LDPC code defined by the core system, which we already did in Sec. 11.2.
The result takes the typical form

E{Z∗}
.
= exp

{
N sup

ω∈[0,V (K,α)]
φ(ω)

}
. (18.18)

Here φ(ω) is the exponential rate for the number of solutions with weight Nω.
Adapting Eq. (11.18) to the present case, we obtain the parametric expression:

φ(ω) = −ω log x − η(1 − e−η) log(1 + yz) + (18.19)

+
∑

l≥2

e−η
ηl

l!
log(1 + xyl) +

η

K
(1 − e−η) log qK(z) ,

ω =
∑

l≥2

e−η
ηl

l!

xyl

1 + xyl
. (18.20)
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where η = KαQ̂∗, qK(z) = [(1 + z)K + (1 − z)K ]/2 and y = y(x), z = z(x) are
the solution of

z =

∑
l≥1[η

l/l!] [xyl−1/(1 + xyl)]
∑

l≥1[η
l/l!] [1/(1 + xyl)]

, y =
(1 + z)K−1 − (1 − z)K−1

(1 + z)K−1 + (1 − z)K−1
. (18.21)

With a little work one sees that ω∗ = V (K,α)/2 is a local maximum of φ(ω),
with φ(ω∗) = Σ(K,α) log 2. As long as ω∗ is a global maximum, E{Z∗|n,Λ} .

=
exp{Nφ(ω∗)}

.
= 2n−m. It turns out, cf. Fig. 18.11, that the only other local

maximum is at ω = 0 corresponding to φ(0) = 0. Therefore E{Z∗|n,Λ} .
= 2n−m

as long as φ(ω∗) = Σ(K,α) > 0, i.e. for any α < αs(K)
Notice that the actual proof of Eq. (18.17) is more complicate because it

requires estimating the sub-exponential factors. Nevertheless it can be carried
out successfully. !

18.5 The Hard-SAT phase: clusters of solutions

In random XORSAT, the whole regime α < αs(K) is SAT. This means that,
with high probability there exist solutions to the random linear system, and the
number of solutions is in fact Z

.
= eN(1−α). Notice that the number of solutions

does not present any precursor of the SAT-UNSAT transition at αs(K) (recall
that αs(K) < 1), nor does it carry any trace of the sudden appearence of a
non-empty two core at αd(K).

On the other hand the threshold αd(K) separates two phases, that we will call
‘Easy-SAT’ (for α < αd(K)) and ‘Hard-SAT’ phase (for α ∈]αd(K), αs(K)[).
These two phases differ in the structure of the solution space, as well as in the
behavior of some simple algorithms.

In the Easy-SAT phase there is no core, solutions can be found in (expected)
linear time using the peeling algorithm and they form a unique cluster. In the
Hard-SAT the factor graph has a large 2-core, and no algorithm is known that
finds a solution in linear time. Solutions are partitioned in 2NΣ(K,α)+o(N) clusters.
Until now the name ‘cluster’ has been pretty arbitrary, and only denoted a subset
of solutions that coincide in the core. The next result shows that distinct clusters
are ‘far apart’ in Hamming space.

Proposition 18.3 In the Hard-SAT phase there exists δ(K,α) > 0 such that,
with high probability, any two solutions in distinct clusters have Hamming dis-
tance larger than Nδ(K,α).

Proof: The proof follows from the computation of the weight enumerator expo-
nent φ(ω), cf. Eq. (18.20) and Fig. 18.11. One can see that for any α > αd(K),
φ′(0) < 0, and, as a consequence there exists δ(K,α) > 0 such that φ(ω) < 0
for 0 < ω < δ(K,α). This implies that if x∗, x′

∗ are two distinct solution of the
core linear system, then either d(x∗, x

′
∗) = o(N) or d(x, x′) > Nδ(K,α). It turns

out that the first case can be excluded along the lines of the minimal distance
calculation of Sec. 11.2. Therefore, if x, x′ are two solutions belonging to distinct
clusters d(x, x′) ≥ d(π∗(x), π∗(x′)) ≥ Nδ(K,α). !
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This result suggests to regard clusters as ‘lumps’ of solutions well separated
from each other. One aspect which is conjectured, but not proved, concerns the
fact that clusters form ‘well connected components.’ By this we mean that any
two solutions in the a cluster can be joined by a sequence of other solutions,
whereby two successive solutions in the sequence differ in at most sN variables,
with sN = o(N) (a reasonable expectation is sN = Θ(log N)).

18.6 An alternative approach: the cavity method

The analysis of random XORSAT in the previous sections relied heavily on the
linear structure of the problem, as well as on the very simple instance distribu-
tion. This section describes an alternative approach that is potentially generaliz-
able to more complex situations. The price to pay is that this second derivation
relies on some assumptions on the structure of the solution space. The observa-
tion that our final results coincide with the ones obtained in the previous section
gives some credibility to these assumptions.

The starting point is the remark that BP correctly computes the marginals of
µ( · ) (the uniform measure over the solution space) for α < αd(K), i.e. as long as
the set of solutions forms a single cluster. We want to extend its domain of validity
to α > αd(K). If we index by n ∈ {1, . . . ,N} the clusters, the uniform measure
µ( · ) can be decomposed into the convex combination of uniform measures over
each single cluster:

µ( · ) =
N∑

n=1

wn µn( · ) . (18.22)

Notice that in the present case wn = 1/N is independent of n and the measures
µn( · ) are obtained from each other via a translation, but this will not be true
in more general situations.

Consider an inhomogeneous XORSAT linear system and denote by x(∗) one
of its solutions in cluster n. The distribution µn has single variable marginals

µn(xi) = I(xi = x(∗)
i ) if node i belongs to the backbone, and µn(xi = 0) =

µn(xi = 1) = 1/2 on the other nodes.
In fact we can associate to each solution x(∗) a fixed point of the BP equation.

We already described this in Section 18.2.1, cf. Eq. (18.9). On this fixed point

messages take one of the following three values: ν(∗)
i→a(xi) = I(xi = 0) (that we

will denote as ν(∗)
i→a = 0), ν(∗)

i→a(xi) = I(xi = 1) (denoted ν(∗)
i→a = 1), ν(∗)

i→a(xi =

0) = ν(∗)
i→a(xi = 1) = 1/2 (denoted ν(∗)

i→a = ∗). Analogous notations hold for
function-to-variable node messages. The solution can be written most easily in
terms of the latter

ν̂(∗)
a→i =






1 if x(∗)
i = 1 and i, a ∈ B(G),

0 if x(∗)
i = 0 and i, a ∈ B(G),

∗ otherwise.

(18.23)
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Notice that these messages only depend on the value of x(∗)
i on the backbone of

G, hence they depend on x(∗) only through the cluster it belongs to. Reciprocally,
for any two distinct clusters, the above definition gives two distinct fixed points.

Because of this remark we shall denote these fixed points as {ν(n)
i→a, ν̂(n)

a→i}, where
n is a cluster index.

Let us recall the BP fixed point condition:

νi→a =

{
∗ if ν̂b→i = ∗ for all b ∈ ∂i\a,
any ‘non ∗’ ν̂b→i otherwise.

(18.24)

ν̂a→i =

{
∗ if ∃j ∈ ∂a\i s.t. ν̂j→a = ∗,
ba ⊕ νj1→a ⊕ · · · ⊕ νjl→a otherwise.

(18.25)

Below we shall denote symbolically these equations as

νi→a = f{ν̂b→i} , ν̂a→i = f̂{νj→a} . (18.26)

Let us summarize our findings.

Proposition 18.4 To each cluster n we can associate a distinct fixed point of

the BP equations (18.25) {ν(n)
i→a, ν̂(n)

a→i}, such that ν̂(n)
a→i ∈ {0, 1} if i, a are in the

backbone and ν̂(n)
a→i = ∗ otherwise.

Note that the converse of this proposition is false: there may exist solutions to
the BP equations which are not of the previous type. One of them is the all ∗
solution. Nontrivial solutions exist as well as shown in Fig. 18.12.

An introduction to the 1RSB cavity method in the general case will be pre-
sented in Ch. 19. Here we give a short informal preview in the special case of the
XORSAT: the reader will find a more formal presentation in the next chapter.
The first two assumptions of the 1RSB cavity method can be summarized as
follows (all statements are understood to hold with high probability).

Assumption 1 In a large random XORSAT instance, for each cluster ‘n’ of
solutions, the BP solution ν(n), ν̂(n) provides an accurate ‘local’ description of
the measure µn( · ).

This means that for instance the one point marginals are given by µn(xj) ∼=∏
a∈∂j ν̂(n)

a→j(xj) + o(1), but also that local marginals inside any finite cavity are
well approximated by formula (14.18).

Assumption 2 For a large random XORSAT instance in the Hard-SAT phase,
the number of clusters eNΣ is exponential in the number of variables. Further, the
number of solutions of the BP equations (18.25) is, to the leading exponential
order, the same as the number of clusters. In particular it is the same as the
number of solutions constructed in Proposition 18.4.

A priori one might have hoped to identify the set of messages {ν(n)
i→a} for

each cluster. The cavity method gives up this ambitious objective and aims to
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corefrozen

1

2

a

b

Fig. 18.12. Left: A set of BP messages associated with one cluster (cluster
number n) of solutions. An arrow along an edge means that the correspond-

ing message (either ν(n)
i→a or ν̂(n)

a→i) takes value in {0, 1}. The other messages
are equal to ∗. Right: A small XORSAT instance. The core is the whole
graph. In the homogeneous problem there are two solutions, which form
two clusters: x1 = x2 = 0 and x1 = x2 = 1. Beside the two correspond-
ing BP fixed points described in Proposition 18.4, and the all-∗ fixed point,
there exist other fixed points such as ν̂a→1 = ν1→b = ν̂b→2 = ν2→a = 0,
ν̂a→2 = ν2→b = ν̂b→1 = ν1→a = ∗.

compute the distribution of ν(n)
i→a for any fixed edge i → a, when n is a cluster

index drawn with distribution {wn}. We thus want to compute the quantities:

Qi→a(ν) = P
{
ν(n)

i→a = ν
}

, Q̂a→i(ν̂) = P
{
ν̂(n)

a→i = ν̂
}

. (18.27)

for ν, ν̂ ∈ {0, 1, ∗}. Computing these probabilities rigorously is still a challenging
task. In order to proceed, we make some assumption on the joint distribution of

the messages ν(n)
i→a when n is a random cluster index (chosen from the probability

wn).
The simplest idea would be to assume that messages on ‘distant’ edges are

independent. For instance let us consider the set of messages entering a given
variable node i. Their only correlations are induced through BP equations along
the loops to which i belongs. Since in random K-XORSAT formulae such loops
have, with high probability, length of order log N , one might think that mes-
sages incoming a given node are asymptotically independent. Unfortunately
this assumption is false. The reason is easily understood if we assume that
Q̂a→i(0), Q̂a→i(1) > 0 for at least two of the function nodes a adjacent to a
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given variable node i. This would imply that, with positive probability a ran-

domy sampled cluster has ν(n)
a→i = 0, and ν(n)

b→i = 1. But there does not exist any
such cluster, because in such a situation there is no consistent prescription for
the marginal distribution of xi under µn( · ).

Our assumption will be that the next simplest thing happens: messages are
independent conditional to the fact that they do not contradict each other.

Assumption 3 Consider the Hard-SAT phase of a random XORSAT problem.
Denote by i ∈ G a uniformly random node, by n a random cluster index with

distribution {wn}, and let - be an integer ≥ 1. Then the messages {ν(n)
j→b}, where

(j, b) are all the edges at distance - from i and directed towards i, are asymptot-
ically independent under the condition of being compatible.

Here ‘compatible’ means the following. Consider the linear system Hi,%xi,% =
0 for the neighborhood of radius - around node i. If this admits a solution under
the boundary condition xj = νj→b for all the boundary edges (j, b) on which
{νj→b} ∈ {0, 1}, then the messages {νj→b} are said to be compatible.

Given the messages νj→b at the boundary of a radius-- neighborhood, the
BP equations (18.24) and (18.25) allow to determine the messages inside this
neighborhood. Consider in particular two nested neighborhoods at distance -
and - + 1 from i. The inwards messages on the boundary of the largest neigh-
borhood completely determines the ones on the boundary of the smallest one. A
little thought shows that, if the messages on the outer boundary are distributed
according to Assumption 3, then the distribution of the resulting messages on the
inner boundary also satisfies the same assumption. Further, the distributions are
consistent if and only if the following ‘survey propagation’ equations are satisfied
by the one-message marginals:

Qi→a(ν) ∼=
∑

{bνb}

∏

b∈∂i\a

Q̂b→i(ν̂b) I(ν = f{ν̂b}) I({ν̂b}b∈∂i\a ∈ COMP) , (18.28)

Q̂a→i(ν̂) =
∑

{νj}

∏

j∈∂a\i

Qj→a(νj) I(ν̂ = f̂{νj}) . (18.29)

Here and {ν̂b} ∈ COMP only if the messages are compatible (i.e. they do not
contain both a 0 and a 1). Since Assumptions 1, 2, 3 above hold only with
high probability and asymptotically in the system size, the equalities in (18.28),
(18.29) must also be interpreted as approximate. The equations should be satis-
fied within any given accuracy ε, with high probability as N → ∞.
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Exercise 18.9 Show that Eqs. (18.28), (18.29) can be written explicitly as

Qi→a(0) ∼=
∏

b∈∂i\a

(Q̂b→i(0) + Q̂b→i(∗)) −
∏

b∈∂i\a

Q̂b→i(∗) , (18.30)

Qi→a(1) ∼=
∏

b∈∂i\a

(Q̂b→i(1) + Q̂b→i(∗)) −
∏

b∈∂i\a

Q̂b→i(∗) (18.31)

Qi→a(∗) ∼=
∏

b∈∂i\a

Q̂b→i(∗) , (18.32)

where the ∼= symbol hides a global normalization constant, and

Q̂a→i(0) =
1

2





∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) +
∏

j∈∂a\i

(Qj→a(0) −Qj→a(1))




 ,

(18.33)

Q̂a→i(1) =
1

2





∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) −
∏

j∈∂a\i

(Qj→a(0) −Qj→a(1))




 ,

(18.34)

Q̂a→i(∗) = 1 −
∏

j∈∂a\i

(Qj→a(0) + Qj→a(1)) . (18.35)

The final step of the 1RSB cavity method consists in looking for a solution of
Eqs. (18.28), (18.29). There are no rigorous results on the existence or number of
such solutions. Further, since these equations are only approximate, approximate
solutions should be considered as well. In the present case a very simple (and
somewhat degenerate) solution can be found that yields the correct predictions
for all the quantities of interest. In this solution, the message distributions take
one of two possible forms: on some edges one has Qi→a(0) = Qi→a(1) = 1/2
(with an abuse of notation we shall write Qi→a = 0 in this case), on some other
edges Qi→a(∗) = 1 (we will then write Qi→a = ∗). Analogous forms hold for
Q̂a→i. A little algebra shows that this is a solution if and only if the η’s satisfy

Qi→a =

{
∗ if Q̂b→i = ∗ for all b ∈ ∂i\a,
0 otherwise.

(18.36)

Q̂a→i =

{
∗ if ∃j ∈ ∂a\i s.t. Q̂j→a = ∗,
0 otherwise.

(18.37)

These equations are identical to the original BP equations for the homogeneous
problem (this feature is very specific to XORSAT and will not generalize to
more advanced applications of the method). However the interpretation is now
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completely different. On the edges where Qi→a = 0 the corresponding message

ν(n)
i→a depend on the cluster n and ν(n)

i→a = 0 (respectively = 1) in half of the
clusters. These edges are those inside the core, or in the backbone but directed
‘outward’ with respect to the core, as shown in Fig.18.12. On the other edges,

the message does not depend upon the cluster and ν(n)
i→a = ∗ for all n’s.

A concrete interpretation of these results is obtained if we consider the one
bit marginals µn(xi) under the single cluster measure. According to Assumption

1 above, we have µn(xi = 0) = µn(xi = 1) = 1/2 if ν̂(n)
a→i = ∗ for all a ∈ ∂i.

If on the other hand ν̂(n)
a→i = 0 (respectively = 1) for at least one a ∈ ∂i, then

µn(xi = 0) = 1 (respectively µn(xi = 0) = 0). We thus recover the full solution
discussed in the previous sections: inside a given cluster n, the variables in the
backbone are completely frozen, either to 0 or to 1. The other variables have
equal probability to be 0 or 1 under the measure µn.

The cavity approach allows to compute the complexity Σ(K,α) as well as
many other properties of the measure µ( · ). We will see this in the next chapter.

Notes

Random XORSAT formulae were first studied as a simple example of random
satisfiability in (Creignou and Daudé, 1999). This work considered the case of
‘dense formulae’ where each clause includes O(N) variables. In this case the SAT-
UNSAT threshold is at α = 1. In coding theory this model had been characterized
since the work of Elias in the fifties (Elias, 1955), cf. Ch. 6.

The case of sparse formulae was addressed using moment bounds in (Creignou,
Daudé and Dubois, 2003). The replica method was used in (Ricci-Tersenghi,
Weigt and Zecchina, 2001; Franz, Leone, Ricci-Tersenghi and Zecchina, 2001a;
Franz, Mézard, Ricci-Tersenghi, Weigt and Zecchina, 2001b) to derive the clus-
tering picture, determine the SAT-UNSAT threshold, and study the glassy prop-
erties of the clustered phase.

The fact that, after reducing the linear system to its core, the first moment
method provides a sharp characterization of the SAT-UNSAT threshold was dis-
covered independently by two groups: (Cocco, Dubois, Mandler and Monasson,
2003) and (Mézard, Ricci-Tersenghi and Zecchina, 2003). The latter also dis-
cusses the application of the cavity method to the problem. The full second
moment calculation that completes the proof can be found for the case K = 3
in (Dubois and Mandler, 2002).

The papers (Montanari and Semerjian, 2005; Montanari and Semerjian, 2006a;
Mora and Mézard, 2006) were devoted to finer geometrical properties of the set
of solutions of random K-XORSAT formulae. Despite these efforts, it remains
to be proved that clusters of solutions are indeed ‘well connected.’

Since the locations of various transitions are known rigorously, a natural
question is to study the critical window. Finite size scaling of the SAT-UNSAT
transition was investigated numerically in (Leone, Ricci-Tersenghi and Zecchina,
2001). A sharp characterization of finite-size scaling for the appearence of a 2-
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core, corresponding to the clustering transition, was achieved in (Dembo and
Montanari, 2008a).
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THE 1RSB CAVITY METHOD

The effectiveness of belief propagation depends on one basic assumption: when
a function node is pruned from the factor graph, the adjacent variables become
weakly correlated with respect to the resulting distribution. This hypothesis may
break down either because of the existence of small loops in the factor graph,
or because variables are correlated on large distances. In factor graphs with a
locally tree-like structure, the second scenario is responsible for the failure of
BP. The emergence of such long range correlations is a signature of a phase
transition separating a ‘weakly correlated’ and a ‘highly correlated’ phase. The
latter is often characterized by the decomposition of the (Boltzmann) probability
distribution into well separated ‘lumps’ (pure Gibbs states).

We considered a simple example of this phenomenon in our study of random
XORSAT. A similar scenario holds in a variety of problems from random graph
coloring to random satisfiability and spin glasses. The reader should be warned
that the structure and organization of pure states in such systems is far from
being fully understood. Furthermore, the connection between long range correla-
tions and pure states decomposition is more subtle than suggested by the above
remarks.

Despite these complications, physicists have developed a non-rigorous ap-
proach to deal with this phenomenon: the “one step replica symmetry breaking”
(1RSB) cavity method. The method postulates a few properties of the pure state
decomposition, and, on this basis, allows to derive a number of quantitative pre-
dictions (‘conjectures’ from a mathematics point of view). Examples include the
satisfiability threshold for random K-SAT and other random constraint satisfac-
tion problems.

The method is rich enough to allow for some self-consistency checks of such
assumptions. In several cases in which the 1RSB cavity method passed this test,
its predictions have been confirmed by rigorous arguments (and there is no case
in which they have been falsified so far). These successes encourage the quest for
a mathematical theory of Gibbs states on sparse random graphs.

This chapter explains the 1RSB cavity method. It alternates between a
general presentation and a concrete illustration on the XORSAT problem. We
strongly encourage the reader to read the previous chapter on XORSAT before
the present one. This should help her to gain some intuition of the whole scenario.

We start with a general description of the 1RSB glass phase, and the de-
composition in pure states, in Sec. 19.1. Section 19.2 introduces an auxiliary
constraint satisfaction problem to count the number of solutions of BP equa-
tions. The 1RSB analysis amounts to applying belief propagation to this auxil-
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iary problem. One can then apply the methods of Ch. 14 (for instance, density
evolution) to the auxiliary problem. Section 19.3 illustrates the approach on the
XORSAT problem and shows how the 1RSB cavity method recovers the rigorous
results of the previous chapter.

In Sec. 19.4 we show how the 1RSB formalism, which in general is rather
complicated, simplifies considerably when the temperature of the auxiliary con-
straint satisfaction problem takes the value x = 1. Section 19.5 explains how to
apply it to optimization problems (leveraging on the min-sum algorithm) lead-
ing to the Survey Propagation algorithm. The concluding section 19.6 describes
the physical intuition which underlies the whole method. The appendix 19.6.3
contains some technical aspects of the survey propagation equations applied to
XORSAT, and their statistical analysis.

19.1 Beyond BP: many states

19.1.1 Bethe measures

The main lesson of the previous chapters is that in many cases, the probability
distribution specified by graphical models with a locally tree-like structure takes
a relatively simple form, that we shall call a Bethe measure (or Bethe state). Let
us first define precisely what we mean by this, before we proceed to discuss what
kinds of other scenarios can be encountered.

As in Ch. 14, we consider a factor graph G = (V, F, E), with variable nodes
V = {1, · · · , N}, factor nodes F = {1, · · · , M} and edges E. The joint probabil-
ity distribution over the variables x = (x1, . . . , xN ) ∈ XN takes the form

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) . (19.1)

Given a subset of variable nodes U ⊆ V (which we shall call a ‘cavity’),
the induced subgraph GU = (U, FU , EU ) is defined as the factor graph that
includes all the factor nodes a such that ∂a ⊆ U , and the adjacent edges. We also
write (i, a) ∈ ∂U if i ∈ U and a ∈ F \ FU . Finally, a set of messages {ν̂a→i} is
a set of probability distributions over X , indexed by directed edges a → i in E
with a ∈ F , i ∈ V .

Definition 19.1. (Informal) The probability distribution µ is a Bethe mea-
sure (or Bethe state) if there exists a set of messages {ν̂a→i}, such that, for
‘almost all’ the ‘finite size’ cavities U , the distribution µU ( · ) of the variables in
U is approximated as

µU (xU ) ∼=
∏

a∈FU

ψa(x∂a)
∏

(ia)∈∂U

ν̂a→i(xi) + err(xU ) , (19.2)

where err(xU ) is a ‘small’ error term, and ∼= denotes as usual equality up to a
normalization.
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i
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j

b

i

a
j

b

Fig. 19.1. Two examples of cavities. The right hand one is obtained by adding
the extra function node a. The consistency of the Bethe measure in these two
cavities implies the BP equation for ν̂a→i, see Exercise 19.1.

A formal definition should specify what is meant by ‘almost all’, ‘finite size’ and
‘small.’ This can be done by introducing a tolerance εN (with εN ↓ 0 as N →∞)
and a size LN (where LN is bounded as N →∞). One then requires that some
norm of err( · ) (e.g. an Lp norm) is smaller than εN for a fraction larger than
1 − εN of all possible cavities U of size |U | < LN . The underlying intuition is
that the measure µ( · ) is well approximated locally by the given set of messages.
In the following we shall follow physicists’ habit of leaving implicit the various
approximation errors.

Notice that the above definition does not make use of the fact that µ factorizes
as in Eq. (19.1). It thus apply to any distribution over x = {xi : i ∈ V }.

If µ( · ) is a Bethe measure with respect to the message set {ν̂a→i}, then
the consistency of Eq. (19.2) for different choices of U implies some non-trivial
constraints on the messages. In particular if the loops in the factor graph G are
not too small (and under some technical condition on the functions ψa( · )) then
the messages must be close to satisfying BP equations. More precisely, we define
a quasi-solution of BP equations as a set of messages which satisfy almost all
the equations within some accuracy. The reader is invited to prove this statement
in the exercise below.
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Exercise 19.1 Assume that G = (V, F, E) has girth larger than 2, and
that µ( · ) is a Bethe measure with respect to the message set {ν̂a→i} where
ν̂a→i(xi) > 0 for any (i, a) ∈ E, and ψa(x∂a) > 0 for any a ∈ F . For U ⊆ V ,
and (i, a) ∈ ∂U , define a new subset of variable nodes as W = U ∪ ∂a (see
Fig. 19.1).

Applying Eq. (19.2) to the subsets of variables U and W , show that the
message must satisfy (up to an error term of the same order as err( · )):

ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

{ ∏

b∈∂j\a

ν̂b→j(xj)
}

. (19.3)

Show that these are equivalent to the BP equations (14.14), (14.15).
[Hint: Define, for k ∈ V , c ∈ F , (k, c) ∈ E, νk→c(xk) ∼=

∏
d∈∂k\c ν̂d→k(xk)].

It would be pleasant if the converse was true, i.e. if each quasi-solution of BP
equations corresponded to a distinct Bethe measure. In fact such a relation will
be at the heart of the assumptions of the 1RSB method. However one should
keep in mind that this is not always true, as the following example shows:

Example 19.2 Let G be a factor graph with the same degree K ≥ 3 both at
factor and variable nodes. Consider binary variables, X = {0, 1}, and, for each
a ∈ F , let

ψa(xi1(a), . . . , xiK (a)) = I(xi1(a) ⊕ · · · ⊕ xiK (a) = 0) . (19.4)

Given a perfect matching M ⊆ E, a solution of BP equations can be constructed
as follows. If (i, a) ∈ M, then let ν̂a→i(xi) = I(xi = 0) and νi→a(0) = νi→a(1) =
1/2. If on the other hand (i, a) .∈ M, then let ν̂a→i(0) = ν̂a→i(1) = 1/2 and
νi→a(0) = I(xi = 0) (variable to factor node).

Check that this is a solution of BP equations and that all the resulting
local marginals coincide with the ones of the measure µ(x) ∼= I(x = 0), inde-
pendently of M. If one takes for instance G to be a random regular graph with
degree K ≥ 3, both at factor nodes and variable nodes, then the number of
perfect matchings of G is, with high probability, exponential in the number of
nodes. Therefore we have constructed an exponential number of solutions of
BP equations that describe the same Bethe measure.

19.1.2 A few generic scenarios

Bethe measures are a conceptual tool for describing distributions of the form
(19.1). Inspired by the study of glassy phases (see Sec. 12.3), statistical mechanics
studies have singled out a few generic scenarios in this respect, that we informally
describe below.

RS (replica symmetric). This is the simplest possible scenario: the distribution
µ( · ) is a Bethe measure.
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A slightly more complicated situation (that we still ascribe to the ‘replica
symmetric’ family) arises when µ( · ) decomposes into a finite set of Bethe
measures related by ‘global symmetries’, as in the Ising ferromagnet dis-
cussed in Sec. 17.3.

d1RSB (dynamic one-step replica symmetry breaking). There exists an exponen-
tially large (in the system size N) number of Bethe measures. The measure
µ decomposes into a convex combination of these Bethe measures:

µ(x) =
∑

n

wn µn(x) , (19.5)

with weights wn exponentially small in N . Furthermore µ( · ) is itself a
Bethe measure.

s1RSB (static one-step replica symmetry breaking). As in the d1RSB case, there
exists an exponential number of Bethe measures, and µ decomposes into a
convex combination of such states. However, a finite number of the weights
wn is of order 1 as N →∞, and (unlike in the previous case) µ is not itself
a Bethe measure.

In the following we shall focus on the d1RSB and s1RSB scenarios, that are
particularly interesting, and can be treated in a unified framework (we shall
sometimes refer to both of them as 1RSB). More complicate scenarios, such as
‘full RSB’, are also possible. We do not discuss such scenarios here because, so
far, one has a relatively poor control of them in sparse graphical models.

In order to proceed further, we shall make a series of assumptions on the
structure of Bethe states in the 1RSB case. While further research work is re-
quired to formalize completely these assumptions, they are precise enough for
deriving several interesting quantitative predictions.

To avoid technical complications, we assume that the compatibility functions
ψa( · ) are strictly positive. (The cases with ψa( · ) = 0 should be treated as limit
cases of such models). Let us index by n the various quasi-solutions {νn

i→a, ν̂n
a→i}

of the BP equations. To each of them we can associate a Bethe measure, and
we can compute the corresponding Bethe free-entropy Fn = F(νn). The three
postulates of the 1RSB scenario are listed below.

Assumption 1 There exist exponentially many quasi-solutions of BP equations.
The number of such solutions with free-entropy F(νn) ≈ Nφ is (to leading expo-
nential order) exp{NΣ(φ)}, where Σ( · ) is the complexity function27 .

This can be expressed more formally as follows. There exists a function Σ : R →
R+ (the complexity) such that, for any interval [φ1, φ2], the number of quasi-
solutions of BP equations with F(νn) ∈ [Nφ1, Nφ2] is exp{NΣ∗ + o(N)} where
Σ∗ = sup{Σ(φ) : φ1 ≤ φ ≤ φ2}. We shall also assume in the following that
Σ(φ) is ‘regular enough’ without entering details.

27As we are only interested in the leading exponential behavior, the details of the definitions
of quasi-solutions become irrelevant, as long as (for instance) the fraction of violated BP
equations vanishes in the large N limit.
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Among Bethe measures, a special role is played by the ones that have short
range correlations (are extremal). We already mentioned this point in Ch. 12,
and shall discuss the relevant notion of correlation decay in Ch. 22. We denote
the set of extremal measures as E.

Assumption 2 The ‘canonical’ measure µ defined as in Eq. (19.1) can be writ-
ten as a convex combination of extremal Bethe measures

µ(x) =
∑

n∈E

wn µn(x) , (19.6)

with weights related to the Bethe free-entropies wn = eFn/Ξ, Ξ ≡
∑

n∈E
eFn.

Note that Assumption 1 characterizes the number of (approximate) BP fixed
points, while Assumption 2 expresses the measure µ( · ) in terms of extremal
Bethe measures. While each such measure gives rise to a BP fixed point by the
arguments in the previous Section, it is not clear that the reciprocal holds. The
next assumption implies that this is the case, to the leading exponential order.

Assumption 3 To leading exponential order, the number of extremal Bethe
measures equals the number of quasi-solutions of BP equation: the number of
extremal Bethe measures with free-entropy ≈ Nφ is also given by exp{NΣ(φ)}.

19.2 The 1RSB cavity equations

Within the three assumptions described above, the complexity function Σ(φ)
provides basic information on how the measure µ decomposes into Bethe mea-
sures. Since the number of extremal Bethe measures with a given free entropy
density is exponential in the system size, it is natural to treat them within a
statistical physics formalism. BP messages of the original problem will be the
new variables and Bethe measures will be the new configurations. This is what
1RSB is about.

We introduce the auxiliary statistical physics problem through the definition
of a canonical distribution over extremal Bethe measures: we assign to measure
n ∈ E, the probability wn(x) = exFn/Ξ(x). Here x plays the role of an inverse
temperature (and is often called the Parisi 1RSB parameter) 28. The partition
function of this generalized problem is

Ξ(x) =
∑

n∈E

exFn
.
=

∫
eN [xφ+Σ(φ)] dφ . (19.7)

According to Assumption 2 above, extremal Bethe measures contribute to µ
through a weight wn = eFn/Ξ. Therefore the original problem is described by
the choice x = 1. But varying x will allow us to recover the full complexity
function Σ(φ).

28It turns out that the present approach is equivalent the cloning method discussed in Chap-
ter 12, where x is the number of clones.
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If Ξ(x)
.
= eNF(x), a saddle point evaluation of the integral in (19.7) gives Σ

as the Legendre transform of F:

F(x) = xφ + Σ(φ) ,
∂Σ

∂φ
= −x . (19.8)

19.2.1 Counting BP fixed points

In order to actually estimate Ξ(x), we need to consider the distribution induced
by wn(x) on the messages ν = {νi→a, ν̂a→i}, that we shall denote by Px(ν). The
fundamental observation is that this distribution can be written as a graphical
model, whose variables are BP messages. A first family of function nodes enforces
the BP equations, and a second one implements the weight exF(ν). Furthermore,
it turns out that the topology of the factor graph in this auxiliary graphical
model is very close to that of the original factor graph. This suggests to use the
BP approximation in this auxiliary model in order to estimate Σ(φ).

The 1RSB approach can be therefore summarized in one sentence:

Introduce a Boltzmann distribution over Bethe measures, write it in the form of
a graphical model, and use BP to study this model.

This program is straightforward, but one must be careful not to confuse the
two models (the original one and the auxiliary one), and their messages. Let us
first simplify the notations of the original messages. The two types of messages
entering the BP equations of the original problem will be denoted by ν̂a→i = m̂ai

and νi→a = mia; we will denote by m the set of all the mia and by m̂ the set of
all the m̂ai. Each of these 2|E| messages is a normalized probability distribution
over the alphabet X . With these notations, the original BP equations read:

mia(xi) ∼=
∏

b∈∂i\a

m̂bi(xi) , m̂ai(xi) ∼=
∑

{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.9)

Hereafter we shall write them in the compact form:

mia = fi
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂a

(
{mja}j∈∂a\i

)
. (19.10)

Each message set (m, m̂) is given a weight proportional to exF(m,bm), where the free-
entropy F(m, m̂) is written in terms of BP messages

F(m, m̂) =
∑

a∈F

Fa ({mja}j∈∂a) +
∑

i∈V

Fi ({m̂bi}b∈∂i)−
∑

(ia)∈E

Fia (mia, m̂ai) .(19.11)

The functions Fa, Fi, Fia have been obtained in (14.28). Let us copy them here
for convenience:
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a i
ia

ai

Fig. 19.2. A part of the original factor graph (left) and the corresponding aux-
iliary factor graph (right)

Fa({mja}j∈∂a) = log




∑

x∂a

ψa(x∂a)
∏

j∈∂a

mja(xj)



 ,

Fi({m̂bi}b∈∂i) = log

[
∑

xi

∏

b∈∂i

m̂bi(xi)

]
, (19.12)

Fia(mia, m̂ai) = log

[
∑

xi

mia(xi)m̂ai(xi)

]
. (19.13)

We now consider the 2|E| messages m and m̂ as variables in our auxiliary
graphical model. The distribution induced my wn(x) on such messages takes the
form

Px(m, m̂) =
1

Ξ(x)

∏

a∈F

Ψa({mja, m̂ja}j∈∂a)
∏

i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.14)
where we introduced the compatibility functions:

Ψa =
∏

i∈∂a

I
(
m̂ai = f̂a

(
{mja}j∈∂a\i

))
exFa({mja}j∈∂a) , (19.15)

Ψi =
∏

a∈∂i

I
(
mia = fi

(
{m̂bi}b∈∂i\a

))
exFi({bmbi}b∈∂i) , (19.16)

Ψia = e−xFia(mia,bmai) . (19.17)

The corresponding factor graph is depicted in Fig. 19.2 and can described as
follows:

• For each edge (i, a) of the original factor graph, introduce a variable node
in the auxiliary factor graph. The associated variable is the pair (mia, m̂ai).
Furthermore, introduce a function node connected to this variable, con-
tributing to the weight through a factor Ψia = e−xFai.

• For each function node a of the original graph introduce a function node in
the auxiliary graph and connect it to all the variable nodes corresponding
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to edges (i, a), i ∈ ∂a. The compatibility function Ψa associated to this
function node has two roles: (i) It enforces the |∂a| BP equations expressing
the variables {m̂ai}i∈∂a in terms of the {mia}i∈∂a, cf. Eq. (19.9); (ii) It
contributes to the weight through a factor exFa .

• For each variable node i of the original graph, introduce a function node
in the auxiliary graph, and connect it to all variable nodes corresponding
to edges (i, a), a ∈ ∂i. The compatibility function Ψi has two roles: (i) It
enforces the |∂i| BP equations expressing the variables {mib}b∈∂i in terms
of {m̂bi}b∈∂i, cf. Eq. (19.9); (ii) It contributes to the weight through a factor
exFi .

Note that we were a bit sloppy in Eqs. (19.15) to (19.17). The messages
mia, m̂ai are in general continuous, and indicator functions should therefore be
replaced by delta functions. This might pose in turn some definition problem
(what is the reference measure on the messages? can we hope for exact solutions
of BP equations?). One should consider the above as a shorthand for the following
procedure. First discretize the messages (and BP equations) in such a way that
they can take a finite number q of values. Compute the complexity by letting
N → ∞ at fixed q, and take the limit q → ∞ at the end. It is easy to define
several alternative, and equally reasonable, limiting procedures. We expect all
of them to yield the same result. In practice, the ambiguities in Eqs. (19.15) to
(19.17) are solved on a case by case basis.

19.2.2 Message passing on the auxiliary model

The problem of counting the number of Bethe measures (more precisely, com-
puting the complexity function Σ(φ)) has been reduced to the one of estimating
the partition function Ξ(x) of the auxiliary graphical model (19.14). Since we
are interested in the case of locally tree-like factor graphs G, the auxiliary fac-
tor graph is locally tree-like as well. We can therefore apply BP to estimate its
free-entropy density F(x) = limN N−1 log Ξ(x). This will give us the complexity
through the Legendre transform of Eq. (19.8).

i

(ia)

aν(ia)→a

ν(ia)→i

νa→(ia)

νi→(ia)

e−xFai(mia,bmai)

Fig. 19.3. Messages in the auxiliary graphical model.

In the following we denote by i ∈ V and a ∈ F a generic variable and function
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node in the graph G, and by (ia) ∈ E an edge in G. By extension, we denote
in the same way the corresponding nodes in the auxiliary graph. The messages
appearing in the BP analysis of the auxiliary model can be classified as follows,
cf. Fig. 19.3:

→ From the variable node (ia) are issued two messages: ν(ia)→a(mia, m̂ai) and
ν(ia)→i(mia, m̂ai)

→ From the function node a are issued |∂a| messages to nodes i ∈ ∂a,
ν̂a→(ai)(mia, m̂ai)

→ From the function node i are issued |∂i| messages to nodes a ∈ ∂i,
ν̂i→(ai)(mia, m̂ai)

→ From the degree-one function node connected to the variable node (ia) is is-
sued a message towards this variable. This message is simply e−xFia(mia,bmai).

The BP equations on the variable node (ia) take a simple form:

ν(ia)→a(mia, m̂ai) ∼= ν̂i→(ia)(mia, m̂ai) e−xFia(mia,bmai) ,

ν(ia)→i(mia, m̂ai) ∼= ν̂a→(ia)(mia, m̂ai) e−xFia(mia,bmai) . (19.18)

We can use these equations to eliminate messages ν̂i→(ia), ν̂a→(ia) in favor of
ν(ia)→a, ν(ia)→i. In order to emphasize this choice (and to simplify notations) we
define:

Qia(mia, m̂ai) ≡ ν(ia)→a(mia, m̂ai) , Q̂ai(mia, m̂ai) ≡ ν(ia)→i(mia, m̂ai) .(19.19)

We can now write the remaining BP equations of the auxiliary graphical
model in terms of Qia( · , · ), Q̂ai( · , · ). The BP equation associated to the func-
tion node corresponding to i ∈ V reads:

Qia(mia, m̂ai) ∼=
∑

{mib,bmbi}b∈∂i\a

[
∏

c∈∂i

I
(
mic = fi({m̂di}d∈∂i\c)

)
]

exp
{
x [Fi ({m̂bi}b∈∂i) − Fai (mia, m̂ai)]

} ∏

b∈∂i\a

Q̂bi(mib, m̂bi) , (19.20)

and the one associated to the function node corresponding to a ∈ F is:

Q̂ ai(mia, m̂ai) ∼=
∑

{mja,bmaj}j∈∂a\i




∏

j∈∂a

I
(
m̂aj = f̂a({mka}k∈∂a\j)

)


 (19.21)

exp
{
x
[
Fa

(
{mja}j∈∂a

}
− Fai (mia, m̂ai)

]) ∏

j∈∂a\i

Qja(mja, m̂aj) . (19.22)

Equations (19.20), (19.22) can be further simplified, using the following lemma.
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Lemma 19.3 Assume
∑

xi
mia(xi)m̂ai(xi) > 0. Under the condition mia = fi({m̂di}d∈∂i\a)

(in particular if the indicator functions in Eq. (19.20) evaluate to 1), the dif-
ference Fi ({m̂bi}b∈∂i) − Fai (mia, m̂ai) can be expressed in terms of {m̂bi}b∈∂i\a.
Explicitly, we have

eFi−Fia = zia({m̂bi}b∈∂i\a) ≡
∑

xi

∏

b∈∂i\a

m̂bi(xi) . (19.23)

Analogously, under the condition m̂ai = f̂a({mka}k∈∂a\i) (in particular if the
indicator functions in Eq. (19.22) evaluate to 1) the difference Fa ({mja}j∈∂a)−
Fai (mia, m̂ai) depends only on {mja}j∈∂a\i. Explicitly:

eFa−Fia = ẑai({mja}j∈∂a\i) ≡
∑

x∂a

ψa(x∂a)
∏

j∈∂a\i

mja(xj) . (19.24)

Proof: Let us first consider Eq. (19.23). From the definition (14.28), it follows
that

eFi−Fia =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi
mia(xi)m̂ai(xi)

. (19.25)

Substituting mia = fi({m̂ci}c∈∂i\a) in the denominator, and keeping track of the
normalization constant, we get

∑

xi

mia(xi)m̂ai(xi) =

∑
xi

∏
b∈∂i m̂bi(xi)∑

xi

∏
b∈∂i\a m̂ai(xi)

, (19.26)

which implies Eq. (19.23).
The derivation of Eq. (19.24) is completely analogous and left as an exercise

for the reader. !
Notice that the functions zia( · ), ẑai( · ) appearing in Eqs. (19.23), (19.24) are

in fact the normalization constants hidden by the ∼= notation in Eqs. (19.9).
Because of this lemma, we can seek a solution of Eqs. (19.20), (19.22) with

Qia depending only on mia, and Q̂ai depends only on m̂ai. Hereafter we shall focus
on this case, and, with an abuse of notation, we shall write:

Qia(mia, m̂ai) = Qia(mia) , Q̂ia(mia, m̂ai) = Q̂ai(m̂ai) . (19.27)

The BP equations for the auxiliary graphical model (19.20), (19.22) then become:

Qia(mia) ∼=
∑

{bmbi}

I (mia = gi({m̂bi})) [zia({m̂bi})]x
∏

b∈∂i\a

Q̂bi(m̂bi) , (19.28)

Q̂ai(m̂ai) ∼=
∑

{mja}

I (m̂ai = fa({mja})) [ẑai({mja})]x
∏

j∈∂a\i

Qja(mja) , (19.29)

where {m̂bi} is a shorthand for {m̂bi}b∈∂i\a and {mja} a shorthand for {mja}j∈∂a\i.
The expressions for zia({m̂bi}) and ẑai({mja}) are given in Eqs. (19.23), (19.24).
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Equations (19.28), (19.29) are the 1RSB cavity equations. As we did in
the ordinary BP equations, we can consider them as an update rule for a message
passing algorithm. This will be further discussed in the next sections. One some-
times uses the notation Qi→a( · ), Q̂a→i( · ), to emphasize the fact that 1RSB
messages are associated to directed edges.

Notice that our derivation was based on the assumption that
∑

xi
mia(xi)m̂ai(xi) >

0. This condition holds if, for instance, the compatibility functions of the original
model are bounded away from 0. Under this condition, we have shown that:

Proposition 19.4 If the 1RSB cavity equations (19.28), (19.29) have a solution
Q̂, Q, this corresponds to a solution to the BP equations of the auxiliary graphical
model. Reciprocally, if the BP equations of the auxiliary graphical model admit a
solution satisfying the condition (19.27), then the resulting messages must be a
solution of the 1RSB cavity equations.

Assumption (19.27) -which is suggestive of a form of “causality”- cannot be
further justified within the present approach, but alternative derivations of the
1RSB equations confirm its validity.

19.2.3 Computing the complexity

We now compute the free-entropy of the auxiliary graphical model within the BP
approximation. We expect the result of this procedure to be asymptotically exact
for a wide class of locally tree like graphs, thus yielding the correct free-entropy
density F(x) = limN N−1 log Ξ(x).

Assume {Qia, Q̂ai} to be a solution (or a quasi-solution) of the 1RSB cavity
equations (19.28), (19.29). We use the general form (14.27) of Bethe free-entropy,
but take into account the degree one factor nodes using the simplified expression
derived in Exercise 14.6. The various contributions to the free-entropy are:

→ Contribution from the function node a (here {mia} is a shorthand for
{mia}i∈∂a):

FRSB
a = log





∑

{mia}

exFa({mia})
∏

i∈∂a

Qia(mia)




 . (19.30)

→ Contribution from the function node i ({m̂ai} is a shorthand for {m̂ai}a∈∂i):

FRSB
i = log





∑

{bmai}

exFi({bmai})
∏

a∈∂i

Q̂ai(m̂ai)




 . (19.31)

→ Contribution from the variable node (ia):

FRSB
ia = log





∑

mia,bmai

exFia(mia,bmai)Qia(mia)Q̂ai(m̂ai)




 . (19.32)
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→ The contributions from the two edges a− (ai) and i− (ai) are both equal
to −FRSB

ia

The Bethe free-entropy of the auxiliary graphical model is equal to:

FRSB({Q, Q̂}) =
∑

a∈F

FRSB
a +

∑

i∈V

FRSB
i −

∑

(ia)∈E

FRSB
ia . (19.33)

19.2.4 Summary

The 1RSB cavity equations (19.28), (19.29) are BP equations for the auxiliary
graphical model defined in (19.14). They relate 2|E| messages {Qia(mia), Q̂ai(m̂ai)}.
Each such message is a probability distribution of ordinary BP messages, respec-
tively mia(xi) and m̂ai(xi). These elementary messages are in turn probability
distributions on variables xi ∈ X .

Given a solution (or an approximate solution) {Qia, Q̂ai}, one can estimate
the free-entropy density of the auxiliary model as

log Ξ(x) = FRSB({Q, Q̂}) + errN . (19.34)

where FRSB({Q, Q̂}) is given by Eq. (19.33). For a large class of locally tree-
like models we expect the BP approximation to be asymptotically exact on the
auxiliary model. This means that the error term errN is o(N).

For such models, the free-entropy density is given by its 1RSB cavity expres-
sion F(x) = fRSB(x) ≡ limN→∞ FRSB({Q, Q̂})/N . The complexity Σ(φ) is then
computed through the Legendre transform (19.8).

19.2.5 Random graphical models and density evolution

Let us consider the case where G is a random graphical model as defined in
Sec. 14.6.1. The factor graph is distributed according to one of the ensembles
GN(K,α) or DN (Λ, P ). Function nodes are taken from a finite list {ψ(k)(x1, . . . , xk; Ĵ)}
indexed by a label Ĵ with distribution P (k)

bJ
. Each factor ψa( · ) is taken equal

to ψ(k)( · · · ; Ĵa) independently with the same distribution. We also introduce
explicitly a degree-one factor ψi(xi) connected to each variable node i ∈ V . This
are also drawn independently from a list of possible factors {ψ(x; J)}, indexed
by a label J with distribution PJ .

For a random graphical model, the measure µ( · ) becomes random, and so
does its decomposition in extremal Bethe states, in particular the probabili-
ties {wn}, and the message sets {νn

i→a, ν̂n
a→i}. In particular, the 1RSB messages

{Qia, Q̂ai} become random. It is important to keep in mind the ‘two levels’ of
randomness. Given an edge (ia), the message νn

i→a is random if the Bethe state
n is drawn from the distribution wn. The resulting distribution Qia(m) becomes
a random variable when the graphical model is itself random.

The distributions of Qia(m), Q̂ai(m̂) can then be studied through the density

evolution method of Sec. 14.6.2. Let us assume an i.i.d. initialization Q(0)
ia ( · ) d

=
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Q(0)( · ) (respectively Q̂(0)
ai ( · ) d

= Q̂(0)( · )), and denote by Q(t)
ia ( · ), Q̂(t)

ai ( · ) the
1RSB messages along edge (ia) after t parallel updates using the 1RSB equa-
tions (19.28), (19.29). If (ia) is a uniformly random edge then, as N → ∞,

Q(t)
ia ( · ) converges in distribution29 to Q(t)( · ) (respectively Q̂(t)

ia ( · ) converges in

distribution to Q̂(t)( · )). The distributions Q(t)( · ) and Q̂(t)( · ) are themselves
random variables that satisfy the equations:

Q(t+1)(m)
d∼=
∑

{bmb}

I (m = f({m̂b}; J)) z({m̂b}; J)x
l−1∏

b=1

Q̂(t)
b (m̂b) , (19.35)

Q̂(t)(m̂)
d∼=
∑

{mj}

I
(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)x

k−1∏

j=1

Q(t)
j (mj) , (19.36)

where k and l are distributed according to the edge perspective degree profiles

ρk and λl, the
{
Q̂(t)

b

}
are k − 1 independent copies of Q̂(t)( · ), and

{
Q(t)

j

}
are

l − 1 independent copies of Q(t)( · ). The functions z and ẑ are given by:

z({m̂b}; J) =
∑

x

ψ(x, J)
l−1∏

b=1

m̂b(x)

ẑ({mj}; Ĵ) =
∑

x1,··· ,xk

ψ(k)(x1, · · · , xk; Ĵ)
k−1∏

j=1

mj(xj) (19.37)

Within the 1RSB cavity method, the actual distribution of Qi→a is assumed
to coincide with one of the fixed points of the above density evolution equations.
As for the RS case, one hopes that, on large enough instances, the message
passing algorithm will converge to messages distributed according to this fixed
point equation (meaning that there is no problem in exchanging the limits t →∞
and N →∞). This can be checked numerically.

For random graphical models, the 1RSB free-entropy density converges to a
finite limit fRSB(x). This can be expressed in terms of the distributions of Q,
Q̂. by taking expectation of Eqs. (19.30) to (19.32), and assuming that 1RSB
messages incoming at the same node are i.i.d.. As in (14.77) the result takes the
form:

fRSB = fRSB
v + nf f

RSB
f − nef

RSB
e . (19.38)

Here nf is the average number of function nodes per variable (equal to Λ′(1)/P ′(1)
for a graphical model in the DN (Λ, P ) ensemble, and to α for a graphical model
in the GN(K,α) ensemble) and ne is the number of edges per variable (equal to

29We shall not discuss the measure-theoretic subtleties related to this statement. Let us just
mention that weak topology is understood on the space of messages Q(t).
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Λ′(1) and to Kα in these two ensembles). The contribution from variable nodes
fRSB
v , function nodes fRSB

f , and edges fRSB
e are:

fRSB
v = El,J,{ bQ} log





∑

{bm1,...,bml}

Q̂1(m̂1) . . . Q̂l(m̂l)

[
∑

x∈X
m̂1(x) . . . m̂l(x)ψ(x; J)

]x

 ,

fRSB
f = Ek, bJ,{Q} log





∑

{m1,...,mk}

Q1(m1) . . . Qk(mk)




∑

x1,...,xk∈X
m1(x1) . . . mk(xk)ψ(k)(x1, . . . , xk; Ĵ)




x

 ,

fRSB
e = E bQ,Q log





∑

bm,m

Q̂(m̂)Q(m)

[
∑

x∈X
m̂(x)m(x)

]x

 . (19.39)

19.2.6 Numerical implementation

Needless to say, it is extremely challenging to find a fixed point of the density evo-
lution equations (19.35), (19.36), and thus determine the distributions of Q, Q̂.
A simple numerical approach consists in generalizing the population dynamics
algorithm described in the context of the RS cavity method, cf. Sec. 14.6.3.

There are two important issues related to such a generalization:

(i) We seek the distribution of Q( · ) (and Q̂( · )), which is itself a distribution
of messages. If we approximate Q( · ) by a sample (a ‘population’), we will
thus need two level of populations. In other words we will seek a popula-
tion {ms

r} with NM items. For each r ∈ {1, . . . , N}, the set of messages
{ms

r}, s ∈ {1, . . . , M} represents a distribution Qr( · ) (ideally, it would be
an i.i.d. sample from this distribution). At the next level, the population
{Qr( · )} , r ∈ {1, · · · , N} represents the distribution of Q( · ) (ideally, an
i.i.d. sample).

Analogously, for function-to-variable messages, we will use a population
{m̂s

r}, with r ∈ {1, . . . , N} and s ∈ {1, . . . , M}.

(ii) The re-weighting factors z({m̂b}; J)x and ẑ({mj}; Ĵ)x appearing in Eqs. (19.35)
and (19.36) do not have any analog in the RS context. How can one take
such factors into account when Q( · ), Q̂( · ) are represented as populations?
One possibility is to generate an intermediate weighted population, and
than sample from it with a probability proportional to the weight.

This procedure is summarized in the following pseudocode.
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1RSB Population dynamics (Model ensemble, Sizes N, M , Iterations T )
1: Initialize {ms

r};
2: for t = 1, . . . , T :
3: for r = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P (k)

bJ
;

7: for s = 1, . . . , M :
8: Draw s(1), . . . , s(k− 1) uniformly in {1, . . . , M};
9: Compute m̂s

temp = f̂(ms(1)
i(1) , · · · , ms(k−1)

i(k−1) ; Ĵ)

10: Compute W s = ẑ(ms(1)
i(1) , · · · , ms(k−1)

i(k−1) ; Ĵ)x

11: end;
12: Generate the new population

{m̂s
r}s∈[M ] = Reweight({m̂s

temp, W
s}s∈[M ])

13: end;
14: for r = 1, . . . , N :
15: Draw an integer l with distribution λ;
16: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
17: Draw J with distribution P ;
18: for s = 1, . . . , M :
19: Draw s(1), . . . , s(l− 1) uniformly in {1, . . . , M};
20: Compute ms

temp = f(m̂s(1)
i(1) , · · · , m̂s(k−1)

i(l−1) ; J)

21: Compute W s = z(m̂s(1)
i(1) , · · · , m̂s(l−1)

i(l−1) ; J)x

22: end;
23: Generate the new population

{ms
r}s∈[M ] = Reweight({ms

temp, W
s}s∈[M ])

24: end;
25: return {m̂s

r} and {ms
r}.

The re-weighting procedure is given by:

Reweight (Population of messages/weights {(ms
temp, W

s)}s∈[M ])

1: for s = 1, . . . , M , set ps ≡ W s/
∑

s′ W s′
;

2: for s = 1, . . . , M :
3: Draw i ∈ {1, . . . , M} with distribution ps;
4: Set ms

new = mi
temp;

5: end;
6: return {ms

new}s∈[M ].

In the large N, M limit, the populations generated by this algorithm should
converge to i.i.d. samples distributed as Q(T )( · ), Q̂(T )( · ), cf. Eq. (19.35), (19.36).
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By letting T grow they should represent accurately the fixed points of density
evolution, although the caveats expressed in the RS case should be repeated here.

Among the other quantities, the populations generated by this algorithm
allow to estimate the 1RSB free-entropy density (19.38). Suppose we have gen-
erated a population of messages {m̂s

r( · )}, whereby each message is a probability
distribution on X . The corresponding estimate of fRSB

v is:

f̂RSB
v = El,J

1

N l

N∑

r(1)...r(l)=1

log





1

M l

M∑

s(1),...,s(l)=1

[
∑

x∈X
m̂

s(1)
r(1)(x) · · · m̂s(l)

r(l)(x) ψ(x; J)

]x

 .

Similar expressions are easily written for fRSB
f and fRSB

e . Their (approximate)
evaluation can be accelerated considerably by summing over a random subset
of the l-uples r(1), . . . , r(l) and s(1), . . . , s(l). Further, as in the RS case, it is
beneficial to average over iterations (equivalently, over T ) in order to reduce
statistical errors at small computational cost.

19.3 A first application: XORSAT

Let us apply the 1RSB cavity method to XORSAT. This approach was already
introduced in Sec. 18.6, but we want to show how it follows as a special case of
the formalism developed in the previous sections. Our objective is to exemplify
the general ideas on a well understood problem, and to build basic intuition that
will be useful in more complicated applications.

As in Ch. 18 we consider the distribution over x = (x1, . . . , xN ) ∈ {0, 1}N

specified by

µ(x) =
1

Z

M∏

a=1

I
(
xi1(a) ⊕ · · · ⊕ xik(a) = ba

)
. (19.40)

As usual⊕ denotes sum modulo 2 and, for each a ∈ {1, · · · , M}, ∂a = {i1(a), . . . , iK(a)}
is a subset of {1, ·, N}, and ba ∈ {0, 1}. Random K-XORSAT formulae are gen-
erated by choosing both the index set {i1(a), . . . , iK(a)} and the right hand side
ba uniformly at random.

19.3.1 BP equations

The BP equations read:

mia(xi) =
1

zia

∏

b∈∂i\a

m̂bi(xi) , (19.41)

m̂ai(xi) =
1

ẑai

∑

x∂a\i

I
(
xi1(a) ⊕ · · · ⊕ xiK(a) = ba

) ∏

j∈∂a\i

mja(xj) . (19.42)

As in Sec. 18.6, we shall assume that messages can take only three values, which
we denote by the shorthands: mia = 0 if (mia(0) = 1, mia(1) = 0); mia = 1 if
(mia(0) = 0, mia(1) = 1); mia = ∗ if (mia(0) = mia(1) = 1/2).
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Consider the first BP equation (19.41), and denote by n0, n1, n∗ the number
of messages of type 0, 1, ∗ in the set of incoming messages {m̂bi}, b ∈ ∂i\a. Then
Eq. (19.41) can be rewritten as:

mia =






0 if n0 > 0, n1 = 0,
1 if n0 = 0, n1 > 0,
∗ if n0 = 0, n1 = 0,
? if n0 > 0, n1 > 0,

zia =






2−n∗ if n0 > 0, n1 = 0,
2−n∗ if n0 = 0, n1 > 0,
21−n∗ if n0 = 0, n1 = 0,
0 if n0 > 0, n1 > 0.

(19.43)

The computation of the normalization constant zia will be useful in the 1RSB
analysis. Notice that, if n0 > 0 and n1 > 0, a contradiction arises at node i
and therefore mia is not defined. However we will see that, because in this case
zia = 0, this situation does not create any problem within 1RSB.

In the second BP equation (19.42) denote by n̂0 (respectively, n̂1, n̂∗) the
number of messages of type 0 (resp. 1, ∗) among {mja}, j ∈ ∂a\i. Then we get

m̂ai =






0 if n∗ = 0, and n1 has the same parity as ba,
1 if n∗ = 0, and n1 has not the same parity as ba,
∗ if n∗ > 0.

(19.44)

In all three cases ẑai = 1.
In Sec. 18.6 we studied the equations (19.41), (19.42) above and deduced

that, for typical random instances with α = M/N < αd(K), they have a unique
solution, with mia = m̂ai = ∗ on each edge.

Exercise 19.2 Evaluate the Bethe free-entropy on this solution, and show
that it yields the free-entropy density fRS = (1 − α) log 2.

19.3.2 The 1RSB cavity equations

We now assume that the BP equations (19.43), (19.44) have many solutions, and
apply the 1RSB cavity method to study their statistics.

The 1RSB messages Qia, Q̂ai are distributions over {0, 1, ∗}. A little effort
shows that Eq. (19.28) yields

Qia(0) =
1

Zia





∏

b∈∂i\a

(
Q̂bi(0) + 2−xQ̂bi(∗)

)
−

∏

b∈∂i\a

(
2−xQ̂bi(∗)

)



 ,(19.45)

Qia(1) =
1

Zia





∏

b∈∂i\a

(
Q̂bi(1) + 2−xQ̂bi(∗)

)
−

∏

b∈∂i\a

(
2−xQ̂bi(∗)

)



 ,(19.46)

Qia(∗) =
1

Zia
2x

∏

b∈∂i\a

2−xQ̂bi(∗) . (19.47)

For instance, Eq. (19.45) follows from the first line of Eq. (19.43): mia = 0 if
all the incoming messages are m̂bi ∈ {∗, 0} (first term), unless they are all equal
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to ∗ (subtracted term). The re-weighting zxia = 2−xn∗ decomposes into factors
associated to the incoming ∗ messages.

The second group of 1RSB equations, Eq. (19.29), takes the form:

Q̂ai(0) =
1

2





∏

j∈∂a\i

(Qja(0) + Qja(1)) + s(ba)
∏

j∈∂a\i

(Qja(0) −Qja(1))




 ,

(19.48)

Q̂ai(1) =
1

2





∏

j∈∂a\i

(Qja(0) + Qja(1)) − s(ba)
∏

j∈∂a\i

(Qja(0) −Qja(1))




 ,

(19.49)

Q̂ai(∗) = 1 −
∏

j∈∂a\i

(Qja(0) + Qja(1)) , (19.50)

where s(ba) = +1 if ba = 0, and s(ba) = −1 otherwise.
Notice that, if one takes x = 0, the two sets of equations coincide with those

obtained in Sec. 18.6, see Eq. (18.35) (the homogeneous linear system, ba = 0, was
considered there). As in that section, we look for solutions such that the messages
Qia( · ) (respectively Q̂ai( · )) take two possible values: either Qia(0) = Qia(1) =
1/2, or Qia(∗) = 1. This assumption is consistent with the 1RSB cavity equations
(19.45) and (19.50). Under this assumption, the x dependency drops from these
equations and we recover the analysis in Sec. 18.6. In particular, we can repeat
the density evolution analysis discussed there. If we denote by Q∗ the probability
that a randomly chosen edge carries the 1RSB message Qia(0) = Qia(1) = 1/2,
then the fixed point equation of density evolution reads:

Q∗ = 1 − exp{−kαQk−1
∗ } . (19.51)

For α < αd(K) this equation admits the only solution Q∗ = 0, implying Qia(∗) =
1 with high probability. This indicates (once more) that the only solution of the
BP equations in this regime is mia = ∗ for all (i, a) ∈ E.

For α > αd a couple of non-trivial solutions (with Q∗ > 0) appear, indicating
the existence of a large number of BP fixed points (and hence, Bethe measures).
Stability under density evolution suggest to select the largest one. It will also be
useful in the following to introduce the probability

Q̂∗ = Qk−1
∗ (19.52)

that a uniformly random edge carries a message Q̂ai(0) = Q̂ai(1) = 1/2.

19.3.3 Complexity

We can now compute the Bethe free-entropy (19.33) of the auxiliary graphical
model. The complexity will be computed through the Legendre transform of the
1RSB free-entropy, see Eq. (19.8).
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Let us start by computing the contribution FRSB
a defined in Eq. (19.30). Con-

sider the weight

eFa({mia}) =
∑

x∂a

I(xi1(a) ⊕ · · · ⊕ xiK(a) = ba)
∏

i∈∂a

mia(xi) . (19.53)

Let n̂0 (respectively, n̂1, n̂∗) denote the number of variable nodes i ∈ ∂a such
that mia = 0 (resp. 1, ∗) for i ∈ ∂a. Then we get

eFa({mia}) =






1/2 if n̂∗ > 0,
1 if n̂∗ = 0 and n̂1 has the same parity as ba,
0 if n̂∗ = 0 and n̂1 has not the same parity as ba,

(19.54)

Taking the expectation of exFa({mia}) with respect to {mia} distributed indepen-
dently according to Qia( · ), and assuming Qia(0) = Qia(1) (which is the case in
our solution), we get

FRSB
a = log

{
1

2

∏

i∈∂a

(1 −Qia(∗)) +
1

2x

[
1 −

∏

i∈∂a

(1 −Qia(∗))
]}

. (19.55)

The first term corresponds to the case n̂∗ = 0 (the factor 1/2 being the proba-
bility that the parity of n̂1 is ba), and the second to n̂∗ > 0. Within our solution
either Qia(∗) = 0 or Qia(∗) = 1. Therefore only one of the above terms survives:
either Qia(∗) = 0 for all i ∈ ∂a, yielding FRSB

a = − log 2, or Qia(∗) = 1 for some
i ∈ ∂a, implying FRSB

a = −x log 2.
Until now we considered a generic K-XORSAT instance. For random in-

stances, we can take the expectation with respect to Qia(∗) independently dis-
tributed as in the density evolution fixed point. The first case, namely Qia(∗) = 0
for all i ∈ ∂a (and thus FRSB

a = − log 2), occurs with probability Qk
∗. The second,

i.e. Qia(∗) = 1 for some i ∈ ∂a (and FRSB
a = −x log 2), occurs with probability

1 −Qk
∗ . Altogether we obtain:

E{FRSB
a } = −

[
Qk

∗ + x(1 −Qk
∗)
]

log 2 + oN (1) . (19.56)

Assuming the messages Qia( · ) to be short-range correlated,
∑

a∈F FRSB
a will

concentrate around its expectation. We then have, with high probability,

1

N

∑

a∈F

FRSB
a = −α

[
Qk

∗ + x(1 −Qk
∗)
]

log 2 + oN (1) . (19.57)

The contributions from variable node and edge terms can be computed along
similar lines. We will just sketch these computations, and invite the reader to
work out the details.

Consider the contribution FRSB
i , i ∈ V , defined in (19.31). Assume that

Q̂ai(∗) = 1 (respectively, Q̂ai(0) = Q̂ai(1) = 1/2) for n∗ (resp. n0) of the neigh-
boring function nodes a ∈ ∂i. Then FRSB

i = −(n∗x + n0 − 1) log 2 if n0 ≥ 1, and
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FRSB
i = −(n∗ − 1)x log 2 otherwise. Averaging these expressions over n0 (a Pois-

son distributed random variable with mean kαQ̂∗) and n∗ (Poisson with mean
kα(1 − Q̂∗)) we obtain:

1

N

∑

i∈V

FRSB
i = −

{[
kαQ̂∗ − 1 + e−kα bQ∗

]
+
[
kα(1 − Q̂∗) − e−kα bQ∗

]
x
}

log 2+oN(1) .

(19.58)
Let us finally consider the edge contribution FRSB

(ia) defined in (19.32). If

Qia(0) = Qia(1) = 1/2 and Q̂ai(0) = Q̂ai(1) = 1/2, then either eFai = 1 or
eFia = 0, each with probability 1/2. As a consequence FRSB

(ia) = − log 2. If ei-

ther Qia(∗) = 1 or Q̂ai(∗) = 1 (or both), eF
RSB
ia = 1/2 with probability 1, and

therefore FRSB
(ia) = −x log 2. Altogether we obtain, with high probability

1

N

∑

(ia)∈E

FRSB
(ia) = −kα

{
Q∗Q̂∗ + (1 −Q∗Q̂∗)x

}
log 2 + oN (1). (19.59)

The free-entropy (19.33) of the auxiliary graphical model is obtained by
collecting the various terms. We obtain FRSB(x) = N fRSB(x) + o(N) where
fRSB(x) = [Σtot + xφtyp] log 2 and

Σtot = kαQ∗Q̂∗ − kαQ̂∗ − αQk
∗ + 1 − e−kα bQ∗ , (19.60)

φtyp = −kαQ∗Q̂∗ + kαQ̂∗ + αQk
∗ − α + e−kα bQ∗ . (19.61)

Here Q∗ is the largest solution of Eq. (19.51) and Q̂∗ = Qk−1
∗ , a condition that

has a pleasing interpretation as shown in the exercise below.

Exercise 19.3 Consider the function Σtot(Q∗, Q̂∗) defined in Eq. (19.60).
Show that the stationary points of this function coincide with the solutions
of Eq. (19.51) and Q̂∗ = Qk−1

∗ .

Because of the linear dependence on x, the Legendre transform (19.8) is
straightforward

Σ(φ) =

{
Σtot if φ = φtyp,
−∞ otherwise.

(19.62)

This means that there are 2NΣtot Bethe measures which all have the same entropy
Nφtyp log 2. Furthermore, Σtot + φtyp = 1−α, confirming that the total entropy
is (1 − α) log 2. This identity can be also written in the form

1

2N(1−α)
=

1

2NΣtot
× 1

2Nφtyp
, (19.63)

which is nothing but the decomposition (19.6) in extremal Bethe measures. In-
deed, if x is a solution of the linear system, µ(x) = 1/2N(1−α), wn ≈ 1/2NΣtot ,
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and (assuming the µn to have disjoint supports) µn(x) ≈ 1/2Nφtyp for the state
n which contains x.

Note that the value of Σ that we find here coincides with the result that
we obtained in Sec. 18.5 for the logarithm of the number of clusters in random
XORSAT formulae. This provides an independent check of our assumptions, and
in particular it shows that the number of clusters is, to leading order, the same as
the number of Bethe measures. In particular, the SAT-UNSAT transition occurs
at the value of α where the complexity Σtot vanishes. At this value each cluster
still contains a large number, 2N(1−αs), of configurations.

Exercise 19.4 Repeat this 1RSB cavity analysis for a linear Boolean system
described by a factor graph from the ensemble DN (Λ, P ) (This means a random
system of linear equations, whereby the fraction of equations involving k vari-
ables is Pk, and the fraction of variables which appear in exactly - equations
is Λ%):

(a) Show that Q∗ and Q̂∗ satisfy:

Q̂∗ = ρ(Q∗) ; Q∗ = 1 − λ(1 − Q̂∗) , (19.64)

where λ and ρ are the edge perspective degree profiles.
(b) Show that the complexity is given by

Σtot = 1 − Λ′(1)

P ′(1)
P (Q∗)− Λ(1 − Q̂∗) − Λ′(1)(1 −Q∗)Q̂∗ (19.65)

and the internal entropy of the clusters is φtyp = 1− Λ′(1)/P ′(1)−Σtot.
(c) In the case where all variables have degree strictly larger than 1 (so that

λ(0) = 0), argue that the relevant solution is Q∗ = Q̂∗ = 1, Σtot =
1 − Λ′(1)/P ′(1), φtyp = 0. What is the interpretation of this result in
terms of the core structure discussed in Sec. 18.3?

19.4 The special value x = 1

Let us return to the general formalism. The x = 1 case plays a special role,
in that the weights {wn(x)} of various Bethe measures in the auxiliary model,
coincide with the ones appearing in the decomposition (19.6). This fact manifests
itself in some remarkable properties of the 1RSB formalism.

19.4.1 Back to BP

Consider the general 1RSB cavity equations (19.28), (19.29). Using the explicit
form of the re-weighting factors eFi−Fia and eFa−Fia provided in Eqs. (19.23),
(19.24), they can be written, for x = 1, as:
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Qia(mia) ∼=
∑

xi

∑

{bmbi}

I (mia = gi({m̂bi}))
∏

b∈∂i\a

Q̂bi(m̂bi) m̂bi(xi) , (19.66)

Q̂ai(m̂ai) ∼=
∑

x∂a

ψa(x∂a)
∑

{mja}

I (m̂ai = fa({mja}))
∏

j∈∂a\i

Qja(mja) mja(xj) .(19.67)

Let us introduce the messages obtained by taking the averages of the 1RSB ones
{Qia, Q̂ai}:

νav
i→a(xi) ≡

∑

mia

Qia(mia) mia(xi) , ν̂av
a→i(xi) ≡

∑

bmai

Q̂ai(m̂ai) m̂ai(xi) .

The interpretation of these quantities is straightforward. Given an extremal
Bethe measure sampled according to the distribution wn, let νn

i→a( · ) (respec-
tively ν̂n

a→i( · )) be the corresponding message along the directed edge i → a
(resp. a → i). Its expectation, with respect to the random choice of the measure,
is νav

i→a( · ) (respectively ν̂av
a→i( · )).

Using the expressions (19.9), one finds that Eqs. (19.66), (19.67) imply

νav
i→a(xi) ∼=

∏

b∈∂i\a

ν̂av
b→i(xi) , (19.68)

ν̂av
a→i(xi) ∼=

∑

{xj}j∈∂a\i

ψa(x∂a)
∏

j∈∂a\i

νav
j→a(xj) , (19.69)

which are nothing but the ordinary BP equations. This suggests that, even if µ( · )
decomposes into an exponential number of extremal Bethe measures µn( · ), it is
itself a (non-extremal) Bethe measure. In particular, there exists a quasi-solution
of BP equations associated with it, that allows to compute its marginals.

The reader might be disappointed by these remarks. Why insisting on the
1RSB cavity approach if, when the ‘correct’ weights are used, one recovers the
much simpler BP equations? There are at least two answers:

1. The 1RSB approach provides a much more refined picture: decomposition
in extremal Bethe states, long range correlations, complexity. This is useful
and interesting per se.

2. In the cases of a static (s1RSB) phase, it turns out that the region x = 1
corresponds to an ‘unphysical’ solution of the 1RSB cavity equations, and
that (asymptotically) correct marginals are instead obtained by letting
x = x∗, for some x∗ ∈ [0, 1). In such cases it is mandatory to resort to the
full 1RSB formalism (see Sec. 19.6 below).

19.4.2 A simpler recursion

As we stressed above, controlling (either numerically or analytically) the 1RSB
distributional recursions (19.35), (19.36) is a difficult task. In the case x = 1, they
simplify considerably and lend themselves to a much more accurate numerical
study. This remark can be very useful in practice.
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As in Sec. 19.2.5, we consider a random graphical model. We shall also assume
a ‘local uniformity condition.’ More precisely, the original model µ( · ) is a Bethe
measure for the message set νav

i→a(xi) = 1/q and ν̂av
a→i(xi) = 1/q, where q = |X | is

the size of the alphabet. While such a local uniformity condition is not necessary,
it considerably simplify the derivation below. The reader can find a more general
treatment in the literature.

Consider Eqs. (19.35) and (19.36) at x = 1. The normalization constants can
be easily computed using the uniformity condition. We can then average over
the structure of the graph, and the function node distribution: let us denote by
Qav and Q̂av the averaged distributions. They satisfy the following equations:

Q(t+1)
av (m) = E




ql−2
∑

{bmb}

I (m = f({m̂b}; J)) z({m̂b})
l−1∏

b=1

Q̂(t)
av (m̂b)




 , (19.70)

Q̂(t)
av (m̂) = E





qk−2

ψk

∑

{mj}

I
(
m̂ = f̂({mj}; Ĵ)

)
ẑ({mj}; Ĵ)

k−1∏

j=1

Q(t)
av (mj)




 , (19.71)

where expectations are taken over l, k, J, Ĵ , distributed according to the random
graphical model. Here ψk =

∑
x1,...,xk−1

ψ(x1, . . . , xk−1, x; Ĵ) can be shown to be

independent of x (this is necessary for the uniformity condition to hold).
Equations (19.70) and (19.71) are considerably simpler that the original dis-

tributional equations (19.35), (19.36) in that Q(t)
av ( · ), Q̂(t)

av ( · ) are non-random.
On the other hand, they still involve a reweighting factor that is difficult to han-
dle. It turns out that this reweighting can be eliminated by introducing a new
couple of distributions for each x ∈ X :

R̂(t)
x (m) ≡ q m(x) Q̂(t)

av (m) , R(t)
x (m) = q m(x) Q(t)

av (m) . (19.72)

One can show that Eqs. (19.70), (19.71) imply the following recursions for R(t)
x ,

R̂(t)
x ,

R(t+1)
x (m) = E





∑

{bmb}

I (m = g({m̂b}; J))
l−1∏

b=1

R̂(t)
x (m̂b)




 , (19.73)

R̂(t)
x (m̂) = E





∑

{xj}

π({xj}|x; Ĵ)
∑

{mj}

I
(
m̂ = f({mj}; Ĵ)

) k−1∏

j=1

R(t)
xj

(mj)




 .(19.74)

Here E denotes expectation with respect to l, Ĵ, k, J and, for any x, Ĵ , the dis-
tribution π({xj}|x; Ĵ) is defined by

π(x1, . . . , xk−1|x; Ĵ) =
ψ(x1, . . . , xk−1, x; Ĵ)

∑
y1,...,yk−1

ψ(y1, . . . , yk−1, x; Ĵ)
. (19.75)
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Exercise 19.5 Prove formulas (19.73) and (19.74). It might be useful to recall
the following explicit expressions for the reweighting factors z and ẑ:

z({m̂b}) m(x) =
l−1∏

b=1

m̂b(x) , (19.76)

ẑ({mj}; Ĵ) m̂(x) =
∑

{xi},x

ψ(x1, . . . , xk−1, x; Ĵ)
k−1∏

j=1

mj(xj) . (19.77)

The equations (19.73), (19.74) have a simple operational description. Let Ĵ
and k be drawn according to their distribution, and, given x, generate x1, . . . , xk−1

according to the kernel π(x1, . . . , xk|x; Ĵ). Then draw independent messages

m1, . . . , mk−1 with distribution (respectively) R(t)
x1 , . . . , R(t)

xk−1 . According to Eq. (19.74),

m̂ = f({mj}; Ĵ) has then distribution R̂(t)
x . For Eq. (19.73), draw J and l accord-

ing to their distribution. Given x, draw l − 1 i.i.d. messages m̂1, . . . , m̂l−1 with

distribution R̂(t)
x . Them m = g({m̂b}; J) has distribution R(t+1)

x .
We will see in Ch. 22 that this procedure does indeed coincide with the one

for computing ‘point-to-set correlations’ with respect to the measure µ( · ).
To summarize, for x = 1 we have succeeded in simplifying the 1RSB density

evolution equations in two directions: (i) The resulting equations do not involve
‘distributions of distributions;’ (ii) We got rid of the reweighting factor. A third
crucial simplification is the following:

Theorem 19.5 The 1RSB equations have a non trivial solution (meaning a
solution different from the RS one) if and only if Eqs. (19.73), (19.74), when

initialized with R(0)
x being a singleton distribution on m(y) = I(y = x), converge

as t →∞, to a non-trivial distribution.

This theorem resolves (in the case x = 1) the ambiguity on the initial condition
of the 1RSB iteration. In other words, if the 1RSB equations admit a non-trivial
solution, it can be reached if we iterate the equations starting from the initial
condition mentioned in the theorem. We refer the reader to the literature for the
proof.

Exercise 19.6 Show that the free-entropy of the auxiliary model FRSB(x),
evaluated at x = 1, coincides with the RS Bethe free-entropy.

Further, its derivative with respect to x at x = 1 can be expressed in terms of

the fixed point distributions R(∞)
x and R̂(∞)

x . In particular the complexity and
internal free-entropy can be computed from the fixed points of the simplified
equations (19.73), (19.74).

The conclusion of this section is that 1RSB calculations at x = 1 are not
technically harder that RS ones. In view of the special role played by the value
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x = 1 this observation can be exploited in a number of contexts.

19.5 Survey propagation

The 1RSB cavity method can be applied to other message passing algorithms
whenever these have many fixed points. A particularly important case is the min-
sum algorithm of Sec. 14.3. This approach (both in its RS and 1RSB versions)
is sometimes referred to as the energetic cavity method because, in physics
terms, the min-sum algorithm aims at computing the ground state configuration
and its energy. We will call the corresponding 1RSB message passing algorithm
SP(y) (survey propagation at finite y).

19.5.1 The SP(y) equations

The formalism follows closely the one used with BP solutions. To emphasize the
similarities, let us adopt the same notation for the min-sum messages as for the
BP ones. We define

mja(xj) ≡ Ei→a(xi) , m̂ai(xi) ≡ Êa→i(xi) , (19.78)

and write the min-sum equations (14.40), (14.41) as:

mia = fei
(
{m̂bi}b∈∂i\a

)
, m̂ai = f̂ea

(
{mja}j∈∂a\i

)
. (19.79)

The functions fei , f̂ea are defined by Eqs. (14.40), (14.41), that we reproduce here:

mia(xi) =
∑

b∈∂i\a

m̂bi(xi)− uia , (19.80)

m̂ai(xi) = min
x∂a\i



Ea(x∂a) +
∑

j∈∂a\i

mja(xj)



− ûai , (19.81)

where uia, ûai are normalization constants (independent of xi) which ensure that
minxi m̂ai(xi) = 0 and minxi mia(xi) = 0.

To any set of messages {mia, m̂ai}, we associate the Bethe energy

Fe(m, m̂) =
∑

a∈F

Fe
a({mia}i∈∂a) +

∑

i∈V

Fe
i ({m̂ai}a∈∂i) −

∑

(ia)∈E

Fe
ia(mia, m̂ai) , (19.82)

where the various terms are (see Eq. (14.45)):

Fe
a = min

x∂a

[
Ea(x∂a) +

∑

j∈∂a

mia(xi)
]
, Fe

i = min
xi

[ ∑

a∈∂i

m̂ai(xi)
]
,

Fe
ia = min

xi

[
mia(xi) + m̂ai(xi)

]
. (19.83)

Having set up the message passing algorithm and the associated energy func-
tional, we can repeat the program developed in the previous Sections. In partic-
ular, in analogy with Assumption 1, we have the following
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Assumption 4 There exist exponentially many quasi-solutions {mn} of min-
sum equations. The number of such solutions with Bethe energy Fe(mn) ≈ Nε
is (to leading exponential order) exp{NΣe(ε)}, where Σe(ε) is the energetic
complexity function.

In order to estimate Σe(ε), we introduce an auxiliary graphical model, whose
variables are the min-sum messages {mia, m̂ai}. These are forced to satisfy (within
some accuracy) the min-sum equations (19.80), (19.81). Each solution is given a
weight e−yF

e(m,bm), with y ∈ R. The corresponding distribution is:

Py(m, m̂) =
1

Ξ(y)

∏

a∈F

Ψa({mja, m̂ja}j∈∂a)
∏

i∈V

Ψi({mib, m̂ib}b∈∂i)
∏

(ia)∈E

Ψia(mia, m̂ia) ,

(19.84)
where:

Ψa =
∏

i∈∂a

I
(
m̂ai = f̂ea

(
{mja}j∈∂a\i

))
e−yF

e
a({mja}j∈∂a) , (19.85)

Ψi =
∏

a∈∂i

I
(
mia = fei

(
{m̂bi}b∈∂i\a

))
e−yF

e
i({bmbi}b∈∂i) , (19.86)

Ψia = eyF
e
ia(mia,bmai) . (19.87)

Since the auxiliary graphical model is again locally tree-like, we can hope
to derive asymptotically exact results through belief propagation. Messages of
the auxiliary problem, to be denoted as Qia( · ), Q̂ai( · ), are distributions over
the min-sum messages. The SP(y) equations are obtained by further making the
independence assumption (19.27).

The reader has certainly noticed that the whole procedure is extremely close
to our study in Sec. 19.2.2. We can apply our previous analysis verbatim to
derive the SP(y) update equations. The only step that requires some care is the
formulation of the proper analog of Lemma 19.3. This becomes:

Lemma 19.6 Assume that mia(xi) + m̂ai(xi) < ∞ for at least one value of
xi ∈ X . If mia = fei ({m̂bi}b∈∂i\a), then

Fe
i − Fe

ia = uia({m̂bi}b∈∂i\a) ≡ min
xi

{ ∑

b∈∂i\a

m̂bi(xi)
}

. (19.88)

Analogously, if m̂ai = f e
a({mja}j∈∂a\i), then

Fe
a − Fe

ia = ûai({mja}j∈∂a\i) ≡ min
x∂a

{
Ea(x∂a) +

∑

k∈∂a\i

mka(xk)
}

. (19.89)

Using this lemma, the same derivation as in Sec. 19.2.2 leads to

Proposition 19.7 The SP(y) equations are (with the shorthands {m̂bi} for {m̂bi}b∈∂i\a

and {mja} for {mja}j∈∂a\i):
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Qia(mia) ∼=
∑

{bmbi}

I (mia = ge
i ({m̂bi})) e−yuia({bmbi})

∏

b∈∂i\a

Q̂bi(m̂bi) , (19.90)

Q̂ai(m̂ai) ∼=
∑

{mja}

I (m̂ai = f e
a({mja})) e−yûai({mja})

∏

j∈∂a\i

Qja(mja) . (19.91)

In the following we shall reserve the name survey propagation (SP) for the
y = ∞ case of these equations.

19.5.2 Energetic complexity

The Bethe free-entropy for the auxiliary graphical model is given by

FRSB,e({Q, Q̂}) =
∑

a∈F

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(ia)∈E

FRSB,e
ia , (19.92)

and allows to count the number of min-sum fixed points. The various terms
are formally identical to the ones in Eqs. (19.30), (19.31) and (19.32), provided
F·( · ) is replaced everywhere by −Fe

· ( · ) and x by y. We reproduce them here for
convenience:

FRSB,e
a = log





∑

{mia}

e−yF
e
a({mia})

∏

i∈∂a

Qia(mia)




 , (19.93)

FRSB,e
i = log





∑

{bmai}

e−yF
e
i({bmai})

∏

a∈∂i

Q̂ai(m̂ai)




 , (19.94)

FRSB,e
ia = log





∑

mia,bmai

e−yF
e
ia(mia,bmai)Qia(mia)Q̂ai(m̂ai)




 . (19.95)

Assuming that the Bethe free-entropy gives the correct free-entropy of the
auxiliary model, the energetic complexity function Σe(ε) can be computed from
FRSB,e(y) through the Legendre transform: in the large N limit we expect FRSB,e({Q, Q̂}) =
NFe(y) + o(N) where

Fe({Q, Q̂}) = Σe(ε)− yε ,
∂Σe

∂ε
= y . (19.96)

Finally, the 1RSB population dynamics algorithm can be used to sample
-approximately- the SP(y)messages in random graphical models.

19.5.3 Constraint satisfaction and binary variables

In Sec. 14.3.3 we noticed that the min-sum messages simplify significantly when
one deals with constraint satisfaction problems. In such problems, the energy
function takes the form E(x) =

∑
a Ea(x∂a), where Ea(x∂a) = 0 if constraint

a is satisfied by the assignment x, and Ea(x∂a) = 1 otherwise. As discussed in
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Sec. 14.3.3 the min-sum equations then admit solutions with m̂ai(xi) ∈ {0, 1}.
Furthermore, one does not need to keep track of the variable-to-function node
messages mia(xi), but only of their ‘projection’ on {0, 1}.

In other words, in constraint satisfaction problems the min-sum messages take
2|X |−1 possible values (the all-1 message cannot appear). As a consequence, the
SP(y)messages Q̂ai( · ) and Qia( · ) simplify considerably: they are points in the
(2|X | − 1)-dimensional simplex.

If the min-sum messages are interpreted in terms of warnings, as we did
in Sec. 14.3.3, then SP(y)messages keep track of the warnings’ statistics (over
pure states). One can use this interpretation to derive directly the SP(y) update
equations without going through the whole 1RSB formalism. Let us illustrate
this approach on the important case of binary variables |X | = 2.

The min-sum messages m̂ and m (once projected) can take three values:
(m̂(0), m̂(1)) ∈ {(0, 1), (1, 0), (0, 0)}. We shall denote them respectively as 0 (inter-
preted as a warning: “take value 0”), 1 (interpreted as a warning: “take value 1”)
and ∗ (interpreted as a warning:“you can take any value”). Warning propagation
(WP) can be described in words as follows.

Consider the message from variable node i to function node a. This depends
on all the messages to i from function nodes b ∈ ∂i \ a. Suppose that n̂0 (respec-
tively, n̂1, n̂∗) of these messages are of type 0 (resp. 1, ∗) for i ∈ ∂a. If n̂0 > n̂1,
i sends to a a 0 message. If n̂1 > n̂0, it sends to a a 1 message. If n̂1 = n̂0, it
send to a a ∗ message. The ‘number of contradictions’ among the messages that
it receives is: Fe

i − Fe
ia = uia = min(n̂1, n̂0).

Now consider the message from function node a to variable node i. It depends
on the ones coming from neighboring variables j ∈ ∂a\ i. Partition the neighbors
into subsets P∗,P0,P1, whereby Pm is the set of indices j such that mja = m. For
each value of xi ∈ {0, 1}, the algorithm computes the minimal value of Ea(x∂a)
such that the variables in P0 (respectively, P1) are fixed to 0 (resp. to 1). More
explicitly, let us define a function ∆P(xi) as follows:

∆P(xi) = min
{xj}j∈P∗

Ea(xi, {xj}j∈P∗ , {xk = 0}k∈P0
, {xl = 1}l∈P1

) . (19.97)

The following table then gives the outgoing message m̂ai and the number of
contradictions at a, Fe

a−Fe
ai = ûai as a function of the values ∆P(0) and ∆P (1):

∆P(0) ∆P(1) m̂ai ûai

0 0 ∗ 0
0 1 0 0
1 0 1 0
1 1 ∗ 1

Having established the WP update rules, it is immediate to write the SP(y) equations.
Consider a node, and one of its neighbors to which it sends messages. For each
possible configuration of incoming warnings on the node, denoted by input, we
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found the rules to compute the outgoing warning output = ÔUT(input) and
the number of contradictions δFe(input). SP(y)messages are distributions over
(0, 1, ∗): (Qia(0), Qia(1), Qia(∗)) and (Q̂ai(0), Q̂ai(1), Q̂ai(∗)). Notice that these
messages are only marginally more complicated than ordinary BP messages. Let
P(input) denote the probability of a given input assuming independent warnings
with distribution Qia( · ) (respectively, Q̂ai( · )). The probability of an outgoing
message output ∈ {0, 1, ∗} is then:

P(output) ∼=
∑

input

P(input)I(ÔUT(input) = output)e−yδF
e(input) . (19.98)

Depending whether the node we are considering is a variable or function node,
this probability distribution corresponds to the outgoing message Qia( · ) or
Q̂ai( · ).

It can be shown that the Bethe energy (19.83) associated with a given fixed
point of the WP equations coincides with the total number of contradictions.
This is expressed as the number of contradictions at function nodes, plus those
at variable nodes, minus the number of edges (i, a) such that the warning in
direction a → i contradicts the one in direction i → a (the last term avoids double
counting). It follows that the Bethe free-entropy of the auxiliary graphical model
FRSB,e(y) weights each WP fixed point depending on its number of contradictions,
as it should.

19.5.4 XORSAT again

Let us know apply the SP(y) formalism to random K-XORSAT instances. We
let the energy function E(x) count the number of unsatisfied linear equations:

Ea(x∂a) =

{
0 if xi1(a) ⊕ · · · ⊕ xiK(a) = ba,
1 otherwise.

(19.99)

The simplifications discussed in the previous subsection apply to this case. The
1RSB population dynamics algorithm can be used to compute the free-entropy
density Fe(y). Here we limit ourselves to describing the results of this calculation
for the case K = 3.

Let us stress that the problem we are considering here is different from the
one investigated in Section 19.3. While there we were interested in the uniform
measure over solutions (thus focusing on the satisfiable regime α < αs(K)), here
we are estimating the minimum number of unsatisfied constraints (which is most
interesting in the unsatisfiable regime α > αs(K)).

It is easy to show that the SP(y) equations always admit a solution in which
Qia(∗) = 1 for all (i, a), indicating that the min-sum equations have a unique
solution. This corresponds to a density evolution fixed point whereby Q(∗) = 1
with probability 1, yielding Fe(y) independent of y. For y smaller than an α-
dependent threshold y∗(α), this is the only solution we find. For larger values of
y, the SP(y) equations have a non-trivial solution. Fig. 19.4 shows the result for
the free-entropy density Fe(y), for three values of α.
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Fig. 19.4. Random 3-XORSAT at α = 0.87, 0.97 and 1.07. Recall that, for
K = 3, αd(K) ≈ 0.818 and αs(K) ≈ 0.918. Left frame: Free-entropy density
Fe(y) as a function of y, obtained using the population dynamics algorithm,
with N = 2 · 104 and t = 5 · 103 (α increases from bottom to top). Right
frame: Complexity Σe(ε) as a function of energy density (equal to the number
of violated constraints per variable). α increases from left to right.

Above this threshold density evolution converges to a ‘non-trivial’ 1RSB fixed
point. The complexity functions Σe(ε) can be deduced by Legendre transform,
cf. Eq. (19.96), which requires differentiating Fe(y) and plotting (ε,Σe) in para-
metric form. The derivative can be computed numerically in a number of ways:

1. Compute analytically the derivative of FRSB,e(y) with respect to y. This
turns out to be a functional of the fixed point distributions of Q, Q̂, and
can therefore be easily evaluated.

2. Fit the numerical results for the function Fe(y) and differentiate the fitting
function

3. Approximate the derivative as difference at nearby values of y.

In the present case we followed the second approach using the parametric form
Ffit(y) = a+b e−y+c e−2y+d e−3y. As shown in Fig. 19.4 the resulting parametric
curve (ε,Σe) is multiple valued (this is a consequence of the fact that Fe(y) is not
concave). Only the concave part of Fe(y) is retained as physically meaningful.
Indeed the convex branch is ‘unstable’ (in the sense that further RSB would be
needed) and it is not yet understood whether it has any meaning.

For α ∈ [αd(K), αs(K)[, Σe(ε) remains positive down to ε = 0. The intercept
Σe(ε = 0) coincides with the complexity of clusters of SAT configurations, as
computed in Ch. 18 (see Theorem 18.2). For α > αs(K) (UNSAT phase) Σe(ε)
vanishes at εgs(K,α) > 0. The energy density εgs(K,α) is the minimal fraction
of violated equations, in a random XORSAT linear system. Notice that Σe(ε)
is not defined above a second energy density εd(K,α). This indicates that we
should take Σe(ε) = −∞ there: above εd(K,α) one recovers a simple problem
with a unique Bethe measure.

Figure 19.5 shows the values of εgs(K,α) and εd(K,α) as functions of α for
K = 3 (random 3-XORSAT).
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Fig. 19.5. Asymptotic ground state energy (= minimal number of violated
constraints) per variable εgs(K,α) for random K = 3-XORSAT formulae.
εgs(K,α) vanishes for α < αs(K). The dashed line εd(K,α) is the highest
energy density e such that configurations with E(x) < Ne are clustered. It
vanishes for α < αd(K).

19.6 The nature of 1RSB phases

In the last sections we discussed how to compute the complexity function Σ(φ)
(or its ‘zero temperature’ version, the energetic complexity Σe(ε)). Here we want
to come back to the problem of determining some qualitative properties of the
measure µ( · ) for random graphical models, on the basis of its decomposition
into extremal Bethe measures:

µ(x) =
∑

n∈E

wnµn(x) . (19.100)

Assumptions 2 and 3 imply that, in this decomposition, we introduce a neg-
ligible error if we drop all the states n but the ones with free-entropy φn ≈ φ∗,
where

φ∗ = argmax{φ + Σ(φ) : Σ(φ) ≥ 0} . (19.101)

In general, Σ(φ) is strictly positive and continuous in an interval [φmin, φmax]
with Σ(φmax) = 0, and

Σ(φ) = x∗(φmax − φ) + O((φmax − φ)2) , (19.102)

for φ close to φmax.
It turns out that the decomposition (19.100) has different properties depend-

ing on the result of the optimization (19.101). One can distinguish two phases
(see Fig. 19.6): d1RSB (dynamic one-step replica symmetry breaking) when the
max is achieved in the interior of [φmin, φmax] and, as a consequence Σ(φ∗) > 0;
s1RSB (static one-step replica symmetry breaking) when the max is achieved at
φ∗ = φmax and therefore Σ(φ∗) = 0 (this case occurs iff x∗ ≤ 1).
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Fig. 19.6. A sketch of the complexity Σ versus free-entropy-density φ in a
finite-temperature problem with 1RSB phase transition, at three tempera-
tures T1 < T2 < T3. A random configuration x with distribution µ(x) is
found with high probability in a cluster of free-entropy-density φ1, φ2, φ3 re-
spectively. T2 and T3 are above the condensation transition: φ2, φ3 are the
points where ∂Σ/∂φ = −1. T1 is below the condensation transition: φ1 is the
largest value of φ where Σ is positive.

19.6.1 Dynamical 1RSB

Assume Σ∗ = Σ(φ∗) > 0. Then we can restrict the sum (19.100) to those states
n such that φn ∈ [φ∗ − ε, φ∗ + ε], if we allow for an exponentially small error.
To the leading exponential order there are eNΣ∗ such states whose weights are
wn ∈ [e−N(Σ∗+ε′), e−N(Σ∗−ε′)].

Different states are expected to have essentially disjoint support. By this we
mean that there exists subsets {Ωn}n∈E of the configuration space XN such that,
for any m ∈ E

µm(Ωm) ≈ 1 ,
∑

n∈E\m

wnµn(Ωm) ≈ 0 . (19.103)

Further, different states are separated by ‘large free-energy barriers.’ This means
that one can choose the above partition in such a way that only an exponentially
small (in N) fraction of the probability measure is on its boundaries.

This structure has two important consequences:

Glassy dynamics. Let us consider a local Markov Chain dynamics that sat-
isfies detailed balance with respect to the measure µ( · ). As an example we can
consider the Glauber dynamics introduced in Ch. 4 (in order to avoid trivial
reducibility effects, we can assume in this discussion that the compatibility func-
tions ψa(x∂a) are bounded away from 0).

Imagine initiating the dynamics at time 0 with an equilibrated configuration
x(0) distributed according to µ( · ). This is essentially equivalent to picking a
state n uniformly at random among the typical ones, and then sampling x(0)
from µn( · ). Because of the exponentially large barriers, the dynamics will stay
confined in Ωn for an exponentially large time, and equilibrate among states only
on larger time scales.
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This can be formalized as follows. Denote by D(x, x′) the Hamming distance
in XN . Take two i.i.d. configuration with distribution µ and let Nd0 be the expec-
tation value of their Hamming distance. Analogously take two i.i.d. configuration
with distribution µn, and let Nd1 be the expectation value of their Hamming
distance. When the state n is chosen randomly with distribution wn, we ex-
pect d1 not to depend on the state n asymptoticaly for large sizes. Furthermore:
d1 < d0. Then we can consider the (normalized) expected Hamming distance
between configurations at time t in Glauber dynamics d(t) = 〈D(x(0), x(t))〉/N .
For any ε < d0−d1, the correlation time τ(ε) ≡ inf{t : d(t) ≥ d0−ε} is expected
to be exponentially large in N

Short-range correlations in finite-dimensional projections. We motivated the
1RSB cavity method with the emergence of long-range correlations due to de-
composition of µ( · ) into many extremal Bethe measures. Surprisingly, such cor-
relations cannot be detected by probing a bounded (when N → ∞) number of
variables. More precisely, if i(1), . . . , i(k) ∈ {1, · · · , N} are uniformly random
variable indices, then, in the d1RSB phase:

E|〈f1(xi(1))f2(xi(2)) · · · fk(xi(k))〉 − 〈f1(xi(1))〉〈f2(xi(2))〉 · · · 〈fk(xi(k))〉|
N→∞→ 0 .

(Here 〈 · 〉 denote the expectation with respect to the measure µ, and E the
expectation with respect to the graphical model in a random ensemble). This
finding can be understood intuitively as follows. If there are long range corre-
lations among subsets of k variables, then it must be true that conditioning on
the values of k − 1 of them changes the marginal distribution of the k-th one.
On the other hand, we think that long range correlations arise because far apart
variables ‘know’ that the whole system is in the same state n. But conditioning
on a bounded number (k − 1) of variables cannot select in any significant way
among the eNΣ∗ relevant states, and thus cannot change the marginal of the k-th
one.

An alternative argument makes use of the observation that, if x(1) and x(2) are
two i.i.d. configurations with distribution µ( · ), then their distance D(x(1), x(2))
concentrates in probability. This is due to the fact that the two configurations
will be, with high probability, in different states n1 .= n2 (the probability of
n1 = n2 being e−NΣ∗), whose distance depends weakly on the states couple.

Let us finally notice that the absence of long range correlations among bounded
subset of variables is related to the observation that µ( · ) is itself a Bethe mea-
sure (although a non-extremal one) in a d1RSB phase, cf. Sec. 19.4.1. Indeed,
each BP equation involves a bounded subset of the variables and can be violated
only because of correlations among them.

As we shall discuss in Sec. 22.1.2, long range correlations in a d1RSB phase
can be probed through more sophisticated “point-to-set” correlation functions.

19.6.2 Static 1RSB

In this case the decomposition (19.100) is dominated by a few states of near-to-
maximal free-entropy φn ≈ φmax. If we ‘zoom’ near the edge by letting φn =
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φmax + sn/N , then the ‘free-entropy shifts’ sn form a point process with density
exp(−x∗s).

The situation is analogous to the one we found in the random energy model
for T < Tc. Indeed it is expected that the weights {wn} converge to the same
universal Poisson-Dirichlet process found there, and to depend on the model de-
tails only through the parameter x∗ (we have already discussed this universality
using replicas in Ch. 8). In particular, if x(1) and x(2) are two i.i.d. replicas with
distribution µ, and n1, n2 are the states they belong to, then the probability for
them to belong to the same state is

E {Pµ(n1 = n2)} = E

{
∑

n∈E

w2
n

}
= 1 − x∗ . (19.104)

Here E denote expectation with respect to the graphical model distribution.
As a consequence, the distance D(x(1), x(2)) between two i.i.d. replicas does

not concentrate (the overlap distribution is non-trivial). This in turn can only
be true if the two-point correlation function does not vanish at large distances.
Long-range correlations of this type make BP break down. The original graphical
model µ( · ) is no longer a Bethe measure: its local marginals cannot be described
in terms of a set of messages. The 1RSB description, according to which µ( · ) is
a convex combination of Bethe measures, is unavoidable.

At this point we are left with a puzzle. How to circumvent the argument given
in Section 19.4.1 that, if the ‘correct’ weight x = 1 is used, then the marginals
as computed within 1RSB still satisfy BP equations? The conundrum is that,
within a s1RSB phase, the parameter x = 1 is not the correct one to be used in the
1RSB cavity equations (although it is the correct one to weight states). In order
to explain this, let us first notice that, if the complexity is convex and behaves
as in Eq. (19.102) near its edge, with a slope −x∗ > −1, then the optimization
problem (19.101) has the same result as

φ∗ = argmax{xφ + Σ(φ) : Σ(φ) ≥ 0} . (19.105)

for any x ≥ x∗. Therefore, in the 1RSB cavity equations we could in principle use
any value of x larger or equal to x∗ (this would select the same states). However,
the constraint Σ(φ) ≥ 0 cannot be enforced locally and does not show up in
the cavity equations. If one performs the computation of Σ within the cavity
method using a value x > x∗, then one finds a negative value of Σ which must
be rejected (it is believed to be related to the contribution of some exponentially
rare instances). Therefore, in order to ensure that one studies the interval of φ
such that Σ(φ) ≥ 0, one must impose x ≤ x∗ in the cavity method. In order to
select the states with free-entropy density φmax, we must thus choose the Parisi
parameter that corresponds to φmax, namely x = x∗.

19.6.3 When does 1RSB fail?

The 1RSB cavity method is a powerful tool, but does not always provide cor-
rect answers, even for locally tree-like models, in the large system limit. The
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main assumption of the 1RSB approach is that, once we pass to the auxiliary
graphical model (which ‘enumerates’ BP fixed points) a simple BP procedure is
asymptotically exact. In other words, the auxiliary problem has a simple ‘replica
symmetric’ structure and no glassy phase. This is correct in some cases, such as
random XORSAT or SAT close to their SAT-UNSAT threshold, but it may fail
in others.

A mechanism leading to a failure of the 1RSB approach is that the auxil-
iary graphical model is incorrectly described by BP. This may happen because
the auxiliary model measure decomposes in many Bethe states. In such a case,
one should introduce a second auxiliary model, dealing with the multiplicity of
BP fixed points of the first one. This is usually referred to as ‘two-step replica
symmetry breaking’ (2RSB). Obviously one can find situations in which it is
necessary to iterate this construction, leading to a R-th level auxiliary graphical
model (R-RSB). Continuous (or full) RSB corresponds to the large-R limit.

While such developments are conceptually clear (at least from an heuristic
point of view), they are technically challenging. So far limited results have been
obtained beyond 1RSB. For a brief survey, we refer to Ch. 22.

Appendix: SP(y) equations for XORSAT

This appendix provides technical details on the 1RSB treatment of random K-
XORSAT, within the ‘energetic’ formalism. The results of this approach were
discussed in Sec. 19.5.4. In particular we will derive the behavior of the auxil-
iary free-entropy Fe(y) at large y, and deduce the behavior of the complexity
Σe(ε) at small ε. This section can be regarded as an exercise in applying the
SP(y) formalism. We shall skip many details and just give the main intermediate
results of the computation.

XORSAT is a constraint satisfaction problems with binary variables. We can
thus apply the simplified method of Sec. 19.5.3. The projected min-sum messages
can take three values: 0, 1, ∗. Exploiting the symmetry of XORSAT between 0
and 1, SP(y)messages can be parametrized by a single number, e.g. by the sum
of their weights on 0 and 1. We will therefore write: Qia(0) = Qia(1) = ζia/2
(thus implying Qia(∗) = 1−ζia), and Q̂ai(0) = Q̂ai(1) = ηai/2 (whence Q̂ai(∗) =
1 − ηai).

In terms of these variables, the SP(y) equation at function node a reads:

ηai =
∏

j∈∂a\i

ζja . (19.106)

The SP(y) equation at variable node i is a bit more complicated. Let us
consider all the |∂i| − 1 incoming messages Q̂bi, b ∈ ∂i \ a. Each of them is
parameterized by a number ηbi. We let η = {ηbi, b ∈ ∂i \ a} and define the
function Bq(η) as follows:

Bq(η) =
∑

S⊂{∂i\a}

I(|S| = q)
∏

b∈∂i\{S∪{a}}

(1 − ηbi)
∏

c∈S

ηcj . (19.107)
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Let Aq,r(η) = Bq+r(η)
(
q+r

q

)
2−(q+r). After some thought one obtains the update

equation:

ζia =
2
∑|∂i|−2

q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq

∑+(|∂i|−1)/2,
q=0 Aq,q(η)e−yq + 2

∑|∂i|−2
q=0

∑|∂i|−1
r=q+1 Aq,r(η)e−yq

(19.108)

The auxiliary free-entropy FRSB,e(y) has the general form (19.92), with the
various contributions expressed as follows in terms of the parameters {ζia, ηai}:

eF
RSB,e
a = 1 − 1

2
(1 − e−y)

∏

i∈∂a

ζia , eF
RSB,e
ai = 1 − 1

2
ηaiζia(1 − e−y) ,

eF
RSB,e
i =

di∑

q=0

di−q∑

r=0

Aq,r ({ηai}a∈∂i) e−ymin(q,r) . (19.109)

Let us consider random K-XORSAT instances with constraint density α.
Equations (19.106), (19.108) get promoted to distributional relations that deter-
mine the asymptotic distribution of η and ζ on a randomly chosen edge (i, a).
The 1RSB population dynamics algorithm can be used to approximate these
distributions. We encourage the reader to implement it, and obtain a numerical
estimate of the auxiliary free-entropy density Fe(y).

It turns out that, at large y, one can control the distributions of η, ζ ana-
lytically, provided their qualitative behavior satisfies the following assumptions
(that can be checked numerically):

• With probability t one has η = 0, and with probability 1− t, η = 1− e−yη̂,
where t has a limit in ]0, 1[, and η̂ converges to a random variable with
support on [0,∞[, as y →∞.

• With probability s one has ζ = 0, and with probability 1−s, ζ = 1−e−yζ̂,
where s has a limit in ]0, 1[, and ζ̂ converges to a random variable with
support on [0,∞[, as y →∞.

Under these assumptions, we shall expand the distributional version of Eqs. (19.106),
(19.108) keeping terms up to first order in e−y. We shall use t, s, η̂, ζ̂ to denote
the limit quantities mentioned above.

It is easy to see that t, s must satisfy the equations (1 − t) = (1 − s)k−1 and
s = e−Kα(1−t). These are identical to Eqs. (19.51) and (19.52), whence t = 1−Q̂∗
and s = 1 −Q∗.

Equation (19.106) leads to the distributional equation:

η̂
d
= ζ̂1 + · · · + ζ̂K−1 , (19.110)

where ζ̂1, . . . , ζ̂K−1 are K − 1 i.i.d. copies of the random variable ζ̂.
The update equation (19.108) is more complicated. There are in general l

inputs to a variable node, where l is Poisson with mean Kα. Let us denote by
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m the number of incoming messages with η = 0. The case m = 0 yields ζ = 0
and is taken care of in the relation between t and s. If we condition on m ≥ 1,
the distribution of m is

P(m) =
λm

m!
e−λ

1

1 − e−λ
I(m ≥ 1) , (19.111)

where λ = Kα(1 − t). Conditional on m, Eq. (19.108) simplifies as follows:

• If m = 1: ζ̂
d
= η̂.

• If m = 2: ζ̂ = 1 identically.
• If m ≥ 3: ζ̂ = 0 identically.

The various contributions to the free-entropy (19.38) are given by:

fRSB,e
f = (1 − s)k

[
− log 2 + e−y(1 + K〈ζ̂〉)

]
+ o(e−y) , (19.112)

fRSB,e
v =

λ2

2
e−λ

[
− log 2 + e−y(1 + 2〈η̂〉)

]

+
∞∑

m=3

λm

m!
e−λ

[
(1 −m) log 2 + e−ym(1 + 〈η̂〉)

]
+ o(e−y) , (19.113)

fRSB,e
e = (1 − t)(1 − s)

[
− log 2 + e−y(1 + 〈η̂〉+ 〈ζ̂〉)

]
+ o(e−y) , (19.114)

where 〈η̂〉 and 〈ζ̂〉 are the expectation values of η̂ and ζ̂. This gives for the free-
entropy density Fe(y) = fRSB,e

f + αfRSB,e
v − Kα fRSB,e

e = Σ0 + e−yε0 + o(e−y),
with:

Σ0 =

[
1 − λ

k
− e−λ

(
1 +

k − 1

k
λ

)]
log 2 , (19.115)

ε0 =
λ

k

[
1 − e−λ

(
1 +

k

2
λ

)]
. (19.116)

Taking the Legendre transform, cf. Eq. (19.96), we obtain the following behavior
of the energetic complexity as ε → 0:

Σe(ε) = Σ0 + ε log
ε0e

ε
+ o(ε) , (19.117)

This shows in particular that the ground state energy density is proportional to
(α−αs)/| log(α−αs)| close to the SAT-UNSAT transition (when 0 < α−αs 8 1).

Exercise 19.7 In the other extreme, show that at large α one gets εgs(K,α) =
α/2 +

√
2αε∗(K) + o(

√
α), where the positive constant ε∗(K) is the absolute

value of the ground state energy of the fully connected K-spin model studied
in Sec. 8.2. This indicates that there is no interesting intermediate asymptotic
regime between the M = Θ(N) (discussed in the present chapter) and M =
Θ(NK−1) (discussed with the replica method in Ch. 8)
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Notes

The cavity method originated as an alternative to the replica approach in the
study of the Sherrington-Kirkatrick model (Mézard, Parisi and Virasoro, 1985b).
The 1RSB cavity method for locally tree-like factor graphs was developed in
the context of spin glasses in (Mézard and Parisi, 2001). Its application to zero
temperature problems (counting solutions of the min-sum equations), was also
first described in the spin glass context in (Mézard and Parisi, 2003). The pre-
sentation in this chapter differs in its scope from those work, which were more
focused in computing averages over random instances. For a rigorous treatment
of the notion of Bethe measure, we refer to (Dembo and Montanari, 2008b).

The idea that the 1RSB cavity method is in fact equivalent to applying BP on
an auxiliary model appeared in several paper treating the cases of coloring and
satisfiability with y = 0 (Parisi, 2002; Braunstein and Zecchina, 2004; Maneva,
Mossel and Wainwright, 2005). The treatment presented here generalizes these
works, with the important difference that the variables of our auxiliary model
are messages rather than node quantities.

The analysis of the x = 1 case is strictly related to the problem of recon-
struction on a tree. This has been studied in (Mézard and Montanari, 2006),
where the reader will find the proof of Theorem 19.5 and the expression of the
free-entropy of exercise 19.6.

The SP(y) equations for one single instance have been written first in the
context of the K-satisfiability problem in (Mézard and Zecchina, 2002), see also
(Mézard, Parisi and Zecchina, 2003). The direct derivation of SP(y) equations
in binary variable problems, shown in Sec. 19.5.3, was done originally for satis-
fiability in (Braunstein, Mézard and Zecchina, 2005), see also (Braunstein and
Zecchina, 2004) and (Maneva, Mossel and Wainwright, 2005). The application of
the 1RSB cavity method to the random XORSAT problem, and its comparison
to the exact results, was done in (Mézard, Ricci-Tersenghi and Zecchina, 2003).

An alternative to the cavity approach followed throughout this book is pro-
vided by the replica method of Ch. 8. As we saw, it was first invented in order
to treat fully connected models (i.e. models on complete graphs), cf. (Mézard,
Parisi and Virasoro, 1987), and subsequently developed in the context of sparse
random graphs (Mézard and Parisi, 1985; Dominicis and Mottishaw, 1987; Mot-
tishaw and Dominicis, 1987; Wong and Sherrington, 1988; Goldschmidt and Lai,
1990). The technique was further improved in the paper (Monasson, 1998), that
offers a very lucid presentation of the method.



20

RANDOM K-SATISFIABILITY

This chapter applies the cavity method to the random K-satisfiability problem.
We will study both the phase diagram (in particular, we will determine the SAT-
UNSAT threshold αs(K)) and the algorithmic applications of message passing.
The whole chapter is based on heuristic derivations: it turns out that the rig-
orization of the whole approach is still in its infancy. Neither the conjectured
phase diagram, nor the efficiency of message passing algorithms have been yet
confirmed rigorously. But the computed value of αs(K) is conjectured to be ex-
act, and the low-complexity message passing algorithms that we will describe
turn out to be particularly efficient in finding solutions.

We will start in Sec. 20.1 by writing the BP equations, following the ap-
proach exposed in Ch. 14. The statistical analysis of such equations provides
a first (replica symmetric) estimate of αs(K). This however turns out to be
incorrect. The reason of this failure is traced back to the incorrectness of the
replica symmetric assumption close to the SAT-UNSAT transition. The system
undergoes a ‘structural’ phase transition at a clause density smaller than αs(K).
Nevertheless, BP empirically converges in a wide range of clause densities, and
it can be used to find SAT assignments on large instances provided the clause
density α is not too close to αs(K). The key idea is to use BP as a heuristic
guide in a sequential decimation procedure.

In Sec. 20.2 we apply the 1RSB cavity method developed in Ch. 19. The
statistical analysis of the 1RSB equations gives the values for αs(K) summarized
in Table 20.2.4. From the algorithmic point of view, one can use SP instead of BP
as a guide in the decimation procedure. We shall explain and study numerically
the corresponding ‘survey-guided decimation’ algorithm, which is presently the
most efficient algorithm to find SAT assignments in large random satisfiable
instances with a clause density close to the threshold αs(K).

This chapter focuses on K-SAT with K ≥ 3. The K = 2 problem is quite
different: satisfiability can be proved in polynomial time, the SAT-UNSAT phase
transition is driven by a very different mechanism, and the threshold is known
to be αs(2) = 1. It turns out that a (more subtle) qualitative difference also
distinguishes K = 3 from K ≥ 4. In order to illustrate this point, we will use
both 3-SAT and 4-SAT as running examples.

Coloring random graphs turns out to be very similar to random K-satisfiability.
Section 20.4 presents a few highlights in the study of random graph colorings.
In particular, we emphasize how the techniques used for K-satisfiability are suc-
cessful in this case as well.

473
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20.1 Belief Propagation and the replica symmetric analysis

We already studied some aspects of random K-SAT in Ch. 10, where we derived
in particular some rigorous bounds on the SAT/UNSAT threshold αs(K). Here
we will study the problem using message passing approaches. Let us start by
summarizing our notations.

An instance of the K-satisfiability problem is defined by M clauses (indexed
by a, b · · · ∈ {1, . . . , M}) over N Boolean variables x1, . . . , xN taking values in
{0, 1}. We denote by ∂a the set of variables in clause a, and by ∂i the set of
clauses in which variable xi appears. Further, for each i ∈ ∂a, we introduce the
number Jai which takes value 1 if xi appears negated in clause a, and takes value
0 if the variable appears unnegated.

It will be convenient to distinguish elements of ∂a according to the values of
Jai. We let ∂0a ≡ {i ∈ ∂a s.t. Jai = 0} and ∂1a = {i ∈ ∂a s.t. Jai = 1}. Similarly
we denote by ∂0i and ∂1i the neighborhoods of i: ∂0i = {a ∈ ∂i s.t. Jai = 0} and
∂1i = {a ∈ ∂i s.t. Jai = 1}.

As usual, the indicator function over clause a being satisfied is denoted by
ψa( · ): ψa(x∂a) = 1 if clause a is satisfied by the assignment x and ψa(x∂a) = 0
if it is not. Given a SAT instance, we begin by studying the uniform measure
over SAT assignments:

µ(x) =
1

Z

M∏

a=1

ψa(x∂a) . (20.1)

We will represent this distribution with a factor graph, as in Fig. 10.1, and in
this graph we draw dashed edges when Jai = 1, and full edges when Jai = 0.

20.1.1 The BP equations

The BP equations for a general model of the form (20.1) have already been
written in Chapter 14. Here we want to rewrite them in a more compact form,
that is convenient both for analysis and implementation. They are best expressed
using the following notation. Consider a variable node i connected to factor node
a and partition its neighborhood as ∂i = {a} ∪ Sia ∪ Uia, where (see Fig. 20.1):

if Jai = 0 then Sia = ∂0i \ {a}, Uia = ∂1i ,

if Jai = 1 then Sia = ∂1i \ {a}, Uai = ∂0i . (20.2)

Since the variables xi’s are binary, the BP messages at any time νi→a( · ),
ν̂a→i( · ), can be parameterized by a single real number. We fix the parameteri-
zation by letting ζia ≡ νi→a(xi = Jai) (which obviously implies νi→a(xi = 1 −
Jai) = 1− ζia), and ζ̂ai ≡ ν̂a→i(xi = Jai) (yielding ν̂a→i(xi = 1−Jai) = 1− ζ̂ai).

A straightforward calculation allows to express the BP equations (here in
fixed point form) in terms of these variables:
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i
j

a

Sia

Uia

Uja

Sja

Fig. 20.1. The set Sia contains all checks b in ∂i \ a such that Jbi = Jai, the
set Uia contains all checks b in ∂i \ a such that Jbi = 1 − Jai

ζia =

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

[∏
b∈Sia

ζ̂bi

] [∏
b∈Uia

(1 − ζ̂bi)
]

+
[∏

b∈Uia
ζ̂bi

] [∏
b∈Sia

(1 − ζ̂bi)
] ,

ζ̂ai =
1 −

∏
j∈∂a\i ζja

2 −
∏

j∈∂a\i ζja
, (20.3)

with the convention that a product over zero term is equal to 1. Notice that eval-
uating the right hand side takes (respectively) O(|∂i|) and O(|∂a|) operations.
This should be contrasted with the general implementation of the BP equations,
cf. Ch. 14 , that requires O(|∂i|) operations at variable nodes but O(2|∂a|) at
function nodes.

The Bethe free-entropy takes the usual form, cf. Eq. (14.27), F =
∑

a∈F Fa +∑
i∈V Fi −

∑
(ia)∈E Fia. The various contributions can be expressed in terms of

the parameters ζia, ζ̂ai as follows

Fa = log

[
1 −

∏

i∈∂a

ζia

]
; Fi = log

[
∏

a∈∂0i

ζ̂ai

∏

b∈∂1i

(1 − ζ̂bi) +
∏

a∈∂0i

(1 − ζ̂ai)
∏

b∈∂1i

ζ̂bi

]
;

Fai = log
[
(1 − ζia)(1 − ζ̂ai) + ζiaζ̂ai

]
. (20.4)

Given the messages, the BP estimate for the marginal on site i is:

νi(xi) ∼=
∏

a∈∂i

ν̂a→i(xi) . (20.5)

20.1.2 Statistical analysis

Let us now consider a random K-sat formula, i.e. a uniformly random formula
with N variables and M = Nα clauses. The resulting factor graph will be dis-
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tributed according to the GN (K, M) ensemble. Given a variable index i, the
numbers |∂0i|, |∂1i| of variables in which xi appears directed or negated, con-
verge to independent Poisson random variables of mean Kα/2.

If (i, a) is a uniformly random edge in the graph, the corresponding fixed point
messages ζia, ζ̂ai are random variables (we assume here that an ‘approximate’
fixed point exists). Within the RS assumption, they converge in distribution, as
N →∞, to random variables ζ, ζ̂ whose distribution satisfy the RS distributional
equations

ζ̂
d
=

1 − ζ1 . . . ζK−1

2 − ζ1 . . . ζK−1
, (20.6)

ζ
d
=

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q)

ζ̂1 . . . ζ̂p(1 − ζ̂p+1) . . . (1 − ζ̂p+q) + (1 − ζ̂1) . . . (1 − ζ̂p)ζ̂p+1 . . . ζ̂p+q

. (20.7)

Here p and q are two i.i.d. Poisson random variables with mean Kα/2 (cor-
responding to the sizes of S and U), ζ1, . . . , ζK−1 are i.i.d. copies of ζ, and
ζ̂1, . . . , ζ̂p+q are i.i.d. copies ζ̂.

The distributions of ζ and ζ̂ can be approximated using the population dy-
namics algorithm. The resulting samples can then be used to estimate the free-
entropy density, as outlined in the exercise below.

Exercise 20.1 Argue that, within the RS assumptions, the large N limit of
the Bethe free-entropy density is given by limN→∞ F/N = fRS = fRS

v + αfRS
c −

KαfRS
e , where:

fRS
v = E log

[
p∏

a=1

ζ̂a

p+q∏

a=p+1

(1 − ζ̂a) +
p∏

a=1

(1 − ζ̂a)
p+q∏

a=p+1

ζ̂a

]
,

fRS
c = E log [1 − ζ1 · · · ζK−1] ,

fRS
e = E log

[
(1 − ζ1)(1 − ζ̂1) + ζ1ζ̂1

]
. (20.8)

Here E denotes the expectation with respect to: ζ1, . . . , ζK which are i.i.d.
copies of ζ; ζ̂1, . . . , ζ̂p+q which are i.i.d. copies of ζ̂; p and q which are i.i.d.
Poisson random variables with mean Kα/2.

Fig. 20.2 shows an example of the entropy density found within this approach
for 3-SAT. For each value of α in a mesh, we used a population of size 104, and
ran the algorithm for 3·103 iterations. Messages are initialized uniformly in ]0, 1[,
and the first 103 iterations are not used for computing the free-entropy.

The predicted entropy density is strictly positive and decreasing in α for
α ≤ α∗(K), with α∗(3) ≈ 4.6773. Above α∗(K) the RS distributional equations
do not seem to admit any solution with ζ, ζ̂ ∈ [0, 1]. This is revealed numerically
by the fact that the denominator of Eq. (20.7) vanishes during the population
updates. Since one finds a RS entropy density which is positive for all α < α∗(K),
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Fig. 20.2. RS prediction for the asymptotic entropy density of random 3-SAT
formulae, plotted versus the clause density α for 3-SAT. The result is expected
to be correct for α ≤ αc(3) = αd(3) ≈ 3.86.

the value α∗(K) is the RS prediction for the SAT-UNSAT threshold. It turns
out that α∗(K) can be computed without population dynamics, as outlined by
the exercise below.

Exercise 20.2 How to compute α∗(K)? The idea is that above this value of
the clause density any solution of the RS distributional equations has ζ̂ = 0
with positive probability. In this case the denominator of Eq. (20.7) vanishes
with positive probability, leading to a contradiction.

We start by regularizing Eq. (20.7) with a small parameter ε: Each ζ̂i is
replaced by max(ζ̂i, ε). Let us denote by x the probability that ζ̂ is of order ε,
and by y the probability that ζ is of order 1− ε. Consider the limit ε → 0.

(a) Show that x = yK−1

(b) Show that 1 − 2y = e−KαxI0(Kαx), where I0(z) is the Bessel function

with Taylor expansion I0(t) =
∑∞

p=0
1

p!2

(
t
2

)2p
.

[Hint: Suppose that there are p′ variables among ζ̂1 . . . ζ̂p, and q′ among

ζ̂p+1 . . . ζ̂p+q, that are of order ε. Show that this update equation gives
ζ = O(ε) if p′ > q′, ζ = 1 −O(ε) if p′ < q′, and ζ = O(1) when p′ = q′.

(c) Let α∗(K) the largest clause density such that the two equations derived
in (a) and (b) admit the unique solution x = y = 0. Show that, for
α ≥ α∗(K) a new solution appears with x, y > 0.

(d) By solving numerically the above equations show that α∗(3) ≈ 4.6673
and α∗(4) ≈ 11.83.

Unhappily this RS computation is incorrect at α large enough, and, as a
consequence, the prediction for the SAT-UNSAT phase transition is wrong as
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Fig. 20.3. Empirical probability that BP converges to a fixed point, plotted
versus the clause density α, for 3-SAT (left plot) and 4-SAT (right plot). The
statistics is over 100 instances, with N = 5 ·103 variables (dashed curve) and
N = 104 variables (full curve). There is an indication of a phase transition
occurring for αBP ≈ 3.85 (K = 3) and αBP ≈ 10.3 (K = 4.)

Data points show the empirical probability that BP-guided decimation
finds a SAT assignment, computed over 100 instances with N = 5 · 103. The
vertical lines correspond to the SAT-UNSAT threshold.

well. In particular, it contradicts the upper bound αUB,2(K), found in Ch. 10
(for instance, in the two cases K = 3, 4, one has αUB,2(3) ≈ 4.66603 < α∗(3), and
αUB,2(4) ≈ 10.2246 < α∗(4)). The largest α such that the RS entropy density is
correct is nothing but the condensation transition αc(K). We will further discuss
this phase transition below and in Ch. 22.

There is another way to realize that something is wrong with the RS assump-
tion close to the SAT-UNSAT phase transition. The idea is to look at the BP
iteration.

20.1.3 BP-Guided Decimation

The simplest experiment consists in iterating the BP equations (20.3) on a ran-
domly generated K-SAT instance. We start from uniformly random messages,
and choose the following convergence criterion defined in terms of a small num-
ber δ: The iteration is halted at the first time t∗(δ) such that no message has
changed by more than δ over the last iteration.

Fixing a large time tmax, one can estimate the probability of convergence
within tmax iterations by repeating the same experiment many times. Fig.20.3
shows this probability for δ = 10−2 and tmax = 103, plotted versus α. The
probability curves show a sharp decrease around a critical value of α, αBP which
is robust to variations of tmax and δ. This numerical result is indicative of a
threshold behavior: The typical convergence time t∗(δ) stays finite (or grows
moderately) with N when α < αBP. Above αBP, BP fails to converge in a time
tmax on a typical random instance.

When it converges, BP can be used in order to find a SAT assignment, using
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it as an heuristic guide for a sequential decimation procedure. Each time the
value of a new variable has to be fixed, BP is iterated until the convergence
criterion, with parameter δ, is met (alternatively, one may be more bold and use
the BP messages after a time tmax even when they have not converged). Then
one uses the BP messages in order to decide: (i) Which variable to fix; (ii) Which
value should the variable take.

In the present implementation these decisions are taken on the basis of a
simple statistics: the variables bias. Given the BP estimate νi( · ) of the marginal
of xi, we define the bias as πi ≡ νi(0) − νi(1).

BP-Guided Decimation (SAT formula F , Accuracy ε, Iterations tmax)
1: For all n ∈ {1, . . . , N}:
2: Call BP(F ,ε, tmax);
3: If BP does not converge, return ‘NOT found’ and exit;
4: For each variable node j, compute the bias πj ;
5: Find a variable i(n) with the largest absolute bias |πi(n)|;
6: If πi(n) ≥ 0, fix xi(n) to x∗

i(n) = 0;

7: Otherwise, fix xi(n) to x∗
i(n) = 1;

8: Replace F by the formula obtained after this reduction
8: End-For;
10: Return the assignment x∗

A pseudocode for BP was given in Sec. 14.2. Let us emphasize that the same
decimation procedure could be used not only with BP, but with other types of
guidance, as soon as we have some way to estimate the marginals.

The empirical success probability of the BP-Guided decimation on random
formulae are shown in Fig. 20.3 (estimated from 100 instances of size N = 5 ·104)
for several values of α. The qualitative difference between 3-SAT and 4-SAT
emerges clearly from this data. In 3-SAT, the decimation procedure returns a
SAT assignment about every time it converges, i.e. with probability close to one
for α " 3.85. In 4-SAT, BP converges most of the times if α " 10.3. This value
is larger than the conjectured SAT-UNSAT threshold αs(4) ≈ 9.931 (and also
larger than the best rigorous upper bound αUB,2(4) ≈ 10.2246.) On the other
hand, the BP guided decimation finds SAT assignments only when α " 9.25. It
is believed that the cases K ≥ 5 behave as K = 4.

20.1.4 On the validity of the RS analysis

These experiments suggest that something is not correct in the RS assumptions
for α large enough. The precise mechanism by which they are incorrect depends
however on the value of K. For K = 3, the BP fixed point become unstable,
and this leads to errors in decimations. In fact, the local stability of the BP fixed
point can be computed along the lines of Sec. 17.4.2. The result is that it become
unstable at αst(3) ≈ 3.86. On the contrary, for K ≥ 4 the fixed point remains
stable but does not correspond to the correct marginals. Local stability is not a
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good enough test in this case.
Correspondingly, one can define two type of thresholds:

(i) A stability threshold αst(K) beyond which BP does not have a locally
stable fixed point.

(ii) A 1RSB condensation threshold αc(K) beyond which there is no BP fixed
point giving a correct estimate of the local marginals and free-entropy.

One should clearly have αc(K) ≤ αst(K). Our study suggests that αc(3) =
αst(3) 1 3.86 while, for K ≥ 4, one has a strict inequality αc(K) < αst(K).

The reason for the failure of BP is the decomposition of the measure (20.1) in
many pure states. This happens at a third critical value αd(K) ≤ αc(K), referred
to as the dynamical transition, in accordance with our discussion of spin glasses
in Sec. 12.3: αd(K) is the critical clause density above which Glauber dynamics
will become inefficient. If αd(K) < α < αc(K), one expects, as we discussed in
Sec. 19.4.1, that there exist many pure states, and many quasi-solutions to BP
equations among which one will give the correct marginals.

At this point the reader might well be discouraged. This is understandable:
we started seeking one threshold (the SAT-UNSAT transition αs(K)) and rapidly
ended up defining a number of other thresholds, αd(K) ≤ αc(K) ≤ αst(K) ≤
αs(K) to describe a zoology of exotic phenomena. It turns out that, while the
understanding of the proliferation of pure states is necessary to get the correct
value of αs(K), one does not need a detailed description of the clusters, which is a
challenging task. Luckily, there exists a shortcut, through the use of the energetic
cavity method. It turns out that the sketchy description of clusters that we get
from this method, as if looking at them from far, is enough to determine αs.
Even more than that. The sketch will be a pretty useful and interesting one.
In Sec. 20.3, we will discuss a more detailed picture obtained through the full-
fledged 1RSB cavity method applied to the model (20.1).

20.2 Survey propagation and the 1RSB phase

The use of the energetic 1RSB cavity method can be motivated in two ways. From
a first point of view, we are changing problem. Instead of computing marginals
of the distribution (20.1), we consider the problem of minimizing the energy
function

E(x) =
M∑

a=1

Ea(x∂a) . (20.9)

Here Ea(x∂a) = 0 if clause a is satisfied by the assignment x, and Ea(x∂a) = 1
otherwise. The SAT-UNSAT threshold αs(K) is thus identified as the critical
value above which the ground state energy minE(x) vanishes.

With the cavity method we shall estimate the ground state energy density,
and find that it vanishes below some threshold. This is then identified as αs(K).
This identification amounts to assuming that, for generic large random K-SAT
problems, there is no interval of α where the ground state energy is positive but
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sub-linear in N . This assumption is reasonable, but of course it does not hold in
more general situations. If, for instance, we added to a random K-SAT formula a
small unsatisfiable sub-formula (including o(N) variables), our approach would
not detect the change, while the formula would be always unsatisfiable.

For α < αs(K) the cavity method provides a rough picture of zero energy pure
states. This brings us to the second way of motivating this ‘sketch.’ We saw that
describing a pure (Bethe) state in a locally tree-like graph amounts to assigning
a set of cavity messages, i.e. of marginal distributions for the variables. The
simplified description of the energetic 1RSB method only distinguishes between
marginals that are concentrated on a single value, and marginals that are not.
The concentrated marginals are described exactly, while the other ones are just
summarized by a single statement, “not concentrated”.

20.2.1 The SP(y) equations

The satisfiability problem involves only hard constraints and binary variables.
We can thus use the simplified SP(y) equations of Sec. 19.5.3. The messages are
triples: (Qia(0), Qia(1), Qia(∗)) for variable-to-function messages, and (Q̂ai(0), Q̂ai(1), Q̂ai(∗))
for function-to-variable messages.

In the case of K-satisfiability, these can be further simplified. The basic ob-
servation is that, if Jai = 0 then Q̂ai(1) = 0, and if Jai = 1 then Q̂ai(0) = 0.
This can be shown either starting from the general formalism in Sec. 19.5.3, or
reconsidering the interpretation of warning propagation messages. Recall that a
“0” message means that the constraint a ‘forces’ variable xi to take value 0 in
order to minimize the system’s energy. In K-SAT this can happen only if Jai = 0,
because xi = 0 is then the value that satisfies the clause a. With this remark in
mind, the function-to-variable node message can be parameterized by a single
real number. We will choose it to be Q̂ai(0) if Jai = 0, and Q̂ai(1) if Jai = 1 ,
and we shall denote it as Q̂ai. This number Q̂ai is the probability that there is
a warning sent from a to i which forces the value of variable xi.

Analogously, it is convenient to adopt a parameterization of the variable-to-
function message Qia(m) which takes into account the value of Jai. Precisely,
recall that Qia is supported on three types of messages: m(0) = 0, m(1) > 0, or
m(0) = m(1) = 0, or m(0) > 0, m(1) = 0. Let us denote the corresponding weights
as Qia(0), Qia(∗), Qia(1). If Jai = 0, we then define QS

ia ≡ Qia(0), Q∗
ia ≡ Qia(∗)

and QU
ia ≡ Qia(1). Vice-versa, if Jai = 1, we let QS

ia ≡ Qia(1), Q∗
ia ≡ Qia(∗) and

QU
ia ≡ Qia(0).

Below we summarize these notations with the corresponding interpretations.
We emphasize that ‘probability’ refers here to the random choice of a pure state,
cf. Sec. 19.1.
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QS
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to satisfy a,

QU
ia: probability that xi is forced by the clauses b ∈ ∂i \ a to violate a,

Q∗
ia: probability that xi is not forced by the clauses b ∈ ∂i \ a.

Q̂ai: probability that xi is forced by clause a to satisfy it.

The 1RSB cavity equations have been written in Sec. 19.5.3.

Exercise 20.3 Write explicitly the 1RSB equations in terms of the messages
QS, QU, Q∗, Q̂ applying the procedure of Sec. 19.5.3.

Alternatively, they can be guessed having in mind the above interpretation.
Clause a forces variable xi to satisfy it if and only if all the other variables
entering clause a are forced (by some other clause) not to satisfy a. This means:

Q̂ai =
∏

j∈∂a\i

QU
ja . (20.10)

Consider on the other hand variable node i, and assume for definiteness that
Jia = 0 (the opposite case gives rise to identical equations). Remember that, in
this case, Sia denotes the subset of clauses b .= a in which Jib = 0, and Uia the
subset in which Jib = 1. Assume that the clauses in ΩS ⊆ Sia, and ΩU ⊆ Uia force
xi to satisfy them. Then xi is forced to satisfy or violate a depending whether
|ΩS| > |ΩU| or |ΩS| < |ΩU|. Finally, xi is not forced if |ΩS| = |ΩU|. The energy
shift is equal to the number of ‘forcing’ clauses in ∂i \ a that are violated when
xi is chosen to satisfy the largest number of them, namely min(|ΩU|, |ΩS|). We
thus get the equations

QU
ia
∼=

∑

|ΩU|>|ΩS|

e−y|ΩS|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) , (20.11)

QS
ia
∼=

∑

|ΩS|>|ΩU|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) , (20.12)

Q∗
ia
∼=

∑

|ΩU|=|ΩS|

e−y|ΩU|
∏

b∈ΩU∪ΩS

Q̂bi

∏

b-∈ΩU∪ΩS

(1 − Q̂bi) . (20.13)

The overall normalization is fixed by the condition QU
ia + Q∗

ia + QS
ia = 1.

As usual, Eqs (20.10-20.13) can be understood either as defining a map-
ping from the space of messages {Q̂ai, Qia} onto itself or as a set of fixed point
conditions. In both cases they are referred to as the SP(y) equations for the
satisfiability problem. From the computational point of view, these equations
involve a sum over 2|∂i|−1 terms. This is often too much if we want to iterate
the SP(y) equations on large K-SAT formulae: the average degree of a variable
node in a random K-SAT formula with clause density α is Kα. Further, in the
most interesting regime –close to the SAT-UNSAT threshold– α = Θ(2K), and
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the sum is over 2Θ(K2K) terms, which becomes rapidly unpractical. It is thus
important to notice that the sums can be computed efficiently by interpreting
them as convolutions.

Exercise 20.4 Consider a sequence of independent Bernoulli random variables
X1, . . . , Xn, . . . , with means (respectively) η1, . . . , ηn, . . . . Let Wn(m) be the
probability that the sum

∑n
b=1 Xb is equal to m.

(a) Show that these probabilities satisfy the recursion

Wn(m) = ηnWn−1(m − 1) + (1 − ηn)Wn−1(m) ,

for m ∈ {0, . . . , n}. Argue that these identities can be used together with
the initial condition W0(m) = I(m = 0), to compute Wn(m) in O(n2)
operations.

(b) How can one compute the right hand sides of Eqs. (20.11-20.13) in
O(|∂i|2) operations?

20.2.2 The free-entropy FRSB,e

Within the 1RSB energetic cavity method, the free-entropy FRSB,e({Q, Q̂}) pro-
vides detailed information on the minimal energy of (Bethe) pure states. These
pure states are nothing but metastable minima of the energy function (i.e. min-
ima whose energy cannot be decreased with a bounded number of spin flips).

The 1RSB free-entropy is expressed in terms of a set of messages {Qia, Q̂ai}
that provide a (quasi-)solution of the SP(y) equations (20.10-20.13). Following
the general theory in Sec. 19.5.2, it can be written in the form

FRSB,e({Q, Q̂}) =
∑

a∈C

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(i,a)∈E

FRSB,e
ia . (20.14)

Equation (19.95) yields

eF
RSB,e
ia = 1 − (1 − e−y)Q̂aiQ

U
ia . (20.15)

The contribution FRSB,e
a defined in (19.93) can be computed as follows. The

reweighting Fe
a({mia}) is always equal to 0, except for the case where all the

variables in clause a receive a warning requesting that they point in the “wrong
direction”, namely the direction which does not satisfy the clause. Therefore:

eF
RSB,e
a = 1 − (1 − e−y)

∏

i∈∂a

QU
ia .

Finally, the contribution FRSB,e
i defined in (19.94) depends on the messages sent

from check nodes b ∈ ∂i. Let us denote by ΩS ⊆ ∂0i the subset of check nodes
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b ∈ ∂0i such that clause b forces xi to satisfy it. Similarly, defined as ΩU ⊆ ∂1i
the subset of ∂1i such that clause b forces xi to satisfy it. We then have:

eF
RSB,e
i =

∑

ΩU,ΩS

e−ymin(ΩS,ΩU)

[
∏

b∈ΩU∪ΩS

Q̂bi

] 


∏

b-∈ΩU∪ΩS

(1 − Q̂bi)



 . (20.16)

Exercise 20.5 Show that, for any i ∈ ∂a, FRSB,e
ia = FRSB,e

a .

20.2.3 Large y limit: the SP equations

Consider now the case of satisfiable instances. A crucial problem is then to
characterize satisfying assignments and to find them efficiently. This amounts
to focusing on zero energy assignments, which are selected by taking the y →∞
limit within the energetic cavity method.

We can take the limit y → ∞ in the SP(y) equations (20.11-20.13). This
yields

Q̂ai =
∏

j∈∂a\i

QU
ja , (20.17)

QU
ja

∼=
∏

b∈Sja

(1 − Q̂bj)



1 −
∏

b∈Uja

(1 − Q̂bj)



 , (20.18)

QS
ja

∼=
∏

b∈Uja

(1 − Q̂bj)



1 −
∏

b∈Sja

(1 − Q̂bj)



 , (20.19)

Q∗
ja

∼=
∏

b∈∂j\a

(1 − Q̂bj) , (20.20)

where the normalization is always fixed by the condition QU
ja + QS

ja + Q∗
ja = 1.

The y = ∞ equations have a simple interpretation. Consider a variable xj

appearing in clause a, and assume it receives a warning from clause b .= a in-
dependently with probability Q̂bj . Then

∏
b∈Sja

(1− Q̂bj) is the probability that
variable j receives no warning forcing it in the direction which satisfies clause
a. The product

∏
b∈Uja

(1 − Q̂bj) is the probability that variable j receives no

warning forcing it in the direction which violates clause a. Therefore QU
ja is the

probability that variable j receives at least one warning forcing it in the direction
which violates clause a, conditional to the fact that there are no contradictions in
the warnings received by j from clauses b .= a. Analogous interpretations hold for
QS

ja and Q∗
ja. Finally, Q̂ai is the probability that all variables in ∂a\ i are forced

in the direction violating clause a, under the same condition of no contradiction.
Notice that the y = ∞ equations are a relatively simple modification of

the BP equations in (20.3). However, the interpretation of the messages is very
different in the two cases.
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Finally the free-entropy in the y = ∞ limit is obtained as

FRSB,e =
∑

a∈C

FRSB,e
a +

∑

i∈V

FRSB,e
i −

∑

(i,a)∈E

FRSB,e
ia , (20.21)

where

FRSB,e
ia = log

{
1 −QU

iaQ̂ai

}
, (20.22)

FRSB,e
i = log

{
∏

b∈∂0i

(1 − Q̂bi) +
∏

b∈∂1i

(1 − Q̂bi) −
∏

b∈∂i

(1 − Q̂bi)

}
, (20.23)

FRSB,e
a = log




1 −
∏

j∈∂a

QU
ja




 . (20.24)

Exercise 20.6 Show that, if the SP messages satisfy the fixed point equations
(20.17) to (20.20), the free-entropy can be rewritten as FRSB,e =

∑
i FRSB,e

i +∑
a(1 − |∂a|)FRSB,e

a .

20.2.4 The SAT-UNSAT threshold

The SP(y) equations (20.10-20.13) always admit a ‘no warning’ fixed point corre-
sponding to Q̂ai = 0, and QS

ia = QU
ia = 0, Q∗

ia = 1 for each (i, a) ∈ E. Other fixed
points can be explored numerically by iterating the equations on large random
formulae.

Within the cavity approach, the distribution of the message associated to a
uniformly random edge (i, a) satisfies a distributional equation. As explained in
Sec. 19.2.5, this distributional equation is obtained by promoting Q̂ai, (QU

ia, QS
ia, Q∗

ia)
to random variables and reading Eqs. (20.10-20.13) as equalities in distribution.
The distribution can then be studied by the population dynamics of Sec. 19.2.6. It
obviously admits a no-warning (or ‘replica symmetric’) fixed point, with Q̂ = 0,
(QU, QS, Q∗) = (0, 0, 1) identically, but (as we will see) in some cases one also
finds a different, ‘non-trivial’ fixed point distribution.

Given a fixed point, the 1RSB free-entropy density Fe(y) is estimated by tak-
ing the expectation of Eq. (20.14) (both with respect to degrees and fields) and
dividing by N . When evaluated on the no-warning fixed point, the free-entropy
density Fe(y) vanishes. This means that the number of clusters of SAT assign-
ments is sub-exponential, so that the corresponding complexity density vanishes.
To a first approximation, this solution corresponds to low-energy assignments
forming a single cluster. Note that the energetic cavity method counts the num-
ber of clusters of SAT assignments, and not the number of SAT assignments
itself (which is actually exponentially large).

Figure 20.4 shows the outcome of a population dynamics computation. We
plot the free-entropy density Fe(y) as a function of y for random 3-SAT, at
a few values of the clause density α. These plots are obtained initializing the
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Fig. 20.4. 1RSB free-entropy density for 3-SAT, computed from the population
dynamics analysis of the SP equation, at α = 4.1, 4.2, 4.3 (from top to
bottom). For each α, y, a population of size 12000 has been iterated 12 · 106

times. The resulting Fe has been computed by averaging over the last 8 · 106

iterations.

population dynamics recursion with i.i.d. messages {Q̂i} uniformly random in
[0, 1]. For α < αd,SP 1 3.93, the iteration converges to the ‘no-warning’ fixed

point where all the messages Q̂ are equal to 0.
For α > αd,SP , and when y is larger than a critical value yd(α) the iteration

converges to a non-trivial fixed point. This second solution has a non-vanishing
value of the free-entropy density Fe(y). The energetic complexity Σe(ε) is ob-
tained from Fe(y) via the Legendre transform (19.96).

In practice, the Legendre transform is computed by fitting the population dy-
namics data, and then transforming the fitting curve. Good results are obtained
with a fit of the form Fe

fit(y) =
∑r∗

r=0 ψr e−ry with r∗ between 2 and 4. The
resulting curves Σe(ε) (or more precisely their concave branches30) are shown in
Fig. 20.5.

Exercise 20.7 Show that Σe(ε = 0) = limy→∞ Fe(y)

The energetic complexity Σe(ε) is the exponential growth rate number of
(quasi-)solutions of the min-sum equations with energy density u. As can be
seen in Fig. 20.5, for α = 4.1 or 4.2 (and in general, in an interval above αd(3))
one finds Σe(ε = 0) > 0. The interpretation is that there exist exponentially
many solutions of the min-sum equations with zero energy density.

On the contrary when α = 4.3 the curve starts at a positive ε or, equivalently
the 1RSB complexity curve has Σe(ε = 0) < 0. Of course, the typical number

30Σe(ε) has a second, convex branch which joins the concave part at the maximal value of
ε; the precise meaning of this second branch is not known.
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Fig. 20.5. Energetic complexity density Σe plotted versus energy density ε,
for the 3-SAT problem at α = 4.1, 4.2, 4.3 (from top to bottom). These
curves have been obtained as the Legendre transform of the free-entropy fits
of Fig. 20.4.

of min-sum solutions cannot decrease exponentially. The result Σe(ε = 0) < 0 is
interpreted as a consequence of the fact that a typical random formula does not
admit any (approximate) solution of the min-sum equations with energy density
ε = 0. Given the correspondence between min-sum fixed points and clusters of
low-energy assignments, this in turns implies that a typical random formula does
not have any SAT assignment.

From Fig. 20.5 one expects that the SAT-UNSAT transition lies between α =
4.2 and α = 4.3. A more precise estimate can be obtained by plotting Fe(y →∞)
versus α, and locating the value of α where it vanishes. For 3-SAT one obtains
the SAT-UNSAT threshold estimate αs(3) = 4.26675± 0.00015. The predictions
of this method for αs(K) are shown in the Table 20.2.4. In practice, reliable
estimates can be obtained with population dynamics only for K ≤ 7. The reason
is that αs(K) increases exponentially with K, and the size of the population
needed in order to achieve a given precision should increase accordingly (the
average number of independent messages entering the distributional equations is
Kα).

For large K, one can formally expand the distributional equations, which
yields a series for αs(K) in powers of 2−K . The first two terms (seven terms have
been computed) of this expansion are:

αs(K) = 2K log 2 − 1

2
(1 + log 2) + O(2−KK2) (20.25)

20.2.5 SP-Guided Decimation

The analysis in the last few pages provides a refined description of the set of
solutions of random formulae. This knowledge can be exploited to efficiently
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K 3 4 5 6 7 8 9 10
αs(K) 4.2667 9.931 21.117 43.37 87.79 176.5 354.0 708.9

Table 20.1 Predictions of the 1RSB cavity method for the SAT-UNSAT thresh-
old of random K satisfiability

find some solutions, much in the same way as we used belief propagation in
Sec. 20.1.3. The basic strategy is again to use the information provided by the
SP messages as a clever heuristic in a decimation procedure.

The first step consists in finding an approximate solution of the SP(y) equations
(20.10-20.13), or of their simplified y = ∞ version (20.17-20.20), on a given in-
stance of the problem. To be definite, we shall focus on the latter case, since
y = ∞ selects zero energy states. We can seek solutions of the SP equations by
iteration, exactly as we would do with BP. We initialize SP messages, generally
as i.i.d. random variable with some common distribution, and then update them
according to Eqs. (20.17-20.20). Updates can be implemented, for instance, in
parallel, until a convergence criterion has been met.

Figure 20.6 shows the empirical probability that the iteration converges before
tmax = 1000 iterations on random formulae as a function of the clause density
α. As a convergence criterion we required that the maximal difference between
any two subsequent values of a message is smaller than δ = 10−2. Messages were
initialized by drawing, for each edge, Q̂ai ∈ [0, 1] independently and uniformly at
random. It is clear that SP has better convergence properties than BP for K = 3,
and indeed it converges even for α larger than the SAT-UNSAT threshold.

The numerics suggests the existence of two thresholds αd,SP(K), αu,SP(K)
characterizing the convergence behavior as follows (all the statements below
should be interpreted as holding with high probability in the large N limit):

For α < αd,SP: the iteration converges to the trivial fixed point defined by

Q̂ai = 0 for all edges (i, a) ∈ G.

For αd,SP < α < αu,SP: the iteration converges to a ‘non-trivial’ fixed
point.

For αu,SP < α: the iteration does not converge.

In the interval αd,SP(K) < α < αU,SP(K) it is expected that an exponential
number of fixed points exist but most of them will be degenerate and correspond
to ‘disguised’ WP fixed points. In particular Q̂ai = 0 or 1 for all the edges (i, a).
On the other hand, the fixed point actually reached by iteration is stable with
respect to changes in the initialization. This suggest the existence of a unique
non-degenerate fixed point. The threshold αd,SP(K) is conjectured to be the
same as defined for the distributional equation in the previous section, this is
why we used the same name. In particular αd,SP(K = 3) ≈ 3.93 and αd,SP(K =
4) ≈ 8.30. One further obtains αu,SP(K = 3) ≈ 4.36 and αu,SP(K = 4) ≈ 9.7.

SP can be used in a decimation procedure . After iterating the SP equations
until convergence, one computes the following SP marginal for each variable
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Fig. 20.6. Empirical convergence probability of SP (initialized from uniformly
random messages) plotted versus the clause density α for 3-SAT (left), and
4-SAT (right). The average is over 100 instances, with N = 5 · 103 (solid
line) and N = 104 variables (dashed line). Data points show the empirical
probability that SP-guided decimation finds a SAT assignment, computed
over 100 instances with N = 5 · 103. The vertical lines are the predicted
SAT-UNSAT thresholds.

i ∈ {1, . . . , N}

wi(1) ∼=
∏

a∈∂0i

(1 − Q̂ai)

[
1 −

∏

a∈∂1i

(1 − Q̂ai)

]
,

wi(0) ∼=
∏

a∈∂1i

(1 − Q̂ai)

[
1 −

∏

a∈∂0i

(1 − Q̂ai)

]
,

wi(∗) ∼=
∏

a∈∂i

(1 − Q̂ai) , (20.26)

with the normalization condition wi(1)+wi(0)+wi(∗) = 1. The interpretations of
these SP marginals is the following: wi(1) (resp. wi(0)) is the probability that the
variable i receives a warning forcing it to take the value xi = 1 (resp. xi = 0),
conditioned to the fact that it does not receive contradictory warnings. The
variable bias is then defined as πi ≡ wi(0)−wi(1). The variable with the largest
absolute bias is selected and fixed according to the bias sign. This procedure is
then iterated as with BP-guided decimation.

It typically happens that, after fixing some fraction of the variables with this
method, the SP iteration on the reduced instance converges to the trivial fixed
point Q̂ai = 0. According to our interpretation, this means that the resulting
problem is described by a unique Bethe measure, and SAT assignments are no
longer clustered. In fact, in agreement with this interpretation, one finds that,
typically, simple algorithms are able to solve the reduced problem. A possible
approach is to run BP guided decimation. An even simpler alternative is to apply
a simple local search algorithms, like Walksat or simulated annealing.
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The pseudocode for this algorithm is as follows.

SP-Guided Decimation (Formula F , SP parameter ε, tmax,
WalkSAT parameters f , p)

1 : Set U = ∅;
2 : Repeat until FAIL or U = V :
3 : Call SP(F , ε, tmax). If it does not converge, FAIL;
4 : For each i ∈ V \ U compute the bias πi;
5 : Let j ∈ V \ U have the largest value of |πi|;
6 : If |πj | ≤ 2Kε call WalkSAT(F , f, p);
7 : Else fix xj according to the sign of πj ,

and define F as the new formula obtained after fixing xj ;
8 : End-Repeat;
9 : Return the current assignment;

SP (Formula F , Accuracy ε, Iterations tmax )
1 : Initialize SP messages to i.i.d. random variables;
2 : For t ∈ {0, . . . , tmax}
3 : For each (i, a) ∈ E

4 : Compute the new value of Q̂ai using Eq. (20.10)
5 : For each (i, a) ∈ E
6 : Compute the new value of Qai using Eqs. (20.11-20.13)
7 : Let ∆ be the maximum difference with previous iteration;
8 : If ∆ < ε return current messages;
9 : End-For;
10 : Return ‘Not Converged’;

The WalkSAT pseudocode was given in Sec. 10.2.3.
In Fig. 20.6 we plot the empirical success probability of SP-Guided Decima-

tion for random 3-SAT and 4-SAT formulae as a function of the clause density
α. A careful study suggests that the algorithm finds a satisfying assignment with
high probability when α " 4.252 (for K = 3) and α " 9.6 (for K = 4). These
values are slightly smaller than the conjectured locations of the SAT-UNSAT
threshold αs(3) ≈ 4.2667 and αs(4) ≈ 9.931.

Apart from the SP routine (that builds upon the statistical mechanics in-
sight) the above algorithm is quite naive and could be improved in a number of
directions. One possibility is to allow the algorithm to backtrack, i.e. to release
some variables that had been fixed at a previous stage of the decimation. Fur-
ther, we did not use at any step the information provided by the free-entropy
Fe(y = ∞) that can be computed at little extra cost. Since this gives an estimate
of the logarithm of the number solutions clusters, it can also be reasonable to
make choices that maximize the value of Fe in the resulting formula.
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Fig. 20.7. Performance of BP-inspired decimation and SP-inspired decimation
on 3-SAT (left plot) and 4-SAT (right plot) problems. Probability of finding
a SAT assignment versus clause density, averaged over 100 instances with
N = 5 · 103 variables. The SP based algorithm (dotted line) performs better
than the BP based one (full line). The vertical lines are the SAT-UNSAT
thresholds.

As can be deduced from Fig. 20.7, SP-Guided Decimation outperforms BP-
Guided Decimation. Empirically this algorithm, or small variations of it, provide
the most efficient procedure for solving large random K-SAT formulae close to
the SAT-UNSAT threshold. Furthermore, it has extremely low complexity. Each
SP iteration requires O(N) operations, which yields O(Ntmax) operations per SP
call. In the implementation outlined above this implies a O(N2tmax) complexity.
This can however be reduced to O(Ntmax) by noticing that fixing a single variable
does not affect the SP messages significantly. As a consequence, SP can be called
every Nδ decimation steps for some small δ. Finally, the number of iterations
required for convergence seem to grow very slowly with N , if it does at all. One
should probably think of tmax as a big constant or tmax = O(log N)

In order to get a better understanding of how SP-guided decimation works, it
is useful to monitor the evolution of the energetic complexity curve Σe(ε) while
decimating. When SP iteration has converged on a given instance, one can use
(20.21) to compute the free-entropy, and by a Legendre transform the curve
Σe(ε).

In Fig. 20.8 we consider a run of SP-Guided Decimation on one random 3-
SAT formula with N = 104 at α = 4.2. the complexity curve of the residual
formula (NΣe(ε) versus the number of violated clauses Nε) is plotted every 1000
decimation steps. One notices two main effects: (1) The zero-energy complexity
NΣe(0) decreases, showing that some clusters of solutions are lost along the
decimation; (2) The number of violated clauses in the most numerous metastable
clusters, the so-called ‘threshold energy’, decreases as well31, implying that the

31Because of the instability of the 1RSB solution at large energies (see Chapter 22), the
threshold energies obtained within the 1RSB approach are not exact. However one expects the
actual behavior to be quantitatively close to the 1RSB description.
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Fig. 20.8. Decimation process: The complexity versus energy density (1/N
times the number of violated clauses) measured on a single instance of ran-
dom 3-SAT with N = 10000 and α = 4.2 (top curve), and on the decimated
instances obtained after fixing 1000, 2000, 3000 variables with the survey in-
spired decimation procedure (from top to bottom). For comparison, the inset
shows the same complexity versus total energy after fixing to arbitrary values
1000, 2000, 3000 randomly chosen variables

problem becomes simpler: the true solutions are less and less hidden among
metastable minima.

The important point is that the effect (2) is much more pronounced than
(1). After fixing about half of the variables, the threshold energy vanishes. SP
converges to the trivial fixed point, the resulting instance becomes ‘simple,’ and
is solved easily by Walksat.

20.3 Some ideas on the full phase diagram

20.3.1 Entropy of clusters

The energetic 1RSB cavity method has given two important results: on one
hand, a method to locate the SAT-UNSAT transition threshold αs, which is
conjectured to be exact, on the other, a powerful message passing algorithm: SP.
These results were obtained at a cost: we completely forgot about the size of the
clusters of SAT assignments, their ‘internal entropy’.

In order to get a finer understanding of geometry of the set of solutions in
the SAT phase, we need to get back to the uniform measure over SAT assign-
ments of (20.1), and use the 1RSB method of Sec. 19.2. Our task is in principle
straightforward: we need to estimate the 1RSB free entropy F(x), and perform
the Legendre transform (19.8) in order to get the complexity function Σ(φ).
Recall that Σ(φ) is the exponential growth rate of the number of clusters with
free-entropy Nφ (in the present case, since we restrict to SAT configurations,
the free-entropy of a cluster is equal to its entropy).
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Fig. 20.9. 1RSB analysis of random 4-SAT. Left: Complexity versus internal
entropy density of clusters, for α = 9.3, 9.45, 9.6, 9.7, 9.8, 9.9 (from top to
bottom). When sampling uniformly SAT configurations, one finds either con-
figurations in an exponentially large number of clusters (dot on the curve
α = 9.45, which is the point where dΣ/dφ = −1), or a condensed phase
where the measure is dominated by a few clusters (squares on the curves
with α ≥ 9.6). Right: Complexity Σ(x) and free-entropy density F(x) at a
few key values of x: x = 0 corresponds to the maximum of Σ(φ), x = 1 to
the point with dΣ/dφ = −1, and x = x∗ to Σ(φ) = 0. The dynamical tran-
sition is at αd ≈ 9.38, the condensation transition at αc ≈ 9.547, and the
SAT-UNSAT transition at αs ≈ 9.931.

This is a rather demanding task from the numerical point of view. Let us un-
derstand why: each BP message is parameterized by one real number in [0, 1], as
we saw in (20.3). A 1RSB message characterizes the distribution of this number,
so it is a pdf on [0, 1]. One such distribution is associated to each directed edge
of the factor graph. For the study of the phase diagram, one needs to perform
a statistical analysis of the 1RSB messages. Within the population dynamics
approach this means that we must use a (large) population of distribution func-
tions. For each value of x, the algorithm must be run for a large enough number
of iterations to estimate F(x). This is at the limit of what can be done numeri-
cally. Fortunately it can be complemented by two simpler computations: the SP
approach which gives the results corresponding to x = 0, and the study of the
x = 1 case using the simplification described in Sec. 19.4.

20.3.2 The condensation transition for K ≥ 4

We shall not provide any technical detail of these computations, but focus on
the main results using K = 4-SAT as a running example. As shown by Fig. 20.9,
this system displays the full scenario of phase transitions explained in Sec. 19.6.
Upon increasing the clause density α, one finds first a RS phase for α < αd, then
a d1RSB phase with exponentially many relevant states for αd < α < αc, then a
s1RSB phase with condensation of the measure on a few states, for αc < α < αs.
The system becomes UNSAT for α > αs.

Fig. 20.9 shows the evolution of the complexity versus internal entropy density
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of the clusters when α increases (note that increasing α plays the same role as
decreasing the temperature in the general scenario sketched in Fig. 19.6). For a
given α, almost all clusters have an internal entropy density φ0 corresponding to
the maximum of Σ(φ). The complexity at the maximum, Σ(φ0) = F(x = 0), is
equal to the complexity at zero energy density that we found with the energetic
1RSB cavity method. When sampling SAT configurations uniformly, almost all
of them are found in clusters of internal entropy density φ1 such that Σ(φ) + φ
is maximum, conditioned to the fact that Σ(φ) ≥ 0. In the d1RSB phase one
has Σ(φ1) > 0, in the s1RSB one has Σ(φ1) = 0. The condensation point αc can
therefore be found through a direct (and more precise) study at x = 1. Indeed it
is identified as the value of clause density such that the two equations: Σ(φ) = 0,
dΣ/dφ = −1 admit a solution.

Exercise 20.8 Using the Legendre transform 19.8, show that this condensa-
tion point αc is the one where the 1RSB free-entropy function F(x) satisfies
F(1) − F′(1) = 0 (where ′ means derivative with respect to x). As we saw in
Sec. 19.4, the value of F(1) is equal to the RS free-entropy. As for the value
of the internal entropy F′(1), it can also be obtained explicitly from the x = 1
formalism. Writing down the full x = 1 formalism for random satisfiability,
including this computation of F′(1), is an interesting (non-trivial) exercise.

The dynamical transition point αd is defined as the smallest value of α such
that there exists a non-trivial solution to the 1RSB equation at x = 1 (in practice
it is best studied using the point-to-set correlation which will be described in
Ch. 22). Notice from Fig. 20.9 that there can exist clusters of SAT assignments
even at α < αd: for α = 4.3, there exists a branch of Σ(φ), around the point φ0

where it is maximum, but this branch disappears, if one increases φ, before one
can find a point where dΣ/dφ = −1. The interpretation of this regime is that
an exponentially small fraction of the solutions are grouped in well separated
clusters. The vast majority of the solutions belongs instead to a single, well
connected ‘replica symmetric’ cluster. As we saw in the energetic cavity method,
the first occurrence of the clusters around φ0 occurs at the value αd,SP which is
around 8.3 for 4-SAT.

The same scenario has been found in the studies of random K-SAT with
K = 5, 6, and it is expected to hold for all K ≥ 4. The situation is somewhat
different at K = 3, as the condensation point αc coincides with αd: the 1RSB
phase is always condensed. Table 20.3.2 summarizes the values of the thresholds.

20.4 An exercise: coloring random graphs

Recall that a proper q-coloring of a graph G = (V , E) is an assignment of colors
{1, . . . , q} to the vertices of q in such a way that no edge has the two adjacent
vertices of the same color. Hereafter we shall refer to a proper q-coloring as
to a ‘coloring’ of G. Colorings of a random graph can be studied following the
approach just described for satisfiability, and reveal a strikingly similar behavior.
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K αd αc αs

3 3.86 3.86 4.2667
4 9.38 9.547 9.931
5 19.16 20.80 21.117
6 36.53 43.08 43.37

Table 20.2 Predictions of the 1RSB cavity method for the non-trivial SP, dy-
namical, condensation, and SAT-UNSAT threshold of random K-satisfiability

Here we shall just present some key steps of this analysis: this section can be
seen as a long exercise in applying the cavity method. We shall focus on the
case of random regular graphs, which is technically simpler. In particular, many
results can be derived without resorting to a numerical resolution of the cavity
equations. The reader is encouraged to work out the many details which are left
aside.

We shall adopt the following description of the problem: to each vertex i ∈ V
of a graph G = (V , E), associate a variable xi ∈ {1, · · · , q}. The energy of a color
assignment x = {x1, · · · , xN} is given by the number of edges whose vertices
have the same color:

E(x) =
∑

(ij)∈E

I(xi = xj) . (20.27)

If the graph is colorable, one is also interested in the uniform measure over proper
colorings:

µ(x) =
1

Z
I(E(x) = 0) =

1

Z

∏

(ij)∈E

I(xi .= xj) , (20.28)

where Z is the number of proper colorings of G. The factor graph associated
with µ( · ) is easily constructed. Associate one variable node to each vertex of
i ∈ G, one function node to each edge (ij) ∈ C, and connect this function it to
the variable nodes corresponding to i and j. The probability distribution µ(x) is
therefore a pairwise graphical model.

We will assume that G is a random regular graphs of degree c. Equivalently,
the corresponding factor graph is distributed according to the DN (Λ, P ) ensem-
ble, with Λ(x) = xc and P (x) = x2. The important technical simplification is
that, for any fixed r, the radius-r neighborhood around a random a vertex i is
with high probability a tree of degree c, i.e. it is non-random. In other words,
the neighborhood of most of the nodes is the same.

Let us start with the RS analysis of the graphical model (20.28). As we saw
in Sec. 14.2.5, we can get rid of function-to-variable node messages, and work
with variable-to-function messages νi→j(xi). The BP equations read

νi→j(x) ∼=
∏

k∈∂i\j

(1 − νk→i(x)) . (20.29)
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Because of the graph regularity, there exists solutions of these equations such that
messages take the same value on all edges. In particular, Eq. (20.29) admits the
solution νi→j( · ) = νunif( · ), where νunif( · ) is the uniform messages: νunif(x) =
1/q for x ∈ {1, . . . , q}. The corresponding free-entropy density (equal here to the
entropy density) is

fRS = log q +
c

2
log

(
1 − 1

q

)
. (20.30)

It can be shown that this coincides with the ‘annealed’ estimate N−1 log EZ. It
decreases with the degree c of the graph and becomes negative for c larger than
cUB(q) ≡ 2 log q/ log(q/(q − 1)), similarly to what we saw in Fig. 20.2. Markov
inequality implies that, with high probability, a random c-regular graph does
not admit a proper q-coloring for c > cUB(q). Further, the RS solution is surely
incorrect for c > cUB(q).

The stability analysis of this solution shows that the spin glass susceptibility
diverges as c ↑ cst(q), with cst(q) = q2 − 2q + 2. For q ≥ 4, cst(q) > cUB(q).

In order to correct the above inconsistencies, one has to resort to the energetic
1RSB approach. Let us focus onto y →∞ limit (equivalently, on the zero energy
limit). In this limit one obtains the SPequations. This can be written in terms
of messages Qi→j( · ) that have the following interpretation

Qi→j(x) = probability that, in absence of (i, j), xi is forced to value x,

Qi→j(∗) = probability that, in absence of (i, j), xi is not forced.

Recall that ‘probability’ is interpreted here with respect to a random Bethe state.
An SP equation express the message Qi→j( · ) in terms of the c− 1 incoming

messages Qk→i( · ) with k ∈ ∂i \ j. To keep notations simple, we fix an edge
i → j and denote it by 0, while we use 1 . . . , c− 1 to label the edges k → i with
k ∈ ∂i \ j. Then, for any x in {1, · · · , q}, one has:

Q0(x) =

∑
(x1...xc−1)∈N (x) Q1(r1)Q2(x2) · · ·Qc−1(xc−1)∑

(x1...xc−1)∈D Q1(r1)Q2(x2) · · ·Qc−1(xc−1)
. (20.31)

where:

• D is the set of tuples (x1, · · · , xc−1) ∈ {∗, 1, · · · , q}n such that there ex-
ist z ∈ {1, · · · , q} with z .= x1, . . . , xc−1. According to the interpretation
above, this means that there is no contradiction among the warmings to i.

• N (x) is the set of tuples (x1, · · · , xc−1) ∈ D such that, for any z .= x there
exists k ∈ {1, . . . , c − 1} such that xk = z. In other words, x is the only
color for vertex i that is compatible with the warnings.

Q0(∗) is determined by the normalization condition Q0(∗) +
∑

x Q0(x) = 1.
On a random regular graph of degree c, these equations admit a solution

with Qi→j( · ) = Q( · ) independent of the edge (i, j). Furthermore, if we assume
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q cd,SP cd cc cs

3 5 5 6 6
4 9 9 10 10
5 13 14 14 15
6 17 18 19 20
10 36 39 43 44
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Fig. 20.10. Results of the 1RSB analysis of proper q-colorings of random regular
graphs. The table gives the thresholds: appearance of non-trivial SP solutions
cd,SP, dynamical cd, condensation cc, colorable/uncolorable cs. The figure
shows the clusters complexity as a function of their internal entropy density.
Here q = 6 and the graph degrees are c = 17 (RS), c = 18 (d1RSB), c = 19
(s1RSB) and c = 20 (uncolorable). The circles denote the points of slope −1
on the complexity curves.

this solution to be symmetric under permutation of colors, the corresponding
message can by parameterized by a single number a ∈ [0, 1/q]:

Q(x) = a for x ∈ {1, · · · , q} ,

Q(∗) = 1 − qa . (20.32)

Plugging this Ansatz in Eq. (20.31), we get:

a =

∑q−1
r=0 (−1)r

(
q−1

r

)
(1 − (r + 1)a)c−1

∑q−1
r=0 (−1)r

( q
r+1

)
(1 − (r + 1)a)c−1

. (20.33)

The complexity Σe(ε = 0) yielding the exponential growth rate of the number of
clusters of proper colorings, is given by Σe(e = 0) = limy→∞ Fe(y). One finds:

Σe(ε = 0; c, q) = log

(
q−1∑

r=0

(−1)r

(
q

r + 1

)
(1 − (r + 1)a)c

)
− c

2
log(1 − qa2) .

(20.34)

Given the number of colors q, one can study what happens when the degree c
grows (which amounts to increasing the density of constraints). The situation is
very similar to the one found in satisfiability. For c ≥ cd,SP(q), there exists a pair
of non-trivial solution to Eq.(20.33) with a > 0. The complexity Σe(e = 0) can
be computed from (20.34) (evaluated on the largest solution a of Eq. (20.33)),
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and is decrasing in c. It becomes negative for c ≥ cs(q). The degree cs(q) is thus
the 1RSB prediction for the SAT-UNSAT threshold.

When c < cs(q), the uniform measure over valid colorings can be studied,
and in particular one can characterize the distribution of entropy of clusters.
Fig. 20.10 shows the complexity as function of internal entropy density of clusters.
The similarity to Fig. 20.9 is obvious. One can define two particularly relevant
thresholds: cd is the smallest degree such that the 1RSB equations at x = 1
have a non-trivial solution, and cc is the smallest degree such that the uniform
measure over proper colorings is ‘condensed’. The table in Fig. 20.10 gives some
examples of these thresholds. An asymptotic analysis for large q shows that:

cd,SP = q(log q + log log q + 1 − log 2 + o(1)) (20.35)

cd = q(log q + log log q + O(1)) (20.36)

cc = 2q log q − log q − 2 log 2 + o(1) (20.37)

cs = 2q log q − log q − 1 + o(1) (20.38)

These predictions can be rephrased into a statement on the chromatic num-
ber, i.e. the minimal number of colors needed to color a graph. Because of the
heuristic nature of the approach, we formulate it as a conjecture:

Conjecture 20.1 With high probability, the chromatic number of a random reg-
ular graph with N vertices and degree c ≥ 4 is equal to χchrom(c), where

χchrom(c) = max{q : Σe(ε = 0; c, q) > 0} . (20.39)

Here Σe(ε = 0; c, q) is given by Eq. (20.34) with a the largest solution of (20.33)
in the interval [0, 1/q].

Using the numbers in table 20.10, this conjecture predicts for instance that
χchrom(c) = 3 for c = 4, 5, χchrom(c) = 4 for c = 6, 7, 8, 9, and χchrom(c) = 5
for 10 ≤ c ≤ 14.

On the side of rigorous results, a clever use of the first and second moment
methods allows to prove the following result:

Theorem 20.2 With high probability, the chromatic number of a random regular
graph with N vertices and degree c is either k or k + 1 or k + 2, where k is the
smallest integer such that c < 2k log k. Furthermore, if c > (2k − 1) log k, then
with high probability the chromatic number is either k or k + 1.

One can check explicitely that the results of the 1RSB cavity conjecture agree
with this theorem, that proves the correct leading behavior at large c.

While this presentation was focused on random regular graphs, a large class
of random graph ensembles can be analyzed along the same lines.

Notes

Random K-satisfiability was first analyzed using the replica symmetric cavity
method in (Monasson and Zecchina, 1996; Monasson and Zecchina, 1996). The
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resulting equations are equivalent to a density evolution analysis of belief propa-
gation. BP was used as an algorithm for finding SAT assignments in (Pumphrey,
2001). This study concluded that BP is ineffective in solving satisfiability prob-
lems, mainly because it assigned variables in a one-shot fashion, unlike in deci-
mation.

The 1RSB cavity method was applied to random satisfiability in (Mézard,
Parisi and Zecchina, 2003; Mézard and Zecchina, 2002), where the value of αc was
computed for 3-SAT. This approach was applied to larger K in (Mertens, Mézard
and Zecchina, 2006), which also derived the large K asymptotics. The SPY and
SP equations for satisfiability were first written in (Mézard and Zecchina, 2002),
where SP-inspired decimation was introduced (Fig. 20.8 is borrowed from this
paper). A more algorithmic presentation of SP was then developed in (Braun-
stein, Mézard and Zecchina, 2005), together with an optimized source code for
SP and decimation (Braunstein, Mézard and Zecchina, 2004). The idea of back-
tracking was suggested in (Parisi, 2003), but its performances have not been
systematically studied yet.

The condensation phenomenon was discussed in (Krzakala, Montanari, Ricci-
Tersenghi, Semerjian and Zdeborova, 2007), in relation with studies of the en-
tropic complexity in colouring (Mézard, Palassini and Rivoire, 2005b; Krzakala
and Zdeborova, 2007) and in satisfiability (Montanari, Ricci-Tersenghi and Se-
merjian, 2008).

The analysis in this chapter is heuristic, and is waiting for a rigorous proof.
Let us point out that one important aspect of the whole scenario has been estab-
lished rigorously for K ≥ 8: it has been shown that in some range of clause density
below αs(K), the SAT assignments are grouped into exponentially many clusters,
well separated from each other (Mézard, Mora and Zecchina, 2005a; Achlioptas
and Ricci-Tersenghi, 2006; Daudé, Mézard, Mora and Zecchina, 2008). This re-
sult can be obtained by a study of ‘x-satisfiability’ problem, that requires to
determine whether a formula has two SAT assignments differing in xN vari-
ables. Bounds on the x-satisfiability threshold can be obtained through the first
and second moment methods.

The coloring problem has been first studied with the energetic 1RSB cav-
ity method by (Mulet, Pagnani, Weigt and Zecchina, 2002; Braunstein, Mulet,
Pagnani, Weigt and Zecchina, 2003): these papers contain the derivation of the
SAT/UNSAT threshold and the SP equations. A detailed study of the entropy of
clusters, and the computation of the other thresholds, has carried out in (Krza-
kala and Zdeborova, 2007). These papers also study the case of Erdös Rényi
graphs. Theorem 20.2 was proven in (Achlioptas and Moore, 2004), and its ana-
logue for Erdös Rényi graphs in (Achlioptas and Naor, 2005).
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GLASSY STATES IN CODING THEORY

In Ch. 15 we studied the problem of decoding random LDPC codes, and found
two phase transitions, that characterize the code performances in the large block-
length limit. Consider, for instance, communication over a binary symmetric
channel with crossover probability p. Under belief propagation decoding, the bit
error rate vanishes in the large blocklength limit below a first threshold pd and
remains strictly positive for p > pd. On the other hand, the minimal bit error
rate achievable with the same ensemble (i.e. the bit error rate under symbol
MAP decoding) vanishes up to a larger noise level pc and is bounded away from
0 for p > pc.

In principle, one should expect each decoding algorithm to have a different
threshold. This suggests not to attach too much importance to the BP threshold
pd. On the contrary, we will see in this chapter that pd is, in some sense, a
‘universal’ characteristics of the code ensemble: above pd, the decoding problem
is plagued by an exponential number of metastable states (Bethe measures). In
other words the phase transition which takes place at pd is not only algorithmic,
it is a structural phase transition. This transition turns out to be a dynamical
1RSB glass transition and this suggests that pd is the largest possible threshold
for a large class of local decoding algorithms.

We have already seen in the last section of Ch. 15 that the two thresholds
pd and pc are closely related and can both be computed formally within the RS
cavity method, i.e. in terms of the density evolution fixed point. The analysis
below will provide a detailed explanation of this connection in terms of the glass
transition studied in Ch.19.

In the next section we start by a numerical investigation of the role of
metastable states in decoding. Sec. 21.2 considers the particularly instructive
case of the binary erasure channel, where the glassy states can be analyzed rel-
atively easily using the energetic 1RSB cavity method. The analysis of general
memoryless channels is described in Sec. 21.3. Finally, Sec. 21.4 draws the con-
nection between metastable states, which are a main object of study in this
chapter, and trapping sets (subgraphs of the original factor graph that are often
regarded as responsible for coding failures).

21.1 Local search algorithms and metastable states

The codewords of an LDPC code are solutions of a constraint satisfaction prob-
lem. The variables are the bits of a word x = (x1, x2, . . . , xN ), with xi ∈ {0, 1},
and the constraints are the parity check equations, i.e. a set of linear equations

500
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mod 2. This is analogous to the XORSAT problem considered in Ch. 18, although
the ensembles of linear systems used in coding are different.

An important difference with XORSAT is that we are looking for a specific
solution of the linear system, namely the transmitted codeword. The received
message y gives us a hint of where to look for this solution. For notational
simplicity, we shall assume that the output alphabet Y is discrete, and the chan-
nel is a binary input memoryless output symmetric (BMS- see Ch. 15) channel
with transition probability32 Q(y|x). The probability that x is the transmitted
codeword, given the received message y, is given by the usual formula (15.1)
P(x|y) = µy(x) where:

µy(x) ∼=
N∏

i=1

Q(yi|xi)
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) . (21.1)

It is natural to associate an optimization problem to the code. Define the
energy E(x) of a word x (also called a ‘configuration’) as twice the number of
parity check equations violated by x (the factor 2 is introduced for future simpli-
fications). Codewords coincide with the global minima of this energy function,
with zero energy.

We already know that decoding consist in computing marginals of the distri-
bution µy(x) (symbol MAP decoding), or finding its argmax (word MAP decod-
ing). In the following we shall discuss two closely related problems: (i) optimizing
the energy function E(x) within a subset of the configuration space defined by
the received word and the channel properties; (ii) sampling from a ‘tilted’ Boltz-
mann distribution associated to E(x).

21.1.1 Decoding through constrained optimization

Let us start by considering the word-MAP decoding problem. We shall ex-
ploit our knowledge of the BMS channel. Conditional on the received word
y = (y1, y2, . . . , yN), the log-likelihood for x to be the channel input is:

Ly(x) =
N∑

i=1

logQ(yi|xi) . (21.2)

We shall later use the knowledge that the input word was a codeword, but Ly(x)

is well defined for any x ∈ {0, 1}N , regardless of whether it is a codeword or not,
so let us first characterize its properties.

Assume without loss of generality that the codeword 0 had been transmitted.
By the law of large numbers, for large N the log-likelihood of this codeword is
close to −Nh, where h is the channel entropy: h = −

∑
y Q(y|0) logQ(y|0). The

probability of an order-N deviation away from this value is exponentially small

32Throughout this chapter we adopt a different notation for the channel transition probability
than in the rest of the book, in order to avoid confusion with 1RSB messages.
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in N . This suggests to look for the transmitted codeword among those x such
that Ly(x) is close to h.

The corresponding ‘typical pairs’ decoding strategy goes as follows: Given
the channel output y, look for a codeword x ∈ C, such that Ly(x) ≥ −N(h + δ).
We shall refer to this condition as the ‘distance constraint’. For instance, in
the case of the BSC channel, it amounts to constraining the Hamming distance
between the codeword x and the received codeword y to be small enough. If
exactly one codeword satisfies the distance constraint, return it. If there is no
such codeword, or if there are several of them, declare an error. Here δ > 0 is
a parameter of the algorithm, which should be thought of as going to 0 after
N →∞.

Exercise 21.1 Show that the block error probability of typical pairs decoding
is independent of the transmitted codeword.
[Hint: use the linear structure of LDPC codes, and the symmetry property of
the BMS channel.]

Exercise 21.2 This exercise aims at convincing the reader that typical pairs
decoding is ‘essentially’ equivalent to maximum likelihood (ML) decoding.

(a) Show that the probability that no codeword exists with Ly(x) ∈ [−N(h+
δ),−N(h− δ)] is exponentially small in N .
[Hint: apply Sanov Theorem, cf. Sec. 4.2, to the type of the received
codeword.]

(b) Upper bound the probability that ML succeeds and typical pairs decoding
fails in terms of the probability that there exists an incorrect codeword x
with Ly(x) ≥ −N(h+ δ), but no incorrect codeword Ly(x) ≥ −N(h− δ).

(c) Estimate the last probability for Shannon’s random code ensemble. Show
in particular that it is exponentially small for all noise levels strictly
smaller than the MAP threshold and δ small enough.

Since codewords are global minima of the energy function E(x) we can
rephrase typical pairs decoding as an optimization problem:

Minimize E(x) subject to Ly(x) ≥ −N(h + δ) . (21.3)

Neglecting exponentially rare events, we know that there always exists at least
one solution with cost E(x) = 0, corresponding to the transmitted codeword.
Therefore, typical pairs decoding is successful if and only if the minimum is non-
degenerate. This happens with high probability for p < pc. On the contrary,
for p > pc, the optimization admits other minima with zero cost (incorrect
codewords). We already explored this phenomenon in chapters 11 and 15, and
we shall discuss it further below. For p > pc there exists an exponential number of
codewords whose likelihood is larger or equal to the likelihood of the transmitted
one.
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Similarly to what we have seen in other optimization problems (such as MAX-
XORSAT or MAX-SAT), generically there exists an intermediate regime pd <
p < pc, which is characterized by an exponentially large number of metastable
states. For these values of p, the global minimum of E(x) is still the transmitted
codeword, but is ‘hidden’ by the proliferation of deep local minima. Remarkably,
the threshold for the appearence of an exponential number of metastable states
coincides with the BP threshold pd. Thus, for p ∈]pd, pc[ MAP decoding would
be successful, but message passing decoding fails. In fact no practical algorithm
which succeeds in this regime is known. A cartoon of this geometrical picture is
presented in Fig. 21.1.

At this point, the reader might be puzzled by the observation that finding
configurations with E(x) = 0 is per se a polynomial task. Indeed it amounts
to solving a linear system modulo 2, and can be done by Gauss elimination.
However, the problem (21.3) involves the condition Ly(x) ≥ −N(h + δ) which is
not a linear constraint modulo 2. If one resorts to local-search based decoding
algorithms, the proliferation of metastable states for p > pd can block the algo-
rithms. We shall discuss this phenomenon on two local search strategies: ∆-local
search and simulated annealing.

21.1.2 ∆ local-search decoding

A simple local search algorithm consists in starting from a word x(0) such that
Ly(x(0)) ≥ −N(h + δ) and then recursively constructing x(t + 1) by optimizing
the energy function within a radius ∆ neighborhood around x(t):

∆ local search (channel output y, search size ∆, likelihood resolution δ)
1: Find x(0) such that Ly(x(0)) ≥ −N(h + δ) ;
2: for t = 0, . . . tmax − 1:
3: Choose a uniformly random connected set U ⊂ {1, . . . , N}

of variable nodes in the factor graph with |U | = ∆;
4: Find the configuration x′ that minimizes the energy subject

to x′
j = xj for all j .∈ U ;

5: If Ly(x′) ≥ −N(h + δ), set x(t + 1) = x′;
otherwise, set x(t + 1) = x(t);

6: end;
7: return x(tmax).

(Recall that a set of variable nodes U is ‘connected’ if, for any i, j ∈ U , there
exists a path in the factor graph connecting i to j, such that all variable nodes
along the path are in U as well.)

Exercise 21.3 A possible implementation of step 1 consists in setting xi(0) =
argmaxx Q(yi|x). Show that this choice meets the likelihood constraint.



504 GLASSY STATES IN CODING THEORY

Fig. 21.1. Three possible cartoon landscapes for the energy function E(x) (the
number of violated checks), plotted in the space of all configurations x with
Ly(x) ≥ N(h − δ). On the left: the energy as a unique global minimum
with E(x) = 0 (the transmitted codeword) and no (deep) local minima. Cen-
ter: many deep local minima appear although the global minimum remains
non-degenerate. Right: More than one codeword is compatible with the like-
lihood constraint, and the global minimum E(x) = 0 becomes degenerate.

If the factor graph has bounded degree (which is the case with LDPC en-
sembles), and ∆ is bounded as well, each execution of the cycle above implies
a bounded number of operations. As a consequence if we let tmax = O(N), the
algorithm has linear complexity. A computationally heavier variant consists in
choosing U at step 3 greedily. This means going over all such subsets and then
taking the one that maximizes the decrease in energy |E(x(t + 1))− E(x(t))|.

Obviously the energy E(x(t)) of the configuration produced after t iterations
is a non-increasing function of t. If it vanishes at some time t ≤ tmax, then the
algorithm implements a typical pairs decoder. Ideally, one would like a charac-
terization of the noise levels and code ensembles such that E(x(tmax)) = 0 with
high probability.

The case ∆ = 1 was analyzed in Ch. 11, under the name of ‘bit-flipping’
algorithm, for communicating over the channel BSC(p). We saw that there exists
a threshold noise level p1 such that, if p < p1 the algorithm returns with high
probability the transmitted codeword. It is reasonable to think that the algorithm
will be unsuccessful with high probability for p > p1.

Analogously, one can define thresholds p∆ for each value of ∆. Determining
these thresholds analytically is an extremely challenging problem.

One line of approach could consist in first studying ∆-stable configura-
tions. We say that a configuration x is ∆-stable if, for any configuration x′ such
that Ly(x′) ≥ −N(h + δ) and d(x, x′) ≤ ∆, E(x′) ≥ E(x).

Exercise 21.4 Show that, if no ∆-stable configurations exists, then the greedy
version of the algorithm will find a codeword after at most M steps (M being
the number or parity checks).

While this exercise hints at a connection between the energy landscape and
the difficulty of decoding, one should be aware that the problem of determining
p∆ cannot be reduced to determining whether ∆-stable states exist or to estimate
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their number. The algorithm indeed fails if, after a number t of iterations, the
distribution of x(t) is (mostly) supported in the basin of attraction of ∆-stable
states. The key difficulty is of course to characterize the distribution of x(t).

21.1.3 Decoding through simulated annealing

A more detailed understanding of the role of metastable configurations in the
decoding problem can be obtained through the analysis of the MCMC decoding
procedure that we discussed in Sec. 13.2.1. We thus soften the parity check
constraints through the introduction of an inverse temperature β = 1/T (this
should not be confused with the temperature introduced in Ch. 6, which instead
multiplied the codewords log-likelihood). Given the received word y, we define
the following distribution over the transmitted message x, cf. Eq. (13.10):

µy,β(x) ≡ 1

Z(β)
exp{−βE(x)}

N∏

i=1

Q(yi|xi) . (21.4)

This is the ‘tilted Boltzmann form’ that we alluded to before. In the low-
temperature limit it reduces to the familiar a posteriori distribution which we
would like to sample: µy,β=∞(x) is supported on the codewords, and gives to each
of them a weight proportional to its likelihood. At infinite temperature, β = 0,
the distribution factorizes over the bits xi. More precisely, under µy,β=0(x), the
bits xi are independent random variables with marginal Q(yi|xi)/(Q(yi|0) +
Q(yi|1)). Sampling from this measure is very easy.

For β ∈]0,∞[, µy,β( · ) can be regarded as a distribution of possible channel
inputs for a code with ‘soft’ parity check constraints. Notice that, unlike the
β = ∞ case, it depends in general on the actual parity check matrix and not
just on the codebook C. This is actually a good feature of the tilted measure:
performances of practical algorithms do indeed depend upon the parity check
matrix representation of C. It is therefore necessary to take it into account.

We shall sample from µy,β( · ) using Glauber dynamics, cf. Sec. 13.2.1. We
have already seen in that section that decoding through sampling at a fixed β
fails above a certain noise level. Let us now try to improve on it using a simulated
annealing procedure in which β is increased gradually according to an annealing
schedule β(t), with β(0) = 0. This decoder uses as input the received word y,
the annealing schedule, and some maximal numbers of iterations tmax, n:

Simulated Annealing Decoder ( y, {β(t)}, tmax, n )
1: Generate x∗(0) form µy,0( · );
2: for t = 0, . . . tmax − 1:
3: Set x(0; t) = x∗(t− 1);
4: Let x(j; t), j ∈ {1, . . . , n} be the configurations produced by

n successive Glauber updates at β = β(t);
5: Set x∗(t) = x(n; t);
6: end
7: return x(tmax).
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Fig. 21.2. Decoding random codes from the (5, 6) LDPC ensemble through sim-
ulated annealing. Here we consider blocklength N = 12000 and transmission
over the BSC(p) with p = 0.12 (left) and 0.25 (right). The system is annealed
through tmax = 1200 temperature values equally spaced between T = 1.2 and
T = 0. At each temperature n = Nτ updates are executed. Statistical errors
are comparable with the size of jumps along the curves.

Its algorithmic complexity is proportional to the total number of Glauber
updates ntmax. If we want the algorithm to be efficient, this should grow linearly
or slightly super-linearly with N . The intuition is that the first (small β) steps
allow the Markov chain to equilibrate across the configuration space while, as β
gets larger, the sample concentrates onto (or near to) codewords. Hopefully at
each stage x∗(t) will be approximately distributed according to µy,β(t)( · ).

Figure 21.2 shows the result obtained by the simulated annealing decoder,
using random LDPC codes from the (5, 6) regular ensemble, used over the binary
symmetric channel at crossover probabilities p = 0.12 and 0.25 (for this ensemble,
pd ≈ 0.139 and pc ≈ 0.264). The annealing schedule is linear in the temperature,
namely β(t) = 1/T (t) with

T (t) = T (0)−
{
T (0)− T (tmax)

} ( t

tmax

)
, (21.5)

with T (0) = 1.2 and T (tmax) = 0. The performance of decoding can be evaluated
through the number of violated checks in the final configuration, which is half
E(x(tmax)). The figure shows the energy density averaged over 10 repetitions of
the decoding experiment (each time with a new code randomly chosen from the
ensemble), e(t) = 1

N 〈E(x(t))〉, versus the temperature T (t). As the number of
updates performed at each temperature increases, the number of violated checks
per variable seems to converge to a well defined limiting value, that depends on
t only through the corresponding temperature

1

N
〈E(x(t))〉 → eann(β(t)) . (21.6)

Further, E(x(t))/N seems to concentrate around its mean as N →∞.
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At small p, the curve eann(β) quickly converges to 0 as β → ∞: a codeword
(the transmitted one) is found efficiently. In fact, already at β = 1, the numerical
result for eann(β) is indistinguishable from 0. We expect that eann(β) coincides
within numerical accuracy with the theoretical prediction for the equilibrium
average

eeq(β) ≡ 1

N
lim

N→∞
〈E(x)〉β . (21.7)

This agrees with the above observations since eeq(β) = O(e−10β) (the lowest
excitation over the ground state amounts to flipping a single bit, its energy is
equal to 10). The numerics thus suggest that x(tmax) is indeed approximately
distributed according to µy,β(t)( · ).

At large p, eann(β) has instead a non-vanishing β → ∞ limit: the annealing
algorithm does not find any codeword. The returned word x∗(tmax) typically
violates Θ(N) parity checks. On the other hand, in the equilibrated system at β =
∞, the energy vanishes by construction (we know that the transmitted codeword
satisfies all checks). Therefore the simulation has fallen out of equilibrium at
some finite β, thus yielding a distribution of x(tmax) which is very different from
µy,β=∞( · ). The data in Fig. 21.2 shows that the energy varies very slowly at low
temperatures, which confirms the fact that the system is out of equilibrium.

We shall argue below that this slowing down is in fact due to a dynamical
glass phase transition occuring at a well defined temperature Td = 1/βd. Below
this temperature, x(tmax) gets trapped with high probability into a pure state
corresponding to a deep local minimum of E(x) with positive energy, and never
reaches a global minimum of the energy (i.e. a codeword).

This is related to the ‘energy landscape’ picture discussed in the previous
section. Indeed, the success of the simulated annealing decoder for p ≤ pd can be
understood as follows. At small noise the ‘tilting’ factor

∏
i Q(yi|xi) effectively

selects a portion of the configuration space around the transmitted codeword
(more or less like the likelihood constraint above) and this portion is small enough
that there is no metastable state inside it. An interesting aspect of simulated
annealing decoding is that it can be analyzed on the basis of a purely static
calculation. Indeed for any β ≤ βd, the system is still in equilibrium and its
distribution is simply given by Eq. (21.4). Its study, and the determination of
βd, will be the object of the next sections.

Before moving to this analysis, let us make a last remark about simulated
annealing: for any finite β, the MCMC algorithm is able to equilibrate if it is
iterated a large number of times (a direct consequence of the fact that Glauber
dynamics is irreducible and aperiodic). This raises a paradox, as it seems to im-
ply that the annealing energy always coincide with the equilibrium one, and the
system never falls out of equilibrium during the annealing process. The conun-
drum is that, in the previous discussion we tacitly assumed that the number of
Monte Carlo steps cannot grow exponentially with the system size. To be more
precise, one can for instance define the annealing energy as
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eann(β) ≡ lim
tmax→∞

lim
N→∞

1

N
〈EN (x(tβ = <(1 − β(0)/β)tmax=))〉 , (21.8)

where we assumed β(tmax) = ∞ The important point is that the limit N → ∞
is taken before tmax →∞: in such a case simulated annealing can be trapped in
metastable states.

21.2 The binary erasure channel

If communication takes place over the binary erasure channel BEC(ε), the anal-
ysis of metastable states can be carried out in details by adopting the point of
view of constrained optimization introduced in Sec. 21.1.1.

Suppose that the all zero codeword x∗ = (0, · · · , 0) has been sent, and let
Let y ∈ {0, ∗}N be the channel output. We shall denote by U = U(y) the set of
erased bits. The log-likelihood for the word x to be the input can take two possible
values: Ly(x) = |U | log ε if xi = 0 for all i .∈ U , and Ly(x) = −∞ otherwise.
Of course the input codeword belongs to the first set: Ly(x∗) = |U | log ε. The
strategy of Sec. 21.1.1 reduces therefore to minimizing E(x) (i.e. minimizing the
number of violated parity checks) among all configurations x such that xi = 0
on all the non-erased positions.

When the noise ε is smaller than the MAP threshold, there is a unique min-
imum with energy 0, namely the transmitted codeword x∗. Our aim is to study
the possible existence of metastable states, using the energetic cavity method
of Sec. 19.5. This problem is closely related to XORSAT, whose analysis was
presented analysis in Ch. 18 and Ch. 19: Once all the non-erased bits have been
fixed to xi = 0, decoding amounts to solving a homogeneous system of linear
equations among the remaining bits. If one uses a code from the LDPCN (Λ, P )
ensemble, the degree profiles of the remaining nodes are Λ(x), R(x), where the
probability of a check node to have degree k, Rk, is given in terms of the original
Pk by:

Rk =
kmax∑

k′=k

Pk′

(
k′

k

)
εk(1 − ε)k′−k , (21.9)

and the corresponding edge perspective degree profile is given as usual by rk =
kRk/

∑
p pRp.

Exercise 21.5 Show that r(u) =
∑

k rkuk−1 = ρ(1 − ε(1 − u)).

Assuming as usual that the number of metastable states - solutions of min-
sum equations- of energy Ne grows like exp(NΣe(e)), we will use the 1RSB
energetic cavity method to compute the energetic complexity Σe(e). This can
be done using the SP(y) equations on the original factor graph. As our problem
involves only hard constraints and binary variables, we can use the simplified
formalism of Sec.19.5.3. Each min-sum message can take three possible values,
0 (the meaning of which is “take value 0”), 1 (“take value 1”) and ∗ (“you can
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take any value”). The SP(y)messages are distributions on these three values or,
equivalently, normalized triplets.

21.2.1 The energetic 1RSB equations

Let us now turn to the statistical analysis of these messages. We denote by
Q = (Q0, Q1, Q∗) the messages from variable to check, and Q̂ the messages from
check to variables. We first notice that, if a bit is not erased, then it sends a
sure 0 message Q = (1, 0, 0) to all its neighboring checks. This means that the
distribution of Q has a mass at least 1 − ε on sure 0 messages. We can write:

Q =

{
(1, 0, 0) with probability (1− ε) ,

Q̃ with probability ε .
(21.10)

The distributional equations of Q̃ and Q̂ can then be obtained exactly as in
Secs. 19.5 and 19.6.3.

Exercise 21.6 Show that the distributions of Q̃ and Q̂ satisfy the equations:

Q̃σ
d
= Fl,σ(Q̂1, · · · , Q̂l−1) (21.11)




Q̂0

Q̂1

Q̂∗



 d
=





1
2

∏k−1
i=1 (Q̃i

0 + Q̃i
1) + 1

2

∏k−1
i=1 (Q̃i

0 − Q̃i
1)

1
2

∏k−1
i=1 (Q̃i

0 + Q̃i
1)− 1

2

∏k−1
i=1 (Q̃i

0 − Q̃i
1)

1 −
∏k−1

i=1 (1 − Q̃∗,i)



 (21.12)

where we defined, for σ ∈ {0, 1, ∗}

Fl,σ(Q̂1, . . . , Q̂l−1) ≡ Zl,σ({Q̂a})
Zl,0({Q̂a}) + Zl,1({Q̂a}) + Zl,∗({Q̂a})

(21.13)

Zl,σ({Q̂a}) ≡
(σ)∑

Ω0,Ω1,Ω∗

e−y min(|Ω0|,|Ω1|)
∏

a∈Ω0

Q̂a
0

∏

a∈Ω1

Q̂a
1

∏

a∈Ω∗

Q̂a
∗ . (21.14)

Here we denoted by
∑(σ)

Ω0,Ω1,Ω∗
the sum over partitions of {1, · · · , l − 1} =

Ω0 ∪ Ω1 ∪ Ω∗ such that |Ω0| > |Ω1| (for the case σ = 0), |Ω0| = |Ω1| (for
σ = ∗), or |Ω0| < |Ω1| (for σ = 1). Furthermore, k, l, are random integers, with
distributions respectively rk and λl, the {Q̃i} are l − 1 i.i.d. copies of Q̃, and
{Q̂a} are k − 1 i.i.d. copies of Q̂.

Given a solution of the 1RSB equations, one can compute the Bethe free-
entropy density FRSB,e(Q, Q̂) of the auxiliary problem. Within the 1RSB cavity
method we estimate the free-entropy density of the auxiliary model using Bethe
approximation as: Fe(y) = 1

N FRSB,e(Q, Q̂). This gives access to the energetic
complexity function Σe(e) through the Legendre transform Fe(y) = Σe(e)− y e.
Within the 1RSB cavity method we estimate the latter using Bethe approxima-
tion: Fe(y) = fRSB,e(y).
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Exercise 21.7 Computation of the free-entropy. Using Eq. (19.92) show that
the Bethe free-entropy of the auxiliary graphical model is N fRSB,e + o(N),
where:

fRSB,e = −Λ′(1)ε E log ze(Q̃, Q̂) + ε E log zv({Q̂a}; l)+

+
Λ′(1)

P ′(1)
E log zf({Q̃i}; k) . (21.15)

Here expectations are taken over l (with distribution Λl), k (with distribution
Rk defined in (21.9)), Q̃, Q̂ as well as their i.i.d. copies Q̃i, Q̂a. The contributions
of edges (ze), variable (zv) and function nodes (zf) take the form:

ze(Q̃, Q̂) = 1 + (e−y − 1)
(
Q̃0Q̂1 + Q̃1Q̂0

)
, (21.16)

zv({Q̂i}; l) =
∑

Ω0,Ω1,Ω∗

∏

b∈Ω0

Q̂b
0

∏

b∈Ω1

Q̂b
1

∏

b∈Ω∗

Q̂b
∗ e−y min(|Ω0|,|Ω1|) , (21.17)

zf({Q̃i}; k) = 1 +
1

2
(e−y − 1)

{
k∏

i=1

(Q̃i
0 + Q̃i

1)−
k∏

i=1

(Q̃i
0 − Q̃i

1)

}
, (21.18)

where the sum in the second equation runs over the partitions Ω0∪Ω1∪Ω∗ = [l].

21.2.2 BP threshold and onset of metastability

A complete study of the distributional equations (21.11), (21.12) is a rather
challenging task. On the other hand they can be solved approximately through
population dynamics. It turns out that the distribution obtained numerically
shows different symmetry properties depending on the value of ε. Let us define
a distribution Q̃ (or Q̂) to be ‘symmetric’ if Q̃0 = Q̃1, and ‘positive’ if Q̃0 > Q̃1.
We know from the BP decoding analysis that directed edges in the graph can be
distinguished in two classes: those that eventually carry a message 0 under BP
decoding, and those that instead carry a message ∗ even after a BP fixed point
has been reached. It is natural to think that edges of the first class correspond to
a positive 1RSB message Q̃ (i.e., even among metastable states the corresponding
bits are biased to be 0), while edges of the second class correspond instead to a
symmetric message Q̃.

This motivates the following hypothesis concerning the distributions of Q̃
and Q̂. We assume that there exist weights ξ, ξ̂ ∈ [0, 1] and random distributions
b, b̂, c, ĉ, such that: b, b̂ are symmetric, c, ĉ are positive, and

Q̃
d
=

{
b with probability ξ
c with probability 1− ξ,

(21.19)

Q̂
d
=

{
b̂ with probability ξ̂,
ĉ with probability 1− ξ̂.

(21.20)
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In other words ξ (respectively ξ̂) denotes the probability that Q (resp. Q̂) is
symmetric.

Equation (21.11) shows that, in order for Q̃ to be symmetric, all the input Q̂i

must be symmetric. On the other hand, Eq. (21.12) implies that Q̂ is symmetric
if at least one of the input Q̃a must be symmetric. Using the result of Exercise
21.5, we thus find that our Ansatz is consistent only if the weights ξ, ξ̂ satisfy
the equations:

ξ = λ(ξ̂) ξ̂ = 1 − ρ(1 − εξ) , (21.21)

If we define z ≡ εξ, ẑ ≡ ξ̂, these coincide with the density evolution fixed point
conditions for BP, cf. Eqs. (15.34). This is not surprising in view of the physical
discussion which lead us to introduce Ansatz (21.19), (21.20): ξ corresponds to
the fraction of edges that remain erased at the BP fixed point. On the other
hand, we will see that this observation implies that BP stops to converge to the
correct fixed point at the same threshold noise εd where metastable states start
to appear.

For ε ≤ εd, Eqs. (21.21) admit the unique solution ξ = ξ̂ = 0, corresponding
to the fact that BP decoding recovers the full transmitted message. As a con-

sequence we can take Q( · ) d
= c( · ), Q̂( · ) d

= ĉ( · ) to have almost surely positive
mean. In fact it is not hard to check that a consistent solution of Eqs. (21.11),
(21.12) is obtained by taking

Q̂ = Q̃ = (1, 0, 0) almost surely. (21.22)

Since the cavity fields do not fluctuate from state to state (their distribution
is almost surely a point mass), the structure of this solution indicates that no
metastable state is present for ε ≤ εd. This is confirmed by the fact that the free
entropy density of this solution Fe(y) vanishes for all y.

Above a certain noise threshold, for ε > εd, Eq. (21.21) still possesses the
solution ξ = ξ̂ = 0, but a new solution with ξ, ξ̂ > 0 appears as well. We have
discussed this new solution in the density evolution analysis of BP decoding: it
is associated with the fact that the BP iterations have a fixed point in which
a finite fraction of the bits remains undetermined. Numerical calculations show
that that, for ε > εd, the iteration of Eqs. (21.11), (21.12) converges to a non-
trivial distribution. In particular Q̃ (resp. Q̂) is found to be symmetric with
probability ξ > 0 (resp ξ̂ > 0), where the values of ξ, ξ̂ are the non-trivial solution
of (21.21). The free-entropy of the auxiliary model Fe(y), can be computed using
(21.15). Its Legendre transform is the energetic complexity curve Σe(e).

Figure 21.3 shows the typical outcome of such a calculation for LDPC en-
sembles, when εd < ε < εc. In this whole regime, there exists a zero energy word,
the transmitted (all 0) codeword. This is described by the solution ξ = ξ̂ = 0.
On top of this, the non-trivial solution gives a complexity curve Σe(e) which is
positive in an interval of energy densities (ec, ed). A positive complexity means
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Fig. 21.3. Metastable states for random elements of the (3, 6) regular ensemble
used over the BEC(ε) (for this ensemble εd ≈ 0.4294 and εc ≈ 0.4882). Left
frame: complexity as a function of the energy density for three values of
the channel parameter above εd. Right frame: the maximum and minimum
energy density ed and ec of metastable states as a function of the erasure
probability.

that an exponential number of metastable states is present. But since ec > 0,
these metastable states violate a finite fraction of the parity checks.

As ε increases both ed and ec decrease. At εc, ec vanishes continuously and
ec = 0, ed > 0 for all ε ≥ εc. In other words, at noise levels larger than εc there
appears an exponential number of zero energy ‘metastable’ states. These are
codewords, that are indeed separated by energy barriers with height Θ(N). Con-
sistently with this interpretation Σ(e = 0) = fRS

h,u where fRS
h,u is the RS free-entropy

density (15.48) estimated on the non-trivial fixed point of density evolution.
The notion of metastable states thus allows to compute the BP and MAP

thresholds within a unified framework. The BP threshold is the noise level where
an exponential number of metastable states appears. This shows that this thresh-
old is not only associated with a specific decoding algorithm, but it also has a
structural, geometric meaning. On the other hand the MAP threshold coincides
with the noise level where the energy of the lowest-lying metastable states van-
ishes.

Figure 21.4 shows the results of some numerical experiments with the simu-
lated annealing algorithm of Sec. 21.1.3. Below the BP threshold, and for a slow
enough annealing schedule the algorithm succeeds in finding a codeword (a zero
energy state) in linear time. Above the threshold, even at the slowest annealing
rate we could not find a codeword. Furthermore, the residual energy density at
zero temperature is close to ed, suggesting that the optimization procedure is
indeed trapped among the highest metastable states. This suggestion is further
confirmed by Fig. 21.5 which compares the ε dependence of ed with the residual
energy under simulated annealing. Once again, there is rough agreement between
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Fig. 21.5. Decoding random codes from the (3, 6) regular ensemble used over
the BEC(ε). Here we plot the minimum energy density achieved through
simulated annealing versus the channel parameter. The continuous line is the
energy of the highest lying metastable states. Size and annealing schedule as
in Fig. 21.4.

the two (let us stress that one should not expect perfect agreement between the
residual energy in Fig. 21.5 and ed: the former does indeed depend on the whole
dynamical annealing process).



514 GLASSY STATES IN CODING THEORY

21.3 General binary memoryless symmetric channels

One would like to generalize to other channel models the above analysis of
metastable states in the constrained optimization formulation of decoding. In
general the computation is technically more intricate than for the BEC. The
reason is that in general channels, the distance condition Ly(x) ≥ −N(h + δ)
cannot be written in terms of ‘local’ binary constraints. As a consequence, one
cannot use the simplified approach of Sec. 19.5.3 and the general 1RSB formalism
is required.

We shall follow this line of approach, but rather than pushing it to the point
of determining the full complexity function, we will only determine whether the
model (21.4) undergoes a dynamical phase transition as β increases from 0 to
∞, and locate the critical point βd(p) (here p denotes the channel parameter).
This is indeed the most important piece of information for our purposes. If a
dynamical phase transition occurs at some βd < ∞, then for β > βd the measure
(21.4) decomposes into an exponential number of metastable pure states. As β
crosses βd the system is trapped in one of these and falls out of equilibrium. Upon
further cooling (increase of β) the energy density of the annealed system remains
higher than the equilibrium one and does not vanish as β → ∞. This analysis
allows to determine the noise threshold of the simulated annealing decoder, as
the largest noise level p such that there is no finite βd.

In the following we first write the general 1RSB equations at finite β, and
present some results obtained by solving them numerically. Finally we give a
heuristic argument showing that βd(p) goes to infinity exactly for p ↓ pd.

21.3.1 The 1RSB cavity approach

We shall apply the 1RSB cavity approach of Ch. 19 to the decoding problem.
Given a code and the received message y, we want to study the probability
distribution µy,β(x) defined in Eq. (21.4), and understand whether it decomposes
in exponentially many extremal Bethe measures. The BP equations are simple
generalizations of those written in Ch. 15 for the case β = ∞. In terms of the
log-likelihoods

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

≡ B(yi) , (21.23)

they read:

hi→a = Bi +
∑

b∈∂i\a

ub→i ≡ fi({ub→i}) , (21.24)

ua→i = atanh
{

tanhβ
∏

j∈∂a\i

tanhhj→a

}
≡ f̂a({hj→a}) . (21.25)

The corresponding Bethe free-entropy is given by (unlike in Ch. 15, here we use
natural logarithms)
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F(u, h) = −
∑

(ia)∈E

log

[
∑

xi

ν̂ua→i(xi)νhi→a(xi)

]
+

N∑

i=1

log

[
∑

xi

Q(yi|xi)
∏

a∈∂i

ν̂ua→i(xi)

]

+
M∑

a=1

log




∑

x∂a

exp(−βEa(x∂a))
∏

i∈∂a

νhi→a(xi)



 . (21.26)

As in (15.44), we shall introduce a “shifted” free-entropy density φ defined as

φ =
1

N
F(u, h) −

∑

y

Q(y|0) logQ(y|0) , (21.27)

Recall that the 1RSB cavity approach assumes that, to leading exponential
order, the number N (φ) of Bethe measures with a shifted free-entropy density
equal to φ is equal to the number of quasi-solutions of Eqs. (21.24), (21.25).
We shall write as usual N (φ)

.
= exp(NΣ(φ)), and our aim is to compute the

complexity Σ(φ), using as in Ch. 19 an auxiliary graphical model which counts
the number of solutions of BP equations, weighted by a factor exp(Nxφ). If the
free-entropy of the auxiliary model is F(x) = limN→∞ FRSB(x)/N , then Σ(φ) is
given by the Legendre transform F(x) = xφ + Σ(φ), ∂Σ/∂φ = −x.

For a given code and received y, the basic objects involved in the 1RSB
approach are the distributions of the fields hi→a and ub→j denoted respectively

as Qia and Q̂bj . They satisfy the following 1RSB equations:

Qia(hi→a) ∼=
∫

δ (hi→a = fi({ub→i})) (zia)x
∏

b∈∂i\a

dQ̂bi(ub→i) , (21.28)

Q̂ai(ua→i) ∼=
∫

δ
(
ua→i = f̂a({hj→a})

)
(ẑai)

x
∏

j∈∂a\i

dQja(hj→a) . (21.29)

Exercise 21.8 Show that the factors zia and ẑai in these equations, defined
in (19.23), (19.24), are given by:

zia({ub→i}, Bi) =
2 cosh(Bi +

∑
b∈∂i\a ub→i)∏

b∈∂i\a(2 cosh(ub→i))
, (21.30)

ẑai({hj→a}) = 1 + e−2β . (21.31)

Although in this case ẑai is a constant and can be absorbed in the normal-
ization, we shall keep it explicitly in the following.

We now turn to the statistical analysis of these equations. Picking up a uni-
formly random edge in the Tanner graph of a code from the LDPCN (Λ, P ) en-
semble, the densities Q̂ and Q become themselves random objects which satisfy
the distributional equations:
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Q(h)
d
=

1

Z

∫
z({ua}; B(y))x δ

(
h− fl−1({ua}; B(y))

) l−1∏

a=1

dQ̂a(ua) , (21.32)

Q̂(u)
d
=

1

Ẑ

∫
ẑ({hi})x δ

(
u − f̂k−1({hi})

) k−1∏

i=1

dQi(hi) . (21.33)

where k, l, y are random variables, {Q̂a} are l − 1 i.i.d. copies of Q̂, and {Qi}
are k−1 i.i.d. copies of Q. Further, l is drawn from the edge perspective variable
degree profile λ, k is drawn from the edge perspective check degree profile ρ,
and y is drawn from Q( · |0), the distribution of channel output upon input 0.

The functions f̂k−1({hi}) = atanh(tanhβ
∏k−1

i=1 tanh(hi)), and fl−1({ua}; B) =

B−
∑l−1

a=1 ua are defined analogously to Eqs. (21.24), (21.25). The functions z( · )
and ẑ( · ) are given similarly by the expressions in (21.30), (21.31).

The 1RSB free-entropy density (i.e. the entropy density of the auxiliary
model) is estimated as F(x) = fRSB(Q, Q̂) where fRSB(Q, Q̂) is the expected free-
entropy density and Q and Q̂ are distributed according to the ‘correct’ solution
of the distributional equations Eqs. (21.32), (21.33).

fRSB(Q, Q̂) = −Λ′(1) E log ze(Q, Q̂) + E log zv({Q̂a}; l, y) +
Λ′(1)

P ′(1)
E log zf({Qi}; k) .

Here the expectation is taken with respect to k i.i.d. copies of Q̂ and l i.i.d. copies

of Q, and with respect to k
d
= P·, l

d
= Λ· and y

d
= Q( · |0). Finally, ze, zv, zf read:

ze(Q, Q̂) =

∫
dQ(h) dQ̂(u)

[ 1∑

x=0

νh(x)νu(x)
]x

, (21.34)

zv({Q̂a}; l, y) =

∫ l∏

a=1

dQ̂a(ua)
[ 1∑

x=0

Q(y|x)

Q(y|0)

l∏

a=1

νua(x)
]x

, (21.35)

zf({Qi}; k) =

∫ l∏

i=1

dQi(hi)
[ ∑

{x1,··· ,xk}

k∏

i=1

νhi(xi)

(
I
(∑

i

xi = even
)

+ e−2β I
(∑

i

xi = odd
))]x

.(21.36)

A considerable amount of information is contained in the 1RSB free-energy den-
sity F(x). For instance, one could deduce from it the energetic complexity by
taking the appropriate β → ∞ limit. Here we shall not attempt at developing
a full solution of the 1RSB distributional equations, but use them to detect the
occurrence of a dynamical phase transition.

21.3.2 Dynamical phase transition

The location of the dynamical phase transition location βd(p) is determined as
the smallest value of β such that the distributional equations (21.32), (21.33)
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Fig. 21.6. Left: Dynamic phase transition for random codes from the (5, 6) en-
semble used over the BSC(p) (circles are obtained through sampled density
evolution; the dashed line is a guide for the eye). Right: residual energy den-
sity after simulated annealing, as measured in numerical simulations. The
dashed line gives the equilibrium energy at the dynamical transition temper-
ature Td.

have a non-trivial solution at x = 1. For β > βd(p), the distribution (21.4)
decomposes into an exponential number of pure states. As a consequence, we
expect simulated annealing to fall out of equilibrium when βd(p) is crossed.

In Fig. 21.6 left frame, we show the result of applying such a technique to
the (5, 6) regular ensemble used for communication over the BSC(p). At small p,
no dynamic phase transition is revealed through this procedure at any positive
temperature. Above a critical value of the noise level p, the behavior changes
dramatically and a phase transition is encountered at a critical point βd(p) that
decreases monotonically for larger p. By changing both β and p, one can iden-
tify a phase transition line that separates the ergodic and non-ergodic phases.
Remarkably, the noise level at which a finite βd appears is numerically indistin-
guishable from pd ≈ 0.145.

Does the occurrence of a dynamical phase transition for p # pd indeed influ-
ence the behavior of the simulated annealing decoder? Some numerical confir-
mation was already presented in Fig. 21.2. Further support in favor of this thesis
is provided by Fig. 21.6, right frame, which plots the residual energy density of
the configuration produced by the decoder as β → ∞. Above pd this becomes
strictly positive and only slowly dependent on the cooling rate. It is compared
with the equilibrium value of the internal energy at βd(p). This would be the
correct prediction if the system didn’t decrease any more its energy after it falls
out of equilibrium at βd(p). Although we do not expect this to be strictly true,
the resulting curve provides a good first estimate.
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21.3.3 Metastable states and BP threshold

One crucial element of this picture can be confirmed analytically, for a generic
BMS channel family ordered by physical degradation with respect to p: At zero
temperature, the dynamical transition, signaling the proliferation of metastable
Bethe states, occurs exactly at the decoding threshold pd. More precisely, the
argument below proves that at β = ∞ there cannot exist any non-trivial x = 1
solution of Eqs. (21.32), (21.33) for p < pd, while there exists one for p > pd.
We expect that, for most channel families, the same situation should hold for β
large enough (and dependent on p), but this has not been proven yet.

Let us consider the 1RSB equations (21.32), (21.33) in the case β = ∞.
Assuming that the degree profiles are such that l ≥ 2 and k ≥ 2 (a reasonable
requirement for useful code ensembles), it is clear that they have a special ‘no-
error’ solution associated with the sent codeword in which Q(h) = δ∞(h) and
Q̂(u) = δ∞(h) almost surely. It is a simple exercise to check that the (shifted)
free-entropy density of this solution is equal to 0.

The important question is whether there exist other solutions beyond the ‘no-
error’ one. We can make use of the simplification occuring at x = 1. As we saw in
Sec. 19.4.1, the expectation values of the messages, νav

i→a(xi) ≡
∑

νia
Qia(νia)νia(xi)

and ν̂av
a→i(xi) ≡

∑
bmai

Q̂ai(ν̂ai)ν̂ai(xi) satisfy the BP equations.
Let us first study the case p < pd. We have seen in Ch. 15 that there is a

unique solution of BP equations: the no-error solution. This shows that in this
low noise regime, there cannot exist any non-trivial 1RSB solution. We conclude
that there is no glass phase in the regime p < pd

We now turn to the case p > pd (always with β = ∞), and use the analysis of
BP presented in Ch. 15. That analysis revealed that, when p > pd, the density
evolution of BP messages admits at least one ‘replica symmetric’ fixed point
distinct from the no-error one.

We shall now use this replica symmetric fixed point in order to construct a
non-trivial 1RSB solution. The basic intuition behind this construction is that
each Bethe measure consists of a single configuration, well separated from other
ones. Indeed, each Bethe measure can be identified with a zero-energy configura-
tion, i.e. with a codeword. If this is true, then, with respect to each of these Bethe
measures the local distribution of a variable is deterministic, either a unit mass
on 0 or a unit mass on 1. Therefore we seek a solution where the distribution of
Q and Q̂ is supported on functions of the form:

Q(h) =
1

2
(1 + tanh h̃) δ+∞(h) +

1

2
(1 − tanh h̃) δ−∞(h) , (21.37)

Q̂(u) =
1

2
(1 + tanh ũ) δ+∞(u) +

1

2
(1 + tanh ũ) δ−∞(u) , (21.38)

where h̃ and ũ are random variables.
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Exercise 21.9 Show that this Ansatz solves Eqs. (21.32), (21.33) at β = ∞ if
and only if the distributions of h̃, ũ satisfy:

h̃
d
= B(y) +

l−1∑

a=1

ũ , ũ
d
= atanh

[ k−1∏

i=1

tanh h̃i

]
. (21.39)

It is easy to check that the random variables h̃ and ũ satisfy the same equa-
tions as the fixed point of density evolution for BP (see Eq. (15.11)). We conclude
that, for p > pd and x = 1, a solution to the 1RSB equations is given by the
Ansatz (21.37), (21.38), if h̃, ũ are drawn from the fixed point distributions of
Eq. (15.11).

It turns out that a similar solution is easily found for any value of x > 0,
provided β = ∞. The only place where x plays a role is in the reweighting factor
of Eq. (21.35): when x .= 1, the only modification in the distributional equations
(21.39) is that B(y) should be multiplied by x. Therefore one can obtain the 1RSB
solution for any x > 0 if one knows the solution to the RS cavity equations (i.e.
the fixed point of the density evolution for BP) in a slightly modified problem in
which B(y) is changed to xB(y). Technically this is equivalent to studying the
modified measure

µy(x) ∼=
M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0)

N∏

i=1

Q(yi|xi)
x , (21.40)

within the RS approach of Ch. 15 (such a modified measure was already intro-
duced in Ch. 6).

Let us assume that we have found a non-trivial fixed point for this aux-

iliary problem, characterized by the distributions a
(x)
RS(h), and â

(x)
RS(u), and call

fRS(x) the corresponding value of the free-entropy density defined in (15.45). The
1RSB equations with reweighting parameter x have a solution of the type (21.37),

(21.38), provided h̃ is distributed according to a
(x)
RS( · ), and ũ is distributed ac-

cording to â
(x)
RS( · ). The 1RSB free-entropy density F(x) = E FRSB(x)/N is simply

given by:
F(x) = fRS(x) . (21.41)

Therefore the problem of computing F(x), and its Legendre transform the com-
plexity Σ(φ), reduce to a replica symmetric computation. This is a simple gen-
eralization of the problem Ch. 15, whereby the decoding measure is modified by
raising it to the power x, as in Eq. (21.40). Notice however that the interpreta-
tion is now different. In particular x has to be properly chosen in order to focus
on dominant pure states.

The problem can be easily studied numerical using the population dynamics
algorithm. Fig. 21.7 shows an example of the complexity Σ(φ) for a BSC channel.
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Fig. 21.7. Left: The free-entropy of the auxiliary model, F(x), as a func-
tion of the weight parameter x, for a (3, 6) code on the BSC chan-
nel (recall that pd ≈ 0.084 and pc ≈ 0.101 in this case). From bot-
tom to top: p = 0.090, 0.095, 0.100, 0.105, 0.110. Right: The complexity
Σ(φ) plotted versus the shifted free-entropy density φ. From left to right:
p = 0.090, 0.095, 0.100, 0.105, 0.110.

The regime pd < p < pc is characterized by the existence of a band of metastable
states with negative shifted free-entropy φ ≤ φ0 < 0. They are in principle
irrelevant when compared to the ‘no-error’ solution which has φ = 0, confirming
that MAP decoding will return the transmitted codeword. In fact they are even
unphysical: φ is nothing but the conditional entropy density of the transmitted
codeword given the received message. As a consequence it must be non-negative.
However the solution extends to β < ∞, where it makes perfect sense (it describes
non-codeword metastable configurations), thus solving the puzzle.

The appearance of metastable states coincides with the noise threshold above
which BP decoding fails. When p > pc the top end of the band φ0 becomes
positive: the ‘glassy’ states dominate the measure and MAP decoding fails.

21.4 Metastable states and near-codewords

In a nutshell, the failure of BP decoding for p > pd can be traced back to
configurations (words) x that: (i) Are deep local minima of the energy function
E(x) (that counts the number of violated parity checks); (ii) Have a significant
weight under the measure

∏
i Q(y|xi).

Typically, such configurations are not codewords, although they can be very
close to codeword from the energy point of view. An interesting qualitative anal-
ogy can be drawn between this analysis, and various notions that have been
introduced to characterize the so-called error floor.

Let us start by describing the error floor problem. We saw that for p < pd

the bit error rate under BP decoding vanishes when the blocklength N → ∞.
Unhappily, the blocklength cannot be taken arbitrarily large because of two types
of practical considerations. First, coding a block of N bits simultaneously implies
a communication delay proportional to N . Second, any hardware implementation
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Fig. 21.8. Bit error probability for 40 random elements of the (3, 6) regular
ensemble with N = 2500 used over the BEC(ε). The continuous curve corre-
sponds to the average error probability.

of BP decoding becomes increasingly difficult as N get larger. Depending on the
application, one can be forced to consider a maximum blocklength between 103

and 105.
This brings up the problem of characterizing the bit error rate at moderate

blocklength. Figure 21.8 shows the outcomes of numerical simulations for random
elements of the (3, 6) ensemble used over the erasure channel. One can clearly
distinguish two regimes: a rapid decrease of the error probability in the ‘waterfall
region’ ε " εd ≈ 0.429 (in physics terms, the ‘critical regime’); a flattening at
lower noise values, in the ‘error floor’. It is interesting to note that the error floor
level is small but highly dependent (in relative terms) on the graph realization.

We know that the error floor should vanish when taking codes with larger and
larger blocklength, but we would like a prediction of its value given the graph G.
With the notable exception of the erasure channel, this problem is largely open.
However several heuristics have been developed. The basic intuition is that the
error floor is due to small subgraphs of the Tanner graph that are prone to
error. If U is the set of variable nodes in such a subgraph, we can associate to
it a configuration x that takes value 1 on U and 0 otherwise (throughout our
analysis we are assuming that the codeword 0 has been transmitted). This x
needs not to be a codeword but it is in some sense ‘close’ to it.

Once a class F of such subgraphs is identified, the error probability is es-
timated by assuming that any type of error is unlikely, and errors on different
subsets are roughly independent:

PB(G) ≈
∑

U∈F
P {BP decoder fails on U} . (21.42)
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If the subset U are small, each of the terms on the right hand side can be
evaluated efficiently via importance sampling.

It is interesting to have a look at some definitions of the class of subgraphs F
that have been introduced in the literature. In each case the subgraph is char-
acterized by two integers (w, e) that describe how dangerous/close to codewords
they are (small w or e corresponding to dangerous subgraphs). In practice one
restricts the sum in Eq. (21.42) to small w, e.

Trapping sets. (or near codewords) A trapping set is a subgraph including
the variable nodes in U , all the adjacent check nodes and the edges that connect
them. It is a (w, e) near-codeword if the number of variable nodes is |U | = w
and the number of check nodes of odd degree is e.

In our framework a trapping set is simply a configuration x with weight
(number of non-zero entries) equal to w and energy E(x) = 2e. Notice that hardly
any restriction is imposed on trapping sets. Special constraints are sometimes
added depending on the channel model, and on the decoding algorithm (if not
BP).

Adsorbing sets. A (w, e) adsorbing set is a (w, e) trapping set that satisfies
two further requirements: (i) Each variable node is adjacent to more check nodes
of even degree (with respect to the subgraph) than of odd degree; (ii) It does
not contain a (w′, e) adsorbing set with w′ < w.

The first condition implies that the corresponding configuration x is a local
minimum of E(x) stable with respect to 1 flip.

The connection between small weak subgraphs and error probability is still
somewhat vague. The ‘energy landscape’ E(x) might provide some hints towards
bridging this gap.

Notes

This chapter is largely based on the analysis of metastable states in (Montanari,
2001b), (Montanari, 2001a) and (Franz, Leone, Montanari and Ricci-Tersenghi,
2002). One step replica symmetry breaking was also investigated in (Migliorini
and Saad, 2006). The approach was extended to asymmetric channels in (Neri,
Skantzos and Bollé, 2008).

Typical pairs decoding presented here is slightly different from the original
procedure of (Aji, Jin, Khandekar, MacKay and McEliece, 2001).

Stopping sets were introduced in (Di, Proietti, Richardson, Telatar and Ur-
banke, 2002), and inspired much of the subsequent research on error floors. The
idea that small subgraphs of the Tanner graph are responsible for error floors
was first convincingly demonstrated for general channel models in (MacKay and
Postol, 2003) and (Richardson, 2003). Absorbing sets are defined in (Dolecek,
Zhang, Anantharam and Nikolić, 2007).

After its invention, simulated annealing was the object of a significant amount
of work within operations research and probability. A review can be found in
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(Aarts, Korst and van Laarhoven, 2003). A detailed comparison between 1RSB
analysis and simulated annealing experiments for models on sparse graphs is
presented in (Montanari and Ricci-Tersenghi, 2004).



22

AN ONGOING STORY

This book describes a unified approach to a number of important problems in
information theory, physics and computer science. We have presented a consistent
set of methods to address these problems, but the field is far from being fully
understood, and there remain many open challenges. This chapter provides a
synthetic description of some of these challenges, as well as a survey of recent
progress. Our ambition is to set an agenda for the newly developed field that we
have been describing. We will distinguish roughly three types of directions.

The first one, to be discussed in Sec. 22.1, is the main challenge. It aims at
a better qualitative understanding of models on sparse random graphs. At the
core of the cavity method lies the postulate that such systems can have only a
limited number of ‘behaviors’ (phases). Each phase corresponds to a different
pattern of replica symmetry breaking (replica symmetric -RS, one-step replica
symmetry breaking -1RSB, etc. . . ). In turn they also have a description in terms
of pure states decomposition, as well as in terms of long range correlations.
Understanding the fundamental reasons and conditions for the universality of
these phases, as well as the equivalence among their characterizations would be
extremely important.

The second direction, described in Sec. 22.2, concerns the development of the
cavity formalism itself. We have mainly focused on systems in which either the
RS or 1RSB cavity method is expected to be asymptotically exact in the large
size limit. This expectation is in part based on some internal consistency checks
of the 1RSB approach. An important one consists in verifying that the 1RSB
‘solution’ is stable with respect to small perturbations. Whenever this test is
passed, physicists feel confident enough that the cavity method provides exact
conjectures (thresholds, minimum cost per variable, etc. . . ). If the test is not
passed, higher order RSB is thought to be needed. The situation is much less
satisfactory in this case, and the cavity method poses some technical problems
even at the heuristic level.

Section 22.3 lists a number of fascinating questions that arise in the connexion
between the existence of glassy phase transitions and algorithmic slowdown.
These are particularly important in view of the applications in computer science
and information theory: sparse graphical models can be useful for a number of
practically relevant tasks, as the example of LDPC codes in channel coding has
shown. There is some empirical evidence that phase transitions have an impact
on algorithms behavior and efficiency. Physicists hope that this impact can be
understood (to some extent) in a unified way, and is ultimately related to the
geometric structure of the set of solutions, and to correlation properties of the

524
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measure. While some general arguments in favour of this statement have been
put forward, the actual understanding is still very poor.

22.1 Gibbs measures and long-range correlations

At an abstract level, the cavity method explored in the last few chapters relies
on a (yet unproven) structural theorem. Consider a generic graphical model, a
probability distribution on N variables, x, taking values in a discrete space XN :

µ(x) =
1

Z

∏

a∈F

ψa(x∂a) . (22.1)

The cavity method postulates that, for large classes of models taken from some
appropriate ensembles, the model is qualitatively described in the large N limit
by one out of a small number of generic scenarios, or phases. The postulated
qualitative features of such phases are then cleverly used to derive quantitative
predictions (e.g. phase transition locations.)

Needless to say, we are not able to state precisely, let alone to prove, such a
structural theorem in this generality. The complete set of necessary hypotheses is
unknown. However we discussed several examples, from XORSAT to diluted spin
glasses or error correcting codes. In principle, it is not necessary that the factor
graph be locally tree-like, but in practice locally tree-like models are the ones
that we can control most effectively. Such a structure implies that when one digs
a cavity in the graph, the variables on the boundary of the cavity are far apart.
This leads to a simple structure of their correlation in the large system limit,
and hence to the possibility of writing asymptotically exact recursion equations.

Here we do not want to discuss in more details the hypotheses. It would
certainly be a significant achievement to prove such a structural theorem even
in a restricted setting (say, for the uniform measure over solutions of random K-
SAT formulae). We want instead to convey some important features of the phases
postulated within the cavity approach. In particular there is a key aspect that
we want to stress. Each of the various phases mentioned can be characterized
from two, complementary, points of view:

1. In terms of decomposition of the distribution µ( · ) into ‘lumps’ or ‘clusters’.
Below we shall propose a precise definition of the lumps, and they will be
called pure states.

2. In terms of correlations among far apart variables on the factor graph.
We shall introduce two notions of correlation decay that differ in a rather
subtle way but correspond to different phases.

These two characterizations are in turn related to the various aspects of the
cavity method.

22.1.1 On the definition of pure states

The notion of pure state is a crucial one in rigorous statistical mechanics. Un-
fortunately, standard definitions are tailored to translation-invariant models on
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infinite graphs. The graphical models that we have in mind are sparse random
graphs (in this class we include labeled random graphs, whereby the labels spec-
ify the nature of function nodes), and standard approaches don’t apply to them.
In particular, we need a concrete definition that is meaningful for finite graphs.

Consider a sequence of finite graphical models {µN ( · )}, indexed by the num-
ber of variable nodes N . A pure state decomposition is defined by assign-
ing, for each N , a partition of the configuration space XN into NN subsets
Ω1,N , . . . ,ΩNN ,N :

XN = Ω1,N ∪ · · · ∪ ΩNN ,N . (22.2)

The pure state decomposition must meet the following conditions:

1. The measure of each subset in the partition is bounded away from 1:

max{µN(Ω1,N ), . . . , µN (ΩN ,N )} ≤ 1 − δ . (22.3)

2. The subsets are separated by ‘bottlenecks.’ More precisely, for Ω ⊆ XN ,
define its ε-boundary as

∂εΩ ≡ {x ∈ XN : 1 ≤ d(x,Ω) ≤ Nε} . (22.4)

where d(x,Ω) is the minimum Hamming distance between x and any con-
figuration x′ ∈ Ω. Then we require

lim
N→∞

max
r

µN (∂εΩr,N)

µN (Ωr,N )
= 0 , (22.5)

for some ε > 0. Notice that the measure of ∂εΩr,N can be small for two rea-
sons, either because Ωr,N is small itself (and therefore has a small bound-
ary) or because the boundary of Ωr,N is much smaller than its interior.
Only the last situation corresponds to a true bottleneck, as is enforced by
the denominator µN (Ωr,N ) in (22.5).

3. The conditional measure on the subset Ωr,N , defined by

µr
N (x) ≡ 1

µN (Ωr,N )
µN (x)I(x ∈ Ωr,N ) (22.6)

cannot be further decomposed according to the two conditions above.

Given such a partition, the distribution µN ( · ) can be written as a convex
combination of distributions with disjoint support

µN ( · ) =
NN∑

r=1

wr µr
N ( · ) , wr ≡ µN (Ωr,N ) . (22.7)

Notice that this decomposition is not necessarily unique, as shown by the example
below. Non-uniqueness is due to the fact that sets of configurations of XN with
negligeable weight can be attributed to one state or another. On the other hand,
the conditional measures µr

N ( · ) should depend weakly on the precise choice of
decomposition.
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Example 22.1 Consider the ferromagnetic Ising model on a random regular
graph of degree (k + 1). The Boltzmann distribution reads

µN (x) =
1

ZN(β)
exp




β
∑

(i,j)∈E

xixj




 , (22.8)

with xi ∈ X = {+1,−1}. To avoid irrelevant complications, let’s assume that
N is odd. Following the discussion of Sec. 17.3, we expect this distribution
to admit a non-trivial pure state decomposition for k tanhβ > 1, with par-
tition Ω+ ∪ Ω− = XN . Here Ω+ (respectively Ω−) is the set of configura-
tions for which

∑
i xi is positive (negative). With respect to this decomposition

w+ = w− = 1/2.
Of course an (asymptotically) equivalent decomposition is obtained by let-

ting Ω+ be the set of configurations with
∑

i xi ≥ C for some fixed C.

It is useful to recall that the condition (22.5) implies that any ‘local’ Markov
dynamics that satisfies detailed balance with respect to µN ( · ) is slow. More
precisely, assume that

µN (∂εΩr,N )

µN (Ωr,N )
≤ exp{−∆(N)} . (22.9)

Then any Markov dynamics that satisfies detailed balance with respect to µN

and flips at most Nε variables at each step, has relaxation time larger than
C exp{∆(N)} (where C is an N -independent constant that depends on the de-
tails of the model). Moreover, if the dynamics is initialized in x ∈ Ωr,N , it will
take a time of order C exp{∆(N)} to get at distance Nε from Ωr,N .

In many cases based on random factor graph ensembles, we expect Eq. (22.9)
to hold with a ∆(N) which is linear in N . In fact in the definition of pure state
decomposition we might ask a bound of the form (22.9) to hold, for some function
∆(N) (e.g. ∆(N) = Nψ, with some appropriately chosen ψ). This implies that
pure states are stable on time scales shorter than exp{∆(N)}.

22.1.2 Notions of correlation decay

The above discussion on relaxation times brings up a second key concept: cor-
relation decay. According to an important piece of wisdom in statistical me-
chanics, physical systems that have only short-range correlations should relax
rapidly to their equilibrium distribution. The hand-waving reason is that, if dif-
ferent degrees of freedom (particles, spins, etc) are independent, then the system
relaxes on microscopic time scales (namely the relaxation time of a single par-
ticle, spin, etc). If they are not independent, but correlations are short ranged,
they can be coarse grained in such a way that they become nearly independent,
Roughly speaking, this means that one can construct ‘collective’ variables from
blocks of original variables. Such conditional variables take |X |B values, where
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B is the block size, and are nearly independent under the original (Boltzmann)
distribution.

As we are interested in models on non-Euclidean graphs, the definition of
correlation decay must be precised. We will introduce two distinct types of cri-
teria. Although they may look similar at first sight, it turns out that they are
not, and each of them will characterize a distinct generic phase.

The simplest approach, widely used in physics, consists in considering two-
points correlation functions. Averaging them over the two positions defines a
susceptibility. For instance, in the case of Ising spins xi ∈ X = {1,−1}, we have
already discussed the spin glass susceptibility

χSG =
1

N

∑

i,j∈V

(〈xixj〉 − 〈xi〉〈xj〉)2 , (22.10)

where 〈 · 〉 denotes the expectation value with respect to µ. When χSG is bounded
as N →∞, this is an indication of short range correlations. Through the fluctua-
tion dissipation theorem (cf. Sec. 2.3), this is equivalent to stability with respect
to local perturbations. Let us recall the mechanism of this equivalence. Imagine
a perturbation of the model (22.16) that acts on a single variable xi. Stability
requires that the effect of such a perturbation on the expectation of a global ob-
servable

∑
j f(xj) should be bounded. The change in the marginal at node j due

to a perturbation at i, is proportional to the covariance 〈xixj〉 − 〈xi〉〈xj〉. As in
Sec. 12.3.2, the average effect of the perturbation at i on the variables xj , j .= i
often vanishes (more precisely limN→∞

1
N

∑
j∈V

(
〈xixj〉−〈xi〉〈xj〉

)
= 0) because

terms related to different vertices j cancel. The typical effect of the perturbation
is captured by the spin glass-susceptibility.

Generalizing this definition to arbitrary alphabets is easy. We need to use a
measure of how much the joint distribution µij( · , · ) of xi and xj is different from
the product of the marginals µi( · ) times µj( · ). One such measure is provided
by the variation distance:

||µij( · , · )− µi( · )µj( · )|| ≡
1

2

∑

xi,xj

|µij(xi, xj) − µi(xi)µj(xj)| . (22.11)

We then define the two-points correlation by averaging this distance over the
vertices i, j

χ(2) ≡ 1

N

∑

i,j∈V

||µij( · , · )− µi( · )µj( · )|| . (22.12)

Exercise 22.1 Consider again the case of Ising variables, X = {+1,−1}. Show
that χSG = o(N) if and only if χ(2) = o(N).

[Hint: Let Cij ≡ 〈xixj〉 − 〈xi〉〈xj〉. Show that Cij = 2||µij( · , · ) −
µi( · )µj( · )||. Then use χSG = NE{C2

ij}, χ(2) = NE{|Cij |}/2, the expectation
E being over uniformly random i, j ∈ V .]
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Of course one can define l-points correlations in an analogous manner:

χ(l) ≡ 1

N l−1

∑

i(1),...,i(l)∈V

||µi(1)...i(l)( · · · ) − µi(1)( · ) · · ·µi(l)( · )|| . (22.13)

The l-points correlation χ(l) has a useful interpretation in terms of a thought
experiment. Suppose you are given an N -dimensional distribution µ(x) and have
access to the marginal µi(1)( · ) at a uniformly random variable node i(1). You
want to test how stable is this marginal with respect to small perturbations.
Perturbations affect l− 1 randomly chosen variable nodes i(2),. . . , i(l) changing
µ(x) into µ′(x) ∼= µ(x)(1 + δ2(xi(2))) · · · (1 + δl(xi(l))). The effect of the resulting
perturbation on µi(1), to the first order in the product δ2 · · · δl, is bounded in

expectation by χ(l) (this is again a version of the fluctuation dissipation theorem).

Definition 22.2. (First type of correlation decay) The graphical model given
by µ( · ) is said to be stable to small perturbations if, for all finite l, χ(l)/N →
0 as N →∞.

In practice in sufficiently homogeneous (mean field) models, this type of stability
is equivalent to the one found using only l = 2.

Let us now introduce another type of criterion for correlation decay. Again we
look at a variable node i, but now we want to check how strongly xi is correlated
with all the ‘far apart’ variables. Of course we must define what ‘far apart’ means.
Fix an integer - and define B(i, -) as the ball of radius - centered at i, and B(i, -)
its complement, i.e. the subset of variable nodes j such that d(i, j) ≥ -. We then
want to estimate the correlation between xi and x

B(i,%) = {xj : j ∈ B(i, -)}. This

amounts to measuring the distance between the joint distribution µi,B(,%)( · , · )
and the product of the marginals µi( · )µB(,%)( · ). If we use the total variation

distance defined in (22.11) we obtain the following point-to-set correlation
function

Gi(-) ≡ ||µi,B(i,%)( · , · ) − µi( · )µB(i,%)( · )|| . (22.14)

The function Gi(-) can be interpreted according to two distinct but equally
suggestive thought experiments. The first one comes from the theory of struc-
tural glasses (it is meant to elucidate the kind of long range correlations arising
in a fragile glass). Imagine to draw a reference configuration x∗ from the distri-
bution µ( · ). Now generate a second configuration x as follows: variables outside
the ball, with i ∈ B(i, -), are forced to the reference configuration: xi = x∗

i .
Variables at distance smaller than - (denoted by xB(i,%)) are instead drawn from
the conditional distribution µ(xB(i,%)|x∗

B(i,%)
). If the model µ( · ) has some form of

rigidity (long range correlations), then xi should be close to x∗
i . The correlation

Gi(-) measures how much the distributions of xi and x∗
i differ.

The second experiment is closely related to the first one, but has the flavour
of a statistics (or computer science) question. Someone draws the configuration
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x∗ as above from the distribution µ( · ). She then reveals to you the values of far
apart variables in the reference configuration, i.e. the values x∗

j for all j ∈ B(i, -).
She asks you to reconstruct the value of x∗

i , or to guess it as well as you can.
The correlation function Gi(-) measures how likely you are to guess correctly
(assuming unbounded computational power), compared to the case in which no-
variable has been revealed to you.

This discussion suggests the following definition:

Definition 22.3. (Second type of correlation decay) The graphical model
µ( · ) is said to satisfy the non-reconstructibility (or extremality) condition
if for all i’s, Gi(-) → 0 as - →∞. (More precisely, we require that there exists a
function δ(-), with lim%→∞ δ(-) = 0, such that Gi(-) ≤ δ(-) for all i and N). In
the opposite case, i.e. if Gi(-) remains bounded away from zero at large distance,
the model is said reconstructible.

22.1.3 Generic scenarios

We shall now describe the correlation decay properties and the pure state de-
composition for the three main phases that we have encountered in the previous
chapters: RS, dynamical 1RSB, and static 1RSB. When dealing with models on
locally tree-like random graphs, each of these phases can also be studied using
the appropriate cavity approach, as we shall recall.

Here we focus on phases that appear ‘generically’. This means that we ex-
clude: (i) Critical points, that are obtained by fine-tuning some parameters of
the model; (ii) Multiplicities due to global symmetries, like for instance in the
zero-field ferromagnetic Ising model. Of course there also exist other types of
generic phases, such as higher order RSB phases that will be discussed in the
next section, and maybe some more that have not been explored yet.

Replica symmetric. In this phase there exists no non-trivial decomposition
into pure states of the form (22.7). In other words NN = 1 with high probability.

Correlations decay according to both criteria: the model is stable to small
perturbations and it satisfies the non-reconstructibility condition. Therefore it is
short-range correlated in the strongest sense.

Finally, the replica symmetric cavity method of Ch. 14 yields asymptotically
exact predictions.

Dynamical 1RSB. In this phase the measure µ( · ) admits a non trivial de-
composition of the form (22.7) into an exponential number of pure states: NN =
eNΣ+o(N) with high probability for some Σ > 0. Furthermore, most of the mea-
sure is carried by states of equal size. More precisely, for any δ > 0, all but an
exponentially small fraction of the measure is comprised in states Ωr,N such that

−Σ− δ ≤ 1

N
log µ(Ωr,N ) ≤ −Σ + δ . (22.15)

From the correlation point of view, this phase is stable to small perturbations,
but it is reconstructible. In other words, a finite number of probes would fail to
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αd(K) αc(K) αs(K) α

UNSAT

Fig. 22.1. A pictorial view of the different phases in K-SAT with K ≥ 4,
depending on the number of clauses per variable α. Form left to right: replica
symmetric, dynamical 1RSB, static 1RSB and UNSAT.

reveal long range correlations. But long range correlations of the point-to-set
type are instead present, and they are revealed, for instance, by a slowdown of
reversible Markov dynamics.

The glass order parameter overlap distribution P (q) is trivial in this phase
(as implied by (12.31)), but its glassy nature can be found through the ε-coupling
method of Sec. 12.3.4.

The model is solved exactly (in the sense of determining its asymptotic free-
energy density) within the 1RSB cavity method. The thermodynamically dom-
inant states, i.e. those satisfying (22.15), correspond to the 1RSB parameter
x = 1.

Static 1RSB. This is the ‘genuine’ 1RSB phase analogous to the low tem-
perature phase of the random energy model. The model admits a non-trivial
pure states decomposition with wildly varying weights. For any δ > 1, a frac-
tion 1 − δ of the measure is comprised in the k(N, δ) pure states with largest
weight. The number k(N, δ) converges, when N → ∞, to a finite random vari-
able (taking integer values). If we order the weights according to their magnitude
w(1) ≥ w(2) ≥ w(3) ≥ · · · , they converge to a Poisson-Dirichlet process, cf. Ch. 8.

This phase is not stable to small perturbation, and it is reconstructible: It
has long range correlations according to both criteria. The asymptotic overlap
distribution function P (q) has two delta-function peaks, as in Fig.12.3.

Again, it is solved exactly within the 1RSB cavity method.

These three phases are present in a variety of models, and are often separated
by phase transitions. The ‘clustering’ or ‘dynamical’ phase transition separates
the RS and dynamical 1RSB phases, while a condensation phase transition sepa-
rates the dynamical 1RSB from the static 1RSB phase. Fig. 22.1.3 describes the
organization of various phases in random K-SAT with K ≥ 4, as we discussed
in Sec. 20.3. For α < αd(K) the model is RS; for αd(K) < α < αc(K), it is
dynamically 1RSB; for αc(K) < α < αs(K), it is statically 1RSB, for αs(K) < α
it is UNSAT. Fig. 22.1.3 shows the point-to-set correlation function in random
4-SAT. It clearly develops long-range correlations at α ≥ αd ≈ 9.38. Notice the
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Fig. 22.2. The point-to-set correlation function defined in (22.14) is plotted
versus distance for random 4-satisfiability, at clause densities α = 9.30, 9.33,
9.35 and 9.40 (from bottom to top).

peculiar development of correlations through a plateau whose width increases
with α, and diverges at αd. This is typical of the dynamical 1RSB transition.

22.2 Higher levels of replica symmetry breaking

For some of the models studied in this book the RS, or the 1RSB cavity method
are thought to yield asymptotically exact predictions. However, in general higher
orders of RSB are necessary. We shall sketch how to construct these higher
order solutions hierarchically in locally tree-like graphical models. In particular,
understanding the structure of the 2RSB solution allows to derive a ‘stability
criterion’ for the 1RSB approach. It is on the basis of this criterion that, for
instance, our derivation of the SAT-UNSAT threshold in Ch. 20 is conjectured
to give an exact result.

22.2.1 The high-level picture

Let us first briefly summarize the RS/1RSB approach. Consider an ensemble of
graphical models defined through the distribution (22.1) with a locally tree-like
factor graph structure. Within the RS cavity method, the local marginals of µ( · )
are accurately described in terms of the message sets {νi→a}, {ν̂a→i}. Given a
small (tree-like) subgraph induced by the vertex set U ⊂ V , the effect of the rest
of the graph G \GU on U is described by a factorized measure on the boundary
of U .

One-step replica symmetry breaking relaxes this assumption, by allowing for
long-range correlations, with a peculiar structure. Namely, the probability dis-
tribution µ( · ) is assumed to decompose into the convex combination of Bethe
measures µr( · ). Within each ‘state’ r, the local marginals of the measure re-
stricted to this state are well described in terms of a set of messages {νr

i→a}
(by ‘well described’ we mean that the description becomes asymptotically exact
at large N). Sampling at random a state r defines a probability distribution
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d0

d1
d2

Fig. 22.3. Cartoon of the distribution µ(x) for a model described by two-step
replica symmetry breaking. The probability mass is concentrated on the gray
‘lumps’ of radius d2, which are organized in ‘clouds’ of radius d1 > d2. The
dashed circle corresponds to the typical distance d0 between clouds.

P({ν}, {ν̂}) over messages. This distribution is then found to be described by
an ‘auxiliary’ graphical model which is easily deduced from the original one. In
particular the auxiliary factor graph inherits the structure of the original one,
and therefore it is again locally tree-like. 1RSB amounts to using the RS cavity
method to study of this auxiliary graphical model over messages.

In some cases 1RSB is expected to be asymptotically exact in the thermody-
namic limit. However, this is not always the case: it may fail because the measure
P({ν}, {ν̂}) decomposes into multiple pure states. Higher-order RSB is used to
study this type of situation by iterating the above construction.

More precisely, the two-step replica symmetry breaking (2RSB) method starts
from the ‘auxiliary’ distribution P({ν}, {ν̂}). Instead of studying it with the RS
method as we did so far, we use instead the 1RSB method to study P({ν}, {ν̂})
(introducing therefore an auxiliary auxiliary model, that is studied by the RS
method).

The 2RSB Ansatz admits a hand-waving interpretation in terms of the qual-
itative features of the original model µ( · ). Reconsider again 1RSB. The inter-
pretation was that µ( · ) is the convex combination of ‘pure states’ µr( · ), each
forming a well separated lump in configuration space. Within 2RSB, lumps have
a hierarchical organization, i.e. they are grouped into ‘clouds’. Each lump is ad-
dressed by giving a ‘cloud index’ r1, and, within the cloud, a ‘lump index’ r2.
The measure thus decomposes as

µ(x) =
∑

r1∈S1, r2∈S2(r1)

wr1,r2 µr1,r2(x) . (22.16)

Here S2(r1) is the set of indices of the lumps inside cloud r1. A pictorial sketch
of this interpretation is shown in Fig. 22.2.1.
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Fig. 22.4. Hierarchical structure of the distribution µ(x) within k-step replica
symmetry breaking. Here k = 3.

Even the most forgiving reader should be puzzled by all this. For instance,
what is the difference between N1 clouds, each involving N1 lumps, and just
N1N2 lumps? In order to distinguish between these two cases one can look at
a properly defined distance, say the Hamming distance divided by N , between
two i.i.d. configurations drawn with distribution µ( · ) (in physics jargon, two
replicas). If one conditions on the two configurations to belong to the same lump,
to different lumps within the same cloud, or to different clouds, the normalized
distances concentrate around three values, respectively d2, d1, d0, with d2 <
d1 < d0. As in the case of 1RSB, one could in principle distinguish dynamic and
static 2RSB phases depending on the number of relevant clouds and lumps within
clouds. For instance in the most studied case of static 2RSB, these numbers are
subexponential. As a consequence, the asymptotic distribution of the distance
between two replicas has non-zero weight on each of the three values d0, d1, d2

(in other words, the overlap distribution P (q) is the combination of three delta
functions).

Of course this whole construction can be bootstrapped further, by having
clouds grouped into larger structures etc. . . Within k-RSB, the probability dis-
tribution µ( · ) is a convex combination of ‘states’ µr( · ) where r = (r1, r2, . . . , rk)
indexes the leaves of a k-generations tree. The indices r1, r2, . . . , rk correspond
to the nodes encountered along the path between the root and the leaf. This
translates into a hierarchy of auxiliary graphical models. By allowing k to be
arbitrarily large, this hierarchy is expected to determine the asymptotic prop-
erties of a large class of models. In particular one can use it to compute the
free-entropy per variable φ ≡ limN→∞ N−1 log ZN .

The resulting description of µ(x) has a natural ultrametric structure, as dis-
cussed in Ch. 8 and recalled in Fig. 22.4. This structure is captured by the
generalized random energy model (GREM), a simple model that generalizes the
REM discussed in Chapter 5. While presenting the solution of the GREM would
take us too far, it is instructive to give its definition.
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Example 22.4 The GREM is a simple model for the probability distribu-
tion µ( · ), within k-step RSB. Its definition involves one parameter N ∈ N

that corresponds to the system size, and several others (to be denoted as
{a0, a1, . . . , ak−1}, {d0, d2, . . . , dk−1} and {Σ0,Σ1, . . . ,Σk−1}) that are thought
to be fixed as N → ∞. States are associated with the leaves of a k-generations
tree. Each leaf is indexed by the path r = (r0, . . . , rk−1) that connects it to the
root, cf. Fig. 22.4.

The GREM does not describe the structure of each state µr( · ) (that can
be thought as supported on a single configuration). It only describes the dis-
tribution of distances between the states, and the distribution of the weights
wr appearing in the decomposition (22.16).

A node at level i has exp{NΣi} offsprings. The total number of states is
therefore exp{N(Σ0 + · · · + Σk−1)}. Two random configurations drawn from
states r and s have distance di(r,s), where i(r, s) is the largest integer i such
that ri = si. Finally, the weight of state r has the form

wr =
1

Z
exp{−β(E(0)

r0
+ · · · + E(k−1)

rk−1
)} , (22.17)

where E(i)
r are independent normal random variables with mean 0 and variance

Nai. The interested reader is invited to derive the thermodynamic properties
of the GREM, for instance the free-energy as a function of the temperature.

22.2.2 What does 2RSB look like?

Higher order RSB has been studied in some detail in many ‘fully connected’
models such as the p-spin Ising model considered in Chapter 8. On the contrary,
if one considers models on sparse graphs as we do here, any cavity calculation
beyond 1RSB is technically very challenging. In order to understand why, it is
interesting to have a superficial look at how a 2RSB cavity calculation would be
formally set up without any attempt at justifying it.

For the sake of simplicity we shall consider a model of the form (22.1) with
pairwise interactions. Therefore all the factor nodes have degree 2, and BP al-
gorithms can be simplified by using only one type of messages passed along the
edges of an ordinary graph, cf. Sec. 14.2.5. Consider a variable node 0 ∈ V of
degree (l+1), and denote l of its neighbors by {1, . . . , l}. We let ν1, . . . , νl be the
messages from (respectively) 1, . . . , l, and ν0 the message from 0 to its (l + 1)-th
neighbor.

As we saw in Sec. 14.2.5, the RS cavity equation (i.e. the BP fixed point
equation) at node 0 reads

ν0(x0) =
1

z{νi}

k∏

i=1

∑

xi

ψ0i(x0, xi)νi(xi) , (22.18)

where z{νi} is determined by the normalization condition of ν0( · ). In order to
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lighten the notation, it is convenient to introduce a function f0 that, evaluated
on l messages ν1, . . . , νl returns the message ν0 as above. We will therefore write
Eq. (22.18) in shorthand form as ν0 = f0{νi}. Each νi is a point in the (|X |− 1)-
dimensional simplex.

The 1RSB cavity equations are obtained from Eq. (22.18) by promoting the
messages νi to random variables with distribution Qi( · ), cf. Ch. 19. The equa-
tions depend on the 1RSB parameter (a real number), that we denote here as
x1. Adopting a continuous notation for the messages distributions, we get

Q0(ν0) =
1

Z{Qi}

∫
z{νi}x1 δ(ν0 − f0{νi})

l∏

i=1

dQi(νi) , (22.19)

Analogously to the replica-symmetric case, Eq. (22.18), we shall write Q0 =
F0{Qi} as a shorthand for this equation. The function F0 takes as argument l
distributions Q1, . . . , Ql and evaluates a new distribution Q0 (each of the Qi’s is
a distribution over the (|X | − 1)-dimensional simplex).

At this point the formal similarity of Eqs. (22.18) and (22.19) should be
clear. The 2RSB cavity equations are obtained by promoting the distributions
Qi to random variables (taking values in the set of distributions over the |X |-
dimensional simplex)33. Their probability distributions are denoted as Qi, and
the resulting equations depend on one further real parameter x2. Formally the
2RSB equation can be written as

Q0(Q0) =
1

Z{Qi}

∫
Z{Qi}x2/x1 δ(Q0 − F0{Qi})

l∏

i=1

dQi(Qi) . (22.20)

This equation might look scary, as Qi( · ) are distributions over distributions over
a compact subset of the reals. It is useful to rewrite it in a mathematically more
correct form. This is done by requiring, for any measurable set of distributions
A (see the footnote), the following equality to hold:

Q0(A) =
1

Z{Qi}

∫
Z{Qi}x2/x1 I(F0{Qi} ∈ A)

l∏

i=1

dQi(Qi) . (22.21)

The interpretation of the 2RSB messages Qi is obtained by analogy with the
1RSB one. Let α1 be the index of a particular cloud of states and Qα1

i ( · ) be
the distribution of the message νi over the lumps in cloud α1. Then Qi is the
distribution of Qα1

i when one picks up a cloud index α1 randomly (each cloud
being sampled with a weight that depends on x1.)

33The mathematically inclined reader might be curious about the precise definition of a
probability distribution over the space of distributions. It turns out that given a measure space
Ω (in our case the (|X | − 1) dimensional simplex), the set of distribution over Ω can be given
a measurable structure that makes 2RSB equations well defined. This is done by using the
smallest σ-field under which the mapping Q "→ Q(A) is measurable for any A ⊆ Ω measurable.
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In principle Eq. (22.20) can be studied numerically by generalizing the pop-
ulation dynamics approach of Ch. 19. In the present case one can think of two
implementations: for one given instance, one can generalize the SP algorithm,
but this generalization involves, on each directed edge of the factor graph, a pop-
ulation of populations. If instead one wants to perform a statistical analysis of
these messages, seeking a fixed point of the corresponding density evolution, one
should use a population of populations of populations! This is obviously chal-
lenging from the point of view of computer resources (both memory and time).
To the best of our knowledge it has been tried only once, in order to compute
the ground state energy of the spin glass on random 5-regular graphs. Because
the graph is regular it looks identical at any finite distance from any given point.
One can therefore seek a solution such that the Qi on all edges are the same, and
one is back to the study of populations of populations. The results have been
summarized in Table 17.4.5: if one looks at the ground state energy, the 2RSB
method provides a small correction of order 10−4 to the 1RSB value, and this
correction seems to be in agreement with the numerical estimates of the ground
state.

22.2.3 Local stability of the 1RSB phase

The above discussion of 2RSB will help us to check the stability of the 1RSB
phase. The starting point consists in understanding the various ways in which
the 2RSB formalism can reduce to the 1RSB one.

The first obvious reduction consists in taking the 2RSB distribution Qi to
be a Dirac delta at Q∗

i . In other words, for any continuous functional F on the
space of distributions

∫
F(Qi) dQi(Qi) = F(Q∗

i ) . (22.22)

It is not hard to check that, if {Q∗
i } solves the 1RSB equation Eq. (22.19), this

choice of {Qi} solves Eq. (22.20) independently of x2.
There exists however a second reduction, that corresponds to taking Qi( · )

a non-trivial distribution, but supported on Dirac deltas: let us denote by δν∗ a
1RSB distribution which is a Dirac delta on the message ν = ν∗. Given a set of
messages{Q∗

i } that solves the 1RSB equation Eq. (22.19), we construct Qi( · ) as
a superposition of Dirac deltas over all values of ν∗, each one appearing with a
weight Q∗

i (ν
∗). Again this distribution is more precisely defined by its action on

a continuous functional F(Q):

∫
F(Qi) dQi(Qi) =

∫
F(δν∗) dQ∗

i (ν
∗) . (22.23)
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Exercise 22.2 Suppose that {Q∗
i } solves the analog of the 1RSB equation

Eq. (22.19) in which the parameter x1 has been changed into x2. Show that Qi

defined by Eq. (22.23) solves Eq. (22.20) independently of x1.
[Hint: Show that, when evaluated on Dirac deltas, the normalization Z

appearing in (22.19) is related to the normalization z in (22.18) by Z{δνi} =
(z{νi})x1 .]

In view of the interpretation of the 2RSB messages Qi outlined in the pre-
vious section, and cartooned in Fig. 22.2.1, these two reductions correspond to
qualitatively different limit situations. In the first case, described by Eq. (22.22),
the distribution over clouds becomes degenerate: there is essentially one cloud
(by this we mean that the number of clouds is not exponentially large in N : the
corresponding complexity vanishes). In the second case, described by Eq. (22.23),
it is the distribution within each cloud that trivializes: there is only one cluster
(in the same sense as above) in each cloud.

What are the implications of these remarks? Within the 1RSB approach one
needs to solve Eq. (22.19) in the space of didtributions over BP messages: let
us call this the ‘1RSB space’. When passing to 2RSB, one seeks a solution of
(22.20) within a larger ‘2RSB space,’ namely the space of distributions over
distributions over BP messages. Equations (22.22) and (22.23) provide two ways
for embedding the 1RSB space inside the 2RSB space.

When one finds a 1RSB solution, one should naturally ask whether there
exists a proper 2RSB as well (i.e. a solution outside the 1RSB subspace). If this
is not the case, physicists usually conjecture that the 1RSB solution is asymp-
totically correct (for instance it yields the correct free-energy per spin). This
check has been carried out for models on complete graph (e.g. the fully con-
nected p-spin glasses). So far, the difficulty of studying the 2RSB equations have
prevented its implementation for sparse factor graph.

Luckily there is a convenient (albeit less ambitious) alternative: check the
local stability of 1RSB solutions with respect to higher order RSB. Given a
1RSB solution, one looks at it as a point in the 2RSB space according to the two
possible embeddings, and one studies the effect of a small perturbation. More
precisely, consider the iteration of 2RSB equations (22.20):

Q(t+1)
i→j (Q0) =

1

Z{Ql→i}

∫
Z{Ql→i}r δ(Qi→j − Fi{Ql→i})

∏

l∈∂i\j

dQ(t)
l→i(Ql→i) .

Given the factor graph G, we initiate this iteration from a point close to the 1RSB
solution described by either of the embeddings (22.22) or (22.23) and see if, the
iteration converges back to the 1RSB fixed point. This is studied by linearizing
the iteration in an appropriate ‘perturbation’ parameter. If the iteration does
not converge to the 1RSB fixed point, the 1RSB solution is said unstable. The
instability is named of ‘type I’ if it occurs when embedding (22.22) is used and
named of ‘type II’ for embedding (22.23).
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Fig. 22.5. Cartoon of the two types of local instabilities from a 1RSB solution
towards 2RSB.

An alternative approach for checking the local stability of a 1RSB solution
consists in computing the spin glass susceptibility, which describes the reaction
of the model (22.16) to a perturbation that acts on a single variable xi. As
we discussed above, the effect of this perturbation (studied in linear order) re-
mains finite when the spin glass susceptibility χ(2) is finite. One should therefore
compute χ(2) assuming that the 1RSB solution is correct and check that it is
finite. However, the 1RSB picture implies a second condition: each single lump r
should also be stable to small perturbations. More precisely, we define χSG,r as
the spin glass susceptibility with respect to the measure µr( · ) restricted to state
r. Denoting by 〈 · 〉r the expectation value with respect to µr, the ‘intra-state’
susceptibility, χSG,intra, is a weighted average of χSG,r over the state r:

χSG,intra =
∑

r

wr χSG,r, (22.24)

χSG,r =
1

N

∑

i,j

(
〈xixj〉r − 〈xi〉r〈xj〉r

)2
. (22.25)

Within the susceptibility approach, the second condition consists in computing
χSG,intra with the 1RSB approach and requiring that it stays finite as N →∞.

It is generally believed that these two approaches to the local stability of
the 1RSB phase coincide. Type I stability should be equivalent to χ(2) being
finite; it means that the system is stable with respect to the grouping of states
into clusters. Type II stability should be equivalent to χSG,intra being finite; it
means that the system is stable towards a splitting of the states into sub-states.
A pictorial representation of the nature of the two instabilities in the spirit of
Fig. 22.2.1 is shown in Fig. 22.2.3.

The two approaches to stability computations have been developed in several
special cases, and are conjectured to coincide in general. Remarkably 1RSB is
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Fig. 22.6. Top: The energetic complexity Σe in a random 3-SAT problem, com-
puted within the 1RSB cavity method, is plotted versus the density e of
violated clauses, for α = 4.1, 4.2, and 4.3 (from top to bottom). The curve
reproduces Fig. 20.5, but it now shows the stable and unstable regions. The
full thick line, below eG(α), gives the part of the complexity curve for which
the 1RSB computation is locally stable (absent for α = 4.1 < αm(3), where
the full curve is unstable). This is the only part that is computed reliably
by 1RSB, the dashed part is unstable. Bottom: In the same random 3-SAT
problem, plotted versus the clause density α: the continuous line gives the
minimum density of unsatisfied clauses as predicted within 1RSB (this is the
value of e where Σe(e) starts to become positive). The dotted line gives the
threshold energy density as predicted within 1RSB (the maximal value of e
where Σe(e) exists). The gray area indicates the region of local stability of the
1RSB stability. The ground state energy density predicted by 1RSB is wrong
for α > αG (although probably very close to the actual value), because in
this region there is an instability towards higher order RSB. It is conjectured
that the stable region, αm < α < αs, is in a 1RSB phase: if this conjecture
holds the 1RSB prediction αs for the SAT-UNSAT threshold is correct. For
K = 3 one has αm(3) = 4.153(1), αs(3) = 4.2667(1), αG(3) = 4.390(5).
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unstable in several interesting cases and higher order RSB would be needed to
obtain exact predictions.

Stability computations are somewhat involved, and a detailed description is
beyond our scope. Nevertheless, we want to give an example of the results that
can be obtained through a local stability analysis. Consider random K-SAT
formulae, with N variables and M = Nα clauses. Let es(α) denote the minimum
number of unsatisfied clauses per variable, in the large system limit. The limit
es(α) can be computed along the lines of Ch. 20 using the 1RSB cavity method:
for a given α, one computes the energetic complexity density Σe(e) versus the
density of violated clauses e. Then es(α) is found as the minimal value of u such
that Σe(e) > 0. It vanishes for α < αs(K) (the SAT-UNSAT threshold) and
departs continuously from 0, increasing monotonically for α > αs(K).

The stability computation shows that, for a given α, there is in general an
instability of type II which appears above some value e = eG(α): only the part
of Σe(e) with e ≤ eG(α) is in a locally stable 1RSB phase. When α < αm(K),
eG(α) = 0 and the whole 1RSB computation is unstable. For α > αG(K),
eG(α) < es(α) (the ground state energy density) and again 1RSB is unstable (this
implies that the 1RSB prediction for es(α) is not correct). The conclusion is that
the 1RSB calculation is stable only in an interval ]αm(K), αG(K)[. Figure 22.2.3
summarizes this discussion for 3-SAT. For all values of K, the stable interval
]αm(K), αG(K)[ contains the SAT-UNSAT threshold αs(K).

The stability check leads to the conjecture that the 1RSB prediction for
αs(K) is exact. Let us stress however that stability has been checked only with
respect to small perturbations. A much stronger argument would be obtained if
one could do the 2RSB computation and show that it has no solution apart from
the two ‘embedded 1RSB solutions’ that we discussed above.

22.2.4 Open problems within the cavity method

The main open problem is of course to prove that the 1RSB cavity approach
yields correct predictions in some models. This was achieved until now only for
a class of models on the complete graph. Here we want to point out a number
of open questions that wait for an answer, even at a heuristic level, within the
1RSB cavity method itself.

Distributional equations. Cavity predictions are expressed in terms of fixed
point of equations of the form (22.19). When considering models on ensembles of
random graphs, this can be read as an equation for the probability distribution
of Q0( · ) (that is taken identical to the one of Q1( · ),. . . , Qk( · ).)

Currently such equations are mostly studied using the population dynamics
method of Sec. 14.6.4. The main alternative explored so far has been to formally
expand the equations for large degrees. Population dynamics is powerful and
versatile. However in many cases, this approach is too coarse, particularly as
soon as one wants to study k-RSB with k ≥ 2. It is intrinsically hampered by
statistical errors, that are of the order of the inverse square root of population
size. In some models (for instance, in graph ensembles with large but bounded
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average degree), statistical fluctuations are too large for the population sizes that
can be implemented on ordinary PCs (typically 107 ÷ 108 elements). This limits
the possibility to distinguish, for instance, 2RSB from 1RSB effects, because high
precision is generally required to see the difference. Furthermore, metastability is
the crux (and the limit) of the whole population dynamics approach. Therefore
it would be interesting to make progress in two directions:

• Analytical tools and generic results on the cavity equations; this could
provide important guiding principles for any numerical study.

• New efficient and stable numerical methods.

A step forward has been made by the reconstruction algorithm discussed in The-
orem 19.5, but unfortunately it is limited to one value of the rescaling parameter,
x = 1.

Local stability. Local stability criteria provide an important guidance in heuris-
tic studies. It would be important to put these results on firmer grounds. Two
specific tasks could be, for instance:

• Prove that, if all 1RSB solutions of the cavity equations are locally unsta-
ble, then there must exist a 2RSB solution outside the 1RSB subspace.

• Prove that, if a solution of the cavity equations is locally unstable, it does
not describe correctly the model.

Occurrence of k-RSB. A number of random graphical models have been stud-
ied within the cavity (or replica) method. In most cases, one finds that the system
is either RS, or 1RSB, or FRSB. The cases in which a 2RSB phase is found are
rare, and they always involve some kind of special construction of the compati-
bility function (for instance, a fully connected model which is a superposition of
two p-spin glass interactions, with p1 = 3 and p2 = 16 displays 2RSB). Therefore
one should

• Find a ‘natural’ model for which 2RSB is asymptotically exact, or under-
stand why this is impossible.

Full replica-symmetry breaking. We saw that k-RSB provides, as k increases,
a sequence of ‘nested’ schemes that aim at computing various quantities like local
marginals, free-entropy density, etc. . . , in the large system limit. A k-th order
scheme includes all the lower l-RSB schemes with l < k as nested subspaces of
the set of feasible solutions to the cavity equations. On the other hand, as the
number of steps increases, the description of the set of feasible solutions becomes
more and more complicated (distributions of distributions of. . . ).

Surprisingly, in the case of fully connected models, there exists a compact
description of the space of feasible solutions in the FRSB limit k → ∞. An
outstanding problem is to find an analogous description in the case of models on
sparse graphs. This would allow to look for the best solution in the k-RSB space
for all k.
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• Find a description of the space of full replica-symmetry breaking messages
for models on sparse graphs.

Variational aspect. It is widely believed that if one finds a consistent solution of
the cavity k-RSB equations, the free-energy density computed with this solution,
is always a lower bound to the correct free energy density of the model (in
particular the k-RSB ground state energy density prediction is a lower bound
to the true one). This should hold for a large class of models with a statistical
+1/− 1 symmetry. While this has been proven in some specific cases, one would
like to:

• Find a general proof that the free-energy computed with the cavity method
is a lower bound to the correct free-energy of the model.

22.3 Phase structure and the behavior of algorithms

A good part of this book has been devoted to the connection between the various
phases in random graphical models, and the behavior of algorithms. There exists
by now substantial evidence (empirical, heuristic, and, in some cases, rigorous)
that such a connection exists. For instance, we have seen on the example of codes
in Ch.21 how the appearance of a 1RSB phase, and the corresponding prolifer-
ation of metastable states, determines the noise threshold where BP decoding
fails. Developing a broader understanding of this connection, and determining
the class of algorithms to which it applies, is a very important problem.

We propose here a list of broad research problems, whose advancement will
probably help to clarify this issue. We always have in mind a graphical model of
the form (22.1), with a locally tree-like factor graph.

Impact of the dynamical transition on Monte Carlo dynamics.
Consider the problem of sampling from the distribution (22.1) using a Monte

Carlo Markov Chain (MCMC) algorithm. The Markov chain is assumed to flip
a sub-linear (o(N)) number of variables at each step, and to satisfy detailed
balance with respect to the probability distribution µ( · ).

One expects that, if the system is in a 1RSB phase, the relaxation time of
this algorithm will increase rapidly (probably exponentially) with system size.
Intuitive arguments in favor of this statement can be obtained from each of the
two characterizations of the 1RSB phases introduced in Sec. 22.1. The argument
is different whether we start from the pure state decomposition, or from the
characterization in terms of correlations. In the first case, the relaxation time is
estimated through the time to cross a bottleneck, see also Ch. 13. In the second
case, one can define a correlation length -∗i through the point-to-set correlation
function Gi(-), cf. Eq. (22.14). In order for the system to relax, information has
to travel a distance -∗i . But if -∗i diverges with size, so must the relaxation time.

This picture is intuitively satisfying, but it is far from being proved, and
should be formulated more precisely. For instance it often happens that in RS
phases there exist small isolated metastable states that make the relaxation time
(the inverse spectral gap of the MCMC) formally large. But even in such cases,
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numerical simulations indicate that Glauber dynamics equilibrates rapidly within
the RS phase. This observation is probably related to the fact that the initial
condition is chosen uniformly random, and that equilibration is only checked on
local observables. A number of questions arise:

• Why is metastability irrelevant ‘in practice’ in a RS phase? Is it because
of local measurements? Or because of the uniform initial condition? If the
latter is true, what is so special about the uniform initial condition?

• Within a RS phase, can one approximate partition functions efficiently?

Message passing and the estimation of marginals.
For a number of models on sparse random graphs within the RS and (some-

times) dynamical 1RSB phases, message passing methods like belief propagation
or survey propagation show, empirically, good performances. More precisely, they
return good approximations of local expectation values if initialized from uniform
messages.

Current rigorous techniques for analyzing BP often aim at proving that it is
accurate regardless of the initialization. As a consequence, results are dominated
by the behavior under worst case initializations that are not used in practice.
As an illustration, consider applying BP to the uniform measure over solutions
of a random K-SAT formula. The analysis under worst case initialization allows
to prove that BP is accurate only for α ≤ (2 log K)/K[1 + o(1)]. This threshold
is embarrassingly small when compared to the dynamical transition point that
terminates the RS phase αd(K) = 2K log K/K[1 + o(1)].

In general we have no good mathematical control of when BP or SP converge
or/and give good approximations of marginals. Empirically it seems that SP is
able to converge in some regions of 1RSB phases where BP does not. We have
no real understanding of this fact beyond the hand-waving argument that 1RSB
correctly captures the structure of correlations in these phases.

Here are a number of open questions on these issues:

• Why are BP/SP performances on random instances, with uniformly ran-
dom initialization, much better than in the worst case? What is special
about the uniform initialization? What are the features of random instances
that make them easier? Can these features be characterized and checked
efficiently?

• Under what conditions do the BP (or the SP) algorithms converge and give
good approximations to local marginals? When their naive iteration does
not converge, can one systematically either force convergence or use time
averages of the messages?

• It seems that, on sparse random graphical models, BP or SP outperforms
local MCMC algorithms. In particular these message passing algorithms
can have (at least in principle), good performances within the dynamical
1RSB phase. Can one demonstrate this possibility convincingly in some
model?
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Message passing algorithms and optimization.
If one seeks a solution to a random constraint satisfaction problem using

message passing, the main approach so far has been the use of decimation: one
first computes all local marginals, then decides, based on this knowledge, how to
fix a variable, and then iterate the procedure. In general this procedure converges
when the number of constraints per variable is not too large, but it fails above
a critical value of this number, which is strictly smaller than the SAT-UNSAT
threshold. No one knows how to determine analytically this threshold.

An alternative to decimation is the reinforcement method: instead of fixing
a variable based on the knowledge of local marginals, it modifies some local
factors applying to each individual variables, based on this same information. So
far, optimizing this modification is an art, and its critical threshold cannot be
estimated either.

• How to predict the performances of BP+ decimation or SP+decimation.
For instance, empirically these methods find solutions to random K-SAT
formulae with high probability for α < αBP(K) (or α < αSP(K)), but
we have no prediction for these algorithmic thresholds. In what class of
problems is SP better than BP?

• Similar questions for BP+reinforcement or SP+reinforcement.

• Find new ways to use the local marginal information found by message
passing in order to exhibit solutions.

• In an UNSAT phase, the message passing procedure is able to give an
estimate of the minimal number of violated constraints. Is it possible to
use this information, and the one contained in the messages, in order to
prove unsatisfiability for one given instance?

The above questions focus on sparse random instances. Message passing tech-
niques have been (partially) understood and sharpened for this type of instances.
They naturally arise in a large class of applications where the graphical model
is random, or pseudo-random, by design. The theory of sparse graph codes is a
clear example in this direction. In the limit of large block-lengths, random con-
structions proved to be generally superior to deterministic ones. More recently
sparse graph constructions have been proposed for data compression (both loss-
less and lossy), online network measurements, multi-terminal communications,
distributed storage, group testing, etc. . .

On the other hand, being able to deal with structured graphs would open an
even much broader class of applications. When applied to structured problems,
message passing algorithms often fail to converge. This is typically the reason why
the decimation method may fail, even when the marginals of the original problem
are well estimated by message passing: the instance found after fixing many
variables is no longer random. Finding appropriate modifications of message
passing for structured graphs would therefore be very interesting.
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• How to use message passing in order to improve the solution of some general
classes of (non-random) constraint satisfaction problems. Can it be coupled
efficiently to other general methods (such as MCMC)?

Notes

The present chapter was inevitably elliptic. We will provide a few pointers to
recent research without any ambition to be comprehensive.

The connection between correlation lengths and phase transitions is a classical
topic in statistical mechanics which has been recently revived by the interest in
the glass transition. A good starting point for learning about this subject in the
context of glasses is the paper (Bouchaud and Biroli, 2004) which describes the
‘freezing’ thought experiment in Sec. 22.1.2.

The description of point-to-set correlations in terms of ‘reconstruction’ prob-
lems is taken from (Evans, Kenyon, Peres and Schulman, 2000). This paper
studies the reconstruction phase transition for Ising models on trees. Results for
a wide class of models on trees are surveyed in (Mossel and Peres, 2003; Mossel,
2004). We also refer to (Gerschenfeld and Montanari, 2007) for the generaliza-
tion to non-tree graphs. The connection between ‘reconstruction’ and ‘dynamical’
1RSB phase transition was first pointed out in (Mézard and Montanari, 2006).
The implications of this phase transition on dynamics were explored in (Berger,
Kenyon, Mossel and Peres, 2005; Martinelli, Sinclair and Weitz, 2004; Montanari
and Semerjian, 2006b). The definition of pure states presented in this chapter
as well as the location of the dynamical and condensation phase transitions for
random K-SAT and coloring of random graphs are from (Krzakala, Montanari,
Ricci-Tersenghi, Semerjian and Zdeborova, 2007).

The GREM has been introduced by (Derrida, 1985) and studied in details
in (Derrida and Gardner, 1986). A 2RSB phase in fully connected models has
been found by (Crisanti and Leuzzi, 2007). There are very few results about
higher order RSB in models on sparse random graphs. For spin glasses, one
can use perturbative expansions close to the critical point (Viana and Bray,
1985), or for large degrees (Goldschmidt and Dominicis, 1990). The 2RSB com-
putation of ground state energy for spin glasses mentioned in Sec. 22.2 is from
(Montanari, 2003). The method for verifying the local stability of the 1RSB so-
lution in sparse systems was first devised in (Montanari and Ricci-Tersenghi,
2003), and applied to random satisfiability problems in (Montanari, Parisi and
Ricci-Tersenghi, 2004). A complete list of stability thresholds, including their
asymptotic behavior, for random K-SAT can be found in (Mertens, Mézard and
Zecchina, 2006). The interpretation of 1RSB instability in terms of susceptibili-
ties is discussed in (Rivoire, Biroli, Martin and Mézard, 2003).

The fact that the free-energy computed with the cavity (or replica) method is
a lower bound to the true one can be proven in some fully connected models using
the inequalities of (Guerra, 2003). The same strategy also yields rigorous bounds
in some diluted systems (Franz and Leone, 2003; Franz, Leone and Toninelli,



NOTES 547

2003; Panchenko and Talagrand, 2004) but it still relies on some details of the
structure of the models, and a general proof applicable to all cases is lacking.

The reinforcement algorithm has been introduced and discussed for SAT in
(Chavas, Furtlehner, Mézard and Zecchina, 2005).

There exist only scarce results on the algorithmic consequences of the struc-
ture of the solution space. Some recent analyses can be found in (Altarelli,
Monasson and Zamponi, 2007; Montanari, Ricci-Tersenghi and Semerjian, 2007;
Ardelius and Aurell, 2006; Alava, Ardelius, Aurell, Kaski, Krishnamurthy, Or-
ponen and Seitz, 2007). The convergence and correctness of BP for random
K-satisfiability at small enough α was proven in (Montanari and Shah, 2007).

This book covered only a small subsets of problems that lie at the intersection
between information theory, computer science and statistical physics. It would
be difficult to provide an exhaustive list of references on the topics we did not
touch: we will limit ourselves to a few ‘access points’.

As we mentioned, channel coding is only one of the fundamental problems
addressed by information theory. Data compression, in particular in its ‘lossy’
version, is a key component in many modern technologies, and presents a num-
ber of open problems (Ciliberti, Mézard and Zecchina, 2005; Wainwright and
Maneva, 2005). Some other statistics problems like group testing are similar in
spirit to data compression (Mézard, Tarzia and Toninelli, 2007).

Modern wireless and wireline communication systems are intrisically multi-
user systems. Finding optimal coding schemes in a multiuser context is a widely
open subject of great practical interest. Even the information theoretic capacity
of such systems is unknown. Two fields that benefited from tools or analogies
with statistical mechanics are multiuser detection (Tanaka, 2002; Guo and Verdú,
2002) and networking (Kelly, 1991). Always within a communications context,
a large effort has been devoted to characterizing large communication networks
such as the Internet. A useful review is provided by (Kleinberg, Kumar, Ragha-
van, Rajagopalan and Tomkins, 1999).

Statistical mechanics concepts have been applied to the analysis of fluctu-
ations in financial markets (Bouchaud and Potters, 2003) or to model interac-
tions among economic agents (Challet, Marsili and Zhang, 2005). Finally, biol-
ogy presents a number of problems in which randomness, interaction between
different components, and robustness play important roles. Stochastic models on
networks, and inference algorithms have been studied in a number of contexts,
from neural networks (Baldassi, Braunstein, Brunel and Zecchina, 2007; Coolen,
Kuehn and Sollich, 2005) to phylogeny (Mossel, 2003), to gene expression (Fried-
man, Linial, Nachman and Peér, 2000).

A few of these topics, and others, are reviewed in the recent school proceedings
(Bouchaud, Mézard and Dalibard, 2007).



APPENDIX A

SYMBOLS AND NOTATIONS

In this Appendix we summarize the conventions adopted throughout the book
for symbols and notations. Secs. A.1 and A.2 deal with equivalence relations and
orders of growth. Sec. A.3 presents notations used in combinatorics and prob-
ability. Table A.4 gives the main mathematical notations, and A.5 information
theory notations. Table A.6 summarizes the notations used for factor graphs and
graph ensembles. Table A.7 focuses on the notations used in message-passing,
belief and survey propagation, and the cavity method.

A.1 Equivalence relations

As usual, the symbol = denotes equality. We also use ≡ for definitions and ≈
for ‘numerically close to’. For instance we may say that the Euler-Mascheroni
constant is given by

γE ≡ lim
n→∞

(
n∑

k=1

1

k
− log n

)
≈ 0.5772156649 . (A.1)

When dealing with two random variables X and Y , we write X
d
= Y if X and

Y have the same distribution. For instance, given n + 1 i.i.d. gaussian variables
X0, . . . , Xn, with zero mean and unitary variance, then

X0
d
=

1√
n

(X1 + · · · + Xn) . (A.2)

We adopted several equivalence symbols to denote the asymptotic behavior
of functions as their argument tends to some limit. For sake of simplicity we
assume here the argument to be an integer n → ∞. The limit to be considered
in each particular case should be clear from the context. We write f(n)

.
= g(n)

if f and g are equal ‘to the leading exponential order’ as n → ∞, i.e. if

lim
n→∞

1

n
log

f(n)

g(n)
= 0 . (A.3)

For instance we may write
(

n

'n/2(

)
.
= 2n . (A.4)

We write instead f(n) ∼ g(n) if f and g are asymptotically equal ‘up to a
constant’, i.e. if

548
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lim
n→∞

f(n)

g(n)
= C , (A.5)

for some constant C *= 0. For instance we have

1

2n

(
n

'n/2(

)
∼ n−1/2 . (A.6)

Finally, the symbol + is reserved for asymptoric equality, i.e. if

lim
n→∞

f(n)

g(n)
= 1 . (A.7)

For instance we have

1

2n

(
n

'n/2(

)
+

√
2

πn
. (A.8)

The symbol ∼= denotes equality up to a constant. If p( · ) and q( · ) are two
measures on the same finite space X (not necessarily normalized), we write
p(x) ∼= q(x) if there exists C > 0 such that

p(x) = C q(x) , (A.9)

for any x ∈ X . The definition generalizes straightforwardly to infinite sets X :
the Radon-Nikodyn derivative between p and q is a positive constant.

A.2 Orders of growth

We used a couple of symbols to denote the order of growth of functions when
their arguments tend to some definite limit. For sake of definiteness we refer here
to functions of an integer n → ∞. As above, the adaptation to any particular
context should be straightforward.

We write f(n) = Θ(g(n)), and say that f(n) is of order g(n), if there exists
two positive constants C1 and C2 such that

C1 g(n) ≤ |f(n)| ≤ C2g(n) , (A.10)

for any n large enough. For instance we have

n∑

k=1

k = Θ(n2) . (A.11)

We write instead f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0 , (A.12)
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For instance
n∑

k=1

k − 1

2
n2 = o(n2) . (A.13)

Finally f(n) = O(g(n)) if there exist a constant C such that

|f(n)| ≤ C g(n) (A.14)

for any n large enough. For instance

n3 sin(n/10) = O(n3) . (A.15)

Notice that both f(n) = Θ(g(n)) and f(n) = o(g(n)) imply f(n) = O(g(n)). As
the last example shows, the converse is not necessarily true.

A.3 Combinatorics and probability

The standard notation is used for multinomial coefficients. For any n ≥ 0, l ≥ 2
and n1, . . . , nl ≥ 0 such that n1 + · · · + nl = n, we have:

(
n

n1, n2, . . . , nl

)
≡ n!

n1!n2! . . . nl!
. (A.16)

For binomial coefficients (i.e. for l = 2) the usual shorhand is
(

n

k

)
≡

(
n

k, l − k

)
=

n!

k!(n − k)!
. (A.17)

In combinatorics, certain quantities are most easily described in terms of their
generating functions. Given a formal power series f(x), coeff{f(x), xn} denotes
the coefficient of the monomial xn in the series. More formally

f(x) =
∑

n

fnxn ⇒ fn = coeff{f(x), xn} . (A.18)

For instance

coeff{(1 + x)m, xn} =

(
m

n

)
. (A.19)

Some standard random variables:

• A Bernoulli p variable is a random variable X taking values in {0, 1} such
that P(X = 1) = p.

• B(n, p) denotes a binomial random variable of parameters n and p. This
is defined as a random variable taking values in {0, . . . , n}, and having
probability distribution

P{B(n, p) = k} =

(
n

k

)
pk(1 − p)n−k . (A.20)
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• A Poisson random variable X of parameter λ takes integer values and has
probability distribution:

P{X = k} =
λk

k!
e−λ . (A.21)

The parameter λ is the mean of X .

Finally, we used the symbol δa for Dirac ‘delta function’. This is in fact a
measure, that attributes unit mass to the point a. In formulae, for any set A:

δa(A) = I(a ∈ A) . (A.22)

A.4 Summary of mathematical notations

= Equal.
≡ Defined as.
≈ Numerically close to.
d
= Equal in distribution.
.
= Equal to the leading exponential order.
∼ Asymptotically equal up to a constant.
∼= Equal up to a normalization constant (for probabilities: see

Eq.(14.3)).
Θ(f) Of the same order as f (see Sec. A.2).
o(f) Grows more slowly than f (see Sec. A.2).
argmaxf(x) Set of values of x where the real valued function f reaches its

maximum.
'·( Integer part. 'x( is the largest integer n such that n ≤ x.
0·1 0x1 is the smallest integer n such that n ≥ x.
N The set of integer numbers.
R The set of real numbers.
β ↓ βc β goes to βc through values > βc.
β ↑ βc β goes to βc through values < βc.
]a, b[ Open interval of real numbers x such that a < x < b.
]a, b] Interval of real numbers x such that a < x ≤ b.
Z2 The field of integers modulo 2.
a ⊕ b Sum modulo 2 of the two integers a and b.
I(·) Indicator function: I(A) = 1 if the logical statement A is true,

I(A) = 0 if the statement A is false .
A 5 0 The matrix A is positive semidefinite.
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A.5 Information theory

HX Entropy of the random variable X (See Eq.(1.7)).
IXY Mutual information of the random variables X and Y (See

Eq.(1.25)).
H(p) Entropy of a Bernoulli variable with parameter p.
M(X ) Space of probability distributions over a finite set X .
C Codebook.
6 BMS(1) 6 BMS(2): Channel BMS(2) is physically degraded

with respect to BMS(1).
B Bhattacharya parameter of a channel.

A.6 Factor graphs

GN(k, M) Random k-factor graph with M function nodes and N variables
nodes.

GN(k, α) Random k-factor graph with N variables nodes. Each function
node is present independently with probability Nα/

(N
k

)
.

DN (Λ, P ) Degree constrained random factor graph ensemble.
Tr(Λ, P ) Degree constrained random tree factor graph ensemble.
Tr(k, α) Shorthand for the random tree factor graph Tr(Λ(x) =

ekα(x−1), P (x) = xk).
Λ(x) Degree profile of variable nodes.
P (x) Degree profile of function nodes.
λ(x) Edge perspective degree profile of variable nodes.
ρ(x) Edge perspective degree profile of function nodes.
Bi,r(F ) Neighborhood of radius r of variable node i.
Bi→a,t(F ) Directed neigborhood of an edge.
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A.7 Cavity and Message passing

νi→a(xi) BP messages (variable to function node).
ν̂a→i(xi) BP messages (function to variable node).
Φ Free-entropy.
F(ν) Bethe free-entropy (as a function of messages).
Fe(ν) Bethe energy (as a function of min-sum messages).
fRS Bethe (RS) free-entropy density.
Qi→a(ν) 1RSB cavity message/SP message (variable to function node).

Q̂a→i(ν̂) 1RSB cavity message/SP message (function to variable node).
x Parisi 1RSB parameter.
F(x) free-entropy density of the auxiliary model counting BP fixed

points.
Σ(φ) Complexity.
FRSB(Q) 1RSB cavity free-entropy (Bethe free-entropy of the auxiliary

model, function of the messages).
fRSB 1RSB cavity free-entropy density.
y Zero-temperature Parisi 1RSB parameter (y = limβ→∞ βx).
Fe(y) Free-entropy density of the auxiliary model counting min-sum

fixed points.
Σe(e) Energetic complexity.
FRSB,e(Q) Energetic 1RSB cavity free-entropy (Bethe free-entropy of the

auxiliary model, function of the messages).
fRSB,e Energetic 1RSB cavity free-entropy density.
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Ciliberti, S., Mézard, M., and Zecchina, R. (2005). Lossy Data Compression
with Random Gates. Phys. Rev. Lett., 95, 038701.

Clifford, P. (1990). Markov random fields in statistics. In Disorder in physical
systems: a volume in honour of John M. Hammersley (ed. G. Grimmett and
D. Welsh), pp. 19–32. Oxford University Press.

Cocco, S., Dubois, O., Mandler, J., and Monasson, R. (2003). Rigorous
Decimation-Based Construction of Ground Pure States for Spin-Glass Models
on Random Lattices. Phys. Rev. Lett., 90, 047205.

Cocco, S. and Monasson, R. (2001a). Statistical physics analysis of the compu-
tational complexity of solving random satisfiability problems using backtrack
algorithms. Eur. Phys. J. B , 22, 505–531.



558 REFERENCES

Cocco, S. and Monasson, R. (2001b). Trajectories in phase diagrams, growth
processes, and computational complexity: How search algorithms solve the
3-satisfiability problem. Phys. Rev. Lett., 86, 1654–1657.

Cocco, S., Monasson, R., Montanari, A., and Semerjian, G. (2006). Approxi-
mate analysis of search algorithms with physical methods. In Computational
Complexity and Statistical Physics (ed. A. percus, G. Istrate, and C. Moore),
Santa Fe Studies in the Science of Complexity, pp. 1–37. Oxford University
Press.

Conway, J. H. and Sloane, N. J. A. (1998). Sphere Packings, Lattices and
Groups. Springer Verlag, New York.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proc. of
the 3rd ACM Symposium on the Theory of Computing, STOC, Shaker Heights,
OH, pp. 151–158.

Coolen, A.C.C., Kuehn, R., and Sollich, P. (2005). Theory of Neural Informa-
tion Processing Systems. Oxford University Press, Oxford.

Cooper, G. F. (1990). The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial Intelligence, 42, 393–405.

Coppersmith, D. and Sorkin, G. B. (1999). Constructive bounds and exact
expectations for the random assignment problem. Rand. Struct. and Alg., 15,
133–144.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. John
Wiley and sons, New York.
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Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. Publ.
Math. Sci. Hung. Acad. Sci , 5, 17–61.

Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Com-
ment. Acad. Sci. U. Petrop., 8, 128–140. Reprinted in Opera Omnia Ser. I-7,
pp. 1-10, 1766.

Evans, W., Kenyon, C., Peres, Y., and Schulman, L. J. (2000). Broadcasting
on Trees and the Ising Model. Ann. Appl. Prob., 10, 410–433.

Feller, W. (1968). An Introduction to Probability Theory and its Applications.
John Wiley and sons, New York.

Ferreira, F. F. and Fontanari, J. F. (1998). Probabilistic analysis of the number
partitioning problem. J. Phys. A, 31, 3417–3428.

Fischer, K. H. and Hetz, J. A. (1993). Spin Glasses. Cambridge University
Press, Cambridge.

Flajolet, P. and Sedgewick, R. (2008). Analytic Combinatorics. Cambridge
University Press, Cambridge.

Forney, G. D. (2001). Codes on graphs: Normal realizations. IEEE Trans.
Inform. Theory, 47, 520–548.

Forney, G. D. and Montanari, A. (2001). On exponential er-
ror bounds for random codes on the DMC. Available online at
http://www.stanford.edu/ montanar/PAPERS/.

Franco, J. (2000). Some interesting research directions in satisfiability. Annals
of Mathematics and Artificial Intelligence, 28, 7–15.

Franz, S. and Leone, M. (2003). Replica Bounds for Optimization Problems
and Diluted Spin Systems. J. Stat. Phys , 111, 535–564.

Franz, S., Leone, M., Montanari, A., and Ricci-Tersenghi, F. (2002). Dynamic
phase transition for decoding algorithms. Phys. Rev. E , 22, 046120.

Franz, S., Leone, M., Ricci-Tersenghi, F., and Zecchina, R. (2001a). Exact
Solutions for Diluted Spin Glasses and Optimization Problems. Phys. Rev.
Lett., 87, 127209.

Franz, S., Leone, M., and Toninelli, F. (2003). Replica bounds for diluted non-
Poissonian spin systems. J. Phys. A, 36, 10967–10985.
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Méasson, C., Montanari, A., Richardson, T., and Urbanke, R. (2005b). The
Generalized Area Theorem and Some of its Consequences. submitted.
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