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Preface

Over the last few vears, several research areas have witnessed important progress
through the unexpected collaboration of statistical physicists, computer scientists, and
information theorists. This dialogue between scientifie disciplines has not been without
difficulties, as each field has its own objectives and rules of behaviour. Nonetheless,
there is increasing consensus that a common ground exists and that it can be fruitful.
This book aims at making this common ground more widely accessible, through a
unified approach to a selection of important research problems that have benefited
from this convergence.

Historically, information theory and statistical physics have been deeply linked
since Shannon, sixty years ago, used entropy to quantify the information content of
a message. A few decades before, entropy had been the cornerstone of Boltzmann's
statistical mechanics. However, the two topics separated and developed in different di-
rections. Nowadays most statistical physicists know very little of information theory,
and most information theosists know very little of statistical physics. This is particu-
larly unfortunate, as recent progress on core problems in both fields has been bringing
these two roads closer over the last two decades. In parallel, there has been growing
interest in applying probabilistic concepts in computer science, both in devising and in
analysing new algorithms. Statistical physicists have started to apply to this field the
non-rigorous techniques they had developed to study disordered systems. Conversely,
they have become progressively aware of the powerful computational techniques in-
vented by computer scientists and applied them in large scale simulations.

In statistical physics, the last quarter of the twentieth century has seen the emer-
gence of a new topic. The main focus until then had been on ‘ordered’ materials:
crystals in which atoms vibrate around equilibrium positions arranged in a periodic
lattice, or liquids and gases in which the density of particles is uniform. In the 1970s,
the interest in strongly disordered systems started to grow, through studies of spin
glasses, structural glasses, polyvmer networks, etc. The reasons for this development
were the incredible richness of behaviour in these systems and their many applications
in materials science, and also the variety of conceptual problems which are involved in
the understanding of these behaviours. Statistical physics deals with the collective be-
havior of many interacting components. With disordered systems, it started to study
collective behaviour of systems in which all of the components are heterogeneous.
This opened the way to the study of a wealth of problems outside of physics, where
heterogeneity is common currency.

Some of the most spectacular recent progress in information theory concerns error-
correcting codes. More than fifty vears after Shannon’s theorems, efficient codes have
now been found which approach Shannon’s theoretical limit. Turbo codes and low-
density parity-check (LDPC) codes have allowed large improvements in error cor-

Copyrighted Material



Copyrighted Material

vi Preface

rection. One of the main ingredients of these schemes is message-passing decoding
strategies, such as the celebrated ‘belief propagation’ algorithm. These approaches
are intimately related to the mean-field theories of disordered systems developed in
statistical physics.

Probability plays an important role in theoretical computer science, from random-
ized algorithms to probabilistic combinatorics. Random ensembles of computational
problems are studied as a way to model real-world situations, to test existing al-
gorithms, or to develop new ones. In such studies one generally defines a family of
instances and endows it with a probahility measure, in the same way as one defines a
family of samples in the case of spin glasses or LDPC codes. The discovery that the
hardest-to-solve instances, with all existing algorithms, lie close to a phase transition
boundary spurred a lot of interest. Phase transitions, or threshold phenomena. are
actually found in all of these three fields, and play a central role in each of them.
Predicting and understanding them analytically is a major challenge. It can also im-
pact the design of efficient algorithms. Statistical physics suggests that the reason for
the hardness of random constraint satisfaction problems close to phase transitions is a
structural one: it hinges on the existence of a glass transition, a structural change in the
geometry of the set of solutions. This understanding has opened up new algorithmic
perspectives.

In order to emphasize the real convergence of interest and methods in all of these
fields, we have adopted a unified approach. This book is structured in five large parts,
focusing on topics of increasing complexity. Each part typically contains three chapters
that present some core topics in each of the disciplines of information theory, statistical
physics, and combinatorial optimization. The topics in each part have a common
mathematical structure, which is developed in additional chapters serving as bridges.

e Part [ (Chapters 1-4) contains introductory chapters to each of the three disci-
plines and some common probabilistic tools.

e Part Il (Chapters 5-8) deals with problems in which independence plays an im-
portant role: the random energy model, the random code ensemble, and number
partitioning. T'hanks to the independence of random variables, classical techniques
can be applied successfully to these problems. The part ends with a description
of the replica method.

e Part III (Chapters 9-13) describes ensembles of problems on graphs: satisfiability,
low-density parity-check codes, and spin glasses. Factor graphs and statistical
inference provide a common language.

e Part IV (chapters 14-17) explains belief propagation and the related ‘replica-
symmetric’ cavity method. These can be thought of as approaches to studying
systems of correlated random variables on large graphs, when the correlations
decay fast enough with distance. The part shows the success of this approach
with three problems: decoding, assignment, and ferromagnets.

e Part V (Chapters 18-22) is dedicated to an important consequence of long-range
correlations, namely the proliferation of pure states and ‘replica symmetry break-
ing’. It starts with the simpler problem of random linear equations with Boolean
variables, and then develops the general approach and applies it to satisfiability
and coding. The final chapter reviews some open problems.
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At the end of each chapter, a section of notes provides pointers to the literature. The
notation and symbols are summarized in Appendix A. The definitions of new concepts
are signalled by boldfaced fonts, both in the text and in the index. The book contains
many examples and exercises of various difficulty, which are signalled by a light grey
background. They are an important part of the book.

As the book develops, we venture into progressively less well-understood topics.
In particular, the number of mathematically proved statements decreases and we rely
on heuristic or intuitive explanations in some places. We have put special effort into
distingnishing what has been proved from what has not, and into presenting the latter
as clearly and as sharply as we could. We hope that this will stimulate the interest
and contributions of mathematically minded readers, rather than alienate them.

This is a graduate-level book, intended to be useful to any student or researcher
who wants to study and understand the main concepts and methods in this common
rescarch domain. The introductory chapters help to set up the common language, and
the book should thus be understandable by any graduate student in science with some
standard background in mathematics (probability, linear algebra, and ealeulus).

Our choice of presenting a selection of problems in some detail has left aside a
number of other interesting topics and applications. Some of them are of direct com-
mon interest in information, physies, and computation, for instance source coding,
multiple-input multiple-output communication, and learning and inference in neural
networks. But the concepts and techniques studied in this book also have applications
in a broader range of ‘complex systems’ studies, ranging from neurobiology, or sys-
tems biology, to economics and the social seiences. A few introductory pointers to the
literature are provided in the Notes of Chapter 22.

The critical reading and the many comments of Heiko Bauke, Alfredo Braun-
stein, John Eduardo Realpe Gomez, Florent Krzakala, Frauke Liers, Stephan Mertens,
Elchanan Mossel, Sewoong Oh, Lenka Zdeborova, have been very useful. We are grate-
ful to them for their feedback. We have also been stimulated by the kind encour-
agements of Amir Dembo, Persi Diaconis, James Martin, Balaji Prabhakar, Federico
Ricci-Tersenghi, Bart Selman and Riidiger Urbanke, and the discreet attention and
steady support of Sonke Adlung, from Oxford University Press.

This book is dedicated to Fanny, Mathias, Isabelle, Claudia, and Ivana.

Mare Mézard and Andrea Montanari, December 2008

Copyrighted Material



Copyrighted Material

Contents

PART | BACKGROUND

1 Introduction to information theory

1.1 Random variables

1.2 Entropy

1.3 Sequences of random variables and their entropy rate
1.4 Correlated variables and mutual information

1.5 Data compression

1.6 Data transmission

Notes

2 Statistical physics and probability theory

2.1 The Boltzmann distribution

2.2 Thermodynamic potentials

2.3 The Huctuation—dissipation relations
2.4 The thermodynamic limit

2.5  Ferromagnets and Ising models

2.6 The Ising spin glass

Notes

3 Introduction to combinatorial optimization

3.1 A first example: The minimum spanning tree

3.2 General definitions

3.3 More examples

3.4  Elements of the theory of computational complexity
3.5 Optimization and statistical physics

3.6 Optimization and coding

Notes

4 A probabilistic toolbox

4.1 Many random variables: A qualitative preview

4.2 Large deviations for independent variables

4.3 Correlated variables

4.4 The Gibbs free energy

4.5 The Monte Carlo method

4.6 Simulated annealing

4.7 Appendix: A physicist’s approach to Sanov’s theorem
Notes

Copyrighted Material

51

61
62

65
65
66
72
77
80
86
87
59



x

10

Copyrighted Material

Contents

PART 1l INDEPENDENCE

The random energy model

5.1 Definition of the model

5.2 Thermodynamics of the REM

5.3 The condensation phenomenon

54 A comment on quenched and annealed averages
5.5 The random subcube model

Notes

The random code ensemble

6.1 Code ensembles

6.2 The geometry of the random code ensemble

6.3 Communicating over a binary symmetric channel
6.4 LError-free communication with random codes

6.5 Geometry again: Sphere packing

6.6 Other random codes

6.7 A remark on coding theory and disordered systems
6.8 Appendix: Proof of Lemma 6.2

Notes

Number partitioning

7.1 A fair distribution into two groups?

7.2 Algorithmic issues

7.3 Partition of a random list: Experiments
7.4 The random cost model

7.5 Partition of a random list: Rigorous results
Notes

Introduction to replica theory

8.1 Replica solution of the random energy model
8.2 The fully connected p-spin glass model

8.3 Extreme value statistics and the REM

8.4 Appendix: Stability of the RS saddle point
Notes

PART I MODELS ON GRAPHS

Factor graphs and graph ensembles

9.1 Factor graphs

9.2 Ensembles of factor graphs: Definitions

9.3 Random factor graphs: Basic properties

9.4 Random factor graphs: The giant component
9.5 The locally tree-like structure of random graphs
Notes

Satisfiability
10.1 The satisfiability problem

Copyrighted Material

93
93
94
100
101
103
105

107
107
110
112
120
123
126
127
128
128

131
131
132
133
136
140
143

145
145
155
163
166
169

173
173
180
182
187
191
194

197
197



11

12

13

14

15

16

Copyrighted Material

10.2 Algorithms

10.3 Random A -satisfiability ensembles

10.4 Random 2-SAT

10.5 The phase transition in random K (> 3)-SAT
Notes

Low-density parity-check codes

11.1 Definitions

11.2 The geometry of the codebook

11.3 LDPC codes for the binary symmetric channel
11.4 A simple decoder: Bit flipping

Notes

Spin glasses

12.1 Spin glasses and factor graphs

12.2 Spin glasses: Constraints and frustration

12.3 What is a glass phase?

12.4 An example: The phase diagram of the SK model
Notes

Bridges: Inference and the Monte Carlo method
13.1 Statistical inference

13.2 The Monte Carlo method: Inference via sampling
13.3 Free-energy barriers

Notes

PART IV SHORT-RANGE CORRELATIONS

Belief propagation

14.1 Two examples

14.2 Belief propagation on tree graphs

14.3 Optimization: Max-product and min-sum
14.4 Loopy BP

14.5 General message-passing algorithms

14.6 Probabilistic analysis

Notes

Decoding with belief propagation

15.1 BP decoding: The algorithm

15.2 Amnalysis: Density evolution

15.3 BP decoding for an erasure channel

15.4 The Bethe free energy and MAP decoding
Notes

The assignment problem

16.1 The assignment problem and random assignment ensembles
16.2 Message passing and its probabilistic analysis

16.3 A polynomial message-passing algorithm

Copyrighted Material

Contents  xi

199
206
209
209
217

219
220
222
231
236
239

241
241
245
250
262
265
267
268
272
281
287

291
292
296
305
310
316
317
325

327
327
329
342
347
352

355
356
357
266



xii

Copyrighted Material

Contents

16.4 Combinatorial results
16.5 An exercise: Multi-index assignment
Notes

17 Ising models on random graphs

17.1 The BP equations for Ising spins
17.2 RS cavity analysis

17.3 Ferromagnetic model

17.4 Spin glass models

Notes

PART V LONG-RANGE CORRELATIONS

18 Linear equations with Boolean variables

19

18.1 Definitions and general remarks

18.2 Belief propagation

18.3 Core percolation and BP

18.4 The SAT-UNSAT threshold in random XORSAT
18.5 The Hard-SAT phase: Clusters of solutions

18.6 An alternative approach: The cavity method
Notes

The 1RSB cavity method

19.1 Beyond BP: Many states

19.2 The 1RSB cavity equations

19.3 A first application: XORSAT

19.4 The special value x =1

19.5 Survey propagation

19.6 The nature of 1RSB phases

19.7 Appendix: The SP(y) equations for XORSAT
Notes

20 Random K-satisfiability

21

22

20.1 Belief propagation and the replica-symmetric analysis
20.2 Survey propagation and the 1RSB phase

20.3 Some ideas about the full phase diagram

20.4 An exercise: Colouring random graphs

Notes

Glassy states in coding theory

21.1 Loecal search algorithims and metastable states
21.2 The binary erasure channel

21.3 General binary memoryless symmetric channels
21.4 Metastable states and near-codewords

Notes

An ongoing story
22.1 Gibbs measures and long-range correlations

Copyrighted Material

371
376
378

381
381
384
386
391
399

403
404
409
412
415
421
422
427

429
430
434
444
449
453
459
463
465

467
468
474
485
488
491
493
493
500
506
513
ol5

517
518



Copyrighted Material

22.2 Higher levels of replica symmetry breaking
22.3 Phase structure and the behaviour of algorithms
Notes

Appendix A Symbols and notation

A1 Equivalence relations

A.2 Orders of growth

A3 Combinatorics and probability

A4 Summary of mathematical notation

A5 Information theory

A6 Factor graphs

A.7T Cavity and message-passing methods
References
Index

Copyrighted Material

Contents

xiii

D24
535
538

541
541
542
543
544
545
545
545
4T

565



1

INTRODUCTION TO INFORMATION THEORY

This chapter introduces some of the basic concepts of information theory, as well
as the definitions and notations of probabilities that will be used throughout
the book. The notion of entropy, which is fundamental to the whole topic of
this book, is introduced here. We also present the main questions of information
theory, data compression and error correction, and state Shannon’s theorems.

1.1 Random variables

The main object of this book will be the behavior of large sets of discrete
random variables. A discrete random variable X is completely defined!' by
the set of values it can take, X, which we assume to be a finite set, and its
probability distribution {px(z)}.cx. The value px () is the probability that
the random variable X takes the value x. The probability distribution px : X —
[0, 1] must satisfy the normalization condition

> px(@)=1. (1.1)

reX

We shall denote by P(A) the probability of an event A C X, so that px(x) =
P(X = z). To lighten notations, when there is no ambiguity, we use p(z) to
denote px (z).

If f(X) is a real valued function of the random variable X, the expectation
value of f(X), which we shall also call the average of f, is denoted by:

Ef= px(@)f(e). (1.2)

reX

While our main focus will be on random variables taking values in finite
spaces, we shall sometimes make use of continuous random variables taking
values in R? or in some smooth finite-dimensional manifold. The probability
measure for an ‘infinitesimal element’ dz will be denoted by dpx (z). Each time
px admits a density (with respect to the Lebesgue measure), we shall use the
notation px () for the value of this density at the point 2. The total probability
P(X € A) that the variable X takes value in some (Borel) set A C X is given
by the integral:

n probabilistic jargon (which we shall avoid hereafter), we take the probability space
(X,P(X),px) where P(X) is the o-field of the parts of X and px = >~ x Px (%) oz

{ch:intro_info}

{proba_norm}



2 INTRODUCTION TO INFORMATION THEORY

P(X €A = / dpx (z) = /]I(m € A)dpx(x) , (1.3)
z€A
where the second form uses the indicator function I(s) of a logical statement
s,which is defined to be equal to 1 if the statement s is true, and equal to 0 if
the statement is false.
The expectation value of a real valued function f(x) is given by the integral
on X:

B1(X) = [ £(2) dpx(a). (1.4)
Sometimes we may write Ex f(X) for specifying the variable to be integrated

over. We shall often use the shorthand pdf for the probability density func-
tion px(z).

Example 1.1 A fair dice with M faces has X = {1,2,..., M} and p(i) = 1/M
for all ¢ € {1,...,M}. The averageof t isEX = (1+...+ M)/M = (M +1)/2.

Example 1.2 Gaussian variable: a continuous variable X € R has a Gaussian
distribution of mean m and variance o2 if its probability density is

exp (_M) . (15)

202

(2) = —=

a6 =

P V2o
One has EX = m and E(X —m)? = o2

The notations of this chapter mainly deal with discrete variables. Most of the
expressions can be transposed to the case of continuous variables by replacing
sums » by integrals and interpreting p(x) as a probability density.

Exercise 1.1 Jensen’s inequality. Let X be a random variable taking value
in aset X C R and f a convex function (i.e. a function such that Vz,y and
Va € [0,1]: flaz + (1 —ay)) < af(z) + (1 — a)f(y)). Then

{eq:Jensen} Ef(X) > f(EX) . (1.6)

Supposing for simplicity that X is a finite set with |X’| = n, prove this equality
by recursion on n.

{se:entropy} 1.2 Entropy

The entropy Hx of a discrete random variable X with probability distribution
p(z) is defined as

=— Z) 10 xXr) = (0] L
{s_det} Hx = ;{p( ) log, p(x) = Elog, L;(X)] ; (L.7)
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where we define by continuity 0log, 0 = 0. We shall also use the notation H(p)
whenever we want to stress the dependence of the entropy upon the probability
distribution of X.

In this Chapter we use the logarithm to the base 2, which is well adapted
to digital communication, and the entropy is then expressed in bits. In other
contexts one rather uses the natural logarithm (to base e ~ 2.7182818). It is
sometimes said that, in this case, entropy is measured in nats. In fact, the two
definitions differ by a global multiplicative constant, which amounts to a change
of units. When there is no ambiguity we use H instead of Hx.

Intuitively, the entropy gives a measure of the uncertainty of the random
variable. It is sometimes called the missing information: the larger the entropy,
the less a priori information one has on the value of the random variable. This
measure is roughly speaking the logarithm of the number of typical values that
the variable can take, as the following examples show.

Example 1.3 A fair coin has two values with equal probability. Its entropy is
1 bit.

Example 1.4 Imagine throwing M fair coins: the number of all possible out-
comes is 2. The entropy equals M bits.

Example 1.5 A fair dice with M faces has entropy log, M.

Example 1.6 Bernouilli process. A random variable X can take values 0,1
with probabilities p(0) = ¢, p(1) = 1 — ¢. Its entropy is

Hx = —qlogyq — (1 —q)logy(1 —q) , (1.8)

it is plotted as a function of ¢ in fig.1.1. This entropy vanishes when ¢ = 0
or ¢ = 1 because the outcome is certain, it is maximal at ¢ = 1/2 when the
uncertainty on the outcome is maximal.

Since Bernoulli variables are ubiquitous, it is convenient to introduce the
function H(q) = —qlogq — (1 — q) log(1 — q), for their entropy.

Exercise 1.2 An unfair dice with four faces and p(1) = 1/2, p(2) =
1/4, p(3) = p(4) = 1/8 has entropy H = 7/4, smaller than the one of the
corresponding fair dice.

{S_bern}
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0O 01 02 03 04 05 06 07 08 09 1
q

Fig. 1.1. The entropy H(gq) of a binary variable with p(X = 0) = gq,
p(X =1) =1 — g, plotted versus ¢

Exercise 1.3 DNA is built from a sequence of bases which are of four types,
A, T,G,C. In natural DNA of primates, the four bases have nearly the same
frequency, and the entropy per base, if one makes the simplifying assumptions
of independence of the various bases, is H = — log,(1/4) = 2. In some genus of
bacteria, one can have big differences in concentrations: p(G) = p(C) = 0.38,
p(A) = p(T) = 0.12, giving a smaller entropy H =~ 1.79.

Exercise 1.4 In some intuitive way, the entropy of a random variable is related
to the ‘risk’ or ‘surprise’ which are associated to it. In this example we discuss
a simple possibility for making these notions more precise.

Consider a gambler who bets on a sequence of bernouilli random variables
X; € {0,1}, t € {0,1,2,...} with mean EX; = p. Imagine he knows the
distribution of the X;’s and, at time ¢ he bets a fraction w(1) = p of his money
on 1 and a fraction w(0) = (1 —p) on 0. He looses whatever is put on the wrong
number, while he doubles whatever has been put on the right one. Define the
average doubling rate of his wealth at time ¢ as

Wy = %E 10g, { 11 2w(Xt/)} : (1.9)

=l

It is easy to prove that the expected doubling rate EW; is related to the entropy
of Xy: EW; = 1 — H(p). In other words, it is easier to make money out of
predictable events.

Another notion that is directly related to entropy is the Kullback-Leibler

{fig_bernouilli}
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(KL) divergence between two probability distributions p(z) and ¢(z) over the
same finite space X. This is defined as:

Dl = 3 a() log 1 (1.10)

= p()

where we adopt the conventions 0log0 = 0, 0log(0/0) = 0. It is easy to show
that: (i) D(q||lp) is convex in ¢(z); (it) D(q|lp) > 0; (i%i) D(q||p) > 0 unless
q(x) = p(z). The last two properties derive from the concavity of the logarithm
(i.e. the fact that the function —logx is convex) and Jensen’s inequality (1.6):
if E denotes expectation with respect to the distribution ¢(z), then —D(ql||p) =
Eloglp(x)/q(x)] < logE[p(x)/q(x)] = 0. The KL divergence D(g||p) thus looks
like a distance between the probability distributions ¢ and p, although it is not
symmetric.

The importance of the entropy, and its use as a measure of information,
derives from the following properties:

1. Hx > 0.

2. Hx =0 if and only if the random variable X is certain, which means that
X takes one value with probability one.

3. Among all probability distributions on a set X with M elements, H is

maximum when all events = are equiprobable, with p(z) = 1/M. The
entropy is then Hx = log, M.
Notice in fact that, if X has M elements, then the KL divergence D(p||p)
between p(z) and the uniform distribution p(x) = 1/M is D(p|[p) =
logy M — H(p). The thesis follows from the properties of the KL diver-
gence mentioned above.

4. If X and Y are two independent random variables, meaning that px y (z,y) =
px (z)py (y), the total entropy of the pair X,Y is equal to Hx + Hy:

Hxy

= p(x,y)logy px v (z,y) =

==Y px(@)py(y) (logy px () + logy py () = Hx + H{1.11)

5. For any pair of random variables, one has in general Hxy < Hx + Hy,
and this result is immediately generalizable to n variables. (The proof can %
be obtained by using the positivity of the KL divergence D(p1||p2), where
p1 = px,y and ps = pxpy).

6. Additivity for composite events. Take a finite set of events X', and decom-
pose it into X = X; U X, where X} N Xy = (. Call ¢; = Eze% p(x)
the probability of A}, and ¢ the probability of X5. For each =z € Aj,
define as usual the conditional probability of x, given that x € Aj, by
r1(x) = p(x)/q1 and define similarly ro(z) as the conditional probability
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of z, given that © € A5. Then the total entropy can be written as the sum
of two contributions Hx = — 3", p(x)log, p(x) = H(q) + H(r), where:

H(q) = —q1logy 1 — g21og, g2 (1.12)
H(r)=—-q Z ri(z)logy () — g2 Z ra(z)logy ra(z)  (1.13)
TEX, TEX,

The proof is obvious by just substituting the laws r; and ro by their ex-
panded definitions. This property is interpreted as the fact that the average
information associated to the choice of an event x is additive, being the
sum of the relative information H(q) associated to a choice of subset, and
the information H(r) associated to the choice of the event inside the sub-
sets (weighted by the probability of the subsetss). It is the main property
of the entropy, which justifies its use as a measure of information. In fact,
this is a simple example of the so called chain rule for conditional entropy,
which will be further illustrated in Sec. 1.4.

Conversely, these properties together with some hypotheses of continuity and
monotonicity can be used to define axiomatically the entropy.

1.3 Sequences of random variables and entropy rate

In many situations of interest one deals with a random process which generates
sequences of random variables {X;};cn, each of them taking values in the
same finite space X. We denote by Py(z1,...,zy) the joint probability dis-
tribution of the first N variables. If A C {1,..., N} is a subset of indices, we
shall denote by A its complement A = {1,..., N} \ A and use the notations
24 = {z;,i € A} and 27 = {2;,i € A}. The marginal distribution of the
variables in A is obtained by summing Py on the variables in A:

Pa(zs) = Pn(z1,...,25) - (1.14)

Example 1.7 The simplest case is when the X,’s are independent. This
means that Py(z1,...,2n5) = p1(x1)p2(x2) ... py(zy). If all the distributions
p; are identical, equal to p, the variables are independent identically dis-
tributed, which will be abbreviated as iid. The joint distribution is

N
Py(z1,...,2n) = [[ p(@:). (1.15)
t=1



SEQUENCES OF RANDOM VARIABLES AND ENTROPY RATE

Example 1.8 The sequence { X }+en is said to be a Markov chain if

N-1

Pn(z1,...,2n) = p1(z1) H w(Ts — Tt1) - (1.16)
t=1

Here {pi(z)}zcx is called the initial state, and {w(z — y)}syecx are the

transition probabilities of the chain. The transition probabilities must be
non-negative and normalized:

Zw(x—mg):l, for any y € X. (1.17)
yeX

When we have a sequence of random variables generated by a certain process,
it is intuitively clear that the entropy grows with the number N of variables. This
intuition suggests to define the entropy rate of a sequence {X;}tcn as

hx = lim Hy, /N, (1.18)

if the limit exists. The following examples should convince the reader that the
above definition is meaningful.

Example 1.9 If the X;’s are ii.d. random variables with distribution
{p()}zecx, the additivity of entropy implies

hx = Zp ) log p(x (1.19)

TeX
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Example 1.10 Let {X;};en be a Markov chain with initial state {p1(z)}sex
and transition probabilities {w(z — y)}s yex. Call {pi(z)}rcr the marginal
distribution of X; and assume the following limit to exist independently of the
initial condition:

p*(z) = lim p;(z). (1.20)

As we shall see in chapter 4, this turns indeed to be true under quite mild
hypotheses on the transition probabilities {w(z — y)}z yex. Then it is easy to
show that

hx = — Z p () w(z — y)logw(z — y). (1.21)

If you imagine for instance that a text in English is generated by picking letters
randomly in the alphabet X', with empirically determined transition probabil-
ities w(x — y), then Eq. (1.21) gives a first estimate of the entropy of English.
But if you want to generate a text which looks like English, you need a more
general process, for instance one which will generate a new letter z;,1 given the
value of the k previous letters z;, xy_1, ..., 2441, through transition probabil-
ities w (s, Xt—1, .oy Tt—k+1 — Ty1). Computing the corresponding entropy
rate is easy. For k = 4 one gets an entropy of 2.8 bits per letter, much smaller
than the trivial upper bound log, 27 (there are 26 letters, plus the space sym-
bols), but many words so generated are still not correct English words. Some
better estimates of the entropy of English, through guessing experiments, give
a number around 1.3.

1.4 Correlated variables and mutual entropy

Given two random variables X and Y, taking values in X and ), we denote their
joint probability distribution as px y (x,y), which is abbreviated as p(x,y), and
the conditional probability distribution for the variable y given = as py|x (y|z),
abbreviated as p(y|z). The reader should be familiar with Bayes’ classical theo-
rem:
p(yle) = p(z,y)/p(z) . (1.22)

When the random variables X and Y are independent, p(y|x) is z-independent.
When the variables are dependent, it is interesting to have a measure on their
degree of dependence: how much information does one obtain on the value of y
if one knows x? The notions of conditional entropy and mutual entropy will be
useful in this respect.

Let us define the conditional entropy Hy|x as the entropy of the law
p(y|z), averaged over x:

Hyx =~ Y p(a) Y plyle)log, pyle). (1.23)

zeX yeyY



CORRELATED VARIABLES AND MUTUAL ENTROPY 9

The total entropy Hx,y = — 3, cx ey P(2,y)logy p(z,y) of the pair of variables
x,y can be written as the entropy of x plus the conditional entropy of y given x:

HX,Y ZHx+Hy|X. (1.24)

In the simple case where the two variables are independent, Hy | x = Hy,
and Hxy = Hx + Hy. One way to measure the correlation of the two variables
is the mutual entropy /x y which is defined as:

_ o ) o, PEY)
IX,Y = wegeyp( ay)l o p(a?)p(y) . (125)

It is related to the conditional entropies by:
Ixy =Hy — Hyx =Hx — Hxy , (1.26)

which shows that Ix y measures the reduction in the uncertainty of « due to the
knowledge of y, and is symmetric in z, y.

Proposition 1.11 Ixy > 0. Moreover Ixy = 0 if and only if X and Y are
independent variables.

Proof: Write —Ixy = E,,log, ”1(72”;3;). Consider the random variable v =
(z,y) with probability distribution p(z,y). As the logarithm is a concave function
(i.e. -log is a convex function), one and applies Jensen’s inequality (1.6). This

gives the result Ixy > 00

Exercise 1.5 A large group of friends plays the following game (telephone
without cables). The guy number zero chooses a number X, € {0,1} with
equal probability and communicates it to the first one without letting the
others hear, and so on. The first guy communicates the number to the second
one, without letting anyone else hear. Call X, the number communicated from
the n-th to the (n+1)-th guy. Assume that, at each step a guy gets confused and
communicates the wrong number with probability p. How much information
does the n-th person have about the choice of the first one?

We can quantify this information through Ix, x, = I,,. A simple calculation
shows that I,, = 1 —H(p,) with p, given by 1 —2p,, = (1 —2p)™. In particular,
as n — oo

(1-—2p)*"

T = ologa [1+0((1-2p)*™)] . (1.27)

The ‘knowledge’ about the original choice decreases exponentially along the
chain.

The mutual entropy gets degraded when data is transmitted or processed.
This is quantified by:

{Smut_def}
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Proposition 1.12 Data processing inequality.

Consider a Markov chain X —Y — Z (so that the joint probability of the
three varaibles can be written as p1(x)wa(x — y)ws(y — 2)). Then: Ix z < Ixy.
In particular, if we apply this result to the case where Z is a function of Y,
Z = f(Y), we find that applying f degrades the information: Ix ¢yvy < Ixy.
Proof: Let us introduce, in general, the mutual entropy of two varaibles con-
ditioned to a third one: Ixy|z = Hx|z — Hx (vz). The mutual information
between a variable X and a pair of varaibles (Y Z) can be decomposed in a sort
of chain rule: I'x (yz) = Ix,z + Ixy|z = Ixy + Ix zy. If we have a Markov
chain X - Y — Z, X and Z are independent when one conditions on the value
of Y, therefore Iy 7y = 0. The result follows from the fact that Ixy |z > 0. U

1.5 Data compression

Imagine an information source which generates a sequence of symbols X =
{X1,..., Xy} taking values in a finite alphabet X'. Let us assume a probabilistic
model for the source: this means that the X;’s are taken to be random variables.
We want to store the information contained in a given realization x = {z1 ...z x}
of the source in the most compact way.

This is the basic problem of source coding. Apart from being an issue of
utmost practical interest, it is a very instructive subject. It allows in fact to
formalize in a concrete fashion the intuitions of ‘information’ and ‘uncertainty’
which are associated to the definition of entropy. Since entropy will play a crucial
role throughout the book, we present here a little detour into source coding.

1.5.1 Codewords

We first need to formalize what is meant by “storing the information”. We define?
therefore a source code for the random variable X to be a mapping w which
associates to any possible information sequence in XV a string in a reference
alphabet which we shall assume to be {0,1}:

w: XN {0,1)
z— w(z). (1.28)

Here we used the convention of denoting by {0,1}* the set of binary strings
of arbitrary length. Any binary string which is in the image of w is called a
codeword.

Often the sequence of symbols X7 ... Xy is a part of a longer stream. The
compression of this stream is realized in three steps. First the stream is broken
into blocks of length N. Then each block is encoded separately using w. Finally
the codewords are glued to form a new (hopefully more compact) stream. If
the original stream consisted in the blocks (), 23 ... (") the output of the

2The expert will notice that here we are restricting our attention to “fixed-to-variable”
codes.
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encoding process will be the concatenation of w(z™),... w(z(™). In general
there is more than one way of parsing this concatenation into codewords, which
may cause troubles to any one willing to recover the compressed data. We shall
therefore require the code w to be such that any concatenation of codewords can
be parsed unambiguously. The mappings w satisfying this property are called
uniquely decodable codes.

Unique decodability is surely satisfied if, for any pair z,2’ € XN, w(z) is
not a prefix of w(z’). If this stronger condition is verified, the code is said to be
instantaneous (see Fig. 1.2). Hereafter we shall focus on instantaneous codes,
since they are both practical and (slightly) simpler to analyze.

Now that we precised how to store information, namely using a source code,
it is useful to introduce some figure of merit for source codes. If I, (x) is the
length of the string w(z), the average length of the code is:

Lw)= > pla)ly(z) . (1.29)

Example 1.13 Take N = 1 and consider a random variable X which takes
values in X = {1,2,...,8} with probabilities p(1) = 1/2, p(2) = 1/4, p(3) =
1/8, p(4) = 1/16, p(5) = 1/32, p(6) = 1/64, p(7) = 1/128, p(8) = 1/128.
Consider the two codes w; and ws defined by the table below

p(z) |wi(z)| wa(z)
1/2 | 000 | 0
1/4 | 001 | 10
1/8 | 010 | 110
1/16| 011 | 1110 (1.30)
1/32 100 11110
1/64 | 101 | 111110
1/128| 110 | 1111110
1/128| 111 |11111110

W N O O WN -8

These two codes are instantaneous. For instance looking at the code wy, the
encoded string 10001101110010 can be parsed in only one way since each symbol
0 ends a codeword. It thus corresponds to the sequence x1 = 2,29 = 1,23 =
1,24 = 3,25 = 4,26 = 1,27 = 2. The average length of code w; is L(w;) = 3,
the average length of code ws is L(wy) = 247/128. Notice that wy achieves a
shorter average length because it assigns the shortest codeword (namely 0) to
the most probable symbol (i.e. 1).

{avlength}
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Fi1Gg. 1.2. An instantaneous source code: each codeword is assigned to a node in
a binary tree in such a way that no one among them is the ancestor of another
one. Here the four codewords are framed. {fig_kraft}

Example 1.14 A useful graphical representation of source code is obtained by
drawing a binary tree and associating each codeword to the corresponding node
in the tree. In Fig. 1.2 we represent in this way a source code with |[XV| =
4. It is quite easy to recognize that the code is indeed instantaneous. The
codewords, which are framed, are such that no codeword is the ancestor of
any other codeword in the tree. Given a sequence of codewords, parsing is
immediate. For instance the sequence 00111000101001 can be parsed only in
001,11, 000, 101,001

1.5.2  Optimal compression and entropy

Suppose to have a ‘complete probabilistic characterization’ of the source you
want to compress. What is the ‘best code’” w for this source? What is the shortest
achievable average length?

This problem was solved (up to minor refinements) by Shannon in his cel-
ebrated 1948 paper, by connecting the best achievable average length to the
entropy of the source. Following Shannon we assume to know the probability
distribution of the source p(z) (this is what ‘complete probabilistic character-
ization’” means). Moreover we interpret ‘best’ as ‘having the shortest average
-heorem: ShannonSource} length’.

Theorem 1.15 Let L the shortest average length achievable by an instanta-
neous code for X = {Xy,...,Xn}, and Hx the entropy of the same variable.

Then
1. For any N > 1:
{Shcomp1} Hx <Ly <Hx+1. (1.31)
2. If the source has a finite entropy rate h = imy_.oc Hx /N, then
1
{Shcomp2} ]\;gnoo NLR, =h. (1.32)

Proof: The basic idea in the proof of Eq. (1.31) is that, if the codewords
were too short, the code wouldn’t be instantaneous. ‘Kraft’s inequality’ makes
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this simple remark more precise. For any instantaneous code w, the lengths 1., (x)
satisfy:

> o <, (1.33)

zeXN

This fact is easily proved by representing the set of codewords as a set of leaves
on a binary tree (see fig.1.2). Let Ljs be the length of the longest codeword.
Consider the set of all the 2™ possible vertices in the binary tree which are
at the generation Lj;, let us call them the ’descendants’. If the information z
is associated with a codeword at generation [ (i.e. l,(z) = l), there can be no
other codewords in the branch of the tree rooted on this codeword, because the
code is instantaneous. We ’erase’ the corresponding 2% ~! descendants which
cannot be codewords. The subsets of erased descendants associated with each
codeword are not overlapping. Therefore the total number of erased descendants,
dow 2Lm—lw(2) ‘must be smaller or equal to the total number of descendants, 25 .
This establishes Kraft’s inequality.

Conversely, for any set of lengths {l(z)},cax~ which satisfies the inequality
(1.33) there exist at least a code, whose codewords have the lengths {I(z)},cn.
A possible construction is obtained as follows. Consider the smallest length I(z)
and take the first allowed binary sequence of length I(z) to be the codeword for
x. Repeat this operation with the next shortest length, and so on until you have
exhausted all the codewords. It is easy to show that this procedure is successful
if Eq. (1.33) is satisfied.

The problem is therefore reduced to finding the set of codeword lengths I(z) =
[*(z) which minimize the average length L = )" p(z)l(x) subject to Kraft’s
inequality (1.33). Supposing first that [(x) are real numbers, this is easily done
with Lagrange multipliers, and leads to I(z) = —log, p(z). This set of optimal
lengths, which in general cannot be realized because some of the I(z) are not
integers, gives an average length equal to the entropy Hx. This gives the lower
bound in (1.31). In order to build a real code with integer lengths, we use

I"(z) = [ logy p(z)] - (1.34)

Such a code satisfies Kraft’s inequality, and its average length is less or equal
than Hy + 1, proving the upper bound in (1.31).

The second part of the theorem is a straightforward consequence of the first
one. [J

The code we have constructed in the proof is often called a Shannon code.
For long strings (N > 1), it gets close to optimal. However it has no reason to be
optimal in general. For instance if only one p(z) is very small, it will code it on
a very long codeword, while shorter codewords are available. It is interesting to
know that, for a given source {X1,..., X}, there exists an explicit construction
of the optimal code, called Huffman’s code.

At first sight, it may appear that Theorem 1.15, together with the construc-
tion of Shannon codes, completely solves the source coding problem. But this is
far from true, as the following arguments show.

{kraft}
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From a computational point of view, the encoding procedure described above
is unpractical. One can build the code once for all, and store it somewhere, but
this requires O(]X'|Y) memory. On the other hand, one could reconstruct the
code each time a string requires to be encoded, but this takes O(|X|V) time.
One can use the same code and be a bit smarter in the encoding procedure, but
this does not improve things dramatically.

From a practical point of view, the construction of a Shannon code requires
an accurate knowledge of the probabilistic law of the source. Suppose now you
want to compress the complete works of Shakespeare. It is exceedingly difficult
to construct a good model for the source ‘Shakespeare’. Even worse: when you
will finally have such a model, it will be of little use to compress Dante or Racine.

Happily, source coding has made tremendous progresses in both directions in
the last half century.

1.6 Data transmission

In the previous pages we considered the problem of encoding some information
in a string of symbols (we used bits, but any finite alphabet is equally good).
Suppose now we want to communicate this string. When the string is transmit-
ted, it may be corrupted by some noise, which depends on the physical device
used in the transmission. One can reduce this problem by adding redundancy to
the string. The redundancy is to be used to correct (some) transmission errors, in
the same way as redundancy in the English language can be used to correct some
of the typos in this book. This is the field of channel coding. A central result
in information theory, again due to Shannon’s pioneering work in 1948, relates
the level of redundancy to the maximal level of noise that can be tolerated for
error-free transmission. The entropy again plays a key role in this result. This
is not surprising in view of the symmetry between the two problems. In data
compression, one wants to reduce the redundancy of the data, and the entropy
gives a measure of the ultimate possible reduction. In data transmission, one
wants to add some well tailored redundancy to the data.

1.6.1 Communication channels

The typical flowchart of a communication system is shown in Fig. 1.3. It applies
to situations as diverse as communication between the earth and a satellite, the
cellular phones, or storage within the hard disk of your computer. Alice wants
to send a message m to Bob. Let us assume that m is a M bit sequence. This
message is first encoded into a longer one, a N bit message denoted by x with
N > M, where the added bits will provide the redundancy used to correct for
transmission errors. The encoder is a map from {0, 1} to {0,1}". The encoded
message is sent through the communication channel. The output of the channel
is a message . In a noiseless channel, one would simply have y = z. In a realistic
channel, y is in general a string of symbols different from z. Notice that y is
not even necessarily a string of bits. The channel will be described by the
transition probability @ (y|x). This is the probability that the received signal is
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FiGg. 1.3. Typical flowchart of a communication device.

y, conditional to the transmitted signal being x. Different physical channels will
be described by different Q(y|z) functions. The decoder takes the message y and
deduces from it an estimate m’ of the sent message.

Exercise 1.6 Consider the following example of a channel with insertions.
When a bit x is fed into the channel, either x or x0 are received with equal
probability 1/2. Suppose that you send the string 111110. The string 1111100
will be received with probability 2-1/64 (the same output can be produced by
an error either on the 5*" or on the 6" digit). Notice that the output of this
channel is a bit string which is always longer or equal to the transmitted one.

A simple code for this channel is easily constructed: use the string 100 for
each 0 in the original message and 1100 for each 1. Then for instance you have
the encoding

01101 — 100110011001001100 . (1.35)

The reader is invited to define a decoding algorithm and verify its effectiveness.

Hereafter we shall consider memoryless channels. In this case, for any input
x = (x1,...,xN), the output message is a string of N letters, y = (y1, ..., yn ), from
an alphabet ) 3 y; (not necessarily binary). In memoryless channels, the noise
acts independently on each bit of the input. This means that the conditional
probability Q(y|z) factorizes:

N

Qylz) = [ Quilzi) , (1.36)

i=1

and the transition probability Q(y;|z;) is ¢ independent.

Example 1.16 Binary symmetric channel (BSC). The input 2; and the
output y; are both in {0, 1}. The channel is characterized by one number, the
probability p that an input bit is transmitted as the opposite bit. It is customary
to represent it by the diagram of Fig. 1.4.

{fig_channel}



16 INTRODUCTION TO INFORMATION THEORY
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Fi1G. 1.4. Three communication channels. Left: the binary symmetric channel.
An error in the transmission, in which the output bit is the opposite of the input
one, occurs with probability p. Middle: the binary erasure channel. An error in
the transmission, signaled by the output e, occurs with probability p. Right: the
7 channel. An error occurs with probability p whenever a 1 is transmitted. {fig_bsc}

Example 1.17 Binary erasure channel (BEC). In this case some of the
input bits are erased instead of being corrupted: z; is still in {0,1}, but y;
now belongs to {0,1,e}, where e means erased. In the symmetric case, this
channel is described by a single number, the probability p that a bit is erased,
see Fig. 1.4.

Example 1.18 Z channel. In this case the output alphabet is again {0,1}.
Moreover, a 0 is always transmitted correctly, while a 1 becomes a 0 with
probability p. The name of this channel come from its graphical representation,
see Fig. 1.4.

A very important characteristics of a channel is the channel capacity C. It
is defined in terms of the mutual entropy Ixy of the variables X (the bit which
was sent) and Y (the signal which was received), through:

{capadef} C = max [ xy = max Z p(x,y)log, pp(L y) (1.37)

) @) Sy (@)p(y)

We recall that I measures the reduction on the uncertainty of x due to the
knowledge of y. The capacity C' gives a measure of how faithful a channel can
be: If the output of the channel is pure noise, x and y are uncorrelated and
C' = 0. At the other extreme if y = f(z) is known for sure, given z, then
C = maxy,(y)} H(p) = 1 bit. The interest of the capacity will become clear in
section 1.6.3 with Shannon’s coding theorem which shows that C' characterizes
the amount of information which can be transmitted faithfully in a channel.
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Example 1.19 Consider a binary symmetric channel with flip probability p.
Let us call ¢ the probability that the source sends x = 0, and 1 — ¢ the prob-
ability of z = 1. It is easy to show that the mutual information in Eq. (1.37)
is maximized when zeros and ones are transmitted with equal probability (i.e.
when ¢ = 1/2).

Using the expression (1.37), we get, C' = 1 — H(p) bits, where H(p) is the
entropy of Bernouilli’s process with parameter p (plotted in Fig. 1.1).

Example 1.20 Consider now the binary erasure channel with error probabil-
ity p. The same argument as above applies. It is therefore easy to get C' = 1—p.

Exercise 1.7 Compute the capacity of the Z channel.

1.6.2  Error correcting codes

The only ingredient which we still need to specify in order to have a complete
definition of the channel coding problem, is the behavior of the information
source. We shall assume it to produce a sequence of uncorrelated unbiased bits.
This may seem at first a very crude model for any real information source.
Surprisingly, Shannon’s source-channel separation theorem assures that there is
indeed no loss of generality in treating this case.

The sequence of bits produced by the source is divided in blocks my, mo, ms, . . .

of length M. The encoding is a mapping from {0,1}* > m to {0,1}", with
N > M. Each possible M-bit message m is mapped to a codeword z(m) which
is a point in the N-dimensional unit hypercube. The codeword length N is also
called the blocklength. There are 2™ codewords, and the set of all possible
codewords is called the codebook. When the message is transmitted, the code-
word z is corrupted to y € YV with probability Q(y|z) = Hf\[:l Q(yilz;). The
output alphabet ) depends on the channel. The decoding is a mapping from
YN to {0,1}M which takes the received message y € YV and maps it to one of
the possible original messages m’ = d(y) € {0,1}M.

An error correcting code is defined by the set of two functions, the encod-
ing z(m) and the decoding d(y). The ratio

M
R= N (1.38)
of the original number of bits to the transmitted number of bits is called the rate
of the code. The rate is a measure of the redundancy of the code. The smaller
the rate, the more redundancy is added to the code, and the more errors one
should be able to correct.
The block error probability of a code on the input message m, denoted
by Pg(m), is given by the probability that the decoded messages differs from the
one which was sent:

{sec:ECC}
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Pp(m) =Y Qylz(m)) L(d(y) #m) . (1.39)

Knowing thee probability for each possible transmitted message is an exceedingly
detailed characterization of the code performances. One can therefore introduce
a maximal block error probability as

Pglax = mer?gi(}M PB (m) . (140)

This corresponds to characterizing the code by its ‘worst case’ performances.
A more optimistic point of view consists in averaging over the input messages.
Since we assumed all of them to be equiprobable, we introduce the average
block error probability as

PEVEQLI S Py(m). (1.41)

me{0,1}M

Since this is a very common figure of merit for error correcting codes, we shall call
it block error probability and use the symbol Pg without further specification
hereafter.
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Example 1.21 Repetition code. Consider a BSC which transmits a wrong
bit with probability p. A simple code consists in repeating k times each bit,
with £ odd. Formally we have M = 1, N = k and

2(0) = 000...00, (1.42)
=
k
z(1) =111...11 (1.43)
—_—
k
For instance with k& = 3, the original stream 0110001 is encoded as

00011111100000 0000111. A possible decoder consists in parsing the received
sequence in groups of k bits, and finding the message m’ from a majority
rule among the £k bits. In our example with & = 3, if the received group
of three bits is 111 or 110 or any permutation, the corresponding bit is as-
signed to 1, otherwise it is assigned to 0. For instance if the channel output is
000101111011000010111, the decoding gives 0111001.

This k = 3 repetition code has rate R = M/N = 1/3. It is a simple exercise
to see that the block error probability is Pg = p* + 3p?(1 — p) independently
of the information bit.

Clearly the k = 3 repetition code is able to correct mistakes induced from
the transmission only when there is at most one mistake per group of three
bits. Therefore the block error probability stays finite at any nonzero value of
the noise. In order to improve the performances of these codes, k must increase.
The error probability for a general & is

Pp = Ek: (f)(l—p)’“”ﬂ. (1.44)

r=[k/2]

Notice that for any finite k£, p > 0 it stays finite. In order to have Pg — 0
we must consider k& — oo. Since the rate is R = 1/k, the price to pay for a
vanishing block error probability is a vanishing communication rate!

Happily enough much better codes exist as we will see below.

1.6.3 The channel coding theorem

Consider a communication device in which the channel capacity (1.37) is C. In
his seminal 1948 paper, Shannon proved the following theorem.

Theorem 1.22 For every rate R < C, there exists a sequence of codes {Cn},
of blocklength N, rate Ry, and block error probability Pg n, such that Ry — R
and Pg.y — 0 as N — oo. Conversely, if for a sequence of codes {Cn}, one has
Ry — R and Py — 0 as N — oo, then R < C.

In practice, for long messages (i.e. large N), reliable communication is possible
if and only if the communication rate stays below capacity. We shall not give the

{sec:channeltheorem}

{theorem: Shannon_channel}
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proof here but differ it to Chapters 6 and ???. Here we keep to some qualitative
comments and provide the intuitive idea underlying this result.

First of all, the result is rather surprising when one meets it for the first
time. As we saw on the example of repetition codes above, simple minded codes
typically have a finite error probability, for any non-vanishing noise strength.
Shannon’s theorem establishes that it is possible to achieve zero error probability,
while keeping the communication rate finite.

One can get an intuitive understanding of the role of the capacity through a
qualitative reasoning, which uses the fact that a random variable with entropy
H ‘typically’ takes 2 values. For a given codeword z(m) € {0,1}", the channel

output y is a random variable with an entropy H,, = NHy,. There exist of
2NH

order vle such outputs. For a perfect decoding, one needs a decoding function
d(y) that maps each of them to the original message m. Globally, the typical
number of possible outputs is 2V Hv therefore one can send at most 2N (Hv—Hyiz)
codewords. In order to have zero maximal error probability, one needs to be able

to send all the 2 = 2NF codewords. This is possible only if R < H,-H,,<C.

Notes

There are many textbooks introducing to probability and to information theory.
A standard probability textbook is the one of Feller (Feller, 1968). The original
Shannon paper (Shannon, 1948) is universally recognized as the foundation of
information theory. A very nice modern introduction to the subject is the book
by Cover and Thomas (Cover and Thomas, 1991). The reader may find there a
description of Huffman codes which did not treat in the present Chapter, as well
as more advanced topics in source coding.

We did not show that the six properties listed in Sec. 1.2 provide in fact an
alternative (axiomatic) definition of entropy. The interested reader is referred to
(Csiszér and Korner, 1981). An advanced information theory book with much
space devoted to coding theory is (Gallager, 1968). The recent (and very rich)
book by MacKay (MacKay, 2002) discusses the relations with statistical inference
and machine learning.

The information-theoretic definition of entropy has been used in many con-
texts. It can be taken as a founding concept in statistical mechanics. Such an
approach is discussed in (Balian, 1992).
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STATISTICAL PHYSICS AND PROBABILITY THEORY

One of the greatest achievement of science has been to realize that matter is
made out of a small number of simple elementary components. This result seems
to be in striking contrast with our experience. Both at a simply perceptual level
and with more refined scientific experience, we come in touch with an ever-
growing variety of states of the matter with disparate properties. The ambitious
purpose of statistical physics (and, more generally, of a large branch of condensed
matter physics) is to understand this variety. It aims at explaining how complex
behaviors can emerge when large numbers of identical elementary components
are allowed to interact.

We have, for instance, experience of water in three different states (solid,
liquid and gaseous). Water molecules and their interactions do not change when
passing from one state to the other. Understanding how the same interactions
can result in qualitatively different macroscopic states, and what rules the change
of state, is a central topic of statistical physics.

The foundations of statistical physics rely on two important steps. The first
one consists in passing form the deterministic laws of physics, like Newton’s law,
to a probabilistic description. The idea is that a precise knowledge of the motion
of each molecule in a macroscopic system is inessential to the understanding of
the system as a whole: instead, one can postulate that the microscopic dynam-
ics, because of its chaoticity, allows for a purely probabilistic description. The
detailed justification of this basic step has been achieved only in a small num-
ber of concrete cases. Here we shall bypass any attempt at such a justification:
we directly adopt a purely probabilistic point of view, as a basic postulate of
statistical physics.

The second step starts from the probabilistic description and recovers deter-
minism at a macroscopic level by some sort of law of large numbers. We all know
that water boils at 100° Celsius (at atmospheric pressure) or that its density
(at 25° Celsius and atmospheric pressures) is 1gr/cm?. The regularity of these
phenomena is not related to the deterministic laws which rule the motions of
water molecule. It is instead the consequence of the fact that, because of the
large number of particles involved in any macroscopic system, the fluctuations
are “averaged out”. We shall discuss this kind of phenomena in Sec. 2.4 and,
more mathematically, in Ch. 4.

The purpose of this Chapter is to introduce the most basic concepts of this
discipline, for an audience of non-physicists with a mathematical background.
We adopt a somewhat restrictive point of view, which keeps to classical (as
opposed to quantum) statistical physics, and basically describes it as a branch
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of probability theory (Secs. 2.1 to 2.3). In Section 2.4 we focus on large systems,
and stress that the statistical physics approach becomes particularly meaningful
in this regime. Theoretical statistical physics often deal with highly idealized
mathematical models of real materials. The most interesting (and challenging)
task is in fact to understand the qualitative behavior of such systems. With this
aim, one can discard any “irrelevant” microscopic detail from the mathematical
description of the model. This modelization procedure is exemplified on the case
study of ferromagnetism through the introduction of the Ising model in Sec. 2.5.
It is fair to say that the theoretical understanding of Ising ferromagnets is quite
advanced. The situation is by far more challenging when Ising spin glasses are
considered. Section 2.6 presents a rapid preview of this fascinating subject.

2.1 The Boltzmann distribution
The basic ingredients for a probabilistic description of a physical system are:

e A space of configurations X. One should think of z € X as giving
a complete microscopic determination of the state of the system under
consideration. We are not interested in defining the most general mathe-
matical structure for X' such that a statistical physics formalism can be
constructed. Throughout this book we will in fact consider only two very
simple types of configuration spaces: (4) finite sets, and (i) smooth, com-
pact, finite-dimensional manifolds. If the system contains N ‘particles’; the
configuration space is a product space:

Av=Xx-xX. (2.1)
—_———
N
The configuration of the system has the form x = (z1,...,zy). Each co-

ordinate x; € X' is meant to represent the state (position, orientation, etc)
of one of the particles.

But for a few examples, we shall focus on configuration spaces of type (i).
We will therefore adopt a discrete-space notation for X'. The generaliza-
tion to continuous configuration spaces is in most cases intuitively clear
(although it may present some technical difficulties).

e A set of observables, which are real-valued functions on the configuration
space O : x — O(x). If X is a manifold, we shall limit ourselves to observ-
ables which are smooth functions of the configuration x. Observables are
physical quantities which can be measured through an experiment (at least
in principle).

e Among all the observables, a special role is played by the energy function
E(x). When the system is a N particle system, the energy function gen-
erally takes the form of sums of terms involving few particles. An energy
function of the form:

E(x) =) Ei(x) (2.2)



THE BOLTZMANN DISTRIBUTION 23

corresponds to a non-interacting system. An energy of the form

E(z)= Y Ei (@i, 2s,) (2.3)

11,0050k

is called a k-body interaction. In general, the energy will contain some
pieces involving k-body interactions, with k € {1,2,..., K}. An important
feature of real physical systems is that K is never a large number (usually
K =2 or 3), even when the number of particles N is very large. The same
property holds for all measurable observables. However, for the general
mathematical formulation which we will use here, the energy can be any
real valued function on X.

Once the configuration space A and the energy function are fixed, the prob-
ability pg(z) for the system to be found in the configuration z is given by the
Boltzmann distribution:

1

pa(x) = A0) e PP Z(8) = Z e P, (2.4)

zeX

The real parameter T = 1/ is the temperature (and one refers to § as the
inverse temperature)®. The normalization constant Z(f3) is called the partition
function. Notice that Eq. (2.4) defines indeed the density of the Boltzmann
distribution with respect to some reference measure. The reference measure is
usually the counting measure if X is discrete or the Lebesgue measure if X
is continuous. It is customary to denote the expectation value with respect to
Boltzmann’s measure by brackets: the expectation value (O(x)) of an observable
O(x), also called its Boltzmann average is given by:

(©) = ¥ ps(@)0(a) = 575 3 e PED0() (2)
zeX reX

3Tn most books of statistical physics, the temperature is defined as T = 1/(kg3) where
kp is a constant called Boltzmann’s constant, whose value is determined by historical reasons.
Here we adopt the simple choice kg = 1 which amounts to a special choice of the temperature
scale
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Example 2.1 One intrinsic property of elementary particles is their spin. For
‘spin 1/2’ particles, the spin o takes only two values: 0 = £1. A localized spin
1/2 particle, in which the only degree of freedom is the spin, is described by
X = {+1, -1}, and is called an Ising spin. The energy of the spin in the state
o € X in a magnetic field B is

E(c)=—-Bo (2.6)
Boltzmann’s probability of finding the spin in the state o is
1

pslo) = 720 e PE@)  7(B8) = e PP 4+ ¢PB = 2cosh(6B). (2.7)
The average value of the spin, called the magnetization is
(o) = Z pg(o) o = tanh(4B). (2.8)
oe{l,-1}

At high temperatures, T > |B|, the magnetization is small. At low temper-
atures, the magnetization its close to its maximal value, (o) = 1 if B > 0.
Section 2.5 will discuss the behaviors of many Ising spins, with some more
complicated energy functions.

Example 2.2 Some spin variables can have a larger space of possible values.
For instance a Potts spin with ¢ states takes values in X = {1,2,...,q}. In
presence of a magnetic field of intensity h pointing in direction r € {1, .., ¢},
the energy of the Potts spin is

E(o) =—Béo - (2.9)
In this case, the average value of the spin in the direction of the field is

exp(B8B)

ot = @B+ [a=1) °

(2.10)

{eq:Ising_energy_1spin}

{eq:boltz_spin}

{eq:mag_tanh_beta_B}
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Example 2.3 Let us consider a single water molecule inside a closed container,
for instance, inside a bottle. A water molecule H5O is already a complicated
object. In a first approximation, we can neglect its structure and model the
molecule as a point inside the bottle. The space of configurations reduces then
to:

X = BOTTLE C R?, (2.11)

where we denoted by BOTTLE the region of R? delimited by the container. Notice
that this description is not very accurate at a microscopic level.

The description of the precise form of the bottle can be quite complex. On
the other hand, it is a good approximation to assume that all positions of the
molecule are equiprobable: the energy is independent of the particle’s position
2 € BOTTLE. One has then:

plx)=—, Z=I¥], (2.12)

and the Boltzmann average of the particle’s position, (x), is the barycentre of
the bottle.
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Example 2.4 In assuming that all the configurations of the previous example
are equiprobable, we neglected the effect of gravity on the water molecule. In
the presence of gravity our water molecule at position z has an energy:

E(x) = whe(z), (2.13)

where he(x) is the height corresponding to the position z and w is a positive
constant, determined by terrestrial attraction, which is proportional to the
mass of the molecule. Given two positions  and y in the bottle, the ratio of
the probabilities to find the particle at these positions is

Pp ZU) _ exp{—ﬂw[he(l') _ he(y)]} (2.14)

For a water molecule at a room temperature of 20 degrees Celsius (7" = 293
degrees Kelvin), one has fw ~ 7 x 107> m~!. Given a point x at the bottom of
the bottle and y at a height of 20 cm, the probability to find a water molecule
‘near’ z is approximatively 1.000014 times larger than the probability to find it
‘near’ y. For a tobacco-mosaic virus, which is about 2 x 10° times heavier than
a water molecule, the ratio is pg(z)/ps(y) ~ 1.4 x 1012 which is very large. For
a grain of sand the ratio is so large that one never observes it floating around y.
Notice that, while these ratios of probability densities are easy to compute, the
partition function and therefore the absolute values of the probability densities
can be much more complicated to estimate, depending on the shape of the
bottle.

Example 2.5 In many important cases, we are given the space of configura-
tions X and a stochastic dynamics defined on it. The most interesting probabil-
ity distribution for such a system is the stationary state ps;(z) (we assume that
it is unique). For sake of simplicity, we can consider a finite space X and a dis-
crete time Markov chain with transition probabilities {w(z — y)} (in Chapter
4 we shall recall some basic definitions concerning Markov chains). It happens
sometimes that the transition rates satisfy, for any couple of configurations
z,y € X, the relation

f@w(z —y) = fy)wly — ), (2.15)

for some positive function f(z). As we shall see in Chapter 4, when this condi-
tion, called the detailed balance, is satisfied (together with a couple of other

technical conditions), the stationary state has the Boltzmann form (2.4) with
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Exercise 2.1 As a particular realization of the above example, consider an
8 x 8 chessboard and a special piece sitting on it. At any time step the piece
will stay still (with probability 1/2) or move randomly to one of the neighboring
positions (with probability 1/2). Does this process satisfy the condition (2.15)?
Which positions on the chessboard have lower (higher) “energy”? Compute the
partition function.

From a purely probabilistic point of view, one can wonder why one bothers
to decompose the distribution ps () into the two factors e ##(®) and 1/Z(3). Of
course the motivations for writing the Boltzmann factor e ##() in exponential
form come essentially from physics, where one knows (either exactly or within
some level of approximation) the form of the energy. This also justifies the use
of the inverse temperature 3 (after all, one could always redefine the energy
function in such a way to set § = 1).

However, it is important to stress that, even if we adopt a mathematical view-
point, and if we are interested in a particular distribution p(z) which corresponds
to a particular value of the temperature, it is often illuminating to embed it into
a one-parameter family as is done in the Boltzmann expression (2.4). Indeed,
(2.4) interpolates smoothly between several interesting situations. As § — 0
(high-temperature limit), one recovers the flat probability distribution

1
I = 2.1
Him () = T (2.16)

Both the probabilities pg(x) and the observables expectation values (O(zx)) can
be expressed as convergent Taylor expansions around § = 0. For small 3 the
Boltzmann distribution can be thought as a “softening” of the original one.

In the limit 8 — oo (low-temperature limit), the Boltzmann distribution
concentrates over the global maxima of the original one. More precisely, one says
xo € X to be a ground state if E(xz) > E(xo) for any x € X. The minimum
value of the energy Ey = F(xy) is called the ground state energy. We will
denote the set of ground states as Xj. It is elementary to show that

1
lim r)=—1I(x € Apy), 2.17
Jim ps() = o K € 40 (27)
where I(z € X)) =1 if x € A and I(z € Ay) = 0 otherwise. The above behavior
is summarized in physicists jargon by saying that, at low temperature, “low
energy configurations dominate” the behavior of the system.

2.2 Thermodynamic potentials

Several properties of the Boltzmann distribution (2.4) are conveniently summa-
rized through the thermodynamic potentials. These are functions of the temper-
ature 1/3 and of the various parameters defining the energy E(x). The most
important thermodynamic potential is the free energy:

{se:Potentials}
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F(8) =~ og 2(9), (215)
where Z(3) is the partition function already defined in Eq. (2.4). The factor —1/3
in Eq. (2.18) is due essentially to historical reasons. In calculations it is sometimes
more convenient to use the free entropy* ®(3) = —3F () = log Z(3).
Two more thermodynamic potentials are derived from the free energy: the
internal energy U(f3) and the canonical entropy S(3):

9 OF(8)
= —(BF S(B) = B> ——. 2.19
FOF®). S0 =5 (219)
By direct computation one obtains the following identities concerning the po-
tentials defined so far:

U(s)

F(B) = U(B) - %sm - f%@@ , (2.20)
U(8) = (E(). (2.21)
$(8) = — 3" pa(a) logps (@) (2.22)
82 2 2
-5 F () = (BGP) - (B@)*. (2.23)

Equation (2.22) can be rephrased by saying that the canonical entropy is the
Shannon entropy of the Boltzmann distribution, as we defined it in Ch. 1. It
implies that S(3) > 0. Equation (2.23) implies that the free entropy is a con-
vex function of the temperature. Finally, Eq. (2.21) justifies the name “internal
energy” for U(f3).

In order to have some intuition of the content of these definitions, let us
reconsider the high- and low-temperature limits already treated in the previous
Section. In the high-temperature limit, 8 — 0, one finds

F(g) = —% log | %] + (E(2))o + ©(F) (2.24)
U(8) = (Ex))o +O(8) (2.25)
S(8) = log |X| + ©(3) (2.26)

(The symbol © means ’of the order of’; the precise definition is given in Appendix
). The interpretation of these formulae is straightforward. At high temperature
the system can be found in any possible configuration with similar probabilities
(the probabilities being exactly equal when S = 0). The entropy counts the
number of possible configurations. The internal energy is just the average value
of the energy over the configurations with flat probability distribution.

4Unlike the other potentials, there is no universally accepted name for ®(3); because this
potential is very useful, we adopt for it the name ‘free entropy’



THERMODYNAMIC POTENTIALS 29

0 05 1 15 2 25 3

T
Fig. 2.1. Thermodynamic potentials for a two-level system with ¢; = —1,

€2 = +1 as a function of the temperature T' = 1/4.

While the high temperature expansions (2.24)—(2.26) have the same form
both for a discrete and a continuous configuration space X’ in the low tempera-
ture case, we must be more careful. If X' is finite we can meaningfully define the
energy gap AE > 0 as follows (recall that we denoted by Ey the ground-state

energy)

AE =min{E(y) — Ey : y € X\Xy}. (2.27)

With this definition we get

F(B) = Bo — 5 log| %] + ©(c#2F), (2.28)
E(B) = Eo+ (e 727, (2.29)
S(B) = log |Xy| + ©(e PAEY . (2.30)

The interpretation is that, at low temperature, the system is found with equal
probability in any of the ground states, and nowhere else. Once again the entropy
counts the number of available configurations and the internal energy is the
average of their energies (which coincide with the ground state).

{fig:twolevel}
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Exercise 2.2 A two level system. This is the simplest non-trivial example:
X = {1,2}, E(1) = &1, E(2) = €. Without loss of generality we assume
€1 < €. It can be used as a mathematical model for many physical systems,
like the spin 1/2 particle discussed above.

Derive the following results for the thermodynamic potentials (A = es — €1
is the energy gap):

F(8) = &1 %log(l +efBy, (2.31)
e=PA
U(B) = e+ T—=pa (2.32)
e PA
S(B) = mﬁA +log(1 +e7P2). (2.33)

The behavior of these functions is presented in Fig. 2.1. The reader can work
out the asymptotics, and check the general high and low temperature behaviors
given above.



THERMODYNAMIC POTENTIALS 31

Exercise 2.3 We come back to the example of the previous section: one water
molecule, modeled as a point, in a bottle. Moreover, we consider the case of a
cylindric bottle of base B C R? (surface |B|) and height d.

Using the energy function (2.13), derive the following explicit expressions
for the thermodynamic potentials:

1 | = @b

1

F(B) = —ElogIBl - Blog B (2.34)
1 wd

UB) = B ePwd_1 (2.35)

S(B) =log|Bd| +1 — eﬂfd% —log (%) : (2.36)

Notice that the internal energy formula can be used to compute the average
height of the molecule (he(x)) = U(8)/w. This is a consequence of the defini-
tion of the energy, cf. Eq. (2.13) and of Eq. (2.21). Plugging in the correct w
constant, one may find that the average height descends below 49.99% of the
bottle height d = 20 cm only when the temperature is below 3.2° K.

Using the expressions (2.34)—(2.36) one obtains the low-temperature expan-
sions for the same quantities:

_ 1, (1Bl o—bud
F(8) = ~glog (1) + O, (2.37)
U(B) = 5+ 6, (2.38)
S(B) = log (';';) + O(e Pl (2.39)

In this case X is continuous, and the energy has no gap. But these results
can be understood as follows: at low temperature the molecule is confined to
a layer of height of order 1/(fw) above the bottom of the bottle. It occupies
therefore a volume of size |B|/(Bw). Its entropy is approximatively given by
the logarithm of such a volume.
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Exercise 2.4 Let us reconsider the above example and assume the bottle to
have a different shape, for instance a sphere of radius R. In this case it is
difficult to compute explicit expressions for the thermodynamic potentials but
one can easily compute the low-temperature expansions. For the entropy one
gets at large (:

2me?R
22

S(B) = log < ) +0(1/p8). (2.40)
The reader should try understand the difference between this result and Eq.
(2.39) and provide an intuitive explanation as in the previous example. Physi-
cists say that the low-temperature thermodynamic potentials reveal the “low-
energy structure” of the system.

2.3 The fluctuation dissipation relations

It often happens that the energy function depends smoothly upon some real
parameters. They can be related to the experimental conditions under which
a physical system is studied, or to some fundamental physical quantity. For
instance, the energy of a water molecule in the gravitational field, cf. Eq. (2.13),
depends upon the weight w of the molecule itself. Although this is a constant
number in the physical world, it is useful, in the theoretical treatment, to consider
it as an adjustable parameter.

It is therefore interesting to consider an energy function E(z) which depends
smoothly upon some parameter A and admit the following Taylor expansion in
the neighborhood of A = A\g:

E)\(x) = E,\O(l‘) + (/\ — /\0) 8£

D) (z) + O((A = Xo)?). (2.41)

Ao

The dependence of the free energy and of other thermodynamic potentials
upon A in the neighborhood of )\ is easily related to the explicit dependence of
the energy function itself. Let us consider the partition function, and expand it
to first order in A — Ag:

Z(\) =) exp (ﬂ

100

oE
Exg(@)+ (A= Xo) 55

Ao

() + O((A = Ao)z)D

= Z(No)

Ao

)o+ O((A = Ao)Q)] (2.42)

where we denoted by ()¢ the expectation with respect to the Boltzmann distri-
bution at A = \g.
This shows that the free entropy behaves as:
0P oF
—| =-8(=
oA 2NN

)05 (2.43)
Ao 0
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One can also consider the A dependence of the expectation value of a generic
observable A(xz). Using again the Taylor expansion one finds that

A(A)x OF

o |, ~ PHAaR,

o . (2.44)

0

where we denoted by (A; B) the connected correlation function: (4; B) =
(AB) — (A)(B). A particular example of this relation was given in Eq. (2.23).

The result (2.44) has important practical consequences and many general-
izations. Imagine you have an experimental apparatus that allows you to tune
some parameter A (for instance the pressure of a gas, or the magnetic or electric
field acting on some material) and to monitor the value of the observable A(x)
(the volume of the gas, the polarization or magnetization of the material). The
quantity on the left-hand side of Eq. (2.44) is the response of the system to an
infinitesimal variation of the tunable parameter. On the right-hand side, we find
some correlation function within the “unperturbed” system. One possible appli-
cation is to measure correlations within a system by monitoring its response to
an external perturbation. Such a relation between a correlation and a response
is called a fluctuation dissipation relation.

2.4 The thermodynamic limit

The main purpose of statistical physics is to understand the macroscopic be-
havior of a large number, N > 1, of simple components (atoms, molecules, etc)
when they are brought together.

To be concrete, let us consider a few drops of water in a bottle. A configuration
of the system is given by the positions and orientations of all the HoO molecules
inside the bottle. In this case X is the set of positions and orientations of a single
molecule, and N is typically of order 10?3 (more precisely 18 gr of water contain
approximatively 6102 molecules). The sheer magnitude of such a number leads
physicists to focus on the N — oo limit, also called the thermodynamic limit.

As shown by the examples below, for large N the thermodynamic potentials
are often proportional to N. One is thus lead to introduce the intensive ther-
modynamic potentials as follows. Let us denote by Fx(3), Un(53), Sn(5) the
free energy, internal energy and canonical entropy for a system with N ‘particles’.
The free energy density is defined by

F(8) = Jim Fx(8)/N, (2.45)

if the limit exists °. One defines analogously the energy density u(3) and the
entropy density s(3).

The free energy Fn(f3), is, quite generally, an analytic function of 8 in a
neighborhood of the real 8 axis. This is a consequence of the fact that Z(8

5The limit usually exist, at least if the forces between particles decrease fast enough at large
inter-particle distances

{se:Thermodynamic}
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is analytic throughout the entire 8 plane, and strictly positive for real 3’s. A
question of great interest is whether analyticity is preserved in the thermody-
namic limit (2.45), under the assumption that the limit exists. Whenever the free
energy density f(f) is non-analytic, one says that a phase transition occurs.
Since the free entropy density ¢(3) = —Ff(8) is convex, the free energy density
is necessarily continuous whenever it exists.

In the simplest cases the non-analyticities occur at isolated points. Let (. be
such a point. Two particular type of singularities occur frequently:

e The free energy density is continuous, but its derivative with respect to
[ is discontinuous at (.. This singularity is named a first order phase
transition.

e The free energy and its first derivative are continuous, but the second
derivative is discontinuous at (.. This is called a second order phase
transition.

Higher order phase transitions can be defined as well on the same line.

Apart from being interesting mathematical phenomena, phase transitions
correspond to qualitative changes in the underlying physical system. For instance
the transition from water to vapor at 100°C at normal atmospheric pressure is
modeled mathematically as a first order phase transition in the above sense. A
great part of this book will be devoted to the study of phase transitions in many
different systems, where the interacting ‘particles’ can be very diverse objects
like information bits or occupation numbers on the vertices of a graph.

When N grows, the volume of the configuration space increases exponentially:
|Xn| = |X|N. Of course, not all the configurations are equally important under
the Boltzmann distribution: lowest energy configurations have greater proba-
bility. What is important is therefore the number of configurations at a given
energy. This information is encoded in the energy spectrum of the system:

NA(E)=[Qa(E)];  Qa(B)={z€ Xy : E<E(z)<E+A}. (2.46)

In many systems of interest, the energy spectrum diverges exponentially as N —
o0, if the energy is scaled linearly with N. More precisely, there exist a function
s(e) such that, given two fixed numbers e and § > 0,

1
lim —logNys(Ne) = sup s(e). (2.47)
N—oco N e’ €le,e+0]
The function s(e) is called microcanonical entropy density. The statement
(2.47) is often rewritten in the more compact form:

E
NA(E) =n exp {Ns (N)} . (2.48)
The notation Ay =x By is used throughout the book to denote that two quan-
tities Ax and By, which normally behave exponentially in N, are equal to lead-
ing exponential order when N is large, meaning: limy_.(1/N)log(An/Bn) =
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0. We often use = without index when there is no ambiguity on what the large
variable N is.

The microcanonical entropy density s(e) conveys a great amount of infor-
mation about the system. Furthermore it is directly related to the intensive
thermodynamic potentials through a fundamental relation:

Proposition 2.6 If the microcanonical entropy density (2.47) exists for any e
and if the limit in (2.47) uniform in e, then the free entropy density (2.45) exists
and is given by:

o(B) = méix[s(e) — fe]. (2.49)

If the mazimum of the s(e)— PBe is unique, then the internal energy density equals
arg max([s(e) — fe].

Proof: For a rigorous proof of this statement, we refer the reader to (Galavotti,
1999; Ruelle, 1999). The basic idea is to write the partition function as follows

Zn(B) = Z Na(kA)e PA = /de exp{Ns(e) — Nfe}, (2.50)

k=—o0

and to evaluate the last integral by saddle point. [J.

Example 2.7 Let us consider N identical two-level systems: Xy = X' x---x X,
with X = {1,2}. We take the energy to be the sum of single-systems energies:
E(z) = Egingle(1) + - - - + Egingle(Tn), With 2; € X'. As in the previous Section
we set Egingle(1) = €1, and Egingle(2) = €2 > €1 and A = €3 — €7.

The energy spectrum of this model is quite simple. For any energy E =
Ney +nA, there are (]T\L[) configurations x with E(x) = E. Therefore, using the
definition (2.47), we get

e — €1
= . 2.51
()= (52) 251)
Equation (2.49) can now be used to get

ﬂm:q—%mau«”%, (2.52)

which agrees with the result obtained directly from the definition (2.18).

The great attention paid by physicists to the thermodynamic limit is ex-
tremely well justified by the huge number of degrees of freedom involved in a
macroscopic piece of matter. Let us stress that the interest of the thermodynamic
limit is more general than these huge numbers might suggest. First of all, it often
happens that fairly small systems are well approximated by the thermodynamic
limit. This is extremely important for numerical simulations of physical systems:

{prop:micro_cano}
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Fia. 2.2. A configuration of a two dimensional Ising model with L = 5. There
is an Ising spin o; on each vertex i, shown by an arrow pointing up if o; = +1,
pointing down if o; = —1. The energy (2.53) is given by the sum of two types of
contributions: (i) A term —o;0; for each edge (ij) of the graph, such that the
energy is minimized when the two neighboring spins o; and o; point in the same
direction; (i¢) A term —Bo; for each site i, due to the coupling to an external
{fig:ising_def} magnetic field. The configuration depicted here has energy —8 + 9B

one cannot of course simulate 10?> molecules on a computer! Even the cases in
which the thermodynamic limit is not a good approximation are often fruitfully
analyzed as wiolations of this limit. Finally, the insight gained in analyzing the
N — oo limit is always crucial in understanding moderate-size systems.

{se:ising) 2.5 Ferromagnets and Ising models

Magnetic materials contain molecules with a magnetic moment, a three-dimensional
vector which tends to align with the magnetic field felt by the molecule. More-
over, the magnetic moments of two distinct molecules interact with each other.
Quantum mechanics plays an important role in magnetism. Because of its effects,
the space of possible configurations of a magnetic moment becomes discrete. It
is also at the origin of the so-called exchange interaction between magnetic mo-
ments. In many materials, the effect of the exchange interactions are such that
the energy is lower when two moments align. While the behavior of a single
magnetic moment in an external field is qualitatively simple, when we consider a
bunch of interacting moments, the problem is much richer, and exhibits remark-
able collective phenomena.

A simple mathematical model for such materials is the Ising model. It de-
scribes the magnetic moments by Ising spins localized at the vertices of a certain
region of the d-dimensional cubic lattice. To keep things simple, let us consider
a region L which is a cube of side L: L = {1,..., L}%. On each site i € L there
is an Ising spin o; € {+1, —1}.
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A configuration ¢ = (oy...0n) of the system is given by assigning the
values of all the spins in the system. Therefore the space of configurations
Xn = {+1,—1}" has the form (2.1) with X = {+1,—1} and N = L.

The definition of ferromagnetic Ising models is completed by the definition
of the energy function. A configuration ¢ has an energy:

E(o)=— ZO’Z'JJ' - BZJZ- ) (2.53)

(i7) el

where the sum over (ij) runs over all the (unordered) couples of sites 7,5 € L
which are nearest neighbors. The real number B measures the applied external
magnetic field.

Determining the free energy density f(3) in the thermodynamic limit for
this model is a non-trivial task. The model was invented by Wilhem Lenz in the
early twenties, who assigned the task of analyzing it to his student Ernst Ising.
In his dissertation thesis (1924) Ising solved the d = 1 case and showed the
absence of phase transitions. In 1948, Lars Onsager brilliantly solved the d = 2
case, exhibiting the first soluble “finite-dimensional” model with a second order
phase transition. In higher dimensions the problem is unsolved although many
important features of the solution are well understood.

Before embarking in any calculation, let us discuss what we expect to be
the qualitative properties of this model. Two limiting cases are easily under-
stood. At infinite temperature, § = 0, the energy (2.53) no longer matters and
the Boltzmann distribution weights all the configurations with the same factor
2=N_ We have therefore an assembly of completely independent spins. At zero
temperature, § — oo, the Boltzmann distribution concentrates onto the ground
state(s). If there is no magnetic field, h = 0, there are two degenerate ground
states: the configurations ¢(*) with all the spins pointing up, o; = +1, and the
configuration ¢(=) with all the spins pointing down, o; = —1. If the magnetic
field is set to some non-zero value, one of the two configuration dominates: ¢(*)
for h > 0 and o) for h < 0.

Notice that the reaction of the system to the external magnetic field h is
quite different in the two cases. To see this fact, define a “rescaled” magnetic
field x = Sh and take the limits 8 — 0 or § — oo keeping x fixed. The expected
value of any spin in L, in the two limits, is:

[ tanh(z) for 5 —0
(oi) = {tanh(Nm) for § — o0’ (2.54)

Each spin reacts independently for 8 — 0. On the contrary, they react as a whole
as § — oo: one says that the response is cooperative.

A useful quantity for describing the response of the system to the external
field is the average magnetization:

My (5, B) = 3o (255)

i€l
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Because of the symmetry between the up and down directions, My (3, B) is an
odd function of B. In particular My (3,0) = 0. A cooperative response can be
evidenced by considering the spontaneous magnetization

My(8) = Jim lim My(5,B). (2.56)

It is important to understand that a non-zero spontaneous magnetization can
appear only in an infinite system: the order of the limits in Eq. (2.56) is crucial.
Our analysis so far has shown that the spontaneous magnetization exists at 3 =
00: M, (00) = 1. On the other hand M, (0) = 0. It can be shown that actually
the spontaneous magnetization M (/) is always zero in a high temperature phase
B < Bc(d) (such a phase is called paramagnetic). In one dimension (d = 1), we
will show below that (.(1) = co. The spontaneous magnetization is always zero,
except at zero temperature (3 = 00): one speaks of a zero temperature phase
transition. In dimensions d > 2, (3.(d) is finite, and M () becomes non zero in
the so called ferromagnetic phase 3 > [.: a phase transition takes place at
B = Bc. The temperature T, = 1/, is called the critical temperature. In the
following we shall discuss the d = 1 case, and a variant of the model, called the
Curie Weiss model, where each spin interacts with all the other spins: this is a
solvable model which exhibits a finite temperature phase transition.
- OneDimensionallsing} 2.5.1 The one-dimensional case

The d = 1 case has the advantage of being simple to solve. We want to com-

pute the partition function (2.4) for a system of N spins with energy E(o) =

— SN oioi — BYY 0i. We will use a method called the transfer matrix

method, which belongs to the general ‘dynamic programming’ strategy familiar

to computer scientists.

We introduce the partial partition function where the configurations of all

spins o1,. .., 0, have been summed over, at fixed op,1:
P P
2p(B, B, 0pt1) = Z exp ﬂZoiai_H + 3B Zoi . (2.57)
01,.-,0p =1 =1

The partition function (2.4) is given by Zn (5, B) = Y
Obviously z, satisfies the recursion relation

ZN—l(/67B7UN)eXp(ﬁBUN)‘

ON

2p(0, B, op11) = Z T(opt1,0p)2p-1(8, B, 0op) (2.58)
op==+1

where we define the so-called transfer matrix T'(o,0’) = exp [Boc’ + 3B0o’],

which is a 2 x 2 matrix:
of+BB  ,—B—BB
T: e_B"FﬁB eﬁ_ﬁB (259)
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Introducing the two component vectors ¢y, = (ef();rz(—ﬂﬁB B))) and YR = ( }),

and the standard scalar product between such vectors (a,b) = a1by + agbs, the
partition function can be written in matrix form:

Zn(B,B) = (Y, TV " 'r) . (2.60)

Let us call A1, Ay the eigenvalues of T', and 1)1, 15 the corresponding eigenvectors.
Since 11,19 can be chosen to be linearly independent, g can be decomposed
as Yr = u1¥1 + ust)s. The partition function is then expressed as:

ZN(/67B) = U1 (wLawl) A{V_l + u2 (¢L7¢2) )\év_l . (261)

The diagonalization of the matrix 7" gives:

A2 = e” cosh(BB) + \/ 20 sinh® BB + ¢=268 (2.62)

For 3 finite, in the large N limit, the partition function is dominated by the
largest eigenvalue A1, and the free entropy density is given by ¢ = log \;.

¢(8,B) = log [eﬂ cosh(8B) + \/625 sinh?® BB 4 =28 . (2.63)

Using the same transfer matrix technique we can compute expectation values
of observables. For instance the expected value of a given spin is

1 . )
(i) = Zn(B.B) (Yo, T 16TV "ym), (2.64)

where ¢ is the following matrix:

5= ((1) _01) . (2.65)

Averaging over the position ¢, one can compute the average magnetization My (8, B).
In the thermodynamic limit we get
sinh 6B _10¢

VsinhZ gh + ¢4 BOB

Both the free energy and the average magnetization turn out to be analytic
functions of g and h for 8 < oco. In particular the spontaneous magnetization
vanishes at any non-zero temperature:

(8,B). (2.66)

lim My(3,B) =
N —o00

M,(3)=0, VB<o. (2.67)

In Fig. 2.3 we plot the average magnetization M (5, B) = limy_.. My (0, B) as
a function of the applied magnetic field A for various values of the temperature
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FiGg. 2.3. The average magnetization of the one dimensional Ising model, as a
function of the magnetic field B, at inverse temperatures 5 = 0.5,1,1.5,2 (from
bottom to top)

(. The curves become steeper and steeper as 3 increases. This statement can
be made more quantitative by computing the susceptibility associated to the
average magnetization:

() = SHE.0) = 52 (2.69)

This result can be interpreted as follows. A single spin in a field has sus-
ceptibility x(8) = (. If we consider N spins constrained to take the the same
value, the corresponding susceptibility will be N3, as in Eq (2.54). In the present
case the system behaves as if the spins were blocked into groups of x(8)/( spins
each. The spins in each group are constrained to take the same value, while spins
belonging to different blocks are independent.

This qualitative interpretation receives further support by computing a cor-
relation function. For h = 0 and 0N < i < j < (1 — )N, one finds, at large
N:

(0i0j) = e71P7I1/E0) L @(emaN) | (2.69)

with £(8) = —1/logtanh 5. Notice that £(8) gives the typical distance below
which two spins in the system are well correlated. For this reason it is usually
called the correlation length of the model. This correlation length increases
when the temperature decreases: spins become correlated at larger and larger
distances. The result (2.69) is clearly consistent with our interpretation of the
susceptibility. In particular, as 3 — oo, £(3) ~ €28 /2 and x(8) ~ 26£(3).

The connection between correlation length and susceptibility is very general
and can be understood as a consequence of the fluctuation-dissipation theorem
(2.44):

{fig:isingld_mag}
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() = 5N<<11r§;‘”> | (11V§;0>>

N N
= % Z (05 0j) = % Z (0i05) (2.70)
ig=1 =1

where the last equality comes from the fact that (o;) = 0 when B = 0. Using
(2.69), we get

“+o0
xu(B)=p Y e B L g(e V). (2.71)

i=—00

It is therefore evident that a large susceptibility must correspond to a large
correlation length.

2.5.2  The Curie-Weiss model

The exact solution of the one-dimensional model, lead Ising to think that there
couldn’t be a phase transition in any dimension. Some thirty years earlier a
qualitative theory of ferromagnetism had been put forward by Pierre Curie. Such
a theory assumed the existence of a phase transition at non-zero temperature T,
(the so-called the “Curie point”) and a non-vanishing spontaneous magnetization
for T' < T,. The dilemma was eventually solved by Onsager solution of the two-
dimensional model.

Curie theory is realized exactly within a rather abstract model: the so-called
Curie-Weiss model. We shall present it here as one of the simplest solvable
models with a finite temperature phase transition. Once again we have N Ising
spins o; € {£1} and a configuration is given by o = (01, ...,0n). However the
spins no longer sits on a d-dimensional lattice: they all interact in pairs. The
energy function, in presence of a magnetic field B, is given by:

N
E(o) = —%Zaiaj —BZJZ-, (2.72)
(i5) i=1

where the sum on (ij) runs over all the couples of spins. Notice the peculiar 1/N
scaling in front of the exchange term. The exact solution presented below shows
that this is the only choice which yields a non-trivial free-energy density in the
thermodynamic limit. This can be easily understood intuitively as follows. The
sum over (ij) involves O(N?) terms of order O(1). In order to get an energy
function scaling as N, we need to put a 1/N coefficient in front.

In adopting the energy function (2.72), we gave up the description of any
finite-dimensional geometrical structure. This is a severe simplification, but has
the advantage of making the model exactly soluble. The Curie-Weiss model is
the first example of a large family: the so-called mean-field models. We will
explore many instances of this family throughout the book.

{se:CurieWeiss}
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A possible approach to the computation of the partition function consists in
observing that the energy function can be written in terms of a simple observable,
the instantaneous magnetization:

N
m(o) = % Zai . (2.73)

Notice that this is a function of the configuration ¢, and shouldn’t be confused
with its expected value, the average magnetization, cf. Eq. (2.55). It is a “simple”
observable because it is equal to the sum of observables depending upon a single
spin.

We can write the energy of a configuration in terms of its instantaneous
magnetization:

E(o) = %N - %Nm(gf —~ NBm(a). (2.74)

This implies the following formula for the partition function
—NB/2 NG
Zn(3,B) =e > N (m) exp —-m’+ NBBm. (2.75)

where the sum over m runs over all the possible instantaneous magnetizations of
N Ising spins: m = —1+2k/N with 0 < k < N an integer number, and Ny (m) is
the number of configurations having a given instantaneous magnetization. This
is given by a binomial coefficient whose large IV behavior is given in terms of the
entropy function of a Bernoulli process:

N (m) = <N{\%) = exp [NH <“;m)] . (2.76)

To leading exponential order in IV, the partition function can thus be written
as:

+1
Zn(3,B) = / dm N #mt(mif.B) (2.77)
—1
where we have defined
1
dme(m; B, B) = —g(l —m?)+ BBm +H (—;m) . (2.78)

The integral in (2.77) is easily evaluated by Laplace method, to get the final
result for the free-energy density

#(8,B) = e Pme(m; 3, B) . (2.79)
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Fig. 2.4. Left: the function ¢n¢e(m;B,B = 0) is plotted versus m, for
8 = .7,.9,1.1,1.3 (from top to bottom). For 8 < [. = 1 there is a unique
maximum at m = 0, for § < . = 1 there are two degenerate maxima at two
symmetric values £m (3).Right: values of m which maximize ¢un¢(m; 3, B = 0)
are plotted versus . The phase transition at 8. = 1 is signaled by the bifurcation.

One can see that the maximum is obtained away from the boundary points, so
that the corresponding m must be a stationary point of ¢n¢(m; 3, B), which
satisfies the saddle-point equation 0¢.,¢(m; 3, B)/0m = 0:

m, = tanh(fm, + 6B). (2.80)

In the above derivation we were slightly sloppy at two steps: substituting the
binomial coefficient with its asymptotic form and changing the sum over m into
an integral. The mathematically minded reader is invited to show that these
passages are indeed correct.

With a bit more work the above method can be extended to expectation
values of observables. Let us consider for instance the average magnetization
M (3, B). It can be easily shown that, whenever the maximum of ¢n,¢(m; 3, B)
over m is non-degenerate,

M(8,B) = lim (m(@)) = m.(6, B) = argmax du(ms 5, B)

N —o0

(2.81)

We can now examine the implications that can be drawn from Egs. (2.79)
and (2.80). Let us first consider the B = 0 case (see Fig.2.4). The function
¢dme(m; 4,0) is symmetric in m. For 0 < 8 < 1 = [, it is also concave and
achieves its unique maximum in m.(8) = 0. For 8 > 1, m = 0 remains a
stationary point but becomes a local minimum, and the function develops two
degenerate global maxima at m(3) with m,(8) = —m_(8) > 0. These two
maxima bifurcate continuously from m = 0 at 8 = [..

A phase transition takes place at (.. Its meaning can be understood by com-
puting the expectation value of the spins. Notice that the energy function (2.72)
is symmetric a spin-flip transformation which maps ¢; — —o; for all ¢’s. There-
fore {(0;) = ((—0;)) = 0 and the average magnetization vanishes M (3,0) = 0.
On the other hand, the spontaneous magnetization, defined in (2.56), is zero

{fig:phiCW}
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in the paramagnetic phase 8 < (., and equal to my(8) in the ferromagnetic
phase § > .. The physical interpretation of this phase is the following: for any
finite N the pdf of the instantaneous magnetization m(c) has two symmetric
peaks, at m4 (83), which become sharper and sharper as N increases. Any exter-
nal perturbation which breaks the symmetry between the peaks, for instance a
small positive magnetic field B, favors one peak with respect to the other one,
and therefore the system develops a spontaneous magnetization. Notice that, in
mathematical terms, the phase transition is a property of systems in the ther-
modynamic limit N — oo.

In physical magnets the symmetry breaking can come for instance from im-
purities, subtle effects of dipolar interactions together with the shape of the
magnet, or an external magnetic field. The result is that at low enough temper-
atures some systems, the ferromagnets develop a spontaneous magnetization. If
you heat a magnet made of iron, its magnetization disappears at a critical tem-
perature T, = 1/8. = 770 degrees Celsius. The Curie Weiss model is a simple
solvable case exhibiting the phase transition.

Exercise 2.5 Compute the expansion of my(8) and of ¢(5,B = 0) near
B = [, and show that the transition is of second order. Compute the low
temperature behavior of the spontaneous magnetization.

Exercise 2.6 Inhomogeneous Ising chain. The one dimensional Ising problem
does not have a finite temperature phase transition, as long as the interactions
are short range and translational invariant. But when the couplings in the Ising
chain grow fast enough at large distance, one can have a phase transition. This
is not a very realistic model from the point of view of physics, but it is useful
as a solvable example of phase transition.

Consider a chain of Ising spins o0g,01,...,05y with energy FE(o) =
= 27]:7:_01 JnOn0ny1. Suppose that the coupling constants .J,, form a positive,

monotonously increasing sequence, growing logarithmically. More precisely, we
assume that lim,—cJ,/logn = 1. Denote by (.)+ (resp. (.)_) the expectation
value with respect to Boltzmann’s probability distribution when the spin on
is fixed to o = +1 (resp. fixed to oy = —1).
(i) Show that , for any n € {0...., N — 1}, the magnetization is (o,)+ =
N—
[T, tanh(3J,)
(44) Show that the critical inverse temperature . = 1/2 separates two
regimes, such that: for § < G, one has imy_, (05, )+ = limy 00 (0y,) - =
0; for 8 > [, one has limy_,oo{on)+ = =M (3), and M(3) > 0.

Notice that in this case, the role of the symmetry breaking field is played by
the choice of boundary condition.
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Fia. 2.5. A configuration of a two dimensional Edwards-Anderson model with
L = 5. Spins are coupled by two types of interactions: ferromagnetic (J;; = +1),
indicated by a continuous line, and antiferromagnetic (J;; = —1), indicated by
a dashed line. The energy of the configuration shown here is —14 — 7h.

2.6 The Ising spin glass

In real magnetic materials, localized magnetic moments are subject to several
sources of interactions. Apart from the exchange interaction mentioned in the
previous Section, they may interact through intermediate conduction electrons,
etc... As aresult, depending on the material which one considers, their interaction
can be either ferromagnetic (their energy is minimized when they are parallel)
or antiferromagnetic (their energy is minimized when they point opposite to
each other ). Spin glasses are a family of materials whose magnetic properties
are particularly complex. They can be produced by diluting a small fraction of
a ‘transition magnetic metal’ like manganese into a ‘noble metal’ like copper in
a ratio 1 : 100. In such an alloy, magnetic moments are localized at manganese
atoms, which are placed at random positions in a copper background. Depend-
ing on the distance of two manganese atoms, the net interaction between their
magnetic moments can be either ferromagnetic or antiferromagnetic.

The Edwards-Anderson model is a widely accepted mathematical ab-
straction of these physical systems. Once again, the basic degrees of freedom are
Ising spins o; € {—1,+1} sitting at the corners of a d-dimensional cubic lattice
L ={1,...,L}, i € L. The configuration space is therefore {—1,+1}". As in
the Ising model, the energy function reads

E(g)=—Y_ Jijoioc; —BY oy, (2.82)

(i7) i€l

where Z(i j) Tuns over each edge of the lattice. Unlike in the Ising ferromagnet,
a different coupling constant J;; is now associated to each edge (ij), and its

{fig:ea_def}
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Fia. 2.6. Four configurations of a small Edwards-Anderson model: continuous
lines indicate ferromagnetic interactions (J;; = +1), while dashed lines are for
antiferromagnetic interactions (J;; = —1). In zero magnetic field (h = 0), the
four configurations are degenerate and have energy £ = —2. The bars indicate
the unsatisfied interaction. Notice that there is no configuration with lower en-
ergy. This system is frustrated since it is impossible to satisfy simultaneously all
constraints.
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sign can be positive or negative. The interaction between spins o; and o; is
ferromagnetic if J;; > 0 and antiferromagnetic if J;; < 0.

A pictorial representation of this energy function is given in Fig. 2.5. The
Boltzmann distribution is given by

ppla) = %ﬂ) exp ﬂZJijaiﬂj +ﬂBZUi ; (2.83)

(i5) i€l

Z(B)=> exp{ B> Jijoio;+BBY oip . (2.84)

(i7) el

It is important to notice that the couplings {J;;} play a completely different role
from the spins {o;}. The couplings are just parameters involved in the definition
of the energy function, as the magnetic field B, and they are not summed over
when computing the partition function. In principle, for any particular sample
of a magnetic material, one should estimate experimentally the values of the
Ji;'s, and then compute the partition function. We could have made explicit
the dependence of the partition function and of the Boltzmann distribution on
the couplings by using notations such as Z(83, B;{Ji;}), ps,s;{J,,}(a). However,
when it is not necessary, we prefer to keep to lighter notations.

The present understanding of the Edwards-Anderson model is much poorer
than for the ferromagnetic models introduced in the previous Section. The basic
reason of this difference is frustration and is illustrated in Fig. 2.6 on an L = 2,
d = 2 model (a model consisting of just 4 spins). A spin glass is frustrated
whenever there exist local constraints that are in conflict, meaning that it is not
possible to all of them satisfy simultaneously. In the Edwards Anderson model,
a plaquette is a group of four neighbouring spins building a square. A plaquette
is frustrated if and only if the product of the J;; along all four edges of the
plaquette is negative. As shown in Fig. 2.6, it is then impossible to minimize
simultaneously all the four local energy terms associated with each edge. In a
spin glass, the presence of a finite density of frustrated plaquettes generates a



NOTES 47

very complicated energy landscape. The resulting effect of all the interactions
is not obtained by ‘summing’ the effects of each of them separately, but is is
the outcome of a complex interplay. The ground state spin configuration (the
one satisfying the largest possible number of interactions) is difficult to find: it
cannot be guessed on symmetry grounds. It is also frequent to find in a spin glass
a configuration which is very different form the ground state but has an energy
very close to the ground state energy. We shall explore these and related issues
throughout the book.

Notes

There are many good introductory textbooks on statistical physics and thermo-
dynamics, for instance the books by Reif (Reif, 1965) or Huang (Huang, 1987).
Going towards more advanced texts, one can suggest the books by Ma (Ma,
1985) and Parisi (Parisi, 1998b). A more mathematically minded presentation
can be found in the books by Gallavotti (Galavotti, 1999) and Ruelle (Ruelle,
1999).

The two dimensional Ising model at vanishing external field can also be solved
by a transfer matrix technique, see for instance (Baxter, 1982). The transfer
matrix, which passes from a column of the lattice to the next, is a 2% x 2F
matrix, and its dimension diverges exponentially with the lattice size L. Finding
its largest eigenvalue is therefore a complicated task. Nobody has found the
solution so far for B # 0.

Spin glasses will be a recurring theme in this book, and more will be said
about them in the next Chapters. An introduction to this subject from a physicist
point of view is provided by the book of Fischer and Hertz (Fischer and Hetz,
1993) or the review by Binder and Young (Binder and Young, 1986). The concept
of frustration was introduced in a beautiful paper by Gerard Toulouse (Toulouse,
1977).
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3

INTRODUCTION TO COMBINATORIAL OPTIMIZATION

This Chapter provides an elementary introduction to some basic concepts in
theoretical computer science. Which computational tasks can/cannot be accom-
plished efficiently by a computer? How much resources (time, memory, etc.) are
needed for solving a specific problem? What are the performances of a spe-
cific solution method (an algorithm), and, whenever more than one method is
available, which one is preferable? Are some problems intrinsically harder than
others? This are some of the questions one would like to answer.

One large family of computational problems is formed by combinatorial op-
timization problems. These consist in finding a member of a finite set which
maximizes (or minimizes) an easy-to-evaluate objective function. Several fea-
tures make such problems particularly interesting. First of all, most of the time
they can be converted into decision problems (questions which require a YES/NO
answer ), which are the simplest problems allowing for a rich theory of computa-
tional complexity. Second, optimization problems are ubiquitous both in appli-
cations and in pure sciences. In particular, there exist some evident connections
both with statistical mechanics and with coding theory. Finally, they form a very
large and well studied family, and therefore an ideal context for understanding
some advanced issues. One should however keep in mind that computation is
more than just combinatorial optimization. A distinct (and in some sense larger)
family consists of counting problems. In this case one is asked to count how many
elements of a finite set have some easy-to-check property. We shall say something
about such problems in later Chapters. Another large family on which we will
say basically nothing consists of continuous optimization problems.

This Chapter is organized as follows. The study of combinatorial optimization
is introduced in Sec. 3.1 through a simple example. This section also contains
the basic definition of graph theory that we use throughout the book. General
definitions and terminology are given in Sec. 3.2. These definitions are further
illustrated in Sec. 3.3 through several additional examples. Section 3.4 provides
an informal introduction to some basic concepts in computational complexity.
As mentioned above, combinatorial optimization problems often appear in pure
sciences and applications. The examples of statistical physics and coding are
briefly discussed in Secs. 3.5 and 3.6.

3.1 A first example: minimum spanning tree

The minimum spanning tree problem is easily stated and may appear in many
practical applications. Suppose for instance you have a bunch of computers in a

48
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F1a. 3.1. This graph has 7 vertices (labeled a to g) and 10 edges. The ‘cost’ of
each edge is indicated next to it. In the Minimum Spanning Tree problem, one
seeks a subgraph connecting all vertices, without any loop, of minimum cost.

building. You may want to connect them pairwise in such a way that the resulting
network is completely connected and the amount of cable used is minimum.

3.1.1 Definition of the problem and basics of graph theory

A mathematical abstraction of the above practical problem requires us to first
define basic graph theoretic definitions. A graph is a set )V of vertices, labeled
by {1,2,...,]V|} and a set £ of edges connecting them: G = (V,€). The ver-
tex set can be any finite set but one often takes the set of the first [V| inte-
gers: V = {1,2,...,|V|}. The edges are simply unordered couples of distinct
vertices £ C V x V. For instance an edge joining vertices ¢ and j is identi-
fied as e = (i,5). A weighted graph is a graph where a cost (a real num-
ber) is associated with every edge. The degree of a vertex is the number of
edges connected to it. A path between two vertices ¢ and j is a set of edges
{(J,i2), (i2,13), (i3,%4), - . (fp—1,1r), (ir,J). A graph is connected if, for every
pair of vertices, there is a path which connects them. A completely con-
nected graph, or complete graph, also called a clique, is a graph where all the
[VI(|V] —1)/2 edges are present. A cycle is a path starting and ending on the
same vertex. A tree is a connected graph without a cycle.

Consider the graph in Fig. 3.1. You are asked to find a tree (a subset of the
edges buiding a cycle-free subgraph) such that any two vertices are connected
by exactly one path (in this case the tree is said to be spanning). To find such
a subgraph is an easy task. The edges {(a,b); (b,¢); (c,d); (b,9); (d,e)}, for in-
stance, do the job. However in our problem a cost is associated with each edge.
The cost of a subgraph is assumed to be equal to the sum of the costs of its
edges. Your problem is to find the spanning tree with minimum cost. This is a
non-trivial problem.

In general, an instance of the minimum spanning tree (MST) problem is
given by a connected weighted graph (each edge e has a cost w(e) € R). The
optimization problem consists in finding a spanning tree with minimum cost.
What one seeks is an algorithm which, given an instance of the MST problem,
outputs the spanning tree with lowest cost.

{fig:MSTree}
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3.1.2  An efficient algorithm for the minimum spanning tree problem

The simple minded approach would consist in enumerating all the spanning
trees for the given graph, and comparing their weights. However the number of
spanning trees grows very rapidly with the size of the graph. Consider, as an
example, the complete graph on N vertices. The number of spanning trees of
such a graph is, according to the Cayley formula, N~ =2, Even if the cost of any
such tree were evaluated in 1072 sec, it would take 2 years to find the MST of
a N = 12 graph, and half a century for V = 13. At the other extreme, if the
graph is very simple, it may contain a small number of spanning trees, a single
one in the extreme case where the graph is itself a tree. Nevertheless, in most
interesting examples the situation is nearly as dramatic as in the complete graph
case.
A much better algorithm can be obtained from the following theorem:

Theorem 3.1 LetU C V be a proper subset of the vertex setV (such that neither
U nor V\U are empty). Let us consider the subset F of edges which connect a
vertex in U to a vertex in V\U, and let e € F be an edge of lowest cost in this
subset: w(e) < w(e') for any e’ € F. If there are several such edges, e can be any
of them. Then there exists a minimum spanning tree which contains e.

Proof: Consider a MST 7, and suppose that it does not contain the edge e.
This edge is such that e = (4,j) with ¢ € U and j € V\U. The spanning tree
7 must contain a path between i and j. This path contains at least one edge
f connecting a vertex in U to a vertex in V\U, and f is distinct from e. Now
consider the subgraph 7’ built from 7 by removing the edge f and adding the
edge e. We leave to the reader the exercise of showing that 7’ is a spanning tree.
Moreover E(7') = E(T) + w(e) — w(f). Since T is a MST, E(7’) > E(T). On
the other hand e has minimum cost within F, hence w(e) < w(f). Therefore
w(e) = w(f) and 7' is a MST containing e. OJ

This result allows to construct a minimum spanning tree of a graph incre-
mentally. One starts from a single vertex. At each step a new edge can be added
to the tree, whose cost is minimum among all the ones connecting the already
existing tree with the remaining vertices. After N — 1 iterations, the tree will be
spanning.

MST algorithm ((Prim, 1957))

Input: A non-empty connected graph G = (V,€), and a weight function w:

E— R+.
Output: A minimum spanning tree 7 and its cost E(7).
1. Set U:={1}, 7T:=0 and E=0.
2. While V\U is not empty
2.1 Let F:={e=(ij) € € such that i €U, j € V\U}.
2.2 Find e, := argmincer{w(e)}. Let e, := (ix,j«) with ix € U,
Jx € V\U.
2.3 Set U:=UUis, T:=TUe,, and E:= E +w(ey).
3. Output the spanning tree 7 and its cost E.

{sec:efficient}
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Fic. 3.2. A minimum spanning tree for the graph defined in Fig. 3.1. The cost
of this tree is F = 17. {fig:MSTree_sol}

Figure 3.2 gives the MST for the problem described in Fig. 3.1. It is easy to
obtain it by applying the above algorithm. *

Exercise 3.1 Show explicitly that the algorithm MST always outputs a mini-
mum spanning tree.

Theorem 3.1 establishes that, for any &/ C )V, and any lowest cost edge e
among the ones connecting U to V\U, there exists a MST containing e. This
does not guarantee that, when two different sets ¢/; and Us, and the correspond-
ing lowest cost edges e; and ey are considered, there exists a MST containing
both e; and ey. The above algorithm works by constructing a sequence of such
U’s and adding to the tree the corresponding lowest weight edges. It is therefore
not obvious a priori that it will output a MST (unless this is unique).

Let us analyze the number of elementary operations required by the algorithm
to construct a spanning tree on an N nodes graph. By ‘elementary operation’
we mean comparisons, sums, multiplications, etc, all of them counting as one.
Of course, the number of such operations depends on the graph, but we can
find a simple upper bound by considering the completely connected graph. Most
of the operations in the above algorithm are comparisons among edge weights
for finding e, in step 2.2. In order to identify e,, one has to scan at most
[U| x [V\U| = [U| x (N — |U|) edges connecting U to V\U. Since [U| =1 at the
beginning and is augmented of one element at each iteration of the cycle 2.1-2.3,
the number of comparisons is upper bounded by Y0_ U(N — U) < N3/65.
This is an example of a polynomial algorithm, whose computing time grows like
a power law of the number of vertices. The insight gained from the theorem
provides an algorithm which is much better than the naive one, at least when NV
gets large.

3.2 General definitions {sec:gendef}

MST is an example of a combinatorial optimization problem. This is defined
by a set of possible instances. An instance of MST is defined by a connected

6The algorithm can be easily improved by keeping an ordered list of the edges already
encountered
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weighted graph. In general, an instance of a combinatorial optimization problem
is described by a finite set X’ of allowed configurations and a cost function F
defined on this set and taking values in R. The optimization problem consists in
finding the optimal configuration C' € X', namely the one with the smallest cost
E(C). Any set of such instances defines a combinatorial optimization problem.
For a particular instance of MST, the space of configurations is simply the set of
spanning trees on the given graph, while the cost function associated with each
spanning tree is the sum of the costs of its edges.

We shall say that an algorithm solves an optimization problem if, for every
instance of the optimization problem, it gives the optimal configuration, or if it
computes its cost. In all the problems which we shall discuss, there is a ‘natural’
measure of the size of the problem N (typically a number of variables used
to define a configuration, like the number of edges of the graph in MST), and
the number of configurations scales, at large N like ¢V, or in some cases even
faster, e. g. like N! or NV. Notice that, quite generally, evaluating the cost
function on a particular configuration is an easy task. The difficulty of solving
the combinatorial optimization problem comes therefore essentially from the size
of the configuration space.

It is a generally accepted practice to estimate the complexity of an algorithm
as the number of ‘elementary operations’ required to solve the problem. Usually
one focuses onto the asymptotic behavior of this quantity as N — oco. It is
obviously of great practical interest to construct algorithms whose complexity is
as small as possible.

One can solve a combinatorial optimization problem at several levels of re-
finement. Usually one distinguishes three types of problems:

e The optimization problem: Find an optimal configuration C*.

e The evaluation problem: Determine the cost E(C*) of an optimal config-
uration.

e The decision problem: Answer to the question: “Is there a configuration
of cost less than a given value Ey?”

3.3 More examples

The general setting described in the previous Section includes a large variety of
problems having both practical and theoretical interest. In the following we shall
provide a few selected examples.

3.3.1 FEulerian circuit

One of the oldest documented examples goes back to the 18th century. The
old city of Konigsberg had seven bridges (see Fig. 3.3), and its habitants were
wondering whether it was possible to cross once each of this bridges and get back
home. This can be generalized and translated in graph-theoretic language as the
following decision problem. Define a multigraph exactly as a graph but for the
fact that two given vertices can be connected by several edges. The problem
consists in finding whether there is there a circuit which goes through all edges
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Fia. 3.3. Left: a map of the old city of Konigsberg, with its seven bridges, as
drawn in Euler’s paper of 1736. The problem is whether one can walk along the
city, crossing each bridge exactly once and getting back home. Right: a graph
summarizing the problem. The vertices A, B, C, D are the various parts of lands
separated by a river, an edge exists between two vertices whenever there is a
bridge. The problem is to make a closed circuit on this graph, going exactly once
through every edge.

of the graph only once, and returns to its starting point. Such a circuit is now
called a Eulerian circuit, because this problem was solved by Euler in 1736,
when he proved the following nice theorem. As for ordinary graphs, we define
the degree of a vertex as the number of edges which have the vertex as an
end-point.

Theorem 3.2 Given a connected multigraph, there exists an Eulerian circuit if
and only if every vertex has an even degree.

This theorem automatically provides an algorithm for the decision problem
whose complexity grows linearly with the number of vertices of the graph: just
go through all the vertices of the graph and check their degree.

Exercise 3.2 Show that, if an Eulerian circuit exists the degrees are necessar-
ily even.

Proving the inverse implication is slightly more difficult. A possible ap-
proach consists in showing the following slightly stronger result. If all the ver-
tices of a connected graph G have even degree but 7 and j, then there exists a
path from ¢ to j that visits once each edge in G. This can be proved by induc-
tion on the number of vertices. [Hint: Stat from ¢ and make a step along the
edge (7,¢"). Show that it is possible to choose ¢’ in such a way that the residual
graph G\(4,4) is connected.]

3.3.2  Hamiltonian cycle

More than a century after Euler’s theorem, the great scientist sir William Hamil-
ton introduced in 1859 a game called the icosian game. In its generalized form,

{fig:seven-bridges}

{th:euler}
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it basically asks whether there exists, in a graph, a Hamiltonian cycle, which
is a path going once through every vertex of the graph, and getting back to its
starting point. This is another decision problem, and, at a first look, it seems
very similar to the Eulerian circuit. However it turns out to be much more com-
plicated. The best existing algorithms for determining the existence of an Hamil-
tonian cycle on a given graph run in a time which grows exponentially with the
number of vertices N. Moreover, the theory of computational complexity, which
we shall describe later in this Chapter, strongly suggests that this problem is in
fact intrinsically difficult.

3.3.3  Traveling salesman

Given a complete graph with N points, and the distances d;; between all pairs
of points 1 <14 < j < N, the famous traveling salesman problem (TSP) is an
optimization problem: find a Hamiltonian cycle of minimum total length. One
can consider the case where the points are in a portion of the plane, and the
distances are Euclidean distances (we then speak of a Euclidean TSP), but of
course the problem can be stated more generally, with d;; representing general
costs, which are not necessarily distances. As for the Hamiltonian cycle prob-
lem, the best algorithms known so far for the TSP have a running time which
grows exponentially with N at large N. Nevertheless Euclidean problems with
thousands of points can be solved.

3.3.4  Assignment

Given N persons and N jobs, and a matrix C;; giving the affinity of person ¢ for
job j, the assignment problem consists in finding the assignment of the jobs
to the persons (an exact one-to-one correspondence between jobs and persons)
which maximizes the total affinity. A configuration is characterized by a permu-
tation of the N indices (there are thus N! configurations), and the cost of the
permutation 7 is ), Cjr¢;y. This is an example of a polynomial problem: there
exists an algorithm solving it in a time growing like N3,

3.3.5  Satisfiability

In the satisfiability problem one has to find the values of N Boolean variables
x; € {T, F'} which satisfy a set of logical constraints. Since each variable can be
either true or false, the space of configurations has size |X| = 2V. Each logical
constraint, called in this context a clause, takes a special form: it is the logical
OR (for which we use the symbol V) of some variables or their negations. For
instance x1 V To is a 2-clause (2-clause means a clause of length 2, i.e. which
involves exactly 2 variables), which is satisfied if either z; = T, or 29 = F, or
both. T1 VZa Va3 is a 3-clause, which is satisfied by all configurations of the three
variables except ©1 = xo = T, 3 = F. The problem is to determine whether
there exists a configuration which satisfies all constraints (decision problem), or
to find the configuration which minimizes the number of violated constraints
(optimization problem). The decision problem is easy when all the clauses have
length smaller or equal to 2: there exists an algorithm running in a time growing
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linearly with N. In other cases, all known algorithms solving the satisfiability
decision problem run in a time which grows exponentially with V.

3.3.6  Coloring and vertex covering

Given a graph and an integer ¢, the famous g-coloring problem asks if it is
possible to color the vertices of the graph using ¢ colors, in such a way that
two vertices connected by an edge have different colors. In the same spirit, the
vertex-cover problem asks to cover the vertices with ‘pebbles’, using the small-
est possible number of pebbles, in such a way that every edge of the graph has
at least one of its two endpoints covered by a pebble.

3.3.7  Number partitioning

Number partitioning is an example which does not come from graph theory.
An instance is a set S of N integers S = {z1,..,xn }. A configuration is a partition
of these numbers into two groups A and S\ A . Is there a partition such that

DicATi = Dies\ATi’

3.4 Elements of the theory of computational complexity

One main branch of theoretical computer science aims at constructing an intrinsic
theory of computational complexity. One would like, for instance, to establish
which problems are harder than others. By ‘harder problem’, we mean a problem
that takes a longer running time to be solved. In order to discuss rigorously
the computational complexity of a problem, we would need to define a precise
model of computation (introducing, for instance, Turing machines). This would
take us too far. We will instead evaluate the running time of an algorithm in
terms of ‘elementary operations’: comparisons, sums, multiplications, etc. This
informal approach is essentially correct as long as the size of the operands remains
uniformly bounded.

3.4.1 The worst case scenario

As we already mentioned in Sec. 3.2, a combinatorial optimization problem,
is defined by the set of its possible instances. Given an algorithm solving the
problem, its running time will vary from instance to instance, even if the instance
‘size’ is fixed. How should we quantify the overall hardness of the problem? A
crucial choice of computational complexity theory consists in considering the
‘worst’ (i.e. the one which takes longer time to be solved) instance among all the
ones having the same size.

This choice has two advantages: (i) It allows to construct a ‘universal’ theory.
(74) Once the worst case running time of a given algorithm is estimated, this
provides a performance guarantee on any instance of the problem.

3.4.2  Polynomial or not?

A second crucial choice consists in classifying algorithms in two classes: (i) Poly-
nomial, if the running time is upper bounded by a fixed polynomial in the size

{sec:Complexity}



56 INTRODUCTION TO COMBINATORIAL OPTIMIZATION

of the instance. In mathematical terms, let Ty the number of operations required
for solving an instance of size N in the worst case. The algorithm is polynomial
when there exist a constant & such that Ty = O(N¥). (ii) Super-polynomial,
if no such upper bound exists. This is for instance the case if the time grows
exponentially with the size of the instance (we shall call algorithms of this type
exponential), i.e. Ty = O(kY) for some constant k.

Example 3.3 In 3.1.2, we were able to show that the running time of the
MST algorithm is upper bounded by N3, with N the number of vertices tin the
graph. This implies that such an algorithm is polynomial.

Notice that we did not give a precise definition of the ‘size’ of a problem.
One may wonder whether, changing the definition, a particular problem can be
classified both as polynomial an as super-polynomial. Consider, for instance, the
assignment problem with 2NV points. One can define the size as being N, or 2N |
or even N? which is the number of possible person-job pairs. The last definition
would be relevant if one would work for instance with occupation numbers n;; €
{0, 1}, the number n,; being one if and only if the job ¢ is assigned to person j.
However, any two of these ‘natural” definitions of size are a polynomial function
one of the other. Therefore they do not affect the classification of an algorithm
as polynomial or super-polynomial. We will discard other definitions (such as e
or N!) as ‘unnatural’, without any further ado. The reader can convince himself
on each of the examples of the previous Section.

3.4.3  Optimization, evaluation, decision

In order to get a feeling of their relative levels of difficulty, let us come back for a
while to the three types of optimization problems defined in Sec. 3.2, and study
which one is the hardest.

Clearly, if the cost of any configuration can be computed in polynomial time,
the evaluation problem is not harder than the optimization problem: if one can
find the optimal configuration in polynomial time, one can compute its cost also
in polynomial time. The decision problem (deciding whether there exists a con-
figuration of cost smaller than a given Fj) is not harder than the evaluation
problem. So the order of increasing difficulty is: decision, evaluation, optimiza-
tion.

But actually, in many cases where the costs take discrete values, the evalu-
ation problem is not harder than the decision problem, in the following sense.
Suppose that we have a polynomial algorithm solving the decision problem, and
that the costs of all configurations can be scaled to be integers in an interval
[0, Ermax] of length Eyay = exp{O(N*)} for some k > 0. An algorithm solving
the decision problem can be used to solve the evaluation problem by dichotomy:
one first takes Fy = Enax/2. If there exists a configuration of energy smaller
than Fjy, one iterates with Ey the center of the interval [0, Fiyax/2]. In the oppo-
site case, one iterates with Ey the center of the interval [Eiax/2, Emax]. Clearly
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this procedure finds the cost of the optimal configuration(s) in a time which is
also polynomial.

3.4.4  Polynomial reduction

One would like to compare the levels of difficulty of various decision problems.
The notion of polynomial reduction formalizes the sentence “not harder than”
which we used so far, and helps to get a classification of decision problems.

Roughly speaking, we say that a problem 5 is not harder than A if any effi-
cient algorithm for A (if such an algorithm existed) could be used as a subroutine
of an algorithm solving efficiently B. More precisely, given two decision problems
A and B, one says that B is polynomially reducible to A if the following
conditions hold:

1. There exists a mapping R which transforms any instance I of problem B
into an instance R(I) of problem A, such that the solution (yes/no) of the
instance R(I) of A gives the solution (yes/no) of the instance I of B.

2. The mapping I — R(I) can be computed in a time which is polynomial in
the size of I.

3. The size of R(I) is polynomial in the size of I. This is in fact a consequence
of the previous assumptions but there is no harm in stating it explicitly.

A mapping R satisfying the above requirements is called a polynomial reduc-
tion. Constructing a polynomial reduction among two problems is an important
achievement since it effectively reduces their study to the study of just one of
them. Suppose for instance to have a polynomial algorithm Alg 4 for solving A.
Then a polynomial reduction of 5 to .4 can be used for constructing a poly-
nomial algorithm for solving B. Given an instance I of B, the algorithm just
compute R(I), feeds it into the Alg 4, and outputs the output of Alg 4. Since the
size of R(I) is polynomial in the size of I, the resulting algorithm for B is still
polynomial.

For concreteness, we will work out an explicit example. We will show that the
problem of existence of a Hamiltonian cycle in a graph is polynomially reducible
to the satisfiability problem.

{sub:polred}



58 INTRODUCTION TO COMBINATORIAL OPTIMIZATION

Example 3.4 An instance of the Hamiltonian cycle problem is a graph with
N vertices, labeled by i € {1, ..., N}. If there exists a Hamiltonian cycle in the
graph, it can be characterized by N2 Boolean variables z,; € {0,1}, where
Tr; = 1 if vertex number ¢ is the r’th vertex in the cycle, and x,; = 0 otherwise
(one can take for instance 217 = 1). We shall now write a number of constraints
that the variables z,;, must satisfy in order for a Hamiltonian cycle to exist,
and we shall ensure that these constraints take the forms of the clauses used
in the satisfiability problem (identifying x = 1 as true, = 0 as false):

e Each vertex i € {1,..., N} must belong to the cycle: this can be written
as the clause x1; V x9; V .... V z;, which is satisfied only if at least one of
the numbers x1;, i, ..., xn; equals one.

e For every r € {1,..., N}, one vertex must be the r’th visited vertex in the
cycle: 1 Vo V... V x,.N

e Each vertex ¢ € {1, ..., N} must be visited only once. This can be imple-
mented through the N(N — 1)/2 clauses Z,; V Zyj, for 1 <r < s < N.

e For every r € {1, ..., N}, there must be only one r’th visited vertex in the
cycle; This can be implemented through the N (N —1)/2 clauses T,; VZ,;,
for1<i<j<N.

e For every pair of vertices ¢ < j which are not connected by an edge of
the graph, these vertices should not appear consecutively in the list of
vertices of the cycle. Therefore we add, for every such pair and for every
r € {1,..., N} the clauses Tp; V T(r41); and Tp; VT (r41); (With the ‘cyclic’
convention N + 1 =1).

It is straightforward to show that the size of the satisfiability problem con-
structed in this way is polynomial in the size of the Hamiltonian cycle prob-
lem. We leave as an exercise to show that the set of all above clauses is a
sufficient set: if the N2 variables satisfy all the above constraints, they describe
a Hamiltonian cycle.

3.4.5 Complexity classes

Let us continue to focus onto decision problems. The classification of these prob-
lems with respect to polynomiality is as follows:

e Class P: These are the polynomial problems, for which there exists an
algorithm running in polynomial time. An example, cf. Sec. 3.1, is the
decision version of the minimum spanning tree (which asks for a yes/no
answer to the question: given a graph with costs on the edges, and a number
Ey, is there a spanning tree with total cost less than Fy?).

e Class NP: This is the class of non-deterministic polynomial problems,
which can be solved in polynomial time by a ‘non deterministic’ algorithm.
Roughly speaking, such an algorithm can run in parallel on an arbitrarily
large number of processors. We shall not explain this notion in detail here,
but rather use an alternative and equivalent characterization. We say that a
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problem is in the class NP if there exists a ‘short’ certificate which allows to
check a ‘yes’ answer to the problem. A short certificate means a certificate
that can be checked in polynomial time.

A polynomial problem like the minimum spanning tree describes above
is automatically in NP so P C NP. The decision version of the TSP is
also in NP: if there is a TSP tour with cost smaller than FEy, the short
certificate is simple: just give the tour, and its cost will be computed in
linear time, allowing to check that it is smaller than Ej. Satisfiability also
belongs to NP: a certificate is obtained from the assignment of variables
satisfying all clauses. Checking that all clauses are satisfied is linear in
the number of clauses, taken here as the size of the system. In fact there
are many important problems in the class NP, with a broad spectrum of
applications ranging from routing to scheduling, to chip verification, or to
protein folding. . .

e Class NP-complete: These are the hardest problem in the NP class. A
problem is NP-complete if: (¢) it is in NP, (i¢) any other problem in NP
can be polynomially reduced to it, using the notion of polynomial reduction
defined in Sec. 3.4.4. If A is NP-complete, then: for any other problem B
in NP, there is a polynomial reduction mapping B to A. So if we had a
polynomial algorithm to solve A, then all the problems in the broad class
NP would be solved in polynomial time.

It is not a priori obvious whether there exist any NP-complete problem. A major
achievement of the theory of computational complexity is the following theorem,
obtained by Cook in 1971.

Theorem 3.5 The satisfiability problem is NP-complete

We shall not give here the proof of the theorem. Let us just mention that the
satisfiability problem has a very universal structure (an example of which was
shown above, in the polynomial reduction of the Hamiltonian cycle problem to
satisfiability). A clause is built as the logical OR (denoted by V) of some variables,
or their negations. A set of several clauses, to be satisfied simultaneously, is the
logical AND (denoted by A) of the clauses. Therefore a satisfiability problem is
written in general in the form (a3 VagV...)A(by VbaV...)A...., where the a;, b; are
‘literals’, i.e. any of the original variables or their negations. This form is called
a conjunctive normal form (CNF), and it is easy to see that any logical
statement between Boolean variables can be written as a CNF. This universal
decomposition gives some idea of why the satisfiability problem can play a central
role.

346 P=NP?

When a NP-complete problem A is known, one can relatively easily find other
NP-complete problems: if there exists a polynomial reduction from A to another
problem B € NP, then B is also NP-complete. In fact, whenever R4 p is a
polynomial reduction from a problem P to A and Rp. 4 is a polynomial reduc-
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FiG. 3.4. Classification of some famous decision problems. If P £ NP, the classes
P and N P-complete are disjoint. If it happened that P = N P, all the problems in
NP, and in particular all those mentioned here, would be solvable in polynomial
time.

tion from A to B, then Rp. 4 o R4 p is a polynomial reduction from P to B.
Starting from satisfiability, it has been possible to find, with this method, thou-
sands of NP-complete problems. To quote a few of them, among the problems
we have encountered so far, Hamiltonian circuit, TSP, and 3-satisfiability (i.e.
satisfiability with clauses of length 3 only) are NP-complete. Actually most of
NP problems can be classified either as being in P, or being NP-complete. The
precise status of some NP problems, like graph isomorphism, is still unknown.

Finally, those problems which, not being in NP are at least as hard as NP-
complete problems, are usually called NP-hard. These includes both decision
problems for which a short certificate does not exist, and non-decision problems.
For instance the optimization and evaluation versions of TSP are NP-hard. How-
ever, in such cases, we shall chose among the expressions ‘TSP is NP-complete’
or ‘TSP is NP-hard’ rather freely.

One major open problem in the theory of computational complexity is whether
the classes P and NP are distinct or not. It might be that P=NP=NP-complete:
this would be the case if someone found a polynomial algorithm for one NP-
complete problem. This would imply that no problem in the broad NP-class
could be solved in polynomial time.

It is a widespread conjecture that there exist no polynomial algorithm for
NP-complete problems. Then the classes P and NP-complete would be disjoint.
In fact it is known that, if P # NP, then there are NP problems which are neither
in P nor in NP-complete.

3.4.7 Other complezity classes

Notice the fundamental asymmetry in the definition of the NP class: the exis-
tence of a short certificate is requested only for the yes answers. To understand
the meaning of this asymmetry, consider the problem of unsatisfiability (which
is the complement of the satisfiability problem) formulated as: “given a set of
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clauses, is the problem unsatisfiable?”. It is not clear if there exists a short cer-
tificate allowing to check a yes answer: it is very difficult to prove that a problem
cannot be satisfied without checking an exponentially large number of possible
configurations. So it is not at all obvious that unsatisfiability is in NP. Problems
which are complements of those in NP define the class of co-NP problems, ans
it is not known whether NP=co-NP or not, although it is widely believed that
co-NP is different from NP. This consideration opens a Pandora box with many
other classes of complexities, but we shall immediately close it since it would
carry us too far.

3.5 Optimization and statistical physics
3.5.1 General relation

There exists a natural mapping from optimization to statistical physics. Consider
an optimization problem defined by a finite set X’ of allowed configurations, and a
cost function E defined on this set with values in R. While optimization consists
in finding the configuration C' € X with the smallest cost, one can introduce a
probability measure of the Boltzmann type on the space of configurations: For
any f3, each C' is assigned a probability 7

Po(C) = e PO 2B = 3D e (3.1
Cex

The positive parameter § plays the role of an inverse temperature. In the limit
B — oo, the probability distribution pg concentrates on the configurations of
minimum energy (ground states in the statistical physics jargon). This is the
relevant limit for optimization problems. In the statistical physics approach one
generalizes the problem to study properties of the distribution pg at finite 3. In
many cases it is useful to follow pg when [ increases (for instance by monitoring
the thermodynamic properties: internal energy, the entropy, and the specific
heat). This may be particularly useful, both for analytical and for algorithmic
purpose, when the thermodynamic properties evolve smoothly. An example of
practical application is the simulated annealing method, which actually samples
the configuration space at larger and larger values of  until it finds a ground
state. It will be described in Chap. 4. Of course the existence of phase transitions
pose major challenges to this kind of strategies, as we will see.

3.5.2  Spin glasses and mazimum cuts

To give a concrete example, let us go back to the spin glass problem of Sec. 2.6.
This involves N Ising spins o1,...,0x in {£1}, located on the vertices of a
graph, and the energy function is:

"Notice that there exist alternatives to the straightforward generalization (3.1). In some
problems the configuration space involves hard constraints, which can also be relaxed in a
finite temperature version.

{sec:0ptimizationPhysics}

{eq:boltzmann_optim}
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E(g) = _ZJijUin7 (3.2)
(i5)

where the sum Z(i j) runs over all edges of the graph and the J;; variables are
exchange couplings which can be either positive or negative. Given the graph and
the exchange couplings, what is the ground state of the corresponding spin glass?
This is a typical optimization problem. In fact, it very well known in computer
science in a slightly different form.

Each spin configuration partitions the set of vertices into two complementary
subsets: Vi = {i|o; = £1}. Let us call v(V) the set of edges with one endpoint
in V., the other in V_. The energy of the configuration can be written as:

E(g)=-C+2 >  Jy (3.3)

(i7)ev(Vy)

where C' = Z(i n Jij. Finding the ground state of the spin glass is thus equivalent
to finding a partition of the vertices, V"=V, U V_, such that Z(ij)e,y(w) cij is
maximum, where ¢;; = —J;;. This problem is known as the maximum cut
problem (MAX-CUT): the set of edges v(Vy) is a cut, each cut is assigned a
weight Z(i Hev(vy) Cigs and one seeks the cut with maximal weight.

Standard results on max-cut immediately apply: In general this is an NP-hard
problem, but there are some categories of graphs for which it is polynomially
solvable. In particular the max-cut of a planar graph can be found in polynomial
time, providing an efficient method to obtain the ground state of a spin glass
on a square lattice in two dimensions. The three dimensional spin glass problem
falls into the general NP-hard class, but nice ‘branch and bound’ methods, based
on its max-cut formulation, have been developed for it in recent years.

Another well known application of optimization to physics is the random
field Ising model, which is a system of Ising spins with ferromagnetic couplings
(all J;; are positive), but with a magnetic field h; which varies from site to site
taking positive and negative values. Its ground state can be found in polynomial
time thanks to its equivalence with the problem of finding a maximal flow in a
graph.

3.6 Optimization and coding

Computational complexity issues are also crucial in all problems of information
theory. We will see it recurrently in this book, but let us just give here some
small examples in order to fix ideas.

Consider the error correcting code problem of Chapter 1. We have a code,
which maps an original message to a codeword z, which is a point in the N-
dimensional hypercube {0, 1}V. There are 2" codewords (with M < N), which
we assume to be a priori equiprobable. When the message is transmitted, the
codeword z is corrupted to -say- a vector y with probability Q(y|z). The decoding
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maps the received message y to one of the possible original codewords 2’ = d(y).
As we saw, a measure of performance is the average block error probability:

PE = 51 Y QUule) 1) #2) (3.4)

A simple decoding algorithm would be the following: for each received message
y, consider all the 2V codewords, and determine the most likely one: d(y) =
arg max, Q(y|z). It is clear that this algorithm minimizes the average block error
probability.

For a general code, there is no better way for maximizing Q(y|z) than going
through all codewords and computing their likelihood one by one. This takes a
time of order 2™, which is definitely too large. Recall in fact that, to achieve
reliable communication, M and N have to be large (in data transmission appli-
cation one may use N as large as 10°). One may object that ‘decoding a general
code’ is too a general optimization problem. Just for specifying a single instance
we would need to specify all the codewords, which takes N 2™ bits. Therefore,
the complexity of decoding could be a trivial consequence of the fact that even
reading the input takes a huge time. However, it can be proved that also decod-
ing codes possessing a concise (polynomial in the blocklength) specification is
NP-hard. Examples of such codes will be given in the following chapters.

Notes

We have left aside most algorithmic issues in this chapter. In particular many
optimization algorithms are based on linear programming. There exist nice the-
oretical frameworks, and very efficient algorithms, for solving continuous opti-
mization problems in which the cost function, and the constraints, are linear
functions of the variables. These tools can be successfully exploited for address-
ing optimization problems with discrete variables. The idea is to relax the integer
constraints. For instance, in the MAX-CUT problem, one should assign a value
x. € {0,1} to an edge e, saying whether e is in the cut. If ¢, is the cost of the
edge, one needs to maximize ) x.c. over all feasible cuts. A first step consists
in relaxing the integer constraints z. € {0,1} to z. € [0, 1], enlarging the space
search. One then solves the continuous problem using linear programming. If the
maximum is achieved over integer x.’s, this yields the solution of the original
discrete problem. In the opposite case one can add extra constraints in order
to reduce again the space search until the a real MAX-CUT will be found. A
general introduction to combinatorial optimization, including all these aspects,
is provided by (Papadimitriou and Steiglitz, 1998).

A complete treatment of computational complexity theory can be found in
(Garey and Johnson, 1979), or in the more recent (Papadimitriou, 1994). The
seminal theorem by Cook was independently rediscovered by Levin in 1973. The
reader can find its proof in one of the above books.

Euler discussed the Konisberg’s 7 bridges problem in (Euler, 1736).
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The TSP, which is simple to state, difficult to solve, and lends itself to nice
pictorial representations, has attracted lots of works. The interested reader can
find many references, pictures of TSP’s optimal tours with thousands of vertices,
including tours among the main cities in various countries, applets, etc.. on the
web, starting from instance from (Applegate, Bixby, Chvdtal and Cook, ).

The book (Hartmann and Rieger, 2002) focuses on the use of optimization al-
gorithms for solving some problems in statistical physics. In particular it explains
the determination of the ground state of a random field Ising model with a max-
imum flow algorithm. A recent volume edited by these same authors (Hartmann
and Rieger, 2004) addresses several algorithmic issues connecting optimization
and physics; in particular chapter 4 by Liers, Jiinger, Reinelt and Rinaldi de-
scribes the branch-and-cut approach to the maximum cut problem used for spin
glass studies.

An overview classical computational problems from coding theory is the re-
view by Barg (Barg, 1998). Some more recent issues are addressed by Spielman
(Spielman, 1997). Finally, the first proof of NP-completeness for a decoding
problem was obtained by Berlekamp, McEliecee and van Tilborg (Berlekamp,
McEliecee and van Tilborg, 1978).
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The three fields that form the subject of this book, all deal with large sets of
random variables. Not surprisingly, they possess common underlying structures
and techniques. This Chapter describes some of them, insisting on the mathe-
matical structures, large deviations on one hand, and Markov chains for Monte
Carlo computations on the other hand. These tools will reappear several times
in the following Chapters.

Since this Chapter is more technical than the previous ones, we devote the
entire Section 4.1 to a qualitative introduction to the subject. In Sec. 4.2 we
consider the large deviation properties of simple functions of many independent
random variables. In this case many explicit results can be easily obtained. We
present a few general tools for correlated random variables in Sec. 4.3 and the
idea of Gibbs free energy in Sec. 4.4. Section 4.5 provide a simple introduction to
the Monte Carlo Markov chain method for sampling configurations from a given
probability distribution. Finally, in Sec. 4.6 we show how sinulated annealing
exploits Monte Carlo techniques for solving optimization problems.

4.1 Many random variables: a qualitative preview

Consider a set of random variables = (z1,z2,...,2yN), with z; € X and an N
dependent probability distribution

PN(Q):PN(LEl,...,JCN). (41)

This could be for instance the Boltzmann distribution for a physical system with
N degrees of freedom. The entropy of this law is Hy = —Elog Py(z). It often
happens that this entropy grows linearly with N at large N. This means that
the entropy per variable hy = Hy /N has a finite limit limy_.o hy = h. It is
then natural to characterize any particular realization of the random variables
(z1,...,2N) by computing the quantity

f(2) = 1o { PNl(x)} 7 (4.2)

which measures how probable the event (x1,...,zy) is.. The expectation of f
is Ef(z) = hx. One may wonder if f(z) fluctuates a lot, or if its distribution
is strongly peaked around f = hy. The latter hypothesis turns out to be the
correct one in many cases: When N > 1, it often happens that the probability
distribution of f, @~ (f) behaves exponentially:
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Qn(f) =e N (4.3)

where I(f) has a non-degenerate minimum at f = h, and I(h) = 0. This means
that, with large probability, a randomly chosen configuration = has f(z) ‘close
to’ h, and, because of the definition (4.2) its probability is approximatively
exp(—Nh). Since the total probability of realizations x such that f(z) ~ h
is close to one, their number must behave as N = exp(Nh). In other words,
the whole probability is carried by a small fraction of all configurations (since
their number, exp(Nh), is in general exponentially smaller than |X'|"V), and these
configurations all have the same probability. When such a property (often called
‘asymptotic equipartition’) holds, it has important consequences.

Suppose for instance one is interested in compressing the information con-
tained in the variables (x1,...,xy), which is a sequence of symbols produced by
an information source. Clearly, one should focus on those ‘typical’ sequences x
such that f(z) is close to h, because all the other sequences have vanishing small
probability. Since there are exp(INh) such typical sequences, one must be able to
encode them in Nh/log2 bits by simply numbering them.

Another very general problem consists in sampling from the probability distri-
bution Py (z). With r realizations z?,...,2" drawn independently from Py (z),
one can estimate an expectation values EO(z) = >, Pn(2)O(z) as EO(z) =
131 O(2*) without summing over |X|" terms, and the precision usually im-
proves like 1/4/r at large r. A naive sampling algorithm could be the follow-
ing. First ‘propose’ a configuration x from the uniform probability distribution
Pnif(z) = 1/]X|: this is simple to be sampled®. Then ‘accept’ the configuration
with probability Py (z). Such an algorithm is totally unefficient: It is clear that,
for the expectation values of ‘well behaved’ observables, we seek configurations
x such that f(z) is close to h. However, such configurations are exponentially
rare, and the above algorithm will require a time of order exp[N (log |X| — h)] to
find just one of them. The Monte Carlo method will provide a better alternative.

4.2 Large deviations for independent variables

A behavior of the type (4.3) is an example of a large deviation principle. One often
encounters systems with this property, and it can also hold with more general
functions f(x). The simplest case where such behaviors are found, and the case
where all properties can be controlled in great details, is that of independent
random variables. We study this case in the present section.

4.2.1 How typical is a series of observations?

Suppose that you are given given the values sq,...,sy of N ii.d. random vari-
ables drawn from a finite space X’ according to a known probability distribution

8Here we are assuming that we have access to a source of randomness: [N log, |X'|] unbiased
random bits are sufficient to sample from P]‘\l,“‘f(g). In practice one replaces the source of
randomness by a pseudorandom generator.

{eq:larged_ex}
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{p(8)}scx. The s;’s could be produced for instance by an information source, or
by some repeated measurements on a physical system. You would like to know
if the sequence s = (s1,...,sy) is a typical one, or if you found a rare event.
If N is large, one can expect that the number of appearances of a given x € X
in a typical sequence should be close to Np(x). The method of types allows to
quantify this statement.

The type g¢s(x) of the sequence s is the frequency of appearance of symbol
x in the sequence:

1 N
QQ(J:) = N Z 5m,si ) (44)
=1

where ¢ is the Kronecker symbol, such that ¢, , =1 if z = y and 0 otherwise.
For any observation s, the type ¢s(x), considered as a function of z, has the
properties of a probability distribution over X: q(x) > 0 for any x € X and
>, ¢(z) = 1. In the following we shall denote by M(X) the space of probability
distributions over X: M(X) = {q € RY s.t. g(z) > 0, >, q(z) = 1}. Therefore
qs € M(X).

The expectation of the type ¢s(z) coincides with the original probability
distribution:

Egs(x) = p(x). (4.5)

Sanov’s theorem estimates the probability that the type of the sequence differs
from p(z).

Theorem 4.1. (Sanov) Let z1,...,xy € X be N i.i.d.’s random variables
drawn from the probability distribution p(xz), and K C IM(X) a compact set
of probability distributions over X. If q is the type of (x1,...,xn), then

Prob [q € K] = exp[-ND(q"|p)], (4.6)

where ¢, = argmingex D(q||p), and D(q||p) is the KL divergence defined in
Eq. (1.10) .

Basically this theorem means that the probability of finding a sequence with
type g behaves at large N like exp[—ND(q||p)]. Therefore, for large N, typical
sequences have a type ¢(z) = p(z), and those with a different type are exponen-
tially rare. The proof of the theorem is a straightforward application of Stirling’s
formula and is left as an exercise for the reader. In Appendix 4.7 we give a
derivation using a ‘field theoretical’ method as used in physics. It may be an
instructive simple example for the reader who wants to get used to these kinds
of techniques, frequently used by physicists.

{thm:Sanov}
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Example 4.2 Let the ;’s be the outcome of a biased coin: X = {head, tail},
with p(head) = 1 — p(tail) = 0.8. What is the probability of getting 50 heads
and 50 tails in 100 throws of the coin? Using the expression (4.6) and (1.10) with
N =100 and g(head) = g(tail) = 0.5, we get Prob[50 tails] ~ 2.04- 10710,

Example 4.3 Let us consider the reverse case: we take a fair coin (p(head) =
p(tail) = 0.5) and ask what is the probability of getting 80 heads and 20 tails.
Sanov theorem provides the estimate Prob[80 heads] ~ 4.27 - 10~ which is
much higher than the one computed in the previous example.
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Example 4.4 A simple model of a column of the atmosphere consists in
studying N particles in the earth gravitational field. The state of particle
i€{l,...,N} is given by a single coordinate z; > 0 which measures its height
with respect to earth level. For the sake of simplicity, we assume z;’s to be in-
teger numbers. We can, for instance, imagine to discretize the heights in terms
of some small unit length (e.g. millimeters). The N-particles energy function
reads, in properly chosen units:

E= ZN: Z. (4.7)

The type of a configuration {z1,...,2yx} can be interpreted as the density
profile p(z)of the configuration:

1 N
= > e (4.8)
i=1

Using the Boltzmann probability distribution (2.4), it is simple to compute the
expected density profile, which is usually called the ‘equilibrium’ profile:

Pea(2) = (p(2)) = (L — %) e~ (4.9)

If we take a snapshot of the N particles at a given instant, their density will
present some deviations with respect to peq(z). The probability of seeing a
density profile p(z) is given by Eq. (4.6) with p(2) = peq(2) and g(z) = p(z). For
instance, we can compute the probability of observing an exponential density
profile, like (4.9) with a different parameter \: py(z) = (1 — e*)e~?*. Using
Eq. (1.10) we get:

il — 8=
D(palloe) =108 (1 =25 ) + 527 (4.10)

The function Ig(A) = D(px||peq) is depicted in Fig. 4.1.

Exercise 4.1 The previous example is easily generalized to the density profile
of N particles in an arbitrary potential V (z). Show that the Kullback-Leibler
divergence takes the form

D(pl|peq) ﬁZV Zp )logp(z) +logz(B).  (4.11)
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1)

FiG. 4.1. Example 3: In an atmosphere where the equilibrium density profile is
Peq(2) o< e7P%, the probability of observing an atypical profile p(z) oc e=** is, for
a large number of particles N, exp[—NIg(\)]. The curves Ig(\), plotted here,
show that small values of A are very rare.

4.2.2  How typical is an empirical average?

The result (4.6) contains a detailed information concerning the large fluctua-
tions of the random variables {x;}. Often one is interested in monitoring the
fluctuations of the empirical average of a measurement, which is a real number

f(@):

f

1 N
o3 ). (4.12)
i=1

Of course f, will be “close” to E f(z) with high probability. The following result
quantifies the probability of rare fluctuations.

Corollary 4.5 Let x1,...,xn be N i.i.d.’s random variables drawn from the
probability distribution p(x). Let f : X — R be a real valued function and f be
its empirical average. If A C R is a closed interval of the real azis

Prob [f € A] = exp[-NI(A)], (4.13)

where

S ql)f(x) € A

reX

I(4) = min [D(qllp) (4.14)

Proof: We apply Theorem 4.1 with the compact set

K ={geM)| Y a@)/(@) € A} (415)

reX

{fig:profilefluc}
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Fi1G. 4.2. Probability of an atypical average height for N particles with energy
function (4.7). {fig:heightfluc}

This implies straightforwardly Eq. (4.13) with

> qla)f(z) = 90] : (4.16)

zeX

I(p) = min [D(QIp)

The minimum in the above equation can be found by Lagrange multipliers

method, yielding Eq. (4.14). O

Example 4.6 We look again at N particles in a gravitational field, as in Ex-
ample 3, and consider the average height of the particles:
N
(4.17)

The expected value of this quantity is E(Z) = zeq = (¢? — 1)~1. The prob-
ability of a fluctuation of Z is easily computed using the above Corollary. For

Z > Zeq, ONE gets P[Z > z] = exp[—N I(z)], with

I(z) = (1 +2) log (1:?) + 2 log (;q) . (4.18)

Analogously, for z < zeq, P[Z < z] = exp[—N I(z)], with the same rate function
I(z). The function I(z) is depicted in Fig. 4.2.
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Exercise 4.2 One can construct a thermometer using the system of N par-
ticles with the energy function (4.7). Whenever the temperature is required,
you take a snapshot of the N particles, compute T and estimate the inverse
temperature (Best using the formula (et — 1)~ = 7. What is (for N > 1) the
probability of getting a result SBest # 87

4.2.3  Asymptotic equipartition

The above tools can also be used for counting the number of configurations
s = (s1,...,8n) with either a given type ¢(z) or a given empirical average of
some observable f. One finds for instance:

Proposition 4.7 The number Nk n of sequences s which have a type belonging
to the compact K C 9M(X) behaves as Nx.ny = exp{NH(q.)}, where q. =
argmax{H(q)|q € K}.

This result can be stated informally by saying that “there are approximately
eNH(9) sequences with type ¢”.

Proof:The idea is to apply Sanov’s theorem, taking the “reference” distribu-
tion p(x) to be the flat probability distribution paa:(z) = 1/|X|. Using Eq. (4.6),
we get

Nie.ny = |X|VProbaailg € K] = exp{N log |X| = ND(q.||pfiat) } = exp{NH(q.)} -
(4.19)

O

We now get back to a generic sequence s = (s, ..., sy) of N iid variables with
a probability distribution p(x). As a consequence of Sanov’s theorem, we know
that the most probable type is p(z) itself, and that deviations are exponentially
rare in N. We expect that almost all the probability is concentrated on sequences
having a type in some sense close to p(z). On the other hand, because of the
above proposition, the number of such sequences is exponentially smaller than
the total number of possible sequences | X|.

These remarks can be made more precise by defining what is meant by a
sequence having a type ‘close to p(z)’. Given the sequence s, we introduce the
quantity

1 1 &
r(s) = N log Py (s) = N Zlogp(xi) . (4.20)

Clearly, Er(s) = H(p). The sequence s is said to be e-typical if and only if
|r(s) — H(p)| < e. Let Ty be the set of e-typical sequences. It has the following
properties:
Theorem 4.8 (i) limy_.o Prob[s € Ty | = 1.

(ii) For N large enough, eNH®P)=el < |Ty | < eNHP) el

(iii) For any s € Ty, e” NH®I+el < Py (s) < e NIH ) =],
Proof:Since r( s) is an empirical average, we can apply Corollary 4.5. This allows
to estimate the probability of not being typical as Prob[s ¢ T'v .| = exp(—N1I).
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The exponent is given by I = min, D(¢||p), the minimum being taken over all
probability distributions ¢(z) such that | Yy q(x)log[1/q(z)] — H(p) | > e.
But D(q||p) > 0 unless ¢ = p, and p does not belong to the of minimization.
Therefore I > 0 and limy_.o Prob[s ¢ T | = 0, which proves (7).

The condition for ¢(z) to be the type of a e-typical sequence can be rewritten

as |D(q||p) + H(q) — H(p)| < e. Therefore, for any e-typical sequence, |H (q) — H(p)| <

¢ and Proposition 4.7 leads to (i7). Finally, (i) is a direct consequence of the
definition of e-typical sequences. O

The behavior described in this proposition is usually denoted as asymptotic
equipartition property. Although we proved it for i.i.d. random variables, this
is not the only context in which it is expected to hold. In fact it will be found in
many interesting systems throughout the book.

4.3 Correlated variables

In the case of independent random variables on finite spaces, the probability of
a large fluctuation is easily computed by combinatorics. It would be nice to have
some general result for large deviations of non-independent random variables. In
this Section we want to describe the use of Legendre transforms and saddle point
methods to study the general case. As it often happens, this method corresponds
to a precise mathematical statement: the Gartner-Ellis theorem. We first describe
the approach informally and apply it to a few of examples. Then we will state
the theorem and discuss it.

4.3.1 Legendre transformation

To be concrete, we consider a set of random variables x = (z1,...,2zy), with
x; € X and an N dependent probability distribution

PN(l):PN(Ilv"'axN)' (421)

Let f: X — R be a real valued function. We are interested in estimating, at
large N, the probability distribution of its empirical average

_ 1 &
flz) = N Zf(ffz) : (4.22)

i=1

In the previous Section, we studied the particular case in which the z;’s are
i.i.d. random variables. We proved that, quite generally, a finite fluctuation of
f(z) is exponentially unlikely. It is natural to expect that the same statement
holds true if the x;’s are “weakly correlated”. Whenever Py (z) is the Gibbs-
Boltzmann distribution for some physical system, this expectation is supported
by physical intuition. We can think of the x;’s as the microscopic degrees of
freedom composing the system and of f(z) as a macroscopic observable (pressure,
magnetization, etc.). It is a common observation that the relative fluctuations of
macroscopic observables are very small.

{sec:CorrelatedVariables}
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Let us thus assume that the distribution of f follows a large deviation
principle, meaning that the asymptotic behavior of the distribution at large IV
is:

Pn(f) = exp[-NI(f)], (4.23)

with a rate function I(f) > 0.

In order to determine I(f), a useful method consists in “tilting” the measure
Py (-) in such a way that the rare events responsible for O(1) fluctuations of f
become likely. In practice we define the (logarithmic) moment generating

function of f as follows
Un(t) = = log (]E eNt?@)) , teR. (4.24)

When the property (4.23) holds, we can evaluate the large N limit of ¢ (¢) using
the saddle point method:

Jim gy (t) = lim % log { / eNth“f)df} = ¥(t), (4.25)
with
Y(t) = sup [t —I(F)] . (4.26)
feER

¥(t) is the Legendre transform of I(f), and it is a convex function of ¢ by con-
struction (this is proved by differentiating twice Eq. (4.24)). It is therefore natural
to invert the Legendre transform (4.26) as follows:

Iy (f) = sup [tf —(t)] (4.27)

teR

and we expect I (f) to coincide with the convex envelope of I(f). This procedure
is useful whenever computing v (t) is easier than directly estimate the probability
distribution Py (f).

4.3.2  FExamples

It is useful to gain some insight by considering a few examples.
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Example 4.9 Consider the one-dimensional Ising model, without external
magnetic field, cf. Sec. 2.5.1. To be precise we have x; = 0; € {+1,—1}, and
Py (o) = exp[—BE(c)]/Z the Boltzmann distribution with energy function

N-1
E(g) = — Z 0,041 - (428)
=1

We want to compute the large deviation properties of the magnetization

N
m(c) = % 2_:1 ;. (4.29)

We know from Sec. 2.5.1, and from the symmetry of the energy function under
spin reversal (o; — —o;) that (m(g)) = 0. In order to compute the probability
of a large fluctuation of m, we apply the method described above. A little
thought shows that ¥(t) = ¢(8,t/8) — ¢(5,0) where ¢(8, B) is the free energy
density of the model in an external magnetic field B, found in (2.63). We thus
get

cosht + v/sinh? ¢ + e—48
P(t) = log ( T+ o 28 ) . (4.30)
One sees that 1(¢) is convex and analytic for any 8 < oo. We can apply
Eq. (4.27) in order to obtain the rate function I,(m). In Fig. 4.3 we report
the resulting function for several temperatures 3. Notice that I, (m) is analytic
and has strictly positive second derivative for any m and [ < oo, so that we
expect I(m) = I,(m). This expectation is confirmed by Theorem 4.12 below.
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FiG. 4.3. Rate function for the magnetization of the one-dimensional Ising
model. Notice that, as the temperature is lowered (8 increased) the probabil-
{fig:largedevidIsing} ity of large fluctuations increases.

Example 4.10 Consider a Markov chain Xg, X7,..., X}, ... taking values in
a finite state space X, as in the Example 2 of Sec. 1.3, and assume all the
elements of the transition matrix w(z — y) to be strictly positive. Let us study
the large deviation properties of the empirical average % > F(X8).

One can show that the limit moment generating function ) (t), cf. Eq. (4.24)
exists, and can be computed using the following recipe. Define the ‘tilted’ tran-
sition probabilities as wy(z — y) = w(x — y) explt f(y)]. Let A\(¢) be the largest
solution of the eigenvalue problem

D (@) wilz — y) = At) G4(y) - (4.31)

TEX

The moment generating function is simply given by ¢ (¢) = log A(¢) (which is
unique and positive because of Perron-Frobenius theorem).

Notice that Eq. (4.31) resembles the stationarity condition for a Markov
chain with transition probabilities w;(z — y). Unhappily the rates w(x — y)
are not properly normalized (}_, wi(z — y) # 1). This point can be overcome
as follows. Call ¢} (x) the right eigenvector of w.(z — y) with eigenvalue A(¢)
and define:

T = y) =~ wi(z — ) G (y) (4.32)
Wi(r —y) = ——wi(z —y y) . .
A(t)of (x) '
We leave to the reader the exercise of showing that: (i) These rates are prop-
erly normalized; (i) Eq. (4.31) is indeed the stationarity condition for the
distribution p;(z) o ¢! (x)¢r (x) with respect to the rates w;(z — y).
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Example 4.11 Consider now the Curie-Weiss model without external field,
cf. Sec. 2.5.2. As in Example 1, we take z; = 0; € {+1,—1} and Py(ag) =
exp|—BE(c)]/Z, and we are interested in the large fluctuations of the global
magnetization (4.29). The energy function is

E(g)=——= ) 0i0;. (4.33)

By repeating the arguments of Sec. 2.5.2, it is easy to show that, for any
—1<m;y <mo < 1:

Py{m(c) € [m1,ms]} = le<¢3) / Vam Nous?), (4.34)

where ¢me(m; 3) = ng —log[2 cosh(Sm)]. The large deviation property (4.23)
holds, with:

I(m) = ¢ume(m™; 8) — dme(m; 6) - (4.35)

and m* (/) is the largest solution of the Curie Weiss equation m = tanh(8m).
The function I(m) is represented in Fig. 4.4, left frame, for several values of
the inverse temperature (. For 5 < . = 1, I(m) is convex and has its unique
minimum in m = 0.

A new and interesting situation appears when 3 > (.. The function I(m)
is non convex, with two degenerate minima at m = +m*(5). In words, the
system can be found in either of two well-distinguished ‘states’: the positive
and negative magnetization states. There is no longer a unique typical value
of the magnetization such that large fluctuations away from this value are
exponentially rare.

Let us now look at what happens if the generating function approach is
adopted. It is easy to realize that the limit (4.24) exists and is given by

P(t) = sup [mt—I(m)]. (4.36)

me[—1,1]

While at high temperature 8 < 1, 1(t) is convex and analytic, for 5 > 1 it devel-
ops a singularity at ¢ = 0. In particular one has ¢'(0+) = m*(8) = —¢'(0-).
Compute now Iy (m) using Eq. (4.27). A little thought shows that, for any
m € [-m*(8),m*(B)] the supremum is achieved for ¢ = 0, which yields
I,(m) = 0. Outside this interval, the supremum is achieved at the unique
solution of ¢'(t) = m, and I,(m). As anticipated, I,(m) is the convex enve-
lope of I(m). In the range (—m™*(3), m*(/)), an estimate of the magnetization
fluctuations through the function = exp(—NIy(m)) would overestimate the
fluctuations.
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4.3.3 The Gdrtner-Ellis theorem

The Gértner-Ellis theorem has several formulations which usually require some
technical definitions beforehand. Here we shall state it in a simplified (and some-
what weakened) form. We need only the definition of an exposed point: z € R
is an exposed point of the function F' : R — R if there exists ¢ € R such that
ty — F(y) > te — F(x) for any y # x. If, for instance, F' is convex, a sufficient
condition for = to be an exposed point is that F is twice differentiable at x with
F"(z) > 0.

Theorem 4.12. (Gértner-Ellis) Consider a function f(z) (not necessarily of
the form (4.22)) and assume that the moment generating function 1y (t) defined
in (4.24) exists and has a finite limit ¥ (t) = limy_o0 YN (t) for any t € R.
Define Iy(-) as the inverse Legendre transform of Eq. (4.27) and let € be the set
of exposed points of I(-).

1. For any closed set F € R:

1 _
i — < —i . .
h]{/njgop N log Pn(f e F) < }relgfw(f) (4.37)

2. For any open set G € R:

1 _
li]{[njipNIOgPN(fEG)Z_feigfmglw(f)' (4.38)
3. If moreover (t) is differentiable for any t € R, then the last statement

holds true with the inf being taken over the whole set G (rather than over

GNE).

Informally, the inverse Legendre transform (4.27) generically yields an upper
bound on the probability of a large fluctuation of the macroscopic observable.
This upper bound is tight unless a ‘first order phase transition’ occurs, corre-
sponding to a discontinuity in the first derivative of ¥ (t).

It is worth mentioning that (¢) can be non-analytic at a point ¢, while its
first derivative is continuous at ¢,. This correspondsm in the statistical mechanics
jargon, to a ‘higher order’ phase transition. As we shall see in the following
Chapters, such phenomena have interesting probabilistic interpretations too.

4.3.4  Typical sequences

Let us get back to the concept of typical sequences, introduced in Section 4.2.
More precisely, we want to investigate the large deviation of the probability itself,
measured by r(z) = —% log P(x). For independent random variables, the study
of sect. 4.2.3 led to the concept of e-typical sequences. What can one say about
general sequences?

Let us compute the corresponding moment generating function (4.24):

wzv(t)=%log > Pyt (4.39)
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Without loss of generality, we can assume Py (z) to have the Boltzmann form:

Pala) = =5 ep{~BE(@)}. (1.40)
with energy function Fy(z). Inserting this into Eq. (4.39), we get
N (t) = BfN(B) — BIN(B(—1)), (4.41)

where fn(3) = —(1/N)log Zn(0) is the free energy density of the system with
energy function Ey(z) at inverse temperature . Let us assume that the ther-
modynamic limit f(8) = limy_.o fn(0) exists and is finite. It follows that the
limiting generating function ¥ (t) exists and we can apply the Gértner-Ellis the-
orem to compute the probability of a large fluctuation of r(x). As long as f(f)
is analytic, large fluctuations are exponentially depressed and the asymptotic
equipartition property of independent random variables is essentially recovered.
On the other hand, if there is a phase transition at 8 = ., where the first
derivative of f(f) is discontinuous, then the likelihood r(z) may take several
distinct values with a non-vanishing probability. This is what happened with the
magnetization in Example 3 above.

4.4 Gibbs free energy

In the introduction to statistical physics of chapter 2, we assumed that the
probability distribution of the configurations of a physical system is Boltzmann’s
distribution. It turns out that this distribution can be obtained from a variational
principle. This is interesting, both as a matter of principle and in order to find
approximation schemes.

Consider a system with a configuration space X, and a real valued energy
function E(x) defined on this space. The Boltzmann distribution is Pg(z) =
exp[—B(E(z) — F(0))], where F (), the ‘free energy’, is a function of the inverse
temperature ( defined by the fact that ) ., Ps(z) = 1. Let us define the
Gibbs free energy G[P] (not to be confused with F(/3)), which is a real valued
functional over the space of probability distributions P(x) on X'

1
G[P]=> P(z)E(x)+ = > P(z)log P(x). (4.42)
reX ﬂ reX
It is easy to rewrite the Gibbs free energy in terms of the KL divergence between

P(x) and the Boltzmann distribution Pg(x):

mmzéwaw+Fw» (4.43)

This representation implies straightforwardly the following proposition (Gibbs
variational principle):

{sec:Gibbs}
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Proposition 4.13 The Gibbs free energy G[P] is a convex functional of P(x),
and it achieves its unique minimum on the Boltzmann distribution P(x) = Pg(x).

Moreover G[Pg] = F(3), where F(f3) is the free energy.

When the partition function of a system cannot be computed exactly, the above
result suggests a general line of approach for estimating the free energy: one can
minimize the Gibbs free energy in some restricted subspace of “trial probability
distributions” P(z). These trial distributions should be simple enough that G[P)]
can be computed, but the restricted subspace should also contain distributions
which are able to give a good approximation to the true behavior of the physical
system. For each new physical system one will thus need to find a good restricted
subspace.

Example 4.14 Consider a system with space of configurations X = R and
energy:

1 1
E(z) = §t:r2 + Zm4, (4.44)

with ¢t € R. We ask the question of computing its free energy at temperature
[ =1 as a function of ¢. With a slight abuse of notation, we are interested in

F(t) = —log ( / dz e-E<w>> : (4.45)

The above integral cannot be computed in closed form and so we recur to the
Gibbs variational principle. We consider the following family of trial probability
distributions:

L 2,
Qa(m):%e /2 (4.46)

It is easy to compute the corresponding Gibbs free energy for § = 1:

1 3 1
GlQd) = 5 ta+ 71“2 -3 (1+log2ma) = G(a,t). (4.47)
The Gibbs principle implies that F'(¢t) < min, G(a,t). In Fig. 4.5 we plot the
optimal value of a, aops(t) = argmin, G(a,t) and the corresponding estimate
Gopt(t) = G(aopt(t), 1)
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Fi1G. 4.4. The rate function for large fluctuations of the magnetization in the
{fig:largedevcy) Curie-Weiss model (left) and the corresponding generating function (right).

Example 4.15 Consider the same problem as above and the family of trials
distributions:
1

Qa(z) = Ee‘(w‘””?. (4.48)

We leave as an exercise for the reader the determination of the optimal value
of aopt, and the corresponding upper bound on F(t), cf. Fig. 4.5. Notice the

peculiar phenomenon going on at te, = —3. For ¢ > ., we have aopi(t) = 0,
while G[Q,] has two degenerate local minima a = aopt(t) for t < te,.
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Example 4.16 Consider the Ising model on a d-dimensional lattice L of linear
size L (i.e. L = [L]?), cf. Sec. 2.5. The energy function is (notice the change of
normalization with respect to Sec. 2.5)

E(g)=-) 0i0;—B> 0. (4.49)
(i5)

i€l

For the sake of simplicity we assume periodic boundary conditions.
This means that two sites ¢ = (i1,...,4q) and j = (j1,...,j4) are considered
nearest neighbors if, for some ! € {1,...,d}, iy —j; = £1 ( mod L) and iy = ji
for any [’ # . The sum over (ij) in Eq. (4.49) runs over all nearest neighbors
pairs in L.

In order to obtain a variational estimate of the free energy F(() at in-
verse temperature 3, we evaluate the Gibbs free energy on the following trial
distribution:

Qm(a) = [[ am(os), (4.50)

i€L

with ¢, (+) = (1 +m)/2 and ¢n(—) = (1 —m)/2 and m € [—1,+1]. Notice
that, under Q,, (o), the o;’s are i.i.d. random variables with expectation m.

It is easy to evaluate the Gibbs free energy on this distribution. If we define
the per-site Gibbs free energy g(m; 3, B) = G[Q..]/L¢, we get

g(m; 3,B) = —%m2—Bm+%H((1+m)/2). (4.51)
Gibbs variational principle implies an upper bound on the free energy density
f(B) < inf,, g(m; S, h). Notice that, apart from an additive constant, this ex-
pression (4.51) has the same form as the solution of the Curie-Weiss model, cf.
Eq. (2.79). We refer therefore to Sec. 2.5.2 for a discussion of the optimization
over m. This implies the following inequality:

1

fa(B,h) < fow(B,h) = 5. (4.52)

The relation between Gibbs free energy and Kullback-Leibler divergence in
Eq. (4.43) implies a simple probabilistic interpretation of Gibbs variational prin-
ciple. Imagine to prepare a large number N of copies of the same physical system.
Each copy is described by the same energy function E(z). Now consider the em-
pirical distribution P(z) of the N copies. Typically P(z) will be close to the
Bolzmann distribution Pg(z). Sanov’s theorem implies that the probability of
an ‘atypical’ distribution is exponentially small in N:

PIP] = exp[-N(G[P] - F(5))]. (4.53)
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An illustration of this remark is provided by Exercise 4 of Sec. 4.2.

4.5 The Monte Carlo method

The Monte Carlo method is an important generic tool which is common to
probability theory, statistical physics and combinatorial optimization. In all of
these fields, we are often confronted with the problem of sampling a configuration
z € XN (here we assume X to be a finite space) from a given distribution
P(x). This can be quite difficult when N is large, because there are too many
configurations, because the typical configurations are exponentially rare and/or
because the distribution P(z) is specified by the Boltzmann formula with an
unknown normalization (the partition function).

A general approach consists in constructing a Markov chain which is guaran-
teed to converge to the desired P(z) and then simulating it on a computer. The
computer is of course assumed to have access to some source of randomness: in
practice pseudo-random number generators are used. If the chain is simulated
for a long enough time, the final configuration has a distribution ‘close’ to P(z).
In practice, the Markov chain is defined by a set of transition rates w(z — y)
with z,y € XN which satisfy the following conditions.

1. The chain is irreducible, i.e. for any couple of configurations z and v,
there exists a path (zg,z;,...x,) of length n, connecting z to y with non-
zero probability. This means that z, = z, z,, = y and w(z; ;%‘-s-l) >0
fori=0...n—1.

2. The chain is aperiodic: for any couple z and y, there exists a positive
integer n(z,y) such that, for any n > n(z,y) there exists a path of length
n connecting z to y with non-zero probability. Notice that, for an irre-
ducible chain, aperiodicity is easily enforced by allowing the configuration
to remain unchanged with non-zero probability: w(z — z) > 0.

3. The distribution P(z) is stationary with respect to the probabilities
w(z — y):

Y Pl wz—y) = Ply). (4.54)

Sometimes a stronger condition (implying stationarity) is satisfied by the
transition probabilities. For each couple of configurations z, y such that
either w(z — y) > 0 or w(y — ) > 0, one has

P(z)w(z —y) = P(y) w(y — ). (4.55)

This condition is referred to as reversibility or detailed balance.

The strategy of designing and simulating such a process in order to sample
from P(z) goes under the name of dynamic Monte Carlo method or Monte
Carlo Markov chain method (hereafter we shall refer to it simply as Monte
Carlo method). The theoretical basis for such an approach is provided by two
classic theorems which we collect below.

{sec:MonteCarlo}
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Theorem 4.17 Assume the rates w(z — y) to satisfy the hypotheses 1-3 above.
Let Xy, Xy,...,X,,... be random variables distributed according to the Markov
chain with rates w(x — y) and initial condition X, = z,. Let f : XN — R be
any real valued function. Then

1. The probability distribution of X; converges to the stationary one:

lim P[X, = z] = P(x). (4.56)

t—o0

2. Time averages converge to averages over the stationary distribution

t

tlgrolO % ; f(X,) = zz: P(z)f(x) almost surely. (4.57)

The proof of this Theorem can be found in any textbook on Markov processes.
Here we will illustrate it by considering two simple Monte Carlo algorithms which
are frequently used in statistical mechanics (although they are by no means the
most efficient ones).

{thm:AsymptoticMarkov}
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Example 4.18 Consider a system of N Ising spins ¢ = (07 ...0x) with en-
ergy function E(o) and inverse temperature 5. We are interested in sampling
the Boltzmann distribution P3. The Metropolis algorithm with random up-
datings is defined as follows. Call ¢(?) the configuration which coincides with
o but for the site ¢ (02@ = —0;), and let AE;(¢) = E(c?) — E(g). At each
step, an integer ¢ € [N] is chosen randomly with flat probability distribution
and the spin o; is flipped with probability

w;(o) = exp{—p max[AE;(c),0]}. (4.58)

In formulae, the transition probabilities are given by

w(e—1) = > wile) d(z,a®) +

L
- ;wi(a)l 6(z, ), (4.59)

where §(g,7) = 1 if 0 = 7, and = 0 otherwise. It is easy to check that this
definition satisfies both the irreducibility and the stationarity conditions for
any energy function E(c) and inverse temperature S < 1. Furthermore, the
chain satisfies the detailed balance condition:

Ps(0) wi(o) = Pa(a™) w;(¢?) . (4.60)

Whether the condition of aperiodicity is fulfilled depends on the energy. It is
easy to construct systems for which it does not hold. Take for instance a single
spin, N = 1, and let E(o) = 0: the spin is flipped at each step and there is no
way to have a transition from o = +1 to ¢ = —1 in an even number of steps.
(But this kind of pathology is easily cured modifying the algorithm as follows.
At each step, with probability 1 —e a site ¢ is chosen and a spin flip is proposed
as above. With probability € nothing is done, i.e. a null transition ¢ — o is
realized.)

Exercise 4.3 Variants of this chain can be obtained by changing the flipping
probabilities (4.58). A popular choice consists in the heath bath algorithm
(also referred to as Glauber dynamics):

) = } [t -t (PAE@Y] "

Prove irreducibility, aperiodicity and stationarity for these transition probabil-
ities.

One of the reason of interest of the heath bath algorithm is that it can be
easily generalized to any system whose configuration space has the form XV. In
this algorithm one chooses a variable index i, fixes all the others variables, and
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assign a new value to the i-th one according to its conditional distribution. A
more precise description is provided by the following pseudocode. Recall that,
given a vector € XV, we denote by z_;, the N — 1-dimensional vector obtained
by removing the i-th component of z.

~T

Heat bath algorithm()

Input: A probability distribution P(z) on the configuration space XN,
and the number r of iteratioms.

Output: a sequence Q(O),gm, . ,g(r)

1. Generate z(” uniformly at random in XN,

2. For t=1 to t=r:
2.1 Draw a uniformly random integer i € {1,...,N}
2.2 For each z € X, compute
PXi=2X , =2'7")
Soex PXi=2,X  =207)
(4.62)

2.3 Set m§t> :x§t71> for each j # i, and 2! = 2 where z is drawn

i

from the distribution P(X; =z|X _, = g(j;”g).

P(X; =z|X_, = :r(tfl)g) = .

Lo

Let us stress that this algorithm does only require to compute the probability
P(z) up to a multiplicative constant. If, for instance, P(z) is given by Boltz-
mann law, cf. Sec. 2.1, it is enough to be able to compute the energy F(x) of
a configuration, and is instead not necessary to compute the partition function
Z(8).

This is a very general method for defining a Markov chain with the desired
property. The proof is left as exercise.

Exercise 4.4 Assuming for simplicity that Va, P(z) > 0, prove irreducibility,
aperiodicity and stationarity for the heat bath algorithm.

Theorem 4.17 confirms that the Monte Carlo method is indeed a viable
approach for sampling from a given probability distribution. However, it does
not provide any information concerning its computational efficiency. In order to
discuss such an issue, it is convenient to assume that simulating a single step
X, — X, of the Markov chain has a unitary time-cost. This assumption is a
good one as long as sampling a new configuration requires a finite (fixed) number
of computations and updating a finite (and N-independent) number of variables.
This is the case in the two examples provided above, and we shall stick here to
this simple scenario.

Computational efficiency reduces therefore to the question: how many step
of the Markov chain should be simulated? Of course there is no unique answer
to such a generic question. We shall limit ourselves to introduce two important
figures of merit. The first concerns the following problem: how many steps should
be simulated in order to produce a single configuration z which is distributed
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approximately according to P(z)? In order to precise what is meant by “approx-
imately” we have to introduce a notion distance among distributions P; () and
Po(-) on XN, A widespread definition is given by the variation distance:

1P -Pll=5 3 1A - Pl (4.63)

zeXN

Consider now a Markov chain satisfying the hypotheses 1-3 above with respect to
a stationary distribution P(z) and call P;(z|z,) the distribution of X, conditional
to the initial condition X, = x,. Let d (t) = [|P:(-[z9) — P(-)|| be the distance
from the stationary distribution. The mixing time (or variation threshold
time) is defined as

Teq(e) =min{t >0 : supdy, (t) <e}. (4.64)

Zo

In this book we shall often refer informally to this quantity (or to some close
relative) as the equilibration time. The number & can be chosen arbitrarily, a
change in ¢ implying usually a simple multiplicative change in in 7eq(¢). Because
of this reason the convention £ = 1/e is sometimes adopted.

Rather than producing a single configuration with the prescribed distribution,
one is often interested in computing the expectation value of some observable
O(z). In principle this can be done by averaging over many steps of the Markov
chain as suggested by Eq. (4.57). It is therefore natural to pose the following
question. Assume the initial condition X is distributed according to the sta-
tionary distribution P(z). This can be obtained by simulating 7eq () steps of the
chain in a preliminary (equilibration) phase. We shall denote by (-) the expec-
tation with respect to the Markov chain with this initial condition. How many
steps should we average over in order to get expectation values within some
prescribed accuracy? In other words, we estimate Y P(z)O(z) = EpO by

T

LS o(x,). (4.65)
t=0

@T =

el

It is clear that (Or) = > P(z)O(z). Let us compute the variance of this esti-
mator:

T-1 T-1
_ 1 1
s,t=0 +=0

where we used the notation O; = O(X,). Let us introduce the autocorrelation

function Cp(t — s) = 280783, so that Var(Or) = % tT:_Ol (T —t)Colt).
General results on Markov chain on finite state spaces imply that Co(t) decreases

exponentially as t — oco. Therefore, for large T', we have
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F1G. 4.5. Variational estimates of the free energy of the model (4.44). We use
the trial distributions (4.46) on the left and (4.48) on the right.

Var(Or) = % [EpO? — (EpO)?] + O(T~2). (4.67)
The integrated autocorrelation time 7%, is given by
T =>_Colt), (4.68)
t=0

and provides a reference for estimating how long the Monte Carlo simulation
should be run in order to get some prescribed accuracy. Equation (4.67) can
be interpreted by saying that one statistically independent estimate of EpO is
obtained every 7%, iterations.

Example 4.19 Consider the Curie-Weiss model, cf. Sec. 2.5.2, at inverse tem-
perature 3, and use the heath-bath algorithm of Example 2 in order to sample
from the Boltzmann distribution. In Fig. 7?7 we reproduce the evolution of the
global magnetization m(c) during three different simulations at inverse temper-
atures # = 0.8, 1.0, 1.2 for a model of N = 150 spin. In all cases we initialized
the Markov chain by extracting a random configuration with flat probability.

A spectacular effect occurs at the lowest temperature, 5 = 1.2. Although
the Boltzmann average of the global magnetization vanishes, (m(o)) = 0, the
sign of the magnetization remains unchanged over extremely long time scales.
It is clear that the equilibration time is at least as large as these scales. An
order-of-magnitude estimate would be 7oq > 10°. Furthermore this equilibra-
tion time diverges exponentially at large N. Sampling from the Boltzmann
distribution using the present algorithm becomes exceedingly difficult at low
temperature.

4.6 Simulated annealing

As we mentioned in Sec. 3.5, any optimization problem can be ‘embedded’ in a
statistical mechanics problem. The idea is to interpret the cost function E(z), z €
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XN as the energy of a statistical mechanics system and consider the Boltzmann
distribution pg(z) = exp[—FE(z)]/Z. In the low temperature limit 8 — oo, the
distribution concentrates over the minima of E(z), and the original optimization
setting is recovered.

Since the Monte Carlo method provides a general technique for sampling
from the Boltzmann distribution, one may wonder whether it can be used, in
the 8 — oo limit, as an optimization technique. A simple minded approach would
be to take 5 = 0o at the outset. Such a straegy is generally referred to as quench
in statistical physics and greedy search in combinatorial optimization, and is
often bound to fail. Consider in fact the stationarity condition (4.54) and rewrite
it using the Boltzmann formula

S e BE@=EW) (g y) = 1. (4.69)

Since all the terms on the left hand side are positive, any of them cannot be larger
than one. This implies 0 < w(z — y) < exp{—F[E(y) — E(z)]}. Therefore, for
any couple of configurations z, y, such that E(y) > F(z) we have w(z — y) — 0
in the 8 — oo limit. In other words, the energy is always non-increasing along
the trajectories of a zero-temperature Monte Carlo algorithm. As a consequence,
the corresponding Markov chain is not irreducible, although it is irreducible at
any 3 < oo, and is not guaranteed to converge to the equilibrium distribution,
i.e. to find a global minimum of E(z).

Another simple minded approach would be to set § to some large but finite
value. Although the Boltzmann distribution gives some weight to near-optimal
configurations, the algorithm will visit, from time to time, also optimal config-
uratons which are the most probable one. How large should be 57 How much
time shall we wait before an optimal configuration is visited? We can assume
without loss of generality that the minimum of the cost function (the ground
state energy) is zero: Ey = 0. A meaningful quantity to look at is the probability
for E(z) = 0 under the Boltzmann distribution at inverse temperature 3. We
can easily compute the logarithmic moment generating function of the energy:

T e (B-0E@)

w} . (4.70)

_ 1 tB) | _ L
Un (t) = 57 log ;pﬁ(z)e D = log

This is given by ¥ (t) = on (6 —t) — dn(8), where ¢y () is the free entropy
density at inverse temperature (. Clearly pg[E(x) = 0] = exp[NyYn(—o0)] =
exp{N[pn(c0)—dn(5)]}, and the average time to wait before visiting the optimal
configuration is 1/pg[E(z) = 0] = exp[—Nn(—00)].



{app_sanov_ft}

90 PROBABILISTIC TOOLBOX

Exercise 4.5 Assume that the cost function takes integer values E =
0,1,2... and call Xg the set of cofigurations z such that E(z) = E. You
want the Monte Carlo trajectories to spend a fraction (1 — &) of the time on
optimal solutions. Show that the temperature must be chosen such that

B =log (%) +0O(e). (4.71)

In Section 2.4 we argued that, for many statistical mechanics models, the free
entropy density has a finite thermodynamic limit ¢(5) = limy_—co dn(0). In the
following Chapters we will show that this is the case also for several interesting
optimization problems. This implies that pg[E(z) = 0] vanishes in the N — oo
limit. In order to have a non-negligibile probability of hitting a solution of the
optimization problem, 0 must be scaled with N in such a waythat 8 — oo as
N — 00. On the other hand, letting 6 — oo we are going to face the reducibility
problem mentioned above. Althouch the Markov chain is formally irreducible,
its equilibration time will diverge as § — oo.

The idea of simulated annealing consists in letting 3 vary with time. More
precisely one decides an annealing schedule {(3;,n1); (82,n2);...(0r,n5)},
with inverse temperatures [3; € [0, 00] and integers n; > 0. The algorithm is ini-
tialized on a configutation z, and executes n; Monte Carlo steps at temperature
b1, no at temperature (s, ..., ny at temperature S;. The final configuration of
each cycle ¢ (with ¢ = 1,...,L — 1) is used as initial configuration of the next
cycle. Mathematically, such a process is a time-dependent Markov chain.
The common wisdom about the simulated annealing algorithm is that varying
the temperature with time should help avoiding the two problems encountered
above. Usually one takes the 3;’s to be an increasing sequence. In the first stages
a small 3 should help equilibrating across the space of configurations XV. As the
themperature is lowered the probability distribution concentrates on the lowest
energy regions of this space. Finally, in the late stages, a large 3 forces the sys-
tem to fix the few wrong details, and to find solution. Of course, this image is
very simplistic. In the following Chapter we shall try to refine it by considering
the application of simulated annealing to a variety of problems.

4.7 Appendix: A physicist’s approach to Sanov’s theorem

Let us show how the formulas of Sanov’s theorem can be obtained using the type
of ‘field theoretic’ approach used in statistical physics. The theorem is easy to
prove, the aim of this section is not so much to give a proof, but rather to show
on a simple example a type of approach that is very common in physics, and
which can be powerful. We shall not aim at a rigorous derivation.

The probability that the type of the sequence x1,---,xy be equal to g(x)
can be written as:
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1 N
_ E{ H I (q(x) = NZ&E“>}
zeEX i=1

= > p(w1)~--p(ww)ﬂ(q(x)= ;,Z}m) - (4.72)

r1"IN

A typical approach in field theory is to introduce some auxiliary variables in
order to enforce the constraint that ¢(z) = + Zf\il 0z,z,;. For each z € X, one
introduces a variable A(z), and uses the ‘integral representation’ of the constraint
in the form:

N 21 T N

- (4.73)

Dropping ¢-independent factors, we get:

C’/ I d\(z) exp{NS[A]} |

zeX

where C' is a normalization constant, and the action S is given by:

A =1iY Mz)g(x) + log Zp —ZW] (4.74)

In the large N limit, the integral in (4.74) can be evaluated with a saddle point
method. The saddle point A(z) = A*(z) is found by solving the stationarity
equations 9S/0A(z) = 0 for any = € X. One gets a family of solutions —i\(z) =
C +1log(q(z)/p(x)) with C arbitrary. The freedom in the choice of C' comes from
the fact that > (3", 04,2,) = N for any configuration z; ...xy, and therefore
one of the constraints is in fact useless. This freedom can be fixed arbitrarily:
regardless of this choice, the action on the saddle point is

=50 — Z q(z log (4.75)

where Sy is a ¢ independent constant. One thus gets Plg(x)] = exp[—ND(q||p)].

The reader who has never encountered this type of reasoning may wonder why
use such an indirect approach. It turns out that it is a very common formalism
in statistical physics, where similar methods are also applied, under the name
‘field theory’, to continuous X’ spaces (some implicit discretization is then usually
assumed at intermediate steps, and the correct definition of a continuum limit is
often not obvious). In particular the reader interested in the statistical physics
approach to optimizations problems or information theory will often find this
type of formalism in research papers. One of the advantages of this approach is
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that it provides a formal solution to a large variety of problems. The quantity to
be computed is expressed in an integral form as in (4.74). In problems having a
‘mean field’ structure, the dimension of the space over which the integration is
performed does not depend upon N. Therefore its leading exponential behavior
at large N can be obtained by saddle point methods. The reader who wants
to get some practice of this approach is invited to ‘derive’ in the same way the
various theorems and corollaries of this chapter.

Notes

The theory of large deviations is exposed in the book of Dembo and Zeitouni
(Dembo and Zeitouni, 1998), and its use in statistical physics can be found in
Ellis’s book (Ellis, 1985).

Markov chains on discrete state spaces are treated by Norris (Norris, 1997)
A nice introduction to Monte Carlo methods in statistical physics is given in the
lecture notes by Krauth (Krauth, 1998) and by Sokal (Sokal, 1996).

Simulated annealing was introduced by Kirkpatrick, Gelatt and Vecchi 1983
(Kirkpatrick, C. D. Gelatt and Vecchi, 1983). It is a completely “universal”
optimization algorithm: it can be defined without reference to any particular
problem. Beacause of this reason it ofteen overlooks important structures that
may help solving the problem itself.
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THE RANDOM ENERGY MODEL

The random energy model (REM) is probably the simplest statistical physics
model of a disordered system which exhibits a phase transition. It is not supposed
to give a realistic description of any physical system, but it provides a workable
example on which various concepts and methods can be studied in full details.
Moreover, due the its simplicity, the same mathematical structure appears in a
large number of contexts. This is witnessed by the examples from information
theory and combinatorial optimization presented in the next two chapters. The
model is defined in Sec. 5.1 and its thermodynamic properties are studied in
Sec. 5.2. The simple approach developed in these section turns out to be useful in
a large varety of problems. A more detailed (and also more involved) study of the
low temperature phase is given in Sec. 5.3. Section 5.4 provides an introduction to
the so-called annealed approximation, which will be useful in more complicated
models.

5.1 Definition of the model

A statistical mechanics model is defined by a set of configurations and an energy
function defined on this space. In the REM there are M = 2V configurations
(like in a system of N Ising spins) to be denoted by indices 7, j,--- € {1,...,2V}.
The REM is a disordered model: the energy is not a deterministic function but
rather a stochastic process. A particular realization of such a process is usually
called a sample (or instance). In the REM, one makes the simplest possible
choice for this process: the energies {F;} are i.i.d. random variables (the energy
of a configuration is also called an energy level). For definiteness we shall keep
here to the case where they have Gaussian distribution with zero mean and
variance N/2, but other distributions could be studied as well®. The pdf for the
energy E; of the state i is thus given by

P(E) = \/% e BN (5.1)

Given an instance of the REM, which consists of the 2V real numbers E;
drawn from the pdf (5.1), one assigns to each configuration ¢ a Boltzmann prob-
ability p; in the usual way:

Py = 5 exp (~OE)) (52)

9The scaling with N of the distribution should be chosen in such a way that thermodynamic
potentials are extensive
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where 3 = 1/T is the inverse of the temperature, and the normalization factor
Z (the partition function) equals:

2N

Z =Y exp(-pE;) . (5.3)

Jj=1

Notice that Z depends upon the temperature 3, the ‘sample size’ N, and the
particular realization of the energy levels Ey ... Ey;. We dropped all these de-
pendecies in the above formula.

It is important not to be confused by the existence of two levels of probabili-
ties in the REM, as in all disordered systems. We are interested in the properties
of a probability distribution, the Boltzmann distribution (5.2), which is itself a
random object because the energy levels are random variables.

Physically, a particular realization of the energy function corresponds to a
given sample of some substance whose microscopic features cannot be controlled
experimentally. This is what happens, for instance, in a metallic alloy: only the
proportions of the various components can be controlled. The precise positions
of the atoms of each species are described as random variables. The expectation
value with respect to the sample realization will be denoted in the following by
E(-). For a given sample, Boltzmann’s law (5.2) gives the probability of occupying
the various possible configurations, according to their energies. The average with
respect to Boltzmann distribution will be denoted by (). In experiments one
deals with a single (or a few) sample(s) of a given disordered material. One
could therefore be interested in computing the various thermodynamic potential
(free energy Fp, internal energy Uy , or entropy Sy) for this given sample.
This is an extremely difficult task. However, we shall see that, as N — oo,
the probability distributions of intensive thermodynamic potentials concentrate
around their expected values:

e [ (2] ] < ”

for any potential X (X = F,S,U,...) and any tolerance 6 > 0. The quantity X
is then said to be self-averaging. This essential property can be summarized
plainly by saying that almost all large samples “behave” in the same way Y.
Often the convergence is exponentially fast in N (this happens for instance in
the REM): this means that the expected value E Xy provide a good description
of the system already at moderate sizes.

5.2 Thermodynamics of the REM
In this Section we compute the thermodynamic potentials of the REM in the
thermodynamic limit N — oo. Our strategy consists first in estimating the

10This is the reason why different samples of alloys with the same chemical composition have
the same thermodynamic properties

{eq:rem_zdef}
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microcanonical entropy density, which has been introduced in Sec. 2.4. This
knowledge is then used for computing the partition function Z to exponential
accuracy at large N.

5.2.1 Direct evaluation of the entropy

Let us consider an interval of energies Z = [Ne, N(e + 6)], and call N (g, & + 4)
the number of configurations i such that E; € Z. Each energy ‘level’ E; belongs
to Z independently with probability:

N e+o
Pr= ‘/7/ e N2y (5.5)
™ £

Therefore A/(g,e + ) is a binomial random variable, and its expectation and
variance are given by:

EN(e,e +6)=2"Pr, VarN(e,e +06) =2 Pr[1 — Pq], (5.6)

Because of the appropriate scaling with IV of the interval Z, the probability Pz
depends exponentially upon N. To exponential accuracy we thus have

EN(e,e+d) = exp {N max sa(x)} , (5.7)
x€[e,e+4]

VarN (e,e +9) .
e S E) (58)

where s,(z) = log2 — 2. Notice that s,(z) > 0 if and only if z € [—¢., ., with
ex = +/log2.

The intuitive content of these equalities is the following: When ¢ is outside
the interval [—e,,e.], the typical density of energy levels is exponentially small
in N: for a generic sample there is no configuration at energy E; ~ Ne. On the
contrary, when e €] — e,,&,[, there is an exponentially large density of levels,
and the fluctuations of this density are very small. This result is illustrated by
a small numerical experiment in Fig. 5.1. We now give a more formal version of
this statement.

Proposition 5.1 Define the entropy function

_ [sale) —log2 - if e <e.,
se) = { —00 if le] > ex. (5.9)

Then, for any couple € and &, with probability one:

1
lim —logN(e,e+d)= sup s(z) . (5.10)
N—oo N z€(e,e+0]

Proof: The proof makes a simple use of the two moments of the number of
energy levels in Z, found in (5.7,5.8).

{se:MicroREM}

{propo:REMdos}
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FiG. 5.1. Histogram of the energy levels for three samples of the random energy
model with increasing sizes: from left to right N = 10,15 and 20. Here we plot
N=Ylog N (eg,e + §) versus €, with § = 0.05. The dashed curve gives the N — oo
analytical prediction (5.9).

Let us first assume that the interval [g, e + d] is disjoint from [—e,,e,]. Then
EN(e,e +0) = e 4N, with A = —sup,c(. .15 5a() > 0. As N(e,e +6) is an
integer, we have the simple inequality

PN (e,e +6) > 0] <EN(e,e +6) = e AV,

In words, the probability of having an energy level in any fixed interval outside
[—&x, €] is exponentially small in N. The inequality of the form (5.11) goes under
the name of Markov inequality, and the general strategy is sometimes called
the first moment method. A general introduction to this approach is provided
in App. 7?77.

Assume now that the intersection between [e,e + ] and [—¢e,,e.] is a finite
length interval. In this case AN (g,& + ) is tightly concentrated around its expec-
tation EN (g,e + §) as can be shown using Chebyshev inequality. For any fixed

C > 0 one has
N(e,e+d) VarN(e,e +6)® . _py
P{ EN(e,c +0) 1’ g C} S PENGerop o 012

with B = sup, ¢ .44] Sa(®) > 0. A slight variation of the above reasoning is often
referred to as the second moment method, and will be further discussed in
App. 7777.

Finally, the statement (5.10) follows from the previous estimates through a
straightfoward application of Borel-Cantelli Lemma. [J

(5.11)

Exercise 5.1 Large deviations: let Nyu:(d) be the total number of configu-
rations j such that |E;| > N(e. + 0), with 6 > 0. Use Markov inequality to
show that the fraction of samples in which there exist such configurations is
exponentially small.

Besides being an interesting mathematical statement, Proposition 5.1 pro-
vides a good quantitative estimate. As shown in Fig. 5.1, already at N = 20, the
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outcome of a numerical experiment is quite close to the asymptotic prediction.
Notice that, for energies in the interval | — ., €.[, most of the discrepancy is due
to the fact that we dropped subexponential factors in EN (g, e + §). It is easy
to show that this produces corrections of order ©(log N/N) to the asymptotic
behavior (5.10). The contribution due to fluctuations of N(e,e + §) around its
average is instead exponentially small in N.

5.2.2  Thermodynamics and phase transition
From the previous result on the microcanonical entropy density, we now com-
N

pute the partition function Zy(3) = Z?:l exp(—fE;). In particular, we are
interested in intensive thermodynamic potentials like the free entropy density
d(B) = limy oo [log Zn(B)]/N. We start with a fast (and loose) argument, using
the general approach outlined in Sec. 2.4. It amounts to discretizing the energy
axis using some step d, and counting the energy levels in each interval with
(5.10). Taking in the end the limit 6 — 0 (after the limit N — o0), one expects
to get, to leading exponential order:

2 = [ e oxp [N (sa(e) - fe)] - (5.13)

—Ey

The rigorous formulation of the result can be obtained in analogy'! with the
general equivalence relation stated in Proposition 2.6. We find the free entropy
density:

¢(B) = max [sa(c) — Pel, (5.14)
e€[—€x,Ex]

Notice that although every sample of the REM is a new statistical physics system,
which might have its own thermodynamic potentials, we have found that almost
all samples have the same free entropy density (5.14), and thus the same energy
,entropy, and free energy densities. More precisely, for any fixed tolerance 6 > 0,
we have |[(1/N)log Zn(5) — ¢(8)| < 6 with probability approaching one as N —
00.

Let us now discuss the physical content of the result (5.14). The optimization
problem on the right-hand side can be solved through the geometrical construc-
tion illustrated in Fig. 5.2. One has to find a tangent to the curve s,(¢) = log 2—¢?
with slope § > 0. Call e,(8) = —(/2 the abscissa of the tangent point. If
€a(f) € [—€x, €], then the max in Eq. (5.14) is realized in £,(3). In the other
case €,(8) < —e4 (because 8 > 0) and the max is realized in —¢,. Therefore:

Proposition 5.2 The free energy of the REM, f(8) = —¢(8)/0, is equal to:

_1p ;
f(B) = {_3/10?21%2//8 gg § gz: where 3. = 24/log2 . (5.15)

' The task is however more difficult here, because the density of energy levels N (e, e + d) is
a random function whose fluctuations must be controlled.

{eq:rem_zcanon}
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0.8
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F1G. 5.2. The ‘annealed’ entropy density s.(¢) of the REM as a function of
the energy density e, see Eq. (5.14). The canonical entropy density s(3) is the
ordinate of the point with slope ds,/de = 8 when this point lies within the in-
terval [—e,,e,] (this is for instance the case at e = &1 in the plot), and s(5) =0
otherwise. This gives rise to a phase transition at 5. = 2/log2. In the ‘an-
nealed’ approximation, the phase transition is not seen, and the s,(g) < 0 part
of the curve is explored, due to the contribution of rare samples to the partition
function, see Sec. 5.4.

This shows that a phase transition (i.e. a non-analyticity of the free energy den-
sity) takes place at the inverse critical temperature 3. = 1/T, = 2+/log2. It is
a second order phase transition in the sense that the derivative of f(() is con-
tinuous, but because of the condensation phenomenon which we will discuss in
Sec. 5.3 it is often called a ‘random first order’ transition. The other thermody-
namic potentials are obtained through the usual formulas, cf. Sec. 2.2. They are
plotted in Fig. 5.3.

The two temperature regimes -or ‘phases’- , § < or > ., have distinct quali-
tative properties which are most easily characterized through the thermodynamic
potentials.

e In the high temperature phase T > T, (or, equivalently, 8 < f.), the
energy and entropy densities are given by: u(8) = —3/2 and s(5) = log2—
(%/4. the configurations which are relevant in Boltzmann’s measure are
those with energy E; ~ —N/2. There is an exponentially large number of
configurations having such an energy density (the microcanonical entropy
density s(e) is strictly positive at e = —(3/2), and the Boltzmann measure
is roughly equidistributed among such configurations.

In the high temperature limit T — oo (8 — 0) Boltzmann’s measure
becomes uniform, and one finds as expected u(3) — 0 (because nearly all

{fig:rem_sde}
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Fig. 5.3. Thermodynamics of the REM: the free energy density (full line),
the energy density (dashed line) and the entropy density (dotted line) are
plotted versus temperature T = 1/8. The phase transition takes place at

T, = 1/(2/I0g2) ~ 0.6005612.

configurations have an energy E;/N close to 0) and s — log 2.

e In the low temperature phase T' < T, (8 > f.), the thermodynamic poten-
tials are constant: u(8) = —e, and s(8) = 0. The relevant configurations
are the ones with the lowest energy density, namely with E;/N =~ —¢,. The
thermodynamics becomes dominated by a relatively small set of configura-
tions, which is not exponentially large in N (the entropy density vanishes).

Exercise 5.2 From the original motivation of the REM as a simple version
of a spin glass, one can define a generalization of the REM in the presence of
a magnetic field B. The 2V configurations are divided in N + 1 groups. Each
group is labelled by its ‘magnetization’ M € {—N,—-N+2,...,N—2, N}, and
includes ( N

(N +M)/2
Gaussian variables with variance y/N/2 as in (5.1), and mean EE; = —MB
which depends upon the group j belongs to. Show that there exists a phase
transition line (.(B) in the plane §, B such that:

1 __ [ tanh [3B] when < 3.(B),
NEM - {tanh [B.(B)B] when 3> 3.(B), (5.16)

> configurations. Their energies {E;} are indipendent

and plot the magnetic susceptibility % =0 versus ' = 1/4.

|5
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Exercise 5.3 Consider a generalization of the REM where the pdf of energies,
instead of being Gaussian, is P(F) x exp [—C’|E|‘5], where § > 0. Show that,
in order to have extensive thermodynamic potentials, one should scale C as
C = N'7°C (i.e. the thermodynamic limit N — oo should be taken at fixed

(). Compute the critical temperature and the ground state energy density.
What is the qualitative difference between the cases 6 > 1 and § < 17

5.3 The condensation phenomenon

In the low temperature phase a smaller-than-exponential set of configurations
dominates Boltzmann’s measure: we say that the measure condensates onto
these configurations. This is a scenario that we will encounter again in some
other glass phases 2, and it usually leads to many difficulties in finding the
relevant configurations. In order to quantify the condensation, one can compute
a participation ratio Yy (/) defined from Boltzmann’s weights (5.2) as:

-2

2N
Yw@B) =D p7 = |Y e Y e (5.17)
j=1 i j

One can think of 1/Yy(0) as giving some estimate of the ‘effective’ number of
configurations which contribute to the measure. If the measure were equidis-
tributed on r levels, one would have Y (5) = 1/r.

The participation ratio can be expressed as Y (8) = Zx(28)/Zn(8)?, where
Zn(P) is the partition function at inverse temperature §. The analysis in the
previous Section showed that Zy(3) = exp[N(log2 + $%/4)] with very small
fluctuations (see discussion at the end of Sec. 5.2.1) when 8 < f3., while Zy (3) =
exp[NGv/1og2] when 5 > (.. This indicates that Yy () is exponentially small
in N for almost all samples in the high temperature phase 5 < (3., in agreement
with the fact that the measure is not condensed at high temperatures. In the
low temperature phase, on the contrary, we shall see that Yx(3) is finite and
fluctuates from sample to sample.

The computation of EY (we drop hereafter its arguments N and ) in the
low temperature phase is slightly involved. It requires having a fine control of
the energy levels E; with E;/N ~ —e,. We sketch here the main lines of com-
putation, and leave the details to the reader as an exercise. Using the integral
representation 1/Z2 = [ dt texp(—tZ), one gets (with M = 2"):

00 M
EY = MIE/ dt texp[—206E;] exp [—tze—ﬂ& = (5.18)
0 i=1
= M/Ocdt ta(t) [ —bt)M~1, (5.19)
0

12We also call the low temperature phase of the REM a glass phase, by analogy with similar
situations that we will encounter later on
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where
/ dP(E) exp [-28E —te "¥] (5.20)
b(t) = /dP(E) [1 — exp(—te PP)], (5.21)
and P(FE) is the Gaussian distribution (5.1). For large N the leading contribu-

tions to EY come from the regions F = —Neg+wu and t = 6 exp(—Nfe), where
u and @ are finite as N — oo, and we defined

€0 = €4 — (5.22)
Notice that £y has been fixed by the condition 2V P(—Negy) = 1 and can be
thought as a refined estimate for the energy density of the lowest energy config-
uration. In the region F = —Negg + u, the function P(E) can be substituted by

27 Nefet One gets:
1 +oo pu 2Nﬁ€0
a(t) ~ 2N550/ du Beu—2B8u—ze _ Mﬁ oBe/B=2 1’\(2 — B /ﬁ)
1
Beu _ —Bu _ _ Be/B _
~ / du %" [1 —exp(—ze ™)) = — 50 SODA/D). (529

where I'(z) is Euler’s Gamma function. Notice that the substitution of 27V e/
to P(E) is harmless because the resulting integrals (5.23) and (5.23) converge at
large wu.

At large N, the expression [1 — b(¢)]™~1 in (5.19) can be approximated by
e~ M) " and one finally obtains:

oo
EY = M/ dt ta(t) e M¥® — (5.24)
0

:%F (2—>/dz ZPe/B~1 exp [;F (—%) zﬂ“m] =1-3./8,

where we used the approximate expressions (5.23), (5.23) and equalities are un-
derstood to hold up to corrections which vanish as N — oo.
We obtain therefore the following:

Proposition 5.3 In the REM, the expectation value of the participation ratio
18:

EY — {0 when T > Ty, (5.25)

1-T/T, when T <T..

This gives a quantitative measure of the degree of condensation of Boltzmann’s
measure: when T decreases, the condensation starts at the phase transition 7T,

{prop:condensation_rem}
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temperature. At lower temperatures the participation ratio Y increases, meaning
that the measure concentrates onto fewer and fewer configurations, until at 7' = 0
only one configuration contributes and ¥ = 1.

With the participation ratio we have a first qualitative and quantitative char-
acterization of the low temperature phase. Actually the energies of the relevant
configurations in this phase have many interesting probabilistic properties, to
which we shall return in Chapter ?77.

5.4 A comment on quenched and annealed averages

In the previous section we have found that the self-averaging property holds in
the REM, which allowed us to discuss the thermodynamics of a generic sample.

Self-averaging of the thermodynamic potentials is a very frequent property,
but in more complicated systems it is often difficult to compute them exactly.
We discuss here an approximation which is frequently used in such cases, the
so-called annealed average. When the free energy density is self averaging, the
value of fy is roughly the same for almost all samples and can be computed as
its expectation, called the quenched average fn :

T
fN,q = EfN = 7N]E10g ZN (526)

Since fy is proportional to the logarithm of the partition function, this average
is in general hard to compute and a much easier task is to compute the annealed
average:

INa= f% log(E 2) (5.27)

Let us compute it for the REM. Starting from the partition function (8.1), we
find:

21\7
EZy =EY e P = oVEe PP = oNNOY/A (5.28)
1=1

yielding fx.a(8) = —B/4 —log2/p.

Let us compare this with the correct free energy density found in (5.15).
The annealed free energy density f.(() is always smaller than the correct one,
as it should because of Jensen inequality (remember that the logarithm is a
concave function). In the REM, and a few other particularly simple problems,
it gives the correct result in the high temperature phase T' > T, but fails to
identify the phase transition, and predicts wrongly a free energy density in the
low temperature phase which is the analytic prolongation of the one at T' > T.
In particular, it finds a negative entropy density s.(3) = log2 — %/4 for T < T,
(see Fig. 5.2).

A negative entropy is impossible in a system with finite configuration space,
as can be seen from the definition of entropy. It thus signals a failure, and the
reason is easily understood. For a given sample with free energy density f, the
partition function behaves as Zy = exp(—fSN fn). Self-averaging means that fy
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has small sample to sample fluctuations. However these fluctuations exist and are
amplified in the partition function because of the factor /V in the exponent. This
implies that the annealed average of the partition function can be dominated by
some very rare samples (those with an anomalously low value of fy). Consider
for instance the low temperature limit. We already know that in almost all
samples the configuration with the lowest energy density is found at E; ~ —Ne¢,.
However, there exist exceptional samples with one configuration with a smaller
minimum F; = —Neg, € > ¢,. These samples are exponentially rare (they occur
with a probability = 2Ve~N¢"), they are irrelevant as far as the quenched average
is concerned, but they dominate the annealed average.

Let us add a short semantic note. The terms ‘quenched’” and ‘annealed’ orig-
inate in the thermal processing of materials used for instance in metallurgy of
alloys: a quench corresponds to preparing a sample by bringing it suddenly from
high to low temperatures. Then the position of the atoms do not move: a given
sample is built from atoms at some random positions (apart from some small
vibrations). On the contrary in an annealing process one gradually cools down
the alloy, and the various atoms will find favorable positions. In the REM, the
energy levels F; are quenched: for each given sample, they take certain fixed
values (like the positions of atoms in a quenched alloy). In the annealed approx-
imation, one treats the configurations ¢ and the energies E; on the same footing:
they adopt a joint probability distribution which is given by Boltzmann’s dis-
tribution. One says that the FE; variables are thermalized (like the positions of
atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the
free energy in any system with finite configuration space. Useful results can be
obtained for instance using the two simple relations, valid for all temperatures
T =1/ and sizes N:

fN,q(T) Z fN,a(T) ] df]\;i;@ S 0. (529)
The first one follows from Jensen as mentioned above, while the second can be
obtained from the positivity of canonical entropy, cf. Eq. (2.22), after averaging
over the quenched disorder.
In particular, if one is interested in optimization problems (i.e. in the limit
of vanishing temperature), the annealed average provides the general bound:

Proposition 5.4 The ground state energy densily

un (T =0) = %E [ min E(ac)} . (5.30)

zeXN

satisfies the bound un(0) > maxpe(o,o0) fN,a(T)

Proof: Consider the annealed free energy density fn.(T') as a function of the
temperature T'= 1/[. For any given sample, the free energy is a concave function
of T because of the general relation (2.23). It is easy to show that the same

{eq:InegAnnealed}

{propo:annealed_bound}
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property holds for the annealed average. Let T, be the temperature at which
fNa(T) achieves its maximum, and f3 , be its maximum value. If T}, = 0, then
un(0) = fnq(0) > fx .- It T >0, then

UN(O) = fN,q(O) Z fN,q(T*) Z fa(T*) (531)

where we used the two inequalities (5.29). O
In the REM, this result immediately implies that w(0) > maxg[—/3/4 —
log2/3] = —y/log 2, which is actually a tight bound.

5.5 Notes
Notes

The REM was invented by Derrida in 1980 (Derrida, 1980), as an extreme case
of some spin glass system. Here we have followed his original solution which
makes use of the microcanonical entropy. Many more detailed computations can
be found in (Derrida, 1981), including the solution to Exercise 2.

The condensation formula (5.3) appears first in (Gross and Mézard, 1984) as
an application of replica computations which we shall discuss in Chapter ?7. The
direct estimate of the participation ratio presented here and its fluctuations were
developed in (Mézard, Parisi and Virasoro, 1985) and (Derrida and Toulouse,
1985). We shall return to some fascinating (and more detailed) properties of the
condensed phase in Chapter ?7.

Exercise 3 shows a phase transition which goes from second order for 6 > 1
to first order when § < 1. Its solution can be found in (Bouchaud and Mézard,
1997).

As a final remark, let us notice that in most of the physics litterature, peo-
ple don’t explicitely write down all the rigorous mathematical steps leading for
instance to Eq. (5.13), preferring a smoother presentation which focuses on the
basic ideas. In much more complicated models it may be very difficult to fill the
corresponding mathematical gaps. The recent book by Talagrand (Talagrand,
2003) adopts a fully rigorous point of view, and it starts with a presentation of
the REM which nicely complements the one given here and in Chapter 77.
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of alloys: a quench corresponds to preparing a sample by bringing it suddenly from
a high to low a temperature. During a quench, atoms do not have time to change
position (apart from some small vibrations). A given sample is formed by atoms in
some random positions. In contrast in an annealing process, one gradually cools down
the alloy, and the various atoms will find favourable positions. In the REM, the energy
levels E; are quenched: for each given sample, they take certain fixed values (like the
positions of atoms in a quenched alloy). In the annealed approximation, one treats the
configurations 7 and the energies E; on the same footing. One says that the variables
E; are thermalized (like the positions of atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the free
energy for any system with a finite configuration space. Useful results can be obtained,
for instance, using the following two simple relations, valid for all temperatures T' =
1/3 and sizes N:

diq{T} ‘
— - < 0. B.s
aT <0 (5.30)

The first relation one follows from Jensen’s inequality as mentioned above, and the
second can be obtained from the positivity of the canonical entropy (see eqn (2.22)),
after averaging over the quenched disorder.

In particular, if one is interested in optimization problems (i.e. in the limit of
vanishing temperature), the annealed average provides the following general bound.

fN,ri(T} = f-“\",a{T} '

Proposition 5.4 The ground state energy density

un(T =0) = %E Lléli}}“ EL—_E}] (5.31)

satisfies the bound un (0) = maxrejo,0c) fnall) .

Proof Consider the annealed free-energy density fi .(1') as a function of the tempera-
ture T'= 1/3. For any given sample, the free energy is a concave function of T because
of the general relation (2.23). It is easy to show that the same property holds for the
annealed average. Let T, be the temperature at which fy .(7') achieves its maximum,
and let f3  be its maximum value. If T, = 0, then un (0) = fn 4(0) = fi .- U T, >0,
using the two inequalities (5.30), one gets

uy(0) = fh’.q[ﬂ] = fN.,q(jw*]' > fal(T5)- (5.32)

O
In the REM, this result immediately implies that u(0) = maxz[—38/4 — log2/3] =
—y/log 2, which is actually a tight bound.

5.5 The random subcube model

In the spirit of the REM., it is possible to construct a toy model for the set of solutions
of a random constraint satisfaction problem. The random subcube model is defined
by three parameters N, o, p. It has 2"V configurations: the vertices z = (xy,--- ,xyn) of
the unit hypercube {0,1}?. An instance of the model is defined by a subset S of the
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hypercube, the ‘set of solutions’. Given an instance, the analogue of the Boltzmann
measure is defined as the uniform distribution p(xz) over S.
The solution space 8 is the union of M = |2!=*"| random subeubes which are

i.i.d. subsets. Each subcube C., r € {1,..., M}, is generated through the following
procedure:
1. Generate the vector t(r) = (t1(r),t2(r), ... . tx(r)), with independent entries

0 with probability (1 — p)/2 ,
ti(r) = { 1 with probability (1 — p)/2 , (5.33)
* with probability p.

2. Given the values of {#;(r)}, C; is a subcube constructed as follows. For all i's such
that ¢t;(r) is 0 or 1, fix x; = ¢;(r). Such variables are said to be ‘frozen’ for the
subcube C,.. For all other i's, x; can be either 0 or 1. These variables are said to
be ‘free’.

A configuration r may belong to several subcubes. Whenever it belongs to at least
one subenbe, it is in S.

To summarize, o < 1 fixes the number of subcubes, and p € [0, 1] fixes their size.
The model ean be studied using exactly the same methods as for the REM. Here we
shall just describe the main results, omitting all proofs. It is a good exercise to work
out the details and prove the various assertions.

Let us denote by o, the entropy density of the r-th cluster in bits: o, = (1/N) log, |C,|.
It is clear that &, coincides with the fraction of *'s in the vector t(r). In the large-N
limit, the number of clusters N(e) with an entropy density ¢ obeys a large-deviation
principle:

N(o) = 2NE() | (5.34)

The function X(g) is given as follows. Let D(a||p) denote the Kullback—Leibler diver-
gence between a Bernoulli distribution with mean ¢ and a Bernoulli distribution with
mean p. As we saw in Section 1.2, this is given by

1 —
D(o||p) = o log, % + (1 —0)logy 7— 2 (5.35)
We define [oq(p, er), o2(p, «)] as the interval in which D(o||p) < 1 — a. Then
E{{T} = {1 —{}_—D(JHPJ "i.-‘i.’}lﬂﬂ- J = [G_lipv Q‘},Ug{p.{k}] » {536}
—O0 otherwise.

We can now derive the phase diagram (see Fig. 5.4). We denote by s the total
entropy density of the solution space, i.e. s = (1/N)log, |S|. Consider a configuration
z. The expected number of clusters to which it belongs is 2¥0 =2} ((1 4 p) /2)V. There-
fore, if @ < ay = log,(1+ p), the solution space contains all but a vanishing fraction of
the configurations, with high probability: s = log 2. On the other hand, if o > ay, the
probability that a configuration in & belongs to at least two distinet clusters is very
small. In this regime, s = max,(X(o)+ o). As in the REM, there are two cases. (i) The
maximum of X(o) + o is achieved for o = o, (p, ) €]s1(p, a), sa(p, «)[. This happens
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Fig. 5.4 Left: the function XE(e) of the random subcube model, for p = 0.6 and
a = 0.8 €|ag, ac]. The maximum of the curve gives the total number of clusters ,,.x.

A ‘typical’ random solution € & belongs to one of the eNE(7.)

., with ¥'(g.) = —1. As a increases above a., random solutions condense into a few clusters
with entropy density sz. Right: thermodynamic quantities plotted versus a for p = (1.6G: the
total entropy s, the total number of clusters X, and the number of clusters where typical
configurations are found, ..

clusters with entropy density

when a < a.(p) = log,(1+p)+(1—p)/(1+p). In this case s = (1 —a) log 2+log(1+p).
(ii1) The maximum of X(o) + o is obtained for ¢ = a2(p. a). In this case s = ga(p, o).
Altogether, we have found three phases:

e For oo < oy, subcubes overlap and one big cluster contains most of the configura-
tions: sior = 1.

e For aqg < a < a., the solution space S is split into 2¥(1=%) pop-overlapping
clusters of configurations (every subeube is a cluster of solutions, separated from
the others). Most configurations of & are in the e™*(%-) clusters which have an
entropy density close to s,(p, ). Note that the majority of clusters have entropy
density 1 — p < s,. There is a tension between the number of clusters and their
size (i.e. their internal entropy). The result is that the less numerous, but larger,
clusters with entropy density s, dominate the uniform measure.

e For @ > a, the solution space 8 is still partitioned into 2V =) non-overlapping
clusters of configurations. However, most solutions are in clusters with entropy
density close to sa(p, o). The number of such clusters is not exponentially large.
In fact, the uniform measure over & shows a condensation phenomenon, which is
completely analogous to that in the REM. One can define a participation ratio
¥ = Zrﬁﬂ{'f']'2~ where p(r) is the probability that a configuration of & chosen
uniformly at random belongs to cluster r; u(r) = eV /5" , eV~ This partici-
pation ratio is finite, and equal to 1 — m, where m is the slope m = —(d¥/de),
evaluated at so(p, av).

Notes

The REM was invented by Derrida (1980), as an extreme case of family of spin glass
models. Here we have followed his original analysis, which makes use of the microcanon-
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ical entropy. More detailed computations can be found in Derrida (1981), including
the solution to Exercise 5.2.

The condensation formula (5.3) appeared first in Gross and Mézard (1984) as an
application of replica computations which we shall discuss in Chapter 8. The direct
estimate of the participation ratio presented here and the analysis of its Auctuations
were developed by Mézard et al. (1985a) and Derrida and Toulouse (1985). We shall
return to the properties of the fascinating condensed phase in Chapter 8.

Exercise 5.3 shows a phase transition which goes from second-order when 4 > 1,
to first-order when é < 1. Its solution can be found in Bouchaud and Mézard (1997).

The random subecube model was introduced by Achlioptas (2007) and studied in
detail by Mora and Zdeborova (2007). We refer to that paper for the derivations
omitted from Section 5.5.

As a final remark, note that in most of the physics literature, authors do not
explicitely write down all of the mathematical steps leading, for instance, to eqn (5.13),
preferring a more synthetic presentation which focuses on the basic ideas. In more
complicated problems, it may be very difficult to fill in the corresponding mathematical
gaps. In many of the models studied in this book, this is still beyond the range of
rigorous techniques. The recent book by Talagrand (2003) adopts a fully rigorous
point of view, and it starts with a presentation of the REM which nicely complements
the one given here and in Chapter 8.
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RANDOM CODE ENSEMBLE

As already explained in Sec. 1.6, one of the basic problem of information theory
consists in communicating reliably through an unreliable communication chan-
nel. Error correcting codes achieve this task by systematically introducing some
form of redundancy in the message to be transmitted. One of the major break-
through accomplished by Claude Shannon was to understand the importance
of codes ensembles. He realized that it is much easier to construct ensembles
of codes which have good properties with high probability, rather than exhibit
explicit examples achieving the same performances. In a nutshell: ‘stochastic’
design is much easier than ‘deterministic’ design.

At the same time he defined and analyzed the simplest of such ensembles,
which has been named thereafter the random code ensemble (or, sometimes,
Shannon ensemble). Despite its great simplicity, the random code ensemble has
very interesting properties, and in particular it achieves optimal error correcting
performances. It provides therefore a prove of the ‘direct’ part of the channel
coding theorem: it is possible to communicate with vanishing error probability
as long as the communication rate is smaller than the channel capacity. Fur-
thermore, it is the prototype of a code based on a random construction. In the
following Chapters we shall explore several examples of this approach, and the
random code ensemble will serve as a reference.

We introduce the idea of code ensembles and define the random code ensemble
in 6.1. Some properties of this ensemble are described in Sec. 6.2, while its
performances over the BSC are worked out in Sec. 6.3. We generalize these
results to a general discrete memoryless channel in Sec. 6.4. Finally, in Sec. 6.5
we show that the random code ensemble is optimal by a simple sphere-packing
argument.

6.1 Code ensembles

An error correcting code is defined as a couple of encoding and decoding maps.
The encoding map is applied to the information sequence to get an encoded
message which is transmitted through the channel. The decoding map is ap-
plied to the (noisy) channel output. For the sake of simplicity, we shall assume
throughout this Chapter that the message to be encoded is given as a sequence
of M bits and that encoding produces a redundant sequence N > M of bits.
The possible codewords (i.e. the 2 points in the space {0, 1}" which are all the
possible outputs of the encoding map) form the codebook €y. On the other
hand, we denote by ) the output alphabet of the communication channel. We
use the notations
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z:{0,1}™ — {0,131 encoding map,
zd: YN = {0,1}Y  decoding map.

—~
[N

Notice that the definition of the decoding map is slightly different from the
one given in Sec. 1.6. Here we consider only the difficult part of the decoding
procedure, namely how to reconstruct from the received message the codeword
which was sent. To complete the decoding as defined in Sec. 1.6, one should get
back the original message knowing the codeword, but this is supposed to be an
easy task (encoding is assumed to be injective).

The customary recipe for designing a code ensemble is the following: ()
Define a subset of the space of encoding maps (6.1); (i4) Endow this set with
a probability distribution; (i7¢) Finally, for each encoding map in the ensemble,
define the associated decoding map. In practice, this last step is accomplished
by declaring that one among a few general ‘decoding strategies’ is adopted. We
shall introduce a couple of such strategies below.

Our first example is the random code ensemble (RCE). Notice that there
exist 22" possible encoding maps of the type (6.1): one must specify N bits
for each of the 2M codewords. In the RCE, any of these encoding maps is picked
with uniform probability. The code is therefore constructed as follows. For each
of the possible information messages m € {0,1}™ we obtain the corresponding

(m) — (scgm),xém), . ,xgz,n)) by throwing N times an unbiased coin:

the i-th outcome is assigned to the i-th coordinate xl(-m).

codeword z

Exercise 6.1 Notice that, with this definition the code is not necessarily in-
jective: there could be two information messages m; # mg with the same
codeword: z(™) = z(™2)_ This is an annoying property for an error correcting
code: each time that we send either of the messages m; or ms, the receiver will
not be able to distinguish between them, even in the absence of noise. Happily
enough these unfortunate coincidences occur rarely, i.e. their number is much
smaller than the total number of codewords 2. What is the expected number
of couples my, mgy such that z(™) = z(™2)? What is the probability that all
the codewords are distinct?

Let us now turn to the definition of the decoding map. We shall introduce here
two among the most important decoding schemes: word MAP (MAP stands here
for maximum a posteriori probability) and symbol MAP decoding, which can be
applied to most codes. In both cases it is useful to introduce the probability
distribution P(z|y) for z to be the channel input conditional to the received
message y. For a memoryless channel with transition probability Q(y|z), this
probability has an explicit expression as a consequence of Bayes rule:

Plaly) = 5

=1

Q(yilz;) Po(z) - (6.3)

=

1
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Here Z(y) is fixed by the normalization condition »  P(z|y) = 1, and Py(z) is
the a priori probability for z to be the transmitted message. Throughout this
book, we shall assume that the sender choses the codeword to be transmitted
with uniform probability. Therefore Py(z) = 1/2M if x € €y and Py(z) = 0
otherwise. In formulas

Py(z) = I(z € Cy). (6.4)

1
€|
It is also useful to define the marginal distribution P() (z4|y) of the i-th bit of the
transmitted message conditional to the output message. This is obtained from
the distribution (6.3) by marginalizing over all the bits z; with j # i:

PO(xly) = Paly), (6.5)

zy;

where we introduced the shorthand z,; = {z; : j # i}. Word MAP decod-
ing outputs the most probable transmitted codeword, i.e. it maximizes™ the
distribution (6.3)

2% (y) = arg max P(zly) . (6.6)

A strongly related decoding strategy is maximum-likelihood decoding. In this
case one maximize Q(y|z) over x € €. This coincide with word MAP decoding
whenever the a priori distribution over the transmitted codeword Py (x) is taken
to be uniform as in Eq. (6.4).

Symbol (or bit) MAP decoding outputs the sequence of most probable
transmitted bits, i.e. it maximizes the marginal distribution (6.5):

2"(y) = (arg max P (w1y) ..., arg max PO (xzvly)) : (6.7)

Exercise 6.2 Consider a code of block-length N = 3, and codebook size |€| =
4, with codewords z(¥ = 001, z(M = 101, 2z = 110, 2z = 111. What
is the code rate? This code is used to communicate over a binary symmetric
channel (BSC) with flip probability p < 0.5. Suppose that the channel output
is y = 000. Show that the word MAP decoding finds the codeword 001. Now
apply symbol MAP decoding to decode the first bit #1: Show that the result
coincides with the one of word MAP decoding only when p is small enough.

It is important to notice that each of the above decoding schemes is optimal
with respect a different criterion. Word MAP decoding minimizes the average

13We do not specify what to do in case of ties (i.e. if the maximum is degenerate), since
this is irrelevant for all the coding problems that we shall consider. The scrupulous reader can
chose his own convention in such cases.
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block error probability Py already defined in Sec. 1.6.2. This is the probability,
with respect to the channel distribution Q(y|z), that the decoded codeword 2 (y)
is different from the transmitted one, averaged over the transmitted codeword:

=g ZIP’ (6.8)

zel

Bit MAP decoding minimizes the bit error probability, or bit error rate
(BER) Py,. This is the fraction of incorrect bits, averaged over the transmitted
codeword:

= 1q] Z Z y) # ;] . (6.9)

x€¢ =1

We leave to the reader the easy exercise to show that word MAP and symbol
MAP decoding are indeed optimal with respect to the above criteria.

6.2 Geometry of the Random Code Ensemble

We begin our study of the random code ensemble by first working out some of its
geometrical properties. A code from this ensemble is defined by the codebook, a
set €y of 2M points (all the codewords) in the Hamming space {0, 1}. Each
one of these points is drawn with uniform probability over the Hamming space.
The simplest question one may ask on €y is the following. Suppose you sit on
one of the codewords and look around you. How many other codewords are there
at a given Hamming distance'#?

This question is addressed through the distance enumerator N, (d) with
respect to a codeword z, € €y, defined as the number of codewords in z € €y
whose Hamming distance from z is equal to d: d(z, z,) = d.

We shall now compute the typical properties of the weight enumerator for
a random code. The simplest quantity to look at is the average distance enu-
merator EN, ( ), the average being taken over the code ensemble. In general
one should further specify which one of the codewords is z. Since in the RCE
all codewords are drawn independently, and each one with uniform probability
over the Hamming space, such a specification is irrelevant and we can in fact
fix z, to be the all zeros codeword, z, = 000 ---00. Therefore we are asking
the following question: take 2" — 1 point at random with uniform probability in
the Hamming space {0, 1}"V; what is the average number of points at distance d
form the 00 - -- 0 corner? This is simply the number of points (2 — 1), times the

fraction of the Hamming space ‘volume’ at a distance d from 000---0 (2= (J;’))

ENg, (d) = (2" —1)27V (5) = QNIR-14H200)] (6.10)

14The Hamming distance of two points T,y € {0,1}¥ is the number of coordinates in
which they differ.



o :RCEWeightEnumerator}

GEOMETRY OF THE RANDOM CODE ENSEMBLE 109

0.8 T T T T T T T T T

0.6 - R—1+Hy(8) —— 4

04 - h 4
0.2 - |
0

02 / \ -
0.4 H \

-0.6 dav -
! ! ! ! ! ! ! ! !
0 01 02 03 04 05 06 07 08 09 1

]

F1c. 6.1. Growth rate of the distance enumerator for the random code ensemble
with rate R = 1/2 as a function of the Hamming distance d = N§.

In the second expression we introduced the fractional distance 6 = d/N and
the rate R = M/N, and considered the N — oo asymptotics with these two
quantities kept fixed. In Figure 6.1 we plot the function R — 1 4+ H2(d) (which
is sometimes called the growth rate of the distance enumerator). For ¢ small
enough, § < gy, the growth rate is negative: the average number of codewords
at small distance from z, vanishes exponentially with N. By Markov inequality,
the probability of having any codeword at all at such a short distance vanishes as
N — 0. The distance dgv(R), called the Gilbert Varshamov distance, is the
smallest root of R—1+H(d) = 0. For instance we have dgv(1/2) ~ 0.110278644.

Above the Gilbert Varshamov distance, § > dgv, the average number of
codewords is exponentially large, with the maximum occurring at § = 1/2:
E Ny, (N/2) = 2NF = 2M Tt is easy to show that the weight enumerator N (d)
is sharply concentrated around its average in this whole regime dgy < 0 <
1 — dgv, using arguments similar to those developed in Sec.5.2 for the random
energy model (REM configurations become codewords in the present context
and the role of energy is played by Hamming distance; finally, the Gaussian dis-
tribution of the energy levels is replaced here by the binomial distribution). A
pictorial interpretation of the above result is shown in Fig. 6.2 (notice that it is
often misleading to interpret phenomena occurring in spaces with a large num-
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Fia. 6.2. A pictorial view of a typical code from the random code ensemble. The
codewords are random points in the Hamming space. If we pick a codeword at
random from the code and consider a ball of radius N§ around it, the ball will not
contain any other codeword as long as § < dgyv(R), it will contain exponentially
many codewords when § > dgv(R)

ber of dimensions using finite dimensional images: such images must be handled
with care!).

Exercise 6.3 The random code ensemble can be easily generalized to other
(non binary) alphabets. Consider for instance a g-ary alphabet, i.e. an alphabet
with letters {0, 1, 2,...,q — 1} = A. A code €y is constructed by taking 2™
codewords with uniform probability in A”Y. We can define the distance between
any two codewords d,(z, y) to be the number of positions in which the sequence
z, y differ. The reader will easily show that the average distance enumerator is
now

EN,, (d) = 2NIE-log; a+dlogy(a—1)+Hz2(9)] (6.11)
Zy ? .
with § = d/N and R = M /N. The maximum of the above function is no longer

at 6 = 1/2. How can we explain this phenomenon in simple terms?

6.3 Communicating over the Binary Symmetric Channel

We shall now analyze the performances of the RCE when used for communicating
over the binary symmetric channel (BSC) already defined in Fig. 1.4. We start by
considering a word MAP (or, equivalently, maximum likelihood) decoder, and we
analyze the slightly more complicated symbol MAP decoder afterwards. Finally,
we introduce another generalized decoding strategy inspired by the statistical
physics analogy.
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Fic. 6.3. A pictorial view of word MAP decoding for the BSC. A codeword
x is chosen and transmitted through a noisy channel. The channel output is y.
If the distance between z, and y is small enough (left frame), the transmitted
message can be safely reconstructed by looking for the closest codeword to y. In
the opposite case (right frame), the closest codeword x; does not coincide with
the transmitted one.

6.3.1 Word MAP decoding

For a BSC, both the channel input z and output y are sequences of bits of length
N. The probability for the codeword z to be the channel input conditional to
the output y, defined in Egs. (6.3) and (6.4), depends uniquely on the Ham-
ming distance d(z,y) between these two vectors. Denoting by p the channel flip
probability, we have

(6.12)

1 e
Plaly) = 5 p"=0 (1 —p)" =2 0(z € Cy),

C being a normalization constant which depends uniquely upon y. Without loss
of generality, we can assume p < 1/2. Therefore word MAP decoding, which
prescribes to maximize P(x|y) with respect to x, outputs the codeword which is
the closest to the channel output.

We have obtained a purely geometrical formulation of the original commu-
nication problem. A random set of points €y is drawn in the Hamming space
{0,1}" and one of them (let us call it z;) is chosen for communicating. The
noise perturbs this vector yielding a new point y. Decoding consists in finding
the closest to y among all the points in ¢y and fails every time this is not Ty
The block error probability is simply the probability for such an event to occur.
This formulation is illustrated in Fig. 6.3.

This description should make immediately clear that the block error proba-
bility vanishes (in the N — oo limit) as soon as p is below some finite threshold.
In the previous Section we saw that, with high probability, the closest code-
word 2’ € €x\z, to z, lies at a distance d(z’,z,) ~ Ndgv(R). On the other
hand y is obtained from z, by flipping each bit independently with probability
p, therefore d(y,zy) ~ Np with high probability. By the triangle inequality z

{fig:RCEMaxLikelihood}
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is surely the closest codeword to y (and therefore word MAP decoding is suc-
cessful) if d(zq,y) < d(zq,2')/2. If p < Sgv(R)/2, this happens with probability
approaching one as N — oo, and therefore the block error probability vanishes.

However the above argument overestimates the effect of noise. Although
about Ndogy(R)/2 incorrect bits may cause an unsuccessful decoding, they must
occur in the appropriate positions for y to be closer to 2’ than to z,. If they
occur at uniformly random positions (as it happens in the BSC) they will be
probably harmless. The difference between the two situations is most significant
in large-dimensional spaces, as shown by the analysis provided below.

The distance between z(®) and y is the sum of N i.i.d. Bernoulli variables
of parameter p (each bit gets flipped with probability p). By the central limit
theorem, N(p —¢) < d(g(o),g) < N(p + €) with probability approaching one in
the N — oo limit, for any £ > 0. As for the remaining 2" —1 codewords, they are
completely uncorrelated with z(°) and, therefore, with y: {y,g(l), e 7£(2M_1)}
are 2™ iid random points drawn from the uniform distribution over {0, 1}*V. The
analysis of the previous section shows that with probability approaching one as
N — oo, none of the codewords {z(), - ,g(QM’l)} lies within a ball of radius
N§ centered on y, when 0 < dgy(R). In the opposite case, if § > dgv(R), there
is an exponential (in N) number of these codewords within a ball of radius NJ.

The performance of the RCE is easily deduced (see Fig. 6.4) : If p < dgv(R),
the transmitted codeword x(® lies at a shorter distance than all the other ones
from the received message y: decoding is successful. At a larger noise level,
p > dgv(R) there is an exponential number of codewords closer to y than the
transmitted one: decoding is unsuccessful. Note that the condition p < dgv(R)
can be rewritten as R < Cpgc(p), where Cpsc(p) = 1 — Ha(p) is the capacity of
a BSC with flip probability p.

6.3.2  Symbol MAP decoding

In symbol MAP decoding, the i-th bit is decoded by first computing the marginal
P (z;]y) and then maximizing it with respect to x;. Using Eq. (6.12) we get

POaily) =Y Plaly) = 3 exp{-2Bd(z.)} (6.13)

Z\; Zy,

where we introduced the parameter

1 1-—
B = log <p> : (6.14)
and the normalization constant
Z= Y exp{-2Bd(z,y)}. (6.15)
zeCN

Equation (6.13) shows that the marginal distribution P(x;|y) gets contributions
from all the codewords, not only from the one closest to y. This makes the
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F1a. 6.4. Logarithm of the distance enumerator /\Afy(d) (counting the number of
codewords at a distance d = N§ from the received Irﬂassage) divided by the block-
-length N. Here the rate is R = 1/2. We also show the distance of the transmitted
codeword for two different noise levels: p = 0.03 < dgv(1/2) ~ 0.110278644 (left)
and p = 0.3 > dgv(R) (right). The tangent lines with slope 2B = log[(1 — p)/p]
determine which codewords dominate the symbol MAP decoder.

analysis of symbol MAP decoding slightly more involved than the word MAP
decoding case.

Let us start by estimating the normalization constant Z. It is convenient to
separate the contribution coming from the transmitted codeword z(® from the
one of the incorrect codewords (), ..., z2" =1 .

N
Z = e 2P0 L SN, (d) e 2P = Zeors + Ze (6.16)
d=0

where we denoted by ./\Afy (d) the number of incorrect codewords at a distance d
from the vector y. The contribution of z(°) in the above expression is easily esti-
mated. By the central limit theorem d(;(o)7 y) =~ Np and therefore Z.o,, is close
to e 2NVBP with high probability. More precisely, for any ¢ > 0, e~ N(ZBpte) <
Zeore < e~ N2BP=2) with probability approaching one in the N — oo limit.

As for Zg,., one proceeds in two steps: first compute the distance enumerator
./\7y(d), and then sum over d. The distance enumerator was already computed
in Sec. 6.2. As in the word MAP decoding analysis, the fact that the distances
are measured with respect to the channel output y and not with respect to a
codeword does not change the result, because y is independent from the incorrect
codewords z(V) - - ~§(2M_1). Therefore ./Vy(d) is exponentially large in the interval
dav(R) <8 =d/N < 1—6dav(R), while it vanishes with high probability outside

0.6
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the same interval. Moreover, if dgv(R) < 6 < 1 — dgv(R), /\Afy(d) is tightly
concentrated around its mean given by Eq. (6.10). The summation over d in
Eq. (6.16) can then be evaluated by the saddle point method. This calculation
is very similar to the estimation of the free energy of the random energy model,
cf. Sec. 5.2. Roughly speaking, we have

N o 1-dav
Doyy = y(d) e—2Bd o N eNI(R=1)log2+H(8)2Bd] 75 - oNderr (6.17)
=0 dav
where
Porr = max [(R—1)log2+ H(§) —2BJ]. (6.18)

deldav,1-dav]

The reader will easily complete the mathematical details of the above derivation
along the lines of Sec. 5.2. The bottom-line is that Ze. is close to e/V% with
high probability as N — oo.

Let us examine the resulting expression (6.18) (see Fig. 6.4). If the maximum
is achieved on the interior of [dgv, 1 — dgv], its location 4, is determined by the
stationarity condition H’'(d.) = 2B, which implies d, = p. In the opposite case,
it must be realized at 0, = dgy (remember that B > 0). Evaluating the right
hand side of Eq. (6.18) in these two cases, we get

g = [ Iev(®log (152)ip <y, (6.19)
(R—1)log2 —log(l —p) otherwise.

We can now compare Zeory and Ze,. At low noise level (small p), the trans-
mitted codeword z(9) is close enough to the received one y to dominate the sum
in Eq. (6.16). At higher noise level, the exponentially more numerous incorrect
codewords overcome the term due to z(?). More precisely, with high probability
we have

—O(N)]
7 — {Zcorr[l +e ] ifp< 5GV7 (620)

Zcrr[]- + 67@(N)} otherwise,

where the O(NN) exponents are understood to be positive.
We consider now Eq. (6.13), and once again separate the contribution of the
transmitted codeword:

1

PO(@ily) = 7 [Zeon I(@i = o) + Zerv.a], (6.21)
where we have introduced the quantity
Zerr,xi = Z 6723(1(5@) H(Z,' = 1‘,’) . (622)
zeCn\z(©)

Notice that Zeyy 4; < Zere. Together with Eq. (6.20), this implies, if p < dgv(R):
PO (z; = xl(o) ly) =1 —e W) and PO (z; # Q:EO) ly) = e ®W). In this low p
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situation the symbol MAP decoder correctly outputs the transmitted bit acl(-o).

It is important to stress that this result holds with probability approaching one
as N — oo. Concretely, there exists bad choices of the code €5 and particularly
unfavorable channel realizations y such that P (z; = x§0)|y) < 1/2 and the
decoder fails. However the probability of such an event (i.e. the bit-error rate
Py,) vanishes as N — oc.

What happens for p > dgv(R)? Arguing as for the normalization constant
7, it is easy to show that the contribution of incorrect codewords dominates the
marginal distribution (6.21). Intuitively, this suggests that the decoder fails. A
more detailed computation, sketched below, shows that the bit error rate in the
N — oo limit is:

- 0 ifp<5(;,v(R)7
Py = {p if gy (R) < p < 1/2. (6.23)

Notice that, above the threshold dgv(R), the bit error rate is the same as if
the information message were transmitted without coding through the BSC: the
code is useless.

A complete calculation of the bit error rate Py in the regime p > dgy(R) is
rather lengthy (at least using the approach developed in this Chapter). We shall
provide here an heuristic, albeit essentially correct, justification, and leave the
rigorous proof as the exercise below. As already stressed, the contribution Z.q,, of
the transmitted codeword can be safely neglected in Eq. (6.21). Assume, without

loss of generality, that xEO) = 0. The decoder will be successful if Zeyr 0 > Zerr 1
and fail in the opposite case. Two cases must be considered: either y; = 0 (this
happens with probability 1 — p), or y; = 1 (probability p). In the first case we

have

Zerr,o = Z ]I(Zz = O) e_zBdi(gaé)

ze€n\z(®)

Zera =€ 28 N T(z =1) e 2Phw2), (6.24)

EEQN\§(0>

where we denoted by d;(z,y) the number of of positions j, distinct form 4, such
that z; # y;. The sums in the above expressions are independent identically
distributed random variables. Moreover they are tightly concentrated around
their mean. Since B > 0, this implies Zeyro > Zewr,1 with high probability.
Therefore the decoder is successful in the case y; = 0. Analogously, the decoder
fails with high probability if y; = 1, and hence the bit error rate converges to
Py, = p for p > dgv(R).
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Exercise 6.4 From a rigorous point of view, the weak point of the above
argument is the lack of any estimate of the fluctuations of Z,, ¢/1. The reader
may complete the derivation along the following lines:

o Define Xo = Zeyy o and Xy = e Zerr,1- Prove that Xy and X are inde-
pendent and identically distributed.

e Define the correct distance enumerators Ny/1(d) such that a representa-
tion of the form X,/ =3, No/1(d) exp(—2Bd) holds.

e Show that a significant fluctuation of Ny/;(d) from its average is highly
(more than exponentially) improbable (within an appropriate range of
d).

e Deduce that a significant fluctuation of Xy, is highly improbable (the
last two points can be treated along the lines already discussed for the
random energy model in Chap. 5).

6.3.3 Finite-temperature decoding

The expression (6.13) for the marginal P(z;|y) is strongly reminiscent of a
Boltzmann average. This analogy suggests a generalization which interpolates
between the two ‘classical’ MAP decoding strategies discussed so far: finite-
temperature decoding. We first define this new decoding strategy in the con-
text of the BSC context. Let 8 be a non-negative number playing the role of an
inverse temperature, and y € {0,1}" the channel output. Define the probability
distribution Ps(z) to be given by

Ps(z) = %ﬂ) e 2B (1 € ¢y, Z(B)

3 e 2Py (6.25)

zelyN

where B is always related to the noise level p through Eq. (6.14). This distri-
bution depends upon the channel output y: for each received message y, the
finite-temperature decoder constructs the appropriate distribution Pg(z). For

the sake of simplicity we don’t write this dependence explicitly. Let Pﬁ(i) (z;) be
the marginal distribution of x; when z is distributed according to Pg(z). The
new decoder outputs

28 = (arg max Pél)(xl) ,...,argmax P[gN) (mN)> . (6.26)
T TN

As in the previous Sections, the reader is free to choose her favorite convention
in the case of ties (i.e. for those i’s such that Pﬁ(")(o) = Pﬁ(z)(l)).

Two values of § are particularly interesting: 5 =1 and 8 = oco. If =1 the
distribution Pg(z) coincides with the distribution P(z|y) of the channel input
conditional to the output, see Eq. (6.12). Therefore, for any y, symbol MAP

B=1 b

decoding coincides with finite-temperature decoding at 8 = 1: ;= z°.
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Fi1a. 6.5. Phase diagram for the rate 1/2 r];ndom code ensemble under finite
temperature decoding. Word MAP and bit MAP decoding correspond (respec-
tively) to 1/8 = 0 and 1/8 = 1. Notice that the phase boundary of the error-free
(ordered) phase is vertical in this interval of temperatures.

If 8 = oo, the distribution (6.25) concentrates over those codewords which
are the closest to y. In particular, if there is a unique closest codeword to ¥, finite-
temperature decoding at = oo coincides with word MAP decoding: 27=> =
zV.
The performances of finite-temperature decoding for the RCE at any 3, in
the large N limit, can be analyzed using the approach developed in the previous
Section . The results are summarized in Fig. 6.5 which give the finite-temperature
decoding phase diagram. There exist three regimes which are distinct phases with

very different behaviors.

1. A ‘completely ordered’ phase at low noise (p < dgy(R)) and low temper-
ature (large enough /). In this regime the decoder works: the probability
distribution Ps(z) is dominated by the transmitted codeword z(®). More
precisely Pg(z(?)) = 1 —exp{—O(N)}. The bit and block error rates vanish
as N — oo.

2. A ‘glassy’ phase at higher noise (p > dgv(R)) and low temperature (large
enough (3). The transmitted codeword has a negligible weight Pg(z(?)) =
exp{—O(N)}. The bit error rate is bounded away from 0, and the block er-
ror rate converges to 1 as N — oo. The measure Pg(z) is dominated by the
closest codewords to the received message y (which are disctinct from the
correct one). Its Shannon entropy H (Pg) is sub-linear in N. This situation
is closely related to the ‘measure condensation’ phenomenon occurring in
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the low-temperature phase of the random energy model.

3. An ‘entropy dominated’ (paramagnetic) phase at high temperature (small
enough ). The bit and block error rates behave as in the glassy phase, and
Ps(2(?) = exp{—O(N)}. However the measure Ps(z) is now dominated
by codewords whose distance d ~ N§, from the received message is larger
than the minimal one: §, = p?/[p® + (1 — p)?]. In particular §, = p if
8 =1, and 6, = 1/2 if § = 0. In the first case we recover the result
already obtained for symbol MAP decoding. In the second one, Pg—o(x)
is the uniform distribution over the codewords and the distance from the
received message under this distribution is, with high probability, close to
N/2. In this regime, the Shannon entropy H(Ps) is linear in N.

The definition of finite-temperature decoding is easily generalized to
other channel models. Let P(z|y) be the distribution of the transmitted mes-
sage conditional to the channel output, given explicitly in Eq. (6.3). For 8 > 0,
we define the distribution!®

Py(z) = ——= P(xly)’,  2(8)=)_ Plaly)’. (6.27)

Once more, the decoder decision for the i-th bit is taken according to the rule
(6.26). The distribution Pg(z) is a ‘deformation’ of the conditional distribution
P(z|y). At large 3, more weight is given to highly probable transmitted messages.
At small 3 the most numerous codewords dominate the sum. A little thought
shows that, as for the BSC, the cases § = 1 and 3 = oo correspond, respectively,
to symbol MAP and word MAP decoding. The qualitative features of the finite-
temperature decoding phase diagram are easily generalized to any memoryless
channel. In particular, the three phases described above can be found in such a
general context. Decoding is successful in low noise-level, large § phase.

6.4 Error-free communication with random codes

As we have seen, the block error rate Pp for communicating over a BSC with
a random code and word MAP decoding vanishes in the large blocklength limit
as long as R < Cpsc(p), with Cpsc(p) = 1 — Ha(p) the channel capacity. This
establishes the ‘direct’ part of Shannon’s channel coding theorem for the BSC
case: error-free communication is possible at rates below the channel capacity.
This result is in fact much more general. We describe here a proof for general
memoryless channels, always based on random codes.

For the sake of simplicity we shall restrict ourselves to memoryless chan-
nels with binary input and discrete output. These are defined by a transition
probability Q(y|x), x € {0,1} and y € Y with Y a finite alphabet. In order to
handle this case, we must generalize the RCE: each codeword z(™) e {0,1}V,

5Notice that the partition function Z(8) defined here differs by a multiplicative constant
from the one defined in Eq. (6.25) for the BSC.
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m=0,... — 1, is again constructed independently as a sequence of N i.i.d.
bits mgm) x (m) . But x( ™) is now drawn from an arbitrary distribution P(x),
x €{0,1} 1nstead of belng uniformly distributed. It is important to distinguish
P(z) (which is an arbitrary single bit distribution defining the code ensemble
and will be chosen at our convenience for optimizing it) and the a priori source
distribution Py(z), cf. Eq. (6.3) (which is a distribution over the codewords and
models the information source behavior). As in the previous Sections, we shall
assume the source distribution to be uniform over the codewords, cf. Eq. (6.4).
On the other hand, the codewords themselves have been constructed using the
single-bit distribution P(z).

We shall first analyze the RCE for a generic distribution P(z), under word
MAP decoding. The main result is:

Theorem 6.1 Consider communication over a binary input discrete memory-
less channel with transition probability Q(y|x), using a code from the RCE with
input bit distribution P(x) and word MAP decoding. If the code rate is smaller
than the mutual information Ix y between two random variables X,Y with joint
distribution P(x)Q(y|z), then the block error rate vanishes in the large block-
length limit.

Using this result, one can optimize the ensemble performances over the choice
of the distribution P(-). More precisely, we maximixe the maximum achievable
rate for error-free communication: Ix y. The corresponding optimal distribution
P*(-) depends upon the channel and can be thought as adapted to the channel.
Since the channel capacity is in fact defined as the maximum mutual information
between channel input and channel output, cf. Eq. (1.37), the RCE with input
bit distribution P*(-) allows to communicate error-free up to channel capacity.
The above Theorem implies therefore the ‘direct part’ of Shannon’s theorem 77.

Proof: Assume that the codeword z(°) is transmitted through the channel
and the message y € YV is received. The decoder constructs the probability for
z to be the channel input, conditional to the output y, see Eq. (6.3). Word MAP
decoding consists in minimizing the cost function

Z logy Q(yi|zi) (6.28)

over the codewords z € €y (note that we use here natural logarithms). Decod-
ing will be successful if and only if the minimum of E(z) is realized over the
transmitted codeword z(?). The problem consists therefore in understanding the
behavior of the 2M random variables E(z(?)),..., BE(z®"~1).

Once more, it is necessary to single out E(z(?)). This is the sum of N iid
random variables — log Q(y1|z( ))
mean

, and it is therefore well approximated by its

EE(z©®) 7fNZP Q(ylz)logy Q(ylx) = NHy|x . (6.29)

{thm :GeneralDirectShannon_]1
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In particular (1 — e)NHy|x < E(z(”) < (14 &)NHy|x with probability ap-
proaching one as N — oo.

As for the 2M — 1 incorrect codewords, the corresponding log-likelihoods
E(zM),... ,E@@M_l)) are iid random variables. We can therefore estimate the
smallest among them by following the approach developed for the REM and
already applied to the RCE on the BSC. In Appendix 6.7, we prove the following
large deviation result on the distribution of these variables:

Lemma 6.2 Let ¢; = E(x)/N. Then ey,...,e9m_q are iid random variables
and their distribution satisfy a large deviation principle of the form P(e) =
2=NVU() | The rate function is given by:

P(e) = min [ZQ(y)D(pyHP) ; (6.30)

{py () }€P- "

where the minimum is taken over the set of probability distributions {py(-), y €
Y} in the subspace P. defined by the constraint:

e=— Qy)py(z)logy Qlylz). (6.31)

and we defined Q(y) = >, Q(y|z)P(x).

The solution of the minimization problem formulated in this lemma is obtained
through a standard Lagrange multiplier technique:

py(z) = — P(z)Q(ylz)", (6.32)

where the (e dependent) constants z(y) and v are chosen in order to verify the
normalizations Yy : Y py(z) =1, and the constraint (6.31).

The rate function (g) is convex with a global minimum (corresponding
toy =0)at e. = =3, P(x)Q(y)logy Q(ylr) where its value is 1(e.) = 0.
This implies that, with high probability all incorrect codewords will have costs
E(g(i)) = Nein the range emin < € < €max, Emin and emax being the two solutions
of ¥ (e) = R. Moreover, for any ¢ inside the interval, the number of codewords
with E(z() ~ Ne is exponentially large (and indeed close to 2VF=N¥(€) The
incorrect codeword with minimum cost has a cost close to Nepy, (with high
probability). Since the correct codeword has cost close to NHy |y, maximum
likelihood decoding will find it with high probability if and only if Hy|x < émin-

The condition Hy‘ x < €min 18 in fact equivalent to R < Ixy, as it can
be shown as follows. A simple calculation shows that the value ¢ = Hy|x is
obtained using v = 1 in Eq. (6.32) and therefore p,(z) = P(z)Q(y|z)/Q(y). The
corresponding value of the rate function is ¢(¢ = Hy|x) = [Hy — Hy|x]| = Iy|x.
The condition for error free communication, Hy|x < &min, can thus be rewritten
as R < (Hy|x), or R<Ixy.O
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Example 6.3 Reconsider the BSC with flip probability p. We have

E(z) = —(N —d(z,y)) log(1 —p) —d(z,y) logp. (6.33)

Up to a rescaling the cost coincides with the Hamming distance from the re-
ceived message. If we take P(0) = P(1) = 1/2, the optimal types are, cf.
Eq. (6.32),

p’y

1)=1—-—po(0) = ———F—, 6.34
po(1) po(0) 1—p) +p ( )

and analogously for p;(z). The corresponding cost is
e=—(1—-9)log(l —p)—odlogp, (6.35)

where we defined 6 = p7/[(1 — p)” + p"]. The large deviations rate function is
given, parametrically, by ¥(g) = log2 — H(d). The reader will easily recognize
the results already obtained in the previous Section.

Exercise 6.5 Consider communication over a discrete memoryless channel
with finite input output alphabets X', and Y, and transition probability Q(y|x),
x € X, y € Y. Check that the above proof remains valid in this context.

6.5 Geometry again: sphere packing

Coding has a lot to do with the optimal packing of spheres, which is a general
problem of considerable interest in various branches of science. Consider for in-
stance the communication over a BSC with flip probability p. A code of rate
R and blocklength N consists of 2V points {g(l) . ~§(2NR)} in the hypercube
{0,1}. To each possible channel output y € {0,1}", the decoder associates

one of the codewords (V). Therefore we can think of the decoder as realizing a
partition of the Hamming space in 2V decision regions @), i ¢ {1...2NFY
each one associated to a distinct codeword. If we require each decision region
{CD(i)} to contain a sphere of radius p, the resulting code is guaranteed to cor-
rect any error pattern such that less than p bits are flipped. One often defines
the minimum distance of a code as the smallest distance between any two
codewords'S. If a code has minimal distance d, the Hamming spheres of radius
p = |(d—1)/2] don’t overlap and the code can correct p errors, whatever are
their positions.

We are thus led to consider the general problem of sphere packing on the
hypercube {0,1}. A (Hamming) sphere of center z, and radius r is defined
as the set of points z € {0,1}¥, such that d(z,z,) < r. A packing of spheres

16This should not be confused with the minimal distance from one given codewords to all
the other ones

{se:Packing}
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of radius r and cardinality Ns is specified by a set of centers z,,...,z Ns €
{0,1}¥, such that the spheres of radius 7 centered in these points are disjoint.
Let N#*(4) be the maximum cardinality of a packing of spheres of radius N in
{0,1}¥. We define the corresponding rate as R (5) = N~ ! log, Na*(§) and
would like to compute this quantity in the infinite-dimensional limit

R™*(§) =lim sup RN (0). (6.36)

N—o0

The problem of determining the function R™**(4) is open: only upper and lower
bounds are known. Here we shall derive the simplest of these bounds:

Proposition 6.4
1 —H2(20) < R™™(5) <1 —"Ho(9) (6.37)

The lower bound is often called the Gilbert-Varshamov bound, the upper bound
is called the Hamming bound.

Proof: Lower bounds can be proved by analyzing good packing strategies. A
simple such strategy consists in taking the sphere centers as 2% random points
with uniform probability in the Hamming space. The minimum distance between
any couple of points must be larger than 2/N¢. It can be estimated by defining
the distance enumerator Ms(d) which counts how many couples of points have
distance d. It is straightforward to show that, if d = 2NJ and ¢ is kept fixed as
N — oo

oNR N
E Ms(d) = ( ) >2N <d> = gNR-1+H2(20)] (6.38)

Aslong as R < [1—"H2(26)]/2, the exponent in the above expression is negative.
Therefore, by Markov inequality, the probability of having any couple of centers
ar a distance smaller than 26 is exponentially small in the size. This implies that

R™(5) > ~[1 — Hy(20)]. (6.39)

N | =

A better lower bound can be obtained by a closer examination of the above
(random) packing strategy. In Sec. 6.2 we derived the following result. If 2V
points are chosen from the uniform distribution in the Hamming space {0,1}%,
and one of them is considered, with high probability its closest neighbour is
at a Hamming distance close to Nogy(R). In other words, if we draw around
each point a sphere of radius 0, with § < dgy(R)/2, and one of the spheres is
selected randomly, with high probability it will not intersect any other sphere.
This remark suggests the following trick (sometimes called expurgation in cod-
ing theory). Go through all the spheres one by one and check if it intersects any
other one. If the answer is positive, simply eliminate the sphere. This reduces the
cardinality of the packing, but only by a fraction approaching 0 as N — oco: the
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F1G. 6.6. Upper and lower bounds on the maximum packing rate R™**(J) of
Hamming spheres of radius Nd. Random packing and expurgated random pack-
ing provide lower bounds. The Hamming and linear programming bounds are
upper bounds.

packing rate is thus unchanged. As dgv(R) is defined by R = 1 — Ha(dav(R)),
this proves the lower bound in (6.37).

The upper bound can be obtained from the fact that the total volume occu-
pied by the spheres is not larger than the volume of the hypercube. If we denote
by An(d) the volume of an N-dimensional Hamming sphere of radius N¢, we
get Ns Ax(8) < 2V . Since Ay () = 2NM200) | this implies the upper bound in
(6.37). O

Better upper bounds can be derived using more sophisticated mathematical
tools. An important result of this type is the so-called linear programming bound:

R™(5) < Ha(1/2 — \/25(1 — 20)) , (6.40)

whose proof goes beyond our scope. On the other hand, no better lower bound
than the Gilbert-Varshamov result is known. It is a widespread conjecture that
this bound is indeed tight: in high dimension there is no better way to pack
spheres than placing them randomly and expurgating the small fraction of them
that are ‘squeezed’. The various bounds are shown in Fig. 6.6.

{fig:HammingSpheres}
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Exercise 6.6 Derive two simple alternative proofs of the Gilbert-Varshamov
bound using the following hints:

1. Given a constant 9, let’s look at all the ‘dangerous’ couples of points
whose distance is smaller than 2N§. For each dangerous couple, we can
expurgate one of its two points. The number of points expurgated is
smaller or equal than the number of dangerous couples, which can be
bounded using E Mo (d). What is the largest value of & such that this
expurgation procedure does not reduce the rate?

2. Construct a packing z; ...z as follows. The first center z; can be placed
anywhere in {0,1}". The second one is everywhere outside a sphere of
radius 2/VJ centered in z. In general the i-th center x; can be at any
point outside the spheres centered in z; ...z, ;. This procedures stops
when the spheres of radius 2N§ cover all the space {0,1}", giving a
packing of cardinality N equal to the number of steps and radius N§.

Let us now see the consequences of Proposition 6.4 for coding over the BSC.
If the transmitted codeword in z(?), the channel output will be (with high prob-
ability) at a distance close to Np from z(*). Clearly R < R™*(p) is a necessary
and sufficient condition for existence of a code for the BSC which corrects any
error pattern such that less than Np bits are flipped. Notice that this correction
criterion is much stronger than requiring a vanishing (bit or block) error rate.
The direct part of Shannon theorem shows the existence of codes with a vanish-
ing (at N — o0) block error probability for R < 1—"Hz(p) = Cpsc(p). As shown
by the linear programming bound in Fig. 6.6 Cpsc(p) lies above R™**(p) for
large enough p. Therefore, for such values of p, there is a non-vanishing interval
of rates R™**(p) < R < Cpsc(p) such that one can correct Np errors with high
probability but one cannot correct any error pattern involving that many bits.

Let us show, for the BSC case, that the condition R < 1—"Hsy(p) is actually a
necessary one for achieving zero block error probability (this is nothing but the
converse part of Shannon channel coding theorem ?7).

Define Pg(k) the block error probability under the condition that k bits
are flipped by the channel. If the codeword z(* is transmitted, the channel
output lies on the border of a Hamming sphere of radius k centered in z("):

Bi(k)={z : d(z,z") = k}. Therefore

" (%)
Polk) = o Z[ e E (6.41)

i)
2NRZ o8 |© | . (6.42)

Since {D@} is a partition of {0, 1}V, 37, |D®| = 2N, Moreover, for a typical
channel realization k is close to Np, and [0B;(Np)| = 2N"2(). We deduce that,

| \/
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for any € > 0, and large enough N:
Pg > 1 — 2NU-B-Ha(p)+e) (6.43)
and thus reliable communication is possible only if R <1 — Ha(p).

6.6 Other random codes

A major drawback of the random code ensemble is that specifying a particular
code (an element of the ensemble) requires N2V bits. This information has to be
stored somewhere when the code is used in practice and the memory requirement
is soon beyond the hardware capabilities. A much more compact specification is
possible for the random linear code (RLC) ensemble. In this case encoding is
required to be a linear map, and any such map is equiprobable. Concretely, the
code is fully specified by a N x M binary matrix G = {G;;} (the generating
matrix) and encoding is left multiplication by G:

z:{0,1}M — {0, 1}V, (6.44)
2 Gz, (6.45)

where the multiplication has to be carried modulo 2. Endowing the set of linear
codes with uniform probability distribution is equivalent to assuming the entries
of G to be i.i.d. random variables, with G;; = 0 or 1 with probability 1/2. Notice
that only M N bits are required for specifying an element of this ensemble.

Exercise 6.7 Consider a linear code with N = 4 and |€| = 8 defined by
¢ = {(Zl D 29, 20D 23, 21 D 23, 21 D22 D 23) | 21,%2,23 € {Oa 1}}7 (646)

where we denoted by @ the sum modulo 2. For instance (0110) € € because
we can take z; = 1, 25 = 1 and 23 = 0, but (0010) ¢ €. Compute the distance
enumerator for z, = (0110).

It turns out that the RLC has extremely good performances. As the original
Shannon ensemble, it allows to communicate error-free below capacity. Moreover,
the rate at which the block error probability Pg vanishes is faster for the RLC
than for the RCE. This justifies the considerable effort devoted so far to the
design and analysis of specific ensembles of linear codes satisfying additional
computational requirements. We shall discuss some among the best ones in the
following Chapters.

6.7 A remark on coding theory and disordered systems

We would like to stress here the fundamental similarity between the analysis
of random code ensembles and the statistical physics of disordered systems. As
should be already clear, there are several sources of randomness in coding:

{se:RCEConsiderations}
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e First of all, the code used is chosen randomly from an ensemble. This was
the original idea used by Shannon to prove the channel coding theorem.

e The codeword to be transmitted is chosen with uniform probability from
the code. This hypothesis is supported by the source-channel separation
theorem.

e The channel output is distributed, once the transmitted codeword is fixed,
according to a probabilistic process which accounts for the channel noise.
e Once all the above elements are given, one is left with the decoding prob-
lem. As we have seen in Sec. 6.3.3, both classical MAP decoding strategies
and finite-temperature decoding can be defined in a unified frame. The de-
coder constructs a probability distribution Pg(z) over the possible channel

inputs, and estimates its single bit marginals Pﬁ(i) (2;). The decision on the
i-th bit depends upon the distribution Péi) ().

The analysis of a particular coding system can therefore be regarded as the anal-
ysis of the properties of the distribution Pg(z) when the code, the transmitted
codeword and the noise realization are distributed as explained above.

In other words, we are distinguishing two levels of randomness'”: on the first
level we deal with the first three sources of randomness, and on the second level
we use the distribution Pg(z). The deep analogy with the theory of disordered
system should be clear at this point. The code, channel input, and noise real-
ization play the role of quenched disorder (the sample), while the distribution
Pg(z) is the analogous of the Boltzmann distribution. In both cases the problem
consists in studying the properties of a probability distribution which is itself a
random object.

Notes

The random code ensemble dates back to Shannon (Shannon, 1948) who used it
(somehow implicitely) in his proof of the channel coding thorem. A more explicit
(and complete) proof was provided by Gallager in (Gallager, 1965). The reader
can find alternative proofs in standard textbooks such as (Cover and Thomas,
1991; Csiszdr and Korner, 1981; Gallager, 1968).

The distance enumerator is a feature extensively investigated in coding the-
ory. We refer for instance to (Csiszdr and Korner, 1981; Gallager, 1968). A treat-
ment of the random code ensemble in analogy with the random energy model
was presented in (Montanari, 2001). More detailed results in the same spirit can
be found in (Barg and G. David Forney, 2002). The analogy between coding the-
ory and the statistical physics of disordered systems was put forward by Sourlas
(Sourlas, 1989). Finite temperature decoding has been introduced in (Rujan,
1993).

17Further refinements of this point of view are possible. One could for instance argue that the
code is not likely to be changed at each channel use, while the codeword and noise realization
surely change. This remark is important, for instance, when dealing with finite-length effects
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A key ingredient of our analysis was the assumption, already mentioned in
Sec. 1.6.2, that any codeword is a priori equiprobable. The fundamental motiva-
tion for such an assumption is the source-channel separation theorem. In simple
terms: one does not loose anything in constructing an encoding system in two
blocks. First a source code compresses the data produced by the information
source and outputs a sequence of i.i.d. unbiased bits. Then a channel code adds
redundancy to this sequence in order to contrast the noise on the channel. The
theory of error correcting codes (as well as the present Chapter) focuses on the
design and analysis of this second block, leaving the first one to source coding.
The interested reader may find a proofs of the separation theorem in (Cover and
Thomas, 1991; Csiszér and Korner, 1981; Gallager, 1968).

Sphere packing is a classical problem in mathematics, with applications in
various branches of science. The book by Conway and Sloane (Conway and
Sloane, 1998) provides both a very good introduction and some far reaching
results on this problem and its connections, in particular to coding theory. Find-
ing the densest packing of spheres in R™ is an open problem when n > 4.

Appendix: Proof of Lemma 6.2

We estimate (to the leading exponential order in the large N limit) the prob-
ability Py () for one of the incorrect codewords, z, to have cost F(z) = Ne.
The channel output y = (y1 -+ - yn) is a sequence of N i.i.d. symbols distributed
according to B

=) Qylz)P(x). (6.47)

and the cost can be rewritten as:

N

N
E(z) = - logQ(yilz:) = —NZQ )log Qylz) &7 Z = z,y; %G8)

i=1 et

There are approximatively NQ(y) positions ¢ such that y; = y, for y € V. We
assume that there are ezactly NQ(y) such positions, and that NQ(y) is an integer
(of course this hypothesis is in general false: it is a routine exercise, left to the
reader , to show that it can be avoided with a small technical etour). Furthermore
we introduce

py(x) =T, Y= Y). (6.49)

uMz

Under the above assumptions the function p,(z) is a probability distribution
over x € {0,1} for each y € ). Looking at the subsequence of positions i such
that y; = y, it counts the fraction of the x;’s such that x; = z. In other words

{se:apShannoni}
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py(+) is the type of the subsequence {z;|y; = y}. Because of Eq. (6.48), the cost
is written in terms of these types as follows

=—NZQ y)p, () log Qyle) . (6.50)

Therefore E(z) depends upon z uniquely through the types {p,(-) : v € V},
and this dependence is linear in py(x). Moreover, according to our definition
of the RCE, z1,...,2y are i.i.d. random variables with distribution P(z). The
probability P(e) that E(x)/N = e can therefore be deduced from the Corollary
4.5. To the leading exponential order, we get

P(e) = exp{—N(e)log2}, (6.51)

fmm ZQ D(py||P) st. e =— ZQ Y)py(x) logy Q(ylx) | (6.52)
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NUMBER PARTITIONING

Number partitioning is one of the most basic optimization problems. It is very
easy to state: “Given the values of N assets, is there a fair partition of them into
two sets?”. Nevertheless it is very difficult to solve: it belongs to the NP-complete
category, and the known heuristics are often not very good. It is also a problem
with practical applications, for instance in multiprocessor scheduling.

In this Chapter, we shall pay special attention to the partitioning of a list
of iid random numbers. It turns out that most heuristics perform poorly on
this ensemble of instances. This motivates their use as a benchmark for new
algorithms, as well as their analysis. On the other hand, it is relatively easy to
characterize analytically the structure of random instances. The main result is
that low cost configurations (the ones with a small unbalance between the two
sets) can be seen as independent energy levels: the model behaves pretty much
like the random energy model of Chap. 5.

7.1 A fair distribution into two groups?

An instance of the number partitioning problem is a set of N positive integers
S={ay,...,an} indexed by i € [N] ={1,..., N}. One would like to partition
the integers in two subsets {a; : i € A} and {a; : ¢ € B = [N]\ A} in such a way
as to minimize the discrepancy among the sums of elements in the two subsets.
In other words, a configuration is given by A C [N], and its cost is defined as

Eyq= ‘(Zai) - (Za,)‘ : (7.1)

i€ A i€B

A perfect partition is such that the total number in each subset equilibrate,
which means E4 < 1 (actually E4 = 0if ). a; is even, or E4 = 1if ), a; is
odd). As usual, one can define several versions of the problem, among which: i)
The decision problem: Does there exist a perfect partition? it) The optimization
problem: Find a partition of lowest cost.

There are also several variants of the problem. So far we have left free the
size of A. This is called the unconstrained version. On the other hand one can
study a constrained version where one imposes that the cardinality difference
|A| — |B| of the two subsets is fixed to some number D. Here for simplicity we
shall mainly keep to the unconstrained case.
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Exercise 7.1 As a small warm-up, the reader can show that (maybe writing
a simple exhaustive search program):

The set S; = {10, 13,23,6,20} has a perfect partition.

The set Sy = {6,4,9,14,12,3,15,15} has a perfect balanced partition.

In the set Sz = {93,58, 141,209, 179, 48, 225, 228}, the lowest possible cost
is 5.

In the set Sy = {2474, 1129, 1388, 3752, 821, 2082, 201, 739}, the lowest pos-
sible cost is 48.

7.2 Algorithmic issues
7.2.1  An NP-complete problem

In order to understand the complexity of the problem, one must first measure its
size. This is in turn given by the number of characters required for specifying a
particular instance. In number partitioning, this depends crucially on how large
the integers can be. Imagine that we restrict ourselves to the case:

ai €{1,...,2M} Vvie{1,... N} (7.2)

so that each of the N integers can be encoded with M bits. Then the entire
instance can be encoded in N M bits. It turns out that no known algorithm solves
the number partitioning problem in a time upper bounded by a power of N M.
Exhaustive search obviously finds a solution in 2V operations for unbounded
numbers (any M). For bounded numbers there is a simple algorithm running in
a time of order N22M (hint: look at all the integers between 1 and N 2 and
find recursively which of them can be obtained by summing the k first numbers
in the set). In fact, number partitioning belongs to the class of NP-complete
problems and is even considered as a fundamental problem in this class.

7.2.2 A simple heuristic and a complete algorithm

There is no good algorithm for the number partitioning problem. One of the
best heuristics, due to Karmarkar and Karp (KK), uses the following idea. We
start from a list ay,...,ay which coincides with the original set of integers, and
reduce it by erasing two elements a; and a; in the list, and replacing them by the
difference |a; — a;|, if this difference is non-zero. This substitution means that a
decision has been made to place a; and a; in two different subsets (but without
fixing in which subset they are). One then iterates this procedure as long as the
list contains two or more elements. If in the end one finds either an empty list
or the list {1}, then there exists a perfect partitioning. In the opposite case,
the remaining integer is the cost of a particular partitioning, but the problem
could have better solutions. Of course, there is a lot of flexibility and ingenuity
involved in the best choice of the elements a; and a; selected at each step. In
the KK algorithm one picks up the two largest numbers.

{ex:8_warmup}
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Fia. 7.1. A complete search algorithm: Starting from a list, one erases the two
largest numbers a; and a; and generate two new lists: the left one contains
la; — ajl, the right one contains a; + a;. At the bottom of the tree, every leaf
contains the cost of a valid partition. In the search for a perfect partition the tree
can be pruned at the dashed leaves because the largest number is bigger than
the sum of others: the dash-dotted lists are not generated. The KK heuristics
picks up only the left branch. In this example it is successful and finds the unique
perfect partition.

Example 7.1 Let us see how it works on the first list of exercise 7.1:
{10, 13,23,6,20}. At the first iteration we substitute 23 and 20 by 3, giving
the list {10, 13,6, 3}. The next step gives {3, 6,3}, then {3, 3}, then (), showing
that there exists a perfect partition. The reader can find out how to systemat-
ically reconstruct the partition.

A modification due to Korf transforms the KK heuristic into a complete
algorithm, which will return the best partitioning (eventually in exponential
time). Each time one eliminates two elements a; and a;, two new lists are built:
a ‘left’ list which contains |a; —a;| (it corresponds to placing a,; and a; in different
groups) and a right one which contains a; + a; (it corresponds to placing a; and
a; in the same group). Iterating in this way one constructs a tree with oN—1
terminal nodes, containing each the cost of a valid partition. Vice-versa, the cost
of each possible partition is reported at one of the terminal nodes (notice that
each of the 2V possible partitions A is equivalent to its complement [N]\ A). If
one is interested only in the decision: ‘is there a perfect partition?’, the tree can
be pruned as follows. Each time one encounters a list whose largest element is
larger than the sum of all other elements plus 1, this list cannot lead to a perfect
partition. One can therefore avoid to construct the sub-tree whose root is such
a list. Figure 7.1 shows a simple example of application of this algorithm.

{fig:numpart_ex}
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F1G. 7.2. Numerical study of randomly generated sets, Where a; are uniformly
distributed in {1,...2M}, with }, a; even. The fraction of samples with a perfect
balanced partition is plotted versus N (left plot: from left to right M = 8,16, 24),
and versus k = M/N (right plot). In the limit N — oo at fixed &, it turns out
that the probability becomes a step function, equal to 1 for Kk < 1, to 0 for k > 1
(see also Fig. 7.4).

7.3 Partition of a random list: experiments

A natural way to generate random instances of number partitioning is to choose
the N input numbers a; as iid. Here we will be interested in the case where they
are uniformly distributed in the set {1,...,2M}. As we discussed in Chap. 3,
one can use these random instances in order to test typical performances of
algorithms, but we will also be interested in natural probabilistic issues, like the
distribution of the optimal cost, in the limits where N and M go to oco.

Tt is useful to first get an intuitive feeling of the respective roles of N (size of
the set) and M (number of digits of each a; - in base 2). Consider the instances
S, 83,8, of example 1. Each of them contains N = 8 random numbers, but
they are randomly generated with M = 4, M = 8, M = 16 respectively. Clearly,
the larger M, the larger is the typical value of the a;’s, and the more difficult
it is to distribute them fairly. Consider the costs of all possible partitions: it is
reasonable to expect that in about half of the partitions, the most significant bit
of the cost is 0. Among these, about one half should have the second significant
bit equal to 0. The number of partitions is 2V =1, this qualitative argument can
thus be iterated roughly N times. This leads one to expect that, in a random
instance with large N, there will be a significant chance of having a perfect
partition if N > M. On the contrary, for N < M, the typical cost of the best
partition should behave like 2~V

This intuitive reasoning turns out to be essentially correct, as far as the
leading exponential behavior in N and M is concerned. Here we first provide
some numerical evidence, obtained with the complete algorithm of Sec. 7.2.2 for
relatively small systems. In the next Section, we shall validate our conclusions
by a sharper analytical argument.

Figure 7.2 shows a numerical estimate of the probability ppess (N, M) that a

{se:numpart_rand_exp}
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FiG. 7.3. Left plot: average of log, R, where R is the 8ize of the search tree.
The three curves correspond to M = 8,16, 24 (from left to right). The size grows
exponentially with N, and reaches a maximum for N = M. Right plot: the
average of logy, R/(N — 1) is plotted versus k = M/N.

randomly generated instance has a perfect partition, plotted versus N. This has
been obtained by sampling nst.: instances of the problem for each considered
pair N,M (here ngtay = 10000, 1000, 100 when M = 8,16, 24 respectively), and
solving each instance by simple enumeration. The probability ppe.s (N, M) was
estimated as the fraction of the sampled instances for which a perfect partitioning
was found. The standard deviation of such an estimate is \/ Ppert (1 — Dpert)/Nistat -

For a fixed value of M, ppes(IV, M) crosses over from a value close to 0 at
small N to a value close to 1 at large N. The typical values of N where the
crossover takes place seem to grow proportionally to M. It is useful to look at
the same data from a slightly different perspective by defining the ratio

M
N’

K= (7.3)
and considering pperr as a function of N and . The plot of pperr(k, N) versus k
at fixed N shows a very interesting behavior, cf. Fig. 7.2, right frame. A careful
analysis of the numerical data '® indicates that limy_ o ppert(s, N) = 1 for
k < 1, and = 0 for kK > 1. We stress that the limit N — oo is taken with &
kept fixed (and therefore letting M — oo proportionally to N). As we shall see
in the following, we face here a typical example of a phase transition, in the
sense introduced in Chap. 2. The behavior of a generic large instance changes
completely when the control parameter x crosses a critical value k. = 1. For
k < 1 almost all instances of the problem have a perfect partition (in the large
N limit), for k > 1 almost none of them can be partitioned perfectly. This
phenomenon has important consequences on the computational difficulty of the
problem. A good measure of the performance of Korf’s complete algorithm is
the number R of lists generated in the tree before finding the optimal partition.

181n order to perform this analysis, guidance from the random cost model or from the exact
results of the next sections is very useful.

{fig:nump_statlbis}
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In Fig. 7.3 we plot the quantity log, R averaged on the same instances which
we had used for the estimation of ppers in Fig. 7.2. The size of the search tree
first grows exponentially with N and then reaches a maximum around N ~ M.
Plotted as a function of x, one sees a clear peak of log, R, somewhere around
Kk = ke = 1: problems close to the critical point are the hardest ones for the
algorithm considered. A similar behavior is found with other algorithms, and in
fact we will encounter it in many other decision problems like e.g. satisfiability
or coloring. When a class of random instances presents a phase transition as a
function of one parameter, it is generally the case that the most difficult instances
are found in the neighborhood of the phase transition.

7.4 The random cost model
7.4.1 Definition of the model

Consider as before the probability space of random instances constructed by
taking the numbers a; to be iid uniformly distributed in {1,...,2M}. For a given
partition A, the cost F 4 is a random variable with a probability distribution P4.
Obviously, the costs of two partitions A and A’ are correlated random variables.
The random cost approximation consists in neglecting these correlations. Such
an approximation can be applied to any kind of problem, but it is not always a
good one. Remarkably, as discovered by Mertens, the random cost approximation
turns out to be ‘essentially exact’ for the partitioning of iid random numbers.
In order to state precisely the above mentioned approximation, one defines
a random cost model (RCM), which is similar to the REM of Chapter 5. A
sample is defined by the costs of all the 2V~1 ‘partitions’ (here we identify the
two complementary partitions A and [N]\.A). The costs are supposed to be iid
random variables drawn from the probability distribution P. In order to mimic
the random number partitioning problem, P is taken to be the same as the
distribution of the cost of a random partition A in the original problem:

1
P= N1 ZPA' (7.4)
A

Here P4 is the distribution of the cost of partition A in the original number
partitioning problem.

Let us analyze the behavior of P for large N. We notice that the cost of a
randomly chosen partition in the original problem is given by | ). 0;a;|, where o;
are iid variables taking value +1 with probability 1/2. For large N, the distribu-
tion of ). 0;a; is characterized by the central limit theorem, and P is obtained
by restricting it to the positive domain. In particular, the cost of a partition will
be, with high probability, of order \/Na3,, where

1

1
aﬁ/leaQngMnL

1
ZoM 4 .
5 +6 (7.5)

Moreover, for any 0 < x1 < xa:
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E 2 [ 2
P | —= € [z1,22] :\/>/ e /2 dx.
\/Na?\4 ™ T

Finally, the probability of a perfect partition P(E = 0) is just the probability
of return to the origin of a random walk with steps o;a; € {—2M,... —1} U
{1,...,2M}. Assuming for simplicity that ), a; is even, we get:

1 /| 6
~2 e~y [ —2M .

where 1/1/27Na3, is the density of a normal random variable of mean 0 and
variance N3, near the origin, and the extra factor of 2 comes from the fact that
the random walk is on even integers only.

As we will show in the next Sections, the RCM is a good approximation for
the original number partitioning problem. Some intuition for this property can
be found in the exercise below.

Exercise 7.2 Consider two random, uniformly distributed, independent parti-
tions A and A’. Let P(FE, E’) denote the joint probability of their energies when
the numbers {a;} are iid and uniformly distributed over {1,...,2M}. Show that
P(E,E') = P(E)P(E')[1 + o(1)] in the large N, M limit, if E, E' < C2M for
some fixed C.

7.4.2 Phase transition

We can now proceed with the analysis of the RCM. We shall first determine the
phase transition, then study the phase x > 1 where typically no perfect partition
can be found, and finally study the phase k < 1 where an exponential number
of perfect partitions exist.

Consider a random instance of the RCM. The probability that no perfect
partition exist is just the probability that each partition has a strictly positive
cost. Since, within the RCM, the 2V~ partitions have iid costs with distribution
P, we have:

1 — ppest (s N) = [1 = PO . (7.7)

In the large N limit with fixed x, the zero cost probability is given by Eq. (7.6).
In particular P(0) < 1. Therefore:

+o(1).

_ 3 ke
Ppert(, N) =1— exp[—2N P(0)] +0(1) =1 —exp l— N oN (1=r)

(7.8)
This expression predicts a phase transition for the RCM at k. = 1. Notice in fact
that imy oo Ppert(k, N) = 1 if K < 1, and = 0 if K > 1. Moreover, it describes
the precise behavior of ppers(#, N) around the critical point k. for finite N: Let

{ex:8_remlike}

{eq:pperf_pred}
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Fic. 7.4. The data of Fig. 7.2 is' replotted, showing the (estimated)
probability of perfect partition ppes(/N,M) versus the rescaled variable
x = N(k — k) + (1/2)logy N. The agreement with the theoretical prediction
(7.9) is very good.

us define the variable © = N(k — kc) + (1/2) logy N. In the limit N — oo and
K — K¢ at fized x, one finds the crossover behavior:

. /3 .
131_1:20 pperf(’{7N) =1—exp l % 2 ] . (79)

K—FKe

This is an example of finite-size scaling behavior.

In order to compare the above prediction with our numerical results for the
original number partitioning problem, we plot in Fig. 7.4 pyers(k, N) versus the
scaling variable z. Here we use the same data presented in Fig. 7.2, just changing
the horizontal axis from N to x. The good collapse of the curves for various values
of M provides evidence for the claim that the number partitioning problem is
indeed asymptotically equivalent to the RCM and presents a phase transition at
k=1

Exercise 7.3 Notice that the argument before assume that >, a; is even. This
is the condition was imposed in the simulation whose results are presented
in Fig. 7.4. How should one modify the estimate of P(0) in Eq. (7.6) when
>, a; is odd? Show that, in this case, if one keeps the definition z = N(xk —
ke) + (1/2)log, N, the scaling function becomes 1 — exp {—2\ /2 2_“”] Run a
simulation to check this prediction.

7.4.3 Study of the two phases

Let us now study the minimum cost in the phase x > 1. The probability that all
configurations have a cost larger than F is:

{eq:NPfss}
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P(VA: E4>FE) = <1 -y P(E’)) : (7.10)

This probability is non trivial (i.e. different form 0 or 1) if ngzo P(E") =
O(27N). It is easy to show that this sum can be estimated by substituting!®
P(E") — P(0), which gives the condition E ~ 1/(P(0)2N~1) ~ 2M=N /N We
therefore get, from Eq. (7.10):

. . € e
NIEHDOIE” (V.A : Eq > P(O)?Nl) =e “I(e>0). (7.11)

In particular the mean of the distribution on the right hand side is equal to 1.
This implies that the expectation of the lowest cost in the problem is E E,s =

@QN (v=1) These predictions also fit the numerical results for number par-

titioning very well.

Exercise 7.4 Show that the probability density of the k-th lowest cost con-
figuration, in the rescaled variable ¢, is e*~1/(k — 1)! exp(—¢) I(¢ > 0). This is
a typical case of extreme value statistics for bounded iid variables.

In the phase k < 1 we already know that, for almost all samples, there exists
at least one configuration with zero cost. It is instructive to count the number
of zero cost configurations. Since each configuration has zero cost independently
with probability P(0), the number Z of zero cost configurations is a binomial
random variable with distribution

N—-1 _
P(Z) = <2 ) ) PO)Z [1—PO)> 7. (7.12)
In particular, for large N, Z concentrates around its average value Z, = 2N1=#)
One can define an entropy density of the ground state as:
1
Sgs = 37 log, Z . (7.13)

The RCM result (7.12) predicts that for k < 1 the entropy density is close 1 — &
with high probability. Once again, numerical simulations on the original number
partitioning problem confirm this expectation.

19 As the resulting value of F is much smaller than the scale over which P(FE) varies signifi-
cantly, cf. Eq. (7.6), the substitution of P(0) to P(E’) is indeed consistent

{ex:8_extreme}
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Exercise 7.5 Using the integral representation of the logarithm:

dt —tlog2 =i
= —_ @ — L 1
log, x /0 ; (e e ), (7.14)

compute E sqs directly. It will be useful to notice that the ¢ integral is dominated
by very small values of ¢, of order 1/(2¥~1P(0)). Then one easily finds E sg ~
(1/N)log, (2N =1P(0)) ~ 1 — k.

7.5 Partition of a random list: rigorous results

A detailed rigorous characterization of the phase diagram in the partitioning
of random numbers has been obtained by Borgs, Chayes and Pittel. Basically it
confirms the predictions of the RCM. We shall first state some of the exact results
known for the balanced partitioning of N numbers. For definiteness we keep as
before to the case where a; are iid uniformly distributed in {1,...,2}, and
both N and Zfil a; are even. The following results hold in the ‘thermodynamic
limit” N, M — oo with fixed kK = M/N,

Theorem 7.2 There is a phase transition at k = 1. For k < 1, with high
probability, a randomly chosen instance has a perfect balanced partition. For
Kk > 1, with high probability, a randomly chosen instance does not have a perfect
balanced partition.

Theorem 7.3 In the phase k < 1, the entropy density (7.13) of the number of
perfect balanced partitions converges in probability to s = 1 — k.

Theorem 7.4 Define E = 2N=1 /2xN/3 and let By < --- < Ej, be the
k lowest costs, with k fized. Then the k-uple (51 =FE/E,... e = Ek/E) con-
verges in distribution to (W1, Wi+Wa, ..., Wi+... Wy), where W; are iid random
variables with distribution P(W;) = e~Wi I(W; > 0). In particular the (rescaled)
optimal cost distribution converges to P(e1) = e~ I(e; > 0).

Note that these results all agree with the RCM. In particular, Theorem 7.4 states
that, for fixed k and N — oo, the lowest k costs are iid variables, as assumed in
the RCM. This explains why the random cost approximation is so good.

The proofs of these theorems (and of more detailed results concerning the
scaling in the neighborhood of the phase transition point x = 1), are all based
on the analysis of an integral representation for the number of partitions with a
given cost which we will derive below. We shall then outline the general strategy
by proving the existence of a phase transition, cf. Theorem 7.2, and we refer the
reader to the original literature for the other proofs.

7.5.1 Integral representation

For simplicity we keep to the case where ), a; is even, similar results can be
obtained in the case of an odd sum (but the lowest cost is then equal to 1).

{ex:8_integlog}

{eq:log_int_rep}
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Proposition 7.5 Given a set S = {a1,...,an} with ), a; even, the number Z
of partitions with cost E =0 can be written as:

N
T d
7z =2N"1 / % I | cos(a;x). (7.15)
™ j=1

Proof: We represent the partition A by writing 0; = 1ifi € A, and 0; = —1

if i € B=[N]\ A One can write: Z = 3> 1T (Z;Vd oja; = 0) , where

the factor 1/2 comes from the A — B symmetry (the same partition is repre-
sented by the sequence o4,...,0n5 and by —o1,...,—oyn). We use the integral
representations valid for any integer number a:

™ d )
I(a =0) = / % el | (7.16)

which gives:
1 Tdr
7 == - ZI(ZJ' oja;) . 1
2 UlZUN /_ﬂ' 2m ’ (7 7)

The sum over o;’s gives the announced integral representation (7.15) O

Exercise 7.6 Show that a similar representation holds for the number of par-
tition with cost E > 1, with an extra factor 2 cos(Ez) in the integrand. For the
case of balanced partitions, find a similar representation with a two-dimensional
integral.

The integrand of (7.15) is typically exponential in N and oscillates wildly.
It is thus tempting to compute the integral by the method of steepest descent.
This strategy yields correct results in the phase x < 1, but it is not easy to
control it rigorously. Hereafter we use simple first and second moment estimates
of the integral which are powerful enough to derive the main features of the
phase diagram. Finer control gives more accurate predictions which go beyond
this presentation.

7.5.2 Moment estimates

We start by evaluating the first two moments of the number of perfect partitions
Z.

Proposition 7.6 In the thermodynamic limit the first moment of Z behaves as:

EZ = 2N<1*H>,/27riN(1 + O(1/N)) (7.18)

Proof: The expectation value is taken over choices of a; where )", a; is even.
Let us use a modified expectation, denoted by E;, over all choices of aq,...,axn,
without any parity constraint, so that a; are iid. Clearly E;Z = (1/2)E Z, because

{ex:8_highercost}

{propo:np_1}

{eq:np_moml_res}
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a perfect partition can be obtained only in the case where . a; is even, and this
happens with probability 1/2.

Because of the independence of the a; in the expectation [E;, one gets from
(7.15)

" g
EZ = 98,7 = 2V / B cos(anz))” (7.19)

—T

The expectation of the cosine is:

<3 2M 2
E; cos(a1x) = 27 cos (g(?M + 1)) M = g(x). (7.20)
A little thought shows that the integral in (7.19) is dominated in the thermo-
dynamic limit by values of x very near to 0. Precisely we rescale the variable
as ¢ = /(2™ +/N). Then one has g(z) = 1 — 22/(6N) + ©(1/N?). The leading
behavior of the integral (7.20) at large N is thus given by:

1 [ di 72 3
EZ =2N—M — ) =N M 21
=/ 3 exp< 6) . (7.21)

up to corrections of order 1/N. O

Exercise 7.7 Show that, for E even, with £ < 2™ for a fixed C, the number
of partitions with cost E is also given by (7.18) in the thermodynamic limit.

Proposition 7.7 When k < 1, the second moment of Z behaves in the thermo-
dynamic limit as:
EZ? =[EZ]’ (1+6(1/N)) . (7.22)

Proof: We again release the constraint of an even ), a;, so that:

d d
EZ% = 22N-1 / o / arz [E cos(aiz1) cos(ayzs)] (7.23)
The expectation of the product of the two cosines is:

L lo@y) + 9] (7.24)

E cos(aix) cos(ajxe) = 5

where x4+ = x1 +x5. In order to find out which regions of the integration domain
are important in the thermodynamic limit, one must be careful because the
function g(z) is 27 periodic. The double integral is performed in the square
[—7, +7]?. The region of this square where g can be very close to 1 are the ‘center’
where x1, 25 = ©(1/(2M+/N)), and the four corners, close to (4, £7), obtained
from the center by a £27 shift in 2y or in z_. Because of the periodicity of g(z),
the total contribution of the four corners equals that of the center. Therefore
one can first compute the integral near the center, using the change of variables

{eq:np_mi_1}
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Ty(9) = 561(2)/(2M\/]V). The correct value of E Z? is equal to twice the result
of this integral. The remaining part of the computation is straightforward, and
gives indeed EZ? ~ 22N(1=r) 3

In order for this argument to be correct, one must show that the contributions
from outside the center are negligible in the thermodynamic limit. The leading
correction comes from regions where z; = ©(1/(2"+/N)) while _ is arbitrary.
One can explicitly evaluate the integral in such a region by using the saddle point
approximation. The result is of order ©(2N(1=%) /N). Therefore, for £ < 1 the
relative contributions from outside the center (or the corners) are exponentially
small in N. A careful analysis of the above two-dimensional integral can be found
in the literature. [J

Propositions 7.6 and 7.7 above have the following important implications.
For k > 1, E Z is exponentially small in N. Since Z is a non-negative integer,
this implies (first moment method) that, in most of the instances Z is indeed 0.
For k < 1, E Z is exponentially large. Moreover, the normalized random variable
Z/E Z has a small second moment, and therefore small fluctuations. The second
moment method then shows that Z is positive with high probability. We have
thus proved the existence of a phase transition at x. = 1, i.e. Theorem 7.2.

Exercise 7.8 Define as usual the partition function at inverse temperature
as Z(B) = Y. e PP Using the integral representation

_ Cdx 1
e lUl:/ — T2 v (7.25)

and the relation Y, ., 1/(1+22k?) = w/(z tanh(m/x)), show that the ‘annealed
average’ for iid numbers a; is

Ei(Z) = QN(H)’/%W(I + ©(1/N)) (7.26)

Notes

A nice elementary introduction to number partitioning is the paper by Hayes
(Hayes, 2002). The NP-complete nature of the problem is a classical result which
can be found in textbooks like (Papadimitriou, 1994; Garey and Johnson, 1979).
The Karmarkar Karp algorithm was introduced in the technical report (Kar-
markar and Karp, 1982). Korf’s complete algorithm is in (Korf, 1998).

There has been a lot of work on the partitioning of random iid numbers.
In particular, the large & limit, after a rescaling of the costs by a factor 2=,
deals with the case where a; are real random numbers, iid on [0, 1]. The scaling
of the cost of the optimal solution in this case was studied as soon as 1986 by
Karmarkar, Karp, Lueker and Odlyzko (Karmarkar, Karp, Lueker and Odlyzko,
1986). On the algorithmic side this is a very challenging problem. As we have
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seen the optimal partition has a cost O(\/N 2=N: however all known heuristics
perform badly on this problem. For instance the KK heuristics finds solution with
a cost O(exp [—.72(log N')?| which is very far from the optimal scaling (Yakir,
1996).

The phase transition was identified numerically by Gent and Walsh (Gent and
Walsh, 1998), and studied through statistical physics methods by Ferreira and
Fontanari (Ferreira and Fontanari, 1998) and Mertens (Mertens, 1998), who also
introduced the random cost model (Mertens, 2000). His review paper (Mertens,
2001) provides a good summary of these works, and helps to solve the Exercises
7.2,7.4, and 7.7. The parity questions discussed in exercise 7.3 have been studied
in (Bauke, 2002).

Elaborating on these statistical mechanics treatments, Borgs, Chayes and
Pittel were able to establish very detailed rigorous results on the unconstrained
problem (Borgs, Chayes and Pittel, 2001), and more recently, together with
Mertens, on the constrained case (Borgs, Chayes, Mertens and Pittel, 2003).
These result go much beyond the Theorems which we have stated here, and the
interested reader is encouraged to study these papers. She will also find there all
the technical details needed to fully control the integral representation used in
Section 7.5, and the solutions to Exercises 7.5 and 7.6.
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INTRODUCTION TO REPLICA THEORY

In the past 25 years the replica method has evolved into a rather sophisticated
tool for attacking theoretical problems as diverse as spin glasses, protein folding,
vortices in superconductors, combinatorial optimization, etc. In this book we
adopt a different (but equivalent and, in our view, more concrete) approach: the
so-called ‘cavity method’. In fact, the reader can skip this Chapter without great
harm concerning her understanding of the rest of this book.

It can be nevertheless instructive to have some knowledge of replicas: the
replica method is an amazing construction which is incredibly powerful. It is
not yet a rigorous method: it involves some formal manipulations, and a few
prescriptions which may appear arbitrary. Nevertheless these prescriptions are
fully specified, and the method can be regarded as an ‘essentially automatic’
analytic tool. Moreover, several of its most important predictions have been
confirmed rigorously through alternative approaches. Among its most interesting
aspects is the role played by ‘overlaps’ among replicas. It turns out that the subtle
probabilistic structure of the systems under study are often most easily phrased
in terms of such variables.

Here we shall take advantage of the simplicity of the Random Energy Model
(REM) defined in Chapter 5 to introduce replicas. This is the topic of Sec. 8.1. A
more complicated spin model is introduced and discussed in Sec. 8.2. In Sec. 8.3
we discuss the relationship between the simplest replica symmetry breaking
scheme and the extreme value statistics. Finally, in the Appendix we briefly
explain how to perform a local stability analysis in replica space. This is one of
the most commonly used consistency checks in the replica method.

8.1 Replica solution of the Random Energy Model

As we saw in Sec. 5.1, a sample (or instance) of the REM is given by the values
of 2V energy levels E;, with j € {1,...,2"V}. The energy levels are iid Gaussian
random variables with mean 0 and variance N/2. A configuration of the REM
is just the index j of one energy level. The partition function for a sample with
energy levels {E; ..., Eon} is

2N

Z =Y exp(-BE;) , (8.1)

j=1

and is itself a random variable (in the physicist language ‘Z fluctuates from sam-
ple to sample’). In Chapter 5 we argued that intensive thermodynamic potentials
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are self-averaging, meaning that their distribution is sharply concentrated around
the mean value in the large-/N limit. Among these quantities, a prominent role
is played by the free energy density f = —1/(SN) log Z. Other potentials can in
fact be computed from derivatives of the free energy. Unlike these quantities, the
partition function has a broad distribution even for large sizes. In particular, its
average is dominated (in the low temperature phase) by extremely rare samples.
In order to have a fair description of the system, one has to compute the average
of the log-partition function, Elog Z, which, up to a constant, yields the average
free energy density.

It turns out that computing integer moments of the partition function E Z™,
with n € N, is much easier than computing the average log-partition function
E log Z. This happens because Z is the sum of a large number of ‘simple’ terms.

If, on the other hand, we were able to compute E Z" for any real n (or, at
least, for n small enough), the average log-partition function could be determined
using, for instance, the relation

E log Z = lim E log(EZ") . (8.2)
n—0n
The idea is to carry out the calculation of E Z™ ‘as if” n were an integer. At a
certain point (after having obtained a manageable enough expression), we shall
‘remember’ that n has indeed to be a real number and take this into account.
As we shall see this whole line of approach has some flavor of an analytic con-
tinuation but in fact it has quite a few extra grains of salt...
The first step consists in noticing that Z™ can be written as an n-fold sum

2N

Z"= Y exp(—BE;, —-- —BE,) . (8.3)

i1..in=1

This expression can be interpreted as the partition function of a new system.
A configuration of this system is given by the n-uple (iy,...,4,), with i, €
{1,...,2"}, and its energy is F;, ; = E; +---+ F; . In other words, the new
system is formed of n statistically independent (in the physicist language: non-
interacting) copies of the original one. We shall refer to such copies as replicas.

In order to evaluate the average of Eq. (8.3), it is useful to first rewrite it as:

z"= Y []exp |-BE; (Z]I(ia:j)ﬂ : (8.4)

i1cin=1j=1
Exploiting the linearity of expectation, the independence of the Ej’s, and their
Gaussian distribution, one easily gets:

2N

EZ"= > exp FN > M(ia=1ib) | - (8.5)

iy .ip=1 a,b=1
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[E Z™ can also be interpreted as the partition function of a new ‘replicated’ sys-
tem. As before, a configuration is given by the n-uple (i1,...,%,), but now its
energy is E;, ;. = —Npj3/4 ZZ,b:l I(igq = ip).

This replicated system has several interesting properties. First of all, it is no
longer a disordered system: the energy is a deterministic function of the config-
uration. Second, replicas do interact: the energy function cannot be written as
a sum of single replica terms. The interaction amounts to an attraction between
different replicas. In particular, the lowest energy configurations are obtained
by setting iy = - -+ = i,,. Their energy is E;, ; = —NfAn?/4. Third: the energy
depends itself upon the temperature, although in a very simple fashion. Its effect
will be stronger at low temperature.

The origin of the interaction among replicas is easily understood. For one
given sample of the original problem, the Boltzmann distribution concentrates
at low temperature (3 > 1) on the lowest energy levels: all the replicas will
tend to be in the same configuration with large probability. When averaging
over the distribution of samples, we do not see any longer which configuration
i € {1...2N} has the lowest energy, but we still see that the replicas prefer
to stay in the same state. There is no mystery in these remarks. The elements
of the n-uple (iy...i,) are independent conditional on the sample, that is on
realization of the energy levels E;, j € {1...2"}. If we do not condition on the
realization, (i ...4,) become dependent.

Given the replicas configurations (i; ...4,), it is convenient to introduce the
n X n matrix Qu = I(i, = ), with elements in {0,1}. We shall refer to this
matrix as the overlap matrix. The summand in Eq. (8.5) depends upon the
configuration (i . ..4,) only through the overlap matrix. We can therefore rewrite
the sum over configurations as:

2 n
B2 =Y Mv(@ esp [ V53 Qu (36)
Q

4
a,b=1

Here Ny (Q) denotes the number of configurations (i1 ...,) whose overlap ma-
trix is @ = {Qap}, and the sum ), runs over the symmetric {0, 1} matrices
with ones on the diagonal. The number of such matrices is 2*("~1/2 while the
number of configurations of the replicated system is 2V™. It is therefore natural
to guess that the number of configurations with a given overlap matrix satisfies
a large deviation principle of the form Ny (Q) = exp(Ns(Q)):

Exercise 8.1 Show that the overlap matrix always has the following form:
There exists a partition Gy, Go, ..., G,, of the n replicas (this means that
G1UGU---UG,, ={1...n} and G;NG; = () into ng groups such that Qu, = 1
if a and b belong to the same group, and @, = 0 otherwise. Prove that Nx(Q)
satisfies the large deviation principle described above, with s(Q) = ng log 2.
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Using this form of My (Q), the replicated partition function can be written
as:

B2 =Y en(No@) : o@=0 Y Quis@. (67
Q

a,b=1

The strategy of the replica method is to estimate the above sum using the saddle
point method?’. The ‘extrapolation’ to non-integer values of n is discussed after-
ward. Let us notice that this program is completely analogous to the treatment
of the Curie-Weiss model in Sec. 2.5.2 (see also Sec. 4.3 for related background),
with the extra step of extrapolating to non-integer n.

8.1.1 Replica symmetric saddle point

The function g(Q) is symmetric under permutation of replicas: Let m € S, be
a permutation of n objects, and denote by Q™ the matrix with elements Q7, =
Qr(a)rv)- Then g(Q™) = ¢g(Q). This is a simple consequence of the fact that
the n replicas were equivalent from the beginning. This symmetry is called the
replica symmetry, and is a completely generic feature of the replica method.

When the dominant saddle point possesses this symmetry (i.e. when Q™ = @
for any permutation 7) one says that the system is replica symmetric (RS).
In the opposite case replica symmetry is spontaneously broken in the large IV
limit, in the same sense as we discussed in chapter 2 (see Sec. 2.5.2).

In view of this permutation symmetry, the simplest idea is to seek a replica
symmetric saddle point. If @) is invariant under permutation, then necessarily
Qaa = 1, and Qg = qo for any couple a # b. We are left with two possibilities:

e The matrix Qgs o is defined by go = 0. In this case Ny (Qrs,0) = 2V (2 —

{eq:ReplicatedPartitionFunc

1)...(2Y —n+1), which yields s(Qrs,0) = nlog 2 and g(Qrs,0) = n (5?/4 + log2).

e The matrix Qrs,1 is defined by gy = 1. This means that i; = --- = iy,
There are of course Ny (Qrs,1) = 2V choices of the n-uple (i; ...i,) com-
patible with this constraint, which yields s(Qrs,1) = log 2 and ¢g(Qrs,1) =
n?3%/4 + log 2.

Keeping for the moment to these RS saddle points, one needs to find which one
dominates the sum. In Figure 8.1 we plot the functions go(n, 5) = g(Qrs,0) and
g1(n,B) = g(Qrs,1) for n = 3 and n = 0.5 as a functions of T' = 1/3. Notice
that the expressions we obtained for go(n,3) and g1 (n, 3) are polynomials in n,
which we can plot for non-integer values of n.

When n > 1, the situation is always qualitatively the same as the one shown in
the n = 3 case. If we let 5.(n) = \/4log2/n, we have g;(3,n) > go(8,n) for g >
Be(n), while g1(3,n) < go(B,n) for 3 < B.(n). Assuming for the moment that
the sum in Eq. (8.7) is dominated by replica symmetric terms, we have E Z" =

20Speaking of ‘saddle points’ is a bit sloppy in this case, since we are dealing with a discrete
sum. By this, we mean that we aim at estimating the sum in Eq. (8.7) through a single
‘dominant’ term.
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9(Q
N

Fia. 8.1. Rate function g(Q) for the REM, cf. Eq. (8.7) versus temperature.
9(Q) is evaluated here on the two replica-symmetric saddle points Qrs,o (con-
tinuous curves) and Qgrs,1 (dashed curves), in the cases n = 3 and n = 0.5.

exp{ N max[go(S,n),g1(5,n)]}. The point S.(n) can therefore be interpreted as
a phase transition in the n replicas system. At high temperatures (8 < [.(n))
the go = 0 saddle point dominates the sum: replicas are essentially independent.
At low temperature the partition function is dominated by gy = 1: replicas are
locked together. This fits nicely within our qualitative discussion of the replicated
system in the previous Section.

The problems appear when considering the n < 1 situation. In this case
we still have a phase transition at f.(n) = y/4log2/n, but the high and low
temperature regimes exchange their roles. At low temperature (8 > f.(n))
one has g1(8,n) < go(B,n), and at high temperature (3 < B.(n)) one has
q1(B,n) > go(B,n). If we applied the usual prescription and pick up the saddle
point which maximizes ¢g(@), we would obtain a nonsense, physically (replicas
become independent at low temperatures, and correlated at high temperatures,
contrarily to our general discussion) as well as mathematically (for n — 0, the
function E Z™ does not go to one, because g1 (3, n) is not linear in n at small n).
As a matter of fact, the replica method prescribes that, in this regime n < 1, one
must estimate the sum (8.7) using the minimum of g(Q)! There is no mathemat-
ical justification of this prescription in the present context. In the next example
and the following Chapters we shall outline some of the arguments employed by
physicists in order to rationalize this choice.
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Example 8.1 In order to get some understanding of this claim, consider the
following toy problem. We want to apply the replica recipe to the quantity
Zioy(n) = (2/N)"(=D/4 (for a generic real n). For n integer, we have the
following integral representation:

Zioy(n) = /6_% > (avy Qi H dQap = /eNg(Q) H dQap , (8.8)

(ab) (ab)

where (ab) runs over all the un-ordered couples of indices a,b € {1...n} with
a # b, and the integrals over (), run over the real line. Now we try to evaluate
the above integral by the saddle point method, and begin with the assumption
that is dominated by a replica symmetric point Q?, = qo for any a # b, yielding
9(Q*) = —n(n — 1)g2/2. Next, we have to fix the value of gy € R. It is clear
that the correct result is recovered by setting go = 0, which yields Zioy(n) = 1.
Moreover this is the unique choice such that g(Q™*) is stationary. However, for
n < 1, go = 0 corresponds to a minimum, rather than to a maximum of g(Q*).
A formal explanation of this odd behavior is that the number of degrees of
freedom, the matrix elements Q4 with a # b, becomes negative for n < 1.

This is one of the strangest aspects of the replica method, but it is unavoid-
able. Another puzzle which we shall discuss later concerns the exchange of order
of the N — oo and n — 0 limits.

Let us therefore select the saddle point gy = 0, and use the trick (8.2) to
evaluate the free energy density. Assuming that the N — oo and n — 0 limits
commute, we get the RS free energy:

2
—Bf = A}gnoo % E log Z = A}gnoo Tlllirb ﬁ log(EZ") = 7133%) % go(n, B8) = %—i—logl
(8.9)
Comparing to the correct free energy density, cf. Eq. (5.15), we see that the
RS result is correct, but only in the high temperature phase 8 < 3. = 2+/log 2.
It misses the phase transition. Within the RS framework, there is no way to get
the correct solution for 3 > f..

8.1.2  One step replica symmetry breaking saddle point

For 8 > (., the sum (8.7) is dominated by matrices ) which are not replica
symmetric. The problem is to find these new saddle points, and they must make
sense in the n — 0 limit. In order to improve over the RS result, one may try
to enlarge the subspace of matrices to be optimized over (i.e. to weaken the
requirement of replica symmetry). The replica symmetry breaking (RSB)
scheme initially proposed by Parisi in the more complicated case of spin glass
mean field theory, prescribes a recursive procedure for defining larger and larger
spaces of () matrices where to search for saddle points.
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Fia. 8.2. The rate function ¢(Q), cf. Eq. (8.7), evaluated on the one-step replica
symmetry breaking point, as a function of the replica-symmetry breaking param-
eter m.

The first step of this procedure, is called one step replica symmetry
breaking (1RSB). In order to describe it, let us suppose that n is a multiple
of m, and divide the n replicas into n/m groups of m elements each, and set:

Qaa = 13
Qay = q1  if a and b are in the same group, (8.10)
Qap = qo if a and b are in different groups.

Since in the case of the REM the matrix elements are in {0, 1}, this Ansatz is
distinct from the RS one only if ¢ = 1 and ¢go = 0. This corresponds, after an
eventual relabeling of the replica indices, to i1 = -+ = i, i1 = -+ - = G2m, etc.
The number of choices of (i1, .. .14,) which satisfy these constraints is Ny (Q) =
2N (2N —1)...(2Y — n/m + 1), and therefore we get s(Q) = (n/m)log2. The
rate function in Eq. (8.7) is given by ¢(Qrss) = grss(8,n, m):

(8 )—Bjnnwﬁlo 2 (8.11)
grsB(Y, N, m) = 1 m g . .

Following the discussion in the previous Section, we should minimize grsp (3, n, m)
with respect to m, and then take the n — 0 limit. Notice that Eq. (8.11) can be
interpreted as an analytic function both in n and in m # 0. We shall therefore
forget hereafter that n and m are integers with n a multiple of m. The first
derivative of grsp (3, n, m) with respect to m, vanishes if m = my((), where

2y/log2 B

& B
Substituting in Eq. (8.11), and assuming again that we can commute the limits
n — 0 and N — oo, we get

me(8) = (8.12)

{eq:REMReplicaSymmetryBroke
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1
—Bf = lir%ﬁ min grsp (8, n, m) = B/log 2, (8.13)

which is the correct result for g > G.: f = —+/log2. In fact we can recover the
correct free energy of the REM in the whole temperature range if we accept that
the inequality 1 < m < n, valid for n, m integers, becomes n = 0 < m < 1 in the
limit n — 0 (we shall see later on other arguments supporting this prescription).
If the minimization is constrained to m € [0, 1], we get a fully consistent answer:
m = (./0 is the correct saddle point in the phase 5 > f., while for 8 < f.
the parameter m sticks to the value m = 1. In Fig. 8.2 we sketch the function
grsp(B,n, m)/n for a few values of the temperature (.

8.1.3 Comments on the replica solution

One might think that the replica method is just a fancy way of reconstructing a
probability distribution from its integer moments. We know how to compute the
integer moments of the partition function E Z", and we would like to infer the
full distribution of Z, and in particular the value of E log Z. This is a standard
topic in probability theory: the probability distribution can be reconstructed
if its integer moments don’t grow too fast as n — oo. A typical result is the
following.

Theorem 8.2. (Carleman) Let X be a real random variable with moments
wn =EX™ such that

u;nl/Qn =00. (8.14)

n=1
Then any variable with the same moments is distributed identically to X .

For instance, if the moments don’t grow faster than exponentially, E X™ ~ e*™,
their knowledge completely determines the distribution of X.

Let us try to apply the above result to the REM case treated in the previous
pages. The replica symmetric calculation of Sec. 8.1.1 is easily turned into a
lower bound:

EZ" > ¢"9(@nso) > (NOn/4 (8.15)
Therefore the sum in Eq. (8.14) converges and the distribution of Z is not nec-

essarily fixed by its integer moments.

Exercise 8.2 Assume Z = ¢ T

probability density

, with F' a Gaussian random variable, with

p(F) = \/Lz_w e F/2 (8.16)

Compute the integer moments of Z. Do they verify the hypothesis of Carleman
Theorem? Show that the moments are unchanged if p(F) is replaced by the
density p,(F) = p(F)[1 + asin(27F)], with |a| < 1 (from (Feller, 1968)).
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In our replica approach, there exist several possible analytic continuations to
non-integer n’s, and the whole issue is to find the correct one. Parisi’s Ansatz
(and its generalization to higher order RSB that we will discuss below) gives a
well defined class of analytic continuations, which turns out to be the correct
one in many different problems.

The suspicious reader will notice that the moments of the REM partition
function would not grow that rapidly if the energy levels had a distribution
with bounded support. If for instance, we considered F; to be Gaussian random
variables conditioned to E; € [—Fmax, FPmax|, the partition function would be
upper bounded by the constant Z,, ., = 2V e#Fmax. Consequently, we would have
EZ" < Z%. ., and the whole distribution of Z could be recovered from its integer
moments. In order to achieve such a goal, we would however need to know exactly
all the moments 1 < n < oo at fixed N (the system size). What we are instead
able to compute, in general, is the large N behavior at any fixed n. In most cases,
this information is insufficient to insure a unique continuation to n — 0.

In fact, one can think of the replica method as a procedure for computing
the quantity

o1 n
P(n) = A}Enoo N logEZ™, (8.17)

whenever the limit exist. In the frequent case where f = —log Z/(8N) satisfies
a large deviation principle of the form Py (f) = exp[—NI(f)], then we have

EZ™ = /df exp[—NI(f) — NOnf] = exp{—Ninf[I(f) + fnf]}. (8.18)

Therefore ¢(n) = —inf[I(f)+Gnf]. In turns, the large deviation properties of fx
can be inferred from 1 (n) through the Gértner-Ellis theorem 4.12. The typical
value of the free energy density is given by the location of the absolute minimum
of I(f). In order to compute it, one must in general use values of n which go to
0, and one cannot infer it from the integer values of n.

8.1.4 Condensation

As we discussed in Chapter 5, the appearance of a low temperature ‘glass’ phase is
associated with a condensation of the probability measure on few configurations.
We described quantitatively this phenomenon by the participation ratio Y. For
the REM we obtained limy_,oo EY =1 — ./ for any 5 > 3. (see proposition
5.3). Let us see how this result can be recovered in just a few lines from a replica
computation.

The participation ratio is defined by ¥ = 2311 p?, where p; = e PEi /7 is
Boltzmann’s probability of the j’th energy level. Therefore:

{se:reprem_cond}
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21\7
o n—2 —28E; s
EY }Lli% E|Z ;e [Definition of Y]
2N
. —B(Eiy++Ei, _,) —26E; o
= }LIL%E Z e 1 2 Ze [Assume n € N|
i1.in—2 =1
— ~B(Bi, ++EBi) (. —
rlbl—>moE Z e 1 I(ip—1 zn)]
11...%mn
1
= ilg%) m ;}E Lz; e BB+ tBin) I(i, = ib)} [Symmetrize]

E [ 3 e~ B(Eiy++Ei,) (i, = Zb):|

Q1..0n

1
= lim Z [Denom. — 1]
n—0 n(n — 1) ab E |: Z eﬂ(Ei1+"'+Ein):|

1,1.,.’L‘n

1
= lim ————— > " (Qu) (8.19)
n—~0 n(n _ 1) ;) ab/n »
where the sums over the replica indices a,b run over a,b € {1,...,n}, while
the configuration indices i, are summed over {1,...,2V}. In the last step we

introduced the notation

Ny (Q)e 2 Ty Qu
(f(@)n = ZQ /@) N(Q1332 ) (8.20)
ZQ NN(Q)BT >a Qab

and noticed that the sum over iy, ...,14, can be split into a sum over the overlap
matrices @) and a sum over the n-uples i .. .14, having overlap matrix ). Notice
that (-),, can be interpreted as an expectation in the ‘replicated system’.

In the large N limit Ny (Q) = eV*(@) and the expectation value (8.20) is
given by a dominant?! (saddle point) term: (f(Q)), ~ f(Q*). As argued in the
previous Sections, in the low temperature phase 8 > (., the saddle point matrix
is given by the 1RSB expression (8.10).

211f the dominant term corresponds to a non-replica symmetric matrix Q*, all the terms
obtained by permuting the replica indices contribute with an equal weight. Because of this
fact, it is a good idea to compute averages of symmetric functions f(Q) = f(Q™). This is what
we have done in Eq. (8.19).
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IR S IRSB .
EY = lim woD) >k [Saddle point]
a#b
zl—mzl—% [90 =0, ¢1 = 1] .(8.21)

This is exactly the result we found in proposition 5.3, using a direct combina-
torial approach. It also confirms that the IRSB Ansatz (8.10) makes sense only
provided 0 < m < 1 (the participation ratio Y is positive by definition). Com-
pared to the computation in Sec. 5.3, the simplicity of the replica derivation is
striking.

At first look, the manipulations in Eq. (8.19) seem to require new assumptions
with respect to the free energy computation in the previous Sections. Replicas
are introduced in order to write the Z~2 factor in the participation ratio, as the
analytic continuation of a positive power Z" 2. It turns out that this calculation
is in fact equivalent to the one in (8.2). This follows from the basic observation
that expectation values can be obtained as derivatives of log Z with respect to
some parameters.

Exercise 8.3 Using the replica method, show that, for 7' < T:

oN ) Ter—m)  (r=1-m)(r—2-m)...(1-m)
E J’;pj - TL—m) (r—1)(r—2)...(1) , (8:22)

where I'(x) denotes Euler’s Gamma function.

Exercise 8.4 Using the replica method, show that, for 7' < T¢:

3 — 5m + 2m?

E(Y?) = 3

(8.23)

8.2 The fully connected p-spin glass model

The replica method provides a compact and efficient way to compute —in a
non rigorous way— the free energy density of the REM. The result proves to be
exact, once replica symmetry breaking is used in the low temperature phase.
However, its power can be better appreciated on more complicated problems
which cannot be solved by direct combinatorial approaches. In this Section we
shall apply the replica method to the so-called ‘p-spin glass’ model. This model
has been invented in the theoretical study of spin glasses. Its distinguishing
feature are interactions which involve groups p spins, with p > 2. It generalizes
ordinary spin glass models, cf. Sec. 2.6, in which interactions involve couples of

{ex:reml}

{se:PspinReplicas}
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spins (i.e. p = 2). This provides an additional degree of freedom, the value of p,
and different physical scenarios appear whether p = 2 or p > 3. Moreover, some
pleasing simplifications show up for large p.

In the p-spin model, one considers the space of 2%V configurations of N Ising

spins. The energy of a configuration o = {o1,...,0n} is defined as:
E(o) = - Z Jiy.iyTiy = Oy (8.24)
’i1<i2<‘..ip

where o; € {£1}. This is a disordered system: a sample is characterized by the
set of all couplings Jiy. iy, With 1 < 4p < --- <4 < N. These are taken as iid
Gaussian random variables with zero mean and variance E J?Z, i, =P/ (2N Py,
Their probability density reads:

p! NP1
P(J)= N1 &XP (— ] I (8.25)

The p-spin model is a so-called infinite range interaction model: there is no
notion of Euclidean distance between the positions of the spins. It is also called
a fully connected model since each spin interacts directly with all the others.
The last feature is at the origin of the special scaling of the variance of the J
distribution in (8.25). A simple criterion for arguing that the proposed scaling
is the correct one consists in requiring that a flip of a single spin generates an
energy change of order 1 (i.e. finite when N — o0). More precisely, let o the
configuration obtained from o by reversing the spin i and define A; = [E(c(¥)) —
E(0)]/2. Tt is easy to see that A; = Zil“ip Jiiy...i,0i04, - - - 04, The sum is over
O(NP~1) terms, and, if o is a random configuration, the product o;0;, -+ 0y, in
each term is +1 or —1 with probability 1/2. The scaling in (8.25) insures that
A; is finite as N — oo (in contrast, the p! factor is just a matter of convention).

Why is it important that the A; are of order 17 The intuition is that A;
estimates the interaction between a spin and the rest of the system. If A; were
much larger than 1, the spin o; would be completely frozen in the direction which
makes A; positive, and temperature wouldn’t have any role. On the other hand,
if A; were much smaller than one, the spin 7 would be effectively independent
from the others.

lp

Exercise 8.5 An alternative argument can be obtained as follows. Show that,
at high temperature § < 1: Z = 2N[1+271 32 D<o iy J? i, +O(3%)]. This
implies N~'E log Z = log2 + Cn3?/2 + O(3?), with Cy = 1. What would
happen with a different scaling of the variance? Which scaling is required in
order for C'y to have a finite N — oo limit?

The special case of p = 2 is the closest to the original spin glass problem and
is known as the Sherrington-Kirkpatrick (or SK) model.
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8.2.1 The replica calculation

Let us start by writing Z" as the partition function for n non-interacting replicas
o, withie{l,...,N}, ae{l,...,n}:

Z H exp (ﬁJZI lPZall... 2;,) . (8.26)
{g }11< <ip

The average over the couplings J;, ;, is easily done by using their independence
and the well known identity

EeMX = g2 (8.27)

holding for a Gaussian random variable X with zero mean and variance E X2 =
A. One gets:

B> p!
= E exp | — E E 0%l 620l .00 ol
4 Np_l 11 11 12 12 ip lp

{oa} i< <ip ab
B2 1 !
- b
= {E }exp 1 o Eb < g afoi> (8.28)

where we have neglected corrections due to coincident indices i; = i in the first
term, since they are irrelevant to the leading exponential order. We introduce
for each a < b the variables Ay, and Qg by using the identity

N . b
1 dAgp —ab [ NQav—3"0f0;
:/anb5 (Qab— ¥ > o;‘crf) :N/anb/ %b e ( )

- (8.29)
with all the integrals running over the real line. Using it in Eq. (8.28), we get

2 62 » 1 " a b
/HanbZeXP<n+ B) ZQab>5(Qab—N;UiUi>

a<b a<b

/ [1(dQub dray) e N @A) (8.30)

a<b

where we have introduced the function:

> iXaboao
G(Q,/\):—n———ZQ +3 A Qas —log | S e T (31)

a<b a<b {oa}

which depends upon the n(n—1)/2+n(n—1)/2 variables Qap, Aap, 1 < a < b < n.

{eq:HubbardStrat}

{eq:ReplicatedPspin}

{eq:pspin_sp}

{eq:PspinAction}
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9(a)

q q

Fia. 8.3. Graphical solution of the RS equations for the p-spin model, with
p = 2 (SK model, left) and p = 3 (right). The various curves correspond to

inverse temperatures § = 4, 3, 2, 1.5, 1, 0.5 (from top to bottom).

Exercise 8.6 An alternative route consists in noticing that the right hand
side of Eq. (8.28) depends upon the spin configuration only through the overlap
matrix Qqp = N~1Y", 0%0?, with a < b. The sum can be therefore decomposed
into a sum over the overlap matrices and a sum over configurations with a given
overlap matrix:

2 2
EZ" = XQ:NN(Q) exp (Nf n+ Nf ZQ§b> . (8.32)

a<b

Here Ny (Q) is the number of spin configurations with a given overlap matrix
Q. In analogy to the REM case, it is natural to guess a large deviations principle
of the form My (Q) = exp[Ns(Q)]. Use the Gértner-Ellis theorem 4.12 to obtain
an expression for the ‘entropic’ factor s(@). Compare the resulting formula for
E Z™ with Eq. (8.28).

Following our general approach, we shall estimate the integral (8.30) at large
N by the saddle point method. The stationarity conditions of G are most easily
written in terms of the variables i, = tAqp. By differentiating Eq. (8.31) with

respect to its arguments, we get Va < b

1 -
Hay = 508 Quy Qab = (0a0)n (8.33)

where we have introduced the average within the replicated system

{AlternativeAction}

(f(o))n = ﬁ > (o) exp (Z uab0a0b> , 2(p) =) exp (Z fab aaab) :
{oo)

a<b {0} a<b
(8.34)

for any function f(o) = f(o'...0m).
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We start by considering a RS saddle point: Qup = q ; pap = p for any a # b.
Using the Gaussian identity (8.27), one finds that the saddle point equations
(8.33) become:

p=gpP @, g =Etanh? oy (8.35)
where E, denotes the expectation with respect to a Gaussian random variable
z of zero mean and unit variance. Eliminating p, we obtain an equation for the
overlap parameter: ¢ = 7(q), with 7(¢) = E, tanh?(z+/pf2 ¢¢~1/2). In Fig. 8.3
we plot the function r(g) for p = 2,3 and various temperatures. The equations
(8.35) always admit the solution ¢ = p = 0. Substituting into Eq. (8.31), and
using the trick (8.2) this solution would yield a free energy density

frs = lim, g*lnG(QRSv/\RS) = —B/4—(1/B)log2. (8.36)

At low enough temperature, other RS solutions appear. For p = 2, a single
such solution departs continuously from 0 at (. = 1, cf. Fig. 8.3, left frame. For
p > 3 a couple of non-vanishing solutions appear discontinuously for 5 > (. (p)
and merge as 8 | Bi«(p), cf. Fig. 8.3, right frame. However two arguments allow
to discard these saddle points:

e Stability argument: One can compute the Taylor expansion of G(Q,\)
around such RS saddle points. The saddle point method can be applied
only if the matrix of second derivatives has a defined sign. As discussed
in the Appendix, this condition does not hold for the non-vanishing RS
saddle points.

e Positivity of the entropy: As explained in Chap. 2, because of the positivity
of the entropy, the free energy of a physical system with discrete degrees
of freedom must be a decreasing function of the temperature. Once again,
one can show that this condition is not satisfied by the non-vanishing RS
saddle points.

On the other hand, the ¢ = 0 saddle point also violates this condition at
low enough temperature (as the reader can show from Eq. (8.36)).

The above arguments are very general. The second condition, in particular, is
straightforward to be checked and must always be satisfied by the correct saddle
point. The conclusion is that none of the RS saddle points is correct at low
temperatures. This motivates us to look for 1RSB saddle points. We partition
the set of n replicas into n/m groups of m replicas each and seek a saddle point
of the following 1RSB form:

Qab =q1, Map =1, if a and b belong to the same group,
Qab = qo, Mab = Mo, if a and b belong to different groups. (8.37)

{eq:1RSBAnsatzPspin}
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n n

Fia. 8.4. Structure of the @,, matrix when replica symmetry is broken. Left:
1RSB Ansatz. The n(n — 1)/2 values of Qg are the non diagonal elements of a
symmetric n X n matrix. The n replicas are divided into n/m blocks of size m.
When a and b are in the same block, Q.5 = q1, otherwise Q. = qo. Right: 2RSB

Ansatz: an example with n/my = 3 and my/mqy = 2. {fig:pspin_irsb_Ansatz}

In practice one can relabel the replicas in such a way that the groups are
formed by successive indices {1...m}, {m+1...2m}, ..., {n—m+1...n}
(see Fig. 8.4)%2.

The computation of G(Q, ) on this saddle point makes repeated use of the
* identity (8.27) and is left as an exercise.One gets:

1RSB y1RSB B 3 P pp_ "1
GQ7 AT = —nr 4+ e (1= m)gy + mgg] = 5 [(1 = m)qup + mgopuo]
n min/m
+ 5/11 — log {Ezo [Ezl (2 COSh(\/,uo 20 + H1 — Mo 2:1)) ] / }

{eq: 1RSBFreeEnergy} (8.38)

where E,; and E,, denote expectations with respect to the independent Gaussian
random variables zy and z; with zero mean and unit variance.

22S0ome of the other labellings of the replicas give distinct 1RSB saddle points with the same
value of G(Q, \). This is a general feature of RSB saddle points, that we already encountered
when studying the REM, cf. Sec. 8.1.4.
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Exercise 8.7 Show that the limit G1rsB(q, p;m) =
lim,, o n~' G(Q'RSB, \RSB) exists, and compute the function Girss(q, p; m).
Determine the stationarity condition for the parameters qi,qo,f41, o and
m by computing the partial derivatives of Gigrsp(q, u;m) with respect to
its arguments and setting them to 0. Show that these equations are always
consistent with gy = g = 0, and that

1 1
G1rsBlyg ug=0 = — Zﬂz[l — (1=m)q7] + Fhull = (1 =m)q]

—% log E. [(2 cosh(y/11 2))™] . (8.39)

Picking up the solution gy = po = 0, the stationarity conditions??® for the
remaining parameters ¢q; and p; read

I I = [(2 cosh(y/p1 2))™ (tanh(, /51 2))?]
p = 2]95 Q. o= E. [2cosh(Vi2)"] . (8.40)

These equations always admit the solution g = py = 0: this choice reduces in
fact to a replica symmetric Ansatz, as can be seen from Eq. (8.37). Let us now
consider the p > 3 case. At low enough temperature two non-vanishing solutions
appear. A local stability analysis shows that the largest one, let us call it mui®,
¢;¥, must be chosen.

The next step consists in optimizing Girsg(¢°P, ©°P; m) with respect to m €
[0,1] (notice that Girsp depends on m both explicitly and through ¢, u5P). It
turns out that a unique stationary point mg(3) exists, but ms(3) € [0, 1] only
at low enough temperature 5 > (.(p). We refer to the literature for an explicit
characterization of f.(p). At the transition temperature [.(p), the free energy
of the 1RSB solution becomes equal to that of the RS one. There is a phase
transition from a RS phase for 5 < (.(p) to a 1RSB phase for 5 > S.(p).

These calculations are greatly simplified (and can be carried out analytically)
in the large p limit. The leading terms in a large p expansion are:

Be(p) = 2¢/log2 + ¢ ) m(8) = &5(1-» +e7O0) g =190 (8.41)

The corresponding free energy density is constant in the whole low temperature
phase, equal to —+/log 2. The reader will notice that several features of the REM
are recovered in this large p limit. One can get a hint that this should be the
case from the following exercise:

23They are most easily obtained by differentiating Eq. (8.39) with respect to q1 and p1.



160 INTRODUCTION TO REPLICA THEORY

Exercise 8.8 Consider a p-spin glass problem, and take an arbitrary configu-
ration ¢ = {01,...,0n}. Let P,(F) denote the probability that this configura-
tion has energy E, when a sample (i.e. a choice of couplings .J;, . ;,) is chosen
at random with distribution (8.25). Show that P,(FE) is independent of o, and
is a Gaussian distribution of mean 0 and variance N/2. Now take two con-
figurations o and o', and show that the joint probability distribution of their
energies, respectively E and E’, in a randomly chosen sample, is:
(E+E)? (E-E)?

E E/
7 = - - .4
Foo (B, E') = Cexp 2N(1+zP) 2N(1 — zP) (8.42)

where = (1/N) )", 0,0;, and C is a normalization constant. When |z| < 1
the energies of the two configurations become uncorrelated as p — oo, (i.e.
lim, .o Py o (E,E") = P,(E)P,/(E")), suggesting a REM-like behavior.

In order to know if the 1RSB solution which we have just found is the correct
one, one should first check its stability by verifying that the eigenvalues of the
Hessian (i.e. the matrix of second derivatives of G(Q,\) with respect to its
arguments) have the correct sign. Although straightforward in principle, this
computation becomes rather cumbersome and we shall just give the result, due
Elizabeth Gardner. The 1RSB solution is stable only in some intermediate phase
Be(p) < B < Bu(p). At the inverse temperature 3,(p) there is a second transition
to a new phase which involves a more complex replica symmetry breaking scheme.

The 1RSB solution was generalized by Parisi to higher orders of RSB. His
construction is a hierarchical one. In order to define the structure of the Qup
matrix with two steps of replica symmetry breaking (2RSB), one starts from the
1RSB matrix of Fig. 8.4 (left panel). The off diagonal blocks with matrix elements
qo are left unchanged. The diagonal blocks are changed: take any diagonal block
of size my x my (we now call m = mq). In the 1RSB case all its matrix elements
are equal to ¢;. In the 2RSB case the m; replicas are split into mj /ms blocks of
me replicas each. The matrix elements in the off diagonal blocks remain equal
to ¢1. The ones in the diagonal blocks become equal to a new number ¢y (see
Fig. 8.4, right panel). The matrix is parametrized by 5 numbers: qo, q1, g2, m1, ma.
This construction can obviously be generalized by splitting the diagonal blocks
again, grouping mg replicas into mq/ms groups of ms replicas. The so-called
full replica symmetry breaking Ansatz (FRSB) Ansatz corresponds to
iterating this procedure R times, and eventually taking R to infinity. Notice
that, while the construction makes sense, for n integer, only when n > my; >
mg > -+ > mpg > 1, in the n — 0 limit this order is reversed to 0 < m; < mgy <
-+ <mp < 1. Once one assumes a R-RSB Ansatz, computing the rate function
G and solving the saddle point equations is a matter of calculus (special tricks
have been developed for R — o0). It turns out that, in order to find a stable
solution in the phase 8 > (3,(p), a FRSB Ansatz is required. This same situation
is also encountered in the case of the SK model, in the whole phase g > 1, but
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its description would take us too far.

8.2.2  Owerlap distribution

Replica symmetry breaking appeared in the previous Sections as a formal trick
for computing certain partition functions. One of the fascinating features of spin-
glass theory is that RSB has a very concrete physical (as well as probabilistic)
interpretation. One of the main characteristics of a system displaying RSB is
the existence, in a typical sample, of some spin configurations which are very
different from the lowest energy (ground state) configuration, but are very close
to it in energy. One gets a measure of this property through the distribution of

overlaps between configurations. Given two spin configurations o = {o1,...,0n}
and o’ = {0}, ..., }, the overlap between ¢ and o’ is:
X
Qoo = N Zaio—z{ ) (843)
i=1

so that N(1 — gyo)/2 is the Hamming distance between o and o’. For a given
sample of the p-spin glass model, which we denote by J, the overlap distribu-
tion Pj;(q) is the probability density that two configuration, randomly chosen
with the Boltzmann distribution, have overlap ¢:

[ Prad = Y ewl-080) - BB e <0) (540

-1 o0’
Let us compute the expectation of Py(¢) in the thermodynamic limit:
P(q) = lim EPy(q) (8.45)

using replicas. One finds:

q
’ r_ 1
[1P(Q)dq = lim > E

ol...on

I ((1010'2 < q) (846)

exp (—62E(0a>

The calculation is very similar to the one of E (Z™), the only difference is that
now the overlap between replicas 1 and 2 is fixed to be < g. Following the same
steps as before, one obtains the expression of P(g) in terms of the saddle point
matrix Q7%. The only delicate point is that there may be several RSB saddle
points related by a permutation of the replica indices. If Q@ = {Qup} is a saddle
point, any matrix (Q),, = Qr(a),x) (With 7 a permutation in S,) is also a
saddle point, with the same weight: G(Q™) = G(Q). When computing P (g), we
need to sum up over all the equivalent distinct saddle points, which gives in the
end:

n—>0n(n—1)a

/ ) do’ = Jim S (P (8.47)
} -

{se:0verlap_distribution}
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In case of a RS solution one has:
q
/ P(¢) dg' =T(¢"° <q) , (8.48)
-1

with ¢®° the solution of the saddle point equations (8.35). In words: if two
configurations o and ¢’ are drawn according to the Boltzmann distribution,
their overlap will be ¢® with high probability. Since the overlap is the sum of
many ‘simple’ terms, the fact that its distribution concentrates around a typical
value is somehow expected.

In a 1RSB phase characterized by the numbers qq, q1, Ao, A1, m, one finds:

q
| P@)ad = -mi@m <0 +miw<a . (8.49)
The overlap can take with finite probability two values: gg or ¢;. This has a
very nice geometrical interpretation. When sampling configurations randomly
chosen with the Boltzmann probability, at an inverse temperature 3 > S.(p),
the configurations will typically be grouped into clusters, such that any two
configurations in the same cluster have an overlap ¢, while configurations in
different clusters have an overlap gy < ¢, and thus a larger Hamming distance.
When picking at random two configurations, the probability that they fall in the
same cluster is equal to 1 — m. The clustering property is a rather non-trivial
one: it would have been difficult to anticipate it without a detailed calculation.
We shall encounter later several other models where it also occurs. Although the
replica derivation presented here is non rigorous, the clustering phenomenon can
be proved rigorously.

In a solution with higher order RSB the P(q) function develops new peaks.
The geometrical interpretation is that clusters contain some sub-clusters, which
themselves contain sub-clusters etc...this hierarchical structure leads to the
property of ultrametricity. Consider the triangle formed by three indepen-
dent configurations drawn from the Boltzmann distribution, and let the lengths
of its sides be measured using to the Hamming distance. With high probability,
such a triangle will be either equilateral, or isosceles with the two equal sides
larger than the third one. In the case of full RSB, P(g) has a continuous part,
showing that the clustering property is not as sharp, because clusters are no
longer well separated; but ultrametricity still holds.

Exercise 8.9 For a given sample of a p-spin glass in its 1RSB phase, define Y
as the probability that two configurations fall into the same cluster. More pre-

cisely: Y = f P;(q") dq', where gy < q < q1. The previous analysis shows that
limy .o EY =1 — m. Show that, in the large N limit, E (YQ) = M
as in the REM. Show that all moments of Y are identical to those of the REM

The result depends only on the 1RSB structure of the saddle point, not on any
of its details.
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{se:ReplicaExtreme} 8.3 Extreme value statistics and the REM

Exercise 8.9 suggests that there exist universal properties which hold in the glass
phase, independently of the details of the model.

In systems with a 1RSB phase, this universality is related to the universality
of extreme value statistics. In order to clarify this point, we shall consider in
this Section a slightly generalized version of the REM. Here we assume the
energy levels to be M = 2% iid random variables admitting a probability density
function (pdf) P(F) with the following properties:

1. P(FE) is continuous.
2. P(P) is strictly positive on a semi-infinite domain —oco < E < Ej.

3. In the E — —oo limit, P(F) vanishes more rapidly than any power law.
We shall keep here to the simple case in which

P(E) ~ Aexp (—B|E|6> as F — —o0, (8.50) {eq:gumbel_hyp}
for some positive constants A, B, d.

We allow for such a general probability distribution because we want to check
which properties of the corresponding REM are universal.

As we have seen in Chap. 5, the low temperature phase of the REM is con-
trolled by a few low-energy levels. Let us therefore begin by computing the dis-

tribution of the lowest energy level among Ei, ..., Ey (we call it Ey). Clearly,
oo M
P[Eg > E) = {/ P(x) d:c] . (8.51)
E

Let E*(M) be the value of E such that P[E; < E] = 1/M for one of the energy
levels F;. For M — oo, one gets

~ logM
B
Let’s focus on energies close to E* (M), such that E = E*(M)+¢/(BS|E*(M)|°~1),
and consider the limit M — oo with € fixed. Then:

A _BIEI
~ gaEpte Lo =

|E*(M)]°

+ O(loglog M) . (8.52)

PlE; > E] =1

1 15
=1- 7€ [1+4o0(1)] . (8.53)

Therefore, if we define the rescaled ground state energy through E,s = E*(M)+
egs/(BO|E*(M)|°71), we get

Nlim Plegs > €] = exp (—e°) . (8.54)

In other words, the pdf of the rescaled ground state energy converges to P (g) =
exp(e —e®). This limit distribution, known as Gumbel’s distribution, is universal.
The form of the energy level distribution P(E) only enters in the values of the
shift and the scale, but not in the form of P;(g). The following exercises show
that several other properties of the glass phase in the REM are also universal.
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Exercise 8.10 Let Fy < Fy < --- < Ej. be the k lowest energies. Show that
universality also applies to the joint distribution of these energies, in the limit
M — oo at fixed k. More precisely, define the rescaled energies e; < --- <
ey through E; = E*(M) + BT (=1 Prove that the joint distribution of
€1,...,&r admits a density which converges (as M — o0) to

Py(e1,...,ex) =exp(er+ - +ep—e*) I(eg < - <egp) . (8.55)

Exercise 8.11 Consider a REM where the pdf of the energies satisfies the
hypotheses 1-3 above, and M = 2~. Show that, in order for the ground state
energy to be extensive (i.e. E4 ~ N in the large N limit), one must have B ~
N'=%_ Show that the system has a phase transition at the critical temperature
T. = 6 (log2)(0—1/93,

Define the participation ratios Y, = 23:1 p;. Prove that, for T' < T, these
quantities signal a condensation phenomenon. More precisely:

. _ I'(r—m)
N EY = S —m)

(8.56)
where m = (T'/T.) min{d, 1}, as in the standard REM (see Sec. 8.3). (Hint:
One can prove this equality by direct probabilistic means using the methods
of Sec. 5.3. For 0 > 1, one can also use the replica approach of Sec. 8.1.4).

In the condensed phase only the configurations with low energies count, and
because of the universality of their distribution, the moments of the Boltzmann
probabilities p; are universal. These universal properties are also captured by
the 1RSB approach. This explains the success of this 1RSB in many systems
with a glass phase.

A natural (and fascinating) hypothesis is that higher orders of RSB corre-
spond to different universality classes of extreme values statistics for correlated
variables. The mathematical definition of these universality classes have not yet
been studied in the mathematical literature, to our knowledge.

8.4 Appendix: Stability of the RS saddle point

In order to establish if a replica saddle point is correct, one widely used criterion
is its local stability. In order to explain the basic idea, let us move a step backward
and express the replicated free energy as an integral over uniquely the overlap
parameters

EZ" =Y NO@, (8.57)
Q

Such an expression can either be obtained from Eq. (8.30) by integrating over
{Aab}, or as described in Exercise 8.6. Following the last approach, we get
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R 62 62 .
G(Q) = Ty ;}Qab —5(Q), (8.58)
where
z abTa0b
$(Q) = = parQab + (1) , () =log | > eis” ,(8.59)
a<b n=p*(Q) {oa}

and p*(Q) solves the equation Qqp, = %(*Z). In other words s(Q) is the Legendre
transform of ¥ (u) (apart from an overall minus sign). An explicit expression of
s(Q) is not available but we shall only need the following well known property

of Legendre transforms

9*s(Q)
8Qaband

0% (1)
— 70—1 , C a e = —— 5 860
(ab)(ed) DD e i)

where C~! is the inverse of C' in matrix sense. The right hand side is in turn easily
written down in terms of averages over the replicated system, cf. Eq. (8.34):

C(ab)(cd) = {(04060:04)n — (0a0b)n{TcOd)n - (8.61)

Assume now that (Q°P, A°P) is a stationary point of G(Q, ). This is equivalent
to say that QP is a stationary point of G(Q) (the corresponding value of p coin-

cides with i\*?). We would like to estimate the sum (8.57) as EZ" = NCG(Q@™7) A
necessary condition for this to be correct is that the matrix of second derivatives
of G(Q) is positive semidefinite at @ = @Q°P. This is referred to as the local
stability condition. Using Eqgs. (8.58) and (8.61), we get the explicit condition

1 _ _
Mayea) = |~ 5820 = DQ” Stab.et) + Clapyeay| =02 (8:62)

where we use the symbol A > 0 to denote that the matrix A is positive semidef-
inite.

In this technical appendix we sketch this computation in two simple cases:
the stability of the RS saddle point for the general p-spin glass in zero magnetic
field, and the SK model in a field.

We consider first the RS saddle point Q. = 0, Aqp = 0 in the p-spin glass.
In this case

(f(@)n = 2% > flo). (8.63)
{Ua}

It is then easy to show that M(ab)(cd) = 5(ab),(cd) for p > 3 and M(ab)(cd) =
(1— 52)5(@),(6,1) for p = 2. The situations for p = 2 and p > 3 are very different:
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e If p = 2 (the SK model) the RS solution is stable for 5 < 1, and unstable
for g > 1.
e When p > 3, the RS solution is always stable.

Let us now look at the SK model in a magnetic field. This is the p = 2 case but
with an extra term —B ). 0; added to the energy (8.24). It is straightforward to
repeat all the replica computations with this extra term. The results are formally
identical if the average within the replicated system (8.34) is changed to:

(F(O)np = ﬁ S flo) exp (Z ot 000 + ﬁ320a> (8.64)
{o}

a<b a

2(p) = Z exp <Z Lab Ta0p + B Zoa> . (8.65)

{o2} a<b a
The RS saddle point equations (8.35) are changed to:

w=03q, q = E. tanh® (2\/5 + 8B) . (8.66)

and the values of ¢, ;4 are non-zero at any positive 3, when B # 0. This compli-
cates the stability analysis.

Since p = 2, we have M(ab)(cd) = _625(ab)(cd) + C(_aé)(cd)' Let {)\]} be the
eigenvalues of C(q)(ca)- Since C' = 0, the condition M = 0 is in fact equivalent
to 1 — (3%2); > 0, for all the eigenvalues \;.

The matrix elements Cqp)(.q) take three different forms, depending on the
number of common indices in the two pairs (ab), (cd):

2
Claby(ab) =1 — [EZ tanh? (zy/+ 53)] —U
Cla(ae) = Ex tanh® (/i + BB) — [E. tank® (=/fi + 8B)] " = V
C(ab)(cd) = EZ tanh4 (Z\//j + ﬂB) - [Ez tanh2 (Z\//7 + 6B)]2 =W ’

where b # ¢ is assumed in the second line, and all indices are distinct in the last
line. We want to solve the eigenvalue equation Z( cd) Clab)(cd)Ted = AT (qp)-

A first eigenvector is the uniform vector z(q,) = @. Its eigenvalue is A\; =
U+2(n—2)V+(n—2)(n—3)/2W. Next we consider eigenvectors which depend
on one special value § of the replica index in the form: x4, = z if a = 6 or
b =0, and z(4) = y in all other cases. Orthogonality to the uniform vector
is enforced by choosing * = (1 — n/2)y, and one finds the eigenvalue Ay =
U+ (n—4)V 4+ (3 — n)W. This eigenvalue has degeneracy n — 1. Finally we
consider eigenvectors which depend on two special values 6, v of the replica index:
Tow) = T, T(ga) = T(v,a) = Y, T(ab) = %, Where a and b are distinct form
0,v. Orthogonality to the previously found eigenvectors imposes © = (2 — n)y
and y = [(3 — n)/2]z. Plugging this into the eigenvalue equation, one gets the
eigenvalue \3 = U — 2V + W, with degeneracy n(n — 3)/2.
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In the limit n — 0, the matrix C has two distinct eigenvalues: Ay = Ay =
U—4V 4+3W and A3 = U -2V +W. Since V> W, the most dangerous eigenvalue
is A3 (called the replicon eigenvalue). This implies that the RS solution of the
SK model is locally stable if and only if

E. [1— tanh® (2/i + 8B)]” < T2 (8.67)

The inequality is saturated on line in the plane T, B, called the AT line. which
behaves like 7' =1 — (%)2/3 B?/3 4 o(B?/3) for B — 0 and like T ~ ﬁe‘fﬁm
for B> 1.

Exercise 8.12 The reader who wants to test her understanding of these
replica computations computation can study the SK model in zero field
(B = 0), but in the case where the couplings have a ferromagnetic bias: J;; are
iid Gaussian distributed, with mean Jy/N and variance 1/N.

(¢) Show that the RS equations (8.35) are modified to:

pw=p3%q; q=E.tanh? (z+/t+ BJom) ; m = E, tanh (/1 + BJom)
(8.68)
(#4) Solve numerically these equations. Notice that, depending on the values
of T and .Jy, three types of solutions can be found: (1) a paramagnetic
solution m = 0,¢ = 0, (2) a ferromagnetic solution m > 0,q > 0, (3) a
spin glass solution m = 0,¢q > 0.
(731) Show that the AT stability condition becomes:

E. [1 — tanh? (2\/z + BJom)]* < T2 (8.69)

and deduce that the RS solution found in (4), (i7) is stable only in the
paramagnetic phase and in a part of the ferromagnetic phase.

Notes

The replica solution of the REM was derived in the original work of Derrida
introducing the model (Derrida, 1980; Derrida, 1981). His motivation for intro-
ducing the REM came actually from the large p limit of p-spin glasses.

The problem of moments is studied for instance in (Shohat and Tamarkin,
1943).

The first universally accepted model of spin glasses was introduced by Ed-
wards and Anderson (Edwards and Anderson, 1975). The mean field theory
was defined by Sherrington and Kirkpatrick (Sherrington and Kirkpatrick, 1975;
Kirkpatrick and Sherrington, 1978), who considered the RS solution. The insta-
bility of this solution in the p = 2 case was found by de Almeida and Thouless
(de Almeida and Thouless, 1978), who first computed the location of the AT line.
The solution to exercise (8.12) can be found in (Kirkpatrick and Sherrington,
1978; de Almeida and Thouless, 1978).

{ex:SK_JO}

{eq:SK_JO_RS_SP}

{eq:SK_JO_RS_AT}
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Parisi’s Ansatz was introduced in a couple of very inspired works starting in
1979 (Parisi, 1979; Parisi, 1980b; Parisi, 1980a). His original motivation came
from his reflection on the meaning of the permutation group S,, when n < 1,
and particularly in the n — 0 limit. Unfortunately there has not been any math-
ematical developments along these lines. The replica method, in the presence of
RSB, is still waiting for a proper mathematical framework. On the other hand it
is a very well defined computational scheme, which applies to a wide variety of
problems. The physical interpretation of RSB in terms of condensation was found
by Parisi (Parisi, 1983), and developed in (Mézard, Parisi, Sourlas, Toulouse and
Virasoro, 1985), which discussed the distribution of weights in the glass phase
and its ultrametric organization. The p-spin model has been analyzed at large p
with replicas in (Gross and Mézard, 1984). The clustering phenomenon has been
discovered in this work. The finite p case was later studied in (Gardner, 1985).
A rigorous treatment of the clustering effect in the p-spin glass model was devel-
oped by Talagrand (Talagrand, 2000) and can be found in his book (Talagrand,
2003).

The connection between 1RSB and Gumbel’s statistics of extremes is dis-
cussed in (Bouchaud and Mézard, 1997). A more detailed presentation of the
replica method, together with some reprints of most of these papers, can be
found in (Mézard, Parisi and Virasoro, 1987).
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FACTOR GRAPHS AND GRAPH ENSEMBLES

Systems involving a large number of simple variables with mutual dependencies
(or constraints, or interactions) appear recurrently in several fields of science.
It is often the case that such dependencies can be ‘factorized’ in a non-trivial
way, and distinct variables interact only ‘locally’. In statistical physics, the fun-
damental origin of such a property can be traced back to the locality of physical
interactions. In computer vision it is due to the two dimensional character of
the retina and the locality of reconstruction rules. In coding theory it is a useful
property for designing a system with fast encoding/decoding algorithms. This
important structural property plays a crucial role in many interesting problems.

There exist several possibilities for expressing graphically the structure of de-
pendencies among random variables: undirected (or directed) graphical models,
Bayesian networks, dependency graphs, normal realizations, etc. We adopt here
the factor graph language, because of its simplicity and flexibility.

As argumented in the previous Chapters, we are particularly interested in
ensembles of probability distributions. These may emerge either from ensembles
of error correcting codes, or in the study of disordered materials, or, finally,
when studying random combinatorial optimization problems. Problems drawn
from these ensembles are represented by factor graphs which are themselves
random. The most common examples are random hyper-graphs, which are a
simple generalization of the well known random graphs.

Section 9.1 introduces factor graphs and provides a few examples of their
utility. In Sec. 9.2 we define some standard ensembles of random graphs and
hyper-graphs. We summarize some of their important properties in Sec. 9.3. One
of the most surprising phenomena in random graph ensembles, is the sudden
appearance of a ‘giant’ connected component as the number of edges crosses a
threshold. This is the subject of Sec. 9.4. Finally, in Sec. 9.5 we describe the local
structure of large random factor graphs.

9.1 Factor graphs
9.1.1 Definitions and general properties
We begin with a toy example.

Example 9.1 A country elects its president among two candidates {4, B} ac-
cording to the following peculiar system. The country is divided into four regions
{1,2,3,4}, grouped in two states: North (regions 1 and 2), and South (3 and 4).
Each of the regions chooses its favorites candidate according to popular vote: we
call him z; € {A, B}, with ¢ € {1,2,3,4}. Then a North candidate yx, and a

169

ch:Graphs
P.

{se:FactorGeneral}

{se:FactorDefinition}



{fig:ElectionFactor}

170 FACTOR GRAPHS AND GRAPH ENSEMBLES

Fia. 9.1. Factor graph representation of the electoral process described in Ex-
ample 1.

South candidate ys are decided according to the following rule. If the preferences
1 and o in regions 1 and 2 agree, then yy takes this same value. In they don’t
agree yy is decided according to a fair coin trial. The same procedure is adopted
for the choice of yg, given 3, z4. Finally, the president z € {A, B} is decided on
the basis of the choices yn and ys in the two states using the same rule as inside
each state.

A polling institute has obtained fairly good estimates of the probabilities
pi(x;) for the popular vote in each region 4 to favor the candidate x;. They ask
you to calculate the odds for each of the candidates to become the president.

It is clear that the electoral procedure described above has important ‘fac-
torization’ properties. More precisely, the probability distribution for a given
realization of the random variables {x;}, {y;}, z has the form:

4

P({xi}, {y;},2) = (208, us) Fyn, 1, 22) [ ys, w3, 2a) [ [ piles) . (9.1)

i=1

We invite the reader to write explicit forms for the function f. The election pro-
cess, as well as the above probability distribution, can be represented graphically
as in Fig. 9.1. Can this particular structure be exploited when computing the
chances for each candidate to become president?

Abstracting from the previous example, let us consider a set of N variables
T1,...,oNn taking values in a finite alphabet X. We assume that their joint
probability distribution takes the form

1 M
P)= 7 [] vuzan) - 92)
a=1

Here we use the shorthands z = {z1,...,2n}, and 25, = {z;|i € da}, where
0da C [N]. The set of indices da, with a € [M], has size k, = |0a|. When necessary,
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X1

Fia. 9.2. A generic factor graph is formed by several connected components.
Variables belonging to distinct components (for instance x3 and x5 in the graph
above) are statistically independent.

we shall use the notation {i{,...,i} } = da to denote the variable indices which
correspond to the factor a, and Lig 2 = Zoq for the corresponding variables.
The compatibility functions ¢, : X% — R are non-negative, and Z is a
positive constant. In order to completely determine the form (9.2), we should
precise both the functions ,(-), and an ordering among the indices in da. In
practice this last specification will be always clear from the context.

Factor graphs provide a graphical representations of distributions of the
form (9.2). The factor graph for the distribution (9.2) contains two types of
nodes: N variable nodes, each one associated with a variable z; (represented
by circles); M function nodes, each one associated with a function v, (squares).
An edge joins the variable node i and the function node a if the variable z; is
among the arguments of 1,(zs,) (in other words if ¢ € da). The set of function
nodes that are adjacent to (share an edge with) the variable node i, is denoted
as 0i. The graph is bipartite: an edge always joins a variable node to a function
nodes. The reader will easily check that the graph in Fig. 9.1 is indeed the factor
graph corresponding to the factorized form (9.1). The degree of a variable node
(defined as in usual graphs by the number of edges which are incident on it) is
arbitrary, but the degree of a function node is always > 1.

The basic property of the probability distribution (9.2) encoded in its factor
graph, is that two ‘well separated’ variables interact uniquely through those vari-
ables which are interposed between them. A precise formulation of this intuition
is given by the following observation, named the global Markov property:

Proposition 9.2 Let A, B,S C [N] be three disjoint subsets of the variable
nodes, and denote by x4, xg and xg denote the corresponding sets of variables.
If S ‘separates” A and B (i.e., if there is no path on the factor graph joining a
node of A to a node of B without passing through S) then

Pz s, zplzg) = Paalzs) P(zplzg) - (9.3)

In such a case the variables x 4, xp are said to be conditionally independent.

{fig:DisconnectedFactor}

{propo:GlobalMarkov}
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X4
b
X d [:>
X2
X1 c
Xg

Fic. 9.3. The action of conditioning on the factor graph.
The probability distribution  on the left has the form
P(zy ) o fa(zi a)fo(@345)fc(21356)fa(zs). After conditioning on s,
we get P(z, glos = x.) o< fo(z194)f3(245)fe(21 56)fa(z5). Notice that the
functions f7(-), fi(-), fi(-) (gray nodes on the right) are distinct from fo(-),
f5(), fe(+) and depend upon the value of z,.

Proof: It is easy to provide a ‘graphical’ proof of this statement. Notice that, if
the factor graph is disconnected, then variables belonging to distinct components
are independent, cf. Fig. 9.2. Conditioning upon a variable x; is equivalent to
eliminating the corresponding variable node from the graph and modifying the
adjacent function nodes accordingly, cf. Fig. 9.3. Finally, when conditioning upon
zg as in Eq. (9.3), the factor graph gets split in such a way that A and B belong
to distinct components. We leave to the reader the exercise of filling the details.
O

It is natural to wonder whether any probability distribution which is ‘globally
Markov’ with respect to a given graph can be written in the form (9.2). In general,
the answer is negative, as can be shown on a simple example. Consider the
small factor graph in Fig. (9.4). The global Markov property has a non trivial
content only for the following choice of subsets: A = {1}, B = {2,3}, S =
{4}. The most general probability distribution such that x; is independent from
{2, 23} conditionally to x4 is of the type fo(z1,x2) fy(z2, 23, x3). The probability
distribution encoded by the factor graph is a special case where f,(x2, x5,24) =
fc(x% x3)fd(x> x4)fe(x4’ x2)'

The factor graph of our counterexample, Fig. 9.4, has a peculiar property:
it contains a subgraph (the one with variables {xs,x3,24}) such that, for any
pair of variable nodes, there is a function node adjacent to both of them. We
call any factor subgraph possessing this property a clique®*. It turns out that,
once one gets rid of cliques, the converse of Proposition 9.2 can be proved. We
shall ‘get rid’ of cliques by completing the factor graph. Given a factor graph F,
its completion F is obtained by adding one factor node for each clique in the

24Tn usual graph theory, the word clique refers to graph (recall that a graph is defined by a
set of nodes and a set of edges which join node pairs), rather than to factor graphs. Here we
use the same word in a slightly extended sense.

{fig:ConditionFactor}
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X2

X3

Fi1a. 9.4. A factor graph with four variables. {z;} and {z2, 23} are independent
conditionally to x4. The set of variables {z2, x5, 24} and the three function nodes
connecting two points in this set form a clique.

graph and connecting it to each variable node in the clique and to no other node
(if such a node does not already exist).

Theorem 9.3. (Hammersley-Clifford) Let P(-) be a strictly positive prob-
ability distributions over the variables x = (z1,...,zy5) € XN, satisfying the
global Markov property (9.3) with respect to a factor graph F. Then P can be
written in the factorized form (9.2), with respect to the completed graph F.

Roughly speaking: the only assumption behind the factorized form (9.2) is the
rather weak notion of locality encoded by the global Markov property. This may
serve as a general justification for studying probability distributions having a
factorized form. Notice that the positivity hypothesis P(z1,...,zx) > 0 is not
just a technical assumption: there exist counterexamples to the Hammersley-
Clifford theorem if P is allowed to vanish.

9.1.2 Examples
Let us look at a few examples

Example 9.4 The random variables X7, ..., Xy taking values in the finite state
space X form a Markov chain of order r (with r < N) if

N—1
P(zy...aon) = Po(z1...2,) H W(Tppg1 - Tt — Teg1) s (9.4)

t=r

for some non-negative transition probabilities {w(z_, ...x_1 — ¢)}, and initial
condition Py(zy ...x,), satisfying the normalization conditions

Z Py(xy...x,) =1, Zw(x_r...:z:_lﬂxo)zl. (9.5)

L1 Lo o

The parameter r is the ‘memory range’ of the chain. Ordinary Markov chains
have » = 1. Higher order Markov chains allow to model more complex phe-
nomena. For instance, in order to get a reasonable probabilistic model of the
English language with the usual alphabet X = {a,b,...z, blank} as state space,
a memory of the typical size of words (r > 6) is probably required.

{se:FactorExamples}



*

{ex:FirstLinearCode}

174 FACTOR GRAPHS AND GRAPH ENSEMBLES

X 3 X5

Fig. 9.5. On the left: factor graph for a Markov chain of length N = 6 and
memory range r = 2. On the right: by adding auxiliary variables, the same
probability distribution can be written as a Markov chain with memory range
r=1.

It is clear that Eq. (9.4) is a particular case of the factorized form (9.2). The
corresponding factor graph includes N variable nodes, one for each variable x;,
N — r function nodes for each of the factors w(-), and one function node for the
initial condition Py(:). In Fig. 9.5 we present a small example with N = 6 and
r=2.

Notice that a Markov chain with memory r and state space X’ can always be
rewritten as a Markov chain with memory 1 and state space X". The transition
probabilities w of the new chain are given in terms of the original ones

ﬂ) _ w(xla"'vxr _>yr) lfl'g =Y1, L3 = Y2, - Ty = Yr—1, (9 6)
0 otherwise, '

where we used the shorthands Z = (z1,...,2,) and ¥ = (y1,...,y,). Figure 9.5
shows the reduction to an order 1 Markov chain in the factor graph language.

What is the content of the global Markov property for Markov chains? Let
us start from the case of order 1 chains. Without loss of generality we can choose
S as containing one single variable node (let’s say the i-th) while A and B are,
respectively the nodes on the left and on the right of i: A = {1,...,r — 1} and
B={r+1,...,N}. The global Markov property reads

P(l‘l .. $N|l‘7) = P(:L‘l . .CCi_1|Ii)P(l‘i+1 .. xN\mz), (97)

which is just a rephrasing of the usual Markov condition: X;i1 ... Xy depend
upon Xj ...X; uniquely through X;. We invite the reader to discuss the global
Markov property for order » Markov chains.

Example 9.5 Consider the code € of block-length N = 7 defined by the code-
book:

¢ = {(z1,22,23,24) € {0,1}! | 21 Bz D5 D g =0, (9.8)
T2© T3 D6 D7 =0, 24D T5 B e D a7 =0},
Let Py(z) be the uniform probability distribution over the codewords: as dis-

cussed in Chap. 6, it is reasonable to assume that encoding produces codewords
according to such a distribution. Then:

{fig:FactorMarkov}
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X4 X4

Fia. 9.6. Left: factor graph for the uniform distribution over the code defined
in Eq. (9.8). Right: factor graph for the distribution of the transmitted message
conditional to the channel output. Gray function nodes encode the information
carried by the channel output.

F1c. 9.7. Factor graph for an Edwards-Anderson model with size L =4 ind = 2
dimensions. Full squares correspond to pairwise interaction terms —.J;;0;0;.
Hatched squares denote magnetic field terms —Bo;.

1
Py(z) = 70]1(331 DrsBasdarr=0)1(x2®r3DrsDar=0)- (9.9)

'H(IL‘4@$5@I6@$7:0),

where Zy = 16 is a normalization constant. This distribution has the form (9.2)
and the corresponding factor graph is reproduced in Fig. 9.6.

Suppose that a codeword in € is transmitted through a binary memoryless
channel, and that the message (y1, ¥, ...yr) is received. As argued in Chap. 6,
it is useful to consider the probability distribution of the transmitted message
conditional to the channel output, c¢f. Eq. (6.3). Show that the factor graph
representation for this distribution is the one given in Fig. 9.6, right-hand frame.

{fig:FactorIsing}
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Example 9.6 In Sec. 2.6 we introduced the Edwards-Anderson model, a sta-
tistical mechanics model for spin glasses, whose energy function reads: F(c) =
— Z(ij) Jijoio; — B, 0;. The Boltzmann distribution can be written as

1
pa(a) = [[ "o [T, (9.10)
(i) i

with i runs over the sites of a d-dimensional cubic lattice of side L: i € [L]¢, and
(ij) over the couples of nearest neighbors in the lattice. Once again, this distri-
bution admits a factor graph representation, as shown in Fig. 9.7. This graph
includes two types of function nodes. Nodes corresponding to pairwise interac-
tion terms —J;;0;0; in the energy function are connected to two neighboring
variable nodes. Nodes representing magnetic field terms —Bo; are connected to
a unique variable.

Example 9.7 Satisfiability is a decision problem introduced in Chap. 3. Given
N boolean variables a1, ...,z x € {T, F'} and a bunch of M logical clauses among
them, one is asked to find a truth assignment verifying all of the clauses. The
logical AND of the M clauses is usually called a formula. As an example, consider
the following formula over N = 7 variables:

(Il\/562\/1774)/\(.%2\/1‘3\/585)/\(1‘74\/1’75)/\(Is\/ﬂ\/%). (911)

For a given satisfiability formula, it is quite natural to consider the uniform
probability distribution Pyt (1, ...,z n) over the truth assignments which satisfy
(9.11)(whenever such an assignment exist). A little thought shows that such a

distribution can be written in the factorized form (9.2). For instance, the formula
(9.11) yields

1

Peai (21, ..+, 7) I(w1 Va2 VED) W22 V23 V 25)) (71 V T5) -

sat

T(xs VT7V Ts), (9.12)

where Zg, is the number of distinct truth assignment which satisfy Eq. (9.11).
We invite the reader to draw the corresponding factor graph.

Exercise 9.1 Consider the problem of coloring a graph G with g colors, already
encountered in Sec. 3.3. Build a factor graph representation for this problem,
and write the associated compatibility functions. [Hint: in the simplest such
representation the number of function nodes is equal to the number of edges
of G, and every function node has degree 2.

9.2 Ensembles of factor graphs: definitions

We shall be generically interested in understanding the properties of ensembles
of probability distributions taking the factorized form (9.2). We introduce here
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a few useful ensembles of factor graphs. In the simple case where every function
node has degree 2, factor graphs are in one to one correspondence with usual
graphs, and we are just treating random graph ensembles, as first studied by
Erdos and Renyi. The case of arbitrary factor graphs is in many cases a simple
generalization. From the graph theoretical point of view they can be regarded
either as hyper-graphs (by associating a vertex to each variable node and an
hyper-edge to each function node), or as bipartite graphs (variable and function
nodes are both associated to vertices in this case).

For any integer k > 1, the random k-factor graph with M function nodes
and N variables nodes is denoted by Gy (k, M), and is defined as follows. For
each function node a € {1... M}, the k-uple da is chosen uniformly at random
among the (JZ) k-uples in {1...N}.

Sometimes, one may encounter variations of this basic distribution. For in-
stance, it can be useful to prevent any two function nodes to have the same
neighborhood (in other words, to impose the condition da # 9b for any a # b).
This can be done in a natural way through the ensemble Gy (k, ) defined as fol-
lows. For each of the (]Z ) k-uples of variables nodes, a function node is added to
the factor graph independently with probability o/ (]IX ), and all of the variables
in the k-uple are connected to it. The total number M of function nodes in the
graph is a random variable, with expectation M,, = a/NV.

In the following we shall often be interested in large graphs (N — oo) with a
finite density of function nodes. In Gy (k, M) this means that M — oo, with the
ratio M /N kept fixed. In Gy (k, ), the large N limit is taken at « fixed. The
exercises below suggests that, for some properties, the distinction between the
two graph ensembles does not matter in this limit.

Exercise 9.2 Consider a factor graph from the ensemble Gy (k, M). What is
the probability pgist that for any couple of function nodes, the corresponding
neighborhoods are distinct? Show that, in the limit N — co, M — oo with
M/N = « and k fixed

O(e~22N) ifk=1,
paist = § e [1+O(N)] if k=2, (9.13)
1+ O(N—F+2) if k>3.
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Exercise 9.3 Consider a random factor graph from the ensemble Gy (k, @),
in the large N limit. Show that the probability of getting a number of function
nodes M different from its expectation N by an ‘extensive’ number (i.e. a
number of order N) is exponentially small. In mathematical terms: there exist
a constant A > 0 such that, for any € > 0,

2

P[|M — M,,| > Ne| < e=4Ne", (9.14)

Consider the distribution of a Gy (k, o) random graph conditioned on the num-
ber of function nodes being M. Show that this is the same as the distribution
of a Gy(k, M) random graph conditioned on all the function nodes having
distinct neighborhoods.

An important local property of a factor graph is its degree profile. Given
a graph, we denote by A; (by P;) the fraction of variable nodes (function nodes)
of degree i. Notice that A = {A,, : n >0} and P = {P, : n > 0} are in fact two
distributions over the non-negative integers (they are both non-negative and
normalized). Moreover, they have non-vanishing weight only on a finite num-
ber of degrees (at most N for A and M for P). We shall refer to the couple
(A, P) as to the degree profile of the graph F. A practical representation of
the degree profile is provided by the generating functions A(z) = > -, A, 2"
and P(xz) = >, <o Pna". Because of the above remarks, both A(x) and P(x)
are in fact finite polynomials with non-negative coefficients. The average vari-
able node (resp. function node) degree is given by »° A, n = A’(1) (resp.
Yonzo Pnn = P'(1))

If the graph is randomly generated, its degree profile is a random variable. For
instance, in the random k-factor graph ensemble Gy (k, M) defined above, the
variable node degree A depends upon the graph realization: we shall investigate
some of its properties below. In contrast, its function node profile P,, = I(n = k)
is deterministic.

It is convenient to consider ensembles of factor graphs with a prescribed
degree profile. We therefore introduce the ensemble of degree constrained
factor graphs Dy (A, P) by endowing the set of graphs with degree profile
(A, P) with the uniform probability distribution. Notice that the number M of
function nodes is fixed by the relation M P’(1) = NA’(1). Moreover, the ensemble
is non-empty only if NA, and M P, are integers for any n > 0. Even if these
conditions are satisfied, it is not obvious how to construct efficiently a graph in
Dy (A, P). Since this ensemble plays a crucial role in the theory of sparse graph
codes, we postpone this issue to Chap. 11. A special case which is important in
this context is that of random regular graphs in which the degrees of variable
nodes is fixed, as well as the degree of function nodes. In a (k, ) random regular
graph, each variable node has degree [ and each function node has degree k,

corresponding to A(x) = z! and P(x) = z*.
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9.3 Random factor graphs: basic properties

In this Section and the next ones, we derive some simple properties of random
factor graphs.

For the sake of simplicity, we shall study here only the ensemble Gy (k, M)
with k > 2. Generalizations to graphs in Dy (A, P) will be mentioned in Sec. 9.5.1
and further developed in Chap. 11. We study the asymptotic limit of large graphs
N — oo with M/N = « and k fixed.

9.3.1 Degree profile

The variable node degree profile {A,, : n > 0} is a random variable. By linearity
of expectation E A,, = P[deg, = n], where deg, is the degree of the node i. Let
p be the probability that a uniformly chosen k-uple in {1,..., N} contains i.
It is clear that deg; is a binomial random variable with parameters M and p.
Furthermore, since p does not depend upon the site i, it is equal to the probability
that a randomly chosen site belongs to a fixed k-uple. In formulae

M k
Pldeg; = n] = (1= p)Mr =—. 1
[deg; = 7] (n>p( YT pE (9.15)
If we consider the large graph limit, with n fixed, we get
. _ 1 _ ko (ka)n
NIEI})OIP’[degi =n|= J\}I_ITQO]EA" =e (9.16)

The degree of site ¢ is asymptotically a Poisson random variable.

How correlated are the degrees of the variable nodes? By a simple generaliza-
tion of the above calculation, we can compute the joint probability distribution of
deg; and deg;, with ¢ # j. Think of constructing the graph by choosing a k-uple
of variable nodes at a time and adding the corresponding function node to the
graph. Each node can have one of four possible ‘fates’: it connects to both nodes
i and j (with probability ps); it connects only to i or only to j (each case has
probability p); it connects neither to @ nor to j (probability po = 1 — 2p; — p2).
A little thought shows that p = k(k —1)/N(N — 1), p1 = k(N — k)/N(N — 1)
and

min(n,m)

M - —n—

P[deg; = n,deg; = m] = <n o z> popy T pg T (9.17)
l:O ) )

where [ is the number of function nodes which connect both to ¢ and to j and
we used the standard notation for multinomial coefficients (see Appendix A).

Once again, it is illuminating to look at the large graphs limit N — oo with
n and m fixed. Tt is clear that the [ = 0 term dominates the sum (9.17). In fact,
the multinomial coefficient is of order ©(N™*™~!) and the various probabilities
are of order pg = ©(1), p1 = O(N '), py = O(N?). Therefore the I-th term of
the sum is of order ©(N~!). Elementary calculus then shows that

{subsec:DegreeRandom}
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P[deg; = n,deg; = m] = P[deg; = n|P[deg; = m] + (N, (9.18)

This shows that the nodes’ degrees are (asymptotically) pairwise independent
Poisson random variables. This fact can be used to show that the degree profile
{A, : n >0} is, for large graphs, close to its expectation. In fact

N
E |(A, — EAn)Q} = % > " {P[deg; = n,deg; = n] — P[deg, = n|P[deg; = n]}

ij=1

=O(N Y, (9.19)

which implies (via Chebyshev inequality) P[|A,, — EA,| > §EA,] = O(N 1) for
any 0 > 0.

The pairwise independence expressed in Eq. (9.18) is essentially a conse-
quence of the fact that, given two distinct variable nodes ¢ and j the probability
that they are connected to the same function node is of order O(N~1). It is
easy to see that the same property holds when we consider any finite number of
variable nodes. Suppose now that we look at a factor graph from the ensemble
Gn (k, M) conditioned to the function node a being connected to variable nodes
i1,...,1x. What is the distribution of the residual degrees deg;17 . ,deg;k (by
residual degree deg’, we mean the degree of node i once the function node a has
been pruned from the graph)? It is clear that the residual graph is distributed
according to the ensemble Gy (k, M — 1). Therefore the residual degrees are (in
the large graph limit) independent Poisson random variables with mean ka. We
can formalize these simple observations as follows.

Proposition 9.8 Letiy,... i, € {1,...,N} ben distinct variable nodes, and G
a random graph from Gy (k, M) conditioned to the neighborhoods of m function
nodes ai, . .., am being dai,...,0a,,. Denote by deg, the degree of variable node
i once ay,...,a, have been pruned from the graph. In the limit of large graphs
N — oo with M/N = «a, k, n and m fized, the residual degrees deggl, e ,deg;n
converge in distribution to independent Poisson random variables with mean ko.

This property is particularly useful when investigating the local properties of a
Gy (k, Na) random graph. In particular, it suggests that these local properties
are close to the ones of the ensemble Dy (A, P), where P(z) = z¥ and A(x) =
explka(z — 1)].

A remark: in the above discussion we have focused on the probability of
finding a node with some constant degree n in the asymptotic limit N — oo.
One may wonder whether, in a typical graph G € Gy(k, M) there may exist
some variable nodes with exceptionally large degrees. The exercise below shows
that this is not the case.
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xf*;/ﬁ{h

(@)

Fia. 9.8. A factor graph from the Gy (k, M) with k =3, N =23 and M = 8. It
contains Ziso = 2 isolated function nodes, Z.oup1 = 1 isolated couples of function
nodes and Zgycle,3 = 1 cycle of length 3. The remaining 3 variable nodes have
degree 0.

Exercise 9.4 We want to investigate the typical properties of the maximum
variable node degree A(G) in a random graph G from Gy (k, M).

(@)

(i)

(iid)

(iv)

9.3.2

Let Timax be the smallest value of n > ka such that NP[deg, = n] < 1.
Show that A(G) < Timax with probability approaching one in the large
graph limit. [Hints: Show that NP[deg; = Timax + 1] — 0 at large N;
Apply the first moment method to Z;, the number of nodes of degree [.]
Show that the following asymptotic form holds for 7i,,.x:

Mmax z log log =z
e~ Barees b Ol 3:20)

where z = (log N)/(kae).

Let n,,.. be the largest value of n such that NP[deg, = n|] > 1. Show
that A(G) > n,,.. with probability approaching one in the large graph
limit. [Hints: Show that NP[deg; = n,,.« — 1] — oo at large N; Apply
the second moment method to Z;.]

What is the asymptotic behavior of n,,.” How does it compare t0 Mmax !

Small subgraphs

The next simplest question one may ask concerning a random graph, is the
occurrence in it of a given small subgraph. We shall not give a general treatment
of the problem here, but rather work out a few simple examples.

Let’s begin by considering a fixed k-uple of variable nodes i1, ... ,i; and ask
for the probability p that they are connected by a function node in a graph
G € Gy(k, M). In fact, it is easier to compute the probability that they are not
connected:

{fig:RandomFactor}

{SmallSection}
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-] 021

The quantity in brackets is the probability that a given function node is not a
neighbor of i1, ..., 4. It is raised to the power M because the M function nodes
are independent in the model Gy (k, M). In the large graph limit, we get

1—p=

ak!

= W[l +O(NY). (9.22)

p
This confirms an observation of the previous Section: for any fixed (finite) set of
nodes, the probability that a function node connects any two of them vanishes
in the large graph limit.
As a first example, let’s ask how many isolated function nodes appear in
a graph G € Gy(k,M). We say that a node is isolated if all the neighboring
variable nodes have degree one. Call the number of such function nodes Zig,. It
is easy to compute the expectation of this quantity

E Ziso = M NG
isol = [(k> < L )] : (9.23)

The factor M is due to the fact that each of the M function nodes can be isolated.
Consider one such node a and its neighbors i1, ..., ;. The factor in (1;7)7 (Nk_k)
is the probability that a function node b # a is not incident on any of the nodes
i1, ..,1k. This must be counted for any b # a, hence the exponent M — 1. Once
again, things become more transparent in the large graph limit:

E Ziso = Nae " [1 + O(N ). (9.24)

So there is a non-vanishing ‘density’ of isolated function nodes. This density
approaches 0 at small « (because there are few function nodes at all) and at
large « (because function nodes are unlikely to be isolated). A more refined
analysis shows that indeed Zig, is tightly concentrated around its expectation:
the probability of an order N fluctuation vanishes exponentially as N — oc.

There is a way of getting the asymptotic behavior (9.24) without going
through the exact formula (9.23). We notice that E Zi, is equal to the number
of function nodes (M = N«) times the probability that the neighboring variable
nodes i1, ..., i have degree 0 in the residual graph. Because of Proposition 9.8,
the degrees deggl, ey deg;k are approximatively i.i.d. Poisson random variables
with mean ka. Therefore the probability for all of them to vanish is close to
(e=he)k = e~k

Of course this last type of argument becomes extremely convenient when
considering small structures which involve more than one function node. As a
second example, let us compute the number Zigo1,2 of couples of function nodes
which have exactly one variable node in common and are isolated from the rest
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of the factor graph (for instance in the graph of Fig. 9.8, we have Zig1 2 = 1).
One gets

E Zisol2 = (2];\1 1) ];(%k_ 1) : (ﬂ)z (e~ Fa)y2h=t [1 +0 Gfﬂ(g.%)

The first factor counts the ways of choosing the 2k — 1 variable nodes which
support the structure. Then we count the number of way of connecting two
function nodes to (2k — 1) variable nodes in such a way that they have only one
variable in common. The third factor is the probability that the two function
nodes are indeed present (see Eq. (9.22)). Finally we have to require that the
residual graph of all the (2k — 1) variable nodes is 0, which gives the factor
(e~*)2k=1 The above expression is easily rewritten as

E Zisolo = N - = (ka)? e *EE=Da 1 1 9(1/N)]. (9.26)

1
2
With some more work one can prove again that Zi2 is in fact concentrated
around its expected value: a random factor graph contains a finite density of
isolated couples of function nodes.

Let us consider, in general, the number of small subgraphs of some definite
type. Its most important property is how it scales with IV in the large N limit.
This is easily found. For instance let’s have another look at Eq. (9.25): N enters
only in counting the (2k—1)-uples of variable nodes which can support the chosen
structure, and in the probability of having two function nodes in the desired
positions. In general, if we consider a small subgraph with v variable nodes and
f function nodes, the number Z,  of such structures has an expectation which
scales as:

EZ,; ~ Nv-(k=DF, (9.27)

This scaling has important consequences on the nature of small structures which
appear in a large random graph. For discussing such structures, it is useful to
introduce the notions of ‘connected (sub-)graph’, of ‘tree’; of ‘path’ in a factor
graphs exactly in the same way as in usual graphs, identifying both variable nodes
and function nodes to vertices (see Chap. 3). We further define a component
of the factor graph G as a subgraph C' which is is connected and isolated, in the
sense that there is no path between a node of C' and a node of G\C'

Consider a factor graph with v variable nodes and f function nodes, all of
them having degree k.This graph is a tree if and only if v = (k — 1)f + 1. Call
Ziree,n the number of isolated trees over v variable nodes which are contained in a
Gn (k, M) random graph. Because of Eq. (9.27), we have E Ziyee» ~ N: arandom
graph contains a finite density (when N — 00) of trees of any finite size. On the
other hand, all the subgraphs which are not trees must have v < (k —1)f + 1,
and Eq. (9.27) shows that their number does not grow with N. In other words,
almost all finite components of a random factor graph are trees.
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Exercise 9.5 Consider the largest component in the graph of Fig. 9.8 (the one
with three function nodes), and let Zcycle,3 be the number of times it occurs
as a component of a Gy (k, M) random graph. Compute E Z,ycic 3 in the large
graph limit.

Exercise 9.6 A factor graph is said to be unicyclic if it contains a unique (up
to shifts) closed, non reversing path wo, w1, . ..,wr = wp satisfying the condition
wy # ws for any t,s € {0...0— 1}, with ¢ # s.
(¢) Show that a factor graph with v variable nodes and f function nodes, all
of them having degree k is unicyclic if and only if v = (k — 1) f.

(73) Let Zcycte,w(IN) be the number of unicyclic components over v nodes in
a Gy (k, M) random graph. Use Eq. (9.27) to show that Zcycle, is finite
with high probability in the large graph limit. More precisely, show that
limy, .00 iMy— 00 PG [chcleﬂ) > n] = 0.

9.4 Random factor graphs: The giant component

While we have just argued that most components of any fixed (as N — o) size
of a Gy (k, M) factor graph are trees, we shall now see that there is much more
than just finite size trees in a large Gy (k, M) factor graph. We always consider
the limit N — oo, M — oo taken at fixed « = M/N. It turns out that when
« becomes larger than a threshold value, a ‘giant component’ appears in the
graph. This is a connected component containing an extensive (proportional to
N) number of variable nodes, with many cycles.

9.4.1 Nodes in finite trees
We want to estimate which fraction of a random graph from the Gy (k, M)

ensemble is covered by finite size trees. This fraction is defined as:

1
(o, k) = lim lim NIENMCC&S, (9.28)

s—00 N—oo

where Nirees,s is the number of sites contained in trees of size not larger than
5. In order to compute E Niyees,s, We use the number of trees of size equal to
s, which we denote by Zirees,s- Using the approach discussed in the previous
Section, we get

]ENtrees,s = Z/U ‘E Ztrees,v = (929)
v=0

() e () e oo )

= N{ak) /DY ! e [k rera]”
v=0 '
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F1a. 9.9. Left: graphical representation of Eq. (9.32) for the fraction of nodes
of a Gy (k, M) random factor graph that belong to finite-size tree components.
The curves refer to kK = 3 and (from top to bottom) o = 0.05, 0.15, 0.25, 0.35,
0.45. Right: typical size of the giant component.

where Ty (v) is the number of trees which can be built out of v distinct variable
nodes and f = (v — 1)/(k — 1) function nodes of degree k. The computation
of Ty (v) is a classical piece of enumerative combinatorics which is developed in
Sec. 9.4.3 below. The result is

(v—1)lof1

T =g

(9.30)
and the generating function fk(z) = > 02 Ti(v)z" /(v — 1)!, which we need in
order to compute ENpees s from (9.29), is found to satisfy the self consistency

equation:
. T.(z)k—1
Ti(z) = z exp {j(;lz(_)l)'} . (9.31)

It is a simple exercise to see that, for any z > 0, this equation has two solutions
such that Ty(z) > 0, the relevant one being the smallest of the two (this is a
consequence of the fact that Ty (z) has a regular Taylor expansion around z = 0).

Using this characterization of T} (z), one can show that z (e, k) is the smallest
positive solution of the equation

Ty = exp (—ka + ko xf;l) . (9.32)

This equation is solved graphically in Fig. 9.9, left frame. In the range o < o, =
1/(k(k — 1)), the only non-negative solution is zy, = 1: almost all sites belong
to finite size trees. When o > ay,, the solution has 0 < z¢, < 1: the fraction of
nodes in finite trees is strictly smaller than one.

9.4.2 Size of the giant component

This result is somewhat surprising. For o > o, a finite fraction of variable nodes
does not belong to any finite tree. On the other hand, we saw in the previous

{fig:Giant}
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Section that finite components with cycles contain a vanishing fraction of nodes.
Where are all the other nodes (there are about N(1 — x¢,) of them)? It turns
out that, roughly speaking, they belong to a unique connected component, the
so-called giant component which is not a tree. One basic result describing this
phenomenon is the following.

Theorem 9.9 Let X, be the size of the largest connected component in a Gy (k, M)
random graph with M = Nla + on(1)], and zg(a, k) = 1 — xy(a, k) where
(o, k) is defined as the smallest solution of (9.32). Then, for any positive €,

| X1 — Nzg(a, k)| < Ne, (9.33)

with high probability.
Furthermore, the giant component contains many loops. Let us define the cyclic
number c of a factor graph containing v vertices and f function nodes of degree

k,as ¢ =v — (k—1)f — 1. Then the cyclic number of the giant component is
¢ = ©(N) with high probability.

Exercise 9.7 Convince yourself that there cannot be more than one compo-
nent of size ©(N). Here is a possible route. Consider the event of having two
connected components of sizes |Ns;| and | Nsy| for two fixed positive num-
bers s; and sy in a Gy(k, M) random graph with M = N« + oy(1)] (with
a > $1+82). In order to estimate the probability of such an event, imagine con-
structing the Gy (k, M) graph by adding one function node at a time. Which
condition must hold when the number of function nodes is M — AM? What
can happen to the last AM nodes? Now take AM = | N°| with 0 < § < 1.

The appearance of a giant component is sometimes referred to as percola-
tion on the complete graph and is one of the simplest instance of a phase
transition. We shall now give a simple heuristic argument which predicts cor-
rectly the typical size of the giant component. This argument can be seen as the
simplest example of the ‘cavity method’ that we will develop in the next Chap-
ters. We first notice that, by linearity of expectation, E X; = Nxg, where z¢
is the probability that a given variable node ¢ belongs to the giant component.
In the large graph limit, site 7 is connected to [(k — 1) distinct variable nodes, [
being a Poisson random variable of mean ka (see Sec. 9.3.1). The node i belongs
to the giant component if any of its [(k—1) neighbors does. If we assume that the
[(k—1) neighbors belong to the giant component independently with probability
rq, then we get

o =1 — (1 —zg) Y], (9.34)
where [ is Poisson distributed with mean k«. Taking the expectation, we get
g =1 —exp[—ka + ka(l — zg)* 1], (9.35)

which coincides with Eq. (9.32) if we set g = 1 — x4,
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root

root(n)

Fi1G. 9.10. A rooted tree G on v+ 1 vertices can be decomposed into a root and
the union of n rooted trees G1,..., Gy, respectively on vy, ..., v, vertices.

The above argument has several flaws but only one of them is serious. In
writing Eq. (9.34), we assumed that the probability that none of [ randomly
chosen variable nodes belongs to the giant component is just the product of the
probabilities that each of them does not. In the present case it is not difficult to
fix the problem, but in subsequent Chapters we shall see several examples of the
same type of heuristic reasoning where the solution is less straightforward.

9.4.3 Counting trees

This paragraph is a technical annex where we compute Tj(v), the number of
trees with v variable nodes, when function nodes have degree k. Let us begin by
considering the case k = 2. Notice that, if k£ = 2, we can uniquely associate to any
factor graph F' an ordinary graph G obtained by replacing each function node by
an edge joining the neighboring variables (for basic definitions on graphs we refer
to Chap. 3). In principle G may contain multiple edges but this does not concern
us as long as we stick to F' being a tree. Therefore T5(v) is just the number of
ordinary (non-factor) trees on v distinct vertices. Rather than computing T5(v)
we shall compute the number T (v) of rooted trees on v distinct vertices. Recall
that a rooted graph is just a couple (G,i.) where G is a graph and i, is a
distinguished node in G. Of course we have the relation T3 (v) = vT5(v).
Consider now a rooted tree on v + 1 vertices, and assume that the root has
degree n (of course 1 < n < v). Erase the root together with its edges and mark
the n vertices that were connected to the root. One is left with n rooted trees of

sizes v1, ..., v, such that v; + - - - 4+ v, = v. This naturally leads to the recursion
* - 1 v * *
o)=Y o X (") T T ). 030
n=1 """ y..0,>0 b v
V1t U =v

which holds for any v > 1. Together with the initial condition T5 (1) = 1, this
relation allows to determine recursively Ty (v) for any v > 0. This recursion is
depicted in Fig. 9.10.

__ The recursion is most easily solved by introducing the generating function
T(z) =3 -0 T5(v) 2 /v!. Using this definition in Eq. (9.36), we get

T(2) = z exp{T(2)}, (9.37)

fig:CayleyRec
g yley

{se:tkdev}
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which is closely related to the definition of Lambert’s W function (usually written
as W (z)exp(W(z)) = z). One has in fact the identity 7(z) = —W(—z). The
expansion of T (z) in powers of z can be obtained through Lagrange inversion
method (see Exercise below). We get T3 (v) = v*~1, and therefore Ty (v) = vV 2.
This result is known as Cayley formula and is one of the most famous results

in enumerative combinatorics.

Exercise 9.8 Assume that the generating function A(z) =3, ., A,2" is so-
lution of the equation z = f(A(z)), with f an analytic function such that
f(0) = 0 and f(0) = 1. Use Cauchy formula A4, = ¢ 4= >="~1 A(2) to show
that

Ay, = coeff { f'(z) (z/f(z))" T 2"} . (9.38)

Use this result, known as ‘Lagrange inversion method’, to compute the power
expansion of T'(z) and prove Cayley formula Ts(v) = v?~2.

Let us now return to the generic k case. The reasoning is similar to the k£ = 2
case. One finds that the generating function Ty (z) = > -, Ty (v)2"/v! satisfies
the equation :

N T (2 k-1
Ti(z) = z exp {1(12(_)1)'} , (9.39)

from which one deduces the number of trees with v variable nodes:

vlpf—1
T (v) = (k:'—l)'ff' (9.40)

In this expression the number of function nodes f is fixed by v = (k — 1)f + 1.

9.5 The local tree-like structure in random graphs
9.5.1 Neighborhood of a node

There exists a natural notion of distance between variable nodes of a factor
graph. Given a path (wo,...,w,) on the factor graph, we define its length as the
number of function nodes in it. Then the distance between two variable nodes
is defined as the length of the shortest path connecting them (by convention it
is set to +o0o when the nodes belong to distinct connected components). We also
define the neighborhood of radius r of a variable node 4, denoted by B; ,(F)
as the subgraph of F' including all the variable nodes at distance at most r from
i, and all the function nodes connected only to these variable nodes.

What does the neighborhood of a typical node look like in a random graph?
It is convenient to step back for a moment from the Gy (k, M) ensemble and
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consider a degree-constrained factor graph F < Dy (A, P). We furthermore de-
fine the edge perspective degree profiles as A(z) = A'(x)/A'(1) and p(z) =
P’(2)/P’(1). These are polynomials

ltl’)ax k[llax
NOEDI p(z) =Y prakt, (9.41)
=1 k=1

where \; (respectively py) is the probability that a randomly chosen edge in the
graph is adjacent to a variable node (resp. function node) of degree I (degree k).
The explicit formulae

lAl k'Pk

A = —_— e R —
l Zl/ Z/Al/ 3 Pk Zk/ k/Pk/ 5

(9.42)

are derived by noticing that the graph F contains nlA; (resp. mkP;) edges
adjacent to variable nodes of degree [ (resp. function nodes of degree k).

Imagine constructing the neighborhoods of a node ¢ of increasing radius 7.
Given B; .(F'), let 41, ...,ir be the nodes at distance r from 4, and deg;1 . ,deg;L
their degrees in the residual graph®®. Arguments analogous to the ones leading
to Proposition 9.8 imply that deg;17 . ,deg;L are asymptotically i.i.d. random
variables with deg;" =1l, —1, and [,, distributed according to A;, . An analogous
result holds for function nodes (just invert the roles of variable and function
nodes).

This motivates the following definition of an r-generations tree ensemble
T, (A, P). If » = 0 there is a unique element in the ensemble: a single isolated
node, which is attributed the generation number 0. If > 0, first generate a tree
from the T,_1 (A, P) ensemble. Then for each variable-node ¢ of generation r — 1
draw an independent integer [; > 1 distributed according to \;, and add to the
graph [; — 1 function nodes connected to the variable ¢ (unless » = 1, in which
case [; function nodes are added, with I; distributed according to A;,). Next, for
each of the newly added function nodes {a}, draw an independent integer k, > 1
distributed according to px and add to the graph k, — 1 variable nodes connected
to the function a. Finally, the new variable nodes are attributed the generation
number r. The case of uniformly chosen random graphs where function nodes
have a fixed degree, k, corresponds to the tree-ensemble T,.(e#*(==1) 2*) (In this
case, it is easy to checkthat the degrees in the residual graph have a Poisson dis-
tribution with mean ke, in agreement with proposition 9.8 ) With a slight abuse
of notation, we shall use the shorthand T, (k, «) to denote this tree ensemble.

It is not unexpected that T,.(A, P) constitutes a good model for r-neighborhoods
in the degree-constrained ensemble. Analogously, T,.(k,«) is a good model for
r-neighborhoods in the Gy (k, M) ensemble when M ~ Na. This is made more
precise below.

25By this we mean F' minus the subgraph B; ,-(F).
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Theorem 9.10 Let F be a random factor graph in the Dy (A, P) ensemble (re-
spectively in the Gy (k, M) ensemble), i a uniformly random variable node in F,

and r a non-negative integer. Then B; (F') converges in distribution to T, (A, P)
(resp. to T,.(k,«)) as N — oo with A, P fized (a, k fized).

In other words, the factor graph F' looks locally like a random tree from the
ensemble T, (A, P).

9.5.2  Loops

We have seen that in the large graph limit, a factor graph F < Gn(k, M)
converges locally to a tree. Furthermore, it has been shown in Sec. 9.3.2 that
the number of ‘small’ cycles in such a graph is only ©(1) an N — oo. It is
therefore natural to wonder at which distance from any given node loops start
playing a role.

More precisely, let ¢ be a uniformly random site in F'. We would like to know
what is the typical length of the shortest loop through ¢. Of course, this question
has a trivial answer if k(k — 1)a < 1, since in this case most of the variable
nodes belong to small tree components, cf. Sec. 9.4. We shall hereafter consider
k(k—1)a > 1.

A heuristic guess of the size of this loop can be obtained as follows. Assume
that the neighborhood B; ,(F) is a tree. Each function node has k — 1 adjacent
variable nodes at the successive generation. Each variable node has a Poisson
number adjacent function nodes at the successive generation, with mean ka.
Therefore the average number of variable nodes at a given generation is [k(k—1)q]
times the number at the previous generation. The total number of nodes in
B;.»(F') is about [k(k —1)a]”, and loops will appear when this quantity becomes
comparable with the total number of nodes in the system. This yields [k(k —
1a]” = O(N), or r = log N/loglk(k — 1)a]. This is of course a very crude
argument, but it is also a very robust one: one can for instance change N with
N'* affecting uniquely the prefactor. It turns out that the result is correct, and
can be generalized to the Dy (A, P) ensemble:

Proposition 9.11 Let F' be a random factor graph in the Dy (A, P) ensemble
(in the Gy (k, M) ensemble), i a uniformly chosen random variable node in F,
and {; the length of the shortest loop in F' through i. Assume that c = N'(1)p'(1) >
1 (c=k(k—1)a > 1). Then, with high probability,

0 = lﬁ)ggf [1+o(1)]. (9.43)

We shall refer the reader to the literature for the proof, the following exercise
gives a slightly more precise, but still heuristic, version of the previous argument.
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Exercise 9.9 Assume that the neighborhood B;,(F') is a tree and that it
includes n ‘internal’ variables nodes (i.e. nodes whose distance from ¢ is smaller
than r), n; ‘boundary’ variable nodes (whose distance from ¢ is equal to r), and
m function nodes. Let F,. be the residual graph, i.e. F' minus the subgraph

B;»(F). It is clear that F, £ GN_n(k, M —m). Show that the probability, p,.,
that a function node of F;. connects two of the variable nodes on the boundary
of B;,(F) is

k k-1 |Mmm
pr=1- [(1—q) +k(1-q) q} ; (9.44)
where ¢ = n/(N — n). As a first estimate of p,, we can substitute in this
expression ny, n, m, with their expectations (in the tree ensemble) and call p,

the corresponding estimate. Assuming that r» = p%, show that

P, =1—exp {—%k(k - 1)aN2f’—1} [1+O(N—2+30)). (9.45)

If p > 1/2, this indicates that, under the assumption that there is no loop of
length 27 or smaller through i, there is, with high probability, a loop of length
2r + 1. If; on the other hand, p < 1/2, it indicates that there is no loop of
length 27 + 1 or smaller through 7. This argument suggests that the length of
the shortest loop through 7 is about %.

Notes

A nice introduction to factor graphs is the paper (Kschischang, Frey and Loeliger,
2001), see also (Aji and McEliece, 2000). They are also related to graphical
models (Jordan, 1998), to Bayesian networks (Pearl, 1988), and to Tanner graphs
in coding (Tanner, 1981). Among the alternatives to factor graphs, it is worth
recalling ‘normal realizations’ discussed by Forney in (Forney, 2001).

The proof of the Hammersley-Clifford theorem (initially motivated by the
probabilistic modeling of some physical problems) goes back to 1971. A proof,
more detailed references and some historical comments can be found in (Clifford,
1990).

The theory of random graphs has been pioneered by Erdos and Renyi (Erdos
and Rényi, 1960). The emergence of a giant component in a random graph is a
classic result which goes back to their work. Two standard textbooks on random
graphs like (Bollobds, 2001) and (Janson, Luczak and Rucinski, 2000) provide
in particular a detailed study of the phase transition. Graphs with constrained
degree profiles were studied in (Bender and Canfield, 1978). A convenient ‘con-
figuration mode’ for analyzing them was introduced in (Bollobds, 1980) and
allowed for the location of the phase transition in (Molloy and Reed, 1995). Fi-
nally, (Wormald, 1999) provides a useful survey (including short loop properties)
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of degree constrained ensembles.

For general background on hyper-graphs, see (Duchet, 1995). The threshold
for the emergence of a giant component in a random hyper-graph with edges of
fixed size k (corresponding to the factor graph ensemble Gy (k, M)) is discussed
in (Schmidt-Pruzan and Shamir, 1985). The neighborhood of the threshold is
analyzed in (Karonski and Luczak, 2002) and references therein.

Ensembles with hyper-edges of different sizes were considered recently in com-
binatorics (Darling and Norris, 2005), as well as in coding theory (as code ensem-
bles). Our definitions and notations for degree profiles and degree constrained
ensembles follows the coding literature (Luby, Mitzenmacher, Shokrollahi, Spiel-
man and Stemann, 1997; Richardson and Urbanke, 2001a).

The local structure of random graphs, and of more complex random objects
(in particular random labeled graphs) is the object of the theory of local weak con-
vergence (Aldous and Steele, 2003). The results in Section 9.5.1 can be phrased
in this framework, cf. for instance 777.
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SATISFIABILITY

Because of Cook’s theorem, see Chapter 3, satisfiability lies at the heart of com-
putational complexity theory: this fact has motivated an intense research activity
on this problem. This Chapter will not be a comprehensive introduction to such a
vast topic, but rather present some selected research directions. In particular, we
shall pay special attention to the definition and analysis of ensembles of random
satisfiability instances. There are various motivations for studying random in-
stances. For testing and improving algorithms that solve satisfiability, it is highly
desirable to have an automatic generator of ‘hard’ instances at hand. As we shall
see, properly ‘tuned’ ensembles provide such a generator. Also, the analysis of
ensembles has revealed a rich structure and induced fruitful contacts with other
disciplines. We shall come back to satisfiability, using methods inspired from
statistical physics, in Chapter 77.

Section 10.1 recalls the definition of satisfiability and introduces some stan-
dard terminology. A basic, and widely adopted, strategy for solving decision
problems consists in exploring exhaustively the tree of possible assignments of
the problem’s variables. In Section 10.2 we present a simple implementation of
this strategy for solving satisfiability. In Section 10.3 we introduce some impor-
tant ensembles of random instances. The hardness of satisfiability depends on
the maximum clause length. When clauses have length 2, the decision problem is
solvable in polynomial time. This is the topic of section 10.4. Finally, in Section
10.5 we discuss the existence of a phase transition for random K-satisfiability
with K > 3, when the density of clauses is varied, and derive some rigorous
bounds on the location of this transition.

10.1 The satisfiability problem
10.1.1 SAT and UNSAT formulas

An instance of the satisfiability problem is defined in terms of N Boolean vari-
ables, and a set of M constraints between them, where each constraint takes
the special form of a clause. A clause is the logical OR of some variables or their
negations. Here we shall adopt the following representation: a variable z;, with
1€ {l,...,N}, takes values in {0,1}, 1 corresponding to ‘true’, and 0 to ‘false’;
the negation of x; is T; = 1 — x;. A variable or its negation is called a literal,
and we shall denote it z; , with ¢ € {1,..., N} (therefore z; denotes any of x;,
T;). A clause a, with a € {1, ..., M}, involving K, variables is a constraint which
forbids exactly one among the 2%« possible assignments to these K, variables.
It is written as the logical OR (denoted by V) function of some variables or their
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FiG. 10.1. Factor graph representation of the formula
(fl VZoV 54)/\(.%1 \Y fz)/\(itg VayV £C5)/\(.’E1 V xo V f5)/\($1 VI3V (E5).

negations. For instance the clause xo V T12 V x37 V T41 is satisfied by all the vari-
ables’ assignments except those where xo = 0,212 = 1,237 = 0,247 = 1. When
it is not satisfied, a clause is said to be violated.

We denote by da the subset {i{,...,i% } C {1,..., N} containing the indices
of the K, = |0a| variables involved in clause a. Then clause a is written as C, =
zigVzig V-V Zig An instance of the satisfiability problem can be summarized
as the logical formula (called a conjunctive normal form (CNF)):

F201/\02/\"'/\C]\{. (10.1)

As we have seen in Chapter 9, Example 9.7, there exists 26 a simple and natural
representation of a satisfiability formula as a factor graph associated with the
indicator function I(x satisfies F'). Actually, it is often useful to use a slightly
more elaborate factor graph using two types of edges: A full edge is drawn be-
tween a variable vertex ¢ and a clause vertex a whenever xz; appears in a, and a
dashed edge is drawn whenever T; appears in a. In this way there is a one to one
correspondence between a CNF formula and its graph. An example is shown in
Fig. 10.1.

Given the formula F', the question is whether there exists an assignment of
the variables z; to {0,1} (among the 2V possible assignments), such that the
formula F' is true. An algorithm solving the satisfiability problem must be able,
given a formula F, to either answer ‘YES’ (the formula is then said to be SAT),
and provide such an assignment, called a SAT-assignment, or to answer ‘NO’,
in which case the formula is called UNSAT. The restriction of the satisfiability
problem obtained by requiring that all the clauses in F' have the same length
K, = K, is called the K-satisfiability (or K-SAT) problem.

As usual, an optimization problem is naturally associated to the decision
version of satisfiability: Given a formula F', one is asked to find an assignment

261t may happen that there does not exist any assignment satisfying F, so that one cannot
use this indicator function to build a probability measure. However one can still characterize
the local structure of I(z satisfies F') by the factor graph



ALGORITHMS 195

which violates the smallest number of clauses. This is called the MAX-SAT
problem.

Exercise 10.1 Consider the 2-SAT instance defined by the formula F; = (21 V
Tg) N (.Z‘Q V 53) N (fg V 374) 7A\ (.’134 \/Tl> A (53 V T4) A (Tg V 373). Show that this
formula is SAT and write a SAT-assignment. [Hint: assign for instance z; = 1;
the clause x4 VT, is then reduced to x4, this is a unit clause which fixes 4 = 1;
the chain of ‘unit clause propagation’ either leads to a SAT assignment, or to
a contradiction.

Exercise 10.2 Consider the 2-SAT formula Fy = (1 VT2) A (22 VZ3) A (T2 V
24) A (24 VT1) A (T3 V Ty) A (T2 V T3). Show that this formula is UNSAT by
using the same method as in the previous Exercise.

Exercise 10.3 Consider the 3-SAT formula F5 = (21 V 29 VT3) A (21 V 23 V
T4) A (1‘2 \/$3 \/.234) A (Tl \/.132 \/f4) A (331 \/fg \/J,‘4) AN (Tl \/Tg \/$4) A (EQ V
T3V T4) AN (172 V x3V 1‘4) A\ (fl V x3 \/T4). Show that it is UNSAT. [Hint: try to
generalize the previous method by using a decision tree, cf. Sec. 10.2.2 below,
or list the 16 possible assignments and cross out which one is eliminated by
each clause.]

As we already mentioned, satisfiability was the first problem to be proved
NP-complete. The restriction defined by requiring K, < 2 for each clause a, is
polynomial. However, if one relaxes this condition to K, < K, with K = 3 or
more, the resulting problem is NP-complete. For instance 3-SAT is NP-complete
while 2-SAT is polynomial. It is intuitively clear that MAX-SAT is “at least as
hard” as SAT: an instance is SAT if and only if the minimum number of violated
clauses (that is the output of MAX-SAT) vanishes. It is less obvious that MAX-
SAT can be “much harder” than SAT. For instance, MAX-2-SAT is NP-hard,
while as said above, its decision counterpart is in P.

The study of applications is not the aim of this book, but one should keep
in mind that satisfiability is related to a myriad of other problems, some of
which have enormous practical relevance. It is a problem of direct importance
to the fields of mathematical logic, computing theory and artificial intelligence.
Applications range from integrated circuit design (modeling, placement, routing,
testing,...) to computer architecture design (compiler optimization, scheduling
and task partitioning,...) and to computer graphics, image processing etc. ..

10.2 Algorithms

10.2.1 A simple case: 2-SAT

The reader who worked out Exercises 10.1 and 10.2 has already a feeling that
2-SAT is an easy problem. The main tool for solving it is the so-called unit
clause propagation (UCP) procedure. If we start from a 2-clause C' = 21 V 2o
and fix the literal z1, two things may happen:

{ex:2-satex1}

{ex:2-satex2}

{ex:3-satex1}

{se:sat_algo}
{se:2satalgo}



196 SATISFIABILITY

e If we fix z; = 1 the clause is satisfied and disappears from the formula

e If we fix z; = 0 the clause is transformed into the unit clause zo which
implies that z5 = 1.

Given a 2-SAT formula, one can start from a variable z;, ¢ € {1,..., N} and
fix, for instance x; = 0. Then apply the reduction rule described above to all
the clauses in which z; or T; appears. Finally, fix recursively in the same way
all the literals which appear in unit clauses. This procedure may halt for one of
the following reasons: (i) the formula does not contain any unit clause; (i7) the
formula contains the unit clause z; together with its negation Zz;.

In the first case, a partial SAT assignment (i.e. an assignment of a subset of
the variables such that no clause is violated) has been found. We will prove below
that such a partial assignment can be extended to a complete SAT assignment
if and only if the formula is SAT. One therefore repeats the procedure by fixing
a not-yet-assigned variable x;.

In the second case, the partial assignment cannot be extended to a SAT as-
signment. One proceeds by changing the initial choice and setting xz; = 1. Once
again, if the procedure stops because of reason (i), then the formula can be effec-
tively reduced and the already-fixed variables do not need to be reconsidered in
the following. If on the other hand, also the choice x; = 1 leads to a contradiction
(i.e. the procedure stops because of (i7)), then it is immediate to show that the
formula is necessarily UNSAT.

It is clear that the algorithm defined in this way is very efficient. Its complex-
ity can be measured by the number of variable-fixing operations that it involves.
Since each variable is considered at most twice, this number is at most 2/NV.

For proving the correctness of this algorithm, we still have to show the fol-
lowing fact: if the formula is SAT and UCP stops because of reason (i), then the
resulting partial assignment can be extended to a global SAT assignment (The
implication in the reverse direction is obvious). The key point is that the residual
formula is formed by a subset R of the variables (the ones which have not yet
been fixed) together with a subset of the original clauses (those which involve
uniquely variables in R). If a SAT assignment exists, its restriction to R satis-
fies the residual formula and constitutes an extension of the partial assignment
generated by UCP.

Exercise 10.4 Write a code for solving 2-SAT using the algorithm described
above.
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Fia.  10.2. Factor graph representation of the 2SAT  formula
F = (z1 VZo)A(x1 VT3)A(z2 V z3) (left) and corresponding directed graph
D(F) (right).

Exercise 10.5 A nice way of understanding UCP, and why it is so effective
for 2-SAT, consists in associating to the formula F' a directed graph D(F) (not
to be confused with the factor graph!) as follows. Associate a vertex to each
of the 2N literals (for instance we have one vertex for z; and one vertex for
T1). Whenever a clause like e.g. T1 V x5 appears in the formula, we have two
implications: if ;1 = 1 then x5 = 1; if x5 = 0 then z; = 0. Represent them
graphically by drawing an oriented edge from the vertex z; toward x5, and an
oriented edge from To to T1. Prove that the F' is UNSAT if and only if there
exists a variable index i € {1,...,N} such that: D(F) contains a directed
path from x; to T;, and a directed path from Z; to x;. [Hint: Consider the UCP
procedure described above and rephrase it in terms of the directed graph D(F).
Show that it can be regarded as an algorithm for finding a pair of paths from
x; to T; and vice-versa in D(F).]

Let us finally notice that the procedure described above does not give any
clue about an efficient solution of MAX-2SAT, apart from determining whether
the minimum number of violated clauses vanishes or not. As already mentioned
MAX-2SAT is NP-hard.

10.2.2 A general complete algorithm

As soon as we allow an unbounded number of clauses of length 3 or larger, sat-
isfiability becomes an NP-complete problem. Exercise 10.3 shows how the UCP
strategy fails: fixing a variable in a 3-clause may leave a 2-clause. As a conse-
quence, UCP may halt without contradictions and produce a residual formula
containing clauses which were not present in the original formula. Therefore, it
can be that the partial assignment produced by UCP cannot be extended to a
global SAT assignment even if the original formula is SAT. Once a contradiction
is found, it may be necessary to change any of the choices made so far in order
to find a SAT assignment (as opposite to 2SAT where only the last choice had
to be changed). The exploration of all such possibilities is most conveniently

{se:dpll}
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described through a decision tree. Each time that a contradiction is found, the
search algorithm backtracks to the last choice for which both possibilities were
not explored.

The most widely used complete algorithms (i.e. algorithms which are able
to either find a satisfying assignment, or prove that there is no such assignment)
rely on this idea. They are known under the name DPLL, from the initials of
their inventors, Davis, Putnam, Logemann and Loveland. The basic recursive
process is best explained on an example, as in Fig. 10.3. Its structure can be
summarized in few lines:

DPLL
Input: A CNF formula F'.
Output: A SAT assignment, or a message ‘F’ is UNSAT’.

1. Initialize n =0, and G(0) = F.

2. If G(n) contains no clauses, return the assignment x; = 0 for
each ¢ present in G(n) and stop.

3. If (G contains the empty clause return the message ‘F' is UNSAT’
and stop.

4. Select a variable index ¢ among those which have not yet been fixed.

5. Let G(n + 1) be the formula obtained from G(n) by fixing z; =
1.

6. Set n«<n+1 and go to 2.

7. Set n<—n—1. (No SAT assignment was found such that z; = 1.)

8. Let G(n + 1) be the formula obtained from G(n) by fixing z; =
0.

9. Set n«+n+1 and go to 2.

The algorithm keeps track of the current satisfiability formula as G(n). As shown
in Fig. 10.3 the algorithm state can be represented as a node in the decision tree.
The index n corresponds to the current depth in this tree.

It is understood that, whenever a variable is fixed (instructions 5 and 8
above), all the clauses in which that variable appears are reduced. More precisely,
suppose that the literal x; appears in a clause: the clause is eliminated if one fixes
x; = 1, and it is shortened (by elimination of z;) if one fixes x; = 0. Vice-versa, if
the literal T; is present, the clause is eliminated if one fixes x; = 0 and shortened
in the opposite case.

In the above pseudo-code, we did not specify how to select the next variable
to be fixed in step 4. Various versions of the DPLL algorithm differ in the order
in which the variables are taken in consideration and the branching process is
performed. Unit clause propagation can be rephrased in the present setting as
the following rule: whenever the formula G(n) contains clauses of length 1, x;
must be chosen among the variables appearing in such clauses. In such a case,
no real branching takes place. For instance, if the literal x; appears in a unit
clause, setting x; = 0 immediately leads to an empty clause and therefore to a
stop of the process: one is obviously forced to set x; = 1.
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Apart from the case of unit clauses, deciding on which variable the next
branching will be done is an art, and can result in very different performances.
For instance, it is a good idea to branch on a variable which appears in many
clauses, but other criteria, like the number of UCP that a branching will generate,
can also be used. It is customary to characterize the performances of this class of
algorithms by the number of branching points it generates. This does not count
the actual number of operations executed, which may depend on the heuristic.
However, for any reasonable heuristics, the actual number of operations is within
a polynomial factor (in the instance size) from the number of branchings and
such a factor does not affect the leading exponential behavior.

Whenever the DPLL procedure does not return a SAT assignment, the for-
mula is UNSAT: a representation of the explored search tree provides a proof.
This is sometimes also called an UNSAT certificate. Notice that the length of
an UNSAT certificate is (in general) larger than polynomial in the input size.
This is at variance with a SAT certificate, which is provided, for instance, by a
particular SAT assignment.

Exercise 10.6 Resolution and DPLL.

() A powerful approach to proving that a formula is UNSAT relies on the
idea of the resolution proof. Imagine that /' contains two clauses: z;VA,
and 7; V B, where A and B are subclauses. Show that these two clauses
automatically imply the resolvent on z;, that is the clause AV B.

(#4) A resolution proof is constructed by adding resolvent clauses to F. Show
that, if this process produces an empty clause, then the original formula
is necessarily UNSAT. An UNSAT certificate is simply given by the se-
quence of resolvents leading to the empty clause.

(7i7) Although this may look different from DPLL, any DPLL tree is an exam-
ple of resolution proof. To see this proceed as follows. Label each ‘UNSAT’
leave of the DPLL tree by the resolution of a pair of clauses of the origi-
nal formula which are shown to be contradictory on this branch (e.g. the
leftmost such leaf in Fig. 10.3 corresponds to the pair of initial clauses
x1 V x2 VT3 and x1 V x5 V 23, so that it can be labeled by the resolvent
of these two clauses on x3, namely z1 V x2). Show that each branching
point of the DPLL tree can be labeled by a clause which is a resolvent of
the two clauses labeling its children, and that this process, when carried
on an UNSAT formula, produces a root (the top node of the tree) which
is an empty clause.

10.2.3  Incomplete search

As we have seen above, proving that a formula is SAT is much easier than
proving that it is UNSAT: one ‘just’ needs to exhibit an assignment that satisfies
all the clauses. One can therefore relax the initial objective, and look for an
algorithm that only tries to deal with the first task. This is often referred to

{se:Schoning}
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Frc. 10.3. A sketch of the DPLL algorithm, acting on the formula
(1 Vaa VIE)A(x1 V as VEOA(T2 V 23 V 2g)A(T1 V 22 V 24) AN (T2 V Ty V Tg) A
(Ta VT3V ag)AN(x1 V2o Vas)AN(T1 Vaxe VT,). In order to get a more readable
figure, the notation has been simplified: a clause like (T1 V 2 V 24) is denoted
here as (124). One fixes a first variable, here z; = 0. The problem is then
reduced: clauses containing x; are eliminated, and clauses containing 7, are
shortened by eliminating the literal T;. Then one proceeds by fixing a second
variable, etc... At each step, if a unit clause is present, the next variable to be
fixed is chosen among the those appearing in unit clauses. This corresponds
to the unit clause propagation (UCP) rule. When the algorithm finds a con-
tradiction (two unit clauses fixing a variable simultaneously to 0 and to 1), it
backtracks to the last not-yet-completed branching point and explores another
choice for the corresponding variable. In this case for instance, the algorithm
first fixes 1 = 0, then it fixes o = 0, which implies through UCP that x5 = 0
and z3 = 1. This is a contradiction, and therefore the algorithm backtracks to
the last choice, which was x5 = 0, and tries instead the other choice: zo = 1,
etc. .. Here we have taken the naive rule of branching in the fixed order given by
the clause index.

as an incomplete search algorithm. Such an algorithm can either return a
satisfying assignment or just say ‘I do not know’ whenever it is unable to find
one (or to prove that the formula is UNSAT).

A simple incomplete algorithm, due to Schoning, is based on the simple ran-
dom walk routine:

Walk( F )
Input: A CNF formula F'.

Output: A SAT assignment, or a message ‘I do not know’.
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1. Assign to each variable a random value O or 1 with probability
1/2.
2. Repeat 3N times:
3. If the current assignment satisfies I’ return it and stop.
4. Choose an unsatisfied clause uniformly at random.
5. Choose a variable z; uniformly at random among the ones belonging
to this clause.
6. Flip it (i.e. set it to 0 if it was 1 and vice-versa).

For this algorithm one can obtain a guarantee of performance:

Proposition 10.1 Denote by p(F') the probability that this routine, when ex-
ecuted on a formula F, returns a satisfying assignment. If F is SAT, then
p(F) > pn where

PN = g (2<KK_1))N : (10.2)

One can therefore run the routine many times (with independent random num-
bers each time) in order to increase the probability of finding a solution. Suppose
that the formula is SAT. If the routine is run 20/py times, the probability of
not finding any solution is (1 — px)2%/P~¥ < =20, While this is of course not a
proof of unsatisfiability, it is very close to it. In general, the time required for
this procedure to reduce the error probability below any fixed € grows as

™ = (Q(KK_I)>N : (10.3)

This simple randomized algorithm achieves an exponential improvement over the
naive exhaustive search which takes about 2%V operations.

Proof: Let us now prove the lower bound (10.2) on the probability of finding
a satisfying assignment during a single run of the routine Walk(-). Since, by
assumption, F'is SAT, we can consider a particular SAT assignment, let us say
x,. Let 2, be the assignment produced by Walk(-) after ¢ spin flips, and d; be
the Hamming distance between x, and z,. Obviously, at time 0 we have

P{do — d} — 2iN (5 ) . (10.4)

Since z, satisfies F', each clause is satisfied by at least one variable as assigned
in x,. Mark ezactly one such variable per clause. Each time Walk(-) chooses a
violated clause, it flips a marked variable with probability 1/K, reducing the
Hamming distance by one. Of course, the Hamming distance can decrease also
when another variable is flipped (if more than one variable satisfies that clauses
in z,). In order to get a bound we introduce an auxiliary integer variable dy
which decreases by one each time a marked variable is selected, and increases
by one (the maximum possible increase in Hamming distance due to a single
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flip) otherwise. If we choose the initial condition (io = dp, it follows from the
previous observations that d; < th for any ¢ > 0. We can therefore upper bound
the probability that Walk(-) finds a solution by the probability that dy = 0 for
some 0 < t < 3N. But the random process d; = 0 is simply a biased random
walk on the half-line with initial condition (10.4): at each time step it moves to
the right with probability 1/K and to the right with probability 1 — 1/K. The
probability of hitting the origin can then be estimated as in Eq. (10.2), as shown
in the following exercise.

Exercise 10.7 Analysis of the biased random walk dy.

(#) Show that the probability for d; to start at position d at t = 0 and be at
the origin at time t is

P{dy = d; dy = 0} = ZLN@[) % (é) (K-1)7  (10.5)

for t + d even, and vanishes otherwise.

(#4) Use Stirling’s formula to derive an approximation of this probability to
the leading exponential order: ]P’{azo =d; d, = 0} = exp{—N¥(0,6)},
where § = t/N and 6 = d/N.

(#44) Minimize ¥(6,d) with respect to § € [0,3] and § € [0,1], and show
that the minimum value is U, = log[2(K — 1)/K]. Argue that py =
exp{—NW,} to the leading exponential order.

O

Notice that the above algorithm applies a very noisy strategy. While ‘fo-
cusing’ on unsatisfied clauses, it makes essentially random steps. The opposite
philosophy would be that of making greedy steps. An example of ‘greedy’ step
is the following: flip a variable which will lead to the largest positive increase in
the number of satisfied clause.

There exist several refinements of the simple random walk algorithm. One of
the greatest improvement consists in applying a mixed strategy: With probability
p, pick an unsatisfied clause, and flip a randomly chosen variable in this clause
(as in Walk); With probability 1 — p, perform a ‘greedy’ step as defined above.

This strategy works reasonably well if p is properly optimized. The greedy
steps drive the assignment toward ‘quasi-solutions’, while the noise term allows
to escape from local minima.

10.3 Random K-satisfiability ensembles

Satisfiability is NP-complete. One thus expects a complete algorithm to take
exponential time in the worst case. However empirical studies have shown that
many formulas are very easy to solve. A natural research direction is therefore
to characterize ensembles of problems which are easy, separating them from
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those that are hard. Such ensembles can be defined by introducing a probability
measure over the space of instances.

One of the most interesting family of ensembles is random K-SAT. An
instance of random K-SAT contains only clauses of length K. The ensemble is
further characterized by the number of variables N, and the number of clauses
M, and denoted as SAT (K, M). A formula in SAT 5 (K, M) is generated by se-
lecting M clauses of size K uniformly at random among the (%)QK such clauses.
Notice that the factor graph associated to a random K-SAT formula from the
SAT y (K, M) ensemble is in fact a random Gy (K, M) factor graph.

It turns out that a crucial parameter characterizing the random K-SAT en-
semble is the clause density o« = M/N. We shall define the ‘thermodynamic’
limit as M — oo, N — oo, with fixed density a. In this limit, several important
properties of random formulas concentrate in probability around their typical
values.

As in the case of random graphs, it is sometimes useful to consider slight
variants of the above definition. One such variant is the SAT 5 (K, ) ensemble.
A random instance from this ensemble is generated by including in the formula
each of the (%)2[( possible clauses independently with probability a N2~ / (%)
Once again, the corresponding factor graph will be distributed according to the
Gn (K, «) ensemble introduced in Chapter 9. For many properties, differences
between such variants vanish in the thermodynamic limit (this is analogous to
the equivalence of different factor graph ensembles).

10.3.1 Numerical experiments

Using the DPLL algorithm, one can investigate the properties of typical instances
of the random K-SAT ensemble SAT (K, M). Figure 10.4 shows the probability
Py (K, «) that a randomly generated formula is satisfiable, for K = 2 and K = 3.
For fixed K and N, this is a decreasing function of «, which goes to 1 in the
a — 0 limit and goes to 0 in the @ — oo limit. One interesting feature in
these simulations is the fact that the crossover from high to low probability
becomes sharper and sharper when N increases. This numerical result points
at the existence of a phase transition at a finite value aq(K): for a < a.(K)
(@ > a.(K)) a random K-SAT formula is SAT (respectively, UNSAT) with
probability approaching 1 as N — oo.

The conjectured phase transition in random satisfiability problems with K >
3 has drawn considerable attention. One important reason comes from the study
of the computational effort needed to solve the problem. Figure 10.5 shows the
typical number of branching nodes in the DPLL tree required to solve a typical
random 3-SAT formula. One may notice two important features: For a given value
of the number of variables N, the computational effort has a peak in the region
of clause density where a phase transition seems to occur (compare to Fig. 10.4).
In this region it also increases rapidly with N. Looking carefully at the datas
one can distinguish qualitatively three different regions: at low « the solution is
‘easily’ found and the computer time grows polynomially; at intermediate «, in
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F1G. 10.4. Probability that a formula generated from the random K-SAT en-
semble is satisfied, plotted versus the clause density «. Left: K = 2, right: K = 3.
The curves have been generated using a DPLL algorithm. Each point is the re-
sult of averaging over 10* random formulas. The curves for K = 2 correspond to
formulas of size N = 50, 100, 200, 400 (from right to left). In the case K = 3 the
curves correspond to N = 50 (full line), N = 100 (dashed), N = 200 (dotted).
The transition between satisfiable and unsatisfiable formulas becomes sharper as
N increases.

the phase transition region, the problem becomes typically very hard and the
computer time grows exponentially. At larger «, in the region where a random
formula is almost always UNSAT, the problem becomes easier, although the size
of the DPLL tree still grows exponentially with N.

The hypothetical phase transition region is therefore the one where the hard-
est instances of random 3-SAT are located. This makes such a region particularly
interesting, both from the point of view of computational complexity and from
that of statistical physics.

10.4 Random 2-SAT

From the point of view of computational complexity, 2-SAT is polynomial while
K-SAT is NP-complete for K > 3. It turns out that random 2-SAT is also much
simpler to analyze than the other cases. One important reason is the existence
of the polynomial decision algorithm described in Sec. 10.2.1 (see in particular
Exercise 10.5). This can be analyzed in details using the representation of a 2-
SAT formula as a directed graph whose vertices are associated to literals. One
can then use the mathematical theory of random directed graphs. In particular,
the existence of a phase transition at critical clause density a.(2) = 1 can be
established.

Theorem 10.2 Let Py(K = 2,«) the probability for a SATN(K = 2, M) ran-
dom formula to be SAT. Then

1 if a<l,

0 ifa>1. (10.6)

— 00

lim Py(K =2,a) = {

{fig:alphac_SAT_num}
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Fig. 10.5. Computational effort of our DPLL algorithm applied to random
3-SAT formulas. Plotted is the average (over 10* instances) of the logarithm of
the number of branching nodes in the search tree, versus the clause density a.
From bottom to top: N = 50, 100, 150, 200.

Proof: Here we shall prove that a formula is almost surely SAT for o« < 1. The
result for a« > 1 is a consequence of theorem 10.5 below. We use the directed
graph representation defined in Ex. 10.5. In this graph, define a bicycle of length s
as a path (u,wr,ws, ..., ws,v), where the w; are literals on s distinct variables,
and u,v € {wy,...,ws,Wy,...,Ws}. As we saw in Ex. 10.5, if a formula F is
UNSAT, its directed graph D(F') has a cycle containing the two literals x; and
T; for some 7. From such a cycle one easily builds a bicycle. Therefore:

N s+1
1
P(F is UNSAT) < P(D(F)has a bicycle) < Z N#2%(25)2 M5t <4(N)> :
s=2 2
(10.7)

The sum is over the size s of the bicycle; N* is an upper bound to (]Z), the
number of ways one can choose the s variables; 2° is the choice of literals, given
the variables; (2s)? is the choice of u,v; M**! is an upper bound to (Sj\fl), the
choices of the clauses involved in the bicycle; the last factor is the probability
that each of the chosen clauses of the bicycle appears in the random formula. A
direct summation of the series in 10.7 shows that, in the large N limit, the result

behaves as C'/N with a fixed C' whenever M/(N —1) < 1. O

10.5 Phase transition in random K (> 3)-SAT
10.5.1  Satisfiability threshold conjecture

As noticed above, numerical studies suggest that random K-SAT undergoes a
phase transition between a SAT phase and an UNSAT phase, for any K > 2.
There is a widespread belief that this is indeed true, as formalized by the following
conjecture:

{eq:proof2sati}

{se:Ksat_intro}



{conj:sat_threshold}

{thm:Friedgut}

{sec:UpperBoundSat}

{eq:satUBcond}

{eq:satimom}

206 SATISFIABILITY

Conjecture 10.3 For any K > 2, there exists a threshold a.(K) such that:

Jme(k = {o F oSl 109

As discussed in the previous Section, this Conjecture is proved in the case K = 2.
The existence of a phase transition is still an open mathematical problem for
larger K, although the following theorem gives some strong support:

Theorem 10.4 (Friedgut) Let Py(K,«) the probability for a random formula
from the SAT Ny (K, M) ensemble to be satisfiable, and assume K > 2. Then there

exists a sequence of oz((;N)(K) such that, for any e > 0,

lim Py(K,a) =

N—oo

1 if a< aSN)(K) —€
0 if a>ad '(K)+e,
In other words, the crossover from SAT to UNSAT becomes sharper and sharper
as N increases. For N large enough, it takes place in a window smaller than
any fixed width e. The ‘only’ missing piece to prove the satisfiability threshold

conjecture is the convergence of oV (K) to some value a.(K) as N — oc.

10.5.2  Upper bounds

Rigorous studies have allowed to establish bounds on the satisfiability threshold
agN)(K ) in the large N limit. Upper bounds are obtained by using the first
moment method. The general strategy is to introduce a function U(F) acting on

formulas, with values in N, such that:

0 if F'is UNSAT,
UF) = { >1 otherwise. (10.10)

Therefore, if F'is a random K-SAT formula
P{Fis SAT} < EU(F) . (10.11)

The inequality becomes an equality if U(F) = I(F is SAT). Of course, we do
not know how to compute the expectation in this case. The idea is to find some
function U(F') which is simple enough that EU(F) can be computed, and with
an expectation value that goes to zero as N — oo, for large enough «.

The simplest such choice is U(F) = Z(F'), the number of SAT assignments
(this is the analogous of a “zero-temperature” partition function). The expec-
tation E Z(F) is equal to the number of assignments, 2V, times the probability
that an assignment is SAT (which does not depend on the assignment). Consider
for instance the all zeros assignment x; = 0, ¢ = 1,..., N. The probability that
it is SAT is equal to the product of the probabilities that is satisfies each of
the M clauses. The probability that the all zeros assignment satisfies a clause
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is (1 — 27%) because a K-clause excludes one among the 2% assignments of
variables which appear in it. Therefore

{eq:satZann} EZ(F)=2N(1-2"" ) =exp [N (log2 + alog(l —27%))] . (10.12)

This result shows that, for o > ayp,1(K), where

{eq:alphaublsat} aup,1(K) = —log2/log(l — 2_K) , (10.13)

E Z(F) is exponentially small at large N. Equation (10.11) implies that the
probability of a formula being SAT also vanishes at large N for such an a:

{thm:satupbi}
Theorem 10.5 If o > aup,1(K), then imy_.o P{F is SAT} = 0. Therefore

agN)(K) < ayp1(K)+ 9 for any 6 >0 and N large enough.

One should not expect this bound to be tight. The reason is that, in the
SAT phase, Z(F') takes exponentially large values, and its fluctuations tend to
be exponential in the number of variables.
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Example 10.6 As a simple illustration consider a toy example: the random
1-SAT ensemble SAT v (1, ). A formula is generated by including each of the
2N literals as a clause independently with probability «/2 (we assume of course
a < 2). In order for the formula to be SAT, for each of the N variables, at
most 1 of the corresponding literals must be included. We have therefore

Py(K =1,a) = (1 —a?/4)N. (10.14)

In other words, the probability for a random formula to be SAT goes exponen-
tially fast to 0 for any a > 0: a(K = 1) = 0 (while ayp1(K) = 1). Consider
now the distribution of Z(F). If F is SAT, then Z(F) = 2", where n is the
number of clauses such that none of the corresponding literals is included in
F'. One has:

P{Z(F)=2"} = <‘:> (1- %)% o (1- %)}N_n . (10.15)

for any n > 0. We shall now use this expression to compute EZ(F) in a
slightly indirect but instructive fashion. First, notice that Eq. (10.15) implies
the following large deviation principle for n > 0:

P{Z(F)=2""} = exp{—N I(v)} (10.16)
I,(v) = —H{) — (1+v)log(l —a/2) — (1 —v)loga(10.17)

We now compute the expectation of Z(F') via the saddle point approximation
EZ(F) = /e_NI”(”)"'N”IOgZdV = exp {Nmax[—[a(y) + vlog 2]} (10.18)

The maximum is achieved at v* =1 — «/2. One finds I, (v*) = log(1l — a/2) +
(a/2)log 2 > 0: the probability of having Z(F) = 2N is exponentially small.
On the other hand —1I,(v*) + v*log2 = log(2 — ) > 0 for a < 1, the factor
2NV" gyvercomes the exponentially small probability of having such a large Z (F),
resulting in an exponentially large E Z(F).

Exercise 10.8 Repeat the derivation of Theorem 10.5 for the SAT (K, «)
ensemble (i.e. compute E Z(F) for this ensemble and find for which values of «
this expectation is exponentially small). Show that the upper bound obtained
in this case is @« = 2% log2. This is worse than the previous upper bound
au,1(K), although one expects the threshold to be the same. Why? [Hint: The
number of clauses M in a SAT (K, o) formula has binomial distribution with

parameters N, and a. What values of M provide the dominant contribution to
EZ(F)?]

In order to improve upon Theorem 10.5 using the first moment method, one
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needs a better (but still simple) choice of the function U(F'). A possible strategy
consists in defining some small subclass of ‘special’ SAT assignments, such that
if a SAT assignment exists, then a special SAT assignment exists too. If the
subclass is small enough, one can hope to reduce the fluctuations in U(F') and
sharpen the bound.

One choice of such a subclass consists in ‘locally maximal’ SAT assignments.
Given a formula F, an assignment x for this formula is said to be a locally
maximal SAT assignment if and only if: (1) It is a SAT assignment, (2) for any
1 such that z; = 0, the assignment obtained by flipping the i-th variable from 0
to 1 is UNSAT. Define U(F') as the number of locally maximal SAT assignments
and apply the first moment method to this function. This gives:

Theorem 10.7 For any K > 2, let ayp,2(K) be the unique positive solution of
the equation:

alog(l —27%) + log {Qexp <2§f1)] =0. (10.19)

Then agN)(K) < ayp2(K) for large enough N.

The proof is left as the following exercise:

Exercise 10.9 Consider an assignment z where exactly L variables are set to
0, the remaining N — L ones being set to 1. Without loss of generality, assume
z1,...,Tr to be the variables set to zero.

(7) Let p be the probability that a clause constrains the variable x;, given

that the clause is satisfied by the assignment z (By a clause constraining
x1, we mean that the clause becomes unsatisfied if x; is flipped from 0
to 1). Show that p = (%j)[(?{ = 1)(%)]_1.

(#4) Show that the probability that variable 2 is constrained by at least one of
the M clauses, given that all these clauses are satisfied by the assignment
x, is equal to ¢ =1 — (1 —p)M

(73i) Let C; be the event that x; is constrained by at least one of the M clauses.
IfCy, ..., Cr were independent events, under the condition that z satisfies
F, the probability that zy, ...z are constrained would be equal ¢g*. Of
course Cyp, ..., Cp are not independent. Find an heuristic argument to
show that they are anti-correlated and their joint probability is at most
q" (consider for instance the case L = 2).

(iv) Show that E[U(F)] = (1 —275)M SN (M) ¢ = (1 —2-K)M [1 4 gV
and finish the proof by working out the large N asymptotics of this
formula (with o = M/N fixed).

In Table 10.1 we report the numerical values of the upper bounds ayg 1 (K)
and aup,2(K) for a few values of K. These results can be slightly improved

{thm:satupb2}

{eq:alphaub2sat}
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upon by pursuing the same strategy. For instance, one may strengthen the con-
dition of maximality to flipping 2 or more variables. However the quantitative
improvement in the bound is rather small.

10.5.3 Lower bounds

Two main strategies have been used to derive lower bounds of ong)(K ) in the
large N limit. In both cases one takes advantage of Theorem 10.4: In order to
show that oa(;N)(K) > «, it is sufficient to prove that a random SAT y (K, M)
formula, with M = aN, is SAT with non vanishing probability in the N — oo
limit.

The first approach consists in analyzing explicit heuristic algorithms for find-
ing SAT assignments. The idea is to prove that a particular algorithm finds a
SAT assignment with finite probability as N — oo when « is smaller than some
value.

One of the simplest such bounds is obtained by considering unit clause prop-
agation. Whenever there exist unit clauses, assign one of the variables appearing
in these clauses in order to satisfy it, and proceed recursively. Otherwise, chose
a variable uniformly at random among those which are not yet fixed assign it to
0 or 1 with probability 1/2. The algorithm halts if it finds a contradiction (i.e. a
couple of opposite unit clauses) or if all the variables have been assigned. In the
latter case, the found assignment satisfies the formula.

This algorithm is then applied to a random K-SAT formula with clause den-
sity a. It can be shown that a SAT assignment is found with positive probability

e o (N) L (k1B r
for o small enough: this gives the lower bound a¢ ' (K) > 3 (ﬂ) % in

the N — oo limit. In the Exercise below we give the main steps of the reasoning
for the case K = 3, referring to the literature for more detailed proofs.
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Exercise 10.10 After T iterations, the formula will contain 3-clauses, as well
as 2-clauses and 1-clauses. Denote by C,(7T') the set of s-clauses, s = 1, 2,3, and
by Cs(T') = |Cs(T)| its size. Let V(T') be the set of variables which have not yet
been fixed, and £(T') the set of literals on the variables of V(T') (obviously we
have |L£(T)| = 2|V(T)| = 2(N — T)). Finally, if a contradiction is encountered
after Ty.1¢ steps, we adopt the convention that the formula remains unchanged
for all T € {Tha, ..., N}.

(4)
(i)

(i)

(vit)

(viii)

Show that, for any T € {1,..., N}, each clause in Cs(T) is uniformly
distributed among the s-clauses over the literals in £(T).

Show that the expected change in the number of 3- and 2-clauses is
given by E [C5(T + 1) — C3(T)] = =220 and E[C(T + 1) — Co(T)] =
3C5(T)  2C5(T)

2(N-T)  N-T °
Show that, conditional on C4(T"), C5(T), and C5(T), the change in the

number of 1-clauses is distributed as follows: C1(T + 1) — C1(T) 4

-I(Cy(T) > 0) + B (CQ(T), ﬁ) (We recall that B(n,p) denotes a
binomial random variable of parameters n, and p (cf. App. A)).

It can be shown that, as N — oo at fixed ¢ = T/N, the variables
Cs3(T)/N concentrate around their expectation values, and these con-
verge to smooth functions c,(t). Argue that these functions must solve
the ordinary differential equations: % = — % ¢;(t); %2 = ﬁc;g(t) -
2;¢2(t). Check that the solutions of these equations are: c3(t) = a(1—t)?,
ca(t) = (3a/2)t(1 — t)2.

Show that the number of unit clauses is a Markov process described by
C1(0) = 0, CL(T + 1) — C1(T) £ —I(C(T) > 0) + n(T), where n(T)
is a Poisson distributed random variable with mean co(t)/(1 — t), where
t =T/N. Given Cy and a time T, show that the probability that there
is no contradiction generated by the unit clause algorithm up to time T’
is [Ty (1= 1/(2(N — ) A=Y,

Let p(T) be the probability that there is no contradiction up to
time 7. Consider T' = N(1 — ¢); show that p(N(1 —¢)) > (1 —
1/(2N¢))AN+B ]P’(Zi\’:(i*e) Ci(1) < AN + B). Assume that « is such
that, Vt € [0,1 — €] : ¢o(t)/(1 —t) < 1. Show that there exists A, B
such that limy_, ]P’(Zf_\]:(ife) Cy(t) < AN + B) is finite. Deduce that
in the large N limit, there is a finite probability that, at time N(1 — €),
the unit clause algorithm has not produced any contradiction so far, and
C1(N(1 - 6)) =0.

Conditionnaly to the fact that the algorithm has not produced any con-
tradiction and C1(N(1 —€)) = 0, consider the problem that remains at
time T'= N (1 — ¢). Transform each 3-clause into a 2-clause by removing
from it a uniformly random variable. Show that one obtains, for e small
enough, a random 2-SAT problem with a small clause density < 3¢2/2,
so that this is a satisfiable instance.

Deduce that, for aw < 8/3, the unit clause propagation algorithm finds a
solution with a finite probability
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More refined heuristics have been analyzed using this type of method and
lead to better lower bounds on agN) (K). We shall not elaborate on this here, but
rather present a second strategy, based on a structural analysis of the problem.
The idea is to use the second moment method. More precisely, we consider a
function U(F) of the SAT formula F, such that U(F') = 0 whenever F' is UNSAT
and U(F') > 0 otherwise. We then make use of the following inequality:

[E U(F)?

P{F is SAT} =P{U(F) >0} > EUET -

(10.20)

The present strategy is more delicate to implement than the first moment method,
used in Sec. 10.5.2 to derive upper bounds on oz((;N)(K). For instance, the sim-
ple choice U(F) = Z(F) does not give any result: It turns out that the ratio
[E Z(F))?/E[Z(F)?] is exponentially small in N for any non vanishing value of
a, so that the inequality (10.20) is useless. Again one needs to find a function
U(F) whose fluctuations are smaller than the number Z(F') of SAT assignments.
More precisely, one needs the ratio [EU(F)]?/E[U(F)?] to be non vanishing in
the N — oo limit.

A successful idea uses a weighted sum of SAT assignments:

M
Ur) => [[wa . (10.21)

z a=1

Here the sum is over all the 2V assignments, and W (z, a) is a weight associated
with clause a. This weight must be such that W (z,a) = 0 when the assignment
x does not satisfy clause a, and W(z,a) > 0 otherwise. Let us choose a weight
which depends on the number r(z,a) of variables which satisfy clause a in the
assignment z:

Wi = {frE) a0 = e
It is then easy to compute the first two moments of U(F'):
EU(F) =2V [Q‘K i (K> o(r) h (10.23)
=1\
27 _ vy (N M
E[U(F)?] =2 LZO ( L) lg,(N, L)]" . (10.24)

Here g, (N, L) is the expectation value of the product W(z,a)W (y,a) when a
clause a is chosen uniformly at random, given that z and y are two assignments
of N variables which agree on ezactly L of them. B

In order to compute g, (N, L), it is convenient to introduce two binary vectors
i,v € {0,1}X. They encode the following information: Consider a clause a, fix
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ugs = 1 if in the assignment z the s-th variable of clause a satisfies the clause,
and us; = 0 otherwise. The components of ¢ are defined similarly but with the
assignment y. Furthermore, we denote by d(, ¥) the Hamming distance between
these vectors, and by w(i), w(¥) their Hamming weights (number of non zero
components). Then

d(i,9) K—d(@,5)
VD=2 Y @) (7)) (1-5) - o)

Here the sum Z' runs over K-component vectors i, v with at least one non zero
component. A particularly simple case is ¢(r) = A". Denoting z = L/N, one
finds:

gu(N,L) = 27K ([()\2 + )z 4201 - 2)] " —2[z+ 20— 2K + zk) .
(10.26)
The first two moments can be evaluated from Eqgs. (10.23), (10.24):

EU(F) = exp{Nhi(\, o)}, E[U(F)?] = exp{Nmaxhy(\ a,z)},(10.27)
where the maximum is taken over z € [0, 1] and

hi(\,a) =log2 — aKlog2 + alog [(1+ ) —1] , (10.28)
ha(A\,a,2) =log2 — zlogz — (1 — 2)log(l — z) — aK log 2 + (10.29)

+alog ([(/\2 Dz 201 - 2]  — 2[4 A1 - 2K + zk) .

Evaluating the above expression for z = 1/2 one finds ha(\, o, 1/2) = 2hq (A, @).
The interpretation is as follows. Setting z = 1/2 amounts to assuming that the
second moment of U(F') is dominated by completely uncorrelated assignments
(two uniformly random assignments agree on about half of the variables). This
results in the factorization of the expectation E [U(F)?] ~ [EU(F)]%.

Two cases are possible: either the maximum of ho(\, @, z) over z € [0,1] is
achieved only at z = 1/2 or not.

(1) In the latter case max, ha(A, o, 2) > 2hq(A, @) strictly, and therefore the
ratio [EU(F))?/E[U(F)?] is exponentially small in N, the second moment
inequality (10.20) is useless.

(#i) If on the other hand the maximum of ho (A, «, 2) is achieved only at z = 1/2,
then the ratio [EU(F)]?/E[U(F)?] is 1 to the leading exponential order.
It is not difficult to work out the precise asymptotic behavior (i.e. to com-
pute the prefactor of the exponential). One finds that [E U (F)])?/E[U(F)?]
remains finite when N — oo. As a consequence o < al) (K) for N large
enough.
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Table 10.1 Satisfiability thresholds for random K-SAT. We report the lower
bound from Theorem (10.8) and the upper bounds from Eqs. (10.13) and (10.19).

K [ 3 4 5 6 7 8 9 10
ap(K) [2.548 7.314 17.62 39.03 82.63 170.6 347.4 7015
aup(K) [5.191 10.74 21.83 44.01 88.38 177.1 354.5 709.4
aup2(K)[4.666 10.22 21.32 43.51 87.87 176.6 354.0 708.9

A necessary condition for the second case to occur is that z = 1/2 is a local
maximum of ho (A, e, z). This implies that A must be the (unique) strictly positive
root of:

1+ N5 = T (10.30)

We have thus proved that:

Theorem 10.8 Let A be the positive root of Eq. (10.30), and the function ha(-)
be defined as in Eq. (10.29). Assume that ha(\, o, 2) achieves its maximum, as a
function of z € [0,1] only at z = 1/2. Then a random SAT y (K, ) is SAT with
probability approaching one as N — oo.

Let ar,p(K) be the largest value of « such that the hypotheses of this Theorem
are satisfied. The Theorem implies an explicit lower bound on the satisfiability
threshold: agN)(K) > app(K) in the N — oo limit. Table 10.1 summarizes some
of the values of the upper and lower bounds found in this Section for a few values
of K. In the large K limit the following asymptotic behaviors can be shown to

hold:
arp(K) =28 log2 — 2(K +1)log2 — 1+ o(1), (10.31)
1
ayp1(K) =25 log2 — 5 log2+o(1). (10.32)

In other words, the simple methods exposed in this Chapter allow to determine
the satisfiability threshold with a relative error behaving as 2% in the large
K limit. More sophisticated tools, to be discussed in the next Chapters, are
necessary for obtaining sharp results at finite K.

Exercise 10.11 [Research problem] Show that the choice of weight ¢(r) = A"
is optimal: all other choices for ¢(r) give a worse lower bound. What strategy
could be followed to improve the bound further?

Notes

The review paper (Gu, Purdom, Franco and Wah, 2000) is a rather comprehen-
sive source of information on the algorithmic aspects of satisfiability. The reader
interested in applications will also find there a detailed and referenced list.
Davis and Putnam first studied an algorithm for satisfiability in (Davis and
Putnam, 1960). This was based on a systematic application of the resolution

{tab:alphabounds}

{eq:lambdadef }
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rule. The backtracking algorithm discussed in the main text was introduced in
(Davis, Logemann and Loveland, 1962).

Other ensembles of random CNF formulas have been studied, but it turns
out it is not so easy to find hard formulas. For instance take N variables, and
generate M clauses independently according to the following rule. In a clause
a, each of the variables appears as x; or T; with the same probability p < 1/2;
and does not appear with probability 1 — 2p. The reader is invited to study this
ensemble; an introduction and guide to the corresponding literature can be found
in (Franco, 2000). Another useful ensemble is the “2 + p” SAT problem which
interpolates between K = 2 and K = 3 by picking pM 3-clauses and (1 — p)M
2-clauses, see (Monasson, Zecchina, Kirkpatrick, Selman and Troyansky, 1999)

The polynomial nature of 2-SAT is discussed in (Cook, 1971). MAX-2SAT
was shown to be NP-complete in (Garey, Johnson and Stockmeyer, 1976).

Schéning’s algorithm was introduced in (Schoning, 1999) and further dis-
cussed in (Schoning, 2002). More general random walk strategies for SAT are
treated in (Papadimitriou, 1991; Selman and Kautz, 1993; Selman, Kautz and
Cohen, 1994).

The threshold a. = 1 for random 2-SAT was proved in (Chvatal and Reed,
1992), (Goerdt, 1996) and (de la Vega, 1992), but see also (de la Vega, 2001).
The scaling behavior near to the threshold has been analyzed through graph
theoretical methods in (Bollobas, Borgs, Chayes, Kim and Wilson, 2001).

The numerical identification of the phase transition in random 3-SAT, and
the observation that difficult formulas are found near to the phase transition,
are due to Kikpatrick and Selman (Kirkpatrick and Selman, 1994; Selman and
Kirkpatrick, 1996). See also (Selman, Mitchell and Levesque, 1996).

Friedgut’s theorem is proved in (Friedgut, 1999).

Upper bounds on the threshold are discussed in (Dubois and Boufkhad, 1997;
Kirousis, Kranakis, Krizanc and Stamatiou, 1998). Lower bounds for the thresh-
old in random K-SAT based on the analysis of some algorithms were pioneered
by Chao and Franco. The paper (Chao and Franco, 1986) corresponds to Ex-
ercise 10.10, and a generalization can be found in (Chao and Franco, 1990).
A review of this type of methods is provided by (Achlioptas, 2001). (Cocco,
Monasson, Montanari and Semerjian, 2003) gives a survey of the analysis of al-
gorithms based on physical methods. The idea of deriving a lower bound with
the weighted second moment method was discussed in (Achlioptas and Moore,
2005). The lower bound which we discuss here is derived in (Achlioptas and
Peres, 2004); this paper also solves the first question of Exercise 10.11. A sim-
ple introduction to the second moment method in various constraint satisfaction
problems is (Achlioptas, Naor and Peres, 2005), see also (Gomes and Selman,
2005).
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11

LOW-DENSITY PARITY-CHECK CODES

Low-density parity-check (LDPC) error correcting codes were introduced in 1963
by Robert Gallager in his Ph.D. thesis. The basic motivation came from the ob-
servation that random linear codes, cf. Section 77, had excellent theoretical per-
formances but were unpractical. In particular, no efficient algorithm was known
for decoding. In retrospect, this is not surprising, since it was later shown that
decoding for linear codes is an NP-hard problem.

The idea was then to restrict the RLC ensemble. If the resulting codes had
enough structure, one could exploit it for constructing some efficient decoding
algorithm. This came of course with a price: restricting the ensemble could spoil
its performances. Gallager’s proposal was simple and successful (but ahead of
times): LDPC codes are among the most efficient codes around.

In this Chapter we introduce one of the most important families of LDPC en-
sembles and derive some of their basic properties. As for any code, one can take
two quite different points of view. The first is to study the code performances®”
under optimal decoding. In particular, no constraint is imposed on the computa-
tional complexity of decoding procedure (for instance decoding through a scan
of the whole, exponentially large, codebook is allowed). The second approach
consists in analyzing the code performance under some specific, efficient, decod-
ing algorithm. Depending on the specific application, one can be interested in
algorithms of polynomial complexity, or even require the complexity to be linear
in the block-length.

Here we will focus on performances under optimal decoding. We will derive
rigorous bounds, showing that appropriately chosen LDPC ensembles allow to
communicate reliably at rates close to Shannon’s capacity. However, the main
interest of LDPC codes is that they can be decoded efficiently, and we will discuss
a simple example of decoding algorithm running in linear time. The full-fledged
study of LDPC codes under optimal decoding is deferred to Chapters ?7. A more
sophisticated decoding algorithm will be presented and analyzed in Chapter ?7.

After defining LDPC codes and LDPC code ensembles in Section 11.1, we
discuss some geometric properties of their codebooks in Section 11.2. In Sec-
tion 11.3 we use these properties to a lower bound on the threshold for reliable
communication. An upper bound follows from information-theoretic considera-

27Several performance parameters (e.g. the bit or block error rates, the information capacity,
etc.) can be of interest. Correspondingly, the ‘optimal’ decoding strategy can vary (for instance
symbol MAP, word MAP, etc.). To a first approximation, the choice of the performance criterion
is not crucial, and we will keep the discussion general as far as possible.
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tions. Section 11.4 discusses a simple-minded decoding algorithm, which is shown
to correct a finite fraction of errors.

11.1 Definitions
11.1.1  Boolean linear algebra

Remember that a code is characterized by its codebook €, which is a subset of
{0,1}. LDPC codes are linear codes, which means that the codebook is a
linear subspace of {0,1}"V. In practice such a subspace can be specified through
an M x N matrix H, with binary entries H;; € {0, 1}, and M < N. The codebook
is defined as the kernel of H:

C={zec{0,1}V : Hz=0}. (11.1)

Here and in all this chapter, the multiplications and sums involved in Hx are
understood as being computed modulo 2. The matrix H is called the parity
check matrix of the code. The size of the codebook is 2V ~"22k(H) wwhere rank(H)
denotes the rank of the matrix H (number of linearly independent rows). As
rank(H) < M, the size of the codebook is €| > 2V =M With a slight modification
with respect to the notation of Chapter 1, we let L = N — M. The rate R of the
code verifies therefore R > L/N, equality being obtained when all the rows of H
are linearly independent.

Given such a code, encoding can always be implemented as a linear operation.
There exists a N x L binary matrix G (the generating matrix) such that the
codebook is the image of G: € = {x = Gz, where z € {0,1}L}. Encoding is
therefore realized as the mapping z — z = Gz. (Notice that the product HG is
a M x L ‘null’ matrix with all entries equal to zero).

11.1.2  Factor graph

In Example 9.5 we described the factor graph associated with one particular
linear code (a Hamming code). The recipe to build the factor graph, knowing
H, is as follows. Let us denote by i, ... ’iZ(a) € {1,..., N} the column indices
such that H has a matrix element equal to 1 at row a and column ¢}. Then the
a-th coordinate of the vector Hz is equal to e @ -+ @ Tig - Let Py(z) be the
uniform distribution over all codewords of the code H (hereafter we shall often
identify a code with its parity check matrix). It is given by:

Palz) = »

N

M
a=1

Therefore, the factor graph associated with Py (z) (or with H) includes N variable
nodes, one for each column of H, and M function nodes (also called, in this
context, check nodes), one for each row. A factor node and a variable node are
joined by an edge if the corresponding entry in H is non-vanishing. Clearly this
procedure can be inverted: to any factor graph with N variable nodes and M

{se:DefLDPC}
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function nodes, we can associate an M x N binary matrix H, the adjacency
matrix of the graph, whose non-zero entries correspond to the edges of the
graph.

11.1.3  Ensembles with given degree profiles

In Chapter 9 we introduced the ensembles of factor graphs Dy (A, P) These
have N variable nodes, and the two polynomials A(z) = Y7 A,a", P(z) =
oo o Poa™ define the degree profiles: A, is the probability that a randomly
chosen variable node has degree n, P, is the probability that a randomly cho-
sen function node has degree n. We always assume that variable nodes have
degrees > 1, and function nodes have degrees > 2. in order to eliminate triv-
ial cases. The numbers of parity check and variable nodes satisfy the relation
M= NA(1)/P'(1).

We define the ensemble LDPCy (A, P) to be the ensemble of LDPC codes
whose parity check matrix is the adjacency matrix of a random graph from the
Dy (A, P) ensemble. (We will be interested in the limit N — oo while keeping the
degree profiles fixed. Therefore each vertex typically connects to a vanishingly
small fraction of other vertices, hence the qualification ‘low density’). The ratio
L/N=(N—-M)/N=1-A(1)/P'(1), which is a lower bound to the actual rate
R, is called the design rate Rges of the code (or, of the ensemble). The actual
rate of a code from the LDPCy (A, P) ensemble is of course a random variable,
but we will see below that it is in general sharply concentrated ‘near’ Rges.

A special case which is often considered is the one of ‘regular’ graphs with
fixed degrees: all variable nodes have degree [ and all functions nodes have degree
k, (i.e. P(x) = ¥ and A(z) = 2'). The corresponding code ensemble is usually
simply denoted as LDPCx(l, k), or, more synthetically as (I, k). It has design
rate Rges =1 — L

Generating a uniformly random graph from the Dy (A, P) ensemble is not a
trivial task. The simplest way to by-pass such a problem consists in substituting
the uniformly random ensemble with a slightly different one which has a simple
algorithmic description. One can proceed for instance as follows. First separate
the set of variable nodes uniformly at random into subsets of sizes NAg, NAq,

., NA;. . and attribute O ‘sockets’ to the nodes in the first subset, one socket
to each of the nodes in the second, and so on. Analogously, separate the set of
check nodes into subsets of size M Py, M Py, ..., M Py_. . and attribute to nodes
in each subset 0,1, ..., knax socket. At this point the variable nodes have NA’(1)
sockets, and so have the check nodes. Draw a uniformly random permutation over
NA’(1) objects and connect the sockets on the two sides accordingly.

Exercise 11.1 In order to sample a graph as described above, one needs two
routines. The first one separates a set of N objects uniformly into subsets of
prescribed sizes. The second one samples a random permutation over a NA’(1).
Show that both of these tasks can be accomplished with O(NN) operations
(having at our disposal a random number generator).
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This procedure has two flaws: (i) it does not sample uniformly Dy (A, P),
because two distinct factor graphs may correspond to a different number of
permutations. (i¢) it may generate multiple edges joining the same couple of
nodes in the graph.

In order to cure the last problem, we shall agree that each time n edges join
any two nodes, they must be erased if n is even, and they must be replaced
by a single edge if n is odd. Of course the resulting graph does not necessarily
have the prescribed degree profile (A, P), and even if we condition on this to be
the case, its distribution is not uniform. We shall nevertheless insist in denoting
the ensemble as LDPCy (A, P). The intuition is that, for large N, the degree
profile is ‘close’ to the prescribed one and the distribution is ‘almost uniform’,
for all our purposes. Moreover, what is really important is the ensemble that is
implemented in practice.

Exercise 11.2 This exercise aims at proving that, for large IV, the degree
profile produced by the explicit construction is close to the prescribed one.

(7) Let m be the number of multiple edges appearing in the graph and com-
pute its expectation. Show that Em = O(1) as N — oo with A and P
fixed.

(7)) Let (A’, P") be the degree profile produced by the above procedure. De-
note by

d=> "M - Al +> 1P — P, (11.3)
1 k

the ‘distance’ between the prescribed and the actual degree profiles.
Derive an upper bound on d in terms of m and show that it implies
Ed = O(1/N).

11.2 Geometry of the codebook

As we saw in Sec. 6.2, a classical approach to the analysis of error correcting codes
consists in studying the ‘geometric’ properties of the corresponding codebooks.
An important example of such properties is the distance enumerator NQO (d),
giving the number of codewords at Hamming distance d from z,. In the case
of linear codes, the distance enumerator does not depend upon the reference
codeword z, (the reader is invited to prove this simple statement).It is therefore
customary to take the all-zeros codeword as the reference, and to use the denom-
ination weight enumerator: N'(w) = N (d = w) is the number of codewords
having weight (the number of ones in the codeword) equal to w.

In this section we want to estimate the expected weight enumerator N (w) =
EN(w), for a random code in the LDPCy (A, P) ensemble. In general one ex-
pects, as for the random code ensemble of Sec. 6.2, that A/(w) grows exponen-
tially in the block-length N, and that most of the codewords have a weight

{se:WELDPC}

*
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w = Nw growing linearly with N. We will in fact compute the exponential
growth rate ¢(w) defined by

N(w = Nw) = eNew) (11.4)

Notice that this number is an ‘annealed average’, in the terminology of dis-
ordered systems: in other words, it can be dominated by rare instances in the
ensemble. On the other hand, one expects log N'(w) to be tightly concentrated
around its typical value N¢,(w). The typical exponent ¢q(w) can be computed

{eq:weightphidef}

through a quenched calculation, for instance considering limy_.o, N ~'Elog [1 + N (w)].

Of course ¢q(w) < ¢(w) because of the concavity of the logarithm. In this Chap-
ter we keep to the annealed calculation, which is much easier and gives an upper
bound. Quenched calculations will be the object of Chapter 777.

Let z € {0,1}" be a binary word of length N and weight w. Notice that
Hz = 0 mod 2 if and only if the corresponding factor graph has the following
property. Consider all variable nodes i such that z; = 1, and color in red all
edges incident on these nodes. Color in blue all the other edges. Then all the
check nodes must have an even number of incident red edges. A little thought
shows that A (w) is the number of ‘colored’ factor graphs having this property,
divided by the total number of factor graphs in the ensemble. We shall compute
this number first for a graph with fixed degrees, associated with a code in the
LDPCx (I, k) ensemble, and then we shall generalize to arbitrary degree profiles.

11.2.1  Weight enumerator: fixed degrees

In the fixed degree case we have N variables nodes of degree [, M function nodes
of degree k. We denote by F' = Mk = NI the total number of edges. A valid
colored graph must have £ = wl red edges. It can be constructed as follows. First
choose w variable nodes, which can be done in (JIX ) ways. Assign to each node in
this set [ red sockets, and to each node outside the set [ blue sockets. Then, for
each of the M function nodes, color in red an even subset of its sockets in such
a way that the total number of red sockets is £ = wl. Let m, be the number of
function nodes with r red sockets. The numbers m, can be non-zero only when
7 is even, and they are constrained by Zf:o m, = M and Zf:o rm, = lw. The
number of ways one can color the sockets of the function nodes is thus:

C(k, M,w) = - Zm() (mo, ,J%,,mk) H <f) N
k k
H(;mrzM) H(;)rmrzlw) !

(11.5)

where the sum Z(E) means that non-zero m, appear only for r even. Finally
we join the variable node and check node sockets in such a way that colors are
matched. There are (lw)!(F — lw)! such matchings out of the total number of F'!
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corresponding to different element in the ensemble. Putting everything together,
we get the final formula:

N(w) = w (JD C(k, M,w) . (11.6)

In order to compute the function ¢(w) in (11.4), one needs to work out
the asymptotic behavior of this formula when N — oo at fixed w = w/N.
Assuming that m, = 2,M = x,.NI/k, one can expand the multinomial factors
using Stirling’s formula. This gives:

b(w) = I{I;a?* (1—DH(w) + é > (—xr log , + z, log <I:)>1 . (L)

-
where the max* is taken over all choices of zg,x2,z4,... in [0,1], subject to
the two constraints ) , = 1 and ) 7z, = kw. The maximization can be
done by imposing these constraints via two Lagrange multipliers. One gets x,, =
Cz" (’;)]I(r even), where C' and z are two constants fixed by the constraints:

2
R L g (1L8)
(T2t —(1 =2k

(T+2F + (- 2F

(11.9)

Plugging back the resulting z;,- into the expression (11.10) of ¢, this gives finally:

)k )k
qb(w):(lfl)H(w)Jrélog(l—'_ ) ;(1 )

—wllog z (11.10)

where z is the function of w defined in (11.9).
We shall see in the next sections how to use this result, but let us first explain
how it can be generalized.

11.2.2  Weight enumerator: general case

We shall compute the leading exponential behavior N (w) = exp[N¢(w)] of the
expected weight enumerator for a general LDPCy (A, P) code. The idea of the
approach is the same as the one we have just used for the case of regular en-
sembles, but the computation becomes somewhat heavier. It is therefore useful
to adopt more compact notations. Altogether this section is more technical than
the others: the reader who is not interested in the details can skip it and go to
the results.

We want to build a valid colored graph, let us denote by E its number of
red edges (which is no longer fixed by w). There are coeff[[],(1 +zy") VA, 2y ¥]
ways of choosing the w variable nodes in such a way that their degrees add up to
E 28, As before, for each of the M function nodes, we color in red an even subset

28We denote by coeff[f(z),2"] the coefficient of z™ in the formal power series f(z).

{eq:weightphires1}

{eq:weightphires1}
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FIG. 11.1. Modulus of the function 273 g4(2)%/4 for € = 1/3.

of its sockets in such a way that the total number of red sockets is E. This can
be done in coeff[[], gi(2)MP*, 2] ways, where qp(z) = $(1+ 2)% + 3(1 — 2)".
The numbers of ways one can match the red sockets in variable and function
nodes is still EI(F — E)!, where F = NA’(1) = MP’(1) is the total number of
edges in the graph. This gives the exact result

Imax kmax

coeff H (1 + 2y )N 2y F | coeff H qe(2)MPe ZE 1 (11.11)
1=1 k=2
In order to estimate the leading exponential behavior at large N, when w =
Nw, we set E = F¢ = NA'(1)€. The asymptotic behaviors of the coeff[...,...]
terms can be estimated using the saddle point method. Here we sketch the idea
for the second of these terms. By Cauchy theorem

k k
max 1 max dZ f(Z) N dZ
MP, E| _ M P =
coeff ]};[2 ae(z) 2T = j{ ZNA(DEHL ]};[2 4 (2) 27i _7{ 2 2mi’
(11.12)

where the integral runs over any path encircling the origin in the complex z
plane, and

k
1) = e [T ax(z)> /2w, (11.13)
k

=2
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In Fig. 11.1 we plot the modulus of the function f(z) for degree distributions
A(z) = 23, P(z) = 2* and ¢ = 1/3. The function has a saddle point, whose

location z, = z.(§) € R4 solves the equation f/(z) = 0, which can also be
written as
kmax + Z k 1 (1 _ z)k—l
= 11.14
£= Zpkz 0T T (—of ( )

where we used the notation pp = kPy/P’(1) already introduced in Sec. 9.5
(analogously, we shall write \; = [A;/A’(1)). This equation generalizes (11.9). If
we take the integration contour in Eq. (11.12) to be the circle of radius z., the
integral is dominated by the saddle point at z. (together with the symmetric
point —z.). We get therefore

coefF[H qr(z MPk L2 ] iexp{N

Proceeding analogously with the second coeff...,...] term in Eq. (11.11),
we get N (w = Nw) = exp{N¢(w)}. The function ¢ is given by

/ Fmax
—N(1)¢log 2z, + 2,((1)) Z Py log Qk(z*)‘| } :
k=2

¢(w) = sup inf {—A'(l)H(f) —wlogz — A'(1)¢log(yz) +

& TY.z

lmax Emax

+ZA; log(1 + xy') 1
1=2

log qi(z }, (11.15)

where the minimization over x,y, z is understood to be taken over the positive
real axis while £ € [0,1]. The stationarity condition with respect to variations of
z is given by Eq. (11.14). Stationarity with respect to &, x, y yields, respectively

Imax Imax

__Y*
$= 10 —Z nyl, £ = Z . (11.16)

If we use the first of these equations to eliminate £, we obtain the final parametric
representation (in the parameter = € [0, 0o[) of ¢(w):

Imax

$(w) = —wlogz — A'(1)log(1 +yz) + Y _ Ajlog(1+ay')+  (11.17)
=1

1 kmax

I
(1) og qx(z

l
w=Y NP (11.18)
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with y = y(z) and z = z(x) solutions of the coupled equations

[ by 1
_ 2kt5 Py (2) L 2 Ny /(U ay) (11.19)

T kmax ? Tmox
Sk pie vy (2) ST N/ (L +ayt)

(142)F1h(1—2)*?
(14+2)k4+(1—2)*

where we defined pf(z) =

Exercise 11.3 The numerical solution of Egs. (11.18) and (11.19) can be quite
tricky. Here is a simple iterative procedure which seems to work reasonably well
(at least, in all the cases explored by the authors). The reader is invited to try
it with her favorite degree distributions A, P.

First, solve Eq. (11.18) for x at given y € [0,00[ and w € [0, 1], using a
bisection method. Next, substitute this value of z in Eq. (11.19), and write the
resulting equations as y = f(z) and z = g(y,w). Define F,(y) = f(9(y,w)).
Solve the equation y = F,,(y) by iteration of the map y,+1 = F,(y,) Once the
fixed point y, is found, the other parameters are computed as z, = g(y«,w) and
2, is the solution of Eq. (11.18) for y = y,. Finally x., y., 2. are substituted in
Eq. (11.17) to obtain ¢(w).

Examples of functions ¢(w) are shown in Figures 11.2, 11.3, 11.4. We shall
discuss these results in the next section, paying special attention to the region
of small w.

11.2.3  Short distance properties

In the low noise limit, the performance of a code depends a lot on the existence
of codewords at short distance from the transmitted one. For linear codes and
symmetric communication channels, we can assume without loss of generality
that the all zeros codeword has been transmitted. Here we will work out the
short distance (i.e. small weight w) behavior of ¢(w) for several LDPC ensembles.
These properties will be used to characterize the code performances in Section
11.3.

As w — 0, solving Egs. (11.18) and (11.19) yields y, 2 — 0. By Taylor expan-
sion of these equations, we get

y~p(lz, 2z~ /\lminxyl"“"_l , w Almmmylm‘" , (11.20)

where we neglected higher order terms in y, z. At this point we must distinguish
whether lmin = 1, lmin =2or lmin Z 3.

We start with the case [, = 1. Then z,y, z all scale like /w, and a short
computation shows that

o(w) = —%w log (w/A7) + O(w) . (11.21)

In particular ¢(w) is strictly positive for w sufficiently small. The expected num-
ber of codewords within a small (but ©(N)) Hamming distance from a given
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Fia. 11.2. Logarithm of the expected weight enumerator, ¢(w), plotted versus
the reduced weight w = w/N, for the ensemble LDPCy(jz + fz? + $2°,25).
Inset: small weight region. ¢(w) is positive near to the origin, and in fact its
derivative diverges as w — 0: each codeword is surrounded by a large number of
very close other codewords. This makes it a very bad error correcting code.

codeword is exponential in N. Furthermore, Eq. (11.21) is reminiscent of the
behavior in absence of any parity check. In this case ¢p(w) = H(w) ~ —wlogw.

Exercise 11.4 In order to check Eq. (11.21), compute the weight enumerator
for the regular LDPCy (I = 1, k) ensemble. Notice that, in this case the weight
enumerator does not depend on the code realization and admits the simple
representation NV (w) = coefflgx(2) V%, 2%].

An example of weight enumerator for an irregular code with l,,;, = 1 is shown
in Fig. 11.2. The behavior (11.21) is quite bad for an error correcting code. In
order to understand why, let us for a moment forget that this result was obtained
by taking w — 0 after N — oo, and apply it in the regime N — oo at w = Nw

fixed. We get
N(w) ~ (N)2 : (11.22)

w

It turns out that this result holds not only in average but for most codes in the
ensemble. In other words, already at Hamming distance 2 from any given code-
word there are ©(NN) other codewords. It is intuitively clear that discriminating
between two codewords at ©(1) Hamming distance, given a noisy observation, is
in most of the cases impossible. Because of these remarks, one usually discards
Imin = 1 ensembles for error correcting purposes.

Consider now the case lin = 2. From Eq. (11.20), we get

P"(1) 2A,
Pr(1) A'(1)

d(w) ~ Aw, A=log [ } =log[p ()N (0)] . (11.23)
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Fi1a. 11.3. Logarithm of the expected weight enumerator for the LDPCy (2, 4)
ensemble: A(r) = 22, meaning that all variable nodes have degree 2, and
P(x) = 4, meaning that all function nodes have degree 4. Inset: small weight

region. The constant A is positive, so there exist codewords at short distances

The code ensemble has significantly different properties depending on the sign
of A. If A > 0, the expected number of codewords within a small (but O(N))
Hamming distance from any given codeword is exponential in the block-length.
The situation seems similar to the Iy, = 1 case. Notice however that ¢(w) goes
much more quickly to 0 as w — 0 in the present case. Assuming again that
(11.23) holds beyond the asymptotic regime in which it was derived, we get

N(w) ~ et (11.24)

In other words the number of codewords around any particular one is o(NN)
until we reach a Hamming distance d. ~ log N/A. For many purposes d, plays
the role of an ‘effective’ minimum distance. The example of the regular code
LDPCx(2,4), for which A = log3, is shown in Fig. 11.3

If on the other hand A < 0, then ¢(w) < 0 in some interval w €]0,w,[. The
first moment method then shows that there are no codewords of weight ‘close
to’ Nw for any w in this range.

A similar conclusion is reached if [,,;;, > 3, where one finds:

lmin -
d(w) ~ (22> w log (A;U

min

) , (11.25)

An example of weight enumerator exponent for a code with good short distance
properties, the LDPCx(3,6) code, is given in Fig. 11.4.

This discussion can be summarized as:
Proposition 11.1 Consider a random linear code from the LDPCy (A, P) en-

semble with 1y, > 2 and assume 1;:((11)) /\2/[?%) < 1. Let w, €]0,1/2[ be the first

non-trivial zero of ¢(w), and consider any interval [wy,ws] Cl0,w.[. With high
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F1a. 11.4. Logarithm of the expected weight enumerator for the LDPCy (3, 6)
ensemble. Inset: small weight region. ¢(w) < 0 for w < w, ~ .02. There are no
codewords except from the ‘all-zeros’ one in the region w < w,.

probability, there does not exist any pair of codewords with distance belonging to
this interval.

Notice that our study only deals with weights w = wN which grow linearly
with N. The proposition excludes the existence of codewords of arbitrarily small
w, but it does not tell anything about possible codewords of sub-linear weight:
w = o(N) (for instance, with w finite as N — 00). It turns out that, if {;,i, > 3,
the code has with high probability no such codewords, and its minimum distance
is at least Nw,. If on the other hand [,,;,, = 2, the code has typically codewords
of finite weight. However (if A < 0), they can be eliminated without changing
the code rate by an ‘expurgation’ procedure.

11.2.4 Rate

The weight enumerator can also be used to obtain a precise characterization of
the rate of a LDPCy (A, P) code. For w = 1/2, v = y = z = 1 satisfy Eqs. (11.18)
and (11.19); this gives:

Plw=1/2) = <1 - 158) 10g2 = Ryes log 2. (11.26)

It turns out that, in most?” of the cases of practical interest, the curve ¢(w) has

its maximum at w = 1/2 (see for instance the figures 11.2, 11.3, 11.4). In such
cases the result (11.26) shows that the rate equals the design rate:

Proposition 11.2 Let R be the rate of a code from the LDPCx (A, P)ensemble,
Ryes =1 — A'(1)/P'(1) the associated design rate and ¢(w) the function defined
in Egs. (11.17) to (11.19). Assume that ¢(w) achieves its absolute maximum

29There exist exceptions though (see the Notes section for references).

{fig:WE36}
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over the interval [0,1] at w = 1/2. Then, for any 6 > 0, there exists a positive
N-independent constant C1(0) such that

P{|R — Ryes| > 6} < C1(5)27N9/2, (11.27)

Proof: Since we already established that R > Rges, we only need to prove an
upper bound on R. The rate is defined as R = (log, N)/N, where A is the total
number of codewords. Markov’s inequality gives:

P{R > Res + 6} = P{N > 2N (Racst0)} < o= N(Faest) g A7 (11.28)

The expectation of the number of codewords is EN (w) = exp{N¢(w/N)}, and
there are only N + 1 possible values of the weight w, therefore:

EN = exp{N sup o(w)}, (11.29)
we(0,1]

As sup ¢p(w) = ¢(1/2) = Rqes log2 by hypothesis, there exists a constant Cy(0)
such that, for any N, BN < C}(6)2N(Faes+9/2) for any N. Plugging this into
Eq. (11.28), we get

P{R > Ryes + 6} < C1(6)2N%/2 . (11.30)
0

11.3 Capacity of LDPC codes for the binary symmetric channel

Our study of the weight enumerator has shown that codes from the LDPCy (A, P)
ensemble with [, > 3 have a good short distance behavior. The absence of
codewords within an extensive distance Nw, from the transmitted one, guar-
antees that any error (even introduced by an adversarial channel) changing a
fraction of the bits smaller than w, /2 can be corrected. Here we want to study
the performance of these codes in correcting typical errors introduced from a
given (probabilistic) channel. We will focus on the BSC(p) which flips each bit
independently with probability p < 1/2. Supposing as usual that the all-zero
codeword z(® = 0 has been transmitted, let us call y = (y1...yn) the received
message. Its components are iid random variables taking value 0 with probability
1 — p, value 1 with probability p. The decoding strategy which minimizes the
block error rate is word MAP decoding®?, which outputs the codeword closest to
the channel output y. As already mentioned, we don’t bother about the practical
implementation of this strategy and its computational complexity.

The block error probability for a code €, denoted by Pg(€), is the probability
that there exists a ‘wrong’ codeword, distinct from 0, whose distance to y is

smaller than d(0, y). Its expectation value over the code ensemble, Py = E Pg(¢),

30Since all the codewords are a priori equiprobable, this coincides with maximum likelihood
decoding.
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is an important indicator of ensemble performances. We will show that in the
large N limit, codes with l,,;, > 3 undergo a phase transition, separating a low
noise phase, p < pyr, in which the limit of Py is zero, from a high noise phase,
p > pwmrL, where it is not. While the computation of py, is deferred to Chapter
7?7, we derive here some rigorous bounds which indicate that some LDPC codes
have very good (i.e. close to Shannon’s bound) performances under ML decoding.

11.3.1 Lower bound

We start by deriving a general bound on the block error probability Pg(€) on
the BSC(p) channel, valid for any linear code. Let N = 2V be the size of the
codebook €. By union bound:

PB(C):P{EIayéO s.t. d(g(a),g)gd(g,y)}

<Z { 2, y) < d(0 y)} (11.31)

As the components of y are iid Bernoulli variables, the probability P{d(z(®), y) <

d(0,y)} depends on z(®) only through its weight. Let z(w) be the vector formed
by w ones followed by N —w zeroes, and denote by N (w) the weight enumerator
of the code €. Then

<D N(w) P{d(z(w),y) < d(0,y)} . (11.32)

{se:LBLDPC}

The probability P {d(z(w),y) < d(0,y)} can be written as >, (%')p"(1—p)*“I(u >

w/2), where u is the number of y; = 1 in the first w components. A good bound
is provided by a standard Chernov estimate. For any A > 0:

P {d(g(w),y) < d(o, y)} < Eeld@y) —dz(w)y)] — [(1—p) e A _;_pe/\]w

The best bound is obtained for A = 1 1og( 2) > 0, and gives

Pp(€) < > N(w)e ™. (11.33)

where v = —log 1/4p(1 — p) > 0. The quantity /4p(1 — p) is sometimes referred

to as Bhattacharya parameter.
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Exercise 11.5 Consider the case of a general binary memoryless symmetric
channel with transition probability Q(y|z), = € {0,1} y € Y C R. First show
that Eq. (11.31) remains valid if the Hamming distance d(z,y) is replaced by
the log-likelihood -

o(zly) = ZIOgQ yilz:) - (11.34)

p=I1l

[Hint: remember the general expressions (6.3), (6.4) for the probability P(z|y)
that the transmitted codeword was z, given that the received message is y_]
Then repeat the derivation from Eq. (11.31) to Eq. (11.33). The final expression
involves v = —log Bg, where the Bhattacharya parameter is defined as Bg =

2y VRu1Q(y]0).

Equation (11.33) shows that the block error probability depends on two fac-
tors: one is the weight enumerator, the second one, exp(—~yw) is a channel-
dependent term: as the weight of the codewords increases, their contribution is
scaled down by an exponential factor because it is less likely that the received
message y will be closer to a codeword of large weight than to the all-zero code-
word.

So far the discussion is valid for any given code. Let us now consider the
average over LDPC (A, P) code ensembles. A direct averaging gives the bound:

N
Pp = E¢Pp(€) < Zﬁ(w) e 7 =exp {N sup [p(w) — ’yw]} . (11.35)
w=1 w€]0,1]

As such, this expression is useless, because the sup,[¢(w) — yw], being larger or
equal than the value at w = 0, is positive. However, if we restrict to codes with
lmin > 3, we know that, with probability going to one in the large N limit, there
exists no wrong codeword in the w interval ]0, w,[. In such cases, the maximization
over w in (11.35) can be performed in the interval [w., 1] instead of ]0,1]. (By
Markov inequality, this can be proved whenever N ZNW*_l N(w) — 0as N —
00). The bound becomes useful whenever the supremum sup,,c(,,, 1j[¢(w) —yw] <

0: then Pp vanishes in the large N limit. We have thus obtained:

Proposition 11.3 Consider the average block error rate Py for a random code
in the LDPCy (A, P) ensemble, with i, > 3, used over a BSC(p) channel, with
p < 1/2. Let v = —log \/4p(1 — p) and let ¢(w) be the the weight enumerator
exponent, defined in (11.4) [p(w) can be computed using Eqs. (11.17), (11.18),
and (11.19)]. If ¢p(w) < yw for any w € (0,1] such that ¢p(w) > 0, then Pg — 0
in the large block-length limit.

This result has a pleasing geometric interpretation which is illustrated in
Fig. 11.5 for the (3, 6) regular ensemble. As p increases from 0 to 1/2, v decreases
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Fig. 11.5. Geometric construction yielding the lower bound on the threshold
for reliable communication for the LDPCy(3,6) ensemble used over the binary
symmetric channel. In this case ppg &~ 0.0438737. The other two lines refer to
p=0.01 <pyg and p =0.10 > prp.

from +oo to 0. The condition ¢(w) < yw can be rephrased by saying that the
weight enumerator exponent ¢(w) must lie below the straight line of slope ~
through the origin. Let us call py,p the smallest value of p such that the line yw
touches ¢(w).

The geometric construction implies pr,g > 0. Furthermore, for p large enough
Shannon’s Theorem implies that Pp is bounded away from 0 for any non-
vanishing rate R > 0. The ML threshold py, for the ensemble LDPCy (A, P)
can be defined as the largest (or, more precisely, the supremum) value of p such
that limy_.o, Pg = 0. This definition has a very concrete practical meaning: for
any p < pyr, one can communicate with an arbitrarily small error probability,
by using a code from the LDPCy (A, P) ensemble provided N is large enough.
Proposition 11.3 then implies:

DML 2 PLB - (11.36)

In general one expects limy_.o, Pp to exist (and to be strictly positive) for
p > pumr. However, there exists no proof of this statement.

It is interesting to notice that, at p = prp, our upper bound on Pg is domi-
nated by codewords of weight w ~ N©, where © > 0 is the value where ¢(w) —yw
is maximum (which is larger than w,). This suggests that, each time an error
occurs, a finite fraction of the bits are decoded incorrectly and this fraction fluc-
tuates little from transmission to transmission (or, from code to code in the
ensemble). The geometric construction also suggests the less obvious (but essen-
tially correct) guess that this fraction jumps discontinuously from 0 to a finite
value when p crosses the critical value pyr,.
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Exercise 11.6 Let us study the case [y, = 2. Proposition 11.3 is no longer
valid, but we can still apply Eq. (11.35). (z) Consider the (2,4) ensemble whose
weight enumerator exponent is plotted in Fig. 11.3, the small weight behavior
being given by Eq. (11.24). At small enough p, it is reasonable to assume that
the block error rate is dominated by small weight codewords. Estimate Pg
using Eq. (11.35) under this assumption. (i) Show that the assumption breaks
down for p > pioc, where pio. < 1/2 solves the equation 31/4p(1 — p) = 1. (ii7)
Discuss the case of a general code ensemble with l,,;, = 2, and ¢(w) concave
for w € [0,1]. (iv) Draw a weight enumerator exponent ¢(w) such that the
assumption of low-weight codewords dominance breaks down before pioc. (v)
What do you expect of the average bit error rate Py for p < pio.? And for

p> ploc?

Exercise 11.7 Discuss the qualitative behavior of the block error rate for the
cases where [, = 1.

11.3.2  Upper bound

Let us consider as before the communication over a BSC(p), but restrict for
simplicity to regular codes LDPCy (I, k). Gallager has proved the following upper
bound:

Theorem 11.4 Let pyip, be the threshold for reliable communication over the
binary symmetric channel using codes from the LDPCy (1, k), with design rate
Raes = 1 — k/l. Then pyr < pup, where pupg < 1/2 is the solution of
1—-(1- 2p)’“)

(11.37)

i) = (1 - Raot (-4

We shall not give a full proof of this result, but we show in this section a sequence
of heuristic arguments which can be turned into a proof. The details can be found
in the original literature.

Assume that the all-zero codeword 0 has been transmitted and that a noisy
vector y has been received. The receiver will look for a vector z at Hamming
distance about Np from y, and satisfying all the parity check equations. In other
words, let us denote by z = Hz, z € {0,1}™, (here H is the parity check matrix
and multiplication is performed modulo 2), the syndrome. This is a vector
with M components. If z is a codeword, all parity checks are satisfied, and we
have z = 0. There is at least one vector z fulfilling these conditions (namely
d(z,y) = Np, and z = 0): the transmitted codeword 0. Decoding is successful
only if it is the unique such vector.

The number of vectors £ whose Hamming distance from y is close to Np is
approximatively 2V7(P) | Let us now estimate the number of distinct syndromes
z = Hz, when z is on the sphere d(z,y) ~ Np. Writing z = y @ 2/, this is
equivalent to counting the number of distinct vectors z’ = Hz’ when the weight
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Table 11.1 Bounds on the threshold for reliable communication over the BSC(p)
channel using LDPCy (I, k) ensembles. The third column is the rate of the code,
the fourth and fifth columns are, respectively, the lower bound of Proposition 11.3
and the upper bound of Theorem 11.4. The sizth column is an improved lower
bound by Gallager, and the last one is the Shannon limit.

I k Rges LB of Sec. 11.3.1 Gallager UB Gallager LB Shannon limit
3 4 1/4 0.1333161 0.2109164 0.2050273 0.2145018
3 5 2/5 0.0704762 0.1397479 0.1298318 0.1461024
3 6 1/2 0.0438737 0.1024544 0.0914755 0.1100279
4 6 1/3 0.1642459 0.1726268 0.1709876 0.1739524
5 10 1/2 0.0448857 0.1091612 0.1081884 0.1100279

of 2’ is about Np. It is convenient to think of ' as a vector of N iid Bernoulli
variables of mean p: we are then interested in the number of distinct typical
vectors z’. Notice that, since the code is regular, each entry z; is a Bernoulli
variable of parameter

k _ o k

n odd

If the bits of 2z’ were independent, the number of typical vectors 2z’ would be
2N (1= Rae:)H(Pr) (the dimension of 2z’ being M = N (1 — Rges)). It turns out that
correlations between the bits decrease this number, so we can use the iid estimate
to get an upper bound.

Let us now assume that for each z in this set, the number of reciprocal
images (i.e. of vectors z such that z = Hz) is approximatively the same. If
oNH(P) 5 9N(1=Raes)H(Pk) for each z there is an exponential number of vectors
x, such that z = Hx. This will be true, in particular, for z = 0: the received
message is therefore not uniquely decodable. In the alternative situation most of
the vectors z correspond to (at most) a single z. This will be the case for z = 0:
decoding can be successful.

11.3.3  Summary of the bounds

In Table 11.1 we consider a few regular LDPCy (A, P) ensembles over the BSC(p)
channel. We show the window of possible values of the noise threshold py,, using
the lower bound of Proposition 11.3 and the upper bound of Theorem 11.4. In
most cases, the comparison is not satisfactory (the gap from capacity is close to a
factor 2). A much smaller uncertainty is achieved using an improved lower bound
again derived by Gallager, based on a refinement of the arguments in the previous
Section. However, as we shall see in next Chapters, neither of the bounds is tight.
Note that these codes get rather close to Shannon’s limit, especially when &,
increase.

{TableLDPCBSC}
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Fia. 11.6. Performances of the bit-flipping decoding algorithm on random codes

from the (5,10) regular LDPC ensemble, used over the BCS(p) channel. On the

left: block error rate. On the right residual number of unsatisfied parity checks
{fig:F1ips10} after the algorithm halted. Statistical error bars are smaller than symbols.

Exercise 11.8 Let ps, be the upper bound on pyy, provided by Shannon
channel coding Theorem. Explicitly ps, < 1/2 is the solution of H(p) = 1 — R.
Prove that, if R = Rges (as is the case with high probability for LDPCy (I, k)
ensembles) pup < psh-

{se:BitF1ippingLDPC} 11.4 A simple decoder: bit flipping

So far we have analyzed the behavior of LDPC ensembles under the optimal
(ML) decoding strategy. However there is no known way of implementing this
decoding with a fast algorithm. The naive algorithm goes through each codeword
2 a=0,...2V% — 1 and finds the one of greatest likelihood Q(y|z(®)) (since
all the codeword are a priori equiprobable, this is in fact the same as word
MAP decoding). However this approach takes a time which grows exponentially
with the block-length N. For large N (which is the regime where the error rate
becomes close to optimal), this is unpractical.

LDPC codes are interesting because there exist fast sub-optimal decoding
algorithms with performances close to the theoretical optimal performance, and
therefore close to Shannon’s limit. Here we show one example of a very sim-
ple decoding method, called the bit flipping algorithm. We have received the
message y and try to find the sent codeword z by:

Bit-flipping decoder

0. Set z(0) =y.

1. Find a bit belonging to more unsatisfied than satisfied parity checks.

2. If such a bit exists, flip it: x;(t+1) = z;(t)®1. Keep the other bits:
xj(t+1) = x;(t) for all j #4i. If there is no such bit, return z(¢) and
halt.
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3. Repeat steps 2 and 3.

The bit to be flipped is usually chosen uniformly at random among the ones
satisfying the condition at step 1. However this is irrelevant in the analysis below.

Exercise 11.9 Consider a code from the (I, k) regular LDPC ensemble (with
[ > 3). Assume that the received message differs from the transmitted one only
in one position. Show that the bit-flipping algorithm always corrects such an
error.

Exercise 11.10 Assume now that the channel has introduced two errors.
Draw the factor graph of a regular (I,k) code for which the bit-flipping al-
gorithm is unable to recover such an error event. What can you say of the
probability of this type of graphs in the ensemble?

In order to monitor the bit-flipping algorithm, it is useful to introduce the
‘energy’:

E(t) = Number of parity check equations not satisfied by z(t). (11.39)

This is a non-negative integer, and if E(t) = 0 the algorithm is halted and its
output is z(t). Furthermore E(t) cannot be larger than the number of parity
checks M and decreases (by at least one) at each cycle. Therefore, the algorithm
complexity is O(N) (this is a commonly regarded as the ultimate goal for many
communication problems).

It remains to be seen if the output of the bit-flipping algorithm is related
to the transmitted codeword. In Fig. 11.6 we present the results of a numerical
experiment. We considered the (5, 10) regular ensemble and generated about 1000
random code and channel realizations for each value of the noise in some mesh.
Then, we applied the above algorithm and traced the fraction of successfully
decoded blocks, as well as the residual energy E, = E(t.), where t, is the
total number of iterations of the algorithm. The data suggests that bit-flipping
is able to overcome a finite noise level: it recovers the original message with
high probability when less than about 2.5% of the bits are corrupted by the
channel. Furthermore, the curves for ng under bit-flipping decoding become
steeper and steeper as the system size is increased. It is natural to conjecture
that asymptotically, a phase transition takes place at a well defined noise level
Dbt ng — 0 for p < ppr and P%f — 1 for p > pps. Numerically pps = 0.025+0.005.

This threshold can be compared with the one for ML decoding: The re-
sults in Table 11.1 imply 0.108188 < pyp, < 0.109161 for the (5,10) ensemble.
Bit-flipping is significantly sub-optimal, but is still surprisingly good, given the
extreme simplicity of the algorithm.

Can we provide any guarantee on the performances of the bit-flipping de-
coder? One possible approach consists in using the expansion properties of the
underlying factor graph. Consider a graph from the (I, k) ensemble. We say that
it is an (g, 0)-expander if, for any set U of variable nodes such that |U| < Ne,
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the set |D| of neighboring check nodes has size |D| > §|U|. Roughly speaking, if
the factor graph is an expander with a large expansion constant §, any small
set of corrupted bits induces a large number of unsatisfied parity checks. The
bit-flipping algorithm can exploit these checks to successfully correct the errors.

It turns out that random graphs are very good expanders. This can be under-
stood as follows. Consider a fixed subset U. As long as U is small, the subgraph
induced by U and the neighboring factor nodes D is a tree with high probability.
If this is the case, elementary counting shows that |D| = (I — 1)|U]| + 1. This
would suggest that one can achieve an expansion factor (close to) [ — 1, for small
enough . Of course this argument have several flaws. First of all, the subgraph
induced by U is a tree only if U has sub-linear size, but we are interested in all
subsets U with |U| < eN for some fixed N. Then, while most of the small subsets
U are trees, we need to be sure that all subsets expand well. Nevertheless, one
can prove that the heuristic expansion factor is essentially correct:

Proposition 11.5 Consider a random factor graph F from the (1, k) ensemble.
Then, for any § < 1—1, there exists a constant € = £(9;1,k) > 0, such that F is
a (g,6) expander with probability approaching 1 as N — oo.

In particular, this implies that, for [ > 5, a random (I, k) regular factor graph
is, with high probability a (e, % l) expander. In fact, this is enough to assure that
the code will perform well at low noise level:

Theorem 11.6 Consider a reqular (I, k) LDPC code €, and assume that the cor-
responding factor graph is an (e, % 1) expander. Then, the bit-flipping algorithm
is able to correct any pattern of less then Ne/2 errors produced by a binary sym-
metric channel. In particular Pp(€) — 0 for communication over a BSC(p) with
p<e/2.

Proof: As usual, we assume the channel input to be the all-zeros codeword 0.
We denote by w = w(t) the weight of z(¢) (the current configuration of the bit-
flipping algorithm), and by E' = E(t) the number of unsatisfied parity checks, as
in Eq. (11.39). Finally, we call F' the number of satisfied parity checks among the
ones which are neighbors of at least one corrupted bit in z(¢) (a bit is ‘corrupted’
if it takes value 1).

Assume first that 0 < w(t) < Ne at some time ¢t. Because of the expansion
property of the factor graph, we have £ + F > %l w. On the other hand, every
unsatisfied parity check is the neighbor of at least one corrupted bit, and every
satisfied check which is the neighbor of some corrupted bit must involve at least
two of them. Therefore E+2F < [w. Eliminating F from the above inequalities,
we deduce that E(t) > §lw(t). Let E;(t) be the number of unsatisfied checks
involving bit x;. Then:

> Eit)= E(t) > %lw(t). (11.40)
iz (t)=1

Therefore, there must be at least one bit having more unsatisfied than satisfied
neighbors, and the algorithm does not halt.
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Let us now start the algorithm with w(0) < Ne/2. It must halt at some
time t,, either with E(t.) = w(t.) = 0 (and therefore decoding is successful),
or with w(t,) > Ne. In this second case, as the weight of z(¢) changes by one
at each step, we have w(t.) = Ne. The above inequalities imply E(t.) > Nle/2
and E(0) < lw(0) < Nle/2. This contradicts the fact that E(t) is a strictly
decreasing function of ¢. Therefore the algorithm, started with w(0) < Ne/2
ends up in the w = 0, ' = 0 state. [

The approach based on expansion of the graph has the virtue of pointing
out one important mechanism for the good performance of LDPC codes, namely
the local tree-like structure of the factor graph. It also provides explicit lower
bounds on the critical noise level py¢ for bit-flipping. However, these bounds turn
out to be quite pessimistic. For instance, in the case of the (5,10) ensemble, it
has been proved that a typical factor graph is an (e, %l) = (g, %) expander for
€ < &, ~ 107'2. On the other hand, numerical simulations, cf. Fig. 11.6, show
that the bit flipping algorithm performs well up noise levels much larger than

€x/2.

Notes

Modern (post-Cook Theorem) complexity theory was first applied to coding
by (Berlekamp, McEliecee and van Tilborg, 1978) who showed that maximum
likelihood decoding of linear codes is NP-hard.

LDPC codes were first introduced by Gallager in his Ph.D. thesis (Gallager,
1963; Gallager, 1962), which is indeed older than these complexity results. See
also (Gallager, 1968) for an extensive account of earlier results. An excellent de-
tailed account of modern developments is provided by (Richardson and Urbanke,
2006).

Gallager proposal did not receive enough consideration at the time. One
possible explanation is the lack of computational power for simulating large
codes in the sixties. The rediscovery of LDPC codes in the nineties (MacKay,
1999), was (at least in part) a consequence of the invention of Turbo codes by
(Berrou and Glavieux, 1996). Both these classes of codes were soon recognized
to be prototypes of a larger family: codes on graphs.

The major technical advance after this rediscovery has been the introduc-
tion of irregular ensembles (Luby, Mitzenmacher, Shokrollahi, Spielman and
Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spielman, 1998). There
exist no formal proof of the ‘equivalence’ (whatever this means) of the various
ensembles in the large block-length limit. But as we will see in Chapter 77, the
main property that enters in the analysis of LDPC ensembles is the local tree-
like structure of the factor graph as described in Sec. 9.5.1; and this property is
rather robust with respect to a change of the ensemble.

Gallager (Gallager, 1963) was the first to compute the expected weight enu-
merator for regular ensembles, and to use it in order to bound the threshold for
reliable communication. The general case ensembles was considered in (Litsyn
and Shevelev, 2003; Burshtein and Miller, 2004; Di, Richardson and Urbanke,
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2004). Tt turns out that the expected weight enumerator coincides with the typ-
ical one to leading exponential order for regular ensembles (in statistical physics
jargon: the annealed computation coincides with the quenched one). This is not
the case for irregular ensembles, as pointed out in (Di, Montanari and Urbanke,
2004).

Proposition 11.2 is essentially known since (Gallager, 1963). The formulation
quoted here is from (Méasson, Montanari and Urbanke, 2005a). This paper con-
tains some examples of ‘exotic’ LDPC ensembles such that the maximum of the
expected weight enumerator is at weight w = Nw,, with w, # 1/2.

A proof of the upper bound 11.4 can be found in (Gallager, 1963). For some
recent refinements, see (Burshtein, Krivelevich, Litsyn and Miller, 2002).

Bit-flipping algorithms played an important role in the revival of LDPC codes,
especially following the work of Sipser and Spielman (Sipser and Spielman, 1996).
These authors focused on explicit code construction based on expander graph.
They also provide bounds on the expansion of random LDPCy (I, k) codes. The
lower bound on the expansion mentioned in Sec. 11.4 is taken from (Richardson
and Urbanke, 2006).
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SPIN GLASSES

We have already encountered several examples of spin glasses in Chapters 2 and
8. Like most problems in equilibrium statistical physics, they can be formulated
in the general framework of factor graphs. Spin glasses are disordered systems,
whose magnetic properties are dominated by randomly placed impurities. The
theory aims at describing the behavior of a typical sample of such materials.
This motivates the definition and study of spin glass ensembles.

In this chapter we shall explore the glass phase of these models. It is not easy
to define this phase and its distinctive properties, especially in terms of purely
static quantities. We provide here some criteria which have proved effective so
far. We also present a classification of the two types of spin glass transitions
that have been encountered in exactly soluble ‘mean field models’. In contrast to
these soluble cases, it must be stressed that very little is known (let alone proven)
for realistic models. Even the existence of a spin glass phase is not established
rigorously in the last case.

We first discuss in Section 12.1 how Ising models and their generalizations can
be formulated in terms of factor graphs, and introduce several ensembles of these
models. Frustration is a crucial feature of spin glasses. In Section 12.2 we discuss
it in conjunction with gauge transformations. This section also explains how to
derive some exact results with the sole use of gauge transformations. Section 12.3
describes the spin glass phase and the main approaches to its characterization.
Finally, the phase diagram of a spin glass model with several glassy phases is
traced in Section 12.4.

12.1 Spin glasses and factor graphs
12.1.1 Generalized Ising models
Let us recall the main ingredients of magnetic systems with interacting Ising

spins. The variables are N Ising spins ¢ = {01, ...,0n} taking values in {41, —1}.

These are jointly distributed according to Boltzmann law for the energy function:

Pmax

Bl@)==> > Ji.i,0n 0, . (12.1)

p=1 i1 <--<ip

The index p gives the order of the interaction. One body terms (p = 1) are also
referred to as external field interactions, and will be sometimes written as — B;0;.
If Jiy..i, 20, for any 41 ...4p, and p > 2, the model is said to be a ferromagnet.
If Ji, .5, <0, it is an anti-ferromagnet. Finally, if both positive and negative
couplings are present for p > 2, the model is a spin glass.
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F1a. 12.1. Factor graph representation of the SK model with N = 4 (left), and
the fully-connected 3-spin model with N = 4 (right). The squares denote the
interactions between the spins.
{Fig:ising_fg}

The energy function can be rewritten as E(c) = >~ Equ(cy,), where Eq(0y,) =
—Ja0ig - Tia - Each interaction term a involves the spins contained in a subset
oo = {0ia, ... ) Oia }, of size p,. We then introduce a factor graph in which each
interaction term is represented by a square vertex and each spin is represented
by a circular vertex. Edges are drawn between the interaction vertex a and the
variable vertex ¢ whenever the spin o; appears in g,,. We have already seen in
Fig. 9.7 the factor graph of a ‘usual’ two-dimensional spin glass, where the en-
ergy contains terms with p = 1 and p = 2. Figure 12.1.1 shows the factor graphs
of some small samples of the SK model in zero magnetic field (p = 2 only) and
the 3-spin model.

The energy function (12.1) can be straightforwardly interpreted as a model
for a magnetic system. We used so far the language inherited from this appli-
cation: the spins {o;} are ‘rotational’ degrees of freedom associated to magnetic
particle, their average is the magnetization etc. In this context, the most relevant
interaction between distinct degrees of freedom is pairwise: —J;;0;0;.

Higher order terms naturally arise in other applications, one of the simplest
one being lattice particle systems. These are used to model the liquid-to-gas,
liquid-to-solid, and similar phase transitions. One normally starts by considering
some base graph G over N vertices, which is often taken to be a portion of Z¢
(to model a real physical system the dimension of choice is of course d = 3).
Each vertex in the graph can be either occupied by a particle, which we shall
assume indistinguishable from the others, or empty. The particles are assumed
indistinguishable from each other, and a configuration is characterized by occu-
pation variables n; = {0,1}. The energy is a function E(n) of the occupancies
n = {ni,...,ny}, which takes into account local interaction among neighboring
particles. Usually it can be rewritten in the form (12.1), with an N independent
Pmax using the mapping o; = 1 — 2n,;. We give a few examples in the exercises
below.
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Exercise 12.1 Consider an empty box which is free to exchange particles with
a reservoir, and assume that particles do not interact with each other (except
for the fact that they cannot superimpose). This can be modeled by taking G
to be a cube of side L in Z¢, and establishing that each particle in the system
contributes by a constant amount —y to the energy: F(n) = —u >, n;. This is
a model for what is usually called an ideal gas.

Compute the partition function. Rewrite the energy function in terms of
spin variables and draw the corresponding factor graph.

Exercise 12.2 In the same problem, imagine that particles attract each other
at short distance: whenever two neighboring vertices 7 and j are occupied, the
system gains an energy —e. This is a model for the liquid-gas phase transition.

Write the corresponding energy function both in terms of occupancy vari-
ables {n;} and spin variables {o; }. Draw the corresponding factor graph. Based
on the phase diagram of the Ising model, cf. Sec. 2.5, discuss the behavior of
this particle system. What physical quantity corresponds to the magnetization
of the Ising model?

Exercise 12.3 In some system molecules cannot be packed in a regular lattice
at high density, and this may result in amorphous solid materials. In order to
model this phenomenon, one may modify the energy function of the previous
Exercises as follows. Each time that a particle (i.e. an occupied vertex) is
surrounded by more than k other particles in the neighboring vertices, a penalty
+6 is added to the energy.

Write the corresponding energy function (both in terms of {n;} and {o;})
and draw the factor graph associated with it.

12.1.2  Spin glass ensembles
A sample (or an instance) of a spin glass is defined by:

e Its factor graph, which specifies the subsets of spins which interact;

e The value of the coupling constant J, € R for each function node in the
factor graph.

An ensemble is defined by a probability distribution over the space of samples.
In all cases which we shall consider here, the couplings are assumed to be iid
random variables, independent of the factor graph. The most studied cases are
Gaussian J,,’s, or J, taking values {+1,—1} with equal probability (in jargon
this is called the +J model). More generally, we shall denote by P(J) the pdf of
Ja-

One can distinguish two large families of spin glass ensembles which have
attracted the attention of physicists: ‘realistic’ and ‘mean field’ ones. While in
the first case the focus is on modeling actual physical systems, one hopes that

{se:SGensembles}
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mean field models can be treated analytically, and that this understanding offers
some clues of the physical behavior of real materials.

Physical spin glasses are real three-dimensional (or, in some cases, two-
dimensional) systems. The main feature of realistic ensembles is that they retain
this geometric structure: a position z in d dimensions can be associated with
each spin. The interaction strength (the absolute value of the coupling J) de-
cays rapidly with the distance among the positions of the associated spins. The
Edwards-Anderson model is a prototype (and arguably the most studied ex-
ample) of this family. The spins are located on the vertices of a d-dimensional
hyper-cubic lattice. Neighboring spins interact, through two-body interactions
(i.e. Pmax = 2 in Eq. (12.1)). The corresponding factor graph is therefore non-
random: we refer to Fig. 9.7 for an example with d = 2. The only source of
disorder are the random couplings J;; distributed according to P(J). It is cus-
tomary to add a uniform magnetic field (i.e. a p = 1 term with .J; non-random).
Very little is known about these models when d > 2, and most of our knowledge
comes from numerical simulations. They suggest the existence of a glass phase
when d > 3 but this is not proven yet.

There exists no general mathematical definition of mean field models. Fun-
damentally, they are models in which one expects to be able obtain exact ex-
pressions for the asymptotic (N — o0) free energy density, by optimizing some
sort of large deviation rate function (in V). The distinctive feature allowing for a
solution in this form, is the lack of any finite-dimensional geometrical structure.

The p-spin glass model discussed in Sec. 8.2 (and in particular the p = 2 case,
which is the SK model) is a mean field model. Also in this case the factor graph
is non-random, and the disorder enters only in the random couplings. The factor
graph is a regular bipartite graph. It contains (JZ ) function nodes, one for each
p-uple of spins; for this reason it is called fully connected. Each function node
has degree p, each variable node has degree (];[__11 ) Since the degree diverges
with N, the coupling distribution P(J) must be scaled appropriately with NV, cf.
Eq. (8.25).

Fully connected models are among the best understood in the mean field
family. They can be studied either via the replica method, as in Chapter 8, or
via the cavity method that we shall develop in the next Chapters. Some of the
predictions from these two heuristic approaches have been confirmed rigorously.

One unrealistic feature of fully connected models is that each spin interacts
with a diverging number of other spins (the degree of a spin variable in the
factor graph diverges in the thermodynamic limit). In order to eliminate this
feature, one can study spin glass models on Erdos-Rényi random graphs with
finite average degree. Spins are associated with vertices in the graph and p = 2
interactions (with couplings that are iid random variables drawn from P(J)) are
associated with edges in the graph. The generalization to p-spin interactions is
immediate. The corresponding spin glass models will be named diluted spin
glasses (DSG). We define the ensemble DSGy (p, M, P) as follows:

e Generate a factor graph from the Gy (p, M) ensemble;
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e For every function node a in the graph, connecting spins f,...,4,, draw
a random coupling Ji‘f,...,ig from the distribution P(J), and introduce an
energy term,;

Eo(apq) = —Jig,...ia0ig ** Tia ; (12.2)

e The final energy is F(g) = 22/[:1 E.(cs,)-

The thermodynamic limit is taken by letting N — oo at fixed « = M/N.

As in the case of random graphs, one can introduce some variants of this def-
inition. In the ensemble DSG(p, v, P), the factor graph is drawn from Gy (p, «):
each p-uple of variable nodes is connected by a function node independently
with probability a/(g). As we shall see, the ensembles DSGy(p, M,P) and
DSGx (p, «, P) have the same free energy per spin in the thermodynamic limit (as
well as several other thermodynamic properties in common). One basic reason
of this phenomenon is that any finite neighborhood (in the sense of Sec. 9.5.1)
of a random site ¢ has the same asymptotic distribution in the two ensembles.

Obviously, any ensemble of random graphs can be turned into an ensem-
ble of spin glasses by the same procedure. Some of these ensembles have been
considered in the literature. Mimicking the notation defined in Section 9.2, we
shall introduce general diluted spin glasses with constrained degree profiles, to
be denoted by DSGy (A, P, P), as the ensemble derived from the random graphs
in Dy (A, P).

Diluted spin glasses are a very interesting class of systems, which are in-
timately related to sparse graph codes and to random satisfiability problems,
among others. Our understanding of DSGs is intermediate between fully con-
nected models and realistic ones. It is believed that both the replica and cavity
methods allow to compute exactly many thermodynamic properties for most of
these models. However the number of these exact results is still rather small, and
only a fraction of these have been proved rigorously.

12.2 Spin glasses: Constraints and frustration

Spin glasses at zero temperature can be seen as constraint satisfaction problems.
Consider for instance a model with two-body interactions

E(g)=—- Y Jyoio;, (12.3)
(i,4)€€

where the sum is over the edge set £ of a graph G (the corresponding factor
graph is obtained by associating a function node a to each edge (ij) € £). At
zero temperature the Boltzmann distribution is concentrated on those configura-
tions which minimize the energy. Each edge (i, 7) induces therefore a constraint
between the spins o; and o;: they should be aligned if J;; > 0, or anti-aligned
if J;; < 0. If there exists a spin configuration which satisfies all the constraint,
the ground state energy is Egs = — 3 (; /ce [Jij| and the sample is said to be
unfrustrated (see Chapter 2.6). Otherwise it is frustrated: a ground state is a
spin configuration which violates the minimum possible number of constraints.

{se:SGgauge}

{eq:ESGdef}
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As shown in the Exercise below, there are several methods to check whether
an energy function of the form (12.3) is frustrated.

Exercise 12.4 Define a ‘plaquette’ of the graph as a circuit iy,4s2,...,77,71
such that no shortcut exists: Vr,s € {1,..., L}, the edge (i,,%s) is absent from
the graph whenever  # s £ 1 (mod L). Show that a spin glass sample is
unfrustrated if and only if the product of the couplings along every plaquette
of the graph is positive.

Exercise 12.5 Consider a spin glass of the form (12.3), and define the Boolean
variables @; = (1 — 0;)/2. Show that the spin glass constraint satisfaction
problem can be transformed into an instance of the 2-satisfiability problem.
[Hint: Write the constraint J;;0;0; > 0 in Boolean form using z; and z;.]

Since 2-SAT is in P, and because of the equivalence explained in the last
exercise, one can check in polynomial time whether the energy function (12.3)
is frustrated or not. This approach becomes inefficient to p > 3 because K-SAT
is NP-complete for K > 3. However, as we shall see in Chapter 77, checking
whether a spin glass energy function is frustrated remains a polynomial problem
for any p.

12.2.1  Gauge transformation

When a spin glass sample has some negative couplings but is unfrustrated, one
is in fact dealing with a ‘disguised ferromagnet’. By this we mean that, through
a change of variables, the problem of computing the partition function for such
a system can be reduced to the one of computing the partition function of a
ferromagnet. Indeed, by assumption, there exists a ground state spin configu-
ration o such that V(i,j) € & Jijofor > 0. Given a configuration g, define
7; = 007, and notice that 7; € {4+1,—1}. Then the energy of the configuration
is E(0) = Eu(1) = = > jee |Jij|7i7;. Obviously the partition function for the
system with energy function E,(-) (which is a ferromagnet since |J;;| > 0) is
the same as for the original system.

Such a change of variables is an example of a gauge transformation. In
general, such a transformation amounts to changing all spins and simultaneously
all couplings according to:

o; — o-l(é) =0;8 , Jij — ijﬁ) = Jijsisj , (12.4>

where s = {s1,...,sy} is an arbitrary configuration in {—1, 1}"V. If we regard the
partition function as a function of the coupling constants J = {.J;; : (ij) € £}:

Z[J] = Zexp g Z Jijoios | (12.5)

{o:} (ij)e€
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then we have
Z[J) = Z[J¥)]. (12.6)

The system with coupling constants J () is sometimes called the ‘gauge trans-
formed system’.

Exercise 12.6 Consider adding a uniform magnetic field (i.e. a linear term of
the form —B )", 0;) to the energy function (12.3), and apply a generic gauge
transformation to such a system. How must the uniform magnetic field be
changed in order to keep the partition function unchanged? Is the new magnetic
field term still uniform?

Exercise 12.7 Generalize the above discussion of frustration and gauge trans-
formations to the £.J 3-spin glass (i.e. a model of the type (12.1) involving only
terms with p = 3).

12.2.2  The Nishimori temperature. . .

In many spin glass ensembles, there exists a special temperature (called the
Nishimori temperature) at which some thermodynamic quantities, such as
the internal energy, can be computed exactly. This nice property is particularly
useful in the study of inference problems (a particular instance being symbol
MAP decoding of error correcting codes), since the Nishimori temperature natu-
rally arises in these context. There are in fact two ways of deriving it: either as an
application of gauge transformations (this is how it was discovered in physics),
or by mapping the system onto an inference problem.

Let us begin by taking the first point of view. Consider, for the sake of
simplicity, the model (12.3). The underlying graph G = (V,€) can be arbitrary,
but we assume that the couplings J;; on all the edges (ij) € £ are iid random
variables taking values J;; = 41 with probability 1 — p and J;; = —1 with
probability p. We denote by E the expectation with respect to this distribution.

The Nishimori temperature for this system is given by T = 1/0n, where
On = %log u;fp). It is chosen in such a way that the coupling constant distribu-
tion P(J) satisfies the condition:

P(J)=e NI p(—]). (12.7)
An equivalent way of stating the same condition consists in writing

efnJ

= ooty 20 (12.8)

P(J)

where Q(|.J]) denotes the distribution of the absolute values of the couplings (in
the present example, this is a Dirac’s delta on |J| = 1).

{se:Nishimori}

{eq:NishimoriCondition}

{eq:gasgsym}
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Let us now turn to the computation of the average internal energy®' U =
E(E(0)). More explicitly

ver ﬁ %: ( - (zkl:) Jklakal) e T Tsoes 4 (12.9)

In general, it is very difficult to compute U. It turns out that at the Nishimori
temperature, the gauge invariance allows for an easy computation. The average
internal energy U can be expressed as U = E{Zy[J]/Z[J]}, where Zy[J] =
=20 2oty Teokor [ i) efnJisoio;,

Let s € {—1,1}". By an obvious generalization of the principle (12.6), we
have Zy[J®)] = Zy[J], and therefore

U=2"N Y E{Zy[19)/211 9]} (12.10)

If the coupling constants J;; are iid with distribution (12.8), then the gauge
transformed constants JZ-'j = Ji(f) are equally independent but with distribution

7 eﬁNJz‘jSiSj
Pelii) = 5oy
Equation (12.10) can therefore be written as U = 27V > Es{ZulJ]/Z[J]},
where E, denotes expectation with respect to the modified measure Pg(J;;).

Using Eq. (12.11), and denoting by E, the expectation with respect to the uni-
form measure over J;; € {£1}, we get

(12.11)

eﬁNJz‘jSiSj ZU[J]
U=2"VY"E — == = 12.12
Z 0 H cosh By Z[J] ( )
El (i5)
es Zuld

= 27N (cosh An) TI¥E, ZSZGBN Liig) Jiasisi ZU[[J]] = (1213)
= 27N (cosh Bx) ¥ {2 [ ]} - (12.14)
It is easy to compute EgZy[J] = —2V (cosh Bx)I€1=1 sinh By. This implies our

final result for the average energy at the Nishimori temperature:
U = —|&| tanh(fN) - (12.15)

Notice that this simple result holds for any choice of the underlying graph. Fur-
thermore, it is easy to generalize it to other choices of the coupling distribution
satisfying Eq. (12.8) and to models with multi-spin interactions of the form
(12.1). An even wider generalization is treated below.

31The same symbol U was used in Chapter 2 to denote the internal energy (F(c)) (instead
of its average). There should be no confusion with the present use.

{eq:gasgU}
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12.2.3 ... and its relation with probability

The calculation of the internal energy in the previous Section is straightforward
but somehow mysterious. It is hard to grasp what is the fundamental reason
that make things simpler at the Nishimori temperature. Here we discuss a more
general derivation, in a slightly more abstract setting, which is related to the
connection with inference mentioned above.

Consider the following process. A configuration ¢ € {£1} is chosen uniformly
at random, we call Py(o) the corresponding distribution. Next a set of coupling
constants J = {J,} is chosen according to the conditional distribution

P(J]g) = e P2 Qo(J) . (12.16)

Here E;(c¢) is an energy function with coupling constants J, and Qo (J) is some
reference measure (that can be chosen in such a way that the resulting P(J|o)
is normalized). This can be interpreted as a communication process. The infor-
mation source produces the message ¢ uniformly at random, and the receiver
observes the couplings J.

The joint distribution of .J and ¢ is P(J, ) = e~ P& Qy(J)Py(c) We shall
denote expectation with respect to the joint distribution by Av in order to dis-
tinguish it from the thermal and quenched averages.

We assume that this process enjoys a gauge symmetry (this defines the
Nishimori temperature in general). By this we mean that, given s € {£1}%,
there exists an invertible mapping J — J® such that Qo(J®)) = Qy(J) and
E ;. (c®) = Ej(o). Then it is clear that the joint probability distribution of
the coupling and the spins, and the conditional one, enjoy the same symmetry

P(c®), J®) = P(0,]) ; P(ID|e®) = P(Jlo). (12.17)
Let us introduce the quantity

UJ) = Av(E; (o ZIP’ alJ)E;(c (12.18)

and denote by U(g,) = > ;P(J|oy)U(J). This is nothing but the average in-
ternal energy for a disordered system with energy function E;(g) and coupling
distribution P(J|g,). For instance, if we take o, as the ‘all-plus’ configuration,
Qo(J) proportional to the uniform measure over {£1}¢, and E (o) as given
by Eq. (12.3), then U(g,) is exactly the quantity U that we computed in the
previous Section.

Gauge invariance implies that 2(J) = U(J®)) for any s, and U(c,) does not
depend upon g,. We can therefore compute U = U(g,) by averaging over g,.

‘We obtain
U = ZIP’O o ZIP’ Jlog) Z]P’ al)E;(a

= ZIP’ (a,])E;(c Z]P’ (Jlog)Es (o), (12.19)
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where we used gauge invariance, once more, in the last step. The final expression
is generally easy to evaluate since the coublings J, are generically independent
under P(J|o,) In particular, it is straightforward to recover Eq. (12.15) for the
case treated in the last Section.

Exercise 12.8 Consider a spin glass model on an arbitrary graph, with en-
ergy given by (12.3), and iid random couplings on the edges, drawn from
the distribution P(J) = Po(|J|)e?/. Show that the Nishimori inverse tem-
perature is Oy = a, and that the internal energy at this point is given by:
U= —[€|>,;Po(|J]|) J sinh(BnJ). In the case where P is a Gaussian distri-
bution of mean Jy, show that U = —|&|Jp.

12.3 What is a glass phase?
12.3.1  Spontaneous local magnetizations

In physics, a ‘glass’ is defined through its dynamical properties. For classical spin
models such as the ones we are considering here, one can define several types
of physically meaningful dynamics. For definiteness we use the single spin flip
Glauber dynamics defined in Section 4.5, but the main features of our discussion
should be robust with respect to this choice. Consider a system at equilibrium
at time 0 (i.e., assume ¢ (0) to be distributed according to the Boltzmann distri-
bution) and denote by ()4 () the expectation with respect to Glauber dynamics
conditional to the initial configuration. Within a ‘solid’ 32 phase, spins are cor-
related with their initial value on long time scales:

Jim lim (0i(t))(0) = Mig(0) 7 (00) - (12.20)
In other words, on arbitrary long but finite (in the system size) time scales, the
system converges to a ‘quasi-equilibrium’ state (for brevity ‘quasi-state’) with
local magnetizations m; (o) depending on the initial condition.

The condition (12.20) is for instance satisfied by a d > 2 Ising ferromagnet
in zero external field, at temperatures below the ferromagnetic phase transition.
In this case we have either m; 0y = M(3), or m; o0y = —M() depending
on the initial condition (here M(3) is the spontaneous magnetization of the
system). There are two quasi-states, invariant by translation and related by a
simple symmetry transformation. If the different quasi-states are not periodic,
nor related by any such transformation, one may speak of a glass phase.

We shall discuss in greater detail the dynamical definition of quasi-states
in Chapter ??7. It is however very important to characterize the glass phase
at the level of equilibrium statistical mechanics, without introducing a specific
dynamics. For the case of ferromagnets we have already seen the solution of
this problem in Chapter 2. Let (.)p denote expectation with respect to the

32The name comes from the fact that in a solid the preferred position of the atoms are time
independent, for instance in a crystal they are the vertices of a periodic lattice
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Boltzmann measure for the energy function (12.1), after a uniform magnetic
field has been added. One then defines the two quasi-states by:
i+ = i li B - 12.21
it = pIoy NEHOO<O—Z>B ( )
A natural generalization to glasses consists in adding a small magnetic field
which is not uniform. Let us add to the energy function (12.1) a term of the form
—e ", si0; where s € {1} is an arbitrary configuration. Denote by (). s the
expectation with respect to the corresponding Boltzmann distribution and let

mis = lim lim (07)es - (12.22)
The Edwards-Anderson order parameter, defined as
1
= lim lim — i) 12.2
qEA ei»I(l)’l:I: Ngnoo N Z<0’l>€’§ ’ ( 3)
3

where s is an equilibrium configuration, then signals the onset of the spin glass
phase.

The careful reader will notice that the Eq. (12.20) is not really completely
defined: How should we take the N — oo limit? Do the limits exist, how does
the result depend on g7 These are subtle questions. They underly the problem of
defining properly the pure states (extremal Gibbs states) in disordered systems.
In spite of many interesting efforts, there is no completely satisfactory definition
of pure states in spin glasses.

Instead, all the operational definitions of the glass phase rely on the idea
of comparing several equilibrated (i.e. drawn from the Boltzmann distribution)
configurations of the system: one can then use one configuration as defining the
direction of the polarizing field. This is probably the main idea underlying the
success of the replica method. We shall explain below two distinct criteria, based
on this idea, which can be used to define a glass phase. But we will first discuss
a criterion of stability of the high temperature phase.

12.3.2  Spin glass susceptibility

Take a spin glass sample, with energy (12.1), and add to it a local magnetic field
on site i, B;. The magnetic susceptibility of spin j with respect to the field B;
is defined as the rate of change of m; = (0;)p, with respect to B;:

o dmj
Xji = 4B, s

= B{oioj) — (oi){o5)) » (12.24)

where we used the fluctuation dissipation relation (2.44).

The uniform (ferromagnetic) susceptibility defined in Sec. 2.5.1 gives the
rate of change of the average magnetization with respect to an infinitesimal
global uniform field: y = % Ez ; Xji- Consider a ferromagnetic Ising model as

{se:SGsusceptibility}
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introduced in Sec. 2.5. Within the ferromagnetic phase (i.e. at zero external field
and below the critical temperature) x diverges with the system size N. One way
to understand this divergence is the following. If we denote by m(B) the infinite
volume magnetization in a magnetic field B, then

x = Jim %[ (B) —m(~B)] = lim M/B=oo, (12.25)
within the ferromagnetic phase.

The above argument relates the susceptibility divergence with the existence
of two distinct pure states of the system (‘plus’ and ‘minus’). What is the ap-
propriate susceptibility to detect a spin glass ordering? Following our previous
discussion, we should consider the addition of a small non-uniform field B; = s;e.
The local magnetizations are given by

(0i)es = (Tido+ €Y xijs; +O(e?). (12.26)
J
As suggested by Eq. (12.25) we compare the local magnetization obtained by
perturbing the system in two different directions s and s’

<Ui>e,s g; es’ €ZX17 “FO( ) (1227)

How should we choose s and s’? A simple choice takes them independent and
uniformly random in {£1}"; let us denote by E, the expectation with respect
to this distribution. The above difference becomes therefore a random variable
with zero mean. Its second moment allows to define spin glass susceptibility
(sometimes called non-linear susceptibility):

. 1 2
XSG = lg% IN2 ZES (<Ui>e,§ - <Ui>e,§’) (12.28)

3

This is somehow the equivalent of Eq. (12.25) for the spin glass case. Using
Eq. (12.27) one gets the expression xsg = % D ((xij)?, that is, thanks to the
fluctuation dissipation relation

2 2
XsG = 7 Z [{oia5) = {oi)(a;)]" - (12.29)

A necessary condition for the system to be in a ‘normal’ paramagnetic phase 33

is that xsg remain finite when N — oo. We shall see below that this necessary
condition of local stability is not always sufficient.

330ne could construct models with ‘exotic’ paramagnetic phases, and a divergent spin glass
susceptibility if (for instance) coupling distribution has infinite second moment. We disregard
such situations.
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Exercise 12.9 Another natural choice would consist in choosing s and s’ as
independent configurations drawn from Boltzmann’s distribution. Show that
with such a choice one would get xsc = (1/N)>_; ; x XijXjkXki- This suscep-
tibility has not been studied in the literature, but it is reasonable to expect
that it will lead generically to the same criterion of stability as the usual one
(12.29).

12.3.3  The overlap distribution function P(q)

One of the main indicators of a glass phase is the overlap distribution, which we
defined in Section 8.2.2, and discussed on some specific examples. Given a general
magnetic model of the type (12.1), one generates two independent configurations
o and ¢’ from the associated Boltzmann distribution and consider their overlap
q(o,0’) = N~'3". 00l The overlap distribution P(q) is the distribution of
q(o,d’) when the couplings and the underlying factor graph are taken randomly

from their ensemble. Its moments are given by3*:

/P(q)qr dg = E{; > dow .‘.air>2} . (12.30)

1yeeeslr

In particular, the first moment [ P(q) ¢ dg =N -1 > m? is the expected overlap

and the variance Var(q) = [P(q) ¢* dg— UP(q) q dq} % is related to the spin glass
susceptibility:

Var(a) = B{ 573 3 l{o0,) — (o) 03)]" } = s (1231)

.7

How is a glass phase detected through the behavior of the overlap distribution
P(q)? We will discuss here some of the features emerging from the solution of
mean field models. In the next Section we will see that the overlap distribution is
in fact related to the idea, discussed in Section 12.3.1, of perturbing the system
in order to explore its quasi-states.

Generically®, at small 3, a system of the type (12.1) is found in a ‘para-
magnetic’ or ‘liquid’ phase. In this regime P(q) concentrates as N — oo on a
single (deterministic) value ¢(3). With high probability, two independent config-
urations ¢ and ¢’ have overlap ¢(3). In fact, in such a phase, the spin glass ysa
susceptibility is finite, and the variance of P(q) vanishes therefore as 1/N.

For [ larger than a critical value f3., the distribution P(gq) may acquire some
structure, in the sense that several values of the overlap have non-zero probability

34Notice that, unlike in Section 8.2.2, we denote here by P(q) the overlap distribution for a
finite system of size N, instead of its N — oo limit.

35This expression should be interpreted as ‘in most model of interest studied until now’ and
subsumes a series of hypotheses. We assume, for instance, that the coupling distribution P(.J)
has finite second moment.

{eq:Pdeq2ndmom}
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tion.

in the N — oo limit. The temperature T, = 1/3. is called the static (or
equilibrium) glass transition temperature. For 5 > [, the system is in an
equilibrium glass phase.

How does P(q) look like at 8 > (.7 Let us focus here on its asymptotic
(N — o0) limit. Generically, the transition falls into one of the following two
categories, the names of which come from the corresponding replica symmetry
breaking pattern found in the replica approach:

(4)

(i)

Continuous (“Full replica symmetry breaking -FRSB”) glass transition.
In Fig. 12.2 we sketch the behavior of the thermodynamic limit of P(q)
in this case. The delta function present at 3 < . ‘broadens’ for g > f,
giving rise to a distribution with support in some interval [go(3), ¢1(8)]. The
width ¢1(8) — qo(8) vanishes continuously when | .. Furthermore, the
asymptotic distribution has a continuous density which is strictly positive
in (go(8),1(8)) and two discrete (delta) contributions at go(3) and ¢1(3).
This type of transition has a ‘precursor’. If we consider the N — oo limit
of the spin glass susceptibility, this diverges as 8 T (.. This phenomenon
is quite important for identifying the critical temperature experimentally,
numerically and analytically.

Discontinuous (“1RSB”) glass transition. Again, the asymptotic limit of
P(q) acquires a non trivial structure in the glass phase, but the scenario
is different. When § increases above [, the §-peak at ¢(83), which had
unit mass at 3 < 3., becomes a peak at qo(3), with a mass 1 — z(3) < 1.
Simultaneously, a second d-peak appears at a value of the overlap ¢;(5) >

{fig:pdeq_continu}
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qo(B) with mass x(8). As 8 | B, q(8) — ¢(5.) and z(3) — 0. Unlike
in a continuous transition, the width ¢;(8) — qo(8) does not vanish as
B | B. and the open interval |qo(8), ¢1(0)[ has vanishing probability in the
N — oo limit. Furthermore, the thermodynamic limit of the spin glass
susceptibility, xsg has a finite limit as 8 T §.. This type of transition has
no ‘simple’ precursor (but we shall describe below a more subtle indicator).

The two-peaks structure of P(g) in a discontinuous transition has a partic-
ularly simple geometrical interpretation. When two configurations ¢ and ¢’ are
chosen independently with the Boltzmann measure, their overlap is (with high
probability) either approximately equal to go or to ¢i. In other words, their
Hamming distance is either N(1 —g1)/2 or N(1 — qo)/2. This means that the
Boltzmann measure p(g) is concentrated in some regions of the Hamming space
(clusters). With high probability, two independent random configurations in
the same cluster have distance (close to) N(1 —¢1)/2, and two configurations in
distinct clusters have distance (close to) N(1 — go)/2. In other words, while the
overlap does not concentrate in probability when ¢ and ¢’ are drawn from the
Boltzmann measure, it does when this measure is restricted to one cluster. In a
more formal (but still imprecise) way, we might write

p(o) =Y Wapa(o), (12.32)

{fig:pdeq_1step}
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where the p, () are probability distributions concentrated onto a single cluster,
and W, are the weights attributed by the Boltzmann distribution to each cluster.

According to this interpretation, z(3) = EY._ W2. Notice that, since 2(3) >
0 for B > [, the weights are sizeable only for a finite number of clusters (if
there were R clusters, all with the same weight W,, = 1/R, one would have
() = 1/R). This is what we found already in the REM, as well as in the
replica solution of the completely connected p-spin model, cf. Sec. 8.2.

Generically, clusters exist already in some region of temperatures above T¢,
but the measure is not yet condensed on a finite number of them. In order to
detect the existence of clusters in this intermediate temperature region, one needs
some of the other tools described below.

There is no clear criterion that allows to distinguish a priori between systems
undergoing one or the other type of transition. The experience gained on models
solved via the replica or cavity methods indicated that a continuous transition
typically occurs in standard spin glasses with p = 2-body interactions, but also,
for instance, in the vertex-cover problem. A discontinuous transition is instead
found in structural glasses, generalized spin glasses with p > 3, random satisfia-
bility and coloring. To complicate things, both types of transitions may occur in
the same system at different temperatures (or varying some other parameter).
This may lead to a rich phase diagram with several glass phases of different
nature.

It is natural to wonder whether gauge transformations may give some in-
formation on P(q). Unfortunately, it turns out that the Nishimori temperature
never enters a spin glass phase: the overlap distribution at Ty is concentrated
on a single value, as suggested in the next exercise.

Exercise 12.10 Using the gauge transformation of Sec. 12.2.1, show that,
at the Nishimori temperature, the overlap distribution P(q) is equal to the
distribution of the magnetization per spin m(c) = N='3", 0;. (In many spin
glass models one expects that this distribution of magnetization per spin obeys
a large deviation principle, and that it concentrates onto a single value as
N — 0.)

12.3.4  From the overlap distribution to the e-coupling method

The overlap distribution is in fact related to the idea of quasi-states introduced in
Sec. 12.3.1. Let us again use a perturbation of the Boltzmann distribution which
adds to the energy a magnetic field term —e ), s;0,, where s = (s1,...,5n) is a
generic configuration. We introduce the e-perturbed energy of a configuration o

as
N

E.s(0) = B(a) =€) sio; . (12.33)

i=1

Is is important to realize that both the original energy F(o) and the new term
—e ), 5i0; are extensive, i.e. they grow proportionally to N as N — oco. Therefore
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in this limit the presence of the perturbation can be relevant. The e-perturbed
Boltzmann measure is

1
Pes(0) = — e PFesle) (12.34)
€8
In order to quantify the effect of the perturbation, let us measure the expected
distance between ¢ and s

N
d(§7 6) = % Z %(]— - Si<0i>§,e) (1235)

(notice that ). (1 — s;0;)/2 is just the number of positions in which ¢ and s
differ). For € > 0 the coupling between o and s is attractive, for e < 0 it is
repulsive. In fact it is easy to show that d(s, €) is a decreasing function of e.

In the e-coupling method, s is taken as a random variable, drawn from the
(unperturbed) Boltzmann distribution. The rationale for this choice is that in
this way s will point in the directions corresponding to quasi-states. The average
distance induced by the e-perturbation is then obtained, after averaging over s
and over the choice of sample:

d(e) = E{ 3 % e PEE s, e)} . (12.36)

There are two important differences between the e-coupling method computation
of the overlap distribution P(q): () When computing P(q), the two copies of
the system are treated on equal footing: they are independent and distributed
according to the Boltzmann law. In the e-coupling method, one of the copies
is distributed according to Boltzmann law, while the other follows a perturbed
distribution depending on the first one. (i7) In the e-coupling method the N — oo
limit is taken at fized e. Therefore, the sum in Eq. (12.36) can be dominaded by
values of the overlap ¢(s, o) which would have been exponentially unlikely for the
original (unperturbed) measure. In the N — oo limit of P(q), such values of the
overlap are given a vanishing weight. The two approaches provide complementary
informations.

Within a paramagnetic phase d(e) remains a smooth function of € in the
N — oo limit: perturbing the system does not have any dramatic effect. But in
a glass phase d(e) becomes singular. Of particular interest are discontinuities at
e = 0, that can be detected by defining

A= lim lim d(e)— lim lim d(e). (12.37)
e—0+ N—oo e—0— N—oo
Notice that the limit N — oo is taken first: for finite IV there cannot be any
discontinuity.
One expects A to be non-zero if and only if the system is in a ‘solid’” phase.
One can think the process of adding a positive € coupling and then letting it to
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0 as a physical process. The system is first forced in an energetically favorable
configuration (given by s). The forcing is then gradually removed and one checks
whether any memory of the preparation is retained (A > 0), or, vice-versa, the
system ‘liquefies’ (A = 0).

The advantage of the e-coupling method with respect to the overlap distri-
bution P(q) is twofold:

e In some cases the dominant contribution to the Boltzmann measure comes
from several distinct clusters, but a single one dominates over the others.
More precisely, it may happen that the weights for sub-dominant clusters
scales as W, = exp[—O(N?)], with # €]0, 1[. In this case, the thermody-
namic limit of P(q) is a delta function and does not allow to distinguish
from a purely paramagnetic phase. However, the e-coupling method iden-
tifies the phase transition through a singularity of d(e) at e = 0.

e One can use it to analyze a system undergoing a discontinuous transition,
when it is in a glass phase but in the T > T regime. In this case, the
existence of clusters cannot be detected from P(q) because the Boltzmann
measure is spread among an exponential number of them. This situation
will be the object of the next Section.

12.3.5 Clustered phase of 1RSB systems and the potential

The 1RSB equilibrium glass phase corresponds to a condensation of the mea-
sure on a small number of clusters of configurations. However, the most striking
phenomenon is the appearance of clusters themselves. In the next Chapters we
will argue that this has important consequences on Monte Carlo dynamics as
well as on other algorithmic approaches to these systems. It turns out that the
Boltzmann measure splits into clusters at a distinct temperature Ty > T¢.. In
the region of temperatures [T¢, Tq] we will say that the system is in a clustered
phase (or, sometimes, dynamical glass phase). The phase transition at Ty
will be referred to as clustering or dynamical transition. In this regime, an
exponential number of clusters N = e/V* carry a roughly equal weight. The rate
of growth ¥ is called complexity3® or configurational entropy.

The thermodynamic limit of the overlap distribution P(g) does not show
any signature of the clustered phase. In order to understand this point, it is
useful to work out an toy example. Assume that the Boltzmann measure is
entirely supported onto ezactly eN* sets of configurations in {41} (each set is a
clusters), denoted by « = 1,.. ., eV* and that the Boltzmann probability of each
of these sets is w = e"N*. Assume furthermore that, for any two configurations
belonging to the same cluster o, 0’ € «, their overlap is ¢(o, o’) = g1, while if they
belong to different clusters o € «, 0’ € o/, @ # ' their overlap is ¢(o, 0’) = qo <
q1- Although it might be actually difficult to construct such a measure, we shall
neglect this for a moment, and compute the overlap distribution. The probability

36This use of the term ‘complexity’, which is customary in statistical physics, should not be
confused with its use in theoretical computer science.
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that two independent configurations fall in the same cluster is eN>w? = e~ N>,
Therefore, we have
P(g)=(1—e")d(g—q0) +e V(g —aq1), (12.38)

which converges to §(¢ — qo) as N — oo: a single delta function as in the para-
magnetic phase.

A first signature of the clustered phase is provided by the e-coupling method
described in the previous Section. The reason is very clear if we look at Eq. (12.33):
the epsilon coupling ‘tilts’ the Boltzmann distribution in such a way that un-
likely values of the overlap acquire a finite probability. It is easy to compute the
thermodynamic limit d,(€) = limy_, o d(€). We get

R e A e

where €. = 3/8(q1 —qo). As T | T, clusters becomes less and less numerous and
3 — 0. Correspondingly, €. | 0 as the equilibrium glass transition is approached.

The picture provided by this toy example is essentially correct, with the
caveats that the properties of clusters will hold only within some accuracy and
with high probability. Nevertheless, one expects d,(¢) to have a discontinuity at
some €, > 0 for all temperatures in an interval |T¢, T}]. Furthermore ¢, | 0 as
T\|T..

In general, the temperature T computed through the e-coupling method
does not coincide with the clustering transition. The reason is easily understood.
As illustrated by the above example, we are estimating the exponentially small
probability P(g|s, J) that an equilibrated configuration ¢ has overlap ¢ with the
reference configuration s, in a sample J. In order to do this we compute the
distance d(e) which can be expressed by taking the expectation with respect
to s and J of a rational function of P(q|s,.JJ). As shown several times since
Chapter 5, exponentially small (or large) quantities, usually do not concentrate
in probability, and d(¢) may be dominated by exponentially rare samples. We
also learnt the cure for this problem: take logarithms! We therefore define®” the
potential

V(o) = = Jim 55B.s {logPlals D) (12.40)

Here (as in the e-coupling method) the reference configuration is drawn from the
Boltzmann distribution. In other words

Eﬁ’l(...):Ei{%ze—ﬁff‘i(ﬁ)(...)}. (12.41)

If, as expected, logP(q|s,J) concentrates in probability, one has P(q|s,J) =
e_NV(Q)

370ne should introduce a resolution, so that the overlap is actually constrained in some
window around ¢. The width of this window can be let to 0 after N — oo.
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Fia. 12.4. Qualitative shapes of the potential V' (q) at various temperatures.
When the temperature is very high (not shown) V(q) is convex. Below T' = Ty,
it develops a secondary minimum. The height difference between the two minima
is V(q1) — V(qo) = T2. In the case shown here ¢o = 0 is independent of the
temperature.

Exercise 12.11 Consider the following refined version of the
toy model (12.38): P(q¢ls,JJ) = (1 — e_NE@’l))qu(é,l);bo/]vﬁ(q) +
e NEEING, (o 1 np(q), Where Gap is a Gaussian distribution of
mean a and variance b. We suppose that bg,b; are constants, but
(s, J),q0(s,J),q1(s,J) fluctuate as follows: when J and s are distributed ac-
cording to the correct joint distribution (12.41), then (s, J), qo(s,J), q1(s, J)
are independent Gaussian random variable of means respectively 3, Gy, q; and
variances %2 /N, 6q3 /N, 6q% /N.

Assuming for simplicity that 6%2 < 2%, compute P(q) and d(e) for this
model. Show that the potential V'(g) is given by two arcs of parabolas:

_ = \E _ =\ .
V(q):min{(q 2b((1)0) , 2151) +%E} (12.42)

The potential V(g) has been computed exactly, using the replica method,
only in a small number of cases, mainly fully connected p-spin glasses. Here
we shall just mention the qualitative behavior that is expected on the basis of
these computations. The result is summarized in Fig. 12.4. At small enough /3
the potential is convex. Increasing (3 one first encounters a value §, where V(q)
stops to be convex. When 5 > (4 = 1/Tq, V(q) develops a secondary minimum,
at ¢ = ¢1(8) > qo(B). This secondary minimum is in fact an indication of the

{exercise:RandomSigma}
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existence of an exponential number of clusters, such that two configurations in
the same cluster typically have overlap ¢, while two configurations in distinct
clusters have overlap ¢g. A little thought shows that the difference between the
value of the potential at the two minima gives the complexity: V(q1) — V(qo) =
3.

In models in which the potential has been computed exactly, the temperature
Tq computed in this way has been shown to coincide with a dramatic slowing
down of the dynamics. More precisely, a properly defined relaxation time for
Glauber-type dynamics is finite for T > Ty and diverges exponentially in the
system size for T' < Ty.

12.3.6  Cloning and the complexity function

When the various clusters don’t have all the same weight, the system is most
appropriately described through a complexity function. Consider a cluster of
configurations, called «. Its free energy F,, can be defined by restricting the parti-
tion function to configurations in cluster . One way of imposing this restriction
is to chose a reference configuration g, € «, and restricting the Boltzmann sum
to those configurations ¢ whose distance from g, is smaller than N¢. In order
to correctly identify clusters, one has to take (1 —¢1)/2 < < (1 —qo)/2.

Let N(f) be the number of clusters such that £, = N f (more precisely, this
is an un-normalized measure attributing unit weight to the points F,/N). We
expect it to satisfy a large deviations principle of the form

Ns(f) = exp{NZ(3, )} . (12.43)

The rate function X(f, f) is the complexity function. If clusters are defined as
above, with the cut-off 6 in the appropriate interval, they are expected to be
disjoint up to a subset of configurations of exponentially small Boltzmann weight.
Therefore the total partition function is given by:

2= e = /eN[E(B,f)—Bf] df = NEGLI=6F) (12.44)

where we applied the saddle point method as in standard statistical mechan-
ics calculations, cf. Sec. 2.4. Here f. = f.(5) solves the saddle point equation
0% /0f = B.

For several reasons, it is interesting to determine the full complexity func-
tion 3(0, f), as a function of f for a given inverse temperature 3. The cloning
method is a particularly efficient (although non-rigorous) way to do this com-
putation. Here we sketch the basic idea: several applications will be discussed in
the next Chapters. One begins by introducing m identical ‘clones’ of the initial
system. These are non-interacting except for the fact that they are constrained
to be in the same cluster. In practice one can constrain all their pairwise Ham-
ming distances to be smaller than N§, where (1 —¢1)/2 < 6 < (1 — qo)/2. The
partition function for the m clones systems is therefore
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Zn= > exp{-pB(EY) - gEE™)}. (12.45)
g(l),...,g(m)
where the prime reminds us that Q(l), ,..Q(m) stay in the same cluster. By

splitting the sum over the various clusters we have

Z,=Y Y eomatesne) (3 e*BE@)m - (12.46)

a g, glmecn oca

At this point we can proceed as for the calculation of the usual partition function
and obtain

Ty =Y e = / NIEB.N-BmI] qf = (NIEBH-pm] (12.47)

where f = f(ﬂ, m) solves the saddle point equation 9%/9f = Bm.
The free energy density per clone of the cloned system is defined as

<I>(,6’,m) = 71\/1511

L GmN log Z,, - (12.48)

The saddle point estimate (12.47) implies that ®(3,m) is related to X(8, f)
through a Legendre transform:

1 >
—ﬁ—mE(ﬁ,f) i = = pPm. (12.49)

(I)(ﬁvm):f 8f:

If we forget that m is an integer, and admit that ®(3, m) can be ‘continued’
to non-integer m, the complexity 3(3, f) can be computed from ®(3,m) by
inverting this Legendre transform33.

38The similarity to the procedure used in the replica method is not fortuitous. Notice however
that replicas are introduced to deal with quenched disorder, while cloning is more general
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Exercise 12.12 In the REM, the natural definition of overlap between two
configurations 4,5 € {1,...,2N} is Q(i,j) = d;;. Taking a configuration jo as
reference, the e-perturbed energy of a configuration j is E’(¢, j) = E; — Né€d; j, -
(Note the extra N multiplying e, introduced in order to ensure that the new
e-coupling term is typically extensive).

(i) Consider the high temperature phase where 8 < 3. = 2\/@ 2. Show that
the e-perturbed system has a phase transition at e = % — 4.

(¢¢) In the low temperature phase § > (., show that the phase transition
takes place at € = 0.

Therefore in the REM the clusters exist at any 3, and every cluster is reduced to
one single configuration: one must have (3, f) = log 2— f? independently of 3.
Show that this is compatible with the cloning approach, through a computation
of the potential ®(5,m):

_log2  pm < Be
@(ﬁ,m):{ Bm__T T (12.50)

log 2 for m > %

12.4 An example: the phase diagram of the SK model

Several mean field models have been solved using the replica method. Some-
times a model may present two or more glass phases with different properties.
Determining the phase diagram can be particularly challenging in these cases.

A classical example is provided by the SK model with ferromagnetically bi-
ased couplings. As in the other examples of this Chapter, this is a model for N
Ising spins o = (01,...,0n). The energy function is

_ZJijUin 5 (12.51)

where (7,7) are un-ordered couples, and the couplings .J;; are iid Gaussian ran-
dom variables with mean Jy/N and variance 1/N. The model somehow inter-
polates between the Curie-Weiss model treated in Sec. 2.5.2, corresponding to
Jo — 00, and the unbiased Sherrington-Kirkpatrick model, considered in Chap-
ter 8, for Jy = 0.

The phase diagram is plotted in terms of two parameters: the ferromagnetic
bias Jy, and the temperature 7. Depending on their values, the system is found in
one of four phases, cf. Fig. 12.5: paramagnetic (P), ferromagnetic (F), symmetric
spin glass (SG) and mixed ferromagnetic spin glass (F-SG). A simple character-
ization of these four phases is obtained in terms of two quantities: the average
magnetization and overlap. In order to define them, we must first observe that,
since F(g) = E(—0o), in the present model (o;) = 0 identically for all values of
Jo, and T'. In order to break this symmetry, we may add a magnetic field term
—B),0; and let B — 0 after the thermodynamic limit. We then define

{sec:PhaseDiag}
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Fic. 12.5. Phase diagram of the SK model in zero magnetic field. When the
temperature 7" and the ferromagnetic bias .Jy are varied, there exist four possible
phases: paramagnetic (P), ferromagnetic (F), spin glass (SG) and mixed ferro-
magnetic-spin glass (F-SG). The full lines separate these various phases. The
dashed line is the location of the Nishimori temperature.

m= Jlim lm Elo)p, 7= lim NliglooE(<0i>2B) : (12.52)
(which don’t depend on i because the coupling distribution is invariant under a
permutation of the sites). In the P phase one has m = 0, = 0; in the SG phase
m = 0,7 > 0, and in the F and F-SG phases one has m > 0,7 > 0.

A more complete description is obtained in terms of the overlap distribu-
tion P(q). Because of the symmetry under spin inversion mentioned above,
P(q) = P(—q) identically. The qualitative shape of P(q) in the thermodynamic
limit is shown in Fig. 12.6. In the P phase it consists of a single ¢ function with
unit weight at ¢ = 0: two independent configurations drawn from the Boltzmann
distribution have, with high probability, overlap close to 0. In the F phase, it
is concentrated on two symmetric values ¢(Jy,T) > 0 and —q(Jy,T) < 0, each
carrying weight one half. We can summarize this behavior by saying that a ran-
dom configuration drawn from the Boltzmann distribution is found, with equal
probability, in one of two different states. In the first one the local magnetiza-
tions are {m;}, in the second one they are {—m;}. If one draws two independent
configurations, they fall in the same state (corresponding to the overlap value
q(Jo, T) = N=13", m?) or in opposite states (overlap —q(Jo, T')) with probability
1/2. In the SG phase the support of P(q) is a symmetric interval [—gmax, Gmax]s
With ¢max = Gmax(Jo, T). Finally, in the F-SG phase the support is the union of
two intervals [—@¢max, —¢min] and [¢min, Gmax)|. Both in the SG and F-SG phases,
the presence of a whole range of overlap values carrying non-vanishing probabil-
ity, suggests the existence of a multitude of quasi-states (in the sense discussed
in the previous Section).

In order to remove the degeneracy due to the symmetry under spin inversion,
one sometimes define an asymmetric overlap distribution by adding a magnetic

{fig:sk_phasediag}
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F1G. 12.6. The typical shape of the P(q) function in each of the four phases of
the SK model ferromagnetically biased couplings.

field terms, and taking the thermodynamic limit as in Eq. (12.52):

Py(q) = Jim lim Pp(q). (12.53)

Somewhat surprisingly, it turns out that Py (q) = 0 for ¢ < 0, while Py (q) =
2P(q) for ¢ > 0. In other words P, (g) is equal to the distribution of the absolute
value of the overlap.

Exercise 12.13 Consider the Curie-Weiss model in a magnetic field, cf.
Sec. 2.5.2. Draw the phase diagram and compute the asymptotic overlap distri-
bution. Discuss its qualitative features for different values of the temperature
and magnetic field.

A few words for the reader interested in how one derives this diagram: Some
of the phase boundaries were already derived using the replica method in Exer-
cise 8.12. The boundary P-F is obtained by solving the RS equation (8.68) for
q, pt, m. The P-SG and F-M lines are obtained by the AT stability condition
(8.69). Deriving the phase boundary between the SG and F-SG phases is much
more challenging, because it separates glassy phases, therefore it cannot be de-
rived within the RS solution. It is known to be approximately vertical, but there
is no simple expression for it. The Nishimori temperature is deduced from the
condition (12.7): Ty = 1/Jy, and the line T' = 1/Jy is usually called ‘Nishimori
line’. The internal energy per spin on this line is U/N = —J/2. Notice that the
line does not enter any of the glass phases, as we know from general arguments.

An important aspect of the SK model is that the appearance of the glass
phase on the lines separating P from SG on the one hand, and F from F-SG
on the other hand is a continuous transition. Therefore it is associated with the
divergence of the non-linear susceptibility ysg. The following exercise, reserved
to the replica aficionados, sketches the main lines of the argument showing this.
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Exercise 12.14 Let us see how to compute the non-linear susceptibility of the

SK model, xsg = ﬁ—]\? >z ({oio) — (ai><oj>)2, with the replica method Show
that:

: /82 n - a a n - a a __cC
XSGZ}LIE%FZ 9 > (otatoial) - 3 > (ofatogas)

i#£j (ab) (abc)
N\ L
+ ( ) Z <0';10'§)ch0'51>
(abed)
_ N lim / T (dQusdras)e=NE@N AQ) , (12.54)
n—0

(ab)

where we follow the notations of (8.30), the sum over (ajas . .. ai) is understood
to run over all the k-uples of distinct replica indices, and

AQ = (Z)l > Q% - (;‘)1 > Quduc + () T Y Quednzss)

(ab) (abc) (abed)

Analyze the divergence of ygg along the following lines: The leading contribu-
tion to (12.54) should come from the saddle point and be given, in the high
temperature phase, by A(Qq.» = ¢q) where Q. = ¢ is the RS saddle point. How-
ever this contribution clearly vanishes when one takes the n — 0 limit. One
must thus consider the fluctuations around the saddle point. Each of the term
like QupQcq in A(Q) gives a factor % time the appropriate matrix element of
the inverse of the Hessian matrix. When this Hessian matrix is non-singular,
these elements are all finite and one obtains a finite result (The 1/N cancels
the factor N in (12.54)). But when one reaches the AT instability line, the
elements of the inverse of the Hessian matrix diverge, and therefore ysg also
diverges.

Notes

A review on the simulations of the Edwards Anderson model can be found in
(Marinari, Parisi and Ruiz-Lorenzo, 1997).

Mathematical results on mean field spin glasses are found in the book (Tala-
grand, 2003). A short recent survey is provided by (Guerra, 2005).

Diluted spin glasses were introduced in (Viana and Bray, 1988).

The implications of the gauge transformation were derived by Hidetoshi
Nishimori and his coworkers, and are explained in details in his book (Nishi-
mori, 2001).

The notion of pure states in phase transitions, and the decomposition of Gibbs
measures into superposition of pure states, is discussed in the book (Georgii,
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1988).

The divergence of the spin glass susceptibility is specially relevant because
this susceptibility can be measured in zero field. The experiments of (Monod and
Bouchiat, 1982) present evidence of a divergence, which support the existence
of a finite spin glass transition in real (three dimensional) spin glasses in zero
magnetic field.

The existence of two transition temperatures 7. < Ty was first discussed
by Kirkpatrick, Thirumalai and Wolynes (Kirkpatrick and Wolynes, 1987; Kirk-
patrick and Thirumalai, 1987), who pointed out the relevance to the theory
of structural glasses. In particular, (Kirkpatrick and Thirumalai, 1987) discusses
the case of the p-spin glass. A review of this line of approach to structural glasses,
and particularly its relevance to dynamical effects, is (Bouchaud, Cugliandolo,
Kurchan and Mézard, 1997).

The e-coupling method was introduced in (Caracciolo, Parisi, Patarnello and
Sourlas, 1990). The idea of cloning in order to study the complexity function
is due to Monasson (Monasson, 1995). The potential method was introduced in
(Franz and Parisi, 1995).
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13

BRIDGES

We have seen in the last three Chapters how some problems with very different
origins can be cast into the unifying framework of factor graph representations.
The underlying mathematical structure, namely the locality of probabilistic de-
pendencies between variables, is also present in many problems of probabilistic
inference, which provides another unifying view of the field. On the other hand,
locality is an important ingredient that allows sampling from complex distribu-
tions using the Monte Carlo technique.

In Section 13.1 we present some basic terminology and simple examples of
statistical inference problems. Statistical inference is an interesting field in it-
self with many important applications (ranging from artificial intelligence, to
modeling and statistics). Here we emphasize the possibility of considering cod-
ing theory, statistical mechanics and combinatorial optimization, as inference
problems.

Section 13.2 develops a very general tool in all these problems, the Monte
Carlo Markov Chain (MCMC) technique, already introduced in Sec. 4.5. This
is often a very powerful approach. Furthermore, Monte Carlo sampling can be
regarded as a statistical inference method, and the Monte Carlo dynamics is a
simple prototype of the local search strategies introduced in Secs. 10.2.3 and
11.4. Many of the difficulties encountered in decoding, in constraint satisfaction
problems, or in glassy phases, are connected to a dramatic slowing down of the
MCMC dynamics. We present the results of simple numerical experiments on
some examples, and identify regions in the phase diagram where the MCMC
slowdown implies poor performances as a sampling/inference algorithm. Finally,
in Section 13.3 we explain a rather general argument to estimate the amount
of time MCMC has to be run in order to produce roughly independent samples
with the desired distribution.

13.1 Statistical inference
13.1.1 Bayesian networks

It is common practice in artificial intelligence and statistics, to formulate infer-
ence problems in terms of Bayesian networks. Although any such problem can
also be represented in terms of a factor graph, it is worth to briefly introduce
this alternative language. A famous toy example is the ‘rain—sprinkler’ network.
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p(rle)\c] 0 1 cloudy P(sle)\ ¢ o 1
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Fic. 13.1. The rain-sprinkler Bayesian network.

Example 13.1 During a walk to the park, a statistician notices that the grass
is wet. There are two possible reasons for that: either it rained during the night,
or the sprinkler was activated in the morning to irrigate the lawn. Both events
are in turn correlated with the weather condition in the last 24 hours.

After a little thought, the statistician formalizes these considerations as
the probabilistic model depicted in Fig. 13.1. The model includes four random
variables: cloudy, rain, sprinkler, wet, taking values in {0, 1} (respectively, false
or true). The variables are organized as the vertices of an oriented graph.
A directed edge corresponds intuitively to a relation of causality. The joint
probability distribution of the four variables is given in terms of conditional
probabilities associated to the edges. Explicitly (variables are indicated by their
initials):

p(c, s, r,w) = p(c) p(s|c) p(rlc) p(wls, r) . (13.1)

The three conditional probabilities in this formula are given by the Tables in
Fig. 13.1. A ‘uniform prior’ is assumed on the event that the day was cloudy:
pC=10) = plc=1) = 1/2.

Assuming that wet grass was observed, we may want to know whether the
most likely cause was the rain or the sprinkler. This amount to computing the
marginal probabilities

Zc’rp(q s,r,w=1)
Yers (e, W =1) ’

Zc’sp(c,s, r,w=1)
ZC,I’,S’ p(C, S/a ryw = 1) .

p(slw=1) = (13.2)

p(rlw =1) = (13.3)

Using the numbers in Fig. 13.1, we get p(s = 1jw = 1) ~ 0.40 and p(r = 1jlw =
1) ~ 0.54: the most likely cause of the wet grass is rain.

In Fig. 13.2 we show the factor graph representation of (13.1), and the one
corresponding to the conditional distribution p(c,s,rlw = 1). As is clear from
the factor graph representation, the observation w = 1 induces some further
dependency among the variables s and r, beyond the one induced by their
relation with c. The reader is invited to draw the factor graph associated to
the marginal distribution p(c,s, r).
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cloudy cloudy
rain sprinkler rain sprinkler
wet

Fia. 13.2. Left: Factor graph corresponding to the sprinkler-rain Bayesian net-
work, represented in Fig. 13.1. Right: factor graph for the same network under
the observation of the variable w.

1 d2 d3 4

i fe f3 fa fs fo Sz fs

Fia. 13.3. Left: toy example of QMR-DT Bayesian network. Right: factor graph
representation of the conditional distribution of the diseases dy, ... ds, given the
findings f1, ... fs.

In general, a Bayesian network is an acyclic directed graph G = (V, E)
defining a probability distribution for variables at the vertices of the graph. A
directed graph is an ordinary graph with a direction (i.e. an ordering of the
adjacent vertices) chosen on each of its edges, and no cycle. In such a graph,
we say that a vertex u € V' is a parent of v, and write u € 7(v), if (u,v) is
a (directed) edge of G. A random variable X, is associated with each vertex v
of the graph (for simplicity we assume all the variables to take values in the
same finite set X'). The joint distribution of {X,, v € V} is determined by the
conditional probability distributions {p(zy|z.(,))}, where m(v) denotes the set
of parents of vertex v, and z(,y = {zy : u € 7(v)}:

II v I ez (13.4)

ver(Q) veG\7(G)

where 7(G) denotes the set of vertices that have no parent in G.

A general class of statistical inference problems is formulated as follows. One
is given a Bayesian network, i.e. a directed graph G plus the associated condi-
tional probability distributions, {p(zy|2,(,))}. A subset O C V of the variables
is observed and takes values 2. The problem is to compute marginals of the
conditional distribution p(zy\olzo)-
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Given a Bayesian network GG and a set of observed variable O, it is easy to
obtain a factor graph representation of the conditional distribution p(gV\O@O),
by a generalization of the procedure that we applied in Fig. 13.2. The general
rule is as follows: (i) associate a variable node with each non-observed variable
(i.e. each variable in zy,\(); (ii) for each variable in 7(G)\O, add a degree 1
function node connected uniquely to that variable; (iii) for each non observed
vertex v which is not in 7(G), add a function node and connect it to v and to all
the parents of v; (iv) finally, for each observed variable u, add a function node
and connect it to all the parents of wu.

Here is an example showing the practical utility of Bayesian networks.

Example 13.2 The Quick Medical Reference-Decision Theoretic (QMR-DT)
network is a two level Bayesian network developed for automatic medical diag-
nostic. A schematic example is shown in Fig. 13.3. Variables in the top level,
denoted by di,...,dy, are associated with diseases. Variables in the bottom
level, denoted by f1,..., fa, are associated with symptoms or findings. Both
diseases and findings are described by binary variables. An edge connects the
disease d; to the finding f, whenever such a disease may be a cause for that
finding. Such networks of implications are constructed on the basis of accumu-
lated medical experience.

The network is completed with two types of probability distributions. For
each disease d; we are given an a priori occurrence probability P(d;). Fur-
thermore, for each finding we have a conditional probability distribution for
that finding given a certain disease pattern. This usually takes the so called
‘noisy-OR’ form:

N
P(f, =0|d) = Ziexp {— Zewdi} : (13.5)
@ i=1

This network is to be used for diagnostic purposes. The findings are set to values
determined by the observation of a patient. Given this pattern of symptoms,
one would like to compute the marginal probability that any given disease is
indeed present.

13.1.2  Inference in coding, statistical physics and combinatorial optimization

Several of the problems encountered so far in this book can be recast in an
inference language.

Let us start with the decoding of error correcting codes. As discussed in
Chapter 6, in order to implement symbol-MAP decoding, one has to compute
the marginal distribution of input symbols, given the channel output. In the
case of LDPC (and related) code ensembles, dependencies between input sym-
bols are induced by the parity check constraints. The joint probability distri-
bution to be marginalized has a natural graphical representation (although we
used factor graphs rather than Bayesian networks). Also, the introduction of
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finite-temperature decoding, allows to view word MAP decoding as the zero
temperature limit case of a one-parameter family of inference problems.

In statistical mechanics models one is mainly interested in the expectations
and covariances of local observables with respect to the Boltzmann measure.
For instance, the paramagnetic to ferromagnetic transition in an Ising ferromag-
net, cf. Sec. 2.5, can be located using the magnetization My (5, B) = (0i)3,B-
The computation of covariances, such as the correlation function Cj;(8, B) =
(0i;04)8,B, is a natural generalization of the simple inference problem discussed
so far.

Let us finally consider the case of combinatorial optimization. Assume, for
the sake of definiteness, that a feasible solution is an assignment of the variables
z = (z1,29,...,on) € XN and that its cost E(x) can be written as the sum of
‘local” terms:

E(z) =) Ea(z,). (13.6)

Here z, denotes a subset of the variables (z1,2a,...,2y). Let pi(z) denote
the uniform distribution over optimal solutions. The minimum energy can be
computed as a sum of expectation with respect to this distribution: E, =
Y oalDos Pe(2)Eq(2,)]. Of course the distribution p,(z) does not necessarily have
a simple representation, and therefore the computation of F, can be significantly
harder than simple inference®’.

This problem can be overcome by ‘softening’ the distribution p.(x). One pos-
sibility is to introduce a finite temperature and define pg(x) = exp[—FE(z)]/Z
as already done in Sec. 4.6: if 3 is large enough, this distribution concentrates
on optimal solutions. At the same time it has an explicit representation (apart
from the value of the normalization constant Z) at any value of 3.

How large should 3 be in order to get a good estimate of E,? The Exercise
below, gives the answer under some rather general assumptions.

Exercise 13.1 Assume that the cost function E(z) takes integer values and
let U(B) = (E(z))s. Due to the form (13.6) the computation of U(f3) is es-
sentially equivalent to statistical inference. Assume, furthermore that Ay .« =
max[E(z) — E.] is bounded by a polynomial in N. Show that

ou 1 _
0< == < ﬁAimx || Ne VT (13.7)
where T' = 1/f. Deduce that, by taking 7'= ©(1/N), one can obtain |U(8) —
E,| < ¢ for any fixed & > 0.

39Consider, for instance, the MAX-SAT problem, and let E(z) be the number of unsatisfied
clauses under the assignment z. If the formula under study is satisfiable, then p«(z) is propor-
tional to the product of characteristic functions associated to the clauses, cf. Example 9.7. In
the opposite case, no explicit representation is known.
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In fact a much larger temperature (smaller ) can be used in many important
cases. We refer to Chapter 2 for examples in which U(3) = E, + E1(N)e™? +
O(e™28) with E;(N) growing polynomially in N. In such cases one expects 3 =
O(log N) to be large enough.

13.2 Monte Carlo method: inference via sampling

Consider the statistical inference problem of computing the marginal probability
p(x; = x) from a joint distribution p(z), z = (z1,22,...,25) € XN, Given
L iid. samples {z(V, ..., z(F)} drawn from the distribution p(z), the desired
marginal p(z; = x) can be estimated as the the fraction of such samples for
which x; = x.

‘Almost i.i.d.” samples from p(z) can be produced, in principle, using the
Monte Carlo Markov Chain (MCMC) method of Sec. 4.5. Therefore MCMC can
be viewed as a general-purpose inference strategy which can be applied in a
variety of contexts.

Notice that the locality of the interactions, expressed by the factor graph, is
very useful since it allows to generate easily ‘local’ changes in z (e.g. changing
only one z;, or a small number of them). This will*® in fact typically change
the value of just a few compatibility functions and hence produce only a small
change in p(z) (i.e., in physical terms, in the energy of z). The possibility of
generating, given x, a new configuration close in energy is in fact important for
MCMC to work. In fact, moves increasing the system energy by a large amount
are typically rejected within MCMC rules .

One should also be aware that sampling, for instance by MCMC, only allows
to estimate marginals or expectations which involve a small subset of variables.
It would be very hard for instance to estimate the probability of a particular
configuration z through the number L(z) of its occurrences in the samples. The
reason is that at least 1/p(z) samples would be required to have any accuracy,
and this is typically a number exponentially large in N.

13.2.1 LDPC codes

Consider a code € from one of the LDPC ensembles introduced in Chapter 11,
and assume it has been used to communicate over a binary input memoryless
symmetric channel with transition probability Q(y|x). As shown in Chapter 6,
cf. Eq. (6.3), the conditional distribution of the channel input z, given the output
vy, reads

N
P(zly) = % I(z € €) HQ(yﬂxi) . (13.8)

We can use the explicit representation of the code membership function to write

40We do not claim here that this is the case always, but just in many examples of interest.

{sec:MonteCarloInference}
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1 M N
P(zly) = Z0 H Tig = 0) HQ(%\%’)- (13.9)

in order to implement symbol MAP decoding, we must compute the marginals
P (z;|y) of this distribution. Let us see how this can be done in an approximate
way via MCMC sampling.

Unfortunately, the simple MCMC algorithms introduced in Sec. 4.5 (single
bit flip with acceptance test satisfying detailed balance) cannot be applied in
the present case. In any reasonable LDPC code, each variable x; is involved
into at least one parity check constraint. Suppose that we start the MCMC
algorithm from a random configuration z distributed according to Eq. (13.9).
Since z has non-vanishing probability, it satisfies all the parity check constraints.
If we propose a new configuration where bit x; is flipped, this configuration will
violate all the parity check constraints involving z;. As a consequence, such a
move will be rejected by any rule satisfying detailed balance. The Markov chain
is therefore reducible (each codeword forms a separate ergodic component), and
useless for sampling purposes.

In good codes, this problem is not easily cured by allowing for moves that
flip more than a single bit. As we saw in Sec. 11.2, if € is drawn from an LDPC
ensemble with minimum variable degree equal to 2 (respectively, at least 3),
its minimum distance diverges logarithmically (respectively, linearly) with the
block-length. In order to avoid the problem described above, a number of bits
equal or larger than the minimum distance must be flipped simultaneously. On
the other hand, large moves of this type are likely to be rejected, because they
imply a large and uncontrolled variation in the likelihood Hfil Q(yilx;).

A way out of this dilemma consists in ‘softening’ the parity check constraint
by introducing a ‘parity check temperature’ v and the associated distribution

M N
1 _ T;a...T;a
P(aly) = g — [T o700 Tl @Gk (13.10)
= a=1 i=1

Here the energy term E, (v .. ~$z‘;) takes values 0 if ;3 © -+ @ z;2 = 0 and 2
otherwise. In the limit v — oo, the distribution (13 10) reduces to (13.9). The
idea is now to estimate the marginals of (13.10), P (ml|y) via MCMC sampling
and then to use the decoding rule

:rlh) = arg max Py) (z4ly) - (13.11)

For any finite ~y, this prescription is surely sub-optimal with respect to symbol
MAP decoding. In particular, the distribution (13.10) gives non-zero weight to
words x which do not belong to the codebook €. On the other hand, one may
hope that for v large enough, the above prescription achieves a close-to-optimal
bit error rate.
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Py

Fic. 13.4. Decoding LDPC codes from the (3,6) ensemble, used over the BSC
channel with flip probability p, using MCMC sampling. The bit error rate is
plotted versus p. The block-length is fixed to N = 2000, the number of sweeps
is 2L. Left: For L = 100, several values of the effective inverse temperature ~.
Right: improvement of the performance as the number of sweeps increases at
fixed v = 1.5.

We can simplify further the above strategy by giving up the objective of
approximating the marginal P,sz) (2;]y) within any prescribed accuracy. We shall
rather run the Glauber single bit flip MCMC algorithm for a fixed computer time
and extract an estimate of P§l)(xi|y) from this run. Fig 13.4 shows the results
of Glauber dynamics executed for 2LN steps starting from a uniformly random
configuration. At each step a bit is chosen uniformly at random and flipped with
probability (here 2 is the configuration obtained from z, by flipping the i-th
bit)

Py (z™]y)
P (zDy) + P, (zy)

The reader is invited to derive an explicit expression for w;(x), and to show that
this probability can be computed with a number of operations independent of
the block-length. In this context, one often refer to a sequence of N successive
updates, as a sweep (on average, one flip is proposed at each bit in a sweep).
The value of x; is recorded at each of the last L sweeps, and the decoder output
is ; = 0 or x; = 1 depending on which value occurs more often in this record.
The data in Fig. 13.4 refers to communication over a binary symmetric chan-
nel (BSC) with flip probability p. In the left frame, we fix L = 100 and use several
values of . At small v, the resulting bit error rate is almost indistinguishable
from the one in absence of coding, namely Py, = p. As 7 increases, parity checks
are enforced more and more strictly and the error correcting capabilities im-
prove at low noise. The behavior is qualitatively different for larger noise levels:
for p 2 0.05, the bit error rate increases with . The reason of this change is
essentially dynamical. The Markov chain used for sampling from the distribution
(13.10) decorrelates more and more slowly from its initial condition. Since the

w;(z) = (13.12)
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initial condition is uniformly random, thus yielding P}, = 1/2, the bit error rate
obtained through our algorithm approaches 1/2 at large v (and above a certain
threshold in p). This interpretation is confirmed by the data in the right frame
of the same figure.

We shall see in Chapter 77 that in the large blocklength limit, the threshold
for error-less bit MAP decoding in this case is predicted to be p. =~ 0.101.
Unfortunately, because of its slow dynamics, our MCMC decoder cannot be
used in practice if the channel noise is close to this threshold.

The sluggish dynamics of our single spin-flip MCMC for the distribution
(13.10) is partially related to its reducibility for the model with hard constraints
(13.9). A first intuitive picture is as follows. At large v, codewords correspond
to isolated ‘lumps’ of probability with P, (z|y) = ©(1), separated by unprobable
regions such that P, (z|ly) = ©(e~?7) or smaller. In order to decorrelate, the
Markov chain must spend a long time (at least of the order of the code minimum
distance) in an unprobable region, and this happens only very rarely. This rough
explanation is neither complete nor entirely correct, but we shall refine it in the
next Chapters.

13.2.2  Ising model

Some of the basic mechanisms responsible for the slowing down of Glauber dy-
namics can be understood on simple statistical mechanics models. In this Section
we consider the ferromagnetic Ising model with energy function

E(o)=- Y o0i0;. (13.13)

(if)eG

Here G is an ordinary graph on NN vertices, whose precise structure will depend
on the particular example. The Monte Carlo method is applied to the problem
of sampling from the Boltzmann distribution pg(c) at inverse temperature (3.

As in the previous Section, we focus on Glauber (or heath bath) dynamics,
but rescale time: in an infinitesimal interval dt a flip is proposed with probability
Ndt at a uniformly random site 7. The flip is accepted with the usual heath bath
probability (here o is the current configuration and ¢ is the configuration
obtained by flipping the spin o;):

pa(c®)

wi(U) = pﬁ(U) —I—pg(a(i)) .

(13.14)

Let us consider first equilibrium dynamics. We assume therefore that the
initial configuration ¢(0) is sampled from the equilibrium distribution pg(-)
and ask how many Monte Carlo steps must be performed (in other words, how
much time must be waited) in order to obtain an effectively independent random
configuration. A convenient way of monitoring the equilibrium dynamics, consists
in computing the time correlation function
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Fic. 13.5. Equilibrium correlation function for the Ising model on the two di-
mensional grid of side L. Left: high temperature, 7' = 3. Right: low temperature,
T=2.

Cx(t)= 5 Sl 0)ai(0). (13.15)

Here the average () is taken with respect to the realization of the Monte Carlo
dynamics, as well as the initial state o(0). Notice that (1—C(t))/2 is the average
fraction of spins with differ in the configurations ¢(0) and o(t). One expects
therefore C(t) to decrease with ¢, asymptotically reaching 0 when ¢(0) and o(t)
are well decorrelated®!.

The reader may wonder how can one sample ¢(0) from the equilibrium (Boltz-
mann) distribution? As already suggested in Sec. 4.5, within the Monte Carlo
approach one can obtain an ‘almost’ equilibrium configuration by starting from
an arbitrary one and running the Markov chain for sufficiently many steps. In
practice we initialize our chain from a uniformly random configuration (i.e. an
infinite temperature equilibrium configuration) and run the dynamics for ¢,
sweeps. We call ¢(0) the configuration obtained after this process and run for ¢
more sweeps in order to measure C(t). The choice of t,, is of course crucial: in
general the above procedure will produce a configuration o(0), whose distribu-
tion is not the equilibrium one, and depends on t,,. The measured correlation
function will also depend on t,,. Determining how large ¢,, should be in order to
obtain a good enough approximation of C(¢) is a subject of intense theoretical
work. A simple empirical rule consists in measuring C(t) for a given large t,,,
then double it and check that nothing has changed. With these instructions, the
reader is invited to write a code of MCMC for the Ising model on a general graph
and reproduce the following data.

41Notice that each spin is equally likely to take values +1 or —1 under the Boltzmann
distribution with energy function (13.13.)

{fig:2dMC}
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Fic. 13.6. Equilibrium correlation function for the Ising model on random
graphs from the Gy (2, M) ensemble, with M = 2N. Left: high temperature,

T = 5. Right: low temperature, T' = 2.

Example 13.3 We begin by considering the Ising model on a two-dimensional
grid of side L, with periodic boundary conditions. The vertex set is {(z1, z2) :
1 <z, < L}. Edges join any two vertices at (Euclidean) distance one, plus
the vertices (L, z3) to (1,22), and (z1,L) to (x1,1). We denote by Cp(t) the
correlation function for such a graph.

In Chapter 2 we saw that this model undergoes a phase transition at the
critical temperature T, = 2/log(1+/2) &~ 2.269185. The correlation functions
plotted in Fig. 13.5 are representative of the qualitative behavior in the high
temperature (left) and low temperature (right) phases. At high temperature
CL(t) depends only mildly on the linear size of the system L. As L increases,
the correlation functions approaches rapidly a limit curve C(¢) which decreases
from 1 to 0 in a finite time scale*?.

At low temperature, there exists no limiting curve C(t) decreasing from 1
to 0, such that Cr(t) — C(t) as L — oco. The time required for the correlation
function Cp,(t) to get close to 0 is much larger than in the high-temperature
phase. More importantly, it depends strongly on the system size. This suggests
that strong cooperative effects are responsible for the slowing down of the
dynamics.

Example 13.4 Take G as a random graph from the Gy (2, M) ensemble, with
M = Na. As we shall see in Chapter 77?7, this model undergoes a phase
transition when N — oo at a critical temperature (., satisfying the equa-
tion 2atanh § = 1. In Fig. 13.6 we present numerical data for a few values of
N, and o = 2 (corresponding to a critical temperature T, ~ 3.915230).

The curves presented here are representative of the high temperature and
low temperature phases. As in the previous example, the relaxation time scale
strongly depends on the system size at low temperature.

1 10 100 1000 10000 100000

{ex:2dSimul}



MONTE CARLO METHOD: INFERENCE VIA SAMPLING 277

{fig:TernaryTree} FiGc. 13.7. A rooted ternary tree with n = 4 generations and N = 40 vertices.
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Fia. 13.8. Equilibrium correlation function for the ferromagnetic Ising model
on a regular ternary tree. Left: high temperature, T" = 2. Right: low temperature,
{fig:TreeMC} T = 1.25.

:T Simul
{ex:TreeSimul} Example 13.5 Take G as a rooted ternary tree, with n generations, cf.

Fig. 13.7. Of course G contains N = (3" — 1)/(3 — 1) vertices and N — 1
edges. As we will see in Chapter 777, this model undergoes a phase transition
at a critical temperature 3., which satisfies the equation 3(tanh 3)? = 1. We
get therefore T, ~ 1.528651. In this case the dynamics of spin depends strongly
upon its distance to the root. In particular leaf spins are much less constrained
than the others. In order to single out the ‘bulk’ behavior, we modify the def-
inition of the correlation function (13.15) by averaging only over the spins o;
in the first n = 3 generations. We keep n fixed as n — oc.

As in the previous examples, C'y(t) has a well defined n — oo limit in the
high temperature phase, and is strongly size-dependent at low temperature.

We summarize the last three examples by comparing the size dependence of
the relaxation time scale in the respective low temperature phases. A simple way
to define such a time scale consists in looking for the smallest time such that
C'(t) decreases below some given threshold:

7(6; N) = min{t > 0 s.t. Cn(t) < 6}. (13.16)

In Fig. 13.9 we plot the estimates obtained from the data presented in the pre-
vious examples, using & = 0.2, and keeping to the data in the low-temperature
(ferromagnetic) phase. The size dependence of 7(J; N) is very clear. However,
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Fia. 13.9. Size dependence of the relaxation time in the ferromagnetic Ising

model in its low temperature phase. Different symbols refer to the different fam-
ilies of graphs considered in Examples 13.3 to 13.5.
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Fic. 13.10. Minimization of the number of unsatisfied clauses in random 3-SAT
formulae via Glauber dynamics. Here the number of variables N = 1000 is kept
fixed. Left: T = 0.25 and, from top to bottom L = 2.5- 103, 5-102, 104, 2 - 10%,
4-10% 8- 10* iterations. Right: L = 4-10* and (from top to bottom at large «)
T = 0.15, 0.20, 0.25, 0.30, 0.35. The insets show the small « regime in greater
detail.

it is much stronger for the random graph and square grid cases (and, in par-
ticular, in the former) than on the tree. In fact, it can be shown that, in the
ferromagnetic phase:

exp{O(N)} random graph,
7(0; N) = { exp{O(V/N)} square lattice, (13.17)
exp{O(log N)} tree.

Section 13.3 will explain the origins of these different behaviors.

{fig:Time}
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13.2.3 MAX-SAT

Given a satisfiability formula over N boolean variables (x1,...,2x) = z, 2; €
{0,1}, the MAX-SAT optimization problem requires to find a truth assignment
which satisfies the largest number of clauses. We denote by z, the set of variables
involved in the a-th clause and by E,(z,) a function of the truth assignment
taking value 0, if the clause is satisfied, and 2 otherwise. With this definitions,
the MAX-SAT problem can be rephrased as the problem of minimizing an energy
function of the form E(z) =, F.(z,), and we can therefore apply the general
approach discussed after Eq. (13.6).

We thus consider the Boltzmann distribution pg(z) = exp[—SE(z)]/Z and
try to sample a configuration from pg(z) at large enough 5 using MCMC. The
assignment z € {0, 1}V is initialized uniformly at random. At each time step a
variable index ¢ is chosen uniformly at random and the corresponding variable
is flipped according to the heath bath rule

wi(z) = 1 (13.18)

pp(z) +pa(z®)

As above 2V denotes the assignment obtained from z by flipping the i-th vari-
able. The algorithm is stopped after LN steps (i.e. L sweeps), and one puts in
memory the current assignment z, (and the corresponding cost E, = E(z,)).

In Fig. 13.10 we present the outcomes of such an algorithm, when applied to
random 3-SAT formulae from the ensemble SAT (3, M) with o = M/N. Here
we focus on the mean cost (E.) of the returned assignment. One expects that, as
N — oo with fixed L, the cost scales as (F.) = ©(N), and order N fluctuations of
F, away from the mean are exponentially unlikely. At low enough temperature,
the behavior depends dramatically on the value of a. For small o, E, /N is small
and grows rather slowly with a. Furthermore, it seems to decrease to 0 ad (3
increases. Our strategy is essentially successful and finds an (almost) satisfying
assignment. Above o &~ 2 + 3, E,/N starts to grow more rapidly with «, and
doesn’t show signs of vanishing as § — co. Even more striking is the behavior as
the number of sweeps L increases. In the small a regime, E, /N rapidly decreases
to some, roughly L independent saturation value, already reached after about
10% sweeps. At large o there seems also to be an asymptotic value but this is
reached much more slowly, and even after 10° sweeps there is still space from
improvement.

13.3 Free energy barriers

These examples show that the time scale required for a Monte Carlo algorithm
to produce (approximately) statistically independent configurations may vary
wildly depending on the particular problem at hand. The same is true if we
consider the time required to generating a configuration (approximately) dis-
tributed according to the equilibrium distribution, starting from an arbitrary
initial condition.

{se:arrhenius}
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E(x)

AE

gs

Fic. 13.11. Random walk in a double-well energy landscape. After how many
steps the walker is (approximatively) distributed according to the equilibrium
distribution?

There exist various sophisticated techniques for estimating these time scales
analytically, at least in the case of unfrustrated problems. In this Section we
discuss a simple argument which is widely used in statistical physics as well as
in probability theory, that of free-energy barriers. The basic intuition can be
conveyed by simple examples.

{fig:WellWalk}
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Fi1G. 13.12. How much time does a random walk need to explore this graph?

Example 13.6 Consider a particle moving on the integer line, and denote its
position as & € Z. Each point x on the line has an energy E(x) > Eq associated
to it, as depicted in Fig. 13.11. At each time step, the particle attempts to
move to one of the adjacent positions (either to the right or to the left) with
probability 1/2. If we denote by 2’ the position the particle is trying to move
to, the move is accepted according to Metropolis rule

w(x — ') = min {efﬁ[EW)*E(mﬂ, 1} . (13.19)

The equilibrium distribution is of course given by Boltzmann law Pg(x) =
exp|—BE(@)]/Z(5).

Suppose we start with, say x = 10. How many steps should we wait for x
to be distributed according to Pg(x)? It is intuitively clear that, in order to
equilibrate, the particle must spend some amount of time both in the right and
in the left well, and therefore it must visit the z = 0 site. At equilibrium this
is visited on average a fraction P3(0) of the times. Therefore, in order to see a
jump, we must wait about

1
T XOR (13.20)
steps.

One is often interested in the low temperature limit of 7. Assuming F(z)
diverges fast enough as || — oo, the leading exponential behavior of Z is
Z(B) = e PP and therefore 7 = exp{BAE}, where AE = E(0) — Ey is
the energy barrier to be crossed in order to pass from one well to the others.
A low temperature asymptotics of the type 7 = exp{BAE} is referred to as
Arrhenius law.

{fig:DoubleGraph}
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Exercise 13.2 Consider a random walk on the graph of Fig. 13.12 (two cliques
with n + 1 vertices, joined by a k-fold degenerate edge). At each time step,
the walker chooses one of the adjacent edges uniformly at random and moves
through it to the next node. What is the stationary distribution Pey(z), = €
{1,...2n}? Show that the probability to be at node 1 is %fﬂ’;ﬂ:ﬁl

Suppose we start with a walker distributed according to Peq(z). Using an
argument similar to that in the previous example, estimate the number of time
steps 7 that one should wait in order to obtain an approximatively independent
value of z. Show that 7 ~ 2n when n > k and interpret this result. In this
case the k-fold degenerate edge joining the two cliques is called a bottleneck,
and one speaks of an entropy barrier.

In order to obtain a precise mathematical formulation of the intuition gained
in the last examples, we must define what we mean by ‘relaxation time’. We will
focus here on ergodic continuous-time Markov chains on a finite state space X.
Such a chain is described by its transition rates w(x — y). If at time ¢, the chain
is in state z(t) = x € X, then, for any y # x, the probability that the chain is in
state y, ‘just after’ time ¢ is

P{z(t+dt) =y | x(t) = 2} = w(z — y)dt. (13.21)

Exercise 13.3 Consider a discrete time Markov chain and modify it as fol-
lows. Instead of waiting a unit time At between successive steps, wait an ex-
ponentially distributed random time (i.e. At is a random variable with pdf
p(At) = exp(—At)). Show that the resulting process is a continuous time
Markov chain. What are the corresponding transition rates?

Let « — O(x) an observable (a function of the state), define the shorthand
O(t) = O(x(t)), and assume x(0) to be drawn from the stationary distribution. If
the chain satisfies the detailed balance*® condition, one can show that the correla-
tion function Co(t) = (O(0)O(t)) — (O(0))(O(t)) is non negative, monotonously
decreasing and that Co(t) — 0 as ¢ — co. The exponential autocorrelation time
for the observable O, To cxp, is defined by

1 1
= — lim n logCo(t) . (13.22)

TO,exp t—o0

The time 7p oxp depends on the observable and tells how fast its autocor-
relation function decays to 0: Co(t) ~ exp(—t/7,exp). It is meaningful to look
for the ‘slowest’ observable and define the exponential autocorrelation time

43 A continuous time Markov chains satisfies the detailed balance condition (is ‘reversible’)
with respect to the stationary distribution P(x), if, for any « # vy, P(z)w(z — y) = P(y)w(y —

{ex:WalkGraph}
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(also called inverse spectral gap, or, for brevity relaxation time) of the
Markov chain as

Texp = SUP {70,exp } - (13.23)

The idea of a bottleneck, and its relationship to the relaxation time, is clarified
by the following theorem:

Theorem 13.7 Consider an ergodic continuous time Markov chain with state
space X, and transition rates {w(x — y)} satisfying detailed balance with respect
to the stationary distribution P(x). Given any two disjoint sets of states A, B C
X, define the probability flux between them as W(A — B) =5
y). Then

rzeA, yeB

Texp > Plec AHPdA) (13.24)
W(A— X\A)

In other words, a lower bound on the correlation time can be constructed by

looking for ‘bottlenecks’ in the Markov chain, i.e. partitions of the configuration

space into two subsets. The lower bound will be good (and the Markov chain

will be slow) if each of the subsets carries a reasonably large probability at

equilibrium, but jumping from one to the other is unlikely.

Example 13.8 Consider the random walk in the double well energy landscape
of Fig. 13.11, where we confine the random walk to some big interval [ M : M]
in order to have a finite state space. Let us apply Theorem 13.7, by taking
A = {z > 0}. We have W(A — X\ A) = P3(0)/2 and, by symmetry Ps(z €
A) = $(1+ P3(0)). The inequality (13.24) yields

1 — P5(0)

oxn > 13.2
T 2P5(0) (13.25)

Expanding the right hand side in the low temperature limit, we get Texp >
2ePAE (1 + O(e=P)).

Exercise 13.4 Apply Theorem 13.7 to a random walk in the asymmetric dou-
ble well energy landscape of Fig. 13.13. Does Arrhenius law 7oy, ~ exp(GAE)
apply to this case? What is the relevant energy barrier AE?

Exercise 13.5 Apply Theorem 13.7 to estimate the relaxation time of the
random walk on the graph in Exercise (13.2).

P(z)w(x —

{thm:Cut}
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Fic. 13.13. Random walk in an asymmetric double well.

Example 13.9 Consider Glauber dynamics for the Ising model on a two di-
mensional L x L grid, with periodic boundary conditions, already discussed in
Example 13.3. In the ferromagnetic phase, the distribution of the total magne-
tization M(c) = >, 04, N = L? is concentrated around the values £N M, (),
where M, () is the spontaneous magnetization. It is natural to expect that
the bottleneck will correspond to the global magnetization changing sign. As-
suming for instance that L is odd, let us define

A={oc: M(o)>1} ; A=X\A={0: M(0c) < -1} (13.26)

Using the symmetry under spin reversal, Theorem 13.7 yields

Top 2 4 3 D Ps(0) wo— o). (13.27)

o :./\/l(a):li seg=Il

A good estimate of this sum can be obtained by noticing that, for any o,
w(e — @) > w(B) = L(1 — tanh43). Moreover, for any o entering the
sum, there are exactly (L? + 1)/2 sites i such that o; = +1. We get therefore
Texp > 2L2w(B) Y, M(o)=1 P3(0) One suggestive way of writing this lower
bound, consists in defining a constrained free energy as follows

Fr(m;p) = . log Z exp[—BE(o)] p , (13.28)
p o: M(o)=m

If we denote by Fr,(3) the usual (unconstrained) free energy, our lower bound
can be written as

Texp = 2L7w(B) exp{B[FL(1;8) — FL(B)]}. (13.29)

Apart from the pre-exponential factors, this expression has the same form as
Arrhenius law, the energy barrier AFE, being replaced by a ‘free energy barrier’

AFL(B) = FrL(1;8) — FL(B).

{fig:AsWell}
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Fi1c. 13.14. Ferromagnetic Ising model on a 9 x 9 grid with periodic boundary

conditions. Open circles correspond to o; = +1, and filled circles to o; = —1.
The configuration shown here has energy E(c) = —122 and magnetization
M(o) = +1.

We are left with the task of estimating AF7(8). Let us start by considering
the 8 — oo limit. In this regime, F7 () is dominated by the all plus and all
minus configurations, with energy Fys = —2L2%. Analogously, Fr(1; 3) is domi-
nated by the lowest energy configurations satisfying the constraint M(o) = 1.
An example of such configurations is the one in Fig. 13.14, whose energy is
E(0) = —2L? + 2(2L + 2). Of course, all configurations obtained from the one
in Fig. 13.14, through a translation, rotation or spin inversion have the same
energy. We find therefore AF(5) = 2(2L +2) + ©(1/09)

It is reasonable to guess (and it can be proved rigorously) that the size
dependence of AF,(3) remains unchanged through the whole low temperature
phase:

AFL(B) ~2v(B)L, (13.30)

where the surface tension () is strictly positive at any > ., and vanishes
as (8 | B.. This in turns implies the following lower bound on the correlation
time

Texp = exp{267(B)L + o(L)} . (13.31)

This bound matches the numerical simulations in the previous Section and can
be proved to give the correct asymptotic size-dependence.

{fig:IsingZeroMagn}
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Exercise 13.6 Consider the ferromagnetic Ising model on a random graph
from Gy (2, M) that we studied in Example 13.4, and assume, for definiteness,
N even. Arguing as above, show that

Texp 2 On(8) exp{BIEW (0 8) — Fn (B)]} (13.32)

Here Cn(0) is a constants which grows (with high probability) slower than
exponentially with N; Fy(m; () is the free energy of the model constrained to
M(o) =m, and Fy(0) is the unconstrained partition function.

For a graph G, let §(G) be the minimum number of bicolored edges if we
color half of the vertices red, and half blue. Show that

Fn(0;8) — Fn(B) = 26(Gn) +©(1/8) . (13.33)

The problem of computing 6(G) for a given graph G is referred to as balanced
minimum cut (or graph partitioning) problem, and is known to be NP-
complete. For a random graph in Gy (2, M), it is known that 6(Gy) = O(N)
with high probability in the limit N — oo, M — oo, with a = M/N fixed and
a > 1/2 (Notice that, if & < 1/2 the graph does not contain a giant component
and obviously 6(G) = o(N)).

This claim can be substantiated through the following calculation. Given a
spin configuration o = (oy,...,0n) with Y, 0; = 0 let Ag(o) be the number
of edges in (4, ) in G such that o; # o;. Then

P{5(G) < n} =P{30 such that Ag(0) <n} < > ENgm, (13.34)

m=0

where Ng ,,, denotes the number of spin configurations with Ag(o) = m. Show

that
o= (3) (3) () (5) [(9) -] a0

Estimate this expression for large N, M with o = M/N fixed and show that
it implies §(G) > ¢(a) N+ with high probability, where ¢(a)) > 0 for o > 1/2.

In Chapter 77?7, we will argue that the Fiy(0; 8) — Fn(8) = ©(V) for all §’s
large enough.
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: T B i
{ex:TreeBarrier} Exercise 13.7 Repeat the same arguments as above for the case of a reg-

ular ternary tree described in example 13.5, and derive a bound of the
form (13.32). Show that, at low temperature, the Arrhenius law holds, i.e.
Texp = €Xp{BAEN + o(8)}. How does AEy behave for large N?

[Hint: an upper bound can be obtained by constructing a sequence of con-
figurations from the all plus to the all minus ground state, such that any two
consecutive configurations differ in a single spin flip.]

Notes

For introductions to Bayesian networks, see (Jordan, 1998; Jensen, 1996). Bayesian
inference was proved to be NP-hard by Cooper. Dagun and Luby showed that
approximate Bayesian inference remains NP-hard. On the other hand, it becomes
polynomial if the number of observed variables is fixed.

Decoding of LDPC codes via Glauber dynamics was considered in (Franz,
Leone, Montanari and Ricci-Tersenghi, 2002). Satisfiability problems were con-
sidered in (Svenson and Nordahl, 1999).

Arrhenius law and the concept of energy barrier (or ‘activation energy’) were
discovered by the Swedish chemist Svante Arrhenius in 1889, in his study of
chemical kinetics. An introduction to the analysis of Monte Carlo Markov Chain
methods (with special emphasis on enumeration problems), and their equilibra-
tion/convergence rate can be found in (Jerrum and Sinclair, 1996; Sinclair, 1997).
The book in preparation by Aldous and Fill (Aldous and Fill, 2005) provides a
complete exposition of the subject from a probabilistic point of view. For a math-
ematical physics perspective, we refer to the lectures of Martinelli (Martinelli,
1999).

For an early treatment of the Glauber dynamics of the Ising model on a tree,
see (Henley, 1986). This paper contains a partial answer to Exercise 13.7.



14
Belief propagation

Consider the ubiquitous problem of computing marginals of a graphical model with N
variables z = (z1,...,2y) taking values in a finite alphabet X'. The naive algorithm,
which sums over all configurations, takes a time of order |X|". The complexity can
be reduced dramatically when the underlying factor graph has some special structure.
One extreme case is that of tree factor graphs. On trees, marginals can be computed
in a number of operations which grows linearly with N. This can be done through
a ‘dynamic programming’ procedure that recursively sums over all variables, starting
from the leaves and progressing towards the ‘centre’ of the tree.

Remarkably, such a recursive procedure can be recast as a distributed ‘message-
passing’ algorithm. Message-passing algorithms operate on ‘messages’ associated with
edges of the factor graph, and update them recursively through local computations
done at the vertices of the graph. The update rules that yield exact marginals on trees
have been discovered independently in several different contexts: statistical physics
(under the name ‘Bethe—Peierls approximation’), coding theory (the ‘sum-product’
algorithm), and artificial intelligence (‘belief propagation’;, BP). Here we shall adopt
the artificial-intelligence terminology.

This chapter gives a detailed presentation of BP and, more generally, message-
passing procedures, which provide one of the main building blocks that we shall use
throughout the rest of the book. It is therefore important that the reader has a good
understanding of BP.

It is straightforward to prove that BP computes marginals exactly on tree fac-
tor graphs. However, it was found only recently that it can be extremely effective on
loopy graphs as well. One of the basic intuitions behind this success is that BP, being
a local algorithm, should be successful whenever the underlying graph is ‘locally’ a
tree. Such factor graphs appear frequently, for instance in error-correcting codes, and
BP turns out to be very powerful in this context. However, even in such cases, its
application is limited to distributions such that far-apart variables become approxi-
mately uncorrelated. The onset of long-range correlations, typical of the occurrence of
a phase transition, leads generically to poor performance of BP. We shall see several
applications of this idea in the following chapters.

We introduce the basic ideas in Section 14.1 by working out two simple examples.
The general BP equations are stated in Section 14.2, which also shows how they provide
exact results on tree factor graphs. Section 14.3 describes an alternative message-
passing procedure, the max-product (or, equivalently, min-sum) algorithm, which can
be used in optimization problems. In Section 14.4, we discuss the use of BP in graphs
with loops. In the study of random constraint satisfaction problems, BP messages
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Fig. 14.1 Top: the factor graph of a one-dimensional Ising model in an external field. Bottom:
the three messages arriving at site j describe the contributions to the probability distribution
of o; due to the left chain (_.;), the right chain (7;.), and the external field B.

become random variables. The study of their distribution provides a large amount of
information about such instances and can be used to characterize the corresponding
phase diagram. The time evolution of these distributions is known under the name
of ‘density evolution’, and the fixed-point analysis of them is done by the replica-
symmetric cavity method. Both are explained in Section 14.6.

14.1 Two examples
14.1.1 Example 1: Ising chain

Consider the ferromagnetic Ising model on a line. The variables are Ising spins (o7, . . .,
on) =g, with o; € {+1, —1}, and their joint distribution takes the Boltzmann form

N-1 N
1 — ag
ug(g)ZZe BE() | E(g)z—ZUioiH—BZai. (14.1)
i=1 i=1

The corresponding factor graph is shown in Figure 14.1.

Let us now compute the marginal probability distribution u(o;) of spin o;. We
shall introduce three ‘messages’ arriving at spin j, representing the contributions to
w(oj) from each of the function nodes which are connected to i. More precisely, we
define

j—1 j—1
vjlog) = % Y exp {5 Y 0+ 6B Y Ui} ;

I oy i=1 i=1
1 N-1 N
Ui (0;) = 7 > exp ﬁZaiaiH +5B_Z oip . (14.2)
Oj+1---ON i=j i=j+1

Messages are understood to be probability distributions and thus to be normalized.
In the present case, the constants Z_,;, Z;_ are set by the conditions v_;(+1) +
v_ij(-1) =1, and 7;(+1) + 7;—(—1) = 1. In the following, when dealing with
normalized distributions, we shall avoid writing the normalization constants explicitly
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and instead use the symbol = to denote ‘equality up to a normalization’. With this
notation, the first of the above equations can be rewritten as

Jj—1 j—1
Vojlo)= Y exp {ﬂ > 0ioi1+ BB Y al} . (14.3)
i=1 i=1

01...05 1

By rearranging the summation over spins o;, ¢ # j, the marginal u(o;) can be
written as
wlog) =0 (0;) ™% Dj(ay) . (14.4)

In this expression, we can interpret each of the three factors as a ‘message’ sent to
j from one of the three function nodes connected to the variable j. Each message
coincides with the marginal distribution of ¢; in a modified graphical model. For
instance, U_,;(o;) is the distribution of ¢; in the graphical model obtained by removing
all of the factor nodes adjacent to j except for the one on its left (see Fig. 14.1).
This decomposition is interesting because the various messages can be computed
iteratively. Consider, for instance, U_,; 1. It is expressed in terms of _,; as

Di1(0) 2N Dy(o’) 7B (14.5)

Furthermore, v_,; is the uniform distribution over {+1,—1}: 7_,1(0) = % for o = £1.
Equation (14.5) allows one to compute all of the messages v_;, i € {1,..., N}, in O(N)
operations. A similar procedure yields ;. , by starting from the uniform distribution
Un— and computing 7;_1. from 7, recursively. Finally, eqn (14.4) can be used to
compute all of the marginals (o) in linear time.

All of the messages are distributions over binary variables and can thus be param-
eterized by a single real number. One popular choice for such a parameterization is to
use the log-likelihood ratio?

(14.6)

In statistical-physics terms, u_,; is an ‘effective (or local) magnetic field: v_,;(0) =
=17 Using this definition (and noticing that it implies 7_;(0) = (1+
otanh(fu_,;))), eqn (14.5) becomes

Uiy = f(u—i+B) , (14.7)
where the function f(x) is defined as
flz) = %atanh [tanh(5) tanh(Bx)] . (14.8)

The mapping u — f(u + B) is differentiable, with its derivative bounded by
tanh 8 < 1. Therefore the fixed-point equation v = f(u 4+ B) has a unique solu-
tion uy, and u_.; goes to u, when ¢ — oo. Consider a very long chain, and a node

INote that our definition differs by a factor 1/24 from the standard definition of the log-likelihood
in statistics. This factor is introduced to make contact with statistical-physics definitions.
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Fig. 14.2 Left: a simple parity check code with seven variables and three checks. Right: the
factor graph corresponding to the problem of finding the sent codeword, given a received

message.

in the bulk j € [eN,(1 — ¢)N]. Then, as N — oo, both u_,; and u;_ converge
to u*, so that (0;) — tanh[8(2u* + B)]. This is the bulk magnetization. If, on the
other hand, we consider a spin on the boundary, we get a smaller magnetization
(01) = (on) — tanh[B(u" + B)].

Exercise 14.1 Use the recursion (14.7) to show that, when NV and j go to infinity, (o;) =
M + O(N,\N77), where M = tanh(2u. + B) and A\ = f'(u. + B). Compare this with the
treatment of the one-dimensional Ising model in Section 2.5.

The above method can be generalized to the computation of joint distributions of
two or more variables. Consider, for instance, the joint distribution (o, oy ), for k > j.
Since we already know how to compute the marginal p(o;), it is sufficient to consider
the conditional distribution p(oy|o;). For each of the two values of ¢;, the conditional
distribution of ¢;j41,...,0n takes a form analogous to eqn (14.1) but with o; fixed.
Therefore, the marginal p(ox|o;) can be computed through the same algorithm as
before. The only difference is in the initial condition, which becomes v_,;(+1) = 1,
U_;(=1) = 0 (if we condition on o; = +1) and v_;(+1) = 0, v_;(—1) = 1 (if we
condition on ¢; = —1).

Exercise 14.2 Compute the correlation function (ojor), when j,k € [Ne, N(1 — ¢)] and
N — oo. Check that when B = 0, (0jo%) = (tanh )7 ~*|. Find a simpler derivation of this
last result.
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14.1.2 Example 2: A tree-parity-check code

Our second example deals with a decoding problem. Consider the simple linear code
whose factor graph is reproduced in the left frame of Fig. 14.2. It has a block length
N =7, and the codewords satisfy the three parity check equations

ToDx1 Dre =0, (149)
ToDrsDary =0, (14.10)
ToDxsDaeg =0. (1411)

One of the codewords is sent through a channel of the type BSC(p), defined earlier.
Assume that the received message is y = (1,0,0,0,0,1,0). The conditional distribution
for z to be the transmitted codeword, given the received message y, takes the usual
form puy (z) = P(z]y):

6

py(2) = (20 @ 71 & 23 = 0) (w0 B 73 B 74 = )70 ® 5 B 26 = 0) [ [ Quils)
=0

where Q(0]0) = Q(1]1) = 1 — p and Q(1]0) = Q(0|1) = p. The corresponding factor
graph is drawn in the right frame of Fig. 14.2.

In order to implement symbol MAP decoding, (see Chapter 6), we need to compute
the marginal distribution of each bit. The computation is straightforward, but it is
illuminating to recast it as a message-passing procedure similar to that in the Ising
chain example. Consider, for instance, bit xg. We start from the boundary. In the
absence of the check a, the marginal of x; would be v1_, = (1 — p,p) (we use here
the convention of writing distributions v(x) over a binary variable as two-dimensional
vectors (v(0),(1))). This is interpreted as a message sent from variable 1 to check a.

Variable 2 sends an analogous message v2_,, to a (in the present example, this
happens to be equal to v1_,,). Knowing these two messages, we can compute the
contribution to the marginal probability distribution of variable xy arising from the
part of the factor graph containing the whole branch connected to x¢ through the
check a:

Da—so(x0) = D I(zo ® 21 @ 22 = 0) 110 (71)12a(72) - (14.12)

1,22

Clearly, U,—0(zo) is the marginal distribution of zg in a modified factor graph that
does not include either of the factor nodes b or ¢, and in which the received symbol
yo has been erased. This is analogous to the messages U_, (o) used in the Ising chain
example. The main difference is that the underlying factor graph is no longer a line,
but a tree. As a consequence, the recursion (14.12) is no longer linear in the incoming
messages. Using the rule (14.12), and analogous ones for Up_,(zo) and U.—o(z0), we
obtain

Voo = (p° + (1 = p)?, 2p(1 —p))

Up—o = (p* + (1 —p)%, 2p(1 —p)),
/V\CHO = (219(1 - P)7 p2 + (1 - p)2) .
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The marginal probability distribution of the variable z¢ is finally obtained by taking
into account the contributions of each subtree, together with the channel output for
bit zq:

(o) = Q(Yo|z0) Va—o(w0)Vs—0(T0)Ve—o(T0)
= (2p°(1—p)[p* + (1 —p)?P?, 4p*(1—p)’[p* + (1 —p)?]) .

In particular, the MAP decoding of the symbol xq is always xy = 0 in this case, for
any p < 1/2.

An important fact emerges from this simple calculation. Instead of performing a
summation over 27 = 128 configurations, we were able to compute the marginal at zg
by doing six summations (one for every factor node a,b, ¢ and for every value of ),
each one over two summands (see eqn (14.12)). Such complexity reduction was achieved
by merely rearranging the order of sums and multiplications in the computation of the
marginal.

Exercise 14.3 Show that the message 1o (z0) is equal to (1/2,1/2), and deduce that
p(@1) = ((1 = p),p).

14.2 Belief propagation on tree graphs

We shall now define belief propagation and analyse it in the simplest possible setting:
tree-graphical models. In this case, it solves several computational problems in an
efficient and distributed fashion.

14.2.1 Three problems

Let us consider a graphical model such that the associated factor graph is a tree (we call
this model a tree-graphical model). We use the same notation as in Section 9.1.1.
The model describes N random variables (z1,...,zy) = z taking values in a finite
alphabet X', whose joint probability distribution has the form

1 M
na) = [ valzad), (14.13)
a=1

where 25, = {2, | € da}. The set da C [N], of size |dal, contains all variables involved
in constraint a. We shall always use indices 1, j, k, ... for the variables and a,b, ¢, ...
for the function nodes. The set of indices 97 involves all function nodes a connected
to <.
When the factor graph has no loops, the following are among the basic problems
that can be solved efficiently with a message-passing procedure:
1. Compute the marginal distributions of one variable, p(x;), or the joint distribution
of a small number of variables.
2. Sample from p(z), i.e. draw independent random configurations  with a distri-
bution pu(z).
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3. Compute the partition function Z or, equivalently, in statistical-physics language,
the free entropy log Z.

These three tasks can be accomplished using belief propagation, which is an obvious
generalization of the procedure exemplified in the previous section.

14.2.2 The BP equations

Belief propagation is an iterative ‘message-passing’ algorithm. The basic variables on
which it acts are messages associated with directed edges on the factor graph. For each
edge (i,a) (where ¢ is a variable node and a a function node) there exist, at the ¢-th

iteration, two messages V( ) and u( )

1—a a—1"

Messages take values in the space of probability

distributions over the single-variable space X'. For instance, Vl(_)m = {Vl_)m(fl,‘i) tx; €

X'}, with V( ) J(xi)>0and )" I/Z_m( x;) = 1.
In tree- graphlcal models, the messages converge when t — oo to fixed-point values
(see Theorem 14.1). These coincide with single-variable marginals in modified graphical

models, as we saw in the two examples in the previous section. More precisely, fH t)l(xl)
is the marginal distribution of variable x; in a modified graphical model which does not
include the factor a (i.e. the product in eqn (14.13) does not include a). Analogously,
ﬁééi(xl) is the distribution of x; in a graphical model where all factors in 0i except a
have been erased.

Messages are updated through local computations at the nodes of the factor graph.
By local we mean that a given node updates the outgoing messages on the basis of
incoming ones at previous iterations. This is a characteristic feature of message-passing
algorithms; the various algorithms in this family differ in the precise form of the update

equations. The belief propagation (BP), or sum—product, update rules are

1 ~
uj(.tja = H Vb (14.14)
bedj\a
o0 @) 2 S Walzea) [ vialae) - (14.15)
Zoa\j keda\j

It is understood that, when 95 \ a is an empty set, vj_,(x;) is the uniform distribu-
tion. Similarly, if da \ j is empty, then 7,_.;(x;) = ¥4 (z;). A pictorial illustration of
these rules is provided in Fig. 14.3. A BP fixed point is a set of t-independent mes-
sages 1/2-(2& = Vj_q, ﬁ((ltlz = Ug—,; which satisfy eqns (14.14) and (14.15). From these,
one obtains 2|€| equations (one equation for each directed edge of the factor graph)
relating 2|€| messages. We shall often refer to these fixed-point conditions as the BP
equations.

After t iterations, one can estimate the marginal distribution p(z;) of variable ¢

using the set of all incoming messages. The BP estimate is:
v (@) = ] 982 (). (14.16)
acdi

In writing the update rules, we have assumed that the update is done in parallel at all
the variable nodes, then in parallel at all function nodes, and so on. Clearly, in this
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1
1
N 1
I

Fig. 14.3 Left: the portion of the factor graph involved in the computation of V(-H'l)(acj).

j—a
This message is a function of the ‘incoming messages’ Déﬂj (z;), with b # a. Right: the portion

=(t)

of the factor graph involved in the computation of v/,” ; (z;). This message is a function of

the “incoming messages’ ") (zk), with k # 7.

k—a

case, the iteration number must be incremented either at variable nodes or at factor
nodes, but not necessarily at both. This is what happens in eqns (14.14) and (14.15).
Other update schedules are possible and sometimes useful. For the sake of simplicity,
however, we shall stick to the parallel schedule.

In order to fully define the algorithm, we need to specify an initial condition. It is
a widespread practice to set initial messages to the uniform distribution over X (i.e.
ul(i)a(xl) = 1/|X]). On the other hand, it can be useful to explore several distinct
(random) initial conditions. This can be done by defining some probability measure
P over the space M(X) of distributions over X’ (i.e. the |X|-dimensional simplex) and
taking yi@a( <) as i.i.d. random variables with distribution P.

The BP algorithm can be applied to any graphical model, irrespective of whether
the factor graph is a tree or not. One possible version of the algorithm is as follows.

BP (graphical model (G, ), accuracy e, iterations tmax)
1 Initialize BP messages as i.i.d. random variables with distribution P;
2 For t € {0,... tmax }

3 For each (j,a) € E

4: Compute the new value of 7,_.; using eqn (14.15);

5: For each (j,a) € E
6.

7

8

9

Compute the new value of v;_,, using eqn (14.14);
Let A be the maximum message change;
If A < e return current messages;
: End-For;
10:  Return ‘Not Converged’;
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Among all message-passing algorithms, BP is uniquely characterized by the prop-
erty of computing exact marginals on tree-graphical models.

Theorem 14.1. (BP is exact on trees) Consider a
tree-graphical model with diameter t. (which means that t. is the maximum distance
between any two variable nodes). Then:

1. Irrespective of the initial condition, the BP update equations (14.14) and (14.15)
converge after at most t, iterations. In other words, for any edge (ia), and any
t>t, v =y W

*5 Vg - " — Ya—i-

i—a i—a’ Ca—1

2. The fized-point messages provide the exact marginals: for any variable node i, and

any t > t,, ui(t)(zi) = p(x;).

Proof As exemplified in the previous section, on tree factor graphs BP is just a clever
way to organize the sum over configurations to compute marginals. In this sense, the
theorem is obvious.

We shall sketch a formal proof here, leaving a few details to the reader. Given a
directed edge i — a between a variable i and a factor node a, we define T(i — a) as
the subtree rooted on this edge. This is the subtree containing all nodes w which can
be connected to i by a non-reversing path? which does not include the edge (i,a). Let
t.(i — a) be the depth of T(i — a) (the maximal distance from a leaf to 7).

We can show that, for any number of iterations ¢ > ¢,(i — a), the message l/i(ﬂa
coincides with the marginal distribution of the root variable with respect to the graph-
ical model T(i — a). In other words, for tree graphs, the interpretation of BP messages
in terms of modified marginals is correct.

This claim is proved by induction on the tree depth ¢, (i — a). The base step of the
induction is trivial: T(i — a) is the graph formed by the unique node i. By definition,
for any t > 1, Vz(i)m(xl) = 1/|X| is the uniform distribution, which coincides with the
marginal of the trivial graphical model associated with T(i — a).

The induction step is easy as well. Assuming the claim to be true for ¢.(i — a) < 7,
we have to show that it holds when ¢.(i — a) = 7+ 1. To this end, take any ¢t > 7+ 1

(t+1)

and compute v;_ ' (x;) using eqns (14.14) and (14.15) in terms of messages Vj(ib(xj)

in the subtrees for b € 9i \ a and j € 9b\ . By the induction hypothesis, and since
the depth of the subtree T'(j — b) is at most 7, Vj(-ib(xj) is the root marginal in such
a subtree. It turns out that by combining the marginals at the roots of the subtrees
T(j — b) using eqns (14.14) and (14.15), we can obtain the marginal at the root of

T(i — a). This proves the claim. O

14.2.3 Correlations and energy

The use of BP is not limited to computing one-variable marginals. Suppose we want
to compute the joint probability distribution p(z;,z;) of two variables z; and x;.
Since BP already enables to compute u(a;), this task is equivalent to computing the

2A non-reversing path on a graph G is a sequence of vertices w = (jo, 1, -.,Jn) such that
(js,Js+1) is an edge for any s € {0,...,n — 1}, and js—1 # js41 for s€ {1,...,n —1}.
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conditional distribution pu(x; | x;). Given a model that factorizes as in eqn (14.13),
the conditional distribution of x = (z1,...,zxN) given x; = = takes the form

M
plzlzs = 2) 2= ][ dalzo,) e = ). (14.17)

In other words, it is sufficient to add to the original graph a new function node of
degree 1 connected to variable node 7, which fixes ; = z. One can then run BP on
the modified factor graph and obtain estimates 1/( )(xj|xi = ) for the conditional
marginal of x;.

This strategy is easily generalized to the joint distribution of any number m of
variables. The complexity, however, grows exponentially in the number of variables
involved, since we have to condition over |X|™~! possible assignments.

Happily, for tree-graphical models, the marginal distribution of any number of
variables admits an explicit expression in terms of messages. Let Fr be a subset
of function nodes, let Vi be the subset of variable nodes adjacent to Fg, let R be
the induced subgraph, and let zp be the corresponding variables. Without loss of
generality, we shall assume R to be connected. Further, we denote by OR the subset
of function nodes that are not in Fz but are adjacent to a variable node in Vjg.

Then, for a € 9R, there exists a unique ¢ € da N Vi, which we denote by i(a).
It then follows immediately from Theorem 14.1, and its characterization of messages,
that the joint distribution of variables in R is

M xR Z H wa $6a H Vaﬂz (a) xz(a)) (1418)

a€FR a€dR

where U*_ () are the fixed-point BP messages.

Exercise 14.4 Let us use the above result to write the joint distribution of the vari-
ables along a path in a tree factor graph. Consider two variable nodes i, j, and let
R = (Vg, Fr, Er) be the subgraph induced by the nodes along the path between 7 and j. For
any function node a € R, denote by i(a) and j(a) the variable nodes in R that are adjacent
to a. Show that the joint distribution of the variables along this path, x5 = {x; : | € Vr},
takes the form

1(zg) Z 11 %e(@i i) ] () (14.19)

a€FpR leVR

In other words, p(zy) factorizes according to the subgraph R. Write expressions for the

compatibility functions wa( ), 1/)1( ) in terms of the original compatibility functions and
the messages going from OR to Vg.

A particularly useful case arises in the computation of the internal energy. In
physics problems, the compatibility functions in eqn (14.13) take the form v, (zy,) =
e PPa(zsa)  where [ is the inverse temperature and E.(zy,) is the energy function
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characterizing constraint a. Of course, any graphical model can be written in this
form (allowing for the possibility of E,(x,,) = +0oo in the case of hard constraints),
adopting for instance the convention § = 1, which we shall use from now on. The
internal energy U is the expectation value of the total energy:

= _u(@) Y loga(za,) - (14.20)

This can be computed in terms of BP messages using eqn (14.18) with Fr = {a}. If,
further, we use eqn (14.14) to express products of check-to-variable messages in terms
of variable-to-check ones, we get

Z Z (7% Z,) log v, (xs,) H Vi o(xj ) , (14.21)

z@a 1€0a

where Zo =35, Ya(Zsa) [[;c0q Viea(®;)- Notice that in this expression the internal
energy is a sum of ‘local’ terms, one for each compatibility function.

On a loopy graph, eqns (14.18) and (14.21) are no longer valid, and, indeed, BP
does not necessarily converge to fixed-point messages {v; ,7*_.}. However, one can
replace fixed-point messages with BP messages after any number ¢ of iterations and
take these as definitions of the BP estimates of the corresponding quantities. From
eqn (14.18), one obtains an estimate of the joint distribution of a subset of variables,

which we shall call v®)(z ), and from (14.21), an estimate of the internal energy.

14.2.4 Entropy

Remember that the entropy of a distribution p over XV is defined as H[u] =

—> . i(z)log pu(z). In a tree-graphical model, the entropy, like the internal energy,
has a simple expression in terms of local quantities. This follows from an important
decomposition property. Let us denote by p,(2s,) the marginal probability distribu-
tion of all the variables involved in the compatibility function a, and by p;(z;) the
marginal probability distribution of variable x;.

Theorem 14.2 In a tree-graphical model, the joint probability distribution u(z) of all
of the variables can be written in terms of the marginals piq(25,) and p;(x;) as

= [ ra(@sa) T witaa)* 17" (14.22)

acF 1%

Proof The proof is by induction on the number M of factors. Equation (14.22) holds
for M =1 (since the degrees |0i| are all equal to 1). Assume that it is valid for any
factor graph with up to M factors, and consider a specific factor graph G with M + 1
factors. Since G is a tree, it contains at least one factor node such that all its adjacent
variable nodes have degree 1, except for at most one of them. Call such a factor node a,
and let 7 be the only neighbour with degree larger than one (the case in which no such
neighbour exists is treated analogously). Further, let z_, be the vector of variables in
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G that are not in da \ 4. Then (writing P,,(-) for a probability under the distribution
1), the Markov property together with the Bayes rule yields

Pu(z) = Pu(z )Pu(z|z.) = Pu(@ )Pu(zpel7i) = Pu(@)pa(@aq)pi(z:) "
(14.23)

The probability P,(z.) can be written as P(z ) = zﬁa(xi)HbGF\a ¥p(zgp), Where
Yo(wi) = Zgaa\i
incorporated into another factor as follows: take one of the other factors connected to
i, ¢ € 0i\ a, and change it to ¥.(z5.) = Ye(z5.)a(x;). In the reduced factor graph,
the degree of 7 is smaller by one and the number of factors is M. Using the induction
hypothesis, we get

Pu(z.) = pi(z:)® 90 T molaan) T wtas) 1970 (14.24)
beF\a jevi

Ya(Zp,)- As the factor 1/~)a has degree one, it can be erased and

The proof is completed by putting together eqns (14.23) and (14.24). O
As an immediate consequence of eqn (14.22), the entropy of a tree-graphical model
can be expressed as sums of local terms:

Hu) = = ta(a) 108 pra(@g,) — > (1 — 10i]) pi(w:) log pi(as) - (14.25)
acF eV

It is also easy to express the free entropy ® = log Z in terms of local quantities.
Recalling that ® = H[u]|—U|p] (where Uy is the internal energy given by eqn (14.21)),
we get @ = F[u], where

Flu] = — Z ta(Zo,) log { HalZp,) } - Z(l — 10| i () log i (x;) . (14.26)

a€F Va(Zoa) i€V

Expressing local marginals in terms of messages, via eqn (14.18), we can in turn
write the free entropy as a function of the fixed-point messages. We introduce the func-
tion F,(v), which yields the free entropy in terms of 2| E| messages v = {v; .o (), Va—i( ) }:

Fo(v)=> Faw)+ > Fiv)— Y Filv), (14.27)

acF i€V (ia)EE
where
Fo(v) =log | Y a(as) [ vieal@:)|, Filw) =log [Z 11 %—»i(%)} :
ZTya i€0a x; bED

Fa;(v) = log Zyﬁa(zi)am(xi)] : (14.28)

T

It is not hard to show that, by evaluating this functional at the BP fixed point v*,
one gets F.(v*) = Flu] = @, thus recovering the correct free entropy. The function
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Fig. 14.4 Left: the factor graph of a small instance of the satisfiability problem with five

variables and five clauses. A dashed line means that the variable appears negated in the
adjacent clause. Right: the set of fixed-point BP messages for the uniform measure over
solutions of this instance. All messages are normalized, and we show their weights for the
value True. For any edge (a, ) (a being the clause and i the variable), the weight corresponding
to the message Us—; is shown above the edge, and the weight corresponding to v;_., below
the edge.

F.(v) defined in eqn (14.27) is known as the Bethe free entropy (when multiplied
by a factor —1/f, it is called the Bethe free energy). The above observations are
important enough to be highlighted in a theorem.

Theorem 14.3. (the Bethe free entropy is exact on trees) Consider a tree-graphical
model. Let {jiq, i} denote its local marginals, and let v* = {v}_ ,, Us_,;} be the fized-
point BP messages. Then ® =log Z = Flu] = F.(v*).

Notice that in the above statement, we have used the correct local marginals in F[ -]
and the fixed-point messages in F, (). In Section 14.4 we shall reconsider the Bethe
free entropy for more general graphical models, and regard it as a function over the
space of all ‘possible’ marginals/messages.

Exercise 14.5 Consider the instance of the satisfiability problem shown in Fig. 14.4,
left. Show by exhaustive enumeration that it has only two satisfying assignments, z =
(0,1,1,1,0) and (0,1,1,1,1). Rederive this result using BP. Namely, compute the entropy
of the uniform measure over satisfying assignments, and check that its value is indeed log 2.
The BP fixed point is shown in Fig. 14.4, right.

Exercise 14.6 In many systems some of the function nodes have degree 1 and amount
to a local redefinition of the reference measure over X'. It is then convenient to single out
these factors. Let us write p(z) = ], cp¥a(2s,) [1;cy %i(:), where the second product
runs over degree-1 function nodes (indexed by the adjacent variable node), and the factors
1o have degree at least 2. In the computation of F,, the introduction of v; adds N extra
factor nodes and subtracts N extra ‘edge’ terms corresponding to the edge between the
variable node i and the function node corresponding to ;.
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Show that these two effects cancel, and that the net effect is to replace the variable-node
contribution in eqn (14.27) with

Fi(v) =log | > wi(:) [] Pailzs)| - (14.29)

a€oi

The problem of sampling from the distribution u(z) over the large-dimensional
space X'V reduces to that of computing one-variable marginals of z(z), conditional on
a subset of the other variables. In other words, if we have a black box that computes
w(x;|zyy) for any subset U C V, it can be used to sample a random configuration z.
The standard procedure for doing this is called sequential importance sampling.
We can describe this procedureby the following algorithm in the case of tree-graphical
models, using BP to implement such a ‘black box’.

BP-GUIDED SAMPLING (fraphical model (G,)))
1 initialize BP messages;

2 initialize U = (;

3 fort=1,...,N:

4 run BP until convergence;

5: choose i € V' \ U;

6: compute the BP marginal v;(x;);
7

8

9

1

1

choose z} distributed according to v;;

fix x; =z} and set U — U U {i};

: add a factor I(xz; = x¥) to the graphical model;
0: end
1: return z*.

14.2.5 Pairwise models

Pairwise graphical models, i.e. graphical models such that all factor nodes have degree
2, form an important class. A pairwise model can be conveniently represented as an
ordinary graph G = (V, E) over variable nodes. An edge joins two variables each
time they are the arguments of the same compatibility function. The corresponding
probability distribution reads

u(z):% I @iz (14.30)

(ij)eE

Function nodes can be identified with edges (ij) € E.
In this case belief propagation can be described as operating directly on G. Further,

one of the two types of messages can be easily eliminated: here we shall work uniquely
(t)

i—j

with variable-to-function messages, which we will denote by v

I/Z.(ﬂ(ij)(l'i). The BP updates then read

(z), a shortcut for
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@y = TT Y valwa ) v (@) (14.31)

ledi\j 1

Simplified expressions can be derived in this case for the joint distribution of several
variables (see eqn (14.18)), as well as for the free entropy.

Exercise 14.7 Show that, for pairwise models, the free entropy given in eqn (14.27) can
be written as Fu(v) = 3=,y Fi(v) — X (i5yem Fij) (), where

Fi(w) =log | > [T | D vul@szi)vii(zs) | |

x; jEO z;

Fiijy () = log | Y viej(@a)this (i, ;) via(s) | - (14.32)

Ti, Ty

14.3 Optimization: Max-product and min-sum

Message-passing algorithms are not limited to computing marginals. Imagine that you
are given a probability distribution u(-) as in eqn (14.13), and you are asked to find
a configuration z which maximizes the probability p(z). Such a configuration is called
a mode of p(-). This task is important in many applications, ranging from MAP
estimation (e.g. in image reconstruction) to word MAP decoding.

It is not hard to devise a message-passing algorithm adapted to this task, which
correctly solves the problem on trees.

14.3.1 Max-marginals

The role of marginal probabilities is played here by the max-marginals

M;(z}) = m;xx{,u(z) Txy =T} (14.33)
In the same way as the tasks of sampling and of computing partition functions can
be reduced to computing marginals, optimization can be reduced to computing max-
marginals. In other words, given a black box that computes max-marginals, optimiza-
tion can be performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate,
i.e., for each i € V, there exists an ] such that M;(z}) > M;(z;) (strictly) for any
x; # xf. The unique maximizing configuration is then given by z* = (z7,...,z})-

In the general case, the following ‘decimation’ procedure, which is closely related
to the BP-guided sampling algorithm of Section 14.2.4, returns one of the maximizing
configurations. Choose an ordering of the variables, say (1,..., N). Compute M (x1),
and let 27 be one of the values maximizing it: z* € argmax M (x1). Fix 21 to take this
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value, i.e. modify the graphical model by introducing the factor I(x; = «7) (this corre-
sponds to considering the conditional distribution p(z|x; = 27)). Compute My (z2) for
the new model, fix x5 to one value z € argmax Ms(x2), and iterate this procedure,
fixing all the z;’s sequentially.

14.3.2 Message passing

It is clear from the above that max-marginals need only to be computed up to a
multiplicative normalization. We shall therefore stick to our convention of denoting
equality between max-marginals up to an overall normalization by . Adapting the
message-passing update rules to the computation of max-marginals is not hard: it is
sufficient to replace sums with maximizations. This yields the following max-product
update rules:

D () = o0 (x4, (14.34)
bedi\a

P (2;) = max { ba(zp,) H v ()t (14.35)
Zoa\i

The fixed-point conditions for this recursion are called the max-product equations.
As in BP, it is understood that, when 97 \ a is an empty set, v;_o(z;) = 1 is the
uniform distribution. Similarly, if da \ j is empty, then U, ;(x;) = ¥, (z;). After any
number of iterations, an estimate of the max-marginals is obtained as follows:

v (z;) 2= [ 282 (@) - (14.36)
a€di

As in the case of BP, the main motivation for the above updates comes from the
analysis of graphical models on trees.

Theorem 14.4. (the max-product algorithm is exact on trees) Consider a tree-
graphical model with diameter t.. Then:

1. Irrespective of the initialization, the maz-product updates (14.34) and (14.35) con-
verge after at most t. iterations. In other words, for any edge (i,a) and any t > t.,
(t) (1) .

Vita= Vz%a and 7, Voosi = Vaosi-

2. The max-marginals are estimated correctly, i.e., for any variable node i and any

t>t,, v (@) = M;(x;).

2

The proof follows closely that of Theorem 14.1, and is left as an exercise for the reader.



Optimization: Max-product and min-sum 307

Exercise 14.8 The crucial property used in both Theorem 14.1 and Theorem 14.4 is the
distributive property of the sum and the maximum with respect to the product. Consider,
for instance, a function of the form f(x1,z2,23) = ¥1(z1,x2)12(x1,23). Then one can
decompose the sum and maximum as follows:

Z f(z1,z2,x3) = Z |:<Z¢1(£U1,m2)> (ng(xl,x3)>:| , (14.37)

Z1,22,T3 z1

LA f(x1, @2, 3) = max {(n;aztxwl(m,wz)) <H;33JX1/12(171,(L’3)>:| . (14.38)

Formulate a general ‘marginalization’ problem (with the ordinary sum and product substi-
tuted by general operations with a distributive property) and describe a message-passing
algorithm that solves it on trees.

The max-product messages M (-) and ﬁfflz( -) admit an interpretation which is

1—a
analogous to that of sum-product messages. For instance, v (+) is an estimate of

1—a
the max-marginal of variable x; with respect to the modified graphical model in which
factor node a is removed from the graph. Along with the proof of Theorem 14.4, it is
easy to show that, in a tree-graphical model, fixed-point messages do indeed coincide
with the max-marginals of such modified graphical models.
The problem of finding the mode of a distribution that factorizes as in eqn (14.13)
has an alternative formulation, namely as minimizing a cost (energy) function that

can be written as a sum of local terms:

E(z) =Y Ba(zp,) - (14.39)

acF

The problems are mapped onto each other by writing 1, (z,,) = e #F(Zoa) (with
some positive constant). A set of message-passing rules that is better adapted to the
latter formulation is obtained by taking the logarithm of eqns (14.34) and (14.35).
This version of the algorithm is known as the min-sum algorithm:

ES D (@) = Y B () + 0, (14.40)
bedi\a
EY (x)) = min |Eo(zp,) + Y. B (z;)| +CL, . (14.41)
Zya\i . .
j€da\i

The corresponding fixed-point equations are also known in statistical physics as the
energetic cavity equations. Notice that, since the max-product marginals are rel-
evant only up to a multiplicative constant, the min-sum messages are defined up to
an overall additive constant. In the following, we shall choose the constants c®

1—a
t

and ) such that min,, E(t+1)(xi) = 0 and min,, EW

a—1 i—a a—1

(x;) = 0, respectively. The
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analogue of the max-marginal estimate in eqn (14.36) is provided by the following
log-max-marginal:

B (w) = Y B @)+ (14.42)

In the case of tree-graphical models, the minimum energy U, = min, E(z) can be

immediately written in terms of the fixed-point messages {E?_,, E;_}. We obtain,
in fact,

U* = ZEQ(E??@) ) (1443)

3, = arg min {Ea(maa) + Z E:;a(xz)} . (14.44)

z
=oa i€0a

In the case of non-tree graphs, this can be taken as a prescription to obtain a max-

product estimate it) of the minimum energy. One just needs to replace the fixed-
point messages in eqn (14.44) with the messages obtained after ¢ iterations. Finally,
a minimizing configuration x* can be obtained through the decimation procedure
described in the previous subsection.

Exercise 14.9 Show that U, is also given by Ux = > p€at+D 0y € —E(M)GE €ia, Where

€ = min | Eq(z,,) + Z E;_o(z5)| » €; = min Z Ez_,l(acl):| ,
S j€8a N PP
€ia = min [E;a(xi) + E;ﬂ-(xi)] . (14.45)

[Hints: (¢) Define z; (a) = arg min [E\;Hz(m) + E;La(xi)], and show that the minima in
eqn (14.45) are achieved at z; = zj (a) (for €; and €.:) and at zj, = {z](a)}icoa (for €q).
(i) Show that -, Ea_i(zi(a)) = 3, €]

14.3.3 Warning propagation

A frequently encountered case is that of constraint satisfaction problems, where the
energy function just counts the number of violated constraints:

0 if constraint a is satisfied,
Ea(2p,) = { 1 otherwise. (14.46)

The structure of messages can be simplified considerably in this case. More precisely,
if the messages are initialized in such a way that ES&L € {0,1}, this condition is
preserved by the min-sum updates (14.40) and (14.41) at any subsequent time. Let us
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prove this statement by induction. Suppose it holds up to time ¢ — 1. From eqn (14.40),

it follows that Efga(xl) is a non-negative integer. Now consider eqn (14.41). Since both

E](tla(xj) and E,(zs,) are integers, it follows that Efflz(xl), the minimum of the right-
hand side, is a non-negative integer as well. Further, since for each j € da \ i there
exists an z such that Ej(tla(x;‘) = 0, the minimum in eqn (14.41) is at most 1, which
proves our claim.

This argument also shows that the outcome of the minimization in eqn (14.41)
depends only on which entries of the messages gt (+) vanish. If there exists an

J—a
assignment z} such that E](tla(xj) = 0 for each j € da\i, and Eq(;,2,,;) = 0, then
the value of the minimum is 0. Otherwise, it is 1.
In other words, instead of keeping track of the messages E;_,,( - ), one can use their
‘projections’
Ei—>a(93i) = min{l, E1—>a(frz)} . (1447)

Proposition 14.5 Consider an optimization problem with a cost function of the form
(14.39) with E,.(zs,) € {0,1}, and assume the min-sum algorithm to be initialized
with Eaﬂi(xi) € {0,1} for all edges (i,a). Then, after any number of iterations, the
function-node-to-variable-node messages coincide with those computed using the fol-
lowing update rules:

E D (2) =mind 1, Y B (@) + 00, b (14.48)
bedi\a
St . t At
B (2:) = min § Balzp) + Y B (2;) p +CL2, (14.49)
Toa j€dai
where C’i(t_),a, éét_)n are normalization constants determined by min, Eaﬁi(wi) =0 and

min,, E; . (2;) = 0.
Finally, the ground state energy takes the same form as eqn. (14.45), with E;_4(+)
replacing E;_ ().

We call the simplified min-sum algorithm with the update equations (14.49) and
(14.48) the warning propagation algorithm.

The name is due to the fact that the messages E;_,(-) can be interpreted as the
following warnings:

Eia(z;) =1 — ‘according to the set of constraints b € 0i \ a, the i-th variable
should not take the value x;’.

Eia(z;) = 0 — ‘according to the set of constraints b € 0i \ a, the i-th variable
can take the value x; .

Warning propagation provides a procedure for finding all direct implications of a par-
tial assignment of the variables in a constraint satisfaction problem. For instance, in
the case of the satisfiability problem, it finds all implications found by unit clause
propagation (see Section 10.2).
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14.4 Loopy BP

We have seen how message-passing algorithms can be used efficiently in tree-graphical
models. In particular, they allow one to exactly sample distributions that factorize
according to tree factor graphs and to compute marginals, partition functions, and
modes of such distributions. It would be very useful in a number of applications to
be able to accomplish the same tasks when the underlying factor graph is no longer a
tree.

It is tempting to use the BP equations in this more general context, hoping to
get approximate results for large graphical models. Often, we shall be dealing with
problems that are NP-hard even to approximate, and it is difficult to provide general
guarantees of performance. Indeed, an important unsolved challenge is to identify
classes of graphical models where the following questions can be answered:

¥ a» Vi_,;} that reproduces the local marginals of

u( ) by use of eqn (14.18), within some prescribed accuracy?

2. Do such messages correspond to an (approximate) fixed point of the BP update
rules (14.14) and (14.15)7

3. Do the BP update rules have at least one (approximate) fixed point? Is it unique?

4. Does such a fixed point have a non-empty ‘basin of attraction’ with respect to
eqns (14.14) and (14.15)? Does this basin of attraction include all possible (or all
‘reasonable’) initializations?

1. Is there any set of messages {v;_, V.

We shall not treat these questions in depth, as a general theory is lacking. We shall,
rather, describe the sophisticated picture that has emerged, building on a mixture of
physical intuition, physical methods, empirical observations, and rigorous proofs.

Exercise 14.10 Consider a ferromagnetic Ising model on a two-dimensional grid with
periodic boundary conditions (i.e. ‘wrapped’ around a torus), as defined in Section 9.1.2
(see Fig. 9.7). Ising spins oy, ¢ € V, are associated with the vertices of the grid, and interact
along the edges:

po) = %eﬁ X(ij)er 7i% (14.50)

(a) Describe the associated factor graph.

(b) Write the BP equations.

(¢) Look for a solution that is invariant under translation, i.e. v;—.q(0:) = v(03), Va—i(0i) =
U(o;): write down the equations satisfied by v(-), U(-).

(d) Parameterize v(o) in terms of the log-likelihood h = (1/208)log(v(+1)/v(—1)) and
show that h satisfies the equation tanh(8h) = tanh(g3) tanh(35h).

(e) Study this equation and show that, for 3tanh 3 > 1, it has three distinct solutions
corresponding to three BP fixed points.

(f) Consider the iteration of the BP updates starting from a translation-invariant initial
condition. Does the iteration converge to a fixed point? Which one?
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(g9) Discuss the appearance of three BP fixed points in relation to the structure of the
distribution p(o) and the paramagnetic—ferromagnetic transition. What is the approx-
imate value of the critical temperature obtained from BP? Compare with the exact
value 3. = 1 log(1+ V2).

(h) What results does one obtain for an Ising model on a d-dimensional (instead of two-
dimensional) grid?

14.4.1 The Bethe free entropy

As we saw in Section 14.2.4, the free entropy of a tree-graphical model has a simple
expression in terms of local marginals (see eqn (14.26)). We can use it in graphs with
loops with the hope that it provides a good estimate of the actual free entropy. In
spirit, this approach is similar to the ‘mean-field’ free entropy introduced in Chapter 2,
although it differs from it in several respects.

In order to define precisely the Bethe free entropy, we must first describe a space
of ‘possible’ local marginals. A minimalistic approach is to restrict ourselves to the
‘locally consistent marginals’. A set of locally consistent marginals is a collection
of distributions b;(-) over X for each i € V, and b,(-) over X194 for each a € F.
Being distributions, they must be non-negative, i.e. b;(x;) > 0 and b,(zy,) > 0, and
they must satisfy the normalization conditions

D bi(zi)=1 VieV, > ba(zp,) =1 Va€eF. (14.51)

Zoa

To be ‘locally consistent’, they must satisfy the marginalization condition

Z bo(z9,) =bi(zi)) YaeF, Vieda. (14.52)

Zya\i

Given a factor graph G, we shall denote the set of locally consistent marginals by
LOC(G), and the Bethe free entropy will be defined as a real-valued function on this
space.

It is important to stress that, although the marginals of any probability distribution
w(z) over = (x1,...,2x) must be locally consistent, the converse is not true: one can
find sets of locally consistent marginals that do not correspond to any distribution.
In order to emphasize this point, locally consistent marginals are sometimes called
‘beliefs’.

Exercise 14.11 Consider the graphical model shown in Fig. 14.5, on binary variables
(z1,22,23), z; € {0,1}. The figure also gives a set of beliefs in the vector/matrix form

b = {bi(o)] . by = [b"((l)o) sl

;(00) bi; (01
bi(1) bij(10) bi; (11

” . (14.53)

Check that this set of beliefs is locally consistent, but that they cannot be the marginals of
any distribution wu(z1,x2,x3).
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by = 8.813) ggé] o [0:010.49
10.010. 711049001
[0.5 0.5

b2 = 0.5] "= {0-5}

- b — | 0-49°0.01
237 10.01 0.49

Fig. 14.5 A set of locally consistent marginals, ‘beliefs’, that cannot arise as the marginals
of any global distribution.

Given a set of locally consistent marginals b = {b,, b; }, we associate a Bethe free
entropy with it exactly as in eqn (14.26):

FlE) = = 3 b o { 72220k = 5201 i) o) o). (1450

a€EF Ya(2oa) eV

The analogy with the naive mean-field approach suggests that stationary points (and,
in particular, maxima) of the Bethe free entropy should play an important role. This
is partially confirmed by the following result.

Proposition 14.6 Assume ¢,(zy,) > 0 for every a and z,,. Then the stationary
points of the Bethe free entropy F[b] are in one-to-one correspondence with the fixed
points of the BP algorithm.

As will become apparent from the proof, the correspondence between BP fixed points
and stationary points of F[b] is completely explicit.

Proof We want to check stationarity with respect to variations of b within the set
LOC(@G), which is defined by the constraints (14.51) and (14.52), as well as b, (z5,) > 0,
bi(xz;) > 0. We thus introduce a set of Lagrange multipliers A = {)\;, i € V;

Aai(x3), (a,i) € E, x; € X'}, where \; corresponds to the normalization of b;(-) and
Aai(z;) corresponds to the marginal of b, coinciding with b;. We then define the La-
grangian

L(b,X) =Fb] - > A lz bi(wi) — 11 = > Nail@i) | D balza,) — bilws)

acF (ia),x; Zoa\i

(14.55)

Notice that we have not introduced a Lagrange multiplier for the normalization of
ba(zy,), as this follows from the two constraints already enforced. The stationarity
conditions with respect to b; and b, imply

bi(x;) = e~ 1/(911=1) Z Xai (i) s balZp,) = balzp,) e 2icoaail@) - (14.56)
a€coi
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The Lagrange multipliers must be chosen in such a way that eqn (14.52) is fulfilled.
Any such set of Lagrange multipliers yields a stationary point of F[b]. Once the \y;(z;)
have been found, the computation of the normalization constants in these expressions
fixes \;. Conversely, any stationary point corresponds to a set of Lagrange multipliers
satisfying the stated condition.

It remains to show that sets of Lagrange multipliers such that Z%a\i bo(2o,) =

bi(x;) are in one-to-one correspondence with BP fixed points. In order to see this, we
define the messages

Viﬂa(ii) = e_kai(m) ) Vaﬂz xz Z 'Q[]a l'aa ]Eaa\l Aaj(wj) . (1457)

‘Laa\L

It is clear from the definition that such messages satisfy

Vg—i(x;) Z Va(Zoa) H Viea(i) (14.58)

‘T@a\ i jeaa\i

Further, using the second equation of eqns (14.56) together with eqn. (14.57), we get
Zza . ba(z5,) = Vi (i) Vasi(x;). On the other hand, from the first of eqns (14.56)

together with eqn (14.57), we get b;(z;) = [], vi—p(2;)'/ 1911, The marginalization
condition thus implies

H Vi, 1/(\51\ 1) o~ i () Uai(24) - (14.59)
beoi

Taking the product of these equalities for a € 9i\ b, and eliminating [, ¢, j, Vi—a(@i)
from the resulting equation (which is possible if 1, (z4,) > 0), we get

Viop(x;) & H Vg—i(x;) . (14.60)
a€di\b

At this point we recognize in equs (14.58) and (14.60) the fixed-point condition for
BP (see eqns (14.14) and (14.15)). Conversely, given any solution of eqns (14.58) and
(14.60), one can define a set of Lagrange multipliers using the first of eqns (14.57).
It follows from the-fixed point condition that the second of eqns (14.57) is fulfilled as
well, and that the marginalization condition holds. [J

An important consequence of this proposition is the existence of BP fixed points.

Corollary 14.7 Assume ¢, (x,) > 0 for every a and zg,. The BP algorithm then has
at least one fized point.

Proof Since F[b] is bounded and continuous in LOC(G) (which is closed), it takes
its maximum at some point b* € LOC(G). Using the condition t,(z,) > 0, it is easy
to see that such a maximum is reached in the relative interior of LOC(G), i.e. that
b (z5,) > 0, bF(x;) > 0 strictly. As a consequence, b* must be a stationary point and
therefore, by Proposition 14.6, there is a BP fixed point associated with it. O

The ‘variational principle’ provided by Proposition 14.6 is particularly suggestive
as it is analogous to naive mean-field bounds. For practical applications, it is sometimes
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Ty I

Fig. 14.6 Left: neighbourhood of a node 7 in a pairwise graphical model. Right: the modified
graphical model used to define the message v;—;(x;).

more convenient to use the free-entropy functional F,(v) of eqn (14.27). This can be
regarded as a function from the space of messages to reals F : (X)1#] — R (remember

that 9(X) denotes the set of measures over X, and E is the set of directed edges in
the factor graph).? It satisfies the following variational principle.

Proposition 14.8 The stationary points of the Bethe free entropy F.(v) are fized
points of belief propagation. Conversely, any fixed point v of belief propagation such
that F.(v) is finite, is also a stationary point of F.(v).

The proof is simple calculus and is left to the reader.

It turns out that for tree graphs and unicyclic graphs, F[b] is convex, and the above
results then prove the existence and uniqueness of BP fixed points. But, for general
graphs, F[b] is non-convex and may have multiple stationary points.

14.4.2 Correlations

What is the origin of the error made when BP is used in an arbitrary graph with loops,
and under what conditions can it be small? In order to understand this point, let us
consider for notational simplicity a pairwise graphical model (see eqn (14.2.5)). The
generalization to other models is straightforward. Taking seriously the probabilistic
interpretation of messages, we want to compute the marginal distribution v;_;(z;)
of z; in a modified graphical model that does not include the factor ¢;;(x;,z;) (see
Fig. 14.6). We denote by 19:\;(z9; ;) the joint distribution of all variables in 9i \ j in
the model where all the factors ¢ (z;,x;), | € 0i, have been removed. Then,

vij() = Y [T dulesnw)pon;(@an ) - (14.61)

EERY RISV

Comparing this expression with the BP equations (see eqn (14.31)), we deduce that
the messages {v;_;} solve these equations if

30n a tree, Fi(v) is (up to a change of variables) the Lagrangian dual of F(b).
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Fig. 14.7 Left: modified graphical model used to define v;_.;(x;). Right: modified graphical
model corresponding to the cavity distribution of the neighbours of 4, 14\ ; (Qai\j)-

poini(zon) = [ vi—il@). (14.62)
1€8i\j

We can expect this to happen when two conditions are fulfilled:

L. Under gy ;(-), the variables {z; : | € 07\ j} are independent: gy (2o, ;) =
[Licon rois(@1)-

2. The marginal of each of these variables under pp; ;(-) is equal to the corre-
sponding message v;_,;(x;). In other words, the two graphical models obtained
by removing all the compatibility functions that involve z; (namely, the model
pai;(-)) and by removing only t; (2;, 7;) must have the same marginal for the
variable x;; see Fig. 14.7.

These two conditions are obviously fulfilled for tree-graphical models. They are
also approximately fulfilled if the correlations among the variables {x; : [ € Ji} are
‘small’ under f9;\;(-). As we have seen, in many cases of practical interest (LDPC
codes, random K-SAT, etc.) the factor graph is locally tree-like. In other words, when
node i is removed, the variables {x; : [ € Ji} are, with high probability, far apart
from each other. This suggests that, in such models, the two conditions above may
indeed hold in the large-size limit, provided far-apart variables are weakly correlated. A
simple illustration of this phenomenon is provided in the exercises below. The following
chapters will investigate this property further and discuss how to cope with cases in
which it does not hold.

Exercise 14.12 Consider an antiferromagnetic Ising model on a ring, with variables
(01,...,0n) =g, 0; € {+1,—1} and distribution

wo) = = e PELavivisn (14.63)

where on+1 = o01. This is a pairwise graphical model whose graph G is a ring over N
vertices.
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(a) Write the BP update rules for this model (see Section 14.2.5).

(b) Express the wupdate rules in terms of the log-likelihoods hgz =
% IOg((Vi(t—)n;-&-l(+1))/(Vi(t—)>i+1(_1)))7 and hfi)i = % 10g((”£2i—1(+1))/(Vi(t—)>i—l(_1)))'

(¢) Show that, for any 8 € [0,00), and any initialization, the BP updates converge to the
unique fixed point h.—; = h,—. = 0 for all 4.

(d) Assume that B = +oo and N is even. Show that any set of log-likelihoods of the form
hi—. = (=1)*a, h; = (—1)"b, with a,b € [-1,1], is a fixed point.

(e) Consider now the case where 8 = oo and N is odd, and show that the only fixed
point is h—; = h;—. = 0. Find an initialization of the messages such that BP does not
converge to this fixed point.

Exercise 14.13 Consider a ferromagnetic Ising model on a ring with a magnetic field.
This is defined through the distribution

l 6525;\]:1 0ioit1+BYN | o

pleo) =~ : (14.64)

where on+1 = o1. Notice that, with respect to the previous exercise, we have changed a
sign in the exponent.
(a,b) As in the previous exercise.
(¢) Show that, for any 3 € [0,00), and any initialization, the BP updates converge to
the unique fixed point h; = h;,—. = h.(8, B) for all i.
(d) Let (0:) be the expectation of spin o; with respect to the measure p(-), and let

(o3)pp be the corresponding BP estimate. Show that |(;) — (o:)mp| = O(\Y) for
some A € (0,1).

14.5 General message-passing algorithms

Both the sum—product and the max-product (or min-sum) algorithm are instances of
a more general class of message-passing algorithms. All of the algorithms in this
family share some common features, which we now highlight.

Given a factor graph, a message-passing algorithm is defined by the following in-
gredients:

1. An alphabet of messages M. This can be either continuous or discrete. The algo-
rithm operates on messages Vl»(ﬂa, ﬁétli € M associated with the directed edges in
the factor graph.

2. Update functions ¥,_,, : MI%\al . M and ®,_,; : MI?9\il . M that describe how
to update messages.

3. An initialization, i.e. a mapping from the directed edges in the factor graph to
0) (0

M (this can be a random mapping). We shall denote by v, ., ¥, the image of
such a mapping.
4. A decision rule, i.e. a local function from messages to a space of ‘decisions’ from

which we are interested in making a choice. Since we shall be interested mostly
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in computing marginals (or max-marginals), we shall assume the decision rule to
be given by a family of functions ¥; : M9 — 9M(X).

Notice the characteristic feature of message-passing algorithms: messages going out
from a node are functions of messages coming into the same node through the other
edges.

Given these ingredients, a message-passing algorithm with parallel updating may
be defined as follows. Assign the values of initial messages I/i(i)a, 31(1(22‘ according to an
initialization rule. Then, for any ¢ > 0, update the messages through local operations

at variable/check nodes as follows:

VI — w5 bedi\a)), (14.65)
o0, = Bui({, - j € dali}). (14.66)

Finally, after a pre-established number of iterations ¢, take the decision using the rules
¥;; namely, return
t = a(t—1 .

v () = B,({B 1 b e ai}) (). (14.67)
Many variants are possible concerning the update schedule. For instance, in the case of
sequential updating one can pick out a directed edge uniformly at random and compute
the corresponding message. Another possibility is to generate a random permutation
of the edges and update the messages according to this permutation. We shall not

discuss these ‘details’, but the reader should be aware that they can be important in
practice: some update schemes may converge better than others.

Exercise 14.14 Recast the sum—product and min-sum algorithms in the general message-
passing framework. In particular, specify the alphabet of the messages, and the update and
decision rules.

14.6 Probabilistic analysis

In the following chapters, we shall repeatedly be concerned with the analysis of
message-passing algorithms on random graphical models. In this context, messages
become random variables, and their distribution can be characterized in the large-
system limit, as we shall now see.

14.6.1 Assumptions

Before proceeding, it is necessary to formulate a few technical assumptions under which
our approach works. The basic idea is that, in a ‘random graphical model’, distinct
nodes should be essentially independent. Specifically, we shall consider below a setting
which already includes many cases of interest; it is easy to extend our analysis to even
more general situations.
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A random graphical model is a (random) probability distribution on z =
(x1,...,2y) of the form*

n(x) = T valzon) [T vilai) (14.68)

acF eV

where the factor graph G = (V, F, E) (with variable nodes V', factor nodes F, and edges
E) and the various factors 14, 1; are independent random variables. More precisely,
we assume that the factor graph is distributed according to one of the ensembles
Gn (K, o) or Dy (A, P) (see Chapter 9).

The random factors are assumed to be distributed as follows. For any given degree

o~

k, we are given a list of possible factors 1 *)(z1, ..., z; J), indexed by a ‘label’ .J € J,

and a distribution P;k) over the set of possible labels J. For each function node a € F
of degree |da| = k, a label J, is drawn with distribution P}k), and the function ,( -)
is taken to be equal to *)(-; ja) Analogously, the factors ¢; are drawn from a list
of possible {¢(-;J)}, indexed by a label J which is drawn from a distribution Pj.
The random graphical model is fully characterized by the graph ensemble, the set of
distributions P}k), P;, and the lists of factors {¢® (-; 1)}, {¢(-;J)}.

We need to make some assumptions about the message update rules. Specifically,
we assume that the variable-to-function-node update rules ¥, _,, depend on i — a only
through |0i| and J;, and the function-to-variable-node update rules ®,_,; depend on
a — 4 only through |0a| and ja With a slight misuse of notation, we shall denote the
update functions by

\Ili—m,({/y\b—nl :bedi \ a}) = \I’l(/V\l, C ,l//\l; Jl) s (1469)
Dy i({Vjoa: j€DaNi}) = Pp(vr,. ..,k Ja), (14.70)

where [ = |0i| — 1, k= |0a| — 1, {V1, ..., 01} ={Vp—; : b€ i\ a}, and {vy,..., 1} =
{Vj—q : j € 0a\ i}. A similar notation will be used for the decision rule W.

Exercise 14.15 Let G = (V, E) be a uniformly random graph with M = Na edges over
N vertices, and let \;, ¢ € V, be i.i.d. random variables uniform in [0, \]. Recall that an
independent set for GG is a subset of the vertices S C V such that if 7,5 € S, then (ij) is
not an edge. Consider the following weighted measure over independent sets:

u(S) = %H(S is an independent set) H A (14.71)
i€s

4Note that the factors 1;, i € V, could have been included as degree-1 function nodes, as we
did in eqn (14.13); including them explicitly yields a description of density evolution which is more
symmetric between variables and factors, and applies more directly to decoding.
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<.

Fig. 14.8 A radius-2 directed neighbourhood B;—.q 2(F).

(a) Write the distribution p(S) as a graphical model with binary variables, and define the
corresponding factor graph.

(b) Describe the BP algorithm to compute its marginals.

(¢) Show that this model is a random graphical model in the sense defined above.

14.6.2 Density evolution equations

Consider a random graphical model, with factor graph G = (V, F, E), and let (i,a)

be a uniformly random edge in G. Let v be the message sent by the BP algorithm

1—a
© ﬁio_),i are
i.i.d. random variables, with distributions independent of N. A considerable amount
of information is contained in the distributions of u}ﬂa and ﬁffil with respect to the
realization of the model. We are interested in characterizing these distributions in the
large-system limit N — oo. Our analysis will assume that both the message alphabet
M and the node label alphabet J are subsets of R? for some fixed d, and that the
update functions ¥;_,,, ®,_; are continuous with respect to the usual topology of R.
It is convenient to introduce the directed neighbourhood of radius t of a directed
edge i — a, denoted by: B;_,(G). This is defined as the subgraph of G that includes
all of the variable nodes which can be reached from ¢ by a non-reversing path of length
at most ¢, whose first step is not the edge (4, a). It includes, as well, all of the function
nodes connected only to those variable nodes; see Fig. 14.8. For illustrative reasons,
we shall occasionally add a ‘root edge’, such as i — a in Fig. 14.8. Let us consider, to
be definite, the case where G is a random factor graph from the ensemble Dy (A, P).
In this case, B;_q,(F) converges in distribution, when N — oo, to the random tree

ensemble T (A, P) defined in Section 9.5.1.

in iteration ¢ along edge (i,a). We assume that the initial messages v,

i—a’

Exercise 14.16 Consider a random graph from the regular ensemble Dy (A, P)
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Fig. 14.9 The three possible radius-1 directed neighbourhoods in a random factor graph
from the regular graph ensemble Dy (2, 3).

with A; = 1 and P3 = 1 (each variable node has degree 2 and each function node degree 3).
The three possible radius-1 directed neighbourhoods appearing in such factor graphs are
depicted in Fig. 14.9.

(a) Show that the probability that a given edge (7, a) has neighbourhoods as in (B) or (C)
in the figure is O(1/N).

(b) Deduce that B;—q,1(F) < T., where T, is distributed according to the tree model
T1(2,3) (i-e. it is the tree in Fig. 14.9, labelled (A)).

(¢) Discuss the case of a radius-t neighbourhood.

For our purposes, it is necessary to include in the description of the neighbourhood
Bi—a,:(F') the value of the labels J;, Jp, for function nodes b in this neighbourhood. It is
understood that the tree model Ty (A, P) includes labels as well: these have to be drawn
as i.i.d. random variables independent of the tree and with the same distribution as
in the original graphical model.

Now consider the message z/f*_),a This is a function of the factor graph G, of the

labels {J;}, {7y}, and of the initial condition {V](O_))b}. However, a moment of thought
shows that its dependence on G and on the labels occurs only through the radius-(t+1)
directed neighbourhood B;_ ¢+1(F). Its dependence on the initial condition is only

through the messages I/J(»O_)w for j,b € Bi—q . (F).

In view of the above discussion, let us pretend for a moment that the neighbourhood
of (i,a) is a random tree T, with distribution Tyy; (A, P). We define v to be the
message passed through the root edge of such a random neighbourhood after ¢ message-

passing iterations. Since B, 4+1(F) converges in distribution to the tree T;11, we
find that® Vi(ﬂa 40 as N — .

We have shown that, as N — oo, the distribution of ufﬂa converges to that of a
well-defined (N-independent) random variable (!). The next step is to find a recursive
characterization of v®). Consider a random tree from the ensemble T, (A, P) and let

5The mathematically suspicious reader may wonder about the topology we are assuming for the
message space. In fact, no assumption is necessary if the distribution of labels J;, :f,l is independent
of N. If it is N-dependent but converges, then the topology must be such that the message updates
are continuous with respect to it.
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j — b be an edge directed towards the root, at a distance d from it. The directed
subtree rooted at j — b is distributed according to T,_4(A, P). Therefore the message
passed through it after r — d — 1 (or more) iterations is distributed as v("=4=1_ The
degree of the root variable node i (including the root edge) has a distribution \;.
Each check node connected to i has a number of other neighbours (distinct from i)
which is a random variable distributed according to pj. These facts imply the following
distributional equations for v®) and p():

v Ly, 51, ZQRCE WO (14.72)

Here D,St), be{l,...,1—1}, are independent copies of 7(*), and V§t), jed{l,....k—1},
are independent copies of v(*). As for [ and k, these are independent random integers
distributed according to A\; and py, respectively; J is distributed as P}k), and J is

distributed as Pj. It is understood that the recursion is initiated with /() 4 V(O)

1—a’
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In coding theory, the equations (14.72) are referred to as density evolution;
sometimes, this term is also applied to the sequence of random variables {V(t), D(t)}.
In probabilistic combinatorics, they are also called recursive distributional equa-
tions. We have proved the following characterization of the distribution of messages.

Proposition 14.9 Consider a random graphical model satisfying the assumptions in
Section 14.6.1. Let t > 0 and let (ia) be a uniformly random edge in the factor graph.
Then, as N — oo, the messages v and oY converge in distribution to the random

1—a 1—a
variables v and 71| respectively, defined through the density evolution equations

(14.72).

We shall discuss several applications of the idea of density evolution in the following
chapters. Here we shall just mention that it allows one to compute the asymptotic
distribution of message-passing decisions at a uniformly random site i. Recall that the
general message-passing decision after ¢ iterations is taken using the rule (14.67), with
U,({Dp}) = (D1, ..., 05 J;) (where | = |i]). Arguing as in the previous paragraphs,

it is easy to show that in the large-IV limit, VZ-(t) 4 v® | where the random variable

v®) is distributed according to
I (72 S i A (14.73)
As above, ﬁft_l), e ,ﬁl(t_l) are i.i.d. copies of (*=1)_ J is an independent copy of the

variable-node label J;, and [ is a random integer distributed according to A;.

14.6.3 The replica-symmetric cavity method

The replica-symmetric (RS) cavity method of statistical mechanics adopts a point of
view which is very close to the previous one, but less algorithmic. Instead of considering
the BP update rules as an iterative message-passing rule, it focuses on the fixed-point
BP equations themselves.
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The idea is to compute the partition function recursively, by adding one variable
node at a time. Equivalently, one may think of taking one variable node out of the
system and computing the change in the partition function. The name of the method
comes exactly from this image: one digs a ‘cavity’ in the system.

As an example, take the original factor graph, and delete the factor node a and
all the edges incident on it. If the graph is a tree, this procedure separates it into |Jal
disconnected trees. Consider now the tree-graphical model described by the connected
component containing the variable j € da. Denote the corresponding partition func-
tion, when the variable j is fixed to the value z;, by Z;_,(x;). This partial partition
function can be computed iteratively as

Zicalz))= ] | D wl@a) [ Ze—slan)| - (14.74)

bedj\a Lab\ j keob\j

The equations obtained by letting j — b be a generic directed edge in G are called the
cavity equations, or Bethe equations.

The cavity equations are mathematically identical to the BP equations, but with
two important conceptual differences: (¢) one is naturally led to think that the equa-
tions (14.74) must have a fixed point, and to give special importance to it; (i7) the
partial partition functions are unnormalized messages, and, as we shall see in Chapter
19, their normalization provides useful information. The relation between BP messages
and partial partition functions is

Zi—al(zj)
Vjima(r)) = 2ot (14.75)
Y, Zja(y)

In the cavity approach, the replica symmetry assumption consists in pretending
that, for random graphical models of the kind introduced above, and in the large-N
limit, the following conditions apply:

1. There exists a solution (or quasi-solution®) to these equations.
2. This solution provides good approximations to the marginals of the graphical
model.
3. The messages in this solution are distributed according to a density evolution
fixed point.
The last statement amounts to assuming that the normalized variable-to-factor mes-

sages V., (see eqn (14.75)), converge in distribution to a random variable v that
solves the following distributional equations:

vE U@, .. D ), 7L, v ). (14.76)
Here we have used the same notation as in eqn (14.72): 1, b € {1,...,1 — 1}, are

independent copies of 7(*); Z/(-t), je{l,...,k — 1}, are independent copies of v

J

6 A quasi-solution is a set of messages Vj_.q such that the average difference between the left- and
right-hand sides of the BP equations goes to zero in the large-N limit.
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and k are independent random integers distributed according to A; and py, respectively;
and J and J are distributed as the variable and function node labels J; and J

Using the distributions of v and 7, the expected Bethe free entropy per variable
F/N can be computed by taking the expectation of eqn (14.27). The result is

15 = £ 4 npffS — n f5S (14.77)

where n¢ is the average number of function nodes per variable, and n, is the average
number of edges per variable. In the ensemble Dy (A, P) we have ny = A'(1)/P'(1)
and ne = A’(1); in the ensemble Gy (K, a), nf = o and n, = Ka. The contributions

of the variable nodes 5%, function nodes ff**, and edges fI*° are

£ = Ky j (5} log lZw(x;J) Dl(ff)"'ﬁl(x)] ;
ffRS = Ek’j\’{y} IOg [ Z ¢(k)($1a sy Lk j) 1/1(371) e Vk(xk)] )

78 = &, 5 log lz Z/(x)ﬁ(x)] : (14.78)

x

In these expressions, E denotes the expectation with respect to the random variables
given in subscript. For instance, if G is distributed according to the ensemble Dy (A, P),
El J {7} 1mphes that [ is drawn from the distribution A, J is drawn from Pj, and
U1,...,0 are | independent copies of the random variable .

Instead of estimating the partition function, the cavity method can be used to
compute the ground state energy. One then uses min-sum-like messages instead of
those in eqn (14.74). The method is then called the ‘energetic cavity method’; we
leave to the reader the task of writing the corresponding average ground state energy
per variable.

14.6.4 Numerical methods

Generically, the RS cavity equations (14.76), as well as the density evolution equations
(14.72), cannot be solved in closed form, and one must use numerical methods to
estimate the distribution of the random variables v, U. Here we limit ourselves to
describing a stochastic approach that has the advantage of being extremely versatile
and simple to implement. It has been used in coding theory under the name of ‘sampled
density evolution’ or the ‘Monte Carlo method’; and is known in statistical physics as
population dynamics, a name which we shall adopt in the following.

The idea is to approximate the distribution of v (or ) through a sample of (ideally)
N i.i.d. copies of v (or U, respectively). As N becomes large, the empirical distribution
of such a sample should converge to the actual distribution of v (or 7). We shall call
the sample {v;} = {v1,...,vn} (or {U;} = {V1,...,Un}) a population.

The algorithm is described by the pseudocode below. As inputs, it requires the pop-
ulation size IV, the maximum number of iterations 7', and a specification of the ensem-
ble of (random) graphical models. The latter is a description of the (edge-perspective)
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degree distributions A and p, the variable node labels P;, and the factor node labels
(k)

P
J

POPULATION DYNAMICS (model ensemble, size N, iterations 7T')

1 Initialize {y( )}

2 fort=1,...,T:

3 forZ—l,...,N:

4: Draw an integer k with distribution p;
5: Draw i(1),...,4(k — 1) uniformly in {1,..., N};
6.

7

8

Draw J with distribution P(Ak);

Set o) = @ (D DT,

i(1) ' Vilk—1)3
: end;
9: fori=1,...,N:
10: Draw an integer [ with distribution A;
11: Draw i(1),...,i(l — 1) uniformly in {1,..., N};
12: Draw J with distribution Py;
13 Set 1) = Wi (0L, .., 5 ); )
14: end;
15:  end;

16: return {VZ.(T)} and {f/\fT)}.

In step 1, the initialization is done by drawing y§0), .. ( ) independently with the

same distribution P that was used for the initialization of the BP algorithm.

It is not hard to show that, for any fixed 7', the empirical distribution of {V(T)}

(or {1/1( )}) converges, as N — 00, to the distribution of the density evolution random
variable v®) (or (). The limit 7' — oo is trickier. Let us assume first that the density
evolution has a unique fixed point, and v®*), D) converge to this fixed point. We then
expect the empirical distribution of {I/Z»(T)} also to converge to this fixed point if the
N — oo limit is taken after 7" — oo. When the density evolution has more than one
fixed point, which is probably the most interesting case, the situation is more subtle.
The population {l/i(T)} evolves according to a large but finite-dimensional Markov
chain. Therefore (under some technical conditions) the distribution of the population
is expected to converge to the unique fixed point of this Markov chain. This seems to
imply that population dynamics cannot describe the multiple fixed points of density
evolution. Luckily, the convergence of the population dynamics algorithm to its unique
fixed point appears to happen on a time scale that increases very rapidly with N. For
large N and on moderate time scales T, it converges instead to one of several ‘quasi-
fixed points’ that correspond to the fixed points of the density evolution algorithm.

In practice, one can monitor the effective convergence of the algorithm by comput-
ing, after any number of iterations ¢, averages of the form
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(o) = %Z o), (14.79)
i=1

for a smooth function ¢ : M(X') — R. If these averages are well settled (up to statistical
fluctuations of order 1/v/N), this is interpreted as a signal that the iteration has
converged to a ‘quasi-fixed point.’

The populations produced by the above algorithm can be used to to estimate
expectations with respect to the density-evolution random variables v, U. For instance,
the expression in eqn (14.79) is an estimate for E{@(v)}. When ¢ = ¢(v1,...,1;) is a
function of [ i.i.d. copies of v, the above formula is modified to

1
(e =5 D ey Vi) (14.80)

n=1

Here R is a large number (typically of the same order as N), and 4,,(1),...,4,(l) are
i.i.d. indices in {1,..., N}. Of course such estimates will be reasonable only if [ < N.

A particularly important example is the computation of the free entropy (14.77).
Each of the terms {15, ff*S and % can be estimated as in eqn (14.80). The precision of
these estimates can be improved by repeating the computation for several iterations
and averaging the result.

Notes

The belief propagation equations have been rediscovered several times. They were de-
veloped by Pearl (1988) as an exact algorithm for probabilistic inference in acyclic
Bayesian networks. In the early 1960s, Gallager had introduced them as an itera-
tive procedure for decoding low-density-parity-check codes (Gallager, 1963). Gallager
described several message-passing procedures, among them being the sum—product
algorithm. In the field of coding theory, the basic idea of this algorithm was redis-
covered in several works in the 1990s, in particular by Berrou and Glavieux (1996).
In the physics context, the history is even longer. In 1935, Bethe used a free-energy
functional written in terms of pseudo-marginals to approximate the partition function
of the ferromagnetic Ising model (Bethe, 1935). Bethe’s equations were of the simple
form discussed in Exercise 14.10, because of the homogeneity (translation invariance)
of the underlying model. Their generalization to inhomogeneous systems, which has
a natural algorithmic interpretation, waited until the application of Bethe’s method
to spin glasses (Thouless et al., 1977; Klein et al., 1979; Katsura et al., 1979; Morita,
1979; Nakanishi, 1981).

The review paper by Kschischang et al. (2001) gives a general overview of belief
propagation in the framework of factor graphs. The role of the distributive property,
mentioned in Exercise 14.8, was emphasized by Aji and McEliece (2000). On tree
graphs, belief propagation can be regarded as an instance of the junction—tree algo-
rithm (Lauritzen, 1996). This algorithm constructs a tree from the graphical model
under study by grouping some of its variables. Belief propagation is then applied to
this tree.
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Although implicit in these earlier works, the equivalence between BP, the Bethe
approximation, and the sum—product algorithm was only recognized in the 1990s. The
turbodecoding and the sum-product algorithms were shown to be instances of BP
by McEliece et al. (1998). A variational derivation of the turbo decoding algorithm
was proposed by Montanari and Sourlas (2000). The equivalence between BP and the
Bethe approximation was first put forward by Kabashima and Saad (1998) and, in a
more general setting, by Yedidia et al. (2001) and Yedidia et al. (2005).

The last of these papers proved, in particular, the variational formulation in Propo-
sition 14.8. This suggests that one should look for fixed points of BP by seeking sta-
tionary points of the Bethe free entropy directly, without iterating the BP equations.
An efficient such procedure, based on the observation that the Bethe free entropy can
be written as a difference between a convex and a concave function, was proposed by
Yuille (2002). An alternative approach consists in constructing convex surrogates of
the Bethe free energy (Wainwright et al., 2005 a,b) which allow one to define provably
convergent message-passing procedures.

The Bethe approximation can also be regarded as the first step in a hierarchy
of variational methods describing larger and larger clusters of variables exactly. This
point of view was first developed by Kikuchi (1951), leading to the ‘cluster varia-
tional method’ in physics. The algorithmic version of this approach is referred to as
‘generalized BP’, and is described in detail by Yedidia et al. (2005).

The analysis of iterative message-passing algorithms on random graphical models
dates back to Gallager (1963). These ideas were developed into a systematic method,
thanks also to efficient numerical techniques, by Richardson and Urbanke (2001 b),
who coined the name ‘density evolution’. The point of view taken in this book, however,
is closer to that of ‘local weak convergence’ (Aldous and Steele, 2003).

In physics, the replica-symmetric cavity method for sparse random graphical mod-
els was first discussed by Mézard and Parisi (1987). The use of population dynamics
first appeared in Abou-Chacra et al. (1973) and was developed further for spin glasses
by Mézard and Parisi (2001), but that paper deals mainly with RSB effects, which
will be the subject of Chapter 19.
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DECODING WITH BELIEF PROPAGATION

As we have seen in Section 6.1, symbol MAP decoding of error correcting codes
can be regarded as a statistical inference problem. If p(z|y) denotes the con-
ditional distribution of the channel input z, given the output y, one aims at
computing its single bit marginals p(z;]y). It is a very natural idea to accom-
plish this task using belief propagation (BP).

However, it is not hard to realize that an error correcting code cannot achieve
good performances unless the associated factor graph has loops. As a conse-
quence, belief propagation has to be regarded only as an approximate inference
algorithm in this context. A major concern of the theory is to establish conditions
for its optimality, and, more generally, the relation between message passing and
optimal (exact symbol MAP) decoding.

In this Chapter we discuss belief propagation decoding of the LDPC ensem-
bles introduced in Chapter 11. The message passing approach can be generalized
to several other applications within information and communications theory:
other code ensembles, source coding, channels with memory, etc.... Here we
shall keep to the ‘canonical’ example of channel coding as most of the theory has
been developed in this context.

BP decoding is defined in Section 15.1. One of the main tools in the analysis
is the ‘density evolution’ method that we discuss in Section 15.2. This allows
to determine the threshold for reliable communication under BP decoding, and
to optimize accordingly the code ensemble. The whole process is considerably
simpler for the erasure channel, which is treated in Section 15.3. Finally, Section
15.4 explains the relation between optimal (MAP) decoding and BP decoding in
the large block-length limit: the two approaches can be considered in the same
unified framework of the Bethe free energy.

15.1 BP decoding: the algorithm

In this chapter, we shall consider communication over a binary input output
symmetric memoryless channel (BMS). This is a channel in which the
transmitted codeword is binary, z € {0, 1}N , and the output y is a sequence of
N letters y; from an alphabet®® ) C R. The probability of receiving letter y
when bit z is sent, Q(y|x), enjoys the symmetry property Q(y|0) = Q(—y|1).

Let us suppose that a LDPC error correcting code is used in this communica-
tion. The conditional probability for the channel input being z € {0, 1}" given
the output y is

51The case of a general output alphabet ) reduces in fact to this one.
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plzly) = Q(yila:) H]I i@ @ =0), (15.1)

H::jz

)

The factor graph associated with this distribution is the same as for the code
membership function, cf. Fig. 9.6 in Chapter 9. An edge joins a variable node
i to a check node a whenever the variable x; appears in the a-th parity check
equation.

Messages V;—q(x;), Va—i(2;), are exchanged along the edges. We shall assume
a parallel updating of BP messages, as introduced in Section 14.2:

0 @) = QUuiler) T 92i() (15.2)
bedi\a
’V\C(Ltll(xz) = Z lz; @xj, - Dy, = H 1/ Jz5),  (15.3)
{z;} j€da\i
where we used the notation da = {4, j1,...,jk—1}, and the symbol = denotes as

usual ‘equality up to a normalization constant’. We expect that the asymptotic
performances (for instance, the asymptotic bit error rate) of such BP decoding
should be not sensitive to the precise update schedule. On the other hand, this
schedule can have an important influence on the speed of convergence, and on
performances at moderate N. Here we shall not address these issues.

The BP estimate for the marginal distribution at node i at time ¢, also called
‘belief” or ’soft decision’, is

t N ~(t—1
i (wxi) = QUyile) [T o420 () (15.4)
beot

Based on this estimate, the optimal BP decision for bit ¢ at time ¢ (sometimes
called ‘hard decision’) is

il(t) = arg max ugt)(zi) . (15.5)

In order to completely specify the algorithm, one should address two more issues:
(1) How are the messages initialized, and (2) After how many iterations ¢, does
one make the hard decision (15.5).

In practice, one usually initializes the messages to 0 (0) = 0 (1)=1/2.

1—a z~>a
One alternative choice, that is sometimes useful for theoretical reasons, is to take

the messages Vl(i)a
(0)

v; ., (0) uniformly on [0, 1].
As for the number of iterations, one would like to have a stopping criterion.
In practice, a convenient criterion is to check whether z®isa codeword, and to
stop if this is the case. If this condition is not fulfilled, the algorithm is stopped

after a fixed number of iterations ¢,,.x. On the other hand, for analysis purposes,

(-) as independent random variables, for instance by choosing
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hi—)/ \ub_q'

i J
Fia. 15.1. Factor graph of a (2,3) regular LDPC code, and notation for the
belief propagation messages.

we shall rather fix ¢, and assume that belief propagation is run always for t,,ax
iterations, regardless whether a valid codeword is reached at an earlier stage.

Since the messages are distributions over binary valued variables, we describe
them as in (??) by the log-likelihoods:

1 Vi‘ﬂl(o) 1 /V\a~>1<o)
hiﬂazfl ’ aﬁizfl =~ . 15.
2 % .1 b 2 %01 (15.6)

We further introduce the a-priori log-likelihood for bit ¢, given the received mes-
sage y;:

B =1 log Q(yilo)

2 Qyil1)

For instance in a BSC channel with flip probability p, one has B; = %log 11);17

(15.7)

on variable nodes which have received y; = 0, and B; = —% log 1;% on those
with y; = 1. The BP update equations (15.2), (15.3) read in this notation (see
Fig. 15.1):

W =B Y, =atankd [T tann®, ). (159

i—a a—1

bedi\a j€da\i
The hard-decision decoding rule depends on the over-all BP log-likelihood
B — B 4 > ult (15.9)
bedila
and is given by (using for definiteness a fair coin outcome in case of a tie):
0 if B > 0,

/x\z(_t) (y) =< 1 if hgt) <0, (15.10)
0 or 1 with probability 1/2 if h{") = 0.

15.2 Analysis: density evolution

In this section we consider BP decoding of random codes from the LDPCy (A, P)
ensemble in the large block-length limit. The code ensemble is specified by the

{sec:DensityEvolutionDecodi
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degree distributions of variable nodes A = {A;} and of check nodes, P = {P}.
We assume for simplicity that messages are initialized to Ufl(ii = 0.

Because of the symmetry of the channel, under the above hypotheses, the
bit (or block) error probability is independent of the transmitted codeword. The
explicit derivation of this fact is outlined in Exercise 15.1 below. This is also
true for any other meaningful performance measures. We shall use this freedom
to assume that the all-zero codeword has been transmitted. We shall first write
the density evolution recursion as a special case of the one written in Section
??7. It turns out that this recursion can be analyzed in quite some detail, and in
particular one can show that the decoding performance improves as ¢ increases.
The analysis hinges on two important properties of BP decoding and density
evolution, related to the notions of ‘symmetry’” and ‘physical degradation’.

Exercise 15.1 Independence of the transmitted codeword. Assume the code-
word z has been transmitted and let B;(z), ufltll(g), hgza(g) be the corre-
sponding channel log-likelihoods and messages. These are regarded as random
variables (because of the randomness in the channel realization). Let further-
more o; = 0;(z) = +1 if z; = 0, and = —1 otherwise.

(a) Prove that the distribution of o;B; is independent of x.

(b) Use the equations (15.8) to prove by induction over ¢ that the (joint)

distribution of {O’ih('t) ol } is independent of z.

(¢) Use Eq. (15.9) to show that the distribution of {aiHi(t)} is independent
of z for any t > 0. Finally, prove that the distribution of the ‘error vector’
20 =z E(t) is independent of x as well. Write the bit and block

y D

error rate in terms of the distribution of z(¥).

15.2.1 Density evolution equations

Let us consider the distribution of messages after a fixed number ¢ of iterations.
As we saw in Section 77, in the large IV limit, the directed neighborhood of any
given edge is with high probability a tree. This implies the following recursive
distributional characterization for A(*) and u(*):

-1 k-1
Rt 4 gy Z ul()t) , u® L atanh{ H tanh h;t)} : (15.11)
b=1 j=1

Here ul()t), be{l,...,1—1} are independent copies of u(*), hgt), jed{l,...;k—1}

are independent copies of h(*), [ and k are independent random integers dis-
tributed, respectively, according to \; and py. Finally, B = %log SEZI%
is independently distributed according to @Q(y|0). The recursion is initiated with
© =0
U .
Let us finally consider the BP log-likelihood at site 7. The same arguments

as above imply hl(t) 4, th), where the distribution of th) is defined by

where y
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l
D N (15.12)
b=1

with [ a random integer distributed according to A;. In particular, if we let P(N 2

be the expected (over a LDPCy (A, P) ensemble) bit error rate for the decodlng
rule (15.10), then:

. (N,t) (t) 1 (t) _
Jim P =P{h <0} + §P{h* =0}. (15.13)
The suspicious reader will notice that this statement is non-trivial, because
f(@) = I(z < 0) + 3I(z = 0) is not a continuous function. We shall prove it

below using the symmetry property of the distribution of hgt) ,which allows to
write the bit error rate as the expectation of a continuous function (cf. Exercise
15.2).

15.2.2  Basic properties: 1. Symmetry

A real random variable Z (or, equivalently, its distribution) is said to be sym-
metric if

E{f(-2)} =E{e??f(2)} . (15.14)

for any function f such that one of the expectations exists. If Z has a density
p(z), then the above condition is equivalent to p(—z) = e~ 2%p(z).

Symmetric variables appear quite naturally in the description of BMS chan-
nels:

Proposition 15.1 Consider a BMS channel with transition probability Q(y|x).
LetY be the channel output conditional to input O (this is a random variable with

distribution Q(y|0)), and let B = 3 log ggm Then B is a symmetric random

variable.
Conversely, if Z is a symmetric random variable, there exists a BMS channel
whose log-likelihood ratio, conditioned on the input being 0 is distributed as Z.

Proof: To avoid technicalities, we prove this claim when the output alphabet )
is a discrete subset of R. Then, using channel symmetry in the form Q(y|0) =

Q(—y[1), we get
1) 0
BB = Qw0 £ (j s gy ) = S ewin 1 (s ) =

= Qw0 gy /(5 (”'°>)=E{e-wf<3>}- (15,19

Q(y[1)

We now prove the converse. Let Z be a symmetric random variable. We
build a channel with output alphabet R as follows: Under input 0, the output is
distributed as Z, and under input 1, it is distributed as —Z. In terms of densities

{sec:Symmetry}

{propo:channel_sym}
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Q(z[0) = p(2),  Q(z[1) =p(—=2). (15.16)

This is a BMS channel with the desired property. Of course this construction is
not unique. [J

Example 15.2 Consider the binary erasure channel BEC(e). If the channel
input is 0, then Y can take two values, either 0 (with probability 1 — €) or *
(probability €). The distribution of B, Pp = (1 —€) 0o + €dp , is symmetric. In
particular, this is true for the two extreme cases: ¢ = 0 (a noiseless channel)
and € = 1 (a completely noisy channel: Pg = d).

Example 15.3 Consider a binary symmetric channel BSC(p). The log-
likelihood B can take two values, either by = %log % (input 0 and output 0)
or —by (input 0 and output 1). Its distribution, P = (1 — p) dp, + pO_p, is
symmetric.

Example 15.4 Finally consider the binary white noise additive Gaussian
channel BAWGN(0?). If the channel input is 0, the output Y has probabil-
ity density

1 —1)2
q(y) = Wori exp{—(y2g2)} , (15.17)

i.e. it is a Gaussian of mean 1 and variance o2. The output density upon
input 1 is determined by the channel symmetry (i.e. a Gaussian of mean —1
and variance o2). The log-likelihood under output y is easily checked to be
b= y/o?. Therefore B also has a symmetric Gaussian density, namely:

p(b) = \/i eXp{—U; <b— ;)Q} . (15.18)

The variables appearing in density evolution are symmetric as well. The ar-
gument is based on the symmetry of the channel log-likelihood, and the fact that
symmetry is preserved by the operations in BP evolution: If Z; and Zs are two in-
dependent symmetric random variables (not necessarily identically distributed),
it is straightforward to show that Z = Z; 4+ Z5, and Z’' = atanh[tanh Z; tanh Z5)
are both symmetric.

Consider now communication of the all-zero codeword over a BMS channel
using a LDPC code, but let us first assume that the factor graph associated
with the code is a tree. We apply BP decoding with a symmetric random initial
condition like e.g. u((loll = 0. The messages passed during the decoding procedure
can be regarded as random variables, because of the random received symbols
y; (which yield random log-likelihoods B;). Furthermore, messages incoming at
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a given node are independent since they are functions of B;’s (and of initial
conditions) on disjoint subtrees. From the above remarks, and looking at the BP

equations (15.8) it follows that the messages u? and h") | aswell as the overall

a—1’ i—a’

log-likelihoods hl(.t) are symmetric random variables at all ¢ > 0. Therefore:

Proposition 15.5 Consider BP decoding of an LDPC code under the above
assumptions. If B;_q 1141 (F') is a tree, then B

1—a

s a symmetric random variable.
Analogously, if B; +1(F) is a tree, then Hi(t) is a symmetric random variable.

Proposition 15.6 The density evolution random variables {h(t),u(t), Hit)} are
symmetric.

Exercise 15.2 Using Proposition 15.5, and the fact that, for any finite ¢
Bi—a.t+1(F) is a tree with high probability as N — oo, show that

N
. (Ng) o 1 )
Jim Py _ngnooE{Nz;f(hi )}, (15.19)

where f(z) =1/2 for < 0 and f(x) = e~2¥/2 otherwise.

The symmetry property is a generalization of the Nishimori condition that we
encountered in spin glasses. As can be recognized from Eq. (12.7) this condition
is satisfied if and only if for each coupling constant .J, 3.J is a symmetric random
variable. While in spin glasses symmetry occurs only at very special values of
the temperature, it is a natural property in the decoding problem. Further it
does not hold uniquely for the BP log-likelihood, but also for the actual (MAP)
log-likelihood of a bit, as shown in the exercise below.

{propo:SymmetryBP}

{propo:SymmetryDE}

{ex:SymmetryBER}
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Exercise 15.3 Consider the actual (MAP) log-likelihood for bit 4 (as opposed
to its BP approximation). This is defined as

1 P{z; = 0y}

B — =l
2 CP{w; = 1y}

(15.20)

If we condition on the all-zero codeword being transmitted, then the random
variable h; is symmetric. This can be shown as follows.

(a) Show that h; = %log gglm + ¢; where g; depends on
Yls- ooy Yim1,Yit1s---, YN, but not on y;. Suppose that a codeword
z # 0 has been transmitted, and let h;(z) be the corresponding log-
likelihood for bit x;. Show that h;(z) 4 h; if z; = 0, and h;(z) 4 —h; if
Zi = 1.

(b) Consider the following process. A bit z; is chosen uniformly at random.
Then a codeword z is chosen uniformly at random conditioned on the
value of z;, and transmitted through a BMS channel, yielding an output
y. Finally, the log-likelihood h;(z) is computed. Hiding the intermediate
steps in a black box, this can be seen as a communication channel: z; —
h;(z). Show this is a BMS channel.

(¢) Show that h; is a symmetric random variable.

15.2.3  Basic properties: 2. Physical degradation

It turns out that BP decoding gets better when the number of iterations ¢ in-
creases (although it does not necessarily converge to the correct values). This is
an extremely useful result, which does not hold when BP is applied to a general
inference problems. A precise formulation of this statement is provided by the
notion of physical degradation. This notion is first defined in terms of BMS chan-
nels, and then extended to symmetric random variables. This allows to apply it
to the random variables encountered in BP decoding and density evolution.

Let us start with the case of BMS channels. Consider two such channels,
denoted as BMS(1) and BMS(2), denote by {Q1(y|x)}, {Q2(y|x)} their transition
matrices and by Vi, Vs the corresponding output alphabets. We say that BMS(2)
is physically degraded with respect to BMS(1) if there exists a third channel
C with input alphabet Y; and output )s such that BMS(2) can be regarded as
the concatenation of BMS(1) and C. By this we mean that passing a bit through
BMS(1) and then feeding the output to C is statistically equivalent to passing
the bit through BMS(2). If the transition matrix of C is {R(y2|y1)}, this can be
written in formulae as

Qa(y2l) = Y R(yalyr) Qu(wle), (15.21)
y1€M

where, to simplify the notation, we assumed )y to be discrete. A pictorial repre-
sentation of this relationship is provided by Fig. 15.2. A formal way of expressing

{ex:MAPSymmetric}
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~ = | BMS(?2) >

—— BMS(1) C e

Fica. 15.2. The channel BMS(2) (top) is said to be physically degraded with
respect to BMS(1) if it is equivalent to the concatenation of BMS(1) with a
{fig:PhysDegr} second channel C.

the same idea is that there exists a Markov chain X — Y; — Y5.

Whenever BMS(2) is physically degraded with respect to BMS(1) we shall
write BMS(1) < BMS(2) (which is read as: BMS(1) is ‘less noisy than’ BMS(2)).
Physical degradation is a partial ordering: If BMS(1) < BMS(2) and BMS(2) <
BMS(3), then BMS(1) < BMS(3). Furthermore, if BMS(1) < BMS(2) and
BMS(2) < BMS(1), then BMS(1) = BMS(2). However, given two binary mem-
oryless symmetric channels, they are not necessarily ordered by physical degra-
dation (i.e. it can be that neither BMS(1) < BMS(2) nor BMS(2) < BMS(1)).

Here are a few examples of channel pairs ordered by physical degradation.

Example 15.7 Let e1,¢€3 € [0, 1] with €; < e5. Then the corresponding erasure
channels are ordered by physical degradation, namely BEC(¢;) < BEC(e2).
Consider in fact a channel C that has input and output alphabet ) =
{0,1, %} (the symbol * representing an erasure). On inputs 0, 1, it transmits
the input unchanged with probability 1 — x and erases it with probability z.
On input * it outputs an erasure. If we concatenate this channel at the output
of BEC(e1), we obtain a channel BEC(¢), with ¢ = 1 — (1 — z)(1 — ¢€) (the
probability that a bit is not erased is the product of the probability that it is
not erased by each of the component channels). The claim is thus proved by
taking z = (e2 —e€1)/(1 —€1) (without loss of generality we can assume ¢; < 1).

Exercise 15.4 If py,ps € [0,1/2] with p; < py, then BSC(p;) < BSC(ps). This
can be proved by showing that BSC(p2) is equivalent to the concatenation of
BSC(p1) with a second binary symmetric channel BSC(z). What value of the
crossover probability x should one take?

Exercise 15.5 If 07,03 € [0,00) with ¢ < 03, show that BAWGN(c}) <
BAWGN(02).
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If BMS(1) < BMS(2), most measures of the channel ‘reliability’ are ordered
accordingly. Let us discuss here two important such measures: (1) conditional
entropy and (2) bit error rate.

(1): Let Y7 and Y be the outputs of passing a uniformly random bit, respec-
tively, through channels BMS(1) and BMS(2). Then H(X|Y;) < H(X|Y2) (the
uncertainty on the transmitted is larger for the ‘noisier’ channel). This follows
immediately from the fact that X — Y; — Y5 is a Markov chain by applying the
data processing inequality, cf. Sec. 77.

(2) Assume the outputs of channels BMS(1), BMS(2) are y; and y,. The
MAP decision rule for x knowing vy, is Z,(y,) = argmax, P{X = z|Y, = y.},
with @ = 1,2. The corresponding bit error rate is Péa) = P{Z,(ya) # x}. Let

us show that PS) < Pl(f). As BMS(1) < BMS(2), there is a channel C be the
channel such that BMS(1) concatenated with C is equivalent to BMS(2). Then
Pl(f) can be regarded as the bit error rate for a non-MAP decision rule given ;.
The rule is: transmit y; through C, denote by ys the output, and then compute
Z2(y2). This non-MAP decision rule cannot be better than the MAP rule applied
directly to .

Since symmetric random variables can be associated with BMS channels (see
Proposition 15.1), the notion of physical degradation of channels can be extended
to symmetric random variables. Let Z1, Zs be two symmetric random variables
and BMS(1), BMS(2) the associated BMS channels, constructed as in the proof
of proposition 15.1. We say that Z is physically degraded with respect to Z; (and
we write Z; = Zs) if BMS(2) is physically degraded with respect to BMS(1). Tt
can be proved that this definition is in fact independent of the choice of BMS(1),
BMS(2) within the family of BMS channels associated to Z;, Zs.

The interesting result is that BP decoding behaves in the intuitively most
natural way with respect to physical degradation. As above, we fix a particular
LDPC code and look at BP message as random variables due to the randomness
in the received vector y.

Proposition 15.8 Consider communication over a BMS channel using an LDPC
code under the all-zero codeword assumption, and BP decoding with standard ini-
tial condition X = 0. If B, .(F) is a tree, then hEO) - hl(»l) Tl hgt_l) - hz(.t)
for any t <r—1. Analogously, if Bi_.q.(F) is a tree, then hgo_)m = hl(-i)a ==
R hgﬂa foranyt <r—1.

We shall not prove this proposition in full generality here, but rather prove
its most useful consequence for our purpose, namely the fact that the bit error
rate is monotonously decreasing with ¢.

Proof: Under the all-zero codeword assumption, the bit error rate is P{i:\l(-t) =
1} = P{hgt) < 0} (for the sake of simplicity we neglect here the case hl(t) =0).
Assume B; ,.(F') to be a tree and fix ¢ < r — 1. Then we want to show that
P{hgt) <0} < IP’{hEt_l) < 0}. The BP log-likelihood after T iterations on the
A" s equal to the actual (MAP) log-likelihood for the reduced

original graph, h;”,
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model defined on the tree B; ;41 (F). More precisely, let us call €;;, the LDPC
code associated to the factor graph B; ;41 (F), and imagine the following process.
A uniformly random codeword in &, ; is transmitted through the BMS channel
yielding output y, . Define the log-likelihood ratio for bit x;

~ P(x; = 0ly,)
) _ 11 - 15.92
hit=35 Og{zp(xi =1ly,) [ (15.22)

and denote the map estimate for z; and Z;. It is not hard to show that hz(-t) is
distributed as iALZ(-t) under the condition x; = 0. In particular, P{Z; = 1|z; = 0} =
P{n{" < 0}.

In the above example, instead of MAP decoding one can imagine to scratch all
the received symbols at distance ¢ from 4, and then performing MAP decoding on
the reduced information. Call ¥} the resulting estimate. The vector of non-erased
symbols is y, . The corresponding log-likelihood is clearly the BP log-likelihood

after t —1 iterations. Therefore P{Z} = 1|x; = 0} = ]P’{hgt_l) < 0}. By optimality
of the MAP decision rule P{Z; # z;} < P{&} # x;}, which proves our claim. [J

In the case of random LDPC codes B, ,(F) is a tree with high probability
for any fixed r, in the large block length limit. Therefore Proposition 15.8 has
an immediate consequence in the asymptotic setting.

Proposition 15.9 The density evolution random variables are ordered by phys-
ical degradation. Namely, h(® = b1 = ... = pt=1 = () — ... Analogously
hio) - hil) e = hit_l) - th) = ---. As a consequence, the asymptotic bit

) (1)

error rate after a fived number t of iterations P,(f = limy .o Py, s monoton-

ically decreasing with t.

Exercise 15.6 An alternative measure of the reliability of hl(t) is provided
by the conditional entropy. Assuming that a uniformly random codeword is

transmitted, this is given by H;(t) = H(Xi\hz(»t)).
(a) Prove that, if B; .(F) is a tree, then H;(t) is monotonically decreasing
with ¢ for ¢t < r — 1.

(b) Assume that, under the all-zero codeword assumption hgt) has density
p:(.). Show that H;(t) = [log(1l + e=2*) dp:(z). (Hint: remember that
p:(.) is a symmetric distribution).

15.2.4  Numerical implementation and threshold
Density evolution is a useful tool because it can be simulated efficiently. One
can estimate numerically the distributions of the density evolution variables

{h® u®}, as well as {th)}. As we have seen this gives access to the prop-
erties of BP decoding in the large block-length limit, such as the bit error rate
P](Ot) after ¢ iterations.

{propo:PhysDegrDE}
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Fig. 15.3. Predicted performances of two LDPC ensembles on a BSC chan-
nel. The curves have been obtained through a numerical solution of den-
sity evolution, using population dynamics algorithm with population size
5. 105. On the left, the (3,6) regular ensemble. On the right, an opti-
mized irregular ensemble with the same design rate Rges = 1/2. Its degree
distribution pair is A(z) = 0.487122 + 0.3128 2% + 0.04212* + 0.1580 27,
P(z) = 0.67972" + 0.3203 2%. Dotted curves give the bit error rate obtained
after t = 1, 2, 3, 6, 11, 21, 51 iterations (from top to bottom), and bold con-
tinuous lines to the limit ¢ — oo. In the inset we plot the expected conditional
entropy EH (X;|Y).

A possible approach®? consists in representing the distributions by samples
of some fixed size. This leads to the population dynamics algorithm discussed
in Section 14.6.2. In Fig. 15.3 we report the results of population dynamics
computations for two different LDPC ensembles used on a BSC channel with
crossover probability p. We consider two performance measures: the bit error
rate PS) and the conditional entropy H®. As follows from proposition 15.9,
they are monotonically decreasing functions of the number of iterations. One
can also show that they are monotonically increasing functions of p. As P}(f) is
non-negative and decreasing in ¢, it has a finite limit PEP = limy_ o Pg) , which
is itself non-decreasing in p (the limit curve PEP is estimated in Fig. 15.3 by
choosing ¢ large enough so that P}(f) is independent of ¢ within the numerical
accuracy). One defines the BP threshold as

pa=sup{pe[0,1/2] : PF"(p)=0}. (15.23)

Analogous definitions can be provided for other channel families such as the
erasure BEC(€) or Gaussian BAWGN(0?) channels. In general, the definition

52An alternative approach is as follows. Both maps (15.11) can be regarded as convolu-
tions of probability densities for an appropriate choice of the message variables. The first
one is immediate in terms of log-likelihoods. For the second map, one can use variables
r®) = (sign h® log | tanh h<’5)|)7 s = (sign u® log | tanh y(t>|)). By using fast Fourier trans-
form to implement convolutions, this can result in a significant speedup of the calculation.

{fig:DE}
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I k Rges Pd Shannon limit
3 4 1/4 0.1669(2) 0.2145018
3 5 2/5 0.1138(2) 0.1461024
3 6 1/2 0.0840(2) 0.1100279
4 6 1/3 0.1169(2) 0.1739524

Table 15.1 Belief propagation thresholds for the BSC channel, for a few reqular
LDPC ensembles. The third column is the design rate 1 —1/k.

(15.23) can be extended to any family of BMS channels BMS(p) indexed by a
real parameter p which orders the channels in terms of physical degradation.

Numerical simulation of density evolution allows to determine the BP thresh-
old pgq with good accuracy. In Table 15.2.4 we report the results of a few such
results. Let us stress that the threshold pq has an important practical meaning.
For any p < pq one can achieve arbitrarily small bit error rate with high probabil-
ity by just picking one random code from the ensemble LDPCy (A, P) with large
N and decoding it using BP with a large enough (but independent of N') number
of iterations. For p > pgq the bit error rate is asymptotically lower bounded by
PBP(p) > 0 for any fixed number of iterations (in practice it turns out that doing
more iterations, say n®, does not help). The value of pq is therefore a primary
measure of the performance of a code.

The design of good LDPC codes thus involves a choice of the degree distri-
bution pair (A, P) with the largest BP threshold pq, given a certain design rate
Rges = 1—P'(1)/A’(1). For general BMS channels, this can be done numerically.
One computes the threshold noise level for a given degree distribution pair using
density evolution, and maximizes it by a local search procedure. As we shall see
in Section 15.3, the optimization can be carried out analytically for the BEC.
Figure 15.3 shows the example of an optimized irregular ensemble with rate 1/2,
including variable nodes of degrees 2,3,4 and 10 and check nodes of degree 7
and 8. Its threshold is pq =~ 0.097 (while Shannon’s limit is 0.110).

Note that this ensemble has a finite fraction of variable nodes of degree 2. We
can use the analysis in Chapter 11 to compute its weight enumerator function.
It turns out that the parameter of A in Eq. (11.23) is positive. This optimized
ensemble has a large number of codewords with small weight. It is surprising,
and not very intuitive, that a code where there exist many codewords close to
the one which is sent has nevertheless a large BP threshold pq. It turns out that
this phenomenon is pretty general: the code ensembles that approach Shannon
capacity turn out to have bad distance properties, without any gap at short
distance in the weight enumerator function. The low-weight codewords are not
harmless. They degrade the code performances at moderate block-length N,
below the threshold pq. Further they prevent the block error probability from
vanishing as N goes to infinity (in each codeword a fraction 1/N of the bits is
decoded incorrectly). This phenomenon is referred to as the error floor.
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