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Preface

There has been a lot of excitement surrounding the science of biology in recent years.
The human genome of three billion letters has been sequenced, as have the genomes
of thousands of other organisms. With unprecedented resolution, the rush of omics
technologies is allowing us to peek into the world of genes, biomolecules, and cells –
and flooding us with data of immense complexity that we are just barely beginning
to understand. A huge gap separates our knowledge of the molecular components of
a cell and what is known from our observations of its physiology – how these cellular
components interact and function together to enable the cell to sense and respond
to its environment, to grow and divide, to differentiate, to age, or to die. We have
written this book to explore what has been done to close this gap of understanding
between the realms of molecules and biological processes. We put together illustrative
examples from the literature of mechanisms and models of gene-regulatory networks,
DNA replication, the cell-division cycle, cell death, differentiation, cell senescence, and
the abnormal state of cancer cells. The mechanisms are biomolecular in detail, and the
models are mathematical in nature. We consciously strived for an interdisciplinary pre-
sentation that would be of interest to both biologists and mathematicians, and perhaps
every discipline in between. As a teaching textbook, our objective is to demonstrate
the details of the process of formulating and analyzing quantitative models that are
firmly based on molecular biology. There was no attempt to be comprehensive in our
account of existing models, and we sincerely apologize to colleagues whose models
were not included in the book.

The mechanisms of cellular regulation discussed here are mediated by DNA
(deoxyribonucleic acid). This DNA-centric view and the availability of sequenced
genomes are fuelling the present excitement in biology – perhaps because one can
now advance the tantalizing hypothesis that the linear DNA sequence contains the
ultimate clues for predicting cellular physiology. Examples of mechanisms that explic-
itly relate genome structure and DNA sequence to cellular physiology are illustrated in
some chapters (on gene expression and initiation of DNA replication in a bacterium);
however, the majority deals with known or putative mechanisms involving pathways
and networks of biochemical interactions, mainly at the level of proteins (the so-called
workhorses of the cell). The quantitative analysis of these complex networks poses sig-
nificant challenges. We expect that new mathematics will be developed to sort through
the complexity, and to link the many spatiotemporal scales that these networks oper-
ate in. Although no new mathematics is developed in this book, we hope that the
detailed networks presented here will make significant contributions to the inspiration
of mathematical innovations. Another important goal is to show biologists with non-
mathematical backgrounds how the dynamics of these networks are modelled, and,



vi Preface

more importantly, to convince them that these quantitative and computational treat-
ments are critical for progress. The collaboration between biologists and mathematical
modellers is crucial in furthering our understanding of complex biological networks.

There are currently hundreds of molecular interaction and pathways databases
that proliferate on the internet. In principle, these bioinformatics resources should be
tapped for building or extracting models; but the sheer complexity of these datasets
and the lack of automatic model-extraction algorithms are preventing modellers from
using them. Although an overview of these databases is provided, almost all of the
models in this book are based on current biological hypotheses on what the central
molecular mechanisms of the cellular processes are.

One of us was trained as a physical-theoretical chemist, and the other as a pure
mathematician. Individually, each has undergone many years of re-education and
re-focusing of his research towards biology. We hope that this work will help in bring-
ing together biologists, mathematicians, physical scientists and other non-biologists
who seriously want to gain an understanding of the inner workings of life.

It is our pleasure to thank Shoumita Dasgupta for reading and generously com-
menting on some of the biology sections (but let it be known that lapses in biology
are certainly all ours). We gratefully acknowledge the support provided by the Mathe-
matical Biosciences Institute that is funded by the National Science Foundation USA
under agreement no. 0112050.

B. D. Aguda & A. Friedman
Columbus, Ohio, USA

12 November 2007
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1
General introduction

1.1 Goals

The study of life involves a bewildering variety of organisms, some extinct, while
those living are in constant evolutionary flux. Amazingly, the vast spectrum of species
is replaced by uniformity in composition at the molecular level. All known life forms
on earth use DNA (deoxyribonucleic acid) as the carrier of information to create and
sustain life – how to reproduce, how to generate energy, how to use nutrients in the
environment, and how to synthesize biomolecules when needed. In recent years, high-
throughput data-acquisition technologies have enabled scientists to identify and study
in unprecedented detail the parts of this DNA-mediated chemical machinery – the
genes, proteins, metabolites, and many other molecules.

A biological cell is a dynamic system, composed of parts that interact in ways that
generate the ‘living’ state. Physicochemical interactions do not occur in isolation but
in concert, creating pathways and networks seemingly intractable in their complexity
but are somehow orchestrated to give rise to a functional unity that characterizes a
living system. This book provides and account of these networks of interactions and
the cellular processes that they regulate: cell growth and division, death, differen-
tiation, and aging. The general aim is to illustrate how mathematical models of these
processes can be developed and analyzed. These networks are large and require proper
modelling frameworks to cope with their complexity. Such frameworks are expected
to consider empirical observations and biological hypotheses that may permit network
simplification. For example, living systems possess modular architecture, both in space
and in terms of biological function. Modularization in space is exemplified by a cell
delineated from its environment by a permeable membrane. Modularization according
to biological function is another way of stating the hypothesis that – in the midst of
these large, highly connected intracellular networks – only certain subnetworks are
essential in driving particular cellular processes. It is the modelling of these cellular
processes in terms of these subnetworks that is the subject of this book.

The cellular processes discussed here – although primarily occurring at the single-
cell level – are the key determinants of cell phenotype, and therefore the physiology
of the organism at the tissue level and beyond. In the next section of this general
introductory chapter, some biological terms are explained and an overview of the
topics covered in the chapters is given. The third section provides a general discussion
of mathematical and computational modelling of biological systems. In the last section,



2 General introduction

remarks on the organization of the chapters and recommendations on how to use this
book for learning, teaching and research purposes are given.

1.2 Intracellular processes, cell states and cell fate:
overview of the chapters

Biology textbooks teach that the cell is the unit of life; anything less does not possess
the attribute of being ‘alive’. Observation of microscopic unicellular organisms – e.g.
bacteria, yeast, algae – demonstrates how one cell behaves as a free-living system:
it is one that grows, replicates, and responds to its environment with unmistakable
autonomy and purpose. Tissues of higher animals and plants are also made up of
cellular units, each with a genetic material (a set of chromosomes) surrounded by a
membrane. It is this genetic material that contains the information for the replication
and perpetuation of the species, and it is the localization or concentration of materi-
als within the cell membrane that makes it possible for the operation of a ‘chemical
factory’ that sustains life – synthesizing and processing proteins, other biomolecules,
and metabolites according to the instructions encoded in the genes. Details of this pic-
ture are provided in Chapter 2 where essentials of cellular and molecular biology are
summarized. This picture may be loosely called a ‘genes-chemical factory’ model that
can begin to explain why, for instance, a muscle cell looks different from a skin cell or
a nerve cell. According to this ‘model’, all these cells are basically the same in archi-
tecture but they look different only because of differences in the relative proportions
of the proteins they make.

During the development of a multicellular organism, the fate of cells – that is, to
what transient states or terminally differentiated states they go – depends in some
complex and incompletely understood way on cell–cell and cell–environment interac-
tions. The maturation of an organism involves multiple rounds of cell growth, division,
and cell differentiation in various stages of development. Certain cells are destined to
die and be eliminated in the progressive sculpting of the adult body. And in the
dynamic maintenance of tissues and organs, certain cells are in continuous flux of
proliferation and death – like cells of the skin and the lining of the gut. As many
types of cells as there are in the adult body, there will be at least as many cell-fate
decisions made. This book does not attempt to follow all these decisions (in fact,
there is only one chapter that explicitly discusses cell differentiation); instead, the
focus is on models of key cellular processes that impact on cell-fate decisions – gene
expression, DNA replication, the cell-division cycle, cell death, cell differentiation, and
cell aging (senescence). There is no attempt to be comprehensive about processes of
cell-fate determination. The choice of topics is, to a large extent, dictated by the
availability of published mathematical models. However, non-mathematical models –
or biological hypotheses – are also discussed to anticipate biological settings for future
computational modelling activities.

A prevailing biological hypothesis is that cellular ‘decisions’ ultimately originate
from the changing states of the chromosomal DNA. Thus, cell division requires DNA
replication, cell differentiation requires transcription of the DNA at select sites, and cell
death is triggered when DNA damage cannot be repaired. Chapter 4 emphasizes the
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connectivity of gene-regulatory networks – from DNA to RNA to proteins to metabo-
lites and back – using well-known genomic, proteomic, and metabolic information on
the bacterium Escherichia coli. The control of the initiation of DNA replication is also
well elucidated in this bacterium, and a kinetic model of this key step in cell division is
discussed in Chapter 5. The importance of modelling the cell-division cycle – and also
because of major recent breakthroughs in its molecular understanding – is reflected in
the two chapters that follow: Chapter 6 provides a summary of the molecular machin-
ery of the so-called ‘cell-cycle engine’ of eukaryotes and some recent dynamical models;
Chapter 7 discusses the more complex mammalian cell cycle and its control using the
mechanism of checkpoints.

Programmed cell death, also called apoptosis, is discussed in Chapter 8. Some cells
are ‘programmed’ to die in the development of an organism or when insults on the
DNA are beyond repair. As a multicellular organism grows, cells begin to acquire
specific phenotypes – that is, how they look and what their functions are. Models
of cell differentiation are discussed in Chapter 9. Chapter 10 deals with cell aging
(senescence) and maintenance. Although there may be other mechanisms involved,
the idea that there is a ‘counting mechanism’ for monitoring the number of times
a cell divides is an intriguing one; and models have been suggested for this process.
Chapter 11 deals with abnormal cell-fate regulation that leads to cancer; this last
chapter illustrates tumor modelling at different scales – from intracellular pathways
to cell–cell interactions in a population.

1.3 On mathematical modelling of biological phenomena

Insofar as possible, the models considered in this book are corroborated by exper-
imental observations. The focus is on models of dynamical biological phenomena
regulated by networks of molecular interactions. Model definitions range from qualita-
tive to quantitative, or from the conceptual to the mathematical. Biologists formulate
their hypotheses (‘models’) in intuitive and conceptual ways, often through the use of
comparisons of systems observed in nature. With the aid of chemistry and physics, bio-
logical concepts and models can be couched in molecular and mechanistic terms. Just
as mathematics was employed by physics to describe physical phenomena, increas-
ingly detailed understanding of the molecular machinery of the cell is allowing the
development of mechanistic and kinetic models of cellular phenomena.

A model is meant to be a replica of the system. Where details are absent – be it due
to lack of instruments for direct observation or lack of ideas to explain observations –
assumptions, hypotheses or theories are formulated. A scientific model involves a self-
consistent set of assumptions to reproduce or understand the behavior of a system and,
importantly, to offer predictions for testing the model’s validity. A clear definition of
the ‘system’ is the required first step in modelling. For example, the solar system –
the sun and the eight planets – is indeed a very complex system if one includes details
such as the shape and composition of the planets, but if the aim of modelling is merely
to plot the trajectories of these planets around the sun, then it is sufficient to model
the planets as point masses and use Newton’s universal law of gravitation to calculate
the planets’ trajectories. It is conceivable, however, that modeling certain complex
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systems – such as a living cell – do not allow further simplification or abstraction below
a certain level of complexity (so-called ‘irreducible complexity’). Abstractions made in
a model assume that certain details of the system can be ‘hidden’ or ignored because
they are not essential in the description of the phenomenon. How such abstractions are
made still requires systematic study. How can one be sure that a low-level detail is not
an essential factor in the description of a higher-level system behavior? As an example
where low-level property is essential for explaining higher-level behavior, one can cite
the example of the anomalous heat capacity of hydrogen gas – the heat capacity being
a macroscopic or system-level property – which, it turns out, can be explained by the
orientation of the nuclear spins (a microscopic or low-level property) of the individual
gas molecules! A similar problem arises in tumor modelling (Chapter 11) where a
mutation in certain genes is eventually manifested in the behavior of cell populations
in the tumor tissue. This book is about models of biological cells that are notoriously
complex if one considers existing genetic and biochemical data. The premise adopted
in this book is that these complex molecular networks can be modularized according
to their associations with cellular processes.

In the definition of a system to be modelled, the abstraction mentioned above
requires careful identification of state variables. In the example of the solar system,
the state variables are the space coordinates and the velocities of the planets and the
sun. Newton’s laws of motion are sufficient to describe the system fully because the
solutions of the dynamical equations provide the values of the state variables at any
future time, given the present state of the variables. In other words, if the objective
of the model is to plot planet trajectories, Newton’s theory of universal gravitation
provides a sufficient description of the system. What are the current physical or chem-
ical theories upon which models of biological processes are based? As illustrated in
many of the models in this book, theories of chemical kinetics are assumed to apply
(these are summarized in Chapter 3). In general, existing biological models carry
the implicit assumption that the fundamental principles of chemistry and physics
encompass the principles necessary to explain biological behavior. There had been
some serious attempts in the past to develop theories on biological processes, includ-
ing theories of non-equilibrium thermodynamics and self-organizing systems (Nicolis
and Prigogine, 1977). Many inorganic systems have been studied that exhibit self-
organizing behavior reminiscent of living systems (Ross et al., 1988), and many of
these systems have been modelled using mathematical theories of non-linear dynami-
cal systems (Guckenheimer and Holmes, 1983). The mathematical and computational
methods discussed in this book are primarily those of dynamical systems theory (see
Chapter 3).

What are other essential attributes of a valid biological model? There is clear
evidence from detailed genetic and biochemical studies that high degrees of redundancy
in the number of genes, proteins, and molecular interaction pathways are quite common
in biological networks (for example, there are at least ten different cyclin-dependent
kinases that influence progression of the mammalian cell cycle – see Chapter 7). This
redundancy may explain the robustness of biological pathways against perturbations.
Robustness is a particularly strong requirement for a valid biological model (Kitano,
2004); this is because a living cell is in a noisy environment, and key cellular decisions
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cannot be at the mercy of random fluctuations. This robustness requirement on biolog-
ical models translates either to robustness against perturbations of model parameters,
or against perturbations of edges – that is, adding or deleting interactions – in the
network.

Lastly, a mathematical model must lend itself to experimental verification. Given
a set of experimental data, a modeller is faced with the difficulty of enumerating
possible models that can explain the data. A proposed model must offer predictions
and explicit experimental means to discriminate itself from other candidate models.
This iterative process between model building and experimental testing represents the
essence of scientific activity.

1.4 A brief note on the organization and use of the book

This book is addressed to students of the mathematical, physical, and biological sci-
ences who are interested in modelling cellular regulation at the level of molecular
networks. Where the mathematics could be involved (but is interesting to non-
biologists who may wish to pursue the topics further), sections indicated by � can be
omitted on first reading.

Chapters 2 to 4 form the foundations on the biology and mathematical modelling
approaches used in the entire book. Although Chapter 2 is a very brief summary
of essential cellular and molecular biology, it embodies the authors’ perspective on
what aspects of the biology are essential in modelling. Chapter 3 is a summary of
key mathematical modelling tools and guides the reader to more detailed modelling
resources; more importantly, this chapter explains how models are created and set up
for analysis.

The remaining chapters can be read independently, although it is recommended
that Chapters 6 and 7 be read in sequence. The arrangement of the chapters, how-
ever, was conceived by the authors to develop a story about the regulation of cellular
physiology – gene expression and cell growth, gene replication and cell division, death,
differentiation, aging, and what happens when these processes are compromised in
cancer. A glossary of terms and phrases is included at the end of the book.
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2
From molecules to a living cell

One of the striking features of life on earth is the universality (as far as we know)
of the chemistry of the basic building blocks of cells; this is especially true in the
case of the carrier of genetic information, the DNA. This universality suggests that
it is in the intrinsic physicochemical properties of these biomolecules where one can
find the origins of spatiotemporal organization and functions characteristic of liv-
ing systems. At the level of molecular interactions, fundamental laws of physics and
chemistry apply. However, the emergence of the ‘living state’ is expected to be associ-
ated with ensembles of molecular processes organized spatially in organelles and other
cellular compartments, as well as temporally in their dynamics far from equilibrium.
To help understand these levels of organization, the basic anatomy of cells, the pro-
perties of these biomolecules and their interactions are summarized in this chapter.
Of central importance is the molecular machinery for expressing genes to proteins;
this is a complex but well-orchestrated machinery involving webs of gene-interaction
networks, signalling and metabolic pathways. Information on these networks is increas-
ingly and conveniently made available in public internet databases. A brief survey is
given at the end of this chapter of the major databases containing genomic, proteomic,
metabolomic, and interactomic information. The challenge to scientists for decades to
come is to integrate and analyze these data to understand the fundamental processes
of life.

2.1 Cell compartments and organelles

A diagram of the basic architecture of eukaryotic cells is shown in Fig. 2.1. Every
eukaryotic cell has a membrane-bound nucleus containing its chromosomes. In con-
trast, a prokaryotic cell lacks a nucleus; instead, the chromosome assembly is referred
to as a nucleoid. A description of the compartments and major organelles in a
representative eukaryotic cell is given in this section.

A bilayer phospholipid membrane, called the plasma membrane, delineates the
cell from its environment. This membrane allows the selective entry of raw materi-
als for the synthesis of larger biomolecules, the transmission of extracellular signals
(e.g. from extracellular ligands docking on membrane-receptor proteins), retains or
concentrates substances needed by the cell, and the efflux of waste products. Each
phospholipid molecule has a hydrophobic (or ‘water-hating’) end and a hydrophilic
(or ‘water-loving’) end. When these molecules are dispersed in water, they aggregate
spontaneously to form a bilayer membrane, both surfaces of the membrane being lined
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Fig. 2.1 The major compartments and organelles of a typical eukaryotic cell. The plasma
membrane, chromosomes (condensed chromatin), ribosomes, nucleolus, mitochondria, centro-
some and the cytoskeleton (microtubules and filaments) are described in the text. The Golgi
apparatus is referred to as the ‘post office’ of the cell: it ‘packages’ and ‘labels’ the different
macromolecules synthesized in the cell, and then sends these out to different places in the
cell. Lysosomes are organelles containing digestive enzymes, which is why they are also called
‘suicide sacs’ because spillage of their contents causes cell death. Reproduced with permission
from the book of Alberts et al. (2002). c© 2002 by Bruce Alberts, Alexander Johnson, Julian
Lewis, Martin Raff, Keith Roberts, and Peter Walter. (See Plate 1)

by the hydrophilic ends of the lipid molecules, while the hydrophobic ends are tucked
in between the surfaces. This is an example of a common observation that many types
of biomolecules synthesized by cells possess the ability to self-assemble into structures
with specific cellular functions (other examples will be given below).

Proteins that span the plasma membrane, called transmembrane proteins, are
involved in cell–environment and cell–cell communications. Examples of these pro-
teins are ion-channel proteins (e.g. sodium and potassium ion channels involved
in regulating the electric potential difference across the plasma membrane) and
membrane-receptor proteins, whose conformational changes (brought about, for exam-
ple, by binding with extracellular ligands) usually initiate cascades of biochemical
processes that get transduced to the nuclear DNA causing changes in gene expression.
Certain membrane proteins are involved in cell–cell recognition that is crucial in the
operation of the immune system.

The material between the plasma membrane and the nucleus is called the cyto-
plasm. Encased by the nuclear membrane are the chromosomes that contain the
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genome (set of genes) of the organism. Humans (Homo sapiens) have 46 chromosomes
in their somatic cells. Human sperm and egg cells have 23 chromosomes each.

Although the code for producing proteins is in the chromosomes, proteins are
synthesized outside the nucleus in sites that look like granules under the microscope.
These sites of protein synthesis are the ribosomes (see Fig. 2.1 and Fig. 2.2). As
shown in Fig. 2.1, ribosomes are either attached to a network of membranes (called
the endoplasmic reticulum) or are free in the cytoplasm. A bacterium such as E.
coli cell has ∼104 ribosomes and a human cell has ∼108 ribosomes. The assembly of
ribosomes originates from a nuclear compartment called the nucleolus (see Fig. 2.1).

Besides proteins, many other types of molecules are produced in the cell through
enzyme-catalyzed metabolic reactions. The organelles called mitochondria (Fig. 2.1)
are the cell’s power plants because most of the energetic molecules – called ATP
(adenosine triphosphate) – are generated in these organelles. Energy is released when
a phosphate bond is broken during the transformation of ATP into ADP (adenosine
diphosphate); this energy is used to drive many metabolic reactions. A typical eukary-
otic cell contains ∼2000 mitochondria. (Interestingly, mitochondria contain DNA,
which suggests – according to the endosymbiotic theory – that these organelles were
once free-living prokaryotes.)

As depicted in Fig. 2.1, the shape of the cell is maintained by the cytoskeleton
that is a network of microtubules and filaments. These cytoskeletal elements are self-
assembled from smaller protein subunits. Rapid disassembly and assembly of these
subunits can occur in response to external signals (this happens, for example, when a
cell migrates). Of major importance to cell division is the organelle called centrosome
that is composed of a pair of barrel-shaped microtubules called centrioles (Fig. 2.1).
Immediately after the chromosomes are duplicated, the centrosome is also duplicated;
the two centrosomes are eventually found in opposite poles prior to cell division. The
spindle fibers (microtubules) emanating from these two centrosomes carry out the
delicate task of segregating the chromosomes equally between daughter cells.

28S

5.8S

5.8S
5S

28S

18S

Total:  33

60S

40S
80S

28S : 5.8S 
(4800 bases + 160 bases)

5S
(120 bases)

18S
(1900 bases)

Total:  50

+

+

Fig. 2.2 Ribosomes of mammalian cells. Shown are schematic pictures of the components
of the large (60S) and small (40S) subunits of the ribosome (80S). The strands represent
ribosomal RNAs, and the triangles are the 50 proteins of the large subunit and the 33 proteins
of the small subunit. Figure reproduced with permission from Lodish et al. Molecular cell
biology. c© 2000 by W. H. Freeman and Company.
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The components and structures of cell organelles and other large protein com-
plexes have been elucidated. For example, mammalian ribosomes are large complexes
of 83 proteins and 4 ribonucleic acids (see Fig. 2.2). Other important examples are
the components and the mechanisms of action of various polymerase enzymes in the
replication of chromosomes (DNA polymerases) and in decoding genes (RNA poly-
merases). Many of these macromolecular complexes are being viewed as molecular
machines.

To reiterate, a wide variety of the biomolecules synthesized in cells self-assemble
spontaneously. The phospholipid molecules of the plasma membrane – products of cell
metabolism – form bilayers spontaneously in aqueous solutions. In the construction
of the cytoskeleton, tubulin proteins polymerize to form microtubules, actin to micro-
filaments, and myosin to thick filaments. Recent studies even suggest that the whole
eukaryotic nucleus is a self-assembling organelle.

2.2 The molecular machinery of gene expression

All known living things on earth use DNA (deoxyribonucleic acid) as the genetic
material (except for some viruses that use ribonucleic acid or RNA for short). The
publication of the structure of DNA by James Watson and Francis Crick in 1953
revolutionized biology. The structure of DNA provides a clear molecular basis for the
inheritance of genes from one generation to the next, as described in more detail below.

In each eukaryotic chromosome, DNA exists as two strands paired to form a double
helix (Fig. 2.3). Each strand has a sugar–phosphate backbone, and attached to the
sugars are four nitrogenous bases, namely, adenine (A), thymine (T), cytosine (C),
and guanine (G). The double helix is formed from the Watson–Crick pairing between
these bases: A paired to T, and C paired to G. As shown schematically in Fig. 2.3,
the specificity of these pairings is due to the number of hydrogen bonds between the
bases. Because these hydrogen bonds are weak – unlike the much stronger covalent
bonds in molecules – they allow the ‘unzipping’ of the double helix during DNA
replication. Note that the T–A pair has two hydrogen bonds while the G–C pair has
three, suggesting that the double helix is easier to unzip where there are more T–A
pairs than G–C pairs. It is these Watson–Crick base pairings that elegantly explain
the molecular basis of gene inheritance.

For DNA replication to start, the duplex has to ‘unzip’ to expose single-stranded
DNA segments where synthesis of new DNA strands occur according to the Watson–
Crick base pairing. This is a highly regulated affair involving dozens of enzymes,
including DNA polymerases.

Genes correspond to stretches of sequences of the letters A, T, C, G on the DNA
(DNA segments comprising a gene are not necessarily contiguous). Gene expression
refers to the synthesis of the protein according to the DNA sequence of the gene (also
called protein-coding sequence). The gene-expression machinery requires that the DNA
sequence is first transcribed to an RNA sequence. RNA molecules also have the A, C,
and G bases, but uracil (U) is used instead of T. RNA molecules do not stably form
double helices like DNA. However, the pairings of C–G and A–U are observed. The
gene-expression machinery is summarized in Fig. 2.4.
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Fig. 2.3 Two DNA molecules form the Watson–Crick double helix where the sugar–
phosphate backbones are on the outside and the bases are inside, paired by hydrogen bonds
as shown on the right of the figure (A with T, and C with G). The 5′ and 3′ designations of
the ends of a DNA strand are based on the numbering of the C atoms on the deoxyribose
(sugar). Figure reproduced with permission from: G. M. Cooper and R. Hausman, (2007)
The cell: a molecular approach. 4th edn. c© ASM Press and Sinauer Assoc., Inc.

As depicted in Fig. 2.4, the DNA double helix is unzipped where particular genes
are located so that the enzyme called RNA polymerase can transcribe the DNA
sequence into RNA. This primary RNA contains sequences called exons and introns;
the latter do not code for proteins and are removed. The remaining exons are then
stitched together through a process called RNA splicing to form a continuous molecule
of mature messenger RNA (mRNA). This mRNA relocates from the nucleus to the
cytoplasm where it is translated in ribosomes. Thus, gene expression is defined as the
combination of transcription and translation to the protein product.
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Fig. 2.4 Gene expression is carried out in two steps: transcription of DNA to RNA, followed
by translation of the messenger RNA (mRNA) to protein. The correspondence between
a codon (a triplet of bases) and the translated amino acid is given by the genetic code
(Table 2.1).

A key question is the correspondence between the mRNA sequence and the amino-
acid sequence of the protein product. One of the triumphs of molecular genetics is
the discovery of the universal genetic code shown in Table 2.1. The genetic code gives
the correspondence between codons (three-nucleotide sequences) on the mRNA and
the 20 amino acids found in almost all naturally occurring proteins. There is a total
of 43 or 64 possible codons, all listed in Table 2.1. The code also specifies codons that
signal termination and initiation of translation. The code is degenerate in the sense
that more than one codon can specify a single amino acid (but not vice versa). As
depicted in Fig. 2.5, small RNAs (composed of 73 to 93 nucleotides) called transfer
RNAs (tRNAs) act as adaptor molecules that read the mRNA codons. Each tRNA
has a sequence of three nucleotides called an anticodon that matches the mRNA
codon by Watson–Crick complementarity. The ribosome moves along the mRNA, and
the charged tRNAs (i.e. those carrying their specific amino acids) enter in the order
specified by the mRNA codons (see Fig. 2.5). The contiguous amino acids are then
enzymatically joined to form polypeptides (proteins).

One can conclude that the amino-acid sequences of all cellular proteins are encoded
in the DNA. Changes in certain DNA sequences can have drastic consequences on the
shape and function of translated proteins. For example, a particular mutation in the
hemoglobin gene (namely, a specific GAG sequence in the DNA is changed to GTG)
leads to the disease called sickle-cell anemia; here, the corresponding single amino-
acid change causes a drastic change in the shape of hemoglobin that compromises
the protein’s function as carrier of oxygen in red blood cells. The shape of proteins
largely determines their biological functions, giving a rationale to many observations
that, in the course of evolution, the three-dimensional structures of proteins are better
conserved than their one-dimensional amino-acid sequences. Although many advances
have been made recently, the problem of predicting three-dimensional structures of
proteins from their one-dimensional amino-acid sequence is still not solved.
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Table 2.1 The genetic code: from RNA codons to amino acids.
A ‘stop’ codon signifies termination of translation. AUG (Met)
is the usual initiator codon, but CUG and GUG are also used
as initiator codons in rare instances. The 3-letter symbols in
this table are for the following amino acids: L-Alanine (Ala),
L-Arginine (Arg), L-Asparagine (Asn), L-Aspartic acid (Asp),
L-Cysteine (Cys), L-Glutamic acid (Glu), L-Glutamine (Gln), Glycine
(Gly), L-Histidine (His), L-Isoleucine (Ile), L-Leucine (Leu), L-Lysine
(Lys), L-Methionine (Met), L-Phenylalanine (Phe), L-Proline (Pro),
L-Serine (Ser), L-Threonine (Thr), L-Tryptophan (Trp), L-Tyrosine
(Tyr), L-Valine (Val).
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2.3 Molecular pathways and networks

Although many of the so-called housekeeping genes are constitutively expressed for
cell maintenance, there are also many other genes whose expressions respond or adapt
to conditions of the cell environment. As a specific example, the bacterium E. coli can
synthesize tryptophan (Trp) if the level of this amino acid in the extracellular medium
is low; otherwise the bacterium shuts off its endogenous Trp-synthesizing machinery.
The network of molecular interactions regulating Trp synthesis, from the transcrip-
tion and translation of genes to the metabolic pathway that generates the amino
acid, will be analyzed in Chapter 4. The Trp network is a good example of how the
expression of genes can be affected by their products – thus forming feedback loops in
the network.
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Fig. 2.5 A cartoon of how the ribosome moves along the mRNA to translate the codons to
amino acids – in collaboration with tRNAs that are charged with corresponding amino acids
(circles labelled aas in the diagram). Figure reproduced with permission from Lodish et al.
Molecular cell biology. c© 2000 by W. H. Freeman and Company.

The metabolic steps in the synthesis of the 20 amino acids in the universal genetic
code, as well as other essential biomolecules – nucleotides, lipids, carbohydrates and
many others – are coupled in a complex web of metabolic reactions. The steps in the
metabolism of these biomolecules require enzymes (proteins) to occur, and therefore
one can claim that the set of biochemical reactions in a cell is orchestrated by the infor-
mation contained in its genome. A glimpse of the complexity of metabolic pathways
is shown in Fig. 2.6.

In addition to metabolic networks, many other cellular networks involve the reg-
ulation of the activities of enzymes and other proteins. Enzymes are found in both
inactive and active states, and the switching between these states involve regula-
tory networks whose complexity may reflect the importance of the enzyme function.
These post-translational protein networks add another layer in the complexity of cel-
lular networks. Figure 2.7 is a broad summary of these networks as they relate to
the ‘DNA-to-RNA-to-protein’ flow of information; the general network shown in the
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Fig. 2.6 Metabolic pathways from the online database KEGG (Kyoto Encyclopedia of Genes
and Genomes, see Table 2.2 for its internet address). Each dot in the above ‘wiring’ diagram
represents a metabolite (usually a small organic molecule). The edge between dots represents
a chemical reaction that is catalyzed by an enzyme (which, in turn, is usually synthesized by a
cell’s gene-expression machinery). Figure reproduced with permission from KEGG (Courtesy
of Prof. M. Kanehisa).

figure is referred to in this book as gene-regulatory networks (GRNs). As indicated
by the many feedback loops in this diagram, the information flow is not strictly
linear; for example, reverse transcription from RNA to DNA is accomplished by
retroviruses. Feedback loops may occur at every step during gene expression where
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Fig. 2.7 A broad summary of gene-regulatory networks. The arrow labelled π represents
metabolic networks requiring proteins (P) to catalyze reactions that produce metabolites (M);
in general, metabolites are needed in every step of the gene-expression machinery. The arrow
labelled α represents the replication of the genomic DNA – a process that needs metabolites
(nucleotides), proteins (polymerases), and RNA (edge from R is not shown in figure). Tran-
scriptional units (G) in the genome are transcribed in step τ to primary RNA transcripts (Ro)
that are processed in step ρ to form mature transcripts (R). Proteins, such as transcription
factors, can directly influence the transcription step τ . The translation of mRNAs to proteins
(Po) in step σ requires the co-operation of many proteins, tRNAs, and ribosomal RNAs.
Step µ represents post-translational modifications of proteins that render them functional.
The edges that end in dots (regulating the steps in the network) represent either activatory
or inhibitory influence.

products can influence the rates of information flow, as well as which information is to
be transmitted.

The existence of the many feedback loops depicted in Fig. 2.7 presents a formidable
challenge in the analysis of GRNs. Many chapters in this book deal with models that
implicitly assume a modularization of these large cellular networks – that is, focus-
ing only on subnetworks that are assumed to explain particular cellular phenomena
or functions. This reductionist approach is open to question in light of the highly
connected property of cellular networks.

2.4 The omics revolution

A draft of the human genome sequence was first published in 2001 and a more
complete version was generated in 2003 (online educational resources can be found
at http://genome.gov/HGP/). This sequence is that of the approximately 3 billion
‘letters’ (bases) consisting of A, T, C, and G in human DNA. Current estimates
of the number of human genes range from 20 000 to 30 000. An internet portal for
databases on genomic sequences (DNA and RNA) is the website of the Interna-
tional Nucleotide Sequence Database Collaboration (http://www.insdc.org/) linking
websites in the USA, Japan and Europe. To date, over 100 gigabases of DNA and
RNA sequences have been deposited in public internet databases. These sequences
represent individual genes and partial or complete genomes of more than 165 000
organisms.

http://www.insdc.org/
http://genome.gov/HGP/
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Table 2.2 A few major pathway and modelling resources on the internet. For a
more comprehensive list, go to the Pathguide website address given in this table.

Pathway & modelling resources URL

General web portal
Pathguide http://pathguide.org

Ontologies
Gene Ontology http://www.geneontology.org
BioPAX http://www.biopax.org

Pathway maps
KEGG http://www.genome.jp/kegg/
Reactome http://www.reactome.org
GenMAPP http://genmapp.org
Biocarta http://biocarta.com
Pathway Interaction Database http://pid.nci.nih.gov/

Model repositories
Biomodels http://www.ebi.ac.uk/biomodels/
CellML http://www.cellml.org

Transcriptomics – the measurement of RNA transcript levels on a large scale – is
made possible by high-throughput microarray technologies. Proteomics technologies
currently being developed aim for the identification and measurement of all proteins
in a cell. Similarly, metabolomic technologies aim at analyzing metabolites. These
so-called omics technologies are providing a comprehensive ‘parts list’ of the cell.
However, in order to understand how the cell works, it is necessary to determine
and understand the interactions among these parts. The preceding sections have
provided glimpses into the complexity of these networks of interactions. Table 2.2
gives a short list of the major internet resources on pathways databases. The website
called Pathguide is a good internet portal to more than 200 of these databases. In
addition to the literature (of which Pubmed is an important electronic resource,
http://pubmed.gov), these pathways databases are important resources for modeling
cellular processes. Gene Ontology and BioPAX represent efforts in the bioinformatics
community to standardize the annotation of genes and of pathways, respectively. The
websites listed under Pathway Maps in Table 2.2 are good sources of diagrams of many
cellular pathways. The websites Biomodels and CellML are repositories of published
mathematical models of a diverse range of cellular processes.
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3
Mathematical and computational
modelling tools

Most of the mathematical equations in this book are descriptions of the dynamics
of biochemical reactions and associated physical processes. A brief review of chem-
ical kinetics is therefore provided in this chapter to illustrate the formulation of
model equations for a given reaction mechanism. For spatially uniform systems, these
model equations are usually ordinary differential equations; but coupling of chemical
reactions to physical processes such as diffusion requires the formulation of partial
differential equations to describe the spatiotemporal evolution of the system. Mathe-
matical analysis of the dynamical models involves basic concepts from ordinary and
partial differential equations (such as bifurcation and stability) that are reviewed in
this chapter. Computational methods, including stochastic simulations, and sources
of computer software programs available free on the internet are also summarized.

3.1 Chemical kinetics

Suppose a molecule of A and two molecules of B react to form a new molecule C.
Chemists depict this reaction as follows

A + 2B k1−→ C, (3.1)

where k1 is called the rate coefficient (sometimes called rate constant). As shown in
the chemical equation, the stoichiometric coefficients of A, B and C are 1, 2 and 1,
respectively. The respective concentrations of these molecules are denoted by [A], [B],
and [C]. The law of mass action states that the rate of a given reaction is proportional
to the concentrations of the chemical species as written on the reactant (left) side of
the chemical equation; thus, for reaction 3.1 whose reactant side can be written as
A + B + B, the reaction rate v1 is equal to k1[A][B]2. Thus,

d[C]
dt

= v1,

d[A]
dt

= −v1,

d[B]
dt

= −2v1.
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One can write the corresponding reversible reaction as two one-way reactions:

A + 2B k1−→ C, C
k2−→ A + 2B. (3.2)

With the rate of the reverse reaction v2 = k2[C], the kinetic equations are now the
following:

d[C]
dt

= v1 − v2,

d[A]
dt

= −v1 + v2,

d[B]
dt

= −2v1 + 2v2.

Note that the above equations can be written in the following vector-matrix form

d
dt


A

B
C


 =


−1 1

−2 2
1 −1


[

v1
v2

]
. (3.3)

The discussion above can be generalized to a system with an arbitrary number of
chemical reactions. Let there be n chemical species whose concentrations are [X1], [X2],
. . ., [Xn]. Let there be r chemical reactions, with each reaction being symbolized by

sR
1jX1 + sR

2jX2 + · · · + sR
njXn −→ sP

1jX1 + sP
2jX2 + · · · + sP

njXn (j = 1, . . ., r), (3.4)

where sR
ij , s

P
ij are the stoichiometric coefficients of species i on the reactant side

and product side, respectively, of reaction j. Let X be the concentration vector
[[X1], . . . , [Xn]], v the reaction velocity vector [v1, . . . , vr] where vj is the rate of
reaction j, and S the so-called stoichiometric matrix whose element sij is equal to
(sP

ij − sR
ij). The general set of dynamical equations for chemical reactions systems can

be written succinctly as

Ẋ = Sv, (3.5)

where Ẋ means dX/dt ≡ [d[X1]/dt, . . . ,d[Xn]/dt]. Such a system of ODEs is called a
stoichiometric dynamical system. One expects that the stoichiometric matrix S exerts
a considerable constraint on the dynamics of the system. For readers interested in
pursuing this topic in detail, the works of Feinberg and of Clarke are recommended
(see references).

A reaction j is said to have mass-action kinetics if its rate vj has the form

vj = kj

n∏
i=1

X
sRij

i .
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Because this kinetics is based on probabilities of collisions between reactant molecules,

the so-called order of the reaction – defined as
n∑

i=1
sR
ij for the jth reaction (see eqn 3.4) –

is usually equal to 1 or 2, and rarely 3. Note that there are other types of kinetics, as
discussed below.

Consider the enzyme-catalyzed conversion of a substrate S into a product P:

S E−→ P, (3.6)

where the E on top of the arrow is the enzyme catalyzing the reaction. How the enzyme
interacts with the substrate to generate the product is not shown explicitly in eqn 3.6 –
this reaction only gives the overall reaction, and the enzyme is regenerated after the
reaction. Many one-substrate enzymatic reactions of the type in eqn 3.6 show initial
rates that follow Michaelis–Menten kinetics of the form

v =
Vmax[S]
KM + [S]

, (3.7)

where [S] is the substrate concentration, Vmax is the maximum rate of the reaction,
and KM is the Michaelis constant. A plot of v versus [S] is shown in Fig. 3.1 by the
curve with n = 1.
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Fig. 3.1 Rate of an enzyme reaction versus substrate concentration according to the
Michaelis–Menten kinetics (n=1) and Hill-type kinetics (n=2, 4). The three curves are
generated from the equation v=VmaxS

n/(Kn
M + S

n) with Vmax=10 and Kn
M=50.
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One possible mechanism that gives rise to the rate expression in eqn 3.7 is the
following (see Exercise 1):

S + E k1−→ ES

ES
k−1−→ S + E

ES k2−→ E + P.

(3.8)

Note that the total enzyme concentration, Etot = [E] + [ES], is a constant.
Another typical rate expression in enzyme kinetics is the Hill function given by

v =
c1[S]n

c2 + [S]n
(n > 1). (3.9)

As shown in Fig. 3.1, as n increases the rate becomes more sigmoidal in shape. An
example of a mechanism giving rise to eqn 3.9, for the specific case of n = 2, is the
following:

S + E k1−→ ES, ES
k−1−→ S + E

ES k2−→ E + P

S + ES k3−→ ES2, ES2
k−3−→ S + ES

ES2
k4−→ ES + P.

(3.10)

Observe that the net overall reaction (i.e. involving only S and P) is identical to 3.6.
The overall reaction rate is v = d[P ]/dt = v2 +v4 = k2[ES]+k4[ES2]. The steady-state
approximations d[ES]/dt = d[ES2]/dt = 0 lead to the following expression

v =
(k2K2 + k4[S])Etot[S]
K1K2 + K2[S] + [S]2

, (3.11)

where K1 = (k−1+k2)/k1 and K2 = (k−3+k4)/k3. Note that steps 1 and 3 in eqn 3.10
represent sequential binding of two substrate molecules to the enzyme. Co-operativity
is said to exist if a previously enzyme-bound substrate molecule significantly increases
the rate of binding of a second substrate molecule; this is the case when k3 � k1.
The extreme case of k1 → 0 and k3 → ∞, with k1k3 a finite positive number, leads to
K1 → ∞ and K2 → 0 with K1K2 a finite positive constant; under these conditions,
eqn 3.11 becomes

v =
Vmax[S]2

K2
M + [S]2

, (3.12)

where Vmax = k4Etot and K2
M = K1K2.

It can be shown that if n substrate molecules bind sequentially to the enzyme,
with corresponding constants K1 to Kn, then in the limit Kn → 0 and K1 → ∞
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(with K1Kn constant), the overall rate of the reaction is given by

v =
Vmax[S]n

Kn
M + [S]n

. (3.13)

This equation is the general Hill equation.

3.2 Ordinary differential equations (ODEs)

The chemical kinetic equations discussed in the previous section assume that the
system is spatially homogeneous, and that temperature and pressure are fixed. The
equations are systems of nonlinear ordinary differential equations (ODEs) of the form:

dxi
dt

= fi(x1, . . . , xn), i = 1, . . . , n,

or, in vector form,

dx
dt

= f(x), (3.14)

where x = (x1, . . ., xn) and f = (f1, . . ., fn). In this section some useful general proper-
ties of ODEs are reviewed, including existence, uniqueness, and stability of solutions.
Subsequent sections (Sections 3.3 to 3.7) develop the notions of phase space, bifurca-
tion and stability in portraying the dynamics of these systems. These mathematical
considerations are important in assessing the validity of biological models.

� 3.2.1 Theorems on uniqueness of solutions

In standard chemical kinetic theory, the functions fi and their derivatives are assumed
to be continuous because the rate of each reaction step is assumed to be a continuous
function with continuous derivatives. If the first derivative is not continuous then the
uniqueness of the solution x(t) of the ODE system eqn 3.14 is not guaranteed. The
following theorems are well known:

Theorem 3.1 If the functions fi(x) in eqn 3.14 and their partial derivatives
∂fi(x)/∂xj are continuous for −∞ < xk < +∞ (k = 1, . . ., n), then for any initial
condition

x(0) = x0 (3.15)

there exists a unique solution x(t) of the system of eqns 3.14 and 3.15 for some small
time interval −δ < t < δ.

As an example where Theorem 3.1 does not apply, consider the following equation

dx
dt

= xα (0 < α < 1), x(0) = 0.

The derivative of the right-hand side of the equation at x(0) goes to infinity, and the
system does not have a unique solution. Indeed, x(t) ≡ 0 is one solution and another

solution is x(t) = Ct
1

1−α where C1−α = 1 − α.
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Theorem 3.2
(i) If f(x) is bounded linearly, that is

|f(x)| ≤ c1 |x| + c2 (3.16)

for some positive constants c1 and c2, then the solution can be uniquely extended
to all −∞ < t < ∞.

(ii) If f(x) is not bounded linearly, but

x · f(x) ≤ c1 |x|2 + c2 (3.17)

for some positive constants c1 and c2, then the solution x(t) can uniquely be
extended for – δ < t < ∞.

In the last theorem, the following notations were used:

|z| =

(
n∑

i=1

z2
i

)1/2

for z = (z1, . . . , zn), and x · z =
n∑

i=1

xizi.

3.2.2 Vector fields, phase space, and trajectories

A set of solution x(t) of eqn 3.14, for all time t, emanating from the initial condition
x0 is called a trajectory. The solution x(t) is sometimes referred to as the state of the
system at time t. The space of all possible states x = (x1, . . ., xn) is called the phase
space or state space. The right-hand side of eqn 3.14 is called a vector field because
it assigns to each point x in the phase space a direction of the flow of trajectories;
in other words, a trajectory x(t) is simply a curve with the tangent vector at each
time t given by the vector f(x(t)) (see Fig. 3.2(a)). Another name for a trajectory
that exists for all −∞ < t < +∞ is orbit. Figure 3.2(b) shows three trajectories from
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Fig. 3.2 (a) A vector field and (b) trajectories associated with the system dx/dt=−y,
dy/dt=x+ cy, c=−0.3.



24 Mathematical and computational modelling tools

different initial conditions. A trajectory, or orbit, is called periodic with period T if
x(t + T ) = x(t) for −∞ < t < +∞.

3.2.3 Stability of steady states

A point x0 such that f(x0) = 0 is called a steady state (also called an equilibrium
point, or a fixed point) of the ODE eqn 3.14. A steady state x0 is stable if for any
small δ1, there exists a δ2 such that if |x(0)−x0| < δ2 then the solution x(t) exists for
all t >0 and |x(t) − x0| < δ1 for all t > 0. A stable steady state x0 is asymptotically
stable if any solution x(t) with x(0) near x0 converges to x0 as t → ∞. The steady
state x0 is unstable if it is not stable.
Example 1. The equation

dx
dt

= f(x) = x − x3

has the steady states x0 = 0,±1. Note that dx/dt > 0 if x < −1 and dx/dt < 0 if
−1 < x < 0. Hence x(t) → −1 if t → ∞ provided x(0) is near −1, so that x0 = −1
is asymptotically stable. Similar reasoning leads to the conclusion that x0 = +1 is
asymptotically stable and x0 = 0 is unstable.

In the general case of eqn 3.14, if x = x0 is a steady state, then one can write

f(x) =Mξ + o(|ξ|), (3.18)

where ξ = (x−x0), o(|ξ|) → 0 if |ξ| → 0, andM is the Jacobian matrix with elements

mij =
∂fi
∂xj

(x0). (3.19)

The vector ξ denotes the deviation from the steady state x0. Consider the case f(x) =
Mξ, then

dξ

dt
=Mξ, (3.20)

and consider a particular solution of the form ξ(t) = ξ0eλt; substituting this solution
to eqn 3.20 leads to

Mξ0 = λξ0. (3.21)

This equation is called an eigenvalue equation, and ξ0 and λ are called eigenvector and
eigenvalue, respectively. The eigenvalues of M are the roots λ1, . . . , λn of the following
nth-degree polynomial equation

det(λI−M) = λn + α1λ
n + · · · + αn−1λ + αn = 0. (3.22)

If all the eigenvalues of M are different, then the general solution of eqn 3.20 is

ξ(t) =
n∑

j=1

cjξ0,je
λjt, (3.23)
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where the cjs are constants, and ξ0,j is the eigenvector corresponding to the eigen-
value λj . It follows that if all the eigenvalues have negative real parts then ξ(t) → 0
(equivalently, x(t) → x0) as t → ∞, so that x0 is asymptotically stable. If some of
the eigenvalues coincide, say λ1 = λ2 = · · · = λk, then one needs to replace cj by
cjt

j−1(j = 1, . . . , k) to obtain the general solution. If at least one of the eigenvalues
has a positive real part, then x0 is unstable; indeed, one can find an initial condition
x(0) arbitrarily close to x0 such that |x(t)| → ∞ as t → ∞. The next theorem deals
with the general case where f(x) is given by eqn 3.18.

Theorem 3.3 Let ξ be the deviation from the steady state x0 of the system of eqn 3.14
so that, by eqn 3.14, dξ

dt = Mξ + o(|ξ|) with o(|ξ|) → 0 if |ξ| → 0. If all the eigen-
values of M have negative real parts then x0 is asymptotically stable, and |ξ(t)| ≤
(constant)e−µt for some µ > 0.

3.3 Phase portraits on the plane

The set of all trajectories in phase space paints the phase portrait of the dynamical
system. This portrait gives a global picture of the behavior of trajectories from all
possible initial conditions or points in phase space. Consider the two-dimensional case
of eqn 3.14 written explicitly as follows:

dx1

dt
= f1(x1, x2)

dx2

dt
= f2(x1, x2).

(3.24)

Consider the case where x0 = (x1, x2) = (0, 0) is a steady state, and, analogous to
eqn 3.20, let the system linearized about x0 be the following:

dx1

dt
= m11x1 + m12x2

dx2

dt
= m21x1 + m22x2.

(3.25)

Figure 3.3 describes the behavior of trajectories near x0 when the eigenvalues λ1, λ2
are of the form:

(a) λ1 > 0, λ2 > 0; (b) λ1 < 0, λ2 < 0; (c) λ1 > 0, λ2 < 0;
(d) λ1,2 = α ± iβ, α > 0; (e) λ1,2 = α ± iβ, α < 0; and (f) λ1,2 = iβ.

To study the behavior of trajectories of eqn 3.24, it is useful to draw the nullclines
of f1 and f2. The x1-nullcline and the x2-nullcline are defined by f1(x1, x2) = 0 and
f2(x1, x2) = 0, respectively. A steady state of the system is a point where the two
nullclines intersect. Figure 3.4 describes a situation where the two nullclines intersect
at two points A and B.

As shown in Fig. 3.4, the phase plane is divided into five regions. In region I, f1 > 0
and f2 < 0 so that the vector field points toward the southeast. In region II, f1 < 0
and f2 < 0 so that the vector field points southwest, and so on. From the directions of
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Fig. 3.3 Possible phase portraits on a plane according to the eigenvalues. Note that in case
(f) the local trajectories are all periodic orbits.
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Fig. 3.4 Schematic illustration of nullclines (curves where dx1/dt = f1 = 0 and dx2/dt =
f2 = 0) and directions of the vector field (arrows).

the vector field, it is seen that steady state B is stable and A is unstable. The phase
diagram also shows that even if the initial condition x(0) is not near B, the solution
x(t) may, nevertheless, converge to B as t → ∞. For example, if x(0) belongs to region
II or V then x(t) → B as t → ∞.

In Fig. 3.5 steady states A and C are stable, and steady state B is unstable. A
system that has two stable steady states is said to be bistable. The system in Example 1
(Section 3.2.3) is bistable.
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x1
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f1> 0

Fig. 3.5 Nullclines with three intersections corresponding to two stable steady states (A and
C) and an unstable steady state (B). Directions of vector fields are shown by arrows.

3.4 Bifurcations

Experimentalists usually study their system of interest under controlled laboratory
conditions. For example, the kinetics of biochemical reactions are often investigated
under fixed temperature and pressure. In mathematics, these fixed conditions are
referred to as the parameters of the system. Consider a system of ODEs that depends
on a parameter p:

dx
dt

= f(x, p). (3.26)

Bifurcation theory is concerned with the question of how solutions depend on the
parameter p. For example, suppose that the steady state of eqn 3.26 depends on p,
and that it is stable for p < pc but loses stability at pc. A bifurcation at p = pc is
said to have occurred, and pc is referred to as a bifurcation point. Bifurcation points
correspond to parameter values where a qualitative change occurs in the phase portrait
of the system. Bifurcation is an important idea that will be useful in analyzing changes
in the dynamics of the cellular processes considered in this book.

There are four major different types of bifurcations; the first three already occur
in one-dimensional systems, while the fourth needs at least two dimensions. The
first three types of bifurcations and their representative differential equations are as
follows:

dx
dt

= p + x2 (saddle-point bifurcation), (3.27)

dx
dt

= px − x2 (transcritical bifurcation), (3.28)

dx
dt

= px − x3 (pitchfork bifurcation). (3.29)
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Fig. 3.6 (a) Saddle-point bifurcation diagram; (b) Transcritical bifurcation diagram.
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Fig. 3.7 Pitchfork bifurcations. Solid curves represent stable steady states, while dotted
curves are unstable steady states.

In the case of eqn 3.27, there are two steady states for p < 0, namely, xs± = ±√−p;xs−
is stable and xs+ is unstable. The solid curve in Fig. 3.6(a) describes the stable branch
of steady states, and the dotted curve describes the curve of unstable steady states.
At p = 0 the stable and unstable branches of steady states coalesce; this bifurcation
at p = 0 is called a saddle-point bifurcation. Figure 3.6 gives examples of bifurcation
diagrams. The parameter p is referred to as the bifurcation parameter.

In the case of eqn 3.28, x = 0 is a steady state for all p; it is stable if p < 0 and
unstable if p > 0. Another branch of steady states is given by xs = p; a steady state
in this branch is stable for p > 0 and unstable for p < 0. This transcritical bifur-
cation diagram is shown in Fig. 3.6(b); the diagram is characterized by an exchange
of stability of the branches of steady states at the bifurcation point (in this case,
at p = 0).

In the case of eqn 3.29, for p < 0 the only steady state is xs = 0; but for p > 0, there
are, in addition to xs = 0, two more steady states, namely, xs± = ±√

p. The steady
state xs = 0 is stable if p < 0 and unstable if p > 0. The steady states xs± = ±√

p
(for p > 0) are both stable. The diagram for this pitchfork bifurcation is shown in
Fig. 3.7(a). A similar pitchfork bifurcation for the equation

dx
dt

= px + x3 (3.30)
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is shown in Fig. 3.7(b); in this case the two branches xs± = ±√−p are unstable and
xs = 0 is stable if p < 0 and unstable if p > 0. The bifurcation in Fig. 3.7(a) is said to
be supercritical since the bifurcating branches appear for values of p larger than the
bifurcation point pc = 0. The bifurcation in Fig. 3.7(b) is called subcritical since the
two bifurcating branches occur for p smaller than the bifurcation point pc = 0.

3.5 Bistability and hysteresis

The pitchfork bifurcation diagram in Fig. 3.7(a), for p > 0, is an example of a bistable
system characterized by having two stable steady states that coexist for a fixed value
of p. As can be seen in Fig. 3.8, this pitchfork diagram is a ‘slice’ of the surface of
steady states derived from the following equation:

dx
dt

= x3 + ρ1x + ρ0 = 0. (3.31)

The case of eqn 3.29 corresponds to ρ0 = 0 in eqn 3.31 – that is, the pitchfork bifurca-
tion diagram is generated by the intersection of the surface defined by eqn 3.31 with
the x-ρ1 plane.

A bifurcation diagram distinguishes one of the parameters of the system as the
bifurcation parameter. Choosing ρ1 as the bifurcation parameter, one can then think of
a bifurcation diagram as a ‘slice’ through the surface shown in Fig. 3.8 at a fixed value
of the other parameter ρ0. With this view, it is evident that the pitchfork diagram is

x

x

x

�1

�1

�0

�0
�0

�1

Fig. 3.8 The so-called cusp catastrophe manifold and its interactions with various planes to
generate different bifurcation diagrams, such as the pitchfork diagram on the x-ρ1 plane (the
grey plane shown on lower left side) and the Z-shaped diagram (bold black curve parallel to
the x-ρ0 plane, shown on the rightmost diagram). The projection of the fold points of the
manifold onto the ρ1–ρ0 plane is the curve with a cusp at the origin.
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X

A B �0

Fig. 3.9 Steady-state bifurcation diagram showing bistability in the range A < ρ0 < B (for
ρ1 < 0, see eqn (3.31). The arrows indicate components of the hysteresis loop. Dotted curve
(middle branch) corresponds to unstable steady states.

unstable in the sense that small perturbations of the parameter ρ0 break the pitchfork
diagram into two disconnected curves.

The Z-shaped bifurcation diagram in Fig. 3.8 is redrawn in Fig. 3.9. The system
is bistable in the parameter range A < ρ0 < B, where A and B correspond to the
knees of the curve. Using the method discussed in Section 3.2 one can show that the
bottom and top branches of the curve are stable steady states, while the middle branch
(dotted curve) are unstable steady states.

The experimental investigation of a bistable system requires varying a chosen
bifurcation parameter (usually taken to be a condition that is amenable to experi-
mental control – e.g. temperature, pressure, constant enzyme concentration). In the
case shown in Fig. 3.9, if the parameter ρ0 is increased (slowly enough for the system to
settle to steady states, and therefore the experiment traces the curve of stable steady
states) starting from the left, the value B will be reached where a discontinuous drop
in the steady state is observed. If the experiment is repeated, but this time starting
from a large value of ρ0 and slowly decreasing it, one will notice that the system will
pass through B (where the first jump was observed) but another value, this time A,
is reached where the steady state jumps discontinuously. The loop formed by these
two discontinuous transitions (including the segments of the curves of stable steady
states) is referred to as a hysteresis loop. Thus, for values of ρ0 within the bistable
range A < ρ0 < B, which of the two stable steady states of the system is reached
depends on the initial condition.

3.6 Hopf bifurcation

Many biological processes are oscillatory in nature – the beating of the heart, spiking
of neurons in the brain, circadian rhythms arising from cycles of day and night, the
cell-division cycle, and many others (the book of Goldbeter (1996) provides many
excellent examples). The existence and characteristics of these oscillations depend
on the parameters of the system, and it is important to know when or how these
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oscillations arise. Hopf bifurcation refers to the bifurcation of periodic solutions as a
parameter is varied.

Consider the system

dx
dt

= f(x, y, p),
dy
dt

= g(x, y, p). (3.32)

Assume that for all p in some interval there exists a steady state (xs(p), ys(p)), and
that the two eigenvalues of the Jacobian matrix (evaluated at the steady state) are
complex numbers λ1(p) = α(p) + iβ(p) and λ2(p) = α(p) − iβ(p). Assume also that
for some parameter p0 within the interval the following are true:

α(p0) = 0, β(p0) �= 0 and
dα
dp

(p0) �= 0.

Then one of the following three cases must occur:

1. there is an interval p0 < p < c1 such that for any p in this interval there exists
a unique periodic orbit containing (xs(p0), ys(p0)) in its interior and having a
diameter proportional to |p − p0|1/2;

2. there is an interval c2 < p < p0 such that for any p in this interval there exists a
unique periodic orbit as in case (1);

3. for p = p0 there exist infinitely many orbits surrounding (xs(p0), ys(p0)) with
diameters decreasing to zero (cf. Fig. 3.3(f)).

Case (1) is called a supercritical Hopf bifurcation and case (2) is called a subcritical
Hopf bifurcation; these cases are generic. Case (3) is rather infrequent. Figure 3.10
illustrates a supercritical Hopf bifurcation.

The stability of the periodic solutions for cases (1) and (2) above is of interest. A
periodic solution x̃(t) is stable if any trajectory with initial condition x(0) near x̃(0)
exists for all t > 0 and it converges to the periodic solution as t → ∞. If this property
is true only when x(0) is outside (inside) the periodic solution then x̃(t) is stable from
the outside (inside). Consider the case where the Jacobian matrix at the bifurcation
point, p0, is

M =
[

0 1
−b 0

]
,

p

x2

x1

Fig. 3.10 Supercritical Hopf bifurcation at p = 0.
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with eigenvalues ±bi. Let W be defined by the expression below involving second-
order and third-order derivatives (evaluated at p = p0) of the functions f and g of the
system of eqn 3.32,

W = b(fxxx + fxyy + gxxy + gyyy)[fxy(fxx + fyy) + gxy(gxx + gyy) + fxxgxx − fyygyy],

(3.33)

where fxxx = ∂3f
∂x3 , gxxy = ∂3f

∂x2∂y , etc. The following give the criteria for stability of
the periodic orbits (Guckenheimer and Holmes, 1983):

1. If W < 0 then the Hopf bifurcation is supercritical and the periodic solutions are
stable.

2. If W > 0 then the Hopf bifurcation is subcritical and the periodic orbits are
unstable.

� 3.7 Singular perturbations

Biological processes often involve several time scales; an example would be the different
time scales of gene expression and protein–protein interactions. Consider the following
system with two time scales:

dx
dt

= f(x, y), (3.34)

dy
dt

= εg(x, y), (3.35)

where ε is a small positive parameter; the variable y changes at a smaller scale than
the variable x. Assume that the x-nullcline is cubic and the y-nullcline is a monotone
function, and that these nullclines intersect at one point Q, as shown in Fig. 3.11.
Then, there exists a periodic orbit of equations 3.34 and 3.35 which lies in the vicinity
of the curve ABCDA. In order to explain why this is so, observe that if ε = 0 then
dy/dt = 0 so that y(t) = constant. Taking ε = 0 as an approximation is justified in case
f(x, y) stays away from zero in eqn 3.34 for then dy/dt is relatively negligible. Thus, a
trajectory (x(t),y(t)) starting at (x0, y0) where f(x0, y0) �= 0 will approximately satisfy
y(t) = y0 as long as f(x(t), y0) remains not equal to zero. In particular, a trajectory
starting near and below B will travel horizontally, with speed dx/dt = f > 0, until it
reaches the x-nullcline near C. Similarly, a trajectory starting near and above D will
travel horizontally, with dx/dt = f < 0, until it reaches the x-nullcline near A.

To see how a trajectory evolves once it is located on the x-nullcline, one introduces
the slow time scale τ defined as τ = εt. Then, eqns 3.34 and 3.35 become

ε
dx
dτ

= f(x, y),
dy
dτ

= g(x, y). (3.36)

Since g < 0 above the y-nullcline, g is negative along the arc AB and thus it pulls
y further downward toward B as well as at B. Since B is the point at which the
x-nullcline turns upward, the trajectory then departs from the x-nullcline, and then,
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Fig. 3.11 Singular perturbation analysis of an oscillatory system. The curves corresponding
to f =0 and g=0 are the nullclines of the system in eqns 3.34 and 3.35. See text for discussion.

as explained above, it proceeds along a curve close to the horizontal line BC. In a
similar way, using the slow time scale, one can see that the trajectory will evolve
approximately along the x-nullcline from C to D (since dy/dτ = g > 0 on CD) and
then back to A along y = constant. The motion along the x-nullcline takes place in
the slow time scale (slow motion), whereas the horizontal motion takes place on the
original (fast) time scale as indicated by the double arrows in Fig. 3.11.

The above considerations can be made more precise. One can prove that for any
small ε > 0 there exists a periodic orbit near the curve ABCDA. The above example is
generic; it can be extended to the case of more than two ODEs showing, for example,
the existence of periodic oscillations in networks.

3.8 Partial differential equations (PDEs)

3.8.1 Reaction-diffusion equations

Consider a particle that moves along a straight line, making steps of size ∆x at discrete
time intervals ∆t. Denote by p(x, t) the probability that the particle is at location x
in time t. If the probability of stepping to the right is the same as the probability of
stepping to the left, then

p(x, t + ∆t) =
1
2
p(x + ∆x, t) +

1
2
p(x − ∆x, t). (3.37)

If it is assumed further that ∆x and ∆t are small, then

p(x ± ∆x, t) = p(x, t) ± px(x, t)∆x +
1
2
pxx(x, t)(∆x)2 + O(|∆x|3),

p(x, t + ∆t) = p(x, t) ± pt(x, t)∆t + O((∆t)2),
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where O(|∆x|3) ≤ const · |∆x|3, and O((∆t)2) ≤ const · (∆t)2. Substituting the above
equations into eqn 3.37 and then letting ∆t → 0 and (∆x)2/(2∆t) → α (with 0 <
α < ∞), one obtains

pt = αpxx. (3.38)

for −∞ < x < ∞ and t > 0.
Consider a chemical species with concentration c(x, t). Interpreting the particle

concentration at (x, t) as equivalent to the probability of finding the particle at (x, t),
one has

ct = αcxx. (3.39)

Equation 3.39 is called the diffusion equation, and α is called the diffusion coefficient.
If the chemical species is involved in a set of chemical reactions whose net rate of

producing this chemical species is R(c), then one has the following reaction-diffusion
equation

ct = αcxx + R(c). (3.40)

For example, if S and C are two chemical species with concentrations s and c,
respectively, and if the set of reactions is {S k1−→ C, C k2−→ P}, then

ct = αcxx + k1s − k2c, (3.41)

where mass-action kinetics is assumed for both reactions. More generally, reaction-
diffusion equations have the form

∂ci
∂t

= ∇(Di∇ci) + Ri(c1, . . . , ck;x) for 1 ≤ i ≤ k, (3.42)

where Di is the diffusion coefficient of species i that may depend on spatial position
and the concentrations of some species. The Ris are the rates of formation of ci due
to reactions at the point x.

� 3.8.2 Cauchy problem

Consider the initial-value problem called the Cauchy problem:

ct = αcxx + f(x, t) for − ∞ < x < ∞, t > 0
c(x, 0) = c0(x) for − ∞ < x < ∞,

(3.43)

where f(x, t) and c0(x) are bounded continuous functions. Then, there is a unique
bounded solution of eqn 3.43, and it is given by the following formula

c(x, t) =

∞∫
−∞

K(x − y, t)c0(y)dy −
t∫

0

∞∫
−∞

K(x − y, t − τ)f(y, τ)dydτ , (3.44)
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where

K(x, t) =
1√

4παt
e− x2

4αt . (3.45)

K(x, t) is called the fundamental solution of the diffusion equation.
The above consideration extends to n-dimensional space consisting of all points

x = (x1, . . . , xn),−∞ < xi < +∞ for i= 1, . . . , n. Consider

ct = α∇2c + f(x, t) for x ∈ Rn, t > 0
c(x, 0) = c0(x) for x ∈ Rn,

(3.46)

where ∇2 ≡ ∆ ≡
n∑

i=1

∂2

∂x2
i

(called the Laplacian), and f and c0 are bounded continuous

functions. Then there exists a unique bounded solution of eqn 3.46, and it is given by

c(x, t) =
∫
Rn

K(x− y, t)c0(y)dy −
t∫

0

∫
Rn

K(x− y, t − τ)f(y, τ)dydτ , (3.47)

where

K(x, t) =
1

(4παt)n/2 e− |x|2
4αt . (3.48)

If f and c in eqn 3.46 are independent of t, then eqn 3.46 becomes the Poisson equation
α∇2c = f ; and if f= 0 then c satisfies the Laplace equation ∇2c = 0.

� 3.8.3 Dirichlet, Neumann and third-boundary-value problems

Consider the boundary-value problem

∇2u(x) = f(x) for x ∈ Ω

β ∂u
∂n + γn = g(x) for x ∈ ∂Ω,

(3.49)

where Ω is a bounded domain (bounded, open and connected set) in Rn with boundary
∂Ω, β and γ are given non-negative functions with β2+gγ2 > 0, and f , g are given
functions. The normal derivative ∂/∂n points in the direction outside of the domain
Ω. The boundary-value problem is called the Dirichlet problem if β ≡ 0, γ > 0; it is
called the Neumann problem if β > 0, γ ≡ 0, and the third-boundary-value problem if
β > 0, γ > 0.

If f and g are continuous functions then the Dirichlet problem and the third-
boundary-value problem have unique solutions. The uniqueness is a consequence of
the maximum principle explained as follows. If

−∇2u(x) + b(x) · ∇u(x) + c(x)u(x) ≥ 0 in Ω, (3.50)

where b(x), c(x) are continuous functions and c(x) ≥ 0, and if the maximum M of
u(x) in Ω = Ω ∪ ∂Ω is ≥ 0 and u(x) �≡ M for some x in Ω, then the maximum cannot



36 Mathematical and computational modelling tools

be taken at any point xo in Ω; furthermore, if xo is a point in ∂Ω where the maximum
is obtained, then ∂u

∂n (xo) > 0, where n is the normal to ∂Ω pointing outward of Ω.
If the Neumann problem has a solution, then necessarily∫

∂Ω

(
g

β

)
dS =

∫
Ω

fdΩ, (3.51)

where dS and dΩ are surface and volume elements, respectively. When eqn 3.51 holds
then the Neumann problem has a solution and, by the maximum principle, the solution
is unique up to an additive constant.

Similarly to eqn 3.49, consider the initial-boundary-value problem

−ut + α∇2u = f(x, t) for x ∈ Ω, t > 0

β ∂u
∂n + γn = g(x, t) for x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) for x ∈ Ω,

(3.52)

where α > 0. This problem has a unique solution provided β > 0, γ ≥ 0, or β ≡ 0,
γ > 0.

� 3.9 Well posed and ill posed problems

In dealing with PDEs with initial and boundary conditions, and before proceeding
with the calculation of the solution, one must determine whether the problem is well
posed. The meaning of a well posed problem is explained below. Consider the example

∂u
∂t = ∆u for x ∈ Ω, t > 0

u|∂Ω = 0 for t > 0

u(x, 0) = f(x) for x ∈ Ω,

(3.53)

where Ω is a bounded domain in Rn with boundary ∂Ω. This problem has a unique
solution for any continuous function f(x). Furthermore, if

∂v
∂t = ∆v for x ∈ Ω, t > 0

v|∂Ω = 0 for t > 0

v(x, 0) = g(x) for x ∈ Ω,

(3.54)

then the following is true: For any T > 0, and for arbitrarily small ε, max
x∈Ω̄

0≤t≤T

|u(x, t)−

v(x, t)| ≤ ε provided the initial data satisfy max
x∈Ω̄

|f(x) − g(x)| ≤ δ, where δ is suf-

ficiently small. This property is referred to as the stability of the solution. When a
problem has a unique solution (for any data in a ‘large’ class of functions) that also
possesses the stability property, then the problem is well posed. A problem that is not
well posed is said to be ill posed.
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The following is an example of an ill posed problem:

∂w
∂t = −∆w for x ∈ Ω, t > 0
w|∂Ω = 0 for t > 0
w(x, 0) = f(x) for x ∈ Ω.

(3.55)

Consider the simple case when n = 1 and Ω = {x| 0 < x < 2π}. If

f(x) =
M∑

m=1

am sinmx, (3.56)

then

u(x, t) =
M∑

m=1

amem
2t sinmx, (3.57)

which is a solution that defies the stability property if M is large enough. One can also
show that the class of functions f(x) for which there exists a solution to eqn 3.55 is
very sparse in the class of continuous functions. (The functions f(x) must be analytic,
i.e. they can be expanded in a power series.)

It is important to note that biological problems may not always lead to well posed
mathematical problems (for example, attempting to deduce from the present density
of tumor cells their density at an earlier time).

3.10 Conservation laws

3.10.1 Conservation of mass equation

Consider a chemical species with density ρ(x, t) at time t and position x, where −∞ <
x < ∞, t > 0. Let the species move or flow in space with speed v(x, t), that is,

v(x, t) =
dx
dt

. (3.58)

Consider a rectangle x1 < x < x2, t1 < t < t2. The change in mass of the chemical
species in the interval x1 < x < x2 from times t1 to t2 is given by

x2∫
x1

[ρ(x, t2) − ρ(x, t1)]dx.

Equivalently, this mass change is due to the flows across x = x2 and x = x1, which
gives the following net change in mass within the interval x1 < x < x2:

t2∫
t1

[ρv](x1, t)dt −
t2∫

t1

[ρv](x2, t)dt.
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If the chemical species is involved in processes that either create or consume it – with
the net mass production rate f(x, t) of the chemical species – then, by conservation
of mass

x2∫
x1

[ρ(x, t2) − ρ(x, t1)]dx =

t2∫
t1

[ρv](x1, t)dt −
t2∫

t1

[ρv](x2, t)dt +

t2∫
t1

x2∫
x1

f(x, t)dxdt.

(3.59)

Using

ρ(x, t2) − ρ(x, t1) = (t2 − t1)ρt(x, t1) + O(|t2 − t1|2)
[ρv](x2, t) − [ρv](x1, t) = (x2 − x1)[ρv]x(x1, t) + O(|x2 − x1|2),

and dividing eqn 3.59 by (t2 − t1) (x2 − x1), and then letting (t2 − t1) → 0 and
(x2 − x1) → 0, one obtains

ρt + (ρv)x = f, (3.60)

which is the conservation of mass equation. This equation can be generalized to n-
dimensions

ρt + div(ρv) = f, (3.61)

where v(x, t) = dx/dt, x ∈ Rn.

3.10.2 Method of characteristics

Consider the initial-value problem of solving eqn 3.61 with the initial condition

ρ(x, 0) = ρ0(x). (3.62)

One method of solving this problem is the method of characteristics. Introduce the
characteristic curves that end at (x, t),

dξi
dτ

= vi(ξ, τ), 0 < τ < t (i = 1, . . . , n), (3.63)

ξi(t) = xi (that is, ξ(t) = x),

where v(ξ, τ) = (v1(ξ, τ), . . . , vn(ξ, τ)), and denote the solution by ξ(τ ;x, t). Set x0 =
ξ(0;x, t), ρ̄(τ) = ρ(ξ(τ ;x, t), τ). Then

dρ̄
dτ

=
n∑

i=1

∂ρ

∂ξi

∂ξi
∂τ

+
∂ρ

∂τ
=

n∑
i=1

vi
∂ρ

∂ξi
+

∂ρ

∂τ
=

∂ρ

∂τ
+

n∑
i=1

∂

∂ξi
(ρvi) −

n∑
i=1

ρ̄
∂vi
∂ξi

, (3.64)
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or, by eqn 3.61,

dρ
dτ

= −ρ̄div(v) + f for 0 < τ < t

ρ̄(0) = ρ(x0).
(3.65)

Equation 3.65 is an ODE and its solution yields the solution of eqns 3.61 and 3.62:

ρ(x, t) = ρ̄(t) = ρ(ξ(0;x, t), 0). (3.66)

In the case where the function ρ(x, t) is restricted to x ∈ Ω, where Ω is a bounded
domain, the characteristic curves ξ(t) from points (x, t) may reach the boundary ∂Ω
at some τ > 0; in this situation, boundary values must be prescribed at these ‘exit
points’ of ∂Ω. For simplicity, consider first the case

∂ρ

∂t
+ αρ = 0 for 0 < x < A, (3.67)

where α is a positive constant. Then, the characteristic curves are defined by

dξ
dτ

= α or ξ(τ) = (x − αt) + ατ (with ξ(t) = x). (3.68)

If x > αt then the characteristic curve does not exit the interval (0, A) for all 0 < τ < t;
but if x < αt then it exits this interval at ξ = 0 at time τ = t – x/α. Thus, initial and
boundary values must be assigned:

ρ(x, 0) = ρ0 for 0 < x < A, (3.69)

ρ(0, t) = ρ1(t) for 0 < t < ∞. (3.70)

Consider a more general case:

∂ρ

∂t
+ div(ρv) = F (ρ, x) for x ∈ Ω, t > 0

ρ(x, 0) = ρ0(x), x ∈ Ω,
(3.71)

where Ω = {(x1, x2)|0 < x1 < A, 0 < x2 < A}. Furthermore, assume that

v1(0, x2, t) > 0, v1(A, x2, t) < 0
v2(x1, 0, t) > 0, v2(x1, A, t) < 0. (3.72)

Then, the characteristic curves ξ(t) (τ < t) with ξ(t) = x ∈ Ω can exit Ω at any point
of the boundary ∂Ω. Hence, one needs to prescribe

ρ(x, t) = ρ1(x, t) for x ∈ ∂Ω, t > 0, (3.73)

after which eqns 3.71–3.73 can then be solved using the method of characteristics.
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3.11 Stochastic simulations

Chemical reactions occur by random or stochastic collisions between reactant
molecules. It was demonstrated by Oppenheim et al. (1969) and proved rigorously
by Kurtz (1972) that these stochastic processes are described exactly by the deter-
ministic eqn 3.5 – for spatially homogeneous sytems – in the thermodynamic limit,
that is, when the number of molecules of each species approaches infinity and the spa-
tial domain increases to the entire space in such a way that molecular concentrations
approach a finite limit. However, when the number of molecules becomes small, the
deterministic equations are no longer appropriate.

Gillespie (1976) developed an algorithm for simulating stochastic chemical reac-
tions. The starting point is a molecular mechanism composed of elementary steps
(involving no intermediate steps) in the conversion of reactants to products. These
elementary steps are usually unimolecular or bimolecular. The propensity of each
elementary step is defined according to the probability of collision among the reac-
tants. As examples, the propensity (symbolized by av) for the unimolecular reaction
{R k1−→P} is a1 = k1XR, while that of a bimolecular reaction {A + B k2−→ C} is equal
to a2 = k1XAXB, where the Xs refer to molecule numbers and the ks to some con-
stant parameters. Note that for the reaction 2S k3−→ P, the propensity is not k3X

2
S

but, instead, a3 = k3XS(XS − 1)/2 because one has to avoid overcounting pairwise
collisions. The Gillespie algorithm is summarized in Fig. 3.12.

The algorithm has two stochastic steps employing random numbers r1 and r2 in
the interval [0, 1]. First, the probability at time t that a reaction occurs in the time
interval between t + τ and t + τ + dτ is given by the following Poisson distribution

P (t, τ) = a0 exp(−a0τ), where a0(t) =
r∑

v=1

av(X(t)). (3.74)

As shown in Fig. 3.12, given the numbers of all molecules and the rate parameters kv,
the sum of all the reaction propensities, a0, is calculated and the time τ for the next
reaction is calculated using the random number r1 from

τ = (1/a0) ln(1/r1). (3.75)

Comparison with eqn 3.74 shows that the underlying hypothesis here is that P (t, τ)
takes a random value r1.

Second, which reaction µ among the r reactions is chosen to occur at time τ is
decided by the relative values of the propensities of the reactions, as illustrated in
Fig. 3.12. The larger aµ/a0 is, the larger is the probability for r2 to fall in the interval
µ−1∑
v=1

(av/a0) < r2 ≤
µ∑

v=1
(av/a0) and thus for the reaction µ to occur. Finally, time is

increased by τ and the number of molecules is updated according to the stoichiometry
of reaction µ.

The Gillespie algorithm is essentially an exact procedure for numerically simulating
the time evolution of a well-stirred chemically reacting system. Its drawback is that it
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Input constant parameter values, kv (v = 1,..., M)

Initialize RNG (random number generator)

Input initial molecule numbers, Xi (i = 1,..., N)
Set t = 0

Calculate propensities, av (v = 1,..., M)

Calculate ao = ∑av.

Generate r1 and r2 from RNG
Take � (1/ao) ln (1/r1)

Advance t = t+ �

Adjust Xi values according to reaction �

Choose reaction � if ∑
� –1

v –1
∑
�

v –1
av r2ao av< ≤

Fig. 3.12 The Gillespie stochastic algorithm (Gillespie, 1977). See text for explanation.

requires a large amount of computer time. Significant gains in simulation speed with
some loss in accuracy are described by Gillespie (2001).

3.12 Computer software platforms for cell modelling

The systems biology community has been quite active in developing computer software
platforms for simulating biochemical reaction networks in a cell. A listing of the more
popular free software on the internet is given in Table 3.1.

CellDesigner, VCell, and E-Cell are ‘whole-cell’ simulation platforms that allow
the user to consider subcellular localizations (cytoplasm, nucleus, mitochondria, etc.)
of molecules and simulate the dynamics of biochemical reactions. CellDesigner is
perhaps the most developed and most advanced in integrating standards of sys-
tems biology and bioinformatics. The program has a good facility for drawing
gene-regulatory and biochemical networks, for generating the differential equations
associated with a model network, and for performing dynamic simulations of the
model. XPPAUT (or simply XPP) is a popular software for solving differential
equations, difference equations, delay equations, functional equations, boundary-
value problems, and stochastic equations. The ‘AUT’ in the name of the software
refers to a program called AUTO that carries out bifurcation analysis of differential
equations.
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Table 3.1 Some popular software platforms for modelling cellular networks.

Name of software platform Internet address

CellDesigner http://celldesigner.org
VCell http://www.nrcam.uchc.edu/
CellML http://www.cellml.org/
E-Cell http://www.e-cell.org/
JDesigner http://sbw.kgi.edu/software/jdesigner.htm
Copasi http://www.copasi.org/tiki-index.php
XPPAUT http://www.math.pitt.edu/∼bard/xpp/xpp.html

References

Clarke, B. L. (1980) ‘Stability of Complex Reaction Networks’, Advances in Chemical
Physics 43, 1–215.

Feinberg, M. (1980) ‘Lectures on Chemical Reaction Networks.’ Technical Report of
the Mathematics Research Center, University of Wisconsin-Madison.

Gillespie, D. T. (1976) ‘A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions,’ Journal of Computational Physics 22,
403–434.

Gillespie, D. T. (1977) ‘Exact stochastic simulation of coupled chemical reactions’,
Journal of Physics Chemistry 81, 2340–2361.

Gillespie, D. T. (2001) ‘Approximate accelerated stochastic simulation of chemically
reacting systems,’ Journal of Chemical Physics 115, 1716–1733.

Goldbeter, A. (1996) Biochemical oscillations and cellular rhythms. Cambridge
University Press.

Guckenheimer, J. and Holmes, P. (1983). Nonlinear oscillations, dynamical systems,
and bifurcation of vector fields, Springer Verlag, New York.

Kurtz, T. G. (1972)‘The relationship between stochastic and deterministic models for
chemical reactions,’ Chemical Physics 57, 2976–2978.

Oppenheim, I., Shuler, K. E., and Weiss, G. H. (1969) ‘Stochastic and deterministic
formulation of chemical rate equations,’ Journal of Chemical Physics 50, 460–466.

Exercises

1. Using the steady-state approximation (that is, d[E]/dt = 0 or d[ES]/dt = 0)
and setting v = d[P]/dt, derive eqn 3.7, and show that Vmax = k2Etot and KM =
(k−1 + k2)/k1.

2. Using the steady-state approximation for [ES] and [ES2] for the mechanism in
eqn 3.10, show that the steady-state rate of formation of the product is given by
eqn 3.11.

3. Derive eqn 3.13 and give the expressions for Vmax and Kn
M.

http://celldesigner.org
http://www.nrcam.uchc.edu/
http://www.cellml.org/
http://www.e-cell.org/
http://sbw.kgi.edu/software/jdesigner.htm
http://www.copasi.org/tiki-index.php
http://www.math.pitt.edu/~bard/xpp/xpp.html
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4. Prove Theorem 3.1. Write eqns 3.1 and 3.2 in the form

x(t) = x0 +

t∫
0

f(x(s))ds. (∗)

Hint : Define

xm+1(t) = x0 +

t∫
0

f(xm(s))ds, x0(t) ≡ x0.

Show by induction on m that

|xm+1(t) − xm(t)| ≤ ctm

m!

and that lim
m→∞xm is a solution asserted in Theorem 3.1.

5. Prove that the solution of (*) in Exercise 4 is unique.
6. Prove Theorem 3.2.
7. Prove Theorem 3.3.
8. Determine whether the steady states of the following systems are stable or not:

(a)
dx
dt

= x + y − x2,
dy
dt

= x − y

(b)
dx
dt

= y − γx + x2,
dy
dt

= x − y − 1 (γ > 0).

9. Show that the cubic polynomial x3 + β2x
2 + +β1x + β0 can be reduced to

the form of the right-hand side of eqn 3.31 by applying a translation of the
variable x.

10. Consider the following systems

(a)
dx
dt

= y,
dy
dt

= −yn + py − x (n = 1, 2, 3, . . .),

(b)
dx
dt

= −x + x2,
dy
dt

= x + y,

(c)
dx
dt

= y,
dy
dt

= py − x − x2 − x3.

For each system above, at which value of p does bifurcation occur? What is the
type of bifurcation?

11. Prove that (a) the function 3.48 satisfies the diffusion equation Kt =∇2K,
(b) the function 3.47 with f ≡ 0 satisfies eqn 3.46 with f ≡ 0.



4
Gene-regulatory networks: from
DNA to metabolites and back

DNA has at least three functions essential to life: first, its chemistry provides a
mechanism for replicating genes (via the Watson–Crick base pairing); second, in its
long strands are nucleotide sequences containing information for producing proteins
(using the universal genetic code); and, third, DNA provides instructions on how a
cell would respond or adapt to its environment for growth and survival. The third
function will be illustrated in this chapter using specific examples of gene-regulatory
networks (GRNs). A living cell possesses a high degree of autonomy – which means
that as long as raw materials are available, it is able to synthesize most of what
it needs. (For example, the human body can synthesize 12 of the 20 amino acids
found in cellular proteins; the remaining 8, called essential amino acids, must be
included in the diet.) GRNs that act as sensors and controllers of cellular responses
to levels of metabolites in their environments have been elucidated. Two of these,
in the bacterium Escherichia coli, are discussed in detail in this chapter. The first
GRN involves the amino acid tryptophan, and the second is on the utilization of lac-
tose. These models demonstrate the connectedness of GRNs – from DNA to RNA
to proteins to metabolites and back. With regards to modelling, an important les-
son illustrated in this chapter is the process of creating low-dimensional models from
complex GRNs.

4.1 Genome structure of Escherichia coli

A large number of prokaryotic genes are organized in chromosomal blocks called oper-
ons. An operon is composed of contiguous genes that are transcribed as single mRNA.
Transcription of an operon is controlled by a promoter-operator region on the DNA
where transcription factors (usually proteins) bind to regulate the rate of transcription
initiation. Figure 4.1(a) shows the relative positions of some operons in the circular
chromosome of E. coli. Most operon genes code for proteins that collaborate in imple-
menting a specific cellular function; for example, the Trp operon (Fig. 4.1(b)) in E. coli
is composed of genes involved in the synthesis of the amino acid tryptophan. In con-
trast, in eukaryotes, the corresponding genes for Trp synthesis do not form an operon;
for example, in the yeast S. cerevisiae the genes are located in four different linear
chromosomes (see Fig. 4.1(c)).
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Fig. 4.1 (a) Relative positions (schematic) of a few of the operons in the circular chromo-
some of E. coli (there are over 400 operons known). (b) Trp operon in E. coli showing the
component genes trpA to trpE. (c) The corresponding genes in yeast (S. cerevisiae) are not
organized into an operon but are found in four different linear chromosomes (IV, V, VII, and
XI). Figures (b) and (c) are adapted from Fig. 4–17 in the textbook of Lodish et al. (1999).

4.2 The Trp operon

The genes comprising the Trp operon, the network regulating their expression, and the
metabolic pathway for Trp synthesis are shown in Fig. 4.2. The structural genes trpA
to trpE form a single block on the DNA (shown as trpABCDE in the figure). There
are three important negative-feedback mechanisms in the network: transcriptional
repression, end-product enzyme inhibition, and transcriptional attenuation (labelled
with the encircled numbers 1 to 3, respectively).

Transcriptional repression occurs at the operator region trpO that has some overlap
with the promoter region trpP. A repressor protein, R, binds trpO, thereby preventing
the RNA polymerase from binding to trpP. The repressor gene trpR is found near the
promoter-operator region. The repressor protein exists as a dimer, with each monomer
containing a binding site for Trp. Without bound Trp molecules, the repressor cannot
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Fig. 4.2 The Trp operon regulatory network. Abbreviations: Trp = tryptophan, PRA = N-
(5′-phosphoribosyl)-anthranilate, CDRP = 1-(o-carboxyphenylamino)-1′-deoxyribulose-5′-
phosphate, InGP = indole-3-glycerol-phosphate, AS = anthranilate synthase, PRT = phos-
phoribosyl anthranilate transferase, IGP = indole-3-glycerol phosphate synthase, TSα= tryp-
tophan synthase (α subunit), TSβ = tryptophan synthase (β subunit), TSαβ = tryptophan
synthase (α and β subunits), R = repressor.

bind tightly to trpO and does not inhibit transcription; this inactive form of the
repressor is called the aporepressor.

End-product enzyme inhibition in the network of Fig. 4.2 involves the product,
Trp, inhibiting the first enzyme, AS (anthranilate synthase), of the metabolic pathway
that leads to the synthesis of Trp itself. The functional enzyme AS is a heterotetramer
consisting of two TrpE and two TrpD proteins. Binding of Trp molecules to the TrpE
subunits inactivates AS.

Transcriptional attenuation is a subtle regulatory mechanism, and is the weakest
among the three negative feedbacks. The transcript of the leader region trpL (see
Fig. 4.2) has 4 segments (labelled 1, 2, 3, 4) that can form three stable hairpin struc-
tures 1:2, 2:3, and 3:4. Nucleotide sequence analysis shows that segment 1 includes two
Trp codons in tandem. The 1:2 hairpin, closest to trpO, causes a pause in transcription
that gives time for a ribosome to bind the leader transcript and start translation. The
movement of the ribosome disrupts the 1:2 hairpin and resumes transcription.
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High Trp levels lead to abundant charged tRNATrp molecules causing ribosomes
to initiate translation of the leader segments more rapidly. The probability of form-
ing the 3:4 hairpin structure is thus increased compared to the 1:2 or 2:3 hairpins.
Interestingly, the RNA polymerase recognizes the 3:4 structure as a signal for termi-
nating transcription. On the other hand, when Trp levels are low, a ribosome could
stall at either of the Trp codons because of small numbers of charged tRNATrp. The
2:3 hairpin structure is thus formed instead of the 1:2 structure, and formation of the
3:4 structure that terminates transcription is prevented. The 1:2 structure is often
referred to as the antiterminator because its formation allows transcription to the end
of the operon.

4.3 A model of the Trp operon

Santillan and Zeron (2004) formulated a model of the Trp-operon dynamics incorpo-
rating the three negative-feedback mechanisms discussed in the previous section. The
Santillan–Zeron (SZ) model has three variables M , Etot, and Ttot, where M = trpE
mRNA concentration, Etot = total AS concentration, and Ttot = total Trp concentra-
tion. The model equations – whose derivations will be discussed below – are the
following:

dM
dt

= kmOtot

P
KP

1 + P
KP

+ Rtot
KR

( T
KT +T )2 × 1 + 2αT

KG+T

(1 + αT
KG+T )2

− (γM + µ)M, (4.1)

dEtot

dt
=

1
2
kEM(t − τE) − (γE + µ)Etot, (4.2)

dTtot

dt
= kTEtot

(
KI

KI + T

)2

− ρ
T

Kρ + T
− µTtot, (4.3)

where M(t − τE) in eqn 4.1 is the concentration M delayed by time τE , taken to be
the time to translate the TrpE protein. The other symbols in the above equations are
parameters of the model; their definitions and values are given in Table 4.1.

Equations 4.1–4.3 are derived using various simplifying assumptions. The active
repressor (R2T) competes against the RNA polymerase (P) for available promoter-
operator regions (O):

R2T + O KR←→ OR, (4.4)

P + O KP←→ OP, (4.5)

where OR and OP are the O–R2T and O–P complexes, respectively. KR and KP are
the respective equilibrium constants for the dissociation of these complexes (double-
headed arrows indicate reversibility of the steps); each equilibrium constant is defined
as the ratio of the rate constant of the dissociation of the complex over the rate
constant of the association reaction. Assuming that reactions 4.4 and 4.5 rapidly attain
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Table 4.1 Parameters of the Santillan–Zeron model of the Trp operon.

Parameter
symbol Description

Values used by Santillan
and Zeron (2004)

Otot Total operator-promoter concentration 4 × 10−3 µ M
Rtot Total repressor concentration 0.8 µM
P RNA polymerase concentration 3.0 µM
KT equilibrium constant of dissociation of

repressor–tryptophan complex
40 µM

KR equilibrium constant of dissociation of
operator–repressor complex

2 × 10−4 µM

KP equilibrium constant of dissociation of
operator–polymerase complex

4.5 × 10−2 µM

KG equilibrium dissociation constant of
Trp-charged tRNA

5 µM

KI equilibrium constant of dissociation of
tryptophan–AS enzyme complex

4.1 µM

Kρ tryptophan consumption parameter 10 µM
km rate coefficient of transcription of operon 5.1 min–1

kE rate coefficient of synthesis of AS enzyme 30 min–1

kT rate coefficient for tryptophan synthesis 7.3 × 104 min–1

µ growth rate coefficient of bacterium 10−2 min–1

α transcription attenuation parameter 18.5
γM degradation rate coefficient of

trpE mRNA
0.69 min–1

γE degradation rate coefficient of AS 0 min–1

ρ rate coefficient for tryptophan
consumption

2.4 × 102 µM min–1

τE time to translate a TrpE protein 1 min

equilibrium, the following relationships are valid:

KROR = OR2T and KPOP = OP, (4.6)

where the italicized symbols of the chemical species represent their respective concen-
trations. In the SZ model, the total concentration of the operator-promoter regions,
Otot, is assumed constant. Since Otot = O + OR + OP , using eqn 4.6, one gets

OP = Otot

P
KP

1 + P
KP

+ R2T

KR

. (4.7)

The concentration of the active repressor, R2T , depends on the total concentration of
the aporepressor (Rtot, assumed constant) and the Trp concentration (T ), as can be
expected from the sequential binding reactions of Trp (T) to the aporepressor (R):

R + T
KT /2←→ RT and RT + T 2KT←→ R2T, (4.8)
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where RT is the single-Trp-bound repressor, R2T is the double-Trp-bound repressor,
and KT is the equilibrium constant for the dissociation of the repressor–Trp complex
defined by

1
2
KTRT = RT and 2KTR2T = RTT. (4.9)

In eqns 4.8 and 4.9, the factor 1/2 occurs because the first T that binds R has two
available binding sites; and the factor 2 accounts for the dissociation rate of R2T being
twice the dissociation rate of a single T from the complex. In the Santillan–Zeron
(SZ) model, the total repressor concentration, Rtot (where Rtot =R+RT +R2T ), is
assumed constant. From eqn 4.9, one obtains the following expression:

R2T = Rtot

(
T

KT + T

)2

. (4.10)

The rate of transcription of the operon is proportional to the concentration of the
OP (promoter–RNA polymerase) complex; this rate has the following constant value
derived from eqns 4.7 and 4.10:

kmOP = kmOtot

P
KP

1 + P
KP

+ Rtot
KR

(
T

KT +T

)2 . (4.11)

Recall that the mechanism of transcription attenuation, depending on Trp concentra-
tion, can terminate transcription. Santillan and Zeron (2004) did not consider all the
steps of the attenuation mechanism but derived the probability that transcription is
not terminated – this is equal to the probability that a ribosome translating the leader
mRNA stalls at either of the Trp codons in segment 1:
probability that transcription is not terminated by attenuation

=
1 + 2αT

KG+T

(1 + αT
KG+T )2

, (4.12)

where KG is the equilibrium constant for the dissociation of charged tRNATrp, and
α = Gtot/KG (where Gtot = constant total tRNATrp concentration).

Combining eqns 4.11 and 4.12 gives the first term on the right-hand side of eqn 4.1.
The second term of this equation represents the degradation rate of trpE mRNA (with
rate coefficient γM ) and rate of dilution of trpE mRNA due to bacterial growth (with
coefficient µ).

The step catalyzed by the enzyme AS is known to be the slowest and rate-
determining step of the metabolic pathway for Trp synthesis from chorismate – this
is the justification for focusing only on the dynamics of this enzyme. The rate of syn-
thesis of AS is proportional to the concentration of trpE mRNA that, when the time
τE to completely translate a TrpE protein is considered, is equal to 1

2kEM(t − τE),
as shown in the first term of the right-hand side of eqn 4.2. The factor 1/2 occurs
because two TrpE proteins are required to assemble one AS molecule (see Exercise
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2 for justification). The second term on the right-hand side of eqn 4.2 represents the
degradation rate of AS (with rate coefficient γE) and the dilution rate due to bacterial
growth (with rate coefficient µ).

The binding steps of tryptophan to AS are represented by the following reversible
processes:

E + T
KI/2←→ ET and ET + T 2KI←→ E2T. (4.13)

where E is the free enzyme, ET is single-Trp-bound enzyme, and E2T is the double-Trp-
bound enzyme. These steps are analogous to those of eqn 4.8. KI is the equilibrium
constant for the dissociation of the enzyme–tryptophan complex defined by

1
2
KIET = ET and 2KIE2T = ETT. (4.14)

The total enzyme concentration, Etot, is given by

Etot = E + ET + E2T . (4.15)

Ignoring the contributions of the repressor–Trp complexes (since the total repres-
sor concentration is negligible compared to those of Trp and AS), the total Trp
concentration is given by

Ttot = T + ET + 2E2T . (4.16)

From eqns 4.14–4.16, one obtains the following expression for the free enzyme and free
Trp concentrations:

E = Etot

(
KI

KI + T

)2

, (4.17)

T =
1
2

√
(KI + 2Etot − Ttot)2 + 4KITtot − 1

2
(KI + 2Etot − Ttot). (4.18)

Equation 4.3 for the dynamics of total Trp concentration assumes that the rate of
Trp synthesis is proportional to the concentration of the free enzyme eqn 4.17. The
second term on the right-hand side of eqn 4.3 stands for the Trp consumption rate,
and the last term is the dilution rate of Trp due to bacterial growth; this completes
the derivation of the set of the model in eqns 4.1–4.3.

4.4 Roles of the negative feedbacks in the Trp operon

In a Trp-rich culture medium, the E. coli bacterium does not need to synthesize Trp.
The inhibition of AS by Trp is energy efficient because this enzyme is at the start
of the Trp-synthesis pathway; inhibiting any other enzyme in the pathway would be
inefficient. Furthermore, targetting an enzyme in the metabolic pathway is a quicker
mechanism for sensing increases in Trp compared to targetting the transcription of
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Fig. 4.3 Activity of the enzyme AS (anthranilate synthase) normalized over total enzyme.
(a) Derepression experiment (see text for discussion); model simulation (solid curve) com-
pared to experimental data (crosses and squares). (b) Derepression dynamics of free AS (solid
curve) and total AS (dashed curve). (c) Derepression dynamics of free AS in a normal Trp
operon (solid line), when AS inhibition is the only negative feedback (dashed curve), and
when AS inhibition is absent (dot-dashed line). (d) Dynamics of free AS in a reactivation
experiment (see text for discussion) with a normal Trp operon (solid curve) and with an
attenuation-lacking operon (dashed curve). Figures are reproduced with permission from the
paper of Santillan and Zeron (2004). Copyright 2004 Elsevier Ltd.

the Trp operon genes. But under conditions of sustained high Trp levels, repression of
gene expression would make sense because it would be wasteful otherwise. However,
shutting off operon expression completely could become problematic when Trp levels
become so low that Trp-containing proteins can no longer be produced. So, in fact,
even in Trp-rich media low levels of operon expression do occur, and it is this that
prepares the cell for rapid synthesis of the amino acid when the need arises.

Computer simulations using the SZ model offer detailed insights into the dynamics
of the Trp operon. Figure 4.3(a) demonstrates that the SZ model with the parameter
values given in Table 4.1 is able to reproduce observations from derepression experi-
ments. These experiments involve growing E. coli in Trp-rich medium for a long time
to ensure that the Trp operon is fully repressed; derepression of the operon is then
carried out by transferring the bacteria in a Trp-free medium, and enzyme activities
are then measured at different times. In Fig. 4.3(a) experimental measurements of the
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activity of the enzyme AS are compared with the results of model simulations. The
experiments show that steady-state AS activity is attained rapidly (in about 20 min);
this quick response is reproduced by the SZ model. Figure 4.3(b) is more revealing;
this figure shows that in a derepression experiment, the activity of AS – interpreted
in the model to be the free AS with concentration E given by eqn 4.17 – approaches
steady state more quickly than the total Etot (dashed curve in Fig. 4.3(b)). Thus, Trp
is acting like a buffer that quickly binds excess AS but rapidly releases the enzyme
when its level decreases.

The SZ model equations were modified to simulate cases where some of the three
negative-feedback inhibition mechanisms are lacking. Figure 4.3(c) shows both the
case where AS inhibition is the only negative-feedback mechanism and the case where
AS inhibition is absent. As shown in this figure, AS inhibition by itself (dashed line)
immediately brings the system to a steady-state level of enzyme activity. If AS inhi-
bition is absent (dot-dashed line), the AS activity can overshoot before reaching the
steady state; this overshoot is explained by the time delay introduced by transcription
and translation of the operon.

The influence of transcriptional attenuation is demonstrated in the simulation of a
reactivation experiment shown in Fig. 4.3(d). A reactivation experiment starts with the
initial conditions M =Etot =Ttot = 0 (a derepression experiment has initial conditions
M =Etot = 0, but with initial Ttot being a positive constant). The model is transformed
to one lacking the attenuation mechanism by making the probability associated with
attenuation a constant fraction instead of the normal Trp-dependent expression of
eqn 4.12. Figure 4.3(d) shows that the response without transcriptional attenuation
(dashed curve) is slower than the normal case.

4.5 The lac operon

The lac operon is composed of genes coding for enzymes needed for processing lac-
tose. The lac operon in E. coli has been studied in detail; its regulatory network is
summarized in Fig. 4.4. As shown in this figure, the operon is composed of three
structural genes – namely, lacZ, lacY, lacA – and the gene lacI that codes for a tran-
scriptional repressor protein. Besides the promoter-operator region, a region called
cap exists where a complex called CAP binds (CAP is made up of CRP and cAMP;
CRP = cyclic AMP receptor protein, cAMP = cyclic adenosine monophosphate). The
gene lacZ codes for the enzyme β-galactosidase and lacY codes for lactose perme-
ase, an enzyme that facilitates the flux of lactose through the cell membrane and
into the cell. The gene lacA codes for thiogalactoside transacetylase involved in sugar
metabolism but does not seem to play a direct role in the processing of lactose.

Glucose is the preferred carbon source of E. coli, but in the case where glucose is
absent and lactose is present in the culture medium, the lac operon is switched on so
that the external lactose is brought in and metabolized by the cell. The network in
Fig. 4.4 explains the general observations summarized in Table 4.2 that shows that
lactose induces the expression of lac operon genes (this is why lactose is often referred
to as an inducer ; note that allolactose is also often referred to as an inducer).
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Fig. 4.4 (a) Regulation of expression of the lac operon. (1) = multimerization of lacI repres-
sor molecules then binding to the operator-promoter region, (2) = CAP complex binding to
cap region and enhances binding of RNA polymerase. (b) Details of the lac operon. The lacI
repressor (tetramer) binds any or combinations of three operator regions O1, O2, and O3.
RNA polymerase can bind to either promoter P1 or P2. The CAP complex binds the cap
region.

Table 4.2 Turning on and off the expression of lac operon genes.

(–) glucose (+) glucose

(–) lactose OFF OFF
(+) lactose ON Low level of operon expression
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If lactose is absent, the lac operon is OFF because the lacI repressor binds the
operator-promoter region and prevents RNA polymerase from binding, regardless of
glucose level (and despite possible CAP binding in the absence of glucose). If lactose
and glucose are both present, expression of the operon is possible because the repressor
is inhibited by allolactose, thereby allowing RNA polymerase to initiate transcription
(but this expression occurs at low levels because CAP is prevented from binding the
DNA). Only in the case where glucose is absent and lactose is present is the operon
fully expressed.

4.6 Experimental evidence and modelling of bistable
behavior of the lac operon

An elegant combination of modelling and experimental validation of the behavior of
the lac operon in E. coli was performed by Ozbudak et al. (2004). The ‘toy’ model
that these authors used to motivate their experiments focuses on the positive-feedback
loop of the regulatory network of the operon (see Fig. 4.5).

The toy model involves two variables, x and y, whose dynamics are described by
the following differential equations:

τy
dy
dt

= α
1

1 + (R/R0)
− y, (4.19)

τx
dx
dt

= βy − x, (4.20)

with R being a function of x according to

R

RT
=

1
1 + (x/x0)n

. (4.21)

The meaning of the symbols are: R is the concentration of active lacI (the repressor),
y is the concentration of the permease, and x is the intracellular concentration of the
inducer; also, n = 2. RT = total repressor concentration, and R0 = initial repressor

R

y

x

Fig. 4.5 The toy model used by Ozbudak et al. (2004). x= inducer, R=active lacI (repres-
sor), y=permease.
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Fig. 4.6 Phase diagram of the model described by eqns 4.19 and 4.20. The parameter ρ is
defined by: ρ = 1 + (RT /R0). The grey region gives the set of parameters where 3 steady
states coexist. Figure reproduced and modified from Ozbudak et al. (2004) with permission.
Copyright 2004 Nature Publishing Group.

concentration. The steady states of the model are determined by equating the right-
hand sides of eqns 4.19 and 4.20 to zero. Analysis of the steady states as functions of the
parameters shows that there are parameter regions where only one steady state exists,
and there are regions where three steady states can coexist, with the intermediate
steady state being unstable. The phase diagram determined by Ozbudak et al. (2004)
is shown in Fig. 4.6.

The experiments of Ozbudak et al. (2004) are summarized in Fig. 4.7. The
phenomenon of bistability is well demonstrated in Figs. 4.7(b) and (c).

4.7 A reduced model derived from the detailed
lac operon network

Santillan et al. (2007) modelled the bistability of the lac operon, including simulations
of the experiments of Ozbudak et al. (2004). The discussion below provides important
lessons in model reduction. The detailed network can be reduced to the following
model involving three dynamical variables, namely, M = mRNA of lacZ-lacY-lacA,
E = lacZ or lacY polypeptide, L = intracellular lactose:

dM
dt

= kMDPD(Ge)PR(A) − γMM

(with A = L as explained below), (4.22)

dE
dt

= kEM − γEE, (4.23)

dL
dt

= kLβL(Le)βG(Ge)Q − 2φMF (L)B − γLL

(with Q = E, B = E/4 as explained below). (4.24)
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Fig. 4.7 (a) A simplified view of the lac operon regulatory network with the additional
expression of fluorescent reporter proteins (GFP and HcRed) used in the experiments of Ozbu-
dak et al. (2004). Instead of lactose, TMG (thio-methylgalactoside) is used as the inducer.
TMG is not metabolized by β-galactoside and TMG uptake does not affect cAMP levels.
Thus, TMG and glucose are used to independently regulate the activities of lacI and CRP.
Transcriptional activity at the lac promoter (labelled Plac in the figure) is reported by the
green-fluorescent protein, GFP, while the effect of CRP on the gat (galactitol) promoter is
reported by the red fluorescent protein HcRed (used to independently see the effect of CRP
on the operon). (b) E. coli cells show coexistence between induced (green) and uninduced
states; cells are grown in 18 µM TMG (which lies in the grey bistable region, see (c)). (c)
Hysteresis experiments. The vertical axis (green fluorescence) corresponds to the number
of cells that express GFP. Lower panel (uninduced to induced state transtion): uninduced
cells grown in increasing levels of TMG, starting with the value corresponding to the white
arrow. Upper panel (induced to uninduced state transition): starting with a high level of
TMG (white arrow), the value of TMG is progressively decreased. The grey region between 3
and 30 µM TMG is the bistable region. (d) Phase diagram showing the bistable, uninduced
monostable, and induced monostable regions in the parameter space of extracellular glucose
and extracellular TMG concentrations. Figure reproduced and modified from Ozbudak et al.
(2004) with permission. Copyright 2004 Nature Publishing Group. (See Plate 2)
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Fig. 4.8 The species labelled L, E, andM are the chosen dynamical variables of the Santillan
et al. (2007) model. L = intracellular lactose,M =mRNA of lacZ-lacY-lacA, E = lacZ or lacY
polypeptides, Ge = external glucose, Le = external lactose, A = allolactose, R = repressor
(lacI), B = β-galactosidase enzyme, Q = permease, G + Gal = glucose and galactose, C =
cap region on DNA, D = lac promoter. See text for the definitions of the functions PD(Ge),
PR(A), F (L), βG(Ge), and βL(Le).

Figure 4.8 aids in understanding the above equations.
The first term on the right-hand side of eqn 4.22 incorporates the three main

contributions to the production of the mRNA, namely, (1) the concentration D of lac
promoter, (2) the probability PD(Ge) of having a RNA polymerase bound to the lac
promoter taking into account concentrations of the CAP complex, RNA polymerase,
and repression by external glucose, Ge (the expression for PD(Ge) is discussed below),
and (3) the probability PR(A) that the lac promoter is not repressed as a function of
inducer concentration A (the expression for PR(A) and the justification for equating
the concentrations A and L are discussed below).

The second term on the right-hand side of eqn 4.22 represents the combined degra-
dation and dilution (due to cell growth) of the mRNA. The rate coefficients kM and
γM are constant parameters of the model.

The first term on the right-hand side of eqn 4.23 is the rate of translation of the lacZ
(also of lacY and lacA) polypeptide from the mRNA, and the second term gives the
combined degradation and growth-dilution of the polypeptide. The rate coefficients of
these processes are kE and γE , respectively.

The first term on the right-hand side of eqn 4.24 gives the rate of increase of
intracellular lactose as determined by the concentrations of external lactose (Le),
external glucose (Ge), and the lactose permease (Q). As indicated in Fig. 4.8, Q = E
since the permease is made up of a single lacY polypeptide (it is assumed that the
levels of lacZ and lacY polypeptides are equal). The expressions for βL and βG are
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as follows:

βL(Le) =
Le

κL + Le
, (4.25)

βG(Ge) = 1 − φG
Ge

κG + Ge
. (4.26)

Thus, the maximum rate of increase of intracellular lactose is equal to kLQ that occurs
when glucose is absent and Le � κL.

The second term on the right-hand side of eqn 4.24 accounts for the two chemical
processes (see Fig. 4.8) that consume intracellular lactose (hence the factor 2): conver-
sion of lactose to allolactose, and hydrolysis of lactose to glucose and galactose; both
chemical processes are catalyzed by β-galactosidase (B), and are assumed to have the
same rate of φMF (L)B, where

F (L) =
L

κM + L
. (4.27)

Since β-galactosidase enzyme is made up of four subunits of the lacZ polypeptide, the
concentration of the enzyme B is set equal to E/4 as indicated in Fig. 4.8. The rate
coefficient φM and the Michaelis–Menten constant κM are constant parameters of the
model. The last term on the right-hand side of eqn 4.24 is due to the growth-dilution
and other processes that may consume lactose.

The probability of RNA polymerase binding, PD(Ge). Although RNA poly-
merase can bind promoter P1 (see Fig. 4.4(b)) on its own, the presence of a bound CAP
on the cap region enhances the binding affinity of the polymerase. This co-operative
binding can be shown (see Exercise 5) to lead to the following expression for the
probability (PD) of polymerase binding on the promoter as a function of polymerase
concentration P and CAP concentration C:

PD =
P
KP

(1 + kpc
C
KC

)

1 + P
KP

+ C
KC

+ kpc
P
KP

C
KC

, (4.28)

where KP is the equilibrium constant for the dissociation (reversible) of the poly-
merase–promoter complex, KC is the equilibrium constant for the dissociation
(reversible) of the CAP–cap complex, and kpc (>1) is a constant that reflects the co-
operation between the promoter and cap for enhanced binding of the RNA polymerase
to the promoter. Note that eqn 4.28 can be rewritten as follows

PD =
pP + pP pC(kpc − 1)
1 + pP pC(kpc − 1)

, (4.29)

where pP = ( P
KP

)/(1 + P
KP

) is the probability of polymerase binding to the promoter
without CAP, and pC = ( C

KC
)/(1+ C

KC
) is the probability of CAP binding to cap with-

out the polymerase. Now, note that the CAP complex concentration (C) is a function
of the external glucose concentration (Ge) since it is known from experiments that
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increasing Ge leads to downregulation of cAMP and thereby decreasing C. The func-
tion pC is then expressed in terms of Ge and assumed to follow a Hill-type functional
form:

pC(Ge) =
KnH

G

KnH

G + GnH
e

, (4.30)

where nH (the Hill exponent) and KG are parameters of the model.

The probability that the promoter is not repressed, PR(A). As shown in
Fig. 4.4(b) there are three operator regions, namely, O1, O2, and O3, in the lac
operon. Binding of the repressor on O1 prevents initiation of transcriptions. Binding
of a repressor to either O2 or O3 does not affect transcription, but DNA can fold in
a way such that a single repressor molecule binds any two of these operators at the
same time (for all combinations possible) thereby inhibiting initiation of transcription
(see Santillan et al. 2007). It can be shown that the probability that the lac promoter
is not repressed is

PR =
(1 + R

K2
)(1 + R

K3
)

(1 + R
K1

)(1 + R
K2

)(1 + R
K3

) + R( 1
K12

+ 1
K13

+ 1
K23

)
, (4.31)

where R is the concentration of the active repressor, Ki (i =1, 2, 3) the equilibrium
constant of the reversible dissociation of the R–Oi complex, and Kij(i, j = 1, 2, 3, i < j)
is the equilibrium constant of the reversible dissociation of the Oi–R–Oj complex.
Considering that a repressor is a tetramer and that each subunit can be bound by an
inducer molecule (identified as allolactose here), one can show that the concentration
R of the active repressor is given by

R = RT

(
KA

KA + A

)4

, (4.32)

where RT is the total repressor concentration and KA is the equilibrium constant for
the allolactose–repressor subunit complex dissociation (reversible) reaction. Thus, the
probability PR in eqn 4.31 is a function of the inducer concentration A. PR(A) can be
rewritten in the following form:

PR(A) =
1

1 + ρ(A) + ε123ρ(A)
(1+ε2ρ(A))(1+ε3ρ(A))

(4.33)

where

ρ(A) = ρmax

(
KA

KA + A

)4

, ρmax =
RT

K1

εi =
K1

Ki
(i = 2, 3), and ε123 =

K1

K12
+

K1

K13
+

K1

K23
.

As indicated after eqn 4.22, A in PR(A) can be replaced by L (the lactose concentra-
tion); this can be justified if the rate of allolactose production from lactose and the
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Table 4.3 Parameter values used in the model of Santillan et al. (2007).
mpb = molecules per average bacterium.

µ = 0.02 min−1 KG = 2.6µM
D = 2 mpb nh = 1.3
kM = 0.18 min–1 ε2 = 0.05
kE = 18.8 min–1 ε3 = 0.01
kL = 6.0 × 104 min–1 ε123 = 163
γM = 0.48 min–1 ρmax = 1.3
γE = 0.03 min–1 KA = 2.92 × 106 mpb
γL = 0.02 min–1 κL = 680 µM
kpc = 30 φG = 0.35
pp = 0.127 κG = 1.0 µM
φM = 0 min–1 to 4 × 104 min–1 κM = 7× 105 mpb

rate of allolactose metabolism to galactose and glucose are much faster than the cell
growth rate.

Model simulations. With the parameter values given in Table 4.3, one can show that
the system of model equations 4.22–4.24 possesses three steady states, the highest and
lowest states being stable locally and the middle state being unstable. Thus, the model
exhibits bistability.

Figure 4.9 gives the model’s predicted phase diagrams on Ge−Le parameter space
for increasing values of the parameter φM (the rate coefficient for lactose metabolism
catalyzed by β-galactosidase). The parameters Ge and Le – the extracellular glu-
cose and lactose–are controlled in the experiments of Ozbudak et al. (2007) (recall
that they used TMG instead of lactose). These phase diagrams show a connected
region of bistability (grey region in Fig. 4.9), and monostable regions of uninduced
and induced operon expression. ‘Induced operon’ means that steady-state expression
of lacZ polypeptide (E in eqn 4.23) corresponds to the highest steady state; the ‘unin-
duced operon’ corresponds to the lowest steady state. Note that the experimental data
points shown in Fig 4.7(d) are plotted in Fig. 4.9 (A) (the black dots) where agreement
with the model prediction is very good. The Ozbudak et al. experiments can only be
compared with Fig. 4.9 (A) where φM = 0, because in the experiments the inducer
TMG cannot be metabolized by β-galactosidase.

Ozbudak et al. (2004) reported that bistability was not observed when they
repeated their experiments using lactose instead of TMG; this observation led to the
question whether bistability is a natural property of the lac operon or an artifact
of using non-metabolizable inducers. The numerical results of Santillan et al. (2007)
shown in Fig 4.9(b)–(d) demonstrate that increasing φM increases the threshold lev-
els of Le for observing bistability. In addition, as φM increases, the bistable region
shrinks – especially at low values of Ge as shown in Fig. 4.9(d). These may be the
reasons, according to Santillan et al., why bistability was not observed when lactose
is used as the inducer.
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Fig. 4.9 Phase diagrams generated by the model of Santillan et al. (2007). Le = extracellular
lactose concentration, Ge = extracellular glucose concentration. Regions labelled ‘uninduced
monostable’ and ‘induced monostable’ have unique low and high, respectively, steady states of
the lacZ polypeptide. Region labelled ‘bistable’ means there are two coexisting stable steady
states (with a third intermediate steady state that is unstable). The values of the parameter
φM are varied as shown. Other parameter values are given in Table 4.3. Figures reproduced
with permission from Santillan et al. (2007). Copyright 2007 Biophysical Society.

4.8 The challenge ahead: complexity of the global
transcriptional network

The circular E. coli chromosome has approximately 4500 genes, and many of these
genes belong to over 400 known operons. The discussion of the Trp and lac operons
in this chapter has given a glimpse of the complexity of the transcriptional regu-
latory networks of this bacterium. A database accessible on the internet, RegulonDB
(http://regulondb.ccg.unam.mx/index.html ), provides information on the gene struc-
ture and the transcriptional regulation of E. coli operons. Figure 4.10 gives a picture
of the regulatory interactions among 413 nodes (each node representing an operon)
and 576 directed links (regulatory relationships between operons). RegulonDB also
contains information on transcription factors (TFs) that regulate promoter activities
of these operons. For the Trp operon, the repressor protein R is an example of a TF

http://regulondb.ccg.unam.mx/index.html
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Fig. 4.10 The transcriptional network of E. coli showing 413 nodes (each node representing
an operon) and 576 directed links (regulatory relationships). The 10 red circles at the center
(with labels) are ‘global’ regulators that have links to almost all of the peripheral operons.
The operons are grouped (shown as clusters of circles, each cluster with a different color) into
functional modules – modules with identifiable cellular functions, such as ‘aromatic amino
acid synthesis’ (e.g. tryptophan), ‘lactose transport and metabolism’, etc. Figure reproduced
with from Ma et al. (2004). Copyright 2004 Ma et al. (See Plate 3)

regulated by the metabolite tryptophan. For the lac operon, the lacI repressor and
the CAP complex are TFs regulated by interactions with allolactose and glucose or
cAMP, respectively. Thus, these TFs can be viewed as sensors for changes in metabo-
lites in the extracellular or intracellular environment; changes that are then relayed
to the DNA-based transcriptional machinery via the changes in TF binding to DNA.
(For a more detailed discussion on this topic, the paper of Martinez-Antonio et al.
(2007) listed in the References is recommended.) The challenge is to integrate these
regulatory networks in ways that are amenable for further modelling and analysis.
Groupings of the operons according to functional clusters or modules is a step in the
right direction (see Fig. 4.10, and Ma et al. (2004)).
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Exercises

1. Derive eqns 4.7 and 4.10.
2. Show that the factor 1/2 in eqn 4.2 occurs because two TrpE proteins are required

to assemble one AS molecule, and with the assumption that the dissociation rate
is small. Hint : Let A be a monomer and B a dimer. Consider the reversible reac-
tion 2A

k+, k−←→ B, where k+ and k− are the rate coefficients of the forward and
reverse reactions, respectively. At chemical equilibrium, [A]2eq =KD[B]eq where
KD = k−/k+ and the subscript eq refers to equilibrium concentration. Let [A]T =
[A] + 2[B] be the total monomer concentration. Show that [B]eq ∼ 1

2 [A]eq if
KD << [A]T .

3. Verify numerically the phase diagram in Fig. 4.6.
4. Consider a molecule A with specific independent binding sites for N different

molecules Bi (1 ≤ i ≤ N). Let (n1, . . . , nN ) ≡ {ni} denote the bound state of
A, with ni = 1 if a molecule Bi is bound to its specific site, and ni = 0 otherwise.
Prove that the probability of a specific bound state (n1, . . . , nN ) is given by

PN (n1, . . . , nN ) =

N∏
i=1

([Bi]/Ki)ni

∑
{nj}

N∏
j=1

([Bj ]/Kj)nj

,

where Ki is the equilibrium (dissociation) constant of the ABi complex, and the
sum over all {nj} in the denominator means over all the possible 2N bound states
of A. Hint : For the case N = 1, one has [B1][A]eq =K1[AB1]eq at equilibrium. Using
[A]total = [A] + [AB1], the following equations hold: [A]

[A]total
= 1

1+ [B1]
K1

≡ P (n1 = 0),

and [AB1]
[A]total

=
[B1]
K1

1+ [B1]
K1

≡ P (n1 = 1). Hence, P (n1) =

(
[B1]
K1

)n1

1+ [B1]
K1

. Now consider N = 2
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and use the information that binding to all sites is independent of each other; and
finally, by induction, arrive at the desired general formula for PN (n1,. . . ,nN ).

5. If in Exercise 3 two sites, p and q, have a co-operative interaction in the sense that
the probability of finding both Bp and Bq bound to A is stronger by a factor kc
(>1) than the corresponding probability if the two binding sites were independent,
then

P (n1, . . . , nN ) =
k
npnq
c

N∏
i=1

([Bi]/Ki)ni

∑
{nj}

k
npnq
c

N∏
j=1

([Bj ]/Kj)nj

.

Use this formula to verify eqn 4.28.
6. Verify eqn 4.31.



5
Control of DNA replication
in a prokaryote

A cell-division cycle, or cell cycle for short, is a combination of growth to double
the amounts of cellular components, and division of these components between two
daughter cells. The chromosomes must be faithfully replicated once during the cell
cycle and segregated equally so that each daughter cell gets a full complement of
genes. The cell cycle of Escherichia coli, a common bacterium that thrives in the guts
of humans and other animals, is the subject of this chapter. The focus of computational
models of E. coli replication is the co-ordination between initiation of DNA replication
and cell growth so that the average size of the bacterium is maintained constant
throughout generations.

5.1 The cell cycle of E. coli

E. coli is a rod-shaped bacterium with a diameter in the range of 0.3−0.7µm and
length in the range of 0.5−3µm (see Fig. 5.1). Its cell-cycle period, commonly referred
to as the generation time, can be as short as 20 min (as in optimum conditions at 37 ◦C)
or as long as several hours (as in minimal media where E. coli synthesizes molecular
building blocks from simple carbon sources). For slow-growing cultures (those with
generation times longer than 80 min), the cell cycle resembles that of eukaryotes. The
cell-cycle phases are labelled with the letters B, C, and D – roughly corresponding
to the G1, S, and G2/M phases of eukaryotic cell cycles (discussed in Chapters 6
and 7). An example of an E. coli cell cycle is shown in Fig. 5.2. Note that unlike in
eukaryotes where DNA replication can initiate at multiple regions in the chromosome,
the initiation of replication in E. coli occurs at a single unique site on the DNA; this
well-characterized site is called the oriC and is described in Section 5.3. In Fig. 5.2,
the single E. coli circular chromosome is depicted as a circle with a green dot repre-
senting the oriC and the yellow dot indicating the location of the replication complex
that moves along the DNA during replication. The replication complex is a molecular
machine whose components include DNA polymerases (enzymes that copy DNA) and
DNA helicases (enzymes that unzip double-stranded DNA).

A key feature of bacterial cell cycles is the requirement for a minimum mass to
initiate chromosome replication. This initiation mass is attained at the end of the B-
period. The chromosome is replicated during the C-period; and the D-period is used
for segregating the chromosomes between the two daughter cells. The average cell
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Fig. 5.1 A colony of the rod-shaped bacterium Escherichia coli. Picture courtesy of the
National Science Foundation (USA).
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Origin Terminus

Initiation

B

C

D

0

20

40

60

80

100

Elongation

Termination

Division

Replication
complex

Time
Period (min)

Fig. 5.2 The bacterial cell cycle in slow-growing cultures. The cell-cycle period is also called
the generation time τ . Figure reproduced with permission from T. Atlung (2004). (See
Plate 4)
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mass, M , increases exponentially throughout the cell cycle:

M(t) = M(0) exp(µt) for 0 ≤ t ≤ τ, (5.1)

where µ is a growth-rate constant, and τ is the generation time equal to the sum of
the periods (B + C + D). Since mass doubles in a generation, i.e. M(τ) = 2M(0),
one obtains

τ =
ln 2
µ

. (5.2)

There are two periodic processes in a cell cycle. One is a growth process that
begins with one cell and ends with two cells (this cycle’s period is τ); the other is a
chromosome-replication cycle that begins with one circular chromosome and ends with
two chromosomes (this cycle’s period is C). The cell must co-ordinate these two cycles
in order to proliferate successfully. This co-ordination problem is discussed next.

5.2 Overlapping cell cycles: coordinating growth and
DNA replication

For a wide range of growth rates or generation times, it is known that the periods
C and D are approximately constant. C is about 40 min and D is about 20 min.
Thus, for generation times greater than 60 min, period B increases correspondingly.
Cases of generation times less than (C + D) do exist – these are cases where over-
lapping cell cycles occur. An example is shown in Fig. 5.3 where the generation time
is 50 min.

Figure 5.3 shows the solution for the problem of co-ordinating a growth cycle
with period τ = 50 min and chromosome cycle with period C = 40 min under the
constraint that D must be equal to 20 min. The C period starts at t = 40 min (labelled
‘Initiation’) in one cell cycle and ends at t = 30 min (labelled ‘Termination’) in the
next cell cycle. The D period (20 min) starts at t = 30 min (labelled ‘Termination’) in
a cell cycle and ends at t = 50 min (labelled ‘Division’) in the same cell cycle. Thus, as
shown at t = 0 min in Fig. 5.3, each newborn cell contains a replicating chromosome
with two origins (depicted by green dots). In one of the exercises at the end of this
chapter, the case of a bacterial cell with 25 min generation time is considered. In this
case, each newborn cell has to initiate at four origins of replication.

5.3 The oriC and the initiation of DNA replication

Figure 5.4(a) shows a micrograph of the E. coli chromosome attached to some sub-
stratum. This single-circular chromosome is composed of (among other things) a DNA
duplex with 4.64 million nucleotide base pairs containing approximately 4500 genes.
The chromosome is nearly 1 mm long when stretched, but it occupies only a third to
a half of the cell volume (∼ 1 µm3) in its supercoiled state in the cell. Figure 5.4(b) is
a picture of an E. coli chromosome that is more than half-way to finishing replication.
The advancing replication fork is indicated in the inset at the top right corner (note
that these two replication forks are very close to each other in a cell – this is why
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Fig. 5.3 The bacterial cell cycle in fast-growing cultures. Figure reproduced with permission
from T. Atlung (2004). (See Plate 5)

they are shown as single yellow dots in Fig. 5.2 and Fig. 5.3). Backward in time, these
two replication forks would have originated from a region in the DNA called the oriC.
Chromosomal replication in E. coli always initiates at a unique oriC region whose
genomics (that is, the DNA base sequence) has been well characterized.

The oriC of E. coli has five sites called 9-mers after a consensus 9-base sequence
TTAT(C/A)CA(C/A)A, where the (C/A) means either C or A. These sites are also
called dnaA boxes because they are the sites where the dnaA protein binds the DNA
to initiate replication. As will be discussed later, the binding of dnaA proteins on
the oriC is key to understanding the control of initiation of DNA replication. Outside
the oriC, there are about 300 dnaA boxes distributed throughout the chromosome to
which dnaA can also bind; however, even if these non-oriC boxes are bound by dnaA
proteins, replication does not initiate on any of them – this is why they are referred
to as non-functional boxes.

The dnaA protein in E. coli exists either in an ATP-bound or an ADP-bound
form. In-vitro studies have shown that only dnaA-ATP is able to initiate replication
at an oriC, although both forms are able to bind all the dnaA boxes. Twenty to forty
dnaA-ATP monomers bind the oriC co-operatively, and it is believed that binding of a
minimum number of dnaA-ATP monomers is required to unwind the DNA and initiate
replication. This unwinding is followed by the unzipping (opening) of a segment of the
DNA duplex that allows the assembly of multiprotein complexes that copy the DNA
strands.
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Fig. 5.4 (a) Micrograph of an E. coli chromosome. (b) Autoradiograph of a replicating E. coli
chromosome. Picture reproduced with permission. Copyright Prentice-Hall, Inc.

Another important feature of the E. coli cell cycle is the fact that dnaA-
ATP cannot bind to the newly replicated oriCs immediately. There is a refractory
period – the so-called eclipse period – of 8 to 10 min before dnaA can bind again
to the oriC boxes. Although not fully understood at this time, the eclipse period
could be due to the methylation state of the DNA after replication, and also to the
observed binding of the newly replicated oriCs to the cell membrane. Furthermore,
upon initiation of replication the oriC-bound dnaA-ATP is converted to the dnaA-
ADP form that is unable to initiate replication (dnaA-ADP is assumed to fall off
the oriC).

5.4 The initiation-titration-activation model of
replication initiation

One of the earliest models of DNA replication initiation in bacteria is due to Pritchard
and coworkers (1969). The model described in this section is called the initiation-
titration-activation model due to Browning et al. (2004); the model incorporates the
earlier models of Mahaffy and Zyskind (1989), and Hansen et al. (1991). In the follow-
ing discussion, dnaA boxes within and outside the oriC regions will be often referred
to simply as oriC boxes and non-oriC boxes, respectively.
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Two types of concentrations will be considered in the rate expressions included
in the model. One refers to the number of monomers per unit volume of the cell’s
cytoplasm, and the other refers to the number of bound monomers per dnaA box on
the chromosome. Due to the small numbers of molecules involved, the proper way of
modelling the dynamics of the system is to employ stochastic and spatially dependent
simulation methods. However, to keep the discussion simple for now, it will be assumed
that the time evolution of average concentrations can be described by deterministic
differential equations.

The steps involved in the initiation of chromosome replication are depicted in
Fig. 5.5.

5.4.1 DnaA protein synthesis

As shown in Fig. 5.5, the dnaA gene is located near the oriC. Expression of this gene
has been shown to be inhibited by its product, the dnaA protein (autorepression).
More specifically, dnaA-ATP and dnaA-ADP can bind to a region in the dnaA gene’s
promoter and repress transcription. DnaA rapidly binds ATP, so it is assumed that
dnaA gene expression gives rise immediately to dnaA-ATP as soon as the protein
is synthesized (note that ATP is abundant in the cell). The rate, v1, of dnaA gene
expression is thus assumed to be identical to the rate of formation of cytoplasmic
(free) dnaA-ATP, and that this rate is proportional to the growth rate of the cell’s
mass and repressed by bound dnaA proteins:

v1 = k1

(
dM
dt

) (
1

1 + αAg + βAi,g

)
, (5.3)

where dM/dt (equal to µM) is the growth rate of the cell mass, Ag is the number of
dnaA-ATP monomers bound per non-oriC box, and Ai,g is the number of dnaA-ADP
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Fig. 5.5 A schematic diagram showing the steps in the initiation-titration-activation model
of DNA replication initiation. Figure adapted from Browning et al. (2004).
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monomers bound per non-oriC box. Strictly speaking, one should only consider in the
last factor (for autorepression) in eqn 5.3 the dnaA proteins bound to oriC boxes since
these are the proteins that directly repress the dnaA gene’s transcription, but since
the number of oriC boxes is very small compared to non-oriC boxes, the chance of
binding to oriC boxes increases only after most of the non-oriC boxes are bound –
this is what is meant by titration of dnaA proteins by the non-oriC boxes. The extent
of autorepression is varied using the parameters α and β (Browning et al. (2004) use
the following arbitrary values: α = 2, β = 0.02). The rate coefficient k1 subsumes a
factor that considers the fraction of the contribution of dnaA synthesis to the overall
growth rate of cell mass; this factor was explicitly stated in the model of Browning
et al. (2004) where the fraction is proportional to the ratio of dnaA gene dosage to
the total gene dosage:

k1 = k
′
1

(
dnaA gene dosage
total gene dosage

)
. (5.4)

Browning et al. (2004) used the values k′
1 = 1.08 × 1018 (to fit with the observed

protein synthesis at 1000 to 2000 monomers per cell) and 0.018 for the gene-dosage
ratio. DnaA is a stable protein and its degradation has been ignored in the model.

A key feature of the E. coli cell cycle is that the cell mass at which replication ini-
tiates (the initiation mass) is roughly constant for a wide range of growth rates. Thus,
eqn 5.3 provides a link between this observation and the amount of dnaA proteins
synthesized by the cell.

5.4.2 DnaA binding to boxes and initiation of replication

DnaA-ATP monomers bind to oriC boxes and non-oriC boxes as represented by the
following steps:

Af + no
2←→Ao, (5.5)

Af + ng
3←→Ag, (5.6)

where Af is the symbol for free (cytoplasmic) dnaA-ATP, Ao is for dnaA-ATP bound
to an oriC box, and Ag is for dnaA-ATP bound to a non-oriC box. The binding rates
are proportional to the number of free oriC and free non-oriC boxes symbolized by
no and ng, respectively. The double-headed arrows in eqns 5.5–5.6 indicate reversible
steps. Browning et al. (2004) took into account the different classes of dnaA boxes
with different affinities to dnaA proteins (that is, different binding and dissociation
rate constants for dnaA-ATP and dna-ADP); to simplify the discussion, only one class
of dnaA boxes is considered here. Using the same monomer symbols for their respective
concentrations, the two processes in eqns 5.5 and 5.6 occur at the following rates:

v2 = k2no

(
Ac
f

kb + Ac
f

)
χ(t), (5.7)

v3 = k3ngAf , (5.8)
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where k2 and k3 are rate constants of the forward steps in eqns 5.5 and 5.6, respectively.
The co-operative binding of dnaA-ATP monomers on the oriC boxes is represented
by the Hill-type function (Ac

f/(kb +Ac
f )) with exponent c (greater than 1) in eqn 5.7.

The factor χ(t) in 5.7, accounting for the eclipse period (from the initiation time ti to
the end of the eclipse period te ), is defined as

χ(ti ≤ t ≤ te) = 0 and χ(0 < t < ti) = χ(te < t ≤ τ) = 1. (5.9)

The observed duration of the eclipse period (that is, te − ti) is typically 8 to 10 min in
E. coli. During the time interval between ti and te, dnaA-ATP and dnaA-ADP cannot
bind to oriC boxes; in contrast, binding of dnaA-ATP to non-oriC boxes (see eqn 5.6)
is assumed to occur throughout the cell cycle. Initiation is triggered when Ao reaches
a critical value, Ai, which is known to correspond to about 30 monomers of dnaA-ATP
bound to the total of 5 oriC boxes.

The binding of dnaA-ATP to the boxes are reversible, with the following
dissociation rates:

v2r = k2rAo, (5.10)

v3r = k3rAg, (5.11)

where k2r and k3r are rate constants of the reverse directions of eqns 5.5 and 5.6,
respectively. Browning et al. (2004) cited three different values of dissociation rate
constants depending on the affinity class of the dnaA boxes (ranging from 0.79 nM
to 2 × 106 nM). Again, to simplify the discussion, only one affinity class is considered
here.

Similar to the binding of dnaA-ATP to the boxes, dnaA-ADP can also reversibly
bind to the boxes according to the following processes and rates:

Ai,f + no
4←→ Ai,o (5.12)

Ai,f + ng
5←→ Ai,g, (5.13)

v4 = k4noAi,fχ(t), (5.14)

v4r = k4rAi,o, (5.15)

v5 = k5ngAi,f , (5.16)

v5r = k5rAi,g, (5.17)

where χ(t) is the eclipse factor given in eqn 5.9, Ai,f is for cytoplasmic (free) dnaA-
ADP, Ai,o is for dnaA-ADP bound to oriC boxes, and Ai,g is for dnaA-ADP bound to
non-oriC boxes. Note that dnaA-ADP competes against dnaA-ATP for the available
boxes no and ng; expressions for no and ng are discussed next.
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5.4.3 Changing numbers of oriCs and dnaA boxes during
chromosome replication

The numbers of free boxes, no and ng, change with time because of the increasing
chromosome length during replication. For simplicity, it is assumed that dnaA boxes
are distributed uniformly around the chromosome so that the extent, E, of the chro-
mosome can be measured in terms of the number of boxes. Let Em(t) be the length (in
units of dnaA boxes) of the additional chromosome that is synthesized after initiation
at the mth oriC (where m is an arbitrary indexing label given to existing oriCs; an oriC
ceases to exist once it is replicated, giving two new ones). For a single chromosome,
let there be ζo oriC boxes and ζg non-oriC boxes (in E. coli, ζo = 5 and ζg ∼ 300).
The maximum number of free dnaA boxes in one non-replicating chromosome with
one oriC is then ζ = (ζo + ζg) ∼ 305. Assuming that the rate of replication is constant
for all initiated oriCs, the rate of increase in chromosome length due to initiation at
the mth oriC is

dEm

dt
=

ζ

C
for tim ≤ t ≤ (tim + C), (5.18)

where C is the length of the replication period (the C-period) and tim is the initiation
time at the mth oriC. For example, for C = 40 min and ζ = 305, the number of
additional dnaA boxes created per minute during replication from one initiated oriC
is about 7.6. Integrating the equation above, one obtains

Em(t) = Em(tim) + (ζ/C)t or

Em(t) = (ζ/C)t for tim ≤ t ≤ (tim + C), (5.19)

since Em(tim) is zero. The total length of the chromosome would then be

Etot(t) = Eo +
q∑

m=1

Em(t), (5.20)

where the constant Eo is the starting length prior to initiation at the first oriC (i.e.
E0 = ζ = 305) and q is the number of oriCs that initiate during a cell cycle. Thus,
the number of free oriC and free non-oriC boxes vary with time as follows:

no(t) = (ζo/ζ)Etot(t)
(

1 − Ao + Ai,o

A∗
)
, (5.21)

ng(t) = (ζg/ζ)Etot(t)
(

1 − Ag + Ai,g

A∗
)
, (5.22)

where A∗ is the maximum number of bound monomers per box. An assumption made
here is that both oriC and non-oriC boxes have identical maximum number capacities,
each equal to A∗ monomers per box where A∗ = Ai ∼ 6.
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5.4.4 Death and birth of oriCs

Once replication initiates at the mth oriC, this oriC disappears and gets replaced
by two new ones. The two new oriCs are initialized with Ao = 0 and Ai,o = 0; this
initialization implies that the dnaA-ATP and dnaA-ADP monomers bound to the oriC
at the time of initiation are all dislodged back to the cytoplasm (with the dnaA-ATP
converted to dnaA-ADP), contributing to the jump in Ai,f after initiation. In general
agreement with observations, it is assumed that the dynamics of sister oriCs (those
coming from one oriC) are perfectly synchronized.

5.4.5 Inactivation of dnaA-ATP

As the replication fork passes by dnaA boxes bound by dnaA-ATP, ATP is hydrolyzed
to ADP to generate the inactive dnaA-ADP form. Only inactivation at the non-
oriC boxes will be considered in the model because, immediately after initiation, all
monomers bound at the oriC boxes are dislodged and returned to their free forms in
the cytoplasm. The inactivation process and its rate are given below:

Ag
6→ Ai,g, (5.23)

v6 = k6(dEtot/dt)Ag, (5.24)

where Etot is given by Eqn. 5.20. Finally, in the cytoplasm, the free dnaA-ADP and
free dnaA-ATP can be transformed to each other:

Ai,f
7←→ Af , (5.25)

v7 = k7Ai,f , (5.26)

v7r = k7rAf , (5.27)

where k7 and k7r are rate constants.

5.5 Model dynamics

The dynamics of chromosome replication coupled with cell growth is modelled by the
differential eqns 5.28–5.33 given below. The expressions for the rates vi have been
described in the preceding section. The terms (−µAf ) and (−µAi,f ) found on the
right-hand sides of eqns 5.28 and 5.31, respectively, represent rates of decrease in
cytoplasmic concentrations due to dilution as the cell volume grows exponentially.

The case of slow-growing E. coli cells (see Fig. 5.2) will be used to illustrate how
a computer simulation is performed. At t = 0, the system starts with one oriC (m =
q = 1) and with initial values for Af , Ai,f , Ao, Ai,o, Ag, Ai,g, and cell mass M . For the
entire generation time (t = 0 to t = τ), an individual cell’s mass increases exponentially
according to eqn 5.1. The following differential equations are first integrated from t = 0
until the oriC boxes achieve the threshold value of Ai (dnaA-ATP monomers per oriC
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box) in order to determine the initiation time, tim,

dAf

dt
= v1 + (−v2 + v2r) + (−v3 + v3r) + (v7 − v7r) − µAf , (5.28)

dAo

dt
= v2 − v2r, (5.29)

dAg

dt
= (v3 − v3r) − v6, (5.30)

dAi,f

dt
= (−v4 + v4r) + (−v5 + v5r) + (−v7 + v7r) − µAi,f , (5.31)

dAi,o

dt
= v4 − v4r, (5.32)

dAi,g

dt
= (v5 − v5r) + v6. (5.33)

Immediately after initiation, the oriC (m = 1) disappears and gets replaced by two
sister oriCs with indices m = 2 and m = 3. These two new oriCs are assumed to
be perfectly synchronized (that is, they initiate and replicate at the same rate). The
increasing length of the chromosome (due to the initiation at the first oriC) is given
by eqn 5.20 (with q = 1). At t = tim, the cytoplasmic monomer concentrations are
increased (discontinuously) by the following amounts due to the monomers dislodged
from the initiated oriC:

∆Af = ζoAi/V (tim), (5.34)

∆Ai,f = ζoAi,o(tim)/V (tim), (5.35)

where V (tim) is the volume of the cell at t = tim. Note that V (tim) = V (0) exp(µtim)
with the assumption that the cell (cytoplasm) density is kept constant as the cell
grows. Integration of eqns 5.28–5.33 continues until t = τ when the mass M(τ) and
the contents of the cell are halved prior to the start of the next cell cycle. Care must
be taken to observe the eclipse period – see eqns 5.7–5.9 and 5.14 – and the end of
the chromosome replication at t = C (eqns 5.18 and 5.19).

5.6 Robustness of initiation control

The kinetic model described in the preceding section is identical in essence to a more
complex deterministic model due to Browning et al. (2004); their model includes
three different types of non-oriC dnaA boxes according to the binding affinities and
dissociation rates of dnaA-ATP and dnaA-ADP monomers (high, medium, and non-
specific affinities). The computer simulation shown in Fig. 5.6 demonstrates that the
total dnaA protein level in a cell does not fluctuate much in comparison with the
level of dnaA-ATP. Large-amplitude fluctuations of the replication initiator (that
is, dnaA-ATP) alleviate the effects of noise that is necessary for robust control of
replication initiation. The investigation of the robustness of the initiation control is
described below.
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Fig. 5.6 Dynamics in an E.coli cell of the total dnaA protein concentration and the free
dnaA-ATP concentration from a computer simulation using the model of Browning et al.
(2004). The arrow indicates the time when DNA replication initiates. Reproduced with
permission from Browning et al. (2004). Copyright 2004 Wiley Periodicals, Inc.

Browning et al. (2004) formulated a hybrid model that combines deterministic and
stochastic steps in their investigation of the factors affecting the control of initiation.
Steps 5.5, 5.6, 5.12, 5.13, and 5.23 are considered to occur stochastically because of
the small numbers of dnaA boxes (no and ng); the dynamics of the rest of the model is
described by deterministic differential equations. The Gillespie algorithm (see Chapter
3) is used to determine the dynamics of the stochastic steps. The robust control of
initiation is manifested in the almost constant interinitiation time, δ ti, that is, the
time between two successive initiations. The doubling time of an E. coli population
is defined as the average 〈δti〉, and a low standard deviation of interinitiation time,
σinit, is used as the measure of the robustness of the control mechanism of initiation.
Figures 5.7 (a)–(d) summarize the results.

For rates of dnaA protein synthesis to the left of the vertical dotted line shown in
Fig. 5.7(a), not enough dnaA is made to keep up with the growth rate, so that initiation
may not occur at all. (The stepwise drops in σinit on the right of Fig. 5.7(a) occur
when the number of oriCs doubles at initiation.) Figure 5.7(b) shows that as long as
the binding-rate constant is greater than ∼0.1 M−1s−1, the standard deviation σinit is
insensitive to the rate of binding of dnaA-ATP monomers to oriC boxes. The dotted
vertical line shown in the figure indicates the estimated experimental value of the
binding-rate constant. Similarly, σinit is generally insensitive to the binding constants
for non-functional (non-oriC) boxes except when the binding rates are comparable
to those of the binding rates at the oriC boxes – as demonstrated by the peak in
σinit in the middle of Fig. 5.7(c); in this case, binding of the initiator dnaA-ATP to
non-oriC boxes interfere with binding to the oriCs. The independence of σinit to low
non-oriC binding constants – as shown on the left side of Fig. 5.7(c) – is not robust
with respect to changes in the number of non-oriC boxes, as illustrated by the upper
curve of Fig. 5.7(d). In contrast, when the non-oriC binding constant is high and when
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Copyright 2004 Wiley Periodicals, Inc.

the number of non-oriC boxes is large enough (>300), the interinitiation time becomes
robust against further increases in the numbers of non-functional boxes.
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Exercises

1. The terms (−µAf ) and (−µAi,f ) found on the right-hand sides of dAf/dt and
dAi,f/dt – eqns 5.28 and 5.31, respectively – represent rates of decrease in cytoplas-
mic concentrations due to dilution as the cell grows. In this case, the density of the
cell is assumed constant as the cell grows. Show that if the cell mass increases expo-
nentially, dM/dt = µM, then the volume increases exponentially, dV/dt = +µV ,
and the concentration c of a substance (defined as the number of molecules per
unit volume) decreases according to dc/dt = −µc.

2. Consider an E. coli cell with a generation time of 25 min, a C-period of 40 min and a
D-period of 20 min. Using Fig. 5.3 as a guide, show that the newborn cell contains
a chromosome with two sets of replication forks, has a replication termination
5 min after birth, and has to initiate at 4 origins 10 min after termination.



6
The eukaryotic cell-cycle engine

The discovery that there is a set of enzymes whose activities correlate with those
of cell-cycle events led to the concept of a ‘cell-cycle engine’; the enzymes are called
cyclin-dependent kinases (CDKs). Current models of the cell cycle focus on the molec-
ular networks regulating the activities of CDKs. Some of these models will be presented
in this chapter. After brief sections that provide a basic background on the physiol-
ogy and biochemistry of eukaryotic cell division, mathematical models of embryonic
cell cycles are first discussed because of their simplicity. The regulatory networks of
non-embryonic cell cycles are more complex, presumably because they have to be
responsive to extracellular and intracellular signals. To highlight the essential network
and dynamical elements of the eukaryotic cell-cycle engine, this chapter will illustrate
the construction of a cell-cycle model of the budding yeast Saccharomyces cerevisiae.

6.1 Physiology of the eukaryotic cell cycle

The eukaryotic cell cycle can be viewed as a mixture of a ‘chromosome cycle’ and a
‘growth cycle’. In a chromosome cycle, DNA is replicated and then segregated between
the two daughter cells. In a growth cycle, cellular mass approximately doubles before
the cell splits in two. Normally, the chromosome and growth cycles are co-ordinated in
eukaryotes, unlike in bacteria where overlapping cell cycles may occur (as illustrated
in the preceding chapter).

A schematic diagram of the chromosome cycle is given in Fig. 6.1. DNA is replicated
during S phase (S for synthesis of DNA). Chromosomes condense and segregate in M
phase (M for mitosis). Gap phases G1 and G2 separate S and M phases, except in
embryonic cell cycles where S and M alternate with no discernible gap phases.

The cell cycle is also sometimes divided into interphase (consisting of G1, S, and
G2) and mitosis. It is during mitosis that the dramatic sequence of events – shown
in Fig. 6.2 – is observed. Mitosis is further divided into different subphases, namely,
prophase, metaphase, anaphase, and telophase (all before the actual process of cell
division called cytokinesis). In prophase, the chromosomes (shown in red in Fig. 6.2)
condense, the nuclear membrane breaks down, and the centrosomes migrate to the
poles (centrosomes are the star-like entities where spindle fibers, shown in green,
emanate). At metaphase, each pair of duplicate chromosomes (called ‘sister chro-
matids’ that are still bound together) migrates to the equator. The alignment of all
the sister chromatids on the equator is a highly regulated process (i.e. separation of
sister chromatids does not begin until all of the pairs are aligned on the equator); this
alignment is crucial for segregating identical copies of the genome between daughter
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Fig. 6.1 Phases of the eukaryotic cell cycle. Shown are the relative durations of the chro-
mosome cycle phases for an animal cell dividing with a period of 24 h. DNA is replicated in
S phase. Duplicate chromosomes are segregated in M phase (mitosis). G1 and G2 are ‘gap’
phases. G0 is the quiescent state.

cells. The sister chromatids are separated during anaphase. At telophase (not shown
in Fig. 6.2), new nuclear membranes are formed. The two daughter cells split during
cytokinesis.

6.2 The biochemistry of the cell-cycle engine

As already mentioned, the cell cycle is driven by a family of enzymes called cyclin-
dependent kinases (CDKs). These enzymes catalyze the phosphorylation of a variety
of proteins involved in processes such as gene expression (e.g. during S phase), protein
degradation (e.g. during nuclear envelop breakdown in mitosis), replication of centro-
somes, segregation of chromosomes, etc. As their names imply, the activation of CDKs
absolutely requires binding with proteins called cyclins, so-called because of the cyclic
variation of their levels during the cell cycle. This variation explains the observed
oscillations in the enzymatic activities of the CDKs. Cyclin binding is followed by two
phosphorylation events, one due to a kinase called CAK (for CDK-activating kinase)
that puts an activating phosphate on the CDK and the other due to Wee1 (a tyrosine
kinase) that puts an inhibitory phosphate on the CDK. The inhibitory phosphate is
removed by a phosphatase called Cdc25. As will be discussed in more detail in Section
6.4, a positive feedback between Cdc25 and CDK exists because the latter activates
the former by phosphorylation. Also, note that the active CDK phosphorylates Wee1
cause the inhibition of the latter, and create another positive feedback (of the mutual
antagonism type).

There is only one cell cycle CDK in budding yeast (called Cdc28), and also only
one in fission yeast (called Cdc2). In contrast, many cyclins have been identified in
both yeasts. In mammalian cells, at least nine cell cycle CDKs and at least 20 cyclins
have been discovered.

Another group of enzymes considered to be essential drivers of cell-cycle progres-
sion are those that target proteins – especially the cyclins – for degradation. For
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interphase prophase metaphase

anaphase cytokinesis

Fig. 6.2 A dividing cell as seen under a microscope. Microtubules (components of the spindle
fibers) are shown in green and chromatin (DNA and associated proteins) is colored red.
Photograph courtesy of W.C. Earnshaw, Wellcome Trust Centre for Cell Biology, University
of Edinburgh, Scotland, UK. (See Plate 6)

example, as a requirement for anaphase, proteins called cohesins (the glue between
sister chromatids) are targeted for degradation by the enzyme complex called APC
(for anaphase promoting complex). The APC also targets mitotic cyclins for destruc-
tion (inactivating mitotic CDKs as a consequence) in order to exit from mitosis. The
APC is a ubiquitin ligase that is an enzyme that catalyzes the transfer of ubiquitin
proteins to the target protein (other ubiquitylation enzymes are also involved). The
activation of the APC usually requires binding with an activating subunit (such as
a protein called Cdc20). Cyclins that are tagged with multiubiquitin chains are then
brought into proteasomes for degradation. (A proteasome is a barrel-shaped protein
complex where ubiquitinated proteins are degraded into smaller peptides.)

CDK activity is kept low in interphase due to high APC activity. Upon entry into
mitosis, APC activity decreases, while CDK activity increases – this observation led
Tyson and Novak (2001) to suggest that the essential dynamics of the cell cycle could
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Fig. 6.3 Oscillations in MPF activity during early embryonic cell cycles after fertilization of
a frog egg. Twelve synchronous oscillations occur after a sperm enters an egg (Murray and
Kirschner, 1989).

be based on the mutual antagonism between mitotic CDKs and APC. This idea will
be explained in more detail below.

6.3 Embryonic cell cycles

The maturation-promoting factor (MPF) was discovered in studies of embryonic cell
cycles of a frog, Xenopus laevis (Murray and Kirschner, 1989). MPF is a protein
complex made up of a kinase subunit, CDK1 (also called Cdc2 in the older literature),
and a B-type cyclin subunit. Unfertilized frog eggs with high levels of MPF activity are
arrested in metaphase. After fertilization by a sperm, MPF activity drops immediately
and a series of 12 synchronous MPF oscillations ensues (see Fig. 6.3).

The embryonic cell cycles shown in Fig. 6.3 are alternating S and M phases with no
discernible G1 and G2 phases, and no cell growth involved. The cell cycles terminate
after twelve divisions. The observation that MPF oscillations also occur in cell-free
extracts suggests that an autonomous oscillator is driving embryonic cell cycles.

Early mathematical models of frog embryonic cell cycles – like those of Goldbeter
(1991) and of Novak and Tyson (1993) – focused on the following observations: (1)
cyclin synthesis is both necessary and sufficient for entry into mitosis, (2) MPF activa-
tion is autocatalytic (i.e. MPF enhances its own activation), and (3) cyclin degradation
is required for exit from mitosis. The Goldbeter model is discussed in this section, while
the Novak and Tyson model will be considered in the next section.

The model proposed by Goldbeter is shown in Fig. 6.4. Cyclin (C) is synthesized at
a constant rate, vi, and degraded through the action of a protease (X). The activation
of X is carried out by a cascade of two cyclic enzymatic reactions, namely, the M+-M
cycle and the X+-X cycle, where M refers to the active MPF and X to the active
protease (the species with a superscript + is the inactive form). Cyclin induces the
activation of MPF as indicated by the dashed arrow from cyclin. In return (although
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Fig. 6.4 The Goldbeter model of the embryonic mitotic oscillator (Goldbeter, 1991). M+

and M are inactive and active MPF, respectively. X+ and X are inactive and active cyclin
protease, respectively.

indirectly via X) MPF induces the degradation of cyclin as indicated by the dashed
arrow from X. This negative feedback is expected to produce sustained periodic oscil-
lations if there is sufficient delay between the time when cyclin is degraded and the
time when X is activated. The delay in the activation of X provided by the cascade of
cyclic reactions is required to give the cyclin time to grow before it gets degraded.

To further understand the time delay in the Goldbeter model, one has to consider
the dynamical equations (6.1–6.3) and the assumptions made on the values of the
parameters. In these equations, C is the cyclin concentration, M is the fraction of the
active MPF concentration, and X is the fraction of the active protease concentration.

dC
dt

= vi − vdX
C

Kd + C
− kdC, (6.1)

dM
dt

= V1(C)
(1 − M)

K1 + (1 − M)
− V2

M

K2 + M
, (6.2)

dX
dt

= V3(M)
(1 − X)

K3 + (1 − X)
− V4

X

K4 + X
, (6.3)

where

V1(C) = VM1
C

Kc + C
and V3(M) = VM3M.

The factors (1−M) and (1−X) are the fractions of the concentrations of inactive
MPF and inactive protease, respectively. V1 to V4 are the maximum rates of the enzy-
matic reactions with corresponding numbers in Fig. 6.4. The form of V1(C) indicates
that step 1 is catalyzed by C, and that V1(C) approaches the maximum value of VM1
as C increases; in contrast, no saturation value is imposed for the reaction catalyzed
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by M as expressed in the form of V3(M). The last two terms in eqn. 6.4 indicate that
the degradation of C is both X-dependent and X-independent.

A key assumption in the Goldbeter model is that both cyclic enzymatic reactions
possess the property of zeroth-order ultrasensitivity, which requires that the Michaelis
constants, K1 to K4, are close to zero. This is the case for curves labelled ‘a’ in
Figs. 6.5A and B.

When conditions are met for ultrasensitivity, Fig. 6.5A shows that the cyclin has
to pass the threshold value of C* to initiate significant activation of M; similarly,
Fig. 6.5B shows that M has to pass the threshold value of M* to induce significant
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Fig. 6.5 (A) Steady state of the fraction of active MPF (M) as a function of cyclin concentra-
tion. (B) Steady state of the fraction of active cyclin protease (X) as a function of M. Curves
‘a’ in the top and bottom panels show zeroth-order ultrasensitivity (when all the Michaelis
constants are small, equal to 0.005). Curves ‘b’ in both panels correspond to large values of
Michaelis constants (set equal to 10). Figure reproduced with permission from Goldbeter
(1991).
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Fig. 6.6 Periodic oscillations exhibited by the Goldbeter model. Parameter values: vi =
0.025µM min−1, vd = 0.25µM min−1, Kd = 0.02µM, and kd = 0.01 min−1. Initial
conditions: C = 0.01 µM, M = X = 0.01. Figure reproduced from Goldbeter (1991).

activation of X. The total time taken to reach C* and M* represents sufficient time
delay for the negative feedback to generate sustained oscillations, as shown in Fig. 6.6.
The character of the oscillations in C and M agree qualitatively with those observed
in embryonic cell cycles of frogs.

6.4 Control of MPF activity in embryonic cell cycles

The Goldbeter model does not take into account the experimentally observed auto-
catalytic character of MPF activation. Interest in the mechanism of this MPF
self-amplification is motivated by observations that it is a target of intracellular sig-
nalling pathways that arrest cell-cycle progression – e.g. pathways that emanate from
unreplicated DNA or from damaged DNA. Positive-feedback loops that account for
MPF self-amplification were considered in a model proposed by Novak and Tyson
(1993) for mitotic control in frog embryos. The model’s network diagram is shown in
Fig. 6.7. Henceforth, this model will be referred to as the NT93 model.

In Fig. 6.7(a), four phosphorylation states of the CDK subunit (depicted as a
rectangular box) of the cyclin/CDK complex are shown (details are given in the
figure caption). The complex on the top right corner is the active MPF, while the
one on the top left corner is called ‘preMPF’. The inactive preMPF is dephospho-
rylated by the phosphatase Cdc25 to produce active MPF; the tyrosine kinase Wee1
reverses the action of Cdc25. Two positive-feedback loops are created by the actions
of Cdc25 and Wee1 as shown in Fig. 6.7(b). The positive feedback between Cdc25
and active MPF is of the mutual-activation type, while the positive feedback between
Wee1 and active MPF is of the mutual-antagonism type. A consequence of these pos-
itive feedbacks is the potential for bistability. Indeed, if total cyclin concentration
is considered as a bifurcation parameter (i.e. cyclin synthesis and degradation are
temporarily ignored in the NT93 model), the model exhibits bistability as shown in
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Fig. 6.7 The NT93 model of M-phase control in Xenopus. Figure redrawn from Novak and
Tyson (1993). (a) Various phosphorylation states of the cyclin/CDK complex. The oval figure
is cyclin and the rectangle is the CDK. P is a phosphate group. T and Y are threonine
and tyrosine amino-acid residues, respectively, in the CDK. aa = amino acids. (b) Details
of the phosphorylation and dephosphorylation events catalyzed by Wee1 and cdc25, respec-
tively. (c) Details of the MPF-induced degradation of cyclin. IE = intermediary enzyme; UbE
= ubiquitin-conjugating enzyme, CAK = CDK activating enzyme, INH = CDK inhibiting
enzyme.

Fig. 6.8. Figure 6.8(a) shows how the steady states of active MPF are approached for
different total cyclin concentration levels. The experimentally observed ‘cyclin thresh-
old’ above which a jump in active MPF occurs can be explained by a saddle-node
bifurcation (see Fig. 6.8(b); note that in this figure, the parameter [total cyclin] is
the vertical axis). Furthermore, the observed lengthening of time to reach the steady
state as the parameter approaches the cyclin threshold (e.g. from [total cyclin] = 0.4
to 0.25 in Fig. 6.8(a)) is consistent with the characteristic slowing down of dynamical
trajectories near a saddle-node bifurcation point (recall that, at this bifurcation point,
one of the eigenvalues vanishes; the magnitude of eigenvalues indicates how fast the
trajectories are moving towards or away from the steady state).

Cyclin synthesis from amino acids and cyclin degradation are shown in Fig. 6.7(a).
Details of MPF-induced cyclin degradation are shown in Fig. 6.7(c) (the four small
circles depict the products of the degradation of the cyclin subunit of the cyclin/CDK
complex) – this portion of the NT93 model is structurally the same as the Goldbeter
model because it involves a cascade of two cyclic enzyme reactions (the first cycle
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Fig. 6.8 (a) Increase of the activity of MPF with time for various levels of total cyclin (given
by the number on top of each curve). The solid square on each curve represents 50% of the
final (steady-state) [active MPF]. The inset shows the final [active MPF] as a function of
[total cyclin]. (b) [total cyclin] versus [active MPF] showing the cyclin threshold at about
0.25, above which [active MPF] makes a big jump to a higher level. Figure reproduced with
permission from Novak and Tyson (1993).

involves IE and the second involves UbE). As in the Goldbeter model, there is a
negative feedback between active MPF and UbE*, the latter causing the degradation
of the cyclin subunit of MPF. The oscillations generated by this negative feedback are
reminiscent of those observed in intact frog embryos.

6.5 Essential elements of the basic eukaryotic
cell-cycle engine

A stepwise construction of a cell-cycle model network of the budding yeast, S. cere-
visiae, will be illustrated in this section. The discussion closely follows that of the
paper of Tyson and Novak (2001). The recent publication of Csikasz-Nagy et al. (2006)
attempts a comprehensive integration of the modelling performed by the Novak–Tyson
group over many years of the cell cycles of various organisms – including budding yeast,
fission yeast, Xenopus embryo, and mammalian cells.

In budding yeast, the only cell cycle CDK is cdc28; but there are several cyclins
that can bind cdc28 to form complexes that function in different cell-cycle phases. The
model below focuses on only one cyclin, namely, a B-type cyclin (symbolized by cycB
in the equations; it is a cyclin that belongs to the so-called Clb family). The model con-
struction starts with the premise that the mutual antagonism between the CDK and
APC (anaphase-promoting complex) is the ultimate origin of two ‘self-maintaining’
states: the G1 state (characterized by high APC and low CDK activities), and the
S-G2-M state (characterized by low AP and high CDK activities). Two irreversible
transitions, called start and finish, delineate one state from the other. These basic fea-
tures are depicted in Fig. 6.9. Sufficient CDK activity is required to trigger the start
transition, and sufficient APC activity is needed for the finish transition. Coupled
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irreversible transitions Start, and Finish. Active Cdk/Cyclin triggers Start, while active APC
(analphase-promoting complex) triggers Finish. The antagonism between Cdk/Cyclin and
APC is shown. The Cdk-induced inhibition of the APC increases with cell growth (increasing
mass, m). The activation of APC is induced by an unidentified factor A. Figure reproduced
with permission from Tyson and Novak (2001).

with the growth of the cell (i.e. increasing cell mass, m), an increase in CDK activity
leads to inhibition of APC. On the other hand, increasing APC activity increases the
rate of cyclin degradation and therefore the inhibition of the CDK.

The dynamical variable used to represent CDK activity is the concentration of
the cyclin, [cycB ]. It can be assumed that CDK activity is proportional to the cyclin
concentration because cellular levels of the free CDK subunit are observed to be non-
rate limiting and approximately constant. The variable representing APC activity is
[Cdh1 ], which refers to the concentration of the auxiliary protein Cdh1 that activates
APC. For the simple network shown in Fig. 6.9, one can write the following kinetic
equations:

d[cycB]
dt

= k1 − k′
2[cycB] − k′′

2 [Cdh1][cycB], (6.4)

d[Cdh1]
dt

=
k′

3(1 − [Cdh1])
J3 + (1 − [Cdh1])

+
k′′

3A(1 − [Cdh1])
J3 + (1 − [Cdh1])

− k4m[cycB][Cdh1]
J4 + [Cdh1]

. (6.5)

The cyclin is synthesized at a constant rate k1, and degraded without or with the
influence of Cdh1 (second and third terms on the right-hand side of eqn 6.4. In eqn 6.5,
the fraction of active Cdh1 is given by [Cdh1] and the fraction of the inactive form
is (1–[Cdh1]). The conversion from the inactive to the active form of Cdh1 occurs
with or without the catalysis of an enzyme A (the identity and significance of which
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0.04. (b) Steady state of cycB as a function of the parameter p where p = (k3′+ k3′′A)/k4m.
Figures reproduced with permission from Tyson and Novak (2001).

will be discussed later) according to the second and first terms, respectively, of the
right-hand side of eqn 6.5. The last term in eqn 6.5 assumes that the inhibition of
Cdh1 is catalyzed by cycB and that this rate increases with cell mass m. Tyson and
Novak assume that the inactivation of Cdh1 by the CDK occurs in the nucleus where
cycB accumulates; thus, [cycB ] is multiplied by m to account for the increase in the
effective concentration of cycB as the cell grows.

The nullclines from eqns 6.4 and 6.5 are plotted in Fig. 6.10(a); these demonstrate
how an increase in mass (m = 0.3 to 0.6) switches the system from the G1 stable
steady state to the S-G2-M stable steady state. Note that the system can have 1 or 3
steady states depending on the mass. Figure 6.10(b) shows a plot of the [cycB] steady
states as a function of the lumped parameter p whose expression arises naturally from
eqn 6.5. The start and finish transitions are associated with saddle-node bifurcation
points. Starting from the G1 branch of the steady-state curve, as the cell mass increases
(equivalent to decreasing p), the system will eventually reach the left knee of the curve
where it makes the start transition to the upper branch of the steady-state curve if
mass continues to grow. From the S–G2–M state, the system can move towards the
right knee of the curve if p increases (which is implemented by an abrupt increase in
the parameter A – a situation discussed below). After the finish transition, the cell
splits in two and the mass per cell is half of what it was at the transition.

At this point, the model represented by eqns 6.4 and 6.5 does not generate CDK
oscillations. Other molecular steps have to be considered to enable the system to switch
between the lower and upper branches of the steady-state curve (these are called hys-
teretic oscillations). In fact, a pathway for CDK-induced activation of APC has been
found; it is a pathway that involves the CDK-induced activation of an APC-activating
factor called cdc20 activates Cdh1 (see Fig. 6.11). The activity of cdc20, symbolized
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Fig. 6.11 The simple model of Fig. 6.9 is augmented to include another APC-activating
factor, Cdc20, and an intermediary enzyme (IE). Figure redrawn from Tyson and Novak
(2001).

by [Cdc20A], therefore replaces the parameter A in eqn 6.5, and is now considered
an additional dynamical variable. Cdc20 exists in both inactive and active forms,
and the model assumes that the inactive form is continuously synthesized in a CDK-
dependent manner. As in the Goldbeter model and the NT93 model for embryonic
cell cycles, a time delay between APC-induced degradation of cycB and activation of
APC (i.e. activation of Cdh1 and Cdc20) is provided by the cascade of cyclic enzyme
reactions, including an assumed intermediary enzyme IE that activates Cdc20. The
network shown in Fig. 6.11, excluding Cdh1 and ignoring mass m as a parameter, can
generate embryonic cell-cycle oscillations similar to the Goldbeter model discussed in
Section 6.3.

The mass m, a parameter in eqn 6.5, is now also considered a dynamical variable.
The additional dynamical equations are

d[Cdc20T ]
dt

= k5
′ + k5

′′ (m[cycB])n

Jn
5 + (m[cycB])n

− k6[Cdc20T ], (6.6)

d[Cdc20A]
dt

=
k7[IEP ]([Cdc20T ] − [Cdc20A])
J7 + ([Cdc20T ] − [Cdc20A])

− k8[Mad][Cdc20A]
J8 + [Cdc20A]

(6.7)

− k6[Cdc20A],

d[IEP ]
dt

= k9m[cycB](1 − [IEP ]) − k10[IEP ], (6.8)

dm
dt

= µm

(
1 − m

m∗

)
, (6.9)

where [Cdc20T ] is the total concentration of Cdc20, [Cdc20A] is the concentration of
the active form of Cdc20, and [IEP ] is the fraction of the phosphorylated (active) form
of IE. In eqn 6.9, m∗ is the maximum mass that the cell can grow to if it does not
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divide. The protein Mad inhibits Cdc20 as shown in Fig. 6.11; it is a fixed parameter
and not considered a dynamical variable. Mad is a family of spindle-checkpoint proteins
that inhibits Cdc20 to prevent the APC from initiating anaphase if not all the sister
chromatids are aligned on the metaphase plane (to be discussed more in the next
chapter).

The model, now consisting of eqns 6.4 (with A replaced by Cdc20) to 6.9, generates
the periodic oscillations shown in Fig. 6.12. These oscillations are not autonomous in
the sense that the mass is reduced to half ‘whenever the cell divides’ which is a decision
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Fig. 6.12 Periodic oscillations generated by eqns 6.4 to 6.9. When [CycBT ] crosses the
threshold of 0.1 from above, cell division is assumed to occur and cell mass is halved. Param-
eter values as in Fig. 6.10(a) except, now, the factor A is replaced by Cdc20 in Fig. 6.11 with
the following associated parameters: (rate constants, min−1) k′

5 = 0.005, k′′
5 = 0.2, k6 = 0.1,

k7 = 1, k8 = 0.5, k9 = 0.1, k10 = 0.02, (Michaelis constants, dimensionless) J5 = 0.3, J7 =
0.001, J8 = 0.001; other dimensionless parameters: n = 4, [Mad] = 1. Figures reproduced
with permission from Tyson and Novak (2001).



92 The eukaryotic cell-cycle engine

that is imposed by the modeller (in the case of Fig. 6.12, this decision to divide is made
whenever [cycB ] drops below 0.1).

CDK activity is also regulated by a family of proteins called CKIs (for CdK-
Inhibitors) that bind cyclin/CDK complexes to form trimers that lack kinase activity.
An example of a CKI in budding yeast is Sic1. High levels of Sic1 prevent entry into the
cell cycle by keeping cycB/CDK activity low. However, cycB/CDK can phosphorylate
Sic1, which leads to a pathway towards Sic1 degradation. To help cycB/CDK, the
initial inhibition of Sic1 is carried out by a starter kinase (SK ). In budding yeast, the
SK is a Cln/CDK complex where Cln is another type of cyclin that is different from
cycB. (In budding yeast there are several Cln cyclins and Clb cyclins; cycB in the model
is a member of the family of Clb cyclins.) This picture completes the basic cell-cycle
engine of the budding yeast. Novak and Tyson (2001) go further by proposing that
the elements of this cell-cycle network characterize all eukaryotic cell cycles, including
mammals. The full model is shown in Fig. 6.13. The full set of equations is composed
of eqns 6.6 to 6.9 above, eqns 6.10 to 6.11 below, and the modificatiions of eqns 6.4
to 6.13 and 6.6 to 6.14 below. The modification in eqn 6.14 includes the assumption
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Fig. 6.13 The basic eukaryotic cell-cycle engine according to Tyson and Novak. SK = starter
kinase, CKI = cdk-inhibitor. Figure redrawn from Tyson and Novak (2001).
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that SK phosphorylates Cdh1 (not shown in Fig. 6.13).

d[CKIT ]
dt

= k11 − (k12
′ + k12

′′[SK] + k12
′′′m[cycB])[CKIT ], (6.10)

d[SK]
dt

= k13[TF ] − k14[SK], (6.11)

where

[TF ] = G(k15
′m + k15

′′[SK], k16
′ + k16

′′[cycB], J15, J16), (6.12)

d[cycBT ]
dt

= k1 − (k2
′ + k2

′′[Cdh1] + k2
′′′[Cdc20A])[cycBT ], (6.13)

where [cycBT ] = [cycB ] + [Trimer ] with Trimer referring to the cycB/CDK/CKI
complex;

d[Cdh1]
dt

=
k3

′(1 − [Cdh1])
J3 + (1 − [Cdh1])

+
k3

′′[Cdc20A](1 − [Cdh1])
J3 + (1 − [Cdh1])

− (k4
′[SK] + k4m[cycB])[Cdh1]

J4 + [Cdh1]
.

(6.14)

[CKI T ] is the total concentration of the CKI and [cycBT ] is the total concentration
of cycB.

The CKI is synthesized at a constant rate of k11, and it is degraded at a basal rate
(associated with rate constant k12’) and at rates that depend on [SK] and on m[cycB].
The synthesis of SK depends on the concentration of transcription factors, [TF], which
is given by the Goldbeter–Koshland function G in eqn 6.12. The autocatalytic nature
of SK activation and the inhibition of SK by cycB/CDK are encoded in the arguments
of the function G (see top of Fig. 6.13).

Novak and Tyson (2001) validate their model using observations from gene knock-
out experiments and deletion mutants. Computer simulation using the model is shown
in Fig. 6.14 (note that the full set of equations is associated with the ‘wild-type’
phenotype). Simulation of Cln mutants (e.g. the triple mutant cln1∆ cln2∆ cln3∆)
by setting k13 = 0 is shown in Fig. 6.14(b), which agrees with the observation that
these mutant cells arrest in G1 with high CKI and Cdh1 activities. Simulation of
mutant cells lacking SK and CKI (e.g. the quadruple mutant cln1∆ cln2∆ cln∆3
sic1∆), by setting k11 = k13 = 0, is shown in Fig. 6.14(c), which is consistent with the
observation that these mutants are viable (it is thought that the only essential role of
the Cln-cyclins is to remove the CKI).

6.6 Summary

The concept of an ‘engine’ in the form of an autonomous CDK oscillator that orches-
trates the sequence of complex cell-cycle events is an attractive one. Studies of early
embryonic cell cycles in frog (Xenopus) provide evidence of the existence of such an
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Fig. 6.14 (a) Wild-type simulation of the full budding yeast cell cycle corresponding to
eqns 6.6 to 6.11, 6.13 and 6.14. Parameter values: all those used in Fig. 6.12 and (rate
constants, min−1) k11 = 1, k′

12 = 0.2, k′′
12 = 50, k′′′

12 = 100, k13 = 1, k14 = 1, k′
15 = 1.5,

k′′
15 = 0.05, k′

16 = 1, k′′
16 = 3, µ = 0.005, and (dimensionless parameters) Keq = 103,

J15 = J16 = 0.01, m∗ = 10. (b) Mutants with no SK are simulated by setting k13 = 0.
(c) Mutant cells without SK and CKI are simulated by setting k11 = k13 = 0. Figures
reproduced with permission from Tyson and Novak (2001).

oscillator. The Goldbeter model for embryonic cell cycles focuses on the role of a neg-
ative feedback between cyclin and a cyclin protease in generating CDK oscillations.
In addition to this negative feedback, the Novak–Tyson (NT93) model incorporates
mechanistic details of the CDK self-amplification (positive feedback) and predicts
bistable behavior.

A detailed construction of a non-embryonic cell-cycle model, using the budding
yeast S. cerevisiae as an example, was illustrated using the work of Tyson and
Novak (2001). In this model, the coupling between cell growth and CDK activation is
accounted for. It should be noted, however, that the nature of this coupling is an open
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problem at this time. The basic premise of the Novak–Tyson yeast model discussed
at the end of this chapter is that the mutual antagonism (i.e. a positive feedback)
between the CDK and the anaphase-promoting complex (APC) generates two stable
steady states corresponding to the so-called ‘self-maintaining states’, namely, G1 and
S-G2-M. The positive feedback in this yeast model generates the potential for bista-
bility under certain conditions; and the coupling between this positive-feedback with a
negative-feedback loop in the network is ultimately the origin of hysteretic oscillations
exhibited by the model.
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Exercises

1. The Goldbeter model (Fig. 6.4 and eqns 6.1–6.3) does not consider any positive
feedback between the dynamical variables; for this reason, one could expect that the
model does not exhibit bistability. Verify that the Goldbeter model does not possess
multiple steady states for any given set of parameters (particularly for parameter
values near those used in Fig. 6.6.

2. Show that the start and finish transitions in Fig. 6.10(b) correspond to saddle-node
bifurcation points, and find the corresponding values of the parameter p at these
points. Analyze the linear stability of the different branches of the steady-state
curve shown in Fig. 6.10(b).

3. The time for a given initial cell mass to double is controlled by the parameter
µ (see eqn 6.9). There is a sensitive relation between µ and the [cycB ] threshold
that signals when the cell mass is halved (see caption of Fig. 6.12). By performing
computer simulations similar to those of Fig. 6.12, find another pair of values for
µ and [cycB ] threshold that gives periodic oscillations.
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Cell-cycle control

Signalling pathways are said to control the cell-cycle engine discussed in the preceding
chapter by regulating transitions between phases in the cell cycle. These are transitions
where putative decisions are made such as initiating DNA replication (entry into S
phase) or segregating duplicated chromosomes (entry into M phase). The mechanisms
for regulating these transitions involve the so-called cell-cycle checkpoints. Modelling
of a G1 checkpoint called the restriction point in mammalian cells is illustrated in
detail in this chapter; it is a checkpoint where a cell’s commitment to DNA replication
is made. Also discussed is a G2 checkpoint that prevents cell-cycle progression into
mitosis when, for example, DNA damage is not repaired. The segregation of sister
chromatids at anaphase is guarded by the so-called metaphase checkpoint (also called
the mitotic spindle checkpoint); it checks that all the chromosomes are aligned on the
metaphase plate prior to anaphase.

7.1 Cell-cycle checkpoints

Cell-cycle checkpoints are points in the cell cycle where decisions are made whether
cell-cycle progression continues or halts. The ‘point’ in checkpoint is a source of
confusion in the literature. Intuitively, a cell-cycle checkpoint involves a surveillance
mechanism that somehow checks whether the requirements for progression to the next
cell-cycle phase are satisfied and, if not, a mechanism is triggered to arrest the process.
These checkpoints are classified as either ‘intrinsic’ or ‘extrinsic’ (Elledge, 1996). To
illustrate, Fig. 7.1(a) shows two sequences of cell-cycle events arising from ‘a’, namely,
a→b→c and a→d→e. The pathway with a hammerhead (indicating inhibition) and
the lifting of this inhibition by ‘c’ is an example of an intrinsic checkpoint mechanism;
it ensures that event ‘e’ does not occur before ‘c’. The pathway labelled ‘extrinsic’
in Fig. 7.1(a) representing, for example, a signal from DNA damage is an extrinsic
checkpoint pathway that arrests the cell cycle at the indicated point.

In Fig. 7.1(b), examples of the major cell-cycle checkpoints are shown. The DNA
replication and the spindle assembly checkpoints are examples of intrinsic check-
points – the first ensures that the G2→M transition (prophase) is blocked until all
the DNA are replicated, while the second prevents the metaphase→anaphase tran-
sition until all of the sister chromatids are aligned properly at the metaphase plate.
Extrinsic DNA damage checkpoints are shown in the figure as operating at the G1→S
and G2→M transitions as well as during S phase. Cell-cycle progression is arrested at
these points presumably to give DNA damage-repair programs time to act. The G1
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Fig. 7.1 (a) Illustration of intrinsic and extrinsic checkpoints. (b) Cell-cycle checkpoints:
Restriction point (R pt), DNA damage checkpoints, DNA replication checkpoint, and spindle
assembly checkpoint. Figures are redrawn from Elledge (1996).

and G2 checkpoints, in addition to their role of checking the integrity of the DNA,
also ensure that the cell has grown to the appropriate size and has enough nutrients
to carry out the next cell-cycle phase.

7.2 The restriction point

There are at least nine CDKs and at least twenty cyclins involved in the mammalian
cell cycle. A typical temporal pattern in the activities of some of the major cyclin/CDK
complexes is shown in Fig. 7.2.

As shown in Fig. 7.2(a), the major cyclins belong to types A, B, D, and E. The
D-type cyclins are often referred to as ‘growth-factor sensors’ because their expression
is upregulated in response to growth factors. These cyclins specifically bind CDK4
and CDK6. The activity of cyclin E/CDK2 increases just before S phase and declines
in S phase. CyclinA/CDK2 activity increases progressively during S-G2. The rapid
increase in cyclin B/CDK1 activity occurs during the G2-M transition and a sharp
drop is required for exit from mitosis.

The G1 checkpoint is referred to as the restriction point (or R point) in mammalian
cells, and is said to be a ‘commitment point’ for DNA replication. Quiescent cells
exposed to growth factors for at least a minimum amount of time are committed to
enter S phase – in other words, withdrawal of growth factors after this minimum time
does not stop DNA replication, but withdrawal before this time does. As an operational
definition, the R point is the point in time after which withdrawal of growth factors
does not stop entry into S phase. (The R point is analogous to the Start transition in
yeast discussed in the preceding chapter.)
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Fig. 7.2 (a) Major cyclin/CDK complexes and where their peak activities occur during the
mammalian cell cycle. R indicates the position of the ‘restriction point’ in mid- to late-
G1. (b) Temporal variation of the cyclin/CDK activities during the mammalian cell cycle.
Figure 7.2(b) is redrawn from Pines (1999).

The experimental determination of the position of the R point is shown schemati-
cally in Fig. 7.3. The accumulation of cyclin E protein and the concomitant activation
of CDK2 are the molecular markers for S-phase entry. It has been demonstrated exper-
imentally that the position of the R point in mammals is located between 3 and 4 h
after the previous mitosis (Pardee, 1974). Note that cyclin E levels are very low (if
not absent) immediately after the R point. Also, interestingly, most of the cyclin E
protein is degraded within 1–2 h after S-phase entry.

The control of the R point is of medical interest because of the fact that almost
all known human cancers involve malfunctions of this checkpoint. In the next section,
the complex regulatory network of the G1–S transition in mammalian cells will be
presented and an approach to extracting a model of the R point will be discussed.

7.3 Modelling the restriction point

7.3.1 The G1–S regulatory network

A model network of the G1–S transition in mammalian cells is shown in Fig. 7.4.
S-phase entry is induced by growth factor (GF)-mediated signalling pathways that
lead to the activation of the pre-replication complex (pre-RC) – a group of proteins
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10 h) associated with the accumulation of cyclin E (symbolized as E in the figure). Upon
entry into S phase, most of the cyclin E protein is degraded within 1–2 h. Figure is adapted
from Ekholm et al. (2001).
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the G1–S transition of the mammalian cell cycle. See text for discussion. The pre-RC forms
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growth factors, pRb = retinoblastoma protein, ORC = origin recognition complex. Arrows
mean ‘activate’, and hammerheads mean ‘inhibit’. Dashed arrows symbolize gene expression.
Solid lines are post-translational modifications.

that possesses enzymatic activity for unzipping the DNA duplex at the origins of
replication, the key first step in DNA replication.

In quiescent cells, S-phase is blocked by the retinoblastoma protein (pRb) by bind-
ing and inhibiting the E2F/DP transcription factors. The E2Fs form heterodimers
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with DP proteins, and together they induce expression of many genes (some of which
are shown by the dashed arrows in Fig. 7.4) that promote S-phase entry; these genes
include cyclin E, cyclin A, the phosphatase Cdc25A, and proteins involved in the for-
mation or activation of the pre-RC (e.g. Cdc6 and Cdc7). In addition to pRb, various
CDK inhibitors (CKIs) reinforce the quiescent state. These proteins belong to either
the Cip/Kip or the INK4 families; p27Kip1 (shown in Fig. 7.4) is an example of the
first family, and p16INK4A is an example of the second. Another significant transcrip-
tion factor that induces S-phase entry is c-Myc; as shown in Fig. 7.4, c-Myc shares
common transcriptional targets with the E2Fs.

Growth factors stimulate signalling pathways that upregulate the synthesis of D-
type cyclins. These cyclins bind and activate CDK4 or CDK6. These so-called G1
CDKs phosphorylate and inactivate pRb, thereby allowing the expression of S-phase
genes including cyclins E and A; these cyclins activate CDK2 that further phospho-
rylates and inactivates pRb. Positive-feedback loops are thus created that accelerate
the inactivation of pRb, freeing up E2F/DP to induce expression of S-phase genes.
The inhibitory action of cyclin A/CDK2 against the E2F/DP transcription factors
(by phosphorylation of the latter) and on the pre-RC have been suggested as possi-
ble mechanisms for ensuring that the chromosomes are replicated only once per cell
cycle.

Since cyclin E/CDK2 activation is considered to be the marker for S-phase entry
(see Fig. 7.3), its regulation is the focus of modelling the R point. Besides its pRb-
mediated transcriptional repression, cyclin E/CDK2 is also inhibited by p27Kip1 (in
fact, a mutual antagonism exists – see the interactions numbered 8 and 9 in Fig. 7.4).
This CKI forms inactive trimers with cyclin E/CDK2, and CDK2 phosphorylates
p27Kip1 leading to the latter’s degradation.

Another protein that regulates cyclin E/CDK2 activity is the phosphatase Cdc25A.
Just like the autocatalytic activation of MPF in the G2-M transition discussed in the
previous chapter, a positive-feedback loop between Cdc25A and CDK2 exists (see
interactions numbered 6 and 7 in Fig. 7.4). Cdc25A activates CDK2 by removing an
inhibitory phosphate and, in return, CDK2 activates Cdc25A by phosphorylation.

7.3.2 A switching module

To begin to understand the kinetic origin of the R point, one investigates the G1–S
network for possible sources of switching behavior. The subnetwork shown in Fig. 7.5
represents a good candidate mechanism that can explain the origin of the switching
behavior of cyclin E/CDK2 at the G1–S transition. Mechanistic details of the qual-
itative interactions depicted in Fig. 7.5(a) are given in Fig. 7.5(b). Note that there
are two positively coupled phosphorylation-dephosphorylation (PD) cycles involving
cyclin E/CDK2 and Cdc25A. Many coupled PD cycles are present in the regulation of
cell-cycle events (PD networks are also referred to as kinase–phosphatase networks).

Regardless of the kinetics of the positively coupled PD cycles involving CDK2
and Cdc25A, one can show that a switching behavior occurs for some parameter
values (Aguda, 1999a). This switching behavior is due to a transcritical bifurcation,
as explained in Fig. 7.6.
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Fig. 7.5 (a) A subnetwork involving CDK2 and its regulators, the CKI called p27 and
the phosphatase Cdc25A. (b) The same subnetwork as in (a) with known details of the
mechanism. Active cyclin E/CDK2 (aCycE/CDK2) is inhibited by p27 by trimer formation,
and aCycE/CDK2 phosphorylates p27 inducing the latter’s degradation. Inactive cyclin E/
CDK2 (iCycE/CDK2) is activated by active phosphatase aCdc25A that is activated in return
by aCycE/CDK2 (by phosphorylation).

Using the mass-action kinetic equations given in the caption of Fig. 7.6, one can
show that the transcritical bifurcation point is given by the following relationship:

(E1E2)∗ =
(
k1r

k1f

) (
k2r

k2f

)
(7.1)

As illustrated in Fig. 7.6(c), the steady states of Y1 and Y2 both become positive only if
E1E2 > (E1E2)*. Applying this result to the coupled cycles involving cyclin E/CDK2
and Cdc25A, one can claim that the total protein levels (active plus inactive) of cyclin
E/CDK2 and Cdc25A must increase in order for the activities of CDK2 and Cdc25A
to turn on (become positive). Importantly, coupling the CDK2-Cdc25A switch with
CDK2-p27 mutual antagonism (see Fig. 7.6) generates a sharp switching dynamics for
the activation of cyclin E/CDK2. The module shown in Fig. 7.6 is the ultimate origin
of the switching behavior of cyclin E/CDK2 in the R point model of Aguda and Tang
(1999).

7.4 The G2 DNA damage checkpoint

A switching module with a structure similar to Fig. 7.6(a) can be found in the G2-M
regulatory network of the mammalian cell cycle; this is shown in the bottom layer of
Fig. 7.7 and consists of Wee1, MPF, and Cdc25C. The so-called ‘G2 DNA damage



102 Cell-cycle control

X1 Y1

1f

1r

Y2 X2

2r

2f

Y2
ss

Y1
ss

Y2
ss

E2

E1

s

s

u
0

0

(a)

(c)

(b)

Fig. 7.6 (a) Two positively coupled cyclic reactions. The reaction rates are: v1f =
k1f [X1][Y2], v1r = k1r[Y1], v2f = k2f [X2][Y1], v2r = k2r[Y2]. A set of two independent kinetic
equations are: d[Y1]/dt = v1f – v1r, d[Y2]/dt = v2f – v2r with [X1] = E1 – [Y1] and [X2] =
[E2] – [Y2], where E1 and E2 are constants. [Y1]ss and [Y2]ss are steady-state concentrations
of Y1 and Y2, respectively. For graphs (b) and (c), solid curves are locally stable steady states
(s) and dotted lines are unstable steady states (u). Superscript ss means ‘steady state’.

checkpoint’ (G2DDC) system shown in Fig. 7.7 involves signalling pathways emanating
from sensors of DNA damage and ending at the Wee1-MPF-Cdc25C module. Only the
essential features of the operation of the G2DDC will be discussed here (mechanistic
details can be found in Aguda (1999b)).

Recall that MPF is identical to cyclin B/CDK1. Some mechanistic details of the
mutual antagonism between Wee1 and MPF, and the mutual activation between
Cdc25C and MPF, are shown in Fig. 7.8. The positive-feedback loop between MPF
and Cdc25C is similar to the interaction between cyclin E/CDK2 and Cdc25A shown
in Fig. 7.5(b). However, the mutual antagonism between Wee1 and MPF is different
from the mutual antagonism between p27Kip1 and CDK2, as shown in the upper half
of Fig. 7.8.

The nature of the instability of the MPF-Cdc25C module in the G2DDC is similar
to that of the CDK2-Cdc25A module in the R point; both checkpoints exhibit trans-
critical bifurcation when the protein levels cross the values according to eqn 7.1. The
Wee1-MPF-Cdc25C module in the G2DDC system is expected to generate a sharp
switching behavior similar to the one generated by the p27Kip1-CDK2-Cdc25A mod-
ule in the R point network (see Fig. 7.5(a)); indeed, this sharp switch is demonstrated
by the computer simulations shown in Fig. 7.9. Note that the activities of Cdc25 and
MPF become positive at the same time – a hallmark of a transcritical bifurcation in
positively coupled cyclic reactions (see Fig. 7.6(c)).
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MPF Cdc25CWee1

Mitosis

Fig. 7.7 DNA-damage-signalling pathways via the kinase Chk1 and the tumor-suppressor
protein p53. Arrows mean activate or upregulate, and hammerheads mean inhibit or down-
regulate. Wee1 is a tyrosine kinase and Cdc25C is a phosphatase. Figure adapted from Aguda
(1999b).

preMPF MPF

Wee1 Wee1-P

Cdc25C-P Cdc25C

Fig. 7.8 Coupled phosphorylation–dephosphorylation cycles involving MPF (cyclin B/
CDK1), Wee1, and Cdc25C. The network corresponds to the lower part of Fig. 7.7 showing
the mutual antagonism between Wee1 and MPF, and the mutual activation between Cdc25C
and MPF. Figure adapted from Aguda (1999a).

Recently, the DNA-damage-signalling pathways that arrest the cell cycle in G1 have
been elucidated. A summary of these pathways is given in Fig. 7.10. From a comparison
between Figs. 7.7 and 7.10, one may suggest the conclusion that DNA damage-
checkpoint-signalling pathways target the cell-cycle-specific CDK-Cdc25 couple that
possesses an intrinsic instability (transcritical bifurcation) that enables checkpoint
signalling to switch cell-cycle progression on or off.
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Fig. 7.9 Computer simulations using the detailed G2 DNA-damage-checkpoint model of
Aguda (1999b). Figure reproduced with permission from Aguda (1999b). Copyright 1999
National Academy of Sciences, USA.
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Fig. 7.10 G1 DNA-damage-checkpoint pathways (Bartek and Lukas, 2001). Compare with
the G2 DNA-damage pathways shown in Fig. 7.7.

7.5 The mitotic spindle checkpoint

After DNA replication in S phase, the chromosomes condense and the sister chromatids
are drawn to the midplane between the centrosomes in preparation for anaphase (see
Fig. 6.2). Spindle fibers (microtubules) emanating from the polar centrosomes elongate
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Fig. 7.11 Sister chromatids, or replicated chromosomes still glued together by cohesins
(small grey rectangles) at metaphase. Microtubules target the kinetochores of chromosomes
prior to anaphase.

and target the kinetochores of the chromosomes for attachment (Fig. 7.11). The mitotic
spindle checkpoint prevents anaphase until all of the chromatids are properly aligned
at the metaphase plane. Note that a single unattached kinetochore is sufficient to
arrest mitosis; it has been estimated that up to a quarter of the total kinetochore
attachment time can be devoted to capturing the last kinetochore before anaphase
commences.

The biochemical control of anaphase is summarized in Fig. 7.12. Anaphase is trig-
gered by a cascade of inhibitory interactions initiated by the activation of APC/Cdc20
(see preceding chapter for discussion of this enzyme complex). The proteins called
cohesin that glue sister chromatids together are degraded by the enzyme separase
whose protease activity is inhibited by a protein called securin; the latter is a direct
target of inhibition by APC/Cdc20. It is believed that the spindle checkpoint acts by
inhibiting APC/Cdc20, but the details of how the checkpoint operates are still unclear.
Extensive biochemical studies with budding yeast have demonstrated that a protein
complex, called the mitotic checkpoint complex (MCC), forms at an unattached kine-
tochore. Components of the MCC include the proteins Mad2, Mad3/BubR1, Bub3,
and Cdc20. Thus, the MCC competes against the APC for Cdc20, and this compe-
tition has been suggested as a possible mechanism of APC inhibition by the MCC.
Another hypothesis emphasizes the role of some mechanical signalling via the lack of
spindle tension due to an unattached kinetochore.
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Fig. 7.12 The series of inhibitory interactions believed to occur from the ‘spindle checkpoint’
to the prevention of anaphase.

Starting with the assumption that the checkpoint signal originates from the last
unattached kinetochore, Doncic et al. (2006) tested various models against two criteria
for satisfactory checkpoint function, namely, (1) the ability of a single unattached
kinetochore to keep APC/Cdc20 activity low throughout the nucleus, and (2) rapid
increase in APC/Cdc20 activity after the last kinetochore is attached to microtubules.
A satisfactory checkpoint model must take into account the physical dimensions of the
cell and offer a mechanism for propagating the anaphase-inhibitory signal from a single
unattached kinetochore to the entire chromosome assembly. In addition, experimental
observations have shown that the anaphase signal must be activated within a short
time after the final kinetochore is attached.

Among the models investigated by Doncic et al. (2006), the so-called ‘emitted inhi-
bition model’ satisfies the criteria for satisfactory spindle-checkpoint function. This
model assumes a molecular species that is activated only at the unattached kine-
tochore, and that once this molecule is activated, it can catalyze the inhibition of
APC everywhere in the nucleus. At this time, the identity of the molecular species
that is activated specifically at the unattached kinetochore is a matter of speculation.
However, the analysis of Doncic et al. (2006) illustrates the impact that spatial and
temporal constraints have on the design of the mitotic-spindle-checkpoint mechanism.
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Exercises

1. Consider the differential equations for [Y1] and [Y2] described in the caption of
Fig. 7.6. (For simplicity, use the symbols y1 and y2 for these concentrations, respec-
tively.) Show that the non-zero steady-state concentrations ys1 and ys2 are explicitly
given by

ys1 =
E1E2 − c1c2

E2 + c1
, ys2 =

E1E2 − c1c2

E1 + c2
, where ci =

kir
kif

(i = 1, 2) and E1E2 > c1c2.

Show also that transcritical bifurcation occurs at parameters that satisfy E1E2 =
c1c2, and that the non-zero steady states are linearly stable.

2. As in Exercise 1, consider the system in Fig. 7.6(a) but now with Michaelis–Menten
kinetics for v1f and v2f :

v1f =
k1fy2x1

KM1 + x1
, v2f =

k2fy1x2

KM2 + x2
.

Does transcritical bifurcation occur? If it does, find the expression for the parame-
ters where this type of bifurcation occurs, and determine the linear stability of the
steady-state branches before and after they cross at the bifurcation point.

3. Using mass-action kinetics (as in the caption of Fig. 7.6), write down the differential
equations for the network shown in Fig. 7.8 (Use the concentrations of Wee1, MPF,
and Cdc25-P as independent variables.) Find the steady states of the network
and determine their stability. Does a bifurcation occur in this system? If it does,
determine the type of bifurcation and the expression for the parameters where this
bifurcation occurs.
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Cell death

Cells divide and differentiate to form various tissues and organs in the development
of a multicellular organism. Along the way, some cells are destined or ‘programmed’
to die, perhaps according to an architectural blueprint of the adult. Apoptosis is the
name given to this programmed cell death. Many of the essential genes, proteins,
and molecular pathways regulating apoptosis are now known, and several mathe-
matical models of these pathways have been proposed. This chapter will introduce
the biological manifestations of apoptosis and gives an overview of the regulatory
biochemical pathways. These pathways are classified as either intrinsic or extrin-
sic – the former being mediated by the mitochondria, and the latter by so-called
death ligands. Kinetic models of these pathways are presented in this chapter. It
is also increasingly recognized that apoptosis is the same mechanism that cells
employ to eliminate cells with irreparably damaged DNA. Indeed, abnormalities in
the regulation of apoptosis have been implicated in the origins of various human
diseases.

8.1 Background on the biology of apoptosis

Cells die either by necrosis or by apoptosis; the former could be due to acute tissue
injury leading to a messy death (Fig 8.1(a)), while the latter is a relatively ‘clean’
or orderly death (Fig 8.1(b)). In necrosis, the cell spills its contents and often elicits
inflammatory responses. Apoptosis was first discovered in the context of develop-
ment – for example, cells in a tadpole’s tail disappear as the animal matures. Because
certain cells are destined to die during development, apoptosis is often referred to
as ‘programmed cell death.’ In the past few years, it has been increasingly recog-
nized that apoptosis plays a key role in many human malignancies, including cancer,
neurodegenerative disorders and autoimmune diseases. In certain tumors, cells with
excessive DNA damage are supposed to die but do not do so because of faulty apoptosis
machinery.

The word ‘apoptosis’ comes from the Greek word for ‘falling off’ or ‘dropping
off’ as leaves falling from a tree. Its manifestations as observed under the microscope
are: cell shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing,
collapse of the nucleus, disintegration of the cell into apoptotic bodies, and final lysis
of apoptotic bodies.
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(a) (b) 10µm

Fig. 8.1 Cell death by (a) necrosis and (b) apoptosis. (Pictures courtesy of Julia F. Burne).

8.2 Intrinsic and extrinsic caspase pathways

Central to the apoptotic molecular machinery is a group of proteases called caspases
(acronym for cysteine-containing aspartic-acid specific proteases). Proteases are
enzymes that catalyze the degradation of cellular proteins. Caspases induce cell
death by cleaving cellular proteins such as nuclear lamins (building blocks of nuclear
architecture), DNA repair enzymes, and various cytoskeletal proteins.

The general pathways for caspase-dependent apoptosis are conserved across many
species. At least 14 different caspases have been identified so far (Philchenkov, 2004).
Caspases are classified into two groups, namely, initiator caspases and effector
(or executioner) caspases. Initiator caspases are the first to be activated upon a
cell’s exposure to death signals; the initiator caspases are said to be ‘upstream’ of
effector caspases in a cascade of caspase activation. Certain thresholds of activity of
effector caspases are required for the death sentence of cells. Caspase-8 and caspase-9
are examples of initiator caspases. Caspase-3, caspase-6, and caspase-7 are examples
of executioner caspases. The inactive precursors of these caspases, called procaspases,
are constitutively expressed by animal cells; their activation requires cleavage and
association of the cleaved fragments to form the active site of the caspase (depicted in
Figure 8.2). The active caspase enzyme is believed to be a tetramer of 2 large subunits
and 2 small subunits (there is still controversy as to whether the dimer also possesses
caspase activity). Procaspase-8 molecules when brought together have been observed
to possess weak protease activities that may initiate a caspase-activation cascade.

Activation of effector caspases can be induced by pathways classified as ‘extrin-
sic’ (also called membrane receptor-mediated pathway) or ‘intrinsic’ (also called the
mitochondria-mediated pathway). Caspase-8 and caspase-9 are initiator caspases of
the extrinsic and intrinsic pathways, respectively. The pathways are depicted in
Fig 8.3.
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Fig. 8.2 Schematic diagram of the activation of a procaspase through cleavages that separate
the prodomain, large and small subunits of the procaspase. An active caspase is shown to
catalyze these cleavage reactions. Figure redrawn from Alberts et al. (2002).
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Fig. 8.3 A schematic representation of the extrinsic and intrinsic pathways of caspase-
mediated apoptosis. DISC = death-inducing signalling complex. The apoptosome is composed
of cytochrome c and a heptamer of Apaf-1. The picture of the apoptosome is from Beere
(2005). Copyright 2005 American Society for Clinical Investigation.
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In Fig 8.3, the extrinsic pathway begins with the formation of the DISC complex.
DISC is the acronym for ‘death-inducing signaling complex’. It is a protein complex
formed when an extracellular ligand (e.g. the homotrimeric Fas ligand) binds to mem-
brane receptors, followed by the recruitment of a protein called FADD that acts as
an ‘adaptor’ for procaspase-8 molecules. The colocalization of several procaspase-8
molecules at the DISC initiates activation of caspase-8. One of the models to be dis-
cussed in this chapter (in Section 8.4) focuses on the formation of DISC and activation
of caspase-8.

The intrinsic pathway is initiated by a variety of intracellular stresses, includ-
ing DNA damage, oxidative stress, and ischemia. These disturbances lead to the
permeabilization of the outer mitochondrial membrane and release of cytochrome c,
SMAC/Diablo, and other proapoptotic molecules. The complex labelled ‘apoptosome’
in Fig 8.3 is composed of a heptamer of Apaf-1 (apoptotic protease-activating factor)
proteins, along with bound ATP and cytochrome c molecules. Procaspase-9 molecules
are then ‘recruited’ to the apoptosome to generate active caspase-9. As shown by the
arrow from caspase-8 to the arrow from mitochondria, the extrinsic pathway can also
enhance the intrinsic pathway. The details in the regulation of the activities of the
initiator and effector caspases will be discussed in the mathematical models below.

8.3 A bistable model for caspase-3 activation

The model proposed by Eissing et al. (2004) – hereafter referred to as the Eissing
model – focuses on the extrinsic apoptotic pathway. The model considers a small
number of steps that generates bistability. As discussed in Chapter 3, bistability is
characterized by having two locally stable steady states that coexist for some fixed
parameter values. The molecular processes involved in the Eissing model are shown in
Figure 8.4 Important structural features of the network include the positive-feedback
loop between caspase-8 and caspase-3, the mutual inhibition between caspase-3 and
the protein IAP (inhibitor of apoptosis), and the inhibition of caspase-8 by the protein
BAR. Note that the aforementioned mutual inhibition is also considered as a positive-
feedback loop.

The individual reaction steps in the Eissing model are as follows (numbers above
the arrows are labels matching those of Fig. 8.4; a negative label is for the reverse
reaction):

C8∗ + C3 1−→ C8∗ + C3∗

C8 + C3∗ 2−→ C8∗ + C3∗

C3∗ + IAP
3,−3←→ iC3∗ ∼ IAP

C3∗ + IAP 4−→ C3∗

C8∗ 5−→
C3∗ 6−→

iC3∗ ∼ IAP 7−→
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Fig. 8.4 The model of Eissing et al. (2004). A dashed arrow means catalysis of the step that
the arrow points to. See text for details.

IAP
8,−8←→

C8
9,−9←→

C3
10,−10←−−−−→

C8∗ + BAR
11,−11←−−−−→ iC8∗ ∼ BAR

BAR
12,−12←−−−−→

iC8∗ ∼ BAR 13−→

When the right-hand side of the reaction arrow is blank (as in steps 5–10 and 12–13),
it means that the protein is being degraded; steps (–8), (–9), (–10), and (–12) mean
that constant rate of production of the protein is assumed. The rates of the individual
reactions are given in Table 8.1. Each reversible reaction is written as two one-way
reactions, each with its own rate expression. Note that mass-action kinetics is assumed
for all rate expressions in Table 8.1

The dynamical equations for the Eissing model are listed in eqn 8.1 ([X] means
‘concentration of X’; the expressions for the vis are given in Table 8.1).

d[C8]
dt

= v−9 − (v9 + v2)

d[C8∗]
dt

= (v2 + v−11) − (v5 + v11)
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Table 8.1 Expressions for the reaction rates (vi) and values
of the kinetic parameters (kj) in the model of Eissing et al.
(2004).

Reaction rates, vi Parameter values, kj

v1 = k1 [C8*][C3] k1 = 5.8 × 105 M−1s−1

v2 = k2[C3*][C8] k2 = 105 M−1s−1

v3 = k3[C3*][IAP] k3 = 5 × 106 M−1s−1

v−3 = k−3[iC3* ∼ IAP] k−3 = 0.035 s−1

v4 = k4[C3*][IAP] k4 = 3 × 106 M−1s−1

v5 = k5[C8*] k5 = 5.8 × 10−3 min−1

v6 = k6[C3*] k6 = 5.8 × 10−3 min−1

v7 = k7[iC3* ∼ IAP] k7 = 1.73 × 10−2 min−1

v8 = k8[IAP] k8 = 1.16 × 10−2 min−1

v−8 = k−8 k−8 = 1.3 × 10−11 M s−1

v9 = k9[C8] k9 = 3.9 × 10−3 min−1

v−9 = k−9 k−9 = 1.4 × 10−11 M s−1

v10 = k10[C3] k10 = 3.9 × 10−3 min−1

v−10 = k−10 k−10 = 2.3× 10−12 M s−1

v11 = k11[C8*][BAR] k11 = 5 × 106 M−1s−1

v−11 = k−11[iC8*∼BAR] k−11 = 0.035 s−1

v12 = k12[BAR] k12 = 10−3 min−1

v−12 = k−12 k−12 = 1.1 × 10−12 Ms−1

v13 = k13[iC8* ∼BAR] k13 = 60 min−1

d[C3]
dt

= v−10 − (v1 + v10)

d[C3∗]
dt

= (v1 + v−3) − (v3 + v6)

d[IAP]
dt

= (v−3 + v−8) − (v3 + v8 + v4) (8.1)

d[iC3∗ ∼ IAP]
dt

= v3 − (v−3 + v7)

d[BAR]
dt

= (v−11 + v−12) − (v11 + v12)

d[iC8∗ ∼ BAR]
dt

= v11 − (v−11 + v13).

Equations (8.1) are solved to generate the plots in Fig. 8.5 that show the sys-
tem switching from a state with low caspase-3 (‘alive’ state) activity to a state
with high activity (‘dead’ state). A steady-state bifurcation diagram can also be
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Fig. 8.5 Dynamics of active caspase-3 (C3*) for various initial values of active caspase-8
(C8*). Equations (8.1) and parameters in Table 8.1 are used in the computer simulations.
Figure is reproduced with permission (Eissing et al., 2004).
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Fig. 8.6 The distribution of cells (density) according to input C8* shown in (a) gives rise to
the slow C3* kinetics of the cell population shown in (b) when the dynamics of C3* activation
(determined as in Fig. 8.5) is averaged over the population. Figures are reproduced with
permission (Eissing et al., 2004).

constructed to show the existence of bistability for some sets of parameter values (see
Exercise 1).

Figure 8.5 shows that when the initial C8* value is less than a certain threshold,
the system attains the state ‘alive’ (i.e. [C3*] remains close to zero); above this thres-
hold, and after a pronounced time lag (which increases as initial C8* decreases), the
system rapidly switches to the ‘dead’ state (high [C3*] state). These time lags and the
fast kinetics of caspase-3 activation in single cells have been observed in laboratory
experiments. Such fast kinetics is not observed in populations of cells that are known
to be undergoing apoptosis. It could take 30 min to a few hours for caspase activation
at the population level, while it could take less than 15 min at the single-cell level.
These observations are accounted for by the Eissing model, as illustrated in Fig. 8.6.
The population kinetics (average [C3*] versus time) shown in Fig. 8.6(b) can be
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generated by the cell number density profile shown in Fig. 8.6(a) as a function of
initial number of C8* molecules per cell. This non-uniformity of initial number of C8*
molecules can be rationalized by differences in expression levels of death receptors
and/or of inhibitor proteins such as BAR in individual cells.

8.4 DISC formation and caspase-8 activation

Figure 8.3 shows the formation of DISC (death-inducing signalling complex) as a pre-
requisite for the activation of the initiator caspase-8. Lai and Jackson (2004) analyzed
a detailed mechanistic model that involves binding of extracellular ‘death ligands’ to
membrane receptors (also called ‘death receptors’), followed by a sequence of protein–
protein interactions, and culminating in the recruitment of procaspase-8 molecules.
Procaspase-8 molecules are known to possess weak protease activity and their co-loc-
alization at the DISC is believed to be sufficient for initiating a cascade of caspase
activation. Families of death ligands and receptors have been identified. One of the
most studied and understood ligand–receptor combinations is FasL/Fas. FasL is a
homotrimeric ligand that binds to the Fas membrane receptor. Fas, also called CD95
or Apo1, is a member of the TNF (tumor necrosis factor) gene superfamily. The aim of
the Lai–Jackson model is to understand the consequences of the ‘multivalency’ of FasL
(i.e. this ligand’s ability to bind up to three receptors at a time) on the kinetics of DISC
formation and subsequent activation of caspase-8. The details of the model (with a few
modifications of the original Lai–Jackson model) are given in Fig. 8.7 and Table 8.2.

To write the dynamical equation for a species shown in Fig. 8.7, one adds all the
rates of incoming steps and subtracts the rates of all outgoing steps. The full system
of equations is given below (the symbol for the concentration of a molecular species is
identical to its symbol shown in Fig. 8.7 and Table 8.2):

dL
dt

= v−1 − v1

dR
dt

= (v−1 + v−2 + v−3) − (v1 + v2 + v3)

dC1

dt
= (v1 + v−2) − (v−1 + v2)

dC2

dt
= (v2 + v−3 + v−4) − (v−2 + v3 + v4)

dC3

dt
= (v3 + v−5) − (v−3 + v5)

dD21

dt
= (v4 + v−8 + v−6) − (v−4 + v8 + v6)

dD22

dt
= (v6 + v−10 + v14) − (v−6 + v10)
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Fig. 8.7 The Lai–Jackson model. Horizontal grey bar represents the cell membrane. L =
ligand, R = membrane receptor, F = FADD, P = procaspase-8, E = executioner caspase.

dD31

dt
= (v5 + v−7 + v−9) − (v−5 + v7 + v9)

dD32

dt
= (v7 + v−11 + v15) − (v−7 + v11)

dN11

dt
= v8 − v−8 (8.2)

dM21

dt
= (v10 + v−12) − (v−10 + v12)

dM22

dt
= v12 − (v−12 + v14)

dN ′
11

dt
= v9 − v−9

dM ′
21

dt
= (v11 + v−13) − (v−11 + v13)



DISC formation and caspase-8 activation 117

Table 8.2 Parameters of the Lai–Jackson model. The sym-
bols for the concentrations of the various molecular species are
identical to their symbols shown in Fig. 8.7

Reaction rates, vi

Correspondence of parameter
values, kj , (left column
of this table) and
parameter symbols (in bold)
used by Lai and Jackson (2004)

v1 = k1LR k1 = 3kf

v−1 = k−1C1 k−1 = k r

v2 = k2C1R k2 = 2kx

v−2 = k−2C2 k−2 = 2k−x

v3 = k3C2R k3 = kx

v−3 = k−3C3 k−3 = 3k −x

v4 = k4C2F k4 = 2kf

v−4 = k−4D21 k−4 = k−1

v5 = k5C3F k5 = k4

v−5 = k−5D31 k−5 = k−4

v6 = k6D21F k6 = k3

v−6 = k−6D22 k−6 = k−2

v7 = k7D31F k7 = k6

v−7 = k−7D32 k−7 = k−6

v8 = k8D21P k8 = kp

v−8 = k−8N11 k−8 = k−p

v9 = k9D31P k9 = k8

v−9 = k−9N’11 k−9 = k−8

v10 = k10D22P k10 = k8

v−10 = k−10M21 k−10 = k−8

v11 = k11D32P k11 = k8

v−11 = k−11M’21 k−11 = k−8

v12 = k12M21P k12 = k c

v−12 = k−12 M22 k−12 = k−c

v13 = k13M’21P k13 = k12

v−13 = k−13M’22 k−13 = k−12

v14 = k14M22 k14 = ka

v15 = k15M’22 k15 = k14

v16 = k16P2 k16 = k̄a
v17 = k17 k17
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dM ′
22

dt
= v13 − (v−13 + v15)

dF
dt

= (v−4 + v−6 + v−5 + v−7) − (v4 + v6 + v5 + v7)

dP
dt

= (v17 + v−8 + v−10 + v−12 + v−9 + v−11 + v−13)

− (2v16 + v8 + v10 + v12 + v9 + v11 + v13)

dE
dt

= 2v14 + 2v15 + 2v16.

As can be deduced from Fig. 8.7, the system of eqn 8.2 is subject to several conser-
vation constraints: the total concentration of all ligand-containing species is a constant
(L0), the total concentration of all receptor-containing species is a constant (RT ), and
the total concentration of all FADD-containing species is a constant (FT ).

Strictly speaking, reversible transitions between D21 and D31, between D22 and
D32, between N11 and M21, and between N’11 and M’21, should be included in a more
complete model; however, the discussion below will be restricted to the steps shown
in Fig. 8.7 and eqn 8.2.

Consider the L-R-C1-C2-C3 subsystem with only the following rates: v1, v−1,
v2, v−2, v3, and v−3 (see Table 8.2). As depicted in Fig. 8.7, only clustered receptors (at
least two) can propagate the ‘death signal’ through their ability to recruit the adaptor
protein FADD; the latter has protein structural domains called ‘death domains’ that
bind to complementary death domains present in the cytoplasmic portion of the Fas
receptor. Since ligand–receptor interactions are fast, the L-R-C1-C2-C3 subsystem is
assumed to reach steady state quickly compared to the events after receptor cluster-
ing. The steady states of L,R,C1, C2, and C3 can be determined by equating to zero
all the right-hand sides of the corresponding equations in eqn 8.2, and taking into
account the conservation constraints on the total ligand (L0) and total receptor (RT )
concentrations (see Exercise 2).

The total number of clustered pairs of Fas receptors, CXT , is used to monitor the
intensity of the death signal (Lai and Jackson refers to CXT as the total number of
receptor cross-links); it is defined as follows:

CXT = C2,eq + 2C3,eq, (8.3)

where C2,eq and C3,eq are the steady-state (equilibrium) values of C2 and C3, respec-
tively. Plots of CXT versus L0 (for a fixed RT ) show how the death signal varies as a
function of total ligand concentration. As Fig. 8.8 shows, for a given RT (i.e. fixed κ
in the figure), a plot of CXT has a maximum at a unique value L0,max; the maximum
CXT value increases (while the corresponding L0,max decreases) as RT (or κ) increases.
The plots in Fig. 8.8 also show that if there is a threshold value of CXT (e.g. shown as
CXT,min in the figure) below which no death signal is propagated, then this threshold
requires that there is a corresponding minimum value κmin (equivalently, RT,min for
death signal propagation. For κ > κmin, only ligand concentrations within a certain
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Figure reproduced with permission from Lai and Jackson (2004).
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FADD concentration. Figures reproduced with permission from Lai and Jackson (2004).

range will successfully propagate the death-signal; the smaller (κ –κmin) is, the nar-
rower this range will be. The assumption that there exists a CXT,min implies that the
apoptosis threshold can be controlled at a stage upstream of the caspase cascade.

Figure 8.9(a) shows the dynamics of activation of caspase-8 for two values of κ
(proportional to the total receptor concentration, RT ). Figure 8.9(b) shows the effect
of changing FADD concentration (proportional to β) on caspase-8 activation. These
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plots demonstrate the significance of the κ and β parameters in the activation of the
initiator caspase-8.

8.5 Combined intrinsic and extrinsic apoptosis pathways

Fussenegger et al. (2000) proposed a detailed mechanistic model involving both intrin-
sic and extrinsic pathways for the activation of executioner caspases. The detailed
network is shown in Fig. 8.10. All of the steps shown in this figure are reversible
except the five steps tagged with asterisks (*) and the step for cytochrome c release
(labelled rC). The extrinsic pathway (top half of the network) includes binding of
the ligand (L) to the membrane receptor (R), a step for clustering of the death
domains of the receptor (R̃L → RL), sequential binding of two FADD (F) molecules,
sequential recruitment of two procaspase-8 molecules (c8Z) to the RL.F2 complex,
and the colocalized c8Z proteins cleaving each other to generate active caspase-8 (c8a).

L
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Fig. 8.10 The model of Fussenegger et al. (2000) for the activation of caspases. R = mem-
brane receptor, L = ligand, F = FADD, ckz = procaspase-k (k = 8, 9, E), Ik = ‘decoy’
proteins inhibiting ckz (k = 8, 9), cja = active caspase-j ( j = 8, 9, E), IEa = ‘decoy’ proteins
inhibiting c8a or c9a, IAPs = inhibitors of apoptosis, A1 = Apaf-1, Cc = cytochrome c, bx =
anti-apoptotic protein of the Bcl-2 family, be = proapoptotic protein of the Bcl-2 family,
rC = rate of release of cytochrome c from mitochondria.
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The model includes ‘decoy’ proteins (I8) – such as proteins called FLIPs – that pos-
sess death-effector domains similar to FADD and could compete with procaspase-8
for binding sites on FADD. The inhibition of active caspase-8 or caspase-9 by other
‘decoy’ molecules (IEa) is also a part of the model. Also included is the possibility,
though of small rate, for two procaspase-8 molecules to activate each other without
the mediation of the DISC.

For the intrinsic pathway, the model assumes the following rate of cytochrome c
release

rC = αCEv(cEa, bx), (8.4)

where αCE is the specific rate of cytochrome c efflux due to active executioner cas-
pases (Fussenegger et al. also considered the contributions of nutritional factors but
these are not included in eqn 8.4 for simplicity). The factor v(cEa, bx) is a function
of the active executioner caspase (cEa) and antiapoptotic members of the Bcl-2 fam-
ily (represented as bx in Fig. 8.10); v(cEa, bx) is assumed to be proportional to the
ratio [cEa]/[bx] and to be within the range 0 ≤ v(cEa, bx) ≤ 1. It is further assumed
that there exists a threshold value (ε) for the ratio [cEa]/[bx] such that cytochrome
c is released if [cEa]/[bx] > ε (in this case v(cEa, bx) = 1) and cytochrome c is not
released if [cEa]/[bx] ≤ ε (in this case v(cEa, bx) =0). It is important to note that the
dependence of rC on cEa implicitly assumes a positive feedback between active execu-
tioner caspases and the process of cytochrome c release. The regulation of cytochrome
c release is not quite understood at this time, and this part of the model should be
considered tentative. The interactions among antiapoptotic and proapoptotic Bcl-2
family members (bx and be, respectively), as would be reflected in the ratio [be]/[bx],
are thought to be crucial in the decision to die or survive. In the model, bx com-
petes against cytochrome c for Apaf-1 binding sites; on the other hand, proapoptotic
be exerts its effect by binding to bx so that the latter is prevented from binding to
Apaf-1.

Cytochrome c binds to Apaf-1 (A1) to form a complex (A1.Cc) that recruits
procaspase-9 (c9Z) molecules and subsequently generate active caspase-9 (c9a). There
are ‘decoy’ proteins (I9) – such as the protein called ARC – that compete against
procaspase-9 for binding sites on (A1.Cc). As with caspase-8, decoy molecules (IEa)
also inhibit caspase-9 (c9a). It is also assumed that two procaspase-9 molecules can
activate each other without involving the apoptosome. As depicted in Fig. 8.10, the
pathway from RL.F 2 to c8a has an identical structure to the pathway from A1.Cc

to c9a and, correspondingly, the kinetic equations are of the same forms. The active
initiator caspases (c8a and c9a) cleave and activate the executioner caspases (cEa).
A family of proteins called IAPs (inhibitors of apoptosis) serves as the final line of
defense for the cell; IAPs directly regulate the activity of executioner caspases by
binding to them.

The protein Bid links the extrinsic to the intrinsic apoptosis pathway (see Fig 8.3)
but is not included in the model of Fussenegger et al. However, even if only the extrin-
sic pathway is initially active, the model of Fussenegger et al. predicts that the intrinsic
pathway will eventually be activated as a result of the positive feedback from the exe-
cutioner caspases to the process of cytochrome c release (see expression for the rate
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Table 8.3 Effects of therapies predicted by the model of Fussenegger et al. (2000). As exam-
ples, overexpression of Bcl-2 alone cannot (‘–’) decrease executioner caspase activation, but
overexpression of IAPs alone can (‘+’); and the combination of overexpression of FLIPs and
mutation of p53 can (‘+’) also decrease executioner caspase activation. Note that no sin-
gle therapy, except overexpression of IAPs, inhibits activation of executioner caspases when
both intrinsic and extrinsic apoptosis pathways are active; therapy combinations shown in
this table are required. (Table from Fussenegger et al., 2000).

Overexpression Disruption or
mutation

Bcl-2 Bcl-xL Bax ARC FLIPs IAPs FADD p53

Bcl-2 − − − − + + + −
Bcl–xL − − − − + + + −
Bax − − − − − + − −
ARC − − − − + + + −
FLIPs + + − + − + − +
IAPs + + + + + + + +
FADD + + − + − + − +
p53 − − − − − + + −

of cytochrome c release, rC , in eqn 8.4). From the network diagram of Fig. 8.3, one
can give answers to the question on what genes or proteins can be perturbed to block
the activation of executioner caspases. Table 8.3, taken from Fussenegger et al. (2000),
gives examples of combined ‘therapies’ (i.e. perturbations such as overexpression or
mutation of genes) that can block activation of executioner caspases. The column on
p53 is based on the information (not shown in the network diagram of Fig 8.10) that
p53 induces expression of proapoptotic Bax, and that p53 antagonizes the antiapop-
totic proteins Bcl-xL and Bcl-2. Among the listed genes or proteins in Table 8.3, the
only successful single therapy is the overexpression of IAPs (note that this is the only
diagonal entry with a + sign). Overexpression of any of the antiapoptotic Bcl-2 fam-
ily members (Bcl-2 and Bcl-xL) cannot block executioner caspase activation simply
because the extrinsic pathway is active. Similarly, overexpression of FLIPs and disrup-
tion of FADD binding (both proteins are involved in inhibiting the extrinsic pathway)
cannot block executioner caspase activation because the intrinsic pathway is active.
The table also shows that overexpression of FLIPs and mutation of p53 allows blocking
of executioner caspase activation; this is because overexpression of FLIPs can block the
extrinsic pathway while inactivation of p53 permits the antiapoptotic Bcl-2 proteins
to block the intrinsic pathway.

8.6 Summary and future modelling

All the models discussed in this chapter focus on the activation of proteolytic
enzymes called caspases whose targets include proteins of the cytoskeleton, the
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nuclear lamina, enzymes involved in fragmenting DNA, and others that are directly
or indirectly associated with the cell-morphological manifestations of apoptosis. The
irreversibility of this cell-death process is no doubt reinforced by the cascading
nature, with concomitant amplification, of the activation of caspases. There are
two caspase cascades considered in the models, namely, one that is a membrane
receptor-mediated (termed the extrinsic pathway) and the other involving mitochon-
dria (termed the intrinsic pathway). The Eissing model focuses on the extrinsic
pathway represented by caspase-8 (initiator) and caspase-3 (executioner). The mag-
nifying character of this caspase cascade is implemented by a positive-feedback loop
between these two caspases (in other words, caspase-8 activates caspase-3 that, in
turn, generates more active molecules of caspase-8). A significant proposal based on
the Eissing model is that the transition between a living cell (low caspase-3) and
a dying cell (high caspase-3) is governed by a bistable switch – this is a predic-
tion that needs experimental validation at the single-cell level. The Eissing model
also demonstrates the role of caspase inhibitors (such as IAP and BAR in the
model) in generating a time lag prior to the fast-switching kinetics of caspase-3
activation.

The Lai–Jackson model is concerned with the consequences of the ‘multivalent’
(trimer) character of the death ligand FasL on the formation of the death-inducing
signalling complex (DISC) and on the activation of initiator caspase-8. One of the
interesting predictions of this model is that, given a fixed number of membrane death
receptors, the number of DISCs that are formed increases and then decreases as the
concentration of death ligands increases (see Fig. 8.8); this implies that if a minimum
number of DISCs is required to trigger apoptosis, then ligand concentrations must be
within a given range.

A model of the intrinsic pathway was published (after this chapter was written)
by Legewie et al. (2006). This interesting work highlights the role of positive-feedback
loops in the network in generating bistability, including the contribution to bistability
that is mediated by IAPs (inhibitors of apoptosis).

A model that combines the extrinsic and intrinsic pathways is proposed by
Fussenegger and coworkers. This model considers neither the trimeric character of
FasL, nor the positive feedback loop between caspase-3 and caspase-8; it does, however,
implicitly assume a positive feedback between caspase-3 and the process of cytochrome
c release from mitochondria. The model accounts for interactions at the outer mito-
chondrial membrane involving antiapoptotic and proapoptotic members of the Bcl-2
family. The current literature on the subject of Bcl-2 proteins seems to claim that the
ratio of the numbers of antiapoptotic and proapoptotic member proteins is a crucial
factor in the decision to undergo apoptosis. The feasibility of this claim can be investi-
gated by further modelling and analysis. In addition, future modelling of the combined
extrinsic and intrinsic caspase pathways should also explore the role of the protein Bid
(see Fig. 8.3) that links the extrinsic pathway to the intrinsic pathway. The molecular
network regulating apoptosis is far from complete, as recent investigations strongly
suggest that there are apoptosis-inducing molecular pathways that do not involve the
caspases; thus, new mechanistic models of apoptosis are expected to be created in the
near future.
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Exercises

1. Determine the steady states of the Eissing model eqn 8.1. Plot the steady states of
C3* as a function of k1, and determine the linear stability of these steady states.
Verify the claim of the authors that if the protein BAR is not included in the
model (i.e. exclude steps 11, –11, 12, –12, 13, and –13), the system exhibits an
‘alive’ steady state that is only stable when k1 is below ∼3.2×103 M–1s–1. Use the
parameter values given in Table 8.1.

2. For the Lai–Jackson model summarized in Fig. 8.7, Table 8.2, and eqns 8.2, show
that the steady state is unique and linearly stable for a fixed set of parameters.

3. Using the steady-state assumption for the L-R-C1-C2-C3 subsystem of the Lai–
Jackson model, determine the ligand concentration (L0) that corresponds to the
maximum of the CXT curve for a given κ (see Fig. 8.8). If there exists a CXT,min
below which the death signal is not propagated, determine the minimum total recep-
tor concentration RT,min that allows propagation; and for RT >RT,min, determine
the range of ligand concentrations that allow propagation of the death signal.

4. Using Fig 8.7 (Lai–Jackson model), and ignoring steps 16 and 17, show that the
steady-state rate of production of active caspase-8 (that is, (dE/dt)eq) has the form(

dE
dt

)
eq

= LT (αR2
eq + βR3

eq),

where LT is the total ligand concentration in the system.
5. Explain all the entries (+ or −) in Table 8.3 using the network diagram of the

Fussenegger model shown in Fig 8.10.
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Cell differentiation

The development of a multicellular organism from a single fertilized egg cell to various
cells with specialized functions, in tissues and organs, is a most fascinating biological
process. How does this cell give rise to an intricately structured adult organism with
an almost deterministic precision? In embryogenesis, cells divide, migrate, and acquire
different programs of gene expression determining whether they will be part of the
endoderm, the ectoderm, or the mesoderm (see Fig. 9.1). Following this initial stage
of cell determination is a maturation process called differentiation by which cells
acquire recognizable phenotypes and functions. These phenotypes are the results of
the expression of specific proteins; for example, muscle cells produce the myosin protein
needed for muscle contraction, and red blood cells synthesize hemoglobin for oxygen
transport in the blood.

Somatic cells of various differentiation lineages generally possess identical genomes
but differ in their patterns of gene expression – this is why models of cell differenti-
ation focus on gene-transcription regulatory networks. Questions on whether there
is some sort of a genetic ‘blueprint’ for the construction of the mature organism
and how this genetic information unfolds during development are profound ques-
tions that are very difficult to answer at this time. However, it is believed that
answers will come from studies of epigenetic mechanisms modifying chromatin struc-
ture and, consequently, the gene-transcription machinery. Epigenetic mechanisms do
not alter the sequence of DNA bases but, instead, change chromatin components
through covalent modifications (e.g. DNA methylation, histone acetylation, histone
phosphorylation).

In this chapter, the kinetic modelling of T helper (Th) lymphocyte differentia-
tion is discussed. This is one of the better understood examples of cell differentiation,
both at the genetic and molecular levels. T lymphocytes originate from the differen-
tiation of hematopoietic (‘blood-making’) stem cells. The hematopoietic system with
its various cell lineages is briefly introduced in Section 9.1. Essential details of the
molecular control of Th differentiation and a dynamical model – proposed by Yates,
Callard and Stark (YCS) – are described in Section 9.2. As will be illustrated for sin-
gle cells in Section 9.3, differentiation can be controlled by two transcription factors
exhibiting intrinsic bistable behavior. In Section 9.4, the YCS model is used to study
the interaction between extracellular and intracellular signalling in a population of
Th cells. Lastly, abstract models of high-dimensional switches (with more than two
differentiation outcomes possible) are presented in Section 9.5.
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Fig. 9.1 Human embryogenesis. After the fertilization of an egg to create the zygote, rapid
mitotic divisions with no significant growth occur to form a fluid-filled sphere of cells called
the blastocyst. During the process of gastrulation, cells specialize and migrate to various
positions in the embryo. The inner cell mass gives rise to germ cells (sperm or eggs) and
to cells of the three germ layers (ectoderm, mesoderm, and endoderm). Reproduced with
permission from the Office of Science Policy, the National Institutes of Health, USA.

9.1 Cell differentiation in the hematopoietic system

The lineages from the hematopoietic stem cell to the specialized cells in the blood
and lymph are summarized in Fig. 9.2. Further differentiation of T lymphocytes is the
subject of the next three sections of this chapter.

Lymphocytes are white blood cells that play important roles in the immune system,
the body’s defense against pathogens. T cells and B cells are two major types of
lymphocytes. T cells are so-called because the immature T cells migrate to the thymus
gland where they mature. B cells are so-called because they mature in the bone marrow
(in mammals). B cells produce antibodies against pathogens (such as bacteria), while
T cells are involved in autoimmunity (the ability to eliminate body cells that are
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Pluripotent stem cell

Lymphoid stem cell

T lymphocyte NK lymphocyte

Myeloid stem cell

Erythrocyte Monocyte

Macrophage

Megakaryocyte GranulocyteB lymphocyte

Fig. 9.2 The pluripotent hematopoietic stem cell gives rise to multipotent stem cells of the
lymphoid and myeloid lines. Myeloid stem cells differentiate into erythrocytes (red blood
cells), megakaryoctes (involved in blood clotting), granulocytes, monocytes and macrophages
(the last three cells are involved in the immune system, particularly in digesting or engulfing
pathogens and dead cells). Lymphoid stem cells give rise to T, NK (natural killer), and B
lymphocytes. See text for more details.

infected by viruses or have become tumorigenic). Th lymphocytes represent a subtype
of T cells and are identified by the presence of surface antigens (proteins) called CD4
(hence the cells are referred to as CD4+). Other subtypes of T cells include cytotoxic
T cells (CD8+) and regulatory T cells (CD4+CD25+, also known as suppressor T
cells). CD8 and CD25 are other types of surface antigens. Cytotoxic T cells target and
destroy infected body cells. Regulatory T cells suppress the activation of the immune
system.

Th cells are by far the most numerous of the T cells in a healthy individual. When
Th cells get activated they proliferate and secrete cytokines that help regulate the
autoimmune response. In fact, CD4+ T cells are one of the known targets of the HIV
virus; abnormally low levels of these Th cells result in AIDS (acquired immunodefi-
ciency syndrome). The modelling of Th lymphocyte differentiation to cell types called
Th1 and Th2 and the acquisition of cytokine memory are discussed in the next two
sections.

9.2 Modelling the differentiation of Th lymphocytes

T-cell activation refers to the stimulation of growth and proliferation of T-cells via a
mechanism involving the interaction of T-cell receptors with antigens on the surfaces
of antigen-presenting cells (APCs). After an initial antigenic stimulation, Th lympho-
cytes differentiate into either of two distinct types called Th1 and Th2. These cells are
distinguished by the repertoire of cytokines they produce. Th1 cells make IFNγ and
lymphotoxin needed for combating intracellular pathogens (this is the so-called cellular
immune response that, if abnormal, is associated with inflammatory and autoimmune
diseases). Th2 cells produce the cytokines IL-4, IL-5, and IL-13 that activate B cells to
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Fig. 9.3 Network diagram corresponding to the Yates–Callard–Stark model of Th lympho-
cyte differentiation driven by the cross-antagonism between two autoactivating transcription
factors, T-bet (x1) and GATA-3 (x2). Cytokine signals S1 and S2 are dependent on the intra-
cellular levels of x1 and x2, respectively, as well as non-helper T cell signals Ci (i = 1, 2) such
as those from antigen-presenting cells (APCs).

produce antibodies against extracellular pathogens (this is called the humoral immune
response that, if abnormal, is associated with allergies and asthma). Whether a pre-
cursor Th cell (symbolized by Th0) becomes Th1 or Th2 depends on ‘polarizing’ sig-
nals. Examples of Th1-polarizing signalling molecules are IL-12 (interleukin-12) and
IFNγ (interferon-γ). An example of a Th2-polarizing signalling molecule is IL-4. An
objective for modelling this system is to understand the phenomenon of ‘cytokine
memory’ exhibited by Th1 and Th2 cells – that is, after an initial antigenic stimu-
lation by APCs, cells with cytokine memory no longer require additional polarizing
signals to express the cytokines characteristic of their differentiated state.

The YCS model of Th differentiation (Yates et al. 2004) is based on the interactions
of two transcription factors, T-bet and GATA-3. These interactions and the molecular
pathways regulating them are summarized in Fig. 9.3. High protein levels of T-bet or
GATA-3 correspond to the Th1 phenotype or the Th2 phenotype, respectively.

Two important features of the network shown in Fig. 9.3 are (1) the positive-
feedback loops of T-bet and GATA-3, and (2) the cross-antagonism between these
factors. As shown next, these network features generate a binary (either/or) decision
during the differentiation process.

The autoactivation of each transcription factor is carried out by two positive feed-
back loops (Fig. 9.3). One is at the transcriptional level in which the protein promotes
the expression of its corresponding gene by binding to the gene’s promoter region. The
other positive feedback involves an autocrine loop – that is, a cell expresses a protein
that is secreted into the extracellular medium, and this protein then binds to a mem-
brane receptor of the same cell type; the ensuing activation of the receptor activates a
pathway that eventually induces the expression of the same protein. For Th1 cells, a
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major autocrine loop involves IFNγ, IFNγR, STAT1 signalling, and T-bet (IFNγR =
IFNγ receptor, STAT = signal transducer and activator of transcription). These Th1
autocrine loops are represented by the loop connecting S1 and x1 (T-bet) in Fig. 9.3.
For Th2 cells, a major autocrine loop involves IL-4, IL-4R, STAT6 signalling, and
GATA-3 (IL-4R = IL-4 receptor). Th2 autocrine loops are represented by the loop
connecting S2 and x2 (GATA-3).

The cross-antagonism between T-bet and GATA-3 also occurs at two levels as
depicted in Fig. 9.3 (dashed lines). One level involves transcriptional repression of one
factor by the other, while the other level involves pathways from the transcription
factors to inhibition of membrane receptors.

Th1-polarizing and Th2-polarizing cytokines as well as other cytokines that stim-
ulate T-bet and GATA-3 production are symbolized by S1 and S2, respectively. The
intracellular concentrations of T-bet and GATA-3 are symbolized by x1 and x2. In the
YCS model, the dynamics of x1 and x2 are described by:

dx1

dt
= −µx1 +

(
α1

xn1
κn1 + xn1

+ σ1
S1

ρ1 + S1

)
× 1

(1 + x2/γ2)
+ β1

dx2

dt
= −µx2 +

(
α2

xn2
κn2 + xn2

+ σ2
S2

ρ2 + S2

)
× 1

(1 + x1/γ1)
+ β2.

(9.1)

The first term on the right-hand side of each equation in eqn 9.1 represents the rate of
protein degradation (assumed to be first order in the protein concentration, and with
identical decay rate constant µ for both proteins). The last term βi is the constant
basal rate of protein synthesis. The autoactivation rate of protein xi is represented by
the term

α1
xn1

κn1 + xn1
,

where n is the Hill exponent that tunes the sharpness of the activation switch. The
contribution of external signalling to the rate of growth in xi is given by the term

σi
Si

ρi + Si
.

The cross-inhibition between x1and x2 occurs at both the autoactivation level and
external (membrane) signalling level, and is represented by the cross-inhibition factors

1
(1 + xi/γi)

.

The parameter γi represents the value of xi at which the rate of production of xj , i �= j,
(due to the combined autoactivation and external signalling) is halved.
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9.3 Cytokine memory in single cells

Considering the dynamics of each transcription factor independently (eqn 9.2), one
can show that each factor is intrinsically bistable (Fig. 9.4).

dxi
dt

= −µxi + αi
xni

κni + xni
+ σi

Si

ρi + Si
+ βi (i = 1, 2). (9.2)

Figure 9.4(a) predicts that for Th0 precursor cells in the states represented by
branch A of the curve, increasing S2 leads to a threshold level θ2 above which a tran-
sition to a high steady-state level of x2 occurs (the C branch shown in Fig. 9.4(a)).
Once on the C branch, small fluctuations in the signal S2 will not return the sys-
tem to the Th0 state, unless S2 is close to θ1 where even a small decrease in S2
below this value can return the system to the Th0 state. Thus, in a biological setting
where cells are stimulated to grow and proliferate, Fig. 9.4(a) shows that as long as
external signalling is above θ1, cells that have acquired the high-x2 phenotype will
maintain this phenotype – in other words, these cells have acquired cytokine memory.
However, continuous external signalling above the θ1 threshold is required to main-
tain progeny cells at high x2 levels; otherwise, the cells return to the precursor Th0
phenotype.

In contrast to the reversibility between the differentiated state and the Th0 state,
Fig 9.4(b) illustrates the commitment of cells to a differentiated state once it is reached.
The steady-state curve is shifted to the left when the parameter α2 is increased
(or alternatively decreasing the decay rate µ) and the lower threshold value of θ1
disappears, thus making impossible a return to the Th0 state if the system is in
the high-x2 branch of the steady-state curve. Experimentally, this commitment or
irreversibility in differentiation is observed with Th lymphocytes after 4 or 5 cell
divisions.
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Fig. 9.4 Steady states of x2 as a function of the level of cytokine signalling, S2 for two
different values of the parameter α2. Figure adapted from Yates et al. (2004).



Population of differentiating Th lymphocytes 131

9.4 Population of differentiating Th lymphocytes

9.4.1 Equation for population density Φ

The YCS model can be used to simulate the dynamics of a population of Th lympho-
cytes in an extracellular medium, itself affected by secretions from individual cells.
Because of the bistable character of each cell and the cross-antagonism between the
two differentiated states, one would like to investigate whether there are certain con-
ditions when the population becomes homogeneous in just one type of cell or whether
there are conditions that allow mixtures of differentiated cells.

In the original study by the authors of the YCS model, the cell population is
assumed to be spatially homogeneous but with time-dependent distribution of T-bet
and GATA-3 levels. A population density Φ(x1, x2, t) is defined such that the number of
cells (per unit volume) with levels of T-bet and GATA-3 in the ranges [x1, x1+δx1] and
[x2, x2 +δx2], respectively, at time t is Φ(x1, x2, t)δx1δx2. To incorporate in the model
the coupling between extracellular and intracellular signalling, each cytokine signals
Si(i = 1, 2) is assumed to depend on the total level of the corresponding intracellular
transcription factor xi (see the integral involving xi in the equation below) and on
signals from non-T helper cell sources (the Ci(t) term in the equation below):

Si =
Ci(t) +

∫
xiΦdx1dx2∫

Φdx1dx2
, (9.3)

where 0 ≤ xi ≤ ∞. Note that Si is normalized by the total Th cell population size
(i.e. Si is a measure of the cytokine signal per cell). Equations 9.1 and 9.3 imply that
each cell senses the population average of xi for the autocrine loop (positive feedback)
between Si and the transcription factor xi (Fig. 9.3).

If g is the rate at which cells divide (number of divisions per unit time), the time
evolution of Φ is given by the following conservation of mass equation:

∂Φ

∂t
+

∂(f1Φ)
∂x1

+
∂(f2Φ)
∂x2

= gΦ, (9.4)

where f1(x1, x2) = dx1/dt, and f2(x1, x2) = dx2/dt are given by eqns 9.1 and 9.3.
Experimental observations suggest the initial value of g = 2 day−1. At the end of
this section, the method of solving eqn 9.4 with appropriate initial and boundary
conditions is discussed.

The cross-suppression of the two differentiated states (giving rise to mutually exclu-
sive population of Th1 or Th2 cells, but not mixed) and the switching between states
(T0, Th1, or Th2) are demonstrated in the simulations shown in Fig. 9.5. Starting
with a population of Th1 cells (i.e. 100% of the population with high T-bet), Th2-
polarizing cytokine level C2/N0 (where N0 is the initial total number of cells and C2 is
the extrinsic Th2-polarizing cytokine such as IL-4) is increased from 0.1 to 200 units
per cell. Note that all the cells revert back to the Th0 state, and are kept in this
precursor state for a wide range of C2/N0 values. A sudden switch to the Th2 state
occurs at C2/N0 ∼ 60–70 units per cell.
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Fig. 9.5 Th1 populations of cells are subjected to various doses of Th2-polarizing cytokine,
C2/N0, and then the fractions of cells in the Th0, Th1, and Th2 states are determined
at day 6. Figure reproduced with permission from Yates et al. (2004). Copyright 2004
Elsevier Ltd.
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Fig. 9.6 Th0 cells are stimulated with a Th1-polarizing cytokine; although this cytokine
is assumed to decay with a half-life of 8 h, the Th1 state is maintained (see first 5 days).
GATA-3 is ectopically expressed in all cells on day 5. Figure reproduced with permission
from Yates et al. (2004). Copyright 2004 Elsevier Ltd.

Experiments have been reported in which ectopic expression of T-bet in committed
Th2 cells lead to a switch to the Th1 state without first going through a reversion to
the Th0 state (Yates et al. 2004). The converse has also been shown experimentally –
that is, ectopic expression of GATA-3 in Th1 cells switch them to the Th2 state. The
YCS model exhibits the same phenomenon as demonstrated in the simulations shown
in Fig. 9.6.



Population of differentiating Th lymphocytes 133

� 9.4.2 Determining the population density Φ

In order to solve eqn 9.4, initial and boundary conditions have to be imposed. Consider
the special case where it is not possible to have cells with x1 or x2 vanishing at any
time, that is

Φ(0, x2, t) = Φ(x1, 0, t) = 0, (9.5)

and, in addition, that there are no cells with x1 or x2 very large (let X represent this
large positive number), that is

Φ(X,x2, t) = Φ(x1, X, t) = 0. (9.6)

Let the initial value of Φ be

Φ(x1, x2, 0) = Φ0(x1, x2). (9.7)

From eqns 9.1 and 9.5, one can see that

f1(0, x2) > 0, f2(x1, 0) > 0, (9.8)

and from eqns 9.1 and 9.6

f1(X,x2) < 0, f2(x1, X) < 0, (9.9)

provided µX > αi + σi + βi for i = 1, 2. Let the domain R be defined by

R = {(x1, x2)|0 < x1 < X and 0 < x2 < X}. (9.10)

If Si (i = 1, 2) were known, eqn 9.4 with boundary and initial conditions 9.5–9.7 can
be solved by the method of characteristics. Note that eqns 9.8 and 9.9 ensure that
characteristics starting at xi = 0 or xi =X(i= 1, 2) enter the domain R defined above.

Si(t) in eqn 9.3 is determined using a sequence of successive approximations, Sn
i (t).

Suppose Sn
i (t) has already been computed; eqn 9.4 is then solved by replacing Si (i =

1, 2) in eqn 9.1 with Sn
i . Denote the solution Φ by ϕn

i , and define

Sn+1
i (t) =

Ci(t) +
∫
R

xiϕ
n
i dx1dx2∫

R

ϕn
i dx1dx2

. (9.11)

To complete the definition of the sequence Sn
i , set

S0
i (t) =

Ci(t) +
∫
R

xiΦ0dx1dx2∫
R

Φ0dx1dx2
. (9.12)

With Si = lim
n→∞Sn

i and Φ = lim
n→∞ϕn

i , one thus arrives at the solution Φ of eqn 9.4
with the imposed boundary and initial conditions.
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9.5 High-dimensional switches in cellular differentiation

The Th differentiation described in the previous sections has only two possible
outcomes, Th1 or Th2 states. This binary decision is implemented by a network
with cross-antagonism between two autoactivating transcription factors (T-bet and
GATA-3); the autoactivating property is important in reinforcing a decision once it
is made. There are many other examples of transcription factors controlling binary
decisions during the development of multicellular organisms. There are also quite a
number of examples in which a cell may differentiate into any of three or more lineages,
with differentiation steps that cannot be reduced to sequences of binary decisions. For
example, hermaphrodite germline cells of the nematode C. elegans can differentiate
into a somatic cell, sperm, or oocyte (egg). Cinquin and Demongeot (2005) reviewed
evidence of other multi-outcome differentiation systems, and studied simple models
composed of cross-antagonizing and autocatalytic factors. A high-dimensional differ-
entiation switch is compared with the corresponding cascade of binary switches in
Fig. 9.7.

The binary cascade starting from the left of Fig 9.7 involves three pairs of cross-
antagonizing factors. The Cinquin–Demongeot (CD) model of ‘one-shot’ differentiation
shown on the right of Fig. 9.7 involves four cross-antagonizing factors. In both binary
and CD models, the progenitor cells express all the switch elements, albeit in small
quantities, before each differentiation step; for example, in Fig 9.7, the progenitor cell
at the left of the binary cascade starts with low-level expressions of factors G1 and
G2. Upon receiving differentiation cues, either G1 or G2 increases, giving rise to either

G1

G2

A

B

C

D

A

B

C

D

Progenitor cell

A

C

B

D

Progenitor cell

G1

G2

G1

G2

A

B

A

B

C

D

C

D

A

B

C

D

A

C

B

D

A

C

B

D

Fig. 9.7 Four differentiated cells (A, B, C, D) depicted by the four small circles, from a
cascade of binary switch elements (from left progenitor cell) or from a progenitor cell with
four coupled switch elements (from right progenitor cell).
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of the cells shown in the second column of Fig. 9.7. Each of these progeny cells has
two competing transcription factors that will then make further binary decisions.

One of the Cinquin–Demongeot (2005) models is discussed here to illustrate poten-
tial differentiation scenarios not exhibited by binary-decision models. Let there be n
transcription factors (also called switch elements) whose concentrations are denoted
by xi(i = 1, . . . , n). In the CD model, the dynamics of the interactions among these
elements are described by the following equations:

dxi
dt

= −xi +
σxci

1 +
∑n

i=1 x
c
i

+ α (i = 1, . . . , n). (9.13)

For simplicity, every switch element is assumed to have a first-order degradation rate
with rate coefficient of 1. The second term on the right-hand side of eqn 9.13) is the
rate of synthesis of each element that is positively regulated by itself (autoactivation)
and inhibited by all other elements (as represented by the sum in the denominator).
The third term represents a constant basal rate of expression of each element. The
‘co-operativity’ parameter c tunes the sharpness of the autoactivation switch and the
parameter σ is related to the strength of gene expression.

The model assumes that the steady states of the system 9.13 represent the differ-
entiated states. For simplicity, let c = 2 and α = 0, and investigate the steady states as
the strength of gene expression σ is increased. Setting the right-hand side of eqn 9.13
to zero gives

σx2
i,s = xi,s

(
1 +

∑n

i=1
x2
i,s

)
, (9.14)

where xi,s is the steady-state value of xi. Let xs = (x1,s, x2,s, . . . xn,s) be the vector of
steady states. Clearly, (0, 0, . . ., 0) is always a steady state. Because of the symmetry
of the equations, all positive xi,s are equal to each other and the values for m (≥ 1)
positive elements must satisfy

σxi,s = 1 + mx2
i,s. (9.15)

Thus, the parameter σ must satisfy a condition, namely, σ2 ≥ 4m, for xs to have
at least m elements that are positive. As a specific example, consider a system with
two elements (n = 2). For 0 ≤ σ2 < 4, the only possible steady state is the origin.
For 4 < σ2 < 8 the system has new steady states of the form (0, p) and (p, 0), in
addition to the origin; from eqn 9.15 one can see that p has two possible values,
namely, p+ = (σ +

√
σ2 − 4)/2 or p− = (σ − √

σ2 − 4)/2. Thus, when 4 < σ2 < 8,
a system with two elements has a total of 5 steady states, namely, (0, 0), (0, p−),
(0, p+), (p−, 0), and (p+, 0). These steady states and state-space trajectories are shown
in Fig. 9.8. The unstable steady states in the boundary (unfilled circles) are saddle
points whose stable manifolds (the trajectories that approach these steady states in
infinite time) separate the basins of attractions of the three stable steady states (black
circles). As x1 and x2 increase, the basin of attraction of the steady state at the
origin shrinks and the probability of finding the system in either the high-x1 or high-
x2 steady state increases. This can be interpreted as a cell-differentiation scenario
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Fig. 9.8 Phase portrait of the system described in eqn 9.13 for two switch elements (n = 2),
α = 0, and σ = 2.2. The small circles show the locations of the steady states; as indicated by
the directions of the trajectories, the black circles are locally stable and the unfilled circles
are unstable.

in which a precursor cell (identified with the steady state at the origin) initiates its
differentiation by increasing the levels of x1 and x2 (‘coexpression’), thereby decreasing
the likelihood of the cell keeping the precursor phenotype and increasing the chance
that the cell attains either the high-x1 phenotype or the high-x2 phenotype.

For σ2 ≥ 8, the two-element system has additional steady states of the form (p, p)
where p± = (σ ± √

σ2 − 8)/4. Thus, the model predicts two new cell phenotypes
associated with the system steady states (p+, p+) and (p−, p−); whether or not these
phenotypes can be observed biologically depends on the stability of the steady states
and the size of their basins of attraction. The phase portrait shown in Fig. 9.8 can
be generalized to any number of switch elements; thus, for the system depicted on
the right of Fig. 9.7, four cross-antagonizing switch elements can give rise to four
differentiated states depending on the initial conditions (in biological terms, these
would be the ‘differentiation cues’ that favor one steady state over another). Each
differentiated state corresponds to a high level of one of the four switch elements and
vanishing levels of the others.

9.6 Summary

The Yates–Callard–Stark (YCS) model of T helper (Th) lymphocyte differentiation is
based on the cross-antagonism between two transcription factors – namely, T-bet and
GATA-3 – whose mutually exclusive dominance determines whether the cell attains a
Th1 or a Th2 phenotype, respectively. These transcription factors control the expres-
sion of specific genes for different cytokines that characterize phenotypes. Once a
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direction of differentiation is chosen, it is reinforced by autocrine loops and by the
autoactivating property of the transcription factor. Due to these positive-feedback
loops, the YCS model predicts bistability and the existence of cytokine signalling
thresholds for switching the system from the precursor cell phenotype (Th0) to one of
the differentiated phenotypes.

The coupling between intracellular and extracellular signalling in a population
of Th cells was also investigated using the YCS model. The model predicts plastic-
ity (reversibility) among the Th0, Th1, and Th1 states, as illustrated in computer
simulations where the population is subjected to increasing cytokine signalling (polar-
ized towards one differentiated state) or ectopic expression of one of the transcription
factors. However, commitment to one phenotype (i.e. irreversibility) is not excluded
by the YCS model as demonstrated in Fig. 9.4(b). Non-Th polarizing cytokine
signals – represented by the term Ci(t) in eqn 9.3 – link the YCS model to ‘differenti-
ation cues’; particularly in models that encompass spatial patterning in development,
these differentiation cues have to be explicitly considered. Current models of develop-
ment adapt the idea that concentrations of molecules called morphogens are sensed
by cells as differentiation cues. Morphogens can be proteins such as transcription fac-
tors or ligands whose concentration gradients elicit differentiation of cells into at least
two distinct phenotypes. The morphogen hypothesis is reviewed recently by Ashe and
Briscoe (2006).

Lastly, the Cinquin–Demongeot (CD) model of cellular differentiation with more
than two transcription factors (switch elements) generating more than two phenotype
outcomes was discussed. As in the YCS model, every pair of switch elements are
cross-antagonistic and each element is autoactivating. The CD model predicts that
increasing a parameter for the rate of gene expression of the switch elements leads to
a rapidly increasing number of steady states (equivalently, to an increasing number of
differentiated states).
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Exercises

1. Mariani et al. (2004) also modelled Th differentiation but, in contrast to the YCS
model, the mRNAs of the transcription factors are considered explicitly. For exam-
ple, the GATA-3 dynamics (independent of T-bet) is modelled by the following
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differential equations (using the symbols in their paper):

dG
dt

= kTR − kGG

dR
dt

= vB + vmax,S
S

KS + S

+ vmax,G

(
G

KG + G

)2

− kRR,

where G is the protein concentration of GATA-3, R is the concentration of its
mRNA, S is the concentration of a signalling protein (Stat6), and vB is the basal
rate of transcription. Show that the system above exhibits bistability similar to
that of Fig. 9.4(a) of the YCS model.

2. With the boundary and initial conditions given by eqns 9.5–9.7, compute the
solution of eqn 9.4 in the following cases:

(a) C1(t) = c, C2(t) = 0, Φ0(x1, x2) = δx1x2(X − x1)(X − x2)
(b) C1(t) = C2(t) = c , Φ0(x1, x2) = δx1x2(X − x1)(X − x2)

where c and δ are positive constants. Assume that α1 > α2, σ1 = σ2, and β1 = β2.
3. Consider eqn 9.13 with c = 2, n > m, and 4m < σ2 < 4(m + 1) where m is the

number of switch elements with positive steady states. Show that:

(a) in addition to the steady state at the origin, the vector of steady states x s has
k elements that are zero and � elements that are equal to p �= 0 where

σp = 1 + �p2, 1 ≤ � ≤ m.

(b) the steady states having non-zero elements p = (σ − √
σ2 − 4�)/2 are unstable

and those with p = (σ +
√
σ2 − 4�)/2 are stable (here, stability means that the

real parts of the eigenvalues of the Jacobian matrix evaluated at the steady state
are all negative; instability means that at least one eigenvalue has a positive
real part.)

4. Extend the result of the previous problem to the case c > 2, n = 2. Prove that,
depending on σ, the only steady states are of the form (0, 0), (0, p), ( p, 0), and
( p, p) where p has two possible values, p1 and p2, with p1 < p2. Also show that the
steady state with p = p2 is stable, and that with p = p1 is unstable.
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Cell aging and renewal

Cellular aging, commonly referred to as cellular senescence, is thought to be a ‘pro-
grammed’ cell fate in a similar sense that apoptosis is somehow programmed to happen
to certain cells during development. A specific kind of aging called replicative senes-
cence is characterized by a cell’s permanent exit from the cell cycle after undergoing
a certain number of divisions. One of the known causes of replicative senescence is
telomere shortening after each division. Telomeres are the ends of linear eukaryotic
chromosomes. A model involving replicative senescence of cells lining the walls of blood
vessels is discussed in this chapter. Both a probabilistic model tracking individual cells
and a deterministic model of the cell population dynamics are illustrated.

The lifespan of multicellular organisms would be significantly shorter were it not
for innate processes of tissue renewal or regeneration. Everyday, for an average per-
son, about 1.5 g of skin cells are shed and replaced, and about 200 billion red blood
cells are replenished. These cells are generated by stem cells that divide and produce
progenitors of many types of cells, in particular those replacing dead cells in tissues.
Recently, there has been considerable interest in embryonic stem cells because of their
ability to generate all of the tissues of an adult human. A model of stem-cell dynam-
ics is discussed in this chapter. The model investigates the parameters affecting the
maintenance of the stem-cell pool in their growth environments. Both probabilistic
and deterministic simulations of the model are presented.

10.1 Cellular senescence and telomeres

Biologists make a distinction between cellular quiescence and senescence; both pro-
cesses involve exit from the cell cycle, but quiescence is a temporary exit (i.e. cells
re-enter the cell cycle upon sufficient mitogenic stimulation) while senescence is a per-
manent one. Besides cell-cycle arrest, other biomarkers of senescence include larger
and more diverse morphology (see Fig. 10.1), distinct changes in gene expression, and
telomere shortening.

Cellular senescence is thought to play a cancer-preventing role because exit from
the cell cycle decreases the probability of acquiring DNA damage. Besides telom-
ere attrition and DNA damage, other documented causes of cellular senescence are
increased oxidative stress, lack of nutrients or growth factors, and improper cell–cell
contacts.

In the early 1960s, Hayflick and Moorhead observed that human embryonic cells
in culture can only divide 50 times, on average, before they enter into a permanently
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Fig. 10.1 Normal human fibroblasts are shown in the leftmost picture. Senescent human
fibroblasts are shown in the other three pictures on the right. Reproduced with permission
from João Pedro de Magalhães (http://www.senescence.info/).

non-dividing state. The number 50 is referred to as the Hayflick limit for these human
cells. There is a correlation between the longevity of the organism and the Hayflick
limit. For mice, the limit is about 15, while for the Galapagos tortoise (that could live
over a century) the limit is about 110.

The existence of a Hayflick limit is explained in terms of telomere shortening. It
is as if the telomeres provide a counting mechanism instructing a cell to stop dividing
when the telomeres become shorter than some critical lengths. In the case of germ
cells (egg and sperm), telomere lengths are maintained by the activity of an enzyme
called telomerase that catalyzes telomere lengthening. Established cell lines used in
in-vitro experiments are immortalized cells that express telomerase. These cells divide
indefinitely as long as they are cultured in suitable conditions. An example of an
immortalized cell line is the HeLa cell line that originates from cancer cells of Henrietta
Lacks who died of cervical cancer in 1951.

10.2 Models of tissue aging and maintenance

10.2.1 The probabilistic model of Op den Buijs et al.

Senescence of individual cells as a cause of aging of the organism is a controversial
idea at this time, although some supporting evidence is available; for example, indi-
viduals with progeroid syndromes (characterized by premature aging) such as Werner
syndrome have cells that exhibit replicative senescence at a much earlier time than
normal. A recent model that deals with aging, not at the organismal level but at the
tissue level, is discussed in this section. This is the model of Op den Buijs et al. (2004)
involving endothelial cells – the cells that form the monolayer lining of the inner wall
of blood vessels. It is a model that uses telomere shortening as the indicator of cell
and tissue aging.

The endothelium is modeled by Op den Buijs et al. (henceforth called the Buijs
model) as a square monolayer of endothelial cells (ECs). Computer simulations were

http://www.senescence.info/
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carried out involving 500 ECs covering an area of 3.5 × 105 µm2 (the cell radius is
15 µm). The model monitors the changes of the EC monolayer for 65 years, with a
discrete time step of 1 year. ECs can be damaged and die, and dead cells could be
replaced either by division of surrounding cells or by homing of endothelial progenitor
cells (EPCs) – according to certain probabilities based on experimental evidence. The
cells that die are chosen at random for each time step, and if the dead cells are to
be replaced by cell division, non-senescent neighboring cells were randomly chosen to
divide. It was assumed that the rates of EPC production from the bone marrow and
EPC homing are such that there is a steady-state number of EPCs in the blood. EPCs
that have homed are considered to convert instantly to fully differentiated EC.

A parameter that corresponds to telomere length, L, decreases by ∆L after each
cell division. The value of ∆L is not fixed but is taken to be a geometric random
variable; mean values of 50 to 250 base pairs (bp) per division were used in the
simulations. A 20-year old individual is the starting point of the Buijs model, with
initial telomere lengths that are distributed normally with mean 8 kbp and standard
deviation of 2 kbp. The critical telomere length at which cells become senescent is
taken to be 2 kbp (based on some measurements of human fibroblasts). The stem cells
are assumed to be non-senescent for 65 years.

Figure 10.2 shows a set of computer simulations of the Buijs model. The pictures
show the structures of the endothelium at age 65 if there is no EPC homing (left
picture) and if there is 5% EPC homing (right picture; this percentage means that
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Fig. 10.2 The cellular profile of the endothelium wall of a 65-year old person according to
simulations using the model of Op den Buijs et al. (2004). Homing of endothelial progenitor
cells (EPCs) is absent in (a), and 5% EPC homing rate is assumed in (b). Grey levels on the
right of each picture represent lengths (in thousands of DNA base pairs) of the proliferation-
restricting telomeres per cell. Cells marked × are senescent; cells marked with + originated
from EPC homing, and black areas are denuded of endothelial cells. Figures reproduced with
permission from Op den Buijs et al. (2004).
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up to 5% of endothelial cells are due to EPC homing). The simulation was carried
out under abnormally increased telomere attrition rate (∆L = 250 bp/cell division)
due to increased oxidative stress. It is seen that without the contribution of EPC
homing, the majority of the cells are senescent and large denuded areas are present.
In contrast, as shown on the right picture, 5% EPC homing is able to maintain the
endothelium wall (with just a few denuded areas and few senescent cells). Note that
the Buijs model should not be construed to mean that telomere-dependent aging of
ECs is the only or primary cause of vascular disease; the modelling merely suggests
that telomere-dependent senescence is a contributing factor.

10.2.2 A continuum model

The small number of ECs considered in the simulations described above of the Buijs
model does not allow one to generalize the results to larger areas of the vascula-
ture, where hundreds of thousands of ECs are involved. It is of interest to know how
endothelium maintenance and damaging factors play out in a large population of ECs,
because this information will then permit one to relate the aging of the organism to the
aging of the EC wall. Wang, Aguda & Friedman (2007) developed a continuum math-
ematical model (henceforth called the WAF model) of the endothelium describing how
densities of ECs of different telomere lengths evolve in time. This model is discussed
below.

The dynamical variable mi(x, y, t) represents the number density (cells per unit
area) of cells of generation i (this index counts the number of mitotic divisions until
senescence). The number of cells of generation i at time t in the area bounded by x
and x + dx, and y and y + dy is equal to mi(x, y, t)dxdy. For viable cells the index
i ranges from 0 (for EPCs that just homed on the endothelium) to N (for senescent
cells). The value taken for N is 50, the human Hayflick limit. For dead cells, i = N +1.
To account for the space created when dead cells are cleared, a variable called ‘hole
density’, h(x, y, t), is defined to be identical to the number density of dead cells before
they are cleared.

A key feature of the WAF model takes into account the observation that a normal
EC in contact with other ECs on all sides does not divide, and only non-senescent cells
that border holes can proliferate; the expression λimih (0 ≤ i ≤ N − 1) for the rate of
cell division satisfies this requirement. The proliferation parameter λi depends on cell
generation i and is expected to decrease with i (that is, it becomes harder for cells to
proliferate as they get older). Also, every viable cell has some probability of dying at
any time, and the death rate is assumed to be proportional to the cell number density,
that is, kimi (0 ≤ i ≤ N). As with λi, the death parameter ki depends on i but
is expected to increase with i. The assumed dependences of proliferation and death-
rate parameters, λi and ki, are shown in Fig. 10.3(a). Cellular senescence is therefore
represented in the model via three mechanisms: the Hayflick limit, the dependence
of λi and of ki on cell generation i. The model considers the case where viable ECs
and EPCs that have homed on the wall do not undergo migration (by diffusion or
transport) on the endothelium surface.
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Fig. 10.3 (a) Variations of cell replication-rate coefficients (hλi) and death-rate coefficients
(ki) with cell generation. The replication-rate parameters λi range from zero (λN = 0 for
senescent cells) to a maximum of λ0 (= 4×10–5 s–1 for progenitor cells), and with intermediate
values determined from the equation λi = (λ0 + 1)(N–i)/N–1. The cell death-rate coefficients
range from a minimum of zero (for k0) to a maximum value of 6 × 10–8 s–1 (for kN ), with
intervening values given by the equation ki = (kN + 1)i/N–1. (b) Figure demonstrating that
due to the variations in (a), a sharply peaked distribution (black solid curve) is spontaneously
generated, even from an initially flat distribution (dashed line). The spike at the end of the
solid curve is due to the accumulation of senescent and dead cells.
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The 53 dynamical equations of the model are given by:

∂m0

∂t
= γh − λ0m0h − k0m0, (10.1)

∂mi

∂t
= 2λi−1mi−1h − λimih − kimi (1 ≤ i ≤ N − 1), (10.2)

∂mN

∂t
= 2λN−1mN−1h − kNmN , (10.3)

∂mN+1

∂t
= D∇2mN+1 +

N∑
i=0

kimi − δmN+1, (10.4)

∂h

∂t
= δmN+1 − γh −

N−1∑
i=0

λimih. (10.5)

The first term on the right-hand side of eqn 10.1 is the EPC homing rate with a
rate coefficient γ. The factor 2 in eqns 10.2 and 10.3 is due to cell doubling after
division. Note that there is no cell-division term in eqn 10.3 since senescent cells do
not proliferate. The first term on the right-hand side of eqn 10.4 takes into account
that dead cells – prior to being cleared – become loosely attached to the endothelial
wall and can diffuse laterally (D is the diffusion coefficient); the second term accounts
for the death of all viable cells, and the last term is the rate of clearing dead cells,
with a rate coefficient of δ.

The simulations presented in the paper of Wang et al. (2007) involve a square R
of 1 cm2 area on the endothelial wall

R = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

and the following set of periodic boundary conditions on the number density of dead
cells:

mN+1(0, y, t) = mN+1(1, y, t), ∇mN+1(0, y, t) = ∇mN+1(1, y, t)
mN+1(x, 0, t) = mN+1(x, 1, t), ∇mN+1(x, 0, t) = ∇mN+1(x, 1, t).

(10.6)

On a macroscopic scale it is assumed that the ECs and holes are initially distributed
so that the total number density is the same at every point, that is,

h(x, y, 0) +
N+1∑
i=0

mi(x, y, 0) = constant, A. (10.7)

Since one EC covers an area of the order of 100 µm2, A is of the order of 106 cells per
cm2 area. One can show that

∫∫
R

(
h +

N+1∑
i=0

mi

)
dxdy = constant, A for all t > 0. (10.8)
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By dividing both sides of eqn 10.7 by A, the number densities are transformed into
dimensionless variables; from hereon, h and mi (i = 1, . . ., N + 1) refer to the dimen-
sionless number densities and the A in eqn 10.7 is set to 1. Note that if h(x,y,0) and
mi(x, y, 0)(i = 1, . . . , N+1) are all constants, then the system eqns 10.1–10.5 becomes
a system of ordinary differential equations.

The distribution G(t) = {mi(t)} is referred to as the ‘cell-generation profile’ of
the endothelium at time t. It is assumed that, on average, the endothelium of an
individual at any age is composed of a distribution G of finite spread. Interestingly,
due to the dependence of the cell-division and death rate-constants (λi and ki) on
cell generation i (see Fig. 10.3(a)), the model spontaneously generates G(t) profiles
that look like Gaussian distributions (see Fig. 10.4); that is, even an initially flat
distribution eventually becomes Gaussian-like given enough time (see Fig. 10.3(b)).
In the WAF model simulations, the chronological age of an individual is measured
by the independent variable t in the dynamical eqns 10.1–10.5. If the peak of the
distribution G is taken as a measure of the endothelium’s age, the model simula-
tions demonstrate that the endothelium does not have to age at the same rate as
the individual’s chronological age (see Fig. 10.4). Currently, there are no published
measurements that permit one to correlate an individual’s chronological age to the
cell generation index i∗ where G peaks (the simulations shown in Fig. 10.4 arbitrar-
ily assumes that a 20-year old has a G that peaks at i∗ = 6 (see leftmost curves in
Fig. 10.4 (a)–(c)).

As shown in Fig. 10.4, the speed by which G moves towards senescence depends
sensitively on the value of the EPC homing parameter γ. This parameter was varied
between 0 and 1, and it was found that G(t) becomes slower if γ is increased, and faster
if γ is decreased. For γ = 10–9, the results are very similar to those of Fig. 10.4(a).
For large values of γ(>10–7), some interesting results are observed. When γ = 10−5,
a stationary G is reached with i∗ = 27 at the age of t = 60 (see Fig. 10.4(b)). For
γ = 10−1 (see Fig. 10.4(c)), G moves forward (increasing i∗) for some time and then
back to a stationary G with i∗ = 9; clearly, this high value of γ is unrealistic. A
biologically sensible value of the homing parameter γ ranges from 10–9 to 10–8 s–1.

The model was also used to investigate the healing time of a wound of the endothel-
ium of young, middle-aged, and old persons. As exhibited in Fig. 10.5, the healing time
dramatically increases towards old age (compare 40 and 60 year-olds in Fig. 10.5(a)),
and sensitively depends on the value of the EPC homing-rate parameter γ.

10.3 Asymmetric stem-cell division

Molecular markers for stem cells have been identified, and specific locations of stem
cells in some tissues have been located. For example, hematopoietic stem cells are
known to reside in the bone marrow, and neural stem cells have recently been found
in certain areas of the brain (the discovery of these neural stem cells was a surprise
because it was thought for a long time that neurons do not regenerate).

Pools of stem cells contain small numbers of these cells. Stem cells are thought to
divide only when the need to regenerate arises. When stem cells divide, it is expected
that new stem cells must be born in addition to the progeny cells that go on to



146 Cell aging and renewal

(b)
	  = 10–5

1 20

30

40
50

60
70

80

0.9

0.8

0.7

0.6

0.5

D
en

si
ty

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25

Generation index
30 35 40 45 50

(c)
20

30

40

50–80

1

0.9

0.8

0.7

0.6

0.5

D
en

si
ty

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25

Generation index
30 35 40 45 50

	  = 10–1

(a)
	  = 10–820

30

40 50 60

80
70

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

D
en

si
ty

0.1

0

Generation index
0 5 10 15 20 25 30 35 40 45 50

Fig. 10.4 Cell-generation profiles for a person with advancing chronological age of T = 20,
30, 40, 50, 60, 70, and 80 years (numbers shown near the peaks of the curves). The three values
used in the simulations for the progenitor cell homing parameter γ are indicated; values of all
other parameters are: D = 10–8 cm2 s–1, k0 = 0 s–1, kN = 0.6× 10–7 s–1, λ0 = 0.4× 10–4 s–1,
λN = 0 s–1, δ = 6× 10–7 s–1. The points on the right edge of the plots (at i = 50, 51) are the
densities of senescent and dead cells.

differentiate. Thus, the common thinking is that a stem cell divides asymmetrically –
that is, one daughter cell is identical to its mother, while the other is different from the
mother and goes on to differentiate. If all stem cells give rise to twins that differentiate,
then the stem-cell pool will ultimately get depleted. The asymmetry with regards
to production of both stem-cell and differentiating progenies can arise by the two
possibilities depicted in Fig. 10.6.

The picture on the left assumes that the progenies are twins that resemble their
stem cell mother, but it is the asymmetry of the environments where the twins reside
that determine the asymmetry of their fates (one niche giving rise to a stem cell, while
the other gives rise to a differentiated cell). The picture on the right hypothesizes
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Fig. 10.5 (a) Starting with identical circular hole-density profiles, h(x, y, 0) = exp[−50((x−
0.5)2 + (y − 0.5)2)], on their endothelia, the time it takes (healing time) for the hole to be
reduced to a fraction θ is shown for a young (T = 20 years), a middle-aged (T = 40), and an
old (T = 60) person. Parameter values as in Fig. 10.4, and γ = 10–8. (b) Starting with the
cell-generation profile of an old person (T = 60 years) with a damaged endothelium (hole-
density profile as in (a)), the healing times are determined for the three γ values indicated.
Other parameter values as in Fig. 10.4.
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(a) (b)

Differentiated cellDifferentiated cell

Fig. 10.6 Symmetric (a) and asymmetric (b) division of a stem-cell. In case a, the stem cell
niche (light grey background) maintains the stemness of a daughter cell; other environments
(dark background) direct the differentiation of a daughter cell. In case b, one daughter cell is
a stem cell (identified by a white vertical bar) while the other goes on to differentiate. Figure
adapted from Alberts et al. (2002).

that the asymmetry already exists internally in the daughter cells, regardless of the
environment.

10.4 Maintaining the stem-cell reservoir

10.4.1 The Roeder–Loeffler model

Roeder and Loeffler (2002) proposed a dynamic model of blood stem-cell organization
using the concept of ‘within-tissue plasticity.’ The model assumes that there are two
space compartments where hematopoietic stem cells can be found. These two compart-
ments are depicted in Fig. 10.7. As can be seen in this figure, the hematopoietic stem
cells (HSCs) are either found attached or unattached to stroma cells. Attached HSCs
have been observed to be quiescent (arrested in G1 of the cell cycle) while unattached
HSCs can proliferate, and may eventually differentiate and exit the bone marrow
into the blood stream or lymphatic system. The Roeder–Loeffler model assumes that
unattached HSCs may attach themselves again with stroma cells and become quies-
cent; this is the basis of the ‘within-tissue plasticity’ modelled of Roeder and Loeffler.
The Roeder–Loeffler model is based on this picture of the bone marrow. The model is
depicted in Fig. 10.8.
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Fig. 10.7 A schematic diagram of the components of the stem-cell microenvironment in the
bone marrow. Figure reproduced with permission from copyright owner cited above.
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Fig. 10.8 The Roeder–Loeffler stem-cell model. Cell environments GE-A and GE-Ω repre-
sent stroma-attached or stroma-unattached situations, respectively. Cells can proliferate in
GE-Ω as depicted by the overlapping circles. Attachment affinity a decreases by a factor of 1/d
per time step in GE-Ω, and increases by a factor r per time step in GE-A. Shuttling of cells
between GE-A and GE-Ω occur with rate coefficients α and ω, both quantities being depen-
dent on a. When a goes below a threshold value amin, the cell exits GE-Ω and is considered
differentiated. Figure reproduced with permission from Roeder and Loeffler (2002).

HSCs can be found in either growth environment GE-A or GE-Ω, corresponding to
whether the HSCs are attached or unattached to stroma cells, respectively. A stem cell
is characterized by two properties: the cycling status c, and the attachment affinity
a. Cells in GE-A do not proliferate while those in GE-Ω do, with a turnover time
of τc. The cycling status c has the range 0 ≤ c ≤ τc. Increasing a means increasing
affinity of the cell to GE-A; it also means an increasing probability (as measured by
the transition coefficient α) for a cell in GE-Ω to move to GE-A, or a decreasing
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transition probability (as measured by the coefficient ω) for a cell in GE-A to move to
GE-Ω. Cells in GE-A are assumed to have increasing values of a with time. Cells in
GE-Ω have decreasing values of awith time. Cells in GE-Ω whose a values go below a
threshold value, amin, are considered differentiated and are irreversibly detached from
GE-A so that they eventually exit the stem-cell niche (GE-Ω + GE-A).

The transition probabilities between the two growth environments are both func-
tions of a and number of stem cells in each environment (NA and NΩ in GE-A and
GE-Ω, respectively), i.e. α = α(a,NA) and ω = ω(a,NΩ). These functions are shown
in Fig. 10.9 where, also, a summary of the Monte-Carlo-type simulation procedure
performed by Roeder and Loeffler is summarized.

The important results of the Monte-Carlo simulations using the Roeder–Loeffler
model are shown in Fig. 10.9(c). The differentiation parameter d (where 1/d is the
fraction that the affinity a decreases to after each time unit, d > 1, for cells in GE-
Ω) and the regeneration parameter r (where r is the multiplicative factor that the
affinity a increases by for each time unit, r > 1, for cells in GE-A) are shown to be
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Fig. 10.9 (a) Variation of the transition intensities α and ω as functions of cell numbers and
attachment affinity a. (b) Discrete dynamics of the attachment affinities in GE-A and GE-Ω,
and the progression of the position of cells in the cell cycle, c. (c) Phase diagram showing the
qualitative behavior of the system (stem-cell number versus time) as a function of the model
parameters d and r. Figures reproduced with permission from Roeder and Loeffler (2002).



Maintaining the stem-cell reservoir 151

determinants of the temporal behavior of stem-cell numbers (NA + NΩ). The figure
shows that medium values of d and high values of r lead to the maintenance of (stable)
stem-cell numbers. Also, as one would expect, low regeneration (low r) and high
differentiation rates (high d) lead to exhaustion of the stem-cell pool. Interestingly,
oscillations in stem-cell numbers characterized by large amplitudes (Fig. 10.9(c)) arise
when d is small. Roeder and Loeffler speculate that these oscillations can explain cyclic
neutropenia or other stem-cell disorders.

10.4.2 A deterministic model

Here, the deterministic PDE model formulated by Roeder (2003) will be described.
The model allows the description of the temporal changes of densities of cells with
varying attachment affinities in both GE-A and GE-Ω. The cell density at affinity a
and time t, n(a, t), is defined so that the number of cells in the affinity interval [a1, a2]
at time t is

N([a1, a2], t) =

a2∫
a1

n(a, t)da. (10.9)

The total stem-cell number is therefore

N(t) = N([amin, amax], t) =

amax∫
amin

n(a, t)da. (10.10)

With superscripts A and Ω referring to quantities associated with GE-A and GE-Ω,
the complete system of PDE equations in {amin <a<amax, t > 0} with and initial
and boundary conditions is

∂

∂t
nA +

∂

∂a
(nA · vA) = −ωnA +

1
κ
αnΩ, (10.11)

∂

∂t
nΩ +

∂

∂a
(nΩ · vΩ) = − 1

κ
αnΩ + ωnA + 2

ln 2
τc

nΩ, (10.12)

nA(a, 0) = gA(a), (10.13)

nΩ(a, 0) = gΩ(a), (10.14)

nA(amin, t) = 0 , nΩ(amax, t) = 0, (10.15)

where, by Fig. 10.9(b) (and vA = (da/dt)A , vΩ = (da/dt)Ω)

vA = a ln r , r > 1, (10.16)

vΩ = −a ln d , d > 1, (10.17)
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Fig. 10.10 (a) Dynamics ofNA andNΩ simulated using the Monte-Carlo method (red curve,
averaged over 100 simulations) and the deterministic PDE model (black curve) of Roeder–
Loeffler. d = 1.07, 1/κ = 0.42. Initial conditions: NA(0) = 250 cells, NΩ(0) = 60 cells; gA(a)
is uniform over a [0.9, 1] and gΩ(a) is uniform over [0.01, 0.1]. (b) d = 1.04, 1/κ = 0.42. Initial
conditions as in (a). (c) d = 1.2, 1/κ = 0.1. Initial conditions as in (a). Figures reproduced
with permission from Roeder (2003). Courtesy of Ingo Roeder. (See Plate 7)

ω =
amin

a
fω(NΩ), (10.18)

α =
a

amax
fα(NA). (10.19)
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The factor (1/κ) in eqns 10.11 and 10.12 corresponds to the fraction of the G1 phase
in the total cell-cycle duration. The rightmost term in eqn 10.13 is due to cell division
with the rate constant equal to (ln 2/τc) where τc is the population doubling time.
The initial distributions of cells with respect to the attachment affinity a in GE-A and
GE-Ω are given by the gA(a) and gΩ(a), respectively, as shown in eqns 10.13 and 10.14.
The parameter r in eqn 10.16 is referred to as the ‘regeneration parameter’ and the
parameter d in eqn 10.17 as the ‘differentiation parameter.’ The functions fω and fα
in eqns 10.18 and 10.19 – corresponding to the detachment and attachment of stem
cells from the stroma, respectively – are assumed to have the following general sigmoid
form

f(Ne) =
1

ν1 + ν2 exp
(
ν3

Ne

∼
N

) + ν4 , e= A or Ω, (10.20)

where Ne is the number of stem cells in the growth environment e (A or Ω),
∼
N is a

scaling factor for Ne (e.g.
∼
N = NA +NΩ) and the νis are adjustable parameters. See

Fig. 10.9 for sample plots of this sigmoid function used in the Monte-Carlo simulations.
Roeder (2003) showed that the PDE model discussed above can be made to agree

with the results of the MC method presented earlier. Figure 10.10 shows a compar-
ison of these methods when parameters are used that give stable, oscillating and
‘exhausting’ stem-cell numbers.
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Exercises

1. Prove eqn 10.8.
2. Consider the model eqns 10.1–10.5 and the case of spatially uniform distribution

of each mi and of h. Does a steady-state generation profile always exist? If so, plot
this profile (G vs. i) and determine whether it is stable.
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3. Consider the system eqns 10.11–10.19 with eqn 10.20. The characteristic curves
of eqns 10.11 and 10.12 are given by da/dt = νA and da/dt = νΩ. Prove that
nA(a, t) ≥ 0, nΩ(a, t) ≥ 0 for all (a, t).

4. For the system eqns 10.11–10.19 with eqn 10.20 prove that if NA+NΩ ≤ constant

for all t > 0, then
∞∫
0
NΩ(t)dt < ∞ ; this suggests that NΩ(t) → 0 as t → ∞.

Explain the biological implication of this.



11
Multiscale modelling of cancer

The development of cancer involves various temporal and spatial scales, as well as
multiple levels of molecular and biological organization – from genes to cells, to tissue,
and to the organism. The spatial scales range from subcellular to the cellular, and
macroscopic or tissue level; temporal scales can range from milliseconds (e.g. activation
of enzymes, or cellular signal transduction) to months or years of tumor growth. The
hallmarks of cancer are briefly summarized in the first section of this chapter, followed
by a discussion of modelling tumor spheroid growth (the typical model system for
avascular tumors) and a model of colorectal cancer (a vascularized tumor). These two
cancer models are hybrids of discrete and continuous dynamical models illustrating
how the subcellular, cellular, cell population, and tissue dynamics are interfaced. The
chapter ends with a discussion of continuum models that focus on the growth of the
tumor boundary and treat the cell population as a continuous fluid.

11.1 Attributes of cancer

Cancer originates from cells in tissues that have acquired abnormal rates of prolifera-
tion that are not constrained by the developmental or tissue-maintenance plans of an
organism. There are more than a hundred known types of human cancers, broadly cat-
egorized according to tissue of origin. Carcinomas begin with epithelial cells; sarcomas
arise from connective tissues, muscles and vasculature; leukemias and lymphomas are
cancers of the hematopoietic (blood) and immune systems, respectively; gliomas
are cancers of the central nervous system, including the brain; and retinoblastomas
are those of the eyes.

The proliferative advantage of cancer cells over normal cells can be due to any
or a combination of the following attributes of cancer cells (Hanahan and Weinberg,
2000):

1. Self-sufficiency in growth signals due to the ability of cancer cells to synthesize
factors that they secrete and stimulate their own division (autocrine signalling).

2. Insensitivity to antigrowth signals. During an organism’s normal development,
certain cells are instructed to exit the cell cycle and differentiate; in contrast,
many cancer cells are not responsive to these cell-cycle-arrest signals for various
reasons, including mutations of genes whose protein products are members of
cell-cycle-arrest pathways.

3. Evasion of apoptosis. Cancer cells avoid dying by apoptosis due to faulty
transduction of death signals.
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4. Limitless replicative potential. As was discussed in Chapter 10, cellular senes-
cence is another built-in program that safeguards the organism from cancer.
However, cancer cells may override senescence by, for example, overexpressing
the telomerase enzyme that maintain telomere lengths.

5. Sustained angiogenesis. The growth of a tumor involves the co-operation of other
non-cancer cells. In angiogenesis, for example, endothelial cells are recruited
towards the tumor to form the lining of blood vessels supplying oxygen and
nutrients required for tumor growth.

6. Ability to invade tissues and metastasize. Metastasis, or the spread of tumor
cells to other parts of the body, is facilitated by the tumor cells’ ability to free
themselves from cell–cell and cell–substrate adhesions.

It is not necessary that all of the above attributes be possessed by a cancer cell
or that these attributes occur sequentially as listed above. It is believed that these
physiological advantages are acquired progressively in a Darwinian-type of evolution
of the cancer-cell population via some succession of genetic and epigenetic changes.

From the cancer hallmarks mentioned above, it is to be expected that cancer
modelling involves a range of spatial and time scales. In terms of time scales, most
mathematical models of solid tumors have focused on the three phases of growth,
namely, avascular, vascular, and metastatic. The avascular growth phase occurs before
angiogenesis; the start of the avascular phase would include the acquisition of genetic
or epigenetic abnormalities at the single-cell level. A cell or a group of abnormal
cells will then slowly (perhaps in the time scale of years) acquire proliferative advan-
tage over the surrounding normal cells (for example, by enhanced autocrine signalling
due to abnormal molecular pathways resulting from gene mutations). This is the
‘Darwinian evolution’ referred to above. In terms of spatial scales, existing mathemati-
cal models of avascular tumor growth are of two types: one is a discrete cell-population
model that considers single-cell processes and rules on cell–cell interactions (using
some Monte-Carlo-type computations and other cellular automata types); the other
type of model is a continuum model that assumes space averaging of cell character-
istics. An example of an avascular tumor-growth model that uses information from
tumor spheroid experiments is discussed in the next section.

Vascular tumor-growth models include the complex process of angiogenesis, which
will not be discussed in this chapter. In Section 11.3, a multiscale model of colorectal
cancer is discussed in detail – this model assumes that there are already blood vessels
from which oxygen diffuses. Both the vascular and avascular tumor models discussed
in this chapter illustrate ways of linking genetic and protein cellular pathways (at the
single-cell level) to the cell-population level. Models of metastasis are in their infancy
and are not discussed in this book.

11.2 A multiscale model of avascular tumor growth

Multicellular tumor spheroids are observed during the early stages of many solid
tumors. The availability of in vitro experimental models makes the study of tumor
spheroids very popular. A cross-section of a tumor spheroid is shown in Fig. 11.1(a).
In vivo, it is believed that one spheroid can be formed from a single cancer cell. With
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Fig. 11.1 (A) Cross-section through the center of a spheroid of tumor cells (mouse mammary
tumor cells, grown from a cell line called EMT6/Ro). The spheroid diameter is ∼1200 µm.
The rim of viable cells (proliferating and quiescent cells) is the dark band surrounding a core
of necrotic cells. Picture is reproduced with permission from Jiang et al. (2005). Copyright
2007 Biophysical Society. (B) Schematic depiction of the necrotic (N), quiescent (Q), and
proliferating (P) cell layers. The boundary between N and the viable rim is observed to be
sharp, but note that the boundary between P and Q is not – there is a continuous decrease
in the fraction of proliferating cells in the viable rim from the spheroid surface to N.

sufficient nutrients, the initial radial growth of the tumor is described as quasiexponen-
tial; eventually the growth saturates (i.e. reaches a steady-state radius). As depicted
in Fig. 11.1, three layers of cells are formed – an outermost layer of proliferating cells
(P), a middle layer of viable but quiescent cells (Q), and a core of dead or necrotic
(N) cells. These layers arise due to diffusion-limited availability of nutrients from the
growth medium (periphery) to the spheroid center. As demonstrated in the experi-
mental system of Fig. 11.1, there is a clear demarcation between the viable rim (P+Q
layers) and the necrotic region. Another interesting experimental observation is the
approximately constant width of the viable rim as the spheroid grows. In this section,
the essential features of the discrete model of Jiang et al. (2005) – referred to below
as the Jiang model – is discussed.

The Jiang model takes the following into consideration: cell growth and division,
diffusion and consumption of nutrients, production and diffusion of cell (metabolic)
wastes, protein factors that promote or inhibit cell growth, intercellular adhesion, cell
geometry, and cell–environment interactions.

11.2.1 Cellular scale

At the cellular scale, the Jiang model employs a discrete-lattice Monte-Carlo pro-
cedure. Three-dimensional space is partitioned into domains of cells and external
medium. (A cell occupies several lattice sites to allow cell deformation.) It is assumed
that a cell is in direct contact with adjacent cells (i.e. the extracellular matrix is
ignored), and cell–cell interaction is through surface adhesion and competition for
space. The growth dynamics of the tumor is governed by a total energy function H
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that accounts for cell–cell adhesion and growth of cell volumes:

H =
∑

lattice sites

[JS1−S2][1 − δ(S1, S2)] +
∑
cells

γ[v − V T ]2, (11.1)

where the first sum (over all lattice sites) on the right-hand side of the equation gives
the total adhesive energy between cells, and the second sum (over all cells) accounts for
changes in cell volumes. The factor JS1−S2 is the adhesive energy between cells labelled
S1 and S2, δ is the Kroneker delta function, V T is the target cell volume (explained
below), v is the current cell volume, and γ is the coefficient of volume elasticity. Note
that the second term provides the potential for cell growth from v to V T . The value
of the parameter JS1−S2 varies according to the types that cells S1 and S2 belong
to – this assumption embodies the differential adhesion hypothesis, which states that
differences in adhesivity between different cell types lead to cell sorting that minimizes
surface energy. The Jiang model assumes three types of cells: proliferating, quiescent,
and necrotic. For computational purposes, the external culture medium is considered
as a special ‘cell’. Each proliferating cell has a V T that is twice its volume at birth;
thus, the cell volume has to grow to minimize H. The target volumes of a quiescent
cell and a necrotic cell are equal to their respective current volumes (in other words,
these cells do not grow). The space occupied by necrotic cells cannot be invaded by
viable cells, but the external medium can be invaded by proliferating cells.

The Monte-Carlo procedure for minimizing H involves randomly selecting a lattice
site, changing the cell ID of this site to the value of one of its neighbors with a different
ID, calculating the ∆H due to this ID change, and then calculating the probability of
accepting such an ID change according to the following equation:

p =
{

1 ∆H < 0
e−β∆H ∆H ≥ 0, (11.2)

where β is a constant (the equation above says that the ID change is accepted if ∆H
is negative, whereas the probability of accepting the change decreases exponentially
with positive values of ∆H). A Monte-Carlo step (MCS) involves the number of trial
lattice updates equal to the total number of lattice sites.

According to the Jiang model, in order for a proliferating cell to divide it must
satisfy two criteria: that it has grown to at least the target volume V T , and that its age
(from birth) must be at least equal to the duration of a cell cycle. After cell division,
one of the halves is assigned a new cell ID. A daughter cell inherits all the properties
of her parent.

11.2.2 Extracellular scale

Concentrations of molecules, ui, found in the extracellular environment evolve accord-
ing to the following continuous reaction-diffusion equation:

∂ui
∂t

= Di∇2ui + Ri(x, y, z), (11.3)
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where the subscript i ranges from oxygen, nutrients, metabolic waste, growth-
promoting factors, growth-inhibiting factors, and others. The function Ri is the
space-dependent net production rate of molecule i, and Di is the molecule’s diffu-
sion coefficient. The Jiang model assumes that necrotic and quiescent cells secrete
growth-inhibitory factors. It is also assumed that the concentrations of oxygen, nutri-
ents, and growth-promoting factors in the extracellular medium are homogeneous and
constant in time.

11.2.3 Subcellular scale

In general, at the subcellular scale, gene- and protein-regulatory networks that control
cellular physiology are considered. The activities of these networks allow further clas-
sification of cells according to their position in the cell cycle (G1, S, G2, and M). (The
subcellular scale is the area of multiscale cancer modelling that is not quite devel-
oped at this time.) The Jiang model, in its original form, assumed a simplistic set
of linear pathways from S-phase-promoting and -inhibiting proteins to the E2F tran-
scription factor and will not be discussed here (the next section will discuss another
more appropriate gene network).

It is common to treat protein and gene-regulatory networks as Boolean networks
with Boolean dynamics, i.e. all the proteins have only two states: on or off. The Jiang
model assumes that the dynamics of the intracellular Boolean network is affected by
the local concentrations of growth-promoting and -inhibiting factors only (ug and ui,
respectively), and that the switching on or off of a protein in the network depends on
the value of a ‘factor level’ f defined as

f =
1

1 + e−α(∆g−θ) , where ∆g = (ug − ui)/u0
g, (11.4)

where θ is a factor level threshold, u0
g is the concentration of growth-promoting factors

in the extracellular medium, and α is a constant. A protein X in the network is turned
on if the factor level f is above the threshold and one of the following situations holds:
either all the proteins affecting X are activating and are on, or all the proteins affecting
X are inhibitory and are off. All other situations turn the protein off. If f is below the
threshold, its value is interpreted as the probability that a protein will be turned on.
If E2F is off then the cell goes into quiescence, otherwise it progresses through the
cell cycle. In the Jiang model, a cell dies if uo < 0.02 mM, un < 0.06 mM, and uw >
8 mM (where uo, un, and uw are the concentrations of oxygen, nutrients, and wastes,
respectively). The Monte-Carlo simulation scheme is shown in Fig. 11.2.

A simulation run of the Jiang model is shown in Fig. 11.3. The top panel
(Fig. 11.3A) shows the cross-sections of the growing tumor from a single cancer cell to
a spheroid; these simulations reproduce the well-defined layers of proliferating, quies-
cent, and necrotic cells observed in experiments. Figure 11.3B demonstrates the good
fit between the model and experimental data on growth in tumor volume. Figure
11.3C compares model predictions and experimental data on the widths of the viable
rim (proliferating and quiescent cells) and diameters of the necrotic core. The exper-
imental data show that the width of the viable rim is approximately constant and
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Solve chemical equations for one cell cycle stage
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Fig. 11.2 Flowchart of the Monte-Carlo simulation steps in the Jiang et al. (2005) model.
In this model, cell-cycle progression is represented by 16 stages (G1 and S phases have 6 stages
each, and G2/M combined has 4 stages). Cell shedding has been observed experimentally for
mitotic cells located on the spheroid surface. Steps in this flowchart are explained in the text.
Figure is modified from Jiang et al. (2005).

that the necrotic core radius linearly increases for tumor spheroid diameters between
370–830 µm. The computer simulations agree well with the data at the larger
diameters, but quantitatively differs in the initial stages of tumor growth.

11.3 A multiscale model of colorectal cancer

In the USA, there are over 130 000 persons diagnosed each year with colorectal cancer
with about 50 000 dying of the disease. The cancer usually starts as a benign tumor
(called polyps) that, under conditions allowing further genetic mutations, can progress
into a full-blown malignant tumor.

Approximately 80% of colorectal cancers are sporadic (about 20% are associated
with family history of colon cancers). Individuals with the hereditary colon cancer
syndrome, called ‘familial adenomatous polyposis’, often develop hundreds or even
thousands of colon polyps in their teenage years, and are therefore quite susceptible
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Fig. 11.3 Simulations of tumor spheroid growth using the Jiang model. (A) Cross-section
of the spheroid. Cyan, yellow, and magenta areas represent proliferating, quiescent, and
necrotic cells, respectively. The simulation was started with a single cell. (B) Growth of the
spheroid volume with time. Solid black symbols are from experimental data. Empty white cir-
cles are from model simulations. The continuous curve is the best fit to the experimental data.
(C) Model predictions (empty circles and triangles) and experimental data (solid circles and
triangles) on the widths of the viable rim (proliferating and quiescent cells) and diameters
of the necrotic core. All pictures are reproduced with permission from Jiang et al. (2005).
Copyright 2007 Biophysical Society. (See Plate 8)

to developing colon cancers. In the following subsections, the different levels at which
the multiscale model of Ribba et al. (2006) is based will be discussed in detail.

11.3.1 Gene level: a Boolean network

The five genes most commonly observed to be mutated in colorectal cancers are: APC,
K-Ras, TGFβ, SMAD4, and p53. Ribba et al. (2006) assumed the gene network shown
in Fig. 11.4 that affects cell proliferation and cell death. As indicated in this figure,
these genes are involved in sensing growth factors, hypoxia (low oxygen), cell crowding
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Fig. 11.4 A caricature of the gene- or protein-interaction network involved in the progression
of colorectal cancer (figure adapted from Ribba et al. (2006) with minor modifications). This
network accounts for the following observations: mitogens or growth factors promote cell
proliferation in the presence of sufficient oxygen; cell crowding (overpopulation) inhibits
cell proliferation; lack of oxygen (hypoxia) inhibits cell proliferation; DNA damage induces
cell death as well as inhibits cell proliferation. An arrow means ‘induces activation of’, and
a hammerhead means ‘induces inhibition of’. Abbreviations: GFR = growth factor receptor,
APC = adenomatous polyposis coli, TGFβR = TGFβ receptor, CDK = cyclin-dependent
kinase, Rb = retinoblastoma protein.

(overpopulation), and DNA damage. This network is highly simplified and should only
be viewed for the purpose of illustrating the multiscale model as simply as possible.
More details about these genes are given in the caption of Fig. 11.4.

The gene network is used in the model of Ribba et al. (2006) as a Boolean network
to make decisions whether cells continue into S-phase (proliferative mode), exit the cell
cycle to a quiescent mode (G0), or die (apoptose). (The model is simply referred to as
the Ribba model from hereon.) The Boolean rules corresponding to the gene network
are given in Table 11.1. This table gives the logical value (0 or 1) of a gene at time t+1
depending on the values at time t of the genes that affect it. For example, the value of
c-MYC at time t+ 1 is equal to (RASt) OR (β-CATENINt) OR (NOT SMADt) where
superscript t means the value at time t. As an example of how a signal propagates
through this Boolean gene network, consider the case when the p27 gene is deleted
and the dynamics of the pathway from ‘DNA-damage signal’ to ‘cell proliferation’
is followed. Assume that at time t, RBt = 0, CYC-CDKt = 1, p21t = 0, and p53t = 0;
this means that cells are proliferating at time t. When an above-threshold DNA-
damage signal is introduced at time t one obtains the following from the gene network:
p53t+1 = 1, p21t+2 = 1, CYC-CDKt+3 = 0, RBt+4 = 1, and (cell proliferation)t+5 = 0;
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Table 11.1 Logic rules corresponding to the Boolean gene network
of Fig. 11.4. (Table is reproduced with permission from Ribba et al.
(2006)).

Node Boolean updating function

APCt APCt+1 =
{

1 if Overpopulation signal
0 Otherwise

APCt+1 = 0 if mutated

βcatt βcatt+1 = ¬APCt

cmyct cmyct+1 = RASt ∧ βcatt ∧ ¬SMADt

p27t p27t+1 = SMADt ∨ ¬cmyct

p21t p21t+1 = p53t

Baxt Baxt+1 = p53t

SMADt SMADt+1 =

{
1 if Hypoxia signal

0 otherwise

SMADt+1 = 0 if mutated

RASt RASt+1 =
{

1 if no Hypoxia signal
0 otherwise

RASt+1 = 1 if mutated

p53t p53t+1 =
{

1 if DNA damage signal
0 otherwise

p53t+1 = 0 if mutated

CycCDKt CycCDKt+1 = ¬p21t ∧ ¬p27t

Rbt Rbt+1 = ¬CycCDKt

that is, the cell cycle is arrested at time t+5 according to Fig. 11.4. However, this cell-
cycle arrest due to the DNA-damage signal does not actually happen because at time
t+ 3 the cell had already gone into apoptosis according to the figure (one must remem-
ber this when the Ribba model is being discussed below). Note that when APC, Smad,
and Ras are mutated, their initial Boolean values are set to 0, 0, and 1, respectively.

11.3.2 Cell level: a discrete cell-cycle model

In the Ribba model, a cell is either in the cell cycle, in a quiescent (G0) state, or in
apoptosis. In the model, the cell-cycle phases are G1, S, and G2/M (G2 and M are
lumped together). Let ϕ denote a cell state where ϕ ∈ {G1, S, G2/M, G0, apoptosis).
These cell states and their interconversions – according to the Ribba model – are
shown in Fig. 11.5.
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Fig. 11.5 The discrete model of cell-cycle progression used in the model of Ribba et al.
(2006). ‘R’ represents the checkpoint called the ‘restriction point’ where a cell ‘decides’ to
apoptose or quiesce depending on extracellular signals such as those shown in Fig. 11.4.

There is only one cell-cycle checkpoint considered in the model, namely, the restric-
tion point (R point). At this point, the decision is made whether the cell proceeds to S
phase, or to G0, or to apoptosis. This decision is governed by the genetic status of the
cell – that is, whether the genes shown in the network of Fig. 11.4 are normal or not.
In the Ribba model, cells that go into G0 stay there for some time and then return to
the S phase of the cell cycle. Cells that have gone into apoptosis stay in this state for
some time before being cleared from the system. At the end of the G2/M phase, one
cell gives rise to two daughter cells in the G1 state.

The Ribba model assumes discrete cell states, each state ϕ having a constant time
duration τϕ; furthermore, these durations are all integer multiples of a discrete time
step dt:

τϕ = dt × Nϕ where ϕ ∈ {G1, S, G2/M, G0, apoptosis}. (11.5)

Cells in the system are therefore identified by an age index a and cell state ϕ, where
a ∈ {1, 2, . . . Nϕ} and ϕ ∈ {G1, S, G2/M, G0, apoptosis}. The binary index (a, ϕ) will
be referred to as the cell state from now on.

11.3.3 Tissue level: colonies of cells and oxygen supply

Here, a two-dimensional simulation of colorectal tumor tissue using the Ribba model is
discussed. A square tissue with five circular colonies of cells and two sources of oxygen
(blood vessels) make up the model domain Ω (see Fig. 11.6).

At the tissue level, the dynamical variables are the number densities (cells per unit
area), denoted by na,ϕ, of cells with age index a and state ϕ. Another variable is the
concentration C of oxygen that diffuses radially from the blood vessels and is then
taken up by the cells according to the following equation:

∂C

∂t
= ∇ · (D∇C) −

∑
a,ϕ

αϕna,ϕ on Ω/Ωbv, (11.6)
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Fig. 11.6 Square domain and initial conditions of the two-dimensional tumor-growth model
of Ribba et al. The smaller grey discs are blood vessels and the black discs are tumor-cell
colonies.

with

C = Cmax on Ωbv

C = 0 at ∂Ω,

where D is the oxygen diffusion coefficient, αϕ are the constant coefficients of oxygen
uptake by cells in various states, Ω is the computational domain (Fig. 11.6), ∂Ω is this
domain’s boundary, and Ωbv is the area covered by the blood vessels. Ω/Ωbv means
the computational domain excluding Ωbv.

The spatiotemporal evolution of the cell number densities is described by the
following system of PDEs:

∂na,ϕ

∂t
+ ∇ · (na,ϕv) = Pa,ϕ, (11.7)

where

a ∈ {1, 2, . . . Nϕ}
ϕ ∈ {G1, S, G2/M, G0, apoptosis}.

The second term on the left-hand side is the advection term corresponding to the
movement of cells in space, usually assumed to be in a porous medium that follows
Darcy’s law – a phenomenological equation relating the velocity v of cell movement
to a local pressure gradient ∇σ:

v = −k∇σ, (11.8)

where k is a permeability constant. It is assumed that the total local cell density is
maintained constant throughout a growing tumor-cell colony:∑

a,ϕ

na,ϕ = constant. (11.9)
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The term on the right-hand side of eqn 11.7, Pa,ϕ, is the net rate of change in the
density of cells in the (a, ϕ) state. This source term is the link between the tissue level
and the two other levels (i.e. cellular and genetic) in the model. For example, consider
the case ϕ∗ ≡ G1 and a∗ ≡ NG1 (the asterisks are just being used to distinguish these
particular assignments of ϕ and a). Let R(a∗−1,ϕ∗)→(a∗,ϕ∗) be the transition rate from
the state (NG1 – 1,G1) to (NG1,G1), R(a∗,ϕ∗)→(1,S) be the transition rate from the state
(NG1,G1) to (1,S), R(a∗,ϕ∗)→(1,G0) be the transition rate from the state (NG1,G1)
to (1,G0), and R(a∗,ϕ∗)→(1,apoptosis) be the transition rate from the state (NG1,G1)
to (1,apoptosis). In the Ribba et al. model, the expression for Pa∗,ϕ∗ is given by

Pa∗,ϕ∗ =



R(a∗−1,ϕ∗)→(a∗,ϕ∗) − R(a∗,ϕ∗)→(1,G0) IF {(hypoxia OR overpopu-

lation) AND (NOT die)}
R(a∗−1,ϕ∗)→(a∗,ϕ∗) − R(a∗,ϕ∗)→(1,apoptosis) IF die

R(a∗−1,ϕ∗)→(a∗,ϕ∗) − R(a∗,ϕ∗)→(1,S) otherwise,
(11.10)

where hypoxia, overpopulation, and die are logical variables whose values are defined
according to specified thresholds of local oxygen concentration (Cth), local cell popu-
lation density (nth), and DNA-damage signal (Dth), respectively, and to the mutation
status of particular genes:

hypoxia =
{
True IF {(C < Cth) AND SMAD}
False otherwise, (11.11)

overpopulation =
{
True IF {(n > nth) AND APC}
False otherwise, (11.12)

die =
{
True IF {(D > Dth) AND P53}
False otherwise. (11.13)

In the above definitions, SMAD, APC, and P53 represent the non-mutated (or wild-
type) genes (these are the only genes considered in the Ribba et al. model because of
their direct relevance to colorectal cancer; the other genes in the network of Fig. 11.4
are all assumed to be wild type).

The set of eqns 11.5–11.13 with initial conditions shown in Fig. 11.6 and bound-
ary condition ∂σ/∂n = 0 completes the definition of the Ribba model. Substituting
eqn 11.7 into eqn 11.9, one obtains

−∇ · (k∇σ) =
∑
a,ϕ

Pa,ϕ, (11.14)

which allows the determination of the pressure field.
Numerical simulations of cell population growth using the Ribba model are shown

in Fig. 11.7 for normal cells and for those having mutations in APC, SMAD, and RAS.
Normal cell-population level tapers off after some time due to overpopulation and

hypoxia signals. When APC is mutated, the overpopulation-signalling pathway is cut
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Fig. 11.7 Growth in cell numbers with time predicted by the model of Ribba et al. (2006).
Thick black curve represents growth of normal cells. Growth curves for cells with gene
mutations are shown and are identified with cases of adenoma and adenocarcinoma. Figure
reproduced with permission from Ribba et al. (2006). Copyright 2006 Ribba et al.

off and cells are permitted to proliferate beyond normal levels (causing adenoma, as
interpreted in the figure); eventually hypoxia sets in to restrain population growth.
As demonstrated by the model, adenocarcinoma results when APC, SMAD, and RAS
are mutated so that cell proliferation becomes unrestrained.

Figure 11.8 shows that when hypoxia occurs in the cell colonies, SMAD/RAS are
activated and induce cell quiescence.

� 11.4 Continuum models of solid tumor growth

Continuum models of solid tumor growth consider dynamical variables representing
cell densities that are continuous functions of time and space, instead of discrete
numbers of cells comprising the tumor. The growth models discussed in this section
are examples of free-boundary problems whose general mathematical analysis is still
an open mathematical problem. The instabilities associated with the morphology of
the free boundary – as determined by parameters such as cell-proliferation rate and
cell–cell adhesion – are thought to be relevant in the early stages of tumor invasion
into the surrounding tissue.

11.4.1 Three types of cells

Following Pettet et al. (2001), consider a model of a growing tumor that includes
three types of cells, namely, proliferating, quiescent, and dead cells; and let the mass
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Fig. 11.8 Growth of tumor-cell colonies starting with the configuration shown in Fig. 11.6.
Areas occupied by proliferating cells are shown in white; black areas surrounded by white areas
are those occupied by cells that have gone into quiescence due to hypoxia and subsequent
Smad and Ras activation. Figure is reproduced with permission from Ribba et al. (2006).
Copyright 2006 Ribba et al.

densities of these cells be p, q, and w, respectively. Due to the birth of new cells and
removal of dead cells, there is continuous cell motion with velocity v that depends
on space and time. The equations for the conservation of cell mass densities are the
following:

∂p

∂t
+ div(pv) = Kpp(c)p + Kpq(c)q − Kqp(c)p − Kwp(c)p, (11.15)

∂q

∂t
+ div(qv) = Kqp(c)p − Kpq(c)q − Kwq(c)q, (11.16)

∂w

∂t
+ div(wv) = Kwp(c)p + Kwq(c)q − krw. (11.17)

The term krw in eqn 11.17 represents the removal rate of dead cells; the other terms on
the right-hand sides of eqns. 11.15–11.17 give the rates of transitions between cellular
states as shown in Fig. 11.9.
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Fig. 11.9 Diagram showing the transitions between proliferating (p), quiescent (q), and dead
(w) cells. The symbols adjacent to each transition arrow are the rate coefficients.

The rate coefficient Kij(c), for the transition from state j to i, is assumed to
depend on the local concentration c of a nutrient. For avascular tumors, this nutrient
diffuses in the tumor region Ω(t) and is consumed by proliferating and quiescent cells.
The evolution of c is modelled by the following equation:

ε0
∂c

∂t
= Dc∇2c − λ(p, q)c in Ω(t). (11.18)

The nutrient’s diffusion coefficient, Dc, is assumed constant. The constant ε0 corre-
sponds to the ratio between the time scale of nutrient diffusion and of tumor growth,
and is therefore small in magnitude. The rate coefficient, λ(p, q), of nutrient consump-
tion is a function of the densities of viable cells, p and q. (In the discussion below, λ
is assumed constant.)

As in the Ribba et al. model, the growing tumor is viewed as a fluid with velocity
v moving in a porous medium that follows Darcy’s law:

v = −β∇σ, (11.19)

where σ is the fluid pressure and β is a positive constant. A further assumption is
that all cells are identical in volume and mass, and that the total cell density at any
location within the tumor at any time is a constant:

p + q + w = constant, C. (11.20)

For simplicity, let β = 1 and C = 1. From the sum of eqns 11.15–11.17, one obtains

divv = Kpp(c)p − krw. (11.21)
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Replacing eqn 11.17 with eqn 11.21, and substituting w = 1−p− q, one arrives at the
following system of equations (Dc is set to 1):

∂p

∂t
− ∇σ · ∇p = f(c, p, q) in Ω(t), t > 0, (11.22)

∂q

∂t
− ∇σ · ∇q = g(c, p, q) in Ω(t), t > 0, (11.23)

∇2σ = −h(c, p, q) in Ω(t), t > 0, (11.24)

ε0
∂c

∂t
= ∇2c − λc in Ω(t), t > 0, (11.25)

where

f(c, p, q) = Kpp(c)p + Kpq(c)q − Kqp(c)p − Kwp(c)p − h(c, p, q)p

g(c, p, q) = Kqp(c)p − Kpq(c)q − Kwq(c)q − h(c, p, q)q

h(c, p, q) = Kpp(c)p − kr(1 − p − q).

Let ∂Ω(t) denote the boundary of the growing tumor; here, the boundary conditions on
the nutrient concentration, ‘fluid’ pressure, and ‘fluid’ velocity normal to the boundary
(vn) are taken to be the following:

c = c̄ on ∂Ω(t), t > 0, (11.26)

σ = γκ on ∂Ω(t), t > 0, (11.27)

vn ≡ v · n = −∂σ

∂n
on ∂Ω(t), t > 0, (11.28)

where n is the normal vector, κ is the boundary’s mean curvature, and γ is the surface-
tension coefficient. For a sphere of radius R, κ ≡ 1

R . What keeps the cells together in a
solid tumor is assumed to be the surface tension attributed to cell-to-cell adhesiveness
with strength proportional to γ. Finally, the following initial conditions complete the
definition of the mathematical problem:

Ω(0) = Ω0, (11.29)

p(x, 0) = p0(x) ≥ 0 , q(x, 0) = q0(x) ≥ 0 , p0(x) + q0(x) ≤ 1 in Ω0, (11.30)

c(x, 0) = c0(x) ≥ 0 in Ω0. (11.31)

Chen and Friedman (2003) proved the existence of a unique smooth solution to the
system 11.22–11.31 for some finite time interval 0 ≤ t ≤ T as long as the initial dataset
{p0, q0, c0} is sufficiently smooth and the initial and boundary conditions are consistent
with the differential equation for c at ∂Ω(0). In general, one cannot extend the solution
beyond some finite time T . However, for the special case of radially symmetric initial
data, the existence of a solution of eqns 11.22–11.31 for all t > 0 has been proven by
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Cui and Friedman (2003) under some conditions on the parameters, as stated in the
following theorem:

Theorem 11.1.A (Cui and Friedman, 2003)
There exists a unique radially symmetric solution for the system (eqns 11.22–11.31)
for all t > 0 when the following conditions hold:

ε0 = 0, (11.32)

K ′
pp(c) > 0, K ′

pq(c) > 0, K ′
wp(c) ≤ 0, K ′

wq(c) < 0,

K ′
qp(c) < 0, K ′

pp(c) + K ′
wq(c) > 0 (0 ≤ c ≤ c̄),

(11.33)

Kpp(0) = 0, Kpq(0) = 0, Kwp(c̄) = 0, Kwq(c̄) = 0, Kqp(c̄) = 0. (11.34)

Furthermore, the free boundary ∂Ω(t) = {r = R(t)} satisfies the following inequalities:

ρ1 ≤ R(t) ≤ ρ2 for all t > 0, (11.35)

where ρ1 and ρ2 are positive constants.

Some remarks on the biological relevance of the conditions of the preceding theorem
can be made. Equation 11.32 states the assumption that the nutrient concentration
spatial profile is steady in time. The dependences of the rate coefficients Kijs on c –
as presented in eqn 11.33 – are intuitively clear; for example, K ′

pp(c) > 0 is consistent
with the fact that cell-proliferation rate increases with nutrient concentration, and
K ′

qp(c) < 0 with the fact that there is increasing rate to quiescence when c decreases.
The condition K ′

pp(c) + K ′
wq(c) > 0 states that the rate coefficient for cell prolif-

eration is larger in magnitude than the rate coefficient for death of quiescent cells;
this assumption is based on experimental data (Dorie et al. 1986; Dorie et al. 1982).
Lastly, eqn 11.35 asserts that the radially symmetric tumor does not grow beyond a
finite radius of ρ2. The calculation of ρ2 in terms of experimentally accessible param-
eters would be of practical significance. It can be shown that, for radially symmetric
tumor growth, R(t) satisfies the following integrodifferential equation:

R2(t)
dR(t)

dt
=

R(t)∫
0

h(c, p, q)r2dr. (11.36)

Solving eqn 11.36 is a difficult problem because the unknown variables {c, p, q} cannot
be decoupled from the variable σ due to eqns 11.22–11.24. Friedman (2006) discussed
several open mathematical problems concerning the system 11.22–11.31, including the
existence of solutions that are not radially symmetric, the stability of solutions, as
well as the extension of Theorem 11.1.A to the case where ε0 > 0. Some of these
open problems have been solved for the special case of a single type of cells, as
discussed next.
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11.4.2 One type of cells

Here, only proliferating cells are assumed to represent the growth of a tumor. The
right-hand side of eqn 11.15 simplifies to:

∂p

∂t
+ div(pv) = Kpp(c)p − Kwp(c)p. (11.37)

Since cell density is still kept constant (p= 1), the right-hand side of the latter equation
is now just a function of c, and the left-hand side simplifies to divv, so that

divv = Kpp(c) − Kwp(c) ≡ S(c). (11.38)

A biologically feasible form of the function S(c) is:

S(c) = µ(c − c̃), (11.39)

where µ is a positive constant and c̃ is some threshold nutrient concentration above
which cells proliferate leading to the expansion of the tumor, and below which the
tumor shrinks. Application of Darcy’s law, and non-dimensionalizing, give

∇2σ = −S(c). (11.40)

The system of equations for the case of one type of cells (proliferating cells) is
summarized below:

∂c

∂t
− ∇2c + c = 0 in Ω(t), t > 0, (11.41)

∇2σ = −µ(c − c̃) in Ω(t), t > 0, (11.42)

c = c̄ on ∂Ω(t), t > 0 and c̄ > c̃, (11.43)

σ = γκ on ∂Ω(t), t > 0, (11.44)

∂σ

∂n
= −vn on ∂Ω(t), t > 0, (11.45)

with initial conditions

Ω(0) = Ω0, (11.46)

c|t=0 = c0(x) for x ∈ Ω0. (11.47)

Note that the equations are non-dimensionalized except those involving the growth-
rate parameter µ and surface-tension coefficient γ. It turns out, as shown below, that
the value of the ratio (µ/γ) plays an important role in deciding the stability of the
tumor boundary.

It has been shown (Bazaliy and Friedman, 2003) that the system 11.41–11.47 has
a unique solution for a small time interval. As in eqn 11.36, one can show that radially
symmetric solutions satisfy the following equation

R2(t)
dR(t)

dt
=

∫ R(t)

0
µ(c(r, t) − c̃)r2dr. (11.48)
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The following theorem, proven by Friedman and Reitich (1999) establishes the
existence of a unique radially symmetric stationary solution.

Theorem 11.1.B (Friedman and Reitich, 1999)
There exists a unique radially symmetric stationary solution of system 11.41–11.47
given by

cs(r) = c̄
Rs

sinhRs

sinh r

r
, σs(r) = C − µcs(r) +

µ

6
c̃r2, (11.49)

where C = γ
Rs

+ µ − µc̃R2
s

6 , and Rs is the unique solution of the equation

tanhRs =
Rs

1 +
(

c̃
3c̄

)
R2

s

.

The following theorem due to Fontelos and Friedman (2003) demonstrates that the
radially symmetric solution becomes unstable and develops ‘fingers’ as the parameter
M(=µ/γ) is increased. The corresponding result in 2D was proved by Friedman &
Reitich (1999).

Theorem 11.1.C (Fontelos and Friedman, 2003)
Let

M�(R) =
(� − 1)�(� + 2)

2
1

R5P0(R){P1(R) − P�(R)} , (11.50)

where

Pn(r) =
I
n+ 3

2
(r)

rI
n+ 1

2
(r)

, (11.51)

Im(R) is the modified Bessel function given by

Im(r) =
∞∑
k=0

(r/2)m+2k

k!Γ(m + k + 1)
. (11.52)

For any � ≥ 2, there exists a stationary solution with free boundary

r = R + εY�,0(θ) + O(ε2) (11.53)

M = M� + εM�,1 + O(ε2) , M = µ/γ (11.54)

for any small |ε| .Y�,0(θ) is the spherical harmonic of mode (�, 0), namely,

Y�,0(θ) =

√
2� + 1

4π
P�(cos θ), P�(x) =

1
2��!

d�

dx�
(x2 − 1)�. (11.55)



174 Multiscale modelling of cancer

References

Bazaliy, B. and Friedman, A. (2003) ‘A free boundary problem for an elliptic-
parabolic system: Application to a model of tumor growth’, Communications in
Partial Differential Equations 28, 517–560.

Chen, X. and Friedman, A. (2003) ‘A free boundary problem for an elliptic-hyperbolic
system: An application to tumor growth’, SIAM Journal of Mathematical Analysis
35, 974–986.

Cui, S. and Friedman, A. (2003) ‘A hyperbolic free boundary problem modeling of
tumor growth’, Interfaces and Free Boundaries 5, 159–182.

Dorie, M. J., Kallman, R. F., and Coyne, M. A. (1986) ‘Effect of cytochalasin b,
nocodazole and irradiation on migration and internalization of cells and microspheres
in tumor cell spheroids’, Experimental Cell Research 166, 370–378.

Dorie, M. J., Kallman, R. F., Rapacchietta, D. F., van Antwer, D., and Huang, Y. R.
(1982) ‘Migration and internalization of cells and polystyrene microspheres in tumor
cell spheroids’, Experimental Cell Research 141, 201–209.

Fontelos, M. A. and Friedman, A. (2003) ‘Symmetry-breaking bifurcations of free
boundary problems in three dimensions’, Asymptotic Analysis 35, 187–206.

Friedman, A. (2006) ‘Cancer models and their mathematical analysis’, in Tutorials in
mathematical biosciences III (A. Friedman, ed.). Springer-Verlag, Berlin. 223–246.

Friedman, A. and Reitich, F. (1999) ‘Analysis of a mathematical model for growth of
tumors’, Journal of Mathematical Biology 38, 262–284.

Hanahan, D. and Weinberg, R. A. (2000) ‘The Hallmarks of Cancer’, Cell 100, 57–70.
Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., and Freyer, J. P. (2005) ‘A Multiscale
Model for Avascular Tumor Growth’. Biophysical Journal 89, 3884–3894.

Pettet, G., Please, C. P., Tindal, M., and McElwain, D. (2001) ‘The migration of cells
in multicell tumor spheroids’, Bullation of Mathematical Biology 63, 231–257.

Ribba, B., Colin, T., and Schnell, S. (2006) ‘A multiscale mathematical model of
cancer and its use in analyzing irradiation therapies’, Theoretical Biology and Medical
Modelling 3, 7.

Webb, G. F. (1986) ‘Logistic models of structured population growth’, International
Journal of Computational Mathematic and Applications 12A, 527–529.

Webb, G. F. (1987) ‘An operator-theoretic formulation of asynchronous exponential
growth’, Transactions of the American Mathematical Society 303, 751–763.

Exercises

1. Consider a population of cells in different phases of the cell cycle. Let a denote
the age of a cell in the cell cycle (a= 0 at birth and a=A, where A is the time
when the cell divides). The number density of cells with cell-cycle age a at time t
is symbolized by n(a,t). If µ(a) is the death-rate coefficient of these cells, then

∂n(a, t)
∂t

+
∂n(a, t)

∂a
= −µ(a)n(a, t)

for 0 < a < A, t > 0, and n(0, t) = 2n(A, t),
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where the last expression accounts for cell doubling. Given n(a, 0) = g(a), compute
n(a, t) for all t > 0 for the case µ(a) = constant, and determine the asymptotic
behavior of n(a, t) as t → ∞. (For additional models of age-dependent population
growth, see the articles of Webb (1986, 1987)).

2. Prove the formula 11.36.
3. Verify eqn 11.49 and prove that there is a unique solution Rs to the equation

tanhRs =
Rs

1 + (c̃/3c̄)R2
s

if c̃ < c̄.

Prove that if c̃ > c̄ then there is no solution to the preceding equation. Explain the
biological implication of this result for the system 11.41–11.47.

4. A tumor cannot grow beyond a few millimeters without a new supply of nutrients
such as oxygen. If such a supply is blocked (by a drug, for instance), then tumor
growth is arrested (size becomes stationary) and necrotic cells populate the tumor
core (also referred to as ‘dead core’). A simple spherical model of tumor with radius
r = R and concentric spherical necrotic core of radius ρ is given by

−∇2c + c = 0 in ρ < r < R

c(r, t) = c0 if 0 < r < ρ

c = c̄ on r = R∫ R

ρ

(c − c̃)r2dr = 0.

Verify that a solution is given by

c(r) =
c̄

r
sinh(R − ρ) + ρ cosh(r − ρ) for ρ < r < R,

where R and ρ satisfy the equations

sinh(R − ρ) + ρ cosh(r − ρ) =
c̄

c0
R

(R − ρ) cosh(r − ρ) + (Rρ − 1) sinh(R − ρ) =
c̄

3c0
(R3 − ρ3) +

µ

σ0
ρ3.

Solve these equations numerically for the case c̃ < c0.



Glossary

acetylation. A chemical change that involves the replacement of a hydrogen atom (H) by
an acetyl group CH3CO.

actin. A contractile protein found in muscle cells. Together with myosin, actin provides the
mechanism for muscle contraction.

adenoma. Benign tumor arising in glandular epithelium.
adenocarcinoma. A cancer that develops in the glandular lining of an organ such as the
lungs.

anaphase. The stage in mitosis in which the chromosomes begin to separate.
angiogenesis. Growth of new blood vessels. Tumor angiogenesis is the growth of blood
vessels from surrounding tissue to a solid tumor. This is caused by the release of chemicals
by the tumor.

antibody. A type of protein made by certain white blood cells in response to a foreign
substance (antigen). Each antibody binds to a specific antigen.

anticodon. A 3-base sequence in a tRNA molecule that base-pairs with its complementary
codon in an mRNA molecule.

antigen. Any foreign substance, usually a protein, that stimulates the body’s immune system
to produce antibodies.

apoptosis. One of the two mechanisms by which cell death occurs (the other being
the pathological process of necrosis). Apoptosis is the mechanism responsible for the
physiological deletion of cells and appears to be intrinsically programmed.

ADP. Adenosine diphosphate
ATP. Adenosine triphosphate
autocrine signals. Signals that affect only cells of the same cell type as the emitting cell.
biomolecule. Substance that is synthesized by and occurs naturally in living organisms.
carcinoma. A malignant tumor that begins in the lining layer (epithelial cells) of organs.
At least 80% of all cancers are carcinomas.

cell senescence. The stage at which a cell has stopped dividing.
cellular automata. Simplified mathematical models of spatial interactions, in which sites or
cells on a landscape are assigned a particular state, which then changes stepwise according
to specific rules conditioned on the states of neighboring cells.

centriole. An organelle in many animal cells that appears to be involved in the formation
of the spindle during mitosis.

centromere. A specialized chromosome region (the constraint ‘waist’ of the chromosome)
to which spindle fibers attach during cell division.

centrosome. A dense body near the nucleus of a cell that contains a pair of centrioles.
charged tRNA. Transfer RNA molecule bound to an amino acid.
chromatids. Each of the two daughter strands of a duplicated chromosome joined at the
centromere during dell division.

chromatin. The chromosome as it appears in its condensed state, composed of DNA and
associated proteins (mainly histones).
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chromosome. A threadlike linear strand of DNA and associated proteins in the nucleus of
animal and plant cells that carries the genes and functions in the transmission of hereditary
information.

codon. A particular sequence of three nucleotides in mRNA coding for an amino acid.
cytochrome c. A protein present in mitochondrial membranes, it is important in the energy-
generation machinery of the cell.

cytokine. Any of many soluble molecules that cells produce to control reactions between
other cells.

cytokinesis. The division of the cytoplasm of a cell following division of the nucleus.
cytoplasm. The contents of a cell, outside of the nucleus.
cytoskeleton. A fibrous network made of proteins that contributes to the structure and
internal organization of eukaryotic cells.

cytosol. The fluid portion of the cytoplasm, which is the part of the cell outside the nucleus.
DNA polymerase. An enzyme that catalyzes synthesis of a DNA under direction of single-
stranded DNA template.

ectopic expression. The expression of a gene in an abnormal place of an organism. This
can be caused by a disease, or it can be artificially produced as a way to help determine
what the function of that gene is.

embryonic stem cell. Embryonic stem cells (ES cells) are stem cells derived from the
inner cell mass of an early-stage embryo known as a blastocyst. Human embryos reach the
blastocyst stage 4–5 days past fertilization, at which time they consist of 50–150 cells. ES
cells have the potential to become a wide variety of specialized cell types.

endoplasmic reticulum (ER). An extensive network of internal membranes within an
eukaryotic cell that is necessary for protein synthesis.

epigenetic. An epigenetic change does not change the sequence of DNA bases but may
indirectly influence the expression of the genome.

epithelial cell. A cell that covers a surface of the body such as the skin or the inner lining
of organs such as the digestive tract.

eukaryotic cell. A cell containing a nucleus.
exon. A segment of a gene that contains instructions for making a protein. In many genes
the exons are separated by ‘intervening’ segments of DNA, known as introns, which do not
code for proteins; these introns are removed by splicing to produce messenger RNA.

fibroblast. Common cell type, found in connective tissue, that secretes an extracellular
matrix rich in collagen and other macromolecules. These cells migrate and proliferate
readily in wound repair and in tissue culture.

gene operator. A segment of DNA that regulates the activity of the structural genes of
the operon that it is linked to, by interacting with a specific repressor or activator. It is a
regulatory sequence for shutting a gene down or turning it ‘on’.

gene promoter. A region of DNA that is located upstream (towards the 5′ region) of the
gene that is needed to be transcribed.

genome. All of the genetic information or hereditary material possessed by an organism.
genomics. The study of an organism’s entire genome.
germ cell. Reproductive cells; the egg and sperm cells.
glioma. A cancer of the brain that begins in glial cells (cells that surround and support
nerve cells).

growth factor. A substance that influences growth by changing or maintaining the rate
that cells divide.

hematopoiesis. The process of formation, development, and differentiation of the cells of
whole blood.
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histone. A type of protein found in chromosomes; histones attached to DNA resemble ‘beads
on a string.’

housekeeping genes. Constitutively expressed genes. Housekeeping genes are continuously
transcribed at low basal levels.

hypoxia. A condition in which there is a decrease in the oxygen supply to a tissue.
in vitro. In the laboratory (outside the body). The opposite of in vivo (in the body).
in vivo. In a living organism, as opposed to in vitro (in the laboratory).
inflammation. Redness, swelling, pain, and/or a feeling of heat in an area of the body. This
is a protective reaction to injury, disease, or irritation of the tissues.

interactome. The whole set of molecular interactions in cells.
interphase. The portion of the cell cycle where the cell is not dividing; includes G1, S and
G2 stages.

intron. ‘Intervening sequence,’ a stretch of nucleic-acid sequence spliced out from the pri-
mary RNA transcript before the RNA is transported to the cytoplasm as a mature mRNA;
can refer either to the RNA sequence or the DNA sequence from which the RNA is
transcribed.

ion channel. A protein integral to a cell membrane, through which selective ion transport
occurs.

kinase. An enzyme that adds phosphate groups to proteins.
kinetochore. The region at which the microtubules of the spindle attach to the centromeres
of chromosomes during nuclear division.

leukemia. Cancer that starts in blood-forming tissue such as the bone marrow, and causes
large numbers of blood cells to be produced and enter the bloodstream.

ligand. A soluble molecule such as a hormone that binds to a receptor.
lymphocyte. A white blood cell. Present in the blood, lymph and lymphoid tissue.
lymphoma. A tumor of the lymphatic system.
mammal. A warm-blooded animal that has hair on its skin and whose offspring are fed with
milk secreted by the female mammary glands.

meiosis. Cell division by which eggs and sperm are produced. Each of these cells receives
half the amount of DNA as the parent cell.

metabolite. Any intermediate or product resulting from metabolism.
metabolome. All native metabolites, or small molecules, that are participants in general
metabolic reactions.

metaphase. A stage in mitosis or meiosis during which the chromosomes are aligned along
the equatorial plane of the cell.

metastasis. In cancer, this is the migration of cancer cells from the original tumor site
through the blood and lymph vessels to other tissues.

methylation. The addition of a methyl group (–CH3) to a molecule.
microtubule. Long, cylindrical polymer composed of the protein tubulin. It is one of the
three major classes of filaments in the cytoskeleton.

mitochondria. Structures in the cell that generate energy for the body to use. Mitochondria
are called the powerhouses of the cell.

mitogen. A substance that induces cell division.
mitosis. The process of division of somatic cells in which each daughter cell receives the
same amount of DNA as the parent cell.

mitotic spindle. A network of microtubules formed during mitosis. These microtubules
attach to the centromeres of the chromosomes and help draw the chromosomes.

Monte Carlo simulation. Amethod that estimates possible outcomes from a set of random
variables by simulating a process a large number of times and observing the outcomes.
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multipotent stem cell. Class of stem cells that can differentiate into more than one tissue
type, but not all.

mutation. A change in the number or arrangement of the sequence of DNA.
necrosis. A type of cell death in which cells swell and break open, releasing their contents
and can damage neighboring cells and cause inflammation.

nuclear lamina. Dense, fibrillar network composed of intermediate filaments made of lamin
that lines the inner surface of the nuclear envelope in animal cells.

nucleoid. The aggregated mass of DNA that makes up the chromosome of prokaryotic cells.
nucleolus. Structure in the nucleus where ribosomal RNA is transcribed and ribosomal
subunits are assembled.

nucleotide. The basic unit of DNA or RNA, consisting of one chemical base, a phosphate
group, and a sugar molecule.

oocyte. Unfertilized egg cell.
operon. A unit of genetic material that functions in a co-ordinated manner by means of an
operator, a promoter, and one or more structural genes that are transcribed together.

oxidative stress. A condition of increased oxidant production in animal cells characterized
by the release of free radicals, resulting in cellular degeneration.

phenotype. The observable traits or characteristics of an organism, for example hair color,
weight, or the presence or absence of a disease.

phosphatase. An enzyme that removes a phosphate from a nucleic acid or protein.
phospholipids. Any of various phosphorus-containing lipids, such as lecithin, that are com-
posed mainly of fatty acids, a phosphate group, and a simple organic molecule such as
glycerol. Phospholipids are the main lipids in cell membranes.

phosphorylation. The chemical addition of a phosphate group to a protein or another
compound.

polypeptide. Several amino acids linked together by a peptide bond.
pluripotent stem cell. A stem cell that can form any and all cells and tissues in the body.
prokaryotic cell. A cell having no nuclear membrane and hence no separate nucleus.
prophase. First stage of mitosis during which the chromosomes are condensed but not yet
attached to a mitotic spindle.

proteome. The collection of all proteins in the body of an organism. For humans, it is
estimated that there are 250 000–300 000 different proteins, of which fewer than half have
been catalogued thus far.

retinoblastoma. A malignant tumor that forms on the retina. Retinoblastoma most often
affects children under the age of 5.

ribosomes. Small cellular components composed of specialized ribosomal RNA and protein;
site of protein synthesis.

RNA polymerase. An enzyme that synthesizes RNA, usually from a DNA template.
sarcoma. Malignant tumor arising in the bone, cartilage, fibrous tissue or muscle.
somatic cell. Any type of cell other than the reproductive cells (egg or sperm).
stem cell. An undifferentiated cell that possesses the ability to divide for indefinite periods
in culture and may give rise to highly specialized cells of each tissue type.

stroma. The supporting framework of an organ, typically consisting of connective tissue.
structural gene. A gene that controls the production of a specific protein or peptide.
telomeres. Repeated DNA sequences found at the ends of chromosomes; telomeres shorten
each time a cell divides.

transcription factor. A DNA-binding protein that regulates expression of a gene.
transcriptome. The full complement of activated genes, mRNAs, or transcripts in a
particular tissue at a particular time.



180 Glossary

transfer RNA (tRNA). A class of RNA having structures with triplet nucleotide sequences
that are complementary to the triplet nucleotide coding sequences of mRNA. They carry
amino acids into ribosomes for protein production.

tubulin. Most abundant protein in microtubules.
ubiquitin. A protein found in all eukaryotic cells that becomes covalently attached to certain
residues of other proteins. The attachment of a chain of ubiquitins tags a protein for
intracellular proteolytic destruction.

zygote. The cell resulting from the union of sperm and egg.
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