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PREFACE

A regional meeting of the London Mathematical Society, followed by a work-
shop on ‘Analysis and Stochastics of Growth Processes’, was held at the Uni-
versity of Bath on 11–15 September 2006. The aim of these events was to bring
together analysts and probabilists working on the mathematical description of
growth phenomena, with models based on the physics of individual particles dis-
cussed alongside models based on the continuum description of large collections of
particles.

Convinced by positive feedback from the participants that this exercise in
interdisciplinary exchange was worthwhile, we invited the speakers of the meet-
ing and the workshop to contribute to this volume with an article in the same
spirit. We hope that the resulting collection will help bridge the gap between
researchers studying phenomena of the same type with different approaches. The
meeting and the workshop were funded by the London Mathematical Society and
the Bath Institute for Complex Systems, whose generous support is gratefully
acknowledged.

The Editors, Bath, 26th October 2007.
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INTRODUCTION

There has been a significant increase recently in activities on the interface between
analysis and probability. Considering the potential of a combined approach to
the study of various physical systems, it seems likely that this trend will con-
tinue. Yet any attempt to cross the divide between different communities can be
impeded by the lack of a common vocabulary, or more fundamentally, by a lack
of awareness of developments in each other’s fields.

Against this background, the invited speakers of the London Mathematical
Society South West and South Wales regional meeting on ‘Analysis and Stochas-
tics of Growth Processes’, held at the University of Bath on 11–15 September
2006, provided an excellent example of how stimulating the interaction between
different communities can be. Many of them agreed to follow up this occasion
with a contribution to these proceedings, and were joined in some cases by co-
authors not present at the workshop. The result is a collection of articles, mainly
of survey character, covering a range of topics in deterministic and stochastic
analysis. In some of them the theories are motivated by a model with an under-
lying lattice structure, in others by macroscopic models.

Quantum and lattice models

Random growth models

Random growth models describing the evolution of an interface in the plane are
discussed by Seppäläinen. For specific models, three basic questions are discussed.
First, under appropriate scaling, what is the limiting shape of the interface
and what is the partial differential equation governing its evolution? Second, how
can random fluctuations around the limit behaviour be described? Third, how can
atypical behaviour be characterized? The power of probabilistic tools is demon-
strated by employing laws of large numbers, central limit theorems, and large
deviation techniques to answer these questions, respectively.

The two-type Richardson model discussed by Deijfen and Häggström is con-
cerned with the competition of two infectious entities and how they spread over
a lattice; they are assumed mutually exclusive at each site. One of the main
questions for this model is under what conditions both entities can grow infinitely
with positive probability. This problem is much more difficult than one would
intuitively expect, and despite various partial results remains open.

The article by Ioffe and Velenik presents a unified approach to a study of
the ballistic phase for a large family of self-interacting random walks with a drift
and self-interacting polymers with an external stretching force. The approach is
based on a recent version of the Ornstein–Zernike theory.
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Microscopic to macroscopic transition
Blanc discusses recent work on homogenization of an elliptic partial differen-
tial equation under certain periodic or random assumptions. The coefficients are
nonconstant but are a stationary random deformation of a periodic set of coeffi-
cients; a limit is taken where the period (in d-space) of the periodicity shrinks to
zero. He also describes related work on average energies of nonperiodic infinite
sets of points.

Matthies and Theil survey a novel rigorous approach to analyse the validity
of continuum approximations for deterministic interacting particle systems. In
particular, they look at the Boltzmann–Grad limit of ballistic annihilation, a
topic which has has received considerable attention in the physics literature.
In this model, due to the deterministic nature of the evolution, it is possible
that correlations build up and the mean field approximation by the Boltzmann
equation breaks down. They find a sharp condition on the initial distribution
which ensures the validity of the Boltzmann equation and demonstrate the failure
of the mean-field theory if the condition is violated.

Applications in physics
The lace expansion is the subject of the article by Sakai. It is one of the few
approaches for a rigorous investigation of critical behaviour for various statistical-
mechanical models. The article summarizes some of the most intriguing lace-
expansion results for self-avoiding walk, percolation, and the Ising model.

Quantum models pose many challenges in probability and analysis alike. One
area is interacting many-particle systems, in particular the peculiar effect of
Bose–Einstein condensation; it is predicted that, under certain conditions (in
particular extremely low temperature), all particles will condense into one state.
Some of the physical background is surveyed in the article by Adams and König.
They also discuss the Gross–Pitaevskii approximation for dilute systems. Varia-
tional problems appear here naturally, as the quantum mechanical ground state is
of interest. In connection with positive temperature, related probabilistic models,
based on interacting Brownian motions in a trapping potential, are introduced.
Again, large deviation techniques are used to determine the mean occupation
measure, both for vanishing temperature and large particle number.

Also motivated by Bose gases is the article by Adams. Here the focus is on
the analysis of symmetrized systems of interacting Brownian motions. A cycle
structure approach is introduced for the symmetrized distributions of empirical
path measures, and this leads to a phase transition in the mean path measure.

Anderson localization is another physical problem that has spurred much
mathematical research. The issue here is how disorder, such as random changes
in the spacing of a crystal, influences the movement of electrons and thus the
crystal’s conductivity. In 1977, Ph. Anderson was awarded the Nobel prize for his
investigations on this subject. Hundertmark introduces the physical model, based
on a random Schrödinger operator, and carefully reviews different notions of loca-
lization as well as rigorous proofs of localization. A very readable introduction
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to finite-volume criteria for localization via percolation arguments is followed by
an elegant proof of localization for large disorder.

Macroscopic models

Nucleation and growth

In her article, Niethammer discusses the derivation and analysis of reduced mod-
els for a coarsening process known as Ostwald ripening, which is a paradigm for
statistical self-similarity in coarsening systems. The underlying physical phe-
nomenon appears in the late stage of phase transitions, when – due to a change
in temperature or pressure for example – the energy of the underlying system
becomes nonconvex and prefers two different phases of the material. Conse-
quently a homogeneous mixture is unstable and, in order to minimize the energy,
it separates into the two stable phases. Typical examples are the condensation of
liquid droplets in a supersaturated vapour and phase separation in binary alloys
after rapid cooling.

Dirr studies a multiscale model for a two-phases material, which is on the
microscopic scale a stochastic process. Due to the stochasticity on the micro-
scopic scale, deviations from the limiting deterministic evolution arise with small
probability. These are described in two illustrative examples.

O. Penrose proposes a stochastic differential equation as the putative limit
for a birth-and-death Markov chain model for the size of a metastable droplet,
and uses the large deviations theory of Freidlin and Wentzell to give a variational
analysis of the path properties of the solution to this stochastic differential equa-
tion, relating these results to the classical theory of Becker and Döring.

Applications in physics

The Burgers equation, first introduced as a model for pressureless gas dynam-
ics, has more recently been used as a tool in the context of various theories
such as hydrodynamic turbulence, statistical mechanics, or cosmology. Neate and
Truman summarize a selection of results on the inviscid limit of the stochastic
Burgers equation. They discuss geometric properties of the caustic, Hamilton–
Jacobi level surfaces, and the Maxwell set, and they show that for small viscosity,
there exists a vortex filament structure near the Maxwell set. Furthermore, they
explain how the theory is related to the adhesion model for the formation of the
early universe.

Majumdar, Robbins, and Zyskin investigate harmonic maps from a polyhe-
dron to the the unit two-sphere, motivated by the study of liquid crystals. They
look at the Dirichlet energy of homotopy classes of such harmonic maps, subject
to tangent boundary conditions, and investigate lower and upper bounds for this
Dirichlet energy on each homotopy class.
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1

DIRECTED RANDOM GROWTH MODELS
ON THE PLANE

Timo Seppäläinen

Abstract

This is a brief survey of laws of large numbers, fluctuation results and large
deviation principles for asymmetric interacting particle systems that repre-
sent moving interfaces on the plane. We discuss the exclusion process, the
Hammersley process, and the related last-passage growth models.

1.1 Introduction

This article is a brief overview of recent results for a class of stochastic processes
that represent growth or motion of an interface in two-dimensional Euclidean
space. The models discussed have in a sense rather orderly evolutions, and the
word ‘directed’ is included in the title to evoke this feature.

Let us begin with generalities about these stochastic processes. The state
at time t ∈ [0,∞) is of the form h(t) = (hi(t) : i ∈ Z) with the interpreta-
tion that the integer- or real-valued random variable hi(t) represents the height
of the interface over site i of the substrate Z. We call the state h = (hi) a
height function on Z. The interface on the plane is then represented by the
graph {(i, hi) : i ∈ Z}. Each particular process has a state space that defines the
set of admissible height functions. The state space will be defined by putting
restrictions on the increments (discrete derivatives) hi − hi−1 of the height
functions.

The random dynamics of the state are specified by the jump rates of the
individual height variables hi. The rates are functions of the current state h.
For the sake of illustration, suppose that only jumps ±1 are permitted for each
variable hi. Then the model is defined by giving two functions p(h) and q(h). If
the current state is h, then the height value h0 at the origin jumps down to a
new value h′0 = h0 − 1 with rate p(h), and jumps up to a new value h′0 = h0 + 1
with rate q(h). In the spatially homogeneous case the rates for hi are p(θih) and
q(θih) where the spatial translations are defined by (θih)j = hi+j .

The quantity p(h) is the rate for the jump h0 � h0 − 1 in an instantaneous
sense: in the current state h, the probability that this jump happens in the
next infinitesimal time interval (0, dt) is p(h)dt + o(dt). Rigorous constructions
of the processes utilize Poisson processes or ‘Poisson clocks’. A rate λ Poisson
process N(t) is a simple continuous time Markov chain: it starts at N(0) = 0,
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runs through the integers 0, 1, 2, 3, . . . in increasing order, and waits for a rate λ
exponential random time between jumps. A rate λ exponential random time is
defined by its density ϕ(t) = λe−λt on R+. The number of jumps N(s+t)−N(s)
in time interval (s, s+ t] has the mean λt Poisson distribution:

P{N(s+ t)−N(s) = k} = e−λt(λt)k

k!
(k ≥ 0).

If the overall rates are bounded, say by p(h) ≤ λ, then a Poisson clock with a
time-varying rate p(h(t)) can be obtained from N(t) by randomly accepting a
jump at time t with probability p(h(t))/λ.

Later, we mention in passing rigorous constructions of some processes. In
each case the outcome of the construction is that all the random variables {hi(t) :
i ∈ Z, t ≥ 0} are defined as measurable functions on an underlying probability
space (Ω,F ,P). Since these processes evolve through jumps, the appropriate
path regularity is that with probability 1, the path t �→ h(t) is right-continuous
with left limits (cadlag for short). The use of Poisson clocks makes the stochastic
process h(t) a Markov process. This means that if the present state h(t) is known,
the future evolution (h(s) : s > t) is statistically independent of the past (h(s) :
0 ≤ s < t). This is a consequence of the ‘forgetfulness property’ of the exponential
distribution. For a complete discussion of these foundational matters we must
refer to textbooks on probability theory and stochastic processes.

This article covers only asymmetric systems. Asymmetry in this context
means that the height variables hi(t) on average tend to move more in one direc-
tion than the other. For definiteness, we define the models so that the downward
direction is the preferred one. In fact, the great majority of the paper is con-
cerned with totally asymmetric systems for which q(h) ≡ 0, in other words only
downward jumps are permitted. Symmetric systems behave quite differently from
asymmetric systems, hence restricting treatment to one or the other is natural.

Stochastic processes with a large number of interacting components, such
as the height process h(t) = (hi(t) : i ∈ Z), belong in an area of probability
theory called interacting particle systems. (Spitzer 1970) is one of the seminal
papers of this subject. Here is a selection of books and lecture notes on the topic:
De Masi and Presutti (1991), Durrett (1988), Kipnis and Landim (1999), Liggett
(1985), Liggett (1999), Liggett (2004), Varadhan (2000). Krug and Spohn (1992)
and Spohn (1991) are sources that combine mathematics and the theoretical
physics side.

Our treatment is organized around three basic questions posed about stochas-
tic models: (i) laws of large numbers, (ii) fluctuations, and (iii) large deviations.

(i) Laws of large numbers give deterministic limit shapes and evolutions
under appropriate space and time scaling. A parameter n ↗ ∞ gives the ratio
of macroscopic and microscopic scales. A sequence of processes hn(t) indexed by
n is considered. Under appropriate hypotheses the height process satisfies this
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type of result: for (t, x) ∈ R+ × R

n−1hn[nx](nt)→ u(x, t) as n→∞, (1.1)

and the limit function u satisfies a Hamilton–Jacobi equation ut + f(ux) = 0.

(ii) Fluctuations. After a law of large numbers the next question concerns
the random fluctuations around the large scale behavior. One seeks an exponent
α that describes the magnitude of these fluctuations, and a precise description
of them in the limit. A typical statement would be:

hn[nx](nt)− nu(x, t)
nα

−→ Z(t, x) (1.2)

where Z(t, x) is a random variable whose distribution would be described as
part of the result. The convergence is of a weak type, where it is the probability
distribution of the random variable on the left that converges.

(iii) Large deviations. The vanishing probabilities of atypical behaviour fall
under this rubric. Often these probabilities decay as e−Cnβ to leading order, with
another exponent β > 0. The precise constant C ∈ (0,∞) is also of interest and
comes in the form of a rate function. When all the ingredients are in place the
result is called a large deviation principle (LDP). An LDP from the law of large
numbers (1.1) with rate function I : R→ [0,∞] could take this form:

lim
ε↘0

lim
n→∞

n−β logP{hn[nx](nt) ∈ (z − ε, z + ε)} = −I(z) (1.3)

valid for points z in some range. Positive values I(z) > 0 represent atypical
behavior, while limit (1.1) would force I(u(x, t)) = 0.

Example. For classical examples of these statements let us consider one-
dimensional nearest-neighbour random walk. Fix a parameter 0<p< 1. Let {Xk}
be independent, identically distributed (IID) ±1-valued random variables with
common distribution P{Xk = 1} = p = 1 − P{Xk = −1}. Define the random
walk by S0 = 0, Sn = Sn−1+Xn for n ≥ 1. Then the strong law of large numbers
gives the long term velocity:

lim
n→∞

n−1Sn = v where v = E(X1) = 2p− 1.

The convergence in the limit above is almost sure (a.s.), that is, almost every-
where (a.e.) on the underlying probability space of the variables {Xk}.

The order of nontrivial fluctuations around the limit is n1/2 (‘diffusive’) and
in the limit these fluctuations are Gaussian. That is the content of the central
limit theorem:

lim
n→∞

P
{Sn − nv
σn1/2

≤ s
}
= Φ(s) ≡ 1√

2π

∫ s

−∞
e−z2/2 dz.

The parameter σ2 = E[(X1 − v)2] is the variance.
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Random walk satisfies this LDP:

lim
ε↘0

lim
n→∞

1
n
logP{|Sn − nx| ≤ nε} = −I(x) (1.4)

where the rate function I : R→ [0,∞] is identically ∞ outside [−1, 1] and:

I(x) =
1− x
2

log
1− x

2(1− p) +
1 + x
2

log
1 + x
2p

for x ∈ [−1, 1]. (1.5)

I(x) can be interpreted as an entropy. Convex analysis plays a major role in large
deviation theory. Part of the general theory behind this simple case is that I is the
convex dual of the logarithmic moment generating function Λ(θ) = logE(eθX1).

Results for random walk are covered in graduate probability texts such as
(Durrett 2004) and (Kallenberg 2002).

At the outset we delineated the class of models discussed. Important models
left out include diffusion limited aggregation (DLA) and first-passage percolation.
Their interfaces are considerably more complicated than interfaces described
by height functions. But even for the models discussed our treatment is not
a complete representation of the mathematical progress of the past decade. In
particular, this article does not delve into the recent work on Tracy–Widom
fluctuations, Airy processes, and determinantal point processes. These topics are
covered by many authors, and we give a number of references to the literature
in Sections 1.3.1 and 1.3.2. Overall, the best hope for this article is that it might
inspire the reader to look further into the references.

Recurrent notation. The set of nonnegative integers is Z+ = {0, 1, 2, . . . },
while N = {1, 2, 3, . . . }. The integer part of a real x is [x] = max{n ∈ Z : n ≤ x}.
a ∨ b = max{a, b} and a ∧ b = min{a, b}.

1.2 Limit shape and evolution

We begin with the much studied corner growth model and a description that is
not directly in terms of height variables. Attach nonnegative weights {Yi,j} to
the points (i, j) of the positive quadrant N2 of Z2, as in Fig. 1.1. Yi,j represents
the time it takes to occupy point (i, j) after the points to its left and below have
been occupied. Assume that everything outside the positive quadrant is occupied
at the outset so the process can start. Once occupied, a point remains occupied.
Thus this is a totally asymmetric growth model, for the growing cluster never
loses points, only adds them.

Let G(k, 	) denote the time when point (k, 	) becomes occupied. The above
explanation is summarized by these rules: G(k, 	) = 0 for (k, 	) /∈ N2, and:

G(k, 	) = G(k − 1, 	) ∨G(k, 	− 1) + Yk,� for (k, 	) ∈ N2. (1.6)
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Y1,3

Y1,2 Y2,2

Y2,1 Y3,1Y1,1

i

j

1 2 3 4 5

1

2

3
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5

Fig. 1.1: Each point (i, j) ∈ N2 has a weight Yi,j attached to it.

i

j

1

1

2

2

3

3

4

4

5

5

Fig. 1.2: An admissible path from (1, 1) to (5, 4).

The last equality can be iterated until the corner (1, 1) is reached, resulting in
this last-passage formula for G:

G(k, 	) = max
π∈Πk,�

∑
(i,j)∈π

Yi,j (1.7)

where Πk,� is the collection of nearest-neighbour up-right paths π from (1, 1) to
(k, 	). Fig. 1.2 represents one such path for (k, 	) = (5, 4).

This model and others of its kind are called directed last-passage percolation
models. ‘Directed’ refers to the restrictions on admissible paths, and ‘last-passage’
to the feature that the occupation time G(k, 	) is determined by the slowest
path to (k, 	). (By contrast, in first-passage percolation occupation times are
determined by quickest paths.)

Our first goal is to argue the existence of a limit for n−1G([nx], [ny]) as
n → ∞. Assume now that the weights {Yi,j} are i.i.d. non-negative random
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variables.
The idea is to exploit sub(super)additivity. Generalize the definition of

G(k, 	) to:

G((k, 	), (m,n)) = max
π∈Π(k,�),(m,n)

∑
(i,j)∈π

Yi,j ,

where Π(k,�),(m,n) is the collection of nearest-neighbour up-right paths π from
(k + 1, 	+ 1) to (m,n). The definitions lead to the superadditivity:

G(k, 	) +G((k, 	), (m,n)) ≤ G(m,n). (1.8)

Kingman’s subadditive ergodic theorem (Durrett, 2004, Ch. 6) and some esti-
mation implies the existence of a deterministic limit:

γ(x, y) = lim
n→∞

n−1G([nx], [ny]) for (x, y) ∈ R2+. (1.9)

Moment assumptions under which the limit function γ is continuous up to
the boundary were investigated by Martin (2004). We turn to the problem of
computing γ explicitly, and for this we need very specialized assumptions. Essen-
tially only one distribution can be currently handled: the exponential, and its
discrete counterpart, the geometric. Take the {Yi,j} to be IID rate 1 exponential
random variables. In other words their common density is e−y.

The difficulty with finding the explicit limit has to do with the superaddi-
tivity. The limit in Birkhoff’s ergodic theorem is simply the expectation of the
function averaged over shifts: n−1

∑n
k=1 f ◦ θk → Ef (Durrett 2004, Ch. 6).

But the subadditive ergodic theorem gives only an asymptotic expression for the
limit. We need a new ingredient. We shall embed the last-passage model into the
totally asymmetric simple exclusion process (TASEP). This has explicitly iden-
tifiable invariant distributions (‘steady states’) with which we can do explicit
calculations.

Originally TASEP was introduced as a particle model. We wish to link
TASEP with the last-passage model in a way that preserves the original formu-
lation of TASEP, while mapping particle occupation variables into height incre-
ments and particle current into column growth. To achieve this we transform
the coordinates (i, j) of Fig. 1.1 via the bijection (i, j) �→ (i− j,−j). The result
is the last-passage model of Fig. 1.3. Weights are relabelled as Xi,j = Yi−j,−j .
The transformation of admissible paths is illustrated by Fig. 1.4. Let the new
last-passage times be denoted by H(k, 	). For 	 < 0 ∧ k the maximizing-path
formulation uses now paths of the kind represented in Fig. 1.4:

H(k, 	) = max
σ∈Σk,�

∑
(i,j)∈σ

Xi,j (1.10)

where Σk,� is the collection of paths σ from (0,−1) to (k, 	) that take steps of
two types: (1, 0) and (−1,−1). The connection with the previous last-passage



Directed random growth models on the plane 15

j

i
�1 0 1 2 3�2�3

X�3,�4 X�2,�4

X�2,�3 X�1,�3 X0,�3

X�1,�2 X0,�2

X0,�1

X1,�2

X1,�1

X2,�2

X2,�1 X3,�1

Fig. 1.3: Last-passage model for TASEP. The horizontal i-axis and the vertical
j-axis are labeled, and points on the i-axis from −3 to 3 are marked. Weights
Xi,j are attached to points (i, j) such that i ∈ Z, j ∈ −N and j < 0 ∧ i.

j

i
�1 0 1 2 3�2�3

Fig. 1.4: The image of the path in Fig. 1.2. Now it goes from (0,−1) to (1,−4).

process is H(k, 	) = G(k − 	,−	). The process {H(k, 	)} is also defined by the
recursion:

H(k, 	) = H(k − 1, 	) ∨H(k + 1, 	+ 1) +Xk,� (	 < 0 ∧ k) (1.11)

together with the boundary values H(k, 	) = 0 for 	 ≥ 0∧k. It satisfies the limit:

λ(x, y) = lim
n→∞

n−1H([nx], [ny]) = γ(x− y,−y) for y < 0 ∧ x. (1.12)

To establish the TASEP connection we first define a height process w(t) =
(wi(t) : i ∈ Z) that will turn out to be an alternative description of the last-
passage process {H(i, j)}. Initially at time t = 0 the height is given by:

wi(0) =

{
i, i ≤ −1
0, i ≥ 0.

(1.13)

This is the boundary of the region {j < 0∧ i} filled with Xi,j ’s in Fig. 1.3. This
initial shape is a wedge, hence the symbol w.
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j
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�

�

�

Fig. 1.5: A possible height function w(t) (thickset graph) with column values
w−1(t) = −3, w0(t) = −2, w1(t) = −2, etc. 8 jumps have taken place during
time (0, t]. The columns grow downward. ×s mark the allowable jumps from
this state.

Give each column i an independent rate 1 Poisson clock Ni. Variable wi

jumps downward according to this rule: if t is a jump time for Poisson process
Ni, then:

wi(t) = wi(t−)− 1 provided

{
wi−1(t−) = wi(t−)− 1 and
wi+1(t−) = wi(t−).

(1.14)

Equivalently, each column variable wi jumps down independently at rate 1, as
long as the state w(t) remains in the state space:

X1 = {h ∈ ZZ : hi − hi−1 ∈ {0, 1} for all i ∈ Z}. (1.15)

(See Fig. 1.5 for an example.) The interaction between the variables is encoded
in rule (1.14). It forces the time-evolution of each variable wi to depend on the
evolution of its neighborus. By contrast, without the interaction the variables wi

would simply march along as Poisson processes independently of each other.
This construction defines the height process w(t) = (wi(t) : i ∈ Z) for all

times t ∈ [0,∞) in terms of the family of Poisson clocks {Ni}. Given this process
w(t) define the stopping times:

T (i, j) = inf{t ≥ 0 : wi(t) ≤ j} (1.16)

that mark the time when column i first reaches level j. Stopping time is a tech-
nical term for a random time whose arrival can be verified without looking into
the future.

Initial condition (1.13) implies T (i, j) = 0 for j ≥ i ∧ 0. Rule (14) tells us
that T (i − 1, j) ∨ T (i + 1, j + 1) is the stopping time at which the system is
ready for wi to jump from level j+1 to j. (Note that wi must have reached level
j +1 already earlier because if the rules are followed, T (i+1, j +1) comes after
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T (i, j + 1).) By the forgetfulness property of the exponential distribution, after
the stopping time T (i− 1, j)∨T (i+1, j+1) it takes another independent rate 1
exponential time X̃i,j until wi jumps from j + 1 to j. Consequently the process
{T (i, j)} satisfies the recursion:

T (i, j) = T (i− 1, j) ∨ T (i+ 1, j + 1) + X̃i,j . (1.17)

This is of the same form as the recursion (1.11) satisfied by {H(i, j)}. From
this one can prove that indeed the processes {T (i, j)} and {H(i, j)} are equal
in distribution. Therefore (1.12) gives also n−1T ([nx], [ny]) → λ(x, y). This is
the precise meaning of the earlier claim that the height process w(t) gives an
alternative description of the last-passage process {H(i, j)}.

Subadditivity and some estimation justifies the existence of a concave func-
tion g on R such that:

lim
t→∞

t−1w[xt](t) = g(x) a.s. for x ∈ R. (1.18)

Since rates are 1, g records only the initial height outside the interval [−1, 1],
and so:

g(x) = 0 ∧ x for |x| > 1.

Since the interface is a level curve of passage times, λ(x, g(x))= 1 for −1≤x≤ 1.
The last-passage limits are homogeneous in the sense that λ(cx, cy) = cλ(x, y)
for c > 0. Consequently λ and then γ can be obtained from g.

To summarize, thus far we have converted the original task of computing
γ(x, y) of (9) to finding the function g of (1.18) on the interval [−1, 1]. Now
consider the general height process h(t) with state space X1 from (1.15) and
dynamics defined as for w(t) above: height variable hi jumps one step down at
every jump epoch of the Poisson clock Ni, provided this jump does not take the
height function out of X1. A jump attempt that would violate the state space
restriction is simply ignored.

Certain technical issues may trouble the reader. An infinite family of Poisson
clocks has infinitely many jumps in any non-empty time interval (0, ε). So there
is no first jump attempt in the system and it is not obvious that the local rule
leads to a well-defined global evolution: to determine the evolution of hi on
[0, t] we need to look at the evolution of its neighbours hi±1, and then their
neighbours, ad infinitum. However, given any T < ∞, almost surely there are
indices ik ↘ −∞ and i′k ↗ ∞ such that Nik and Ni′k have no jumps during
(0, T ]. Consequently the system decomposes into (random) finite pieces that do
not communicate before time T . The evolution can be determined separately in
each finite segment which do experience only finitely many jumps up to time T
(again almost surely). Another technical point is that the clocks {Ni} have no
simultaneous jumps (almost surely) so one never needs to consider more than
one jump at a time.
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Given that the height process h(t) has been constructed, next define the
increment process η(t) = (ηi(t) : i ∈ Z) by:

ηi(t) = hi(t)− hi−1(t). (1.19)

Process η(t) has compact state space {0, 1}Z and its dynamics inherited from
h(t) can be succinctly stated as follows: each 10 pair becomes a 01 pair at rate
1, independently of the rest of the system. To see this connection, observe that
if Poisson clock Ni jumps at time t, the height process undergoes the transfor-
mation hi(t)=hi(t−)− 1 only if (ηi(t−)= 1, ηi+1(t−)= 0), and then after the
jump the situation is (ηi(t) = 0, ηi+1(t) = 1). This is a direct translation of
the condition that jumps are executed only if the state h remains in the state
space X1.

It is natural to interpret the 1s as particles and the 0s as holes, or vacant sites.
The process η(t) is the totally asymmetric simple exclusion process (TASEP).
In this model the only interaction between the particles is the exclusion rule
that stipulates that particles are not allowed to jump onto occupied sites. This
property is enforced by the evolution because the definitions made above ensure
that a jump in Poisson clock Ni sends a particle from site i to site i+ 1 only if
site i+ 1 is vacant. Total asymmetry refers to the property that particles jump
only to the right, never left. The definitions also entail this connection between
the heights and the particles:

hi(0)− hi(t) = cumulative particle current across the edge (i, i+ 1). (1.20)

We need to discuss two more properties of these processes, (i) stationary
behaviour and (ii) the envelope property. Then we are ready to compute the
function g of (1.18).

(i) Stationary behaviour. For ρ ∈ [0, 1], the Bernoulli probability measure νρ
on {0, 1}Z is defined by the requirement that:

νρ{η : ηi = 1 for i ∈ I, ηj = 0 for j ∈ J} = ρ|I|(1− ρ)|J| (1.21)

for any disjoint I, J ⊆ Z with cardinalities |I| and |J |. Measure νρ corresponds
to putting a particle at each site independently with probability ρ.

It is known that the measures {νρ}ρ∈[0,1] are invariant for the process η(t),
and in fact they are the extremal members of the compact, convex set of invari-
ant probability measures that are also invariant under spatial shifts. Invariance
means that if the process η(t) is started with a random νρ-distributed initial state
η(0), then at each time t ≥ 0 the state η(t) is νρ-distributed, and furthermore,
the probability distribution of the entire process η(·) = (η(t) : t ≥ 0) is invariant
under time shifts.

If we know the current state h(t), then the probability that h0 jumps down in
a short time interval (t, t+ ε) is εη0(t)(1− η1(t))+O(ε2). This follows because a
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jump can happen only when a 10 pair is present, and from properties of Poisson
processes. Estimation of this kind proves that:

h0(t)− h0(0) = −
∫ t

0
η0(t)(1− η1(t)) ds+M(t) (1.22)

whereM(t) is a mean-zero martingale. This identity is a stochastic ‘fundamental
theorem of calculus’ of sorts. Since things are random the difference between
h0(t)−h0(0) and the integral of the infinitesimal rate cannot be identically zero.
Instead it is a martingale. This is a process whose increments have mean-zero in
a very strong sense, namely even when conditioned on the entire past.

Let us average over (1.22) in the stationary situation. Let Eνρ denote expec-
tation of functions of the stationary process η(·) whose state η(t) is νρ-distributed
at each time t. Normalize the height process h(·) at time zero so that h0(0) = 0.
Then h(·) is entirely determined by η(·). Since η0(s) and η1(s) are independent
at any fixed time s, we get:

Eνρ [h0(t)] = −tf(ρ) (1.23)

where the particle flux is defined by:

f(ρ) = ρ(1− ρ). (1.24)

(ii) Envelope property. Even though the flux f is nonlinear and therefore, as
we see later, TASEP is governed by a nonlinear PDE, the height process has a
valuable additivity property. Suppose a given initial height function h(0) ∈ X1
is the envelope of a countable collection {z(k)(0)}k∈K of height functions in the
sense that

hi(0) = sup
k∈K

z
(k)
i (0) for each site i ∈ Z. (1.25)

Take a single collection {Ni} of Poisson clocks, and let all processes h(t), z(k)(t)
evolve from their initial height functions by following the same clocks {Ni}. This
kind of simultaneous construction of many random objects for the purpose of
comparison is called a coupling. By induction on jumps one can prove that this
coupling preserves the envelope property for all time:

Lemma 1.1 hi(t) = sup
k∈K

z
(k)
i (t) for all i ∈ Z and all t ≥ 0, almost surely.

We take as auxiliary processes z(k)(t) suitable translations of the basic wedge
process defined in (1.13)–(1.14). For k ∈ Z set:

w
(k)
i (0) =

{
i− k, i < k

0, i ≥ k
and z

(k)
i (t) = hk(0) + w

(k)
i (t). (1.26)

The apex of the wedge z(k)(0) is at the point (k, hk(0)), and then the definition
of the wedge ensures that h(0) ≥ z(k)(0). Hypothesis (1.25) holds and Lemma 1.1
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gives this variational equality:

hi(t) = sup
k∈Z

{
hk(0) + w

(k)
i (t)

}
. (1.27)

Now we extract two results from the assembled ingredients: the function g of
(1.18), and a general ‘hydrodynamic limit’ that describes the large scale evolution
of the process.

First specialize (1.27) to the stationary situation where h0(0) = 0 and the
increments are νρ-distributed, and write (1.27) in the form:

t−1h0(t) = sup
y∈R

{
t−1h[ty](0) + t−1w

([ty])
0 (t)

}
. (1.28)

Let t→∞. Inside the braces on the right t−1h[ty](0)→ ρy a.s. by the law of large
numbers. t−1w([ty])0 (t) → g(−y) by a translation of the limit (1.18). With some
work take the limit outside the supremum. Then we know t−1h0(t) converges.
By supplying some moment bounds we can take expectations over the limits,
and with (1.23) arrive at:

−f(ρ) = sup
y∈R
{ρy + g(−y)}. (1.29)

This is a convex duality (Rockafellar 1970). From the explicit invariant distribu-
tions (1.21) we obtained f in (1.24), and then we can solve (1.29) for g. (Without
the invariant distributions we can carry out part of this reasoning but we cannot
find f and g explicitly.) Let us record the results.

Theorem 1.1 For the limit (1.18) g(x) = −14 (1− x)2 for −1 ≤ x ≤ 1. For the
limit (1.9) γ(x, y) = (

√
x+
√
y )2 for x, y ≥ 0.

We turn to the hydrodynamic limit. Assume given a function u0 on R and a
sequence of random initial height functions hn(0) ∈ X1 (n ∈ N) such that:

n−1hn[nx](0)→ u0(x) a.s. as n→∞ for each x ∈ R. (1.30)

For this to be possible u0 has to be Lipschitz with 0 ≤ u′0(x) ≤ 1 Lebesgue-a.e.

Theorem 1.2 For x ∈ R and t > 0 we have the limit:

n−1hn[nx](nt)→ u(t, x) a.s. as n→∞ (1.31)

where

u(t, x) = sup
y∈R

{
u0(y) + tg

(x− y
t

)}
. (1.32)
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Equation (1.32) is a Hopf–Lax formula (Evans 1998) and it says that u is the
entropy solution of the Hamilton–Jacobi equation:

ut + f(ux) = 0, u|t=0 = u0. (1.33)

In other words this equation governs the macroscopic evolution of the height
process. Theorem 1.2 is proved by showing that, as n→∞, variational formula
(1.27) for n−1hn[nx](nt) turns into (1.32). Details can be found in (Seppäläinen
1999).

Further remarks. The function g in Theorem 1.1 was first calculated by
Rost (1981) in one of the seminal papers of hydrodynamic limits, but without
the last-passage representation and with a different approach than the one pre-
sented here.

Let us discuss various avenues of generalization. We immediately encounter
difficult open problems.

(i) Generalizations that retain the envelope property. The argument sketched
above that combines the envelope property with the duality of the flux and
the wedge shape to derive hydrodynamic limits was introduced in (Seppäläinen
1998a,c; 1999). An earlier instance of the variational connection appeared in
Aldous and Diaconis (1995) for Hammersley’s process. This work itself was based
on the classic paper (Hammersley 1972); see Section 1.3.2 below. Also, in queue-
ing literature, similar variational expressions arise (Szczotka and Kelly 1990).

To define the K-exclusion process we replace the state space X1 of (1.15)
with:

XK = {h ∈ ZZ : 0 ≤ hi − hi−1 ≤ K for all i ∈ Z} (1.34)

for some 2 ≤ K <∞. Otherwise keep the model the same: rate 1 Poisson clocks
{Ni} govern the jumps of height variables hi, and jumps that take the state
h outside the space XK are prohibited. The increment process is now called
totally asymmetric K-exclusion (some authors use ‘generalized exclusion’). The
variational coupling (Lemma 1.1) works as before. But invariant distributions
are unknown, and there is even no proof of existence of an extremal invariant
distribution for each density value ρ ∈ [0,K]. No alternative way to compute f
and g has been found. Theorem 1.2 is valid, but the most that can be said about
f and g is that they exist as concave functions.

Interestingly, the situation becomes again explicitly analysable for K = ∞
where the only constraint on h is hi ≤ hi+1. The increment process is a special
case of a zero range process. Its state space is (Z+)Z and i.i.d. geometric distribu-
tions are invariant (Liggett 1973; Andjel 1982). As a final step of generalization,
away from monotone height functions, let us mention bricklayer processes (Balázs
2003; Balázs et al. 2007) whose increments ηi = hi − hi−1 can be positive or
negative.
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The variational coupling of Lemma 1.1 works equally well for certain multi-
dimensional height processes h(t) = (hi(t) : i∈Zd) of the type discussed here.
Examples appear in (Rezakhanlou 2002b; Seppäläinen 2000, 2007). No explicit
invariant distributions are known for multidimensional height models. The varia-
tional scheme proves that scaled height processes converge to solutions of
Hamilton–Jacobi equations as in Theorem 1.2. But again one can only assert
the existence of f and g instead of giving them explicitly.

Another direction of generalization is to let the weights {Yi,j} have distri-
butions other than exponential or geometric. The height process h(t) ceases to
be Markovian but the last-passage model of Figs. 1.1 and 1.2 makes sense. As
mentioned, the limit γ(x, y) in (1.9) is explicitly known only for the exponential
and geometric cases. A distribution as simple as Bernoulli (Yi,j takes only two
values) cannot be handled. However, if the paths are altered to require that one
or both coordinates increase strictly, then the variational approach does find the
explicit shape for the Bernoulli case (Seppäläinen 1997, 1998b).

Thus the present situation is that an explicit limit shape can be found only
for some fortuitous combinations of path geometries and weight distributions.

(ii) Partially asymmetric models. Let us next address the case where the
column variables hi are allowed to jump both up and down. Fix two parameters
0 < q < p such that p + q = 1 (convenient normalization). Give each column
i two independent Poisson clocks, N (−)i with rate p and N (+)i with rate q. At
jump times of N (±)i variable hi attempts to jump to hi ± 1, and as before, a
jump is completed if its execution does not take the state out of the state space
X1. For the increment process this means that a 10 pair becomes a 01 pair at
rate p, and the opposite move happens at rate q. Bernoulli distributions (1.21)
are still invariant. This increment process is the asymmetric simple exclusion
process (ASEP). In the same vein one can allow K particles per site and talk
about asymmetric K-exclusion.

The envelope property of Lemma 1.1 is now lost. An alternative approach
from (Rezakhanlou 2001) utilizes compactness of the random semigroups of the
height process. Limit points are characterized as Hamilton–Jacobi semigroups
via the Lions–Nisio theorem (Lions and Nisio 1982). Thereby Theorem 1.2 is
derived for one-dimensional asymmetric K-exclusion. For K = 1 the flux f in
(1.33) must be replaced by f(ρ) = (p − q)ρ(1 − ρ), while for 2 ≤ K < ∞ the
flux is unknown. In the multidimensional case it is not known if the resulting
equation itself is random or not.

1.3 Fluctuations

A simple way to create initial height functions hn(0) that satisfy assumption
(1.30) is to take independent increments with distributions:

P[ηni (0) = 1] = n
(
u0( i

n )− u0( i−1n )
)
,
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and at the origin assign the deterministic value hn0 (0) = [nu0(0)]. The stationary
situation is of this type with u0(x) = ρx. Then initial fluctuations:

n−1/2{hn[nx](0)− nu0(x)}

are Gaussian in the limit n → ∞. This makes it natural to look for a distribu-
tional limit at later times t > 0 on the central limit scale n1/2:

n−1/2{hn[nx](nt)− nu(x, t)} −→ ζ(t, x) as n→∞, (1.35)

for some limit process ζ(t, x). Such limits can be proved, but process {ζ(t, x)}
turns out to be a deterministic function of the initial fluctuations {ζ(0, x)}. Con-
sequently limit (1.35) does not record any fluctuations created by the dynamics.
Theorem 1.3 below gives a precise statement of this type.

In asymmetric systems the fluctuations created by the dynamics occur on a
scale smaller than n1/2. Two types of such phenomena have been found. Processes
related to the last-passage model and exclusion process discussed in Section 1.2
have order n1/3 fluctuations whose limits are distributions from random matrix
theory. A class of linear processes has order n1/4 fluctuations and Gaussian limits
related to fractional Brownian motion with Hurst parameter H = 1/4. To see
these lower order fluctuations one can start the system with a deterministic
initial state, or one can start the system in the stationary distribution or some
other random state, but then follow the evolution along characteristic curves of
the macroscopic PDE. The fluctuation situation is very different for symmetric
systems; the reader can consult (Kipnis and Landim 1999, Ch. 11).

1.3.1 Exclusion process

Probability distributions from random matrix theory were discovered as limit
laws for last-passage growth models almost a decade ago.

Theorem 1.3 (Johansson 2000). For the corner growth model:

P
[ G([xn], [ny])− nγ(x, y)

c(x, y)n1/3
≤ s

]
−→ F (s) as n→∞, (1.36)

where F is the Tracy–Widom GUE distribution.

The distribution F first appeared as the limit distribution of the scaled largest
eigenvalue of a random Hermitian matrix from the GUE (Tracy and Widom
1994). GUE is short for Gaussian Unitary Ensemble. This means that a random
Hermitian matrix is constructed by putting IID complex-valued Gaussian ran-
dom variables above the diagonal, IID real-valued Gaussian random variables
on the diagonal, and letting the Hermitian property determine the entries below
the diagonal. Then as the matrix grows in size, the variances of the entries are
scaled appropriately to obtain limits. The standard reference is (Mehta 2004).
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Theorem 1.3 and related results initially arose entirely outside probability
theory (except for the statements themselves), involving the RSK correspon-
dence and Gessel’s identity from combinatorics and techniques from integrable
systems to analyse the asymptotics of the resulting determinants. The RSK cor-
respondence, named after Robinson, Schensted, and Knuth, is a bijective map-
ping between certain arrays of integers or integer matrices (in this case the matrix
in Fig. 1.1 if the Yi,j ’s are integers) and pairs of Young tableaux. These latter
objects are ubiquitous in combinatorics. Standard references are (Fulton 1997;
Sagan 2001). More recently determinantal point processes have appeared as the
link between the growth processes and random matrix theory. We shall not pur-
sue these topics further for many excellent reviews are available: Baik (2005),
Deift (2000), Johansson (2002), König (2005), and Spohn (2006).

Precise limits such as (1.36) have so far been restricted to totally asymmetric
systems. Next we discuss ideas that fall short of exact limits but do give the
correct order of the variance of the height for partially asymmetric systems.

Consider the height process h(t) whose increments ηi(t) = hi(t)−hi−1(t) form
the asymmetric simple exclusion process (ASEP). This process was introduced in
the remarks at the end of Section 1.2. Each height variable hi attempts downward
jumps with rate p and upward jumps with rate q, and p > q. A jump is suppressed
if it would lead to a violation of the restrictions hi−1 ≤ hi or hi ≥ hi+1 − 1
encoded in the state space X1 of (1.15). In the increment process each 10 pair
becomes a 01 pair at rate p and each 01 pair becomes 10 pair at rate q.

On large space and time scales the height process obeys the Hamilton–Jacobi
equation:

ut + f(ux) = 0 with f(ρ) = (p− q)ρ(1− ρ).
This PDE carries information along the curves ẋ = f ′(ux(t, x)), in the sense
that the slope ux is constant along these curves as long as it is continuous. At
constant slope ux = ρ the characteristic speed is V ρ = f ′(ρ) = (p− q)(1− 2ρ).

Consider the stationary process: 0 < ρ < 1 is fixed, and at each time t ≥ 0
the increments {ηi(t)}i∈Z have Bernoulli νρ-distribution from (1.21). Normalize
the heights by setting initially h0(0) = 0. We determine the order of magnitude
of the variance of the height as seen by an observer traveling at speed V ρ.

Theorem 1.4 (Balázs and Seppäläinen 2007b) Height fluctuations along the
characteristic satisfy:

0 < lim inf
t→∞

t−2/3Var{h[V ρt](t)} ≤ lim sup
t→∞

t−2/3Var{h[V ρt](t)} <∞.

If the observer choses any other speed v �= V ρ, only a translation of initial
Gaussian fluctuations would be observed. Take v > V ρ to be specific. Due to the
normalization h0(0) = 0 we can write:

h[vt](t) =
(
h[vt](t)− h[(v−V ρ)t](0)

)
+
[(v−V ρ)t]∑

i=1

ηi(0). (1.37)
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On the right the first expression in parentheses is a height increment along a
characteristic and so by the theorem has fluctuations of order t1/3. The last sum
of initial increments has Gaussian fluctuations of order t1/2 and consequently
drowns out the first term.

The proof of Theorem 1.4 is entirely different from the proofs of Theorem 1.3.
As it involves an important probabilistic idea let us discuss it briefly.

Couplings enable us to study the evolution of discrepancies between pro-
cesses. In exclusion processes these discrepancies are called second class
particles. Consider two initial ASEP configurations η(0), ζ(0) ∈ {0, 1}Z. The
configurations differ at the origin: ζ(0) has a particle at the origin (ζ0(0) = 1)
but η(0) does not (η0(0) = 0). At all other sites i �= 0 we give the configurations
a common but random value ηi(0) = ζi(0) according to the mean ρ Bernoulli
distribution. Let the joint process (η(t), ζ(t) : t ≥ 0) evolve together governed
by the same Poisson clocks. The effect of this coupling is that there is always
exactly one site Q(t) such that ζQ(t)(t) = 1, ηQ(t)(t) = 0, and ηi(t) = ζi(t) for all
i �= Q(t).
Q(t) is the location of a second class particle relative to the process η(t).

(Relative to ζ(t) one should say ‘second class antiparticle’.) In addition to ordi-
nary exclusion jumps, Q yields to η-particles: if an η-particle at Q + 1 jumps
left (rate q) then Q jumps right to switch places with the η-particle. Similarly
an η-particle at Q − 1 switches places with Q at rate p. These special jumps
follow from considering the effects of clocks N (∓)Q±1 on the discrepancy between
η and ζ.

Proof of Theorem 1.4 utilizes couplings of several processes with different
initial conditions. Evolution of second class particles is directly related to differ-
ences in particle current (height) between processes. On the other hand Q and
the height variance are related through this identity:

Var{h[vt](t)} = ρ(1− ρ)E
{
|Q(t)− [vt] |

}
for any v. (1.38)

The right-hand side can be expected to have order smaller than t precisely when
v = V ρ on account of this second identity:

EQ(t) = tV ρ. (1.39)

From these ingredients the bounds in Theorem 1.4 arise.

Further remarks. As already suggested at the end of Section 1.2, a major
problem for growth models is to find robust techniques that are not dependent
on particular choices of probability distributions or path geometries. Progress
on fluctuations of the corner growth model beyond the exponential case has
come in situations that are in some sense extreme: for distributions with heavy
tails (Hambly and Martin 2007) or for points close to the boundary of the
quadrant (Baik and Suidan 2005; Bodineau and Martin 2005). See review by
Martin (2006).
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The second class particle appears in many places in interacting particle
systems. In the hydrodynamic limit picture second class particles converge to
characteristics and shocks of the macroscopic PDE (Ferrari and Fontes 1994b;
Rezakhanlou 1995; Seppäläinen 2001). Versions of identities (1.38) and (1.39) are
valid for zero range and bricklayer processes (Balázs and Seppäläinen 2007a).
Equation (1.39) is surprising because the process as seen by the second class
particle is not stationary.

In general the view of the process from the second class particle is compli-
cated. Studies of invariant distributions seen by second class particles appear in
(Derrida et al. 1993; Ferrari et al. 1994; Ferrari and Martin 2007). There are
special cases of parameter values for certain processes where unexpected sim-
plification takes place and the process seen from the second class particle has a
product-form invariant distribution (Derrida et al. 1997; Balázs 2001).

1.3.2 Hammersley process

We began this paper with the exclusion process because this process is by far
the most studied among its kind. It behooves us to introduce also Hammers-
ley’s process for which several important results were proved first. It has an ele-
gant graphical construction that is related to a classical combinatorial question,
namely the maximal length of an increasing subsequence of a random permuta-
tion. This goes back to (Hammersley 1972); see also (Aldous and Diaconis 1995,
1999).

We begin with the growth model. Put a homogeneous rate 1 Poisson point
process on the plane. This is a random discrete subset of the plane characterized
by the following property: the number of points in a Borel set B is Poisson
distributed with mean given by the area of B and independent of the points
outside B. Call a sequence (x1, t1), (x2, t2), . . . , (xk, tk) of these Poisson points
increasing if x1 < x2 < · · · < xk and t1 < t2 < · · · < tk. Let L((a, s), (b, t))
be the maximal number of points on an increasing sequence in the rectangle
(a, b ]×(s, t] (Fig. 1.6). The random permutation comes from mapping the ordered
x-coordinates to ordered t-coordinates in the rectangle, and L((a, s), (b, t)) is
precisely the maximal length of an increasing subsequence of this permutation.

The limit:

lim
n→∞

n−1L((0, 0), (nx, nt)) = 2
√
xt a.s. (1.40)

holds for x, t > 0. The limit exists by superadditivity exactly as for (1.9). The
functional form c

√
xt follows from scaling properties of the Poisson process. The

value c = 2 was first derived by Veršik and Kerov (1977), while Logan and Shepp
(1977) independently proved c ≥ 2. The fluctuation result for L is analogous to
(1.36), with normalization n1/3 and the Tracy–Widom limit (Baik et al. 1999).

We embed the increasing sequences in the graphical construction of the
Hammersley process. This process consists of point particles that move on R

by jumping. Put a rate 1 Poisson point process on the space–time plane and
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Fig. 1.6: Increasing sequences among planar Poisson points marked by ×s.
L((a, s), (b, t)) = 4 as shown by the circled Poisson points that form an
increasing sequence.
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zi�1 (0)zi (0)

zi�1 (t) zi�2 (t)zi (t)

Fig. 1.7: Portion of the graphical construction of Hammersley’s process. ×’s
mark space–time Poisson points. •’s mark particle locations at time 0 and
at a later time t > 0. Space–time trajectories of particles are shown. The
horizontal segments are traversed instantaneously and the vertical segments
at constant speed 1.

place the particles initially on the real axis. Move the real axis up at constant
speed 1. Each Poisson point (x, t) instantaneously pulls to x the next particle to
the right of x. We label the particles from left to right: zi(t) ∈ R is the position
of particle i at time t. We could regard the variables zi as heights again, but
the particle picture seems more compelling. This construction is illustrated by
Fig. 1.7. In terms of infinitesimal rates, the construction realizes this rule: inde-
pendently of other particles, at rate zi − zi−1 variable zi jumps to a uniformly
chosen location in the interval (zi−1, zi).
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As in Section 1.2, there is a variational characterization for this construction.
Define an inverse for the maximal path variable L((a, s), (b, t)) by:

Γ((a, s), t, w) = inf{h ≥ 0 : L((a, s), (a+ h, t)) ≥ w}.

Take an initial particle configuration {zi(0)} ∈ RZ that satisfies zi−1(0) ≤ zi(0)
and i−2zi(0) → 0 as i → −∞. Then the graphical construction leads to a well-
defined evolution {zi(t)} that satisfies:

zi(t) = inf
k:k≤i

{
zk(0) + Γ((zk(0), 0), t, i− k)

}
. (1.41)

Here is the hydrodynamic limit. Consider a sequence of processes zn(t) that
satisfies n−1zn[ny](0) → u0(y) for each y ∈ R, say in probability. The initial
function u0 is nondecreasing, locally Lipschitz, and satisfies:

y−2u0(y)→ 0 as y → −∞. (1.42)

Define:

u(t, x) = inf
y:y≤x

{
u0(y) +

(x− y)2
4t

}
, (t, x) ∈ (0,∞)× R. (1.43)

Since rates are unbounded, we need to assume a left tail bound to prevent the
particles from disappearing to −∞: given ε > 0 there exist 0 < q, n0 < ∞ such
that:

P{zni (0) < −εi2/n for some i ≤ −qn} ≤ ε for n ≥ n0.

Under these assumptions:

n−1zn[nx](nt)→ u(t, x) in probability (1.44)

(Seppäläinen 1996). The function defined by the Hopf–Lax formula (1.43) solves
the Hamilton–Jacobi equation ut + (ux)2 = 0.

Let us state a precise result about the central limit scale fluctuations (1.35)
that covers also shocks. For (t, x) ∈ (0,∞)× R let:

I(t, x) =
{
y ∈ (−∞, x] : u(t, x) = u0(y) +

(x− y)2
4t

}
(1.45)

be the set of minimizers in (1.43), guaranteed nonempty and compact by hypo-
thesis (1.42). Then (t, x) is a shock if I(t, x) is not a singleton. This is equivalent
to the nonexistence of the x-derivative ux(t, x).

Fluctuations on the scale n1/2 from the limit (1.44) are described by the
process:

ζn(t, x) = n−1/2{zn[nx](nt)− nu(x, t)}.
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Assume the existence of a continuous random function ζ0 on R such that the
convergence in distribution ζn(0, · ) → ζ0 holds in the topology of uniform
convergence on compact sets. Define the process ζ by:

ζ(t, x) = inf
y∈I(t,x)

ζ0(y)

where I(t, x) is the (deterministic) set defined in (1.45).

Theorem 1.5 For each (t, x), ζn(t, x)→ ζ(t, x) in distribution.

As stated in the beginning of Section 1.3, this distributional limit reflects
no contribution from dynamical fluctuations as the process ζ is a deterministic
transformation of ζ0. The underlying reason is that the dynamical fluctuations
of order n1/3 are not visible on the n1/2 scale. The dynamical fluctuations are
the universal ones described by the Tracy–Widom laws. See again the discussion
and references that follow Theorem 1.3.

Further remarks. The polynuclear growth model (PNG) is another related
(1+1)-dimensional growth model used by several authors for studies of Tracy–
Widom fluctuations and the Airy process in the KPZ scaling picture (Baik and
Rains 2000; Ferrari 2004; Johansson 2003; Prähofer and Spohn 2002, 2004).
Like the Hammersley process, the graphical construction of the PNG utilizes
a planar Poisson process, and in fact the same underlying last-passage model
of increasing paths. This time the Poisson points mark space–time nucleation
events from which new layers grow laterally at a fixed speed. Roughly speak-
ing, this corresponds to putting the time axis at a 45 degree angle in Figs. 1.6
and 1.7.

More about the phenomena related to Theorem 1.5 can be found in arti-
cle (Seppäläinen 2002). A similar theorem for TASEP appears in (Rezakhanlou
2002a). Earlier work on the diffusive fluctuations of ASEP was done by Ferrari
and Fontes (1994a,b).

1.3.3 Linear models

We turn to systems macroscopically governed by linear first order equations
ut + bux = 0. Fluctuations across the characteristic occur now on the scale n1/4

and converge to a Gaussian process related to fractional Brownian motion.
The random average process (RAP) was first studied by Ferrari and Fontes

(1998). The state of the process is a height function σ : Z → R with σi ∈ R

denoting the height over site i. (More generally the domain can be Zd.) The
basic step of the evolution is that a value σi is replaced by a weighted average of
values in a neighbourhood, and the randomness comes in the weights. This time
we consider a discrete time process. The basic step is carried out simultaneously
at all sites i.

Now for precise formulations. Let {u(k, τ) : k∈Z, τ ∈N} be an IID collec-
tion of random probability vectors indexed by space–time Z × N. In terms of
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coordinates u(k, τ) = (uj(k, τ) : −M ≤ j ≤ M). We assume the system has
finite range defined by the fixed parameter M . We impose a minimal assump-
tion that guarantees that the weight vectors are not entirely degenerate:

P{max
j
uj(0, 0) < 1} > 0. (1.46)

For technical convenience we also assume that the process is ‘on the correct
lattice’: there does not exist an integer h ≥ 2 such that for some b ∈ Z the mean
weights p(j) = Euj(0, 0) satisfy

∑
j∈b+hZ p(j) = 1.

To start the dynamics let σ(0) be a given random or deterministic initial
height function. The process σ(τ), τ = 0, 1, 2, . . . , is defined iteratively by:

σi(τ) =
∑
j

uj(i, τ)σi+j(τ − 1) , τ ≥ 1, i ∈ Z. (1.47)

As before, we can define the process of increments ηi(τ) = σi(τ) − σi−1(τ).
The increments also evolve via random linear mappings and are conserved like
particles in exclusion processes.

As in Section 1.2 we create suitable initial conditions for a hydrodynamic
limit. Consider a sequence of processes σn(τ) indexed by n ∈ N, initially nor-
malized by σn0 (0) = 0. For each n assume independent initial increments {ηni (0) :
i ∈ Z} with:

E[ηni (0)] = ρ(i/n) and Var[ηni (0)] = v(i/n) (1.48)

for given Hölder 1/2 + ε functions ρ and v. Assume a uniform moment bound:
supn.iE[ |ηni (0)|2+δ ] <∞ for some δ > 0.

The hydrodynamic limit is rather trivial for it consists only of transla-
tion. Define a function u on R by u(0) = 0 and u′(x) = ρ(x). The characteristic
speed is:

b = −
∑
j

jp(j).

Then for each (t, x) ∈ R+ × R:

n−1σn[nx]([nt]) −→ u(x− bt) as n→∞, in probability.

In other words, the height obeys the linear PDE ut + bux = 0.
On the central limit scale n1/2 one would also see only translation of initial

fluctuations. To see something nontrivial we look at fluctuations around a char-
acteristic line. Fix a point ȳ ∈ R and consider the characteristic line t �→ ȳ + tb
emanating from (ȳ, 0). Define space–time process:

Zn(t, r) = σn[nȳ]+[r√n ]+[ntb]([nt]) − σn[nȳ]+[r√n ](0) , (t, r) ∈ R+ × R.
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The spatial variable r describes fluctuations around the characteristic on the
spatial scale n1/2. For the increment process Zn(t, 0) represents net current from
right to left across the characteristic.

Theorem 1.6 (Balázs et al. 2006) The finite-dimensional distributions of the
process n−1/4Zn converge to those of the Gaussian process {z(t, r) : t ≥ 0, r∈R}
described below.

The statement means that for any finite collection of space–time points
(t1, r1), . . . , (tk, rk), the Rk-valued random vector n−1/4(Zn(t1, r1), . . . , Zn

(tk, rk)) converges in distribution to the vector (z(t1, r1), . . . , z(tk, rk)). The lim-
iting process z has the following representation in terms of stochastic integrals:

z(t, r) = ρ(ȳ)σa
√
κ

∫∫
[0,t]×R

ϕσ2
a(t−s)(r − z) dW (s, z)

+
√
v(ȳ)

∫
R

sign(x− r) Φσ2
at

(
−|x− r|

)
dB(x).

(1.49)

Above W is a two-parameter Brownian motion on R+×R and B is a one-
parameter Brownian motion on R independent ofW . The first integral represents
dynamical noise generated by the random weights, and the second the initial
noise propagated by the evolution. The functions in the integrals are Gaussian
densities and distribution functions:

ϕσ2(x) =
1√
2πσ2

exp
{
− x

2

2σ2
}

and Φσ2(x) =
∫ x

−∞
ϕσ2(y) dy.

The only effects from the initial height are the mean ρ(ȳ) and variance v(ȳ)
of the increments around the point nȳ. The parameter σ2a is the variance of the
probabilities p(j), and κ another parameter determined by the distribution of the
weights. Process z has a self-similarity property: {z(at, a1/2r)} d= {a1/4z(t, r)}.

In the special case where v(ȳ) = κρ(ȳ)2 the temporal process {z(t, r) : t ∈
R+} (for any fixed r) has covariance:

Ez(s, r)z(t, r) =
σaκρ

2
√
2π

(√
s+
√
t−
√
|t− s|

)
.

This identifies z(· , r) as fractional Brownian motion with Hurst parameter H =
1/4. In particular, this limit arises in a stationary case where the averaging
involves two points and the weight is beta distributed (Balázs et al. 2006
Example 2.1).

The proof of Theorem 1.6 utilizes a special case of another stochastic model
of great contemporary interest, namely random walk in random environment
(RWRE). Here is how the RWRE arises. An environment ω = {u(k, τ)} is deter-
mined by the weight vectors. Given ω, define a ‘backward’ walk {Xi,τ

s : s ∈ Z+}
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on Z with initial position Xi,τ
0 = i and transition probability:

Pω(Xi, τ
s+1 = y |Xi, τ

s = x) = uy−x(x, τ − s), s = 0, 1, 2, . . .

The superscript ω on Pω indicates that it is the quenched path measure of
{Xi,τ

s : s ∈ Z+} under a fixed ω. The basic step (1.47) of RAP evolution can be
rewritten so that σi(τ) equals the average value of the previous height function
σ(τ − 1) seen by a walk started at i after one step:

σi(τ) =
∑
j

uj−i(i, τ)σj(τ − 1) = Eω
[
σXi, τ

1
(τ − 1)

]
.

This can be iterated all the way down to the initial height function:

σi(τ) = Eω
[
σXi, τ

τ
(0)
]
.

Note that the expectation Eω over paths of the walk Xi, τ
s under fixed weights

ω sees the initial height function {σi(0)}i∈Z as a constant.
We have here a special type of RWRE called ‘space–time’. Another term used

is ‘dynamical environment’ because after each step the walk sees a new sample of
its environment. Proof of Theorem 1.6 requires limits for the walk itself and its
quenched mean process Eω(Xi, τ

s ). These results appear in (Balázs et al. 2006;
Rassoul-Agha and Seppäläinen 2005).

Independent walks on Z display the same behavior as RAP. Let the process
Zn(t, r) be the net particle current across the characteristic t �→ [nȳ] + [r

√
n ] +

[ntb] where b is the common average speed of the particles. Then under suitable
assumptions on the initial particle arrangements and their jump kernel, Zn satis-
fies a stronger form of Theorem 1.6 that also contains process-level convergence.
One adjustment is necessary: the constants in front of the stochastic integrals in
(1.49) are different for the random walk case. The stationary system sees again
fractional Brownian motion as the limit of the current. Details for the random
walk case appear in (Seppäläinen 2005; Kumar 2007). Earlier related results for a
Poisson system of independent Brownian motions appeared in (Dürr et al. 1985).

1.4 Large deviations

We present the large deviation picture for the Hammersley process, so we con-
tinue in the setting of Section 1.3.2. Recall the definition of the longest path
model among planar Poisson points illustrated in Fig. 1.6. Abbreviate Ln =
L((0, 0), (n, n)). Then the limit (1.40) is n−1Ln → 2. Here is the large devia-
tion theorem for Ln. It was completed shortly before the fluctuation result of
Baik et al. (1999), through a combination of several independent papers: Logan
and Shepp (1977), Kim (1996), Seppäläinen (1998d), and Deuschel and Zeitouni
(1999).
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Theorem 1.7 We have the following upper and lower tail large deviation bounds.

lim
n→∞

n−1 logP{Ln ≥ nx} = −I(x) for x ≥ 2 (1.50)

with rate function I(x) = 2x cosh−1(x/2)− 2
√
x2 − 4 .

lim
n→∞

n−2 logP{Ln ≤ nx} = −U(x) for 0 ≤ x ≤ 2 (1.51)

with rate function U(x) =
∫ 2
x
R2(s) ds where R2(s) = s log(s/2) − s + 2 is the

rate function for IID mean 2 Poisson random variables.

To develop this theme further we state a lower tail LDP for the tagged particle
in Hammersley’s process. An interesting feature is that the large deviation rate
functions again obey the Hopf–Lax semigroup formula, as did the limit (1.44).
The assumption is that lower tail rate functions exist initially: for all y, s ∈ R

the limit:
J0(y, s) = − lim

n→∞
n−1 logP{zn[ny](0) ≤ ns}

exists and is left continuous in y for each fixed s. Define:

Ψ(w, r) = − lim
n→∞

n−1 logP{Γ((0, 0), (n, nw)) ≤ nr}. (1.52)

This limit exists by superadditivity. For technical reasons a uniform tail bound
is needed for the initial particle locations: there exist constants 0 < Cj <∞ such
that:

P{zni (0) ≤ −C1|i| } ≤ e−C2|i| for i ≤ −C3n, for large enough n.

Theorem 1.8 (Seppäläinen 1998d) The limit:

Jt(x, r) = − lim
n→∞

n−1 logP{zn[nx](nt) ≤ nr}

exists for all x, r ∈ R and t > 0, and is given by:

Jt(x, r) = inf
(y,s):y≤x, s≤r

{
J0(y, s) + tΨ

(x− y
t
,
r − s
t

)}
. (1.53)

The approach of Section 1.2 can be adapted to prove the upper tail LDP
(1.50) and Theorem 1.8. The stationary systems make explicit calculation again
possible. Presently it is not clear how to include the lower tail LDP (1.51) in the
variational framework. Hence this part requires a separate proof. Details appear
in Deuschel and Zeitouni (1999) and Seppäläinen (1998d).

Further remarks. Even though Theorem 1.7 has explicit rate functions,
this large deviation problem remains unfinished in an important sense. It is not
understood how the system behaves to create a deviation, and it is not clear
what the rate functions I and U represent. The present proofs are too indirect.
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Let us illustrate through the random walk LDP (1.4)–(1.5) how a large devi-
ation problem ideally should be understood. To create a deviation Sn ≈ nu with
u > v, the entire walk behaves as a random walk with mean step u. Namely,
it can be proved that the conditioned measure P( · |Sn ≥ nu) converges on the
path space to the distribution Q(u) of a mean u random walk. The value I(u)
of the rate function in (1.5) is the entropy of this measure Q(u) relative to the
original P.

Results of the type presented in this section appear for TASEP in
(Seppäläinen 1998a). The asymptotic analysis of Baik et al. (1999) and Johans-
son (2000) gives also LDP’s for the growth models. Concentration results for
a Brownian last-passage model appear in (Hambly et al. 2002) and a general
discussion of deviation inequalities for growth models in the lectures of Ledoux
(2007).
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437–64.

Rezakhanlou, F. (2002b). Continuum limit for some growth models. Stochastic
Process. Appl. 101(1), 1–41.

Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series, No.
28. Princeton University Press: Princeton, N.J..

Rost, H. (1981). Nonequilibrium behaviour of a many particle process: density
profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58(1), 41–53.

Sagan, B. E. (2001). The Symmetric Group (Second ed.), Volume 203 of Grad-
uate Texts in Mathematics. Springer-Verlag: New York. Representations,
combinatorial algorithms, and symmetric functions.
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THE PLEASURES AND PAINS OF STUDYING THE
TWO-TYPE RICHARDSON MODEL

Maria Deijfen and Olle Häggström

Abstract

This paper provides a survey of known results and open problems for the
two-type Richardson model, which is a stochastic model for competition on
Zd. In its simplest formulation, the Richardson model describes the evo-
lution of a single infectious entity on Zd, but more recently the dynamics
have been extended to comprise two competing growing entities. For this
version of the model, the main question is whether there is a positive prob-
ability for both entities to simultaneously grow to occupy infinite parts of
the lattice, the conjecture being that the answer is yes if, and only if, the
entities have the same intensity. In this paper attention focuses on the two-
type model, but the most important results for the one-type version are also
described.

2.1 Introduction

Consider an interacting particle system in which, at any time t, each site x ∈ Zd

is in either of two states, denoted by 0 and 1. A site in state 0 flips to a 1
at a rate proportional to the number of nearest neighbours in state 1, while a
site in state 1 remains a 1 forever. We may think of sites in state 1 as being
occupied by some kind of infectious entity, and the model then describes the
propagation of an infection where each infected site tries to infect each of its
nearest neighbours on Zd at some constant rate λ > 0. More precisely, if at
time t a vertex x is infected, and a neighbouring vertex y is uninfected, then,
conditional on the dynamics up to time t, the probability that x infects y dur-
ing a short time window (t, t + h) is λh + o(h). Here, and in what follows,
sites in state 0 and 1 are referred to as uninfected and infected respectively.
This is the intuitive description of the model; a formal definition is given in
Section 2.2.

The model is a special case of a class of models introduced by Richardson
(1973), and is commonly referred to as the Richardson model. It has several
cousins among processes from mathematical biology, see e.g., Eden (1961),
Williams and Bjerknes (1972), and Bramson and Griffeath (1981). The model is
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also a special case of so called first-passage percolation, which was introduced
in Hammersley and Welsh (1965) as a model for describing the passage of a
fluid through a porous medium. In first-passage percolation, each edge of the
Zd-lattice is equipped with a random variable representing the time it takes for
the fluid to traverse the edge, and the Richardson model is obtained by letting
these passage times be i.i.d. exponential.

Since an infected site stays infected forever, the set of infected sites in the
Richardson model increases to cover all of Zd as t→∞, and attention focuses on
how this set grows. The main result is, roughly, that the infection grows linearly
in time in each fixed direction and that, scaled by a factor 1/t, the set of infected
points converges to a non-random asymptotic shape as t→∞. To prove that
the growth is linear in a fixed direction involves Kingman’s subadditive ergodic
theorem—in fact, the study of first-passage percolation was one of the main
motivations for the development of subadditive ergodic theory. That the linear
growth is preserved when all directions are considered simultaneously is stated
in the celebrated shape theorem (Theorem 2.1 in Section 2.2) which originates
from Richardson (1973).

Now consider the following extension of the Richardson model, known as the
two-type Richardson model and introduced in Häggström and Pemantle (1998).
Instead of two possible states for the sites there are three states, which we denote
by 0, 1, and 2. The process then evolves in such a way that, for i = 1, 2, a site in
state 0 flips to state i at rate λi times the number of nearest neighbours in state
i and, once in state 1 or 2, a site remains in that state forever. Interpreting states
1 and 2 as two different types of infection and state 0 as absence of infection,
this gives rise to a model describing the simultaneous spread of two infections
on Zd. To rigorously define the model requires a bit more work; see Section 2.3.
In what follows we will always assume that d ≥ 2; the model makes sense also
for d = 1 but the questions considered here become trivial.

A number of similar extensions of (one-type) growth models to (two-type)
competition models appear in the literature; see for instance Neuhauser (1992),
Durrett and Neuhauser (1997), Kordzakhia and Lalley (2005), and Ferrari et al.
(2006). These tend to require somewhat different techniques, and results tend not
to be easily translated from these other models to the two-type Richardson model
(and vice versa). Closer to the latter are (non-Markovian) competition models
based on first-passage percolation models with non-exponential passage time
variables—Garet and Marchand (2005), Hoffman (2005:1), Hoffman (2005:2),
Garet and Marchand (2006), Gouéré (2007), Pimentel (2007)—and a certain
continuum model—Deijfen et al. (2004), Deijfen and Häggström (2004), Gouéré
(2007). For ease of exposition, we shall not consider these variations even in cases
where results generalize.

The behaviour of the two-type Richardson model depends on the initial con-
figuration of the infection and on the ratio between the intensities λ1 and λ2
of the infection types. Assume first, for simplicity, that the model is started
at time 0 from two single sites, the origin being type 1 infected and the site
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(1, 0, . . . , 0) next to the origin being type 2 infected. Three different scenarios for
the development of the infection are conceivable:

(a) The type 1 infection at some point completely surrounds type 2, thereby
preventing type 2 from growing any further.

(b) Type 2 similarly strangles type 1.
(c) Both infections grow to occupy infinitely many sites.

It is not hard to see that, regardless of the intensities of the infections, outcomes
(a) and (b) where one of the infection types at some point encloses the other have
positive probability regardless of λ1 and λ2. This is because each of (a) and (b)
can be guaranteed through some finite initial sequence of infections. In contrast,
scenario (c)—referred to as infinite coexistence—can never be guaranteed from
any finite sequence of infections, and is therefore harder to deal with: the main
challenge is to decide whether, for given values of the parameters λ1 and λ2, this
event (c) has positive probability or not. Intuitively, infinite coexistence repre-
sents some kind of power balance between the infections, and it seems reasonable
to suspect that such a balance is possible if and only if the infections are equally
powerful, that is, when λ1 = λ2. This is Conjecture 2.1 in Section 2.3, which
goes back to Häggström and Pemantle (1998), and, although a lot of progress
have been made, it is not yet fully proved. We describe the state of the art in
Sections 2.4 and 2.5.

As mentioned above, apart from the intensities, the development of the
infections in the two-type model also depends on the initial state of the model.
However, if we are only interested in deciding whether the event of infinite coex-
istence has positive probability or not, it turns out that, as long as the initial
configuration is bounded and one of the sets does not completely surround the
other, the precise configuration does not matter, that is, whether infinite coexis-
tence is possible or not is determined only by the relation between the intensities.
This is proved in Deijfen and Häggström (2006a); see Theorem 2.2 in Section
2.3 for a precise formulation. Of course one may also consider unbounded initial
configurations. Starting with both infection types occupying infinitely many sites
means—apart from in very laboured cases—that they will both infect infinitely
many sites. A more interesting case is when one of the infection types starts from
an infinite set and the other one from a finite set. We may then ask if outcomes
where the finite type infects infinitely many sites have positive probability or not.
This question is dealt with in Deijfen and Häggström (2007), and we describe
the results in Section 2.6.

The dynamics of the two-type Richardson model is deceptively simple, and
yet gives rise to intriguing phenomena on a global scale. In this lies a large
part of the pleasure indicated in the title. Furthermore, proofs tend to involve
elegant probabilistic techniques such as coupling, subadditivity, and stochastic
comparisons, adding more pleasure. The pain alluded to (which by the way is
not so severe that it should dissuade readers from entering this field) comes from
the stubborn resistance that some of the central problems have so far put up
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against attempts to solve them. A case in point is the ‘only if’ direction of the
aforementioned Conjecture 2.1, saying that infinite coexistence starting from a
bounded initial configuration does not occur when λ1 �= λ2.

2.2 The one-type model

As mentioned in the introduction, the one-type Richardson model is equivalent
to first-passage percolation with i.i.d. exponential passage times. To make the
construction of the model more precise, first define EZd as the edge set for the
Zd lattice (i.e., each pair of vertices x, y ∈ Zd at Euclidean distance 1 from each
other have an edge e ∈ EZd connecting them). Then attach i.i.d. non-negative
random variables {τ(e)}e∈E

Zd
to the edges. We take each τ(e) to be exponentially

distributed with parameter λ > 0, meaning that:

P (τ(e) > t) = exp(−λt)

for all t ≥ 0. For x, y ∈ Zd, define:

T (x, y) = inf
Γ

∑
e∈Γ
τ(e) (2.1)

where the infimum is over all paths Γ from x to y. The Richardson model with
a given set S0 ⊂ Zd of initially infected sites is now defined by taking the set St
of sites infected at time t to be:

St = {x ∈ Zd : T (y, x) ≤ t for some y ∈ S0} . (2.2)

It turns out that the infimum in (2.1) is a.s. a minimum and attained by a unique
path. That St grows in the way described in the introduction is a consequence
of the memoryless property of the exponential distribution: for any s, t > 0 we
have that P (τ(e) > s+ t |τ(e) > s) = exp(−λt).

Note that for any x, y, z ∈ Zd we have T (x, y) ≤ T (x, z) + T (z, y). This
subadditivity property opens up for the use of subadditive ergodic theory in
analysing the model. To formulate the basic result, let T (x) be the time when the
point x ∈ Zd is infected when starting from a single infected site at the origin and
write n = (n, 0, . . . , 0). It then follows from the subadditive ergodic theorem—
see e.g. Kingman (1968)—that there is a constant µλ such that T (n)/n → µλ
almost surely and in L1 as n→∞. Furthermore, a simple time scaling argument
implies that µλ = λµ1 and hence, writing µ1 = µ, we have that:

lim
n→∞

T (n)
n

= λµ a.s. and in L1. (2.3)

The constant µ indicates the inverse asymptotic speed of the growth along the
axes in a unit rate process and is commonly referred to as the time constant. It
turns out that µ > 0, so that indeed the growth is linear in time. Similarly, an
analog of (2.3) holds in any direction, that is, for any x ∈ Zd, there is a constant
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µ(x) > 0 such that T (nx)/n → λµ(x). The infection hence grows linearly in
time in each fixed direction and the asymptotic speed of the growth in a given
direction is an almost sure constant.

We now turn to the shape theorem, which asserts roughly that the linear
growth of the infection is preserved also when all directions are considered simul-
taneously. More precisely, when scaled down by a factor 1/t the set St converges
to a non-random shape A. To formalize this, let S̃t ⊂ Rd be a continuum version
of St obtained by replacing each x ∈ St by a unit cube centred at x.

Theorem 2.1 (Shape Theorem) There is a compact convex set A such that,
for any ε > 0, almost surely

(1− ε)λA ⊂ S̃t
t
⊂ (1 + ε)λA

for large t.

In the above form, the shape theorem was proved in Kesten (1973) as an improve-
ment on the original ‘in probability’ version, which appears already in Richardson
(1973). See also Cox and Durrett (1988) and Boivin (1990) for generalizations to
first-passage percolation processes with more general passage times. Results con-
cerning fluctuations around the asymptotic shape can be found, e.g., in Kesten
(1993), Alexander (1993), and Newman and Piza (1995), and, for certain other
passage time distributions, in Benjamini et al. (2003).

Working out exactly, or even approximately, what the asymptotic shape A
is has turned out to be difficult. Obviously the asymptotic shape inherits all
symmetries of the Zd lattice—invariance under reflection and permutation of
coordinate hyperplanes—and it is known to be compact and convex, but, apart
from this, not much is known about its qualitative features. These difficulties
with characterizing the shape revolve around the fact that Zd is not rotationally
invariant, which causes the growth to behave differently in different directions.
For instance, simulations on Z2 indicate that the asymptotic growth is slightly
faster along the axes as compared to the diagonals. There is, however, no formal
proof of this.

Before proceeding with the two-type model, we mention some work concern-
ing properties of the time-minimizing paths in (2.1), also known as geodesics.
Starting at time 0 with a single infection at the origin 0, we denote by Γ(x)
the (unique) path Γ for which the infimum T (0, x) in (2.1) is attained. Define
Ψ = ∪x∈ZdΓ(x), making Ψ a graph specifying which paths the infection actually
takes. It is not hard to see that Ψ is a tree spanning all of Zd and hence there must
be at least one semi-infinite self-avoiding path from the origin (called an end)
in Ψ. The issue of whether Ψ has more than one end was noted by Häggström
and Pemantle (1998) to be closely related to the issue of infinite coexistence in
the two-type Richardson model with λ1 = λ2: such infinite coexistence happens
with positive probability starting from a finite initial configuration if and only if
Ψ has at least two ends with positive probability.
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We say that an infinite path x1, x2, . . . has asymptotic direction x̂ if xk/
|xk| → x̂ as k → ∞. In d = 2, it has been conjectured that every end in Ψ
has an asymptotic direction and that, for every x ∈ R2, there is at least one
end (but never more than two) in Ψ with asymptotic direction x̂. In particular,
this would mean that Ψ has uncountably many ends. For results supporting this
conjecture, see Newman (1995) and Licea and Newman (1996). In the former
of these papers, the conjecture is shown to be true provided an unproven but
highly plausible assumption on the asymptotic shape A, saying roughly that the
boundary is sufficiently smooth. See also Lalley (2003) for related work.

Results not involving unproven assumptions are comparatively weak: the
coexistence result of Häggström and Pemantle (1998) shows for d=2 that Ψ
has at least two ends with positive probability. This was later improved to Ψ
having almost surely at least 2d ends, by Hoffman (2005b) for d = 2 and by
Gouéré (2007) for higher dimensions.

2.3 Introducing two types

The definition of the two-type Richardson model turns out to be simplest in the
symmetric case λ1 = λ2, where the same passage time variables {τ(e)}e∈E

Zd
as

in the one-type model can be used, with λ = λ1 = λ2. Suppose we start with an
initial configuration (S10 , S

2
0) of infected sites, where S10 ⊂ Zd are those initially

containing type 1 infection, and S20 ⊂ Zd are those initially containing type 2
infection. We wish to define the sets S1t and S2t of type 1 and type 2 infected
sites for all t > 0. To this end, set S0 = S10 ∪ S20 , and take the set St = S1t ∪ S2t
of infected sites at time t to be given by precisely the same formula (2.2) as in
the one-type model; a vertex x ∈ St is then assigned infection 1 or 2 depending
on whether the y ∈ S0 for which:

inf{T (y, x) : y ∈ S0}

is attained is in S10 or S20 .
As in the one-type model, it is a straightforward exercise involving the

memoryless property of the exponential distribution to verify that (S1t , S
2
t )t≥ 0

behaves in terms of infection intensities as described in the introduction.
This construction demonstrates an intimate link between the one-type and

the symmetric two-type Richardson model: if we watch the two-type model while
wearing a pair of glasses preventing us from distinguishing the two types of
infection, what we see behaves exactly as the one-type model. The link between
infinite coexistence in the two-type model and the number of ends in the tree
of infection Ψ of the one-type model claimed in the previous section is also a
consequence of the construction.

In the asymmetric case λ1 �= λ2, the two-type model is somewhat less trivial
to define due to the fact that the time it takes for infection to spread along a
path depends on the type of infection. There are various ways to deal with this,
one being to assign, independently to each e ∈ EZd , two independent random
variables τ1(e) and τ2(e), exponentially distributed with respective parameters
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λ1 and λ2, representing the time it takes for infections 1 resp. 2 to traverse e.
Starting from an initial configuration (S10 , S

2
0), we may picture the infections

as spreading along the edges, taking time τ1(e) or τ2(e) to cross e depending
on the type of infection, with the extra condition that once a vertex becomes
hit by one type of infection it becomes inaccessible for the other type. This is
intuitively clear, but readers with a taste for detail may require a more rigorous
definition, which however we refrain from here; see Häggström and Pemantle
(2000) and Deijfen and Häggström (2006a).

We now move on to describing conjectures and results. Write Gi for the
event that type i infects infinitely many sites on Zd and define G = G1 ∩ G2.
The question at issue is:

Does G have positive probability? (2.4)

A priori, the answer to this question may depend both on the initial
configuration–that is, on the choice of the sets S10 and S20—and on the ratio
between the infection intensities λ1 and λ2. However, it turns out that, if we are
not interested in the actual value of the probability of G, but only in whether
it is positive or not, then the initial configuration is basically irrelevant, as long
as neither of the initial sets completely surrounds the other. This motivates the
following definition.

Definition 2.1 Let ξ1 and ξ2 be two disjoint finite subsets of Zd. We say that
one of the sets (ξi) strangles the other (ξj) if there exists no infinite self-avoiding
path in Zd that starts at a vertex in ξj and that does not intersect ξi. The pair
(ξ1, ξ2) is said to be fertile if neither of the sets strangles the other.

Now write Pλ1,λ2
ξ1,ξ2

for the distribution of a two-type process started from
S10 = ξ1 and S

2
0 = ξ2. We then have the following result.

Theorem 2.2 Let (ξ1, ξ2) and (ξ′1, ξ
′
2) be two fertile pairs of disjoint finite sub-

sets of Zd, where d ≥ 2. For all choices of (λ1, λ2), we have:

Pλ1,λ2
ξ1,ξ2

(G) > 0⇔ Pλ1,λ2
ξ′
1,ξ

′
2
(G) > 0.

For connected initial sets ξ1 and ξ2 and d=2, this result is proved in
Häggström and Pemantle (1998). The idea of the proof in that case is that, by
controlling the passage times of only finitely many edges, two processes started
from (ξ1, ξ2) and (ξ′1, ξ

′
2) respectively can be made to evolve to the same total

infected set after some finite time, with the same configuration of the infection
types on the boundary. Coupling the processes from this time on and observing
that the development of the infections depends only on the boundary configura-
tion yields the result. This argument however breaks down when the initial sets
are not connected (since it is then not sure that the same boundary configura-
tion can be obtained in the two processes) and it is unclear whether it applies
for d ≥ 3. Theorem 2.2 is proved in full generality in Deijfen and Häggström
(2006a), using a more involved coupling construction.
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It follows from Theorem 2.2 that the answer to question (2.4) depends only
on the value of the intensities λ1 and λ2. Hence it is sufficient to consider a
process started from S10 =0 and S20 =1 (recall that n = (n, 0, . . . , 0)), and in
this case we drop subscripts and write Pλ1,λ2 for Pλ1,λ2

0,1 . Also, by time-scaling,
we may assume that λ1 = 1. The following conjecture, where we write λ2 = λ,
goes back to Häggström and Pemantle (1998).

Conjecture 2.1 In any dimension d ≥ 2, we have that P 1,λ(G)> 0 if and only
if λ = 1.

The conjecture is no doubt true, although proving it has turned out to be a
difficult task. In fact, the ‘only if’ direction is not yet fully established. In the
following two sections we describe the existing results for λ = 1 and λ �= 1
respectively.

2.4 The case λ = 1

When λ=1, we are dealing with two equally powerful infections and
Conjecture 2.1 predicts a positive probability for infinite coexistence. This part
of the conjecture has been proved:

Theorem 2.3 If λ = 1, we have, for any d ≥ 2, that P 1,λ(G) > 0.

This was first proved in the special case d = 2 by Häggström and Pemantle
(1998). That proof has a very ad hoc flavour, and heavily exploits not only the
two-dimensionality but also other specific properties of the square lattice, includ-
ing a lower bound on the time constant µ in (2.3) that just happens to be good
enough. When eventually the result was generalized to higher dimensions, which
was done simultaneously and independently by Garet and Marchand (2005) and
Hoffman (2005a), much more appealing proofs were obtained. Yet another dis-
tinct proof of Theorem 2.3 was given by Deijfen and Häggström (2007). All
four proofs are different, though if you inspect them for a smallest common
denominator you find that they all make critical use of the fact that the time
constant µ is strictly positive. We will give the Garet–Marchand proof below.
In Hoffman’s proof, ergodic theory is applied to the tree of infection Ψ and a
so-called Busemann function which is shown to exhibit contradictory behavior
under the assumption that infinite coexistence has probability zero. The Deijfen–
Häggström proof proceeds via the two-type Richardson model with certain infi-
nite initial configurations (cf. Section 2.6.)

Proof of Theorem 2.3 The following argument is due to Garet and
Marchand (2005), though our presentation follows more closely the proof of an
analogous result in a continuum setting in Deijfen and Häggström (2004)—a
paper that, despite the publication dates, was preceded by and also heavily
influenced by Garet and Marchand (2005).

Fix a small ε> 0. By Theorem 2.2, we are free to choose any finite starting
configuration we want, and here it turns out convenient to begin with a sin-
gle type 1 infection at the origin 0, and a single type 2 infection at a vertex
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n = (n, 0, . . . , 0), where n is large enough so that:
(i) E[T (0,n)] ≤ (1 + ε)nµ, and
(ii) P (T (0,n) < (1− ε)nµ) < ε;
note that both (i) and (ii) hold for n large enough due to the asymptotic speed
result (2.3). The reader may easily check, for later reference, that (i) and (ii)
together with the nonnegativity of T (0,n) imply for any event B with P (B) = α
that:

E[T (0,n) | ¬B] ≤
(
1 +

3ε
1− α

)
nµ . (2.5)

Next comes an important telescoping idea: for any positive integer k we have:

E[T (0, kn)] = E[T (0,n)] + E[T (0, 2n)− T (0,n)] + E[T (0, 3n)− T (0, 2n)]
+ · · ·+ E[T (0, kn)− T (0, (k − 1)n)] .

Since limk→∞ k−1E[T (0, kn)] = nµ, there must exist arbitrarily large k such
that:

E[T (0, (k + 1)n)− T (0, kn)] ≥ (1− ε)nµ .
By taking m= kn, and by translation and reflection invariance, we may deduce
that:

E[T (n,−m)− T (0,−m)] ≥ (1− ε)nµ (2.6)

for some arbitrarily large m. We will pick such an m; how large will soon be
specified.

The goal is to show that P (G)> 0, so we may assume for contradiction that
P (G) = 0. By symmetry of the initial configuration, we then have that P (G1) =
P (G2) = 1

2 . This implies that:

lim
m→∞

P (−m gets infected by type 2) = lim
m→∞

P (T (n,−m) < T (0,−m)) =
1
2

so let us pick m in such a way that:

P (T (n,−m) < T (0,−m)) ≥ 1
4

(2.7)

while also (2.6) holds. Write B for the event in (2.7). The expectation E[T (n,
−m)− T (0,−m)] may be decomposed as:

E[T (n,−m)− T (0,−m)] = E[T (n,−m)− T (0,−m) |B]P (B)
+ E[T (n,−m)− T (0,−m) |¬B]P (¬B)
≤ E[T (n,−m)− T (0,−m) |¬B]P (¬B)

≤ 3
4
E[T (n,−m)− T (0,−m) |¬B]

≤ 3
4
E[T (n,0)|¬B]

≤ 3
4
(1 + 4ε)nµ
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where the second-to-last inequality is due to the triangle inequality T (n,−m) ≤
T (n,0) + T (0,−m), and the last one uses (2.5). For small ε, this contradicts
(2.6), so the proof is complete. �

2.5 The case λ �= 1

Let us move on to the case when λ �= 1, that is, when the type 2 infection has a
different intensity than type 1. It then seems unlikely that the kind of equilibrium
which is necessary for infinite coexistence to occur would persist in the long run.
However, this part of Conjecture 2.1 is not proved. The best result to date is the
following theorem from Häggström and Pemantle (2000).

Theorem 2.4 For any d ≥ 2, we have P 1,λ(G) = 0 for all but at most countably
many values of λ.

We leave it to the reader to decide whether this is a very strong or a very
weak result: it is very strong in the sense of showing that infinite coexistence
has probability 0 for (Lebesgue)-almost all λ, but very weak in the sense that
infinite coexistence is not ruled out for any given λ.

The result may seem a bit peculiar at first sight and we will spend some time
explaining where it comes from and where the difficulties arise when one tries to
strengthen it. Indeed, as formulated in Conjecture 2.1, the belief is that the set
{λ : P 1,λ(G) > 0} in fact consists of the single point λ = 1, but Theorem 2.4
only asserts that the set is countable.

First note that, by time-scaling and symmetry, we have P 1,λ(G) = P 1,1/λ(G)
and hence it is enough to consider λ ≤ 1. An essential ingredient in the proof
of Theorem 2.4 is a coupling of the two-type processes {P 1,λ}λ∈(0,1] obtained
by associating two independent exponential mean 1 variables τ1(e) and τ ′2(e) to
each edge e ∈ Zd and then letting the type 2 passage time at parameter value
λ be given by τ2(e) = λ−1τ ′2(e) and the type 1 time (for any λ) by τ1(e). Write
Q for the probability measure underlying this coupling and let Gλ be the event
that infinite coexistence occurs at parameter value λ. Theorem 2.4 is obtained
by showing that:

with Q-probability 1 the event Gλ occurs
for at most one value of λ ∈ (0, 1]. (2.8)

Hence, Q(Gλ) can be positive for at most countably many λ, and Theorem 2.4
then follows by noting that P 1,λ(G) = Q(Gλ).

But why is (2.8) true? Let Gλ
i be the event that the type i infection grows

unboundedly at parameter value λ. Then the coupling defining Q can be shown
to be monotone in the sense that Gλ

1 is decreasing in λ – that is, if Gλ
1 occurs

then Gλ′
1 occurs for all λ′<λ as well – and Gλ

2 is increasing in λ. This kind
of monotonicity of the coupling is crucial for proving (2.8), as is the following
result, which asserts that, on the event that the type 2 infection survives, the
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total infected set in a two-type process with distribution P 1,λ, where λ < 1,
grows to a first approximation like a one-type process with intensity λ. More
precisely, the speed of the growth in the two-type process is determined by the
weaker type 2 infection type. We take S̃i

t to denote the union of all unit cubes
centered at points in Si

t and A is the limiting shape for a one-type process with
rate 1.

Theorem 2.5 Consider a two-type process with distribution P 1,λ for some λ≤ 1.
On the event G2 we have, for any ε > 0, that almost surely:

(1− ε)λA ⊂ S̃
1
t ∪ S̃2t
t

⊂ (1 + ε)λA

for large t.

Theorem 2.4 follows readily from this result and the monotonicity properties of
the coupling Q. Indeed, fix ε > 0 and suppose Gλ occurs. Then Theorem 2.5
guarantees that on level λ the type 1 infection is eventually contained in (1 +
ε)λtA, a conclusion that extends to all λ′ > λ, because increasing the type 2
infection rate does not help type 1. On the other hand, for any λ′ > λ we get
on level λ′ that the union of the two infections will—again by Theorem 2.5—
eventually contain (1− ε)λ′tA, so by taking ε sufficiently small we see that the
type 1 infection is strangled on level λ′, implying (2.8), and Theorem 2.4 follows.

We will not prove Theorem 2.5, but mention that the hard work in proving
it lies in establishing a certain key result (Proposition 2.2 in Häggström and
Pemantle 2000) that asserts that if the strong infection type reaches outside
(1 + ε)λtA infinitely often, then the weak type is doomed. The proof of this
uses geometrical arguments, the most important ingredient being a certain spiral
construction, emanating from the part of the strong of infection reaching beyond
(1 + ε)λtA, and designed to allow the strong type to completely surround the
weak type before the weak type catches up from inside.

How would one go about strengthening Theorem 2.4 and ruling out infinite
coexistence for all λ �= 1? One possibility would be to try to derive a contradic-
tion with Theorem 2.5 from the assumption that the strong infection type grows
unboundedly. For instance, intuitively it seems likely that the strong type occu-
pying a positive fraction of the boundary of the infected set would cause the speed
of the growth to exceed the speed prescribed by the weak infection type. This
type of argument is indeed used in Garet and Marchand (2007) to show, for
d = 2, that on the event of infinite coexistence the fraction of infected sites
occupied by the strong infection will tend to 0 as t→∞. This feels like a strong
indication that infinite coexistence does not happen.

Another approach to strengthening Theorem 2.4 in order to obtain the only-if
direction of Conjecture 2.1 is based on the observation that, since coexistence
represents a power balance between the infections, it is reasonable to expect that
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P 1,λ(G) decreases as λ moves away from 1. We may formulate that intuition as
a conjecture:

Conjecture 2.2 For the two-type Richardson model on Zd with d ≥ 2, we have,
for λ < λ′ ∈ (0, 1], that P 1,λ(G) ≤ P 1,λ′

(G).

A confirmation of this conjecture would, in combination with Theorem 2.4,
clearly establish the only-if direction of Conjecture 2.1: If P 1,λ(G) > 0 for some
λ < 1, then, according to Conjecture 2.2, we would have P 1,λ

′
(G) > 0 for all

λ′ ∈ (λ, 1] as well. But the interval (λ, 1] is uncountable, yielding a contradiction
to Theorem 2.4.

Although Conjecture 2.2 might seem close to obvious, it has turned out to be
very difficult to prove. A natural first attempt would be to use coupling. Consider
for instance the coupling Q described above. As pointed out, the events Gλ

1 and
Gλ
2 that the individual infections grow unboundedly at parameter value λ are

then monotone in λ, but one of them is increasing and the other is decreasing, so
monotonicity of their intersection Gλ does not follow. Hence more sophisticated
arguments are needed.

Observing how our colleagues react during seminars and corridor chat, we
have noted that it is very tempting to go about trying to prove Conjecture 2.2
by abstract and ‘easy’ arguments, here meaning arguments that do not involve
any specifics about the geometry or graph structure of Zd. To warn against such
attempts, Deijfen and Häggström (2006b) constructed graphs on which the two-
type Richardson model fails to exhibit the monotonicity behaviour predicted in
Conjecture 2.2. Let us briefly explain the results.

The dynamics of the two-type Richardson model can of course be defined on
graphs other than the Zd lattice. For a graph G, write Coex(G) for the set of
all λ ≥ 1 such that there exists a finite initial configuration (ξ1, ξ2) for which
the two-type Richardson model with infection intensities 1 and λ started from
(ξ1, ξ2) yields infinite coexistence with positive probability. Note that, by time-
scaling and interchange of the infections, coexistence is possible at parameter
value λ if and only if it is possible at λ−1, so no information is lost by restricting
to λ ≥ 1. In Deijfen and Häggström (2006b) examples of graphs G are given that
demonstrate that, among others, the following kinds of coexistence sets Coex(G)
are possible:

(i) Coex(G) may be an interval (a, b) with 1 < a < b.
(ii) For any positive integer k the set Coex(G) may consist of exactly k points.
(iii) Coex(G) may be countably infinite.

All these phenomena show that the monotonicity suggested in Conjecture 2.2
fails for general graphs. However, a reasonable guess is that Conjecture 2.2 is
true on transitive graphs. Indeed, all counterexamples provided by Deijfen and
Häggström are highly nonsymmetric (one might even say ugly) with certain parts
of the graph being designed specifically with propagation of type 1 in mind, while
other parts are meant for type 2. We omit the details.
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2.6 Unbounded initial configurations

Let us now go back to the Zd setting and describe some results from our most
recent paper, Deijfen and Häggström (2007), concerning the two-type model
with unbounded initial configurations. Roughly, the model will be started from
configurations where one of the infections occupies a single site in an infinite
‘sea’ of the other type. The dynamic is as before and also the question at issue
is the same: can both infection types simultaneously infect infinitely many sites?
With both types initially occupying infinitely many sites the answer is (apart
from in particularly silly cases) obviously yes, so we will focus on configurations
where type 1 starts with infinitely many sites and type 2 with finitely many—for
simplicity only one. The question then becomes whether type 2 is able to survive.

To describe the configurations in more detail, write (x1, . . . , xd) for the coor-
dinates of a point x ∈ Zd, and define H = {x : x1 = 0} and L = {x : x1 ≤ 0
and xi = 0 for i = 2, . . . , d}. We will consider the following starting configura-
tions.

I(H) : all points in H\{0} are type 1 infected and
0 is type 2 infected, and

I(L) : all points in L\{0} are type 1 infected and
0 is type 2 infected.

(2.9)

Interestingly, it turns out that the set of parameter values for which type 2 is
able to grow indefinitely is slightly different for these two configurations. First
note that, as before, we may restrict to the case λ1 = 1. Write P 1,λH,0 and P 1,λL,0
for the distribution of the process started from I(H) and I(L) respectively and
with type 2 intensity λ. The following result, where G2 denotes the event that
type 2 grows unboundedly, is proved in Deijfen and Häggström (2007).

Theorem 2.6 For the two-type Richardson model in d ≥ 2 dimensions, we have:

(a) P 1,λH,0(G2) > 0 if and only if λ > 1;

(b) P 1,λL,0(G2) > 0 if and only if λ ≥ 1.

In other words, a strictly stronger type 2 infection will be able to survive in
both configurations, but, when the infections have the same intensity, type 2 can
survive only in the configuration I(L).

The proof of the if-direction of Theorem 2.6 (a) is based on a lemma stating
roughly that the speed of a hampered one-type process, living only inside a
tube which is bounded in all directions except one, is close to the speed of
an unhampered process when the tube is large. For a two-type process started
from I(H), this lemma can be used to show that, if the strong type 2 infection
at the origin is successful in the beginning of the time course, it will take off
along the x1-axis and grow faster than the surrounding type 1 infection inside a
tube around the x1-axis, thereby escaping eradication. The same scenario—that
the type 2 infection rushes away along the x1-axis—can, by different means, be
proved to have positive probability in a process with λ = 1 started from I(L).
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Infinite growth for type 2 when λ < 1 is ruled out by the key proposition from
Häggström and Pemantle (2000) mentioned in Section 3. Proving that type 2
cannot survive in a process with λ = 1 started from I(H) is the most tricky
part. The idea is basically to divide Zd in different levels, the l-th level being all
sites with x1-coordinate l, and then show that the expected number of type 2
infected sites at level l is constant and equal to 1. It then follows from a certain
comparison with a one-type process on each level combined with an application of
Levy’s 0-1 law that the number of type 2 infected sites at the l-th level converges
almost surely to 0 as l→∞.

Finally we mention a question formulated by Itai Benjamini as well as by an
anonymous referee of Deijfen and Häggström (2007). We have seen that, when
λ = 1, the type 2 infection at the origin can grow unboundedly from I(L) but
not from I(H). It is then natural to ask what happens if we interpolate between
these two configurations. More precisely, instead of letting type 1 occupy only
the negative x1-axis (as in I(L)), we let it occupy a cone of constant slope around
the same axis. The question then is what the critical slope is for this cone such
that there is a positive probability for type 2 to grow unboundedly. That type
2 cannot survive when the cone occupies the whole left half-space follows from
Theorem 2.6, as this situation is equivalent to starting the process from I(H). It
seems likely, as suggested by Itai Benjamini, that this is actually also the critical
case, that is, infinite growth for type 2 most likely have positive probability for
any smaller type 1 cone. This, however, remains to be proved.
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3

BALLISTIC PHASE OF SELF-INTERACTING
RANDOM WALKS

Dmitry Ioffe and Yvan Velenik

Abstract

We explain a unified approach to a study of ballistic phase for a large family
of self-interacting random walks with a drift and self-interacting polymers
with an external stretching force. The approach is based on a recent ver-
sion of the Ornstein–Zernike theory developed in (Campanino, Ioffe, and
Velenik, 2003; Campanino, Ioffe, and Velenik, 2004; Campanino, Ioffe, and
Velenik, 2007). It leads to local limit results for various observables (e.g.,
displacement of the end-point or number of hits of a fixed finite pattern) on
paths of n-step walks (polymers) on all possible deviation scales from CLT
to LD. The class of models, which display ballistic phase in the ‘universal-
ity class’ discussed in the paper, includes self-avoiding walks, Domb–Joyce
model, random walks in an annealed random potential, reinforced polymers,
and weakly reinforced random walks.

3.1 Introduction and results

Self-interacting polymers and random walks have received much attention by
both physicists and probabilists. As the resulting models are non-Markovian,
their analysis requires new techniques, and many basic questions remain open.

Chayes 2007 recently pointed out that the presence of an arbitrary nonzero
drift turns a self-avoiding walk on Zd into a ‘massive’ model, and used this
observation to prove the existence of a positive speed, using renewal techniques
of Ornstein–Zernike–type, in the spirit of (Chayes and Chayes 1986). A similar
approach was used by Flury (2007a) in order to study non-directed polymers in
a quenched random environment, under the influence of a drift: after suitable
reduction to an annealed setting (at the cost of considering two interacting copies
of the polymer), he used the same Ornstein–Zernike approach in order to prove
equality of quenched and annealed free energies. Notice that introducing a drift
in such polymer models is very reasonable from the point of view of physics, as
it is equivalent to pulling the polymer with a constant force at one endpoint, the
other being pinned.

Ornstein–Zernike renewal techniques have known considerable progress in
recent years, allowing nonperturbative control of percolation connectivities
(Campanino and Ioffe 2002), Ising correlation functions (Campanino et al. 2003,
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2004) and more generally connectivities in random cluster models (Campanino
et al. 2007), in the whole subcritical regime.

The purpose of this note is to point out that the approach of (Campanino
et al. 2003, 2004, 2007) allows a unified and a detailed treatment of self-interacting
polymers or self-interacting walks in ballistic regime. In particular, we shall
explain how to use it in order to prove that:

• For self-interacting polymers with a repulsive interaction (see below), a
positive drift gives rise to a ballistic phase, in a very strong sense (local
limit theorem for the endpoint).

• For self-interacting polymers with an attractive interaction (see below),
there is a sharp transition between a confined phase and a ballistic phase
as the drift increases; in the latter regime, we establish again a local limit
theorem for the endpoint.

• These behaviours are stable under small perturbations (in a sense defined
below). In addition to allowing us to consider mixed attractive/repulsive
models, this also makes it possible to prove local limit theorems for some
models of reinforced random walk with drift, strengthening the recent
results obtained by van der Hofstad and Holmes (2007) using the lace
expansion.

• In all cases mentioned, the local limit theorem can be readily complemented
by a functional CLT for the ballistic path.

• In the ballistic phase, these results can be complemented by sharp local
limit theorems for general local observables of the path. This permits for
example a strong version of Kesten’s pattern theorem (Kesten 1963) in this
regime.

We would also like to remark that the approach could be pushed to analyse the
interaction of paths, e.g., as considered in (Flury 2007a), in order to analyse
random polymers in quenched environment.

For the sake of readability, we make some simplifying assumptions in the
sequel (for example, on the nearest neighbour nature of paths or on the form of
the local observables), but the technique is flexible enough to be applicable in
numerous other situations.

3.1.1 Class of models

For each nearest neighbour path γ = (γ(0), . . . , γ(n)) on Zd define:

• Length |γ| = n and displacement D(γ) = γ(n)− γ(0).
• Local times: for a given a site x ∈ Zd set:

lx(γ) =
|γ|∑
k=0

1{γ(k)=x}.
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Similarly, one defines local times lb(γ) for either un-oriented or oriented
nearest neighbour bonds b.
• Potential Φ(γ): in this paper we shall concentrate on potentials Φ which
depend only on bond or edge local times of γ. That is:

Φ(γ) =
∑
x∈Zd

φ (lx(γ)) or Φ(γ) =
∑
b

φ (lb(γ)) . (3.1)

To every h ∈ Rd and λ ∈ R, we associate grandcanonical weights defined by:

Wh,λ(γ) = e−Φ(γ)+(h,D(γ))−λ|γ|, (3.2)

where (·, ·) is the usual scalar product on Rd. If h or λ equal to zero, then the
corresponding entry is dropped from the notation.

The important assumptions are those imposed on the potential Φ in (3.1). In
all the models we are going to consider:

(N) φ(0) = 0 and φ is a nonnegative and nondecreasing function on N.

Furthermore, we shall distinguish between the repulsive case:

(R) For all l,m ∈ N, φ(l +m) ≥ φ(l) + φ(m);

and the attractive case:

(A) For all l,m ∈ N, φ(l +m) ≤ φ(l) + φ(m).

In the attractive setup, there is no loss of generality in restricting our attention
to sublinear potentials:

(SL) limn→∞ φ(n)/n = 0.

Finally, we shall consider small perturbations of the above two pure (attractive
or repulsive) cases.
Whichever model we are going to consider, the main object of our study is the
canonical path measure:

Ph
n (·) =

Wh(·)
Zh
n

,

where:
Zh
n =

∑
γ(0)=0,|γ|=n

Wh(γ).

Note that in the attractive case condition (SL) simply boils down to a choice of
normalization for the partition functions Zh

n .

3.1.2 Collection of examples

Two main examples of repulsive interactions are:

1. Site or bond self-avoiding walks with φ(l) =∞ · δ{l > 1}.
2. Domb–Joyce model with φ(l) = βl(l − 1)/2 .
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Two examples of attractive interactions are:
1. Annealed random walks in random potential,

φ(l) = − logEelV ,

where V is a nonpositive random variable.
2. Edge or site reinforced polymers with

φ(l) =
l∑
1

βk,

where {βk} is a nonnegative and nonincreasing sequence.

3.1.3 Connectivity constants, Lyapunov exponents and Wulff shapes
The connectivity constant:

λ0
∆= lim

n→∞
logZn

n

is well defined and finite in both repulsive and attractive cases. Indeed, since φ
is nonnegative and nondecreasing:

e−φ(1)n ≤ Zn ≤ (2d)n.

On the other hand, Zn+m ≤ ZnZm in the case of repulsion, whereas Zn+m ≥
ZnZm in the attractive case.

As we shall check in the Appendix it is always the situation in the attractive
case (under the normalization (SL)) that:

λ0 = log(2d). (3.3)

There are two slightly different approaches to Lyapunov exponents which we are
going to employ: for every x ∈ Zd, let Dx be the family of nearest neighbour
paths from 0 to x. The family Hx comprises those paths from Dx which hit x
for the first time. Formally:

Hx = {γ ∈ Dx : lx(γ) = 1} .

Define:
Dλ(x) =

∑
γ∈Dx

Wλ(γ) and Hλ(x) =
∑
γ∈Hx

Wλ(γ), (3.4)

where, as before, Wλ(γ) = e−Φ(γ)−λ|γ|. Notice that:

Hλ(x) ≤ Dλ(x) ≤
∑

n≥‖x‖1

Zne−λn, (3.5)

which is converging for every λ > λ0.
For λ > λ0 define now:

ξλ(x) = − lim
M→∞

1
M

logHλ(�Mx�) = − lim
M→∞

1
M

logDλ(�Mx�). (3.6)
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As we shall recall in the Appendix:

Proposition 3.1 For every λ>λ0 the function ξλ in (3.6) is well-defined.
Furthermore, ξλ is an equivalent norm on Rd, and

max
x∈Sd−1

ξλ(x) ≤ c(d) min
x∈Sd−1

ξλ(x). (3.7)

Finally, ξλ0

∆= limλ↓λ0 ξλ is identically zero in the repulsive case (R), whereas it
is strictly positive in the attractive case (A)+ (SL).

For every λ ≥ λ0 define the Wulff shape:

Kλ =
{
h ∈ Rd : (h, x) ≤ ξλ(x) ∀x ∈ Rd

}
. (3.8)

The name Wulff shape is inherited from continuum mechanics, where Kλ is
the equilibrium crystal shape once ξλ is interpreted to be a surface tension.
Alternatively, one can describe Kλ in terms of polar norms, as was done, e.g., in
(Flury 2007b): introducing the polar norm:

ξ∗λ(h) = max
x=0

(h, x)
ξλ(x)

= max
ξλ(x)=1

(h, x).

we see that Kλ can be identified with the corresponding unit ball:

Kλ = {h : ξ∗λ(h) ≤ 1} .

This way or another, in view of Proposition 3.1, the limiting shape Kλ0 has
non-empty interior in the attractive case, whereas Kλ0 = {0} in the repul-
sive case.

3.1.4 Main result

Let h ∈ Rd \ {0}. Assume that the potential Φ in (3.1) satisfies condition (N).
In all the cases under consideration the displacement per step D(γ)/n satisfies
under Ph

n a large deviation (LD) principle with a convex rate function Jh. This,
of course, does not say much. However:

1) For repulsive potentials (R), it is always the case that the probability
measures Ph

n are asymptotically concentrated on ballistic trajectories: For every
h �= 0 there exist v̄ = v̄h ∈ Rd \ {0}, a constant κ > 0 and a small ε (ε < ‖v̄h‖),
such that:

Ph
n

(
D(γ)
n
�∈ Bε(v̄)

)
≤ e−κn, (3.9)

where Bε(v̄) = {u : |u− v̄| < ε}. Furthermore, the end-point γ(n) complies with
the following strong local limit type description: the rate function Jh is real
analytic and strictly convex on Bε(v̄h) with a non-degenerate quadratic minimum
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at v̄h. Moreover, there exists a strictly positive real analytic function G on Bε(v̄h)
such that:

Ph
n

(
D(γ)
n

= u
)

=
G(u)√
(n)d

e−nJh(u) (1 + o(1)) , (3.10)

uniformly in u ∈ Bε(v̄h) ∩ Zd/n. In particular, the displacement D(γ) obeys
under Ph

n a local CLT and local moderate deviations on all possible scales.

2) In the (normalized) attractive case (A) + (SL):

• If h ∈ int (Kλ0), then D(γ)/n behaves sub-ballistically: Namely, the rate
function Jh is bounded below in a neighbourhood of the origin as Jh(u) ≥
α‖u‖ for some α = α(h) > 0.

• If, on the other hand, h �∈ Kλ0 , then both (3.9) and the local limit descrip-
tion (3.10) hold.

Remark 3.1 It remains an open question to determine what happens when h ∈
∂Kλ0 . Nevertheless, we shall show that in this case the rate function satisfies
Jh(0) = 0, and thus no ballistic behaviour in the sense of (3.9) is to be expected.
It still remains to understand whether the sub-ballistic to ballistic transition is
of first order. One way to formulate this question is: assume that h ∈ ∂Kλ0 ;
does lim infε→0 ‖v̄(1+ε)h‖ > 0 hold or not? In Mehra and Grassberger 2002 it
is claimed on the basis of simulations that the transition is of first order in
dimensions d ≥ 2 whereas it is of second order in d = 1.

In the sequel, values of positive constants δ, ε, ν, c, C1, c2, . . . may vary from
section to section.

3.2 Coarse graining

Let λ > λ0. In this section we are going to develop a rough description of typical
paths which contribute to Hλ(x). Their contribution is going to be measured in
terms of the probability distribution:

Px
λ (γ) =

Wλ(γ)
Hλ(x)

on Hx. Our results will be particularly relevant in the asymptotic regime
‖x‖→∞.

The key idea behind the renormalization is that although on the microscopic
scale paths γ are entitled to wiggle as much as they wish, on large but yet finite
scales they exibit a much more rigid behaviour and, in a sense, go ballistically
towards x.

The skeleton scale K is going to be chosen the same for all x. Given such K
and a path γ ∈ Hx we shall use γ̂K for the K-skeleton of γ. The construction of
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u2

u1

u0

Fig. 3.1: The construction of the K-skeleton in the repulsive case.

γ̂K will be different for repulsive and attractive interactions, but in both cases
γ̂K will enjoy the following two properties:

(P1) γ passes through all the vertices of γ̂K .
(P2) If η is a portion of γ which connects two vertices u and v of γ̂K and η does
not pass through any other vertex of γ̂K , then:

η ⊆ KUλ(u) ∪KUλ(v), (3.11)

where Uλ is the unit ball in the ξλ norm.

Below we shall rely on the following inequality which holds for all the models we
consider: Let λ > λ0 be fixed. There exists a sequence εK → 0, such that:

Hλ(u) ≤ e−ξλ(u)(1−εK), (3.12)

uniformly in K and in u �∈ KUλ.
Indeed, in the attractive case (3.12) follows from super-multiplicativity of

Hλ(x) (with εK ≡ 0). In the repulsive case (3.12) follows from the estimate
(A.2) of the Appendix.

3.2.1 Skeletons in the repulsive case

Let us fix a scale K. The K-skeleton γ̂K of γ = (γ(0), . . . , γ(n)) ∈ Hx is con-
structed as follows (see Fig. 3.1):

STEP 0. Set u0 = 0, τ0 = 0 and γ̂K = {u0}. Go to STEP 1.

STEP (l + 1). If (γ(il), . . . , γ(n)) ⊆ KUλ(ul) then stop. Otherwise set

τl+1 = min {j > τl : γ(j) �∈ KUλ(ul)} .

Define ul+1 = γ(τl+1), update γ̂K = γ̂K ∪ {ul+1} and go to STEP (l+2).

Given a skeleton γ̂K = (0, u1, . . . , um) we use # (γ̂K) = m for the number of full
K-steps. If γ is compatible with γ̂K , then it is decomposable as the concatenation:

γ = γ1 ∪ γ2 ∪ · · · ∪ γm ∪ γm+1,



62 Analysis and stochastics of growth processes and interface models

where γl : ul−1 �→ ul for l = 1, . . . ,m and γm+1 : um+1 �→ x. By construction,
γl ∈ Hul−ul−1 . Since we are in the repulsive case:

Wλ(γ) ≤
m+1∏
1

Wλ(γl) (3.13)

Therefore, the probability of appearence of γ̂K is bounded above as (see (3.12)
for the second inequality):

Px
λ (γ̂K) ≤

∏m
1 Hλ(ul − ul−1)

Hλ(x)
≤ e−mK(1−εK)

Hλ(x)
. (3.14)

This formula is a key to a study of the geometry of typical skeletons and hence
of typical paths. Its implications for path decomposition are discussed in detail
in Section 3.3. Notice, however, that one immediate consequence is the following
uniform exponential bound on the number of steps in typical skeletons: there
exist ν = ν(λ, d) and C = C(λ, d) and a large finite scale K0 = K0(λ, d), such
that:

Px
λ

(
#(γ̂K) > C

‖x‖
K

)
≤ e−ν‖x‖, (3.15)

uniformly in K ≥ K0 and x ∈ Zd. Indeed, the total number of m-step
K-skeletons is bounded above as exp {c1(d, λ) logK}, which, on large K scales,
is suppressed by the extra e−K(1−εK) per step price in (3.14).

3.2.2 Skeletons in the attractive case

Since in the attractive case (3.13) does not hold we should proceed with more
care. Accordingly our construction relies on the following fact: assume that the
path γ can be represented as a concatenation:

γ = γ1 ∪ η1 ∪ γ2 ∪ · · · ∪ γm ∪ ηm, (3.16)

such that γ1, . . . , γm share at most one end-point. Then:

Wλ (γ) ≤
m∏
l=1

Wλ(γl)eφ(1) ·
m∏

k=1

e−λ|ηk|. (3.17)

For every λ > λ0, (3.3) enables a comparison with a killed simple random
walk. Consequently, since ξλ is an equivalent norm, there exists δ = δ(λ, d) > 0,
such that: ∑

η∈Hu

e−λ|η| ≤ e−δK , (3.18)

uniformly in K and in u �∈ KUλ.
In view of (3.17) and (3.18) it happens to be natural to construct skeletons

γ̂K as a union γ̂K = tK ∪ hK , where tK is the trunk and hK is the set of hairs of
γ̂K (see Fig. 3.2). Let γ ∈ Hx and choose a scale K.
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Fig. 3.2: The first stage of the construction of the K-skeleton in the attractive
case (notice that u5 = v5 and u6 = v6 in this picture). In a second stage, one
constructs skeletons for the (reversed) paths connecting uk to vk, using the
algorithm for the repulsive case.

STEP 0. Set u0 = 0, τ0 = 0 and t0 = {u0}. Go to STEP 1.
STEP (l + 1) If (γ(τl), . . . γ(n)) ⊆ KUλ(ul) then set σl+1 = n and stop. Other-
wise, define

σl+1 = min {i > τl : γ(i) �∈ KUλ(ul)}

and

τl+1 = 1 +max {i > τl : γ(i) ∈ KUλ(ul)} .

Set vl+1= γ(σl+1) and ul+1= γ(τl+1). Update tK = tK ∪ {ul+1} and go to
STEP (l+ 2)

Apart from producing tK the above algorithm leads to a decomposition of γ as
in (3.16) with:

γl = (γ(τl), . . . , γ(σl+1)) and ηl = (γ(σl), . . . , γ(τl)) .

The hairs hK of γ̂K take into account those ηl-s which are long on K-th scale.
Recall that ηl : vl �→ ul. It is equivalent, but more convenient, to think about ηl
as of a reversed path from ul to vl. Then the l-th hair hlK of γ is constructed as
follows: if ηl ⊆ KUλ(ul) then hlK = ∅. Otherwise, construct hlK of ηl following
exactly the same rules as in the construction of K-skeletons in the repulsive case.

Putting everything together, using (3.17) and (3.18), we arrive to the follow-
ing upper bound on the probability of a K-skeleton γ̂K = tK ∪ hK :

Px
λ (tK ∪ hK) ≤ e−#(tK)K(1−φ(1)/K)−δK#(hK)

Hλ(x)
, (3.19)

where # (hK) ∆=
∑m
1 #

(
hlK
)
is the total K-length of hairs attached to the

trunk tK .
As in the repulsive case, (3.19) leads to an exponential upper bound on the

number of K-steps in the trunk tK : there exists a large finite scale K0 = K0(λ, d)
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such that:

Px
λ (tK) ≤ e−#(tK)K(1−εK)

Hλ(x)
, (3.20)

for all K ≥ K0 and uniformly in x and tK . Consequently, there exist ν = ν(λ, d)
and C = C(λ, d) such that:

Px
λ

(
#(tK) > C

‖x‖
K

)
≤ e−ν‖x‖, (3.21)

uniformly in K ≥ K0 and x ∈ Zd. Furthermore, since the number of different
ways to attach hairs hK with # (hK) = r to vertices of a trunk tK of cardinality
# (tK) = m is bounded above as:

ec1r logK · 1
maxp pr(1− p)m

≤ ec2r logK+m/K ,

formula (3.19) implies that:

Px
λ

(
#(hK) = r; # (tK) ≤C ‖x‖

K

)
≤ e−δrK+c3‖x‖ logK/K max

K#(tK)≤C‖x‖

e−K#(tK)

Hλ(x)
.

As we shall point out in the beginning of Section 3.3:

lim sup
K→∞

lim sup
‖x‖→∞

1
‖x‖ log max

K#(tK)≤C‖x‖

e−K#(tK)

Hλ(x)
= 0. (3.22)

Consequently, for each ε > 0 there exists a finite scale K0 = K0(ε, λ, d), such
that:

Px
λ

(
#(hK) > ε

‖x‖
K

)
≤ e−εδ‖x‖/2, (3.23)

uniformly in K ≥ K0 and x ∈ Zd.

3.3 Irreducible decomposition of ballistic paths

In this section we derive an irreducible representation of typical (under Px
λ)

paths γ ∈ Hx. This irreducible representation has an effective 1D structure and
it enables a local limit treatment of various observables over paths such as, e.g.,
the displacement D(γ) along γ, or the number of steps |γ| in γ. It should be
kept in mind that in the framework of the theory we develop there are many
alternative ways to define irreducible paths and, accordingly, to study statistics
of other local patterns over γ.

In the sequel, given x ∈ Zd, we say that h ∈ ∂Kλ is dual to x if (h, x) = ξλ(x).
Of course, if h is dual to x, then h is dual to αx for any α > 0. Thus it makes
sense to talk about ‖x‖ → ∞ for a fixed dual h.
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3.3.1 Surcharge function and surcharge inequality

We shall now analyse the geometry of typical K-skeletons. In order to unify as
much as possible our treatment of the repulsive and attractive cases, let us define
the trunk tK of the skeleton γ̂K in the repulsive case as being the skeleton itself,
tK = γ̂K .

The basic quantity in the following analysis is the surcharge function of a
trunk tK = (u0, . . . , um) defined by:

sh(tK) =
m∑
i=1

sh(ui − ui−1),

where the function sh : Rd → R+ is given by sh(y) = ξλ(y) − (h, y). Note that
sh(y) = 0 if and only if h ∈ ∂Kλ and y are dual directions. The surcharge
measure sh enters our skeleton calculus in the following fashion: by construction,
ξλ(ui − ui−1) ≤ K + c1(λ) for all K-steps of tK . As a result:

K#(tK) ≥
∑

(ξλ(ui − ui−1)− c1(λ)) ≥ ξλ(x) + sh(tK)− c1#(tK).

Since we can restrict attention to #(tK) ≤ C‖x‖/K, (3.22) is an immediate
corollary. Moreover, arguing similarly as in (3.14) and (3.20), we obtain that, for
any ε > 0 fixed:

Px
λ(tK) ≤ e−sh(tK)(1−oK(1)),

uniformly in ‖x‖ and in sh(tK) ≥ ε‖x‖, with limK→∞ oK(1) = 0. The following
surcharge inequality is at the core of our method, allowing us to reduce the
characterization of typical trunks to geometrical considerations.

Lemma 3.1 For every small ε > 0 there exists K0(d, λ, ε) such that

Px
λ(sh(tK) > 2ε‖x‖) ≤ e−ε‖x‖,

uniformly in x ∈ Zd, h ∈ ∂Kλ dual to x, and scales K > K0.

Proof: By (3.15) and (3.21), we can assume that the trunk is admissible, that
is #(tK) ≤ C‖x‖/K. Since the number of such trunks being bounded by:

exp
(
c2(d, λ)

logK
K
‖x‖
)
,

we infer that:

Px
λ(sh(tK) > 2ε‖x‖) ≤ e−ν‖x‖ + exp

(
c2(d, λ)

logK
K
‖x‖ − sh(tK)(1− oK(1))

)
≤ e−ε‖x‖,

as soon as K is chosen large enough. �
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Thanks to the surcharge inequality, we can exclude whole families of trunks
simply by establishing a lower bound as above on their surcharge function.

3.3.2 Cone points of trunks
Let us fix δ ∈ (0, 13 ). For any h ∈ ∂Kλ, we define the forward cone by:

Y >
δ (h) = {y ∈ Zd : sh(x) < δξλ(x)},

and the backward cone by Y <
δ (h) = −Y >

δ (h).
Given a trunk tK = (u0, . . . , um), we say that the point uk is an (h, δ)-forward

cone point if:
{uk+1, . . . , um} ⊂ uk + Y >

δ (h).

Similarly, uk is an (h, δ)-backward cone point if:

{u0, . . . , uk−1} ⊂ uk + Y <
δ (h).

Finally, uk is an (h, δ)-cone point if it is both an (h, δ)-forward and an (h, δ)-
backward cone point.

Proceeding now as in Section 2.6 of (Campanino et al. 2007), we prove
that most vertices of typical trunks are (h, δ)-cone points. Let us denote by
#non−cone

h,δ (tK) the number of those vertices in the trunk tK that are not (h, δ)-
cone points.

Lemma 3.2 Let δ ∈ (0, 13 ) be fixed. Then

sh(tK) ≥ c3δK#non−cone
h,δ (tK),

uniformly in x ∈ Zd, h ∈ ∂Kλ dual to x, and K large enough. In particular, the
estimate

Px
λ

(
#non−cone

h,δ (tK) ≥ ε#(tK)
)
≤ e−c4ε‖x‖,

holds uniformly in x ∈ Zd, h ∈ ∂Kλ dual to x, and K large enough.

3.3.3 Cone points of skeletons
In the repulsive case, the previous lemma provides all the control we need. In the
attractive case, to which we restrict ourselves temporarily, it is also necessary
to control the hairs. Let us start by extending the notion of (h, δ)-cone points
from trunks to full skeletons: a point uk of a trunk tK = (u0, . . . , um) is an
(h, δ)-forward cone point of the skeleton γ̂K = (tK ∪ hK) if:

γ̂K ⊂
(
uk + Y >

2δ (h)
)
∪
(
uk + Y <

2δ (h)
)
.

(Notice that we increased the aperture of the cone from δ to 2δ.) It readily
follows (3.23) that most vertices of the trunk have no hair attached to them.
Therefore, the only way an (h, δ)-cone point of tK may fail to be an (h, δ)-cone
point of γ̂K is when another vertex of the trunk has such a long hair attached
to it that the latter exits the (enlarged) cone; in such a case, we say that the
(h, δ)-cone point is blocked. Lemma 2.5 of (Campanino et al. 2007) implies that
most vertices of the trunk are (h, δ)-cone points of γ̂K .
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Lemma 3.3 Let #blocked
h,δ (γ̂K) be the number of vertices of the trunk of γ̂K that

are not (h, δ)-cone points of γ̂K . Suppose that tK is an admissible trunk with
#non−cone

h,δ (tK) < ε#(tK). Then there exists c5(d, δ, λ) > 0 such that

Px
λ(#

blocked
h,δ (γ̂K) ≥ ε#(tK) | tK) ≤ e−c5ε‖x‖,

uniformly in x ∈ Zd, h ∈ ∂Kλ dual to x, and K large enough.

3.3.4 Cone points of paths

We return now to the general case of attractive or repulsive potentials; in the
latter case we identify the notions of cone points of trunks and skeletons, as these
two notions coincide.

Now that the skeletons are under control, we can turn to the microscopic
path itself. Let γ = (γ(0), . . . , γ(n)) ∈ Hx. We say that γ(k) is an (h, δ)-cone
point of γ if:

γ ⊂
(
γ(k) + Y >

3δ (h)
)
∪
(
γ(k) + Y <

3δ (h)
)
.

Notice that we increased again the aperture of the cone to 3δ. Notice also that
we tacitly assume that Y >

3δ (h) contains a lattice direction.
Proceeding as in Section 2.7 of (Campanino et al. 2003), we can show that,

up to exponentially small Px
λ-probabilities, a uniformly strictly positive fractions

of the (h, δ)-cone points of the trunk of γ̂K are actually (h, δ)-cone points of the
path.

Theorem 3.1 Let #cone
h,δ (γ) be the number of (h, δ)-cone points of γ. There exist

δ ∈ (0, 13 ) and two positive numbers c and ν, depending only on d, δ and λ,
such that

Px
λ(#

cone
h,δ (γ) < c‖x‖) ≤ e−ν‖x‖,

uniformly in x ∈ Zd, h ∈ ∂Kλ dual to x, and K large enough.

Remark 3.2 Observe that the above estimate still holds true (possibly for a
smaller constant ν) when x is replaced by an arbitrary site y ∈ Y >

δ (h).

3.3.5 Decomposition of paths into irreducible pieces

With the help of the Theorem 3.1, we can finally construct the desired decom-
position of typical ballistic paths into irreducible pieces.

A path γ = (γ(0), . . . , γ(n)) is said to be (h, δ)-backward irreducible if γ(n) is
the only (h, δ)-cone point of γ. Similarly, γ is said to be (h, δ)-forward irreducible
if γ(0) is the only (h, δ)-cone point of γ. Finally, γ is said to be irreducible if γ(0)
and γ(n) are the only (h, δ)-cone points of γ.

Let ΩL,Ω and ΩR be the corresponding sets of such irreducible paths.
In view of Theorem 3.1, we can restrict our attention to paths possessing at

least c‖x‖ (h, δ)-cone points, at least when ‖x‖ is sufficiently large. We can then
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vL

v1
v2

v3

v4

vR

Fig. 3.3: The decomposition of a path into irreducible components.

unambiguously decompose λ into irreducible sub-paths (see Fig. 3.3):

γ = ωL ∪ ω1 ∪ · · · ∪ ωm ∪ ωR. (3.24)

We thus have the following expression:

e(h,x)Hλ(x) = O
(
e−ν‖x‖

)
+

∑
m≥c‖x‖

∑
ωL∈ΩL

∑
ω1,...ωm∈Ω

∑
ωR∈ΩR

Wh,λ(γ)1{D(γ)=x}.

(3.25)

In fact, since e(h,y)Hλ(y) � e−sh(y), we, in view of Remark 3.2, infer that,
perhaps for a smaller choice of ν > 0

e(h,y)Hλ(y) = O
(
e−ν‖y‖

)
+

∑
m≥c‖y‖

∑
ωL∈ΩL

∑
ω1,...ωm∈Ω

∑
ωR∈ΩR

Wh,λ(γ)1I{D(γ)=y}.

(3.26)
uniformly in y ∈ Zd.

3.3.6 Probabilistic structure of the irreducible decomposition
We shall treat Ω, ΩL and ΩR as probability spaces. In this way various path
observables such as, e.g., D(ω) or |ω| will be naturally interpreted as random
variables. First of all let us try to rewrite the weights of concatenated paths in
the product form:

Wh,λ(γ) = Wh,λ(ωL ∪ ω1 ∪ · · · ∪ ωm ∪ ωR) = Ŵh,λ(ωL)Ŵh,λ(ωR)
∏
l

Ŵh,λ(ωl)

(3.27)

If the potential Φ depends on bond local times only, then Ŵh,λ = Wh,λ qua-
lifies. However, when Φ depends on site local times, such a choice would imply
overcounting of local times at end-points. In that case, we thus set Ŵh,λ(ω) =
eφ(1)Wh,λ(ω) for ω ∈ ΩL and ω ∈ Ω, and Ŵh,λ = Wh,λ on ΩR. Evidently (3.27)
is satisfied. Accordingly, we can rewrite (3.26) as:

e(h,y)Hλ(y) = O
(
e−ν‖y‖

)
+
∑

m≥c‖y‖

∑
ωL∈ΩL

∑
ω1,...ωm∈Ω

∑
ωR∈ΩR

Ŵh,λ(ωL)Ŵh,λ(ωR)×

m∏
1

Ŵh,λ(ωl)1I{D(γ)=y}.

(3.28)
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uniformly in y ∈ Zd. Since the sums over ωL and ωR converge (by Theorem 3.1),
and:

Kλ = {h ∈ Rd :
∑
y∈Zd

e(h,y)Hλ(y) <∞},

it follows that h ∈ ∂Kλ if and only if
∑

ω∈Ω Ŵh,λ(ω) = 1, and thus Ŵh,λ is a
probability measure on Ω. Let us use the notation Qh,λ = Ŵh,λ to stipulate this
fact. Similarly we shall use the notation Q

h,λ
L and Q

h,λ
R for the values of Ŵh,λ on

respectively ΩL and ΩR.
In general Q

h,λ
L and Q

h,λ
R are not probability measures. However, together

with Qh,λ, they display exponential tails both in the displacement variable D(ω)
and in the number of steps |ω| (as well as in many other path observables of inter-
est). Indeed, as follows from Theorem 3.1 and in view of the Y3δ(h)-confinement
properties of irreducible paths, all three measures in question already display
exponential tails in the displacement variable D(ω). On the other hand, the
weights Ŵh,λ are bounded above as:

Ŵh,λ(ω) ≤ e‖h‖‖D(ω)‖−λ|ω|+φ(1).

Consequently, there exists c6 = c6(λ, d), such that:

Ŵh,λ (‖D(ω)‖ = l, |ω| > 2(l‖h‖+ φ(1))) ≤ c6e−l‖h‖(λ−λ0).

Together with the already established exponential tails of D(ω), this readily
implies exponential tails for the variable |ω| as well. Exactly the same line of
reasoning applies to Q

h,λ
L and Q

h,λ
R .

We use Qh,λ
m for the product probability measure on ×m

1 Ω. Then (3.28) in its
final form looks like:

e(h,y)Hλ(y) = O
(
e−ν‖y‖

)
+
∑

m≥c‖y‖
Q

h,λ
L � Q

h,λ
R � Qh,λ

m(
D(ωL) +D(ωR) +

m∑
1

D(ωl) = y

)
. (3.29)

Similarly, let F be some functional on paths, e.g., F (γ) = |γ| or, for a change,
F (γ) =

∑
x 1I{lx(γ)>1}. We then have the following expression for the restricted

partition functions:

e(h,y)Hλ(y;F (γ)=f)=O
(
e−ν‖y‖

)
+
∑

m≥c‖y‖
Q

h,λ
L �Q

h,λ
R �Qh,λ

m (D(γ)=y;F (γ)=f) .

(3.30)
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The point is that, for good local functionals F such as in the two instances
above, sharp asymptotics simply follow from local limit properties of the product
measure Qh,λ

m .
Note that a very similar analysis applies for partition functions Dλ(.). In par-

ticular (3.30) holds for Dλ(y;F (λ) = f) with the very same measures Q
h,λ
L ,Qh,λ

and the appropriate modification of Q
h,λ
R .

3.4 Proof of the main result
3.4.1 Large deviation rate function
Since:

Λ(h) ∆= lim
n→∞

1
n
logZh

n

is well defined (either by sub- or by superadditivity) and the distribution of
the displacement per step D(γ)/n under Ph

n is certainly exponentially tight, the
random variables D(γ)/n satisfy a LD principle with rate function:

Jh(u) = sup
g
{(g, u)− Λh(g)} ,

where Λh(g) = Λ(h+ g)− Λ(h).
We claim that:

Λ ≡ λ0 on Kλ0 . (3.31)
Consequently, if h ∈ int (Kλ0), then Λh ≡ 0 in a neighbourhood of the origin and
hence there exists α = α(h) such that Jh(u) ≥ α‖u‖, which is the sub-ballistic
part of our Main Result.

Furthermore, we claim that if h �∈ Kλ0 , then Λ is real analytic and strictly
convex in a neighbourhood of h. In addition:

v̄h = ∇Λ(h) �= 0 and d2Λ(h) is non-degenerate. (3.32)

In fact, for h �∈ Kλ0 , we shall see that the log-moment generating function
satisfies Λ(h) = λ(h) with λ = λ(h) being recovered from h ∈ ∂Kλ. Since
Kλ0 = ∩λ>λ0Kλ, (3.31) is an immediate consequence: indeed, since Λ is convex
and, by Jensen inequality, Zh

n ≥ Zn � eλ0n, it satisfies Λ ≥ λ0.
For the rest of this section we shall, therefore, focus on the case h �∈ Kλ0 .

3.4.2 Surface λ = λ(h) = Λ(h)
Our next task is to explain (3.32). Let λ > λ0 and h ∈ ∂Kλ. As we shall see
below, there exists Ψ(h) > 0, such that:

e−λnZh
n =

∑
γ

Wh,λ(γ) = Ψ(h) (1 + o(1)) . (3.33)

This immediately implies that Λ(h) = λ. Let us for the moment accept (3.33)
as an apriori lower bound on e−λnZh

n (see the paragraph after (3.34) below). Then
we are able to rule out Ph

n-negligible x-s as follows:

1) Let 0 < l < λ− λ0. Then:
e−λnZh

n ((h, γ(n)) ≤ ln) ≤ e−(λ−l)nZn.
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Since Zn � eλ0n, the latter expression is exponentially small and we can
ignore x-s such that (h, x) ≤ ln.

2) Let (h, x) > ln, but x �∈ Y >
δ (h) (see Section 3.3). Then Zh,λ

n,x ≤ Zh,λ
x ≤ e−ν‖x‖,

and, consequently, we can ignore such x-s as well.

It remains to consider x ∈ Y >
δ (h) with ‖x‖ > ln/‖h‖ ∆= c1n. For such x-s, (3.30),

or rather its modification in the case of Dλ-partition functions, implies that:

Zh,λ
n,x =

∑
γ∈Dx

|γ|=n

Wh,λ(γ)

= O
(
e−c1νn

)
+
∑

m≥c‖x‖
Q

h,λ
L �Q

h,λ
R �Qh,λ

m

(
D(γ) = x, |γ| = n

)
= C ′(h)

∑
m≥c‖x‖

Qh,λ
m

( m∑
i=1

(D(ωi), |ωi|) = (x, n)
)
, (3.34)

where in the last line, apart from ignoring the O (e−c1νn) term, we have (already
anticipating local limit behaviour under Qh,λ

m ) summed out the terms involv-
ing Q

h,λ
L and Q

h,λ
R . And indeed, since the random vector V (ω) = (D(ω), |ω|)

has exponential moments under Qh,λ, we can apply the classical local CLT
to (3.34), which, after summing up with respect to x, yields the lower bound
in (3.33), thereby justifying the conclusions 1) and 2) above.

Let now g ∈ ∂Kµ with (g, µ) being sufficiently close to (h, λ), say:

|λ− µ|+ ‖g − h‖ < 1
2
min {ν, λ− l} .

Then 1) and 2) above still describe Pg
n-negligible x-s. Moreover, the (g, µ)-

modification of (3.34) still holds: for x ∈ Y >
δ (h) with ‖x‖ ≥ c1n:

Zg,µ
n,x (1 + o(1)) = C ′(g)

∑
m≥c1‖x‖

Qh,λ
m

( m∑
i=1

(D(ωi), |ωi|) = (x, n)
)
e(g−h,x)−(µ−λ)n.

(The prefactor C ′(g) coming as before from the summation over ωL and ωR.)
Since we have employed the very same sets of irreducible paths, the positive
function C ′(g) is real analytic. Now, using an argument similar to the one in
Subsection 3.3.6, together with the fact that the lower bound in (3.33) holds for
(g, µ) as well, we deduce that:

Qh,λ
(
e(g−h,D(ω))−(µ−λ)|ω|

)
= 1.

In other words, define:

F (g, µ) = log
∑
ω∈Ω

e(g,D(ω))−µ|ω| Ŵ(ω).
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We have proved:

Lemma 3.4 Let λ > λ0 and h ∈ ∂Kλ. Then there exists ρ > 0 such that the
graph of the function µ = Λ(g) over Bρ(h) is implicitly given by

F (g, µ) = 0.

Since the distribution of the random vector V under Qh,λ is obviously non-
degenerate and has finite exponential moments in a neighbourhood of the origin,
(3.32) follows. Furthermore, there exists ε > 0 such that:

Bε(v̄h) ⊂ ∪g∈Bρ(h)∇Λ(g). (3.35)

3.4.3 Local limit result in the ballistic regime

We already know that under Ph
n the average displacement D(γ)/n satisfies a LD

principle with strictly convex rate function Jh. Thereby, (3.9) is justified. Let us
restrict our attention to x ∈ Bεn(nv̄h) and go back to (3.34). Obviously, (v̄h, 1)
is parallel to z = (w̄, t̄) ∆= Qh,λ ((D(ω), |ω|)). Set x = �nv̄h�. By the local CLT
and Gaussian summation formula applied to (3.34):

Zh,λ
n,x =

C(h)√
nd

(1 + o(1)) . (3.36)

Let y ∈ Bnε(nv̄h) ∩ Zd and u ∆= y/n ∈ Bε(v̄h). By (3.35), we can find g ∈ Bρ(h)
such that u = ∇Λ(g). Set µ = Λ(g) and y = �nu�. As in (3.36):

Zg,µ
n,y =

C(g)√
nd

(1 + o(1)) , (3.37)

where C is a positive real analytic function on Bρ(h). On the other hand:

Zh,λ
n,y = e−n((g−h,u)+Λ(h)−Λ(g))Zg,µ

n,y .

It remains to notice that:

(g − h, u) + Λ(h)− Λ(g) = Jh(u).

Since C in (3.37) is analytic (continuous would be enough) and Jh has quadratic
minimum at v̄h, the partition function asymptotics (3.33) follows from Gaussian
summation formula. (3.10) is proved.

3.5 Perturbations by small potentials and statistics of patterns

Let Φ be either an attractive or a repulsive potential of the type considered
above, λ > λ0 and h ∈ ∂Kλ. Let Uh ⊂ Rd be a neighbourhood of h.
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We would like to consider perturbations of Φ of the form:

Φ̃(γ) = Φ(γ) + R(γ, h). (3.38)

We shall assume that for each fixed γ the function g �→ R(γ, g) is analytic on Uh
and that it is appropriately negligible: for some ε sufficiently small:

sup
g∈Uh

|R(γ, g)| ≤ ε|γ|, (3.39)

simultaneously for all γ.
Furthermore, we shall assume that the perturbation R is in some sense local.

This could be quantified on various levels of generality and, in order to fix ideas,
we shall restrict our attention to the following case: For every g ∈ Uh:

R(γ1 ∪ · · · ∪ γm, g) =
m∑
1

R(γi, g), (3.40)

whenever γ1, . . . , γm are edge disjoint.

3.5.1 An example

An immediate example is a random walk with small edge reinforcement. Set
F ≡ 0. For a path γ = (x0, x1, x2, . . .) define the running local times on unori-
ented bonds:

ltb(γ) =
t−1∑
j=0

1I{b=(xi,xi+1)}.

Let β : N �→ R+ be a nondecreasing bounded concave function with β(∞) = ε.
Set:

R(γ, h) = −
|γ|−1∑
t=0

logE exp
{
β(ltxi,xi+Xh

(γ))− β(lt(xi,xi+1)(γ))
}
,

where the random variable Xh is distributed as the step of a simple random walk
with drift h.

3.5.2 Ballistic behaviour and local limit theory

Let Z̃h
n be the partition function which corresponds to the perturbed interaction

(3.38). We claim that the following generalization of (3.33) holds:

Theorem 3.2 Let Φ, λ > λ0 and h ∈ ∂Kλ be fixed. Then one can choose a
number ε0 = ε0(h,Φ) > 0, a continuous function ρ : [0, ε0] �→ R+ with ρ(0) = 0
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and a neighbourhood Uh of h, so that:
For any ε ≤ ε0 and for any (analytic) perturbation Φ̃ = Φ+R of Φ satisfying

(3.40) and (3.39) above, there exist an analytic function f with:

sup
g∈Uh

|f(g)| ≤ ρ(ε), (3.41)

and a positive analytic function Ψ̃ on Uh, such that the following asymptotics
holds:

e−λ(g)nZ̃g
n = Ψ̃(g)enf(g) (1 + o(1)) , (3.42)

uniformly in g ∈ Uh. The function f can be recovered from the following implicit
relation:

logQg,λ(g)
(
ef(g)|ω|−R(ω,g)

)
= 0. (3.43)

The proof and the implications of the above theorem essentially boil down
to a rerun of the arguments employed in the pure (repulsive or attractive) cases:
the crux of the matter is that under assumption (3.39) the random variable
R(ω, h) on the probability space (Ω,Qh,λ) has exponential tails, whereas under
assumption (3.40) all the relevant asymptotics are settled via local limit theorems
for independent random variables. Let us briefly reiterate the principal steps
involved:

STEP 1 Assume (3.42) as an apriori lower bound on e−λ(g)nZ̃g
n and use it to rule

out trajectories γ = (γ(0), . . . , γ(n)) which fail to comply with:
1) min {(γ(n), g), ‖γ(n)‖} ≥ c1n and γn ∈ Y >

δ (h).
2) γ has at least m ≥ c2n irreducible pieces:

γ = ωL ∪ ω1 ∪ · · · ∪ ωm ∪ ωR.

STEP 2 By Assumption (3.39), the random variables D(ω) and |ω| have expo-
nential tails under the modified measures Q̃g,λ(g):

Q̃g,λ(g)(ω) =
Qg,λ(g)(ω)e−R(ω,g)

Qg,λ(g)
(
e−R(·,g)) .

Consequently, both the lower bound in (3.42) and then (3.42) itself follow from
the local limit analysis of i.i.d. sums

∑m
1 Vi, where V (ω) = (D(ω), |ω|). In par-

ticular, the limiting log-moment generating functions:

Λ̃(g) = lim
n→∞

log Z̃g
n

n

∆= λ(g) + f(g),

are analytic on Uh, whereas the asymptotic speed ṽn = ∇Λ̃(h) has a positive
projection on h by STEP 1. The local limit description of the distribution of the
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end-point γ(n) under the perturbed measure P̃h
n follows exactly as in the pure

(repulsive or attractive) case. In particular, we arrive to the following local limit
description of ballistic behaviour under P̃h

n: There exists ε′ > 0, such that:
• Outside Bε′(ṽh):

P̃h
n

(
D(γ)
n
�∈ Bε′(ṽh)

)
≤ e−c3n.

• For nu ∈ Bnε′(nṽh) ∩ Zd:

P̃h
n (D(γ) = nu) =

G̃(u)√
nd

e−nJ̃h(u) (1 + o(1)) ,

where the rate function J̃h on Bε′(ṽh) is quadratic at its unique min-
imum ṽh.

3.5.3 Statistics of finite patterns and local observables

A finite pattern is a fixed nearest neighbour (and self-avoiding in case of SAW-s)
path:

η = (u0, . . . , up) .

For example, we may take η as an elementary loop:

η = (0, e1, e1 + e2, e2). (3.44)

Given a trajectory γ define Nη(γ) as the number of times η is re-incarnated
in γ:

Nη(γ) =
|γ|−p∑
l=0

1{(γ(l),...,γ(l+p))m=η}

where m= means matching up to a shift. Obviously, N(γ) ≤ |γ|. Also, in the case
of (3.44):

Nη(γ) = Nη(ωL) +Nη(ω1) + · · ·+Nη(ωm) +Nη(ωR), (3.45)

whenever γ is given in its irreducible representation (3.24).
For general patterns η the relation (3.45) does not necessarily hold for the

particular irreducible decomposition which was constructed in Section 3.3. We
could not have worried less: first of all given any finite pattern η we could have
adjusted the notion of irreducible decomposition in such a way that (3.45) would
become true. Furthermore, the import of (3.45) is a possibility to work with
independent random variables. In the situation we consider here, sums of finitely
dependent variables have qualitatively the same local asymptotics as sums of
i.i.d.s. So, for the sake of exposition, let us assume that η satisfies (3.45).
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But then, given some small δ > 0, R(γ) = δNη(γ) qualifies as a small per-
turbation of the type considered in the preceding section. Accordingly, we are
in a position to develop a standard local limit analysis of restricted partition
functions of the type:

Zh
n (Nη(γ) = �nx�) .

Theorem 3.3 Let η be a finite pattern, λ > λ0 and h ∈ ∂Kλ. Then there exist
xη ∈ (0, 1), ε > 0, ν > 0 and a rate function Jη

h on (xη− ε, xη+ ε) with quadratic
minimum at xη, such that:

Ph
n

(∣∣∣∣Nη(γ)
n
− xη

∣∣∣∣ ≥ ε) ≤ e−νn,

and, for x ∈ (xη − ε, xη + ε):

Ph
n (Nη(γ) = �nx�) =

Gη(x)√
n

e−nJηh(x) (1 + o(1)) ,

where, of course, Gη is a positive real analytic function on [xη − ε, xη + ε]
Note that we have used only |Nη(γ)| ≤ |γ| and (3.45). Therefore, the above

theorem holds for a wider class of path observables, as for example:

N(γ) =
∑
b

1I{lb(γ)>1}.

3.A Existence of Lyapunov exponents

3.A.1 Attractive case

In the attractive case both Dλ and Hλ are super-multiplicative:

Dλ(x+ y) ≥ Dλ(x)Dλ(y) and Hλ(x+ y) ≥ Hλ(x)Hλ(y).

Hence both limits in (3.6) exist.
Furthermore, since the potential Φ is monotone in γ, 0 ≤ Φ(γ) ≤ Φ(γ ∪ η):

Dλ(x) ≤ Hλ(x) ·
∑

η:0 �→0
e−λ|η|. (A.1)

The relation (3.3) immediately implies that the right-most term in (A.1) is con-
vergent for every λ>λ0, and, consequently, that both limits in (3.6) are equal.

In order to check (3.3) note first of all that since Φ is nonnegative, the par-
tition function Zn is bounded above by the total number of all n-step near-
est neighbour trajectories; Zn ≤ (2d)n. For the reverse direction, proceeding as
in (Flury 2007b), let us fix a number R and note that in view of the monotonicity
of φ:

Zn≥
Zn(γ ⊂ BR)

(2d)n
en log(2d)−|BR∩Zd|φ(n) = PSRW (γ ⊂ BR) en log(2d)−|BR∩Zd|φ(n),
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where PSRW is the distribution of simple random walk on Zd. Since (Hryniv and
Velenik 2004)

PSRW (γ ⊂ BR) ≥ exp
{
−c(d) n

R2

}
,

we conclude that for all R and n:

1
n
logZn ≥ log(2d)− c(d)

R2
− |BR ∩ Zd|φ(n)

n
.

Thus, (3.3) indeed follows from (SL).
Inequality (3.7) is a trivial consequence of convexity and lattice symmetries.

It remains to check that in the attractive case ξλ0 is strictly positive. However,
again as in (Flury 2007b):

Hλ(x) =
∞∑

n=‖x‖1

ESRWe−Φ(γ)−(λ−λ0)n1Iτx=n,

where τx is the first hitting time of x. As a result, ξλ(x) ≥ φ(1)‖x‖1 for all
λ ≥ λ0.

3.A.2 Repulsive case

First of all:
Dλ(x) ≤ Hλ(x)Dλ(0).

Thus, in view of (3.5), for every λ > λ0 both exponents in (3.6) are automatically
equal once it is proved that at least one of them is defined. We shall show that
the first limit in (3.6) exists, using a familiar bubble diagram method. Consider:

Hλ(x)Hλ(y) =
∑
γ∈Hx

∑
η∈x+Hy

e−Φ(γ)−Φ(η).

Given a couple of trajectories γ ∈ Hx and η ∈ x+Hy define:

n = min {l : γ(l) ∈ η} and n = max {k : η(k) = γ(n)} .

The concatenated path:

γ̃
∆= (γ(0), . . . , γ(n), η(n+ 1), . . . , η(|η|)) ∆= γ1 ∪ η1 ∈ Hx+y.

Define also:

γ2 = (γ(n), . . . , γ(|γ|)) and η2 = (η(0), . . . , η(n)) .

Evidently, one can recover γ and η from γ̃, γ2 and η2 up to, perhaps, an inter-
change of γ2 and η2. Now, since γ1 and η1 intersect only at the end-point:

Φ(γ) + Φ(η) ≥ Φ(γ1) + Φ(γ2) + Φ(η1) + Φ(η2)
= Φ(γ̃)− φ(1) + Φ(γ2) + Φ(η2).
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As a result:

Hλ(x)Hλ(y) ≤ 2eφ(1)
(∑

z

Dλ(z)2
)

Hλ(x+ y). (A.2)

But
∑

z Dλ(z)2 <∞ for every λ > λ0, and the first limit in (3.6) is indeed well
defined.

It remains to show that in the repulsive case ξλ0 ≡ 0. If this is not the case,
then, as can be easily deduced from (A.2), there exists some finite constant c
such that:

Dλ(x) ≤ ce−ξλ(x) ≤ ce−ξλ0 (x),

uniformly in λ > λ0 and x ∈ Zd. By Fatou this would mean that
∑

x Dλ0(x)
converges. However, since we are in the repulsive case, Zn ≥ eλ0n, and conse-
quently: ∑

x

Dλ0(x) =
∑
n

Zne−λ0n = ∞.
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STOCHASTIC HOMOGENIZATION AND ENERGY
OF INFINITE SETS OF POINTS

Xavier Blanc

Abstract

This article presents in a synthetic way a series of joint works with C. Le
Bris and P.-L. Lions (Blanc et al. 2003, 2006, 2007b,a). They are devoted on
the one side to the definition of average energies for nonperiodic infinite set
of points, and on the other hand to a setting for stochastic homogenization.
We will present both aspects, and highlight the link between them.

4.1 Introduction

The aim of this article is to give an overview on the series of papers of Blanc
et al. (2003, 2007a) on the one hand, and the papers of Blanc et al. (2006, 2007b)
on the other hand. The first ones deal with the thermodynamic limit for some
infinite non periodic set of points, and the others with a setting for stochastic
homogenization.

This setting for stochastic homogenization of elliptic operators, presented in
Section 4.4 below, consists in defining the coefficients of the elliptic PDE as the
deformation of periodic ones by a random diffeomorphism, namely:

A(y, ω) = Aper

(
Φ−1(y, ω)

)
,

where Aper is a periodic square matrix, and Φ is a random diffeomorphism having
a stationary gradient (all this is made precise in Section 4.4). We then prove that
the problem:

−div
[
A
(x
ε
, ω
)
∇u
]
= f, (4.1)

with Dirichlet boundary condition has a limit as ε → 0 in the sense of homo-
genization, and that the homogenized matrix A∗ (which is deterministic and
constant in space) may be computed using corrector problems.

The definition of average energy for infinite set of points is exposed in
Section 4.5. The idea there is to define geometric assumptions on a determinis-
tic set of points {Xi}i∈Zd of Rd which allow us to define the average energy of
{Xi}i∈Zd . In the special case of a two-body interaction W , this corresponds to
the existence of the limit:

lim
R→+∞

1
# ({Xi}i∈Zd ∩BR)

∑
Xi =Xj∈BR

W (Xi −Xj). (4.2)
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In Blanc et al. (2003), a set of hypotheses was derived which imply that (4.2)
exists, even for more sophisticated models than two-body interaction. They are
called (H1)–(H2)–(H3) below (see Definition 4.1). Hypotheses (H1) and (H2)
are of Delaunay type, meaning that there is no big hole or cluster in the set of
points {Xi}i∈Zd , while (H3) is a hypothesis on correlations (in a spatial sense)
on {Xi}i∈Zd .

The link between the two aforementioned theories (homogenization and ther-
modynamic limit) is the following: if the set {Xi}i∈Zd is random and satisfies:

Xi = Φ(i), (4.3)

where Φ is a diffeomorphism such that ∇Φ is stationary, then {Xi}i∈Zd satisfies
(H1)–(H2)–(H3) almost surely. But the link between these two settings is even
deeper: if {Xi}i∈Zd is defined by (4.3), then it is possible to define the algebra
of functions generated by functions of the form:

f(x) =
∑
i∈Zd

ϕ(x−Xi),

which we will denote by A. Any f ∈ A then satisfies:

f(x) = gper
(
Φ−1(x)

)
,

where gper is periodic. Hence, if A ∈ A is matrix-valued, then the homogenization
of the problem (4.1) is exactly the one treated in Section 4.3.

Section 4.2 is devoted to some notations which are useful in the next sections.
It can therefore be skipped by readers who are familiar with these notations.
Then, Section 4.3 is a (very) short review of homogenization theory, outlining
the main ingredients. It is then used as a guideline for the homogenization the-
ory exposed in Section 4.4. Finally, Section 4.5 deals with the above-mentioned
notion of average energy and its links with the theory of Section 4.4.

4.2 Definitions and notation
Throughout the article, D is an open bounded smooth subset of Rd, where d
is a positive integer. By ‘smooth’ we mean that the boundary ∂D of D may be
locally defined as the nullset of a smooth (i.e, C∞) function (see Gilbarg and
Trudinger 2001 for the details). All the definitions below are valid for D = Rd.

The set of smooth compactly supported functions is defined as:

C∞
c (D) =

{
f : D → R, f is infinitely differentiable,

supp(f) is a compact subset of D
}
. (4.4)

The space (C∞
c )′ (D) is the space of distributions on D, i.e., the topological dual

of C∞
c (D). We will use the standard duality bracket notation:

∀g ∈ (C∞
c )′ (D), ∀f ∈ C∞

c (D), 〈g, f〉 := g(f).

For any p ≥ 1, we define Lp(D) as the set of measurable functions f : D → R

such that |f |p is integrable with respect to the Lebesgue measure. If p = ∞,
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L∞(D) is the set of essentially bounded functions. Then, we define the Sobolev
spaces:

W k,p(D) =
{
f ∈ Lp(D),

∫
D
|Dkf |p < +∞

}
,

where k is any nonnegative integer, and Dkf is that kth derivative of f (note
that Df = ∇f).1 In the special case p = 2, we will use the standard notation:

Hk(D) =W k,2(D).

The associated norms are:

‖f‖Wk,p(D) =
k∑

j=0

(∫
D
|Djf |p

)1/p
, ‖f‖Hk(D) =

k∑
j=0

(∫
D
|Djf |2

)1/2
.

This makesW k,p(D) a Banach space. In addition, Hk(D) is a Hilbert space. It is
possible to define the trace f|∂D of any f ∈ Hk(D) on the boundary of D. Note
that f|∂D ∈ Hk−1(∂D). 2 This allows us to define:

Hk
0 (D) =

{
f ∈ Hk(D), f|∂D = 0

}
.

In other words, Hk
0 (D) is the closure of C∞

c (D) in Hk(D). Then we define the
following.

Definition 4.1 (The spaces H−k(D)) For any smooth open domain D of Rd

and any k ∈ N, the space H−k(D) is the dual space (for the L2 scalar product)
of the space Hk

0 (D). In other words:

H−k(D) =
{
g ∈ (C∞

c )′ (D), ∃M > 0, ∀f ∈ Hk
0 (D), |〈g, f〉| ≤M‖f‖Hk(D)

}
.

We define the spaces W k,p
loc (R

d), or simply W k,p
loc , as:

W k,p
loc

(
Rd
)
=
{
f : Rd → R, f measurable, ∀x ∈ Rd, f ∈W k,p(B1 + x)

}
,

where B1 + x is the unit ball centred at x. This allows us to define:

Definition 4.2 For k ∈ N and p ∈ [1,∞]:

W k,p
unif

(
Rd
)
=
{
f ∈W k,p

loc

(
Rd
)
, sup

x∈Rd
‖f‖Wk,p(B1+x) < +∞

}
,

and‖f‖Wk,p
unif

= sup
x∈Rd

‖f‖Wk,p(B1+x). (4.5)

1Note that Dkf is a dk-linear form, or equivalently a dk-tensor. Thus, |Dkf | stands for the
euclidean norm of Dkf in R

dk.
2Actually, f|∂D ∈ Hk−1/2(∂D), but we do not want to enter the details of defining Hk for

k /∈ N.
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In the case k = 0, we set Lp
unif

(
Rd
)
=W 0,punif

(
Rd
)
, and in the case p = 2, we set

Hk
unif

(
Rd
)
=W k,2

unif

(
Rd
)
.

We now define the notion of weak convergence. For the sake of simplicity,
we restrict our attention to the special cases of Lp and H1. However, these
definitions are easily adapted to any Banach space.

Definition 4.3 (Weak convergence in Lp(D)) Let p ∈ [1,+∞). Define q ∈
(1,+∞] by 1p+

1
q = 1.We say that a sequence (fn)n∈N in Lp(D) converges weakly

to f ∈ Lp(D) if:

∀g ∈ Lq(D), lim
n→∞

∫
D
fng =

∫
D
fg.

We note this convergence as follows:

fn ⇀ f in Lp(D).

If p = +∞, we say that the sequence (fn)n∈N in L∞(D) converges weakly−∗ to
f ∈ L∞(D) if:

∀g ∈ L1(D), lim
n→∞

∫
D
fng =

∫
D
fg.

We note this convergence as follows:

fn
∗
⇀f in L∞(D).

The difference in the notation for p = +∞ is due to the fact that the dual of
L∞(D) is not L1(D). We refer to Adams (1975) or Brezis (1983) for the details.
Finally, we define the weak convergence in H1 as follows:

Definition 4.4 (Weak convergence in H1(D)) A sequence (fn)n∈N in H1(D)
converges weakly to f ∈ H1(D) if

∀g ∈ H1(D), lim
n→∞

(∫
D
fng +

∫
D
∇fn · ∇g

)
=
∫
D
fg +

∫
D
∇f · ∇g.

We note this convergence as follows:

fn⇀f in H1(D).

Note that if fn converges in Lp (resp. H1), then it converges weakly in Lp (resp.
H1), but the reverse implication is not true. However, any bounded sequence has
a subsequence which converges weakly.

We will also need the notion of normalized integral:

Definition 4.5 For any open subset D ⊂ Rd of finite measure, for any f ∈
L1(D), we define the normalized integral of f by:∫

D
f :=

1
|D|

∫
D
f(x)dx. (4.6)
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4.3 Homogenization of elliptic PDEs

This section is a (very) short review of some aspects of (stochastic) homoge-
nization of linear elliptic PDEs. Subsection 4.3.1 reports on a general theory
of homogenization, while subsections 4.3.2 and 4.3.3 indicate how one can go
further in the analysis with more specific hypotheses, namely periodicity in Sub-
section 4.3.2 and stationarity in Subsection 4.3.3.

4.3.1 General theory of homogenization

Let us consider the following model problem:{
−div (Aε∇u) = f in D
u = 0 on ∂D, (4.7)

where ε is a small parameter, f ∈ L2(D) is independent of ε, and D is a fixed
bounded connected open subset of Rd. The family of matrices Aε = Aε(x) is
assumed to be bounded and uniformly elliptic:

∃γ > 0 / ∀ε > 0, ∀ξ ∈ Rd, ξTAε(x)ξ ≥ γ|ξ|2, (4.8)

almost everywhere in x ∈ D, and:

∃M > 0 / ‖Aε‖L∞(D) ≤M. (4.9)

Under these hypotheses, Murat and Tartar (see Murat 1978; Tartar 1979; Murat
and Tartar 1997) have proved the following Theorem:

Theorem 4.1 (Murat and Tartar 1997) Let D be an open bounded subset of
Rd, where d is a positive integer. Consider a set of matrices Aε satisfying hypothe-
ses (4.8) and (4.9). Let uε be the unique solution of (4.7). Then, there exists a
sequence εn −→ 0, a matrix A∗ satisfying (4.8) and (4.9), and u∗ ∈ H1(D) such
that: {

−div (A∗∇u∗) = f in D
u = 0 on ∂D, (4.10)

and:
uεn ⇀ u∗ in H1(D), Aεn∇uεn ⇀ A∗∇u∗ in L2(D). (4.11)

In other words, problem (4.7) has a limit problem, up to extraction of a
subsequence, which has the same form, whose coefficients do not depend on f .
The main tool for the proof of Theorem 4.1 is the celebrated compensated com-
pactness method (see Murat 1978; Tartar 1979), and more precisely the div-curl
lemma, which may be stated as follows:

Lemma 4.1 (Murat and Tartar 1997) Let D be a bounded open subset of
Rd, and ξn ∈ L2(D)d, vn ∈ L2(D) two sequences such that:{

ξn ⇀ ξ in L2(D)d,
div(ξn) −→ div ξ in H−1(D),
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and: {
vn ∈ H1(D),
vn ⇀ v in H1(D),

Then:
ξn · ∇vn ∗

⇀ξ · ∇v in L∞(D).
This Lemma allows us to pass to the limit in product of weakly converging
seqences, as for instance Aε∇uε, provided they satisfy some PDE in the limit.

Theorem 4.1 is very powerful in the sense that it provides the existence of
a limit problem with very few hypotheses: the assumptions (4.8) and (4.9) on
matrices Aε are very general. However, as one may expect, the lack of information
on Aε implies a lack of information on A∗, which is unknown. The question of
giving more explicit formulas, or at least estimates on the coefficients of A∗, is
a very difficult question (see for instance Tartar 1997, Jikov et al. 1994 and the
references therein). In order to have a more explicit way of computing A∗, one
needs more specific assumptions on Aε. This is the case, for instance, in the two
following subsections.

4.3.2 The periodic case

In this subsection, we deal with a special case of matrix Aε in (4.7), namely:

Aε(x) = Aper
(x
ε

)
,

where Aper is a periodic matrix-valued function. Without loss of generality, we
may assume that the periodic cell of Aper is the unit cube Q.

We thus consider, in an open bounded domain D in Rd, the problem:
−div

[
Aper

(
x
ε

)
∇uε

]
= f in D,

uε = 0 on ∂D,
(4.12)

where the matrix Aper is Zd-periodic.
In order to compute the corresponding homogenized matrix A∗, we define

the corrector problem associated with (4.12), which reads, for p fixed in Rd:
−div (Aper(y) (p+∇wp)) = 0,

wp is Zd-periodic.
(4.13)

It has a unique solution up to the addition of a constant (see Bensoussan et al.
1978). Then, the homogenized coefficients read:

A∗ij =
∫
Q

(ei +∇wei(y))
T
Aper(y)

(
ej +∇wej (y)

)
dy

=
∫
Q

(ei +∇wei(y))
T
Aper(y)ejdy, (4.14)
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where Q is the unit cube. As ε goes to zero, the solution uε to (4.12) converges
to u∗, the solution to: 

−div [A∗∇u∗] = f in D,

u∗ = 0 on ∂D,
(4.15)

The convergence holds in L2(D), and weakly in H10 (D). The correctors wei (for
ei the canonical vectors of Rd) may then also be used to ‘correct’ u∗ in order to
identify the behaviour of uε in the strong topology H10 (D). The proof here again
uses the div-curl lemma, and the (trivial) fact that if f ∈ L∞

(
Rd
)
is Zd-periodic,

then:
f
(x
ε

)
∗
⇀

∫
Q

f, (4.16)

in L∞
(
Rd
)
.

This periodic homogenization theory is exposed in many textbooks. See, for
instance, Bensoussan et al. 1978; Babuška 1976; Cioranescu and Donato 1999;
Persson et al. 1993; and Jikov et al. 1994.

Remark 4.1 Of course, the above approach using the div-curl lemma is not the
only one for the homogenization of linear elliptic problems. Let us mention for
instance the two-scale convergence, introduced in Nguetseng (1989) and further
developed in Allaire (1992) and Cioranescu et al. (2002) for the periodic setting.
It was then adapted to more general settings (Lukkassen et al. 2002; Nguetseng
2003, 2004b; and Visintin 2007).

4.3.3 The stationary ergodic case
A natural question is, do the explicit formulas of the preceding subsection carry
through to some nonperiodic setting? The answer is yes for the special case of
stationary ergodic setting, which is a natural extension of the periodic case. In
order to introduce it, we first set the notation.

In what follows, (Ω,F ,P) denotes a probability space, and E is the expecta-
tion value associated with P. We fix d ∈ N∗, and assume that the group (Zd,+)
acts on Ω. We denote by (τk)k∈Zd this action, and assume that it preserves the
measure P, i.e:

∀k ∈ Zd, ∀A ∈ F , P(τkA) = P(A). (4.17)

We assume that τ is ergodic, that is:

∀A ∈ F ,
(
∀k ∈ Zd, τkA = A

)
⇒ (P(A) = 0 or 1). (4.18)

In addition, we define the following notion of stationarity: F ∈ L1loc
(
Rd, L1(Ω)

)
is said to be stationary if:

∀k ∈ Zd, F (x+ k, ω) = F (x, τkω), (4.19)

almost everywhere in x, almost surely.
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Note that the case of a periodic function F is a particular case of (4.19),
when F is deterministic.

Remark 4.2 This stationary setting is not the standard one used, for instance
in Jikov et al. (1994), which uses (Rd,+) as the group acting on Ω. However,
all the properties we are about to give here extend to this case.

We thus consider problem (4.7), where:

Aε(x, ω) = A
(x
ε
, ω
)
, (4.20)

with A a stationary ergodic matrix (in the sense of (4.19)). In such a setting, the
corrector problem reads, for any p ∈ Rd:

−div [A (y, ω) (p+∇wp)] = 0,

∇wp(y, ω) is stationary in the sense of (4.19),∫
Q

E (∇wp) = 0.

(4.21)

Here again, this system has a unique solution (the proof is easily adapted from
Jikov et al. 1994), up to the addition of a (random) constant. Using the solution
of the corrector problem, one can compute the matrix A∗ with the formula:

A∗
ij =

∫
Q

E
[
(ei +∇wei)

T
A (ej +∇wei)

]
=
∫
Q

E
[
(ei +∇wei)

T
Aej

]
. (4.22)

In this setting again, the proof of convergence to the homogenized problem:
−div [A∗∇u∗] = f in D,

u∗ = 0 on ∂D,
relies on the div-curl lemma. In addition, one also needs the ergodic theorem
(see Kallenberg 2002; Krengel 1985, or Shiryaev 1996, for instance), which in
this setting can be stated as follows:

Theorem 4.2 (Ergodic theorem, Kallenberg 2002)Let F ∈L∞
(
Rd,L1 (Ω))

be a stationary random variable in the sense of (4.19). For k = (k1, k2, . . . kd) ∈
Rd, we set |k|∞ = sup

1≤i≤d
|ki|. Then:

1
(2N + 1)d

∑
|k|∞≤N

F (x, τkω) −→
N→∞

E (F (x, ·)) in L∞(Rd), almost surely.

(4.23)
This implies that (here, Q is the unit cube):

F
(x
ε
, ω
)

∗
⇀
ε→0

E

(∫
Q

F (x, ·)dx
)

in L∞(Rd), almost surely. (4.24)
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As can be seen in (4.24), this theorem replaces the convergence property (4.16)
of the periodic setting. Roughly speaking, the above considerations indicate that
the periodic case extends to the stationary one, with the integrals over the cube
replaced by expectation values of integrals over the unit cube in all the formulas.

Let us finally point out once again that the present discrete setting has a
continuous counterpart, where the group (Zd,+) is replaced by (Rd,+). In such
a case, the operator

∫
Q

E is simply replaced by E in all the above formulas.
However, we stick here to the discrete case because it is a more natural setting
for the following section.

4.4 Random deformations of periodic problems

We next introduce a different stationary setting: the idea is to use a periodic
geometry as a reference, and deform it randomly, with some kind of stationarity.
Note that this is not a particular case of the standard (discrete or continuous)
stationary setting.

The probability space (Ω,F ,P) enjoys the same properties as in Sub-
section 4.3.3, and the action τ of (Zd,+) on Ω is ergodic. We consider the model
problem (4.7), with:

Aε(x, ω) = Aper

(
Φ−1

(x
ε
, ω
))
, (4.25)

that is, we consider the following problem:
−div

[
Aper

(
Φ−1 (x

ε , ω
))
∇u
]
= f in D,

u = 0 on ∂D,
(4.26)

where the function Φ(·, ω) is assumed to be a diffeomorphism from Rd to Rd for
P-almost every ω. The diffeomorphism is assumed to additionally satisfy:

EssInf
ω∈Ω, x∈Rd

[det(∇Φ(x, ω))] = ν > 0, (4.27)

EssSup
ω∈Ω, x∈Rd

(|∇Φ(x, ω)|) =M <∞, (4.28)

∇Φ(x, ω) is stationary in the sense of (4.19). (4.29)

Such a Φ will be called a random stationary diffeomorphism.
The following results are proved in Blanc et al. (2006) and Blanc et al. (2007b)

(Recall that L2unif is defined in (4.5)):

Theorem 4.3 (Blanc et al. 2006) Let Aper be a square matrix which is
Zd-periodic and satisfies (4.8)–(4.9) and Φ a random stationary diffeomorphism
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satisfying hypotheses (4.27)–(4.28)–(4.29). Then for any p ∈ Rd, the system:

−div
[
Aper

(
Φ−1(y, ω)

)
(p+∇wp)

]
= 0,

wp(y, ω) = w̃p

(
Φ−1(y, ω), ω

)
, ∇w̃p is stationary,

E

(∫
Φ(Q,·)

∇wp(y, ·)dy
)

= 0,

(4.30)

has a solution in
{
w ∈ L2loc(Rd, L2(Ω)), ∇w ∈ L2unif(Rd, L2(Ω))

}
. Moreover,

this solution is unique up to the addition of a (random) constant.

Theorem 4.4 (Blanc et al. 2006) Let D be a bounded smooth open subset of
Rd, and let f ∈ H−1(D). Let Aper and Φ satisfy the hypotheses of Theorem 4.3.
Then the solution uε(x, ω) of (4.26) satisfies the following properties:
(i) uε(x, ω) converges to some u0(x) strongly in L2(D) and weakly in H1(D),

almost surely;
(ii) the function u0 is the solution to the homogenized problem:

−div (A∗∇u) = f in D,

u = 0 on ∂D.
(4.31)

In (4.31), the homogenized matrix A∗ is defined by:

A∗
ij = det

(
E

(∫
Q

∇Φ(z, ·)dz
))−1

× E

(∫
Φ(Q,·)

(ei +∇wei(y, ·))
T
Aper

(
Φ−1(y, ·)

)
ej dy

)
, (4.32)

where for any p ∈ Rd, wp is the corrector defined by (4.30).

We will not give the proof of Theorems 4.3 and 4.4, since it is contained in
Blanc et al. (2006), and to some extent in Blanc et al. (2007b). Let us only point
out that, as in the standard ergodic case, the central points are:
• the div-curl lemma;
• the convergence of rescaled functions, which here is closely related to the
property εΦ

(
x
ε

)
−→

∫
Q

E(∇Φ) · x in L∞loc(R
d), almost surely. This in par-

ticular gives:

Aper

(
Φ−1

(x
ε

))
∗
⇀ E

(∫
Q

det(∇Φ(y, ·))dy
)−1

×E

(∫
Φ(Q,·)

Aper

(
Φ−1(x, ·)

)
dx

)
.
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Note that many extensions of the results of the present section are possible,
with, for instance, Aper being stationary instead of periodic, or with a notion of
continuous ergodicity. We refer to Blanc et al. (2007b) for the details.

Let us finally point out that in the particular case when Φ(x) = x + ηΨ(x)
with η small, the above results may be expanded as powers of η: the first order
is clearly the periodic case, and the second one may be computed in a much
simpler way than (4.32). Indeed, its computation only involves solutions to peri-
odic corrector problems, rather then stationary ones, which are much simpler to
compute. All this is detailed in Blanc et al. (2007b).

4.5 Infinite sets of points

This section is devoted to some considerations on the definition of average ener-
gies for infinite sets of points. Subsection 4.5.1 deals with the deterministic case,
which was treated in Blanc et al. (2003), while Subsection 4.5.2 deals with a
stochastic case, as treated in Blanc et al. (2007a).

As above, let us first have a look at the periodic case, then at the stationary
case: consider thus a set of N particles of positions {Xi}1≤i≤N in Rd interacting
by a two-body potentialW , which is supposed to be smooth, radially symmetric,
and decay fast enough at infinity. Then, the energy per particle is defined by:

E ({Xi}1≤i≤N ) =
1
2N

∑
1≤i=j≤N

W (Xi −Xj). (4.33)

Assume that the set {Xi}1≤i≤N is a subset of some lattice, say, Zd. Then, if
{Xi}1≤i≤N converges to Zd in a suitable sense (this is the case, for instance,
when {Xi}1≤i≤N = Zd ∩BRN

with RN going to infinity), a simple computation
proves that the energy (4.33) has a limit as N goes to infinity, namely:

lim
N→+∞

E ({Xi}1≤i≤N ) =
1
2

∑
j∈Zd\{0}

W (j). (4.34)

Of course, this simple computation carries through to the case of a stationary
sequence Xi. Indeed, using the same stochastic setting as in Subsection 4.3.3,
if we assume that the sequence {Xi}i∈Zd , now indexed by Zd rather than N, is
stationary, i.e:

∀i, j ∈ Zd, Xi+j(ω) = Xi(τjω), (4.35)

almost surely, than we have the following convergence:

lim
N→+∞

 1
(2N + 1)d

∑
Xi∈(2N+1)Q

∑
Xj∈(2N+1)Q, j =i

W (Xi −Xj)


= E

 ∑
j∈Zd\{0}

W (Xj −X0)

 , (4.36)
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almost surely. The proof is rather simple: noticing that the inner sum in the
right-hand side is almost equal to:∑

i∈Zd\{0}
W (Xi −Xj) := Fi(ω),

one easily proves that Fi is stationary in the sense of (4.35). Hence, applying the
ergodic theorem (Theorem 4.2), one finds (4.36).

As in Section 4.3, these two particular cases (periodic and stationary) will
serve as a guideline in the following subsections.

4.5.1 The deterministic case

The question considered in Blanc et al. (2003) is the following: what are the most
general (deterministic) hypotheses which allow us to carry out the same kind of
computation as (4.34). The following answer was given:

Definition 4.6 We shall say that a set of points {Xi}i∈N is admissible if it
satisfies the following:

(H1) sup
x∈Rd

#
{
i ∈ N / |x−Xi| < 1

}
< +∞;

(H2) ∃R > 0 such that inf
x∈Rd

#
{
i ∈ N / |x−Xi| < R

}
> 0;

(H3) for any n ∈ N, the following limit exists:

lim
R→∞

1
|BR|

∑
Xi0∈BR

. . .
∑

Xin∈BR

δ(Xi0−Xi1 ,... Xi0−Xin )(h1, . . . , hn)

= ln(h1, . . . , hn), (4.37)

and is a nonnegative uniformly locally bounded measure.
We use here the convention that if n = 0, l0 is the constant function equal to:

l0 = lim
R→∞

1
|BR|

#
{
i ∈ N / Xi ∈ BR

}
. (4.38)

It is proved in Blanc et al. (2003) that if {Xi}i∈N is an admissible set of points,
then a formula similar to (4.34) holds:

lim
R→+∞

 1
# (BR ∩ {Xi}i∈N)

∑
Xi =Xj∈BR

W (Xi −Xj)

 =
1
l0

∫
R3
W (h)l1(dh).

(4.39)

Actually, for this special case of two-body interactions, one only needs hypo-
thesis (H3) for n = 0, 1. Indeed, these are exactly the convergence one needs in
the computation leading to (4.39). However, since Blanc et al. (2003) aimed at
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dealing with more general models, such as N -body energies, hypotheses (H1)–
(H2)–(H3) were naturally derived: the first one corresponds to the fact that there
is no cluster of particles, the second one that there is no big hole in the position
configuration, and the third one should be seen as the existence of an n-body
average correlation between the Xi. As pointed out in Blanc et al. (2003), these
hypotheses are not logically linked.

Given Definition 4.6, one can define the corresponding functional spaces:

Definition 4.7 Let {Xi}i∈N be an admissible set, and denote by A({Xi}) the
vector space generated by the functions of the form:

f(x) =
∑
i1∈N

∑
i2∈N

. . .
∑
in∈N

ϕ(x−Xi1 , x−Xi2 , . . . , x−Xin), (4.40)

with ϕ ∈ C∞
c (R3n). Then, for any k ∈ N and any p ∈ [1,+∞), we denote by

Ak,p({Xi}), or simply Ak,p when there is no ambiguity, the closure of A({Xi})
for the norm ‖ · ‖Wk,p

unif
.

When k = 0, we use the notation Ap for A0,p. The closure of A for the norm
‖ · ‖L∞(R3) being a set of continuous functions, we will denote it by Ac. We will
call A∞ the closure for the L∞(Rd) norm of the space of functions of the form
(4.40), with ϕ ∈ L∞(Rd) having compact support.

Note that Ak,p is the closure for the W k,p
unif norm of the algebra generated by

functions of the form:

f(x) =
∑
i∈N

ϕ(x−Xi), ϕ ∈ D(Rd).

Moreover, in the particular case of a periodic lattice {Xi}i∈N, Ak,p({Xi}i∈N)
is the algebra of periodic functions with the appropriate period and regularity.

A direct consequence of the above definitions is the following

Lemma 4.2 (Blanc et al. 2003) Let {Xi}i∈N be an admissible (in the sense
of Definition 4.6) set of points. Then, for any f ∈ Ak,p, the following limit exists:

〈f〉 := lim
R→∞

∫
BR

f.

In addition, in the special case of an f of the form (4.40), we have:

〈f〉 =
∫

Rd

∫
Rd(n−1)

ϕ(x, x− h1, . . . , x− hn−1)dln−1(h1, . . . , hn−1)dx. (4.41)

4.5.2 Random deformation of periodic lattices

Being inspired by the stochastic setting introduced in Section 4.4, let us now
consider a set of points {Xi}i∈Zd , which is the deformation of a periodic lattice
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by a stationary diffeomorphism Φ. More precisely, we assume that Φ satisfies
(4.27)–(4.28)–(4.29), and we define:

∀i ∈ Zd, Xi(ω) = Φ(i, ω). (4.42)

The relation between Definition 4.6 and the notion of stationary diffeomorphism
is best illustrated by:

Proposition 4.1 (Blanc et al. 2003) Let Φ be a stationary diffeomorphism,
i.e a diffeomorphism satisfying (4.27)–(4.28)–(4.29). Let the set {Xi(ω)}i∈Zd be
defined by (4.42). Then, {Xi}i∈Zd satisfies (H1)–(H2)–(H3) of Definition 4.6,
almost surely.

This proposition allows us to assert that the average energy of this (stochas-
tic) set of points may be defined in the same way as in (4.36). In addition, it is
also possible to construct the algebras Ak,p defined in Subsection 4.5.1. This is
done in:

Proposition 4.2 Let Φ be a stationary diffeomorphism, i.e a diffeomorphism
satisfying (4.27)–(4.28)–(4.29). Let the set {Xi(ω)}i∈Zd be defined by (4.42).
Define A as the vector space generated by the functions of the form:

f(x, ω) =
∑
i1∈Zd

∑
i2∈Zd

. . .
∑

in∈Zd

ϕ(x−Xi1(ω), x−Xi2(ω), . . . , x−Xin(ω)), (4.43)

with ϕ ∈ C∞
c (R3n). Denote by Ak,p the closure of A for the L1

(
Ω,W k,p

unif

(
Rd
))

norm. Then for any f ∈ Ak,p, the following limit exists almost surely:

〈f〉 = lim
R−→∞

∫
BR

f.

In addition, 〈f〉 does not depend on ω, and:

f
(x
ε
, ω
)

∗
⇀
ε→0
〈f〉, almost surely. (4.44)

Let us point out that the hypotheses (H1)–(H2)–(H3) do not imply the con-
vergence (4.44). This property is closely linked with stationarity, which is a form
of translation invariance. Note indeed that in hypothesis (H3), the origin plays a
special role, which prevents any form of translation invariance from being implied
by this assumption.

Remark 4.3 The proof of Proposition 4.2, is based on the following property:
∀f ∈ Ak,p, there exists g ∈W k,p

unif

(
Rd, L1(Ω)

)
such that g is stationary, i.e:

∀j ∈ Zd, ∀x ∈ Rd, g(x+ j, ω) = g(x, τjω),

almost surely, and:

∀x ∈ Rd, f(x, ω) = g
(
Φ−1(x, ω), ω

)
,

almost surely.
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We are now in position to relate Subsection 4.5.2 and the homogenization
setting discussed in Section 4.4. We recall Φ is a stationary diffeomorphism
(i.e Φ satisfies (4.27)–(4.28)–(4.29)), and the set {Xi}i∈Zd is defined by (4.42),
that is:

∀i ∈ Zd, Xi(ω) = Φ(i, ω).

In addition, the algebras Ak,p are defined as in Proposition 4.2. Hence, if we
consider a matrix A ∈ A∞({Xi}i∈Zd), Remark 4.3 implies that there exists a
stationary matrix B such that:

A(x, ω) = B
(
Φ−1(x, ω), ω

)
.

Consequently, Theorems 4.3 and 4.4 apply to the present case, giving:

Theorem 4.5 Let A ∈ A∞({Xi}i∈Zd) be a square matrix which satisfies (4.8)–
(4.9). Then for any p ∈ Rd, the system:

−div [A (y, ω) (p+∇wp)] = 0,

wp(y, ω) = w̃p

(
Φ−1(y, ω), ω

)
, ∇w̃p is stationary in the sense of (4.19)

E

(∫
Φ(Q)

∇wp(y, ·)dy
)

= 0,

(4.45)

has a solution in
{
w ∈ L2loc(Rd, L2(Ω)),∇w ∈ L2unif(Rd, L2(Ω))

}
. In addition,

this solution is unique up to the addition of a (random) constant.

Theorem 4.6 Let D be a bounded smooth open subset of Rd, and let f ∈
H−1(D). Let A satisfy the hypotheses of Theorem 4.5. Then the solution uε(x, ω)
of: 

−div
(
A
(
x
ε , ω
)
∇u
)
= f in D,

u = 0 on ∂D
(4.46)

satisfies the following properties:

(i) uε(x, ω) converges to some u0(x) strongly in L2(D) and weakly in H1(D),
almost surely;

(ii) the function u0 is a solution to the homogenized problem:
−div (A∗∇u) = f in D,

u = 0 on ∂D.
(4.47)
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In (4.47), the homogenized matrix A∗ is defined by:

A∗
ij = det

(
E

(∫
Q

∇Φ(z, ·)dz
))−1

×E

(∫
Φ(Q,·)

(ei +∇wei(y, ·))
T
A (y, ·) ej dy

)
, (4.48)

where for any p ∈ Rd, wp is the corrector defined by the system (4.45).

We end this section with two remarks:

Remark 4.4 The above considerations on the random lattices may be general-
ized further. In particular, only the increments Xi−Xj are present in the energy.
Therefore it is possible to study the thermodynamic limit in the case of stationary
increments. Furthermore, the energy should be a function of the (infinite) set of
points as a whole. It is thus natural to study the thermodynamic limit for a form
of stationarity involving only the set 	 = {Xi}, that is, 	(τkω) = 	(ω) − k. All
the above considerations apply to this case mutatis mutandis. We refer to Blanc
et al. (2007a,b) for the details.

Remark 4.5 It is also possible to define a deterministic setting for non peri-
odic homogenization, in the spirit of the thermodynamic limit study of Sub-
section 4.5.1. However, one in general adds a form of translation invariance
to the hypothesis (H3) in order to be able to do so. We refer to Nguetseng (1989,
2003, 2004a,b) for studies of this kind.

References

Adams, R. A. (1975). Sobolev Spaces. Pure and Applied Mathematics, Vol. 65.
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers],
New York-London.

Allaire, G. (1992). Homogenization and two-scale convergence. SIAM J. Math.
Anal. 23(6), 1482–1518.
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5

VALIDITY AND NON-VALIDITY OF
PROPAGATION OF CHAOS

Karsten Matthies and Florian Theil

Abstract

We develop a novel rigorous approach to analyse the validity of continuum
approximations for deterministic interacting particle systems. Some of our
ideas have been used earlier in the context of annihilating Brownian spheres
(Sznitman 1991). We study the Boltzmann–Grad limit of ballistic annihi-
lation, a topic which has has received considerable attention in the physics
literature. Due to the deterministic nature of the evolution it is possible that
correlations build up and the mean-field approximation by the Boltzmann
equation breaks down. We find a sharp condition on the initial distribution
which ensures the validity of the Boltzmann equation and demonstrate the
failure of the mean-field theory if the condition is violated.

The derivation of the continuum models of mathematical physics from atomistic
descriptions is a longstanding and fundamental problem. One of the most notori-
ous challenges is the question whether the Hamiltonian nature of the fundamental
laws of motion (quantum mechanics, Newtonian mechanics) is compatible with
the fact that the second principle of thermodynamics postulates that macro-
scopic systems are irreversible. An illustration of this question is provided by
deterministic hard ball dynamics with random initial states. For high particle
densities and suitably scaled diameters it is expected that the time-evolution of
the density is close to the solution of the Boltzmann equation:

∂tf + v · ∂uf=
∫

Rd×Sd−1
(f(u, ṽ)f(u, ṽ′)− f(u, v)f(u, v′)) ((v− v′) · ν)+ dv′ dν,

(5.1)
where ṽ, ṽ′ are obtained from v, v′ by exchanging the respective components of
v and v′ in direction ν, that is:

ṽ = v + (v′ − v) · ν ν, ṽ′ = v′ + (v − v′) · ν ν,

and ft(u, v) is the density of presence at time t of particles at locations u with
velocity v, see Spohn (1991).

An important concept which sheds some light on the connection between
the Boltzmann equation and hard ball dynamics is the propagation of chaos.
This means that the distribution pN (u1, v1 . . . , uN , vN , t) of N particles will lose
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its product structure for nonzero time t. However, the marginal distribution
of the first k particles should be very close to a product measure when the
total number of particles N is large. A classical method to establish propaga-
tion of chaos is to express the evolution of k-particle marginals in terms of the
k+1-particle marginals. This strategy is implemented in the BBGKY hierarchy.
The weakness of this approach consists in the fact that establishing convergence
of the resulting series is hard in many cases. O. Lanford succeeded in proving
that in the case of hard ball dynamics the series that corresponds to the BBGKY
hierarchy converges for small times to a solution of the Boltzmann equation
(Lanford 1975). Unfortunately it cannot be shown that the time interval where
the series is known to converge is larger than a small fraction of the mean free
time, regardless of the initial data. This problem was partially overcome by
Illner and Pulvirenti (1989) who managed to obtain a global result if the posi-
tions are in Rd and the initial density is sufficiently small. However, currently
there is no result which covers the case where both data and time are large.
It is arguable that the justification of the Boltzmann equation (5.1) as a scal-
ing limit of deterministic evolution constitutes a part of Hilbert’s sixth problem
(Hilbert 2000).

In Lang and Nguyen (1980) the same strategy is applied to the simpler prob-
lem of coagulation. Here the spheres move along Brownian paths and two intact
spheres annihilate each other if the distance between the centres drops below a.
Although the series generated by the BBGKY hierarchy does not converge glob-
ally in time, Lang and Nguyen were able to give a rigorous justification of the
corresponding Boltzmann equation by restarting the procedure at small positive
time.

In this paper we consider kinetic annihilation, another simplification of hard
ball dynamics which keeps two central features of the original evolution: the
initial state is random, the evolution is deterministic. We assume that the initial
phase space positions in the phase space Td × Rd (Td is the unit torus) form a
Poisson point process with some intensity µ ∈M(Td ×Rd). As long as they are
intact the centres of the spheres move along straight lines with constant velocity.
When the centres of two spheres, which are still intact, come within distance a,
then both spheres are destroyed.

We will consider the asymptotic behaviour of the system in the limit where
the diameter a of the particles tends to 0 and the total intensity n = µ(Td×Rd)
is linked to a by the Boltzmann–Grad relation:

nad−1 = 1. (5.2)

The central question in this paper is whether for small values of a the many-body
evolution can be described by the gainless Boltzmann equation:

∂tf + v · ∂uf = Q−[f, f ], (5.3)

where Q−[f, g](v) = −κdf(v)
∫

Rd
dg(v′) |v−v′| is the loss term of the hard-sphere

collision kernel of the Boltzmann equation (5.1) and κd is the volume of the d−1
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dimensional unit-ball. For the sake of simplicity we will restrict ourselves to the
case where the initial density f0 does not depend on u, in this case the transport
term v · ∂uf in equation (5.3) vanishes and ft(u, v) = ft(v).

Solutions f of the Boltzmann equation (5.3) have two different but closely
related interpretations. The macroscopic interpretation involves the empirical
quantity b(U, t)=#(ω(t)∩U) where U ⊂ Td×Rd is arbitrary (measurable) and
ω(t) ⊂ Td×Rd is the realization of the phase space positions of the particles at
time t. Equation (5.3) is valid in the macroscopic sense if b(U, t)/n converges to∫
U
du dft(v) in probability as a tends to 0.
A microscopic interpretation is based on the single-particle marginals of the

N -particle distribution. The gainless homogeneous Boltzmann equation is valid
in the microscopic sense if:

lim
a→0

Prob((u1(t), v1(t)) ∈ U and particle 1 is intact at time t)

=
1

f0(Rd)

∫
U

du dft(v).

Since the distribution of the N particles is invariant under permutation it is
irrelevant which particle index we use to define the microscopic validity.

It is well known that microscopic validity and a simple bound on correlations
implies macroscopic validity. Ballistic annihilation has been studied extensively
in the physics literature, see Elskens and Frisch (1985); Piasecki (1995); Droz
et al. (1995, 2002); and Coppex et al. (2003). Kinetic annihilation dynamics can
be used to model growth and coarsening of surfaces, see Krug and Spohn (1988).

This paper contains an outline of the essential steps of the first mathematical
proof of the microscopic validity of the Boltzmann equation as a scaling limit of
kinetic annihilation (Theorem 5.1). The main idea is to determine the probabil-
ity distribution of objects that are adapted to the system under consideration.
In this case we work with marked trees that record the history of potential col-
lisions which a tagged particle experiences. The trees have the property that
their expected size remains finite as a tends to 0. This idea has been used earlier
in Sznitman (1991) in the context of Brownian spheres. Note however that our
results differ significantly from those in Sznitman (1991).

First of all, we are working with a deterministic evolution. The Boltzmann
equation emerges because of random initial conditions. We obtain a limiting
measure in the phase space Td ×Rd, not in position space Td. Since we consider
initial distributions which are u-independent we end up with measures on the
velocity space Rd.

Secondly, for a large subset of trees we obtain a very simple, explicit represen-
tation formula for the distribution of the trees (5.38). Thanks to this formula we
are able to establish explicit o(1)-bounds of the total variation difference between
empirical distribution P̂ and the limiting measure P as a tends to 0.

Thirdly, since the only source of stochasticity are the initial values, it is less
obvious that the initial chaos is propagated to such a degree that the limiting



104 Analysis and stochastics of growth processes and interface models

evolution can be described by a simple mean-field theory which leads to the
Boltzmann equation. We obtain novel necessary conditions on the absence of
certain concentrations in the initial density (5.7) which are sufficient for the
validity of the Boltzmann equation. A counter-example (Theorem 5.2) demon-
strates that, if the concentrations are present in the initial density, the mean-field
theory that underlies the Boltzmann equation is not consistent with the many
body evolution. This shows on the one hand, that our condition is actually sharp,
and on the other hand, that a previously published justification of the Boltz-
mann equation by Droz et al. (2002) requires the additional assumption that
the initial velocity density is absolutely continuous with respect to the Lebesgue
measure.

Since the Boltzmann equation is insensitive to these concentrations it is
impossible to derive condition (5.7) from the mean-field theory itself.

Failure of the Boltzmann approximation of high-dimensional deterministic
many-body systems has been previously observed in the case of ballistic anni-
hilation for for d = 1, see Elskens and Frisch (1985) and for discrete velocity
models of collisional dynamics, see Ushiyama (1988). In both cases the failure of
the mean-field theory can be traced back to the the finiteness of the set of pos-
sible directions. Our analysis shows that the buildup of correlations is actually
caused by concentrations in the initial distributions, not by the specifics of the
evolution.

5.1 Validity

We consider N particles with initial values (u0(i), v0(i)) ∈ Td × Rd, i = 1 . . . N ,
which evolve by Newtonian dynamics:

u(i, t = 0) = u0(i), v(i, t = 0) = v0(i),
u̇(i, t) = v(i, t), v̇(i, t) = 0. (5.4)

For each t ∈ [0,∞), i ∈ {1 . . . N} with zi = (ui, vi), there exists a unique
scattering state β(a)(i, t) ∈ {0, 1}. Here β(a)(i, t) = 1 means that the ith particle
has not collided with another particle up to time t. The scattering state satisfies
the implicit relation:

β(a)(i, t) =

{
1 if dist(zi, zi′ , s) ≥ aβ(a)(i′, s) for all s ∈ [0, t), i′ �= i,
0 else

(5.5)

with a modified distance function to ignore initial intersections:

dist((u, v), (u′, v′), s) = |u− u′ + s(v − v′)|+ aχ[0,a](|u− u′|), (5.6)

where |.| is the metric on the torus Td = Rd/Zd and χA is the characteristic
function of A.
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Definition 5.1 (Tagged Poisson point processes) Let Ω be a measure
space. The random variable z ∈ ⋃∞

N=0 Ω
N is a realization of a Poisson point

process (PPP) with density µ ∈M+(Ω) if:

Prob(z ∈ ΩN ) = e−µ(Ω)µ(Ω)
N

N !
, law(zi) = µ/µ(Ω),

and z1, . . . , zN are independent. Realizations of the tagged Poisson point pro-
cess (tPPP) are obtained by adding an independent random variable z0 with law
µ/µ(Ω), i.e. for symmetric A ⊂ ⋃∞

N=1 Ω
N one obtains that:

ProbtPPP((z0, z) ∈ A) =
1

µ(Ω)eµ(Ω)

∞∑
N=0

1
N !

∫
A∩ΩN+1

dµ(z0) . . .dµ(zN ).

Note that the tagged PPP is a symmetric point process. The motivation for
working with this process is that the realizations of the tagged PPP without the
tagged particle form a PPP and we obtain a very simple explicit formula for
the distribution of trees, see (5.38), hence the complexity of the proof can be
reduced. On the other hand, it seems that the formulae for the joint distribution
of two trees are much more complicated, therefore we will only make statements
which concern the law of a single, tagged particle.

Theorem 5.1 (Justification of the gainless homogeneous Boltzmann equation)
Let f0 ∈ PM+(Rd), d ≥ 2 be a momentum density with finite second moment
(
∫

Rd
df0(v)(1 + |v|2) <∞) which does not concentrate mass on lines:

f0(v + Rw) = 0 for all v, w ∈ Rd. (5.7)

Assume that the intensity of the tagged PPP is µ = n(1Td ⊗ f0), with n given by
(5.2), then:

lim
a→0

ProbtPPP
(
z(0, t) ∈ A and β(a)(0, t) = 1

)
=
∫
A

du dft(v), (5.8)

where z(0, t), β(0, t) are position and status of the tagged particle at time t and
f : [0,∞)→M+(Rd) solves the gainless homogeneous Boltzmann equation:

∂tf = Q−[f, f ], f(t = 0) = f0. (5.9)

The assumption that
∫

Rd
df0(v) = 1 is not necessary. We make it because it

simplifies the notation in the proof.
Assumption (5.7) does not exclude the possibility that f0 is concentrated on

lower dimensional subsets, for example the uniform distribution on the sphere
Sd−1 is admissible, i.e., f0 satisfies:∫

ϕ(v) df0(v) :=
1

Hd−1(Sd−1)

∫
Sd−1

ϕ(v) dHd−1(v), (5.10)

for all test-functions ϕ ∈ Cc(Td×Rd), where Hd is the d-dimensional Hausdorff-
measure.
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5.2 Effective descriptions

5.2.1 The hierarchy of evolutions

Instead of expanding ft into a power-series in t and matching coefficients, in a
first step, we replace the initial value problem (5.9) by an infinite system using
general initial distribution without concentrations:

ḟk = Q−[fk−1, fk], ft=0,k = f0. (5.11)

Since Q− is quadratic, for fixed k the integro-differential equation (5.11) is in
fact linear and nonautonomous. We can therefore work with the mathematically
much more convenient mild formulation. The differential equation completely
decouples in v and the equation for each v is a scalar linear nonautonomous
ODE, which can be directly integrated to:

ft,k = exp(−
∫ t

0L[fs,k−1] ds)f0, (5.12)

where L[f ](v) = κd
∫
df(v′) |v − v′|. We observe that dft,k(v) is absolutely con-

tinuous with respect to df0(v) due to the decoupling in v.

Lemma 5.1 Let f0 ∈M(1+|v|)2 then fk converges in C0ρ([0,∞),M1+|v|) to f for
some ρ > 0 and f ∈ C1([0,∞),M1+|v|) is the unique solution of (5.9).

By M1+|v| and M(1+|v|)2 we mean the set of Radon measures on Rd with first
and second moment, Cρ denotes the continuous functions on R+ which grow not
faster than eρt. The proof of Lemma 5.1 together with a precise definition of the
function spaces is standard.

Now we have to translate this idea into the context of deterministic many-
body dynamics. To limit the complexity of the notation we will from now on
assume that everything except the constants depends on a without displaying
the dependency. For every realization of the N -body evolution the random vari-
able β(i, t) ∈ {0, 1}, which encodes the scattering state of particle i ∈ {1 . . . N}
at time t ∈ [0,∞) satisfies the implicit relation (5.5). The computation of the
scattering state β can be simplified by introducing a hierarchy of artificial evo-
lutions indexed by k ∈ N. We assume that the initial values of the particles at
all levels are identical. The particles at level k = 1 are simply transported and
do not interact with anything. The particles at level k > 1 interact only with the
particles at level k−1, but not with each other. For each k ∈ N and i ∈ {1 . . . N}
the scattering state βk(i, t) ∈ {0, 1} is defined in the following way:

βk(i, t) =

{
1 if dist(zi, zi′ , s) ≥ aβk−1(i′, s) for all s ∈ [0, t), i′ �= i,
0 else,

(5.13)

β1(i) ≡ 1, (5.14)

with dist as in (5.6).
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Remark 5.1 While the determination of the collision-state β(i, t) is a com-
plicated problem, the state βk(i, t) emerges via a very simple calculation from
βk−1(·, t).

Lemma 5.2 For all realizations of the initial conditions ω ∈ ⋃∞
N=1(T

d × Rd)N

both βk(i, t) and β(i, t) are well defined and:

lim
k→∞

βk(i, t) = β(i, t) (5.15)

pointwise in i and uniformly in t.

5.2.2 The concept of marked trees

The translation of the N -body evolution into scattering states β is greatly facili-
tated by the concept of trees. In the collision tree with root (u, v) we will collect
information of collisions and potential collisions up to time t for a particle with
initial data u, v.

As an example assume that N = 4 and consider the scenario in Fig. 5.1
where the letters A,B,C,D are the labels of the four particles, the empty circles
are the initial positions and the arrows are the initial velocities. Consequentially
the arrow-tips indicate the positions of the particles at time t=1. To determine
whether a certain particle has been scattered before time t=1 it suffices to
analyse the associated collision tree which is constructed as follows: the particle
of interest is the root with initial data (u, v). The particles which are potentially
scattered by the root are added as nodes, i.e., a particle with initial data (u′, v′) is
added, if |u+sv− (u′+sv′)| ≤ a for some s ∈ [0, t]. This procedure is recursively

B

D

A

C

Fig. 5.1: Initial positions and velocities of four particles. The bullets indicate
the positions where the particles are potentially scattered. The shown con-
figuration is not very likely and consequentially the collision trees are quite
complex.
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BA

ADAC
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Fig. 5.2: Collision trees of the four particles with initial positions and collision
structure given in Fig. 5.1. At time t = 1 particles C and D have been scat-
tered, particles A and B have not. Note that the labels of the particles which
generate the potential scattering events are only included in the picture in
order to illustrate the translation of Fig. 5.1 into collision trees. The scat-
tering state of the particle at the root is completely determined by the tree
structure, the labels of the tree nodes are irrelevant. For example, the tree of
particle B does not contain enough information to decide whether particle A
is scattered.

applied to every node but we consider only potential scattering events which
are upstream, i.e., before the event which is responsible for adding the leaf. The
four collision trees associated to the scenario in Fig. 5.1 are shown in Fig. 5.2.
The extraction of the collision trees amounts to a significant reduction of the
complexity of the problem. In general, the number of potential scattering events
(bullets) is proportional to N but thanks to the Boltzmann–Grad-scaling (5.2)
the number of nodes in the individual trees is a Poissonian random number with
an intensity which is asymptotically independent of N and grows exponentially
with t, see Proposition 5.1.

We now convert the example into a general concept.

Definition 5.1 Let N = {1, 2, . . .}. The height of a node (or multi-index) l∈Ni

is defined by |l| := i, the parent node of l ∈ Ni is l̄ = (l1, . . . , li−1). Let F =⋃∞
i=1 Ni be the set of multi-indices. We say that m ⊂ F is a tree with root

(m ∈ T ), if:

1. #m <∞,

2. m ∩ N = {1},
3. l̄ ∈ m for all l ∈ m \ N,

4. l − 1 ∈ m for all l ∈ m such that l �= (∗, . . . , ∗, 1),
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where l−1 = l−(0, . . . , 0, 1). We say that a tree m has at most height k (m ∈ Tk)
if m ∩ Nk+1 = ∅.

Let Y = {(u, v, s, ν) ∈ Td×Rd× [0,∞)×Sd−1} be the space of initial values
and collision parameters. The set of marked trees is given by:

MT =
{
(m,φ)

∣∣∣∣ m ∈ T , φ : m→ Y with the property sl ∈ [sl−1, sl̄]

and νl = 1
a (ul̄ − ul + sl(vl̄ − vl)) for all l ∈ m \ N

}
,

where s(∗,...∗,0) = 0. For each skeleton m ∈ T we define the set:

E(m) = {(m̃, φ) ∈MT | m̃ = m}, (5.16)

which contains all trees with skeleton m. We stipulate a strict order of the set of
nodes m:

l < l′ if either |l| < |l′| or (|l| = |l′| and l̄ < l̄′) or (l̄ = l̄′ and l|l| < l′|l|). (5.17)

This order is induced by the link between the collision time and the indices l ∈ m.

For example, {(1), (1, 1), (1, 2), (1, 3), (1, 1, 1), (1, 1, 2)} ∈ T3, but {(1), (2, 1)} is
not a tree skeleton. The assumption sl ∈ [sl−1, sl̄] implies that for all nontrivial
permutations π ∈ S#m \ Id (Sn is the set of permutations of n symbols) and all
trees Φ = (m,φ) ∈ MT the permuted tree Φπ = (m,φπ) with φπl = φπ(l) is not
a tree in the sense of Definition 5.1.

The value ν1 has no relevance. To circumvent this problem we fix a point
ν∗ ∈ (Sd−1), define:

MT ∗ = {Φ ∈MT | ν1 = ν∗ }.

We will in future denoteMT ∗ byMT .
It is clear from the definition that for each tree m ∈ T there exists a function

r : m→ N ∪ {0} which counts the number of direct successors, i.e:

rl = #{l′ ∈ m | l̄′ = l}.

Remark 5.2 Graph theoretical description of collisions in a hard-sphere gas can
lead to many different graphs, which are not necessarily trees. The advantage of
our definition is that this graph will always be a tree. Particles might appear
several times in a tree, as in Fig. 5.2. This will not destroy the tree structure,
as these are due to different collision events. Multiple collisions, which are well-
defined in our setting, can lead to identical branches within the tree, but the
definition T will discriminate between these and the graph of collisions is still
a tree.

The scattering state β : m → {0, 1} is determined uniquely by the skeleton,
i.e., the labels of the particles are immaterial, but the actual computation is not
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completely trivial. The most important aspect of the computation of β is that
the scattering information flows from the leaves to the root, i.e., the scattering
state of a node is completely determined by the state of the nodes above, the
nodes below are irrelevant.

We will construct now two families of probability measures Pt,k, P̂t,k ∈ PM
(MT ). The empirical distribution P̂t,k is induced by the many-body dynamics
and will be constructed recursively in Section 5.2.4. The mean-field distribution
Pt,k is given by an explicit formula (5.18). The link between Pt,k and P̂t,k is
provided by the set of good trees G(a) ⊂ MT (Definition 5.3) which has the
properties that restriction of P̂t,k on G(a)∩MT converges to Pt,k and Pt,k(G(a))
goes to 1 as a tends to 0 (Proposition 5.2).

This is the crucial step which eventually yields the justification of the mean-
field theory. In other words, the main task consists in analysing the mean-field
measure Pt,k, the empirical distribution P̂t,k enters only when we prove that Pt,k
is consistent with P̂t,k.

5.2.3 The mean-field distribution Pt,k
We construct now the mean-field distribution of trees Pt,k ∈ PM(MT ). Let
Ω ⊂MT and t ∈ [0,∞). The mean-field probability that the observed tree is in
Ω is given by:

Pt,k(Ω) =
∑
m∈Tk

∫
Ω∩E(m)

e−
∑

j<k Γj(Φ) dλm(φ) (5.18)

where E(m) was defined in (5.16) and

Γj(Φ) =
∑

l∈m,|l|=j
γl(Φ),

γl(Φ) =
∫ sl

0
L[f0](vl) ds′ = sl L[f0](vl) ≥ 0 is the collision rate of particle l,

λm(φ) =µ(z1)⊗ δ(s1 − t)⊗
∏

l∈m\N

[
((vl − vl̄) · νl)+ χ[sl−1,sl̄](sl) df0(vl) dνl dsl

]
,

(5.19)

µ(u, v) =1Td(u)⊗ f0(v).

Remark 5.3

1. Note that the positions ul are completely determined by (u1, v1) and
(vl, sl, νl)l∈m\{1}. Since we have assumed that ν1 is fixed, the value of
Pt,k(Ω) is well-defined.

2. It is noteworthy that the measures Pt,k depend on time only via the param-
eter t. In other words, time plays the role of a parameter which propagates
through the tree and qualifies the local branching structure.

3. For some event Ω⊂MT k the probability Pt,k′(Ω) is independent of k′ if
k′ > k. Equivalently, Pt,k1(Ω ∩ E(m)) = Pt,k2(Ω ∩ E(m)), if the height of
m is strictly smaller than min{k1, k2}.
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We can simplify the measure Pt,k by integrating over the collision parameters
νl ∈ Sd−1, l ∈ m. Let Ŷ = Rd × [0,∞) be the reduced set of collision data. For
every Ω ⊂ T (Ŷ ) we find that when still denoting the collision data as φ:

P̄t,k(Ω) =
∑
m∈Tk

∫
Ω∩E(m)

dλ̄m(φ) e−
∑

j<k Γj(Φ) (5.20)

with

λ̄m(φ) =f0(v1)⊗ δ(s1 − t)⊗
∏

l∈m\N

[
κd |vl − vl̄|χ[sl−1,sl̄](sl) df0(vl) dsl

]
.

The measures Pt,k have the remarkable property that the expectation of certain
random variables can be computed exactly or estimated accurately.

Proposition 5.1 For a tree m ∈ T the number of non-root nodes is given by
R(m) =

∑
r∈m rl = #m − 1. The expected value of R satisfies the estimate

uniformly in k:

E(R) ≤ Kini exp(κdKinit), (5.21)

with Kini =
∫

Rd
df0(v) (1 + |v|)2 and:

Pt,k+1 (v1 ∈ Ω and β(1, t) = 1) = dft,k(v) (5.22)

holds, where ft,k is the solution of system (5.12).

The proof relies on the recursive structure of the definition of the measure Pt,k
and can be found in Matthies and Theil (2008).

5.2.4 The empirical distribution P̂t,k
We return now to the hierarchy of many body evolutions described in Sec-
tion 5.2.1. The initial values of the particles form a random set ω ⊂ Td × Rd

and it is assumed that the law of ω is the Poisson point process with density µ,
where µ = n1Td ⊗ f0. Hence, the size n = #ω is Poissonian random variable
with intensity n. As explained in Section 5.2.2, the family of probability measures
P̂t,k ∈ PM(MT ) is the empirical distribution of the tree Φ which is generated
by the many-body evolution and has a randomly chosen (tagged) particle as its
root. This tree is only well defined if N > 0, i.e. ω is nonempty. For this reason
we define P̂t,k(Ω) as the conditional probability that the tree is contained in the
set Ω, given that N = #ω > 0.

A particularly simple method of sampling from this conditional distribution
consists in drawing a realization of ω according to the unconditioned Poisson
point process, and an independent random variable z ∈ Td×Rd with law µ(z) =
1Td(u)⊗ f0(v) which is the initial value of the tagged particle. It can be checked
without difficulty that the joint distribution of ω and z is the previously defined
conditional distribution.
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The trees generated by this procedure are denoted by Φ(t, k) = (m(t, k), φ) ∈
MT k, where m(t, k) ∈ Tk is the skeleton and φ : m(t, k)→ Y specifies the initial
values, the collision times and the impact parameters. The measures P̂t,k are the
image measure of ProbtPPP induced by the many-particle flows so that for each
Ω⊂MT we obtain:

P̂t,k(Ω) :=ProbtPPP((m(t, k), φ) ∈ Ω). (5.23)

The tree measures P̂t,k are derived from ProbtPPP, but ProbtPPP cannot be
derived from P̂t,k.

By construction, for fixed ω the skeleton m is monotonously increasing in
t and k, and for fixed l ∈ m the data φl does not depend on t or k. This is
equivalent to saying that the j-marginal of P̂t,k (trees of height j ≤ k) is given
by P̂t,j , i.e.:

P̂t,k

((
m(t, k) ∩ (

j⋃
i=1

Ni), (φl)|l|≤j

)
∈ Ω

)
= P̂t,j((m(t, j), (φl)|l|≤j)∈Ω) (5.24)

for all Ω ⊂MT j , k ≥ j.
We will use formula (5.24) to construct an alternative characterization of P̂t,k

which reflects the iterative process that underlies the definition of m(t, k). Using
this alternative characterization one can easily establish total-variation bounds
for Pt,k − P̂t,k. Since the time t is arbitrary but fixed we will often write P̂k
instead of P̂t,k.

Let (m′, φ′) ∈ MT k−1 and let P̂k( · | (m′, φ′)) ∈ PM(MT k) be the con-
ditional distribution of P̂k in the sense that:

P̂k(Ω | (m′, φ′)) := P̂k
(
(m(k), φ) ∈ Ω | m ∩ Nj = m′ ∩ Nj for all j ∈ {1 . . . k − 1}

and φl = φ′l for all l ∈ m such that |l| < k
)
.

Formula (5.24), which characterizes the j-marginals of P̂t,k, yields the following
recurrence relation for P̂k:

P̂k(Ω) =
∫
MT k−1

dP̂k−1(Φ′) P̂k(Ω |Φ′). (5.25)

Repeating this step k − 1 times we obtain the following iterative representation
of P̂k:

P̂k(Ω) =
∫
MT 1

dP1(Φ1)
∫
MT 2

dP̂2(Φ2 |Φ1)

. . .

∫
MT k−1

dP̂k−1(Φk−1 |Φk−2) P̂k(Ω |Φk−1), (5.26)

where:
P1(z1) =

1
n
µ(z1) ∈ PM

(
Td × Rd

)
(5.27)

is the distribution of initial value for the root particle.
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5.2.5 Convergence of P̂k to Pk
Having constructed an iterative characterization of P̂k we will now show that
it is very similar to the mean field measure Pk in a precise way. The key is to
identify the mechanisms by which the two probability distributions fail to be
equal. In this part of the paper we will work with the phase-space representation
of the trees: zl = (ul, vl) ∈ Td × Rd.

Remark 5.4 There are only two reasons why P̂k may fail to coincide with Pk
in the limit a→ 0:

1. The cylinders which are covered by the paths of the particles might contain
self-intersections due to the periodic boundary conditions: v − v′ ∈ R(t, a)
with:

R(t, a) =
{
v ∈ Rd

∣∣∣ min
{
|s v − ξ|

∣∣ s ∈ [0, t], ξ ∈ Zd \ {0}
}
≤ a
}
. (5.28)

2. Particles might appear at different positions within a tree, i.e., the map
z : m→ Td × Rd might be not injective.

The set R(t, a), which can easily seen to be nonempty, is relevant due to periodic
boundary conditions, which will lead to self-intersections of the cylinders. This
happens, if v − vj is sufficiently close to a velocity v∗, where the components of
v∗1 , . . . , v

∗
d are rationally dependent, i.e. η ·v∗ ∈ Z with η ∈ Zd, but only if |η| ≤ t.

The effect is not present in a setting where (u, v) ∈ Rd × Rd.
The second effect is caused by the notorious recollisions. These dependencies

disappear as the diameter a tends to zero.
Motivated by Remark 5.4 we define the set of ‘good’ trees.

Definition 5.3 For each a0 > 0 the set of ‘good’ trees G(a0) ⊂MT consists of
those trees (m,φ) ∈MT with the property that for all 0 < a ≤ a0 and all l ∈ m:

vl̄ − vl ∈ Rd \R(t, a) (all parent-child-pairs are non-resonant), (5.29)

zl �∈
⋃
l′<l
l′ �=l̄

Cl′ (no particle appears more than once in the tree),

(5.30)

where we associate to each node l ∈ m the set of colliding initial values:

Cl =
{
z′ ∈ Td × Rd

∣∣∣∣ min
s′∈[0,sl]

|dist(zl, z′, s′)| ≤ a
}
,

and dist as in (5.6) ignores overlap in the initial data.

Note that G(a0) ⊂ MT is a family of sets which increases monotonically with
decreasing a0. An elementary calculation yields that for all v′ ∈ Rd\(vl+R(t, a))

nHd
(
Cl ∩ (Td × {v′})

)
= κd|vl − v′|sl. (5.31)
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The significance of G(a0) is given by the following results:

lim
a0→0

inf
k
Pk(G(a0)) = 1, (5.32)

lim
a→0

sup
{∣∣∣P̂k(Ω)− Pk(Ω)∣∣∣ ∣∣∣ k ∈ N, Ω ⊂ G(a0)

}
= 0 for fixed a0, (5.33)

which are given in Proposition 5.2. For this we need a more explicit characteri-
zation of the distributions P̂k(· |Φk−1) and P̂k(·).

We recall the following fundamental independence-principle of Poisson-point
processes which allows us to compute certain conditional probabilities explicitly.

Lemma 5.3 Let the random set ω ⊂ Td × Rd be distributed according to a
Poisson point process with density µ, C̄, C ⊂ Td × Rd and A ⊂ ⋃∞

r=0(C \ C̄)r be
symmetric. Then we obtain the following formula for the conditional probability
of the event A:

ProbtPPP
(
tup(ω ∩ C) ∈ A

∣∣ ω ∩ C̄ = ∅) = exp
(
−µ(C \ C̄)

) ∞∑
r=0

1
r!

∫
A∩Cr

dµr(z),

(5.34)

where µr = µ⊗ . . .⊗ µ︸ ︷︷ ︸
r terms

and tup({z1, . . . , zr}) = (z1, . . . , zr).

To apply Lemma 5.3 we have to work with the phase-space representation of
trees. Owing to the decomposition Ω =

⋃̇
m∈T E(m) ∩ Ω we can assume that

Ω ⊂ E(m) for some m ∈ T .
Note that for a general tree Φ = (m,φ) ∈MT the number of nodes #m can

be bigger than the number of particles involved in the collisions, i.e. it is possible
that the map z : m→ Td×Rd is not injective and zl = zl′ for some pair l, l′ ∈ m,
l �= l′. This scenario corresponds to a bad tree where the same particle appears
twice in the tree. For this reason we restrict our attention to sets Ω which are
subsets of G(a). The excluded set has nonzero probability, however we will show
that the probability ofMT \G(a) tends with a to 0. By construction for all trees
in Ω the map l �→ zl is injective.

The order defined by (5.17) induces a representation of the events Ω⊂MT
in phase-space coordinates:

A(Ω) ⊂ (Td × Rd)#m.

In the same spirit one obtains a one-to-one correspondence between the initial
values of particles associated with the tree-nodes at height k and subsets of
(Td × Rd)#m∩Nk :

Zk = (zl)|l|=k ∈ (Td × Rd)#(m∩Nk).
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We will also need the conditional events:

Ak(Ω,Φ) =
{
Zk ∈ (Td × Rd)#(m∩Nk) | (Zk,Φ) ∈ Ω

}
,

where Φ ∈ MT k−1 and (Zk,Φ) ∈ MT k is the tree obtained by attaching the
leaves Zk to the topmost nodes of Φ.

Recall that the density of the Poisson point process which generates the initial
positions of the particles is given by Nµ where:∫

dµ(z)ϕ(z) =
∫

Rd
df0(v)

∫
Td

duϕ(u, v)

for every test-function ϕ ∈ Cc(Td × Rd).
Before applying Lemma 5.3 we have to specify the sets C and C̄. Fix a0 > 0

and let Φ ∈ MT ∩ G(a0). We are interested in the distribution of those trees
which coincide with Φ up to level k. Clearly, the initial positions of the particles
at height k + 1 are contained in the set:

Ck(Φ) :=
⋃

l∈m∩Nk

Cl ⊂ Td × Rd,

with Φ = (m,φ). In order to apply formula (5.34) we have to identify the condi-
tioning of the distribution ω ∩ Ck(Φ). Define the collection of cylinders:

C̄k(Φ) :=
⋃
|l|<k

Cl ⊂ Td × Rd

which contains those initial values that would affect the lower nodes. By con-
struction the information on the point process ω that we have accumulated so
far is given by ω ∩ C̄k(Φ) = {zl | |l| ≤ k}. Furthermore, since Φ ∈ G(a0) we have
that ω ∩ Ck(Φ) ∩ C̄k(Φ) = ∅. This implies that for each Ω ⊂ MT ∩ G(a0) and
Φ ∈MT k ∩ G(a0) that

P̂k+1(Ω |Φ) = ProbtPPP(Ck(Φ) ∩ ω ∈ sym(Ak(Ω,Φ)) | Ck(Φ) ∩ C̄k(Φ) ∩ ω = ∅).

where sym(A) is the symmetrization of the set A, i.e. (z1, . . . , zn) ∈ sym(A) if
there exists a permutation π ∈ Sn such that (zπ(1), . . . , zπ(n)) ∈ A; in particular
A ⊂ sym(A). This is the crucial step where the complicated dependency on the
past of the many-body evolution is reduced to a simple conditional expectation
of the Poisson point process. Since:

A(Ω,Φ) ∩ C̄k(Φ)× . . .× C̄k(Φ)︸ ︷︷ ︸
r terms

= ∅

for each r we can use formula (5.34) and deduce that:

P̂k+1(Ω |Φ) = e−Γ̂k(Φ)
1
r!

∫
sym(Ak+1(Ω,Φ))

dµr(Zk+1)
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where
Γ̂k(Φ) = µ(Ĉk(Φ)) (5.35)

and Ĉ(k) = Ck(Φ) \ C̄k(Φ). Recall the convention that the value of the integral
over (Td × Rd)0 is 1.

Since each nontrivial permutation of the labels l ∈ m destroys the tree struc-
ture we obtain that if zπ ∈ A and z ∈ A, then necessarily π is the identity
transformation, i.e., zπ = z. This implies that if we replace in the above formula
sym(A) by the nonsymmetric set A we have to drop the term 1

r! .

P̂k+1(Ω |Φ) = e−Γ̂k(Φ)
∫
Ak+1(Ω,Φ)

dµr(Zk+1). (5.36)

Plugging the expression (5.36) for the conditional expectation P̂k+1(· |Φ) into
equation (5.26) yields that:

P̂k(Ω) =
∫

Td×Rd
dP1(φ1(Z1)) e−Γ̂1(Φ1(Z1))

∫
(Td×Rd)r2

µr2(Φ2(Z2))

. . . e−Γ̂k−1(Φk−1(Z1...Zk−1))
∫
Ak(Ω,Φk−1(Z1...Zk−1))

dµrk(Zk)

=
∑
m∈Tk

∫
A(Ω)

dµ#m(z) e−
∑

j<k Γ̂j(Φ(z)). (5.37)

The intermediate step in the computation above relies on the additional assump-
tion that m ∈ Tk \ Tk−1. In general we have to be more careful concerning the
domains of integration, but the the final formula is unaffected.

We return now to the collision representation of the trees. This means that
the variables (zl)l∈m are replaced by (u1, v1)×(sl, νl, vl)l∈m\{1}. The determinant
of the derivative of this transformation is given by:

detDΦz(Φ) =
∏

l∈m\{1}

(
ad−1[νl · (vl − vl̄)]+

)
.

Thus changing coordinates in the integrals we obtain that for each m ∈ T :∫
A(Ω)

e−
∑

j<k Γ̂j(Φ(z)) dµ#m(z)

=
∫
Ω
dP1(z1) e−

∑
j<k Γ̂j(Φ)∏

l∈m\{1}

(
N df0(vl) dνl dsl χ[sl−1,sl̄](sl) a

d−1 [(vl − vl̄) · νl]+
)

(5.2)
=
∫
Ω
dP1(z1) e−

∑
j<k Γ̂j(Φ)

∏
l∈m\{1}

(
df0(vl) dνl dsl χ[sl−1,sl̄](sl) [(vl − vl̄) · νl)]+

)
=

∫
Ω
dλm(φ) e−

∑
j<k Γ̂j(Φ).
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Hence we have shown that for all Ω ⊂ G(a):

P̂k(Ω) =
∑
m∈Tk

∫
Ω∩E(m)

e−
∑

j<k Γ̂j(Φ) dλm(φ) (5.38)

and:
Pk(Ω) = P̂k(Ω) + ek(Ω), (5.39)

where the error has the form:

ek(Ω) =
∑
m∈Tk

∫
Ω∩E(m)

dλm(φ)
(
e−

∑
j<k Γj(Φ) − e−

∑
j<k Γ̂j(Φ)

)
. (5.40)

Since Γ̂j(Φ) ≤ Γj(Φ) the difference ek(·) is a nonnegative measure.
Now we are in a good position to prove that equations (5.32) and (5.33) hold.

Proposition 5.2 (Similarity of P̂k and Pk) Let G(a) the set of good trees
from Definition 5.3, and Ω ⊂ G(a0). Then equations (5.32) and (5.33) hold.

The proof requires elementary but tedious estimates of sets Cl ∩Cl′ and can be
found in Matthies and Theil (2008).

Proof of Theorem 5.1
We first demonstrate that the distribution of a single tagged particle satisfies the
Boltzmann equation. Let A ⊂ Td × Rd and define Ω(A) ⊂MT by:

Ω(A) = {Φ ∈MT | β1(m) = 1 and z1 ∈ A}.

With this notation we obtain that for every a0 > 0:∣∣∣∣ lima→0
lim
k→∞

P̂t,k(Ω)−
∫
A

du dft(v)
∣∣∣∣

Lem. 5.1= lima→0 limk→∞
∣∣∣P̂t,k(Ω)− ∫A du dft,k−1(v)

∣∣∣
Prop. 5.1

= lima→0 limk→∞

∣∣∣∣P̂t,k(Ω)− Pt,k(Ω)∣∣∣∣
= lima→0 limk→∞

∣∣∣∣P̂t,k(Ω ∩ G(a0))− Pt,k(Ω ∩ G(a0))
−Pt,k(Ω \ G(a0)) + P̂t,k(Ω \ G(a0))

∣∣∣∣
(5.33)
≤ lima→0 limk→∞ Pt,k(MT \ G(a0)) + lima→0 limk→∞ P̂t,k(MT \ G(a0))

Now using equation (5.33) again for Ω̃ :=MT ∩G(a0) and that P̂t,k and Pt,k are
probability measures, we also obtain that lima→0 P̂t,k(MT \G(a0)) = Pt,k(MT \
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G(a0)). Now proceeding:

≤2 lim
k→∞

Pt,k(MT \ G(a0)),

we send now a0 to 0, apply (5.32) and obtain that lima0→0 limk→∞ Pt,k(MT \
G(a0)) = 0, hence lima→0 limk→∞ P̂t,k(Ω) =

∫
A
du dft(v).

The proof of Theorem 5.1 is complete. �

5.3 Concentrations and non-validity
We illustrate now that the mean-field theory does not capture the many-particle
dynamics if the initial distribution f0 exhibits strong concentrations. To simplify
the long calculations in the proof we assume that d = 2, but similar results are
expected to hold in the case d = 3.

Theorem 5.2 Let v ∈ R2 be nonresonant (α · v �∈ Z for all α ∈ Zd) such that
|v| = 1 and set f0 = 1

2 (δ(·− v)+ δ(·+ v)). If Q̂(t) = lima→0 limk→∞ P̂t,k(β1 = 1)
denotes the empirical probability that a tagged particle does not collide, then:

lim
t→0

1
t3

(
Q̂(t)−

∫
R2

dft(v)
)

=
1
9
, (5.41)

where ft = 1
1+tf0 is the unique solution of the Boltzmann equation (5.9) which

satisfies the initial condition ft=0 = f0.
A numerical simulation for N = 100000 particles (Fig. 5.3) illustrates the pre-
diction (5.41). The proof is based on a simple but lengthy calculation and can
be found in Matthies and Theil (2008).
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6

APPLICATIONS OF THE LACE EXPANSION
TO STATISTICAL-MECHANICAL MODELS

Akira Sakai

6.1 Introduction

Synergetics is a common feature in interesting statistical-mechanical problems.
One of the most important examples of synergetics is the emergence of a second-
order phase transition and critical behaviour. It is rich and still far from fully
understood. The reason why it is so difficult is due to the increase to infinity of
the number of strongly correlated variables in the vicinity of the critical point.
For example, the Ising model, which is a model for magnets, exhibits critical
behaviour as the temperature T comes closer to its critical value Tc; the closer
the temperature T is to Tc, the more spin variables cooperate with each other
to attain the global magnetization. In this regime, neither standard probabil-
ity theory for independent random variables nor naive perturbation techniques
work. The lace expansion, which is the topic of this article, is currently one
of the few approaches to rigorous investigation of critical behaviour for various
statistical-mechanical models. We summarize here some of the most intriguing
lace-expansion results for self-avoiding walk (SAW), percolation, and the Ising
model. We also briefly explain the proof based on the latest version of boot-
strapping argument (Borgs et al. 2005; Heydenneich et al. 2008; Slade 2006)
and the first few stages of the derivation of the lace expansion for those three
models.

6.1.1 Models

Let D be either the step distribution of the simple symmetric random walk
(i.e., D(x) = 1

2d1{|x|=1}, where 1{ ··· } is the indicator function) or the following
spread-out probability distribution on Zd. Given L ∈ [1,∞), we let hL be a
piecewise-continuous bounded probability distribution on Rd that respects the
Zd-symmetry and satisfies hL(Lu) > 0 for any unit vector u ∈ Zd and hL(o) = 0
at the origin o = (0, . . . , 0). Then, we define:

D(x) =
hL(x/L)∑

y∈Zd hL(y/L)
, (6.1)

where x/L = (x1/L, . . . , xd/L) ∈ Zd/L. By the assumed bound on hL, we have
D(o)= 0 andD(u)> 0 for any unit vector u∈Zd. Moreover, by the Riemann-sum
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approximation, the denominator in (6.1) is O(Ld), which plays a significant role
in the analysis of the lace expansion.

We will use D as a microscopic coupling of the models on Zd. We refer to
a model defined by D(x) = 1

2d1{|x|=1} as a nearest-neighbour model and to a
model defined by (6.1) as a spread-out model. Furthermore, we refer to a model
defined by hL with bounded domain as a finite-range model, to a model with∑

x |x|2+εhL(x) < ∞ for some ε > 0 as a finite-variance model, and to a model
with hL(x) � |x|−d−α (i.e., |x|d+αhL(x) is bounded away from zero and infinity)
for large |x| as a long-range model with index α> 0. Obviously, finite-range
models and long-range models with index α > 2 are finite-variance models.

6.1.1.1 Self-avoiding walk (SAW ) We denote by �wn an ordered sequence
(w0, w1, . . . , wn) of sites in Zd, and say that �wn is an SAW path if wi �= wj

for i �= j. We define the SAW two-point function by:

GSAW
p (x, y) =

∞∑
n=0

pn
∑

�wn=(x,...,y)
SAW

n∏
j=1

D(wj − wj−1), (6.2)

where, and in the rest of this article, we interpret the n = 0 term as δx,y. Since this
is invariant under translation, we may suppress the notation to GSAW

p (y − x) :=
GSAW

p (o, y − x). If the self-avoiding constraint is absent from (6.2), GSAW
p (x) is

simply reduced to the random-walk Green’s function:

Sp(x) =
∞∑

n=0

pn
∑

�wn=(o,...,x)

n∏
j=1

D(wj − wj−1) ≡
∞∑

n=0

pnD∗n(x), (6.3)

where D∗n is the n-fold convolution of D, and p0D∗0(x) = δx,o by convention. If
Sp is summable, then its Fourier transform can be solved as:

Ŝp(k) :=
∑
x∈Zd

eik·xSp(x) =
1

1− pD̂(k)
=

1
1− p+ p(1− D̂(k))

. (6.4)

6.1.1.2 Percolation A pair {x, y} of sites in Zd is called a bond, which is either
occupied with probability pD(y−x) ∈ [0, 1] or vacant with probability 1−pD(y−
x), independently of the other bonds. Since D is a probability distribution, the
percolation parameter p is the average number of occupied bonds per site. We
define {x←→ y} to be the event that x is connected to y, i.e., if either x = y or
there is an SAW path of occupied bonds from x to y. We define the percolation
two-point function by:

Gperc
p (x, y) = Pp(x←→ y), (6.5)
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where Pp is the probability distribution of the bond variables. We will denote the
expectation against Pp by Ep. Similarly to GSAW

p (y − x), we may simply denote
Gperc

p (x, y) by Gperc
p (y − x).

6.1.1.3 Ising model Let Λ be a finite subset of Zd containing the origin o,
e.g., a d-dimensional hypercube centred at o. At each site x ∈ Λ, there is a
spin variable ϕx that takes values either +1 or −1. The energy of the system is
defined by:

HΛ(ϕ) = −
∑

{x,y}⊂Λ
Jx,yϕxϕy, (6.6)

where ϕ := {ϕx}x∈Λ is a spin configuration and {Jx,y}x,y∈Zd is a collection
of microscopic spin-spin couplings. We assume that Jx,y = Jo,y−x ≥ 0 (i.e.,
translation-invariant and ferromagnetic) and that

∑
x Jo,x < ∞. Given the

inverse temperature β ≥ 0, we let:

p =
∑
x∈Zd

tanh(βJo,x), D(x) =
1
p
tanh(βJo,x). (6.7)

We use p as the parameter of the model, since it is increasing in β < ∞ given
{Jo,x}x∈Zd . We define the Ising two-point function GIsing

p (x, y) as the unique
infinite-volume limit of the thermal average 〈ϕxϕy〉p;Λ:

〈ϕxϕy〉p;Λ =

∑
ϕ∈{±1}Λ ϕxϕy e

−βHΛ(ϕ)∑
ϕ∈{±1}Λ e

−βHΛ(ϕ)
, GIsing

p (x, y) = lim
Λ↑Zd

〈ϕxϕy〉p;Λ,

(6.8)

where the uniqueness is assured by the second Griffiths inequality (e.g.,
Fernández et al. 1992). We may denote GIsing

p (x, y) by GIsing
p (y − x), due to its

translation-invariance (e.g., Bodineau 2006).

6.1.2 Phase transition

Let d ≥ 2. It is known that there is a model-dependent critical point pc ∈ (0,∞)
such that the susceptibility:

χp := ‖Gp‖1 ≡
∑
x∈Zd

Gp(x) (6.9)

is finite if p < pc, and infinite if p > pc. For percolation, in particular, χp is the
expected number of sites connected from the origin o: χp = Ep[

∑
x 1{o←→x}].

We denote pc for each model by pSAW
c , ppercc or pIsingc if necessary. By (6.2)–(6.3)

and (6.5), 1 ≤ pSAW
c ≤ ppercc ; by (6.70) below, pIsingc ≥ 1. For percolation and the

Ising model, pc can also be characterized by the positivity of the percolation
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probability (i.e., the probability of existence of an infinite cluster of occupied
bonds at the origin) (Aizenman and Barsky 1987) or the spontaneous magnetiza-
tion (i.e., the infinite-volume limit of 〈ϕo〉+p;Λ under the plus-boundary condition)
(Aizenman et al. 1987).

For the finite-range models, in particular, the finiteness of χp is equivalent to
exponential decay of correlation: for every p < pc, there are Cp <∞ (which is 1
for percolation and the Ising model) and mp > 0 such that:

Gp(x) ≤ Cp e
−mp‖x‖∞ (x ∈ Zd). (6.10)

This is a result of partial removal of the self-avoiding constraint (Madras and
Slade 1993) or of the Simon–Lieb inequality (Lieb 1980; Simon 1980).

6.1.3 Critical exponents and their universality

The susceptibility χp is infinite not only for p > pc, but also in the limit p ↑ pc
(e.g., Aizenman 1982; Aizenman and Newman 1984; Madras and Slade 1993).
In addition, mp in (6.10) tends to zero as p ↑ pc. It is expected that there are
model-dependent critical exponents γ and η such that:

χp ≈
p↑pc

(pc − p)−γ , Ĝpc(k) := lim
p↑pc

Ĝp(k) ≈
|k|↓0

(
1− D̂(k)

)−1+η
, (6.11)

in some appropriate sense of limits (e.g., convergence of the log-ratio of the
left-hand side to the right-hand side). Other observables, such as the percola-
tion probability and the spontaneous magnetization, are also expected to exhibit
power-law behaviour near p = pc characterized by their own critical exponents.
To prove existence of these critical exponents and identify their values is one of
the most important problems in statistical physics. So far, there is no general
proof of existence. The values of the critical exponents for two-dimensional mod-
els can be identified assuming that scaling limits of interfaces and critical cluster
boundaries of the models are represented by the Schramm–Loewner Evolution
(e.g., Werner 2004). The assumption has been proved affirmative for some special
cases, such as nearest-neighbour site percolation on the triangular lattice (e.g.,
Camia and Newman 2007).

The most important prediction about the critical exponents is their univer-
sality. The critical exponents are believed to depend only on d (and possibly
on α for the long-range models with index α ≤ 2) and to be insensitive to the
microscopic details, such as the value of the spread-out parameter L. For exam-
ple, the value of γIsing for the nearest-neighbour Ising model is believed to be
equal to that for the finite-variance Ising model for every d ≥ 2, independently
of L < ∞. It is natural to believe so, because the critical exponents character-
ize macroscopic physics, which should not be very much affected by the differ-
ence in the microscopic coupling D of the finite-variance models (the long-range
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models with index α ≤ 2 may not be in the same universality class). There-
fore, the critical exponents are considered to possess the intrinsic nature of the
models.

As described below, the lace-expansion approach provides some evidence to
believe in universality, in high dimensions.

6.1.4 Mean-field behaviour above the upper-critical dimension

It is the interaction among constituents (such as spins) of each model that makes
investigation of critical behaviour difficult. For SAW, for example, if the effect of
the self-avoiding constraint were negligible, then we could approximate GSAW

p (X)
by the random-walk Green’s function Sp(x) and expect that pSAW

c $ 1, γSAW $ 1
and ηSAW $ 0, due to (6.4). Here, we call the critical behaviour described by the
underlying random walk as the mean-field behaviour.

However, the mean-field approximation is problematic, because of the follow-
ing two reasons. (i) By ignoring the interaction among constituents, pc decreases
towards the mean-field value 1, so we cannot really observe the behaviour around
the true pc. (ii) In lower dimensions, the critical exponents are expected to take
on non-mean-field values; e.g., (γSAW, ηSAW) = ( 4332 ,

5
24 ), (γ

perc, ηperc) = (4318 ,
5
24 )

and (γIsing, ηIsing) = ( 74 ,
1
4 ) in two-dimensions (see Fernández et al. 1992; Madras

and Slade 1993; and Smirnov and Werner 2001 and references therein). Let dc
denote the model-dependent threshold dimension above which the critical expo-
nents take on their mean-field values. If dc =∞, it is hopeless to use the mean-
field approximation to investigate the critical behaviour.

There is a sufficient condition for the mean-field behaviour. Let:

Bp = (Gp ∗Gp)(o) ≡
∑
x∈Zd

Gp(x)2, (6.12)

Tp = (Gp ∗Gp ∗Gp)(o) ≡
∑

x,y∈Zd

Gp(x)Gp(x, y)Gp(y), (6.13)

and say that the bubble (resp., triangle) condition holds if Bpc < ∞ (resp.,
Tpc <∞). It is known that γ and various other critical exponents take on their
mean-field values if the bubble condition holds for SAW and the Ising model
and if the triangle condition holds for percolation (see Fernández et al. 1992;
Gimmett 1999; Madras and Slade 1993 and references therein). This is because,
for example (see Madras and Slade 1993):

(χSAW
p )2

BSAW
p

≤
d(pχSAW

p )
dp

≤ (χSAW
p )2 (0 < p < pSAW

c ). (6.14)

We obtain γSAW = 1 by integrating this differential inequality under the bubble
condition (and using the monotonicity of BSAW

p in p).
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On the other hand, if there is a parameter change µp ∈ [0, 1] with µpc = 1
such that Gp � Sµp uniformly in p < pc, then Bpc < ∞ if d > 4 and Tpc < ∞
if d > 6 for the finite-variance models, and Bpc < ∞ if d > 2α and Tpc < ∞
if d > 3α for the long-range models with index α ≤ 2. Therefore, we are led to
expect that the mean-field prediction is correct in high dimensions.

As explained in the next section, the lace expansion proves this consistency for
the nearest-neighbour models in sufficiently high dimensions and for the spread-
out models with L% 1 above the model-dependent upper-critical dimension.

Before closing this section, we stress that the exponential decay (6.10) does
not prove the bubble/triangle condition. For example, since mp → 0 as p ↑ pc as
mentioned earlier:

Bpc = lim
p↑pc

∑
x∈Zd

Gp(x)2 ≤ 1 + lim
p↑pc

∞∑
r=1

O(rd−1) e−2mpr = 1 + lim
p↑pc

O(m−d
p ) =∞.

(6.15)

6.2 Results of the lace expansion

In this section, we summarize some of the most intriguing results of the lace
expansion.

The lace-expansion approach was initiated by Brydges and Spencer (1985)
for investigation of nearest-neighbour weakly SAW for d > 4. Since then, it has
been applied successfully to various finite-variance statistical-mechanical models,
such as strictly SAW for d > 4, lattice trees and lattice animals for d > 8,
percolation for d > 6, oriented percolation and the contact process for d > 4.
See Slade (2006) for the references up to the year 2005. It has been growing
to cover other models, such as finite-range self-interacting random-walk models
(van der Hofstad and Holmes 2006; Holmes and Sakai 2007) and the finite-range
Ising model for d > 4 (Sakai 2007). Analysis of the lace expansion has also been
improved to deal with the long-range models with index α > 0 (Chen and Sakai
forthcoming; Heydenreich et al. forthcoming).

In general, the lace expansion for Gp(x) is the following recursion equation
(assuming its convergence):

Gp(x) = ∆p(x) + (pD ∗Gp)(x) + (Πp ∗Gp)(x), (6.16)

where {∆p(x)}x∈Zd and {Πp(x)}x∈Zd are the model-dependent expansion coef-
ficients. If ∆p(x) = δx,o and Πp(x) = 0, then (6.16) is reduced to the recursion
equation for the random-walk Green’s function Sp(x):

Sp(x) = δo,x + (pD ∗ Sp)(x). (6.17)

It is therefore natural to expect that, assuming some nice properties of ∆p and
Πp, we may find a suitable parameter change µp ∈ [0, 1] such that Gp � Sµp for
p ≤ pc.
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6.2.1 Main results
Before showing the results below, we first introduce some notation. For the finite-
variance models, we let ad = d

2π
−d/2Γ(d2 − 1) and σ2 =

∑
x |x|2D(x), hence

S1(x) ∼ ad
σ2 |x|2−d (see, e.g., Hara 2008; Hara et al. 2003), and let:

dc =

{
4 (SAW and the Ising model),
6 (percolation).

(6.18)

For the long-range models with index α ≤ 2, we let:

dc =

{
2α (SAW and the Ising model),
3α (percolation).

(6.19)

Let:

λ =

{
d−1 (nearest-neighbour models),
L−d (spread-out models).

(6.20)

Theorem 6.1 (Hara and Slade 1990, 1992; Heydenreich et al. 2008)
Let d > dc. For the nearest-neighbour models with d % 1 and the spread-
out models with L% 1

Ĝp(k) =
1 +O(λ)

χ−1p + p(1− D̂(k))
(6.21)

holds uniformly in p < pc and k ∈ [−π, π]d. Consequently, γ = 1 and η = 0, and
various other critical exponents take on their respective mean-field values.

Theorem 6.2 (Hara 2008; Hara et al. 2003; Sakai 2007) Let
d > dc. For the nearest-neighbour models with d% 1 and the finite-range spread-
out models with L% 1

Gpc(x) ∼
Kad
σ2
|x|2−d as |x| → ∞, (6.22)

where K ∈ (0,∞) is a model-dependent constant.

Theorem 6.3 (Van der Hofstad and Sakai 2005) Let d > dc. For the finite-
range models, as L→∞:

pc = 1 +

{∑∞
n=2D

∗n(o) +O(λ2) (SAW ),
D∗2(o) +

∑∞
n=3

n+1
2 D

∗n(o) +O(λ2) (percolation),
(6.23)

where
∑∞

n=2D
∗n(o) and D∗2(o) +

∑∞
n=3

n+1
2 D

∗n(o) are both O(λ).

Remark 6.1

1. Theorems 6.1–6.2 hold for nearest-neighbour SAW as soon as d ≥ 5 (Hara
2008; Hara and Slade 1992).
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2. Theorem 6.2 may be extended to the finite-variance models, following the
argument in Hara (2008).

3. Similar asymptotic results to (6.23) have been obtained for spread-out ori-
ented percolation, where pc − 1 ∼ 12

∑∞
n=2D

∗2n(o) (Chen and Sakai forth-
coming; van der Hofstad and Sakai 2005), and for the finite-range contact
process, where pc − 1 ∼ ∑∞

n=2D
∗n(o) (van der Hofstad and Sakai 2005).

It is expected that pIsingc obeys the same asymptotics as pSAW
c in (6.23), with

a different error term.

6.2.2 Idea of the proof

Since the lace expansion (6.16) is a convolution equation, a natural approach to
investigate it is to take its Fourier transform and solve the resulting equation
for Ĝp(k). For SAW, in particular, ĜSAW

p (k) is considered as the Fourier–Laplace
transform of the n-step SAW two-point function ZSAW

n (x) (= the sum in (6.2) over
SAWs �wn = (o, . . . , x)), where p is the fugacity. Therefore, one way to investigate
Ẑn(k) for fixed n is to use the Tauberian theorem to find the coefficient of pn

in ĜSAW
p (k). Another way is to solve a recursion equation for ẐSAW

n (k), which
is a version of (6.16) for fixed n, by induction on n. To investigate asymptotic
behaviour of Gp(x) as |x| → ∞, we may reorganize (6.16) to approximate Gp(x)
by κSµ(x) for some κ ∈ (0,∞) and µ ∈ [0, 1]. See Slade (2006) and references
therein for more details of those approaches. Here, we focus on the proof of
Theorem 6.1.

First, we heuristically explain the required properties of ∆p and Πp. Sup-
pose that ∆p and Πp are absolutely summable, hence ∆̂p(k) and Π̂p(k) exist (we
assume more below). Then, by solving the Fourier transform of (6.16)
for Ĝp(k):

Ĝp(k) = ∆̂p(k) + pD̂(k) Ĝp(k) + Π̂p(k) Ĝp(k)

=
∆̂p(k)

1− pD̂(k)− Π̂p(k)
=

∆̂p(k)
∆̂p(o)χ−1p + p(1− D̂(k)) + Π̂p(o)− Π̂p(k)

,

(6.24)

where we have used ∆̂p(o)χ−1p ≡ ∆̂p(o)Ĝp(o)−1 = 1−p−Π̂p(o). We obtain (6.21)
if there are p-independent constants C,C ′ <∞ such that:

|∆̂p(k)− 1|
|Π̂p(k)|

}
≤ Cλ, |Π̂p(o)− Π̂p(k)| ≤ C ′λp

(
1− µpD̂(k)︸ ︷︷ ︸

Ŝµp (k)−1

)
, (6.25)

where:

µp = 1− χ−1p ∈ [0, 1] (6.26)
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is a parameter change to compare Ĝp(k) with Ŝµp(k) (cf., f
(1)
p in (6.28) below);

due to this definition, Ĝp(o) = Ŝµp(o) for any p < pc. The first inequality in (6.25)
means, in a weak sense, that ∆p(x) $ δx,o and Πp(x) $ 0 (cf., the discussion
around (6.16)–(6.17)).

The above heuristic argument shows that (6.25) implies (6.21). To complete
the proof of Theorem 6.1, it suffices to prove the converse statement: (6.21)
implies (6.25). In fact, the actual proof is based on bootstrapping argument.
To explain its latest version (Borgs et al. 2005; Heydenreich et al. forth-
coming; Slade 2006), we define:

fp = p ∨ f (1)
p ∨ f (2)

p ≥ 0, (6.27)

where:

f (1)
p = sup

k∈[−π,π]d

Ĝp(k)
Ŝµp(k)

, (6.28)

f (2)
p = sup

k,l∈[−π,π]d

Ŝµp(k)
∣∣Ĝp(l)− 12 (Ĝp(l + k) + Ĝp(l − k))

∣∣
100
∑
(j,j′)=(0,±1),(1,−1) Ŝµp(l + jk) Ŝµp(l + j′k)

. (6.29)

The function f (2)
p is to compare the Fourier transform of (1 − cos(k · x))Gp(x),

which is:∑
x∈Zd

eil·x
(
1− cos(k · x)

)
Gp(x) = Ĝp(l)− 12

(
Ĝp(l + k) + Ĝp(l − k)

)
, (6.30)

with a constant (= 100) multiple of:

Ŝµp(k)
−1

∑
(j,j′)=(0,±1),(1,−1)

Ŝµp(l + jk) Ŝµp(l + j
′k). (6.31)

It has been proved (Borgs et al. 2005; Heydenreich et al. forthcoming; Slade
2006) (and we will demonstrate a part of (i) in Section 6.3) that:

(i) fp ≤ 3 implies (6.25) for every p < pc if d > dc and λ' 1;

(ii) fp ≤ 3 and (6.25) imply the stronger bound fp ≤ 2 for every p < pc if
d > dc and λ' 1;

(iii) fp is continuous in p < pc, with f0 = 1.

Because of (i)–(ii), fp /∈ (2, 3] for every p < pc. With the help of (iii), fp ≤ 2 for all
p < pc, hence (6.25) indeed holds uniformly in p < pc. This proves Theorem 6.1.
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6.3 Lace expansion and bounding diagrams

In this section, we explain (the first few stages of) the derivation of the lace
expansion (6.16) for each model. We note here that there are many identities
of the form (6.16) depending on ∆p and Πp. Among those identities, the lace
expansion is the one with optimal ∆p and Πp, which means that ∆p and Πp

are absolutely summable for p ≤ pc (cf., the mean-field approximation, which is
valid only for p < 1) and d > dc. We briefly explain that ∆p and Πp are bounded
by geometrical series of nonzero bubbles for SAW and the Ising model and of
nonzero triangles for percolation, where the nonzero bubble/triangle is O(λ)
if d > dc.

6.3.1 Expansion for self-avoiding walk

In this section, we use inclusion-exclusion to derive the expansion (6.16) for
GSAW

p (x), with ∆SAW
p (x) = δx,o and:

ΠSAW
p (x) =

∞∑
N=1

(−1)NΠSAW
p;N (x) ≡ −

x � o

+

o

x

−
o x

+ · · · ,

(6.32)

where each ΠSAW
p;N (x) ≥ 0 consists of N vertices and 2N − 1 lines; unlabelled

vertices in ΠSAW
p;N (x) for N ≥ 3 are summed over Zd; unslashed lines correspond

to nonzero SAW paths (or loop when N = 1), while slashed lines in ΠSAW
p;N (x) for

N ≥ 3 correspond to SAW paths which may have zero length. Some lines in each
term are mutually avoiding, others are not. For example, all the lines in ΠSAW

p;2 (x)
are mutually avoiding, which is not the case for ΠSAW

p;3 (x). Refer to, e.g., Madras
and Slade (1993) for the subtlety of this mutual avoidance.

Before showing the derivation of the lace expansion, we demonstrate how
fp ≤ 3 implies the inequalities in (6.25) for ΠSAW

p if d > dSAW
c and λ ' 1. First,

by ignoring the mutual avoidance among consisting SAW paths, |Π̂SAW
p (k)| is

bounded as:

|Π̂SAW
p (k)| ≤

∑
x∈Zd




x � o

+ G̃SAW
p (x)3 + GSAW

p (x)
(
(G̃SAW

p )2 ∗ (G̃SAW
p )2

)
(x) + · · ·


 ,

(6.33)

where G̃SAW
p (x) = GSAW

p (x)− δx,o, which obeys the trivial bound:

G̃SAW
p (x) ≤ (pD ∗GSAW

p )(x) ≤ pD(x) + p2(D∗2 ∗GSAW
p )(x). (6.34)
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If p∨f (1)
p ≤ 3 and d > 12d

SAW
c , then the sum of the first term in (6.33) is bounded

as:

∑
x∈Zd

x � o

≤ p2(D∗2 ∗GSAW
p )(o) = p2

∫
[−π,π]d

ddk
(2π)d

D̂(k)2ĜSAW
p (k)

≤ 33
∫
[−π,π]d

ddk
(2π)d

D̂(k)2Ŝµp(k) ≤ 33
∫
[−π,π]d

ddk
(2π)d

D̂(k)2

1− D̂(k)
= O(λ),

(6.35)

where we have used the random-walk estimates (see, e.g., Slade (2006) for the
nearest-neighbour model, and Chen and Sakai (2007), van der Hofstad and Sakai
(2007), and van der Hofstad and Slade (2002) for the spread-out model). For the
sum of the second term in (6.33), we use:∑

x∈Zd

G̃SAW
p (x)3 ≤ ‖G̃SAW

p ‖∞ (G̃SAW
p )∗2(o), (6.36)

where ‖G̃SAW
p ‖∞ = O(λ) if d > 12d

SAW
c , due to (6.34), ‖D‖∞ = O(λ) and a similar

analysis to (6.35). Moreover, if d > dSAW
c :

(G̃SAW
p )∗2(o) ≤ p2(D ∗GSAW

p )∗2(o) = p2
∫
[−π,π]d

ddk
(2π)d

D̂(k)2ĜSAW
p (k)2

≤ 34
∫
[−π,π]d

ddk
(2π)d

D̂(k)2Ŝµp(k)
2 ≤ 34

∫
[−π,π]d

ddk
(2π)d

D̂(k)2

(1− D̂(k))2
= O(λ).

(6.37)

Therefore, ‖ΠSAW
p;2 ‖1 ≤ O(λ)2. By similar manipulation of supremums and sums,

we can show ‖ΠSAW
p;N ‖1 ≤ O(λ)N if d > dSAW

c (see, e.g., Madras and Slade 1993),
hence the series (6.33) converges and is O(λ) if λ ' 1. This proves the first
inequality in (6.25).

For the second inequality in (6.25), we use f (2)
p as well. For example:

Π̂SAW
p;2 (o)− Π̂SAW

p;2 (k) =
∑
x∈Zd

(
1− cos(k · x)

)
ΠSAW

p;2 (x)

≤
∑
x∈Zd

(
1− cos(k · x)

)
G̃SAW

p (x)3

≤
(
sup
x∈Zd

(
1− cos(k · x)

)
GSAW

p (x)
)
(G̃SAW

p )∗2(o)︸ ︷︷ ︸
pO(λ)

, (6.38)
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where, by (6.30) and f (2)
p ≤ 3:

(
1− cos(k · x)

)
GSAW

p (x)

≤
∫
[−π,π]d

ddl
(2π)d

∣∣ĜSAW
p (l)− 12

(
ĜSAW

p (l + k) + ĜSAW
p (l − k)

)∣∣
≤

∑
(j,j′)=(0,±1),(1,−1)

∫
[−π,π]d

ddl
(2π)d

300 Ŝµp(k)
−1

(1− D̂(l + jk))(1− D̂(l + j′k))
, (6.39)

which is O(1)Ŝµp(k)
−1 if d > dSAW

c , hence Π̂SAW
p;2 (o)− Π̂SAW

p;2 (k) ≤ O(λ)pŜµp(k)−1.
Similarly, we can show Π̂SAW

p;N (o) − Π̂SAW
p;N (k) ≤ O(λ)NpŜµp(k)

−1 if d > dSAW
c

(Heydenreich et al. forthcoming; Slade 2006), which yields the second inequality
in (6.25) if λ' 1.

Derivation of the lace expansion for GSAW
p (x).We only explain the first two stages

of the derivation of the expansion (6.16). To complete the expansion, we refer
to, e.g., Madras and Slade (1993).

The first stage of the expansion is to isolate the zero-step walk and identify
the position of w1 for the nonzero SAW paths �wn = (o, w1, . . . , x). Denoting
these nonzero SAW paths by �wn = (o, �w′n−1), we obtain:

GSAW
p (x) = δx,o +

∞∑
n=1

pn
∑
y∈Zd

∑
�wn=(o,y,...,x)
SAW

n∏
j=1

D(wj − wj−1)

= δx,o +
∑
y∈Zd

pD(y)
∞∑

n=1

pn−1
∑

�w′
n−1=(y,...,x)
SAW

n−1∏
j=1

D(w′j − w′j−1) 1{�w′
n−1 �o}.

(6.40)

Since �w′n−1 is an SAW path, the last indicator is 1 if and only if �wn = (o, �w′n−1)
is an SAW path. If this indicator is absent, then the sum over n is simply equal
to GSAW

p (y, x); the correction is the contribution from 1{�w′
n−1�o} ≡ 1−1{�w′

n−1 �o},
due to inclusion-exclusion. Therefore:

GSAW
p (x) = δx,o + (pD ∗GSAW

p )(x)−RSAW
p;1 (x), (6.41)

with:

RSAW
p;1 (x) =

∑
y∈Zd

pD(y)
∞∑

n=0

pn
∑

�wn=(y,...,o,...,x)
SAW

n∏
j=1

D(wj − wj−1), (6.42)
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where we have replaced n − 1 in (6.40) by n′ ∈ Z+ := {0, 1, . . .} and then
removed all the primes from the expression. The derivation of the full expansion
is completed if we can show RSAW

p;1 (x) = −(ΠSAW
p ∗GSAW

p )(x).
The second stage of the expansion is to split an SAW path �wn=(y, . . ., o, . . ., x)

in (6.42) into two subwalks according to the ‘time’ t at which �wn is at o. Let
�wn = (�wt, �w

′
n−t), where �wt = (y, . . . , o) and �w′n−t = (o, . . . , x). Then, we obtain:

RSAW
p;1 (x) =

∑
y∈Zd

pD(y)
∞∑
t=0

pt
∑

�wt=(y,...,o)
SAW

t∏
i=1

D(wi − wi−1)

×
∞∑
n=t

pn−t
∑

�w′
n−t=(o,...,x)
SAW

n−t∏
j=1

D(w′j − w′j−1) 1{�wt ∩ �w′
n−t={o}}. (6.43)

Since �wt and �w′n−t are SAW paths, the last indicator is 1 if and only if �wn =
(�wt, �w

′
n−t) is an SAW path. If we ignore this indicator, the first and second

lines become independent, yielding (ΠSAW
p;1 ∗ GSAW

p )(x), where ΠSAW
p;1 (x) ≡

x � o

is the self-avoiding loop at the origin. The correction is the contribution from
1{�wt ∩ �w′

n−t�{o}} ≡ 1− 1{�wt ∩ �w′
n−t={o}}. Therefore:

RSAW
p;1 (x) = (ΠSAW

p;1 ∗GSAW
p )(x)−RSAW

p;2 (x), (6.44)

where, by replacing n− t in (6.43) by s ∈ Z+:

RSAW
p;2 (x) =

∑
y∈Zd

pD(y)
∞∑
t=0

pt
∑

�wt=(y,...,o)
SAW

t∏
i=1

D(wi − wi−1)

×
∞∑
s=0

ps
∑

�w′
s=(o,...,x)
SAW

s∏
j=1

D(w′j − w′j−1) 1{�wt ∩ �w′
s�{o}|]. (6.45)

This completes the second stage of the expansion.
To obtain the higher-order expansion coefficient ΠSAW

p;N (x), we look at the last
SAW path in the higher-order remainder RSAW

p;N (x), e.g., �w′s in RSAW
p;2 (x), and see

when for the first time the condition in the indicator, e.g., �wt ∩ �w′s � {o} in
(6.45), is satisfied. Let u ∈ {0, 1 . . . , s} be that ‘first time’ and split the path �w′s
into �w′s = (�w′u, �w

′′
s−u). If we forget that �w′u and �w′′s−u are mutually avoiding, we
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obtain (ΠSAW
p;N ∗GSAW

p )(x); the correction becomes −RSAW
p;N+1(x). See, e.g., Madras

and Slade (1993) for more details of this inclusion-exclusion argument.

6.3.2 Expansion for percolation

Here and in Section 6.3.3, we explain the derivation of the following expansion
for percolation and the Ising model1:

Gp(x) = ∆p(x) + (∆p ∗ pD ∗Gp)(x) ≡ ∆p(x) + (pD ∗Gp)(x)

+
(
(∆p − δ) ∗ pD︸ ︷︷ ︸

Πp

∗Gp

)
(x), (6.46)

where ∆p(x) is the alternating series of the model-dependent N th-order expan-
sion coefficients ∆p;N (x) ≥ 0:

∆p(x) =
∞∑

N=0

(−1)N∆p;N (x). (6.47)

For percolation (Hara and Slade 1990), ∆perc
p (x) may be depicted as:

∆perc
p (x) = o x − o x + · · · , (6.48)

where each line corresponds to an occupied path that may have zero length
(the horizontal bold line in the second term has an occupied bond at the left
end, hence it is nonzero). The first term represents the probability that o is
doubly-connected to x, i.e., either x = o or there are at least two bond-disjoint
occupied paths from o to x �= o. The higher-order terms may be interpreted in a
similar way. For example, in the second term, the thinner lines are mutually bond-
disjoint occupied paths, and so are the bold lines. The difference in thickness is
to represent nested expectations; the bold lines are on a probability space that is
different from the one the thinner lines are defined on, and these lines are coupled
in order to satisfy certain geometrical conditions. The higher-order terms are also
defined by using nested expectations. See, e.g., Hara and Slade (1990) for more
details.

Before going into the derivation of the expansion (6.46), we demonstrate how
to use fp ≤ 3 to obtain (6.25) if d > dpercc and λ' 1. The key is the BK inequality
(van der Berg and Kesten 1985), by which we can prove that the probability of
occurrence of bond-disjoint connections is bounded from above by the product

1To keep this article as simple and intuitive as possible, we pretend here and in Section 6.3.3
that the expansion (6.46) is complete without a remainder, with the series representation (6.47)
for ∆p(x). See Hara and Slade (1990) and Sakai (2007) for the lace expansion up to any �th

order, with ∆p(x) =
∑�

N=0(−1)N∆p;N(x) and a remainder.
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of the probability of occurrence of each connection. For example, by the BK
inequality:

δx,o ≤ o x ≤ Gperc
p (x)2 = δx,o + G̃perc

p (x)2, (6.49)

where each G̃perc
p (x) := Gperc

p (x) − δx,o is bounded, again by the BK inequality,
as:

G̃perc
p (x) ≤

∑
v∈Zd

Pp

(
{o, v} is occupied, v ←→ x without using {o, v}

)
≤ (pD ∗Gperc

p )(x) ≤ pD(x) + p2(D∗2 ∗Gperc
p )(x). (6.50)

Therefore, by the same computation as in (6.37), we obtain |∆̂perc
p;0 (k)−1| ≤ O(λ)

if d > 23d
perc
c . Similarly, by the BK inequality and taking supremums and sums:

‖∆perc
p;1 ‖1 ≤

∑
u,v∈Zd

Gperc
p (u)Gperc

p (u, v)Gperc
p (v)

×
∑

y,z∈Zd

(pD ∗Gperc
p )(v, y)Gperc

p (y, z)Gperc
p (z, u)

∑
x∈Zd

Gperc
p (y, x)Gperc

p (x, z)

≤ (Gperc
p )∗3(o) ‖pD ∗ (Gperc

p )∗3‖∞ ‖(Gperc
p )∗2‖∞. (6.51)

Since f (1)
p ≤ 3 and d > dpercc , both (Gperc

p )∗3(o) and ‖(Gperc
p )∗2‖∞ are O(1). More-

over, by (6.50) and Gperc
p (x) ≥ δx,o and using p ∨ f (1)

p ≤ 3 and the random-walk
estimates mentioned below (6.35):

‖pD ∗ (Gperc
p )∗3‖∞ ≤ p‖D‖∞ + 3p2‖D∗2 ∗ (Gperc

p )∗3‖∞

≤ 3‖D‖∞ + 36
∫
[−π,π]d

ddk
(2π)d

D̂(k)2

(1− D̂(k))3
= O(λ), (6.52)

if d > dpercc , hence ‖∆perc
p;1 ‖1 ≤ O(λ). By similar manipulations of supremums

and sums, we can show ‖∆perc
p;N‖1 ≤ O(λ)N for N ≥ 2 if d > dpercc (see, e.g.,

Heydenreich et al. forthcoming). As a result, if λ' 1:

|∆̂perc
p (k)− 1| ≤ |∆̂perc

p;0 (k)− 1|+
∞∑

N=1

‖∆perc
p;N‖1 = O(λ), (6.53)

which also implies |Π̂perc
p (k)| ≤ O(λ). This proves the first inequality in (6.25).
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For the second inequality in (6.25), we first note that:

Π̂perc
p (o)− Π̂perc

p (k) = p
((

∆̂perc
p (o)− 1

)
−
(
∆̂perc

p (k)− 1
)
D̂(k)

)
= p
((

∆̂perc
p (o)− ∆̂perc

p (k)
)
+
(
∆̂perc

p (k)− 1
)(
1− D̂(k)

))
.

(6.54)

Since 1 − D̂(k) ≤ 2Ŝµp(k)
−1, it thus suffices to show |∆̂perc

p (o) − ∆̂perc
p (k)| ≤

O(λ)Ŝµp(k)
−1. However, we only show here that ∆̂perc

p;0 (o)− ∆̂perc
p;0 (k) ≤ O(1)Ŝµp

(k)−1 (the wanted O(λ) term can be extracted using (6.50); Heydenreich et al.
forthcoming). By (6.49) and (6.30) and using f (1)

p ∨ f (2)
p ≤ 3, we obtain:

∆̂perc
p;0 (o)− ∆̂perc

p;0 (k) =
∑
x∈Zd

(
1− cos(k · x)

)
∆perc

p;0 (x) ≤
∑
x∈Zd

(
1− cos(k · x)

)
Gperc

p (x)2

=
∫
[−π,π]d

ddl
(2π)d

Ĝperc
p (l)

(
Ĝperc

p (l)− 12
(
Ĝperc

p (l + k) + Ĝperc
p (l − k)

))
≤

∑
(j,j′)=(0,±1),(1,−1)

∫
[−π,π]d

ddl
(2π)d

900 Ŝµp(k)
−1

(1− D̂(l))(1− D̂(l + jk))(1− D̂(l + j′k))
,

(6.55)

which is O(1)Ŝµp(k)
−1 if d > dpercc , as required. The higher-order term ∆̂perc

p;N (o)−
∆̂perc

p;N (k) obeys a diagrammatic bound that contains N nonzero triangles, which
is bounded by O(λ)N Ŝµp(k)

−1 for N ≥ 1 if d > dpercc (Heydenreich et al. forth-
coming), yielding the second inequality in (6.25) if λ' 1.

Derivation of the lace expansion for Gperc
p (x). Here, we only explain the first

stage of the derivation of the expansion (6.46). See Hara and Slade (1990) for
the completion of the expansion.

First, we introduce the following notions and notation (which will also be
used for the Ising model):

Definition 6.1

1. For V ⊂ Zd, we denote by BV the set of bonds whose vertices are both
in V . Given a bond configuration n ≡ {nb} (where nb = 1{b is occupied}),
we say that x is n-connected to y in V , denoted x ←→

n
y in V , if either

x = y ∈ V or there is a path from x to y consisting of bonds b ∈ BV with
nb > 0.
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2. For an event E (= a set of bond configurations) and a bond b, the event
{E without using b} is the set of bond configurations n ∈ E such that
the new configuration obtained by changing nb is also in E. Given a bond
configuration n, we let:

Cbn(x) = {y : x←→n y without using b}. (6.56)

3. We denote the head and tail of a directed bond b by b and b, respectively:
b = (b, b). Given a bond configuration n, we say that a directed bond b
is pivotal for x ←→

n
y from x, if x ←→

n
b without using b and b ←→

n
y in

Zd \ Cbn(x). Let:

pivn(x, y) = {b : b is pivotal for x←→n y from x}. (6.57)

If x←→
n
y and pivn(x, y) = ∅, we say that x is n-doubly connected to y,

denoted x⇐⇒
n
y.

4. As usual, we abbreviate {n : Cbn(x) = V } to {Cb(x) = V }, and {n : b ∈
pivn(x, y)} to {b ∈ piv(x, y)}, etc.

We now begin with the derivation of the lace expansion for Gperc
p (x) ≡

Pp(o←→ x). First we note that, for each bond configuration n, there are two pos-
sibilities for o←→

n
x: either pivn(o, x) = ∅ or pivn(o, x) �= ∅. If pivn(o, x) �= ∅,

we take its first element b (so that o⇐⇒
n
b). Then, we have:

{o←→ x} = {o←→ x, piv(o, x) = ∅}︸ ︷︷ ︸
{o⇐⇒x}

∪̇
⋃̇
b

{o←→ x, b ∈ piv(o, x), o⇐⇒ b},

(6.58)

where, by definition, the event subject to the big union over b can be written as:

{b is occupied} ∩ {o⇐⇒ b without using b} ∩ {b←→ x in Zd \ Cb(o)}. (6.59)

Let pb = pD(b− b) ≡ Pp(b is occupied). Since {b is occupied} is independent of
the other two events in (6.59), we obtain:

Gperc
p (x) = ∆perc

p;0 (x) +
∑
b

pbEp

[
1{o⇐⇒b}1{b←→x in Zd\Cb(o)}

]
, (6.60)

where the ‘without using b’ condition has been ignored, as 1{b←→x in Zd\Cb(o)} is
always zero on the event {b∈Cb(o)}⊃{o⇐⇒x} \ {o⇐⇒x without using b}.
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Next we investigate the expectation in (6.60). For notational convenience, we
will drop the subscript p from Pp and Ep. First, by conditioning on the cluster
Cb(o), we can formally write:

E
[
1{o⇐⇒b}1{b←→x in Zd\Cb(o)}

]
=
∑

V⊂Zd

E
[
1{Cb(o)=V,o⇐⇒b}1{b←→x in Zd\V }

]
=
∑

V⊂Zd

∑
(l,m)

P(l,m)1{Cbl (o)=V, o⇐⇒
l

b}1{b←→
m

x},

(6.61)

where (l,m) is a bond configuration on BZd , with m ∈ {0, 1}BZd\V and l ∈
{0, 1}BZd

\B
Zd\V , and we have ignored the unnecessary ‘in Zd \ V ’ condition for

such an m. Let:

PZd\V (m) =
∏

b∈B
Zd\V

(
pbδmb,1 + (1− pb)δmb,0

)
(6.62)

and let P̃V be such that P(l,m) = P̃V (l)PZd\V (m). Then, by multiplying and
dividing (6.61) by

∑
m′ PZd\V (m′) (which is always 1 for percolation), we obtain

(6.61) =
∑

V⊂Zd

∑
(l,m′)

P̃V (l)PZd\V (m
′)︸ ︷︷ ︸

P(l,m′)

1{Cbl (o)=V, o⇐⇒
l

b}

∑
m PZd\V (m)1{b←→

m
x}∑

m′ PZd\V (m′)︸ ︷︷ ︸
P

Zd\V (b←→x)

=
∑

V⊂Zd

E
[
1{Cb(o)=V, o⇐⇒b}PZd\V (b←→ x)

]
= E
[
1{o⇐⇒b}PZd\Cb(o)(b←→ x)

]
. (6.63)

Of course, the above derivation using P(l) for l ∈ {0, 1}BZd is formal and
rather blunt. However, in Section 6.3.3, we will find similarity in the derivation
of an Ising version of this identity.

Finally, by substituting (6.63) back to (6.60), we arrive at:

Gperc
p (x) = ∆perc

p;0 (x) +
∑
b

∆perc
p;0 (b) pbG

perc
p (b, x)−Rperc

p;1 (x), (6.64)

where:

Rperc
p;1 (x) =

∑
b

E
[
1{o⇐⇒b} pb

(
P(b←→ x)− PZd\Cb(o)(b←→ x)

)]
. (6.65)

This completes the first stage of the expansion.
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At every stage of the further expansion, we have to investigate the differ-
ence between the full two-point function Gperc

p (y, x) ≡ P(y ←→ x) and its
restricted version PZd\V (y ←→ x) for given y ∈ Zd and V ⊂ Zd. However,
since PZd\V (y ←→ x) = P(y ←→ x in Zd \ V ), the difference is actually equal to
the probability of the event that y is connected to x in Zd, but not in Zd \ V ,
i.e., every connection from y to x has to go through a vertex in V . The key idea
to derive the higher-order expansion coefficients is to see when for the first time
the connection goes though V . If there are no pivotal bonds for that connection
after going through V , this will be the contribution to ∆perc

p;N (x) at the N th stage
of the expansion. On the other hand, if there are pivotal bonds for that connec-
tion after going through V , then we cut the structure at the first bond among
those pivotal bonds, yielding (∆perc

p;N ∗ pD ∗Gperc
p )(x)−Rperc

p;N+1(x), where the cor-
rection term Rperc

p;N+1(x) again contains the difference between a full two-point
function and its restricted version. Therefore, we can repeat the same proce-
dure and continue expanding indefinitely. See Hara and Slade (1990) for more
details.

6.3.3 Expansion for the Ising model

In this section, we explain the derivation of the expansion (6.46) for the finite-
volume Ising two-point function 〈ϕoϕx〉Λ := 〈ϕoϕx〉p;Λ for x, o ∈ Λ ⊂ Zd:

〈ϕoϕx〉Λ = ∆Ising
p,Λ (x) +

∑
b∈BΛ

∆Ising
p,Λ (b) pb 〈ϕbϕx〉Λ. (6.66)

To obtain this identity, we use the so-called random-current representation, ini-
tiated by Griffiths et al. (1970). As explained below, it allows us to represent
〈ϕoϕx〉Λ as a sort of percolation two-point function. Therefore, we can apply
the inclusion-exclusion argument using pivotal bonds, as explained in the pre-
vious section. Moreover, the event defining the N th-order expansion coefficient
∆Ising

p,Λ;N (x) is identical to that for ∆perc
p;N (x), for every N ≥ 0. Then, why is dIsingc

equal to dSAW
c , not equal to dpercc , as in (6.18)–(6.19)? We will get back to this

issue at the end of this section.
Now, we explain the random-current representation of 〈ϕxϕy〉Λ. We call n ≡

{nb} ∈ ZBΛ
+ a current configuration on BΛ (cf., a bond configuration n ∈ {0, 1}BΛ

for percolation). A vertex v is said to be a source of a current configuration
n if

∑
b�v nb is an odd number, and we denote by ∂n the set of all sources

of n. Let:

WΛ(n) =
∏
b∈BΛ

(βJb)nb

nb!
. (6.67)
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Then, 〈ϕxϕy〉Λ can be represented as (e.g., Griffiths et al. 1970):

〈ϕxϕy〉Λ =

∑
∂n=x�y

WΛ(n)1{x←→
n

y}∑
∂n=∅

WΛ(n)
=

y

x

, (6.68)

where x � y is an abbreviation for the symmetric difference {x}*{y}: x � y =
{x, y} if x �= y, and x � y = ∅ if x = y. In the above figures, each bold line-
segment represents a bond with an odd current, while a thinner line-segment
represents a bond with a positive-even current. Although the indicator function
in the numerator is redundant because of the source constraint, we keep it here
to emphasize that x is n-connected to y. In fact, x is connected to y with bonds
having odd currents. Using this fact, we have, for example:

∑
∂n=x�y

WΛ(n)1{x←→
n

y} ≤
∑
v∈Λ

∑
nx,v :odd(βJx,v)

nx,v/nx,v!∑
mx,v :even(βJx,v)

mx,v/mx,v!

×
∑

∂m=v�y
(mx,v :even)

WΛ(m)1{v←→
m

y}

≤
∑
v∈Λ

tanh(βJx,v)︸ ︷︷ ︸
px,v≡pD(v−x)

〈ϕvϕy〉Λ
∑

∂n=∅

WΛ(n), (6.69)

which implies in the infinite-volume limit (cf., (6.34) and (6.50))

G̃Ising
p (x, y) := GIsing

p (x, y)− δx,y ≤ (pD ∗GIsing
p )(x, y). (6.70)

Repeated use of this inequality yields GIsing
p (x) ≤ Sp(x) for any p < 1.

Derivation of the lace expansion for 〈ϕoϕx〉Λ. We only explain here the first stage
of the derivation of the expansion (6.66), and refer to Sakai (2007) for the full
expansion.
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First, we define:

∆Ising
p,Λ;0(x) =

∑
∂n=o�x

WΛ(n)1{o⇐⇒
n

x}∑
∂n=∅

WΛ(n)
. (6.71)

Then, by (6.58) and (6.68), we obtain:

〈ϕoϕx〉Λ = ∆Ising
p,Λ;0(x)

+
∑
b∈BΛ

∑
∂n=o�x

WΛ(n)1{o⇐⇒
n

b without using b}1{nb:odd}1{b←→
n

x in Λ\Cbn(o)}∑
∂n=∅

WΛ(n)
,

(6.72)

where we have used the fact that nb > 0 is an odd number if o ←→
n
x and

b ∈ pivn(o, x).
Next, we investigate the numerator of the second term. First, by changing

the parity of nb as in (6.69), we obtain:∑
∂n=o�x

WΛ(n)1{o⇐⇒
n

b without using b}1{nb:odd}1{b←→
n

x in Λ\Cbn(o)}

=

∑
nb:odd(βJb)

nb/nb!∑
nb:even(βJb)

nb/nb!

∑
∂n=o�b�x
(nb:even)

WΛ(n)1{o⇐⇒
n

b without using b}1{b←→
n

x in Λ\Cbn(o)}

= pb
∑

∂n=o�b�x

WΛ(n)1{o⇐⇒
n

b}1{b←→
n

x in Λ\Cbn(o)}, (6.73)

where we have ignored the ‘without using b’ condition, due to the same reason as
explained below (6.60); we have also dropped the ‘nb:even’ condition, because it
is impossible to satisfy the source constraint and the conditions in the indicators
at the same time if nb is an odd number. By conditioning on the cluster Cb(o),
we have (cf., (6.61)):

(6.73) = pb
∑
V⊂Λ

∑
∂n=o�b�x

WΛ(n)1{Cbn(o)=V, o⇐⇒
n

b}1{b←→
n

x in Λ\V }

= pb
∑
V⊂Λ

∑
∂l=o�b

∂m=b�x

W̃V (l)WΛ\V (m)1{Cbl (o)=V, o⇐⇒
l

b}1{b←→
m

x}, (6.74)

where n ≡ (l,m) is a current configuration on BΛ, with m ∈ Z
BΛ\V
+ and

l ∈ Z
BΛ\BΛ\V
+ , and W̃V is such that WΛ(l,m) = W̃V (l)WΛ\V (m). Here, in
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order for a joint current configuration (l,m) to satisfy all the conditions in the
first line, l and m have to satisfy the required source constraints in the sec-
ond line. Inspired by the computation in (6.63), we multiply and divide (6.74)
by
∑

∂m′=∅WΛ\V (m
′) (which is not 1 in general for the Ising model) and

obtain:

(6.74) = pb
∑
V⊂Λ

∑
∂(l,m′)=o�b

W̃V (l)WΛ\V (m′)︸ ︷︷ ︸
WΛ(l,m′)

1{Cbl (o)=V, o⇐⇒
l

b}

×

∑
∂m=b�x

WΛ\V (m)1{b←→
m

x}∑
∂m′=∅

WΛ\V (m′)︸ ︷︷ ︸
〈ϕbϕx〉Λ\V

=
∑

∂n=o�b

WΛ(n)1{o⇐⇒
n

b} pb 〈ϕbϕx〉Λ\Cbn(o). (6.75)

Finally, by substituting (6.75) back to (6.72), we arrive at:

〈ϕoϕx〉Λ = ∆Ising
p,Λ;0(x) +

∑
b∈BΛ

∆Ising
p,Λ;0(b) pb 〈ϕbϕx〉Λ −R

Ising
p,Λ;1(x), (6.76)

where:

RIsing
p,Λ;1(x) =

∑
b∈BΛ

∑
∂n=o�b

WΛ(n)1{o⇐⇒
n

b} pb
(
〈ϕbϕx〉Λ − 〈ϕbϕx〉Λ\Cbn(o)

)
∑

∂n=∅

WΛ(n)
. (6.77)

This completes the first stage of the expansion.
Similarly to percolation, at every stage of the further expansion, we have to

investigate 〈ϕyϕx〉Λ − 〈ϕyϕx〉Λ\V for given y ∈ Λ and V ⊂ Λ. However, since∑
∂n=∅WA(n) �= 1 for any nontrivial A ⊂ Zd, we have:

〈ϕyϕx〉Λ\V �=

∑
∂n=y�x

WΛ(n)1{y←→
n

x in Λ\V }∑
∂n=∅

WΛ(n)
, (6.78)

in contrast with the equality PΛ\V (y ←→ x) = P(y ←→ x in Λ \ V ) for percola-
tion. This makes it difficult to compare two-point functions on different sets of
sites.
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In Sakai (2007), we overcame this difficulty using the so-called source-switching
lemma (Griffiths et al. 1970) and proved that:

〈ϕyϕx〉Λ − 〈ϕyϕx〉Λ\V =

∑
∂n=y�x
∂m=∅

WΛ(n)WΛ\V (m)1{y←→
m+n

x through V }

∑
∂n=∂m=∅

WΛ(n)WΛ\V (m)
, (6.79)

where 1{y←→
m+n

x through V } = 1{y←→
m+n

x}−1{y←→
m+n

x in Λ\V } for m+n = {mb+nb} ∈
ZBΛ
+ . By this percolation representation, we can follow the same strategy as for

percolation: find the first bond b ∈ pivm+n(y, x) such that x←→
m+n

b though V . At

the N th stage of the expansion, the contribution from the case in which there are
no such pivotal bonds is ∆Ising

p,Λ;N (x), otherwise we have
∑

b ∆
Ising
p,Λ;N (b)pb〈ϕbϕx〉Λ−

RIsing
p,Λ;N+1(x), where the correction term RIsing

p,Λ;N+1(x) again contains the difference
of the form (6.79). Then, we can repeat the same argument to continue the
expansion indefinitely. See Sakai (2007) for more details.

Remark 6.2 : Since we have exploited the percolation structure of the random-
current representation, the set of ‘bond’ configurations defining ∆Ising

p,Λ;N (x) is
identical to that for ∆perc

p;N (x), for every N ≥ 0. As explained in Section 6.3.2,
in order to bound ∆perc

p;N (x) for percolation, it suffices to know the geometrical
structure of the relevant bond configurations. Then, the BK inequality does the
remaining job: e.g., ∆perc

p;0 (x) ≤ Gperc
p (x)2. However, if this was also the case for

the Ising model, i.e., if there was an Ising version of the BK inequality such that
∆Ising

p,Λ;0(x) ≤ GIsing
p (x)2, then dIsingc would be equal to dpercc (above which the trian-

gle condition holds) rather than dSAW
c (above which the bubble condition holds, as

required for the mean-field behaviour for the Ising model).
In fact, instead of using visible clusters of positive-current bonds, we should

use a graph GΛ(n) ≡ (Λ, EΛ(n)) that is constructed from each current config-
uration n ∈ ZBΛ

+ by joining u, v ∈ Λ with nu,v labelled edges. Then, for each
n ∈ ZBΛ

+ defining ∆Ising
p,Λ;0(x), there are at least three edge-disjoint paths from o to

x in the graph GΛ(n), as shown in the following example:

Example 6.1

1
11

1

1

2

1 1 1

2
2

2 2

2

2

2

2

2 2

1

1
1 1

1

1

1

o

x

n ∈ ZBΛ
+

⇒

x

o

GΛ(n)
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This observation leads us to predict that ∆Ising
p,Λ;0(x) is bounded similarly to ∆SAW

p;1 (x).
The prediction was proved affirmative in Sakai (2007): ∆Ising

p,Λ;0(x) − δx,o ≤
G̃Ising

p (x)3. It was also proved that the higher-order expansion coefficients for the
Ising model obey similar diagrammatic bounds for the SAW expansion coeffi-
cients. This is why dIsingc = dSAW

c , not dIsingc = dpercc .
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LARGE DEVIATIONS FOR EMPIRICAL CYCLE
COUNTS OF INTEGER PARTITIONS AND THEIR

RELATION TO SYSTEMS OF BOSONS

Stefan Adams

Abstract

Motivated by the Bose gas, we introduce certain combinatorial structures.
We analyse the asymptotic behaviour of empirical shape measures and of
empirical path measures of N Brownian motions with large deviations tech-
niques. The rate functions are given as variational problems which we anal-
yse. A symmetrized system of Brownian motions, that is, for any i, the
terminal location of the i-th motion is affixed to the initial point of the
σ(i)-th motion, where σ is a uniformly distributed random permutation of
1, . . . , N , is highly correlated and has to be formulated such that standard
techniques can be applied. We review a novel spatial and a novel cycle
structure approach for the symmetrized distributions of the empirical path
measures. The cycle structure leads to a proof of a phase transition in the
mean path measure.

7.1 Introduction
We study different aspects of combinatorial asymptotic large-N behaviour of
distributions on the group SN of permutations of N elements and their cycles
structures distributed on the set PN of integer partitions of N . We combine this
analysis with large deviations principles for certain empirical path measures of
Brownian motions. We review two different approaches to analyse the large-N
asymptotic of the mean path measure under symmetrized distributions. One is
spatial structure of the symmetrization and the other one is the cycle structure
for concatenations of Brownian bridges to Brownian bridges whose time horizons
equal the cycle lengths.

The main focus is to derive variational problems whose analyses will provide
deeper insight into the probabilistic asymptotic behaviour for large systems of
Brownian motions. This combination of combinatorial studies, large deviations
techniques, and variational analysis is novel and has its roots in the mathematical
analysis of large systems of Bosons, and it is hence related to and carries forward
the article Adams and König (2008a) in these proceedings. In Section 7.1.1 we
review main features of studying systems of Bosons and in Section 7.1.2 we intro-
duce probabilistic models and outline how these raise interesting combinatorial
structures for permutations and integer partitions.
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7.1.1 Motivation

The state of a large system of N identical quantum particles (subsystems) is
described by the many-body wave function. Two many-body wave functions
which result from each other by a permutation of the indices distinguishing the
particles must describe the same state. Such a permutation can change the state
vector (wave function) only by a numerical factor, and these factors must give
a 1−dimensional representation of the permutation group SN of N elements.
Hence, there are only two possible choices, −1 and +1. That is, wave functions
are antisymmetric or symmetric under permutations. Due to Pauli’s exclusion
principle, systems of Fermions are described by antisymmetric wave functions.
If the wave functions are symmetric, i.e., they are elements in the image of the
projection P+N : L2(RdN )→ L2+(RdN ) of the N -particle Hilbert space L2(RdN ):

P+N (Ψ)(x) =
1
N !

∑
σ∈SN

Ψ(xσ(1), . . . , xσ(N)),

one calls the quantum particles Bosons. The Bosons are well-known because they
show a phenomenon known as Bose–Einstein condensation. It was predicted by
Einstein (1925) on the basis of ideas of the Indian physicist Bose (1924) con-
cerning the statistical description of the quanta of light: in a system of particles
described by symmetric many-body wave functions and whose total number is
conserved, there should be a temperature below which a finite fraction of all the
particles ‘condense’ into the same one-particle state. Einstein’s original predic-
tion was for a noninteracting gas of particles. The predicted phase transition is
associated with the condensation of atoms in the state of lowest energy and is
the consequence of quantum statistical effects.

For a long time these predictions were considered as a curiosity of non-
interacting gases and its statistics, called Bose statistics, and had no practical
impact. But the ideal gas systems show that the above symmetrization gener-
ates correlations among the noninteracting particles. We review the mathematics
concerned with this symmetrization and its relation to combinatorial studies of
integer partitions and corresponding limit theorems. Our main objective is to
derive variational formulae via large deviations principles for symmetrized sys-
tems of Brownian motions. We briefly motivate this ansatz in the following. N
quantum particles are described by the N -particle Hamilton operator:

HN =
N∑
i=1

(
−∆i +W (xi)

)
+

∑
1≤i<j≤N

v(|xi − xj |), x1, . . . , xN ∈ Rd,

where the i-th Laplace operator, ∆i, represents the kinetic energy of the i-th
particle, and W : Rd → [0,∞] is the trap potential, and where the pair potential
v : R+ → R expresses the potential energy of two interacting particles. We do not
specify here the assumptions on the trap potentialW and on the pair potential v
but refer to standard choices in Ruelle (1969) and Lieb et al. (2005). The ground
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state at zero temperature is the minimizer of the energy and is, due to the symme-
try properties of the Hamilton operator, a symmetric N -particle wave function.
The study of systems of Bosons at zero temperature is reviewed in the article
Adams and König (2008a), more can be found in Lieb et al. (2005). Recent good
references including experimental aspects are Pitaevskii and Stringari (2003) and
Griffin et al. (1995).

To describe systems of Bosons at thermodynamic equilibrium with inverse
temperature β > 0 one has to analyse the traces of the Boltzmann factor e−βHN ,
like the free energy, or the pressure, where the trace is restricted to the sub-
space L+(RdN ) of symmetric N -particle wave functions. The trace class operator
e−βHN is called the canonical ensemble for which the number of particles and the
inverse temperature is fixed, see Khinchin (1960) and Thirring (1980) as stan-
dard references. The so-called quantum canonical partition function Z(sym)

N (β) is
the trace of this operator, i.e.:

Z(sym)

N (β) = Tr L2
+(R

dN )

(
e−βHN

)
= Tr L2(RdN )

(
P+N e−βHN

)
.

However, these traces are very difficult to calculate because the spectral analysis
of the Hamilton operator HN with interaction is not known. We will discuss
therefore only noninteracting Bosons in this article.

The genuine task of quantum statistical mechanics is to prove and analyse
the thermodynamic limit − limΛ↑Rd,N→∞ 1/β|Λ| logZ(sym)

N (β), which is the free
energy, such that N/|Λ| → ρ ∈ (0,∞), see Ruelle (1969) for a general introduc-
tion to the concept of thermodynamic limit. The quantum statistical mechanics
of this ideal Bose gas is well understood (see for example Huang 1987). One can
calculate the specific free energy in the thermodynamic limit as a function of
the inverse temperature and the density. The Bose–Einstein condensation tran-
sition can be identified here as a singularity in the specific free energy for certain
parameter values. The pressure of the ideal Bose gas at finite temperature can be
calculated in the so-called grandcanonical ensemble, where the particle number
is a Poissonian random variable. However, since Einstein’s work in 1925 there
has been no rigorous mathematical proof for interacting Bosons in the thermo-
dynamic limit for finite density and positive temperature. The only exception
is the proof of Bose–Einstein condensation on a lattice with hard-core exclu-
sion and half filling, see Lieb et al. (2005). The main difficulties are the role
of the symmetrization, the role of the interaction, and an appropriate defini-
tion/criterium of what Bose–Einstein is precisely. There have been three lines of
rigorous mathematical attacks. One started with Landau (1941) and its descrip-
tion of superfluidity, which is considered as a Bose–Einstein condensation since
London (1938), in terms of the spectrum of elementary excitations of the fluid.
In 1947 Bogoliubov developed the first microscopic theory of interacting Bose
gases, based on approximations of the Hamilton operator and the concept of
Bose–Einstein condensation. This initiated several theoretical studies; a recent
account on the state of the art can be found in Adams and Bru (2004a,b) and
on its contribution to superfluidity theory in Adams and Bru (2004c).
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A second line is devoted to the study of dilute interacting systems, compare
the article Adams and König (2008a) for an overview on this. For these systems
the first experimental realization of Bose–Einstein condensation was derived in
1995. This was followed by rigorous studies in a series of papers by Lieb et al.,
see Lieb et al. (2005) for more information.

The third line of attack focuses on probabilistic representations of traces
and interacting Brownian motions. This started with Adams et al. (2006a) and
Adams et al. (2006b) for dilute systems and in Adams and König (2007), Adams
and Dorlas (2007), and Adams (2007) for symmetrized systems. In Section 7.1.2
below we outline this approach. This approach has two challenging task one is
to deal with the interaction of the Brownian motions and the other one is to
resolve the correlations due to the symmetrization. The symmetrization correla-
tions are the main subject of this article, and we will outline several aspects of
combinatorial and stochastic analysis related with these.

In order to understand Bose–Einstein condensation as a quantum phase tran-
sition one needs to study correlation functions. In quantum statistical mechanics
correlations can be expressed as reduced traces of the Boltzmann factor (see
Thirring (1980) or Bratteli and Robinson (1997)). The reduced one-particle den-
sity matrix defines an integral kernel for the corresponding operator. Penrose
(1951) and Onsager and Penrose (1956) introduced the concept of the nondi-
agonal long-range order of the one-particle reduced density matrix (the integral
kernel) and defined this as a criterion for Bose–Einstein condensation.

Let us make some remarks on related literature. Scaling limits for shape
measures of integer partitions in PN under uniform distribution are obtained in
Vershik (1996). Large deviations from this limit behaviour are in Dembo et al.
(2000), where large deviations principles for scaled shape measures for parti-
tions as well as for strict partitions under uniform distributions are derived.
Motivated by the statistics of combinatorial partitions, illustrated by Vershik
in Vershik (1996), Benfatto et al. (2005) derived limit theorems for statistics of
combinatorial partitions for the case of a mean field Bose gas in the grandcanon-
ical ensemble. Here, in contrast to the canonical ensemble, only the mean of the
particle number is fixed. Benfatto et al. (2005) are using Fourier analysis of the
corresponding traces to derive a complete description of the statistics of short
and long cycles. For a perturbed mean-field model the density of long cycles for
a perturbed mean-field model is analysed in Dorlas et al. (2005).

7.1.2 Systems of Bosons and Probabilistic models

Feynman 1953 introduced the functional integration methods for traces, see
de Witt and Storaeds (1970) and Bratteli and Robinson (1997) for details. Since
the 1960s, interacting Brownian motions are generally used for probabilistic rep-
resentations for these traces. The parameter β, which is interpreted as the inverse
temperature of the system, is then the length of the time interval of the Brownian
motions. Difficulties arise for systems of Bosons due to the symmetrization (see
Bratteli and Robinson 1997) and the interaction.
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Let Ω := {ω : [0,∞)→ Rd : ω continuous} be the set of continuous functions
[0,∞)→ Rd. The elements in Ω are called trajectories or paths and we denote by
Ωk = {ω : [0, kβ] → Rd : ω continuous}, k ∈ N, the set of paths for time horizon
[0, kβ]. We write Ωβ for Ω1. We equip Ω (respectively Ωk) with the topology
of uniform convergence and with the corresponding Borel σ-field B (respectively
Bk). We consider N Brownian motions, B(1), . . . , B(N), with time horizon [0, β] as
N random variables taking values in Ωβ . For the reader’s convenience, we repeat
the definition of a Brownian bridge measure; see the Appendix in Sznitman
(1998). We decided to work with Brownian motions having generator ∆ instead
of 12∆. We write Px for the probability measure under which B = B(1) starts
from x ∈ Rd. The canonical (non-normalized) Brownian bridge measure on the
time interval [0, β] with initial site x ∈ Rd and terminal site y ∈ Rd is defined
as µβx,y(A) = Px(B ∈ A;Bβ ∈ dy)/dy for A ⊂ Ωβ measurable. Hence, the
Brownian bridge measure for a Brownian bridge confined to a subset ΛN ⊂ Rd is
defined by:

µβ,Nx,y (A) =
Px(B ∈ A;Bβ ∈ dy,B[0,β] ⊂ ΛN )

dy
A ⊂ Ωβ measurable. (7.1)

If the motions are not confined to stay in ΛN we have:

µβx,y(Ωβ) =
Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e−

1
4β |x−y|2 .

The Feynman–Kac formula gives an expression for the traces of Boltzmann
factor. For that we define the following interaction Hamiltonian:

GN,β =
∑

1≤i<j≤N

∫ β

0
v(|B(i)

t −B(j)
t |)dt

for the N Brownian motions B(1), . . . , B(N) with time horizon [0, β].
For Dirichlet boundary conditions for the Hamilton operator (Laplace oper-

ator), i.e., the particles are enclosed in the box ΛN , we have:

Tr (e−βHN ) =
∫
ΛN

dx1 · · ·
∫
ΛN

dxN
N⊗
i=1

µβ,Nxi,xi

(
e−GN,β

)
.

This trace describes so-called Boltzmann particles, which means classical parti-
cles for which no special statistics is required. The symmetrized trace is:

Tr L2
+(R

dN )(e
−βHN ) =

1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫
ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)

(
e−GN,β

)
.

(7.2)

The trace formula (7.2) is the starting point for the remaining sections, it
defines transformed path measures for N Brownian motions. As mentioned above
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there are two aspects to deal with, the interaction and the symmetrization. The
interaction for dilute systems is handled in Adams and König (2008a) of these
proceedings and the symmetrization is studied here. In what follows we there-
fore do not handle interacting motions but focus on the symmetrization. This
symmetrization is the origin for the Bose–Einstein condensation and has to be
understood deeply. In Section 7.2 the cycle structure of the permutations raises
interesting asymptotic combinatorial questions, and we derive our first large devi-
ations principles for the discrete shape measures under various distributions. We
give an overview of the combinatorial research on permutations and integer par-
titions. In Section 7.3 we combine the asymptotic combinatorics with certain
path empirical measures of the Brownian motions. The objective there is to gain
deeper insight in a probabilistic symmetrized model which can provide informa-
tion on the corresponding systems of Bosons. For the first time we derive a phase
transition for mean path measure for a model with no interaction. The proof of
this transition requires complete information on the cycle structure, i.e., we will
use our insights from Section 7.2. We contrast the cycle structure to a spatial
structure, which we analyse in Section 7.3.1. This spatial approach is new, see
Adams and König (2007) and Adams and Dorlas (2007), and it gives an indi-
rect proof for the Bose–Einstein condensation. In future, the spatial and the cycle
method have to be combined to describe the transition behaviour also with inter-
actions. This combination will enable one to prove Bose–Einstein condensation
with the off-diagonal long range order behaviour criterion.

7.2 Large deviations for cycle counts
The cycle structure of permutations allows us to replace in (7.2) the sum over
permutations by a sum over integer partitions. This in turn defines probability
distributions on permutations and on integer partitions. We introduce some basic
facts on integer partitions.

For any integer N , a partition λ of N is the collection of integers n1 ≥ n2 ≥
· · · ≥ nk ≥ 1, k ∈ {1, . . . , N}, such that

∑k
i=1 ni = N . We denote the set of all

partitions of N by PN . Any partition λ ∈ PN is determined by the sequence
{rk}Nk=1 of positive integers rk such that

∑N
k=1 krk = N , where we write rk(λ) =

rk. We call the number rk an occupation number or cycle count of the partition,
and we denote the whole tuple of the cycle counts by RN = (r1, . . . , rN ) The
multiplicity �λ of a partition is the number of cycles, i.e., �λ =

∑N
k=1 rk. A cycle

of length k is a chain of permutations, such as 1 goes to 2, 2 goes to 3, 3 goes to
4, etc. until k − 1 goes to k and finally k goes to 1. A permutation with exactly
rk cycles of length k is said to be of type {rk}Nk=1. Hence, each partition λ ∈ PN

corresponds to a conjugacy class A(λ) of permutations, i.e., those of the same
type, with exactly:

�A(λ) =
N !∏N

k=1 rk!krk

elements.
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If a permutation is chosen uniformly and at random from the N ! possible
permutations in SN , then the counts rk of cycles of length k are dependent
random variables. The joint distribution of the cycle countsis given by:

P(RN = r) = 1l{
N∑

k=1

krk = N}
N∏

k=1

(1
k

)rk 1
rk!

(7.3)

with r = (r1, . . . , rN ) ∈ ZN
+ . The uniform distribution in (7.3) is called the Ewens

Sampling formula with parameter Θ = 1. The Ewens Sampling formula (Ewens
1972) reads:

P(RN = r) =
N !

Θ(Θ + 1) · · · (Θ +N − 1)
1l{

N∑
k=1

krk = N}
N∏

k=1

(Θ
k

)rk 1
rk!

with r = (r1, . . . , rN ) ∈ ZN
+ . This sampling formula was analysed intensively by

Kingman (1975), Kingman (1978b), and Kingman (1978a), see also Watterson
(1976) for a diffusion model of the allele frequencies. There exists an extensive
literature on questions related to this sampling formula and random discrete
partitions. See the recent monographs Pitman (2002) and Arratia et al. (2003)
for an overview and further references. These studies go back to Goncharov
(1944), who studied the asymptotic behaviour of the distribution of cycle counts
for the uniform (Ewens sampling with Θ = 1) distribution. For permutations of
single points of point process clouds in Rd or graphs we refer to Kolchin (1986),
see further the Section 7.3.1 below.

We focus on large deviations of different distributions of the following func-
tional of integer partitions, the so-called discrete empirical shape measure, or
empirical cycle count distribution, defined as:

QN : PN →M1(N), λ �→ Qλ
N (·) = 1

N

N∑
k=·
rk(λ), (7.4)

whereM1(N) is the set of probability measures on N. We will write Qλ
N = QN

in the following. The name shape measure has its roots in the two conjugate
representations of integer partitions, the so-called Ferrer diagram and the Young
Tableau. Define Q̂N (k) = QN (k)−QN (k + 1) for any k ∈ N. Then the occupa-
tion numbers are given by rk = NQ̂N (k), k = 1, . . . , N , which define uniquely the
integer partition λ. In a Ferrer diagram the partition {rk}Nk=1 is represented by
rk rows of k horizontal blocks. They are placed in a diagram in descending order
with the longest or largest k at the top. It can also be viewed as a block diagram
in the (NQN (1), . . . , NQN (N)) space. Here NQN (k) blocks are put vertically in
the k-th column. The total number of rows is the multiplicity �λ of the partition
and the area (the total number of blocks) of this diagram is N . A Young tableau
is similar but, here, NQN (k) blocks are put horizontally in the k-th row. One
can obtain a Young tableau from a Ferrer diagram by first turning the diagram
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upside down and then by rotating it through 90◦ clockwise. The notion ‘shape’
comes now from the study of the asymptotic shapes of this diagrams/tableaux
as N→∞ under suitable continuous scaling, see Vershik (1996) and for a recent
overview Pitman (2002). Large deviations from the expected shape of the dia-
grams are studied in Dembo et al. (2000) for the uniform distribution.

We do not scale the discrete shape measure because we need in the limit
the whole discrete cycle count distribution for our large deviations results in
Section 7.3. That is, we are interested in the large N -behaviour of the discrete
shape measures QN under different distributions of the integer partitions. Beside
the uniform distribution in (7.3) and general Ewens sampling distribution our
main interest is in the following distribution.

ν(Bose)

N (λ) =
1

Z(Bose)

N (β)

N∏
k=1

((
�−1N

)rk
rk!krk

)(
1

4πβk

)d/2rk
λ ∈ PN (7.5)

with normalization:

Z(Bose)

N (β) =
∑

λ∈PN

N∏
k=1

((
�−1N

)rk
rk!krk

)(
1

4πβk

)d/2rk

for given d ∈ N and β, � > 0. This distribution is motivated from the non-
interacting Bose gas enclosed in ΛN ⊂ Rd with particle density � = |ΛN |/N .
We outline this in the following. Going back to trace formula (7.2) note that the
conjugacy classes A(λ) of permutations are the ones where the trace operation
is constant because it is a cyclic operation. For each partition λ ∈ PN we can
regroup the product of the Brownian bridge measures µβ,Nx,y in such a way that we
concatenate rk times k Brownian bridges to obtain rk Brownian bridges of time
horizon [0, kβ]. This is possible because we integrate out the intermediate spatial
points. Hence we get for the canonical partition function of the noninteracting
Bose gas:

Z(sym)

N (β) =
∑

λ∈PN

N∏
k=1

( 1
rk!krk

) N⊗
k=1

(∫
ΛN

dxµkβ,Nx,x

)⊗rk

(Ω⊗N
β ). (7.6)

The difference with (7.5) is that there we are using the free Brownian bridge
measure, i.e., the motions are not confined to stay in ΛN . However, both expres-
sions are close and coincide in the limit ΛN ↑Rd as N→∞, because of the
estimation:

(4πβk)−d/2(1− e−dN/4β) ≤ µkβ,Nx,x (Ωk) ≤ (4πβk)−d/2,

which compares the measure with Dirichlet boundary condition for the box ΛN

with the free Brownian bridge measure. It is technically easier here to work on
a torus and with periodic boundary conditions for the Laplacian.
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To formulate the rate functions we need some notations. Let:

M = {Q ∈ [0, 1]N :
∑
l∈N

Q(l) ≤ 1, Q(l) ≥ Q(l + 1)∀l ∈ N}

be the set of monotonously nonincreasing sub-probability functions on N. For
Q ∈M define Q̂(k) = Q(k)−Q(k + 1) for any k ∈ N. For d ≥ 1 let:

Q̂∗(k) =
1

ρ(4πβ)d/2k1+d/2
, k ∈ N, (7.7)

be given, and define the functional:

S(Bose)(Q) =
∞∑
k=1

Q̂(k)
(
log

Q̂(k)

Q̂∗(k)
− 1
)

Q ∈M. (7.8)

The corresponding functional for the uniform distribution ν(u)

N is given as:

S(u)(Q) =
∞∑
k=1

Q̂(k)
(
log Q̂(k)k − 1

)
Q ∈M.

The uniform distribution is defined through (7.3), i.e.:

ν(u)

N (λ) =
1
ZN

N∏
k=1

(1
k

)rk 1
rk!

λ ∈ PN ,

with normalization ZN =
∑

λ∈PN
∏N

k=1

(
1
k

)rk 1
rk!

.
The main results follow in the next theorem.

Theorem 7.1 (Adams 2008b)

(a) Under the uniform measure ν(u)

N the empirical discrete shape measures QN

satisfy a large deviations principle onM with speed N and rate function:

I(u)(Q) = S(u)(Q)− χ with χ = inf
Q∈M

S(u)(Q). (7.9)

(b) Let � ∈ (0,∞) and ΛN ⊂ Rd with ΛN ↑ Rd and N/|ΛN | → � as N → ∞.
Under the measure ν(Bose)

N the empirical discrete shape measures QN satisfy
a large deviations principle onM with speed N and rate function:

I(Bose)(Q) = S(Bose)(Q)− χ(β, �) with χ(β, �) = inf
Q∈M

S(Bose)(Q).

(7.10)

Remark 7.1 (Free energy, Adams 2007) The variational formula (7.10)
gives the specific free energy f(β, ρ) := limN→∞−1/β|ΛN | logZ(sym)

N (β) for
inverse temperature β and density ρ of the non-interacting Bose gas, i.e.:

f(β, ρ) =
ρ

β
inf

Q∈M

{ ∞∑
k=1

Q̂(k) log
( Q̂(k)
Q̂∗(k)

− 1
)}
.
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We analyse the variational formulae for χ and χ(β, ρ), and we derive an
expression for the specific free energy f as a function of β and ρ. Define a
dimension dependent critical density:

ρc =

{
1

(4πβ)d/2 ζ
(

d
2

)
, for d ≥ 3,

+∞, for d = 1, 2,
(7.11)

where ζ is the Riemann zeta function:

ζ
(d
2

)
=

∞∑
k=1

k−
d
2 .

Furthermore, denote by gs(α) the so-called Bose functions (see (7.20) in
Appendix 7.4)

gs(α) =
∞∑
k=1

k−se−αk for all α > 0 and all s > 0.

For any ρ < ρc we denote by α = α(β, ρ) the unique root of:

ρ =
1

(4πβ)d/2

∞∑
k=1

k−d/2e−αk. (7.12)

The essential difference in d ≥ 3 and d = 1, 2 lies in the fact that in the latter
two cases the corresponding Bose functions, g1(α) respectively g 1

2
(α), diverge as

α → 0 (see Appendix 7.4 and Gram 1925). For d = 1, 2 there is a unique α for
any density ρ <∞. For d ≥ 3 there is such an unique α given only for densities
ρ < ρc. Hence, this is the mathematical origin of the so-called Bose-condensation,
where for d ≥ 3 and ρ > ρc particles condense in the zero mode state.

Theorem 7.2 (Analysis for χ, Adams 2008b) The functional S(u) is convex
and there is a unique minimizer Q∗ for χ = infQ∈M S(u)(Q), and it is defined
through:

Q̂∗(k) =
e−αk

k
k ∈ N and α = log 2.

The analysis for the Bose distribution gives the proof of the Bose–Einstein
condensation for non-interacting Bose gas depending on the parameters d, ρ
and β.

Theorem 7.3 (Analysis for χ(β, �), Adams 2007) For any ρ < ∞ in
dimensions d = 1, 2, and � < �c in dimensions d ≥ 3, there is a unique min-
imiser Q ∈ M of the variational formula for χ(β, �) in (7.10) with probability
mass one with:

Q̂(k) =
e−αk

ρ(4πβ)d/2k1+
d
2

for k ∈ N,
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whereas for dimensions d ≥ 3 and densities � > �c, there is no minimizer for the
variational problem (7.10) with probability mass one, but the infimum is attained
for any minimizing sequence (Qn)n∈N of Qn ∈M such that Qn → Q∗ as n→∞.

The specific free energy for d ≥ 3 is given by:

f(β, �) =


− 1
(4πβ)d/2β g d+2

2
(α)− 1β �α , for � < �c

− 1
(4πβ)d/2β ζ

(
d+2
2

)
, for � > �c,

and for d = 1, 2 by:

f(β, �) = − 1
(4πβ)d/2β

g d+2
2
(α)− �α

β
,

where α is the unique root of (7.12).

7.3 Large deviations for empirical path measures
In this section we present our large deviations results for the empirical path
measures for N Brownian motions B(1), . . . , B(N) in Rd with time horizon [0, β].
The empirical path measures:

LN =
1
N

N∑
i=1

δB(i)

are random elements in the set M1(Ωβ) of probability measures on the set Ωβ

of continuous paths [0, β]→ Rd. We analyse the large-N behaviour of the distri-
butions of LN under different symmetrized measures in Section 7.3.1 and Sec-
tion 7.3.2 respectively. In both cases we derive large deviations principles whose
rate functions are given as variational problems. In Section 7.3.2 the analysis
for the variational problem for the cycle structure gives the proof of a phase
transition in the empirical path measure.

7.3.1 Spatial structure
We analyse the large-N asymptotic of the empirical path measure LN under the
following symmetrized probability measure:

P
(sym)

m,N =
1
N !

∑
σ∈SN

∫
Rd
· · ·
∫

Rd
m(dx1) · · ·m(dxN )

N⊗
i=1

Pβ
xi,xσ(i)

, (7.13)

where m ∈ M1(Rd) is a probability measure and where Pβ
x,y is the Brownian

bridge probability measure:

P β
x,y = µβx,y/µ

β
x,y(Ωβ) =

µβx,y
(4πβ)d/2

,

i.e., a probability measure on Ωβ . The expectation with respect to the measure
P β
x,y is denoted by Eβ

x,y. We can conceive P
(sym)

m,N as a two-step random mecha-
nism: first we pick uniformly a random permutation σ, then we pick N Brownian
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motions with initial distribution m, and the i-th motion is conditioned to termi-
nate at the initial point of the σ(i)-th motion, for any i.

The main idea in resolving the combinatorics of the measure (7.13) is to
rewrite it as a sum over pair frequencies NQ(x, y), x, y ∈ Rd. Here Q is a pair
probability measure with equal marginals, and NQ(x, y) is the number of Brow-
nian motions which are sent from location x to location y due to the symmetriza-
tion. We shall count the number of permutations which are admissible for a given
pair probability measure Q. Furthermore, for Brownian motions we need to work
with open sets of positive Lebesgue measure instead of single points. But this is
a technical point and it is analysed in detail in Adams and König (2007), where
one needs an additional assumption on the probability measure m ∈ M1(Rd).
We will neglect these details and refer to Adams and Dorlas (2007), where sym-
metrized systems of random walks on graphs are analysed and applied to certain
mean-field type interacting systems.

The core idea, performed in Adams and König (2007), Adams and Dorlas
(2007), and Adams (2008a), is that the rewriting gives a sum over pair probability
measures with two terms, one part is counting permutations for a given pair
probability measure, and for any given pair probability measure the other part is
a probability measure for N Brownian motions. This probability measure is now
a product of not necessarily identically distributed Brownian bridge probability
measures. Hence, we resolved the correlations due to the symmetrization in a
two level large deviations setting (see for example Dawson and Gärtner 1994).
Our rate functions consist of two parts, one deals with the combinatorics and is
therefore a function of a pair probability measure and the initial measure m, the
other part governs the large deviations for the empirical path measures under
the corresponding probability measure.

The motivation for this novel approach is threefold. First, it is an appealing
method from the mathematical point of view and originated from combinatorial
methods for microcanonical ensembles in Adams (2001). Second, Bose–Einstein
condensation in Onsager and Penrose (1956) is defined as an off-diagonal long
range behaviour of the one-particle reduced density matrix, which measures the
correlation between two spatial points. Third, we are informed by Schrödinger
(1931) who considered the question of how any two spatial points are connected
by random paths. The crucial observation is that this aspect of the problem can
be described by pair measures. Schrödinger (1931) raised the question of the most
probable behaviour of a large system of diffusing particles in thermal equilibrium.
Föllmer (1988) gave a mathematical formulation of these ideas in terms of large
deviations. He applied Sanov’s theorem to obtain a large deviations principle
for LN when B(1), B(2), . . . are i.i.d. Brownian motions with initial distribution
m and no condition at time β. The rate function is the relative entropy with
respect to

∫
Rd
m(dx)Px ◦ B−1, where the motions start in x under Px. Then

Schrödinger’s question amounts to identifying the minimizer of that rate function
under given fixed independent initial and final distributions. It turns out that the
unique minimizer is of the form

∫
Rd

∫
Rd

dxdy f(x)g(y)Pβ
x,y ◦B−1, i.e. a Brownian
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bridge with independent initial and final distributions. The probability densities
f and g are characterized by a pair of dual variational equations, which originally
appeared in Schrödinger (1931) for the special case that both the initial and the
final measures are Lebesgue measures.

We introduce now the rate functions for our method. With:

H(Q|P ) =
∫

Rd×Rd
Q(dx) log

Q(dx)
P (dx)

we denote the relative entropy of the pair probability measure Q ∈M1(Rd×Rd)
with respect to P ∈ M1(Rd × Rd). Let M(s)

1 (Rd × Rd) be the set of shift-
invariant probability measuresQ on Rd×Rd, i.e., measures whose first and second
marginals coincide and are both denoted by Q. Note that Q �→ H(Q|Q⊗m) is
strictly convex.

Define the functional I(sym)
m onM1(Ωβ) by the following variational problem:

I(sym)
m (µ) = inf

Q∈M(s)
1 (Rd×Rd)

{
H(Q|Q⊗m) + I(Q)(µ)

}
,

where:

I(Q)(µ) = sup
Φ∈Cb(Ωβ)

{
〈Φ, µ〉 −

∫
Rd

∫
Rd
Q(dx,dy) logEβ

x,y

(
eΦ(B)

)}
(7.14)

for µ ∈ M1(Ωβ) and 〈Φ, µ〉 =
∫
Ωβ

Φ(ω)µ(dω). Here Cb(Ωβ) is the space of
bounded continuous functions on Ωβ . Hence, I(Q) is a Legendre–Fenchel trans-
form, but not the one of a logarithmic moment generating function of any random
variable. In particular, I(Q), and therefore also I(sym)

m , are nonnegative, and I(Q) is
convex as a supremum of linear functions. There seems to be no way to represent
I(Q)(µ) as the relative entropy of µ with respect to any measure.

Let us explore briefly the variational problem connected with the rate func-
tion I(sym)

m . By πs : Ωβ → Rd we denote the projection πs(ω) = ωs. The marginal
measure of µ ∈ M1(Ωβ) is denoted by µs = µ ◦ π−1s ∈ M1(Rd); analogously
we write µ0,β = µ ◦ (π0, πβ)−1 ∈ M1(Rd × Rd) for the joint distribution of the
initial and the terminal point of a random process with distribution µ. It is easy
to see that Q = µ0,β if I(Q)(µ) <∞. Indeed, in (7.14) relax the supremum over
all Φ ∈ Cb(Ωβ) to all functions of the form ω �→ f(ω0, ωβ) with f ∈ Cb(Rd). This
gives that:

∞ > I(Q)(µ) ≥ sup
f∈Cb(Rd)

(〈
µ0,β , f

〉
−
〈
Q, logEβ

π0,πβ

(
ef(B0,Bβ)

)〉)
= sup

f∈Cb(Rd)

〈
µ0,β − q, f

〉
,
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and this implies that µ0,β = Q. In particular, the infimum in the variational
problem for I(sym)

m is uniquely attained at this Q, i.e.:

I(sym)
m (µ) =

H(µ0,β |µ0 ⊗m
)
+ sup
Φ∈Cb(C)

〈
µ,Φ− logEβ

π0,πβ

(
eΦ(B)

)〉
if µ0 = µβ ,

+∞ otherwise.

In particular, I(sym)
m is convex.

Our main large deviations result reads as follows.

Theorem 7.4 (Large deviations for LN) Fix β ∈ (0,∞) and m ∈ M1(Rd).
Then, as N → ∞, under the symmetrized measure P

(sym)

m,N , the empirical path
measures LN satisfy a large deviations principle on M1(Ωβ) with speed N and
rate function I(sym)

m .

Simplifying the large deviations principle says that, as N →∞:

P
(sym)

m,N

(
LN = µ

)
≈ e−NI(sym)

m (µ), µ ∈M1(Ωβ).

Proof: If m has compact support the proof is in Adams and König (2007).
Arbitrary initial distributions are handled in Adams (2008a). A corresponding
result for symmetrized systems of random walks on graphs with applications to
mean-field models is given in Adams and Dorlas (2007). �

There are also analogous results for the mean:

YN =
1
N

N∑
i=1

µ(i)

β ,

of the N occupation measures:

µ(i)

β (dx) =
1
β

∫ β

0
δBs

(dx) ds, i = 1, . . . , N.

We will present below these results for the very special case that m is the
Lebesgue measure of finite set in Rd. The general version can be found in Adams
and König (2007) and Adams and Dorlas (2007).

Let us comment briefly on the shape of the rate functions above. The sym-
metrized measure P

(sym)

m,N arises from a two-step probability mechanism. This is
reflected in the representation of the rate function I(sym)

m : in a peculiar way the
entropy term H(Q|Q ⊗m) describes the large deviations of the uniformly dis-
tributed random permutation σ, together with the integration over m⊗N . The
measure Q governs a particular distribution of N independent, but not identi-
cally distributed, Brownian bridges. Under this distribution, LN satisfies a large
deviations principle with rate function I(Q), which also can be guessed from the
Gärtner–Ellis theorem (Dembo and Zeitouni 1998, Th. 4.5.20).
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Let us contrast this to the case of i.i.d. Brownian bridges B(1), . . . , B(N)

with starting distribution m, i.e., we replace P
(sym)

m,N by (
∫
m(dx)Pβ

x,x)
⊗N . Here

the empirical path measure LN satisfies a large deviations principle with rate
function:

Im(µ) = sup
Φ∈Cb(Ωβ)

{
〈Φ, µ〉 − log

∫
Rd
m(dx)Eβ

x,x

(
eΦ(B)

)}
,

as follows from an application of Cramér’s theorem (Dembo and Zeitouni 1998,
Th. 6.1.3). Note that Im(µ) is the relative entropy of µ with respect to

∫
m(dx)

Pβ
x,x◦B−1. Although there is apparently no reason to expect a direct comparison

between the distributions of LN under P
(sym)

m,N and under (
∫
m(dx)

Pβ
x,x)

⊗N , the rate functions admit a simple relation: it is easy to see that I(Q) ≥
Im for the measure Q(dx,dy) = m(dx)δx(dy) ∈M(s)

1 (Rd × Rd), since:

−
∫

Rd

∫
Rd
Q(dx,dy) logEβ

x,y

(
eΦ(B)

)
≥ − log

∫
Rd
m(dx)Eβ

x,x

(
eΦ(B)

)
.

In particular, I(sym)
m ≥ Im.

An interesting question is what happens if we replace in the definition of the
symmetrized probability measure P

(sym)

m,N the Brownian bridge probability mea-
sure Pβ

x,y by g(x, y)Pβ
x,y, when g : Rd × Rd → R is a continuous function? The

motivation to multiply the Brownian bridge probability measure by the spatial
function g is to model (see Adams (2008a)) the spatial correlations for permu-
tations of finitely many points of graphs or finitely many points of point process
clouds in Rd. Compare Fichtner (1991), who studied permutations of random
point configurations in Rd and introduced the spatial weight e−c|x−y|2 for per-
mutations that sent the spatial point x to the spatial point y. We shall discuss
no further details at this stage but formulate our general result.

Proposition 7.1 (Adams and König 2007) Let g : Rd → Rd → R be con-
tinuous and define P

(sym)

m,N with Pβ
x,y replaced by g(x, y)Pβ

x,y. Then the following
holds.
(a) Theorem 7.4 remains true under the replacement. The corresponding rate

function is µ �→ I(sym)
m (µ)− 〈µ0,β , log g〉.

(b)

lim
N→∞

1
N

log

(
1
N !

∑
σ∈SN

∫
(Rd)N

N∏
i=1

m(dxi)
N∏
i=1

g(xi, xσ(i))

)

= − inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗m)− 〈Q, log g〉

}
.

(7.15)

(c) The unique minimizer of the rate function µ �→ I(sym)
m (µ) − 〈µ0,β , log g〉 is

given by:

µ∗ =
∫

Rd

∫
Rd
Q∗(dx,dy)Pβ

x,y ◦B−1, (7.16)
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where Q∗ ∈M(s)
1 is the unique minimizer of the formula on the right hand

side of (7.15).
(d) Law of large numbers: Under the measure gP(sym)

m,N , normalized to a probabil-
ity measure, the sequence (LN )N∈N converges in distribution to the measure
µ∗ defined in (7.16).

Setting g ≡ 1 we derive easily the following law of large numbers for our
previous case.

Corollary 7.1 Under the measure P
(sym)

m,N , normalized to a probability measure,
the sequence (LN )N∈N converges in distribution to the measure µ∗ given by:

µ∗ =
∫

Rd

∫
Rd
m⊗m(dx,dy)Pβ

x,y ◦B−1.

That is, in spite of strong correlations for fixed N under P
(sym)

m,N , the initial and
terminal locations B(1)

0 and B(1)

β of the first motion become independent in the
limit N → ∞. One can prove this also in an elementary way, and also the fact
that, for any k ∈ N and for all i1 < i2 < · · · < ik, the Brownian motions
B(i1), . . . , B(ik) under P

(sym)

m,N become independent in the limit N →∞.
We finish the section with the following special case as promised above. We

replace the initial distribution m ∈ M1(Rd) by the Lesbesgue measure of a set
Λ ⊂ Rd having finite Lesbesgue measure. That is we study the non-normalized
measure:

µ(sym)

Λ,N =
1
N !

∑
σ∈SN

∫
Λ
· · ·
∫
Λ
dx1 · · ·dxN

N⊗
i=1

µβxi,xσ(i) . (7.17)

Apart from questions motivated from physics, this measure is also mathemati-
cally interesting. According to an analogous result of Theorem 7.4 for the mean
of occupation measures, the distribution of the mean of the normalized occupa-
tion measures YN , under (Z(sym)

Λ,N )−1µ(sym)

Λ,N , satisfies a large deviations principle.
Here Z(sym)

Λ,N is the normalization for the the measure (7.17). That is, we have:

lim
N→∞

1
N

log
(
µ(sym)

Λ,N ◦ Y −1
N (·)

)
= − inf

p∈ ·
J (sym)

Λ (p),

in the weak sense on subsets ofM1(Rd), where we introduced:

J (sym)

Λ (p) = inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗ LebΛ) + J (Q)(p)

}
− inf

p∈M1(Rd)

{
J̃ (sym)

Λ (p)
}

with J̃ (sym)

Λ (p) = inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗ LebΛ) + J (Q)(p)

}
and

J (Q)(p) = sup
f∈Cb(Rd)

{
β〈f, p〉 −

∫
Rd

∫
Rd
Q(dx,dy) log

Ex

(
e
∫ β
0 f(Bs) ds;Bβ ∈ dy

)
dy

}
.

The main goal is to express J (sym)

Λ in much easier and more familiar terms.
It turns out that J (sym)

Λ (p) is identical to the energy of the square root of the
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density of p, in the jargon of large deviations theory also sometimes called the
Donsker–Varadhan rate function, IΛ :M1(Rd)→ [0,∞] defined by:

IΛ(p) =

{∥∥∇√ dpdx∥∥22, if p has a density with square root in H10 (Λ
◦),

∞ otherwise.

Theorem 7.5 (Adams and König 2007) Let Λ ⊂ Rd be a bounded closed
box. Then β−1J (sym)

Λ (p) = IΛ(p)− infp∈M1(Rd) IΛ(p) for any p ∈M1(Rd).

In the theory and applications of large deviations, IΛ plays an important
role as the rate function for the normalized occupation measure of one Brownian
motion (or, one Brownian bridge) in Λ, in the limit as time to tends infinity (see
Gärtner 1977 and Donsker and Varadhan 1983). It is remarkable that this func-
tion turns out also to govern the large deviations for the mean of the normalized
occupation measures under the symmetrized measure µ(sym)

Λ,N , in the limit of a
large number of motions. Let us give an informal discussion and interpretation
of this fact.

The measure µ(sym)

Λ,N in (7.17) admits a representation which goes back to Feyn-
man (1953) and which we want to briefly discuss. Every permutation σ ∈ SN can
be written as a concatenation of cycles. Given a cycle (i, σ(i), σ2(i), . . . , σk−1(i))
with σk(i) = i and precisely k distinct indices, the contribution coming from
this cycle is independent of all the other indices. Furthermore, by the fact that
µβxi,xσ(i) is the conditional distribution given that the motion ends in xσ(i), this
contribution (also executing the k integrals over xσl(i) ∈ Λ for l = k − 1, k −
2, . . . , 0) turns the corresponding k Brownian bridges of length β into one Brow-
nian bridge of length kβ, starting and ending in the same point xi ∈ Λ and
visiting Λ at the times β, 2β, . . . , (k − 1)β. Hence:

µ(sym)

Λ,N =
1
N !

∑
σ∈SN

⊗
k∈N

(∫
Λ
dyk µk,β,Λyk,yk

)⊗fk(σ)
,

where fk(σ) denotes the number of cycles in σ of length precisely equal to k,
and µk,β,Λx,y is the Brownian bridge measure µkβx,y as in (7.1), restricted to the
event

⋂k
l=1{Blβ ∈ Λ}. (See de Witt and Storaeds 1970, Lemma 2.1 for related

combinatorial considerations.) If fN (σ) = 1 (i.e., if σ is a cycle), then we are con-
sidering just one Brownian bridge B of length Nβ, with uniform initial measure
on Λ, on the event

⋂N
l=1{Blβ ∈ Λ}. Furthermore, YN is equal to the normal-

ized occupation measure of this motion. For such a σ, the limit N → ∞ turns
into a limit for diverging time, and the corresponding large-deviation principle
of Donsker and Varadhan formally applies. This reasoning applies for permu-
tations σ having only cycles whose lengths are growing with N unboundedly.
Presumably, the contribution from those permutations whose bounded cycles
sum up to something of order N is strictly smaller. A thorough investigation of
the large deviation properties of the cycle structure and the distribution of the
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cycle lengths is contained in Adams (2007) and in Section 7.3.2 below for the
case of boxes Λ = ΛN having volume of order N . There, a phase transition in
β for the mean path is obtained. This phase transition is absent in the present
case; the fixed box Λ forces all cycle lengths to grow unbounded with N .

7.3.2 Cycle structure

We analyse the large-N behaviour of a system of N Brownian motions with
time horizon [0, β] in Rd confined in subsets ΛN ⊂ Rd, i.e., the behaviour of the
system under the symmetrized measure:

P
(sym)

N = Z(sym)

N (β)−1
1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫
ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)
, (7.18)

and Z(sym)

N (β) is the normalization:

Z(sym)

N (β) =
1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫
ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)
(ΩN

β ).

The measure in (7.18) is different from the measure (7.13) in the previous
section. Here, we want to exploit our results for the discrete empirical shape
measure and the formula (7.6). The core idea in formula (7.6) is to concatenate
Brownian bridges to obtain Brownian bridges with larger time horizons. There-
fore we study in this section large deviations of the empirical path measures for
paths with unbounded time horizon. That allows us to put the Brownian bridges
of time horizon [0, kβ] onto the path of unbounded time horizon. We conceive
the empirical path measure as a random element in M1(Ω), hence, we need a
convenient extension of any continuous path [0, β] → Rd to a continuous path
[0,∞) → Rd in the definition of the empirical path measure. For any x ∈ Rd

we denote by P x the Brownian probability measure on Ω, i.e., the canonical
Wiener measure with deterministic start in x ∈ Rd (Chung and Zhao 1995). In
the following we write alternatively ωt or ω(t) for any point of a path ω. Given
a path ω ∈ Ωβ with time horizon [0, β] define:

P (β)
ω = δω ⊗β P

ωβ(β) ∈M1(Ω,B),

where the product ⊗β is defined for the ‘splice’ of two paths, i.e., for ω ∈ Ωβ

and ω̃ ∈ Ω define ω ∈ Ω by ω(t) = ω(t∧β), t ∈ [0,∞), and ω⊗β ω̃ ∈ Ω such that
ω ⊗β ω̃ = ω if ω̃(0) �= ω(β) and:

ω ⊗β ω̃(t) =
{

ω(t) for t ∈ [0, β]
ω̃(t− β) for t ∈ (β,∞) (7.19)

if ω̃(0) = ω(β). The mapping ω ∈ Ωβ �→ P (β)
ω ∈M1(Ω,B) is measurable, and the

family {P (β)
ω : ω ∈ Ωβ} satisfies the Markov property, see (Deuschel and Stroock,
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2001, Lemma 4.4.21). Hence, the empirical path measure:

L̂N : ΩN
β →M1(Ω), ω �→ L̂N (ω) =

1
N

N∑
i=1

δω(i) ⊗β P
ω
(i)
β ,

is Ω⊗N
β measurable. Here ω = (ω(1), . . . , ω(N)) ∈ ΩN

β . Our main result concerns
a large deviations principle for the distributions of L̂N under the symmetrized
measure P

(sym)

N . Recall that P
(sym)

N is a probability measure on Ω⊗N
β .

The rate function is given by:

I(sym)(µ) = inf
Q∈M

{
S(Bose)(Q) + I(Q)(µ)

}
− χ(β, �) µ ∈M1(Ω),

where:

I(Q)(µ) = sup
F∈Cb(Ω)

{
〈F, µ〉 −

∑
k∈N

Q̂(k) logE
kβ
0,0

(
eF (B)

)}
µ ∈M1(Ω),

and where the function χ(β, �) := infQ∈M{S(Bose)(Q)} is given as the negative
logarithmic limit of the partition function Z(sym)

N (β), see Theorem 7.3, and where
Cb(Ω) is the space of continuous bounded functions of the paths in Ω. E

kβ
0,0 denotes

the expectation with respect to the Brownian bridge probability measure P
kβ
0,0

extended to a probability measure in M1(Ω). Here, I(Q) is a Fenchel–Legendre
transform, but not the one of a logarithmic moment generating function of any
random variable. In particular, I(Q), and therefore also I(sym), are nonnegative,
and I(Q) is convex as a supremum of linear functions. There seems to be no way
to represent I(Q)(µ) as the relative entropy of µ with respect to any measure.

Theorem 7.6 (Large deviations for L̂N, Adams 2007) Let � ∈ (0,∞) and
ΛN ⊂ Rd centred boxes with ΛN ↑ Rd and N/|ΛN | → � as N →∞.

Under the symmetrized measure P
(sym)

N the empirical path measures (L̂N )N∈N

satisfy a large deviations principle on M1(Ω) with speed N and rate function
I(sym).

Remark 7.2 To be more precise we have a large deviations principle for L̂N

under the symmetrized distribution such that the initial distribution is subtracted,
i.e., all motions are considered to start at the origin. This is a technical detail,
and we refer to Adams (2008a) and Adams et al. (2008), where our analysis is
combined with marked point processes in Rd. However, as we focus here solely on
the noninteracting case, we can relax the abstraction and let the motions start
at the origin.

We give a brief informal interpretation of the shape of the rate functions in
I(sym) and I(Q), Q ∈ M. As remarked earlier, the symmetrized measure P

(sym)

N

arises from a two-step probability mechanism. This is reflected in the represen-
tation of the rate function I(sym): in a peculiar way, the term S(Q) − χ(β, �)
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describes the large deviations of the discrete empirical shape measure for integer
partitions. The discrete empirical shape measures QN governs a particular dis-
tribution of N independent, but not identically distributed, Brownian bridges.
Under this distribution, L̂N satisfies a large deviations principle with rate func-
tion I(Q), which can also be guessed from the Gärtner–Ellis theorem (Dembo
and Zeitouni 1998, Th. 4.5.20). The presence of a two-step mechanism makes it
impossible to apply this theorem directly to P

(sym)

N .
Let us contrast this to the case of i.i.d. Brownian bridges B(1), . . . , B(N),

starting in the origin, i.e., we replace P
(sym)

N by (Pβ
0,0)

⊗N . Here the empirical path
measure L̂N satisfies a large deviations principle with rate function:

I(µ) = sup
F∈Cb(Ω)

{
〈F, µ〉 − logE

β
0,0

(
eF (B)

)}
,

as follows from an application of Cramér’s theorem Dembo and Zeitouni 1998,
Th. 6.1.3. Note that I(µ) is the relative entropy of µ with respect to P

β
0,0 ◦B−1.

Although there is apparently no reason to expect a direct comparison between
the distributions of LN under P

(sym)

N and under (Pβ
0,0)

⊗N , the rate functions admit
a simple relation: it is easy to see that I(Q) ≥ I for the measure Q ∈ M with
Q̂(k) = δ1, since:

−
∞∑
k=1

Q̂(k) logE
kβ
0,0

(
eF (B)

)
≥ − logE

β
0,0

(
eF (B)

)
.

In particular, I(sym) ≥ I.

Remark 7.3 The techniques of the proof of Theorem 7.6 apply also to a proof of
a large deviations principle under the symmetrized measure P

(sym)

N for the empir-
ical path measure L̃N = 1/N

∑N
i=1 δB(i) , which is a random element inM1(Ωβ).

The rate function is:

Ĩ(sym)(µ) =

inf
Q∈M

{
S(Bose)(Q)− sup

F∈Cb(Ωβ)

{
〈F, µ〉 −

∞∑
k=1

Q̂(k) logE
kβ
0,0

(
e
∑k−1

l=0 F (B[lβ,(l+1)β])
)}}

.

Similar results hold for the mean YN of the occupation measures. However, these
rate functions seem not to give enough information to derive the phase transition
as in Theorem 7.7, and to obtain a probabilistic interpretation of Bose–Einstein
condensation.

Our large deviations result is accompanied by an analysis of the variational
formula for the rate function I(sym), i.e., the analysis for zeros of the rate func-
tion. This gives the proof of the phase transition for empirical path measures
depending on the dimension and the density parameter in Theorem 7.7.
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The result of Theorem 7.3 in Section 7.3.2 is an essential ingredient which
leads to the analysis of the rate function I(sym). Let:

Ak = {ω ⊗kβ ξ : ω ∈ Ωk, ω(0) = ω(kβ), ξ ∈ Ω} ⊂ Ω, k ∈ N,

be the set of paths in Ω which result from the splice (7.19) of Brownian bridges
paths of time horizon [0, kβ] with any path ξ ∈ Ω.

Theorem 7.7 (Analysis of the rate function I(sym)) Adams 2007
Under the assumptions of Theorem 7.6 the following holds:

(i) d = 1, 2. A unique minimizer µ∗ ∈M1(Ω) of the rate function µ �→ I(sym)(µ)
exists with

∑
k∈N kµ

∗(Ak) = 1.

(ii) d ≥ 3 and � < �c. A unique minimizer µ∗ ∈ M1(Ω) of the rate function
µ �→ I(sym)(µ) is given with

∑
k∈N kµ

∗(Ak) = 1.
For � > �c there is no unique minimizer given, but there exist minimizing
sequences (µn)n≥1, µn ∈ M1(Ω), with

∑∞
n=1 kµn(Ak) = 1 for any n ∈ N

such that µn → µ0 ∈M1(Ω) weakly as n→∞ with
∑∞

n=1 kµ
0(Ak) < 1.

Let us draw an easy corollary from this theorem.

Corollary 7.2 (Law of large numbers, Adams 2007) Under the assumpt-
ions of Theorem 7.7 the following holds.

(i) For d = 1, 2, and any density � < ∞, there is a law of large numbers.
Under the probability measure P

(sym)

N , the sequence (L̂N )N∈N converges in
distribution to the measure µ∗ ∈M1(Ω).

(ii) For d ≥ 3 and � < �c there is a law of large numbers. Under the probabil-
ity measure P

(sym)

N , the sequence (L̂N )N∈N converges in distribution to the
measure µ∗ ∈M1(Ω).

The main conclusion of the large deviations principle in Theorem 7.6 and
Theorem 7.7 is the following phase transition for the mean empirical path mea-
sure, which gives a path measure interpretation of Bose–Einstein condensation
(BEC).

Path measures and their interpretation as Bose–Einstein condensation
Let N Brownian motions with time horizon [0, β] confined in centred sets ΛN ⊂
Rd given such that ΛN ↑ Rd and N/|ΛN | → � ∈ (0,∞) as N → ∞. Then the
following holds:

(i) For β > 0 there is a �c = �c(β, d) such that:
no BEC: Case � < �c for d ≥ 3, � > 0 for d = 1, 2:
L̂N → µ∗ ∈M1(Ω) under P

(sym)

N as N →∞ with
∑∞

k=1 kµ
∗(Ak) = 1

BEC: Case � < �c and d ≥ 3:
L̂N → µ0 ∈M1(Ω) under P

(sym)

N as N →∞ with
∑∞

k=1 kµ
0(Ak) < 1.



Large deviations for empirical cycle 169

(ii) For � ∈ (0,∞) there exists a:

βc =

{
1
4π

(
�

ζ(d/2)

)2/d
, for d ≥ 3,

+∞, for d = 1, 2,

such that:
no BEC: Case β < βc for d ≥ 3 and β > 0 for d = 1, 2:
L̂N → µ∗ ∈M1(Ω) under P

(sym)

N as N →∞ with
∑∞

k=1 kµ
∗(Ak) = 1

BEC: Case β > βc and d ≥ 3:
L̂N → µ0 ∈M1(Ω) under P

(sym)

N as N →∞ with
∑∞

k=1 kµ
0(Ak) < 1.

If d = 1, 2, or � < �c for d ≥ 3, the mean empirical path measure has support
on those paths in which one can insert, starting from time origin, a concatenation
of any finite number of Brownian motions with time horizon [0, β], i.e., for any
k ∈ N one can find in paths ωk ∈ Ak exactly k Brownian motions concatenated
to a Brownian bridge with horizon [0, kβ]. This follows from the concatenation
of the Brownian motions due to the cycle structure of the permutations and
due to the Lebesgue integration of any initial position in the definition of the
symmetrized measure P

(sym)

N . If the density � is high enough for d ≥ 3, i.e., � > �c
(or equivalently, if the inverse temperature is sufficiently large for given density,
i.e., β > βc, for d ≥ 3), the mean path measure has positive weight for paths with
an infinite time horizon, that is, concatenation of any finite number of Brownian
motions with time horizon [0, β], i.e., any finite cycle path in Ak, is not sufficient,
because there is an excess density (�−�c) of Brownian motions with time horizon
[0, β]. These motions concatenate to infinite long cycle, that is, these cycles
grow with the system size in the thermodynamic limit. The fraction of these
motions is:

1− �c
�

= 1−
(βc
β

)d/2
.

7.4 Appendix: Bose functions

These functions are defined by:

gs(α) =
1

Γ(s)

∫ ∞

0

ts−1

et+α − 1
dt =

∞∑
k=1

k−se−αk for all α > 0 and all s > 0,

(7.20)
and also α = 0 and s > 1. In the latter case:

gs(0) =
∞∑
k=1

k−s = ζ(s),
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which is the zeta function of Riemann. The behaviour of the Bose functions
about α = 0 is given by:

gs(α) =

 Γ(1− s)αs−1 +
∑∞

k=0 ζ(s− k)
(−α)k

k! , s �= 1, 2, . . .

(−α)s−1

(s−1)!

[
log 1α +

∑s−1
m=1

1
m

]
+
∑

k=0
k �=s−1

ζ(s− k) (−α)k

k! , s = 1, 2, . . .

At α = 0, gs(α) diverges for s ≤ 1; indeed for all s there is some kind of singularity
at α = 0, such as a branch point. For further details see Gram (1925).
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Adams, S. and Bru, J.-B. (2004c). A new microscopic theory of superfluidity at
all temperatures. Ann. Henri Poincaré 5, 435–76.
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8

INTERACTING BROWNIAN MOTIONS AND
THE GROSS–PITAEVSKII FORMULA

Stefan Adams and Wolfgang König

Abstract

We review probabilistic approaches to the Gross–Pitaevskii theory describing
interacting dilute systems of particles. The main achievement are large devi-
ations principles for the mean occupation measure of a large system of inter-
acting Brownian motions in a trapping potential. The corresponding rate
functions are given as variational problems whose solution provide effective
descriptions of the infinite system.

8.1 Introduction

The phenomenon known as Bose–Einstein condensation (hereafter abbreviated
BEC) was predicted by Einstein (1925) on the basis of ideas of the Indian physi-
cist Bose (1924) concerning statistical description of the quanta of light: in a
system of particles obeying Bose statistics and whose total number is conserved,
there should be a temperature below which a finite fraction of all the particles
‘condense’ into the same one-particle state. Einstein’s original prediction was
for a non-interacting gas of particles. The predicted phase transition is associ-
ated with the condensation of atoms in the state of lowest energy and is the
consequence of quantum statistical effects.

For a long time these predictions were considered a curiosity of non-interacting
gases and had no practical impact. After the observation of superfluidity in
liquid 4He below the λ temperature (2.17 K) was made, London (1938) sug-
gested that, despite the strong interatomic interactions, BEC indeed occurs in
this system and is responsible for the superfluidity properties. A superfluid is
a fluid that flows without resistance. London suggested that a large number of
Helium atoms (which are Bosons) are in the translational state of lowest energy
(Bose condensate), and these atoms are mixed with normal fluid consisting of
atoms with higher translational energies. This interpretation has stood the test
of time and is the basis of our modern understanding of the properties of the
superfluid phase.

The first self-consistent theory of super-fluids was developed by Landau
(1941) in terms of the spectrum of elementary excitations of the fluid. In 1947
Bogoliubov developed the first microscopic theory of interacting Bose gases,
based on the concept of Bose–Einstein condensation. This initiated several theo-
retical studies; a recent account on the state of the art can be found in
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(2004a, 2004b) and on its contribution to superfluidity theory in Adams and
Bru (2004c). After Landau and Lifshitz (1951) had appeared, Penrose (1951)
and Onsager and Penrose (1956) introduced the concept of the non-diagonal
long-range order and discussed its relationship with BEC. An important develop-
ment in the field took place with the prediction of quantized vortices by Onsager
(1949) and Feynman (1955). The experimental studies on dilute atomic gases
were developed much later, starting from the 1970s, benefiting from the new
techniques developed in atomic physics based on magnetic and optical trapping,
and advanced cooling mechanisms.

In 1995, the first experimental realizations of BEC were achieved in a system
that is as different as possible from 4He, namely, in dilute atomic alkali gases
trapped by magnetic fields. These realizations are due to Anderson et al. (1995),
Bradley et al. (1995), and Davis et al. (1995), after appropriate cooling methods
had been developed. For this remarkable achievement, the Nobel prize in physics
2001 was awarded to E.A. Cornell, W. Ketterle, and C.E. Wieman. Over the
last few years these systems have been the subject of an explosion of research,
both experimental and theoretical. A comprehensive account on Bose–Einstein
condensation is the recent monograph Pitaevskii and Stringari (2003).

Perhaps the most fascinating aspect of BEC is best illustrated by the cover
of Science magazine of 22 December, 1995, in which the Bose condensate is
declared as the ‘molecule of the year’. The Bose condensate is pictured as a
platoon of soldiers marching in lookstep: every atom in the condensate must
behave in exactly the same way. One of the most striking consequences is that
effects, which are so small that they are practically invisible at the level of a
single atom, are spectacularly amplified.

Motivated by the experimental success, in a series of papers Lieb et al.
(2000a), Lieb et al. (2000b), Lieb et al. (2001), and Lieb and Seiringer (2002)
obtained a mathematical foundation of Bose–Einstein condensation at zero tem-
perature. The mathematical formulation of the N -particle Boson system is in
terms of an N -particle Hamilton operator, HN , whose ground states describe
the Bosons under the influence of a trap potential and a pair potential, see
Section 8.2. Lieb et al. rigorously proved that the ground state energy per
particle of HN (after proper rescaling of the pair potential) converges towards
the energy of the well-known Gross–Pitaevskii functional. The ground state is
approximated by the N -fold product of the Gross–Pitaevskii minimizer multi-
plied by a correlated term involving the solution of the associated scattering equa-
tion. Moreover, they also showed the convergence of the reduced density matrix,
which implies the Bose–Einstein condensation. As had been generally predicted,
the scattering length of the pair interaction potential plays a key role in this
description.

These rigorous results are only for zero temperature, whereas the exper-
iments show BEC at very low, but positive temperature. The mathematical
understanding of BEC at positive temperature is rather incomplete yet. Its
analysis represents an important challenging and ambitious research area in the
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field of many-particle systems. Thermodynamic equilibrium states are described
by traces of e−βHN , where β ∈ (0,∞) is the inverse temperature and HN is the
N -particle Hamilton operator. In what follows we set the Boltzmann constant
kB = 1. Via the Feynman–Kac formula (see e.g. Feynman 1953 and Ginibre
1970), these traces are expressed as exponential expectations of N interacting
Brownian motions with time horizon [0, β]. This opens up the possibility to use
probabilistic approaches for the study of these traces, in particular stochastic
analysis and the theory of large deviations.

In this review we present our probabilistic approaches to dilute systems
of interacting many-particle systems at positive temperature using the Gross–
Pitaevskii approximation. Using the the theory of large deviations, we charac-
terize the large-N and the large-β behaviour of various exponential expectations
of N interacting Brownian motions with time horizon [0, β] in terms of variants
of the Gross–Pitaevskii variational formula. In particular we introduce and anal-
yse a new model, which we call the Hartree model, whose ground states are the
ground product states of the Hamilton operator HN . Their large-N behaviour is
characterized in terms of the Gross–Pitaevskii formula, with the scattering length
replaced by the integral of the pair interaction potential. This nice assertion is
complemented by an analogous result for positive temperature. Our programme
started with Adams et al. (2006a,b) which we summarize here. Further aspects
are considered in Adams and Dorlas (2007a), Adams and König (2007), Adams
and Dorlas (2007b), and Adams (2008a). Under current development are Adams
(2007), Adams (2008b), and Adams et al. (2007) in which non-dilute systems
are studied.

We give a brief introduction to the physics of dilute quantum gases and their
mathematical treatment at zero temperature in Section 8.2. In particular we
introduce the Gross–Pitaevskii formula and the scattering length and describe
the results by Lieb et al. and our results of the ground product state. Our prob-
abilistic models are introduced in Section 8.3. Section 8.4 is devoted to our large
deviations results and the variational analysis.

8.2 Dilute quantum gases

We introduce the modelling of the Gross–Pitaevskii theory which will be the
starting point for our probabilistic models in Section 8.3. Let us comment briefly
on some issues of the 1995 experiments as these are the motivation for the
renewed interest in the Gross–Pitaevskii theory and its analytical proof by
Lieb et al.

The experimental systems are collections of individual neutral alkali-gas atoms
(e.g., 6Li, 40K, 87Rb, 23Na, 7Li and 85Rb, 87Rb,133Cs,174Yb, 85Rb2, and 6Li2),
with total numberN ranging from a few hundreds up to≈ 1010, confined by mag-
netic and/or optical means to a relatively small region of space. Their densities
range from ≈ 1011cm−1 to ≈ 5×1015cm−1, and their temperatures are typically
in the range of a few tenths of nK up to ≈ 5µK.
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In a typical system, we are faced with several length scales. One of them
is the two-body interaction energy �2/mα2, where m is the reduced mass of
the two particles, � is Heisenberg’s constant, and α is the scattering length
(see Section 8.2.1 below), expressing the strength of the interatomic interaction.
A second one is the mean interparticle spacing rint, and a third one is the oscil-
lator frequency aosc of the confining trap potential. Note that the first scale does
not depend on the trap geometry, whereas the oscillator frequency aosc, the mean
interparticle spacing, the transition temperature Tc, and the mean-field energy
U0 (to be specified later) do depend on the shape of the confining potential.
Introduce the ‘healing length’ ξ = (2mnU0�)−1/2 and the de Broglie wavelength
λDB. Note that aosc is the zero-point spread of the ground-state wave function
of a free particle in the trap. The relations between these scales are as follows.

α' rint ≈ λDB ≤ ξ ' aosc.

Typical values are α ≈ 50 Å, rint ≈ 2000 Å, ξ ≈ 4000 Å, aosc ≈ 1µ. If one
compares these numbers with those of liquid helium, one sees that the dilute gas
condition α' rint, which is characteristic for the BEC of alkali gases, is very far
from satisfied for liquid helium. As a consequence, liquid helium is a much more
strongly interacting system than BEC gases, by many orders of magnitude.

We now turn to a mathematical modelling and introduce the potentials
and the scattering length in Section 8.2.1 and the Gross–Pitaevskii theory in
Section 8.2.2.

8.2.1 Potentials and scattering length

Our two fundamental ingredients are a trap potential, W , and a pair-interaction
potential, v. We restrict ourselves to dimensions d ∈ {2, 3}. Our assumptions on
W are the following.

W : Rd → [0,∞] is measurable and locally integrable on {W <∞} with
lim

R→∞
inf

|x|>R
W (x) =∞.

(8.1)

In order to avoid trivialities, we assume that {W <∞} is either equal to Rd or
is a bounded connected open set containing the origin. A typical choice for the
trapping potentials is W (x) = |x|2, see Pitaevskii and Stringari (2003).

Our assumptions on v are the following. By Br(x) we denote the open ball
with radius r around x ∈ Rd.

v : [0,∞)→ R ∪ {+∞} is measurable and bounded from below,
a := sup{r ≥ 0: v(r) =∞} ∈ [0,∞), v|[η,∞) is bounded ∀η > a.

(8.2)

Note that we also admit v(a) = +∞. We are mainly interested in the case
where v has a singularity, i.e., either a > 0, or a = 0 and limr↓0 v(r) = ∞.
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According to integrability properties near the origin, we distinguish two different
classes as follows. We call the interaction potential v a soft-core potential if
a = 0 and

∫
B1(0)

v(|x|) dx < +∞. Otherwise (i.e., if a > 0, or if a = 0 and∫
B1(0)

v(|x|) dx = +∞), we call the interaction potential a hard-core potential.
We shall need the following dN -dimensional versions of the trap and the

interaction potential:

W(x) =
N∑
i=1

W (xi) and v(x) =
∑

1≤i<j≤N

v(|xi − xj |),

where x = (x1, . . . , xN ) ∈ RdN .
Let us introduce the scattering length of the pair potential, v, and its most

important properties. For a detailed overview, see Lieb and Yngvason (2001).
First we turn to d ≥ 3. Let u : [0,∞) → [0,∞) be a solution of the scattering
equation:

u′′ =
1
2
uv on (0,∞), u(0) = 0. (8.3)

Then the scattering length α(v) ∈ [0,∞], of v is defined as:

α(v) = lim
r→∞

[
r − u(r)

u′(r)

]
. (8.4)

If v(0) > 0, then α(v) > 0, and if
∫∞
a+1 v(r)r

d−1 dr <∞, then α(v) <∞. In the
pure hard-core case, i.e., v = ∞1l[0,a), we have α(v) = a. It is easily seen from
the definition that the scattering length of the rescaled potential ξ−2v(· ξ−1) is
equal to ξα(v), for any ξ > 0.

There is some ambiguity of the choice of u in (8.3); positive multiples of u
are also solutions, but the factor drops out in (8.4). We like to normalize u by
requiring that limR→∞ u′(R) = 1. It is easily seen that (where ωd denotes the
area of the unit sphere in Rd):∫

Rd
v(|x|) u(|x|)|x|d−2 dx = ωd

∫ ∞

0
v(r)u(r)r dr = 2ωd

∫ ∞

0
u′′(r)r dr

= 2ωd lim
R→∞

(
u′(r)r

∣∣∣R
0
−
∫ R

0
u′(r) dr

)
= 2ωd lim

R→∞

(
u′(R)R− u(R)

)
= 2ωdα(v).

(8.5)

As a consequence, in dimension d = 3, we have α(v) < α̃(v), where α̃(v) =
1l/8π

∫
Rd
v(|x|)dx. Indeed, u is a nonnegative convex function whose slope is

always below one because of limR→∞ u′(R) = 1. By u(0) = 0, we have that
u(r) < r = rd−2 for any r > 0. With the help of (8.5) we therefore get 8πα(v) =
2ωdα(v) <

∫
Rd
v(|x|) dx = 8πα̃(v).
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In d = 2, the definition of the scattering length is slightly different. We treat
first the case that supp(v) ⊂ [0, R∗] for some R∗ > 0 and consider, for some
R > R∗, the solution u : [0, R]→ [0,∞) of the scattering equation:

u′′ =
1
2
uv on [0, R], u(R) = 1, u(0) = 0.

Then u(r) = log r
α(v)/ log

R
α(v) for R∗ < r < R for some α(v) ≥ 0, which is by

definition the scattering length of v in the case that supp(v) ⊂ [0, R∗]. Note that
α(v) does not depend on R. Hence:

logα(v) =
log r − u(r) logR

1− u(R) , R∗ < r < R.

For general v (i.e., not necessarily having finite support), v is approximated by
compactly supported potentials, and the scattering length of v is put equal to
the limit of the scattering lengths of the approximations.

The dilute gas condition ensures that the scattering length is a satisfactory
measure of the interaction strength. This approximation neglects any higher
energy scattering processes. We finally discuss briefly the effects of the atom-
atom scattering on the properties of the many-body alkali-gas system. The fun-
damental result is that under some conditions the true interaction potential v of
two atoms of reduced mass m may be replaced by a delta function of strength
2π�2α/m. The effective interaction is:

veff(x) =
4πα�2

m
δ(x), x ∈ Rd.

This motivates to scale the potential in such a way that it approximates the
delta function in the large N -limit. This will be done in the so-called Gross–
Pitaevskii scaling in Subsection 8.2.2, which is a particular approximation of the
delta function.

8.2.2 The Gross–Pitaevskii approximation
The simplest possible approximation for the wave function of a many-body sys-
tem is a (correctly symmetrized) product of single-particle wave functions, i.e.,
the Hartree–Fock ansatz, see Thirring (1980), Fetter and Walecka (1971), or
Dickhoff and Van Neck (2005). In the case of a BEC system at temperature
T = 0, this approximation usually leads to the Gross–Pitaevskii approxima-
tion. Basically the Gross–Pitaevskii approximation suggests replacing the (time-
dependent) evolution of the many-body wave functions, governed by a system
of Schrödinger equations, by a one-particle non-linear Schrödinger equation (see
Gross 1961, Pitaevskii 1961):

i∂tΨ(x, t) =
(
−∆+W + 4πα|Ψ(x, t)|2

)
Ψ(x, t), x ∈ Rd, t ∈ R+.

In the stationary case, the Gross–Pitaevskii theory gives an approximation for the
quantum mechanical ground state for many particles (i.e., in the limit
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N→∞) as a variational problem for a single particle in an effective poten-
tial. Hence we first summarize some ground state properties for finitely many
particles.

The ground-state energy per particle of the N -particle Hamilton operator:

HN = −∆+ W + v on L2(Rd),

is given by:

χN =
1
N

inf
h∈H1(Rd) : ‖h‖2=1

{
‖∇h‖22 + 〈W, h2〉+ 〈v, h2〉

}
, (8.6)

Here H1(Rd) = {f ∈ L2(Rd) : ∇f ∈ L2(Rd)} is the usual Sobolev space, and
∇ is the distributional gradient. It is standard to proof that there is a unique,
continuously differentiable, minimizer h∗ ∈ H1(Rd) on the right hand side of
(8.6), and that it satisfies the variational equation:

∆h∗ = Wh∗ + vh∗ −NχNh∗.

Now we turn to the above mentioned product ansatz. Introduce the ground
product state energy of HN , that is:

χ(⊗)

N =
1
N

inf
h1,...,hN∈H1(Rd) : ‖hi‖2=1 ∀i

〈
h1 ⊗ · · · ⊗ hN ,HNh1 ⊗ · · · ⊗ hN

〉
. (8.7)

The replacement of the ground state energy, χN , by the ground product state
energy, χ(⊗)

N , is known as the Hartree–Fock approach (see Dickhoff and Van Neck
2005). Sometimes, the formula in (8.7) is called the Hartree formula. Obviously:

χ(⊗)

N ≥ χN .

We can also write:

χ(⊗)

N =
1
N

inf
h1,...,hN∈H1(Rd) :

‖hi‖2=1 ∀i

{ N∑
i=1

{
‖∇hi‖22 + 〈W,h2i 〉

}
+

∑
1≤i<j≤N

〈h2i , V h2j 〉
}
,

where V denotes the integral operator with kernel v ◦ | · |, either defined for
functions by V f(x)=

∫
Rd
v(|x − y|)f(y) dy or for measures by V µ(x) =∫

Rd
µ(dy) v(|x − y|). The main assertions on the formula in (8.7) and its mini-

mizers are summarized as follows (see Adams et al. 2006a).

Lemma 8.1 (Ground product states of HN) Fix N ∈ N.

(i) There exists at least one minimizer (h1, . . . , hN ) of the right hand side in
the formula for χ(⊗)

N . The set of minimizers is compact and invariant under
permutation of the functions h1, . . . , hN .
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(ii) Any minimizer (h1, . . . , hN ) satisfies the system of differential equations:

∆hi = −λihi +Whi + hi
∑
j =i
V h2j , i = 1, . . . , N,

with λi = ‖∇hi‖22 + 〈W,h2i 〉 +
∑

j =i〈h2i , V h2j 〉. Furthermore, ‖hi‖∞ ≤
Cd(λi− (N − 1) inf v)d/4 for any i ∈ {1, . . . , N}, where Cd > 0 depends on
the dimension d only.

(iii) Let v be soft-core, assume that d ∈ {2, 3}, and let (h1, . . . , hN ) be any
minimizer. Assume that v|(0,η) ≥ 0 for some η > 0. In d = 3, furthermore
assume that: ∫

B1(0)

∣∣v(|y|)∣∣1+δdy <∞, for some δ > 0.

Then every hi is positive everywhere in Rd and continuously differentiable,
and all first partial derivatives are α-Hölder continuous for any α < 1.

(iv) Let v be hard-core, assume that d ∈ {2, 3}, and let (h1, . . . , hN ) be any
minimizer. Then every hi is continuously differentiable in the interior of
its support, and all first partial derivatives are α-Hölder continuous for
any α < 1.

Remark 8.1

(i) Unlike for the ground states of HN in (8.6), there is no convexity argu-
ment available for the formula in (8.7). This is due to the fact that a convex
combination of tensor-products of functions is not tensor-product in general, and
hence the domain of the infimum in (8.7) is not a convex subset of H1(RdN ).
However, for h2, . . . , hN fixed, the minimization over h1 enjoys the analogous
convexity properties on H1(Rd) as the minimization in (8.6).

(ii) If v is hard-core, it is easy to see that the distances between the supports
of h1, . . . , hN have to be no smaller than a (see (8.2)) in order to make the value
of 〈h1⊗ . . .⊗hN ,HNh1⊗ . . .⊗hN 〉 finite. The potential

∑
j =i V h

2
j is equal to ∞

in the a-neighbourhood of the union of the supports of hj with j �= i, and hi is
equal to zero there (we regard 0 ·∞ as 0). In particular, minimizers of (8.7) are
not of the form (h, . . . , h). In the soft-core case, this statement is not obvious at
all. A partial result on this question in d = 3 will be a by-product of Section 8.2.2
below.

We study now our main variational formulas, χN and χ(⊗)

N , and their minimizers
in the limit for diverging number N of particles. In particular, we point out
some significant differences between χN and its product state version χ(⊗)

N in the
soft-core and the hard-core case, respectively.

First we report on recent results by Lieb, Seiringer, and Yngvason on the
large-N behaviour of χN . Let the pair functional v be as in (8.2) and assume
additionally that v ≥ 0 and v(0) > 0.
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We shall replace v by the rescaling vN (·) = ξ−2N v( · ξ−1N ), for some appropriate
ξN tending to zero sufficiently fast. This will provide the dilute gas condition
needed. Hence, the reach of the repulsion is of order ξN , and its strength of
order ξ−2N . Furthermore, the scattering length of v, α(v), is rescaled such that
α(vN ) = α(v)βN . If βN ↓ 0 sufficiently fast, this rescaling makes the system
dilute, in the sense that α(vN ) ' N−1/d. This means that the interparticle
distance is much bigger than the range of the interaction potential strength.
More precisely, the decay of βN will be chosen in such a way that the pair-
interaction has the same order as the kinetic term.

The mathematical description of the large-N behaviour of χN in this scaling,
and hence the theoretical foundation of the above mentioned physical experi-
ments, has been successfully accomplished in a recent series of papers Lieb et al.
(2000a), Lieb and Yngvason (2001), Lieb et al. (2001), and Lieb and Seiringer
(2002). It turned out that the well-known Gross–Pitaevskii formula adequately
describes the limit of the ground states and its energy. This variational formula
was first introduced in Gross (1961) and Gross (1963) and independently in
Pitaevskii (1961) for the study of superfluid Helium. After its importance for the
description of Bose–Einstein condensation of dilute gases in magnetic traps was
realized in 1995, the interest in this formula considerably increased; see Dalfovo
et al. (1999) for a summary and the monograph Pitaevskii and Stringari (2003)
for a comprehensive account on Bose–Einstein condensation.

The Gross–Pitaevskii formula has a parameter α > 0 and is defined as follows:

χ(GP)
α = inf

φ∈H1(Rd) : ‖φ‖2=1

{
‖∇φ‖22 + 〈W,φ2〉+ 4πα‖φ‖44

}
.

It is known by Lieb, Seiringer, and Yngvason (2000a) that χ(GP)
α possesses a

unique minimizer φ(GP)
α , which is positive and continuously differentiable with

Hölder continuous derivatives of order one.
Since v(0) > 0, its scattering length α(v) is positive. The condition:

∫ ∞

a+1
v(r)rd−1 dr <∞

implies that α(v) <∞. Furthermore, note that the rescaled potential ξ−2v(·ξ−1)
has scattering length ξα(v) for any ξ > 0.

Theorem 8.1 (Large-N asymptotic of χN in d∈{2, 3}) [Lieb et al. 2000a,
Lieb and Yngvason 2001, Lieb et al. 2001]. Assume that d ∈ {2, 3}, that v ≥ 0
with v(0) > 0, and

∫∞
a+1 v(r)r

d−1 dr < ∞. Replace v by vN (·) = ξ−2N v( · ξ−1N )
with ξN = 1/N in d = 3 and ξ2N = α(v)−2e−N/α(v)N‖φ(GP)

α(v)‖
−4
4 in d = 2. Let

hN ∈ H1(RdN ) be the unique minimizer on the right hand side of (8.6), and
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define φ2N ∈ H1(Rd) as the normalized first marginal of h2N , i.e.:

φ2N (x) =
∫

Rd(N−1)
h2N (x, x2, . . . , xN ) dx2 · · ·dxN , x ∈ Rd.

Then we have:

lim
N→∞

χN = χ(GP)

α(v) and φ2N →
(
φ(GP)

α(v))
2 in weak L1(Rd)-sense.

In particular, the proofs show that the ground state, hN , approaches, for
large N , the function:

(x1, . . . , xN ) �→
N∏
i=1

( φ(GP)

α(v)(xi)

‖φ(GP)

α(v)‖∞
f
(
min{|xi − xj | : j < i}

))
,

where f(r) = u(r)/r and u is the solution of the scattering equation (8.3). In
order to obtain the Gross–Pitaevskii formula as the limit of χN also in d = 2, the
rescaling of v in Theorem 8.1 has to be chosen in such a way that the repulsion
strength is the inverse square of the repulsion reach and such that this reach
decays exponentially, which is rather unphysical.

There is an analogue of Theorem 8.1 for the Hartree model in the soft-core
case, see Adams et al. (2006a). It turns out that the ground product state energy
χ(⊗)

N also converges towards the Gross–Pitaevskii formula. However, in d = 2, it
turns out that the potential v has to be rescaled differently. Furthermore, in
d ∈ {2, 3}, the scattering length α(v) is replaced by the number:

α̃(v) :=
1
8π

∫
Rd
v(|y|) dy.

Theorem 8.2 (Large-N asymptotic of χ(⊗)

N , soft-core case) Let d∈{2, 3}.
Assume that v is a soft-core pair potential with v ≥ 0 and v(0) > 0 and α̃(v) <∞.
In dimension d = 3, additionally assume that (iii) of Lemma 8.1 holds. Replace v
by vN (·) = Nd−1v( ·N) and let (h(N)

1 , . . . , h
(N)

N ) be any minimizer for the ground
product state energy. Define φ2N = 1

N

∑N
i=1(h

(N)
i )2. Then we have:

lim
N→∞

χ(⊗)

N = χ(GP)

α̃(v) and φ2N →
(
φ(GP)

α̃(v)

)2
,

where the convergence of φ2N is in the weak L1(Rd)-sense and weakly for the
probability measures φ2n(x) dx towards the measure (φ(GP)

α̃(v))
2(x) dx.

Note that, in d = 3, the interaction potential is rescaled in the same way in
Theorems 8.1 and 8.2. However, the two relevant parameters depend on different
properties of the potential (the scattering length, respectively the integral) and
have different values, since α(v) < α̃(v) (see Section 8.2.1). In particular, for N
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large enough, the ground state of χN is not a product state. This implies the
strictness of the inequality for the two ground state energies, for v replaced by
vN (·) = N2v( ·N). The phenomenon that (unrestricted) ground states are linked
with the scattering length has been theoretically predicted for more general
N -body problems (see Fetter and Walecka 1971, Ch. 14, Popov 1983). Indeed,
Landau combined a diagrammatic method (a Born approximation of the scatter-
ing length) with Bogoliubov’s approximations to almost reconstruct the scatter-
ing length from the L1-norm of v ◦ | · | in the (non-dilute) ground state. However,
the relation between the L1-norm and the product ground states was not rigor-
ously known before.

In d = 2, a more substantial difference between the large-N behaviours of χN
and χ(⊗)

N is apparent. Not only the asymptotic relation between the reach and
the strength of the repulsion is different, but also the order of this rescaling in
dependence on N . We can offer no intuitive explanation for this.

Interestingly, in the hard-core case, χ(⊗)

N shows a rather different large-N
behaviour, which we want to roughly indicate in a special case. Assume that W
and v are purely hard-core potentials, for definiteness we take W = ∞1lB1(0)c

and v =∞1l[0,a]. We replace v by vN (·) = v( · /ξN ) for some ξN ↓ 0 (a pre-factor
plays no role). Then χ(⊗)

N is equal to 1
N times the minimum over the sum of

the principal Dirichlet eigenvalues of −∆ in N subsets of the unit ball having
distance ≥ aβN to each other, where the minimum is taken over the N sets. It
is clear that the volumes of these N sets should be of order 1N , independently
of the choice of ξN . Then their eigenvalues are at least of order N2/d. Hence,
one arrives at the statement lim infN→∞N−2/dχ(⊗)

N > 0, i.e., χ(⊗)

N tends to ∞ at
least like N2/d.

8.3 The probabilistic models

Much thermodynamic information about the Boson system is contained in the
traces of the Boltzmann factor e−βHN for β > 0, like the free energy, or the
pressure. Since the 1960s, interacting Brownian motions are generally used for
probabilistic representations for these traces. The parameter β, which is inter-
preted as the inverse temperature of the system, is then the length of the time
interval of the Brownian motions.

However, the traces do not contain much information about the ground state.
Since the pioneering work of Donsker and Varadhan in the early 1970s it is
basically known that the ground states are intimately linked with the Brownian
occupation measures. This link is rigorously established via the theory of large
deviations for diverging time, which corresponds to vanishing temperature.

We introduce two different models of interacting Brownian motions. These
models are given in terms of transformed measures for paths of length β in
terms of certain Hamiltonians. Let a family of N independent Brownian motions,
(B(1)

t )t≥0, . . . , (B
(N)
t )t≥0, in Rd with generator −∆ be given. The Hamiltonians

of both models possess a trap part and a pair-interaction part. The trap part is
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for both models the same, namely:

HN,β =
N∑
i=1

∫ β

0
W (B(i)

s ) ds. (8.8)

The Hamiltonian of our first model consists of two parts: the trap part given in
(8.8), and a pair-interaction part:

GN,β =
∑

1≤i<j≤N

∫ β

0
v
(
|B(i)

s −B(j)
s |
)
ds.

We look at the distribution of theN Brownian motions under the transformed
path measure:

dP̂N,β =
1
ZN,β

exp(−HN,β−GN,β) dP, where ZN,β = E
(
exp(−HN,β−GN,β)

)
.

Here E denotes the Brownian expectation for deterministic start at the origin
and time horizon [0, β]. We call P̂N,β the canonical ensemble model, since it
is derived, via a Feynman–Kac formula, from the trace-class operator of the
canonical ensemble, e−βHN . That is, the trace is given as:

Tr (e−βHN ) =
∫

Rd
dx1 · · ·

∫
Rd

dxN
N⊗
i=1

Eβ
xi,xi

(
e−HN,β−GN,β

)
.

Here Eβ
xi,xi denotes the expectation with respect to a Brownian bridge starting

in xi and terminating in xi after time β.
However, a system of N Bosons is described by a trace of the projection to

symmetric wave functions, i.e., wave functions that are invariant under permu-
tations of the single particle indices. Hence the trace for a system of Bosons is
given as:

Tr+(e−βHN ) =
1
N !

∑
σ∈SN

∫
Rd

dx1 · · ·
∫

Rd
dxN

N⊗
i=1

Eβ
xi,xσ(i)

(
e−HN,β−GN,β

)
,

where SN is the group of permutations, of N elements. These symmetrized
systems are the subject of the review Adams (2008c) in these proceedings. Recent
results can be found in Adams and Dorlas (2007a), Adams and König (2007),
Adams (2007), and Adams (2008b).

The path measure PN,β is a model for N Brownian motions in a trapW with
the presence of a repellent pair interaction. We can conceive the N -tuple of the
motions, Bt = (B(1)

t , . . . , B
(N)
t ), as one Brownian motion in RdN . Introduce the

normalized occupation measure of the dN -dimensional motion:

µβ(dx) =
1
β

∫ β

0
δBs

(dx) ds,

which is a random element of the set M1(RdN ) of probability measures on
RdN . It measures the time spent by the tuple of N Brownian motions in a
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given region. Note that there is only one time scale involved for all the motions,
i.e., the Brownian particles interact with each other at common time units. We
can write the Hamiltonians in terms of the occupation measure as:

HN,β = β〈W, µβ〉 and GN,β = β〈v, µβ〉.
Our second Brownian model is defined in terms of another Hamiltonian. We
keep the trap Hamiltonian HN,β as in (8.8), but the interaction Hamiltonian
is now:

KN,β =
∑

1≤i<j≤N

1
β

∫ β

0

∫ β

0
v
(
|B(i)

s −B(j)
t |
)
dsdt. (8.9)

Note that the i-th Brownian motion interacts with the mean of the whole path
of the j-th motion, taken over all times before β. Hence, the interaction is not
a particle interaction, but a path interaction. The interaction (8.9) is related to
Polaron type models Donsker and Varadhan (1983) and Bolthausen et al. (1993),
where instead of several paths a single path is considered. We consider the cor-
responding transformed path measure:

dP̂
(⊗)

N,β =
1
Z(⊗)

N,β

exp(−HN,β−KN,β) dP, where Z(⊗)

N,β = E
(
exp(−HN,β−KN,β)

)
.

In Theorem 8.4 below it turns out that the large-β behaviour of Z(⊗)

N,β is inti-
mately related to the Hartree formula in (8.7). Therefore, we call this model the
Hartree model. Its usefulness as a simplified model for the ground state of HN is
well-known, see the physics monograph (Dickhoff and Van Neck 2005, Ch. 12).
Approximating many-body wave function by products of single-particle wave
functions is known as the Hartree–Fock ansatz, usually used for wave functions
of electrons (Fermions) of large atoms or molecules.

We introduce the normalized occupation measure of the i-th motion:

µ(i)

β (dx) =
1
β

∫ β

0
δ
B

(i)
s
(dx) ds ∈M1(Rd).

The tuple of the N occupation measures, (µ(1)

β , . . . , µ
(N)

β ), plays a particular role
in this model. We can write the Hamiltonians as:

HN,β = β〈W, µ⊗β 〉 and KN,β = β
∑

1≤i<j≤N

〈µ(i)

β , V µ
(j)

β 〉 = β〈v, µ⊗β 〉,

where we recall the operator V with kernel v ◦ | · |, and µ⊗β = µ(1)

β ⊗ . . .⊗ µ
(N)

β is
the product measure.

8.4 Large deviations results
We present our main large deviations results for both the canonical ensemble
and the Hartree model. In Section 8.4.1 the zero temperature (i.e., large-β) limit
is considered, and in Section 8.4.2 the large-N limit, both at zero temperature
and positive temperature.
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8.4.1 Vanishing temperature

It turns out that the large-β behaviour of the canonical ensemble model is
described by the ground state of the Hamilton operator HN via a large devia-
tions principle. The rate function IN appearing in Theorem 8.3 is the well-known
Donsker–Varadhan rate function on RdN defined by:

IN (µ) =

{∥∥∇√dµdx∥∥22 if
√
dµ
dx ∈ H1(RdN ) exists ,

∞ otherwise.
(8.10)

Note that the energy functional 〈h,HNh〉 may be rewritten 〈h,HNh〉 = IN (µ)+
〈W, µ〉+ 〈v, µ〉 for the probability measure µ(dx) = h2(x) dx.

Simplifying, the large deviations principle says that, as β →∞:

P(µβ ≈ µ) ≈ e−NIN (µ), µ ∈M1(RdN ).

This is formulated precisely in the next theorem. We refer to Appendix 8.A for
the notion of what a large deviations principle is.

Weak convergence of probability measures is understood as the convergence
of the integrals (expectations) against bounded continuous functions (this con-
vergence is often called weak-� convergence).

Theorem 8.3 (Canonical ensemble model at late times) Adams et al.
(2006a). Fix N ∈ N.

(i)

lim
β→∞

1
Nβ

logE
(
exp(−HN,β −GN,β)

)
= −χN ,

where χN is the ground-state energy per particle of the N -particle operator
HN given in (8.6).

(ii) As β → ∞, the distribution of µβ on M1(RdN ) under P̂N,β satisfies a
principle of large deviation with speed β and rate function IN given by:

IN (µ) = IN (µ) + 〈W, µ〉+ 〈v, µ〉 −NχN for µ ∈M1(RdN ),

that is:

lim
β→∞

1
β
log P̂N,β(µβ ∈ G) ≥ − inf

ν∈G
IN (ν) G ⊂M1(Rd) open,

lim
β→∞

1
β
log P̂N,β(µβ ∈ F ) ≤ − inf

ν∈F
IN (ν) F ⊂M1(Rd) closed.

(iii) The distribution of µβ under P̂N,β converges weakly (in the sense of prob-
ability measures) towards the measure h∗(x)2 dx, where h∗ is the unique
minimizer in (8.6).
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Remark 8.2 It is well-known (Ginibre 1970) that the bottom of the spectrum
of HN is related to the large-β behaviour of the trace of e−βHN , more precisely:

χN = − lim
β→∞

1
Nβ

log Tr
(
e−βHN

)
.

Theorem 8.4 (Hartree model at late times) Adams et al. (2006a).
Assume that W and v are continuous in {W < ∞} resp. in {v < ∞}. Fur-
thermore, assume in the soft-core case that there exists an ε > 0 and a decreasing
function ṽ : (0, ε) → R with v ≤ ṽ on (0, ε), which satisfies

∫
Bε(0)

G(0, y)ṽ(|y|) dy < ∞, where G denotes the Green’s function of the free
Brownian motion on Rd. Fix N ∈ N.
(i)

lim
β→∞

1
Nβ

logE
(
exp(−HN,β −KN,β)

)
= −χ(⊗)

N .

(ii) As β →∞, the distribution of the tuple (µ(1)

β , . . . , µ
(N)

β ) of Brownian occupa-
tion measures onM1(Rd)N under P̂

(⊗)

N,β satisfies a large deviation principle
with speed β and rate function:

I(⊗)

N (µ1, . . . , µN ) =
N∑
i=1

I1(µi) + 〈W, µ⊗〉+ 〈v, µ⊗〉 −Nχ(⊗)

N ,

with µ1, . . . , µN ∈M1(Rd) where I1 is defined in (8.10), and µ⊗ = µ1⊗ . . .
⊗ µN is the product measure.

(iii) The distribution of (µ(1)

β , . . . , µ
(N)

β ) under P̂
(⊗)

N,β converges weakly (in the
sense of probability measures) to the set of minimizers for ground product
state energy χ(⊗)

N .

8.4.2 Large systems at positive temperature
We now formulate our results on the behaviour of the Hartree model in the limit
as N →∞, with β > 0 fixed. As in the zero temperature case in Theorem 8.2, we
replace v by vN (·) = Nd−1v(·N); we write K(N)

N,β for the Hamiltonian introduced
in (8.9).

First we introduce an important functional, which will play the role of a
probabilistic energy functional. Define Jβ :M1(Rd) → [0,∞] as the Legendre–
Fenchel transform of the map Cb(Rd)f �→ 1

β logE[e
∫ β
0 f(Bs) ds] on the set Cb(Rd) of

continuous bounded functions on Rd, where (Bs)s≥0 is one of the above Brownian
motions. That is:

Jβ(µ) = sup
f∈Cb(Rd)

{
〈f, µ〉 − 1

β
logE

(
e
∫ β
0 f(Bs) ds

)}
, µ ∈M1(Rd).

Here M1(Rd) denotes the set of probability measures on Rd, and we write
〈f, µ〉 =

∫
Rd
f(x)µ(dx) and also use the notation 〈f, g〉 =

∫
Rd
f(x)g(x) dx for
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integrable functions f, g. Note that Jβ depends on the initial distribution of the
Brownian motion. One can show that Jβ is not identical to +∞. Clearly, Jβ is a
lower semicontinuous and convex functional on M1(Rd), which we endow with
the topology of weak convergence induced by test integrals against continuous
bounded functions. However, Jβ is not a quadratic form coming from any linear
operator. If µ possesses a Lebesgue density φ2 for some L2-normalized φ ∈ L2,
then we also write Jβ(φ2) instead of Jβ(µ). It turns out that Jβ(µ) = ∞ if µ
fails to have a Lebesgue density, see Adams, Bru, and König (2006b).

In the language of the theory of large deviations, Jβ is the rate function that
governs a large deviations principle. The object that satisfies this principle is the
mean of the N normalized occupation measures:

µN,β =
1
N

N∑
i=1

µ(i)

β , N ∈ N.

The principle follows from Cramér’s theorem, see (Deuschel and Stroock 2001,
Th. 3.3.11), together with the exponential tightness of the sequence (µN,β)N∈N.

To apply this principle, we have to express our Hamiltonians HN,β and KN,β

as functionals of µN,β . For the first this is an easy task and can be done for any
fixed N :

HN,β = Nβ
∫

Rd
W (x)

1
N

N∑
i=1

µ(i)

β (dx) = Nβ
〈
W,µN,β

〉
.

Now we rewrite the second Hamiltonian, which will need Brownian intersec-
tion local times and an approximation for large N . Let us first introduce the
intersection local times, see Geman et al. (1984). For the following, we have to
restrict to the case d ∈ {2, 3}.

Fix 1 ≤ i < j ≤ N and consider the process B(i)−B(j), the so-called confluent
Brownian motion of B(i) and −B(j). This two-parameter process possesses a local
time process, i.e., there is a random process (L(i,j)

β (x))x∈Rd such that, for any
bounded and measurable function f : Rd → R:∫

Rd
f(x)L(i,j)

β (x) dx =
1
β2

∫ β

0
ds
∫ β

0
dt f
(
B(i)

s −B(j)
t

)
(8.11)

=
∫

Rd

∫
Rd
µ(i,j)

β (dx)µ(i,j)

β (dy)f(x− y). (8.12)

We scale the interaction potential, i.e., we replace v with vN (·) = Nd−1v(·N),
and we denote the interaction (8.9) with this replacement by K(N)

N,β . We rewrite
it as follows:

K(N)

N,β = βNd−1
∑

1≤i<j≤N

∫
Rd
v(zN)L(i,j)

β (z) dz

= Nβ
∫

Rd
v(x)

1
N2

∑
1≤i<j≤N

L(i,j)

β ( 1N x) dx.
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It is known (Geman et al. 1984, Th. 8.1) that (L(i,j)

β (x))x∈Rd may be chosen
continuously in the space variable. Furthermore, the random variable L(i,j)

β (0) =
limx→0 L

(i,j)

β (x) is equal to the normalized total intersection local time of the two
motions B(i) and B(j) up to time β. Formally:

L(i,j)

β (0) =
1
β2

∫
A

dx
∫ β

0
ds

1l{B(i)
s ∈ dx}
dx

∫ β

0
dt

1l{B(j)
t ∈ dx}
dx

=
∫
A

dx
µ(i)

β (dx)
dx

µ(j)

β (dx)
dx

,

Using the continuity of L(i,j)

β , we approximate:

K(N)

N,β ≈ Nβ4πα(v)
2
N2

∑
1≤i<j≤N

L(i,j)

β (0) ≈ Nβ4πα(v)
〈 1
N

N∑
i=1

µ(i)

β ,
1
N

N∑
i=1

µ(i)

β

〉
= Nβ4πα(v)

∥∥∥dµN,β

dx

∥∥∥2
2
.

where we conceive µ(i)

β as densities.
Hence, using Varadhan’s lemma (see (Deuschel and Stroock 2001, Th. 2.1.10)

for example) and ignoring the missing continuity of the map µ �→ ‖dµdx‖22, this
heuristic explanation is finished by:

E
(
e−HN,β−K

(N)
N,βeN〈f,µN,β〉

)
≈ E
(
exp
{
−Nβ

[〈
W − f, µN,β

〉
− 4πα(v)

∥∥∥dµN,β

dx

∥∥∥2
2

]})
≈ e−Nβχ

(⊗)
α(v)(f),

where:

χ(⊗)
α (β) = inf

φ∈L2(Rd) : ‖φ‖2=1

{
Jβ(φ2) + 〈W,φ2〉+ 4πα ||φ||44

}
. (8.13)

Here we substituted φ2(x) dx = µ(dx), we may restrict the infimum over
probability measures to the set of their Lebesgue densities φ2.

Let us now give the precise formulation of our results.

Theorem 8.5 (Many-particle limit for the Hartree model) Adams
et al. (2006b). Assume that d ∈ {2, 3} and let in addition to the assumptions
in Section 8.2.1 W be continuous in {W < ∞} and v with

∫
Rd
v(|x|) dx < ∞

and
∫

Rd
v(|x|)2 dx <∞. Introduce:

α(v) :=
∫

Rd
v(|y|) dy <∞.
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Fix β > 0. Then, as N → ∞, the mean µN,β = 1
N

∑N
i=1 µ

(i)

β of the normalized
occupation measures satisfies a large deviation principle on M1(Rd) under the

measure with density e−HN,β−K
(N)
N,β with speed Nβ and rate function:

I(⊗)

β (µ) =

{
Jβ(φ2) + 〈W,φ2〉+ 12α(v) ||φ||44 if φ2 = dµ

dx exists,
∞ otherwise.

The level sets {µ ∈M1(Rd) : I(⊗)

β (µ) ≤ c}, c ∈ R, are compact.

In order to avoid trivialities, we tacitly assume that the support of the initial
distribution of the Brownian motions is contained in the set {W <∞}.

Lemma 8.2 (Analysis of χ(⊗)
α (β), Adams et al. 2006b) Fix β > 0 and

α > 0.
(i) There exists a unique L2-normalized minimizer φ∗ ∈ L2(Rd) ∩ L4(Rd) of

the right hand side of (8.13).
(ii) For any neighbourhood N ⊂ L2(Rd) ∩ L4(Rd) of φ∗:

inf
φ∈L2(Rd) : ‖φ‖2=1,φ/∈N

{
Jβ(φ2) + 〈W,φ2〉+ 4πα||φ||44

}
> χ(⊗)

α (β).

Here ‘neighbourhood’ refers to any of the three following topologies: weakly
in L2, weakly in L4, and weakly in the sense of probability measures, if φ
is identified with the measure φ(x)2 dx.

Corollary 8.1 (Free energy for positive temperature) Let the assump-
tions of the previous Theorem 8.5 be satisfied. Then the specific free energy per
particle is:

lim
N→∞

1
−βN logE

(
e−HN,β−K

(N)
N,β
)
= χ(⊗)

α(v)(β).

8.A Large deviations principles
For the convenience of our reader, we repeat the notion of a large deviation prin-
ciple. A family (Xβ)β>0 of random variables Xβ , taking values in a topological
vector space X , satisfies the large deviation upper bound with speed aβ , where
aβ →∞ for β →∞, and rate function I : X → [0,∞] if, for any closed subset F
of X :

lim sup
β→∞

1
aβ

logP(Xβ ∈ F ) ≤ − inf
x∈F

I(x),

and it satisfies the large deviation lower bound if, for any open subset G of X :

lim inf
β→∞

1
aβ

logP(Xβ ∈ G) ≥ − inf
x∈G

I(x).

If both upper and lower bound are satisfied and, in addition, the level sets {I ≤ c}
are compact for any c ∈ R, then one says that (Xβ)β satisfies a large deviation



Interacting Brownian motions and the Gross–Pitaevskii formula 191

principle. This notion easily extends to the situation where the distribution of
Xβ is not normalized, but a sub-probability distribution only.

In our large deviations results we shall rely on the following principles for
the normalized Brownian occupation measures, i.e., for certain M1(Rd)-valued
random variables. For any measurable subset A of Rd, we conceiveM1(A) as a
closed convex subset of the space M(A) of all finite signed Borel measures on
A, which is a topological Hausdorff vector space whose topology is induced by
the set Cb(A) of all continuous bounded functions A → R. Here Cb(A) is the
topological dual of M(A). The set M1(Rd) inherits this topology from M(A).
When we speak of a large deviation principle ofM1(A)-valued random variables,
then we mean a principle onM(A) with a rate function that is tacitly extended
fromM1(A) toM(A) with the value +∞.
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A SHORT INTRODUCTION TO ANDERSON LOCALIZATION

Dirk Hundertmark

Abstract

We give short introduction to some aspects of the theory of Anderson
localization.

9.1 Introduction

Anderson (1958) published an article where he discussed the behaviour of
electrons in a dirty crystal. This is the quantum mechanical analogue of a random
walk in a random environment. He considered the tight binding approximation,
in which the electrons can hop from atom to atom and are subject to an external
random potential modelling the random environment and gave some nonrigorous
but convincing arguments that in this case such a system should lose all its con-
ductivity properties for large enough disorder, that is, become an insulator. The
electrons in such a system become trapped due to the external extensive disor-
der. This is in sharp contrast to the behaviour in ideal crystals which are always
conductors.

But what is this supposed to mean precisely? In this note we try to shed
some light on the mathematical theory of Anderson localization. Our plan can
be summarized as follows:

I. Disordered Matter: the Anderson model of a quantum particle in a random
environment.

II. Exponential decay of ‘correlations’ (fractional moments of the resolvent)
as a signature for localization.

III. Finite volume criteria for the decay of correlations in a toy model (perco-
lation): sub-harmonicity is your friend.

IV. Localization at large disorder: the self-avoiding random walk
representation.

9.1.1 The Anderson model

The arena is given by the Hilbert space l2(Zd). On Zd we usually consider the
Manhattan norm |x| = |x1|+ · · ·+ |xd|, but for most results one can equally well
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use the Euclidian norm. Disordered matter is described by a random Schrödinger
operator, often called random Hamiltonian:

H = Hω := H0 + λVω

with H0 the unperturbed part, coupling constant λ > 0, and the random poten-
tial Vω which is simply a multiplication operator on l2(Zd) with matrix elements
Vω(x) = vx(ω), where (vx(ω))x∈Zd is a collection of random variables indexed by
Zd. In Dirac notation:

Vω =
∑
x∈Zd

vx(ω)|x〉〈x|.

We often use Dirac’s notation, since it gives a convenient way to write projections
and integral kernels: |x〉 = δx with δx the Kronecker delta function, δx(x) = 1 and
δx(y) = 0 for y �= x, and |x〉〈x| is the Dirac notation for the projection operator
|x〉〈x| = 〈δx, ·〉δx, where 〈·, ·〉 is the usual scalar product in l2(Z2) with the
convention that it is linear in the second component. For a bounded operatorM
on l2(Zd), i.e., an infinite matrix M , the expression M(x, y) = 〈x|M |y〉 denotes
the x-y matrix element.

We will often consider the simplest case in which (vx)x∈Zd are independent
identically distributed (i.i.d) random variables with (single-site) distribution ρ.
In this case the probability space is given by the product space Ω = RZd =
{f : Zd → R} and the usual product σ-algebra, and the probability measure on
Ω is simply the product measure P = ⊗x∈Zd ρ. Note, however, that one does not
need to consider i.i.d. random variables, the Aizenman–Molchanov approach is
rather robust to correlated random potentials, as long as the assumptions on ρ
are replaced by suitable uniform assumptions on conditional expectations.

The unperturbed part of the Hamiltonian is given by:

H0 = T + V0.

Here V0 models, e.g., a periodic background potential, T is the kinetic
energy, e.g.:

Tψ(x) = −∆ψ(x) := −
∑
|e|=1

ψ(x+ e), that is 〈x|T |y〉 = T (x, y) = −δ|x−y|,1

is the discrete Laplace, or the (negative) adjacency matrix of Zd (nearest neigh-
bour hopping). It is also possible to include a constant magnetic field, in which
case the kinetic energy is modified to:

T (x, y) = −e−iAx,y δ|x−y|,1.

Here Ax,y is a phase function, i.e., an antisymmetric function of the (oriented)
bond b = {x, y}. Moreover, one can allow for more than nearest neighbour
hopping in the kinetic energy T , all that is needed for most of the analysis
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is a sumability condition of the form:

sup
x∈Zd

∑
y∈Zd

eµ|x−y||T (x, y)| <∞,

for some µ > 0. This decay condition can also be weakened a little bit further
if one is not interested in exponential decay estimates but content with some
polynomial decay rate.

The resolvent is given by G(z)=Gω(z)= (Hω − z)−1 and the Green’s func-
tion, the kernel of the resolvent, is given by G(x, y; z) = 〈x|G(z)|y〉.

Remark 9.1

i) We mainly focus on an i.i.d. random potential Vω, a kinetic energy given
by T = −∆ and H0 = −∆+ V0 with V0 periodic or at least bounded.

ii) We will take expectations of ‘random variables’ freely, completely ignoring
measurability questions in the spirit of ‘when it is interesting after integrating
then it is usually measurable’. Even though sometimes one has to work hard to
prove measurability one should, in this case, first be convinced that it is inter-
esting anyway. For good reading concerning measurability and other aspects of
random operators see, for example, Kirsch (1989), Kirsch and Metzger (2007),
and Pastur (1980).

iii) Originally discussed by Anderson was the case V0 = 0, ρ(dv) =
1
2χ(−1,1)(x) dv, and no magnetic field, that is, T = −∆ is the negative adja-
cency matrix of Zd.

9.1.2 What is Anderson localization (for mathematicians)?

Under the conditions described above it is known, see, for example, Pastur (1980)
or Kirsch (1989), that the spectrum σ(Hω) is (almost surely) constant. There is
a closed set Σ ⊂ R such that:

σ(Hω) = Σ for P almost all ω.

Moreover, for the Anderson model on l2(Zd) with an i.i.d. random potential one
knows that:

Σ = σ(H0) + λ supp(ρ) (9.1)

where supp(ρ) is the support of the single-site distribution ρ. But what is the
(almost sure) nature of the spectrum?

For any self-adjoint operator H in a Hilbert space H there is a decomposition
of the Hilbert space into invariant subspaces:

H = Hp ⊕Hsc ⊕Hac (9.2)
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with:

Hp = subspace corresponding to point spectrum
Hac = subspace corresponding to absolutely continuous spectrum
Hsc = subspace corresponding to singular continuous spectrum

and a decomposition of the spectrum into not the necessarily distinct set:

σ(H) = σp(H) ∪ σac(H) ∪ σsc(H). (9.3)

Physical intuition tells us that the states in Hp are bound states, that is, they
should stay in compact regions and the states in Hac correspond to scattering
states, corresponding to transport. This is made precise by the RAGE theorem,
due to Ruelle, Amrein, Georcescu, and Enss.

Theorem 9.1 Under some mild physically reasonable conditions on the
Hamiltonian H:

ϕ ∈ Hp ⇐⇒ lim
R→∞

sup
t∈R
‖χ(|x|>R)e

−itHϕ‖ = 0,

ϕ ∈ Hc = Hac ⊕Hsc ⇐⇒ lim
T→∞

1
2T

∫ T

−T

‖χ(|x|≤R)e
−itHϕ‖ dt = 0.

Here χ(|x|≤R) is the characteristic function of the ball {|x| ≤ R} and χ(|x|>R)
the characteristic function the complement of this ball.

Remark 9.2

i) The mild conditions needed in the RAGE theorem are always fulfilled for
the Anderson model on l2(Zd), and are generally fulfilled for physically reason-
able Schrödinger operators in the continuum L2(Rd). Thus the RAGE theorem
confirms the intuition that states ϕ ∈ Hp corresponds to physically bound states
in the sense that up to arbitrary small errors, the time evolved state e−itHϕ does
not leave the compact balls {|x| ≤ R} uniformly in time.

ii) The RAGE theorem is somewhat vague for the complement of the bound
states. It does not distinguish between the absolutely continuous and the singularly
continuous subspaces.

iii) For a nice proof of the RAGE theorem see Hunziker and Sigal (2000).

One of the possible definition(s) of Anderson localization is as follows.

Definition 9.1 A random Schrödinger operator Hω of the type discussed above
in Section 9.1.1 has spectral localization in an energy interval [a, b] if, with
probability one, the spectrum of Hω in this interval is pure point. That is, if:

σ(Hω) ∩ [a, b] ⊂ σp(Hω) with probability one.

The random Schrödinger operator Hω has exponential spectral localization in
[a, b] if it has spectral localization in [a, b] and the eigenfunctions corresponding
to eigenvalues in [a, b] decay exponentially.



198 Analysis and stochastics of growth processes and interface models

Remark 9.3 Thus exponential spectral localization holds in the interval [a, b] if
for almost all ω the random Hamiltonian Hω has a complete set of eigenvectors
(ϕω,n)n∈N in the energy interval [a, b] obeying:

|ϕω,n(x)| ≤ Cω,ne
−µ|x−xn,ω| (9.4)

with µ > 0, some finite Cω,n and xn,ω the centres of localization.

The physical mechanism for localization is the suppression of tunnelling over
large distances due to the de-coherence effect induced by the random potential
(as opposed to, say a periodic potential). Spectral localization was for quite some
time the only definition used by mathematicians. From a physical point of view,
one might prefer to say that Anderson localization holds if there is no transport.
But what exactly does transport mean? A possible way to express this is as
follows: take any initial condition ϕ0 with compact support and consider:

〈x2〉PHω∈[a,b]ϕ0(t) := 〈e−itHωPHω∈[a,b]ϕ0, x
2e−itHωPHω∈[a,b]ϕ0〉

= |||x|e−itHωPHω∈[a,b]ϕ0||2
(9.5)

here PHω∈[a,b] is the orthogonal projection onto the spectral subspace of Hω

corresponding to energies in [a, b]. That is, we consider only the portion of ϕ0 with
energy in [a, b]. If the electrons with energies in [a, b] move ballistically with aver-
age velocity vav then roughly x(t) ∼ vavt for large times. Hence 〈x2〉PHω∈[a,b]ϕ0(t)
will be proportional to t2 for large t. This can certainly be interpreted as a sig-
nature for transport.

On the other hand, if the electrons in the energy interval [a, b] are localized
then it should be natural to expect that 〈x2〉PHω∈[a,b]ϕ0(t) is bounded uniformly
in t. So as long as the spectrum in [a, b] is pure point or at least if exponential
spectral localization holds in [a, b] then, with probability one, (9.5) should be
uniformly bounded in t for all suitably localized initial conditions ϕ0. But this is
wrong. It is known, see Simon (1990), that pure point spectrum implies absence
of ballistic motion:

lim
t→∞

〈x2〉PHω∈[a,b]ϕ0(t)
t2

= 0

for all compactly supported initial conditions ϕ0 as soon as the spectrum in
[a, b] is pure point. However, del Rio, Jitomirskaya, Last, and Simon (1996) con-
structed examples of (nonrandom) one dimensional Schrödinger operators with
pure point spectrum for all energies and exponentially localized eigenfunction
for which:

lim sup
t→±∞

〈x2〉ϕ0(t)
t2−δ

=∞ for all δ > 0, (9.6)
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for a large class of compactly supported initial conditions ϕ0. That is, the mean
square distance 〈x2〉ϕ0(t) can grow arbitrarily close to the ballistic motion even
though the operator has exponential spectral localization. Thus exponential spec-
tral localization in the sense of Definition 9.1 is a priori not strong enough to
restrict the long time dynamics of the system besides what is given by the RAGE
theorem. The main failing has to do with the complete freedom of the constants
Cω,n in (9.4). When thinking about localization one usually thinks of all the
eigenvectors being confined with some typical length scale. If the Cω,n are allowed
to arbitrarily grow, in n, then, in fact, the eigenvectors can be extended over arbi-
trarily large length scales, possibly leading to transport arbitrarily close to the
ballistic motion, even though one has only pure point spectrum. This is nicely
discussed in del Rio et al. (1995) with the proofs given in del Rio et al. (1996).

A physically more natural definition for localization than Definition 9.1, one
which takes the dynamical properties of the physical system into account, is:

Definition 9.2 A random Schrödinger operator has strong dynamical localiza-
tion in an energy interval [a, b] if for any q > 0

E
[
sup
t
‖|X|qe−itHωPHω∈[a,b]ϕ‖2

]
<∞

for all ϕ with compact support.

So strong dynamical localization holds if for any localized initial condition ϕ
the part of ϕ with energy in [a, b] (i.e., in the range of the spectral projection
PHω∈[a,b]) has uniformly in time bounded moments of all orders. In particular,
localized initial conditions stay in compact regions for all times up to arbitrary
small errors. Thus, by the RAGE Theorem 9.1 strong dynamical localization in
[a, b] implies spectral localization in [a, b], but not vice versa, as the examples in
del Rio, Jitomirskaya, Last, and Simon (1996) show.

9.1.3 Known (rigorous) results

The following is a heavily personally biased (and fairly incomplete) list of rigorous
results for Anderson localization; for example, we will completely disregard all
results for continuum random operators.

1. Kunz and Souillard (1980): d = 1 and nice ρ: always localization, no matter
how small λ > 0 is. (Extended by Carmona et al. (1987) to general ρ.)

2. Fröhlich and Spencer (1983): multi-scale analysis gives:

〈x|(Hω − E)−1|y〉 ≤ Aω,xe
−µ|x−y|

for fixed energy E ∈ σ(Hω) and almost all ω. This implies vanishing of
the conductivity using the Kubo formula and absence of an absolutely
continuous spectrum, see Fröhlich and Spencer (1983) for the former and
Martinelli and Scoppola (1985) for the latter.
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3. Simon and Wolff (1986): The Fröhlich–Spencer result for fixed E ∈ (a, b)
(and nice ρ) already implies exponential localization in the sense of
Definition 9.1:

σ(Hω) ∩ (a, b) ⊂ σp(Hω)

and the corresponding eigenfunctions decay exponentially.
4. New approach by Aizenman and Molchanov (1993): instead of proving

pointwise bounds for almost all ω, try to prove bounds for averages:

τ(x, y; z) := E[|〈x|(Hω − z)−1|y〉|s]. (9.7)

More precisely, Aizenman and Molchanov showed that these fractional
moments are exponentially small:

τ(x, y;E + iε) ≤ Ae−µ|x−y| (9.8)

for E ∈ (a, b), uniformly in ε �= 0 and a suitable (fixed) 0 < s < 1, in the
case of large disorder or extreme energies.

Kunz and Souillard proved, in fact, what we now call strong dynamical local-
ization by showing that E[supt |〈x|eitHω |y〉|] decays exponentially in the distance
|x−y|. Their proof is similar to the proof that correlations in the one-dimensional
nearest neighbour Ising model decay exponentially at all positive temperatures,
see Cycon et al. (1987). One of the central themes of the approach to Anderson
localization initiated by Aizenman and Molchanov is a shift in focus: instead of
trying to prove almost sure (in the random potential) decay estimates for the
off-diagonal Green’s function Gω(x, y;E) = 〈x|(Hω − z)−1|y〉 for some energy E
within the spectrum of the Hamiltonian, one should instead study the correla-
tion τ(x, y; z) given by (9.7) for z = E + iε (uniformly for small ε > 0). As we
will see shortly, the reason to look at fractional moments is purely technical: to
guarantee that τ is well-defined. But first we discuss some consequences of (9.8).
It turns out that the Aizenman–Molchanov criterion is a very useful signature
for localization. It implies localization in all different manifestations:

Some consequences of the localization criterion (9.8):

1. Spectral localization: Hω has in (a, b) only pure point spectrum with expo-
nentially decaying eigenfunctions.

2. Strong dynamical localization: wave-packages corresponding to energies in
(a, b) are trapped in finite regions for all times:

E[sup
t
|〈x|e−itHωPHω∈(a,b)|y〉|] ≤ Ãe−µ̃|x−y|. (9.9)

3. No level repulsion: Minami (1996) showed that (9.8) implies that the local
fluctuation of the energy levels of a multidimensional Anderson model in
the energy range (a, b) have a Poisson statistic. The first results for d = 1
of this type are due to Molchanov (1981).
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4. Exponential decay of the Fermi projection kernel:

E[|〈x|PHω≤E |y〉|] ≤ Âe−µ̂|x−y|,

for some finite Â and µ̂ > 0, see Aizenman and Graf (1998).

Remark 9.4

i) As mentioned before, the RAGE theorem guarantees that strong dynamical
localization implies spectral localization. Strong dynamical localization itself fol-
lows from the Aizenman–Molchanov criterion (9.8) and the following bound on
the evolution of states in the random system: if the single site distribution has a
density with respect to Lebesgue measure, ρ(dv) = f(v)dv, with f ∈ Lp for some
p > 1 then:

E[ sup
‖g‖∞≤1

|〈x|g(Hω)PHω∈[a,b]|y〉|] ≤ C lim inf
ε→0

∫ b

a

E[|G(x, y;E + iε)|s] dE (9.10)

for all 0 < s < (p − 1)/p. See, for example, Aizenman et al. (2001) or
Hundertmark (2000) for a proof of (9.10). As soon as the Aizenman–Molchanov
criterion (9.8) for localization is fulfilled, the bound (9.10) clearly implies (9.9)
hence strong dynamical localization according to Definition 9.2 holds in this
regime.

ii) The exponential decay of the kernel of the Fermi projection plays a central
rôle in understanding the plateaus in the quantized Hall effect. As soon as for
some q > 2 one has:

ξq =
∑
x∈Z2

E[|〈0|PHω≤E |x〉|q]1/q|x| ≤ C <∞

for all E ∈ (a, b), the Hall conductivity on the interval (a, b) is constant. See
Aizenman and Graf (1998) and Bellissard, van Elst, and Schulz-Baldes (1994).

9.1.4 Disclaimer

Finally let us mention what we are not discussing in this note. Both the physics
and mathematics literature on the Anderson model is huge, leaving us no chance
to discuss it fully. Instead we hope that this note wets the appetite of the reader.
With this in mind we want to give some, still incomplete, hints to the literature.
Since we will stick to the configuration space Zd, there will be no mention of the
very nice extension of Aizenman–Molchanov technique to certain random oper-
ators on the continuum Rd given in Aizenman et al. (2006). In addition, we will
not discuss at all the so-called multiple-scale approach initiated by Fröhlich and
Spencer (1983) nor its often very powerful extensions, see for example Germinet
and Klein (2004) and the references therein. Even worse, we will not discuss
the beautiful recent results for Anderson localization with Bernoulli random
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potentials by Bourgain and Kenig (2005) and for Poisson random potentials by
Germinet et al. (2005). There are many articles on the multiscale analysis
approach, for a readable book see Stollmann (2001), which, however, does not
contain any of the new developments in the multiscale approach. We will also not
discuss at all the results on delocalization in the Anderson model on trees instead
of Zd, see Aizenman et al. (2006), Froese et al. (2007), and Klein (1998). For a
nice and readable introduction to the physics of random Schrödinger operators,
see, for example, Lifshits et al. (1988).

9.2 Why fractional moments?

The reason to consider fractional moments of the modulus of the Green’s function
is to guarantee that the expectation in (9.7) is finite. Since:

τ(x, y; z) = E[|G(x, y; z)|s].

and G is the resolvent of a self-adjoint operator, one always has the bound
τ(x, y; z) ≤ 1/|-(z)|. But can one guarantee that τ is finite for z = E + iε
uniformly in ε �= 0? It is here that the fractional moment plus one regularity
condition on the single-site distribution ρ enters. To see this in the simplest
possible case, we will explicitly show that τ(x, x; z) is finite.

Write H = H̃ + λvx|x〉〈x|. Here |x〉〈x| is the Dirac notation for the rank one
projection operator onto the one-dimensional subspace generated by |x〉 = δx.
Thus H̃ is the Hamiltonian H with vx = 0. The resolvent formula:

A−1 −B−1 = A−1(B −A)B−1 = B−1(B −A)A−1

gives:

(H − z)−1 = (H̃ − z)−1 − (H − z)−1λvx|x〉〈x|(H̃ − z)−1 (9.11)

With the resolvent G(x, y; z) := 〈x|(H − z)−1|y〉 one has:

G(x, x; z) = G̃(x, x; z)− λvxG(x, x; z)G̃(x, x; z). (9.12)

which is a simple algebraic equation for the complex number G(x, x; z). Solving
for G(x, x; z) gives:

G(x, x; z) =
G̃(x, x; z)

1 + λvxG̃(x, x; z)
=

1
β + λvx

(9.13)

where β = (G̃(x, x; z))−1 depends on everything but NOT on the potential at
site x! In the physics literature β is often called the self-energy. The importance
of formula (9.13) is that although the Green’s function is usually a very compli-
cated function of the potential V , its diagonal element G(x, x; z) is a very simple
fractional function of vx.
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Now assume that the single site distribution ρ is Hölder continuous of order
α ≤ 1, that is:

sup
E∈R

ρ([E − ε, E + ε]) ≤ CHε
α (9.14)

for all ε > 0. Under this condition supz τ(x, y; z) is finite for all 0 < s < α. This
is easiest to see for τ(x, x; z): for all 0 < s < α

sup
z∈C,x∈Zd

τ(x, x; z) ≤ Cs,α <∞ (9.15)

with Cs,α ≤ 1
1−s/αC

s/α
H < ∞. The proof uses the self-energy formula (9.13)

heavily. One has:

E[|G(x, x; z)|s|vx] = E
[∣∣ 1
β + λvx

∣∣s∣∣vx] = λ−s

∫
|β̃ + v|−s dρ(v),

with β̃ = β/λ, for the conditional expectation of |G(x, x; z)|s with respect to the
random potential at x. Notice that one always has:

∫
|β̃ + v|−s dρ(v) =

∫∫ |β̃+v|−s

0
1 dtdρ(v) =

∫ ∞

0

∫
χ(|β̃+v|−s>t) dρ(v)dt

=
∫ ∞

0
ρ(|β̃ + v|−s > t) dt =

∫ ∞

0
ρ(|β̃ + v| < t−1/s) dt.

The assumption that ρ is an α-Hölder continuous probability measure and
0 < s < α yields the bound:∫ ∞

0
ρ(|β̃ + v| < t−1/s) dt ≤

∫ ∞

0
max(1, CHt

−α/s) dt ≤
∫ r

0
1dt+ CH

∫ ∞

r

t−α/s) dt

= r + CH(−1 + α/s)−1r1−α/s =
1

1− s/αC
s/α
H

for the optimal choice of r = Cs/α
H . Note that the right hand side here does not

depend on β̃ any more. In particular, doing first a conditional expectation with
respect to the random variable vx and then integrating over all random variables,
one gets:

τ(x, x; z) = E
[
E
[
|G(x, x; z)|s

∣∣vx]] ≤ λ−sE
[
sup
β̃∈C

∫
|β̃ + v|−s dρ(v)

]
≤
(
1− s/α

)−1
C

s/α
H λ−s

(9.16)

which is (9.15).
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Remark 9.5

i) In the model originally studied by Anderson, ρ is given by ρ(dv) =
1
2χ[−1,1](v) dv. In this case Cs,1 = Cs = (1− s)−1.

ii) The key to showing that τ(x, x; z) is bounded uniformly in z ∈ C and x ∈ Zd

was the representation (9.13). To see that also τ(x, y; z) is bounded uniformly in
z ∈ C and x, y ∈ Zd one can argue similarly using a rank-two perturbation
argument. Write:

H = H̃ + λvx|x〉〈x|+ λvy|y〉〈y|,

that is, H̃ is now the H with the potential at sites x and y put to zero. The
resolvent equation yields:

G = (H − z)−1 = G̃−G
(
λvx|x〉〈x|+ λvy|y〉〈y|

)
G̃ (9.17)

where we put G̃ = (H̃−z)−1 and suppressed the dependence on z. Equation (9.17)
is an equation for G on the whole Hilbert-space l2(Zd), but one can restrict it
to the two-dimensional subspace spanned by the two vectors |x〉 and |y〉: defining
the 2× 2 matrices:

B =
(
G(x, x) G(x, y)
G(y, x) G(y, y)

)
and B̃ =

(
G̃(x, x) G̃(x, y)
G̃(y, x) G̃(y, y)

)
equation (9.17) gives:

B = B̃ −B
(

λvx 0
0 λvy

)
B̃. (9.18)

Hence:

B
(
12×2 + λ

(
vx 0
0 vy

)
B̃
)
= B̃

which can be solved as:

B = B̃
(
12×2 + λ

(
vx 0
0 vy

)
B̃
)−1

=
(
Θ+ λ

(
vx 0
0 vy

))−1
(9.19)

with Θ = B̃−1. Note that here all matrix inverses are for 2 × 2 matrices. As in
the rank-one case, the 2× 2 matrix Θ depends on everything BUT the potential
vx and vy and the off-diagonal Green’s function G(x, y; z) is seen to be:

G(x, y; z) =
(
Θ+ λ

(
vx 0
0 vy

)
,
)−1
1,2

(9.20)

that is, G(x, y; z) can be identified as the off-diagonal matrix element of the 2×2
matrix

(
Θ+λ

(
vx 0
0 vy

) )−1. A similar, and not much more complicated, argument
to the one leading from (9.13) to (9.16) now shows that supx,y∈Zd,z∈C\R τ(x, y; z)
is finite as long as the single-site distribution of the random potential is Hölder
continuous, for details, see Aizenman and Molchanov (1993) or Aizenman et al.
(2001).
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9.3 Finite-volume criteria

A main extension of the original Aizenman–Molchanov approach to localization
was that one can develop finite-volume criteria for the exponential decay of the
correlations τ , see Aizenman et al. (2001). These bounds are related to similar
bounds in statistical mechanics. One restricts the random operatorH = −∆+Vω
to a finite box Λ = {x ∈ Zd : |xj | < L all j = 1, . . . , d}, and puts GΛ(z) =
(HΛ − z)−1 considered as an operator (or infinite matrix) in l2(Λ). Somewhat
loosely speaking, the finite volume criteria say that as soon as:

sup
v∈∂Λ

E[|GΛ(0, v; z)|s] is small enough (9.21)

for all z = E + iε, E ∈ [a, b], ε > 0, then there exist constants A < ∞, µ > 0
such that:

sup
ε>0
τ(x, y;E + iε) = sup

ε>0
E[|G(x, y;E + iε)|s] ≤ Ae−µ|x−y| (9.22)

for all E ∈ [a, b]. Thus in this case the correlation τ(x, y;E + iε) decays
exponentially on all of Zd and the Aizenman–Molchanov criterion for local-
ization is fulfilled, yielding strong dynamical localization etc., as discussed in
the introduction. Of course, the question is what does ‘small enough’ in (9.21)
mean precisely and, when made precise, whether this criterion is fulfilled in
interesting physical situations. We are deliberately vague at this point. Let us
only mention that (9.21) (in its precise formulation) is a physically very natu-
ral condition which is often quite easily seen to be true in the relevant cases.
See Aizenman et al. (2001) for a more precise formulation of such a finite vol-
ume criterium for Anderson localization, and Aizenman et al. (2000) for a dis-
cussion of the physical implications of these criteria in the case of Anderson
localization.

Here we would like to take the opportunity to discuss finite volume criteria for
the decay of correlations in their original setting, namely statistical mechanics.
The type of argument we are going to give is known as Simon–Lieb inequalities,
see Simon (1980) and Lieb (1980). In fact, we will discuss the simplest possible
case, namely finite volume criteria for percolation in the spirit of Aizenman and
Newman (1984).

9.3.1 Analogy with percolation

Consider independent site percolation on Zd. A site x ∈ Zd is occupied with
probability p and empty with probability 1 − p. We usually visualize this by
drawing occupied sites as small solid black circles and empty sites as white
circles. Recall that two sites x, y in Zd are nearest neighbours if |x − y| =∑d

j=1 |xj − yj | = 1.
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y

x

Fig. 9.1: Two points x and y connected by a path via nearest-neighbour occu-
pied sites. The percolation with p = 1/2 was simulated by tossing a coin 80
times.

Definition 9.3 Two points x, y ∈ Zd are connected, in short x� y, if both x
and y are occupied sites and one can hop from x to y via a sequence of occupied
nearest neighbour sites.

The connectivity τ is given by the probability that x and y are connected:

τ(x, y) := P{x� y}.

The situation in Definition 9.1 is sketched in Fig. 9.1. Note that, with a slight
abuse of notation, we denote the connectivity with the same symbol as the
correlation in the Anderson model. The point being that one can rather easily
deduce finite-volume criteria for the connectivity in percolation: Let Λ = ΛL be
the centred cube:

ΛL = {x ∈ Zd : |xj | < L for all j = 1, . . . , d};

we will always choose L �∈ N. Note that Λ has an inner and an outer boundary:

∂−Λ = {x ∈ Λ : ∃ v �∈ Λ, |x− v| = 1},
∂+Λ = {v �∈ Λ : ∃x ∈ Λ, |x− v| = 1}.

For a subset B ⊂ Zd we denote by |B| the ‘volume’ of B, that is, the number of
elements in B and with τ(x,B) = P(x� B) the probability that x is connected
to some point in B. Of course, one can restrict percolation to, possibly finite,
subsets A of Zd. In this case we denote by τA(x, y) = P(x in A� y) the probability
that x and y are connected by a path in A and similarly for τA(x,B).
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The finite volume criterion for percolation with probably the simplest proof
is as follows.

Theorem 9.2 Let Λ be a centred box in Zd and b = bΛ := |∂+Λ|τΛ(0, ∂−Λ).
Then:

τ(x, y) ≤ b−1b|x−y| (9.23)

for all x, y ∈ Zd.

Note that this criterion predicts exponential decay of the connectivity as soon as
bΛ < 1. That is, strong enough finite-volume decay implies exponential decay of
the connectivity τ in the infinite volume Zd. Since the expression bλ is computed
in a finite volume Λ, one can, in principle, give it to the friendly neighbourhood
computational physicist in order to check on a computer if bΛ < 1 for some
maybe large box Λ.

Moreover, the criterion given in Theorem 9.2 is not only sufficient for expo-
nential decay of τ but also necessary. Indeed, the volume of the boundary, |∂+λ|,
grows at a polynomial rate in the side-length of Λ and since the origin is in the
interior of the box Λ, it is connected to ∂−Λ within the box Λ, if and only if they
are connected, τΛ(0, ∂−Λ) = τ(0, ∂−Λ). Thus, as soon as τ on Zd decays with
some exponential rate, one will have bΛ < 1 for all large enough boxes Λ.

The proof of Theorem 9.2 is surprisingly simple and was the main driving
force in the search of the finite volume criteria in Aizenman et al. (2001).

Proof: Let Λ = ΛL be a centred cube of side length L and Λ(x) = Λ + x.
Assume that x and y are so far from each other that y �∈ Λ(x) and that x� y.
This situation is sketched in Fig. 9.2. Since x� y, there must be a path within

y

x

Fig. 9.2: The event that x and y are connected. Note that the path has to cross
the box Λ(x) at least once.
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y

x

Fig. 9.3: The upper bound in equation (9.24): x is connected to the boundary
of Λ(x) within Λ(x) and y is connected to the boundary of Λ(x) within Λ(x)c.

Λ(x) from x to the (inner) boundary ∂−Λ(x) and a path within the complement
of Λ(x) from the (outer) boundary Λ+(x) to y, see Fig. 9.3.

Thus, as long as y �∈ Λ(x):

τ(x, y) = P(x� y)

≤ P(x
in Λ(x)� ∂−Λ(x), ∂−Λ(x) � ∂+Λ(x), and ∂+Λ(x)

in Λ(x)c� y)

≤ P(x
in Λ(x)� ∂−Λ(x) and ∂+Λ(x)

in Λ(x)c� y) (9.24)

by dropping the restriction that the inner boundary has to be connected to the
outer boundary by some path of connected sites in Zd, see Fig. 9.3.

Since the events ‘x is connected to ∂−Λ(x) within Λ(x)’ and ‘∂+Λ(x) is con-
nected to y within the complement of Λ(x)’ are independent, the probability in
(9.24) factorizes into a product and we arrive at:

τ(x, y) ≤ P(x
in Λ(x)� ∂−Λ(x))P(∂+Λ(x)

in Λ(x)c� y)
≤ τΛ(x)(x, ∂−Λ(x)) τΛ(x)c(∂+Λ(x), y)

By translation invariance, τΛ(x)(x, ∂−Λ(x)) = τΛ(0, ∂−Λ). Moreover we have the
simple monotonicity:

τΛ(x)c(∂+Λ(x), y) = P(∂+Λ(x)
in Λ(x)c� y) ≤ P(∂+Λ(x) � y)

= τ(∂+Λ(x), y) ≤
∑

v∈∂+Λ(x)
τ(v, y).

Thus for all y �∈ Λ(x), τ obeys the bound:

τ(x, y) ≤ bΛ
|∂+Λ(x)|

∑
v∈∂+Λ(x)

τ(v, y), (9.25)

which, if bΛ < 1, says for fixed y, τ(x, y) is a subharmonic function of x �∈ Λ(y).
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There are many ways to see that subharmonic functions have a tendency to
decay exponentially. In the case at hand, possibly the easiest way is to iterate
(9.25), which can be done at least |x − y| − 1 times, and then use the a priori
bound τ(x, y) ≤ 1. This gives:

τ(x, y) ≤ b|x−y|−1
Λ

which is (9.23). �

Remark 9.6

i) One should notice that the above proof did not need the underlying lat-
tice to be given by Zd. In fact, it does not need to be a lattice at all; the
proof works for percolation on arbitrary graphs G. A similar argument as given
after Theorem 9.2 then shows that the condition bΛ < 1 is not only suffi-
cient for the exponential decay of τ but also necessary as long as the growth
of the surface volume |∂+ΛL| of large boxes ΛL in the graph G is
sub-exponential.

ii) This type of idea seems to go back at least to Hammersley (1957) in the
case of percolation.

iii) Using the van den Berg–Kesten inequalities for percolation one can improve
on Theorem 9.2, see Aizenman and Newman (1984).

9.3.2 Some consequences from finite volume criteria
As already mentioned in Remark 9.6, the finite-volume criterion in Theorem
9.2 is a sufficient and, for a large class of graphs, also necessary condition for
the exponential decay of the connectivity. For percolation on graphs it is known
that there is a critical probability 0 < pc < 1 such that for p < pc τ(x, y) decays
exponentially in the distance |x−y| and for p > pc it does not. This is also related
to the occurrence of an infinite connected cluster above pc with probability one,
Grimmett (1999).

The finite-volume criteria turn out to be a useful tool there. For example,
they yield an algorithm to compute pc: for p > pc:

lim inf
L→∞

bΛL ≥ 1

while for p < pc there exists at least one box Λ with bΛ < 1. In particular,
this yields lower bounds on pc for graphs for which the precise value is not
known.

The finite volume criteria can also be used to give painless proofs of the
following, not necessarily obvious, facts,

1. Exponential decay of the connectivity is stable under small perturbations
of parameters (for example, variation of p or slight deformations of the
underlying graph) for all graphs for which the volume of boxes λL grows
sub-exponentially in L.
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2. Fast power law decay⇒ exponential decay. (For graphs in which the surface
volume growth of boxes is polynomially bounded.)

3. At critical percolation, the connectivity cannot decay too fast.

Indeed, that the exponential decay of the connectivity is stable under small
perturbations of the parameters is not at all clear since one might be at a phase-
transition point. That this is not the case is due to the finite-volume criteria. To
show 1, assume that τ decays exponentially. Then, for some finite box Λ one must
have bΛ < 1. Since bΛ is computed in a finite volume, it depends continuously on
the parameters, hence wiggling them a little bit will still result in bΛ < 1, hence
the connectivity will still decay exponentially, by Theorem 9.2.

To show 2 one argues similarly, if τ decays so fast that it beats the growth of
the surface volume |∂+Λ|, then bΛ will be less than 1 for all large enough boxes
Λ and hence τ must decay exponentially by Theorem 9.2.

Finally, for 3, note that τ does not decay exponentially for all p > pc. Hence
for p = pc we must have:

1 ≤ bΛ = |∂+Λ|τ(0, ∂−Λ)
for all centred boxes Λ. Otherwise, by the first fact, one would have exponen-
tial decay of the connectivity for all p slightly above pc, which contradicts the
definition of the critical probability. Thus:

τ(0, ∂−Λ) ≥
1
|∂+Λ|

for all centred boxes Λ.
In a similar fashion, the finite volume criteria for Anderson localization give

rise to the stability results for the exponential decay of the fractional moments
of the Green’s function analogously to the stability results (9.1)–(9.3) for perco-
lation above. In particular, the exponential decay of the fractional moments
is stable under small perturbation of external fields, like an external (peri-
odic) potential or an external magnetic field. For more discussions of this, see
Aizenman et al. (2000).

9.4 Localization for large disorder: a simple proof
Our discussion of the finite volume criteria for Anderson localization has been,
deliberately, somewhat vague. In contrast to this we would like to give a full and,
we think, rather simple proof of Anderson localization which yields, in addition,
very easily checkable assumptions with explicit bounds.

Theorem 9.3 Consider the random operator H = Hω = −∆ + Vω on l2(Zd).
Let the single side distribution ρ of the random potential at site 0, say, be such
that:

Cs = sup
β∈C

∫
|β − v|−s dρ(v) <∞.
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for some 0 < s < 1. Then for all λs > (2d− 1)Cs, the exponential bound:

sup
z∈C\R

E[|G(x, y; z)|s] ≤ Ad,λe
−µ(d,λ)|x−y| (9.26)

holds. Here:

Ad,λ =
2d(2d− 1)Csλ

−s

(2d− 1)2[1− (2d− 1)Csλ−s]
(9.27)

and:

µ(d, λ) = − ln
(
λs/((2d− 1)Cs)

)
> 0. (9.28)

Remark 9.7

i) As the proof will show, the conclusion of the Theorem remains valid even
for highly correlated random potentials V = (vj)j∈Zd as long as a suitable bound
of the form:

Cs = sup
β∈C,j∈Zd

E[|β + vj |−s| vj ] <∞ (9.29)

for the fractional moments of the conditional expectations of the potential at site
j holds.

ii) For the original Anderson model, ρ(dv) = 1
2χ[−1,1](v) dv. In this case

Cs = 1/(1− s) and one has localization at all energies as soon as:

λ > (1− s)−1/s(2d− 1)1/s

for some 0 < s < 1.

9.4.1 The self-avoiding random walk representation

The observation which leads to a simple and straightforward proof of Anderson
localization for large disorder is the following self-avoiding walk (SAW) repre-
sentation for the off-diagonal Green’s function. That such a representation holds
is not necessarily new, but that it holds for all complex energies off the real axis
seems to be.

Lemma 9.1 (The self-avoiding walk representation) Let B ⊂ Zd be finite,
GB(z) = (HB − z)−1 and GB(x, y; z) = 〈x|GB(z)|y〉. Then:

GB(x, y; z) =
∑

w:SAW in B
x�y

|w|∏
j=0

GBj
(w(j), w(j); z) (9.30)

for all z ∈ C \ R. Here w is a self-avoiding random walk connecting x = w(0)
and y in B, |w| is the length of the walk, and the sets Bj = Bj(w) are recursively
defined by B0 = B and Bj+1 = Bj \ {w(j)}.
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Remark 9.8 Given a self-avoiding path w in B the sets Bj are given by
Bj = B \ {x,w(1), w(2), . . . w(j − 1)} for j = 1, . . . |w|. Thus they are a nested
shrinking sequence of subsets of B depending on the self-avoiding walk only up
to time-step j − 1. In particular, given a self-avoiding path w, the resolvent
GBj

does not depend any more on the potential at the previously visited places
x,w(1), . . . , w(j − 1). This makes the representation (9.30) very powerful.

It is crucial for the application we have in mind that the representation (9.30)
in terms of a self-avoiding random walk is valid for all z ∈ C \ R and not only
for complex z with a large enough imaginary part. Nevertheless, we will deduce
Lemma 9.1 from a perturbative result which a priori is valid only for complex
energies far up in the complex plane.

Lemma 9.2 (The random walk representation) Let B ⊂ Zd be an arbi-
trary subset and GB = (HB − z)−1 as above. Then:

GB(x, y; z) =
∑

w:RW in B
x�y

|w|∏
j=0

1
λV (w(j))− z (9.31)

for all -(z) large enough.

Proof: Recall the resolvent formula 1A − 1B = 1
B (B−A) 1A . Using this with the

choice A = HB − z and B = λV − z yields:

1
HB − z

=
1

−∆B + λV − z =
1

λV − z +
1

λV − z∆B
1

−T0 + λV − z
where ∆B is the adjacency matrix of the graph Zd∩B. Iterating the above gives:

1
HB − z

=
1

λV − z
∑
n≥0

(
∆

1
λV − z

)n (9.32)

which is, of course, a Neumann series and converges for large enough |-(z)|.
More precisely, since the operator norm ‖∆‖ = 2d and V is real valued, we need
-(z) > 2d to guarantee convergence of the right hand side of (9.32).

Now we claim that (9.32) is nothing but (9.31) in disguise. Indeed, taking
the x, y-matrix element of (9.32) gives:

GB(x, y; z) = 〈x|
1

HB − z
|y〉 = 1

λV (x)− z
∑
n≥0
〈x|
(
∆B

1
λV − z

)n|y〉.
Note that:

〈x|
(
∆B

1
λV − z

)n|y〉 = ∑
paths w of length n

in B, x�y

n∏
j=1

1
λV (w(j))− z .

Setting w(0) = x, w(n) = y, and |w| = the length of the path, we arrive at the
random walk representation (9.31).
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At first sight it might seem that the random walk representation is just a
simple rewriting of a particular Neumann series for the resolvent GB and does
not necessarily deserve its own name. This is not true, however, since giving it
a new name can drastically change the emphasis: the key for the proof of the
self-avoiding random walk representation is the observation that every random
walk leads to a self-avoiding random walk by deleting loops. By the random walk
representation, for any set C ⊂ Z, the Green function on the diagonal is given
by summing over all loops of a random walk within the set C:

GC(x, x; z) =
∑

w:RW in C
x�x

|w|∏
j=0

1
λV (w(j))− z (9.33)

�

To re-sum the loops, let:

nx(w) := inf{n : w(j) �= x for all j > n},

that is, nx(w) is the last time the path w visited the point x.
Cut the path w from the random walk representation (9.31) into two parts,

w = (w1, w), where w1 runs from 0 up to time nx(w) (|w1| = nx(w)) and w runs
from nx(w) + 1 up to time |w|. In particular:

|w| = |w1|+ |w|+ 1.

for the lengths of the combined paths.
From (9.31) one infers:

GB(x, y; z) =
∑

w1:RW in B
x�x

|w1|∏
j=0

1
λV (w1(j))− z

∑
x′∈B:|x′−x|=1

w:RW in B,x′�y
w never visits x

|w|∏
j=0

1
λV (w(j))− z .

(9.34)

Using (9.33), the first factor is just GB(x, x; z), and appealing to the random
walk representation (9.31) once more, one sees that the second factor is the
resolvent of the operator HB\{x}, summed over the nearest neighbours of x:

∑
w: in B,x′�y
w never visits x

|w|∏
j=0

1
λV (w(j))− z = 〈x′| 1

(H − z)|B\{x}
|y〉 = GB\{x}(x′, y)

Thus (9.34) can be rewritten as:

GB(x, y; z) = G(x, x; z)
∑
x1∈B

|x1−x|=1

GB\{x}(x1, y). (9.35)
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Of course, iterating (9.35) yields:

GB(x, y; z) = G(x, x; z)
∑
x1∈B

|x1−x|=1

GB\{x}(x1, x1; z)
∑

x2∈B\{x}
|x2−x1|=1

GB\{x,x1}(x2, y; z)

= . . . =
∑

w: SAW in B
x�y

|w|∏
j=0

GBj
(w(j), w(j); z)

with B0 = B and Bj+1 = Bj \ {w(j)}, which nearly finishes the proof of Lemma
9.1, except that so far we only know that (9.30) holds as long as -(z) is large
enough.

To finish the proof of Lemma (9.1), let B be a finite set. We know that
the resolvent is an analytic operator-valued function for z in the complex upper
half-plane. In particular, GB(x, y; z) is an analytic function on the upper half-
plane and so are all the factors GBj (w(j), w(j); z) in the right hand side of
(9.30). The punchline is that although in a finite set B there are infinitely many
different random walk of arbitrary length, there are only finitely many self-
avoiding random walks. Thus for finite B, the right hand side of (9.30) is a
finite sum of a finite product of analytic functions, hence it is also analytic on
the upper half-plane. Since by the above both sides of (9.30) agree for z with
a large enough imaginary part, by analyticity they must agree on the whole
complex upper half-plane. A similar argument holds for the lower half-plane.
This concludes the proof of the self-avoiding random walk representation.

9.4.2 Proof of localization at large disorder

In this section we use the self-avoiding random walk representation to give a
straightforward proof of Anderson localization for large disorder. In some sense
this proof makes precise Anderson’s original heuristical argument, which uses
second order perturbation theory.

Before we fully embark on the proof of Theorem 9.3, let us first note that
it is enough to prove this bound for the Green function restricted to some
finite set B ⊂ Zd as long as the bounds are uniform in B. This follows from
the strong resolvent convergence of HB to H as B → Zd and Fatou’s lemma,
E[|G(x, y; z)|s] ≤ lim infB→Zd E[|GB(x, y; z)|s]. Secondly, note that for 0 < s ≤ 1
the bound:

|
n∑

j=1

αj |s ≤
n∑

j=1

|αj |s (9.36)

for all complex numbers αj ∈ C hold. This is one of the fundamental observations
in the original Aizenman–Molchanov proof. By induction, it is enough to consider
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the case n = 2. In this case:

|α1 + α2|s ≤ (|α1|+ |α2|)s =
|α1|

(|α1|+ |α2|)1−s
+

|α2|
(|α1|+ |α2|)1−s

≤ |α1|
(|α1|)1−s

+
|α2|
|α2|)1−s

= |α1|s + |α2|s

by dropping the term |α2| in the first denominator, respectively |α1| in the second
denominator.

Now let B ⊂ Zd be an arbitrary finite set and 0 < s < 1. We claim that:

E[|GB(x, y; z)|s] ≤
∑

w:SAW,
x�y

(Cs/λ
s)|w|+1 (9.37)

which is exponentially small in the distance |x − y| (note that the right hand
side does not depend on the set B anymore). Indeed, organizing the summation
over the self-avoiding random walks according to their lengths one has:∑

w:SAW,
x�y

(Cs/λ
s)|w|+1 =

∑
n≥0

(Csλ
−s)n+1

∑
w:SAW,
x�y
|w|=n

1.

Of course, in order to connect x with y the length n of the walk must be at
least |x − y|. In this case, since in the first step a self avoiding walk has 2d of
the neighbours to choose and at most 2d− 1 from then on, one has the general
bound: ∑

w:SAW,
x�y
|w|=n

1 ≤ 2d(2d− 1)n−1.

This gives: ∑
w:SAW,
x�y

(Cs/λ
s)|w|+1 ≤

∑
n≥|x−y|

(Csλ
−s)n+12d(2d− 1)n−1

=
2d

(2d− 1)2

[
(2d− 1)Csλ

−s
]|x−y|+1

1− (2d− 1)Csλ−s

which is the right hand side of (9.26).
It remains to prove (9.37). Applying (9.36) to the self-avoiding random walk

representation from Lemma 9.1 and taking the expectation with respect to the
random potential yields the bound:

E[|GB(x, y; z)|s] ≤
∑

w:SAW in B
x�y

E

 |w|∏
j=0

|GBj
(w(j), w(j); z)|s

 . (9.38)



216 Analysis and stochastics of growth processes and interface models

We evaluate the expectation on the right hand side of (9.38) successively with
the help of conditional expectations with respect to the random potential visited
along the path of the self-avoiding walk w: take first the expectation with respect
to v(x) = v(w(0)) and note that the only Green’s function which depends on on
v(w(0)) is GB0(w(0), w(0); z). Thus:

E

 |w|∏
j=0

|GBj
(w(j), w(j); z)|s| v(w(0))


= E [|GB0(w(0), w(0); z)|s|v(w(0))]

|w|∏
j=1

|GBj
(w(j), w(j); z)|s

(9.39)

Recalling the rank-one perturbation formula (9.13) one can bound the condi-
tional expectation on the right hand side of (9.39) simply by Cs/λ

s. Thus:

E

 |w|∏
j=0

|GBj
(w(j), w(j); z)|s| v(w(0))

 ≤ Cs

λs

|w|∏
j=1

|GBj
(w(j), w(j); z)|s (9.40)

Now take the conditional expectation of (9.40) with respect to v(w(1)) and note
that all factors GBj

(w(j), w(j); z) with j ≥ 2 can again be taken out of the
expectation since they do not depend on v(w(1)). Again one uses the a priori
bound E[|GB1(w(1), w(1); z)|s|v(w(1))] ≤ Cs/λ

s to see:

E

 |w|∏
j=0

|GBj
(w(j), w(j); z)|s| v(w(0)), v(w(1))

 ≤(Cs

λs

)2 |w|∏
j=2

|GBj
(w(j), w(j); z)|s

(9.41)

Iterating this procedure |w|+ 1 times yields the bound:

E

 |w|∏
j=0

|GBj (w(j), w(j); z)|s|

 ≤ (Cs

λs

)|w|+1
which together with (9.38) gives (9.37). This ends the proof of Theorem 9.3.
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10

EFFECTIVE THEORIES FOR OSTWALD RIPENING

Barbara Niethammer

10.1 Introduction

In this article we discuss the derivation and analysis of reduced models for a
specific coarsening process which is known as Ostwald ripening. This phenomenon
appears in the late stage of phase transitions, when—due to a change in tem-
perature or pressure for example—the energy of the underlying system becomes
nonconvex and prefers two different phases of the material. Consequently a homo-
geneous mixture is unstable and, in order to minimize the energy, it separates into
the two stable phases. Typical examples are the condensation of liquid droplets
in a supersaturated vapour and phase separation in binary alloys after rapid
cooling.

With Ostwald ripening one usually denotes the case when the composition of
the mixture is such that one of the two stable phases has much smaller volume
fraction than the other. Then the minority phase nucleates in the form of many
small droplets which first grow from a uniform background supersaturation. Once
the latter is small, surface energy becomes the dominant part of the total energy
and to minimize it particles start to interact via diffusional mass exchange to
reduce their total surface area. As a consequence large particles grow, while
smaller ones shrink and finally disappear.

Ostwald ripening is a paradigm for statistical self-similarity in coarsening
systems. This means that after a transient stage the particle number density
evolves in a unique self-similar fashion, which is independent of the details of the
initial data. The first quantitative description of this phenomenon was given by
Lifshitz and Slyozov (1961) and Wagner (1961) and is nowadays known as the
classical LSW-theory. In the regime where the volume fraction of the droplets
is small they derive an equation for the particle number density based on the
crucial assumption that in the dilute regime the interaction between particles
can be expressed solely through a common mean-field. However, it has been
established by a mathematically rigorous analysis that the long-time behaviour
within the LSW model is not a universal statistically self-similar one but on the
contrary depends sensitively on the initial data. Hence, in order to overcome this
shortcoming, one has to go beyond the mean-field assumption and take higher
order effect, such as screening induced fluctuations and particle collisions, into
account.

A number of different approaches to developing a corresponding theory can
be found in the physics and metallurgical literature. However, the predictions
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based on the respective theories differ significantly and it seems that a more
rigorous analysis could be helpful in resolving some of the open questions. It
is the main goal of the present article to review corresponding progress on the
understanding of first order corrections to the LSW theory. While we go along,
we also point out some directions for future research, in particular where the
combination of analytic and stochastic tools could be relevant.

For more background on results, which are not discussed in detail here, as
well as for references to the applied literature, we refer to the review article
(Niethammer et al. 2006).

10.2 Basic models and mean-field theories

10.2.1 The starting point: a simplified Mullins–Sekerka evolution

A basic model for diffusion controlled Ostwald ripening of spherical particles is
a simplified Mullins–Sekerka type model which is appropriate in the case that
particles have small volume fraction. In this model particles, called Pi, are dis-
tributed in a domain Ω ⊂ R3 and are characterized by their immovable centres
Xi ∈ Ω and their radii Ri(t). Particles interact by diffusion, but in late-stage
coarsening we can assume that mass exchange between particles is much faster
than the growth of the interfaces. Hence we can use a quasi-steady approach,
that is we assume that the potential u relaxes at each time instantaneously to
equilibrium. This gives that for each time t the potential u = u(x, t) solves:

∆u = 0 in Ω\
⋃
i

Pi

u =
1
Ri

on ∂Pi ,
(10.1)

where ∆ and later ∇ denotes derivatives with respect to the space variable
x. The second equation in (10.1) is the well-known Gibbs–Thomson law which
accounts for surface tension. To define the potential uniquely, we have to couple
(10.1) with suitable boundary conditions on ∂Ω. In the case that Ω is bounded,
a natural assumption is to consider closed systems and require:

∂u

∂�n
= 0 on ∂Ω . (10.2)

We can also consider the problem in the whole space Ω = R3 in which case the
appropriate boundary condition is a no-flux condition at infinity:

|∇u| → 0 as |x| → ∞ . (10.3)

We easily convince ourselves that if all particles have the same size, the
potential u is constant (indeed equal to the inverse radius of the particles).
However, if particles have different sizes, this induces gradients in the potential
and these gradients drive the system towards a state of lower energy. The Gibbs–
Thomson law in (10.1) implies that u is large at small particles which have large
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surface area compared to their volume, and small at large particles. Hence, mass
diffuses from the small to the large particles. The growth rate of a particle is
simply given by the total flux towards the particle, that is:

d

dt

(4πR3i
3

)
=
∫
∂Pi

∂ u

∂�n
dS , (10.4)

where here �n denotes the outer normal to the particle.
It is not difficult to show that, if we start with a finite number of particles,

which do not overlap, the problem (10.1)+(10.2) or (10.1)+(10.3) is well-posed
(cf. (Dai and Pego 2005a) for the case (10.3)) and depends Lipschitz-continuously
on the initial radii of the particles. As a consequence, the full time-dependent
system (10.1)–(10.4) is well-posed for short times. We can extend such a local
solution up to a time when a particle vanishes or when two particles touch. In the
first case we just eliminate the particle and continue with the remaining ones.
In this way we obtain a continuous in time, piecewise smooth solution. In the
second case, where particles touch, there is no way to extend the solution in a
reasonable way. In fact, the simplifying assumption that particles are spherical
is not a good approximation when particles are close.

However, we are interested in the dynamics of a large set of particles with
small volume fraction, and we expect that the event that particles touch is rare
if it occurs at all. Hence it is plausible that it does not have an influence on
the global behaviour of the system. As we shall see, the latter is true to leading
order, but not if one is interested in higher order effects. We will return to this
issue later in Section 10.4.

As long as the evolution is well-posed we easily verify that it preserves the
total volume of the particles and decreases the surface energy. Indeed, we have:

d

dt

∑
i

R3i = 0 (10.5)

and:

d

dt

∑
i

R2i = −π
2

∫
Ω
|∇u|2 dx . (10.6)

In contrast to other curvature driven evolutions, such as the mean curvature
flow, the Mullins–Sekerka evolution (10.1)–(10.4) is nonlocal. More precisely, the
evolution of the radius of one particle depends on all the other particles in the
system, since all particles interact via the potential u. A priori the interaction
range between particles is large due to the slow decay of the fundamental solution
of Laplace’s equation. The challenge is to derive the effective growth law of a
particle in a sea of surrounding particles. We will see that a key aspect in the
analysis will be to establish the screening effect which identifies the effective
interaction range between particles (cf. Section 10.2.5).
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10.2.2 The leading order theory (LSW-theory)

Our goal is to derive from the Mullins–Sekerka model the BBGKY hierarchy for
the number densities of particle radii and centres. The BBGKY hierarchy can be
derived from the Liouville equation by averaging and describes the evolution of
theN -particle distribution in terms of the (N+1)-particle distribution. To obtain
a tractable system of equations one typically tries to truncate the hierarchy by
a suitable closure hypothesis on the level of the one- or two particle number
density. This procedure can often be justified if there is a small parameter in the
system, such as in our case the volume fraction of the particles.

The formal identification of the leading order terms in the dilute regime is
not difficult and goes back to the classical work by Lifshitz and Slyozov (1961)
and Wagner (1961) (called nowadays the ‘LSW-theory’).

If the particle size is much smaller than the typical distance between the
nearest neighbours one can assume that the potential u is approximately constant
in space away from the particles, that is u ≈ u∞(t). In other words, each particle
Pi feels the influence of the other particles only through u∞, also called a mean-
field. We then solve for particle Pi:

−∆u = 0 in R3\Pi

u =
1
Ri

on ∂Pi

u→ u∞ as |x| → ∞ ,

(10.7)

whose solution is given by:

u(x, t) = u∞ +
1−Riu∞
|x−Xi|

.

Using this solution in (10.4) we obtain the simple law:

d

dt

(4π
3
R3i

)
= Riu∞ − 1 . (10.8)

So far, we have not specified u∞. In the above approximation we have not yet
taken into account that the evolution preserves the total volume of the particles.
This constraint determines u∞ and implies that:

u∞ =

∑
i :Ri>0 1∑

iRi
=

1
mean radius

. (10.9)

We read off from (10.8)–(10.9) that the critical radius in this approximation is
just the mean radius. Recall that in the coarsening picture, the critical radius
typically increases, so that over time more and more particles start to shrink and
finally disappear.

Based on (10.8) we can now derive an equation for the one-particle number
density, that is the expected number of particles with radius R in (R,R + dR),
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which we denote by f1= f1(R, t). Due to the translation invariance of the Mullins–
Sekerka evolution f1 is independent of the centres. The system (10.8)–(10.9)
translates without further approximation into the following evolution law for f1:

∂tf1 + ∂R
( 1
R2

(Ru∞(t)− 1) f1
)
= 0 (10.10)

with

u∞(t) =

∫∞
0 f1(R, t) dR∫∞
0 Rf1(R, t) dR

. (10.11)

10.2.3 Dynamic scaling and coarsening rates

Within the LSW model (10.10)–(10.11) we can investigate statistical self-
similarity. In fact, we check that the equation has a scale invariance R ∼ t1/3
which is inherited from the Mullins–Sekerka evolution. It turns out that (10.10)
has indeed self-similar solutions, but not only one but a one-parameter family of
the form f(R, t) = t−4/3Fa(R/t) with u∞ = (at)1/3 and a ∈ (0, 49 ]. All of the self-
similar profiles have compact support, one is smooth, the other ones behave like
power laws at the end of their support. LSW predict in their work that only the
smooth self-similar solution is stable and is the unique scaling limit for the LSW
model. As a consequence they obtain universal growth rates of the coarsening
process, such as, for example, that the mean radius evolves as

( 4
9 t
)1/3.

However, it has been rigorously established in (Niethammer and Pego 1999)
(see also Carr and Penrose 1998 for a related model and Giron et al. 1998 for
formal asymptotics) that the long-time behaviour of solutions to the LSW model
is not universal, but on the contrary depends sensitively on the initial data, more
precisely on the behaviour at the end of the support. Loosely speaking, if the
data behave like a power law of power p, the solution converges to the self-similar
solution with the same power law. The notion ‘to behave like a power law’ is
made precise, the technical term is that the data must be regularly varying with
power p at the end of their support.

Before we continue to discuss how one could overcome this weak selection
problem, let us digress to discuss a related issue, which is to establish coarsening
rates, that is the growth rate of typical length scales, in general. While one can
often predict coarsening rates via a dimensional analysis, a rigorous treatment
has only recently become available. In (Kohn and Otto, 2002) a time averaged
upper bound of the coarsening rate within the Cahn–Hilliard theory has been
established via a lower bound on the decay rate of the energy density. The
argument uses an energy-dissipation relation and a relation between the energy
and a certain appropriate length scale. This technique has been shown to be
quite robust and has been applied to a large variety of other coarsening problems
(Kohn and Yan 2004; Dai and Pego 2005c), in particular also to the LSW model
(Dai and Pego 2005b; Pego 2007). Naturally, pointwise upper bounds are much
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more difficult to obtain. For the relatively simple LSW model a first result has
been obtained in (Niethammer and Velàzquez, 2006a), where upper and even
lower bounds on the coarsening rates have been established for data which are
close to a self-similar solution. In general lower bounds cannot be expected, since
there are configurations for which coarsening does not occur (e.g., all particles
with equal size in the LSW model) or is extremely slow (e.g., one-dimensional
coarsening in the Cahn–Hilliard equation).

It would be extremely interesting to establish lower bounds for coarsening
rates using probabilistic arguments, which characterize ‘typical’ configurations,
for which the system coarsens with the expected rate.

10.2.4 Questions around the LSW theory

We have seen that one problem in the LSW theory is the weak selection of self-
similar asymptotic states, which suggests that some mechanisms are neglected
in the LSW model.

Another shortcoming of the LSW model becomes apparent if one compares
the predictions by LSW with experimental data. It turns out that the discrepancy
is rather large: the constants in the coarsening rates are much larger and the size
distributions are less narrow than predicted by the LSW theory.

It is usually argued in the applied literature that one disadvantage of the
LSW theory is its mean-field nature which neglects the build up of correlations
between particles, which are relevant already in the dilute regime. In other words,
the LSW theory assumes that the interaction range of a particle is infinite and
the contribution of all the other particles is given by a deterministic average,
the mean-field. This picture however neglects screening, which implies that the
interaction range of one particle is screened by its neighbours and hence finite,
which leads to deviations of the effective mean-field from its average.

It is the goal of (Velàzquez, 2000) to investigate whether these discrete effects
in the mean-field, and similarly in the data, change the weak-selection criterion
of the LSW model over the relevant time scales, that is as long as a sufficiently
large number of particles is still present. However, the analysis is restricted to
a regime, in which screening effects are not relevant. It turns out that in this
regime, stochastic effects do not essentially modify the effective dynamics as
described by the LSW model and thus do not provide a selection mechanism.

Before we continue to give an overview of further attempts to access the effect
of finite volume fraction on Ostwald ripening, we describe screening in Section
10.2.5 and review results on the rigorous derivation of the LSW model from the
Mullins–Sekerka evolution in Section 10.2.6.

10.2.5 Screening

The screening effect, described above, can be most easily understood by referring
to electrostatics. We briefly recall the argument which gives us the scaling of the
screening length in terms of the parameters of the system.
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To that aim we consider a point charge at X0 ∈ R3 surrounded by conducting
balls Pi = B(Ri, Xi) which are uniformly distributed according to a number
density ρ, have volume fraction ε' 1, and average radius 〈R〉. The point charge
atX0 creates an electric field and a corresponding potentialG, and thus induces a
negative charge on ∂B(Ri, Xi). This induced charge roughly equals−4πRiG(Xi),
where 4πRi is the capacity of a single ball in R3. In a dilute system capacity is
approximately additive which implies that the total negative charge density is
approximately given by−4π〈R〉ρG. Hence the effective electric potential satisfies:

−∆G = δX0 − 4π〈R〉ρG in R3,

and thus:

G(x) =
1

4π|x−X0|
e−

|x−X0|
ξ , (10.12)

where the ‘screening length’ ξ is given by:

ξ =
1√

4π〈R〉ρ
. (10.13)

Formula (10.12) shows that the presence of the balls has the effect that the
effective range of the electric potential is limited to ξ, whereas the electric poten-
tial in a system without balls is just 1

4π|x−X0| and decays slowly. Notice that the
number of particles within the screening range is ξρ1/3 which according to (10.13)
equals 〈R〉−1/2ρ−1/6 ∼ ε−1/6. Hence, in the dilute regime, the number of particles
within the screening range is still large and becomes infinite as ε→ 0.

For further reference, we also note another relevant scaling, the ratio between
typical radius and screening length, which is 〈R〉/ξ ∼ ε1/2.

10.2.6 Rigorous derivation of the LSW theory
The rigorous derivation of the LSW model from the Mullins–Sekerka evolution as
ε→ 0 is by now rather complete. It is treated in a series of papers (Niethammer
1999; Niethammer and Otto 2001; Niethammer and Velàzquez 2004a,b) which
deal with different assumptions on the data respectively. First, the simplest case
was treated in (Niethammer, 1999), where the system size is smaller than the
screening length. More precisely, one starts with Nε % 1 well-separated par-
ticles in—say—the unit box with volume fraction ε ' 1, that is ρ = Nε and
Nε〈R〉3 = ε. That the system size (here equal to one) is smaller than the screen-
ing length means in view of (10.13) that limε→0〈R〉Nε → 0 as ε → 0. In this
regime it is established in (Niethammer, 1999) that the solution of the Mullins–
Sekerka problem converges to the (unique) solution of the LSW model. (Well-
posedness of the LSW model is established in Niethammer and Pego 2005; see
also Laurençot 2002.)

In the case that the system is of the order of the screening length or larger,
one obtains an inhomogeneous extension of the LSW model (Niethammer and
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Otto 2001). Most interesting and natural is the case that the system size is much
larger than the screening length. This implies that when rescaling the system
with respect to the natural length scale, the screening length, one obtains a
homogenization problem in an unbounded domain. As a consequence, energy-
type estimates are not useful in the analysis. One important step in the analysis of
(Niethammer and Velàzquez 2004a,b,c) is the result (Niethammer and Velàzquez
2006b) which establishes that the fundamental solution of the microscopic prob-
lem decays exponentially w.r.t. the screening length. This allows one to ‘localize’
the homogenization procedure in (Niethammer and Velàzquez 2004a,b. While in
previous work it has been assumed that initially particles are well-separated so
that they cannot touch during the evolution, Niethammer and Velàzquez (2004b)
treat the case of initially randomly distributed particles. In this case particles
might overlap and the evolution is defined by merging these particles into a larger
one and continuing. To justify this procedure it is important to show that a very
small fraction of particles can overlap and that this does not affect the macro-
scopic evolution law for the remaining particles. This result rules out corrections
on the zero order level due to a stochastic nature of the data.

The result by Niethammer and Velàzquez (2006b) should also turn out to be
useful in further related investigations. In fact, the Mullins–Sekerka evolution has
not yet been considered in the setting where infinitely many particles distributed
in the whole space, e.g., according to a homogeneous Poisson process. Even if
one handles collision of particles in some way, global existence of a solution to
this problem is not obvious, since if locally screening is very weak there could
be a mass flux from infinitely far away leading to the finite time blow up of
the radius of one particle. We expect, however, that if particles are initially
uniformly distributed, such that there is a uniform—in a sense which has to be
made precise—screening length, such a scenario does not take place and that the
evolution is well-posed.

10.3 Scaling of the first order correction: a cross-over due to
screening

In order to derive a perturbative theory to the LSW model which takes nonzero
volume fraction into account we first have to identify the correct expansion
parameter, or in other words, the scaling of the first order correction. In this
chapter we review a result which rigorously establishes such a scaling. The anal-
ysis combines a variational viewpoint with elementary probability.

In the applied literature there had been a controversy about the size of the
scaling of the first order correction, since numerical simulations for finite systems
predicted an error of order ε1/3, whereas theories for infinite systems predicted
an error of order ε1/2. This was first to some extent resolved by numerical simu-
lations in (Fradkov et al. 1996), which show a cross-over from ε1/3 to ε1/2 when
the system size becomes larger than the screening length. We will now discuss
in some detail a result, which proves a refined version of this observation.
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10.3.1 Set-up and assumptions
Our starting point here is the monopole approximation of (10.1), (10.3), and
(10.4). In fact, it has been established in (Dai and Pego 2005a), that the monopole
approximation is exact for a variant of (10.1), (10.3), and (10.4), where the
Gibbs–Thomson condition is averaged, instead of the Stefan condition (10.4).

In the monopole approximation we use the ansatz u(x, t) := −∑i
Vi

|Xi−x| for
a solution of (10.1), where {Vi}i are the growth rates of the particle volumes,
that is Vi := d

dt [
4π
3 R

3
i ] = 4π R2i

dRi

dt . Using the Gibbs–Thomson condition in
(10.1) gives to leading order the following linear system of equations:

1
Ri

= u∞ −
Vi
Ri
−
∑
j =i

Vj
dij
, (10.14)

where dij := |Xi −Xj | is the distance between particle centres and u∞ is such
that: ∑

i

Vi = 0 . (10.15)

We consider from now on a fixed distribution of n % 1 particles centres
{Xi}i in a sphere of volume n (that is the number density ρ satisfies ρ ∼ 1)
which satisfies certain regularity assumptions listed below. The particle radii
{Ri}i are identically and independently distributed according to a distribution
with compact support and mean volume ε. Within this setting the screening
length is given by ξ ∼ 1√

〈R〉
∼ ε−1/6 and hence the screening length is smaller,

resp. larger, than the domain size if ξ ' n1/3 or ξ % n1/3—in other words
if εn2 % 1 or εn2 ' 1—respectively. We call these regimes supercritical and
subcritical respectively.

In the following we estimate the deviation of the joint distribution
{Xi, Ri, Vi}i from {Xi, Ri, V

LSW
i }i, where the {Vi}i are determined according

to (10.14) and {V LSW
i }i are the LSW growth rates, given by the truncation of

(10.14):

1
Ri

= uLSW
∞ − V

LSW
i

Ri
and

∑
i

V LSW
i = 0. (10.16)

Such an analysis is also called ‘Snapshot’ analysis, since we only estimate the
difference in the rate of change of the system at a given time.

The quantity we consider in the following will be the relative deviation in the
rate of change of energy, which is another convenient measure for the coarsening
rate. More precisely we consider ĖLSW−Ė

|〈ELSW 〉| , where E is the interfacial energy of

the particles, i.e., E = 1
2n

∑
iR
2
i , and its rate of change is:

Ė =
1
n

∑
i

Vi
Ri
,
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while:

ĖLSW =
1
n

∑
i

V LSW
i

Ri
,

with V LSW
i given by (10.16). Since the energy is decreasing, Ė is always negative.

Likewise ĖLSW is always negative, but we expect the difference ĖLSW − Ė to
be negative for most realizations, since the LSW theory should underestimate
the rate at which E is decreasing.

For the analysis we need the following regularity assumptions on the distri-
bution of {Xi}i. The first one ensures a certain uniformity in the distribution.
We assume in the supercritical case, i.e., when the system size is much larger
than the screening length, that each subdomain of size of order ξ, contains at
least of the order of ε−1/2 particles. This assumption can be shown (at least if
ε ≤ 1

lnn5 , cf. (Niethammer and Velàzquez 2004b)) to be satisfied with probability
converging to one as n→∞.

The second assumption is less natural. We assume that the minimal distance
between particles is of the order of the mean nearest neighbour distance, that
is minj =i dij ≥ c0 > 0. This assumption is not satisfied with probability close
to one. The number of particles which violate this assumption is small and one
might expect that the inclusion would not destroy our result. It would be very
interesting to establish a corresponding result rigorously, or show, on the con-
trary, that the above assumption is relevant.

One consequence of these two assumptions on the distribution of particle
centres is that we can approximate discrete sums by the corresponding integrals,
an approximation we use frequently in the proofs.

10.3.2 The result

The main result in (Hönig et al. 2005b) is that for a fixed distribution of particle
centres satisfying our regularity assumptions we have with high probability (with
respect to the radius distribution):

− Ė − Ė
LSW

|〈ĖLSW 〉|
∼
{
n−1/3 ε1/3 for n' ε−1/2
ε1/2 for n% ε−1/2

}
. (10.17)

Notice that this is a qualitative statement about the entire distribution, not
just its expected value, which is usually considered in numerical simulations.
Furthermore it makes the dependence on n precise and gives a proper cross-
over, that is the scalings agree in the case that n ∼ ε−1/3.

In the following 〈·〉 denotes the expected value with respect to the joint
probability measure P of the variables {Ri}i.
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Theorem 10.1 (Hönig et al. 2005b, Th. 2.2) (The supercritical regime)
If n' ε−1/2 and ε ≤ ε0 we have with high probability that:

−C ε1/2 ≤ Ė − Ė
LSW

|〈ĖLSW 〉|
≤ − 1

C
ε1/2 ,

that is for all δ > 0 there exists a constant C = C(δ) such that:

P

({
−C ε1/2 ≤ Ė − Ė

LSW

|〈ĖLSW 〉|
≤ − 1

C
ε1/2

}c)
≤ δ.

Theorem 10.2 (Hönig et al. 2005b, Th. 2.1) (The subcritical regime) If n '
ε−1/2 and ε ≤ ε0 we have with high probability that:

Ė − ĖLSW

|〈ĖLSW 〉|
≥ −C n−1/3 ε1/3.

Furthermore:

〈Ė − ĖLSW 〉
|〈ĖLSW 〉|

≤ − 1
C
n−1/3ε1/2.

Remark: notice that in the subcritical regimes we only succeed to derive a
lower bound, whereas we obtain an upper bound only for the expected value. It is
not surprising, that subcritical systems have less good self-averaging properties
than supercritical systems and, in fact, a recent rigorous result by Conti et al.
(2006) shows, that for any M > 0 there is a finite probability ρM > 0 such that
(Ė − ĖLSW )/|〈ĖLSW 〉| > M .

10.3.3 Sketch of proof

In the following we present the main ideas of the proof of Theorem 10.2.
We first perform the natural rescaling, by rescaling radii with respect to their

typical size ε1/3 such that (10.14) becomes:

1
Ri

= u∞ −
Vi
Ri
− ε1/3

∑
j =i

Vj
dij
, (10.18)

where again u∞ is such that
∑

i Vi = 0. Recall that the radii are distributed
according to a distribution with compact support. Thus, after rescaling we can
assume that Ri ≤ C0 for some C0 > 0.
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Variational formulation:
A key idea in the proof of Theorem 10.2 is that the deviation in the rate of

decrease of the energy can be formulated variationally. First we observe that the
solution of (10.18) can also be characterized as a minimizer of:

min
{Wi}i;

∑
iWi=0

 1
n

∑
i

1
2Ri

Wi
2 + ε1/3

1
n

∑
i

∑
j =i

WiWj

2dij
+

1
n

∑
i

Wi

Ri

 .
and the solution {Vi}i satisfies:

1
n

∑
i

1
2Ri

V 2i + ε1/3
1
n

∑
i

∑
j =i

ViVj
2dij

+
1
n

∑
i

Vi
Ri

=
1
n

∑
i

Vi
2Ri

=
1
2
Ė.

Hence:

Ė − ĖLSW = min
{Wi}i,

∑
iWi=0

{
1
n

∑
i

1
Ri
Wi
2

+ ε1/3
1
n

∑
i

∑
j =i

WiWj

dij
+

1
n

∑
i

2Wi

Ri
− 1
n

∑
i

V LSW
i

Ri

}
.

and after some elementary manipulations, recalling V LSW
i =

Ri

R
− 1 with R :=

1
n

∑
iRi, we find:

Ė − ĖLSW = min
{Wi}i;

∑
iWi

 1
n

∑
i

1
Ri

(
Wi − V LSW

i

)2
+ ε1/3

1
n

∑
i

∑
j =i

WiWj

dij

 .
(10.19)

Hence our goal will be to show that for any δ > 0 there exists a constant C = C(δ)
such that:

P
({
− C ≤ T ≤ − 1

C

}c)
< δ , (10.20)

where:

T := min
{Wi}i;

∑
iWi

ε−1/2 1n∑
i

1
Ri

(
Wi − V LSW

i

)2
+ ε−1/6

1
n

∑
i

∑
j =i

WiWj

dij

 .
Notice that this is exactly the statement in Theorem 10.2, since our scaling is
such that |〈ĖLSW 〉| = O(1).

The variational formulation has the advantage that, first, we get rid of the
nonlocal term u∞, which is not explicit, and, second, that we can obtain an
upper bound by constructing a suitable test function {Wi}i.
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The upper bound:
In the supercritical case, that is the case when the system size is much larger

than the screening length ξ, our intuition is that the system separates into many
small subsystems of size of order ξ. With this idea in mind we divide our system
into subsystems of order ξ and use the LSW construction in each subsystem

j, that is Wi :=
Ri

R[j]
− 1, where R[j] means that we take the average over

subsystem j. This construction indeed gives the desired upper bound. The com-
putations are somewhat tedious but straightforward (see Hönig et al. 2005b
for details).

The lower bound:
We now turn to the mathematically most interesting part, which is the lower

bound for T . We write T = T0 + T1 with

T0 := ε−1/2
1
n

∑
i

1
Ri

(
Wi − V LSW

i

)2
, T1 := ε−1/6

1
n

∑
i

∑
j =i

WiWj

dij
,

that is, T0 is the ‘good’ positive part, and what we need to show is that T1 can be
split in terms which can be absorbed in T0 and other terms which are bounded
in weak-L1, that is we aim to show that |T1| ≤ 12T0 + T̃ , where T̃ is bounded in
weak-L1. (We say that T is bounded in weak-L1 if there exists exists a constant
C such that P (|T | ≥M) ≤ C/M for all M > 0.)

• Replace V LSW
i by

Ri

〈R〉 − 1:

In a first step we replace in T0 the term V LSW
i by Li :=

Ri

〈R〉 − 1. This has

the advantage that 〈Li〉 = 0 and 〈LiLj〉 = 0 for i �= j. It is not difficult to
show that the error which is made by this replacement is bounded in the
supercritical regime, which ensures that R is a good approximation of 〈R〉.
We omit the details here.
• Introduce cut-off length ξ̂ := δξ:
Next, we introduce a length ξ̂ := δξ, where δ > 0 is a small number, which
will be chosen appropriately. We split the kernel:

1
dij

=
e−dij/ξ̂

dij
+

1− e−dij/ξ̂

dij

into a far-field and near-field respectively, a splitting motivated by the
screening effect and also used for example in the Ewald summation method.
Accordingly we split:

T1 = ε−1/6
1
n

∑
i

∑
j =i

e−dij/ξ̂

dij
WiWj + ε−1/6

1
n

∑
i

∑
j =i

1− e−dij/ξ̂

dij
WiWj

=: T11 + T12 .
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• The ‘far-field’ term:
It turns out that the far-field term T12 is the simpler one to estimate. We
split again:

T12 := ε−1/6
1
n

∑
i

∑
j

1− e−dij/ξ̂

dij
WiWj − ε−1/6

1

nξ̂

∑
i

W 2i

=: T121 − T122 .

We see that T121 is positive, since the kernel is even and is the Fourier trans-
form of a positive measure and hence a function of positive type according
to Bochner’s theorem.
On the other hand:

T122 = ε−1/6
1

nξ̂

∑
i

(
Wi − Li + Li

)2
≤ 2ε−1/6

1

ξ̂

( 1
n

∑
i

(Wi − Li)2 +
1
n

∑
i

L2i

)
≤ Cε−1/6 1

ξ̂

(
ε1/2T0 +

1

R
2

)
since Ri ≤ C0 and since 1n

∑
i L
2
i ≤ C 1R2 . Recall that ξ ∼ ε−1/6 and hence:

T122 ≤
C

δ

(
ε1/2T0 +

1

R
2

)
.

Using large deviation theory one can show that the expected value of all
moments of R

−1
are bounded. Hence, once we have chosen δ, we can choose

e.g., ε ≤ δ2 such that and T122 is bounded by CδT0 plus a term which is
bounded in weak-L1.
• The ‘near-field’ term:
It remains to estimate the near-field term T11. We write:

T11 = ε−1/6
1
n

∑
i

∑
j =i

e−dij/ξ̂

dij

(
Wi − Li

)(
Wj − Lj

)
+2ε−1/6

1
n

∑
i

∑
j =i

e−dij/ξ̂

dij
Lj

(
Wi−Li

)
+ ε−1/6

1
n

∑
i

∑
j =i

e−dij/ξ̂

dij
LiLj .

(10.21)

The first term on the right hand side can be estimated by a kind of con-
volution argument and turns out to be smaller than Cε1/3(ξ̂)2T0 ≤ CδT0.
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We denote the second term in (10.21) by T112 and have with:

Z2i :=
∑
j =i

∑
k =i

e−
dij
ξ

dij

e−
dik
ξ

dik
LjLk

that: ∣∣T112∣∣ ≤ ε−1/6( 1
n

∑
i

(
Li −Wi

)2)1/2( 1
n

∑
i

Z2i

)1/2
.

As before we argue that 1n
∑

i

(
Li −Wi

)2 ≤ Cε1/2T0. Furthermore, due to
〈LjLk〉 = 0 for j �= k, we have:

〈Z2i 〉 =
∑
j =i

e−
2dij
ξ

d2ij
〈L2i 〉 ≤ Cξ ,

where the last inequality follows from our regularity assumptions on the
distribution of particle centres which allow to approximate sums by the
corresponding integrals. Thus, we obtain:

P
(
|T112| ≥M

)
≤ 1
M
〈|T112|〉

≤ 1
M
ε−1/6ε1/4

√
T0
√
ξ

=
1
M
ε−1/6+1/4−1/12

√
δT0

≤ C

M

(
δT0 + 1

)
,

which says that T112 is bounded in weak-L1.
The third term in (10.21) can be handled similarly, we omit the proof here.
• Summary:
Collecting the above computations we have:

T ≥ (1− Cδ)T0 + T̃1
with P

(
|T̃1| ≥M

)
≤ C

M . Choosing δ sufficiently small finishes the proof of
the lower bound.

10.4 Approaches to extend the LSW model
In this section we review different approaches to derive extensions to the LSW
model which take nonvanishing volume fraction into account. The theories we
present now are not derived in full rigour, which due to the complexity of the
problem can also not be expected. The first approach, described in Section 10.4.1,
has been derived by establishing several building blocks rigorously. The model is
also self-consistent for small times. However, it turns out not to be self-consistent
for large times. Another approach, which overcomes this difficulty is presented
in Section 10.4.2. Section 10.4.3 finally discusses an ad hoc model which takes
encounters of particles into account.
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10.4.1 BBGKY hierarchy to capture correlations

The first attempt to derive a corresponding theory was done in (Marqusee and
Ross 1984), where an evolution of the one-point statistics under the assump-
tion of independently and identically distributed particles is derived. However,
it is obvious that the assumption of statistical independence is not preserved
up to the relevant order O(ε1/2) by the evolution and thus this theory is not
self-consistent.

A more advanced theory has been developed by Marder (1987) who takes the
build up of correlations into account. Let us briefly discuss why one expects a
faster coarsening process due to correlation effects. Consider a system which has
undergone coarsening and suppose you find a large particle. The likely reason
for it being large is that it is surrounded by smaller than average particles.
Because of that fact the large particle can also grow faster than predicted by
the LSW mean-field theory. Equally, smaller than average particles shrink faster
than predicted by the mean-field theory, and one should obtain larger coarsening
rates than within the LSW model.

In order to access correlations Marder (1987) derives the evolution of the
two-point statistics up to an error o(ε1/2). Starting from the monopole approx-
imation he generates the BBGKY hierarchy for the particle number densities,
computes the growth rates which appear as coefficients in these equations, and
truncates the hierarchy on the level of two-particle statistics by a closure
hypothesis.

The goal of Hönig et al. (2005a) was to find a new method to identify the
conditional expectations of particle growth rates under a more natural closure
hypothesis than Marder’s.

The assumption in Hönig et al. (2005a) is that the joint probability
distribution of {(Ri, Xi)}i≥1 satisfies a cluster expansion. More precisely, if
f1(R1, t) and f2(R1, R2, X1, X2, t) denote the one- and two-particle number den-
sities respectively, it is assumed, with g2(R1, R2, X1, X2, t) := f1(R1)f1(R2) −
f2(R1, R2, X1, X2, t), that

g2
f1f1

= O(ε1/2) and that higher order correlations are

of order o(ε1/2) and can henceforth be neglected.
Under this assumption Hönig et al. (2005a) derive that f1, f2 satisfy the

Liouville equations:

∂f1
∂t

+
∂

∂R1

( 1
R21
〈V1 | 1〉 f1

)
= 0 ,

∂f2
∂t

+
∂

∂R1

( 1
R21
〈V1 |1, 2〉 f2

)
+

∂

∂R2

( 1
R22
〈V2 |1, 2〉 f2

)
= 0 ,

(10.22)

where 〈V1 | 1〉, 〈V1 |1, 2〉 denote the expected growth rates of particles conditioned
on size and position of particle (R1, X1) and (R1, X1, R2, X2) respectively. These
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are given by:

〈V1 |1〉 =
(
1 +

R1
ξ

)
(R1u∞ − 1− δu1) + o(ε1/2), (10.23)

〈V1 |1, 2〉 =
(
1 +

R1
ξ

)
(R1u∞ − 1− (δu1 + δu2))

+
R1
d12
e−

d12
ξ (1−R2u∞) + o(ε1/2) , (10.24)

where for i = 1, 2:

δui =
∫
e−

|y−X1|
ξ

|y −X1|
(
1−Ru∞

)g2(Ri, Xi, R, y)
f1(Ri)

dR dy (10.25)

and δui have relative size of order O(ε1/2). The mean-field u∞ is implicitly
determined by volume conservation, which is expressed by the condition 〈V1〉 = 0.

Notice that the terms R1/ξ and R1/d12, etc. are terms which have typically
size of order ε1/2 due to (10.13). Hence, we recover in (10.23) to leading order
the LSW theory.

We also observe that (10.24) has the expected structure. The second term on
the right hand side describes how a particle (R2, X2) affects the growth rate of
particle (R1, X1). If it is larger than average, the growth rate of particle (R1, X1)
is smaller than predicted by LSW, if it is smaller than the growth rate of particle
(R1, X1) increases. The effect is more relevant the closer particle (R2, X2) is to
particle (R1, X1) and can be neglected if the distance between two particles is
larger than the screening length ξ.

Nevertheless, it turned out that the model (10.22)–(10.25), despite its com-
plexity, is still not satisfying. First, even though this is not demonstrated rig-
orously, it seems that the model contains no mechanism to select a unique
self-similar solution. Furthermore, and most importantly, the model is not self-
consistent for large times, more precisely it fails for the largest particles in the
system. The argument for the latter is basically as follows. Suppose one solves
(10.22)–(10.24) for uncorrelated initial data, where f1(R1, 0) has compact sup-
port. Consequently, the support of f2 = f2(R1, R2, X1, X2, 0) is also compact
in R1 and R2. However, the evolution of R1 and R2, determined by (10.24),
depends on space due to the term e−d12/ξ/d12 in (10.24). Therefore, particles R1
and R2 which are at a distance smaller than ξ evolve differently from particles
R1 and R2 which are at a distance much larger than ξ. As a consequence also the
support of f2 in R1 and R2 varies in space and we obtain regions in the variables
(R1, R2, X1, X2) where f2 identically vanished but f1(R1) and f1(R2) do not and
consequently g2 is of the order f1(R1)f1(R2) which violates the cluster expansion.

10.4.2 Boundary layers due to fluctuations
For the reasons described in the previous section one cannot assume that cor-
relations are small around the largest particles, and hence a uniform cluster
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expansion approach cannot be successful. The onset of correlations for the largest
particles has instead to be described by a suitable boundary layer, that is a small
region in the space of radii on which the number densities vary rapidly. A cor-
responding model has been derived in (Niethammer and Velàzquez 2008). The
analysis is quite elaborate and the resulting model is also complicated to state in
full detail. We confine ourselves here to describing the most important aspects.

The main idea in the derivation of the model is that we do not start from
an expansion on the level of the number densities, but instead on the level of
the trajectories of particles. This allows for a closure relation using Taylor’s
expansion in order to express f2 by f1 and ∂Rf1.

One aspect is, however, very similar to the analysis of Hönig et al. (2005a). A
key idea in the computation is always to describe a system of particles through
the ones in a system where a particle has been removed. This is a version of
Schwarz alternating method.

The resulting model has the following form:

∂tf1 + ∂R

(
1
R2
(
Ru∞ − 1

)
f1

)
= ε1/2 ∂R

(
D(R) ∂Rf1

)
(10.26)

where the function D=D(R) acts as a kind of diffusion coefficient and is deter-
mined via a complicated nonlocal integral equation. We refer for details to
(Niethammer and Velàzquez 2008); the most relevant property of D, however, is
that it is positive and has the appropriate scaling such that (10.26) has a scale
invariance.

Let us emphasize again that the right hand side is seemingly a higher order
term due to the factor ε1/2. However, this is only true where f1 is not small. For
largest particles, where f1 is small, the right hand side of (10.26) becomes of the
same size as the left hand side.

By formal asymptotic expansion it is also established in (Niethammer and
Velàzquez 2008) that a unique self-similar solution to (10.26) exists. This is a
perturbation of the LSW self-similar solution with a Gaussian tail. Thus, the
boundary layer provides a possible solution to the selection problem within the
LSW theory. The induced correction to the mean particle size of order ε1/4.
Notice, that the latter does not contradict our scaling analysis in Section 10.3. For
short times we have that the correction terms are of order ε1/2. This does not say,
however, what order of size of correction we can expect in a self-similar regime.

10.4.3 The LSW model with encounters
A different approach from the ones described in the last two sections has been
suggested already in (Lifshitz and Slyozov 1961). As we have already mentioned,
particles may collide during their evolution and merge into a larger particle. At
first glance, this effect seems to be of higher order than correlations, since the
number of particles per unit volume which are involved in collisions is of order ρε
and as a consequence the correction of the LSW model due to collisions should
have relative size of order ε.
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A model which takes this effect into account has already been suggested in
(Lifshitz and Slyozov 1961). To state it, it is more convenient to change variables
from radius R to volume v := R3. After rescaling time by a constant, the LSW
law Ṙ = 1

R2 (Ru∞−1) reads in the volume variable v̇ = v1/3u∞−1 and the LSW
model for the density of volumes g (defined by g(v) dv = f1(R) dR) is given by:

∂tg + ∂v
(
(v1/3u∞ − 1)g

)
= 0 .

Introducing self-similar variables via x :=
v

t
, F (x, τ) := t2g(v), τ = ln t and

λ = u∞t1/3 we obtain the equation in self-similar variables as:

∂τF − x∂xF − 2F + ∂x
(
(x1/3λ− 1)F

)
= 0 . (10.27)

To account for collisions, or ‘encounters’ as the phenomenon is called by Lifshitz
and Slyozov, a coagulation term is added on the right hand side which is of the
form:

1
2

∫ x

0
K(y, x− y)F (x− y)F (y) dy − F (x)

∫ ∞

0
K(x, y)F (y) dy . (10.28)

Since merging particles basically add their volume (this is not completely correct,
since at the same time they still interact with the other particles, but sufficient
for our purpose), it is assumed that K is additive and grows proportionally to
x+ y as x, y →∞. For simplicity we set K(x, y) := x+ y. To summarize, after
normalizing to

∫
xF (x) dx = 1, self-similar solutions for the LSW model with

encounters are given by the equation:

−x∂xF − 2F + ∂x
(
(x1/3λ− 1)F

)
= ε
(x
2

∫ x

0
F (x− y)F (y) dy − xF (x)

∫ ∞

0
F (y) dy − F (x)

)
.

(10.29)

Naively, one would expect that since the order of the right hand side is
O(ε), collisions are not as relevant as correlations and fluctuations which are of
order O(ε1/2). However, all particles can encounter other particles and thus two
colliding particles of medium size produce a large particle which then dominates
the long-time behaviour. Hence, for the large-time, behaviour encounters could
be more relevant than fluctuations and correlations.

This conjecture is supported by an asymptotic analysis by Lifshitz and
Slyozov (1961). Assuming that there exists a fast decaying solution to (10.29),
they find that the correction of the growth rate of the particles is of order is of

order
1

| ln 1ε |2
and hence much larger than the correction induced by fluctuations.

It is still open, however, whether the analysis in (Lifshitz and Slyozov 1961)
is correct, since is is not obvious that exponentially fast decaying solutions to
(10.29) exist at all. In fact, we know from the pure coagulation equation that
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such a solution only exists for ε = 1. The situation here might be, of course,
completely different. Preliminary computations by Herrmann et al. (2007) sug-
gest, that for small ε there are both, algebraically decaying solutions as well as
an exponentially decaying one. If this turns out to be correct, it is reasonable
to expect, that solutions to the time dependent problem with compactly sup-
ported data converge to the self-similar solution with exponential decay and the
correction to the mean radius is indeed of order 1

| ln 1
ε |2

.
To summarize, even though the model including encounters is set up only

ad hoc and is not derived from the Mullins–Sekerka evolution, which would be
another challenging task, the enormous effect on the mean radius and hence the
coarsening rate suggests that encounters are in fact more relevant for the long-
time self-similar dynamics than fluctuations. The explanation lies in the kinetic
character of the collision term, that the fraction of particles which are transported
to the supercritical regime is of order ε, whereas the diffusive correction due to
fluctuations in (10.26) only involves the few largest particles.
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SWITCHING PATHS FOR ISING MODELS WITH
LONG-RANGE INTERACTION

Nicolas Dirr

Abstract

We introduce a multi-scale model for two-phases material. The model is
on the finest scale a stochastic process. The effective behaviour on larger
scales is governed by deterministic nonlinear evolution equations. Due to the
stochasticity on the finest scale, deviations from these limit evolution laws
can happen with small probability. We describe the most likely among those
deviations in two situations: first we consider the switching from one stable
equilibrium of the evolution equation to another one, then we describe what
happens when enforce a fast motion on a manifold of stationary solutions.
This chapter is based on joint work with Giovanni Bellettini, Anna DeMasi,
and Errico Presutti.

11.1 Introduction

11.1.1 Motivation

This note is mainly concerned with the qualitative behaviour of minimizing
sequences to certain functionals, which is of course a standard topic in the Cal-
culus of Variations and, so far, a piece of pure mathematics. The purpose of the
following paragraphs is to motivate how our results are related to a multiscale
description of material behaviour in the presence of thermal effects, i.e., noise.

11.1.1.1 Gradient flow models at multiple scales It is well known that physical
models are described by a family of effective theories, such that each of them is
valid in a certain time–space scale. The challenge for the mathematician is to
prove that the effective theory on a larger scale can be derived from that on a finer
scale under a suitable rescaling (and averaging out degrees of freedom). The ratio
between the two (length) scales is a small parameter, and a typical mathematical
result states that an ‘averaged’ and rescaled solution to the fine-scale equation
converges to a solution of the coarse-scale equation if this parameter vanishes.

Here however, we look in a certain sense at higher-order effects. We look at
deviations from the effective evolution law at a larger scale which are rare, but
possible, due to a stochastic evolution law on a finer scale. More precisely we deal
with models for the evolution of a phase boundary at three scales: at the finest
scale, called atomistic, we deal with a stochastic process; at an intermediate
scale, called mesoscopic, with a nonlocal reaction-diffusion equation; and at the
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Fig. 11.1: Schematic drawing of the micro- meso- and macroscale for a model
for phase boundaries.

largest scale with a geometric evolution law for the interface (mean curvature
flow). (See also Fig. 11.1).

Of course the probability of not following the effective evolution law at a
larger scale converges to zero with the ratio between the scales, but we are
interested in finding among all those unlikely paths of the system that deviate
from the effective large-scale evolution, the most likely one. This most likely
deviating path may be rare, but on large samples (many independent realizations
in space) or after large waiting times it will be seen. Such deviations allow in
particular the switching between two local minima of the free energy of the
system. (See also Olivieri and Vares (2005) and Cassandro et al. (1986).) This
would be impossible for the evolution law itself, because the effective models
on the meso- and macroscale have the free energy for a Lyapunov functional,
i.e., the evolution can never leave an isolated local minimum.

The gradient flow dynamics in our models is a consequence of the type of
stochastic process which we choose as a starting point on the finest scale (see
next subsection). Gradient flow models are a good approximation in the case of
strong damping/dissipation. Assume that the state of the system is described
by a vector X, and the associated energy is given by V (X). In the case of high
friction (here ε' 1) Newton’s law yields (in suitable units):

Ÿ = −1
ε
Ẏ − V ′(Y )

Now let X(t) = Y (ε−1t), then ε2Ẍ = −Ẋ − V ′(X) and we obtain formally as
ε→ 0 Ẋ = −V ′(X), i.e., a gradient flow of the energy V.

In this note we look at two types of deviations from the gradient flow evolu-
tion, see also Fig. 11.2.

1. Switching The transition between two local minima of the free energy,
which are separated by a potential wall. Here both minima have the same
energy.
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A B State

Energy
(a) (b)

Fig. 11.2: Schematic drawing of an energy landscape for the case of ‘switching’
from well A to well B (left), and for the fast motion on a stationary manifold
(right).

Phase A 

Phase B

Fig. 11.3: Structure of the model: two phases, separated by a phase boundary.

2. Motion on stationary manifold Along a level set of the free energy the
gradient vanishes, and therefore a gradient flow evolution should not move
at all. We put as constraint a ‘fast’ motion and look for the most likely
deviation. It turns out that this may be a path that leaves the level set of
the energy.

In this note the two minima A, and B, correspond to the two ‘phases’ of a
material occupying a container. The potential wall is related to the fact that
the formation of a (growing) region of phase B into phase A requires a phase
boundary, i.e., a region in space separating the subdomain occupied by phase A
from the subdomain occupied by phase B. Near this phase boundary the system
is neither close to A nor to B, hence the free energy there is higher than in any
of the pure phases. (See also Fig. 11.3). The container wall is supposed to be
neutral (Neumann or reflecting boundary conditions), i.e., no free energy cost is
associated with the region where a subdomain occupied by one phase touches
the container wall.

The manifold of stationary solutions in case 2 corresponds to the manifold of
instantons (stationary solutions connecting the two phases) in a one dimensional
phase field model.
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11.1.2 Ising-model with Kac potential and Glauber dynamics: the three scales
Here we define more precisely our model for two-phase material. First we describe
the stochastic process at the finest (atomistic) scale, then we explain the effective
evolution law on the meso- and macroscale. In this note, D = R or D = [−L,L]d,
d ∈ {1, 2, 3}, L % 1. We state the definitions as needed later, but many of the
statements hold in more general situations, see De Masi et al. (1994a).

The basic object on all scales is the interaction kernel J(x, y) : D × D →
[0,∞), which we assume (for simplicity) to be smooth and which we require to
have in addition the following properties:

1. J(x, y) = J(y, x)
2. ∫

D

J(x, y)dy = 1

3. If D = R then J(x, y) = J̃(|x − y|) for some smooth function J̃ with
J̃(r) = 0 for r > 1.

4. If D = [−L,L]d, then with J̃ as above

J(x, y) =
∑
y′�y

J̃(|x− y′|),

where y′ $ y means that y′ is equal to y modulo reflections along the lines
{y = ±(2n+ 1)L/2} and {x = ±(2n+ 1)L/2}, n ∈ Z.

Now we define the stochastic process: let Λ = γ−1D ∩ Zd, where γ ' 1 and γ−1

is the interaction range.
The state space is {−1, 1}Λ, an element is denoted by σ, and its value on a

site Xon Zd ∩ γ−1D is denoted by σ(X) and called the spin at x.
We can define a Markov process on this state space by defining the ‘flip’ rate

for the spin σ(X), i.e., loosely speaking, if c(X, t) is the flip rate of the spin at
X at time t, then the probability of the event that σ(X) changes to −σ(X) in
the time interval [t, t + dt] equals c(X, t)dt. Of course the flip rate depends in
general on the state σ.

This flip rate at site X depends on the spin at X and on its neighbours
(interaction) in such a way that the spin is more likely to align with its neighbours
than to oppose them (ferromagnetic interaction), but the dependence is only
through the average over neighbours within the interaction range (which is large,
γ−1.) This is called Kac potential or Kac interaction.

Thus the model is of local mean field type. See also the picture on the left of
Fig. 11.4.

This type of dynamics, where the total magnetization (sum of the spins) is
not conserved, is known as Glauber dynamics.

More precisely, with the effective field:

hX(σ) :=
∑
Y

γdJ(γX, γY )σ(Y ),
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Fig. 11.4: a) interaction through average of neighbours. b) coarse graining over
a box smaller than the interaction range.

felt by the spin at site X we define:

c(X, t) =
e−βσ(X)hX(σ(t))

eβhX(σ(t)) + e−βhX(σ(t))
,

where β is the inverse temperature, a quantity that controls in some sense how
far the spins are from independence, i.e., from β = 0. We assume β > 1 in order
to have two phases, one with magnetization close to 1 and the other one with
magnetization close to −1.

As the interaction between sites depends only on averaged quantities, it
is plausible to assume that correlations between spins remain small if they
were small initially (propagation of chaos). If the spins are almost uncorre-
lated, then averaged quantities should, by some law of large numbers, be almost
deterministic. This is indeed the case, for rigorous results we refer to De Masi
et al. 1994a. More precisely, let us define the following coarse graining (‘block spin
transform’ in De Masi et al. 1994a). Rescale space with γ, i.e., x = γX for x ∈ D.
Then we define the piecewise constant random function mγ(x, t, ω) ∈ [−1, 1] by:

mγ(X, t, ω) := (γα)d
∑

|Yi−Xi|∞< 1
2γ

−α

σ(Y, t, ω) (11.1)

for 0 < α < 1, i.e., we average over many spins, but over an area which is
smaller than the interaction range. It can be shown (see De Masi et al. 1994a,
see also Markos et al. 1995) that on space–time domains that grow slowly in
γ−1 (e.g., logarithmically) the random function mγ converges in probability to
a deterministic function m(x, t) which solves the nonlocal nonlinear evolution
equation:

mt = −m+ tanh(βJ ∗m), (11.2)

which is thus the effective evolution law on the mesoscopic scale. (∗ denotes, as
usual, the convolution.)
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Fig. 11.5: Double-well potential with wells in ±mβ .

This equation has some features in common with the well-known Allen–Cahn
equation (see Allen and Cahn 1979):

∂tm = ∆m−W ′(m), (11.3)

where W is a so-called double-well potential, i.e., it has exactly two local minima
of equal depth, is strictly convex near each local minimum, and the local min-
ima are separated by a potential barrier, see Fig. 11.5. Obviously (11.3) is the
L2-gradient flow of the energy:

FAC(m) =
∫
D

(|∇m|2 +W (m))dx. (11.4)

The mesoscopic equation (11.2) has as Lyapunov functional the mesoscopic
free energy of the Ising spins with Kac interaction, the functional:

F (m) =
∫
D

φβ(m) dx+
1
4

∫
D×D

J(x, x′)[m(x)−m(x′)]2dx dx′, (11.5)

where Φβ is a double well potential with minima (wells) at ±mβ . mβ is defined
as positive solution of m = tanh(βm), β > 1, and Φβ is explicitly given as:

Φβ(m) = −m
2

2
+

1
β

(
1−m

2
log

1−m
2

+
1 +m

2
log

1 +m
2

.

)
Φβ is double-well potential for β > 1. (See Fig. 11.5.)

As J ≥ 0, we see that both (11.4) and (11.5) consist of a term that penalises
oscillations and a double well potential, which prefers m to be close to one of two
ground states or phases. Hence the two ground states of (11.5) are the constant
functions ±mβ .

Both functionals have stationary solutions which connect the two wells and
which are in some sense the lowest energy excited states (see Bellettini et al.
2005a). We call standing wave or instanton a function m which solves:

m = tanh(βJ ∗m) (11.6)
m(x) : lim

x→±∞
m(x) = ±mβ , m(0) = 0, m′(x) > 0. (11.7)
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m
�mb mb

Fig. 11.6: Sketch of invariant manifold in function space, arrows indicating
dynamics on the manifold.

For D = R the equation (11.2) is invariant under translations in space, hence
there exists a one-dimensional manifold of such stationary solutions, and the
solution of (11.6,11.7) is unique up to translations.

If D = [−L,L], then the (reflecting) boundary conditions break the trans-
lational symmetry, and of course we cannot impose any additional boundary
conditions like in (11.7). The solution of (11.6) with the lowest energy will be
called finite volume instanton m̂L. (See Bellettini et al. 2005a,b). In order to
make this well-defined we have to suppose that L is sufficiently large. There
exist one-dimensional invariant manifolds M± connecting m̂L to the ground
states m ≡ +mβ and m ≡ −mβ . (See Fig. 11.6, see also Bellettini et al. 2007.)

Now we turn to the coarsest scale, the macroscale. Let D denote the signed
distance function and letm be the instanton on R, i.e., the solution of (11.6,11.7).
If L = ε−1, ε → 0, and space and time are rescaled diffusively, i.e. T = ε2t,
R = εx, then one can show by formal asymptotic expansions that both (11.3)
and (11.2) admit solutions that are close to m(ε−1d(x,Σ(t)), where the hyper-
surface Σ(t) evolves by mean curvature, i.e., the normal velocity equals the mean
curvature multiplied by a coefficient which depends on J and β in a complicated
way. This can be made rigorous, even if the mean curvature evolution admits
only generalized solutions, see De Masi et al. 1994a; Markos et al. 1995.

11.1.3 Deviations from the mesoscopic equation
The fact that the random variable mγ (see 11.1) converges to a (deterministic)
solution m of (11.2) can (informally) be restated as:

mγ(x, t, ω) = m(x, t) + rγ(x, t, ω),

with rγ small. Hence we can consider mγ as a random perturbation of a solution
to (11.2). This bears some similarities with a stochastically forced PDE, see e.g.,
Faris and Jona-Lasinio 1982.

This random perturbation is small, but it allows with (small) probability
deviations from the mesoscopic equation. The probability of such deviations is
exponentially small and the exponential weight of the event that mγ is near a
given function m(x, t) is given (for γ → 0) by the action functional, a functional:

IL;t0,t1(m) : C∞(QL × [t0, t1], [−1, 1])→ [0,∞),

such that, loosely speaking:

P(mγ(ω) ∈ Uδ(m)) ∼ e−γ−2IL;t0,t1 (m) (0 < δ ' 1)
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where Uδ denotes a neighbourhood in a suitable topology (here the weak
topology). Clearly IL;t0,t1(m) = 0 if and only if m(x, t) solves the mesoscopic
limit of equation (11.2). For space reasons this discussion remains at the level of
heuristics, for precise definitions of large deviation principles and action function-
als in a similar context we refer to the books (Olivieri and Vares 2005; Freidlin
and Wentzell 1998).

Hence if we are interested in the most likely deviation satisfying certain con-
straints, e.g. the constraint to start in one local minimum and to end up in
another one (switching), then we have to minimize the action functional under
these constraints.

The action functional for the Ising model with Kac potential and Glauber
dynamics on the mesoscopic scale has been rigorously derived by F. Comets in
the case of periodic boundary conditions and on finite time intervals, (Comets
1987). The extension of the derivation to large (logarithmical in γ) time intervals
that would allow for a diffusive rescaling (macroscale) is far from trivial and is
a work in progress.

For simplicity we replace the Comets rate function by an ‘easier functional’.
The extension to the true Comets functional and then to the Ising system may
still require a nontrivial work, but we believe that the main physical features of
the actual tunnelling excursion are already captured by our results.

First we replace (11.2) by the L2 gradient flow of (11.5) i.e.:

mt = −
1
β

tanh−1(m) + J ∗m. (11.8)

As tanh is invertible, being a stationary solution of (11.8) is equivalent to (11.6).
The simplified action functional is given by the L2- norm of the right hand side

r(x, t) which makes the given path m(x, t) a solution of ∂tm = − 1
β

tanh−1(m)+

J ∗m+ r(x, t), i.e.:

IL;T (m) =
1
4

∫ T

0

∫
[−L,L]d

[
mt +

δF (m)
δm

]2
dx dt. (11.9)

(If D = R, then we simply write IT .)
The two different types of constraints we impose are as follows:
1. ‘Switching’ constraint. ( [4]) If D = [−L,L]D, d ∈ {2, 3} then we consider

infT minm∈UL,T IL;T (m), where

UL,T =
{
m ∈ C∞([−L,L]d × [0, T ]) : m(r, 0) = −mβ , m(r, T ) = mβ

}
,

(11.10)

i.e., there is no time constraint,
2. Fast motion on invariant manifold. (Masi et al. 2006) If D = R, i.e. L =∞,

then we minimize IT (m) over the set

UT,R = {m ∈ C∞(R), m(r, 0) = m(r), m(r, ε−2T ) = m(r − ε−1R)}
(11.11)
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11.2 Results

11.2.1 ‘Switching’ (d= 2 , 3 )

Let the space dimension be 2 or 3, let J be as in Section 11.1.2, 11.4., and
let IL,T and UL,T be as in (11.9) and (11.10), respectively. Define the cost of
switching as:

PL := inf
T>0

inf
UL,T

IL;T (m) (11.12)

Let m̂ be the finite volume instanton, and m̂e its planar extension to higher
dimensions, i.e., m̂e(x) = m̂(x · e1), where e1 is the first unit vector in Rd.
Moreover let the functions v± : D × R → R describe the dynamics on the
invariant manifoldsM±, i.e. v±(x, t) solve (11.8) and:

lim
s→−∞

‖v±(·, s)− m̂e(·)‖L2(D) = 0, lim
s→+∞

‖v±(·, s)−±mβ‖L2(D) = 0.

(See Fig. 11.6). Then we have (Theorems 2.3 and 2.4 in Bellettini et al. 2007,
for the extension to d = 3 see the appendix in Bellettini et al. 2007):

Theorem 11.1 1. For L large enough

PL = Ld−1F (1)(m̂L),

where F (1) denotes the free energy (see 11.5) in one dimension, i.e., for
D = [−L,L].

2. For all L large enough, if {Tn, un} is a minimising sequence for 11.12, then
limn→+∞ Tn = +∞ and, for any ε > 0 there exists a positive integer nε
such that for any n ≥ nε, un (or its image under a the symmetry group
of a square/cube) has the following properties. There is s ∈ (0, Tn) so that
‖un(·, s)− m̂e‖2 ≤ ε and there are τ ′ and τ ′′ positive so that:

‖un(·, t)− v(−)(·, τ ′ − t)‖L2(D) ≤ ε, t ∈ [0, s] (11.13)

‖un(·, t)− v(+)(·,−τ ′′ + (t− s))‖L2(D) ≤ ε, t ∈ [s, Tn]. (11.14)

Theorem 11.1 proves that the lowest cost of switching is obtained by paths which
have (approximately) planar level sets, and which (approximately) follow the
one-dimensional manifolds connecting the saddle m̂e and the wells ±mβ (stable
local minima). First the path ‘climbs up’ in the time reverse direction and then,
after crossing the saddle, follows the forward time direction.

We see that (in the limit) the free energy jumps at time 0 to a value which
then remains (up to exponentially small corrections) constant: in the limit the
whole penalty is paid at time 0+. Thus the pattern b) in Fig. 11.7 (pay everything
at once) is more favourable than pattern a) (pay ‘continuously’).
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(a) (b)

Fig. 11.7: In a) and b) we depict two possible paths on the macroscale. In a) a
small droplet of the + phase (dark region) nucleates at a vertex of the square.
It then invades the square as time increases, gradually changing its interface,
and eventually becomes a rectangle. In b) we have initially a nucleation of a
flat interface (dark rectangular region), which smoothly invades the square.
b) is optimal, a) is not.

It is important to note that the optimal pattern differs initially from the
Wulff shape, i.e., the shape that minimizes the free energy given the volume. For
small volumes the Wulff shape is a droplet, only for large volumes a plane.

Our results use information from the macroscale (e.g., about Wulff shapes)
but are essentially mesoscopic: we control the L2-norm in D = [−L,L]d without
rescaling (i.e., without division by Ld). Thus we obtain for the case treated here
a much stronger result than the ones one could obtain by Γ-convergence methods
for action functionals (e.g., as in Ros 2005).

11.2.2 Optimal displacement of instanton on diffusive scale

Let D = R, let J be as in Section 11.1.2, 11.1.4., let m solve (11.6–11.7), and
let IT := I∞,T and UT,R be as in (11.9) and (11.11), respectively. We shorthand
mr(x) = m(x−r). In this case we will move to the macroscale, i.e., rescale space
and time diffusively with ε > 0. Therefore define the macrocost of displacing an
instanton by R macrounits in macrotime T as:

W (R, T ) = lim
ε→0

inf
m: m(0)=m,m(T )=mε−1R

Iε−2T (mt,m)

When solving this variational problem, we are not forced to stay on the instanton
manifold, we are allowed to leave it (e.g. by nucleating more interface) and return
to it only at the end of the time interval. (See Fig. 11.8) The cost of a nucleation
is 2F(m), (see Bellettini et al. 2005a,b) and the optimal cost of n nucleations
and subsequent uniform displacement of the resulting 2n+1 interfaces until they
‘collide’ is:

wn(R, T ) := n2F(m) + (2n+ 1)

{
1
µ

(
V

2n+ 1

)2
T

}
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Fig. 11.8: We depict two possible paths on the macroscale. On the top
a) an instanton is displaced with uniform velocity, and on the bottom
b) new instantons are nucleated and subsequently displacement until they
‘collide’. The top picture is optimal for ‘slow’ constraints (V = R/T small)
and the bottom picture is better for ‘faster’ constraints (V = R/T large).

The following theorem (Theorem 2.3 in De Masi et al. 2006) holds:

Theorem 11.2 For all R > 0 and T > 0 and V = R/T

W (R, T ) = min
n∈N0

wn(R, T ),

and the minimum is attained at n(V ) if

F(m)[(2n(V ))2 − 1] ≤ V
2T

µ
≤ F(m)

([
2(n(V ) + 1)

]2 − 1
)

Hence ‘the faster, the more nucleations’.
Let us mention that for the Allen–Cahn equation there are rigorous results

on Γ-limits for action functionals, see e.g., Kohn et al. 2006, Röger and Mugnai
2007, but the methods do not seem to work for the nonlocal mesoscopic equation
treated here.

11.3 Elements of the proofs

11.3.1 Common ideas

The proofs of both theorems have three important ingredients in common:
1. The linear stability of the 1-d instanton: the linearization of both

(11.2) and (11.8) around m yields:

∂tv = −L(1)v



Switching paths for Ising models with long-range interaction 255

where L(1) has zero as smallest eigenvalue with eigenfunction m′(x) > 0
which is separated by a spectral gap from the rest of the spectrum. This
fact (see De Masi et al. 1994a,b) yields important information even in the
higher dimensional case.

2. Coarse graining with two parameters 	− ' 	+ : a function m is averaged
over cubes of sidelength 	−, and a phase indicator η(ζ,�−), is associated with
m : η(ζ,�−) = +1 (−1) on a cube if the average over the cube differs from
+mβ (−mβ) by less than the accuracy ζ. If the average is close neither to
+mβ nor to −mβ , then η(ζ,�−) = 0 on that cube. Because of the nonlocality
of the interaction, η(ζ,�−) �= 0 does not guarantee that the cube contributes
little to the free energy. This is only the case if it is surrounded by a ‘safety
zone’ of ‘like-minded’ cubes.
Θ(ζ,�−,�+)(m; r) = ±1 in a 	+-cube, if η(ζ,�−)(m; ·) = ±1 in all

	−-cubes in that 	+-cube and in all neighbouring 	+-cubes. See also
Fig. 11.9. Loosely speaking we call ‘contours’ the regions where Θ = 0,
and these contours contribute to the free energy proportional to their
volume. For more details we refer to Bellettini et al. 2007 or Presutti
2008.

3. Reversibility: this important property of the action functional is not
a feature of our simplified action functional, but already present in the
Comets action functional (Comet 1987) and related to the way the micro-
scopic stochastic dynamics is constructed out of a microscopic energy
(Hamiltonian).

r

(ζ,l–) = 1

l+

h

Fig. 11.9: Nine large squares of sidelength 	+. The small squares are have
sidelength of 	−. Even if η(ζ,�−)(m; ·) = 1 in all small squares except the one
in grey, nonetheless Θ(ζ,�−,�+)(m; r) = 0.
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It connects the action of a path m(t) on [t0, t1], the action of the time
reversal of that pathmrev(t) = m(t1−t) and the free energy by the formula:

IL;t0,t1(m) = IL;t0,t1(m
rev)︸ ︷︷ ︸

≥0

+[F (m(t1))− F (m(t0))] (11.15)

We immediately see:
• the action of the path is at least as big as the largest free energy
difference the path encounters
• if this largest free energy difference is encountered at a saddle point
which is dynamically connected to m(t0) and m(t1) then the free
energy difference equals the action.

11.3.2 Switching

We turn to the elements of the proof of Theorem 11.1.

1. Upper bound using the invariant manifoldsM± (see Section 11.1.2 and
Fig. 11.6) and the reversibility (Section 11.3.1, 3.) we construct a for T sufficiently
large paths mε,T with IL,T (mε,T ) = Ld−1F (1)(m̂L)+ε, hence any ‘candidate’ for
minimization must be at least as cheap:

IL,Tn(mn) ≤ Ld−1F (1)(m̂L) + ε (11.16)

For the construction of these invariant manifolds we refer to Bellettini et al. 2007
and Buttà et al. 2003.

2. Reversibility: by reversibility and (11.16), mn can never reach a point
of free energy higher than the r.h.s. of (11.16), i.e., supt∈[0,T ] FL(mn(·, t)) ≤
LF (1)(m̂L) + ε

On the other hand, we know that
∫
D
mn(x, t)dx is continuous in time, so there

must be a time t0 with
∫
D
mn(x, t)dx = 0. Intuitively, the idea is to proceed as

follows: the minimizer of the free energy under the constraint
∫
D
mn(x, t)dx = 0

is m̂e, and the energy landscape is not degenerate around this minimizer, hence
mn(t0) must be close (on the mesoscopic scale) to m̂e. While this intuitive idea
is correct, the rigorous proof is not straightforward. First we show that the
constraint minimizer of the free energy must be close to a plane in macroscopic
coordinates, then we improve this estimate, so that we get closeness in mesoscopic
coordinates.

3. Wulff shape in [−1, 1]d : we use the following auxiliary result from
geometric analysis: if d = 2, 3 and |θ − 1/2| ' 1, then:

inf
A⊆Q1, |A|=θ, Neumann b.c.

Per(A,Q1) = 1,

which is achieved only by a hyperplane.



Switching paths for Ising models with long-range interaction 257

In d = 2 this is almost obvious: minimizers have constant mean curvature,
hence are segments of planes or segments of circles. Now the minimization can
be done explicitly. In higher dimensions, however, there are many hypersurfaces
with constant mean curvature (including all minimal surfaces). For minimal
hypersurfaces and their properties we refer to Massari and Miranda 1984. In
d = 3 the question can be settled (see Ros 2005), in d ≥ 4 it is, to our
knowledge, an open problem. This auxiliary result is the only reason for the
restriction d ∈ {2, 3}.

4. Γ-convergence: the (macroscale) result from 3. is related to constraint
minimizers of the free (mesoscopic) energy by the following Γ-convergence result,
[1]: Let GL(v) :=

F (v(L·))
Ld−1 (acting on functions on the unit cube) then Γ−limL→∞

GL(v) = cβPer({m = mβ}, [−1, 1]d). An argument by contradiction using 3. and
4. yields: for any δ > 0 there exists L(δ) such that for L > L(δ) :

‖mn(t)−mξ‖L2([−L,L]d) ≤ δLd, if L−2
∣∣∣∣∣
∫
[−L,L]d

mn

∣∣∣∣∣' 1.

Here mξ(x) = m(x · e1 − ξ) (up to symmetries of the cube/square), and ξ is
chosen such that

∫
[−L,L]d mn =

∫
[−L,L]d mξ.

This is not yet the bound we need, because on the large (mesoscopic)
square/cube, the error grows with L, and we need to increase L several times in
the course of the proof. (Recall that the theorem holds for L sufficiently large
only.)

5. Improved bound: we have to show that mn also on mesoscale close to
planar shape:

‖mn(t)−mξ‖L2([−L,L]d) ≤ L−100, if L−2
∣∣∣∣∣
∫
[−L,L]d

m

∣∣∣∣∣' 1.

(The exponent 100 is chosen arbitrarily)
The idea is to use the spectral gap of the planar instanton (m(x · e1) on

the channel R × [−L,L]d−1. The spectral gap result itself is not an immediate
consequence of the 1-d result because we need to quantify the dependence of the
spectral gap on L, see 7. below.

In order to transfer our problem to the channel we use the coarse graining
introduced in Section 11.3.1, 11.3.2. We know from 4. that most of the cubes are
+-cubes close to one face of the cube, and most of them are − close to the other
face. If there is a positive (negative) ‘connection’ (see Fig. 11.10) then there is
a configuration in the channel which equals the given configuration between the
two connections and has a free energy which is not much higher than that of the
given configuration on the cube.

If there is no such connection, then we are able to show (by estimating the
number of cubes that are neither + not − in a way motivated by Bodineau and
Loffe 2004) that the free energy must be higher than the upper bound from 1,
hence this case can be excluded. The spectral gap for the linearization of (11.8) on
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Fig. 11.10: The left strip is a connection of grey (+) cubes, the right strip
is not.

the channel then implies that the energy landscape orthogonal to the instantons
looks like a parabola, i.e., there is CL s.t.

FL(u)− FL(m) ≥ 1
CL
‖u−m‖2L2(R×[−L,L]d−1),

in a small but finite L2-neighbourhood of the instanton manifold. From this the
desired mesoscopic bound follows: if the energy at t0 is close to that of m̂e, then
the function m(·t0) must be close to m̂e in L2([−L,L]d).

6. Attraction by invariant manifold: step 5. implies that mn gets very
close to m̂e. Again stability arguments are used to show that it gets ‘attracted’
by W± and stays close to the manifolds all the time. Care has to be taken
because we need to show that the time-reversal of the path stays close to W+.
Using reversibility and the bound on the action, we can show that this time-
reversal satisfies the mesoscopic evolution equation (11.8) with a forcing term
b(x, t) which is small in space–time L2. If this forcing is small enough, then the
solution stays close to the evolution on the invariant manifold (which solves 11.8
exactly).

7. Linear stability: in many of the previous arguments we used the fact
that the linearized mesoscopic evolution in a square, cube, or channel has a
spectral gap. This is not an obvious consequence of the 1-d result for infinite
volume in (De Masi et al. 1994b,c) because the translational symmetry is broken,
and it does not follow immediately from the results in (De Masi et al. 1998),
because we need the scaling of the spectral gap in L. We use a probabilistic
proof: motivated by the analysis in (De Masi et al. 1998) we associate a Markov
jump process with the linear operator. The invariant measure of this process is
related to the principal eigenfunction, and the loss of memory for this process
is related to the decay rate of the semigroup generated by the linear operator
on the orthogonal complement of the span of the principal eigenfunction. Note
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that the smallest eigenvalue is not zero on bounded domains, but exponentially
small in L.

The auxiliary results for the Markov jump process are proved by a coupling
argument. The idea goes roughly as follows: a function which is orthogonal to
the principal eigenfunction has expectation zero under the invariant measure.
Hence we have to measure the distance of the law of the Markov process at
time t from the invariant measure. In order to do so, we could consider two
random walkers, one starting from the actual initial position, the other one
starting from the invariant measure. A measure for the distance between the
law of these two walkers (Wasserstein distance) is given by constructing an opti-
mal coupling, i.e., a measure on the product of the two state spaces such that
the marginals equal the laws of the two walkers and such that the expectation
of the distance of the two walkers is as small as possible. This distance—at a
given time—can be estimated by the probability that the two walkers have met
by this time. This leads to the task of ‘coupling’ two processes (instead of two
laws at a fixed time) in such a way that they are likely to meet soon. As the
x1-coordinates of both walkers have a drift towards the origin, we can couple
them first and then couple the remaining coordinates, which are essentially inde-
pendent jump processes without drift. Therefore we obtain the scaling in L from
basic probabilistic facts.

Finally we would like to point out that the step from a 1-d spectral gap
to a result in a cube/channel is immediate for the Allen–Cahn equation: the
linearization around a function with planar symmetry has the form:

−∆m+ V ((x1))m = L(1)x m(x1, x2)− ∂2x2x2
m(x1, x2),

and the Laplacian in x2 commutes with the ‘1-d operator’ L(1)x . Such a splitting
does not exist for our nonlocal evolution operator.

11.3.3 Displacement of an instanton

1. Upper bound by construction: we construct explicitly a path with
the claimed cost by moving, nucleating, and ‘crashing’ instantons explicitly. (See
also Bellettini et al. 2005a,b.)

2. Good/bad intervals (contours in time): in analogy to the course
graining in space introduced in Section 11.3.1, 1., we define a coarse graining
in time. For the spatial coarse graining a cube was ‘good’ (not a contour) if it
contributed little to the free energy. Now we call a time interval good if that
interval (and its left neighbour) contribute little to the action. Note that we
need the ‘safety zone’ only towards the past. More precisely, define a partition
of time axis: {S[j, j + 1), j ∈ N} and let φ(δ,S)(u; t) = 1, if:∫ (j+1)S

jS

‖ut − f(u)‖22 < δ,
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�1 �2 �3l >> 1

Fig. 11.11: An element of the three-instanton manifoldM(3).

and 0 otherwise. Here and later we shorthand f(u) for the right hand side
of (11.8).

Let Gtot = {t ≤ ε−2T : Φ(δ,S)(u; t) = 1} and call the sub-intervals of Gtot
‘good intervals’. As the total action is bounded, there are only finitely many bad
intervals and (by reversibility) only finitely many contours.

3. Multi-instanton manifold: for ξ̄ = (ξ1, . . . , ξk) ∈ Rk, ξ1 < . . . < ξk
ξi+1 − ξi % 1, ξ0 := −∞, ξk+1 :=∞:

mξ̄(x) :=


m(x−ξj), x ∈

[
ξj−1+ξj
2 ,

ξj+1+ξj
2

]
, j odd,

m(ξj−x), x ∈
[
ξj−1+ξj
2 ,

ξj+1+ξj
2

]
, j even.

M(k) = {mξ(x) : ξ ∈ Rk}, M =
⋃

k≥1M(k) See also Fig. 11.11. This multi-
instanton manifold plays an important role, because the path has to stay close
to it during the good intervals. This follows from the next step:

4. Permanence away from multi-instanton manifold: by compactness
arguments and the uniqueness of the infinite volume instanton (up to transla-
tions) we can show the following:

For any ϑ > 0 there is ρ > 0 such that the following holds:
Let m ∈ L∞(R; (−1, 1)) have an odd number p of mixed contours, let F(m) ≤ P
and let dM(m)2 ≥ ϑ.(d denotes the L2-distance) Then:∫

R

f(m)2 ≥ ρ.

As a consequence of this estimate (and the fact that by reversibility and the
upper bound the oscillation in time of the free energy is uniformly bounded for
optimal paths) is that if S (length of time intervals) is chosen sufficiently large
depending on ρ and the bound on the action, then u has to get close toM before
the good interval begins. (The action was already small in the ‘safety interval’
before the good interval.)

5. Crashing/enlarging droplets: we can use linearization techniques only
as long as the path is sufficiently close to the multi-instanton manifold. Bad
intervals have to be controlled in a different way. After having passed through
a bad interval and/or having been away from M on an interval (e.g., because
the centres ξi were not separated from each other sufficiently), there are three
possibilities:

1. The number of mixed contours (separating Θ = 1 from Θ = −1) is the
same as in the last good interval before the bad one: then the bad interval
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is ‘useless’. As the displacement during that interval is negligible in com-
parison to ε−1R, we can ignore that interval for the purpose of finding a
lower bound.

2. The number of mixed contours has decreased, i.e. two contours have col-
lided: we replace the path by one with similar energy where we collide the
contours explicitly, similarly as in the construction of the upper bound.
(See also Bellettini et al. 2005a,b.) In this step the comparison principle
for (11.8) comes into play: we construct solutions which ‘overshoot’, i.e.,
m(ε−2T, x) ≤ mε−1R instead of having equality. Nevertheless, we can derive
a lower bound.

3. The number of mixed contours has increased, which means that a nucle-
ation of a droplet (or pair of instantons) must have taken place. We replace
the path by one with an ‘optimal’ nucleation. (Time-reversal of the ‘crash-
ing’ of a droplet, see also Bellettini et al. 2005a,b.)

6. Linearization: the tangent space toM is generated by shifts of centres. A
typical element is obtained by patching together functions of the type m′

ξj
(x) =

m′(x−ξj). (m′(x) = d
dxm(x).) The linearized evolution around mξ̃ is denoted by

Lm
ξ̃
and has the property that Lm

ξ̃
(m′

ξj
) ∼ 0, (vanishing as ε→ 0). Moreover, as

a consequence of the spectral gap of the linearization around a single instanton
(De Masi et al. 1994b; De Masi et al. 1995) we get:

(Lu, u)L2 ≤ ω‖u‖22, if (u,m′
ξi) = 0, for all i.

Now denote by u the difference of the path m from its projection on the multi-
instanton manifold and let t0 be the time when the path has reached a small
neighbourhood of M, after having been attracted towards it during the safety
interval before the good interval. Moreover let σi ∈ {±1}, for left/right motions
of the centres. Let b be the forcing required to make the path m a solution of
(11.8) with that forcing, i.e.:

IT =
∫ T

0

∫
R

b2dxdt.

Then we compute:

‖u(·, t)‖22 ≤ e−(t−t0)ω/2‖u(·, t0)‖22 + cSU2j

σi[ξi(t)− ξi(t0)] ≤ −
1

‖m′‖22

∫ t

t0

(b,m′
ξi(t)) + c

[
‖u(·, t0)‖22 + SU2j

]
(11.17)

U2j =
∫ (j+1)S
(j−1)S

‖b(·, s)‖22 + higher order

(t0 is the time when the path has reached a small neighbourhood ofM, after hav-
ing been attracted towards it during the safety interval before the good interval,
and σi ∈ {±1}).
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First note that u stays small (order 1 in ε). Then note that any part of the
forcing b which is orthogonal to m′

ξ̃
contributes to the action, but not to the

displacement. Hence it costs without helping to satisfy the constraint and is
therefore useless. So the optimal choice is:

b(x, t) = Vi(t)m′
ξi(t)(x).

where Vi is the velocity of the i− th centre ξi.
Then we sum up over all good intervals. The total displacement (the sum of

the ξi(t) − ξi(tin) is of order ε−1, while the sum of the UJ -terms is bounded by
the total action and hence of order 1 in ε and therefore negligible.

7. Conclusion: expanding the action in the good intervals and counting the
cost of nucleations in the bad intervals, we obtain:

1
4

∫ ε−2T

0
‖b(t)‖22 ≥

∫
Gtot

∑
i

Vi(t)2

µ
+ 2nF(m) + o(1)

Equating terms of highest order in (11.17) and using the constraint yields:

n∗∑
i=1

∫
|v0i (t)| ≥ ε−1R+ lower orders in ε.

The claimed result follows by solving:

min
ti,vi:

∑
Viti=Rε−1

∑
V 2i ti.
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NUCLEATION AND DROPLET GROWTH AS
A STOCHASTIC PROCESS

Oliver Penrose

Abstract

A stochastic differential equation is conjectured for approximately
modelling the fluctuating size changes of an individual droplet in a fluid
that is metastable with respect to nucleation of a new phase, in the limit
when the critical droplet size is very large. The Freidlin–Wentzell formula
for this SDE is used to make estimates of large-deviation type for proba-
bilities of such events as the formation of a critical droplet at a specified
time. A relation is obtained connecting these estimates to the nucleation
rate predicted by the well-established theory of Becker and Döring.

12.1 Introduction

Nucleation is the initiation of a phase transition (such as the transition from gas
to liquid or liquid to gas) when a significant droplet of the new phase forms.
For example, when the atmospheric temperature drops in the evening, or when
a stream of air cools on going up a mountainside, a phase transition becomes
possible in which the water vapour mixed with the air will change from gas to
liquid. At first only very small droplets of liquid water are formed. The droplets
may never grow large enough to be seen; but if the atmospheric conditions are
right the droplets can eventually become large enough to be seen as a mist, fog,
or cloud.

The growth of any individual droplet is a stochastic process: its size can
either increase or decrease as molecules attach themselves to the droplet or
detach themselves from it. There is a contest between, on the one hand, the
general preference of the water molecules (at a sufficiently low temperature) to
be in the liquid rather than the vapour phase, which tends to increase the size
of the droplet and, on the other hand, the surface tension, which tries to reduce
the surface area of the droplet and, in consequence, its size. The surface tension
effect is stronger for small droplets than for large ones because of the greater
curvature of the surface of a small droplet. There is a critical droplet size at
which the surface tension exactly balances the water’s preference for being in
the liquid rather than the vapour phase. Droplets of supercritical size tend to
grow, while those of subcritical size tend to shrink. At first, no supercritical
droplets at all are present (except, perhaps, at places on the edge of the vapour,
such as leaves on which dew may form); there is no mist, and the vapour is said
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to be metastable. If all the droplets followed the average behaviour, supercritical
droplets would never form and the metastable state would last for ever. But
this is a stochastic process, and the sizes of the droplets fluctuate. Eventu-
ally, as a result of these fluctutations, some droplets will reach and then sur-
pass the critical size, and when enough of them have done so the mist will be
visible.

This paper is concerned with the mathematical description of nucleation as
a stochastic process. For mathematical simplicity we shall consider the limiting
case of very large critical droplet size—in the physical example mentioned, this
means that the temperature is only just below the dew point. The idea is to
approximate the behaviour of the droplets by a stochastic differential equation,
and to obtain quantitative information about the nucleation process by applying
the Freidlin–Wentzell formula to this equation.

12.2 A mathematical description of nucleation

In 1935, R. Becker and W. Döring proposed a mathematical model of nucleation
in which each droplet is considered to be fully described by its size, that is, by the
number of molecules comprising it. The shapes and positions of the droplets are
ignored. The size can be any positive integer, and by convention molecules of the
vapour are treated as droplets of size 1 (usually called monomers). The Becker–
Döring model includes two characteristic assumptions: (i) the only way the size
of a droplet (other than a monomer) can change is by emitting or absorbing
a monomer (ii) the probability per unit time that a given droplet will emit a
monomer depends only on the size of that droplet, while the probability per
unit time of absorbing a monomer depends on the size of the droplet and on the
overall concentration of monomers.

Focusing attention on a particular droplet, let us denote its size (i.e., the
number of molecules in it) at time t by N(t). Then, following the assumptions
of Becker and Döring, we can treat N(t) is a stochastic process, in which the
probability per unit time for N to increase by 1 is anz and for it to decrease
by 1 is bn, where z is a parameter representing the overall concentration of
monomers (i.e., the number of monomers per unit volume). In symbols, the
transition probabilities are:

Pr(N(t+ δt) = n+ 1 |N(t) = n) = anzδt+O(δt)2 (n = 1, 2, . . .)

Pr(N(t+ δt) = n− 1 |N(t) = n) = bnδt+O(δt)2 (n = 2, 3, . . .)

Pr(|N(t+ δt)−N(t)| ≥ 2 |N(t) = n) = O(δt)2 (12.1)

where the constants a1, a2, . . . , b2, b3, . . . depend on the physical situation. Here
we shall assume them to be given by the following approximate formulas, for
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which there is some physical justification (Lifshits and Slyozov 1961, Wagner
1961, Penrose and Buhagiar 1983, Penrose 1997)1:

an = nγ (n = 1, 2, . . .)
bn = nγ(1 + µn−1/3) (n = 2, 3, . . .)

(12.2)

where µ is a positive constant proportional to the surface tension at the sur-
face of a droplet and γ is a constant satisfying γ ≥ 1

3 . Later in this paper we
shall specialize to the case γ = 1

3 . The significance of the exponents 13 and
− 13 is that the radius of a droplet is proportional to the cube root of its size.
From the formulas (12.2) it can be seen that anz < bn if n1/3(z − 1) < µ, but
anz > bn if n1/3(z − 1) > µ; so provided that z > 1 there is a critical droplet
size:

nc :=
(

µ

z − 1

)3
(12.3)

such that any droplet whose size exceeds this is more likely to grow than to
shrink.

To finish specifying the model we need to say how z depends on time. In
this paper, following the original paper of Becker and Döring (1935), we shall
assume that z is a constant. Physically, z is the concentration of monomers, and
is related to Pr{N(t) = 1}, the probability that a randomly chosen droplet will
be a monomer, by the formula:

z = cPr{N(t) = 1} (12.4)

where c is the total number of molecules per unit volume. Thus the assumption
of constant z can be arrived at physically by assuming that c is a constant
and that nearly all the droplets are monomers, so that Pr{N(t) = 1} ≈ 1 and
z ≈ c = const. Alternatively one may assume that Pr{N(t) = 1} does change
with time but that c changes in such a way that z remains constant: this will
happen, for example if the process takes place at constant pressure. The case
where c is constant but both z and Pr{N(t) = 1} change with time has many
interesting features (see for example Lifshits and Slyozov 1961, Ball et al. 1986)
but is not our concern here.

There are two ways to obtain information about metastability and nucle-
ation from this stochastic model. The one devised by Becker and Döring was to

1The formulas in eqn (12.2) are often presented in a more general form such as an = anγ,
bn = anγzs(1 + µn−1/d) where a and zs are positive constants, d is the number of space
dimensions (at least 3), and γ satisfies γ ≥ 1/d. The version used in (12.2) can, however, be
obtained from the more general version by setting d = 3 and making a suitable choice of time
and length units.
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study the average behaviour of the entire collection of droplets, described by the
probability distribution:

pn(t) := P{N(t) = n} (12.5)

They found a steady-state distribution in which, for each droplet size n, the rate
of occurrence of events which increase the droplet size from n to n + 1 slightly
exceeds the rate for events which decrease the size from n+ 1 to n. The excess,
which is independent of n, can be interpreted as at the rate at which droplets
surpass the critical size; it is called the nucleation rate. This approach, now
known as ‘classical nucleation theory’, is summarized in Section 12.5.

In 1984 Cassandro et al. introduced an alternative way of obtaining informa-
tion about metastability and nucleation in stochastic models. In this method, the
‘pathwise approach’, we focus not on averages but on the stochastic behaviour of
a single droplet. The pathwise approach has been used to study metastability in
a variety of statistical mechanics models. A very thorough account of this body
of work and the related theory is given in the book by Olivieri and Vares (2006);
for a shorter account see den Hollander (2004).

It is the purpose of this article to apply a variant of the pathwise approach
to the Becker–Döring model. The idea is to concentrate on a particular droplet
and represent its size as a stochastic process. We can treat such questions as how
likely it is that the size of a given droplet will reach or pass the critical size, and
if it does so how long that is likely to take.

12.3 The proposed SDE

One can think of the process (12.1) as a biased random walk along the positive
integer axis—or as a birth-and-death process. The expected rate of increase in
the droplet size N is given by:

E(N(t+ δt)−N(t)|N(t) = n) = (anz − bn)δt+O(δt)2 (12.6)

Thus there is a drift in the expected size of N(t); the rate of drift is:

anz − bn = nγ((z − 1)− µn−1/3) (12.7)

The rate of increase in the variance of n per unit time may be estimated as:

lim
δt→0

1
δt
E((N(t+ δt)−N(t))2|N(t) = n) = anz + bn (12.8)

The idea of the present work is to approximate this stochastic process by one
in which the unit-size jumps are replaced by jumps with a Gaussian distribution
having the same mean and variance. This approximating process corresponds to
the stochastic differential equation:

dN = (anz − bn)dt+
√
anz + bndW (t) (12.9)

where W (t) is a Wiener process.
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Although such an SDE would not be a good approximation for the individ-
ual jumps, it may be a good one if we look at the process on a different scale,
where the jumps look very small and there are a large number of them. There
is an analogy with Khinchin’s method of deriving the Central Limit Theorem 2,
which involves rescaling the time and space variables in a similar way, although
in his case the rescaled equation is deterministic (the heat equation) rather than
stochastic. Our rescaling will use, in place of N , a new random variable X pro-
portional to N/nc. The jumps in X will then be proportional to 1/nc, so they
will be small if we consider a limit in which nc is large. As we have seen, nc is
proportional to (z − 1)−3 and so z is close to 1 in this limit; we shall write:

z := 1 + ε
X := ε3N = µ3(N/nc) (12.10)

and consider the limit ε→ 0.
In addition to rescaling the size of the jumps, it is useful to re-scale the time,

so that X is regarded as a function of a re-scaled time variable τ rather than
of the original time variable t. The advantage of rescaling the time is that the
drift velocities of the two processes, each with respect to its own time scale, can
be made comparable. According to eqn (12.6), the drift velocity of the random
walk variable N is:

DtN(t) := lim
δt↘0

E
{
N(t+ δt)−N(t)

δt

∣∣∣∣N(t)
}

= aN(t)z − bN(t) = N(t)γ(z − 1− µN(t)−1/3) (12.11)

Consequently the drift velocity of X, with respect to the re-scaled time variable
τ , is:

DτX(τ) := lim
δτ↘0

E
{
X(τ + δτ)−X(τ)

δτ

∣∣∣∣X(τ)
}

=
dt

dτ
Dt(ε3N(t)) = ε3

dt

dτ
N(t)γ(z − 1− µN(t)−1/3)

= ε3
dt

dτ
(ε−3X(τ))γ(ε− µ(ε−3X(τ))−1/3)

= ε4−3γ
dt

dτ
X(τ)γ(1− µ/X(τ)1/3) (12.12)

On making the choice:
τ := tε4−3γ (12.13)

this simplifies to:
DτX(τ) = X(τ)γ(1− µ/X(τ)1/3) (12.14)

2There is a description of this method on page 10 of Ito and McKean’s book (1996).
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Comparison with (12.11) shows that the drift velocities of the two processes,
each relative to its own time scale, are given by similar differential equations.

We can do a similar calculation for the variance of X(τ), using the
formula (12.8):

lim
δτ↘0

E
{
[X(τ + δτ)−X(τ)]2

∣∣X(τ)
}

δτ
=

= lim
δt↘0

ε6E
{
[N(t+ δt)−N(t)]2

∣∣N(t) = ε−3X(τ)
}

δt

dt

dτ
=

= ε6[ε−3X(τ)]γ(2 + ε+ µ(ε−3X(τ))−1/3)ε3γ−4 = 2ε2X(τ)γ +O(ε3)
(12.15)

In the limit of small ε this is the same rate of change of variance as for a Brownian
motion multiplied by

√
2εX(τ)γ/2. Adding together this Brownian motion and

the drift given by (12.14), we may conjecture that in the limit of small ε the
random variable X will obey the stochastic differential equation:

dX(τ) = X(τ)γ(1− µ/X(τ)1/3)dτ +
√
2εX(τ)γ/2dW (τ) (12.16)

where W (τ) is a Brownian motion.

12.4 Applying the Freidlin–Wentzell formula

12.4.1 A formula for the action

In this section we shall use ideas from the Freidlin–Wentzell theory (Freidlin and
Wentzell 1998, Olivieri and Vares 2006) to estimate the probabilities for different
ways in which the size of a droplet can change over time. The Freidlin–Wentzell
theory applies to SDEs of the form:

dX(τ) = v(X(τ))dτ + εσ(X(τ))dW (τ) (12.17)

The fundamental object in this theory is the ‘action’ or rate function. For an
arbitrary trajectory x(τ) the action is defined to be:

S(τ1, τ2) :=
1
2

∫ τ2

τ1

(
ẋ(τ)− v(x(τ))
σ(x(τ))

)2
dτ (12.18)

where ẋ(τ) := dx/dτ . The main property of the action is that, in the limit of
small ε, the probability of executing the path x(τ), or one very similar to it,
between times τ1 and τ2, conditional on starting at the given point x(τ1) at time
τ1, is exp{−ε−2 S(τ1, τ2) + o(ε−2)}.

The conjectural SDE (12.16) is of the Freidlin–Wentzell form, with:

v(x) = xγ(1− µx−1/3), σ(x) =
√
2xγ/2 (12.19)
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and so the action for eqn (12.16) is:

S(τ1, τ2) :=
1
2

∫ τ2

τ1

[ẋ(τ)− x(τ)γ(1− µx(τ)−1/3)]2
2x(τ)γ

dτ

=
1
2

∫ τ2

τ1

[ẋ(τ) + x(τ)γU ′(x(τ))]2

2x(τ)γ
dτ (12.20)

where:

U(x) :=
3
2
µx2/3 − x (12.21)

and the prime denotes a derivative, so that U ′(x) = µx−1/3 − 1.

12.4.2 The minimization problem

Let (x1, τ1) and (x2, τ2) be given inital and final states of the rescaled process.
The most probable path connecting them can be found by minimizing the action
S(τ1, τ2) subject to the constraints x(τ1) = x1, x(τ2) = x2, using the calculus of
variations. To carry out the minimization we first multiply out the integrand in
(12.20), obtaining:

2S(τ1, τ2) =
1
2

∫ τ2

τ1

x(τ)−γ ẋ(τ)2dτ +
∫ τ2

τ1

U ′(x(τ))ẋ(τ)dτ +

+
1
2

∫ τ2

τ1

x(τ)γU ′(x(τ))2dτ

=
∫ τ2

τ1

L(ẋ(τ), x(τ))) dτ + U(x2)− U(x1) (12.22)

where L is a ‘Lagrangian’ defined by:

L(ẋ, x) :=
1
2
x−γ ẋ2 +

1
2
xγU ′(x)2 (12.23)

The minimizer satisfies the Euler–Lagrange equation:

d

dτ

∂L

∂ẋ
=
∂L

∂x
(12.24)

The following procedure gives a first integral of this equation, enabling its solu-
tion to be reduced to a quadrature. We define a ‘momentum’ p by 3:

p :=
∂L

∂ẋ
= x−γ ẋ (12.25)

3This use of the symbol p is traditional in Hamiltonian dynamics. It is hoped that there will
be no confusion with the use of the same symbol for probability in other parts of this paper.



272 Analysis and stochastics of growth processes and interface models

and a ‘Hamiltonian’ H by:

H := pẋ− L(ẋ, x) = 1
2
xγp2 − 1

2
xγU ′(x)2 (12.26)

These definitions imply dH = ẋdp + pdẋ − (∂L/∂ẋ)dẋ − (∂L/∂x)dx = ẋdp −
(∂L/∂x)dx. Consequently, looking on H as a function of p and x and using
(12.24), we find that Hamilton’s equations:

∂H(p, x)
∂p

=
dx

dτ
,
∂H(p, x)
∂x

= −dp
dτ

(12.27)

are satisfied on the minimizer. It follows that dH/dτ = 0, so that H is a constant
along the minimizer. The value of this constant, which is analogous to the energy
in mechanics, will be denoted by E.

12.4.3 Paths for which E = 0

The calculation of the action is particularly simple in the case E = 0. Setting
H = 0 in eqn (12.26) yields p = ±U ′(x) and then, from (12.25), ẋ = ±xγU ′(x),
so that the equation of the minimizer is:

dx

dτ
= ±xγ(µx−1/3 − 1) (12.28)

With the minus sign, this is the equation of the ‘average’ path which, according
to equation (12.16), the droplet size would follow if there were no noise at all.
For that path the value of S is zero (by eqn (12.20)) and so the the probability
of the ‘average’ path, or one very similar to it, is exp{−o(ε−2)}.

With the plus sign, the path is an ‘average’ path traversed backwards. Since
the right side is zero at the critical cluster size x = µ3 and varies approximately
linearly with x nearby, with a negative derivative, the value of x(τ) for this
path approaches the critical size asymptotically as τ → ∞. For a path of this
type the action is, using first (12.20) and then the fact that ẋ = xγU ′(x) on
this path:

S(τ1, τ2) :=
1
2

∫ τ2

τ1

[ẋ(τ) + x(τ)γU ′(x(τ))]2

2x(τ)γ
dτ

=
1
2

∫ τ2

τ1

[2x(τ)γU ′(x(τ))][2ẋ(τ)]
2x(τ)γ

dτ

=
∫ τ2

τ1

U ′(x(τ))ẋ(τ)dτ = U(x2)− U(x1) (12.29)

In particular, if the initial scaled droplet size is small and the final scaled size is
close to the scaled critical size, which is µ3, the action is U(µ3) − U(0) = 1

2µ
3,

so that the probability of the droplet’s reaching the critical size by a path close
to the E = 0 path is exp

{
− 12ε−2µ3 + o(ε−2)

}
.



Nucleation and droplet growth as a stochastic process 273

12.4.4 General values of E

Putting H = E in eqn (12.26), solving for p and then using (12.25) we get:

x−γ ẋ = p = ±
√

2Ex−γ + (µx−1/3 − 1)2

i.e. ẋ = xγp = ±
√
2Exγ + (µxγ−1/3 − xγ)2 (12.30)

The qualitative features of the solution depend on the value of E. They can be
worked out by studying how the radicand (the expression under the radical sign)
depends on x. We give below the analysis for the important case γ = 1

3 , in which
eqn (12.30) simplifies to:

ẋ = ±
√
µ2 + 2(E − µ)x1/3 + x2/3 (12.31)

1. If E < 0 the radicand (now a quadratic polynomial in x1/3) is zero for two
positive values of x, whose geometric mean is µ3. Between these two roots,
it is negative. The solution can have a maximum at the root lying between
x = 0 and x = µ3, or a minimum at the root above µ3. Values of x between
these two roots are impossible.

2. If E = 0 the radicand has a double zero at x = µ3. The formula (12.31)
simplifies to:

ẋ = ±(µ− x1/3) whence τ = const±
∫
(µ− x1/3)−1dx (12.32)

The solutions are monotonic and have an asymptote x = µ3. The most
probable path through any given point (x0, τ0) is of this type (with the
negative sign chosen if 0 < x0 < µ3). For the calculation of the action in
this case, see eqn (12.29).

3. If 0 < E < 2µ the radicand is positive for all x. The solutions go mono-
tonically from −∞ to +∞ or vice versa.

4. If E = 2µ the radicand has a double zero at x = −µ3. The formula (12.31)
simplifies to:

ẋ = ±(µ+ x1/3) whence τ = const±
∫
(µ+ x1/3)−1dx (12.33)

The solutions are monotonic and have an (unphysical) asymptote x = −µ3.
5. If E > 2µ the radicand is zero for two different values of x, both negative,

whose geometric mean is −µ3. The physically meaningful solutions (i.e.
those for which x is positive) are monotonic.
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Fig. 12.1: The action (approximately ε2 times the negative logarithm of the
probability) of the most probable path taking a small cluster to one of critical
size in a given time, plotted as a function of that given time. The abscissa,
labelled T ∗, is µ−2 times the integral in eqn (12.36), which in turn is ε3

times the physical time for the droplet to grow. The ordinate, labelled S∗,
is µ−3 times the action S(τ1, τ2) as given by eqn (12.37). At large times, S∗

approaches the limit 12 , in agreement with eqn (12.42).

12.4.5 The probability of a given droplet becoming critical in a given time

To get a path which increases from a subcritical value (x1 < µ3) to a supercritical
one (x2 > µ3) we need the positive sign in the formula (12.30) and we also need
E > 0. The time to get from x1 to x2 along such a path is, by (12.30):

τ2 − τ1 =
∫ x2

x1

dx

ẋ
=
∫ x2

x1

dx

xγ
√
2Ex−γ + (µx−1/3 − 1)2

(12.34)

If we assume x1 < µ3 ≤ x2 and τ1 < τ2, then, as E increases from 0 to +∞,
the value of the integral decreases (at fixed x1, x2) from +∞ to zero, and so the
given values of x1, x2, τ1, τ2 determine a unique positive value of E.

The action along this path is, by (12.20) and (12.30)

S =
1
4

∫ x2

x1

x−γ [ẋ+ xγU ′(x)]2
dx

ẋ
=

1
4

∫ x2

x1

xγ [x−γ ẋ+ U ′(x)]2
dx

ẋ

=
1
4

∫ x2

x1

{
√
2Ex−γ + (µx−1/3 − 1)2 + µx−1/3 − 1}2dx√

2Ex−γ + (µx−1/3 − 1)2
(12.35)
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12.4.6 Exact solutions for the case γ = 1/3

In the physically important case γ = 1/3, the integrals in (12.34) and (12.35)
simplify to:

T := τ2 − τ1 =
∫ x2

x1

dx√
2Ex1/3 + (µ− x1/3)2

(12.36)

S(τ1, τ2) =
1
4

∫ x2

x1

[
√
2Ex1/3 + (µ− x1/3)2 + µ− x1/3]2 dx
x1/3

√
2Ex1/3 + (µ− x1/3)2

(12.37)

Both integrals can be done analytically.
Of particular interest is the case where x1 = 0, x2 = µ3, in which the droplet

starts out very small and ends up at the critical size. Fig. 12.1 shows a graph of
S as a function T for this case, obtained by eliminating E between eqns (12.36)
and (12.37). The interpretation of the graph is that the probability for a very
small droplet to reach the critical size after a time T is exp{−ε−2S + o(ε−2)}.

12.5 Relation of the results of section 12.4 to the ‘classical’
Becker–Döring nucleation theory

The method used by Becker and Döring to estimate nucleation rates was based
on the time evolution equations for the probability pn(t) that the size of the
droplet at time t is n, i.e., pn(t) = Pr(N(t) = n), as in eqn (12.5). The evolution
equations for p2(t), p3(t), . . . can be written:

dpn/dt = Jn−1 − Jn (n = 2, 3, . . .)
Jn = anzpn − bn+1pn+1 (n = 1, 2, 3, . . .) (12.38)

Becker and Döring looked for a solution which was stationary, in the sense that
p2, p3, . . . are independent of time, and p1 (whose evolution equation they did not
discuss4) varies only very slowly. For a solution that is stationary in this sense,
Jn must be independent of n. The common value of Jn is interpreted as the
rate of nucleation. Denoting this common value by J , we can solve the equations
(12.38) successively to get:

p1 =
J + b2p2
a1z

=
J

a1z
+
b2
a1z

(
J + b3p3
a2z

)
=
J

a1z
+

b2J

a1a2z2
+
b2b3
a1a2z2

(
J + b4p4
a3z

)
= J

(
1
a1z

+
b2

a1a2z2
+

b2b3
a1a2a3z3

+ · · ·
)

= J
∞∑

n=1

Q1
Qnanzn

(12.39)

4A treatment of nucleation rates which does allow for the time evolution of p1 is given by
Penrose (1989).
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where:

Q1 := 1, Qn :=
a1a2 . . . an−1
b2 . . . bn

∼ const. exp(−3
2
µn2/3) (n = 1, 2, . . .) (12.40)

The series in (12.39) converges for z > 1 and its largest term occurs at the value
of n satisfying anz = bn, i.e., the critical droplet size. Under the approximations
used earlier, this size is (µ/ε)3 and the size of the corresponding term in the
series is:

Q1
Qnanzn

≈ const. exp
(
3
2
µ
(µ
ε

)2
−
(µ
ε

)3
log z

)
≈ const. exp

(
µ3

2ε2

)
(12.41)

since log z ≈ ε. The rate of nucleation J , calculated from (12.39), is there-
fore equal to the reciprocal of this expression, multiplied by a factor whose
logarithm is o(1), so that J = exp

(
−µ3/2ε2 + o(1)

)
. This formula agrees with

the large-deviation estimate obtained in Section 12.4 for the probability that a
given droplet will escape, which (after division by the time needed for the escape
to take place) can also be thought of as a rate of nucleation. For large times, this
probability, according to (12.29) with U(x) given by (12.21), is:

exp(−ε−2{U(µ3)− U(0)}) = exp(−µ3/2ε2) (12.42)

agreeing with the above estimate of J .

12.6 Conclusions
The stochastic differential equation (12.16) proposed in Section 12.3 provides a
possible mathematical model for the way that the sizes of droplets in a metastable
thermodynamic phase, such as a supersaturated vapour, can change with time,
including the way that nuclei of the new phase can form. The action formula
(12.20), obtained in Section 12.4 by applying the ideas of Freidlin and Wentzell
to this SDE, provides a convenient estimate of large-deviation type for the prob-
abilities of the various different ways that the rescaled droplet size can vary as a
function of rescaled time. Applied to the problem of estimating nucleation rates,
this method gives a result that is consistent with the estimate provided by Becker
and Döring’s classical theory of nucleation.

This work raises the problem of whether the use of the SDE (12.16), and/or
the action formula (12.20) for the logarithms of path probabilities, can be justi-
fied by a rigorous argument. One way of trying to justify the method is to treat
the jump rates as approximately independent of particle size over a short time
interval and using a Gaussian approximation (as in the Central Limit Theorem)
for the probability distribution of the resulting biased random walk. Unfortu-
nately, however, it seems to be impossible to choose the time interval so that
it is short enough to make the accumulating error due to the approximation
of constant jump rates small and yet also long enough to make the errors in
the Gaussian approximation small. Thus the problem of justifying (12.16) and
(12.20) or, if these formulas are incorrect, of finding the correct formulas, remains
unsolved.
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Becker, R. and Döring, W. (1935), Kinetische Behandlung der Keimbildung in
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ON THE STOCHASTIC BURGERS EQUATION AND SOME
APPLICATIONS TO TURBULENCE AND ASTROPHYSICS

A. D. Neate and A. Truman

Abstract
We summarize a selection of results on the inviscid limit of the
stochastic Burgers equation emphasizing geometric properties of the caus-
tic, Maxwell set and Hamilton–Jacobi level surfaces and relating these
results to a discussion of stochastic turbulence. We show that for small
viscosities there exists a vortex filament structure near to the Maxwell
set. We discuss how this vorticity is directly related to the adhesion model
for the evolution of the early universe and include new explicit formulas
for the distribution of mass within the shock.

13.1 Introduction

The Burgers equation was first introduced by J. M. Burgers as a model for
pressureless gas dynamics. It has since provided a tool for studying turbulence
in fluids (Frisch and Bec 2001), for obtaining detailed asymptotics for stochastic
Schrödinger and heat equations (Truman and Zhao 1996a,b; Elworthy et al. 2001)
and has played a part in Arnol’d’s work on caustics (Arnol′d 1989, 1990, 1992)
and Maslov’s works in semiclassical quantum mechanics (Maslov and Fedoriuk
1981). It has also been used for studying the formation of galaxies in the early
universe in the Zeldovich approximation and also the adhesion model (Arnol′d
et al. 1982; Shandarin and Zel′dovich 1989). A detailed explanation of these
applications as well as a complete history of the Burgers equation can be found
in (Bec and Khanin 2007).

In this article we will summarize a selection of results on the inviscid limit
of the stochastic Burgers equation and outline some applications of these results
to turbulence and the adhesion model. We begin in Section 2 with a summary
of results on deterministic Hamilton–Jacobi theory for the heat and Burgers
equation.

In Sections 3 to 5 we present some geometric and analytic results first devel-
oped by Davies, Truman, and Zhao (Davies et al. 2002, 2005) and later extended
by Truman and Neate (Neate and Truman 2005, 2007a). These results relate the
geometry of the caustic, Hamilton–Jacobi level surfaces and Maxwell set to that
of their algebraic pre-images under the inviscid classical mechanical flow map Φt

which will be defined in Section 3. In two dimensions these results show that a
Hamilton–Jacobi level surface, or Maxwell set, can only have a cusp where their
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pre-images intersect the pre-caustic and so can only have cusps on the caustic.
They also allow us to give conditions for the formation of swallowtails on both
caustics and level surfaces which in turn have implications for the geometry of
the Maxwell set.

We also introduce a reduced (one dimensional) action function which was
developed by Reynolds, Truman, and Williams (Truman et al. 2003) under the
assumption that only singularities of Ak type occur (Arnol′d 1992). Using this,
we can find explicit equations for the caustic, level surfaces and Maxwell set and
their pre-images. In Section 6 we use this to write down an explicit stochastic
process whose zeros give ‘turbulent times’ at which cusps on the Hamilton–Jacobi
level surfaces appear and disappear infinitely rapidly.

Finally, in Sections 7 and 8, we summarize results showing that the fluid has
nonzero vorticity in some neighbourhood of the Maxwell set (Neate and Truman
2007a). We show that this vorticity disappears under the assumptions required
for the adhesion model for the evolution of the early universe and outline a new
formula for the mass which adheres to the shock (the Maxwell set).

Notation: throughout this paper x, x0, xt etc will denote vectors (usually
in Rd). Cartesian coordinates of these will be indicated using a sub/superscript
where relevant; thus x = (x1, x2, . . . , xd), x0 = (x10, x

2
0, . . . , x

d
0) etc. The only

exception will be in discussions of explicit examples in two and three dimensions
when we will use (x, y) and (x0, y0) etc to denote the vectors.

13.2 Elements of Hamilton–Jacobi theory

We begin by considering a deterministic classical mechanical system consisting
of a unit mass moving under the influence of a conservative force, −∇V . This
system has Hamiltonian:

H(q, p) =
1
2
p2 + V (q),

where p, q ∈ Rd. Let us assume that the system has a given initial velocity field
∇S0 for some function S0 : Rd → R.

The evolution of this system will be given by the classical mechanical flow
map, Φs : Rd → Rd defined by:

d2Φs

ds2
= −∇V (Φs),

with initial condition:
Φ0 = Id, Φ̇0 = ∇S0,

where Id denotes the d-dimensional identity map. Thus, if X(s) is a classical
mechanical path with X(0) = x0, then:

X(s) = Φs(x0), Ẋ(0) = ∇S0(x0).
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Usually we also demand that X(t) = x for fixed x and t. If S0 and V are twice
continuously differentiable with bounded second order derivatives, then there
exists a caustic time tc > 0, such that for all t ∈ (0, tc) the classical mechanical
flow map is a diffeomorphism. This is a simple consequence of the global inverse
function theorem (Abraham and Marsden 1978). Therefore we can define:

x0(x, t) := Φ−1
t (x),

to be the unique pre-image of the point x reached by the path X(s) at time t. If
we now define:

S(x, t) := S0(x0(x, t)) +
∫ t

0

(
1
2
Ẋ2(s)− V (X(s))

)
ds,

then it can be easily shown that St(x) := S(x, t) satisfies the Hamilton–Jacobi
equation:

∂St
∂t

+H(x,∇St) = 0, St=0(x) = S0(x). (13.1)

We now show how the function St can be used to construct a semi-classical
solution to a corresponding heat equation (Truman 1977; Truman and Zhao
1996a, 1998).

Consider the heat equation for uµ(x, t) ∈ R where x ∈ Rd and t > 0:

∂uµ

∂t
=
µ2

2
∆uµ + µ−2V (x)uµ, (13.2)

with initial condition:

uµ(x, 0) = exp
(
−S0(x)
µ2

)
T0(x). (13.3)

Let Bs ∈ Rd be a d-dimensional Wiener process on the space (Ω,F ,P) with
E {B(s)B(t)} = min(s, t). Define an Ito diffusion Xµ

s ∈ Rd and an Ito process
Y µ
s ∈ Rd by:

dXµ
s = −∇St−s(Xµ

s ) ds+ µdBs, Xµ
0 = x, (13.4)

dY µ
s = µdBs, Y µ

0 = x, (13.5)

where 0 < s ≤ t < tc. The time reversal in St−s allows us to effectively consider
a diffusion process which will reach the point x at time t. Define h(s, ω) :=
h0(Y µ

s (ω), s) where:
h0(Y µ

s , s) := −µ−1∇St−s(Y µ
s ).

Since h satisfies the Novikov condition:

EP

{
exp
(
1
2

∫ tc

0
h2(s, ω) ds

)}
<∞,
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where EP denotes expectation with respect to the measure P, it follows that:

Ms := exp
(
−
∫ s

0
h(u, ω) dBu −

1
2

∫ s

0
h2(u, ω) du

)
,

is a martingale with respect to Fs = σ(Bs) and P.
Using the Girsanov theorem, we can now define a new measure P̃ on (Ω,F):

dP̃(ω) =Mtc(ω) dP(ω),

and then:

B̃s :=
∫ s

0
h(u, ω) du+Bs,

is a Brownian motion with respect to P̃. Therefore, (Y µ
s , B̃s), where Y µ

s is defined
in (13.5), forms a weak solution to equation (13.4). That is:

dY µ
s = −∇St−s(Y µ

s ) ds+ µdB̃s,

and conseqeuntly:

EP {f(Xµ
s )} = EP̃ {f(Y µ

s )} = EP {Msf(Bs)} . (13.6)

It follows from the Feynmann–Kac formula that the heat equation (13.2) has
a solution given by:

uµ(x, t) = EP̃

{
T0(Y

µ
t ) exp

(
−µ−2S0(Y µ

t ) + µ−2
∫ t

0
V (Y µ

s ) ds
)}
,

and so by equation (13.6):

uµ(x, t) = EP

{
T0(X

µ
t ) exp

(
−µ−2S0(Xµ

t ) + µ
−2
∫ t

0
V (Xµ

s ) ds
)

dP̃

dP

}

= EP

{
T0(X

µ
t ) exp

(
−µ−2S0(Xµ

t ) + µ
−2
∫ t

0
V (Xµ

s ) ds

+ µ−1
∫ t

0
∇St−s(Xµ

s ) dBs −
1

2µ2

∫ t

0
|∇St−s(Xµ

s )|2 ds
)}
.

(13.7)

Now, using Ito’s formula:

S(Xµ
t , 0) = S(x, t) +

∫ t

0

(
∂St−s

∂s
(Xµ

s )− |∇St−s(Xµ
s )|2 +

µ2

2
∆St−s(Xµ

s )
)

ds

+µ
∫ t

0
∇St−s(Xµ

s ) dBs,
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and so substituting into equation (13.7) for
∫ t

0 ∇St−s(Xµ
s ) dBs gives:

uµ(x, t) = e−
St(x)
µ2 EP

{
T0(X

µ
t ) exp

(
−1
2

∫ t

0
∆St−s(Xµ

s ) ds

− µ−2
∫ t

0

(
∂St−s

∂s
(Xµ

s )−
1
2
|∇St−s(Xµ

s )|2 − V (Xµ
s )
)

ds
)}
.

But St satisfies the Hamilton–Jacobi equation (13.1), and so, by reversing time
in the diffusion Xµ, we have:

uµ(x, t) = exp
(
−St(x)
µ2

)
Ex

{
T0(X

µ
0 ) exp

(
−1
2

∫ t

0
∆St−s(Xµ

s ) ds
)}
. (13.8)

Using the logarithmic Hopf–Cole transformation (Hopf 1950):

vµ(x, t) = −µ2∇ lnuµ(x, t), (13.9)

the heat equation (13.2) becomes the Burgers equation for velocity field vµ(x, t) ∈
Rd where µ2 is now the coefficient of viscosity:

Dvµ

Dt
=
∂vµ

∂t
+ (vµ · ∇)vµ =

µ2

2
∆vµ −∇V, (13.10)

with initial condition:

vµ(x, 0) = ∇S0(x) + O(µ2).

We will be particularly interested in the behaviour of vµ for small values of µ.
In the remainder of this paper we will focus on the discontinuities that develop
in vµ as µ→ 0.

The convergence factor T0 in the initial condition (13.3) is related to the

square root of the Burgers fluid mass density ρ
1
2
t :

T0(x0(x, t))
∣∣∣∣(∂x0∂x (x, t)

)∣∣∣∣ 12 = ρ
1
2
t (x). (13.11)

For t ∈ (0, tc) it can be seen that mass is conserved:

total mass =
∫
ρt(x) dx =

∫
T 20 (x0) dx0 =

∫
ρ0(x) dx.

The next lemma will be key to our treatment of the solution for the Burgers
equation.
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Lemma 13.1 Consider the above C2 Hamiltonian dynamical system with
Hamiltonian H(q, p) and Hamilton–Jacobi function St satisfying:

∂St
∂t

+H(x,∇St) = 0, St=0(x) = S0(x),

so that:
Ẋ(t) = ∇St(X(t)), Ẋ(0) = ∇S0(X(0)).

Then:

exp
{
−1
2

∫ t

0
∆Ss(X(s)) ds

}
=
∣∣∣∣∂X(0)
∂X(t)

∣∣∣∣ 12 ,
where the right hand side is a Jacobian determinant.

In particular it follows from Lemma 13.1, for t ∈ (0, tc), that by consider-
ing an asymptotic expansion of the diffusion Xµ

s in the solution to the heat
equation (13.8):

uµ(x, t) = exp
(
−St(x)
µ2

)
T0(x0(x, t))×

∣∣∣∣(∂x0∂x (x, t)
)∣∣∣∣ 12 (1 + O(µ2)), (13.12)

where x0(x, t) is the unique start point of X0s with:

Ẋ0s = ∇Ss(X0s ), X0t = x.

Consequently, the Burgers velocity field is given by:

vµ = vµ(x, t) ∼ ∇St(x) + O(µ2).

13.3 The stochastic case

We now consider the behaviour of a Burgers equation with stochastic forcing.
That is for vµ(x, t) ∈ Rd:

∂vµ

∂t
+ (vµ · ∇) vµ =

µ2

2
∆vµ −∇V (x)− ε∇kt(x)Ẇt, (13.13)

with initial condition vµ(x, 0) = ∇S0(x)+O(µ2), where Ẇt denotes white noise.
Using the logarithmic Hopf–Cole transformation (13.9), the Burgers equation

(13.13) becomes the Stratonovich heat equation:

∂uµ

∂t
=
µ2

2
∆uµ + µ−2V (x)uµ +

ε

µ2
kt(x)uµ ◦ Ẇt, (13.14)

with initial condition uµ(x, 0) = exp
(
−S0(x)

µ2

)
T0(x).



Applications to turbulence and astrophysics 287

Now let:

A[X] :=
1
2

∫ t

0
Ẋ2(s) ds−

∫ t

0
V (X(s)) ds− ε

∫ t

0
ks(X(s)) dWs,

and select a path X with X(t) = x which minimizes A[X]. This requires:

dẊ(s) +∇V (X(s)) ds+ ε∇ks(X(s)) dWs = 0.

We then define the stochastic action, A(X(0), x, t) := inf
X
{A[X] : X(t) = x} .

Setting:

A(X(0), x, t) := S0(X(0)) +A(X(0), x, t),

and then minimizing A over X(0), gives Ẋ(0) = ∇S0(X(0)).Moreover, it follows
that:

St(x) := inf
X(0)
{A(X(0), x, t)} ,

is the minimal solution of the Hamilton–Jacobi equation:

dSt +
(
1
2
|∇St|2 + V (x)

)
dt+ εkt(x) dWt = 0, St=0(x) = S0(x).

Following the work of Freidlin and Wentzell (Freidlin and Wentzell 1998):

−µ2 lnuµ(x, t)→ St(x),

as µ → 0. This gives the inviscid limit of the minimal entropy solution of the
Burgers equation as v0(x, t) = ∇St(x) (Dafermos 2005).

Define the classical flow map Φs : Rd → Rd by:

dΦ̇s +∇V (Φs) ds+ ε∇ks(Φs) dWs = 0, Φ0 = id, Φ̇0 = ∇S0.

Since X(t) = x it follows that X(s) = Φs

(
Φ−1

t (x)
)
, where the pre-image

x0(x, t) = Φ−1
t (x) is not necessarily unique.

Given some regularity and boundedness, the global inverse function theorem
gives a random caustic time tc(ω) such that for 0 < t < tc(ω), the pre-image,
x0(x, t), if it exists, is unique and Φt is a random diffeomorphism. Thus, before
the caustic time v0(x, t) = Φ̇t

(
Φ−1

t (x)
)
is the inviscid limit of a solution of the

Burgers equation with probability one (Truman and Zhao 1996a, 1998).
The method of characteristics suggests that discontinuities in v0(x, t) are

associated with the nonuniqueness of the real pre-image x0(x, t). In the situation
we consider, when this occurs the classical flow map Φt focuses an infinitesimal
volume of points dx0 into a zero volume dX(t).
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Definition 13.1 The caustic at time t is defined to be the set:

Ct =
{
x : det

(
∂X(t)
∂x0

)
= 0
}
.

Assume that after the caustic time tc(ω) > 0, x has n real pre-images:

Φ−1
t {x} = {x0(1)(x, t), x0(2)(x, t), . . . , x0(n)(x, t)} ,

where each x0(i)(x, t) ∈ Rd. Then the Feynman–Kac formula and Laplace’s
method in infinite dimensions give for a nondegenerate critical point (Davies
and Truman 1983, 1984):

uµ(x, t) =
n∑

i=1

θi exp
(
−S

i
0(x, t)
µ2

)
, (13.15)

where Si
0(x, t) := S0 (x0(i)(x, t)) + A (x0(i)(x, t), x, t) , and θi is an asymptotic

series in µ2. An asymptotic series in µ2 can also be found for vµ(x, t) (Truman
and Zhao 1998). Note that St(x) = min{Si

0(x, t) : i = 1, 2, . . . , n}.

Definition 13.2 The Hamilton–Jacobi level surface is the set:

Hc
t =

{
x :Si

0(x, t) = c for some i
}
.

As µ→ 0, the dominant term in the expansion (13.15) comes from the minimizing
x0(i)(x, t) which we denote x̃0(x, t). Assuming x̃0(x, t) is unique, we obtain the
inviscid limit of the Burgers fluid velocity as the minimal entropy v0(x, t) =
Φ̇t (x̃0(x, t)) .

If the minimizing pre-image x̃0(x, t) suddenly changes value between two
pre-images x0(i)(x, t) and x0(j)(x, t), a jump discontinuity will occur in v0(x, t).
There are two distinct ways in which the minimizer can change; either two pre-
images coalesce and disappear (become complex), or the minimizer switches
between two pre-images at the same action value. The first of these occurs as x
crosses the caustic. When this results in the minimizer disappearing the caustic
is said to be cool. The second occurs as x crosses the Maxwell set and again,
when the minimizer is involved, the Maxwell set is said to be cool.

Definition 13.3 The Maxwell set is:

Mt =
{
x : ∃x0, x̌0 ∈ Rd s.t.

x = Φt(x0) = Φt(x̌0), x0 �= x̌0 and A(x0, x, t) = A(x̌0, x, t)} .
We illustrate this in one dimension by considering the integral:

I(x, t) =
∫

R

G(x0) exp
(
i
F (x0, x, t)

µ2

)
dx0, (13.16)

where G ∈ C∞
0 (R), x ∈ Rd and i =

√
−1. Consider the graph of the phase

function, F(x,t)(x0) = F (x0, x, t), as x crosses the caustic and Maxwell set (see
Fig. 13.1).
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Before On Cool part Beyond

Ct (a)
(b)

Mt x0

x0
ν

Fig. 13.1: Graphs of the phase function as x crosses Ct and Mt.

As we cross the caustic, the critical point at (a) becomes an inflexion which
disappears causing x̃0(x, t) to jump from (a) to (b). This only causes a jump in
vµ(x, t) when the point of inflexion is the global minimizer of F . As we cross the
Maxwell set, the critical points at x0 and x̌0 move so that F(x,t)(x0) = F(x,t)(x̌0).
If this pair of critical points also minimize the phase function, then the inviscid
limit of the solution to the Burgers equation will jump.

13.4 The reduced action function

In this section we will find the phase function F in equation (13.16). We briefly
summarize some results of Davies, Truman, and Zhao (Davies et al. 2002, 2005).
As before, let the stochastic action be defined as:

A(x0, p0, t) =
1
2

∫ t

0
Ẋ(s)2 ds−

∫ t

0

[
V (X(s)) ds+ εks(X(s)) dWs

]
,

where X(s) = X(s, x0, p0) ∈ Rd and for s ∈ [0, t] with x0, p0 ∈ Rd:

dẊ(s) = −∇V (X(s)) ds− ε∇ks(X(s)) dWs, X(0) = x0, Ẋ(0) = p0.

We assume X(s) is unique and let Fs denote the sigma algebra generated by
X(u) up to time s. It follows from Kunita (Kunita 1984):

Lemma 13.2 Assume S0, V ∈ C2 and kt ∈ C2,0, ∇V,∇kt Lipschitz with
Hessians ∇2V,∇2kt and all second derivatives with respect to space variables
of V and kt bounded. Then for p0, possibly x0 dependent:

∂A

∂xα0
(x0, p0, t) = Ẋ(t) · ∂X(t)

∂xα0
− Ẋα(0), α = 1, 2, . . . , d.
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The methods of (Kolokol′tsov et al. 2004) guarantee that for small t the
map p0 �→ X(t, x0, p0) is onto for all x0. Therefore, we can define A(x0, x, t) :=
A(x0, p0(x0, x, t), t) where p0 = p0(x0, x, t) is the random minimizer (which we
assume to be unique) of A(x0, p0, t) when X(t, x0, p0) = x.

Thus, the stochastic action corresponding to the initial momentum ∇S0(x0)
is A(x0, x, t) := A(x0, x, t) + S0(x0).

Theorem 13.1 If Φt is the stochastic flow map then:

Φt(x0) = x ⇔ ∂

∂xα0
[A(x0, x, t)] = 0, α = 1, 2, . . . , d.

Using this we can create a one dimensional reduced action function. This is
done by finding a series of functions xα0 (x

1
0, . . . , x

α−1
0 , x, t) for decreasing α =

d, d− 1, . . . , 2 by systematically locally solving the equations:

∂A
∂xα0

(x10, . . . , x
α
0 , x

α+1
0 (. . .), . . . , xd0(. . .), x, t) = 0.

At each stage this eliminates one more coordinate from x0 until only x10 remains.
This gives local reducibility on the assumption that ∂2A/(∂xα0 )2 �= 0 for α =
2, 3, . . . , d and also some mild regularity conditions (Truman et al. 2003).

Definition 13.4 The reduced action function is the univariate function:

f(x,t)(x10) := A(x10, x20(x10, x, t), . . . , xd0(x10, x20(·), . . . , xd−10 (·), x, t), x, t).

The Hamilton–Jacobi level surface Hc
t is found by eliminating x0 between:

A(x0, x, t) = c, ∇x0A(x0, x, t) = 0.

Alternatively, if we eliminate x to give an expression in x0, we have the pre-level
surface Φ−1

t H
c
t . Similarly the caustic Ct (and pre-caustic Φ−1

t Ct) are obtained
by eliminating x0 (or x) between:

det

(
∂2A
∂xα0 ∂x

β
0

(x0, x, t)

)
α,β=1,2,...,d

= 0, ∇x0A(x0, x, t) = 0.

The Maxwell set Mt (and pre-Maxwell set Φ−1
t Mt) are obtained by eliminating

x0 and x̌0 (or x and x̌0) between the four equations,

∇x0A(x0, x, t) = 0, ∇x0A(x̌0, x, t) = 0, A(x0, x, t) = A(x̌0, x, t) = c.

The pre-images are calculated algebraically and in the case of the pre-level
surfaces are not necessarily the topological inverse images. This can be done in
the free case or when the relevant functions are polynomials in all variables which
is an implicit assumption in what follows.
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For polynomial A, the eliminations involved with the Hamilton–Jacobi level
surfaces and caustics are fairly simple to complete using the reduced action
function with resultants and discriminants which can be calculated via Sylvester
determinants (van der Waerden 1949). The Maxwell set is more complicated
to find as eliminating pre-images leads to a surface involving both real and
complex pre-images termed the ‘Maxwell–Klein set’ (Neate and Truman 2005).
It is easier to find the pre-Maxwell set and then use the flow map to parameterize
the Maxwell set. Parameterizing in this manner allows one to restrict the pre-
image of the Maxwell set to have only real values. In the polynomial case we
have the following lemma.

Lemma 13.3 Let Dx denote the polynomial discriminant taken with respect to
x. The set of all singularities is:

Dc(Dλ1(f(x,t)(λ1)− c)) = 0,

which factorizes as:
k ×Bt(x)2 × Ct(x)3 = 0,

where Bt = 0 is the equation of the Maxwell–Klein set, Ct = 0 is the equation of
the caustic and k is some nonzero constant.

The pre-Maxwell set is given by:

Dλ1

(
f(Φt(x0),t)(x

1
0)− f(Φt(x0),t)(λ1)

(x10 − λ1)2
)

= 0.

The reduced action function can also be used to identify the cool (singular)
parts of the Maxwell set and caustic (Neate and Truman 2008b).

13.5 Geometric Results

The results in this section are taken from (Davies et al. 2002; Neate and
Truman 2005, 2007a). Assume that A(x0, x, t) is C4 in space variables with
det
(

∂2A
∂xα0 ∂x

β

)
�=0.

Lemma 13.4 Let Φt denote the stochastic flow map and Φ−1
t Γt and Γt be some

surfaces where if x0 ∈ Φ−1
t Γt then x = Φt(x0) ∈ Γt. Then, Φt is a differentiable

map from Φ−1
t Γt to Γt with Frechet derivative:

(DΦt)(x0) =
(
− ∂2A
∂x∂x0

(x0, x, t)
)−1(

∂2A
(∂x0)2

(x0, x, t)
)
.

Let nH(x0), nC(x0) and nM(x0) denote the normal at x0 to the pre-level surface,
pre-caustic and pre-Maxwell set respectively. Using Lemma 13.4 we can show
the following.
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Theorem 13.2 The normal to the pre-level surface is, to within a scalar mul-
tiplier, given by:

nH(x0) = −
(
∂2A
(∂x0)2

)(
∂2A
∂x0∂x

)−1
Ẋ (t, x0,∇S0(x0)) .

Theorem 13.3 Assume that a point x on the Maxwell set corresponds to exactly
two pre-images on the pre-Maxwell set, x0 and x̌0. Then the normal to the pre-
Maxwell set at x0 is, to within a scalar multiplier, given by:

nM(x0) = −
(
∂2A
(∂x0)2

(x0, x, t)
)(

∂2A
∂x0∂x

(x0, x, t)
)−1

·(
Ẋ(t, x0,∇S0(x0))− Ẋ(t, x̌0,∇S0(x̌0))

)
.

We now consider the two dimensional case.

Definition 13.5 Let x = x(γ) = (x1, x2)(γ) denote a curve where γ is some
intrinsic parameter (e.g., arc length) with γ ∈ (γ0 − δ, γ0 + δ) for γ0 ∈ R and
δ > 0. Then the curve is said to have a generalized cusp when γ = γ0 if,

dx
dγ

(γ0) =
(

dx1
dγ

(γ0),
dx2
dγ

(γ0)
)

= 0.

It then follows from Theorems 13.2 and 13.3 that:

Theorem 13.4 Assume that in two dimensions at x0 ∈ Φ−1
t H

c
t the normal

nH(x0) �= 0 so that the pre-level surface does not have a generalized cusp at x0.
Then, the level surface can only have a cusp at Φt(x0) if Φt(x0)∈Ct.
Moreover, if:

x = Φt(x0) ∈ Φt

{
Φ−1

t Ct ∩ Φ−1
t H

c
t

}
,

the level surface will have a generalized cusp at x.

Theorem 13.5 Assume that in two dimensions at x0 ∈ Φ−1
t Mt the normal

nM(x0) �= 0 so that the pre-Maxwell set does not have a generalized cusp at x0.
Then, the Maxwell set can only have a cusp at Φt(x0) if Φt(x0)∈Ct.
Moreover, if:

x = Φt(x0) ∈ Φt

{
Φ−1

t Ct ∩ Φ−1
t Mt

}
,

the Maxwell set will have a generalized cusp at x.

These results lead to a range of conclusions relating to the geometry of these
curves. In particular, they allow us to characterize when swallowtails will form
(a swallowtail perestroika). The appearance of a swallowtail is related to the
existence of points with complex pre-images which are discussed in detail in
(Neate and Truman 2005).
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Corollary 13.1 Assume that at x0 ∈ Φ−1
t H

c
t ∩ Φ−1

t Ct, nH(x0) �= 0 and
nC(x0) �= 0. Then at Φt(x0) there is a cusp on the caustic if and only if Φ−1

t H
c
t

touches Φ−1
t Ct at x0. Moreover, it follows that, x0 ∈ Φ−1

t Mt and that Φ−1
t H

c
t

touches Φ−1
t Mt at x0. Also, at Φt(x0), Mt will have a generalized cusp parallel

to the cusp on Ct.

Corollary 13.2 Assume that at x0 ∈ Φ−1
t Mt ∩ Φ−1

t Ct, nM(x0) �= 0 and
nC(x0) �= 0. Then, there is a cusp on the Maxwell set where it intersects the
caustic at x = Φt(x0) and the pre-Maxwell set touches a pre-level surface Φ−1

t H
c
t

at x0. Moreover, if the cusp on the Maxwell set intersects the caustic at a regular
point of the caustic, then there will be a cusp on the pre-Maxwell set which also
meets the same pre-level surface Φ−1

t H
c
t at another point x̌0.

Corollary 13.3 Assume that at x0 ∈ Φ−1
t H

c
t ∩ Φ−1

t Ct, nH(x0) �= 0 and
nC(x0) �= 0. Then at Φt(x0) there is a point of swallowtail perestroika on the
level surface Hc

t if and only if there is a generalized cusp on the caustic Ct

at Φt(x0).

The results in this section have natural extensions to three dimensions where
the cusps are replaced by curves of cusps. We now give some two dimensional
examples.

Example 13.1 (The generic cusp)We consider a two dimensional deterministic
free example (V ≡ 0, ε = 0). In general for such a system the flow map is
given by:

Φt(x0) = x0 + t∇S0(x0),

with derivative map DΦt(x0) = (I + t∇2S0(x0)). The pre-level surface is then
given by the eikonal equation:

t

2
|∇S0(x0)|2 + S0(x0) = c,

where the key identity is:

∇x0

{
t

2
|∇S0(x0)|2 + S0(x0)

}
= (I + t∇2S0(x0))∇S0(x0).

The generic cusp initial condition, S0(x0, y0) = x20y0, gives a simple cusped caus-
tic (see Fig. 13.2).

Example 13.2 (The polynomial swallowtail)Let V (x, y) = 0, kt(x, y) = x and
S0(x0, y0) = x50 + x

2
0y0. The noisy potential does not affect either the pre-caustic

or pre-Maxwell set. Consequently at time t the noise will have shifted the
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(a) (b)

Φ–1Ct and Φ–1Hc
t Ct and Hc

tt t

Fig. 13.2: The generic cusp caustic (dashed) with three level surfaces (solid
line).
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4

6

5

(a) (b)

Fig. 13.3: The polynomial swallowtail caustic (dashed) and Maxwell set (solid
line).

deterministic caustic and Maxwell set by −ε
∫ t

0 W (u) du in the x direction. This
point will be returned to in Section 6.

From Theorem 13.5, the cusps on the Maxwell set correspond to the
intersections of the pre-curves (points 3 and 6 on Fig. 13.3). But from Corol-
lary 13.2, the cusps on the Maxwell set also correspond to the cusps on the
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Cusp on maxwell set Cusp on caustic

(a) (b)

Fig. 13.4: The caustic (long dash) and Maxwell set (solid line) with the level
surfaces (short dash) through special points.

Approaching the caustic

(a) (b)

Approaching a cusp on the caustic

Fig. 13.5: The caustic (long dash) Maxwell set (solid line) and level surface
(short dash).

pre-Maxwell set (points 2 and 5 on Fig. 13.3 and also Fig. 13.4). The Maxwell
set terminates when it reaches the cusps on the caustic. These points satisfy
the condition for a generalized cusp but, instead of appearing cusped, the curve
stops and maps back exactly onto itself. At such points the pre-surfaces all touch
(Fig. 13.4).

These two different forms of cusps correspond to very different geometric
behaviours of the level surfaces. From the definition of a Maxwell set it is clear
that any point on Mt is a point of self-intersection of some level surface. Where
the Maxwell set stops or cusps corresponds to the disappearance of a point of
self-intersection on a level surface. There are two distinct ways in which this
can happen. Firstly, the level surface will have a point of swallowtail perestroika
when it meets a cusp on the caustic. At such a point only one point of self-
intersection will disappear, and so there will be only one path of the Maxwell
set which will terminate at that point. However, when we approach the caus-
tic at a regular point, the level surface must have a cusp but not a swallowtail
perestoika. This corresponds to the collapse of two points of self-intersection and
so two paths of the Maxwell set must approach the point and produce the cusp
(see Fig. 13.5).
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13.6 Recurrence of stochastic turbulence

Following (Truman et al. 2003; Neate and Truman 2007b), the geometric results
of Section 5 can be used to characterize a sequence of turbulent times.

Definition 13.6 Real turbulent times are defined to be times t at which there
exist real points where the pre-level surface Φ−1

t H
c
t and pre-caustic Φ−1

t Ct touch.

Real turbulent times correspond to times at which there is a change in the
number of cusps or cusped curves on the level surface Hc

t . In d-dimensions,
assuming Φt is globally reducible, let f(x,t)(x10) denote the reduced action func-
tion and xt(λ) denote the caustic parameterized using the pre-caustic and
flow map.

Theorem 13.6 The real turbulent times t are given by the zeros of the zeta
process ζct where:

ζct := f(xt(λ),t)(λ1)− c,

λ satisfies:

∂

∂λα
f(xt(λ),t)(λ1) = 0 for α = 1, 2, . . . , d, (13.17)

and xt(λ) is on the cool part of the caustic.

The term ‘real’ is used in (Neate and Truman 2005) to distinguish this form
of turbulence from ‘complex’ turbulence where swallowtail perestroikas occur
on the caustic. We shall not discuss the details of complex turbulence in this
chapter.

We now consider the stochastic Burgers equation with white noise forcing in
d-orthogonal directions:

∂vµ

∂t
+ (vµ · ∇)vµ =

µ2

2
∆vµ − εẆ (t), (13.18)

where W (t) = (W1(t),W2(t), . . . ,Wd(t)) is a d-dimensional Wiener process.

Proposition 13.1 The stochastic action corresponding to the Burgers equation
(13.18) is:

A(x0, x, t) =
|x− x0|2

2t
+
ε

t
(x− x0) ·

∫ t

0
W (s) ds− εx ·W (t)

−ε
2

2

∫ t

0
|W (s)|2 ds+ ε

2

2t

∣∣∣∣∫ t

0
W (s) du

∣∣∣∣2 + S0(x0).
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Lemma 13.5 If xεt(λ) denotes the random caustic for the stochastic Burgers
equation (13.18) and x0t (λ) denotes the deterministic caustic (the ε = 0 case)
then:

xεt(λ) = x
0
t (λ)− ε

∫ t

0
W (u) du.

Using Proposition 13.1 and Lemma 13.5, we can find the zeta process
explicitly.

Theorem 13.7 In d-dimensions, the zeta process for the stochastic Burgers
equation (13.18) is:

ζct = f0(x0
t (λ),t)

(λ1)− εx0t (λ) ·W (t) + ε2W (t) ·
∫ t

0
W (s) ds− ε

2

2

∫ t

0
|W (s)|2 ds− c,

where f0(x,t)(λ1) is the deterministic reduced action function, x0t (λ) is the deter-
ministic caustic and λ must satisfy the stochastic equation:

∇λ

(
f0(x0

t (λ),t)
(λ1)− εx0t (λ) ·W (t)

)
= 0. (13.19)

Equation (13.19) shows that the value of λ used in the zeta process may be either
deterministic or random. In the two dimensional case this gives:

0 =
(
∇xf

0
(x0
t (λ),t)

(λ1)− εW (t)
)
· dx

0
t

dλ
(λ), (13.20)

which has a deterministic solution for λ corresponding to a cusp on the deter-
ministic caustic.

Using the law of the iterated logarithm, it is a simple matter to show formally
that if there is a time τ such that ζcτ = 0, then there will be infinitely many zeros
of ζct in some neighbourhood of τ . This suggests that the set of zeros of ζct are a
perfect set which can be rigorously proved in some generality (Reynolds 2002).

The intermittence of turbulence will be demonstrated if we can show that
there is an unbounded increasing sequence of times at which the zeta process is
zero. This can be done using an idea of David Williams and the Strassen form
of the law of the iterated logarithm (Truman et al. 2003).

Theorem 13.8 There exists an unbounded increasing sequence of times tn for
which Ytn = 0, almost surely, where:

Yt =W (t) ·
∫ t

0
W (s) ds− 1

2

∫ t

0
|W (s)|2 ds,

and W (t) is a d-dimensional Wiener process.

Corollary 13.4 Let h(t) = (2t ln ln(t))−
1
2 . If h(t)2t−1f0(x0

t (λ),t)
(λ1) → 0 and

h(t)t−1
d∑

i=0
x0it (λ)→ 0, then the zeta process ζct is recurrent.
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13.7 A vortex line sheet on the Maxwell set

We now summarize results of (Neate and Truman 2007a) which show that for
compressible flow and small viscosity, with appropriate initial conditions, there is
a vortex filament structure in the neighbourhood of the cool part of the Maxwell
set. This result is valid for both deterministic and stochastic cases.

We first compute the Burgers fluid velocity on the cool part of the Maxwell set
where typically for x ∈Mt the pre-images x0(x, t) and x̌0(x, t) are well behaved
functions. Recall from equations (13.11) and (13.12) that for t < tc(ω) and
small µ:

uµ(x, t) ∼ exp
(
−St(x)
µ2

)
ρ

1
2
t (x)(1 + O(µ2)).

For t > tc(ω), the analagous result for vµ is:

Lemma 13.6 Let x ∈ Cool(Mt), so that x = Φt(x0) = Φt(x̌0) where x0 �= x̌0
and A(x0, x, t) = A(x̌0, x, t). Then:

vµ(x, t) ∼ ρ
1
2
t (x)∇St(x) + ρ̌

1
2
t (x)∇Št(x)

ρ
1
2
t (x) + ρ̌

1
2
t (x)

+ O(µ2),

where:

ρ
1
2
t (x) = T0(x0(x, t))

∣∣∣∣∂x0∂x (x, t)
∣∣∣∣ 12 , ρ̌

1
2
t (x) = T0(x̌0(x, t))

∣∣∣∣∂x̌0∂x (x, t)
∣∣∣∣ 12 ,

and St(x) = A(x0(x, t), x, t), Št(x) = A(x̌0(x, t), x, t).
We denote by v0(x, t) the leading term for the behaviour of vµ(x, t) on the

Maxwell set and choose orthogonal curvilinear coordinates on Mt denoted by
(ξ1, ξ2). Let the unit normal in a coordinate patch on Mt be denoted n.

Theorem 13.9 If v0(x, t) is the leading behaviour of vµ(x, t) for x ∈Mt, then:

v0(x, t) =
1
2

{
∇(St(x) + Št(x)) +

ρ̌
1
2
t (x)− ρ

1
2
t (x)

ρ̌
1
2
t (x) + ρ

1
2
t (x)

(
∂Št
∂n

(x)− ∂St
∂n

(x)
)
n

}
,

where
∂

∂n
denotes the normal derivative (n · ∇) on Mt.

Definition 13.7 The inviscid limit of the vorticity ω0 is defined to be:

ω0(x, t) := ∇∧ v0(x, t),

where v0(x, t) denotes the leading behaviour of vµ(x, t) as µ→ 0.
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Since the first term in v0 is C1 on Mt, we obtain:

Corollary 13.5 For x ∈ Cool(Mt):

ω0 = ∇∧
{
ρ̌

1
2
t (x)− ρ

1
2
t (x)

ρ̌
1
2
t (x) + ρ

1
2
t (x)

(
∂Št
∂n

(x)− ∂St
∂n

(x)
)
n

}
∈ TxMt.

From Corollary 13.5 it follows that ω0 �= 0. Hence, we expect that for
small viscosity even though initially there was zero vorticity, once a Maxwell
set appears, the flow is no longer irrotational.

The above result shows that for small viscosity a vortex filament structure
will appear in a neighbourhood of the cool part of the Maxwell set. The limit
of this vortex filament structure is a sheet of vortex lines on the cool part of
the Maxwell set. We now give the equation of these limiting vortex lines on the
Maxwell set in terms of orthogonal coordinates (ξ1, ξ2).

Theorem 13.10 The limiting vortex lines in a coordinate patch of Mt have
equations:

h1(ξ)h2(ξ)(ρ̌
1
2
t (x)− ρ

1
2
t (x))

(
∂

∂n

(
f(x,t)(x̌10(x, t))− f(x,t)(x10(x, t))

))
= c(ρ̌

1
2
t (x) + ρ

1
2
t (x)),

where c is a real constant and ∂
∂n denotes the normal derivative (n · ∇) on Mt.

This confirms that for our initial conditions, for small viscosity, and for com-
pressible flow, vortex filaments will inevitably appear in a neighbourhood of the
cool part of the Maxwell set. Given the rotational effects at work in the universe
perhaps this suggests that we should consider the Burgers equation with vortic-
ity from the outset. Kinematical considerations and Galilean invariance suggest
that the appropriate equation is a Burgers equation with a vector potential. We
hope to discuss this in a future paper (Neate and Truman 2008a).

13.8 The adhesion model

The adhesion model for the formation of the early universe is a refinement of the
Zeldovich approximation (Arnol′d et al. 1982). In the original adhesion model
there is no noise and a variational principle is assumed which forces the mass
to move perpendicular to the cool part of the Maxwell set (often referred to as
the shock) with the same velocity as the Maxwell set itself. This clearly results
in mass adhering to the cool Maxwell set leading to an accumulation of mass
at certain points (Bec and Khanin 2007; Bogaevsky 2004). A simple calculation
gives the velocity of the Maxwell set as:

1
2
{
∇(St(x) + Št(x))

}
,
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and a comparison with Theorem 13.9 and Corollary 13.5, reveals that this adhe-
sion is sufficient to precisely destroy the vorticity near the Maxwell set. When
adhesion occurs, an interesting question to consider is how rapidly mass will
accrete on the Maxwell set as µ→ 0 (Bec and Khanin 2007). This would relate
directly to the mass involved in the formation of galaxies on the shock. Here we
prove an inequality for the magnitude of the accumulated mass.

For this analysis we need to first mollify the Nelson diffusion process intro-
duced in Section 2, equation (13.4),

dXµ
u = ∇Su(Xµ

u ) du+ µdB(u), Xµ
t = x.

This mollification will remove the discontinuities in the drift caused by the
Maxwell set and caustic.

Let 0 < t < T , for some fixed T , and let u ∈ (0, t). Assume that we can
mollify the minimizing Hamilton–Jacobi function Su such that, Su = Smollu off
some thin open set τu(µ) surrounding the cool Maxwell set MCoolu and the cool
caustic CCoolu where the Lebesgue measure |τu(µ)| = O(µ), and that ∇Smollu is
uniformly Lipschitz in space and bounded for u ∈ (0, t).

We can then define a mollified potential, V mollu (x), corresponding to this new
system such that:

∂Smollu

∂u
+

1
2
|∇Smollu |2 + V mollu = 0,

so that as µ→ 0, (V mollu − V ) is a surface potential.
This system then has a corresponding Burgers equation:

Dvmoll

Dt
=
µ2

2
∆vmoll −∇V moll,

where this is the physically important velocity field in the limit µ→ 0.
Let µ = µn where µn is a sequence of real values such that µn → 0 as n→∞.

Let the diffusion associated with µ = µn after mollification be denoted by Xn

and let:

An
t =

{
ω : Xn(ω) avoids CCoolu ∪MCoolu at all times u ∈ (0, t)

}
.

It is important to note that, formally at least:

P(An
t ) = lim

λ→∞
Ex

[
exp
(
−λ
∫ t

0
χCCool

u (λ−1)(X
n
trev(u)) du

)
× exp

(
−λ
∫ t

0
χMCool

u (λ−1)(X
n
trev(u)) du

)]
,

where:

CCools (λ−1) :=
{
y : d(y, CCools ) < λ−1

}
,

MCools (λ−1) :=
{
y : d(y,MCools ) < λ−1

}
.
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Here trev denotes time reversal so that:

Xn
trev(s) := X

n(t− s), Xn
trev(0) = x.

We need to assume that for sufficiently large n, P(An
t ) > δ > 0.

Now assume that at any point x on the cool Maxwell set, MCoolt divides
space into m(x) parts. Therefore, x has m(x) minimizing pre-images x0(i)(x, t),
(i = 1, 2, . . . ,m) and for each pre-image there is a corresponding S = S(i)
given by:

∇Su(i)(x) = Ẋ(x0,∇S0(x0), u)
∣∣∣
x0=x0(i)(x,t).

We assume that all ∇S(i) are bounded and uniformly Lipschitz in space away
from the caustic. Note that at a regular point of the Maxwell set m = 2 which is
the case in which we are interested. In this case x0(i)(x, t) for i = 1, 2 correspond
to matter arriving on different sides of the cool part of the Maxwell set. Arguing
as in (Freidlin and Wentzell 1998), the Borel–Cantelli and Gronwall’s lemmas
give:

Lemma 13.7 For u ∈ (0, t) and n ∈ N (i = 1, 2) let:

dXn
i (u) = ∇Sn

u (i)(X
n
i (u)) du+ µn dB(u),

and:
dX0i (u) = ∇Su(i)(X0i (u)) du,

with Xn
i (t) = X

0
i (t) = x. Then, if

∑
µ2n <∞, for 0 < t < T :

P

[
sup
0<u<t

∣∣Xn
i (u)−X0i (u)

∣∣→ 0 as n→∞
∣∣∣∣An

t

]
= 1.

We can now give our results on the distribution of mass. We parameterize
the cool Maxwell set using the pre-Maxwell set and flow map:

x0 = (x10, x
2
0, . . . , x

d−1
0 , xd0(x

1
0, . . . , x

d−1
0 , t)) ∈ Φ−1

t M
Cool
t .

Define x0 ∈
(
Φ−1

t M
Cool
t

)̃
if the classical path from x0 toMCoolt avoids CCoolu and

MCoolu for all u < t. It now follows from our results in Section 2 that:

Theorem 13.11 Let the mass adhering to the Maxwell set in time interval
(0, T ) be m(0, T ). Then if:

m0(0, T ) =
∫ T

0

dt
2

∫
x0∈(Φ−1

t MCool
t )̃

T 20 (x0)
∣∣∣∣∂xd0∂t

∣∣∣∣ dx10 . . . dxd−10 ,
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we obtain:
m(0, T ) ≥ m0(0, T ).

The volume ofMCoolt is zero andm(0, T ) is O(1). Therefore, the mass density
on MCoolt will be infinite in parts of MCoolt in the inviscid limit. As we stated
earlier, the process of adhesion forces the velocity away from Mt to be zero, and
consequently the adhering particles carry no vorticity.

We now conjecture what happens when particles hit CCoolt first. Taking limits,
m0(0, T ) is the contribution to the mass in the shock from paths with no kinks
which would be caused by hitting the caustic before time t.

It would therefore be reasonable to calculate m1(0, T ), the contribution of
mass from paths with one kink caused by a single intersection with the caustic
before adhesion occurs. In this case we see that the shock causes a compression
or decompression of mass. This comes from a generalized Ito formula for non C2

functions.
Let x0 = x0(t, u, x10) where x

1
0 ∈ k1(u, t) ⊂ R and x0 ∈ K1(u, t) the curvilin-

ear open set:

K1(u, t) =
(
Φ−1

u C
Cool
u

)̃
∩
((

lim
n

Φn
t

)−1
MCoolt

)̃
,

K1(t) =
⋃

u∈(0,t)
K1(u, t).

If we then integrate over K1(t), and use the generalized Ito formula for a dis-
continuous function due to Elworthy, Truman, and Zhao (Elworthy et al. 2007;
Feng and Zhao 2006), we get:

m1(0, T ) =
∫ T

0

dt
2

∫ t

0
du
∫
k1(u,t)

dx10 T
2
0 (x0)

∣∣∣∣∂x0(t, u, x10)∂(t, u, x10)

∣∣∣∣
× exp

{
−[∇nSu(X(u+))−∇nSu(X(u−))]

}
,

where Su(X(u±)) is the action evaluated at the appropriate minimizing pre-
image x0(i)(x, t) just above or below the caustic Cu and ∇nS is the normal
derivative. The final factor in the integrand is the compression/decompression
term coming from the adhesion process. In one dimension this result can be cast
as a theorem. In higher dimensions it is only so far a conjecture.

Clearly, the mass involved in the formation of galaxies in the early universe
would be given by a sum of terms involving mr(0, T ) for r = 0, 1, 2, . . .. As
discussed at the start of this section, the complete adhesion of all matter to the
cool part of the Maxwell set precisely destroys the rotation discussed in Section
7. However, if the adhesion were only partial, this would not totally remove the
rotation, and could explain the formation of spiral galaxies in the early universe.
We will discuss such properties and detailed examples in a forthcoming work on
the Burgers equation with vorticity (Neate and Truman 2008a).
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LIQUID CRYSTALS AND HARMONIC MAPS IN
POLYHEDRAL DOMAINS

Apala Majumdar, Jonathan Robbins, and Maxim Zyskin

Abstract

Unit-vector fields n on a convex polyhedron P subject to tangent boundary
conditions provide a simple model of nematic liquid crystals in prototype
bistable displays. The equilibrium and metastable configurations correspond
to minimizers and local minimizers of the Dirichlet energy, and may be
regarded as S2-valued harmonic maps on P . We consider unit-vector fields
which are continuous away from the vertices of P . A lower bound for the
infimum Dirichlet energy for a given homotopy class is obtained as a sum
of minimal connections between fractional defects at the vertices of P .
In certain cases, this lower bound can be improved by incorporating certain
nonabelian homotopy invariants. For a rectangular prism, upper bounds
for the infimum Dirichlet energy are obtained from locally conformal solu-
tions of the Euler–Lagrange equations, with the ratio of the upper and lower
bounds bounded independently of homotopy type. However, since the homo-
topy classes are not weakly closed, the infimum may not be realized; the
existence and regularity properties of continuous local minimizers of given
homotopy type are open questions. Numerical results suggest that some
homotopy classes always contain smooth minimizers, while others may or
may not depending on the geometry of P . Numerical results modelling a
bistable device suggest that the observed nematic configurations may be
distinguished topologically.

14.1 Introduction

Liquid crystals are intermediate phases of matter exhibiting partial ordering in
the orientation and/or positions of their constituent particles. The constituents of
nematic liquid crystals have a distinguished axis, and in the nematic phase these
axes tend to align. The direction and degree of alignment can exhibit a rich vari-
ety of singularities. Standard references on liquid crystals include de Gennes and
Prost (1995), Virga (1994), Kleman and Lavrentovich (2002), Stewart (2004).

The nematic phase is optically birefringent (light propagation is polarization-
dependent). This, together with the fact that nematic ordering can be modified
by external electric and magnetic fields, has led to a wide range of display applica-
tions. Most present-day liquid crystal displays (e.g., twisted nematic) are based
on monostable cells, where, in the absence of external fields, the orientation
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Fig. 14.1: The PABN cell (from Kitson and Geisow 2002).

assumes a single (spatially varying) equilibrium configuration which is effectively
transparent to incident polarized light. To produce and maintain optical contrast,
voltage pulses, which change the orientation, must be continually applied. There
is considerable interest in developing bistable cells, which support two (and pos-
sibly more) stable configurations with contrasting optical properties. In bistable
cells, power is needed only to switch between configurations. One mechanism for
engendering bistability is to introduce microstructures into the geometry (Jones
et al. 2000; Kitson and Geisow 2002; Tsakonas et al. 2007). Nematic liquid crys-
tals in cells with polyhedral features (e.g., ridges, posts, wells) have been found
to support multiple configurations. One such device, the PABN, or post-aligned
bistable nematic cell, is shown in Fig. 14.1 (Kitson and Geisow 2002). It con-
sists of a liquid crystal layer sandwiched between two planar substrates, with the
lower substrate featured by an array of microscopic posts.

As a simple model for such systems, we consider nematic liquid crystals in
a convex polyhedron P ⊂ R3 with orientation described by a director field,
n : P → RP 2, taking values in the real projective plane. We consider the case of
strong azimuthal anchoring, described by tangent boundary conditions. Tangent
boundary conditions require that, on a face of P , n lies tangent to the face,
but is otherwise unconstrained. It follows that on the edges of P , n is paral-
lel to the edges, and therefore is necessarily discontinuous at the vertices. We
are interested as to whether equilibria can be classified according to homotopy,
and therefore restrict our attention to director fields which are continuous away
from the vertices. For these, we can unambiguously assign an orientation to the
director field (as P is simply connected), and regard n as a unit-vector field. We
let C0T (P, S

2) denote the space of continuous unit-vector fields on P satisfying
tangent boundary conditions, or tangent unit-vector fields for short.

The elastic or Oseen-Frank energy of a configuration n is given by:

E =
∫
P

[
K1(∇ · n)2 +K2(n · (∇× n))2 +K3(n× (∇× n))2

+K4∇ · ((n · ∇)n− (∇ · n)n)
]
dV. (14.1)
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Tangent boundary conditions imply that the contribution from the K4-term,
which is a pure divergence, vanishes. We shall make use of the so-called one-
constant approximation, in which the remaining elastic constants K1, K2, and
K3 are taken to be the same and set to unity. In this case, (14.1) becomes the
Dirichlet energy:

E(n) =
∫
P

(∇n)2 dV. (14.2)

Minimizers of the Dirichlet energy, which correspond to equilibrium configura-
tions, are S2-valued harmonic maps, as are local minimizers, which correspond
to metastable configurations.

The homotopy classes of C0T (P, S
2) are described in Section 14.2, and a lower

bound for the infimum of the Dirichlet energy in each homotopy class is given
in Section 14.3. The lower bound is expressed as a sum of minimal connections
between fractional defects at the vertices of P , in analogy with the well-known
result of Brezis, Coron, and Lieb (1986) for the infimum Dirichlet energy of a
set of point defects in R3. For nonconformal homotopy classes, this bound can
be improved by incorporating certain nonabelian homotopy invariants; this is
shown explicitly for certain homotopy classes in a rectangular prism in Section
14.4. Unlike the case of point defects in R3, the lower bound of Section 14.3 is
expected to be strictly less than the infimum; achieving the lower bound would
require concentration along a minimal connection, which would be incompatible
with tangent boundary conditions. However, for P a rectangular prism, we can
construct trial configurations in each homotopy class whose energies differ from
the lower bound by a factor which is bounded independently of h (Section 14.5).
Generalizing the construction to arbitrary P requires finding conformal maps on
S2 which preserve a given set of geodesics.

It is an open question as to whether the infimum is achieved in a given
homotopy class, as is the regularity of the local minimizers. Numerical results
presented in Section 14.6 suggest that some homotopy classes always contain
smooth minimizers, while others may or may not depending on the geometry of
P . Numerical results for a model of a bistable display suggest that the observed
nematic configurations are topologically distinct.

In addition to existence and regularity questions, it would be interesting to
investigate dynamics under the influence of applied fields. Switching between
configurations of different homotopy type requires the creation and destruction
of defects, and one would like to understand this process in detail.

14.2 Homotopy classification

Given n ∈ C0T (P, S2) we can identify a number of discrete-valued quantities
which depend continuously on n and which are therefore homotopy invariants.
(Details may be found in Robbins and Zyskin 2004 and Majumdar et al. 2007b).
Along an edge of P , n must lie parallel to the edge, so its value there is
determined up to a sign, which we call an edge orientation (see Fig. 14.2(a)).
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(a) (b)

(c)

Fig. 14.2: Homotopy invariants. (a) Edge orientation (b) Kink number. n
describes a 3/4-turn about the vertex (the image on S2 is also shown), cor-
responding to kink number −1. (c) Trapped area. The image of the cleaved
surface on S2 has signed area −3π/2.

Next, along a path on a face of P between two edges, n must lie tangent to
the face, and therefore describes a geodesic on S2, i.e., an arc of a great cir-
cle (see Fig. 14.2(b)). As the endpoints of the geodesic are fixed by the edge
orientations, the geodesic may be assigned an integer-valued relative winding
number, or kink number. By convention, the shortest geodesic is assigned kink
number zero. Another invariant is associated with a surface which separates one
of the vertices of P from the other vertices—we call this a cleaved surface (see
Fig. 14.2(c)). Along the boundary of a cleaved surface, n is determined up to
homotopy by its edge orientations and kink numbers. Therefore, the signed area
of the image of the cleaved surface itself, called the trapped area at the vertex, is
determined up to an integer multiple of 4π (i.e., some number of whole coverings
of the sphere).

Collectively, the edge orientations, kink numbers, and trapped areas consti-
tute a complete set of homotopy invariants for C0T (P, S

2); two configurations
are homotopic if and only if their invariants are the same. We note that the
invariants are not all independent—continuity of configurations on the faces of
P implies that the kink numbers on each face satisfy a sum rule, while continuity
on the interior of P implies that the trapped areas add up to zero. One can show
that every set of invariants satisfying these sum rules can be realized.

From the preceding discussion, it is evident that the invariants of n can be
determined from its values on a set of cleaved surfaces (the values of n on the
corners and edges of the cleaved surfaces determine its edge orientations and
kink numbers). Given a set of cleaved surfaces we can define an alternative set
of invariants, the wrapping numbers, which will be used in subsequent sections.
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P S2

Fig. 14.3: Sectors for a tetrahedron. The great circles of directions tangent to
the four faces partition the two-sphere into 14 sectors.

Let T ⊂ S2 denote the set of directions which are tangent to one of the faces
of P . Then T consists of a union of great circles. S2 − T consists of a union of
disjoint open spherical polygons, which we call sectors (see Fig. 14.3). Let Ca

denote a cleaved surface separating the ath vertex of P , say, from the others,
and let na denote the restriction of n to Ca. Let Σσ denote the σth sector of S2.
The wrapping number waσ is the number of times na covers Σσ, counted with
orientation. For n differentiable, this is given by:

waσ =
1
Aσ

∫
Ca

n∗(χσω), (14.3)

where ω is the area two-form on S2, normalised to have integral 4π, χσ is the
characteristic function of Σσ, n∗ denotes the pull-back, and Aσ =

∣∣∫
S2 χ

σ ω
∣∣ is

the area of Σσ. Alternatively, waσ can be expressed as the index of a regular
value s ∈ Σσ, i.e.:

waσ =
∑

r |na(r)=s

sgn det(na)
′
(r). (14.4)

The wrapping numbers are homotopy invariants, and using Stokes’ theorem can
be expressed in terms of the edge orientations, kink numbers, and trapped areas.
These relations can also be inverted to obtain the edge orientations, kink num-
bers, and trapped areas in terms of the wrapping numbers. Thus, the wrapping
numbers constitute a complete (though redundant) set of homotopy invariants.

If the nonzero wrapping numbers at a given vertex are all negative, the homo-
topy class is said to be conformal with respect to that vertex, and if positive,
anticonformal with respect to that vertex. A homotopy class is called noncon-
formal if there are vertices with wrapping numbers of different signs.

It is straightforward to count the number of invariants as well as the relations
among them. Suppose that P has f faces, e edges, and v vertices (so that, from
Euler’s formula, f−v+e = 2). Then P has v trapped areas, which satisfy a single
sum rule; 2e kink numbers, which satisfy f sum rules; and e edge orientations.
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It also follows from Euler’s formula applied to the set of tangent directions T ,
regarded as a graph on S2, that there are generically (and at most) f2−f+2 sec-
tors (‘generically’ means that no direction is tangent to three or more faces of P ).
Thus, there are generically (and at most) (f2−f+2)v wrapping numbers, many
more than the number of trapped areas and kink numbers. Among the con-
straints on the wrapping numbers, we point out that for a fixed sector Σσ, their
sum over vertices must vanish, i.e.:∑

a

waσ = 0. (14.5)

We will use h to denote both an admissible set of values of the invariants as well
as the homotopy class in C0T (P, S

2) characterized by these values.

14.3 Lower bound: minimal connection
Brezis et al. (1986) established the infimum Dirichlet energy for unit-vector fields
on R3 with point defects of specified position and degree. The result is expressed
in terms of a minimal connection between the defects, defined below. A similar
argument yields a lower bound for the infimum Dirichlet energy for tangent unit-
vector fields on P of fixed homotopy type, in which the vertices of P play the role
of defects, and the wrapping numbers that of generalized degrees. Details may
be found in (Majumdar et al. 2004b), (Majumdar et al. 2004a), and (Majumdar
et al. 2007b).

We first review the result of Brezis, Coron, and Lieb (1986). Let Ω = R3 −
{r1, . . . , rn}, and let n : Ω → S2 denote a unit-vector field on Ω. Continu-
ous unit-vector fields on Ω may be classified up to homotopy by their degrees,
d = (d1, . . . , dn) ∈ Zn, on spheres about each of the excluded points rj (the
restriction of n to such a sphere may be regarded as a map from S2 into itself).
For n smooth:

dj =
1
4π

∫
|r−rj |=ε

n∗ω (14.6)

for small enough ε. For ∇n square-integrable, the Dirichlet energy is given as in
(14.2) by:

E(n) =
∫
Ω
(∇n)2dV. (14.7)

In order for E(n) to be finite, we require that:∑
j

dj = 0. (14.8)

Let C0Ω(d) denote the homotopy class of continuous unit-vector fields with degrees
d satisfying (14.8), and let:

EinfΩ (d) = inf
n∈C0

Ω(d)∩H1(Ω,S2)
E(n) (14.9)

denote the infimum energy in C0Ω(d).
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Given two m-tuples of points in R3, P = (a1, . . . ,am) and N = (b1, . . . ,bm)
(whose points need not be distinct), a connection is a pairing (aj ,bπ(j)) of points
in P and N , specified here in terms of a permutation π ∈ Sm (Sm denotes
the symmetric group). The length of a connection is the sum of the distances
between the paired points, and a minimal connection is a connection of minimum
length. Let:

L(P,N ) = min
π∈Sm

m∑
j=1

|aj − bπ(j)| (14.10)

denote the length of a minimal connection, and let |d| = 1
2

∑
j |dj |.

Theorem 14.1 (Brezis et al. 1986) The infimum Einf
Ω (d) of the Dirichlet energy

of continuous unit-vector fields on the domain Ω = R3−{r1, . . . , rn} of degrees dj
about the excluded points rj is given by:

Einf
Ω (d) = 8πL(P(d),N (d)), (14.11)

where P(d) is the |d|-tuple of excluded points of positive degree, with rj included
dj times, and N(d) is the |d|-tuple of excluded points of negative degree, with rk

included |dk| times.

In fact, the result of (Brezis et al. 1986) applies to more general domains with
holes.

Here we sketch the argument that 8πL(P(d),N (d)) is a lower bound for
EinfΩ (d). It suffices to consider smooth unit-vector fields on Ω, as these are dense
in C0Ω(d)∩H1(Ω, S2). For any orthonormal frame u, v, w, one has the inequality:

(∇n)2 ≥ 2|(dξ ∧ n∗ω)(u,v,w)| ≥ 2(dξ ∧ n∗ω)(u,v,w), (14.12)

where ξ is differentiable and |dξ| ≤ 1. (14.12) follows from the fact that, at every
point, there is at least one direction (say u) in which the directional derivative
∇un := (u · ∇)n vanishes, while:

(∇vn)2 + (∇wn)2 ≥ 2|∇vn| |∇wn| ≥ 2|∇vn ∧∇wn|. (14.13)

Since dω = 0, it follows that dξ ∧ n∗ω = d(ξn∗ω), so that:

(∇n)2 ≥ 2d(ξn∗ω). (14.14)

Substituting (14.14) into (14.7) and applying Stokes’ theorem, we get a lower
bound:

EinfΩ (d) ≥ 2
∑
j

ξjdj , (14.15)

which depends only on the values ξj := ξ(rj) of ξ at the defects. Since |dξ| ≤ 1,
these values are constrained by |ξj − ξk| ≤ |rj − rk|. In fact, every set of ξj ’s
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satisfying these constraints can be realized by a piecewise-differentiable function
ξ (eg, let ξ(r) = maxj(ξj − |r− rj |)). Thus, one obtains a bound:

EinfΩ (d) ≥ 2max
ξj

∑
j

ξjdj , where ξj ≥ 0, |ξj − ξk| ≤ |rj − rk|, (14.16)

in the form of a finite-dimensional linear optimization problem.
The dual formulation is given by:

EinfΩ (d) ≥ 2min
ηjk

∑
jk

ηjk|rj − rk|, where ηjk ≥ 0,
∑
k

(ηjk − ηkj) ≥ dj . (14.17)

This is a sort of transport problem, in which the degrees are the quantities to
be transported and the costs are the distances between defects. We can take
ηjk to be 0 unless dj > 0 and dk < 0. Without loss of generality, we may also
assume that the degrees are either +1 or −1, so that there are an equal number,
m := n/2, of each, with positions (a1, . . . ,am) and (b1, . . . ,bm) respectively (if
not, repeat each defect according to its multiplicity). (14.17) becomes:

EinfΩ (d) ≥ 2min
Mpq

m∑
p,q=1

Mpq|ap − bq|, where Mpq ≥ 0,
∑
p

Mpq =
∑
q

Mqp = 1.

(14.18)

As M is constrained to be doubly stochastic, a theorem of Birkhoff (Birkhoff
1946) implies that it lies in the convex hull of the set of m-dimensional permu-
tation matrices. The optimal solution will be amongst the permutation matrices
themselves, leading to EinfΩ (d) ≥ 8πL(P(d),N (d)).

A similar argument leads to a lower bound for the infimum Dirichlet energy
for tangent unit-vector fields on P of given homotopy type.

Theorem 14.2 (Majumdar et al. 2007b) Let h = {waσ} be an admissible topol-
ogy for continuous tangent unit-vector fields on a polyhedron P . The infimum
Einf(h) of the Dirichlet energy of continuous tangent unit-vector fields on P
with invariants h is bounded below by:

Einf
P (h) ≥

∑
σ

2AσL(Pσ(h),N σ(h)), (14.19)

where Pσ (resp. N σ) contains the vertices of P for which waσ is positive
(resp. negative), each such vertex included with multiplicity |waσ|.

Thus, to each sector σ may be associated a constellation of point defects at the
vertices va with degrees waσ. The lower bound of (14.19) is a sum of the lengths
of minimal connections for these constellations, weighted by the sector areas Aσ.
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14.4 Lower bound: nonabelian invariants

For nonconformal homotopy classes, the lower bound of Theorem 14.2 can be
improved by incorporating certain nonabelian invariants. These invariants, and
the sense in which they are nonabelian, are introduced in Section 14.4.1 in a two-
dimensional setting. For tangent unit-vector fields on P ⊂ R3 we describe this
phenomenon in a particular case (Section 14.4.2), reflection-symmetric homotopy
classes in a rectangular prism. Details will be given in (Majumdar et al. 2008).

14.4.1 Absolute degree and spelling length

Let φ : D2 → R2 be a smooth map of the two-disk into the plane. We recall that
x ∈ D2 is a regular point of φ if x is in the interior of D2 and detφ′(x) �= 0,
y ∈ R2 is regular value of φ if all of its pre-images are regular points, and a
regular value has a finite number of pre-images. Let R(φ) ⊂ R2 denote the set
of regular values of φ. From Sard’s theorem, Imφ−R(φ) is of zero measure.

Given y ∈ R(φ), the algebraic degree of y (or degree, for short) is given by:

dφ(y) =
∑

x∈φ−1(y)

sgn detφ′(x), (14.20)

and is invariant under smooth deformations of φ which preserve the boundary
map ∂φ. We define the absolute degree of y by:

Dφ(y) =
∑

x∈φ−1(y)

1. (14.21)

Clearly Dφ(y) is not invariant under all deformations which preserve ∂φ, and:

Dφ(y) ≥ |dφ(y)|. (14.22)

Let R = {y1, . . . , yn} ⊂ R(φ) denote a set of n regular values of φ. We may
regard the boundary ∂φ as a map ∂φ : S1 → R2 − R from the circle to the
n-times-punctured plane. Let π1(R2 − R, p) denote the fundamental group of
R2 − R, based at a point p, and let [∂φ] ∈ π1(R2 − R, p) denote the homotopy
class of ∂φ.

The fundamental group π1(R2 −R, p) may be identified with the free group
on n generators, F (c1, . . . , cn) (see, e.g., Magnus et al. 1976). Let us specify
that the generator cj corresponds to a loop which encircles yj once with positive
orientation but contains no other yk’s. This determines the cjs up to conjugacy.
Given g ∈ π1(R2 − R, p), we define a spelling to be a factorization of g into a
product of conjugated generators and inverse generators, e.g.,

g = h1cε1i1h
−1
1 · · ·hrcεrirh

−1
r , (14.23)

where hs ∈ π1(R2 − R, p) and εs = ±1. The length of a spelling is the num-
ber of factors (i.e., r in (14.23)). Define the spelling length, denoted Λn(g), to
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be the shortest possible length of a spelling of g (e.g., Λn(c1c2c−11 c
−1
2 ) = 2).

The spelling length of the identity, e, is taken to be zero. It turns out that the
spelling length of [∂φ] gives a lower bound on the sum of the absolute degrees of
points in R.

Proposition 14.1 Given φ : D2 → R2 smooth, R = {y1, . . . , yn} ⊂ R(φ), and
π1(R2 −R, p) � Fn(c1, . . . , cn), with generators cj as above. Then:

n∑
j=1

Dφ(yj) ≥ Λn([∂φ]). (14.24)

Let F̄n(c1, . . . , cn) denote the abelianization of Fn(c1, . . . , cn), obtained by
taking all of the cjs to commute, and given g ∈ Fn(c1, . . . , cn), let ḡ denote
the corresponding element of F̄n(c1, . . . , cn). Then ḡ can be written as cδ11 · · · cδnn
for some integers δj . Let Λ̄n(g) =

∑n
j=1 |δj | . Clearly Λn(g) ≥ Λ̄n(g) (e.g.,

Λ̄n(c1c2c−11 c
−1
2 ) = 0). It is readily seen that:

n∑
j=1

|dφ(yj)| = Λ̄n([∂φ]). (14.25)

Thus, Proposition 14.1 implies that
∑

j Dφ(yj) is strictly greater than
∑

j |dφ(yj)|
provided that Λn([∂φ]) is strictly greater than Λ̄n([∂φ]). For example, if [∂φ] =
c1c2c

−1
1 c

−1
2 , then φ takes values y1 or y2 at least twice, even though y1 and y2

are of degree zero.
For our applications we shall want to consider maps ν : D2 → S2 from the

two-disk into the two-sphere. Let R = {e0, . . . , en} ∈ R(ν) denote a set of n+1
regular values of ν. In contrast to the case of maps to the plane, the algebraic
degrees d(ej) are not determined by ∂ν, since the image of ν itself is determined
only up to whole coverings of S2. We can remove this ambiguity by specifying
the degree at one of the regular values, e.g., dν(e0) = d0. We may identify
the fundamental group π1(S2 − R,q) with the free group Fn(c1, . . . , cn) on n
generators. As above, we specify that the generator cj corresponds to a closed
loop which encircles ej once with positive orientation but contains no other eks,
which determines the cjs up to conjugacy. c0, which corresponds to a loop about
e0, may be expressed as a product of the generators c1 through cn and their
inverses. In what follows, we write b ∼ c to denote that b and c are conjugate.
In analogy with Proposition 14.1, we have the following:

Proposition 14.2 Given ν : D2 → S2 smooth, R = {e0, . . . , en} ⊂ R(ν),
and π1(R2 − R, p) � Fn(c1, . . . , cn) with generators cj as above, such that c0 ∈
Fn(c1, . . . , cn). Suppose that dν(e0) = d0. Then:

n∑
j=0

Dν(ej) ≥ |d0|+ min
g1,...,gr+|d0|∼c0,

h1,...,hr∼c−1
0

Λn([∂ν]g1 · · · gr+|d0|h1 · · ·hr). (14.26)
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While it is straightforward to compute the spelling length of a given element g,
evaluating (14.26) may not be as straightforward.

14.4.2 Reflection-symmetric homotopy classes in a prism

A crude way to obtain a lower bound for the Dirichlet energy of tangent unit-
vector fields on P is to estimate the contributions from nonoverlapping balls
centred on each vertex. Let n denote a smooth tangent unit-vector field on P
with invariants h. Let va denote the ath vertex of P , and let Oa ⊂ S2 denote
the set of directions about va subtended by P . For r less than the length of any
of the edges coincident at va, define νa

r : Oa → S2 by:

νa
r(e) = n(va + re). (14.27)

Up to parameterization, νa
r describes the restriction of n to a spherical cleaved

surface of radius r. We have that:

|∇n(va + re)|2 ≥ 1
r2
|(νa

r)
′
(e)|2 ≥ 2

1
r2
|det(νa

r)
′
(e)|, (14.28)

where the last inequality follows from the same reasoning as in (14.12). Then:

E(n) ≥
∑
a

∫ Ra

0
W a

r dr, where W a
r =

∫
Oa

|det(νa
r)

′ | de (14.29)

and the Ra’s are chosen so that Ra +Rb ≤ |va − vb|.
The quantity W a

r is just the unsigned area of Im νa
r . The unsigned area of

Im νa
r ∩ Σσ is at least the area of Σσ times the minimal absolute degree of the

regular values in Σσ. Thus we have that:

W a
r ≥

∑
σ

min
e∈R(νar )∩Σσ

Dνar
(e)Aσ. (14.30)

Noting thatDνar
(e0) ≥ |waσ0 | for all e0 ∈ R(νa

r)∩Σσ0 , we may apply Proposition
14.2 to (14.30) to obtain:

W a
r ≥ |waσ0 |Aσ0 +

∑
σ =σ0

min
g1,...,gr+|waσ0 |∼cσ0 ,

h1,...,hr∼c−1
σ0

Λs−1([∂ν]g1 · · · gr+|waσ0 |h1 · · ·hr)Aσ

(14.31)

(s in (14.31) is the number of sectors). We note that it follows from (14.30) and
(14.22) that

W a
r ≥

∑
σ

|waσ|Aσ. (14.32)

For certain homotopy classes of tangent unit-vector fields on a rectangular
prism, R, one can show that the estimate (14.32) based on spelling lengths leads
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to an improvement of the lower bound of Theorem 14.2. Let:

R = {r | 0 ≤ rj ≤ Lj , j = x, y, z}, (14.33)

where for convenience we have chosen coordinates with the origin at one of the
vertices and axes parallel to the edges. By convention, we take Lx ≥ Ly ≥ Lz.
In this case, the sectors are the coordinate octants of S2 with area Aσ = π/2.

Reflection-symmetric homotopy classes on R are the homotopy classes of
tangent unit-vector fields which are invariant under reflections through the mid-
planes of the prism:

n(x, y, z) = n(Lx − x, y, z) = n(x, Ly − y, z) = n(x, y, Lz − z). (14.34)

In this case, the wrapping numbers at two vertices a and ā related by a single
reflection differ by a sign:

waσ = −wāσ. (14.35)

Thus, the wrapping numbers about the origin determine all the rest, and for
simplicity we denote these by wσ. The prism, and reflection-symmetric configu-
rations in particular, will also feature in Sections 14.5 and 14.6.

To estimate EinfR (h) for reflection-symmetric h, it suffices to consider tangent
unit-vector fields n which are themselves reflection symmetric. From (14.29) and
(14.32) it follows that:

EinfR (h) ≥ 4π
∑
σ

|wσ|Lz, (14.36)

which coincides with the lower bound (14.19) of Theorem 14.2 (a minimal connec-
tion in this case is obtained by pairing vertices at the endpoints of the (shortest)
Lz-edges of R). However, by using the estimate (14.31) instead of (14.32), we
get the following.

Theorem 14.3 (Majumdar et al. 2008) Let R be a nonconformal reflection-
symmetric homotopy class in R. Let σ+ denote the sector with largest positive
wrapping number, denoted W+, and let σ− denote the sector with largest (in
magnitude) negative wrapping number, denoted W−. Let:

∆(h) = max

W+ − ∑
σ∈adj(σ+) |wσ>0

wσ − χ, |W−| −
∑

σ∈ adj (σ−) |wσ<0

|wσ| − χ, 0

,
(14.37)

where adj (σ) denotes the set of (three) octants adjacent to (i.e., sharing an edge
with) σ and χ is equal to 0 or 1 depending on the signs of the edge orientations
and kink numbers. Then:

Einf
R (h) ≥ 4π

(∑
σ

|wσ|+ 2∆(h)

)
Lz. (14.38)

For typical nonconformal homotopy classes, ∆(h) > 0.
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14.5 Upper bound in a prism

In Theorem 14.1, one obtains an equality for the infimum Dirichlet energy for a
prescribed set of point defects, rather than just a lower bound, by constructing
a sequence n(j) whose energies approach 8πL(P(d),N (d)). It can be shown that a
subsequence n(k) approaches a constant away from lines joining the paired defects
in a minimal connection (here assumed unique), while |∇n(k)|2 approaches a
singular measure supported on these lines (Brezis et al. 1986). For tangent unit-
vector fields on P , the boundary conditions preclude such a construction; n is
required to vary across the faces of P , and therefore throughout its interior.
However, by constructing tangent unit-vector fields which saturate the local
inequality (14.12) over most of P , we can produce upper bounds for the Dirichlet
energy with the same scaling with homotopy invariants as the lower bound of
Theorem 14.2. Details are given in (Majumdar et al. 2004a; Majumdar 2006;
Majumdar et al. 2008).

Here in outline is a procedure for constructing such configurations. Fix a set
of values h of the homotopy invariants. As in Section 14.4.2, let Oa ⊂ S2 denote
the set of directions about the vertex va subtended by P . Define spherical cleaved
surfaces:

Ca = {va + rae | e ∈ S2}, (14.39)

where ra is taken to be less than half the length of the smallest edge coincident
at va (so that the Cas do not intersect). Specify n on Ca so as to satisfy tangent
boundary conditions with wrapping numbers given by h, and take n to be con-
stant along rays from Ca to va. It remains to define n on P̂ , the (closed) domain
obtained by excising the cones between the Cas and vas. The boundary of P̂ is
composed of i) the Cas and ii) the faces of P truncated by the Cas. Extend n
smoothly to these truncated faces so as to satisfy tangent boundary conditions.
Choose a point p in the interior of P̂ . Along rays from Ca to p, take n to be
constant. Along rays from each truncated face to p, rotate the values of n out
of the tangent plane to the outward normal. There emerges a discontinuity at
p, but this is easily removed. If n is specified on the Cas to be conformal or
anticonformal, except possibly on a small subset where its derivative is suitably
controlled, then the local inequality (14.12) is saturated throughout most of P ,
and the Dirichlet energy can be shown to be proportionate to the lower bound
of Theorem 14.2 independently of h.

The main difficulty in carrying out this procedure is in defining n on the Cas.
Let νa : Oa → S2 be given by νa(e) = n(va + rae) (similarly to (14.27)). We
note that Oa is a geodesic polygon on S2; its sides are arcs of the great circles of
directions tangent to the faces of P which are coincident at va. Tangent boundary
conditions require that νa maps each side of Oa into the great circle containing
it. If h is conformal with respect to va (the anticonformal and nonconformal
cases are discussed below), we are led to the following:
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Problem 14.1 Find conformal maps on S2 which preserve a given set of
geodesics.

Restricting the domain of such a map to Oa yields a candidate for νa.
In the case of the rectangular prism R, Problem 14.1 is readily solved. There

are three geodesics which meet at right angles, and which may be taken to be
the great circles about x̂, ŷ, and ẑ. Under the stereographic projection e �→ w =
(ex + iey)/(1+ ez) from S2 to the extended complex plane, these are mapped to
the real axis, imaginary axis and unit circle respectively. Problem 14.1 becomes
one of finding locally analytic functions f(w) such that i) f(w) is real when w
is real, ii) f(w) is imaginary when w is imaginary, and iii) |f(w)| = 1 when
|w| = 1. Property i) implies that f is real; ii) then implies that f is odd; iii) then
implies that f(1/w) = 1/f(w). Therefore, if w∗ is a zero of f , then −w∗ and
w̄∗ are zeros, while 1/w̄∗ is a pole. Restricting to f to be meromorphic, we may
conclude that f is rational of the form:

f(w) = ±w2m+1
a∏

j=1

(
w2 − r2j
r2jw

2 − 1

)ρj b∏
k=1

(
w2 + s2k
s2kw

2 + 1

)σk

×

×
c∏

l=1

(
(w2 − t2l )(w2 − t̄2l )
(t2lw2 − 1)(t̄2lw2 − 1)

)τl

. (14.40)

The rjs denote the real zeros (ρj = 1) and poles (ρj = −1) of f between 0 and 1;
the sks, the imaginary zeros and poles of f (according to σk = ±1) between 0
and i ; and the tls, the complex zeros and poles of f (according to τl = ±1) with
modulus less than one and argument between 0 and π/2.

The parameters in (14.40) can be chosen to realize any admissible set of
conformal (i.e., nonpositive) wrapping numbers. Anticonformal topologies can
be realised by replacing w with w̄. Nonconformal topologies can be produced
by modifying f in a small neighbourhood to be anticonformal and smoothly
interpolating between the conformal and anticonformal domains.

Let:

E−
P (h) =

∑
σ

2AσL(Pσ(h),N σ(h)) (14.41)

denote the lower bound of Theorem 14.2.

Theorem 14.4 (Majumdar et al. 2007b) Let R denote a rectangular prism with
sides of length Lx≥Ly ≥Lz and largest aspect ratio κ = Lx/Lz. Then:

Einf
R (h) ≤ Cκ3E−

P (h) (14.42)

for some constant C independent of h and Lx, Ly, Lz.
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In the proof of Theorem 14.4, the positions of the zeros and poles of the
conformal map (14.40) must be chosen carefully to ensure that the bound is
achieved.

For reflection-symmetric conformal homotopy classes (cf (14.34)), a simpler
construction leads to an improved result, in which C = 1 and κ3 is replaced by
(L2x + L2y + L

2
z)
1/2/Lz.

Theorem 14.5 (Majumdar et al. 2004a) Let R denote a rectangular prism with
sides of length Lx ≥ Ly ≥ Lz and h a reflection-symmetric homotopy class which
is conformal about one of the vertices. Then:

Einf
R (h) ≤

(L2x + L2y + L
2
z)
1/2

Lz
E−

P (h). (14.43)

Theorem 14.5 extends to nonconformal reflection-symmetric homotopy classes,
provided E−

P (h) is replaced by the lower bound given by Theorem 14.5
(Majumdar et al. 2008).

14.6 Existence and regularity of local minimisers:
numerical results

Using direct methods, one might expect to establish the existence of a global
minimizer of the Dirichlet energy for tangent unit-vector fields on P . The exis-
tence of (continuous) local minimizers in a given homotopy class h, however, is
more difficult to address. The homotopy classes are not weakly closed, so that
the existence of such local minimizers is not guaranteed; EinfP (h) may not be
realized (just as the infimum energy for a prescribed set of point defects in R3 is
not realized). We also recall the Hardt–Lin phenomenon (Hardt and Lin 1989) –
global minimizers of the Dirichlet energy may have interior singularities, even
when continuous unit-vector fields are admissible. If continuous local minimizers
exist, then one would like to analyse their regularity (Schoen and Uhlenbeck
1982, 1983; Duzaar and Mingione 2004; Moser 2005).

Questions about the existence and regularity of continuous local minimizers
of given homotopy type appear to be open for the problems we are considering.
Below we describe some numerical results which suggest that, for some homotopy
classes, smooth minimizers always exist, while for others, they may exist or not
depending on the geometry of P .

The first examples concern two reflection-symmetric homotopy classes in a
rectangular prism, denoted here by h0 and h1, which are both conformal with
respect to one of the vertices (and, therefore, conformal or anticonformal with
respect to the others). Details are given in (Majumdar et al. 2004a). h0 is the
simplest possible, in which there is a single nonzero wrapping number equal
to −1, so that n takes values in a single octant of S2. The restriction of n to a
spherical cleaved surface corresponds to the conformal map given by f0(w) = w
(cf (14.40)). Such a configuration is shown in Fig. 14.4. The lower bound for the
infimum energy of Theorem 14.2 is 4πLz. The upper bound of Theorem 14.3 can
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Fig. 14.4: Unwrapped configuration in class h0.

be improved in this case by explicit evaluation of the Dirichlet energy for a trial
configuration, yielding:

EinfR (h0) < 8
LyLz

L2x
F2

(
1,

1
2
,
1
2
,
1
2
,
1
2
,−
L2y
L2x
,−L

2
z

L2x

)
+ (x→ y → z) + (x→ z → y), (14.44)

where F2(α, β, β′, γ, γ′; s, t) is the Appell hypergeometric function (Gradshteyn
and Ryzhik 1980). For a unit cube, we get the bounds:

12.5 � EinfR (h0) � 15.3 (14.45)

We computed minimizers numerically using two methods, namely solution of the
Euler–Lagrange equation (using FEMLAB, a commercial PDE solver) and gra-
dient descent. The converged energies from both methods agree, giving approx-
imately 14.8. The converged unit-vector field is indistinguishable from Fig. 14.4
at the resolution shown, and appears to be regular away from the vertices.

The homotopy class h1 is the next simplest among the reflection-symmetric
conformal classes. There are three nonzero wrapping numbers equal to −1 in
contiguous octants, so that n takes values in three-quarters of a hemisphere.
The restriction of n to a spherical cleaved surface corresponds to the
conformal map:

f1(w) = w
w2 + s2

s2w2 + 1
. (14.46)
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1

0
2

0 0

2

Fig. 14.5: A configuration n in h1, generated by the conformal map
f(w) = w(w2 + s2)/(s2w2 + 1) for s = .5. n describes a 3/4-turn about
each vertex in the top and bottom face.

Such a configuration is shown in Fig. 14.5. On the xy-faces of the prism, n
executes a three-quarter turn about each vertex, corresponding to kink num-
bers of ±1; the kink numbers on the other faces all vanish. As the parameter
s approaches 1 from below, half-turns becomes concentrated along the y-edges,
while f1 approaches f0 away from the y-edges. The corresponding family of
configurations ns is weakly but not strongly continuous with respect to s (an
example of the fact that h1 is not weakly closed).

Both numerical methods indicate that h1 supports a smooth local mini-
mizer for sufficiently thin slabs (Lx/Ly, Lx/Lz � 1/10), while for aspect ratios
closer to unity, the numerical solution converges to the minimizer in h0. Some
insight into this behaviour is provided by computing the Dirichlet energy of trial
configurations characterized by the one-parameter family (14.46), as shown in
Fig. 14.6. For a cube (dashed curve), the energy approaches a minimum as s
approaches 1, corresponding to a configuration in which half-turns concentrate
along the y-edges. For Lx = 20, Ly = 10, Lz = 1 (solid curve), the energy has
a minimum for s between 0 and 1, corresponding to a smooth configuration.
Note that concentration along the shortest (Lz)-edges (which support the mini-
mal connection) is not compatible with the topology, as the nonzero kink num-
bers lie in the xy-faces. Analogous arguments suggest that reflection-symmetric
homotopy classes with two or more nonzero kink numbers do not contain smooth
minimizers (for these classes, concentration along the shortest edge is compatible
with the topology). However, it is conceivable that more nonreflection-symmetric



Liquid crystals and harmonic maps in polyhedral domains 323

0 0.5 1
40

42

44

46

48

50

52

s

ε

Fig. 14.6: Scaled energy ε = E/(LxLyLz)1/3 of the conformal configuration
w(w2+s2)/(s2w2+1). Solid curve: Lx = 20, Ly = 10, Lz = 1. Dashed curve:
Lx = Ly = Lz = 1.

homotopy classes (for which minimal connections do not necessarily pair vertices
along edges) support smooth local minimizers.

The last numerical example is an idealized model of the PABN device. Details
are given in (Majumdar et al. 2007). In fact, the model lies outside the class
of problems we have considered so far; the domain is not a polyhedron, and
the boundary conditions are not purely tangent. We take the PABN to consist
of a rectangular post of square cross-section centred on the bottom surface of
a rectangular cell of square cross-section, as in Fig. 14.7. In keeping with the
device dimensions, the cell height is taken to be three times the cell width, and
the cell width to be twice the post width. The height of the post is variable.
Boundary conditions are dictated by material characteristics of the substrates.
Tangent boundary conditions apply on the bottom substrate and on the post,
while normal boundary conditions are appropriate for the top substrate. Periodic
boundary conditions are imposed on the vertical sides of the cell, simulating a
two-dimensional array of cells supporting the same nematic configuration (at a
given time) and comprising a single pixel.

We consider four simple homotopy classes, in which the kink numbers are
zero and the trapped areas taken to have their minimal allowed values. The
orientation of n on the horizontal edges of the post are fixed, as in Fig. 14.7(a).
The classes are distinguished by the relative orientations of n on the vertical
edges of the post. Up to symmetry, there are four distinct possibilities. For the
tilted class T , the orientation on all four vertical edges is the same. The other



324 Analysis and stochastics of growth processes and interface models

(a)

P1 P2 P3

(c) (d) (e)

(b)

T

Fig. 14.7: Edge orientations for the four PABN configurations. (a) Orientations
on the horizontal edges are the same for all. (b) Tilted profile T . n points up
on all vertical edges. (c) Planar profile P1. n points down on a single vertical
edge (d) Planar profile P2. n points down on a pair of adjacent vertical edges
(e) Planar profile P3. n points down on a pair of opposite vertical edges.

three classes, called planar, are obtained by taking the orientation to be opposite
on, respectively, one of the vertical edges (the P1 class), two adjacent vertical
edges (P2), and two opposing vertical edges (P3). Configurations in T exihibit a
large vertical component nz in the region around the post. In configurations in
P1 through P3, nz is suppressed by the change in orientation between the vertical
edges.

Local minimizers for each of these homotopy classes were computed using
FEMLAB for a range of post heights. The converged configurations appear to
be smooth away from the vertices of the post. In Fig. 14.8 we plot the converged
energies of the local minimizers as a function of post height. The tilted class
has the lowest energy, which is consistent with experimental observations which
show that the liquid crystal always relaxes into the high-tilt state when cooled
from the isotropic state (Kitson and Geisow 2002). The computations support
the hypothesis that the bistable states of the PABN are topologically distinct.
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Deijfen, M. and Häggström, O., 41, 45,

50, 51
del Rio, R. et al., 198, 199
De Masi, A. et al., 247, 248, 254, 255, 258
Dembo, A. et al., 151, 155
den Hollander, F., 268
determinantal point processes 12, 24
de Witt, C. and Storaeds, R., 151
Dickhoff, W. and Van Neck, D., 178
diffusion limited aggregation (DLA), 12
dilute interacting systems 151
dilute quantum gases 175–6

Gross–Pitaevskii approximation 178–83
potentials and scattering length 176–8

Dirac notation 195
directed bonds, notation 139
directed last-passage percolation

models 13
Dirichlet energy 308

infimum 312–13
local minimizers 320–4
lower bound

minimal connection 311–13
nonabelian invariants 314–18

upper bound in a prism 318–20
discrete empirical shape measures

(empirical cycle counts), 154–5

div–curl lemma 87–8
Domb–Joyce model 57
Donsker, M. and Varadhan, S., 183, 185
Donsker–Varadhan rate function 164, 186
Dorlas, T. et al., 151
double-well potential, 249
drift velocities 269–70
droplet growth 265–6
droplet size, Becker–Döring model 266–8
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Fröhlich, J. and Spencer, T., 199, 201

gainless homogeneous Boltzmann
equation 102–3

validity 105
galaxy formation, adhesion

model 299–302
Garet, O. and Marchand, R., 46
Gärtner–Ellis theorem 161, 167
Gaussian Unitary Ensemble (GUE), 23
Geman, D. et al., 188
generalized cusps, Maxwell sets, 292–5
generalized exclusion 21
generic cusp 293, 294
geodesics, Richardson model 43
Germinet, F. and Klein, A., 201
Germinet, F. et al., 202
Gibbs–Thomson law 224, 231
Giron, B. et al., 227
Girsanov theorem 284
Glauber dynamics 247
global inverse function theorem 283
Goncharov, V., 154
good time intervals 259–60
‘good’ trees 113–14
gradient flow models

motion on a stationary manifold, 246

multiple scales 244–5
switching 245, 246

Gradshteyn, I. and Ryzhik, I., 321
grandcanonical ensemble 150, 151
Green’s function 124, 127, 128, 196

use of fractional moments 202
Griffin, A. et al., 150
Griffiths, R. B. et al., 141
Gronwall lemma 301
Gross, E., 181
Gross–Pitaevskii approximation 2, 174,

175, 178–83
growth processes

fluctuations 22–32
exclusion processes 22–6
Hammersley process 26–9
linear models 29–32

large deviations 32–4
limit shape and evolution 12–22
stochastic processes 9–12
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