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To Maita, Frances, and Lucas



When we have unified enough certain knowledge, we will understand who
we are and why we are here.

If those committed to the quest fail, they will be forgiven. When lost, they
will find another way. The moral imperative of humanism is the endeavour
alone, whether successful or not, provided the effort is honorable and failure
memorable.

Edward O. Wilson, Consilience

Believe those who seek the truth.
Doubt those who find it.

Saying on refrigerator magnet



Preface

As I write, the centennial of Einstein’s annus mirabilis, and in particular of his
great 1905 paper on the electrodynamics of moving bodies, is upon us. Einstein
thought that the principles of the special theory of relativity would be as robust
and secure as those of thermodynamics, and both the special and general theories
have undoubtedly borne the test of time. Each theory in its own right is a triumph.

However confident Einstein was in the solidity of special relativity, there was
nonetheless a vein of doubt running through his writings—culminating in his
1949 Autobiographical Notes—concerning the way he formulated the theory in
1905. It is clear, to me at least, that Einstein was fully conscious right from the
beginning that there were two routes to relativistic kinematics, and that as time
went on the appropriateness of the route he had chosen, which he felt he had to
choose in 1905, was increasingly open to question. In his acclaimed 1982 scientific
biography of Einstein, Abraham Pais noted with disapproval that as late as 1915,
H. A. Lorentz, the contemporary physicist Einstein revered above all others, was
still concerned with the dynamical underpinnings of length contraction. ‘Lorentz
never fully made the transition from the old dynamics to the new kinematics.’
There is a sense, and an important one, in which neither did Einstein.

A small number of other commentators have, over the intervening years, voiced
similar misgivings about the standard construal of the theory, whether in the 1905
formulation or in its geometrical rendition by Minkowski and others following
him. It seems to me that the alternative, so-called ‘constructive’ route to space-
time structure deserves more discussion, and in particular its significance in general
relativity needs to be examined in more detail.

In fact, there are essentially two competing versions of the constructive account,
and in this book I will defend what might be called the ‘dynamical’ version which
contains an echo of some key aspects of the thinking of Hendrik Lorentz, Joseph
Larmor, Henri Poincaré, and particularly George F. FitzGerald prior to the sudden
explosion on the scene of Einstein. (I feel, from dire experience, I must emphasize
from the outset that this approach does not involve postulating the existence of a
hidden preferred inertial frame! The approach is not a version of what is sometimes
called in the literature the neo-Lorentzian interpretation of special relativity.) The
main idea appears briefly in the writings of Wolfgang Pauli and Arthur Eddington,
and in a more sustained fashion in the work of W. F. G. Swann, L. Jánossy, and
J. S. Bell. I have been promoting it in papers over the last decade or so, some
of which were the result of a stimulating collaboration with Oliver Pooley. In a
nutshell, the idea is to deny that the distinction Einstein made in his 1905 paper
between the kinematical and dynamical parts of the discussion is a fundamental
one, and to assert that relativistic phenomena like length contraction and time
dilation are in the last analysis the result of structural properties of the quantum
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theory of matter. Under this construal, special relativity does not amount to a
fully constructive theory, but nor is it a fully fledged principle theory based on
phenomenological principles. Now according to a competing, fully constructive
view, and one dominant within at least the philosophical literature over the last
three decades or so, the basic explanation of these kinematical effects is that rods
and clocks are embedded in Minkowski space-time, with its flat pseudo-Euclidean
metric of Lorentzian signature. This geometric structure, purportedly left behind
even if per impossibile all the matter fields were removed from the world, is, I shall
argue, the space-time analogue of the Cartesian ‘ghost in the machine’, to borrow
Gilbert Ryle’s famous pejorative phrase.

I should make it clear what this little book is not. It is not a textbook on
relativity theory. It is not designed to teach the special or general theory. The
latter only appears in the last chapter of the book, and there is even less about
special relativistic dynamics in the sense of E = mc2 and all that. What the book
is about is the nature of special relativistic kinematics, its relation to space and
time, and how it is supposed to fit in to general relativity. With the exception
of the appendices, the book is designed to read—and here I borrow shamelessly
from my other scientific hero, Charles Darwin—as one long argument.

Other research collaborators who have worked with me on topics related to
the book are Katherine Brading, Peter Holland, Adolfo Maia, Roland Sypel,
and Christopher Timpson; our interaction has been enjoyable and rewarding.
I have benefitted a great deal from countless interactions with my Oxford col-
leagues Jeremy Butterfield and Simon Saunders; through their constructive crit-
icism they have tried to keep me honest. I have also had very useful discus-
sions on space-time matters and/or the history of relativity with Ron Anderson,
Edward Anderson, Guido Bacciagaluppi, Yuri Balashov, Tim Budden, Marco
Mamone Capria, Michael Dickson, Pedro Ferreira, Brendan Foster, Michel Ghins,
Carl Hoefer, Richard Healey, Chris Isham, Michel Janssen, Oliver Johns, Clive
Kilmister, Douglas Kutach, Nicholas Maxwell, Arthur Miller, John Norton,
Hans Ohanian, Huw Price, Dragan Redžić, Rob Rynasiewicz, Graham Shore,
Constantinos Skordis Richard Staley, Geoff Stedman, George Svetlichny, Roberto
Torretti, Bill Unruh, David Wallace, Hans Westman, and Bill Williams. Antony
Valentini suggested the first part of the title of this book, and has been a constant
source of encouragement and inspiration. Useful references were kindly provided
by Gordon Beloff and Michael Mackey. Katherine and Stephen Blundell vol-
unteered to read the first draft of the book and apart from pointing out many
typographical and spelling errors etc., made a number of important suggestions
for improving clarity—and crucially encouraging noises. To all of these friends
and colleagues I owe a debt of gratitude.

The two people who have had the greatest influence on my thinking about rel-
ativity are Julian Barbour and the late Jeeva Anandan who was also a collaborator.
It is hard to summarize the multifarious nature of that influence, or to quantify
the debt I owe them through their written work and many hours of conversation
and contact. Julian Barbour taught me that the question ‘what is motion?’ is far
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deeper than I first imagined, and as a result made me entirely rethink the nature
of space and time, and much else besides. Indeed, Julian’s 1989 masterpiece on
the history of dynamics Absolute or Relative Motion? came as a revelation to me; its
combination of sure-footed history, conceptual insight and sheer exhilaration was
unlike anything I had read before. I should perhaps clarify that my book is not
designed to be a defence of a Leibnizian/Machian relational view of space-time
of the kind Barbour has been articulating and defending with such brilliance in
recent years, and in particular in his 1999 The End of Time. Although I have sym-
pathies with this view, in my opinion the dynamical version of relativity theory
is a separate issue and can be justified on much wider grounds, having essentially
to do with good conceptual house-keeping. Jeeva Anandan, despite his excep-
tional abilities as a geometer, likewise drove home the lesson that physics is more
than mathematics, and that operational considerations, though philosophically
unfashionable, are essential in getting to grips with it.

I would also like to acknowledge the influence of the late Robert Weingard,
whose enthusiasm for the subject of space-time rubbed off on me. He would
almost certainly have found this book uncongenial in many ways, but his open-
mindedness leads me to think, fondly, that he would not have dismissed it. I am
indebted also to Jon Dorling and Michael Redhead, who in their different ways,
taught me the ropes of philosophy of physics.

This book grew out of the experience of teaching a course over a number of
years on the foundations of special relativity to second-year students in the Physics
and Philosophy course at Oxford University. It is a privilege and pleasure to teach
students of this calibre. I have gained a lot from their feedback through the years,
and particularly that of Marcus Bremmer, James Orwell, Katrina Alexandraki,
Michael Jampel, Hilary Greaves, and Eleanor Knox.

This project received vital prodding and cajoling from Peter Momtchiloff at
Oxford University Press. His encouragement and faith are greatly appreciated.
The comments, critical and otherwise, provided by the readers appointed by the
Press to review the manuscript, Yuri Balashov, Carl Hoefer, and Steve Savitt,
were very helpful and much appreciated. The copy-editor for the Press, Conan
Nicholas, did a meticulous job on the original manuscript; I am very grateful
to him for the resulting improvements. I thank Oliver Pooley and particularly
Antony Eagle for patiently setting me straight about LATEX. Abdullah Sowkaar D
and Bhuvaneswari H Nagarajan at Newgen, India provided vital technical LATEX-
related help with the index, through the good services of Jason Pearce. Thanks
go also to the staff of the Philosophy Library and the Radcliffe Science Library at
Oxford University (physical sciences) for their ready and cheerful help.

Research related to different parts of this book was undertaken with the support
of the Radcliffe Trust, the British Academy, and the Arts and Humanities Research
Council (AHRB) of the UK. I am grateful to all these bodies, and to John Earman
and Larry Sklar for their crucial help in securing the AHRB support.

Finally, without the sacrifices, patience, and love coming from my family—
Maita, Frances, and Lucas—the book would never have seen the light of day.
Muitíssimo obrigado, meus queridos.
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The “Great Relative.”
Name given Albert Einstein by Hopi Indians, 1921.

“The scientist finds his reward in what Henri Poincaré calls the joy of comprehension . . .”
Albert Einstein.
Pen drawing by the author.



1

Overview

The dogmas of the quiet past are inadequate to the stormy present.

Abraham Lincoln, 1862

1.1 WHEN THE WHOLE RIGMAROLE BEGAN

The claim that a particular theory in science had its true origins at this or that
moment of time, in the emergence of this or that fundamental insight, is almost
bound to be contentious. But there are developments, sometimes in the unpub-
lished writings of a key figure, which deserve more recognition and fanfare in
the literature for being truly seminal moments in the path to a given theory.
In my opinion such a moment occurred in 1889. In the early part of that year
George Francis FitzGerald, Professor of Natural and Experimental Philosophy
at Trinity College Dublin, wrote a letter to the remarkable English auto-didact,
Oliver Heaviside, concerning a result the latter had just obtained in the field
of Maxwellian electrodynamics.1 Heaviside had shown that the electric field
surrounding a spherical distribution of charge should cease to have spherical sym-
metry once the charge is in motion relative to the ether. In this letter, FitzGerald
asked whether Heaviside’s distortion result might be applied to a theory of inter-
molecular forces. Some months later this idea would be exploited in a note by
FitzGerald published in Science, concerning the baffling outcome of the 1887
ether-wind experiment of Michelson and Morley. FitzGerald’s note is today quite
famous, but it was virtually unknown until 1967. It is famous now because the
central idea in it corresponds to what came to be known as the FitzGerald–Lorentz
contraction hypothesis, or rather to a distinct precursor of it. The contraction effect
is a cornerstone of the ‘kinematic’ component of the special theory of relativity
proposed by Albert Einstein in 1905. But the FitzGerald–Lorentz explanation of
the Michelson–Morley null result, known early on through the writings of Oliver
Lodge, H. A. Lorentz, and Joseph Larmor, as well as through FitzGerald’s rela-
tively timid proposals to students and colleagues, was widely accepted as correct

1 This chapter, which relies heavily on Brown (2003), is a brief outline of the main arguments of
the book; references for all the works cited will be given in subsequent chapters.
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before 1905. In fact it was accepted by the time of FitzGerald’s untimely death in
1901 at the age of 49.

Following Einstein’s brilliant 1905 work on the electrodynamics of moving
bodies, and its geometrization by Minkowski which proved to be so important
for the development of Einstein’s general theory of relativity, it became standard
to view the FitzGerald–Lorentz hypothesis as the right idea based on the wrong
reasoning. I strongly doubt that this standard view is correct, and suspect that
posterity will look kindly on the merits of the pre-Einsteinian, ‘constructive’
reasoning of FitzGerald, if not Lorentz. After all, even Einstein saw the limitations
of his own approach based on the methodology of ‘principle theories’. I need to
emphasize from the outset, however, that I do not subscribe to the existence of the
ether, nor recommend the use to which the notion is put in the writings of our two
protagonists (which was very little). The merits of their approach have, as J. S. Bell
stressed some years ago, a basis whose appreciation requires no commitment to
the physicality of the ether.

There is, nonetheless, a subtle difference between the thinking of FitzGerald and
that of Lorentz prior to 1905 that is of interest. What Bell called the ‘Lorentzian
pedagogy’, and bravely defended, has, as a matter of historical fact, more to do
with FitzGerald than Lorentz. Furthermore, the significance of Bell’s work for
general relativity has still not been fully appreciated.

1.2 FITZGERALD, MICHELSON, AND HEAVISIDE

A point charge at rest with respect to the ether produces, according to both
intuition and Maxwell’s equations, an electric field whose equipotential surfaces
surrounding the charge are spherical. But what happens when the charge dis-
tribution is in uniform motion relative to the ether? Today, we ignore reference
to the ether and simply exploit the Lorentz covariance of Maxwell’s equations,
and transform the stationary solution to one associated with a frame in relative
uniform motion.

But in 1888, the covariance group of Maxwell’s equations was yet to be discov-
ered, let alone understood physically—the relativity principle not being thought
to apply to electrodynamics—and the problem of moving sources required the
solution of Maxwell’s equations. These equations were taken to hold only relative
to the rest frame of the ether. Oliver Heaviside found—it seems more on hunch
than brute force—and published the solution: the electric field of the moving
charge distribution undergoes a distortion, with the longitudinal components
of the field being affected by the motion but the transverse ones not. The new
equipotential surfaces define what came to be called a Heaviside ellipsoid.

The timing of Heaviside’s distortion result was propitious, appearing as it did
in the confused aftermath of the 1887 Michelson–Morley (MM) experiment.
FitzGerald was one of Heaviside’s correspondents and supporters, and found,
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like all competent ether theorists, the null result of this fantastically sensitive
experiment a mystery. Null results in earlier first-order ether wind experiments
had all been explained in terms of the Fresnel drag coefficient, which would in
1892 receive an electrodynamical underpinning of sorts in the work of Lorentz.
But by early 1889 no one had accounted for the absence of noticeable fringe
shifts in the second-order MM experiment. How could the apparent isotropy
of the two-way light speed inside the Michelson interferemeter be reconciled
with the seeming fact that the laboratory was speeding through the ether? Why
didn’t the ether wind blowing through the laboratory manifest itself when the
interferometer was rotated?

The conundrum of the MM null-result was surely in the back of FitzGerald’s
mind when he made an intriguing suggestion in that letter to Heaviside in January
1889. The suggestion was simply that a Heaviside distortion might be applied
‘to a theory of the forces between molecules’ of a rigid body. FitzGerald had
no more reason than anyone else in 1889 to believe that these intermolecular
forces were electromagnetic in origin. No one knew. But if these forces too were
rendered anisotropic by the mere motion of the molecules, which FitzGerald
regarded as plausible in the light of Heaviside’s work, then the shape of a rigid
body would be altered as a consequence of the motion. This line of reasoning
was briefly spelt out, although with no explicit reference to Heaviside’s work,
in a note that FitzGerald published later in the year in the American journal
Science. This was the first correct insight into the mystery of the MM experiment
when applied to the stone block on which the Michelson interferometer was
mounted. But the note sank into oblivion; FitzGerald did not bother to confirm
that it was published, and seems never to have referred to it, though he did
promote his deformation idea in lectures, discussions, and correspondence. His
relief when he discovered that Lorentz was defending essentially the same idea
was palpable in a good-humoured letter he wrote to the great Dutch physicist
in 1894, which mentioned that he had been ‘rather laughed at for my view
over here’.

It should be noted that FitzGerald never seems to have used the words ‘contrac-
tion’ or ‘shortening’ in connection with the proposed motion-induced change of
the body. The probable reason is that he did not have the purely longitudinal con-
traction, now ubiquitously associated with the ‘FitzGerald–Lorentz hypothesis’,
in mind. It is straightforward to show, though not always appreciated, that the
MM result does not demand it. Any deformation (including expansion) in which
the ratio of the suitably defined transverse and longitudinal length change factors
equals the Lorentz factor γ = (1 − v2/c2)−1/2 will do, and there are good
reasons to think that this is what FitzGerald meant, despite some claims to the
contrary on the part of historians. It is certainly what Lorentz had in mind for
several years after 1892, when he independently sought to account for the MM
result by appeal to a change in the dimensions of rigid bodies when put into
motion.
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1.3 EINSTEIN

In his masterful review of relativity theory of 1921, Wolfgang Pauli was struck
by the difference between Einstein’s derivation and interpretation of the Lorentz
transformations in his 1905 paper and that of Lorentz in his theory of the electron.
Einstein’s discussion, noted Pauli, was in particular ‘free of any special assumptions
about the constitution of matter’, in strong contrast with Lorentz’s treatment. He
went on to ask: ‘Should one, then, completely abandon any attempt to explain
the Lorentz contraction atomistically?’

It may surprise some readers to learn that Pauli’s answer was negative. Be that
as it may, it is a question that deserves careful attention, and one that, if not
haunting him, then certainly gave Einstein unease in the years that followed the
full development of his theory of relativity.

Einstein realized, possibly from the beginning, that the first, ‘kinematic’ section
of his 1905 paper was problematic, that it effectively rested on a false dichotomy.
What is kinematics? In the present context it is the universal behaviour of rods and
clocks in motion, as determined by the inertial coordinate transformations. And
what are rods and clocks, if not, in Einstein’s own later words, ‘moving atomic con-
figurations’? They are macroscopic objects made of micro-constituents—atoms
and molecules—held together largely by electromagnetic forces. But it was the
second, ‘dynamical’ section of the 1905 paper that dealt with the covariant treat-
ment of Maxwellian electrodynamics. Einstein knew that the first section was not
wholly independent of the second, and in 1949 would admit that the treatment
of rods and clocks in the first section as primitive, or ‘self-sustained’ entities was
a ‘sin’. The issue is essentially the same one that Pauli had stressed in 1921:

The contraction of a measuring rod is not an elementary but a very complicated process.
It would not take place except for the covariance with respect to the Lorentz group of
the basic equations of electron theory, as well as those laws, as yet unknown to us, which
determine the cohesion of the electron itself.

Pauli is here putting his finger on two important points: that the distinction
between kinematics and dynamics is not fundamental, and that to give a full
treatment of the dynamics of length contraction was still beyond the resources
available in 1921, let alone 1905. And this latter point was precisely the basis of
the excuse Einstein later gave for his ‘principle theory’ approach—modelled on
thermodynamics—in 1905 in establishing the Lorentz transformations.

The singular nature of Einstein’s argumentation in the kinematical section of
his paper, its limitations and the recognition of these limitations by Einstein
himself, will be discussed in detail below. It is argued that there is in fact a sig-
nificant dynamical element in Einstein’s reasoning in that section, specifically
in relation to the use of the relativity principle, and that it is unclear whether
Einstein himself appreciated this. The main lesson that emerges, as I see it, is
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that the special theory of relativity is incomplete without the assumption that
the quantum theory of each of the fundamental non-gravitational interactions—
and not just electrodynamics—is Lorentz-covariant. This lesson was anticipated
as early as 1912 by W. Swann, and established in a number of his papers up to
1941. It was independently advocated by L. Jánossy in 1971, and reinforced in
the didactic approach to special relativity advocated by J. S. Bell in 1976, to which
we return shortly.

Swann’s unsung achievement was in effect to spell out in detail the meaning of
Pauli’s 1921 warning above. His incisive point was that the Lorentz covariance of
Maxwellian electrodynamics, for example, has no clear connection with the claim
that electrodynamics satisfies the relativity principle, unless it could be established
that the Lorentz transformations are more than just a formal change of variables
and actually codify the behaviour of moving rods and clocks. But the validity of
this last assumption depends on our best theory of the micro-constitution of stable
macroscopic objects. Or rather, it depends on a fragment of quantum theory (for it
could not be other than a quantum theory): that at the most fundamental level all
the interactions involved in the composition of matter, whatever their nature, are
Lorentz covariant. It must have been galling for Einstein to recognize this point,
given his lifelong struggle with the quantum. It is noteworthy that although he
repeats in his 1949 Autobiographical Notes the imperative to understand rods and
clocks as structured, composite bodies, which he had voiced as early as 1921, he
makes no concession to the great strides that had been made in the quantum
theory of matter in the intervening years.

1.4 FITZGERALD AND BELL’S ‘LORENTZIAN
PEDAGOGY ’

In 1999, Oliver Pooley and I referred to this insistence on this role of quantum
theory in special relativity as the ‘truncated’ version of the ‘Lorentzian pedagogy’
advocated by J. S. Bell in 1976. The full version of this pedagogy involves provi-
ding a constructive model of the matter making up a rod and/or clock and solving
the equations of motion in the model. Bell’s terminology is slightly misplaced: it
would be more appropriate still to call this reasoning the ‘FitzGeraldian pedagogy’!

Bell’s model (which is discussed at greater length below) has as its starting
point a single atom built of an electron circling a much more massive nucleus.
Using not much more than Maxwellian electrodynamics (taken as valid relative
to the rest frame of the nucleus), Bell determined that the orbit undergoes the
familiar relativistic longitudinal contraction, and its period changes by the familiar
‘Larmor’ dilation. Bell claimed that a rigid arrangement of such atoms as a whole
would do likewise, given the electromagnetic nature of the interatomic/molecular
forces. He went on to demonstrate that there is a system of primed variables such
that the description of the uniformly moving atom with respect to them is the
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same as the description of the stationary atom relative to the orginal variables—
and that the associated transformations of coordinates are precisely the familiar
Lorentz transformations. But it is important to note that Bell’s prediction of length
contraction and time dilation is based on an analysis of the field surrounding a
(gently) accelerating nucleus and its effect on the electron orbit. The significance
of this point will become clearer in the next section.

Bell cannot be berated for failing to use a truly satisfactory model of the atom; he
was perfectly aware that his atom is unstable and that ultimately only a quantum
theory of both nuclear and atomic cohesion would do. His aim was primarily
didactic. He was concerned with showing us that

[W]e need not accept Lorentz’s philosophy [of the reality of the ether] to accept a Lorentzian
pedagogy. Its special merit is to drive home the lesson that the laws of physics in any one
reference frame account for all physical phenomena, including the observations of moving
observers.

For Bell, it was important to be able to demonstrate that length contraction
and time dilation can be derived independently of coordinate transformations—
independently of a technique involving a change of variables.

But this is not strictly what Lorentz had done in his treatment of moving
bodies, despite Bell’s claim that he followed very much Lorentz’s approach. (It is
noteworthy both that Bell gives no references to Lorentz’s papers, and admits that
the inspiration for the method of integrating equations of motion in a model of
the sort he presented was ‘perhaps’ a remark of Larmor.)

The difference between Bell’s treatment and Lorentz’s theorem of corresponding
states that I wish to highlight is not that Lorentz never discussed accelerating
systems. He didn’t, but of more relevance is the point that Lorentz’s treatment, to
put it crudely, is (almost) mathematically the modern change-of-variables-based-
on-covariance approach but with the wrong physical interpretation. Lorentz used
auxiliary coordinates, field strengths, and charge and current densities associated
with an observer co-moving with the laboratory, to set up states of the physical
bodies and fields that ‘correspond’ to states of these systems when the laboratory is
at rest relative to the ether, both being solutions of Maxwell’s equations. Essentially,
prior to Einstein’s work, Lorentz failed to understand (even when Poincaré pointed
it out) that the auxiliary quantities were precisely the quantities that the co-moving
observer would be measuring, and not mere mathematical devices. But then to
make contact with the actual physics of the ether-wind experiments, Lorentz
needed to make a number of further complicating assumptions, the nature of
which we return to later. Suffice it to say here that the whole procedure was
limited in practice to stationary situations associated with optics, electrostatics,
and magnetostatics.

The upshot was an explanation of the null results of the ether-wind experi-
ments that was if anything mathematically simpler, but certainly conceptually
much more complicated—not to say obscure—than the kind of exercise Bell was
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involved with in his 1976 essay. It cannot be denied that Lorentz’s argumen-
tation, as Pauli noted in comparing it with Einstein’s, is dynamical in nature.
But Bell’s procedure for accounting for length contraction is in fact much closer
to FitzGerald’s 1889 thinking based on the Heaviside result, summarized in
section 1.2 above. In fact it is essentially a generalization of that thinking to
the case of accelerating bodies.

Finally, a word about time dilation. It was seen above that Bell attributed its dis-
covery to Joseph Larmor, who indeed had partially—very partially—understood
the phenomenon in his 1900 Aether and Matter, a text based on papers Larmor
had published in the very last years of the nineteenth century. It is still widely
believed that Lorentz failed to anticipate time dilation before the work of Einstein
in 1905, as a consequence of failing to see that the ‘local’ time appearing in his own
(second-order) theorem of corresponding states was more than just a mathem-
atical artifice, but rather the time as read by suitably synchronized clocks at rest
in the moving system. It is interesting that if one does an analysis of the famous
variation of the MM experiment performed by Kennedy and Thorndike in 1932,
exactly in the spirit of Lorentz’s 1895 analysis of the MM experiment and with no
allowance for time dilation, then the result, taking into account the original MM
outcome too, is the wrong kind of deformation for moving bodies.2 It can easily be
shown that rods must contract transversely by the factor γ−1 and longitudinally
by the factor γ−2. One might be tempted to conclude that Lorentz, who had
opted for purely longitudinal contraction (for dubious reasons), was lucky that it
took so long for the Kennedy–Thorndike experiment to be performed!

But the conclusion is probably erroneous. In 1899, as Michel Janssen recently
spotted, Lorentz had already discussed yet another interesting variation of the MM
experiment, suggested a year earlier by the French physicist A. Liénard, in which
transparent media were placed in the arms of the interferometer. The experiment
had not been performed, but Lorentz both suspected that a null result would still
be obtained, and realized that shape deformation of the kind he and FitzGerald had
proposed would not be enough to account for it. What was lacking, according
to Lorentz? Amongst other things, the claim that the frequency of oscillating
electrons in the light source is lower in systems in motion than in systems at rest
relative to the ether. Lorentz had pretty much the same (limited) insight into the
nature of time dilation as Larmor did, at almost the same time. It seems that the
question of the authorship of time dilation is ripe for reanalysis, and we return to
this issue in Chapter 4.

2 Kennedy and Thorndike have as the title of their paper ‘Experimental Establishment of the
Relativity of Time’, but their experiment does not imply the existence of time dilation unless it is
assumed that motion-induced deformation in rigid bodies is purely longitudinal—indeed, just the
usual length contraction. As mentioned above, this specific kind of deformation is not a consequence
of the MM experiment, and was still not established experimentally in 1932 (although it was widely
accepted). What the Kennedy–Thorndike experiment established unequivocally, in conjunction with
the MM experiment, is that the two-way light speed is (inertial) frame-independent.
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1.5 WHAT SPACE-TIME IS NOT

If you visit the Museum of the History of Science in Oxford, you will find a number
of fine examples of eighteenth- and nineteenth-century devices called waywisers,
designed to measure distances along roads. Typically, these devices consist of an
iron-rimmed wheel, connected to a handle and readout dial. The dial registers
the number of revolutions of the wheel as the whole device is pulled along the
road, and has hands which indicate yards and furlongs/miles. (Smaller versions
of the waywiser are seen being operated by road maintenance crews today in the
UK, and are sometimes called measuring wheels.) The makers of these original
waywisers had a premonition of relativity! For the dials on the waywisers typically
look like clocks. And true, ideal clocks are of course the waywisers, or hodometers,
of time-like paths in Minkowski space-time.

The mechanism of the old waywiser is obvious; there is no mystery as to how
friction with the road causes the wheel to revolve, and how the information about
the number of such ‘ticks’ is mechanically transmitted to the dial. But the true
clock is more subtle.There is no friction with space-time, no analogous mechanism
by which the clock reads off four-dimensional distance. How does it work?

One of Bell’s professed aims in his 1976 paper on ‘How to teach relativity’ was
to fend off ‘premature philosophizing about space and time’. He hoped to achieve
this by demonstrating with an appropriate model that a moving rod contracts,
and a moving clock dilates, because of how it is made up and not because of the
nature of its spatio-temporal environment. Bell was surely right. Indeed, if it is
the structure of the background spacetime that accounts for the phenomenon,
by what mechanism is the rod or clock informed as to what this structure is?
How does this material object get to know which type of space-time—Galilean
or Minkowskian, say—it is immersed in?

Some critics of Bell’s position may be tempted to appeal to the general theory
of relativity as supplying the answer. After all, in this theory the metric field is
a dynamical agent, both acting on, and being acted upon by, the presence of
matter. But general relativity does not come to the rescue in this way (and even if
it did, the answer would leave special relativity looking incomplete). Indeed the
Bell–Jánossy–Pauli–Swann lesson—which might be called the dynamical lesson—
serves rather to highlight a feature of general relativity that has received far too
little attention to date. It is that in the absence of the strong equivalence principle,
the metric gµν in general relativity has no automatic chronometric operational
interpretation.

For consider Einstein’s field equations

Rµν − 1
2

gµνR = 8πGTµν (1.1)
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where Rµν is the Ricci tensor, R the curvature scalar, Tµν the stress energy tensor
associated with matter fields, and G the gravitational constant. A possible space-
time, or metric field, corresponds to a solution of this equation, but nothing in
the form of the equation determines either the metric’s signature or its operational
significance. In respect of the last point, the situation is not wholly dissimilar from
that in Maxwellian electrodynamics, in the absence of the Lorentz force law. In
both cases, the ingredient needed for a direct operational interpretation of the
fundamental fields is missing.

But of course there is more to general relativity than the field equations. There
is, besides the specification of the Lorentzian signature for gµν , the crucial assump-
tion that locally physics looks Minkowskian. (Mathematically of course the tan-
gent spaces are automatically Minkowskian, but the issue is one of physics, not
mathematics.) It is a component of the strong equivalence principle that in ‘small
enough’ regions of space-time, for most practical purposes the physics of the
non-gravitational interactions takes its usual Lorentz covariant form. In short,
as viewed from the perspective of the local freely falling frames, special relativity
holds when the effects of space-time curvature—tidal forces—can be ignored.
It is this extra assumption, which brings in quantum physics even if this point
is rarely emphasized, that guarantees that ideal clocks, for example, can both be
defined and shown to survey the postulated metric field gµν when they are moving
inertially. Only now is the notion of proper time linked to the metric. But yet
more has to be assumed before the metric gains its full, familiar chronometric
significance.

The final ingredient is the so-called clock hypothesis (and its analogue for rods).
This is the claim that when a clock is accelerating, the effect of motion on the rate
of the clock is no more than that associated with its instantaneous velocity—the
acceleration adds nothing. This allows for the identification of the integration
of the metric along an arbitrary time-like curve—not just a geodesic—with the
proper time. This hypothesis is no less required in general relativity than it is in the
special theory. The justification of the hypothesis inevitably brings in dynamical
considerations, in which forces internal and external to the clock (rod) have to be
compared. Once again, such considerations ultimately depend on the quantum
theory of the fundamental non-gravitational interactions involved in material
structure.

In conclusion, the operational meaning of the metric is ultimately made possible
by appeal to quantum theory, in general relativity as much as in the special theory.
The only, and significant, difference is that in special relativity, the Minkowskian
metric is no more than a codification of the behaviour of rods and clocks, or equi-
valently, it is no more than the Kleinian geometry associated with the symmetry
group of the quantum physics of the non-gravitational interactions in the theory
of matter. In general relativity, on the other hand, the gµν field is an autonomous
dynamical player, physically significant even in the absence of the usual ‘matter’
fields. But its meaning as a carrier of the physical metrical relations between
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space-time points is a bonus, the gift of the strong equivalence principle and the
clock (and rod) hypothesis. The problem in general relativity is that the matter
fields responsible for the stress-energy tensor appearing in the field equations are
classical, and thus there is a deep-seated tension in the story about how the metric
field gains its chronometric operational status.

1.6 FINAL REMARKS

It seems to be widely accepted today that Einstein owed little to the Michelson–
Morley experiment in his development of relativity theory. Yet the null result
cannot but have buttressed his conviction in the validity of the relativity principle,
or at least its applicability to electromagnetic phenomena. And as we shall see later,
in 1908 Einstein wrote to Sommerfeld clarifying the methodological analogy
between his 1905 relativity theory and classical thermodynamics. It was clear
here (and elsewhere in Einstein’s writings) that by stressing this connection with
thermodynamics Einstein was stressing the limitations of his theory rather than
its strengths—and his explicit point was that even ‘half ’ a solution is better than
none to the dilemma posed by the Michelson–Morley result.

Be that as it may, there is no doubt about the spur the MM experiment gave to
the insights gained by FitzGerald and Lorentz concerning the effects of motion on
the dimensions of rigid bodies. It is my hope that commentators in the future will
increasingly recognize the importance of these insights, and that the contributions
of the two pioneers will emerge from the shadow cast by Einstein’s 1905 ‘kinematic’
analysis. As Bell argued, the point is not that Einstein erred, so much as that
the messier, less economical reasoning based on ‘special assumptions about the
composition of matter’ can lead to greater insight, in the manner that statistical
mechanics can offer more insight than thermodynamics. The longer road, Bell
reminded us, may lead to more familiarity with the country.
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The Physics of Coordinate Transformations

It [the law of inertia] reads in detailed formulation necessarily as follows:
Matter points that are sufficiently separated from each other move uniformly
in a straight line—provided that the motion is related to a suitably moving
coordinate system and that the time is suitably defined. Who does not feel
the painfulness of such a formulation? But omitting the postscript would
imply a dishonesty.

Albert Einstein1

The first law . . . is a logician’s nightmare . . .To teach Newton’s laws so that
we prompt no questions of substance is to be unfaithful to the discipline
itself.

J. S. Rigden2

2.1 SPACE-TIME AND ITS COORDINATIZATION

It is common in discussions of the principle of general covariance in Einstein’s
general theory of relativity to find the claim that coordinates assigned to events are
merely labels. Since physics, or the objective landscape of events, cannot depend on
the labelling systems we choose to distinguish events, it would seem to follow that
in their most fundamental form the laws of physics should be coordinate-general,
or ‘generally covariant’ as it is usually put.

Discerning students should be puzzled on a number of grounds. (A) Before
we consider labelling them, what physically distinguishes two different events
of exactly the same kind? (B) Why doesn’t this labelling argument apply to
all theories, and not just general relativity? (C) And how is it that coordi-
nate transformations—which are presumably nothing more than re-labelling
schemes—can in some cases contain physics? Indeed, if contrary to the normal
procedure, we were to learn general relativity prior to special relativity, wouldn’t
we be puzzled to see apparently physical effects such as length contraction and
time dilation emerge from the Lorentz transformations between local inertial
coordinate systems?

1 Einstein (1920); English translation in Pfister (2004). 2 Rigden (1987).
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In his General Relativity from A to B, Robert Geroch gives us the following
account of the notion of ‘event’: ‘By an event we mean an idealized occurrence in
the physical world having extension in neither space nor time. For example, “the
explosion of a firecracker” or “the snapping of one’s fingers” would represent an
event.’3

Geroch is careful of course to qualify the firecracker as ‘very small, very fast-
burning’—after all, events are supposed to be points in an appropriate space.
What is important for our present purposes is Geroch’s account of the sameness
of events: ‘We regard two events as being “the same” if they coincide, that is, if
they “occur at the same place at the same time.” That is to say, we are not now
concerned with how an event is marked—by firecracker or finger-snap—but only
with the thing itself.’4

Geroch’s intuition is clearly that there is a difference between the localized mate-
rial thing that ‘marks’ the event and the event in itself. This kind of view—modulo
terminological variations—has a prestigious lineage. For example, Minkowski
made a distinction in his famous Cologne lecture of 1908 between ‘substantial’
and ‘world’ points:

I still respect the dogma that space and time have independent existence. A point of space
at a point of time, that is a system of values x, y, z, t , I will call a world-point. The
multiplicity of all thinkable x, y, z, t systems of values we will christen the world. . . . Not
to leave a yawning void anywhere we will imagine that everywhere and everywhen there is
something perceptible. To avoid saying ‘matter’ or ‘electricity’ I will use for this something
the word ‘substance’. We fix our attention on the substantial point which is at the world
point x, y, z, t , and imagine we are able to recognize this substantial point at any other
time.5

Einstein made similar remarks prior to 1915. But whereas Minkowski and
the early Einstein were in no doubt as to the reality of the points underpinning
the material markers, this cannot be said for Geroch. The somewhat shadowy
nature of the world-point or event (in Geroch’s strict sense of the word) prompts
him to to raise and then explicitly avoid questions as to its reality, particularly
after wondering whether an event is not better characterized as an ‘idealized
potential occurrence . . .’. He ends up sidestepping the reality issue by claiming
that ‘Relationships between events—that is what we are after.’

Geroch is right to be cagey about the reality of the underlying events as he
defines them. The usual appeal to the existence of the physical continuum, or
‘manifold’ of featureless space-time points ineluctably raises conceptual problems
that were the backdrop to the great debate in the late seventeenth and early
eighteenth centuries between Newton and Leibniz on the nature of space and
time. The main such problem goes as follows.

It is only the markers, to use Geroch’s terminology, and not the events proper
that come under our senses. We could imagine two universes with identical

3 Geroch (1978), p. 3. 4 op. cit., p. 4. 5 Minkowski (1909).
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arrangements of markers, and identical systems of observable relations between
them, which differ only by the way the markers are related to the space-time
points. Thus, Leibniz considered two material universes differing only by the
locations in space God decides to put them. Einstein, roughly two centuries later,
found himself likewise considering two empirically indistinguishable space-times
that differ only by the way the metric tensor field gµν in each relates to the back-
ground 4-dimensional point manifold. Now Leibniz famously dismissed his pair
of cosmological alternatives as a fancy, on the grounds that it violated both the
Principle of Identity of Indiscernibles and the Principle of Sufficient Reason. The
two universes were for Leibniz but one and the same thing. God could thus avoid
the hopeless task of rationally deciding where to put the universe in space because
space is not a separate thing! In 1915, Einstein, in tackling what was later called
the Hole Problem, came to reject the reality of the space-time manifold essen-
tially on the grounds that such a position allowed his gravitational field equations
to avoid the spectre of underdetermination—the analogue of Leibniz’s spectre of
divine indecision.6 The way Einstein put it in 1952 was: space-time is a ‘structural
quality of the field’, not the other way around.

I think there are indeed good grounds for questioning the existence of the
physical space-time manifold, or the set of events in the strict sense of Geroch,
at least if the manifold points have no distinguishing features. (We return to this
issue in Chapter 9.) But if the space-time points as they are usually understood do
not exist, it is not entirely clear why we, like Geroch, ought to concern ourselves
with relationships between them. On the other hand, Geroch is surely right to
think that the marker is not enough to get hold of the notion of a space-time
point.

Recall we can think of the markers as suitably idealized explosions, collisions of
point-particles, flashes of light and so on—the kinds of things physicists typically
mention when asked to provide examples of ‘events’. We might even try to be
more technical and insist on characterizing a marker as the set of values at a point
of the (components of the) most fundamental fields in our best physical theories.
Whatever your favourite example of a marker is, it is bound to occur at many
distinct points in space and at many times in the history of the universe. The very
existence of a lawlike structure in the universe, of the fact that physics deals with
empirical regularities, makes this virtually inevitable. The flash of light, or the
collision of particles or whatever, taken in its idealized, pristine, localized sense,
is not a one-off. (Something like this point is suggested at the end of the quote
from Minkowski above.) As a consequence, in the language of the mathematical
physicist, there simply cannot be a one-to-one correspondence between the set

6 It might more correctly be said that when Einstein realized that the ‘diffeomorphically related’
spacetimes were physically indisinguishable, he ceased to believe them physically (as opposed to
mathematically) distinct, thus adopting a stance with clear echoes of Leibniz. Given this stance, the
apparent underdetermination of the field equations that is a consequence of their general covariance
evaporates.
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of distinct marks and the set of points that is the space-time manifold. Now
this may not be considered a problem if the coordinates are used to label, first
and foremost, the manifold points. But this is both conceptually questionable (as
we have seen) and operationally mysterious. If coordinate systems are labelling
schemes we impose on the world, how is that we go about coordinatizing space-
time points which we do not and cannot see?

Let’s consider what it is that distinguishes two flashes of light that, in Geroch’s
terms, do not coincide. The distinction does not lie in the fact that they have
different coordinates. They have different coordinates because they are distinct,
and they are distinct not in virtue of what they are locally but in virtue of the
fact that they stand in different relations to the rest of the universe—to the rest of
the markers. It is because those relations are in principle discernible that we can
say that the same markers can occur at different space-time points. So rather
than think of a space-time point, i.e. an event in Geroch’s strict sense, as a self-
contained localized atom of the invisible uniform space-time manifold, we might
more usefully think of it as the view of the universe from a point.

This is how Julian Barbour put the idea in 1982.

Minkowski, Einstein, and Weyl invite us to take a microscopic look, as it were, for little
featureless grains of sand, which, closely packed, make up space-time. But Leibniz and
Mach suggest that if we want to get a true idea of what a point of space-time is like we
should look outward at the universe, not inward into some supposed amorphous treacle
called the space-time manifold. The complete notion of a point of space-time in fact
consists of the appearance of the entire universe as seen from that point. Copernicus did not
convince people that the earth was moving by getting them to examine the earth but rather
the heavens. Similarly, the reality of different points of space-time rests ultimately on the
existence of different (coherently related) viewpoints of the universe as a whole. Modern
theoretical physics will have us believe that the points of space are uniform and featureless;
in reality, they are incredibly varied, as varied as the universe itself.7

The preceding discussion represents an attempt to briefly address question (A)
above. Question (B) will be left until our discussion of general relativity. The rest
of this chapter is designed to address various issues raised by question (C).

2.2 INERTIAL COORDINATE SYSTEMS

Inertia, before Einstein’s general theory of relativity, was a miracle. I do not mean
the existence of inertial mass, but the postulate that force-free (henceforth free)
bodies conspire to move in straight lines at uniform speeds while being unable,

7 Barbour (1982). A discussion of the meaning of points in space that is similar in spirit is found
in Poincaré (1952), section 8 of chap. V, pp. 84–8. It should be noted that, from the point of view of
quantum theory, the familiar space-time events we have been discussing are only ‘effective’ notions
specifically the outcome of quantum decoherence.
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by fiat, to communicate with each other. It is probably fair to say that anyone
who is not amazed by this conspiracy has not understood it. (And the coin has
two sides: anyone who is not struck by the manner in which the general theory
is able to explain the conspiracy—a feature of his own theory to which Einstein
was oblivious in 1915—has failed to appreciate its strength, as we shall see later.)

Newton’s first law of motion, for that is what we have been discussing, can
be construed as an existence claim. Inertial coordinate systems are those special
coordinate systems relative to which the above conspiracy, involving rectilinear
uniform motions, unfolds. Qua definition, this statement has of course no content.
What has content is the claim that such a coordinate system exists, applicable to
all the free bodies in the universe.8 Needless to say, it would be nice to give a
coordinate-independent formulation of the same principle, and we shall return
to that shortly. Right now we need to clarify what role Newton’s first law plays in
the special theory of relativity.9

The special theory of 1905, together with its refinements over the following
years, is, in one important respect, not the same theory that is said to be the
restriction of the general theory in the limit of zero gravitation (i.e. zero tidal forces,
or space-time curvature). The nature of this limiting theory, and its ambiguities,
will be discussed later; for our present purposes we shall associate it with the
local, tangent-space structure of GR, which to a good approximation describes
goings-on in sufficiently ‘small’ regions of space-time. But in this picture, local
inertial coordinate systems are freely falling systems. They are not in Einstein’s
1905 theory. Einstein stated explicitly in his 1905 paper that the inertial coordinate
systems were the ones in which Newton’s laws held good, by which he really meant
the first law, and of course for Newton a freely falling object is accelerating with
respect to inertial frames—it is not free. For the moment, we will follow the 1905,
not the 1915, Einstein.

2.2.1 Free Particles

There is little doubt that Newton’s first law (inspired by Descartes’ 1644 principle
of inertial motion) is empty unless one can demarcate between force-free bodies
and the rest. Precisely how this demarcation is to be understood is still a moot
point. In his Definition IV of the Principia, Newton states that a force is essentially
an agency that causes bodies to deviate from their natural inertial motions; this

8 See e.g., Weyl (1952), p. 178, and Bergmann (1976), p. 8.This view of the first law as an existence
claim has been criticized by Earman and Friedman (1973), who claim that it ‘is not empirical in
the way the second law is; rather it is an [unsuccessful] attempt to specify part of the structure of
Newtonian space-time’ (p. 337). I fail to see why the existence claim is not empirical.

9 An unorthodox approach to inertia in Newtonian mechanics (or an important sector thereof )
emerges from the application of a global ‘best-matching’ procedure developed by Barbour and Bertotti
(1982). Whether this approach, inspired by the relationism of Leibniz, Mach, and Poincaré, makes
inertia less miraculous is a moot point, but it notably establishes a deep connection with inertial
mass, see Pooley and Brown (2002), p. 199.
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hardly helps. But implicit in Newton’s mechanics is the assumption that forces on
a given body are caused by the presence of other bodies, whether acting by contact
or by action-at-a-distance as in the case of gravity. If all forces of the latter variety
likewise fall off sufficiently quickly with distance, then bodies sufficiently far from
all other bodies are effectively free. There is little question too that Newton would
have accepted that bodies constrained to move on flat friction-free surfaces by
forces orthogonal to the surface would move inertially.

In a recent careful treatment of Newton’s first law, Herbert Pfister prefers
to avoid the approximate and even ‘logically fallacious’ nature of Newton’s
treatment,10 in favour of defining free particles as inactive test objects with only
one essential physical property: mass.Thus they should have zero charge, magnetic
moment, higher electromagnetic multipole moments, intrinsic angular momen-
tum, all higher mass multipole moments; ‘(nearly) any other physical property
imaginable, or for which experimentalists have invented a measuring device should
also be zero’.11 I cannot help wondering if such an account does not rely too much
on hindsight—whether indeed the definition of the properties that are supposed
to have a null value does not ultimately refer to the very inertial frames we are
trying to construct. My purpose here is not so much to resolve the issue—though
my sympathies here are more with Newton than Pfister—but rather to stress that
it is an important one.12

2.2.2 Inertial Coordinates

For the moment, let us assume that point particle paths are 1-dimensional sub-
manifolds defined within a 4-dimensional space-time manifold M . In a given
coordinate system xµ, (µ = 0, . . . , 3) suppose that the path of any free particle
can be expressed thus

d2xµ/dτ 2 = 0, (2.1)

where τ is a monotonic parameter on the path xµ(τ) in question. Integration of
(2.1) yields

xµ(τ) = xµ(0) + τvµ(0), (2.2)

10 Pfister (2004) states, incorrectly in my view, that the definition of ‘force’ and ‘force-free’ is
reserved to Newton’s second law, and furthermore that since the gravitational and electromagnetic
forces have an infinitely long range, it is ‘impossible in any practical case to say what distance to
other objects is “big enough” . . .’. I doubt such pessimism is truly warranted.

11 Pfister (2004), p. 54.
12 In another careful treatment of Newton’s first law, J. L. Anderson seems to regard it as part of

the definition of free bodies that they move in straight lines in space-time, and that the non-trivial
existence claim associated with the first law concerns just ‘the ensemble of straight lines that form part
of the geometric structure of Newtonian space-time’ (Anderson (1990), p. 1193). What is unclear
in this account is what the physical objects are that trace out the straight lines.
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where vµ(0) = dxµ/dτ at τ = 0, so we obtain a straight line in the
4-dimensional manifold. Yet this simple description is of course coordinate-
dependent. Imagine an arbitrary (not necessarily ‘projective’, or even linear)
coordinate transformation13 xµ → x ′µ(xν), along with an arbitrary parameter
transformation τ → λ(τ). Then (2.1) is transformed into

d2x ′µ

dλ2 + Πµ
νσ(x ′ρ)

dx ′ν

dλ

dx ′σ

dλ
=

d2τ

dλ2

dλ

dτ

dx ′µ

dλ
, (2.3)

where

Πµ
νσ = − ∂2x ′µ

∂xρ∂xγ

∂xρ

∂x ′ν
∂xγ

∂xσ
. (2.4)

(Note that from here on we use the Einstein convention for repeated indices.)
It may be ‘painful’ to see how easily the simple form of (2.1) is lost (see the
quotation from Einstein in the epigraph at the beginning of this chapter), but let
us not lose sight of the main point. A kind of highly non-trivial pre-established
harmony is being postulated, and it takes the form of the claim that there exists a
coordinate system xµ and parameters τ such that (2.1) holds for each and every
free particle in the universe. Now we are not yet at the principle of inertia as
standardly construed, but a word here about geometry.

Hermann Weyl was the first to notice that the structure we have just defined is
that of a projective geometry,14 and the point was given further prominence in the
famous 1972 paper of Ehlers, Pirani, and Schild15 on the operational meaning
of the geometrical structures of space-time. Pfister has stressed that straight lines
can be characterized in projective geometry in a coordinate independent way:
he defines them as paths that fulfill the so-called Desargues property. (Desargues’
theorem is the statement that if corresponding sides of two triangles meet in three
points lying on a straight line, then corresponding vertices lie on three concurrent
lines.) We are to suppose then that free particles follow paths which are straight
in this sense.

In detail, the first four paths of such a construction define an inertial system.That, however,
all other free particles also move on straight lines with respect to this inertial system and
do so independently of the mass and many other inner properties of the particles, belongs
to the most fundamental and marvellous facts of nature.16

Now it is a remarkable property of Desargues’ theorem that it is self-dual. If we
interchange the parts played by the words ‘points’ and ‘lines’, the new proposition

13 Projective coordinate transformations are defined in section 3.3 below.
14 Projective geometry deals with properties and invariants of geometric figures under projection.

It is based on the notions of collinearity and concurrence, and so its concerns are with straight lines
and points; the notions of distance, angle, and parallelism are absent.

15 Ehlers et al. (1972); see also Ehlers (1973), §2.4. 16 Pfister (2004).
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is equivalent to the old. Indeed, all the propositions in projective geometry occur in
dual pairs such that given either proposition of the pair, the other can be inferred
by this interchange. It is unclear to me whether the material particles in the
Newtonian picture break this symmetry, and part of the uncertainty surrounding
the matter has to do with the fact that in the 4-dimensional projective space under
consideration no clear distinction between space and time has been elucidated.

Both Descartes and Newton were clearly saying something stronger than the
claim that free particles define paths that are straight in the sense of the Desargues
configuration. The coordinates xµ are special not just because the equation of
motion expressed in terms of them takes the special simple form (5.1); the coor-
dinates xi (i = 1, 2, 3) should also be special in relation to the metrical properties
of space. When Newton talks of uniform speeds, he means equal distances being
traversed in equal times, and these distances are meant in the sense of Euclid.
The projective-geometric formulation of the first law of motion would be of lim-
ited interest if the projective 4-geometry was not ‘compatible’ with the Euclidean
metric of 3-space. In other words, relative to the special coordinates xi above,
the metric tensor gij should take the form gij = diag(1, 1, 1). Indeed, signific-
ant efforts have been made to elucidate the geometric structures that underlie
Newtonian mechanics in all its richness17. But note that the standard account
in the literature posits ab initio a privileged foliation of the space-time manifold
that rests on the existence of absolute simultaneity in the theory. There is a sense
in which such an account oversteps the mark, and I want to dwell on this point
momentarily.

2.2.3 Newtonian Time

‘Absolute, true, and mathematical time, of itself, and from its own nature, flows
equably without relation to anything external, and by another name is called
duration . . .’18

What is meant when it is said that Newtonian time is ‘absolute’? Many things.
One sense is that time flows independently of the existence of matter—if the

material universe ceased to exist there would still be time. This is a contentious
issue that is not our concern now. A weaker notion is that time is in some sense
intrinsically tied up with change in the arrangement of matter, that it has a metric
character, and that this metric character does not depend on the contingencies of
the occasion. According to this notion of duration, it is the same everywhere and
at all epochs of the universe.

17 See e.g., Havas (1964), Anderson (1967), Earman and Friedman (1973), and Anderson (1990).
It is interesting that in most (all?) of these accounts, the principle of inertia on its own is associated with
the existence of an affine, rather than projective structure of space-time. I return to this point below,
but note here that the extra structure being appealed to is the existence of ‘affine’ parameters τ in (2.1)
such that the RHS of (2.2) vanishes in arbitrary coordinate systems and arbitrary reparametrization.

18 Newton (1999).
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It is a notion dealt with by Newton with remarkable sophistication, more,
arguably, than was the case with Einstein when in 1905 he also assumed the
existence of a temporal duration read by stationary ideal clocks. Newton did not
identify the temporal metric with the behaviour of any given clock—indeed,
he was aware (perhaps more than many of his followers!) of the limitations of
real clocks. In the highly denuded world that we have been discussing of empty
space populated solely by free particles, the only clock available is the free particle
itself—one such particle is arbitrarily chosen, and the temporal intervals during
which it traverses equal distances are taken to be equal.19 Newton was fully aware
that in the real world, no such inertial clocks exist, and indeed that any clocks that
are subsystems of the universe may fail to march precisely in step with absolute
time. ‘It may be, that there is no such thing as an equable motion, whereby time
might be accurately measured. All motions may be accelerated and retarded, but
the flowing of absolute time is not liable to any change.’

What is the significance of this notion of time? At the end of the nineteenth cen-
tury, a number of commentators, such as Auguste Calinon and Henri Poincaré in
France and independently G. F. FitzGerald in Ireland, articulated the key notion.
Physical time has to do with the choice of a temporal parameter relative to which
the fundamental equations of motion of the isolated system under investigation
take their simplest form.20 Such a dynamical notion was already appreciated by
Newton, and it had to do with his explicit association of absolute time in the De
Motu with ‘that whose equation astronomers investigate’. In practice, astronomers
would use the rotation of the earth until the late nineteenth century as a clock,
but Newton already foresaw the fact that absolute time cannot be defined in terms
of the sidereal day.21 He anticipated the notion of ‘ephemeris’ time which would
be employed by the astronomers prior to the advent of atomic clocks. This issue
will be revisited, along with the question of what a clock actually is, later.

Another absolute aspect of Newtonian time is that in so far as it is read by
clocks, this reading is achieved without regard to the inertial state of motion of
the clock. Better put, it is that proper time and coordinate time coincide: there
is no time dilation. Special relativity rejects this feature of Newtonian time, as
well as another. The last feature is absolute distant simultaneity, which itself has
two facets: (i) the the absolute nature of simultaneity relative to the frame in
which the laws are postulated, and (ii) the invariance of this simultaneity relation
under boosts. In relation to facet (i), we encounter the subtle business that has
been such a prominent feature in the discussion of inertial coordinate systems
in special relativity: how to spread time through space. The conventional nature of
distant simultaneity in special relativity—not to be confused with the relativity

19 This point was first given its due prominence in the work of Neumann (1870), and later Lange
(1886). (It was Lange who coined the term ‘inertial system’.) For discussion of their contributions
see Barbour (1989), pp. 654–7.

20 See Calinon (1897), Poincaré (1898), and FitzGerald (1902).
21 See Barbour (1989), p. 633.
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of simultaneity—is one of the most hotly debated issues in the literature. But the
issue is not the exclusive remit of relativity theory, and the common claim that
Einstein revolutionized the notion of time seems to me to be overstated, at least
in regard to facet (i) of Newtonian time. Einstein’s contribution will of course
be discussed below, and my scepticism will be spelt out in detail. What I want
to underline here is that even with the introduction of 3-dimensional Euclidean
metric structure into the Newtonian 4-manifold, the simple equations for the free
particle

d2xi/dt2 = 0 (2.5)

(i = 1, 2, 3) are form invariant, or covariant, under the linear transformations of
the form

x′ = x; t ′ = t − �κ.x, (2.6)

for any constant 3-vector field �κ. These transformations are not elements of the
10-parameter Galilean group (even of the subgroups that don’t involve boosts);
they represent a change in the assignment of the simultaneity relation between
events. (Note that the locus of events for which t ′ = 0 corresponds to that for
t = �κ.x.) In the rarified Newtonian world of free particles moving in Euclidean
3-space, there is no privileged notion of simultaneity, even when viewed with
respect to the frame at rest relative to Newton’s hypothetical absolute space.

It follows that Newtonian simultaneity is a by-product of the introduction of
forces into the theory. Indeed, Newton spread time through space in inertial frames
in such a way that actions-at-a-distance like gravity are instantaneous and do not
travel backwards in time in some directions. It is a highly natural convention—it
would be barmy to choose any other—but it is a convention nonetheless, and
one consistent with the standard Galilean coordinate transformations. The only
appearance of something like this claim in the literature that I am aware of is due
to Henri Poincaré.22 In his remarkable 1898 essay The Measure of Time, Poincaré
asserts that statements involving the order of occurrence of distant events have
no intrinsic meaning—their meaning only being assigned by convention. Note
that part of his argument relates to what we now call the Cauchy, or initial
data problem in Newtonian mechanics. Poincaré imagines a toy system of three
bodies: the sun, Jupiter, and Saturn represented as mass points. He remarks that
it would be possible to predict future (and past!) behaviour of the system by
taking the appropriate data concerning Jupiter (and presumably the sun) at the
instant t , together with data concerning Saturn not at t but at t + a. This
odd procedure would involve using ‘laws as precise as that of Newton, although
more complicated’. Poincaré asks why the unorthodox ‘aggregate’ of positions

22 For a fascinating account of the extraordinary range of Poincaré’s accomplishments—from
mining engineering to the highest reaches of abstract mathematics—see Galison (2004).



Physics of Coordinate Transformations 21

and velocities is not regarded as the cause of future and past aggregates, ‘which
would lead to considering as simultaneous the instant t of Jupiter and the instant
t + a of Saturn’. In answer there can only be reasons, very strong, it is true, of
convenience and simplicity.23

Related brief remarks appear in the chapter on classical mechanics in his 1902
La Science et l’hypothèse:

There is no absolute time. When we say that two periods are equal, the statement has
no meaning, and can only acquire a meaning by convention. . . . Not only have we no
direct intuition of the equality of two periods, but we have not even direct intuition of
the simultaneity of two events which occur in two different places.24

In 1898, Poincaré had already written ‘The simultaneity of two events, or the
order of their succession, the equality of two durations, are to be so defined that
the enunciation of the natural laws may be as simple as possible.’25

I will return to this delicate issue in Chapter 6, where a more systematic dis-
cussion is given of the conventionality of distant simultaneity in both Newtonian
and relativistic kinematics. In conclusion, I want to emphasize a few points in
relation to Newtonian time.

First, the fact that under the Galilean transformations the notion of Newtonian
simultaneity is frame-independent, so that whether two events occur at the same
time does not depend on the state of motion of the observer, does not mean
that a conventional element related to spreading time through space is absent in

23 Poincaré (1898), section XI. Galison (2004) urges the importance of understanding Poincaré’s
1898 essay within the context of his active role as a member of the Paris Bureaux des Longitudes.
Galison correctly stresses that Poincaré’s context is very different from Einstein’s (p. 44). In fact
Poincaré was immersed in ‘the concerns of real-world engineers, sea-going ships captains, imperious
railway magnates, and calculation-intensive astronomers’ (p. 165). But Galison’s absorbing analysis
is marred by two features. (i) In his lengthy discussion of the new telegraphic method of estab-
lishing longitude, and Poincaré’s intimate knowledge of it, Galison repeatedly seems to associate
the conventionality of the technique with the fact that the time of transmission of the signals had
to be taken into consideration in establishing simultaneity between distant sites (see particularly
pp. 182–3, 189–90). In this sense, the electric mappers ‘did not need to wait for relativity’. But the
basis for the conventionality of distant simultaneity that Einstein espoused was not simply the fact
that light signals used to synchronize distant clocks take time to propagate; what is at issue is how
the transit time is dealt with. Galison gives a nice account of the simple method electric surveyors
used to ‘measure’ the time it took a telegraphic signal to pass through cables (p. 184). Where then is
the relevant conventional element? It happens to be in the crucial assumption that the velocity of the
electric signal is the same in both directions. Now Galison is aware that this assumption inter alia lies
behind the standard measurement of transit time (p. 186), but its role in his analysis seems to be of
a secondary nature, almost an afterthought. In short, it is not easy to reconcile Galison’s reconstruc-
tion of Poincaré’s conventionalism about simultaneity with Poincaré’s discussion in the 1898 essay
of both telegraphy and the initial value problem in astronomy. (ii) Poincaré was a conventionalist,
as we have seen, about both simultaneity (spreading time through space) and the temporal metric
used in physics. In both cases, the choice depends on convenience. But the two issues are entirely
distinct; the former involves synchronizing distant ideal clocks, whereas the latter concerns the very
meaning of a single ideal clock. At times Galison seems to treat the two issues as one (see particularly
pp. 187, 239). 24 Poincaré (1952), chap. VI.

25 Poincaré (1898), §XIII.
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Newtonian mechanics. It is a feature of any theory of motion. Second, the conven-
tion standardly adopted in Newtonian mechanics is motivated by the structure of
forces in the theory—it is completely obscure in relation to inertial effects alone.

2.2.4 Newtonian Space

Euclidean 3-space was introduced rather blithely above, despite the fact that it is
not required, or so it is often claimed, in the attempt to explicate the conspiracy
that is inertia. The point I made earlier was that the conspiracy couched in the
language of projective or affine spaces is highly significant, but it is not the real
McCoy. The full significance of the principle of inertia, and of the inertial frame,
incorporates the notion of 3-dimensional spatial distance.

It is on the possibility of measuring distance that ultimately the whole of dynamics rests. All
the higher concepts of dynamics—velocity, acceleration, mass, charge, etc.—are built up
from the possibility of measuring distance and observing motion of bodies. Examination
of the writings of Descartes and Newton reveals no awareness of the potential problems
of an uncritical acceptance of the concept of distance. Both men clearly saw extension as
something existing in its own right with properties that simply could not be otherwise
than as they, following Euclid, conceived them. As Newton said in De gravitatione: . . .
‘We have an exceptionally clear idea of extension.’26

But even before one considers the threat to this clear idea caused by the emer-
gence of non-Euclidean geometry, the more one thinks about the physical notion
of distance, the more elusive it becomes. (Einstein had a lifelong struggle with the
notion of a metric 3-space, his confidence in defining it in terms of the physics of
packing mobile rigid bodies waxing and waning.)27 In a counterfactual Newtonian
world comprising just a collection of N mass points interacting gravitationally, it is
possible in principle to describe the motion of the particles using the Newtonian
laws of motion. We can imagine such a world because in ours we have access
to rigid, or near-rigid bodies that allow us to give those all-important numbers
associated with the separation between points a more or less direct operational
meaning. But in the hypothetical world of unaggregated point particles, the deep
structural feature of the time-evolving configuration of the totality of particles
that is Euclidean space has no meaning except in and through that dynamical
evolution. But meaning it has, and it may be worth bearing this point in mind
when assessing the claim Poincaré made in 1902: ‘If . . . there were no solid bodies
in nature there would be no geometry.’28

It will be assumed, at any rate, in the following that rigid rulers that come
to rest with respect to the inertial frame, and hence have no significant net
external forces acting them, are objects which also come rapidly to internal

26 Barbour (1989), p. 692.
27 See Brown and Pooley (2001), Ryckman (2005), §3.3, and Paty (1992).
28 Poincaré (1952), p. 61.
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equilibrium and stay there. Furthermore, they are capable to a ‘high’ degree
of accuracy of reading off spatial intervals defined by the Euclidean metric.
Note that I do not assume that the metric is defined by the behaviour of rigid
bodies.

2.2.5 The Role of Space-time Geometry

In their influential 1973 article on Newton’s first law of motion, John Earman
and Michael Friedman claimed that no rigorous formulation of the law is possible
except in the language of 4-dimensional geometric objects. But the appearance
of systematic studies of the 4-dimensional geometry of Newtonian space-time is
relatively recent; the first I am aware of is a 1909 paper by P. Frank immediately
following the work of Minkowski on the geometrization of special relativity.29 It
is curious that so much success had been achieved by the astronomers in applying
Newton’s theory of universal gravity to the solar system (including recognizing its
anomalous prediction for the perihelion of Mercury) well before this date. How
could this be if the astronomers were unable to fully articulate the first law of
motion, and hence the meaning of inertial frames?

How tempting it is in physics to think that precise abstract definitions are if
not the whole story, then at least the royal road to enlightenment. Yet consider
the practical problem faced by astronomers in attempting to fix the true motions
of the celestial bodies. The astronomers who know their Newton are not helped
by the further knowledge that Newtonian space-time comes equipped with an
absolute flat affine connection. Even Newton realized that his absolute space and
time—those entities distinct from material bodies but whose existence is necessary
in Newton’s eyes to situate the bodies so that their motions can be defined—‘by
no means come under the observation of our senses’. Newton was keenly aware
of the need to arrest the backsliding into pure metaphysics: but how to make
the theoretical edifice touch solid empirical ground? The story as to how this
was achieved in practice, involving the contributions of such men as Neumann,
Lange, and Tait, is both fascinating and far too little known.30 But it happened
with little more than the knowledge of the nature of the gravitational force and
the elements of Euclidean spatial geometry, and growing amounts of astronomical
records.

Let us pass on to a more philosophical question regarding the role of geometry
in our understanding of motion. In Newtonian space-time, the world-lines of
free particles are, as we have seen, widely regarded as geodesics (straights) of the
postulated affine connection; in Minkowski space-time they are geodesics of the
Minkowski metric. What is geometry doing here—codifying the behaviour of

29 Frank’s work is cited in Havas (1964), fn. 13.
30 An eloquent introduction to this story is found in Barbour (1989), chap. 12, which deals with

the empirical definitions of inertial system by Lange, of the equality of time interval by Neumann
and that of mass by Mach. Barbour (1999) discusses the contribution of Tait.
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free bodies in elegant mathematical language or actually explaining it? It is widely
known that Einstein’s first reaction to his ex-professor Hermann Minkowski’s
geometrization of his special theory was negative. But as Einstein’s ideas on grav-
ity developed and the need for changing its status from a Newtonian force to
something like geodesic deviation (curvature) in four dimensions became clear
to him, his attitude underwent a fundamental shift. As late as 1924, in referring
to the special theory and its treatment of inertia, he wrote ‘That something real
has to be conceived as the cause for the preference of an inertial system over a
noninertial system is a fact that physicists have only come to understand in recent
years.’31

Einstein’s position would, three years later, undergo yet another shift, at least
in relation to inertia in the general theory, but that is a story for later in the book.
The idea that the space-time connection plays this explanatory role in the special
theory, that affine geodesics form ruts or grooves in space-time which somehow
guide the free particles along their way, has become very popular, at least in the late
twentieth century philosophical literature. It was expressed succinctly by Nerlich
in 1976:

[W]ithout the affine structure there is nothing to determine how the [free] particle tra-
jectory should lie. It has no antennae to tell it where other objects are, even if there were
other objects . . . It is because space-time has a certain shape that world lines lie as they do.32

It is one of the aims of this book to rebut this and related ideas about the role of
absolute geometry. Of course, Nerlich is half right: there is a prima facie mystery as
to why objects with no antennae should move in an orchestrated fashion. That is
precisely the pre-established harmony, or miracle, that was highlighted above. But
it is a spurious notion of explanation that is being offered here. If free particles
have no antennae, then they have no space-time feelers either. How are we to
understand the coupling between the particles and the postulated geometrical
space-time structure? As emerges from a later discussion of the geodesic principle
in general relativity, it cannot simply be in the nature of free test particles to
‘read’ the projective geometry, or affine connection or metric, since in the general
theory their world-lines follow geodesics approximately, and then for quite different
reasons.

At the heart of the whole business is the question whether the space-time
explanation of inertia is not an exercise in redundancy. In what sense then is the
postulation of the absolute space-time structure doing more explanatory work
than Molière’s famous dormative virtue in opium? It is non-trivial of course that
inertia can be given a geometrical description, and this is associated with the fact
that the behaviour of force-free bodies does not depend on their constitution:
it is universal. But what is at issue is the arrow of explanation. The notion of
explanation that Nerlich offers is like introducing two cogs into a machine which

31 Einstein (1924). 32 Nerlich (1976), p. 264.
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only engage with each other.33 It is simply more natural and economical—better
philosophy, in short—to consider absolute space-time structure as a codification
of certain key aspects of the behaviour of particles (and/or fields). The point has
been expressed by Robert DiSalle as follows:

When we say that a free particle follows, while a particle experiencing a force deviates
from, a geodesic of spacetime, we are not explaining the cause of the difference between
two states or explaining ‘relative to what’ such a difference holds. Instead, we are giving the
physical definition of a spacetime geodesic. To say that spacetime has the affine structure
thus defined is not to postulate some hidden entity to explain the appearances, but rather
to say that empirical facts support a system of physical laws that incorporates such a
definition.34

This theme will reappear later in the discussion of Minkowski space-time in special
relativity.

2.2.6 Quantum Probes

We finish this section with a word about space-time structure seen from the
perspective of quantum, rather than classical probes, or test bodies. The claim
that the behaviour of free bodies does not depend on their mass and internal
composition has been referred to as the ‘zeroth law of mechanics.’35 Consider
also the weak equivalence principle (WEP) which can be stated like this. ‘The
behaviour of test bodies in a gravitational field does not depend on their mass and
internal composition.’36

Now it is interesting that non-relativistic quantum mechanics violates both
principles.37 In the case of the zeroth law, this is seen merely by noting that
the time-dependent Schrödinger equation for a free particle represented by the
wavefunction ψ = ψ(x, t)

i�
∂ψ

∂t
= − �

2

2m
∇2ψ (2.7)

contains the mass m of the system. A more striking way of making the point is by
way of the spread of the free wavepacket in empty space. If it is assumed that the
packet is originally Gaussian with standard deviation (width) a, then after time t
the width becomes

�x = a
(

1 +
�

2t2

4m2a4

)1/2

. (2.8)

33 I am grateful to Chris Timpson for this simile.
34 DiSalle (1995); see also DiSalle (1994). 35 See Sonego (1995).
36 See Will (2001), §2.1.
37 See Sonego (1995). Sonego points out that the zeroth law is a special case of the WEP, and

hence that a violation of the first is automatically a violation of the second.
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How much the wavepacket spreads depends inversely on the (square of the) mass
of the system.

Violation of the WEP was all but established experimentally in the 1970s with
intriguing experiments using neutron interferometry, in which the two coherent
beams inside the interferometer are made to experience different gravitational
potentials (associated with a difference of height of the order of a centimetre!) as a
result of the interferometer being tilted away from its usual horizontal orientation.
The tilting produced a detectable loss of interference between the two beams,
in good agreement with the predictions of quantum mechanics.38 The effect is
indeed predicted to depend on the (gravitational) mass of the particle.39

It is important to emphasize that despite all this, nothing in quantum theory
threatens the claim that underlies the whole edifice of the general theory of rela-
tivity, namely that it is impossible for an observer to distinguish immersion in a
homogeneous gravitational field from acceleration. (We return to this principle
in Chapter 9.) Nonetheless, the violation in quantum theory of the zeroth law
has led to doubts being expressed as to the truly geometric nature of the metric
field in general relativity, as well as that of the affine connection in Newtonian
space-time.40 As far as the affine connection is concerned in both Newtonian and
Minkowski space-time, it seems to me that use of quantal, as opposed to classical,
test bodies merely makes this structure, not less geometrical per se, but simply of
less direct operational significance. The real issue is not whether physical geometry
is easy to get your hands on, but rather whether, when it is absolute and immune
to perturbation as in Newtonian and Minkowski space-time, it offers a causal
explanation of anything.

2.3 THE LINEARITY OF INERTIAL COORDINATE
TRANSFORMATIONS

So far we have been looking at the nature of the inertial coordinate system xµ, the
existence of which was claimed to be tantamount to Newton’s first law of motion.
We may think of the associated inertial ‘reference frame’ S as the equivalence class
of coordinate systems related to xµ by rigid translations and rotations of space, and
translations in time. It is clear that such linear transformations preserve both the
form of (2.5) and the spatial and temporal metrics. But now the questions arise:
are there other inertial frames corresponding to different states of motion, and if
so, why are the transformations between them systems linear? Two approaches to
answering these questions will be considered, each depending on the existence of
certain dynamical symmetry principles.

38 For a review of these experiments, see Werner (1994) and Audretsch et al. (1992).
39 For a recent discussion of the behaviour of a quantum particle in free fall and its connection

with the equivalence principle, see Davies (2004a, b). 40 Sonego (1995).
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The first approach relies on the relativity principle. Let us suppose that there is
a reference frame moving rigidly with uniform velocity relative to the system xµ.
According to the relativity principle (of which much will be said in the following
chapter) free bodies must also move uniformly and rectilinearly relative to some
system x ′µ adapted to S ′. Since whether a body is free or otherwise is frame-
independent, we are interested now in the question as to what constraint on the
functions f µ in

x ′µ = f µ(x0, x1, x2, x3) (2.9)

is imposed by the requirement that (2.5) take the same form in the primed system
of coordinates: uniform velocities must be transformed by the fi into uniform
velocities. It can be shown that the transformations take the form of a ‘rational
fraction’, or ‘projective’ transformation:

x ′µ =
aµ

νxν + aµ

bνxν + b
, (2.10)

again using the Einstein summation convention. Note that the denominator does
not depend on the chosen index µ. Now if transformations take finite coordinates
always into finite coordinates (equivalently, if coordinates are defined everywhere),
then it follows from (2.10) that the transformations are linear. This approach was
advocated by Fock, following Weyl.41

The second approach follows Einstein, who in his 1905 paper, grounds the
linearity of the coordinate transformations associated with boosts on the homo-
geneity of space and time. Einstein provided no justification for this connection;
here is a way of spelling it out.

41 The main result here is taken from Fock (1969), Appendix A. See also Torretti (1983), pp. 75–6.
Recently, Jahn and Sreedhar (2001) have claimed that the most general transformations that leave
the Newtonian equations of motion for the free particle form invariant are given by

x′
i =

Rij xj + αi + vi t
γt + δ

, t ′ =
αt + β

γt + δ
, (2.11)

where αδ − βγ = 1 and RT R = 1. These are far more restricted than (2.10). The reason is that
Jahn and Sreedhar are actually determining the most general transformations that are variational
symmetries of the non-relativistic action

S =
m
2

∫ (
dxi

dt

)2

dt , (2.12)

which are more constrained than those that preserve the form of the Euler–Lagrange equation of
motion (2.5) resulting from this action under Hamilton’s principle of least action. (It is already
widely known that variational symmetries of actions exist that are not symmetries of the equations
of motion; see for example Brown and Holland (2004). What the present example is reminding
us is that even where variational symmetries are dynamical symmetries, we must be careful not to
conflate the maximal symmetry groups associated with actions and their associated Euler–Lagrange
equations.) Note that the transformations (2.6) are not of the type (2.11), despite being a symmetry
of (2.5).
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We rewrite equation 2.9 as follows:

x ′µ = f µ(X ) (2.13)

where X represents the quadruple x0, . . . , x3. Let us suppose that the coordinate
transformations encode information regarding the behaviour of moving rods and
clocks. (This highly non-trivial supposition should not be taken as obvious, and
will be justified in the next section.) Then such behaviour should not depend
on where the moving rods and clocks find themselves in space, or in time, if the
homogeneity claim holds. Consider now the infinitesimal interval (dx0, . . . , dx3)
for which

dx ′µ =
∂f µ

∂xν
dxν . (2.14)

Homogeneity implies that the coefficients ∂f µ/∂xν must be independent of X ,
which means that the f µ must be linear functions of the coordinates xµ.42

Which of these approaches is more fundamental depends in part on whether
the relativity principle has the status of a fundamental postulate or of something
derivable from more basic principles. In Chapter 7 we will examine arguments for
the latter position; if valid, they lend support to the priority of Einstein’s approach
to establishing linearity.

2.4 THE ROD AND CLOCK PROTOCOLS

Now consider a ‘rigid’ rod lying in a direction parallel with the x-axis in the frame
S with rest length L0, but now boosted to velocity v in that direction relative
to S . We assume of course that following the application of the force that has
been applied to the rod to boost it, the rod has time to retain an equilibrium
configuration. According to the rod protocol, we define the longitudinal length
change factor of the rod relative to S as

C‖ = ∆x/L0, (2.15)

where ∆x is the length of the moving rod relative to S , which is taken to mean
the distance between events that occur simultaneously at the extremities of the
rod. This distance can be given direct operational significance by way of stationary
rulers in S .

42 See, e.g., Terletskii (1968), pp. 18–19, and Lévy-Leblond (1976). A lengthier, and possibly
more rigorous proof of this kind is found in Berzi and Gorini (1969).
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Similarly we can define the transverse length change factor C⊥ of the same rod
but this time lying perpendicular to its motion along the x-axis:

C⊥ = ∆y/L0 = ∆z/L0. (2.16)

Note that we are assuming here that the length change factor is isotropic in the
transverse plane. In particular we are assuming the factor is the same whether the
direction involved is given by the y-axis or the z-axis.

Now according to the clock protocol, we define the time dilation factor in the
following manner. Consider an ideal clock also moving at speed v along the x-axis,
and two events occurring on the clock’s worldline, with τ being the (proper) time
read off by the clock between the two events. Relative to S , the two events clearly
occur at different spatial locations, and the (coordinate) time interval between
them, denoted by ∆t , is established by the difference in readings of stationary,
synchronized clocks at those locations. Then the time dilation factor for the clock
relative to S is given by

D = ∆t/τ. (2.17)

It is important to stress at this point that both protocols are defined with
respect to the clock synchrony convention associated with the frame S ; change
the way clocks are synchronized and the factors will in general change. But the
corresponding convention associated with frame S ′—the rest frame of the moving
rod or clock—is irrelevant. Indeed, the protocols are entirely defined relative to a
single frame.43 In the case of the length factors C‖ and C⊥, it is also important to
realize that the overall distortion effect (if any) that they describe should not be
conflated with the visual shape change induced by motion. The apparent shape of
the moving body that an observer ‘sees’ is the result of light emitted from different
points on the body’s surface entering simultaneously into his or her eyes, or into
a camera, and this generally will be quite different from the distortion associated
with the rod protocol!44 In the case of the time dilation factor, it is important
not to lose sight of the fact that we are comparing the proper time read off by one
moving clock against the coordinate time defined by two synchronized stationary
clocks.

43 Thus the contraction and dilation factors do not depend on, nor are an automatic result of, the
relativity of simultaneity, despite occasional claims to the contrary. (In Galison (2004), for instance,
it is claimed (p. 22) that the relativity of simultaneity leads to a relativity of lengths.)

44 The first discussion of this issue, given by A. Lampa in 1924, seems to have been widely
overlooked; the problem was rediscovered in 1959, and then early contributors were J. Terrell,
R. Penrose, R. Weinstein, V. Weisskopf, and M. Boas. It is now known that bodies subtending a
small solid angle appear rotated when moving at relativistic speeds, and bodies subtending a large
solid angle appear both rotated and distorted. A useful bibliography is found in Kraus (2000), where
the separate Doppler and searchlight effects are compared with the geometric aberration effect.
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Now we raise the simple question as to what the length change and time dilation
factors have to do with the transformations between inertial coordinate systems.
To this end, we introduce two further aspects of the protocols. We assume

1. The universality of the behaviour of rods and clocks. The length change factors
for rods and the dilation factor for clocks do not depend on the constitution
of these objects, nor on the means by which the rods and clocks were boosted.

2. The boostability of rulers and clocks. Any object that can act as a rigid ruler
in the frame S when stationary relative to that frame retains that role in
its new rest frame S ′ when boosted. The same assumption holds for ideal
clocks.

Assumption 1 represents the second great miracle in our story after the existence
of inertial frames, at least if motion has any affect at all on rods and clocks. It is
highly nontrivial, indeed remarkable, that such behaviour should be insensitive
to the microscopic make-up of the bodies in question. We are now so used to this
miracle that it seems mundane, but it is worth recalling that in the early twentieth
century the Michelson–Morley experiment was repeated on several occasions with
different substances making up the rigid support of the interferometer mirrors
precisely to test for the universality of the FitzGerald–Lorentz deformation effect.
Later in this book we shall also see why it is non-trivial that length change and
dilation factors should likewise be independent of the manner in which rods and
clocks, respectively, are boosted.

Assumption 2 is more of a stipulation than an assumption. Our earth-bound
laboratories are not in a constant state of inertial motion; their velocities relative
to the sun for example are changing constantly. Yet we neither want nor expect to
have to change the instruments in our laboratories every few days for fear that rigid
standards of length etc. are corrupted simply because they are slowly changing
their state of motion.

It is easy to infer from Assumptions 1 and 2 that the rest length of any rigid
rod will be invariant under the linear coordinate transformations (2.7). Now the
two events mentioned above occurring simultaneously at the end-points of the
moving rod will in general not be simultaneous relative to S ′, but since the rod
is at rest in that frame, the distance ∆x ′ between them will nonetheless coincide
with the invariant rest length. So we can rewrite (2.15) and (2.16) as

C‖ = ∆x/∆x ′ (2.18)

C⊥ = ∆y/∆y′ = ∆z/∆z ′. (2.19)

Similarly we can rewrite (2.17) as

D = ∆t/∆t ′. (2.20)
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It is easy then to show that the linear coordinate transformations between
inertial frames S and S ′ with their adapted coordinate systems in the standard
configuration can, given (2.18–2.20), be written in total generality in the following
form:

x ′ =
1
C‖

(x − vt) (2.21)

y′ =
1

C⊥
y (2.22)

z ′ =
1

C⊥
z (2.23)

t ′ =
1

(1 − αv)D (t − αx). (2.24)

The factors C‖, C⊥, and D will in general depend on the velocity v of the frame
S ′ relative to S , and we expect that that as v → 0, these factors will tend to 1.
Now t ′ = 0 implies that t = αx , so the factor α in (2.24) gives the slope of
the simultaneity planes defined in S ′ as they appear in S . Thus α can be called
the relativity of simultaneity factor, and unlike the other factors it depends on how
distant clocks are synchronized in both frames S and S ′. Furthermore α → 0 as
v → 1.

We note that the velocity transformation rules that follow strictly from (2.21–
2.24) are these:

u′
x′ =

(1 − αv)(ux − v)D
(1 − αux)C‖

(2.25)

u′
y′(z′) =

(1 − αv)uy(z)D
(1 − αux)C⊥

(2.26)

where ux , uy , and uz are the components of velocity of some body or signal as
measured relative S , and u′

x′ , u′
y′ , and u′

z′ are the components of velocity of the

same system as measured relative S ′. If now we denote by V ′ the velocity of frame
S relative to S ′, then V ′ = u′

x′ when ux = 0. So from (2.25) we obtain

V ′ = −(1 − αv)vD/C‖. (2.27)

Thus, the condition of Reciprocity holds (which means that V ′ = −v) if and
only if

C‖ = (1 − αv)D. (2.28)
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One sees that Reciprocity is sensitive to the synchrony conventions adopted in
both frames S and S ′.45

Finally, for some body moving along the positive x-direction relative to S with
acceleration u̇x , the acceleration transformation resulting from (2.25) is

u̇′
x′ =

(1 − αv)3u̇xD2

(1 − αux)3C‖
(2.29)

where ux is the instantaneous velocity of the body relative to S . The acceleration
u̇′

x′ is generally a function of t ′, even when the acceleration relative to S is uniform.

45 In case the reader finds any deviation from Reciprocity to be inconceivable, it may be worth
noting that in special relativity, the principle of reciprocity for the relative speed between an inertial
observer and one being uniformly accelerated holds only at events where their world-lines coincide.
See Hamilton (1978).
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The Relativity Principle and the
Fable of Albert Keinstein

All manner of fable is being attached to my personality, and there is no end
to the number of ingeniously devised tales.

Albert Keinstein, with apologies to Albert Einstein.1

Albert Einstein was not the first to use the relativity principle (RP) as a postulate
in the treatment of a problem in physics. Christian Huygens had done so over two
hundred years earlier in his treatment of collisions. And as we shall see shortly, even
Newton in his pre-Principia writings viewed the RP as having the same axiomatic
status as his laws. But the prominent role played by the principle in Einstein’s
1905 paper on moving bodies in electrodynamics marked the beginning of a new
attitude concerning the foundational status of symmetries in physics.

For Einstein, the RP was to be interpreted, at least in his 1905 paper, as a phe-
nomenological principle analogous to the well-known laws of thermodynamics.
There was something new and something old in Einstein’s RP. It was new (though
due acknowledgement must be given to Henri Poincaré, who had actually antic-
ipated Einstein in this respect) to the extent that it encompassed electromagnetic
phenomena and hence optics. After all, what was nontrivial in 1905, given all that
had happened in physics in the nineteenth century, was deciding not the validity
of the principle but its scope. Yet it was old in the sense that all that Einstein was
really doing in extending its scope to electrodynamics was to restore the principle
to its original Newtonian form. It is that form that interests us now.

3.1 THE RELATIVITY PRINCIPLE: THE LEGACY OF
GALILEO AND NEWTON

3.1.1 Galileo

In a celebrated 1632 Dialogo thought experiment,2 Galileo invites us to imagine
diverse experiments—involving leaking bottles, small flying animals, etc.—being

1 Calaprice (1996), p. 13. 2 Galilei (1960).
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performed in the cabin of a stationary ship. He tells us that no difference in the
outcomes of the experiments will be discernible if they are repeated when the ship
is sailing uniformly over calm waters in a straight line.

The process of putting the ship into motion corresponds (with an important
caveat to be elucidated below) to what today we call an active pure boost of the
laboratory. A key aspect of Galileo’s principle that we wish to highlight is this. For
Galileo, the boost is a clearly defined operation pertaining to a certain subsystem
of the universe, namely the laboratory (the cabin and equipment contained in it).
The principle compares the outcome of relevant processes inside the cabin under
different states of inertial motion of the cabin relative to the shore. It is simply
assumed by Galileo that the same initial conditions in the cabin can always be
reproduced. What gives the relativity principle empirical content is the fact that
the differing states of motion of the cabin are clearly distinguishable relative to
the earth’s rest frame.

Let us delve a little deeper into what that content is. It is now well known that
Galileo’s relativity principle, like his principle of inertia, is associated with a class
of horizontal motions, i.e. a class of motions of the laboratory that hug the earth’s
surface.3 However, it is clearly implicit in Galileo’s thinking that the regularities
in the processes he discusses do not depend on the time of year. For a defender of
Copernicanism such as Galileo, it would seem to follow that a second type of
relativity principle must hold. This is one defined for certain states of motion
relative not to the earth but to the ‘fixed’ stars, such as those instantiated by the
earth in the course of its annual trek around the sun. But it is at this point that
the weakness in Galileo’s theory of motion becomes apparent. It is far from clear
how to reconcile such insensitivity of the phenomena occurring inside the cabin
to the seasons with Galileo’s ill-fated theory of the tides. Recall that in this theory,
the tides are caused in part by the existence of the earth’s motion around the sun.
It is ironic that today we rule out such a theory precisely on the grounds of the
‘Galilean relativity principle’.

It should be noted that for some experiments explicitly mentioned in the ship
thought-experiment, such as observation of the motion of drops of water in free
fall, satisfaction of the relativity principle follows directly from Galileo’s principle
of inertia. Indeed, this case is a variant of the famous discussions concerning
the behaviour of a cannon ball dropped either from the mast of a moving ship
onto the deck, or from a tower fixed on the rotating earth. In all these cases,
Galileo could explain the (supposed) vertical drop of the projectile by appeal to the
inertial principle, and the assumption that perpendicular components of motion
are independent. One might wonder whether Galileo did not view his relativity
principle in its generality as a consequence of his principle of inertia. It is unlikely,
though we cannot be sure. What is clear is that the inertial principle does not
account, for example, for the velocity-independence of the rate of flow of drops in

3 See, e.g., Chalmers (1993).
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the case of the leaking bottle experiment. In fact, a little thought, aided no doubt by
considerable hindsight, indicates that that for almost all the processes considered
by Galileo in his thought-experiment, satisfaction of the relativity principle is
not a mere consquence of the principle of inertia: the processes concern not
just objects in motion but the dynamical mechanisms that produce that motion.
(Why should our ability to throw a ball or jump around, or the mechanism used
by butterflies to flap their wings, be independent of the state of motion of the
cabin?)

Finally and signficantly, it seems likely that Galileo viewed his relativity prin-
ciple as universal in scope, valid for all processes capable of being observed on
the surface of the earth, including electrical and magnetic phenomena.4 There is
certainly no hint of the existence of counter-examples to the ship experiment in
the Dialogo.

3.1.2 Newton

Largely as a result of the influence of Cartesian cosmology, post-Galilean
seventeenth-century versions of the RP replaced the horizontally moving frames
with rectilinearly moving ones. Here is Newton’s formulation, as stated in
Corollary V of the laws of motion in the Principia: ‘The motions of bodies
included in a given space are the same among themselves, whether that space
is at rest, or moves uniformly forwards in a right line without any circular
motion.’

Both Huygens and Newton espoused versions of the RP in which horizon-
tally moving frames play no essential role, and both used the principle at times
in a way that presaged Einstein’s 1905 reasoning, viz. as a fundamental postu-
late which has non-trivial implications for the nature of dynamical interactions.5

But Huygens, who believed in the relativity of all motion, was wisely silent on
the crucial issue as to the whereabouts of bodies which constitute frames rela-
tive to which the Cartesian version of the inertial principle could be stated, and
the relativity principle defined.6 Newton, of course, appealed to an invisible,
etherial body—absolute space—to this end. And by the time he wrote the Prin-
cipia, the relativity principle for Newton had its status as a postulate demoted
to that of a consequence of the laws of motion—a move which, as we shall
see in the next subsection, resulted in one of the few non sequiturs in his great
treatise.

It is noteworthy that at the end of his derivation of Corollary V, Newton explic-
itly mentions the ‘proof ’ given by the ‘experiment of a ship; where all motions [of
bodies in the cabin] happen after the same manner, whether the ship is at rest, or
is carried uniformly forwards in a right line.’7 But unlike in the case of Galileo’s

4 See Brown (1993), p. 232. 5 Barbour (1989), pp. 464–7, 571.
6 See Barbour (1989), p. 462. 7 Newton (1962).
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RP, the question arises in relation to Newton’s Corollary V whether the ‘bodies
included in a given space’ cannot also refer to the whole material universe, assum-
ing it is enclosed in a finite space. Given the role of absolute space in Newton’s
theory of motion, it certainly makes sense in the Newtonian scheme to talk about
different states of inertial motion of the centre of mass of the physical universe.
It is by no means clear that Newton would have regarded the relativity principle
as inapplicable in this, untestable, case.

In this sense, as well as in the definition of the inertial motions involved,
Newton’s RP may be said to differ somewhat from Galileo’s. But there are two
important senses in which they concur.

First, in neither case does the statement of the principle presuppose the precise
nature of the coordinate transformations between inertial frames. This point is
enough to dispel what is sometimes regarded as a seemingly paradoxical feature
of the RP, which in 1983 Michael Friedman put thus:

The Newtonian principle of relativity is expressed in our freedom to transform coordinate
systems by a Galilean transformation, the special [Einstein] principle of relativity in our
freedom to transform coordinate systems by a Lorentz transformation, and so on. But this
way of putting the matter makes the traditional relativity principles appear trivial. Are
we not always free to transform coordinate systems by any transformation whatsoever?
Will not any theory, regardless of its physical content, be generally covariant? If so, what
physical content do the traditional relativity principles express?8

Friedman went on to develop a technical formulation of the traditional relativity
principles (largely inspired by the 1960’s work of James Anderson) designed to
circumvent this kind of meltdown. But what Friedman overlooked in his analysis
is the simple fact that the RP was born without any commitment to the nature
of coordinate transformations at all.

The second point is this. For Newton, there were contact forces, and actions-
at-a-distance; electrical and magnetic forces—examples of the latter—were in
principle just as much part of his ‘mechanics’, and susceptible to his second
law, as the gravitational force was. It is true that in the late seventeenth cen-
tury what was missing was knowledge of the form of the electric and mag-
netic force expressions which would constitute the electromagnetic analogues
of the ‘inverse square’ force expression for gravity. But nothing in the Principia
suggests that the relativity principle is not applicable to electric and magnetic
interactions.

There is, in short, probably no difference in scope between the relativity princi-
ples of Galileo and Newton, at least for terrestrial experiments, and no significant
difference at all between those of Newton and the 1905 Einstein, at least for
boosted subsystems of the universe.

8 Friedman (1983), p. xii.
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3.2 THE NON-SEQUITUR IN NEWTON’S
COROLLARY V

Newton’s proof of Corollary V, that is to say his derivation of the RP from the laws
of motion, is cursory in the extreme. But it is clear that he was assuming two things.

The first was the Galilean transformations between inertial frames in relative
motion, and hence the invariance of accelerations. (The Galilean transformations
were simply taken for granted until the beginning of the twentieth century, not
even being named until that period.) But significantly, Newton also presupposed
the velocity independence of forces and masses. To remind ourselves as to why
these two assumptions are needed we need to rehearse the meaning of Newton’s
second law of motion.

In its modern formulation, the law is F = mẍ, for a force acting on a body of
inertial mass m.9 Commentators who regard the equation as a definition of force
underestimate its significance. For Newton’s idea is that whatever the nature of
the interaction involved, be it in virtue of contact with another body or action-
at-a-distance, there should be a force expression—some vector-valued function
analogous to the inverse square dependence on relative distance for gravity—
which will slot into the place-holder F in the equation. The claim that there
always exist such expressions is highly non-trivial (and, as finally realized in the
twentieth century, false!). What Newton is assuming in Corollary V is first that
for all the different kinds of interactions, the force expressions will have a property
in common with the gravitational one. As measured by the observer at rest in the
frame relative to which the laws of motion are initially postulated—let us call this
the stationary frame—the forces will not depend on the collective state of uniform
motion of the system of bodies under consideration. (Recall that the gravitational
force depends on the relative distances between bodies, and not their absolute
velocities.) A similar assumption is being made about the inertial and hence
gravitational masses of the bodies.

Consider then an isolated system of bodies—a subsystem of the universe—
enclosed in some region of space and interacting amongst themselves. Their
accelerations relative to the stationary frame will be unaffected when the sys-
tem of bodies as a whole is boosted. Relative to the observer comoving with the
boosted system, the accelerations are the same as for the stationary observer, and
likewise independent of the collective state of motion of the bodies. Indeed, given
the same initial conditions, both observers will expect the same motions of the
bodies to unfold ‘among themselves’. This ensures the validity of the relativity
principle and allows us to treat the forces and masses as invariant.

9 It will be recalled that the acceleration ẍ of the body is defined relative to the inertial frame
arising out of the first law of motion. It is for this reason that the first law is not a special case of the
second for F = 0.
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The trouble is that the velocity-independence of forces and inertial masses is
not a consequence of the laws of motion, as Barbour noted in 1989.10 Without
this extra assumption, it is not possible to derive the relativity principle from
Newton’s laws and Galilean kinematics.11

3.3 KEINSTEIN’S 1705 DERIVATION

Let us fantasize that in 1705 a young German natural philosopher working in a
patent office in Switzerland had come to the same conclusion after studying the
Principia, and decided to invert the logic of Newton’s argument.12

Albert Keinstein decided to postulate the RP, and investigate, like his illustrious
near-namesake two hundred years later, how it constrains kinematics. As we shall
see in Chapter 6, there are a number of routes he could have taken. The route he
actually took in our story involved assuming explicitly the validity of Newton’s
laws of motion relative to the stationary (unprimed) frame, as well Newton’s ‘extra’
condition concerning the velocity-independence of forces and masses relative to
that frame. (Keinstein was aware that Newton had implicitly used the conven-
tion for synchronizing clocks in that frame according to which the gravitational
interaction is instantaneous in every direction, or equivalently, the clock transport
convention.)

It follows from the second law of motion and Newton’s ‘extra’ assumption that
relative to the stationary frame, the accelerations of a system of bodies enclosed
in a given space are independent of the collective uniform rectilinear motion
of the bodies (or of the motion of the space, as Newton would say). According
to the RP, Keinstein surmised, the same velocity-independence also holds from
the perspective of the moving (primed) frame. Indeed, given the same initial
conditions in each frame, the same accelerations are predicted, and these are
preserved under boosts of the systems of particles. It follows that accelerations are
invariant across the two frames.

Keinstein realized that if you apply this conclusion to the general rule for
transforming longitudinal accelerations given in equation (2.29), it follows (given
the fact that v and ux are freely chosen) that

D =
√

C‖; α = 0. (3.1)

10 See Barbour (1989), pp. 31–2, 577–8, 608. It is somewhat hard to believe that recognition of
this simple fact is not to be found in the literature prior to 1989, but I am unaware of any precursor.

11 It might be thought that velocity-dependence of mass is a peculiarly relativistic phenomenon,
but this view is becoming increasingly unpopular, as mass in special relativity is more and more
identified with rest mass—which is of course invariant. This does not mean, however, that mass can
be interpreted in special relativity as inertia; its meaning is now associated with the rest energy of a
system. For reviews of the notion of mass in physics, see Okun (1989) and Roche (2005).

12 The fable of Keinstein is taken, with minor modifications, from Brown (1993).
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Thus a correlation between the values of the longitudinal length change factor
and the time dilation factor has been established, but not the values themselves.
Keinstein was at first tempted to argue that if Reciprocity is to hold, as one
expects, then it follows from equation (2.28) and (3.1) that the mentioned factors
can only be unity. Except for the transverse transformations (2.22) and (2.23), it
would seem that the Galilean transformations have emerged. And regarding the
transverse transformations, Keinstein could in principle have anticipated Einstein’s
(and independently Poincaré’s) argument to the effect that the transverse length
change factor is unity. This rather subtle argument will be discussed in Chapter 5;
it depends only on the RP and spatial isotropy.

But Keinstein realized that appeal to the Reciprocity principle after deriving
(3.1) is not innocent. After all, as we saw in section 2.4, once the distant clock syn-
chrony convention is chosen in both the stationary and moving frame, Reciprocity
becomes an empirical issue. Note that the second equation in (3.1) effectively fixes
the synchrony convention in the moving frame, given Newton’s implicit conven-
tion in the stationary frame. Is it really necessary to assume Reciprocity on top of
the other postulates?

It was at this point that Keinstein realized that he had not made sufficient use of
Newton’s ‘extra’ assumption concerning the velocity-independence of forces and
masses. What after all is a boosted rigid rod, if not a ‘moving atomic configuration’
to borrow the phrase Einstein used in 1949?The same phrase could have been used
by Keinstein, in the spirit of Newtonian atomism. The atoms of the rod are held
together rigidly by finding the stable equilibrium configuration consistent with
the nature of the inter-atomic forces, whatever they are. That such is possible
for the moving rod just as much as for the stationary one is a consequence of
the relativity principle. But under the assumption that such unknown forces are
themselves ‘Newtonian’, and therefore subject to the second law, it follows from
Newton’s ‘extra’ assumption that they, like the atomic masses, do not depend on
the uniform state of motion of the rod relative to the stationary frame. Keinstein
concluded that the shape and size of the rod is motion-independent: there can be
no longitudinal nor transverse length change. Clearly, a similar conclusion holds
in relation to clocks: there can be no time dilation.

This reasoning allowed Keinsten to put C‖ = C⊥ = D = 1 in the transfor-
mations (2.21–2.24) to obtain

x ′ = x − vt (3.2)

y′ = y (3.3)

z ′ = z (3.4)

t ′ =
t − αx
1 − αv

. (3.5)
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Finally, Keinstein correctly reasoned that he could choose to synchronize clocks
in the moving frame so as to preserve absolute simultaneity and render α = 0,
and thus obtain the Galilean transformations. Reciprocity did not after all have
to be introduced as an extra assumption.

3.4 THE DYNAMICS–KINEMATIC CONNECTION

The Keinstein fable is of course preposterously anachronistic. It assumes that
Keinstein understood the nature and meaning of kinematics better than anyone
prior to Einstein. In the early eighteenth century it would have been wholly
unclear to natural philosophers why any one would want to derive something
(much later called the Galilean transformations) which was so self-evidently true.
It assumes in particular that Keinstein had an understanding of the role of the clock
synchrony convention in defining distant simultaneity that proved to be the last
and hardest lesson Einstein had to learn to arrive at his 1905 derivation of the
Lorentz transformations and which is an issue that still confuses people today.13

But the point of the fable is first to demonstrate that in pre-relativistic mechanics
a derivation of the Galilean transformations is possible that mimics Einstein’s 1905
derivation of the Lorentz transformations. Second, Keinstein’s thinking demon-
strates fairly clearly, I hope, that kinematics and dynamics are not independent
departments of physics. As we will see later, the young Wolfgang Pauli stressed
in 1921 that length contraction for instance is a ‘very complicated process’, and
whether it takes place or not depends on the nature of the forces holding the
constituent parts of the rod together. Keinstein was able to see that the absence of
length contraction and time dilation is not a strict consequence of Newton’s laws
of motion, but is intimately connected with the ‘extra’ force and mass assumption
that Newton employed in deriving the RP in Corollary V of the Principia.

13 Lest it be thought that the conventionality of distant simultaneity is only an issue in relativity
theory, recall the discussion in section 2.2.3 above.
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The Trailblazers

If the Michelson–Morley experiment had not put us in the worst
predicament, no one would have perceived the relativity theory as (half )
salvation.

Albert Einstein1

[M]y approach was not so terribly unsatisfactory. Lacking a general theory,
one can derive some pleasure from the explanation of an isolated fact, as long
as the explanation is not artificial. And the interpretation given by me and
FitzGerald was not artificial. It was more so that it was the only possible one,
and I added the comment that one arrives at the [deformation] hypothesis if
one extends to other forces what one could already say about the influence of a
translation on electrostatic forces. Had I emphasized this more, the hypothesis
would have created less of an impression of being invented ad hoc.

Letter of H. A. Lorentz to A. Einstein, 19152

The cradle of the special theory of relativity was the combination of Maxwellian
electromagnetism and the electron theory of Lorentz (and to a lesser extent of
Larmor) based on Fresnel’s notion of the stationary ether. Even when the search
for detailed mechanical models of the electromagnetic ether had been given up as
futile, the success of the program was enormous, and easy to underestimate today.
In this chapter we look at the contributions of the principal figures concerned
with the explanation of the prima facie surprising failure to detect any significant
trace of the ether wind on the surface of the earth. It is well known that Einstein’s
special relativity was partially motivated by this failure, but in order to understand
the originality of Einstein’s 1905 work it is incumbent on us to review the work
of the trailblazers, and in particular Michelson, FitzGerald, Lorentz, Larmor, and
Poincaré.3 After all they were jointly responsible for the discovery of relativistic
kinematics, in form if not in content, as well as a significant portion of relativistic
dynamics as well.4

1 Einstein (1995). 2 Lorentz (1915).
3 All five of these luminaries were born in the 1850s—what a decade for physics! But their deaths

spanned over 40 years.
4 The treatment of Michelson, Lorentz, and FitzGerald in this chapter is based largely on the

study of the Michelson–Morley experiment and its immediate aftermath in Brown (2001).
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4.1 MICHELSON

If it had not been for the prodding of Lord Rayleigh and H. A. Lorentz, Albert
A. Michelson (1852–1931) might never had performed his celebrated 1887 ether
wind experiment with Edward R. Morley. Of Polish birth, Californian upbringing,
and a product of the US Naval Academy, Michelson had already established
a reputation in experimental optics through his measurements of the velocity
of light,5 and in 1881 he had published the report of an intriguing ether wind
experiment performed in Potsdam during a study leave in Europe. Michelson had
designed a novel type of interferometer, and with money donated by Alexander
Graham Bell had had it constructed by a reputable Berlin firm of instrument
makers. Its behaviour would be surprising and ultimately galling for the precocious
young American.

The Michelson interferometer involves a beam of near-monochromatic light
being split by a semi-silvered mirror into two perpendicular beams which are then
reflected back to the beam splitter; the light which reaches a telescope (eyepiece)
close to the beam splitter is a superposition of contributions from the two arms.
The two mirrors are equidistant from the beam splitter; suitable adjustment of
the mirrors produces straight interference fringes. If the laboratory has speed v
relative to the luminiferous ether, a rotation of the interferometer should produce
a shift in the fringes, the effect being second order in the ratio v/c, where c is
the speed of light relative to the ether. The very fact that the interferometer could
produce a stable fringe pattern surprised the Continental leaders in the field of
experimental optics; the device was one of unprecedented, almost implausible
sensitivity.6 In 1881 Michelson found no significant fringe shift under rotation
in his Potsdam experiment.7

It is well known that the significance of this experiment lay in the fact that the
predicted fringe shift is a second-order effect. A number of ether wind experiments
had already been performed to test for first-order effects, all with null results. That
this had not created a crisis in the ether theory was essentially due to the fact
that the experiments all involved the transmission of light through transparent
media, and there were excellent grounds, both experimental and theoretical, for
the validity of the originally surprising value suggested by Fresnel in 1818 for the
refractive index of media moving through the ether.8 The Fresnel ‘drag coefficient’,
much later understood to be a first-order consequence of the relativistic rule for
transforming velocities under boosts, led to null results in every case. James Clerk

5 A useful account of Michelson’s many achievements in physics is found in Bennett et al. (1973).
6 See Staley (2002).
7 Michelson (1881). Michelson found that in the relatively bustling Berlin, where he first set up

the interferometer, he could not keep the fringes stable during rotation. A useful discussion of the
1881 experiment can be found in Haubold et al. (1988).

8 For a recent detailed study of the history of this development, see Pedersen (2000). In 1886
Michelson would perform, in collaboraton with Morley, a more accurate version of the famous 1851
Fizeau experiment confirming the value of the Fresnel coefficient.
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Maxwell (1831–1879) had been the first to suggest the possibility of observing
second-order ether wind effects, but doubted that they could be performed in
terrestrial experiments. Michelson had risen to the challenge in 1881, or nearly.

Soon after he had published his 1881 paper, it was brought to Michelson’s
attention by the French physicist Alfred Potier that he had made an elementary
error in calculating the passage time of light in the arm of the interferometer
perpendicular to the motion of the laboratory through the ether. H. A. Lorentz
would independently spot the error. Michelson had simply overlooked the effect
of motion in the perpendicular arm, using the expression for the passage time
that would hold were the interferometer at rest relative to the ether. The trouble
was that when he corrected for the error, Michelson realized that the precision of
the apparatus was just under that required to detect the fringe-shift. The 1881
interferometer was a technological marvel but it was a flop as an ether wind
detector.

Michelson would complain that few people showed any interest in his 1881
experiment, and used this as an excuse for never publishing a note clarifying
the miscalculation.9 It is hard not to believe he was embarrassed by the episode,
and wanted to move on. But some key figures rightly thought that the second-
order effect was now too close to experimental test for the issue to be left to rest.
Lord Rayleigh and Lorentz both encouraged Michelson to repeat the experiment
using an improved (i.e. bigger) interferometer. The rest, as they say, is history.
What is perhaps little known is the fact that the new expression for the transverse
passage time in the celebrated 1887 paper with Morley is still wrong, but this
time innocuously so: to second order it agrees with the correct one!

4.1.1 The Michelson–Morley Experiment Revisited

It is crucial in discussing the Michelson–Morley (henceforth MM) experiment10

that the analysis take place from the perspective of some specific inertial frame
S relative to which both the earth-bound laboratory is to a good approximation
moving inertially, and the following assumption holds good.

The Light Principle (LP). Relative to S, the two-way light speed in vacuo is a constant
c, that is to say independent of the speed of the source and isotropic.

Note that LP refers to the ‘two-way’ (or ‘round-trip’ or ‘back-and-forth’) light
speed, whose determination can be established by a single clock, given know-
ledge of the distance the light traverses. At the end of the nineteenth century, this
principle was widely accepted, under the assumption that S is the rest frame
of the luminiferous ether. After all, if electromagnetic waves are propagating
disturbances in this ether, their speed depends only on the elastic properties of the

9 For a discussion of Michelson’s attitude to his own ether-wind experiments, including that with
Morley in 1887, see Staley (2002, 2003). 10 Michelson and Morley (1887).
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medium—and the ether is assumed to be homogeneous and isotropic. (The most
prominent dissenter was Walter Ritz, who in the early years of the twentieth cen-
tury would defend a ballistic theory of light in which the light speed does depend
on the speed of the source.) Pauli would refer to the LP in 1921 as the ‘true essence
of the old aether point of view’11 and as we see in the next chapter, Einstein in 1905
simply helped himself to it while performing the Wittgensteinian act of kicking
away the justificational ladder of the ether. By the end of the century, Lorentz
had already given up trying to give a mechanical underpinning to the ether, and
just treated it as a new and somewhat mysterious form of imponderable matter.
Nonetheless, relative to S the Maxwell–Lorentz equations of electromagnetism
hold and no matter how etherial the ether proved to be, these equations support
the LP.

The problem now is to calculate the passage times of light to-and-fro inside
the two arms of the interferometer moving at speed v relative to S , say in the
direction of the positive x-axis. Let us suppose arm A is pointing in this direction
initially and arm B is pointing in the direction of the y-axis. Then it is easy to
show given LP that the two-way passage times in the arms are relative to S :12

TA = 2γ2LA/c (4.1)

TB = 2γLB/c, (4.2)

where LA is the length relative to S of the moving arm A etc., and γ is the now
familiar ‘Lorentz’ factor (1 − v2/c2)−1/2.

Note that already something remarkable has taken place. Each arm of the MM
interferometer, when at rest relative to S , is a Langevin clock, or would be if there
were mirrors at both ends of the arm. Note that the passage times in (4.1) and (4.2)
are not defined as the ‘proper’ periods of the ‘longitudinal’ and ‘transverse’ clocks,
but correspond rather to the two values of the term ∆t appearing in the expression
(2.17) for the dilation factor of a clock. Supposing the Galilean transformations
to hold, there is of course no dilation in either case. But this means that (4.1)
and (4.2) coincide after all with the proper periods of the moving clocks, which
are clearly not the same as the common rest periods of the clocks relative to S ,
viz. 2LA/c and 2LB/c respectively. So if the Galilean transformations are valid,
the Langevin clock is therefore a counter-example to the boostability assumption
for clocks made in section 2.4 above: its rest period is not invariant. This should
sound warning bells about the Galilean transformations already.13

11 Pauli (1981).
12 Michelson and Morley in their 1887 paper give the value of TB as (2LB/c)(1 + v2/c2)1/2; the

mistake was first noted in the literature by Soni (1989). For speculation as to why this expression,
which coincides to second order with (4.2) above, was arrived at see Capria and Pambianco (1994),
fn. 6.

13 This point is overlooked in attempts to provide a geometrical underpinning to the Maxwellian
notion that electromagnetism is reconcilable with Galilean kinematics, as are found in Friedman
(1983) and Earman (1989). It should be noted that these authors regard such attempts as doomed,
but on other grounds.
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But let us push on with the MM experiment. The rotation of the stone block
supporting the apparatus allows one to compare the delay time TA −TB with the
corresponding delay time after rotation—a difference will show up as a shift in
the interference fringes. On the assumptions that (i) the lengths of the arms of the
interferometer were equal and unaffected by the motion relative to the ether, and
(ii) the velocity of the laboratory relative to the ether is of the order of the orbital
velocity of the earth relative to the sun, Michelson and Morley predicted a fringe
shift of roughly 0.4 fringe for a rotation by 90◦. The actual result was ‘certainly
less than the twentieth part of this, and probably less than the fortieth part’.

The experiment has been repeated, in different guises and by different experi-
mentalists, many times since 1887. Some of the most recent cases are mentioned
at the end of the following chapter. But the rigorous theoretical analysis of the
original experiment is more subtle than meets the eye. Two aspects are worth
noting

(i) The standard derivation of the fringe-shift requires that the orientation of
the semi-silvered mirror (beam splitter) is adjusted to deviate slightly from 45◦
in relation to the incoming beam of light relative to the stationary frame. It was
only realized fairly recently that if this tiny deviation in tilt is not properly taken
into account, both before and after rotation, then the exact formulas for the delay
times are considerably more complicated than the standard ones, although the
differences are only third and higher order in v/c.14 And a separate 2002 analysis
concluded that if, instead of the telescope in the experiment being focused on
one of the mirrors, the interference pattern is formed on a vertical screen, then a
first-order contribution to the fringe shift caused by rotating the interferometer
would also be predicted on the basis of the usual assumptions.15 In this case the
observed absence of the fringe shift would not follow from either the FitzGerald–
Lorentz deformation hypothesis (see below), or the Fresnel drag coefficient (since
the effect is predicted in vacuo).

(ii) A common textbook explanation of the MM null result uses the Galilean
rule for transforming velocities from the ether rest frame S to the rest frame S ′ of
the laboratory, and then assumes that the rest length of the longitudinal arm under-
goes contraction.This is incorrect, and very misleading—it is inconsistent with the
relativity principle, and is based on an untenable picture of length contraction.16

We shall see now that the MM result is directly inconsistent with the Galilean
rule for transforming velocities.

14 See Capria and Pambianco (1994) and Schumacher (1994); a discussion of the former paper
in found in Brown (2001). Another related discussion of the reflection of light from moving mirrors
is found in Gjurchinovksi (2004). 15 See de Miranda Filho et al. (2002).

16 Since according to the argument each arm of the interferometer changes its rest length under
rotation, it follows that there is a violation of spatial isotropy relative to the lab frame S ′. This is
inconsistent with the relativity principle taken in conjunction with the fact that spatial isotropy
is assumed to hold relative to the stationary frame S . Furthermore, the contraction is selective: it
cannot hold for rigid rulers attached to the interferometer, since otherwise the contraction would be
undetectable. A more complete discussion of this widespread, erroneous account of the null result is
given in Brown (2001), section III.
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4.2 MICHELSON–MORLEY KINEMATICS

What are the implications of the MM null result for the general inertial coordinate
transformations (2.21–2.24)? The first and obvious implication is that the two-
way speed of light is isotropic relative to the lab frame S ′,17 just as it is assumed to
be relative to the stationary frame S . This is a weaker claim than the invariance of
the two-way speed! From the linearity of the coordinate transformations and the
constancy of the light speed relative to S , it follows that the two-way light speed
relative to S ′ is also independent of the speed of the source. So it is natural (but
not compulsory) to adopt in both frames the Poincaré–Einstein convention for
synchronizing clocks which renders the one-way speed of light isotropic. From
this double convention alone, something interesting emerges.

Let us denote by c ′ the two-way speed of light relative to S ′. Applying our
synchrony convention in (2.25) and using ux = c ⇐⇒ u′

x′ = c ′, and ux =
−c ↔ u′

x′ = −c ′, one obtains

α = v/c2 (4.3)

D = c ′γ2C‖/c. (4.4)

The relativity of simultaneity factor α is the familiar relativistic one, but so far no
appeal has been made to the invariance of the light speed!

The second lesson of the MM null result concerns the length change factors.
The delay times before and after rotation of the apparatus are given by

∆ ≡ TA − TB = 2γ(γLA − LB)/c (4.5)

∆rot ≡ T rot
A − T rot

B = 2γ(Lrot
A − γLrot

B )/c, (4.6)

where Lrot
A is the length relative to S of the rotated arm A, etc. Referring back

to the discussion of the rod protocol in section 2.4 above, we see that the length
change factors are given by

C‖ = LA/Lo
A = Lrot

B /Lo
B , (4.7)

C⊥ = LB/Lo
B = Lrot

A /Lo
A, (4.8)

where Lo
A(B) is the length of arm A(B) relative to S , when the interferometer is

at rest relative to that frame. It follows from the isotropy of space relative to S

17 As always, we have to be careful with the obvious! A very contrived model of electrodynamics
involving anisotropic light propagation has recently been shown to be consistent with the null
MM result when the orientation dependence of lengths of rigid bodies—itself a prediction of the
theory—is taken into account. See Lämmerzahl and Haugan (2001).
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that such rest lengths do not depend on the orientation of the interferometer. It is
further taken (following assumptions 1 and 2 in section 2.4) that rest lengths are
invariant, i.e. Lo

A(B) = L′
A(B), and that L′

A(B) likewise does not depend on the
orientation of the interferometer. Now the fringe shift resulting from the rotation
is proportional to ∆ − ∆rot , and for this quantity to be strictly zero, it must be
the case that

C⊥ = γC‖. (4.9)

Actually, an explanation of the null MM result ensues if the dimensions relative
to S of the stone block underpinning the interferometer undergo an anisotropic
change as a result of motion, consistent up to second order with (4.9), and hence
with C⊥ ∼ (1 + v2/2c2)C‖. But using (4.3, 4.4, 4.9) we obtain the MM-
transformations:

x ′ = kγ(x − vt) (4.10)

y′ = ky (4.11)

z ′ = kz (4.12)

t ′ = k(γc/c ′)(t − vx/c2), (4.13)

where |v| < c, and putting k ≡ 1/C⊥.18 The temporal transformation (4.13)
can be rewritten as

t ′ = (γ2/D)(t − vx/c2), (4.14)

in which form it is clearer that the MM experiment (in its original form, but
see below) does not constrain the time dilation factor D. Let’s examine the main
points of significance concerning what has been established so far.

(i) The value of the dimensionless factor k = k(v) is not fixed by convention,
but by experiment: it affects the measurable degree to which the shape of rigid
objects is affected by motion relative to frame S . (Note that unless k is an even
function of v, the shape effects will be anisotropic.) Indeed, the motion-induced
distortion or deformation associated with (4.9) is of course more general than the

18 The MM-transformations were derived in Brown and Maia (1993) and Brown (2001), and
are consistent with the classic analysis by Robertson (1949) of the experimental basis of relativistic
kinematics.
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purely longitudinal contraction we are familiar with in special relativity (in which
C⊥ = 1). The deformation may actually involve expansion and/or contraction
effects, but it cannot vanish in toto. Regrettably, very few textbook treatments of the
MM experiment recognize anything other than a purely longitudinal contraction
as an explanation of the null result.19

(ii) No appeal was made in the derivation of the MM-transformations to the
relativity principle. Indeed, in general the deformation effect defined for motion
relative to an arbitrary frame may differ from that defined relative to S .

(iii) The transformations (4.10), (4.13) are in general incompatible with the
principle of Reciprocity (see section 2.4). It is easy to show that reciprocity holds
only if D = γ, or equivalently if c = c ′. But since the synchrony convention has
already been fixed in both frames, reciprocity is now an empirical issue.

(iv) It can easily be seen from (2.25-6) that even if we choose the synchrony
convention in the lab frame S ′ in such a fashion that α = 0 (which we must do
if we want Galilean kinematics to emerge and which does not affect the length-
change factors defined relative to S), the result C⊥ 	= C‖ is inconsistent with the
Galilean rule of transformation of velocities:20

u′
x′ = ux − v (4.15)

u′
y′(z′) = uy(z). (4.16)

As we mentioned at the end of the previous section, this fact is in conflict with a
common textbook ‘solution’ of the Michelson–Morley conundrum.

In this section we have looked at the implication of the MM experiment from
a modern, kinematical perspective. Let us return now to history.

4.3 FITZGERALD AND HEAVISIDE

In May of 1889, the American journal Science published a brief letter by the
prominent Irish physicist George Francis FitzGerald (1851–1901),21 contain-
ing a sensational suggestion: ‘almost the only hypothesis’ capable of reconciling
the ‘wonderfully delicate’ MM experiment with the apparent fact that the earth

19 The only exception I am aware of amongst modern textbooks is Mills (1994). As we see below,
both Lorentz and (almost certainly) FitzGerald were aware that strict longitudinal contraction was
not required, as well as a handful of commentators on Lorentz.

20 See Melchor (1988) and Brown (2001).
21 For good accounts of FitzGerald’s character and life, see Lodge (1905) and Coey (2000). It is

too bad that a full scientific biography worthy of this man, one of the great Maxwellians, and who
by all accounts was revered by his colleagues and friends, has never been written.
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dragged a negligible amount of ether at its surface was that . . . ‘the length of
material bodies changes, according as they are moving through the ether or across
it, by an amount depending on the square of the ratio of their velocities to that
of light.’22

FitzGerald’s letter was to remain virtually unknown until the historian Stephen
Brush drew attention to it in 1967.23 FitzGerald himself never checked to see if
it had appeared in print, and when his friend Joseph Larmor edited FitzGerald’s
collected work a year after his untimely death in 1901,24 Larmor was unaware
of its existence. Nowhere else did FitzGerald publish the idea that probably most
made his name in physics,25 and yet by the time of his death it was widely
accepted at least in the European physics community. The reason for its fame was
essentially twofold. It was mentioned in papers on optics by another of FitzGerald’s
friends and colleagues, Oliver Lodge, in 1892 and 1893, and H. A. Lorentz
independently arrived at the same idea in 1892. Lorentz promulgated it more
energetically than FitzGerald while recognizing the latter’s priority. Joseph Larmor,
following Lorentz, would adopt the idea in his 1900 book Aether and Matter. But
FitzGerald would not find his idea easy to sell for some time. In 1884, when he
mentioned it to R. T. Glazebrook and J. J. Thomson while visiting Cambridge
on examining duties, his listeners found it—in Glazebrook’s words—‘the brilliant
baseless guess of an Irish genius’.26

The few historical studies of this episode have not done it justice. Alfred Bork
in 1966 was struck by the vagueness of the formulations of the hypothesis by both
FitzGerald and Lodge: he noted that they ‘do not state just what contraction is
involved, in terms of mathematical details’.27 On the other hand, Bruce Hunt
claimed in 1988 that when FitzGerald first voiced the deformation hypothesis
during a visit to Lodge’s Liverpool home in 1889: ‘there is no reason to think
that the idea that flashed on him in Lodge’s study involved anything other than
a simple [longitudinal] contraction.’28

In my opinion, there is every reason to think FitzGerald was not thinking
specifically of simple contraction—a term, incidentally, that he never used. Not
only is longitudinal contraction not required to explain the MM result as we have
seen above (and as Lorentz knew perfectly well), but Lodge’s 1893 account of

22 FitzGerald (1889). 23 Brush (1984). 24 Larmor (1902).
25 FitzGerald did elsewhere endorse the idea in print when proposed by Larmor, but modestly

without claiming priority; see FitzGerald (1900b) and FitzGerald (1900a).
26 Glazebrook (1928). Lodge would proudly write in 1909 that the deformation hypothesis was

born while FitzGerald was ‘sitting in my study and discussing the matter with me. The suggestion
bore the impress of truth from the first.’ In his account of the episode, Silberstein (1914) wrote of
Lodge: ‘Happy are those who are gifted with that immediate feeling for “truth”.’ Alas, the feeling on
this occasion may have been exaggerated. FitzGerald pointed out to Lorentz in 1894 that Lodge only
mentioned the deformation hypothesis in his 1892, 1893 papers as a result of ‘reiterated positiveness’
on FitzGerald’s part. It is also pretty clear from the papers themselves that Lodge was initially far
from convinced of the validity of the hypothesis. For more details, see Brown (2001), section V.

27 Bork (1966). 28 Hunt (1988).
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the hypothesis explicitly mentions the possibility that ‘the length and breadth of
Michelson’s stone block were differently affected’.29 Nor did Lorentz attribute a
strict contraction effect to FitzGerald; he wrote in 1899 in respect of the MM
experiment: ‘In order to explain the negative result of this experiment fitzgerald
and myself have supposed that, in consequence of the translation, the dimensions
of the solid bodies serving to support the optical apparatus, are altered in a certain
ratio.’30

In fact, W. M. Hicks in 1902 and Wolfgang Pauli as late as 1921 gave similar
readings of the FitzGeraldian hypothesis. It is more recently that commentators
have, almost without exception, incorrectly attributed a strict contraction hypoth-
esis to FitzGerald.31 The situation vis-à-vis Lorentz is better, but not much, as we
shall see.

But the important question is: what could have made FitzGerald come up with
such a strange and unlikely deformation hypothesis? His 1889 letter in Science
provides part of the answer.

We know that electric forces are affected by the motion of electrified bodies relative to the
ether and it seems a not improbable supposition that the molecular forces are affected by
the motion and that the size of the body alters consequently.

The remaining piece in the puzzle was provided by Bruce Hunt in 1988.32 Hunt
pointed out that some months before he wrote the letter to Science, FitzGerald
had been in communication with Oliver Heaviside (1850–1925), the remarkable
autodidact who is credited with the familiar vector form of Maxwell’s equations
and by the turn of the century was widely regarded as one of the authorities on
electrodynamics. The correspondence concerned Heaviside’s 1888 analysis of the
distortion of the electromagnetic field of a charged body resulting from its motion
relative to the ether.33 We need to pause to examine this development.

There are two ways to derive the electric and magnetic fields produced by
charges in uniform motion relative to some inertial frame S , as textbooks on
electromagnetism will testify. The easier way is to consider the relatively simple
solution of Maxwell’s equations associated with the rest frame of the charge—
in which the electric field has spherical symmetry—and then use the known
transformation rules for the components of the electric and magnetic fields under
Lorentz transformations to derive the field strengths in the original frame S .34

The second way is to solve Maxwell’s equations in S for a moving charge using
the so-called Liénard–Wiechert potentials, and then omitting the contributions

29 Later Lodge would reminisce that FitzGerald, at the 1889 home meeting with Lodge, accepted
his suggestion that the effect of motion might be a volume-preserving sheer distortion. In his 1966
study Bork found this astounding, and suggested it is likely that Lodge was projecting a view of his
own. But it is entirely possible FitzGerald accepted Lodge’s deformation as one of the possibilities
consistent with the MM null result. See Brown (2001), section V. 30 Lorentz (1899).

31 The only exception I am aware of is Capria and Pambianco (1994); see Brown (2001), section V.
32 Hunt (1988). 33 Heaviside (1888).
34 It is tempting to call this the modern way, but Larmor had used it before 1900!



The Trailblazers 51

to the field strengths that are due to any acceleration of the charge. Either way,
the electric field is found to take the form

E =
(qr/r2)(1 − v2/c2)
(1 − v2 sin2θ/c2)3/2

, (4.17)

where E is evalutated at a point with displacement r from the centre of the charged
body and θ is the angle between r and the direction of motion of the charge. The
terms in (4.17) involving the charge’s speed v give rise to a distortion away from
spherical symmetry. Indeed, the surface of equipotential forms an oblate spheriod,
now known in the literature as a Heaviside ellipsoid, whose principle axes have ratios
γ−1:1:1.

The reason for this terminology is that Heaviside arrived at the formula (4.17)
(as well as the correct expression for the magnetic field) in the 1888 work that
was soon to come to FitzGerald’s attention. Needless to say, Heaviside did not
use the easier route above, because neither the formal notion nor meaning of the
Lorentz covariance of Maxwell’s equations was known in 1888. It is interesting
that Heaviside gives no indication as to how he got (4.17), but simply argues that
it has all the properties that the desired solution of Maxwell’s equations would be
expected to have!35

In a letter written to Heaviside in January 1889, FitzGerald made the remark-
able suggestion that the Heaviside distortion result might be applied ‘to a theory
of the forces between molecules’ in a rigid body.36 The implication of this sugges-
tion is obvious: the shape of a body moving through the ether will be deformed,
precisely as FitzGerald stated in his Science letter published later in the same year.
Could FitzGerald then have predicted the null outcome of the MM experiment
had Heaviside arrived at his distortion result before 1887?

35 For a recent derivation in the spirit of Heaviside’s approach, see Dmitriyev (2002). Heaviside
made one mistake. Being concerned with the field associated with a moving point charge, Heaviside
thought the effect would be the same as that produced by charge smeared non-uniformly on a perfectly
conducting moving sphere. After all, a uniform distribution of charge on a stationary conducting
sphere gives the same radial field lines as a stationary point charge. In private correspondence in
1892, G. Searle pointed out to him that the equilibrium distribution of charge associated with the
Heaviside field distortion would not be over a sphere but over an ellipsoid, and it was Searle who
in later papers of 1896 and 1897 introduced the term ‘Heaviside ellipsoid’; see Searle (1896). For
a treatment of this issue, see Redžić (1992) and the references therein. Recently, Redžić has argued
that there is a tension between the relativity principle holding for Maxwell’s equations and Searle’s
result, which had it been recognized by the ether theorists might have led to the notion of length
contraction independently of the Michelson–Morley experiment; see Redžić (2004). But it is hard
to imagine the relativity principle being used in this way, at least prior to 1900.

36 The letter contains another remarkable suggestion, viz. that the speed of light might be a
limiting speed. Was this the first time this notion was advanced? See also in this connection Bell
(1992).
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It is doubtful. Despite some claims to the contrary, it is highly questionable
whether prior to 1889 FitzGerald thought, as Larmor would some years later, that
intermolecular forces are electromagnetic in origin.37 (Lorentz, certainly, was very
non-commital on this issue until well into the twentieth century.) But as part of a
response to the MM null result, FitzGerald’s deformation hypothesis is, as he says
in his Science letter, ‘not improbable’ in the light of the Heaviside result. Shape
deformation produced by motion is far from the proverbial riddle wrapped in a
mystery inside an enigma. And there is another feature of FitzGerald’s argument
that needs to be emphasized. For Heaviside and FitzGerald, it is motion of charges
relative to the ether that causes the distortion of the electric field. But how does the
ether achieve this feat? Very simply—by way of Maxwell’s equations. Throw away
the ether, and simply assume Maxwell’s equations hold relative to some inertial
frame S . According to FitzGerald’s reasoning, it still is the case that moving bodies
undergo shape deformation relative to S as long as the intermolecular force fields
mimic electromagnetic ones. The ether, in and of itself, is doing virtually no work
in FitzGerald’s original argument!

4.4 LORENTZ

Hendrik Antoon Lorentz38 (1853–1928) hit on essentially the same deforma-
tion hypothesis independently in 1892,39 only later learning of FitzGerald’s idea
through Lodge’s papers on optics. Lorentz’s original suggestion was that the
Michelson stone block undergoes a longitudinal contraction which up to sec-
ond order coincides with the factor γ−1, but he was aware that certain other
changes in the dimensions of the body ‘would answer the purpose equally well’. It
was in his extensive 1895 essay (sometimes referred to briefly as the ‘Versuch’40)
on electromagnetic and optical phenomena associated with moving bodies that
the point was brought out more systematically. Here, Lorentz introduced a longi-
tudinal factor C‖ written as 1+ δ and a transverse factor C⊥ as 1+ ε. He claimed

37 For further discussion see Brown (2001), section VII.
38 I cannot do justice here to the role played by Lorentz as the greatest of the ether theorists, nor

to the scope of his achievements. It is enough to say that he and Joseph Larmor were responsible for
establishing that ‘atoms of electricity’ are consistent with the Maxwellian programme, thus founding
a clear-cut distinction between matter and the ether, or rather fields. If one has to encapsulate his
personal greatness in a few words, the job is best left to Einstein.

If we younger ones had known H. A. Lorentz only as a great luminary, our admiration and
veneration for him would already have been of an extremely special kind. But what I feel when I
think of H. A. Lorentz is not covered by a long way by that veneration alone. For me personally
he meant more than all the others I have met in my life’s journey. Just as he mastered physics
and mathematical structures, so he mastered also himself,—with ease and perfect serenity. His
quite extraordinary lack of human weaknesses never had a depressing influence on his fellow-men.
Everyone felt his superiority; no one felt depressed by it. Einstein (1957), p. 8.
39 Lorentz (1892). 40 Lorentz (1895).
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that the null result requires

ε − δ ∼ v2/2c2, (4.18)

which is consistent to second order with (4.9). Lorentz stressed that the value
of one of the quantities δ, ε remains undetermined. Indeed, he mentions the
possibilities of joint values associated with pure transverse expansion, and with
a combination of longitudinal contraction and transverse expansion. From the
1895 essay up to his 1906 New York lectures on the theory of the electron,
Lorentz would repeatedly refer to his hypothesis as one dealing with the ‘changes
of dimension’ of a moving solid body. Most commentators overlook this point, but
unlike in the case of FitzGerald, there is a handful of writers who have appreciated
the difference between length contraction and Lorentz’s hypothesis.41

Another common misconception in the literature is that the FitzGerald–
Lorentz ‘contraction’ hypothesis is somehow intrinsically different from the con-
traction effect Einstein deduced in 1905, because the former is more ‘real’ or
‘absolute’ or something of the sort. Consider the following claim found in a
very useful recent collection of papers on the history and foundations of special
relativity:

This contraction hypothesis was regarded as an immediate forerunner of Einstein’s the-
ory of relativity. However, it should be emphasized that the concept of FitzGerald and
Lorentz contradicts the fundamental principle of relativity because the FitzGerald–Lorentz
contraction is absolute, while the Lorentz contraction in Einstein’s theory is relative.42

What is presumably meant here is that the hypothesis was defined initially for
rigid bodies moving relative to the rest frame S of the ether, and not relative to an
arbitrary frame. This is true, but it was recognized well before Einstein was on the
scene that this difference meant little in practice. S could be any inertial frame,
as far as experiment could tell. The real difference was not the effect in itself, but
the nature of its justification.

Again, like FitzGerald, Lorentz was not introducing a purely ad hoc mechanism
to save the appearances. In a letter written to Einstein in 1915, and unearthed
many years later by A. J. Kox,43 Lorentz admitted that he had arrived at the idea of
deformation shortly before he developed a dynamical plausibility argument. But
develop one he did, and to his regret (expressed in the letter to Einstein) he did not
emphasize it more from the outset.44 In 1892 Lorentz had convinced himself that a
collection of electrons held together in equilibrium45 would undergo longitudinal
contraction by the factor γ−1 when boosted relative to the ether. Lorentz argued

41 See esp. Nercessian (1986, 1988). For details of other perceptive commentators on Lorentz,
see Brown (2001), section VI. 42 Hsu and Zhang (2001), p. 516.

43 Lorentz (1915). 44 See the epigraph at the beginning of this chapter.
45 The notion deserves care; it has been noted in this connection by Janssen (1995) that it was

already known that no such stable equilibrium based on purely electrostatic forces is strictly possible.
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both in 1892 and 1895 that it was ‘not far-fetched’ to infer an ether-wind effect on
the molecular forces similar to that associated with electrostatic ones. Although
he flirted with a strong version of this correlation, according to which molecular
forces exactly mimicked the electrostatic forces in this sense, Lorentz realized that
there was ‘no reason’ for it. By 1899, he explicitly admitted that he had no means
of determining the factor k in the possible values C‖ = (kγ)−1 and C⊥ = k−1.

Lorentz’s 1892 argument concerning the collection of charges was followed in
1895 and 1899 by the first-order and second-order versions respectively of his
so-called theorem of corresponding states, which were designed to show that no first-
or second-order ether-wind effects would be discernible in experiments involving
optics and electrodynamics. Note that it was in the context of the first-order version
of the theorem that the notion of ‘local time’ appeared as an adjunct—with purely
formal significance—to the Galilean coordinate transformations:

t ′ = t − vx/c2. (4.19)

It was not until 1908 that Lorentz would learn of, and immediately acknow-
ledge, the priority of Woldemar Voigt who first introduced this transformation in
1887.46

The full logic of the theorem of corresponding states—at least by modern
lights—is convoluted. Unlike FitzGerald’s logic, it relies explicitly on the formal
symmetry properties of Maxwell’s equations; and in the second-order version of
the theorem, the Lorentz coordinate transformations appear in their full glory. (In
particular by 1904 Lorentz had largely convinced himself, if not Poincaré, that
k = 1.)47 Part of what makes the argument unfamiliar to modern eyes is that
Lorentz’s interpretation of these transformations is not the one Einstein would
give them and which is standardly embraced today. Indeed, until Lorentz came
to terms with Einstein’s 1905 work, and somehow despite Poincaré’s warnings, he
continued to believe that the true coordinate transformations were the Galilean
ones, and that the ‘Lorentz’ transformations (the terminology is due to Poincaré)
were merely a useful formal device. These days, Lorentz’s pre-1905 views are
often discussed but seldom really understood. As we shall see later, J. S. Bell
would courageously defend in 1976 what he called the ‘Lorentzian pedagogy’ in

46 Voigt (1994). Voigt has been described, perhaps somewhat whimsically, as the ‘unsung hero of
special relativity’ (see Hsu and Zhang (2001), 24). In his 1887 paper, Voigt showed that coordinate
transformations exist—specifically the Lorentz transformations multiplied by γ−1—which preserve
the form of the wave equations in the elastic theory of light.The main object of the paper was to derive
a new expression for the Doppler shift. It is unclear precisely how Voigt meant the transformations
to be interpreted, or why the multiplicative factor γ−1 is what it is. For further discussion, see Kittel
(1974). (Kittel cites a 1888 paper of Voigt’s on the effect of motion on the propagation of light which
predicts a ‘perceptible effect’, in violation of the null result in the MM experiment.)

47 Part of Lorentz’s argument for k = 1 contains the assumption that a moving electron, considered
to be a small conducting sphere covered with a unit of charge, contracts longitudinally by the factor
γ−1. Now the nature of the force of cohesion on the surface of the electron that prevents it from
disintegrating under the repulsive Coulomb force between different charge elements on the surface
was completely unknown, and Lorentz’s assumption had no clear justification.
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teaching special relativity, but he showed little familiarity with the complexities
of Lorentz’s reasoning.

I will not go through these complexities,48 but concentrate on the bottom line of
Lorentz’s argument. Imagine a system of electric and magnetic fields and charged
particles, whose configuration over time, call it A, is a solution of Maxwell’s
equations. (It goes without saying that these equations are taken to hold in the
ether rest frame S .) Then there exists another solution associated with a distinct
configuration B, whose description in terms of the Lorentz-transformed (primed)
coordinates is the same as configuration A relative to S—the ‘corresponding state’
in S ′. It is important to realize that the Lorentz transformations involve field
components as well as coordinates, and that both depend on the elusive scale
factor k mentioned above. Now the fact that these primed coordinates and field
components are in part ‘fictitious’, i.e. not judged to have direct operational
significance, is not of crucial import. What is critical is the claim that configuration
B represents the result of boosting configuration A, i.e. accelerating the system to
the new state of motion relative to the rest frame S . If it is then further assumed
that this very configuration change holds for all the equipment in the laboratory,
including say the stone block in the Michelson interferometer, then no effects of
ether drift are discernible in optical or electromagnetic experiments, at least to
second order.49

Michel Janssen has highlighted the importance of this combined assumption
regarding the effects of an active boost and called it the ‘generalized contraction
hypothesis’. As Janssen correctly asserted, it is a consequence of the claim that
all the fundamental laws of physics, and not just those of electromagnetism, are
Lorentz covariant.50 (But is this entirely obvious? It surely depends to some extent
on the details of the accelerative process, and we will return to this issue later.)51

No such claim was made by Lorentz prior to 1905; nor is it obvious that Lorentz
recognized that even the restricted version of the boost hypothesis concerning
purely electrodynamical systems is a consequence of the symmetries of Maxwell’s
equations.

48 Happily, excellent critical reconstructions of Lorentz’s theorem of corresponding states, and
its evolution from 1895 to 1899, are available; the most systematic I am aware of is found in the
work of Michel Janssen. See Janssen (1995)—an example of history of physics at its best—and the
briefer review in Janssen and Stachel (2003); the study by Rynasiewicz (1988) is also recommended.
Note that Janssen also showed (see Janssen (1995, 2003)) that the null result obtained in the second-
order ether-drift experiment of Trouton and Noble involving the measurement of torque on rotating
capacitors could not be explained by appeal to the FitzGerald–Lorentz deformation hypothesis alone,
even in its restricted contraction form, but actually requires appeal to Einstein’s 1905 identification
of energy and mass.

49 This is something of an oversimplification. Lorentz exploited the fact that most optical experi-
ments involve observation of a pattern of brightness and darkness, and argued that corresponding
states produce identical patterns of this kind. But Lorentz’s argument only holds, Janssen has claimed,
if the patterns are stationary; see Janssen (1995). 50 Janssen (1995), fn. 60, p. 205.

51 See section 7.5.1 below.
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This brings us to the little-known aspect of Lorentz’s thinking that was
mentioned in Chapter 1 and deserves another look. In 1889, the reader will recall,
Lorentz commented on the claim of a year earlier made by the French physicist
Alfred Liénard (1869–1958)—he of the Liénard–Wiechert potentials mentioned
in the previous section—that in a variation of the MM experiment in which the
arms of the interferometer contain a transparent medium, FitzGerald–Lorentz
deformation would be insufficient to predict a null result. It is remarkable that
instead of seizing on the possibility of a novel second-order ether-wind experi-
ment uncovering what the MM experiment failed to, Lorentz expected (as did
Liénard) that the result would still be null, and went about trying to see what could
cause this. His conclusion: besides the change in dimensions of the apparatus, the
period of oscillation of light waves leaving the moving source must be γ/k times
the period obtaining when the source is at rest relative to the ether. Indeed, this
dilation effect is a consequence of the second-order version of Lorentz’s theorem
of corresponding states, as he pointed out in 1899.52

The almost universal view that Lorentz had, prior to Einstein’s work, no appre-
ciation of the breakdown of the Newtonian nature of time may be due to a failure
to distinguish between the two distinct components built into the Lorentz trans-
formation for time, namely the dilation factor (D = γ) and the relativity of
simultaneity factor (α = v/c2). Lorentz consistently failed to understand the
operational significance of his notion of ‘local’ time, which is connected with the
latter. He did however have an intimation of time dilation in 1899, but inevitably
there are caveats. First, it is very unlikely that Lorentz appreciated the universality
of time dilation—that it would hold for all ideal clocks, whatever their con-
struction. Second, the sense in which he is reading time dilation off the k-Lorentz
transformations (which for him are, recall, nothing more than a convenient formal
device) is quite different from the way we now read it off.

Lorentz noted that the theorem of corresponding states actually implies that the
frequency of oscillating electrons in the light source is affected by motion of the
source, and it is this fact that gives rise to the change in frequency of the emitted
light. But Lorentz realized that the oscillating electrons only satisfy Newton’s laws
of motion if it is assumed that both their masses and the forces impressed on them
depend on the electrons’ velocity relative to the ether. The hypotheses in Lorentz’s
system were starting to pile up, and the spectre of ad hocness was increasingly
hard to ignore (as Poincaré would complain).

It is interesting to ask how FitzGerald might in principle have dealt with the
Liénard challenge. Recall that the FitzGerald–Heaviside approach to the original
MM experiment makes no use of the symmetry properties of Maxwell’s equations,
or the existence of form-preserving coordinate transformations. What principle
holding then in the ether frame S might one appeal to in order to account for the

52 As far as I know, the first commentator to notice this intriguing development in Lorentz’s
thinking was Michel Janssen; see Janssen (1995) and Janssen and Stachel (2003).
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expected new null result in the presence of transparent media? It is clear that the
Fresnel drag coefficient, which it will be recalled determines the refractive index
of the moving medium relative to the ether frame, will play a role. And of course
two coefficients are needed: one defined for light moving parallel to the direction
of motion, and one defined for the component of the light ray speed transverse
to the direction of motion. Suppose at any rate that we provisionally accept the
following exact relations:

c‖ =
c/n + v

1 + v/(nc)
(4.20)

c⊥ = c/(nγ), (4.21)

where c‖ and c⊥ are the one-way speeds for light propagating in the direction
of the positive x- and y-axes inside the moving medium relative to S , and n is
the refractive index of the medium when at rest relative to S . (The speeds for
propagation in the opposite directions are obtained by replacing c with −c.) The
usual Fresnel drag coefficients53 follow from (4.20) and (4.21) up to first order.
It is straightforward, but a little tedious, to show that the to-and-fro times TA
and TB defined above are, to be consistent with (4.20) and (4.21), equal, with
the value 2kγLon/c. Since rotation of the apparatus does not affect this equality,
the null outcome is assured.

Where do the expressions (4.20) and (4.21) come from? The velocity trans-
formation rules that follow from the Lorentz coordinate transformations. Pulling
them out of the air is far from ideal, but it is no worse in meeting Liénard’s chal-
lenge than explaining the null outcomes of first-order ether-wind experiments by
way of the Fresnel drag coefficient, at least before a dynamical account of it is
available (of which more later). Perhaps more importantly, the relations show that
a MM-type experiment involving a transparent medium does not yield a non-null
result, contrary to a recent claim in the literature.54 Lorentz was right. But note
that in the argument I have just presented, which is close in spirit to Lorentz’s
earlier 1892 and 1895 analyses of the MM experiment, dilation of the period of
oscillation of the light source plays no direct role.55

53 See, e.g., Larmor (1900), p. 49. As we shall see shortly, Larmor provided an interesting treatment
of the modified MM experiment independently of Lorentz and possibly without being aware of
Liénard’s work.

54 See Cahill (2004). It might be objected that since (4.20) and (4.21) are relativistic, it is no
surprise that the outcome is consistent with the relativity principle. But the point here is that Cahill’s
derivation of a non-null result assumes that the light speed in the moving medium is c/n relative to
S , which is consistent with neither the Galilean nor the Lorentz transformations.

55 Since (4.20) and (4.21) follow from the relativistic transformation rules for longitudinal and
tranverse velocities, time dilation (defined up to the unknown factor k) is unavoidable, but it does
not figure in the argument.
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4.5 LARMOR

In 1898, Joseph Larmor (1857–1942), an accomplished Irish mathematical physi-
cist lecturing at St John’s College, Cambridge, put together a series of his papers
on the electron theory. The resulting extended essay won the Adams prize at
Cambridge that year and in 1900 was published as a book under the title Aether
and Matter. A development of the dynamical relations of the aether to material sys-
tems.56 Larmor’s work has received less attention from historians of relativity the-
ory than Lorentz’s.57 Abraham Pais, in his acclaimed 1982 scientific biography of
Einstein, wrote that

. . . [T]here is no doubt that he [Larmor] gave the Lorentz transformations and the resulting
contraction argument before Lorentz independently did the same. It is a curious fact that
neither in the correspondence between Larmor and Lorentz nor in Lorentz’s papers is there
any mention of this contribution by Larmor.58

There is much truth to these remarks59, but Pais’s additional claim that Larmor
also provided ‘the proof that one arrives at the FitzGerald–Lorentz contraction
with the help of these transformations’ does not bear scrutiny.

Larmor was, it seems, the first to introduce the Lorentz transformations,
although in the ungainly form

x1 = ε1/2x ′ (4.22)

y1 = y′ (4.23)

z1 = z ′ (4.24)

t1 = ε−1/2t ′ − (v/C 2)ε1/2x ′, (4.25)

where ε ≡ (1 − v2/C 2)−1, C is the speed of light relative to the rest frame
S of the ether, and the x ′ etc. are obtained from the S coordinates by way of
the Galilean transformations. Larmor showed that Maxwell’s equations for the
free field are covariant under these transformations.60 In the way in which he
applied this result, Larmor’s logic is very similar to that of Lorentz’s theorem of

56 Larmor (1900).
57 But see Kittel (1974), Buchwald (1981), Warwick (1991), and particularly Darrigol (1994).

Larmor would go on to hold the Lucasian Professorship of Mathematics at Cambridge; his successor
in the post was P. A. M. Dirac. 58 Pais (1982), p. 126.

59 Note that Pais is not saying Larmor anticipated the FitzGerald–Lorentz hypothesis, which
would be impossible given the relevant dates. Pais is aware that the latter hypothesis concerns a
family of possible deformations, and his point was that Larmor settled on longitudinal contraction
before Lorentz did.

60 Larmor (1900), p. 174. Relevant sections of the book are reprinted in Hsu and Zhang (2001),
pp. 27–41.
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corresponding states. (Larmor was aware of of the first-order version of the theorem
in Lorentz’s 1895 Versuch, but could not have known Lorentz’s 1899 second-order
work.) The transformations (4.21–4.24) seem to have merely formal significance;
indeed Larmor explicitly refers to the fields (‘aetherial vectors’) associated with a
system of moving electrons (which Larmor takes to be singularities of the ether)
‘referred to axes of (x ′, y′, z ′) moving through the aether with uniform translatory
velocity (v, 0, 0)’.61 It seems that like Lorentz, Larmor still viewed the Galilean
transformations as valid, but again like Lorentz, deemed that he had proved that
a system of electrons is ‘contracted in comparison with the fixed system in the
ratio ε−1/2, or 1 − 1

2 v2/C 2, along the direction of its motion’.62 (I say ‘like
Lorentz’, but as we have seen Lorentz continued to struggle with the elusive value
of the scale factor k for several more years. Larmor is perfectly aware of this
scale ambiguity63, and his his choice of k = 1 is entirely arbitrary.)64 Finally,
it is patent that the whole argument is approximate, and holds only to second
order.65

It is important to recognize that the contraction of a system of electrons does
not lead automatically to the (contraction version of the) FitzGerald–Lorentz
hypothesis—a further assumption about forces of cohesion between the con-
stituents of matter is needed. Larmor, just as much as FitzGerald and Lorentz,
made this quite clear.

We derive the result, correct to second order, that if the internal forces of a material
system arise wholly from electrodynamic actions between the systems of electrons which
constitute the atoms, then an effect of imparting to a steady material system a uniform
velocity of translation is to produce a uniform contraction of the system in the direction
of the motion, of amount ε−1/2, or 1 − 1

2 v2/C 2.

Larmor is no more reading length contraction off the coordinate transformations
than Lorentz does; indeed earlier in Aether and Matter, in a discussion of the
fields surrounding moving spherical conductors, he refers to ‘a physical hypothesis
presently to be discussed’ which is that ‘one effect of the motion is to actually
cause a material system to shrink in this direction in the ratio ε−1/2.’66 To repeat,
Larmor’s justification of this hypothesis is much closer to Lorentz’s thinking than
FitzGerald’s, but in all cases appeal has to be made to the possibility that internal

61 ibid. 62 op. cit., p. 175. Larmor denotes the velocity of radiation by C .
63 op. cit., p. 176.
64 This weakness in Larmor’s logic is nicely treated by Darrigol (1994), pp. 330, who points out

that Lorentz’s 1904 solution to the k problem, such as it was, did not tally with Larmor’s ideas
about the point-like nature of the electron.

65 Chapter XI of Larmor’s 1900 essay, in which this argument is found, is an extension of the
related first-order analysis found in chapter X; indeed the title of chapter XI is ‘Moving material
system: approximation carried to the second order’. This point was noted in Hsu and Zhang (2001),
41. Earlier interesting remarks on Larmor’s eventual recognition of the exact nature of the Lorentz
transformations—whose name he was happy to adopt in deference to Lorentz’s 1892 work—as
symmetries are found in Kittel (1974). 66 Larmor (1900), p. 155.
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forces mimic electrostatic ones. Larmor is more gung-ho about this possibility
than the ever-cautious Lorentz, reflecting the differing views the two men held
on the nature of matter:

It is to be observed that on the view being developed, in which atoms of matter are
constituted of aggregations of electrons, the only actions between atoms are what may be
described as electric forces. The electric character of the forces of chemical affinity was
an accepted part of the chemical views of Davy, Berzelius, and Faraday; and more recent
discussions . . . have invariably tended to the strengthening of that hypothesis.67

Indeed, from the point of view of the electrodynamics and optics of moving bod-
ies, this seems to be the only issue on which Larmor goes beyond Lorentz. The
debt Larmor owes to Lorentz and his 1895 theorem of corresponding states is
reinforced in a paper Larmor published in 1904,68 which offers another attempt
to put the ‘somewhat complex’ argument for the contraction hypothesis (now
explicitly associated with FitzGerald as well as Lorentz) which has been ‘misun-
derstood’. Like Aether and Matter, this paper extends Lorentz’s thinking to the
second-order regime;69 Larmor is still apparently unaware of Lorentz’s independ-
ent work of 1899. Abraham Pais was right: it is one of the curiosities of this
whole story how little Lorentz and Larmor were aware of each other’s pub-
lished work.

This leaves us with the question of how Larmor treats time in his theory.
It is contentious. In 1937 Herbert Ives attributed time dilation to Larmor, and
in the 1970s, the same attribution was urged by Charles Kittel and apparently
independently by John S. Bell, after Wolfgang Rindler had scotched it.70 Indeed,
Bell referred to relativistic time dilation as the ‘Larmor effect’.71 How justified
this nomenclature is depends on how you define time dilation.

It is true that in Aether and Matter, Larmor discusses the case of a pair of electrons
of opposite signs moving in uniform circular orbits around each other, so slowly
that radiation can be ignored. He shows, using arguments similar to those applied
to a system of relatively static electrons, that when the pair is moving uniformly
and rectilinearly through the ether, the orbit not only contracts longitudinally by

67 Larmor (1900), p. 165. Darrigol (1994) argues that although Larmor’s reasoning in relation to
the theorem of corresponding states is very similar to Lorentz’s, there was a crucial difference:

Since Larmor conceived of matter as built out of point singularities of the ether, he could do
without Lorentz’ assumptions regarding the internal structure of electrons and the behaviour of
molecular forces. (336)

Darrigol’s 1994 study provides an illuminating account of the differences between the ether ontologies
of Larmor and Lorentz (it appears only the latter adopted a truly dualist picture of ether and matter)
and between their overall notions of explanation in physics. 68 Larmor (1904).

69 Note that Larmor in this paper (622) repeats Lorentz’s point that although corresponding states
involve distinct field configurations, the patterns of darkness are the same.

70 See Ives (1937b), Kittel (1974), Bell (1976a), and Rindler (1970).
71 Perhaps it is not a total irrelevance that both Larmor and Bell were Ulstermen!
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the familiar ratio 1 − 1
2 v2/C 2, but the period of rotation will be changed in

the ratio 1 + v2/2C 2.72 In fact, the argument had already appeared in a paper
Larmor published in 1887, as Kittel noted in 1974.73 This dilation in the period
is of course consistent to second order with the relativistic factor D = γ. Again,
Larmor would need to appeal to his internal forces hypothesis if he wanted
to extend the dilation effect to macroscopic clocks of arbitrary construction.
However, about this issue he remained silent, and one can only speculate as to
how pervasive the ‘Larmor effect’ would have appeared to him. This is precisely
Rindler’s point: if it is not universal it is not true-blue time dilation. It seems
churlish however to deny that Larmor had gained an important, if limited insight
into time dilation, two years before Lorentz’s strikingly similar and independent
insight of 1899.

Recall that Lorentz was responding to the challenge laid down by Liénard,
concerning a MM-type experiment with transparent media in the arms of the
interferometer. It is remarkable that Larmor independently discusses precisely
this possibility in chapter III of Aether and Matter, and demonstrates that using
the then accepted formulae for the longitudinal and transverse Fresnel coefficient a
non-null result is expected.74 However, in chapter XI, Larmor uses corresponding
states for the electromagnetic fields in order to calculate to second-order ray
velocities in the moving medium, and now predicts not just a null result in the
modified MM experiment, but ‘the absence of effect of the Earth’s motion in
optical experiments, up to the second order of small quantities’. Note that once
again, the ray velocities are not being read off the coordinate transformations
(as was done at the end of the previous section above).

It is worth remarking that in both Aether and Matter and his 1904 paper,
Larmor does acknowledge that the coordinate transformation (4.25) involves
a change in the ‘scale of time’ in the ratio ε1/2. Note first that this factor is
the inverse of the relativistic factor D = γ. Second, it is anything but clear
whether Larmor gave this scale change any general physical significance, despite
the argument referred to above concerning orbiting electrons. In his 1904 paper,
Larmor states enigmatically that the shrinkage in the scale of time ‘being isotropic,
is unrecognizable’.75

I give one last positive comparison with Lorentz. There seems to have been no
appreciation on Larmor’s part prior to 1905 that the vx/C 2 terms in the first- and

72 Larmor (1900), p. 179.
73 See Larmor (1897) and Kittel (1974). Kittel claims that this ‘is the first historical statement of

time dilation’, p. 727.
74 Larmor (1900), p. 50 gives general formulae valid up to second order for the transit times in

each of the arms, for an arbitrary orientation of the instrument relative to the direction of the ether
wind. Making use of both the Fresnel drag coefficient and the longitudinal contraction effect, it is easy
to show that these formulae lead to a delay time (compare (4.5) above) ∆ = (2nL0v2/c3)(1−1/n2)
before rotation of the apparatus. Larmor warns however that ‘according to the general molecular
theory to be explained later [Chapter XI], it [the outcome of the MM experiment] will always be
null’. 75 Larmor (1904), p. 624.
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second-order versions of the temporal coordinate transformation—associated
with Lorentz’s ‘local’ time—is connected with the issue of how to synchronize
clocks at rest relative to the moving system of charges, etc.

Let’s end this brief survey of Larmor’s views with mention of his 1929 com-
ments on Einstein’s 1905 work. Like many commentators, Larmor mistakenly
read Einstein’s light postulate as that of the invariance of the light-speed from one
frame to another. (As we shall see, light-speed invariance follows from Einstein’s
postulates; it is not one of them.) At any rate, he found this assumption ‘myste-
rious’, and one that ‘might well appear to be a pure paradox’, until it is put into
the context of the theorem of corresponding states. Until, that is, it is given a
dynamical underpinning based on the structure of Maxwell’s equations, despite
‘masquerading in the language of kinematics’.76

4.6 POINCARÉ

Of all the fin de siècle trailblazers, the one that came closest to pre-empting Einstein
is Henri Poincaré (1854–1912)—the man E. T. Bell called the ‘Last Universalist’.
Indeed, the claim that this giant of pure and applied mathematics co-discovered
special relativity is not uncommon77, and it is not hard to see why.

(i) Poincaré was the first to extend the relativity principle to optics and elec-
trodynamics exactly.78 Whereas Lorentz, in his theorem of corresponding states,
had from 1899 effectively assumed this extension of the relativity principle up to
second-order effects, Poincaré took it to hold for all orders.

(ii) Poincaré was the first to show that Maxwell’s equations with source terms
are strictly Lorentz covariant. Actually, he proved that they are covariant under
what we shall call the k-Lorentz transformations:79

x ′ = kγ(x − vt) (4.26)

y′ = ky (4.27)

z ′ = kz (4.28)

t ′ = kγ(t − vx/c2). (4.29)

76 Larmor (1929), p. 644. 77 See, e.g., Zahar (1983, 1989).
78 A careful account of Poincaré’s treatment of the relativity principle is found in Paty (1994).
79 The proof is found in Poincaré (1906), of which a summary is found in Poincaré (1905). These

famous papers, completed in mid-1905, are both entitled ‘The dynamics of the electron’. (Extensive
references to discussions of these papers in the literature are given in Darrigol (1995), which contains
an astute analysis of Poincaré’s work on electrodynamics.) The full covariance group of Maxwell’s
equations was not recognized until the work of Cunningham (1910) and Bateman (1910), which
showed that besides the k-Lorentz transformations the group contains elements corresponding to
certain non-linear coordinate transformations. (Note that Voigt’s 1887 transformations correspond
to k = γ−1.)
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(These are the MM-transformations (4.10–4.13) with (two-way) light speed
invariance: c ′ = c. Note that the transformations of the E, B fields pick up
k2 terms etc.)

(iii) Poincaré was the first to use the generalized relativity principle as a con-
straint on the form of the coordinate transformations. He recognized that the
relativity principle implies that the transformations form a group, and in further
appealing to spatial istotropy, he independently, and virtually simultaneously,
came up with the same argument as Einstein to determine the unit value of the
dimensionless scale factor k in the equations (4.21–4.24), something that Lorentz
had never quite succeeded in doing convincingly.

(iv) Poincaré was the first to see the connection between Lorentz’s ‘local time’
(4.19) and the issue of clock synchrony. In 1900, he not only pointed out that
the form of local time results from the adoption in both frames S and S ′ of the
rule for synchronizing clocks in which the one-way light speed is isotropic,80

but he insisted that such a rule was but a convention, though a natural one.81

(This so-called ‘Einstein’ convention for synchronizing distant clocks would be
more aptly entitled the ‘Poincaré’ or ‘Poincaré–Einstein’ convention. I shall adopt
the latter terminology henceforth.) It is fair to say that Poincaré was the first
to understand the relativity of simultaneity, and the conventionality of distant
simultaneity.

(v) Poincaré anticipated Minkowski’s interpretation of the Lorentz transfor-
mations as a passive, rigid rotation within a four-dimensional pseudo-Euclidean
space-time. He was also aware that the the electromagnetic potentials transform
in the manner of what is now called a Minkowski 4-vector.

(vi) He anticipated the major results of relativistic dynamics (and in particular
the relativistic relations between force, momentum and velocity), but not E0 =
mc2 in its full generality.

Taking all of this on board, is not the onus on the sceptic? What are the grounds
for denying Poincaré the title of co-discoverer of special relativity? Here are some
considerations that bear on what is bound to be a contentious issue.

(a) Although Poincaré understood independently of Einstein how the Lorentz
transformations give rise to non-Galilean transformation rules for velocities

80 Poincaré (1900). Thus Poincaré anticipated the derivation of (4.3) found in section 4.2 above.
As noted by Janssen (1995) p. 248, it is ironic that Lorentz was oblivious to Poincaré’s clarification

of the significance of local time, given that it appeared in a collection of papers celebrating the
25th anniverary of Lorentz’s doctoral thesis! Inexplicably, Lorentz would only fully understand the
relativity of simultaneity through reading Einstein’s 1905 work.

81 In his 1898 essay ‘The Measure of Time’, Poincaré had already clarified that the supposition
that the speed of light is the same in all directions ‘could never be verified directly by measurement’,
and that ‘it furnishes us with a new rule for the investigation of simultaneity’. It is pretty clear from
the essay that Poincaré views the adoption of this rule, or alternatively that of clock transport, as
ultimately based on convenience in relation to the problem at hand (Poincaré (1898), §XII).
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(indeed Poincaré derived the correct relativistic rules), it is not clear that he had
a full appreciation of the modern operational significance attached to coordinate
transformations. Although it is sometimes claimed82 that Poincaré understood
that the primed coordinates (part of Lorentz’s ‘auxiliary quantities’) were simply
the coordinates read off by rods and clocks stationary relative to the primed frame,
he did not seem to understand the role played by the second-order terms in the
transformation. (Note that the γ’s do not appear in the velocity transformations.)
Let me spell this out.

Compared with the cases of Lorentz and Larmor, it is even less clear that Poincaré
understood either length contraction or time dilation to be a consequence of the
coordinate transformations.Take length contraction first. In proving k = 1 for the
k-Lorentz transformations in 1906, Poincaré at no point says that he has thereby
shown that the deformation is indeed a longitudinal contraction. He doesn’t
seem to connect the issues at all. A similar state of affairs is observed in his 1905
treatment of the deformability of the moving electron. One of the main results of
his 1906 paper ‘On the dynamics of the electron’83 was the demonstration that
amongst the existing rival notions concerning the shape of the moving electron
(assumed to take the form of a sphere at rest) only the longitudinal contraction
hypothesis of Lorentz is consistent with the relativity postulate. Once again, the
argument made no appeal to the form of the coordinate transformations even
after Poincaré had shown k = 1. The claim made by Abraham Pais that ‘the
reduction of the FitzGerald–Lorentz contraction to a consequence of Lorentz
transformations is a product of the nineteenth century’ in the context of Lorentz’s
1899 work has been justly criticized by Janssen.84 The claim is equally doubtful in
relation to Larmor and wholly inappropriate for Poincaré. Pais himself emphasized
the fact that as late as 1908, Poincaré still did not regard length contraction as a
consequence of the relativity principle and Einstein’s light postulate (or something
close to it).85

Now take time dilation. It was claimed by Rindler in 1970 that Poincaré
never recognized its existence, at least prior to Einstein.86 I have found nothing
in Poincaré’s writings which contradicts this claim. In particular, his interpreta-
tion of Lorentz’s local time (4.19) never seemed to be cognizant of the fact that in
the second-order theorem of corresponding states, and indeed in his own treat-
ment of the Lorentz covariance of Maxwell’s equations, a multiplicative γ appears
in the transformation.87 It is very striking that his 1902 analysis of the measure
of time is a repetition of his 1898 analysis.

82 See Darrigol (1995) and Janssen and Stachel (2003).
83 Poincaré (1906); a summary of this paper is found in Poincaré (1905).
84 Janssen (1995), p. 212. 85 Pais (1982). 86 Rindler (1970).
87 In Pais (1982), p. 133, it is emphasized that Einstein must have been aware before 1905 of

Poincaré’s insistance that we lack of any intuition about the equality of two time intervals. The
reader of Pais’s admirable book would be forgiven for thinking that perhaps Einstein was steered by
this towards time dilation, but this would be wrong. Poincaré’s point is related to the problem of
comparing two different intervals within the same frame.
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Let us go back to Lorentz’s initial notion of local time (4.19). If this really is
the time read off by suitably synchronized clocks stationary in the S ′ frame—the
view that is normally attributed to Poincaré—then we need to compare (4.19)
with the general form of the linear time transformation given in (2.24). It will
be seen that Lorentz’s seemingly first-order local time actually has hidden in it a
dilation factor given by D = γ2! Of course, (4.19) appeared in the context of
a theory defined only to first order, but even if it were exact, it is not obvious
Poincaré would have recognized the dilation. It may never have occurred to him
to analyse the coordinate transformations in the way that was done in Chapter 2
above. Or even if he did, he may have felt that not enough was known to justify the
two assumptions given in section 2.4 needed to connect length change and time-
dilation factors with the form of the coordinate transformations corresponding
to boosts.

(b) It is well known that Poincaré was unhappy with the piling up of ‘com-
plementary’ hypotheses in Lorentz’s explanation of the absence of any ether-wind
effects up to second order, but what I find most striking is his attitude to the
first of these: the FitzGerald–Lorentz deformation hypothesis. Poincaré famously
referred to it (which he seems always to interpret in terms of pure contraction) as
a coup de pouce (helping hand) that Nature provides to secure the null result of the
MM experiment. He seems never to have recognized the dynamical plausibility
argument Lorentz gave concerning the intermolecular forces within solid bodies
and their possible mimicry of electrostatic forces. Indeed, although he saw in
Lorentz’s theory of the electron the best available account of the electrodynamics
of moving bodies, he did not credit it with the resources needed to provide an
adequate explanation of the unobservability of motion relative to the ether. What
Poincaré was holding out for was no less than a new theory of ether and matter—
something far more ambitious than what appeared in Einstein’s 1905 relativity
paper. It is true, as we saw in (iii) above, that like Einstein, Poincaré would use
the relativity postulate to constrain the form of the coordinate transformations
associated with boosts. But this was only a temporary, stop-gap measure. Poincaré
would have been in complete agreement with Lorentz when the latter wrote
‘Einstein simply postulates what we have deduced, with some difficulty and not
altogether satisfactorily, from the fundamental equations of the electromagnetic
field.’88 Actually, Lorentz followed this statement by a concession to Einstein:
‘By doing so, he may certainly take credit for making us see in the negative [i.e.
null] result of experiments like those of Michelson, Rayleigh and Brace, not a
fortuitous compensation of opposing effects but the manifestation of a general
and fundamental principle’.89

But the principle in question is of course none other than Poincaré’s relativity
postulate! Poincaré was already perfectly aware that that the null result of the
MM experiment, for instance, was a direct consequence of it, and for all he did

88 Lorentz (1916), p. 230. 89 ibid.
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in his 1905 paper, Einstein was not needed to drive the lesson home. Poincaré, to
repeat, wanted much more, including ultimately an explanation of the relativity
postulate itself. Ironically, one is reminded of Einstein’s own alleged response to
the appearance in 1952 of the deterministic, hidden-variable version of quantum
theory due to David Bohm—too ‘cheap’. Like Einstein half a decade later, Poincaré
wanted new physics, not a reinterpretation or reorganization of existing notions.

4.7 THE ROLE OF THE ETHER PRIOR TO EINSTEIN

It is hard not to believe that a major factor in the widespread view that special
relativity was the brainchild of Einstein and not of the fin de siècle trailblazers
has to do with the perceived role of the ether in the work of FitzGerald, Lorentz,
Larmor, and Poincaré. After all, Einstein in 1905 summarily declared the notion
of the ether ‘superfluous’, and his predecessors didn’t. But let us not be too hasty.

I mentioned earlier that the mechanical nature of the ether played virtually
no role in FitzGerald’s arguments for the change of dimensions in rigid bodies
moving through it. In the case of Lorentz, he was content to abandon attempts
to model the ether’s constitution, and came to regard it merely as ‘the bearer of
electromagnetic phenomena’, as well as providing a frame relative to which true
simultaneity could be defined (but not detected).

…[W]hether there is an aether or not, electromagnetic fields certainly exist, and so also
does the energy of electrical oscillations. If we do not like the name of ‘aether’, we must
use another word as a peg to hang all these things upon. It is not certain whether ‘space’
can be so extended as to take care not only of the geometrical properties but also of the
electric ones.

One cannot deny to the bearer of these properties a certain substantiality, and if so,
then one may, in all modesty, call true time the time measured by clocks which are fixed
in this medium, and consider simultaneity as a primary concept.90

It is noteworthy that as late as 1922, when the above remarks were published,
Lorentz still does not seem to be aware of the conventional nature of distant
simultaneity even in the rest frame of the ‘medium’, whatever its nature. But
more significantly for our present purposes, Lorentz was never able to picture the
electromagnetic field as an entity in its own right, rather than as a property of
some kind of substratum.

A similar picture was painted by Poincaré in 1902, a decade before his death.
‘We know the origin of our belief in the ether. If light takes several years to reach
us from a distant star, it is no longer on the star, nor is it on the earth. It must be
somewhere, and supported, so to speak, by some material agency.’91

Perhaps the most curious aspect of Poincare’s views regarding the ether had to do
with his understanding of the Fresnel ‘drag’ coefficient, that deus ex machina which

90 Lorentz (1922), pp. 210–11. 91 Poincaré (1952), p.169.
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accounted for all the null results of first-order ether-wind experiments. Even after
Lorentz had given in 1895 a dynamical derivation of the coefficient on the basis of
an entirely undragged ether, Poincare continued to support the original Fresnellian
interpretation according to which a fraction of the ether is caught up inside
a moving transparent body (which fraction, embarrassingly, depending on the
frequency of the light!). The celebrated (non-null) 1851 interference experiment
performed by Fizeau which corroborated Fresnel’s hypothesis seemed to show for
Poincaré ‘. . . two different media penetrating each other, and yet being displaced
with respect to each other. The ether is all but in our grasp.’92

At any rate, we tend to snigger today at the idea that physical fields need
a substantial peg like the luminiferous ether to hang on. But in doing so we
lose sight of the fact that Einstein himself and many others after 1905 fell foul
of a similar prejudice. The view that the space-time manifold is a substratum
or bedrock, whose point elements physical fields are properties of, is just the
twentieth-century version of the ether hypothesis. This point was nicely expressed
by John Earman:

When relativity theory banished the ether, the space-time manifold M began to function
as a kind of dematerialized ether needed to support the fields. In the ninetheenth century
the electromagnetic field was construed as the state of a material medium, the luminiferous
ether; on postrelativity theory it seems that the electromagnetic field, and indeed all physical
fields, must be construed as states of M . In a modern, pure field-theoretic physics, M
functions as the basic substance, that is, the basic object of predication.93

This was written in 1989, when most physicists and philosophers were still
either unaware, or had failed to absorb the lessons, of the fact that Einstein had
already found himself in 1915 having to abandon precisely this reification of the
space-time manifold in order to save his generally covariant gravitational field
equations from the bogey of underdetermination. (It is noteworthy that Earman
himself would figure prominently in the later awakening of the philosophical
community to the issue of underdetermination in GR.)94

At the end of the day, it is always possible to add for whatever reason the notion
of a privileged frame to special relativity, as long as one accepts that it will remain
unobservable. (It is sobering to recall that something just like this goes on in
several of the main interpretations of relativistic quantum theory. In the so-called
Copenhagen interpretation of quantum mechanics, the privileged frame is that
relative to which the wave function collapses instantaneously at the end of a
measurement process; in the standard construal of the de Broglie–Bohm theory
interpretation, it is that relative to which the ‘hidden’ corpuscles or fields act on
each other instantaneously.)95 If this issue was all that separated the trailblazers

92 Poincaré (1952), p. 170. Like Einstein, Poincare failed in 1905–6 to appreciate that the Fresnel
drag coefficient is a consequence of the Lorentz transformations, or rather the velocity transformation
that both men independently derived from them. 93 Earman (1989), p. 155.

94 See Earman and Norton (1987).
95 The issue as to whether quantum theory is incompatible with special relativity will be discussed

in Appendix B.
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from Einstein, we would hardly be justified in assigning clear-cut priority for
authorship of special relativity to Einstein. But as we have seen in this chapter, the
real situation was rather different. The full meaning of relativistic kinematics was
simply not properly understood before Einstein. Nor was the ‘theory of relativity’
as Einstein articulated it in 1905 anticipated even in its programmatic form.

Let us leave the last word with Poincaré.

Whether the ether exists or not matters little—let us leave that to the metaphysicians;
what is essential for us is, that everything happens as if it existed, and that this hypothesis
is found to be suitable for the explanation of phenomena. After all, have we any other
reason for believing in the existence of material objects?96

Here Poincaré, writing in 1902, is espousing an anti-metaphysical view about
the nature of reality that is very similar to Einstein’s realism,97 even if its application
in this case seems non-Einsteinian. But he has a surprise in store for us: he goes on
to assert that the existence of matter will never cease to be a convenient hypothesis,
‘. . . while some day, no doubt, the ether will be thrown aside as useless’.

96 Poincaré (1952), pp. 211–12. As Darrigol (1995), p. 19 notes, these remarks by Poincaré date
back to 1888.

97 For a careful discussion of Einstein’s notion of realism, see Fine (1986), chap. 6.
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Einstein’s Principle-theory Approach

The principle of relativity is a principle that narrows the possibilities; it is not
a model, just as the second law of thermodynamics is not a model.

Albert Einstein1

5.1 EINSTEIN’S TEMPLATE: THERMODYNAMICS

How did Albert Einstein (1879–1955) arrive at his special theory of relativity?
(There is a nice cartoon picturing the young Einstein with chalk in hand at the
blackboard, writing his most famous equation after having crossed out E = ma2,
and E = mb2.) Much work has been done by historians to trace out the steps
in the intellectual journey that brought Einstein in his mid-twenties to write
his On the Electrodynamics of Moving Bodies—the fourth of his five publications,
including his dissertation, in the annus mirabilis of 1905. (The announcement
of the equivalence of mass and rest energy was in the fifth.) I won’t attempt to
summarize this journey.2 I want only to stress that it is impossible to understand
Einstein’s discovery (if that is the right word) of special relativity without taking
on board the impact of the quantum in physics.3

Several months before he finished writing his paper on special relativity (hence-
forth SR), Einstein had written a revolutionary paper claiming that electromag-
netic radiation has a granular structure. The suggestion that radiation was made
of quanta—or photons as they would later be dubbed—was the basis of Einstein’s

1 This statement was made by Einstein in 1911 at a scientific meeting in Zurich; see Galison
(2004), p. 268. In 1911 Einstein was still using ‘principle of relativity’ to mean theory of relativity;
see the related remarks in Stachel (1995), reference [2], 323.

2 For useful accounts of the journey see Stachel (2002b, 2005) and his editorial contri-
bution ‘Einstein on the theory or relativity’ in Stachel et al. (1989), pp. 253–74, reprinted
in Stachel (2002a), pp. 191–214. See also Rynasiewicz (2000a), Norton (2005), Pais (1982)
chapters 6 and 7, and Miller (1981). Further related works by John Norton can be found at
<www.pitt.edu/jdnorton/jdnorton.html>. Einstein’s own 1912 reconstruction of his journey is
found in Einstein (1995b), pp. 9–108. See also Sterrett (1998).

3 The present chapter was completed before I discovered recent papers by Robert Rynasiewicz
discussing the conceptual origins of Einstein’s 1905 paper, which are not only in agreement with
much of my account but supplement it in useful ways, particularly in relation to the dynamical part
of the Einstein paper. See in particular Rynasiewicz (2005).

www.pitt.edu/jdnorton/jdnorton.html
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extraordinary treatment of the photoelectric effect in the same paper. This treat-
ment would win its author the Nobel prize of 1921; acceptance of the photon
by the physics community would take longer. But the immediate consequence
of Einstein’s commitment to the photon was to destabilize in his mind all the
previous work on the electrodynamics of moving bodies.

All the work of the ether theorists was based on the assumption that Maxwellian
electrodynamics is true. Poincaré was, as we have seen, waiting for the emergence
of new physics of the interaction of the ether and ponderable matter, but even
in his case it is not clear he expected any violation of Maxwell’s equations. In
the work of Lorentz, Larmor, and Poincaré, the Lorentz transformations make
their appearance as symmetry transformations (whether considered approximate
or otherwise) of these equations. But Maxwell’s equations are strictly incompatible
with the existence of the photon.

In his 1949 Autobiographical Notes, written when he was 67, Einstein was clear
about the seismic implications of this conundrum.

Reflections of this type [on the dual wave-particle nature of radiation] made it clear to me
as long ago as shortly after 1900, i.e. shortly after Planck’s trailblazing work, that neither
mechanics nor electrodynamics could (except in limiting cases) claim exact validity. By
and by I despaired of the possibility of discovering the true laws by means of constructive
efforts based on known facts.4

Already in the Notes, Einstein had pointed out that the general validity of New-
tonian mechanics came to grief with the success of the electrodynamics of Faraday
and Maxwell, which led to Hertz’s detection of electromagnetic waves: ‘phenom-
ena which by their very nature are detached from every ponderable matter’.5 Later,
he summarized the nature of Planck’s 1900 derivation of his celebrated black-body
radiation formula, in which quantization of absorption and emission of energy
by the mechanical resonators is presupposed. Einstein noted that although this
contradicted the received view, it was not immediately clear that electrodynamics,
as opposed to mechanics, was violated. But now with the emergence of the light
quantum, not even electrodynamics was sacrosanct. ‘All my attempts . . . to adapt
the theoretical foundation of physics to this [new type of ] knowledge failed com-
pletely. It was if the ground had been pulled out from under one, with no firm
foundation to be seen anywhere, upon which one could have built.’6

Earlier in the Notes, Einstein had sung the praises of classical thermodynamics,
‘the only physical theory of universal content concerning which I am convinced
that, within the framework of the applicability of its basic concepts, it will never
be overthrown.’7 Now, he explains how the very structure of the theory was
influential in the search for a way out of the turn-of-the-century crisis in physics.

4 Einstein (1969), p. 51, 53 5 op. cit., p. 25 6 op. cit., p. 45.
7 op. cit., p. 33. Einstein wryly directs this confidence in thermodynamics to ‘the special attention

of those who are sceptics on principle’.
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The longer and more despairingly I tried, the more I came to the conviction that only the
discovery of a universal formal principle could lead us to assured results. The example I saw
before me was thermodynamics. The general principle was there given in the theorem:8

the laws of nature are such that it is impossible to construct a perpetuum mobile (of the
first and second kind). How, then, could such a universal principle be found?9

Now it is very curious that Einstein here says ‘principle’ and not ‘principles’,
given that (the kinematical part of ) his 1905 paper rests on several postulates. I
will return to this point later. Now that the connection with thermodynamics is
revealed, it needs to be examined more closely.

5.2 THE PRINCIPLE VS . CONSTRUCTIVE THEORY
DISTINCTION

Let us remind ourselves of what Einstein was attempting in his 1905 paper. The
Maxwell–Lorentz theory is designed to account for the interaction between the
ether and charged matter from the perspective of the ether rest-frame. Unfortu-
nately, the earthbound laboratory, in which most tests of the theory are carried
out, is moving relative to the ether. It would clearly represent a great simplification
of the problem of ‘the electrodynamics of moving bodies’ if it could be shown
that the equations of the theory are one and the same when expressed in relation
to either of the ether or lab rest-frames. How should one go about proving this
covariance if it is suspected that the fundamental Maxwell–Lorentz equations are
themselves only of limited, i.e. statistical, validity?

Further insight into the nature of Einstein’s thinking was revealed in 1919, in an
article he wrote for the LondonTimes, entitled ‘What is the theory of relativity?’.10

Here Einstein characterized SR as an example of a ‘principle theory’, methodolo-
gically akin to thermodynamics, as opposed to a ‘constructive theory’, akin to the
kinetic theory of gases.

Most [theories in physics] are constructive. They attempt to build up a picture of the more
complex phenomena out of the materials of a relatively simple formal scheme from which
they start out. Thus, the kinetic theory of gases seeks to reduce mechanical, thermal, and
diffusional processes to movements of molecules . . .

[Principle theories] employ the analytic, not the synthetic method. The elements which
form their basis and starting point are not hypothetically constructed but empirically
discovered ones, general characteristics of natural processes, principles that give rise to
mathematically formulated criteria which the separate processes . . . have to satisfy . . . The
theory of relativity belongs to the latter class.

8 The word ‘theorem’ for ‘Satze’ in the translation by P. A. Schilpp is perhaps better rendered as
‘sentence’ or ‘statement’. I thank Thomas Müller for discussion of this point.

9 op. cit., p. 53. 10 Einstein (1919).
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If for some reason one is lacking the means of mechanically modelling the
internal structure of the gas in a single-piston heat engine, say, one can always
fall back on the laws of thermodynamics to shed light on the performance of
that engine—laws which stipulate nothing about the structure of the working
substances, or rather hold whatever that structure might be. The laws or principles
of thermodynamics are phenomenological, based on a large body of empirical data;
the first two laws can be expressed in terms of the impossibility of certain types of
perpetual-motion machines. Could similar, well-established phenomenological
laws be found, Einstein was asking, which would constrain the behaviour of
moving rods and clocks without the need to know in detail what their internal
dynamical structure is?

The methodological analogy between SR and thermodynamics was not a post
hoc rationalization dreamt up by Einstein in 1919 and repeated in his Autobio-
graphical Notes. He mentioned it on several earlier occasions. In a short paper of
1907 replying to a query of Ehrenfest on the deformable electron, he wrote:

The principle of relativity, or, more exactly, the principle of relativity together with the
principle of the constancy of velocity of light, is not to be conceived as a ‘complete system’,
in fact, not as a system at all, but merely as a heuristic principle which, when considered
by itself, contains only statements about rigid bodies, clocks, and light signals. It is only
by requiring relations between otherwise seemingly unrelated laws that the theory of
relativity provides additional statements. . . . we are not dealing here at all with a ‘system’
in which the individual laws are implicitly contained and from which they can be found
by deduction alone, but only with a principle that (similar to the second law of the theory
of heat) permits the reduction of certain laws to others.11

Einstein went on in this note to emphasize that even if the relativity theory is
true, there is still ignorance as to the dynamics and kinematics (apart from parallel
translation) of the rigid bodies over which charge is distributed in the theory of
electrons.12 In a letter to Sommerfeld of January 1908, Einstein wrote:

So, first to the question of whether I consider the relativistic treatment of, e.g., the mechan-
ics of electrons as definitive. No, certainly not. It seems to me too that a physical theory
can be satisfactory only when it builds up its structures from elementary foundations. The
theory of relativity is not more conclusively and absolutely satisfactory than, for example,
classical thermodynamics was before Boltzmann had interpreted entropy as probability.
If the Michelson–Morley experiment had not put us in the worst predicament, no one
would have perceived the relativity theory as a (half ) salvation. Besides, I believe that we
are still far from having satisfactory elementary foundations for electrical and mechanical
processes. I have come to this pessimistic view mainly as a result of endless, vain efforts
to interpret the second universal constant in Planck’s radiation law in an intuitive way.

11 Einstein (1907a). The English translation is found in Document 44 in Einstein (1989).
12 For discussion of the background to this episode, see Maltese and Orlando (1995), §2.
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I even seriously doubt that it will be possible to maintain the general validity of Maxwell’s
equations for empty space.13

This passage is particularly interesting, because in making the connection with
thermodynamics it highlights the price that is paid in adopting the principle theory
approach to relativistic kinematics, and Einstein’s unease with that price.14 On a
more upbeat note, in his 1917 text Relativity,15 Einstein noted with satisfaction
that in SR the explanation of Fizeau’s 1851 experiment is achieved ‘without the
necessity of drawing on hypotheses as to the physical nature of the liquid’, and that
‘the contraction of moving bodies follows from the two fundamental principles of
the theory, without the introduction of particular hypotheses’. He further noted
that Lorentz, in correctly predicting the degree of deflection of high-velocity
electrons (cathode- and beta-rays) in electromagnetic fields, needed an hypothesis
concerning the deformability of the electron which was ‘not justifiable by any
electrodynamical facts’, while the same predictions in SR are obtained ‘without
requiring any special hypothesis whatsoever as to the structure and behaviour of
the electron’.

This is all within the spirit of his 1919 claim that SR is a principle theory.
Perhaps the clearest statement by Einstein to this effect is the one written in 1955
to Born in which he expressed the significance of his 1905 discovery that ‘the
Lorentz transformation transcended its connection with Maxwell’s equations and
had to do with the nature of space and time in general.’

A further new result was that the Lorentz-invariance is a general condition for any physical
theory.This was for me of particular importance because I had already found that Maxwell’s
theory did not account for the micro-structure of radiation and could not therefore have
general validity.16

13 Einstein (1995a).
14 There is more than a hint of recognition of the limitations of his programme also in Einstein’s

1911 remarks quoted in the epigraph at the beginning of this chapter. Such ambivalence about the
nature of principle theories was not new:

[T]he variables of the science [of thermodynamics] range over macroscopic parameters such as
temperature and volume. Whether the microphysics underlying these variables are motive atoms in
the void or an imponderable fluid is largely irrelevant to this science. The developers of the theory
both prided themselves on this fact and at the same time worried about it. Clausius, for instance
was one of the first to speculate that heat consisted solely of the motion of particles (without
an ether), for it made the equivalence of heat with mechanical work less surprising. However,
as was common, he kept his ontological beliefs separate from his statement of the principles of
thermodynamics, because he didn’t wish to (in his words) ‘taint’ the latter with the speculative
character of the former. (Callender (2001)).

15 Einstein (1917).
16 See Born et al. (1971), p. 248; see also Torretti (1983) note 8, pp. 292–3, and Zahar (1989),

p. 101. For a discussion of Einstein’s earliest doubts about Maxwell’s equations, see Miller (1981),
section 2.4.
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5.3 EINSTEIN’S POSTULATES

5.3.1 The Relativity Principle

It appears that by 1899, Einstein had convinced himself that the relativity prin-
ciple (RP) encompassed the laws of electrodynamics and hence optics.17 In the
beginning of his 1905 paper, he briefly discusses physical grounds for the ‘conjec-
ture that not only the phenomena of mechanics but also those of electrodynamics
have no properties that correspond to the concept of absolute rest’.

Rather, the same laws of electrodynamics and optics will be valid for all coordinate systems
in which the equations of mechanics hold good, as has already been shown for quantities
of the first order. We shall raise this conjecture (whose content will hereafter be called ‘the
principle of relativity’) to the status of a postulate.18

Einstein goes on to assert that the ‘light ether’ will prove to be ‘superfluous’
in his new account of the electrodynamics of moving bodies, in so far as no
‘space at absolute rest’ is required. Interestingly, he simply ignores the non-trivial
issue (raised as we have seen by both Lorentz and Poincaré) as to whether the
electromagnetic field can even be conceived of in the absence of the ether.

In section I.3, Einstein introduces yet a stronger claim: ‘If two coordinate
systems are in uniform parallel translational motion relative to each other, the
laws according to which the states of a physical system change do not depend on
which of the two systems these changes are related to.’

This principle applies simply to all fundamental laws in physics,19 and the
importance of this generalization—which Einstein may not initially have fully
appreciated—will be seen below.

Note that these formulations of the RP makes no reference to the form of the
coordinate transformations between the two frames in question. This is just as
well! The whole point of the kinematical part of the 1905 paper is to derive the
Lorentz transformations on the basis of a small number of phenomenological
principles. If one of these principles, namely the RP, made appeal to the form of
these transformations at the outset, the exercise would be circular. And the fact
that Einstein’s RP is silent on kinematics in this sense allows it to be (largely)
identified with the relativity principle of Newton, as we saw in Chapter 3.

Einstein’s formulation of the relativity principle has come under fire in recent
times. It is sometimes regarded as too informal, or too imprecise; and the criterion
that the fundamental equations of physical interactions take the same form in all
inertial frames is certainly open to ambiguities. Michael Friedman, in particular,

17 See Stachel (1995), p. 266.
18 Einstein (1905a); the English translation is taken from Stachel (1998), pp. 123–60.
19 The laws of sound propagation, for instance, are not fundamental; the mechanical medium in

which the sound propagates acts as a natural symmetry-breaker.
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has reminded us of a point (long ago raised by Kretschmann) that one can in
principle construct dynamical theories incorporating a privileged inertial frame
that are generally covariant (i.e. formulated in the tensor calculus associated with a
four-dimensional space-time manifold). For Friedman the equations of such the-
ories take the same form in all coordinate systems, not just inertial ones, and hence
Einstein’s rendition is ‘too weak’ to capture the content of the relativity principle.
But this particular argument is flimsy. It is implicit in Einstein’s definition that it is
the ‘simplest’ form of the equations that is at stake, and this refers in the usual case
of inertial coordinates in SR to the 3-tensor (mostly 3-vector) calculus. A theory
may be formulated generally covariantly, but it doesn’t follow that the equations
are equally simple in all coordinate systems.20 The attempts I am aware of that
have been made in recent decades to give RP a more rigorous or precise formu-
lation have invariably (a) misleadingly attributed different principles to Newton
and Einstein and (b) involved some loss of physical insight.21

5.3.2 The Light Postulate

It is the ultimate irony that the paper which would spell the demise of the luminif-
erous ether had as one of its central postulates what Wolfgang Pauli aptly called
(as we saw in Chapter 4) the ‘true essence of the old aether point of view’.22 Here
is how it is presented in the 1905 paper: ‘Every ray of light moves in the “rest”
coordinate system with a definite velocity V , independently of whether this ray
is emitted by a body at rest or in motion.’

Einstein made it clear from the beginning of his kinematical discussion that the
‘rest’ frame can be chosen arbitrarily from the infinity of inertial frames, the term
‘rest’ merely distinguishing it ‘verbally’ from all the others. However, this implicit
appeal to the relativity principle at the outset does little to clarify the origins of
the light postulate.

Throughout the 1905 paper, the physics being assumed to hold in the rest frame
corresponds to what informed readers would expect to hold in the frame relative to
which the ether is at rest. In a footnote to his fifth 1905 paper, on the inertia–energy
connection, Einstein says in reference to his paper currently under discussion: ‘The
principle of the constancy of the velocity of light used there is of course contained
in Maxwell’s equations.’23 In 1907, Einstein would write of the postulate:

It is by no means self-evident that the assumption made here, which we will call ‘the
principle of the constancy of the velocity of light,’ is actually realized in nature, but—at

20 Indeed, Friedman (1983, p. 61) himself discusses the ‘standard formulation’ of a theory, which
generally does not coincide with its generally covariant formulation, precisely because the theory may
look simplest in a given family of coordinate systems.

21 The attempt in Friedman (1983) is analysed in Sypel and Brown (1992); that of Norton (1989,
1993) and Wald (1984) is analysed in Brown and Sypel (1995) and Budden (1997a).

22 Pauli (1981), p. 5.
23 Einstein (1905b); an English translation is found in Stachel (1998), pp. 161–4.
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least for a coordinate system in a certain state of motion—it is made plausible by the
confirmation of the Lorentz theory, which is based on the assumption of an ether absolutely
at rest, through experiment.24

Much later, Einstein would reiterate the point: ‘Scientists owe their confidence
in this proposition to the Maxwell–Lorentz theory of electrodynamics.’25

In assessing the Maxwell–Lorentz theory, Einstein was aware of some of the
difficulties involved in constructing a reasonable theory of electrodynamics on
the basis of the alternative emission theory of light.26 And an important feature
of Lorentz’s 1895 theorem of corresponding states, and one cited by Einstein in
his 1907 paper, was that it provided the first dynamical derivation of the Fresnel
drag coefficient (shown by von Laue also in 1907 to be a direct consequence of
the Einstein–Poincaré velocity transformations.) All this gives some indication
as to why Einstein felt secure in postulating in 1905 the existence of a specific
inertial frame relative to which the light-speed is independent of the source and
isotropic. In effect then, Einstein was adopting, with nefarious intent, the Light
Principle of the ether theorists which was introduced in section 4.2 above.27 Thus
the acronym LP can be used for both the etherial Light Principle or Einstein’s light
postulate. (It is worth recalling that in 1905 there was no direct empirical evidence
supporting the LP, distinct from the empirical successes of the Maxwell–Lorentz
theory generally. Today, it is known to hold to an accuracy of better than one part
in 1011.)28

It is often wrongly claimed that Einstein’s light postulate is the stronger claim
that the light speed is invariant across inertial frames. The advantage of his postu-
late as it stands is that it is logically independent of the RP. This meets an obvious
desideratum in a semi-axiomatic derivation of the new kinematics of the type
Einstein was constructing. The corresponding behaviour of light relative to any
‘moving’ frame was explicitly taken by Einstein in section 3 of the 1905 paper
to follow from the conjunction of the light postulate and the RP. This would be
reiterated in his later work. In 1921 Einstein wrote:

24 Einstein (1907b). It should be noted that Einstein here equates the ‘principle of the constancy
of the velocity of light’ with the claim that c is a ‘universal constant’, a claim also made in the section
1.1 of the 1905 paper. The significance of Einstein’s remarks on the light postulate in the 1907 paper
are discussed in Miller (1981), p. 202; our understanding of the postulate and the role of the resting
frame in it appears to differ from Miller’s (see also his discussion on p. 165).

25 Einstein (1950), p. 56.
26 Emission theories continued to be defended in certain quarters after 1905, most famously, as

we have seen, by Walter Ritz in 1908. A useful discussion of these theories is found in Pauli’s great
treatise on relativity; see Pauli (1981), Part I, Section 3. Einstein’s own flirtation with an emission
theory is discussed in Stachel (1982), pp. 51–2.

27 Recent recognition of the etherial origins of the light postulate is found in Galison (2004),
p. 17; earlier cases of such recognition are listed in Brown and Maia (1993).

28 The history of direct tests, both terrestrial and astronomical is fascinating, but beyond our scope;
see Fox (1962). Note that the most precise test to date has been provided by neutrino detection events
associated with Supernova 1987A; see Brecher and Yun (1988). The 1960s saw a number of terrestrial
tests, particularly by T. Alväger and collaborators; for a critical review of these experiments see Hsu
and Zhang (2001), chap. 17.
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The consequence of the Maxwell–Lorentz equations that in a vacuum light is propagated
with the velocity c, at least with respect to a definite inertial system K, must therefore be
regarded as proved. According to the special theory of relativity, we must assume the truth
of this principle for every other inertial system.29

And in his Autobiographical Notes Einstein defines the principle of relativity as
the ‘independence of the laws (thus specially also of the law of the constancy of
the light velocity) of the choice of the inertial system . . .’.30

The most remarkable feature of Einstein’s light postulate is the fact that it seems
at first sight antithetical to his own revolutionary notion of the light quantum.
In 1905 it was far from clear to Einstein what sort of thing the light quantum
precisely is, but it must have seemed closer in nature to a bullet than a wave. The
fact that nonetheless Einstein adopted the LP over an emission theory of light
is testimony to the sureness of his physical intuition in the midst of blooming,
buzzing confusion.31

5.4 EINSTEIN’S DERIVATION OF THE LORENTZ
TRANSFORMATIONS

Einstein’s 1905 derivation of relativistic kinematics is fairly elementary from a
mathematical point of view, but it is conceptually subtle. It is useful to break the
logic into three steps; what follows is a reconstruction of the argument rather than
an exact rendition of the original.

5.4.1 Clock Synchrony

Relative to the rest frame S it is assumed as part of the light postulate that the
two-way or round-trip velocity of light in vacuo c is isotropic, and it seems nat-
ural to adopt the Poincaré–Einstein convention for synchronizing distant clocks,
according to which the one-way speed is also isotropic, and hence also has the
value c.32 (Remarkably, there persist doubts in the literature as to whether this is
a true convention or whether it is imposed by, say, the structure of space-time.
I will return to this issue in the following chapter.) According to the relativity

29 Einstein (1921).
30 Einstein (1969), p. 57. Detailed analyses of the logic of the kinematical part of the 1905 paper

are found in Williamson (1977) and Rynasiewicz (2000a). Torretti (1983, note 7, p. 295) also
stresses Einstein’s ‘careful reasoning’ in deriving the light velocity in the moving frame from the light
postulate and the relativity principle. See also Brown and Maia (1993), from which most of the
material in this subsection is taken.

31 See Hoffmann (1982) p. 99, and Torretti (1983) p. 49. The role of light quanta in Einstein’s
1905 relativity paper is discussed in Miller (1976). An enlightening study of the relationship between
early relativity and early quantum theory is found in Nugaev (1988).

32 Einstein would have made things clearer if he had formulated the light postulate in terms of
the two-way and not the one-way velocity of light.
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principle, or alternatively the Michelson–Morley experiment, the same consider-
ations apply to the moving frame S ′. Note that what motivates the adoption of
the Poincaré–Einstein convention in this case is again the isotropy of the two-
way velocity, not light-speed invariance per se. It will be recalled from section 4.2
above that the mere adoption of this convention in both frames constrains the
relativity of simultaneity factor α in (2.24) to take the value v/c2. (This point
was appreciated in section 3 of the Kinematic Part of the 1905 paper.)

5.4.2 The k-Lorentz Transformations

Einstein, as mentioned above, used the combination of the RP and the light
postulate to infer the invariance of the velocity of light c, and from this he derived,
in a somewhat convoluted argument, the k-Lorentz transformations (4.26–4.29).
In section 3 of the paper, he showed these to be consistent with the claim that a
spherical light-wave front centred at the origin seen in relation to the rest system
S will also appear spherical from the point of view of the moving frame S ′, so
that

x2 + y2 + z2 − c2t2 = 0 ⇐⇒ x ′2 + y′2 + z ′2 − c2t ′2 = 0. (5.1)

Nowadays, the k-transformations are standardly derived directly from (5.1), and
the details will not be repeated here.33

A few commentators have questioned, somewhat idiosyncratically, whether the
invariance of c does in fact follow from Einstein’s two main postulates. The bone
of contention is the meaning of the RP, and in particular the issue as to whether
form-invariance of equations also means the invariance of the numerical values of
the fundamental physical constants that appear in them. It might be considered
that Einstein’s postulates imply merely that relative to any moving frame S ′, there
is a ‘constant’ two-way light velocity c ′, independent of the speed of the source and
isotropic. Various attempts have been made to see what else is needed in this case
to obtain the k-Lorentz transformations, instead of what we have called earlier
the MM-transformations (4.10–4.13).34 It should not be overlooked, however,
that if distinct inertial frames came equipped with distinct, constant light speeds,
empirical discrimination between them would be possible, and it is clear that for
Einstein at least such a possibility was incompatible with the RP.

5.4.3 RP and Isotropy

Einstein, like Poincaré, took it to follow from the relativity principle also that
the coordinate transformations form a group. In particular this means that the

33 The 1913 reprint of the 1905 paper has an appended note acknowledging that this route is
simpler than that given originally. It is not entirely clear whether Einstein wrote the note, but he
may at least have approved it. See Stachel (1998), pp. 160–1.

34 See Brown and Maia (1993) and the further references therein.
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transformations between arbitrary pairs of frames take the same functional form
as that of the original transformations taking S into S ′. Consider now, in the case
of 1+1-dimensional space-time, the k-Lorentz transformations with the following
value of k:

k =
(

c + v
c − v

)n

(5.2)

for any real number n. I have referred elsewhere to the resulting transformations
as the Bogoslovsky–Budden (BB) transformations.35 They can be shown to form a
group, so they are consistent with the relativity principle.36 They are clearly con-
sistent with the invariance of the light velocity. So why are the BB-transformations
not the basis of relativistic kinematics? (Note first that in the special case corre-
sponding to the value n = 1/2, although there is a time dilation factor D 	= 1,
there is no clock retardation effect, or ‘twin paradox’.37 Second, the BB transforma-
tions are associated with Finslerian, rather than a pseudo-Riemannian space-time
geometry.)

The simple reason is that k in (5.2) is not an even function of v, so that the
length change and clock dilation factors will differ depending on whether they
move at velocity v or −v. (This explains the absence of a twin effect: the moving
twin undoes on the return part of the trip the dilation it suffers on the outgoing
part.) There is clearly a clash with the assumption that space associated with the
frame S is isotropic.

What the existence of the BB-transformations highlights is the importance of
the assumption of spatial isotropy in the Einsteinian derivation of the Lorentz
transformations. The simplest way now of obtaining k = 1 is as follows.

Consider the transverse transformation z ′ = k(v)z . Inverting algebraically,
we obtain z = [k(v)]−1z ′. But according to the relativity principle, the inverse
transformations must take the same form as the original ones: z = k(−v)z ′. This
is only possible if

k(−v)k(v) = 1. (5.3)

But now note that the transverse length change factor defined for a rigid body
moving relative to the frame S at velocity v relative to the positive x-axis is given

35 Brown (1997). To the best of my knowledge, they first appeared in Bogoslovsky (1977),
which established a connection with Finsler geometry. The special case corresponding to the value
n = 1/2 was introduced independently in Brown (1990), and Budden (1992) rediscovered the
BB-transformations in generalizing Brown’s work. An elegant survey of the nature and lessons of
these kinematics is found in Budden (1997b), in which, as in Bogoslovsky (1977), a treatment in
4-dimensional space-time is given.

36 It is necessary for the transformations to form a group in order that the RP is satisfied, but
arguably not sufficient. The MM transformations (4.10–4.13) can be shown to form a group when
k = 1, but they are not consistent with the RP when c′ �= c; see Brown and Maia (1993).

37 Brown (1990).
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by C⊥ = (k(v)γ)−1, and it should take the same value, given isotropy, when v is
replaced by −v. This means that k(v) = k(−v), so from (5.3) we obtain k2 = 1,
and k = 1 is the only solution consistent with the transformations reverting to
the identity transformation in the limit v → 0.38 The Lorentz transformations

x ′ = γ(x − vt) (5.4)

y′ = y (5.5)

z ′ = z (5.6)

t ′ = γ(t − vx/c2), (5.7)

where v/c < 1, have thus been derived. As we shall see in the next section, there
is more to be said about the second application of the RP in this third step.

5.5 RODS AND CLOCKS

The introductory section of the 1905 paper ends with the following paragraph.

Like all electrodynamics, the theory to be developed here is based on the kinematics of a
rigid body, since the assertions of any such theory have to do with the relations among rigid
bodies (coordinate systems), clocks, and electromagnetic processes. Insufficient regard for
this circumstance is at the root of the difficulties with which the electrodynamics of moving
bodies has to contend.

At first sight, this last statement is surprising. Did not Lorentz clearly introduce
shape deformation of rigid bodies in his 1895 Versuch, which Einstein is known to
have been familiar with? Einstein’s point here seems to be that before one under-
stands the meaning of the coordinate transformations, one must understand what
a coordinate system is. The same point is repeated in his Autobiographical Notes:
‘One had to understand clearly what the spatial co-ordinates and the temporal
duration of events meant in physics.’39

At the beginning of the Kinematical Part of the paper, Einstein is clearly more
concerned with time than space. Positions of bodies are simply ‘defined’ with
the aid of rigid measuring rods provided in the ‘rest’ system. (Actually, this is
the beginning of Einstein’s lifelong struggle with the notion of spatial distance,
which we alluded to in section 2.2.4.) The real emphasis is on motion, which
as Einstein points out introduces the notion of spreading time through space.

38 Poincaré had independently derived k = 1 in a letter to Lorentz written sometime between
late 1904 and mid-1905, and in essentially the same manner. Poincaré showed that if k takes the
form (1 − v2/c2)m, where m is an arbitrary real number, then the group property of the k-Lorentz
transformations requires that m = 0. (See Miller (1981), section 1.14.) By assuming k to be an even
function of v, over and above the condition that k → 1 when v → 0, Poincaré seems to be have
been aware that the issue of spatial isotropy is important. See also his derivation of k = 1 in Poincaré
(1906). 39 Einstein (1969), p. 55.



Einstein’s Principle-theory Approach 81

Unfortunately, Einstein opts for an excessively operational treatment of this issue,
which arguably has misled generations of students of the theory (and not a few
philosophers). The picture that is often advocated in textbooks of vast, tightly
packed grids in space with an ideal clock sitting at each intersection of the grid
lines is traceable back to Einstein’s paper, where a meaningful notion of one-
way uniform motion, and indeed that of light itself, presupposes distinct points
of space equipped with synchronized clocks. Nothing could be further from the
truth in typical experiments. I will take up this issue again in the following chapter,
but it must be conceded here that Einstein was right to put so much emphasis
on the stipulatory nature of the isotropy of the one-way speed of light, and the
conventional nature of distant simultaneity. It was essential in understanding the
relativity of simultaneity, and hence the compatibility of Einstein’s apparently
irreconcilable postulates.

In this respect, Einstein was doing little more than expanding on a theme that
Poincaré had already introduced, as we have seen. Where Einstein goes well beyond
the great mathematician is in his treatment of the coordinate transformations
as encoding information about the behaviour of moving rigid rods and clocks.
Einstein’s treatment is far closer to the discussion on the physics of coordinate
transformations given in section 2.4 above than was ever given before. In partic-
ular, the extraction of the phenomena of length contraction and time dilation directly
from the Lorentz transformations in section 4 of the 1905 paper is completely orig-
inal. It was in particular the first time that the phenomenon of time dilation
was predicted in its full scope.40 Note that the two overarching assumptions of
our section 2.4—the universality and boostability assumptions—are implicit in
Einstein’s treatment. In 1910, he was more explicit: ‘It should be noted that we
will always implicitly assume that the fact of a measuring rod or clock being set in
motion or brought back to rest does not change the length of the rod or the rate
of the clock.’ 41

The difference with Poincaré’s approach is particularly clear, oddly, in a place
where both protagonists seemed to agree. I refer to the second application of

40 As Pauli (1981, p. 13) wrote: ‘While this consequence of of the Lorentz transformations [time
dilation] was already implicitly contained in Lorentz’s and Poincaré’s results, it received its first clear
statement only by Einstein.’

See also Rindler (1970) in this connection. It is remarkable that in his detailed account of Einstein’s
1905 reasoning about time, Galison (2004, chap. 5) does not mention the discovery of time dilation.

41 Einstein (1910). The importance of this assumption was stressed by Born.

. . . it is assumed as self-evident that a measuring rod which is brought into one system of reference
S and then into another S ′ under exactly the same physical conditions would represent the same
length in each. . . . Exactly the same would be postulated for clocks . . . We might call this tacit
assumption of Einstein’s theory the ‘principle of the physical identity of the units of measure’ . . .
This is the feature of Einstein’s theory by which it rises above the standpoint of a mere convention
and asserts definite properties of real bodies. Born (1965) pp. 251–2.

As was argued in section 2.4, this is the feature that allows the coordinate transformations to encode
the phenomena of length change and time dilation for moving rods and clocks respectively. (I am
grateful to Antony Valentini for the Einstein and Born quotations; see Valentini (2005).)
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the relativity principle in Einstein’s argument, designed to guarantee the group
property of the coordinate transformations. For Poincaré, this aspect of the
transformations is intimately connected with their role as (a subgroup of ) the
covariance group of Maxwell’s equations. For Einstein, who for reasons spelt out
in section 5.1, cannot appeal to Maxwellian electrodynamics in the same way, the
group property must be justified by appeal to what the transformations mean in
themselves.

This is how I take it that the argument—which Einstein does not fully spell
out—ought to go.42 Suppose that the coordinate transformations between frames
S and S ′ are different in form from their inverse, for instance. We expect in this
case either the length contraction factor or the time dilation factor (if any), or
both, to differ when measured relative to S and when measured relative to S ′.
And this would imply a violation of the relativity principle. Specifically, it would
be inconsistent with the claim that the dynamics of all the fundamental non-
gravitational interactions which play a role in the cohesion of these bodies satisfy
the relativity principle.Thus the dynamical relativity principle constrains the form
of the kinematical transformations, because such kinematics encode the universal
dynamical behaviour of rods and clocks in motion. One can understand why, as
we saw earlier, someone like Larmor would say that Einstein’s 1905 reasoning is
ultimately based on dynamical considerations ‘masquerading in the language of
kinematics’.

5.6 THE EXPERIMENTAL EVIDENCE FOR THE LORENTZ
TRANSFORMATIONS

5.6.1 The 1932 Kennedy–Thorndike Experiment

We have already met the MM-transformations (4.10–4.13) that are a consequence
of the null result of the Michelson–Morley experiment, where S is the frame
relative to which the Light Principle is valid. It was stressed that the form of
the temporal transformation (4.13) depends on the adoption of the Poincaré–
Einstein convention for synchronizing clocks in both frames. In 1979, L. Brillet
and J. L. Hall improved the accuracy of the MM experiment by a factor of 4000,
using a helium-neon laser mounted on a rotary platform.43 More recently, groups
at Stanford University, Humboldt University in Berlin, and the Observatoire in
Paris have undertaken measurements of the optical frequency of an optical or
microwave cavity cooled to liquid helium temperatures. These experiments use
the Earth itself to rotate the apparatus; if the (two-way) velocity of light were
to depend on direction, the rotation would produce a shift in the resonance
frequency, and relative shifts in cavities pointing in different directions can be

42 The argument is taken from Brown and Pooley (2001). 43 Brillet and Hall (1979).
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measured. The Humboldt group took data over a period of a year, and established
a limit for variations in the light-speed of ∆c/c < 2 × 10−15.44

A difficult and well-known variation of the MM experiment, first performed
by Kennedy and Thorndike in 1932,45 involved a Michelson interferometer with
arms A, B of different lengths. Using a continuous, monochromatic source of
light, the experiment was designed to detect over a six-month period any change
in the brightness of the light emerging from a fixed, non-rotated, interferometer
in the form of an alteration to the circular fringes produced in the eyepiece.

Suppose n is the (frame-independent) number of periods of the light waves
associated with the time delay in traversing the two unequal arms. Relative to the
laboratory frame S ′, this relative phase is

n = ∆′/τ ′ = 2(L′
A − L′

B)/c ′τ ′, (5.8)

where τ ′ is the period of the light source, and ∆′ is again (recall the discussion
in subsection 4.2) the delay time, both relative to frame S ′. Here, the length of
arm A is assumed to be greater than the length of arm B. It is further assumed
(in the light of the MM experiment) that the two-way light velocity c ′ relative to
S ′ is isotropic. Notice that (5.8) holds even when the arms are not perpendicular
(which was the case in the Kennedy–Thorndike experiment).

Any variation in the brightness of the emerging light measured over a signific-
ant period of time (i.e. one in which the Earth would be expected to significantly
change its velocity relative to the ether) would indicate a variation of n with S ′,
or with the velocity v. Since the conditions of the experiment are that L′

A, L′
B ,

and τ ′ are held fixed over the period in question (and maintaining this stabil-
ity was the most difficult part of the experiment), any brightness variation must
be a measure of the variation in c ′. No appreciable variation was detected in the
Kennedy–Thorndike (KT) experiment, in conformity with the Poincaré–Einstein
relativity principle and the assumed constancy of the light velocity relative to S ′.
Thus, the inference from the combination of the MM- and KT-experiments is
that the coordinate transformations take the form of the k-Lorentz transforma-
tions (4.26–4.29) for |v| < c. A repetition of the KT experiment using laser
light was performed by Hils and Hall (1990); their null result held good to two
parts in 1013.46

Note that the length change factors (recalling the form (2.21–2.24) of the
general linear inertial transformations) thus still take the forms imposed by the
MM-experiment C‖ = (kγ)−1, C⊥ = k−1. But now the dilation factor takes
the form D = γ/k.

It is common to read in standard texts on SR that the KT experiment provides
evidence for the relativistic dilation factor D = γ, but this claim clearly only

44 See Müller et al. (2003). 45 Kennedy and Thorndike (1932).
46 See Hils and Hall (1990).



84 Physical Relativity

holds if k = 1, and we have seen that this condition is not imposed by the MM
experiment. (If the choice k = γ is made, there is no dilation, at least relative
to the S observer, and this is perfectly consistent with the KT experiment.) This
fact was essentially recognized by Kennedy and Thorndike themselves, and stated
quite explicitly in 1937 by Ives, and repeated by Robertson in 1949.47

5.6.2 The Situation So Far

Up until this point, we have fixed the deformation and dilation factors relative to
the S frame, not the rest frame S ′ of the laboratory. What we really want are the
corresponding factors defined relative to the latter frame.

We need to know the transformations between S ′ and S ′′, where S ′′ is a frame
moving with arbitrary speed w along the positive x ′-axis. Let us denote by V the
velocity of S ′′ relative to S . Since the velocity transformation rule which follows
from the k-Lorentz transformations does not depend on k (so it is the same rule
as in SR) the velocities v, V , and w are related by

w = (V − v)/(1 − Vv/c2). (5.9)

In fact, since we know how to transform between S and S ′, and between S and
S ′′ we can calculate the transformations from S ′ to S ′′. After some algebra we get

x ′′ = K γ(w)(x ′ − wt ′) (5.10)

y′′ = Ky′ (5.11)

z ′′ = Kz ′ (5.12)

t ′′ = K γ(w)(t ′ − wx ′/c2), (5.13)

where K = k(V )/k(v) and γ(w) = (1 − w2/c2)−1/2.
We are now able to state what the deformation and dilation effects are relative

to S ′:

C‖ = (K γ)−1; C⊥ = K −1; D = γ/K , (5.14)

where γ = γ(w). But we see that we still need to know not only what the
functional form of k is, but also what the speed v is of the lab frame relative to
the ‘rest’ frame S in the event that k 	= 1.

47 See Ives (1937a) and Robertson (1949). Note that in their discussion of the KT experiment,
Hsu and Zhang (2001, p. 527) incorrectly claim that ‘the null result excludes the original hypothesis
of the FitzGerald–Lorentz contraction of length’.
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5.6.3 The 1938 Ives–Stilwell Experiment

Suppose the rest frequency is given for some source of monochromatic light, that
is, the frequency relative to the source’s rest frame. (We will assume, in accordance
with the discussion in section 2.4, that the rest period does not depend on the
state of motion of that frame.) If the source is at rest relative to the frame S ′′, so
moving with speed w relative to the lab frame S ′, it is desirable to calculate the
frequency of the light relative to the lab.

One might think that since for plane monochromatic waves, the frequency ν ′ is
just the inverse of the period T ′ of the wave, then it is related to the rest frequency
ν0 in a way that is determined solely by the time dilation factor D in (5.14) and
the direction of wave propagation. But this is not so. Recall first that for wave
phenomena in classical kinematics there is a Doppler effect even in the absence
of time dilation. Furthermore, the frequency of a plane wave is by definition
measured by a single clock at rest in the relevant frame, whereas time dilation
involves one clock at rest relative to one frame and two separated synchronized
clocks at rest relative to another. Any transformation rule for frequencies concerns
the readings of a single clock at rest in one frame and another at rest in another.
The connection with time dilation is not obvious.

The transformation of frequency actually follows from the coordinate trans-
formations together with the fact that the phase of a plane wave is invariant. (See
the derivation of the relativistic Doppler effect in any relativity text.) The result
for a plane wave moving in the x ′, y′ plane say is:

ν ′ = K ν ′′/γ[1 − (w cos α)/c], (5.15)

where again γ = γ(w), and α is the angle relative to the lab frame S ′ between
the direction of the light emitted by the moving source and the x ′-axis. (Note
that although the source moves at speed w parallel to the x ′-axis, the observer
at rest in S ′ may choose to observe the light emitted from the moving source at
any angle α.) But since in our example ν ′′ is the rest frequency ν0 of the source,
we have

ν ′ = K ν0/γ[1 − (w cos α)/c]. (5.16)

In 1938, H. E. Ives and G. R. Stilwell made measurements48 related to the
wavelength of light emitted by fast-moving ions for α = 0, π, the rest wavelength
of the light being known. Since wavelength is just the phase speed c divided by
the frequency, the experiment tested the validity of (5.16) for these angles. The
sensitivity of Ives and Stilwell’s technique allowed for the second-order effect to

48 Ives and Stilwell (1938).
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be detected. The results were consistent with (5.16) for the value K = 1. Since
it is highly likely that V 	= v, the implication is that k = 1.49

It is not unreasonable to conclude that it took until 1938 to establish exper-
imentally the full form of the Lorentz transformations: that they form a group,
that deformation is purely longitudinal (C⊥ = 1) and that time dilation exists
(D = γ).50

But it would be quite wrong to give the impression that special relativity as
a whole languished experimentally until the 1930s. An illuminating story sur-
rounds the relativistic experiments performed in the period 1901–1905 by Walter
Kaufmann (1871–1947). These involved measuring the deflection of fast elec-
trons in strong magnetic fields. In the terminology of the day, Kaufmann was
essentially measuring the dependence of mass on velocity—not a ‘kinematical’
effect. Kaufmann’s results were not good for Einstein’s SR, whose predictions
coincided with Lorentz’s, based on the notion of the deformable electron. The
results were apparently closer to the predictions of Max Abraham (1875–1922),
based on a theory of the electron which does not deform in motion. Lorentz was
devastated, but characteristically faced defeat with true Popperian humility before
the tribunal of experience. He wrote to Poincaré in March 1906:

Unfortunately, my hypothesis of the flattening of electrons is in contradiction with the
results of new experiments by Mr Kaufmann and I believe I am obliged to abandon
it; I am at the end of my Latin and it seems to me impossible to establish a theory that
demands a complete absence of the influence of translation on electromagnetic and optical
phenomena.51

Einstein’s response was much less defeatist. It was to cast doubt on the validity
of Kaufmann’s results—not only were the competing theories less plausible than
his, or so he argued, but he had a shrewd idea about possible systematic errors in
Kaufmann’s procedure. Einstein’s defiance was vindicated when new versions of
the experiment performed by Bucherer in 1909, and particularly by Neumann in
1914 and by Guye and Lavanchy in 1915, produced results consistent with the
relativistic predictions.52

Karl Popper’s famous criterion of demarcation between science and pseudo-
science, based on the empirical falsifiability of theories, was partly inspired by
Einstein. Popper was greatly impressed by Einstein’s bold conjecture in his general

49 Recent more accurate versions of the Ives–Stilwell experiment were performed by Hasselkamp
et al. (1979) and Kaivola et al. (1985). A review of the three classic experiments discussed in this
section is found in Hsu and Zhang (2001), Part II.

50 For a recent review of Lorentz covariance tests, see Pospelov and Romalis (2004). For new tests
motivated by quantum gravity considerations, see Amelino-Camilia and Lämmerzahl (2004).

51 Cited in Galison (2004), p. 220.
52 For nice treatments of the whole episode, see Cushing (1981), Hon (1995), and Staley (1998).

It is worth noting that in the opinion of L. Jánossy, it was not before 1940 that experimental results
were accurate enough to decide between the Abraham predictions and those of Lorentz and Einstein;
see Jánossy (1971), p. 45, and further references therein.
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theory of relativity regarding the redshift of spectral lines of atoms in a gravitational
field.53 Popper contrasted Einstein’s willingness in 1917 to stick his neck out, and
face the possibility of empirical refutation, with the behaviour he regarded typical
of social scientists and particularly psychologists and psychoanalysts. At any rate,
it has been claimed that ‘apart from Einstein, Popper probably did more than any
other individual to change the twentieth century’s conception of science.’54 It is
hard not to wonder how the history of twentieth century philosophy of science
might have gone if the young Popper had known about Einstein’s reaction to the
Kaufmann experiments.55

5.7 ARE EINSTEIN’S INERTIAL FRAMES THE SAME AS
NEWTON’S?

It is a remarkable fact that the experimental results discussed so far which deter-
mine the nature of the coordinate transformations between inertial frames do not
pin down precisely what the inertial frames are. In particular, they do not help
us decide whether a frame co-moving with the Earth’s surface (for a sufficiently
short period of time) or with a freely falling particle is a better inertial frame. It is
the so-called terrestrial redshift experiments that provide the answer.56

In the famous redshift experiment of R. W. Pound and G. A. Rebka reported in
1960, at the top of a 74-foot tower an accurate measurement was made (using the
Mössbauer effect) of the frequency of γ-ray photons emitted from the base of the
tower. This result was compared with the frequency of similar photons emitted
by the same source (57Fe nuclei) moved to the top of the tower. Now if the tower
is at rest relative to an inertial frame, Maxwellian electrodynamics predicts that
there will be no shift in frequency, and hence wavelength of the γ-rays. However,
if the tower is accelerating uniformly a frequency shift is predicted using the
expression for the transverse Doppler shift in SR. (The Doppler effect is caused
by the motion of the absorber relative to the emitter, at the time of absorption, due
to its acceleration during the time of transmission.) In particular, if inertial frames

53 See Popper (1982), p. 38.
54 Bryan Magee, in the Financial Times, 19 September, 1994.
55 Cushing’s summary (op. cit., p. 1133) of the Kaufmann story reads as follows.

The entire episode provides another example that science does not proceed by a strict falsificationist
methodology. It shows rather that that a great scientist such as Einstein at times gives more weight
to a theory that has a certain beauty and produces equations simple in form than he does to
experimental results that apparently conflict with such a theory.

56 This section owes much to Ehlers (1973), §1.4. For useful analyses of the observations made
by a uniformly accelerated observer in SR, see Hamilton (1978), Giannoni and Gron (1979), and
Desloge and Philpott (1987).
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are attached to freely falling particles, then the predicted redshift in wavelength is

�λ

λ
=

gl
c2 + much smaller terms, (5.17)

where g is the free-fall acceleration relative to the surface of the Earth and l the
height of the tower. The results of Pound and Rebka were in good agreement
with this shift; a more precise version of the experiment by Pound and Snider
confirmed it in 1964 with an accuracy of 1 per cent.57

There are several aspects of this result that are worthy of emphasis. The first is
that the nuclei in the experiment, which act both as emitters and absorbers of the
γ-ray photons, are assumed to act as ideal clocks in spite of the fact that they are
accelerating relative to the free-fall, inertial frames. Nothing so far in Einstein’s
SR refers to the behaviour of accelerating rods and clocks, so clearly some kind of
extra ingredient is needed if the theory is to be applicable to this case. This is the
so-called clock hypothesis, whose significance and justification will be discussed in
the next chapter. (It is an essential element of any decent discussion within SR of
the so-called Twins Paradox, or the clock retardation effect.) The important thing
to note at this stage is that it does not require for its justification any appeal to
general relativity.

The second point is that the present reading of the significance of the redshift
experiments presupposes that an inertial frame is one relative to which Maxwellian
electrodynamics are valid. (I do not mean this in an exact sense; what is really
being assumed is that the standard laws of quantum electrodynamics are valid
relative to the freely falling frame; it is just that Maxwell’s equations are a perfectly
good approximation in this experiment.) It could hardly be otherwise, given the
origins of SR. It is the behaviour of matter (including fields) that determines
inertial structure in SR, not the other way round. But if, in the spirit of the
relativity principle, we make the further highly non-trivial assumption that the
fundamental equations of all the other non-gravitational interactions also pick
out the freely falling frames in this way, then a profound implication emerges.
Since a freely falling particle does not, it turns out, accelerate relative to the inertial
frames in SR, gravity cannot be a force in the usual Newtonian sense. Of course,
Newtonian gravity was always going to be a problem for SR, given that it is an
instantaneous action-at-a-distance and hence not Lorentz covariant. But now it
seems gravity is not even an action! It further follows that Einstein was wrong
in the 1905 paper to identify his inertial frames with Newton’s. So his RP turns
out not to be equivalent to Newton’s after all. They sound pretty much exactly
the same, as we saw in section 5.3.1. But the terrestrial redshift experiments show
that they refer to different families of frames.

Finally, there is the obvious, and now rather alarming, fact that free particles
falling at different places on the Earth’s surface are in relative acceleration, the

57 For a fuller discussion see, e.g., Ohanian and Ruffini (1994).
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magnitude of the acceleration depending of course on the distance between these
places. Inertial frames are thus either impossible, or they must be curtailed in the
sense that they are considered well-defined only ‘locally’. We are now so steeped in
general relativity that the notion of local inertial (‘geodesic’) frames seems natural
and straightforward. We often forget how tricky this notion of ‘local’ really is. But
what is of greater interest at this stage is the question as to how the replacement
of global frames by a multitude of local ones is supposed to work.

The mathematical theory of Riemannian spaces incorporates the notion of
an affine connection which allows comparison to be made, generally in a path
dependent way, between tangent vectors at the different locations in the space.
Perhaps space-time comes equipped with such an ‘affinity’ that allows for the
inertial structure at different events to be systematically connected. If the affine
connection is dynamical, subject to field equations which couple it to matter
fields, then a theory of what is commonly called the gravitational force but now
understood as space-time curvature may emerge which explains the stupendous
success of Newton’s theory despite its misconception about the nature of gravity.
We cannot be sure at this stage how the dynamics of the pure ‘gravitational’
degrees of freedom will incorporate this and possibly other affinities. But if the
programme as it has been broadly defined is successful, as Einstein showed it was
in 1915,58 one question deserves particular attention. Does the seeming miracle
of all the non-gravitational forces concurring about local inertial structure receive
an explanation in this programme?

5.8 FINAL REMARKS

Let’s return finally to Einstein’s 1949 Autobiographical Notes and the oddity flagged
at the end of section 5.1 above. The whole point of the principle theory approach
to relativistic dynamics that Einstein consciously adopted in 1905 was to find
phenomenological principles, akin to the laws of thermodynamics, which would
constrain the behaviour of rods and clocks. Now imagine in thermodynamics if
the second law were replaced by the assertion that there exists a state parameter
called entropy, which over time would in the case of adiabatic processes either
remain constant or increase. Normally of course, this is taken to be a theorem of
the standard laws, but now we consider postulating it. It is not a phenomenological
law; it cannot be directly distilled from a large amount of empirical experience, like
the impossibility of constructing a perpetual motion machine of the second kind.
It has moved in the direction of the abstract. The new version of the theory shifts
along the theory continuum that has classical thermodynamics at one extremity
and statistical mechanics at the other. It is still far from supplying the explicit

58 Actually, in 1915 Einstein was not aware of the significance of the affine connection in his
theory of gravity, as we see in chap. 9.
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micro-structure that statistical mechanics, or even the kinetic theory of gases,
provides. But it represents a displacement away from the pure principle theory
that is instantiated in classical thermodynamics.

Something like this shift seems to occur in the Autobiographical Notes when,
a few pages after announcing the need to find a universal principle analogous to
the laws of thermodynamics, Einstein writes:

The universal principle of the special theory of relativity is contained in the postulate:
The laws of physics are invariant with respect to the Lorentz-transformations (for the
transition from one inertial system to any other arbitrarily chosen system of inertia). This
is a restricting principle for natural laws, comparable to the restricting principle of the
non-existence of the perpetuum mobile which underlies thermodynamics.59

But the comparison with thermodynamics has now been weakened. I think
that there can be no doubt that initially Einstein thought of the RP and the LP,
or their combination, as the analogues of the laws of thermodynamics—recall
the discussion in section 5.2 above. In 1905, and to a lesser but still significant
extent in 1949, when Einstein wrote the above, the LP was based on relatively
little direct empirical evidence, certainly less than the RP. But both principles are
phenomenological in character, as was repeatedly stressed above. In particular, the
LP does not depend on whether light is made of wave, particle, or a combination
of the two; like the RP it is taken to be independent of the micro-structure of
matter and radiation. The requirement of the Lorentz-covariance of ‘natural laws’,
of the equations that govern the fundamental interactions of nature, is certainly
not phenomenological. True, it does not make a commitment to the exact form
of the deep structure of matter and radiation; it is, as Einstein says, a restricting
principle on any theory purporting to describe this structure. But the requirement
was also explicitly defended by Poincaré, and clearly represents a shift away from
the pure principle theory concept that was unique to Einstein. The stipulation of
Lorentz-covariance was not, nor could it have been, the starting point of Einstein’s
1905 distinctive approach to SR.

What, then, is special relativity? This question is taken up in Chapter 8, after
we have dealt with some preliminary matters.

59 Einstein (1969), p. 57.
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Variations on the Einstein Theme

Had silicon been a gas, I would have been a major general.

James McNeill Whistler1

6.1 EINSTEIN’S OPERATIONALISM: TOO MUCH
AND TOO LITTLE?

The operational nature of Einstein’s discussion of inertial coordinate systems,
and the issue of distant simultaneity in particular, has been hugely influential.
In physics, it was consciously emulated by the founder of the matrix mechan-
ics approach to quantum mechanics; recall Heisenberg’s dismay in finding that
Einstein of all people did not embrace his operationalist stance in the late 1920s.
In philosophy, it was influential in the emergence of the doctrine of operationalism
and played a significant role in the development of logical positivism. But after
the pendulum swung back and operationalism (or rather its radical version due to
such writers as Percy Bridgeman) got such a bad name in philosophy, it has been
fashionable for some time in the philosophical literature to discuss space-time
structure without any reference at all to such base elements as rods and clocks.
This has been unfortunate. It has tended to prevent philosophers from asking the
important question as to why real rods and clocks happen to survey the postulated
space-time structure.2 All in all, Einstein’s treatment has at times been taken too
literally by both physicists and philosophers.

The point was made earlier that a typical physics laboratory contains no grid-
like arrangement of rigidly connected synchronized clocks, not to mention no
collection of rigid rulers hanging around to determine precisely where everything
is. (Just think of the early experiments related to SR, such as the MM and KT
experiments.) This point is banal.3 What Einstein presumably had in mind was

1 The artist made this remark after he failed his studies at the West Point military academy in
1854 because of his ignorance of chemistry.

2 We shall return to this issue in the next chapter.
3 It seems a little less banal, though, when it is borne in mind that if a laboratory representing

an inertial frame really did have a system of rigidly connected synchronized clocks, and the lab was
boosted to a new state of uniform motion, then the clocks would cease to be Einstein synchronized
as a result of the joint acceleration; see Giannoni and Gron (1979).
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a counterfactual claim: the temporal coordinates associated with distant events
relative to some inertial frame would be read off by suitably synchronized clocks
were they there, and similarly with positions and rulers. But is clear, as we saw in
section 5.5, that Einstein considered the rods and clocks as defining distances and
temporal intervals, and it is this notion that is highly questionable. In particular, it
makes proper time seem more fundamental than (inertial) coordinate time, when
the opposite is the case.

But if we appeal, as Einstein did, to hypothetical, ideal clocks and rods, it is
beholden on us to say what they are, and here, to repeat, Einstein was strangely
silent, at least in 1905. In 1910, he was more forthcoming. ‘By a clock we under-
stand anything characterized by a phenomenon passing periodically through iden-
tical phases so that we must assume, by virtue of the principle of sufficient reason,
that all that happens in a given period is identical with all that happens in an
arbitrary period’.4

The problem, of course, is to spell out how the principle of sufficient reason
should be applied systematically and not just on the basis of whim. If one tries to
fill in the blanks in Einstein’s definition, one is inevitably drawn into dynamics,
into a discussion of the simplest form of the dynamical equations governing the
fundamental processes under investigation. Spatial and temporal coordinates are
chosen on the basis of such simplicity considerations, and rods and clocks are then
defined to be bodies that best take up space and tick, respectively, in accordance
with these natural coordinates. Good conceptual housekeeping means that coor-
dinatization comes before operationalism in Einstein’s sense, and it seems that
Poincaré had a better understanding of this point than Einstein.5

6.2 WHAT IS A CLOCK?

George F. FitzGerald was also one to stress the dynamical nature of time. In an essay
written before the turn of the century on the nature of physical measurement, and
never published in his lifetime,6 FitzGerald gave a lucid account of the problem of
defining temporal duration in physics. The standard of time universally adopted
in FitzGerald’s day was the time of rotation of the Earth, and he pointed out
that although ‘there is every reason for assuming that the Earth rotates on its
axis more uniformly than any clock we can construct’, there is nonetheless good
ground for thinking that this rotation rates is slowing down.7 Not only do the

4 Cited in Galison (2004), p. 266.
5 Recall the discussion of Newtonian time in section 2.2.4.
6 See FitzGerald (1902); the essay was published in Larmor’s edition of FitzGerald’s collected

papers, with the editorial comment ‘Hitherto unpublished: apparently the introduction to a projected
treatise on physical measurement.’ The mention on p. 536 of advances in the science of heat ‘during
the present century’ is a clear indication that it was written before 1900.

7 Actually, although the long term trend has been a slowing down, over the last decade the rotation
has been speeding up. See Bradt (2004), p. 86.
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records of ancient eclipses testify to this, said FitzGerald, but it is plausible that
frictional resistance to the tides caused by the sun and moon are responsible for the
slowdown. But this situation raises a conceptual conundrum: ‘. . . how on earth
can we discover a change in our standard itself?’8

The answer of course is by finding a ‘more ultimate standard of time’ postulated
in the investigation of the Earth’s rotation. This is none other than that defined by
the uniform rectlinear motion and rotation of free bodies in Newtonian mechan-
ics, and the assumption that Newton’s law of gravitation accurately holds for the
solar system. ‘Hence our real ultimate standard of time is an assumed accuracy of
these laws, and there is a great deal to be said in favour of explicitly basing our
measure of time upon these laws of motion and gravitation. This is possible and
has been more than once suggested.’9

FitzGerald was anticipating what came to be called ephemeris time (originally
Newtonian time) in astronomy. By the late 1930s, discrepancies in the observed
motion of the Sun, Moon, and planets led to the abandonment of the standard
of time based on the Earth’s rotation.10 By the 1950s astronomers had officially
adopted the standard defined by ephemeris time: the independent variable in the
equations of motion of the bodies of the solar system. By monitoring one body,
the Moon, they could check when it reached positions predicted on the basis
of these laws and verify that the other bodies in the solar system reached their
predicted positions. They used, in Julian Barbour’s words, ‘the Moon as the hand
of a clock formed by the solar system’.11 Ideal clocks were then defined as those
which marched in step with this ephemeris time.

But there are practical limitations to the accuracy with which ephemeris time
can be measured, and by 1967 atomic clocks were officially adopted to provide
the fundamental unit of measurement of the second.12 An important feature of

8 op. cit., p. 538. 9 ibid.
10 The rotational motion of the Earth has five components: uniform motion, forced secular motion

(precession) that was recognized by Hipparchus, Euler motions (the Chandler wobble), periodic
motions (nutation), and finally irregular motions that were suspected from the eighteenth century
onwards. (See Kinoshita and Sasao (1989).) The last of these, due to geophysical phenomena on the
surface and within the earth, are unpredictable. FitzGerald mentioned frictional resistance to the
tides as the cause, as we have seen, but the true situation is much more complicated.

A complete understanding of the driving mechanisms requires a study of the deformation of the
solid Earth, of fluid motions in the core and of the magnetic field, of the mass redistributions and
motions within the oceans and atmosphere, and of the interactions between the solid and fluid
regions of the planet. (Lambeck (1989).)

11 Barbour (1999), p. 107. For further details see Taff (1985), pp. 100–2. By the 1980s, lunar rang-
ing by lasers was accurate enough to require general relativistic corrections to Newtonian predictions
for the motion of the moon.

12 Useful accounts of the different measures of time used in astronomy are given in Sadler (1968)
and Bradt (2004), section 5.4. They remind us that a clock used to establish the fundamental unit
of measurement of the second is not the same as a procedure for determining duration.

If I wanted to know how many . . . seconds (atomic time) I had lived, I would find the number of
days since my date of birth, taking into account leap years . . .. I would adjust this for partial days
at each end of the interval and then multiply by 864400 s/d. Finally I would add the difference
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the use of atomic clocks must be stressed. A single high-quality caesium clock is
not enough, because it is recognized that there is a risk of failure or abnormal
functioning. In establishing an international atomic time scale, an averaging over
a number of such clocks in different laboratories is used, with appropriate statistical
weighting for the ‘best’ clocks. Moreover, stability algorithms for atomic time
scales are employed in each laboratory.13 Such procedures highlight the fact that
it is theory that rules in the construction of accurate clocks, not the availability of
accurate clocks that rules in the construction of theory.14 And the same holds for
rigid rods.

6.2.1 The Clock Hypothesis

So far we have been discussing clocks that move inertially, or equivalently, that are
isolated from their environment. What happens when they accelerate in relation
to inertial frames? If the clock is sufficiently small, it defines a world-line or track
in space-time which is ‘straight’ if left to itself, but crooked if accelerating and
hence being subject to external forces. Eddington put his finger on the problem in
relation to the latter case: ‘We may force it [the clock] into the track by continually
hitting it, but that may not be good for its time-keeping qualities.’15

An important part of the history of time has been the search for accurate clocks
which withstand buffeting, which, in short, can be carried around. In particular,
in the field of maritime navigation, the ability to measure longitude at sea was
severely handicapped, often with tragic consequences, for centuries by the lack of
accurate clocks that could withstand the tossings of the seas.16

An atomic clock can in principle be adversely affected by tidal gravitational
forces acting on either the atomic process responsible for the frequency stability
or on the locking to the the crystal oscillator responsible for the periodic sig-
nal output, the latter being disrupted long before the former.17 But such forces
are negligible in the solar system, and of more practical interest is the effect of

in the two TT–UTC offsets at the ends of the interval. . . . The latter step takes into account the
leap seconds that were inserted between the two dates. (Bradt (2004), p. 87)

Here TT stands for Terrestrial Time (ephemeris time corrected for atomic time) and and UTC
stands for Universal Coordinated Time (time based on the earth’s rotation corrected for atomic time).
For more detailed accounts of time in astronomy and the use therein of atomic clocks, see Guinot
(1989a, b). It is interesting that some rotating neutron stars, seen as regularly pulsing radio pulsars,
have an extremely high degree of stability, rivalling that of atomic clocks; see Bradt (2004), p. 91.

13 See Guinot (1989a), p. 390. For a popular account of the ‘best’ clock in the world in 2000,
see Klinkenborg (2000).

14 There is a widespread view, possibly due originally to Erwin Schrödinger, that no clock modelled
in quantum mechanics can be perfect even in principle. This is because any such clock must possess
an energy spectrum that ranges (not necessarily continuously) from minus to plus infinity. (See in
this connection Unruh and Wald (1989), pp. 2605–6.) A recent careful analysis of the matter is given
in Hilgevoord (2005), which contests the standard view and plausibly concludes that ideal clocks are
indeed possible in quantum mechanics.

15 Eddington (1966). 16 See Sobel (1996). 17 See Misner et al. (1973), p. 396.
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acceleration. It is important to appreciate that this effect will vary depending on
the nature of the clock, even in the case of atomic clocks. The key issue is the
comparison of the magnitude of the external force producing the acceleration and
that of the forces at work in the internal mechanism of the clock. Even moderate
accelerations can disturb the locking mechanism in many atomic clocks. But other
kinds of clocks, such as those based on certain nuclear frequencies, can continue
to function ‘ideally’ under accelerations of up to 108 cm/s2.18

If the accelerative forces are small in relation to the internal restorative forces
of the clock, then the clock’s proper time will be proportional to the Minkowski
distance along its world-line. Consider two events A and B lying on this time-like
world-line. The distance along the world-line between these events is given by∫ B

A ds, where ds2 = c2dt2 − dx2 − dy2 − dz2 in inertial coordinates. It is a sum,
in other words, of ‘straight’ infinitesimal elements ds: the effect of motion on the
clock depends accumulatively only on it instantaneous speed, not its acceleration.
This condition is often referred to as the clock hypothesis, and its justification, as
we have seen, rests on accelerative forces being small in the appropriate sense. The
term ‘hypothesis’ is arguably a misnomer, and tends to hide the straightforward
dynamical issues at stake. There should be no mystery as to why clocks are way-
wisers of space-time.19

Indeed, it is noteworthy that in many accounts of the behaviour of a clock
in motion, dynamical considerations seem relevant, if at all, only when the clock is
accelerating. To be sure, in the case of inertial motion, the behaviour of the clock is
universal, and does not depend on its constitution, whereas whether a given force
acting on a clock renders it unreliable depends crucially on the make-up of the
time-piece. But if it is argued that it is the nature of space-time itself that accounts
both for the stability (and time dilation) of the clock in inertial motion, when it
comes to accelerative motion it seems to be a competition between the ‘pull’ of
space-time and the effect of the applied force. How are they to be compared? Like
is not being compared with like.

6.3 THE CONVENTIONALITY OF DISTANT
SIMULTANEITY

It is a remarkable thing that distant simultaneity has proved over the years to be
one of the most contentious and apparently confusing issues in the conceptual

18 See Ohanian and Ruffini (1994), p. 172.
19 There is a strict analogy with the notion of distance in Euclidean three-dimensional space.

Consider a curve joining two points A and B, whose distance is taken to be
∫ B

A ds, where ds2 =
dx2 + dy2 + dz2 in Cartesian coordinates. Why does a string placed along the curve measure this
distance? Because, to put it crudely, it has the microscopic structure of a bicycle chain: at the atomic
level the size of smallest links does not depend on the degree of bending of the string. (This point
became clear to me in discussions with Jeeva Anandan.)
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foundations of relativity theory. It is true that it was the last piece of the jigsaw
that Einstein hit on in formulating SR in 1905, and in particular in showing that
his two postulates are not mutually exclusive. But does the issue deserve to be
such so controversial?

Let us start by examining non-standard definitions of simultaneity. Recall the
transformation (2.6) in section 2.2.3 involving a change in the simultaneity rela-
tion for a given inertial frame S :

x̃ = x; t̃ = t − �κ.x, (6.1)

for any constant 3-vector field �κ. It was pointed out that this transformation
is a symmetry of the equation of motion for the free particle. But there is a
broader issue to be addressed. Suppose �κ is no longer constant, but depends
on space. Suppose furthermore that clocks assigned à la Einstein to points in
space are resynchronized in terms of �κ. Would any observable differences occur
in any dynamical theory submitted to such a reformulation? Not as long as the
equations of motion of the relevant dynamical entities undergo a corresponding
�κ-dependent reformulation, and this certainly takes place if the theory can be
formulated in the tensor calculus.20

In the case of special relativity, consider the effect of the transformation (6.1)
when the coordinate t is the usual one resulting from the Poincaré-Einstein con-
vention for synchronizing clocks in frame S . After the transformation, the velocity
of light in the direction n̂ is now

c̃(n̂) =
cn̂

1 − c�κ.n̂
. (6.2)

Now in many discussions, the space-time is taken to be (1 + 1)-dimensional and
the vector field �κ is taken to be constant, resulting in

c̃± =
c

1 ∓ cκ
. (6.3)

In the philosophy literature, it is common to use a different parametrization of
synchrony (or better, the anisotropy of the light speed) due to Hans Reichenbach
based on the parameter ε, where

ε =
1
2
(1 + cκ), (6.4)

20 An illuminating discussion of this case is found in Anderson et al. (1998), in which it is shown
how the components of the 4-metric are altered by the components of 	χ ≡ ∇(	κ.x) and how the
irrotational (curl-free) nature of 	χ ensures the synchrony independence of the round-trip speed of
light; see section 2.3.4.
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so that c̃+ = c/2ε and c̃− = c/2(1 − ε). The advantage of this parametrization
is easy to see. Suppose event A represents the emission of a photon, B its reflection
at a distant mirror, and C its absorption back at the same (spatial) point from
where it was emitted. There is no question as to how long the round-trip journey
took, call it T ; it can be measured by a single inertial clock whose world-line
contains the events A and C . The question is: relative to the S frame, when did
the event B take place? If A occurs at time tA and thus C at tC = tA + T , then
tB = tA + εT . Poincaré–Einstein synchronization is clearly given by ε = 1/2.

I will have more to say about this Reichenbach factor ε shortly, but note that
it is widely assumed that ε must be restricted to the closed set [0, 1], or equiva-
lently |cκ| ≤ 1. This is to ensure that in one direction light does not propagate
backwards in time. It is often claimed that such a possibility would violate the
fundamental canons of causality, but it is a hum-drum experience for airline trav-
ellers flying East across the International Date Line.21 No, such a restriction on
the parameters is again mere convention. But recognizing this point in the case
of special relativity severely weakens the difference between SR and Newtonian
mechanics vis-à-vis the conventionality issue. We saw in section 2.2.3. that any
liberalization of the standard convention in Newtonian mechanics for spreading
time through space would result in the gravitational action-at-a-distance no longer
being instantaneous, even though a round-trip gravitational effect would be. The
idea of a gravitational effect occurring before its cause in this sense is no better
or worse than the idea in SR of a photon arriving at a detector before it left its
source. We standardly choose temporal coordinates in such a way as to prevent
this odd-sounding possibility (unless we are forced to spread time non-uniformly
across a finite two-dimensional surface with the global topology of a sphere, like
the surface of the Earth) not because it is metaphysically imperative, or empiri-
cally established, but because it is convenient.22 The only remaining difference
between Newtonian mechanics and SR is that in the latter one is still left with
a degree of conventionality: the choice of κ consistent with |cκ| ≤ 1, or of ε
within the interval [0, 1], and again the criterion is convenience. As has been
pointed out on a number of occasions above, in the light of the MM experiment
and its modern variants which establish the isotropy of the two-way light speed,
it is natural to adopt the convention according to which the one-way speed is also
isotropic.

There is still confusion about this last issue. Perhaps the most significant
instance is associated with attempts to define ‘test theories’ of SR, such as the
1977 effort due to Mansouri and Sexl. In this approach, although it is accepted

21 This nice point is made by Anderson et al. (1998), sections 1.5.1 and 2.3.2. I can testify,
having flown from New Zealand to both North and South America, that arriving before you left is
survivable! (Note that the establishment of international time zones is a case of a spatially dependent
and discontinuous κ factor.) Come to think of it, every telephone call from, say Australasia to the
UK, involves a signal arriving before it left, and no one seems the worse for it.

22 The odd kind of possibility being discussed here has roughly the status of those singularities in
general relativity which can be transformed away under a suitable coordinate transformation.
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that the one-way speed of light is not measurable in SR, it becomes measurable in
other elements of the theory-continuum defined by values of test parameters asso-
ciated with space-time structure. This line of thinking has been widely endorsed.
However, a careful analysis of such test theories, and many other related issues,
has been given in a lengthy 1998 review paper by Anderson, Vetharaniam, and
Stedman, in which the case for the conventionality of distant simultaneity is in
my opinion made overwhelmingly.23 But not even this tour de force has succeeded
in settling the issue.24

6.3.1 Malament’s 1977 Result

I cannot discuss the issue of distant simultaneity without devoting some words to
a result which virtually single-handedly managed to swing the orthodoxy within
the philosophy literature from conventionalism to anticonventionalism.25

David Malament’s 1977 result was an extension of much earlier work of Alfred
Robb, an English mathematician interested in axiomatizing Minkowski space-
time using just the relation of causal connectibility between space-time points—in
other words, using the light-cone or conformal structure of space-time.26 Robb
was able to define a 4-dimensional notion of orthogonality which, it turned out,
had a clear link to the Poincaré–Einstein convention. Specifically, imagine an
inertial world-line W and any point p on W ; then the set of points q such that
the straight line joining p and q is orthogonal to W in Robb’s sense turns out
to be just the set of all points simultaneous with p according to the Poincaré–
Einstein convention in the inertial rest frame of the free particle whose world-line
is W . (It is being assumed that light would propagate along light-like curves, even
though no geometrical object representing the electromagnetic field appears in
the argument. Note too that the notion of straightness that applies to both W
and the curve joining p and q is based on the affine structure that is definable in
terms of the postulated conformal structure.27) Malament’s famous result is that
‘Robb-orthogonality’28 is the only non-trivial way of defining simultaneity solely
in terms of W and the causal structure of space-time.

23 See Anderson et al. (1998).
24 A very recent attempt to defend the anti-conventionalist position is found in Ohanian (2004).

The essence of the argument rests on the erroneous claim that choosing a non-standard synchrony
convention should give rise to measurable effects analogous to the centrifugal effect associated with
rotating coordinate systems.

25 Norton (1992) described the impact of the result as ‘one of the most dramatic reversals in the
debates in the philosophy of space and time’.

26 See Malament (1977) and Robb (1914). The following characterization of Malament’s result
and its connection with Robb’s work follows Rynasiewicz (2001). See also in this connection Lucas
and Hodgson (1990), §3.3, and Anderson et al. (1998).

27 See, e.g., Friedman (1983), p. 164. It has been pointed out to me by Rob Rynasiewicz
that whether the affine structure is definable in terms of the conformal structure depends on the
global properties of the manifold; in the case of R4 it is definable.

28 This terminology is due to Rynasiewicz (2001).
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Malament’s 1977 paper is a model of logical and mathematical rigour, and it
detracts little from the theorem to say that the result is unsurprising. Consider
any two distinct points on the world-line W , and imagine the half light cones
emanating from each point that contains the other point. The intersection of
these cones defines a flat ‘space-like’ hypersurface all of whose points are Robb-
orthogonal to W , and it is hard to see how any other such non-trivial structure
could emerge from the very limited means available.29

Malament’s stated objective was to provide a clean refutation of an earlier,
specific claim by Adolf Grunbaum that simultaneity relative to an inertial observer
is not uniquely definable in terms of the relation of causal connectability. But
within the philosophical community, Malament’s result has often, perhaps mostly,
been given a wider significance; essentially because the conformal structure is in
turn definable in terms of the metric structure of Minkowski space-time, the result
has commonly been taken to settle the conventionality issue once and for all.30

In his Foundations of Space-Time Theories, Michael Friedman was clear as to the
ramifications of the result.

So we cannot dispense with standard simultaneity without dispensing with the entire
conformal structure of Minkowski space-time. Second, it is clear that if we wish to employ
a nonstandard [simultaneity] . . . we must add further structure to Minkowski space-time.
. . .This additional structure has no explanatory power, however, and no useful purpose
is served by introducing it into Minkowski space-time. Hence the methodological prin-
ciple of parsimony favors the choice of Minkowski space-time, with its ‘built-in’ standard
simultaneity, over Minkowski space-time plus any additional nonstandard synchrony.

These considerations seem to me to undercut decisively the claim that the relation of
[simultaneity] …is arbitrary or conventional in the context of special relativity.31

In a similar vein, Roberto Torretti, in his monumental Relativity and Geometry,
expressed the lessons of the Malament result as follows:

In the natural philosophy of Relativity, time relations between events are subordinate
to and must be abstracted from their space-time relations. A partition of the universe
into simultaneity classes amounts to a decomposition of space time into disjoint space-
like hypersurfaces each one of which separates its complement into two disconnected
components. . . . Such a decomposition is impossible unless the universe is stably causal;
but where one is possible many more are available as well. Not all of them, however, will

29 This way of putting things makes it clear that Malament requires that the simultaneity require-
ment be invariant under temporal reflection, and this requirement has been questioned by Sarkar and
Stachel (1999). Actually, Sarkar and Stachel argue that non-trivial simultaneity relations other than
that associated with Robb-orthogonality are definable in terms of W and the given causal structure,
so perhaps we should not regard Malament’s result (as opposed to its proof ) as entirely obvious.
Indeed, there are subtleties concerning the notion of ‘definability’ in Malament’s argument, as is
shown in the careful criticism of Sarkar and Stachel’s claims given by Rynasiewicz (2000b).

30 Not all philosophers of physics, however, have taken this line; see for instance Debs and Redhead
(1996), Anderson et al. (1998), Sarkar and Stachel (1999), and Rynasiewicz (2001).

31 Friedman (1983), p. 312. See also Dieks (1984) for a similar claim in relation to the Malament
theorem.
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be equally significant from a physical point of view. …In the Minkowski space-time of
Special Relativity, the hypersurfaces orthogonal to the congruence of timelike geodesics
which makes up any given inertial frame define a partition that is naturally adapted to
that frame.32

It is important at this point to emphasize that both Friedman and Torretti
are fully aware that the adoption of a temporal coordinatization of Minkowski
space-time that fails to respect the simultaneity hyperplanes picked out by Robb-
orthogonality in relation to the world-line W will not lead to anything so drastic
as predictive error. Friedman in particular stresses the point that ‘Minkowski
space-time can be described equally well from the point of view of any coordinate
system’: the empirical equivalence of standard and non-standard coordinatiza-
tions ‘reveals no deep facts about Minkowski space-time and special relativity;
rather it is simply a trivial consequence of general covariance’.33 Indeed, anti-
conventionalists almost always concede this point, but take such justification of
the possibility of coordinates not adapted to Robb-othogonality to be ‘trivial’.
Friedman insists that what is important is not mere description, but the nature
of the coordinate-independent geometric structures, and how they illuminate the
issue of simultaneity.

I do not find the logic of this argument compelling, insofar as I understand
it. Largely this is because I see the absolute geometrical structures of Minkowski
space-time as parasitic on the relativistic properties of the dynamical matter fields,
a view which will be articulated in the following chapter, and which makes the
‘non-trivial’ take on the issue of simultaneity given by Friedman and Torretti
appear to be question-begging. The essential point can be made, however, in the
following relatively simple way.

Why should we consider defining simultaneity just in terms of the limited
structures at hand in the Grunbaum–Malament construction, namely an inertial
world-line W and the causal, or light-cone structure of Minkowski space-time?34

Part of the answer is already obvious in Malament’s paper: W is taken to represent
an inertial observer, and we are after all talking about simultaneity relative to such
an observer. But in the real world there is a lot more structure for the observer to
observe: is none of this relevant? To help clarify this issue, let’s start with what I
shall call the Malament world, consisting of literally nothing more than W and
the causal structure discussed in his paper.

The Malament world is so utterly different from ours, I think it is legitimate
to ask whether it even contains time at all.35 It is not enough to say that being

32 Torretti (1983), p. 230. 33 Friedman (1983), p. 175.
34 The same question has been posed by Rynasiewicz (2001), but his justification seems to be

quite different from mine.
35 In assessing the significance of Malament’s result, I am reminded of a saying I heard from my

old teacher, the late Heinz Post, who was a sceptic about the meaningfulness of wildy counterfactual
claims: ‘If my grandmother had four wheels, she would be a bus.’ Another delightful counterfactual,
for which I thank Ronald Anderson, S. J., is in the epigraph at the beginning of this chapter.
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four-dimensional, the space-time manifold therein has time built into it. We are
doing physics, not mathematics. (A similar point was made in Chapter 2 in relation
to the 4-dimensional projective space used by some commentators to articulate
the meaning of Newton’s first law. Note that a similar concern can be expressed
in relation to the conformal structure of the manifold in the Malament world. It
is a misnomer of breathtaking proportions to use the adjective ‘causal’ in a world
where neither action nor reaction takes place.) Time, at its most fundamental
level, has something to do with change, and change is not an obvious feature of
the Malament world. There are two absolute, non-interacting (but to some degree
correlated) structures.The conformal light-cone structure is in itself timeless. It has
no non-trivial dynamics. Supposedly there is also a particle or observer in motion,
but in motion relative to what? There can only be one answer: in relation to the
space-time manifold. But if Malament’s world is anything at all like ours, this is
not a notion that today, after the lesson of Einstein’s hole argument has finally sunk
in, is widely regarded as physically meaningful. Putting the point another way,
take any two instantaneous configurations or states of the universe associated with
different points along the particle world-line using Robb-orthogonality (or any
other procedure for that matter): it is unclear whether they are discernible and
whether they should not be identified physically.

I think these considerations are enough to undermine the notion that the
uniquely defined hypersurfaces in the Malament world are connected with simul-
taneity in the ordinary sense of the term. Yet the arguments of Friedman and
Torretti seem to apply even in this case, and this suggests that something impor-
tant is missing in their analysis, and indeed in the very motivation of Grunbaum’s
initial problem. (In fact it is even worse than this. To have time appearing in the
world, we need more structure, but adding just one more world-line into the Mala-
ment world prevents simultaneity-relative-to-W from being uniquely defined.36)
The missing insight was, to repeat, provided by Poincaré in his analysis of time: we
choose a simultaneity relation which optimally simplifies the dynamics. In 1978
C. Giannoni formulated Maxwellian electrodynamics allowing for an arbitrary
degree of anisotropy in the one-way speed of light,37 and one has only to see the
complications introduced into Maxwell’s equations as a result of this procedure
to understand why we standardly choose the isotropic option. The point is that
we understand simultaneity not by abstracting away from dynamics but by facing
its full complexity.

A final points about the logic of the Friedman–Torretti argument. There is
a clear admission, particularly in the passage from Friedman above, that it is

A more systematic discussion of what is aptly called ‘modal mayhem’ in a somewhat different context
(speculations about the physics of worlds with spatial dimensions other than 3) is found in Callender
(2005), §5.3.

36 The realization that the addition of extra structure to the Malament world, even of a rather
limited kind, can nullify the Malament result is evident in Janis (1983) and in a different context in
Budden (1997b). 37 Giannoni (1978).
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not impossible to define a non-standard simultaneity relation: it is just that to
characterize it in terms of geometric, coordinate-independent structure something
more needs to be added to the two given elements in the Malament world, or
indeed to Minkowski space-time with a single world-line.

Let us put aside for the moment the point made above that imposing extra
structure is inevitable if time in the ordinary sense is to emerge. Another way of
describing Friedman’s appeal to the principle of parsimony in this context is to say
that considerations of simplicity are in play. But does Friedman’s reasoning differ
fundamentally in form from the usual argument conventionalists use to justify
the Poincaré–Einstein convention? The issue is no different from that of choos-
ing spherical polar coordinates when the dynamical system under investigation
has spherical symmetry. Friedman’s logic, though wrapped up in coordinate-free
language, seems in essence very much like the traditional one. It is hard then to
see why the traditional approach to the conventionalism issue is ‘trivial’, but the
coordinate-independent one isn’t.

6.3.2 The Edwards–Winnie Synchrony-general Transformations

For the sake of simplicity let’s restrict space-time to a single space and a time
dimension, and assign the Reichenbach synchrony factor ε to the frame S , and ε′
to the frame S ′. Then if the Lorentz transformations hold between S and S ′ for
the (Poincaré–Einstein, or standard) choice ε = ε′ = 1/2, it can be shown that
in the general case

x ′ =
c√
A

(x − vεt) (6.5)

t ′ =
1

c
√

A
(Yt − Xx), (6.6)

where c is the two-way light speed and

A = c2 + 2(1 − 2ε)cvε − 4ε(1 − ε)v2
ε (6.7)

X = 2(ε − ε′)c + 4ε(1 − ε)vε (6.8)

Y = c2 + 2(1 − ε − ε′)cvε. (6.9)

These transformations were introduced by Edwards in 1967 and further studied
by Winnie in 1970.38 Some features of the Edwards–Winnie transformations are
worth emphasizing.

38 See Edwards (1963) and Winnie (1970).
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(i) The condition of Reciprocity (recall that this is the claim that the speed of
S ′ relative to S is the negative of the speed of S relative to S ′) holds if and only if
ε = ε′ = 1/2.39 Actually, this result holds even when the only constraint on the
coordinate transformations is satisfaction of the synchrony-independent version of
the invariance of the light-speed, or what Winnie called the Round Trip Light
Principle (RTLP). This is the claim that the average round trip speed of any light
signal propagating in a closed path is equal to a constant c relative to all inertial
frames. The coordinate transformations consistent with RTLP are more general
than (6.5–6.6) and take the form

x ′ =
1
C‖

(x − vεt) (6.10)

t ′ =
1

c2C‖
(Yt − Xx), (6.11)

where X and Y are defined as above. It is easy to show that Reciprocity ⇐⇒
ε = ε′ = 1/2 follows from (6.10–6.11).40

(ii) It follows from RTLP alone that the ratio of the length change factor to
the dilation factor takes the form

C‖/D = A/c2, (6.12)

where A is defined as in (6.7).41 Suppose we require that both these kinematical
factors are isotropic, so that their ratio is an even function of vε. Then it follows
straightforwardly from (6.12) that ε = 1/2.42 This result is hardly surprising, but
it demonstrates that the Poincaré–Einstein convention for frame S can be defined
not only in relation to the one-way speed of light but also by way of the behaviour
of rods and clocks, given RTLP. (Since the length change and dilation factors for S
do not depend on ε′, the synchrony factor in S ′ is not constrained; see the Sjodin–
Tangherlini transformations in point (vi) below.) Note that the notion of isotropy
here is quite distinct from the notion of isotropy used in the Poincaré–Einstein
derivation of k = 1, as outlined in section 5.4.3 above. In our present argument,
it is being used to constrain the ε factor. In the Poincaré–Einstein derivation, the
isotropy of rods and clocks is defined relative to the pre-chosen value ε = 1/2.

(iii) Winnie showed, without assuming the standard convention ε = 1/2, and
thus avoiding circularity, that the method of synchronizing clocks by slow clock
transport approximates the Poincaré–Einstein convention.43

39 Winnie (1970). 40 See Brown (1990), fn. 5. 41 Brown (1990).
42 This point was made in Brown and Maia (1993), p. 402.
43 Winnie (1970). This result had previously been obtained by Eddington in 1923; see Eddington

(1965), §§4, 11. See also Torretti (1983), pp. 226–7.
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(iv) For ε 	= ε′, the Edwards–Winnie transformations (6.5–6.6) do not form
a group when ε ∈ [0, 1]. Rather than see this as a grave defect, it should remind
us that associating group structure with symmetries (in this case the relativity
principle) is perhaps more subtle than meets the eye. But the transformations do
form a group when the parameter is invariant.

(v) Suppose we have a homogeneous, istotropic body of air that is at rest relative
to S . Choose the Poincaré–Einstein convention in S (relative to which both light
and sound propagate isotropically in a one-way sense) and the convention in S ′
making only sound propagate isotropically. If ω is the isotropic one-way speed of
sound relative to S , then (−ω)′ = −(ω′). This implies that

x ′ = γ(x − vt) (6.13)

t ′ =
1

γ(1 − v2/ω2)
(t − vx/ω2), (6.14)

where γ is the usual Lorentz factor. The contraction and dilation effects are the
usual relativistic ones (since these only depend on the choice of ε) but the relativity
of simultaneity factor takes on, as expected, a new form: α = v/ω2. This acoustic
formulation of relativistic kinematics, due to Michael Redhead,44 corresponds to
the choices

ε = 1/2 (6.15)

ε′ = 1/2 +
v(c2 − ω2)

2c(v2 − ω2)
. (6.16)

This contrivance was devised to yield the so-called Zahar transformations in the
non-relativistic limit.45

(vi) The absence of the relativity of simultaneity (α = 0 hence X = 0) is
equivalent to the condition

ε′ = ε + 2ε(1 − ε)vε/c. (6.17)

So

x ′ =
c√
A

(x − v − εt) (6.18)

t ′ =
√

A
c

t . (6.19)

44 Redhead (1983). 45 Zahar (1977).
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Putting ε = ε′, we have two possibilities: ε = ε′ = 0 and ε = ε′ = 1.
According to the first

x ′ = (1 + 2v/c)−1/2(x − vt) (6.20)

t ′ = (1 + 2v/c)1/2t . (6.21)

According to the second

x ′ = (1 − 2v/c)−1/2(x − vt) (6.22)

t ′ = (1 − 2v/c)1/2t . (6.23)

Putting ε = 1/2 and ε′ = (c + v)/2c, we obtain the Sjödin–Tangherlini
transformations:46

x ′ = γ(x − vt) (6.24)

t ′ = t/γ. (6.25)

Note first that in transformations (6.20)–(6.21) and (6.22)–(6.23) the length
change and dilation factors are not even functions of v and hence are anisotropic.
This anisotropy is merely an artefact of the choice of the non-standard syn-
chrony factors, and is quite distinct in nature from the objective anisotropy we
encountered in the Bogoslovsky–Budden transformations in section 5.4.3. Sec-
ond, the Sjödin–Tangherlini transformations (6.24)–(6.25) demonstrate that the
ε-related anisotropy is not a necessary feature of relativistic kinematics constructed
to exclude relativity of simultaneity. Admittedly, such exclusion is obtained by
means of an artificial procedure, but what all these transformations consistent
with (6.18)–(6.19) show is that explanations of synchrony-independent phenomena
in SR that rely crucially on the relativity of simultaneity are not fundamental. (A com-
mon example concerns the clock retardation effect, or ‘twins paradox’, where it is
claimed that at the point of turn-around of the travelling clock, the hyperplanes
of simultaneity suddenly change orientation and the resulting ‘lost time’ accounts
for the fact that the clocks when reunited are out of phase. It is worth bearing in
mind that the clock retardation effect, like any other synchrony-independent phe-
nomenon in SR, is perfectly consistent with all the non-standard transformations
in this section, including those which eliminate relativity of simultaneity.47)

6.4 RELAXING THE LIGHT POSTULATE: THE
IGNATOWSKI TRANSFORMATIONS

An idea that has appeared a number of times in the literature on relativistic kine-
matics is that of exploring the consequences of dropping Einstein’s light postulate

46 Sjödin (1979). 47 For further discussion of this point, see Debs and Redhead (1996).
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in his derivation of the Lorentz transformations. The first case appears to be due
to W. von Ignatowski, a Russian mathematical physicist, in work that appeared
in 1910 and 1911.48 Here is a reconstruction of the argument.

Let’s recall (from section 3.4) the general linear transformations between frames
S and S ′, whose adapted coordinate systems are in the standard configuration

x ′ =
1
C‖

(x − vt) (6.26)

y′ =
1

C⊥
y (6.27)

z ′ =
1

C⊥
z (6.28)

t ′ =
1

D(1 − αv)
(t − αx). (6.29)

Recall also that it follows from (6.26) and (6.29) that the velocity transformation
rule for a signal moving along the common x, x ′-axis is

u′ =
D(1 − αv)

C‖
(u − v)

(1 − αu)
. (6.30)

Step 1
We would like to resort to something like the Poincaré–Einstein argument (out-
lined in section 5.4.3) based on joint application of the Relativity Principle (RP)
and spatial isotropy to conclude that

C⊥ = 1. (6.31)

But recall that the original argument is given in the context of the Poincaré–
Einstein convention for synchronizing clocks. But now we have no fundamental
speed to exploit in this sense, so we just have to assume that there exists a method of
synchronizing clocks—one which can be applied in any inertial frame in the spirit
of RP—in terms of which the isotropy of the length-change factors manifests itself.

Step 2
Ignatowski erroneously assumed that Reciprocity is a consequence of the RP.49

A counter-example is provided by the Edwards–Winnie transformations for any

48 References to the relevant papers of Ignatowski can be found in Torretti (1983); later redis-
coveries of his approach to kinematics are found in Lee and Kalotas (1975) and Lévy-Leblond
(1976).

49 Ignatowski argued that Reciprocity is a consequence of the equal passage times principle. This
states that rods of equal lengths at rest relative to S and S ′ take equal times to pass a clock at rest
at, say, the origin of the frame moving relative to the rod. This principle would reappear later in
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choice of ε = ε′ 	= 1/2. The transformations form a group, but violate Reci-
procity (see points (i) and (iv) in section 6.2). However, in 1969, Berzi and Gorini
proved that the combination of RP and spatial isotropy does imply Reciprocity.
The proof is somewhat elaborate, and I have not been able to simplify it.50 I shall
assume at any rate that if we apply the synchronization convention introduced in
Step 1 to both frames S and S ′ then Reciprocity will hold. Recall that Reciprocity
holds only if

D(1 − αv) = C‖. (6.32)

Equations (6.31) and (6.32) thus lead to what might be called the Reciprocity
Transformations

x ′ =
1
C‖

(x − vt) (6.33)

y′ = y (6.34)

z ′ = z (6.35)

t ′ =
1
C‖

(t − αx), (6.36)

with the associated (longitudinal) velocity transformation

u′ =
(u − v)

(1 − αu)
. (6.37)

Step 3
We have already applied the RP to the transverse transformations (6.27), (6.28)
in Step 1. We now do likewise to the transformations (6.33) and (6.36). First we
simply algebraically invert these equations:

x =
C‖(v)

(1 − α(v)v)
(x ′ + vt ′) (6.38)

t =
C‖(v)

(1 − α(v)v)
(t ′ + α(v)x ′). (6.39)

Winnie (1970). Both Ignatowski and Winnie incorrectly thought that the principle is a consequence
of the RP. In Ignatowski’s case, the error was pointed out by Torretti (1983), fn. 5, pp. 79, 298; in
Winnie’s case by Brown (1990). A careful treatment of the Ignatowski derivation as a whole is found
in Torretti (1983), pp. 76–82.

50 See Berzi and Gorini (1969). For a summary of the proof, see Torretti (1983), pp. 79–80, fn. 7,
p. 298, but see a correction in Budden (1997b). The attempt by Rindler to establish reciprocity just
on the basis of isotropy is criticized in Brown and Maia (1993), Appendix II.
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Now the RP implies that these equations should have the same form as (6.33)
and (6.36), i.e.

x =
1

C‖(−v)
(x ′ + vt ′) (6.40)

t =
1

C‖(−v)
(t ′ − α(−v)x ′). (6.41)

So equating (6.38) with (6.40), and (6.39) with (6.41), we obtain (recalling from
Step 1 that in the chosen synchrony convention C‖(−v) = C‖(v) )

C‖(v) = (1 − α(v)v)1/2 (6.42)

α(−v) = −α(v), (6.43)

yielding

x ′ = (1 − αv)−1/2(x − vt) (6.44)

y′ = y (6.45)

z ′ = z (6.46)

t ′ = (1 − αv)−1/2(t − αx). (6.47)

Note that for the coordinates x ′ and t ′ to remain finite, we must have |1−αv| > 0.

Step 4
Now consider a further transformation from frame S ′ to S ′′, where S ′ is also in the
standard configuration and moving with velocity v′ relative to S ′. Using u′ = v′
and solving for u in (6.37), it is easily seen that the velocity w of S ′′ relative to S
is given by

w =
v + v′

1 + α(v)v′ . (6.48)

For simplicity let us write (1 − αv)−1/2 = µ(v). Then using RP and hence the
form of (6.44) to (6.47) for each of the transformations S → S ′ and S ′ → S ′′,
and combining, we obtain the transformations for S → S ′′:

x ′′ = µ(v′)µ(v)(1 + α(v)v′)−1/2(x − wt) (6.49)

y′′ = y (6.50)

z ′′ = z (6.51)

t ′′ = µ(v′)µ(v)(1 + α(v′)v)−1/2(t − α̂x), (6.52)
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where

α̂ =
α(v) + α(v′)
1 + α(v′)v

. (6.53)

The transformations (6.49–6.52) should in turn take the same form as (6.44–
6.47). This means that for all v, v′

α(v)v′ = α(v′)v (6.54)

or

α(v)
v

=
α(v′)

v′ = K , (6.55)

where K is a universal constant of dimensions vel−2. (This is consistent with
α̂ = α(w).)

So we obtain finally the Ignatowski transformations

x ′ = (1 − Kv2)−1/2(x − vt) (6.56)

y′ = y (6.57)

z ′ = z (6.58)

t ′ = (1 − Kv2)−1/2(t − Kvx), (6.59)

where |v| < K −1/2.

6.4.1 Comments

(i) No assumption about the existence of an invariant speed entered into the
proof of the Ignatowski transformations. However, it is easily seen that
the transformations themselves imply the existence of an invariant speed:
K −1/2.

(ii) Putting K = 0 (invariant speed is infinite) we obtain the Galilean
transformations.

(iii) Putting K > 0 and simply writing c = K −1/2, we obtain the Lorentz
transformations. But we have not obtained relativistic kinematics in the
usual sense of the term. For the physical connection between K −1/2 and
the light speed has not been established.

(iv) The derivation of the Ignatowski transformations yields the isotropy of the
one-way invariant speed K −1/2, on the basis of the synchrony convention
associated with steps 1 and 2. This seems to mean that the assumption of
(one-way) isotropy of space deformation and time dilation, together with
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either the RP (given the results of Ignatowski, and Berzi and Gorini) or the
Round Trip Light Principle (invariance of the two-way light speed) as seen
in point (ii) in section 6.3.2, is sufficient to guarantee that the invariant
speed is isotropic. (This point should not be interpreted as a establishing
that the issue of spreading time through space is anything other than based
on convention!)

6.5 THE NON-RELATIVISTIC LIMIT

Formally, to go from the Lorentz transformations to the Galilean transformations
we can take the limit c → ∞. It corresponds to going from a finite value of K to
the zero value in the Ignatowski transformations. But this is not the right way to
think about the non-relativistic limit of relativistic kinematics.

The reason is simple: in our world c, the invariant speed, is finite. What we
want is to specify conditions that pertain to our world and under which non-
relativistic kinematics emerge to a high degree of approximation. In a penetrating
1989 treatment of the reduction of general relativity to the Newtonian theory of
gravity, F. Rohrlich compared what he called the ‘dimensionless’ process of theory
reduction to the ‘dimensional’ one.51 The former generally takes suitable dimen-
sionless quantities—the ratio of two physical quantities of the same dimensions—
to be negligibly small. The latter involves taking limits of dimensional parameters
such as the light speed c or Planck’s constant �. Rohrlich emphasized that the
dimensionless process represents a case of ‘factual’ approximation and that the
dimensional approximation is ‘counterfactual’, because for instance it is a fact
that c is finite. What we are interested in here is the factual approach.

So imagine two frames S and S ′ whose adapted coordinates are in the standard
configuration and transform according to the Lorentz transformations (5.4–5.7).
Let us suppose first that we consider only relative speeds v that satisfy the condition
|v/c| � 1, so that γ ∼ 1. We thus obtain

x′ ∼ x − vt ; t ′ ∼ t − v · x/c2. (6.60)

A similar result is obtained for the limit of the differential operators

∇′ ∼ ∇ +
v
c2

∂

∂t
,

∂

∂t ′ ∼ ∂

∂t
+ v · ∇. (6.61)

Note that the temporal transformation in (6.60) incorporates discernible relativity
of simultaneity as long as distances are big enough. Indeed, if we have |x| � ct ,
we obtain

x′ ∼ x; t ′ ∼ t − v · x/c2, (6.62)

51 Rohrlich (1989).



Variations on the Einstein Theme 111

which represents not a boost but a shift in the simultaneity hyperplanes relative
to the original frame S . If we are hoping to get Galilean kinematics, we need to
impose the opposite constraint: |x| � ct , yielding the desired transformations

x′ ∼ x − vt ; t ′ ∼ t . (6.63)

However, the Galilean transformations of the differential operators

∇′ ∼ ∇,
∂

∂t ′ ∼ ∂

∂t
+ v · ∇ (6.64)

follow from (6.61) only if the derivatives of relevant functions are such that
expressions involving the time-derivative term appearing in the first equation in
(6.61) are negligible in this approximation. The feasibility of implementing this
condition, which we shall denote as ∇ � (v/c2)∂/∂t , depends on the context
and requires considerable care.

The conditions imposed on the relativistic kinematics so far do not suffice to
regain the full Galilean kinematics because the relativistic velocity transformation
rule still differs from the Galilean one if the velocity of the body in question—not
to be conflated with the relative velocity v of the frames—is relativistic. (The
Fresnel drag coefficient which follows from this rule is measurable even when
|v|/c � 1 because the object is light itself.) Thus we need further to assume that
all bodies move at non-relativistic speeds, so that

ẋ′ ∼ x − v. (6.65)

Thus we may collect the conditions necessary for Galilean kinematics to emerge:52

|v/c| � 1; |x| � ct ; ∇ � (v/c2)∂/∂t ; |ẋ/c| � 1. (6.66)

But there is a last twist in the story. The Galilean transformations (6.63) are
formally right (or would be if they were exact) but what guarantees that the
way time is spread through space corresponds to the synchrony convention in
Newtonian mechanics? It is here that the Eddington–Winnie theorem, mentioned
in section 6.3.2, shows its worth. For it establishes that the Poincaré–Einstein
synchrony convention in S is equivalent to that of slow clock transport, and that
is all we need.

A final word concerns Maxwellian electrodynamics, the first relativistic theory.
It has been known for some time that this theory has two non-relativistic lim-
its, corresponding to the striking fact that deleting one of either two terms in

52 For a fuller discussion see Holland and Brown (2003).
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Maxwell’s equations—one corresponding to the Faraday induction term, and the
other corresponding to the displacement current—renders the equations Galilean
covariant. (Note that this fact does not in itself imply that conditions can be found
for real electric and magnetic fields that yield the Galilean-covariant behaviour in
the appropriate approximation.) That even one limit exists is noteworthy given
that the theory is one of a massless field, although in this sense the situation is
no different from the case of gravity. When Maxwell’s equations are coupled with
the Dirac equation, however, there appears to be a single non-relativistic limit.53

53 The first systematic treatment of the non-relativistic limit of Maxwell’s equations to our knowl-
edge was given by Bellac and Lévy-Leblond (1973); a somewhat different treatment is found in
Holland and Brown (2003), from which the conditions (6.66) are taken, and which also discusses
the non-relativistic limit of the coupled Maxwell–Dirac equations.
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Unconventional Voices on Special Relativity

I think it may be pedagogically useful to start with the example, integrating
the equations in some pedestrian way, for example by numerical computation.
The general argument, involving as it does a change of variables, can (I fear)
set off premature philosophizing about space and time.

John S. Bell1

7.1 EINSTEIN HIMSELF

A theme running through Einstein’s writings was that what he called ‘elementary’
foundations were unavailable to account for the stable structure and cohesion of
matter, and that this was the reason he constructed SR in the way he did. We saw in
section 5.2 that as early as 1908, he was referring to SR as a ‘half ’ salvation, given
its inspiration in thermodynamics. In the 1919 article for the LondonTimes where
he made the principle-constructive theory distinction, he stated quite clearly that
‘when we say we have succeeded in understanding a group of natural processes,
we invariably mean that a constructive theory has been found which covers the
processes in question.’

But the SR of 1905 is not a constructive theory, and part of the reason is
the role that rods and clocks play in Einstein’s attempt to operationalize inertial
coordinate systems. It is evident that Einstein harboured a sense of unease about
their status in his theory. In his 1921 essay entitled ‘Geometry and Experience’, he
wrote:

It is . . . clear that the solid body and the clock do not in the conceptual edifice of physics play
the part of irreducible elements, but that of composite structures, which must not play any
independent part in theoretical physics. But it is my conviction that in the present stage of
development of theoretical physics these concepts must still be employed as independent
concepts; for we are still far from possessing such certain knowledge of the theoretical
principles of atomic structure as to be able to construct solid bodies and clocks theoretically
from elementary concepts.2

1 Bell (1976a), fn. 10. 2 Einstein (1921).
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Einstein’s unease is again clearly expressed in a similar passage in his 1949
Autobiographical Notes:

One is struck [by the fact] that the theory [of special relativity] . . . introduces two kinds
of physical things, i.e. (1) measuring rods and clocks, (2) all other things, e.g., the
electromagnetic field, the material point, etc. This, in a certain sense, is inconsistent;
strictly speaking measuring rods and clocks would have to be represented as solutions of
the basic equations (objects consisting of moving atomic configurations), not, as it were,
as theoretically self-sufficient entities. However, the procedure justifies itself because it was
clear from the very beginning that the postulates of the theory are not strong enough to
deduce from them sufficiently complete equations . . . in order to base upon such a foun-
dation a theory of measuring rods and clocks. . . . But one must not legalize the mentioned
sin so far as to imagine that intervals are physical entities of a special type, intrinsically
different from other variables (‘reducing physics to geometry’, etc.).3

These remarks are noteworthy for several reasons.
First, there is the issue of justifying the ‘sin’ of treating rods and clocks as

primitive, or unstructured entities in SR. Einstein does not say, as he does in
1908 and 1921, that the ‘elementary’ foundations of a constructive theory of
matter are still unavailable; rather he simply reminds us of the limits built into the
very form of the 1905 theory. It is hardly any justification at all. Progress in the
relativistic quantum theory of matter had been made between 1905 and 1949.
Was it Einstein’s long-standing distrust of the quantum theory that held him back
from recognizing this progress and its implications for his formulation of SR?4

Second, it is clear that not even Einstein ever ‘fully made the transition from
the old dynamics to the new kinematics’ (recall, in the Preface above, Abraham
Pais’s criticism of Lorentz for having failed to make this transition). For to say that
length contraction is intrinsically kinematical would be like saying that energy or
entropy are intrinsically thermodynamical, not mechanical—something Einstein
would never have accepted.

Third, there is a hint at the end of the passage that towards the end of his
life Einstein still did not view geometrical notions as fundamental in the special
theory. We will return to this delicate issue shortly. In the meantime, I shall attempt
to outline the doubts raised by some other voices in the twentieth century about
the standard treatment of rods and clocks in SR.5

7.2 1918: HERMANN WEYL

In discussing the significance of the MM experiment in his 1918 text Raum-Zeit-
Materie, Hermann Weyl stressed that the null result is a consequence of the fact

3 Einstein (1969), pp. 59, 61.
4 Further discussion of Einstein’s 1949 acknowledgement of his ‘sinful’ treatment of rods and

clocks is found in Brown and Pooley (2001).
5 Sections 8.2 and 8.5 of this chapter rely heavily on Brown and Pooley (2001).
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that ‘the interactions of the cohesive forces of matter as well as the transmission of
light’ are consistent with the requirement of Lorentz covariance. Weyl’s emphasis
on the role of ‘the mechanics of rigid bodies’ in this context indicates a clear
understanding of the dynamical underpinnings of relativistic kinematics.6 But
Weyl’s awareness that rigid rods and clocks are structured dynamical entities led
him to the view that it is wrong to define the ‘metric field’ in SR on the basis of
their behaviour.

Weyl’s concern had to do with the problem of accelerated motion, or with
deviations from what he called ‘quasi-stationary’ motion. Weyl’s opinion in Raum-
Zeit-Materie seems to have been that if a clock, say, is undergoing non-inertial
motion, then it is unclear in SR whether the proper time read off by the clock
is directly related to the length of its world-line determined by the Minkowski
metric. For Weyl, clarification of this issue can only emerge ‘when we have built
up a dynamics based on physical and mechanical laws’.7 In a sense Weyl was right.
The claim that the length of a specified segment of an arbitrary time-like curve
in Minkowski spacetime, obtained by integrating the Minkowski line element ds
along the segment, is just the clock hypothesis we met in section 6.2.1. Recall that
its justification rests on the contingent dynamical requirement that the external
forces accelerating the clock are small in relation to the internal ‘restoring’ forces at
work inside the clock. This dynamical theme was to re-emerge in Weyl’s responses
to Einstein’s criticisms of his 1918 attempt at a unified field theory.

Weyl’s 1918 publication8 of a stunning, though doomed, unification of gravi-
tational and electromagnetic forces raised a number of intriguing questions about
the meaning of space-time structure. Weyl started from the claim that the pseudo-
Riemannian space-time geometry of Einstein’s general relativity is not sufficiently
local in that it allows the comparison of the lengths of distant vectors. Instead,
Weyl insisted that the choice of unit of (space-time) length at each point is arbi-
trary: only the ratios of the lengths of vectors at the same point and the angles
between them can be physically meaningful. Such information is invariant under
a gauge transformation of the metric field: gij → g ′

ij = e2λ(x)gij and constitutes a
conformal geometry.

In addition to this conformal structure, Weyl postulated that space time is
equipped with an affine connection that preserves the conformal structure under
infinitesimal parallel transport. In other words, the infinitesimal parallel transport
of all vectors at p to p′ is to produce a similar image at p′ of the vector space
at p.9 For a given choice of gauge, the constant of proportionality of this similarity
mapping will be fixed. Weyl assumed that it differed infinitesimally from unity and
thereby proceeded to show that the coefficients of the affine connection depended

6 Weyl (1952), pp. 173. 7 op. cit., p. 177. 8 Weyl (1918).
9 It is worth noting at this point that Weyl could, and perhaps should have gone further! As the

keen-eyed Einstein was to point out, it is in the spirit of Weyl’s original geometric intuition to allow
for the relation between tangent spaces to be a weaker affine mapping: why insist that it be a similarity
mapping? Einstein made this point in a letter to Weyl in 1918. For details see Vizgin (1985).
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on a one-form field φi in addition to the metric coefficients gij in such a way that
the change in any length l under parallel transport from p (coordinates {xi}) to
p′ (coordinates {xi + dxi}) is given by:

dl = lφidxi . (7.1)

Under the gauge transformation, gij → g ′
ij = e2λgij , l → eλl . Substituting this

into (7.1) gives:

φi → φ′
i = φi +

∂λ

∂xi , (7.2)

the familiar transformation law for the electromagnetic four-potential. Weyl thus
identified the gauge-invariant, four-dimensional curl of the geometric quantity
φi with the familiar electromagnetic field tensor.

For a given choice of gauge a comparison of the length of vectors at distant
points can be effected by integrating (7.1) along a path connecting the points.
This procedure will in general be path independent just if the electromagnetic
field tensor vanishes everywhere.

As is well known, despite his admiration for Weyl’s theory, Einstein was soon
to spot a serious difficulty with the non-integrability of length10. In the case of a
static gravitational field, a clock undergoing a round-trip in space during which
it encountered a spatially varying electromagnetic potential would return to its
starting point ticking at a rate different from that of a second clock which had
remained at the starting point and which was originally ticking at the same rate.
An effect analogous to this ‘second clock effect’ would occur for the length of an
infinitesimal rod under the same circumstances. But it is a fact of the world—
and a highly fortunate one!—that the relative periods of clocks (and the relative
lengths of rods) do not depend on their relative histories in this sense.

Before looking at Weyl’s reply to this conundrum, it is worth remarking that it
was apparently only in 1983 that the question was asked: what became of Einstein’s
objection once the gauge principle found its natural home in quantum mechanics?
C. N. Yang pointed out that because the non-integrable scale factor in quantum
mechanics relates to phase, the second clock effect could be detected using wave-
functions rather than clocks, essentially what Yakir Aharonov and David Bohm
had discovered.11. Note that Yang’s question can be inverted: is there a full ana-
logue of the Aharonov–Bohm effect in Weyl’s gauge theory?12 The answer is yes,
and it indicates that there was a further sting in Einstein’s objection to Weyl that
he and his contemporaries failed to spot. The point is that the second-clock effect

10 Einstein (1918a).
11 See Yang (1984), Aharonov and Bohm (1959). Yang recounts this incident in Yang (1986).
12 This point, as with much of this section, is taken from Brown and Pooley (2001).
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obtains in Weyl’s theory even when the electromagnetic field vanishes everywhere on
the trajectory of the clock, so long as the closed path of the clock encloses some
region in which there is a non-vanishing field. This circumstance highlights the
difficulty one would face in providing a dynamical or ‘constructive’ account of
the second-clock effect in Weyl’s theory.13 The theory seems to be bedevilled by
non-locality of a very striking kind.

The precise nature of Weyl’s responses to Einstein’s objection would vary in
the years following 1918 as he went on to develop new formulations of his uni-
fied field theory based on the gauge principle. But the common element was
Weyl’s rejection of the view that the metric field could be assigned operational
significance in terms of the behaviour of rods and clocks. His initial argument
was an extension of the point he made about the behaviour of clocks in SR: one
cannot know how a clock will behave under accelerations and in the presence of
electromagnetic fields until a full dynamical modelling of the clock under these cir-
cumstances is available. The price Weyl ultimately paid for the beauty of his gauge
principle—quite apart from the complicated nature of his field equations—was
the introduction of tentative and ultimately groundless speculations concerning
a complicated dynamical adjustment of rods and clocks to the ‘world curvature’
so as to avoid the second-clock effect and its analogue for rods.

We finish this section with a final observation on the nature of Weyl’s theory,
with an eye to issues in standard general relativity to be discussed later. It was noted
above that Weyl’s connection is not a metric connection. It is a function not only
of the metric and its first derivatives, but also depends on the electromagnetic
gauge field: in particular, for a fixed choice of gauge, the covariant derivative of
the metric does not vanish everywhere. What does this imply?

The vanishing of the covariant derivative of the metric—the condition of
metric compatibility—is sometimes introduced perfunctorily in texts on gen-
eral relativity, but Schrödinger was right to call it ‘momentous’.14 It means that
the local Lorentz frames associated with a space-time point p (those for which,
at p, the metric tensor takes the form diag(1,−1,−1,−1) and the first deriva-
tives of all its components vanish) are also local inertial frames (relative to which
the components of the connection vanish at p).15 If the laws of physics of the
non-gravitational interactions are assumed to take their standard special relativis-
tic form at p relative to such local Lorentz charts (the local validity of special
relativity), then metric compatibility implies that gravity is not a force in the

13 It is worth noting that in 1923, Lorentz himself wrote, in relation to the rod analogue of the
second clock effect in the Weyl theory, that this ‘would amount to an action of an electromagnetic field
widely different from anything that could reasonably be expected’; see Lorentz (1937). But whether
Lorentz was concerned with the dynamical problem of accounting for how Maxwell’s electrodynamics
could in principle have such an effect on physical bodies like rods—a consideration which one would
not expect to be foreign to Lorentz’s thinking!—or simply with the empirical fact that such an effect
is non-existent, is not entirely clear from Lorentz’s comments.

14 Schrödinger (1985), p. 106. 15 See Misner et al. (1973), p. 313.
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traditional sense—an agency causing deviation from natural motion—insofar as
the worldlines of freely falling bodies are geodesics of the connection.

The full physical implications of the non-metric compatible connection in
Weyl’s theory remain obscure in the absence of a full-blown theory of matter.
Weyl’s hints at a solution to the Einstein objection seem to involve a viola-
tion of minimal coupling, i.e. a violation of the prohibition of curvature cou-
pling in the non-gravitational equations, and hence of the local validity of spe-
cial relativity. It seems that the familiar insight into the special nature of the
gravitational interaction provided by the strong equivalence principle—the encap-
sulation of the considerations given in the previous paragraph—is lost in the Weyl
theory.

7.3 1920S: PAULI AND EDDINGTON

The acclaimed 1921 review article on relativity theory, special and general, by
Wolfgang Pauli (1900–1958) is one of the supreme examples of precociousness
in the history of physics: Pauli was 21 when it was published, in the same year
that he completed his doctoral thesis on the quantum theory of ionized molecular
hydrogen. The maturity of this review, and the sure-footedness of its historical
parts, are astonishing.16 In the section of the essay discussing Einstein’s 1905
paper, Pauli was struck by the ‘great value’ of the apparent fact that, unlike Lorentz,
Einstein had given an account of his kinematics which was free of assumptions
about the constitution of matter. He wrote:

Should one, then, completely abandon any attempt to explain the Lorentz contraction
atomistically? We think that the answer to this question should be No. The contraction
of a measuring rod is not an elementary but a very complicated process. It would not take
place except for the covariance with respect to the Lorentz group of the basic equations
of electron theory, as well as of those laws, as yet unknown to us, which determine the
cohesion of the electron itself.

I cannot help wondering if this view was not influenced by the fact that Pauli’s
first research papers concerned the 1918 Weyl theory.

In his 1928 book The Nature of the Physical World, Arthur S. Eddington
(1882–1944) attributed length contraction to the electromagnetic nature of the

16 See Pauli (1981). Here is Einstein’s evaluation of the essay:
Whoever studies this mature and grandly conceived work might not believe that its author is a
twenty-one year old man. One wonders what to admire most, the psychological understanding
for the development of ideas, the sureness of mathematical deduction, the profound physical
insight, the capacity for lucid, systematical presentation, the knowledge of the literature, the
complete treatment of the subject matter, or the sureness of critical appraisal. (Quoted in the essay
‘Wolfgang Ernst Pauli’, in Pais (2000), pp. 210–62.)
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composition of a rigid rod:

There is really nothing mysterious about the FitzGerald contraction. It would be an unnat-
ural property of a rod pictured in the old way as continuous substance occupying space
in virtue of its substantiality; but it is an entirely natural property of a swarm of particles
held in delicate balance by electromagnetic forces, and occupying space by buffeting away
anything that tries to enter.17

Eddington’s informal clarification of the nature of the contraction is a little off-
beam. He puts emphasis on the appearance of magnetic fields inside the moving
rod, whose particles at rest assume a rigid configuration as a result only of electric
forces. Eddington both attributes a stress to this magnetic effect, and does not seem
to be aware of the distortion produced by motion in the electric forces. Moreover,
he makes no mention of the effects of motion on the non-electromagnetic forces
involved in the cohesion of matter. At any rate, for a quantitative analysis he
misleadingly points the reader in the direction of the writings of Lorentz and
Larmor of around 1900, in which as we have seen, length contraction is not
derived in any systematic fashion. (To be fair to Eddington, he knew something
in 1928 that Lorentz and Larmor didn’t: that the principal force of cohesion in
matter is after all electromagnetic. But this is not the whole story of course, as
we see below.) However, Eddington correctly puts the qualitative cause of the
contraction squarely in the nature of the forces of cohesion:

It is necessary to rid our minds of the idea that this failure to keep a constant length is
an imperfection of the rod; it is only imperfect as compared with an imaginary ‘some-
thing’ which has not this electrical constitution—and therefore is not material at all. The
FitzGerald contraction is not an imperfection but a fixed and characteristic property of
matter, like inertia.18

7.4 1930S AND 1940S: W. F. G. SWANN

As early as 1912, the British physicist William F. G. Swann (1884–1962), best
known later for his work in the USA on cosmic rays, stressed that the Lorentz
covariance of Maxwell’s equations was far from sufficient in accounting for length
contraction. In itself this point was far from new; we have seen in Chapter 6
how clearly it was appreciated by Lorentz, Larmor, and Poincaré. But in papers
in 1930 and particularly 1941, Swann stressed that the extra ingredient had to
be relativistic quantum theory, and the prospect it held out for an explanation

17 Eddington (1928), p. 7.
18 op. cit., p. 7. It is noteworthy that Eddington’s thinking on the issue appears to have gone

through a change. In his earlier books on relativity dating from 1920 and 1924 (specifically Eddington
(1966), p. 151 and Eddington (1965), pp. 26–7), the discussions of length contraction present it as
a perspectival effect which, at least in the 1920 discussion, is contrasted with the view based on the
‘the behaviour of electrical forces’.
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of the cohesion of matter. As far as I know, Swann was the first to stress the
important role played by quantum theory in understanding the physics of the
Lorentz transformations.19

Swann was of course aware of the nature of Einstein’s derivation of the Lorentz
transformations, but seemed to regard it as providing virtually no explanation as to
why rods in fact contract and clocks dilate.20 Swann seemed to think (like Einstein
in 1949) that the fundamental tenet of SR is the Lorentz-covariance of the laws of
physics, and his particular emphasis was on electrodynamics. In his 1941 papers
he claimed that there would be meaning to SR even if the FitzGerald–Lorentz
contraction were not to hold, and the result of the Michelson–Morley experiment
were non-null.

What Swann meant by this strange-sounding claim was this.21 It is a mathe-
matical fact, having nothing to do with the usual physical meaning of the variables
appearing in the Lorentz transformations (and of course the concomitant transfor-
mations of the field components) that Maxwell’s equations are Lorentz covariant.
In itself this fact does not imply that the primed (transformed) variables refer
to physical quantities actually measured by an inertial observer moving at the
appropriate speed v relative to the unprimed frame. (In fact, Lorentz denied it,
as we have seen.) Thus, Swann concludes that SR, which secures the mathemat-
ical fact of Lorentz covariance, does not in itself determine how rods and clocks
behave in motion. One can imagine Pauli protesting at this point, and reminding
us that if all the laws of physics are Lorentz covariant, which must also follow
from SR, including the laws governing all the forces of cohesion in matter, then
length contraction and time dilation are guaranteed. Quite so. There is no doubt
Swann overstated his case, but the merit of his argument is that he went on to
stress that these laws must be of a quantum nature, and he spells out the logic in
unprecedented detail.

Swann imagines a rigid rod at rest relative to the frame S , whose form and
stability are determined by the rod being in a quantum mechanical ground state ψ,
robust under small perturbations. If the quantum mechanical equations (which
must in principle govern all the forces involved in atomic structure, not just
electromagnetic) are Lorentz covariant, then we can guarantee the existence of
another solution ψ̃, another ground state, but now describing the rod moving

19 It is known that Swann corresponded with Einstein on the foundations of SR; in Stachel (1986),
p. 378, part of a 1942 letter from Einstein to Swann is cited in which he discusses the possibility of a
constructive formulation of the theory wherein rods and clocks are not introduced as ‘independent
objects’. Einstein argues in this letter that any such theory must, like the quantum theory, contain
an absolute scale of length. It would be interesting to know more about this correspondence.

20 Swann (1930), p. 248. This lengthy paper on ‘Relativity and Electrodynamics’—over 60
pages—which appeared in the second volume of Reviews of Modern Physics, is curious both in
content and style; it is long-winded, thoughtful, and somewhat idiosyncratic; and it contains not a
single reference other than to the author’s own publications! The Editors didn’t seem to mind: these
features are shared by Swann’s two (shorter) 1941 papers in the same journal: Swann (1941a) and
Swann (1941b). 21 Swann (1941b).
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with uniform speed v relative to S , and longitudinally Lorentz contracted by
the factor γ−1. Remember: a symmetry transformation takes solutions of the
equations of motion into new solutions, and for every v we have a new ‘moving’
solution. It is not necessary to know the precise form of the quantum equations,
just that they are Lorentz covariant. So far nothing has been said about co-moving
coordinates, but if a co-moving observer adopts coordinates that match the moving
rods and clocks associated with the new solution (the same argument can be used
for clocks)—recall the crucial assumption 2 discussed in section 2.4 concerning
the boostability of rulers and clocks—then the quantum description of the moving
rod by the comoving observer is exactly the same as the description of the originally
stationary rod by the observer associated with the frame S . The two coordinate
systems will be related by a Lorentz transformation once the Einstein convention
for synchronizing distant clocks in the moving frame is adopted.

Two points are worth stressing about this argument. First, the relativity principle
is a consequence of the Lorentz covariance of the quantum dynamics, rather than
the other way round. Second, the assumption 1 in section 2.4 concerning the
universality of the behaviour of rods and clocks, which, it will be recalled, is
crucial for the coordinate transformations to carry empirical content in terms of
length contraction and time dilation, now also emerges as a consequence of the
dynamical argument, as long as matter of any constitution is assumed in principle
to come under the sway of the quantum theory in question.

Swann’s own conclusion was this:

It thus appears that a relativistically invariant quantum theory, or something closely anal-
ogous to it, is a necessary supplement to the general principle of invariance of equations if
we are to provide for the Fitzgerald-Lorentz contraction and for the customarily accepted
form of the theory of relativity.22

But if we ask what the equations are which appear in this general principle
of invariance, at the most fundamental level they will already be equations in
quantum theory. After all, even the electromagnetic field—the object of Swann’s
attention—is ultimately quantized. It may be then that Swann’s articulation of the
main point leaves a little to be desired, but the main point itself stands. Rods and
clocks in motion behave relativistically because the forces that are responsible for
the cohesion of matter, forces which inevitably are described by quantum theory,
satisfy equations that are Lorentz covariant. It is noteworthy that the essence of
Swann’s message was recently rediscovered by S. Liberati, S. Sonego, and M. Visser.
In 2002, they gave with apparent approval the following ‘somewhat unusual take
on special relatively’:

The Maxwell equations, considered simply as a mathematical system, possess a symmetry,
the Lorentz group, under redefinitions of the labels x and t . But this is a purely mathe-
matical statement devoid of interesting consequences until one asks how physical clocks

22 op. cit., p. 201.
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and rulers are constructed and what forces hold them together. Since it is electromagnetic
forces balanced against quantum physics which holds the internal structure of these objects
together, the experimental observation that to very high accuracy physical bodies also
exhibit Lorentz symmetry allows one to deduce that quantum physics obeys the same
symmetry as the Maxwell equations. Viewed in this way, all experimental tests of special
relativity are really precision experimental tests of the symmetry group of quantum physics.

7.5 1970S: L. JÁNOSSY AND J. S. BELL

7.5.1 L. Jánossy

In 1971 a remarkable book entitled Theory of Relativity based on Physical Reality
by Lajos Jánossy (1912–1978)23 was published in Budapest. It contains a careful,
technical treatment of relativity theory and its experimental basis from the point of
view that relativistic physics, though correct, has ‘nothing to do with the structure
of space and time’.24 Care must be exercised in interpreting this claim; the book is
essentially an attempt to consolidate and complete Lorentz’s programme of pro-
viding a dynamical underpinning for relativistic kinematic effects. Unfortunately,
Jánossy advocated a notion of the ether as the seat of electromagnetic waves. It
turns out to be a very weak notion, and categorically not the basis of a concept
of absolute rest. Indeed, it was claimed by Jánossy to be hardly different from the
notion of ether that Einstein himself defended in 1924.25 But one cannot help
wondering whether its appearance in the book, which seems unnecessary, did not
harm the book’s reputation.

Jánossy is clear about the origins of, say, length contraction.

A solid consists of atoms and the shape of the solid arises as a dynamical equilibrium
of these atoms. It must be supposed that the atoms act upon each other in a retarded
fashion. It can easily be seen that the retarded interaction leads to different equilibrium
configurations in the case of atoms at rest and in the case of atoms moving with a constant
velocity v.26

But the devil is in the details, and Jánossy criticizes Lorentz for appealing to
‘independent, more or less accidental circumstances’ in his defence of something
like this position. Like Einstein, Jánossy wants to provide an account based on a
small number of general principles, and the way he goes about it is curious.

Jánossy introduces first the Lorentz principle. Imagine a physical system con-
sisting of a collection of moving point particles. A deformation of the system

23 Jánossy, whose foster-father was Georg Lukacs, the Marxist philosopher, emigrated from
Hungary in 1919, and received his education in Vienna and Berlin. In 1936 he moved to Manchester
to work with P. M. S. Blackett, and in 1947 took up a position in the Institute for Advanced Studies
in Dublin. Jánossy returned to his homeland in 1950 at the invitation of the government, and up
to 1970 held directorships of a number of laboratories and research institutes in Hungary. (I am
grateful to Miklos Redei for these biographical details.) 24 Jánossy (1971), p. 13.

25 Einstein (1924). 26 op. cit., p. 64.
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is obtained by transforming the coordinates of the particles according to some
subgroup of the Lorentz group, say the proper Lorentz group of boosts. This is not
to be interpreted as a passive coordinate transformation, or change of reference
system, but rather as an active change in the coordinates of the particles relative
to the original inertial coordinate system. The Lorentz principle states that the
laws of physics must be such that the Lorentz deformed system is a possible system
obeying the same laws as the original system.27 Jánossy goes on to show that the
null results of the ether-drift experiments are a consequence of this principle, and
that more generally ‘from the observations of physical systems we cannot arrive
at conclusions as to the translational velocity of these systems relative to the ether
provided the internal motion of the system obeys the Lorentz principle.’

The argument is essentially the same as that given by Swann in 1941, except
for two important features. First, Jánossy does not bring quantum theory into
the picture. In fact, it is initially unclear how the Lorentz principle is supposed
to work even in the classical case of a system of interacting particles, or of test
particles immersed in a background field, or indeed of just fields. The deformation
is defined, as we have seen, in terms of transformations of the coordinates of the
particles, but the Lorentz principle would not be expected to hold in general if
corresponding transformations in the fields are not also introduced. That this
extra element is indeed what Jánossy has in mind only becomes clear later in the
book in the discussion of Maxwell’s equations and the Lorentz principle.28 This
ambiguity in the formulation of the principle would be removed if Jánossy just
equated it with the Lorentz covariance of the fundamental laws of physics, and it is
hard to see why he didn’t.29 It is almost as if Jánossy intends the Lorentz principle
to stand over Lorentz covariance. At the start of the mentioned discussion of
Maxwell’s equations, he announces that ‘Physically new statements are obtained
if we apply the Lorentz principle to Maxwell’s equations.’ But of course what
emerges in the discussion is simply a consequence of the Lorentz covariance of
these equations.

The second way in which Jánossy’s treatment differs from Swann’s is that Jánossy
feels the need to introduce a second general principle. It has not been shown that
the Lorentz deformation for a system is actually produced by an active boost,
or change of translation motion, suffered by a system. Precisely this gap in the
argument was plugged in Lorentz’s original reasoning based on the theorem of
corresponding states by what Janssen called Lorentz’s ‘generalized contraction
hypothesis’ (recall the discussion in section 4.4 above). This finds its expression in
Jánossy’s scheme as the dynamical principle: If a connected physical system is carefully

27 op. cit., §183. Note that the account being given here is considerably more informal than
Jánossy’s. 28 op. cit., §§275–9.

29 In section 185, Jánossy actually states that the unobservability of the uniform translational
motion of the system is a consequence of the Lorentz covariance of the laws governing the internal
motion and the structure of the system. Likewise, earlier in the book (p. 64), he promises to offer
Einstein-type general principles related to ‘symmetry properties of the laws of physics’.



124 Physical Relativity

accelerated, then as a result of the acceleration it suffers a Lorentz deformation.30

He emphasizes that this principle is ‘additional’ to the Lorentz principle.
It isn’t, and ironically this becomes clear in Jánossy’s own excellent, if brief,

discussion of the process of accelerating a rigid rod in the section of the book
entitled ‘The mechanism of the Lorentz deformation’.31 Jánossy analyses the
boost analogue of quasi-static changes of state of a system in thermodynamics
caused by slow changes of some state parameter like temperature. The second
dynamical principle above turns out to follow from the Lorentz principle, once
the elastic disturbances resulting from the application of external forces involved
in the boost process die down and the system relaxes back to equilibrium after
each step in the process. This has to be right, as otherwise the total dynamical
description of the process, involving all possible details of the nature of the external
forces and the internal constitution of the rod, would be incomplete, and truly a
mysterious coup de pouce, to use Poincaré’s term, would need to be provided by
Nature. It is hard to avoid the conclusion that despite his own arguments, Jánossy
somehow failed, like Lorentz before him, to understand that universal Lorentz
covariance is all that is needed. And yet Jánossy’s insights into the physics of the
accelerative process are to be commended.

I cannot do justice here to the richness of Jánossy’s 1971 study. Chapter 10 of
his book extends his thinking into the problem of gravitation, and he attempts to
rigorously redefine the Lorentz principle in the case of curved, dynamical space-
time. To the extent that I understand it, this analysis seems to be compatible with
the position I will adopt below in Chapter 9 when it comes to understanding the
local validity of SR in Einstein’s theory of gravity and the physical meaning of the
metric field therein.

7.5.2 J. S. Bell. Conceptual Issues

In 1976, John S. Bell (1928–1990) published a paper on ‘How to teach special
relativity’.32 The paper was reprinted a decade later in his well-known book Speak-
able and Unspeakable in Quantum Mechanics, the only essay to stray significantly
from the theme of the title of the book. In the paper Bell was at pains to defend
a dynamical treatment of length contraction and time dilation, following ‘very
much the approach of H. A. Lorentz’.

Bell considered a single atom modelled by an electron circling a more massive
nucleus, ignoring the back-effect of the field of the electron on the nucleus. The
question he posed was: what is the prediction in Maxwell’s electrodynamics (taken
to be valid relative to the rest-frame of the nucleus) as to the effect on the electron
orbit when the nucleus is (gently) accelerated in the plane of the orbit? Using
only Maxwell’s field equations, the Lorentz force law, and the relativistic formula

30 op. cit., §193. 31 op. cit., §§195–7.
32 Bell (1976a). The following analysis relies heavily on Brown and Pooley (2001).
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linking the electron’s momentum and its velocity, which Bell attributed to Lorentz,
he concluded that the orbit undergoes the familiar longitudinal (‘FitzGerald’)
contraction, and its period changes by the familiar (‘Larmor’) dilation when the
motion becomes uniform. Bell went on to demonstrate that there is a system of
primed variables such that the description of the uniformly moving atom with
respect to them coincides with that of the stationary atom relative to the original
variables, and the associated transformations of coordinates is precisely the familiar
Lorentz transformation.

Bell carefully qualified the significance of this result. He stressed that the exter-
nal forces involved in boosting a piece of matter must be suitably constrained in
order that the usual relativistic kinematical effects such as length contraction be
observed. (The force cannot be such as to disintegrate the atom!) More impor-
tantly, Bell acknowledged that Maxwell–Lorentz theory is incapable of accounting
for the stability of solid matter, starting with that of the very electronic orbit in his
atomic model; nor can it deal with cohesion of the nucleus. (He might also have
included here the cohesion of the electron itself.) How Bell addressed this short-
coming of his model is important, and we will return to it below. Note that the
positive point Bell wanted to make was about the wider nature of the ‘Lorentzian’
approach: that it differed from that of Einstein in 1905 in both philosophy and
style.

The difference in philosophy is simply that Lorentz believed in a preferred
frame of reference—the rest-frame of the ether—and Einstein did not, regarding
the notion as superfluous, as we have seen. Actually, the ether plays no role at
all in Bell’s argument and the only justification for bringing it up at all seems to
be historical. The interesting difference, rather, was that of style. Bell argues first
that ‘we need not accept Lorentz’s philosophy to accept a Lorentzian pedagogy.
Its special merit is to drive home the lesson that the laws of physics in any one
reference frame account for all physical phenomena, including the observations
of moving observers.’ He went on to stress that Einstein postulates what Lorentz
is attempting to prove (the relativity principle). Bell has no ‘reservation whatever
about the power and precision of Einstein’s approach’; his point (as we mentioned
in Chapter 1) is that ‘the longer road [of FitzGerald, Lorentz, and Poincaré]
sometimes gives more familiarity with the country’.

The point, then, is not the existence or otherwise of a preferred frame. It is how
best to understand, and teach, the origins of the relativistic ‘kinematical’ effects.
Near the end of his life, Bell reiterated the point with more insistence:

If you are, for example, quite convinced of the second law of thermodynamics, of the
increase of entropy, there are many things that you can get directly from the second law
which are very difficult to get directly from a detailed study of the kinetic theory of gases,
but you have no excuse for not looking at the kinetic theory of gases to see how the
increase of entropy actually comes about. In the same way, although Einstein’s theory
of special relativity would lead you to expect the FitzGerald contraction, you are not
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excused from seeing how the detailed dynamics of the system also leads to the FitzGerald
contraction.33

There is something almost uncanny in this exhortation. Bell did not seem to be
aware that just this distinction between thermodynamics and the kinetic theory
of gases was foremost in Einstein’s mind when he developed his fall-back strategy
for the 1905 paper.

It was mentioned above that Bell drew attention in his 1976 essay to the limi-
tations of the Maxwell–Lorentz theory in accounting for stable forms of material
structure. He realized that a complete analysis of length contraction, say, would
also require reference to forces other than of electromagnetic origin, and that the
whole treatment would have to be couched in a quantum framework. In order
to predict, on dynamical grounds, length contraction for moving rods and time
dilation for moving clocks, Bell recognized that one need not know exactly how
many distinct forces are at work, nor have access to the detailed dynamics of all of
these interactions or the detailed micro-structure of individual rods and clocks.
It is enough, said Bell, to assume Lorentz covariance of the complete quantum
dynamics, known or otherwise, involved in the cohesion of matter.34 Thus, once
Bell recognized the limitations of his constructive pedagogical model, and stepped
beyond it, his overall message was very much in the spirit of Pauli and particularly
of Swann and Jánossy, though he seemed to be unaware of the arguments of the
first two writers in this regard.35

7.5.3 Historical Niceties

For Bell, it was important to be able to demonstrate that length contraction
and time dilation can be derived independently of coordinate transformations,
independently of a technique involving a change of variables.36 But as we saw in

33 Bell (1992). Consider the analogous question in electrodynamics: why does the speed of light
diminish in a transparent medium? One could say it follows from Maxwell’s equations themselves in
the form usually given for a linear dielectric medium of susceptibility χ. But what is the mechanism
involved? One could say further that the electric field acting on a dielectric material induces an
oscillating electric dipole in each molecule. The secondary radiation emitted by these dipoles com-
bines with the primary fields to produce a single wave propagating at the reduced velocity. For some
commentators, this seemingly miraculous conspiracy also calls for further analyis; for a step-by-step
analysis, involving a perturbation expansion of the susceptibility χ, see James and Griffith (1992).
These authors stress:

There are no surprises here—only a comforting confirmation that the story we have told is con-
sistent, and perhaps a somewhat deeper understanding of the mechanism by which the speed of
light is reduced in a dielectric medium. (p. 309).
34 This argument was dubbed the ‘truncated Lorentzian pedagogy’ in Brown and Pooley (2001).
35 Bell cites Jánossy’s 1971 book as the only modern textbook known to him taking the dynamical

road of FitzGerald, Lorentz, Larmor, and Poincaré. 36 Bell (1976a), p. 80.
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Chapter 4, this is not strictly what Lorentz did in his treatment of moving bodies,
despite Bell’s claim that he followed very much Lorentz’s approach.37

The difference between Bell’s treatment and Lorentz’s theorem of corresponding
states that I wish to highlight is not that Lorentz never discussed accelerating
systems. He didn’t, but of more relevance is the point that Lorentz’s treatment,
to put it crudely, is (almost) mathematically the modern change-of-variables-
based-on-covariance approach but interpreted in terms of what Jánossy called a
Lorentz deformation and not a change of reference system. Bell’s procedure for
accounting for length contraction is in fact closer to FitzGerald’s 1889 thinking
based on the Heaviside result, summarized in section 4.3 above. In fact it is
essentially a generalization of that thinking to the case of accelerating charges,
followed by an application of the Lorentz force law. It is remarkable that Bell
indeed starts his treatment recalling the anisotropic nature of the components of
the field surrounding a uniformly moving charge, and pointing out that

Insofar as microscopic electrical forces are important in the structure of matter, this sys-
tematic distortion of the field of fast particles will alter the internal equilibrium of fast
moving material. Such a change of shape, the Fitzgerald contraction, was in fact postulated
on empirical grounds by G. F. Fitzgerald in 1889 to explain the results of certain optical
experiments.

Bell, like most commentators on FitzGerald and Lorentz, incorrectly attributes
to them length contraction rather than shape deformation. But more importantly,
it is unclear that Bell was aware that FitzGerald had more than ‘empirical grounds’
in mind, that through drawing on the work of Heaviside, he had essentially the
dynamical insight Bell so nicely encapsulates. What Bell calls the ‘Lorentzian
pedagogy’ is more aptly called the FitzGeraldian pedagogy, as was claimed in
Chapter 1. But let us not exaggerate the importance of this point. In the ideas of
both FitzGerald and Lorentz, and in the further articulations of Lorentz’s approach
by Swann and Jánossy, there is played out the lesson Bell emphasized, namely that
‘the laws of physics in any one reference frame account for all physical phenomena,
including the observations of moving observers.’

37 op. cit., p. 77. It is noteworthy both that Bell gives no references to Lorentz’s papers, and admits
on p. 79 that the inspiration for the method of integrating equations of motion in a model of the sort
he presented was ‘perhaps’ a remark of Joseph Larmor. A more recent and very careful comparative
analysis of length contraction from the points of view of the electron theory and SR, and one which
is more aware of the precise nature of Lorentz’s thinking, is found in Dieks (1984). Dieks concludes
that there is no objection in principle to the appeal for a dynamical, microscopic explanation of length
contraction in SR. But he believes that relativistic theories, including general relativity, provide more
scope for physical explanations of this kind. This is because, according to Dieks, general relativity
explains in turn why the constructive laws such as Maxwell’s equations are valid in particular frames
of reference. This is correct if it is taken as part of the assumptions of general relativity that the
usual form of the electromagnetic stress-energy tensor is valid. But for many commentators, the local
validity of Maxwell’s equations has to do with the Einstein equivalence principle (more specifically
the minimal coupling principle), which is more put in by hand than explained in general relativity.
We shall return to this important issue in chap. 9.
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What is Special Relativity?

Einstein . . . wrote that in a really satisfactory theory clocks and rods should
be provided self-consistently by the theory itself. Presumably, the ultimate
point is the measure inherent in the action integral for universal dynamics.
Its properties should be inherited by all partial notions and structures. In the
end, it is this analysis that tells us that the geometric relations seen in physical
structures are subject to physical laws.

Dierck-E. Liebscher1

8.1 MINKOWSKI’S GEOMETRIZATION OF SR

The dramatic words of Minkowski in 1908 have echoed down the decades:
‘Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality.’2

Today, we are so imbued with the legacy of Minkowski that Einstein’s first
description of his old lecturer’s reformulation of SR as ‘superfluous learnedness’3

seems, at first sight, almost perverse.
Minkowski’s 1908 geometrization of SR was both a crucial advance in itself

(as Einstein later recognized), and a sort of stepping-stone towards Einstein’s
geometrical theory of gravity, or general relativity. The 1908 paper altered the
feel of the theory. It introduced the space-time diagram and terms like ‘world-
line’, front and back light ‘cones’ and ‘proper time’, that are still popular today.
Interestingly, the piece of nomenclature that Minkowski introduced with greatest
emphasis, that of the ‘postulate of the absolute world’, or the ‘world-postulate’,
never stuck.

This was the postulate that ‘natural phenomena’, and by this Minkowski clearly
means the fundamental laws of physics,4 have as their covariance group Gc ,
whose elements are coordinate transformations which preserve the expression

1 Liebscher (2005), §10.2.
2 Minkowski (1909). An elegant modern treatment of the geometry of Minkowski space-time is

found in Liebscher (2005). 3 Pais (1982), p. 152.
4 See particularly the penultimate para. in section I.
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c2dt2 − dx2 − dy2 − dz2 (what we would call today the isometries of the
Minkowski metric).5 The laws of physics are Lorentz covariant. But by expressing
this notion in 4-dimensional geometrical language, and showing how it applies
even to central tenets of the Lorentz–Larmor theory of the electron, Minkowski
felt he had shown how ‘the validity of the world-postulate without exception . . .
now lies open in the full light of day’. Minkowski’s aim was that of clarification
and illumination.

As with Einstein’s 1905 paper, Minkowksi’s paper contained distinct kinemat-
ical and dynamical arguments. I shall comment briefly on each in turn.

8.1.1 Kinematics

Minkowski starts with the ‘fundamental axiom’ that (in modern parlance) a par-
ticle can always be regarded as at rest relative to some inertial coordinate system,
which would not be possible were the speed of light not a maximal speed. (Note
that Minkowski is right to introduce this as an extra postulate—it does not follow
straightforwardly from the world-postulate, nor of course from Einstein’s 1905
postulates.) He then goes on to claim that the existence of rigid bodies is only con-
sistent with mechanics whose covariance group is the (Galilean) group G∞, since
a theory of optics compatible with Gc and rigid bodies would lead to a violation
of the relativity principle. Note that by ‘rigid’ Minkowski means a body whose
dimensions are unaltered by motion, an infelicitous, though common, choice of
terminology. But the important point here is that Minkowski goes on to construct
what is clearly a crucial argument for him in favour of his 4-dimensional picture
of space-time.

Minkowski first claims that the FitzGerald–Lorentz ‘contraction’ hypothesis
(which he attributes solely to Lorentz) ‘sounds extremely fantastical, for the con-
traction is not to be looked upon as a consequence of resistances in the ether,
or anything of that kind, but simply as a gift from above,—as an accompanying
circumstance of the circumstance of motion.’6

Minkowski, like Poincaré before him, seems quite oblivious to the dynamical
plausibility arguments that both Lorentz and FitzGerald (not to mention Larmor)
gave for the motion-induced change in dimensions in rigid bodies. He now claims
that ‘the Lorentzian contraction hypothesis is completely equivalent to the new
conception of space and time, which indeed makes the hypothesis much more
intelligible.’

Minkowski proceeds to give the graphic argument which has been repeated
so often in the relativistic literature: that (in modern vernacular) the world tube
of a rigid body is sliced into space-like sections in different ways by observers in

5 By Lorentz covariance I shall mean covariance with respect to the 10-dimensional inhomoge-
neous Lorentz group, or the ‘Poincaré’ group, which incorporates rigid rotations and translations as
well as boosts. 6 op. cit., part II.
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relative motion. This claim to intelligibility is so important, and came to be so
influential, that we must dwell on it in detail.

The first point that must be made is that Minkowski is not claiming that it is
space-time structure in and of itself that renders the phenomenon of length con-
traction intelligible. Actually, Minkowski seems nervous about the physicality of
empty space.7 Much more importantly, Minkowski’s paper is an attempt to spell out
the mathematical consequences, only partially understood by Einstein, of the world-
postulate, and in particular of the claim that the laws of physics are Lorentz covariant.8

There is in the paper an explicit analogy with the nature of Euclidean 3-space and
its association with the fact that the laws of classical mechanics are invariant under
rigid spatial rotations, which similarly preserve the distance between points. It is
the world-postulate that accounts for the unity of Minkowski space-time, for the
fact that there exists an invariant 4-dimensional metric.9 At the very end of the
1908 paper, Minkowski refers to a pre-established harmony between pure math-
ematics and physics, and I take the former to be the Minkowski geometry of pure
space-time and the latter to be the Minkowski geometry of natural phenomena
exemplified by the laws of physics which adhere to the world-postulate.

Thus the world-postulate is responsible for the phenomenon of length con-
traction, but Minkowski is presenting an account of this connection that appears
to be different from that of Pauli, Swann, and Bell. Minkowski is reading length
contraction straight off the induced geometry.

The reading is curious. It is odd to intimate that only the geometric argument
confers intelligibility to the FitzGerald–Lorentz contraction, when the geometry
itself is a direct consequence of a structural feature of the dynamics of non-
gravitational interactions. The dynamical line of argument outlined in the last
chapter is not only intelligible, it explains what the Minkowski geometry means
physically. It accounts for the fact that ideal rods and clocks, in different states
of uniform motion, and irrespective of their constitution, exemplify the physics
of coordinate transformations, of the group Gc , and thus survey the Minkowski
geometry. It is beautiful to see how simply the inverse of the Lorentz factor γ can
be distilled out of the Minkowski metric in the way that Minkowski first did it
and which has been repeated on innumerable occasions since, but the fact that this

7 When Minkowski comes, at the end of part I, to explicate the meaning of the universal constant
c that appears in the group Gc , he first states that it is the velocity of light in empty space. Then he
writes: ‘To avoid speaking either of space or emptiness, we may define this magnitude in another
way, as the ratio of the electromagnetic to the electrostatic unit of electricity.’

8 Minkowski’s historical reasoning at the end of part II is odd. He misleadingly claims that
Lorentz gave ‘local’ time a ‘physical construction . . ., for the better understanding of the hypothesis
of contraction’. He then assigns credit for the first recognition of the idea that ‘t and t ′ are to be
treated identically’ to Einstein, with no mention of Poincaré. But then, most curiously, he states that
neither Einstein nor Lorentz ‘made any attack on the problem of space’, even though a ‘violation of
the concept of space’ is ‘indispensable for the true understanding of the group Gc ’.

9 This crucial feature of Minkowski’s logic has not gone entirely unnoticed. Jon Dorling stressed
it in private communication with Michel Janssen; see Janssen (1995), p. 267.
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is the length-change factor of actual physical rigid bodies needs supplementary
arguments of the kind developed in the previous chapter.

8.1.2 Dynamics

Electrodynamics gave Minkowski the real opportunity to show the simplifying
power of the 4-dimensional approach. His reconstruction in the 1908 paper of the
Liénard–Wiechert potentials associated with an arbitrarily moving charge is based
on the geometry (and in particular the notion of orthogonality) of 4-vectors, and
his treatment of the action of one moving charge on another relies specifically
on his analysis of the velocity and acceleration 4-vectors and their orthogonality.
Minkowski writes of this latter treatment

When we compare this statement with previous formulations . . . of the same elementary
law of the ponderomotive action of moving point charges on one another, we are compelled
to admit that it is only in four dimensions that the relations here taken under consideration
reveal their inner being in full simplicity, and that on a three-dimensional space forced
upon us a priori they cast only a very complicated projection.10

The elegance and simplifying power of the 4-dimensional approach to relativis-
tic dynamics is probably Minkowski’s greatest legacy. In particular, where Oliver
Heaviside had vastly simplified the formulation of Maxwell’s equations by using
the 3-vector formalism which demonstrates manifest covariance relative to the
symmetries of Euclidean space, so Minkowski produced an equally important
simplification of electrodynamics based on the 4-vector formalism, which analo-
gously secures manifest covariance with respect to the symmetries of Minkowski
space-time. That, at any rate, is how Einstein in the last years of his life described
Minkowski’s legacy.

Minkowksi’s important contribution to the theory [SR] lies in the following: Before
Minkowski’s investigation it was necessary to carry out a Lorentz-transformation on a
law in order to test its invariance under such transformations; he, on the other hand,
succeeded in introducing a formalism such that the mathematical form of the law itself
guarantees its invariance under Lorentz-transformations. By creating a four-dimensional
tensor-calculus he achieved the same thing for the four-dimensional space which the ordi-
nary vector-calculus achieves for the three spatial dimensions. He also showed that the
Lorentz transformation (apart from a different algebraic sign due to the special character of
time) is nothing but a rotation of the coordinate system in the four-dimensional space.11

It is often forgotten that it was Poincaré, in 1905, who first understood the
‘rotational’ nature of the Lorentz transformations, and provided the first insights
into the 4-vector calculus. It is very curious that Minkowski never cites Poincaré’s
great 1906 paper on the dynamics of the electron, or even mentions his name in
the 1908 paper.

10 op. cit., section IV. 11 Einstein (1969), p. 59.
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8.2 MINKOWSKI SPACE-TIME: THE CART OR
THE HORSE?

There is a long-standing tradition, at least within the philosophy literature, to
go beyond Minkowski himself, or rather to invert his logic, and to consider
Minkowski space-time as the basis of an explanatory account of the Lorentz
covariance of physical laws (indeed of the world-postulate), and hence relativistic
kinematics. In Michael Friedman’s Foundations of Space-Time Theories, for exam-
ple, special relativity is the theory of a space-time manifold equipped with a flat
Minkowski metric.12 It is particularly clear in the section of Friedman’s book on
the reality of space-time structure13 that even before the manifold is endowed with
the Maxwell or any other dynamical field, the Minkowski geometry is understood
as physically real and primordial.

The reader will recall from the last chapter that Einstein admitted that con-
structive theories like the kinetic theory of gases provide more insight into the
nature of things than principle theories like thermodynamics and special relativity.
The question naturally arises as to whether there is a constructive version of SR.14 The
approach advocated by Friedman is tantamount to the claim that the Minkowski
geometry provides the structure that is needed in a constructive account of the
theory.

In discussing Poincaré’s preference for the Lorentz–FitzGerald approach to
length contraction over Einstein’s, Friedman wrote more recently:

[T]he crucial difference between the two theories, of course, is that the Lorentz contraction,
in the former theory, is viewed as a result of the (electromagnetic) forces responsible for
the microstructure of matter in the context of Lorentz’s theory of the electron, whereas the
same contraction, in Einstein’s theory, is viewed as a direct reflection, independent of all
hypotheses concerning microstructure and its dynamics, of a new kinematical structure for
space and time involving essential relativized notions of duration, length, and simultaneity.
In terms of Poincaré’s hierarchical conception of the sciences, then, Poincaré locates the
Lorentz contraction (and the Lorentz group more generally) at the level of experimental
physics, while keeping Newtonian structure at the next higher level (what Poincaré calls
mechanics) completely intact. Einstein, by contrast, locates the Lorentz contraction (and
the Lorentz group more generally) at precisely this next higher level, while postponing
to the future all further discussions of the physical forces and material structure actually
responsible for the physical phenomenon of rigidity. The Lorentz contraction, in Einstein’s
hands, now receives a direct kinematical interpretation.15

The talk of a preference for one theory over the other might suggest that
we are dealing with two incompatible viewpoints. On one side one has a truly

12 Friedman (1983), chap. IV. 13 op. cit. §4, chap. VI.
14 This question was raised in Brown (1993), Brown (1997), and Balashov and Janssen (2003);

the answers provided were essentially positive, but were not in agreement as to what the constructive
account is, as we shall see. 15 Friedman (2002), pp. 211–12.
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constructive space-time interpretation of SR, involving the postulation of the
structure of Minkowski space-time as an ontologically autonomous element in
the models of the phenomena in question. In this picture, length contraction is to
be given a constructive explanation in terms of Minkowski space-time because the
behaviour of complex material bodies is constrained somehow to ‘directly reflect’
its structure, in a way that is ‘independent of all hypotheses concerning microstruc-
ture and its dynamics’. If one were to adopt such a viewpoint there would seem
little room left for the opposing viewpoint, according to which the explanation
of length contraction is ultimately to be sought in terms of the dynamics of the
microstructure of the contracting rod.

In fact, it is not clear that Friedman has these two opposing pictures in mind.
Although he claims that Poincaré keeps Newtonian structure at the level of
‘mechanics’, if one is committed to the idea that Lorentz contraction is the result of
a structural property of the forces responsible for the microstructure of matter—as
is defended in this book—then one should believe that Minkowskian, rather than
Newtonian, structure is the appropriate kinematics for mechanics. The appropri-
ate structure is Minkowski geometry precisely because the laws of physics of the
non-gravitational interactions are Lorentz covariant. Equally one can postpone
(as Einstein did) the detailed investigation into the forces and structures actu-
ally responsible for the phenomena in question without thereby relinquishing
the idea that these forces and structures are, indeed, actually responsible for the
phenomena, and, hence, for space-time having the structure that it has.

Precisely the opposite idea has recently been defended by Balashov and Janssen,
who wrote:

[D]oes the Minkowskian nature of space-time explain why the forces holding a rod together
are Lorentz invariant or the other way around? Our intuition is that the geometrical struc-
ture of space(-time) is the explanans here and the invariance of the forces the explanandum.
To switch things around, our intuition tells us, is putting the cart before the horse.16

It has to be noted that Balashov and Janssen’s target is a particular ‘neo-
Lorentzian’ interpretation of SR, in which space-time structure is supposed to
be Newtonian and in which there is supposed to be a preferred frame, a position
very different from anything defended in this book. But what Balashov and Janssen
find unattractive in this interpretation also applies to the dynamical treatment of
relativistic kinematics outlined in the previous chapter, and even to Minkowski’s
own position:

In the neo-Lorentzian interpretation it is, in the final analysis, an unexplained coincidence
that the laws effectively governing different sorts of matter all share the property of Lorentz
invariance, which originally appeared to be nothing but a peculiarity of the laws governing
electromagnetic fields. In the space-time interpretation this coincidence is explained by

16 Balashov and Janssen (2003).
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tracing the Lorentz covariance of all these different laws to a common origin: the space-time
structure posited in this interpretation.

Here we are at the heart of the matter. It is wholly unclear how this geometrical
explanation is supposed to work.17 To help clarify matters, let us look at other
situations in physics where absolute geometric structure makes an appearance.

8.2.1 The Cases of Configuration and ‘Kinematic’ Space

It has been recognized since the middle of the nineteenth century, particularly
through the work of Jacobi, that the evolution of a system of N particles in
Newtonian mechanics can be described by way of a geodesic (maximal straight-
ness) principle involving paths in the configuration space of the system, this space
having a curved Riemannian geometry.18

Another case of geometric reasoning that is closer to home concerns relativistic
velocity (or ‘kinematic’) space.19 It was remarked earlier that the Fresnel drag coef-
ficient, so important in explaining the absence of first order effects in early ether-
wind experiments, was recognized in 1907 by Max von Laue to be a consequence
of the relativistic rule for transforming velocities. In 1908, Arnold Sommerfeld
found a geometrical account of this rule: the original velocity of the body in ques-
tion u, the velocity of the moving frame v, and their ‘resultant’ (the transformed
velocity u′) form the sides of a spherical triangle on a sphere of imaginary radius
ic. A year later, V. Varičak pointed out that 3-dimensional velocity space in SR
has constant negative curvature with radius c, i.e. it is a Lobachevskian geometry.
(The corresponding space in Galilean–Newtonian kinematics is flat.) A velocity
and its ‘Lorentz’ transform form a pair of points in this space, and their relation
is obtained by solving for Lobachevskian triangles; the geometry of such triangles
is equivalent to to that of Sommerfeld’s spherical triangles of imaginary radius.
(In 1921, Pauli pointed out a new interpretation of the conformal structure of
Minkowski space-time in terms of the 3-dimensional Lobachevksian geometry.)20

A striking feature of this Lobachevksian geometry is that the non-
commutativity of the transformation rule, in the general case where u and v
do not lie in the same direction, is an immediate consequence of the curvature of
kinematic space. And in 1913, Emil Borel considered the holonomy associated
with parallel-transport of a vector around a closed path in the space, predicting that

17 A detailed critique of the position defended by Friedman, and by Balashov and Janssen, is
found in Brown and Pooley (2004). In this chapter, some points are taken from this critique and
some new ones are added.

18 See Lanczos (1970). I am grateful to Jeremy Butterfield for stressing the relevance of this early
use of non-Euclidean absolute geometry in physics.

19 In the following treatment, I rely heavily on section 4.2.6 of Stachel (1995), to which the reader
is referred for further references. See also Liebscher (2005), Appendix B.

20 Pauli (1981), p. 74, fn. 111.
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a torque-free angular momentum vector undergoes a precession. This is precisely
the Thomas precession effect, famously rediscovered in 1926.

Borel’s work in 1913 demonstrates the suggestive power of geometric reasoning
in physics. But the issue that concerns us is that of explanation. Do we want to say
that the non-commutativity of velocity transformations in SR, and the Thomas
precession are caused, or explained by the existence of curvature in relativistic
velocity space? Do we likewise want to say that the curvature of the configuration
space is causing the motion of the N -body system in mechanics to be what it is?
Note a crucial difference between these cases and general relativity: the geometry
here is not a dynamical agent, there are no non-trivial equations of motion which
couple it with matter. It is absolute.

8.2.2 The Projective Hilbert Space

Following the seminal work of Michael Berry in 1984 on systems undergoing
cyclic adiabatic evolution, it has come to be realized that there exists an important
geometrical structure in the quantum formalism related to the phase of a system
undergoing standard Schrödinger evolution. Consider a system undergoing cyclic
(but not necessarily abiabatic) evolution, so that during the temporal interval
[0, T ], the system’s final and initial states coincide up to a phase factor: |ψ(T )〉 =
exp(iφ)|ψ(0)〉, where φ is an arbitrary real number. When projected on to ray
space, i.e. the projective Hilbert space P , this evolution defines a closed path. Now
suppose we have the idea of subtracting from the total phase φ the accumulation of
local phase changes produced by the motion on this path. By a ‘local phase change’
is meant the quantity δφ (ψt , ψt+δt ) = −i〈ψ(t)|d/dt |ψ(t)〉δt (choosing units
in which � = 1). We are subtracting then from the total phase the quantity

φd ≡ −i
∫ T

0
〈ψ(t)|d/dt |ψ(t)〉dt = −

∫ T

0
〈ψ(t)|H |ψ(t)〉dt , (8.1)

where H is the Hamiltonian responsible for the cyclic motion. Because it depends
on the Hamiltonian, the quantity φd is called the dynamical phase. Now what we
are left with after the subtraction, φg ≡ φ−φd , is the geometric phase, formulated
by Yakir Aharonov and the late Jeeva Anandan in 1987. It is reparametrization
invariant, i.e. independent of the speed at which the path in P is traversed.
Moreover, it takes the same value for all the (infinity of ) evolutions in the Hilbert
space which project onto the given closed path in P . It is natural then to interpret
it as the holonomy associated with ‘parallel transport’—transport in which there
is no local phase change—around the closed curve in P . The existence of the
geometric phase testifies to the existence of an absolute, non-flat connection, or
curvature, in P . It turns out this is the curvature associated with the so-called
Study–Fubini metric on P .21

21 For a review, see Anandan (1992).
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The recognition that there is a feature of Schrödinger evolution that is indiffer-
ent to the dynamical details specified by the Hamiltonian, or at least the choice
of Hamiltonian within an infinite relevant class, and that depends on only the
fixed path in P , has led to a significant geometrical reformulation of quantum
mechanics. In particular, the symplectic structure of P , and its role as a metric
space have been clarified. The situation is clearly reminiscent of the geometric
reformulation of SR by Minkowski. But, again, it seems unnatural to say that
the phenomenon of geometric phase is caused by the geometry of the projec-
tive Hilbert space of a quantum system. Is not this geometric structure merely
an elegant codification of the existence of a universal, or Hamiltonian-
independent, feature of the Schrödinger dynamics of cyclic motions, albeit one
that remained hidden for many years?22 But then what grounds are there for
assigning a causal role to Minkowski space-time?

8.2.3 Carathéodory: The Minkowski of Thermodynamics

It is of considerable relevance to our concerns that a development in thermody-
namics itself took place in 1909 that is strikingly analogous to that instigated
by Minkowski in relation to SR in 1908. In 1909, Constantin Carathéodory
(1873–1950), a Berliner of Greek origin and who had as it happens studied
under Minkowski when writing his doctoral thesis in mathematics a few years
earlier, published a new formulation of thermodynamics.23 This formulation was
far more abstract than that found in the well-known writings of Clausius, Kelvin,
and Planck on the subject. Carathéodory wanted to turn attention away from
cyclic processes of the type Sadi Carnot had discussed, and in particular away
from the delicate notion of heat, in favour of the structure of the space of equilib-
rium states available to a thermodynamic system. He did to this space something
akin to what Minkowski had done to space-time.

Carathéodory assumed that the thermodynamic phase space Γ of equilib-
rium states is an N -dimensional differentiable manifold equipped with the usual
Euclidean topology. Global coordinate systems are provided by the values of N
thermodynamic parameters, some (actually one in the case of ‘simple’ systems)
‘thermal’ and the rest ‘deformation’ variables. Different coordinate systems of this
kind are available and no one is privileged. Instead of postulating a metric on
the space, Carathéodory introduced the relation of adiabatic accessibility between
pairs of points, clearly analogous to the causal connectibility relation in the con-
formal geometry of Minkowski space-time, and famously postulated that in any
neighbourhood of any point p in Γ, there exists at least one point q that is not
adiabatically accessible from p.

22 It is noteworthy that Anandan, one of the pioneers of the geometric approach to quantum
mechanics (see Anandan (1991)), wrote a careful defence of the dynamical underpinning of absolute
space-time geometry (see Anandan (1980)). 23 Carathéodory (1909).
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On the basis of this postulate, which replaces the traditional second law, and a
number of crucial continuity assumptions, Carathéodory was able to show that for
simple systems a foliation of Γ exists, a division of the space into a continuum of
non-intersecting (N − 1)–dimensional surfaces, such that any continuous curve
confined to a given surface represents a quasi-static reversible process between end-
points of the curve involving continuous change in the deformation coordinates.
More importantly, each surface could be identified by the value of a continuous
real parameter S , such that for any two points p and q not on the same surface, q
being adiabatically accessible from p means S(q) > S(p). Finally, Carathéodory
was able to prove that S and T play the familiar roles of entropy and absolute
temperature respectively.

Actually, this account needs to be qualified. What Carathéodory in fact was
able to deduce from his assumptions is that for any two points p and q not on
the same surface, i.e. not connected by a reversible quasi-static path, when q is
adiabatically accessible from p then either S(q) > S(p) or S(q) < S(p). In other
words, irreversible processes either all involve an increase in entropy or all involve
a decrease in entropy. Carathéodory accepted that this is a weaker condition than
the analogous conclusion of strict entropy increase that follows from, say, Kelvin’s
formulation of the second law which rules out perpetual motion machines of the
second kind, and in which the notion of heat is explicitly referred to. Carathéodory
considered it to be a matter of experience whether in his scheme the monotonic
law of entropy change is one of increase or decrease.24

The 1909 formulation proved to be the inspiration for a number of subse-
quent approaches to thermodynamics based likewise not on the notion of heat
and Carnot-type cycles, and the efficiency of heat engines, but rather on prop-
erties of the thermodynamic phase space Γ. The latest significant development
in this tradition is the 1999 axiomatization due to Lieb and Yngvason, in which
the differentiable nature of Γ is no longer assumed, but a variant of the adia-
batic accessibility relation retained, now explicitly a preorder on the space.25 This
approach avoids a number of criticisms that were levelled at Carathéodory’s 1909
formulation.26 Be that as it may, the work of Carathéodory is clearly analogous
to that of Minkowski in 1907. In both cases, an existing theory is recast in a more
abstract, geometrical mould.

Is it reasonable to say that Carathéodory transformed thermodynamics from
the paradigmatic principle theory to a constructive theory? Of course there is no
categorical answer to this question, for the simple reason that the distinction, as has

24 It is clear that this appeal to experience only works if a background arrow of time exists,
relative to which the change of entropy can be compared. Carathéodory was silent about what
this pre-thermodynamic arrow of time is, but in this reticence he was not alone. The founders of
thermodynamics were happy to discuss (quasi-static) cyclic motion for a heat engine, which requires
saying which of two nearby equilibrium states is the earliest, but little was said as to what this meant in
practice. 25 Lieb and Yngvason (1999).

26 See Uffink (2001).
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already been stressed, is not categorical. Nonetheless there is certainly the appear-
ance in the very postulates of Carathéodory’s scheme of structure that is defined in
theoretical terms rather than observational terms. It is less phenomenological than
the traditional approach. But the new scheme still seems a long way short of the
insight provided by the mixture of combinatorial and dynamical arguments that
is characteristic of statistical mechanics. This point has been aptly expressed by
Peter Landsberg, whose remarks were intended to apply to the formal axiomatic
approach just as much as to the traditional formulation of thermodynamics.

Since the nature of the thermodynamical variables and their number can vary within wide
limits, the basic theoretical framework of thermodynamics must be kept very general. This
has the advantage of giving the theory a wide range of application, but this is balanced
by the drawback that thermodynamic reasoning is in general unsuitable for giving insight
into the details of physical processes.

This last observation, together with the remark that thermodynamics leaves microscopic
variables on one side, leads to the conclusion that a thermodynamic theory is necessarily
incomplete. For any system to which thermodynamics can be applied, a more exhaustive
theory should exist which yields insight into the detailed physical processes involved.
This deeper theory must also give some account of the nature of equilibrium states, and
therefore of fluctuation phenomena, and of course it must lead to the thermodynamics of
the system. Such theories are provided by statistical mechanics.27

I do not know if Einstein took any interest in Carathéodory’s work in ther-
modynamics, but there is little doubt that despite its importance as a template
in 1905, Einstein’s long-term attitude towards thermodynamics was that of a
non-fundamental, perhaps one could say effective, theory. He would consistently
endorse the Boltzmannian combinatorial definition as the most fundamental ren-
dition of entropy, and referred at the end of his life to the concepts of classical
thermodynamics as ‘untenable in the long run’.28

Nor did Einstein ever appear to have been tempted to say that Minkowski
provided the elements of a constructive formulation of SR. Indeed, there is a
hint that geometrical notions are not fundamental in the theory in Einstein’s
Autobiographical Notes, as we saw in section 8.1. I think it is likely that Einstein’s
reasons are closely analogous to the sentiments expressed by Landsberg concerning

27 Landsberg (1990), p. 4.
28 In one of his last letters, in which he touched on the widely accepted role of classical concepts

in quantum mechanics, Einstein wrote:

I believe however that the renunciation of the objective description of ‘reality’ is based upon the
fact that one operates with fundamental concepts which are untenable in the long run (like f.i.
classical thermodynamics).

This 1955 letter to Andre Lamouche is cited in Stachel (1986), p. 376. Nonetheless, as Stachel has
pointed out, the chances of success of a fully constructive approach to fundamental physics at times
seemed remote to Einstein, particularly as a result of his failure to erect a unified field theory. Stachel
notes (p. 360) in some of Einstein’s letters in the 1950s that touch on his scientific method, the
advocacy of a kind of blurring of the principle vs. constructive theory distinction.



What is Special Relativity? 139

thermodynamics, including Carathéodory’s formulation. Einstein would have
expected a constructive theory of SR to do much more than anything Minkowski
had done in his 1908 paper. Minkowski had implemented a geometrical pro-
gramme initiated by Poincaré in 1906, but this was a far cry from the new
theory of the interaction of matter and radiation that Poincaré was hoping
would supersede Lorentz’s theory of the electron and rigorously, systematically
account for length contraction or rigid rods, the deformability of the electron,
etc. These ambitious demands on a truly constructive explanation of relativis-
tic kinematics were shared by both Einstein and Poincaré, but of the two only
Einstein was content in the meantime to make do with a weaker principle theory
explanation.

8.3 WHAT DOES ABSOLUTE GEOMETRY EXPLAIN?

It is doubtful at best whether the geometries of the configuration space in classical
mechanics, the ‘kinematic’ space in SR, the projective Hilbert space in quantum
mechanics, or the space of equilibrium states in thermodynamics, play the kind of
explanatory role that the space-time interpretation of SR attributes to Minkowski
geometry. Why should space-time geometry be any different? It might be thought
that space and time are somehow more fundamental physically than the other
spaces, or more accessible to the senses, or that they combine to form the arena of
physical events. In short, that they are more real. But is not this reasoning question-
begging?29 The reader may recall that in section 3.2.5 above, it was mentioned that
Einstein for a limited period of time (after 1905) sought a geometric explanation
of inertia. The position defended by Balashov and Janssen (and many others) is
an attempt to extend Einstein’s logic in this sense to an explanation of the Lorentz
covariance of physical laws. In order to assess further the plausibility of this line
of thinking, let’s see how far Einstein was right about inertia.

29 A defence of the view that the conformal structure of space-time is a structural property of
Maxwellian electrodynamics, and that even the Euclidean nature of space is determined by the
dielectric properties of the medium in electrostatics, is found in Sternberg (1978) and Guillemin
and Sternberg (1984). (Thanks go to Gordon Belot for bringing this work to my attention.) Here is
how the point is made in relation to space in both works:

The statement that it is the dielectric properties of the vacuum that determines Euclidean geometry
is not merely a mathematical sophistry. In fact, the forces between charged bodies in any medium
are determined by the dielectric properties of that medium. Since the forces that bind together
macroscopic bodies as we know them are principally electrostatic in nature, it is the dielectric
property of the vacuum which fixes our rigid bodies. We use rigid bodies as measuring rods to
determine the geometry of space. It is in this very real sense that the dielectric properties of the
vacuum determine Euclidean geometry.

The related notion that the Euclidean geometry of space is a consequence of the Euclidean symmetries
of the fundamental laws of non-gravitational physics is defended in Brown and Pooley (2004).
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8.3.1 The Space-time ‘Explanation’ of Inertia

It was a source of satisfaction for Einstein that in developing the general theory of
relativity (GR) he was able to eradicate what he saw as an embarrassing defect of
SR: violation of the action–reaction principle. Leibniz held that a defining attribute
of substances was their both acting and being acted upon. It would appear that
Einstein shared this view. He wrote in 1924 that each physical object ‘influences
and in general is influenced in turn by others’.30 It is ‘contrary to the mode of
scientific thinking’, he wrote earlier in 1922, ‘to conceive of a thing . . . which acts
itself, but which cannot be acted upon.’31 But according to Einstein the space-
time continuum, in both Newtonian mechanics and special relativity, is such a
thing. In these theories space-time upholds only half of the bargain: it acts on
material bodies and/or fields, but is in no way influenced by them.

It is important to be clear about what kind of action Einstein thought is involved
here. Although he did not describe them in these terms, it seems that he had in
mind the roles of the four-dimensional absolute affine connection in each case, as
well as that of the conformal structure in SR. The connection determines which
paths are geodesics, or straight, and hence determines the possible trajectories of
force-free bodies. The null cones in SR in turn constrain the possible propagation
of light. These structures form what Einstein would come to call, with tongue in
cheek, the ether.

The inertia-producing property of this ether [Newtonian space-time], in accordance with
classical mechanics, is precisely not to be influenced, either by the configuration of matter,
or by anything else. For this reason, one may call it ‘absolute’. That something real has to
be conceived as the cause for the preference of an inertial system over a noninertial system
is a fact that physicists have only come to understand in recent years . . . Also, following
the special theory of relativity, the ether was absolute, because its influence on inertia and
light propagation was thought to be independent of physical influences of any kind . . .
The ether of the general theory of relativity differs from that of classical mechanics or the
special theory of relativity respectively, insofar as it it is not ‘absolute’, but is determined
in its locally variable properties by ponderable matter.32

The success in salvaging the action–reaction principle was not confined in GR
to the fact that the space-time metric field (which of course determines both the
connection, by the principle of metric compatibility, and the conformal struc-
ture) is dynamical, that it is a solution of Einstein’s field equations. In the early
1920s, when he wrote the above comment, Einstein had still not discovered an
important aspect of his theory of gravitation: the fact that the field equations them-
selves underpin the geodesic principle. This principle states that the world-lines

30 Einstein (1924).
31 Einstein (1922, 55–6). For a recent discussion of the action–reaction principle in modern

physics, see Anandan and Brown (1995). 32 Einstein (1924).
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of force-free test particles are constrained to lie on geodesics of the connection. It
is important for our purposes to dwell briefly on the significance of this fact.

In 1924, Einstein thought that the inertial property of matter (to be precise,
the fact that particles with non-zero mass satisfy Newton’s first law of motion, not
that they possess such inertial mass) requires explanation in terms of the action
of a real entity on the particles. It is the space-time connection that plays this
role: the affine geodesics form ruts or grooves in space-time that guide the free
particles along their way. In GR, on the other hand, this view is at best redundant,
at worst problematic, something that was still not widely appreciated in the early
1920s. For it follows from the form of Einstein’s field equations that the covariant
divergence of the stress-energy tensor field Tµν , that object which incorporates
the ‘matter’ degrees of freedom, vanishes.

T µ
ν;µ = 0. (8.2)

This result is about as close as anything is in GR to the statement of a conservation
principle, and it came to be recognized as the basis of a proof, or proofs, that the
world-lines of a suitably modelled force-free test particles are geodesics.33 The
fact that these proofs vary considerably in detail need not detain us. The first
salient point is that the geodesic principle for free particles is no longer a postulate
but a theorem. GR is the first in the long line of dynamical theories, based on
that profound Aristotelian distinction between natural and forced motions of
bodies, that explains inertial motion. The second point is that the derivations of
the geodesic principle in GR also demonstrate its limited validity. In particular,
it is not enough that the test particle be force-free. It has long been recognized
that spinning bodies for which tidal gravitational forces act on its elementary
pieces deviate from geodesic behaviour. What this fact should clarify, if indeed
clarification is needed, is that it is not simply in the nature of force-free bodies to
move in a fashion consistent with the geodesic principle.34 It is not an essential
property of localized bodies that they run along the ruts of space-time determined
by the affine connection, when no other dynamical influences are at play. In
Newtonian mechanics and SR, the conspiracy of inertia is a postulate, and its
explanation by way of the affine connection is no explanation at all.

And it is here that Einstein and Nerlich part company with Leibniz, and even
Newton. For both Leibniz and Newton, absolute space-time structure is not the
sort of thing that acts at all. If this is correct, and it seems to be, then neither
Newtonian mechanics nor SR represent, pace Einstein, a violation of the action–
reaction principle, because the space-time structures in both cases are neither acting
nor being acted upon. Indeed, we go further and agree with Leibniz that they are
not real entities in their own right at all.

33 We return to this issue in chap. 9.
34 A rare recognition of this point in the philosophical literature is found in Sklar (1977) and

Sklar (1985), chap. 3.
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It is well known that Leibniz rejected the reality of absolute Newtonian space
and time principally on the grounds that their existence would clash with his
principles of Sufficient Reason and the Identity of Indiscernibles. Nonentities do
not act, so for Leibniz space and time can play no role in explaining the mystery
of inertia. Newton seems to have agreed with this conclusion, but for radically
different reasons, as expressed in his pre-Principia manuscript De Gravitatione.
For Newton, the existence of absolute space and time has to do with provid-
ing a structure, necessarily distinct from ponderable bodies and their relations,
with respect to which it is possible systematically to define the basic kinematical
properties of the motion of such bodies. For Newton, space and time are not
substances in the sense that they can act, but are real things nonetheless.35 It is
now known, however, that the job can be done without postulating any back-
ground space-time scaffolding, and that at least a significant subset, perhaps the
significant subset, of solutions to any Newtonian theory can be recovered in the
process.36

Recall Nerlich’s remark reported in section 2.2.5 to the effect that force-free
particles have no antennae, and that they are unaware of the existence of other
particles. That is the prima facie mystery of inertia in pre-GR theories: how do
all the free particles in the world know how to behave in a mutually coordinated
way such that their motion appears extremely simple from the point of view of
a family of privileged frames? To appeal, however, to the action of a background
space-time connection in which the particles are immersed—to what Weyl called
the ‘guiding field’—is arguably to enhance the mystery, not to remove it. There is
no dynamical coupling of the connection with matter in the usual sense of the term.

As remarked earlier, it is of course non-trivial that inertia can be given a geo-
metrical description, and this is connected with the fact that the behaviour of
force-free bodies is universal: it does not depend on their constitution. But, again,
what is at issue is the arrow of explanation. It is more natural in theories such
as Newtonian mechanics or SR to consider the 4-connection as a codification of
certain key aspects of the behaviour of particles and fields.37 One faces a similar
choice in parity-violating theories: do orientation fields play an explanatory role

35 It is worth stressing that its lack of causal influence is Newton’s sole reason for refraining
from calling space a substance. It is therefore at least misleading to deny that Newton (1962) was a
substantivalist.

36 See Barbour and Bertotti (1982) and Barbour (1999). For discussion see Belot (2000) and
Pooley and Brown (2002).

37 Robert DiSalle put this point well in 1995:

Space-time theories are not the sort of theory Einstein thought they were, because they don’t
really make the sort of metaphysical claim that he thought they make—in particular, space-time
theories do not claim that some unobservable thing is the cause of observable effects. Instead,
they make a more restricted, but perhaps more profound and certainly more useful claim: that
particular physical processes, governed by established physical laws, can be represented by aspects
of geometrical structure in the universe. (DiSalle (1995).)
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in such theories, or are they simply codifications of the coordinated asymmetries
exhibited by the solutions of such theories?38

8.3.2 Mystery of Mysteries

In the dynamical approach to length contraction and time dilation that was
outlined in the previous chapter, the Lorentz covariance of all the fundamental
laws of physics is an unexplained brute fact. This, in and of itself, does not count
against the approach: all explanation must stop somewhere. What is required if
the so-called space-time interpretation is to win out over this dynamical approach
is that it offer a genuine explanation of universal Lorentz covariance. This is what
is disputed. Talk of Lorentz covariance ‘reflecting the structure of space-time
posited by the theory’ and of ‘tracing the invariance to a common origin’ needs
to be fleshed out if we are to be given a genuine explanation here, something akin
to the explanation of inertia in general relativity. Otherwise we simply have yet
another analogue of Molière’s dormative virtue. (We shall see later that nothing
in GR causes us to rescind this view.)

In fact space-time theorists often accommodate, if grudgingly, theories in which
the symmetries of space-time structure are not reflected in the symmetries of the
laws governing matter. They do not question the coherence of such theories (as
they should); rather they seek to rule them out on the grounds of explanatory
deficiencies when compared to their preferred theory.39 This shows that, as matter
of logic alone, if one postulates space-time structure as a self-standing, autonomous
element in one’s theory, it need have no constraining role on the form of the laws
governing the rest of content of the theory’s models.40 So how is its influence
on these laws supposed to work?41 How in turn are rods and clocks supposed
to know which space-time they are immersed in? This mystery becomes even
more acute when it is borne in mind that there is a growing number of ‘bimetric’
theories in the literature: attempts to modify Einstein’s general relativity theory
which involve two metric fields, with different contributions to the gravitational
dynamics. A brief account of one such theory will be given in the next chapter.
The question that must be faced is how rods, clocks, free particles, and light rays
come to survey at most one of them.

38 See Pooley (2003, 272–4).
39 For a clear indication of this, see the discussion in Earman (1989), pp. 46–7.
40 See in this connection Brown (1993).
41 A more sustained discussion of how Minkowski space-time provides a putative common origin

for the ‘unexplained coincidence’ in Lorentz’s theory that both matter and fields are governed by
Lorentz covariant laws, is to be found in Janssen’s detailed recent analysis of the differences between the
Einstein and Lorentz programmes in Janssen (2002b). It is also covered in Janssen’s wider investigation
of ‘common origin inferences’ in the history of science; see Janssen (2002a). The claim that neither of
these papers succeeds in clarifying how space-time structure can act as a ‘common origin’ of otherwise
unexplained coincidences is defended in Brown and Pooley (2004).
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8.4 WHAT IS SPECIAL RELATIVITY?

It will probably not have escaped the attention of readers that the range of matters
relativistic treated so far has been narrow. Relativistic kinematics have dominated
the discussion. There is of course much more to SR, and arguably the most
important part has not been treated. In the fifth of his 1905 papers, Einstein
reverted to a theme that had already made its appearance in the literature on the
ether theories: the connection between mass and electromagnetic energy in special
situations. In formulating his famous equation E = mc2, Einstein was the first to
postulate the proportionality between mass and all forms of (rest) energy. This is
no more a direct consequence of the Lorentz transformations than were Einstein’s
original definitions of relativistic force and momentum. Indeed, the latter were
to give way (with Einstein’s approval) to simpler definitions provided by Planck,
which in turn were incorporated by Minkowski into the four-momentum vector.

But in restricting ourselves to just a part of the edifice of SR, we can still ask:
What precisely did Einstein offer? One present-day authority on the history and
foundations of relativity theory, John Stachel, considers what the consensus view
might plausibly have been in the community of experts had Einstein made no
appearance.

The work of Lorentz, Poincaré, and others suggests that, without Einstein’s contribution,
the consensus version might not have made a clear distinction between kinematic and
dynamic effects, but interpreted such things as length contraction, time dilation and
increase of mass with velocity as dynamical effects, caused by motion relative to the ether
frame . . . . Emphasis would then have been placed on factors leading to the undetectability
of absolute velocity, rather than on the complete equivalence of all inertial frames.42

I think this view encapsulates the difficulty most relativists have today in accept-
ing what has been defended throughout this book: the true lack of a clear distinc-
tion between kinematic and dynamic effects (in particular in the context of length
contraction and time dilation). The difficulty arises because the valid dynamical
insights provided by the trailblazers like FitzGerald, Lorentz, and Poincaré are con-
taminated in most physicists’ minds by association with the philosophy of ether.
One of the chief aims of Chapter 4 was to demonstrate that the ether played no
truly essential role in the pre-1905 thinking that led to the discovery of length
contraction and time dilation (to the limited extent that the latter was appreciated
by Larmor and Lorentz). All the real work was being done by Maxwell’s equations
and the idea that molecular forces inside chunks of matter might mimic electro-
magnetic forces in a specific sense (a point that as we saw in Chapter 7 was stressed
particularly by Bell). In the cases of Lorentz and Poincaré, it is clear that the role
of the ether was essentially that of a peg to hang the electromagnetic field on,

42 Stachel (1995), p. 272.
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and even then Poincaré was at times doubtful. Giving up the ether-as-substratum
prejudice simply does not entail rejecting the dynamical basis of the trailblazers’
arguments or their modern variants. The difference that Stachel regards as critical
between the undetectability of absolute velocity and the complete equivalence of
all inertial frames is, in this sense, chimerical.

In conclusion, Einstein’s contribution was not to establish a clear-cut divide
between kinematics and dynamics, though both the organization and terminol-
ogy of his 1905 paper were misleading in this respect. We saw in Chapter 7
that Einstein was aware of this defect in his initial formulation of SR. What his
contribution amounted to, rather, was the demonstration (a) of the full opera-
tional significance of the Lorentz transformations, and (b) that the latter could be
obtained by imposing simple phenomenological constraints on the nature of the
fundamental interactions in physics. But the importance of this second feature
is to some extent epoch-dependent: in 1905 something like this derivation was
all that was available given the theoretical maelstrom in physics and in particular
the advent of the quantum with all its subversive, or revolutionary, potential.
But now?

8.4.1 The Big Principle

Stachel has argued that Einstein, having been ‘mesmerized’ by the problem of
the nature of light,43 failed to see that the light postulate and the relativity prin-
ciple are qualitatively different and should not be mixed together. Stachel cor-
rectly emphasized that the relativity principle is ‘universal in scope’44 whereas
the light postulate is taken (as we have seen in Chapter 5) from the ether the-
ory of electrodynamical phenomena. ‘Such traces of its electrodynamical origins
exposed the new kinematics to avoidable misunderstandings and attacks over the
years.’45

For Stachel, Einstein overlooked the importance of the 1910 work of Igna-
towski, who ‘showed that the special theory does not require the light postulate’.46

An earlier commentator who emphasized this point is Jean-Marc Lévy-Leblond.
In 1976 he wrote ‘the lesson to be drawn from more than half a century is that

43 Stachel (1995), p. 270.
44 Stachel actually claims that the relativity principle is kinematical in nature, whereas in this

book the relativity principle has been described as dynamical. I argued in Chapter 5 that in Einstein’s
hands it was not essentially different from the principle defended by Newton—a constraint on the
nature of the fundamental interactions. Indeed, the apparently curious fact that such a ‘dynamical’
principle could be used to constrain ‘pure’ kinematics in the form of coordinate transformations
was examined in detail in both chap. 2 (in the context of the Keinstein’s derivation of the Galilean
transformations) and chap. 5 (in the context of Einstein’s derivation of the Lorentz transformations).
But it seems that this particular difference with Stachel is merely terminological. He simply defines
kinematical to be synonymous with principle theory; see footnote [4], p. 323.

45 Stachel (1995), p. 270. 46 op. cit., pp. 272, 277.
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special relativity up to now seems to rule all classes of phenomena, whether they
depend on electromagnetic, weak, [or] strong . . . interactions.’47

Lévy-Leblond emphasized that the Lorentz covariance of the laws of physics
does not entail the existence of zero-mass bodies, or even that the photon mass is
exactly zero.This is an important point, and we return to it in the next chapter. Like
Stachel, Lévy-Leblond extolled the virtues of the Ignatowski derivation; indeed,
in the paper under consideration he rediscovered it!

A warning was sounded earlier (section 6.4.1) as to whether the Ignatowski
transformations are indeed relativistic in nature. They are clearly weaker than the
Lorentz transformations, in the sense that they rule out less. In particular, they
do not exclude the Galilean transformations, and hence are less falsifiable (in the
Popperian sense) than the Lorentz transformations. Unless the magnitude of the
invariant speed is established, the Ignatowski group can hardly be equated with
the Lorentz group. In short, an empirical element (that for the purposes of Stachel
and Lévy-Leblond should not refer to light in an essential way) over and above
Ignatowski’s postulates is needed.

Be that as it may, we must not lose sight of the distinction between the content
of a theory and its mode of discovery, or even its axiomatic formulation. If it is
the content of SR that we are after, then as Lévy-Leblond himself attested

Relativity theory, in fact, is but the statement that all laws of physics are invariant under the
Poincaré group (inhomogeneous Lorentz group). The requirement of invariance, when
applied to a classfication of the possible fundamental particles . . . permits but does not
require the existence of zero-mass objects . . .48

This is the real point, and in making it, Lévy-Leblond was doing nothing more
than reiterating Einstein’s own view. As Stachel has stressed,49 Einstein came to
regret the emphasis in his 1905 paper on the behaviour of light. Here is how he
put it in 1935.

The special theory of relativity grew out of the Maxwell electromagnetic equations. But it
came about that even in the derivation of the mechanical concepts and their relations the
considerations of those of the electromagnetic field played an essential role.The question as
to the independence of these relations is a natural one because the Lorentz transformation,
the real basis of special-relativity theory, in itself has nothing to do with the Maxwell
theory.50

As we saw in section 6.7, Einstein emphasized again in his 1949 Autobiograph-
ical Notes that the central principle of SR is the Lorentz covariance of all the fun-
damental laws of (non-gravitational) physics, and somewhat confusingly tried to
tie this big principle into the thermodynamical, or principle-theory, methodology

47 Lévy-LeBlond (1976), p. 271. 48 ibid. 49 Stachel (1995), pp. 9, 271–2.
50 Einstein (1935).
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he used in 1905.51 At any rate, the nature of the big principle—what Minkowski
called the world postulate—has often led commentators to remark that SR has the
character of a ‘meta-theory’, or that it has a ‘transcendental’ flavour. It doesn’t tell
you how things interact; rather it tells you how any theory of interaction should
behave. The big principle is a super law whose function, like that of all symmetry
principles, is in Eugene Wigner’s words . . . ‘to provide a structure or coherence to
the laws of nature, just as the laws of nature provide a structure and coherence to
the set of events’.52

At its most fundamental, SR is a theory that lies somewhere between a pure
principle theory (like thermodynamics, or Einstein’s 1905 version of SR) and a
fully constructive theory (like statistical mechanics).The big principle is a universal
constraint on the nature of the non-gravitational interactions. It is a ‘restricting
principle’, as Einstein himself put it, and does not determine the exact form of
the dynamics in question. It is this facet of the theory that so bewildered Poincaré,
who was already well aware of the big principle, and even attributed it to Lorentz.
For Poincaré the principle was the germ of a theory, not a theory in its own right.
It must have been galling for him to see Einstein’s SR given such prominence,
when a good part of what the young man seemed to be doing was merely to
postulate what he and Lorentz had been trying to prove the hard way.

8.4.2 Quantum Theory

The one and only meeting between Einstein and the great French polymath took
place at the Solvay Conference in Brussels in 1911, a year before Poincaré’s death.
Maurice de Broglie later recalled: ‘I remember one day at Brussels, while Einstein
was explaining his ideas, Poincaré asked him, “what mechanics are you using in
your reasoning?” Einstein answered: “No mechanics” which appeared to surprise
his interlocutor.’53

Einstein may have been discussing his hypothesis of the light quantum rather
than SR, but as both were based, in different ways, on thermodynamic con-
siderations, it may not much matter for our purposes. For his part, Einstein
found Poincaré’s incomprehension frustrating,54 and from a modern point of
view Poincaré stance might well seem short-sighted, if not high-handed.

Criticisms can, I think, be justly made of Poincaré’s position. It does not appear
that he really appreciated the full significance of Einstein’s operational analysis of
the Lorentz coordinate transformations associated with boosts. Poincaré contin-
ued to regard length contraction as a separate assumption, and never seems to
have appreciated the existence of time dilation. Most importantly, as we saw
in Chapter 4, Poincaré never understood that the dynamical origins of length

51 Recall that the relativity principle that appears as an axiom in both the 1905 Einstein and the
1910 Ignatowski derivations must not under pain of circularity contain reference to the precise form
of the inertial coordinate transformations. 52 Wigner (1964).

53 Galison (2004), p. 297. 54 ibid.
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contraction could be tied up with the big principle of Lorentz covariance. How-
ever, there is an aspect of his thinking that deserves commendation, at Einstein’s
expense. Einstein was justified in 1911 to reply ‘no mechanics’, because as he
repeated throughout his life, no successful constructive theory of the constitution
of matter and radiation existed in the early years of SR. Under these circumstances,
the self-confessed ‘sin’ of treating rods and clocks as primitive entities within SR
was forgivable. But within two decades or so a new mechanics did emerge: quan-
tum mechanics. As I have stressed earlier, by the time of Einstein’s death exactly
fifty years after his annus mirabilis, much insight had been gained within quantum
theory as to the detailed nature of material structure. And as Swann emphasized
in the 1940s (recall the discussion of his arguments in the previous chapter), an
answer of sorts had appeared to the obvious question related to the big principle:
Lorentz covariance of what? Einstein chose largely to ignore this development, at
least in the context of his original ‘sin’. The irony is that what Poincaré wanted
he did not live to see; what Einstein lived to see, and partially instigated, he did
not want.55

An analogy with the biological sciences suggests itself. Charles Darwin’s theory
of evolution by natural selection relies critically on two empirically based claims:
the existence of variation, or differences between individual members of a species,
and heredity, or the ability of these members to pass on the differences to suc-
ceeding generations. Darwin himself realized that a biological mechanism must
exist to bolster these claims, but never succeeded in specifying what it was. He
developed a simple, but amazingly fertile theory of how slow adaptation to the
changing environment by plants and animals accounts for the immense variety
of species seen today in the natural world. But the analogy with a principle the-
ory in physics, and in particular Einstein’s 1905 theory of relativity is obvious:
Darwin’s theory of natural selection in its original form presupposed the existence
of a microscopic mechanism whose nature was obscure, but whose existence was
required by a critical combination of fact and theory. The obscurity of the mech-
anism did not prevent early success for the theory within the community of life
scientists. But it was of course the ‘new synthesis’ based on subsequent knowledge
of genetics, chromosomes, and DNA that filled the gap, and re-established the
primacy of Darwin’s theory after the doldrums it was to go through around the
turn of the twentieth century.

55 It is in the nature of the argument that Swann, and to a lesser extent Bell, gave that the
appeal to quantum theory involves nothing other than the Lorentz covariance of its laws. The
argument is obviously far from fully constructive. To provide a quantum theoretical analogue of
Bell’s constructive pedagogical model, particularly one involving inter-atomic forces, would be an
ambitious undertaking, outlandishly so if the starting point is the most fundamental theory we have:
quantum field theory. I am unaware of a systematic derivation of the stable structure of even the
hydrogen atom within relativistic quantum field theory. And even today, relativistic treatments of
the cohesion of matter based on quantum mechanical models of interaction are not thick on the
ground. One starting point for the physics of interatomic forces in molecules and crystals is based
on relativistic Projected-Dirac-Breit Hamiltonians within the framework of the Born–Oppenheimer
approximation; see Schwartz et al. (1991).
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It is dangerous to push this analogy too far. Amongst other things, there is every
reason to think Darwin himself would have been thrilled by the genetic revolution
had he lived to see it. It is intriguing that this revolution not merely provided the
missing mechanism in natural selection, but changed the philosophy of biology.
I have in mind the relatively recent insight, due principally to William Hamilton
and developed and popularized by Richard Dawkins, that the agent of evolution is
neither the group nor the individual but the gene. This notion has had a profound
effect on the understanding of such key issues as altruism and sexual reproduction
in evolution, not to mention the little issue of our own significance in the cosmic
order.56 There is no way that appreciation of the role quantum theory plays in
the most fundamental account of the relativistic behaviour of rods and clocks can
lead to as profound a change in the philosophy of relativity theory, and it is a pity
all of this has nothing to do with sex. But it is part of the full picture, and it paves
the way to some of the arguments developed in the next chapter.

56 For a recent, highly readable account of these developments, see Sykes (2004).
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The View from General Relativity

Space tells matter how to move. Matter tells space how to curve.

Charles W. Misner, Kip S. Thorne, and
John Archibald Wheeler1

9.1 INTRODUCTION

In 1954, a year before his death, Albert Einstein wrote in a letter to Georg Jaffe

You consider the transition to special relativity as the most essential thought of relativity,
not the transition to general relativity. I consider the reverse to be correct. I see the most
essential thing in the overcoming of the inertial system, a thing which acts upon all
processes, but undergoes no reaction. The concept is in principle no better than that of
the center of the universe in Aristotelian physics.2

As we saw in section 8.3.1, Einstein viewed the ‘inertial system’, the privileged
coordinate system associated with the rigid geometric structure of Minkowski
space-time, as explaining the principle of inertial motion for force-free bodies
in SR. Whether Einstein was right about space-time geometry in SR ‘acting’ on
bodies, and whether therefore in the theory there is a violation of the action–
reaction principle, may be questioned (and we did question it above), but there
remains the fundamental difference between SR and the general theory of relativity
(GR): in GR the metric tensor (and hence the affine connection, given their
compatibility) becomes a dynamical agent. It undeniably acts and is acted upon.
But in what sense is it geometry, or space-time structure itself that acts?

In his 1923 book The Mathematical Theory of Relativity, Arthur Eddington
distinguished between two chains of reasoning in GR. The first familiar one starts
with the existence of the four-dimensional space-time interval ds, whose meaning
is the usual one associated with the readings of physical rods and clocks and
possibly light rays. From the metric field gµν associated with the interval

ds2 = gµνdxµdxν (9.1)

1 Misner et al. (1973), p. 5 2 See Stachel (1986), p. 377.
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(recall we are using the Einstein summation convention for repeated indices) the
Einstein tensor is built up, which finally is equated with the stress-energy tensor
related to matter. The other less familiar chain of reasoning ‘binds the physical
manifestations of the energy tensor and the interval; it passes from matter as now
defined by the energy-tensor to the interval regarded as the result of measurements
made with this matter.’3

The aim of this chapter is to take up the challenge of outlining this second
chain of reasoning, at least as I see it. In developing this reasoning, it will be
argued that the dynamical underpinning of relativistic kinematics that has been
defended in this book is consistent with the structure and logic of GR.4 It will
be seen as we go along that chronogeometrical significance of the gµν field is not
an intrinsic feature of gravitational dynamics, but earns its spurs by way of the
strong equivalence principle.

The first part of the chapter concerns various aspects of the nature of Einstein’s
field equations. The second part concerns the operational significance of the
metric field. Appendix A deals with Einstein’s changing views on the significance
of general covariance in GR.

9.2 THE FIELD EQUATIONS

9.2.1 The Lovelock–Grigore Theorems

A 1969 theorem due to D. Lovelock5 establishes that gravitational actions (in the
sense of the principle of ‘least’ action) are severely constrained by the requirement
of invariance under arbitrary coordinate transformations:

xµ → x ′µ = xµ + εξµ (9.2)

where ξµ is an arbitrary vector field and ε is small. Specifically, Lovelock proved
that in a space-time of four or fewer dimensions, any strictly invariant action that
is second-order in the metric field gµν (i.e. depends on at most second derivatives
of the metric with respect to the coordinates) and that gives rise to second-order
field equations, must be associated with a Lagrangian density Lgrav which is a
linear combination of the Hilbert Lagrangian density and a cosmological term:

Sgrav =
∫

Ω
Lgrav d4x =

∫
Ω
(aR + λ)

√
|g | d4x, (9.3)

3 Eddington (1965), p. 146.
4 The arguments in this chapter are a development of the logic given in Brown and Pooley

(2001), in which the possibility of extending the dynamical approach advocated by Bell into GR was
defended. 5 Lovelock (1969).
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where R is the curvature scalar and g is the determinant of gµν . Note that |g |
appears in the square root rather than the usual −g , because no assumptions
about the signature of gµν are made in the theorem.6

It is easy to overestimate the role that invariance is playing in this theorem. For
one thing, it is not at all trivial that a second-order action be required to produce
only second-order Euler–Lagrange equations, and not fourth-order equations as
might be expected (i.e. twice the order reached in the Lagrangian). In fact the
reason that the usual Hilbert Lagrangian density R

√−g achieves this feat can
best be seen by recalling how Einstein introduced his version of the Lagrangian
formulation of general relativistic dynamics.

Einstein was originally interested in unimodular coordinates satisfying the con-
dition

√−g = 1, as he thought that such a restriction produced a substantial
simplification of gravitational dynamics. (We will return to this remarkable aspect
of Einstein’s thinking, and how it was abandoned by late 1916, in Appendix A.)
For these coordinates he introduced the Lagrangian density

Lgrav = gµνΓα
µβΓβ

να

√−g , (9.4)

where the Γα
βγ represent the (metric compatible) connection coefficients.7

For arbitrary coordinates, Einstein’s Lagrangian density—often called the Γ−Γ
Lagrangian—became8

Lgrav = gµν
(
Γα

µβΓβ
να − Γβ

µνΓα
αβ

) √−g . (9.5)

Now both the Hilbert action (the action in (9.3) with λ = 0) and the action
obtained from the Γ−Γ Lagrangian (9.5) give rise, under Hamilton’s principle

6 A word on conventions and notation. The Lorentzian signature of the metric gµν is (+− − −).
Greek indices run from 0 to 3; x0 = ct , t being coordinate time. For any geometrical object F ,
F,µ = ∂µF = ∂F /∂xµ and F;µ = ∇µF .

7 In 1915, Einstein was unaware of the geometrical meaning of the Christoffel symbol, a function
of the gravitational potential gµν and its first derivatives, as a connection, or rule for defining parallel
transport. Indeed, such an insight would have to wait for work by Hermann Weyl, principally.
Before this development, Einstein referred to his gravitational theory as an exercise in the theory of
general invariants; it was not a fully ‘geometrical’ theory yet in his mind.(See Stachel (1995), p. 292.)
However that may be (and it is good not to lose sight of the fact that the notion of ‘geometry’ is very
elastic) it is noteworthy that the motivation for Einstein’s choice of the Lagrangian density (9.4) is
analogous with the form of the Lagrangian density for the free Maxwell field, −(1/4)FµνF µν√−g
(see section 9.4 below). A major breakthrough in Einstein’s long and tortuous road of discovery was
the realization in late 1915 that the components of the gravitational field Γα

µβ are not simply the
first derivatives of the gravitational potential, or more specifically (1/2)gαλgλµ;β as in his 1913
‘Entwurf ’ theory, but are defined as in the Christoffel symbols. This point has been emphasized in
the impressive recent historical study of Einstein’s discovery of the field equations by Janssen and
Renn (2005), which also highlights the importance of the role of the action principle in Einstein’s
thinking from 1913 on. A very nice, briefer historical account is found in Sauer (2004).

8 The Lagrangian density (9.4) appeared in Einstein (1915, 1916a); the Lagrangian density (9.5)
in Einstein (1916b). Note that Einstein’s connection coefficients were the negative of the usual
Christoffel symbols.
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applied to arbitrary variations in gµν , to the same Euler–Lagrange equations,9

which are Einstein’s famous matter-free or vacuum field equations

Gµν ≡ Rµν − 1
2

Rgµν = 0, (9.6)

where Rµν is the Ricci tensor. (These equations are equivalent to Rµν = 0.) That
second-order equations are obtained from the Γ−Γ Lagrangian density which is
first-order is not surprising. But it can be shown that if one subtracts the Γ−Γ
density from the Hilbert Lagrangian density the result is a second-order term that
takes the form of a total divergence of a first-order functional of gµν .10 And it is
well known that two Lagrangian densities that differ only by a total divergence
term give rise to the same Euler–Lagrange equations under Hamilton’s principle.

Einstein’s original approach to the Lagrangian formulation of the field equations
reminds us of a point that is sometimes overlooked in texts on GR: that the
gravitational action integral need not be a scalar invariant as in (9.3).11 Indeed,
a strengthened version of the Lovelock theorem was reported by D. Grigore in
1992,12 concerning the class of first-order gravitational actions that are quasi-
invariant, i.e. invariant up to a total divergence. This new theorem, the proof
of which is daunting, purports to establish that, whatever the dimensionality of
space-time, the Lagrangian density appearing in this action must take the form
of a linear combination of the Γ−Γ Lagrangian (9.5) and a cosmological term.
As in the Lovelock theorem, the result does not depend on the signature of the
metric being Lorentzian.

Further words of caution are in order when the results of Lovelock and Grigore
are taken to show the importance of general covariance as a constraint on gravi-
tational dynamics. General covariance is a symmetry of the equations of motion,
such as the field equations (9.6) above. It is trivially satisfied by any equations
that can be written in the tensor calculus. But conceptually there is a distinc-
tion between dynamical symmetries and what are sometimes called variational
symmetries. The former are transformations of the dependent and possibly inde-
pendent variables that take solutions of the equations of motion into solutions.
The latter are transformations of these variables which render the action invariant
or quasi-invariant (i.e. invariant up to a surface term, which because of Gauss’s
theorem corresponds to the Lagrangian density being invariant up to a diver-
gence). A sufficient condition for (quasi-) invariance of the action to imply the

9 The reader will recall that this is the principle requiring the first-order variation in the action
to vanish under arbitrary infinitesimal variations in the (inverse of the) metric, as well as its first
derivatives in the case of the Hilbert action, which themselves vanish on the boundary of the region
of integration in the action integral.

10 For details see, for instance, Eddington (1965), §58, Schrödinger (1985), pp. 100–1, and Dirac
(1966), §26.

11 Cf., e.g., Misner et al., p. 503. The issue is not a new one. The standard action for a free particle in
Newtonian mechanics is not invariant under a pure Galilean boost, but it is ‘quasi-invariant’ (see
below). For further discussion, see Brown and Brading (2002). 12 Grigore (1992).



154 Physical Relativity

corresponding dynamical symmetry with respect to a given transformations of
variables is that all the dependent variables in the action are subject to Hamilton’s
principle, or in other words, that all the fields are dynamical.13 In fact, Lovelock
and Grigore assumed something even stronger: that the only field that repre-
sents the gravitational potential is gµν , that no other geometrical object fields,
dynamical or otherwise, appear in the action. The 1961 Brans–Dicke theory of
gravitation also proposes second-order equations in gµν , and has an invariant
second-order action distinct from Hilbert’s (up to a cosmological term). That the
theory is not a counter-example to the Lovelock theorem is due to the fact that
the (matter-free) Brans–Dicke action depends on a scalar field as well as gµν .

The demand that nothing other than the gµν field is needed to describe the
dynamics of pure gravity has occasionally been referred to in the mainstream
literature as the ‘the principle of general covariance’,14 but it clearly goes much
further than the mere requirement of coordinate generality, or the requirement
that the field equations be written in the tensor calculus. We shall discuss the
nature and justification of this weaker requirement in Appendix A, but it is useful
now to look briefly at one of its important consequences.

9.2.2 The Threat of Underdetermination

Suppose we have a system of partial differential equations involving one or more
fields (which may be just the components of a single tensor field), and a spacelike
hypersurface defined by x0 = const. We may wish to know whether, given
suitable ‘Cauchy’ data on the hypersurface involving the fields and their partial
x0-derivatives, the differential equations uniquely determine the fields in the
neighbourhood of any point on the hypersurface. This is the case when both
an analytic solution of the equations exists at this point, and it is possible to
reconstruct uniquely the whole sequence of partial x0-derivatives of each of the
fields there. For then we can obtain the coefficients of the power series expansion
of each of the fields about the point in question, using the well-known connection
between the coefficients and such partial derivatives.

Now it is straightforward to see that any system of equations that is generally
covariant cannot satisfy this requirement, since the equations will necessarily be
formally underdetermined. This follows from the simple fact that given a solution
of the equations, a distinct solution can always be constructed by a coordinate
transformation which reduces to the identity transformation in a four-dimensional
neighbourhood of the Cauchy, or ‘initial value’ hypersurface, but which is arbit-
rary elsewhere. (Recall that the coordinate transformation (9.2) depends on the
arbitrary vector field ξµ, and therefore can depend on space and time.) Mathem-
atically distinct solutions are thus consistent with the same initial data.

13 For a recent discussion, see Brown and Holland (2004) and the references therein.
14 See, e.g., Wald (1984), p. 57.
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An important theorem due to Cauchy and Kovalevskaya establishes a sufficient
condition for the existence of unique solutions to the Cauchy problem. The
condition is that the differential equations in question take the ‘normal form’: in
our case they are such as to allow for the highest partial x0-derivative appearing
in the equations to be expressed for each of the fields as an analytic function
of the fields and their derivatives, providing no higher derivative with respect
to coordinates other than x0 appears. This permits the calculation of the whole
sequence of partial x0-derivatives mentioned above and ensures the convergence
of the power series expansion.15 It can be shown generally that for as many fields
as there are arbitrary functions defined in the symmetry (in our case four), the
Cauchy–Kovalevskaya condition fails.16

In the present case of matter-free GR it is relatively easy to see how this works.
The (twice contracted) Bianchi identity states that the covariant divergence of the
Einstein tensor Gµν vanishes independently of the validity of the field equations:

Gµ
ν;µ = 0. (9.7)

It is easily shown that these identities can be rewritten in the form

(√−gGµ
ν

)
,µ

− Γµ
νσ

√−gGσ
µ = 0. (9.8)

Inspection of (9.8) indicates that G0
µ contains no second derivatives of the metric

with respect to x0, because the second term contains at most second derivatives.
Now given Einstein’s field equations (9.6), it follows that four of these, namely
G0µ = 0 do not take the ‘normal’ form mentioned earlier in the context of the
Cauchy problem, and are ‘constraints’ (recall we are taking the Cauchy hypersur-
face to be spacelike); they express conditions between components of the metric
tensor and their x0-derivatives on the hypersurface. Only six of the ten Einstein
vacuum field equations thus propagate the Cauchy data. These same equations
propagate the constraints themselves, in the sense that it is a consequence of the
field equations that the x0-derivatives of the constraints vanish.17 Note however
that the six equations involving the Gij (i, j = 1, 2, 3) can be arranged in the
normal form, given that x0 is time-like.

Formal underdetermination of this kind may seem at first sight disastrous for
attempts to model a deterministic world. Indeed, Einstein was reluctantly led to
question the viability of general covariance in his new metric theory of gravity
between 1913 and 1915 on precisely these grounds, until he realized that math-
ematically distinct solutions of covariant field equations generated by coordinate

15 Discussion of the Cauchy–Kovalevskaya theorem can be found in John (1978), pp. 76–86, and
Dennery and Krzywicki (1967), p. 333.

16 A useful general treatment of this issue is found in Anderson (1967), §4–6, 4–7.
17 See, e.g., Bergmann and Komar (1980) and Schmidt (1996).
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transformations (so-called active diffeomorphisms) are empirically equivalent.18

This equivalence turns out to be a general feature of theories with ‘local’ symmet-
ries: no observable differences exist between different solutions of the dynamical
equations that are related by local, or ‘gauge’ transformations, and so the threat
to predictability is lifted.

But the philosophical implications of the diffeomorphism invariance of GR
are still being debated, and a large literature exists today related to the question
whether the notion of space-time as a substance is viable in the light of this
symmetry. One thing seems obvious: if the bare, differential space-time manifold
is a real entity, then different solutions of Einstein’s field equations that are related
by diffeomorphisms correspond to different physical states of affairs.19 The theory
is incapable of predicting which of the different possible worlds is realized, but
all of them are, as we have seen, empirically indistinguishable. The simplest (and
to my mind the best) conclusion, and one which tallies with our usual intuitions
concerning the gauge freedom in electrodynamics, is that the space-time manifold
is a non-entity. In this case the different, diffeomorphically related worlds are not
only observationally indistinguishable, they are one and the same thing.20

9.2.3 Matter

All these considerations apply equally well in the case where ‘matter’ is present21

and represented by the stress-energy tensor Tµν . In the action principle approach,
the total action S now contains a matter-related term:

S = Sgrav + Smatter =
∫

Ω

(Lgrav + Lmatter
)

d4x. (9.9)

It is normally assumed that the Lmatter depends not just on the variables associated
with the matter fields but also on gµν but not its derivatives. The assumption that
the total action can be broken up into two components, one of which depends
only on gµν , is non-trivial, as we see below.

Application of Hamilton’s principle of the stationarity of the action under
variations of the inverse of the metric gµν yields the familiar result that the the
sum of the variational (or Hamiltonian) derivatives of Lgrav and Lmatter vanishes:

δLgrav

δgµν
+

δLmatter

δgµν
= 0. (9.10)

18 For treatments of Einstein’s struggle with the ‘hole problem’, see Norton (1988) and Stachel
(1989). 19 But this has been contested; see Maudlin (1990).

20 As we noted in section 2.1 above, this was apparently Einstein’s own conclusion. However, for a
defence of what is now called in the philosophy literature ‘sophisticated’ space-time substantivalism,
see Pooley (2006).

21 The word ‘matter’ in GR usually means all those fields and particles whose degrees of freedom
are distinct from gravitational degrees of freedom. In particle physics, there is a subdivision of reality
into ‘matter’ (leptons and quarks) and ‘radiation’ (fields like the electromagnetic, gravitational, and
gluon fields). See Rovelli (1997), note 10, p. 219.
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Defining finally the symmetric second rank tensor

Tµν ≡ −2√−g
δLmatter

δgµν
, (9.11)

and suppressing the cosmological constant so Lgrav = κ−1R
√−g , say (κ =

8πG , where G is Newton’s gravitational constant; the similarly weighted Einstein
Γ−Γ Lagrangian density would do just as well) we arrive at the general field
equations

Gµν ≡ Rµν − 1
2

gµνR = 8πGTµν . (9.12)

There follow some remarks about these famous equations.

Meaning of the field equations
The equations are, unlike the field equations in electromagnetism, non-linear;
and they are very hard to solve in any systematic fashion. The equations can be
re-arranged to take the following form, where the roles of R, the Ricci scalar, and
T (recalling that T ≡ T µ

µ) are reversed:

Rµν = 8πG
(

Tµν − 1
2

gµνT
)

. (9.13)

These equations will be true, remarkably, if that for any one component holds in
all local inertial coordinate systems everywhere in space-time. In such coordinates
gµν = diag(−1, 1, 1, 1) (see below), so g00 = −1, and

T = −T00 + T11 + T22 + T33, (9.14)

so the field equations are equivalent to the fact that

R00 =
8πG

2
(T00 + T11 + T22 + T33) (9.15)

holds in every local inertial frame. Now T00, the flow of momentum in the
t -direction, is just the energy density ρ, and T11 ≡ Txx , the flow of momentum
in the x-direction, is the momentum in that direction Px , etc.

The operational significance of R00 ≡ Rtt in an inertial frame of reference can
be demonstrated as follows. Imagine a small ball of free-falling test particles all
of which are assumed to have world-lines that are geodesics of the metric, with
four-velocities U µ. (The justification of this geodesic assumption will be taken up
shortly.) The covariant divergence of U µ, or ‘expansion’ θ = U µ

;µ, is a measure
of the rate of change of the three-volume of the ball. This will depend on initial
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conditions, and we shall assume that it is initially zero. But gravity will determine
the rate of change of the expansion, or the acceleration of the volume. When the
particles are all initially at rest,22 so that U µ = (1, 0, 0, 0), it can be shown that

dθ

dt
= −RµνU µU ν = −Rtt . (9.16)

Thus we end up in these special circumstances with the simple result

dθ

dt
=

−8πG
2

(ρ + Px + Py + Pz). (9.17)

The beauty of this formulation of the field equations is the ease with which it
reveals some qualitative properties of Einsteinian gravity. First, suppose a massive
body is situated at the centre of the ball of test particles; its positive mass density is
a form of energy density, and because of the minus sign in (9.17) the volume of the
ball will shrink. Gravity attracts. Not a surprising result, but comforting. Second,
gravity depends on pressure—a feature that has no Newtonian analogue—and acts
in the opposite sense to the normal, ‘direct’ action of pressure which is expansive.
(Normally, the gravitational effect of pressure is swamped by that of energy density,
but in neutron stars, for instance, the two effects are comparable. On the human
scale, all terms on the RHS of (9.17) are small: gravity is a weak force.) Finally,
consider the case where matter is absent, or Tµν = 0. Since the rate of change
of volume is initially zero, and it now follows from (9.17) that the acceleration is
too, it must be the case that volume remains constant, even though curvature can
distort the ball.Tidal effects will occur in a ball in free fall at the surface of the earth.
Even though we are describing the physics relative to a local inertial coordinate
system, and hence the tidal effects will be negligible, they nonetheless occur in
such a way that the vertical elongation and horizontal squeezing are consistent
with zero acceleration in volume. The same thing happens when gravitational
waves pass through the ball.23

A noteworthy feature of the matter-free case is this. It follows from the reasoning
in section 9.2.2 above that R00 contains no second x0-derivatives of gµν , and yet
the second-time derivative of the volume of the ball of test particles is determined
by it. It turns out that the same feature obtains in the general case where matter is
present, as long as the pressure terms in the RHS of (9.17) vanish, since analogous
reasoning leads to the conclusion that T00 likewise cannot depend on second
x0-derivatives of gµν . The demonstration above that gravity is attractive depends
then only on one of the four constraint equations.

22 It needs to be stressed that the dimensions of the ball must be small in relation to the radius of
curvature, so that comparison between the velocities of the balls is meaningful.

23 The discussion so far has followed that of Baez and Bunn (2004) and Carroll (2004), pp. 167–70.
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Curvature and the Weyl tensor
A word about the field equations and curvature. The Ricci tensor is the trace
of the Riemann curvature tensor: Rµν = Rα

µαν . The trace-free part of the
curvature tensor is therefore not algebraically related to the stress-energy tensor
(at least by the Einstein field equations) and depends on boundary conditions. So
the vacuum field equations, for instance, have solutions that correspond to flat
Minkowski space-time and ones in which gravitational waves are propagating.
These solutions differ only in relation to the trace-free part of the Riemann tensor
that is captured by the so-called Weyl tensor which in four-dimensional space-time
takes the form

Cρσµν = Rρσµν +
1
3

gρ[µgν]σR − gρ[µRν]σ + gσ[µRν]ρ, (9.18)

where antisymmetrization in a pair of indices is indicated by surrounding them
by square brackets, e.g. A[µBν] = AµBν − AνBµ. The Weyl tensor may not
be algebraically related to Tµν , but because of the Bianchi identities and the
field equations, a first-order differential equation relates these tensors, which is
analogous to Maxwell’s equations in electrodynamics.24

Matter and space
The standard terminology in which we distinguish between gµν and ‘matter’ fields
is arguably misleading, as is the oft-repeated claim that gµν plays a dual role in
GR, acting both as the gravitational potential and the form of the background
space-time, or arena, within which physical processes play themselves out. The
fact that gµν cannot vanish anywhere in spacetime makes it unlike any other
physical field, as does the fact that it couples with every other field. Gravity is
different from the other interactions, but this doesn’t mean that it is categorically
distinct from, say, the electromagnetic field. Carlo Rovelli put the point this way
in 1997:

A strong burst of gravitational waves could come from the sky and knock down the rock
of Gibraltar, precisely as a strong burst of electromagnetic radiation could. Why is the . . .
[second] ‘matter’ and the . . . [first] ‘space’? Why should we regard the . . . [first] burst
as ontologically different from the second? Clearly the distinction can now be seen as
ill-founded.25

Conflating gµν with space-time itself, or an essential part of it, has also given rise
to the widespread misapprehension that the existence of physical solutions of the
vacuum field equations, including the Minkowski metric ηµν with its preferred
global inertial coordinate systems, is inconsistent with Mach’s principle. Once it is
recognized that gµν is an autonomous field (or fields) in its own right, nothing in

24 For further details, see Carroll (2004), pp. 169–70. 25 Rovelli (1997), p. 193.
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Mach’s philosophy implies that its dynamical behaviour, or very existence, must
be determined by the presence of (other kinds of ) matter.

Rovelli contrasts two ways of interpreting Einstein’s ‘identification’ of the grav-
itational field and geometry: as (a) the discovery that the gravitational field is
nothing but a local distortion of space-time geometry or as (b) ‘the discovery that
space-time geometry is a manifestation of a particular physical field, the gravitational
field’. Rovelli prefers (b), reserving the term ‘space-time’ for the unobservable
differential manifold.

Physical reality is now described as a complex interacting ensemble of entities (fields), the
location of which is only meaningful with respect to one another. The relation among
dynamical entities of being contiguous . . . is the foundation of the spacetime structure.
Among these various entities, there is one, the gravitational field, which interacts with every
other one and thus determines the relative motion of the individual components of every
object we want to use as rod or clock. Because of that, it admits a metrical interpretation.26

The first two sentences of this passage express a view very similar to one Ein-
stein defended, and which was reinforced in section 9.2.2 above. The remaining
sentences, suggestive but perhaps a little vague, lead nicely on to our next point.

The chronometric meaning of gµν

Nothing in the form of the equations per se indicates that gµν is the metric of
space-time, rather than a (0, 2) symmetric tensor which is assumed to be non-
singular, but, significantly, whose signature is indeterminate. As James Anderson
wrote in 1967

[F]rom the point of view of the principle of general invariance we need not interpret
gµν as a metric, nor Rµν as a Ricci tensor. . . . [Einstein’s field equations] do not rest
on such an interpretation; one can show that they are the only dynamical equations of
second differential order for a symmetric tensor gµν that are in accord with the principle
of general invariance as we have interpreted it. . . . As in all physical theories we will look
for consequences of . . . [the field equations] that will lead us to associate gµν with some
observable element of the physical world.27

The ‘chronogeometric’, or ‘chronometric’, significance of gµν is not given a
priori. How does it come about that gµν is surveyed by physical rods and clocks,
and that its null and time-like geodesics are associated with the world-lines of
photons and massive particles respectively? It will be argued below that it is only
the geodesic motion of massive particles that can be read more or less directly
off from the general form of the field equations. The rest of the operational
significance of gµν depends on other considerations.

26 op. cit., p. 194. 27 Anderson (1967), p. 342.
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9.3 TEST PARTICLES AND THE GEODESIC PRINCIPLE

The first empirical evidence that Einstein had of the validity of his field equations
had to do with the anomalous advance of the perihelion of the planet Mercury.The
extraordinary emotion Einstein felt at the moment in 1915 when he accounted
for the tiny but nagging discrepancy between Mercury’s orbit and the Newtonian
predictions is well documented. Using what was an approximation to the still-to-
be-discovered exact Schwarzschild solution of the vacuum field equations, Einstein
treated Mercury as a test particle and assumed that its motion corresponds to a
geodesic of the metric.

From his earliest inklings of a theory of gravity based on the principle of
equivalence and the curvature of space-time, until 1927, Einstein assumed that
all test bodies would follow the grooves or ruts of space-time defined by curves that
are straight, or equivalently that are of extremal length. We have seen that during
this period Einstein assigned a causal role to space-time structure in precisely this
sense: to nudge the particles along such privileged ruts. This kind of action of
space-time on matter was taken to be primitive; fortunately it turned out to be
unnecessary. Appeal to the form of the field equations was enough to deliver the
principle of geodesic motion.

In one of the most eloquent sections of their monumental book on gravitation,
C. Misner, K. Thorne, and J. Wheeler give a detailed, if informal account28 of the
way in which the problems of defining and treating test bodies, and defining
the background geometry, can be handled in GR. In particular, they explain how
the geodesic behaviour of test bodies can be derived from the vanishing of the
covariant divergence of the stress-energy tensor associated with the body:

T µ
ν;µ = 0. (9.19)

Recall that these equations are an immediate consequence of the field
equations (9.12), since the covariant divergence of the Einstein tensor vanishes
identically (see (9.7) above)29. (Although it is common for (9.19) to be referred
to as a ‘conservation law’, it was appreciated from the very beginning that the
presence of the covariant derivative, and not the simple partial derivative in the
equation makes this reading strictly untenable in curved space-time.)

Some version of the derivation of the geodesic equation of motion for test bod-
ies from (9.19) is now a common feature of textbooks on GR, as is recognition of
its limitations: that corrections to this equation arise from the interaction of the
spin of an object of finite dimensions with the background space-time curvature.

28 See Misner et al. (1973), section 20.6, pp. 471–80. References to more systematic treatments
are given on p. 480.

29 The connection between (9.12) and the requirement of general covariance will be spelt out in
the Appendix A.
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The first realization that such a derivation of geodesic motion is possible is some-
times attributed30 to Einstein and Grommer in 1927. (Einstein’s approach in
this and later work was to treat elementary particles as field singularities. Differ-
ent approaches to the derivation of the geodesic theorem were adopted by other
workers.)31 But the first derivation of geodesic motion is found as early as 1918 in
a review paper on GR by Eddington.32 Five years later, Eddington stressed that it is
a ‘blemish’ in a ‘deductive theory’ simply to assume that test bodies—particles and
light rays—trace out geodesics and null geodesics respectively of the metric, and
he provided an interesting plausibility argument based on the equations (9.19)
for the geodesic motion of ‘symmetrical’ particles.33

The fact that geodesic motion is a theorem and not a postulate has striking
consequences that cannot be overemphasized. Earlier in the book I argued that it
(and the need for corrections in the case of bodies with spin) casts doubt on the
widespread view that space-time structure, in and of itself, can act directly on test
bodies. But it also sheds light on the meaning of inertia (in the sense of inertial
motion) and gravity.

Gravity traditionally has had two faces. It explains why things fall down and it
explains why the fall is not uniform across space and time. Take the latter aspect
first. Two objects are in free-fall in my office: the head of my student who has
just nodded off in a tutorial, and the copy of Misner, Thorne, and Wheeler’s
Gravitation that I am throwing at him. Ignoring initial horizontal components of
the motions, the two objects do not quite move along parallel lines, they are each
heading after all towards the centre of the Earth. This of course has to do in GR
with geodesic deviation, with the so-called ‘tidal’ effects of space-time curvature.
It is tempting to think that in GR this is all we mean, or should mean, by gravity.
For when we come to explaining why the objects are falling in the first place,
the answer seems almost banal. It is because the frame defined by my office is
accelerating in relation to the local inertial frames, and in relation to the latter
frames the objects, being force-free, are simply moving inertially.34 The glory of

30 See Adler et al. (1975), p. 352, and Misner et al. (1973) p. 480.
31 See in particular Fock (1969).
32 A fascinating detailed account of early, independent work on the equation of motion in GR by

Eddington, de Donder, Weyl, Pauli, and several others, which not only predated the collaboration
between Einstein and Grommer but was never properly acknowledged by Einstein, is found in Havas
(1989).

33 In his 1923 book The Mathematical Theory of Relativity, Eddington treated a particle as a narrow
tube containing non-zero Tµν , with momentum and mass obtained by integrating T4ν over a three-
dimensional volume. He realized that the constancy along of the tube of the ‘dynamical’ velocity
4-vector does not show that the direction of this vector is in the direction of this tube. But he argued
that if the particle is symmetrical (or at least defines three perpendicular planes of symmetry) there
would be no preferential direction in which the momentum can point to cause deviation from a
geodesic. See Eddington (1965), pp. 125, 127. It should be noted that in the same publication
(section 74c), Eddington also gave a careful treatment of the behaviour of light wave fronts based on
the generally covariant form of Maxwell’s equations.

34 This argument doesn’t of course account for why gravitation is attractive, an issue we dealt with
earlier.
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this explanation is that it accounts for the universality of free fall, that all bodies,
independent of their constitution, fall at the same rate. But we must be especially
careful when we conclude that gravity is either merely a pseudo-force, or not a
force at all.

It is true that no force in the traditional sense is acting on a freely falling body,
because such a force strictly only has meaning in GR in relation to the non-
gravitational interactions, whose job it is to pull objects with suitable attributes
like charge etc. off the geodesics. It is the notion found in SR, not quite the same
as a Newtonian force, but clearly related to it. But when ‘force-free’ test bodies
undergo geodesic flow in GR, whether there is geodesic deviation or not, such
motion is ultimately due to the way the Einstein field gµν couples to matter, as
determined by the field equations. It is a consequence, even if one that remained
hidden for some years after the birth of GR, of the fundamental dynamics of the
theory. As Misner, Thorne, and Wheeler stress:

Only here [in GR] does the conservation of energy-momentum appear as a fully automatic
consequence of the of the inner working of the machinery of the world . . . It makes no
difficulties whatsoever for Maxwell’s equations that one had shifted attention from a world
line that follows the Lorentz equation of motion to one that does not. Quite the contrary
is true in general relativity. To shift from right world line (geodesic) to wrong world line
makes the difference between satisfying Einstein’s field equations in the vicinity of that
world line and being unable to satisfy Einstein’s field equations.35

Inertia, in GR, is just as much a consequence of the field equations as grav-
itational waves. For the first time since Aristotle introduced the fundamental
distinction between natural and forced motions, inertial motion is part of the
dynamics. It is no longer a miracle.36

9.4 LIGHT AND THE NULL CONES

In the majority of experimental tests of GR, light, or electromagnetic radiation
more generally, plays a crucial role as a tracer, mapping out the curvature of space-
time. These tests involve the gravitational ‘bending’ of light, the gravitational
redshift (though this is a test not of the existence of curvature but of the equivalence
principle), the time delay of radar pulses in the gravitational field of the Sun,
and most recently the gravitational lensing (and microlensing of starlight) in the
gravitational field of galaxies.

In all these experiments, light is treated as a test body, materializing null
geodesics in prescribed gravitational fields that are solutions of the Einstein vac-
uum equations (9.6)—the Schwarzschild metric in the case of the solar system.

35 Misner et al., p. 475. For a more critical evaluation of the geodesic theorem in GR, see Tavakol
and Zalaletdinov (1998).

36 Another way of putting the point is that there are no truly force-free bodies in GR; see Trautman
(1966) and Anderson (1967), p. 438.
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(The possible novel effects of the coupling between the Einstein and Maxwell
fields such as the generation of electromagnetic waves by gravitational waves are
too small to be detected.) But, just as with test bodies and their geodesic motion,
it would be wrong to imagine that the behaviour of light is defined in GR by
the null cones. What is needed is a determination of the behaviour of light in a
curved space-time as given by the best theory of the Einstein–Maxwell equations,
by way of the geometric optics approximation. This has long been appreciated
(possibly first by Eddington)37and the argument usually goes like this.

The standard Lagrangian density for the Maxwell field in the absence of matter
sources is given by

LEM = −1
4

FµνF µν
√−g , (9.20)

the field strength tensor being given by Fµν ≡ Aν;µ − Aµ;ν = Aν,µ − Aµ,ν

where Aµ is the electromagnetic four-potential. The Maxwell field couples to
gravity because in (9.20) F µν ≡ gµσgνλFσλ. The Lagrangian (9.20) fits in to
the RHS of (9.11), and the metric will be a solution of the full field equations
(9.12). However, we may assume that in the experiments we are interested in,
the effect of the light beam on the background metric is negligible, and we treat
the metric as a solution of the vacuum equations (9.6). If we apply Hamilton’s
principle with respect to arbitrary variations in the Aµ we obtain in the standard
way the generally covariant field equations

F µν
;µ = 0. (9.21)

The further familiar equations

Fµν;σ + Fνσ;µ + Fσµ;ν = 0 (9.22)

follow of course from the definition above of Fµν in terms of the Aµ.
In the geometric optics regime,38 wave solutions to the equations (9.11) are

considered where the wavelength is much smaller than the scale on which either
the amplitude or the background space-time curvature is varying. Locally, one can
think of the wave as an undistorted plane wave. So we suppose that the 4-potential
can be written as

Aµ = Re

{[
aµ(x) + O(ε) + O(ε2) + · · · ] exp

(
i
ε
θ(x)

)}
, (9.23)

where the amplitude aµ is complex and slowly varying, and the phase θ is real
and rapidly varying. The dimensionless parameter ε tends to zero as the typical

37 See fn. 33 above.
38 A useful treatment is found in Misner et al. (1973), section 22.5; see also Ehlers (1973).
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wavelength of the electromagnetic signal becomes shorter and shorter; the elec-
tromagnetic field equations can be solved order-by-order in ε. The wave vector
kµ is defined as the gradient of the phase

kµ ≡ θ,µ, (9.24)

and light rays are defined to be the curves normal to the surfaces of constant
phase θ. Thus the differential equation for a light ray is

dxµ

ds
= kµ = gµνθ,ν . (9.25)

Now insert the potential (9.23) into the source-free field equations (9.21) and
collecting terms of order (1/ε2) one derives first that

k2 ≡ kµ
µ = 0, (9.26)

which establishes that kµ is a null vector. If one now takes the gradient of k2, and
recalling that the wave vector is the gradient of a scalar, it can be shown that

kµkµ;ν = kµkν;µ = 0, (9.27)

which means that the curve for which kµ is its tangent parallel transports kµ

along itself: the curve is a geodesic. But from (9.25) the curve is just the path of
a light ray, so it has been shown that light rays propagate along null geodesics
in the geometric optics approximation. Light acts as a tracer of the conformal
structure associated with the metric field, not because it must but because the
electromagnetic field equations say it does.

9.4.1 Non-minimal Coupling

But interest has been growing in recent years in possible modifications to the
standard electromagnetic Lagrangian density (9.20). Consider for example the
Lagrangian L̃EM =
(

−1
4

FµνF µν +
1
4
ξRFµνF µν +

1
2
ηRµνF µρF ν

ρ +
1
4
ζRµνρσF µνF ρσ

) √−g ,

(9.28)

where Fµν is defined as above, Rµνρσ is the curvature tensor and ξ, η, and ζ are
constants having dimensions [length]2. This Lagrangian density brings together
a number of terms that individually have appeared in various investigations of
the Einstein–Maxwell equations that follow from non-minimal coupling (the
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meaning of which is discussed in the following section), but which reduce to the
standard equations when space-time is Minkowskian and hence flat. The case of

η = −2ξ, ζ = ξ (9.29)

is of particular interest. A 1976 theorem due to G. W. Horndeski39 purports to
show that the Lagrangian density (9.18) with the constants given by (9.29) give
rise to the most general electromagnetic equations which are (i) derivable from a
variational principle, (ii) at most second-order in the derivatives of both gµν and
Aµ, (iii) consistent with charge conservation, and (iv) compatible with Maxwell’s
equations in Minkowski space-time.

Satisfaction of the conditions (i) to (iv) above is sometimes taken to establish
compatibility with the currently accepted principles of electromagnetism.40 But a
word is in order at this point regarding condition (iv).The only justification for this
condition that I can see is the notion that in the special relativistic limit, i.e. in the
absence of curvature, the traditional Maxwell’s equations must be recovered. This
rationale is questionable. It rests on the ‘counterfactual’ notion of limit that was
raised and criticized in section 6.5 above. The special relativistic limit of GR is a
subtle business, as we see in the next section, but what it involves is not postulating
a globally flat Minkowski space-time (which is consistent with the Einstein field
equations only if the stress energy tensor Tµν vanishes everywhere, so there is
strictly no matter) but rather the specification of experimental conditions under
which the observed effects of space-time curvature are negligable. The interesting
examples of non-minimal coupling are cases where this condition fails.

In 1980, I. T. Drummond and S. Hathrell calculated the effective action in
QED with a background gravitational field, or more specifically the one-loop
vacuum polarization contribution to the action. Vacuum polarization in QED
confers a size to the photon of the order of the Compton wavelength of the
electron, defined as λC = �/mec. As in the case of the spinning particle of finite
dimensions that violates the principle of geodesic motion, the motion of the
photon can now be influenced by a tidal gravitational effect that depends on the
curvature. In the one-loop approximation, Drummond and Hathrell41 obtained
a Lagrangian density of the form (9.28) but with an extra additive term

LQED = L̃EM + λF µσ
;µF ν

σ;ν , (9.30)

where the coefficients in (9.28) are (compare with (9.29) for the Horndeski
theorem) in units � = c = 1

ξ = − α

144π
λ2

C, η =
13α

360π
λ2

C, ζ = − α

360π
λ2

C, (9.31)

39 See Horndeski (1976), Horndeski and Wainwright (1977), Buchdahl (1979), and Müller-
Hoissen and Sippel (1988). 40 See Teyssandier (2003).

41 Drummond and Hathrell (1980).
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α being the fine-structure constant. Note that the additive term in (9.30) does not
depend on curvature; it represents off-mass-shell effects in vacuum polarization
but is irrelevant for considerations related to the speed of photons.

Indeed, in the low frequency approximation λ � λC, it can be shown that
the analogue of (9.26) is

k2 − 13αλ2
C

180π
Rµνkµkν − αλ2

C

45π
Rµνλρkµkλaνaρ = 0, (9.32)

where aµ is the amplitude defined in (9.23), the normalized part of which is
the polarization of the wave. It is helpful to rewrite this equation using the field
equations (9.12), so that the matter and gravitational contributions are sepa-
rated:42

k2 − 22αλ2
C

45
Tµν − αλ2

C

45π
Cµνλρkµkλaνaρ = 0, (9.33)

where Cµνλρ is the Weyl tensor, and the gravitational constant G is set equal to 1.
The second term in (9.33) takes into account the effect of any one of a number of
distinct backgrounds on photon propagation. Examples that have been studied in
detail include (classical) electromagnetic fields, Casimir cavities involving parallel
conducting mirrors, and finite temperature environments. In short, QED appears
to predict, without any appeal to gravity, deviation from null-cone behaviour for
photons under certain conditions.43 The deviations are tiny, far beyond the reach
of current experimental techniques.

We are more familiar with the fact that the velocity of light may differ from
c inside a transparent material medium, which may or may not be dispersive.
What is striking in the case of the electromagnetic field environment is that light
is now scattering off light: the effective action (traditionally known as the Euler–
Heisenberg action) introduces non-linearity into the Maxwell field equations.
In the case of the Casimir cavity, it is the reflective boundaries that provide a
kind of medium in otherwise empty space, one which alters the velocity of light.
But what is truly striking in this case is the prediction that photons propagating
perpendicular to the conducting plates do so ‘superluminally’: the Scharnhorst
effect.

The third term in (9.33) is of course solely gravitational, and because it depends
on aµ, the interaction produces a polarization-dependent shift in the velocity of
light, or what is called gravitational birefringence. Now because of the symmetry
properties of the Weyl tensor, it turns out that the two physical polarizations
contribute equally in magnitude, but oppositely in sign. The upshot is that for

42 See Shore (2003), §4.1.
43 See, e.g., Latorre et al. (1995), in which a unification of results concerning variations in the

speed of low-energy photons due to modifications of the vacuum is given.
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space-times with vanishing Ricci tensor (which means that the only interaction
term is the one containing the Weyl tensor) if one polarization produces a time-
like deviation from the null-cone behaviour, the other must produce a space-like
deviation. Thus, superluminal velocities are predicted in this case too.

Are such theories self-consistent? It appears so: detailed studies of the causality
problem have shown that no clear instances of the so-called grandfather paradox
arise in these theories.44 But despite their intriguing nature, these theories are
based on an approximation which is known not to be the whole story. So far
the effective actions hold only in the low-frequency regime, while it is known
that for the purposes of considerations related to causality the relevant concept
(particularly in dispersive media) is wavefront velocity, which in turn can be shown
to be the high frequency limit of the phase velocity.45 To deal with this case,
a generalization of the Drummond–Hathrell effective action containing higher
orders of derivatives of the fields is required, which indeed leads to dispersive
propagation of light generally. A careful treatment involving the generalized action
has been undertaken recently by Graham Shore in the special case of Bondi–Sachs
space-time, and it was found that here exceptionally the dispersion vanishes so
that the wavefront velocity coincides with the superluminal low-frequency phase
velocity. ‘This is potentially a very important result. It appears to show that there
is at least one example in which the wavefront truly propagates with superluminal
velocity. If so, quantum effects would indeed have shifted the light cone into the
geometrically spacelike region.’46

But alas, the situation is not entirely clear-cut, as Shore himself stresses. The
problem is that in the discussion of light propagation in background magnetic
fields based on the Euler–Heisenberg action, it is known that the perturbative
approach hitherto discussed is not adequate to deal with the full range of fre-
quencies in the effectively dispersive medium. And it is simply not clear whether
the gravitational case should be any different, and so whether ignoring a non-
perturbative contribution to the equation for light propagation is justified. If it
isn’t, it seems that the wavefront velocity may after all be driven back to c, as it is
in the case of background magnetic fields in the non-perturbative analysis.47

The technical details involved are far too intricate to go into here. My moti-
vation in mentioning this recent work is merely to point out that no rigorous
derivation that the wavefront velocity is strictly c in the exotic gravitational regime
under discussion is available, even if it might be supposed that this identification
does, in the end, hold. What Shore and others have demonstrated is that quan-
tum effects may lift light off the null cones, and that even if superluminal speeds
were reached (as is predicted in the Casimir cavity) no fundamental conceptual
inconsistencies are necessarily at play. What would be violated is not logic, but
the strong equivalence principle.

44 See, e.g., Liberati et al. (2002) and Shore (2003). 45 See Shore (2003), §6.2.
46 op. cit., §6.4. 47 ibid.
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9.5 THE STRONG EQUIVALENCE PRINCIPLE

9.5.1 The Local Validity of Special Relativity

The apparent fact that the trajectory of a freely falling body does not depend on
its internal structure and constitution was of singular importance for Einstein
in his development of GR, as every textbook on the subject attests. Indeed, in
modern formulations of the theory this fact is standardly elevated to the status of a
principle: the weak equivalence principle (WEP), which we discussed in Chapter 2.
(The terminology is of course a consequence of the fact that in the context of
Newtonian dynamics, the principle demands that the inertial mass of the body
is proportional to its weight, or passive gravitational mass.) The principle follows
from the above-mentioned derivation of the geodesic principle from the field
equations to the extent that the particular constitution of the test body is irrelevant
to the derivation.

A more far-reaching claim is the strong equivalence principle (SEP), which will
be defined here as follows.48 There exist in the neighbourhood of each event pre-
ferred coordinates, called locally inertial at that event. For each fundamental non-
gravitational interaction, to the extent that tidal gravitational effects can be ignored
the laws governing the interaction find their simplest form in these coordinates.
This is their special relativistic form, independent of space-time location.49 Note
that in practice, any measurements that are being performed involving these inter-
actions must be such that their action on the sources of the gravitational field can
be ignored.

The SEP, as just defined, does not entirely specify what the local inertial
coordinates are. In standard GR, they are connected to the metric in the following
way. There exist at each point (event) p locally geodesic coordinates. These are
coordinates such that at p, the components of the symmetric connection compat-
ible with gµν vanish: Γα

βν = 0. A subset of such coordinates can be found such
that all geodesics through p look like straight lines, and at p the first (ordinary)
derivatives of gµν vanish: gµν = ηµν and gµν,λ = 0. For points in the neigh-
bourhood of p, the difference in the value of the components of the metric from
that at p depends on the Riemann curvature tensor (which of course depends on
second derivatives of gµν and hence need not vanish at p). Thus, as long as the
curvature tensor, or ‘tidal field’, evaluated in the mentioned orthonormal frame at
p, is ‘sufficiently small’, the coordinates of points in this neighbourhood will differ
little from the inertial coordinates for events on the tangent space at p related to

48 The discussion will closely follow that in Ehlers (1973).
49 Sometimes what we are calling the SEP is referred to as the Einstein equivalence principle (EEP),

and the term ‘strong equivalence principle’ is reserved for the principle that deals with bodies with
gravitational self-energy. (See Will (2001), §3.1.2, and Carroll (2004), p. 50.) For a criticism of this
distinction, see Ohanian and Ruffini (1994), p. 56. A recent treatment of the strong equivalence
principle in the philosophical literature is in Ghins and Budden (2001).
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the points in the manifold by the so-called exponential map.50 Since the tangent
space is Minkowskian, it might be thought that the special relativistic chrono-
metric significance of of the Minkowski metric in SR is automatically recovered
locally in GR. But it is only through the SEP that such chronometric signific-
ance can be given to the tangent space geometry in the first place.51 This still
leaves the irksome question: what does ‘sufficiently small’ mean? Is the curvature
of space-time in the vicinity of the Earth small enough to make a freely falling
laboratory the size of the room you are presently in realize a local inertial frame?
Whether you can detect tidal effects in a space the size of the room depends on
what kind of equipment you have access to, or in some cases how much time you
have at your disposal!52 And the issue of time reminds us that the closest thing we
have in GR to inertial coordinate systems in classical mechanics and SR are not
the local inertial systems as defined above, but non-rotating freely falling frames
(otherwise known as Fermi normal coordinates, or proper reference frames of a
freely falling observer). These are local inertial frames maintained along time-like
geodesics, whose coordinate axes are parallel transported (in the sense of the metric
compatible connection) along the geodesic.53

James L. Anderson correctly emphasized that the SEP as we have defined it con-
tains two distinct principles.54 The first, let us call it SEP1, is that measurements
on any physical system will serve (approximately) to determine the same affine
connection in a given region of space-time (which Anderson called the equivalence
principle). In other words, the non-gravitational interactions all pick out the same
local inertial structure. The second principle, SEP2, is that only the connection
determined by gµν , with its Lorentzian signature, appear in the dynamical laws
for these systems, or that in a ‘sufficiently small’ region of space-time, the laws of
special relativity are valid. Anderson claimed that the first principle is vital to GR,
but not the second.

In relation to SEP2, what does it mean that in freely falling frames ‘the non-
gravitational laws of physics are those written in the language of special relativ-
ity’?55 What is this language? If we must be clear about the content of SR, or at
least that part of it concerned with space-time structure, it is surely here. What
is being assumed is that the covariance group of the equations is the inhomoge-
neous Lorentz group, which the minimal coupling condition ensures. This is the
claim that the matter fields do not couple to the Riemann curvature tensor or its
contractions. Recall that in SR, inertial frames are global, which implies that the
curvature vanishes everywhere, and hence trivially makes no appearance in the

50 For more details see Ehlers (1973).
51 The present section is an attempt to spell out this claim, which was made briefly in Brown

and Pooley (2001) in response to the earlier claim by Torretti (1983) that the local validity of SR is
automatic in the above sense.

52 See Ohanian and Ruffini (1994) §1.9, and Hartle (2003), example 6.3, p. 120.
53 For further details, see e.g. Ehlers (1973) §2.10, Hartle (2003), §20.5, and Cook (2004).
54 Anderson (1967), §10–2. 55 Will (2001), §2.1.
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laws of physical interactions. This feature is now absorbed into GR in the requisite
local context. It is worth emphasizing that minimal coupling is sufficient for local
Lorentz covariance, but is not necessary, at least in the sense of the homogeneous
group. Consider for example the propagation of a free scalar field with mass m in
Minkowski space-time described by

(
ηµν∂µ∂ν − m2) Φ = 0. (9.34)

One possible generalization of (9.34) to curved space-time is

(
gµν∇µ∇ν − m2 − ξR

)
Φ = 0 (9.35)

where as above R is the curvature scalar and ξ is a numerical constant. Minimal
coupling implies ξ = 0, but local Lorentz covariance doesn’t. Analogously, the
cases of non-minimal coupling discussed in the previous section do not involve
violation of local Lorentz covariance.

Violation of local Lorentz covariance (homogeneous group) requires the intro-
duction of further fields—typically the preferred frame is defined by a vector field
or the gradient of a scalar field—over and above gµν and the standard matter fields.
A recent example is a theory due to Ted Jacobson and David Mattingly,56 in which
the extra, time-like unit vector field uα is itself a dynamical object. Without going
into details, the total action can be written in the form S = Sgrav+Svector+Smatter,
where Sgrav is the standard Hilbert–Einstein action, Svector depends on gµν , uα,
and λ = λ(x) (a Lagrange multiplier associated with the normalization of uα),
and Smatter depends on gµν , uα, and ψ, where ψ is the generic matter field. I take
it that such a theory is also incompatible with minimal coupling as it is standardly
construed.

Minimal coupling is usually identified with the so-called ‘comma-goes-to semi-
colon’ rule. One starts with a Lorentz covariant theory of some non-gravitational
force and formally replaces in the equations the flat Minkowski metric ηµν by the
curved metric gµν , and the ordinary derivative represented by a comma with the
covariant derivative represented by a semicolon. The resulting theory is automat-
ically consistent with the local validity of SR. Of course textbooks almost invari-
ably warn that such a procedure for generating theories consistent with minimal
coupling is only unambiguous in theories in which the field equations are first
order. In practice, factor ordering problems are easily avoided, and anyway the
rule is essentially heuristic.57 A more serious limitation of minimal coupling itself

56 See Jacobson and Mattingly (2001); this paper contains references to several earlier gravitational
theories incorporating violation of local Lorentz covariance by other authors.

57 The ambiguity in the comma-goes-to-semicolon rule for second-order equations is reminiscent
of the ambiguity in the process of canonical quantization in mechanics, which arises when dynamical
systems can be associated with ‘inequivalent’ Lagrangians, i.e. Lagrangians that are not related by a
divergence. See, e.g., Morandi et al. (1990).
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is illustrated by the example of the scalar field associated with equation (9.35).
Normally, it is argued that conformal invariance results in the factor ξ taking the
value 1/6, whereas as mentioned above minimal coupling requires ξ = 0. But
if it is required merely that the physical properties of wave propagation rather
than the form of the equation reduce locally to those of SR, then the value 1/6 is
permissible.58 And it is known that the equation of motion of the spin of a rigid
body fails to satisfy minimal coupling, because tidal torques are present in the
correct equation and the motion of the spin depends on the Riemann curvature
tensor.59

The correctness of Anderson’s claim that minimal coupling, and hence the local
validity of SR, is not essential to the programme of GR naturally depends on what
that programme is taken to be. At the very least, it is clear that minimal coupling
is not a direct consequence of the form of Einstein’s field equations.60

9.5.2 A Recent Development

It is widely known that there is a route to GR based on global Minkowski space-
time with spin-2 gravitons. It involves postulating a symmetric tensor field hµν

propagating in flat space-time according to a certain action principle. (The action
happens to be that associated with the so-called linearized Einstein tensor.) If it
is then required that hµν couple to its own stress-energy tensor, as well as to the
matter stress-energy tensor, an iterative process involving induced higher-order
terms in the action leads to the Hilbert–Einstein action (or (1.3) with λ = 0)
for gµν ≡ ηµν + hµν , with matter also in the end coupling to gµν .61 The flat
background metric in this approach becomes bereft of any direct operational
meaning because the SEP holds for the local inertial frames defined relative to
gµν and not to ηµν .

An interesting, and potentially more significant, variation of this theme con-
cerns a recent proposal to modify GR. In 2004, Jacob D. Bekenstein introduced
a new covariant theory of gravity,62 the latest in a line of theories that owe their
origin and motivation to the work of Mordehai Milgrom in the 1980s. Milgrom
suggested a modification of Newtonian gravitational dynamics (MOND), based
on a new acceleration scale, that would account for galactic rotation curves with-
out appealing to dark matter.63 Bekenstein’s new theory, denominated TeVeS (for

58 Sonego and Faraoni (1993).
59 See Ohanian and Ruffini (1994), pp. 379–80. A very interesting discussion of the apparent

violation of the strong equivalence principle by particle detectors in quantum field theory on curved
background space-times is found in Sonego and Westman (2003). A discussion of the strong equiv-
alence principle from the perspective of quantum processes is also found in Audretsch et al. (1992).

60 A useful discussion of non-minimal coupling of matter and the gravitational field is found in
Goenner (1984). 61 See, e.g., Carroll (2003), p. 299.

62 Bekenstein (2004b), Bekenstein (2004a).
63 A useful introduction to MOND is found in Milgrom (2001). A good treatment of the strengths

and weaknesses of successive theories in the MOND paradigm is given in Bekenstein (2004b), in
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‘Tensor-Vector-Scalar’), postulates as its fundamental dynamical entities a met-
ric field gµν , a time-like four-vector field Uµ and a scalar field φ, as well as a
non-dynamical scalar field σ.

Besides its success with the dark-matter-free treatment of observed galactic
rotation behaviour, TeVeS is consistent with the results of all the solar systems
tests of GR, predicts gravitational lensing in agreement with the observations,
and provides a formalism for constructing cosmological models. It seems too
complicated to be the last word, but it deserves our attention. In particular, the
structure of the theory speaks to the concerns of this book.

It is assumed that the gµν field has a well-defined inverse gµν and that
gµνUµUν ≡ UνUν = −1. The purely gravitational part of the total action
is built out of the ‘metric’ field gµν just as it is in GR, but otherwise the role
and meaning of this field is quite different. A second metric field, g̃µν , is obtained
from gµν by stretching it in the space-time directions orthogonal to Uµ by a factor
e−2φ, and shrinking it by the same factor in the direction parallel to Uµ (so that
it is not conformal to gµν ):

g̃µν = e−2φ(gµν + UµUν) − e2φUµUν (9.36)

= e−2φgµν − 2UµUν sinh (2φ). (9.37)

It can be shown that like gµν , g̃µν has a well-defined inverse.
As mentioned, the purely gravitational action essentially coincides with that of

standard GR (9.3) for gµν :

Sgrav =
1

16πG

∫
Ω

R
√−g d4x. (9.38)

The action for the pair of scalar fields is

Sscalar = −1
2

∫
Ω

[
σ2hµνφ,µ φ,ν +

1
2

Gl −2σ4F (kGσ2)
]√−g d4x, (9.39)

where hµν ≡ gµν −UµUν and F is a free dimensionless function. The constant
positive parameters k, l are such that k is dimensionless, and l has dimensions of
length. The action of the vector field Uµ takes the form

Svector = − K
32πG

∫
Ω

[
gαβgµνU[α,µ]U[β,ν]

− 2(λ/K )(gµνUµUν + 1)
]√−g d4x, (9.40)

which it is stressed that much of the relevant galactic observational data post-dates the original
predictions of MOND.
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where λ = λ(x) is a Lagrange multiplier associated with the normalization of
Uµ, and K is a dimensionless constant. Finally, the matter action associated with
fields written generically as f α is

Smatter =
∫

Ω
Lmatter(g̃µν , f α, f α|µ, · · · ) d4x, (9.41)

where the covariant derivatives denoted by ‘|’ are defined relative to the connection
compatible with g̃µν . Note that the Lagrangian density Lmatter is to be understood
as a multiple of

√−g̃ , which can be shown to be equal to e2φ√−g .
The TeVeS theory thus has two dimensionless parameters, k and K , as well as

the constants G and l . The basic equations of the theory are obtained from the
total action S = Sgrav + Sscalar + Svector + Smatter by varying with respect to the
fields gµν , φ, σ, and Uµ.

We need not concern ourselves with the detailed form of these equations.
Needless to say, things are a lot more complicated than in GR. In particular, the
analogue of the Einstein field equations (9.12) obtained by varying with respect
to gµν looks like

Gµν = 8πGT̃µν + · · · , (9.42)

where the ellipses denotes the sum of various terms involving the φ, σ, and Uµ

fields and their first derivatives. The stress-energy tensor T̃µν is defined in the
usual way in terms of the variational derivative of Smatter, but now with respect
to the (inverse) ‘physical’ metric g̃µν , not gµν as in (9.11). It turns out that in
the limit l → ∞, g̃µν coincides with gµν , and when furthermore K → 0, the
theory reduces to exact GR whatever the value of k. In several familiar contexts,
such as Friedmann–Robertson–Walker (FRW) cosmologies, it can be shown that
standard GR predictions are obtained also in the limit k → 0, l ∝ k−3/2, and
K ∝ k, whatever form the function F takes. At any rate, it is assumed in the
theory that k � 1 and K � 1, and a choice of the the function F is made so as
best to match observation.

The theory is not beautiful; the menagerie of dynamical fields—the price one
pays for eliminating dark matter—has collectively nothing like the simple heuristic
foundation that Einstein introduced for the gµν field. Not that dark matter is being
replaced by something just like it; the way the new scalar and vector fields (whose
contribution to the stress-energy tensor is usually negligable) affect the geometrical
structure associated with g̃µν is quite different from the way dark matter is usually
understood to act on gµν . At any rate, it is far too soon to predict what the fate
of the theory will be. But our concerns have more to do with conceptual than
empirical matters. And the key issue is this.

The metric field that is surveyed by rods and clocks, whose conformal structure
is traced by light rays and whose geodesics correspond to the motion of free bodies
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is clearly not gµν , but the less ‘basic’ g̃µν .64 Indeed, it is explicitly assumed in the
theory65 that the matter Lagrangian is obtained from that associated with flat
space-time g̃µν = gµν = ηµν by using the f α,µ-goes-to-f α|µ rule. In other
words, the theory incorporates the SEP, but with respect to the g̃µν field.66 It is
this field, and not the metric which features in what Bekenstein curiously calls the
‘geometric’ part of the action Sgrav, which acquires chronometric significance, and
it does so because of the postulated dynamics in the theory. Right or wrong, the
theory reminds us that the operational significance of a non-singular second-rank
tensor field, and its geometric meaning, if any, depends on whether it is ‘delineated
by matter dynamics’.67

Recall Poincaré’s remark cited in section 2.2.4, to the effect that if there were no
rigid bodies there would be no (3-space) geometry. In the TeVeS theory, there is a
lot of non-trivial dynamics associated with gµν (unlike hµν in the spin-2 graviton
theory above), and hence g̃µν , even when the matter fields f α vanish everywhere.
But it is the g̃µν field that becomes ‘geometrical’ in the usual four-dimensional
sense when the usual matter fields are introduced.68

9.6 CONCLUSIONS

In the context of standard GR, Clifford Will has nicely expressed a common view:

The property that all non-gravitational fields should couple in the same manner to a
single gravitational field is sometimes called ‘universal coupling’. Because of it, one can
discuss the metric as a property of spacetime itself rather than as a field over space-time.

64 The sense in which the g̃µν field is less basic than the field is not just that it is in terms of
variations with respect to the latter that the analogue of Einstein’s field equations are derived from
the action principle. The FRW cosmology in the theory is of course defined in the usual way in
terms of gµν , and it is assumed that the TeVeS scalar and vector fields share the symmetries of this
field.

65 Bekenstein (2004b) §III.A. A recent study of the compatibility of TeVeS with observations of
the cosmic microwave background and of galaxy distributions is found in Skordis et al. (2005).

66 The vanishing of the covariant divergence of T̃µν—with respect to g̃µν—is required if the
geodesic principle of free motion and the local validity of Maxwell’s equations are to hold, and
this requirement is not a consequence of the field equations (9.42) alone. It is a remarkable feature
of the other field equations that they conspire, together with (9.42), to ensure the validity of the
‘conservation’ requirement. I am grateful to Jacob Bekenstein for clarifying this point.

67 Bekenstein (2004b) §III.A.
68 The TeVeS theory is the latest in a bunch of bimetric theories of gravitation. Another, due to

Nathan Rosen, was designed to avoid the singularities which arise in standard GR; see Rosen (1980).
In this theory the metric field gµν describes gravitation and interacts with matter, so that the line
element between neighbouring events ds2 = gµνdxµdxν is measured by way of rods and clocks in
the usual way. But a second, background metric field γµν , of constant curvature, exists which serves
to define a fundamental rest frame of the universe, and which is capable of entering into the field
equations. Its line interval has no direct operational significance. As with TeVeS, the rods and clocks
know which metric to survey because of the way matter fields are postulated to couple to one of
them. See also in this connection the 2001 bimetric theory of Drummond, which like Bekenstein’s,
attempts to eliminate dark matter; Drummond (2001).
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This is because its properties may be measured and studied using a variety of different
experimental devices, composed of different non-gravitational fields and particles, and,
because of universal coupling, the results will be independent of the device. Thus, for
instance, the proper time between two events is characteristic of spacetime and of the
location of the events, not of the clocks used to measure it.69

In the context of the Bekenstein TeVeS theory, the same reasoning leads inex-
orably to g̃µν being regarded a property of space-time, not gµν . This conclusion
is fine as far as it goes, but the message from Chapters 2 and 8, that space-time
geometry per se does not explain the kind of universality in question, should not
be forgotten. It is true that in both GR and TeVeS all matter fields couple in the
same way to a single ‘metric’ field of Lorentzian signature, which ensures local
Lorentz covariance; and by coupling minimally, special relativity in its full glory
appears to be valid locally. But to say that these metric fields are space-time itself,
or properties of space-time, is simply to re-express this remarkable double claim,
not to account for it.

And what does special relativity mean in this context? The heart of this theory
that is laid bare in GR is, as we saw in the previous section, the combination of
the big principle governing the non-gravitational interactions and the fact that
curvature terms make no appearance in those equations. It is the dynamics that
count. Einstein’s 1905 principle theory route to the big principle now more than
ever seems like little more than a means, albeit a delicately contrived one, to an
end. The thermodynamic template, so important to Einstein in the theoretical
conditions that prevailed in 1905 is a ladder that can be kicked away. The dynam-
ical approach to special relativistic kinematics expressed by the unconventional
voices, and particularly those of W. Swann, L. Jánossy, and J. S. Bell, recorded in
Chapter 7, and further defended in Chapter 8, is in this sense consistent with the
spirit of GR and of alternative theories of gravity that preserve the strong equi-
valence principle. It is because of minimal coupling and local Lorentz covariance
that rods and clocks, built out of the matter fields which display that symmetry,
behave as if they were reading aspects of the metric field and in so doing confer
on this field a geometric meaning. That light rays trace out null geodesics of the
field is again a consequence of the strong equivalence principle, which asserts that
locally Maxwell’s equations of electrodynamics are valid.

But of course Maxwell’s equations are not strictly valid locally, and this construal
of the minimal coupling principle is only approximately valid. Maxwell’s equations
represent the classical approximation in quantum electrodynamics, and as we saw
in section 9.4.1, very small deviations from null cone behaviour are predicted
in QED in special circumstances, such as in a Casimir cavity. This should not
entirely surprise us. We only have to remember the role that Einstein’s third 1905
paper on Brownian motion, and the experimental confirmation by Perrin in 1908
of Einstein’s predictions, played in establishing the limits of validity of the laws

69 Will (2001), §3.1.1.
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of thermodynamics. It is ironic that it was the work of Einstein, amongst others,
which established the existence of non-thermodynamic fluctuation phenomena
based on constructive theory, given his principle theory approach to SR inspired
by thermodynamics. The QED effects mentioned above are the analogues of
Brownian motion in space-time theory.

In a sense, SR is not a theory about the behaviour of rods and clocks, because
as Einstein stressed their very existence, at least in their familiar forms, is not
guaranteed by the big principle. If, however, the Lorentz transformations are to
have their usual operational meaning in the context of physical boosts, and if
the Minkowski space-time interval is to have some connection with the universal
behaviour of rods and clocks—those special ‘moving atomic configurations’ to
repeat yet again Einstein’s phrase—ultimately some appeal to quantum theory
must be made. In SR, this raises no problem in principle: the big principle after
all does not pin down the precise form of the dynamics of matter.70 But the
situation is more complicated in GR. There is, after all, a crucial tension between
the dynamical interpretation of SR and the structure of GR. It arises from the
fact that Einstein’s field equations refer to classical fields. In particular, the matter
fields appearing in the definition of the stress-energy tensor are classical. To follow
the history of attempts to circumvent this problem would take us too far afield,71

but the arguments of this book, if correct, can only reinforce the importance of
solving it.

70 A justification of this optimistic view concerning the marriage of SR and quantum mechanics
is found in Appendix B.

71 See the Introduction in Callender and Huggett (2001) for a brief review of responses to this
problem.



APPENDIX A

Einstein on General Covariance

Many readers of Einstein’s 1916 review paper on GR must have been bewildered by the
number of reasons he gave in favour of the principle of general covariance.1 Einstein
cites both Mach’s principle and the weak equivalence principle in section 2 of the paper,
and the lack of operational significance of coordinate differences for rotating frames, as
well as the coordinate-independence of physical happenings in section 3. (It is ironic
that the last argument, based on the insight of the reality of ‘point-coincidences’, turns
Einstein’s 1915 solution of the underdetermination problem posed by the principle of
general covariance into a justification of that principle.) It is clear that Einstein’s instinctive
feel for the importance of the principle was still outstripping his ability to articulate
its fundamental motivation. It appears furthermore that Einstein was still viewing the
principle as an ‘extension’ of the traditional relativity principle shared (as he correctly said)
between classical mechanics and SR. This confused idea accompanied his early discussions
of the weak equivalence principle and was finally disowned by him in 1926.

It is striking that Einstein did not appeal to the very simple fact that inertial coordinate
systems are only defined locally in curved space-time. Of course, to do so is implicitly to
acknowledge that inertial coordinates are privileged, but only when gravitational effects can
be ignored. Since GR is the theory of gravity (most importantly gravitational tidal effects) it
is clear that use must be made of coordinate systems which extend beyond neighbourhoods
of events in which the observed geometry is approximately that of the tangent space.2 But
even then, depending on the problem under investigation some coordinate systems are
more ‘equal’ than others.3 This situation is not novel; it arises in electrodynamics where a
number of special gauges are on offer (Lorentz, Coulomb, temporal, etc.) and where choice
reflects the problem at hand. The electrodynamic field equations, in their full glory, are
standardly written in gauge-general form, but in practice the use of such special gauges
abounds.

In his 1916 review paper, Einstein did not think a coordinate-general approach to the
field equations was the best route. He promised an ‘important simplification of the laws
of nature’ produced by the restriction to unimodular coordinates, for which

√−g = 1
(recall the discussion in section 9.2.1 above). Towards the end of the paper, he stated that

1 Einstein (1916a). 2 See Ryckman(2005), note 14, p. 252.
3 I am struck for example by the usefulness of the harmonic coordinates (which satisfy the de

Donder gauge condition
(√

( − g)gαβ
)

,β
= 0) in the treatment of the Cauchy, or initial value

problem in GR (see York (1979)), and in formulating the so-called relaxed form of the field equations
(see Will (2001), §4.3 and Wald (1984), p. 261 in this connection). Fock went so far as to say that
without appeal to such coordinates the debate between Copernicanism and the Ptolemaic system
is vacuous; see Fock (1969), p. 4 and sections 92–3. A rather feeble response to Fock is found
in Anderson (1964). For further discussion of the role of special coordinate systems in GR see
Zalaletdinov et al. (1996).
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he had indeed achieved a ‘considerable simplification of the formulae and calculations’
using these coordinate systems, all in a manner consistent with general covariance!4

Yet by the time Einstein addressed the famous challenge of Kretschmann over the
principle of general covariance in 1918, his thinking had changed. Recall the nature
of the challenge: Kretschmann explained that any theory could be formulated generally
covariantly.5 The principle has to do with mode of description, not content—it could
not be a defining characteristic of Einstein’s metric theory of gravity. Einstein had of
course to agree, but in addressing Kretschmann’s paper, he nonetheless argued that there
is good reason why general covariance had proved to have ‘considerable heuristic force’
in his own work on gravitation.6 This reason has to do with an interpretation of the
principle that transcends Kretschmann’s concerns. The principle for Einstein, which he
reiterated decades later in his Autobiographical Notes, was not just that a theory should have
a coordinate general formulation, but that it be such that this formulation is the simplest
and most transparent one available to it.

Although there has been debate in the literature as to precisely what Einstein meant
here,7 one reading is particularly plausible. When he proceeds to cite the case of New-
tonian mechanics as being ruled out practically if not theoretically by this principle, the
problem with the latter theory seems to be the fixed inertial and metric structure therein. A
significant simplification of the dynamical description results when it is restricted to global
inertial coordinate systems, which are defined in terms of this structure and its symmetries.
It seems Einstein was essentially objecting to the existence of absolute geometric objects
of this kind. If this was indeed the core of Einstein’s response to Kretschmann in 1918,
it was essentially an anticipation of the view of Andrej Trautman and James L. Anderson
as to the real content of general covariance, which in turn has been defended in many
standard texts on GR.8 Mere coordinate generality has been left far behind.

But there was an earlier shift in Einstein’s thinking that is not well known. In November
of 1916, Einstein wrote to Hermann Weyl:

I also came belatedly to the view that the theory [GR] becomes more perspicuous when Hamilton’s
scheme is applied and when no restrictions are put on the choice of the frame of reference. It is
true that the formulas then become somewhat more complicated but more suitable for applications;
for it appears that the free choice of the reference system is advantageous in the calculations. The
connection between the general covariance requirement and the conservation laws also becomes
clearer.9

The motivation for at least the last sentence in this passage is clear. In the autumn
of 1916, Einstein had anticipated an important application of what is now often called
Noether’s second theorem.10

4 Einstein (1916a), pp. 130 and 156 of the English translation. 5 Kretschmann (1917).
6 Einstein (1918b). 7 See Norton (1993), sections 5.2 and particularly 5.5.
8 See Misner, Thorne, and Wheeler (1973), section 12.9; Wald (1984) p. 57; Ohanian and Ruffini

(1994), section 7.1. 9 Einstein (1998).
10 Einstein (1916b). Brown and Brading (2002) raised the question as to what Einstein had in mind

when writing the 1916 letter to Weyl. Despite referring to Einstein’s 1916 paper on the variational
formulation of GR, these authors did not realize that the answer to the question lay in this paper;
the connection was independently clarified in Janssen and Renn (2003), p. 69.
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In the same year as the Kretschmann debate, 1918, Emmy Noether, a young
mathematician working in David Hilbert’s group in Göttingen, published a celebrated
paper on the role of symmetry principles in physics.11 Actually, her paper did not mention
the word symmetry; Noether’s focus was on transformations which leave the action for
some dynamical system invariant, an exercise in the calculus of variations. Normally, how-
ever, such transformations happen also to be dynamical symmetries: they take solutions
of the Euler–Lagrange equations of motion into solutions. What Noether showed first, in
a very systematic fashion, was the existence of a correlation between such dynamical sym-
metries and strict conservation principles (or more correctly continuity equations), in the
case where the symmetries were of the ‘global’ variety. Examples are rigid spatio-temporal
translations, which depend on space-time independent parameters. This correlation was
not a new result, and nor was it the main object of Noether’s paper, but it is the main source
of her fame in physics. Noether’s real aim in 1918, inspired by Hilbert’s work related to
Einstein’s metric theory of gravity, was to investigate systematically the consequences of
variational symmetries of the ‘local’ variety, which depend on parameters that vary from
point to point in space-time. What Noether showed in her ‘second theorem’ is that each
such symmetry gives rise to a ‘Noether identity’, essentially a condition on the form of
the Lagrangian of the dynamical system that holds independently of the field equations
themselves.12 It was shown soon after 1918 that all of Noether’s results follow from the
weaker condition of quasi-invariance, or invariance of the action up to a surface term,
equivalently invariance of the Lagrangian up to a total divergence.13

Consider the special case of the action (9.9), the sum of a purely gravitational action
and a matter action. Suppose as usual that the gravitational action Sgrav depends only on
gµν , whereas the matter action Smatter depends on the generic matter fields ψi and gµν . Let
us not be specific as to the form of the associated Lagrangian densities, except to demand
that each action separately is (quasi-) invariant under general coordinate transformations
(9.2).14 The conservation principle (9.19) can be shown to follow from either of the
following two procedures. (The fact that more than one exists is typical of the case of
coupled fields.)

1. Take the Noether identity associated with the invariance of the matter action,
and apply Hamilton’s principle to the matter fields, so that their Euler–Lagrange
equations hold.15

11 Noether (1918).
12 This condition expresses an interdependence between the various Euler expressions associated

with the action, i.e. the variational derivatives of the total Lagrangian with respect to the dynamical,
or dependent variables. Note that it follows from the nature of the Noether identity that a dynamical
system with a local symmetry cannot have Euler–Lagrange equations which all take the Cauchy–
Kovalevskaya form mentioned in section 9.2.2.; a kind of underdetermination is after all built into
the dynamics.

13 For recent discussions of Noether’s theorems see Brading and Brown (2003), and Brown and
Holland (2004).

14 More correctly, we are interested in the vanishing (up to a possible surface term) of the first-order
variation in the relevant action under infinitesimal transformations of the form xµ → x′µ = xµ+εξµ

where ξµ is an arbitrary vector field and ε is small.
15 See Carroll (2004), pp. 435–6. In the treatment of Noether’s second theorem in Brown and

Brading (2002), the argument would put E i = 0 in equation (23), and use the fact that the
connection is compatible with the metric: gµν

;α = 0.



Einstein on General Covariance 181

2. Take the Noether identity associated with the invariance of the gravitational part
of the action (for the choice of the Hilbert–Einstein action this is the contracted
Bianchi identity (9.7)) and apply the gravitational field equations (the analogue
of Einstein’s equations, or the Euler–Lagrange equations obtained from the total
action with respect to variations in gµν ).16 This is a generalization of the way the
conservation law is standardly derived in GR.

The paper Einstein wrote in the autumn of 1916 came very close to the derivation based
on procedure 2.17 Although it was far from the first study by Einstein of gravitational
dynamics based on an action, or variational, principle, it is the first of his 1915/1916
papers that deals with gravitational dynamics in arbitrary coordinates. Afterwards Einstein
would write contentedly to a number of colleagues that he had clarified the connection
between the requirement of general covariance (which he still referred to as the ‘relativity
postulate’ at times) and the conservation laws. The only significant difference between his
analysis and that given in procedure 2 is that Einstein actually gave the precise form of
the gravitational action, and did not realize that this was unnecessary in the argument.18

How then did Einstein’s derivation differ from the now standard one? Einstein did not
show explicitly that the Euler expression related to the Hilbert–Einstein action is actually
the Einstein tensor density, and hence that the identity associated with invariance is the
contracted Bianchi identity. In fact, in 1916 Einstein was unaware of this identity. On
the other hand, the fact that the form of the matter action was irrelevant in his derivation
was fully appreciated by Einstein; indeed he regarded it as a sign of the superiority of his
approach to gravitational dynamics over Hilbert’s, which he regarded as too committed to
the electromagnetic world picture.

Up to the time Einstein wrote this paper in late 1916, it appears he was convinced
that the unimodular coordinates that he had used in his previous papers had true physical
significance, in part because of the belief that in such coordinates no gravitational waves
propagated without transport of energy. It may even be that this belief extended into
1917.19 But it is clear that general covariance took on a new meaning for Einstein once
he established its relationship with the conservation laws. And yet a word of warning is in
order. As Carroll has stressed in this connection20 (see also the comments on the Lovelock–
Grigore theorems in section 9.2.1), the derivation of the conservation law depends not
just on (quasi-)invariance of both the gravitational and matter actions, but on the crucial
assumption that no fields other than gµν appear in the gravitational action.

16 In Brown and Brading (2002), §V, the pair of Noether identities associated with the invariances of
the total action and the matter action are taken, one is subtracted from the other, and the gravitational
field equations are applied. This is a complicated version of procedure 2.

17 A very clear account of Einstein’s thinking in this paper, and its significance within the devel-
opment of GR, is found in Janssen and Renn (2005).

18 Even if Einstein had thought that the choice of quasi-invariant, first-order gravitational action
built only out of gµν is highly constrained, the proof is non-trivial. Recall the discussion of the
Lovelock–Grigore theorems in section 9.2.1. 19 See Janssen and Renn (2005), p. 63.

20 Carroll (2004), p. 436.



APPENDIX B

Special Relativity and Quantum Theory

B.1 INTRODUCTION

In this appendix, we briefly consider the question as to whether SR and quantum theory
are compatible, or if they are, how to understand what appear to be tensions in their
marriage.

Part of the story depends on how SR is to be interpreted. An excessively literal geomet-
rical interpretation of SR is likely to run foul of a construction like the de Broglie–Bohm
version of relativistic quantum theory.1 In this theory, the quantum dynamics are Lorentz
covariant, but the sub-quantum dynamics are not. This makes the Minkowski structure
of space-time relevant only to the quantum dynamics, and the question seems to arise
as to ‘which space-time’ the de Broglie–Bohm ontology is ‘in’. The question is bogus:
the full set of dynamical equations is fundamental, and the fact that different parts have
different symmetry groups does not mean that the fields and/or particles in question are
immersed in a background space-time that is somehow schizophrenic or ambiguous as to
its geometric structure.

Another part of the story concerns the issue of entanglement of composite systems
in quantum theory, and it is that part which is taken up in this appendix.2 Given that
entanglement is a property of certain quantum states, and relativistic versions of quantum
theory exist, what is the problem? The immediate response is that entanglement and
relativity seem to run up against one another in the spectre of non-locality. We face
the question of whether the special sorts of correlation that quantum mechanics allows
between spatially separated systems in entangled states, correlations often simply dubbed
‘non-local’, can be consistent with the strictures of relativity. We should begin, however,
by noting that the relations of both entanglement and relativity to non-locality are rather
subtle, and that the notion of non-locality itself is rather vague.

The interesting properties of entangled states were emphasized by Einstein, Podolsky,
and Rosen (EPR) in their famous 1935 paper;3 the term ‘entanglement’ itself was coined
by Schrödinger in his work on the quantum correlations that was stimulated by EPR.
With the rapid development of quantum information theory over the last 10–15 years
and the recognition that entanglement can function as a communication resource, great
strides have been made in understanding the properties of entangled states, in particular,
with the development of quantitative theories of bipartite (two-party) entanglement and
the recognition of qualitatively distinct forms of entanglement. Entanglement assisted
communication, an important novel aspect of quantum information theory, also provides

1 See, e.g., Holland (1993), chap. 12.
2 This appendix is a shortened version of the recent study of entanglement and special relativity

by Timpson and Brown (2002). 3 Einstein et al. (1935).
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a new context in which the relations between entanglement, non-locality, and relativity
may be explored.

In the following section, the question of how entanglement is related to the notions
of non-locality arising from the work of Bell is reviewed, and how this impinges on
the constraints of relativity considered. Section B3 is concerned with the twin use of
entanglement and wavefunction collapse in Einstein’s incompleteness argument, recalling
the interesting fact that Einstein’s true concern in the EPR argument appears not to
have been with relativity. It is often asserted that the Everett interpretation provides an
understanding of quantum mechanics unblemished by any taint of non-locality; this claim
is also assessed below in section B4.

B.2 ENTANGLEMENT, NON-LOCALITY, AND BELL
INEQUALITIES

A state is called entangled if it is not separable, that is, if it cannot be written in the form:

|Ψ〉AB = |φ〉A ⊗ |ψ〉B , for pure, or ρAB =
∑

i αiρ
i
A ⊗ ρi

B , for mixed states,

where αi > 0,
∑

i αi = 1, and A, B label the two distinct subsystems. The case of
pure states of bipartite systems is made particularly simple by the existence of the Schmidt
decomposition—such states can always be written in the form:

|Ψ〉AB =
∑

i

√
pi |φ̄i〉A ⊗ |ψ̄i〉B , (B.1)

where {|φ̄i〉}, {|ψ̄i〉} are orthonormal bases for systems A and B respectively, and pi are the
(non-zero) eigenvalues of the reduced density matrix of A. The number of coefficients in
any decomposition of the form is fixed for a given state |Ψ〉AB . Hence if a state is separable
(unentangled), there is only one term in the Schmidt decomposition, and conversely.4

The measure of degree of entanglement is also particularly simple for bipartite pure states,
being given by the von Neumann entropy of the reduced density matrix of A or B (these
entropies being equal, from).

To see something of the relation of entanglement to non-locality, we now need to say
a little about non-locality. One precise notion of non-locality is due, of course, to Bell.
Having noted that the de Broglie–Bohm theory incorporates a mechanism whereby the
arrangement of one piece of apparatus may affect the outcomes of distant measurements
(due to the interdependence of the space-time trajectories of particles in entangled states),
Bell posed the question of whether peculiar properties of this sort might be true of any
attempted hidden variable completion of quantum mechanics . He was to show (famously)
that this is indeed the case.5

Consider two measurements, selected and carried out at spacelike separation on a pair
of particles initially prepared in some state and then moved apart. The outcomes of the

4 For the mixed state case, this simple test does not exist, but progress has been made in providing
necessary and sufficient conditions for entanglement for certain systems e.g. 2 ⊗ 2 and 2 ⊗ 3
dimensional systems (see Horodecki et al. (2001) for a review). 5 Bell (1964).
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measurements are denoted by A and B, and the settings of the apparatuses by a and b.
(We call this scenario a Bell-type experiment.) We now imagine adding parameters λ to
the description of the experiment in such a way that the outcomes of the measurements
are fully determined by specification of λ and the settings a and b. We also make an
assumption of locality, that the outcome of a particular measurement depends only on
λ and on the setting of the apparatus doing the measuring. That is, the outcomes are
represented by functions A(a, λ), B(b, λ); the outcome A does not depend on the setting
b, nor B on a. The parameter (or ‘hidden variable’) λ is taken to be chosen from a space
Λ with a probability distribution ρ(λ) over it, and expectation values for these pairs of
measurements will then take the form

E (a, b) =
∫

A(a, λ)B(b, λ)ρ(λ)dλ. (B.2)

This sort of theory is known as a deterministic hidden variable theory. From the expres-
sion (A.2), a variety of inequalities (Bell inequalities) for the observable correlations in
pairs of measurements follow. Violation of such an inequality implies that the correlations
under consideration cannot be explained by a deterministic hidden variable model with-
out denying the locality condition and allowing the setting of one apparatus to affect the
outcome obtained by the other. It turns out that the quantum predictions for appropri-
ately chosen measurements on, for example, a singlet state, violate a Bell inequality; and
the implication is that any attempt to model the quantum correlations by a deterministic
hidden variable theory must invoke some non-local mechanism that allows the setting of
an apparatus to affect (instantaneously) the outcome of a distant experiment (analogously
to the situation in the de Broglie–Bohm theory). Entanglement is a necessary condition
for Bell inequality violation, so it is entanglement that makes quantum mechanics incon-
sistent with a description in terms of a local deterministic hidden variable theory. This is
one sense of non-locality.

The discussion of Bell inequalities was later generalized to the case of stochastic hidden
variable theories, leading to a somewhat different notion of non-locality. In such a stochastic
theory, specification of the variables λ only determines the probabilities of measurement
outcomes.

Bell begins his discussion6 with an intuitive notion of local causality, that events in one
spacetime region cannot be causes of events in another, spacelike separated, region. He
then goes on to define a model of a correlation experiment as being locally causal if the
probability distribution for the outcomes of the measurements factorises when conditioned
on the ‘hidden’ state λ in the overlap of the past light cones of the measurement events.
Thus the requirement for a locally causal theory is that

pa,b(A ∧ B|λ) = pa(A|λ)p b(B|λ),

where, as before, A and B denote the outcomes of spacelike separated measurements and
a, b the apparatus settings.

Imposing this requirement amounts to saying that once all the possible common causes
of the two events are taken into account (which, guided by classical relativistic intu-
itions, we take to reside in their joint past), we expect the probability distributions for the

6 Bell (1976b).
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measurement outcomes to be independent and no longer display any correlations.7 Again,
from the assumption of factorisability, a number of inequalities can be derived which are
violated for some measurements on entangled quantum states,8 leading to the conclusion
that such correlations cannot be modelled by a locally causal theory. In fact, (note that we
could take λ simply to be the quantum state of the joint system) we know that quantum
mechanics itself is not a locally causal theory, as it can be seen directly that factorisability
will fail for some measurements on entangled states.

However, it is important to note that failure of local causality in Bell’s sense does not
entail the presence of non-local causes. In arriving at the requirement of factorizability
it is necessary to assume something like Reichenbach’s principle of the common cause;
namely, to assume that if correlations are not due to a direct causal link between two
events, then they must be due to common causes, such causes having being identified
when conditionalization of the probability distribution results in statistical independence.
(Then, arguing contrapositively, if the correlations can’t be due to common causes, we
can infer that they must be due to direct causes.) Thus although failure of factorizability
may imply that quantum correlations cannot be explained by a common cause, it need
not imply that there must therefore be direct (and hence non-local) causal links between
spacelike separated events: it could be the principle of the common cause that fails. Perhaps
it is simply not the case that in quantum mechanics, correlations are always apt for causal
explanation.9 When discussing non-locality in the context of Bell inequality violation,
then, we see that it is important to distinguish between the non-locality implied for a
deterministic hidden variable model of an experiment and a violation of local causality,
which latter need not, on its own, imply any non-locality.

Bell’s condition of factorizability is usually analysed as the conjunction of two further
conditions, sometimes called parameter independence and outcome independence. Parameter
independence states that the probability distribution for local measurements, conditioned
on the hidden variable, should not depend on the setting of a distant measuring apparatus;
it is a consequence of the no-signalling theorem (which we shall discuss further in the next
section) that quantum mechanics, considered as a stochastic hidden variable theory, satisfies
this condition. The condition of outcome independence, on the other hand, states that
when we have taken into account the settings of the apparatuses on both sides of the
experiment and all the relevant factors in the joint past, the probability for an outcome
on one side of the experiment should not depend on the actual result at the other. It
is this condition that is typically taken to be violated in orthodox quantum mechanics.

7 The correlation coefficient between two random variables x and y is given by the covariance of x
and y, cov(x, y) = 〈(x − 〈x〉)(y − 〈y〉)〉, divided by the square root of the product of the variances.
If x and y are statistically independent, p(x ∧ y) = p(x)p(y), then cov(x, y) = 0 and the variables
are uncorrelated.

8 If we wanted to be more precise, we would need also to assume, for example, that the types of
measurement A and B chosen did not depend in a conspiratorial way on λ.

9 In contrast to the present approach, Maudlin insists that failure of factorizability does imply
non-local causation as he adheres to the common cause principle, taking it be almost a tautology that
lawlike prediction of correlations is indicative of a causal connection, either directly or via a common
cause; see Maudlin (2002), ch. 4. One might be worried, however, that this sort of argument does
not provide a sufficiently robust notion of cause to imply a genuine notion of non-local action-at-a-
distance. Dickson argues that in the absence of full dynamical specification of a model of Bell exper-
iments (of the sort that the de Broglie–Bohm theory, for instance, provides), as opposed to the rather
schematic hidden variable schemes we have been considering, it is in any case precipitate to reach
much of a conclusion about whether genuine non-locality is involved in a model; see Dickson (1998).
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We shall discuss outcome independence further in the context of the Everett interpretation
below.10

It was pointed out above that entanglement was a necessary condition for Bell inequal-
ity violation; somewhat surprisingly, it turns out that the converse is not true. Werner
showed that a local hidden variable model could be constructed for a certain class of
entangled mixed states (‘Werner states’),11 which means that entanglement is not a suffi-
cient condition for non-locality in the sense of Bell inequality violation; the two terms are
not synonymous (although it was subsequently established that entanglement does always
imply violation of some Bell inequality for the restricted case of bipartite pure states). The
plot was further thickened when Popescu demonstrated that the Werner states for dimen-
sions greater than or equal to five could, however, be made to violate a Bell inequality if
sequential measurements are allowed, rather than the single measurements of the standard
Bell inequality scenario; this property he termed ‘hidden non-locality’.12 We see that the
relationship between entanglement and Bell inequality violation is indeed subtle, just as
the links between Bell inequality violation and non-locality are complex. What, then, of
relativistic concerns?

Normally one would vaguely assent to the idea that special relativity implies that the
speed of light is a limiting speed, in particular, the limiting speed for causal processes or for
signalling. But we have seen that the fundamental role of the speed of light in relativity is as
the invariant speed of the theory, not, in the first instance, as a limiting speed. That being
said, one does still need to pay some attention to the question of superluminal signalling.

The immediate concern with superluminal signals in a relativistic context is familiar;
in at least some frames, a superluminal signal is received before it is emitted, so we could
arrange for a signal to be sent back that would result in the original signal not being
transmitted, hence paradox. Clearly, such signal loops must be impossible. In an influential
discussion, though, Maudlin draws a distinction between superluminal signals simpliciter
and superluminal signals that allow loops, arguing that it is only the latter that need give
rise to inconsistencies with relativity.13 And cases where photons propagate at superluminal
speeds in a consistent fashion were touched on in section 9.4.1 above. The fundamental
relativistic constraint is that of Lorentz covariance.

How, then, do the notions of non-locality that we have seen to be associated with
some forms of entanglement in the violation of Bell inequalities relate to relativity? Only
indirectly, at best. Violation of Bell’s notion of local causality does not on its own imply
non-local causation, hence there is no immediate suggestion of any possible conflict with
Lorentz covariance; and although the implied non-local mechanism in a deterministic
hidden variable theory would pick out a preferred inertial frame and violate Lorentz
covariance14 this would only be of any significance if we were actually to choose to adopt
such a model.15

10 For a discussion of the relation between outcome independence and Reichenbach’s principle of
the common cause, see Brown (1991). 11 Werner (1989).

12 Popescu (1995). 13 Maudlin (2002).
14 At least when a full dynamical specification of the theory was forthcoming; cf. the comment on

Dickson, fn. 5.
15 Even then, surprisingly, one might still argue that there is no real violation of relativity; some

have suggested that it is only observable, or empirically accessible quantities whose dynamics need
be Lorentz invariant. This would imply that even the de Broglie–Bohm theory might be consistent
with relativity, despite its manifest non-locality.
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A more direct link between entanglement and relativity would be in the offing, however,
if we were to take collapse of the wavefunction seriously, a matter we have not so far
addressed. Collapse seems just the sort of process of action-at-a-distance that would be
inimical to relativity, and in the context of EPR or Bell-type experiments, the processes
of collapse that would be needed to explain the observed correlations raise profound
difficulties with the requirement of Lorentz covariance. Some Lorentz covariant theories
of dynamical collapse have been proposed, but rather than consider these, our attention
now turns instead to consider how relativity and collapse figure in the context of Einstein’s
celebrated discussions of the interpretation of quantum theory, before we go on to see how
the issue of non-locality is transformed if one denies collapse, as in the Everett theory.

B.3 EINSTEIN, RELATIVITY, AND SEPARABILITY

Einstein’s scepticism about quantum mechanics, or at least his opposition to the quantum
theory as preached by the Copenhagen school, is well known. As the father of relativity
and in the context of the EPR paper, it is tempting to see this opposition as based on his
recognizing that the sort of correlations allowed by entangled states will conflict with rela-
tivity at some level. At the 1927 Solvay Conference, Einstein did indeed convict quantum
theory, considered as a complete theory of individual processes, on the grounds of conflict
with relativity. At this early stage, though, his concern was with the action-at-a-distance
implied by the collapse on measurement of the wavefunction of a single particle diffracted
at a slit (a process that somehow stops the spatially extended wavefunction from producing
an effect at two or more places on the detecting screen), rather than anything to do with
entanglement.

In fact, as several commentators have remarked, Einstein’s fundamental worry in the
EPR paper, a worry more faithfully expressed in his later expositions of the argument,
was not directly to do with relativity. Rather, his opposition to quantum theory was based
on the fact that, if considered complete, the theory violates a principle of separability for
spatially separated systems. What he had in mind is expressed in the following passage:

If one asks what, irrespective of quantum mechanics, is characteristic of the world of ideas of physics,
one is first of all struck by the following: the concepts of physics relate to a real outside world, that
is, ideas are established relating to things such as bodies, fields, etc., which claim ‘real existence’ that
is independent of the perceiving subject. . . It is further characteristic of these physical objects that
they are thought of as arranged in a space-time continuum. An essential aspect of this arrangement
of things in physics is that they lay claim, at a certain time, to an existence independent of one
another, provided these objects ‘are situated in different parts of space’. Unless one makes this kind of
assumption about the independence of the existence (the ‘being thus’) of objects which are far apart
from one another in space, which stems in the first place from everyday thinking, physical thinking
in the familiar sense would not be possible. It is also hard to see any way of formulating and testing
the laws of physics unless one makes a clear distinction of this kind.

. . .The following idea characterizes the relative independence of objects far apart in space (A and
B): external influence on A has no direct influence on B; this is known as the ‘principle of contiguity’,
which is used consistently only in the field theory. If this axiom were to be completely abolished, the
idea of the existence of (quasi-)enclosed systems, and thereby the postulation of laws which can be
checked empirically in the accepted sense, would become impossible.16

16 Einstein (1948).
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In this passage, Einstein’s description of the grounds for a principle of separability takes
on something of the form of a transcendental argument: separability is presented as a
condition on the very possibility of framing empirical laws. From the EPR argument,
however, it follows that separability is not consistent with the thought that quantum
mechanics is complete.

If we consider two entangled systems, A and B, in a pure state, the type of measurement
made on A will determine the (pure) state that is ascribed to B, which may be at spacelike
separation. Any number of different measurements could be performed on A, each of which
would imply a different final state for B. From the principle of separability, however, the real
state of a distant system cannot be affected by the type of measurement performed locally
or indeed on whether any measurement is performed at all; separability then requires that
the real state of B (the physically real in the region of space occupied by B) has all of these
different possible quantum states associated with it simultaneously, a conclusion clearly
inconsistent with the wavefunction being a complete description17.

Since the principle of separability is supported by his quasi-transcendental argument,
Einstein would seem to be on firm ground in denying that quantum mechanics can be
a complete theory. On further consideration, however, the argument for separability can
begin to look a little shaky. Isn’t quantum mechanics itself a successful empirical theory?
Is it not then simply a counter-example to the suggestion that physical theory would be
impossible in the presence of non-separability? As Maudlin puts it: ‘quantum mechanics
has been precisely formulated and rigorously tested, so if it indeed fails to display the
structure Einstein describes, it also immediately refutes his worries.’18

As implied in Maudlin’s phrasing (note the conditional), some care is required with this
response. Since it is precisely the question of how the formalism of quantum mechanics is
to be interpreted that is at issue, we are always free to ask what it is that is supposed to have
been tested by the empirical success of the predictions of quantum theory. A complete
and non-separable theory, or an incomplete and statistical one? Appeal to bare empirical
success appears insufficient to decide the question of the meaning of the formalism. Let
us, then, try to sharpen the intuition that orthodox quantum theory may consitute a
counter-example to Einstein’s argument.

It is useful to look in a little more detail at the principle of separability. Although it
is not clear that he does so in the above quoted passage, elsewhere at least, Einstein dis-
tinguished between what might be called separability proper and locality.19 Separability
proper is the requirement that separated objects have their own independent real states
(in order that physics can have a subject matter, the world be divided up into pieces
about which statements can be made); locality is the requirement that the real state of
one system remains unaffected by changes to a distant system. One would usually take

17 This is the simplified version of the EPR incompletness argument which Einstein preferred. It
is interesting to note the dialectical significance of Einstein’s use of entangled systems in the argu-
ment for incompleteness. His earlier attempt to argue for incompleteness could be blocked by Bohr’s
manouevre of invoking the unavoidable disturbance resulting from measurement in order to explain
non-classical behaviour and the appearance of probabilities in the quantum description of experi-
ments. Using the correlations implicit in entangled systems to prepare a state cleverly circumvents
the disturbance doctrine, as there is no possibility of the mechanical disturbance Bohr had in mind
being involved. See Fine (1986), p. 31 18 Maudlin (1998), p. 49.

19 See Born et al. (1971), p. 164, and Einstein (1969), p. 85.
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this locality condition to fail in orthodox quantum mechanics with collapse. The justifi-
cation for the feeling that the orthodox theory provides a counter-example to Einstein’s
transcendental argument is that this failure of locality is relatively benign; it does not
seem to make the testing of predictions for isolated systems impossible. It is import-
ant to note why. The predictions made by quantum mechanics are of the probabili-
ties for the outcomes of measurements. It is established by the no-signalling theorem,
however, that the probabilities for the outcomes of any measurement on a given sub-
system, as opposed to the state of that system, cannot be affected by operations per-
formed on a distant system, even in the presence of entanglement. Thus the no-signalling
theorem entails that quantum theory would remain empirically testable, despite violating
locality.20

There might remain the worry from the Einsteinian point of view that testability at the
level of statistical predictions does not help with the problem that the proper descriptive
task of a theory may be rendered difficult given a violation of locality. Local experiments
may have difficulty in determining the real states, if such there be; but this is a different issue
from the question of whether it is possible to state empirical laws. Consider, for example,
the de Broglie–Bohm theory. Here we have perfectly coherently stated dynamical laws, yet
if the distribution for particle coordinates is given (as usual) by the modulus squared of
the wavefunction, it is impossible to know their positions. So it does seem that counter-
examples can be given to Einstein’s transcendental argument, orthodox quantum theory
with collapse being one of them. With this in mind, it is somewhat reassuring that having
presented the transcendental argument, Einstein went on to reach a more conciliatory
conclusion:

There seems to me no doubt that those physicists who regard the descriptive methods of quantum
mechanics as definitive in principle would. . . drop the requirement. . . for the independent existence
of the physical reality present in different parts of space; they would be justified in pointing out that
quantum theory nowhere makes explicit use of this requirement. I admit this, but would point out:
when I consider the physical phenomena known to me. . . I still cannot find any fact anywhere which
would make it appear likely that [the requirement] will have to be abandoned.21

Having introduced the no-signalling theorem, we should close this section by remark-
ing that this theorem is of crucial importance in saving quantum mechanics from explicit
non-locality; moreover, a form of non-locality that would lead to direct conflict with
relativity.22 For if the probability distribution for measurement outcomes on a distant
system could be affected locally, this would provide the basis for superluminal signalling
processes that could lead to the possibility of temporal loop paradoxes; and such pro-
cesses, we have suggested, cannot be incorporated into a Lorentz covariant dynamical
theory.

20 For references to the first versions of the no-signalling theorem, see Timpson and Brown (2002),
fn. 12. 21 Einstein (1948), p. 172.

22 The no-signalling theorem rules out the possibility of signalling using entangled systems, but
note that in the context of non-relativistic quantum mechanics, signalling at arbitrary speeds is
nonetheless possible by other means. For example, if the walls are removed from a box in which a
particle has been confined, then, instantaneously, there is a non-zero probability of the particle being
found in any region of space.
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B.4 NON-LOCALITY, OR ITS ABSENCE, IN THE EVERETT
INTERPRETATION

Einstein’s argument for the incompleteness of quantum mechanics made crucial use of the
notion of collapse along with that of entanglement. It is interesting to see what happens
if one attempts to treat quantum theory without collapse as a complete theory. This way
lies the Everett approach, to which we shall now turn.

It is a commonplace that the Everett interpretation23 provides us with a picture in
which non-locality plays no part; indeed, this is often presented as one of the main selling
points of the approach. Everett himself stated rather dismissively that his relative state
interpretation clarified the ‘fictitious paradox’ of Einstein, Podolsky, and Rosen illustrates
in some detail how the absence of collapse in the Everett picture allows one to circumvent
the argument for incompleteness.

Two things are important for the apparent avoidance of non-locality in Everett. The first
is that we are dealing with a no-collapse theory, a theory of the universal wavefunction in
which there is only ever unitary evolution. Removing collapse, with its peculiar character
of action-at-a-distance, we immediately do away with one obvious source of non-locality.
The second, crucially important, factor (compare the de Broglie–Bohm theory) is that in
the Everett approach, the result of a measurement is not the obtaining of one definite value
of an observable at the expense of other possible values.

In the presence of entanglement, subsystems of a joint system typically do not possess
their own state (i.e. are not in an eigenstate of any observable), but only a reduced density
matrix; it is the system as a whole which alone has a definite state. In the Everett approach,
however, what claim importance are the states relative to other states in an expansion
of the wavefunction. A given subsystem might not, then, be in any definite state on its
own, but relative to some arbitrarily chosen state of another subsystem, it will be in an
eigenstate of an observable. That is, it possesses a definite value of the observable relative
to the chosen state of the other system. This allows us to give an explanation of what
happens on measurement. Measurement interactions, on the Everett picture, are simply
(unitary!) interactions which have been chosen so as to correlate states of the system being
measured to states of a measuring apparatus. Following an ideal first-kind (non-disturbing)
measurement, the measured system will be in a definite state (eigenstate of the measured
observable) relative to the indicator states of the measuring apparatus and ultimately,
relative to an observer. If there are a number of different possible outcomes for a given
measurement, a state corresponding to each outcome will have become definite relative
to different apparatus (observing) states, following the interaction. Thus the result of a
measurement is not that one definite value alone from the range of possible values of an

23 It is perhaps worth noting that there have been a number of different attempts to develop Everett’s
original ideas into a full-blown interpretation of quantum theory (Many Minds, Many Worlds. . .).
The most satisfactory of these, in our view, is the approach developed, in slightly different ways, by
Simon Saunders and David Wallace, which resolves the preferred basis problem by way of appeal to
the phenomenon of decoherence and which has made considerable progress on the question of the
meaning of probability in the Everett picture. (See Saunders (1996, 1998) and Wallace (2003a, b)
and further references therein.) It is this version that should be considered, then, when a detailed
ontological picture is desired in what follows, although nothing much in the discussion of non-locality
should turn on this.
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observable obtains, but that each outcome becomes definite relative to a different state of
the observer or apparatus.24

Given this sort of account of measurement, there appears to be no non-locality, and
certainly no conflict with relativity in Everett. The obtaining of definite values of an
observable is just the process of one system coming to have a certain state relative to
another, a result of local interactions governed by the unitary dynamics. Furthermore, when
considering spacelike separated measurements on an entangled system, say measurements
of parallel components of spin on systems in a singlet state, there is no question of the
obtaining of a determinate value for one subsystem requiring that the distant system acquire
the corresponding determinate value, instead of another. Both sets of anti-correlated values
are realized (become definite) relative to different observing states; there is, as it were,
no dash to ensure agreement between the two sides to be a source of non-locality and
potentially give rise to problems with Lorentz covariance.

The distinction introduced above between parameter independence and outcome inde-
pendence in the framework of stochastic hidden variable theories provides a common
terminology in which the oddity of the quantum correlations inherent in entangled states
is discussed. As we mentioned, the no-signalling theorem ensures that parameter inde-
pendence is satisfied for orthodox quantum mechanics, and it is violation of outcome
independence that one usually takes to be responsible for failure of factorizability. Recall
that the condition of outcome independence states that once one has taken into account
the settings of the apparatuses on both sides of the experiment and all the relevant factors
in the joint past, the probability for an outcome on one side of the experiment should not
depend on the actual result at the other. Violation of this condition, then, presents us with
a very odd situation. For how could it be true of two stochastic processes which are distinct and
supposed to be irreducibly random that their outcomes may nonetheless display correlations?
(One might say that this question captures the essence of the concerns raised by the EPR
argument, but formulated in a way that requires neither explicit appeal to collapse nor to
perfect correlations as in the case of parallel spin measurements on the singlet state.)

The Everett interpretation can help us with the oddity of the violation of outcome
independence and with understanding how the quantum correlations come about in
general. The important thing to note is that the obtaining of the relevant correlations in the
Everett picture is not the result of a stochastic process, but of a deterministic one. Given
the initial state of all the systems, the appropriate correlations follow deterministically, given
the interactions that the systems undergo. Correlations between measurement outcomes
obtain if definite post-measurement indicator states of the various measuring apparatuses
are definite relative to one another. If we have a complete, deterministic story about how
this can come about, as we do, then it is difficult to see what more could be demanded in
explanation of how the quantum correlations come about. (Of course, the general question

24 The situation becomes more complicated when we consider the more physically realistic case of
measurements which are not of the first kind; in some cases, for example, the object system may even
be destroyed in the process of measurement. What is important for a measurement to have taken
place is that measuring apparatus and object system were coupled together in such a way that if the
object system had been in an eigenstate of the observable being measured prior to measurement,
then the subsequent state of the measuring apparatus would allow us to infer what that eigenstate
was. In this more general framework the importance is not so much that the object system is left in
a eigenstate of the observable relative to the indicator state of the measuring apparatus, but that we
have definite indicator states relative to macroscopic observables.
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of understanding the nature and capacities of the correlations inherent in entangled states
remains, but as a separate issue.)

We have seen how the story goes in the EPR-type scenario: for parallel measurements,
given the initial entangled singlet state and given the measurement interactions, it was
always going to be the case that an ‘up’ outcome on side A would be correlated with a ‘down’
outcome on side B and a ‘down’ at A with an ‘up’ at B (both outcomes coexisting in the
Everett sense). For the case of non-parallel measurements, correlations don’t immediately
obtain after the two spin measurements, but again, it follows deterministically that the
desired correlations obtain if the necessary third measurement is later performed. With
regard to the question of outcome independence, we see that we avoid the tricky problem
of having to explain how the condition is violated, as from the point of view of Everett,
the scenario is not one of distinct stochastic processes mysteriously producing correlated
results, but of correlations arising deterministically from an initial entangled state.25

25 For a fuller account, which also contains an analysis of the phenomena of superdense coding
and teleportation in the context of the Everett theory, is given in Timpson and Brown (2002).



Bibliography

Ronald Adler, Maurice Bazin, and Menahim Schiffer. Introduction to General Relativity.
McGraw-Hill Kogakusha Ltd., Tokyo, 2nd edn., (1975). International student edn.

Y. Aharonov and D. Bohm. ‘Significance of electromagnetic potentials in quantum theory’,
Physical Review, 115: 485–91 (1959).

Giovanni Amelino-Camilia and Claus Lämmerzahl. ‘Quantum-gravity-motivated
Lorentz-symmetry tests with laser interferometers’, Classical and Quantum Gravity,
21: 899–915 (2004).

Jeeva Anandan. ‘On the hypotheses underlying physical geometry’, Foundations of Physics,
10: 601–29 (1980).

—— ‘A geometric approach to quantum mechanics’, Foundations of Physics, 21: 1265–84
(1991).

—— ‘The geometric phase’, Nature, 360: 307–13 (1992).
—— and Harvey R. Brown. ‘On the reality of space-time geometry and the wavefunction’,

Foundations of Physics, 25: 349–60 (1995).
James L. Anderson. ‘Relativity pirnciples and the role of coordinates in physics’, in Hong-

Yee Chiu and William F. Hoffmann, eds., Gravitation and Relativity, 175–94. W. A.
Benjamin Inc., New York (1964).

—— Principles of Relativity Physics. Academic Press Inc., New York (1967).
—— ‘Newton’s first two laws of motion are not definitions’, American Journal of Physics,

58: 1192–95 (1990).
R. Anderson, I. Vetharanium, and G. E. Stedman. ‘Conventionality of synchronization,

gauge dependence and test theories of relativity’, Physics Reports, 295: 93–180 (1998).
Jürgen Audretsch, Friedrich Hehl, and Claus Lämmerzahl. ‘Matter wave interfer-

ometry and why quantum objects are fundamental for establishing a gravita-
tional theory’, in J. Ehlers and G. Shäter, eds., Relativistic Gravity Research,
with emphasis on Experiments and Observations. Lecture Notes in Physics, 410:
368–407. Springer-Verlag, Berlin, Heidelberg (1992).

John C. Baez and Emory F. Bunn. ‘The meaning of Einstein’s equation’, E-print: arXive:gr-
qc/0103044 v3 (2004).

Yuri Balashov and Michel Janssen.‘Critical notice: Presentism and relativity’, British Journal
for the Philosophy of Science, 54: 327–46 (2003).

Julian B. Barbour. ‘Relational concepts of space and time’, British Journal for the Philosophy
of Science, 33: 251–74 (1982).

—— Absolute or Relative Motion? Vol. 1: The Discovery of Dynamics. Cambridge University
Press, Cambridge (1989).

——The End of Time: The Next Revolution in Our Understanding of the Universe. Weiden-
feld & Nicolson, London (1999).

—— and Bruno Bertotti. ‘Mach’s principle and the structure of dynamical theories’, Pro-
ceedings of the Royal Society, London, A 382: 295–306 (1982).

H. Bateman. ‘The transformation of the electrodynamical equations’, Proceedings of the
London Mathematical Society (2), 8: 223–64 (1910).



194 Bibliography

Jacob D. Bekenstein. ‘An alternative to the dark matter paradigm: relativistic MOND
gravitation’, E-print: arXiv:astro-ph/0412652 v2 (2004a).

—— ‘Relativistic gravitation theory for the MOND paradigm’, E-print: arXiv:astro-
ph/0403694 v2 (2004b).

John S. Bell. ‘On the Einstein–Podolsky–Rosen paradox’, Physics, 1: 195–200 (1964);
repr. in Bell (1987), 14–21.

—— ‘How to teach special relativity’, Progress in Scientific Culture, 1, (1976a); repr. in
Bell (1987), 67–80.

—— ‘The theory of local beables’, Epistemological Letters (March 1976b); repr. in Bell
(1987), 52–62.

—— Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press,
Cambridge (1987).

—— ‘George Francis FitzGerald’, Physics World, 5: 31–35 (1992); 1989 lecture, abridged
by Denis Weare.

Gordon Belot. ‘Geometry and motion’, British Journal for the Philosophy of Science, 51: 561–
95 (2000).

J. M. Bennett, D. T. McAllister, and G. M. Cabe. ‘Albert A. Michelson, Dean of American
Optics—life, contributions to science, and influence on modern-day physics’, Applied
Optics, 12: 2253–79 (1973).

Peter G. Bergmann. Introduction to the Theory of Relativity. Dover Publications, New York
(1976).

—— and Arthur Komar. ‘The phase space formulation of general relativity and approaches
toward its canonical quantization’, in A. Held, (ed.), General Relativity and Gravitation.
One Hundred Years After the Birth of Albert Einstein. Vol. 1, 227–54. Plenum Press, New
York (1980).

V. Berzi and V. Gorini. ‘Reciprocity principle and the Lorentz transformations’, Journal of
Mathematical Physics, 10: 1518–24 (1969).

G. Yu. Bogoslovsky. ‘A special-relativistic theory of the locally anisotropic space-time. I:
The metric and group of motions of the anisotropic space of events’, Il Nuovo Cimento,
40B(1): 99–133 (1977).

Alfred M. Bork. ‘The “FitzGerald” contraction’, Isis, 57: 199–207 (1966).
Max Born. Einstein’s Theory of Relativity. Dover publications, New York (1965); revised

edn. prepared in collaboration with Günther Leibfried and Walter Biem.
—— H. Born and A. Einstein. The Born-Einstein Letters. Macmillan, London (1971).
K. Brading and E. Castellani, (eds.). Symmetries in Physics: Philosophical Reflections.

Cambridge University Press, Cambridge (2003).
—— and Harvey R. Brown. ‘Symmetries and Noether’s theorems’, in Brading and Castel-

lani (2003), 89–109.
Hale Bradt. Astronomy Methods. A Physical Approach to Astronomical Observations.

Cambridge University Press, Cambridge (2004).
K. Brecher and J. L. Yun. Note in Bulletin of the American Astronomical Society, 20: 987

(1988).
A. Brillet and J. L. Hall. ‘Improved laser test of the isotropy of space’, Physical Review

Letters, 42(9): 549–52 (1979).
Harvey R. Brown. ‘Discussion: Does the principle of relativity imply Winnie’s (1970)

equal passage times principle?’ Philosophy of Science, 57: 313–24 (1990).



Bibliography 195

—— ‘Nonlocality in quantum mechanics’, Proceedings of the Aristotelian Society, Suppl.
LXV: 141–59 (1991).

—— ‘Correspondence, invariance and heuristics in the emergence of special relativity’, in
S. French and H. Kamminga, (eds.), Correspondence, Invariance and Heuristics; Essays
in Honour of Heinz Post, 227–60. Kluwer Academic Press, Dordrecht (1993); repr. in
Butterfield et al. (1996).

—— ‘On the role of special relativity in general relativity’, International Studies in the
Philosophy of Science, 11: 67–81 (1997).

—— ‘The origins of length contraction: I the FitzGerald–Lorentz deformation hypothe-
sis’, American Journal of Physics, 69: 1044–54 (2001). E-prints: arXive:gr-qc/0104032;
PITT-PHIL-SCI 218.

—— ‘Michelson, FitzGerald, and Lorentz: the origins of special relativity revisited’, Bul-
letin de la Société des Sciences et des Lettres de Lódź, Vol LIII; Série: Recherches sur les
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