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Preface

National and global macroeconometric modelling has had a long and ven-
erable history in the UK, with important implications for macroeconomic
policy in general and monetary policy in particular. It is an activity that
involves sustained research input of several investigators with a variety
of skills. The present work is not an exception and its completion has
required the enthusiasm and commitment of a large number of individu-
als and institutions. It was given initial impetus by funding from the UK’s
Economic and Social Research Council (Grant no. L116251016) and from
the Newton Trust of Trinity College, Cambridge (under Anil Seal), to whom
we are very grateful. They funded a project on ‘Structural Modelling of the
UK Economy within a VAR Framework using Quarterly and Monthly Data’,
conceived and originally housed in the Department of Applied Economics
(DAE) at the University of Cambridge in the mid-1990s. The authors all
worked at Cambridge at the time, along with Brian Henry and Martin
Weale who were also co-applicants on the project. Although the team dis-
persed over the years (Garratt to Leicester and then Birkbeck; Henry to LBS
and then Oxford; Lee to Leicester; Shin to Edinburgh and Leeds; and Weale
to the National Institute), we remain very grateful for the resources and
congenial atmosphere provided by co-researchers and colleagues during
our time working at and visiting the DAE.

The research associated with the project extended well beyond the orig-
inal intentions of the funded project, however, and has benefited from
the help and expertise of many friends and colleagues. We are particu-
larly grateful to Richard Smith and Ron Smith, who have collaborated
with us and made essential contributions to various aspects of the work
in the book, and we have received invaluable comments from Manuel
Arrelano, Michael Binder, Carlo Favero, Paul Fisher, Clive Granger, David
Hendry, Cheng Hsiao, George Kapetanios, Adrian Pagan, Bahram Pesaran,
Til Schuermann, James Stock, Ken Wallis and Mike Wickens. The book
draws on material from a variety of our published journal articles also, and
we are particularly grateful to the constructive and enlightening comments
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received from the editors and referees of Econometric Reviews (especially
regarding parts of the material of Chapter 6), Economic Journal (Chapters 4
and 9), Economics Letters (Chapter 6), Journal of the American Statistical Asso-
ciation (Chapters 7 and 11) and Journal of Econometrics (Chapter 6). And
the project has also been assisted greatly by the contributions of Yoga
Affandi, Mutita Akusuwan, Mahid Barakchian, James Mitchell, Dimitrios
Papaikonomou and Eduardo Salazar.

While we have been keen to disseminate various aspects of our work in
the form of publications in academic journals, it was always our intention
to write up the project in the form of a book describing the entire pro-
cess of model building, including the methodology tying the economics
and the econometric techniques together, descriptions of the data collec-
tion and analysis, and the use of the model in various decision-making
contexts. We hope that our description will increase transparency on the
process of model building. In the light of new economic and econometric
ideas, and with the advent of fast and readily available computing power,
macroeconometric model-building is an activity that can be widely pur-
sued for a better understanding of national and global economies and their
interlinkages. We hope this book serves to reduce the investment required
in the first stages of the sustained effort required in building and using
macroeconometric models.

November 2005
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1

Introduction

Macroeconometric modelling is at the heart of decision-making by govern-
ments, industrial and financial institutions. Models are used to organise
and describe our understanding of the workings of the national and global
economies, provide a common framework for communication, predict
future economic developments under alternative scenarios, and to evalu-
ate potential outcomes of policies and external events. This book aims to
contribute to this important literature by providing a detailed description
of the ‘long-run structural modelling approach’ applied to modelling of
national economies in a global context. The modelling approach builds on
recent developments in macroeconomic theory and in time series econo-
metrics, and provides a transparent framework for forecasting and policy
analysis. The book covers theoretical as well as practical considerations
involved in the model-building process, and gives an overview of the
econometric methods.

The modelling strategy is illustrated through a detailed application to
the UK economy. This application is intended to be of interest in its own
right, as well as providing a blueprint for long-run structural modelling
by potential users of the approach in other contexts. To this end, we also
provide the data and computer code employed in the UK modelling exer-
cise to illustrate the steps taken and to facilitate replication of the methods
and their application to other datasets. Hence, the book aims to provide
a description of the construction and use of the UK macroeconometric
model in sufficient detail so that it will be of use to practitioners who
might wish to undertake a similar sort of exercise; users are persuaded
of the cohesion between the modelling activity and the end uses of the
model; and the policy analyses and forecasts that are presented are read-
ily interpretable and of direct use by decision-makers. We also describe
various extensions of the modelling exercise, including an explanation
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Introduction

of how the modelling approach could be applied to develop a global
macroeconometric model, developed from scratch or accommodating the
UK model, and an explanation of how the UK model could be used to focus
on specific features of the national economy which might be of specific
interest to particular decision-makers.

In describing our modelling activities, we address directly the anxieties
of those who make use of macroeconomic models but who recognise also
the uncertainties and ambiguities involved in modelling and associated
forecasting. So, in explaining our strategy, we make an explicit distinction
between those elements of economic theory that we believe with some
degree of confidence (usually associated with the long-run properties of
the economy) and those elements for which economic theory is less clear-
cut (on the short-run dynamics arising out of the precise sequencing of
decisions, for example). We also compare our views on the working of the
macroeconomy with those of alternative modelling approaches, noting
the areas in which there is broad agreement and those in which there
is less consensus. We note too that, once we have estimated our model,
we can test formally the validity of hypotheses implied by our specific
economic theory. This discussion aims to place our modelling approach
in context, trying to reconcile it with the work of other macromodellers.
And it aims to reassure the reader that the modelling approach is securely
anchored to a firm and transparent theoretical base.

The distinction drawn between confidently held views and less confi-
dently held beliefs on the underlying economic theory also informs our
interpretation of the model and its dynamic properties. Hence, there are
some properties of the model which reflect the influence of the views
on the long-run relationships between variables implied by economic
theory. But other aspects of the dynamic properties of the model are
interpretable only if one has a particular view on the short-run processes
driving decision-making, and these views may be more contentious. By
explicitly drawing these distinctions, we are able to provide more reli-
able and informed predictions on the outcome of policies and on the
reactions of the macroeconomic variables of interest to external events
and to relate the model predictions directly to the underlying economic
theory.

Most importantly, when considering the use of models in forecasting,
we emphasise the needs of decision-makers and other end-users. For this
reason, we do not present our forecasts only in the form of point forecasts
with confidence intervals, as is usually the case, but provide tables and
graphs of ‘probability forecasts’. These measures refer to events considered
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to be of interest to decision-makers (such as ‘recession’ or ‘low inflation’
at various forecast horizons, for example) and indicate the likelihood of
these events taking place according to the estimated model. The probabil-
ity forecasts convey the uncertainty surrounding the model’s forecasted
outcomes in a clear and transparent way.

1.1 Historical background

Macroeconometric modelling in the UK and elsewhere has undergone
a number of important changes over the past twenty or thirty years,
driven by developments in economic and econometric theory as well
as changing economic circumstances. One important impetus in this
process was Lucas’ (1976) critique of macroeconometric policy evalu-
ation, which resulted in widespread adoption of the rational expectations
methodology in macroeconomic models. It also provoked considerable
scepticism concerning the use of large-scale macroeconometric models
in policy analysis and initiated the emergence of a new generation of
econometric models explicitly based on dynamic intertemporal optimi-
sation decisions by firms and households. At the same time, Sims’ (1980)
critique raised serious doubts about the traditional, Cowles Commission
approach to identification of behavioural relations, which had been based
on what Sims termed ‘incredible’ restrictions on the short-run dynamics of
the model. This critique generated considerable interest in the use of vec-
tor autoregressive (VAR) models in macroeconometric analysis.1 A third
impetus for change in the way in which macroeconometric modelling has
been undertaken came from the increased attention paid to the treatment
of non-stationarity in macroeconomic variables. The classic study was that
by Nelson and Plosser (1982), who showed that the null hypothesis of a
unit root could not be rejected in a wide range of macroeconomic time
series in the US. This resurrected the spectre of spurious regression noted
originally by Yule (1926), Champernowne (1960), and more recently by
Granger and Newbold (1974). Subsequently, the work of Engle and Granger
(1987), Johansen (1991) and Phillips (1991) on cointegration showed pos-
sible ways of dealing with the spurious regression problem in the presence
of unit root variables, with important consequences for macroeconometric
modelling in particular.

1 Sims’ critique also extends to the identification of rational expectations models.
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1.2 Alternative modelling approaches

Different purposes require different models. A purely theoretical model
may be adequate for some purposes while, for other purposes, a purely stat-
istical description of the data may be adequate. However, in many cases,
we need to combine theoretical coherence with a good description of the
data. This synthesis has taken four main forms. First, there are large-scale
macroeconometric models such as the various vintages of HM Treasury’s
model of the UK economy and the Federal Reserve Board’s model of the US
economy. These models can contain hundreds of variables and equations
and are typically built on detailed sub-models of the various sectors of
the macroeconomy. The large-scale models have made many important
innovations over the years but, by their very nature and because of the
questions they are designed to address, they have evolved slowly. Hence,
they have essentially followed the tradition of the Cowles Commission,
making a distinction between exogenous and endogenous variables and
imposing restrictions, often on the short-run dynamic properties of the
model, in order to achieve identification. The parameters have been typ-
ically estimated by least squares or by instrumental variables methods,
and full information estimation of the model parameters has rarely been
attempted.

Secondly, following the methodology developed by Doan, Litterman
and Sims (1984), Litterman (1986), and Blanchard and Quah (1989),
there are unrestricted, Bayesian, and ‘structural’ vector autoregression
(VAR) specifications that are used extensively in the literature. VAR and
Bayesian VARs (BVAR) are primarily used for forecasting. The structural
VAR approach aims to provide the VAR framework with structural con-
tent through the imposition of restrictions on the covariance structure of
different types of shocks. The basis of the structural VAR analysis is the
distinction made between shocks with temporary (transient) effects from
those with permanent effects which are then related to economic theory in
a rather loose manner by viewing the two types of shocks as demand and
supply type shocks, for example. The approach does not attempt to model
the structure of the economy in the form of specific behavioural relation-
ships. Its application is also limited to relatively small models where the
distinction between the two types of shocks is sufficient to deliver identi-
fication. The particular application considered by Blanchard and Quah to
illustrate their approach, for example, is based on a bivariate VAR in real
output and the rate of unemployment.

4



Alternative Modelling Approaches

The third approach is closely associated with the Dynamic Stochastic
General Equilibrium (DSGE) methodology originally employed in the Real
Business Cycle literature. This approach developed following the seminal
work of Kydland and Prescott (1982) and Long and Plosser (1983), and pro-
vides an explicit intertemporal general equilibrium model of the economy
based on optimising decisions made by households and firms. Originally,
the emphasis of these models was on real factors (e.g. productivity shocks)
but more recently the ‘New Keynesian DSGE models’ have been developed
to allow for monetary policy rules, adjustment costs, heterogeneity, and
endogenous technological progress, for example, and also to accom-
modate nominal rigidities.2 In consequence, the differences between
the DSGE and the most recent incarnations of traditional macroecono-
metric models have become less pronounced. Also many of the DSGE
models can be approximated by restricted VAR models, which also renders
them more comparable with other modelling approaches.3

The fourth approach, and the one which we aim to promote in this book,
is the ‘structural cointegrating VAR’ approach. This approach is based on
the desire to develop a macroeconometric model that has transparent
theoretical foundations, providing insights on the behavioural relation-
ships that underlie the functioning of the macroeconomy. Implicit in the
modelling approach is the belief that economic theory is most inform-
ative about the long-run relationships, as compared to the short-run
restrictions that are more contentious. The approach allows testing of
the over-identifying restrictions on the long-run relations and provides
a statistically coherent framework for the analysis of the short run. At
the practical level, the approach is based on a log-linear VARX model,
where the familiar VAR model is augmented with weakly exogenous vari-
ables, such as oil prices, and country-specific foreign variables.4 On the
assumption that the individual macroeconomic series have a unit root,
each of the long-run relationships derived from theory is associated with
a cointegrating relationship between the variables, and the existence of
these cointegrating relationships imposes restrictions on a VAR model of
the variables. Hence, the approach provides an estimated structural model
of the macroeconomy, in which the only restrictions on the short-run

2 See Section 2.3 for details.
3 See, for example, Kim and Pagan (1995), and Christiano et al. (1998). New Keynesian

versions of the DSGE models have also been developed successfully by Smets and Wouters
(2003) and Christiano et al. (2005).

4 The econometrics of VARX models are described in detail in Chapter 6.
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dynamics of the model are those which are imposed through the decision
to limit attention to log-linear VARX models with a specified maximum
lag length.5 The work of King et al. (1991), Gali (1992), Mellander et al.
(1992) and Crowder et al. (1999) is in this vein, although our own work has
shown the flexibility of the approach, including the first attempts to use
the structural cointegrating VARX modelling approach to build national
and global macroeconometric models.6

It is worth noting at the outset that, while the approach that we advocate
emphasises the importance of long-run restrictions, it is entirely possi-
ble to investigate also the validity and implications of specific theories
on the short run while still following our modelling strategy. Of course,
this would require the imposition of further restrictions on the cointe-
grating VAR, but these additional short-run restrictions can be imposed
without reference to the restrictions imposed on the long run and have
no bearing on the influence of the long-run restrictions (or vice versa).
Indeed, there are many questions of interest that necessitate the use of
a macroeconometric model and which require the investigator to take a
view on the short-run behaviour of the macroeconomy; investigating the
effects of monetary policy, for example. This can be done and, indeed, we
shall devote some time in the book to the examination of monetary policy
using our estimated model for the UK.

1.3 The long-run modelling approach

The long-run structural modelling approach begins with an explicit state-
ment of a set of long-run relationships between the macroeconomic
variables of interest, derived from macroeconomic theory, including key
arbitrage and solvency conditions for example. These long-run relation-
ships are then embedded within an otherwise unrestricted VARX model,
augmented appropriately with country-specific foreign variables. The
VARX model is then estimated, using recently developed econometric

5 Hence, the approach cannot capture directly the possibility that some of the macroeco-
nomic relationships contain a moving average component or involve important asymmetries
in adjusting to shocks, for example. The impact of these influences on the dynamics of the
macroeconomy can only be approximated within the context of a non-linear dynamic model.

6 The work of these earlier papers is more limited in scope. The models of King et al. (1991),
Gali (1992) and Crowder et al. (1999) are closed economy models unsuitable for modelling a
small open economy such as the UK. The model of Mellander et al. (1992) attempts to capture
the open nature of the Swedish economy only by adding a terms of trade variable to the
consumption–investment–income model analysed by King et al. (1991).
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methods, to obtain an augmented cointegrating VAR model which incorp-
orates the structural long-run relationships. This direct procedure also
yields theory-consistent restrictions on the intercepts and/or the trend
coefficients in the VAR, which play an important role in testing for cointe-
gration and co-trending, as well as for testing restrictions on the long-run
relations.

The approach shares common features with many applications of coin-
tegration analysis. However, it is distinct because many applications of
cointegration analysis start with an unrestricted VAR and then (sometimes)
impose restrictions on the cointegrating relations, without a clear a priori
view of the economy’s structural relations. This latter more statistical
approach is likely to be applicable when there exists only one cointegrating
relationship among the variables in the VAR. When the number of coin-
tegrating relations are two or more, without a clear and comprehensive
theoretical understanding of the long-run relations of the macroecon-
omy, identification of the cointegrating relations and the appropriate
choice of intercepts/trends in the underlying VAR model will become a
very difficult, if not an impossible, undertaking. By beginning the analysis
with an explicit statement of the underlying macroeconomic theory, the
structural cointegrating VAR approach that we employ places the macro-
economic theory centre-stage in the development of the macroecono-
metric model.

The long-run structural approach has a number of other strengths in
undertaking national and global macroeconometric modelling too. Being
based on a cointegrating VAR with fully specified long-run properties, the
estimated model possesses a transparency which is frequently lost in larger
macromodels and our approach ensures that the resultant macromodel
has a long-run structural interpretation. Further, by clarifying the relation-
ship between economic theory and the short- and long-run restrictions of
our model, our approach makes clear the difficulties involved in inter-
preting the effects of shocks in general, and in the analysis of impulse
responses in particular. And our approach allows for a fairly general
dynamic specification, and avoids some of the difficulties involved in other
modelling approaches where a tight economic theory is used to impose
very rigid restrictions on the short-run dynamics at the expense of fit with
the data.7

The UK model that we present as the detailed illustration of our approach
focuses on five domestic variables whose developments are widely regarded

7 See, for example, Kim and Pagan’s (1995) discussion of some of the early DSGE models.
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as essential to a basic understanding of the behaviour of the UK macro-
economy; namely, output, prices, the nominal interest rate, the exchange
rate and real money balances. It also contains four foreign variables: for-
eign output, the foreign price level, the foreign interest rate, and oil prices.
The analysis gives a forum with which to illustrate further strengths of our
modelling approach, providing insights on the UK from at least three per-
spectives. First, the econometric methodology that has been developed
provides the means for testing formally the validity of restrictions implied
by specific long-run structural relations within a given macromodel. The
ability to test rigorously the validity of long-run restrictions implied by
economic theory within the context of a small and transparent, but reas-
onably comprehensive, model of the UK macroeconomy is an important
step towards an evaluation of the long-run underpinnings of alternative
macrotheories. As such we test and implement an approach standard in
theory but rare in practice. Second, our approach allows an investigation
of the short-run dynamic responses of the model to shocks, while ensur-
ing that the effects of the shocks on the long-run relations eventually
vanish. This provides an important insight into the dynamics of coin-
tegrating models where shocks have permanent effects on the levels of
individual variables in the model. The methods employed enable us to
undertake realistic policy evaluation exercises following one of two routes.
The first route imposes no restrictions on the short-run dynamics of the
model and investigates the model properties using ‘generalised impulse
response analysis’. This route avoids the strictures of Sims’ critique and pro-
vides insights on the macroeconomy’s dynamic responses which, unlike
the orthogonalised impulse responses, are invariant to the order of the
variables in the underlying VAR. The second route supplements the long-
run restrictions with additional restrictions based on theorising on the
short run. This route is susceptible to the criticisms of Sims and requires
strong assumptions to be made on issues which are not uncontentious.
But the route allows us to investigate the impact of very specific policy
innovations (e.g. monetary policy shocks) and other external events (e.g.
oil price innovations). And third, the relative simplicity of the cointegrat-
ing VAR model enables us to generate forecasts not just of the most likely
outcomes of our macroeconomic variables, but also to generate forecasts
of the likelihood of various events taking place and to investigate the
sources of uncertainty surrounding these forecast probabilities. Hence,
for example, we are able to evaluate the likelihood of the Bank of Eng-
land hitting its inflation target over the near or longer term, and whether
this is compatible with avoiding recession. Hence, our approach relates
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the forecasts to the underlying properties of the macroeconomic model
and presents the forecasts in a way which is helpful to those agents for
whom the performance of the UK economy is an important influence on
decision-making.

1.4 The organisation of the book

The book can be considered to be in three parts. In the first part, con-
sisting of Chapters 2–7, we discuss the way in which economic theory
and econometric analysis can be brought together to construct a macro-
econometric model in which the long-run relationships are consistent
with economic theory and where the short-run dynamics have an interpre-
tation. The second part, consisting of Chapters 8–9, is devoted to the prac-
tical detail of estimating a long-run structural macroeconometric model,
illustrated by a detailed description of the estimation of a model of the
UK macroeconomy. And in the third part, consisting of Chapters 10–13,
we discuss the interpretation and use of long-run structural macroecono-
metric models, describing the uses of the illustrative UK model along with
extensions of the modelling activity to investigate global macroecono-
metric models and other specified issues in a national macroeconometric
context.

In more detail, Chapter 2 briefly describes some alternative approaches
to macroeconometric modelling, focusing primarily on their long-
run characteristics and the consensus that has developed surrounding
desirable long-run properties. Chapter 3 describes a framework for macro-
econometric modelling which draws out the links with economic the-
ory relating to the long run and with theory relating to the short
run. The chapter elaborates a modelling strategy that can be employed
to accommodate directly the theory of the long run and notes the
ways in which short-run theory can also be accommodated. It also
reviews the recent literature on modelling short-run dynamics, high-
lighting the difficulties in obtaining consensus on appropriate short-run
restrictions and commenting on the approaches taken in the literature
in examining policy shocks in general and monetary policy in partic-
ular. Chapter 4 describes a specific theoretical framework for macro-
economic modelling of a small open economy that can be embedded
within a macroeconometric model, noting the testable restrictions on
the long-run relations suggested by the theory. Complementing this,
Chapter 5 explores a set of identifying restrictions on the short-run
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dynamics that might be used to supplement the long-run restrictions if
the model is to be used to investigate the effect of economically mean-
ingful shocks. Chapter 6 then briefly reviews the econometric methods
needed for the empirical analysis of cointegrating VAR models, includ-
ing new material (on the conditions under which error correction models
are mean-reverting, for example) that are particularly useful in practical
macroeconometric modelling. Finally in this part, Chapter 7 provides
an introduction to the interpretation and estimation of probability fore-
casts which we consider to be a particularly useful method for presenting
forecasts.

The part of the book concerned with the practical construction of the
illustrative model of the UK economy begins with Chapter 8, which
provides an overview of the data. Chapter 9 describes the empirical
work underlying the construction of the UK model, discusses the results
obtained from testing its long-run properties, and compares the model
with benchmark univariate models of the variables. This description of
the modelling work not only provides one of the first examples of the use
of these cointegrating VAR techniques in an applied context, but it also
includes a discussion of bootstrap experiments designed to investigate the
small sample properties of the tests employed.

The final part of the book is concerned with the use of long-run structural
macroeconometric models. It begins with Chapter 10, which discusses
the dynamic properties of the estimated model. Chapter 11 is concerned
with forecasting and prediction based on the model. Here we elaborate
the notion of probability forecasting, which provides a useful means
of conveying the uncertainties surrounding forecasts obtained from the
model, and illustrate the usefulness of probability forecasts with refer-
ence to the Bank of England’s inflation targets and the UK’s growth
prospects. Chapter 12 describes some recent extensions of the model
and some other applications, including an introduction to the develop-
ment of a model of the global macroeconomy using the same modelling
approach.

Finally, in the appendices, we provide an account of the construction
and sources of the data plus instructions on how to replicate the results
presented in the empirical sections of the book. Much of the modelling
work described in the book can be undertaken using Pesaran and Pesaran’s
(1997) econometric package Microfit. But for those who prefer to work with
a programmable language, to adapt some of the procedures for example,
we provide in the appendices also a simple manual for the use of a set of
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computer programs written in Gauss that can be used to replicate or extend
the analysis of the book too. The data and code are available through the
authors’ webpages. It is worth noting that the use of the programs, as
described in the manual, is relatively straightforward to follow, although
the user will need some familiarity with Gauss to implement them.
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2

Macroeconometric modelling:
Alternative approaches

This chapter provides an overview of the main approaches to macro-
econometric modelling, focusing in particular on the implications of the
different approaches for modelling the long run. We discuss the ‘struc-
tural cointegrating VAR’ approach to macroeconometric modelling in
general terms and compare it to other approaches currently followed
in the literature; namely, the large-scale simultaneous equation macro-
econometric models, structural VARs, and the dynamic stochastic general
equilibrium (DSGE) models. The primary purpose of the review is to ascer-
tain the extent to which there is a consensus on the desired long-run
properties of a macroeconometric model and to compare the effective-
ness of the different approaches to macroeconomic modelling in their
attempts to test and incorporate these long-run properties into models in
practice.

2.1 Large-scale simultaneous equation models

Large-scale simultaneous equation macroeconometric models (SEMs) have
a long history and can be traced back to Tinbergen and Klein and the sub-
sequent developments at the Cowles Commission. Prominent examples
of large-scale models include the first and second generation models
developed at the Federal Reserve Board (see, for example, Ando and
Modigliani, 1969, Brayton and Mauskopf, 1985, and Brayton and Tinsley,
1996), Fair’s (1994) model of the US economy, Murphy’s (1988, 1992)
model for Australia, and the various vintages of models constructed for
the UK at the London Business School (LBS), the National Institute of
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Economic and Social Research (NIESR), HM Treasury (HMT), and the Bank
of England (BE).1

The relatively poor forecasting performance of the large-scale models in
the face of the stagflation of the 1970s, in conjunction with the advent of
rational expectations and the critiques of Lucas (1976) on policy evalu-
ation and Sims (1980) on identification, brought about a number of
important changes in the development and the use of large-scale SEMs
throughout the 1980s and subsequently. Important developments have
taken place in three major areas.2 First, in response to Sims’ criticism
of the use of ‘incredible’ identifying restrictions involving short-run
dynamics, and under the influence of developments in cointegration
analysis (e.g. Engle and Granger, 1987), a consensus has formed that
the important aspect of a structural model is its long-run relationships,
which must be identified without having to restrict the model’s short-run
dynamics. Second, in response to the criticism that large-scale models paid
insufficient attention to the micro-foundations of the underlying rela-
tionships and the properties of the macroeconomic system considered
as a whole, there is now a greater use made of economic theory in the
specification of large-scale models. And third, in response to the criticisms
of Lucas, considerable work has been undertaken to incorporate rational
expectations (RE), or strictly speaking model consistent expectations, into
large-scale macromodels.

Under the influence of these developments, more recent generations
of large-scale models have shared a number of important features. Almost
invariably, the models have comprised of three basic building blocks: equi-
librium conditions, expectations formation, and dynamic adjustments.
The equilibrium conditions have been typically derived from the steady
state properties of a Walrasian general equilibrium model, and there
seems to be clear evidence of a developing consensus on what consti-
tutes the appropriate general equilibrium model for characterising the
long-run relations built around utility maximising households and profit-
maximising firms facing appropriate budget and technology constraints.

1 Bodkin et al. (1991) provide a comprehensive survey of the history of macroeconometric
model building. The evolution and the development of macroeconometric modelling at the
Federal Reserve Board is reviewed by Brayton et al. (1997). For the UK these developments were
documented in a series of volumes produced by the ESRC Macroeconomic Modelling Bureau
(see, for example, Wallis et al. 1987). Further reviews of the modelling in the UK and elsewhere
can be found in Smith (1994), Wallis (1995) and Hall (1995).

2 A detailed discussion of these developments in the case of the UK practice can be found
in Hall (1995). Similar arguments have also been advanced by Brayton et al. (1997) in the case
of the US experience.
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This consensus side-steps the Sims critique by focusing on the long run
and remaining agnostic on short-run dynamics.

Despite the progress made, and the growing consensus on what con-
stitutes best practice in macroeconometric modelling, large-scale models
have continued to be viewed with some scepticism by some, particularly in
the area of policy analysis.3 The complexity of the interactions of different
parts of a large dynamic model means that the accumulated response of
the macroeconomy to a particular shock or change in a given exogenous
variable can be difficult to interpret, particularly as far as their effects on
the long-run relations are concerned.4 It is also difficult to identify and
correct for misspecification in large-scale models, as attempts to fix one
part of the model can have far reaching (and often unpredictable) con-
sequences for the properties of the overall model.5 Furthermore, as far as
estimation is concerned, full information methods are often not an option
given the size of the models. With these difficulties in mind, it has been
argued that it is simply not possible for large-scale models to follow a best
practice approach because of their size and complexity.

These difficulties are particularly apparent in the modelling exercises
undertaken to consider global interactions. One of the first attempts at
global linkages was Larry Klein’s Project Link adopted by the United
Nations which linked up traditional large-scale macroeconometric mod-
els developed originally for national economies. Other examples include
the IMF’s MULTIMOD multi-regional model (Laxton et al. (1998)) and
the National Institute’s Global Econometric Model (NiGEM) which estim-
ates/calibrates a common model structure across OECD countries, China
and a number of regional blocks and the IMF’s MULTIMOD. The
country/region-specific models in NiGEM are still large, each comprised
of 60–90 equations with 30 key behavioural relationships.6 These contri-
butions provide significant insights into the interlinkages that exist among
the major world economies and have proved invaluable in global forecast-
ing. However, there are important weaknesses in the models. For example,

3 See, for example, Whitley (1997).
4 Innovative methods for characterising and summarising SEM’s short-run and long-run

properties have been developed to address this problem, however, primarily through stoch-
astic simulation methods. See, for example, Wallis et al. (1987), Turner (1991) and Wallis and
Whitley (1987). Methods for the analysis of the long-run properties of large macroeconometric
models have also been developed by Murphy (1992), Fisher et al. (1992), and Wren-Lewis et al.
(1996).

5 See, for example, the empirical exercise of Fisher et al. (1992) relating to the current account
balance reaction to nominal exchange rate changes in the models developed by NIESR, LBS,
BE and HMT at that time.

6 For a recent detailed account, see Barrell et al. (2001).

15



Macroeconometric Modelling

as argued in Pesaran, Schuermann and Weiner (2004), these models do not
typically address the financial linkages that exist among the world’s major
economies. Moreover, they can be rather cumbersome to use in practice
and the interlinkages of the different relations in different country models
are often difficult to interpret.7

To summarise, while important progress has been made in the construc-
tion and use of large-scale SEMs, it is still often argued that these models are
subject to a number of limitations that arise primarily from their large and
complex structure. As Brayton et al. (1997) conclude: ‘Large-scale macro-
models are by their nature slow to evolve.’ Simultaneous estimation and
evaluation of such models is currently computationally prohibitive and,
given the available time series data, may not be even feasible. A full inte-
gration of theory and measurement has proved elusive to large-scale model
builders. Despite the imaginative attempts made over the past two decades,
it remains a formidable undertaking to construct a theory-consistent large-
scale macroeconometric model which has transparent long-run properties
and fits the data well.

2.2 Unrestricted and structural VARs

2.2.1 Unrestricted VARs

The unrestricted VAR approach introduced into macroeconometrics by
Sims (1980) stands at the other extreme to large-scale models. It focuses
on modelling a relatively small set of core macroeconomic variables using
a VAR specification with particular emphasis on the statistical fit of the
model to the data possibly at the expense of theoretical consistency, both
from a short-run and a long-run perspective. Sims’ objective was to invest-
igate the dynamic response of the system to shocks (through impulse
response functions) without having to rely on ‘incredible’ identifying
restrictions, or potentially controversial restrictions from economic the-
ory. This strategy eschews the need to impose long-run relationships on
the model’s variables, and relies exclusively on time series observations to
identify such relationships if they happen to exist.

According to the Wold decomposition theorem, all covariance station-
ary processes can be written as the sum of a deterministic (perfectly pre-
dictable) component and a stationary process possessing an infinite order

7 The global VAR model of Pesaran, Schuermann and Weiner (2004) adopts the structural
cointegrating VAR approach to developing a model to analyse global financial and real inter-
actions. As explained in Section 3.4 and illustrated in Section 12.2, this analysis provides the
modelling outcome with considerably more transparency.
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moving average (MA) representation.8 Restricting attention to ‘invertible’
processes,9 one obtains a unique MA representation, also known as the
‘fundamental’ representation which fully characterises the sample auto-
correlation coefficients. Such a fundamental representation can be approx-
imated by a finite order vector autoregressive moving average (VARMA)
process. However, estimation of VARMA models poses important estima-
tion problems, particularly when the number of variables in the VARMA
model is relatively large. For this reason, Sims chooses to work with a finite
order VAR model which is much simpler to estimate, but involves further
approximations. To perform impulse response analysis, Sims’ approach
then requires the use of a Choleski decomposition of the variance covari-
ance matrix of the model’s innovations/shocks. This enables the MA
representation to be written in terms of orthogonalised innovations. It is
the responses of the macroeconomic variables to these orthogonalised
shocks that are described in Sims’ orthogonalised impulse responses.

This approach to modelling has been subject to a number of criticisms
(see, for example, Pagan, 1987), some of which are worth noting here.
First, the approach requires care in the initial stages in the choice of trans-
formation of the data to achieve stationarity. In particular, it is important
that economically meaningful, and statistically significant, relations are
not excluded from the analysis at this stage by the choice of transforma-
tion. For example, a VAR model in the first differences of I(1) variables is
mis-specified if there exists a cointegrating relationship between two or
more of the I(1) variables. Second, care is needed in the choice of vari-
ables to be included in the VAR analysis, and it is difficult to imagine
how this choice could be made without reference to some underlying eco-
nomic theory. And third, since the choice of the Choleski decomposition
is not unique, there are a number of alternative sets of orthogonalised
impulse responses which can be obtained from any estimated VAR model.
A particular choice of orthogonalisation might be suggested by economic
theory, and Sims’ original approach to choosing an orthogonalisation was
to impose a causal ordering on the variables in the VAR. However, such a
causal ordering can be difficult to justify in practice. In the absence of a
generally accepted casual ordering, the orthogonalised impulse responses
are difficult to interpret economically.

8 See, for example, pages 108–109 of Hamilton (1994).
9 Limiting attention to the fundamental Wold representation is not uncontentious. As

shown in Hansen and Sargent (1991), for example, the MA representation that underlies the
VAR model can be non-fundamental (in the sense that one or more of the roots of the MA
process fall inside the unit circle) and at the same time be economically meaningful.
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Due to their flexibility and ease of use, VAR models are used extensively
in forecasting and as benchmarks for evaluation of large-scale and DSGE
models. In order to mitigate the curse of dimensionality and the large
number of parameters typically estimated in VAR models, Doan, Litterman
and Sims (1984) have also proposed Bayesian VARs (BVARs) which com-
bine unrestricted VARs with Bayesian, or what has come to be known
as ‘Minnesota’ priors. Other types of priors have also been considered in
the literature; DeJong et al. (1993), for example, combine a VAR(1) model
with prior probabilities on its parameters derived from a RBC model. This
approach represents a coherent attempt to take advantage of the empir-
ical simplicity of the VAR approach while at the same time making use
of economic theory and, as discussed later in this chapter, is an approach
which has been taken up recently in the context of Dynamic Stochastic
General Equilibrium modelling. See also Section 2.3 on the use of Bayesian
techniques in DSGE models.

2.2.2 Structural VARs

The structural VAR approach builds on Sims’ approach but attempts to
identify the impulse responses by imposing a priori restrictions on the
covariance matrix of the structural errors and/or on long-run impulse
responses themselves. This approach is developed by Bernanke (1986),
Blanchard and Watson (1986) and Sims (1986) who considered a priori
restrictions on contemporaneous effects of shocks, and subsequently by
Blanchard and Quah (1989), Clarida and Gali (1994) and Astley and Garratt
(1996) who use restrictions on the long-run impact of shocks to iden-
tify the impulse responses. In contrast to the unrestricted VAR approach,
structural VARs explicitly attempt to provide some economic rationale
behind the covariance restrictions used, and thus aim to avoid the use of
arbitrary or implicit identifying restrictions associated with orthogonalised
impulse responses. However, while the use of ‘theory based’ covariance
restrictions in small systems allow the impulse responses to be identified
under the structural VAR approach, such restrictions still do not enable
identification of the long-run relationships among the variables. Further-
more, even the covariance restrictions are not always easy to interpret or
motivate from an economic perspective, particularly in the case of VAR
models with three or more variables. So, as explained in detail in the fol-
lowing chapters, the number of exactly identifying covariance restrictions
required increases rapidly with the number of variables in the VAR. In
a system involving m variables and a set of m orthogonalised structural
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shocks, the required number of such restrictions is equal to m(m − 1)/2.
For example, in the case of the core model of the UK presented in this
book, which includes nine endogenous variables, the number of covari-
ance restrictions required to exactly identify the impulse responses will be
36, even if the covariance of the structural shocks is assumed to be diag-
onal. It is not clear how so many restrictions could be identified within
the structural VAR framework, let alone motivated from an appropriate
economic theory perspective.

There are also inherent difficulties with the interpretation that are given
to the impulse responses obtained under the structural VAR approach.
For example, in Blanchard and Quah (1989), a bivariate VAR model of
unemployment and output growth is investigated by first solving the two
variables in terms of two orthogonalised white-noise shocks, and then
estimating impulse responses under the identifying assumption that one
of the shocks has no long-run effects on output levels. They then refer to
this shock as the ‘demand shock’, and refer to the other shock as the ‘supply
shock’.10 However, while it might be an interesting exercise to consider the
effects on output and unemployment of the two different types of shock,
and while it might be possible to elaborate a model of the macroecon-
omy in which demand shocks have the property assumed by Blanchard
and Quah, there seems little rationale in referring to these innovations as
‘demand’ and ‘supply’ shocks in the context of the purely statistical model
used by these authors. The different types of shock considered in this ana-
lysis are defined with reference to their statistical properties (i.e. whether or
not they have a permanent effect on output levels) and not with reference
to a model of how consumers and producers behave in a macroeconomy.11

Also, in the context of VAR models with three or more variables, the pos-
sibility of more than one permanent or transitory shock poses a further
identification problem since many combinations of stationary shocks will
themselves be stationary. For further details see Section 3.2.5.

2.3 Dynamic stochastic general equilibrium models

Unrestricted VARs and the Structural VARs make minimal use of economic
theory, while the use of theory in large-scale models is typically modular,

10 Recall that since m = 2, only one covariance restriction is needed to identify the
impulse responses.

11 For a more detailed critical evaluation of the structural VAR approach see Levtchenkova
et al. (1998).
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in the sense that the theory is used in a coherent manner only in specific
modules or parts of the model. In contrast, the DSGE models develop a
general equilibrium approach to modelling using stochastic intertemporal
optimisation techniques applied to decision problems of representative
households and firms.12

The DSGE model is expressed in terms of ‘deep’ structural parameters,
such as the parameters that enter the preferences, production technolo-
gies and the probability distributions of taste and technology shocks.
In practice, very simple forms are chosen for these functions (power
utility function and Cobb–Douglas production functions, for example).
Nevertheless, the resultant optimal decision rules are complicated func-
tions of the macroeconomic variables. These are generally approximated
around the deterministic steady-state values of the macroeconomic vari-
ables to provide a log-linear system of rational expectations (RE) equations
with backward and forward components. The RE solution of this system
is obtained assuming certain transversality conditions hold (thus ruling
out bubble effects), the DSGE model provides the correct characterisa-
tion of economy, the representative agent paradigm is acceptable, and that
the underlying processes remain stable into the infinite future. The latter
assumption is made implicitly (although rarely acknowledged) in order to
derive the expected present value of the discounted future variables that
enter the RE solution. Under these assumptions the RE solution can be
written as a VAR (or a VARX in the case of open economies) model subject
to cross-equation parametric restrictions.13

The proponents of the DSGE approach to macroeconomic modelling
argue that this approach takes macroeconomic theory seriously in a way
that the large-scale SEMs do not. In particular, it is argued that the use of a
general equilibrium framework ensures that the DSGE models display stock
equilibria, rather than the flow equilibria which are characteristic of the
traditional approach to macroeconometric models. The derivation of the
model’s relationships as solutions to intertemporal optimisation problems
of households and firms ensures that the model has an internal consist-
ency and a relationship with economic theory that is lost in traditional
large-scale models. However, we have already noted that the proponents

12 For a survey of early developments in the literature on DSGE models, see the contributions
in the volume edited by Cooley (1995), while discussion of the more recent ‘New Keynesian’
DSGE models is given in Smets and Wouters (2003) and Christiano et al. (2005).

13 A specific illustration of this procedure is given in Chapter 3 below. See also, for example,
Binder and Pesaran (1995), Kim and Pagan (1995), Wickens (1995), and Pesaran and Smith
(2005) in the case of open economy DSGE models within a global context.
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of large-scale models have made considerable progress in relating the
structure of their models to economic theory, particularly in relation to
the long-run properties of the model. Indeed, we noted that there has
developed a consensus on the appropriate theory for the characterisation
of the long run, based on Walrasian general equilibrium theory, which
has been adopted (at least in part) in many of the current generation of
large-scale models. In this respect, therefore, the differences in the theo-
retical underpinnings of the DSGE models and the large-scale models are
less polarised than is sometimes argued.

However, there are important differences between the two approaches
both in content and in emphasis. In particular, they differ significantly
in their treatment of short-run dynamics. The DSGE models not only pro-
vide the form of relationships between economic variables that exist in the
long run, but also provide an explicit statement of the dynamic evolution
of the macroeconomy in response to shocks. It is argued (for example, in
Plosser, 1989) that the foundations of typical Keynesian models are static
in nature, and that the dynamics are introduced arbitrarily through accel-
erator mechanisms for investment and inventory behaviour, or through
arbitrary nominal rigidities in wage and price setting, or through par-
tial adjustment mechanisms in various forms, for example. The lack of
cohesion in the derivation of the long-run and dynamic properties in
the large-scale models represents a fundamental shortcoming of the large-
scale SEMs, according to this argument, encouraging the view that the
long-run evolution of the macroeconomy can be considered indepen-
dently of short- and medium-term fluctuations. In contrast, there are no
dichotomies between the determinants of long-run growth and short-run
fluctuations in DGSE models (though the long run is often not modelled
explicitly in its entirety in DSGE models either and actual data are often
(arbitrarily) filtered before they are analysed).

In fact, one can distinguish two phases in the development of the DSGE
models which have separate implications for modelling macrodynamics.
In the first phase, one of the primary motivating ambitions behind the
DSGE models was to establish that the dynamic responses of the macro-
economy are consistent with a model in which there are no market failures,
the predicted outcomes are Pareto optimal, and intervention by a social
planner to force agents to change their actions will be welfare reducing.
The ‘real business cycle’ agenda that lay behind the first phase of the devel-
opment of the DSGE approach to modelling therefore played down the
potential role of monetary policy in generating economic fluctuations and
instead placed considerable emphasis on real shocks. Indeed, many of the
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calibration exercises undertaken in the first phase of the DSGE literature
ignored the monetary sector altogether.

It was quickly recognised that this first phase of models required some
refinement if it was to provide a satisfactory understanding of economic
fluctuations. The first generation of DSGE models were therefore extended
to incorporate features such as adjustment costs (e.g. Kydland and Prescott,
1982, Christiano and Eichenbaum, 1992a, and Cogley and Nason, 1995);
signal extraction and learning (e.g. Kydland and Prescott, 1982, and Cooley
and Hansen, 1995); aggregation (e.g. Christiano, Eichenbaum and Mar-
shall, 1991 on temporal aggregation and Cooley et al. 1997 and Ríos-Rull,
1995 on cross-sectional aggregation); endogenous technological progress
(e.g. Stadler, 1990 and Hercowitz and Sampson, 1991) and information
heterogeneities (e.g. Kasa, 2000). However, it remained unclear whether a
model could be developed that would be capable of simultaneously deal-
ing with all of these factors in a satisfactory manner and, even if it could,
whether it would be any more transparent or easy to interpret than the
available stock of large-scale models. Moreover, by limiting attention to
particular sources of dynamics, the first-phase models following the DSGE
approach were likely to be too restrictive. In fact, as it turned out, when
the models were confronted with the data, in Litterman and Weiss (1985),
King et al. (1991), Christiano and Eichenbaum (1992b) or Kim and Pagan
(1995), for example, the evidence suggested that this was indeed the case.

The second phase in the development of DSGE models returned to
the simpler basic characteristics of the earliest DSGE models, emphasis-
ing the micro-foundations of macroeconomic fluctuations, but explicitly
incorporating nominal frictions and paying more attention to monetary
factors influencing business cycles. There were early attempts to incor-
porate money in DSGE models (see, for example, Cooley and Hansen,
1989, 1995), but there is now a considerable literature elaborating ‘New
Keynesian DSGE models’, which have price and wage rigidities at their
core and which are designed to consider the impact of monetary policy
(see Clarida et al. (1999) for a review). A simple New Keynesian DSGE model
consists of an ‘IS curve’ relating output to the expected real interest rate, a
Phillips curve relating inflation to expected inflation and output (measured
as deviations from its trend), and a policy rule relating the nominal inter-
est rate to output and inflation. The IS curve is motivated with reference
to optimising behaviour on the part of households, the Phillips curve is
based on profit-maximising pricing behaviour on the part of monopolisti-
cally competitive firms, and the policy rule is based on a policy-maker that
optimises an objective function describing welfare in terms of inflation
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and output.14 As in all DSGE models, the decisions made by households,
firms and the policy-maker are interrelated and intertemporal, generating
explicit dynamic structures. But this class of models also pays particular
attention to the rigidities that exist in price setting, frequently incorporat-
ing ‘Calvo (1983) contracts’, in which prices are reset only periodically and
with a fixed probability, to motivate both backward- and forward-looking
effects in the Phillips curve, for example. These modelling assumptions
have important implications for the dynamic properties of the DSGE
models, their ability to fit the data and their implications for monetary
policy analysis. Indeed, recent modelling exercises by Gali and Gertler
(1999), Clarida et al. (2000), Smets and Wouters (2003), Favero and Rov-
elli (2003), Del Negro and Schorfheide (2004), Del Negro et al. (2005)
and Christiano et al. (2005), among others, indicate that these second-
generation DSGE models are able to introduce more flexible dynamics,
often with the help of Bayesian estimation techniques, and can perform
relatively well in explaining various episodes of historical macroexperience
and in forecasting.

2.4 The structural cointegrating VAR approach

The structural cointegrating VAR modelling strategy is described in detail
in Section 3.1.3 of the next chapter. But, stated briefly, the strategy begins
with an explicit statement of the long-run relationships between the
variables of the model obtained from macroeconomic theory. These rela-
tionships will typically be based on stock-flow and accounting identities,
arbitrage (equilibrium) conditions, and long-run solvency requirements
that ensure stationary asset–income ratios. The long-run relationships are
approximated by log-linear equations, with disturbances that characterise
the deviations of the long-run relations from their realised, short-run
counterparts. These deviations are referred to as the ‘long-run structural
shocks’. Not all of the variables contained in the long-run relationships
suggested by economic theory are observable, however, and in writing the
long-run relationships in terms of observable variables, ‘long-run reduced
form shocks’ are derived as functions of the long-run structural shocks.
The long-run, or error correcting, relations are then embedded within
an otherwise unrestricted log-linear VAR model of a given order in the

14 For an open economy version of the New Keynesian DSGE model see, for example, Gali
and Monacelli (2005).
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variables of interest to obtain a cointegrating VAR model which incorpo-
rates the structural long-run relationships as its steady-state solution. This
allows testing for the presence of the cointegrating relations and the over-
identifying restrictions implied by the long-run economic theory. In this
way, the cointegrating VAR model will embody the long-run theory restric-
tions in a transparent, and an empirically consistent, manner. The theory
also imposes restrictions on the intercepts and/or the trend coefficients in
the VAR, which play an important role in testing for cointegration as well
as co-trending, often ignored in other approaches to macroeconometric
modelling.15

2.4.1 Comparisons with the alternative approaches

COMPARISON WITH LARGE-SCALE SEMS

As the discussion above makes clear, the structural cointegrating VAR
approach to macroeconometric modelling begins by describing the rela-
tionships which define the long-run structure of the macroeconomy, and
embeds these long-run relationships within an otherwise unrestricted VAR
model of the macroeconomy. The number of variables chosen to include in
the core model is selected to ensure that the system can be estimated simul-
taneously, taking into account all of the potential feedbacks between the
variables captured by the short-run dynamics and suggested by the long-
run economic relationships. One of the primary strengths of this approach,
therefore, is that the model is developed and estimated in a way that
ensures that the long-run relations of the estimated model are data consist-
ent and theoretically coherent. Furthermore, this is accomplished without
compromising short-run empirical adequacy as an important criteria by
which models in the final analysis must be judged. The transparency of the
model’s long-run properties would also be important for impulse response
analysis and forecasting, particularly over the medium term.

Despite its advantages, the cointegrating VAR model is still highly
restrictive and, given the available time series data, it can deal with at most
8–10 variables simultaneously. This clearly precludes addressing many
important issues if we were to confine our analysis to a single cointegrating
VAR model. Macroeconometric models are used for many different pur-
poses by government, academic and corporate institutions, and no one

15 See Chapter 6 for a discussion of the relevant econometric issues involved in the analysis
of cointegrating VARs.
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model will be appropriate for all of these uses (see Whitley, 1997). How-
ever, traditional macroeconometric models tend to become large often in
response to demands for more disaggregated analysis, and for addressing a
wider range of policy questions. For example, a central bank may require a
detailed model of the monetary sector, corporate institutions might require
forecasts and analysis disaggregated by the main industrial sectors (energy,
construction, agriculture, transportation, etc.), and government agencies
might be required to investigate the effects of a given policy on particu-
lar interest groups and/or markets. As will be discussed in more detail in
Chapter 3 below, our approach to meeting these model-specific require-
ments is through the development of appropriate satellite models. These
are constructed using similar econometric techniques to those employed
in the estimation of the core model, and are then linked up to the core
model, with the core variables (and the associated error correction terms
from the core model) influencing sectoral developments, but not vice versa
(see Pesaran and Ron Smith, 1997). The distinction between the core and
satellite models is made possible by allowing the error correction terms
of the core model to enter the relationships of the satellite models but
not vice versa. This enables consistent estimation of the satellite model
by treating the variables of the core model as weakly exogenous. Exam-
ples of satellite models include models of the labour market, households’
portfolio and expenditure decisions, foreign trade and fiscal policy.16

COMPARISON WITH UNRESTRICTED AND STRUCTURAL
VAR MODELLING

Unrestricted and restricted VAR modelling places great emphasis on char-
acterising the dynamic behaviour of variables and makes considerable use
of impulse response analysis as a means of illustrating the timing of the
reactions of various variables to different types of structural shock. The
identification of the structural shocks, using the reduced form shocks
obtained from the estimated VAR models, requires a well-defined eco-
nomic theory of the short run, concerned with the sequencing of decisions
and information available to different economic agents and with the
various rigidities arising in decision-making. This emphasis on identify-
ing the effects of specific economic shocks and the associated short-run
dynamics contrasts with that of the structural cointegrating VAR approach.

16 An illustration of how a satellite model of the household sector might be coupled with
the core macroeconomic model is described in Chapter 12.
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The structural cointegrating VAR approach to modelling emphasises the
long-run relationships that exist between variables. This is based on the
view that economic theory is typically more informative on these long-run
relationships than it is on the short-run dynamics, noting that theory is fre-
quently silent on the sequencing of decisions, the structure of information
sets across agents, and the nature of rigidities that arise from transac-
tions costs. The structural cointegrating VAR approach describes explicitly
the nature of the ‘long-run structural errors’ that arise from a specific
economic theory and that characterise deviations from long-run relation-
ships. It also clarifies the links between these long-run structural errors
and the ‘long-run reduced form errors’ that can be related to the data
at hand.

If it is the case that economic theory is insufficiently well-defined
to provide credible identifying restrictions on the short-run behaviour
of economic agents, then a more general method of analysing impulse
responses is required; that is, one that allows an examination of the short-
run dynamic interrelations of the model without needing to identify the
nature of the shocks. The current literature on impulse response analysis
focuses on the effects of identified shocks are often difficult to accom-
plish in a satisfactory manner, particularly in the case of VAR models with
8–10 variables often encountered in the analysis of small open economies.
The source of the difficulty lies in the unobservable nature of the shocks
of interest such as monetary policy shocks, say, or demand and supply
shocks. An alternative, less ambitious approach is to consider the impulse
response functions associated with unit shifts in observable variables, such
as output, interest rates and inflation. Clearly, a unit shock to the inter-
est rate variable need not be the same as a monetary policy shock, since
many different internal and external factors could influence interest rates.
But the impulse response associated with a unit (one standard error) shift
in interest rates would be informative about the dynamic properties of
the model as well as being relevant to private sector decisions that are
concerned with the consequences of a rate rise rather than the precise rea-
sons behind its occurrence. The Generalised Impulse Response Function
(GIRF), introduced in Koop et al. (1996) and developed in Pesaran and
Shin (1998), provides such a method. Unlike the more familiar orthogo-
nalised IR functions, the GIRFs are invariant to the ordering of the variables
included in the VAR and provide an empirically coherent solution to the
analysis of impulse responses so long as the shocks under consideration
relate to observed variables. For example the GIRFs can be used to com-
pute the time profile of the effects of a shock to oil prices, output or
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interest rate without any ambiguities. In many applications, such as the
analysis of market interactions or the sensitivity of market or credit risks to
changes in the market environment, the GIRFs are sufficient. The effects
of system-wide shocks on the variables of the VAR or on the cointegrating
relations can also be analysed using the persistence profile methodol-
ogy advanced in Pesaran and Shin (1996). This type of analysis is also
invariant to the ordering of the variables in the VAR and does not require
economic identification of the shocks. The identification problem arises
when it is further required to decompose the effects of the shocks to the
observed variables into unobserved theoretical concepts such as supply,
demand, or monetary policy shocks. In such cases, as we shall demonstrate
in Chapter 10, the GIRF approach need to be combined with additional
a priori restrictions from economic theory, preferably within a decision
context.17

It is worth emphasising that the structural cointegrating VAR approach
to modelling is not incompatible with the identification of economically
meaningful shocks to the macroeconomy and the application of more
standard impulse response analysis. Rather, this is a question of emphasis.
The structural cointegrating VAR approach implies that the structural rela-
tionships that are suggested by theory for the short run are less robust
and can be held with less confidence. But it is perfectly possible to elab-
orate an economic theory which motivates both short-run and long-run
restrictions and the structural cointegrating VAR approach would remain
valid (supplemented with the additional restrictions suggested on the short
run). These issues are discussed in detail in Chapter 3 below, which con-
centrates on the identification issues associated with short-run structures,
and in Chapter 5, where a specific model of short-run decision-making
is elaborated to illustrate the issues involved in showing how monetary
policy shocks can be identified without having to identify other types of
shocks that might also impinge on the macroeconomy.

COMPARISON WITH DSGE MODELLING

In DSGE modelling, the derivation of the long-run, steady-state relations of
the macromodel starts with the intertemporal optimisation problems faced
by households and firms and then solves for the long-run relations using
the Euler first-order conditions and the stock-flow constraints. Given the
invariably non-linear nature of the Euler equations and the linear forms

17 The econometric issues involved in GIR analysis are discussed in Chapter 6 and their
application to the core model of the UK economy is described in Chapter 10.
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of the constraints, the resultant relations of the model economy are usu-
ally approximated by log-linear relations (the real business cycle literature
and the New Keynesian DSGE literature follow this methodology). The
long-run relations are then obtained by assuming that the model econ-
omy is stationary and ergodic in certain variables, such as growth rates,
capital per effective worker and asset–income ratios, and typically ignoring
expectational errors. The structural cointegrating VAR approach, on the
other hand, works directly with the arbitrage conditions which provide
intertemporal links between prices and asset returns in the economy as a
whole. The arbitrage conditions, however, must be appropriately modified
to allow for the risks associated with market uncertainties.

Clearly, the above two approaches are closely related and yield similar
results as far as the long-run relations are concerned. The main difference
between the two approaches lies in the empirical validation of the long-
run relations and their treatment of short-run dynamics. The strength of
the intertemporal optimisation approach lies in the explicit identification
of macroeconomic disturbances as shocks to tastes, to technology, to pol-
icy, and so on, rendered possible by the explicit statement on the form of
the short-run dynamics. However, this is achieved at the expense of often
strong assumptions concerning the form of the underlying utility and
cost functions, expectations formation process and the related assump-
tion that the DSGE model remains stable into the indefinite future, and
the process of technological change. In contrast, the cointegrating VAR
approach advanced in this work is silent on short-run dynamics, but is in
line with the DSGE model as far as the long-run relations are concerned.
Our approach also has the added advantage that particular long-run rela-
tions are considered only when adequately supported by the evidence. We
test the validity of the long-run relations rather simply imposing them on
a priori grounds.

Both the DSGE modelling approach and the structural cointegrating VAR
approach represent attempts to combine theory and evidence to obtain
models that will be useful for policy- and decision-makers. The differ-
ences in approach reflect modellers’ strength of conviction on different
aspects of the theory and evidence. So, the structural cointegrating VAR
approach assumes that we understand how the economy works in the
long run with some degree of confidence, and allows theory to inform this
aspect of modelling. But it is less sure on the short-run dynamics and so
turns to the evidence on these. In comparison, the DSGE approach empha-
sises more the use of theory in the modelling of both the short run and
long run.
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We shall show, in Chapter 6, that the estimation of our structural
cointegrating VAR model is straightforward using estimation techniques
developed in Pesaran and Shin (2002) and Pesaran, Shin and Smith (2000).
The issue of combining theory and evidence is typically less straightfor-
ward in the larger DSGE models where the highly restricted VAR model
suggested by the theory cannot be readily reconciled with the data.
Kapetanios et al. (2005) discuss this issue, outlining the steps taken in the
construction of a ‘conceptual model’ (for example, a restricted VAR derived
from a variant of a DSGE model) and its translation into a ‘data adjusted
model’ which can better match the data in policy-oriented macroeco-
nomic modelling. One approach to making this translation is Ireland’s
(2004) method based on ‘tracking shocks’. Here, any observed macroeco-
nomic variable is assumed to differ from its corresponding latent variable
(as generated by the conceptual model) by a tracking shock. This shock,
in turn, is assumed to follow some known stochastic process. Forecasts
are provided as an average reconciliation of the data and the outcome
suggested by the conceptual model, with the split between theory and
evidence depending on the nature of the tracking errors in the sam-
ple.18 Alternatively, Del Negro and Schorfheide (2004) describe a Bayesian
method, along similar lines to that developed by DeJong et al. (1993), in
which a New Keynesian DSGE is used to provide priors for a VAR and
these are updated in the light of the data, where the investigator explic-
itly chooses the weight to be placed on the theory-based prior relative to
the evidence. The paper also shows how the posterior inference on the
VAR parameters can be translated into posterior inference for the DSGE
parameters so that theory and evidence is combined and summarised in
such a way as to retain its economic meaning. A third possible method,
advocated by Christiano et al. (2005), focuses on matching theoretical and
empirical impulse responses.

Kapetanios et al. (2005) make the important point that, no matter which
method is used to combine theory and evidence, the underlying concep-
tual model will need to accommodate cointegrating relations if the effects
of some shocks are persistent (so that some of the variables are I(1) vari-
ables and long-run relations exist between them in levels). This feature
will provide its own restrictions on the VAR derived from the conceptual
model so that, once the theory-based long-run relations are incorporated

18 Recent models in various central banks adopt a DSGE structure as their core theoretical
components, but also allow for non-core empirically based dynamics. See, for example, the
TOTEM model of the Bank of Canada as described in Cayen, Corbett and Perrier (2005) or
Adolfson et al.’s (2005) description of their model of the Swedish economy.
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into the model, it can be written as a VECM (see also Giannone et al.
(2005)). They note that failing to impose these restrictions (if cointegra-
tion exists in the data) will cause difficulties when trying to match the
theory with data and will cause considerable problems in forecasting.19 A
related issue arises in many DSGE models in which analysis is carried out
using variables measured as deviations from some ad hoc trend estimate
(e.g. the Hodrick–Prescott filter). Of course, the choice of a misspecified
trend will generate bias in estimation so the choice of trend is much more
significant than many DSGE modellers are prepared to acknowledge. But
perhaps even more importantly, the use of this type of de-trending makes
it rather difficult to test hypotheses based on long-run theory. In con-
trast, our approach readily allows the long-run theory to be tested and the
equilibrium values to be explicitly identified.

The long-run structural and the DSGE approaches both represent
attempts to reconcile theory and data. The differences between the
approaches are based on differences in emphasis and practicalities rather
than principle. The methods taken in the DSGE models to reconcile the-
ory and data oblige the projected paths of the variable to converge to the
equilibrium value suggested by the theory of the core conceptual model.
This implicitly places emphasis on the long-run properties of the theory,
which are held with some confidence, exactly as in our approach. But
this is achieved in a more restricted way than in our long-run structural
approach (being based on a single weighting parameter in the Bayesian
method described above, for example) and the long-run relations sug-
gested by theory are typically not tested in the DSGE models. The short-run
restrictions suggested by the DSGE models (including those implied by
the forward-looking expectations involved20) can be accommodated, and
tested, within the cointegrating VAR framework used in the long-run
structural approach.

In short, many economists might accept the view that economic theory
is more likely to provide a coherent guide to the long-run characteristics
of the macroeconomy than its short-run dynamics, and the mainstream
macroeconometric and structural VAR models are based on a pragmatic
approach to capturing the dynamics. As we shall demonstrate in the

19 Christiano, Eichenbaum and Evans’s (2005) attempts to tie down model parameters
by matching impulse responses will suffer from this shortcoming, for example, since the
impulse responses are based on short-run dynamics and are not consistent with the presence of
long-run relations in levels.

20 See Section 3.2 for details on how the expectation effects are accommodated in the long-
run structural model.
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following chapter, our own approach is to allow the dynamics to be flexibly
estimated within a VAR or VARX framework, but to impose restrictions on
the system to ensure that the estimated relationships are theory-consistent
in the long run. Theory-inspired short-run restrictions can then be consid-
ered in the light of their empirical validity, and not adopted blindly since
they are implied by a particular macroeconomic theory.
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3

National and global structural
macroeconometric modelling

The discussion of the previous chapter suggested that there is a degree
of consensus surrounding the desirable long-run properties of a macro-
economic model and that most recently developed models will be similar
in this regard whether they have been developed following the SEM,
VAR or DSGE approaches. There is far less agreement about the way in
which short-run dynamic adjustment should be tackled, however, and in
this chapter we broaden the discussion to consider this aspect of macro-
economic modelling too. To this end, in the following section, we present a
canonical dynamic structural model. This allows us to clarify the distinc-
tion between short-run and long-run effects and to illustrate the issues
involved in identifying these respective effects. Using the model, we can
also provide a general description of the modelling strategy involved in
constructing a ‘structural cointegrating macroeconomic model’ as applied
to the UK in the subsequent chapters of the book. We believe that this
strategy provides a coherent approach to dealing with both short-run and
long-run influences in a way that can reflect the strength of conviction
with which we believe the underlying economic theory.

The description of the canonical dynamic structural model also helps
explain how the identification of short-run dynamics relates to the
identification of economically meaningful shocks and the measurement
of their dynamic effects. These issues are important since they lie at the
heart of the discussion surrounding the identification of monetary policy
shocks and the measurement of their effects. In this chapter, we shall
review the attempts that have been made in the literature to impose struc-
ture on the short-run dynamics of macroeconomic models and to identify
the effects of different types of shock, and particularly monetary policy
shocks.

33



Macroeconometric Modelling

Finally in this chapter, we shall elaborate on the context within which
a macroeconomic modelling exercise of this sort might be conducted and
describe three ways in which the model might be extended. Specifically,
we note first that, in any national macroeconomic model, there might be
influences that are determined exogenously to the model. While much of
the discussion is conducted under the (implicit) assumption that all of the
variables in the model are determined endogenously, this section demon-
strates that the modelling framework can be readily extended to accommo-
date exogenous shocks. Next, we note that any national macroeconomic
model might constitute just one element of a broader examination of the
economic behaviour of a number of economies. The UK economy within
the world economy, for example, or within the European Community, say.
With this in mind, we describe how the modelling strategy elaborated and
applied to a national model can be extended to place its behaviour within
the global context. Thirdly, we note that in any modelling exercise, inter-
est might focus on a particular sector of the national economy rather than
the whole. A detailed understanding of the macroeconomy might be an
essential element of understanding the behaviour of the particular sector,
but is not an end in itself. Thus it is worth considering how the analysis
of a particular sector might be developed in these circumstances and the
final section of the chapter considers this sectoral dimension.

3.1 Identification in a dynamic structural vector error
correction model

A very general dynamic linear structural model of the determination of
the m × 1 vector of variables zt is given by the Vector Error Correcting
Model (VECM):

A�zt = ã + b̃t − �̃zt−1 +
p−1∑
i=1

�̃i�zt−i + εt . (3.1)

The m equations in the model embody what are seen as the relevant
autonomous economic relationships.1 A, �̃ and �̃i are m×m matrices, and
ã and b̃ are m × 1 vectors of unknown structural coefficients. The matrix
A contains the contemporaneous structural coefficients, while �̃ and �̃i

1 Here, we assume that all variables of interest are determined endogenously within the sys-
tem. The modelling framework can be readily extended to VEC models with weakly exogenous
I(1) variables, as discussed in Section 3.3.1 below.
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contain the dynamic coefficients relating �zt to past values of zt . The term
εt is an m × 1 vector of disturbances, assumed to be serially uncorrelated,
with zero means and a positive definite variance covariance matrix, �.
These are the structural shocks relating to the m economic relationships.2

The form in (3.1) is particularly useful when the elements of zt are
stationary in differences, or integrated of order one, I(1). In general, linear
combinations of I(1) variables are typically I(1), but when there exist linear
combinations of the zt , say β ′zt , that are stationary, or I(0), the zt are said
to be cointegrated. If zt were composed of only stationary variables, then
�̃ would be a matrix of full rank, m. In this case, one cannot meaningfully
separate out long-run and short-run effects although a distinction can still
be made between level effects and the effects on first differences. Disturb-
ing the system has no long-run impact and the variables eventually return
to their unconditional mean (or to a deterministic trend if b̃ �= 0). If zt

were I(1) and not cointegrated, �̃ would be a null matrix. The system is
described by a VAR in differences; all shocks have persistent effects, but
there are no equilibrium relationships that exist between the levels that
impact on these persistent effects. But suppose there are r cointegrating
vectors, 0 < r < m. Then β will be an m × r matrix and �̃ will be of rank r,
with the form

�̃ = α̃β ′. (3.2)

The I(0) variables β ′zt (appropriately adjusted by demeaning and detrend-
ing) are often interpreted as errors or deviations from equilibrium. Thus
the m × r matrix, α̃, has a natural interpretation as a matrix of adjust-
ment coefficients that measure how rapidly deviations from equilibrium
feedback onto the variables zt . Here, the cointegrating relationships act as
an attractor for the system and, despite the persistent effect of shocks on
the individual variables, shocks to the system have no persistent effect on
the equilibrium relations and their effects on such relations will die out
eventually.

The reduced form vector error correction model in (3.1) is given by

�zt = a + bt −�zt−1 +
p−1∑
i=1

�i�zt−i + vt , (3.3)

2 This form appears backward-looking, in the sense that all variables are dated at time t and
earlier. But the model can readily accommodate the solution of forward-looking models of the
form associated with SEMs incorporating RE or with DSGE models, for example. See Pesaran
(1997) for a discussion.
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where a = A−1ã, b = A−1b̃, and �i = A−1�̃i. Further, we have� = A−1�̃ =
A−1α̃β ′ =αβ ′, where α = A−1α̃ and vt = A−1εt are the reduced form
errors with variance covariance matrix �, where � = A�A′. Within this
framework, there are two quite distinct questions that we might wish to
address. First, how do we identify the r distinct long-run relationships
implicit in (3.2)? And second, assuming that the parameters and errors
of (3.3) can be estimated, how do we identify the parameters A, ã, b̃, �̃,
and �̃i, i = 1, . . . , p − 1, and hence obtain measures of the effects of the
economically meaningful structural shocks?

3.1.1 Identifying long-run relationships

Consideration of (3.3) shows that, even if an estimate of � was available,
without further restrictions, neither α nor β ′ are separately identified. We
can choose any non-singular r × r matrix, Q , and write

� = αβ ′ = (αQ′−1)(Q ′β ′) = α∗β ′∗,

so that α∗ = αQ′−1 and β∗ = βQ constitute observationally equivalent
alternative structures. In order to identify the cointegrating vectors, we
need to provide r2 independent pieces of information, formed from r
restrictions on each of the r cointegrating relations. Only r restrictions are
provided by ‘normalisation’ conditions and so a further r2 − r restrictions
will be needed to uniquely identify β (and hence α).3

It is important to note that knowledge of the structural coefficients A,
ã, b̃, �̃, and �̃i, i = 1, . . . , p − 1, does not resolve the problem of identifica-
tion of the long-run relations when zt is I(1). Reiterating the fact that
� = A−1�̃ = A−1α̃β ′ = αβ ′, it is clear that knowing the value of A would
not resolve the issue of how to uniquely factor the rank-deficient matrix
�̃ into the m × r matrices α̃ and β. The structural coefficient matrices
determine the short-run responses and on their own do not identify the
long-run relations.4

Beginning with Johansen (1988), a large and sophisticated literature
has developed considering the analysis of cointegrating VAR models of
the form in (3.3). Johansen (1988, 1991) provides procedures for testing
the rank of � and then estimating α and β ′ using statistically motivated

3 Wickens (1996) also considers the interpretation of cointegrating vectors, raising the possi-
bility of imposing restrictions on the loading vector α and also concluding that prior, structural
information is essential for identification of meaningful cointegrating vectors.

4 Similarly, identification of the long run relations do not generally help with identification
of short-run coefficients.
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identifying restrictions that assume the columns of β form an orthogo-
nal set. While mathematically natural given the statistical structure of the
problem, these restrictions have no economic meaning since in general
there is no reason to expect economic cointegrating relations to be ortho-
gonal. When r > 1, economic interpretation of the Johansen estimates
of the cointegrating vectors is almost impossible. Similarly, the identifica-
tion conditions employed by Phillips (1991), in the context of a triangular
VECM, are chosen for their mathematical convenience rather than their
suitability for economic interpretation.

The obvious alternative means of obtaining the r2 − r required restric-
tions is to draw on economic theory and other a priori information. Since
the restrictions are to be imposed on the r cointegrating vectors, the relev-
ant economic theory is that of the long run. This avoids the criticisms
of many that economic theory is insufficiently well-defined to impose
restrictions based on the short-run dynamics (cf. the Sims critique cited
previously); indeed, as the discussion of the previous chapter made clear,
in the context of macroeconometric models, there exists a broad consensus
on the nature of the restrictions that might be imposed on a macroecono-
metric model in the long run. Pesaran and Shin (2002) describe precisely
this approach to identifying the long-run relationships embedded within
the cointegrating VAR. The modelling strategy implied by this approach
is elaborated upon at the end of the subsection (and the econometric
methods are described in detail in Chapter 6). First, however, we con-
sider the identification issues relating to the short-run parameters and the
structural shocks of (3.1).

3.1.2 Identifying short-run structural parameters and shocks

Abstracting from the issues relating to the long-run relationships, exact
identification of the structural coefficients in (3.1) from the estimated
parameters of the reduced form model in (3.3) requires m2 restrictions
to be imposed on the structural parameters. These are typically imposed
on A and/or �. The traditional econometric approach to restricting short-
run dynamics was to impose a particular shape (such as a geometrically
declining or bell-shaped form), deemed plausible on a priori grounds, on
the distributed lag functions relating to different components of zt . Early
contributors to this approach include Nerlove (1958), Griliches (1967), and
Jorgenson (1966). Dryhmes (1971) provides a comprehensive review of
this early literature. A more recent literature on dynamic economic theory
has attempted to provide restrictions on the short-run dynamics that are
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more plausible theoretically. An important example is the short-run restric-
tions involved in Real Business Cycle models due to the intertemporal
nature of decision-making in these models and to the particular specifica-
tion adopted in characterising technological progress.5 Another example
is given by the restrictions implied by the rational expectations hypothesis
in the context of the Linear–Quadratic (LQ) optimisation models involv-
ing adjustment costs. Dynamic adjustment cost models have been applied
in a number of important areas in applied econometrics with some success
and could be an important source of a priori restrictions on the short-run
dynamics of macroeconometric models. Some recent versions of the DSGE
model, based on New Keynesian sticky price models, attempt to integrate
intertemporal optimisation and adjustment cost models.

A third approach taken to identify the structural parameters is that pro-
moted by the ‘Structural VAR’ approach to macroeconometric modelling,
discussed in the previous chapter. The identifying restrictions imposed
here are typically motivated with reference to some ‘tentative’ theory
on macroeconomic dynamics, expressed with reference to contempora-
neous relationships or with reference to the long-run impulse responses.
Perhaps the most prominent example of this approach is the familiar
recursive structure pioneered by Sims (1980) which requires A to be a
lower or an upper triangular matrix and � to be a diagonal matrix.
This imposes a recursive, Wold-causal ordering on the contemporane-
ous relationships among the variables in zt and can be motivated by
‘tentative’ economic theory on the timing of decisions and the detailed
arrangements of the decision-making context. Such theories can also
be used to motivate non-recursive structures on the structural parame-
ters. This approach is particularly prevalent in the literature concerned
with identifying monetary policy shocks. We shall discuss these three
approaches to imposing structure on the short-run dynamics to identify
short-run structural parameters and the structural shocks in more detail
below.

Although there is a range of possible sources of theoretical restrictions
on the short-run dynamics, in many cases, theory is either silent on the
nature of the adjustment process or the theoretical restrictions are overly
strong (making all the dynamics a function of a few deep parameters) with
the consequence that they are invariably rejected by the data. In such cases,
inferences about the long-run parameters and the dynamic properties of

5 Other types of short-run restrictions could be obtained in the context of learning models.
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the macroeconomy need to be conducted using unrestricted short-run
parameters.

3.1.3 A modelling strategy

The canonical model described above emphasises the distinct contribu-
tions of economic theory as it relates to identification of the short-run
and long-run relationships. In developing a modelling strategy, we need
to consider the different characteristics of these contributions.

Typically, theories relating to the short run are concerned with relation-
ships between variables motivated as the outcome of specific decisions
made at a particular moment in time. Each row of the structural model
of (3.1) describes the determination of one of the variables in the system
and the restrictions imposed on the contemporaneous parameter matrix
A reflect the assumed behaviour of the agent or group of agents setting the
variable. Each equation in the model shows the factors taken into account
by the decision-makers when they determine the value of a particular vari-
able through their actions. The factors are either included explicitly in the
model in the form of the contemporaneous values of the other variables
in zt or the lagged values of zt , or implicitly as part of the economically
meaningful structural shocks, εt .

The long-run relationships identified by economic theory typically do
not relate to a specific time period or to particular events or decisions,
but reflect the outcome of (potentially numerous) equilibrating pressures
exerted over a (typically unspecified) period of time. Economic theory
might provide little insight on the means by which a particular disequi-
librium feeds back on the system and might involve concepts that are
inherently unobservable or are difficult to measure accurately, such as
expectations, natural rates or potential output. For example, economic
theory might suggest that, in the long run, supply and demand of a good
will be equal but might not elaborate on the tatonnement process involved
other than to observe that price and quantity will react in an unspecified
way to eliminate excess demand or supply (where the excess is itself unob-
served). At any time, the system might be out of equilibrium along any
of the dimensions suggested by economic theory, but neither these dis-
equilibria nor the corresponding equilibrating pressures will be observable.
On the other hand, theory also suggests the existence of long-run equi-
librium relationships between the observed variables and the deviations
from these will be observed. These deviations from equilibria are more
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useful for modelling purposes and might be termed ‘long-run errors’, which
we denote by ξ t .

6

The modelling strategy involved in constructing a structural cointegrat-
ing model of the macroeconomy is based on the idea that the long-run
errors, ξ t , can be expressed as a linear combination of the variables in the
system, possibly supplemented by appropriate deterministic intercepts and
trends; that is,

ξ t = β ′zt − b0 − b1t , (3.4)

for appropriate parameter vectors b0 and b1 and where β ′ is the r×m matrix
of parameters that describes the r equilibrium relationships expected to
hold between the m variables in zt in the long run. In modelling the short-
run dynamics of the variables in zt , we follow the standard VAR approach
established by Sims (1980) and others, and assume that changes in the zt

can be well-approximated by a linear function of a finite number of past
changes in zt . Assuming that the variables in zt are difference-stationary,
our modelling strategy is to embody the ξ t in an otherwise unrestricted
VAR(p) model in zt ; that is, we consider the (p − 1)th order VEC model

�zt = a0 − αξ t−1 +
p−1∑
i=1

�i�zt−i + vt . (3.5)

Given the definition of the long-run errors in (3.4), the model in (3.5) can
be rewritten as

�zt = a0 − α [β ′zt−1 − b0 − b1(t − 1)
]+

p−1∑
i=1

�i�zt−i + vt , (3.6)

or

�zt = a + bt − αβ ′zt−1 +
p−1∑
i=1

�i�zt−i + vt ,

which is of the form of (3.3), with a = a0 + α (b0 − b1
)

and b = αb1. This
model embodies directly the predictions of economic theory, as it relates
to the long run. This is in contrast to some cointegrating VAR analysis
which starts with an unrestricted VAR and investigates some vague priors
about the nature of the long-run relations. Estimation of a model of the

6 The relationship between economically meaningful but unobservable disequilibria and
observable long-run errors is illustrated in the economic theory of the long run elaborated in
Chapter 4.
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form in (3.6) can be carried out using the long-run structural modelling
approach described in Pesaran and Shin (2002) and Pesaran, Shin and
Smith (2000). A complete description of the econometric methods is post-
poned until Chapter 6. However, it is worth noting here that this approach
not only provides estimates of the parameters in (3.6), but it can also pro-
vide a straightforward test of the long-run theory. Specifically, estimation
of a VECM (p − 1) of the form in (3.6) can be carried out first imposing
just r2 exact identifying restrictions on the cointegrating relations. This
will ensure that there are r cointegrating relations among the series but is
not likely to impose the full structure suggested by the economic theory;
i.e. these are likely to be a subset of the restrictions suggested by economic
theory and embedded directly within (3.6). Estimation of the model sub-
ject to the full set of restrictions suggested by economic theory provides
over-identifying restrictions that can be tested.

3.2 Specifying the dynamic structure of a macroeconomic
model

The discussion above makes it clear that estimation of the structural
parameters and the structural shocks to the model in (3.1) requires m2

restrictions to be imposed, typically on A and/or �. In this section, we
elaborate on some of the approaches taken in the literature to motivate
such restrictions. We focus on three approaches that are pervasive in the lit-
erature. The first approach is that associated with the Dynamic Stochastic
General Equilibrium models; the second is a broad class of ‘Adjustment
Cost’ models; and the third class, associated with the Structural VAR
approach to macroeconomic modelling, relies on miscellaneous assump-
tions on the contemporaneous and long-run interactions among variables,
including recursiveness and exclusion assumptions, based on ‘tentative’
economic theory.

3.2.1 Dynamics of DSGE models

The strength of the DSGE approach to modelling the macroeconomy is
that, in principle at least, it is based on the decisions of all agents in the
economy. In this approach, macroeconomic phenomena are the outcome
of the decisions made by these agents, driven by individual preferences,
subject to constraints and relating to a whole range of variables simultane-
ously. The different decisions are reconciled to form a general equilibrium

41



Macroeconometric Modelling

through the economy-wide market system. One result of this is that the
models designed following this approach have clearly defined steady-state
properties built into them automatically. This is the feature of the models
discussed at length in the previous chapter. A second important feature
of DSGE models arises because the decisions made by agents are usually
intertemporal, relating to choices and constraints on economic magni-
tudes both today and in the future. This means that the dynamic structure
of the DSGE model is also specified explicitly.

The derivation of an explicit dynamic structure for DSGE models is both
a strength and a weakness. On the positive side, the approach provides very
clear predictions on the dynamic responses of variables to different types
of innovation impacting on the macroeconomy and these predictions
can be tested. The downside is the difficulty of matching these predic-
tions with the data; see, for example, the discussion of Kim and Pagan
(1995) below. The DSGE modellers have responded to this challenge by
supplementing the ‘intrinsic dynamics’ generated by the intertemporal
optimisation of the DSGE models’ agents with ‘extrinsic dynamics’ of
various forms (motivated by the presence of adjustment costs, learning,
aggregation issues, and so on).7

To illustrate these points, we consider below the DSGE model presented
in Christiano and Eichenbaum (1992b) and analysed in some detail in
Binder and Pesaran (1995). This model is in the spirit of the ‘first phase’
of DSGE models which focused on real magnitudes. But the ideas would
carry over to the ‘New Keynesian DSGE’ models discussed in the previous
chapter that are based on an IS curve, a Phillips curve and a policy rule
(either in their closed economy form or in the open economy version
derived in Gali and Monacelli (2005), for example).8 In particular, the
explicit reliance on forward-looking behaviour and rational expectations
can be readily accommodated by our VARX modelling structure.

The model we consider here assumes an aggregate constant returns to
scale Cobb–Douglas production function in which labour augmenting
technology At , labour Nt and capital Kt are used to produce output Yt .
This can be used for consumption Ct , investment It or government spend-
ing Gt . The representative household has a time endowment of N. Capital
is assumed to depreciate at rate δ so that

Kt+1 = (1 − δ)Kt + It . (3.7)

7 See the citations provided in Chapter 2.
8 Pesaran and Smith (2005) provide a formal account of the relationship between the New

Keynesian DSGE models and the VARX models that will be discussed below in Section 3.3.1.
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Given the Cobb–Douglas production function, the production
constraint is

Ct + Kt+1 − (1 − δ)Kt + Gt = Kα
t (AtNt )

1−α. (3.8)

The forces outside the control of the representative household are technol-
ogy and government spending and it is assumed that the laws of motion
of these variables can be represented as follows:

� ln(At ) = γt = γ + εat , εat ∼ N(0, σ2
a ), (3.9)

and

ln(Gt/At ) = ln(gt ) = τ0 + τ1 ln(gt−1) + εgt , εgt ∼ N(0, σ2
g ), (3.10)

|τ1| < 1, so that the logarithm of At is represented by a random walk with
drift and government expenditure expressed relative to technology, gt =
Gt/At , follows a simple AR(1) process. As is well known, the competitive
equilibrium outcome is the same as that of a Social Planner who acts to
maximise the utility of the representative household, which is assumed to
be given by

∞∑
t=1

ρt [ln(Ct ) + θ(N − Nt )] , (3.11)

where ρ is the discount factor and θ reflects the weight given to leisure in
the utility function.

The Social Planner maximises the representative household’s utility
through the choice of Ct , Kt+1 and Nt for t = 0, 1, 2, . . ., demonstrating
the simultaneous and intertemporal nature of the model solution. The
source of the dynamics in the solution to this model are also apparent,
arising from the forward-looking properties of the utility function and
the intertemporal nature of the production constraint arising from capital
accumulation. These dynamics are supplemented by the dynamics intro-
duced through the processes assumed to drive technology and government
expenditure.
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To be more precise, the solution of the model is obtained with the Social
Planner maximising the following Lagrangian

L0 = E0

{ ∞∑
t=1

ρt [ln(ct ) + θ(N − Nt ) + ln(At )]

}

+ E0

{ ∞∑
t=1

λtρ
t
[
kαt N1−α

t exp(−αγt ) − ct

−kt+1 + (1 − δ)kt exp(−γt ) − gt

]}
,

through choice of ct , kt+1 and Nt for t = 0, 1, 2, . . ., where E0 indicates the
expectation formed on the basis of information at time 0 and lower case
letters indicate that the variable is expressed as a ratio relative to At ; i.e.
yt = Yt/At , ct = Ct/At , kt = Kt/At and it = It/At . The first-order conditions
for this optimisation are non-linear and in general do not lend themselves
to an exact solution. However, the non-stochastic steady-state values of
yt , ct , kt , it and Nt , denoted by y, c, k, i and N, respectively, are given by
non-linear equations derived from the first-order conditions as follows:

y = k
α
N

1−α
exp(−αγ ),

c = y − i − g,

k = [exp(−αγ )sk]1/(1−α) N,

i = k − (1 − δ) exp(−γ )k,

N =
[

1 − α

θ
+ g

sα/(1−α)

k exp(−αγ/(1 − α))

]
÷ [(1 − δ) exp(−γ )sk] ,

where g is the mean of gt and

sk = αρ

1 − ρ(1 − δ) exp(−γ )
= k/y.

These non-linear equations illustrate the steady-state properties automat-
ically built into the model, with steady-state labour inputs explained by
the ‘deep’ parameters of the model, α, ρ, δ, γ , θ and g, and the steady-state
growth path of the remaining variables driven by technological progress
(recalling from the specification of the labour augmenting technological
progress in (3.9) that steady-state growth is γ ).

Further, expanding the first-order conditions obtained from the Social
Planner’s optimisation around the non-stochastic steady-state outcomes
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above, we obtain a log-linear approximation for the model solution with
which to characterise the model dynamics. Specifically, eliminating the
shadow prices from the log-linearised first-order conditions, we obtain the
following:

Azt = Bzt−1 + CEt (zt+1) + ut , (3.12)

where

zt =

⎛⎜⎜⎜⎜⎜⎝
k̃t+1

Ñt

c̃t

ỹt

ĩt

⎞⎟⎟⎟⎟⎟⎠ , ut =

⎛⎜⎜⎜⎜⎜⎝
sg g̃t

θ1γ̃t

αγ̃t

αγ̃t

θ3γ̃t

⎞⎟⎟⎟⎟⎟⎠
and

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 −sc 1 −si

1 0 0 0 −(1 − θ1)

0 −(1 −α) 0 1 0
0 α 1 0 0
θ2 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
θ1 0 0 0 0
α 0 0 0 0
α 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

C =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 θ2 −1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

where a variable written with an ‘˜’ overstrike means that it is measured
relative to its non-stochastic steady-state value (i.e. k̃t = ln(kt/kt ), for exam-
ple), where sc = c/y, si = i/y and sg = g/y, and where θ1 = (1 − δ) exp(−γ ),
θ2 = ρα(1−α)s−1

k and θ3 = ρα2s−1
k +ρθ1. Hence, the dynamic specification

derived for the DSGE model in (3.7)–(3.11) is summarised by the multi-
variate linear rational expectations model given in (3.12) which is driven
by the exogenous shock to technology and fiscal policy.

There have been many methods proposed for the solution of such
models, and these are reviewed in Binder and Pesaran (1995). Clearly,
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the system is capable of generating very sophisticated dynamics, and the
solution depends on whether the quadratic determinantal equation,

det(Cλ2 − Aλ + B) = 0,

has pairs of solutions which satisfy the regularity conditions; namely
whether, for each pair, one root will fall inside the unit circle and the
other outside it. Assuming these conditions are satisfied, then the model
has a unique stable solution given by

zt = b + λzt−1 + vt ,

where λ is the solution with all its roots on or inside the unit circle and
(A − Cλ)vt = ut , so the DSGE model fits readily into a VARX structure.
Denoting the steady-state values with an overbar once more, the long-run
structural relations associated with (3.12) will be given by

(A − B − C)zt = ηt ,

where the ηt are the long-run errors and

(A − B − C) =

⎛⎜⎜⎜⎜⎜⎝
0 0 −sc 1 −si

1 − θ1 0 0 0 −(1 − θ1)

−α −(1 − α) 0 1 0
−α α 1 0 0
θ2 −θ2 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

It is also worth emphasising that it is not only the matrix (A − B − C)
that is subject to restrictions. The elements of A, B and C are themselves
subject to a number of restrictions. Given the number of coefficients of
zero and unity in the matrices A, B and C, it is also clear that the solution
imposes a large number of restrictions on the system dynamics. These
are precisely the restrictions that are tested in Kim and Pagan (1995), for
example, and which are easily rejected by the data.

3.2.2 Dynamics of adjustment cost models

A second approach in which the dynamic structure of a model is speci-
fied is one where there is an explicit intertemporal optimisation problem
involving adjustment costs. There are many examples of models of this
type found in the applied econometrics literature. Nickell (1985) and
Breeson et al. (1992) focus on models of labour demand, for example;
Blundell et al. (1992) focus on capital investment; West (1995) focuses
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on inventory models; and so on. Hansen and Sargent (1995) also provide
a useful overview of linear–quadratic general equilibrium models with
adjustment costs. The latter reference works with a familiar but restrictive
class of objective function, having the advantage that the optimisation
produces a linear decision rule. But the approach is similar if the analysis
starts with a general non-linear specification of an objective function and
linearises around the resultant first-order conditions.

To briefly review the nature of the dynamic specification arising from
these models, consider the following quadratic optimisation problem

min
(zt+s)

Et

{ ∞∑
s=0

ρs
[(

zt+s − z†
t+s

)′
H
(
zt+s − z†

t+s

)

+ �zt+sG�zt+s + �2zt+sK�2zt+s

]}
(3.13)

for given values of z†
t , z†

t+1, z†
t+2, . . ., where zt is the vector of decision

variables, H, G and K are symmetric matrices of structural parameters and
ρ is a discount factor in (0, 1). z†

t+s represents the corresponding vector
of targets, which may be fixed or evolving stochastically. The problem
in (3.13) indicates that costs are quadratic and strictly convex in the argu-
ments. Costs are incurred if the decision variables deviate from their targets
and if the decision variables are changed from their previous value. The
third term allows for the possibility that the rate at which the variables
are changed also generates an independent cost. The relative importance
of the three elements of costs are captured by the parameters in H, G and
K. Assuming that the targets are indeed varying stochastically, differen-
tiating (3.13) with respect to zt and rearranging the resultant conditions
yields the following stochastic Euler equation system:

zt = M−1[G + 2(1 + ρ)K]zt−1 − M−1Kzt−2

+ ρ−1M−1[G + 2(1 + ρ)K)] Et (zt+1)

− ρ2M−1K Et (zt+2) + M−1Hz†
t , (3.14)

where M = H + (1 + ρ)G+(1 + 4ρ + ρ2)K. The solution of (3.14) can be
obtained in a number of different ways, some of which are reviewed in
Binder and Pesaran (1995). However, it is intuitively clear that the solution
for zt will depend, in general, on zt−1, zt−2 and expressions for Et (zt+i),
i = 0, 1, 2, . . ., so that an explicit solution requires a statement on the
process driving the targets. For this purpose, we might describe the process
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explaining the targets by the vector ARMA specification

θ(L)z†
t+s ≡ φ(L)εt+s, εt+s ∼ i.i.d. (0,�ε) ,

where �ε is an m × m covariance matrix for εt . The solution for zt will
therefore depend on zt−1, zt−2, current and lagged values of z†

t and εt . The
dynamic structure of the solution will be a complicated function of the
parameters in H, G, K, θ and φ but, given the linearity of the problem, will
be readily written in the form of a VAR.9 Moreover, despite its complexity,
the solution will be explicitly derived and the restrictions suggested in the
model solution can usually be tested in the context of a straightforward
regression exercise.10

3.2.3 Identification of short-run dynamics based on ‘tentative’
theory on contemporaneous relations

The Structural VAR approach to macroeconometric modelling described
in the previous chapter aims to provide economic meaning to the esti-
mated shocks and associated impulse responses by suggesting restrictions
on the contemporaneous relations between variables based on a ‘tentative’
economic theory. Perhaps the most frequently used form of restriction
imposed on the short-run dynamics of a VAR model of the form in (3.1) is
that suggested by Sims (1980). This approach assumes a recursive structure
among the variables whereby the first variable in the VAR is assumed to
be contemporaneously independent of the other variables, the second is
contemporaneously influenced by the first but no other, the third by the
first two but not the rest, and so on. It is also assumed that the structural
shocks are independent of each other. This identification scheme imposes a
triangular structure on A and assumes that� is a diagonal matrix, namely:

A =

⎛⎜⎜⎜⎝
1 0 ... 0

a21 1 ... 0
... ... ... ...

am1 am2 ... 1

⎞⎟⎟⎟⎠ , and � =

⎛⎜⎜⎜⎝
ω11 0 ... 0
0 ω22 ... 0
... ... ... ...
0 0 ... ωmm

⎞⎟⎟⎟⎠ .

(3.15)

9 This point was illustrated in Nickell (1985), who showed that adjustment costs models
can frequently be represented by a simple VECM, depending on the nature of the stochastic
process characterising the determination of the target variables.

10 Pesaran (1991) considers these issues explicitly in the context of a univariate model. The
paper describes the order conditions necessary for the identification of the structural para-
meters and the cross-equation restrictions that can be tested (in either the structural equations
or the reduced form) in this case.
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The zeros on the top right-hand of A, imposed by the recursiveness, pro-
vides 1

2 m(m − 1) restrictions; the ‘normalising’ unit coefficients on the
diagonal of A provide a further m restrictions; and the zero off-diagonals in
�, imposed by the orthogonality assumption, provide a further 1

2 m(m−1)
restrictions. This provides the m2 restrictions required in total to exactly
identify the structural parameters of (3.1).

In fact, the identifying structure of (3.15) described in Sims (1980)
was initially suggested as part of a more mechanical, statistical exercise
in which the dynamics of an estimated reduced form system could be
illustrated by tracing the impact of specific ‘orthogonalised’ shocks. Start-
ing from an estimated reduced form VECM of the type given in (3.3),
orthogonalised impulses can be derived from the estimated reduced form
errors, vt , and associated estimated variance–covariance matrix, �, using
the Choleski decomposition AA′ = � where A is lower triangular and �
is a diagonal matrix. Since the errors εt = Avt are orthogonal by construc-
tion, it is straightforward to trace out the dynamic effects on the variables
in zt of an impulse in one of the elements of εt . Sims acknowledged that the
choice of Choleski decomposition, and associated orthogonalised shocks,
was arbitrary and depended on the ordering of the variables and sug-
gested trying various different Choleski decompositions to characterise
the dynamic properties of the system (see Sims (1980, 1981) for exam-
ple). However, Cooley and Leroy (1985) noted that, despite the apparent
atheoretic content of the orthogonalisation, the choice of any Choleski
decomposition is equivalent to imposing a clearly defined recursive struc-
ture on the contemporaneous relationships across the variables in the
system.

There are many applied economists who would find a recursive structure
of the sort given in (3.15) no more persuasive than the exclusion restric-
tions used to distinguish between exogenous and endogenous variables
in the early Cowles Commission work and described by Sims as ‘incredi-
ble’. But there are others who embrace this sort of structure, motivating the
restrictions imposed through ‘tentative’ theory on the timing and sequenc-
ing of decisions. The theory is ‘tentative’ in the sense that it is typically not
derived from any form of optimising behaviour on the part of agents or
given any explicit microeconomic foundations. Rather, the theory reflects
the investigator’s a priori beliefs on the costs involved in making particular
decisions, on the consequent frequency of decisions and on the sequenc-
ing of these decisions, based on the investigator’s understanding of the
institutional background and the decision-making context. The difficulty
in translating such beliefs into an identifying structure is that there is

49



Macroeconometric Modelling

a degree of judgement involved and it is difficult to formalise the nature
of any disagreements that arise between investigators on such restrictions.
The approach also relies to a considerable extent on the frequency with
which the main variables in the VAR are observed. For example, the degree
of contemporaneous dependence in variables measured at an annual fre-
quency might be large as compared to the case when the frequency of
observations is monthly or weekly.11 The challenge facing this approach
is, therefore, to choose an identification scheme that is sufficiently well-
grounded in theory and sufficiently loosely defined that the restrictions
are relatively uncontentious for the dataset available.

Two further examples of the identification of structural shocks through
the application of ‘tentative’ theory are provided by Blanchard (1989) and
Gali (1992). Both papers describe a broadly ‘Keynesian’ IS-LM aggregate
demand and aggregate supply model that places restrictions on A and �.
Blanchard considers a five equation system involving output, unem-
ployment, prices, wages and money explained, in turn, by relationships
based on aggregate demand, Okun’s (1962) Law, wage-setting behaviour,
price-setting behaviour and a money rule. These relationships motivate
restrictions on the contemporaneous short-run effects of the structural dis-
turbances. For example, given contemporaneous output, (un)employment
is determined solely by productivity shocks in the Okun’s Law relationship;
given wages and output, price-setters decisions are influenced by (only)
price-setting innovations and productivity shocks in the price-setting rela-
tionship; and so on. The structural innovations are themselves considered
to be independent of each other. Gali’s (1992) paper is in a similar vein.
Restricting attention to output, interest rates, money and prices, Gali
describes a four equation system relating to the IS, LM, money supply rule
and Phillips curve relationships. The associated structural innovations are
‘spending’, ‘money demand’, ‘money supply’ and ‘supply’ shocks. Identi-
fying restrictions considered here include that neither money supply nor
money demand shocks have a contemporaneous effect on output, and
that neither output nor prices enter the money supply rule.

Both Blanchard and Gali provide time series results, analyses of impulse
responses and discussion of US macroeconomic fluctuations on the basis
of their identifying schemes, arguing that, broadly speaking, the results
confirm the usefulness of the Keynesian modelling framework. However,
while the results are interesting and informative, their conclusions are

11 Even in the case of observations sampled at daily frequencies, the presence of common
factors can bring about a substantial degree of correlated behaviour and contemporaneous
dependence.
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only as reliable as the identifying assumptions on which the analysis is
based. The exclusion restrictions imposed are very similar in form to those
employed in the traditional Cowles Commission work which have been
subject to so much scepticism over the past three decades. Moreover, the
systems described by Blanchard and Gali work at a level of abstraction that
makes it difficult to relate the economic relationships of their systems to
specific decision-making by particular agents. This renders the definition
of the relationships, and the associated shocks, almost tautological. For
example, output in Blanchard’s system depends on demand shocks and
productivity shocks only. If productivity shocks could be identified from
the remaining supply-side relationships of the system, then there is a one-
to-one correspondence between output movements and ‘demand shocks’.
The denomination of these innovations as ‘demand’ shocks conveys an
economic meaning to them, but a description of these as ‘output shocks’
seems equally justified. In the absence of a more elaborate theory, it is
difficult to envisage which agents take the decision to set output and what
information is at their disposal when they do so. Seen in this light, this
identifying assumption appears rather vacuous and difficult to justify.

3.2.4 Measuring the effects of monetary policy

The use of tentative theory on the contemporaneous relations among
variables is perhaps most widely used in the study of monetary policy
shocks. Christiano, Eichenbaum and Evans (1999, CEE) provide a very
useful review of this literature. In their paper, CEE describe three alter-
native identifying structures in which variables are grouped into three
sets: a set including variables for which the contemporaneous values are
known when policy is set; a set of policy instruments; and a set of variables
for which the contemporaneous values are observed only after the policy
decisions are made. The frequency of the observations on the variables is
taken to be monthly and the assumed structure imposes a block recursive
structure on the matrix A.

In the first identifying structure, (s1), the monetary policy instrument
(measured by the federal funds rate) is set taking into account information
on the contemporaneous values of output, domestic prices and com-
modity prices, but considering only lagged values of total reserves, of
non-borrowed reserves and of the money supply. In the second identifying
scheme, (s2), the instrument is the non-borrowed reserves, and the federal
funds rate is included only as one of the variables observed after policy
is set. And in the third scheme, (s3), the non-borrowed reserves remains
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the instrument, but total reserves is switched into the set of contempo-
raneously observed variables. CEE point out that identifying structures of
the sort outlined in (s1) and (s2) are widely used; for example, in papers
by Christiano and Eichenbaum (1992a), Christiano et al. (1996, 1998),
Eichenbaum and Evans (1995), Bernanke and Blinder (1992), Bernanke
and Mihov (1998) and Gertler and Gilchrist (1994). But the very fact that
CEE include in their review three alternative identification schemes is
immediate evidence of the lack of consensus that exists on theories of
contemporaneous dependence.

The motivation for the three identifying structures considered in CEE is
based on two complementary and interrelated arguments: the first argu-
ment is concerned with the information available to decision-makers and
the second is concerned with the operational procedures followed by the
monetary authorities. On the first of these, the motivation given by CEE
for the assumption that policy-makers observe the contemporaneous val-
ues of output, domestic prices and commodity prices when setting policy
is provided as follows:

The Fed does have at its disposal monthly data on aggregate employment, indus-
trial output and other indicators of real activity. It also has substantial amounts
of information regarding the price level. In our view, the assumption that the Fed
sees output and prices when they choose the policy instrument seems at least as
plausible as assuming that they don’t [CEE, p. 83]12

CEE recognise the relative frailty of this assumption, acknowledging that
quarterly measures of output and prices, namely real GDP and the GDP
deflator, are actually only known with a lag. This point is elaborated in
Brunner (2000) and Rotemberg and Woodford (1999). Brunner notes that
information on most broad measures of time-t economic activity and on
time-t domestic prices is simply not available until one month after the
time-t monetary policy is set (and is indeed subject to considerable sub-
sequent data revision).13 Rotemberg and Woodford (1999) make the point
that the political process of responding to data takes time even if the data
is, in principle, reported concurrently. CEE also make reference to Sims
and Zha (1998), for example, in which an entirely different sequencing

12 The argument is further developed in footnote 64 of CEE where the available indicators of
prices and output are listed in a little more detail.

13 Brunner also makes the point that the information available to policy-makers is almost
certainly considerably wider than that represented by the variables included in these VAR
analyses and persuasively makes the case for the inclusion of direct measures of market par-
ticipants’ expectations in the VAR as a parsimonious means of including additional relevant
information.
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is adopted, assuming that only contemporaneous commodity prices and
money supply are known to policy-makers when setting interest rates.
Moreover, this structure is assumed in the context of a model estimated
using quarterly data.

Kim and Roubini (2000) also make use of an identification scheme based
on information flows. They note that, while price and activity data is pub-
lished with (at least) a one month lag, monetary data is available within
the month and financial data is available daily. This reasoning is used to
motivate an identification scheme that is broadly based on the sequenc-
ing of decisions, but which is more complex than the usual block recursive
structure.

The motivation for the identifying assumptions considered by CEE,
Kim and Roubini and others are also based on the perceived institu-
tional arrangements and operational procedures implemented by the US
monetary policy-makers. These provide an explanation for the different
treatment of the federal funds rate, total reserves, non-borrowed reserves
and money supply under the identification schemes (s1)–(s3). This aspect
of the tentative theory underlying the identification of the short-run rela-
tions is emphasised in Bernanke and Blinder (1992), Bernanke and Mihov
(1998), Strongin (1995) and Gordon and Leeper (1994). The latter paper,
for example, focuses attention directly on the actions of the Fed in the
federal funds market via open market operations and discount window
operations. They argue that, at least in the case of the United States, much
work in the area incorrectly associates innovations in monetary policy
either with movements in the funds rate or with movements in reserves
because it fails to fully specify the underlying behavioural relationships
in the federal funds market. They argue that identification of monetary
policy requires a fully specified model of the market relationships and, to
this end, they argue that the demand for reserves will depend on the fed-
eral funds rate, prices and output only, while the Fed’s decisions on the
fund rate will depend on reserves, long-term interest rates and commod-
ity prices only.14 Imposing the further recursive assumption that financial
and goods markets respond to money market disturbances only with a lag,
this identifying structure on the supply and demand for reserves allows the
short-run structural parameters of the relations of the federal funds mar-
ket, and hence monetary policy shocks, to be identified (the latter defined
as unexplained movements in the rate-setting equation).

14 There is also an explicit informational assumption here that the Fed’s interest rate deci-
sions are based on money and financial market data released at high frequencies but not based
on current innovations in goods market variables which are observed only with a lag.
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Gordon and Leeper (1994) make the further important point that many
empirical studies use broad monetary aggregates as measures of policy
variables, as though the separation of policy behaviour from financial sec-
tor behaviour is of only secondary importance (failing to distinguish, for
example, between the federal funds rate and the Treasury bill rate). Clearly,
when the identification of shocks relies on the fine distinctions of timing
in decision-making, it is very likely that monetary policy shocks derived
from the federal funds market in which the monetary authorities oper-
ate will be distinct from money supply shocks derived from the money
markets in which financial institutions operate. The authors demonstrate
empirically that this is indeed the case.

The literature on identifying monetary policy shocks has produced
some important and innovative contributions. But, as the discussion
surrounding CEE makes clear, there is little consensus in the literature
on the identifying restrictions motivated by the sequencing of deci-
sions or the information flows faced by decision-makers. And, as the
work of Gordon and Leeper illustrates, identifying structures motivated
by the operational procedures implemented by the monetary authori-
ties requires very detailed knowledge of the money market and finan-
cial markets and is also unlikely to deliver uncontentious restrictions.
Both of these points illustrate well the general difficulties involved in
the identification of contemporaneous dependencies in macroeconomic
models.

3.2.5 Identification using ‘tentative’ theory on long-run relations

An alternative approach to identification is to follow the Structural VAR
approach and impose restrictions on the model parameters based on
‘tentative’ theory relating to the long-run properties of the model. This
approach was popularised by Blanchard and Quah (1989) who provide a
structural interpretation to the shocks by imposing a priori restrictions
on the covariance matrix of the structural errors and on the long-run
responses of variables to the shocks. This approach has been widely
employed, including more recent uses of the approach in Gali (1992),
Clarida and Gali (1994), Lastrapes and Selgin (1994, 1995), Bullard and
Keating (1995), Astley and Garratt (1996), Crowder et al. (1999), Gonzalo
and Ng (2001). Blanchard and Quah (1989) identify ‘demand’ and ‘sup-
ply’ shocks in a bivariate VAR in output growth and unemployment on the
usual assumption that the two shocks are contemporaneously orthogonal
plus the further assumption that ‘demand’ shocks have no permanent
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effect on output whilst ‘supply’ shocks do. In the moving average rep-
resentation for output growth, this assumption ensures that the sum of
the coefficients on the current and lagged observations of the demand
shock is equal to zero. Inverting the moving average representation to
obtain the (approximate) VAR representation, the restriction translates to
the imposition of restrictions involving all the reduced form parameters.
The implications of the transitory/permanent decomposition of the shocks
for the structural parameters varies across the structural equations and
are discussed in Pagan and Pesaran (2005). Given that these restrictions
relate to the long run, this approach does not rely on the precise timing
and sequencing of decisions and is less sensitive to the frequency of the
observations of the data.

The two-variable example considered by Blanchard and Quah is a rather
special case. In more general VAR models, where there are m − r unit
roots and r cointegrating relations, the assumption that there are r transi-
tory structural shocks and m − r permanent structural shocks, orthogonal
to each other, is equivalent to assuming that m − r of the variables
evolve independently of the long-run relations that exist between the vari-
ables. This imposes (m − r) × r restrictions on the matrix of adjustment
coefficients, α̃, in the structural VECM of (3.1).15 Even if the cointegrating
vector β is identified, the Blanchard and Quah assumptions on the per-
manent/transitory nature and orthogonality of the shocks provide only
(m − r)r + 1

2 (m + 1)m restrictions (including m normalisation restrictions),
fewer than the m2 restrictions required to fully identify the shocks to the
system. The assumption that shocks can be split into those that are per-
manent and those that are transitory will provide sufficient restrictions
to identify the shocks only in the special case where m = 2 and r = 1;
of course, this is the case in the bivariate model used by Blanchard and
Quah (1989) where there is one transitory (demand) shock and one per-
manent (supply) shock.16 But generally, further restrictions are required.
For example, a further 1

2 (m − r)(m − r − 1) + 1
2 (r − 1)r restrictions, giv-

ing m2 in total, would be provided by using Sims’ recursive identification
approach applied to the two types of shock (permanent and temporary)
separately. This approach is described in Gonzalo and Ng (2001). But such
an identification strategy is subject to the same criticisms already levelled
against the recursive schemes discussed above.

15 See Pagan and Pesaran (2005) for details.
16 Blanchard and Quah trivially identify β by assuming unemployment (u) is stationary and

output (y) is I(1). Including u as the first variable in their bivariate VAR identifies β as (1, 0)
since u is I(0) by assumption.
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3.3 National macroeconomic modelling in a global context

The modelling strategy reviewed in Section 3.1.3 treats all the core vari-
ables included in the VAR symmetrically and no distinction has been
drawn between endogenous and exogenous variables. However, this mod-
elling strategy, and the associated econometric methods, is not efficient
in the case of small open economies, or if one wishes to develop satel-
lite models that are influenced by the core variables but they themselves
have little feedback into the core variables (to be made precise below).
In the context of most macroeconometric modelling exercises, a natural
example of variables that we might choose to treat as exogenous to the
domestic economy is the international price of oil which is largely set
outside the UK economy.

For most small open economies whose decisions do not significantly
influence the rest of the world, including the UK, one might consider
macroeconomic events abroad to be exogenously determined. Having
said this, however, there may be occasions when movements in macro-
economic variables of a small economy like the UK provide important
contemporaneous indicators of movements in world-wide economic vari-
ables. For example, news on the threat of war is likely to impact on demand
and output across all of the world’s economies. In these circumstances,
treating domestic output as though it can have no power for explain-
ing contemporaneous movements in foreign output will incorrectly omit
these important feedbacks from unobserved external events. Hence, the
decision on how to treat a foreign variable can involve a judgement
between, on the one hand, treating the variable as exogenous to capture
the (obvious) characteristic that foreigners do not look to the domestic
variable in their decision-making and, on the other hand, the less direct
gain of capturing influences from outside the model which impact jointly
and contemporaneously on domestic and foreign variables.

This judgement needs to take into account the statistical implications
of the modelling decision. These will typically encourage the treatment
of variables as endogenous, as the treatment of an exogenous variable as
endogenous involves a loss of efficiency in estimation, which is usually
relatively harmless. In contrast, the treatment of an endogenous variable
as exogenous will introduce biases in the estimation which can be con-
siderably more damaging. In what follows we consider an intermediate
case where the foreign I(1) variables are treated as weakly exogenous, in
the sense that they affect the domestic variables contemporaneously (and
could be affected by lagged changes of domestic and foreign variables)
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but are not affected by disequilibria in the domestic economy. In other
words, in error correcting regressions of changes in foreign variables none
of the lagged error correction terms associated with the domestic econ-
omy should be statistically significant. Note that this is not the same as
the notion of ‘Granger Causality’ under which none of the domestic vari-
ables are allowed to enter the model for the foreign variables. A weakly
exogenous I(1) variable is also referred to as ‘long-run’ forcing by Granger
and Lin (1995).

3.3.1 VARX models: VAR models with weakly exogenous variables

To elaborate on the treatment of endogenous and exogenous variables in
our modelling framework, denote the my variables in zt that are endo-
genously determined by yt , and denote the mx variables that are exoge-
nously determined by xt . In this case, zt = (

y′
t , x′

t

)′, and the structural
model of (3.1) can be rewritten as(

Ayy Ayx

0 Axx

)(
�yt

�xt

)
= ã + b̃t − �̃

(
yt−1

xt−1

)

+
p−1∑
i=1

�̃i

(
�yt−i

�xt−i

)
+
(
εyt

εxt

)
, (3.16)

where

�̃ =
⎛⎜⎝ �̃y

(my×m)

0
(mx×m)

⎞⎟⎠ =
⎛⎜⎝ α̃y

(my×r)

0
(mx×r)

⎞⎟⎠ β ′
(r×m)

.

The first my equations in the system in (3.16) provide the decision-rules
explaining the determination of the endogenous variables and, hence, the
disturbances εyt continue to have a clear structural interpretation. Non-
zero values of Ayy and Ayx allow for contemporaneous influences on the
variables in yt from the other variables in yt and from the variables in
xt . Non-zero values of �̃y allow for feedback from long-run reduced form
disturbances, ξ t . These are linear combinations of variables which may
be endogenously or exogenously determined; i.e. we continue to define
ξ t = β ′zt−1. Given the exogeneity of the variables in xt and given that
they continue to exert an influence on the long-run outcomes of yt via ξ t ,
the xt are often termed ‘long-run forcing’ variables.

The remaining mx equations in (3.16) characterise the determination of
the exogenously determined variables. A zero matrix in the lower triangle
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of A shows that there are no direct contemporaneous feedbacks from the
variables in yt to those in xt , and the mx × m matrix of zeros in �̃ shows
that there are no feedbacks from the long-run reduced form disturbances,
ξ t , to xt either. The structural disturbances, εxt , have a clear economic
meaning in the sense that they relate to unanticipated movements in the
exogenous variables but, given that these variables are considered to be
determined outside the system under consideration, they do not have the
same behavioural content as the εyt structural shocks.

Strict exogeneity in the xt requires the εxt shocks to be uncorrelated with
the εyt shocks. In the case where they are not, the asymptotically innocu-
ous assumption that (εyt , εxt ) are jointly normally distributed provides the
linear relationship:

εyt = �yx�
−1
xx εxt + ηyt ,

where the structural errors have variance covariance matrix

� =
(
�yy �yx

�xy �xx

)

and, by construction, εxt and ηyt are uncorrelated. The first my equations
of (3.16) can then be rewritten as

Ayy�yt + A∗
yx�xt = ã∗

y + b̃∗
yt − �̃yzt−1 +

p−1∑
i=1

�̃
∗
yi�zt−i + ηyt , (3.17)

where ã∗
y = ãy − �yx�

−1
xx ãx, b̃∗

y = b̃y − �yx�
−1
xx b̃x, �̃

∗
yi = �̃yi − �yx�

−1
xx �̃xi,

and A∗
yx = Ayx − �yx�

−1
xx Axx and where we have used the decomposition,

ã =
(̃
a′

y , ã′
x

)′
, b̃ =

(
b̃′

y , b̃′
x

)′
and �̃yi =

(
�̃

′
yi, �̃

′
xi

)′
. This formulation of

the structural equations explaining yt allows for the indirect effects of
changes in xt on yt , experienced through the contemporaneous depen-
dence between the structural shocks, as well as the direct effects captured
through the elements of A.

The above representation decomposes the modelling task into the
specification of a ‘conditional model’ for �yt given by (3.17), and a
‘marginal model’ for �xt which under weak exogeneity can be written
more generally as

Axx�xt = ãx + b̃xt −�xxxt−1 +
p−1∑
i=1

�̃xi�zt−i + εxt . (3.18)
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Note the absence of error correction terms from the conditional model in
the marginal model. In the case where xt ’s are I(1) and not cointegrated
amongst themselves we have the further restrictions, �xx = 0. In this set-
up xt is said to be long-run forcing for the error correcting model in � yt .

The combined model of the structural equations explaining �yt in
(3.17) and the structural equations explaining �xt in (3.18) can now be
written as:

A∗�zt = ã∗ + b̃∗t − �̃zt−1 +
p−1∑
i=1

�̃
∗
i �zt−i + ε∗

t , (3.19)

where
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)
and ε∗

t =
(
ηyt

εxt

)
.

The associated reduced form system is readily obtained, following the argu-
ments surrounding (3.1) and (3.3) but using A∗ in place of A. Estimation
of the reduced form system can proceed by the maximum likelihood (ML)
method, taking account of the long-run restrictions implied by the eco-
nomic theory on the elements in �̃, as described in Chapter 6; see Pesaran
and Shin (2002) and Pesaran, Shin and Smith (2000) for further details.
Identification of the structural parameters of (3.19), and the structural
errors, requires quite separate identifying restrictions on the short-run
dynamics of the sort discussed in the subsections above. These restrictions
will clearly need to take account of the structure incorporated into (3.19)
to reflect the exogeneity of the xt but, otherwise, the modelling framework
is unaffected.

3.3.2 Developing satellite or sectoral models

The structural modelling strategy advanced here can also be adapted to
account for sectoral effects. This can be done by linking the national
macroeconomic models to other ‘sectoral’ models assuming a block recur-
sive structure. The identifying structure imposed on the system assumes
that the variables of the sectoral models are influenced by the variables
of the national macroeconomic model, but do not exert a correspond-
ing influence on the variables of the national model. Such a set-up
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would allow analysis to focus on issues of particular interest in the labour
market, international trade, or particular sectors or regions in the national
economy.

To illustrate the idea, consider a set of sectoral variables, wt , which are
influenced by the variables in the national model, zt , but have no feedback
to the ‘core’ macroempirical variables. As above, the elements of zt can
themselves be distinguished according to whether they are endogenously
determined within the national model, yt , or determined exogenously, xt .
For expositional purposes, assume that a simple first-order model is appro-
priate and that there are only contemporaneous interactions between the
different types of variables. To broaden the possible relevance of the model,
assume also that anticipated and unanticipated values of the explanatory
variables can have different effects. The structure is then

xt = D1xt−1 + u1t ,

yt = F1yt−1 + F2xt + F3 [xt − Et−1 (xt )] + u2t ,

wt = G1wt−1 + G2yt + G3 [yt − Et−1(yt )]

+ G4xt + G5 [xt − Et−1 (xt )] + u3t .

Solving for the terms involving expectations, and stacking the relation-
ships in vector form, we have⎛⎜⎝ I 0 0

−(F2 + F3) I 0
−(G4 + G5) −(G2 + G3) I

⎞⎟⎠
⎛⎜⎝ xt

yt

wt

⎞⎟⎠

=
⎛⎜⎝ D1 0 0

−F3D1 F1 0
−(G3F2D1 + G5D1) −G3F1 G1

⎞⎟⎠
⎛⎜⎝ xt−1

yt−1

wt−1

⎞⎟⎠+
⎛⎜⎝ u1t

u2t

u3t

⎞⎟⎠ .

(3.20)

The structure of the model is block triangular, as is immediately apparent
from the matrix premultiplying the vector of variables on the LHS of (3.20).
There is clearly a causal structure from xt to yt ; and from xt and yt to
wt . If we assume that E(uitujt ) = 0, for i �= j, then the model is block
recursive. This structure has the advantage that the analysis of the variables
in zt = (x′

t , y′
t )

′ can be carried out without reference to those in wt , while
the variables in wt can be studied by means of ‘sectoral models’, estimated
independently of the model for zt and taking values of xt , yt , u1t and u2t

as given.
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The development of satellite or sectoral models opens up many oppor-
tunities for modelling decision-making in the real world. The number
of parameters that are estimated in a VAR could confine the approach
to the analysis of a relatively small number of variables. This would be
a potentially significant limitation of the modelling approach. Further,
longer time series do not necessarily resolve the problem because the struc-
tural stability of the model might be called into question with very long
spans of data. The assumptions described above provide a means of circum-
venting these problems so long as the block recursive structure of (3.20)
corresponds to the decision-making context.

The purpose of this chapter has been to set out a canonical dynamic
structural model which demonstrates the distinction between short-run
and long-run effects in a model and to highlight the important role of eco-
nomic theory in identifying these respective effects. Economic theory was
shown to be central to the identification of long-run relations and of eco-
nomically meaningful shocks, and we argued that some of the identifying
assumptions used in the literature, especially those relating to the short
run and based on the sequencing of decisions or release of data, seem to
be relatively frail. On the other hand, our approach to macroeconometric
modelling is a pragmatic one; we recognise that it will never be possible
to model the economy in its entirety and all models are imperfect and
potentially contentious, therefore. For this reason, we emphasise the cri-
terion of model relevance, urging modellers to construct models that are
useful for policy analysis and decision-making. We believe our approach
to modelling will allow the modeller to capture the properties of the data
well while informing the model with economic theory. Our emphasis is on
the economic theory of the long run, based on the strength of conviction
with which we believe theory as it relates to the long run and the short
run, but our modelling approach can readily accommodate the restrictions
suggested by theories of the short run as well as the long run. In deciding
on the theory to be embedded within the model, the model should con-
sider what is the minimal structure required for its purpose. This will include
a clear view on the part of the modeller of what can be taken as exogenous
and what needs to be modelled endogenously. Hence, for the purposes of
monetary or macroeconomic decisions in the UK, for example, it seems
entirely reasonable that the world economy might be taken as long-run
forcing (weakly exogenous) to the core macroeconomic model of the UK,
and that the variables of the core macromodel might be taken as long-run
forcing in particular sectors of the economy. The modelling choice on what
constitutes the minimal structure is, of course, itself informed by economic
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theory and, in what follows, we describe in more detail particular models
of the long run, in Chapter 4, and of the short run, in Chapter 5, that will
inform our modelling choices as they relate to the UK macroeconomy.

3.4 Global vector autoregressive (GVAR) models

The discussion so far has considered the modelling of a single national
economy, possibly containing exogenous variables to take into account
the effects of variables determined outside the national economy. In many
instances, however, one might be interested to model more explicitly the
source of the foreign influences on the domestic economy and the contri-
butions of the national economy to the broad global changes that are, in
turn, influencing the other economies of the world. One possible example
of such an analysis is a model of the UK economy and its interactions with
the economies in the euro area. Such an analysis might be used to establish
the impact of shocks to the euro area economies on the UK, and vice versa,
to quantify the likely effects of the UK’s entry into the monetary union.
Pesaran, Smith and Smith (2005) provide such an exercise. Or, given the
increasing globalisation of world financial markets, a second application
could be the analysis of the effect of shocks to financial markets on business
cycles both within and across economies.

These analyses require the development of a ‘global’ modelling frame-
work within which the national model can be incorporated, along with
equivalent models of the other economies in the rest of the world. The
straight application of the modelling framework outlined in Section 3.1.3
is an attractive approach, but is almost certainly constrained by com-
putational limitations. Hence, while it is possible in principle to extend
the modelling strategy to cover the same m variables in each of, say, N + 1
separate economies, in practice this would involve the estimation of a
cointegrated VAR involving around mp(N+1) parameters in each equation
of the model to be estimated (where p is the order of the VAR). If there
are five variables modelled in each economy, 20 economies and a lag-
order of 2 is used, this generates at least 210 parameters to be estimated
in each equation, which is clearly infeasible for the data series that are
available.

The issue of how to overcome this problem is pursued in Pesaran,
Schuermann and Weiner (2004, PSW), with further development in Dees,
di Mauro, Pesaran and Smith (2005, DdPS), in which a Global VAR (GVAR)
model is developed to investigate global interactions and the analysis
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of regional shocks on the world economy in general. The problem of
modelling many economies in a coherent and consistent manner is solved
through the careful construction of separate measures of ‘foreign’ vari-
ables for use in each of the separate national models. The country-specific
foreign variables are then treated as weakly exogenous (in the sense dis-
cussed above) when estimating each of the country models. Specifically,
individual country (or region) VEC models are estimated using a range
of domestic macroeconomic variables plus corresponding foreign vari-
ables constructed from other economies’ data using weights to match the
international trade pattern of the country under consideration. The indi-
vidual country models are then combined in a consistent and cohesive
manner to generate forecasts for all the variables in the world economy
simultaneously.

To illustrate these ideas in a little more detail, assume that there are
N + 1 economies in the world, indexed by i = 0, 1, . . . , N, and denote
the country-specific variables by the m × 1 vector yit and the associated
country-specific foreign variables by y∗

it , then a first-order country-specific
model can be written17

yit = ai0 +�iyi,t−1 +�i0y∗
it +�i1y∗

i,t−1 + uit , (3.21)

y∗
it =

N∑
j=0

wijyjt , (3.22)

where wij ≥ 0 are the weights attached to the foreign variables such that∑N
j=0 wij = 1, and wii = 0 for all i. These weights could be based on trade

shares, for example (i.e. the share of country j in the total trade of coun-
try i). The country-specific errors uit are assumed to be serially uncorrelated
with mean zero and a non-singular covariance matrix �ii. For the pur-
pose of estimation and inference, it is worth noting that the model in
(3.21) can be readily recast as a cointegrating VARX of the form that we
have considered above. Moreover, the country-specific foreign variables
y∗

it can be treated as weakly exogenous for most countries so this con-
struction will introduce no extra difficulties in terms of the econometric
estimation.18

Although the model is estimated on a country by country basis, the
shocks are allowed to be weakly correlated across countries. In particular,

17 The number of variables in the different country models need not be the same. Here we
assume all country models are based on the same set of variables to simplify the exposition.

18 The econometric issues involved are explored in detail in Pesaran (2004b).
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it is assumed that

E
(
uitu

′
jt

)
= �ij for t = t ′,

= 0 for t �= t ′.

Global interactions take place through three distinct, but interrelated
channels:

1. Direct dependence of yit on y∗
it and its lagged values.

2. Dependence of the region-specific variables on common global exoge-
nous variables such as oil prices.

3. Non-zero contemporaneous dependence of shocks in region i on the
shocks in region j, measured via the cross-country covariances, �ij.

The individual models are estimated allowing for unit roots and cointe-
gration assuming that region-specific foreign variables are weakly exoge-
nous, with the exception of the model for the US economy which is treated
as a closed economy model. The US model is linked to the outside world
through exchange rates themselves being determined in rest of the region-
specific models. While models of the form in equation (3.21) are relatively
standard, PSW show that the careful construction of the global variables as
weighted averages of the other regional variables leads to a simultaneous
system of regional equations that may be solved to form a global system.
They also provide theoretical arguments as well as empirical evidence in
support of the weak exogeneity assumption that allows the region-specific
models to be estimated consistently.

To obtain the global VAR (GVAR) model, define the (m+m∗)×1 vector as

zit =
(

yit

y∗
it

)

and rewrite (3.21) as

Aizit = ai0 + Bizi,t−1 + uit , (3.23)

where Ai = (Im, −�i0) and Bi = (�i,�i1). Collecting all the country-specific
variables together in a (N + 1)m × 1 vector yt = (y′

0t , y′
1t , y′

2t , . . . , y′
Nt )

′, it
is easily seen that the country-specific variables can all be written in terms
of yt :

zit = Wiyt , i = 0, 1, . . . , N, (3.24)
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where Wi is a matrix of known weights such that(
yit

y∗
it

)
= Wiyt .

For example, for country i = 0 we have

W0 =
(

Im 0 0 · · · 0
0 w01Im w02Im · · · w0NIm

)
,

where w01 + w02 + .... + w0N = 1. Using (3.24) in (3.23), we have

AiWiyt = ai0 + BiWiyt−1 + uit (3.25)

and stacking these equations yields the model

Gyt = a0 + Hyt−1 + ut , (3.26)

where

a0 =

⎛⎜⎜⎜⎜⎝
a00

a10
...

aN0

⎞⎟⎟⎟⎟⎠ , ut =

⎛⎜⎜⎜⎜⎝
u0t

u1t
...

uNt

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
A0W0

A1W1
...

ANWN

⎞⎟⎟⎟⎟⎠ , H =

⎛⎜⎜⎜⎜⎝
B0W0

B1W1
...

BNWN

⎞⎟⎟⎟⎟⎠ .

Finally, the GVAR model simplifies to a large dimensional VAR model

yt = G−1a0 + G−1Hyt−1 + G−1ut . (3.27)

Hence, having estimated the separate national models in the form of
(3.21), the global model in (3.27) can be solved recursively forward to
obtain future values of all the endogenous variables in the global model, yt ,
for forecasting multi-step ahead to investigate the dynamic response of the
global economy to shocks and in the analysis of international interactions.

The GVAR model allows for cross-country as well as inter-country
cointegration. For example, within each country model one could have
the Fisher parity that relates domestic nominal short term interest rate to
the domestic inflation rate, as well as relating domestic prices and output
to their foreign counter parts and exchange rates. As shown in DdPS, the
GVAR can also be derived from global factor models where there might be
one or more unobserved common factors with differential effects across
countries. Finally, it is worth noting that cointegration properties of the
individual country models are preserved in the GVAR model, and in gen-
eral mean-reverting features of the individual economies carry over to the
world economy.
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4

An economic theory of the long run

As was noted in Chapter 2, there are various theoretical approaches to
the derivation of the long-run, steady-state relations of a macroecono-
metric model. However, we have argued that many of the approaches
yield very similar results as far as the long-run relations are concerned
and that there is a degree of consensus on these long-run properties
across macroeconomic models. In this chapter, we outline the theoret-
ical basis of the long-run relations to be considered for the modelling
of a small open economy such as the UK. The analysis emphasises
stock-flow equilibria and arbitrage conditions, appropriately modified
to allow for the risks associated with market uncertainties. The arbi-
trage conditions provide intertemporal links between prices, interest rates
and asset returns in the economy as a whole. The approach is dis-
tinct from the intertemporal optimisation approach underlying the DSGE
models, but it is closely related and yields similar results on the long-run
relations.

The minimal structure required of any model of the macroeconomy
must accommodate a description of the production technology, the role
of market forces and a characterisation of the institutional set-up (includ-
ing financial institutions and the role of money, for example). The model
described in this chapter is based on three sectors (namely the private,
government and foreign sectors) and, to provide the required minimal
economic structure, in what follows we begin with a description of out-
put determination and the technological diffusion process, comment on
the important arbitrage conditions arising from market forces, and note
the implications of institutional solvency requirements for the long-run
relationships in the macroeconomy.
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4.1 Production technology and output determination

We assume that, in the long run, aggregate output is determined according
to the following constant returns to scale production function in labour
(denoted by Nt ) and capital stock (denoted by Kt ):

Ỹt

Pt
= F(Kt , AtNt ) = AtNtF

(
Kt

AtNt
, 1
)

, (4.1)

where Ỹt is gross domestic product measured in pounds sterling (with
nominal magnitudes denoted with a ‘∼’ throughout), Pt , is a general
price index, Ỹt/Pt is real aggregate output, and At stands for an index
of labour-augmenting technological progress, assumed to be composed
of a deterministic component, a0 + g t , and a stochastic mean-zero
component, uat :

ln(At ) = a0 + g t + uat . (4.2)

The process generating uat is likely to be quite complex and there is little
direct evidence on its evolution. But a few studies that have used patent
data or R&D expenditures to directly analyse the behaviour of uat over
the course of the business cycle generally find highly persistent effects
of technological disturbances on output (discussed in Fabiani (1996) and
the references cited therein). The indirect evidence on uat , obtained from
empirical analysis of aggregate output, also corroborates this finding and
generally speaking does not reject the hypothesis that uat contains a unit
root. (See, for example, Nelson and Plosser (1982) and, for the UK, Mills
(1991).)

We further assume that the fraction of the population which is employed
at time t , λt = Nt/POPt , is a stationary process such that

Nt = λPOPt exp(ηnt ), (4.3)

where POPt is population at the end of period t and ηnt represents a
stationary, mean-zero process capturing the cyclical fluctuations of the
unemployment rate around its steady-state value, 1 − λ. The presence of,
for example, real and nominal wage and price rigidities could generate
deviations from the equilibrium, and these might be large and prolonged.
However, these influences are captured by the presence of the ηnt , and ulti-
mately it is assumed that the long-run equilibrium unemployment rate is
re-established. The assumption that the steady-state unemployment rate is
constant is by no means innocuous: it requires labour supply to be inelastic
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with respect to the real wage in the long run, and abstracts from the pos-
sibility that there exist factors which might cause permanent changes in
labour supply decisions.1 The first requirement might not be too unrealis-
tic in the very long run, given the absence of a long-term trend increase in
unemployment corresponding to the unremitting rise in real wages (when
measured over decades rather than years). However, many commentators
would point to changes in labour market conditions which persist and
which might reasonably be expected to influence the equilibrium unem-
ployment rate; these might include shocks to incentives due to changes
in the incidence of direct and indirect taxation; changes in the size and
coverage of benefit payments; changes in the extent of union influence
and other institutional changes in wage-bargaining arrangements; and so
on. Our approach can be justified on the grounds that these institutional
changes are by their nature constrained not to change continually and
without bounds (so that they can be subsumed into the ηnt ) or that their
effects are small compared to the consequences of technical progress which
dominates output determination.2

Under the above assumptions and using the relations (4.1), (4.2) and
(4.3) it now readily follows that

yt = a0 + ln(λ) + g t + ln(f (κt )) + uat + ηnt , (4.4)

where yt = ln[Ỹt/(POPt × Pt )] is the logarithm of real per capita out-
put, κt = Kt/AtNt is the capital stock per effective labour unit, and
f (κt ) = F(κt , 1) is a well-behaved function in the sense that it satisfies the
Inada conditions. See, for example, Barro and Sala-i-Martin (1995, p. 16).
Assuming the aggregate saving rate is monotonic in κt and that certain
other mild regularity conditions hold, Binder and Pesaran (1999) show
that, irrespective of whether the process generating uat is stationary or
contains a unit root, κt converges to a steady-state probability distribu-
tion with κt → κ∞, where κ∞ is a time-invariant random variable with a
non-degenerate probability distribution function. Hence, in the long run
the evolution of per capita output will be largely determined by techno-
logical process, with E[� ln(yt )] = g. Also whether yt contains a unit root
crucially depends on whether there is a unit root in the process generating
technological progress.3

1 See Nickell (1990) for a review of the literature on unemployment determination.
2 Notice that the assumption that the unemployment rate is stationary in effect rules out

long-run hysteresis effects in the unemployment process.
3 See Lee et al. (1997, 1998) and Pesaran (2004a) for further discussion of the time series

properties of output series derived under the stochastic Solow model framework.
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Given the small and open nature of the UK economy, it might be rea-
sonable to assume that, in the long run, At is determined by the level of
technological progress in the rest of the world; namely

At = γA∗
t exp(ηat ), (4.5)

where A∗
t represents the level of foreign technological progress, γ captures

productivity differentials based on fixed, initial technological endow-
ments, and ηat represents stationary, mean zero disturbances capturing
the effects of information lags or (transitory) legal impediments to tech-
nology flows across different countries, for example. Assuming that per
capita output in the rest of the world is also determined according to a
neoclassical growth model, and using a similar line of reasoning as above,
we have

yt − y∗
t = ln(γ ) + ln(λ/λ∗) + ln[f (κt )/f ∗(κ∗

t )] + ηat + (ηnt − η∗
nt ), (4.6)

where foreign variables are shown with a ‘star’. Similarly to κt the foreign
capital stock per effective labour unit, κ∗

t , also tends to a time-invariant
probability distribution function, and hence under the assumption that A∗

t
(or At ) contain a unit root, (yt , y∗

t ) will be cointegrated with a cointegrating
vector equal to (1, −1). (See Lee (1998) and Pesaran (2004a) for further
discussion.)

The above stochastic formulation of the neoclassical growth model also
has important implications for the determination of the real rate of return,
which we denote by ρt . Profit maximisation on the part of firms ensures
that, in the steady state, ρt will be equal to the marginal product of capital,
so that

ρt = f ′(κt ), (4.7)

where f ′(κt ) is the derivative of f (κt ) with respect to κt . Since κt → κ∞, it
therefore follows that ρt → f ′(κ∞); thus establishing that the steady-state
distribution of the real rate of return will also be ergodic and stationary.
This result allows us to write

1 + ρt+1 = (1 + ρ) exp(ηρ,t+1), (4.8)

where ηρ,t+1 is a stationary process normalised so that E[exp(ηρ,t+1) | It ] =
1, and where It is the publicly available information set at time t . This nor-
malisation ensures that ρ is in fact the mean of the steady-state distribution
of real returns, ρt , given by E [f ′(κ∞)].
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4.2 Arbitrage conditions

Market forces in the model motivate a set of arbitrage conditions that are
included in many macroeconomic models in one form or another. They
are the (relative) Purchasing Power Parity (PPP), the Fisher Inflation Parity
(FIP), and the Uncovered Interest Parity (UIP) relationships. We consider
each of these in turn.

Purchasing Power Parity is based on the presence of goods market arbi-
trage, and captures the idea that the price of a common basket of goods
will be equal in different countries when measured in a common currency.
Information disparities, transportation costs or the effects of tariff and
non-tariff barriers are likely to create considerable deviations from (abso-
lute) PPP in the short run and, with the likely exception of information
disparities, these might persist indefinitely. However, if the size of these
influences has a constant mean over time, then the common currency
price of the basket of goods in the different countries will rise one-for-one
over the longer term, and this is captured by the (weaker) concept of ‘rel-
ative PPP’. The primary explanation of long-run deviations from relative
PPP is the ‘Harrod–Balassa–Samuelson (H–B–S) effect’ in which the price
of a basket of traded and non-traded goods rises more rapidly in coun-
tries with relatively rapid productivity growth in the traded goods sector.4

Following these arguments, we express relative PPP as

Pt+1 = Et+1P∗
t+1 exp(ηppp,t+1), (4.9)

where Et is the effective exchange rate, defined as the domestic price of a
unit of foreign currency at the beginning of period t (so that an increase
in the exchange rate represents a depreciation of the home country cur-
rency), P∗

t is the foreign price index and the term in brackets captures the
deviations from PPP. Here, ηppp,t+1 is assumed to follow a stationary (or pos-
sibly trend-stationary) process capturing short-run variations in transport
costs, information disparities, and the effects of tariff and non-tariff bar-
riers. The errors ηppp,t+1 could be conditionally heteroscedastic, although
this particular source of variability is unlikely to be very important in quar-
terly macromodels. The effects of differential productivity growth rates in
the traded and non-traded goods sectors at home and abroad, accommo-
dating the H–B–S effect, can be captured by assuming that ηppp,t+1 contains
a trend.

4 See Obstfeld and Rogoff (1996, Chapter 4) and Rogoff (1996) for further discussion of this
effect and alternative modifications to PPP.
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Deviations from PPP might be observed because real exchange rates are
measured using price indices which involve different baskets of commodi-
ties across countries. In this case, real shocks which cause changes in the
relative price of particular commodities will have differential impacts on
countries’ prices, and deviations from PPP remain consistent with goods
market arbitrage. In the case of the UK, which is an oil producer, the (poten-
tial) direct effect of changes in the relative price of oil on the UK’s real
exchange rate could be accommodated in the model by including a mul-
tiplicative term in the relative oil price variable, say (Po

t+1/P
∗
t+1)

θ on the
right-hand side of (4.9).5 Of course, one might doubt that changes in rel-
ative oil prices would have a permanent effect on real exchange rates over
long horizons, in which case θ = 0. However, even in this case, the rela-
tive oil price variable could still affect real exchange rates over prolonged
periods, given the size of the oil price changes in recent years, because
of differential speeds of adjustment to the productivity shock in different
economies. Ultimately, this is a matter to be investigated empirically.6

The FIP relationship captures the equilibrium outcome of the arbitrage
process between holding bonds and investing in physical assets. Denoting
the expected real rate of return on physical assets over the period t to
t +1 by ρe

t+1, and denoting inflation expectations over the same period by
(Pe

t+1 − Pt )/Pt , we have

(1 + Rt ) = (1 + ρe
t+1)

(
1 + Pe

t+1 − Pt

Pt

)
exp(ηfip,t+1)

= (1 + ρe
t+1)

(
Pe

t+1

Pt+1

)(
1 + �Pt+1

Pt

)
exp(ηfip,t+1), (4.10)

where Rt is the nominal interest rate on domestic assets held from the
beginning to the end of period t and ηfip,t+1 is the risk premium, capturing
the effects of money and goods market uncertainties on risk-averse agents.
We assume that ηfip,t+1 follows a stationary process with a finite mean and
variance. Also recall that in the context of the neoclassical growth model

5 This approach is advocated in Chauduri and Daniel (1998), for example. The inclusion
of the relative oil price term in (4.9) can also be justified with reference to the H–B–S effect.
Certainly, (relative) oil price changes have a pervasive effect on productivity, and these might
have a differential effect in the traded and non-traded sectors of different economies. See
Bruno and Sachs (1984) or Perron (1989), among others, for discussion of the role of the 1973
oil price shock in the worldwide slowdown in productivity.

6 Distinguishing whether these effects are permanent or transitory is likely to be difficult
using available datasets. However, the importance of explicitly taking into account the effects
of oil price changes on the dynamics of real exchange rates has been widely acknowledged in
applied work; see, for example, Johansen and Juselius (1992).
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the real rate of interest (which we take to be the same as the real rate of
return on capital) follows a stationary process; see (4.7) and (4.8).

The third arbitrage condition is based on the UIP relationship, which
captures the equilibrium outcome of the arbitrage process between holding
domestic and foreign bonds. In this, any differential in interest rates across
countries must be offset by expected exchange rate changes to eliminate
the scope for arbitrage. The presence of transactions costs, risk premia and
speculative effects provide for the possibility of short-run deviations from
UIP, and we therefore define the Interest Rate Parity (IRP) relationship as
follows:

(1 + Rt ) = (1 + R∗
t )

(
1 + Ee

t+1 − Et

Et

)
exp(ηuip,t+1)

= (1 + R∗
t )

(
Ee

t+1

Et+1

)(
1 + �Et+1

Et

)
exp(ηuip,t+1), (4.11)

where R∗
t is the nominal interest rate paid on foreign assets during period

t and ηuip,t+1 is the risk premium associated with the effects of bond and
foreign exchange uncertainties on risk-averse agents. As before, we shall
assume that ηuip,t+1 is stationary and ergodic.7

For the purpose of long-run modelling, we assume that the expectations
errors ηe

i,t+1, i = p, e, ρ, defined by

Pe
t+1 = Pt+1 exp(ηe

p,t+1),

Ee
t+1 = Et+1 exp(ηe

e,t+1),

and (1 + ρe
t+1) = (1 + ρt+1) exp(ηe

ρ,t+1) (4.12)

follow stationary processes. The assumption that the expectation errors are
stationary seems quite plausible and is consistent with a wide variety of
hypotheses concerning the expectations formation process.8 In this case,
the three arbitrage relationships discussed above can be written in terms
of the observables using the expressions in (4.8) and (4.12). Specifically,
the FIP relation can be written as:

rt = ln(1 + ρ) + �pt + ηfip,t+1 + ηρ,t+1 + η��p,t+1 + ηe
p,t+1 + ηe

ρ,t+1, (4.13)

7 As noted earlier, the relationships in (4.10) and (4.11) can also be derived from Euler
equations obtained from consumer and producer optimisation in an intertemporal model of
an economy with well-behaved preferences and technologies.

8 This assumption is consistent with the Rational Expectations Hypothesis (REH), for exam-
ple. However, it is much less restrictive than the REH, and can accommodate the possibility
of systematic expectational errors in the short run, possibly due to incomplete learning.
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where lower cases denote the logarithm of a variable, so that rt = ln(1+Rt )

and pt = ln(Pt ),

�pt = ln
(

1 + �Pt

Pt−1

)
and

η��p,t+1 = ln
(

Pt+1

Pt

/
Pt

Pt−1

)
.

Similarly, the IRP relation can be written as

rt = r∗
t + η�e,t+1 + ηuip,t+1 + ηe

e,t+1, (4.14)

where r∗
t = ln(1 + R∗

t ) and η�e,t+1 = � ln(Et+1). And the log-linear version
of the PPP relationship in (4.9) is given by

pt+1 = p∗
t+1 + et+1 + ηppp,t+1, (4.15)

where p∗
t+1 = ln(P∗

t+1) and et+1 = ln(Et+1).

4.3 Accounting identities and stock-flow relations

The institutional set-up of the model is captured through the use of the rel-
evant accounting identities and stock-flow relations. We use the following
stock identities:

D̃t = H̃t + B̃t , (4.16)

F̃t = Et B̃∗
t − (B̃t − B̃d

t ), (4.17)

L̃t = H̃t + B̃d
t + Et B̃∗

t , (4.18)

where D̃t is net government debt, H̃t is the stock of high-powered money,
B̃t is the stock of domestic bonds issued by the government, F̃t is the net
foreign asset position of the economy, B̃∗

t is the stock of foreign assets held
by domestic residents, B̃d

t is the stock of domestic assets held by domestic
residents, and L̃t (= D̃t + F̃t ) is the stock of financial assets held by the pri-
vate sector.9 All the stocks are measured at the beginning of period t . Recall
that nominal magnitudes are denoted with a ‘∼’, and these are expressed

9 It is assumed that foreign asset holdings of domestic residents and domestic holdings of
foreign residents are composed of government bonds only.
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in pounds sterling, except B̃∗
t which is expressed in foreign currency. It is

assumed that the government holds no foreign assets of its own.
We also have the output–expenditure flow identity:

Ỹt = C̃t + Ĩt + G̃t + (X̃t − M̃t ), (4.19)

where C̃t is consumption expenditures, Ĩt investment expenditures, G̃t

government expenditures, X̃t expenditures on exports and M̃t expendi-
tures on imports, all are in current market prices and expressed in pounds
sterling. The private sector disposable income is defined by

Ỹd
t = Ỹt − T̃t + Rt B̃d

t + EtR∗
t B̃∗

t , (4.20)

where T̃t represents taxes net of transfers to the private sector.
The model economy’s stock-flow relationships are:

�D̃t+1 = G̃t + Rt B̃t − T̃t , (4.21)

�L̃t+1 = Ỹd
t − C̃t − Ĩt + (Ee

t+1 − Et )̃B∗
t , (4.22)

�F̃t+1 = X̃t − M̃t + ÑFAt + (Ee
t+1 − Et )̃B∗

t , (4.23)

where ÑFAt = EtR∗
t B̃∗

t − Rt (B̃t − B̃d
t ) is net factor income from abroad, and

Ee
t+1 stands for exchange rate expectations formed on the basis of pub-

licly available information at time t . Hence, the term (Ee
t+1 − Et )̃B∗

t is the
(expected) revaluation of foreign assets held by domestic residents accru-
ing through exchange rate appreciation in period t .10 Note that, since L̃t =
D̃t + F̃t , any two of (4.21)–(4.23) implies the third.

4.4 Long-run solvency requirements

The assumption that the private sector remains solvent, taken with the
stock-flow relationships given by (4.21)–(4.23), provides the motivation
for further long-run relationships between macroeconomic variables. In
order to ensure the long-run solvency of the private sector asset/liability
position, we assume

L̃t+1/Ỹt = µ exp(ηly,t+1), (4.24)

10 In most formulations of stock-flow relationships the asset revaluation term is either
ignored or is approximated by an ex post counterpart such as (Et − Et−1 )̃B∗

t . But for consis-
tency with the arbitrage (equilibrium) conditions to be set out below, we prefer to work with
the ex ante asset revaluation term.
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where ηly,t+1 is a stationary process, so that the ratio of total financial
assets to the nominal income level is stationary and ergodic. Expression
(4.24) captures the idea that domestic residents are neither willing nor
able to accumulate claims on, or liabilities to, the government and the
rest of the world which are out of line with their current and expected
future income. This condition, in conjunction with assumptions on the
determinants of the equilibrium portfolio balance of the private sector
assets, provides additional long-run relations.

In modelling the equilibrium portfolio balance of private sector assets,
we follow Branson’s (1977) Portfolio Balance Approach. From (4.18), we
note that the stock of financial assets held by the private sector consists
of the stock of high-powered money plus the stock of domestic and for-
eign bonds held by domestic residents. Given this adding-up constraint,
we specify two independent equilibrium relationships relating to asset
demand; namely, those relating to the demand for high-powered money
and for foreign assets. These relationships are characterised in our model
by the following:

H̃t+1

L̃t
= Fh

(
Yt

Pt
, ρe

b,t+1, ρ∗e
b,t+1,

�Pe
t+1

Pt
, t

)
exp(ηh,t+1), (4.25)

and

F̃t+1

L̃t
= Ff

(
Yt

Pt
, ρe

b,t+1, ρ∗e
b,t+1,

�Pe
t+1

Pt
, t

)
exp(ηf ,t+1), (4.26)

where Fh1 ≥ 0, Fh2 ≤ 0, Fh3 ≤ 0, Fh4 ≤ 0, and Ff 1 ≤ 0, Ff 2 ≤ 0, Ff 3 ≥ 0,
Ff 4 ≥ 0, and where

Yt = Ỹt

POPt−1
, ρe

b,t+1 = (1 + Rt )(
1 + Pe

t+1−Pt
Pt

) − 1,

and

ρ∗e
b,t+1 =

(1 + R∗
t )

(
1 + Ee

t+1−Et
Et

)
(

1 + Pe
t+1−Pt

Pt

) − 1.

The last two terms are the expected real rates of return on domestic and
foreign bonds, respectively (both measured in domestic currency), ηht

is a stationary process which captures the effects of various factors that
contribute to the short-run deviations of the ratio of money balances to
total financial assets from its long-run determinants, and ηft is the corre-
sponding stationary process capturing the effects of short-run deviations
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of the ratio of foreign assets to total financial assets from its long-run posi-
tion. The determinants of the ratio of money to total financial assets in
(4.25) include the real output level, to capture the influence of the trans-
actions demand for money, and the expected real rates of return on the
three alternative forms of holding financial assets; namely domestic bonds,
foreign bonds and high-powered money. We have also specified a deter-
ministic trend in Fh (·) to allow for the possible effect of the changing
nature of financial intermediation, and the increasing use of credit cards
in settlement of transactions on the convenience value of money. One
would expect a downward trend in H/L, reflecting a trend reduction in
the proportion of financial assets held in the form of non-interest bearing
high-powered money over time. The determinants of the ratio of foreign
assets to total financial assets in (4.26) are the same, with the decision to
hold assets in the form of bonds mirroring that relating to holding assets
in the form of money.

In view of the IRP relationship of (4.11), it is clear that, in the steady
state, domestic and foreign bonds become perfect substitutes, and their
expected rates of return are equal. Similarly, given the FIP relationship of
(4.10) the real rates of return on (both) domestic and foreign bonds are
equal to the (stationary) real rate of return on physical assets in the steady
state. Hence, the asset demand relationships of (4.25) and (4.26) can be
written equally as:

H̃t+1

L̃t
= Fhl

(
Yt

Pt
, Rt , t

)
exp(ηhl,t+1), Fhl1 ≥ 0, Fhl2 ≤ 0, (4.27)

and

F̃t+1

L̃t
= Ffl

(
Yt

Pt
, Rt , t

)
exp(ηfl,t+1), Ffl1 ≤ 0, Ffl2 ≥ 0, (4.28)

where the effects of the short-run deviations from IRP and FIP are now
subsumed into the more general stationary processes ηhl,t+1 and ηfl,t+1 and
where the effects of the expected real rate of return on non-interest bearing
money holdings (i.e. minus the expected inflation rate) are captured by the
domestic nominal interest rate (again making use of (4.10)). Note that this
final effect implies that different rates of inflation, and hence different
levels of nominal interest rates, could change the equilibrium portfolio
composition, depending on the responsiveness of the asset demands to
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the relative returns on the three assets, so that changes in nominal rates
of interest can potentially have lasting real effects.11

4.4.1 Liquidity (real money balances)

The solvency condition in (4.24) combined with the asset demand rela-
tionship of equation (4.27) now yields

H̃t+1

Ỹt
= Ht+1

Yt
= µFh

(
Yt

Pt
, Rt , t

)
exp(ηly,t+1 + ηhl,t+1), (4.29)

where Ht = H̃t/POPt−1 or, in its approximate log-linear form,

(ht − yt ) = ln(µ) + µ1t + µ2rt + µ3yt + ηly,t+1 + ηhl,t+1,

where ht − yt = ln(Ht+1/Pt )− ln(Yt/Pt ) = ln(Ht+1/Yt ) and with unknown
parameters µi, i = 1, 2, 3.12 The equivalent relationship, based on (4.24)
and (4.28), yields the following expression for the ratio of net foreign assets
(measured in domestic currency) to the nominal output level:

F̃t+1

Ỹt
= µFf

(
Yt

Pt
, Rt , t

)
exp(ηfl,t+1 + ηly,t+1), (4.30)

although foreign asset levels are less frequently the focus of attention in
macroeconometric models.13 Equation (4.29) therefore provides the final
long-run relationship to be considered in our model of the UK macro-
economy, along with the other four relationships described in (4.6), (4.13),
(4.14) and (4.15).

4.4.2 Imports and exports

Before moving on to consider how the five steady-state relationships given
in (4.6), (4.13), (4.14), (4.15), and (4.29) can be incorporated into an empir-
ical model, it is worth briefly elaborating on the potential role that might
be played by the demand for foreign assets in the domestic economy.

11 The possibility of the ‘super-non-neutrality’ of monetary policy arising through this route
is discussed in Buiter (1980), for example.

12 For expositional simplicity, we have chosen to denote ln(Ht+1/Pt ) by ht , rather than ht+1.
Recall that Ht+1 relates to the stock of high-powered money at the beginning of period t + 1.

13 The stock-flow relationship of (4.23) can be used in conjunction with (4.17) to motivate
a relationship between net foreign assets, net exports and domestic and foreign interest rates.
Assuming that net exports depend on domestic and foreign output and the terms of trade,
substitution of these relationships into (4.28) provides the justification for a further possible
long-run relationship between Yt , Y∗

t , Rt , R∗
t , and Et P∗

t /Pt .
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Specifically, we can show that the conditions (4.24) and (4.28), when
taken with assumptions on import and export determination, provide a
further equilibrium condition between the real exchange rate, domestic
and foreign outputs and the interest rate. Given the stationarity of the
real exchange rate expressed by (4.15) and given the relationship between
domestic and foreign outputs in (4.6), it is reasonable to believe that
this extra equilibrium relationship will provide little additional explana-
tory power in a model that incorporates the effects of (4.15) and (4.6)
already. Indeed, in the empirical model of the later chapters, we do not
include this additional equilibrium relationship. But it is worth elabo-
rating the relationship here both to clarify the potential role of foreign
asset demand and to note that, in practice, the equilibrating pressures
assigned to deviations from PPP and the ‘output gap’ relationship may in
fact confound these effects and those arising from balance of payments
outcomes.

To derive the extra equilibrium relationship, we note that the stock-flow
relationship (4.23) can be used in conjunction with the definition of the
country’s net foreign asset position in (4.17) to write

F̃t+1 = X̃t − M̃t + F̃t + EtR∗
t B̃∗

t − Rt (B̃t − B̃d
t ) + (Ee

t+1 − Et )̃B∗
t

= X̃t − M̃t + (1 + Rt )F̃t − Et B̃∗
t

(
Rt − R∗

t − �Ee
t+1

Et

)
.

Dividing through by nominal income, and writing the various ratios in
per capita terms, we obtain

Ft+1

Yt
= Xt − Mt

Yt
+ (1 + Rt )

(
Ft

Yt−1

)(
Yt−1

Yt

)
− EtB∗

t

Yt

(
Rt − R∗

t − �Ee
t+1

Et

)
,

where Yt = Ỹt/POPt−1, Xt = X̃t/POPt−1 and Ft = F̃t/POPt−1. Let
gt denote the growth of per capita output and note that Yt/Yt−1 =
(1 + gt )(1 + �Pt/Pt−1). Hence

Ft+1

Yt
= Xt − Mt

Yt
+ (1 + Rt )

(1 + gt )(1 + �Pt/Pt−1)

(
Ft

Yt−1

)

− EtB∗
t

Yt

(
Rt − R∗

t − �Ee
t+1

Et

)
. (4.31)
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Now, under our assumptions, (1+ gt ) and (1 + Rt ) /(1+�Pt/Pt−1) both tend
to stationary processes with constant means, 1 + g and 1 + ρ, respectively,
and the term in Rt − R∗

t − (�Ee
t+1/Et ) itself tends to a stationary process.

Recalling from (4.30) that the value of F̃t+1/Ỹt depends on Yt/Pt , Rt and t ,
the solvency condition and the relationships describing the determinants
of the ratio of foreign to total financial assets provides, through (4.31), a
long-run relationship between (Xt − Mt )/Yt , Yt/Pt and Rt . We represent
this relationship by the following:

Xt − Mt

Yt
= Fb

(
Yt

Pt
, Rt , t

)
exp(ηb,t+1), Fb1 ≤ 0, Fb2 ≥ 0, (4.32)

where ηb,t+1 is a stationary process.
To complete our derivations, we further assume that real per capita

imports (Mt/Pt ) and exports (Xt/Pt ) are determined according to the
following relations:

Xt

Pt
= Fx

(
Y∗

t

P∗
t

,
EtP∗

t

Pt

)
exp(ηxt ), Fx1 > 0, Fx2 > 0, (4.33)

Mt

EtP∗
t

= Fm

(
Yt

Pt
,

EtP∗
t

Pt

)
exp(ηmt ), Fm1 > 0, Fm2 < 0,

where ηxt and ηmt are stationary processes with zero means. In the long
run, real per capita exports are assumed to depend on real activity levels
abroad, Y∗

t /P
∗
t , and on the relative price of goods abroad compared to those

at home, while real per capita imports depend on domestic real per capita
output and relative prices. The stationary processes ηxt and ηmt charac-
terise the short-run departure of exports and imports from their long-term
determinants. Using (4.32) and (4.33), we obtain

Fx

(
Y∗

t

P∗
t

,
EtP∗

t

Pt
,

Po
t

P∗
t

)
exp(ηxt ) − EtP∗

t

Pt
Fm

(
Yt

Pt
,

EtP∗
t

Pt
,

Po
t

P∗
t

)
exp(ηmt )

= Yt

Pt
Fb

(
Yt

Pt
, Rt , t

)
exp(ηb,t+1), (4.34)

or, in its approximate log-linear form,

(et + p∗
t − pt ) = µ4 + µ5t + µ6yt + µ7y∗

t + µ8rt + ηxt + ηmt + ηb,t+1,

with unknown parameters µi, i = 4, . . . , 8. In summary, then, the inter-
play between the stock-flow equilibria, the demand for foreign assets,
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the solvency condition, and simple assumptions on the determinants
of import and export demand generates a further long-run relationship
between the real exchange rate, domestic and foreign outputs and the
interest rate. In principle, this ‘trade balance’ relationship could be inves-
tigated alongside the five steady-state relationships in (4.6), (4.13), (4.14),
(4.15) and (4.29). However, comparison of the log-linear version of (4.34)
with those of the PPP relationship of (4.15) and the output relationship
of (4.6) shows that it is likely to be difficult to distinguish the separate
contributions of the trade balance relationship empirically. For these rea-
sons, we do not pursue the effects of the trade balance relationship in what
follows.

4.5 Econometric formulation of the model

In this section, we adopt the modelling strategy elaborated in Section 3.1.3
to derive an econometric formulation for our model based on the eco-
nomic theory of the long run elaborated above. For empirical purposes,
we employ a log-linear approximation of the five long-run equilibrium
relationships set out in the previous section in (4.15), (4.14), (4.6), (4.29)
and (4.13).14 These constitute the theory-based long-run relationships of
the model and take the following form:

pt − p∗
t − et = b10 + b11t + ξ1,t+1, (4.35)

rt − r∗
t = b20 + ξ2,t+1, (4.36)

yt − y∗
t = b30 + ξ3,t+1, (4.37)

ht − yt = b40 + b41t + β44rt + β46yt + ξ4,t+1, (4.38)

rt − �pt = b50 + ξ5,t+1, (4.39)

recalling that pt = ln(Pt ), p∗
t = ln(P∗

t ), et = ln(Et ), yt = ln(Yt/Pt ), y∗
t =

ln(Y∗
t /P

∗
t ), rt = ln(1+Rt ), r∗

t = ln(1+R∗
t ), ht −yt = ln(Ht+1/Pt )−ln(Yt/Pt ) =

ln(Ht+1/Yt ) and b50 = ln(1 + ρ). We have allowed for intercept and trend
terms (when appropriate) in order to ensure that (long-run) reduced form
disturbances, ξi,t+1, i = 1, 2, ...., 5, have zero means. These disturbances are

14 We assume a trend term enters the log-linear PPP relationship, as mentioned earlier.

81



An Economic Theory of the Long Run

related to the long-run structural disturbances, the η′
is, in the following

manner:15

ξ1,t+1 = ηppp,t − b10 − b11t ,

ξ2,t+1 = ηuip,t+1 + ηe
e,t+1 + η�e,t+1 − b20,

ξ3,t+1 = ηat + (ηnt − η∗
nt ) + (ηkt − η∗

kt ), (4.40)

ξ4,t+1 = ηly,t + ηhl,t ,

ξ5,t+1 = ηfip,t+1 + ηρ,t+1 + η��p,t+1 + ηe
p,t+1 + ηe

ρ,t+1.

The above relationships between the long-run structural disturbances,
ηi’s, and the long-run reduced form disturbances, ξi’s, clearly show the
difficulties involved in identifying the effects of changes in particular struc-
tural disturbances on the dynamic behaviour of the macroeconomy. For
example, ξ5,t+1 is composed of the five structural disturbances, ηfip,t+1,
ηρ,t+1, η��p,t+1, ηe

p,t+1, ηρ,t+1, representing the different factors that could
be responsible for disequilibria between inflation and interest rates. In
general, without further a priori restrictions, the effect of particular struc-
tural disturbances, ηi’s, cannot be identified: firstly, there are many more
long-run structural disturbances than there are long-run reduced form dis-
turbances; and, secondly, there is no reason to believe that the ηi’s are
not themselves contemporaneously correlated. Empirical analysis at best
enables us to identify the effect of changes in the long-run reduced form
disturbances on the evolution of the macroeconomy towards its long-
run equilibrium, although, as we discuss below, even identification of the
effects of specific changes in these long-run reduced form disturbances
will typically require further identifying restrictions based on an explicit
model of short-run decision-making.

The five long-run relations of the model, (4.35)–(4.39), can be written
more compactly as

ξ t = β ′zt−1 − b0 − b1(t − 1), (4.41)

where

zt = (
po

t , et , r∗
t , rt ,�pt , yt , pt − p∗

t , ht − yt , y∗
t
)′ . (4.42)

b0 = (b10, b20, b30,b40, b50)
′, b1 = (b11, 0, 0, b41, 0)′,

ξ t = (ξ1t , ξ2t , ξ3t , ξ4t , ξ5t )
′,

15 In the case of ξ2,t+1, we have taken account of the effect of exchange rate depreciation
on the interest rate differential since, as we shall see below, the hypothesis that η�e,t+1 is
stationary cannot be rejected.
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and

β
′ =

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 −1
0 0 0 −β44 0 −β46 0 1 0
0 0 0 1 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (4.43)

The description of the long-run disturbances in (4.41) is, of course, of pre-
cisely the form of (3.4) introduced in the outline of our modelling strategy
in Section 3.1.3.

For estimation purposes, we choose to partition zt = (po
t , y′

t )
′ where yt =

(et , r∗
t , rt ,�pt , yt , pt − p∗

t , ht − yt , y∗
t )

′. Here, po
t (the logarithm of oil prices) is

considered to be a ‘long-run forcing’ variable for the determination of yt ,
in the sense that changes in po

t have a direct influence on yt , but changes
in po

t are not affected by the presence of ξ t , which measure the extent of
disequilibria in the UK economy. The treatment of oil prices as ‘long-run
forcing’ represents a generalisation of the approach to modelling oil price
effects in some previous applications of cointegrating VAR analyses (e.g.
Johansen and Juselius, 1992, or Pesaran and Shin, 1996), where the change
in the oil price is treated as a strictly exogenous I(0) variable. The approach
taken in the previous literature excludes the possibility that there might
exist cointegrating relationships involving oil prices, while the approach
taken here allows the validity of the hypothesised restriction to be tested
and for the restriction to be imposed if it is not rejected.

We choose to treat foreign output and interest rates as endogenous for
pragmatic reasons. As the discussion of Section 3.4 makes clear, the natural
modelling choice for a small open economy like the UK would be to treat
y∗

t and r∗
t as long-run forcing. However, we shall want to use our model

for forecasting purposes and therefore require a world model with which
to forecast future values of y∗

t and r∗
t . Rather than build a world model, we

have implemented the model by treating these variables as endogenous
(effectively supplementing simple autoregressive models of foreign output
and interest rates with the lagged values of the UK variables as a substitute
for the world model). It is worth noting that the endogenous treatment of
foreign output and interest rates involves loss of efficiency in estimation if
they were in fact long-run forcing or strictly exogenous, but this is clearly
less serious than treating these variables as exogenous if this turned out to
be false, for example.

Under the assumption that oil prices are long-run forcing for yt , the
cointegrating properties of the model can be investigated without having
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to specify the oil price equation.16 However, specification of an oil price
equation is required in the analysis of the short-run dynamics and fore-
casting. For this purpose we shall adopt the following general specification
for the evolution of oil prices:

�po
t = δo +

p−1∑
i=1

δoi�zt−i + uot , (4.44)

where uot represents a serially uncorrelated oil price shock with a zero
mean and a constant variance. The above specification ensures oil prices
are long-run forcing for yt since it allows lagged changes in the endogenous
and exogenous variables of the model to influence current oil prices but
rules out the possibility that the error correction terms, ξ t , have any effects
on oil price changes. These assumptions are weaker than the requirement
of ‘Granger non-causality’ often invoked in the literature.

Assuming that the variables in zt are difference-stationary (as discussed
in Chapter 8), our modelling strategy is now to embody ξ t in an otherwise
unrestricted VAR(p−1) in zt . Under the assumption that oil prices are long-
run forcing, it is efficient (for estimation purposes) to base our analysis on
the following conditional error correction model

�yt = ay − αyξ t +
p−1∑
i=1

�yi�zt−i + ψyo�po
t + uyt , (4.45)

where ay is an 8 × 1 vector of fixed intercepts, αy is an 8 × 5 matrix of
error correction coefficients (also known as the loading coefficient matrix),
{�yi, i = 1, 2, ..., p − 1} are 8 × 9 matrices of short-run coefficients, ψyo is
an 8 × 1 vector representing the impact effects of changes in oil prices on
�yt , and uyt is an 8 × 1 vector of disturbances assumed to be i.i.d.(0,�y),
with �y being a positive definite matrix, and by construction uncorrelated
with uot . Using equation (4.41), we now have

�yt = ay + αyb0 − αy

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�yi�zt−i + ψyo�po
t + uyt ,

(4.46)

where β
′
zt−1 − b1(t − 1) is a 5 × 1 vector of error correction terms. The

above specification embodies the economic theory’s long-run predictions
by construction.

16 See, for example, Pesaran, Shin and Smith (2000).
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Estimation of the parameters of the model, (4.46), can be carried out
using the long-run structural modelling approach described in Pesaran and
Shin (2002) and Pesaran, Shin and Smith (2000). It is based on a modified
and generalised version of Johansen’s (1991, 1995) maximum likelihood
approach to the problem of estimation and hypothesis testing in the con-
text of vector autoregressive error correction models. With this approach,
having selected the order of the underlying VAR model (using model selec-
tion criteria such as the Akaike Information Criterion (AIC) or the Schwarz
Bayesian Criterion (SBC)), we test for the number of cointegrating relations
among the nine variables in zt . When performing this task, and in all the
subsequent empirical analysis, we work in the context of a VAR model
with unrestricted intercepts and restricted trend coefficients.17 In terms of
(4.46), we allow the intercepts to be freely estimated but restrict the trend
coefficients so that αyb1 = �yγ , where �y = αyβ

′
and γ is a 9 × 1 vec-

tor of unknown coefficients. These restrictions ensure that the solution
of the model in levels of zt will not contain quadratic trends. We then
compute Maximum Likelihood (ML) estimates of the model’s parameters
subject to exact and over-identifying restrictions on the long-run coeffi-
cients. Assuming that there is empirical support for the existence of five
long-run relationships, as suggested by theory, exact identification in our
model requires five restrictions on each of the five cointegrating vectors
(each row of β), or a total of 25 restrictions on β. These represent only a
subset of the restrictions suggested by economic theory as characterised
in (4.43), however. Estimation of the model subject to all the (exact- and
over-identifying) restrictions given in (4.43) enables a test of the validity
of the over-identifying restrictions, and hence the long-run implications
of the economic theory, to be carried out.

17 This is referred to as Case IV in Pesaran, Shin and Smith (2000), see Subsection 6.2.1
below.
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5

An economic theory of the short run

The modelling strategy described in the previous chapter has the two-
fold advantage that it is capable of accommodating the relationships that
exist between variables in the long run as suggested by an explicit macro-
economic theory, and that the estimated model reflects parsimoniously
the complex dynamic relationships that exist between variables at shorter
horizons. In this chapter, we consider the problem of identification of con-
temporaneous relationships, and in particular discuss the identification of
the monetary policy shocks and the associated impulse responses.

Our view is that the economic theory of the long run described in the
previous chapter can be held with some degree of confidence (and, as we
shall see, we can judge whether this confidence is justifiable through a
formal statistical test of the over-identifying restrictions suggested by the
theory). We are less confident in the economic theory of the short run
that we shall present. The theory that is described is ‘tentative’ in the
sense described in Section 3.2.3 of Chapter 3, relying to a large extent
on a priori views on the sequencing of decisions and the institutional
detail of the decision-making process. As we noted in that discussion,
there is no consensus on the appropriate form of short-run restrictions
in macroeconometric models, and we recognise the frailty of the the-
ory elaborated here. On the other hand, some identifying restrictions are
essential if we are to investigate specific types of shock (e.g. monetary policy
shocks) and we present a theory which seems the most reasonable to us
and which involves the imposition of the minimum possible identifying
structure.

Before describing the proposed theory of the short run, it is worth
briefly summarising the specification of the macromodel derived in the
previous chapter. Combining the oil price equation (4.44) and the condi-
tional model explaining the remaining eight variables of interest (4.46),
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we obtain the reduced form specification

�zt =
(

�po
t

�yt

)
= a − α

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�i�zt−i + vt , (5.1)

where

zt = (
po

t , et , r∗
t , rt ,�pt , yt , pt − p∗

t , ht − yt , y∗
t
)′ .

and

a =
(

δo

ψyoδo + ay − αyb0

)
, α =

(
0
αy

)
, �i =

(
δoi

ψyoδoi + �yi

)
,

vt =
(

1 0
ψyo I8

)(
uot

uyt

)
=
(

uot

ψyouot + uyt

)
.

Under standard assumptions, all the reduced form coefficients can be
consistently estimated from the ML estimates of the parameters of the
conditional model (4.46), and the OLS regression of the oil price equation
(4.44). In particular, the vector of the reduced form errors vt , and its
covariance matrix, �, can be estimated consistently from the reduced
form parameters. The ‘structural’ VECM associated with the long-run
structural macroeconometric model defined by (4.44) and (4.46) can be
written as:

A �zt = ã − α̃
[
β

′
zt−1−b1(t − 1)

]
+

p−1∑
i=1

�̃i�zt−i + εt , (5.2)

where A represents the 9 × 9 matrix of contemporaneous structural
coefficients, ã = Aa, α̃ = Aα, �̃i = A�i, and εt = Avt are the associated
structural shocks which are serially uncorrelated and have zero means and
the positive definite variance covariance matrix, � = A�A′. So far, the
only restrictions relating to the contemporaneous dependencies in (5.2)
are those imposed on the first row of A through the assumption that oil
prices are long-run forcing.

This is precisely the set-up described in Chapter 3. For exact identifica-
tion of all the structural coefficients in our model, 92 = 81 restrictions
are required to be imposed on A, �, or, more unusually, on �̃ or the �̃i,
i = 1, . . . , p − 1. Alternatively, it might be possible to identify a specific
subset of the structural parameters and/or shocks imposing fewer than
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81 restrictions. The restrictions might be motivated by a fully articulated
DSGE model of the entire economy; or they might be motivated via a more
limited linear–quadratic optimisation model involving adjustment costs;
or they might be motivated by a less formal theory.

In our macroeconometric modelling, we do not address the problem of
the identification of all the structural shocks. This is because such an exer-
cise would require a detailed specification of all the structural relations
and the underlying decisions as well as the mechanisms by which expec-
tations are formed. Rather, we focus on the identification of the effects
of oil and monetary policy shocks only, concentrating on the decisions
made by monetary authorities and agents in the financial sector. These
decisions are discussed with reference to the optimisation problem faced
by the monetary authorities (modelled as an LQ model with adjustment
costs) combined with ‘tentative’ theory on the sequencing of decisions
and the institutional context. The decisions of the monetary authorities
and agents in the financial sector are made taking as given the decision
rules of the private agents as embodied in the structural relations bearing
on output and inflation in the structural VECM, (5.2). Whilst it might be
desirable to consider the identification of other shocks, such as technol-
ogy or demand shocks, this does not seem to be necessary for the analysis
of monetary shocks. As we shall show, the identification of other shocks
in the economy can be dealt with using the generalised impulse response
approach developed in Pesaran and Shin (1998).

5.1 Modelling monetary policy

5.1.1 The monetary authority’s decision problem

For identification of the monetary policy shocks, we first need to formally
articulate the decision problem of the monetary authorities. We assume
that, at the start of each period, the monetary authorities try to influence
the market interest rate, rt , by setting the base rate, rb

t that they have under
their direct control.1 We then impose a structure on the sequencing of deci-
sions, assuming that the difference between the market rate and the base
rate, the term premium, is determined by unanticipated factors such as oil

1 In the case of the UK, it is reasonable to assume that the Bank of England determines
rb
t , the price of liquidity. This is a characteristic of the institutional framework in the UK and

contrasts with the US (as described in Gordon and Leeper (1994), for example).
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price shocks, unexpected changes in foreign interest rates and exchange
rates. This is justified on the grounds that these four variables, i.e. po

t , et , r∗
t ,

and rt − rb
t , are likely to be contemporaneously determined in the market

place on a daily (even intra-daily) basis. The remaining variables, yt , y∗
t ,

�pt , pt − p∗
t , and ht − pt , are much less frequently observed, often with rel-

atively long delays, and their contemporaneous values can be reasonably
excluded from the determination of the term premium, rt − rb

t . However,
as we shall see below, lagged values of these variables can still affect the
term premium.

To help explain the structure imposed by the sequencing of decisions
described above, and to aid the subsequent exposition, it is worth intro-
ducing some notation to explicitly denote the structural parameters of
interest. So, let us distinguish between three sets of variables: the first
set consists of the four variables determined contemporaneously with rb

t ,
namely, po

t , et , r∗
t , and rt ; the second set, denoted wt , contains output and

inflation, which we shall assume are the variables of direct concern to the
monetary authorities; and the third set, denoted qt , consists of the remain-
ing variable in the model. Hence, we have the following partitioning of
the variables:

zt =
(

po
t

yt

)
, yt =

⎛⎜⎜⎜⎜⎜⎝
et

r∗
t
rt

wt

qt

⎞⎟⎟⎟⎟⎟⎠ , wt =
(

yt

�pt

)
, qt =

⎛⎜⎝ pt − p∗
t

ht − yt

y∗
t

⎞⎟⎠ .

The assumption that oil prices are determined as in (4.44) and that et , r∗
t ,

and rt are determined prior to the variables in wt and qt imposes a structure
on the parameter matrices of (5.2) as follows:2

ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δ0

ãe

ãr∗

ãr

ãw

ãq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, α̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
α̃e

α̃r∗

α̃r

α̃w

α̃q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, �̃i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δi

�̃e,i

�̃r∗,i

�̃r,i

�̃w,i

�̃q,i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, εt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

εo,t

εe,t

εr∗,t

εr,t

εw,t

εq,t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

2 In fact, for expositional purposes, we make the further assumption that exchange rates
are determined prior to foreign interest rates in what follows.
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and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−ψ̃e 1 0 0 0 0
−ψ̃r∗ ar∗e 1 0 0 0
−ψ̃r are arr∗ 1 0 0
−ψ̃w Awe Awr∗ Awr Aww Awq

−ψ̃q Aqe Aqr∗ Aqr Aqw Aqq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that A has a lower triangular structure only in the case of the vari-
ables, pot , et , r∗

t and rt that are primarily market determined on a daily
basis. However, A taken as a whole is not triangular. The parameters of
the corresponding reduced form equations given in (5.1) can be similarly
defined, using

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δ0

ae

ar∗

ar

aw

aq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, α =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
αe

αr∗

αr

αw

αq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, �i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δi

�e,i

�r∗,i

�r,i

�w,i

�q,i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, vt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

vo,t

ve,t

vr∗,t

vr,t

vw,t

vq,t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Given the above relationships between the structural and reduced form
parameters, we can return to the monetary authorities’ decision problem.
The sequencing of decisions assumes that the term premium equation has
the following form:

rt − rb
t = ρb,t−1 + arr∗

[
r∗
t − E

(
r∗
t | It−1

)]
+ are

[
et − E

(
et | It−1

)]
+ ψ̃r

[
po

t − E
(
po

t | It−1
)]+ εrt , (5.3)

where It−1 is the information set of the monetary authorities at the end
of t − 1, ρb,t−1 is the predictable component of the term premium, which
could be a general function of one or more elements in the information
set It−1, rb

t is the systematic component of monetary policy, and εrt is
the monetary policy shock.3 Hence, in addition to εrt , the unexpected
component of the term premium is assumed to vary linearly with the

3 In the absence of a fully specified model of the markets which link the monetary author-
ities with other financial markets, we associate monetary policy shocks with innovations to
short-term interest rates. It is worth noting that several researchers, including Sims (1992)
and Bernanke et al. (1997), have argued that, within this context, innovations to short-term
interest rates are preferable to using innovations in monetary aggregates.
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unanticipated changes in oil prices, the exchange rate, and the foreign
interest rate. We shall assume that the monetary policy shocks, εrt , satisfy
the following standard orthogonality condition:

E
(
εrt | It−1

) = 0,

and the associated time-varying expected term premium is given by

E
(
rt − rb

t | It−1

)
= ρb,t−1.

The term premium equation of (5.3) can be written equivalently as

�rt = rb
t − rt−1 + ρb,t−1 + arr∗

[
�r∗

t − E
(
�r∗

t | It−1
)]

+ are
[
�et − E

(
�et | It−1

)]+ ψ̃r
[
�po

t − E
(
�po

t | It−1
)]+ εrt . (5.4)

Under expectations formation mechanisms consistent with the reduced
form VECM (5.1), the expectational variables E

(
�r∗

t | It−1
)
, E
(
�et | It−1

)
,

and E
(
�po

t | It−1
)

can be solved in terms of the error correction terms,
β

′
zt−1 − b1 (t − 1), and �zt−i, i = 1, 2, . . . , p − 1, to yield:

�rt − arr∗�r∗
t − are�et − ψ̃r�po

t

= rb
t − rt−1 + ρb,t−1 + φ∗

r

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

φ∗
zi�zt−i + εrt , (5.5)

where the parameters φ∗
r and φ∗

zi are functions of arr∗ , are, aro and the
coefficients in the rows of (5.1) associated with the equations for �r∗

t , �et

and �po
t . This relates the change in the market rate to the base rate, to

changes in the contemporaneously determined variables r∗
t , et and po

t , and
to past information. We turn now to the determination of the base rate.

5.1.2 The derivation of the base rate

For the derivation of rb
t , we follow the literature on inflation targeting

and assume that it is derived as the solution to the following optimisation
problem:4

min
rb
t

{
E [C(wt , rt ) | It−1]

}
, (5.6)

4 For recent accounts, see Blinder (1998), Bernanke et al. (1999) and Svensson (1999), for
example.
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where C(wt , rt ) is the loss function of the monetary authorities, assumed
to be quadratic so that

C(wt , rt ) = 1
2
(wt − w

†

t )
′
Q(wt − w

†

t ) + 1
2
θ(rt − rt−1)

2, (5.7)

where wt = (yt , �pt )
′ and w

†

t = (y
†

t , π
†

t )
′ are the target variables and their

desired values, respectively. Since the target variables are both assumed to
be I(1) in our model, the desired target values, w

†

t also need to be I(1)
and cointegrated with wt for the optimisation problem to be controllable;
otherwise the solution to the control problem will not be consistent with
the assumed structural model. The 2×2 matrix Q characterises the authori-
ties’ short term trade-off between output growth and a reduction in the rate
of inflation. The final term in (5.7) is intended to capture the institutional
and political costs of changes to the interest rate.

The solution to the above optimisation problem requires the specifica-
tion of a model linking the target variables, wt , to the policy instrument,
rb
t . Within our framework, such a model can be derived as a sub-system

of the general long-run structural model specified in (5.2), with (5.5) as its
structural interest rate equation. Subject to this sub-model, we can derive
the first-order condition for the minimisation of (5.6), which is easily seen
to be given by5

E

[(
∂wt

∂rb
t

)′
Q(wt − w†

t ) + θ

(
∂rt

∂rb
t

)
�rt | It−1

]
= 0. (5.8)

The outcome of this optimisation is a feedback rule (or reaction function)
explaining the determination of rb

t given the information available to the
authorities. The parameters of the feedback rule depend on the preference
parameters and the parameters of the econometric model. A complete
description of the optimisation and the relationship between the para-
meters of the feedback rule is given in Appendix A. Stated simply, though,
the feedback rule is of the following form:

rb
t = rt−1 − ρb,t−1 +ϒ ′ [E(wt | It−1,�rb

t = 0) − w
†

t

]
(5.9)

where ϒ ′ is a function of the parameters of the econometric model and
of the preference parameters of the monetary authorities, Q and θ . Here,

5 The problem of the credibility of the monetary policy, discussed in the literature by Barro
and Gordon (1983), Rogoff (1985) and, more recently, by Svensson (1997), for example, is
resolved in our application by the common knowledge assumption and the information sym-
metry. It is also worth noting that the extension of the decision problem to an intertemporal
setting will complicate the analysis but does not materially alter our main conclusions.
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E(wt |It−1,�rb
t = 0) indicates the value of the target variables that would

occur in time t in the absence of any interest rate adjustment and in the
absence of any structural innovations to the economic system. The expres-
sion E(wt | It−1,�rb

t = 0) is a function of information available to the
monetary authorities and, as demonstrated in Appendix A, (5.9) can be
written in more detail as:

rb
t = rt−1 − ρb,t−1 + φ
 −ϒ ′ (w†

t − wt−1

)
+ φ


r

[
β

′
z t−1− b1(t − 1)

]
+

p−1∑
i = 1

φ

zi�zt−i, (5.10)

where φ
, φ

r , and φ


zi are again functions of the parameters of the
econometric model and of the preference parameters of the monetary
authorities.

INFLATION TARGETING AND THE BASE RATE
REACTION FUNCTION

The term E(wt | It−1,�rb
t = 0) expresses the monetary authorities’ condi-

tional forecast of the target variables in time t assuming that they leave

the base rate unchanged. The term
[
E(wt |It−1,�rb

t = 0) − w
†

t

]
therefore

has a natural interpretation as the gap between the desired level of the tar-
get variables and the authorities’ forecast of the target variables in the
absence of policy intervention. Written in this way, the reaction function
of (5.9) clarifies the link between ‘instrument rules’ and ‘target rules’ in
guiding monetary policy, as discussed recently in Svensson (2001, 2002),
for example.

Svensson defines a ‘target rule’ as a commitment to set a policy instru-
ment so as to achieve specific criteria for target variables. He contrasts
this with an ‘instrument rule’ in which the central bank mechanically
sets its instrument as a simple function of a small subset of the informa-
tion available to the central bank, via a reaction function. He notes that,
while most of the literature discusses central banks’ behaviour in terms of
reaction functions and instrument rules, few central banks have com-
mitted to mechanical instrument rate rules in practice. Rather, inflation
targeting has been adopted as a strategy for implementing monetary pol-
icy by various countries in recent years, meaning that: (i) there is a
numerical inflation target announced (either as a point target or as an
acceptable range); (ii) monetary instruments are set such that the infla-
tion forecasts of the authorities, conditional on the instrument setting, are
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consistent with the target (so that the decision process can be described as
‘inflation-forecast targeting’); and (iii) the authorities provide transparent
and explicit policy reports presenting forecasts and are held accountable
for achieving the target. Svensson argues that inflation targeting is bet-
ter described and prescribed as a commitment to a targeting rule than a
commitment to an instrument rule.

As it is written in (5.10), the base rate reaction function derived above
could clearly form the basis of an instrument rule, linking the authori-
ties’ base interest rate decision to known information on lagged variables
in a complex but mechanical formula. However, the form in (5.9) shows
that, despite the complexity, the reaction function has a relatively straight-
forward form based on the authorities’ view of conditional forecasts of the
target variables expressed relative to their desired levels. Moreover, as is
demonstrated in detail in Appendix A, the reaction function can readily
provide the motivation for a target rule.

To demonstrate this idea in Appendix A, we substitute the base rate
reaction function into the structural relationships explaining the determi-
nation of the target variables in (5.2). This shows that, when the monetary
authorities are following the reaction function derived above, the target
variable outcome can be written as

wt = (I2 −�)E(wt | It−1,�rb
t = 0) + �w†

t + v

ww,t

where� is a 2×2 matrix of fixed parameters and v

ww,t is a composite shock

generated by the structural shocks impacting on the po
t , et , r∗

t and target
variables in time t . Hence, the target variable outcomes are a weighted
average of the expected levels that would be achieved if the base rate is left
unchanged and their desired levels, plus a random component, v


ww,t . The
weights on the expected target variables and the desired target variables,
(I2 −�) and � respectively, depend on the preference parameters and the
parameters of the econometric model. In particular, they reflect the rel-
ative importance of deviations of the target variables from their desired
levels and the costs of changing the base rate in the monetary authorities’
objective function in (5.6). Hence, in the simple case where there is only
one target variable (say inflation), so that A′

wr , A′
ww and Q in (5.2) and (5.7)

are scalars, and equal to awr , 1, and q, respectively, say; then the weight is
simply given by

� = a2
wrq

a2
wrq + θ

.
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As q/θ → ∞, so that the cost of deviations of inflation from its
desired level rises relative to the cost of changing the base rate, we have

a2
wrq

a2
wrq+θ

→ 1 and

wt = w†
t + v


ww,t . (5.11)

Abstracting from the unpredictable structural shocks, the target variable
would track the desired level precisely therefore. Hence, in the case where
the costs of changing the base rate are small,6 a commitment to an instru-
ment rule of the form in (5.9), based on the gap between the inflation
rate expected in the absence of a policy response and the desired infla-
tion rate, is operationally equivalent to a commitment to a target rule in
which policy is undertaken so as to achieve a specific desired inflation
target.7

5.1.3 The structural interest rate equation

The final stage in deriving the structural interest rate equation is made
in two further steps. First, we require a specification for w

†

t . Given
that the desired target values need to be I(1) and cointegrated with
wt , a simple specification for w

†

t that satisfies these requirements is
given by

w
†

t =
(

yt−1 + g
†

y

�pt−1 − g
†

π

)
= wt−1 + g

†
, (5.12)

where g
† = (g

†

y , −g
†

π )
′, g

†

y > 0 is the fixed target level for output growth, and

g
†

π > 0 is the desired reduction in the rate of inflation. This specification
is realistic and provides a reasonable working hypothesis with which to
complete an empirical model. A discussion of alternative specifications
for w

†

t is considered below.

6 Svensson, for example, is sceptical about the importance of these issues; see Section 5.6
of Svensson (2002).

7 This is a desired time-t inflation target, given that it is contemporaneous time-t inflation
that enters into the objective function. We consider the case where future inflation enters into
the objective function below.
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Finally, substitution of (5.9) in (5.5) yields the following structural
interest rate equation

�rt − arr∗�r∗
t − are�et − ψ̃r�po

t

= ϒ ′ [E(wt | It−1,�rb
t = 0)

]
− w

†

t

+ φ∗
r

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

φ∗
z,i�zt−i + εrt , (5.13)

which illustrates clearly the need for wt and w
†

t to be cointegrated.8

Further, using (5.12) and (5.10), we obtain

�rt − arr∗�r∗
t − are�et − ψ̃r�po

t

=
(
φ
 −ϒ ′g†

)
+ (φ


r + φ∗
r )
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

(φ

zi + φ∗

z,i)�zt−i + εrt , (5.14)

where εrt is the monetary policy shock, as discussed above. Note that this
structural equation is consistent with the long-run properties of the general
structural model specified in (5.2). In particular, although changes in the
preference parameters of the monetary authorities affect the magnitude
and the speed with which interest rates respond to economic disequilib-
ria, such changes have no effect on the long-run coefficients, β, that are
determined by general arbitrage conditions. It is also easily shown that,
while changes in the trade-off parameter matrix, Q , affect all the short-
run coefficients of the interest rate equation, changes to the desired target
values, g

†

y and g
†

π , affect only the intercept term, φ
 −ϒ ′g†
.9

8 For example, the interest rate decision would not have been consistent with the assumed
underlying structural model if a fixed inflation rate target were specified; i.e. if it was required
that π

†

t = g
†

π as opposed to our specification where π
†

t = �pt−1 − g
†

π .
9 These properties could form the basis of an empirical test of recent developments in

the conduct of monetary policy in the UK. But such an analysis is beyond the scope of the
present work.
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5.2 Alternative model specifications

The model derived above provides a sufficiently complete description
of the context within which the monetary authorities’ make their deci-
sions to explicitly identify monetary policy shocks. But, as has been
noted already, the identifying structure is based on assumptions on the
sequencing of decisions and on the information sets available to agents
when making decisions which may be contentious. Identification also
relies on an assumed structure for the authorities’ objective function and
assumptions on how desired values for target variables are formed. In this
section, we briefly comment on alternative assumptions that could be
made on these latter two issues and consider the impact these alterna-
tive assumptions would have on the identification of the monetary policy
shocks.

5.2.1 Forecast-inflation targeting

The model above makes use of an objective function in which it is the
current values of the variables in wt that are assumed of importance to
the monetary authorities. In contrast, King (1994) argues that future val-
ues of target variables should also be of interest to monetary authorities.
Certainly in the UK, for example, the Bank of England overtly follows a
targeting rule in which there is a commitment to set policy so that the
inflation rate for about two years ahead is on target. The decision to focus
attention on future values of target variables is reasonable if there is a
significant delay between the implementation of the monetary policy deci-
sion and the time the effects are felt. In this case, the authorities’ objective
function might be written as

min
rb
t

{
E

[ ∞∑
h=0

δhC(wt+h, rt ) | It−1

]}
, (5.15)

where C(wt+h, rt ) might continue to have the quadratic form of (5.7) and
δ is a discount rate. This complicates the authorities’ decision-rule and
focuses attention on forecasts of future target variables. However, the iden-
tification of monetary policy shocks is unaffected by this complexity and
the impulse responses obtained on the basis of the identification scheme
of the previous section remains unchanged here.

To see this, consider the simple case in which the monetary authori-
ties care about just one particular period ahead, t + h say, and face the
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optimisation problem

min
rb
t

{
E [C(wt+h, rt ) | It−1]

}
, (5.16)

with

C(wt+h, rt ) = 1
2
(wt+h − w

†

t+h)
′
Q(wt+h − w

†

t+h) + 1
2
θ(rt − rt−1)

2. (5.17)

Identification of the monetary policy shocks can be achieved following
the steps described in the previous section. Hence, as explained in more
detail in Appendix A, minimisation of (5.16) provides a reaction function
of the form

rb
t = rt−1 − ρb,t−1 +ϒ ′

h

[
E(wt+h | It−1,�rb

t = 0) − w
†

t+h

]
(5.18)

where ϒ ′
h is a function of the parameters of the econometric model and

of the preference parameters of the monetary authorities (and w
†

t+h is
assumed known at time t−1). Assuming that the derived reaction function
is followed, the target variable outcome, wt+h, will be a weighted average of
E(wt+h | It−1,�rb

t = 0) and w
†

t+h plus the effects of structural shocks expe-
rienced between t and t+h. In the case where the costs of adjusting the base
rate are small relative to the costs of deviating from the desired level, wt+h

will track w
†

t+h closely (abstracting from the effects of the unknown struc-
tural innovations that occur between t and t + h) and the commitment to
the instrument rule in (5.18) is equivalent to pursuing a target rule where
policy attempts to achieve a specified forecast-inflation target. Moreover,
having derived the base rate reaction function in (5.18), the structural
interest rate equation is derived exactly as in Section 5.1.3 above. Hence,
the form of the structural model for zt is exactly as in (5.2) and monetary
policy shocks are once more identified as changes in the interest rate not
explained by unanticipated movements in oil prices, exchange rates and
foreign interest rates.

5.2.2 Choice of targets and their desired levels

The form of the monetary authorities’ objective function played a central
role in the short-run economic theory that underlies the identification of
monetary policy shocks in the previous section. There has been a lively
debate in the literature in recent years over the terms that should enter
into the authorities’ objective function and over their desired levels. In this
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section, we briefly comment on this discussion and relate the arguments
to our identification scheme.

The objective function described in the previous section is consistent
with monetary authorities’ statements about their objectives. The main-
tenance of low and stable inflation is an explicitly stated objective for the
independent central banks that now implement monetary policy in many
countries. And many policy-makers are also encouraged to consider the
output consequences of monetary policy.10 However, despite the general
consensus among practitioners, there remains considerable controversy
over certain aspects of the objectives of monetary policy in the academic
community.

Among those who believe that inflation should be stabilised around
a fixed target level, there is long-standing disagreement on whether this
should be at zero or a small positive figure (see King (1999) for a review).
Some argue that non-zero inflation is damaging because of the distortions
to money demand that arise and because of the relative price distortions
that are created in a world with less than instantaneous or asynchronised
price adjustment.11 Others argue that a low but positive inflation rate is
optimal on the basis of the presence of downward nominal rigidities (e.g.
Akerlof et al. (1996)) or on the basis of the dangers of a liquidity trap given
a zero bound to nominal interest rates (e.g. Summers (1991)). Still others
believe that monetary policy should aim at price level targeting rather than
inflation targeting (e.g. Svensson (1999)).

The debate regarding the role of output in monetary authorities’ objec-
tive functions is also unresolved. There is now a broad consensus within
macroeconomics that there is relatively little scope for manipulating real
magnitudes through monetary policy in the long run and attention focuses
on the role of monetary policy in minimising short-run variation of output
around its ‘long-run level’. Hence, desired output levels found in the liter-
ature typically refer to ‘potential output’ and the ‘output gap’ between
actual and potential output. The term is used in the sense introduced
by Okun (1962) and refers to the level of output potentially available
at full employment and given the level of technological knowledge, the
capital stock, natural resources, skill of the labour force and so on. In prac-
tice, this desired level is frequently measured as a trend in actual output

10 In the UK, for example, the Bank of England’s remit is to achieve an annual rate of
consumer price inflation of 2.0% (over an unspecified time horizon) and, insofar as it does
not compromise the targeting of inflation, the Bank is to support the policy of the government
including its objectives for growth and employment.

11 See Feldstein (1998), Bakhshi et al. (1997) and Woodford (2002, 2003), for example.

100



Alternative Model Specifications

data, obtained as a simple exponential trend or through the Hodrick–
Prescott filter. These empirical measures are simple statistical constructs,
however, and have little economic motivation. Indeed, if potential output
is difference-stationary, as the evidence seems to suggest, these measures
are unlikely to be satisfactory. Woodford (2002, 2003) provides a more
detailed discussion of the appropriate measure of desired output based on
an explicit model of private sector behaviour in which welfare can be con-
sidered explicitly. He demonstrates that a socially optimal desired level of
output is the ‘natural level’ of output, defined as the equilibrium level of
output that would obtain in the event of perfectly flexible prices. But again,
an adequate measure of such a concept will require a relatively complete
macroeconomic model to be developed.

In the model of the previous section, we assumed in expression (5.12)
that there are fixed desired growth rates for output and inflation, so that
desired levels of output and inflation in each period are a fixed markup over
last period’s level. The advantage of such a specification is that it ensures
that the desired levels are I(1) and this is necessary to generate I(1) val-
ues for the target variable outcomes. The disadvantage is that this form
for the desired target variables does not correspond to the economic con-
cepts discussed above any better than the standard use of trends. However,
while the form of the variables in (5.12) is the simplest that will ensure
difference-stationarity, it is not the only assumption that will generate I(1)
variables. In particular, an alternative approach to motivating measures of
desired target variables is suggested by the idea that it would be unreason-
able to choose desired targets which are inconsistent with the long-run
relationships outlined by economic theory. Hence, we might make use of
the long-run relationships involving the target variables to suggest sensi-
ble measures of their desired levels which will be I(1) by construction. In
this, a balance is struck between the integration properties of the observed
variables such as real output and inflation and their desired target values.

For example, following this approach in the case of output determi-
nation, we recall that the economic theory of the long run elaborated in
Chapter 4 suggested a long-run relationship between domestic and foreign
output. The relationship was based on a stochastic Solow growth model, a
simple model of technological progress and an assumption that, subject to
transitory impediments to information flows and legal impediments, tech-
nology flows across national boundaries. This view provided the long-run
‘output gap’ relationship in (4.37) that was embedded within our macroe-
conometric model, i.e. yt = y∗

t + b30 + ξ3,t+1, with stationary zero-mean
long-run reduced form disturbance ξ3t . Given this theory of the long run,
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and the acknowledgement that domestic and foreign outputs are being
driven by an underlying (and unobserved) common measure of techno-
logical progress, a reasonable measure of potential output might be given
by the value of foreign output at time t expected when policy is set. This
also provides a natural alternative measure of desired UK output; i.e.

y
†

t = E(y∗
t |It−1).

This alternative measure of target output has the required property that it
is I(1). Moreover, an expression for E(y∗

t |It−1) can be obtained, in terms
of β

′
zt−1and �zt−i, i = 1, . . . , p − 1, from the reduced form expression

y∗
t in (5.1). Inclusion of this expression in (5.13) would provide a struc-

tural interest rate equation of precisely the same form as in (5.14). The
coefficients of the associated reduced form model would have a different
interpretation, but the identified monetary policy shocks obtained on the basis
of the estimated reduced form model would be the same and any impulse response
analysis undertaken would be unchanged.

In a similar vein, the description of the Fisher equation of Chapter 4
motivated a long-run relationship between nominal interest rates and
inflation that might be used to motivate an alternative measure of the
desired inflation rate. Specifically, the long-run theory provided a station-
ary real interest rate equation in (4.39) of the form rt −�pt = b50 + ξ5,t+1,
with stationary zero-mean long-run reduced form disturbance ξ5t . Simply
rewriting the long-run relationship and abstracting from the long-run dis-
turbances, we might consider �p

†

t = E[rt − b50 |It−1], so that the desired
interest rate is that which would ensure the real interest rate is at its long-
run level for any expected value of rt . Further, given that the nominal
interest rate is, via the base rate, the instrument under the control of the
monetary authorities, and given that interest rate movements are intrin-
sically costly in the authorities’ cost function in (5.7), the desired level
might reasonably be defined under the assumption of no change in the
base rate,12 so that we might amend the above to give

�p
†

t = E[rt − b50 |It−1,�rb
t = 0]

= rt−1 − b50.

12 Even if the cost of adjusting the instrument rate is considered close to zero, the authorities
might consider the desired level of inflation to be such that, if the economy is in equilibrium,
no instrument rate adjustment is required. The definition of desired inflation would build in
the assumption that �rb

t = 0 in this case.
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Again, this alternative measure of the target inflation rate has the required
property that it is I(1).13 And, once more, inclusion of this expression in
(5.13) would provide a structural interest rate equation of precisely the
same form as in (5.14), the identified monetary policy shocks would be
the same, and any impulse response analysis undertaken on the basis of
the model would be unchanged.

13 Note that the Taylor (1993) rule is typically written as

rt = (1 − λ)
[
ρ + �pt + γ1(�pt − �p

†

t ) + γ2(yt − y
†

t )
]

+ λrt−1,

with ρ being the average real interest rate. Now, when �pt and yt are at their desired levels in
this expression, then

rt − rt−1 = (1 − λ)
[
ρ + �p

†

t − rt−1

]
and we again have �p

†

t = rt−1 − ρ when �rt = 0.
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6

Econometric methods: A review

In this chapter, we provide an overview of the econometric methods
used in long-run structural macroeconometric modelling. The aim is to
place in context the methods employed, to describe the steps taken in
the estimation and development of the model, to help explain the various
econometric tools used in interpreting the empirical results, and to explore
some of the ways in which a long-run structural macroeconometric model
can be used.

The long-run structural VARX modelling approach adopted in our work
is described in Pesaran and Shin (2002) and Pesaran, Shin and Smith
(2000), jointly denoted PSS, and is based on a modified and generalised
version of Johansen’s (1988, 1991, 1995) maximum likelihood approach
to the problem of estimation and hypothesis testing in the context of
augmented vector autoregressive error correction models. Of course, the
analysis of economic time series containing unit roots has a long his-
tory, traceable to Yule’s seminal (1926) paper on the potential pitfalls
of interpreting regressions based on such data.1 Granger and Newbold
(1974) revived the issue when they showed that spurious regressions could
result from the regression of one independent random walk on another.2

The theoretical rationale behind the Granger–Newbold spurious regression
result was set out in Phillips (1986) who showed that the R2 of the regres-
sions involving I(1) variables tend to one and the t-ratios grow without
bound as the sample size increases, even if the underlying I(1) variables

1 Excellent surveys of the literature on cointegration are provided in Banerjee et al. (1993),
Watson (1994), Hamilton (1994), and in the papers in the Special Issue of the Journal of Economic
Surveys edited by Oxley and McAleer (1998). The material of this chapter draws on Pesaran
and Smith (1998) in that Special Issue.

2 The problem of spurious regression in the case of stationary but highly serially corre-
lated regressors was demonstrated earlier by Champernowne (1960), also using Monte Carlo
techniques.
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are statistically independent. The possibility of spurious regression and the
growing availability of tests for unit roots, e.g. Dickey and Fuller (1979),
led to a proliferation of testing for the order of integration of economic
time series in the 1980s. The classic study is Nelson and Plosser (1982)
who raised the possibility that the null hypothesis of a unit root could
not be rejected for most US economic time series. At the same time,
Granger (1981, 1986) and Engle and Granger (1987) were developing
the analysis of cointegrated systems, explaining the links with the (rela-
tively well-established) error correction models used for example in Sargan
(1964) and subsequently popularised through the work of Davidson et al.
(1978). Johansen’s maximum likelihood approach popularised the use of
cointegration analysis, allowing for symmetric treatment of all the vari-
ables in the cointegrated system and for an analysis of the number of
cointegrating relations. Our own approach, elaborated in PSS, builds on
this to allow economic theory to motivate the exact and over-identifying
restrictions studied in the cointegration analysis in place of the type of
statistical identification used by Johansen. PSS also develop the econo-
metric analysis of vector error correction models with weakly exogenous
I(1) variables.

In what follows, we provide a brief statement of the econometric issues
involved in the modelling approach advanced in PSS. We start by describ-
ing a general structural VARX model, allowing for the possibility of
drawing a distinction between endogenous and exogenous variables. We
use this general model to place in context the identification issues raised
in Chapter 3 and to introduce the ideas behind impulse response analysis.
We then turn our attention to cointegrating VARX models, contrasting the
PSS approach to the Johansen approach, commenting on the small sample
properties of some of the test statistics and broadening the discussion of
the impulse response analysis to a more general analysis of system dynam-
ics in the cointegrated VARX context. We end the chapter with comments
on the small sample properties of some of the test statistics discussed in
the chapter and on the distributional properties of the impulse response
function. These statistical properties can be readily investigated through
simulation methods and we explain how simulation methods can be used
in this regard. This sets the scene for the use of structural VARX models in
forecasting discussed in Chapter 7. Throughout the chapter, our descrip-
tion of the econometric techniques is informed by how they are used in
practice and we relate the discussion to the choices that an applied econo-
metrician has to make in the practical application of cointegrating VARX
techniques.
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6.1 Augmented VAR or VARX models

6.1.1 The structural VARX model

The general structural VARX model for an my × 1 vector of endogenous
variables yt , is given by:3

Ayt = A1yt−1 + · · · + Apyt−p + B0xt + B1xt−1 + · · · + Bpxt−p + Ddt + εt ,
(6.1)

for t = 1, 2, . . . , T , where dt is a q × 1 vector of deterministic variables (e.g.
intercept, trend and seasonal variables), xt is an mx×1 vector of exogenous
variables, εt = (ε1t , ε2t , . . . , εmyt )

′ is an my ×1 vector of serially uncorrelated
errors distributed independently of xt with a zero mean and a constant pos-
itive definite variance–covariance matrix, � = (ωij), where ωij is the (i, j)th
element of �. For given values of dt and xt , the above dynamic system is
stable if all the roots of the determinantal equation∣∣∣A − A1λ − A2λ

2 − · · · − Apλ
p
∣∣∣ = 0, (6.2)

lie strictly outside the unit circle. This stability condition ensures the
existence of long-run relationships between yt and xt , which will be
cointegrating when one or more elements of xt are integrated, namely
contain unit roots. The assumption, however, rules out the possibility that
the endogenous variables, yt , will themselves be cointegrating when the
model contains no exogenous variables.

The above VARX model is structural in the sense that it explicitly allows
for instantaneous interactions between the endogenous variables through
the contemporaneous coefficient matrix, A. It can also be written as

A(L)yt = B(L)xt + Ddt + εt , (6.3)

where L is the lag operator such that Lyt= yt−1, and

A(L) = A − A1L − · · · − ApLp; B(L) = B0 + B1L + · · · + BpLp.

Of particular interest are the system long-run effects of the exogenous
variables which are given by:

A(1)−1B(1) =
(

A−
p∑

i=1
Ai

)−1 p∑
i=0

Bi.

3 In general, different orders can be assumed for the distributed lag functions associated with
the endogenous and exogenous variables. Alternatively, p can be viewed as the maximum lag
order of the distributed lag functions on yt and xt .
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Notice that, since all the roots of (6.2) fall outside the unit circle by
assumption, the inverse of A(1), which we denote by A(1)−1, exists.

INITIAL MODELLING CHOICES

The decision to work with a model of the type described above presents the
applied econometrician with a number of important choices, namely:

1. The number and list of the endogenous variables to be included,
(my , yt ).

2. The number and list of the exogenous variables (if any) to be included,
(mx, xt ).

3. The nature of the deterministic variables (intercepts, trends, season-
als) and whether the intercepts and/or the trend coefficients need to
be restricted.

4. The lag orders of the VARX (the lag order of the yt and xt components
of the VARX need not be the same).

5. The order of integration of the variables.

These choices change the maximised value of the log-likelihood (MLL)
so that, in principle, they could be made on the basis of either hypothe-
sis testing exercises or by means of model selection criteria such as the
Akaike Information Criterion (AIC), or the Schwarz Bayesian Criterion
(SBC). However, different significance levels, different forms of the tests
and different model selection criteria invariably can lead to different model
specifications. In many cases, little is known about the small sample prop-
erties of these procedures and what is known is often not reassuring. Little
is also known about the properties of the tests or model selection criteria
when the range of models considered does not include the data generation
process. These choices are often closely related and the outcomes are sen-
sitive to initial choices. The combination of these choices gives us a very
large space of possible models and there is no reason to expect a series of
sequential choices (e.g. fix my and mx, then choose p conditional on my and
mx, etc.) to adequately explore the possible model space. Joint tests may
lead to different inferences from a sequence of individual tests. Sequential
procedures are likely to suffer from pre-test bias, while general to specific
searches face the difficulty that the unrestricted models are profligate with
parameters.

While data-dependent decision procedures are extremely important,
they have to be supplemented with other considerations given the com-
plexity of most applied modelling problems. In particular, choices will be
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informed by the purpose of the exercise and by prior information from
economic theory; theory being interpreted widely. In principle, this com-
bination could be done formally by embodying the purpose of the exercise
in an explicit loss function and the theory information in a prior probabil-
ity distribution for the parameters, and then applying Bayesian techniques.
In practice, the difficulty of formalising the loss function and prior prob-
ability distributions makes a formal use of these other considerations
attractive only for relatively simple problems. Often, the applied econo-
metrician will make use of a range of informal procedures for integrating
economic and statistical information. For example, statistically insignif-
icant variables may be retained when they are economically important,
and statistically significant variables may be deleted when they are likely
to be economically unimportant, since misleading statistical significance
can arise for many reasons. For example, chance correlations with omitted
variables, like cold winters or policy announcements, can make variables
significant. It is a matter of judgement whether these variables or lags are
regarded as economically important.

Given the size of the potential model space, defined by the choices dis-
cussed above, it is important to investigate a range of specifications and
allow for model uncertainty in forecasting and policy analysis. At present
full exploration of the model space is likely to be highly data-intensive and
computationally burdensome, if not infeasible. Even much simpler prob-
lems, like determining the lag order in a single-equation autoregressive
distributed lag model, as discussed in Pesaran and Shin (1999), require
many hundred regressions. As full exploration is not feasible, organised
sensitivity analysis plays an important role. This sensitivity analysis should
investigate both the statistical significance and the economic importance
of the restrictions.

6.1.2 The reduced form VARX model

The reduced form of the structural model (6.1), which expresses the
endogenous variables in terms of the predetermined and exogenous
variables, is given by

yt = �1yt−1 + · · · +�pyt−p +�0xt +�1xt−1 + · · · +�pxt−p +ϒdt + ut ,
(6.4)

where �i = A−1Ai, � i = A−1Bi, ϒ = A−1D, ut = A−1εt is i.i.d. (0,�)
with � = A−1�A

′−1 = (σij). The classical identification problem is how to
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recover the structural form parameters(
A, Ai+1, Bi, i = 0, 1, . . . , p; D and �

)
,

from the reduced form parameters,(
�i,� i, i = 0, 1, . . . , p,ϒ, and �

)
.

This is the identification issue raised in the discussion of Section 3.1, and
Section 3.1.2 in particular. The resolution of this identification problem
formed the basis of the Cowles Commission approach to structural mod-
elling in econometrics. Exact identification of the structural parameters
requires m2

y a priori restrictions, of which my restrictions would be provided
by normalisation conditions. The restrictions typically involve setting cer-
tain elements of the structural coefficient matrices to zero. These were
the a priori restrictions criticised by Sims (1980), particularly when such
identifying restrictions were obtained by restricting the short-run dynam-
ics. Most of the traditional macromodels were heavily over-identified and
while, in principle, these over-identifying restrictions could be tested, in
practice the number of exogenous and predetermined variables was so
large that it was impossible to estimate the reduced form. There are a
variety of other ways of imposing identifying restrictions. For instance,
if after a suitable ordering, it is assumed that A is triangular and � diag-
onal (though there is no general theoretical reason to expect it to be so),
the structural system becomes a recursive causal chain, each equation of
which can be consistently estimated by OLS. The assumptions that A is
triangular and � is diagonal each provide my(my − 1)/2 + my(my − 1)/2
restrictions respectively, which together with the my normalisation restric-
tions just identify the system. As we shall see below these assumptions are
also equivalent to the use of the Choleski decomposition of � originally
advocated by Sims for identification of impulse responses.

6.1.3 Impulse response analysis

One of the main features of the traditional macromodels was their dynamic
multipliers, which measured the effect of a shock to an exogenous variable,
e.g. a policy change, or a shock to one of the structural errors, εt , on the
(expected) future values of the endogenous variables. Here, we shall briefly
review how one can measure the dynamic effects of shocks or impulse
response functions.

Under the stability assumption (namely that the roots of (6.2) lie strictly
outside the unit circle), A(L) is invertible and the time profile of the
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effect of a shock can be calculated from the ‘final form’ of the structural
model:

yt = A (L)−1 B (L)xt + A (L)−1 Ddt + A (L)−1 εt . (6.5)

This expresses each endogenous variable in terms of an infinite distributed
lag on the exogenous variables and an infinite moving average process
on the structural errors. Notice that the dynamic multipliers, the effects
of a shock to xt , can be derived from the reduced form coefficients,
but to measure the dynamic effect of a shock to the structural errors
we have to identify the structural coefficients. The equivalent final form
representation of the reduced form model is:

yt = � (L)−1� (L)xt +� (L)−1ϒdt +� (L)−1 ut , (6.6)

where4

�(L) = Imy −�1L − · · · −�pLp, �(L) = �0 +�1L + · · · +�pLp,

and Imy is an identity matrix of order my . Since �(L) is invertible, we have
the following moving-average representation of the structural errors:

�(L)−1ut =
∞∑

i=0
�iut−i =

∞∑
i=0
�iA

−1εt−i, (6.7)

where the �i’s can be calculated from the following recursive relations:

�i = �1�i−1 +�2�i−2 + · · · +�p�i−p, for i = 0, 1, 2, . . . , (6.8)

where �i = 0, for i < 0 and �0 = Imy .
Although this infinite moving average representation exists only when

the model is stable, it turns out that similar results can be obtained even
in the unstable case where one or more roots of (6.2) are on the unit circle.
Irrespective of whether the model is stationary or contains unit roots, one
can derive impulse response functions for the responses of the endoge-
nous variables to a ‘unit’ displacement in the particular elements of either
the exogenous variables, xt , or the errors (ut or εt ). The former represents
the time profile of the response of the system to changes in the observed
forcing variables of the system, while the latter examines the responses of

4 Since A is non-singular and the roots of
∣∣A − A1λ − A2λ

2 − · · · − Apλ
p
∣∣ = 0 are assumed to

fall outside the unit circle, it follows that the roots of
∣∣∣Imy −�1λ −�2λ

2 − · · · −�pλ
p
∣∣∣ = 0 will

also fall outside the unit circle.
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the system to changes in the unobserved forcing variables. The impulse
response functions for the errors can be defined either with respect to the
‘structural’ errors, εt , or with respect to the reduced form errors, ut . All
these impulse responses can be obtained using the generalised impulse
response approach advanced in Koop et al. (1996) for non-linear mod-
els and discussed in more detail for linear models in Pesaran and Shin
(1998). The generalised impulse response function GIRF measures the
change to the n period ahead forecast of each of the variables that would
be caused by a shock to the exogenous variable, structural or reduced form
disturbance.

GENERALISED IMPULSE RESPONSE FUNCTIONS

To formally define the generalised impulse response functions, denote
the information set containing current and all lagged values of yt and
xt by It = (

yt , yt−1, . . . ; xt , xt−1, . . .
)
. Consider a shock to the ith struc-

tural error, εit , and let g (n, z : εi) be the generalised impulse responses of
zt+n = (

y′
t+n, x′

t+n

)′ to a unit change in εit , measured by one standard devi-
ation, namely

√
ωii. At horizon n the GIRF is defined by the point forecast

of zt+n conditional on the information It−1 and the one standard error
shock of the ith structural error, εit , relative to the baseline conditional
forecasts. Namely,

g (n, z : εi) = E(zt+n | εit = √
ωii, It−1) − E(zt+n | It−1).

Clearly, since the xt are assumed to be strictly exogenous, the effects of
shocking εit on xt+h will be zero, i.e. g (n, x : εi) = 0 for all n and i.5 Since
the εit are serially uncorrelated then their impulse response functions are
non-zero only at horizon zero when g (n, ε : εi) = E(εt | εit = √

ωii) for
n = 0, but for all other horizons n > 0 we have g (n, ε : εi) = 0.

If the structural errors are correlated, a shock to one error will be asso-
ciated with changes in the other errors. As shown by Koop et al. (1996),
in the Gaussian case where εt � i.i.d.N(0,�), (εt , εit ) are also normally
distributed(

εt

εit

)
∼ i.i.d.N

[(
0
0

)
,

(
� Cov(εt , εit )

Cov(εit , εt ) V(εit )

)]
,

5 This would not of course be the case if xt was only weakly exogenous.
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then noting that V(εit ) = ωii

E(εt |εit = √
ωii) = E(εt ) + Cov(εt , εit )

V(εit )
(
√
ωii − 0)

= 1√
ωii

Cov(εt , εit )

= 1√
ωii

⎛⎜⎜⎜⎜⎝
ω1i

ω2i
...

ωmyi

⎞⎟⎟⎟⎟⎠ . (6.9)

which can be written more compactly as

E(εt |εit = √
ωii) =

(
1√
ωii

)
�ei,

where ei is an my × 1 selection vector of zeros except for its ith element
which is set to unity.6 This gives the predicted shocks in each struc-
tural error given a shock to εit , based on the typical correlation observed
historically between the structural errors. In the special case where the
structural errors are orthogonal, the shock only changes the ith error and
we have

E
(
εt | εit = √

ωii
) = √

ωiiei.

Application of the generalised impulse response analysis to the VARX
specification, (6.1), now yields

Ag
(
n, y : εi

) = A1g
(
n − 1, y : εi

)+ · · · + Apg
(
n − p, y : εi

)+ g (n, ε : εi) ,

for n = 0, 1, 2, . . . , with the initial values g
(
n, y : εi

) = 0 for n < 0 and as
we saw above the last term is non-zero only for n = 0. The identification of
g
(
n, y : εi

)
requires the identification of the structural coefficients A and

Ai, i = 1, . . . , p, and the covariance matrix �. It is also possible to iden-
tify g

(
n, y : εi

)
by a mixture of identification restrictions on A and �. To

see this we premultiply both sides of the above relationship by A−1 and
obtain

g
(
n, y : εi

) = �1g
(
n − 1, y : εi

)+ · · · +�pg
(
n − p, y : εi

)
+ A−1g (n, ε : εi) , (6.10)

6 This result also holds in non-Gaussian but linear settings where the conditional expecta-
tions E

(
εt | εit = √

ωii
)

can be assumed to be linear.
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where as before �i = A−1Ai i = 1, 2, . . . , p, and the last term is non-zero
only for n = 0. The �i can be estimated from the reduced form, thus
the indeterminacy is confined to the contemporaneous interaction of the
structural errors through the expression A−1g (0, ε : εi) , and is resolved up
to a scalar multiplication if A−1� can be estimated consistently. However,
to identify (or consistently estimate) A−1� involves the imposition of m2

y
a priori restrictions on the elements of A and/or �. Evidently, the identi-
fication of the structural impulse responses does not require A and � to
be separately identified, and it is possible to trade off restrictions across
A and �. But in cases where there are no a priori grounds for restrict-
ing �, since A−1�A

′−1= , then A−1� = �A
′
, and the identification of

the impulse responses with respect to structural errors requires complete
knowledge of the contemporaneous effects, A.

ORTHOGONALISED IMPULSE RESPONSES

The standard approach to deriving impulse response functions is to start
from the moving average representations of the final form, (6.6). The
reduced form disturbances are correlated and the covariance matrix of ut ,
which can be consistently estimated, is given by � = A−1�A

′−1. Ortho-
gonalised impulse response function advanced by Sims (1980) makes use
of the Choleski decomposition of � = PP′, where P is a lower triangular
matrix. This can be used to create a new sequence of errors, u∗

t = P−1ut ,
t = 1, 2, . . . , T , which are orthogonal to each other contemporaneously
with unit standard errors, namely E

(
u∗

t u∗′
t

) = Imy . Thus the effect of a

shock to one of these orthogonalised errors, u∗
t =

(
u∗

1t , u∗
2t , . . . , u∗

myt

)′
, say

u∗
1t , on the remaining shocks is unambiguous, because it is not correlated

with the other orthogonalised errors. The impulse response analysis is also
often supplemented by the forecast error variance decomposition where
the error variance of forecasting the ith variable n periods ahead is decom-
posed into the components accounted for by innovations in different
variables in the VAR.

There are two problems with orthogonalised impulse response func-
tions and the forecast error variance decomposition. First, the impulse
responses obtained refer to the effects on the endogenous variables, yit ,
of a unit displacement (measured by one standard error) in the ortho-
gonalised error, u∗

jt , and not in the structural or even the reduced form
errors, εjt and ujt . Second, notice that the choice of P is unique only for
a particular ordering of the variables in the VAR. Unless � is diagonal,
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or close to diagonal, different orderings of the variables will give differ-
ent estimates of the impulse response functions. In fact, the particular
ordering of the variables in the VAR and the Choleski decomposition pro-
cedure used constitute an implicit identification assumption, equivalent to
the recursive identifying restrictions discussed in Section 3.2.3. Orthogo-
nalised impulse response functions, therefore, actually employ traditional
identification assumptions, typically motivated by what we termed ‘tenta-
tive’ theory on contemporaneous relations. Other identification schemes
based on similarly tentative theory were discussed in Section 3.2.3 in the
context of the Structural VAR models. The interpretation of the impulse
responses obtained on the basis of these is only as robust as the under-
lying identifying assumptions and, as the discussion of Section 3.2.3
showed, our view is that economic theory only rarely provides justification
for robust short-run identifying restrictions (although it is more capa-
ble of providing justification for identifying restrictions on the long-run
coefficients).

When plausible a priori information to identify the effects of structural
shocks is not available, it would still be of some interest to examine the
effect of shocks to the reduced form errors, ut = A−1εt . The generalised
impulse response function provides a natural way to do this since it mea-
sures the effect on the endogenous variables of a typical shock to the
system, based on the estimated covariances of the reduced form shocks
computed using the historical data. Recall from (6.9) that the generalised
impulse responses of yt+n with respect to uit (the ith element of ut ) are
given by

g
(
n, y : ui

) = �1g
(
n − 1, y : ui

)+ · · · +�pg
(
n − p, y : ui

)
+ g (n, u : ui) , (6.11)

where the last term is non-zero only for n = 0, when it is

g(n, u : ui) =
(

1√
σii

)
�ei for n = 0. (6.12)

These impulse responses can be uniquely estimated from the parameters
of the reduced form and unlike the orthogonalised impulse responses are
invariant to the ordering of the variables in the VAR. One can also construct
a comparable forecast error variance decomposition.

In the case of stationary variables the generalised impulse response func-
tion, as defined by (6.10) or (6.11), will tend to zero as n tends to infinity.
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In the case of I(1) variables it will tend to a non-zero constant as n goes to
infinity. When the variables are I(1) and cointegrated, there will be linear
combinations of the generalised impulse response function that tend to
zero and we discuss this further below.7

Note that an alternative methodology used to investigate the dynamic
properties of large-scale systems, often employed by macromodellers, is
to consider the effect of a displacement in the intercept of one of the
model’s equations. This is equivalent to shocking the innovation in the
equation and implicitly assumes that changes in one equation’s intercept
has no effect on the intercepts of the other equations in the system. Of
course, this is one possible counter-factual exercise that might be of inter-
est. But in interrelated systems, it is not likely that one could change the
parameters of one part of the system without initiating changes elsewhere.
The interpretation of dynamics based on innovations of the type captured
by generalised impulse responses is, in our opinion, a much more plau-
sible type of counter-factual than the ad hoc once-and-for-all changes in
parameter values considered by many macromodellers.

PERSISTENCE PROFILES

The above impulse responses consider the effect of a shock to a particular
exogenous variable, xit , or an error term, εit or uit . An alternative approach,
developed in Lee and Pesaran (1993), would be to consider the effect of
system-wide shocks at time t on the evolution of the system at time t + n.
Under this approach, the generalised impulse responses are derived with
respect to the whole vector of shocks, εt or ut , and viewed as random vari-
ables. The probability distribution function of these random variables is
then examined as a function of n. In the case where εt (or ut ) are Gaussian,
the generalised impulse responses with respect to the system-wide shocks
are also Gaussian with a zero mean and the covariance matrix�n��

′
n (see

(6.8)). The diagonal elements of �n��
′
n (appropriately scaled) are called

the persistence profiles by Lee and Pesaran (1993). It is easily seen that
the same persistence profiles are obtained for the structural as well as the
reduced form errors. For a stationary VAR, the persistence profiles tend to
zero as n → ∞. For VARs with unit roots, the persistence profiles tend to
the spectral density function (apart from a scalar constant) of �yt at zero
frequency.

7 The relationships between the generalised impulse response functions and the orthogo-
nalised impulse responses are discussed in Pesaran and Shin (1998).
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6.2 Cointegrating VAR models

Much of the econometric analysis of cointegration has been done in the
context of a VAR(p), where all the variables are regarded as endogenous.
Initially, we follow the literature and assume that the VAR model only
contains endogenous I(1) variables and linear deterministic trends. Setting
Bi = 0 in (6.1), we have:

yt = �1yt−1 + · · · +�pyt−p + a0 + a1t + ut , (6.13)

where a0 and a1 are m × 1 vectors of unknown coefficients.8 To cover the
unit root case we allow for the roots of∣∣∣Im −�1λ −�2λ

2 − · · · −�pλ
p
∣∣∣ = 0, (6.14)

to fall on and/or outside the unit circle, but rule out the possibility that
one or more elements of yt be I(2).9 We shall return to the case where
the model also contains exogenous I(1) variables below. The model can be
re-parameterised as a Vector Error Correction Model (VECM)

�yt = −�yt−1+
p−1∑
i=1
�i�yt−i + a0 + a1t + ut , (6.15)

where

� = Im−
p∑

i=1
�i, �i = −

p∑
j=i+1

�j, i = 1, . . . , p − 1. (6.16)

If the elements of yt were I(0), � will be a full rank m × m matrix. If the
elements of yt are I(1) and not cointegrated then it must be that � = 0
and a VAR model in first differences will be appropriate. If the elements
of yt are I(1) and cointegrated with rank(�) = r, then �=αβ ′, where
α and β are m × r full column rank matrices, and there will be r < m linear
combinations of yt , the cointegrating relations, ξ t = β ′yt , which are I(0).
The variables ξ t are often interpreted as the deviations from equilibrium,
an interpretation that is at the heart of the long-run structural modelling
strategy elaborated in Section 3.1.3.

Under cointegration, (6.15) can be written as:

�yt = −αβ ′yt−1+
p−1∑
i=1

�i�yt−i + a0 + a1t + ut , (6.17)

8 To simplify the notations in this section we denote the dimension of yt by my = m.
9 A review of the econometric analysis of I(2) variables is provided in Haldrup (1998).
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where α is the matrix of adjustment or feedback coefficients, which
measure how strongly the deviations from equilibrium, the r station-
ary variables β ′yt−1, feedback onto the system. If there are 0 < r < m
cointegrating vectors, then some of the elements of αmust be non-zero, i.e.
there must be some Granger causality involving the levels of the variables
in the system to keep the elements of yt from diverging.

The unrestricted estimate of � can be obtained using (6.15). In the
restricted model, (6.17), which accommodates r < m cointegrating vec-
tors, we need to estimate the two m × r coefficient matrices, α and β. This
rank reduction therefore imposes m2 − 2mr restrictions to be imposed on
�. Further, as noted in Section 3.1.1, α and β are not separately identified
without some additional restrictions since, for any non-singular matrix
Q , we have � = αQQ−1β ′, and the new coefficient matrices α∗ = αQ
and β∗′ = Q−1β ′ would be observationally equivalent to using α and β ′

respectively. Put differently, any linear combination of the I(0) variables,
ξ t = β ′yt , are also I(0) variables. To avoid this indeterminacy, we require
r independent restrictions on each of the r cointegrating relations, a total
of r2 further restrictions (r of which are provided by normalisation condi-
tions). Thus in the restricted model, we impose (m2 −2mr)+ r2 = (m− r)2,
namely m2−2mr restrictions imposed by the rank restrictions on �, and
r2 exact identifying restrictions.

6.2.1 Treatment of the deterministic components

If there are unrestricted linear trends in the unrestricted VAR, in general
there will be quadratic trends in the level of the variables when the model
contains unit roots. To avoid quadratic trends, the linear trend coeffi-
cients must be restricted. As shown, for example, in Pesaran, Shin and
Smith (2000), using (6.13), �yt can be represented by an infinite moving
average10

�yt = C(L) (a0 + a1t + ut ) , (6.18)

where

C(L) =
∞∑

j=0
CjL

j = C(1) + (1 − L)C∗(L), (6.19)

10 This ‘first-difference MA representation’ was originally given in Engle and Granger (1987)
for VAR models without linear trends.
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C∗(L) =
∞∑

j=0
C∗

j Lj, C∗
j = C∗

j−1 + Cj, or C∗
j = −

∞∑
i=j+1

Ci. (6.20)

Consider now the relationship between Ci and �1,�2, . . . ,�p , the
parameter matrices of the underlying VAR specification in (6.13), and note
that since C(L) is invertible, we must also have11

C−1(L)�yt = �(L)yt ,

where as before

�(L) = Im −�1L −�2L2 − · · · −�pLp.

Hence, we also have [
C−1(L)(1 − L) −�(L)

]
yt = 0,

or

(1 − L) Im = �(L)C(L) = C(L)�(L).

Therefore

Ci = �1Ci−1 +�2Ci−2 + · · · +�pCi−p, for i = 2, 3, . . . , (6.21)

where C0 = Im, C1 = �1 − Im, and Ci = 0, for i < 0.
Using (6.19) in (6.18), it is now easily seen that

�yt = b0 + b1t + C(1)ut + C∗(L)�ut , (6.22)

where

b0 = C(1)a0 + C∗(1)a1, b1 = C(1)a1.

Cumulating (6.22) forward, we obtain the ‘level MA representation’

yt = y0 + b0t + b1
t(t + 1)

2
+ C(1)st + C∗(L)(ut − u0),

where st denotes the partial sum st = ∑t
j=1 uj, t = 1, 2, . . . , and

rank [C(1)] = m − r. It is immediately seen that, since b1 = C(1)a1,
in general yt will contain m different linear deterministic trends, b0t ,
m − r different (independent) deterministic quadratic trends given by
1
2 t(t + 1)C(1)a1, m − r unit root (or permanent) components given by

11 Recall that by assumption �yt is covariance stationary.
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C(1)st , and m stationary components given by C∗(L)(ut − u0).12 With
a1 unrestricted, the quadratic trend term disappears only in the full rank
stationary case where there are no unit roots, namely if rank(�) = m.

To remove the quadratic trends and ensure that the trend in the deter-
ministic part of yt is linear for all values of r, we need to restrict the trend
coefficients such that

a1 = �γ , (6.23)

where γ is an arbitrary m × 1 vector of fixed constants. Note that γ is
unrestricted only if � is full rank. In this case γ = �−1a1. But where � is
rank deficient, all elements of γ can be estimated from the reduced form
coefficients. In this case the reduced form trend coefficients are restricted.

For the above choice of a1, it is easily seen that b1 = C(1)�γ = 0.13

Under this restriction on the trend coefficients, we have

yt = y0 + b0t + C(1)st + C∗ (L) (ut − u0) , (6.24)

and its associated vector error correction formulation is given by

�yt = −αβ ′ (yt−1 − γ t
)+

p−1∑
i=1
�i�yt−i + a0 + ut

= −�∗y∗
t−1 +

p−1∑
i=1
�i�yt−i + a0 + ut , (6.25)

where �∗ = αβ ′∗, β ′∗ = (β ′, −β ′γ ), y∗
t−1 = (y′

t−1, t)′, and the determin-
istic trend is now specified to be a part of the cointegrating relations,
β ′ (yt−1 − γ t

) = β ′∗y∗
t−1. This ensures that the yt contains only linear and

not quadratic deterministic trends. This result also shows that in general
the cointegration relations could contain linear trends if yt is trended. In
the absence of a time trend term in the cointegrating relations we must
have β ′γ = 0. These provide r further restrictions, known as ‘co-trending’
restrictions which are testable.

A similar conclusion also follows from the ‘level MA representation’,
(6.24). Premultiplying both sides of (6.24) by β ′ we have

β ′yt = β ′y0 + (β ′b0
)
t + β ′C(1)st + β ′C∗(L) (ut − u0) .

12 This decomposition of the stochastic part of yt into permanent and transitory compo-
nents is not unique and raises a number of identification problems discussed by Levtchenkova
et al. (1998).

13 Notice from (6.13) and (6.18) that since C(L)�(L) = (1 − L)Im, then C(1)�(1) =
C(1)� = 0.
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But β ′C(1) = 0, and it is also easily established that

β ′b0 = β ′C(1)a0 + β ′C∗(1)a1 = β ′C∗(1)�γ = β ′γ .

Hence

β ′yt = β ′y0 + (β ′γ
)
t + β ′C∗(L)(ut − u0), (6.26)

and in the case of VAR models with linear trends, the cointegrating rela-
tions will generally contain deterministic trends, unless the co-trending
restrictions β ′γ = 0 are imposed. The hypothesis of co-trending is
particularly relevant in the output convergence literature where ‘con-
vergence’ involves both cointegration and co-trending. See, for example,
Pesaran (2004a) for a pairwise approach to testing for output and growth
convergence.

So far we have focused on cointegrating VAR models with linear deter-
ministic trends. A similar consideration also applies to cointegrating VAR
models that contain intercepts only. Once again to ensure that the level
variables do not contain different numbers of independent linear deter-
ministic trends as the cointegrating rank changes, the intercepts in these
models must be restricted accordingly. It is also possible that different ele-
ments of yt may have different trend characteristics. For example, output
and interest rates are often included in the same VAR, while it is clear that
these variables have different trend characteristics. Although there are a
large number of possible treatments of the deterministic elements, it will be
convenient to distinguish between five different cases often encountered
in practice:

• Case I: (No intercepts; no trends.) a0 = 0 and a1 = 0. Hence, the
VECM (6.17) becomes

�yt = −�yt−1 +
p−1∑
i=1
�i�yt−i + ut . (6.27)

• Case II: (Restricted intercepts; no trends.) a0 = �µ and a1 = 0. The
VECM (6.17) is

�yt = �µ−�yt−1 +
p−1∑
i=1
�i�yt−i + ut . (6.28)

• Case III: (Unrestricted intercepts; no trends.) a0 �= 0 and a1 = 0. In
this case, the intercept restriction a0 = �µ is ignored and the structural
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VECM estimated is

�yt = a0 −�yt−1 +
p−1∑
i=1
�i�yt−i + ut . (6.29)

• Case IV: (Unrestricted intercepts; restricted trends.) a0 �= 0 and a1 =
�γ . Thus

�yt = a0 + (�γ )t −�yt−1 +
p−1∑
i=1
�i�yt−i + ut . (6.30)

• Case V: (Unrestricted intercepts; unrestricted trends.) a0 �= 0 and
a1 �= 0. Here, the VECM estimated is

�yt = a0 + a1t −�yt−1 +
p−1∑
i=1
�i�yt−i + ut . (6.31)

It should be emphasised that the DGPs for Cases II and III are identical
as are those for Cases IV and V. However, as in the test for a unit root
proposed by Dickey and Fuller (1979) compared with that of Dickey and
Fuller (1981) for univariate models, estimation and hypothesis testing in
Cases III and V proceed ignoring the constraints linking, respectively, the
intercept and trend coefficient vectors, a0 and a1, to the parameter matrix
�whereas Cases II and IV fully incorporate these restrictions. As argued in
Pesaran, Shin and Smith (2000), Cases II and IV are likely to be particularly
relevant in practice and are preferable to the corresponding unrestricted
Cases III and V.

6.2.2 Trace and maximum eigenvalue tests of cointegration

If the sole purpose of the cointegration analysis is simply to test for
cointegration (or select the appropriate number of cointegrating rela-
tions), the nature of the r2 restrictions employed to ensure there are r
identified cointegrating relations is not important since the maximised
log-likelihood values will be invariant to how the long-run relations are
exactly identified. This was shown by Johansen (1988, 1991) who estab-
lished an algorithm for maximising the likelihood of (6.25) subject to
the constraint that �∗ = αβ ′∗ and under the assumption that the distur-
bances are Gaussian. The algorithm involves two steps. In the first, �yt

and y∗
t−1 = (y′

t−1, t)′ are regressed in turn on �yt−1,�yt−2, . . . ,�yt−p+1

and 1 to generate residuals r0t and r1t , respectively. Then, defining

S00 = T−1
T∑

t=1
r0tr′

0t , S01 = T−1
T∑

t=1
r0tr′

1t , S11 = T−1
T∑

t=1
r1tr′

1t , (6.32)
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the m ordered eigenvalues of S−1
11 S10S−1

00 S01 namely λ1 > λ2 > · · · > λm, are
computed. The maximum value of the log-likelihood function subject to
the constraint that there are r cointegrating relations is given by

�T (β̂T ) = −Tm
2

(
1 + log(2π)

)− T
2

log |S00| − T
2

r∑
i=1

log (1 − λi) , (6.33)

where β̂T is the ML estimate of the m × r cointegrating coefficient matrix
(see also the discussion below). This expression can be calculated irrespec-
tive of the form of the r2 independent restrictions on the cointegrating

relations. In fact it is easily established that �T

(
β̂

′
T

)
= �T

(
Q β̂

′
T

)
, for any

choice of a r × r non-singular matrix, Q .
If the applied econometrician is simply interested in testing the null

hypothesis of r cointegrating relations in (6.15):

H0 : Rank(�) = r, (6.34)

there are two types of the log-likelihood ratio statistics that can be used for
this purpose. The ‘trace’ statistic is intended for testing the null hypothesis
(6.34) against the full rank hypothesis,

H1a : Rank(�) = m, (6.35)

and the ‘maximum eigenvalue’ statistic is intended for testing the null
against

H1b : Rank(�) = r + 1. (6.36)

These statistics are computed as

λtrace = −T
m∑

i=r+1
ln(1 − λi), (6.37)

λmax = −T ln(1 − λr+1). (6.38)

Given the presence of unit roots, the asymptotic distributions of both
statistics are non-standard (and depend on the nature of the determin-
istic processes involved), but Johansen (1991) provided the appropriate
critical values based on Monte Carlo simulations, and Pesaran, Shin and
Smith (2000) provided the corresponding statistics under Cases I–V above.

6.2.3 Identifying long-run relationships in a cointegrating VAR

Typically, the applied econometrician will be interested not only in the
number of cointegrating relations that might exist among the variables
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but also the specification of the identifying (and possibly over-identifying)
restrictions on the cointegrating relations. Indeed, Johansen (1988, 1991)
have provided procedures for estimating α and β, using ‘statistical’ over-
identifying restrictions. He computed the ML estimates of β as the r
eigenvectors corresponding to the first r largest eigenvalues of the canon-
ical correlation matrix, S−1

11 S10S−1
00 S01, where S00, S01, and S11 are defined

in (6.32). These are often referred to as ‘empirical’ or ‘statistical’ iden-
tifying restrictions, and together impose the r2 restrictions needed for
exact identification of β. However, while mathematically natural given
the statistical structure of the problem, these restrictions have no eco-
nomic meaning since there is no reason to expect economic cointegrating
vectors to be orthogonal. When r > 1, the economic interpretation of
the Johansen estimates of the cointegrating vectors is almost impossi-
ble. See also Phillips (1991) for an alternative non-economic identification
adopting a triangular structure.

The more satisfactory approach promoted in Pesaran and Shin (2002)
is to estimate the cointegrating relations under a general set of structural
long-run restrictions provided by a priori economic theory. Suppose that
we are considering an example of a model with unrestricted intercepts
and restricted trends (Case IV), and the cointegrating vectors, β∗, are sub-
ject to the following k general linear restrictions, including cross-equation
restrictions:14

R vec(β∗) = f, (6.39)

where R and f are a k × (m + 1)r matrix of full row rank and a k × 1 vector
of known constants, respectively, and vec(β∗) is the (m + 1)r × 1 vector of
long-run coefficients, which stacks the r columns of β∗ into a vector. Three
cases can be distinguished: (i) k < r2: the under-identified case; (ii) k = r2:
the exactly identified case; and (iii) k > r2: the over-identified case.

ESTIMATION OF THE LONG-RUN COINTEGRATING
VECTORS SUBJECT TO IDENTIFYING RESTRICTIONS

Following Pesaran and Shin (2002), we will describe the ML estimation of
the long-run parameters β of the VEC model (6.25) subject to the k identi-
fying restrictions on β given by (6.39). We first note that the concentrated

14 Pesaran and Shin (2002) also consider the more general case where the restrictions on
the cointegrating coefficients may be non-linear.
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log-likelihood function for the cointegrated model is given by:15

�T (β) = constant − T
2

{
ln |β ′ATβ| − ln |β ′BTβ|} . (6.40)

where

AT = S11 − S10S−1
00 S01, BT = S11, (6.41)

and S00, S10, S11 are defined in (6.32). Then, the ML estimator of θ = vec(β)
is obtained by solving

max
θ ,λ

� (θ ,λ) ,

where �(θ ,λ) is the Lagrangian function for this constrained ML estima-
tion problem and given by

�(θ ,λ) = 1
T
�T (θ) − 1

2
λ′h (θ) (6.42)

= constant − 1
2

{
ln
∣∣β ′ATβ

∣∣− ln
∣∣β ′BTβ

∣∣− λ′ (Rθ − f
)}

,

where h (θ) = Rθ − f and λ is a k × 1 vector of Lagrange multipliers.
We distinguish between two cases: when the cointegrating vectors are

exactly identified (k = r2), and when they are subject to over-identifying
restrictions (k > r2). In both cases it is convenient to start with the exactly
identified ML estimator of β obtained by Johansen’s eigenvalue routine,
i.e. the r eigenvectors corresponding to the first r largest eigenvalues of
S−1

11 S10S−1
00 S01, which we denote by β̂J .

Exactly identified case (k = r2)

In the exactly identified case, the ML estimator of β is obtained simply by

θ̂ =
(
Ir ⊗ β̂J

) [
R
(
Ir ⊗ β̂J

)]−1
f, (6.43)

where Ir is an r × r identity matrix and R and f are defined by (6.39).
Note that by construction β̂

′
JBT β̂J = Ir and β̂

′
Ji (BT − AT ) β̂Jj = 0 for i �= j,

i, j = 1, 2, . . . , r and β̂Ji is the ith column of β̂J .

15 Since the main focus is on the long-run parameters, β, we can concentrate out all the
short-run parameters from the log-likelihood function.
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Over-identified case (k > r2)

Now there are k − r2 additional restrictions that need to be taken into
account at the estimation stage. This can be done by explicitly maximis-
ing the Lagrangian function (6.42). We assume that the normalisation
restrictions on each of the r cointegrating vectors are also included in
h (θ) = Rθ − f = 0.

The first-order conditions are given by

dT (θ̂) − R′λ̂ = 0, (6.44)

Rθ̂ − f = 0, (6.45)

where dT (θ) = T−1[∂�T (θ) /∂θ ]. Let θ̂
(0)

and λ̂
(0)

be the initial estimates of
the ML estimators of θ and λ. Taking the Taylor series expansion of (6.44)

and (6.45) around θ̂
(0)

and λ̂
(0)

, we obtain16

⎡⎣ GT

(
θ̂
(0)
)

R′

R 0

⎤⎦
⎡⎢⎣ T

(
θ̂ − θ̂ (0)

)
λ̂− λ̂(0)

⎤⎥⎦ =

⎡⎢⎢⎣ dT

(
θ̂
(0)
)

− R′λ̂(0)

−T
(

Rθ̂
(0) − f

)
⎤⎥⎥⎦+ op(1),

(6.46)

where GT (θ̂) = T−2[−∂2�T (θ̂)/∂θ∂θ
′]. To deal with the singularity of the

normalised Hessian matrix, GT (θ̂) in the case of cointegration, we let

JT (θ) = GT (θ) + R′R.

Then, the solution of (6.46) using a generalised inverse based on JT (θ̂) is
given by

⎡⎢⎣ T
(
θ̂ − θ̂ (0)

)
λ̂− λ̂(0)

⎤⎥⎦ =

⎡⎢⎢⎣ Vθθ

(
θ̂
(0)
)

Vθλ

(
θ̂
(0)
)

V′
θλ

(
θ̂
(0)
)

Vλλ

(
θ̂
(0)
)
⎤⎥⎥⎦

×
⎡⎢⎣ dT

(
θ̂
(0)
)

− R′λ̂(0)

−T
(
Rθ̂

(0) − f
)

⎤⎥⎦+ op(1), (6.47)

16 The detailed derivations for dT (θ) and GT (θ) can be found in the DAE Working Paper
version of Pesaran and Shin (2002).
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where

Vθθ (θ̂) = J−1
T (θ̂) − J−1

T (θ̂)R′ [RJ−1
T (θ̂)R′]−1

RJ−1
T (θ̂), (6.48)

Vθλ(θ̂) = J−1
T (θ̂)R′ [RJ−1

T (θ̂)R′]−1
, Vλλ(θ̂) =

[
RJ−1

T (θ̂)R′]−1
.

Hence, we obtain the following generalised version of the Newton–
Raphson algorithm:17

⎛⎝ θ̂
(i)

λ̂
(i)

⎞⎠ =
⎛⎝ θ̂

(i−1)

λ̂
(i−1)

⎞⎠
⎡⎢⎢⎣ Vθθ

(
θ̂
(i−1)

)
Vθλ

(
θ̂
(i−1)

)
V′
θλ

(
θ̂
(i−1)

)
Vλλ

(
θ̂
(i−1)

)
⎤⎥⎥⎦

×

⎡⎢⎢⎣ T−1
{

dT

(
θ̂
(i−1)

)
− R′λ̂(i−1)

}
−T

(
Rθ̂

(i−1) − f
)

⎤⎥⎥⎦ . (6.49)

From (6.47) we also find that

T
(
θ̂ − θ

)
a∼ MN [0, Vθθ (θ)] , (6.50)

which shows that the cointegrating parameters are super-consistent and
have an asymptotic (mixture) normal distribution. It also shows that a
consistent estimator of the asymptotic variance of θ̂ is given by (6.48).
See also Pesaran and Shin (2002) for a proof, and Pesaran and Pesaran’s
(1997) Microfit 4.0 for more details of the numerical algorithms and other
computational considerations.

For the initial estimates, θ̂
(0)

, we suggest using the linearised exactly
identified estimators given by (6.43). One important aspect of this method-
ology is the fact that we begin with the exactly identifying restrictions
from economic theory, rather than the type of statistical identification
favoured by Johansen. This is particularly important for models with a
relatively large number of long-run relations. Clearly, without some guid-
ance from theory it would be extremely difficult to advance an exactly
identified model with meaningful and understandable properties.

17 See Magnus and Neudecker (1988, pp. 57–60) for the algebra about the bordered Gramian
matrix.
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TESTING THE VALIDITY OF OVER-IDENTIFYING
RESTRICTIONS

Consider the general k ≥ r2 restrictions on θ given by (6.39), and partition
these restrictions as (

RAθ

RBθ

)
=
(

fA

fB

)
, (6.51)

where RA, RB are r2 × (m + 1) r, and
(
k − r2) × (m + 1) r known matrices,

and fA, fB are r2 × 1 and
(
k − r2) × 1 known vectors, respectively. Since

we need r2 independent restrictions to just identify θ , without loss of
generality, RAθ = fA can be regarded as such r2 just-identifying restric-
tions. The remaining restrictions, RBθ = fB, will then constitute the k − r2

over-identifying restrictions.
Let θ̂1 be the (unrestricted) ML estimators of θ obtained subject to the r2

exactly identifying restrictions (say, RAθ = fA), and θ̂0 be the restricted ML
estimators of θ obtained subject to the full k restrictions (namely, Rθ = f),
respectively. Then, the k−r2 over-identifying restrictions on θ can be tested
using the log-likelihood ratio statistic given by

LR = 2
[
�T

(
θ̂1

)
− �T

(
θ̂0

)]
, (6.52)

where �T

(
θ̂1

)
and �T

(
θ̂0

)
represent the maximised values of the log-

likelihood function obtained under RAθ = fA and Rθ = f, respectively.
Pesaran and Shin (2002) prove that the log-likelihood ratio statistic for
testing Rθ = f given by (6.52) has a χ2 distribution with k − r2 degrees
of freedom, asymptotically. Small sample properties of the tests of over-
identifying restrictions on the cointegrating vectors are described in
Section 6.4 below.

6.2.4 Estimation of the short-run parameters of the
conditional VEC model

Having computed the ML estimates of the cointegrating vectors β̂
′
∗ =(

β̂
′
, − β̂γ ′)′

, obtained under the exact and/or over-identifying restric-

tions given by (6.39), the ML estimates of the short-run parameters(
α,�1, . . . ,�p−1, a0

)
in (6.25) can be computed by the OLS regressions of

�yt on

ξ̂
∗
t ,�yt−1, . . . ,�yt−p+1 and 1,
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where ξ̂
∗
t = β̂

′
∗y∗

t−1 is the ML estimate of ξ∗
t = β ′∗y∗

t−1. Notice that β̂ is
super-consistent, while the ML estimators of the short-run parameters are√

T -consistent. The ML estimate of the (restricted) trend coefficients are
then obtained by â1 = α̂y β̂

′
γ .

It is worth emphasising that, having established the form of the long-
run relations, then standard OLS regression methods and standard testing
procedures can be applied. All of the right-hand side variables in the error
correction regression models are stationary and are either dated at time
t − 1 or earlier. In these circumstances, OLS is the appropriate estimation
procedure and diagnostic statistics for residual serial correlation, normal-
ity, heteroscedasticity and functional form misspecifications can be readily
computed, based on these OLS regressions, in the usual manner.18 This is
an important observation because it simplifies estimation and diagnostic
testing procedures. Moreover, it makes it clear that the modelling pro-
cedure is robust to uncertainties surrounding the order of integration of
particular variables. It is frequently difficult to establish the order of inte-
gration of particular variables using the techniques and samples of data
which are available, and it would be worrying if the modelling procedure
relied on assumptions that variables were integrated of a particular order.
However, the observations above indicate that, so long as the ξ̂

∗
t = β̂ ′

∗y∗
t−1

are stationary, the conditional VEC model, estimated and interpreted in
the usual manner, will be valid even if it turns out that some or all of
the variables in y∗

t−1 are I(0) and not I(1) after all. A related discussion
with mathematical proofs is given in Pesaran and Shin (1999) for cases
where r = 1.

6.2.5 Analysis of stability of the cointegrated system

Having estimated the system of equations in the cointegrating VAR, we will
typically need to check on the stability of the system as a whole, and more
particularly to check that the disequilibria from the cointegrating relations
are in fact mean-reverting. Although such a mean-reverting property is
intrinsic to the modelling framework when the cointegration restrictions
are not rejected, it is possible that the estimated model does not display
this property in practice or that, if it does, the speed with which the system

18 Further discussion of the validity of standard diagnostic test procedures when different
estimation procedures are adopted in models involving unit roots and cointegrating relations
is provided in Gerrard and Godfrey (1998), and the importance of the use of predicted values
in the tests is discussed in Pesaran and Taylor (1999).
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reverts back to its equilibrium is very slow. Summary statistics that shed
light on the convergence property of the error correction terms, ξ̂ t , will
therefore be of some interest.

In the empirical applications of cointegration analysis where r = 1, the
rate of convergence of ξ̂ t to its equilibrium is ascertained from the estimates
of the error correction coefficients, α. However, as we shall demonstrate
below, this procedure is not generally applicable. Consider the simple two
variable error correction model(

�y1t

�y2t

)
= −

(
α1

α2

) (
β1y1,t−1 + β2y2,t−1

)+
(

u1t

u2t

)
, (6.53)

in which the variables y1t and y2t are cointegrated with cointegrating vec-
tor β = (β1,β2)

′. Denoting ξt+1 = β1y1t + β2y2t , and premultiplying both
sides of (6.53) by β ′, we obtain

�ξt+1 = −(β ′α)ξt + β ′ut ,

where α = (α1,α2)
′ and ut = (u1t , u2t )

′, or

ξt+1 = (1 − β ′α)ξt + β ′ut . (6.54)

Since β ′ut is I(0), then, the stability of this equation requires |1 − β ′α |=
|1 − β1α1 − β2α2| < 1, or β1α1 + β2α2 > 0, and β1α1 + β2α2 < 2. It is
clear that these conditions depend on the adjustment parameters from
both equations (α1 and α2) as well as the parameters of the cointegrating
vector, and the estimate of α1 alone will not allow us to sign the expressions
β1α1 +β2α2 and β1α1 +β2α2 −2. Hence, for example, restricting α1 to lie in
the range (0, 2) ensures the stability of (6.54) only under the normalisation
β1 = 1, and in the simple case where α2 = 0.19

More generally, we can rewrite (6.17) as an infinite order difference
equation in an r×1 vector of (stochastic) disequilibrium terms, ξ t = β ′yt−1.
Under our assumption that all the variables in yt are I(1), and all the roots

of
∣∣∣Im −∑p−1

i=1 �iyi
∣∣∣ = 0 fall outside the unit circle, we have the following

expression for �yt :

�yt = �(L)−1 (−αξ t + a0 + a1t + ut
)
, t = 1, 2, . . . , T , (6.55)

where �(L) = Im −∑p−1
i=1 �iLi. Defining �(L) = �(L)−1 = ∑∞

i=0�iLi, then
it is easily seen that the following recursive relations hold:

�n = �1�n−1 + �2�n−2 + · · · + �p−1�n−p+1, n = 1, 2, . . . ,

19 When α2 = 0, y2t is said to be ‘long-run forcing’ for y1t .
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where �0 = Im, and �n = 0 for n < 0. Premultiplying (6.55) by β ′, then
we have

�ξ t+1 = −β ′
(

Im +
∞∑

i=1
�iL

i

)
αξ t + β ′

(
Im +

∞∑
i=1
�iL

i

)
(a0 + a1t + ut ) ,

(6.56)

or

ξ t+1 =
[(

Ir − β ′α
)−

∞∑
i=1

(
β ′�iα

)
Li

]
ξ t +

(
β ′ +

∞∑
i=1
β ′�iL

i

)
(a0 + a1t + ut ) .

(6.57)

This shows that, in general, when p ≥ 2, the error correction variables,
ξ t+1, follow infinite order VARMA processes, and there exists no simple rule
involving α alone that could ensure the stability of the dynamic processes
in ξ t+1.20

However, given the assumption that none of the roots of
∣∣∣Im −∑p−1

i=1 �izi
∣∣∣

= 0 fall on or inside the unit circle, it is easily seen that the matrices�i, i =
0, 1, 2, . . . are absolutely summable,21 and therefore a suitably truncated
version of

∑∞
i=1
(
β ′�iα

)
Li can provide us with an adequate approximation

in practice. Using an �-order truncation we have

ξ t+1 ≈

�∑
i=1

Diξ t−i+1 + vt , t = 1, 2, . . . , T , (6.58)

where

D1 = Ir − β ′α, Di = −β ′�i−1α, i = 2, 3, . . . , �,
(6.59)

vt =
(
β ′ +

�∑
i=1
β ′�iL

i

)
(a0 + a1t + ut ) .

To explicitly evaluate the stability of the cointegrated system, we rewrite
(6.58) more compactly as

ξ̌ t+1 = Dξ̌ t + v̌t , t = 1, 2, . . . , T , (6.60)

20 This result also highlights the deficiency of residual-based approaches to testing for
cointegration, where finite-order ADF regressions are fitted to the residuals even if the order
of the underlying VAR is 2 or more.

21 The matrix sequence,
{
�i, i = 0, 1, 2, . . .

}
is said to be absolutely summable if∑∞

i=0
[
tr(�i�

′
i)
]1/2

< ∞, which is satisfied since �(L) is invertible. See, for example, Lütkepohl
(1991), Section C3, pp. 488–491.

131



Econometric Methods

where

ξ̌ t
r�×1

=

⎛⎜⎜⎜⎜⎜⎜⎝
ξ t

ξ t−1
ξ t−2

...
ξ t−�+1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

D
r�×r�

=

⎛⎜⎜⎜⎜⎜⎜⎝
D1 D2 D3 · · · D�−1 D�

Ir 0 0 · · · 0 0
0 Ir 0 · · · 0 0

...
0 0 0 · · · Ir 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

v̌t
r�×1

=

⎛⎜⎜⎜⎜⎜⎜⎝
vt

0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.61)

The above cointegrated system is stable if all the roots of∣∣∣Ir − D1z − · · · − D�z�
∣∣∣ = 0

lie outside the unit circle, or if all the eigenvalues of D have modulus less
than unity.22

6.2.6 Impulse response analysis in cointegrating VARs

Using the level MA representation, (6.24), generalised impulse response
functions can be calculated for the cointegrating VAR model (6.25) in a
way similar to the VAR discussed above. Now, it is easily seen that the
effect of a unit shock to the ith reduced form error, uit , is given by23

g
(
n, y : ui

) = 1√
σii

C̃n�ei, n = 0, 1, . . . , i = 1, . . . , m, (6.62)

where ut is i.i.d. (0,�), C̃n = ∑n
j=0 Cj, Cj’s are given by the recursive rela-

tions (6.21), and ei is a selection vector of zeros with unity as its ith

22 Notice that the stability analysis is not affected by the presence of deterministic and
stationary exogenous variables in the system.

23 Combining (6.11) and (6.24) together, we obtain g
(
n, y : ui

) = σ
−1/2
ii

{
C(1) + C∗

n
}
�ei.

Then, using (6.20), we find that C(1) + C∗
n = ∑n

j=0 Cj = C̃n.
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element. For the effect of a unit shock to the ith structural form error,
εit , we notice that (6.24) can be written as

yt = y0 + b0t + C(1)st + C∗ (L)A−1 (εt − ε0) , (6.63)

where we use ut = A−1εt , and therefore we have

g
(
n, y : εi

) = 1√
ωii

C̃nA−1�ei, n = 0, 1, . . . , i = 1, . . . , m, (6.64)

where εt is i.i.d. (0,�) with � = A−1�A
′−1. In particular,

g
(∞, y : εi

) = ω
−1/2
ii C(1)A−1�ei, g

(∞, y : ui
) = σ

−1/2
ii C(1)�ei,

which shows that shocks will have permanent effects on the I(1) variables,
unlike the stationary case.

Shocks will have only a temporary effect on the cointegrating relations
though. Hence, the generalised impulse response function for the cointe-
grating relations ξ t = β ′yt−1 with respect to a unit shock to the structural
errors is given by

g (n, ξ : εi) = 1√
ωii
β ′C̃nA−1�ei, n = 0, 1, . . . , i = 1, . . . , m. (6.65)

Since β ′C̃∞ = β ′C(1) = 0, it follows that g (∞, ξ : εi) = 0, and ulti-
mately the effects of shocks on the cointegrating relations will disappear.
Nevertheless, estimation of g (n, ξ : εi) for a finite n still requires a priori
identification of A−1�. Once again, a variety of identification schemes
can be used for this purpose. Alternatively, we could focus on the impulse
response functions of ξ t = β ′yt−1 with respect to the ith reduced form
shock, uit . In this case

g (n, ξ : ui) = 1√
σii
β ′C̃n�ei, n = 0, 1, . . . , i = 1, . . . , m. (6.66)

which is uniquely determined from the knowledge of the reduced form
parameters.

Furthermore, generalised forecast error variance decompositions for the
cointegrating VAR model (6.25) can be computed as follow:

ψij,n =
σ−1

ii

∑n
�=0

(
e′

iC̃��ej

)2

∑n
�=0 e′

iC̃��C̃′
�ei

, n = 0, 1, . . . ; and i, j = 1, . . . , m. (6.67)

The ψij,n in (6.67) measures the proportion of the n-step ahead forecast
error variance of variable i accounted for by the reduced form error in
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the jth equation in the system unlike the orthogonalised forecast error
variance decomposition, which due to non-zero correlations across the
shocks, cause the different proportions not necessarily to add up to unity.

Corresponding orthogonalised impulse response functions and forecast
error variance decompositions for the cointegrating VAR model (6.25) are
given by:

o
(
n, y : u∗

i

) = C̃nPei, n = 0, 1, . . . , i = 1, . . . , m, (6.68)

o
(
n, ξ : u∗

i

) = β ′C̃nPei, n = 0, 1, . . . , i = 1, . . . , m, (6.69)

oij,n =
σ−1

ii

∑n
�=0

(
e′

iC̃�Pej

)2

∑n
�=0 e′

iC̃��C̃′
�ei

, n = 0, 1, 2, . . . , i, j = 1, . . . , m, (6.70)

where u∗
it is an orthogonalised residual and P is a lower triangular matrix

obtained by the Choleski decomposition of � = PP′.
Finally, we could examine the effect of system-wide shocks on the

cointegrating relations using the persistence profiles discussed above in
Section 6.1.3. Pesaran and Shin (1996) suggest using the persistence pro-
files to measure the speed of convergence of the cointegrating relations
to equilibrium. The scaled persistence profiles of the jth cointegrating
relation is given by

h
(
β ′

jyt , n
)

=
β ′

jC̃n�C̃′
nβ j

β ′
j�β j

, n = 0, 1, . . . , j = 1, . . . , r, (6.71)

which is scaled to have a value of unity on impact. The profiles tend to
zero as n → ∞, and provide a useful graphical representation of the extent
to which the cointegrating (equilibrium) relations adjust to system-wide
shocks. Once again, the main attraction of persistence profiles lies in the
fact that they are uniquely determined from the reduced form parameters
and do not depend on the nature of the system-wide shocks considered.
Using (6.26), the cointegrating relations in terms of the structural errors
may be written as

β ′
jyt = β ′

jy0 +
(
β ′

jγ
)

t + β ′
jC

∗(L)A−1 (εt − ε0) ,
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and the persistence profile of β ′
jyt with respect to the structural errors,

εt , is given by

β ′
j

(
C̃nA−1

)
�
(
C̃nA−1

)′
β j

β ′
jA

−1�A′−1β j
, n = 0, 1, . . . , j = 1, . . . , r.

But, since � = A−1�A
′−1, this persistence profile is in fact identical to the

one derived using the reduced form errors, ut , given by (6.71).

6.3 The cointegrated VAR model with I(1)
exogenous variables

The most complete econometric model that we might wish to consider
is the case in which there are both endogenous and exogenous variables
and linear deterministic trends. This is the model discussed in Pesaran,
Shin and Smith (2000), where we distinguish between an my × 1 vector of
endogenous variables yt and an mx × 1 vector of exogenous I(1) variables
xt among the core variables in zt = (y′

t , x′
t )

′, with m = my + mx.
We begin with the extended vector error correction model (VECM) in zt

(cf. (6.17)),

�zt = −�zt−1 +
p−1∑
i=1
�i�zt−i + a0 + a1t + ut , (6.72)

where the short-run response matrices {�i}p−1
i=1 and the long-run multiplier

matrix � are similarly defined to those below (6.17).
By partitioning the error term ut conformably with zt = (

y′
t , x′

t

)′ as ut =(
u′

yt , u′
xt

)′
and its variance matrix as

� =
(
�yy �yx

�xy �xx

)
,

we are able to express uyt conditionally in terms of uxt as

uyt = �yx�
−1
xx uxt + υt , (6.73)

where υt ∼ i.i.d. (0,�υυ), �υυ ≡ �yy − �yx�
−1
xx �xy and υt is uncorrelated

with uxt by construction. Substitution of (6.73) into (6.72) together with a

similar partitioning of the parameter vectors and matrices a0 =
(
a′

y0, a′
x0

)′
,
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a1 =
(
a′

y1, a′
x1

)′
, � =

(
�′

y ,�′
x

)′
, �i =

(
�′

yi,�
′
xi

)′
, i = 1, . . . , p − 1, provides a

conditional model for �yt in terms of zt−1,�xt ,�zt−1,�zt−2, . . .; viz.

�yt = −�yy.xzt−1 +��xt +
p−1∑
i=1
� i�zt−i + c0 + c1t + υt , (6.74)

where �yy.x ≡ �y − �yx�
−1
xx �x, � = �yx�

−1
xx , � i ≡ �yi − �yx�

−1
xx �xi, i =

1, . . . , p − 1, c0 ≡ ay0 −�yx�
−1
xx ax0 and c1 ≡ ay1 −�yx�

−1
xx ax1,

Following Johansen (1995), we assume that the process {xt }∞t=1 is weakly
exogenous with respect to the matrix of long-run multiplier parameters�,
namely,

�x = 0. (6.75)

Therefore,

�yy.x = �y . (6.76)

Consequently, from (6.72) and (6.74), the system of equations is ren-
dered as

�yt = −�yzt−1 +��xt +
p−1∑
i=1
� i�zt−i + c0 + c1t + υt , (6.77)

�xt =
p−1∑
i=1
�xi�zt−i + ax0 + uxt , (6.78)

where now the restrictions on trend coefficients (6.23) are modified to

c1 = �yγ . (6.79)

The restriction �x = 0 in (6.75) implies that the elements of the vector
process {xt }∞t=1 are not cointegrated among themselves as is evident from
(6.78). Moreover, the information available from the differenced VAR(p−1)
model (6.78) for {xt }∞t=1 is redundant for efficient conditional estimation
and inference concerning the long-run parameters�y as well as the deter-
ministic and short-run parameters c0, c1, � and � i, i = 1, . . . , p − 1, of
(6.77).24 Furthermore, we may regard {xt }∞t=1 as long-run forcing for

{
yt
}∞

t=1;
see Granger and Lin (1995). Note that this restriction does not preclude{
yt
}∞

t=1 being Granger-causal for {xt }∞t=1 in the short run.

24 In general the variance of υt will be smaller than that of uyt because it is easily seen that

�υυ −�yy = −�yx�
−1
xx �xy ≤ 0.

136



The Cointegrated VAR Model

When there are r cointegrating relations among zt , then we may express

�y = αyβ
′, (6.80)

where αy
(
my × r

)
and β (m× r) are matrices of error correction coefficients

and of the long-run (or cointegrating) coefficients, both of which are of
full column rank, r. For the purpose of empirical analysis, we assume that
the lag order p is large enough so that ut and υt are serially uncorrelated,
and have zero mean and positive definite covariance matrices, � and �υυ ,
respectively. For the purpose of the ML estimation, we also assume that ut

and υt are normally distributed, although this is not binding if the number
of the time series observations available is large enough.25

To a large extent, the analysis of a cointegrated VAR model containing
exogenous I(1) variables follows very similar lines to that described in
Section 6.2 above. Hence, to avoid the unsatisfactory possibility that there
exist quadratic trends in the level solution of the data generating process
for zt when there is no cointegration, we can again assume that there are
restrictions on the intercepts and/or time trends corresponding to Cases
I–V in Section 6.2.1 above. We delineate five cases of interest; viz.

• Case I: (No intercepts; no trends.) c0 = 0 and c1 = 0. Hence, the
structural VECM (6.77) becomes

�yt = −�yzt−1 +��xt +
p−1∑
i=1
� i�zt−i + υt . (6.81)

• Case II: (Restricted intercepts; no trends.) c0 = �yµ and c1 = 0. The
structural VECM (6.77) is

�yt = �yµ−�yzt−1 +��xt +
p−1∑
i=1
� i�zt−i + υt . (6.82)

• Case III: (Unrestricted intercepts; no trends.) c0 �= 0 and c1 = 0. In this
case, the intercept restriction c0 = �yµ is ignored and the structural

Therefore, the parameters in the conditional model (6.77) are likely to be estimated more
precisely than the parameters of the unconditional model. Whether this is an advantage
depends on what the economic parameters of interest are. If the parameters of interest are
�y = (

�yy ,�yx
)
, it is clear from the above equation that �xt will be weakly exogenous for �y

only if either �yx = 0 so that � = 0 or if �x = (
�xy ,�xx

) = 0. In either of these cases the
coefficient matrix on

(
yt−1, xt−1

)
in the conditional model will provide an estimate of �y . In

other cases the economic parameter of interest may be simply the long-run effects of xt on yt
so one might be interested in �y −��x directly, in which case the model conditional on xt
is appropriate whether or not �x = 0.

25 For a more precise statement of these assumptions see Johansen (1995), and Pesaran,
Shin and Smith (2000).
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VECM estimated is

�yt = c0 −�yzt−1 +��xt +
p−1∑
i=1
� i�zt−i + υt . (6.83)

• Case IV: (Unrestricted intercepts; restricted trends.) c0 �= 0 and c1 =
�yγ . Thus,

�yt = c0 + (�yγ
)
t −�yzt−1 +��xt +

p−1∑
i=1
� i�zt−i + υt . (6.84)

• Case V: (Unrestricted intercepts; unrestricted trends.) c0 �= 0 and
c1 �= 0. Here, the deterministic trend restriction c1 = �yγ is ignored
and the structural VECM estimated is

�yt = c0 + c1t −�yzt−1 +��xt +
p−1∑
i=1
� i�zt−i + υt . (6.85)

Tests of the cointegrating rank are obtained along exactly the same
lines as those in Section 6.2.2, with the first step in the algorithm gen-
erating residuals r0t and r1t from the regression of, in turn, �yt and

z∗
t−1 =

(
z′

t−1, t
)′

on �xt ,�zt−1,�zt−2, . . . ,�zt−p+1 and 1.26 Estimation of

the VECM subject to exactly and over-identifying long-run restrictions
can be carried out using maximum likelihood methods as in Section 6.2.3
applied to (6.77) subject to the appropriate restrictions on the intercepts
and trends, subject to Rank(�y) = r, and subject to k general linear
restrictions of the form in (6.39). And, having computed ML estimates
of the cointegrating vectors, estimation of the short-run parameters of the
conditional VECM can be computed using OLS regressions exactly as in
Section 6.2.4.

The investigation of the dynamic properties of the system including
exogenous I(1) variables does require a little care, however. For this, we
require the full-system VECM, obtained by augmenting the conditional
model for �yt , (6.77), with the marginal model for �xt , (6.78). This is
written as

�zt = −αβ ′zt−1 +
p−1∑
i=1
�i�zt−i + a0 + a1t + Hζ t , (6.86)

26 Asymptotic distributions of the trace and maximum eigenvalue statistics are again non-
standard, and depend on whether the intercepts and/or the coefficients on the deterministic
trends are restricted or unrestricted. Pesaran, Shin and Smith (2000) have tabulated the
upper 5% and 10% quantiles of the asymptotic critical values of both statistics via stochastic
simulations with T = 500 and 10, 000 replications. See also Mackinnon (1996).
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where β is defined by (6.80),

α =
(
αy

0

)
, �i =

(
� i +��xi

�xi

)
, a0 =

(
c0 +�ax0

ax0

)
, a1 =

(
c1

0

)
,

(6.87)

ζ t =
(
υt

uxt

)
, H =

(
Imy �

0 Imx

)
, Cov(ζ t ) = �ζ ζ =

(
�υυ 0

0 �xx

)
.

(6.88)

Analysis of the stability of the cointegrated system follows the arguments
of Section 6.2.5, and impulse response analysis follows the arguments
in Section 6.2.6, but applied to the full system in (6.86). While efficient
conditional estimation of, and inference on, the parameters of (6.77)
can be conducted without reference to the marginal model (6.78), the
dynamic properties of the system have to accommodate the influence of
the processes driving the exogenous variables.

This last point is worth emphasising and applies to any analysis involv-
ing counter-factuals, including impulse response analysis and forecasting
exercises, for example. Macromodellers frequently consider the dynamic
response of a system to a change in an exogenous variable by considering
the effects of a once-and-for-all increase in the variable.27 This (implicitly)
imposes restrictions on the processes generating the exogenous variable,
assuming that there is no serial correlation in the variable and that a
shock to one exogenous variable can be considered without having to
take into account changes in other exogenous variables. These counter-
factual exercises might be of interest. But, generally speaking, one needs
to take into account the possibility that changes in one exogenous vari-
able will have an impact on other exogenous variables and that these
effects might continue and interact over time. This requires an explicit
analysis of the dynamic processes driving the exogenous variables, as cap-
tured by the marginal model in (6.78). The whole point of the approach
to investigating model dynamics reflected in the model of (6.86) and
incorporated in the idea of generalised impulse response analysis is to
explicitly allow for the conditional correlation structure in errors and
the interactions between endogenous and exogenous variables to pro-
vide a ‘realistic’ counter-factual exercise based on the contemporaneous
covariances and interactions observed historically in the data.

27 This corresponds to our earlier discussion of the dynamic impact of a once-and-for-all
shock to an equation in a system captured as an intercept shift.
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6.4 Small sample properties of test statistics

The distributions of the trace and maximal eigenvalue statistics used to
test the number of cointegrating relationships (see (6.37) and (6.38)) and
of the log-likelihood ratio statistic used to test the validity of the over-
identifying restrictions (see (6.52)) are appropriate only asymptotically.
Moreover, recent work has shown that the asymptotic results are valid
only when relatively large samples of data are available if the cointegrating
VAR model is of even modest size (in terms of the number of parameters
involved); that is, when the order of the VAR or the number of variables
in the VAR exceeds three or four, say.28 This suggests that care should be
taken in interpreting the test statistics obtained.

In some cases, it is possible to undertake bootstrapping exercises to
investigate directly the small sample properties of the estimated statis-
tics. For example, suppose that the VEC model of (6.77) and (6.78) has
been estimated subject to the just- or over-identifying restrictions sug-
gested by economic theory. Using the observed initial values for each
variable, it is possible to generate S new samples of data (of the same
size as the original) under the hypothesis that the estimated version of
(6.77) and (6.78) is the true data generating process. For each of the
S replications of the data, the tests of the cointegrating rank and of the
over-identifying restrictions can be carried out and, hence, distributions
of the test statistics are obtained which take into account the small sam-
ple of data available when calculating the statistics. Working at the α%
level of significance, critical values which take into account the small sam-
ple properties of the tests can be obtained by observing, from the right
tails of the simulated distributions, the value of the statistics which would
ensure that the probability that the null is not rejected when it is true
is (1 − α).

More specifically, suppose that the model in (6.77) has been estimated
under the exactly or over-identifying restrictions given by (6.39). We
therefore have estimates of the cointegrating vectors, β̂∗, of the short-run

parameters,
(
α̂y , �̂1, . . . , �̂p−1, �̂, ĉ0

)
, and of the covariance matrix, �̂υυ .

Taking the observed values of �xt as fixed or re-sampled using (6.78) over
the whole sample, and taking the p lagged values of the yt observed just
prior to the sample as fixed also, for the sth replication, we can recursively

28 See, for example, Abadir et al. (1999), Gonzalo (1994) and Muscatelli and Hurn (1995).
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simulate the values of �y(s)
t , s = 1, 2, . . . , S, using

�y(s)
t = −α̂y β̂

′
∗z∗(s)

t−1 +
p−1∑
i=1
�̂ i�z(s)t−i + �̂�xt + ĉ0 + υ(s)t , t = 1, 2, . . . , T .

(6.89)

To obtain υ(s)t , allowing for the observed correlation of shocks across the
�yt , we can generate draws from a multivariate normal distribution chosen
to match the observed correlation of the estimated reduced form errors,
�̂υυ , (termed a parametric bootstrap) or we can re-sample with replacement
from the estimated residuals (a non-parametric bootstrap).29

Having generated the �y(s)
t , t = 1, . . . , T , and making use of the

observed �xt , it is straightforward to estimate the VECM of (6.77) sub-
ject to just-identifying restrictions and then subject to the over-identifying
restrictions of (6.39) to obtain a sequence of log-likelihood ratio test statis-
tics, LR(s), each testing the validity of the over-identifying restrictions in
the s-th simulated dataset, s = 1, . . . , S.30 These statistics can be sorted
into ascending order and, given that the data has been generated by the
model at (6.77) incorporating the over-identifying restrictions of β̂∗, criti-
cal values can be identified which are relevant to this particular model and
which take into account the sample size. Hence, for example, the value of
LR(s) which exceeds 95% of the observed statistics represents the appro-
priate 95% critical value for the test of the validity of the over-identifying
restrictions.31

6.5 Empirical distribution of impulse response functions and
persistence profiles

The simulation methods described above are relatively easy to imple-
ment in the context of a VAR and can be applied in various contexts.

29 More detailed discussion on generating simulated errors in bootstrap procedures is
provided in Section 7.3.3.

30 The maximum likelihood estimation of the VECM can be time-consuming, especially if
one is to be sure that all of the estimates relate to global and not local maxima. Practically,
the choice of an optimisation algorithm is likely to be important in this exercise, and the
simulated annealing algorithm discussed in Goffe et al. (1994) can prove useful in this respect.

31 Simulation here is used to find the probability of rejection for one point in the space
covered by the null (that the over-identifying restrictions are valid). The classical significance
level is the maximum of the rejection probabilities over the null space. By using a single point,
the observed critical values potentially understate the true rejection level.
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An important example is in examining the distributional properties of
the various statistics used to investigate the dynamic properties of the
estimated models we have discussed in the chapter. Specifically, in this
section, we describe the steps involved in the calculation of empirical
distribution of generalised (orthogonalised) impulse response functions
and persistence profiles based on a vector error correction model using
stochastic simulation techniques.

Consider the underlying vector error correction model, (6.86), which
can be rewritten as

zt =
p∑

i=1
�izt−i + a0 + a1t + Hζ t , t = 1, 2, . . . , T , (6.90)

where �1 = Im − αβ ′ + �1, �i = �i − �i−1, i = 2, . . . , p − 1, �p = −�p−1.
In what follows, we take into account parameter uncertainty and describe
how to evaluate the empirical distributions of generalised (orthogonalised)
impulse response functions of both individual variables and cointegrat-
ing relations and persistence profiles. In the presence of exogenous I(1)
variables, they are given, respectively, by

g (n, z : ζi) = 1√
σζ ,ii

C̃nH�ζ ζei, n = 0, 1, . . . , i = 1, . . . , m, (6.91)

g (n, ξ : ζi) = 1√
σζ ,ii

β ′C̃nH�ζ ζei, n = 0, 1, . . . , i = 1, . . . , m, (6.92)

o
(
n, z : ζ ∗

i

) = C̃nHPζei, n = 0, 1, . . . , i = 1, . . . , m, (6.93)

o
(
n, ξ : ζ ∗

i

) = β ′C̃nHPζei, n = 0, 1, . . . , i = 1, . . . , m, (6.94)

h
(
β ′

jz, n
)

=
β ′

jC̃nH�ζ ζH′C̃′
nβ j

β ′
jH�ζ ζH′β j

, n = 0, 1, . . . , j = 1, . . . , r, (6.95)

where ζ t is i.i.d.
(
0,�ζ ζ

)
, σζ ,ij is

(
i, j
)
th element of �ζ ζ , C̃n = �n

j=0Cj, with
Cj’s given by the recursive relations (6.21), H and �ζ ζ are given in (6.88),
ξ t = β ′zt−1, ei is a selection vector of zeros with unity as its ith element,
Pζ is a lower triangular matrix obtained by the Choleski decomposition of
�ζ ζ = PζP′

ζ , and m = mx + my .
Suppose that the ML estimators of �i, i = 1, . . . , p, a0, a1, H and �ζ ζ

are given and denoted by �̂i, i = 1, . . . , p, â0, â1, Ĥ and �̂ζ ζ , respectively.
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To allow for parameter uncertainty, we use the bootstrap procedure and
simulate S (in-sample) values of zt , t = 1, 2, . . . , T , denoted by z(s)t , s =
1, . . . , S, where

z(s)t =
p∑

i=1
�̂iz

(s)
t−i + â0 + â1t + Ĥζ

(s)
t , t = 1, 2, . . . , T , (6.96)

realisations are used for the initial values, z−1, . . . , z−p, and ζ (s)t ’s can be
drawn either by parametric or non-parametric methods (see 7.3.3).

Having obtained the S sets of simulated in-sample values,(
z(s)1 , z(s)2 , . . . , z(s)T

)
,

the VAR(p) model, (6.90), is re-estimated S times to obtain the ML esti-

mates, �̂
(s)
i , â(s)0 , â(s)1 , Ĥ(s) and �̂

(s)
ζ ζ , for i = 1, 2, . . . , p, and s = 1, 2, . . . , S.

For each of these bootstrap replications, we then obtain the estimates

of g(s)
(
n, z(s) : ζ (s)i

)
, g(s)

(
n, ξ (s) : ζ (s)i

)
, o(s)

(
n, z(s) : ζ ∗(s)

i

)
, o(s)

(
n, ξ (s) : ζ ∗(s)

i

)
,

h(s)
(
β ′

jz
(s), n

)
. Therefore, using these S sets of simulated estimates, we will

obtain both empirical mean and confidence intervals of impulse response
functions and persistence profiles.
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7

Probability forecasting: Concepts
and analysis

Having considered the econometric issues involved in the estimation, test-
ing and interpretation of a long-run structural VAR model, in this chapter
we turn attention to the use of the model in probability forecasting. Much
of the material would be relevant to forecasts based on any type of model.
However, the material is particularly relevant here since VARs are fre-
quently employed in forecasting. Moreover, given the size and simplicity
of the structure of most VAR models, these models are particularly well-
suited to an investigation of the various types of uncertainty that influence
forecasts, and their use in decision-making.

7.1 Probability forecasting

In much of what follows, we are concerned with the notion of probability
forecasting, arguing that these convey the uncertainties surrounding fore-
casts from a macroeconomic model in a very straightforward way and
one that is most useful in decision-making. A probability forecast is a
statement of the likelihood of a specified event taking place conditional
on the available information and can be estimated on the basis of any
macroeconomic model. The event can be defined with respect to the val-
ues of a single variable or a set of variables, measured at a particular time,
or at a sequence of times, or over a particular interval of time in the
future.

For example, in a macroeconomic context, suppose that the focus of
interest is inflation, �pt , and output growth, �yt . Then events that might
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be of interest include

π1t = Pr
(
�pt+1 < a1 | It

)
,

π2t = Pr
(
�pt+1 < a1,�yt+1 > a2 | It

)
,

π3t = Pr
(
�pt+h < a1,�yt+h > a2 | It

)
, h ≥ 1,

π4t = Pr
(
�pt+1 < a1,�pt+2 < a1,�pt+3 < a1,�pt+4 < a1 | It

)
,

(7.1)

where It denotes a non-decreasing information set up to time t . The
first example illustrates a single event while the others relate to joint
events involving either more than one variable or a variable considered at
more than one time horizon. Examples one and two are concerned with
the one-step ahead forecast horizon, example three is concerned with
an h-step ahead forecast horizon, and the fourth example relates to a
multiple-step ahead forecast horizon. The probability of all events are
conditional on It .

The calculation of probability forecasts remains relatively unusual, how-
ever. Macroeconomic forecasts are typically presented in the form of
point forecasts and their uncertainty is characterised (if at all) by fore-
cast confidence intervals. Focusing on point forecasts is justified when the
underlying decision problems faced by agents and the government are
linear in constraints and quadratic in the loss function; the so-called LQ
problem. But for most decision problems, reliance on point forecasts will
not be sufficient and probability forecasts will be needed (see, for example
Granger and Pesaran, 2000a,b).

The need for probability forecasts is also acknowledged by a variety of
researchers and institutions. In the statistics literature, for example, Dawid
(1984) has been advocating the use of probability forecasting in a sequen-
tial approach to the statistical analysis of data; the so-called ‘prequential
approach’. In the macroeconometric modelling literature, Fair (1980) was
one of the first to compute probability forecasts using a macroeconometric
model of the US economy. For example, in a macroeconomic context,
the motivation for the current monetary policy arrangements in the UK
is that it provides for transparency in policy-making and an economic
environment in which firms and individuals are better able to make invest-
ment and consumption decisions. The range of possible decisions that a
firm can make regarding an investment plan represents the firm’s action
space. The ‘states of nature’ in this case are defined by all of the possible
future out-turns for the macroeconomy. For example, referring to the illus-
trative events above, the investment decision might rely on inflation in
the next period, or the average rate of inflation over some longer period,
remaining below a target level; or interest might focus on the future path
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of inflation and output growth considered together. In making a deci-
sion, the firm should define a loss function which evaluates the profits or
losses associated with each point in the action space and given any ‘state
of nature’. Except for LQ decision problems, decision rules by individ-
ual households and firms will generally require probability forecasts with
respect to different threshold values reflecting their specific cost–benefit
ratios. For this purpose, we need to provide estimates of the whole prob-
ability distribution function of the events of interest, rather than point
forecasts or particular forecast intervals which are likely to be relevant
only to the decision problem of a few. Probability event forecasts can also
convey important information on the properties of a model. For exam-
ple, long-run neutrality of output growth to inflation (or vice versa) would
imply that

lim
h→∞

Pr
(
�pt+h < a1,�yt+h > a2 | It

)
=
[

lim
h→∞

Pr
(
�pt+h < a1 | It

)]×
[

lim
h→∞

Pr
(
�yt+h > a2 | It

)]
. (7.2)

7.1.1 Probability forecasts in a simple univariate AR(1) model

As an illustration we first consider probability forecasts in the case of a sim-
ple univariate AR(1) model. This serves to illustrate the use of the concept
in a simple context, but also demonstrates some of the (perhaps surprising)
features of probability forecasts and highlights the problems involved in
calculating probability forecasts analytically (as opposed to the use of the
simulation methods described below).

Consider the following AR(1) model for the log of real output yt :

yt = µ + (1 − ρ) γ t + ρyt−1 + ut , t = 1, 2, . . . , T , T + 1, . . . , T + H ,
(7.3)

where ut ’s are independently and identically distributed random variables
with a zero mean and variance σ2. In the case where output can be assumed
to be trend stationary (i.e. |ρ| < 1), the trend growth rate of yt is given by γ .
In the case where yt is difference stationary (i.e. ρ = 1), the average growth
rate will be given by µ. The restricted specification of the trend coefficient
in (7.3) ensures that irrespective of whether yt is trend stationary or first
difference stationary its deterministic trend component is linear.
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Defining the lag polynomial

ρh (L) = 1 + ρL + ρ2L2 + · · · + ρh−1Lh−1,

then, by successive substitution in (7.3), we can obtain

yT+h = ρhyT + ρh (L)
[
µ + (1 − ρ) γ

(
T + h

)+ uT+h
]
, h = 1, 2, . . .H ,

which after some algebra yields

yT+h = ρhyT + δ
(
h, T

)+ hγ + vT+h, (7.4)

where

δ(h, T) =
(

1 − ρh

1 − ρ

)
µ −

(
1 − ρh

1 − ρ

)
ργ + T(1 − ρh)γ ,

vT+h =
h−1∑
i=0

ρiuT+h−i.

For a given initial value and the sample size, T , the sum of the terms ρhyT

and δ
(
h, T

)
is of O(1) in h and will be dominated by hγ as the forecast

horizon, h, is extended. Note that

lim
h→∞

δ(h, T) = µ − ργ

1 − ρ
+ Tγ , if |ρ| < 1,

and δ
(
h, T

) = h (µ − γ ) if ρ = 1. Therefore, for sufficiently large h, the deter-
ministic component of yT+h will be given by hγ + Tγ + (µ − ργ ) / (1 − ρ)

if |ρ| < 1, and by yT + hµ if ρ = 1. It is interesting to note that irrespective
of whether yt has a unit root or not, the mean of the h-step ahead forecast
will be of the same order of magnitude.

Also, for reasonably long forecast horizons, the composite error term
vT+h will be approximately distributed as a normal variate even if the
underlying errors, ut , were not normally distributed. In particular, for
sufficiently large h we have

vT+h � N

[
0, σ2

(
h∑

j=1
ρ2(j−1)

)]
. (7.5)

Unlike the point forecasts, the orders of the variance of the h-step ahead
forecasts differ depending on whether |ρ| < 1 or ρ = 1. Under the former
V
(
yT+h|It

) = V
(
vT+h

) = O(1), whilst under the latter V
(
vT+h

) = O(h).
But as we shall see, the probability forecasts have similar limit properties
under |ρ| < 1 or ρ = 1, when yt contains deterministic trends.
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FORECASTING GROWTH PROBABILITIES:
AN ANALYTIC SOLUTION

To illustrate the nature of probability forecasts in the univariate AR(1)
model, we present below expressions for forecasts of output growth over
different horizons. Specifically, we consider the four-period average growth
rate over the period T + h − 4 to T + h, for any arbitrary horizon h, and
also the average growth rate in yt over the period T to T +h, for horizon h.
The four-period average growth rate is given by

yT+h − yT+h−4

4
= f1

(
ρ, yT , δ (4, T)

)+ γ + vT+h − vT+h−1

4
, h = 4, 5, . . .H ,

(7.6)

where f1
(
ρ, yT , δ (4, T)

) = ρh−4 {−(1 − ρ4)yT + δ (4, T)
}
/4, while the aver-

age growth rate of yt over the period T to T + h is given by

yT+h − yT

h
= f2

(
ρ, yT , δ

(
h, T

))+ γ + h−1vT+h, h = 1, 2, . . .H , (7.7)

where f2
(
ρ, yT , δ

(
h, T

)) = {− (1 − ρh)yT + δ(h, T)
}
/h. The four-period aver-

age given by (7.6) provides a good example of a typical event of interest;
setting h = 4, for example, we would have the annual growth rate over
the coming year if quarterly data were used. Given the trended nature of
the yt process, the ‘long average’ in (7.7) provides useful insights on the
long-run properties of the probability forecasts. In what follows, we exam-
ine probability forecasts of

(
yT+h − yT

)
/h in both the stationary and unit

root cases, but we focus on the case where parameters are known, so that
the only source of uncertainty relates to the future shocks.

Case 1: yt is trend stationary (|ρ| < 1)

If yt is trend stationary, then (7.5) provides

vT+h − vT+h−4

4
∼ N

[
0,

σ2

42

(
1 + ρ2

) (
2 − (1 − ρ4)ρ2(h−4)

)]
, (7.8)

while

1
h

vT+h ∼ N

[
0,

σ2

h2

(
1 − ρ2h

1 − ρ2

)]
. (7.9)
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From (7.6) and using (7.8), we have

Pr
(

yT+h − yT+h−4

4
< a | IT

)
= Pr

{
vT+h − vT+h−4

4
<
[
a − γ − f1

(
ρ, yT , δ (4, T)

)] | IT

}

= �

⎧⎪⎨⎪⎩ 4
[
a − γ − f1

(
ρ, yT , δ (4, T)

)]
σ

√(
1 + ρ2

) (
2 − (1 − ρ4)ρ2(h−4)

)
⎫⎪⎬⎪⎭ ,

while from (7.7)

Pr
(

yT+h − yT

h
< a | IT

)
= Pr

{
h−1vT+h <

[
a − γ − f2

(
ρ, yT , δ

(
h, T

))] | IT

}
,

= �

{
h
√

1 − ρ2
[
a − γ − f2

(
ρ, yT , δ

(
h, T

))]
σ
√

1 − ρ2h

}
, (7.10)

where �(·) denotes the cumulative distribution function of a standard
normal variate. For sufficiently large h we now have

lim
h→∞

[
Pr
(

yT+h − yT+h−4

4
< a | IT

)]
= �

⎛⎜⎝ 4 (a − γ )

σ

√
2
(
1 + ρ2

)
⎞⎟⎠ ,

and the probability of the four-period average falling below a given
threshold converges to a constant.

For the long average, as h → ∞ we have

lim
h→∞

[
Pr
(

yT+h − yT

h
< a | IT

)
− �

(
h
√

1 − ρ2 (a − γ )

σ

)]
= 0, (7.11)

and hence

lim
h→∞

Pr
(

yT+h − yT

h
< a | It

)
=

⎧⎪⎨⎪⎩
1 if a > γ

0.5 if a = γ

0 if a < γ

⎫⎪⎬⎪⎭ .

This shows that, at the infinite horizon, the probability of events relat-
ing to the long average will typically degenerate to values of zero or one,
depending on the value of the trend growth rate, γ , relative to the selected
threshold value. This property follows directly from the fact that yt tends
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(mean-reverts) to its deterministic trend path as h → ∞. In addition this
result also explains why the long-run forecasts of trend stationary models
are not affected by intercept adjustments.

Case 2: yt has a unit root (ρ = 1).

In this case, the analysis simplifies considerably and we have

Pr
(

yT+h − yT+h−4

4
< a | IT

)
= �

[√
4 (a − µ)

σ

]
, (7.12)

and

Pr
(

yT+h − yT

h
< a | IT

)
= �

[√
h (a − µ)

σ

]
. (7.13)

For the long average case

lim
h→∞

Pr
(

yT+h − yT

h
< a | IT

)
=

⎧⎪⎨⎪⎩
1 if a > µ

0.5 if a = µ

0 if a < µ

⎫⎪⎬⎪⎭ , (7.14)

which is the same as the result obtained for the trend stationary case.
The above discussion highlights an extremely important property of the

probability forecasts, showing that the probability of the long-run average
growth rate, (yT+h − yT )/h, will take a value of zero or one at the infinite
horizon whether or not there exists a unit root in the series. Compari-
son of (7.10) and (7.13) shows that the speeds with which the probability
forecasts degenerate are given by h

√
(1 − ρ2) and

√
h for the trend station-

ary and the unit root processes, respectively. Thus, the main distinction
between the stationary and unit root case is the speed with which the
zero/unity boundary is reached.

Consider now the effect of parameter uncertainty on the probability
forecasts, and for simplicity assume that ρ = 1, σ2 is given and that
the unknown mean growth rate, µ, is estimated by the sample mean,
µ̂ = T−1∑T

t=1 �yt . To allow for parameter uncertainty, we first write (7.7)
for ρ = 1 as

yT+h − yT

h
= µ̂ + (µ − µ̂) + h−1vT+h, (7.15)

and let µ to be unknown conditional on the past observations given by
the information set, IT = {

y1,y2, . . . , yT
}
. The uncertainty associated with
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µ can be characterised by1

µ − µ̂|IT ∼ N

(
0,

σ2

T

)
. (7.16)

This result can be viewed as the posterior distribution of µ with respect to
diffuse priors for µ. Using (7.16) in conjunction with (7.15), we have

h−1 (yT+h − yT
) ∼ N

(
µ̂,

σ2

T
+ ρ2

h

)
,

and therefore,

Pr
(

yT+h − yT

h
< a | IT

)
= �

⎛⎜⎝ a − µ̂

σ

√
1
T + 1

h

⎞⎟⎠ .

The result in this case depends on the relative size of T and h. For a fixed
T and as h → ∞,

lim
h→∞

Pr
(

yT+h − yT

h
< a | IT

)
= �

(√
T [a − µ̂]

σ

)
,

which differ from the limit result given by (7.14) whenµ is known. Clearly,
result (7.14) follows if T and h → ∞, jointly. In this case the uncertainty
surrounding the value of µ vanishes as T → ∞ and we return to the case
of known µ. In the case where h is relatively small, the effect of parameter
uncertainty on the probability estimates is of order T−1. To establish this
result we first write πt = Pr[h−1 (yT+h − yT

)
< a | IT ] as

πt (x) = �
[
θ (1 + x)−1/2

]
,

where θ = √
h (a − µ̂) /σ and x = h/T . Expanding πt (x) around x = 0, we

have2

πt (x) = πt (0) −
[
θ

2
φ(θ)

]
x + O(x2),

where πt (0) corresponds to the probability estimate that ignores parameter
uncertainty. Hence, for finite h we have

πt (x) = πt (0) + O
(

h
T

)
,

1 It is also assumed that conditional on IT , µ and vT+h are i.i.d. normal variables.
2 Such an expansion is sensible since h is assumed to be small relative to T .
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as required. This result holds more generally and in practice the effect of
parameter uncertainty on probability forecasts would be of second-order
importance when h is small and T relatively large.

7.2 Modelling forecast uncertainties

Returning to a more general setting, model-based forecasts are subject to
five different types of uncertainties:

• future uncertainty
• parameter uncertainty (for a given model)
• model uncertainty
• policy uncertainty
• measurement uncertainty (data inadequacies and measurement

errors).

Here, we focus on the first three and consider how to allow for them in
the computation of probability forecasts. Policy and measurement uncer-
tainties pose special problems of their own and will not be addressed here.
Future uncertainty refers to the effects of unobserved future shocks on
forecasts, while parameter and model uncertainties are concerned with
the robustness of forecasts to the choice of parameter values (for a given
model) and more generally the alternative models under consideration.3

7.2.1 Future and parameter uncertainties

The standard textbook approach to taking account of future and parameter
uncertainties is through the use of confidence intervals around point fore-
casts. Instead of a point forecast, an interval forecast is provided. Although
such forecast intervals may contain important information about proba-
bility forecasts of interest to a particular decision-maker, they do not allow
for a full recovery of the forecast probability distribution function which
is needed in decision-making contexts where the decision problem is not
of the LQ type. The relationships between forecast intervals and proba-
bility forecasts become even more tenuous when forecasts of joint events
or forecasts from multiple models are considered. For example, it would
be impossible to infer the probability of the joint event of a positive out-
put growth and an inflation rate falling within a pre-specified range from

3 For a discussion on the problem of model uncertainty, see Draper (1995) and Chatfield
(1995).
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given variable-specific forecast intervals. In fact, even if the primary object
of interest is a point forecast, as we shall see below, consideration of proba-
bility forecasts can help clarify how best to pool point mean and volatility
forecasts in the presence of model uncertainty.

For the purpose of exposition, initially we abstract from parameter
uncertainty and consider the following simple linear regression model:

yt = x′
t−1β + ut , t = 1, 2, . . . , T ,

where xt−1 is a k × 1 vector of predetermined regressors, β is a k × 1 vector
of fixed but unknown coefficients, and ut ∼ N(0, σ2). The optimal forecast
of yT+1 at time T (in the mean squared error sense) is given by x′

Tβ. In the
absence of parameter uncertainty, the calculation of a probability forecast
for a specified event is closely related to the more familiar concept of fore-
cast confidence interval. For example, suppose that we are interested in
the probability that the value of yT+1 lies below a specified threshold, say
a, conditional on IT = (yT , xT , yT−1, xT−1, . . . .), the information available
at time T . For given values of β and σ2, we have

Pr
(
yT+1 < a | IT

) = �

(
a − x′

Tβ

σ

)
,

where as before �(·) is the standard Normal cumulative distribution func-
tion while the (1 − α)% forecast interval for yT+1 (conditional on IT ) is
given by x′

Tβ ± σ�−1 (1 − (α/2)).
The two approaches, although related, are motivated by different

considerations. The point forecast provides the threshold value a =
x′

Tβ for which Pr
(
yT+1 < a | IT

) = 0.5, while the forecast inter-
val provides the threshold values cL = x′

Tβ − σ�−1 (1 − (α/2)), and
cU = x′

Tβ + σ�−1 (1 − (α/2)) for which Pr
(
yT+1 < cL | IT

) = α/2 and
Pr
(
yT+1 < cU | IT

) = 1 − (α/2). Clearly, the threshold values, cL and cU ,
associated with the (1 − α)% forecast interval may or may not be of
interest.4 Only by chance will the forecast interval calculations provide
information in a way which is directly useful in specific decision-making
contexts.

The relationship between probability forecasts and interval forecasts
becomes even more obscure when parameter uncertainty is also taken into
account. In the context of the above regression model, the point estimate

4 The association between probability forecasts and interval forecasts is even weaker when
one considers joint events. Many different such intervals will be needed for the purpose of
characterising the probability forecasts of joint events.
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of the forecast is given by ŷT+1 = x′
T β̂T , where

β̂T = Q−1
T−1qT ,

is the Ordinary Least Squares (OLS) estimate of β, with

QT−1 =
T∑

t=1

xt−1x′
t−1, and qT =

T∑
t=1

xt−1yt .

The relationship between the actual value of yT+1 and its time T
predictor can be written as

yT+1 = x′
Tβ + uT+1

= x′
T β̂T + x′

T (β − β̂T ) + uT+1, (7.17)

so that the forecast error, ξT+1, is given by

ξT+1 = yT+1 − ŷT+1 = x′
T (β − β̂T ) + uT+1.

This example shows that the point forecasts, x′
T β̂T , are subject to two

types of uncertainties, namely that relating to β and that relating to the
distribution of uT+1. For any given sample of data, IT , β̂T is known and
can be treated as fixed. On the other hand, although β is assumed fixed
at the estimation stage, it is unknown to the forecaster and, from this
perspective, it is best viewed as a random variable at the forecasting stage.
Hence, in order to compute probability forecasts which account for future
as well as parameter uncertainties, we need to specify the joint probability
distribution of β and uT+1, conditional on IT . As far as uT+1 is concerned,
we continue to assume that

uT+1|IT ∼ N(0, σ2),

and to keep the exposition simple, for the time being we shall assume that
σ2 is known and that uT+1 is distributed independently of β. For β, noting
that (

β̂T − β) |IT ∼ N
(
0, σ2Q−1

T−1

)
, (7.18)

we assume that

β | IT ∼ N
(
β̂T , σ2Q−1

T−1

)
, (7.19)

which is akin to a Bayesian approach with non-informative priors for β.
Hence

ξT+1 | IT ∼ N
[
0, σ2

(
1 + x′

T Q−1
T−1xT

)]
.
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The (1 − α)% forecast interval in this case is given by

cLT = x′
T β̂T − σ

{
1 + x′

T Q−1
T−1xT

}1/2
�−1

(
1 − α

2

)
, (7.20)

and

cUT = x′
T β̂T + σ

{
1 + x′

T Q−1
T−1xT

}1/2
�−1

(
1 − α

2

)
. (7.21)

When σ2 is unknown, under the standard non-informative Bayesian priors
on (β,σ2), the appropriate forecast interval can be obtained by replacing σ2

by its unbiased estimator, σ̂2
T = (T − k)−1∑T

t=1(yt − x′
t−1β̂T )

′
(yt − x′

t−1β̂T ),
and �−1 (1 − (α/2)) by the (1 − (α/2))% critical value of the standard
t-distribution with T − k degrees of freedom. Although such interval fore-
casts have been discussed in the econometrics literature, the particular
assumptions that underlie them are not often fully recognised.

Using this interpretation, the effect of parameter uncertainty on fore-
casts can also be obtained via stochastic simulations, by generating alter-
native forecasts of yT+1 for different values of β (and σ2) drawn from the
conditional probability distribution of β given by (7.19). Alternatively,
one could estimate probability forecasts by focusing directly on the prob-
ability distribution of yT+1 for a given value of xT , simultaneously taking
into account both parameter and future uncertainties. For example, in the
simple case where σ2 is known, this can be achieved by simulating y(j,s)T+1,
where

y(j,s)T+1 = x′
T β̂

(j) + u(s)T+1, j = 1, 2, . . . , J , s = 1, 2, . . . , S,

β̂
(j)

is the jth random draw from N
(
β̂T , σ2Q−1

T−1

)
, and u(s)T+1 is the sth ran-

dom draw from N
(
0, σ2) , which is independant of the drawing β̂

(j)
.5 This

is an example of the parametric ‘bootstrap predictive density’ discussed
in Harris (1989). In large samples, the stochastic simulation approach will
be equivalent to the analytical methods discussed above, as J and S → ∞.
However, as argued below, it is more generally applicable and will be used
in our empirical application.

An alternative approach to allowing for the effects of future and parame-
ter uncertainties on prediction of yT+1 would be to follow the literature on
‘predictive likelihoods’, where a predictive density for yT+1 conditional on
IT is derived directly.6 In the case of the regression example, the problem

5 In the realistic case where σ2 is unknown it is replaced by σ̂2
T .

6 A large number of different predictive likelihoods have been suggested in the statistics
literature. Bjørnstad (1990) provides a review.
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has been studied by Levy and Perng (1986) who show that the optimal
prediction density for yT+1, in the Kullback–Leibler information-theoretic
sense, is the Student t-distribution with T − k degrees of freedom, hav-

ing the location ŷT+1 = x′
T β̂T and the dispersion σ̂2

T

(
1 + x′

T Q−1
T−1xT

)
.

This is the same as the Bayes predictive density of yT+1 | IT with a
non-informative prior on (β,σ2). In this way Levy and Perng provide a
non-Bayesian interpretation of Bayes predictive density in the context of
linear regression models.

7.2.2 Model uncertainty: Combining probability forecasts

Suppose we are interested in a decision problem that requires probability
forecasts of an event defined in terms of one or more elements of zt , over
the period t = T +1, T +2, . . . , T +h, where zt = (z1t , z2t , . . . , znt )

′ is an n×1
vector of the variables of interest and h is the forecast (decision) horizon.
Assume also that the data generating process (DGP) is unknown and the
forecasts are made considering m different models indexed by i (that could
be nested or non-nested). Each model, Mi, i = 1, 2, . . . , m, is characterised
by a probability density function of zt defined over the estimation period
t = 1, 2, . . . , T , as well as the forecast period t = T + 1, T + 2, . . . , T + h, in
terms of a ki × 1 vector of unknown parameters, θ i, assumed to lie in the
compact parameter space, �i. Model Mi is then defined by

Mi :
{
fi
(
z1, z2, . . . , zT , zT+1, zT+2, . . . , zT+h; θ i

)
, θ i ∈ �i

}
, (7.22)

where fi (·) is the joint probability density function of past and future val-
ues of zt . Conditional on each model, Mi, being true we shall assume that
the true value of θ i, which we denote by θ i0, is fixed and remains constant
across the estimation and the prediction periods and lies in the interior
of �i. We denote the maximum likelihood estimator of θ i0 by θ̂ iT , and
assume that it satisfies the usual regularity conditions so that

√
T
(̂
θ iT − θ i0

) |Mi
a� N

(
0, Vθi

)
,

where a� stands for ‘asymptotically distributed as’, Vθi is a positive definite
matrix, and T−1Vθi is the asymptotic covariance matrix of θ̂ iT conditional
on Mi, with Vθi being a positive definite matrix.7 Under these assumptions,

parameter uncertainty only arises when T is finite and θ̂ iT
a→ θ i0 as T → ∞.

7 In the case of cointegrating VAR models, a more general version of this result is needed.
This is because the cointegrating coefficients converge to their asymptotic distribution at a
faster rate than the other parameters in the model. However, the general results of this section
are not affected by this complication.
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The case where θ i0 could differ across the estimation and forecast periods
poses new difficulties and can be resolved in a satisfactory manner if one is
prepared to formalise how θ i0 changes over time. See, for example, Pesaran,
Timmermann and Pettenuzzo (2004).8

7.2.3 Bayesian model averaging

The object of interest is the probability density function of ZT+1,h =(
zT+1, . . . , zT+h

)
conditional on the available observations at the end of

period T , ZT = (z1, z2, . . . , zT ), denoted by Pr
(
ZT+1,h |ZT

)
. For this purpose,

models and their parameters serve as intermediate inputs in the process of
characterisation and estimation of Pr

(
ZT+1,h |ZT

)
. The Bayesian approach

provides an elegant and logically coherent solution to this problem, with
a full solution given by the so-called ‘Bayesian model averaging’ formula
(e.g. Draper (1995) and Hoeting et al. (1999)):

Pr
(
ZT+1,h |ZT

) =
m∑

i=1
Pr (Mi |ZT )Pr

(
ZT+1,h |ZT , Mi

)
, (7.23)

where Pr (Mi |ZT ) is the posterior probability of model Mi,

Pr (Mi |ZT ) = Pr (Mi)Pr (ZT |Mi )∑m
j=1 Pr

(
Mj
)
Pr
(
ZT
∣∣Mj

) . (7.24)

Pr (Mi) is the prior probability of model Mi, Pr (ZT |Mi ) is the integrated
likelihood,

Pr (ZT |Mi ) =
∫
θ i

Pr (θ i |Mi )Pr (ZT |Mi, θ i ) dθ i. (7.25)

Pr (θ i |Mi ) is the prior on θ i conditional on Mi, Pr (ZT |Mi, θ i ) is the like-
lihood function of model Mi, and Pr

(
ZT+1,h |ZT , Mi

)
is the posterior

predictive density of model Mi defined by

Pr
(
ZT+1,h |ZT , Mi

) =
∫
θ i

Pr (θ i |ZT , Mi )Pr
(
ZT+1,h |ZT , Mi, θ i

)
dθ i, (7.26)

in which Pr (θ i |ZT , Mi ) is the posterior probability of θ i given model Mi:

Pr (θ i |ZT , Mi ) = Pr (θ i |Mi )Pr (ZT |Mi, θ i )∑m
j=1 Pr

(
Mj
)
Pr
(
ZT
∣∣Mj

) . (7.27)

8 Pesaran, Timmermann and Pettenuzzo (2004) propose a Bayesian procedure that allows for
the possibility of new breaks over the forecast horizon, taking account of the size and duration
of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are
formed by integrating over the hyper parameters from the meta distributions that characterise
the stochastic break point process.
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The Bayesian approach requires a priori specifications of Pr (Mi) and
Pr (θ i |Mi ) for i = 1, 2, . . . , m, and further assumes that one of the m models
being considered is the DGP so that Pr

(
ZT+1,h |ZT

)
defined by (7.23) is

proper.

7.2.4 Pooling of forecasts

The Bayesian model averaging formula also provides a simple ‘optimal’
solution to the problem of pooling of the point and volatility forecasts.
In the context of the above set-up the point forecasts are given by
E
(
ZT+1,h |ZT , Mi

)
, i = 1, 2, . . . , m, and can be combined in a variety of

ways as discussed extensively in the literature. For reviews of the forecast
combination literature see Clemen (1989), Granger (1989), Diebold and
Lopez (1996) and Newbold and Harvey (2002).

In general the combined or pooled point forecasts can be written as

Ew
(
ZT+1,h |ZT

) =
m∑

i=1

wiT E
(
ZT+1,h |ZT , Mi

)
,

where wiT , i = 1, 2, . . . , m are the weights attached to the individual point
forecasts. The main issues are: Should the weights be non-negative and
add up to unity? Should they be based on past relative performance of
the alternative models and hence be time varying? How should the rela-
tive performance of the various models be measured, namely should we
be using in-sample criteria of fit and parsimony or out-of-sample realised
performance?

In situations where the models under consideration are thought to be
exhaustive (and hence the true data generating process is thought to lie in
the set of models under consideration), the Bayesian approach can be used
to provide a coherent answer to these questions. Under Bayesian model
averaging (BMA) the weights, wiT , are set to the posterior probability of
model Mi and hence are non-negative and satisfy the additivity condition,∑m

i=1 wiT = 1. Using the Bayesain weights the combined point forecast is
given by

E
(
ZT+1,h |ZT

) =
m∑

i=1

Pr (Mi |ZT )E
(
ZT+1,h |ZT , Mi

)
.

In practice the derivation of the model-specific probability weights pose
a number of conceptual and computations issues that will be briefly
addressed below.
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In cases where the models under consideration are not exhaustive
and the underlying data generation process could be time varying, non-
Bayesian weights might be more appropriate. Many alternatives have been
proposed in the literature. Amongst these the simple average rule where
equal weights are attached to the alternative forecasts tends to perform sur-
prisingly well, as noted originally by Clemen (1989).9 Recently, Granger
and Jeon (2004) have proposed a modification of this procedure where the
average rule is applied to a subset of best performing models. This modifi-
cation, referred to as ‘thick’ modelling, is particularly relevant when there
are many forecasts under consideration.

Pooling of forecast variances can also be considered. Under BMA we have
(e.g. Draper, 1995)

Var
(
ZT+1,h |ZT

) =
m∑

i=1
Pr (Mi |ZT )Var

(
ZT+1,h |ZT , Mi

)
+

m∑
i=1

Pr (Mi |ZT )
[
E
(
ZT+1,h |ZT , Mi

)
−E

(
ZT+1,h |ZT

)]2 ,

Once again, more generally, we could have

Varw
(
ZT+1,h |ZT

) =
m∑

i=1
wiT Var

(
ZT+1,h |ZT , Mi

)
+

m∑
i=1

wiT
[
E
(
ZT+1,h |ZT , Mi

)− E
(
ZT+1,h |ZT

)]2 ,

where the weights wiT could be obtained using Bayesian or non-Bayesian
procedures. The first term in the above expression accounts for within
model variability and the second term for between model variability.
Clearly, a procedure that only combines the forecast variances will not
be correct unless all models have the same point forecasts. Pooling of pre-
dictive densities clearly does not imply using averages of the moments of
the underlying distributions except for the first moments.

There is no doubt that the Bayesian model averaging provides an attrac-
tive solution to the problem of accounting for model uncertainty. But
its strict application can be problematic particularly in the case of high-
dimensional models such as the vector error correction model of the UK
economy considered in our empirical work. The major difficulties lie in

9 Recent Monte Carlo evidence that attempts to explain this empirical finding is provided
by Hendry and Clements (2004) and Smith and Wallis (2005).
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the choice of the space of models to be considered, the model priors
Pr (Mi), and the specification of meaningful priors for the unknown para-
meters, Pr (θ i |Mi ). The computational issues, while still considerable, are
partly overcome by Monte Carlo integration techniques. For an excellent
overview of the issues involved in the application of BMA approach to
forecasting, see Hoeting et al. (1999). See also Fernandez et al. (2001a,b)
and Pesaran and Zaffaroni (2005) for specific applications.

Putting the problem of model specification to one side, the two impor-
tant components of BMA formula are the posterior probability of the
models, Pr (Mi |ZT ), and the posterior density functions of the parame-
ters, Pr (θ i |ZT , Mi ), for i = 1, . . . , m. In what follows we therefore consider
different approximations of Pr (Mi |ZT ) and Pr (θ i |ZT , Mi ), assuming that
T is sufficiently large that the sample observations dominate the choice
of the priors; in essence adopting a classical stance within an otherwise
Bayesian framework. See also Garratt et al. (2003b).

7.3 Computation of probability forecasts:
Some practical issues

Suppose the joint event of interest is defined by ϕ
(
ZT+1,h

)
< a, where

ϕ (·) and a are the L × 1 vectors ϕ (·) = (ϕ1 (·) ,ϕ2 (·) , . . . ,ϕL (·))′, a =
(a1, a2, . . . , aL)

′, ϕj(ZT+1,h) is a scalar function of the variables over the fore-
cast horizon T +1, . . ., T +h, and aj is the ‘threshold’ value associated with
ϕj (·). To simplify the exposition, we denote this joint event by Aϕ . The
(conditional) probability forecast associated with this event assuming that
model Mi holds is given by

πi
(
a, h;ϕ (·), θ i

) = Pr
[
ϕ
(
ZT+1,h

)
< a |ZT , Mi, θ i

]
. (7.28)

In practice, we might be interested in computing probability forecasts for
a number of alternative threshold values over the range aj ∈ [amin, amax].

With future uncertainty only

If the model is known to be Mi defined by (7.22) but the value of θ i is not
known, a point estimate of πi

(
a, h;ϕ (·) , θ i

)
can be obtained by

πi
(
a, h;ϕ (·) , θ̂ iT

) =
∫

Aϕ

fi
(
ZT+1,h

∣∣ZT , Mi, θ̂ iT
)
dZT+1,h. (7.29)

This probability distribution function only takes account of future uncer-
tainties that arise from the model’s stochastic structure, as it is computed
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for a given density function, Mi, and a given value of θ i, namely θ̂ iT .
It is also known as the ‘profile predictive likelihood’. See, for example,
Bjørnstad (1990).

With future and parameter uncertainty

To allow for parameter uncertainty, we assume that conditional on ZT , the
probability distribution function of θ i is given by g (θ i |ZT , Mi ). Then,

π̃i
(
a, h;ϕ (·)) =

∫
θ i∈�i

πi
(
a, h;ϕ (·) , θ i

)
g (θ i |ZT , Mi ) dθ i, (7.30)

or equivalently,

π̃i
(
a, h;ϕ (·)) =

∫
θ i∈�i

∫
Aϕ

fi
(
ZT+1,h |ZT , Mi, θ i

)
g (θ i |ZT , Mi ) dZT+1,hdθ i.

(7.31)

Computation of (7.31) requires the knowledge of g (θ i |ZT , Mi ). In the
absence of model priors Pr (Mi) or priors for the unknown parameters,
Pr (θ i |Mi ), we might assume

θ i |ZT , Mi
a� N

(̂
θ iT , T−1V̂θ i

)
. (7.32)

In this case, the point estimate of the probability forecast, πi
(
a, h;ϕ (·) ,̂θ iT

)
,

and the alternative estimate, π̃i
(
a, h;ϕ (·)), that allows for parameter uncer-

tainty are asymptotically equivalent as T → ∞. The latter is the ‘bootstrap
predictive density’ described in Harris (1989), who demonstrates that it
performs well in a number of important cases. Also, both of these esti-
mates under Mi tend to πi

(
a, h;ϕ (·) , θ i0

)
, which is the profile predictive

likelihood evaluated at the true value θ i0. In practice, computations of
πi
(
a, h;ϕ (·) , θ̂ iT

)
and π̃i

(
a, h;ϕ (·)) are typically carried out by stochastic

simulations (see Section 7.3.2 below), and the two estimates will differ by
terms that are O(h/T) and will be very close when h is small and T large.10

With future and model uncertainty

The probability estimates that allow for model uncertainty can now
be obtained using the Bayesian averaging procedure. Abstracting from
parameter uncertainty we have

π
(
a, h;ϕ (·) , θ̂T

) =
m∑

i=1
wiTπi

(
a, h;ϕ (·) , θ̂ iT

)
, (7.33)

10 See Bjørnstad (1990, 1998) for reviews of the literature on predictive likelihood analysis.
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where θ̂T =
(̂
θ

′
1T , . . . , θ̂

′
mT

)′
, and the weights, wiT ≥ 0 can be derived by

approximating the posterior probability of model Mi by11

ln Pr (Mi |ZT ) = LLiT −
(

ki

2

)
ln (T) + O (1) , (7.34)

where LLiT is the maximised value of the log-likelihood function for model
Mi. This is the familiar Schwarz (1978) Bayesian information criterion for
model selection. The use of this approximation leads to the following
choice for wiT :

wiT = exp (�iT )∑m
j=1 exp

(
�jT

) , (7.35)

where �iT = SBCiT − maxj
(
SBCjT

)
and SBCiT = LLiT −

(
ki
2

)
ln(T). Alter-

natively, following Burnham and Anderson (1998), one could use Akaike
weights defined by �iT = AICiT − max j

(
AICjT

)
, AICiT = LLiT − ki. While

the Schwarz weights are asymptotically optimal if the DGP lies in the set
of models under consideration, the Akaike weights are likely to perform
better when the true model does not lie in the set of models under con-
sideration, that are viewed as approximations to a complex and (possibly)
unknown DGP.

With future, parameter and model uncertainty

When parameter uncertainty is also taken into account, we have

π̃
(
a, h;ϕ (·)) =

m∑
i=1

wiT π̃i
(
a, h;ϕ (·)) , (7.36)

where π̃i
(
a, h;ϕ (·)) is the bootstrap predictive density defined by (7.31)

that makes use of the normal approximation given by (7.32). Again,
in practice, computations of πi

(
a, h;ϕ (·))and π̃i

(
a, h;ϕ (·)) are typically

carried out by stochastic simulations (see Section 7.3.2 below).

7.3.1 Computation of probability forecasts using analytic methods

In this subsection, we outline the computational difficulties that typically
will be encountered in the calculation of probability forecasts. We illustrate
this using the simpler case in which it is assumed that the parameters of

11 See also Draper (1995) for approximate posterior probability forecasts, conditional on the
model Mi being true.
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the model are known, so that only stochastic uncertainty is considered,
and the probability forecast is evaluated according to (7.29).

In this case there is generally no conceptual difficulty in evaluating the
probability of an event taking place using (7.29) for known θ̂ . However, the
computation can become complicated because of the form of the functions
ϕ or due to the difficulties arising from the selection of appropriate limits
of integration for the expression, or because of the complexity of the event
to be forecast even if the functions ϕ are reasonably simple.

Consider, for example, the linear case in which the joint event of interest
ϕ
(
zT+1, . . . , zT+h

)
can be expressed by

ϕ
(
zT+1, . . . , zT+h

) = ϕ (ẑT+1, . . . , ẑT+h
)+ νT+h, (7.37)

where ϕ
(
ẑT+1, . . . , ẑT+h

)
represents a (consistent) estimate of

ϕ
(
zT+1, . . . , zT+h

)
, based on estimated model parameter values θ̂T , and the

stochastic uncertainty surrounding the estimate is captured by an L × 1
vector of the corresponding forecast errors, νT+h, which is assumed to
be normally distributed with zero means and an L × L positive covari-
ance matrix, �ν . In this case, the probability forecast defined by (7.29) is
given by

π̂
(
a, h;ϕ(.),̂θT

)
= Pr

(
ϕ
(
zT+1, . . . , zT+h

)
< a

) = Pr
(
νT+h < a − ϕ (ẑT+1, . . . , ẑT+h

))
=
∫ a∗

L

−∞
· · ·
∫ a∗

1

−∞

[
(2π)−

1
2 L |�ν |− 1

2 exp
(

−1
2
ν′

T+h�
−1
ν νT+h

)]
dνT+h,1 · · · dνT+h,L,

where

a∗
j = aj − ϕj

(
ẑT+1, . . . , ẑT+h

)
, j = 1, 2, . . . , L.

Even in this relatively simple case, the evaluation of the probability
involves L multiple integrals and, unless L is small (1 or 2), its computation
would be quite demanding.

7.3.2 Computation of probability forecasts based on VAR models by
stochastic simulation

In this subsection, we describe the steps involved in the calcula-
tion of probability forecasts based on a vector error correction model
described in Section 6.3, using stochastic simulation techniques. Con-
sider the underlying vector error correction model, (6.86), which can be
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rewritten as

zt =
p∑

i=1
�izt−i + a0 + a1t + Hζ t , , t = 1, 2, . . . , T , (7.38)

where �1 = Im −αβ ′ +�1, �i = �i −�i−1, i = 2, . . . , p−1, �p = −�p−1, and
ζ t is assumed to be a serially uncorrelated i.i.d. vector of shocks with zero
means and a positive definite covariance matrix, �ζ ζ given by (6.88). In
what follows, we consider the calculation of probability forecasts first for
given values of the parameters, and then taking into account parameter
uncertainty.

FORECASTS IN THE ABSENCE OF
PARAMETER UNCERTAINTY

Suppose that the ML estimators of �i, i = 1, . . . , p, a0, a1, H and �ζ ζ are
given and denoted by �̂i, i = 1, . . . , p, â0, â1, Ĥ and �̂ζ ζ , respectively. Then,
the point estimates of the h-step ahead forecasts of zT+h conditional on
IT , denoted by ẑT+h, can be obtained recursively as

ẑT+h =
p∑

i=1
�̂iẑT+h−i + â0 + â1

(
t + h

)
, h = 1, 2, . . . , (7.39)

where the initial values, zT , zT−1, . . . , zT−p+1, are given. To obtain proba-
bility forecasts by stochastic simulation, we simulate the values of zT+h by

z(r)T+h =
p∑

i=1
�̂iz

(r)
T+h−i + â0 + â1

(
t + h

)+ Ĥζ
(r)
T+h,

h = 1, 2, . . . ; r = 1, 2, . . . , R, (7.40)

where superscript ‘(r)’ refers to the rth replication of the simulation algo-
rithm, and z(r)T = zT , z(r)T−1 = zT−1, . . ., z(r)T−p+1 = zT−p+1 for all r. The ζ (r)T+h’s
can be drawn either by parametric or non-parametric methods as described

in Section 7.3.3 below. The probability that ϕ�
(
z(r)T+1, . . . , z(r)T+h

)
< a�, is

computed as

πR
(
a�, h;ϕ� (·) , θ̂

) = 1
R

R∑
r=1

I
(
a� − ϕ�

(
z(r)T+1, . . . , z(r)T+h

))
,

where θ̂ is a vector containing estimates of all the parameters, and I (A)
is an indicator function which takes the value of unity if A > 0, and zero
otherwise. To simplify the notation we denote πR

(
a�, h;ϕ� (·) , θ̂

)
by πR (a�).

The predictive probability distribution function is now given by πR (a�) as
the threshold values, a�, are varied over the relevant regions.
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FORECASTS IN THE PRESENCE OF
PARAMETER UNCERTAINTY

To allow for parameter uncertainty, we use the bootstrap procedure and
first simulate S (in-sample) values of zt , t = 1, 2, . . . , T , denoted by z(s)t , s =
1, . . . , S, where

z(s)t =
p∑

i=1
�̂iz

(s)
t−i + â0 + â1t + Hζ

(s)
t , t = 1, 2, . . . , T , (7.41)

realisations are used for the initial values, z−1, . . . , z−p, and ζ (s)t ’s can be
drawn either by parametric or non-parametric methods (see Section 7.3.3
below). Having obtained the S set of simulated in-sample values,(
z(s)1 , z(s)2 , . . . , z(s)T

)
, the VAR

(
p
)

model (7.38) is estimated S times to obtain

the ML estimates, �̂
(s)
i , â(s)0 , â(s)1 , Ĥ(s) and �̂

(s)
ζ ζ , for i = 1, 2, . . . , p, and

s = 1, 2, . . . , S.
For each of these bootstrap replications, R replications of the h-step

ahead point forecasts are computed as

z(r,s)T+h =
p∑

i=1
�̂
(s)
i z(r,s)T+h−i + â(s)0 + â(s)1 (t + h) + Ĥ(s)ζ

(r,s)
T+h, (7.42)

for h = 1, 2, . . .H ; r = 1, 2, . . . , R and s = 1, 2, . . . , S, and the predictive
distribution function is then computed as

πR,S (a�) = 1
SR

R∑
r=1

S∑
s=1

I
[
a� − ϕ�

(
z(r,s)T+1, . . . , z(r,s)T+h

)]
.

Bootstrapping cointegrating models can be done either for a fixed num-
ber of cointegrating relations (obtained from estimates based on the actual
time series), or the cointegrating relations could be re-estimated for each
bootstrap replication. In our empirical applications we follow the former,
but allow for the uncertainty surrounding the number of cointegrating
vectors by means of model averaging techniques; namely different choices
of the number of cointegrating relations are regarded as different models.

7.3.3 Generating simulated errors

We now provide more details on the mechanism by which shocks are
generated in stochastic simulation methods described above. There are
two basic ways that the in-sample and future errors, ζ (s)t and ζ (r,s)T+h respec-
tively, can be simulated so that the contemporaneous correlations that
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exist across the errors in the different equations of the VAR model are
taken into account and maintained. The first is a parametric method where
the errors are drawn from an assumed probability distribution function.
Alternatively, one could employ a non-parametric procedure. The latter
is slightly more complicated and is based on re-sampling techniques in
which the simulated errors are obtained by a random draw from the
in-sample estimated residuals (e.g. Hall, 1992).

Parametric approach

Under this approach the errors are drawn for example, from a multi-

variate distribution with zero means and the covariance matrix, �̂
(s)
ζ ζ . To

obtain the simulated errors for m variables over h periods we first generate
mh draws from an assumed i.i.d. distribution which we denote by ε(r,s)T+i,

i = 1, 2, . . . , h. These are then used to obtain
{
ζ
(r,s)
T+i, i = 1, 2, . . .h

}
com-

puted as ζ (r,s)T+h = P̂(s)ε
(r,s)
T+h for r = 1, 2, . . . , R and s = 1, 2, . . . , S, where P̂(s)

is the lower triangular Choleski factor of �̂
(s)
ζ ζ such that �̂

(s)
ζ ζ = P̂(s)P̂(s)′,

and �̂
(s)
ζ ζ is the estimate of �ζ ζ in the sth replication of the bootstrap

procedure set out above. In the absence of parameter uncertainty, we
obtain ζ (r)T+h = P̂ε(r)T+h with P̂ being the lower triangular Choleski factor of

�̂ζ ζ . In our applications, reported in Chapter 11, for each r and s, we gen-
erate ε(r,s)T+i as i.i.d.N (0, Im), although other parametric distributions such
as the multivariate Student t-distribution can also be used.

Non-parametric approaches

The most obvious non-parametric approach to generating the simulated
errors, ζ (r,s)T+h, which we denote ‘Method 1’, is simply to take h random draws

with replacements from the in-sample residual vectors
{
ζ̂
(s)
1 , . . . , ζ̂

(s)
T

}
. The

simulated errors thus obtained clearly have the same distribution and
covariance structure as that observed in the original sample. However, this
procedure is subject to the criticism that it could introduce serial depen-
dence at longer forecast horizons since the pseudo-random draws are made
from the same set of relatively small T vector of residuals.

An alternative non-parametric method for generating simulated errors,
‘Method 2’, makes use of the Choleski decomposition of the estimated
covariance employed in the parametric approach. For a given choice

of P̂(s) a set of mT transformed error terms
{
ε̂
(s)
1 , . . . , ε̂(s)T

}
are computed

such that ε̂(s)t = P̂(s)−1ζ̂
(s)
t , t = 1, 2, . . . , T . The mT individual error terms
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are uncorrelated with each other, but retain the distributional infor-
mation contained in the original observed errors. A set of mh simulated
errors are then obtained by drawing with replacement from these trans-

formed residuals, denoted by
{
ε
(r,s)
T+1, . . . , ε(r,s)T+h

}
. These are then used to

obtain
{
ζ
(r,s)
T+1, . . . , ζ (r,s)T+h

}
, using the transformations ζ (r,s)T+h = P̂(s)ε

(r,s)
T+h for

r = 1, 2, . . . , R and s = 1, 2, . . . , S. Given that the P̂(s) matrix is used to
generate the simulated errors, it is clear that ζ (r,s)T+h again has the same
covariance structure as the original estimated errors. And being based
on errors drawn at random from the transformed residuals, these sim-
ulated errors will also display the same distributional features. Further,
given that the re-sampling occurs from the mT transformed error terms,
Method 2 also has the advantage over Method 1 that the serial depen-
dence introduced through sampling with replacement is likely to be less
problematic.

Choice of approach

The two non-parametric approaches described above have the advantage
over the parametric approach that they make no distributional assump-
tions on the error terms, and are better able to capture the uncertainties
arising from (possibly rare) extreme observations. However, they suffer
from the fact that they require random sampling with replacement. Replace-
ment is essential as otherwise the draws at longer forecast horizons are
effectively ‘truncated’ and unrepresentative. On the other hand, for a
given sample size, it is clear that re-sampling from the observed errors with
replacement inevitably introduces serial dependence in the simulated fore-
cast errors at longer horizons as the same residuals are drawn repeatedly.
When generating simulated errors over forecast horizons, therefore, this
provides an argument for the use of non-parametric methods over shorter
forecast horizons, but suggests that a greater reliance might be placed
on the parametric approach for the generation of probability forecasts at
longer time horizons.

7.4 Estimation and forecasting with conditional models

The density function fi (·) given in (7.22) can be decomposed in two
ways. First, a sequential conditioning decomposition can be employed to
write fi (·) as the product of the conditional distributions on successive
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observations on the zt ,

fi (Zt ; z0, θ) =
t∏

s=1
fi
(
zs | Zs−1; z0, θ i

)
,

where Zs = (z0, z1, . . . , zs) for given initial values z0. Second, since we
frequently wish to distinguish between variables which are endogenous,
denoted by yt , and those which are exogenous, denoted by xt , we can
write zt = (

y′
t , x′

t

)′ and use the factorisation:

fi
(
zt | Zt−1; z0, θ

) = fiy
(
yt | xt , Zt−1; z0, θ iy

)× fix
(
xt | Zt−1; z0, θ ix

)
, (7.43)

where fiy
(
yt | xt , Zt−1; z0, θ iy

)
is the conditional distribution of yt given

xt under model Mi and the information available at time t − 1, Zt−1, and
fix
(
xt | Zt−1; z0, θ ix

)
is the marginal density of xt conditional on Zt−1. Note

that the unknown parameters θ i are decomposed into the parameters of
interest, θ iy , and the parameters of the marginal density of the exogenous
variables, θ ix. In the case where xt is strictly exogenous, knowledge of
the marginal distribution of xt does not help with the estimation of θ iy ,
and estimation of these parameters can therefore be based entirely on the
conditional distribution, fiy

(
yt | xt , Zt−1; z0, θ iy

)
.

Despite this, parameter uncertainty relating to θ ix can continue to be rel-
evant for probability forecasts of the endogenous variables, yt , and forecast
uncertainty surrounding the endogenous variables is affected by the way
the uncertainty associated with the future path of the exogenous vari-
ables is resolved. In practice, the future values of xt are often treated as
known and fixed at pre-specified values. The resultant forecasts for yt are
then referred to as scenario (or conditional) forecasts, with each scenario
representing a different set of assumed future values of the exogenous vari-
ables. This approach underestimates the degree of forecast uncertainties.
A more plausible approach would be to treat xt as strongly or weakly exoge-
nous (as appropriate) at the estimation stage, but to allow for the forecast
uncertainties of the endogenous and the exogenous variables jointly. The
exogeneity assumption will simplify the estimation process but does not
eliminate the need for a joint treatment of future and model uncertainties
associated with the exogenous variables and the endogenous variables.
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8

The UK macroeconomy

In this part of the book, we provide a description of the construction
of a quarterly long-run structural macroeconometric model for the UK
using the framework and the techniques set out in Chapters 3–7. The
econometric methods employed are relatively straightforward to imple-
ment and our intention is to give a detailed account of the different steps
involved in the modelling process, covering the specification, estimation
and evaluation stages.

The model will be estimated over the period 1965q1–1999q4. This is
a sample of data which is relatively reliable in the sense that it is now
unlikely to be revised. We also consider some results obtained over a longer
sample of data covering the period 1965q1–2001q1. This provides a useful
means of investigating the robustness of the model to changes in the sam-
ple period and enables us to produce forecasts, in Chapter 11, which are
relevant to policy-makers at the time of going to print. A postscript evalu-
ation of point and event forecasts is also provided in Section 11.3. Before
undertaking this analysis, however, in the remainder of this chapter, we
provide an overview of the time series properties of the macrovariables
included in the model.

The theory outlined in Chapter 4 motivates our choice of the variables to
be included in the core model and suggests the appropriate measurements
to be used. Hence, yt is measured as the natural logarithm of UK real per
capita GDP; pt is the logarithm of domestic producer prices; p̃t is the loga-
rithm of domestic retail prices; p∗

t is the logarithm of the producer prices
of the OECD countries; et is the logarithm of the UK effective nominal
exchange rate (defined as the domestic price of a unit of foreign currency,
so that an increase in et represents a depreciation of the home currency); rt

is the domestic nominal interest rate, computed as rt = 0.25 ln(1+Rt/100),
where Rt is the 90 day Treasury Bill average discount rate per annum; r∗

t is
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the foreign nominal interest rate, computed as r∗
t = 0.25 ln(1 + R∗

t /100),
where R∗

t is a weighted average of 90 day interest rates per annum in the US,
Germany, Japan and France and weights are provided by the International
Monetary Fund Special Drawing Right (SDR); y∗

t is the logarithm of real per
capita GDP of the OECD countries; ht is the logarithm of (end-of-period)
real per capita money stock (M0); and po

t is the logarithm of oil prices,
measured by the average crude oil price published by the IMF. Details of
the construction and sources of the data are provided in Appendix C.

Considerable care has been exercised in choosing the appropriate mea-
sure for the macroeconomic variables of interest described above, ensuring
that the various measures correspond as closely as possible to the theo-
retical concepts discussed in Chapter 4. For example, to ensure a more
satisfactory match between theoretical and empirical concepts, producer
price indices are used to construct deviations between the domestic and
foreign price levels in the PPP relationship, while the retail price index
is used to measure domestic inflation in the FIP relationship.1 To check
on the robustness of our results, we also considered various alternative
measures of y∗

t , p∗
t and r∗

t , but we found that these have relatively little
impact on the estimation results.2 For example, the use of a weighted
average of the logarithm of the price indices of UK’s 42 largest trading
partners, where the weights are given by the share of UK imports from
these countries and the use of an export-weighted average of foreign out-
put, including countries both inside and outside of the OECD, appears to
have only marginal effects on the results. Similarly, the results were hardly
affected when we used the US nominal interest rate as an alternative to
the SDR-weighted rate.

The data used in the applied work are quarterly, seasonally adjusted
series covering the period 1964q1–1999q4. To ensure that all regressions
are comparable (irrespective of the order chosen for the underlying VAR
model, for example), all estimation results reported in the book are car-
ried out over the period 1965q1–1999q4 (140 observations) or the slightly
extended period 1965q1–2001q1 (145 observations). Plots of the core
macroeconomic series are provided in Figures 8.1–8.7. In what follows,
we summarise the main statistical characteristics of the series and provide

1 There is considerable evidence, both on the basis of our own analysis and elsewhere, that
the various alternative measures of inflation that are available are pairwise cointegrated with
a cointegrating vector of (1, −1) and a zero constant. The use of two measures of prices, pt and
p̃t , in the analysis has no impact on the long-run properties of the model, therefore, but is
likely to capture the short-run dynamics more accurately.

2 Other approaches to the construction of foreign variables are discussed in Pesaran,
Schuermann and Weiner (2004).
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a brief account of their history, considering, in turn, the series of outputs,
prices, exchange rates, interest rates and money.

8.1 Domestic and foreign output

Figures 8.1a and 8.1b show the level and first differences of the logarithm
of domestic output yt over our sample period, and Figures 8.1c and 8.1d
show the corresponding plots for foreign (OECD) output y∗

t .
Both variables show clear upward trends and appear stationary in first

differences. Over the whole of the sample period 1965q1–1999q4, yt and
y∗

t grew at similar rates, at 1.97% and 2.10% per annum, respectively.
But this obscures quite different experiences over different sub-periods,
with foreign output growing very rapidly at the beginning of the sample
before slowing at the end while the UK achieved relatively stable rates of
growth over these horizons. So, for example, the UK achieved a growth
rate of 1.86% per annum during the second half of the 1960s, 1965q1–
1969q4, rising to 2.15% over the 1970s, before falling slightly to 1.91%
per annum over the period 1980q1–1999q4. Foreign output, by way of
contrast, achieved very high levels of growth, of 3.9% per annum, during
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Figure 8.1a UK output, yt .
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Figure 8.1b First difference of UK output, �yt .
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Figure 8.1c Foreign output, y∗
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Figure 8.1d First difference of foreign output, �y∗
t .

1965q1–1969q4, compared to an average growth rate of 2.29% per annum
over the period 1970q1–1979q4, and an average rate of 1.56% per annum
for the period 1980q1–1999q4.

These differences in growth rates across extended periods are demon-
strated in Figures 8.1e and 8.1f, which show clearly the UK’s relative decline
over the first half of the sample period and relative recovery over the
second half of the sample.

Of course, the growth rates achieved over the decades were influenced
by some particular, and remarkable, episodes of output change in the UK.
For example, yt fell by around 2.47% in 1974q1 and this was followed by a
period of low growth that persisted throughout the mid-1970s. A similar,
although less pronounced, slowdown in growth was observed in y∗

t also,
and the timing of the slowdown provides some support for the view dis-
cussed in Chapter 3 that the oil price shock could be an important factor
in bringing about such sharp declines. In the early 1980s, domestic out-
put fell for five consecutive quarters between the periods 1980q1–1981q1,
including a fall of 2.00% in 1980q2. There was an associated rise in unem-
ployment from 1.37 million to 2.37 million and this contributed to a
growth rate in yt of just 0.85% per annum over the period 1980q1–1984q4
(compared to 1.1% per annum in y∗

t ). However, in terms of international
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Figure 8.1e UK and foreign output, yt and y∗
t .
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Figure 8.1f Difference of UK and foreign output, yt − y∗
t .
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comparisons, this was more than offset during 1985q1–1989q4 by the
rapid growth associated with the ‘Lawson boom’: unemployment fell from
3.34 million to 1.64 million, and output growth reached 3.49% per annum
in the UK (compared to 2.45% per annum abroad).

These episodes, among others, have contributed to a relatively volatile
output growth series for the UK considered quarter-on-quarter, with the
UK output growth series having a standard deviation of 4.1% compared
to 2.3% for foreign output growth over the whole sample. However, an
additional feature, which is readily apparent in Figures 8.1b in particu-
lar, is the large time-variation in the volatility of output growth. For
the period 1965q1–1979q4, the standard deviation of �yt was 5.33% per
annum (compared to 2.51% per annum for �y∗

t ), but these fell dramati-
cally during the second half of the sample to 2.84% per annum for the
UK during 1980q1–1999q4 (and to 1.90% per annum for foreign output
growth). Output growth in the UK was at its most volatile during the
1970s, during which time there were industrial disputes in the Mining
and Energy sectors in 1972 and 1974,3 and the effects of the oil price rises
of the early 1970s were apparent. But the reduction in volatility is not
just associated with these particular episodes and it is worth noting here
that a decline in the volatility of domestic and foreign prices and inter-
est rates has also been apparent since the mid-1980s, as we shall discuss
below.4

Finally, an alternative and complementary way of considering the varia-
tion in output growth is provided in Table 8.1. This table gives information
for the four-quarter moving average of output growth showing the pro-
portion of observations in which this average has fallen below various
thresholds during the extended sample 1965q1–2001q1 and during three
sub-periods 1970q1–1979q4, 1980q1–1989q4 and 1990q1–2001q1.

For example, we might be interested in the occurrence of a ‘recession’,
which we define as an event where the four-quarter moving average of
output growth falls below zero. Table 8.1 shows that the proportion of
times in which according to this definition recession occurred over the
whole sample was 13.1%, but that this proportion was higher through the

3 The miners’ strike of January–February 1971 resulted in the government declaring a state
of emergency, power cuts and fuel rationing, and much of British industry went on a three-day
working week. Industrial action by the miners and power engineers in the final months of 1973
resulted in the declaration of a further state of emergency, the imposition of prohibitions on
space heating in industrial and commercial premises and the imposition of a reduced working
week in January–February 1974.

4 The decline in the volatility is not thought to be sufficiently large that it will have much
effect on the unit root tests. See, for example, Busetti and Taylor (2005) and, for the testing of
cointegrating rank in the presence of GARCH error terms, see Garratt, Lee and Pesaran (2005b).
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Table 8.1 Historical unconditional probabilities for output growth (4-quarter moving
average).

Sample period Thresholds (per cent)

−2.0 −1.0 −0.5 0 1 2 2.5 3 4 5

1970q1–1979q4 5.00 10.00 12.50 15.00 17.50 37.50 57.50 70.00 80.00 90.00
1980q1–1989q4 10.00 12.50 12.50 12.50 17.50 35.00 40.00 47.50 72.50 95.00
1990q1–2001q1 2.22 6.67 13.33 17.78 22.22 42.22 60.00 77.79 93.33 100.00
1965q1–2001q1 4.83 8.28 11.03 13.10 17.93 40.00 55.86 67.59 83.45 95.86

Note: Output growth here is computed as: (�yt × 400) + 0.22236 where yt is the logarithm of real per capita
output and 0.22236 is the annualised population growth rate.

period 1990q1–2001q1 at 17.8%. Of course, this information is already
implicitly provided in Figures 8.1a and 8.1c. But these proportions con-
vey the information on the mean values and the volatility of the series
during the sub-samples in a particularly useful and meaningful way and
in much the same way as the probability forecasts convey information
on expected future events compared to the more usual point forecasts (as
discussed in Chapter 7). Certainly the values in Table 8.1 provide use-
ful reference points, showing the unconditional probability of the various
events occurring based on the various sub-samples, and can be readily used
in the interpretation of the probability forecasts that we shall describe in
Chapter 11.

8.2 Domestic and foreign prices

Figures 8.2, 8.3 and 8.4 plot the time paths of the levels and first differences
of the various price series considered in our model pt , p̃t , p∗

t , pt −p∗
t , po

t (plus
the second difference of pt and p̃t ) over the sample period 1964q1–1999q4.
We focus mostly on the price changes, but make the observation that the
levels of the price series are clearly non-stationary and upward trended.

Domestic price inflation, measured either by producer price inflation�pt

or retail price inflation �p̃t , was relatively low through the early part of the
sample, averaging 4.46% per annum and 5.22% per annum, respectively,
over the period 1965q1–1972q2. But it rose to very high levels through the
mid-1970s, averaging in excess of 15% per annum during 1972q3–1976q4
and peaking at 25.95% per annum for �pt and 33.03% per annum for �p̃t

in 1974q1 and 1975q2, respectively.
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Figure 8.2a UK producer prices, pt .
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Figure 8.2b First difference of UK producer prices, �pt .
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Figure 8.2c UK retail prices, p̃t .

–5

0

5

10

15

20

25

30

35

64q1 66q4 69q3 72q2 75q1 77q4 80q3 83q2 86q1 88q4 91q3 94q2 97q1 99q4

A
nn

ua
l p

er
ce

nt

Figure 8.2d First difference of UK retail prices, �p̃t .
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Focusing on �pt , a significant part of these price movements are asso-
ciated with rapidly rising oil prices and exchange rate depreciations.
However, other domestic factors were also associated with the high infla-
tion of this period. The implementation of various forms of incomes policy
in this period can also help explain the volatility of the �pt series: sharp
reductions in the series are observed in 1967q1, 1967q2 and 1973q2,
following the statutory period of zero wage increases during the ‘Wage
Freeze’ and ‘Severe Restraint’ of the Wilson administration (covering two
six-month periods beginning June 1966) and the wage and price ‘Stand-
still’ of the Heath administration (lasting from November 1972 to March
1993); and the effects of the statutory ceilings on pay increases imposed
during 1968q2–1969q2 and 1973q2–1974q3 help account for falls in �pt

observed at the end of these two sub-periods. The Callaghan government’s
‘Social Contract’ with the Trade Unions, beginning in July 1976, saw a
reduction in wage inflation from 27% per annum in 1975 to 9% per
annum in 1977, and there was a corresponding reduction in price infla-
tion. But the breakdown of this policy in the ‘Winter of Discontent’ of
1978/79, the oil price rises of 1978 and 1979 and the increase in VAT
from 8% to 15% in June 1979 generated upward pressure on prices, so
that producer price inflation averaged 12.07% per annum over the period
1977q1–1981q1. Since that time, �pt and �p̃t have achieved relatively
low levels once more, averaging 3.97% and 4.53% per annum over the
period 1981q2–1998q2. Particularly low levels of inflation, of 2.24% and
2.54% per annum, were observed during the later period 1992q4–1999q4,
which largely coincides with the period over which the British govern-
ment adopted an explicit policy of inflation targeting (a strategy followed
in the aftermath of the UK’s exit from the ERM in 1992 and implemented
both before and after central bank independence was announced in
1997).5

In view of the various policy stances taken on inflation over the sample,
it is interesting to consider the proportion of times that the (four-quarter
moving average of) domestic inflation, as measured by the Retail Price
Index has fallen below various thresholds, as shown in Table 8.2.

5 Inflation targets relating to the Retail Price Index (excluding mortgage payments) were
first set explicitly in the UK in October 1992, specifying that inflation should be in the lower
half of the range 1–4% per annum by Spring 1997. The policy was formalised further in May
1997 when the Bank of England was given operational independence with the remit to aim
for an average annual inflation rate of 2.5%, with the rate falling in the target range 1.5–3.5%.
The current target is consumer price inflation of 2.0%, with bands of 1% either side. If these
bands are exceeded then a letter is required to be sent to the Chancellor explaining why this
has occurred.
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These show that realisations of the annual rate of inflation below 6%
were rare in the 1970s, but occurred quite frequently during in the 1980s
and were experienced in almost 90% of cases in the 1990s. The proportion
of occasions on which inflation has been within the acceptable range of
[1.5%, 3.5%] over the sample 1965q1–2001q1 is just 24.14%. However,
over the low inflation period after 1990q1, inflation was within this band
60% of the time.

The apparently distinct episodes of high and low inflation influence the
statistical characterisation of the data since the persistence of shocks in the
inflation series suggests that inflation might not be stationary. In contrast,

Table 8.2 Historical unconditional probabilities for inflation (4-quarter moving
average).

Sample period Thresholds (per cent)

1.5 2.5 3.5 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0

1970q1–1979q4 0.00 0.00 0.00 2.50 7.50 12.50 30.00 37.50 52.50 72.50 90.00
1980q1–1989q4 0.00 0.00 10.00 40.00 55.50 62.50 75.00 77.50 77.50 92.50 100.00
1990q1–2001q1 8.89 28.89 68.89 86.67 88.89 88.89 91.11 93.33 100.00 100.00 100.00
1965q1–2001q1 3.45 10.35 27.59 48.28 57.93 62.01 71.03 74.48 80.69 90.35 97.24
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Figure 8.2e Second difference of UK producer prices, �2pt .
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Figure 8.2f Second difference of UK retail prices, �2p̃t .

changes in the rate of inflation (illustrated in Figures 8.2e–f) appear clearly
stationary. We discuss this feature of the data more formally in Section 9.2.

The effects of the oil price hikes can also be seen in the �p∗
t series, with

high inflation observed worldwide during the 1970s. There are, however,
clear periods during which UK and world inflation diverge.

For example, Figure 8.3c shows the UK price index rose very rapidly
relative to world prices around the mid- to late-1970s. In particular, we see
that during the period 1972q3 to 1976q4, (pt − p∗

t ) rose at an average rate
of 5.05% per annum, and this compares to average growth of 0.55% per
annum over the sample period up to 1972q3, and of 0.13% per annum
during the sample period after 1976q4.

Finally, to be quite clear on the timing and size of the effects of oil prices
on domestic and foreign price inflation, Figures 8.4a and 8.4b plot the level
and first difference of oil prices themselves. These are obviously dominated
by the effects of the various large oil price shocks.

Over the period 1965q1–1973q4, the price of oil was essentially flat, but
quadrupled in 1974q1 as a result of the Yom Kippur War and its after-
math. Oil prices remained relatively stable until the second increase in the
price of oil in 1979q2, which was brought about largely due to the Iranian
Revolution in February 1979. In 1986q1, the oil price fell sharply, largely
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Figure 8.3a Foreign producer prices, p∗
t .
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Figure 8.3b First difference of foreign producer prices, �p∗
t .
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Figure 8.3c Relative prices, pt − p∗
t .
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Figure 8.3d First difference of relative prices, �(pt − p∗
t ).
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Figure 8.4b First difference of the oil price, �po
t .
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instigated by Saudi Arabia, and there followed a period where the level
was considerably lower than previously, but where the volatility was high.
Large increases in the price of oil were experienced in 1990q3 and 1990q4
during the Persian Gulf War in the aftermath of the invasion of Kuwait by
Iraq, but these were reversed in 1991q1. Over the remaining part of our
sample, 1991q2–1999q4, real oil prices fell slightly relative to domestic as
well as foreign prices.

8.3 Exchange rates

Figures 8.5a and 8.5b plot the level and first differences of the UK effec-
tive exchange rate, et . When considering exchange rate movements, the
sample can conveniently be split into four main episodes, namely: (i) the
period of fixed exchange rate upto June 1972; (ii) the high inflation period
of 1972q3–1976q4; (iii) the period between 1977q1 and 1981q1; and
(iv) 1981q2–1999q4.

During the first of these episodes, et depreciated by 2.08% per annum,
although this depreciation came about almost entirely through the 14%
devaluation of November 1967. The flotation of sterling in June 1972 was
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Figure 8.5a Effective exchange rate, et .
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Figure 8.5b First difference of effective exchange rate, �et .

accompanied by a sharp depreciation. And the worsening of the UK’s trade
balance, associated with its accession to the EC in January 1973 and with
the oil price shock of 1973q4, was followed by a sequence of further depre-
ciations. Hence, the average rate of increase in et over the second episode,
covering 1972q3–1976q4, was 11.61% per annum (substantially outstrip-
ping the rise in (pt − p∗

t ) over the same period). The third period, covering
1977q1–1981q1, saw the UK become a net exporter of oil at a time when
oil prices rose once more and when the Thatcher administration started
to implement its Medium Term Financial Strategy (both in 1979). Over
this period, et appreciated at a rate of 6.77% per annum, reversing (and
overshooting) the trend reduction in the terms of trade that had occurred
over the first two periods. Finally, the fourth period is characterised once
more by moderate depreciation, averaging 1.33% per annum over 1981q2–
1999q4, although this has been subject to a certain degree of exchange
rate volatility and there have been a number of episodes during the period
which particularly stand out. For example, the rise in et of 18.2% dur-
ing 1986, associated with the fall in oil prices of that year; the period
of exchange rate appreciation observed during the pound’s shadowing
of the Deutschemark during 1987–88; the sharp appreciation of sterling
following entry into the ERM in October 1990; the sharp depreciation of
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sterling in the aftermath of the pound’s exit from the ERM in September
1992; and the almost continuous appreciation of sterling from 1996q1 to
the end of the sample in 1999q4.

8.4 Domestic and foreign interest rates

Figures 8.6a–8.6d display the time series for rt , r∗
t and their first differ-

ences. Again the series can be considered in four broad episodes, defined
according to the movements in r∗

t .
Episode 1 is defined over the period 1965q1–1970q1, during which

time r∗
t gradually rose, largely reflecting the rising budget deficit in the

US emerging as a result of financing the Vietnam War, rising US infla-
tion and the contractionary monetary policy of the Nixon administration
through 1969.6 The second episode, over the 1970q2–1974q3 period,
sees r∗

t first falling and then rising as the US Federal Reserve pursued
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Figure 8.6a UK interest rates, rt .

6 This discussion is based on the assumption that the primary driving force in r∗
t is the US

short-term interest rate whose weight when computing r∗
t is 0.4382, compared with the next

largest weight of 0.2360 for Germany.
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Figure 8.6b First difference of UK interest rates, �rt .
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Figure 8.6c Foreign interest rates, r∗
t .
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Figure 8.6d First difference of foreign interest rates, �r∗
t .
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Figure 8.6e UK and foreign interest rates, rt and r∗
t .
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Figure 8.6f Difference of UK and foreign interest rates, rt − r∗
t .

a non-accommodating monetary policy following the OPEC oil price
shock. The third episode, 1974q4–1981q3, ends with US rates achiev-
ing unprecedentedly high levels following the Reagan administration’s
anti-inflationary policy and the US monetary authorities’ pursuit of tight
money through 1980/81, and the fourth episode, lasting to the end of
the sample, is characterised by generally falling foreign nominal rates.
Rates reached their lowest levels since 1972 at the end of 1987 when the
monetary authorities loosened policy following the Wall Street Crash of
October 1987, but rose through 1990 in response to the effects of monetary
unification of Germany in July 1990.

Over the first of these episodes, rt corresponds quite closely to move-
ments in r∗

t , although rt appears relatively high in 1967q4 (at which
time Harold Wilson’s government in the UK was implementing defla-
tionary measures to support the devaluation of the exchange rate) and
rt fell relatively rapidly through 1971 in reaction to the changes in
monetary control outlined in the Bank of England’s publication on ‘Com-
petition and Credit Control’. In the second episode, the UK and world-
wide experience of inflation through the early and mid-1970s coincided
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with high nominal interest rates at home and abroad. Although rt rose
substantially higher than r∗

t during this period, UK nominal rates did
not keep pace with the very high inflation of the time and real rates
of interest in the UK were negative for most of the 1970s. During the
third episode, while r∗

t fell through 1974q4–1976q2 and then remained
low until 1978q2, rt rose sharply during 1976 following the implementa-
tion of monetary targets by the Callaghan administration from mid-1975
and the administration’s loan negotiations with the IMF at the end of
1976. UK rates rose throughout 1978/79, preceding the rises abroad,
and remained high until international rates began to fall at the end of
1981. Finally, during the fourth episode, UK rates fell through to the
end of 1987, although even during this period they remained high by
international standards. The UK policy of shadowing the Deutschemark
through 1988 and sterling’s membership of the ERM between October
1990 and September 1992 saw rt high relative to r∗

t although, by the
end of the sample, rt was at a level comparable with those of the early
1960s.

8.5 Real money balances relative to income

Figures 8.7a and 8.7b show the time series for ht − yt and their first dif-
ference. The variable ht − yt measures the inverse of the per capita real
narrow money velocity and what is very clear is the almost uninterrupted
downward trend since the beginning of our period (a trend which goes
back as far as the late 1940s; see Janssen, 1996).

This trend is usually explained by progress in payments technology.
The increased use of alternative means of payments has caused the pro-
portion of expenditure financed by cash to fall almost continuously.
However, since 1990, the trend has flattened out. Explanations given for
this are that the payments technology growth has slowed down to a point
of no longer having an effect and that a shift to a low inflation envi-
ronment has led agents to voluntarily hold a larger proportion of their
portfolios in cash. Evidence on these hypothesis are presented in Janssen
(1996).

This concludes our overview of the UK macroeconomic experiences as
reflected in the variables to be included in the core UK macroeconomic
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Figure 8.7b First difference of the money income ratio, �(ht − yt ).
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model. The overview is not intended to provide a comprehensive eco-
nomic history of the UK economy over the last three decades, but provides
a useful statement of some of the major events that lie behind the
data presented to place the econometric analysis in context. This formal
econometric analysis follows in the next chapter.
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9

A long-run structural model of the UK

In this chapter, we describe the estimation and testing of the core long-
run model of the UK economy set out in Chapter 4. This involves the
estimation of a VECM of the form defined in equation (4.46) which for
convenience we reproduce here:

�yt = ay + αyb0 − αyβ
′
[zt−1 − γ (t − 1)] +

p−1∑
i = 1

�yi�zt−i + ψyo�po
t + uyt ,

(9.1)

where β
′
γ = b1 in (4.46). In this specification, zt is partitioned as zt =

(po
t , y′

t )
′, where yt = (et , r∗

t , rt ,�p̃t , yt , pt −p∗
t , ht −yt , y∗

t )
′, ay is an 8×1 vector

of fixed intercepts, αy is an 8×5 matrix of error correction coefficients (also
known as the loading coefficient matrix), �yi, i = 1, 2, . . . , p − 1, are 8 × 9
matrices of short-run coefficients, ψyo is an 8 × 1 vector representing the
impact effects of changes in oil prices on �yt , uyt is an 8 × 1 vector of
disturbances assumed to be i.i.d.(0,�y), with �y being a positive definite
matrix, and by construction uncorrelated with uot , and β

′
(zt−1−γ (t −1)) is

an r ×1 vector of error correction terms. The long-run theory suggests that
r = 5, but our approach tests the hypothesis of r = 5 against alternative
values for r.

The above specification embodies the economic theory’s long-run pre-
dictions by construction, in contrast to the more usual approach where
the starting point is an unrestricted VAR model, with some vague priors
about the nature of the long-run relations. By including the trend inside
the error correction term, the deterministic trend properties of the model
do not change with the number of cointegrating vectors, r.
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9.1 The different stages of estimation and testing

As a general guide to the application of the econometric techniques
described in Chapter 6, and as a precursor to our own analysis of the core
model, we now describe the sequence of steps we followed in our empirical
work. Note that in order to incorporate the long-run relationships into a
suitable model, as defined above, it is important that the variables used
in the empirical analysis can be reasonably argued to be I(1). Hence the
preliminary stage in any analysis is to establish the orders of integration of
the variables in the vector zt and we do this in the next section.1 Following
on from this, we can identify five stages of the estimation procedure.

First, a sequence of unrestricted VAR(p), p = 0, 1, 2, . . . , 6 models are esti-
mated over the same sample period, 1965q1–1999q4. The maximum lag
order, 6, is in some sense arbitrary, but is chosen a priori bearing in mind
the quarterly nature of the observations, and the size of the available sam-
ple (namely, 140 quarterly observations). The order of VAR model to be
used in the analysis is then selected in the light of the Akaike Information
Criterion (AIC) and the Schwarz Bayesian Criterion (SBC).

Second, having established the appropriate order of the VAR model, co-
integration tests are carried out using the trace and the maximum eigen-
value statistics, reviewed in Chapter 6. The results of these tests can be
inconclusive. So the test results need to be carefully interpreted in con-
junction with the theory’s prediction described in Chapter 4, before a
decision is made concerning the number of the cointegrating relations
that are most likely to exist among the variables under investigation.

Third, having decided that there exist, say, r cointegrating vectors among
the variables, we are in a position to estimate an exactly identified set of
long-run relations, in which r2 restrictions are imposed on the cointegrat-
ing vectors (r restrictions on each of the r vectors). In one sense, the choice
of the exactly identifying restrictions is arbitrary: the maximised value of
the log-likelihood of the system will be the same irrespective of how the
long-run relations are exactly identified. In another sense, however, the
choice of exactly identifying restrictions is crucial, as it provides the basis
for the development of an econometric model with economically mean-
ingful long-run properties. It is therefore important that the cointegrating

1 It is, however, important to note that in testing the rank of the cointegrating space, it is not
necessary that the underlying variables should all be I(1). The problem arises in interpreting
the long-run relations; since an I(0) variable can be viewed trivially as forming a cointegrating
relationship with the other variables using β = (0, . . . , 0, 1, 0, . . . , 0) as a cointegrating vector,
with the non-zero element attached to the I(0) variable in question.
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relations are exactly identified by imposing restrictions that are a subset
of those suggested by economic theory. It is also a good practice to avoid
using doubtful theory restrictions as exact identifying restrictions. Estima-
tion of the parameters of the core model, (9.1), can be carried out using
the long-run structural modelling approach in described in Chapter 6.

The fourth step in the analysis considers the imposition and testing of
over-identifying restrictions on the cointegrating vectors, as predicted by
economic theory. This analysis is carried out along the lines set out in
Pesaran and Shin (2002) and Pesaran, Shin and Smith (2000) and involves
the ML estimation of the model subject to the exactly and over-identifying
restrictions. The tests of over-identifying restrictions will now be in the
form of the familiar χ2 tests with degrees of freedom equal to the num-
ber of the over-identifying restrictions. It is worth noting that this is a
system-estimation procedure, and the likelihood function in terms of the
cointegrating vectors can be quite complicated, so that the existence of
local maxima cannot be ruled out, and the search for the global maximum
might be difficult. To avoid convergence problems, it is often advisable to
impose over-identifying restrictions one-at-a-time and, as far as possible,
in a sequence that can be meaningfully interpreted so that information
can be obtained on which of the restrictions is more or less likely to be
accepted by the data.2 Another possibility would be to start from fully spec-
ified long-run relationships and then relax some of the theory restrictions
one at a time.

The fifth step in the analysis concerns the interpretation of the results.
The imposition of long-run, theory-based restrictions yield error correction
terms that can be interpreted as characterising disequilibria in partic-
ular markets, and the associated error correction regressions show the
short-run evolution of the variables in the model in response to devia-
tions from equilibrium and to past changes in the variables of the model.
The error correction regressions are also subjected to diagnostic tests for
residual serial correlation, non-normal errors, functional form misspecifi-
cation, and heteroscedasticity as is usual in the case of standard regression
analysis. The magnitudes of some of the estimated regression coefficients
provide useful information on the dynamics of the system, highlighting
which of the variables have large and statistically significant effects on
each other, although care needs to be exercised in the interpretation of

2 The interpretation of this sequence of restriction tests should also be sensitive to the fact
that asymptotic critical values of over-identifying restrictions tend to over-reject when applied
to small samples, and in some cases by a large amount, as discussed earlier in Section 6.4.
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the coefficients on the error correction terms as far as the stability of the
system as a whole is concerned (as discussed in Chapter 6).

As part of assessing the model we would also need to analyse its dynam-
ics. This involves the use of persistence profiles, impulse responses and
probability forecasting which we discuss in Chapters 10 and 11.

9.2 Unit root properties of the core variables

Before the estimation of the model can begin, it is important that the
unit root properties of the variables under investigation are established to
enable sensible interpretation of the long-run relations. The limitations of
the standard tests for unit roots (such as the Dickey and Fuller (1979) or
the Phillips and Perron (1988) tests) are well-known, but they neverthe-
less provide important information on the nature of the persistence of the
time series under investigation. For example, it might be difficult to come
to a clear-cut conclusion over whether the effects of a shock to a particular
variable take a long while to die away (for an I(0) variable) or whether
they will never die away (for an I(1) variable) using existing tests and
given the limited data available. Even such an ambiguous conclusion can
be helpful, however, as it suggests that certain variables are on the border-
line of being I(0)/I(1) or I(1)/I(2). For example, one might assume that a
given variable is I(1), perhaps on the basis of a priori economic reasoning,
and subsequently carry out tests to establish the number of cointegrating
relations between this and other I(1) variables. The knowledge that this
variable is close to being stationary, when considered in isolation, means
that the tests of the number of cointegrating relationships are likely to sup-
port the presence of a higher number of cointegrating relations than would
be the case if the variable in question was clearly I(1).

The results of the Augmented Dickey–Fuller (ADF) and Phillips–Perron
(PP) tests, computed over the sample period for the levels and first
differences of the core variables, are reported in Tables 9.1a and 9.1b.

Both sets of tests provide relatively strong support for the view that yt ,
y∗

t ,rt , r∗
t , et , (ht − yt ) and po

t are I(1) series. The unit root hypothesis is
clearly rejected when applied to the first differences of these variables,
but there is no evidence with which to reject the unit root hypothesis
when the tests are applied to the levels. There is, however, some ambigu-
ity regarding the order of integration of the price variables. Application
of the ADF test to �pt , �p̃t and �p∗

t yields mixed results: the hypothe-
sis that there is a unit root in the domestic and foreign inflation rates
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Table 9.1a Augmented Dickey–Fuller unit root tests applied to
variables in the core model, 1965q1–1999q4.

Variable ADF(0) ADF(1) ADF(2) ADF(3) ADF(4)

(i) For the first differences

�yt −11.94 −8.06 −5.40a −5.18 −4.81
�y∗

t −7.43 −5.28a −4.53 −4.22 −4.11
�rt −10.54 −7.79 −7.49 −6.08 −6.30a

�r∗
t −7.06a −6.19 −4.89 −4.85 −4.54

�et −9.81a −7.89 −6.45 −5.52 −5.39
�(ht − yt ) −12.21a −8.16 −5.79 −4.82 −3.13
�pt −3.50a −3.19 −2.67 −2.44 −2.43
�p̃t −4.41 −3.05a −2.97 −2.42 −2.23
�p∗

t −5.06 −3.47 −2.73a −2.75 −2.90
�po

t −11.05a −8.71 −6.41 −5.68 −5.71
�2pt −13.32 −10.74a −8.80 −7.15 −6.95
�2p̃t −17.37 −10.22 −9.48 −8.06 −7.43
�2p∗

t −17.82 −12.75a −8.63 −6.65 −6.43
�(pt − p∗

t ) −6.69 −4.91 −3.72a −3.60 −3.32

(ii) For the levels

yt −2.32 −2.33 −2.46 −3.14a −3.06
y∗
t −3.37 −3.18 −3.22a −3.24 −3.22
rt −2.23 −2.57a −2.65 −2.32 −2.46
r∗
t −1.24 −2.47a −2.46 −2.86 −2.71
et −1.03 −1.45a −1.32 −1.33 −1.37
ht − yt 1.41 1.82a 2.00 1.83 1.86
pt 2.21 −0.39a −0.48 −0.76 −0.90
p̃t 2.12 −0.03 −0.61a −0.57 −0.88
p∗
t 1.83 −0.07 −0.73 −1.20a −1.13

po
t −1.43a −1.53 −1.38 −1.49 −1.44

pt − p∗
t 0.47 −0.40 −0.66 −1.01a −0.96

Note: When applied to the first differences, augmented Dickey–Fuller (1979, ADF)
test statistics are computed using ADF regressions with an intercept and p lagged
first differences of dependent variable, while when applied to the levels, ADF statis-
tics are computed using ADF regressions with an intercept, a linear time trend and
p lagged first differences of dependent variable, with the exception of the follow-
ing variables: rtand r∗

t where only an intercept was included in the underlying ADF
regressions. The relevant lower 5% critical values for the ADF tests are −2.88 for the
former and −3.45 for the latter. The symbol ‘a’ denotes the order of augmentation
in the Dickey–Fuller regressions chosen using the Akaike Information Criterion, with
a maximum lag order of four.

is rejected for low orders of augmentation (namely, for p = 0 and 1),
but not for higher orders. The application of the PP test rejects the unit
root hypothesis when applied to �p∗

t , �pt and �p̃t . Overall the available
data is not informative as to whether domestic and foreign prices are I(1)
or I(2).

These preliminary results regarding the unit roots properties of the core
variables raise interesting issues concerning the use of economic theory
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Table 9.1b Phillips and Perron unit root tests applied to variables
in the core model, 1965q1–1999q4.

Variable PP(0) PP(5) PP(10) PP(15) PP(20)

(i) For the first differences

�yt −11.94 −12.00 −12.02 −11.95 −11.98
�y∗

t −7.43 −7.68 −7.73 −7.72 −7.80
�rt −10.54 −10.50 −10.51 −10.67 −11.41
�r∗

t −7.06 −7.14 −6.84 −6.43 −6.27
�et −9.81 −9.75 −9.76 −9.81 −9.73
�(ht − yt ) −12.21 −12.28 −12.55 −12.86 −13.22
�pt −3.05 −3.30 −3.38 −3.64 −3.78
�p̃t −4.41 −4.22 −4.70 −5.04 −5.32
�p∗

t −5.06 −5.07 −5.52 −5.91 −6.16
�po

t −11.05 −11.03 −11.03 −11.03 −11.03
�2pt −13.32 −5.99 −4.49 −4.03 −2.76
�2p̃t −17.37 −19.84 −21.27 −23.83 −25.96
�2p∗

t −17.82 −20.07 −22.92 −24.82 −28.66
�(pt − p∗

t ) −6.69 −6.96 −7.53 −7.87 −8.01

(ii) For the levels

yt −2.32 −2.70 −2.84 −2.70 −2.47
y∗
t −3.37 −3.07 −3.08 −3.14 −3.22
rt −2.23 −2.45 −2.37 −2.24 −2.02
r∗
t −1.24 −2.13 −2.03 −1.72 −1.54
et −1.03 −1.29 −1.29 −1.35 −1.17
ht − yt 1.41 1.90 1.85 1.87 1.83
pt 2.21 0.43 0.01 −0.22 −0.36
p̃t 2.12 0.45 0.02 −0.18 −0.31
p∗
t 1.83 −1.45 −1.43 −1.46 −1.45

po
t −1.43 −1.45 −1.43 −1.46 −1.45

pt − p∗
t 0.47 −0.43 −0.69 −0.78 −0.79

Note: PP(�) represents Phillips and Perron (1988) unit root statistic based on the Bartlett
window of size �. In the first difference equations, PP test statistics are obtained includ-
ing only an intercept in the underlying DF regressions; in the levels equations, PP test
statistics are obtained including an intercept and a time trend in the underlying DF
regressions, with the exception of the following variables; rt and r∗

t where no trend
is included. The relevant lower 5% critical values are −2.88 for the first difference
equations, and −3.45 for the levels equations.

and statistical evidence in macroeconometric modelling. Starting from the
long-run theory set out in Chapter 4, the validity of the Fisher equation
requires that inflation and interest rates have the same order of inte-
gration. The theoretical literature generally assumes that these series are
I(0), but as we have seen above the empirical evidence is mixed with the
interest rate behaving as an I(1) variable and the inflation rate being a
borderline case.3 There is, therefore, a trade-off between the demands of

3 In this book we are confining the modelling exercise to log-linear specifications and a more
complicated non-linear model might be needed for interest rates and inflation, as argued,
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theory and econometrics. Our approach to this dilemma is a pragmatic
one, aiming to adequately capture the statistical properties of the data
in a modelling framework which, at the same time, is coherent with our
underlying analytic account of how the economy operates. For these rea-
sons, in our work, we treat rt , r∗

t , �pt , �p̃t and �p∗
t as I(1) variables.

This allows the empirical model to adequately represent the statistical
features of the series over the sample period and provides the scope for
accommodating in the model the long-run relationships described in
Chapter 4.

Of course, domestic and foreign prices appear in their level in the PPP
relationship of (4.35) and this raises the potential difficulty of mixing I(1)
and I(2) variables. Haldrup’s (1998) review of the econometric analysis
of I(2) variables warns of the dangers of the inappropriate application of
econometric methods designed for use with I(1) variables and suggests
that it is often useful to transform time series a priori to obtain variables
that are unambiguously I(1) rather than dealing with mixtures of I(1) and
I(2) variables directly. In the case of the core variables under consideration,
this is achieved by working with the relative price variables pt − p∗

t rather
than the two price levels pt and p∗

t separately. As shown in Table 9.1a,
the relative price term is unambiguously I(1) according to the ADF
statistics.

The decision to include domestic prices in the model in two forms,
(pt − p∗

t ) and �p̃t does not create difficulties of inconsistency either alge-
braically or economically (and would not do so even if we used �pt in
place of �p̃t in the model). Ignoring the distinction between pt and p̃t

for the moment, we note that the associated structural model of (5.2)
contains nine equations in eight endogenous variables. One of the nine
equations corresponds to the determination of domestic prices pt and one
corresponds to the determination of foreign prices p∗

t and this is entirely
consistent with the fact that the domestic price variable influences the
relative price variable and the inflation variable when the model is esti-
mated. Further, there is considerable evidence, both on the basis of our
own analysis and elsewhere, that the various alternative measures of infla-
tion that are available are pairwise cointegrated with a cointegrating vector
of (1, −1) and a zero constant. The use of two measures of prices, pt

and p̃t , in the analysis has no impact on the long-run properties of the

for example, in Pesaran, Timmermann and Pettenuzzo (2004). Such an approach is worth
considering but lies outside the scope of the present work.

203



A Long-run Model of the UK

model, therefore, but is likely to capture the short-run dynamics more
accurately.

In summary, then, we can say that it seems appropriate to view all nine
variables of zt = (

po
t , et , r∗

t , rt ,�p̃t , yt , pt − p∗
t , ht − yt , y∗

t

)′ as approximately
I(1) on the basis of the unit root statistics reported. We therefore con-
ducted our analysis on this basis, although the ambiguity regarding the
�p̃t variable needs to be borne in mind in interpreting the subsequent
results.

9.3 Testing and estimating of the long-run relations

The first stage of our modelling sequence is to select the order of the
underlying VAR using AIC and SBC reported in Table 9.2.

Here we find that a VAR of order two appears to be appropriate when
using the AIC as the model selection criterion, but not surprisingly that the
SBC favours a VAR of order one. We proceed with the cointegration analysis
using a VAR(2), on the grounds that the consequences of overestimation
of the order of the VAR are much less serious than underestimating it; see
Kilian (2002).4

Using a VAR(2) model with unrestricted intercepts and restricted trend
coefficients, and treating the oil price variable, po

t , as a weakly exoge-
nous I(1), or long-run forcing, variable, we computed Johansen’s ‘trace’

Table 9.2 Akaike and Schwarz Information
Criteria for lag order selection.

Lag length Log likelihood AIC SBC

6 4641.2 4155.2 3440.4
5 4538.7 4133.7 3538.0
4 4459.0 4135.0 3658.4
3 4389.0 4146.0 3788.5
2 4326.0 4164.0 3925.7
1 4222.3 4141.3 4022.2
0 1775.6 1775.6 1775.6

4 Note that, if the dimension of the VAR is large, then a relatively low lag order can be
selected and still accommodate rich dynamic specifications at the level of individual series.
Specifically, if the m × 1 vector zt follows a p-order autoregression, then in general the indi-
vidual elements follow an ARMA

(
mp, mp − p

)
process. See Hamilton (1994, p. 349). In our

application where m = 9 and p = 2, the univariate representation of the individual series
could be ARMA(18, 16).
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Table 9.3 Cointegration rank test statistics for the core model,(
pt − p∗

t , et , rt , r∗
t , yt , y∗

t ,ht − yt ,�p̃t , po
t

)
.

H0 H1 Test statistic 95% Critical values 90% Critical values

(a) Trace statistic

r = 0 r = 1 324.75 199.12 192.80
r ≤ 1 r = 2 221.16 163.01 157.02
r ≤ 2 r = 3 161.88 128.79 123.33
r ≤ 3 r = 4 116.14 97.83 93.13
r ≤ 4 r = 5 78.94 72.10 68.04
r ≤ 5 r = 6 48.71 49.36 46.00
r ≤ 6 r = 7 22.46 30.77 27.96
r ≤ 7 r = 8 6.70 15.44 13.31

(b) Maximum eigenvalue statistic

r = 0 r = 1 103.59 58.08 55.25
r ≤ 1 r = 2 59.27 52.62 49.70
r ≤ 2 r = 3 45.75 46.97 44.01
r ≤ 3 r = 4 37.20 40.89 37.92
r ≤ 4 r = 5 30.23 34.70 32.12
r ≤ 5 r = 6 26.25 28.72 26.10
r ≤ 6 r = 7 15.76 22.16 19.79
r ≤ 7 r = 8 6.70 15.44 13.31

Note: The underlying VAR model is of order 2 and contains unrestricted intercepts and
restricted trend coefficients, with po

t treated as an exogenous I(1) variable. The statistics
refer to Johansen’s log-likelihood-based trace and maximal eigenvalue statistics and are
computed using 140 observations for the period 1965q1–1999q4. The asymptotic
critical values are taken from Pesaran, Shin and Smith (2000).

and ‘maximal eigenvalue’ statistics.5 These statistics, together with their
associated 90% and 95% critical values, are reported in Table 9.3.

The maximal eigenvalue statistic indicates the presence of just two co-
integrating relationships at the 5% significance level, which does not sup-
port our a priori expectations of five cointegrating vectors. However, as
shown by Cheung and Lai (1993), the maximum eigenvalue test is gener-
ally less robust to the presence of skewness and excess kurtosis in the errors
than the trace test. Given that we have evidence of non-normality in the
residuals of the VAR model used to compute the test statistics, we there-
fore believe it is more appropriate to base our cointegration tests on the
trace statistics. As it happens the trace statistics reject the null hypothe-
ses that r = 0, 1, 2, 3 and 4 at the 5% level of significance but cannot
reject the null hypothesis that r = 5. This is in line with our a priori expec-
tations based on the long-run theory of Chapter 4, which suggests the

5 An account of the algorithms used for the computation of cointegration test statistics in
the presence of I(1) exogenous variables can be found, for example, in Pesaran, Shin and Smith
(2000).
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existence of five possible long-run relations, reproduced below for ease of
exposition:

pt − p∗
t − et = b10 + b11t + ξ1,t+1 (9.2)

rt − r∗
t = b20 + ξ2,t+1 (9.3)

yt − y∗
t = b30 + ξ3,t+1 (9.4)

ht − yt = b40 + b41t + β44rt + β46yt + ξ4,t+1 (9.5)

rt − �pt = b50 + ξ5,t+1. (9.6)

Proceeding under the assumption that there are five cointegrating vec-
tors, the five long-run relations of the core model, (9.2)–(9.6), can be
written more compactly as

ξ t = β ′
THzt−1 − b0 − b1(t − 1), (9.7)

where

b0 = (b10, b20, b30,b40, b50)
′,

b1 = (b11, 0, 0, b41, 0)′,

ξ t = (ξ1t , ξ2t , ξ3t , ξ4t , ξ5t )
′,

and

β
′
TH =

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 −1
0 0 0 −β44 0 −β46 0 1 0
0 0 0 1 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (9.8)

The matrix β
′
TH , as described in equation (9.8), imposes all the restrictions

necessary to correspond to the long-run relationships and as such is over-
identified. However, the first step in the estimation is to exactly identify
the long run, which with five cointegrating relations requires five restric-
tions on each relationship. In view of the underlying long-run theory as
encapsulated in the relations (9.2)–(9.6), we impose 25 exactly identifying
restrictions on the cointegrating matrix (in the form of five restrictions
on each of the five cointegrating vectors) so that the exactly identified
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cointegrating matrix is given by:

β ′
EX =

⎛⎜⎜⎜⎜⎜⎝
β11 β12 0 0 β15 0 1 β18 0
β21 0 β23 1 β25 0 0 0 β29

β31 0 0 0 0 1 β37 β38 β39

β41 0 0 −β44 β45 −β46 0 1 0
β51 0 0 β54 −1 0 0 β58 β59

⎞⎟⎟⎟⎟⎟⎠ . (9.9)

The first vector (the first row of β ′
EX) relates to the purchasing power parity

(PPP) relationship defined by (9.2) and is normalised on pt −p∗
t ; the second

relates to the interest rate parity (IRP) relationship defined by (9.3) and is
normalised on rt ; the third relates to the ‘output gap’ (OG) relationship
defined by (9.4) and is normalised on yt ;6 the fourth is the money market
equilibrium condition (MME) defined by (9.5) and is normalised on ht −yt .;
and the fifth is the real interest rate relationship (FIP) defined by (9.6),
normalised on �p̃t .

Having exactly identified the long-run relations, we then tested the over-
identifying restrictions predicted by the long-run theory. There are 20
unrestricted parameters in (9.9) and, based on the theory restrictions as
set out in (9.8), there are 18 theory-based over-identifying restrictions that
could be tested. Note that the theory does not restrict two of the para-
meters of the money demand equation (β44 and β46) in the fourth row of
βTH defined by (9.8). In addition, working with a cointegrating VAR with
restricted trend coefficients (as described in Sections 6.2.1 and 6.2.3), there
are potentially five further parameters on the trend terms in the five co-
integrating relationships. There is no economic rationale for including
time trends in the IRP, FIP or OG relationships, and the imposition of
zeros on the trend coefficients in these relationships provides a further
three over-identifying restrictions. The absence of a trend in the PPP rela-
tionship is also consistent with the theory of Chapter 4, as is the restriction
that β46 = 0 (so that equation (9.5) is effectively a relationship explaining
the velocity of circulation of money). Hence, once the long-run theory is
fully imposed, there are just two parameters to be freely estimated in the
cointegrating relationships, and there are a total of 23 over-identifying
restrictions on which the core model is based and with which the validity
of the long-run economic theory can be tested.

6 Our use of the term ‘output gap relationship’ to describe (9.4) should not be confused
with the more usual use of the term which relates more specifically to the difference between
a country’s actual and potential output levels (although clearly the two uses of the term are
related and, for some open economies, the foreign output variable might provide a good proxy
for potential output).
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9.3.1 Small sample properties of the tests of restrictions on the
cointegrating vectors

When testing the linear restrictions implied by our long-run theory, we
need to take account of the relatively small sample size available. This issue
arises in our example despite having 140 quarterly observations as we are
investigating the properties of a large dimensioned VARX model subject to a
large number of over-identifying restrictions. In order to deal with the small
sample bias, we apply the methods described in Section 6.4. These methods
involve a bootstrapping exercise to investigate and accommodate the small
sample properties of the log-likelihood ratio (LR) test of over-identifying
restrictions, generating a simulated distribution for the test statistic when
only a small sample is available and using this to derive appropriate critical
values against which to compare the estimated test statistic.

Specifically, the LR test for jointly testing the 23 over-identifying restric-
tions described above and implied by our long-run theory takes the value
71.49. To compute appropriate small sample critical values, we adopt a
bootstrap procedure based on 3000 replications of the LR statistic testing
the 23 restrictions. For each replication, an artificial dataset is generated
(of the same length as the original dataset) on the assumption that the
estimated version of the core model is the true data-generating process,
using the observed initial values of each variable, the estimated model,
and a set of random innovations. These innovations can be obtained
as draws from a multivariate normal distribution chosen to match the
observed correlation of the estimated reduced form errors (termed a ‘para-
metric bootstrap’) or by re-sampling with replacement from the estimated
residuals (a ‘non-parametric bootstrap’). In the light of the evidence of
non-normality of residuals that we found in estimation, we apply the non-
parametric bootstrap in this exercise (see Chapter 7 for further details).
For each simulated dataset, the cointegrating VAR is estimated first sub-
ject to the exactly identifying restrictions of (9.9) and then subject to the
over-identifying restrictions of (9.8).7 The LR test of the over-identifying

7 Given the complexity of the likelihood in the over-identified case, the choice of the opti-
misation algorithm to be used in maximising the likelihood may be important in this exercise.
We found the Simulated Annealing routine by Goffe et al. (1994) to be useful. The simulated
annealing algorithm explores a function’s entire surface and tries to optimise the function
while moving both uphill and downhill. It is therefore largely independent of starting val-
ues, and it can escape local minima and go on to find the global optimum by the uphill and
downhill moves. Simulated annealing also makes less stringent assumptions on the form of the
function than conventional algorithms and can therefore deal more easily with functions that
have ridges and plateaux. Hence it is less likely to fail on difficult functions and is more robust
than conventional Newton–Raphson and David–Fletcher–Powell uphill-only algorithms.

208



The Vector Error Correction Model

–0.01

0.01

0

0.02

0.03

0.04

0.05

0.06

0.07

0 11 22 33 44 55 66 77 88

Fr
eq

ue
nc

y

Simulated annealing
Asymptotic

Figure 9.1 Asymptotic and empirical distribution generated by the simulated
annealing algorithm of the test of the long-run over-identifying restrictions.

restrictions is carried out on each of the replicated datasets and the
empirical distribution of the test statistic is derived across all replications.

Figure 9.1 illustrates the empirical distribution obtained in this way,
plotting this alongside the corresponding asymptotic χ2

23 distribution. The
figure shows the empirical distribution of the test statistic lies substantially
to the right of its asymptotic counterpart, demonstrating clearly the need
for taking into account the small sample in this instance.

The bootstrapped critical values for the joint tests of the 23 over-
identifying restrictions are 67.51 at the 10% significance level and 73.19
at the 5% level. Using these bootstrapped critical values, the 23 theory
restrictions cannot be rejected at the conventional 5% level. Moreover, it
is worth noting that the simulation is used to find the probability of rejec-
tion for one point in H0, taking the estimated parameters of the core model
as given. The classical significance level is the maximum of the rejection
probabilities over H0. So, by using a single point, the observed critical val-
ues potentially understate the true rejection level. The fact that we (almost)
fail to reject at the 5% level might provide more compelling evidence to
support the validity of the restrictions than it first appears therefore.

9.4 The vector error correction model

9.4.1 The long-run estimates

The estimates of the long-run relations and the reduced form error correc-
tion specification are provided in Table 9.4 below. The long-run relations,
which incorporate all the restrictions suggested by the theory in Chapter 4,
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are summarised below:

(pt − p∗
t ) − et = 4.588 + ξ̂1,t+1 (9.10)

rt − r∗
t = 0.0058 + ξ̂2,t+1 (9.11)

yt − y∗
t = −0.0377 + ξ̂3,t+1 (9.12)

ht − yt = −0.0538 − 56.0975
(22.2844)

rt − 0.0073
(0.0012)

t + ξ̂4,t+1 (9.13)

rt − �p̃t = 0.0036 + ξ̂5,t+1. (9.14)

The bracketed figures are asymptotic standard errors. The first equation,
(9.10), describes the PPP relationship and the failure to reject this in the
context of our core model provides an interesting empirical finding. Of
course, there has been considerable interest in the literature examining
the co-movements of exchange rates and relative prices, and the empirical
evidence on PPP appears to be sensitive to the dataset used and the way in
which the analysis is conducted. For example, the evidence of a unit root in
the real exchange rate found by Darby (1983) and Huizinga (1988) contra-
dicts PPP as a long-run relationship, while Grilli and Kaminsky (1991) and
Lothian and Taylor (1996) have obtained evidence in favour of rejecting
the unit root hypothesis in real exchange rates using longer annual series.
In work investigating PPP using cointegration analysis, the results seem to
be sensitive to whether the model is a trivariate one (including et , pt and
p∗

t in the VAR as separate variables) or a bivariate one (including et and
(pt −p∗

t ) as two separate variables). The null of no cointegration is rejected
more frequently in trivariate than in bivariate analyses.8 The finding here
that PPP can be readily incorporated into the model is a useful contribu-
tion to this literature, indicating that the empirical evidence to support
the relationship is stronger in a more complete model of the macroecon-
omy incorporating feedbacks and interactions omitted from more partial
analyses.

The second cointegrating relation, defined by (9.11), is the IRP condi-
tion. This includes an intercept, which can be interpreted as the deter-
ministic component of the risk premia associated with bonds and foreign
exchange uncertainties. Its value is estimated at 0.0058, implying a risk
premium of approximately 2.3% per annum. The empirical support we
find for the IRP condition is in accordance with the results obtained in the
literature, and is compatible with UIP, defined by (4.14). However, under

8 See Taylor (1988) and Mark (1990) for illustrations of further work in this area, and Froot
and Rogoff (1995) and MacDonald (1995) for a review of the literature.
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the UIP hypothesis it is also required that a regression of rt −r∗
t on� ln(Et+1)

has a unit coefficient, but this is not supported by the data.
The third long-run relationship, given by (9.12), is the OG relationship

with per capita domestic and foreign output (measured by the total OECD
output) levels moving in tandem in the long run. It is noteworthy that
the co-trending hypothesis cannot be rejected; i.e. the coefficient of the
deterministic trend in the output gap equation is zero. This suggests that
average long-run growth rate for the UK is the same as that in the rest of
the OECD. This finding seems, in the first instance, to contradict some of
the results obtained in the literature on the cointegrating properties of real
output across countries. Campbell and Mankiw (1989), Cogley (1990) and
Bernard and Durlauf (1995), for example, consider cointegration among
international output series and find little evidence that outputs of different
pairs of countries are cointegrated. However, our empirical analysis, being
based on a single foreign output index, does not necessarily contradict this
literature, which focuses on pairwise cointegration of output levels. The
hypothesis advanced here, that yt and y∗

t are cointegrated, is much less
restrictive than the hypothesis considered in the literature that all pairs of
output variables in the OECD are cointegrated.9

For the MME condition, given by (9.13), we could not reject the hypo-
thesis that the elasticity of real money balances with respect to real output
is equal to unity, and therefore (9.13) in fact represents an M0 velocity
equation. The MME condition, however, contains a deterministic down-
ward trend, representing the steady decline in the money–income ratio
experienced in the UK over most of the period 1965–1999, arising pri-
marily from the technological innovations in financial intermediation.
There is also strong statistical evidence of a negative interest rate effect on
real money balances. This long-run specification is comparable to recent
research on the determinants of the UK narrow money velocity reported
in, for example, Breedon and Fisher (1996).

Finally, the fifth equation, (9.14), defines the FIP relationship, where the
estimated constant implies an annual real rate of return of approximately
1.44%. While the presence of this relationship might appear relatively
uncontentious, there is empirical work in which the relationship does
not seem to be supported by the empirical evidence; see, for example
MacDonald and Murphy (1989) and Mishkin (1992). In La Cour and

9 See Lee (1998) for further discussion of cross-country interdependence in growth dynam-
ics. Pesaran (2004a) also provides an analysis of pairwise output gaps, showing that output
convergence is not generally supported by the time series observations.
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MacDonald (2000), evidence of a cointegrating relationship between inter-
est rates and inflation was obtained in an analysis of financial data series
from the euro area and US. However, the FIP relationship itself, with coef-
ficients of (1, −1) on the interest rate and inflation, was observed in the
two zones only when the financial variables were incorporated into a larger
macrosystem. Our results support the FIP relationship and again highlight
the important role played by the FIP relationship in a model of the macroe-
conomy which can incorporate interactions between variables omitted
from more partial analyses.

9.4.2 Error correction specifications

The short-run dynamics of the model are characterised by the eight error
correction specifications given in Table 9.4.

The estimates of the error correction coefficients show that the long-run
relations make an important contribution in most equations and that the
error correction terms provide for a complex and statistically significant
set of interactions and feedbacks across commodity, money and foreign
exchange markets. The results in Table 9.4 also show that the core model
fits the historical data well and has satisfactory diagnostic statistics. The
diagnostic statistics of the equations in Table 9.4 are generally satisfactory
as far as the tests of the residual serial correlation, functional form and
heteroscedasticity are concerned. The assumption of normally distributed
errors is rejected in all the error correction equations which is understand-
able if we consider the three major hikes in oil prices experienced during
the estimation period and the special events that have afflicted the UK
economy such as the three-day week, coal miners’ strikes, the stock market
crash of 1987 just to mention a few.

Figures 9.2a–9.2h plot the actual and fitted values for the reduced form
error correction equations reported in Table 9.4.

These figures illustrate the extent to which the model fit the historical
series. As might be expected, the exchange rate and domestic interest rate

equations appear to have least explanatory power, with R
2

of 0.07 and 0.12
respectively, and the model struggles to fit the observations of variables
associated with the unusual events described above and during the volatile
periods of the 1970s. But significant equilibrating pressures are found even
in the �et and �rt equations and, by-and-large, the fitted values seem to
perform well in terms of tracking the main movements of all the dependent

variables, reflecting the fact that the remaining R
2

are relatively high and
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Table 9.4 Reduced form error correction specification for the core model.

Equation �(pt − p∗
t ) �et �rt �r∗

t �yt �y∗
t �(ht − yt ) �(�p̃t )

ξ̂1,t −0.015† 0.060† 0.002 0.002 0.017† 0.021† −0.024∗ −0.005
(0.007) (0.029) (0.002) (0.001) (0.008) (0.004) (0.013) (0.004)

ξ̂2,t −0.840† 1.42 0.049 0.130∗ 1.34† 0.891† −0.721 −0.811†

(0.301) (1.28) (0.107) (0.043) (0.353) (0.181) (0.576) (0.297)
ξ̂3,t 0.062† −0.210∗ −0.013 −0.006 −0.165† −0.021 0.106∗ 0.034

(0.029) (0.121) (0.010) (0.004) (0.034) (0.017) (0.055) (0.028)
ξ̂4,t 0.018† −0.029 −0.003∗ −0.001∗ −0.027† −0.016† −0.003 0.009∗

(0.005) (0.020) (0.002) (0.001) (0.005) (0.003) (0.009) (0.005)
ξ̂5,t −0.149∗ −0.244 −0.054∗ −0.024† −0.099 −0.119† 0.408† 0.451†

(0.083) (0.353) (0.028) (0.012) (0.098) (0.050) (0.159) (0.082)
�(pt−1 − p∗

t−1) 0.459† 0.150 −0.039 −0.028† −0.136 −0.013 0.046 0.436†

(0.095) (0.404) (0.032) (0.014) (0.111) (0.057) (0.182) (0.094)
�et−1 0.051† 0.216† −0.005 −0.001 0.021 0.013 0.007 −0.022

(0.022) (0.092) (0.007) (0.003) (0.025) (0.013) (0.042) (0.021)
�rt−1 0.416† −1.31 0.125 −0.067 0.467 0.204 −0.677 0.974†

(0.294) (1.25) (0.098) (0.042) (0.345) (0.177) (0.562) (0.290)
�r∗

t−1 −0.810 2.75 −0.606† 0.430† 0.306 0.573 −0.267 0.166
(0.617) (2.62) (0.205) (0.088) (0.723) (0.371) (1.18) (0.606)

�yt−1 0.083 0.072 0.017 0.015 −0.044 0.031 −0.168 0.356†

(0.089) (0.381) (0.030) (0.013) (0.105) (0.053) (0.172) (0.089)
�y∗

t−1 0.010 −0.630 −0.050 0.040∗ −0.073 0.069 0.602∗ −0.010
(0.161) (0.683) (0.054) (0.023) (0.188) (0.097) (0.307) (0.158)

�(ht−1 − yt−1) 0.116 0.331 0.026 0.006 0.069 −0.014 −0.253† 0.140†

(0.054) (0.228) (0.018) (0.008) (0.063) (0.032) (0.103) (0.053)
�(�p̃t−1) −0.151† 0.321 0.016 0.010 0.125 −0.082∗ 0.012 −0.244†

(0.073) (0.302) (0.024) (0.011) (0.086) (0.044) (0.140) (0.072)
�po

t −0.018† −0.024 0.001 0.001† −0.010† 0.0001 0.024† 0.003
(0.004) (0.018) (0.001) (0.0005) (0.005) (0.002) (0.008) (0.004)

�po
t−1 0.010† −0.013 −0.002 −0.0001 0.006 0.002 −0.011 0.016†

(0.005) (0.019) (0.002) (0.0001) (0.005) (0.003) (0.009) (0.004)

R
2

0.484 0.070 0.115 0.345 0.260 0.367 0.257 0.445

Benchmark R
2

0.316 0.026 0.007 0.213 0.022 0.194 0.00 0.191

σ̂ 0.007 0.032 0.002 0.001 0.009 0.004 0.014 0.007
χ2
SC [4] 2.79 0.96 2.43 17.13† 6.71 0.79 8.37† 5.63

χ2
FF [1] 8.57† 0.13 4.34† 6.70† 0.04 5.28† 0.033 0.01

χ2
N [2] 12.53† 13.98† 17.15† 19.9† 112.4† 10.84 31.45† 118.9†

χ2
H [1] 6.13† 1.97 4.53† 5.2† 0.88 0.93 0.19 4.55†

Note: The five error correction terms are given by

ξ̂1,t+1 = pt − p∗
t − et − 4.588,

ξ̂2,t+1 = rt − r∗
t − 0.0058,

ξ̂3,t+1 = yt − y∗
t + 0.0377,

ξ̂4,t+1 = ht − yt + 56.0975
(22.2844)

rt+ 0.0073
(0.0012)

t + 0.05379,

ξ̂5,t+1 = rt − �p̃t − 0.0036.

Standard errors are given in parentheses. ‘∗’ indicates significance at the 10% level, and ‘†’ indicates significance
at the 5% level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form (FF), normality

(N) and heteroscedasticity (H). The benchmark R
2

statistics are computed based on univariate ARMA(s, q),
s, q = 0, 1, . . . , 4 specifications with the s and q orders selected by AIC; see text for details.
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Figure 9.2a Actual and fitted values for the�(pt −p∗
t ) reduced form ECM equation.
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t reduced form ECM equation.
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Figure 9.2e Actual and fitted values for the �yt reduced form ECM equation.
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Figure 9.2f Actual and fitted values for the �y∗
t reduced form ECM equation.

216



The Vector Error Correction Model

65q1 67q4 70q3 73q2 76q1 78q4 81q3 84q2 87q1 89q4 92q3 95q2 98q1

Actual
Fitted

–8.0

–6.0

–4.0

–2.0

0.0

2.0

4.0

6.0

Figure 9.2g Actual and fitted values for the�(ht −yt ) reduced form ECM equation.
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Figure 9.2h Actual and fitted values for the �(�p̃t ) reduced form ECM equation.
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lie in the range [0.25, 0.49]. Generally speaking, then, the equations of
Table 9.4 appear to capture well the time series properties of the main
macroeconomic aggregates in the UK over the period since the mid-1960s.

9.4.3 Comparing the core model with benchmark univariate models

In order to evaluate the in-sample fit of the individual equations in the
core long-run structural model a little more rigorously, we can compare the
ECM specifications in Table 9.4 with a set of ‘benchmark’ univariate time
series representations. To this end, and in view of the unit root properties
of the variables, we estimate ARMA(p, q) specifications applied to the first
differences of each of the eight core endogenous variables in turn. These
benchmark models are selected following the Box–Jenkins methodology
and allow us to address the question of how much, if at all, the explanatory
power and potential forecasting ability of the model has improved by the
adoption of the long-run structural modelling approach.10

We examine a range of ARMA models for each core endogenous variable.
For example, in the case of the real output variable, yt , the ARMA(p, q)
specification can be written as:

�yt = α +
p∑

i=1

βi�yt−i +
q∑

i=1

γiεt−i + εt , t = 1, . . . , T . (9.15)

The first requirement in the construction of the benchmark model is the
selection of an a priori maximum lag order for the autoregressive and mov-
ing average processes, p and q, respectively. Here we choose 4, in light of
the quarterly nature of the data, the number of available observations (140
observations for the sample period 1965q1–1999q4) and considering that
the degree of serial correlation in the first difference of the macrovariables
is not very high. We then examine the full set of model combinations that
are spanned by all p = 0, 1, . . . , 4 and q = 0, 1, . . . , 4, providing 25 differ-
ent combinations. Our preferred benchmark model is then selected on the
basis of the Akaike Information Criterion (AIC).

The choice of AIC for model selection, compared with the Schwarz
Bayesian Criterion (SBC) for example, relates to various practical and theo-
retical issues involved in the use of AIC and SBC. For example, choosing
the SBC over AIC as a tool of model selection may be reasonable if we are

10 Of course, these comparisons do not measure the usefulness of the more structural inter-
pretation and understanding which the use of a long-run structural model, based on economic
theory, can entail.
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confident that the true model lies in the set of models under consideration.
Only in these circumstances (and assuming certain other regularity con-
ditions are met) is SBC a consistent model selection criterion. In contrast,
AIC is a more appropriate selection criterion if the aim is to select the best
approximating model (in the information-theoretic sense), as we believe to
be the case in our particular application. We certainly do not claim that the
‘true model’ lies in the set of models that we are considering (univariate or
vector error correcting), so this suggests the use of AIC in model selection.
Moreover, the theoretical grounds for the use of SBC in the case of models
involving unit roots and cointegration has not been fully developed; there
remains no clear practical guidance on how one would allocate degrees of
freedom across the equations in a cointegrating system in calculating SBC;
and there is evidence that SBC can seriously underestimate the lag order
in these circumstances. Moreover, the AIC is designed for minimising the
forecast error variance (see Lütkepohl (1991), Chapter 4). This is a feature
that might be thought to be important since one of the key uses of our
model will be in probability event forecasting (see Chapter 11).11

The results of the estimation and selection of the univariate ARMA mod-
els are summarised in Table 9.5, providing details of the AIC, SBC and R

2

statistics calculated for different models estimated for each of the eight
endogenous variables.

The first two columns of Table 9.5 relate to the unrestricted ‘ARMA(4, 4)’
specifications for each variable and to the error correction specification
of the core model discussed above and reported in Table 9.4 (described as
‘unrestricted’ in the sense that the short-run dynamics are unconstrained).
The third column relates to our preferred benchmark ARMA model chosen
by AIC, and imposing restrictions on the short-run dynamics as discussed
above. Comparison across these three columns show that the error correc-
tion specifications of our core model outperform the preferred ARMA(p, q)
model for 7/8 of the variables, �et being the exception, in terms of the

AIC (and in all eight in terms of the estimated R
2
’s). For example, the

preferred benchmark ARMA model selected for the relative price variable,
�(pt − p∗

t ), in the third column is the ARMA(4, 3) process. This model
explains as much as 31.6% of the total variation in �(pt − p∗

t ) but this
compares unfavourably with the error correction specification for this
variable in the core model, which explains 48.4% of the variation. The
preferred benchmark ARMA model for the change in domestic inflation

11 Note that the use of the same criterion for model selection and model evaluation can lead
to misleading results. For model evaluation, we prefer to use out-of-sample forecast evaluation
procedures as illustrated in Chapter 11.
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Table 9.5 Model selection criteria for the core model and alternative time series
specifications.

Variable Unrestricted Restricted

ARMA(4,4) ECM ARMA(p,q) ARMA(p,q) ECM with
order selected order selected short-run
by AIC by SBC restrictions

�(p − p∗)
AIC 416.62 479.27 463.43 462.37 480.67
SBC 448.38 455.74 453.43 457.96 460.08

R
2

0.308 0.484 0.316 0.277 0.487
(̂p, q̂) − − (4,3) (1,1) −
χ2(m) − − − − 1.18 (2)

�e
AIC 276.37 276.45 280.03 280.03 282.54
SBC 263.13 253.21 277.09 277.09 270.00

R
2

0.028 0.070 0.026 0.026 0.098
(̂p, q̂) − − (0,1) (0,1) −
χ2(m) − − − − 4.35 (8)

�r∗
AIC 741.36 750.80 744.56 744.46 754.29
SBC 728.12 727.27 741.52 741.52 738.11

R
2

0.218 0.345 0.213 0.213 0.356
(̂p, q̂) − − (1,0) (1,0) −
χ2(m) − − − − 3.00 (5)

�r
AIC 632.37 633.17 631.67 631.66 638.55
SBC 619.14 609.63 628.73 630.19 625.31

R
2

0.090 0.115 0.007 0.000 0.142
(̂p, q̂) − − (1,0) (0,0) −
χ2(m) − − − − 3.20 (7)

�y
AIC 442.80 456.97 442.95 442.85 460.72
SBC 429.54 433.44 437.07 441.38 444.54

R
2 −0.130 0.260 0.022 0.000 0.276

(̂p, q̂) − − (3,0) (0,0) −
χ2(m) − − − − 2.47 (5)

�y∗
AIC 540.46 550.45 539.70 538.71 555.17
SBC 527.22 526.92 535.29 535.77 540.46

R
2

0.102 0.367 0.194 0.178 0.385
(̂p, q̂) − − (1,1) (1,0) −
χ2(m) − − − − 0.38 (6)

�(h − y)
AIC 379.53 388.49 374.68 374.68 393.73
SBC 366.29 364.96 373.22 373.22 379.02

R
2

0.186 0.257 0.000 0.000 0.284
(̂p, q̂) − − (0,0) (0,0) −
χ2(m) − − − − 2.51 (8)

�2p
AIC 456.05 481.16 458.88 457.94 484.53
SBC 422.81 457.63 448.59 454.99 468.35

R
2

0.199 0.445 0.191 0.152 0.454
(̂p, q̂) − − (3,3) (0,1) −
χ2(m) − − − − 3.23 (5)

Note: The unrestricted ECM equations are those reported in Table 9.4. The restricted ARMA(p, q) models are obtained
using AIC and SBC searching over all possible orders p, q = 0, 1, 2, 3, 4. The restricted ECM equations are obtained using a
general-to-specific search procedure that begins with the unrestricted single equation ECM and takes the form of dropping,
one at a time, the lagged change and cointegrating terms, starting with the variable with the largest p-value (assuming it
is greater than 0.25). The search process ends when all the terms that remain in the equation have p-values of 0.25 or less.

The χ2(m) statistic is the Lagrange multiplier joint test of m zero restrictions on coefficients of the deleted variables.
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is an ARMA(3, 3) process which explains 19.1% of the total variation in
�2p̃t . But this compares with 44.5% for the long-run structural error cor-
rection specification. The preferred ARMA benchmark model for domestic
output growth is an ARMA(3, 0) process, whose explanatory power is low
and accounts for 2.2% of the movement in �yt . This compares with 26%
for the long-run structural error correction specification. This pattern is

repeated for all variables as far as the R
2

is concerned.
The conclusion to be drawn from these results is that the error correc-

tion model of the core model does indeed perform well in comparison
to univariate time series models chosen according to our preferred AIC.
For completion, though, the table also provides details of the SBC statis-
tics, including in the fourth column of Table 9.5 details of the ARMA
specification that would be chosen according to this criterion. The SBC
statistic places greater weight on parsimony in model selection, and this is
reflected by the fact that relatively simple models are chosen in the fourth
column. Moreover, comparison of the SBC of the error correction speci-
fications of the core model and that of the ARMA models of the fourth
column suggests that the ARMA models outperform the core model (since
the SBC shows the ARMA(p, q) model to be preferred for 7/8 variables by
this criterion). However, this is not an even-handed comparison. The error
correction specifications of the core model were obtained without impos-
ing restrictions on the short-run dynamics and are bound to be disadvan-
taged relative to the ARMA models when parsimony is given more weight.
For a more balanced comparison, therefore, we calculated the SBC statis-
tics associated with a ‘restricted ECM’ in which a specification search was
conducted, starting from the ‘unrestricted’ ECMs of the core model but
dropping terms when the p-values of the estimates coefficient were greater
than 0.25. As the results in the final column of Table 9.5 shows, the resul-
tant ‘restricted’ ECM model outperforms the restricted univariate model
in 8/8 cases according to AIC and in 5/8 of the cases according to SBC. So
any criticism of our model for not adopting SBC as a selection mechanism
for a benchmark comparison effectively disappears when the criteria are
employed in a comparable manner.

9.5 An alternative model specification

The core model presented in the sections above fits the short-run
dynamics well and embodies the economic theory’s long-run relations in
a transparent manner and in a way that is consistent with the data. Before
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moving on to discuss the use of the model, however, it is worth checking its
robustness to alternative specifications. This also allows us to illustrate the
types of choices typically encountered when performing empirical work of
this sort. In what follows, we comment on one possible alternative model,
which is similar in many respects to our preferred core model, but which
is based on a different interpretation of the preliminary statistical analysis
and one that places emphasis on the different aspects of the theoretical
arguments.

Specifically, recall from the earlier discussion on the tests of unit roots in
the variables that there is some ambiguity in the data regarding the order
of integration of the price variables. The application of the ADF(s) tests
to �pt and �p∗

t yields mixed results. The hypothesis that there is a unit
root in the domestic and foreign inflation rates is rejected for low orders of
augmentation (namely, for p = 0 and 1), but not for higher orders. Overall
the available data is not informative as to whether domestic and foreign
prices are I(1) or I(2).

In our preferred model described in the previous section, we chose to
follow Haldrup’s (1998) advice on the analysis of I(2) variables by work-
ing with the inflation series �pt and the relative price variable pt − p∗

t
rather than the price levels pt and p∗

t separately. The statistical evidence
supports the view that pt − p∗

t is I(1) and, on balance, the same is true for
�pt . So we have some reassurance that our empirical work is statistically
sound. However, this is not the only choice available. Investigation shows
that the transformed series pt − po

t and p∗
t − po

t are also unambiguously
I(1) according to the tests available. An alternative model might therefore
be obtained employing exactly our modelling procedure, working instead
with the vector of variables zALT

t = (
pt − po

t , et , r∗
t , rt , yt , p∗

t − po
t , ht − yt , y∗

t

)′
and in which the long-run relationships suggested by economic theory are
captured by the vector

β ′
ALT =

⎛⎜⎜⎜⎝
1 −1 0 0 0 −1 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 −βa

44 −βa
46 0 1 0

⎞⎟⎟⎟⎠ .

The vector βALT incorporates the PPP, IRP, OG, and MME relationships of
our preferred model (but not FIP) and, in terms of its treatment of the
ambiguity on the order of integration of the price variables, the model
is as justifiable as our preferred model. As shown in the empirical exer-
cise of Garratt et al. (2000), this alternative model also performs well in
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terms of the fit of the data, with the associated test of the long-run rela-
tions accepted and with satisfactory diagnostics for the associated error
correction equations.

In these circumstances, the judgement on which of the two models is
preferred has to be based on economic as well as statistical analysis. The use
of the variables pt −po

t and p∗
t −po

t in the alternative model has at its base the
view that, once the effects of oil price movements are taken into account,
the price series are I(1). This is appealing to those who point out that
inflation rates are unlikely to grow without bounds and are therefore best
modelled as being stationary. However, the statistical evidence indicates
unambiguously that nominal interest rates are I(1). If prices are treated as
I(1), then the modeller can only maintain the long-run FIP relationship
if the interest rate is excluded from the cointegrating analysis (assuming
nominal rates are I(0) despite the statistical evidence). Or interest rates
can be retained in the analysis as I(1) variables, but then the long-run FIP
relationship cannot be accommodated within the model (as is the case
with βALT above). We preferred to work with the relative price variable, pt −
p∗

t and the inflation rate �pt , since this allows us to accommodate the FIP
relationship in the model in a straightforward way. While we recognise the
difficulties in the view that price inflation and nominal interest rate series
are I(1), we also note the importance of capturing the statistical properties
of the sample of data available and of accommodating the FIP relationship
in the long-run model. We have, therefore, decided to continue with the
model described in the earlier section, but we understand that others may
make a different judgement. This highlights the importance of taking into
account model uncertainty when making decisions on the basis of models.
This is an issue that we explore in the work of Chapter 11 below.
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10

Impulse response and trend/cycle
properties of the UK model

One important use of macroeconometric models is to conduct counter-
factual experiments in order to interpret previous historical episodes and
to help with policy analysis. For example, it is important to learn about
the possible impacts of changes in interest rates or oil prices on output and
inflation over one or more years into the future. And our understanding
of the macroeconomy will be enhanced if we are able to characterise past
observations on economic activity as being related to ‘trend’ growth or
as ‘cyclical’ movements around the trend. In this chapter, we focus on
these uses of an estimated macroeconometric model, noting that we need
to supplement the model with additional a priori assumptions in order to
undertake these counter-factual exercises in many cases.

For example, an analysis of the dynamic impact of shocks is typically
carried out using impulse response functions that focus on the evolution
of the conditional means of the target variables in response to differ-
ent types of shocks.1 The estimation of impulse response functions, with
respect to shocks applied to observables such as the oil price, does not
pose any new technical difficulties and can be conducted using the gen-
eralised impulse response approach described in Section 6.1.3. In the case
of monetary policy shocks or shocks to technology or tastes, the analysis
of dynamic impulses is complicated due to the fact that such shocks are
rarely observed directly and must be identified indirectly through a fully
articulated macroeconomic model.

In the context of the core model of the UK economy developed in
Chapters 4 and 5, we have made a clear distinction between the long-run

1 Pesaran, Smith and Smith (2005) argue that a probabilistic approach to the analysis of
counter-factuals might be more appropriate. Such an analysis is, however, beyond the scope
of the present chapter.
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structural and long-run reduced form disturbances, denoted by ηit and
ξit , respectively, and between the reduced form shocks associated with
the reduced form vector error correction model of (5.1) and the struc-
tural shocks associated with the structural macroeconomic model of (5.2),
denoted uit and εit , i = 1, 2, . . . , 5. It is the structural innovations that have
a clear economic interpretation: the ηit measure the deviations from long-
run relationships in which the equilibrating pressures are identified by
economic theory,2 while the uit measure the (typically white noise) devi-
ations of target variables from the value suggested by the corresponding
decision rule.

The analysis of the dynamic response of the macroeconomy to reduced
form shocks provides important insights with which to interpret recent
episodes in the UK economy and with which to consider the potential
effects of changes abroad or of moderate changes in policy. Such an anal-
ysis illustrates and summarises the complex macrodynamics that can be
captured by a cointegrating VAR model. The analysis does not rely on iden-
tifying assumptions other than those that relate to the long-run properties
of the model (about which there is a relatively high degree of consensus)
and so is not subject to the Sims critique. Moreover, the use of the Gen-
eralised Impulse Responses (GIR) analysis described in Chapter 6 ensures
that the analysis is invariant to the ordering of the variables in the VAR.
These impulse responses are relatively robust, therefore, and represent our
preferred means of illustrating the dynamic properties of the model. In
this chapter, we provide impulse responses of this sort relating to foreign
output and to foreign interest rates to illustrate the dynamic properties of
the macroeconomy.

If we wish to identify the effects of monetary policy shocks, or struc-
tural shocks more generally, we require a much more detailed a priori
modelling of expectations, production and consumption lags, and the
short-run dynamics of the technological process and its diffusion across
the countries in the international economy. That is, we require further
restrictions to be placed on the contemporaneous relationships amongst
the variables. This relates to the ‘structural’ VECM given in equation (5.2)
associated with the long-run structural macroeconometric model:

A �zt = ã − α̃
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�̃i�zt−i + εt , (10.1)

2 The mechanics of the equilibrating processes are not necessarily described by economic
theory (involving unspecified adjustment costs, rigidities, coordination issues and so on), but
theory explains why the long-run structural disturbances are stationary.
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where A represents the 9 × 9 matrix of contemporaneous structural coeffi-
cients, ã = Aa, α̃ = Aα, �̃i = A�i, and εt = Aut are the associated structural
shocks which are serially uncorrelated and have zero means and the pos-
itive definite variance covariance matrix, � = A�A′. As highlighted in
Chapter 5, without a priori restrictions on A and/or �, it is not possible
to give economic meanings to the estimates of the loading coefficients,
α̃, or to identify economically meaningful impulse response functions to
shocks. The simplest example of such restrictions is obtained if a variable
is considered weakly exogenous. Here, for example, because the oil price is
assumed to be an I(1) weakly exogenous variable, with no contemporane-
ous feedbacks from the endogenous variables to the oil price, identification
of the impulse responses of the shock to oil prices does not pose any new
problems. More generally, however, the restrictions on A that are necessary
for identification of these structural effects require a tight description of the
decision-rules followed by the public and private economic agents, incor-
porating information on agents’ use of information and the exact timing
of the information flows. An example of a set of short-run restrictions
of this type was given in Chapter 5, based on a decision-theoretic model
intended to capture the behaviour of the monetary authorities, and these
would allow us to examine the short-run dynamic responses of the sys-
tem to an economically meaningful monetary policy shock. In the section
below, we describe in detail the steps taken to obtain the impulse response
functions under these short-run restrictions. Subsequently, the impulse
responses of these monetary policy shocks are presented alongside those
obtained in response to a reduced form shock to the interest rate equation
to illustrate the differences between the two approaches.

10.1 Identification of monetary policy shocks

The decision problem of the monetary authorities that underlies the iden-
tification scheme we adopt here to analyse monetary policy shocks has
already been articulated in Section 5.1. The aim is to derive the impulse
response functions of the monetary policy shocks, εrt , of the structural
interest rate equation (5.14) described in Section 5.1. This requires the
use of certain a priori restrictions based on the timing of the availability
of information on the variables of interest. Recall from Section 5.1 that
the aim of the monetary authorities is to set the market interest rate rt

by setting the base rate rb
t . The difference between the two, the term pre-

mium, is influenced by the unanticipated factors such as oil price shocks,
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unexpected changes in foreign interest rates and exchange rates. We
assume the market interest rate, rt , and these three variables are determined
on a daily basis, whereas the remaining variables are assumed to be much
less frequently observed. Hence, we decompose zt = (

z′
1t , z′

2t

)′, where
z1t = (po

t , et , r∗
t , rt )

′ and z2t = (
�pt , yt , pt − p∗

t , ht − yt , y∗
t

)′, and partition
the structural model (10.1) accordingly:(

A11 A12

A21 A22

)(
�z1t

�z2t

)
= µt−1 +

(
ε1t

ε2t

)
,

where

µt−1 = ã − α̃
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�̃i�zt−i,

and (
ε1t

ε2t

)
� i.i.d.

[
0,

(
�11 �12

�21 �22

)]
.

Our primary concern is with identification of the impulse responses asso-
ciated with the structural equations explaining the four variables in z1t ,
namely, po

t , et , r∗
t , rt . For this purpose, we adopt the following sets of

restrictions:

A12 = 0, (10.2)

A11 =

⎛⎜⎜⎜⎝
1 0 0 0

−aeo 1 0 0
−ar∗o −ar∗e 1 0
−aro −are −arr∗ 1

⎞⎟⎟⎟⎠ , (10.3)

and assume that the covariance matrix of the structural shocks, ε1t , is
diagonal:

�11 =

⎛⎜⎜⎜⎝
ωoo 0 0 0
0 ωee 0 0
0 0 ωr∗r∗ 0
0 0 0 ωrr

⎞⎟⎟⎟⎠ . (10.4)

The first set of restrictions, (10.2), are justified on the grounds that the
variables in z2t are much less frequently observed than those in z1t , and
hence are unlikely to contemporaneously affect them. The lower triangular
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form of A11 is motivated by our theoretical derivation of the structural
interest rate equation in Section 5.1, plus the assumption that the UK
exchange rate has a contemporaneous impact on foreign interest rates and
not vice versa.3 The final set of restrictions, (10.4), imposes further identify-
ing restrictions on the structural shocks corresponding to z1t by assuming
that these shocks are orthogonal to each other. For the sub-system con-
taining z1t , the assumptions (10.3) and (10.4) are the familiar type of exact
identifying restrictions employed in the literature, and together impose 42

restrictions needed for the exact identification of the impulse responses of
the shocks to ε1t . However, as demonstrated in Appendix B, the impulse
responses associated with ε1t are invariant to the identification of the rest
of the system and, in particular, do not require �12 = 0, or A to be a lower-
triangular matrix.4 It is also possible to show that in our set-up the impulse
responses of the monetary policy shocks are invariant to a re-ordering of
the variables po

t , et and r∗
t in z1t . Hence, once the position of the monetary

policy variable in zt is fixed (in our application after po
t , et and r∗

t ), the
impulse response functions of the monetary policy shocks will be invari-
ant to the re-ordering of the variables before and after rt in zt . (A proof is
provided in Appendix B.)

To derive the impulse responses, first recall that the reduced form
equation associated with (10.1) is given by:

�zt = a − α
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�i�zt−i + ut , (10.5)

where the reduced form errors can be partitioned as ut = (
u′

1t , u′
2t

)′
conformably with zt = (

z′
1t , z′

2t

)′, and note that

�11 = Cov (ε1t ) , �11 = Cov (u1t ) , u1t = A−1
11 ε1t .

Then, under (10.2), �11 = A−1
11�11A′−1

11 and the 10 unknown coefficients
in A11 and �11 can be obtained uniquely from the 10 distinct elements
of �11. A consistent estimate of �11 can be computed from the reduced
form residuals, û1t , namely �̂11 = T−1∑T

t=1 û1t û′
1t . Under the identi-

fication scheme in (10.3)–(10.4), the impulse response functions of the
effects of a unit shock to the structural errors on zt can now be obtained
following the approach set out in Koop et al. (1996), and discussed further

3 Recall that we are also assuming that the oil price can contemporaneously affect the
macroeconomic variables, but is not itself contemporaneously affected by them.

4 Note also that the impulse response functions of the monetary policy shocks are invariant
to the ordering of the variables in z2t .

229



Impulse Response and the UK Model

in Pesaran and Shin (1998).5 Let g(n, z : εi), i = o, e, r∗, r, be the generalised
impulse responses of zt+n to a unit change in εit , measured by one standard
deviation, namely

√
ωii. Then, at horizon n we have

g (n, z : εi) = E
(
zt+n | εit = √

ωii, It−1
)− E

(
zt+n | It−1

)
, i = o, e, r∗, r,

where It−1 is the information set available at time t−1. Since all the shocks
are assumed to be serially uncorrelated with zero means, (10.5) provides
the following recursive relations in g(n, z : εi):

�g (n, z : εi) = −�g (n − 1, z : εi) +
p−1∑
i=1

�i�g (n − 1, z : εi) for n = 1, 2, . . . ,

(10.6)

with the initialisation g (n, z : εi) = 0 for n < 0, where � = αβ
′

and
�g (n, z : εi) = g (n, z : εi) − g (n − 1, z : εi). In the case of n = 0 (i.e. the
impact effects), we have

g(0, z : εi) = E
(
�zt | εit = √

ωii, It−1
)− E

(
�zt | It−1

)
. (10.7)

Under (10.1) and conditional on It−1,
(
εit ,�z′

t

)′ is distributed with mean(
0

A−1µt−1

)
,

and the covariance matrix(
ωii E

(
εitu′

t

)
E (εitut ) E

(
utu′

t

) ) .

In the case where, conditional on It−1, �zt is normally distributed,
using familiar results on conditional expectations of multivariate normal
densities, we have6

E
(
�zt | εit = √

ωii, It−1
) = A−1µt−1 + E(εitut )

ωii

√
ωii.

But under (10.2),

ut =
(

A−1
11 ε1t

u2t

)
,

5 For more details and the application of the approach to structural simultaneous equation
models see Pesaran and Smith (1998).

6 This result provides an optimal linear approximation when the errors are not normally
distributed.
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and hence, using (10.7), we have

g(0, z : εi) = E (εitut )√
ωii

= 1√
ωii

[
A−1

11 E (εitε1t )

E (εitu2t )

]
=
⎡⎣ A−1

11�
1
2
11τ i

E
(
εit u2t√

ωii

) ⎤⎦ , (10.8)

where τ i is a 4 × 1 selection vector for i = o, e, r∗, r. For the oil price
shock τ o = (1, 0, 0, 0)′, and for the monetary policy shock the selection
vector is defined by τ r = (0, 0, 0, 1)′. Under the identification restric-

tions (10.3) and (10.4), a consistent estimate of A−1
11�

1
2
11 can be obtained

by the lower triangular Choleski factor of �̂11. To consistently estimate

E
(
εit u2t√

ωii

)
, we note that, under the same restrictions, ωii, i = o, e, r∗, r, and

the unknown elements of A11 can also be consistently estimated using �̂11.
It, therefore, remains to obtain a consistent estimate of E (εitu2t ). Recall
that ε1t = A11u1t . Hence E (εitu2t ) can be consistently estimated by the ith
row of

T−1
T∑

t=1

Â11û1t û′
2t ,

where Â11 is a consistent estimate of A11. It is clear that the impulse
response functions of shocks to the structural errors, εit , i = o, e, r∗, and
r, are invariant to the way the structural coefficients associated with the
second block, z2t , in (10.1) are identified.

10.2 Estimates of impulse response functions

We now report the estimates of impulse response functions of the endoge-
nous variables of the core model. We begin by describing the impulse
responses to an oil price shock, which is obtained on the relatively uncon-
tentious assumption that oil prices are weakly exogenous. We then present
the impulse responses to a foreign output and foreign interest equation
shock, illustrating the use of the GIR techniques. And we then present the
impulse responses to a monetary policy shock, obtained under the short-
run identifying restrictions and using the method described in Section 10.1
above. We also compare the responses to monetary policy shocks directly
with those to an interest rate equation shock. The macroeconomic analyses
of the effects of these shocks have been of special interest and help provide
further insights into the short-run dynamic properties of our model. We
shall also consider the time profile of the effects of shocks on the long-run
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relationships. Recall that despite the integrated properties of the under-
lying variables, the effects of shocks on the long-run relations can only be
temporary and should eventually disappear. But it is interesting to see how
long such effects are likely to last. These types of impulse response func-
tions are referred to as ‘persistence profiles’ and, as shown in Pesaran and
Shin (1996), they shed light on the equilibrating mechanisms embedded
within the model.

To compute all the impulse response functions analysed, we need an
estimate of the oil price equation.7 We decided to exclude domestic vari-
ables from the equation since we would not expect a small open economy
such as the UK to have any significant influence on oil prices. The resultant
oil price equation, estimated over the period 1965q1–1999q4, is given by:

�po
t = −0.0039

(0.0352)
+ 0.04787

(0.1070)
�po

t−1 + 2.7731
(2.6818)

�y∗
t−1 + 0.4199

(1.8572)
�p∗

t−1

+ 2.4855
(11.635)

�r∗
t−1 + ε̂ot , (10.9)√

ω̂oo = 0.1661, χ2
SC[4] = 1.86, χ2

N [2] = 6558.9.

where standard errors are in brackets, ωoo = var(εot ) and χ2
SC and χ2

N are chi-
squared statistics for serial correlation and normality, respectively. None
of the coefficients are statistically significant at the conventional levels,
although there is some evidence of a positive effect from past changes in
foreign output. The hypothesis that the residuals are serially uncorrelated
cannot be rejected either. But, not surprisingly, there is a clear evidence
of non-normal errors, primarily reflecting the three major oil price shocks
experienced during the period under consideration. These results are in
line with the widely held view that oil prices follow a geometric random
walk, possibly with a drift. Therefore, we base our computations of impulse
responses on the following simple model:

�po
t = 0.0173

(0.0139)
+ ε̂ot , (10.10)√

ω̂oo = 0.16485, χ2
SC[4] = 2.19, χ2

N [2] = 6399.

10.2.1 Effects of an oil price shock

Over the past three decades, oil price changes have had a significant impact
on the conduct of monetary policy in the UK and elsewhere. Increases in
oil prices have often been associated with rising prices, falling output and

7 This relates to the discussion surrounding (4.44) in Chapter 4.
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a tightening of monetary policy which has in turn contributed to further
output falls. It is important that special care is taken to separate the out-
put and inflation effects of an oil price shock from those of a monetary
shock as they are likely to be positively correlated. In our framework, this is
achieved by treating oil prices as long-run forcing, and by explicitly mod-
elling the contemporaneous dependence of monetary policy shocks on the
oil price shocks, as well as on shocks to exchange rates and foreign interest
rates.8

Figure 10.1 provides the persistence profiles of the effects of a one stan-
dard error increase in oil prices (around 16.5% per quarter) on the five
long-run relationships. Figure 10.2 gives the impulse responses of the oil
price shock on the levels of all the eight endogenous variables in the model.
Both figures also provide bootstrapped 95% confidence error bands (see
Section 6.5 for more details).9 All the persistence profiles converge towards
zero, thus confirming the cointegrating properties of the long-run rela-
tions. In addition, the persistence profiles provide useful information on
the speed with which the different relations in the model, once shocked,
will return to their long-run equilibria. The results are generally in line
with those found in the literature, with PPP and output gap relations
showing much slower rates of adjustments to shocks. The effect of the
oil price shock on the output gap takes some ten years to complete. This is
rather slow, but is comparable to those implied by Barro and Sala-i-Martin’s
(1995) analyses of international output series.10 Similarly, deviations from
PPP are relatively long lived, but the slow speed of convergence towards
equilibrium in this relationship is again consistent with existing results
which put the half life of deviations from PPP at about four years for the
major industrialised countries.11 Convergence to the FIP, IRP and MME
relationships is much more rapid, reflecting the standard view that arbi-
trage in asset markets functions much faster than in the goods markets in
restoring equilibria.

8 For an alternative identification scheme applied to the US economy, see Bernanke et al.
(1997).

9 Point estimates and 95% confidence intervals are plotted in Figures 10.1–10.10. We also
calculated the empirical means and medians of the bootstrap estimates and generally found
them to be close to the point estimates.

The calculations were performed using GAUSS and the programs are described in Appendix
D. A forthcoming version of Microfit, Microfit 5.0, may also be used to calculate the impulse
responses and persistence profiles reported here. See Pesaran and Pesaran (2006).

10 However, Barro and Sala-i-Martin (1995) assume that output series are trend stationary
and study convergence to a common trend growth rate. The present study assumes the output
series are difference stationary and tests for cointegration between UK and OECD output series.
For further discussion, see Lee et al. (1997, 1998).

11 See, for example, Johansen and Juselius (1992), Pesaran and Shin (1996), or Rogoff (1996).
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t − pt . The size of the shock is

equal to the standard deviation of the selected equation error. The solid and dashed lines plot
the point estimates and 95% confidence intervals, respectively, of the impulse responses. The
confidence intervals are generated from a bootstrap procedure using 2000 replications.

Figure 10.1 Persistence profiles of the long-run relations of a positive unit shock
to the oil price.

Turning to the impulse response functions in Figure 10.2, the oil price
shock has a permanent effect on the level of the individual series, reflecting
their unit root properties. Its effect on output has the expected negative
sign, reducing domestic output by approximately 0.24% below its base
after 2.5 years. Foreign output also declines to the same long-run value
but at a much slower speed. On impact, the oil price shock raises the
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Note: The solid and dashed lines plot the point estimates and 95% confidence intervals, respec-
tively, of the impulse responses. The confidence intervals are generated from a bootstrap
procedure using 2000 replications.

Figure 10.2 Generalised impulse responses of a positive unit shock to the oil price.

domestic rate of inflation by 0.20%, and by 0.82% after one quarter, before
gradually falling back close to zero after approximately three years. Despite
the higher domestic prices, the oil price shock generates a small apprecia-
tion of the nominal exchange rate, as can be seen from Figure 10.2g. This
initial movement is then followed by further appreciations, although the
process starts to reverse after approximately one year. In the long run, the
nominal exchange rate fully adjusts to the change in relative prices with
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PPP restored but, as noted above, the speed of adjustment is relatively slow.
The oil price shock is accompanied by increases in both domestic and for-
eign interest rates, suggesting a possible tightening of the monetary policy
in response to the rise in oil prices. Domestic interest rates increase by
some nine basis points on impact, rising to 16 basis points after approxi-
mately three quarters, and then falling to a long-run values of eight basis
points above its pre-shock level. The oil price shock affects real money
balances both directly and indirectly through its impact on interest rates.
The overall outcome is to reduce real money balances by around 1% in
the long run. This is indicative of the presence of a strong liquidity effect
in our model. The oil price shock also causes the real rate of interest to
fall, initially by 0.1% and then by 0.7%, before gradually returning to its
equilibrium value of zero.

10.2.2 Effects of a foreign output equation shock

The Generalised Impulse Responses (GIR), outlined in Chapter 6, describe
the time profile of the effect of a unit shock to a particular equation on
all the model’s endogenous variables. The dynamics which result from the
shock will embody the contemporaneous interactions of all the endoge-
nous variables of the system. These are captured by the elements of the
estimated covariance matrix of the shocks to the endogenous variables
which reflects the historical patterns of correlations across the shocks in
the sample period under consideration. There are many issues that could
be analysed through the GIR analysis and here we focus on the effects
of shocks to the foreign output equation. As was noted earlier, unlike the
orthogonalised impulse responses, the GIRs are invariant to the ordering of
the variables in the VAR, and only require that the particular shock under
consideration does not significantly alter the parameters of the model (see
Section 6.1.3).12

Figure 10.3 plots the persistence profiles of the effects of a unit shock
to the foreign output equation for the five long-run relations. The size of
the deviations from equilibrium are much smaller than those compared
to the oil price shock but the pattern is similar. Hence, the PPP and output
gap relations show much slower rates of adjustments to shocks, whilst the
convergence to the FIP, IRP and MME relationships is much more rapid.

Figure 10.4 gives the impulse responses of the foreign output shock
on the levels of all the eight endogenous variables in the model. Given

12 Here we mean policy changes that do not result in significant changes in the covariance
structure of the shocks and/or the coefficients of the underlying VAR model.
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the point estimates and 95% confidence intervals, respectively, of the impulse responses. The
confidence intervals are generated from a bootstrap procedure using 2000 replications.

Figure 10.3 Persistence profiles of the long-run relations of a positive unit shock
to the foreign output equation.

the strong positive correlation that exists between foreign and domes-
tic output innovations, the effect of the foreign output shock on impact
is to cause domestic output to increase by approximately 0.3% (see
Figure 10.4d).13 These effects continue to persist over the subsequent
quarters. In the long run, the effect of a unit shock to the foreign output

13 All percentage changes quoted in this section are computed at annual rates.
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Figure 10.4 Generalised impulse responses of a positive unit shock to the foreign
output equation.

equation is to increase both domestic and foreign output by 0.2% above
their baseline values. However, it is important to note that the gap between
domestic and foreign output growths persists even after 20 quarters, with
the foreign output level remaining considerably higher than domestic
output through this time.
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The GIRs for the foreign output shock on the domestic inflation and
the nominal exchange rates are displayed in Figures 10.4f and 10.4g. The
shock initially reduces domestic prices by 0.23% and appreciates the nom-
inal exchange rate on impact by 0.27%. The fall in inflation is reversed
in the following quarter, though, returning to near its baseline value
after about 12 quarters. In the long run, the effect of the foreign output
shock on the domestic inflation rate is zero, so that the effects are purely
temporary.

The effects of the shock on domestic and foreign interest rates are dis-
played in Figures 10.4a and 10.4b. The initial response to the shock is to
increase domestic and foreign interest rates by 11 and six basis points,
respectively. Subsequently the foreign interest rate rises above the domes-
tic interest rate, but eventually this gap disappears, as predicted by the
long-run interest parity relation embodied in the core model.

10.2.3 Effects of a foreign interest rate equation shock

In Figures 10.5 and 10.6, we report the GIRs for a shock to the foreign inter-
est rate equation, where the size of the shock is scaled to ensure that the
foreign interest rate rises by one standard deviation of the error variance
on impact. Figure 10.5 again confirms the varying speeds of adjustments
of the long-run relationships as before.

Figure 10.6 shows the impact effect of the shock to the foreign interest
rate equation is to increase the domestic interest rate by 23 basis points
whilst domestic output is unchanged. Domestic output falls thereafter,
down by 0.37% after four quarters and reaching 0.5% below its baseline
value after approximately 16 quarters. This suggests a complicated rela-
tionship between interest rate and output changes over the course of the
business cycle. The shock to the foreign interest rate equation depreciates
the nominal exchange rate on impact by 0.14% and by approximately
0.5% in the long run.

The effects of the shock on domestic interest rates, foreign interest rates,
and domestic inflation are displayed in Figures 10.6a–b and 10.6f. The fact
that the impulse response function for the foreign interest initially slopes
upwards reflects the highly persistent nature of the interest rate move-
ments in the short run. Perhaps not surprisingly, the domestic interest rate
is much less affected by the shock with the result that, during the first three
years following the shock, the foreign interest rate tends to rise above the
domestic interest rate. This interest rate gap (relative to its baseline value)
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confidence intervals are generated from a bootstrap procedure using 2000 replications.

Figure 10.5 Persistence profiles of the long-run relations of a positive unit shock
to the foreign interest rate equation.

will eventually disappear, however, as predicted by the long-run interest
parity relation embodied in the core model.

The initial effect of the interest rate shock on domestic inflation is to
increase the rate of inflation by 0.13% followed by 0.57% after one quar-
ter, and 0.88% after four quarters. This effect is reversed from this point
onwards, with the inflation rate falling to be approximately 0.1% above
its baseline value after about 14 quarters. In the long run, the effect of
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Note: The solid and dashed lines plot the point estimates and 95% confidence intervals, respec-
tively, of the impulse responses. The confidence intervals are generated from a bootstrap
procedure using 2000 replications.

Figure 10.6 Generalised impulse responses of a positive unit shock to the foreign
interest rate equation.

the interest rate shock on the domestic inflation rate is zero. Through-
out, the effects of the shock to the foreign interest rate equation on real
money balances are negative, which is in line with the strong negative
effect of interest rates on real money balances obtained at the estimation
stage.
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10.2.4 Effects of a monetary policy shock

We turn now to the more economically meaningful monetary policy
shocks or, more precisely under our identification scheme set out in
Chapter 5, the non-systematic (or unanticipated) component of the policy.
Recall that the shock is defined by εrt , the shock in the structural equation
for the market interest rate, and allows oil prices, exchange rates and for-
eign interest rates to have contemporaneous effects on rt . The algorithms
necessary for the computation of the associated impulse responses are set
out above in Section 10.1.

Figure 10.7 presents the persistence profiles of the effects of one standard
error unexpected increase in the interest rate (i.e. a rise of 91 basis points)
on the five long-run relations of the model.

As with the previous shocks, the effects of the monetary policy shock on
these relations disappear eventually, but the speed with which this occurs
varies considerably across the different arbitrage conditions. The interest
parity condition is the quickest to adjust followed by the Fisher inflation
parity, the monetary equilibrium condition, purchasing power parity and
the output gap. It is worth emphasising that, in our model, the long-run
equilibrium condition for interest rate parity rules out the phenomena
observed in Eichenbaum and Evans (1995), where a contractionary mone-
tary policy shock could result in a permanent shift in the interest rate
differential.

On impact, the effect of the monetary policy shock is most pronounced
on the money market equilibrium condition, resulting in a 12.7% unex-
pected excess supply of money. With foreign interest rates unchanged on
impact (by construction), the shock raises the domestic interest rate above
the foreign interest rate by 91 basis points, but it also raises the real inter-
est rate by 59 basis points while leaving the real exchange rate unchanged.
The output gap is initially left intact, reflecting a lagged response of real
output to interest rate changes. However, the contractionary impact of
the shock on domestic output (relative to the foreign output) begins to be
seen after the second quarter, with domestic output falling below foreign
output by 0.29% after two years.

The impulse response functions for the effects of the monetary
shock on the various endogenous variables in the model are given in
Figure 10.8.

Most of these plots exhibit familiar patterns. After the initial impact, the
domestic interest rate declines at a steady rate settling down after approx-
imately four years at an equilibrium value of five basis points above the

242



Estimates of Impulse Response Functions

a: Interest Rate Parity 

0 5 10 15 20 25 30 35 40

Horizon (quarters)

A
nn

ua
l P

er
ce

nt

b: Money Market Equilibrium 

–4

–2

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40

Horizon (quarters)

0 5 10 15 20 25 30 35 40

Horizon (quarters)

 %
 C

ha
ng

e

d: Fisher Inflation Parity 

–1.2
–1.0
–0.8
–0.6
–0.4
–0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

A
nn

ua
l P

er
ce

nt

c: Output Gap 

–0.6

–0.4

–0.2

0.0

0.2

0.4

0 5 10 15 20 25 30 35 40

Horizon (quarters)

 %
 C

ha
ng

e

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

e: Purchasing Power Parity 

–2.0

–1.6

–1.2

–0.8

–0.4

0.0

0.4

0.8

0 5 10 15 20 25 30 35 40

Horizon (quarters)

%
 C

ha
ng

e

Note: The graphs define the long-run relationships as follows: Interest Rate Parity: rt − r∗
t ,

Money Market Equilibrium Condition: ht −yt +56.1rt +0.0073t , the Output Gap: yt −y∗
t , Fisher
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t − pt . The size of the shock is

equal to the standard deviation of the selected equation error. The solid and dashed lines plot
the point estimates and 95% confidence intervals, respectively, of the impulse responses. The
confidence intervals are generated from a bootstrap procedure using 2000 replications.

Figure 10.7 Persistence profiles of the long-run relations of a positive unit shock
to monetary policy.

baseline value. In tandem with the fall in the interest rate, the excess sup-
ply of money declines to approximately 8.6% after one year, then to 5.0%
after two years, reaching its equilibrium after approximately five years.
These results clearly show the presence of a sizeable ‘liquidity effect’ in
our model following the unexpected tightening of the monetary policy.14

14 See, for example, the analysis of liquidity effects in Pagan and Robertson (1998).
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Note: The solid and dashed lines plot the point estimates and 95% confidence intervals, respec-
tively, of the impulse responses. The confidence intervals are generated from a bootstrap
procedure using 2000 replications.

Figure 10.8 Generalised impulse responses of a positive unit shock to monetary
policy.

The monetary policy shock has little immediate effects on the real side
of the economy. The contractionary effects of the policy begin to be felt on
output and real money balances after one quarter. The impulse responses
of domestic and foreign output are given in Figures 10.8d and 10.8e,
each showing a relatively smooth decline to around 0.46% and 0.17%,
respectively, below base after two and half years. The speed of adjustments
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of the two series differ, however, as was seen clearly from the persistence
profile of the output gap presented in Figure 10.7c. Figure 10.8f provides
evidence of the well-known ‘price puzzle’, as inflation increases in imme-
diate response to the contractionary monetary shock, falling back to close
to zero after three years. Note, however, that with the exception of the first
few quarters the inflation responses are insignificantly different from zero
so that, insofar as the puzzle is apparent, the underlying long-run relations
ensure that the anomaly are observed in the short run only.

The impact effect of the monetary policy shock on the nominal
exchange rate is zero by construction but, as can be seen from Figure1̃0.8g,
the shock causes the exchange rate to appreciate by around 0.5% in the
following period. The exchange rate remains roughly constant for the sub-
sequent year and then depreciates back to close to its original level after 20
quarters. This pattern is reasonably consistent with the Dornbusch (1976)
overshooting model which would predict a large initial appreciation in
the exchange rate in response to a monetary contraction, followed by sub-
sequent depreciation to its long-run level. Certainly it matches well the
broader view of overshooting discussed in Eichenbaum and Evans (1995)
in which there might be a sequence of periods of appreciation followed by
depreciation because of secondary effects of the shock on risk premia,
speculative behaviour and information imperfections relating to the per-
manence of the shock. Moreover, this time profile for the exchange rate is
observed in a set of responses in which interest rate parity is re-established
relatively quickly and in which a positive differential of domestic over for-
eign interest rates is associated with a constant or depreciating exchange
rate as suggested by UIP. This accords well with theory, therefore, and
is in contrast to the ‘ exchange rate puzzle’ observed by Eichenbaum
and Evans (1995) in which the interest rate differential is maintained
indefinitely and is associated with a persistently appreciating exchange
rate.15

By way of comparison, we also provide here the time profiles of the
effects of shocks to a unit (one standard error) increase in the domes-
tic interest rate equation. Figure 10.9 provides the persistence profiles
of the effects of a unit shock to domestic interest rates (the size of the
shock is scaled to ensure domestic interest rates rise by one standard
error on impact) on the five long-run relationships. Figure 10.10 gives the

15 See Gali and Monacelli (2005) for a small open economy model which shows the key
difference between alternative rule-based policy regimes as being one of the relative amount
of exchange rate volatility.
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generalised impulse responses of a unit shock to the interest rate on the
levels of all the eight endogenous variables in the model.

As is immediately apparent, the time profiles of the impulse responses
of Figures 10.9 and 10.10 are very similar, in both size and shape, to those
plotted in Figures 10.7 and 10.8 resulting from the identified monetary
policy shock. This may not be too surprising as the impulses in the two
experiments are clearly related and the long-run properties of the systems
are the same. However, there are differences between the two which are
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Note: The graphs define the long-run relationships as follows: Interest Rate Parity: rt − r∗
t ,

Money Market Equilibrium Condition: ht −yt +56.1rt +0.0073t , the Output Gap: yt −y∗
t , Fisher

Inflation Parity: rt −�pt and the PPP (real exchange rate): et + p∗
t − pt . The size of the shock is

equal to the standard deviation of the selected equation error. The solid and dashed lines plot
the point estimates and 95% confidence intervals, respectively, of the impulse responses. The
confidence intervals are generated from a bootstrap procedure using 2000 replications.

Figure 10.9 Persistence profiles of the long-run relations of a positive unit shock
to the UK interest rate equation.
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Note: The solid and dashed lines plot the point estimates and 95% confidence intervals, respec-
tively, of the impulse responses. The confidence intervals are generated from a bootstrap
procedure using 2000 replications.

Figure 10.10 Generalised impulse responses of a positive unit shock to the UK
interest rate equation.

important in terms of interpretation of the responses. In particular, the
response of the exchange rate in Figure 10.10g shows important differences
to those in Figure 10.8g, indicating a depreciation of the exchange rate on
impact in response to the positive shock to interest rates. Moreover, the
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positive differential of domestic over foreign interest rates observed over
the first ten quarters is associated in Figure 10.10g with an appreciating
exchange rate. It is worth emphasising that the GIRs obtained for the shock
to the interest rate equation in Figure 10.10 take into account the contem-
poraneous innovations in the other variables typically observed when the
interest rate is shocked. It does not have the interpretation of a monetary
policy shock and one should not expect to be able to relate the profile
of responses to economically motivated dynamics as we could those for
Figure 10.8. But the comparison with the responses of Figure 10.8, which
do have this reasonable match with an economically motivated interpre-
tation, illustrates well both the strengths of the GIR analysis of reduced
form shocks and its limitations.

10.3 Trend/cycle decomposition in cointegrating VARs

In this section, we consider a decomposition of the variables in the UK
model into trends and cycles, with the former further decomposed into
deterministic and stochastic components, following Garratt, Robertson
and Wright (2005, GRW). As we shall see, the stochastic components
will be present only if the underlying VAR contains a unit root. The
decomposition can be viewed as a multivariate version of the well-known
Beveridge–Nelson (BN) permanent/transitory decomposition, but has the
advantage that it is characterised fully in terms of the observables.16 We
illustrate the analysis with an empirical example, highlighting the perma-
nent components of selected variables of the core VEC model of the UK
economy developed in the earlier chapters.

It is worth noting that the choice of a permanent trend/transitory cycle
decomposition relies on a priori assumptions on the extent of the corre-
lation between permanent and transitory innovations. In the literature,
views have ranged from the assumption that the innovations arise from
the same sources (so that the correlation is perfect) to the assumption that
they are entirely unrelated (so that the correlation is zero). Decompositions
in the spirit of BN assume that shocks to the transitory component and
to the stochastic permanent component have a correlation of one. This is
in contrast to the unobserved component’s approach to permanent and

16 Beveridge and Nelson (1981) describe the decomposition in the case of a univariate spec-
ification. For a multivariate version of the BN decomposition, see Stock and Watson (1988)
and Evans and Reichlin (1994). Other decompositions are provided by Gonzalo and Granger
(1995), Proietti (1997), Hecq, Palm and Urbain (2000), and Gonzalo and Ng (2001).
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transitory decomposition, for example, which assumes the correlation is
zero.17

To explain our proposed decomposition scheme, suppose we take any
arbitrary partitioning of zt = (y′

t , x′
t )

′ into permanent trend, zP
t , and

transitory cycle, zC
t components of the form:

zt = zP
t + zC

t , (10.11)

where the permanent component may be further subdivided into deter-
ministic and stochastic components

zP
t = zP

dt + zP
st .

Following GRW, we define the deterministic and the stochastic trend
components of zt , respectively, by

zP
dt = g0 + gt ,

zP
st = lim

h→∞
Et

(
zt+h − zP

d,t+h

)
= lim

h→∞
Et [zt+h − g0 − g(t + h)] , (10.12)

where g0 is an m × 1 vector of fixed intercepts, g is an m × 1 vector of
(restricted) trend growth rates, t is a deterministic trend term, and Et (·)
denotes the expectations operator conditional on the information at time
t , taken to be

{
zt , zt−1, . . . , z0

}
. Then we have

zP
t = lim

h→∞
Et
(
zt+h − gh

)
. (10.13)

This definition of permanent trend has a number of important features
that are worth emphasising

Remark 1 Even if we are interested in the permanent/transitory decomposi-
tion of the endogenous variables, yt , we would still need to work with the VECM
in zt since this allows for long-run restrictions as well as for the short-term
interactions that might exist between yt and xt , under which the perma-
nent/transitory properties of xt would have a direct bearing on those of yt . This
point reaffirms the desirability of multivariate approaches to trend/cycle decom-
position over the univariate such as the Hodrick and Prescott (1997) and the
original Beveridge–Nelson decompositions.

17 For a description of this alternative approach, see Harvey (1985), Watson (1986), Clarke
(1987) and Harvey and Jaeger (1993). A review is provided in Canova (1998). Recently, Morley
et al. (2003) have shown in a univariate context that when the (identifying) restriction in the
unobserved components model that trend and cycle innovations are uncorrelated is relaxed,
both decompositions will be identical.
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Remark 2 The stochastic permanent component of zP
t , namely zP

st , satisfies
the property:18

lim
h→∞

Et

(
zP

s,t+h

)
= zP

st , (10.14)

which is a limiting martingale property shared by the random walk models.
Recall that a process Xt is said to follow a martingale process if Et

(
Xt+h

) = Xt

for all h. In the context of cointegrating VAR models, zP
st satisfy the martingale

property in the limit, whilst the permanent component of the BN decomposition
is a martingale process and satisfy the property for all h. To establish the limit
martingale property, (10.14), we first note that

Et

(
zt+h − zP

d,t+h

)
= Et

(
zP

s,t+h

)
+ Et

(
zC

t+h

)
.

Since zC
t+h is transitory, lim

h→∞
Et

(
zC

t+h

)
= 0, and therefore

lim
h→∞

Et

(
zt+h − zP

d,t+h

)
= lim

h→∞
Et

(
zP

s,t+h

)
.

Then, the result in (10.14) follows using (10.12).

Remark 3 As pointed out earlier the definition of the permanent component
given by (10.13) has the advantage that it is defined directly in terms of the
observables

{
zt , zt−1, . . . , z0

}
. But this does not render it unique. For example,

suppose that zt is cointegrated and co-trended such that β ′zt +c0 is a stationary
process with zero mean, and set zPP

st = zP
st+ β ′zt +c0. Then it readily follows that

lim
h→∞

Et

(
zPP

s,t+h

)
= lim

h→∞
Et

(
zP

s,t+h

)
= zP

st .

Therefore, zPP
st is also a stochastic permanent component with the same limiting

martingale property as zP
st .

10.3.1 Relationship of GRW and BN Decompositions

For a comparison of the BN and GRW decompositions, it is instructive
to consider the UK model, which is given by the following vector error
correction specification with restricted (deterministic) trend coefficients:19

�zt = a − αβ ′
[zt−1 − γ (t − 1)] +

p−1∑
i=1

�i�zt−i + ut . (10.15)

18 The deterministic permanent components are the same for GRW and BN.
19 See, for example, equation (10.5) and note that under case IV, b1 = β ′γ , where γ is an

m × 1 vector of restricted trend coefficients.
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Denote the deviation of the variables in zt from their deterministic
components as z̃t , namely

z̃t = zt − g0 − gt .

Then in terms of z̃t we have

�z̃t = a − αβ ′
g0 −

⎛⎝Im−
p−1∑
i=1

�i

⎞⎠g − αβ ′ (g − γ
)
(t − 1)

− αβ ′
z̃t−1 +

p−1∑
i=1

�i�z̃t−i + ut .

Since z̃t has no deterministic components by construction, it must be that

a = αβ ′
g0 +

⎛⎝Im −
p−1∑
i=1

�i

⎞⎠g, (10.16)

and

β ′g = β ′γ . (10.17)

Hence

�z̃t = −αβ ′
z̃t−1 +

p−1∑
i=1

�i�z̃t−i + ut , (10.18)

or, equivalently,

z̃t =
p∑

i=1

�ĩzt−i + ut , (10.19)

where

�1 = Im + �1 − αβ ′
, �i = �i − �i−1, i = 2, . . . ., p − 1, �p = −�p−1.

The BN decomposition of zt can now be written as20

zt = z0 + gt + C (1) sut + C∗ (L) (ut − u0) , (10.20)

20 See also Stock and Watson (1988) and Evans and Reichlin (1994), and the discussion in
Section 6.2.1.
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where

sut =
t∑

i=1

ui, C∗ (L) =
∞∑

i=0

C∗
i Li,

Ci = Ci−1�1 + Ci−2�2 + · · · + Ci−p�p, for i = 1, 2, . . . ,

with C0 = Im, C1 = −(Im − �1), and Ci = 0 for i < 0; C∗
i = C∗

i−1 + Ci, for
i = 1, 2, . . ., with C∗

0 = C0−C(1), and C(1) = ∑∞
i=0 Ci. Hence, the stochastic

trend in this approach is defined by

zBN
st = C (1)

t∑
i=1

ui, (10.21)

and satisfies the martingale property

Et

(
zBN

s,t+h

)
= zBN

st , for all h.

The two decompositions differ in the way the permanent stochastic com-
ponents are defined and yield identical results only in the case where zt

follows a random walk model, possibly with a drift. This arises in the case
of univariate models, or in the case of multivariate models without cointe-
gration.21 For example, considering univariate models, Morley et al. (2003,
p. 3) also define zBN

st by

zBN
st = lim

h→∞
Et
(
zt+h − gh

)
,

and show that it reduces to zBN
st = c (1)

∑t
i=1 ui. Therefore, at first it

appears that the two definitions, zP
st = limh→∞ Et

(
zt+h − gh

)
and zBN

st =
C (1)

∑t
i=1 ui are the same in general. But as noted above and the applica-

tions below illustrate this is not true in the multivariate case where zt is
cointegrated.

10.3.2 Computation of the GRW decomposition

As noted earlier, the GRW decomposition also has the advantage that it can
be computed directly from the error correction or the VAR representation
in terms of zt , zt−1, . . . , zt−p+1. For computational purposes it is convenient
to use the companion form of (10.19) given by

Z̃t = FZ̃t−1 + Ut , t = 1, . . . , T ,

21 Note, however, that the two decompositions are based on the same deterministic trend
specifications, with the restrictions on g, defined by (10.17), applicable to both.
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where

Z̃t
mp×1

=

⎡⎢⎢⎢⎢⎣
z̃t

z̃t−1
...

z̃t−p+1

⎤⎥⎥⎥⎥⎦ , Z̃t
mp×1

=

⎡⎢⎢⎢⎢⎣
z̃t−1

z̃t−2
...

z̃t−p

⎤⎥⎥⎥⎥⎦ , Ut
mp×1

=

⎡⎢⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎥⎦ ,

F
mp×mp

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�1 �2 �3 · · · �p−1 �p

Im 0 0 · · · 0 0
0 Im 0 · · · 0 0
.
:

.
:

.
:

.
:

.
:

.
:

0 0 0 · · · 0 0
0 0 0 · · · Im 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easily seen that

Z̃t+h = FhZ̃t +
h−1∑
j=0

FjUt+h−j.

Therefore, we have

z̃t+h = JFhZ̃t +
h−1∑
j=0

JFjUt+h−j = JFhZ̃t +
h−1∑
j=0

(
JFjJ′

)
ut+h−j,

and

Et
(̃
zt+h

) = JFhZ̃t ,

where J
m×mp

= (Im, 0, . . . , 0) is a selection matrix.

In the case of the cointegrating VAR system with I (1) variables, the
eigenvalues of the underlying VAR model are either on or inside of the
unit circle, and thus we have

zP
st = lim

h→∞
Et
(̃
zt+h

) = JF∞Z̃t , (10.22)

where F∞ is the limit of Fh as h → ∞. In the case where all the variables
in the VAR are stationary, F∞ = 0 and zt will have no stochastic trend
components. But in the general case where zt contains I(1) variables (and
possibly cointegrated), F∞ tends to a finite non-zero matrix and the overall
trend component of zt will be given by

zP
t = lim

h→∞
Et
(
zt+h − gh

) = g0 + gt + JF∞Z̃t . (10.23)
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The cycle or the transitory component of zt is then defined simply as

zC
t = zt − zP

t .

In the applications below we set the vector of intercepts, g0, so that the
cyclical components have mean zero.

10.3.3 An application to the UK model

To compute the decomposition described above, all the required para-
meters can be estimated from the maximum likelihood estimates of the
underlying VEC model, except for g. Note that under Case IV, the estima-
tion of the cointegrating VAR yields an estimate of β ′γ , and γ cannot be
separately identified from β in the presence of cointegration. But, noting
that �zt is stationary with mean g, we can estimate g by estimating

�zt = g + ϑ t , (10.24)

subject to the restrictions β ′g = β ′γ with β ′γ given by the maximum
likelihood estimates, say β̂ ′γ . A consistent estimate of g can be obtained
by application of the SURE procedure to (10.24) subject to the restrictions,
β ′g = β̂ ′γ . A more efficient estimator can be obtained by exploiting the
serial correlation properties of ϑ t as well.

In the case of the UK model where

zt = (
po

t , et , r∗
t , rt ,�pt , yt , pt − p∗

t , ht − yt , y∗
t
)′ ,

g = (go, ge, gr∗ , gr , g�p, gy , gp−p∗ , gh−y , gy∗)′

and

β̂
′
g =

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 −1
0 0 0 −56.098 0 0 0 1 0
0 0 0 1 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

go

ge

gr∗

gr

g�p

gy

gp−p∗

gh−y

gy∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
ge − gp−p∗

gr∗ − gr

gy − gy∗

−56.098gr

gr − g�p

⎞⎟⎟⎟⎟⎟⎠ .
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Also, the estimated version of the model yields

β̂ ′γ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0

−0.007300
0

⎞⎟⎟⎟⎟⎟⎠ .

This yields the following restrictions

ge = gp−p∗ , gr∗ = gr , gy = gy∗ , gr = 0.007300/56.098, and gr = g�p.

The presence of a linear trend in the money demand equation implies
a very small but a non-zero value for gr (= 0.00013). We decided to set
gr = 0 as it is unlikely that the trend in the money demand equation
could prevail in the very long run. Therefore, we estimate g subject to the
following restrictions:

ge = gp−p∗ , gy = gy∗ and g�p = gr = gr∗ = 0,

and obtained the estimate,

ĝ = (0.018557, 0.002179, 0, 0, 0, 0.005256, 0.002179, −0.007287, 0.005256)′.

Using these estimates together with the estimated parameters from
equation (10.15), we can construct a permanent/transitory or trend/cycle
decomposition.

To illustrate the decomposition, Figures 10.11–10.18 plot a range of tran-
sitory and permanent components for some selected endogenous variables
of the model. Figure 10.11 plots the actual series and the GRW permanent
component of domestic output yt . The GRW permanent component of UK
GDP is not as smooth as other trend estimates and it is also subject to some
fairly significant downward, as well as upward, shifts at various points in
the sample. However, the important point here is that, by construction,
the permanent component of yt is perfectly correlated with the permanent
component of y∗

t . This interesting feature, that the permanent stochastic
components of the variables that cointegrate and co-trend should be per-
fectly correlated, also applies to the pairs rt and r∗

t ; and rt and �pt (once
the long-run theory restrictions are imposed).

In Figure 10.12, we plot the transitory component of the UK output
alongside the transitory component of inflation so that we might look
at the cyclical movements in the inflation–output trade-off.22 Given our

22 To provide a clearer picture of the relationships we have normalised all the transitory
components so that they have mean zero over the sample period under consideration.
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Figure 10.11 Actual UK output (yt ) and the GRW permanent component.
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Figure 10.12 GRW transitory components of UK output and inflation: yt and�pt .

explicit multivariate approach to detrending, the figure automatically
takes account of the interactions between the variables when analysing
the nature of the relationship between output and inflation. As the figure
shows, there is a limited degree of positive co-movement between infla-
tion and output, with a correlation coefficient of just 0.14, which is
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Figure 10.13 GRW and BN transitory components of UK output: yt .

consistent with a demand-shock view of the business cycle, but the cyclical
dependence seems rather weak. A sub-sample analysis could well be more
revealing here.

Figure 10.13 plots the GRW and BN transitory components for yt . There
is a clear degree of consensus between the two series, reflected in a correla-
tion coefficient of 0.827, although the BN transitory component suggests
higher growth in the early 1960s but lower growth in the late 1990s.
In fact, there is a high degree of co-movement between the GRW and
BN transitory components for all the endogenous variables, with corre-
lation coefficients of 1.00, 0.965, 0.980, 0.997, 0.999, 0.901 and 0.929
for et , r∗

t , rt ,�pt , pt − p∗
t , ht − yt and y∗

t , respectively. The two decomposi-
tions yield the same result for the exchange rate due to its random walk
property.

Figure 10.14 plots the GRW transitory components of yt and y∗
t .23 The

most noticeable feature is the limited degree of co-movement exhibited
by the two series, with a correlation coefficient of 0.28, particularly in the
late 1960s, early 1980s and late 1990s. For a comparison, Figures 10.15
and 10.16 plot the BN and Hodrick–Prescott (HP) transitory components
of the same two series.24 Both the GRW and BN decompositions show

23 To make any meaningful comparison between the transitory components of variables
with different levels we require that each variable be mean zero and hence we first de-mean
(using the sample mean) the transitory components.

24 The HP filter uses a smoothing parameter value of 1600.
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Figure 10.14 GRW transitory components of UK and foreign output: yt and y∗
t .
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Figure 10.15 BN transitory components of UK and foreign output: yt and y∗
t .

a low degree of co-movement between the transitory components of
UK and foreign output, although the correlation coefficient is slightly
higher at 0.38 (as compared to 0.28) in the case of the BN decompo-
sition. The degree of co-movement between the HP transitory yt and
y∗

t components is noticeably higher, yielding a correlation coefficient of
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Figure 10.16 Hodrick–Prescott transitory components of UK and foreign output:
yt and y∗

t .

0.69. A tentative implication therefore is that the univariate HP filter
overstates the degree of co-movement between the transitory compo-
nents (i.e. induces highly synchronised business cycle for the UK relative
to the rest of the world); the multivariate VECM, which imposes the
long-run restrictions, does not support such a high degree of short-run
synchronisations.

Figure 10.17 plots the transitory components of rt and r∗
t . As in the

case of yt and y∗
t , the restriction that the permanent components are per-

fectly correlated is imposed. Here, our zero growth rate assumption on
rt and r∗

t implies that the change in the permanent component of these
series is determined purely by the stochastic part (where the determin-
istic part is fixed at its initial value, see Figure 10.6). The co-movement
between domestic and foreign interest rates is positive and reasonably
strong, with a correlation coefficient of 0.5. The transitory component of
domestic interest rates is more volatile but part of this difference reflects
the fact that foreign interest rates are measured as the average of inter-
est rates in a number of countries and hence is likely to be relatively
smooth. Figure 10.18 plots the actual rt series alongside its permanent
component. We see here that a large part of movements in rt could
be defined as transitory, with the permanent component showing little
variations.
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Figure 10.17 GRW transitory components of UK and foreign interest rates: rt
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Figure 10.18 Actual and GRW permanent component of UK interest rates: rt .

10.4 Concluding remarks

In this chapter, we have illustrated how we might use our modelling
approach in the analysis of shocks through the use of both GIR and struc-
tural identified impulse responses. The cointegrating VAR model is not
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only able to provide a reasonably flexible characterisation of the short-
run dynamics of the macroeconomy but, by making explicit the link
with the long-run relationships suggested by economic theory, it also
enables us to consider explicitly the links between ‘structural’ and ‘observ-
able’ shocks and provides an appropriate treatment of the analysis of the
model’s dynamic properties. Our use of Persistence Profiles show directly
the dynamic effects of system-wide shocks to the equilibrium relations.
Hence, for example, the estimated profiles illustrate clearly the differen-
tial speeds of response to the disequilibria involving financial variables
compared to those involving real magnitudes. Our use of the Generalised
Impulse Response functions allows us to investigate the effects of spe-
cific shocks to particular equations in the model, gaining insight on the
dynamic response to particular events without the use of arbitrary ortho-
gonalisation assumptions and without losing sight of the relationships
that exist between the innovations and the underlying economic model.

There are, of course, a variety of other impulse response analyses that
can be conducted using our model. Bernanke et al. (1997) and Cochrane
(1998), for example, suggest counter-factual exercises aimed at distinguish-
ing the effects of systematic changes to monetary policy rules from those
that influence the economy’s intrinsic propagation mechanisms. As a sec-
ond example, one might consider impulse response functions associated
with a once-and-for-all shift in the intercept of the interest rate equation.25

This would help, for example, identify the time profile of the effects of
shifts in the target variables for output growth or inflation reduction, i.e.
�w

†
in (5.12) of Chapter 5. The model presented in this book provides a

potentially fruitful framework with which to investigate these and other
counter-factual policy exercises.

Our discussion of the trend/cycle decomposition also highlights the
importance of allowing for the long-run restrictions in identification and
estimation of the transitory components. For example, by abstracting from
the long-run relations that might exist in cross-country outputs, the use
of univariate approaches such as the Hodrick–Prescott filter is likely to
over state the degree of business cycle synchronisations that exist across
countries.

25 This is equivalent to a GIR function with certain zero restrictions on the error correction
covariances.
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11

Probability event forecasting with the
UK model

In this chapter, we consider the application of the probability forecasting
techniques introduced in Chapter 7 to our model of the UK economy.
A number of macroeconomic modelling teams in the UK have recently
begun to provide further information on the uncertainties surrounding
their forecasts of key macroeconomic variables. It is widely acknowl-
edged that it is important to provide this information on the precision
of the forecasts in order to enable policy-makers to motivate and justify
actions based on the forecasts, and to help a more balanced evaluation
of the forecasts by the public.1 However, it remains rare for forecasters,
policy-makers or private, to provide the detailed information on the range
of potential outcomes that agents might find useful in decision-making
and policy analysis. One explanation of this relates to the difficulty in
measuring the uncertainties associated with forecasts in the large main-
stream macroeconomic models typically employed. A second explanation
is the perceived difficulty in conveying the outcomes of complicated
macroeconomic models in a simple and easily understood form.

Our compact modelling approach, however, provides a practical frame-
work for probability forecasting. The model is theoretically coherent, fits
the UK historical aggregate time series data reasonably well (as argued in
earlier Chapters) and yet the model is small enough to allow for a large vari-
ety of probability forecasting problems of interest to be analysed without
encountering difficult computational problems. In what follows we shall

1 For example, the Bank of England now routinely publishes a range of outcomes for its
inflation and output growth forecasts (see Britton et al. (1998), or Wallis (1999)); the National
Institute use their model to produce probability statements alongside their central forecasts
(their methods are described in Blake (1996), and Poulizac et al. (1996)); and in the financial
sector, J.P. Morgan presents ‘Event Risk Indicators’ in its analysis of foreign exchange markets.
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focus on events that particularly interest the monetary authorities namely
the inflation rate remaining within a given target band and the economy
going into recession over various time frames. We consider these events
both individually and jointly. Although only a small number of events
are considered, we shall show that these probability event forecasts can
convey a considerable amount of information on the uncertainties sur-
rounding a forecast, and correspond with those which the public uses in
judging policy-makers’ performance.

11.1 An updated version of the core model

In principle, probability forecasts can be computed using any macro-
econometric model, although the necessary computations would become
prohibitive in the case of most large-scale macroeconometric models, par-
ticularly if the objective of the exercise is to compute the probabilities of
joint events at long forecast horizons. At the other extreme, the use of
small unrestricted VAR models, while computationally feasible, may not
be satisfactory for the analysis of forecast probabilities over the medium
term. Our VAR model of order 2, involving nine variables, represents an
intermediate alternative that is well suited to the generation of probabil-
ity forecasts. In what follows, therefore we work with a model of the same
form as that presented in Chapter 9. However, in order to evaluate the fore-
casting performance of the model, we extend the dataset, so that it covers
the period 1965q1–2001q1, as compared to 1965q1–1999q4 discussed in
the earlier chapters and work with updated versions of the core model.2

As a reminder we reproduce the model specification below. Under the
assumption that oil prices are ‘long-run forcing’, efficient estimation of
the parameters can be based on the following conditional error correction
model:

�yt = ay − αy

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�yi�zt−i + ψyo�po
t + uyt , (11.1)

where yt = (
et , r∗

t , rt ,�pt , yt , pt − p∗
t , ht − yt , y∗

t

)′, ay is an 8×1 vector of fixed
intercepts, αy is an 8 × 5 matrix of error correction coefficients, {�yi, i =
1, 2, . . . , p − 1} are 8 × 9 matrices of short-run coefficients, ψyo is an 8 × 1
vector representing the impact effects of changes in oil prices on �yt , and

2 The description of the empirical work of this chapter elaborates that provided in Garratt
et al. (2003b).
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uyt is an 8 × 1 vector of disturbances assumed to be i.i.d.(0,�y), with �y

being a positive definite matrix. For forecasting purposes, we specify the
process for the change in the oil price to be:

�po
t = δo +

p−1∑
i=1

δoi�zt−i + uot , (11.2)

where δoi is a 1 × 9 vector of fixed coefficients and uot is a serially uncor-
related error term distributed independently of uyt . This specification
encompasses the familiar random walk model used in the impulse response
analysis in Chapter 10 as a special case and seems quite general for our
purposes. Combining (11.1) and (11.2), and solving for �zt yields the
following reduced form equation which will be used in forecasting:

�zt = a − α
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�i�zt−i + vt , (11.3)

where a =
(
δo, a′

y − aoψ
′
yo

)′
, α =

(
0,α′

y

)′
, �i =

(
δ′
oi,�

′
yi − δ′

oiψ
′
yo

)′
and

vt =
(
uot , u′

yt − uotψ
′
yo

)′
is the vector of reduced form errors assumed to

be i.i.d.(0,�), where � is a positive definite matrix.

11.1.1 Estimation results and in-sample diagnostics

Chapter 9 documents the empirical exercise with respect to the core model
using data over the period 1965q1–1999q4. The results showed that: (i) a
VAR(2) model can adequately capture the dynamic properties of the data;
(ii) there are five cointegrating relationships amongst the nine macroe-
conomic variables; and (iii) the over-identifying restrictions suggested by
economic theory, and described in Chapter 9 above, cannot be rejected.
For the present exercise, we re-estimated the model on the more up-to-date
sample, 1965q1–2001q1. The results continue to support the existence
of five cointegrating relations, and are qualitatively very similar to those
described in Garratt et al. (2003a). For example, the interest rate coefficient
in the real money balance equation is estimated to be 75.68 (standard error
35.34), compared to 56.10 (22.28) in the original work, while the coeffi-
cient on the time trend is estimated to be 0.0068 (0.0010), compared to
0.0073 (0.0012).

Since the modelling exercise here is primarily for the purpose of
forecasting, we next re-estimated the model over the shorter period of
1985q1–2001q1, taking the long-run relations as given. The inclusion
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of the long-run relations estimated over the period 1965q1–2001q1 in
a cointegrating VAR model estimated over the shorter sample period
1985q1–2001q1, is justified on two grounds: (i) as argued by Barassi et al.
(2001) and Clements and Hendry (2002), the short-run coefficients are
more likely to be subject to structural change as compared to the long-
run coefficients; and (ii) the application of Johansen’s cointegration tests
is likely to be unreliable in small samples. Following this procedure, we
are able to base the forecasts on a model with well-specified long-run rela-
tions, but which is also data-consistent, capturing the complex dynamic
relationships that hold across the macroeconomic variables over recent
years.

Table 11.1 gives the estimates of the individual error correcting relations
of the benchmark model estimated over the 1985q1–2001q1 period.

These estimates show that the error correction terms are important in
most equations and provide for a complex and statistically significant
set of interactions and feedbacks across commodity, money and foreign
exchange markets. The estimated error correction equations pass most of
the diagnostic tests and compared to standard benchmarks, fit the histori-

cal observations relatively well. In particular, the R
2

of the domestic output
and inflation equations, computed at 0.549 and 0.603, respectively, are
quite high. The diagnostic statistics for tests of residual serial correlation,
functional form and heteroscedasticity are well within the 90% critical val-
ues, although there is evidence of non-normal errors in the case of some of
the error correcting equations. Non-normal errors is not a serious problem
at the estimation and inference stage, but can be important in Value-at-
Risk analysis, for example, where tail probabilities are the main objects
of interest. In such cases non-parametric techniques for computation of
forecast probabilities might be used. See Chapter 7 for further details.

11.1.2 Model uncertainty

The theory-based cointegrating model is clearly one amongst many possi-
ble models that could be used to provide probability forecasts of the main
UK macroeconomic variables. In order to address the issue of model uncer-
tainty in the analysis that follows we adopt the Bayesian Model Averaging
(BMA) framework described in Chapter 7.3

3 The role of model uncertainty in explaining historical inflation data and the various
monetary policy stances held in post-war US and UK has been highlighted recently by the
work of Cogley and Sargent (2001, 2005) and Cogley et al. (2005).
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Table 11.1 Error correction specification for the over-identified model, 1985q1–
2001q1.

Equation �(pt − p∗
t ) �et �rt �r∗

t �yt �y∗
t �(ht − yt ) �2p̃t

ξ̂1t −0.020∗ 0.136∗ 0.003 0.0006 0.010 0.002 0.031∗ −0.014∗
(0.010) (0.071) (0.004) (0.001) (0.009) (0.006) (0.017) (0.008)

ξ̂2t −0.775 −2.59 −593† 0.117 0.541 0.063 −1.31 −1.05†

(0.664) (4.63) (0.281) (0.075) (0.592) (0.418) (1.09) (0.508)
ξ̂3t 0.022 0.073 0.029 −0.003 −0.061 0.057 0.271† 0.087∗

(0.060) (0.414) (0.025) (0.007) (0.050) (0.037) (0.098) (0.045)
ξ̂4t 0.010∗ 0.003 0.004 −0.001 −0.012† 0.0004 −0.003 0.005

(0.006) (0.043) (0.003) (0.0007) (0.005) (0.004) (0.010) (0.005)
ξ̂5t 0.131 2.04 0.007 −0.014 0.315 0.060 0.257 1.26

(0.239) (1.67) (0.101) (0.027) (0.203) (0.150) (0.393) (0.183)
�(pt−1 − p∗

t−1) 0.275 −0.588 −0.030 0.007 0.136 0.031 −0.066 0.163
(0.176) (1.23) (0.074) (0.020) (0.149) (0.111) (0.289) (0.134)

�et−1 0.020 0.210 −0.0001 0.0004 0.019 −0.012 0.059 −0.025
(0.022) (0.155) (0.009) (0.003) (0.029) (0.014) (0.037) (0.017)

�rt−1 −0.025 −3.90 0.214 0.053 0.190 0.025 −0.296 0.960†

(0.404) (2.81) (0.171) (0.046) (0.342) (0.254) (0.665) (0.309)
�r∗

t−1 −0.839 5.74 −0.120 0.407† 0.784 −0.732 −2.42 1.15
(1.23) (8.59) (0.522) (0.139) (1.05) (0.775) (2.03) (0.943)

�yt−1 −0.090 −1.47 0.009 −0.017 0.439† 0.343† −0.782† 0.252∗
(0.177) (1.23) (0.075) (0.020) (0.150) (0.111) (0.291) (0.135)

�y∗
t−1 −0.052 0.489 0.131 0.072† 0.351∗ 0.184 0.386 0.147

(0.229) (1.51) (0.097) (0.026) (0.194) (0.053) (0.377) (0.175)
�(ht−1 − yt−1) 0.023 −0.081 −0.029 −0.001 −0.057 −0.007 −0.255∗ −0.023

(0.086) (0.588) (0.036) (0.010) (0.073) (0.053) (0.141) (0.066)
�2p̃t−1 −0.064 0.860 −0.012 −0.008 −0.019 −0.049 −0.194 0.017

(0.171) (1.19) (0.072) (0.019) (0.145) (0.107) (0.281) (0.131)
�po

t−1 −0.005 0.006 −0.0001 −0.0009 0.012† 0.005 0.006 0.003
(0.005) (0.036) (0.002) (0.0006) (0.004) (0.003) (0.009) (0.004)

�po
t −0.010† −0.019 0.002 −0.0007 −0.010† −0.001 −0.001 0.004

(0.005) (0.032) (0.002) (0.0005) (0.004) (0.003) (0.007) (0.003)

R
2

0.365 0.089 0.017 0.476 0.549 0.371 0.378 0.603
σ̂ 0.005 0.032 0.002 0.001 0.004 0.003 0.008 0.003
χ2
SC [4] 4.31 3.16 9.40∗ 1.91 5.74 7.29 7.40 5.89

χ2
FF [1] 3.04 0.76 3.49∗ 2.26 0.86 2.31 0.02 0.98

χ2
N [2] 3.53 11.2† 7.13† 0.27 1.91 1.47 33.9† 26.0†

χ2
H [1] 0.01 0.01 1.08 0.01 0.83 0.84 0.17 0.057

Note: The five error correction terms, estimated over the period 1965q1–2001q1, are given by

ξ̂1,t+1 = pt − p∗
t − et − 4.8566,

ξ̂2,t+1 = rt − r∗
t − 0.0057,

ξ̂3,t+1 = yt − y∗
t + 0.0366,

ξ̂4,t+1 = ht − yt + 75.68
(35.34)

rt + 0.0068
(0.001)

t + 0.1283,

ξ̂5,t+1 = rt − �p̃t − 0.0037.

Standard errors are given in parentheses. ‘∗’ indicates significance at the 10% level, and ‘†’ indicates significance
at the 5% level. The diagnostics are chi-squared statistics for serial correlation (SC), functional form (FF), normality
(N) and heteroscedasticity (H).
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We confine our analysis to the class of VAR(p) models, which nonethe-
less allows for the existence of range of important sources of uncertainties.
The most important sources of uncertainty in this context are the order
of the VAR, p, the number of the long-run (or cointegrating) relations, r,
the validity of the over-identifying restrictions imposed on the long-run
coefficients, and the specification of the oil price equation. Given the lim-
ited time series data available, consideration of models with p = 3 or more
did not seem advisable. We also thought it would not be worthwhile to
consider p = 1 on the grounds that the resultant equations would most
likely suffer from residual serial correlation. Therefore, we confined the
choice of the models to be considered in the BMA procedure to exactly
identified VAR(2) models with r = 0, 1, . . . , 5, and two alternative spec-
ifications of the oil price equation, namely (11.2), and its random walk
counterpart,

�po
t = δo + uot . (11.4)

Naturally, we also included our benchmark model in the set (for both
specifications of the oil price equation), thus yielding a total of 14 models
to be considered. We shall use these models in the forecast evaluation
exercise below investigating the robustness of probability forecasts from
the benchmark model to model uncertainty.

To allow for the effect of model uncertainty, we employed the BMA
formulae, (7.33) and (7.36), with the weights, wiT , set according to the
following three schemes: Akaike, Schwarz and equal weights (wiT = 1/14).
The first two are computed using (7.35). In the event, only five of the
14 models appeared as plausible candidates according to the AIC and
SBC criteria. Using the AIC, only two candidate models were consid-
ered plausible: namely, the exactly identifed five cointegrating vector (CV)
models with the two alternative oil price specifications. For the estimation
period 1985q1–1998q4, the two models had estimated weights of 0.93
and 0.07 (for the model containing the oil equation in (11.2) and that
containing the random walk model, respectively). These weights grad-
ually changed to 0.60:0.40 for the estimation period 1985q1–2000q4,
following our recursive forecasting procedure, but all other models had
zero weights throughout. Using the SBC, the exactly identified models
with 5, 4, 3 and 2 cointegrating vectors, each supplemented by the ran-
dom walk model for oil prices, were chosen as plausible candidates. For
the estimation period 1985q1–1998q4, the weights of these four models
were 0.07:0.86:0.06:0.01, respectively, but these also changed gradually to
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0.00:0.01:0.22:0.77 for the estimation period 1985q1–2000q4. The num-
ber of candidate models considered ‘best’ is relatively small, therefore,
according to AIC and SBC, but there is considerable variability in the esti-
mated posterior probabilities of these chosen models with relatively minor
changes in the sample sizes.

11.1.3 Evaluation and comparisons of probability forecasts

In the evaluation exercise, each of the 14 alternative models was used to
generate probability forecasts for a number of simple events over the period
1999q1–2001q1. This was undertaken in a recursive manner, whereby
we first estimated all the 14 models over the period 1985q1–1998q4 and
computed one-step-ahead probability forecasts for 1999q1, then repeated
the process moving forward one quarter at a time, ending with forecasts
for 2001q1 based on models estimated over the period 1985q1–2000q4.
The probability forecasts were computed for directional events of inter-
est. In the case of pt − p∗

t , et , rt , r∗
t and �p̃t , we computed the probability

that these variables rise next period, namely Pr
[
�(pt − p∗

t ) > 0 | It−1
]
,

Pr [�et > 0 | It−1]), and so on, where It−1 is the information available at
the end of quarter t − 1. For the remaining variables, (yt , y∗

t , ht − yt and po
t )

which are trended, we considered the event that the rate of change of these
variables rise from one period to the next, namely Pr

[
�2yt > 0 | It−1

]
,

Pr
[
�2y∗

t > 0 | It−1
]
), and so on. The probability forecasts are computed

recursively using the parametric stochastic simulation technique which
allows for future uncertainty and the non-parametric bootstrap technique
which allows for parameter uncertainty, as detailed in Chapter 7. Model
uncertainty, as highlighted in the previous section, is allowed for through
the three weighting schemes: Akaike, Schwarz and equal weights. The
probability forecasts were then evaluated using a number of different
statistical techniques.

To evaluate the probability forecasts, we adopted a statistical approach,
using a threshold probability of 0.5, so that an event was forecast to be
realised if its probability forecast exceeded 0.5.4 Formal statistical com-
parisons of forecasts and realisations were made using Kuipers score (KS),
Pesaran and Timmermann (PT) (1992) directional (market timing) statistic
and the probability integral transform as proposed by Dawid (1984) and

4 As an alternative, we could conduct a decision-theoretic approach to forecast evaluation
as advocated in Granger and Pesaran (2000a,b) and reviewed in Pesaran and Skouris (2001),
which bases the evaluation of the probability forecasts on their implied economic value in
a specific decision-making context. However, this demands a complete specification of the
decision problem and this has been rather rare in macroeconomic policy evaluation.
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Table 11.2 Forecast evaluation of the benchmark model.

Variable Threshold Future
uncertainty

Future and parameter
uncertainty

UD DD DU UU UD DD DU UU

po
t �2po

t > 0 0 6 1 2 1 5 1 2
et �et > 0 5 0 0 4 5 0 0 4
r∗
t �r∗

t > 0 0 3 2 4 2 1 2 4
rt �rt > 0 5 0 0 4 5 0 0 4
�p̃t �2p̃t > 0 1 3 0 5 2 2 0 5
yt �yt > 0 2 2 1 4 2 2 1 4
pt − p∗

t �(pt − p∗
t ) > 0 2 5 2 0 3 4 2 0

ht − yt �2(ht − yt ) > 0 0 4 1 4 0 4 1 4
y∗
t �2y∗

t > 0 2 3 2 2 2 3 2 2

Total 17 26 9 29 22 21 9 29

Hit rate 55/81 = 0.679 50/81 = 0.617

Note: The forecast evaluation statistics are based on one-step-ahead forecasts obtained from models
estimated recursively, starting with the forecast of events in 1999q1 based on models estimated over
1985q1–1998q4 and ending with forecasts of events in 2001q1. The events of interest are described
in Section 11.1.3. In the column headings the first letter denotes the direction of the forecast (U=up,
D=down) and the second letter the direction of the outcome (U=up, D=down). For example, UU
indicates an upward movement was correctly forecast. Hit rate is defined as (DD + UU)/(UD + DD +
DU + UU).

developed further in Diebold, Gunther and Tay (1998). Table 11.2 reports
the incidence of the four possible combinations of our directional forecasts
based on the benchmark model. For each variable, nine event forecasts are
generated over the period 1999q1–2001q1 (nine quarters), thus providing
81 forecasts for evaluation purposes. These event forecasts are compared
with their realisations and grouped under the headings, ‘UU’, indicating
forecasts and realisations are in the same upward direction, ‘UD’ indicating
an upward forecast with a realised downward movement, and so on. High
values for UU and DD indicate an ability of the model to forecast upward
and downward movements correctly, while high values of UD and DU
suggest poor forecasting ability.

The information in Table 11.2 documents the forecasting performance
of the benchmark model, and comparable tables of results can be gener-
ated based on the probability forecasts obtained from the equal-weighted,
AIC-weighted and SBC-weighted averages of the 14 candidate models.
Briefly, Table 11.2 shows that for the case of future uncertainty the hit rate
is 0.68 versus 0.62 when both parameter uncertainty and future uncer-
tainty are considered. The forecasting performance of these is summarised
by KS, defined by H − F, where H is the proportion of ups that were
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Table 11.3 Diagnostic statistics for the evaluation of benchmark and average model
probability forecasts.

Model Future
uncertainty

Future and parameter
uncertainty

KS Hit
rate

PT Dn KS Hit
rate

PT Dn

Benchmark with (11.2) 0.373 0.679 3.356 0.111 0.269 0.617 2.354 0.136
Benchmark with (11.4) 0.302 0.642 2.701 0.123 0.237 0.605 2.094 0.136
Equal Weights Average 0.259 0.630 2.346 0.062 0.256 0.630 2.322 0.111
AIC Weighted Average 0.302 0.642 2.701 0.160 0.273 0.630 2.451 0.136
SBC Weighted Average 0.207 0.605 1.873 0.111 0.233 0.617 2.109 0.099

Note: The forecast evaluation statistics are based on one-step-ahead forecasts obtained from models estimated
recursively, starting with the forecast of events in 1999q1 based on models estimated over 1985q1–1998q4
and ending with forecasts of events in 2001q1. The events of interest are described in Section 11.1.3. The hit
rate is defined as is the proportion of ups and downs that were correctly forecast to occur. The KS statistic is the
Kuipers score statistic, PT statistic is the Pesaran and Timmermann (1992) test which under the null hypothesis
has a standard normal distribution. Finally, Dn is the Kolmogorov–Smirnov statistic where the 5% critical value
of Dn for n = 81 is equal to 0.149.

correctly forecast to occur, and F is the proportion of downs that were
incorrectly forecast.5 This statistic provides a measure of the accuracy of
directional forecasts of the model, with high positive numbers indicat-
ing high predictive accuracy. In Table 11.3, we report the KS along with
the other forecast evaluation statistics listed above, for the benchmark
model, the three average models and the benchmark model replacing the
oil equation of (11.2) with the random walk model. Where the probabil-
ity forecasts take account of future uncertainty only, the KS suggests that
the most accurate forecasts are provided by the benchmark model. Allow-
ing for parameter uncertainty in the computation of probability forecasts,
however, the KS suggests the benchmark model and the AIC average model
produce the most accurate forecasts, although these forecasts perform less
well than when just considering future uncertainty.6

The Kuipers score is a useful summary measure but does not provide
a statistical test of the directional forecasting performance. Pesaran and
Timmermann (1992) provide a formal statistical test which, as shown in
Granger and Pesaran (2000b), turns out to be equivalent to a test based on

5 These two proportions are known as the ‘hit rate’ and ‘false alarm rate’, respectively. In
the case where the outcome is symmetric, in the sense that we value the ability to forecast ups
and downs equally, then the score statistic of zero means no accuracy, whilst high positive
and negative values indicate high and low predictive power.

6 These statistics are based on probability forecasts where future uncertainty is taken into
account using a parametric procedure. The results are hardly affected if a non-parametric
procedure is used instead.
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the Kuipers score. The PT statistic is defined by

PT = P̂ − P̂∗{
V̂ (̂P) − V̂ (̂P∗)

} 1
2

,

where P̂ is the proportion of correctly predicted upward movements, P̂∗
is the estimate of the probability of correctly predicting the events under
the null hypothesis that forecasts and realisations are independently dis-
tributed, and V̂ (̂P) and V̂ (̂P∗) are the consistent estimates of the variances
of P̂ and P̂∗, respectively. Under the null hypothesis, the PT statistic has a
standard normal distribution. For the forecasts based on the benchmark
model in combination with the estimated oil price equation, (11.2), we
obtained PT = 3.356 when only future uncertainty was allowed for, and
PT = 2.354 when both future and parameter uncertainties were taken into
account. Both of these statistics are statistically significant. The alternative
oil price specification of (11.4) yielded corresponding PT test statistics of
2.701 and 2.094, which are significant but marginally less so. The prob-
ability forecast results based on the average models were marginally less
convincing, with the AIC average having the highest PT of 2.701 for future
uncertainty only, but when considering parameter uncertainty as well
gives the highest PT of all models of 2.451. These results suggest that the
benchmark model performs well under future uncertainty, suggesting the
importance of imposing theory-based long-run restrictions for probabil-
ity forecasting, but that this distinction is removed when both future and
parameter uncertainty are considered.

An alternative approach to probability forecast evaluation would be to
use the probability integral transforms

u(zt ) =
∫ zt

−∞
pt (x) dx, t = T + 1, T + 2, . . . , T + n,

where pt (x) is the forecast probability density function, and zt , t =
T+1, T+2, . . . , T+n, the associated realisations. Under the null hypothesis
that pt (x) coincides with the true density function of the underlying pro-
cess, the probability integral transforms will be distributed as i.i.d.U [0, 1].
This result is due to Rosenblatt (1952), and has been recently applied in
time series econometrics by Diebold, Gunther and Tay (1998).7 In our
application, we first computed a sequence of one step ahead probability

7 Also see Diebold, Hahn and Tay (1999) and Berkowitz (1999).
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forecasts (with and without allowing for parameter uncertainty) from
the over-identified and exactly identified models for the nine sim-
ple events set out above over the nine quarters 1999q1, 1999q2, . . . ,
2001q1, and hence the associated probability integral transforms, u(zt ).
To test the hypothesis that these probability integral transforms are
random draws from U [0, 1], we calculated the Kolmogorov–Smirnov
statistic,

Dn = sup
x

|Fn(x) − U(x)| ,

where Fn(x) is the empirical cumulative distribution function (CDF) of the
probability integral transforms, and U(x) = x, is the CDF of i.i.d.U [0, 1].
Large values of the Kolmogorov–Smirnov statistic, Dn, indicate that the
sample CDF is not similar to the hypothesised uniform CDF.8 For the
over-identified benchmark specification, we obtained the value of 0.111
for the Kolmogorov–Smirnov statistic when only future uncertainty was
allowed for, and the larger value of 0.136 when the underlying proba-
bility forecasts took account of both future and parameter uncertainties.
The corresponding statistics for the benchmark model with the alterna-
tive oil price specification of (11.4) were 0.123 and 0.136, respectively. All
these statistics are well below the 5% critical value of Kolmogorov–Smirnov
statistic (which for n = 81 is equal to 0.149), and the hypothesis that the
forecast probability density functions coincide with the true ones cannot
be rejected. We cannot reject the same hypothesis for the average models
either but with the noticeable exception of the AIC model. The AIC aver-
age model obtains a value of 0.160 for the Kolmogorov–Smirnov statistic
when only future uncertainty was allowed for and 0.136 when we include
parameter uncertainty. Hence we reject the null that the forecast probabil-
ity density functions coincide with the true ones when considering future
uncertainty but not when we consider both future and parameter uncer-
tainty. This is an interesting results in light of the support given to the AIC
from the hit rate, the KS and PT statistics. Overall results do not reject any
one model but do provide some evidence, in particular when considering
future uncertainty, for supporting the use of the over-identified specifica-
tion in forecasting. With this in mind, we now proceed to the generation
of out-of-sample forecast probabilities of interest using the over-identified
benchmark model.

8 For details of the Kolmogorov–Smirnov test and its critical values see, for example, Neave
and Worthington (1992, pp. 89–93).
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11.2 Probability forecasts of inflation and output growth

Here we apply the techniques described in Chapter 7 to the updated core
model of the UK economy to compute out-of-sample probability forecasts
of events relating to inflation targeting and output growth which are of
particular interest for the analysis of macroeconomic policy in the UK.
Inflation targets have been set explicitly in the UK since October 1992, fol-
lowing the UK’s exit from the European Exchange Rate Mechanism (ERM).
The Chancellor’s stated objective at the time was to achieve an average
annual rate of inflation of 2%, while keeping the underlying rate of infla-
tion within the 1–4% range. In May 1997, the policy of targeting inflation
was formalised further by the setting up of the Monetary Policy Commit-
tee (MPC), whose main objective is to meet inflation targets primarily by
influencing the market interest rate through fixing the base rate at regular
intervals. Its current remit, as set annually by the Chancellor, is to achieve
an average annual inflation rate of 2.0%, based on the Harmonised Index of
Consumer Prices (HICP), renamed the Consumer Price Index. In this appli-
cation we have used the RPI index (as an approximation to the measure
previously used by the MPC, the Retail Price Index, excluding mortgage
interest payments, RPI-x), where the previous target of 2.5% is argued to
be equivalent to the new 2.0% target, as the method of constructing the
consumer price index will produce a lower measure of inflation than the
RPI method. The previous target range of 1.5–3.5% therefore also remains
of interest and constitutes one of the events analysed. Note a feature of
the policy framework is that the time horizon over which the inflation
objective is to be achieved is not stated.

Inflation rates outside the target range act as a trigger, requiring the
Governor of the Bank of England to write an open letter to the Chancellor
explaining why inflation had deviated from the target, the policies being
undertaken to correct the deviation, and how long it is expected before
inflation is back on target. The Bank is also expected to conduct monetary
policy so as to support the general economic policies of the government,
so far as this does not compromise its commitment to its inflation target.

Since October 1992, the Bank of England has produced a quarterly
Inflation Report which describes the Bank’s assessment of likely inflation
outcomes over a two-year forecast horizon. In addition to reviewing the
various economic indicators necessary to place the inflation assessment
into context, the Report provides forecasts of inflation over two year hori-
zons, with bands presented around the central forecast to illustrate the
range of inflation outcomes that are considered possible (the so-called fan
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charts). The forecasts are based on the assumption that the base rate is left
unchanged. Since November 1997, a similar forecast of output growth has
also been provided in the Report, providing insights on the Bank’s percep-
tion of the likely outcome for the government’s general economic policies
beyond the maintenance of price stability. For a critical assessment of the
Bank’s approach to allowing for model and parameter uncertainties, see
Wallis (1999).

The fan charts produced by the Bank of England are an important step
towards acknowledging the significance of forecast uncertainties in the
decision-making process and this is clearly a welcome innovation. How-
ever, the approach suffers from two major shortcomings. First, it seems
unlikely that the fan charts can be replicated by independent researchers.
This is largely due to the subjective manner in which uncertainty is
taken into account by the Bank, which may be justified from a real-time
decision-making perspective but does not readily lend itself to indepen-
dent analysis. Second, the use of fan charts is limited for the analysis of
uncertainty associated with joint events. Currently, the Bank provides sep-
arate fan charts for inflation and output growth forecasts, but in reality one
may also be interested in joint events involving both inflation and out-
put growth, and it is not clear how the two separate fan charts could be
used for such a purpose. Here, we address both of these issues using the
benchmark long-run structural model and the various alternative models
discussed.

In what follows, we present plots of estimated predictive distribution
functions for inflation and output growth at a number of selected fore-
cast horizons. These plots provide us with the necessary information with
which to compute probabilities of a variety of events, and demonstrate the
usefulness of probability forecasts in conveying the future and parameter
uncertainties that surround the point forecasts. But our substantive discus-
sion of the probability forecasts focuses on two central events of interest;
namely, keeping the rate of inflation within the announced target range
of 1.5–3.5% and avoiding a recession. Following the literature, we define
a recession as the occurrence of two successive negative quarterly growth
rates. See, for example, Harding and Pagan (2002).

11.2.1 Point and interval forecasts

Before reporting the probability forecasts, it is worth briefly summarising
the point and interval forecasts to help place the probability forecasts in
context. Tables 11.4a and 11.4b provide the point forecasts for domestic
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Table 11.4a Point and interval forecasts of inflation and output
growth (four quarterly moving averages, per cent, per annum).

Forecast Output growth Inflation
horizon

Forecast Actual Forecast Actual

2001q2 1.84 (1.02, 2.65) 2.33 1.80 (1.11, 2.49) 1.92
2001q3 1.30 (−0.13, 2.73) 2.12 1.61 (0.34, 2.88) 1.80
2001q4 1.28 (−0.62, 3.18) 2.11 1.37 (−0.36, 3.11) 1.04
2002q1 1.27 (−1.05, 3.51) 1.60 1.69 (−0.44, 3.82) 1.21
2002q2 1.42 (−1.10, 3.94) 1.49 2.08 (−0.31, 4.47) 1.20
2002q3 1.65 (−1.08, 4.37) 1.88 2.01 (−0.51, 4.52) 1.48
2002q4 1.89 (−1.04, 4.81) 1.97 1.92 (−0.69, 4.52) 2.50
2003q1 2.02 (−1.08, 5.12) 2.06 1.93 (−0.75, 4.60) 3.00

Note: Forecasts are based on the model reported in Table 11.1, combined with an
estimate of the oil price equation (11.2). The figures in parentheses are the lower and
upper 95% confidence intervals. The four quarterly moving average output growth is
defined as 100×ln(GDPT+h/GDPT+h−4), where GDPT is the real Gross Domestic Product
in 2001q1, which is computed from the forecasts of per capita output, yT+h , assuming
a population growth of 0.22% per annum. The four quarterly moving average inflation
rate is defined as 100 × (pT+h − pT+h−4

)
where pT is the natural logarithm of the retail

price index in 2001q1.

Table 11.4b Point and interval forecasts of inflation and output
growth (quarter on quarter changes, per cent, per annum).

Forecast Output growth Inflation
horizon

Forecast Actual Forecast Actual

2001q2 1.30 (−1.96, 4.55) 2.01 0.28 (−2.49, 3.06) 4.86
2001q3 1.16 (−2.61, 4.91) 2.00 2.22 (−2.05, 6.50) 0.23
2001q4 1.12 (−2.83, 5.07) 1.19 2.31 (−2.40, 7.04) −0.46
2002q1 1.53 (−2.59, 5.64) 1.19 1.93 (−3.01, 6.87) 0.23
2002q2 1.89 (−2.37, 6.15) 1.58 1.86 (−3.28, 7.00) 4.80
2002q3 2.05 (−2.36, 6.45) 3.54 1.91 (−3.39, 7.21) 1.36
2002q4 2.08 (−2.45, 6.61) 1.56 1.95 (−3.47, 7.37) 3.61
2003q1 2.08 (−2.56, 6.71) 1.56 1.97 (−3.54, 7.49) 2.24

Note: See Notes to Table 11.4a. Output growth is defined as 400 ×
ln(GDPT+h/GDPT+h−1), while inflation is defined as 400 × (pT+h − pT+h−1

)
.

inflation rates and output growth over the period 2001q1–2003q1 together
with their 95% confidence intervals.

Table 11.4a presents the four quarterly growth rate forecasts, while Table
11.4b gives the forecasts of annualised quarter-on-quarter growth rates.9

9 It is worth noting that the inflation target is expressed in terms of RPI-x while our model
provides forecasts of RPI.
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The model predicts the average annual rate of inflation to fall from 2.5%
in 2001q1 to 1.8% in 2001q2. This is followed by further falls for the
rest of 2001 before returning to approximately 2% to the end of the fore-
cast horizon, 2003q1. These point forecasts are lower than the inflation
rates realised during 2000, as illustrated by the historical data on infla-
tion presented in Figure 11.1a. Output growth is predicted to be positive
throughout the forecast horizon, falling from an average annual rate of
2.8% in 2000 to 1.3% by the end of 2001, before rising to around 2.0%
thereafter (see Table 11.4a). Therefore, based on these point forecasts, we
may be tempted to rule out the possibility of a recession occurring in the
UK over the 2001–2003 period.

However, these point forecasts are subject to a high degree of uncer-
tainty, particularly when longer forecast horizons are considered. For
example, at the two year forecast horizon the point forecast of annual infla-
tion in 2003q1 is predicted to be 1.9%, which is well within the announced
inflation target range. But the 95% confidence interval covers the range
−0.8% to +4.6%. For the quarter on quarter definition, the uncertainty
is even larger, with a range of −3.5% to 7.5% around a point forecast of
approximately 2.0%. Similarly, the point forecast of the quarter on quarter
annual rate of output growth in 2003q1 is 2.1%, but its 95% confidence
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Figure 11.1b Output growth (four-quarter moving average).

interval covers the range −2.6% to +6.7%. As we have noted, it is difficult
to evaluate the significance of these forecast intervals for policy analy-
sis and a more appropriate approach is to directly focus on probability
forecasts as a method of characterising the various uncertainties that are
associated with events of interest. This is the topic that we shall turn to
now.

11.2.2 Predictive distribution functions

In the case of single events, probability forecasts are best represented by
means of probability distribution functions. Figures 11.2a and 11.2b give
the estimates of these functions for the four-quarter moving averages of
inflation and output growth for the one-quarter, one- and two-year ahead
forecast horizons based on the benchmark model (i.e. the over-identified
version of the cointegrating model, (11.1), augmented with the oil price
equation, (11.2)). These estimates are computed using the simulation tech-
niques described in detail in Section 7.3 and take account of both future
and parameter uncertainties.

Figure 11.2a presents the estimated predictive distribution function for
inflation for the threshold values ranging from 0% to 5% per annum at
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Figure 11.2a Predictive distribution functions for inflation (benchmark model
with parameter uncertainty).
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Figure 11.2b Predictive distribution functions for output growth (benchmark
model with parameter uncertainty).
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the three selected forecast horizons. Perhaps not surprisingly, the function
for the one-quarter ahead forecast horizon is quite steep, but it becomes
flatter as the forecast horizon is increased. Above the threshold value of
2.0%, the estimated probability distribution functions shift to the right
as longer forecast horizons are considered, showing that the probability
of inflation falling below thresholds greater than 2.0% declines with the
forecast horizon. For example, the forecast probability that inflation lies
below 3.5% becomes smaller at longer forecast horizons, falling from close
to 100% one quarter ahead (2001q2) to 70% eight quarters ahead (2003q1).
These forecast probabilities are in line with the recent historical experience:
over the period 1985q1–2001q1, the average annual rate of inflation fell
below 3.5% for 53.9% of the quarters, but were below this threshold value
throughout the last two years of the sample, 1999q1–2001q1.

Figure 11.2b plots the estimated predictive distribution functions for
output growth. These functions also become flatter as the forecast hori-
zon is increased, reflecting the greater uncertainty associated with growth
outcomes at longer forecast horizons. These plots also suggest a weaken-
ing of the growth prospects in 2001 before recovering a little at longer
horizons. For example, the probability of a negative output growth one
quarter ahead (2001q2) is estimated to be almost zero, but rises to 14%
four quarters ahead (2002q1) before falling back to 12% after eight quarters
(2003q1). Therefore, a rise in the probability of a recession is predicted, but
the estimate is not sufficiently high for it to be much of a policy concern
(at least viewed from the end of our sample period 2001q1).

11.2.3 Event probability forecasts

Here we consider three single events of particular interest:

A : achievement of inflation target, defined as the four-quarterly moving
average rate of inflation falling within the range 1.5–3.5%;

B : recession, defined as the occurrence of two consecutive quarters of
negative output growth;

C : poor growth prospects, defined to mean that the four-quarterly
moving average of output growth is less than 1%;

and the joint events A ∩ B (inflation target is met and recession is avoided),
and A ∩ C (inflation target is met combined with reasonable growth
prospects), where B and C are complements of B and C.
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INFLATION AND THE TARGET RANGE

Two sets of estimates of Pr(AT+h | IT ) are provided in Table 11.5a (for h =
1, 2, . . . , 8) and depicted in Figure 11.3 over the longer forecast horizons
h = 1, 2, . . . , 24.

The first set relates to π , which only take account of future uncertainty,
and the second set relates to π̃ which allow for both future and parameter
uncertainties. Both π and π̃ convey a similar message, but there are never-
theless some differences between them, at least at some forecast horizons,
so that it is important that both estimates are considered in practice.

Based on these estimates, and conditional on the information available
at the end of 2001q1, the probability that the Bank of England will be
able to achieve the government inflation target is estimated to be high in
the short run but falls in the longer run, reflecting the considerable uncer-
tainty surrounding the inflation forecasts at longer horizons. Specifically,
the probability estimate is high in 2001q2, at 0.87 (0.80) for π̃ (π), but it
falls rapidly to nearer 0.45 by the end of 2001/early 2002. This fall in the
first quarters of the forecast reflects the increasing likelihood of inflation
falling below the 1.5% lower threshold (since the probability of observ-
ing inflation above the 3.5% upper threshold is close to zero through this
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Figure 11.3 Probability estimates of inflation falling within the target range using
the benchmark model.
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period). Ultimately, though, the estimated probability of achieving infla-
tion within the target range settles to 0.38 (0.35) for π̃ (π) in 2003q1. At
this longer forecast horizon, the probabilities of inflation falling below
and above the target range are 0.32 and 0.30, respectively, using π̃ (or
0.42 and 0.23 using π), so these figures reflect the relatively high degree of
uncertainty associated with inflation forecasts even at moderate forecast
horizons. Hence, while the likely inflation outcomes are low by historical
standards and there is a reasonable probability of hitting the target range,
there are also comparable likelihoods of undershooting and overshooting
the inflation target range at longer horizons.

RECESSION AND GROWTH PROSPECTS

Figure 11.4 shows the estimates of the recession probability, Pr(BT+h | IT )

over the forecast horizons h = 1, 2, . . . , 24. For this event, the probability
estimates that allow for parameter uncertainty (i.e. π̃) exceed those that
do not (i.e. π) at shorter horizons, but the opposite is true at longer hori-
zons. Having said this, however, π and π̃ are very similar in size across
the different forecast horizons and suggest a very low probability of a
recession: based on the π̃ estimate, for example, the probability of a reces-
sion occurring in 2001q2 is estimated to be around zero, rising to 0.09 in
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Figure 11.4 Probability estimates of a recession using the benchmark model.
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2002q1. However, as shown in Table 11.5b, the probability that the UK
faces poor growth prospects is much higher, in the region of 0.35 at the
end of 2001, falling to 0.3 in 2003q1 according to the π̃ estimates.

Single events are clearly of interest but very often decision-makers are
concerned with joint events involving, for example, both inflation and
output growth outcomes. As examples here, we consider the probability
estimates of the two joint events, AT+h ∩ BT+h, and AT+h ∩ CT+h over

Table 11.5a Probability forecasts of single events involving inflation.

Forecast Pr(Inf < 1.5%) Pr(Inf < 2.5%) Pr(Inf < 3.5%) Pr(1.5% < Inf < 3.5%)
horizon

π π̃ π π̃ π π̃ π π̃

2001q2 0.206 0.135 0.978 0.920 1.000 1.000 0.795 0.865
2001q3 0.437 0.275 0.884 0.732 0.996 0.963 0.560 0.688
2001q4 0.541 0.364 0.849 0.682 0.974 0.899 0.433 0.535
2002q1 0.451 0.292 0.721 0.533 0.893 0.761 0.442 0.469
2002q2 0.367 0.244 0.597 0.441 0.801 0.652 0.434 0.408
2002q3 0.405 0.285 0.611 0.484 0.785 0.683 0.381 0.398
2002q4 0.424 0.315 0.625 0.514 0.792 0.705 0.368 0.390
2003q1 0.422 0.321 0.607 0.515 0.772 0.702 0.351 0.381

Note: The probability estimates for inflation relate to the four quarterly moving average of inflation
defined by 400 × (pT+h − pT+h−4), where p is the natural logarithm of the retail price index. The
probability estimates (π and π̃) are computed using the model reported in Table 11.1, where π

is the ‘Profile Predictive Likelihood’ that only takes account of future uncertainty, whereas π̃ is the
‘Bootstrap Predictive Distribution’ function and accounts for both future and parameter uncertain-
ties. The computations are carried out using 2000 replications. See Chapter 7 for computational
details.

Table 11.5b Probability forecasts of events involving output growth and inflation.

Forecast
horizon

Pr(Recession) Pr(output
growth < 1%)

Pr(1.5% < Inf <
3.5%, No recession)

Pr(1.5% < Inf <3.5%,
output growth > 1%)

π̃ π̃ π̃ π̃

2001q2 0.000 0.040 0.865 0.832
2001q3 0.111 0.319 0.629 0.500
2001q4 0.084 0.343 0.499 0.381
2002q1 0.092 0.371 0.426 0.300
2002q2 0.092 0.312 0.373 0.278
2002q3 0.088 0.314 0.365 0.273
2002q4 0.090 0.305 0.358 0.272
2003q1 0.092 0.295 0.350 0.270

Note: The probability estimates for output growth are computed from the forecasts of per capita output,
assuming a population growth of 0.22% per annum. Recession is said to have occurred when output growth
(measured, quarter on quarter, by 400 × ln(GDPT+h/GDPT+h−1)) becomes negative in two consecutive
quarters. Also see the notes to Tables 11.4a and 11.5a.
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the forecast horizons h = 1, 2, . . . , 24. Probability estimates of these events
(based on π̃) are presented in Table 11.5b. Both events are of policy interest
as they combine the achievement of the inflation target with alternative
growth objectives. For the event AT+h ∩ BT+h, the joint probability fore-
casts are similar in magnitude to those for Pr

(
AT+h | IT

)
alone at every

time horizon. This is not surprising since the probability of a recession is
estimated to be small at most forecast horizons and therefore the prob-
ability of avoiding recession is close to one. Nevertheless, the differences
might be important since even relatively minor differences in probabilities
can have an important impact on decisions if there are large, discontinu-
ous differences in the net benefits of different outcomes. The probability
forecasts for AT+h ∩ CT+h are, of course, considerably less than those for
Pr
(
AT+h | IT

)
alone.

Figure 11.5 plots the values of the joint event probability over the fore-
cast horizon alongside a plot of the product of the single event probabili-

ties; that is Pr
(
AT+h | IT

)×Pr
(
BT+h | IT

)
, h = 1, 2, . . . , 24. This comparison

provides an indication of the degree of dependence/independence of the
two events. As it turns out, there is a gap between these of just under 0.1
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Figure 11.5 Probability estimates of meeting the inflation target without a reces-
sion (future and parameter uncertainty).
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at most forecast horizons. But the probabilities are relatively close, indicat-
ing little dependence between output growth prospects and inflation out-
comes. This result is compatible with the long-term neutrality hypothesis
that postulates independence of inflation outcomes from output growth
outcomes in the long run.

Figure 11.6 also plots the probability estimates of the joint event AT+h ∩
BT+h, but illustrates the effects of taking into account model uncertainty.
The figure shows three values of the probability of the joint event over the
forecast horizon, each calculated without taking account of parameter
uncertainty. One value is based on the benchmark model, but the other
two show the weighted average of the probability estimates obtained from
the 14 alternative models described in the model evaluation exercise of the
previous section. The weights in the latter two probability estimates are set
equal in one of the estimates and are the in-sample posterior probabilities
of the models approximated by the Akaike weights in the other. The plots
show that estimated probabilities from the benchmark model are, by and
large, quite close to the ‘equal weights’ estimate, but these are both lower
than the AIC-weighted average, by more than 0.1 at some forecast hori-
zons. Again, the extent to which these differences are considered large or
important will depend on the nature of the underlying decision problem.
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Figure 11.6 Probability estimates of meeting the inflation target without a reces-
sion (future uncertainty only).
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11.3 A postscript

The elapse of time since the publication of the above forecasts in Garratt et
al. (2003b) presents us with an opportunity for a real-time out-of-sample
forecast evaluation, albeit over a rather short period. In what follows
we compare the point and probability forecasts, reported in Tables 11.4a
and 11.4b with the realised values of output growth and inflation for the
eight quarters 2001q2–2003q1.

The difficulty of producing accurate point forecasts is reflected in the
size of the forecast errors but the uncertainty surrounding the point fore-
casts is so large that in only one case does the realised value exceed the
95% confidence intervals. The less volatile four quarterly moving average
changes perform reasonably, with root mean square errors (RMSE) of 0.47
and 0.60 percentage points for output growth and inflation, respectively.
The quarter on quarter annual realisations exhibit high volatility, particu-
larly for inflation and as such have larger and more volatile forecast errors.
This is reflected in the RMSEs which take the values of 0.72 and 2.43 for
output growth and inflation, respectively. On this definition inflation fore-
casts perform badly. For example, the realised value was 4.86% in 2001q2
as compared to the forecast value of 0.28%.

The probability event forecasts, which use the same distributions as the
point and interval forecasts, perform well in terms of predicting specific
events and as such convey useful information, not always apparent when
using the point forecasts. If we evaluate the probability event forecasts
using the threshold probability of 0.5, so that an event was forecast to
be realised if its probability forecast exceeded 0.5, then the ‘hit rate’ (see
footnote 5 of this chapter) or percentage of correctly forecasting events,
for all the 32 events regarding inflation defined in Table 11.5a is 84%
(27 out of 32) for future uncertainty only and 75% (24 out of 32) for
future and parameter uncertainty. The hit rate for events associated with
output growth (i.e. recession defined as two consecutive quarters of nega-
tive growth and output growth of <1%) exhibits a hit rate of 100% (16 out
of 16). Joint event probability event predictions also perform well with a
hit rate of 69% (11 out of 16).

11.4 Concluding remarks

One of the many problems economic forecasters and policy-makers face
is conveying to the public the degree of uncertainty associated with point
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forecasts. Policy-makers recognise that their announcements, in addition
to providing information on policy objectives, can themselves initiate
responses which affect the macroeconomic outcome. This means that Cen-
tral Bank Governors are reluctant to discuss either pessimistic possibilities,
as this might induce recession, or more optimistic possibilities, since this
might induce inflationary pressures. There is therefore an incentive for
policy-makers to seek ways of making clear statements regarding the range
of potential macroeconomic outcomes for a given policy, and the likeli-
hood of the occurrence of these outcomes, in a manner which avoids these
difficulties.

Here we have argued for the use of probability forecasts as a method
of characterising the uncertainties that surround forecasts from a macro-
economic model believing this to be superior to the conventional way
of trying to deal with this problem through the use of confidence inter-
vals. We argue that the use of probability forecasts has an intuitive appeal,
enabling the forecaster (or users of forecasts) to specify the relevant ‘thresh-
old values’ which define the event of interest (e.g. a threshold value
corresponding to an inflation target range 1.5–3.5%). This is in contrast
to the use of confidence intervals which define threshold values only
implicitly, through the specification of the confidence interval widths,
and these values may or may not represent thresholds of interest. A fur-
ther advantage of the use of probability forecasts compared with the use
of confidence intervals and over other more popular methods is the flex-
ibility of probability forecasts, as illustrated by the ease with which the
probability of joint events can be computed and analysed. Hence, for
example, we can consider the likelihood of achieving a stated inflation tar-
get range whilst simultaneously achieving a given level of output growth,
with the result being conveyed in a single number. In situations where
utility or loss functions are non-quadratic and/or the constraints are non-
linear the whole predictive probability distribution function rather than
its mean is required for decision-making. This chapter shows how such
predictive distribution functions can be obtained in the case of long-
run structural models, and illustrates its feasibility in the case of a small
macroeconometric model of the UK.

The empirical exercise provides a concrete example of the usefulness
of event probability forecasting both as a tool for model evaluation and
as a means for conveying the uncertainties surrounding the forecasts of
specific events of interest. The model used represents a small but com-
prehensive model of the UK macroeconomy which incorporates long-run
relationships suggested by economic theory so that it has a transparent
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and theoretically coherent foundation. The model evaluation exercise not
only demonstrates the statistical adequacy of the forecasts generated by
the model but also highlights the considerable improvements in forecasts
obtained through the imposition of the theory-based long-run restrictions.
The predictive distribution functions relating to single events and the
various joint event probabilities presented illustrate the flexibility of the
functions in conveying forecast uncertainties and, from the observed inde-
pendence of probability forecasts of events involving inflation and growth,
in conveying information on the properties of the model. The model aver-
aging approach also provides a coherent procedure to take account of
parameter and model uncertainties as well as the future uncertainty.
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12

Global modelling and other
applications

The modelling approach described in Chapters 2–7, and adopted in the
detailed description of the UK macroeconometric model of Chapters 8–11,
is widely applicable and has been recently employed in a variety of stud-
ies investigating important macroeconomic issues. We conclude the book
with a brief description of a number of these applications. The applications
have been chosen to illustrate the flexibility of the modelling approach
and the range of topics that can be addressed using these techniques. The
first group of applications are concerned with the widespread use of the
Structural Cointegrating VAR modelling approach, and provides a brief
description of a global VAR (GVAR) model, which is aimed at capturing
regional interdependencies in the world economy. The GVAR illustrates
how the modelling approach advanced in the book can be generalised to
build a global model within which the core UK model could, in principle,
be subsumed. The second area focuses on the increasing use of impulse
responses and the ways in which the VAR estimates can be interpreted,
commenting on the construction of a high-frequency (monthly) version
of the core model which is of particular use in identifying monetary policy
shocks. Finally, a third area of applications focuses on recent use of proba-
bility forecasts, including a description of a measure of ‘financial distress’
that provides probabilistic statements on events in the UK unsecured credit
market, investigated as a ‘satellite’ of the core UK model.

12.1 Recent applications of the structural cointegrating
VAR approach

There has been considerable interest and activity in the application of the
Structural Cointegrating VAR approach to macroeconometric modelling
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within academia, and from central bankers, government and industry in
recent years. The flexibility of the modelling techniques is evidenced by
the sheer variety of studies employing the techniques in the academic
literature. So for example, recent applications have investigated mone-
tary policy transmission mechanisms in Australia and New Zealand (Haug
et al., 2005), the link between wage setting, minimum wages and infla-
tion in France (L’horty and Rault, 2004), the determinants of the demand
for electricity in Greece (Hondroyianis, 2004), the demand for exports in
Hong Kong (Abbott and De Vita, 2002), employment dynamics in India
(Roy, 2004), the link between financial variables and import demand in
Japan (Tang, 2004), the PPP hypothesis and the relationship between
macroeconomic stability and growth in Turkey (Yazgan, 2003; Ismihan,
Metin-Ozcan and Tansel, 2005), and the demand for calories in Zimbabwe
(Tiffin and Dawson, 2003).

The approach to modelling the macroeconomy, as opposed to partic-
ular macroeconomic relationships, has also been illustrated in models
of the US economy, in Anderson et al. (2002), the Canadian economy,
in Crowder and Wohar (2004), and for the euro area in Brand and
Cassola (2004). In the US model, a six-variable cointegrating VAR is
obtained (including the CPI, the GDP deflator, real money balances,
the federal funds rate, the yield on long-term bonds, and output), and
anchored by four long-run relationships suggested by economic theory:
namely, a money demand relationship, the Fisher inflation parity relation-
ship, a term-structure relationship, and a relationship linking the two mea-
sures of prices. In the Canadian case, the six variables under consideration
include disposable income, consumption, wealth, the interest rate, real
money balances and the GDP deflator, while the long-run relationships
include consumption–income and consumption-wealth relationships, the
money demand relationship and the FIP relationship. For the euro area,
Brand and Cassola’s model describes real money balances, inflation, short-
term and long-term interest rates and GDP, taking into account a demand
for money relationship, a term-structure relationship and the FIP, again
motivated with reference to the economic theory of the long run.

In each case, the models perform well by various statistical criteria and
against alternative models and uncover important policy-relevant features.
Hence, the US study concludes that the model provides forecasts that
are very similar to those published by government agencies and so could
provide a useful tool on which to base policy recommendations, accom-
modating the steady-state growth model of the economy implicitly shared
by many government agencies and private forecasters. The Canadian and
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euro area studies both focus on the impact of monetary policy change:
the Bank of Canada’s shift to a stable price level target in the early 1980s
was associated with a once-and-for-all shift in the long-run relationships,
while no major distortions were found with the advent of Stage Three of
Economic and Monetary Union in the euro area model. In all cases, there
is no doubt that practitioners, who need manageable and interpretable
models to answer specific questions, appreciate the transparency and prag-
matism of this modelling approach and that these methods are already in
increasingly widespread use in the policy-making and decision-making
communities.

In the case of the emerging market economies, in an interesting and
thorough application of the long-run structural modelling, Akusuwan
(2005) develops a small quarterly macroeconometric model for the Thai
economy over the period 1980q1–2002q4, and establishes the existence of
three long-run relations, namely the Fisher interest parity, the uncovered
interest parity, and the long-run money demand. By allowing for a pos-
sible break in the domestic variables following the 1997 Asian crisis, she
finds that the crisis has significant effects on the short-run structure of the
model, but not on its long-run relationships.

The merits of the application of the approach to macroeconometric
modelling are investigated recently by Jacobs and Wallis (2005). In their
study, the core model of the previous chapters is compared and contrasted
with COMPACT, a large-scale simultaneous equation model of the UK
of the type described in Chapter 2 and elaborated in Wren-Lewis et al.
(1996). It is noted that, with approximately ten times more variables and
around 20 behavioural relations, the SEM is able to address a broader set
of issues than the core model, but requires the use of single-equation and
small sub-system estimation techniques. However, focusing on the main
macroeconomic variables that are common to both models, Jacobs and
Wallis compare the dynamic responses of the two models to a foreign out-
put shock and to an oil price shock. They find that the core model performs
well on the former exercise, compared to the unrealistically slow response
of COMPACT, but fails to properly take into account the UK’s changing
response to oil price changes (given that the UK started and ended the
period as a net importer of oil, but was a net exporter mid-sample). These
findings, of course, reflect the VAR’s power in fitting complicated dynam-
ics and also its relatively simple form. Jacob and Wallis also use simulation
methods to uncover the long-run relationships implicit in COMPACT and
to compare these to the immediately apparent long-run relationships of
the core model. This analysis shows a reassuring degree of consensus, with
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the interest rate parity (IRP), output gap (OG) and FIP relationships all
holding in both models, and a further relationship described as a ‘small
deviation from the PPP relationship’ also present in COMPACT’s long-run
properties.1 The paper concludes that further research is required to inves-
tigate the effects of how best to treat the foreign variables (and in particular
whether these are best treated as endogenous or exogenous variables), but
highlights the strengths of these modelling approaches and illustrates well
the emerging consensus between SEMs and our own approach that was
anticipated and described in the discussion of Chapter 2.

Finally, in an exercise related to our analysis conducted in Chapter 11,
Strachan and van Dijk (2004) use the UK model as one of three examples
to investigate the uncertainty associated with structural features. Using a
Bayesian approach they consider cointegration, exogeneity, deterministic
processes and over-identification. Posterior probabilities of these features
are then used in a model averaging approach to forecasting and impulse
response analysis.

12.2 Regional interdependencies and credit risk modelling

The Jacobs and Wallis (2005) paper also raises the important issue of how
national macroeconomic models, obtained using the Structural Cointe-
grating VAR modelling approach, relate to outside factors. This issue is
explored in detail in the global vector error correction model of regional
interdependencies advanced in Pesaran, Schuermann and Weiner (2004,
PSW). The GVAR is used to examine a variety of problems including the
effects of foreign shocks on the euro area in Dees, di Mauro, Pesaran and
Smith (2005, DdPS), the modelling of credit risk in Pesaran, Schuermann,
Treutler and Weiner (2005), and the counter-factual problem of a quan-
titative analysis of the possible effects of UK or Sweden joining the euro
area in Pesaran, Smith and Smith (2005).

Global modelling is subject to a number of important constraints,
including the quantity and quality of data available, the curse of dimen-
sionality that arises out of the many between- and within-country chan-
nels of interactions and transmissions, our knowledge of economic theory
and institutions and the availability of human and computing resources.

1 Since money is not included as a variable in COMPACT, the fifth long-run relationship
in our core model could not be considered in that model. This is likely to limit the use of
COMPACT in analysis of liquidity effects and the possible disquilibrium effects of money
markets on output and inflation.
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The Global VAR approach developed and applied in the above papers and
outlined in Section 3.4 provides a coherent solution by treating the foreign
variables as weakly exogenous. This assumption is plausible for small open
economies and can be tested empirically for medium size economies such
as Japan and the euro area. A different modelling set-up would be needed
for the US. In PSW the US economy is modelled as a closed economy except
for the effective exchange rate which is treated as weakly exogenous. In
extending and updating the GVAR, DdPS also experiment with a US model
that includes foreign inflation and output variables as weakly exogenous
and find that this is not rejected by the data.

Under the weak exogeneity of the foreign variables, country- (or region-)
specific vector error correcting models (VECMs) can be estimated consis-
tently, thus obviating the need for estimating the global model as a whole,
which would not be feasible in any case. Despite this the variables in each
economy are potentially related to all the variables in other economies.
This is accomplished by relating the domestic variables of each economy
to corresponding foreign variables constructed to match the international
trade pattern of the country under consideration. The trade weights can
be either fixed or time varying. The key assumption is that they are pre-
determined. In principle, different types of weights can also be used in
constructing different types of foreign variables. But the limited experi-
ments carried out in DdPS suggest that the GVAR results are likely to be
reasonably robust to the choice of the weights. Once the estimates of the
individual country models are obtained, they are combined in a consistent
and cohesive manner to generate forecasts or impulse response func-
tions for all the variables in the world economy simultaneously. See also
Section 3.4.

Specifically, PSW consider country/region-specific quarterly models esti-
mated over the period 1979q1–1999q1 for seven countries (namely
USA, Germany, France, Italy, UK, Japan, China) along with four broader
regions (namely, Western Europe, South East Asia, Middle East, and Latin
America).2 For these eleven regions, domestic variables of interest include
real output for area i (yit ), the rate of price inflation (�pit ), a real equity
price index (qit ), the real exchange rate (eit − pit ), where eit is the log of
nominal exchange rate in terms of a reference currency (US dollar), an
interest rate (rit ), and real money balances (mit ), with i = 0 (US), 1, . . . , 10.
So, in terms of the domestic variables, we have the vector yit defined in

2 The data for the four regions was itself constructed from data for 18 countries. The output
of the 25 countries incorporated in the model covers more than 80% of total world output.
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(3.21) set as yit = (yit ,�pit , qit , eit − pit , rit , mit )
′, with ki = 6.3 The vector of

foreign variables (indices), denoted by y∗
it , is a k∗

i ×1 vector are constructed
as weighted averages, with region-specific weights:

y∗
it = (y∗

it ,�p∗
it , q∗

it , e∗
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it , m∗
it )

′,
y∗
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j=0 wijyjt , p∗

it = ∑10
j=0 wijpjt ,

q∗
it = ∑10

j=0 wijqjt , e∗
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j=1 wijejt ,

r∗
it = ∑10

j=0 wijrjt , m∗
it = ∑10

j=0 wijmjt ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(12.1)

where the weights wij, for i, j = 0, 1, . . . , 10, are based on trade shares
(namely the share of region j in the total trade of region i measured in
US dollars). Note that wii = 0, for all i.

Region-specific cointegrating VAR models are estimated treating the rele-
vant foreign variables, along with the price of oil, as exogenous in each
case. As noted earlier the only foreign variable included by PSW in the
US model was e∗

it . A VAR of order 1 is assumed across the regions given
the small amount of data available, and careful analysis of the cointegrat-
ing properties of the data is employed to choose the cointegrating rank
of each regional model. The underlying exogeneity assumptions are con-
firmed to be acceptable and the adequacy of the dynamic properties of the
regional models is established, both taking the regions one at a time and
when taken together. In the latter case, the regional models are brought
together to form a global model following the steps outlined in expressions
(3.23)–(3.27) in Section 3.4. To be more specific, each of the individual
region-specific cointegrating VAR models is written in terms of the vari-
ables from all other regions, using the definitions in (12.1), and these are
then stacked in a large global system accommodating all the contempora-
neous and lagged interactions across the 60 plus variables of the system.
The corresponding reduced form representation provides the vehicle for
forecasting and impulse response analysis.

DdPS, building on the work of PSW, develop a global model covering
33 countries grouped into 25 countries and a single euro area economy
comprising eight of the 11 countries that joined the euro in 1999. To deal
with the modelling issues that arise from the creation of the euro area (a
single exchange rate and a single short-term interest rate post 1999), the
GVAR model is estimated with the euro area being treated as a single econ-
omy. This turns out to be econometrically justified and allows DdPS to

3 Asset prices were excluded from the models for China and the Middle East on the grounds
that the capital markets are less well-developed.
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consider the impact of external shocks on the euro area as a whole with-
out the danger of being subject to possible inconsistencies that could arise
if the different economies in the euro area were modelled separately. The
effects of external shocks on the euro area are examined based on differ-
ent simulations using generalised as well as structural impulse response
functions. Compared to the previous version of the GVAR developed by
PSW, this Mark II version, in addition to increasing the geographical cover-
age, also extends the estimation period, and includes long-term as well as
short-term interest rates, thus allowing more fully for the possible effects
of bond markets on output, inflation and equity prices.4

DYNAMIC PROPERTIES OF THE GLOBAL MODEL

The GVAR provides a general, yet practical, global modelling frame-
work for a quantitative analysis of the relative importance of different
shocks and channels of transmission mechanisms for the analysis of the
co-movements of output, inflation, interest rates, exchange rates and
equity prices. Using generalised impulse response functions, it is possi-
ble to estimate the effects of shocks to one variable in one country on the
other variables in the same country and/or in the rest of the world. PSW
illustrate the power of the analysis by focusing on the effects of a one stan-
dard error (unit) negative shock to US equity prices, oil prices and interest
rates. DdPS provide further experiments in relation to the euro area.

As an example in Figure 12.1 we reproduce (from PSW) the time profiles
of the effects of shocks to US equity market on equity prices worldwide. On
impact, a fall in the US equity prices causes prices in all equity markets to
fall as well but by smaller amounts: 3.5% in the UK, 4.5% in Germany, 2.4%
in Japan, 2.6% in South East Asia, and 4.8% in Latin America, as compared
to a fall of 6.4% in the US. However, the falls in equity prices across the
regions generally start to catch up with the US over time, and even get
amplified in the case of Italy and Latin America. While the precise values
of the responses need to be treated with caution, the relative position and
pattern of the impulse response functions confirm the pivotal role played
by the US stock market in the global economy, for example, and suggest
that in the longer run scope for geographic diversifications across equity
market might be somewhat limited.

4 DdPS also provide a theoretical framework where the GVAR is derived as an approximation
to a global unobserved common factor model. Also using average pairwise cross-section error
correlations, the GVAR approach is shown to be quite effective in dealing with the common
factor interdependencies and international co-movements of business cycles.
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Figure 12.1 Impulse response of a negative one standard error shock to US real
equity prices on real equity prices across regions.

The time profiles of the effects of the shock to the US equity market on
real output across the different regions are shown in Figure 12.2.

The impact effects of the fall in the US equity market on real out-
put are negative for most regions, but rather small in magnitude. After
one year, real output shows falls of around 0.31% in the US, 0.25% in
Germany, 0.29% in the UK, 0.26% in Latin America, and 0.12% in
South East Asia, respectively. Japanese output only begins to be negatively
affected by the adverse US stock market shock much later. The two regions
without capital markets are either not affected by the shock (Middle East)
or even show a rise in output (in the case of China). Once again, while
these point estimates should be treated with caution, they provide a very
useful indication of the likely dynamic effects of changes in the US equity
market. Further exercises are provided in PSW to show the effects of a
shock to the equity markets of South East Asia (providing useful insights
with which to judge the experiences of the events surrounding the 1997
South East Asian crisis), and to derive a credit portfolio model based on
forecasted default probabilities and loss distributions.

In PSW and elsewhere, the GVAR model has also been used as a global
macroeconomic engine driving credit risk models. This is particularly rele-
vant for policy analysis, where one would like to be able to examine
how shocking a given macroeconomic variable in a given region could
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Figure 12.2 Impulse response of a negative one standard error shock to US real
equity prices on real output across regions.

affect risk of a globally diversified credit portfolio. For example, it might
be of interest to determine the effects of a contemporaneous 10% drop
in the Japanese equity prices on other macroeconomic variables, and the
effects that these have on the credit risk. As before, generalised impulse
response functions can be used to carry out this type of analysis. For further
details see Pesaran, Schuermann, Treutler and Weiner (2005) and Pesaran,
Schuermann and Treutler (2005).

12.3 A monthly version of the core model

The interest in investigating structural cointegrating VAR models of the
macroeconomy has been mirrored by a surge of interest in the use of
impulse response analysis, work on the identification of trends and shocks
and attempts to decompose the effects of these shocks. The analysis of the
macroeconomic models of Canada, the US and the euro area described
in the previous section, and the GVAR model, were all accompanied by
impulse response analyses to interpret the implicit model properties. In a
similar vein, there has been increased interest in obtaining economically
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meaningful shocks through the imposition of theory-based restrictions
and the decomposition of trends. Hence, for example, Crowder et al. (1999)
provide a decomposition of the effects of shocks to their four-variable coin-
tegrating VAR model of the US to illustrate the historical importance of
demand and supply shocks; Wickens and Motto (2001) illustrate the effects
of money supply shocks in another four-variable model of the US through
imposition of economically motivated restrictions on the cointegrating
VAR; Mitchell (1999) examines the effects of monetary policy shocks in
the G7 economies using models of a similar form to that of our core
model; Ribba (2003) provides a permanent–transitory decomposition of
measures of core inflation based for the US; Schumacher (2002) uses a
permanent–transitory decomposition to investigate trend output in the
euro zone which is, in turn, used to obtain measures of the output gap;
and so on.

As the discussion of the earlier chapters made clear, the identification
schemes of the short run used to identify economically meaningful shocks
are frequently based on the timing of decisions and/or release of news.
These identification schemes are often most easily motivated with refer-
ence to high frequency data, where temporal aggregation issues are less
common. In this section, we briefly describe an application of the mod-
elling techniques developed in the earlier chapters which constructs a
monthly version of the core model of the UK, as discussed in Garratt,
Lee and Pesaran (2005a). Such a model is particularly relevant for the
conduct and the analysis of monetary policy, which is typically updated
at a monthly frequency. It is particularly interesting to consider the
impulse responses of a model, based on monthly observations that match
more closely the decision-making frequency, and to contrast these with
those obtained previously on quarterly data to gauge the robustness of the
findings of the earlier modelling exercise.

THE STRUCTURE OF THE MONTHLY MODEL

The illustration below uses monthly data for the UK over the period
1965m1–2002m9 (453 observations). We undertake a modelling exer-
cise of precisely the same form as in Chapter 9 and conduct an
impulse response exercise, using the exact short-run identification scheme
described in Chapter 10 to compute monetary policy and oil price shocks.
Where possible, we collected the exact or near exact monthly equivalents
of the quarterly measures used in the earlier chapters; see Garratt, Lee
and Pesaran (2005a) for details. The variables available at the monthly
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frequency are pt , p̃t , po
t , rt , r∗

t and mt . The remaining three variables, yt ,
y∗

t and nominal domestic GDP are not directly observable on a monthly
basis. We therefore use a linear exponential monthly interpolation method
described in Dees, di Mauro, Pesaran and Smith (2004, appendix) for these
variables.

The long-run structure we consider in the monthly model is identical to
that described and estimated in Chapter 9, the lag length is six months
(matching two quarters previously used). In this model, the long-run
estimates obtained from the monthly model are given by:

(pt − p∗
t ) − et = ξ̂1,t+1, (12.2)

rt − r∗
t = ξ̂2,t+1, (12.3)

yt − y∗
t = ξ̂3,t+1, (12.4)

ht − yt = − 134.72
(33.44)

rt − 0.0021
(0.00028)

t + ξ̂4,t+1, (12.5)

rt − �p̃t = ξ̂5,t+1. (12.6)

It is worth recalling that the estimates of the coefficients in the money
demand equation based on the quarterly model were 56.10 and 0.0073,
as compared to the above estimates of 134.72 and 0.0021, respectively. To
ensure that the two estimates of the interest rate effects are comparable the
one based on the monthly model should be divided by 3, which yields the
estimate of 33.7 which is only somewhat lower than the estimate of 56.10
obtained from the quarterly model.5 The estimate of the trend coefficient
is also lower using the monthly model, partly reflecting the more recent
sample that underlies the monthly model. As noted before it is unlikely
that the downward trend in real money balances observed pre-1999 should
continue into the future. The log-likelihood ratio statistic for testing the
23 over-identifying restrictions is 71.73, which is again in line with the
results obtained for the quarterly model.

Table 12.1 reports the estimates of the loading matrix α for the co-
integrating terms in the error correction specification, along with various
diagnostic test statistics.

The estimates of the loading coefficients show that the long-run rela-
tions make an important contribution in most equations and that the
error correction terms provide for a complex and statistically significant
set of interactions and feedbacks across commodity, money and foreign

5 Note rt is measured on a per annum basis and hence an approximate comparison with
the quarterly coefficient would be the number is 134.72/4 = 33.7.
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Table 12.1 Reduced form error correction equations of the monthly model.

Eq �(pt − p∗
t ) �et �rt �r∗

t �yt �y∗
t �(ht − yt ) �(�p̃t )

ξ̂1,t −0.009∗ 0.0263∗ 0.0002 −0.0002 0.007∗ 0.0109∗ −0.0093 −0.0055
(0.0027) (0.011) (0.0002) (−0.0002) (0.003) (0.0019) (0.0056) (0.003)

ξ̂2,t −0.878∗ 1.433 0.007 0.0493∗ 1.187∗ 1.101∗ −1.045 −1.237∗
(0.296) (1.229) (0.03) (0.0171) (0.341) (0.210) (0.622) (0.342)

ξ̂3,t 0.0157 −0.0623 −0.0015∗ −0.00065 −0.0473∗ −0.0108 0.0491∗ 0.0177
(0.0085) (0.035) (0.0009) (0.0101) (0.009) (0.006) (0.0178) (0.0098)

ξ̂4,t 0.009∗ −0.0152 −0.00024 −0.00002 −0.0097∗ −0.0071∗ −0.0020 0.0056
(0.002) (0.0084) (0.0002) (0.0001) (0.0023) (0.001) (0.0043) (0.0023)

ξ̂5,t 0.052 −0.185 −0.0235∗ −0.0152 −0.1984∗ −0.1659∗ 0.5063∗ 0.700∗
(0.085) (0.352) (0.0086) (0.0049) (0.0976) (0.0602) (0.178) (0.0981)

R
2

0.2210 0.0697 0.0811 0.2689 0.2606 0.2401 0.2736 0.4682
σ̂ 0.0043 0.0179 0.00044 0.0003 0.0049 0.00308 0.0091 0.005
χ2
SC [12] 15.998 10.39 17.51 28.68 36.73 38.15 34.48 116.57

χ2
A [12] 22.008 3.31 62.63 1.511 116.14 24.91 23.30 9.17

χ2
N [2] 329.31 1804.3 295.2 522.7 262.16 117.23 231.99 305.74

χ2
H [1] 34.33 17.12 68.17 58.48 7.19 40.56 1.56 39.22

Note: To save space only the error correction coefficients are reported, with their standard errors given in
parentheses.

exchange markets. The results in Table 12.1 also show that the core model
fits the data well and the diagnostic statistics of the equations are generally
satisfactory as far as the tests of the residual serial correlation, functional
form and heteroscedasticity are concerned.6

IMPULSE RESPONSE ANALYSIS FOR THE MONTHLY MODEL

Figures 12.3 and 12.4 plot the monthly impulse responses of the variables
to a monetary policy and oil price shock corresponding to the impulse
responses described for the quarterly model in Section 10.2.

The shape and timing of the monthly and quarterly impulses are very
similar. Focusing on the monetary policy shock, for example, the sign of
the impact effects is the same in the quarterly and monthly models across
all of the endogenous variables, and the shapes of the impulse responses
are the same in monthly and quarterly versions for all the series too.7

Moreover, the timing of the responses is very similar: domestic interest
rates settle to their long-run levels after around 30 months in the monthly
plots compared to around 12 quarters in the quarterly plot of Figure 10.4;

6 The normality of the errors is rejected in all of the error correction regressions, and is
almost certainly due to the three major oil price hikes experienced during the estimation
period.

7 There is, however, a minor exception in the core of the impulse responses for the effects
of the monetary policy shock on the exchange rate. Unlike the quarterly model the monetary
policy shock shows a brief (two month) period of depreciation in the monthly model.
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Note: The solid and dashed lines plot the point estimates and 95% confidence intervals of the
impulse responses, which are generated from the bootstrap procedure using 2000 replications.

Figure 12.3 Monthly generalised impulse responses to a positive unit shock to
monetary policy.

the initial upward impact on domestic output is reversed after six months
in the monthly plot compared to two quarters in the quarterly plots; the
puzzling rise in inflation in response to the contractionary shock shows in
the monthly model as in the quarterly model, but the effects are relatively
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Figure 12.4 Monthly generalised impulse responses to a positive unit shock to
the oil price.

short-lived and effectively disappear after 12 months (cf. four quarters in
Figure 10.4). Similar comments apply to the impulse responses arising from
the oil price shock. Again the responses from the monthly model are very
similar to those obtained in the quarterly model, shown in Figure 10.6,
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both in terms of the sign of the impact effects and the shape and timing
of the subsequent responses. (Perhaps the only notable feature that is dis-
tinctive is the higher volatility of the inflation response in the monthly
plots compared to those in the quarterly plots.)

12.4 Probability forecasting and measuring financial distress
in the UK

The material of Chapter 11 showed that probability forecasting is an
extremely useful means of providing information on the properties of
a model and conveying the uncertainty that surrounds the predictor of
future events of particular interest. This type of analysis is also becoming
increasingly popular, particularly as investigators recognise the ease with
which the probability forecasts can be produced with the small and flexible
models of the type we have promoted in our work. This is especially true
for analyses of inflation forecasts and monetary policy formulation; see, for
example, Diebold et al. (1999), Ehrmann and Smets (2003), and Hall and
Mitchell (2005). In the illustration below, we consider the recent work of
Lee and Mizen (2005) who focus on the use of the probabilistic statement
as a macroeconomic indicator. The illustration is also of interest because
it provides an example of the use of a satellite model, supplementing the
core, as described in Section 3.3.2.

12.4.1 A satellite model of the UK financial sector

The extension of the model considered here concerns the measurement
of ‘financial distress’ at the macroeconomic level. Financial distress relates
to the vulnerability of individuals in their financial decision-making and
is reflected in periods of high levels of defaults on loan repayments and
bankruptcies. This has become a topic of some interest in recent years as
the levels of credit card debt, in the UK, the US and elsewhere, have risen to
unprecedented levels. There is widespread anxiety that this could generate
financial instability if there were to be an adverse macroeconomic shock
in the form of higher interest rates or low growth. Indeed, current lev-
els of the ‘debt burden’ (showing debt interest payments on repayments
based on unsecured debt relative to income) are, in 2005, at their high-
est ever level in the UK and have recently exceeded those observed in the
early 1990s when many households experienced considerable financial
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hardship, personal bankruptcies were widespread and loan repayment
defaults were extremely high.

Lee and Mizen (2005) consider this problem using the long-run struc-
tural modelling approach developed in the earlier chapters applied to the
core macroeconomic model and to a satellite model of UK households’
portfolio and expenditure decisions. Economic theory is used to motivate
the long-run relations that are likely to hold between household consump-
tion expenditure (ct ), money deposits (mt ) and borrowing (lt ) where a
household can consume more than current income and money balances
by borrowing at a ‘credit card’ interest rate rl

t . The long-run relationships of
the satellite model suggested by the theory relating to household portfolio
and expenditure decisions can be written as

ct = b10 + b11t + ỹt + b12rt + ξc,t+1, (12.7)

mt = b20 + b21t + ỹt + b22rt + ξm,t+1, (12.8)

lt = b30 + b31t + ỹt + b32rl
t + ξl,t+1, (12.9)

rl
t = b40 + b41t + rt + ξr,t+1, (12.10)

where ỹt refers to real net labour income. This can be written more
compactly as

ξbt = β ′
b(wt−1, rt−1) − b0 − b1(t − 1),

where

wt =
(
ct − ỹt , mt − ỹt , lt − ỹt , rl

t

)′
.

b0 = (b10, b20, b30,b40)
′, b1 = (b11, b21, b31, b41)

′,

ξbt = (ξct , ξmt , ξlt , ξrt )
′,

and

β
′
b =

⎛⎜⎜⎜⎝
1 0 0 0 −b12

0 1 0 0 −b22

0 0 1 −b32 0
0 0 0 1 −1

⎞⎟⎟⎟⎠ . (12.11)

A simplifying assumption is that the household portfolio and expenditure
decisions are made taking into account the macroeconomic context, but
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that these household allocation decisions do not impact on the evolution
of the national macroeconomic aggregates. In this case, the set of sec-
toral variables in wt are influenced by the core macroeconomic variables
of our core model (including the interest rate rt ) but not vice versa, and
the modelling framework between a core and a satellite model described
in Section 3.3.2 is appropriate. In particular, in these circumstances, the
estimation of the core model can be conducted without reference to
the satellite model (so that the model of Chapter 9 remains relevant),
while the model of the household expenditure and portfolio decisions can
be estimated taking the macroeconomic interest rate rt as an exogenous
I(1) variable.

12.4.2 UK financial distress in the early 1990s and early 2000s

The estimation of the above model is discussed in Lee and Mizen (2005).
The model provided an extremely useful vehicle with which to forecast
future events relating to the macroeconomy and/or household portfolio
and expenditure decisions. It is argued in Lee and Mizen (2005) that finan-
cial distress is associated with particular conjunctions of events involving
the disequilibria in the credit market as reflected in the estimated values
of ξlt in (12.9) and the economy’s growth prospects. In this case, forecasts
of the probability of the occurrence of these events provide useful indica-
tors of financial distress at the macroeconomic level. With this in mind,
Lee and Mizen calculate forecasts of various probabilities involving excess
credit holdings (i.e. ξlt > c1 for various threshold values, c1) and recession
or slow growth (defined where a four-quarter moving average falls below
zero or 1% respectively; i.e. �ŷMA

t < c2, for c2 = 0 or 0.01). The exer-
cise is conducted using the core and satellite models estimated over the
period 1965q1–2001q1 and then again, using exactly the same methods,
on the data ending in 1990q1 (just prior to the previous period of financial
distress). Representative results are provided in Table 12.2.

These show that the estimated probability of excess credit holdings or
slow growth occurring were very high in the early 1990s, so that the
high levels of financial distress that were experienced would have been
reflected in these forecast figures. In contrast, the corresponding probabil-
ities observed for 2001–2002 were very much lower.8 Despite the very high
debt burden levels observed at this time, the point forecasts of excess credit

8 The fact that the successive columns of the table relating to 2001q1–2003q1 are the same
reflects the fact that the joint probability relates exclusively to the probability of slow growth;
the probability of excess credit holdings was found to be zero for c1 = 0.2, 0.3 and 0.4.
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Table 12.2 Probability forecasts involving credit–income
disequilibria and low growth 1990q2–1992q1 and 2001q2–
2003q1

Forecast
Horizon

Pr(A ∪ B)
c1 = 0.20
c2 = 0.01

Pr(A ∪ B)
c1 = 0.30
c2 = 0.01

Pr(A ∪ B)
c1 = 0.40
c2 = 0.01

1990q2 1.00 0.97 0.49
1990q3 1.00 0.92 0.45
1990q4 1.00 0.66 0.40
1991q1 1.00 0.74 0.46
1991q2 1.00 0.82 0.46
1991q3 1.00 0.84 0.44
1991q4 1.00 0.80 0.42
1992q1 1.00 0.83 0.40

Forecast
Horizon

Pr(A ∪ B)
c1 = 0.20
c2 = 0.01

Pr(A ∪ B)
c1 = 0.30
c2 = 0.01

Pr(A ∪ B)
c1 = 0.40
c2 = 0.01

2001q2 0.21 0.21 0.21
2001q3 0.33 0.33 0.33
2001q4 0.38 0.38 0.38
2002q1 0.43 0.43 0.43
2002q2 0.36 0.36 0.36
2002q3 0.32 0.32 0.32
2002q4 0.30 0.30 0.30
2003q1 0.29 0.29 0.29

Note: The probability estimates relate to the quarter-on-quarter forecasts of
the credit–income disequilibria and the four-quarter moving average of out-
put growth (denoted �yMA

t ). Slow growth is defined to occur when the
latter falls below 1%. Event A = {̂ξlt > c1} and B = {�ŷMA

t < c2}. A ∪ B means
‘disequilibrium exceeds a critical value or slow growth occurs’.

holdings were low (and well below the threshold values for c1 that were
considered to relate to financial distress). Financial distress would be driven
by the probability of recession or poor growth in these circumstances, but
this seemed relatively unlikely in 2001–2003 also. Hence, the probability
forecasts provided in Table 12.2 indicate low levels of financial distress
and, as it turned out, this was not a period in which either high levels of
loan default or bankruptcy actually occurred.

12.5 Directions for future research

This chapter provides an overview of the various applications and exten-
sions of the long-run structural modelling strategy advanced in this
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volume, namely the rigorous use of long-run economic theory in the
context of an econometrically coherent time series framework. We are con-
fident that many of the areas that we have highlighted will be adapted or
extended to initiate new research avenues in due course. In particular, we
believe there to be considerable scope for the further development and use
of the techniques in the sphere of global macroeconometric modelling.
This chapter briefly discusses the evidence obtained so far in the literature
on global VAR modelling. Here, the individual national economy models
are combined in a feasible and consistent manner into a global macro-
econometric model for use in policy analysis and risk management, very
much reminiscent of the pioneering work of the Project Link under the
leadership of Lawrence Klein. The GVAR models developed so far impose
cointegrating rank restrictions on the individual economy models. The
next stage would be to consider the imposition of over-identifying long-
run theory restrictions on the cointegrating relations of the individual
economies, very much along the lines implemented in this volume for
the UK economy, before combining them into a global model. Prelimi-
nary analysis suggests that this could indeed be a promising line for future
research.

307



This page intentionally left blank 



13

Concluding remarks

In this book, our aim has been to provide a reasonably comprehensive
account of the cointegrating VAR analysis of national and global macro-
economic modelling with a solid underlying long-run economic theory.
We have compared our approach to other alternatives, particularly where
either little economic theory is used in the modelling process or, where the
economic theory is allowed to dominate the empirical evidence. We view
both of these strands as valuable from a pedagogical viewpoint. For the
modelling exercise to be useful and relevant to a better understanding of
the macroeconomic processes and public debates about macroeconomic
policy, a middle ground is needed. This book presents such an approach
where implications of the long-run economic theory are combined with
short-run dynamics within a cointegrating VAR framework. Contemporan-
eous restrictions from economic theory are imposed subsequently as a
means of identification of the monetary policy shock and its impulse
responses.

The book also addresses one of the important limitations of VAR for
the analysis of relatively large system of equations that arise particu-
larly in the case of global modelling. This is done by means of VARX or
VARX* specifications where the familiar VAR model is augmented with
I(1) weakly exogenous (or long-run forcing) variables so that the ‘core’
variables are distinguished from the variables in the satellite sub-models.
In the case of national macroeconometric modelling, core variables would
typically include real output, inflation, interest rates and exchange rates,
whilst the variables in satellite models could be consumption, investment,
employment, real wages, imports or exports. At the national level, the
core variables would be long-run forcing for the satellite variables, whilst
within a global context the foreign variables, denoted as * variables, will
be long-run forcing for the core national variables. The resultant modular
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structure is eminently suitable for a cointegrating analysis of large (log)
linear systems.

In combining the long-run theory with empirically based short-run
dynamics, particular attention is also paid to a simultaneous treatment
of trends and cycles. This contrasts with much of the empirical imple-
mentation of the DSGE modelling where individual series are de-trended
first, often with the help of Hodrick–Prescott filter, before modelling the
relationships that might exist amongst the de-trended series. By building
on long-run economic relations that are widely held as providing a solid
economic foundation, and by allowing for unit roots and deterministic
trends simultaneously, we believe that our modelling framework would
be a suitable starting point for the analysis of short-run economic restric-
tions such as those implied by intertemporal optimisation, learning and
expectations formation.

The long-run structural approach is illustrated with an application to the
UK macroeconomy. Careful attention is paid to the different stages of the
modelling exercise and, in the interest of ready replications of our results
by other researchers, data and programs used are supplied with detailed
accounts of their implementation. Further applications are considered and
recent extensions of the modelling strategy to a global context (namely the
GVAR modelling) are also discussed.

To summarise in more detail the book serves to

• explain and promote the long-run structural modelling approach as a
way of undertaking macroeconometric research;

• provide a comprehensive illustration of the approach through a
description of each stage of the development of the core model of
the UK economy; and

• demonstrate how a model obtained following this approach can be
used in real-world decision-making.

On the issue of promoting the long-run structural modelling approach,
our aim throughout has been to present a fully transparent approach
to macroeconomic modelling in which there is a clear statement of
the economic theory and the associated econometric methodology. Our
explicit description of a macroeconomic theory of the long run aims
to highlight the level of abstraction at which an analyst might work
in building a model that can be confronted with the data. Similarly,
our description of the theory of the short run also exposes the extent
to which economic theory might realistically inform our attempts to
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interpret macroeconomic dynamics. And our comprehensive description
of the econometric methods underlying the long-run structural mod-
elling approach showed how the insights obtained from an explicit
statement on the long-run theory (and, if available, on the short-run the-
ory) can be embedded, and tested, within a statistical model that can
both possess economically reasonable properties and reflect the char-
acteristics of the data. In brief, the intention is that the economic
theory and the econometric methods complement and enhance each
other.

We have been keen to compare and contrast our approach to modelling
with other popular approaches not just to highlight its transparency and
ease of implementation, but also to draw out those areas on which there is
consensus in macroeconomics and those areas that are subject to contro-
versy. Our approach emphasises the use of long-run theory on the grounds
that this is the area in which there is most agreement. But we acknowl-
edge that some questions require more detailed short-run analysis and so
we explain how such an analysis can be undertaken and the assumptions
that are required. Our discussion of these issues emphasises the difficul-
ties in identifying economically meaningful shocks on the basis of the
identification schemes currently employed in the literature, casting doubt
on the ability of the current generation of theories of macroeconomic
dynamics to deliver an all-encompassing description of the short run or
one that is consistent with the data. However, even if we doubt the valid-
ity of some of the currently employed identification schemes, we hope
that our work will contribute to what is an ongoing debate and, through
our discussion of models employing higher frequency data, hope to focus
modellers’ attention on more reasonable identification schemes that can
be defended with reference to information flows and the precise timing of
decisions.

The second aim of the book is to provide an illustration of the entire
process of building a model, from the description of the underlying eco-
nomic theory and its empirical counterpart, through the collection of data
and its initial characterisation, through the estimation and testing of the
model, to its final use in interpreting the macroeconomy and its use in
decision-making. Of course, we hope that the core model of the UK econ-
omy that we have obtained is useful in its own right, and we have provided
full details of the data and the model estimation in Appendix C for this
reason. But the primary purpose of this description is to illustrate the
steps and decisions that have to be taken in building a macroeconomic
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model. The construction and maintenance of a model typically requires
a sustained research effort. Our hope is that the description of our mod-
elling activities for the UK economy can provide a blueprint for model
construction in a variety of different (global and/or national) contexts so
that the first stages of the modelling activity are more easily addressed,
and we have provided details of our programs so that these can be readily
adapted for the use of others.

The third objective of the book is that the work will be useful to prac-
titioners. As can be seen from the discussion of the previous chapters,
many of the methods that we have described are already being applied
both inside and outside academia. Practitioners, who need manageable
and interpretable models to answer specific questions, appreciate the
transparency and pragmatism of the modelling approach so that the meth-
ods are already in increasingly widespread use in the policy-making and
decision-making communities. Of course, it is true that our core model
could not be used to answer questions on the impact of particular tax
changes or other very detailed policy effects, which would require a
large-scale macroeconomic model. But financial institutions and decision-
makers in industry need to answer a large variety of questions and make
use of a range of macroeconomic models to address these questions. Some
of these models will be more complex than ours and some of them will
be less complex. But in any event, the ease of construction of a model
following our approach means that such models can be obtained easily
either to stand in their own right or as a complementary view to other
models. Moreover, as we have noted, a model obtained following our
approach can be readily extended either by its inclusion within a broader
framework (as in the GVAR model, for example), or by linking it to a
more detailed ‘satellite’ model of the market of interest. In all cases, the
relative simplicity and flexibility of the models that are obtained means
that they are well-suited for use in simulation and other counter-factual
exercises so that we believe they provide an extremely valuable tool for
decision-making.

The research reported in this volume also points to a number of impor-
tant extensions, and suggests a number of new applications that might
be pursued. For example, alternative sets of short-run restrictions, moti-
vated by macroeconomic theory, can be imposed and tested using the
core long-run structural model; satellite models of labour market and
foreign trade can be developed and tested; the global modelling frame-
work can be utilised for identification of long-run theory relations in the
world economy; and it can be used to investigate the extent to which
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business cycles are synchronised across different economies using the
permanent/transitory decomposition of the variables in the cointegrating
country-specific models; and so on. In each case, we believe the meth-
ods described in the book will contribute to a theoretically informed and
evidence-based analysis of important macroeconomic phenomena.
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APPENDIX A

Derivation of the interest rate rule

Recall from Chapter 5 that, in our model, we distinguish between three classes of
variable: the first set consists of the four variables determined contemporaneously
with rb

t (namely, po
t , et , r∗

t , and rt ); the second set, denoted wt contains output and
inflation, which we shall assume are the variables of direct concern to the mone-
tary authorities; and the third set, denoted qt , consists of the remaining variables.
Hence, we have

zt =
(

po
t

yt

)
, yt =

⎛⎜⎜⎜⎜⎜⎝
et

r∗
t
rt

wt

qt

⎞⎟⎟⎟⎟⎟⎠ , wt =
(

yt

�pt

)
, qt =

⎛⎜⎝ pt − p∗
t

ht − yt

y∗
t

⎞⎟⎠ .

The assumptions discussed in Section 5.1 of the text imposes a structure on the
parameter matrices of (5.2),

A �zt = ã − α̃
[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�̃i�zt−i + εt , (A.1)

as follows:1

ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

δo

ãe

ãr∗

ãr

ãw

ãq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
α̃e

α̃r∗

α̃r

α̃w

α̃q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �̃i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

δi,o

�̃e,i

�̃r∗,i

�̃r,i

�̃w,i

�̃q,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, εt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

εo,t

εe,t

εr∗,t

εr,t

εw,t

εq,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1 In fact, for expositional purposes, we make the further assumption that exchange rates

are determined prior to foreign interest rates in what follows.
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and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−ψ̃e 1 0 0 0 0
−ψ̃r∗ ar∗e 1 0 0 0
−ψ̃r are arr∗ 1 0 0
−ψ̃w Awe Awr∗ Awr Aww Awq

−ψ̃q Aqe Aqr∗ Aqr Aqw Aqq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The corresponding reduced form equation, given in (5.1), is

�zt = a − α
[
β

′
zt−1 − b1(t − 1)

]
+

s−1∑
i=1

�i�zt−i + vt , (A.2)

where ã = Aa, α̃ = Aα, �̃i = A�i, εt = Avt and

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

δo

ae

ar∗

ar

aw

aq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
αe

αr∗

αr

αw

αq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

δo,i

�e,i

�r∗,i

�r,i

�w,i

�q,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, vt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

vo,t

ve,t

vr∗,t

vr,t

vw,t

vq,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A.1 The relationship between policy instruments and targets

To derive the monetary authorities’ reaction function, we need an expression that
explains the consequences of changes in the policy instrument, rb

t , on the target
variables, �wt . The policy instrument affects the targets via the market interest
rate, rt , so we first focus attention on the block in the structural model of (A.1)
relating the targets to the market interest rate. This block is given by the rows of
(A.1) concerned with the determination of �wt :

− ψ̃w�po
t + Awe�et + Awr∗�r∗

t + Awr�rt + Aww�wt + Awq�qt

= ãw − α̃w

[
β

′
zt−1 − b1(t − 1)

]
+

s−1∑
i=1

�̃w,i�zt−i + εw,t . (A.3)

Using the reduced form model of (A.2), we can replace the terms involving �po
t ,

�et , �r∗
t , and �qt in (A.3) to obtain an expression relating the targets to the market

interest rate which involves only lagged information and news becoming available
at time t in the form of structural shocks. Specifically, the reduced form model of
(A.2) provides expressions for the oil price, exchange rate, foreign interest rate and
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variables in qt as follows:

�po
t = δo +

p−1∑
i=1

δo,i�zt−i + vo,t , (A.4)

�et = ae − αe

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�e,i�zt−i + ve,t (A.5)

�r∗
t = ar∗ − αr∗

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�r∗,i�zt−i + vr∗,t (A.6)

and

�qt = aq − αq

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�q,i�zt−i + vq,t . (A.7)

Substituting (A.4)–(A.7) into (A.3) yields the structural relationship between the
targets and the market rate:

Awr�rt + Aww�wt = aww + αwξ

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�wz,izt−i + εww,t , (A.8)

where

aww = ãw + ψwδo − Aweae − Awear∗ − Awqaq

αwξ = −α̃w + Aweαe + Awr∗αr∗ + Awqαq

�wz,i = �̃w,i + ψwδo,i − Awe�e,i − Awr∗�r∗,i − Awq�q,i

εww,t = εw,t + ψwvo,t − Aweve,t − Awr∗vr∗,t − Awqvq,t .

The ‘quasi’ reduced form linking targets to the market rate, to be used subsequently
in the optimisation problem, is then given by

�wt = �wr�rt +�ww +�wξ

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�wz,i�zt−i + vww,t , (A.9)

where �ww = A−1
wwaww, �wr = −A−1

wwAwr , �wξ = A−1
wwαwξ , �wz,i = A−1

ww�wz,i, and
vww,t = A−1

wwεww,t . Expression (A.9) can also be written as

�wt = �wr�rt + E
[
�wt |It−1,�rb

t = 0
]

+ vww,t , (A.10)
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where

E
[
�wt | It−1,�rb

t = 0
]

= �ww +�wξ

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

�wz,i�zt−i,

and represents the growth in the target variables that would occur in time t in the
absence of any adjustment to the base interest rate

(
�rb

t = 0
)

and in the absence
of any structural innovations to the system (vww,t = 0).

A.2 Deriving the monetary authority’s reaction function

The first-order condition for the minimisation of (5.6) in the text, subject to (A.9),
is given by

E

[(
∂rt

∂rb
t

)(
∂wt

∂rt

)′
Q
(
wt − w†

t

)
+ θ

(
∂rt

∂rb
t

)
�rt | It−1

]
= 0. (A.11)

Noting from the term structure relationship of (5.4) in the text that ∂rt/∂rb
t = 1,

and from (A.9) that

∂�wt

∂rt
= ∂wt

∂rt
= �wr ,

(A.11) provides

E
[
�′

wrQ
(
�wr�rt + E

[
wt |It−1,�rb

t = 0
]

+ vww,t − w†
t

)
+ θ�rt |It−1

]
= 0.

Rearranging, and noting from (5.4) that E [�rt |It−1] = rb
t − rt−1 + ρb,t−1, we have

(
θ +�′

wrQ�wr
) (

rb
t − rt−1 + ρb,t−1

)
= −�′

wrQ
(
E
[
wt |It−1,�rb

t = 0
]

− w†
t

)
,

and the systematic component of the interest rate rule denoted by rb
t is given by

rb
t = rt−1 − ρb,t−1 +ϒ ′ (E

[
wt |It−1,�rb

t = 0
]

− w†
t

)
, (A.12)

where

ϒ ′ = − (θ +�′
wrQ�wr

)−1
�′

wrQ ,

or, more fully,

rb
t = rt−1 − ρb,t−1 + φ
 −ϒ ′ (w†

t − wt−1

)
+ φ


r

[
β

′
zt−1 − b1(t − 1)

]
+

p−1∑
i=1

φ

zi�zt−i,

(A.13)
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where

φ
 = ϒ ′�ww, φ

r = ϒ ′�wξ ,

φ

zi = ϒ ′�wz,i, i = 1, 2, . . . , s − 1.

Expressions (A.12) and (A.13) are those given for rb
t in the text.

A.3 Inflation targeting and the base rate reaction function

From equation (5.3) of the text, the relation between the market and base interest
rates is given by

rt − rb
t = ρb,t−1 + arr∗

[
r∗
t − E

(
r∗
t | It−1

)]+ are
[
et − E

(
et | It−1

)]
+ ψ̃r

[
po

t − E
(
po

t | It−1
)]+ εrt . (A.14)

Rearranging and substituting out rb
t from the monetary authorities’ reaction

function in (A.12), we obtain

�rt = ϒ ′ (E
[
wt | It−1,�rb

t = 0
]

− w†
t

)
+ arr∗

[
r∗
t − E

(
r∗
t | It−1

)]
+ are

[
et − E

(
et | It−1

)]+ ψ̃r
[
po

t − E
(
po

t | It−1
)]+ εrt . (A.15)

Taking this expression back to the quasi-reduced form expression for �wt in (A.10),
we obtain

wt = (I −�)E
[
wt | It−1,�rb

t = 0
]

+�w†
t + v


ww,t ,

where

� = −�′
wrϒ

′ = �′
wr
(
θ +�′

wrQ�wr
)−1

�′
wrQ ,

and

v

ww,t = �′

wr
{
arr∗

[
r∗
t − E

(
r∗
t | It−1

)]+ are
[
et − E

(
et | It−1

)]
+ ψ̃r

[
po

t − E
(
po

t | It−1
)]+ εrt

}+ vww,t .

This shows that the value of the target variables achieved when the authorities
pursue their optimal policy is a weighted average of the level that would be achieved
if the base rate is left unchanged and the desired level, plus a random element
generated by the structural shocks impacting on the po

t , et , r∗
t and target variables in

time t . The weights on the expected target variable and the desired target variable
terms are (I −�) and �, respectively. In the simple case where there is only one
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target variable (say inflation), so that A′
wr , A′

ww and Q are scalars in (A.1) and (5.7),
and equal to awr , 1, and q respectively then the weights are simply

(I −�) = 1 − a2
wrq

a2
wrq + θ

and � = a2
wrq

a2
wrq + θ

.

In particular, as q/θ → ∞, so that the cost of the target deviating from its desired
level rises relative to the cost of changing the base rate in (5.7) in the text, we have

a2
wrq

a2
wrq + θ

→ 1

and

wt = w†
t + v


ww,t .

Hence, abstracting from the unpredictable structural shocks, the target variable
tracks the desired level precisely.

A.4 Reaction functions and targeting future values of variables

In the text, we consider the case where future values of target variables might be
the concept of interest to monetary authorities. Consider the simple case in which
the monetary authorities care about just one future period, t + h say, and face the
optimisation problem

min
rb
t

{
E [C(wt+h, rt ) | It−1]

}
, (A.16)

with

C(wt+h, rt ) = 1
2

(
wt+h − w

†

t+h

)′
Q
(
wt+h − w

†

t+h

)
+ 1

2 θ
(
rt − rt−1

)2 .

Identification of the monetary policy shocks is obtained following the steps
described in the previous section. Hence, derivation of the base rate decision rule
first requires an expression linking the base rate to the target variable. This is read-
ily obtained on the basis of (A.2), from which we can obtain a model of �zt+h in
terms of zt+h−1, s − 1 lagged values of �zt+h and vt+h. Recursive substitution of
(A.2) can be used to generate a complex expression expressing �zt+h in terms of
vt+h, vt+h−1, . . . , vt+1, �zt , zt−1, and s − 1 lagged values of �zt . Substituting out all
of the elements of �zt other than �rt using the relevant rows of (A.1), we obtain an
expression relating �zt+h to �rt along with lagged values of zt and combinations of
structural shocks dated at time t up to time t +h. Finally, we can premultiply �zt+h

and the corresponding expression involving �rt by a selection vector choosing the
target variables from within �zt+h. This provides a relationship of the form:

�wt+h = �wrh�rt + E[wt+h | It−1,�rb
t = 0] + vwwh,t ,
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where �wrh is a matrix of parameters capturing the effects of �rt on the target
variables h periods ahead, E

[
wt+h | It−1,�rb

t = 0
]

indicates the value of the target
variables that would occur in time t+h in the absence of any interest rate adjustment
at t and in the absence of any structural innovations to system between t and t +h,
and vwwh,t summarises the effects of the structural innovations that do occur.

Given this expression describing the relationship between �wt+h and �rt ,
minimisation of (A.16) provides the first-order condition

E
[
�′

wrhQ
(
�wrh�rt + E

[
wt+h | It−1,�rb

t = 0
]

+ vwwh,t − w†
t+h

)
+ θ�rt | It−1

]
= 0,

and this provides a reaction function of the form

rb
t = rt−1 − ρb,t−1 +ϒ ′

h

(
E
[
wt+h | It−1,�rb

t = 0
]

− w
†

t+h

)
,

where ϒ ′
h is a function of the parameters of the econometric model and of the

preference parameters of the monetary authorities (and w
†

t+h is assumed known
at time t − 1). Substitution of the reaction function into the quasi-reduced form
expression for �wt+h provides an expression for �wt+h as a weighted average of

E
[
wt+h | It−1,�rb

t = 0
]

and w
†

t+h plus the effects of structural shocks experienced
between t and t + h. Further, having derived the base rate reaction function, the
structural interest rate equation is derived as in (A.15) above, and monetary policy
shocks are identified as changes in the interest rate not explained by unanticipated
movements in oil prices, exchange rates and foreign interest rates.
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APPENDIX B

Invariance properties of the impulse
responses with respect to monetary policy
shocks

In this appendix, we provide a proof for footnote 4 of Chapter 10 that, once the
position of the monetary policy variable in zt is fixed (in our application as the
fourth element of εt ), the impulse response functions of the monetary policy shocks
will be invariant to the re-ordering of the variables before and after rt in zt .

Since the proof becomes unduly complicated for the case where there are four or
more variables in z1t , we consider the simpler case (without loss of generality) where
there are only three variables in z1t . In particular, we consider the two different
cases: (a) z(a)1t = (z1t , z2t , z3t )

′ and (b) z(b)1t = (z2t , z1t , z3t )
′, where z3t is fixed at the

last element of z1t , and z2t = (z4t , . . . , zmt )
′. We then show that the impact impulse

responses of ε3t on z1t and z2t are the same under both cases.
Note that the impact impulse responses with respect to the third structural shocks

are given by

g (0, z : ε3) = E (ε3tut )√
ω33

= 1√
ω33

[
A−1

11 E (ε3tε1t )

E (ε3tu2t )

]
= 1√

ω33

[
A−1

11 �11τ i(
τ ′

3A11�12
)′
]

,

(B.1)

where ε1t = (ε1t , ε2t , ε3t )
′ is a 3 × 1 vector of structural errors, the reduced form

errors, ut = (
u′

1t , u′
2t

)′ are decomposed conformably with zt = (z′
1t , z′

2t )
′, �11 =

Cov (ε1t ), � = Cov (ut ) =
[
�11 �12

�′
12 �22

]
, and τ3 = (0, 0, 1)′ is a 3 × 1 selection

vector.
Under this set-up we now have

�11 = A−1
11 �11A−1′

11 =
(

A−1
11 �

1
2
11

)(
�

1
2
11A−1′

11

)
= PP′, (B.2)

where

P =
⎡⎢⎣ p11 0 0

p21 p22 0
p31 p32 p33

⎤⎥⎦
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is the 3 × 3 lower-triangular matrix. Using (B.2), then �11, A−1
11 and A11 can be

obtained, respectively, as

�11 =
⎡⎢⎣ ω11 0 0

0 ω22 0
0 0 ω33

⎤⎥⎦ =
⎡⎢⎣ p2

11 0 0
0 p2

22 0
0 0 p2

33

⎤⎥⎦ (B.3)

A−1
11 = P×

⎡⎢⎣ p11 0 0
0 p22 0
0 0 p33

⎤⎥⎦
−1

=
⎡⎢⎣ 1 0 0

p21
p11

1 0
p31
p11

p32
p22

1

⎤⎥⎦ (B.4)

A11 =
⎡⎢⎣ 1 0 0

a21 1 0
a31 a32 1

⎤⎥⎦ =
⎡⎢⎣ 1 0 0

− p21
p11

1 0
p21p32
p11p22

− p31
p11

− p32
p22

1

⎤⎥⎦ . (B.5)

Then, (B.1) simplifies to

g (0, z : ε3) = 1√
ω33

⎡⎢⎢⎢⎣
⎛⎜⎝ 0

0
ω33

⎞⎟⎠
E (ε3tu2t )

⎤⎥⎥⎥⎦ .

Furthermore, in the absence of any over-identifying restrictions on the system of
equations for z2t , E (ε3tu2t ) can be consistently estimated by

T−1
T∑

t=1

ε̂3t û′
2t ,

where û2t are the reduced form residuals associated with z2t , and

ε̂3t = a31û1t + a32û2t + û3t ,

where û1t , û2t , and u3t are the reduced form residuals associated with z1t , z2t , z3t

in z1t , respectively. Thus,

T−1
T∑

t=1

ε̂3t û′
2t = a31

(
T−1

T∑
t=1

û1t û′
2t

)
+ a32

(
T−1

T∑
t=1

û2t û′
2t

)

+
(

T−1
T∑

t=1

û3t û′
2t

)
. (B.6)

Hence to prove that the invariance of the (structural) impulse responses of ε3t on
z1t and z2t to changing the order of z1t and z2t in z1t as well as to changing the order
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of variables in in z2t , we first need to establish that p2
33’s obtained for cases (a) z1t =

(z1t , z2t , z3t )
′ and (b) z1t = (z2t , z1t , z3t )

′, are identical, and then that a(a)31 = a(
b)

32 and

a(a)32 = a(
b)

31 , where superscripts ‘(a)’ and ‘
(
b
)
’ refer to cases (a) and (b), respectively.

First, consider the case (a) with z1t = (z1t , z2t , z3t )
′. Here we have

�
(a)
11 =

⎡⎢⎣ σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎤⎥⎦ .

Using the relationship in (B.2), it is straightforward to show

p(a)11 = √
σ11; p(a)21 = σ12√

σ11
; p(a)31 = σ13√

σ11
;

p(a)22 =
√
σ11σ22 − σ2

12
σ11

; p(a)32 =
√

σ11σ23 − σ12σ13

σ11
(
σ11σ22 − σ2

12

) ;

p(a)33 =
√√√√σ11σ22σ33 − σ11σ

2
23 − σ22σ

2
13 − σ33σ

2
12 + 2σ12σ13σ23

σ11σ22 − σ2
12

. (B.7)

Turning to A11, and using the above results, we have

p(a)21 p(a)32 = σ12√
σ11

×
√

σ11σ23 − σ12σ13

σ11
(
σ11σ22 − σ2

12

) = σ12

σ11

√
σ11σ23 − σ12σ13

σ11σ22 − σ2
12

p(a)11 p(a)22 = √
σ11 ×

√
σ11σ22 − σ2

12
σ11

=
√
σ11σ12 − σ2

12

p31

p11
= σ13

σ11

so that

a(a)31 = p(a)21 p(a)32

p(a)11 p(a)22

− p(a)31

p(a)11

= σ12σ23 − σ13σ22

σ11σ22 − σ2
12

, (B.8)

and

a(a)32 = −p(a)32

p(a)22

= σ12σ13 − σ11σ23

σ11σ22 − σ2
12

. (B.9)
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Second, consider the case (b) of z1t = (z2t , z1t , z3t )
′. Now we have

�
(b)
1 =

⎡⎢⎣ σ22 σ12 σ23

σ12 σ11 σ13

σ23 σ13 σ33

⎤⎥⎦ ,

and similarly,

p(
b)

11 = √
σ22; p(

b)
21 = σ12√

σ22
; p(

b)
31 = σ23√

σ22
;

p(
b)

22 =
√
σ11σ22 − σ2

12
σ22

; p(
b)

32 =
√

σ22σ13 − σ12σ23

σ22
(
σ11σ22 − σ2

12

) ;

p(
b)

33 =
√√√√σ11σ22σ33 − σ11σ

2
23 − σ22σ

2
13 − σ33σ

2
12 + 2σ12σ13σ23

σ11σ22 − σ2
12

. (B.10)

Therefore, we now have

a(
b)

31 = p(
b)

21 p(
b)

32

p(
b)

11 p(
b)

22

− p(
b)

31

p(
b)

11

= σ12σ13 − σ11σ23

σ11σ22 − σ2
12

, (B.11)

a(b)32 = −p(
b)

32

p(
b)

22

= σ12σ23 − σ13σ22

σ11σ22 − σ2
12

. (B.12)

Comparing (B.7), (B.8) and (B.9) with (B.10), (B.11) and (B.12), we find that

p2 (a)
33 = p2 (b)

33 ; a(a)31 = a(b)32 ; a(a)32 = a(b)31 ,

as desired.
This result clearly shows that once the order of the particular structural shock is

determined, their impulse responses on the variables in the system are invariant to
reordering of other variables before the specific equation of interest.

Finally, from (B.6) it is trivial to show that the structural impulse responses of
the shocks to ε3t on the variables in the system are also invariant to reordering of
variables in z2t , since if their order is changed, then all the associated VAR parameter
estimates are changed such that the structural impulse responses are intact.
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APPENDIX C

Data for the UK model

Here we describe the definitions and sources of the variables used to estimate the
core model of the UK economy. Our intention is to enable the user to use this
appendix in combination with the information provided on the authors’ web pages
(which contains all the necessary files and data used in the estimation and construc-
tion of the core variables) to reproduce our results. The appendix also provides a
brief guide on how to construct the Microfit 4.0 file ukmod.fit, which contains all
the variables used in the estimation and outlines the steps required to be performed
in Microfit 4.0 to reproduce our estimates.

C.1 Definitions and sources of the core model variables

The core UK model variables are as follows:

[1] yt : the natural logarithm of UK real per capita domestic output, defined as

[Ỹt/(Pt × POPt )] in Chapter 4, is computed as:

ln(GDPt/POPt ),

where GDPt is real gross domestic product, at 1995 market prices (index numbers,
1995 = 100), seasonally adjusted, source: Office of National Statistics (ONS) Eco-
nomic Trends, code YBEZ. POPt is total UK population in thousands, source: ONS,
Monthly Digest of Statistics, code DYAY, which at the time of collection of the data
was available up to 1998. For the 1999 number we extrapolated the 1998 annual
number using the average annual growth rate for the period 1993–1997. For the
population variable we constructed a quarterly series through linear interpolation
of the annual numbers and then converted the quarterly population series to an
index number.

[2] pt : the natural logarithm of the domestic price level is computed as:

ln(Pt ),

where Pt is the UK Producer Price Index: Output of Manufactured Products (1995 =
100), source: ONS, Economic Trends, code PLLU.
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The data used in the estimation are seasonally adjusted versions of pt or
ln(Pt ), where the adjustment is performed using the Stamp package (see Harvey,
Koopman, Doornik and Shephard, 1995). This involved using a Structural Time
Series approach on the first difference of pt , �pt (as we observed a seasonal pattern
in the spectral density of�pt rather pt ) and then integrating the seasonally adjusted
first difference up to compute the seasonally adjusted level. We adopted the Stamp
manual’s recommended version (p. 88) of the basic structural model of a stochastic
trend with a stochastic slope, a trigonometric seasonal and an irregular compo-
nent. A cyclical component was not included in the adjustment procedure. It is
worth noting the Stamp manual’s comment (p. 88) that in practice seasonal com-
ponents seem to be insensitive to the specification of the trend and the inclusion of
a cycle.

[3] �p̃t : the UK inflation rate is computed as:

ln(PR
t ) − ln(PR

t−1),

where PR
t is the UK Retail Price Index, All Items (1995 = 100, rebased from

1987 = 100), source: ONS, Economic Trends, code CHAW. As with the Producer
Price Index, in the estimation we use a seasonally adjusted version of ln(PR

t ), where
the adjustment is performed using the Structural Time Series procedure described
above.

[4] rt : the domestic nominal interest rate, measured as a quarterly rate is com-
puted as:

0.25 × ln [1 + (Rt/100)] ,

where Rt is the 90 day Treasury Bill average discount rate, at an annualised rate,
source: ONS, Financial Statistics, code AJNB.

[5] ht − yt : the natural logarithm of real per capita money stock expressed as a
proportion of real per capita income is computed as:

ln(H̃t/Ỹt ),

where H̃t is the M0 definition of the money stock (end period, £ Million) seasonally
adjusted, source: ONS, Financial Statistics and Bank of England. For the period
1969q2–1999q4 we use M0 money stock source: ONS, Financial Statistics, code
AVAE. Prior to this period, where no M0 money stock data is available, we project the
AVAE series backwards using the quarterly percentage change (where the quarterly
data is the average of the monthly data) of estimated circulation of notes and coins
with the public as documented in the Bank of England Abstract 1970. Nominal
income Ỹt , is measured using gross domestic product at market prices (£ Million)
and is seasonally adjusted, source: ONS, Economic Trends, code YBHA. Note that

328



Data for the UK Model

ln(H̃t/Ỹt ) = ln(ht/yt ) given that Pt and POPt appear in both the numerator and
denominator (see the definitions in Chapter 4).

[6] et : the natural logarithm of the UK nominal effective exchange rate is com-
puted as:

− ln(Et ),

where Et is the Sterling Effective Exchange Rate (1995 = 100, rebased from 1990 =
100), source: ONS, Financial Statistics, code AJHX. The ONS define Et as the foreign
price of domestic currency (a rise represents a UK currency appreciation) hence
we take minus the logarithm of Et redefining et as the domestic price of foreign
currency, as defined in the text.

[7] y∗
t : the natural logarithm of real per capita foreign output, defined as [Ỹ∗

t /(P
∗
t ×

POP∗
t )] in Chapter 4 is computed as:

ln(GDP∗
t /POP∗

t ),

where GDP∗
t is a total OECD Gross Domestic Product Volume Index (1995 = 100), at

1995 market prices, seasonally adjusted, source: OECD, Main Economic Indicators
(MEI), code Q00100319. POP∗

t is total OECD population (adjusted by subtracting
the populations of Mexico, Poland, Hungary and Czech Republic), source: OECD,
Labour Force Statistics, 1967–1987 and 1974–1996. For 1997–1999 we extrapolated
the 1996 annual number using the average annual growth rate for the period 1992–
1996. For the population variable we constructed a quarterly series through linear
interpolation of the annual numbers and then converted the quarterly population
series to an index number.

[8] p∗
t : the natural logarithm of the foreign price index is computed as:

p∗
t = ln(P∗

t ),

where P∗
t is the total OECD Producer Price Index, 1995 = 100, source: OECD, MEI,

code Q005045k. Data was available on this series from 1982q1. The data prior
to 1982q1 was constructed by backwardly imposing the percentage changes of a
separately constructed weighted average index of OECD consumer and producer
prices on the 1982q1 figure. As with the previous two price measures, in the esti-
mation we used a seasonally adjusted version of the foreign price variable, where
the adjustment is performed using the Structural Time Series procedure described
above.

[9] r∗
t : the foreign nominal interest rate, measured as a quarterly rate is computed as:

r∗
t = 0.25 × ln

[
1 + (R∗

t /100
)]

,
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where R∗
t is a weighted average of foreign annualised interest rates computed as:

R∗
t =

mr∑
j=1

wr
j Rjt ,

where wr
j are fixed weights and mr = 4. The countries and weights in brackets are

the United States (0.4382), Germany (0.236), Japan (0.2022) and France (0.1236).
The weights are taken from the IMFs International Financial Statistics Yearbook
1998, pages x and xi which report Special Deposits Rights (SDR) weights for five
countries which in 1996 were for the US 0.39, Germany 0.21, France 0.11, Japan
0.18 and the UK 0.11. Excluding the UK we the recompute the weights to get those
reported above.

The annualised interest rates used in the calculation, Rjt , are all from the IMFs
International Financial Statistics (IFS). For the US we use the three-month Trea-
sury Bill rate (IFS Code Q11160C), for Germany the Money Market Rate (IFS Code
Q13460B), for Japan the Money Market Rate (IFS Code Q15860B) and for France
the three-month Treasury Bill Rate (IFS Code Q13260C).

[10] p0
t : the natural logarithm of the oil price is computed as:

ln(POIL),

where POIL is the Average Price of Crude Oil, in terms of US Dollars per Barrel,
source: IMF, IFS, code Q00176AAZ, converted into a 1995 = 100 index.

To construct the Microfit 4.0 file ukmod.fit read in the file core.fit into Microfit 4.0
and run core.bat. The resulting file is ukmod.fit, which must be saved, where the
names used in file, which correspond to the model variables defined above, are the
following: y = yt , p = pt , dpr = �p̃t , r = rt , hy = (ht − yt ), e = et , ys = y∗

t , ps = p∗
t ,

rs = r∗
t , po = po

t , pps = (pt − p∗
t ), dpo = po

t − po
t−1.

All the estimation reported in Chapter 9 is performed in Microfit 4.0 (the impulse
responses, persistence profiles and probability forecasts can be computed using the
Gauss files provided, see the next appendix describing the Gauss files). The results
in the paper may be reproduced, using the file ukmod.fit in Microfit 4.0, through
the execution of the following steps:

(i) Choose the multivariate estimation option, select the cointegrating VAR
menu and choose option 4, unrestricted intercepts restricted trends.

(ii) Read in the ukmod.lst, set the period to be 1965q1–1999q4 and the order of
the VAR to be two and estimate.

(iii) Set number of cointegrating vectors to be five (r = 5, option 2) and in the
following menu select option 6, long-run structural modelling.
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(iv) Choose option 4, likelihood ratio test, exactly identify the system by reading
in exiden.equ and then estimate the cointegrating VAR model subject to the
exact identifying restrictions.

(v) Then choose to impose and test the over-identifying restrictions. First using
the restrictions contained in oviden1.equ, second using oviden2.equ.
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APPENDIX D

Gauss programs and result files

Much of the estimation and analysis of the UK core model was carried out using
Pesaran and Pesaran’s (1997) econometric software package Microfit 4.0, and Microfit
4.11. However, a number of the calculations and computations reported in the book
were conducted using a series of Gauss programs. For users who prefer the flexibility
such programs allow and for those who wish to perform (and adapt) the range
of estimation and computations reported in the book, we are making available,
through our webpages, the Gauss programs we have used in the analysis of the core
model in a sequence of files. The content and operation of these files is described
below. Note that an updated version of microfit, Microfit 5.0 (to be published by
Oxford University Press in 2006), will be able to compute all the impulse responses
and persistence profiles described below.

In total there are eight programs. The first two relate to impulse responses and
persistence profiles:

• GLPS-GIR.g computes Generalised Impulse Responses (GIRs), Orthogonalised
Impulse Responses (OIRs), Persistence Profiles (PPs), and VECM estimation
results (with diagnostics), and examines the stability of the VECM system.

• GLPS-SIR.g computes impulse responses which result from (exogenous) oil
price shocks and (unanticipated) monetary policy shocks, where monetary
policy shocks are defined according to the short-run identification scheme
developed in Chapter 5.

The next five programs compute and evaluate probability event forecasts. Two are
concerned with out-of-sample probability events:

• GLPS-PFS.g computes out-of-sample probability event forecasts, h-steps ahead,
taking into account future uncertainty only.

• GLPS-PFB.g computes out-of-sample probability event forecasts, h-steps ahead,
taking into account future and parameter uncertainty.

The next three programs conduct in-sample forecast evaluation using one-step
ahead recursive probability forecasts of directional-changes and events used in the
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calculation of probability integral transforms over the period 1999q1–2001q1 (nine
quarters).

• GLPS-EVS.g computes in-sample one-step ahead probability event forecasts
taking into account future uncertainty only.

• GLPS-EVB.g computes in-sample one-step ahead probability event forecasts
taking into account future and parameter uncertainty.

• GLPS-EV.g computes forecast evaluation statistics for one-step ahead prob-
ability event forecasts: hit ratios, Kuipers Score, Pesaran–Timmermann,
Kolmogorov–Smirnov test statistics for probability integral transform. To
obtain the results reported in the book, you run this program using as inputs
the files produced by first running the two programs above, GLPS-EVS.g and
GLPS-EVB.g.

Finally the eighth program computes the trend decomposition in cointegrating
VARs described in Section 10.3.

• GLPS-DEC.g computes the permanent and transitory decomposition of all the
endogenous variables in the vector zt using the estimated VECM core model
and estimates of the restricted growth rates, g.

D.1 General comments on the Gauss programs

All the programs presuppose that certain results have been obtained already (e.g. by
Microfit, as described at the end of Appendix C). Specifically, they take as inputs: the
ML estimates of the long-run cointegrating relationships subject to general linear
non-homogeneous restrictions (and their rank); and the estimation results for the
exogenous I(1) variable(s) (here an oil price equation).

The initial step in each program loads and defines the data. It also specifies
some initial information which is needed for the rest of the program, such as
the VAR lag order, the rank and the estimates of cointegrating vectors. Given
the estimates of the cointegrating vectors, the program estimates the dynamic
short-run parameters. It then combines these results with the estimation results for
the exogenous I(1) variable(s), to provide the full system VAR estimation results.
These form the basis for an analysis of further short-run dynamics such as impulse
responses and forecasts. For the underlying econometric theory, see Chapters 6
and 7 and the related papers by Pesaran, Shin and Smith (2000) and Pesaran and
Shin (2002).

D.2 Impulse response and persistence profile programs

The impulse response results for the UK described in Chapter 10 were obtained
using the two programs GLPS-GIR.g and GLPS-SIR.g and reading in the UK dataset
given in ukmod99.dat. The dataset has the dimension of 148 × 10 and the variables
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are saved in the column order: yt , y∗
t , rt , r∗

t , et , ht − yt , po
t , �po

t , �pt and pt − p∗
t (see

Appendix C for details). The full data period is 1963q1–1999q4 (148 observations),
but the program estimates the cointegrating VAR(2) model over the period 1965q1–
1999q4 (140 observations) using the Cointegrating VAR Option 4 with unrestricted
intercepts and restricted trends.

GLPS-GIR.g
This program computes GIRs, OIRs, PPs, and the estimation results, and analyses
stability of the VECM. It also provides an option to compute the empirical confi-
dence intervals for PPs, GIRs and OIRs with respect to reduced form errors, based
on the bootstrap re-sampling techniques. In our work, we employ non-parametric
re-sampling methods with 2000 replications to allow for parameter uncertainty (see
Section 6.4 for further details).

The estimation results in Sections 10.2.2 and 10.2.3, and also those reported in
Garratt, Lee, Pesaran and Shin (2000) can be generated using this program. The
results reported in Figures 10.3, 10.4, 10.5, 10.6, 10.9 and 10.10 are also computed
using this file. The program requires the user to select the shock (to an equation) by
specifying the number defining the order of the variable in the zt vector (see below
for the order). The program assumes the size of the shock is equal to the standard
deviation of the selected equation error, and that all the results (except for OIR) are
invariant to re-ordering of the variables in the VAR.

After running the program, you will obtain the following five Gauss data files
(with an fmt extension) which contain the results for PPs, GIRs and OIRs. The saved
files are: PPOUT.fmt, GIRZOUT.fmt, OIRZOUT.fmt, GIROUT.fmt, and OIROUT.fmt,
respectively.

PPOUT.fmt contains the results for the scaled PPs of the cointegrating relations,
which take the value of unity on impact of the shock and tend to zero as the time
horizon tends to infinity. The dimensions are

(
h + 1

)
by 7r, where h is the number

of horizon and r is the number of cointegrating vectors (= 5 in the case of the core
UK model). The first r columns (1 to r) are point estimates of the PPs of the 1, . . . , r
cointegrating vectors; the next r columns (r +1 to 2r) are empirical means; the next
r columns (2r + 1 to 3r) are empirical medians; the next r columns (3r + 1 to 4r)
are empirical 90% lower confidence intervals (CIs); the next r columns (4r + 1 to
5r) are empirical 90% upper CIs; and finally, the next r columns (5r + 1 to 6r) are
empirical 95% lower CIs, whereas the final r columns (6r+1 to 7r) are empirical 95%
upper CIs. Note the order of the cointegrating relations for each block (containing
r columns) is PPP, IRP, OG, MME and FIP.

GIRZOUT.fmt (OIRZOUT.fmt) contains the GIRs (OIRs) of the r cointegrating rela-
tions with respect to selected shocks, referred to as PPs in the text. These are the
files which contain the results, when the foreign interest rate, foreign output and
domestic interest rate are selected, which are plotted in Figures 10.3, 10.5 and 10.9,
respectively. The dimensions and ordering of these result files are exactly the same
as those of PPOUT.fmt.
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The files GIROUT.fmt (OIROUT.fmt) contain results for GIRs (OIRs) of the m exoge-
nous and endogenous I(1) variables in the system with respect to selected shocks
(m = 9 in the core UK model). The dimensions are

(
h + 1

)
by 7m, where m is num-

ber of variables. The first m columns (1 to m) are point estimates of GIRs (OIRs)
of 1, . . . , m variables; the next m columns (m + 1 to 2m) are empirical means; the
next m columns (2m+1 to 3m) are empirical medians; the next m columns (3m+1
to 4m) are empirical 90% lower CIs; and the next m columns (4m + 1 to 5m) are
empirical 90% upper CIs. The next m columns (5m + 1 to 6m) are empirical 95%
lower CIs, whereas the final m columns (6m + 1 to 7m) are empirical 95% upper
CIs. Note the order of the variables for each block (containing m columns) is: po

t , et ,
rt , r∗

t , �pt , yt , pt − p∗
t , ht − yt and y∗

t (the numbering for the selection of the shock
follows this order).

GLPS-SIR.g
This program computes the Structural Impulse Responses and PPs reported in
Figures 10.1, 10.2, 10.7, 10.8, 12.3 and 12.4. For this purpose we decompose vari-
ables as zt = (

z1t , z2t
)
, where z1t = (

po
t , et , r∗

t , rt
)

and z2t = (
�pt , yt , pt − p∗

t , ht − yt , y∗
t

)
.

Note the position of the variable, rt , determined by the short-run identification
scheme, is important for an analysis of monetary policy shocks. Once its position
is determined, the impulse responses are invariant to the change of ordering of
other variables in the system before and after rt ; see Appendix B for a proof.

As an additional option the program can examine the impact of an (exogenous)
intercept shift in the interest rate equation, as an alternative autonomous or exoge-
nous monetary policy shock. The program also provides the empirical mean and
confidence intervals for generalised impulse response functions with respect to
structural shocks to the oil price, exchange rate, foreign interest rate and domestic
interest rate equations as well as an intercept shift in the interest rate equation,
based on the bootstrap re-sampling techniques with 2000 replications to allow for
parameter uncertainty (see Section 6.4 for further details). In all cases the size of
the shock is equal to the standard deviation of the selected equation error. For the
case of the intercept shift in the domestic interest equation, the size of the shock
is equal to the standard deviation of the domestic interest equation error.

After running the program, you will obtain 10 Gauss result files (with an fmt
extension). The saved files are POGIR.fmt, POGIRZ.fmt, EXGIR.fmt, EXGIRZ.fmt,
RSGIR.fmt, RSGIRZ.fmt, MPGIR.fmt, MPGIRZ.fmt, INTIR.fmt and INTIRZ.fmt, respec-
tively. We have then provided estimation results in Sections 10.2.1 and 10.2.4.

The files POGIRZ.fmt, EXGIRZ.fmt, RSGIRZ.fmt and MPGIRZ.fmt contain the
results for the GIRs of the r cointegrating relations with respect to oil price shocks,
exchange rate shocks, foreign interest rate shocks and monetary policy shocks,
respectively. The file INTIRZ.fmt contains the results for impulse responses of the r
cointegrating relations with respect to the autonomous intercept shift in the domes-
tic interest equation. Their dimensions are

(
h + 1

)
by 7r. The first r (= 5 here)

columns (1 to r) are point estimates of the GIRs of 1, . . . , r cointegrating vectors;
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the next r columns (r + 1 to 2r) are empirical means; the next r columns (2r + 1
to 3r) are empirical medians; the next r columns (3r + 1 to 4r) are empirical 90%
lower CIs; the next r columns (4r +1 to 5r) are empirical 90% upper CIs; the next r
columns (5r + 1 to 6r) are empirical 95% lower CIs; and the final r columns (6r + 1
to 7r) are empirical 95% upper CIs. Note the order of the cointegrating relations
for each block (containing r columns) is PPP, IRP, OG, MME and FIP.

POGIR.fmt, EXGIR.fmt, RSGIR.fmt and MPGIR.fmt contain the results for the GIRs
of the m variables with respect to oil price shocks, exchange rate shocks, foreign
interest rate shocks and monetary policy shocks, respectively. The file INTIR.fmt
contains the results for the impulse responses of the m variables with respect to the
autonomous intercept shift in the domestic interest equation. Their dimensions
are

(
h + 1

)
by 7m. The first m columns (1 to m) are the empirical means of the GIRs

of 1, . . . , m variables; the next m columns (m + 1 to 2m) are the empirical means;
the next m columns (2m+1 to 3m) are the empirical medians; the next m columns
(3m + 1 to 4m) are the empirical 90% lower CIs; the next m columns (4m + 1 to
5m) are the empirical 90% upper CIs; the next m columns (5m + 1 to 6m) are the
empirical 95% lower CIs; and the final m columns (6m + 1 to 7m) are the empirical
95% upper CIs. Note the order of the impulse responses for each block (containing
m columns) is: po, e, r∗, r, �p, y, p − p∗, h − y and y∗.

D.3 Programs for computing probability forecasts

The probability forecast programs use the data file, ukmod01.dat. This is a 153×9 file
which contains data for the extended period 1963q1–2001q1 (153 observations),
saved in the column order of y, r, r∗, e, h − y, po, �p, p − p∗, y∗ (the change in oil
prices, �po, is defined in the program). We estimate the ML cointegrating vectors
for the period 1965q1–2001q1, but estimate the short-run dynamic parameters of
the vector error correction model over the shorter sample 1985q1–2001q1.

We allow for future and parameter uncertainty separately and jointly and in
addition we allow for model uncertainty. We focus on uncertainty regarding the
rank of the cointegrating vectors, so we consider the six cases with rank = 0,1,2,3,4,5
where we use exactly identified cointegrating vectors. We also consider our core
model, i.e. the case where we have five cointegrating relationships which impose
the theory based over-identifying restrictions described and tested in Chapter 9.
This makes for seven models. For each of the seven models, we examine exogenous
uncertainty through the consideration of two different oil price equations, based
on (A) the simple random walk with a drift model and (B) the unrestricted VAR(2)
specification. Hence in total 14 models are considered.

These models are denoted by OV5A and OV5B for the five cointegrating vec-
tors obtained subject to the theory based over-identifying restrictions, combined
with the oil price equations A and B, respectively. Similarly we denote EX5A and
EX5B as being five cointegrating vectors obtained subject to the exactly identifying
restrictions combined with an oil price equations A and B, respectively. Following
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this use of notation the remaining 10 models are denoted: EX4A, EX4B, EX3A,
EX3B, EX2A, EX2B, EX1A, EX1B, EX0A, EX0B. Note that the models, EX0A and
EX0B, have zero cointegrating relations.

The program computes the weights for these models according to the AIC weight
scheme described in Chapter 7, but also considers weights based on SBC, HQ, and
equal weights of 1/14. See Section 7.3 for more details.

D.3.1 Programs for computing out-of-sample probability event forecasts

The two programs, GLPS-PFS.g and GLPS-PFB.g, compute out-of-sample probabil-
ity event forecasts based on the h-step ahead forecasts of the nine variables in zt

and their four-quarter moving averages with h = 1, . . . , 24. Note that the computa-
tion algorithms for GLPS-PFS.g and GLPS-PFB.g are basically the same, where only
future uncertainty is allowed for in GLPS-PFS.g, whereas both future and parameter
uncertainties are allowed for in GLPS-PFB.g.

In our UK application, we consider the following seven events:

E1: A single event: Pr(four-quarter moving average of inflation < a%), where
a is per cent per annum and we use 10 threshold values of a = (0, 0.5, 1, 1.5,
2, 2.5, 3, 3.5, 4, 5).

E2: A single event: Pr(four-quarter moving average of the gross output growth
< a%), where gross output growth is the sum of output growth and deterministic
population growth, a is per cent per annum and we use 10 threshold values of
a = (−1.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5).

E3: A single event: BofE target met, Pr(1.5% < four-quarter moving average of
inflation < 3.5%).

E4: A single event: recession, Pr(quarterly output growths < 0% for two
consecutive quarters).

E5: A single event: low growth, Pr(four-quarter moving average of gross output
growth < 1%)

E6: A joint event: Pr(no recession and BofE target met).
E7: A joint event: Pr(high growth and BofE target met).

GLPS-PFS.g (with future uncertainty only)
After running the program, you will obtain the following 18 Gauss result files (with
an fmt extension). They contain the results of the Probability Event Forecasts based
on future uncertainty only, which we have used in obtaining the tables and figures
reported in Chapter 11 and Garratt, Lee, Pesaran and Shin (2003, Journal of American
Statistical Association).

The saved files are OV5ASPE.fmt, OV5BSPE.fmt, EX5ASPE.fmt, EX5BSPE.fmt,
EX4ASPE.fmt, EX4BSPE.fmt, EX3ASPE.fmt, EX3BSPE.fmt,EX2ASPE.fmt, EX2BSPE.fmt,
EX1ASPE.fmt, EX1BSPE.fmt, EX0ASPE.fmt, EX0BSPE.fmt, AVGSPE.fmt, AICSPE.fmt,
SBCSPE.fmtand HQSPE.fmt, respectively.

The dimensions of these Gauss result files is the number of horizons (= 24 here)
by 25. The first 10 columns (1 to 10) are probability forecasts for event E1 for the
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10 thresholds; the next 10 columns (11 to 20) are probability forecasts for event E2
with 10 thresholds; the 21st column is probability forecasts for event E3; the 22nd
column is the probability forecasts for event E4; the 23rd column is the probability
forecasts for event E5; the 24th column is the probability forecasts for event E6;
and, finally, the 25th column is the probability forecasts for event E7.

GLPS-PFB.g (with future and parameter uncertainty)
This program is as above but where the Probability Event Forecasts are based on
both future and parameter uncertainty. The saved files are OV5ABPE.fmt,
OV5BBPE.fmt, EX5ABPE.fmt, EX5BBPE.fmt, EX4ABPE.fmt, EX4BBPE.fmt, EX3ABPE.
fmt, EX3BBPE.fmt, EX2ABPE.fmt, EX2BBPE.fmt, EX1ABPE.fmt, EX1BBPE.fmt,
EX0ABPE.fmt, EX0BBPE.fmt, AVGBPE.fmt, AICBPE.fmt, SBCBPE.fmt and HQBPE.fmt.

D.3.2 Programs for computing in-sample probability event forecast evaluation

The three programs, GLPS-EVS.g, GLPS-EVB.g and GLPS-EV.g, are used to evaluate
the probability event forecasts. They compute in-sample forecast evaluation using
one-step ahead probability forecasts of directional-change and events used in cal-
culating probability integral transforms, which are obtained using recursive point
forecasts over 1999q1–2001q1 (nine quarters).

To replicate the results reported in Chapter 11, first run the programs GLPS-EVS.g
and GLPS-EVB.g and save the output Gauss results files. Then run the program GLPS-
EV.g. The algorithms used in GLPS-EVS.g and GLPS-EVB.g are essentially the same,
although only future uncertainty is allowed in GLPS-EVS.g whereas both future and
parameter uncertainties are allowed in GLPS-EVB.g.

Here we consider the following nine single event probability of directional
changes:

E1: Pr
(
�2po

T+1 > 0
)

E2: Pr
(
�eT+1 > 0

)
E3: Pr

(
�r∗

T+1 > 0
)

E4: Pr
(
�rT+1 > 0

)
E5: Pr

(
�2pT+1 > 0

)
E6: Pr

(
�2yT+1 > 0

)
E7: Pr

(
�(pT+1 − p∗

T+1) > 0
)

E8: Pr
(
�2(hT+1 − yT+1) > 0

)
E9: Pr

(
�2y∗

T+1 > 0
)

.

We also consider the following nine single events for the probability integral
transform, which will be used in computing the Kolmogorov–Smirnov test statistic:

I1: Pr
(
forecast of �2po

T+1 > actual �2po
T+1

)
I2: Pr

(
forecast of �eT+1 > actual �eT+1

)
I3: Pr

(
forecast of �r∗

T+1 > actual �r∗
T+1

)
I4: Pr

(
forecast of �rT+1 > actual �rT+1

)
I5: Pr

(
forecast of �2pT+1 > actual �2pT+1

)
I6: Pr

(
forecast of �2yT+1 > actual �2yT+1

)
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I7: Pr
(
forecast of �(pT+1 − p∗

T+1) > actual �(pT+1 − p∗
T+1)

)
I8: Pr

(
forecast of �2(hT+1 − yT+1) > actual �2(hT+1 − yT+1)

)
I9: Pr

(
forecast of �2y∗

T+1 > actual �2y∗
T+1

)
.

GLPS-EVS.g (with future uncertainty only)
After running the program, you will obtain the following 50 Gauss data files (with
an fmt extension). They contain the results for (i) the one-step ahead central fore-
casts (18 files), (ii) root mean square errors (RMSEs) (14 files), (iii) the in-sample
Probability Event Forecasts (18 files):

(i) The 18 files for one-step ahead central forecasts with no future and no para-
meter uncertainties are: OV5AFOR.fmt, OV5BFOR.fmt, EX5AFOR.fmt, EX5BFOR.fmt,
EX4AFOR.fmt, EX4BFOR.fmt, EX3AFOR.fmt, EX3BFOR.fmt, EX2AFOR.fmt, EX2BFOR.
fmt, EX1AFOR.fmt, EX1BFOR.fmt, EX0AFOR.fmt, EX0BFOR.fmt, AVGFOR.fmt,
AICFOR.fmt, SBCFOR.fmt and HQFOR.fmt. Here the first four letters refer to indi-
vidual models, and AVG, AIC, SBC and HQ indicate the equal weights, the AIC
weights, the SBC weights and the HQ weights, respectively, used in pooling the
forecasts.

The dimensions of all the above Gauss result matrices are the same, the number of
in-sample horizons (here nine quarters over 1999q1–2001q1) by 54. The first nine
columns (1 to 9) are one-step ahead central forecasts of the level of the nine variables
(in the order of po, e, r∗, r,�p, y, p−p∗, h−y, y∗); the next nine columns (10 to 18) are
one-step ahead central forecasts of the four-quarter moving averages of the levels of
the nine variables; the columns from 19 to 27 are one-step ahead central forecasts
of the first differences; the next nine columns (28 to 36) are one-step ahead central
forecasts of the four-quarter moving average of the first differences; columns 37 to
45 are one-step ahead central forecasts of the second differences; and the next nine
columns (46 to 54) are one-step ahead central forecasts of the four-quarter moving
average of the second differences.

(ii) The 14 files for RMSEs of the one-step ahead central forecasts with no future and
no parameter uncertainties are: OV5ARMSE.fmt, OV5BRMSE.fmt, EX5ARMSE.fmt,
EX5BRMSE.fmt, EX4ARMSE.fmt, EX4BRMSE.fmt, EX3ARMSE.fmt, EX3BRMSE.fmt,
EX2ARMSE.fmt, EX2BRMSE.fmt, EX1ARMSE.fmt, EX1BRMSE.fmt, EX0ARMSE.fmt
and EX0BRMSE.fmt.

The dimensions of all the above Gauss result files are the same, the number of
in-sample horizon (here nine quarters over 1999q1–2001q1) by 27. The first nine
columns (1 to 9) are RMSEs of the one-step ahead central forecasts of the level of
the nine variables (in the order of po, e, r∗, r, �p, y, p − p∗, h − y, y∗); the next 9
columns (10 to 18) are RMSEs of the one-step ahead central forecasts of the first
diferences; and the next columns from 19 to 27 are RMSEs of the one-step ahead
central forecasts of the second differences.

(iii) The 18 files for the probabilities of directional changes and probability
integral transform with future uncertainty only are: OV5ASPR.fmt, OV5BSPR.fmt,
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EX5ASPR.fmt, EX5BSPR.fmt, EX4ASPR.fmt, EX4BSPR.fmt, EX3ASPR.fmt, EX3BSPR.
fmt, EX2ASPR.fmt, EX2BSPR.fmt, EX1ASPR.fmt, EX1BSPR.fmt, EX0ASPR.fmt,
EX0BSPR.fmt, AVGSPR.fmt, AICSPR.fmt, SBCSPR.fmt and HQSPR.fmt.

The dimensions of all the above Gauss data files are the same: the number of
in-sample horizon (here nine quarters over 1999q1–2001q1) by 36. The first nine
columns (1 to 9) are the probabilities of directional changes (see definitions of the
events given above and denoted by E1, . . . , E9) for the nine variables (in the order
of po, e, r∗, r, �p, y, p − p∗, h − y, y∗), using one-step ahead central forecasts of the
first and second differences; the next nine columns (10 to 18) are the probabilities
of directional changes for the nine variables using one-step ahead central forecasts
of the four-quarter moving average of the first and second differences; the nine
columns (19 to 27) are the probabilities of integral transforms (see definitions of
the events given above and denoted by I1, . . . , I9) for the nine variables, using one-
step ahead central forecasts of the first and second differences; and the final nine
columns (28 to 36) are the probabilities of integral transforms for the nine variables
using one-step ahead central forecasts of the four-quarter moving average of the
first and second differences.

Finally, we have also saved the two additional data files, actdat.fmt and
a4actdat.fmt, which contain in-sample actual data observations for the first differ-
ences and the second differences of the data, and which will be used for comparison
with one-step ahead forecasts of directional changes in the program GLPS-EV.g.

GLPS-EVB.g (with both future and parameter uncertainties)
After running the program, you will obtain the following 18 Gauss result files
(with an fmt extension). They contain the results for Probability Event Forecasts
for directional changes and probability integral transform with both future and
parameter uncertainties. These will be used in the companion file GLPS-EV.g to
compute various test statistics reported in the tables of Chapter 11.

The 18 files are OV5ABPR.fmt, OV5BBPR.fmt, EX5ABPR.fmt, EX5BBPR.fmt,
EX4ABPR.fmt, EX4BBPR.fmt, EX3ABPR.fmt, EX3BBPR.fmt, EX2ABPR.fmt, EX2BBPR.
fmt, EX1ABPR.fmt, EX1BBPR.fmt, EX0ABPR.fmt, EX0BBPR.fmt, AVGBPR.fmt,
AICBPR.fmt, SBCBPR.fmt and HQBPR.fmt. The dimensions and ordering of the Gauss
result files are as described in probability event matrices for GLPS-EVS.g.

GLPS-EV.g
This program computes the in-sample forecast evaluation test statistics using the
Gauss result files saved after running the companion programs, GLPS-EVS.g and
GLPS-EVB.g. The program computes the following statistics:

(i) UD, DD, DU and UU , where the first letter denotes the direction of forecasts
(D for down, U for up) and the second the direction of actual outcome.

(ii) The hit ratio defined as: (DD + UU) / (UD + DD + DU + UU).
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(iii) The Kuipers Score statistic given by H − F, where H = UU/ (UU + UD)

is the proportion of ups that were correctly predicted to occur, and F =
DU/ (DU + DD) is the proportion of downs that were incorrectly predicted.

(iv) The Pesaran–Timmerman, test statistic.

(v) The Kolmogorov–Smirnov test statistic.

D.4 Program for computing the decomposition of trends in
cointegrating VARs

GLPS-DEC.g
This program provides the decomposition of the underlying I(1) variables into
permanent and transitory components as described in Section 10.3. This decom-
position can be viewed as a (generalised) multivariate BN decomposition but has an
advantage that it is characterised fully in terms of observables and estimated para-
meters. See also Garratt, Robertson and Wright (2005). The program also computes
the more conventional multivariate Beveridge–Nelson trends of the system.

As in the case of the programs for GIRs and PPs, we use the data file, ukmod99.dat
and the ML estimates of the cointegrating VAR(2) model over 1965q1–1999q4 (140
observations) using the Cointegrating VAR Option 4 with unrestricted intercepts
and restricted trends. The program requires as an input estimates of the vector g,
the trend growth rates (these are computed using a restricted SURE procedure in
Chapter 10; see Section 10.3). After running the program, you will obtain nine
ASCII files with txt extensions: po.txt, ex.txt, rs.txt, r.txt, dp.txt, y.txt, pps.txt, hy.txt
and ys.txt. They contain summary results for each of the variables (in the order of
po, e, r∗, r, �p, y, p−p∗, h−y, y∗). These files can be easily be read into the Excel pro-
gram for constructing tables and figures. The dimensions of the result files are 140
(the sample size) by 6. In each case, the first column contains the actual data, the
second column the permanent component, the third column the transitory com-
ponent, the fourth column the de-trended data, the fifth column the deterministic
(permanent) trend and the sixth column the stochastic (permanent) trends.
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