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Preface

Over the past decade we have seen a definite shift in knowledge base of our students.
Presently, at pre-university level, mathematics seems to be less integrated with the
study of physics and some of the most important topics are covered only in Further
Mathematics courses. Results and techniques are often learnt in school as mathe-
matical processes without much regard for the underlying principles. Hence, students
often find it hard to build up a mathematical description of a physical system from
scratch. This is an essential skill required for any undergraduate degree in physics or
engineering.

You will notice that we have tried, where possible, to integrate the mathematics
into the physics so that the reader is given a chance to see the physics unfold in the
most appropriate language (mathematics). The reader is given ample opportunity to
try out the language for themselves in workshop sections, which have been designed
to show intermediate steps and results and to help the reader through some of the
most conceptually difficult demonstrations. Fully worked solutions to all workshops
are presented as an appendix to this book. There are also questions following each
section that deal with principles studied in that section.

While we have not seen ‘workshops’ as such in other books, the idea is straight-
forward. When carpenters build things out of wood, they have to fashion them into
pieces that have the right shape first. They do this in a workshop where they are
surrounded by the right tools. Our workshops have been designed with this in mind
– the students enter a section that is specifically designed to help them get to grips
with a particular mathematical concept that will transform their understanding of
the physics. As with the carpenter, the mathematics is ‘fit for purpose’ – we choose
to convey the mathematical techniques with a strong reference to the context of
physics.

The assumed knowledge base here is really only that of a standard pre-university
course in mathematics (such as a single mathematics A-level in the UK). The physics
is developed using the mathematics as a tool, and while pre-university study of physics
is not assumed, we cover the necessary concepts quite rigorously, and previous study
would be beneficial. The ‘syllabus’ is intended to form a convenient stepping stone
between school and undergraduate study in the physical sciences or engineering. By
requiring a good measure of problem solving (which itself requires a deeper understand-
ing of concepts), it is possible to design questions that do not venture into university
mathematics, but would nevertheless give most undergraduates a good run for their
money.

Therefore we hope the present text will be used by first-year undergraduate stu-
dents as they grapple (perhaps for the first time) with their physics or engineer-
ing written in the language of mathematics. We also would hope that it would be



vi Preface

used by not a few dedicated pre-university students in the run up to their first-year
undergraduate course. And it may even be of interest to any physical scientists who
need or are compelled to espy a little of the fundamental mathematics that lies behind
their physics.

JPC and ACM
Winchester and High Wycombe, 2008



To the Student . . .

One of us once heard two senior school students muttering in the back of the class,
‘Why is there so much calculus in our maths course? It’s not as if it’s any use . . .’
Once those students went to university to study engineering, they discovered that a
knowledge of calculus is as vital as knowing that 9 is bigger than 5, and that there was
precious little useful information written without calculus. After all, the true language
of physics is not English. It is mathematics. The aim of this book is to help you develop
fluency in the true language of your undergraduate subject by explaining the physics
you know in terms of mathematics, and showing you how this enables you to solve a
wider range of problems at a more advanced level.

To get the most out of this book you need to have studied, or be studying, a pre-
university course in mathematics (such as single mathematics A-level in the UK). It
will help if you have also studied physics at this level and/or part of an extra mathe-
matics course, but these are not assumed. If you have studied physics, we hope that
this book helps you ‘bridge the gap’ between two disciplines taught so separately at
school. If you have not studied physics, we hope that this book gives you a mathe-
matically oriented introduction to the subject.

Practice is vital to developing fluency in any language. Accordingly, there are
many problems to be worked through. Harder problems are marked + or ++. The
most essential exercises are in the form of ‘workshops’ which lead you through a new
technique or concept by the hand. Full solutions to these workshops are included as
an appendix to this book, and we hope that you will use them regularly (looking in
the back is not cheating, it is learning). If you want a summary of what you have
learned, please look through the relevant part of Chapter 8 where you will find a
summary of the equations used – which is probably the best way of summarizing
the content of each chapter in the book. With any complex calculation, we advise
you to work in terms of the parameters represented by letters (t, s, E, γ, etc.),
and only to substitute numbers once you are sure you have the correct algebraic
expression.

In addition to undergraduates, we hope that some of our readers will be students
still at school wishing to enrich their understanding and gain a better taste for how
subjects such as physics are presented at university. If you are working by yourself, you
will probably find this quite tough, but either of us would be delighted to hear from
you if you require further help. We would encourage any students working without
a teacher to make use of the Solutions Manual available on the publisher’s website.
We are, of course, deeply grateful to any student, lecturer or teacher who writes to us
(through our publisher) with feedback.

Einstein referred to nature as subtle, not malicious. Some of the techniques may
seem malicious, that is unnecessarily complicated, as indeed the theories of nature
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often appear. Our aim, though, is that you should come through the suspicion of
malice to an appreciation of the subtlety of physical thought, and that one day this
will help you appreciate the mathematical beauty of nature herself.

JPC and ACM
Winchester and High Wycombe, 2008
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1
Linear mechanics

Kinematics is the study of motions within a framework of three-dimensional (3-D)
space which are realized in the course of time. This study is made independently of
the physical laws of these motions. Dynamics is the study of the physical laws of
motion. It seems absolutely logical to study the different kinds of motion in space,
before considering the reasons and according to what laws such and such a motion
occurs in such and such a circumstance. In this chapter we will be following this quite
traditional line of storytelling, but we will do so as a development of ideas rather than
a compartmentalizing of the subject matter.

1.1 Kinematics

1.1.1 The law of falling bodies

From experiments it is possible to infer a simple general rule: the motion of free fall
is universally the same, independent of the size and material of the body. The effect of
the air on falling objects masks this general rule sometimes, so this seems a remarkable
fact which people can find surprising. Further study of free fall reveals more than just
the qualitative rule – a beautiful and simple pattern seems to emerge from the fall of
an object under the influence of gravity alone (Figure 1.1).

If a body is released from rest, it falls a distance c in the first unit of time, then
in the next unit of time the body will fall 3c, then in the next unit it will fall 5c,
and so on. In successive units of time, the body falls distances that are odd number
multiples of the distance fallen in the first unit. The total distance fallen from the
point of release is then going to go as multiples of c following the perfect squares:
1, 1 + 3 = 4, 1 + 3 + 5 = 9, and so on.

Therefore the total distance fallen (say s) can be conveniently represented as

s = ct2, (1.1)

where t is the total time elapsed from the point of release. This simple relationship has
been dubbed the law of falling bodies. Expression (1.1) holds no matter what interval
of time ∆t∗ is chosen. This of course means that (1.1) describes a smooth curve when

∗The Greek letter ∆ or δ seems to crop up a lot in physics texts. This is not just to frighten people
away with mathematical symbols. There is really a good reason for it. When it does appear, ∆ or δ
will always be followed by another letter, e.g. ∆t or δt. Sometimes, in physics we wish to write a
symbol for a change or step in a quantity rather than a particular value of a quantity. For example,
we might want to use y to describe the y-coordinate of a point, but we might want to use ∆y to
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5c

c

3c

Fig. 1.1

plotted on Cartesian axes with s on the ordinate (vertical axis) and t on the abscissa
(horizontal axis).

Let us now see what we can get out of (1.1) using the elementary concept:

Average speed = distance ÷ time. (1.2)

Figure 1.2 depicts a small portion of the curve (1.1). The point s(t) is the value
of (1.1) evaluated at time t, and the point s(t + ∆t) is (1.1) evaluated at a later time
t + ∆t. Using (1.2) we can easily see that the average speed, v, of the body in free fall
between times t and t + ∆t is just

v =
s(t + ∆t) − s(t)

∆t
. (1.3)

Using (1.1) we can see that

s(t + ∆t) − s(t) = c(t + ∆t)2 − ct2 = 2ct · ∆t + c∆t2, (1.4)

so (1.3) becomes

v = 2ct + c∆t. (1.5)

Now the interesting thing about (1.5) is that as we make ∆t smaller and smaller
the point s(t + ∆t) gets closer and closer to the point s(t), and in the limit when
∆t = 0 we see that s(t + ∆t) = s(t) and (1.5) becomes

v = 2ct. (1.6)

The reason why this quantity v remains finite even though both s(t + ∆t) − s(t)
and ∆t tend to 0 is that (1.3) is actually the gradient of the chord cutting the curve

describe the change or step in y-coordinate when a particle moves between two points separated along
the y-axis. The lower case delta δ is used when we want to describe a very small change, so that the
related quantities remain almost constant over the change.
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Distance

Time
t t + ∆t

s(t)

s(t + ∆t)

Fig. 1.2

at points s(t+∆t) and s(t), and as ∆t → 0 this chord becomes a tangent to the curve
at the point s(t). The expression for v in (1.6) is therefore the gradient of the tangent
to the curve at the instant t; that is, v in (1.6) is the instantaneous speed at t. In
fact, to make a distinction between this instantaneous speed and the average speed
calculated for finite ∆t we use the notation of differential calculus∗ and write:

ds

dt
= lim

∆t→0

{
s(t + ∆t) − s(t)

∆t

}
. (1.7)

Or,
ds

dt
= v(t) = 2ct the instantaneous speed at t.

Q1 Imagine that the distance travelled by a particle after a time t is given by

s = 2 + 3t − t2.

Use equation (1.3) to calculate the average speed in the interval from t = 2 to
t = 2 + δt when δt = 0.1, 0.01, and 0.001. What is the instantaneous speed at
t = 2?

∗A note on the calculus notation:
The quantity s(t + ∆t) − s(t) is actually a small increment in s and we might call it ∆s. We have

avoided writing
(

s(t + ∆t) − s(t)
∆t

=
∆s

∆t

)
because there is tendency for students to fall into the trap

of saying that in the limit as ∆t → 0, ∆s → ds, and ∆t → dt. This is of course is nonsense, ∆s → 0
and ∆t → 0. In fact, the way in which we have taken the limit in the above analysis is really a
mental-scaffolding that allows us to approach the concept of a tangent to a curve in terms of ideas
more familiar to our everyday experience such as gradients of chords. Indeed, mathematicians would
prefer to treat the symbol d/dt as an ‘operation’ that one can perform on a function and performing
the operation on, say s(t), is effectively asking for the rate of change of s(t) with respect to t; i.e.
(d/dt {s(t)}) = ds/dt, which itself is a function of t and gives the instantaneous gradient of s for any t.
This operation is called differentiation, and the above procedure followed to calculate the ‘derivative’
of s(t) is applicable to any function likely to appear in any physics text.
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Q2 The following tables give the distance travelled since t = 0. Deduce possible rela-
tionships between s and t in each case:
(a)

t 0 1 2 3 4 5

s 0 5 20 45 80 125

(b)
t 0 1 2 3 4 5

s 0 2 4 6 8 10

(c)
t 0 1 2 3 4 5

s 1 4 7 10 13 16

(d)
t 0 1 2 3 4 5

s 0 2 6 12 20 30

1.1.2 The kinematics of falling bodies

Expression (1.6) tells us the instantaneous speed v(t) of a body in free fall. It is
of course a motion due to a uniform acceleration, say a. In each successive unit
of time, the expression (1.6) tells us that the instantaneous speed increases by the
value 2c:

v = 2ct. (1.6)

Therefore, the acceleration due to gravity is 2c in units of speed per unit of time –
in SI this would be 2c m/s per s or 2c m/s2. We usually use the symbol g to represent
the acceleration due to gravity, so we see that (1.1) and (1.6) become

s =
g

2
t2 and v = gt. (1.8)

Hence the odd number progression that emerges out of the free fall of bodies is the
signature for a uniform acceleration.

It is informative to apply our method for calculating the instantaneous gradient of
a function even though we already know what the answer will be for v(t):

dv

dt
= lim

∆t→0

{
v(t + ∆t) − v(t)

∆t

}
= lim

∆t→0

{
g · (t + ∆t) − g · t

∆t

}
= g. (1.9)
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This means ∆v/∆t = g whatever the value of ∆t, which is of course what one
would expect for a uniform acceleration. However, in applying this method we see
how the calculus notation naturally arises.

From (1.8)

s =
g

2
t2, v = gt, a = g,

ds

dt
= gt,

dv

dt
= g,

d2s

dt2
= g;

that is, the gradient function of speed is the acceleration of the body and the gradient
function of distance is the speed of the body. The quantity d2s/dt2 is called the second
derivative of s with respect to t and a mathematician would see this as the application
of the differentiation operation twice to the function s, hence the notation:

d

dt
{v} =

d

dt

{
d

dt
{s}
}

=
d2s

dt2
. (1.10)

Section 1.1.3 is a workshop on differential equations and looks at a number of the
most common v(t), a(t), and s(t) that turn up in elementary kinematics problems.

In Figure 1.3, the body is in free fall so throughout the motion its speed is increas-
ing. Now, it would be simple to compute the distance travelled in the time ∆t if the
speed of the body were say a constant u throughout the interval. If this were the case,
we would simply say

Distance travelled = u · ∆t. (1.11)

This quantity would have the graphical representation of the area shaded in Figure 1.4.

Speed

Time
t t + ∆t

v(t)

v(t + ∆t)

Fig. 1.3
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Speed

Time

u

t t + ∆t

Fig. 1.4

Speed Speed

Time Time

u

v(t)
a

b

d gt

P

Q

Fig. 1.5

Bearing this in mind we can now see a way of dealing with the question of distance
travelled over an interval ∆t if the speed is increasing throughout that interval. It
is possible to think of the motion described in Figure 1.3 as a motion at a constant
speed u where

u =
v(t + ∆t) + v(t)

2
. (1.12)

Effectively we are saying that in the first half of the interval ∆t the distance trav-
elled will be less than what it would be if u is given by (1.12), but in the second half of
the interval the distance travelled will be more by exactly the distance required to make
up the deficit in the first half of the interval. This is more clearly seen in Figure 1.5.
We can see by rotating the triangle P into Q that the uniformly accelerated motion
over the interval ∆t covers the same distance as a motion at a constant speed in (1.12).

Therefore the distance travelled over the interval ∆t is

s(t + ∆t) − s(t) =
(

v(t + ∆t) + v(t)
2

)
· ∆t, (1.13)

which is of course the area of the trapezium α, β, γ, δ.



Kinematics 1.1 7

A ∆A

2

v(t + ∆t) + v(t)

v(t + ∆t)

v(t)

t t + ∆t

Speed

Time

Fig. 1.6

Thus far our exposition has been restricted to the motion of bodies in free fall.
However, the methods described above may be used to analyse motions that lead to
more complicated functions s(t). In Figure 1.6, the function for speed v(t) is a curve,
but this does not stop us from considering the meaning of the area under the curve,
even though applying the above methods would only be calculating an approximate
value of that area∗:

∆A ≈
(

v(t + ∆t) + v(t)
2

)
· ∆t. (1.14)

A small increment ∆t adds a small area ∆A to the total, which may be approxi-
mated by the area of a trapezium.

This of course means that

∆A

∆t
≈
(

v(t + ∆t) + v(t)
2

)
, (1.15)

and in the limit as ∆t → 0

lim
∆t→0

(
∆A

∆t

)
=

dA

dt
= v(t); (1.16)

that is, the function v(t) is the first derivative of a function A(t). We already know from
Section 1.1.2 that the first derivative of s(t) is v(t); however, since the differentiation

∗This choice of approximation is called ‘the midpoint rule’ for calculating an approximate value
of the area ∆A. Numerical integration (or numerical quadrature) is a whole subject devoted to
calculating areas under smooth curves by essentially calculating the areas of very small strips. Many
different methods exist, and the midpoint rule is just one of them. In some physics problems, the
integration can only be done numerically, so it is important to choose the most appropriate method
that leads to a good convergence to an answer for the fewest intervals. When an analytical solution
is possible, one is effectively saying that there exists a function that describes in terms of t the area
under the speed–time curve (see Figure 1.6) from one t-value to another. Performing the integral is
finding this area function.
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operation only calculates the rate of change of a function, A(t) could be

A(t) = s(t) + so, (1.17)

where so is a constant. Differentiating (1.17) would still lead to

dA

dt
=

ds

dt
= v(t). (1.18)

This just expresses the fact that the kinematics (the rates of change of quantities) of
the motion is unchanged by a shift so in the coordinate s. This would correspond to
a non-zero value for s(0), or s(t) = so at t = 0.

The function A(t), and hence s(t) + so, may therefore be thought of as the limit
of the sum of little areas like (1.14) up to a time t:

A(t) = lim
∆t→0

(
t∑
0

∆A

)
. (1.19)

Now, just as in differentiation, mathematicians make a distinction between the
area calculated for finite ∆t (which of course in general is an approximation) and the
limiting value of the summation as ∆t → 0:

lim
∆t→0

{
t∑
0

(
v(t + ∆t) + v(t)

2

)
· ∆t

}
=
∫ t

0
v dt′. (1.20)

The sign ∫ is really a very elongated ‘s’ to represent the limiting summation. The
term v dt ′ means we are doing this limiting summation to calculate the area under the
curve v(t′) up to a value of t′ = t. Therefore t′ is often called a dummy variable as it
is only used to show which variable we are doing the summation over. This gives us a
clue as to how we actually calculate such a thing as (1.20).

Since

dA

dt
= v, (1.21)

then if

A(t) =
∫ t

0
v dt′, (1.22)

we have A(t) = s(t) + s(0) so

s(t) − s(0) =
∫ t

0

ds

dt′
dt′. (1.23)

The quantity on the right is called the integral of ds/dt′ from t′ = 0 to t′ = t. The
operation we have performed on ds/dt′ is integration and we can see why integration
is the inverse operation to differentiation.
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Of course, all that we have discussed so far for deriving an expression for s(t)
by calculating the limiting area under the curve v(t′) may be applied to deriving an
expression for v(t′) by calculating the area under the curve a(t′′)∗; that is,

v(t′) − v(0) =
∫ t′

0
a dt′′ =

∫ t′

0

d2s

dt′′2
dt′′. (1.24)

Section 7.1 is a workshop on setting up integrals and looks at how integrals
occur in physics problems and a general method for setting them up (with a specific
example).

Q3 The acceleration a of a particle with speed v along a straight line can have the
following forms:
• g

• −kv
• g − kv,

where g and k are constants. Sketch graphs for each case assuming that v = 0 at t = 0,
of a against v and v against t. +

1.1.3 Workshop: Simple differential equations†

You will probably have gleaned much of the calculus appearing in Sections 1.1.1 and
1.1.2 from elementary mathematics courses. However, we have nevertheless included
these formal presentations so as to lay down the basics of the calculus language that
a physicist must become familiar with.

Very often our analysis of the dynamics of a problem leads us to conclusions about
the functions a(t), v(t), and s(t). These conclusions may take the form of explicit
functions of t, so straightforward integrations would lead to explicit functions for
a, v, and s in terms of t. However, most of the time we do not have this luxury.
Take, for example, the case of an object undergoing some v-dependent deceleration.
A v-dependence that occasionally turns up in simple dynamics problems is propor-
tional to v, so

dv

dt
= −kv, (1.25)

where k is a constant. The minus sign here is expressing the fact that the acceleration
is in the opposite direction to the direction of motion. In Section 1.1.4, we discuss
in detail the vector nature of the quantities appearing in (1.25); for now we only

∗Here t′′ is yet another dummy variable to integrate over.
†A number of simple differential equations do keep cropping up in elementary physics problems

and it is good to be aware of them. Differential equations (a) and (b) at the end of this workshop
also turn up in electricity, radioactivity, and many other studies.
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concern ourselves with the kinematics problem in one dimension (1-D). This is a first-
order linear differential equation∗ in v as it gives information about the first derivative
of v in terms of v and is not complicated by higher-order powers of the first derivative.

What can we do with (1.25)? Well, it tells us that the function v(t) is such that its
gradient at any time t is equal to the function at that time multiplied by a constant,
−k. What we would like to do is to determine the function of t that has this prop-
erty. Our discussions in Sections 1.1.1 and 1.1.2 would allow us to give the following
approximation:

v(t + ∆t) ≈ v(t) + ∆v = v(t) +
dv

dt
∆t, (1.26)

which gets better as ∆t → 0. This would mean that ∆v =
dv

dt
∆t, and

∆v = −kv∆t, (1.27)

which rearranges to

1
v
∆v = −k∆t. (1.28)

Equation (1.28) is of the form f(v)·∆v = −k∆t, both sides of which can be integrated:∫ v

vo

f(v′)dv′ =
∫ v

vo

dv′

v′ = −k

∫ t

0
dt′.† (1.29)

You should know enough to perform these integrals (certainly you will be able to

do the one on the far right). However, the integral
∫ v

vo

dv′

v′ leads to the function ln(v),

which you may need some reminding about. Section 7.2 is a workshop on logarithms.
On performing the integrals in (1.29), we get

[ln(v′)]vvo
= −k [t′]t0 (1.30)

or

v(t) = voe−kt. (1.31)

With (1.31) we have an explicit function of t for v so it is a simple matter of
integration and differentiation to obtain explicit expressions of a(t) and s(t).

∗Equation (1.25) is in fact second order in x as v = dx/dt, so dv/dt = d2x/dt2. The most important
second-order differential equation in x does not appear in Section 1.1.3, but rather has almost two
entire chapters devoted to it (Chapters 4 and 5). The differential equation for the harmonic oscillator
is the basis of all work with waves and oscillations of any kind.

† Notice that the integration variables are primed. As was mentioned in Section 1.1.2, the variables
appearing inside the integral sign are dummy variables and represent the ‘labels’ of the strips being
summed. In expression (1.29) of Section 1.1.3, we are integrating the function of v′ from an initial
value vo at t = 0 to a value v at time t. This of course achieves our goal of finding an expression for
v in terms of t.
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Obtain explicit expressions of t for a(t), v(t), and s(t) for the systems described
by the following differential equations:

(a)
dv

dt
= −kv, where k is a constant where v′ = v0 at t′ = 0 and v′ = v at t′ = t

(b)
dv

dt
= g − kv, where k and g are constants v = 0 when t = 0

(c)
dv

dt
= g − kv2, where k and g are constants (Hint : partial fractions) and v = 0

when t = 0

1.1.4 The kinematics of a projectile

Let us analyse what happens when we project a ball straight up into the air. Our hand
accelerates the ball to an initial speed, say u, in the upward direction, which the ball
has as soon as it leaves the hand. However, once it leaves the hand the ball is in free
fall; that is, it begins to accelerate to the ground at a rate g. Now this idea usually
takes some getting used to – the ball is moving upwards, but accelerating downwards.
To illustrate this more clearly, we usually combine the directional and magnitude
information of the above quantities into a single vector representation. Thus we talk
about the vector v as the velocity vector and the vector a as the acceleration vector.
In Cartesian coordinates of the x–z plane, one might represent these two vectors using
the column matrices

v =
(

0
u

)
(1.32)

and

a =
(

0
−g

)
. (1.33)

Notice the negative sign in a representing the fact that acceleration is at a rate g
in the negative z-direction. The change in the velocity, say ∆v, of the ball over a time
∆t is just

∆v = a∆t, (1.34)

which means that

v(0 + ∆t) = v(0) + a∆t =
(

0
u

)
+
(

0
−g

)
· ∆t =

(
0

u − g∆t

)
. (1.35)

The illustration in Figure 1.7 shows how the ball can initially be moving in the
upward direction whilst accelerating in the downward direction. The upward velocity
becomes reduced by g∆t over each interval ∆t. Eventually, the velocity is zero. This
means that the ball must momentarily be at rest. Then the velocity begins to grow
in the negative z-direction until it reaches the velocity

(
0

−u

)
, at which time it has

returned to the point from which it was initially projected.
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x

z
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– g

0
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u

0
v

Fig. 1.7

v

t

g∆t

∆t

u

–u

Fig. 1.8

The graph of velocity against time must therefore look like the line drawn in
Figure 1.8 The gradient of the line is negative with a magnitude g, which expresses
the fact that the acceleration in the z-direction is −g. So we may write v(t) as

v(t) = v(0) + at

or (
0

vz(t)

)
=
(

0
u

)
+
(

0
−g

)
· t. (1.36)
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In this present case of uniform acceleration, we may use the result obtained in
(1.13):

r(t) =
1
2
(v(0 + t) + v(0))t =

1
2

((
0

u − gt

)
+
(

0
u

))
t =

(
0

ut − 1
2
gt2

)
, (1.37)

which is a vector called the displacement of the ball from the point of initial projection.
If as well as an initial vertical velocity, the ball was simultaneously given an initial

horizontal velocity then

v(0) =
(

ux

uz

)
, (1.38)

where ux and uz are the magnitudes of the initial velocities in the x- and z-directions,
respectively.

The vector a would still be given by

a =
(

0
−g

)
, (1.39)

since there will be no horizontal acceleration once the ball has left the hand.
The vector r(t) would then be given by

r(t) =

⎛
⎝ uxt

uzt − 1
2
gt2

⎞
⎠ . (1.40)

In terms of the Cartesian coordinates x(t) and z(t) the vector r(t) is
(

x(t)
z(t)

)
, so

we have a pair of parametric equations (in terms of the parameter t):

x(t) = uxt

and

z(t) = uzt − 1
2
gt2, (1.41)

which we can rearrange so that z is a function of x by eliminating t:

z(x) =
uz

ux
x − g

2u2
x

x2. (1.42)

Solving the equation z = 0 we have two solutions for x:

x = 0

and

x =
2uxuz

g
. (1.43)

The first is clearly the origin and therefore the initial point of projection, the second
solution is well known to be the range of a projectile projected simultaneously with
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initial velocities ux and uz in the horizontal and vertical directions, respectively. The
curve in (1.42) is of course a parabola. Notice the time the projectile spends in the air,
say τ , is just as it would be if the projectile were given no initial horizontal velocity,
that is, ux = 0:

τ =
2uz

g
. (1.44)

So the range is given by

x = uxτ =
2uxuz

g
, (1.45)

which is just as far as the projectile would cover at a speed ux over a time τ . Expression
(1.42) is not a bad approximation to the kind of curved path that a projectile might
really take up if the effect of the air were small. A projectile does not really have
separate horizontal and vertical motions. As it moves along its curved path, its motion
at any instant is directed along a tangent to the curve. The splitting up of the actual
motion along the path into horizontal and vertical motions, called components, is a
mathematical artifice – the vector representation.

The vector representation therefore seems to give us the correct answer for ideal
projectile motion in the absence of air under the influence of gravity. We have still not
yet considered the interactions or forces that lead to the acceleration experienced by
our projectile (i.e. dynamics and we will deal with that later). However, the validity of
the vector representation in this particular case does suggest a law that we often take
for granted – that the horizontal and vertical motions of a body under the influence of
gravity alone are independent of each other.

Q4 A projectile is fired up an inclined plane at some angle to the plane. Let r be the
maximum range of the projectile on the plane, and t be the corresponding time
of flight. Deduce a relationship between r and t. ++

Q5 A particle is projected from ground level in such a way that it passes through
two points at the same height h and a distance d apart. Calculate the direction
of the velocity that has the smallest magnitude that just satisfies the above con-
ditions. ++

Q6 A horizontal wind exerts a horizontal force on a projectile of kw, where k is a
constant and w is the weight of the projectile. Determine the horizontal range of
the projectile and sketch the trajectory for initial horizontal and vertical velocities
ux and uz. +

1.1.5 Workshop: Motion on the surface of a smooth inclined plane

Suppose a particle is projected with a velocity v on the surface of a smooth inclined
plane. What path would it take?

We have effectively a projectiles problem again. Let the initial velocity be of mag-
nitude v and let angles A and B both be 30◦ (see Figure 1.9).
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x

A

B

y

Fig. 1.9

(a) Show that if one chooses coordinate system for the problem as shown above
(x, y), then the equation of the path is

y =
√

3x − gx2

v2 , (1.46)

where g is the acceleration due to gravity.
(b) Determine the biggest y-value reached by the particle.

1.1.6 Adding and subtracting vectors

What rules govern resolving, or splitting, a vector into components, and the reverse
process of combining components? We saw in the last section the usefulness of a
vector representation. However, with the representation comes the rules for combining
vectors. To answer these questions we need only look at the addition of vectors. When

we represent the displacement r(t) in the x–z plane by the column matrix
(
x(t)
z(t)

)
,

we are already assuming the rule for vector addition, that is, we are saying that the
displacement r(t) is equivalent to a displacement x(t) along the horizontal direction
and then a displacement z(t) along the vertical direction. It was very convenient to
do it this way for the projectile motion because motions in the horizontal and vertical
directions were independent of each other and had slightly different rules governing
how they changed in time. Adding and subtracting two vectors, like two displacements,
follows almost directly from the representation itself. For example, in Figure 1.10 we
add and subtract two vectors r1 and r2

r1 + r2 =

⎛
⎝4

3
5

⎞
⎠+

⎛
⎝−2

−2
4

⎞
⎠ =

⎛
⎝2

1
9

⎞
⎠ ; r2 − r1 =

⎛
⎝−2

−2
4

⎞
⎠−

⎛
⎝4

3
5

⎞
⎠ =

⎛
⎝−6

−5
−1

⎞
⎠ .

The result of adding two vectors is to produce a resultant r1 + r2. We can see why
the resultant is said to be obtained by the head to tail rule – the separate addition
of x-components, y-components, and z-components is effectively the placing of one
vector’s tail on to the other vector’s head. Notice it does not matter in which order
the addition is done.
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Fig. 1.10

The subtraction r2 − r1 has the meaning of the relative displacement; that is, the
position of the head of the vector r2 relative to the head of the vector r1. The relative
vector is therefore like shifting the origin of the coordinate system from O to the head
of r1 and viewing the head of r2 from there. r1 − r2 will of course have the opposite
meaning.

It is also convenient to give vectors in terms of unit vectors x̂, ŷ, and ẑ defined as
follows:

x̂ =

⎛
⎝1

0
0

⎞
⎠ ŷ =

⎛
⎝ 0

1
0

⎞
⎠ ẑ =

⎛
⎝0

0
1

⎞
⎠ .

Using these objects, the displacement r becomes

r =

⎛
⎝x

y
z

⎞
⎠ = xx̂+ yŷ + zẑ. (1.47)

The rate of change of a vector like r would then simply be a vector of components
which were the rates of change of the components of r. This of course is just the

velocity vector: v = vxx̂ + vyŷ + vz ẑ, with vx =
dx

dt
, vy =

dy

dt
, vz =

dz

dt
. Resultant

velocities can therefore be calculated in the same way as resultant displacements –
head to tail rule applied to velocities.

One would of course obtain relative velocities by subtracting velocity vectors. For
example, in Figure 1.10 the vector r2 − r1 could represent the position of a point (2)
in a coordinate system with an origin centred on a point (1). Differentiating r2 − r1
would produce the relative velocity of (2) with respect to (1):

d

dt
(r2 − r1) =

d

dt
r2 − d

dt
r1 = v2 − v1, (1.48)
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which is also the subtraction of the velocity vector of point (1) from that of point (2) in
the coordinate system centred on O. What is the rate of change of a velocity vector v?
Well, of course the rate of change of v is the acceleration vector a : a = axx̂+ayŷ+az ẑ,

with ax =
dvx
dt

=
d2x

dt2
, ay = . . . , az = . . . . Addition and subtraction of acceleration

vectors produce resultant and relative accelerations, respectively.

Q7 Two aircraft take off from an airfield. One leaves at 14:00 and flies towards east
at an average speed of 400 km/h. The other leaves at 14:10 and flies on a course
60◦ east of north at an average speed of 450 km/h. Find their distance apart at
15:00 and the bearing of the first with respect to the second.

Q8 A particle describes a circle of radius a with a uniform speed v. If it starts from
a point X, determine an expression for the displacement from X at a time t.

Q9 Rain falls vertically at 8.0 m/s. The rain drops make tracks on the side of a car
window at an angle 30◦ below the horizontal. Calculate the speed of the car.

Q10 Resolve a velocity of 10 m/s into two perpendicular components such that
• the components are equal
• one component is twice the other.

1.2 Dynamics

1.2.1 Newton’s laws

Newton’s laws of motion give no specific details about interactions that exist between
bodies in the universe, but they do have much to say about the consequences of these
interactions. In Figure 1.11, we have three interacting masses m1, m2, and m3 far
removed from any other bodies so that the three masses interact with each other and
with nothing else.

From more elementary work, we remind ourselves that the momentum of a body
is defined as the mass of the body multiplied by its velocity :

p = mv. (1.49)
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The momentum is used to describe the state of motion of a body, and Newton
equates the rate of change of momentum to the resultant force applied.

F =
d

dt
p. (1.50)

Thus the state of motion of a body can only change if there is a resultant force applied.
The momenta of the three masses in Figure 1.11 are

p1 = m1
d

dt
r1 = m1v1, p2 = m2

d

dt
r2 = m2v2, p3 = m3

d

dt
r3 = m3v3.

The force accelerating m1 is

F12 + F13 =
d

dt
p1 =

d

dt
(m1v1), (1.51)

where F12 and F13 are the forces exerted on m1 by m2 and m3, respectively.
Similar expressions for masses m2 and m3 exist:

F21 + F23 =
d

dt
p2 =

d

dt
(m2v2). (1.52)

F31 + F32 =
d

dt
p3 =

d

dt
(m3v3). (1.53)

If there are no interactions with anything outside the system, these forces must nec-
essarily sum to zero as not doing so would imply a non-zero resultant force on the
system as a whole. So,

F12 + F13 + F21 + F23 + F31 + F32 = 0, (1.54)

which must of course give us:

0 =
d

dt
(p1 + p2 + p3) =

d

dt
(m1v1 + m2v2 + m3v3); (1.55)

that is,

m1v1 + m2v2 + m3v3 = constant = P. (1.56)

So no matter how these bodies move, the vector sum of the three momenta p1, p2,
and p3 must always equal a constant vector P for all time (see Figure 1.12).

Now,

m1v1 + m2v2 + m3v3 =
d

dt
(m1r1 + m2r2 + m3r3) = P, (1.57)
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Fig. 1.12

as m1, m2, and m3 are all constants. So integrating (1.57) gives us

m1r1 + m2r2 + m3r3 = Pt +Q, (1.58)

where Q is some constant vector.
The left-hand side of (1.58) may now look familiar. If we were looking for the

coordinates of the centre of mass∗ of the system of three masses, we would write

m1r1 + m2r2 + m3r3 = MR, (1.59)

where M = (m1+m2+m3), the total mass of the system, and R is the position vector
for the centre of mass of the three masses. This means that

R =
1
M

(Pt +Q). (1.60)

This just expresses the fact that the centre of mass drifts at constant velocity
(say, V) whilst the three masses move in orbit around each other. The point in Figure
1.12† labelled M drifts as the masses m1, m2, and m3 orbit around each other (notice
that the path of M is parallel to the constant vector P). P turns out therefore to be
not only the total momentum of the system but also the momentum of the centre of
mass; that is,

P =
d

dt
(MR) = M

d

dt
R = MV. (1.61)

By starting with equations (1.55) and (1.57) and integrating, we have introduced
constant vectors P and Q. We can see though that with an appropriate choice of our

∗Section 7.7 is a workshop on locating centres of mass.
†Figure 1.12 was created using a computer model and rendering the output as an animation. The

figure is in fact a screen shot of the animation.
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point of view, we could make both of these constants zero and this would have no effect
on the dynamics of the system. Different points of view appear in the general expres-
sions and merely represent a difference in uniform relative motion of the coordinate
system chosen to describe the motion of the three masses.

The vector sum of p1, p2, and p3 must always equal P – the centre of mass just
drifts along at a constant velocity because there is no resultant force from outside
the system to accelerate it. This is of course traditionally called Newton’s first law,
whilst equating the rate of change of momentum to the resultant force is the second
law. The constant state of motion represented by the constant vector P is essentially
a statement of the law of conservation of linear momentum as well as a statement of
the first law. The so-called third law∗ ensures that bodies in the universe do not just
act on each other – they interact; that is, the internal forces that occur within our
closed system are such that a vector sum of them must always be zero.

Let us summarize all this in four statements:

• Bodies continue in their state of motion (represented by a momentum vector)
unless a resultant force acts upon them.

• The resultant force on a body is equal to the rate of change of the momentum
vector of the body.

• Forces arising directly from an interaction between two bodies must always sum
to zero.

• The sum of linear momenta in a closed system† is a constant of the motion.

Q11 Six identical numbered cubes, each of mass m, lie in a straight line on a smooth
horizontal table. A constant force F is applied along the line of cubes. Determine
(a) the acceleration of the system
(b) the resultant force on each cube
(c) the force exerted on the fifth cube by the fourth cube. +

Q12 A bullet of mass 20 g is shot into a block of wood with an initial speed of 300 m/s,
and is brought to rest in 0.01 s. Calculate the resistive force exerted by the wood
assuming it to be constant over the 0.01 s.

∗In more recent times, the use of the word reaction in the statement of Newton’s third law has
caused dreadful confusion with students. In applied mathematics, the word reaction has come to
mean normal reaction at a surface of contact. An object sitting on the surface of the Earth would
not accelerate towards the centre of the Earth because of the normal reaction from the ground.
However, the ‘equal and opposite reaction force’ of Newton’s third law for the gravitational interaction
between the object and the Earth is actually the force of attraction (to the object) acting at the
centre of the Earth and NOT the normal reaction from the ground. To see this, just imagine lifting
the object up and dropping it – Newton’s third law still applies, but with no normal reaction the
object and Earth accelerate towards each other (of course the Earth moves an infinitesimally small
distance).

†The system in our example of Figure 1.12 is what physicists call closed because there is no
interaction between the masses in the system and anything outside the system (since there is nothing
at all outside the system). In reality it is impossible to isolate such systems from the rest of the universe
so the law of conservation of linear momentum is always approximately upheld and agreement is close
when the interactions between the system in question and the rest of the universe can be neglected.
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Q13 A man of mass 70 kg stands on a set of bathroom scales on the floor of a lift.
Find the reading registered by the scales when
(a) the lift is ascending with a uniform acceleration of 5 m/s2

(b) the lift is descending with a uniform acceleration of 5 m/s2.
Assume that the scales were calibrated in a gravitational field of strength
9.81 N/kg. +

1.2.2 The principle of relativity

Let us now consider implications with a much simpler example. Imagine two spacecraft
of equal mass, approaching each other for docking in deep intergalactic space so that
interactions with anything else may be said to be negligible.

Imagine monitoring the event from the centre of mass coordinate system. The two
craft approach each other at equal and opposite velocities +v and −v (their relative
velocity must be 2v) and dock at the origin of the centre of mass coordinates.

From the point of view of the centre of mass coordinate system, the whole docking
procedure is symmetrical – there is no reason for the two docked craft to accelerate
in any particular direction. Actually Newton’s laws allow you to predict more than
this. Even if the docking were to misfire and the two craft were to rebound off each
other, whatever their rebound velocities, the two velocities would have to be equal
and opposite (the momentum vectors must, in the centre of mass coordinate system,
sum to zero).

Now consider the event from the point of view of a coordinate system attached
to one of the craft. You would see the other craft approaching at velocity 2v, but
on impact you would see both the craft move in the direction of the other craft at
a reduced velocity v. You are now in a coordinate system moving at velocity v with
respect to the centre of mass frame, so the docked craft now appear to be moving at
velocity v. The difference between the two events occurs because of a difference in
uniform relative motion of the two coordinate systems chosen to describe them. The
two events are the same, so the physics (the laws of motion) in one must be the same
as the physics in the other. Put another way: all points of view moving with different
uniform velocities are as good as one another for the description of the physics; that
is, the constants of integration P and Q in our example are merely informing us
that the calculus we use to encode the kinematics is insensitive to the uniform relative
motion of different points of view. Coordinate systems that share this property for
the description of physics are called Galilean, after Galileo who was one of the first to
realize this remarkable property of nature – the physics of an event cannot be different
just because you walk past it. This is the principle of relativity. The extension of the
principle of relativity to include electromagnetism is what physicists call the special
theory of relativity.

In Figure 1.12, our system of three interacting masses seems to drift past at the
velocity of the centre of mass because the coordinate system chosen to analyse the
system was chosen with a uniform relative motion with respect to the centre of mass
of the system.
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1.2.3 Impulse and impulsive forces

In a closed system any change in momentum of one part of the system must be balanced
by an equal and opposite change in momentum of the rest of the system, otherwise
the total momentum would not be conserved and this would imply the action of an
external influence (which is absurd since the system is supposed to be closed).

The term impulse of a force is defined as follows:
When a force F is constant, the impulse is the product of the force and the time

during which it acts, that is F∆t. Note that it is a vector quantity. If the force acts
on a constant mass m, it produces an acceleration a so that

F∆t = ma∆t = m(v− u), (1.62)

which is the change in momentum of the mass m.
When F is not a constant force, the impulse of F becomes∫ t

0
Fdt′, (1.63)

where t is the time during which the force acts and t′ is the dummy variable of
integration. F is equal to the rate of change of momentum of the mass m:

F =
d

dt
p. (1.64)

So, ∫ t

0
Fdt′ =

∫ t

0

d

dt′
p dt′ = p(t) − p(0), (1.65)

which is once again the change of momentum produced by the force applied over that
time. The impulse of a force applied over a time t is thus the change in momentum
produced.

Occasionally, in problems the applied force F may be very large, but acting over a
short time. The body would only move a very short distance while the force is acting.
In the limiting situation of an infinitely great F acting over an infinitely short time,
the change in position ‘during’ the interaction would be zero. This limiting situation
is known as an impulsive force. Equation (1.65) would still hold in this case.

In Figure 1.13, the two idealized forces both impart the same impulse to a body
that they act upon:

F1∆t1 = F2∆t2, (1.66)

however, F1 is a small force applied over a long time whereas F2 is a larger force applied
over a shorter time. The area under such a force – time graph is the impulse and in the
limit∗ of an impulsive force ∆t → 0 as F → ∞. This limit is of course never realized

∗As ∆t → 0 and F → ∞, we reach an idealized limit where the area
∫

Fdt′ remains finite as
it is the impulse or change in momentum. The object that is the limit of this process is called the
delta distribution and it is usually given by the symbol δ(t). Such objects become very useful in more
advanced work.



Dynamics 1.2 23

F

F1

F2

t∆t2

∆t1

Fig. 1.13

in practice, but approximate examples are the blow of a hammer or the collision of
hard billiard balls.

Q14 A hot air balloon ascends at a steady speed of 10 m/s. The pilot drops a 10 kg
sandbag from a height of 600 m. Calculate the magnitude of the impulse with
which the sandbag hits the ground. Assume no rebound at the ground.

Q15 A shell of mass m is fired from a gun of mass M placed on a smooth horizontal
track. The barrel of the gun is inclined at an angle θ to the horizontal and imparts
the recoil motion of the gun to the shell before the shell finally leaves the barrel.
Show that the initial direction of the shell’s motion is inclined at an angle α:

α = tan−1
[(

1 +
m

M

)
tan θ

]
. ++

Q16 A particle of mass m is moving at 5 m/s in a given direction and is struck by an
impulsive force F that deflects its direction of motion through 60◦ and doubles
the magnitude of its velocity. The same impulsive force F is applied to a mass
of 5m at rest. Describe the resulting motion of the 5m mass.

1.2.4 Workshop: The conservation of linear momentum

As an example of the use of the conservation of linear momentum in problems, we
shall consider a two-dimensional (2-D) collision between two hard spheres. Here we
are considering smooth spheres, so the mutual action between them is then along
the line joining their centres. Therefore, the state of motion perpendicular to the line
joining their centres remains unchanged. When hard spheres collide they are slightly
compressed and return to their original shape causing a rebound. The collision can
therefore be divided into two parts: impact and compression, and restitution and
separation. The property that causes bodies to recover their original shape is called
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elasticity. However, this property depends on the material of which the bodies are
made; whilst the law of conservation of linear momentum always holds true, there is
no way of calculating the effect of the elasticity of the bodies∗ in the collision. We
therefore have to fall back on the results of experiments first conducted by Newton
himself. Newton discovered the following empirical law:

When two bodies of given substances collide the relative velocity after impact is in
a constant ratio to the relative velocity before impact, and in the opposite direction.
If the bodies impinge obliquely the empirical law holds for the component velocities
along the common normal.

In Figure 1.14 two smooth hard spheres of mass m1 and m2 impact obliquely. We
have chosen our coordinate system so that the spheres remain on the x–y plane and
the line through their centres is parallel to the x-axis. The initial and final velocities
of the spheres are

u1 =
(

u1 cos θ
u1 sin θ

)
u2 =

(
u2 cos φ
u2 sinφ

)

v1 =
(

v1
u1 sin θ

)
v2 =

(
v2

u2 sinφ

)
.

With nothing else involved in the collision, the momentum vector diagram shows
how the initial momenta pi1 and pi2 (and indeed the final momenta, pf1 and pf2) must
sum to a constant vector P:

pi1 + pi2 = pf1 + pf2 = P
pi1 = m1u1

pi2 = m2u2

∗To work out the effect of the elasticity, one would have to know all about the internal structure
of the colliding bodies. Newton’s empirical law conveniently encompasses the effect of the motions
and interactions of the internal parts of the colliding bodies in terms of the relative velocities of the
bodies before and after impact.
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pf1 = m1v1

pf2 = m2v2.

(a) Use Newton’s experimental law to show that

v1 − v2

u2 cos φ − u1 cos θ
= e,

where e is a constant.
(b) Obtain the following expressions for v1 and v2:

v1 =
(m1 − em2)u1 cos θ + m2u2(1 + e) cos φ

m1 + m2

v2 =
(m2 − em1)u2 cos φ + m1u1(1 + e) cos θ

m1 + m2
.

(c) If m1 = m2 and u2 = 0 (the second sphere is initially at rest), then show that

v1

v2
=

(1 − e)
(1 + e)

.

(d) What does the expression in (a) imply when e = 1?

Q17 Two identical smooth elastic spheres (e = 1), each of mass m, are at rest on a
smooth horizontal table and touch each other. They are struck symmetrically by
an identical sphere, but of mass M , having a velocity u perpendicular to the line
of centres of the two stationary spheres. The mass M comes to rest immediately
after the collision. Determine the ratio M/m.

Q18 Three identical particles X, Y, and Z of mass m are placed on a smooth horizontal
table. X is joined to Y and Z by light (can be thought of as massless) inextensible
strings XY and XZ. The angle XYZ is 60◦. An impulse I is applied to X in the
direction YX. The strings act as constraints so that the initial motions of Y
and Z must be the same as the components of the initial motion of X along YX
and ZX, respectively. Determine the initial velocities of the particles. +

Q19 If the initial relative velocity of two spheres before direct impact has a magni-
tude u, show that the magnitude of the impulse each sphere receives is given by(

(1 + e)mM

m + M

)
u,

where m and M are the masses of the spheres. +
Q20 Three spheres of equal mass and coefficient of restitution e are initially at rest in

a straight line. The first sphere is given an initial speed u. Determine the speeds
of the three spheres after two impacts. +

1.2.5 The law of falling bodies

In Section 1.1, we introduced the law of falling bodies. Within the framework of
Newton’s laws of motion, a little more insight may be had. Newton’s second law
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applied to a body of constant mass m acted upon by a resultant force F gives

F =
d

dt
p =

d

dt
(mv) = m

d

dt
v+ v

d

dt
m = m

d

dt
v = ma, (1.67)

where v is the instantaneous velocity of the body and a is the acceleration of the

body, as
d

dt
m = 0 because m is a constant. The mass m appearing in expression

(1.67) essentially describes how hard it is to accelerate the body and is for this reason
called the inertial mass of the body.

Now, if the accelerating force arises from a gravitational interaction between the
body and say the Earth, the accelerating force would be the weight W of the body:

W = mg, (1.68)

where g is the gravitational field strength vector. The mass m appearing in this expres-
sion (1.68) determines how hard the Earth will pull on it, and by Newton’s third law
this m also determines how strongly the body will attract another body, the Earth.
We therefore call this mass the gravitational mass.

The two letters m appearing in both (1.67) and (1.68) do not seem, a priori, to
be representing the same kinds of things. Newton realized though that the law of
falling bodies implies that they must at least be related by a direct proportion – if we
double the mass of the body in a gravitational field we would double the weight and
hence the accelerating force in free fall, but we would also double how hard it is to
accelerate the body, thus the motion of free fall is universally the same, independent
of the size and material of the body.∗

Newton used these ideas to further develop his thoughts on gravity. The apocryphal
story of Newton and the apple may well be fictitious, but it illustrates very beautifully
with the aid of reasonable common experience one of the most profound discoveries
ever made. Newton is supposed to have compared the fall of an apple near the surface
of the Earth and the motion of the Moon around the Earth. In seeking to apply
the law of falling bodies to both the Moon and the apple, Newton demonstrates the
universality of his laws of motion.

1.2.6 Workshop: Newton and the apple

In this workshop, you will follow the thoughts that convinced Sir Isaac Newton of his
universal law of gravitation. Near the surface of the Earth, an apple, when released
from rest, accelerates towards the centre of the Earth at 9.81 m/s2. Newton knew
(from the Greeks) that the Moon is 60 times further from the centre of the Earth than
an apple at the Earth’s surface. He also expected the acceleration due to gravity at

∗This is a surprising property of nature, though after some thought one might think it entirely
obvious – both types of mass go by the amount of matter present. For Einstein though this property
was too intriguing just to leave it at that.. If no experiment can distinguish between these two kinds
of mass, then does this mean that our framework of nature must be such that we cannot tell them
apart? Einstein’s general theory of relativity, which is beyond the scope of this book, essentially
describes a framework in which gravitational and inertial mass are necessarily the same.
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the Moon’s orbit to be smaller than at the surface of the Earth. The question was,
how much smaller? Sixty times?

Newton had a remarkable intuition, and expected the acceleration due to gravity
not to be 60 times smaller, but 60 × 60 times smaller, that is, 3600 times smaller.

(a) Show that the Moon must fall about 1.3 mm in 1.0 s.
The Moon takes 28 days to orbit the Earth, at a radius of 384 000 km.

(b) Show that the speed of the Moon in its orbit is approximately 1.0 km/s.
Study Figure 1.15, which is not to scale.

Newton argued (by evoking his first law) that if there were no gravitational accele-
ration towards the centre of the Earth, the Moon would continue to move along the line
AB. Therefore the Moon travelling in its orbit actually falls below the line AB towards
the centre of the Earth.

In (a), you showed that each second, the Moon must fall about 1.3 mm.
(c) Show that a fall of about 1.3 mm each second is just what is required to describe

the motion of the Moon in its circular orbit.∗ (Hint : Consider the triangle OAB
and determine an expression for the distance BC in terms of the other para-
meters; do not forget BC will be small compared to the other parameters if it
is the distance the Moon falls each second.)

1.3 Conclusion

In Section 1.1, we saw how the motions of particles could be described within a frame-
work of 3-D space realized in the course of time. The functions s(t), v(t), and a(t),
with the help of vector notations, completely describe the trajectory of a particle. Cal-
culus is the language of translation between these functions and much can be gleaned
about the motion through s(t), v(t), and a(t) without actually appealing to the cause
or dynamics of the motion at all.

∗Having demonstrated this astounding result, Newton then left this calculation for nearly 10 years
before he picked it up again. It seems that he preoccupied himself in demonstrating that the whole
Earth acted on apples and the Moon as though all of the Earth’s mass were concentrated at its centre.
For more on this and other similar problems, please take a look at the Gauss’ law in Chapter 2.



28 Linear mechanics

The description of the motion of a particle involves the rates of change of functions,
so it is not a surprise that constants of integration arise out of initial conditions.
However, we saw in Sections 1.2.1 and 1.2.2 that physics seems insensitive to the
uniform relative motion of points of view and therefore all points of view moving
with different uniform velocities are as good as one another for the description of the
physics.

If it is possible to treat a system of particles as closed, we can rely on the idea that
the centre of mass of the system can only be at most in uniform relative motion with
respect to our point of view. The total momentum of the system of particles must
then be equal to, for all time, some constant vector. This total momentum turns out
to be the momentum of the centre of mass. A clever choice of coordinate system can
get rid of this relative motion, and then the total momentum of the system would
be zero, or put another way, our point of view would then be attached to the centre
of mass.



2
Fields

Our previous chapter was in two parts. The first part showed you how an acceleration
would affect an object. The second part explained that forces could cause accelerations.
A question was left unanswered, ‘What causes the forces?’. You may have also found
it strange that one vital concept was completely missing from the whole chapter –
nowhere was energy mentioned. It is time to set both of these deficiencies right, and
the topic of fields is the best place in which to do it.

Physics is the science of matter and interactions, and the latter are more important,
since we could not understand the structure of the atom, say, without some idea of the
forces which hold it together. And by far the most helpful way of viewing interactions
is in terms of fields. And when objects interact, there is a certain something which can
be passed from one object to another via interactions with fields – a something which
is passed on but never created or used up – a something which helps us understand
the very nature of interactions – a something which also makes our calculations much
easier. That something is, of course, energy.

2.1 Introduction and field strength

Every school student knows that a positive charge will attract a negative charge and
repel another positive one. Many also know the formula for the magnitude of the
repulsion: F = Qq/4πεd2, where a negative value of F implies attraction. It is often
helpful to view this force as a two-stage process. Rather than saying that Q repels q
directly, we say that Q does something to the surrounding space. When q is put in
this space it experiences a force, because of what has been done to its location by the
big charge Q. This ‘affecting of space’ is called a field.

A point charge Q sets up an electrostatic field of magnitude E = Q/4πεd2 at all
points around it, where d is the distance of that point from the charge Q. When a
second charge q is put into this field, it experiences a force of magnitude F = qE. The
advantage of this way of thinking is that whatever kind of charge q we are putting
into the field, the first part of the calculation (working out E) is always the same.

We may summarize by saying that for any interaction, there are two relationships
we need to find. First we need to calculate the field strength at each point in space
for a given arrangement of charges, masses, currents, and nuclear dipole moments (or
whatever we have in the system). Second we need a formula which tells us how the
field at a given point will affect an object placed there.∗

∗In more complicated electrostatic work, we use a field within a field. We say that the system of
charges sets up a D-field, which in turn interacts with the material in that region to form the E-field
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For electric fields, we define the field strength at a point E as the force per unit
charge which would act on a small test charge placed there. Accordingly, E is a vector,
and, provided that our test charge does not disturb the arrangement of the other
charges in the system, the force on a point charge q placed at a point r is given by
F(r) = qE(r).

Similarly, we define the gravitational field strength g at a point as the force per
unit mass which would act on a small test mass there. Accordingly, g is a vector,
and, provided that our test mass does not disturb the arrangement of the other
masses in the system, the force on a point mass m placed at a point r is given by
F(r) = mg(r).

As indicated by the bold print, one vital fact about our gravitational and elec-
trostatic fields is that they are vector fields because the field strength E or g has
directionality as well as magnitude.

Q1 Two positive charges are fixed on the x-axis. One, at the origin, has a charge Q,
the other is at x = 0.5 m and has charge q. Where can I put a small test charge
so that it will not accelerate? If I move the small charge a very small distance
from its equilibrium position, will the resultant force on it tend to push it back to
equilibrium? +

Q2 The gravitational field strengths in London, Paris, and Chennai are 9.81183,
9.80943, and 9.78281 N/kg, respectively. Why are they different? If I took scales
made in London to Chennai, and there measured my weight as ‘72.00 kg’, what
would my real mass be?

Q3 If Earth and Sun were given positive electric charges in proportion to their masses,
how much charge would the Earth have to have before the electrostatic repulsion
was equal and opposite to the gravitational attraction?

2.2 Workshop: Motion in a uniform field in one dimension

We start with the simplest kind of situation. An object is going to move subject to only
one force – gravity. At the surface of the Earth, we can approximate the gravitational
field strength as constant and uniform, and we call it g. The force on the object (its
weight) is therefore W = mg, and this is also constant. Let us allow the object to fall
from height h above the ground until it hits the ground. It will accelerate downwards
with acceleration a = W/m = g as shown in figure 2.1.

In Section 1.1, you analysed this kind of motion in terms of the time elapsed since
it was released. Here we shall do an analysis in terms of the distance fallen.

which actually causes the force on the test charge. Gauss’ law of electrostatics allows us to calculate
the D-field at the location desired, we then use knowledge of the polarizability of the material to
obtain a relationship linking the D-field with the E-field this will make at this point. For a single
point charge Q, the D-field at a distance d from the charge Q is given by D = Q/4πd2. In a linear,
isotropic, dielectric material, the electric field is given by E = D/ε0εrel, and the force on a test charge
q is F = qE = Qq/4πε0εreld

2, as we would expect by Coulomb’s law. More complicated materials
have a more complex relationship between D and E, but this increased complexity need not obscure
the clarity of the calculation of the D-field in the first place.
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(a) If we use the function y(t) to represent the distance, the object has fallen at
time t. Our earlier studies (in section 1.1.2) show us that the speed v(t) is given
by v = at = gt, while y(t) = y = 1

2gt2. Combine these equations to find v as a
function of y and g (i.e. eliminate t from the equations).

(b) We are now going to derive the same result using a more qualitative method. For
an object in uniform acceleration, its average speed∗ is equal to the arithmetic
mean of its initial and final speeds. Show that this enables us to write y = 1

2vt
for our object dropped from rest until (at time t later) it has speed v. Given
that v = gt, eliminate t from the equations to give v as a function of y and g.
Check it agrees with your answer to (a).

(c) So far, we have let the object start from rest. We shall now take its initial
downward velocity as u, as illustrated in Figure 2.2. Repeat the methods of
either (a) or (b) to find an equation without t linking the distance an object falls
y to the acceleration g, the initial downward velocity u and the final downward
velocity v.†

(d) Show that the product of the force (mg) with the distance fallen is equal to
1
2mv2 − 1

2mu2.

∗The definition of average speed is, of course, distance travelled ÷ time taken, or equivalently it
is the steady speed which would have enabled the object to cover that distance in the same time.

†Hint : y = Average velocity × time = 1
2 (u + v) t, and t is equal to the velocity change (v − u)

divided by the acceleration g.
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(e) Suppose the initial height of the object above the ground was h1 and the final
height was h2, so that y = h1 − h2. Show that

mgh1 +
1
2
mu2 = mgh2 +

1
2
mv2. (2.1)

Our working has shown us that there is a conserved quantity in our motion. While
the velocity and the height change, the total of mg×height+ 1

2m×speed2 remains the
same. We call this conserved quantity energy. The part of the energy which depends
on the speed ( 1

2mv2) is the energy of motion or kinetic energy.
The other part (mgh) is called the potential energy because although we cannot

see it, an object at height could develop considerable motion if it were allowed to fall.∗

You may ask, ‘Where is this energy stored?’ Is it in the object? Or in the Earth which
set up the gravitational field in the first place? Or is it shared, and if so how? Our
most helpful answer is to say that the energy is stored in the gravitational field itself.

You will notice that if an object is lifted, its potential energy will change by an
amount equal to its weight (mg) multiplied by the height by which it is lifted (h).
When we allow this force to change the height of the object (i.e. by letting it go)
we say that the force does work on the object, and we define the ‘work done’ as the
product of the force and the distance the object moves in that direction.

Work done by force = Force × Distance moved by object in that direction.

Note: If the object is moving in the opposite direction to the force (as when a car
is being slowed down by its brakes), the work done by the force is negative and the
kinetic energy will be reduced.

The ‘work done’ turns out to be the same as the amount of energy transferred from
one form to another. Here the work done by the force on the object (mgy) is equal to
the amount of energy ‘converted’ from potential to kinetic in form.

Having solved our problem of analysing motion in one dimension, we need to extend
this to other dimensions. However, there is a vital tool we shall need first, and this is
covered in the next workshop.

2.3 Workshop: Scalar product of vectors

Unlike real or complex numbers (to be dealt with in Chapter 4), there is no unique
way of multiplying two vectors together. While the magnitudes of vectors can be
multiplied, each vector also has a direction associated with it, and it is by no means
obvious how to multiply the directions together.

It transpires that there are two multiplication procedures which can be applied
to vectors. One gives its result as a scalar and is called the scalar product. The other
gives its result as a vector and is called the vector product. When we need to write
these down, the scalar product is written with a dot: a · b, while the vector product
is written with a cross: a× b. For this reason, the scalar product is sometimes called

∗In common speech, the word potential always means ‘could develop’ (e.g. ‘He is a player with
potential’ = ‘He could develop into a good player’) and the same is true here.
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the dot product, while the vector product is called the cross product. Vector prod-
ucts will be dealt with in a workshop in Section 3.1.3, and scalar products are intro-
duced here.

The scalar product of two vectors a ·b is defined as the magnitude of a multiplied
by the component of b which is parallel to a.

In Figure 2.3, the component of b parallel to a is equal to b cos θ. Accordingly:

a · b = ab cos θ, (2.2)

where we use the italic letter a to represent the magnitude of vector a. Notice that
when you take the scalar product of a vector with itself, the angle θ = 0, and so
a · a = a2.

(a) Show that the following definition of a · b is equivalent to the one above: a · b
is defined as the magnitude of b multiplied by the component of a which is
parallel to b. One consequence of your reasoning is that a · b = b · a.

(b) If a =
(
ax

0

)
and b =

(
bx

by

)
, show that a · b = axbx.∗

∗Hint : Imagine the situation in Figure 2.3 again, but with vector a lined up along the x-axis.
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(c) Evaluate a·b if a =
(

0
ay

)
and b =

(
bx

by

)
.

(d) The aim of this part is to convince you that just as in normal algebra where
a(b + c) = ab + ac, with scalar products a · (b + c) = a · b + a · c. Look at
Figure 2.4, where d is defined as the vector sum of b and c, and the angles
made by b, c, and d = b+c with the direction of a are denoted β, γ, and δ.
(i) Write a · b in terms of a, b, and an angle.
(ii) Write a · c in terms of a, c, and an angle.
(iii) Write a · d in terms of a, d, and an angle.
(iv) Write a · b+ a · c as the sum of your answers to parts (i) and (ii).
(v) Show, by reference to Figure 2.4 that your answer to (iv) is the same as

your answer to (iii) and as such is equal to a · (b+ c).
(e) Armed with your knowledge from part (d), and given that

(
ax

ay

)
=
(
ax

0

)
+(

0
ay

)
, combine your answers to parts (b) and (c) to show that

(
ax

ay

)
·
(
bx

by

)
=

axbx + ayby.

It turns out that our reasoning in part (e) can be extended to as many dimensions
as you like. In three dimensions, a · b = axbx + ayby + azbz.

2.4 Workshop: Motion in a uniform field in three dimensions

In some senses, our one dimensional work in Section 2.2 on falling objects needs no
extension to three dimensions since the other two dimensions are irrelevant. Any non-
vertical motion will not change the potential energy and will therefore not change the
kinetic energy (or speed). Put in other words, non-vertical motion does not change
the work done by the force on the object. Thus equation (2.1) remains true in three
dimensions as long as we let the letters h continue to represent the heights of objects
without reference to horizontal position. Interestingly, we can let the letters u and
v (which used to represent the vertical components of velocity) now represent three
dimensional speeds without putting a spanner in the works.∗

That said, we do wish to be in a position to analyse three dimensional motion
using vectors without particular regard for aligning our coordinates so that one points
downwards, and so we extend our analysis.

We now return to the situation of Section 2.2, but extend our reasoning to all
three dimensions. Imagine an object of mass m is subject to a uniform acceleration
g, and starts with velocity u. At time t later the object has velocity v and has a
displacement s with respect to its initial position. Thus the variables s, g, u, and v,
are all vectors.

(a) The acceleration g is equal to the rate of change of velocity, so g = velocity
change ÷ time = (v − u)/t. The displacement s will still be given by average

∗How is this justified? The velocities in equation (2.1) are vertical velocities which we now call uz

and vz . Is it OK to replace these v2
z and u2

z with the squares of the speeds v2 and u2? Yes. Remember
that v2 = v2

x + v2
y + v2

z . Neither vx nor vy will change (there are no forces acting in these directions)
and so v2 − u2 = v2

z − u2
z .
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velocity × time, and hence s = 1
2 (u+v)t. We can combine these two equations

to eliminate t by calculating the scalar product g ·s. Calculate this product, and
show that it is equal to 1

2 (v2 − u2) where u2 means the square of the speed and
is equal to u · u.

In Section 2.2, we defined the work done by a force on an object as the
magnitude of the force multiplied by the distance the object moves in the same
direction as the force. This is naturally written using vector notation as

Work done by force = F · s. (2.3)

(b) Use equation (2.3) together with your answer to part (a) to show that the work
done by the force of gravity F = mg on the object is equal to the gain in the
object’s kinetic energy.

When work is done by gravity on the object, it loses potential energy. This
means that the change in potential energy of the object is −mg · s. This minus
sign is vital. If you want to raise the potential energy of the object, you need
to give it a displacement in the opposite direction to the field strength g (i.e.
upwards).

Frequently we wish to make comments about how ‘rich’ a particular position
is in terms of potential energy without specifying the mass of the object. To
help us do this, we define the potential of a point as the potential energy per
unit mass. The change in potential accompanied by a change in displacement s
is given by

∆φ = −g · s, (2.4)

where we use the symbol φ for potential.
(c) The analysis so far in this chapter has concentrated on uniform gravitational

fields. Electrostatic fields are just as straightforward, but we use E to represent
the electric field strength. The force on a charge is then given by F = qE.
Notice that E points in the direction in which a positive charge would experience
a force.

Rework the analysis above, with the acceleration now being given by F/m =
qE/m. Show that the change of potential energy of an object is now given by
−qE · s, and that the change in potential (i.e. potential energy per unit charge)
when we move a charge by displacement s is now,

∆φ = −E · s. (2.5)

(d) A capacitor consists of two parallel metal plates separated by a distance d, one
of which is charged positively, while the other is negatively charged. Assume
that the electric field (E) is uniform in the region between the plates and points
towards the negative plate. Show that the change in potential when moving
from a point on the negative plate to any point on the positive plate∗ is the

∗Hint : It may help if you assume that the charge is taken on a straight line route from the one
point to the other.
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same and is equal to Ed. Given that this is equal to the potential energy gained
per unit charge, this will be the same as the voltage difference between the
plates.

2.5 Non-uniform fields

All of the analysis up to now has concentrated on uniform fields, where g or E re-
mains the same wherever you go. But what happens if they change? In practice they
could change for one of two reasons. Either the field everywhere could change (i.e.
E could be a function of time), or the field could be time-independent but vary-
ing from place to place. In either case, a moving particle would experience different
strengths or directions of field along its route.

Our first observation is that if the displacement is sufficiently small (and the time
taken to move correspondingly short), the field will not change appreciably over the
course of this mini-motion. As in Chapter 1, we denote this mini-motion with the
letter δ – so here the small displacement is δs. We say that the minuscule amount of
work done by the force δW is

δW = F · δs. (2.6)

Correspondingly, the change in the potential will be

δφ = −g · δs (2.7)

for a gravitational field, or

δφ = −E · δs (2.8)

for an electrostatic one.
Notice that if we divide both sides of (2.6) by the small amount of time taken δt,

we get an expression for the power P – that is, the rate at which the force is working
on the object:

P =
δW

δt
=
F · δs

δt
= F · δs

δt
= F · v. (2.9)

Thus power is the scalar product of force with velocity.
This is all very interesting, but of course we will want to analyse motions which

are not minuscule. Our approach is to break our intended motion ∆s into lots of very
small pieces δs. We then work out the work done by each of the small pieces using
equation (2.6), and then add them up to get the total work done ∆W :

∆W =
∑

δW =
∑
F · δs. (2.10)
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But how small should the pieces be? As small as possible, of course, and so we let
our summation in equation (2.10) become an integral∗:

∆W =
∫
F · ds. (2.11)

This may be your first example of what is called a line integral, since it is executed
along the line of the path (all the little stages ds). Before we explain in greater detail
how to work this out, let us note in passing that equivalent logic with our potential
functions gives

∆φ = −
∫
g · ds (2.12)

for gravitational fields, and

∆φ = −
∫
E · ds (2.13)

for electrostatic ones.

2.6 Workshop: Evaluating line integrals

In this workshop we shall outline a few methods of evaluating the integrals, starting
with the simplest cases.

Sometimes you can choose the route of the integral so that the field strength E,
and the angle it makes to the route θ are the same all along the path. In this case,
the equation simplifies to∫

E · ds =
∫

E cos θ ds = E cos θ

∫
ds = ES cos θ,

where S is the total length of the path.

(a) The magnetic field round a straight current-carrying wire points round the
wire in a set of circles centred on, and perpendicular to, the wire. It has been
demonstrated that the integral of the magnetic field strength round any loop
enclosing the wire, and coming back to the same place

∮
B · ds = µ0I, where I

is the current in the wire.†

If we assume that all points equidistant from the wire have equally strong
magnetic flux B, show by performing the line integral round a circle of radius
r centred on the wire and perpendicular to it that 2πrB = µ0I, and thus find
an equation for B.

Before leaving this method, it is worth pointing out that you are allowed to choose
the route of the integral in certain circumstances only. We shall deal with this later
in Section 2.7 and Chapter 9. If in doubt, do not change the route.

∗See Section 1.1.2 for an introduction to what this means. Further details on how to use them are
given in a special workshop in Section 7.1.

†The symbol
∮

with a ring around it simply means that the integral has its start and end points
in the same place. Sometimes this kind of line integral is called a loop integral, since the path of
integration takes the form of a loop.
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Our next approach is to declare a new scalar variable s, equal to the distance
travelled along the path from the start point of the integral to the end. By knowing
the field E at each point along the route, we can rewrite E as a function of s. Once
this is done, we can work out the angle θ(s) between the vector E(s) and the direction
of the path for each point on the path. We can then write∫

E · ds =
∫
E (s) · ds =

∫
E(s) cos θ(s) ds,

which is an ordinary integration of a function of s with respect to s, and as such can
be integrated using the methods you will already be familiar with.

(b) As you may know, the magnitude of the electric field in the vicinity of a point
charge Q is given by E = Q/4πε0r

2 where r is the distance of the point from the
charge Q and ε0 is a constant called the permittivity of free space. The direction
of the field is outwards (away from Q) if the charge is positive and inwards if
the charge is negative. Calculate the potential difference between a point R away
from Q and a point twice as far away by integrating ∆φ = − ∫ E · ds along a
radial line from r = R to r = 2R.

Our final method is to write the three components of E separately. If Ex is the
x-component of E, then we can use part (e) of Section 2.3 to rewrite our integral as∫

E · ds =
∫

Exdx + Eydy + Ezdz =
∫

Exdx +
∫

Eydy +
∫

Ezdz.

The integral has now become a sum of three ‘ordinary’ integrals. If we can arrange
for one of the coordinate axes (say, x) to be parallel to the route of integration, then
two of the integrals sum to zero since there is no range of y or z to be integrated over.
Just watch out: Ex is the x-component of E, and will in general still be a function of
x, y, and z (not just x).∗

(c) Suppose our field E is given by

E =
F

a2

⎛
⎝ yz

xz
xy

⎞
⎠ ,

where F and a are constants. Calculate the potential difference between the
origin and the point (1,1,1) along the straight line given by the formula (s, s, s)
where the variable s runs from 0 to 1.

(d) Repeat part (c) but now perform the line integral in three stages – from (0,0,0)
to (1,0,0), then on to (1,1,0), and then from there to (1,1,1). For this particular
choice of field, you should get the same answer.

∗When evaluating
∫

Ex(x, y, z)dx, write y and z as functions of x using your knowledge of the
shape of the path or route you are integrating over. After all, if you know the value of x of a point
on a known path, you should be able to work out the values of y and z as well. [If you cannot, then
you set up your coordinates badly, and should try again.]
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(e) In Section 2.2, we proved that the total of the potential and the kinetic energy
was constant for a particle moving in a uniform field in one dimension. In Section
2.4, we generalized this to three dimensions. Here we will present a proof of the
same result applicable to three dimensional non-uniform fields.
(i) Using the product rule for differentiation and information from our work-

shop on scalar products (Section 2.3), prove that

d

dt
v2 = 2v · dv

dt
= 2v · g,

where the acceleration dv/dt is equal to g because the gravitational force is
the only force acting on the object.

(ii) Our work in Section 2.4 taught us that the change in potential energy of
the object is given by

−
∫

mg · ds = −
∫

mg · ds
dt

dt = −
∫

mg · v dt,

where we have taken the liberty of using a substitution to change the variable
of integration to the scalar t. Use your answer to (i) to show that this is the
same as

−
∫

m

2
d
(
v2
)

dt
dt = −

[
1
2
mv2
]
,

and hence the gain in potential energy is still equal to the loss of kinetic
energy.

(f) In all of our work so far, we have assumed that only the gravitational field caused
a force to act on the particle, and as a result the acceleration of the particle a was
equal to g. This may have given you some concern that our reasoning was limited
to this case. To prove that it is not, consider a particle moving in a gravitational
field g which is also being pulled around by an additional force F. We shall show
that the work done by the force F on the system is equal to the sum of the gains
of the potential and kinetic energy.

(i) By considering the resultant force on the particle, show that F = m(a−g).
(ii) The work done by the additional force is

∫
F · ds. Use your result to (i) to

show that this is equal to m
∫
a · ds+ the gain in potential energy.

(iii) Using the methodology of part (e), show that m
∫
a · ds is the gain in kinetic

energy of the object.
Accordingly we have shown that the energy inserted into the system by the action

of force F has been shared between the potential and kinetic energy of the system,
and that the total energy has been conserved.

2.7 Potential gradients
We have spent the majority of the sections in this chapter defining potentials and
giving methods for their calculation. Apart from a knowledge of the energy of the
system, what was the point? One answer is that the potential is a scalar and is much
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easier to work with than three dimensional vectors. Accordingly if we succeed in
writing all of the information about a field into a potential function φ, we simplify
many of the calculations we might wish to do with it.

To do so, we first limit ourselves to the fields whose potentials φ are functions
of position alone. This means that the potential difference between two points has
a single value, and so when the potential difference is calculated by performing the
integral ∆φ = − ∫ g · ds, you get the same answer no matter what route you use to
get from the one point to the other.

In Section 2.2, we have already ascertained that the potential energy of an object
in a uniform, downwards gravitational field is given by mgh where h is the height of
the point, and so the potential will be given by φ = gh.

Imagine that you are in hilly terrain, and that instead of a map with contours, you
are given a mathematical function to tell you the height of the ground at any point. If
we set up coordinate axes where x points east, y points north, and z points upwards,
this means that we have a function z = h(x, y).

If I ask the question, ‘How steep is the ground here?’ the answer depends on the
direction I am walking. The gradient of the slope as measured by someone walking east
(the +x-direction) is written ∂h/∂x, which means the derivative of h with respect to x
while keeping y constant. The gradient of the slope as measured by someone walking
north is given by ∂h/∂y.∗

If I walk in some other direction, when I move a distance δs = (δx, δy), it is as
if I moved δx east and then moved δy north. This situation is shown in figure 2.5.
Accordingly the change in the ground’s height as I walk is

δh =
∂h

∂y
δy +

∂h

∂x
δx,† (2.14)

∗These derivatives written with curly ∂ are called partial derivatives, and they crop up whenever
you have a function with more than one independent variable.

†We are assuming that our displacement δs is sufficiently small that the gradients do not change
appreciably as we walk this tiny distance.
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and so the change in my gravitational potential is

δφ = δ(gh) = gδh =
∂φ

∂y
δy +

∂φ

∂x
δx. (2.15)

If we now write the displacement I have moved as a vector δs = (δx, δy), I can
write my change in gravitational potential as δφ = D · δs, if the vector D = (∂φ/∂x ,
∂φ/∂y). This vector gives me all the information I need to work out the gradient when
walking in any direction on the hillside.

If I choose to walk in the direction of D, then I choose the steepest uphill route
(I get the biggest change in φ for a particular value of δs). If I walk in the opposite
direction to D, I choose the steepest downhill route. If I walk perpendicularly to D,
then D · δs = 0, and I neither rise nor fall. My potential energy does not change –
I am walking along the contour line.

We now extend our logic to motion in any kind of gravitational field where the
potential φ is given by a known function of x, y, and z. The change in potential after
a mini-motion δs is given by equation (2.7) as

δφ = −g · δs = − (gx δx + gy δy + gz δz) . (2.16)

The change in potential is also given by equation (2.15), where we have adapted
the equation to take into account motion in three dimensions:

δφ =
∂φ

∂x
δx +

∂φ

∂y
δy +

∂φ

∂z
δz. (2.17)

Comparing equations (2.16) and (2.17), it follows that

gx = −∂φ

∂x
, gy = −∂φ

∂y
, gz = −∂φ

∂z
. (2.18)

This is more conveniently written as g = −∇ (φ), where ∇ is a vector function,
which acts on the scalar potential φ to produce a vector with the partial derivatives of
φ in each of the three directions as its components. Given that its three components
are the gradients of φ in the directions of the three axes, it is called the gradient
function (or grad for short).

We now summarize our two most important relationships linking field g and
potential φ:

For calculating ∆φ,

∆φ = −
∫
g · ds. (2.19)
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For calculating g,

g = −∇ (φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−∂φ

∂x

−∂φ

∂y

−∂φ

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.20)

Thus we use line integrals to work out potentials from a knowledge of the field, and
we use the gradient function to work out the field from a knowledge of the potential.

Not all fields can be described using a potential in this way. For some functions g,
there are no functions φ which can be found and which will satisfy equation (2.20).
However, gravitational and electrostatic∗ fields can be described using potentials as
shown above. These gravitational or electrostatic potential functions are functions of
position only, and accordingly it does not matter which route you take between two
fixed points: the total change in potential will be the same. Such fields are said to
be conservative fields, and their field lines have no loops in them (see Q9 for more
details).

Q4 A particle is held to a point on a horizontal surface using a spring. The force on
the particle has magnitude F = k

√
x2 + y2, and is directed towards the point

x = 0, y = 0.
(a) What is the potential energy of the system as a function of x when the particle

moves on the line y = 0? Take the potential energy to be zero when the particle
is at x = 0.

(b) What is the potential energy of the system as a function of x and y when the
particle can be anywhere on the plane? +

(c) Write the force acting on the particle at point (x, y) as a vector.
(d) Calculate the partial derivatives of your answer to (b) with respect to x and y,

and thus verify your answer to (c).
Q5 If the potential function for a field is φ = 3x2 + 2yz+ 9xy/z, work out the force F

acting on a particle in this field as a function of its position.
Q6 For the following forces, attempt to find a potential function to describe their

fields
(a) F = (0, 65, 2)
(b) F = (54y, 54x, 3)
(c) F = (54y, 59x, 3z)
(d) F = (54y, −54x, 2x)
(e) F = (−3x, −3y, −3).

Q7 The height of a point on a hillside is given by h = 0.06x − 0.02y + 100 m, where
x and y are the east and north coordinates of the point.
(a) Calculate ∂h/∂x. What does this mean?

∗By electrostatic field, we mean the sort of electric field set up by charged objects. Electric fields
can also be produced by chemical or electromagnetic means; however, our discussion here is limited
to the electrostatic case, ensuring that we deal with a conservative field.
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(b) Calculate ∂h/∂y. What does this mean?
(c) How can you tell that this surface is not curved?
(d) In which direction is the gradient steepest?
(e) What is the steepest gradient of the slope?
(f) Which way would I walk to keep at the same height?
(g) I walk from (100,200) to (300,800). Calculate the change in height of my

position using the equation h = 0.06x − 0.02y + 100 m, and also using your
answers to (a) and (b). Check that your answers agree.

Q8 We shall show in Section 2.8.3 that the gravitational field due to a point mass M
at the origin is given by

g = −GM

r2 r̂,

where r̂ is a unit vector pointing away from the origin.
(a) Satisfy yourself that in Cartesian coordinates:

r̂ =
1√

x2 + y2 + z2

⎛
⎝x

y
z

⎞
⎠ .

(b) Show that in Cartesian coordinates, g can be written:

g = − GM

(x2 + y2 + z2)3/2

⎛
⎝x

y
z

⎞
⎠ .

(c) Find the potential function which gives this field. That is, find φ such that
−∇φ = g. If you are stuck, look it up in the hint below, and then verify that
it is correct.∗

Q9 A circular loop of wire is placed in a changing magnetic field. The electric field set
up by the moving magnet is given by E = (−Ay,Ax, 0), where A is a constant.

(a) Show that it is impossible to write E as the gradient of a scalar function φ.
(b) Calculate the value of the loop integral

∮
E · ds where S is a circular path

in the x − y plane, centred on the origin, with radius r, and show that
it is non-zero. Your answer gives the reading a voltmeter would show if
connected to a single turn of wire: it is the voltage induced in the wire. +

Your answer to (b) shows that an electron moving round the wire and coming back
to its starting place comes back with a different amount of potential energy. How can
this be possible? The answer is that it has picked up or lost energy by interacting with
the changing magnetic field on the way – this is how generators work. We call this kind
of field non-conservative, since the potential of a point is not a unique function of its
position, but depends on the route of evaluation of the integral. In general all fields
which have a tendency to produce loops in their field lines are non-conservative, and

∗The function you are looking for is φ = −GM

r
= − GM√

x2 + y2 + z2
. By taking partial derivatives

of this with respect to x, y, and z, you should be able to recover the three components of the g field
given in the question.
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they include magnetic fields and the electric fields made when magnetic fields change.
Conservative fields (e.g. gravitational and electrostatic fields) can be distinguished in
two ways – the field strength can be written as −∇φ and the field lines never form
loops.

2.8 Setting up a field
At the beginning of the chapter, we commented that forces caused accelerations, and
pondered what caused the forces. We have now developed the idea that fields cause
forces. But what causes the fields? The answer is that masses set up gravitational
fields, and charged particles set up electrostatic fields.

To quantify these interactions, we need to have an understanding of how these
charges and masses set up fields. Once this is done, we have a complete picture of how
an interaction can be modelled. In this section, we shall concentrate on electrostatic
fields; since these are easier to manipulate in the laboratory, however, nearly all of the
following reasoning also applies to gravitational fields.

One helpful way of visualizing an electric field is with field lines. No doubt you
have done things in the past like plotting the magnetic field of a bar magnet, and we
use a similar approach to drawing the field lines of an electric charge. The field lines
are not real (but then again, the field itself is only a model), but by visualizing their
flow we can picture what is going on much better as shown in figure 2.6.

As with the magnetic fields, the field lines give the direction of the field (the
direction of E) at any point along their path. Given that the field cannot have more
than one direction at any point, field lines never cross or branch out. Electrostatic field
lines do not start or end in midspace. However, neither do they form complete loops
like the magnetic field lines around a current-carrying wire or coil. The direction of the
electric field is the direction a positive charge would experience a force. Accordingly,
they must point away from positively charged objects and point towards negatively
charged ones. Electric field lines therefore start on positive charges and always end on
negative charges. Gravitational field lines always end on masses (Figure 2.7)

N S

Field lines give direction
a compass would point
if at this position

Fig. 2.6
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The electric field points in the
direction a (+) charge would
experience a force.

The gravitational field points in
the direction a mass would
experience a force.

Fig. 2.7
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This is a weaker field than A, since
although it has the same ‘number of
lines’, they are more spread out.

Area S

‘Number of field lines’ n defined
so that n/S = E, the field strength.

Strength of field given by
number of lines per unit
area.

Fig. 2.8

Regions of stronger field stand out as areas where the field lines are closer together.
In fact, we can build up a model where the electric field strength is represented by the
‘density’ of the field lines – that is the number of lines per unit area (where we count
in a plane perpendicular to the field lines) as shown in figure 2.8.∗

E =
Number of field lines

Perpendicular area passed through
. (2.21)

A caution must be given at this point. Field lines are not discrete, and there is
no ‘real’ way of counting them. However, if each field line represents a certain defined

∗This gives us our working definition for the ‘number of field lines’ passing through a surface. The
number need not be an integer, since there is nothing specific about each individual line. They merely
give us a picture of what the field is doing. There is an analogy here with contour lines on a map –
the map maker can put as many or as few as they see fit – a line every 5 m of altitude, a line every
100 m or every 1 mm – the one thing that would be useless for a map user is the truth of a infinite
continuum of lines all smudged together.
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amount of field, then counting them has some meaning in evaluating the total amount
of field emanating from a charge or passing through an area. We shall define things
more rigorously in terms of surface integrals in Section 2.8.4, however, until then we
shall continue to use the visually helpful idea of ‘number of field lines’ with the proviso
that it is just a convenient model for the complex business of field strength.

We can use this model to help us understand where Coulomb’s law for the force
between two charges comes from.

The field of a point charge +Q (or any spherically symmetrical arrangement of
charge) must, by symmetry, point inwards or outwards. If the charge is positive, the
field lines stream outwards in the direction in which small positive charges would be
repelled if placed there. Given that the field lines do not end, the lines carry on going
to infinity. However, they spread out as they do so, and this indicates that the field
gets weaker as we get further away from the positive charge in the centre as shown in
figure 2.9.

If we draw a spherical shell centred on the charge +Q with radius r, it will have area
4πr2. If the electric field strength E is given by the density of field lines, then it follows
that the total number of field lines must be equal to the field strength multiplied by
the perpendicular area through which they pass. Now our field is radial, and so will
be perpendicular to the sphere. The total number of field lines is then given by

n = E × 4πr2.

This number must be the same no matter what the size of the sphere (assuming
of course that the sphere is larger than the charged object itself). Therefore we can
write:

E =
n

4πr2 ,

and so the force experienced by a charge +q at this distance will be

F = qE =
nq

4πr2 .
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If our charged object Q suddenly doubled in the amount of charge it stored, we
would expect the field E and hence the force F to double too. It therefore seems
sensible to say that the number of field lines streaming out from a positive charge is
proportional to the charge on that object. We define the constant of proportionality
to be the permittivity of free space ε0, so

Q = nε0. (2.22)

Our equations for the field strength and force then become

E =
Q

4πε0r2

F = qE =
qQ

4πε0r2 ,
(2.23)

and the second equation is known as Coulomb’s law for the force experienced between
two point charges separated by distance r. Our equations so far have only given the
strength or magnitude of the electric field, however, directionality is easy to add,

E =
Q

4πε0r2 r̂,

F = qE =
qQ

4πε0r2 r̂,
(2.24)

where r̂ is a unit vector pointing radially outwards from the charge Q. The electrostatic
field then points parallel to r̂(outwards) if Q is positive and inwards if Q is negative,
just as it should. Similarly F, which gives the force experienced by the charge q because
of the presence of Q, will point in the r̂ direction if Q and q have the same sign, but
will point the other way if Q and q have opposite signs. Thus like charges attract, and
opposite charges repel.

Q10 Calculate the electric field strength at a distance of 3 m from a 6 µC charge.

2.8.1 Workshop: The electrostatic field surrounding a charged wire

In this workshop we imagine a long straight wire carrying a static charge of λ per
metre, and we attempt to work out the electric field experienced at a distance r from
the wire.

Assuming that the wire is positively charged, the field lines are sketched in Fig-
ure 2.10 as they pass through a cylinder of length l and radius r centred on the wire.
Notice that they all go out through the curved surface, not the flat circular ends. Also,
because of the symmetry, the strength of the electric field at all points on the curved
surface of the cylinder must be equal.

(a) Using our definition that the ‘number of field lines’ is equal to the electric field
multiplied by the perpendicular area it goes through, show that the magnitude
of the electric field is given by

E =
n

2πrl
.
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E(r)

E(r)

Fig. 2.10

(b) Using equation (2.22), derive another expression for n in terms of λ and ε0.
(c) Equate your answers to (b) and (c) to give an expression for E which is not in

terms of our fictitious field lines. You should get

E =
λ

2πε0r
. (2.25)

(d) Calculate the electric field strength at a distance of 2 cm from a long thin wire
carrying a charge of 400 nC per metre of its length. What is the field strength
3 cm from the wire?

(e) A copper wire is cylindrical, with a cross-sectional area of 1 mm2. Copper has
a density of 8930 kg/m3, and each atom has a mass of 1.07 × 10−25 kg. Each
atom has one electron free to move. Calculate the total charge on each metre
of wire if all of these electrons were removed, and the electric field strength 200
m from the wire. Given that these electrons do all move when the wire carries
a current, why are electric fields this big not formed during the passage of
current?

2.8.2 Electrostatic charge in a parallel plate capacitor

Figure 2.11 shows a simple capacitor with plates of cross-sectional area A, and sep-
aration d. All of the electric field is contained within the two plates, and we shall
assume that it is uniform. The ‘number of field lines’ n is clearly equal to EA using
our definition (2.21).

If we apply our Q = nεo rule to the positive plate, we see that n = Q/εo and as
n = EA, it follows that

E =
Q

ε0A
. (2.26)
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In workshop 2.4 part (d), you showed that the voltage across the capacitor V = Ed.
Given that the capacitance of a capacitor is defined as Q/V , the capacitance of the
capacitor is equal to

C =
Q

V
=

ε0EA

Ed
=

ε0A

d
. (2.27)

Notice that if we put two such capacitors side by side so that they are effectively
in parallel, then the area is doubled, and so is the capacitance. On the other hand,
if two identical capacitors are put one above the other (in series) then the effective
separation of the plates has doubled, so the capacitance is halved.

Q11 If I wanted to make a 1 F capacitor for the backup power supply in a computer
using parallel plates, and I used plates with an area of 1 m2, how close together
must the plates be? In practice the plates are very thin, and are rolled into a
cylinder to save space.

We can also use the capacitor to help us work out the energy content of an electric
field. The energy stored in a capacitor is equal to 1

2CV 2.∗ For our parallel plate
capacitor, this equates to

Energy =
1
2
CV 2 =

ε0A

2d
× (Ed)2 =

1
2
ε0E

2 × Ad. (2.28)

Now the volume of the capacitor is Ad, and thus the energy per unit volume is
equal to 1

2ε0E
2. While we have only proved this result for the uniform field in a parallel

plate capacitor, any electric field can be thought of as a mosaic of tiny parallel plate

∗The energy used to charge a capacitor to voltage Vf from 0 is given by
∫

V I dt =
∫

V
dQ

dt
dt =∫

V dQ =
∫

V d (CV ) = C

∫ Vf

0
V dV =

1
2

CV 2
f .
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capacitors, and thus this formula actually applies to the energy density at any point
in any electrostatic field.

2.8.3 Gravitational fields inside planets

We can apply the methods we have been developing to gravitational fields as well.
When working with gravitational fields, we shall define our ‘number of field lines’ n
analogously to (2.21) as the product of the field strength g with the perpendicular area
through which it passes. Field lines end on masses, and we would expect the number
of field lines ending on a mass to be proportional to the mass M itself. So that we
end up with agreement with Newton’s law of gravitation, we shall define a slightly
complicated constant of proportionality:

n = 4πMG. (2.29)

We now apply our two ideas to a spherically symmetric distribution of mass. This
ensures that the field will be radial at all points. If we draw a spherical surface within
this distribution of radius r, and denote the total mass contained within this sur-
face M , then n = 4πMG, and by multiplying the field strength g by the area of
the sphere 4πr2, we find that n = 4πgr2. Eliminating n between the two equations
gives

g =
GM

r2 , (2.30)

as we would have been expecting, since you will already know that the gravitational
field of a point mass is given by this expression. However, there is more to this equation
than meets the eye. It tells us that

• the mass outside our spherical surface has no contribution to the field within it.
• all of the mass within the spherical surface behaves gravitationally as if it were

all concentrated at a single point at the very centre.
We inadvertently use this second point whenever we solve a problem involving

orbits where we simply take the Earth to be a dot of mass 6.0 × 1024 kg at the centre
of the orbit rather than the large planet we know it to be. While this approximation is
not quite correct, the errors only come from the fact that the Earth is not spherically
symmetric.

Q12 Assume the Earth to have a uniform internal density. At the planet’s surface
(6.4 × 106 m from the centre), the gravitational field strength is 9.8 N/kg. What
do you expect the field strength to be at a point half way out (3.2 × 106 m from
the centre)?

Q13 Prove that if a straight tunnel were constructed through the centre of the Earth,
and if it were kept empty of magma and molten iron, and so on, that an object
dropped into it would undergo simple harmonic motion about the centre of the
Earth, and calculate the time period of the motion.∗

∗Hint : You need to show that the force on the object is proportional to the distance from the
centre of the Earth. If unfamiliar with harmonic motion, you may need to study Section 4.1.
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Fig. 2.12

Q14 Show that you still get simple harmonic motion with the same time period even
if the tunnel does not go through the centre of the Earth, but rather joins any
two points on the Earth’s surface by a straight line.∗ Assume that the objects in
the tunnel are able to pass up and down frictionlessly. +

2.8.4 Formalizing the notation

As mentioned at the beginning of this section, field lines are a fictitious pictorial
representation of a field. Therefore we cannot really justify continuing further without
formalizing what we mean by ‘number of field lines’. After all, how do you count
fictitious objects?

We need a more mathematical definition of what ‘counting field lines’ means. Sup-
pose we take any closed surface which encloses the charges concerned, and we call this
S. We can imagine this to be made up of lots of small pieces of surface each with area
δS, and each of which is small enough to be almost flat. We assign a vector to each
one called δS, where the magnitude of the vector is equal to the area δS, and it points
perpendicular to the surface (outwards) as shown in figure 2.12.

If δSmakes an angle α to the field lines E, then the area as measured perpendicular
to the field is δS cos α. So the number of field lines crossing the area is given by
E cos α δS = E · δS. We may count the total number of lines n crossing the whole area
S by adding up the contributions from each part. The result n =

∑
E · dS is written

as an integral as we break the area up into smaller and smaller pieces to fit the surface
more accurately:

n =
�
S

E · dS, (2.31)

∗Hint : Here you need to show that the component of the force along the direction of the tunnel is
proportional to the distance of the object from the tunnel’s centre.
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where the double integral reminds us that we are integrating over a two-dimensional
area and the loop round the integrals reminds us that our surface is closed (it has no
gaps or holes in it).

Earlier in equation (2.22), we defined the permittivity of free space ε0 as the ratio
of charge to the number of field lines produced Q/n. Using our definition of n, this
becomes �

S

E · dS =
Q

ε0
. (2.32)

This equation is formally known as Gauss’ law of electrostatics.
Any closed surface S without charge inside it must have a zero value of

�
S
E · dS –

this means that there must be as many field lines leaving the region as entering it. It
follows that any charge-free area of space cannot have any field lines ending in it or
starting from it.

For gravitational fields, we may use a similar definition of field lines and say that
n =

�
S
g · dS. However, once we take directionality into account, we have to say that

the number of field lines leaving an area is given by n = −4πMG with the negative
sign reminding us that lines come into the area in order to end on the mass. This
gives us �

g · dS = −4πMG, (2.33)

where M is the total mass contained within the surface S. It is worth mentioning
that (2.33) is valid for all distributions of mass, not just spherically symmetric ones.
However, it is only for the spherically symmetric distributions that we can simplify
this expression to an inverse square law as in (2.30).

For magnetic fields, it is found that
�
S
B · dS = 0. Put into words, this means

that magnetic field lines have no end. They may go from north to south outside of a
bar magnet, but inside the magnet they all make their way back to north again.

Q15 Explain how the use of pole pieces (shaded grey in Figure 2.13) makes the mag-
netic field stronger in the gap in a horseshoe magnet.

N

S

Fig. 2.13
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Q16 Use Gauss’ law of electrostatics to prove that in the absence of other charges,
there is no electric field inside a uniformly charged hollow spherical shell. If
we made a hollow region at the very centre of the Earth, what would be the
gravitational field there?

Q17 Use Gauss’ law of electrostatics to work out the magnitude of the electric field
inside a uniformly charged sphere of radius R and total charge Q, if we make our
measurement at a point a distance r away from the centre of the sphere. Find a
potential function which will give this electrostatic field. +

2.9 Conclusion

After introducing the idea of a field as a description of the way space is affected
by charges and masses and defining field strengths, we analysed motion in terms of
distance rather than time. This led naturally to the ideas of work done and energy
conservation. Through this we were able to develop a line integral for calculating the
gain in potential energy of an object travelling on a route. For electrostatic, grav-
itational, and other conservative fields, the gain is independent of the route taken,
and accordingly the potential of a point is a unique function of its position. The grad
function can be used to calculate the field strength from a knowledge of the potential
function.

We then moved on to discuss the way in which fields are set up, using the fictitious
concept of counting field lines. This illustrated the similarities of electrostatic and
gravitational fields and gave us a range of methods for calculating field strengths.
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Rotation

In this chapter, we will examine the fundamental principles that are essential for a
good understanding of rotational motion. We begin by considering the kinematics of
rotating systems and the consequences of referring the physics of a situation to a
rotating point of view (frame of reference). We then move on to ideas of the forces
involved, which make up the ‘dynamics’ of this chapter. The techniques and ideas
developed in the early part of this chapter are then applied to the Kepler problem
in two workshops, which essentially outline the derivation of planetary trajectories
through Newtonian mechanics. All the principles introduced in this chapter are also
essential for a good understanding of the material contained in workshops in Sections
7.8–7.11 in Chapter 7. In order to fully appreciate those workshops, students seeing
the material for the first time should work through Chapter 3 first.

3.1 Rotational kinematics and dynamics

3.1.1 Kinematics on a circular path

In this section (and accompanying workshops), we will only be looking at the kine-
matics of uniform circular motion, but many of the basics here form the foundation
of more advanced work. We will be deriving a number of results that are essential to
other chapters of this book, so it is worth making a mental note of this section and
its results.

Figure 3.1 shows a rotating vector, or radius vector, r(t). The length of the vec-
tor, say r, does not change, but its direction is changing continuously. We can best
represent this change in direction over time by defining a quantity called the angular
frequency, ω. The angular frequency is most conveniently defined in terms of the angle
in radians swept per unit time by the radius vector as it rotates. We will see why this
is in a moment. For now, we define ω as follows:

ω =
2π

T
= 2πf, (3.1)

where T and f are the time period and frequency of the rotation, respectively. The
angle swept by r(t) in t is therefore ωt (see Figure 3.1) for constant ω.∗

∗The quantity ω is
dθ

dt
, the rate at which angle, θ, is swept by r. If ω(t) is not a constant then the

angle swept between times t1 and t2 is given by the integral,

θ =
∫ t2

t1

dθ

dt
dt =

∫ t2

t1

ω(t)dt.
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r(t)

ωt

Fig. 3.1

Remember, the radian system of angular measurement is based on the idea that
the circumference, C, of a circle of radius r is given by C = 2πr. If the circumference
were broken up into q equal sections, the length of each one, called the arc length s
would be given by

s =
2π

q
r, (3.2)

where q × s=C. The quantity s/r is therefore a measure of angle, which we say
is in radians, and that means there are 2π radians in a complete rotation. Hence
equation (3.1) gives the rate at which angle is swept by the radius vector rotating
uniformly as just the total angle swept in one rotation divided by the time of the
rotation. ω is measured in radians per second, rad/s.

If the radius vector r(t) represents the position of a body, then the speed of the
body along the circular path is easily obtained as

v =
2πr

T
=

2π

T
r = ωr. (3.3)

Let us take a closer look at the rotating vectors in this motion. The velocity vector
v(t) is always tangential to the circular path, and so it is a vector that is always 90◦

or π/2 radians in advance of the radius vector (see Figure 3.2).
Therefore v(t) is also a vector rotating at an angular frequency ω (Figure 3.2).

The magnitude of v(t) is v =ωr as discussed above. It is important to realize that
the two vector diagrams in Figure 3.2 are not in fact representing the same kinds of
quantity; that is, one represents a rotating displacement vector of length r, whilst the
other represents a rotating velocity vector of length v =ωr.

The head of the vector v(t) describes a circle of circumference 2πv in a velocity
coordinate system. The sum of all the little ∆v around this path must therefore also
have a length of 2πv.∗ The rate of change v(t) is a vector, a(t) (see Figure 3.3),
perpendicular to (90◦ or π/2 in advance of) v(t) with a magnitude

a =
2πv

T
=

2π

T
v = ωv = ω2r. (3.4)

∗Think about the line integrals introduced in the previous chapter:
∮
circle dv = 2πv.
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r(t) v(t) 

v(t)

t t

Fig. 3.2

v(t)a(t)

a(t)
t t

Fig. 3.3

The variable a(t) is of course the centripetal acceleration vector. The vector dia-
grams in Figures 3.2 and 3.3 tell us that

a(t) = −ω2r(t). (3.5)

Expression (3.5) is a very important vector equation and it will pay dividends
to analyse in more detail how it arises. Notice that a(t) itself is a rotating vector,
antiparallel to the original radius vector r(t), hence the negative sign in (3.5).

Q1 Calculate how far away a spacecraft would have to be in order that the radius of
the Earth’s orbit would appear to be 1/3600◦ (one arc-second) wide.

Q2 A car has wheels of 40 cm in radius. It goes on a journey of exactly 140 km.
Calculate: (1) how many times the wheels rotate on the journey and (2) the
accuracy with which the radius would have to be known if your answer to part (1)
should be correct to the nearest revolution. +

3.1.2 Workshop: Rotated coordinate systems and matrices

Imagine we have two sets of coordinate axes (x, y, z) and (x′, y′, z′) with z and z′

axes coincident and x, y, x′, and y′ axes rotated by some angle θ with respect to each
other.
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The same point P is referred simultaneously to the two coordinate systems.
(a) By inspecting Figure 3.4 show that

a = x cos(θ) b = y sin(θ) c = y cos(θ) d = x sin(θ). (3.6)

So,

x′ = a + b

y′ = c − d.
(3.7)

(b) Hence show that the transformation of coordinates may be written as matrices:⎛
⎝x′

y′

z′

⎞
⎠=

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ . (3.8)

Rotation transformations such as these are said to be orthogonal, so their matrix
representations are orthogonal matrices. This means that the inverse (denoted with
−1 at the top right) of the matrix is equal to the transpose (denoted with a T at the
top right), which is obtained by swapping rows for columns and vice versa:

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

−1

=

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
T

=

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ . (3.9)

So, ⎛
⎝x

y
z

⎞
⎠=

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠ . (3.10)
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3.1.3 Workshop: Rotating vectors and the vector product

Using the results in the previous workshops, it is possible to obtain the rates of change
of unit vectors rotating with respect to a fixed coordinate system. Let us begin with
the transformation from the primed coordinates to the unprimed coordinates.⎛

⎝x
y
z

⎞
⎠=

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠ . (3.11)

If the primed coordinate frame is rotating at a uniform angular speed of ω about
the z-axis, then θ(t) =ωt so:⎛

⎝x
y
z

⎞
⎠=

⎛
⎝cos ωt − sinωt 0

sinωt cos ωt 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠ . (3.12)

(a) Differentiate (3.12) with respect to t (applying the product rule) and show that

d

dt

⎛
⎝x

y
z

⎞
⎠= ω

⎛
⎝− sinωt − cos ωt 0

cos ωt − sinωt 0
0 0 0

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠+

⎛
⎝cos ωt − sinωt 0

sinωt cos ωt 0
0 0 1

⎞
⎠
⎛
⎝ ẋ′

ẏ′

ż′

⎞
⎠ ,

(3.13)

where ẋ′ etc. are the time derivatives of positions in the primed coordinates.∗

The second term in (3.13) is obviously the velocity vector in the primed coordinates
as seen from the unprimed coordinates. If P were moving in the rotating coordinate
system (primed system), this term would be non-zero.

The first term in (3.13) seems to have some interesting properties.
(b) Show that

ω

⎛
⎝− sinωt − cos ωt 0

cos ωt − sinωt 0
0 0 0

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠= ω

⎛
⎝−y

x
0

⎞
⎠ (3.14)

The following are the rules for multiplying unit vectors x̂, ŷ, and ẑ by what math-
ematicians call the vector product.†

x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0
x̂× ŷ = −ŷ × x̂ = ẑ
ŷ × ẑ = −ẑ× ŷ = x̂
ẑ× x̂ = −x̂× ẑ = ŷ.

(3.15)

∗Here we introduce the ‘dot’ notation to save room. We represent df/dt as ḟ and d2f/dt2 as f̈ , so
the ‘dots’ keep track of the number of differentiations with respect to time.

†The other product that is useful to us in this text is the scalar product. As is obvious from their
names, the scalar product produces a scalar and the vector product produces a vector. The scalar
product was invaluable in considering work and energy in Chapter 2.
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Notice that the vector product combines two unit vectors to form another vector
(either 0, x̂, ŷ, or ẑ). The 0 is actually a vector with zero components.

(c) Using the rules for vector products of the unit vectors show that

ω × r = −ωyx̂ + ωxŷ = ω

⎛
⎝−y

x
0

⎞
⎠ , (3.16)

where ω =ωẑ and r=xx̂+ yŷ + zẑ.

The vector ω is called the angular velocity and is a vector of magnitude ω (the rate of
rotation about the z-axis) and direction parallel to ẑ, the unit vector in the z-direction.
The vector r is the position vector of P in the unprimed coordinate system.

Combing our results from (a)–(c) this means our time derivative of the vector r
could be written symbolically:

da
dt
r =

dr
dt
r+ ω × r, (3.17)

where (da/dt)r is the absolute velocity of P in the unprimed Galilean (non-rotating)
coordinate system, and (dr/dt)r is the velocity of P relative to the primed rotating
coordinate system.

3.1.4 Angular velocity

The results of the last two workshops are really very important. The analyses yield the
idea that the time derivatives of position vectors referred to two coordinate systems,
primed (rotating) and unprimed (Galilean), are related thus:

da
dt
r =

dr
dt
r+ ω × r. (3.18)

Let us take a closer look at the term containing the vector product. To do this we
make P stationary with respect to the primed coordinate system so (3.18) becomes

da
dt
r = ω × r. (3.19)

Figure 3.5 shows a pictorial representation of expression (3.19). Point P rotates
about the z-axis and its instantaneous position is given by the trio of numbers
(x, y, z). As can be seen from the figure, in all of the following reasoning we are
assuming that the origin of coordinates (from which r is measured) is on the axis of
rotation.

Let us imagine a clock face, with the minute hand rotating clockwise. What direc-
tion would one associate with this motion? Up towards 12 o’clock because the hand
sometimes points that way? Towards 3 o’clock because the hand sometimes points
that way? Both are equally unhelpful. In fact the only way of choosing a direction
that will always apply is to assign the rotation ‘direction’ perpendicular to the clock
face – the direction in which the hands never point.

Point P is rotating as shown in Figure 3.5 and the convention is to represent
the ‘direction’ of this rotation parallel to the positive z-axis (parallel to +ẑ). Various
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aides-memoire have been created to help physicists remember this convention, but
the most obvious one is to consider a right-hand screw. When turned in the way P is
rotating about the z-axis, a right-hand screw will move upwards in the direction of the
positive z-axis. Notice that the rotation in the opposite direction would be represented
by a vector in the −ẑ direction.

With this convention established, we can see that the rotation of P about the
z-axis can be described by an angular velocity vector ω =ωẑ. Looking at Figure 3.5,
we can immediately see that

ωr sin θ = v, (3.20)

where r and v are, respectively, the magnitudes of r and v, and θ is the angle between
the vectors ω and r. The direction of v is perpendicular to the plane OABC, which is
a plane that contains both ω and r. So (3.20) may be recast as

|ω||r| sin θ n̂ = v, (3.21)

where n̂ is a unit vector that is perpendicular to the plane OABC in the direction
of v (see Figure 3.5). The vector, v, is effectively constructed out of the two vectors
ω and r. Indeed, mathematicians would say that v is the vector product of ω and r,
written as

ω × r = |ω||r| sin θ n̂ = v. (3.22)

Now, we already have an expression for ω × r from Section 3.1.3:

ω × r = −ωyx̂+ ωxŷ = ω

⎛
⎝−y

x
0

⎞
⎠ , (3.23)

and we can now see the meaning of the swapping and change of sign of the components
with respect to r=xx̂ + yŷ + zẑ. The vector ω × r sits parallel to the x–y plane,
perpendicular to the plane OABC, with a magnitude:

ω
√

x2 + y2 = |ω||r| sin θ; (3.24)
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that is,

v = ω × r = −ωyx̂+ ωxŷ = ω

⎛
⎝−y

x
0

⎞
⎠ . (3.25)

We have effectively recovered our expression (3.3), v =ωr, for circular motion,
but it is now in a more generalized vector form: v=ω × r. We have achieved this
by inventing the angular velocity vector, ω, which represents the magnitude (rate) of
rotation as well as the direction of rotation.

One final thing, as with the aides-memoire for remembering the direction of ω,
there is a way of easily deducing the direction of a vector product. In performing the
vector product v=ω × r, one may think of a right-hand screw rotation of ω into r;
that is, the direction of v. Therefore the vector product r×ω would be in the opposite
direction.

Q3 Some chewing gum has become stuck on the tread of a tyre. Calculate the speed
of the gum with respect to the axle if it is 40 cm from the axle, which is attached
to a car travelling at 30 m/s. Assume no slip.

Q4 Repeat Q3 for the instantaneous velocity of the chewing gum with respect to the
point of contact with the ground as a function of its height above the ground. +

Q5 An object is being rotated about the z-axis with angular frequency 10 rad/s. What
is the velocity of the point which is momentarily at position (5 cm, 0, 3 cm)? Where
will this point be 5 s later? +

Q6 An object is being rotated about an axis which passes the origin of coordinates.
One part of the object is at position (x, y, z) when its velocity is (u, v, w). Give
the angular velocity ω as a vector, and explain how you would test whether the
motion can be described as a pure rotation. ++

3.1.5 Workshop: Vector triple product

In the workshops and sections that follow, we will be seeing vectors formed by taking
products like

a× (b× c) and (a× b) × c, (3.26)

where a, b, and c are arbitrary vectors. These products are called vector triple products.
Let us consider a× (b× c) first.

(a) Using the rules for vector products of unit vectors (3.1.3) show that

(b× c) = (bxx̂+ byŷ + bz ẑ) × (cxx̂+ cyŷ + cz ẑ)
= x̂(bycz − bzcy) + ŷ(bzcx − bxcz) + ẑ(bxcy − bycx).∗ (3.27)

∗A useful way of representing this result is by writing it in determinant form thus: b× c =∣∣∣∣∣∣
x̂ ŷ ẑ
bx by bz

cx cy cz

∣∣∣∣∣∣ = x̂(bycz − bzcy) + ŷ(bzcx − bxcz) + ẑ(bxcy − bycx).
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(b) Extend what you have done in (a) to show that

a× (b× c)
= x̂{bx(axcx + aycy + azcz) − cx(axbx + ayby + azbz)}

+ ŷ{by(axcx + aycy + azcz) − cy(axbx + ayby + azbz)}
+ ẑ{bz(axcx + aycy + azcz) − cz(axbx + ayby + azbz)}. (3.28)

(c) In Section 2.3, we introduced the scalar product. Collect together terms in the
above expressions and use the rules for scalar products to show that

a× (b× c) = (a · c)b− (a · b)c. (3.29)

(d) Now show that

(a× b) × c = (c · a)b− (c · b)a. (3.30)

This would suggest that a× (b× c) is not equal to (a×b) × c either in magnitude or
direction.

3.1.6 Acceleration vectors in rotating frames

In part (a) of 3.1.3, we mention that the second term of our vector equation is obviously
the velocity vector in the primed coordinates as seen from the unprimed coordinates.
This means that if the two frames were not rotating with respect to each other and
were merely rotated by an angle θ then⎛

⎝ ẋ
ẏ
ż

⎞
⎠=

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝ ẋ′

ẏ′

ż′

⎞
⎠ ; (3.31)

that is, the rotation matrix used to transform the position vector for point P from
unprimed to primed coordinates would work just as well for velocity vectors and indeed
for any vectors. This is not hard to see. A vector is a quantity that has components
in the x-, y-, and z-directions. Whilst these components do not necessarily have the
meaning of distances along these axes, the magnitudes of the components may be
represented as such (all that is needed is an appropriate scale). Therefore, since we
derived our time-derivative expression using (3.31), we may think of differentiation of
a vector K in a rotating coordinate system as applying the symbolic operation:

da
dt

=
dr
dt

+ ω×; (3.32)

that is,

da
dt
K =

dr
dt
K+ ω ×K, (3.33)

where ω is the angular velocity of the rotating frame.
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Let us apply (3.32) to the velocity vector v:

da
dt
v =

dr
dt
v+ ω × v, (3.34)

but

v =
da
dt
r =

dr
dt
r+ ω × r. (3.35)

So (3.34) becomes

da
dt
v =

dr
dt

(
dr
dt
r+ ω × r

)
+ ω ×

(
dr
dt
r+ ω × r

)
. (3.36)

Expression (3.36) contains two things that might be new to the reader:

(i) The derivative of a vector product:
dr
dt

(ω × r)
(ii) The vector triple product: ω × (ω × r).

To carry out (i), we need only respect the order of the vector product (remember that
under the rules of vector products of unit vectors in Section 3.1.3, ω × r �= r×ω).
So,

dr
dt

(ω × r) =
dr
dt

ω × r+ ω × dr
dt
r. (3.37)

To carry out (ii) you will need to follow the rules derived in Section 3.1.5:

ω × (ω × r) = (ω · r)ω − (ω · ω)r. (3.38)

Therefore (3.36) becomes

da
dt
v =

d2
r

dt2
r+

dr
dt

ω × r+ 2ω × dr
dt
r+ ω × (ω × r). (3.39)

Here we have not expanded out the vector triple product.

Q7 Expression (3.39) may be derived by differentiating with respect to t a second
time the expression (3.13) in Section 3.1.3. This exercise is likely to require a page
of algebra and matrices. Notice that we needed to be careful with our notation

and introduced
dr
dt
r to mean:

dr
dt
r =

⎛
⎝cos ωt − sinωt 0

sinωt cos ωt 0
0 0 1

⎞
⎠
⎛
⎝ ẋ′

ẏ′

ż′

⎞
⎠ ;

that is, the velocity relative to the rotating coordinate system. When differenti-
ating a second time, you will need to remember this so that terms containing ẋ′,
ẏ′, and ż′, or ẍ′, ÿ′, and z̈′, do in fact, respectively, involve the velocity in the
rotating frame, or the acceleration in the rotating frame.
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Q8 A millstone with 60 cm radius is being rotated about the z-axis to grind some
flour. Calculate the acceleration of a point on the rim of the millstone:
(a) when the millstone is rotating at a steady 8 rad/s
(b) just as the millstone begins slowing at a rate of 0.2 rad/s2 from its original 8

rad/s.
Q9 Use (3.39) and the results from the workshop in Section 3.1.5 to consider the

uniform circular motion of a point that is stationary in the primed coordinate
frame (x′, y′, z′) with respect to the unprimed coordinate frame (x, y, z). You
should of course recover:

da
dt
v = ω × (ω × r) = −ω2r.

3.1.7 ‘Fictitious force’: Centrifugal and Coriolis forces

Let us look more closely at the meaning of (3.39). To do this, we will consider the
experiences of astronauts living in a giant rotating space station. The living quarters
of this station are on the rim of a huge wheel and it is the rotation that provides the
artificial gravity.

The coordinate system attached to the space station is the primed coordinate
system so setting (dr/dt)ω =0 (as the rate of rotation is not increasing) in (3.39)
would give

da
dt
v =

d2
r

dt2
r+ 2ω × dr

dt
r+ ω × (ω × r). (3.40)

Let us see what an astronaut standing on the rim of the rotating space station
experiences first. We rearrange (3.40) so that we have the acceleration as measured
by the astronaut, (d2

r/dt2)r:

d2
r

dt2
r =

da
dt
v− 2ω × dr

dt
r− ω × (ω × r). (3.41)

Since he is in equilibrium and static with respect to the space station (the rotating
coordinate system), his (dr/dt)r=0 and he experiences no resultant force. Newton’s
second law applied to this astronaut would give us

0 = F− mω × (ω × r), (3.42)

where m is the mass of the astronaut. Looking at the direction∗ of the force vector
−mω × (ω × r), we see that Fmust be directed towards the centre of the space station.
This is of course what we would expect to be the force on the astronaut referred to
the absolute Galilean (unprimed) frame – this is the centripetal force (centre-seeking).

∗For the direction of this vector triple product, work out the direction of ω × r first using the
right-hand screw rule (as suggested in Section 3.1.4), then do exactly the same to do the vector
product of ω with the answer to your first ω × r.
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The force −mω × (ω × r) is therefore the centrifugal force, and whilst it is often called
a fictitious force it is very real to the astronaut.

Now let us turn our attention to an astronaut moving up a service ladder towards
the centre of the space station. The astronaut moves at a velocity (dr/dt)r with respect
to the space station (in Figure 3.6, this vector is labelled (dr/dt)r).

According to (3.41), he should experience a force

−2mω × dr
dt
r. (3.43)

To see this remember that the vector ω is directed as shown in Figure 3.6, so the
cross product −ω × (dr/dt)r will be a vector directed in the same direction as (da/dt)r.
To see how this apparent force arises, we must remember that as the astronaut moves
up the ladder he is moving into parts of the space station that are in fact moving
more slowly than he is. To the astronaut therefore there seems to be some mysterious
force that is pushing him against the ladder as he climbs up it – we know though that
the normal reaction from the ladder provides the force required to slow him down
so that he is moving at the same speed as that part of the space station. The force,
−2mω × (dr/dt)r, is called the Coriolis force after the French mathematician Gaspard
Gustave de Coriolis (1792–1843).

Q10 Use the analysis that led to (3.39) to analyse the motion of a particle moving
at a constant velocity along the x-axis of the unprimed coordinate frame (the
Galilean frame). You will discover that whilst

da
dt
v =

d2
a

dt2
r = 0,
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(d2
r/dt2)r will not be ZERO and will be made up of two components. The par-

ticle’s motion with respect to the primed coordinate frame will be accelerating
– the dynamics would therefore require that there be fictitious forces to explain
why the particle in question does not follow a straight line in the primed coordi-
nate frame. +

3.2 Orbits
3.2.1 The Kepler problem

Johannes Kepler’s (1571–1630) work of 1609 was based on a meticulous analysis of
the accurate astronomical data collected by Tycho Brahe (1546–1601). Working from
a Copernican viewpoint, Kepler found that he was unable to fit the orbit of Mars onto
a circle. Even the inclusion of epicycles (essentially orbits on orbits) could not model
accurately the orbit of Mars. Kepler had great faith in the reliability of Brahe’s data
and continued to search for an explanation for the irregularities in the Martian orbit.
Finally he was able to make the orbit of Mars fit a particular trajectory but only if
he dropped an assumption that he shared with both Copernicus and the Greeks: that
the ‘natural’ path of a planet was a circle. If the orbit of Mars were an ellipse with
the Sun at one of the foci, then the Copernican model fits the data extremely well
without the need for epicycles.

Kepler summarized his discoveries in three laws that now bear his name:

• Kepler’s first law : Planets move on ellipses with the Sun at one of the foci (See
Figure 3.7).
• In more elementary work, we learn that an ellipse may be drawn by using a

loop of inextensible string, two pins, and a pencil. The pins are placed at the
foci (F1 and F2) and the pencil traces a curve keeping the string taut.

• The distance OP is called the semi-major axis and is usually given the sym-
bol a. The distance OQ is called the semi-minor axis and is usually given the
symbol b.

• F1 R F2 is a constant distance no matter where R is on the ellipse. The total
distance F1 R F2 is equal to 2a.

• The distance OF1 (or OF2) is often expressed as a factor e times the semi-
major axis a; that is, OF1 =OF2 = ea. The factor e is called the eccentricity
and is about 0.81 in the ellipse of Figure 3.7.

• Using triangle OF1Q (or OF2Q), we see that a, b, and e are linked, thus

a =
b√

1 − e2
. (3.44)

• Kepler’s second law : The imaginary line connecting the planet to the Sun sweeps
out equal areas over equal periods of time.

• Kepler’s third law : The square of the orbital period (T ) for a planet is proportional
to the cube of the semi-major axis (a) of the ellipse; that is, T 2 ∝ a3.

Kepler’s three laws describe, but they do not explain. By the time Newton came
onto the scene in the late 1660s, the derivation of Kepler’s three laws of planetary
motion from yet more fundamental laws of nature became dubbed the Kepler problem.
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It seems that Newton was aware that an inverse-square∗ force law could lead to
closed trajectories that were conic sections. Conic sections are curves that are obtained
from cutting (taking sections) through cones. Geometry text books are the places to
go for a really in-depth study of such curves. Presently, we are only interested in the
polar coordinate representation of these things. We include it in this text because this
form for conic sections is particularly useful for the study of trajectories that result
from an inverse-square force law.

Pappus of Alexandria (c. ad 300) came up with a way of describing the conic
sections:

A conic section is made up of all the points R that are a distance r from a point
F (which we call the focus) such that the point is also a distance r/e from a fixed line
called the directrix, D. The constant e is the eccentricity of the conic section.

• For 0 < e < 1, the conic section is an ellipse.
• For e= 1, the conic section is a parabola.
• For e > 1, the conic section is a hyperbola.

From Figure 3.8, we can see that d = r cos θ + r/e, which rearranges to

r(θ) =
ed

1 + e cos θ
. (3.45)

In Chapter 2, we introduced the concept of a gravitational field around a point mass.
The gravitational field vector g1 at a distance r away from a mass m1 is

g1 = −G
m1

r3 r, (3.46)

where r is the position vector of the point we are interested in relative to m1.

∗Early in his investigations, Newton realized that two special power laws enjoyed a degree of
mathematical elegance not shared by the others: force decreasing as the square of the distance and
force increasing directly as the distance. Only for these two laws are the orbits conic sections.
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The ‘weight’ of m2 in the gravitational field of m1 is therefore

W = m2g1 = −G
m2m1

r3 r. (3.47)

We are now in a position to attack the Kepler problem. In Figure 3.9, two masses
m1 and m2 have position vectors r1 and r2 in some coordinate system with origin O.
The gravitational interaction between m1 and m2 leads to the following forces between
them:

Weight of m1 in the field of m2 =W1 = G
m1m2

r3 r,

Weight of m2 in the field of m1 =W2 = −G
m2m1

r3 r,
(3.48)

where r= r2 − r1.
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Now W1 is the resultant force acting on m1 and W2 is the resultant force acting
on m2, so Newton’s second law would give us

m1
d2

dt2
r1 =W1 = G

m1m2

r3 r,

m2
d2

dt2
r2 =W2 = −G

m2m1

r3 r.
(3.49)

These two expressions must necessarily sum to zero (Newton’s third law):

m1
d2

dt2
r1 + m2

d2

dt2
r2 = 0. (3.50)

Integration of (3.50) leads to

m1
d

dt
r1 + m2

d

dt
r2 = p, (3.51)

m1r1 + m2r2 = pt + q, (3.52)

where p is a constant momentum vector and q is a constant displacement vector
(multiplied by the total mass). Expression (3.51) is a statement of the conservation of
linear momentum and (3.52) describes how the centre of mass drifts with respect to
the origin of our coordinate system O. The coordinates of the centre of mass may be
obtained by finding the displacement vector R of a mass (m1 + m2) such that

m1r1 + m2r2 = (m1 + m2)R. (3.53)

Combining the expressions in (3.49), we obtain

d2

dt2
r = −G

(m1 + m2)
r3 r, (3.54)

which is a differential equation in r= rx̂′ (Figure 3.10). The solution of this would
give the trajectories of the mass m2 in the coordinate system centred on m1.

θ

m1

m2

r

x̂

ŷ

x̂'
ŷ'

Fig. 3.10
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Q11 A satellite is in a circular orbit of radius r about a spherical planet of mass M .
Show that the orbital period for the satellite is given by

T =
2π√
GM

r
3
2 .

Q12 If the above satellite is in a low altitude orbit, show that the period is determined
entirely by the average density of the planet and not at all by the size of the
planet. +

Q13 A binary star system made up of two stars of mass m1 and m2 in circular motion
about their centre of mass and separated by a distance a. Show that

T 2 =
4π2

G(m1 + m2)
a3.

Compare this expression with the more general expression (3.80) in Section 3.2.4.

3.2.2 Kepler’s first law and properties of d2

dt2 r

The acceleration in (3.54) has some interesting properties because its direction is
always antiparallel to the vector r. We can probe some of these properties by con-
structing various products∗ of (d2/dt2)r with other vectors in the system. To be more
economical on the notation let

d2

dt2
r = a and

d

dt
r = v.

Then,

r× a = −G(m1 + m2)
r3 r× r = 0, (3.55)

and since the vector product of any vector with itself is zero we can write (3.55) as

d

dt
(r× v) = 0, (3.56)

which implies that

r× v = a constant vector. (3.57)

This quantity, which we shall call h here, is a constant of the motion and is therefore
one of the conserved quantities that we will find invaluable in orbital motion problems.
In Section 3.2.3, the workshop uses (3.56) and (3.57) to understand the underlying
reasons behind Kepler’s second law.

When we take the scalar product of (3.54) with v, we get

v · a = −G(m1 + m2)
r3 v · r. (3.58)

∗Either scalar, vector or vector triple products.
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The left-hand side of this is just the time derivative of (v2/2),∗ where v is the
magnitude of the vector v.

The right-hand side of (3.58) requires a little more manipulation,† but also turns
out to be the time derivative of something quite familiar:

−G(m1 + m2)
r3 v · r =

d

dt

{
G(m1 + m2)

r

}
. (3.59)

Therefore (3.58) becomes

d

dt

{
v2

2
− G(m1 + m2)

r

}
= 0, (3.60)

or

v2

2
− G(m1 + m2)

r
= a constant scalar. (3.61)

This of course is another conserved quantity and the workshop in 7.11 takes (3.61)
further and classifies orbits in terms of the values of this conserved quantity.

Finally, taking the vector product of a with r×v or h leads to something very
interesting indeed:

First of all,

h = r× v = r×
(

dr
dt
r+ ω × r

)
=r×

(
dr

dt
x̂′ + ωrŷ′

)
= ωr2ẑ, (3.62)

where we align the rotating x′-axis with the position vector r, with ŷ′ perpendicular
to x̂′, but still in the plane of rotation (see Figure 3.10). So,

a× h = −G
(m1 + m2)

r3 r× ωr2ẑ = −G
(m1 + m2)

r3 r3ωx̂′ × ẑ, (3.63)

∗ d

dt

{
v2

2

}
=

1
2

d

dt
(v) · v +

1
2
v · d

dt
(v) = v · a.

† d

dt

{
G(m1 + m2)

r

}
is not as simple as it looks as r =

√
x2 + y2 + z2 when referred to Cartesian

coordinates:
d

dt

{
G(m1 + m2)√
x2 + y2 + z2

}
= G(m1 + m2)

⎡
⎣−1

2
1

(x2 + y2 + z2)
3
2

2x
dx

dt
+ · · ·

⎤
⎦, with the ex-

pression in the square brackets containing a term for each of the three dimensions of space. This may

be simplified to:
d

dt

{
G(m1 + m2)√
x2 + y2 + z2

}
= − G(m1 + m2)

r3

[
x

dx

dt
+ y

dy

dt
+ z

dz

dt

]
= − G(m1 + m2)

r3
r·v,

which is of course the right-hand side of (3.59).
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which of course is just:

a× h = G(m1 + m2)ωŷ′. (3.64)

But∗

ωŷ′ =
dx̂′

dt
. (3.65)

Once again we can rewrite (3.64) as the time derivative of something†:

d

dt
(v × h) =

d

dt
{G(m1 + m2)x̂′} , (3.66)

which means that

v× h− G(m1 + m2)x̂′ = a constant vector. (3.67)

As we can see from Figure 3.11, the vector v×h is always perpendicular to the
tangent on the trajectory and is always pointing outwards away from the orbiting
masses. We may choose a form for the constant vector so as to clarify its meaning.
Remember, this vector has arisen out of the integration of a time derivative, so its
value is set by the boundary conditions‡ of the system.

In Figure 3.12, we see two possible values of the constant vector. On the left, we
have the situation when the constant vector is zero, so the vector v×h is directed
along the x̂′-axis. In the picture on the right, we see that the non-zero constant vector
(which we have chosen to be parallel to the x̂-axis without loss of generality) shifts
the circle on which the end of the vector v×h resides.

∗ dax̂′

dt
=

drx̂′

dt
+ ω × x̂′ = ωẑ× x̂′ = ωŷ′, as

drx̂′

dt
= 0 because x̂′ is stationary with respect to the

rotating coordinate system.
†As h is itself a constant vector

d

dt
(v×h) = a×h.

‡When one solves a differential equation the resulting solution is of course a general solution; that
is, it describes all the possible solutions to the equation. To make the solution specific to the physical
system under study, one needs to introduce the boundary conditions, which are specific values of the
variables at their extremities, for example at t = 0 or t = ∞ (hence the word ‘boundary’).
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The vector v×h sits in the same plane as v. The situation on the left-hand side
of Figure 3.12 is obviously the condition for a circular orbit as v×h is along x̂′ and
therefore x̂′ and hence r is always perpendicular to the velocity v. The situation on the
right must therefore be the condition for an elliptical orbit with v×h having maximum
and minimum magnitudes corresponding, respectively, to the points of minimum and
maximum magnitudes of r.

As we shift the two circles further apart (Figure 3.13) with a constant vector equal
and exceeding in magnitude of v×h, we see that v×h never takes values along the
negative x̂-axis. Thus, the orbits corresponding to these choices of the constant vector
cannot be periodic and these values of v×h turn out to be values taken up as the
magnitude of r tends to infinity. In these two cases then we have respectively the
parabolic and hyperbolic orbits.

This pictorial analysis of v×h means that we can integrate (3.66) to obtain

v× h = G(m1 + m2)(x̂′ + e), (3.68)

where G(m1 + m2)e is the constant vector and e is a vector with a magnitude:

• 0 ≤ e < 1 for a periodic orbit (circle or ellipse)
• e= 1 for a parabolic orbit
• e > 1 for a hyperbolic orbit.
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We can now take the scalar product of r with v×h and obtain

r · (v× h) = G(m1 + m2)(r + er cos θ), (3.69)

where θ is the angle between r and e. Now∗ r · (v×h) = (r×v) · h = h · h = h2, so

r(θ) =
h2/G(m1 + m2)

(1 + e cos θ)
, (3.70)

which of course is the form for a conic section (3.45).

3.2.3 Workshop: Kepler’s second law

In the previous section, the constant vector h (r×v=ωr2ẑ) figures a lot in the
analysis.

What is this constant?
In Figure 3.14, the radius vector r changes by a vector ∆r over an interval ∆t.

The vector product (see Section 3.1.3) of r and ∆r is a vector perpendicular to the
plane containing r and ∆r and has a magnitude that is the area of the parallelogram
ABCD. The vector product r×∆r is

|r||∆r| sinφ ẑ = r∆r sinφ ẑ, (3.71)

where φ is the angle CBE in Figure 3.14.
(a) Show that r∆r sinφ is just the area of the parallelogram ABCD.
(b) Hence show that the area swept, ∆A, by r in the time ∆t is

∆A =
1
2
r× ∆r. (3.72)

In the limit as ∆t → 0, the instantaneous rate of change of this vector is given by

d

dt
A =

1
2
r× d

dt
r. (3.73)

∗A · (B×C) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Bx By Bz

Cx Cy Cz

Ax Ay Az

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Cx Cy Cz

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ = (A×B) · C; that is,



Orbits 3.2 75

(c) Hence show that

d

dt
A =

1
2
hẑ. (3.74)

Expression (3.74) essentially says that the rate at which area is swept by the radius
vector is a constant of the motion. This is of course nothing more than Kepler’s second
law – the imaginary line connecting the planet to the Sun sweeps out equal areas over
equal periods of time.

3.2.4 Workshop: Kepler’s third law

We see from the previous section that the outcome of looking for an r(θ) is to rediscover
the general form for a conic section. Remember, our analyses began by looking at the
motion of two point masses about each other (m1 and m2) under the influence of the
gravitational force. Let us just take stock of the major results:

(i) The general expression for a conic section in polar coordinates is

r(θ) =
p

1 + e cos θ
, (3.75)

where p is a constant and e is the eccentricity.
For
• 0 ≤ e < 1 the conic section is a circle or an ellipse.
• e= 1 the conic section is a parabola.
• e > 1 the conic section is a hyperbola.

(ii) The gravitational interaction between the two masses is through their centres,
so provides no ‘torque’ (See Workshop 7.8). The consequence of this is that the
radius vector r sweeps out equal areas in equal times:

d

dt
A =

1
2
hẑ. (3.76)

Here A is a vector that has a magnitude (a constant h) which is the area
swept per second by the radius vector and direction parallel to ẑ.

(iii) The polar coordinate form of our solution for the trajectories is

r =
h2/G(m1 + m2)

1 + e cos(θ)
. (3.77)

(a) Taking the case of a closed orbit so that we can define a time period T, we have
a general form for the trajectory in Cartesian coordinates:

x2

a2 +
y2

b2 = 1, (3.78)
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where a and b are related by equation (3.44) with 0 ≤ e < 1:

a =
b√

1 − e2
,∗

show that

πab

T
=

1
2

√
pG(m1 + m2),† (3.79)

with

p = a(1 − e2).

(b) Hence show that

T 2 =
4π2

G(m1 + m2)
a3. (3.80)

Q14 By using the expressions:

r =
a(1 − e2)

1 + e cos(θ)

and

h = ωr2,

which arose out of our analyses of planetary trajectories, show that
• V 2 =G(m1 + m2)

( 2
r − 1

a

)
for an elliptical orbit,

• V 2 =G(m1 + m2)
( 2
r

)
for a parabolic orbit, and

• V 2 =G(m1 + m2)
( 2
r + 1

a

)
for a hyperbolic orbit,

where V is the orbital speed: V =
√

ṙ2 + ω2r2.
Q15 A spacecraft in an elliptical orbit around the Sun (mass M) has a period T .

Rocket motors on-board the craft are fired and an impulse is imparted to the
craft so that the orbital speed V is increased by an increment ∆V without a
change in direction of the velocity. Use Kepler’s third law and results obtained
in the last question to obtain the resulting increase in time period.

∗For a circle of course a = b = R and e = 0.
†The area A enclosed by a closed conic section (circle or ellipse) is given by A = πab.
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3.3 Conclusion

In this chapter, we have concentrated on techniques of visualization and representation
of rotating systems. Our aim has been to see how the mathematics of rotation emerges
from the physics. By introducing the relationships between rotated coordinate systems
in a matrix representation, it was possible to approach rotating frames of reference
using the same mathematical framework, which provides a neat and tidy structure.
The vector product appears in this structure quite naturally, and a generalized form
for a vector description of rotation with respect to a Galilean frame is achieved. This
is made possible by the introduction of the angular velocity vector ω, which represents
the magnitude (rate) of rotation as well as the direction of rotation.

All of this is then applied to elucidate problems in ‘fictitious forces’ and the deriva-
tion of planetary trajectories from Newtonian mechanics. This chapter is also linked
closely with workshops contained in Sections 7.8–7.11 in Chapter 7. In order to fully
appreciate those workshops, students meeting the material for the first time should
work through Chapter 3 first.



4
Oscillations and waves

Two of the greatest frameworks in physics have already been described in this book.
Classical mechanics predicts the general motion of any body (whether in straight lines
or rotation), and the study of fields enables us to understand the interaction of different
objects, and as such goes to the root of what physics is about. And yet, the story,
if left there, would be incomplete even for a nineteenth-century physicist. Very often
(especially in practical situations) fields conspire (through the principles of mechanics)
to produce repeating patterns of motion. While these can be studied using the normal
techniques of classical mechanics, special methods for describing them make life much
simpler for the physicist or engineer.

The physicist appreciates these methods because they often illuminate a new facet
of nature. When Maxwell combined the electromagnetic field equations to produce
the possibility of an electromagnetic oscillation (i.e. wave), he opened the door to the
development of radio, and thus to all manner of communications we enjoy today. When
Young, Fraunhofer, Fresnel, and others applied wave methods to light, they gave the
study of light a level of importance which has not died to this day. When de Broglie,
Schrödinger, and others accredited particles themselves to have wave properties, it
gave birth to an exceptionally fruitful form of quantum theory, which now gives the
theoretical underpinning to much of chemistry.

To the engineer, the wave methods hold a different fascination. Vibrations occur
for a whole variety of reasons. Unless these can be understood, the safety of a struc-
ture cannot be ensured. A bridge which is perfectly stable in still air may not be so
secure if subjected to periodic forces. In addition, the electronic engineer understands
that without a very sound comprehension of waves, no communication system can be
developed effectively.

4.1 Describing an oscillation

If an object oscillates, and we draw a graph of its position as a function of time, the
result (for a 2 Hz oscillation) is shown in Figure 4.1.

The graph can be described using the sine function, since the position is zero (and
increasing) at t = 0. However, y = sin t would not describe this oscillation, since
sin t goes through one whole cycle every time t gets bigger by 2π radians, whereas
our wave goes through one whole cycle every half second. Accordingly, the function
we need to use is y = sin 4πt. Similarly, a wave with a frequency of 1 Hz would be
described by the function y = sin 2πt. Usually we would write this as

y = A sinωt, (4.1)
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where A is the amplitude and ω is called the angular frequency. The angular frequency
is related to the frequency f and time period T by the equations:

ω = 2πf, (4.2)
ω = 2π/T. (4.3)

We have not finished with the simple oscillation yet. Not all oscillations start with
y = 0 when t = 0. Some have a peak at t = 0, and for these we may write y = A cos ωt.
However, others start neither at a peak nor at the equilibrium position. For these, we
introduce a phase factor φ which tells the ‘angle’ of the cosine when t = 0. In general
then, we may write an oscillatory motion as

y = A cos(ωt + φ). (4.4)

This can be shown to be equivalent to

y = A cos (ωt + φ)
= A cos ωt cos φ − A sinωt sinφ.

(4.5)

Now if you have a free choice of A and φ, you can choose the ‘amplitudes’ of the
sine and cosine terms to be any values you like. Accordingly, you will frequently see
the general solution written as

y = C cosωt + D sinωt, (4.6)

where the constants C and D are chosen to give the right overall amplitude and phase
to the oscillation. The A and φ of equation (4.4) are related to the C and D of (4.6)
by the equations:

C = A cos φ

D = −A sinφ
(4.7)

A =
√

C2 + D2
∗

φ = tan−1
(−D

C

)
.

(4.8)

∗This formula for φ must be used with care, since there will be two solutions for φ within the range
0 ≤ φ < 2π. The correct one must be chosen using common sense or by checking using equation (4.7).
An example of this checking is given in workshop 4.1.1 part (a)(iv).
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If an object’s motion is described by the equation y = A cos(ωt + φ), then we may
work out its speed and acceleration:

u =
dy

dt
= −ωA sin (ωt + φ) ,

a =
d2y

dt2
= −ω2A cos (ωt + φ) = −ω2y.

(4.9)

You will notice that the acceleration is proportional to the displacement y but has
opposite sign. Motion such as this is called simple harmonic motion, and an oscillator
undergoing this kind of motion is said to be a harmonic oscillator.

Notice that it follows from equation (4.9) that

u2 + ω2y2 = ω2A2 (4.10)

at all times. When equation (4.10) is multiplied by half the mass of the oscillator,
the left term gives the kinetic energy, the second term the potential energy, and the
final term the constant total energy. This makes it clear that the energy of a wave is
proportional to the square of its amplitude.

Q1 Write down an equation for an oscillation with frequency 4 Hz, where the ampli-
tude is 4 cm, and the object starts off with y = 4 cm.

Q2 Write down an equation for an oscillation with frequency 10 Hz, where the am-
plitude is 5 cm, and the objects starts off with y = 3 cm (and getting bigger).

Q3 Work out the amplitude and phase factor of an oscillation described by the equa-
tion y = 3 cos ωt + 4 sinωt.

Q4 An object moves in a two-dimensional plane where its position vector is given by
(x,y) = (5 sinωt, 5 sin 2ωt). Describe its motion – and use a graphical calculator
or spreadsheet to check your answer. +

4.1.1 Workshop: Simple harmonic motion

Motion of the form described in equation (4.9) is so important that it is worth further
study. Any object which remains stationary is in equilibrium. If you slightly displace
such an object with a knock or a shake, it usually has a tendency to return to its earlier
position with a force more or less proportional to the disturbance. These conditions
give rise to simple harmonic motion.

(a) Suppose an object with mass m = 0.3 kg is free to move in one dimension, with
its position at any time given by the function y(t). Suppose in addition that it
is subject to a force which is proportional to its distance from the y = 0 point.
If the force acting on the object has the same sign as y, the force will point
away from the equilibrium point and the object will never return. However, if
the force acting on the object points back towards y = 0, the force will have
the opposite sign to y and oscillations will occur.
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For these questions, assume that the force on the mass is given by F = −ky
where k = 1.2 N/m.
(i) Show that Newton’s second law for this oscillator takes the form of equa-

tion (4.9) and find the angular frequency of the motion.
(ii) Suppose that the object is stationary at t = 0, with y(0) = 2 m. Assume

that the motion can be described by an equation of the form of (4.6), and
calculate the C and D coefficients. What is the amplitude of the motion?

(iii) Repeat part (ii) assuming that the object is at y = 0 at t = 0, but with a
velocity of +6 m/s.

(iv) Suppose that at t = 0, y = 2 m and dy/dt = −1.5 m/s. Derive an equa-
tion to describe the motion at later times, and convert it to the form
y = A cos(ωt + φ). From this write down the amplitude of the motion, and
work out the first time after t = 0 at which the object is stationary.

(b) We now extend the work of section (a) to include the situation where the force on
the mass has a part proportional to y and a constant part. We write F = −ky+h
where you may take k = 1.2 N/m and h = 0.45 N. In this workshop we shall
satisfy ourselves that the frequency of oscillation is not affected by the presence
of the constant term h.
(i) Write Newton’s second law for this oscillator and show that it takes the

form:

d2y

dt2
= Py + Q,

where P and Q are constants, which you should evaluate in terms of m, k
and h.

(ii) Show that y = A cos (ωt + φ) can never be the solution to your answer to
(i) no matter what values are chosen for A, ω, or φ.

(iii) Derive an expression for the position of the equilibrium point y0, that is
the point at which the mass experiences zero resultant force.

(iv) If we define new coordinates y′ which measure the position of the object
with respect to the equilibrium position (so that y′ = y − y0), show that
Newton’s second law in the new coordinates has no constant Q term, and
accordingly, y′ can be expressed in the form A cos (ωt + φ).

(c) Suppose that our 0.3 kg mass is subject to a force F = −ky+hy2 where k = 1.2
N/m as before and h = 2 N/m2. The mass is initially at rest at y = 0. It is then
knocked out of position by 3 cm and released. Will it undergo simple harmonic
motion?

4.2 Workshop: Introducing complex numbers
It turns out that there is a simpler way of representing oscillation than using sines and
cosines – and this involves the use of complex numbers. Accordingly in this section we
revise the basic ideas of complex numbers.

We start with a number line, as shown in Figure 4.2, with the zero in the middle
and the positive numbers to its right. We now imagine this to be the x-axis of a
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two dimensional surface, and it is called the real axis. The corresponding y-axis is
called the imaginary axis. The number one unit along the positive y-axis from zero is
called i, the next is twice as big (2i), then we have 3i, 4i, and so on.∗ Similarly, on
the negative y-axis we have −i, −2i, −3i, and so on.

Any point on the plane can be described by its x- and y-coordinates, which are
called the real and imaginary parts of the number. Thus the point A in Figure 4.2 is
3 + 2i, while B is at 4 − i and C is at −1 + 2i.

Complex numbers can be added or subtracted in a manner analogous to the addi-
tion or subtraction of vectors, where real and imaginary parts of numbers are summed
separately. Thus (3 + 2i) + (−1 + 6i) = 2 + 8i.

(a) What happens to a point on the complex plane when you add 1 to it?
(b) What happens to a point on the complex plane when you add i to it?
(c) Describe what happens to a point on the complex plane when you multiply it

by 2 (this multiplies real and imaginary parts by 2).
(d) Describe what happens to the point labelled +1 when you multiply its complex

number by i. What happens when you multiply the point labelled −1 by i?

You should have found that multiplication of a complex number by a real number
(like 2) moves it away from or towards zero, without changing its ‘bearing’ from the
origin. On the other hand, multiplication by i takes the point representing a real
number and rotates it by 90◦ anticlockwise with the origin as the centre of rotation.

∗Warning to engineers: Frequently you will see the letter j used instead of i. This is because in
engineering i is often used to label electric currents, and we do not want to get them confused. That
said, things are rarely this straightforward. The letter j is frequently used to label currents too.
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If we want multiplication by i to rotate any point by 90◦ anticlockwise, then this
means that we must require that i × i = −1.

(e) Start with a point z = x + iy, where x and y are real (they label the real
and imaginary parts of z). Using the information that i × i = −1, show that
iz = −y + ix, and accordingly that this point has also been rotated by 90◦ about
the origin on multiplication by i. Note that we sometimes use the notation Re(z)
to mean ‘real part of z’, and similarly Im(z) means ‘imaginary part of z’.

(f) Show that, for any complex numbers a and b, Re(ab) = Re(a) Re(b) − Im(a) Im(b)
and that Im(ab) = Re(a) Im(b) + Im(a) Re(b). Hint : Write a and b in terms of
their real and imaginary parts (a = p + iq, b = r + is), and then work out ab in
terms of p, q, r, and s.

(g) The complex conjugate of a number is defined to be the reflection of its point in
the real axis. Thus the complex conjugate of z = x+ iy is z∗ = x− iy (here, once
more, we take x and y to be real numbers). Write down the complex conjugates
of 3 + 2i, 5 − 3i, −2 + i, and −4 − 5i.

(h) Show that if z = ab, where z, a, and b are all complex, then z∗ = a∗b∗.
(i) Show that Re (z) = 1

2 (z + z∗), and find a similar expression for Im(z).
(j) The ‘direct distance’ from the origin to a point on the complex plane is called its

modulus. Thus the modulus of 3 + 4i, written as |3 + 4i| = 5. Show that when
you multiply a complex number z by its complex conjugate z∗, you always get a
real number equal to |z|2. For this reason z∗z is called the modulus square of z.

(k) The ‘bearing’ of a point on the complex plane is called its argument (Arg). By
convention, the arguments of positive, real numbers are zero; the arguments of
positive imaginary numbers are +π/2 (never, but never use degrees). If Arg(z) = θ,
show that Re(z) = |z| cos θ, while Im(z) = |z| sin θ.

(l) Work out the real and imaginary parts of i3, i4, i5, and i6.
(m) It can be shown (see Section 7.2) that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · .

It is also true (providing your angles are in radians, as they should be) that

cos θ = 1 − θ2

2!
+

θ4

4!
− θ6

6!
· · · and sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
· · · .

Use these facts, together with your answers to part (l) to show that eiθ =
cos θ + i sin θ. This means that reiθ is a natural way to represent the complex
number which has modulus r and argument θ.

(n) If I multiply the complex number reiθ by seiφ, what is the result? Assume that
r, s, φ, and θ are all real. What is its modulus? What is its argument?

(o) Suppose z = eiθ and w = eiφ, where θ and φ are real. Show that Re(zw) =
cos(θ+φ) using your results to parts (f), (k), and (n). Remembering that Re(z) =
cos θ, Re(w) = cos φ, and so on, show that cos (θ + φ) = cos θ cos φ − sin θ sinφ.
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Similarly, use the imaginary parts to prove that sin (θ + φ) = sin θ cos φ +
cos θ sinφ. Hint : You may find your answers to (f) or (i) useful.

(p) Show that cos θ = 1
2

(
eiθ + e−iθ

)
and that sin θ = 1

2i

(
eiθ − e−iθ

)
.

4.3 Describing an oscillation using complex numbers
If we use the results of the last section, we can rewrite our equation (4.4) in terms of
the real part of a complex number:

y = Re Aei(ωt+φ). (4.11)

This in turn can be written as

y = Re Aeiφeiωt, (4.12)

and if we define a complex amplitude B = Aeiφ, then our equation becomes

y = Re Beiωt. (4.13)

Complex numbers are ideally suited to describing oscillations, because a complex
number, with its modulus and argument, can describe both amplitude and phase at
the same time.

The convenience of using complex numbers to describe oscillations becomes clear if
we wish to add two oscillations together. Suppose that y = A cos ωt+B cos(ωt+φ). We
can simplify this by looking up trigonometric identities; however, it is much simpler
to note that

y = Re Aeiωt + Re Bei(ωt+φ)

= Re
{(

A + Beiφ
)
eiωt
}

, (4.14)

and that the complex amplitude of the combined wave is given by the number A +
Beiφ. The amplitude and phase of the oscillation are then given by the modulus and
argument of this complex amplitude. They can be worked out as

Amplitude:
∣∣A + Beiφ

∣∣ =√(A + Beiφ) (A + Be−iφ)

=
√

A2 + B2 + AB (eiφ + e−iφ)

=
√

A2 + B2 + 2AB cos φ. (4.15)

Phase: Arg
(
A + Beiφ

)
= tan−1

(
Im
(
A + Beiφ

)
Re (A + Beiφ)

)

= tan−1
(

B sinφ

A + B cos φ

)
(4.16)

While this may seem a trifle messy, it is not as messy as using the trigonometric
functions throughout. In addition, we are usually happy to calculate the complex
amplitude and leave it at that – it does after all contain all of the essential information.
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Notice one other helpful consequence of using complex numbers to describe an
oscillation. Suppose that y = A cos ωt = Re Aeiωt. It follows that

dy

dt
= Re iωAeiωt, (4.17)

and hence that the complex amplitude of the velocity is directed along the imaginary
axis of the complex plane at t = 0, showing that it has been rotated by π/2 radians
with respect to the displacement y. This in turn means that the derivative has a phase
π/2 greater than the original, and we can observe this in much greater clarity than
if we had differentiated A cos ωt to get −Aω sinωt. Waves of different phases can be
added very conveniently without the need to add sines to cosines – and this is a great
strength of the notation, as will become clear when we look at interference calculations.

4.4 Workshop: Damped oscillators

To demonstrate the usefulness of complex numbers to describe oscillations in practical
situations, we are now going to solve the ‘damped oscillator’ problem. This describes
the motion of a car wheel on the end of a suspension point, a bridge when a load is
applied, and many other things besides.

Suppose a particle has mass m and is constrained to move in one dimension only.
Its position is given by x, and it is subject to two forces:

• A restoring force directed towards x = 0 of magnitude kx.
• A friction force directed in opposition to its motion, which is proportional to

its speed. The force has magnitude rẋ, where we use the dot to signify ‘time
derivative’.

(a) Show that the equation satisfied by the motion of the particle is

F = ma

−kx − rẋ = mẍ,

and hence that mẍ + rẋ + kx = 0.
(b) Now we assume that the solution is given by x = Re(z), where z is a complex

number equal to Aeαt and A and α are complex constants as yet unknown.
Show that our solution will suffice providing that(

mα2 + rα + k
)
z = 0. (4.18)

(c) Given that we do not want z = 0, it follows that we require a value of α such
that the quadratic in brackets is zero. Find the two values of α which satisfy
this condition – we shall call them α1 and α2.

If r2 − 4mk > 0, then there is a lot of resistance in the system – it is said
to be overdamped. In this case α1 and α2 are both real and negative, and the
solution can be written as

z = A1eα1t +A2eα2t. (4.19)
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If r2 = 4mk, then the situation is said to be critically damped, and the
solution is of the form

z = e−rt/2m (A1 + A2t) . (4.20)

(d) Show that the solution given as equation (4.20) does satisfy the differential
equation in the case when r2 = 4mk.

(e) If r2−4mk < 0, we have an underdamped situation. Remembering that i2 = −1,
show that α1 and α2 are now equal to

− r

2m
+ i

√
k

m
− r2

4m2 and − r

2m
− i

√
k

m
− r2

4m2 . (4.21)

(f) In this case, show that the solution is of the form

z = e−rt/2m (Aeiωt + Be−iωt
)
, (4.22)

where ω is equal to the square root in (4.21), and is real. The solution can also
be written in the form

x = e−rt/2m (C cos ωt + D sinωt) , (4.23)

where C and D are real. The solution is an oscillation with diminishing
amplitude.

(g) Try solving parts (e) to (f) without using complex numbers. Assume that you
already know that the solution is of the form e−at (C cos ωt + D sinωt), and
determine the values of a and ω in terms of m, k, and r.

4.5 Describing a wave in one dimension

If you set up a row of oscillators and tie them together, then each one causes the next
one to move. This sets up a wave. Let us suppose that a wave is being set up by an
oscillator at a position we call x = 0, which moves according to y = A cos (ωt + φ)
(Figure 4.3). The peaks and troughs then move away from this oscillator to increasing
x at a speed c.

x

y

Oscillator moves
y = A cos (ωt +φ)

Wave  moves away at speed c

Fig. 4.3
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I want to know the height y of the wave at position x at time t. How do I work
this out?

Whatever I have now at position x has taken a time x/c to reach this point from the
oscillator. Accordingly whatever is at position x now was at the origin x/c seconds
ago. Thus whatever is at position x at time t was at the origin at time t − x/c.
Mathematically, this reasoning is written as

y(x, t) = y
(
0, t − x

c

)
= A cos

{
ω
(
t − x

c

)
+ φ
}

= A cos
(
ωt − ωx

c
+ φ
)

. (4.24)

We now look at this function for a fixed value of t. This is equivalent to taking
a ‘freeze frame’ picture of the wave in progress. Let us find its wavelength. As you
look further down the wave, the wave will start repeating its pattern once ωx/c has
increased by 2π. Accordingly the distance you need to move down the wave before you
get a repetition is λ = 2πc/ω = c/f . We can rewrite our wave using the wavelength as

y = A cos
(

ωt − 2πx

λ
+ φ

)
, (4.25)

although it is more common to define a wavenumber k = 2π/λ, and then to write

y = A cos(ωt − kx + φ) (4.26)

or

y = Re Aeiφei(ωt−kx). (4.27)

The use of k is partly done to make the equation more tidy – however, it has a
knock on benefit that the quantity k can be considered a vector when the wave is
moving in three dimensions. We shall come back to this later.

Before leaving this section of wave description, it is worth making one point. If you
change the −kx into a+kx, you make a wave which moves the other way: towards −x.

Q5 Show that ω/k gives the wave speed c.
Q6 Work out the wavenumber and angular frequency for a 2 m wavelength, 7 Hz

wave. If the wave has an amplitude of 3 cm, write an equation to describe it.
Assume that there is a maximum (peak) at x = 0 when t = 0.

Q7 Write the equation for a wave identical to that in Q6, only going the
opposite way.

Q8 Add the two waves you wrote in Q6 and Q7. This makes a standing wave. There
are certain values of x for which y = 0 at all times. These are called the nodes.
Calculate the position of the nodes. Derive an expression for the amplitude of
the oscillations at position x. +

4.6 Interference – a brief introduction

Most wave physics involves encouraging a wave to take more than one route from
a source to a detector, and then experimenting and calculating to find the intensity
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of the wave at the detector. The different routes will have different lengths. If the
original wave started off as y = Re

(
Bei(ωt−kx)

)
, then after travelling along an ad-

ditional path of length L, it will now be described by y = Re
(
Bei(ωt−k(x+L))

)
=

Re
(
Be−ikLei(ωt−kx)

)
.

Let us now suppose that two waves of equal amplitude B arrive at the same point
(same x) via two different routes of lengths L1 and L2. The total disturbance is equal
to the sum of the contributing wave displacements:

y = Re
(
Be−ikL1ei(ωt−kx) + Be−ikL2ei(ωt−kx)

)
= Re

(
B
(
e−ikL1 + e−ikL2

)
ei(ωt−kx)

)
. (4.28)

The complex amplitude is thus given by B
(
e−ikL1 + e−ikL2

)
. We can calculate the

measured amplitude if we first calculate the modulus square of the complex amplitude:

B
(
e−ikL1 + e−ikL2

)
× B∗

(
eikL1 + eikL2

)
= |B|2

(
2 + eik(L1−L2) + eik(−L1+L2)

)
= |B|2 (2 + 2 cos k (L2 − L1))

= |B|2 4 cos2
(

1
2
k (L2 − L1)

)
,

which gives us a real amplitude (modulus) of

2
∣∣∣∣B cos

(
1
2
k (L2 − L1)

)∣∣∣∣ . (4.29)

This depends on the difference in the two path lengths. You will often see L2 − L1
written as the ‘path difference’ or ‘path length difference’. Once multiplied by k,
the path difference becomes the phase difference of the two waves. We see from
equation (4.29) that if the phase difference is an even multiple of π the resulting
amplitude will be twice the original amplitude. If the phase difference is an odd mul-
tiple of π, there will be complete destructive interference, and the waves will ‘cancel
out’.

Q9 Suppose three waves of equal amplitude meet at a point. The complex amplitudes
of the three waves are Ae−iφ, A, and Aeiφ, respectively. Calculate the modulus
square amplitude, and find which values of φ give rise to full constructive inter-
ference and full destructive interference. +

Q10 Use the formula for the sum of a geometric series to find the modulus square
amplitude when N waves meet at a point, where the complex amplitude of the
pth wave is given by Aeipφ, where p can take the values 0, 1, 2, 3, . . . , N − 1.
Determine the values of φ for which full constructive and full destructive inter-
ference occur. ++

Q11 Plot the modulus square amplitudes as functions of φ for Q9 and Q10 in the cases
where N = 3, N = 5, and N = 10. What would you expect to find for N = 10 000?
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4.7 Workshop: The wave equation

So far we have looked at how you describe a wave, but we have said nothing about how
they ‘work’. It turns out that whenever you have a wave, the physics of the situation
(be it water waves on the ocean, seismic waves in the Earth or radio waves in the
air) fits a differential equation called the wave equation. Our equation (4.26) is the
solution to the wave equation.

The wave equation is an example of a partial differential equation – that is an
equation containing partial derivatives. So, in this section we shall not only introduce a
vital equation but also revise our understanding of partial derivatives from Section 2.3.

We shall start with a wave of the form y = A cos (ωt−kx+φ) = Re Aeiφ ei(ωt−kx).
In the questions that follow, it is probably best if you attempt them twice – once using
trigonometric functions and once using the complex exponential method.

(a) Work out the partial derivative ∂y/∂x. This means that you differentiate y with
respect to x, treating t as a simple constant.

(b) Differentiate your answer to (a) to get the second derivative of y with respect
to x, that is ∂2y

/
∂x2. Show that this is equal to −k2y.

(c) Work out the partial derivative ∂y/∂t. Here you differentiate y with respect
to t, treating x as a constant.

(d) Work out the second derivative ∂2y
/
∂t2 by differentiating your answer to (c)

by t once more. Show that ∂2y
/
∂t2 = −ω2y.

(e) Show that (∂2y/∂x2) = (k2/ω2)(∂2y/∂t2) = (1/c2)(∂2y/∂t2), where c = ω/k
is the speed of the wave. This partial differential equation is called the wave
equation.

(f) Show that any function of the form f(ωt± kx) would satisfy the wave equation
given in (e). While the cosine or complex exponential function is not the only
solution to the wave equation, it turns out to be the most useful because it has
a well-defined frequency and wavelength, and furthermore any other function
can be built up from sine and cosine waves.

4.8 A wave on a string

The simplest kind of wave to analyse is a transverse wave set up on a taut string. We
start with the string lined up horizontally with the x-axis, and then wiggle one end up
and down in the y-direction. We shall assume that the tension in the string is T , and
that this is sufficiently high that additional tensions caused by the extra stretching of
the string as it wiggles are negligible in comparison to T . The position of the string at
position x at time t is denoted y(x,t). While the true string is continuous, it is easier
to analyse if we start by thinking of it as a string of beads, each of mass m, on a light
string. In this way, the string joining each bead will be straight. Let the angle between
the horizontal and a string leaving a bead be αx.

As shown in Figure 4.4, the vertical component of the force on oscillator x is
given by

Fy = T sinαx − T sinαx−δx,
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while the horizontal component is

Fx = T cos αx − T cos αx−δx.

It turns out to be quite acceptable to assume that the angles α are small, and
so cos α = 1 (to first order in α), while sinα =α. Accordingly, all of the interesting
motion will be in the vertical direction.

Fy = T (αx − αx−δx) ≈ T
∂α

∂x
δx. (4.30)

Now, since α is small, we may also write α ≈ tanα = ∂y/∂x. Thus,

Fy ≈ T
∂

∂x

(
∂y

∂x

)
δx =

∂2y

∂x2 δx. (4.31)

The bead’s vertical component of acceleration is ∂2y/∂t2, and so we write Newton’s
second law for this oscillating particle as

Fy = may

T
∂2y

∂x2 δx = m
∂2y

∂t2

T
∂2y

∂x2 =
m

δx

∂2y

∂t2
.

(4.32)

Now m/δx is the mass per unit length of string, usually called the density (even
though it is not a mass per unit volume) and denoted ρ. The equation then becomes

∂2y

∂x2 =
ρ

T

∂2y

∂t2
, (4.33)

which is identical in form to the wave equation derived in the workshop, providing
that the c2 of the wave equation is equal to T/ρ. This not only tells us that waves
can pass up and down the string, but also tells us that their speed must be given by
c =
√

T/ρ.
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Q12 Use the equation c =
√

T/ρ for a transverse wave on a string to work out the
mass per unit length needed on each of the strings on a violin. Violin strings are
about 50 cm long, and held at a tension of about 50 N. The four strings on the
instrument produce sounds of frequency 196, 293, 440, and 660 Hz, respectively.
Why do you think that violin makers prefer all four strings to be at approximately
equal tensions?

4.9 Energy content of a wave
Waves may oscillate, and may travel up and down a string. But at the end of the day,
we use waves to carry energy, and hence information. Ascertaining the rate at which
a wave carries energy is essential. The simplest way of doing this is to work out how
much energy each metre’s worth of wave carries. Because the wave’s speed (c) is the
distance covered by the signal each second, the energy passing a point in one second
is equal to the energy contained in c metres.

If we take the wave’s function as y = A cos (ωt − kx), then the vertical component
of velocity is given by ∂y/∂t = −Aω sin (ωt − kx). The kinetic energy of a short length
δx of string (of mass ρ δx) is accordingly:

δK =
1
2
ρ δx (∂y/∂t)2 =

1
2
ρA2ω2 sin2 (ωt − kx) δx. (4.34)

The average value of the sin2 function is one half, and accordingly we expect the
kinetic energy carried by a short section of wave to be (on average)

δK =
1
4
ρA2ω2δx. (4.35)

The potential energy carried by each metre of wave is more tricky to calculate.
However, if we think of the wave as a string of oscillators, any one of which is transfer-
ring its kinetic energy into potential and then back again, it follows that the average
value of potential energy will be the same as the average kinetic energy.∗ Accordingly,
the total energy of each metre is twice the value in equation (4.35) once the potential
energy is included as well.

We can now calculate the power of the wave – the energy passing a point each
second – by multiplying this figure by the speed of the wave:

P =
1
2
ρA2ω2 × c. (4.36)

This equation gives us two important pieces of information. First, the power trans-
mitted by a wave is proportional to the square of its amplitude. This means that if you
want to double the power of a wave you only need to increase its amplitude by

√
2.

∗We are here hiding the full details. A travelling wave is not like a string of independent oscillators
in that energy can be passed from one to another down the string. It does turn out to be true that the
average potential energy is equal to the average kinetic energy; however, the places of greatest kinetic
energy are also the places of greatest potential energy, while the points in between have neither form
of energy.



92 Oscillations and waves

Second, the equation contains the factor ρc. This proves to be fundamental in its own
right, and it is called the impedance of the wave, and is given the symbol Z. While
we use this information below, a fuller description of the meaning of impedance will
have to wait until our chapter on electric circuits. In terms of impedance,

P =
1
2
ZA2ω2. (4.37)

Q13 Show that the impedance of a wave on a string is also given by the expression T/c.
Q14 Show that the power of a wave is also given by the expression 1

2Tck2A2.
Q15 When a wave moves from one medium to another, the frequency remains the

same, but the wavelength usually changes. Suppose two strings are tied end to
end, and a wave passes across the join from one to the other. The tensions in
the strings must be equal. Show that the ratio of the impedances of the waves
on the two strings is the same as the ratio of the wavenumbers k. +

While we have defined Z = ρc, the impedance has another important meaning.
Equation (4.37) gives the average rate of transfer of energy down the string. The actual
rate fluctuates as a sin2 function with equation (4.37) as its average value. With this
being the case, the instantaneous power is given by Z (Aω sinωt)2. Now, as shown in
equation (2.9), P = F ·v. Since Aω sinωt is the velocity of the wave in the y-direction,
it follows that ZAω sinωt must be the transverse component of the force transmitted
down the string. And so the force is equal to the impedance Z multiplied by the
velocity of the waving string. This fact has great significance which will be used in our
next chapter when we discuss electric circuits.

4.10 Impedance matching

Engineers and other practical folk often need to make the transition of wave from one
material to another as efficient as possible. To give examples, a violin maker wants
to get as much of the vibration of the string into the air (as music) as possible. An
electric guitarist at a gig might use a direct input (DI) box to improve the efficiency
of the transfer of electrical ‘sound’ from the guitar to the amplification system. There
are different sockets on the back of a TV depending on which kind of aerial you have.
Before a medic does an ultrasound scan in a hospital, they put a gel between the probe
and the skin. There is no point connecting 200 Ω speakers to an amplifier which is
designed for 8 Ω speakers – you will not hear much. And if you are using an oscilloscope
to watch for a finely calibrated pulse in the laboratory, it is handy to set the input
impedance to 50 Ω rather than ‘high’ otherwise you get reflected pulses which confuse
your experimental equipment.

The source of the problem is that when a wave moves from one material to another,
some will reflect at the boundary, and this is a waste of energy or signal. By study-
ing the behaviour of waves as they cross boundaries between materials of different
impedance, we can learn how to reduce the reflection.

The simplest kind of transfer is where we tie strings of different thickness together,
and then make a wave on the string. When the wave hits the join, we can work out how
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much will reflect and how much will go over to the other string. For convenience, let
us say that the join is at x = 0, and the waves are coming from a source at negative x.
The impedance of the material is ZL for x < 0 and ZR for x > 0. We shall ignore the
extra mass of the knot, and write separate equations for the waves involved.

Original (incident) wave:

yi = Ai cos (ωt − kLx) for x < 0 only. (4.38)

Reflected wave:

yr = Ar cos (ωt + kLx) for x < 0 only. (4.39)

The + shows that this wave is moving to the left. The actual shape of the wave
for x < 0 will be given by yi + yr using the principle of wave superposition. So the full
equation for x < 0 is

yi + yr = Ai cos (ωt − kLx) + Ar cos (ωt + kLx) for x < 0. (4.40)

For x > 0, the only wave is the transmitted wave:

yt = At cos (ωt − kRx) for x > 0 only. (4.41)

Note that because the two materials have different impedances, the waves will have
different wavenumbers kL and kR depending on which material they are in.

There are two rules to use as we try and link the equations describing the left and
right halves of the problem.

First, because the strings are joined at x = 0, the equations for x < 0 and x > 0
must agree on the value of y at the join. This means that yi(0, t) + yr(0, t) = yt(0, t)
for all times. Accordingly, Ai cos ωt + Ar cos ωt = At cos ωt, and so not only must all
the frequencies be the same on either side of the join (as our notation has assumed),
but also

Ai + Ar = At. (4.42)

Second, there must be no unbalanced force at the join itself, since the join has no
mass, and so any unbalanced force would cause an infinite acceleration. The vertical
component of force on the right of the join is +T sinα ≈ T∂yt/∂x, with T being the
horizontal component of tension in the string and α being the angle made by the string
to the horizontal. On the left of the join the force is similarly given by −T∂(yi+yr)/∂x.
These two vertical components must sum to zero, giving us the following equation:

∂yi
∂xx=0

+
∂yr
∂xx=0

=
∂yt
∂xx=0

, (4.43)
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and so

−AikL sinωt + ArkL sinωt = −AtkR sinωt

(Ar − Ai) kL = −AtkR.
(4.44)

From equations (4.42) and (4.44), we can work out

Ar = Ai
kL − kR

kL + kR
, (4.45)

At = Ai
2kL

kL + kR
, (4.46)

and so we get no wasteful reflection when kL = kR. Now because the tension and
angular frequency of the wave must be the same on left and right, and because Z =
T/c = Tk/ω, then for the strings Z is proportional to k. Hence equations (4.45–4.46)
can be written as

Ar = Ai
ZL − ZR

ZL + ZR
, (4.47)

At = Ai
2ZL

ZL + ZR
. (4.48)

The business of keeping k the same on left and right to ensure total transmission
is the same as keeping the impedance the same. Therefore you will hear people talk
about ‘impedance matching’ when they want to ensure efficient transmission.

Q16 Show that the efficiency of the join in terms of power (rather than amplitude)
is given by η = 4ZLZR

/
(ZL + ZR)2 using equations (4.37) and (4.48). Work out

the fraction of energy reflected, and show that all of the incident energy is either
reflected or transmitted.

4.11 Describing waves in three dimensions
All of the waves we have looked at so far have been in one dimension. Our reality is
three dimensional, and so we next look at how you describe a wave in three dimensions,
and we shall look at two types of three dimensional wave – the plane wave and the
spherical wave.

4.11.1 Plane waves

Suppose a quantity called E is waving, with the waves moving in the +x-direction. We
can write this wave E = E0 cos(ωt−kx) even though it is in three dimensions, since the
oscillation is doing the same thing in step at all y- and z-values. This is a plane wave.
Similarly a plane wave moving to +y would be described using E = E0 cos(ωt − ky),
and one moving to −y would be E = E0 cos(ωt + ky).

What about a wave moving in some other direction? Let us set up a vector s =
(u, v, w) which points in the direction that the wave is moving, and to make our
mathematics easier, let us normalize s so that it has unit length (i.e. u2+v2+w2 = 1).
Let us also set up an axis through the origin which points in the s-direction.
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The wave is described by E = E0 cos(ωt−kd), where d is the distance of the point
from the origin as measured parallel to our s-axis. But how do we work out the value
of d at a particular point r = (x, y, z)? The answer is that d equals the component of
r parallel to s, and since s is normalized, it follows that d = r · s. We can then write
a plane wave travelling in the s-direction as

E = E0 cos (ωt − ks · r) . (4.49)

It is usually more convenient to define a vector k = ks, that is a wave vector which
points in the direction that the wave is travelling, and has a magnitude given by 2π/λ.
Once this is done, the plane wave can be written:

E = E0 cos (ωt − k · r) . (4.50)

Q17 Using the plane wave equation (4.50), show that ∂E/∂x = E0kx sin(ωt − k · r)
where kx is the x-component of k.

Often waves are vectors, and so E of equation (4.50) would be a vector E rather
than a scalar E. The electric field of a radio wave or the displacement of a molecule
from its mean position during a seismic wave would be examples. In this case, we
have two main classes of wave – transverse (where E is perpendicular to k) and
longitudinal (where E is parallel to k). When dealing with vector waves such as E, it
is worth remembering that there is no special link between the x-component of E and
the x-component of k. Ex gives the amplitude observed in the x-direction. kx gives
the wavenumber when the wave is looked at along the x-axis alone.

4.11.2 Spherical waves

The final type of wave we shall describe is the wave which spreads out radially. If we
want to know what is happening at a point (x, y, z), the important thing is its distance
from the centre where the waves were made, and we call this distance r. Initially we
might want to write E = E0 cos (ωt − kr), however, there is a problem.

Remember from equation (4.37) that the power of a wave is related to the square
of its amplitude. If the energy in a ripple remains the same as the ripple spreads, the
energy in each part of the ripple must get smaller (the wave spreading out). As each
spherical wavefront of the ripple spreads to radius r, the area it is covering is now
4πr2, so the fraction of the wave’s energy meeting each square metre at this radius is
now 1/4πr2. Accordingly the amplitude must reduce by the square root of this factor,
and we usually write

E =
E0

r
cos (ωt − kr) , (4.51)

where E0 is the amplitude of the wave 1 m from the source.
So at radius r, the intensity (or local power of the wave in W/m2) is proportional to

(E0/r)2, and the total energy passing this radius is proportional to (E0/r)2 × 4πr2 =
E2

0 ×4π which is the same as for any other radius. Accordingly, the total energy
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remains the same – it is just spread over a larger area. To draw on a two dimensional
example, this is why ripples in a pond get less high as the radius of the ripple increases.∗

Q18 The power output of the Sun is about 3.9 × 1026 W. The Sun has a radius of
about 6.96×108 m, and the Earth is approximately 1.50×1011 m from the centre
of the Sun. Work out (1) the intensity (in W/m2) of sunlight at a point on Earth
facing the Sun directly and (2) the intensity (in W/m2) of sunlight at a point
just above the Sun’s own surface. Assume that none of the sunlight is absorbed
in space.

4.11.3 Workshop: Stellar magnitudes

Astronomers use ‘magnitudes’ to refer to the brightness of stars. In ancient times,
the brightest stars were put in the ‘first magnitude’, the next brightest in the ‘second
magnitude’ until the ‘fifth magnitude’ contained those just visible to the naked eye.
In subsequent years, sixth and higher magnitudes were used to label stars visible only
with telescopes, while one or two stars are sufficiently bright to warrant promotion
from the first to a zeroth magnitude (the ‘premier league’ of stars).

The brightness of a star partly depends on how far away it is. Accordingly we
use absolute magnitudes (denoted M) to label how bright the star actually is, while
apparent magnitudes (m) label the brightness of the star as viewed from Earth.

In both cases, a hundred-fold decrease in intensity corresponds to an addition of
5 to M or m. Each time the magnitude increases by one, the brightness reduces by
the same factor. While the original classification was discrete (stars could be first or
second magnitude but not magnitude one-and-a-half), we now allow M and m to vary
continuously.

(a) Show that a first magnitude (m = 1.0) star is 5
√

100 = 2.512 . . . times brighter
than a second magnitude (m = 2.0) star.

(b) Show that the brightness of a star (as seen from Earth) is proportional to
10−2m/5. Once you have showed this, it follows that the total visible power
output of the star (its luminosity, in watts) must be proportional to 10−2M/5.

(c) Using the results of the last section, the intensity of a star when viewed from
a distance D will be given by I = P

/
4πD2, where P is the total visible power

output (luminosity) of the star. Use your answers from (b) to show that this
means that 10−2m/5 = B × 10−2M/5

/
D2 where B is a constant. Please note that

we can measure D in any units we choose, as long as we adjust the constant B
accordingly.

(d) The absolute magnitude M is defined to be the apparent magnitude the star
would have if it were 10 parsecs (pc) away from Earth. Assuming that we
measure our distances D in parsecs, show that the constant B = 100 pc2.†

∗That said, if you are working in 2-Ds, the energy does not spread out so rapidly. A ripple on a pond
has circumference (hence ripple length) 2πr, and therefore as the ripple gets bigger we expect power =
intensity ×2πr to remain constant. Accordingly intensity ∝ 1/r and E = E0 cos (ωt − kr)

/√
r.

†The parsec (pc) is about 3 light years, and is the distance from the Sun at which an observer
would see the radius of the Earth’s orbit subtending 1 second of arc (i.e. 1/3600◦). Please see Q1 of
Section 3.1.1.
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(e) By taking logarithms to base ten of the result from (c), or otherwise, show that
the distance D of a star from Earth is given, by 10(5+m−M)/5 pc. You may find
it helpful to study workshop 7.2 if you are in need of revision on logarithms.

In practice, the distances of many stars in our own, or other, galaxies are calculated
using this formula. The value of m is determined from Earth-bound observation, while
M is inferred from other data known about the star – for example, its spectral class.
Particularly accurate values of M can be obtained for stars called Cepheid variables,
whose brightness varies periodically, and for a particular type of supernova.

4.12 Conclusion

We began the chapter by applying our knowledge of trigonometry to describing oscil-
latory motion. After revision of the ideas of complex numbers, we were able to describe
oscillations in a new way, which was more convenient when it came to analysing the
damped oscillator. Travelling waves were then described, and interference between two
waves of different paths could be analysed.

The physics which gives rise to travelling waves was discussed using the transverse
wave on a taut string as a specific case. This led us naturally on to impedance, and
the efficiency of wave coupling at a junction. At the end of the chapter we noted how
our equations changed if we were working in two or three dimensions.



5
Circuits

When asked at the dawn of the 20th century why Britain produced so many world
leading physicists, the Nobel laureate and Cavendish Professor J.J. Thomson replied
that it was because no science was taught in British schools.

Understanding an electric circuit is hardly as conceptually groundbreaking or fun-
damentally fascinating as more exotic topics such as quantum mechanics, particle
physics or astrophysics. However, the humble electric circuit is important to the en-
gineers or physicists for two main reasons. First of all, they spend much of their time
using and designing electronic circuits to do their measuring and experimental con-
trol. Without measurement, there is no science; and in a modern paper mill, hospital,
refinery, nuclear reactor, airliner or laboratory, most of the measurements are made
electronically. Second, a good understanding of electric circuits is not easy to achieve,
but serves as an excellent exercise for the mind – which is then much more adept
at tackling other problems (just like Thomson’s school studies in Latin and Greek).
In fact when engineers are trying to understand a completely new system, they may
often draw analogies between the parts of the system and the components of an elec-
tric circuit. Once they have solved the circuit using their electrical knowledge, they
have solved the other system too. Electric circuits, with all their connections, serve as
excellent analogies for a vast number of linked or connected systems.

5.1 Fundamentals

Electricity is a wonderful tool for transferring energy (and hence information) from
one place to another. When a battery or generator is put into a circuit, it sets up
electric fields. All of the charged particles involved experience forces as a result of this
field. Electrons are repelled by the (−) terminal and attracted to the (+) terminal
of the supply, the nuclei in the wires (and the insulators) experience forces in the
opposite directions. Accordingly, when some of the electrons are free to move, as they
typically are in a metal, they will accelerate. As they accelerate, they are involved more
frequently in collisions which resist their motion, just as falling sky divers experience
more resistance from the air as they fall faster. The sky divers eventually reach terminal
velocity, and once this has been reached, their weight and the air resistance are equal
and opposite, and they accelerate no more. Similarly, the electrons reach a certain top
speed called their drift velocity with great rapidity, and can then be thought of as
travelling round the circuit at a steady speed.



Fundamentals 5.1 99

The analogy with the sky diver is far from perfect. All of the atoms in the sky
diver, for example, fall with the same speed, since they are attached to one another.
The electrons in the wire, on the other hand, have a great range of velocities up,
down and across the wire (even when no battery is in the circuit) – with the fastest
travelling at an appreciable fraction of the speed of light. However, when we consider
the average (or mean) velocity of the electrons, the analogy is a fair one. Before the
battery is put into the circuit, the mean velocity (or drift velocity) is zero. Once the
battery is connected, each electron acquires a small additional component of velocity
in the same direction, and the mean velocity increases by this same amount too.

5.1.1 Electric current

So, what exactly is carried round an electric circuit? The first answer is that electri-
cally charged particles are pushed round in response to the fields. The electric fields
in wires cause the free electrons to move, while the chemical reactions in cells, and
the electromagnetic effects in generators have similar effects. Accordingly, we wish to
measure this flow of charged particles. We call it the current and measure it with an
ammeter. We define the current at a point in a circuit as the rate (in coulombs per
second) and direction in which a stream of positively charged particles would have to
flow to have the same electrical effect as the one actually observed.

In a metal wire, the charge carriers are electrons, and are negatively charged. If
1016 electrons pass a point in a wire each second (travelling from (−) to (+)), then
this is equivalent to 1016 oppositely charged particles travelling the other way each
second. Since each of these ‘oppositely charged particles’ would carry a charge of
+1.6 × 10−19 C, this means that we have a flow of 1016 × 1.6 × 10−19 C = 0.0016 C
each second, so the current is 0.0016 A or 1.6 mA, and this current is said to flow
from (+) to (−) in the wire.∗

Q1 A metal wire of cross-sectional area A contains n free electrons per cubic metre.
If all of these electrons move along the wire in the same direction at speed u, and
each one has charge q, what is the current?†

Q2 Using your answer to Q1, work out the mean (or drift) velocity u for electrons
carrying a steady 13 A current in a copper cable with a cross-sectional area of
1.5 mm2. Assume that copper has 1.0 × 1029 free electrons per cubic metre. Does
your answer surprise you?

Q3 Recalculate Q2 for a 0.1 × 0.2 mm cross section of silicon, with about 1020 free
electrons per cubic metre, carrying a current of 10 mA. Does your answer sur-
prise you?

∗Note that this means that inside the battery (or generator), the current must be flowing the other
way from − to +. It is able to flow the ‘wrong’ way because it is being pulled by the chemical or
electromagnetic forces present there, which are sufficiently great to overcome the electrical repulsion.

†Hints: (1) Work out the number of free electrons per metre of wire. If you look at a particular
point on the wire, the electrons which are about to pass that point in the next second occupy a
cylinder behind that point of length u. So, (2) work out the number of electrons which occupy a
length u of wire, as this is the number of electrons which will pass a point in 1 s. Finally, (3) work
out the total charge on these electrons. This gives the current.
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In an ionic solution, copper II sulphate for example, there could be positive (Cu2+)
and negative (SO2−

4 ) ions on the move. The copper ions would move one way, the
sulphate ions the other. However, they would both contribute to carrying the electric
current the same way.

Q4 A beaker of copper II sulphate is carrying a current of 30 mA between two elec-
trodes. Assume that all of the current is carried by the copper ions. Calculate
the number of copper ions leaving the anode ((+) electrode) each second. Also
calculate how many free electrons leave the anode each second to flow round the
rest of the circuit. How would the answers change if the same total current of
30 mA were carried equally by copper and sulphate ions? +

Notice that at the electrode, different numbers of charged particles can arrive as
leave. At the cathode, copper ions arrive, and have their charge neutralized by the
electrons arriving down the wires. No charged particles leave. However, the current
arriving (on the positive ions) is equal to the current leaving (via the negative, arriving
electrons).

5.1.2 Electric potential

So, what exactly is carried round an electric circuit? Our first answer was that charged
particles (and hence electric charge) was carried round. However, the reason we spend
so much time making electric circuits is that by means of that electric charge, energy
(and hence information) can also be carried.

As mentioned in the introduction, the moving electrons gain energy from the elec-
tric field in the wires. The field is set up by, and gets its energy from, the processes
in the cell or generator. However, the electrons reach a low ‘terminal’ velocity quickly,
and so their kinetic energy never gets terribly high. The energy from the field, ac-
cordingly, is directly passed on to the other particles in the wire via collisions which
the electrons make. This energy warms the wire and its surroundings. Other compo-
nents, like light-emitting diodes (LEDs), motors or loudspeakers, are able to convert
the energy in the electric field into light, motion or sound.

So while we cannot talk strictly of electrons ‘carrying’ electrical energy round the
circuit,∗ it does make sense to say that between two points in the circuit, the charge
carriers will take a particular amount of electrical energy from the field and convert it
to other forms. This drop in electrical energy will of course be measured in joules, and
when we work it out per unit of charge, it is called the potential (or voltage) difference
between the two points. The point of higher potential is the one from which a positive
charge would naturally be repelled towards the other; so the (+) terminal of a battery
has a more positive potential than the (−) terminal.

Q5 Use your earlier answer to work out the kinetic energy of the electron in Q2. The
potential difference of the mains supply is about 230 V. Calculate the potential

∗The energy is in the field, not the electron (unless you count the negligible amount of kinetic
energy the electron has, which is constant all the way round the circuit).
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energy lost by the electron as it goes through a 230 V light bulb. What is the
ratio of the potential to kinetic energy?
While you can measure the potential difference across any component, or between

any two points in the circuit, it is frequently more helpful to measure the potentials of
all the points in the circuit with reference to a single point. Usually the (−) terminal
of the battery is chosen as the reference point. That way, the potentials of all the other
points are higher and therefore regarded as positive. The potential of the reference
point (measured with respect to itself) is of course zero.

The labelling of points with voltages can be a helpful tool in analysing circuits.
We shall use it here to solve a simple problem – working out which bulbs in a circuit
are going to be bright and which dim.

5.1.3 Workshop: Using voltage to solve simple circuit problems

For each circuit in Figure 5.1:

• Label the negative terminal of the battery (top left point) ‘0 V’.
• Label the other points on the upper side of the circuit with their correct voltages.

For each cell, the (+) terminal’s voltage will be 1.5 V higher than its (−) terminal.
• Now label the other points on the circuit with their voltages. Assume that the

voltage of the two ends of the same wire will be the same, as very little energy is
converted to heat by a good conductor unless the currents are really high.

• Any bulb with exactly 1.5 V difference across it will be normal brightness (N). If
the potential difference is greater, the bulb will be brighter (B); if it is less, the
bulb will be dim (D) or off (O) if the potential difference is zero. Label each bulb
with a B, N, D or O according to its brightness.

5.1.4 Ohm’s law and resistance

When a component like a bulb or heater is supplied with a larger voltage, a stronger
electric field is set up. Notwithstanding the collisions, you would expect the stronger
electric field to cause a higher drift velocity for the electrons just as you would expect
terminal velocities of falling objects to be higher if the gravitational field strength got
larger.∗ Accordingly, when the voltage goes up, the electrons move faster, and a larger
current is carried. For many materials, the voltage and current are proportional, and
we say that these materials obey Ohm’s law and so we find that the ratio

R =
V

I
(5.1)

is constant. This ratio is called the resistance, and it is measured in ohms (Ω). Other
materials do not obey Ohm’s law, but we still define their resistance using equation
(5.1) – but the resistance will be a function of the current through the component.

Notice that because the voltage V measures (in some way) the strength of the
electric field (and hence the force on a charge carrier), and I measures the current

∗That is, assuming that the atmospheric density remained the same (which it would not).
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and hence the speed of the carriers, it follows that R = V/I measures a kind of ‘force
per unit speed’. Given the discussion at the end of Section 4.9, where the impedance
of a medium to the motion of a wave was equal to the ratio of the force to the speed,
it should come as little surprise that R behaves in many ways like an impedance. We
shall be exploring this link further later in this chapter.

5.2 Direct current circuit analysis

While it is helpful to review the processes and terminology at the heart of an electric
circuit, part of our motivation for studying circuits was to gain a way of understanding
connected systems. Therefore we turn from electrons and potential energy to whole
circuits. We start with the simplest kind of circuits – ones with perfect batteries,
perfect resistors and perfect wires to connect them up.
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• A perfect wire has no resistance, so all of its points will be at the same voltage
(potential).

• A perfect resistor has a constant value of resistance R, such that whatever the
voltage V put across it, the current flowing through it will be given by I = V/R.

• A perfect 3 V battery always has a 3 V difference between its (+) and (−)
connections, irrespective of how much current is flowing through it – in other
words, the perfect battery has zero resistance.

That said, the circuits can be quite complicated, because they might be connected
in very complicated ways. Before we deal with a really complicated circuit, let us study
Figure 5.2.

5.2.1 Analysis using fundamental principles

We want to find out the currents flowing through each resistor. To do this, we make
use of two laws – Kirchhoff’s laws.

The first law says that the total current leaving a junction must equal the total
current entering it. To give an example, if an 80 A current flows into a domestic
fusebox, which is connected to an oven drawing 38 A and some sockets, then the
sockets must be drawing 80 A − 38 A = 42 A.

In our example, that means that I1 + I2 + I3 = 0.
Note that it does not matter which way the arrows are drawn on the diagram to

start with. If one of them is drawn the ‘wrong’ way, we shall simply get a negative
answer for that current, telling us that it is flowing in the opposite direction to the
arrow.

The second law says that you must get the same answer for the voltage difference
between two points whichever route you calculate it from.

In our example, let us use V to mean the voltage of point A relative to B. It
follows that

V = 3 V − 200 I1 using the top branch of the circuit
V = 4 V − 300 I2 using the middle branch
V = −100 I3 using the lowest branch.
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Notice that we add the voltage of a cell when going through it from (−) to (+).
This is, after all, the direction the current goes through the cell, and the charge gains
energy as it does so – so the voltage must increase.

Notice that we subtract the voltage across a resistor when going through it in the
direction of the current. This is because as the charge passes through the resistor in
this direction it is losing electrical energy, so its voltage must be decreasing.

We now have four equations in our four unknown quantities V , I1, I2, and I3,
and these can be solved to tell us that the voltage of point A relative to B is about
1.55 V.

Q6 Solve the circuit, and check that V = 1.55 V. Also find the currents through the
three resistors. Which current or currents are going in opposition to the arrows
on the diagram?

5.2.2 Method of loop currents

Complex circuits are better solved more systematically. One approach is to break them
down into their smallest loops, and assign a current to each loop, as in Figure 5.3.
Current I3 is in the second loop, so I3 = IL2. Current I1 is in the first loop, but in the
opposite direction to the loop, so I1 = −IL1. Other components (such as the 300 Ω
resistor in our example) are in both loops, and Kirchhoff’s first law can be used to say
that the current in this resistor is I2 = IL1 − IL2.

We then form one statement of Kirchhoff’s second law for each loop. If you go all
the way around a loop, the total potential difference must be zero (so that you come
back to the same voltage you started with). In our circuit, it means that if you start
at point A and go round the loops clockwise, our two voltage loop equations are
First loop:

−3 − 200 IL1 − 300(IL1 − IL2) + 4 = 0

so

1 = 500 IL1 − 300 IL2

B

4 V
I1

I2

I3

A

IL2

IL1

100 Ω

300 Ω

200 Ω

Fig. 5.3
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Second loop:
−4 − 300(IL2 − IL1) − 100 IL2 = 0

so
4 = 300 IL1 − 400 IL2,

and so we have two equations in two unknowns IL1 and IL2, which can be solved to
give IL1 = −7.27 mA while IL2 = −15.45 mA (to two decimal places).

Notice that the loop method is simpler in that there were two simultaneous equa-
tions rather than four, and it is more easy to generalize it to more complex networks.

Q7 Calculate the current in each resistor in the networks in Figure 5.4.

5.3 Introducing alternating current

In alternating current (a.c.) analysis, instead of working with perfect batteries, we work
with perfect alternators – that is, sources of perfect sine wave signals. This analysis
is useful because it enables us to study our mains electricity supply and also enables
us to study any oscillating electrical signal. These signals could be anything from the
output of a microphone which is amplified in a mixer to the oscillating microwaves
used to convey information to a communications satellite. As such, a.c. analysis is
valuable in helping us understand all kinds of communication or signalling.

If the voltage across a component is given by V = V0 cos ωt, then after any short-
term transients have died away, we find that the current is also given by a cosine wave:
I = I0 cos(ωt + φ). As we can see from the presence of φ this wave might not be in
step with the voltage. When solving the circuit, we aim to find out two things: how
large I0 is in relation to V0 and the size of the phase factor φ.

It turns out to be more simple mathematically if we use the complex exponential
notation for these oscillations.∗ We may then write

V = Re(V0eiωt), (5.2)

I = Re(I0ei(ωt+φ)) = Re(I0eiφeiωt). (5.3)

∗If you are rusty on complex numbers, please work through Section 4.2 before proceeding. If you
are used to complex numbers, but have not seen them used to represent oscillations before, please
read Section 4.3.
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If we write the complex amplitude of the current as J0 = I0eiφ, then things are
simpler still, since the one complex number J0 contains both the amplitude and phase
information.

The impedance of the component is defined as the complex number Z = V0/J0.
The modulus of Z gives the ratio of the amplitudes of the voltage and current waves,
while Arg(Z) gives the phase difference between the two waves.

You will frequently see the impedance written as the sum of a real part (called
the resistance R) and an imaginary part (called the reactance X). Accordingly, Z =
R + iX, where R and X are real numbers.

5.3.1 Resistors

The resistor is the simplest kind of component. For the resistor, the voltage V and
current I are proportional: V = IR. Accordingly, if I = I0 cos ωt, then V = I0R cos ωt.
The phase factor between voltage and current waves is accordingly zero, and Z =
V/I = R is a real number. Now you can see that the real part of impedance is indeed
resistance.

Q8 A component has an impedance of 18 Ω. It is connected to an a.c. electrical supply
with frequency 50 Hz and amplitude 325 V.
(a) Calculate the amplitude of the current.
(b) Calculate the amplitude of the electron speed in the connecting wire. As-

sume that the wire is made of copper (with 1029 electrons/m3) and has cross-
sectional area 1.5 mm2. (Hint : Use your answers to Q1 or Q2.)

(c) Calculate the amplitude of the electron’s motion in the wire as it oscillates
back and forth. You may find equation (4.9) helpful.

5.3.2 Power in a.c. circuits and rms values

If the voltage across a component gives the potential energy difference per unit charge
between the charges going in and those coming out, and the current gives the charge
passing through the component every second, then it makes sense that current mul-
tiplied by voltage gives the electrical potential energy lost each second – that is, the
power transformed from electrical energy to other forms by that component.

For a direct current (d.c.) circuit, we sum this up as P = IV. Here P is regarded as
positive when the component is using electrical energy, and V is regarded as positive
when the potential goes down as the charges pass through the component in the
‘positive I’ direction. If the potential rises as the charge goes through, then either
V or I is negative, and so P is negative too. This implies that the component is
supplying electrical energy to the circuit.

When working with a.c., there is a refinement we need to make. Since V and I are
not steady, P will not be steady either. The power supplied to a resistor is given by

P = V I

= V0 cos ωt I0 cos ωt

= V0I0 cos2 ωt. (5.4)
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Accordingly, the average value of the power is P = 1
2V0I0.∗ As the component is a

resistor then V0 = RI0, and we can also write the average power as

P =
1
2
I2
0R =

1
2V 2

0

R
.

These factors of one-half would make life confusing. They would mean that while
P = IV for d.c. circuits, P = 1

2IV for a.c. However, if we describe the alternating
current and voltage not by their amplitudes but by Vrms = 1√

2
V0 and Irms = 1√

2
I0,

then we notice that P = IrmsVrms = I2
rmsR = V 2

rms/R, and the formulae are identical
to those for d.c. You could say that Vrms (or Irms) is the steady voltage (or current)
which would heat a resistor identically to the a.c. actually present. In fact these values
are so useful that whenever an a.c. measurement is taken, you can assume that it is
the rms value that is meant unless told explicitly otherwise.

Q9 For the British mains supply Vrms is supposed to be close to 230 V. Calculate
the amplitude of the voltage.

Q10 Calculate the maximum current going through a heater if Irms = 13 A.
Q11 What is the maximum power consumption of a ‘60 W’ light bulb?
Q12 The letters ‘rms’ stand for ‘root mean square’. You can understand why this

description is used as follows:
(a) Suppose V = V0 cos ωt. Calculate V 2.
(b) Calculate the mean value of V 2.
(c) Now take the square root. You should get 1√

2
V0.

Notice that you have worked out
√

V 2, that is the root of the mean of the square,
or rms for short.

Q13 You may have noticed that in this question we refused to use complex exponential
notation. The reason is that when you multiply a complex current by a complex
voltage you must explicitly remember that the voltages and currents are only the
real parts of V0eiωt or I0eiωt, not the whole complex numbers. +
(a) Multiply V0eiωt and I0eiωt together. Notice that the result’s real part is

equally often positive and negative with a mean of zero. The true expres-
sion for power (5.4) on the other hand is never negative and has a mean of
1
2V0I0.

(b) To do the calculation properly, we use the result from Section 4.2(i) that
Re(z) = 1

2 (z + z∗). We shall also take the opportunity of avoiding the as-
sumption that V and I are in phase. Using this formula, show that

V I = Re
(
V0eiωt

)× Re
(
I0ei(ωt+φ)

)
=

1
4
V0I0

(
e2iωt+iφ + e−2iωt−iφ + eiφ + e−iφ

)
if V0 and I0 are real.

∗We have assumed that the voltage and current are in phase, as this is a resistor. The situation is
more complex if the two wave forms are not in phase, and the situation is tackled in Q13.
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(c) Using our result from Section 4.2(p) that cos θ = 1
2

(
eiθ + e−iθ

)
, show that

V I = 1
2V0I0 (cos (2ωt + φ) + cos φ), and hence that the average power is

equal to 1
2V0I0 cos φ = VrmsIrms cos φ.

(d) To reconvince you that complex numbers are better than sines and cosines,
derive this result using trigonometry, where unlike in (5.4) above, you include
the phase factor and assume that I = I0 cos(ωt + φ).

The cos φ term which has cropped up in our equations is called the power fac-
tor. You can see that if the voltage and current get out of phase, less power can
be transmitted for the same maximum voltage and current. For this reason, electric-
ity supply companies charge extra to commercial customers whose equipment causes
the two waves to get out of phase. Domestic electricity meters are not designed
to pick this up, which these days saves many customers’ money at the generator’s
expense – modern ‘energy efficient’ devices such as compact fluorescent light bulbs
and solid state power supplies (as used by laptops) frequently have power factors as
low as 0.5.

5.3.3 Capacitors

The voltage across a capacitor is given by Q/C where Q is the charge stored on it,∗

and C is its capacitance. If a charging current I flows through the capacitor, then
I = dQ/dt. It follows that the fundamental equation for a capacitor is

I =
dQ

dt
=

d

dt
CV = C

dV

dt
. (5.5)

Accordingly, if V = Re(V0eiωt), then

I = C
dV

dt
= C

d

dt
Re
(
V0eiωt

)
= Re

(
CV0

deiωt

dt

)
= Re

(
iωCV0eiωt

)
.

The complex amplitude of the current J0 = iωCV0, and so the impedance, which
is defined as Z = V0/J0 = 1/iωC = −i/ωC.

The phase difference φ is calculated from Arg(Z) = −π/2.† Accordingly, the cur-
rent peaks one-fourth of a cycle before the voltage. Engineers talk of the ‘current
leading the voltage’ in a capacitor.

Using our answer to Q13, we can see that with this value of φ, the power factor
cos φ = 0, and accordingly no power is dissipated in the capacitor on average. At some
times during the cycle, the instantaneous power V I < 0. At these times the capacitor
is charging and the energy stored in its electric field is increasing. At other times

∗As is conventional, when we say charge Q is stored on the capacitor, we mean that +Q is stored
on the positive plate, and −Q is stored on the negative plate. The total on the two plates is always
equal to zero.

†See part (h) of workshop 4.2 for an explanation of what we mean by ‘argument’.
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V I > 0. At these times the capacitor is discharging, and energy is being transferred
from the capacitor’s electric field to the rest of the circuit.

5.3.4 Inductors

Inductors are usually coils of wire which form a magnetic field when a current passes.
The total number of magnetic field lines Φ will be proportional to the current, so
Φ = LI, and we call the constant of proportionality the inductance L. When the
current changes, the magnetic field changes and this induces a voltage in the coil.
This voltage can be calculated from Faraday’s law as the rate of change of magnetic
field V = dΦ/dt, so V = L dI/dt.

Accordingly, if I = Re(I0eiωt), then V = Re(iωLI0eiωt). This means that Z = iωL.
The phase difference φ is now +π/2, so the current peaks one-fourth of a cycle

after the voltage. Engineers talk of the current in an inductor ‘lagging’ the voltage.
As with the capacitor, a perfect inductor has an average power consumption of

zero because the voltage and current are π/2 radians out of phase.

5.3.5 Sign conventions

When we write V = IR for a resistor, the V stands for the size of potential difference
(or voltage drop) across it, while I stands for the size of current through it. As such, no
sign is needed. However, when we analyse a circuit, we need to give the directionality
some thought. As mentioned earlier, the voltage drops (as electrical energy is lost) in
the direction the current flows.

This same convention works for the capacitor. If I is positive and charging the
capacitor, the current is flowing onto the (+) plate, and so similarly the voltage drops
in the direction of positive current flow.

For the inductor if the current is increasing, the voltage will be induced so as to
oppose this change. So the voltage drop is in the direction of the current if dI/dt > 0,
and vice versa. Accordingly we may write V = L dI/dt where V is regarded as positive
if it goes down in the direction of positive I.∗

To sum up: all of our equations relating the voltage difference across a component
to the current through it follow the same sign convention – a positive value of V means
that the potential is higher at the end where a positive current goes in and lower at
the end where a positive current comes out as summarized in Figure 5.5.

5.3.6 Phasor methods in a.c. analysis

While complex analysis provides the quickest and cleanest way of solving problems in
a.c. analysis, the more visually minded among us have always used ‘phasor’ diagrams
to aid understanding of this topic. The diagram is basically a drawing of the complex

∗Many books take a different view, and insist on labelling the voltage across an inductor as
−L dI/dt, to make it clear that the voltage drops as you go across the component when a current
is increasing. However, if they were being consistent, they would also use V = −IR for the humble
resistor since the voltage also drops as you go through a resistor in the direction of the current. You
are welcome to put in the minus signs if you wish, however, you are going to be very confused if you
use a minus sign for the inductor and not for the resistor.
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amplitudes of V and I in the complex plane or Argand diagram of Section 4.2. The
voltages and currents are represented as ‘vectors’ in the complex plane with lengths
given by their amplitudes and directions representing their phase. As the current in
the circuit goes back and forth, the phasor ‘vectors’ rotate in a manner analogous to
the vectors used for describing rotation in Section 3.1.

The diagrams showing the relationship between current and voltage for our three
main components are given in Figure 5.6.

If you imagine all of the arrows rotating anticlockwise at the frequency of the
a.c., you can see the meaning of the current ‘lagging’ the voltage for the inductor or
‘leading’ it in the case of the capacitor.

Many electrical engineers or electricians will use the arrows on these diagrams
like vectors when they analyse circuits. In a series circuit, the current through the
components will all be the same, and so one I arrow is drawn pointing to the right.
The ‘voltage’ arrows are drawn for each component in turn and then added vectorially
to give the voltage across the combination. The phase of the resultant voltage with
respect to the current can then be calculated from its direction, and its amplitude is
given by its length.
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When working with parallel circuits, the electrician rotates each of the figures
above until the voltage arrow points to the right, since the voltage will be the same
for each element in the circuit. The currents through each component are then drawn
in the correct directions∗ and added vectorially to give the total current through the
combination.

5.4 Alternating current circuit analysis

We now extend the methods used for d.c. circuit analysis in Section 5.2 to a.c.. Our
first circuit is shown in Figure 5.7 – an inductance L wired in series with a resistance R.
This is a useful circuit, since an electric motor can be modelled well as a resistor and
inductance in series.

This circuit has only one loop, and we denote the current in this loop as I.
Kirchhoff’s second law then gives (starting at the black dot and working clockwise):

V0 cos ωt − IR − L dI/dt = 0. (5.6)

The general solution to this equation contains two parts – one which dies away
with time and one (of frequency ω) which remains. This remaining part is called the
‘steady state’ current (even though it is oscillatory). If the circuit is in use for some
time, we can neglect the part which dies away, and we can use our understanding of
impedance to solve the problem.

Re(V0eiωt) = Re(RJ0eiωt + iωLJ0eiωt). (5.7)

If we write down the more restrictive equation:

V0eiωt = RJ0eiωt + iωLJ0eiωt, (5.8)

then any value of J0 which satisfies this will also automatically satisfy our equation
(5.7). The value is found as

J0 =
V0

R + iωL
. (5.9)

Notice that the impedance of this resistor–inductor circuit (Z = V0/J0) is equal to
R + iωL. In other words, the impedance of a series circuit is equal to the sum of the
impedances of its parts.

The current therefore has an amplitude given by

I0 = |J0| = V0/
√

R2 + ω2L2, (5.10)

and the phase of the voltage with respect to the current is given by

Arg(Z) = Arg(R + iωL) = tan−1(ωL/R). (5.11)

∗That is, right for a resistor, down for an inductor and up for a capacitor.



112 Circuits

I
L

R

0 V V0 cos ωt

Fig. 5.7

You can also find the phase of the current relative to the voltage if we write the
impedance of the circuit as |Z|eiφ where φ = Arg(Z).

J0 =
V0

|Z| eiφ =
V0 e−iφ

|Z| , (5.12)

and so the phase of current with respect to voltage is −φ = −Arg(Z).
In one sense this is obvious – if the phase of voltage with respect to current is

+φ = Arg(V0/J0), then the phase of current with respect to voltage must be −φ =
Arg(J0/V0). However, notice that how well complex numbers are suited to this kind
of algebra – since with complex numbers 1/Z always has the opposite argument to Z.

5.4.1 Analysis using impedances

We have deliberately ‘laboured’ this example to show the use of the complex numbers
and the application of Kirchhoff’s second law. However, when there is only one power
supply, it is easier to analyse the circuit purely in terms of the impedances.

Suppose that we have two components which have impedances of Z1 and Z2. If we
connect them to a voltage V eiωt (we omit the ‘Re’ for brevity), then we can work out
the current flowing.

If the two are connected in series, then they will have the same current Jeiωt, and
the supply voltage must be given by the sum of the voltages across the two components.
Therefore,

V eiωt = V1 + V2

= Z1Jeiωt + Z2Jeiωt

= (Z1 + Z2) Jeiωt, (5.13)

and the overall impedance of the circuit is

Series : Z =
V

J
= Z1 + Z2. (5.14)

Alternatively, if the two are connected in parallel, they must share the same
voltage, and the supply current Jeiωt must be the sum of the currents through the
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two components. Therefore,

Jeiωt = J1 + J2

=
V eiωt

Z1
+

V eiωt

Z2

=
(

1
Z1

+
1
Z2

)
V eiωt, (5.15)

and the overall impedance of the circuit is given by

Parallel : Z =
V

J
=
(

1
Z1

+
1
Z2

)−1

. (5.16)

We now use these facts to work out the impedance of the circuit in Figure 5.8 –
our old resistor–inductor circuit with a capacitor in parallel.

The impedance of the resistor–inductor branch is R + iωL, as we showed before.
The impedance of the capacitor is −i/ωC. Accordingly, the impedance of the combi-
nation is given by

Z =
(

1
R + iωL

+
1

−i/ωC

)−1

=
(

1
R + iωL

+ iωC

)−1

=
R + iωL

1 + iωC (R + iωL)

=
R + iωL

1 + iωCR − ω2CL
. (5.17)

Q14 Use equation (5.17) to derive the capacitance needed if the supply current is to
be in phase with the supply voltage. Give your answer in terms of R, L, and ω.
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Hint : To make the voltage and current to be in phase, the impedance must
be entirely real. This means that Z−1 must also be real. In practice this is
an important calculation. Many industrial plants contain motors, which have
considerable inductance. This causes their currents to lag significantly behind
the mains voltage, and this gives rise to financial penalties and wasted resources
in the supply network as indicated in Q13. Installing capacitors in parallel with
the motors corrects the problem and saves the companies money. +

Q15 The tuner in a radio uses a circuit very similar to the one in this section, with a
very low resistance R. Show that there is one frequency at which the impedance
is extremely high, and express this frequency in terms of L and C. In a radio,
the signal from the aerial is passed through an amplifier and then on to our
LCR circuit wired in parallel with the rectifier which feeds the audio amplifiers
and thus the speakers. Assuming that the signal from the aerial contains radio
waves of many different frequencies, explain why only the chosen one with its
special frequency will drive measurable currents through the rectifier and thus be
‘heard’. On old or cheap radios, the inductance can be changed using the tuning
knob to ‘tune’ the radio to the frequency of the radio station desired. Modern
radios are digital and thus far more complicated. +

5.4.2 Analysis using a phasor

We start with the inductor and resistor in series, each carrying current I. The voltages
are given by iωLI and RI, respectively, and if we add these vectorially, we get the
situation shown in Figure 5.9.

From Figure 5.9 we can see that the magnitude of the voltage will be
√

R2+ω2L2×I
and the voltage will ‘lead’ the current by phase angle, A = tan−1 ωL/R. This agrees
with our analysis in equations (5.10) and (5.11).

If we now put our capacitor C in parallel with this combination, the voltage across
C must be the same as that across our LR combination, but the current through it
will be different. The two currents can be added to give the total current as shown in
Figure 5.10.

Denoting the amplitude of the current through the resistor and inductor as ILR =
V/

√
R2 + ω2L2, we can see that the resultant current will be in phase with the voltage



Conclusion 5.5 115

Current through L and R

Phase of voltage

A

Current through C
= ivC V

Resultant current I

Fig. 5.10

if ILR sinA = ωCV, and that the value of the capacitance needed to do this can be
calculated from our calculations of A and ILR.

Q16 Verify that the value of the capacitance needed to bring the current back in phase
with the voltage agrees with your answer to Q14.

5.5 Conclusion

We began our chapter by presenting an overview of what is happening in terms of
charge and energy in an electric circuit. We then used these principles to analyse d.c.
circuit networks. Next we were able to use our knowledge of fields and waves (using
complex numbers and phasors) to develop methods for analysing a.c. circuits with a
single frequency.



6
Thermal physics

This chapter gives an introduction to the areas of physics known as thermodynamics
and statistical mechanics. These deal with the questions, ‘What happens when things
heat up or cool down?’ and ‘Why?’, respectively.

We start with a statement that will be very familiar – but then find that it leads
us into new territory when explored further.

6.1 The conservation of energy: The first law
You will be used to the idea that energy can neither be used up nor created – only
transferred from one object to another, perhaps in different forms.

For our purposes, this is stated mathematically as

∆Q + ∆W = ∆U, (6.1)

where ‘∆X’ refers to ‘a change in X’. Put into words, this states: ‘Heat entering
object + work done on the object = the change in its internal energy’. Internal energy
means any form of stored energy in the object. Usually this will mean the heat it
has, which by the presence of matter, can be measured by temperature. However,
if magnetic or electric fields are involved, U can also refer to electrical or magnetic
potential energy.

Given that the conservation of energy must be the starting point for a study of
heat, it is called the first law of thermodynamics.

Equation (6.1) can be applied to any object or substance. The most straightforward
material to think about is a perfect or ideal gas, and so we shall start there. It is
possible to generalize our observations to other materials and systems afterwards.

Imagine some ideal gas in a cylinder with a piston of cross-sectional area A. The
gas will have a volume V , a pressure p, and a temperature T . From more elementary
work (we also derive this result in Section 6.5.2) we remind ourselves that the internal
energy of a monatomic ideal gas is related to its temperature by

U =
∑
i

1
2
mv2

i =
3
2
NkT, (6.2)

where N is the number of molecules in the gas and k is Boltzmann’s constant, which is
about 1.38×10−23 J/K. We deal in more detail with perfect gases in Section 6.6, here
we are only using the concept to help us visualize things. Such a gas is imagined to
be made up of N identical tiny elastic spheres (so all the m are the same) in random
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motion (hence the different vi), which do not interact with each other or the container,
except through collisions with each other and the piston and cylinder. Therefore, the
only energy they can be said to possess is kinetic and this total kinetic energy makes
up the internal energy.

There are a number of terms that now need to be introduced to facilitate our
discussions.

Adiabatic process: This is a process performed on our system that does not involve
any heat energy being transferred in or out of our system. An easy way to
represent this would be to say that ∆Q = 0 in (6.1) for an adiabatic process.

Isothermal process: This is a process that occurs whilst maintaining a constant
temperature in our system. Our system is an ideal gas so an isothermal process
would be represented as ∆U = 0 in (6.1).

Isochoric process: This is a process that involves no change in volume. For our
system this would be like locking the piston position and could be represented
by ∆W = 0 in (6.1), since the only way to do mechanical work on the gas is to
move the piston.

Let us now do some work on the gas by pushing the piston in by a small distance∗

∆x. The force F required to push the piston is F = pA, where A is the cross-sectional
area of the piston. The work done on the gas is

∆W = F∆x = pA∆x. (6.3)

Notice that A∆x is also the amount by which the volume of the gas has been
decreased. If ∆V represents the change in volume then ∆V = A∆x. Therefore,

∆W = −p ∆V.

For a perfect gas in a cylinder (or in fact in any other situation), the first law can
be written a bit differently as

∆U = ∆Q − p ∆V. (6.4)

6.2 The second law
While the first law is useful, there are certain things it can never tell us. For example,
think about an ice cube sitting on a dish in an oven. We know what happens next –
the ice cube melts as heat flows from oven to ice, warming it up until it reaches melting
point. However, the first law does not tell us that. As far as it is concerned it is just
as possible for heat to flow from the ice to the oven, cooling the ice and heating the
oven.

We have stumbled across our next law – called the second law of thermodynamics.
This can be stated in several ways, but we shall start with this: Heat will never flow
from a cold object to a hotter object by itself.

∗The work done is of course a scalar product of the force and displacement vectors. However, the
force and displacement are clearly parallel for the piston so we have dropped the vector notation here
and refer only to the scalar magnitudes.
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This helps us with the ice in the oven, but you may be wondering what the sig-
nificance of the ‘by itself’ is. Actually heat can be transferred from a cold object to
a hotter one – that is what fridges and air conditioning units do. However, they can
only do it because they are plugged into the electricity supply. If you are prepared to
do some work – then you can get heat out of a cold object and into a hotter one, but
as soon as you turn the power off and leave it to its own devices, the heat will start
flowing the other way again.

6.3 Carnot’s theorem

6.3.1 Heat engines and fridges

The fridge is shown in Figure 6.1. It is a device which uses work ∆W (usually provided
by an electric compressor) to extract heat ∆Q2 from the icebox, and pump it out into
the surroundings. We usually employ the word ‘reservoirs’ to describe the icebox and
surroundings here, because we mean that they are large enough so that taking heat
out of them or putting heat into them will not change their temperatures appreciably.
The temperature T1 of the surroundings is of course greater than the temperature of
the icebox T2. However, by the conservation of energy, the amount of energy pumped
out ∆Q1 is bigger than the amount of energy removed from the icebox. By convention
∆Q2 > 0 and ∆Q1 < 0, since heat flowing into this engine is regarded as positive.
The first law therefore states, for this engine, that ∆Q1 + ∆Q2 + ∆W = 0.

The fridge is a device that uses work to move heat from cold objects to hot. The
opposite of a fridge is a heat engine (Figure 6.2). This allows heat to flow in its
preferred way – namely from hot to cold – but arranges it to do some work on the
way. Petrol engines, steam engines, turbogenerators, and jet engines are all examples
of heat engines.

T1

T2

∆Q1

∆Q2

∆W

Fig. 6.1
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T1

T2

∆Q2

∆Q1

∆W

Fig. 6.2

It was Carnot who realized that the most efficient heat engine of all was a
‘reversible’ heat engine. In other words, one that got the same amount of work out
of the heat transfer as would be needed to operate a perfect fridge to undo its oper-
ation.

In order to do this, it is necessary for all the heat transfers (between one object
and another) to take place with as small a temperature difference as possible. If this
is not done, heat will flow from hot objects to cold – a process which could have been
used to do work, but was not. Therefore not enough work will be done to enable the
fridge to return the heat to the hot object.

Carnot therefore proposed that the ratio of heat coming in from the hot object to
the heat going out into the cold object has a maximum for this most efficient engine.
This is because the difference between heat in and heat out is the work done, and we
want to do as much work as possible.

So how would a ‘Carnot’ engine work? Whatever processes occur, there can never
be any transfer of heat across a temperature difference (as this is irreversible). So let
us have a go at designing such an engine. First, we can confine ourselves to two kinds
of processes that were listed in Section 6.1:

(a) Isothermal processes (our heat engine can be attached to one of the reser-
voirs at the temperature of that reservoir and acquire ∆Q without changing
temperature)

(b) Adiabatic processes (our heat engine can be isolated from the reservoirs and un-
der an adiabatic change modify its temperature without involving an exchange
of energy with the environment).

These processes are reversible because they do not involve the transfer of heat
across a temperature difference.

A ‘Carnot cycle’ might look like the one shown in Figure 6.3.
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∆W ∆W
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∆Q2

∆Q1
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(2) (3)

T1 T1
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T2T1 T2

T1 T2T2 T1

Fig. 6.3

(1) ∆Q1 is transferred isothermally from the hotter reservoir to the engine at tem-
perature T1.

(2) The engine is isolated from the hotter reservoir and allowed to expand adiabat-
ically. Work is done on the surroundings, but conservation of energy would re-
quire that the temperature of the engine must now fall. It falls from T1 (the tem-
perature of the hotter reservoir) to T2 (the temperature of the colder reservoir).

(3) The engine is now attached to the colder reservoir and ∆Q2 is transferred
isothermally to the colder reservoir at temperature T2.

(4) The engine is isolated from the colder reservoir and some work is done on it
adiabatically. Since there is no transfer of heat (it is after all, adiabatic), the
conservation of energy would require that the temperature of the engine will
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rise from T2 (the temperature of the colder reservoir) to T1 (the temperature of
the hotter reservoir).

After (4) we of course return to (1) and the beginning of the next cycle.
In thinking up this cycle, Carnot also noticed that processes (1) and (3) are

essentially identical except in the temperatures at which the energies (∆Q1 and
∆Q2) are transferred. Therefore, ∆Q1 and ∆Q2 can only be dependent on T1 and T2,
respectively. Furthermore, he said that the ratio of the two energies must be a function
of the temperatures of the hot and cold reservoirs only.

This can be stated as ∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = f(T1, T2). (6.5)

More light can be shed on the problem if we stack two heat engines in series,
with the second taking the heat ∆Q2 from the first (at temperature T2), extracting
further work from it before dumping it as heat (∆Q3) into a yet colder reservoir at
temperature T3.

The two heat engines separately and together give us the equations:∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = f(T1, T2)
∣∣∣∣∆Q2

∆Q3

∣∣∣∣ = f(T2, T3)
∣∣∣∣∆Q1

∆Q3

∣∣∣∣ = f(T1, T3)

⇒ f(T1, T3) = f(T1, T2) × f(T2, T3)

⇒ f(T1, T2) =
f(T1, T3)
f(T2, T3)

=
g(T1)
g(T2)

. (6.6)

6.3.2 Thermodynamic temperature

However, if g(T ) is a function of the temperature alone, we might as well call g(T ) the
temperature itself. To summarize, thermodynamic temperature (T ) is defined so that
in a reversible heat engine, the ratio of heat extracted from the hot object (∆Q1) to
the heat ejected into the cold object (∆Q2) is∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = T1

T2
. (6.7)

William Thomson∗ (Lord Kelvin) proposed a temperature scale based on this and
Carnot’s theory. Using the observations of a contemporary, Regnault, Thomson showed
that for a close approximation to a Carnot cycle operating between the temperatures
of boiling water (T1) and pure melting ice (T2) at atmospheric pressure,∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = 1.366.

With T1 − T2 = 100 units (Thomson wanted to match the Celsius scale), this is only
achievable if T2 = 273.2 units. This is of course the Kelvin scale, though nowadays by
international agreement the ‘Kelvin’ and its scale are defined by two points: absolute

∗On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and
calculated from Regnault’s observations. By Lord Kelvin (William Thomson) 1848.
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zero and the temperature of the triple point of water.∗ So T2 = 273.16 K (or 0.01◦C)
by modern standards, and is the triple point of water.

The ‘Kelvin’ temperature scale obtained using the gas laws (a perfect gas) satisfies
this definition as well. For this reason, the kelvin is frequently referred to as the unit
of ‘thermodynamic temperature’. Section 6.6.2.3 considers a Carnot engine with a
perfect gas as its working medium.

6.3.3 Efficiency of a heat engine

The efficiency of a reversible heat engine can now be calculated. We define the efficiency
(η) to be the ratio of the work done (the useful output) to ∆Q1 (the total energy input).
Therefore,

η =
∣∣∣∣∆W

∆Q1

∣∣∣∣ = ∆Q1 − |∆Q2|
∆Q1

= 1 − T2

T1
. (6.8)

This, being the efficiency of a reversible engine, is the maximum efficiency that
can be achieved. A real engine will fall short of this goal. Notice that for a coal-fired
power station, in which T1 (the temperature of the boiler) is frequently 840 K, and T2
(the temperature of the stream outside) is 300 K, the maximum possible efficiency is

η = 1 − 300
840

= 64%.

In practice the water leaves the turbogenerator at 530 K, and so the efficiency
cannot go higher than

η = 1 − 530
840

= 37%.

The design of modern large power stations is such that the actual efficiency is
remarkably close to this value.

Q1 Calculate the maximum efficiency possible in a coal-fired power station, if the
steam is heated to 700◦C and the river outside is at 7◦C.

Q2 Mechanical engineers have been keen to build jet engines which run at higher
temperatures. This makes it very difficult and expensive to make the parts, given
that the materials must be strong, even when they are almost at their melting
point. Why are they making life hard for themselves?

∗The triple point of water is the state in which pure water, pure ice, and pure water vapour can
coexist in stable equilibrium.
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6.4 Entropy

6.4.1 Reversible processes

Now we need to take a step backwards before we can go forwards. Look back at the
definition of thermodynamic temperature in equation (6.7). It can be rearranged to
state:

Reversible :
∆Q1

T1
=

|∆Q2|
T2

⇒ ∆Q1

T1
+

∆Q2

T2
= 0. (6.9)

Remember that this is for the ideal situation of a reversible process – as in a
perfect fridge or heat engine. Suppose, then, that we start with some gas at pressure
p and volume V . Then we do something with it (squeeze it, heat it, let it expand, or
anything reversible), and finally do some more things to it to bring it back to pressure
p and volume V . The list of processes can be broken up into tiny stages, each of
which saw some heat (∆Q) entering or leaving the system, which was at a particular
temperature T . The only difference between this situation and that in (6.9) is that
there were only two stages in the process for the simpler case. The physics of (6.9)
should still apply, no matter how many processes are involved. Therefore, provided all
the actions are reversible we can write

Reversible :
∑

Complete cycle

∆Q

T
= 0 ⇒

∮
dQ

T
= 0, (6.10)

where the circle on the integral implies that the final position (on a p,V graph) is the
same as where the gas started.

Now suppose that there are two points on the (p,V ) graph which are of interest to
us, and we call them A and B. Let us go from A to B and then back again (using a
different route), but only using reversible processes. We call the first route I, and the
second route II. Equation (6.10) tells us

Reversible :

∮
dQ

T
=
∫ B

A

dQI

T
+
∫ A

B

dQII

T
= 0

∫ B

A

dQI

T
−
∫ B

A

dQII

T
= 0

∫ B

A

dQI

T
=
∫ B

A

dQII

T
.

(6.11)

In other words the integral
∫

dQ/T between the two points A and B is the same,
no matter which reversible route is chosen. This is a very special property of a function
– we label

∫
dQ/T as a function of states A and B, and call it the change in entropy,

∆SAB .
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This means that the current entropy of the gas, like pressure, volume, and tem-
perature, is only a function of the state that the gas is in now – and does not depend
on the preparation method.

6.4.2 Irreversible processes and the second law

We must stress that entropy is only given by
∫

dQ/T when the integral is taken along
reversible processes in which there is no wastage of heat. Heat is wasted when it is
allowed to flow from a hot object to a cold one without doing any work on the journey.
This would be irreversible, since you could only get the heat back into the hot object
if you expended more energy on it.

Let us make an analogy. Reversible processes are like a world in which purchasing
prices and selling prices are the same. If you started with £100, and spent it in various
ways, you could sell the goods and end up with £100 cash at the end.

Irreversible processes are like the real world in that traders will want to sell you
an apple for more than they bought it for. Otherwise they will not be able to make
a profit. If you started with £100, and spent it, you would never be able to get £100
back again, since you would lose money in each transaction. You may end up with
£100 ‘worth of goods’, but you would have to be satisfied with a price lower than
£100 if you wanted to sell it all for cash.

Let us now return to the physics, and the gas in the piston. What does irreversibility
mean here? We have not lost any energy – the first law has ensured that. But we have
lost usefulness.

Equation (6.10) tells us that if we come back to where we started, and only use
reversible processes on the way, the total entropy change will be zero. There is another
way of looking at this, from the point of view of a heat engine.

Let us suppose that the temperature of the boiler in a steam engine is TA. In a
perfect heat engine, the cylinder will receive the steam at this temperature. Sup-
pose ∆Q joules of heat are transferred from boiler to cylinder. The boiler loses
entropy ∆Q/TA; the cylinder gains entropy ∆Q/TA and the total entropy remains
constant.

Now let us look at a real engine. The boiler must be hotter than the cylinder, or
heat would not flow from boiler to cylinder. Suppose that the boiler is still at TA, but
the cylinder is at TC. We have now let irreversibility loose in the system, since the
heat ∆Q now flows from hot to cooler without doing work on the way.

What about the entropy? The boiler now loses ∆Q/TA to the connecting pipe,∗

but the cylinder gains ∆Q/TC from it. Since TC < TA, the cylinder gains more entropy
than the boiler lost.

This is an alternative definition of the second law. Processes go in the direction to
maximize the total amount of entropy.

∗What has the pipe got to do with it? Remember that we said that change in entropy ∆S is
only given by ∆Q/T for reversible processes. The passing of ∆Q joules of heat into the pipe is done
reversibly (at temperature TA), so we can calculate the entropy change. Similarly, the passing of ∆Q
joules of heat from pipe to cylinder is done reversibly (at TC), so the calculation is similarly valid
at the other end. However, something is going on in the pipe which is not reversible – namely ∆Q
joules of heat passing from higher to lower temperature. Therefore we cannot apply any ∆S = ∆Q/T
arguments inside the pipe.



The Boltzmann law 6.5 125

6.4.3 Restatement of first law

For reversible processes, ∆W = −p∆V , and ∆Q = T∆S. Therefore the first law (6.1)
can be written as

∆U = T∆S − p∆V. (6.12)

We find that this equation is also true for irreversible processes. This is because
T , S, U , p, and V are all functions of state, and therefore if the equation is true for
reversible processes, it is true for all processes. However, care must be taken when
using it for irreversible processes, since T∆S is no longer equal to the heat flow and
p∆V is no longer equal to the work done.

Q3 Two insulated blocks of steel are identical except that one is at 0◦C, while the
other is at 100◦C. They are brought into thermal contact. A long time later, they
are both at the same temperature. Calculate the final temperature; the energy
change and entropy change of each block if (1) heat flows by conduction from one
block to the other, and if (2) heat flows from one to the other via a reversible heat
engine. ++

6.5 The Boltzmann law
The Boltzmann law is simple to state, but profound in its implications:

Probability that a particle has energy E ∝ e−E/kT , (6.13)

where k is the Boltzmann constant and is about 1.38×10−23 J/K. We also find that the
probability that a system has energy E or greater is also proportional to e−E/kT (with
a different constant of proportionality). This energy E is therefore very important and
as such is often called an activation energy and processes that seem to obey this law
are often called activation processes. If you are less familiar with the number e you
might like to try the workshop in Section 7.2, which is on logarithms.

There is common sense here because (6.13) is saying that greater energies are less
likely, and also that the higher the temperature, the more likely you are to have higher
energies. The quotient in the power of the number e essentially compares the energy E
with the energy kT. As we will see, typically, the average energy of a molecule in a
system is given by kT, so (6.13) is very small if E/kT is large; that is, if T is small
and kT is small compared to E – the likelihood of a molecule at low T having an
energy E is small because the chances of a molecule receiving the energy from thermal
excitations at low T is small. As T gets larger without limit we see that (6.13) tends
to unity – now the average energy kT becomes much larger than the energy E and it
becomes very likely that any molecule can have any energy.

Let us look at two examples.

6.5.1 Workshop: Atmospheric pressure

The pressure in the atmosphere at height h is proportional to the probability that a
molecule will be at that height, and is therefore proportional to e−mgh/kT . Here, the
energy E is of course the gravitational potential energy of the molecule – which has
mass m.
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The proof of this statement is in several parts.
First we assume that all the air is at the same temperature. This is not a realistic

assumption, but we shall make do with it. Next we divide the atmosphere into slabs
(each of height ∆h and unit area), stacked one on top of the other. Each slab has to
support all the ones above it.
(a) From the gas law∗ (pV = NkT where N is the number of molecules under con-

sideration), the definition of density (ρ = Nm/V ) show that

ρ =
pm

kT
.

(b) Increasing the height h by a small increment ∆h, the pressure will reduce by the
weight of one slab. Show that

∆p = −pmg

kT
∆h.

(c) Integrate the expression above to show that

p = p0e−(mgh/kT ) = p0e−(Egrav/kT ),

where p0 is the pressure at ground level and Egrav is the difference in gravitational
potential energy of a molecule at a height h and a molecule on the ground.

Sections 7.1 and 7.2 are workshops that deal with setting up integrals in physics
problems and logarithms, respectively. You might like to have a go at them before you
try (c).

We see that the Boltzmann law is obeyed for an isothermal atmosphere.

6.5.2 Velocity distribution of molecules in a gas

The probability that a molecule in the air will have an x-component of its velocity in
a range ux and ux + ∆ux is once again proportional to e−E/kT . Here the energy E is
the kinetic energy associated with the x-component of motion, namely mu2

x/2. This
means that the number of molecules with an x-component of velocity in the range ux

and ux + ∆ux is

∆N ∝ e−mu2
x/2kT∆ux. (6.14)

From this statement, we can set up the average value of u2
x. Thus:

u2
x =

∑
u2
x∆N∑
∆N

. (6.15)

The numerator of this quotient is just the sum of all the possible u2
x and the

denominator is just the total number of molecules. Taking the limit as the interval
∆ux tends to zero we get an integral:

u2
x =

∫
u2
x exp

(−mu2
x

/
2kT
)

dux∫
exp
(−mu2

x

/
2kT
)

dux

=
1
2 (2kT/m)3/2

(2kT/m)1/2
=

kT

m
. (6.16)

∗Dealt with in more detail in Section 6.6.
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The mean kinetic energy is given by

K =
1
2
mu2 =

1
2
m
(
u2
x + u2

y + u2
z

)
=

3
2
kT, (6.17)

as (6.16) would have produced the same answer for any direction (x, y, or z) in space.
So the internal energy of a mole of gas (due to linear motion) is

U = NAK =
3
2
NAkT =

3
2
RT, (6.18)

where R ≡ NAk is the gas constant. From this it follows that the molar heat capacity
of a perfect gas,∗ CV = 3

2R.

Q4 There is a ‘rule of thumb’ in chemistry that when you raise the temperature by
10◦C, the rate of reaction roughly doubles. Use Boltzmann’s law to show that this
means the activation energy of chemical processes must be of order 10−19 J. +

Q5 The amount of energy taken to turn 1 kg of liquid water at 100◦C into 1 kg
of steam at the same temperature is 2.26 MJ. This is called the latent heat of
vaporization of water. How much energy does each molecule need to ‘free itself’
from the liquid?

Q6 The probability that a water molecule in a mug of tea has enough (or more than
enough) energy to leave the liquid is proportional to exp(−EL/kT ) where EL is
the energy required to escape the attractive pull of the other molecules (latent
heat of vaporization per molecule). By definition, the boiling point of a liquid is
the temperature at which the saturated vapour pressure is equal to atmospheric
pressure (about 100 kPa). Up a mountain, you find that you cannot make good
tea, because the water is boiling at 85◦C. What is the pressure? You will need
your answer to Q5. +

Q7 Estimate the altitude of the mountaineer in Q6. Assume that all of the air in the
atmosphere is at 0◦C. +

Q8 The fraction of molecules (mass m each) in a gas at temperature T which have
a particular velocity (of speed u) is proportional to e−mu2/2kT , as predicted by
the Boltzmann law. However, the fraction of molecules which have speed u is
proportional to u2e−mu2/2kT . Where does the u2 come from? ++

6.5.3 Workshop: Justification of Boltzmann law

In this section, we aim to give you an understanding about where the e−E/kT comes
from in fundamental terms. This is hardly necessary in most first-year university
courses; however, we feel you deserve some kind of explanation. As a benefit, this
analysis also introduces you to some of the most vital concepts in statistical mechanics.

Imagine you toss three fair coins. There are two ways of describing the outcome.
You could simply say, ‘Two heads, one tail’, or you could be more specific: ‘coins

∗This is the heat capacity due to linear motion. For a monatomic gas (like helium), this is the
whole story. For other gases, the molecules can rotate or vibrate about their bonds as well, and
therefore the heat capacity will be higher.
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A and B came down heads, coin C came down tails’. The first description is called
a macrostate and the second a microstate. Notice that if the coins were identical,
you could not distinguish the two ‘head’ coins from each other, and therefore the
microstate A = heads, B = tails, C = heads would look the same as A = B = heads,
C = tails.

(a) Write down all the possible macrostates for three tossed coins. Work out how
many microstates each one contains.

(b) Now suppose instead of tossed coins, we have 4 units of energy to give to seven
atoms. The units cannot be split up, but we can give one atom more than one
unit of energy if we wish. Two of the resulting macrostates are ‘one atom with
three energy units, one atom with one unit, five atoms with no energy’, and
‘four atoms with one energy unit, three with none’. Write down the other three
possible macrostates.

(c) A macrostate can be more conveniently written {n0, n1, n2, n3, . . .} where n0
is the number of atoms with no units of energy, n1 gives the number of atoms
with only one unit, and np gives the number of atoms with exactly p units of
energy. Accordingly, the two macrostates written out above could be rewritten
{5,1,0,1} and {3,4}, respectively. Use this notation to write down the other
three macrostates.

(d) Attempt to calculate the number of microstates in each macrostate.∗

(e) If all microstates were equally likely, which macrostate would be most likely?
What do you notice about this macrostate?

It turns out that the most likely macrostate will always be the one in which the
numbers n0, n1, n2, . . . are closest to a geometric progression. In other words, for the
most likely macrostate, np = Afp, where f is some fixed number.† Given that there
are fewer atoms with larger amounts of energy, the number f will be less than 1. Often
this relationship is written np = Ae−αp where α is a positive constant.

(f) Derive a relationship between α and f in the previous paragraph.
(g) If the number of atoms with p units of energy is given by np = Afp as above,

prove that the total number of atoms N =
∑

p np = A/(1 − f).‡

(h) If the number of atoms with p units of energy is given by np = Afp as above,
prove that the total number of energy units E =

∑
p p np = Af

/
(1 − f)2.§

(i) Using your answers to (g) and (h), derive expressions for A and f in terms of N
and E. Hence write down the value of np in terms of N and ε where ε = E/N

∗The formula for the number of microstates in the macrostate is given by W = N !/(n0!n1!n2! . . .)
where the exclamation mark means ‘factorial’ – i.e. 3! = 3 × 2 × 1, 4! = 4 × 3 × 2 × 1, and so on (0! is
defined equal to 1); and N is the total number of atoms. You might like to think about why this
might be the case. A justification is given in the solution to part (d) of this workshop.

†This is easier to prove than you might think, and a justification is given in the solution to part
(e) of this workshop.

‡Hint : Note that Nf = N − A.
§Hint : Note that

(
f + 2f2 + 3f3 + 4f4 + · · ·) =

(
1 + f + f2 + f3 + · · ·) S where S = f + f2 +

f3 + f4 + · · · , and then use your answer to the previous question to sum the geometric series.
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is the average number of energy units per atom. You should find that

np = N

(
1

1 + ε

)
×
(

ε

1 + ε

)p

=
N

1 + ε
× (1 + ε−1)−p

.

( j) When we use this method to describe the distribution of energy between many
atoms, we frequently make an assumption that E is much larger than N , so
that the amount of energy which an atom has can be regarded as continuous.
Accordingly ε is much larger than 1. Show that in this case, the α factor of
question (f) becomes α = ε−1, and hence:

np = Ae−p/ε.

(k) Now suppose that each unit of energy is actually η joules worth. Thus if an
atom has p units of energy, it has pη joules (which we now define as F ); while
the average energy per atom is Eη/N = εη (which we now define as F ). Rewrite
the equation for np in terms of A, F , and F . Typically, the average energy is
given by kT, and hence we find that the Boltzmann distribution comes about
because it is the most likely macrostate.

6.6 Perfect gases

All substances have an equation of state. This tells you the relationship between vol-
ume, pressure, and temperature for the substance. Most equations of state are nasty;
however, the one for an ideal, or perfect, gas is straightforward to use. It is called the
gas law. This states that

pV = nRT (6.19)
pV = NkT, (6.20)

where p is the pressure of the gas, V its volume, and T its absolute (or thermodynamic)
temperature. This temperature is measured in kelvin always. There are two ways of
stating the equation: as in (6.19), where n represents the number of moles of gas, or
as in (6.20), where N represents the number of molecules of gas. Clearly N = NAn
where NA is the Avogadro number, and therefore R = NAk.

You can adjust the equation to give you a value for the number density of molecules.
This means the number of molecules per cubic metre, and is given by N/V = p/kT .
The volume of one mole of molecules can also be worked out by setting n = 1 in (6.19):

Vm =
RT

p
. (6.21)

You can adjust this equation to give you an expression for the density. If the mass
of one molecule is m, and the mass of a mole of molecules (the relative molecular mass)
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is M , we have

ρ =
Mass

Volume
=

M

RT/p
=

Mp

RT

=
NAmp

NAkT
=

mp

kT
. (6.22)

Please note that this is the ideal gas law. Real gases will not always follow it.
This is especially true at high pressures and low temperatures where the molecules
themselves take up a good fraction of the space. However, at room temperature and
atmospheric pressure, the gas law is a very good model.

Q9 Use the gas law to work out the volume of one mole of gas at room temperature
and pressure (25◦C, 100 kPa).

Q10 What fraction of the volume of the air in a room is taken up with the molecules
themselves? Make an estimate, assuming that the molecules are about 10−10 m
in radius.

Q11 Estimate a typical speed for a nitrogen molecule in nitrogen at room temperature
and pressure. On average, how far do you expect it to travel before it hits another
molecule? Again, assume that the radius of the molecule is about 10−10 m. ++

6.6.1 Heat capacity of a perfect gas

We have already shown (in Section 6.5.2) that for a perfect gas, the internal energy
due to linear motion is 3

2RT per mole. If this were the only consideration, then the
molar heat capacity would be 3

2R. However, there are two complications which are
described below.

6.6.1.1 The conditions of heating

In thermodynamics, you will see molar heat capacities written with subscripts:
CP and CV. They both refer to the energy required to heat a mole of the substance
(M kg) by 1 K. However, the energy needed is different depending on whether the
volume or the pressure is kept constant as the heating progresses.

When you heat a gas at constant volume, all the heat going in goes into the internal
energy of the gas (∆QV = ∆U).

When you heat a gas at constant pressure, two things happen. The temperature
goes up, but it also expands. In expanding, it does work on its surroundings. Therefore
the heat put in is increasing both the internal energy and is also doing work (∆QP =
∆U + p∆V ).

Given that we know the equation of state for the gas (6.19), we can work out the
relationship between the constant-pressure and constant-volume heat capacities. In
these equations we shall be considering one mole of gas.

∆QV = CV∆T =
dQV

dT
∆T =

dU

dT
∆T

∆QP = CP∆T =
dQP

dT
∆T =

dU

dT
∆T + p

dV

dT
∆T
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so

CV =
dQV

dT
=

dU

dT

CP =
dQP

dT
=

dU

dT
+ p

dV

dT

= CV + p
d

dT

(
RT

p

)
= CV + R. (6.23)

6.6.1.2 The type of molecule

Gas molecules come in many shapes and sizes. Some only have one atom (like helium
and argon), and these are called monatomic gases. Some gases are diatomic (like
hydrogen, nitrogen, oxygen, and chlorine), and some have more than two atoms per
molecule (like methane).

The monatomic molecule only has one use for energy – going places fast. Therefore
a monatomic molecule’s internal energy is given simply by 3

2kT , and so the molar
internal energy is U = 3

2RT . Therefore, using equation (6.23), we can show that
CV = 3

2R and CP = CV + R = 5
2R.

A diatomic molecule has other options open to it. The atoms can rotate about the
molecular centre (and have a choice of two axes of rotation). They can also wiggle back
and forth – stretching the molecular bond like a rubber band. At room temperature
we find that the vibration does not have enough energy to kick in, so only the rotation
and translation (the linear motion) affect the internal energy.

Each possible axis of rotation adds 1
2kT to the molecular energy, and so we find

that for most diatomic molecules, CV = 5
2R and CP = 7

2R.

6.6.1.3 Thermodynamic gamma

It turns out that the ratio of CP/CV crops up frequently in equations, and is given
the letter γ. This is not to be confused with the γ in relativity, which is completely
different.

Using the results of our last section, we see that γ = 5/3 for a monatomic gas, and
γ = 7/5 for one that is diatomic.

6.6.2 Pumping heat

In this section we show you how to turn a perfect gas (in a cylinder) into a reversible
heat engine, and in doing so we will summarize all that we have dealt with so far.

6.6.2.1 Isothermal gas processes

As an introduction, we need to know how to perform two processes. First we need
to be able to get heat energy into or out of a gas without changing its temperature.
Remember that we want a reversible heat engine, and therefore the gas must be at the
same temperature as the hot reservoir when the heat is passing into it. Any process,
like this, which takes place at a constant temperature is said to be isothermal.
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The gas law tells us (6.19) that pV = nRT , and hence that pV is a function of
temperature alone (for a fixed amount of gas). Hence in an isothermal process,

pV = constant. (6.24)

Using this equation, we can work out how much we need to compress the gas
to remove a certain quantity of heat from it. Alternatively, we can work out how
much we need to let the gas expand in order for it to ‘absorb’ a certain quantity of
heat. These processes are known as isothermal compression and isothermal expansion,
respectively.

Suppose that the volume is changed from V1 to V2, the temperature remaining T .
Let us work out the amount of heat absorbed by the gas. First of all, remember that
as the temperature is constant, the internal energy will be constant, and therefore the
first law may be stated ∆Q = p∆V . In other words, the total heat entering the gas
may be calculated by integrating p∆V from V1 to V2:

Q =
∫

pdV =
∫

nRT

V
dV = [nRT lnV ]V2

V1
= nRT ln

V2

V1
. (6.25)

This equation describes an isothermal (constant temperature) process only. In order
to keep the temperature constant, we maintain a good thermal contact between
the cylinder of gas and the hot object (e.g. the boiler wall) while the expansion is
going on.

6.6.2.2 Adiabatic gas processes

The other type of process you need to know about is the adiabatic process. These
are processes in which there is no heat flow (∆Q = 0), and they are used in our
heat engine to change the temperature of the gas in between its contact with the hot
object and the cold object. Sometimes this is referred to as an isentropic process, since
if ∆Q = 0 for a reversible process, T∆S = 0, and so ∆S = 0 and the entropy remains
unchanged.∗

Before we can work out how much expansion causes a certain temperature change,
we need to find a formula which describes how pressure and volume are related in an
adiabatic process. First, the first law tells us that if ∆Q = 0, then 0 = ∆U + p∆V .
We can therefore reason like this for n moles of gas:

0 = ∆U + p∆V

= n CV ∆T + p ∆V.

∗While the terms ‘isentropic’ and ‘adiabatic’ are synonymous for a perfect gas, care must be taken
when dealing with irreversible processes in more advanced systems. In this context ∆Q is not equal
to T∆S. If ∆Q = 0, the process is said to be adiabatic; if ∆S = 0, the process is isentropic. Clearly
for a complex system, the two conditions will be different. This arises because in these systems, the
internal energy is not just a function of temperature, but also of volume or pressure.
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Now for a perfect gas, nRT = pV , therefore nR∆T = p∆V + V ∆p. So we may
continue the derivation thus:

nCV∆T =
CV

R
(p∆V + V ∆p)

0 =
CV

R
(p∆V + V ∆p) + p∆V

= CV(p∆V + V ∆p) + Rp∆V

= CPp∆V + CVV ∆p

= γ p∆V + V ∆p

= γ
∆V

V
+

∆p

p
. (6.26)

Integrating∗ this differential equation gives

γ lnV + ln p + C = 0

pV γ = e−C

pV γ = constant. (6.27)

Equation (6.27) is our most important equation for adiabatic gas processes, in that
it tells us how pressure and volume will be related during a change.

We now come back to our original question: what volume change is needed to
obtain a certain temperature change? Let us suppose we have a fixed amount of gas
(n moles), whose volume changes from V1 to V2. At the same time, the temperature
changes from T1 to T2. We may combine equation (6.27) with the gas law to obtain

pV γ = constant

pV V γ−1 = constant

nRTV γ−1 = constant

T1

T2

V γ−1
1

V γ−1
2

= 1.

(6.28)

6.6.2.3 A gas heat engine

We may now put our isothermal and adiabatic processes together to make the heat
engine, which we first introduced in Section 6.3.1. Remember, the engine operates on
a cycle:

(1) The cylinder is attached to the hot reservoir (temperature T1), and isothermal
expansion is allowed (from V1 to V2) so that heat ∆Q1 is absorbed into the gas.

∗This step involves both integration and natural logarithms. If you are less than familiar with
either of these concepts, please have a go at the workshops in Sections 7.1 and 7.2.
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(2) The cylinder is detached from the hot reservoir, and an adiabatic expansion
(from V2 to V3) is allowed to lower the temperature to that of the cold reser-
voir (T2).

(3) The cylinder is then attached to the cold reservoir. Heat ∆Q2 is then expelled
from the cylinder by an isothermal compression from V3 to V4.

(4) Finally, the cylinder is detached from the cold reservoir. An adiabatic compres-
sion brings the volume back to V1, and the temperature back to T1.

Applying equation (6.25) to the isothermal processes gives us

∆Q1 = nRT1 ln
V2

V1

∆Q2 = nRT2 ln
V4

V3
. (6.29)

Similarly, applying equation (6.28) to the adiabatic processes gives us

V3

V2
=
(

T1

T2

)γ−1

V4

V1
=
(

T1

T2

)γ−1

⇒ V3

V2
=

V4

V1
⇒ V3

V4
=

V2

V1
. (6.30)

Notice that this result means that the ratio of ∆Q1 and ∆Q2, depends only on the
temperatures of the heat reservoirs T1 and T2. Combining equations (6.29) and (6.30)
gives us

∆Q1

∆Q2
= −T1

T2∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = T1

T2
, (6.31)

where the minus sign reminds us that Q2 < 0, since this heat was leaving the gas.
To summarize this process, we have used a perfect gas to move heat from a hot

reservoir to a colder one. In doing this, we notice less heat was deposited in the cold
reservoir than absorbed from the hot one. Where has it gone? It materialized as useful
work when the cylinder was allowed to expand. Had the piston been connected to a
flywheel and generator, we would have seen this in a more concrete way.

We also notice that we have proved that the Kelvin scale of temperature, as defined
by the gas law, is a true thermodynamic temperature since equation (6.31) is identical
to (6.7).

Q12 A volume V of gas is suddenly squeezed to one-hundredth of its volume. Assuming
that the squeezing was done adiabatically, calculate the work done on the gas,
and the temperature rise of the gas. Why is the adiabatic assumption a good one
for rapid processes such as this?
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6.7 Conclusion

We began this chapter with the first law of thermodynamics, which is essentially a
statement of the law conservation of energy. We make the distinction between the two
laws because the first law is explicit about the relationship between work, internal
energy, and heat.

Heat will flow from a hotter object to a colder object and will never, by itself, do
the reverse. A fridge will do the reverse, but only if it is plugged in; that is, only if
you are prepared to do some work will you be able to transfer heat from the icebox
(colder object) to the surroundings (hotter object). This is essentially the second law
of thermodynamics.

A heat engine allows heat to flow through it and arranges to do some work on the
way. If the processes involved in the operation of the heat engine are all reversible,
then the heat engine is the most efficient it can be. Irreversible processes involve
heat flowing from hot objects to cold – a process which could have been used to
do work, but was not. The Carnot engine is this idealized reversible engine and
close approximations of the Carnot cycle may be used to define the Kelvin tempera-
ture scale. When we devise a Carnot engine with a perfect gas as the working medium,
we discover that the Kelvin scale as defined by the ideal gas law is identical to the
scale defined by a general Carnot cycle. The Carnot cycle and the idea of reversibility
allow us to introduce the concept of entropy, thereby quantifying ideas introduced
earlier in the chapter.

The Boltzmann law gives insight into many physical phenomena. Very often such
phenomena are called activation phenomena as the probability of occurrence becomes
significant when the available thermal energy becomes a good fraction of an activa-
tion energy. We also presented a justification of the Boltzmann law in the form of a
workshop.



7
Miscellany

7.1 Workshop: Setting up integrals

Problems that require integration in physics are often difficult for beginners not
because the integrals are so difficult (in fact the integrals themselves are usually quite
easy), but because it takes a lot of practice to become comfortable with the process
of translating the physical problem statement into the corresponding mathematical
integral. This is called ‘setting up’ the integral. Let us use an example to illustrate the
idea.

Figure 7.1 shows a dam holding back water of depth h. The water exerts a hori-
zontal force on the dam but this force is larger at the base of the dam than near the
surface of the water. Neglecting atmospheric pressure (as it acts on either side of the
dam in the same way), we should be able to calculate the resultant horizontal force
due to the water by summing up the contributions from the water at different depths.

The thing to do is to imagine the force exerted by the water on infinitesimal
elements of area l∆y as shown in Figure 7.1, and to ‘add them up’ (i.e. to integrate)
to get the total effect.

We need a clear diagram (like Figure 7.1), showing a representative example of
one of the infinitesimal elements and labelling it and any auxiliary coordinate (y) that
might be helpful in specifying the location of this or any other element. It is critical
that one does not choose an element that is special in any way (e.g. the element at
y = h). That way the formula one obtains is applicable to any other element. The
infinitesimal horizontal force ∆F on one of these elements is

∆F = Pressure × area = ρgy × l∆y.

Now,

∆F =
dF

dy
∆y

is an approximate expression for ∆F for small ∆y and the approximation gets better
as ∆y → 0, so in this limit

dF

dy
= ρgly.
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∆y y

h
l

A

B

Fig. 7.1

So, the total resultant force F is the limiting sum

F =
∫ h

0

dF

dy
dy = ρgl

∫ h

0
y dy =

ρglh2

2
.

(a) Obtain an expression for the resultant moment about AB caused by the water
on the dam. (Hint : The perpendicular distance of an element of area from AB
is (h − y).)

(b) Calculate the height at which the resultant force would have to act to produce
the same total moment.

Occasionally one is also required to construct integrals over multiple variables. A
volume integral is a typical example of this sort of problem.

An element of volume of the sphere is depicted in Figure 7.2 as a prism made of
sides ∆r, r∆θ, and r sin θ∆ϕ. In this coordinate system, called spherical polar, the

∆u

∆w

∆r

rsinu∆w

r∆u

r

w

u

Fig. 7.2
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element is referred to by the coordinates (r, θ, ϕ). Hence the volume V of the whole
sphere is calculated by adding up all the volume elements

r2 sin θ ∆r ∆θ ∆ϕ

and taking the limit as ∆r → 0, ∆θ → 0, and ∆ϕ → 0 we have

V =
∫∫∫

r2 sin θ dr dθ dϕ.

Since the variables are independent of each other, the three integrals can be per-
formed separately and V becomes the product of the three integrals:

V =
∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dϕ.

(c) Show that this gives the well-known expression: V = 4
3πR3.

7.2 Workshop: Logarithms

The common logarithm (log) of a number is more clearly demonstrated than defined.
Look at the table below:

Number (x) Can be written as Common logarithm (log x)

100 102 2
1000 103 3
0.1 10−1 −1
3.162 . . . 101/2 0.5
2 100.301... 0.301 . . .

The log of a number is the power to which 10 would have to be raised to make
that number. Thus y = log(x) is the solution to the equation x = 10y.

(a) What is the log of 100 000? What is the log of 10 000? What is the log of
10 000 × 100 000? What do you notice?

(b) What is the log of 100 000 ÷ 10 000. What do you notice?
The questions should have convinced you of the truth of the following three state-

ments:

log(xy) = log x + log y, (7.1)
log(x/y) = log x − log y, (7.2)
log(xa) = a log x. (7.3)

The first follows because 10x+y = 10x×10y, and the other two follow by extension.
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(c) If log 2 = 0.301 and log 3 = 0.477 to three decimal places, work out the logs
of the following numbers without a calculator, then check: (a) 6, (b) 1.5, (c) 4,
(d) 9, and (e) 0.5.

(d) Sketch (or plot) the graph of log y against log x where y = 100x4. Why do you
get a straight line? What are the values of the y-intercept and gradient? Why?

(e) If I start with mass m0 of a radioisotope with half-life T , I have only m0/2
remaining after one half-life and m0/4 after two half-lives. Show that the mass
of radioisotope remaining after time t is equal to

m = m0

(
1
2

)t/T

. (7.4)

Show that if I plot the graph of log m against t, I get a straight line. The
y-intercept is related to m0 and the gradient related to T . Find the relationships.

You may be wondering what was special about the number 10 (called the base of
the logarithms). Why did we say that log x= y meant that 10y =x rather than 2y =x
or 2.7y =x? The answer is that we generally use a denary counting system (base 10)
and therefore this choice makes our logarithms as easy as possible for the common
man or woman. Therefore they are called common logarithms, and not too long ago,
before the age of the calculator, everyone used them when they worked out what a
7.5% reduction in the price of some trousers meant. These days logarithms are not so
common, and we need not just use a base of 10.

We can use any number as a base, but when doing so, we need to specify the base.
Thus since 1024 = 210, we say that log2 1024 = 10, with the little 2 specifying the base.
If no base is given, we assume that common logarithms (base 10) are in use.

(f) What is the logarithm of 56 in base 2? Hint : This means that 56 = 2x. We can
use equation (7.3) to help us find x.

There is one base that is far more important mathematically than all of the others
put together. It turns out that logarithms to base e= 2.71 . . . are particularly useful
in mathematics, and these are called natural logarithms. The natural logarithm of a
number is usually written ln (standing for log natural). For example, ln 10 = 2.30 to
three significant figures.

If y = ex, then x = ln y. (7.5)

The importance of these particular logarithms stems from the fact that the natural
logarithm of x is the solution of the following integral:

lnx =
∫ x

y=1

1
y
dy. (7.6)

(g) Show that ln(ab) = ln a + ln b using the integral in equation (7.6). This proves
that the integral of 1/y has the properties of a logarithm stated in equa-
tion (7.1).∗

∗Hint : Start with ln ab =
∫ ab

1

1
y

dy =
∫ a

1

1
y

dy +
∫ ab

a

1
y

dy = ln a +
∫ ab

a

1
y

dy and then substitute

y = za in the remaining integral, changing the dummy variable from y to z.
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It follows from equation (7.6) that

d

dx
lnx =

1
x

. (7.7)

If we write x = ey, where e is defined to be the base of the natural logarithms; it
follows that ln x = y, and accordingly,

dy

dx
=

1
ey

⇒ dx

dy
= ey ⇒ d

dy
ey = ey. (7.8)

Thus the function ex is a function which, when differentiated with respect to x
remains unchanged.

(h) Show that any function of the form Aex remains unchanged on differentiation
with respect to x, providing that A is a constant.

(i) Show that

d

dx
Aekx = kAekx,

and thus that a solution of the differential equation dy/dx = ky is given by
y = Aekx, where A is a constant to be determined from the situation.

(j) If we assume that the function ex can be written in the form

ex = a0 + a1x + a2x
2 + a3x

3 + · · · ,

where the ap are constants, then
(i) explain why a0 = 1
(ii) show that it follows from equation (7.8) that ap−1 = pap,
(iii) show that ap = 1/p!, and thus that ex = 1 + x + 1

2x2 + 1
6x3 + · · · ,

(iv) finally, by substituting x = 1, show that e = e1 = 2.718. . . .

If you want more practice with logarithms, you may like to try solving workshop
4.11.3 using logs.

7.3 Workshop: Rockets and stages

In (1.67) we recovered the well-known vector equation F = ma from the full derivative
of the momentum vector p = mv. This was because m, in the simple case we were
studying (the mass of a falling body), was constant so (d/dt)m = 0. However, how do
we deal with the situation when (d/dt)m �= 0? One situation in which this condition
occurs is when we study the acceleration of a rocket. A rocket works by ejecting
combustion gases out of the back end (hence the mass of the rocket changes), which
drives the body of the rocket forwards. Here we are going to consider the performance
of a rocket in force-free space; that is, far from any other gravitating body so that all
external forces are assumed to be zero.

A rocket at an initial velocity of v and total mass m + M ejects a small mass of
gas m and acquires a new velocity v+ ∆v. The ejected mass of gas leaves the rocket
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at a velocity relative to the ground of v − ve, where ve is the velocity of ejection of
the exhaust gas. With no external forces acting on the system we once again have

F =
d

dt
P = 0,

where P is the total momentum of the system.

(a) Show that momentum conservation leads to the following relationship:

0 = −mve + M∆v.

The small mass of fuel m is effectively a small reduction in mass of the rocket −∆M .
So∗:

−∆M

M
=

∆v

ve
.

Here we have dropped the vector notation as we understand ∆v and ve to be vec-
tors along the line of flight. This expression can be integrated to obtain an expression
for the sum of all the small boosts in speed ∆v from an initial speed v0 to a final speed
v1:

−ve

∫ M1

M0

dM

M
=
∫ v1

v0

dv,

where M0 and M1 are, respectively, the initial and final masses of the rocket before
and after the burning of a large amount of fuel.

(b) Perform the integral and show that†

v1 − v0

ve
= ln

(
M0

M1

)
.

The rocket expends all of its fuel to achieve a velocity increment (v1 − v0). The
mass of the rocket in the absence of fuel is made up of a structural mass MS and a
payload mass ML.

Rocket engineers find it convenient to introduce dimensionless parameters:
(i) The ‘dead weight fraction’ or s is the ratio of the structural mass to the initial

mass of the rocket before firing its rocket motor without its payload.
(ii) The ‘payload fraction’ or l is the ratio of the payload mass to the initial mass of

the rocket before firing its motor with its payload.
(c) Show that the velocity increment may be rewritten in terms of s and l as

v1 − v0

ve
= − ln(s(1 − l) + l).

∗You might like to have a go at Workshop 7.1, which is a workshop on setting up integrals in
physics problems.

†You might like to take a look at Section 7.2, which is just to remind you of the properties of this
function.
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In order to improve the performance of the rocket, several rockets may be combined
to give a multistage vehicle. After the first stage is fired and its fuel expended it is
jettisoned and the second stage is ignited, and so on. The advantage of the multistage
rocket is that the structural weight at any time is better scaled to the amount of
propellant that remains.

To determine the performance of a multistage rocket, the performance of each
individual stage is obtained using the basic equation for the velocity increment of
a single-stage rocket. The initial mass of the nth stage, M

(n)
0 , is made up of the

propellant mass used by the nth stage, M
(n)
p , the structural mass of the nth stage,

M
(n)
s , and the initial mass of the next stage, M

(n+1)
0 ,

M
(n)
0 = M (n)

p + M (n)
s + M

(n+1)
0 .

The notation introduced for the single-stage rocket may be extended to the multi-
stage rocket if it is noted that the payload of the nth stage is the initial mass of the
next stage:

M
(n)
L = M

(n+1)
0 .

(d) By assuming that ve (the velocity of ejection of exhaust gases), s (the dead
weight fraction), and l (the payload fraction) are the same for all stages of an
N -stage rocket, show that the total velocity increment after N stages is

v1 − v0

ve
= −N ln(s(1 − l) + l).

Let the ratio of the payload mass, ML, to the initial mass of the first stage, M
(1)
0

be λ:

λ = ML/M
(1)
0 .

(e) Show that the expression in (d) becomes

v1 − v0

ve
= −N ln

(
s
(
1 − λ1/N

)
+ λ1/N

)
.

(f) Hence show that for large N the limit of improvement in the velocity increment
due to multistaging is

v1 − v0

ve
= −(1 − s) ln(λ).

To show this you may find the following series useful:

ax = ex ln a = 1 + x ln a +
(x ln a)2

2!
+

(x ln a)3

3!
+ · · · − ∞ < x < ∞

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · − 1 < x ≤ 1.
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7.4 Workshop: Unit conversion

While schools ensure that students are only faced with one set of units (usually the
SI units), laboratories are notoriously less fastidious in this matter. Accordingly it is
vital that you are able to convert between different systems of units reliably. We shall
illustrate two possible methods with two examples each.

(a) Convert 30 mph (miles per hour) into metres per second.
Solution 1: Convert the units themselves (1 miles = 1608 m; 1 h = 60 × 60 s):

30 mph =
30 miles

1 h
=

30 × 1608 m
60 × 60 s

=
30 × 1608

3600
m/s = 13.4 m/s.

Solution 2: Keep multiplying by 1, since this cannot change the answer. Just find
some very creative ways of writing the number 1, such as 1 = (1608 m/1 mile)

30 mph =
30 miles

1 h
× 1 h

60 × 60 s
× 1608 m

1 miles
=

30 × 1608
3600

m/s = 13.4 m/s.

Notice how the unwanted units cancel out if the working is laid out correctly.
(b) Convert 13.6 g/cm3 into kilograms per cubic metre.

Solution 1: Convert the units themselves:

13.6 g
1 (cm)3

=
13.6 × 10−3kg

1 × (10−2m
)3 =

13.6 × 10−3kg
1 × 10−6m3

= 13.6 × 103 kg/m3
.

Solution 2: Keep multiplying by 1:

13.6 g
1 (cm)3

=
13.6 g

1 (cm)3
× 10−3kg

1g
×
(

1 cm
10−2m

)3

=
13.6 × 10−3kg
1 × 10−6m3

= 13.6 × 103 kg/m3
.

Note that whenever prefixes are used in derived units, they are deemed to be
stuck with glue to the unit on their immediate right, and should be squared or
cubed together with it. Thus 1 cm3 means 1 (cm)3 = 10−6 m3 not 1 c(m3) =
10−2 m3.

(c) Show that the acceleration due to gravity (9.81 m/s2) is about 32 ft/s2, where
1 ft is 0.305 m.

(d) Show that atmospheric pressure (1.03 × 105 N/m2) is about 15 lbf/in.2. One
pound force (lbf) is the weight of one pound (1 lb = 0.454 kg) in the Earth’s
gravitational field (9.81 N/kg), while 1 in. is 25.4 mm.

(e) Some chemists still use the ‘cgs’ system of units, which is just like SI, except
that mass is measured in grams and length is measured in centimetres. Show
that the cgs unit of force (the dyne) is equal to 10−5 N, and that the cgs unit
of energy (the erg) is equal to 10−7 J.

(f) Express the speed of light (3.00 × 108 m/s) in feet per nanosecond (ft/ns),
where 1 ft = 0.305 m and 1 ns is 10−9 s.
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7.5 Workshop: Dimensional analysis
When using SI units (kilograms, metres, seconds, amps, and so on), you will be used
to using derived units wherever possible. If lengths are in metres, it seems perfectly
natural to measure areas in square metres and volumes in cubic metres. If masses
are in kilograms and time in seconds, it is no surprise that velocities are measured
in m/s (or m s−1) and densities are measured in kg/m3 (or kg m−3). Much about our
quantities are given away by the units. The very fact that electric field strength is
measured in N/C tells you that it must be related to some kind of force divided by
some kind of charge, and thus gives you a very helpful hint as to what electric field
strength is all about.

In addition, watching the units helps us get our equations right and guard against
errors.

(a) By checking the units of left- and right-hand side of the following, determine
which is the correct wave equation:

∂2y

∂x2 =
1
c2

∂2y

∂t2
or

∂2y

∂t2
=

1
c2

∂2y

∂x2 .

Note: For the purposes of unit analysis ignore any differential ‘d’s (so dy/dt
or ∂y/∂t reads as y/t and hence has units of m/s).∗

Keeping tabs on the units is a very helpful way of not only checking our working,
but also guessing likely forms of relationships.

(b) You are asked to find a relationship giving the time period of a simple pendulum.
You think that it might depend on the mass m of the bob, the length L of the
string, and the local gravitational field strength g. Assuming that the mass is
in kilograms, the length in metres, and you express the field strength as an
acceleration in m/s2, how are you going to combine those quantities to produce
a time in seconds?

Solution – empirical method: We wish to find the time in seconds. The only
quantity to have seconds in it is g, so we start with this. The acceleration g is
in m/s2 (or ms−2), so to get seconds, we first have to divide it by some kind of
length (e.g. L) and then we have a quantity measured in s−2. To get seconds we
put this to the power of −1/2. We have no need to use the mass in kilogram, and
so the time period must be independent of the pendulum mass. This reasoning
is summarized in the table below:

Quantity Unit

g ms−2

g/L ms−2/m = s−2

(g/L)−1/2 =
√

L/g
(
s−2
)−1/2 = s

∗And what about second derivatives? Again, we just ignore the ‘d’s. So ∂2y/∂t2 is read as y/t2

and consequently has units of m s−2 – which is after all what you would expect for an acceleration.
This is one way of looking at the reason why second derivatives are written d2y/dt2 and not dy2/dt2 –
the quantity y on the top is most definitely not squared by the action of taking a second derivative.
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Solution – analytical method: A more rigorous method is provided if we write
the time period as a function T ≡ mαLβgγ , where α, β, and γ are unknown
powers. We then write the equation in terms of its units:

s ≡ kgαmβ
(m

s2
)γ

.

The next stage is to equate the powers of the various units:

(i) Powers of kilograms 0 = α
(ii) Powers of metres 0 = β + γ
(iii) Powers of seconds 1 = −2γ,

and the simultaneous equations are easily solved to give α = 0, β = 1/2, and
γ = −1/2. So we know that T will be proportional to m0L1/2g−1/2 =

√
L/g.

The full formula for the time period is T = 2π
√

L/g. Our methods got the
last bit right, but notice that there was no way for us to guess the factor of 2π
since it does not have units.

(c) Work out the form of the equation for the current in a wire I, expressed in
terms of the cross-sectional area A, the charge on each electron q, the number
of free electrons per cubic metre n, and the mean velocity of the electrons u.

(d) Show that if you know that centripetal acceleration is given by un/r, where u
is the speed and r the radius of the turn, that the power n must be 2.

(e) Show that when farads (1 F = 1 C/V) are multiplied by ohms (1 Ω = 1 V/A),
the result has the units of time. Is it then any wonder that if you double the
resistance in an R–C circuit, you also double its time constant?

While these methods are useful, you may have noticed some complications. For ex-
ample, if in question (b), we had given g in N/kg (as we normally do), things would
have been more complicated. Hopefully you are already aware that 1 N, being the
force that causes a 1 kg mass to have a 1 m/s2 acceleration can also be written as
1 kg m/s2, but it would none the less have made things more complicated.

We get round the problem by ensuring that we use only the SI base units (m, kg, s,
A, mol, K, cd) when expressing the ‘units’ of quantities. This ensures that things work
in a unique way since the base units expressed above are algebraically independent
(none can be expressed in terms of the others).

However, some people prefer a slightly different way of working, called dimen-
sional analysis, which builds upon the principles above. In this, we use square brack-
ets [. . .] to denote ‘the dimensions of’, and use the symbols L, M, T , I, Θ to represent
length, mass, time, electric current, and thermodynamic temperature, as in the ta-
ble below. We can then write [F ] = [ma] = [MLT−2], or [E] = [mu2] = [ML2T−2].
Algebra can then be done amongst the dimensional quantities M, L, T , and so on.
The square brackets remind us that we are only dealing with the dimensions, and
that numerical factors (such as the 1/2 in the expression for kinetic energy) are being
ignored.
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Quantity SI Base unit Dimension

Length metre (m) L
Time second (s) T
Mass kilogram (kg) M
Electric current ampere (A) I
Thermodynamic temperature kelvin (K) Θ
Amount of substance mole (mol) 1
Luminous intensity candela (cd) no agreed symbol

The mole, being just a number of objects (usually molecules or atoms) has no
dimensions – or more rigorously, it has the same dimensions as the number 1. Angles,
when expressed in radians, are equally dimensionless – since the angle in radians is
defined as the length of the arc of a circle (say, in metres) divided by the circle’s radius
in the same units. Thus angular frequency ω in rad/s has dimensions of T−1, just like
ordinary frequency (as measured in hertz).

(f) Express electric charge and voltage in terms of dimensions M , L, T , and I,
and express their units (coulombs and volts) in terms of kg, m, s, and A. Thus
show that the newton per coulomb (N/C) is identical numerically to the volt
per metre (V/m), and so electric field strength measures the ‘rate’ of change of
voltage with distance.

(g) Derive the likely form for the equation which gives the lift of an aircraft wing
F in terms of the density of the air ρ, the cross-sectional area A of the wing (as
presented to the airflow) and the speed of the air over the wing u.

The speed of fluid down a pipe u is related to the diameter of the pipe D, the
length of the pipe L, the pressure difference across this length of pipe P , the density
of the fluid ρ and the viscosity of the fluid µ (measured in N s/m2 or kg m−1s−1). It is
difficult to write an expression for P in terms of the other quantities, because there is
more than one way of doing it. The approach is accordingly more complex than that
outlined above.

(h) Using a method similar to the analytical solution to (b), suppose that the pres-
sure difference is related to the other quantities by

[P ] = [ραµβDγLδuε]

Given that we know the dimensions of all the quantities, show that we can
set up equations for the unknown powers α–ε by equating the powers of the
dimensions M , L, and T :

M 1 = α + β
L −1 = −3α − β + γ + δ + ε
T 2 = β + ε.

(i) The variables α and ε can be eliminated easily, and γ can also be expressed in
terms of other variables without too much difficulty.∗ Once that is done show

∗We could, of course, use the equations to eliminate β instead of α or δ instead of γ; however, the
guidance here is given to enable the equation to end up in the form most familiar (and useful) for
fluid mechanics problems.
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that our equation reads

[P ] =

[
ρu2
(

µ

ρuD

)β (
L

D

)δ
]

.

(j) It is found that the pressure difference is proportional to the length of the pipe.
Show that once this is taken into account, we find δ = 1, and

[P ] =

[
ρu2L

D

(
µ

ρuD

)β
]

.

The fact that β can take any value (we could use any function of the term in
round brackets) means that we cannot tie down the way in which the pressure
drop will depend upon the viscosity using this method. However, it transpires
that the reciprocal of the term in brackets ρuD/µ is called the Reynold’s num-
ber, and that its value determines the way in which the fluid flows down the
pipe.

7.6 Workshop: Error analysis

No measurement is exact, and as such there is always a degree of uncertainty in a
measured quantity. We can reduce the uncertainty by using a more precise measuring
instrument or technique – but there always comes a point where there is no practical
point in reducing the uncertainty further. While it might be interesting to make the
measurement, there is no reason why the length of a curtain track needs to be known
to the nearest 1 µm.

The business of science frequently requires us to know whether particular experi-
ment agrees with theory – and for this we need to know the uncertainty of the experi-
mental measurement. It is not good rejecting a wonderful theory on the grounds that
its prediction for the mass of the electron is out by 1.2 × 10−32 kg if the electronic
mass is only known to the nearest 7 × 10−32 kg.

In engineering, the use of uncertainties is even more important. When designing
a supporting column for a multi-storey car park we need to take into account that
different castings of the same concrete recipe can (and do) have different strengths,
and that the projected weight of the building above might be exceeded if the car park
ends up full of 4 × 4 s. We can only make a safe choice of column thickness if we are
aware of these issues.

We start by using ‘absolute uncertainties’. If a current is 1.3 ± 0.1 A, then the
absolute uncertainty is 0.1 A. Putting it crudely, you can expect the measurement to
usually be within 0.1 A of 1.3 A.

Absolute uncertainties are usually estimated in one of two ways – from the measur-
ing instrument, or from the data when more than one reading has been taken. If your
metre ruler is calibrated in millimetres, and you use it carefully, it will probably make
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sense to say that the absolute uncertainty is 0.5 mm (half of the smallest division).
Equally well, you may be told that a particular ammeter is only accurate to 0.02 A.

On the other hand, you might make the measurement a number of times, and
infer the uncertainty from the spread of results. If you measured the force required to
stretch a spring by 15 cm three times, and got the answers 6.4, 6.5, and 6.3 N, you
would usually be justified in estimating the uncertainty as 0.1 N, since the readings
are all within 0.1 N of the central value. With a large amount of data, you might wish
to use the standard deviation to calculate a more formal measure of the uncertainty –
but this is not always required.

The relative uncertainty in a measurement is the absolute uncertainty expressed
as a percentage of the measurement itself.

Relative uncertainty (%) =
Absolute uncertainty

Measurement
× 100%,

where the absolute uncertainty and the measurement must be expressed in the same
units.

(a) Calculate the relative uncertainty of the following measurements:
(i) 3.03 ± 0.2 m
(ii) 2.34 m ± 2 cm
(iii) 24.3 km ± 240 m
(iv) 1.602 × 10−19C ± 3 × 10−22 C.

(b) Work out the relative and absolute uncertainty (to one significant figure) of the
following set of voltage measurements: 34.2, 36.2, 35.2, 35.8, and 36.1 mV.

(c) A house is 7.5 ± 0.2 m high, and a TV aerial is 2.1 ± 0.1 m tall. If the aerial
is put onto the top of the house, how high is the top of the aerial above the
ground?

(d) My mass, as measured by bathroom scales, is 63.2 ± 0.2 kg. When holding my
daughter, it is 74.7 ± 0.2 kg. What is the mass of my daughter?

Hopefully you got the answers 9.6 ± 0.3 m and 11.5 ± 0.4 kg, respectively. In (c)
the worst case scenario is if both measurements are underestimates (or both are over-
estimates) – in which case the errors add to 0.3 m. In (d) the situation is reversed.
The worst errors occur if one measurement is too small while the other is too big.
Accordingly the biggest mass allowable by the data is 74.9 − 63.0 = 11.9 kg, which is
0.4 kg different from the expected result. In either case, you would be wrong to make
the assumption that the errors would cancel out. Of course they might, but then again
they might not, and you would better not take the gamble.

These exercises give us the following rule: When adding or subtracting measurements,
you ADD the absolute uncertainties.

When dealing with a large amount of data, it is highly unlikely that all of the
random errors will be overestimates. Accordingly, the ‘statistically correct’ thing to
do is not simply to add the absolute uncertainties, but to square them, then add
them, then take the square root. This allows for the possibility of some of the errors
cancelling out. This is sometimes called combining errors in quadrature.



Workshop: Error analysis 7.6 149

(e) Using the method of adding errors in quadrature, show that expected absolute
uncertainties in (c) and (d) are ±0.22 m and ±0.28 kg (to 2 significant figures).

(f) A 10 cm long rod is attached to a 20 cm rod with a hinge. The angle between
the two rods at the hinge is equally likely to take any value. Make an estimate
of the most likely distance between the two free ends of the rods.

(g) Nine measurements are made of the magnetic field strength of the Earth. Each
measurement carries an uncertainty of 1.0×10−6 T. Using the method of adding
errors in quadrature, what absolute uncertainty would you expect for (1) the
sum and (2) the mean of the nine measurements.

Hopefully you found in (g) that your absolute error for the sum was√
9 × (1.0 × 10−6)2 = 3.0 × 10−6 T, and thus the absolute error for the mean (on

division by 9) was 3.3×10−7 T. This is the justification for expecting a mean of many
measurements to be less uncertain than a single measurement. You expect some of
the overestimates to cancel out underestimates when they are added. Crudely put, we
expect:

Uncertainty of mean =
Uncertainty of each measurement√

Number of measurements
.

(h) A journey is 87.3 ± 0.5 km long, and I travel along the road at a speed of 92 ± 1
km/h. Calculate (1) the expected time for the journey, (2) the longest time the
journey could take and then (3) compare the relative uncertainty of the time
with the relative uncertainties of the distance and speed.

Part (h) brings us onto our next approximate rule: When measurements are multiplied
or divided, the relative error of the result equals the SUM of the relative uncertainties
of the individual measurements.

(i) If the voltage across a thermistor is 6.43 V ± 30 mV, and the current flowing
through it is 7.5 ± 0.1 mA, what is the resistance of the thermistor? Give your
answer with a relative uncertainty.

(j) Calculate the relative uncertainty in the kinetic energy of a 1.000 kg mass tra-
velling at a speed of 3.4 ± 0.3 m/s. How does this compare with the relative
uncertainty of the speed?

Our third rule is that if the relative uncertainty of x is p%, the relative uncertainty of
xn is np%. Notice that the relative uncertainty in x−1 is the same as that in x, but of
opposite sign (underestimates become overestimates and vice versa).

Our second and third rules can be justified and extended to other situations using
the chain rule in calculus. If f(x) is some function of a measurement x (which has
absolute uncertainty δx), then the absolute error in f(x) is

f(x + δx) − f(x) ≈ df

dx
δx,

while the relative uncertainty is

f(x + δx) − f(x)
f(x)

× 100% ≈ 1
f

df

dx
δx × 100%.
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(k) Use the equation for relative uncertainty to show that if f(x) = xn, then the
relative uncertainty in f(x) is n times the relative uncertainty in x.

If a function depends on more than one measurement, then the total uncertainty
is the sum of the uncertainties due to the dependence on each of the measurements:

f(x + δx, y + δy) − f(x, y) ≈ ∂f

∂x
δx +

∂f

∂y
δy,

f(x + δx, y + δy) − f(x, y)
f(x, y)

≈ 1
f

∂f

∂x
δx +

1
f

∂f

∂y
δy.

Note the use of partial derivatives to show that in each case we are differentiating
with respect to one of the variables holding the other constant.

(l) Use the expression above to show that the relative error in the function
f(x, y) = xy is equal to the relative error in x added to the relative error in y.

7.7 Workshop: Centres of mass

In the two-body problem, introduced in Section 3.2.1, the location of the centre of
mass may be obtained by finding the vector R that satisfies the following expression
(Figure 7.3):

m1r1 + m2r2 = (m1 + m2)R.

Here O is some arbitrary origin. Generalizing this for any number of point masses mi

of position vectors ri with respect to some arbitrary origin we have

∑
i

miri =

(∑
i

mi

)
R.

This expression offers us a clue as to how we might locate the centre of mass of a
rigid body. In the case of a rigid body, the number of ‘particles’ is effectively infinite,
though of course we are not saying here that we would perform a sum over the atoms

O

m2m1

r = r2 − r1

r2
r1

R

Fig. 7.3
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of the body. The usual approach is to imagine the rigid body to be made up of lots
of infinitesimally small pieces, the summation over these pieces converges to a finite
sum, which turns out to be an integral. For this reason, it might be informative to
have a go at workshop 7.1 before proceeding to the problem in this section.

Let us apply this procedure to locating the centre of mass of a uniform solid right
circular cone of total mass M . With the cone material being uniform, we have a
constant density throughout, which we shall call here ρ. However, we can of course
extend this to include densities that also vary with position.

The cone in Figure 7.4 is cylindrically symmetric about the x-axis. Therefore the
centre of mass must lie along this axis. We now imagine that the cone is in fact made
up of lots of infinitesimally thin discs each of thickness ∆x. The centre of mass of each
of these discs is located at its centre, so the location of the centre of mass of the cone
is a vector Rcm that satisfies the following expression:

∑
i

∆miri =

(∑
i

∆mi

)
Rcm,

where ∆mi is the mass of ith disc and ri is the location of the centre of the ith disc.

(a) Show that

Rcm =

(
ρπR2

MX2

∫ X

0
x3dx

)
x̂,

and perform the integral to verify that the centre of mass of a uniform solid
right circular cone is located 1/4 of the cone’s height above the base of the cone.

(b) Now assume that the density of the cone in Figure 7.4 is a function of y:

(i) For 0 ≤ y ≤ R, ρ = 2ρ0
(ii) For −R ≤ y < 0, ρ = ρ0

and show that the centre of mass must now lie on the line y =
4R

9Xπ
x.
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7.8 Workshop: Rigid body dynamics

In the section on orbits (3.2), it became apparent that the form of the gravitational
interaction and associated equations of motion led to some important quantities. One
of these was the vector h:

h = r× v.

This vector was a constant of the motion if the vector r× a = 0, as

r× a = 0⇒ d

dt
(r× v) = 0,

which of course is true for the gravitational interaction as a and r are parallel.
In Figure 7.5 we have a rigid body (a sphere in this case, but all this applies to

any rigid body), centred on the origin of the coordinate system, rotating about the
z-axis. A rigid body may be thought of a collection of lots of little masses that are
rigidly held together. For each of these masses the angular velocity ω of the rotation
about the z-axis is the same, but the instantaneous velocity will be different:

vi = ω × ri,

where i denotes the ith particle. We can of course define an hi for each of these
particles. If we multiply hi by the mass of each of the particles and sum over all the
particles we construct a vector, say L, which is parallel to the z-axis.

L =
∑
i

ri × mivi.

Now mivi is in fact the instantaneous linear momentum of the ith particle and each
of the ri × mivi is usually referred to as the angular momentum of the ith particle,
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so the vector L is the total angular momentum of the rigid body. Physicists find this
vector useful because its rate of change is something that is quite familiar:

d

dt
L =

∑
i

d

dt
(ri) × mivi + ri × d

dt
(mivi) =

∑
i

ri × Fi,

where Fi is the force on the ith particle. The object on the far right is called the
torque on the rigid body (with each of the ri × Fi being the torque on each of the
ith particles). It is a twisting force, which is of course why r × v is a constant for
the Kepler problem as the gravitational interaction cannot apply a twist (the force is
always through the centres of mass of the interacting bodies). Therefore we have a
parallelism between rotational dynamics and linear dynamics.

In linear dynamics the rate of change of momentum is equal to force:

F =
d

dt
p,

so when the resultant force on the system is zero then (d/dt)p = 0, and p, the total
momentum (the vector sum of component momenta) of the system must be a constant.

In rotational dynamics the rate of change of angular momentum is equal to torque –
a force is applied at a point on the body and the torque is just the force multiplied
by the perpendicular distance from the axis of rotation to the point of application.
This is just r × F (Fr sin θẑ has indeed a magnitude that is just the perpendicular
distance of the axis from the point of application multiplied by the force).

One more thing,∗

r× F =
d

dt
(r× p),

so when the resultant torque on the system is zero then (d/dt)(r × p) = 0, which
means that (r×p), the angular momentum of the system must be a constant. This is
merely a statement of the conservation of angular momentum in systems where there
is no resultant torque.

(a) For a rigid body rotating about some arbitrary axis, the angular velocity will
take the form:

ω =

⎛
⎝ωx

ωy

ωz

⎞
⎠ .

∗You can easily see this by differentiating (r × p) and respecting the order of the vector product;
that is, d/dt(r × p) = (d/dt)r × p+r × (d/dt)p = v × p+r × F=r × F as v is parallel to p and
the vector product of parallel vectors is zero.
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Show that L =
∑
i

ri × mivi =
∑
i

ri × mi (ω × ri) =

⎛
⎜⎜⎜⎝
∑
i

mi(r2
i − x2

i )
∑
i

−mixiyi
∑
i

−mixizi∑
i

−mixiyi
∑
i

mi(r2
i − y2

i )
∑
i

−miyizi∑
i

−mixizi
∑
i

−miyizi
∑
i

mi(r2
i − z2

i )

⎞
⎟⎟⎟⎠ω.

Hint : Section 3.1.5.
The matrix here is called the moment of inertia and is usually given the

symbol I (here the underline denotes that it is a 3 × 3 matrix).
(b) The sphere in our example (Figure 7.6) may be broken up into little pieces each

of volume:

∆V = r2 sin θ∆r∆θ∆ϕ,

where r (0 ≤ r ≤ R), θ (0 ≤ θ ≤ π), and ϕ (0 ≤ ϕ ≤ 2π) refer to the
coordinates of the little piece (say P) in spherical polar coordinates. The second
half of workshop in 7.1 introduces this coordinate system and it might be a
good idea to have a look at that before attempting the rest of this workshop.

Assuming the sphere is uniform and is rotating about the z-axis only, which
passes through its centre, show that the matrix expression in (a) collapses to

L = Izzωz ẑ,

where Izz = ρ
∫∫∫

r4 sin3 θ dr dθ dϕ, with ρ being the density of the material.
(c) Perform the integral and show that

Izz = ρ

∫∫∫
r4 sin3 θ dr dθ dϕ =

8
15

πρR5,
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where R is the radius of the sphere. You may find the following indefinite integral
helpful: ∫

sin3 θdθ = − cos θ +
cos3 θ

3
.

For symmetric bodies that only rotate about one of the coordinate axes, the moment
of inertia collapses to a single number.

(d) The total kinetic energy of a rotating rigid body is of course the sum of all the
kinetic energies of all the little masses that make up the body:

K =
∑
i

1
2
mivi · vi,

Show that K =
1
2
ω · Iω, which collapses to

K =
1
2
Izzω

2 =
1
2

8
15

πρR5ω2

for our sphere.
The object I , the moment of inertia, describes the mass distribution in the rigid body.

(e) Our sphere rolls down an inclined plane, rough enough to prevent slipping. The
frictional force F at the point of contact applies a torque to the sphere and as
it accelerates down the slope (maintaining contact with the slope) the rotation
picks up speed as well. Show that F is given by:

F =
2
5
MR

dω

dt
,

where M is the total mass of the sphere.
With no slipping the speed V of the sphere along the plane is just:

V = Rω.

Show that the acceleration of the centre of mass of the sphere is given by

a =
5
7
g sinα,

where g is the acceleration due to gravity and α is the inclination of the plane.

7.9 Workshop: Parallel axes theorem

This workshop follows on from the previous one (Section 7.8). Indeed, the parallel axes
theorem refers to the transformation of the moment of inertia if the axis of rotation is
shifted to another axis that is parallel to the first. You are advised to have a go at the
previous workshop (or at least look over the solutions) before attempting this one.
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In the previous workshop, the angular momentum L of the sphere about the z-axis
was given by

L = Izzωz ẑ,

where Izz = ρ
∫∫∫

r4 sin3 θdrdθdϕ, with ρ being the density of the material, and ωz is
the magnitude of the angular velocity about the z-axis. The expression for Izz looks
complicated, but is really only a term of the form:

Izz =
∫∫∫

dM r2 sin2 θ,

or, in other words, sum up all the little masses dM multiplied by the square of their
distances away from the z-axis (r sin θ).

(a) If we shift the axis of rotation to the new axis (see Figure 7.7) show that Izz
transforms to

Izz = ρ

∫∫∫
(r2 sin2 θ + d2)r2 sin θ dr dθ dϕ,

where d is the magnitude of the displacement d (look at the triangle ABC).
This expression becomes:

I ′
zz = Izz +Md2.

With d coming out of the integral signs because it is a constant, we can see that
this is a general result; that is, the moment of inertia about a new axis that is
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parallel to the old is just the old moment of inertia plus Md2 (the mass of the
rigid body multiplied by the square of the distance between the new axis and
the old).

7.10 Workshop: Perpendicular axes theorem
Like the previous workshop, this section follows on from Section 7.8. You are advised
to have a go at Section 7.8 (or at least look over the solutions) before attempting
this one.

The sphere in Figure 7.8 is rotating about an axis through its centre. The angular
velocity of this rotation is

ω = ωxx̂+ ωyŷ + ωz ẑ =

⎛
⎝ωx

ωy

ωz

⎞
⎠ .

In Section 7.8, we discovered that the angular momentum L of a rigid body rotating
at an angular velocity ω is given by

L =

⎛
⎜⎜⎜⎝
∑
i

mi(r2
i − x2

i )
∑
i

−mixiyi
∑
i

−mixizi∑
i

−mixiyi
∑
i

mi(r2
i − y2

i )
∑
i

−miyizi∑
i

−mixizi
∑
i

−miyizi
∑
i

mi(r2
i − z2

i )

⎞
⎟⎟⎟⎠ω,

where the rigid body has been imagined to be made of a collection of lots of little
masses that are rigidly held together. The letter i denotes the ith little mass in the
collection and the summation is over the whole collection of masses.

O vy

vx

vz

Fig. 7.8



158 Miscellany

The sphere in this example is uniform so terms like

∑
i

−mixiyi

will be zero because for a given value of xio there will be two terms:

mixioyi + mixio(−yi) = 0,

and similarly for a yio:

mixiyio + mi(−xio)yio = 0.

So, L becomes

L =

⎛
⎝Ixx 0 0

0 Iyy 0
0 0 Izz

⎞
⎠ω.

The term Izz =
∑

i mi(r2
i − z2

i ) =
∑

i mi(x2
i + y2

i ) just means the following: Sum
up all the little masses multiplied by the square of the distance from the z-axis. The
terms

∑
i mi(r2

i −x2
i ) and

∑
i mi(r2

i −y2
i ) are just the same only the relevant axes are,

respectively, the x and y axes. The symmetry and uniformity of our sphere mean that

Ixx = Iyy = Izz =
2
5
MR2,

where M and R are, respectively, the mass and radius of the sphere.
Let us apply all this to the uniform disc in Figure 7.9. Let the mass per unit area

be σ.

vy

vx

vz

ri O

Fig. 7.9
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(a) Show that for each ring of radius ri and thickness ∆r, Izz = (2πri∆rσ)r2
i .

(b) Izz for the disc is the sum of all the little ring masses. Show that this comes out
to be

Izz =
1
2
MR2,

where M and R are, respectively, the mass and radius of the disc.
(c) Now each r2

i = x2
i + y2

i , so
∑

i mir
2
i =

∑
i mi(x2

i + y2
i ). Hence show that if

Izz = 1
2MR2, then Ixx = Iyy = 1

4MR2, and that the angular momentum of our
disc is

L =

⎛
⎜⎜⎜⎜⎝

1
4
MR2 0 0

0
1
4
MR2 0

0 0
1
2
MR2

⎞
⎟⎟⎟⎟⎠
⎛
⎝ωx

ωy

ωz

⎞
⎠ ,

In general, if the moments of inertia of a lamina about two perpendicular axes in
its plane which meet at O are Ixx and Iyy, then the moment of inertia about an axis
through O perpendicular to the plane of the lamina is

Izz = Ixx + Iyy.

7.11 Workshop: Orbital energy and orbit classification

It is informative to have an idea of the physical meaning of the constant scalar in
(3.61) of Section 3.2.2. To do this we first consider our system of two gravitation-
ally interacting masses m1 and m2 from the point of view of the centre of mass. In
Figure 7.10, O is an arbitrary origin of coordinates and C is the centre of mass of the
system. Notice that we have attached the rotating coordinates (x̂′, ŷ′) to C.

The total energy E of this system, referred to the centre of mass coordinates, is
given by

E =
1
2
m1V

2
1 +

1
2
m2V

2
2 − Gm1m2

r
,

where

V1 = −dR1

dt
x̂′ − ωR1ŷ′ and V2 =

dR2

dt
x̂′ + ωR2ŷ′,

V1 ·V1 = V 2
1 , V2 ·V2 = V 2

2 (see Figure 7.10), and r = r2 − r1 = rx̂′.

(a) Show that R1 =
m2

(m1 + m2)
r and R2 =

m1

(m1 + m2)
r.

(b) Now show that
1
2
m1V

2
1 +

1
2
m2V

2
2 =

1
2

m1m2

(m1 + m2)
v2, where v2 =

d

dt
r · d

dt
r.
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(c) Hence show that

v2

2
− G(m1 + m2)

r
=

E

µ
,

where µ = (m1m2)/(m1 + m2), which is often referred to as the reduced mass.∗

This of course means that the constant scalar in (3.61) is effectively a statement
of the conservation of energy.

(d) Determine v× h with v = (dr/dt)x̂′ + rωŷ′ and h = ω2rẑ′.
(e) Show that (v × h)·(v × h) = v2h2, where h = ω2r.

From (3.51), (v × h) = G(m1 + m2)(x̂′ + e), so

(v× h) · (v× h) = G2(m1 + m2)2(1 + 2e cos θ + e2),

where θ is the angle between the unit vector x̂′ and the constant vector e.
Hence

v2 =
G2(m1 + m2)2

h2 (1 + 2e cos θ + e2).

∗Reduced mass is the ‘effective’ mass appearing in the two-body problem. This is a quantity with
the units of mass, which allows the two-body problem to be solved as if it were a one-body problem.
For the two-body problem, F1 + F2 = m1a1 + m2a2 = 0 is a statement of the system’s isolation
from all other bodies (and hence a statement of Newton’s third law). This expression can of course
be rearranged to:

a = a1 − a2 = (1 + m2
m1

)a1 = F1
µ

; that is,

mass 1 moves with respect to mass 2 as a body equal in mass to the reduced mass µ.
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(f) With

r =
h2/(G(m1 + m2))

(1 + e cos θ)
,

show that
v2

2
− G(m1 + m2)

r
=

G2(m1 + m2)2

2h2 (e2 − 1).

The eccentricity (e) of the trajectory is related directly to the total energy (E) of
the system. The orbit is effectively classified by the sign of the total energy.

For:
(i) 0 ≤ e < 1 the total energy is negative (E < 0) so it must be a bound orbit and

hence we have either an elliptical or circular orbit (NB : The circular orbit is
the lowest energy orbit).

(ii) e = 1 the total energy is zero (E = 0), and we have just the conditions for
escape. This is a parabolic orbit.

(iii) e > 1 the total energy is positive (E > 0). We have a hyperbolic orbit the bodies
escape from each other’s gravitation and still have positive kinetic energy at an
infinite distance from each other.



8
Summary of equations

8.1 Linear mechanics

Fundamental theorems of calculus

df

dt
= lim

∆t→0

{
f(t + ∆t) − f(t)

∆t

}

f(t) =
d

dt

∫ t

t0

f(t′)dt′ =
∫ t

t0

df

dt′
dt′ + f(t0)

Applied to the scalar components of acceleration (a), velocity (v), and displace-
ment (s)

v(t) =
∫ t

t0

dv

dt′
dt′ + v(t0) =

∫ t

t0

a(t′)dt′ + v(t0)

s(t) =
∫ t

t0

ds

dt′
dt′ + s(t0) =

∫ t

t0

v(t′)dt′ + s(t0)

s(t) =
∫ t

t0

(∫ t′

t0

a(t′′)dt′′ + v(t0)

)
dt′ + s(t0)

=
∫ t

t0

(∫ t′

t0

a(t′′)dt′′
)

dt′ + v(t0)(t − t0) + s(t0)

For a uniform acceleration a

s(t) = s(t0) + v(t0)(t − t0) +
1
2
a(t − t0)2

Vector equations of motion for velocity v, and displacement r under uniform accel-
eration a

v(t) = v(t0) + a(t − t0)

r(t) − r(t0) =
(v(t0) + v(t))(t − t0)

2
= v(t0)(t − t0) +

1
2
a(t − t0)2
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Resultant vector R and relative vectors r21 and r12

R = r1 + r2
r21 = r2 − r1 = −r12

Momentum and resultant force F

p = mv

F =
d

dt
p =

d

dt
(mv) = m

dv
dt

+ v
dm

dt

Conservation of momentum in a closed system

d

dt

∑
i

pi = 0⇒
∑
i

pi = Pconstant

Impulse ∆p

∫ t

t0

F(t′)dt′ =
∫ t

t0

dp
dt′

dt′ = p(t) − p(t′) = ∆p

Newton’s experimental law

v2 − v1 = −e(u2 − u1)

8.2 Fields
Scalar product of vectors

a · b = b · a = ab cos θ⎛
⎝ax

ay
az

⎞
⎠ ·
⎛
⎝ bx

by
bz

⎞
⎠ = axbx + ayby + azbz

Equation linking acceleration, velocity, and displacement

v2 = u2 + 2a · s
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Motion in gravitational fields

Field strength (N/kg) = Gravitational force (N)÷Mass (kg) g = F/m

1-D 3-D Non-uniform fields

Work done by field mgy mg·s ∫
mg · ds

Kinetic energy 1
2mv2 = 1

2mv · v
Change in potential energy mgh −mg·s − ∫mg · ds
Change in potential = potential energy per kg gh −g · s − ∫ g · ds

Motion in electrostatic fields

Field strength (N/C) = Electrostatic force (N) ÷ Charge (C) E=F/q

1-D 3-D Non-uniform fields

Work done by field qEy qE·s ∫
qE · ds

Kinetic energy 1
2mv2 = 1

2mv · v
Change in potential energy qEh −qE·s − ∫ qE · ds
Change in potential = potential energy per C Eh −E · s − ∫E · ds

Gradient function

∇φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂φ

∂x

∂φ

∂y

∂φ

∂y

⎞
⎟⎟⎟⎟⎟⎟⎠

g(orE) = −∇φ

Setting up fields

‘Number of field lines’ leaving a region defined as, for example,
�
S

E · dS, where S is a

surface that bounds the region.
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Equation representing number of field lines

Electrostatic
�
S

E · dS =
Q

ε0

Gravitational
�
S

g · dS = −4πMG

Magnetic
�
S

B · dS = 0

Particular expressions for field strength

Electrostatic field due to point charge: E =
Q

4πε0r2

Electrostatic field due to line charge: E =
λ

2πε0r

Gravitational field due to point mass: g =
GM

r2

Magnetic field due to straight current-carrying wire: B =
µ0I

2πr

Particular expressions for potential

Due to a point charge: φ =
Q

4πε0r

Due to a point mass: φ = −GM

r

Capacitors

Capacitance of a parallel plate capacitor: C = ε0A/d

Energy stored in electric field per unit volume: = 1
2ε0E

2

8.3 Rotation

Angular speed (ω), speed in circular motion (v), and magnitude of centripetal
acceleration (a)

ω =
2π

T

v =
2π

T
r = ωr

a = ωv = ω2r
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Rotated coordinate system

⎛
⎝x′

y′

z′

⎞
⎠=

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x

y
z

⎞
⎠

⎛
⎝x

y
z

⎞
⎠=

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠

Rotating vectors and the vector product

x̂× x̂ = ŷ × ŷ = ẑ× ẑ = 0
x̂× ŷ = −ŷ × x̂ = ẑ
ŷ × ẑ = −ẑ× ŷ = x̂
ẑ× x̂ = −x̂× ẑ = ŷ

da
dt
r =

dr
dt
r+ ω × r

Angular velocity (ω), velocity (v), and radius vector (r)

v = ω × r

Vector triple product

a× (b× c) = x̂{bx(axcx + aycy + azcz) − cx(axbx + ayby + azbz)}
+ ŷ{by(axcx + aycy + azcz) − cy(axbx + ayby + azbz)}
+ ẑ{bz(axcx + aycy + azcz) − cz(axbx + ayby + azbz)}

a× (b× c) = (a · c)b− (a · b)c
(a× b) × c = (c · a)b− (c · b)a

Acceleration vectors in rotating frames

da
dt
v =

dr
dt
v+ ω × v

da
dt
v =

d2
r

dt2
r+

dr
dt

ω × r+ 2ω × dr
dt
r+ ω × (ω × r)

Cartesian ellipse and relationship between semi-major axis (a), semi-minor axis (b),
and eccentricity (e)

x2

a2 +
y2

b2 = 1, a =
b√

1 − e2
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Polar coordinates (r, θ) for conic sections with d the directrix and e the eccentricity

r(θ) =
ed

1 + e cos θ

Equations of motion for a two-body planetary system

a+ G
(m1 + m2)

r3 r = 0

r× a+
G(m1 + m2)

r3 r× r=0⇒ d

dt
(r× v) = 0

v · a+
G(m1 + m2)

r3 v · r=
d

dt

{
v2

2
− G(m1 + m2)

r

}
= 0

Constants of the motion (h and E) with µ the reduced mass

r× v = h

v2

2
− G(m1 + m2)

r
=

E

µ

Kepler’s laws

r(θ) =
h2

/G(m1+m2)

(1 + e cos θ)

d

dt
A =

1
2
hẑ

T 2 =
4π2

G(m1 + m2)
a3

8.4 Waves

Complex numbers

A complex number z = x + iy contains a real part Re(z) = x, and an imaginary part
Im(z) = y.

Basic arithmetic: (a + ib) + (x + iy) = a + x + i (b + y)
(a + ib) − (x + iy) = a − x + i (b − y)

(a + ib) (x + iy) = ax − by + i (bx + ay)

The complex conjugate (z∗) of a complex number z = x + iy is given by z∗ = x − iy.

The modulus of z = x + iy is written |z| =
√

z∗z =
√

x2 + y2.
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The argument of z = x + iy is written Arg (z) = tan−1
(y

x

)
.

The complex number whose modulus is r and whose argument is θ can be written

reiθ = r cos θ + ir sin θ

It follows that

reiθ × seiφ = rs ei(θ+φ)

eiθ + e−iθ = 2 cos θ

eiθ − e−iθ = 2i sin θ

Describing a simple harmonic oscillation

Angular frequency: ω = 2πf

Equation for displacement:
y = A cos (ωt + φ)
y = Re Aeiωt

Newton’s second law:
d2y

dt2
= −ω2y, y measured from equilibrium.

Describing a damped harmonic oscillation

Newton’s second law: m
d2y

dt2
+ r

dy

dt
+ ky = 0

Solution: y = Re
(
e−rt/2m

(
Aeiωt + Be−iωt

))
,

where ω =

√
k

m
− r2

4m2 .

Waves in one dimension

Equation for displacement: y = Re Aei(ωt−kx)

Wavenumber: k =
2π

λ
=

ω

c

Wave equation:
∂2y

∂x2 =
1
c2

∂2y

∂t2

For a wave on a string: c =
√

T

ρ

Specific impedance: Z = ρc =
T

c
=

Tk

ω

Power transmitted: P =
1
2
ZA2ω2
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Impedance matching

Ar = Ai
ZL − ZR

ZL − ZR

At = Ai
2ZL

ZL − ZR

Waves in three dimensions

Plane wave: E = E0 cos (ωt − k · r)

Spherical wave: E =
E0

r
cos (ωt − kr)

8.5 Circuits

Direct current

Flow equation: I = quAn

Alternating currents and voltages

Written as V = ReV0eiωt

I = ReJ0eiωt,

where complex current: J0 = I0eiφ

Resistor: V = IR

Capacitor: I = C
dV

dt

Inductor: V = L
dI

dt

Average power dissipated in resistor: P = VrmsIrms

P = I2
rmsR

Vrms =
V0√

2
, Irms =

I0√
2

Average power dissipated in a circuit: P = Vrms Irms cos φ

Impedance

Definition: Z =
V0

J0
Generally Z = R + iX

where X is reactance.
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Resistor: Z = R

Capacitor: Z = − i

ωC

Inductor: Z = iωL

Series circuit: Z = Z1 + Z2 + Z3 + · · ·

Parallel circuit:
1
Z

=
1
Z1

+
1
Z2

+
1
Z3

+ · · ·

8.6 Thermal physics

First law

∆U = ∆Q + ∆W

∆U = ∆Q − p∆V

Thermodynamic temperature

∣∣∣∣∆Q1

∆Q2

∣∣∣∣ = T1

T2

Efficiency of a reversible heat engine

η =
∣∣∣∣∆W

∆Q1

∣∣∣∣ = ∆Q1 − |∆Q2|
∆Q1

= 1 − T2

T1

Reversible processes

∑
Completecycle

∆Q

T
= 0 ⇒

∮
dQ

T
= 0

Re-statement of the first law for a reversible process

∆U = ∆Q + ∆W = T∆S − p∆V

∆Q = T∆S

∆W = −p∆V

Boltzmann law

Probability that a particle has energy E ∝ e−E/kT
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Perfect gases

pV = nRT = NkT

CV =
dQV

dT
=

dU

dT

CP =
dQP

dT
=

dU

dT
+ p

dV

dT

= CV + p
d

dT

(
RT

p

)
= CV + R

Monatomic: CV =
3
2
R and CP = CV + R =

5
2
R

Diatomic: CV =
5
2
R and CP = CV + R =

7
2
R

γ =
CP

CV

Isothermal: pV = constant
Adiabatic: pV γ = constant

Adiabatic:
T1

T2

V γ−1
1

V γ−1
2

= 1



Workshop solutions

Chapter 1

1.1.3 Simple differential equations

(a) The preamble of the workshop solves the differential equation: (dv/dt) = −kv
and gives the solution: v(t) = v0e−kt. It is therefore a simple matter to obtain
an expression for a(t):

a(t) =
dv

dt
= −kv = −kv0e−kt.

We can obtain s(t) by remembering that (ds/dt) = v(t) and that the approxi-
mation ∆s = (ds/dt)∆t:

∆s = v∆t = v0e−kt∆t

gets better and better as ∆t → 0. The summation of all the little bits ∆s
becomes an integral in the limit ∆t → 0:

s(t) =
∫ t

0
v0e−kt′dt′ =

[
v0e−kt′

−k

]t
0

=
v0

k
(1 − e−kt).

(b) dv

dt
= g − kv

so,

∆v =
dv

dt
∆t = (g − kv)∆t ⇒ ∆v

(g − kv)
= ∆t.

Once again, the sum of all the ∆t becomes an integral in the limit ∆t → 0:∫ v

0

dv′

(g − kv′)
=
∫ t

0
dt′,

which gives: [
− ln (g − kv′)

k

]v
0

=
[
− ln (g − kv)

k
+

ln (g)
k

]
= t,
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which simplifies to:

v(t) =
g

k
(1 − e−kt).

Indeed this expression has the correct asymptotic value, as t → ∞, v → g/k,
which is exactly what one would expect as (dv/dt) → 0 in (dv/dt) = g − kv.
Once again a(t) is easily obtained:

a(t) =
dv

dt
= g − kv = g − k

(g

k
(1 − e−kt)

)
= ge−kt.

s(t) is obtained by following the same procedure as before, so

∆s = v∆t =
g

k
(1 − e−kt)∆t,

by integrating:

s(t) =
g

k

∫ t

0
(1 − e−kt′)dt′ =

g

k

[
t′ +

e−kt′

k

]t
0

=
g

k

(
t +

1
k

(e−kt − 1)
)

.

(c) dv

dt
= g − kv2

so,

∆v =
dv

dt
∆t = (g − kv2)∆t ⇒ ∆v

(g − kv2)
= ∆t,

which leads to the integral:

∫ v

0

dv′(g

k
− v′2

) = k

∫ t

0
dt′.

By partial fractions:

1(g

k
− v′2

) =

1
2

√
k

g√
g

k
− v′

+

1
2

√
k

g√
g

k
+ v′

,
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so the integral becomes

1
2

√
k

g

∫ v

0

dv′(√
g

k
− v′
) +

1
2

√
k

g

∫ v

0

dv′(√
g

k
+ v′
) = kt.

Performing the integration and putting in the limits we get

[
− ln

(√
g

k
− v′
)]v

0
+
[
ln
(√

g

k
+ v′
)]v

0
= ln

⎛
⎜⎜⎝
(√

g

k
+ v

)
(√

g

k
− v

)
⎞
⎟⎟⎠ = 2t

√
gk,

which means that ⎛
⎜⎜⎝
(√

g

k
− v

)
(√

g

k
+ v

)
⎞
⎟⎟⎠ = e−2

√
gk t,

which after some rearrangement becomes:

v(t) =
√

g

k

(
e
√

gk t − e−
√

gk t

e
√

gk t + e−
√

gk t

)
.

Now it just so happens that the combinations of exponential functions in the
parentheses are in fact called hyperbolic functions:

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x

so,

v(t) =
√

g

k
tanh

(√
gk t
)

.

a(t) is easily obtained either by differentiating or by using (dv/dt) = g − kv2,

dv

dt
= g − kv2 = g − g tanh2

(√
gk t
)

=
g

cosh2 (√gk t
) .
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s(t) is, as usual, obtained by integration:

s(t) =
∫ t

0
v(t′)dt′ =

√
g

k

∫ t

0
tanh

(√
gk t′
)

dt′ =
1
k

[
ln
(
cosh

(√
gk t′
))]t

0

=
1
k

ln
(
cosh

(√
gk t
))

.

1.1.5 Motion on the surface of a smooth inclined plane

(a) It is useful to have at our disposal the sine and cosine of the angles that are
important to us in this problem:

sin(30◦) = cos(60◦) =
1
2

sin(60◦) = cos(30◦) =
√

3
2

.

Using the coordinate system suggested by the question, we have that the accel-
eration on the slope is

a =
(

0
−g sin(30◦)

)
= −1

2

(
0
g

)
.

The velocity vector then in the suggested coordinate system is

v(t) =
(

vx
vy

)
=

(
v cos(60◦)

v cos(30◦) − g

2
t

)
=

1
2

(
v√

3v − gt

)
.

So r(t) is just:

r(t) =
1
2
(v(0 + t) + v(0))t =

1
2

(
vt√

3vt − g

2
t2

)
.

For a given position (x, y), the x-component tells us that t = 2x/v, so

y =
√

3
2

v

(
2x

v

)
− g

4

(
2x

v

)2

=
√

3x − gx2

v2 .

(b) The trajectory described above is symmetric in the suggested coordinate system,
so the maximum y-value will occur at the x midpoint. The extremities of the
x-values are obtained by setting y = 0:

0 = x
(√

3 − gx

v2

)
⇒ x = 0,

√
3v2

g
.

Midpoint occurs for x =
√

3v2/2g, so maximum y =
3v2

4g
.
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1.2.4 The conservation of linear momentum

The vector equation:

pi1 + pi2 = pf1 + pf2 = P

is in fact a shorthand for the two sets of equations:(
m1u1 cos θ
m1u1 sin θ

)
+
(

m2u2 cos ϕ
m2u2 sinϕ

)
=
(

m1v1
m1u1 sin θ

)
+
(

m2v2
m2u2 sinϕ

)
;

that is,

m1u1 cos θ + m2u2 cos ϕ = m1v1 + m2v2

m1u1 sin θ + m2u2 sinϕ = constant.

Newton’s law may be written mathematically as

v1 − v2

u1 cos θ − u2 cos ϕ
= −e,

To see this let us just go through the statement again:

When two bodies of given substances collide the relative velocity after impact (v1−v2)
is in a constant ratio (e) to the relative velocity before impact, and in the opposite
direction (hence the minus sign). If the bodies impinge obliquely the empirical law
holds for the component velocities along the common normal (u1 cos θ − u2 cos ϕ).

(a) Obvious! Just take the statement and turn it into mathematics as is done above.
The minus sign is taken into the denominator and we get

v1 − v2

u2 cos ϕ − u1 cos θ
= e.

(b) Using the answer for (a) we can find expressions for v1 and v2 and put them
into the expression:

m1u1 cos θ + m2u2 cos ϕ = m1v1 + m2v2

after some algebra:

v1 =
(m1 − em2)u1 cos θ + m2u2(1 + e) cos φ

m1 + m2

v2 =
(m2 − em1)u2 cos φ + m1u1(1 + e) cos θ

m1 + m2
.

(c) With m1 = m2 and u2 = 0

v1 =
(1 − e)u1 cos θ

2

v2 =
(1 + e)u1 cos θ

2
,
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so v1/v2 is

v1

v2
=

(1 − e)
(1 + e)

.

(d) When e = 1 we have what is called an elastic collision. The equations would sug-
gest that v1 = 0 so all the horizontal momentum particle (1) had is transferred
to particle (2). Since particle (2) was initially at rest, u2 = 0, the two particles
will collide and move off in directions that are perpendicular to each other. The
velocities must therefore be related through the Pythagoras theorem∗:

u2
1 = u2

1 sin2 θ + v2
2 = u2

1 sin2 θ + u2
1 cos2 θ,

which, if you multiply by the mass m of the particles, is just

1
2
mu2

1 =
1
2
mu2

1 sin2 θ +
1
2
mu2

1 cos2 θ.

It is why we very often say that in elastic collisions the kinetic energy is con-
served. With e= 1 we have the simple situation that the energy is not distributed
amongst other types of energy in the collision so, along the common normal, the
magnitude of the velocity of approach is equal to the magnitude of the velocity
after restitution. Notice that when e = 0 we have that v1 = v2; that is, the two
particles do not separate after impact (an inelastic collision).

1.2.6 Newton and the apple

(a) If the distance the Moon falls in 1 s is s′ then

s′ =
1
2
g′t2, with g′ =

g

3600
,

so the distance fallen by the Moon in 1 s is essentially the distance an apple
near the surface of the Earth falls in 1 s divided by 3600(60 × 60), which gives
s′ ∼= 1.3 mm.

(b) v =
2πR

T
∼= 1 km/s.

(c) If (OB) = (R + δ), then δ is the small distance that the Moon falls in 1 s. So

(OA)2 + (AB)2 = (OB)2,

R2 + (AB)2 = (R + δ)2 = (R2 + 2Rδ + δ2).

For small δ we can neglect terms of second order (i.e. δ2) so

δ ∼= (AB)2/2R,

or about 1.3 mm. The Moon does fall towards the Earth just enough each second
to remain in its orbital motion.

∗Of course you will remember that sin2 θ + cos2 θ = 1.
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Chapter 2

2.2 Motion in a uniform field in 1-D

(a) From v = gt, it follows that t = v/g so y = 1
2gt2 = 1

2 g (v/g)2 = v2/2g.
(b) Initial speed = 0; final speed = v; average speed = 1

2 (0 + v) = 1
2v

Distance fallen y = Average speed ×Time = 1
2vt

From (a), t = v/g, so y = 1
2vt = v2/2g, in agreement with (a).

(c) Using methods of part (b):
Initial speed =u; final speed = v; average speed = 1

2 (u + v)
From definition of acceleration g = (v − u)/t so t = (v − u)/g
Distance fallen = Average speed ×Time

y =
u + v

2
× v − u

g
=

v2 − u2

2g
.

If you choose to use methods of part (a), you must start with y = ut + 1
2gt2.

(d) From (c) we have

mgy = mg
u + v

2
× v − u

g
= m

v2 − u2

2
=

1
2
mv2 − 1

2
mu2.

(e) y = h1 − h2, so mgy = mgh1 − mgh2 and from (d)

mgy = mgh1 − mgh2 =
1
2
mv2 − 1

2
mu2

mgh1 +
1
2
mu2 = mgh2 +

1
2
mv2.

2.3 Scalar product of vectors

(a) Magnitude of b is b. Component of a parallel to b is a cos θ.
Multiplying them gives a · b = ba cos θ = ab cos θ as before.

(b) We visualize the vectors using Figure 2.3, with a aligned with the x-axis.
Then a · b = ab cos θ. But a = ax and b cos θ = bx so a · b = axbx.

(c) We repeat the methods of (b), now aligning a with the y-axis.
Then a · b = ab cos θ. But a = ay and b cos θ = by so a · b = ayby.

(d) (i) a · b = ab cos β
(ii) a · c = ac cos γ
(iii) a · d = ad cos δ
(iv) a · b+ a · c = a(b cos β + c cos γ)
(v) From Figure 2.4, b cos β + c cos γ = d cos δ
Thus a · b+ a · c = ad cos δ = a · d = a · (b+ c).
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(e)
(

ax
ay

)
·
(

bx
by

)
=
{(

ax
0

)
+
(

0
ay

)}
·
(

bx
by

)

=
(

ax
0

)
·
(

bx
by

)
+
(

0
ay

)
·
(

bx
by

)
= axbx + ayby

2.4 Motion in a uniform field in 3-D

(a)
g · s =

v − u
t

· 1
2

(u+ v) t

=
1
2

(v − u) · (u+ v)

=
1
2

(v · u− u · u− u · v + v · v) .

But we showed in 2.3 (a) that a · b = b · a, so this means that u · v = v · u.
We also noted that a · a = a2, and hence u · u = u2. It follows that

g · s =
1
2
v2 − 1

2
u2.

(b) Work done =F · s = mg · s = 1
2mv2 − 1

2mu2 = Gain in kinetic energy.
(c) Work done =F · s = qE · s= Loss in potential energy. (Note that this must be

a loss since the kinetic energy has increased.)
Change in potential energy =− qE · s.
Change in potential (that is energy per unit charge) =−E · s.

(d) Let us take a straight route s from a point on the negative plate to one on the
positive plate along a line which makes angle θ to the perpendicular distance
d. The vector E points from + to − (opposite to our direction of motion)
perpendicular to the plates, and hence the change in potential is −E · s =
Es cos θ = Ed. This is independent of the angle θ or the length of the route s
and thus all points on the positive plate must be at the same potential with
respect to our chosen point on the negative plate. By a reverse argument from
a fixed point on the positive plate to any point on the negative plate, we can
also show that all points on the positive plate are at the same potential with
respect to any point on the negative plate.

2.6 Evaluating line integrals

(a) By symmetry, the magnetic field strength must be the same at all points with
the same distance r from the wire. The field lines take the form of a circle round
the wire, and if we follow one for one circuit of the wire, we will travel a distance
2πr and the magnetic field will be the same all the way round (since we have
not got closer to or further away from the wire). Given that we are following
the wire, B is parallel to δs, and therefore the cos θ term equals 1.
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Thus
∮
B · ds = BS = 2πrB, and since we know that this is equal to µ0I, it

follows that B = (µ0I)/(2πr).
(b)

∆φ = −
∫
E · ds = −

∫
E ds = −

∫
Q

4πε0r2 dr =
[

Q

4πε0r

]2R
R

= − Q

8πε0R

The first stage follows since our path s points away from the charge Q and is
therefore in the same direction as E. The next stage follows since δs = δr.

(c) For our path, x = y = z at all points. With this simplification the electric field

along our path becomes E = F
a2

(
x2

x2

x2

)
, and so

∫
E · ds becomes

∫ 1
0 Exdx +

∫ 1
0 Eydy +

∫ 1
0 Ezdz = 3

∫ 1
0 Exdx since along our path Ex = Ey = Ez and δx =

δy = δz. We then evaluate this as

∆φ = −
∫
E · ds = −3

∫ 1

0

Fx2

a2 dx = −3
[
Fx3

3a2

]1
0

= − F

a2 .

(d) Stage one: ∆φ = − ∫ E · ds = − ∫ Exdx = − ∫ 1
0 ((Fyz)/a2)dx = 0 since y and

z are both 0.
Stage two: ∆φ = − ∫ E · ds = − ∫ Eydy = − ∫ 1

0 ((Fxz)/a2)dy = 0 since z = 0.
Stage three: ∆φ=−∫ E · ds=−∫ Ezdz =−∫ 1

0 ((Fxy)/a2)dz =−∫ 1
0 ((F )/a2)dz

= −
[
Fz

a2

]1
0

= −F/a2, where we remember that as we go from (1,1,0) to (1,1,1),

x = y = 1.
Adding these gives the same result as in (c).

(e) (i) (d/dt)v2 = d/dt (v · v) = dv/dt · v + v · dv/dt = 2v · dv/dt = 2v · g
(ii) − ∫mg · v dt = − ∫ 1

2m
(
d
(
v2
)
/dt
)
dt = − 1

2m
∫

d
(
v2
)

If we now perform this integral from initial speed U to final speed V we get

−
∫

mg · v dt = −1
2
m

∫ V 2

U2
d
(
v2) = −1

2
m
(
V 2 − U2) =

1
2
m
(
U2 − V 2) ,

which is the loss in kinetic energy.
(f) (i) ma= Resultant force =F+ mg, thus F = ma− mg = m(a− g).

(ii)
∫
F · ds =

∫
m (a− g) · ds =

∫
ma · ds− ∫mg · ds

The second term is the gain in potential energy m∆φ as in equation (2.12).
(iii) In (e) we showed that − ∫ mg · ds=−∫ mg · vdt =−∫ 1

2m
(
d
(
v2
)
/dt
)
dt =

− 1
2m
∫

d
(
v2
)

was the loss in kinetic energy. In that part, g was the
acceleration, since the gravitational force was the only force acting.
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Accordingly, to use this result in part (f) we have to replace the g with
an a. Thus − ∫ ma · v dt will be the loss in kinetic energy, and therefore∫

ma · v dt will be the gain in kinetic energy, as required.

2.8.1 The electrostatic field surrounding a charged wire

(a) Field lines radiate outward from the wire, and only pass through the curved
surface. This surface has area 2πrl. So the number of field lines n = E × 2πrl,
so E = n/2πrl.

(b) The total charge enclosed is lλ, and so the number of field lines must also be
Q/ε0 = lλ/ε0.

(c) Thus 2πrlE = lλ/ε0 and so E = λ/2πε0r.
(d) λ = 4 × 10−7 C/m, r = 0.02 m, ε0 is given in data on inside back cover so,

E =
4.00 × 10−7 C/m

2π × 8.85 × 10−12 F/m × 0.02 m
= 3.60 × 105 V/m.

(e) Number of free electrons in 1 m of wire = volume × density ÷ mass of one
atom = π×10−6 m2×1 m×8930 kg/m3÷1.07×10−27 kg = 2.62×1025 electrons.

Charge on the free electrons in 1 m of wire = 1.6 × 10−19 C × 2.62 × 1025 =
4.20 × 106 C.

Field at a distance of 200 m given by

E =
4.20 × 106 C/m

2π × 8.85 × 10−12 F/m × 200 m
= 3.78 × 1014 V/m.

This is ridiculously large, but remember that the free electrons are not the only
charged objects in the wire – you also have the bound electrons and the nuclei
which have equal and opposite charge to the electrons. In fact the fields due to
the positive and negative charges do not quite cancel out because of relativistic
effects, and this can be used to explain the mutual attraction of two parallel
current-carrying wires. That is a topic beyond this book, however.

Chapter 3

3.1.2 Rotated coordinate systems and matrices

(a) & (b) From the Figure 3.4 we can see:

x′ = cos θx + sin θy +0z
y′ = − sin θx + cos θy +0z
z′ = 0x +0y +1z

.
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Now matrix multiplication goes like this:⎛
⎝ v′

1
v′
2

v′
3

⎞
⎠ =

⎛
⎝M11 M12 M13

. . .

. . .

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠⇒

v′
1 = M11v1 + M12v2 + M13v3

.

.

⎛
⎝ v′

1
v′
2

v′
3

⎞
⎠ =

⎛
⎝ . . .

M21 M22 M23
. . .

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠⇒

.

v′
2 = M21v1 + M22v2 + M23v3.

.

⎛
⎝ v′

1
v′
2

v′
3

⎞
⎠ =

⎛
⎝ . . .

. . .
M31 M32 M33

⎞
⎠
⎛
⎝ v1

v2
v3

⎞
⎠⇒

.

.

v′
3 = M31v1 + M32v2 + M33v3.

So our expressions relating (x′, y′, z′) and (x, y, z) can be written in matrix form:⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ = R(θ)

⎛
⎝x

y
z

⎞
⎠ .

The matrix R(θ) rotates the coordinate axes by an angle θ in the direction
indicated in the diagram and the new coordinates of a point (x, y, z) are given
by (x′, y′, z′) in the new rotated coordinate system.
Now it just so happens that another matrix:

R(θ)T =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ ,

which is easily obtained from the first by swapping the columns for rows and
the rows for columns (this operation is called transposing), and it has a special
relationship with the first matrix. We call this matrix the transpose of the first,
R(θ)T .

Before we go any further, let us first spend some time reminding ourselves
about matrix multiplication of two matrices like the ones we have above, for
example, ⎛

⎝M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞
⎠×

⎛
⎝N11 N12 N13

N21 N22 N23
N31 N32 N33

⎞
⎠ .

The rules of matrix multiplication say that⎛
⎝M11 M12 M13

. . .

. . .

⎞
⎠×

⎛
⎝N11 . .

N21 . .
N31 . .

⎞
⎠ =

⎛
⎝ (MN)11 . .

. . .

. . .

⎞
⎠ ;
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that is,

(MN)11 = M11N11 + M12N21 + M13N31,

which is the (1,1)th element of the matrix that is the product of the two ma-
trices. Let us try another element:⎛

⎝ . . .
M21 M22 M23

. . .

⎞
⎠×

⎛
⎝ . N12 .

. N22 .

. N32 .

⎞
⎠ =

⎛
⎝ . . .

. (MN)22 .

. . .

⎞
⎠ ;

that is,

(MN)22 = M21N12 + M22N22 + M23N32.

In general,

(MN)ij =
∑
k

MikNkj ,

which turns out to be true for any square matrices (here we are of course only
dealing with 3×3 matrices). You may have noticed that the letter, or sometimes
we call it index, that is being summed over (k in this case) is always repeated.
Indeed, this was noticed by Albert Einstein who introduced a convenient con-
vention where: ‘any repeated index in an expression like the one above, must
indicate a summation, hence we can drop the summation sign’ and

(MN)ij = MikNkj .

We can take things further then and write down the elements of a triple product
of matrices, thus,

(LMN)ij = LipMpqNqj ,

where the summations are implied over p and q. One last thing, it is not diffi-
cult to see that in general (MN )ij �= (NM )ij ; that is, in general, the order of
multiplication of matrices matters.

Let us return to our rotation matrices R(θ) and R(θ)T .
The product

R(θ)TR(θ) = R(θ)R(θ)T =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ .

Here we notice that in this particular case order of multiplication does not
matter. The matrix on the far right is called the unit matrix – multiplying it
into any matrix or vector always gives you back the same matrix or vector. If
applying R(θ) is to rotate the coordinate axes, then the result above suggests
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that R(θ)T = R(−θ), or a rotation by the same angle in the opposite direction.
Since this rotation undoes the first rotation we call these two rotations inverses
of each other. Obtaining the transpose of a matrix is not always the procedure
to obtain the inverse (you will need to go to a maths textbook to find out
about the method to obtain the inverse of a general matrix). The transpose is
the inverse for a special class of matrices called orthogonal matrices. Rotation
matrices for 3-D space are always orthogonal.

Therefore,

⎛
⎝x

y
z

⎞
⎠ = R(−θ)

⎛
⎝x′

y′

z′

⎞
⎠ =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠,

rotating the primed coordinates back by θ must bring us back to the unprimed
coordinates.

3.1.3 Rotating vectors and the vector product

In this workshop we use the matrices of the previous workshop to keep track of the
effect of rotating our points of view. The matrices in the previous workshop allow us
to relate the coordinates of a point (x, y, z) to the coordinates of the same point in
a rotated coordinate system (x′, y′, z′). To obtain the effect of rotating rather than
just being rotated we use the operation of differentiation with respect to time. This is
because to predict how the rotating coordinates evolve in time, we need their rates of
change.

Let us set the primed coordinate system rotating at a constant rate:

ω =
2π

T
,

where T is the time period of the rotation. So θ = θ(t) = ωt. From the previous
workshop we have

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ cos ωt − sinωt 0

sinωt cos ωt 0
0 0 1

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠,

which actually means

x = cos ωtx′ − sinωty′ +0z′

y = sinωtx′ + cos ωty′ +0z′

z = 0x′ +0y′ +1z′
.
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(a) We can differentiate these three equations to obtain:

dx

dt
= −ω sinωtx′ + cos ωt

dx′

dt
−ω cos ωty′ − sinωt

dy′

dt
+0

dy

dt
= ω cos ωtx′ + sinωt

dx′

dt
−ω sinωty′ + cos ωt

dy′

dt
+0

dz

dt
= +0 +0 +

dz′

dt

.

Let us gather like terms together:

dx

dt
= cos ωt

dx′

dt
− sinωt

dy′

dt
+0 −ω sinωtx′ −ω cos ωty′ +0

dy

dt
= sinωt

dx′

dt
+ cos ωt

dy′

dt
+0 +ω cos ωtx′ −ω sinωty′ +0

dz

dt
= 0 +0 +1

dz′

dt
+0 +0 +0

.

From this grouping the following pattern is obvious:⎛
⎝ ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝ cos ωt − sinωt 0

sinωt cos ωt 0
0 0 1

⎞
⎠
⎛
⎝ ẋ′

ẏ′

ż′

⎞
⎠+ ω

⎛
⎝− sinωt − cos ωt 0

cos ωt − sinωt 0
0 0 0

⎞
⎠
⎛
⎝x′

y′

z′

⎞
⎠ ,

where we have used the ‘dot’ notation for time derivatives to save room.
(b) In this part we concentrate on the second matrix term, which is actually a vector

whose:
x - component = −ω sinωtx′ −ω cos ωty′ +0z′

y - component = ω cos ωtx′ −ω sinωty′ +0z′

z - component = 0x′ +0y′ +0z′
.

From our original relationships between (x, y, z) and (x′, y′, z′), we see that
this means the vector’s

x - component = −ωy
y - component = ωx
z - component = 0

or ω

⎛
⎝−y

x
0

⎞
⎠ .

(c) Using the rules for the vector product we see

ωẑ× (xx̂+ yŷ + zẑ) = ωxŷ − ωyx̂ = ω

⎛
⎝−y

x
0

⎞
⎠ .

3.1.5 Vector triple product

(a) You just have to work through this by doing all the possible multiplications in
(b× c) = (bxx̂+ byŷ+ bz ẑ) × (cxx̂+ cyŷ+ cz ẑ) taking care to respect the order
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of each multiplication that involves unit vectors. You should discover when you
collect all the like terms together that this product comes to

x̂(bycz − bzcy) + ŷ(bzcx − bxcz) + ẑ(bxcy − bycx).

Footnote 5 of chapter 3 that appears with this answer is for those of you who
have studied determinants. It just so happens that the expression above can be
written shorthand as a determinant – do not worry if you have not yet studied
them, they appear in more advanced work and when you really need them you
will probably receive maths courses on them.

(b) Just as in (a), you will need to work through this to see how it emerges – it will
be good algebra practice. Once again, respect the order of multiplication with
unit vectors.

(c) x̂{bx(axcx + aycy + azcz) − cx(axbx + ayby + azbz)}
+ ŷ{by(axcx + aycy + azcz) − cy(axbx + ayby + azbz)}
+ ẑ{bz(axcx + aycy + azcz) − cz(axbx + ayby + azbz)}.

In this expression, we can try to group together like terms:

(axcx + aycy + azcz)(bxx̂+ byŷ + bz ẑ)
− (axbx + ayby + azbz)(cxx̂+ cyŷ + cz ẑ)

which is just:

(a · c)b− (a · b)c.

(d) We know that (a × b) × c = −c × (a × b) = c × (b × a), so taking the last
expression and swapping the a and c terms we get:

(axcx + aycy + azcz)(bxx̂+ byŷ + bz ẑ)
− (cxbx + cyby + czbz)(axx̂+ ayŷ + az ẑ),

which is of course just:

(a · c)b− (c · b)a.

3.2.3 Kepler’s second law

(a) The angle ABC is 180◦ −φ and sin(180◦ −φ) = sinφ. Therefore r∆r sinφ really
is the area of the parallelogram ABCD (Figure A.1).

(b) The area of the triangle ABC is the area swept in the time ∆t and is exactly
half the area of the parallelogram ABCD, and since:

|rδ||∆r| sinφ ẑ = r∆r sinφ ẑ

we must have that the area of the triangle is just:

∆A =
1
2
r× ∆r.

(c)
d

dt
A =

1
2
r× d

dt
r =

1
2
r× v =

1
2
h =

1
2
hẑ.
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m1

m2

m2

r(t)r(t + ∆t)

∆r

A

B
C

D

E

Fig. A.1

3.2.4 Kepler’s third law

(a) The area enclosed in the ellipse is πab so as the rate at which area is swept is
a constant h we must have that

h =
πab

T
.

Comparing the two expressions:

r(θ) =
p

1 + e cos θ

and

r =
h2/G(m1 + m2)

1 + e cos(θ)

we see that

p =
h2

G(m1 + m2)
⇒ h =

√
pG(m1 + m2),

which of course means that

πab

T
=
√

pG(m1 + m2).

When θ = 0, r(θ) = a − ea. So

r(0) = a(1 − e) =
p

1 + e
⇒ p = a(1 − e2).

(b) πab

T
=

πa2
√

1 − e2

T
=
√

pG(m1 + m2) =
√

a(1 − e2)G(m1 + m2)

⇒ T 2 =
4π2

G(m1 + m2)
a3.
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Chapter 4
4.1.1 Simple harmonic motion

(a) (i) F =
d (mu)

dt
= m

du

dt
= m

d2y

dt2
.

Now, here F = −ky, so −ky = m(d2y/dt2), hence (d2y/dt2) = −(k/m)y.
This is the same as a = −ω2y as in equation (4.9) providing that ω2 = k/m.
Thus ω =

√
(k/m) =

√
(1.2 N/m)/0.3 kg = 2.0 rad/s.

(ii) If y = C cos ωt + D sinωt, then u = dy/dt = −Cω sinωt + Dω cos ωt.
At t= 0 we have y = C and u = Dω. Here y = 2 m and u = 0. Thus C = 2
m and D = 0. The equation of the motion is thus y = 2 m × cos ωt, and
the amplitude is 2 m since the largest value cos ωt can take is 1.

(iii) Using the same logic as in (ii), at t = 0 we have y = C = 0 and u =
Dω = 6 m/s. Thus D = 6 m/s ÷ 2 rad/s = 3 m and y = 3 m × sinωt. The
amplitude is 3 m.

(iv) At t = 0 we have y = C = 2 m and u = Dω = −1.5 m/s. D = u/ω =
−0.75 m. Thus y = 2 m × cos ωt − 0.75 m × sin ωt.

Using the conversion formulae (4.8) we have A =
√

22 + 0.752m =
2.14 m and φ = tan−1 (0.75/2) = 20.6◦. Note that φ = 200.6◦ would
also solve this equation, and so we have to check which answer is correct.
Using equation (4.7) we note that if φ = 20.6◦ then both sin φ and cos φ
would be positive, and hence C would be positive and D would be negative.
This fits with our conditions, and hence the correct answer is φ = 20.6◦,
or 20.6π/180rad = 0.359 rad. We use the answer in radians given that our
ω is in rad/s.

So y = 2.14 m × cos (ωt + 0.359 rad).
The amplitude is accordingly 2.14 m.

u = dy/dt = −4.28 m/s × sin (ωt + 0.359 rad).

This will first be zero when ωt + 0.359 rad = π rad and hence:

t =
π rad − 0.359 rad

2 rad/s
= 1.39 s.

(b) (i) Since F = −ky + h, so −ky+h = m(d2y/dt2), hence (d2y/dt2) = −(k/m)y+
(h/m).
Thus P = −k/m and Q = h/m.

(ii) When you differentiate this expression for y, to find d2y/dt2, you will only
ever have cosines or sines, never any constant part like the Q term.

(iii) At equilibrium F = 0 and so −ky + h = 0 and hence y0 = h/k.
Here this is at y0 = 0.375 m.

(iv) Since y = y′ + y0 = y′ + h/k, Newton’s second law now takes the form(
d2
(
y′ + h

k

)
/dt2
)

= −(k/m) (y′ + h/k) + h/m = −(ky′/m). Now since
h/k is a constant, we can write

(
d2 (y′ + (h/k))/dt2

)
=
(
d2 (y′)/dt2

)
, and
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accordingly,
(
d2y′/dt2

)
= −(ky′/m), which is a regular simple harmonic

motion equation in y′ with ω2 = k/m as before. Therefore y′ can be written
in the form y′ = A cos(ωt +φ), and

y =
h

k
+ A cos (ωt + φ) .

(c) No it will not, because the acceleration is not simply proportional to −y. How-
ever given that it is only knocked out of position by 3 cm, the contribution of
the squared term will be negligible in comparison to the linear term. The largest
value of the linear term ky = 1.2 N/m × 0.03 m = 0.036 N, whereas the largest
value of the squared term is hy2 = 2 N/m2 × (0.03 m)2 = 0.0018 N which is
20 times smaller. Thus, while it is not strictly correct, simple harmonic motion
may be a suitable approximation to the motion. It all depends on the level of
accuracy needed.

4.2 Describing complex numbers

(a) It moves one unit to the ‘right’ on Figure 4.2.
(b) It moves one unit upwards on Figure 4.2.
(c) Both its ‘x-coordinate’ and ‘y−coordinate’ double, so the point moves twice

as far from the origin, but maintains the same ‘bearing’ with respect to the
origin.

(d) +1 × i = i, while −1 × i = −i. In both cases, the multiplication by i seems to
rotate the point by 90◦ anticlockwise about the origin. This is equally true if
you start with +2 or −2 and multiply them by i.

(e) iz = ix + i2y = ix − y. The positions of z and iz are shown on the Argand
diagram in Figure A.2, with the coordinates derived from our algebra. It follows
from the geometry of Figure A.2 that angles ∠ZOR and ∠Z′OI are the same.
Given that ∠IOR = 90◦, it follows that ∠Z′OZ = 90◦.

z

iz

x

y

R
O

I

x

y

Z
Z'

Fig. A.2
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z

x
θ

y

R
O

I

Z

Fig. A.3

It is also apparent from the diagram that OZ = OZ′ =
√

x2 + y2, so the
transformation caused by multiplication by i is a pure rotation and does not
involve any stretching or magnification.

(f) If a = p + iq and b = r + is then

ab = (p + iq) (r + is) = pr + iqr + ips + i2qs = pr − qs + i (qr + ps) .

Thus Re (ab) = pr − qs = Re (a) Re (b) − Im (a) Im (b) and
Im (ab) = qr + ps = Im (a) Re (b) + Re (a) Im (b) .

(g) Reverse the sign of the imaginary part: 3 − 2i, 5 + 3i, −2 − i, −4 + 5i.
(h) If a = p + iq and b = r + is, then ab = pr − qs + i (qr + ps),

while a∗b∗ = (p − iq) (r − is) = pr − qs − i (qr + ps).
We see that the real part of a∗b∗ is the same as that of ab, while the imag-

inary part has reversed its sign. It follows that a∗b∗ is the complex conjugate
of ab.

(i) If z = x + iy, then z∗ = x − iy and so 1
2 (z + z∗) = 1

2 (2x) = x = Re(z).
Similarly 1

2 (z − z∗) = 1
2 (2iy) = iy = i × Im(z). Thus Im(z) = 1

2i (z − z∗).
( j) For z = x + iy, then we use Pythagoras’ theorem to show that its ‘direct dis-

tance’ from the origin on the Argand diagram is r =
√

x2 + y2.
Evaluating z*z we find (x + iy) (x − iy) = x2 + y2 = r2 as requested.

(k) In Figure A.3, the modulus |z| is represented by the length of the line OZ.
Re(z) = x = |z| cos θ, while Im(z) = y = |z| sin θ, where θ = Arg(z).

(l) i3 = i × i2 = i × −1 = −i

i4 = i × i3 = i × −i = +1

i5 = i × i4 = i × 1 = +i

i6 = i × i5 = i × i = −1.

(m) Using our expression for ex, it follows that

eiθ = 1 + iθ +
(iθ) 2

2!
+

(iθ) 3

3!
+

(iθ) 4

4!
+

(iθ) 5

5!
+

(iθ) 6

6!
+ · · ·

= 1 + iθ +
i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+

i5θ5

5!
+

i6θ6

6!
+ · · ·
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= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− θ6

6!
+ · · ·

=
(

1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+

θ5

5!
+ · · ·

)

= cos θ + i sin θ.

(n) reiθ × seiφ = rs × eiθeiφ = rs ei(θ+φ).
The modulus is rs, and the argument is θ + φ.

(o) zw = |z||w|ei(θ+φ), and since |z| = |w| = 1, zw = ei(θ+φ).
Thus Arg(zw) = θ + φ, and Re(zw) = |zw| cos(Arg(zw)) = 1 × cos(θ + φ).
But from (f) we know that Re(zw) = Re(z)Re(w) − Im(z)Im(w).
Now Re(z) = cos θ, Im(z) = sin θ, Re(w) = cos φ and Im(w) = sinφ.
Thus it follows that cos (θ + φ) = cos θ cos φ − sin θ sinφ.
Similarly, Im(zw) = sin(Arg(zw)) = sin(θ + φ) and since Im(zw) = Im(z)Re(w)
+ Re(z)Im(w) we have sin (θ + φ) = sin θ cos φ + cos θ sinφ.

(p) From (m) we know that eiθ = cos θ + i sin θ. It follows that e−iθ = cos (−θ) +
i sin (−θ) = cos θ − i sin θ.

Thus 1
2

(
eiθ + e−iθ

)
= 1

2 (2 cos θ) = cos θ, and 1
2

(
eiθ − e−iθ

)
= 1

2 (2i sin θ) =
i sin θ.

4.4 Damped oscillators

(a) The restoring force can be written F = −kx (as in workshop 4.1.1), where the
negative sign indicates that the force is directed in the opposite direction to x,
and thus points back towards x = 0.

The friction (or damping) force can be written F = −rẋ, with the negative
sign indicating that the force will always be in the opposite direction to the
velocity (tending to decelerate it).

Adding the two forces gives F = −kx − rẋ, and so Newton’s second law
becomes:

F =
d

dt
mẋ = mẍ = −kx − rẋ, and thus mẍ + kx + rẋ = 0.

(b) If x = Re(Aeαt) then ẋ = Re (Aαeαt) and ẍ = Re
(
Aα2eαt

)
. Our statement of

Newton’s law then becomes m Re
(
Aα2eαt

)
+ r Re (Aαeαt) + k Re(Aeαt) = 0.

This can be rewritten Re
(
Amα2eαt

)
+ Re (Arαeαt) + Re (Akeαt) = 0 or

Re
(
Amα2eαt + Arαeαt + Akeαt

)
= 0

Re
{(

mα2 + rα + k
)
Aeαt

}
= 0

Re
{(

mα2 + rα + k
)
z
}

= 0.

This equation will definitely be satisfied if the stricter condition (mα2 +
rα + k)z = 0 is enforced.
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(c) We solve the quadratic mα2 + rα + k = 0 to give the solutions for α:

α2 +
r

m
α = − k

m(
α +

r

2m

)2
=
( r

2m

)2
− k

m

α +
r

2m
= ±
√( r

2m

)2
− k

m

α = − r

2m
±
√( r

2m

)2
− k

m

α1 = − r

2m
+

√( r

2m

)2
− k

m

α2 = − r

2m
−
√( r

2m

)2
− k

m
.

(d) Our differential equation is mẍ + rẋ + kx = 0. This will definitely be true if
the more rigorous equation mz̈ + rż + kz = 0 is satisfied. If we use the solution
suggested in equation (4.20) then:

z = e−rt/2m (A1 + A2t)

ż = e−rt/2m
(
A2 − r

2m
A1 − r

2m
A2t
)

z̈ = e−rt/2m
(

− r

2m
A2 − r

2m
A2 +

( r

2m

)2
A1 +

( r

2m

)2
A2t

)
.

Substituting these into the differential equation gives:

mz̈ + rż + kz = 0

e−rt/2m
((

−rA2 +
r2

4m
A1 +

r2

4m
A2t

)
+
(

rA2 − r2

2m
A1 − r2

2m
A2t

)

+ (kA1 + kA2t)
)

= 0

e−rt/2m
(

− r2

4m
A1 − r2

4m
A2t + kA1 + kA2t

)
= 0

but, since in our special case r2 = 4mk, the term in brackets is equal to zero,
and thus our solution is verified.
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(e)
α1 = − r

2m
+

√( r

2m

)2
− k

m
= − r

2m
+

√
(−1) ×

(
k

m
−
( r

2m

)2
)

= − r

2m
+ i

√
k

m
−
( r

2m

)2

α2 = − r

2m
−
√( r

2m

)2
− k

m
= − r

2m
−
√

(−1) ×
(

k

m
−
( r

2m

)2
)

= − r

2m
− i

√
k

m
−
( r

2m

)2
.

(f) Let us define ω =
√

(k/m) − (r/2m)2. Since we are told r2−4mk < 0, it follows
that 4mk > r2 and the term in the square root is real, and so ω will be real as
well.

Our solution z can then be written as

z = A1eα1t + A2eα2t

= A1e−rt/2meiωt + A2e−rt/2me−iωt

= e−rt/2m (A1eiωt + A2e−iωt
)
.

We can show that this can be expressed in terms of sines and cosines as follows,
remembering from workshop 4.2 part (m) that eiθ = cos θ + i sin θ.

z = e−rt/2m (A1eiωt + A2e−iωt
)

= e−rt/2m (A1 cos ωt + iA1 sinωt + A2 cos (−ωt) + A2 sin (−ωt))

= e−rt/2m (A1 cos ωt + iA1 sinωt + A2 cos ωt − iA2 sinωt)

= e−rt/2m ((A1 + A2) cos ωt + i (A1 − A2) sinωt)

x = Re (z) = e−rt/2m (C cos ωt + D sinωt) ,

where C = Re(A1 + A2) and D = −Im(A1 − A2).
(g) x = e−at (C cos ωt + D sinωt)

ẋ = −ae−at (C cos ωt + D sinωt) + ωe−at (−C sinωt + D cos ωt)

ẍ = a2e−at (C cos ωt + D sinωt) − 2aωe−at (−C sinωt + D cos ωt)

+ ω2e−at (−C cos ωt − D sinωt)

=
(
Ca2 − 2Daω − Cω2) e−at cos ωt +

(
Da2 + 2Caω − Dω2) e−at sinωt.

Inserting these trial solutions into the equation mẍ + rẋ + kx = 0 gives us:
For the coefficients of e−at cos ωt : Cma2 − 2Dmaω −Cmω2 −Car +Drω +

Ck = 0.
For the coefficients of e−at sin ωt : Dma2 +2Cmaω −Dmω2 −Dar −Crω +

Dk = 0.



194 Workshop solutions

Given that these equations need to be satisfied for any values of C or D, our
cosine coefficient equation tells us that ma2 − mω2 − ar + k = 0 and −2maω +
rω = 0. From the second of these, we have a = r/2m, and substituting back into
the first we have (r2/4m)−mω2 −(r2/2m)+k = 0, so −mω2 −(r2/4m)+k = 0
and so ω =

√
(k/m) − (r2/4m2).

Analysis of the sine coefficient would have led to the same conclusion.

4.7 The wave equation (using trigonometry)

(a) y = A cos (ωt − kx + φ)

∂y

∂x
=

∂y

∂ (ωt − kx + φ)
∂ (ωt − kx + φ)

∂x

= −A sin (ωt − kx + φ) × −k

= Ak sin (ωt − kx + φ) .

(b) ∂2y

∂x2 =
∂ (∂y/∂x)

∂ (ωt − kx + φ)
∂ (ωt − kx + φ)

∂x

= Ak cos (ωt − kx + φ) × −k

= −Ak2 cos (ωt − kx + φ) = −k2y.

(c) y = A cos (ωt − kx + φ)

∂y

∂t
=

∂y

∂ (ωt − kx + φ)
∂ (ωt − kx + φ)

∂t

= −A sin (ωt − kx + φ) × ω

= −Aω sin (ωt − kx + φ) .

(d) ∂2y

∂t2
=

∂ (∂y/∂t)
∂ (ωt − kx + φ)

∂ (ωt − kx + φ)
∂t

= −Aω cos (ωt − kx + φ) × ω

= −Aω2 cos (ωt − kx + φ) = −ω2y.

(e) (∂2y/∂x2) = −k2y, and (∂2y/∂t2) = −ω2y.
It follows that −y = (1/k2)(∂2y/∂x2) = (1/ω2)(∂2y/∂t2)
and thus that (∂2y/∂x2) = (k2/ω2)(∂2y/∂t2).
Now ω/k = c, so (∂2y/∂x2) = (1/c2)(∂2y/∂t2).

(f) y = f (ωt − kx)
∂y

∂x
=

∂y

∂ (ωt − kx)
∂ (ωt − kx)

∂x

= f ′ × −k
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∂y

∂t
=

∂y

∂ (ωt − kx)
∂ (ωt − kx)

∂t

= f ′ × ω

∂2y

∂x2 =
∂ (∂y/∂x)
∂ (ωt − kx)

∂ (ωt − kx)
∂x

= −kf ′′ × −k = k2f ′′

∂2y

∂t2
=

∂ (∂y/∂t)
∂ (ωt − kx)

∂ (ωt − kx)
∂t

= ωf ′′ × ω = ω2f ′′.

where f ′ refers to the derivative of the function f with respect to its argument.
Similar working using ωt + kx gives identical results for the second derivatives.

It is clear from the derivatives above that (1/k2)(∂2y/∂x2)=(1/ω2)(∂2y/∂t2),
and so the wave equation is satisfied.

4.7 The wave equation (using complex numbers)
(a) y = Re Aeiφei(ωt−kx)

∂y

∂x
=

∂y

∂ (ωt − kx)
∂ (ωt − kx)

∂x

= Aeiφei(ωt−kx) × −ik

= −Aikeiφei(ωt−kx).

(b) ∂2y

∂x2 =
∂ (∂y/∂x)
∂ (ωt − kx)

∂ (ωt − kx)
∂x

= −Aikeiφei(ωt−kx) × −ik

= −Ak2eiφei(ωt−kx) = −k2y.

(c) y = Re Aeiφei(ωt−kx)

∂y

∂t
=

∂y

∂ (ωt − kx)
∂ (ωt − kx)

∂t

= Aeiφei(ωt−kx) × iω

= Aiωeiφei(ωt−kx).

(d) ∂2y

∂t2
=

∂ (∂y/∂t)
∂ (ωt − kx)

∂ (ωt − kx)
∂t

= Aiωeiφei(ωt−kx) × iω

= −Aω2eiφei(ωt−kx) = −ω2y.

(e) & (f) See solution presented above after earlier parts have been solved using
trigonometry.
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4.11.3 Stellar magnitudes

(a) Let us suppose the intensity of a sixth-magnitude star (m = 6.0) is called I6,
and we define a constant a such that I5 = aI6. It follows by the constant-ratio
rule that I4 = aI5 = a2I6, and so on, until we have that I1 = a5I6. We are told
in the text that an increase of five in the magnitude gives a 100-fold reduction
in I, thus I1 = 100 I6, and so a5 = 100. It follows that a = 5

√
100 = 1001/5 =

102/5 = 2.512 . . ., and given that I1 = a I2, a first magnitude star is 2.512 times
as bright as a second magnitude star.

(b) Suppose the brightness of a zero-magnitude star (m = 0) is called I0. It follows
from the logic of (a) that Im = I0/am = I0a

−m = I0
(
102/5

)−m
= I0 ×10−2m/5.

(c) From part (b) we have that I ∝ 10−2m/5 while P ∝ 10−2M/5. Given that the 4π
factor is a constant, we can write 10−2m/5 ∝ I ∝ P

/
D2 ∝ 10−2M/5

/
D2. Defin-

ing B as the constant of proportionality, we have 10−2m/5 = B × 10−2M/5
/
D2.

(d) When D = 10 pc, M = m. Putting M = m into our equation from part (c)
gives us 1 = B

/
D2 = B

/
100 pc2, and so B = 100 pc2.

(e) Using logarithms, as requested
We take logarithms to base 10 of both sides, and assume that D is in parsecs.
This means that B = 100 pc2, and hence log B = 2.

10−2m/5 =
B × 10−2M/5

D2

−2m

5
= log B − 2M

5
− 2 log D

−2m

5
= 2 − 2M

5
− 2 log D

−m = 5 − M − 5 log D

log D =
5 + m − M

5

D = 10(5+m−M)/5.

(e) Without using logarithms
While doing this using logarithms is good practice, it is actually easier to do it
without – and here is how:

10−2m/5 =
B × 10−2M/5

D2

D2 =
B × 10−2M/5

10−2m/5 = B × 10−2(M−m)/5

= 100 × 10−2(M−m)/5 = 102−2(M−m)/5

D = 101−(M−m)/5 = 10(5+m−M)/5
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Chapter 5

5.1.3 Using voltage to solve simple circuit problems

Voltage labelling (see key at base for symbols used) (Figure A.4)
Potential differences (all in volts) and bulb brightnesses (bright/normal/dim/off)

Potential Potential Potential
No. difference No. difference No. difference

1 1.5 − 0 = 1.5 N 9 1.5 − 0 = 1.5 N 17 3 − 1.5 = 1.5 N
2 3 − 0 = 3 B 10 1.5 − 0 = 1.5 N 18 3 − 3 = 0 O
3 1.5 − 0 = 1.5 N 11 0.75 − 0 = 0.75 D 19 1.5 − 0 = 1.5 N
4 1.5 − 0 = 1.5 N 12 1.5 − 0.75 = 0.75 D 20 3 − 1.5 = 1.5 N
5 0.75 − 0 = 0.75 D 13 0.75 − 0 = 0.75 D 21 1.5 − 1.5 = 0 O
6 1.5 − 0.75 = 0.75 D 14 1.5 − 0.75 = 0.75 D 22 1.5 − 0 = 1.5 N
7 2.25 − 0 = 2.25 B 15 1.5 − 0 = 1.5 N 23 3 − 1.5 = 1.5 N
8 4.5 − 2.25 = 2.25 B 16 1.5 − 0 = 1.5 N

1 2 3

4

5 6 7 8
9

10

1211

16 17 18

13 14

15

19 20

21

22

0 V 1.5 V 3 V 4.5 V2.25 V0.75 V

23

Fig. A.4
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Chapter 6

6.5.1 Atmospheric pressure

(a)
ρ =

Mass
Volume

=
Number of molecules × mass of molecule

Volume

=
Nm

V
=

pV

kT

m

V
=

pm

kT
.

(b) Mass of one slab = volume × density = V ρ = ∆hρ

(since slabs have unit area).

Weight of one slab = mass × g = ρg∆h =
pm

kT
g∆h =

pmg

kT
∆h.

Difference in force supporting this slab compared to force needed to support
next slab up will be equal to this weight. Now because the slabs have unit area,
the difference in the force is numerically equal to the difference in pressure.
Thus the difference in pressure as we go up a height ∆h is (pmg/kT )∆h, where
the pressure reduces as we rise. Thus we write ∆p = −(pmg/kT )∆h.

(c) If we now let the height increments become small, then (∆p/∆h) = −(pmg/kT )
tends to (dp/dh) = −(pmg/kT ) = −(mg/kT )p. This is a differential equation of
the form (dy/dx) = ky, and workshop 7.2 shows us that the solution is y = Aekx,
where A is a constant. Applying this to our equation, we have p = p0e−mgh/kT ,
where p0 is the pressure at height h = 0. For the final part, we note that mgh
= Egrav is the potential energy gained by a molecule when it rises by height h,

and we can therefore write p = p0 e−Egrav
/
kT .

6.5.3 Justification of Boltzmann law

(a)

Number of
Macrostate microstates Microstates

3 Heads 1 HHH
2 Heads, 1 Tail 3 THH, HTH, HHT
1 Head, 2 Tails 3 HTT, THT, TTH
3 Tails 1 TTT

(b) & (c) • Two atoms with two units, five atoms with no units {5,0,2}
• One atom with two units, two with one unit, four with no units

{4,2,1}
• One atom with four units, six with none {6,0,0,0,1}.
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(d) Using first principles in each case
{6,0,0,0,1} Seven microstates (we choose one of the seven atoms).
{5,1,0,1} We choose one of the seven to hold three units, and then choose

one of the remaining six to hold the remaining unit. This means 7 × 6 = 42
microstates.

{5,0,2} We choose one atom from 7, then choose the second from the remain-
ing 6. This gives us 7× 6 possible ways of doing this, but in doing so we double
count each possibility (choosing atom 3 then atom 5 is the same as choosing
atom 5 then atom 3). Thus the number of different microstates is 7× 6/2 = 21.

{4,2,1} We choose one atom from the seven to hold two units: there are
seven to choose from. We then choose two from the remaining six to take the
other individual units: there are 6 × 5/2 = 15 ways of doing this. Thus the
number of microstates is 7 × 15 = 105.

{3,4} Here we need to choose three of the atoms to take no energy. We start
by choosing the first from 7, then choose the second from the remaining 6, then
the third from 5. This means 7 × 6 × 5 = 210 possibilities, but we have counted
each possible microstate six times over. To see why, suppose the microstate is
to choose atoms 1, 2 and 3. We could choose (1 then 2 then 3) or (1 then 3 then
2) or (2 then 3 then 1) or (2 then 1 then 3) or (3 then 1 then 2) or (3 then 2
then 1). Thus the number of different microstates is 210/6 = 35.

(d) Using a general procedure
In this solution, we shall justify the equation given in footnote 7 of Chapter 6
and then use it.

Proof

(i) Suppose you have N objects. The number of ways of putting them in order
equals N !, that is N× (N− 1) × (N− 2) . . . × 2 × 1. To see why, you first
have to choose one of the N to go first (there are N to choose from). You
then have to choose one of the (N− 1) remaining to go second (there are
(N− 1) to choose from), one of the (N− 2) to go third, and so on, until
you have no choice when it come to the last object.

(ii) We want to work out how many ways there are of assigning the energy units
to the atoms for a particular macrostate. To do this, we shall prepare a grid
to hold the atoms. The first n0 places in the grid are reserved for the atoms
which will end up with no energy, the next n1 places will hold the atoms
which are to have 1 unit of energy, and so on. There are N ! ways of putting
the atoms in the ordered grid (as discussed above). However this does not
mean that there are N ! microstates, since any rearrangement of the n0
atoms, say, within their places on the grid does not change the microstate
since the same atoms each time will have no energy, they will just go in a
different order within the n0 places at the beginning of the grid. There are,
of course, n0! ways of rearranging these atoms within their places on the
grid. We therefore have to divide our N ! ways by n0! to avoid counting these
rearrangements of the no-energy atoms as different microstates. Similarly
we also have to divide by n1! to avoid counting rearrangements of the atoms
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with 1 unit as different microstates. We also have to divide by n2!, n3!, and
so on. This gives us the equation for the number of microstates in the

macrostate {n0, n1, n2, n3, . . . } as
N !

n0!n1!n2! . . .
.

Evaluation

Macrostate Calculation

{6,0,0,0,1} 7!
6!1!

=
7 × 6 × 5 × 4 × 3 × 2 × 1

(6 × 5 × 4 × 3 × 2 × 1) × 1
= 7

{5,1,0,1} 7!
5!1!1!

=
7 × 6 × 5 × 4 × 3 × 2 × 1

(5 × 4 × 3 × 2 × 1) × 1 × 1
= 7 × 6 = 42

{5,0,2} 7!
5!2!

=
7 × 6 × 5 × 4 × 3 × 2 × 1

(5 × 4 × 3 × 2 × 1) × (2 × 1)
=

7 × 6
2

= 21

{4,2,1} 7!
4!2!1!

=
7 × 6 × 5 × 4 × 3 × 2 × 1

(4 × 3 × 2 × 1) × (2 × 1) × 1
=

7 × 6 × 5
2

= 105

{4,3} 7!
4!3!

=
7 × 6 × 5 × 4 × 3 × 2 × 1

(4 × 3 × 2 × 1) × (3 × 2 × 1)
=

7 × 6 × 5
6

= 35

(e) There is a clear winner – {4,2,1} and the numbers in the curly brackets happen
to form a geometric series, each one being half of the one before.

But why is the most likely macrostate the one with the geometric progres-
sion? A hint as to the method of proof was given in the footnote 7 of Chaper 6,
we shall expand this here.

We start by assuming that we have a geometric progression, and so we may
write np = n0f

p. Accordingly, the number of microstates in the macrostates is
given by

W =
N !

n0!n1!n2! · · · =
N !

n0! (n0f)! (n0f2)! · · · .

We now move one of the units of energy from an atom that had p units to one
that has q. The atom that had p now has p − 1, and the atom that had q now
has q + 1. Thus np and nq have gone down by one, while np−1 and nq+1 have
gone up by one. To avoid confusion, we shall use np (and so on) to refer to the
number of atoms with p units of energy before the swap, and use primed letters
(n′

p) to refer to the situation after the swap. This means that

np has gone down by 1 so n′
p! = (np − 1)! =

np!
np

nq has gone down by 1 so n′
q! = (nq − 1)! =

nq!
nq

np−1 has gone up by 1 so n′
p−1! = (np−1 + 1)! = np−1! × (np−1 + 1)

nq+1 has gone up by 1 so n′
q+1! = (nq+1 + 1)! = nq+1! × (nq+1 + 1).
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This in turn means that the number of microstates in the new macrostate is
given by

W ′ =
N !

n′
0!n

′
1!n

′
2! · · ·

= W
npnq

(np−1 + 1) (nq+1 + 1)
.

Now nq+1/nq = np/np−1 = f , and so we have:

W ′ = W
np

np−1 + 1
nq

nq+1 + 1
= W × f

1 +
1

np−1

× 1

f +
1
nq

= W × 1

1 +
1

np−1

× 1

1 +
1

fnq

< W.

Thus the new state has fewer microstates than the original one. This indicates
that the original macrostate was the one with the most microstates.∗ In short,
the geometric series distribution has the most microstates, and if the microstates
are equally likely (a workable and useful assumption), this will be the one most
likely to occur.

(f) e−αp = (e−α)p , so f = e−α.
(g) Given that

∑
p

np = N , it follows that

N =
∞∑
p=0

np =
∞∑
p=0

Afp = A
∞∑
p=0

fp. As suggested in the hint, we notice that

Nf = f
∞∑
p=0

np =
∞∑
p=0

Afp+1 = A
∞∑
q=1

fq = A
∞∑
q=0

fq − Af0 = N − A.

Thus:

Nf = N − A

A = N (1 − f)

N =
A

1 − f
.

Please note in passing that this means that
∞∑
p=0

fp = 1+f+f2+f3+· · · =
1

1 − f
,

a fact which we shall be using in our next part.
(h) The total number of energy units:

E =
∞∑
p=0

pnp = A

∞∑
p=0

pfp = A
(
f + 2f2 + 3f3 + 4f4 + · · ·) .

∗As it stands, this does not constitute a formal proof that the ‘geometric progression distribution’
has a global maximum on the number of microstates. In addition, the cases where p = q or p = q + 1
require special consideration as the swaps then ‘cross’. However the tidying up of the situation does
not involve any new physics, and as far as we are concerned, this ought to give you as good a reason
as any why the geometric series distribution is the one favoured by nature.
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As suggested in the hint, the quantity in brackets can be expressed:

f + 2f2 + 3f3 + 4f4 + · · · =

f +f2 +f3 +f4 + · · ·
+f2 +f3 +f4 + · · ·

+f3 +f4 + · · ·
+f4 + · · ·

=
(
f + f2 + f3 + f4 + · · ·)

+ f
(
f + f2 + f3 + · · ·)

+ f2 (f + f2 + · · ·)
+ f3 (f + · · ·)

=
(
1 + f + f2 + f3 + f4 + · · ·)

× (f + f2 + f3 + f4 + · · ·)
=

1
1 − f

× f

(
1

1 − f

)
=

f

(1 − f)2
.

and so E =
Af

(1 − f)2
.

( i) From part (g) we know A = N (1 − f). Inserting this into our answer to part
(h) gives:

E =
Af

(1 − f)2
=

N (1 − f) f

(1 − f)2
=

Nf

(1 − f)
, so E (1 − f) = Nf

and hence:

E = f (E + N) and f =
E

E + N
=

ε

ε + 1

using ε = E/N as suggested.

We can now write A = N (1 − f) = N

(
1 − ε

ε + 1

)
= N

1
ε + 1

, and we have

equations for A and f in terms of N and E. We then substitute to find:

np = Afp =
N

ε + 1

(
ε

ε + 1

)p

=
N

ε + 1

⎛
⎜⎝ 1

1 +
1
ε

⎞
⎟⎠

p

=
N

ε + 1
(
1 + ε−1)−p

.

(j) As shown in workshop 7.2, we may write ex as an expansion 1+x+
x2

2!
+

x3

3!
+· · · ,

and hence f−1 = eα = 1 + α +
α2

2!
+

α3

3!
+ · · · . From part (i) we know that

f−1 = 1+ε−1. Thus 1+ε−1 = 1+α+
α2

2!
+

α3

3!
+ · · · . If ε is very large, then ε−1

will be very small, and therefore 1 + ε−1 will be very close to 1. In this case, we
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can get a good approximation to the series by truncating it: 1 + ε−1 = 1 + α,
and so we approximate α = ε−1. With this done, np = Ae−αp = Ae−p/ε.

(k) If an atom has F joules of energy, then p = F/η. We can also write ε = F̄
/
η.

Thus np = A exp
(−(F/η)/(F/η)

)
= Ae−F/F̄ . So if F̄ = kT , then it follows

that the probability that an atom will have energy F is given by np = Ae−F/kT ,
which is, of course, the Boltzmann law.

Note: You may be surprised by the complexity of the argument in this workshop
and by the number of assumptions we have had to make. However these assump-
tions are made in modern statistical mechanics, and prove to be excellent descriptions
of nature. Beware simpler treatments – the assumptions may be still present, but
hidden.

Chapter 7

7.1 Setting up integrals
(a) From more elementary work we remember that the moment of a force about

a pivot is the force times the perpendicular distance from the pivot. Choosing
our line AB to be the pivot we have that the moment of a force applied by the
water to the dam at a depth y is

∆Γ = Pressure × area × (h − y) = ρgy × l∆y × (h − y).

Now, once again

∆Γ =
dΓ
dy

∆y

is an approximate expression for ∆Γ for small ∆y and the approximation gets
better as ∆y → 0, so in this limit:

dΓ
dy

= ρgly(h − y).

So, the total resultant moment Γ is the limiting sum:

Γ =
∫ h

0

dΓ
dy

dy = ρgl

∫ h

0
y(h − y)dy =

ρglh3

6
.

(b) From the preamble of the workshop the resultant force F was

F =
∫ h

0

dF

dy
dy = ρgl

∫ h

0
ydy =

ρglh2

2
,

so

F × (h − yo) =
ρglh3

6
,

and therefore h − yo = h/3; that is, F would have to act at a height h/3 from
AB in order to apply the same moment as the combined turning effect of all
the water on the dam.
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(c) The volume integral is broken down into a product of three other integrals:

V =
∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dϕ.

Performing each one separately,

V =
R3

3
× 2 × 2π =

4
3
πR3.

7.2 Logarithms

(a) log 100 000 = log 105 = 5
log 10 000 = log 104 = 4
log(105 × 104) = log 109 = 9 = 5 + 4.
Thus log(ab) = log a + log b.

(b) log(105 ÷ 104) = log 10 = log 101 = 1 = 5 − 4.
Thus log(a/b) = log a − log b.

(c) (i) 6 = 2 × 3, so log 6 = log 2 + log 3 = 0.778
(ii) 1.5 = 3 ÷ 2 so log 1.5 = log 3 − log 2 = 0.176
(iii) 4 = 2 × 2 so log 4 = log 2 + log 2 = 2 × log 2 = 0.602
(iv) 9 = 3 × 3 = 32 so log 9 = 2 × log 3 = 0.954
(v) 0.5 = 1 ÷ 2 so log 0.5 = log 1 − log 2 = 0 − log 2 = −0.301

or 0.5 = 2−1 so log 0.5 = −1 × log 2 = −0.301.
(d) Taking logs of both sides of y = 100x4, we get:

log y = log 100 + log x4

= log 100 + log (xxxx)
= log 100 + log x + log x + log x + log x

= log 100 + 4 log x

log y = 2 + 4 log x.

Thus when we plot log y against log x we get a straight line with gradient 4 and
y-intercept 2.

(e) Each time another half-life passes, m needs to halve so it must be multiplied
by another factor of 1

2 . The number of half-lives passed is t/T , so we need to

multiply m0 (the starting mass) by one half t/T times. Thus m = m0
( 1

2

)t/T ,
and accordingly:

log m = log m0 + log

(
1
2

t/T
)

= log m0 +
t

T
log

1
2

= log m0 − t

T
log 2,



Chapter 7 7.2 205

so we get a straight line when we plot log m against t, with gradient − log 2/T
and y-intercept log m0.

(f) 56 = 2x

log 56 = log 2x = x log 2

x =
log 56
log 2

=
1.748
0.310

= 5.81.

(g) ln ab =
∫ ab

1

1
y
dy =

∫ a

1

1
y
dy +

∫ ab

a

1
y
dy = ln a +

∫ ab

a

1
y
dy.

We now use the substitution y = az to evaluate the remaining integral:

ln a +
∫ ab

a

1
y
dy = ln a +

∫ b

z=1

1
az

d (az) = ln a +
∫ b

z=1

1
az

a dz = ln a +
∫ b

z=1

1
z
dz

= ln a + ln b.

(h)
d

dx
Aex = A

d

dx
ex = Aex as required.

(i) d

dx
Aekx = A

d

dx
ekx = A

dekx

d (kx)
d (kx)

dx
= Aekxk = kAekx.

Thus if y = Aekx, then
dy

dx
= kAekx = ky, so y = Aekx is the solution to the

differential equation
dy

dx
= ky.

( j) (i) If x = 0, then ex = e0 = a0. Now anything raised to the 0th power is one,
so thus a0 = 1.

(ii) If y = a0 + a1x + a2x
2 + a3x

3 + · · · + apx
p + · · · then it follows that

dy

dx
= a1 + 2a2x + 3a3x

2 + · · · + papx
p−1 + · · · . Now if we require that

y =
dy

dx
, then the coefficients for each power of x must be the same in the

two equations. So it must be true that a0 = a1, a1 = 2a2, a2 = 3a3, and
so on.

Thus ap−1 = pap.
(iii) From (ii) we have that ap = (ap−1/p). We know that a0 = 1, so a1 =

a0/1 = 1. Next, a2 = a1
2 = 1

2 , a3 = a2
3 = 1/2

3 = 1
2×3 = 1

3! , a4 = a3
4 =

1/3!
4 = 1

3!×4 = 1
4! , and it follows that ap = ap−1

p = 1/(p−1)!
p = 1

(p−1)! × p = 1
p! .

ex = a0 + a1x + a2x
2 + a3x

3 + · · · + apx
p + · · ·

Thus

= 1 + x +
x2

2!
+

x3

3!
+ · · · +

xp

p!
+ · · · .
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(iv) We now substitute x = 1 into our equation and get:

e = e1 = 1 + 1 +
1
2!

+
1
3!

+ · · · + 1
p!

+ · · ·
= 2.0000 + 0.5000 + 0.1667 + 0.0417 + 0.0083 + 0.0014 + 0.0002
= 2.718

to four significant figures.

7.3 Rockets and stages

(a) The conservation of momentum would tell us that

(m + M)v = m(v − ve) + M(v + ∆v);

that is, the momentum of the rocket + element of fuel before the fuel is ejected
must equal the momentum of the rocket + the momentum of the element of fuel
after the fuel is ejected. The ejection of fuel leads to a small increment in velocity
∆v along the direction of motion of the rocket. Expanding this expression and
cancelling common terms on both sides of the equality sign leads to

0 = −mve + M∆v.

Using the suggested notation in the workshop, m = −∆M we immediately get:

∆v = − ve
M

∆M,

which gives an approximation for the velocity increment ∆v that gets better as
∆M → 0. So in the limit, the sum of all the velocity increments from a velocity
v0 up to a velocity v1 becomes:∫ v1

v0

dv =
∫ M1

M0

dv

dM
dM = −

∫ M1

M0

ve
M

dM.

(b) Performing the integration:

[v]v1
v0

= −ve [ln (M)]M1
M0

,

and introducing the limits:

v1 − v0 = −ve(ln (M1) − ln (M0)) = ve ln
(

M0

M1

)
.

(c) From the descriptions of s and l we get:

s =
MS

M0 − ML
and l =

ML

M0
.
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Now:

M1

M0
=

MS + ML

M0
=

MS

M0
+ l =

MS(M0 − ML)
(M0 − ML)M0

+ l = s(1 − l) + l,

so

v1 − v0 = −ve ln (s(1 − l) + l) .

(d) If all the parameters ve, s, and l are the same for every stage, then the velocity
increment is the same for every stage, therefore:

v1 − v0 = −veN ln (s(1 − l) + l)

for N stages. However, this expression can be misleading. Let us analyse more
carefully what happens as N → ∞:

(e) λ = ML/M
(1)
0

= (M (2)
0 /M

(1)
0 ) × (M (3)

0 /M
(2)
0 ) × (M (4)

0 /M
(3)
0 ) × · · · × (ML/M

(N−1)
0 ),

so λ = lN , which means that l = λ1/N , we have:

v1 − v0 = −Nve ln (s(1 − l) + l) = −Nveln(s(1 − λ1/N ) + λ1/N ).

(f)
N ln

(
s(1 − λ

1
N ) + λ

1
N

)
= N ln

(
λ

1
N

(
1 +

s(1 − λ
1
N )

λ
1
N

))

= ln (λ) + N ln

(
1 +

s(1 − λ
1
N )

λ
1
N

)
.

Using the first expansion provided:

1 − λ
1
N = − 1

N
ln λ − 1

2!

(
1
N

ln λ

)2

− 1
3!

(
1
N

ln λ

)3

+ · · · ,

so

s(1 − λ
1
N )

λ
1
N

= − s

Nλ
1
N

ln λ − s

2!λ
1
N

(
1
N

ln λ

)2

− s

3!λ
1
N

(
1
N

ln λ

)3

+ · · · .
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As N gets bigger, the higher power terms of N become smaller and smaller and

N ln

(
1 +

s(1 − λ
1
N )

λ
1
N

)
= N

(
− s

Nλ
1
N

ln λ

)
= − s

λ
1
N

ln λ

since all higher power terms tend to zero as N → ∞, and this term tends to
−s ln λ, so

N ln
(
s(1 − λ

1
N ) + λ

1
N

)
= ln λ − s ln λ = (1 − s) ln λ;

that is,

v1 − v0 = −ve(1 − s) ln λ

in the limit as N → ∞. The misleading expression in Q4, which looks like it
just gets bigger as N gets bigger, actually tends to a finite velocity increment
as N → ∞.

7.4 Unit conversion

(a) & (b) Were solved as examples in workshop 7.4.
(c) Using ‘multiply by one’ method

9.81 m
s2

=
9.81 m

s2
× 1 ft

0.305 m
=

9.81 ft
0.305 s2

= 32.2 ft
/
s2.

(d) Using ‘convert the units’ method

1 lbf
in2 =

1 × 0.454 kgf
(0.0254 m)2

=
1 × 0.454 kg × 9.81 N/kg

(0.0254 m)2
=

0.454 × 9.81 N
0.02542 m2

= 6903 N
/
m2.

Thus one atmosphere = 1.03 × 105N =
1.03 × 105

6903
lbf = 14.92 lbf.

(e) 1 N is the force required to accelerate 1 kg by 1 m/s2.
Thus 1 dyne will be the force required to accelerate 1 g by 1 cm/s2.
We can work this out in newtons using F = ma = 10−3 kg × 10−2 m/s2 =
10−5 N.
1 J is the work done when a 1 N force moves an object 1 m.
Thus 1 erg will be the work done when a 1 dyne force moves an object 1 cm.
We can work this out in joules using W = Fs = 10−5 N × 10−2 m =
10−7 J.
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(f) Using ‘multiply by one’ method

3.00 × 108 m
s

=
3.00 × 108 m

s
× 1 s

109ns
× 1 ft

0.305m
=

3.00 × 108 ft
109 × 0.305 ns

= 0.983 ft/ns.

7.5 Dimensional analysis

(a)
∂2y

∂x2 =
1
c2

∂2y

∂t2
: LHS has units

m
m2 =

1
m

. RHS :
1

(m/s)2
m
s2

=
1
m

.

∂2y

∂t2
=

1
c2

∂2y

∂x2 : LHS has units
m
s2

. RHS :
1

(m/s)2
m
m2 =

s2

m3 .

Thus the first equation is correct.
(b) Was solved in two different ways within workshop 7.5.
(c) Using the empirical method

We are trying to make a current in amps (coulombs/second).

Quantity Unit

q C
qu C × m s−1 = C m s−1

qun C m s−1× m−3 = C m−2s−1

qunA C m−2s−1× m2 = C s−1

(d) Using the analytic method
Let the centripetal acceleration a = un/r. Now a is measured in m s−2, u in
m s−1 and r in m.

Thus we have
m
s2

=

(
m s−1

)n
m

=
mn−1

sn
.

In terms of metres, we have equality when 1 = n − 1. In terms of seconds we
have equality when n = 2. Both pieces of evidence tell us that n = 2.

(e)
Quantity Unit

C F = C V−1

R Ω = V A−1 = V(C s−1)
−1

= V s C−1

CR F Ω = C V−1 × V s C−1 = s

(f) [Electric Charge] = [Current] × [Time], thus [Q] = [IT ]
[Voltage] = [Energy] ÷ [Charge] = [Force] × [Distance] ÷ [Charge],
thus [V ] = [FLI−1T−1], where we have used [F ] to represent the dimensions of
force.
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Now, [Force] = [Mass] × [Acceleration], so [F ] = [MLT−2] and with this we
achieve:

[V ] = [MLT−2 × LI−1T−1] = [ML2T−3I−1].

Now in the SI units we define charge, voltage, and force such that the ‘dimen-
sional’ equations above hold exactly without the need for extra constants. Thus
we define 1 C = 1 A × 1 s, 1 V = 1 J ÷ 1 C and 1 N = 1 kg × 1 m s−2.
Accordingly 1 C = 1 A s, and 1 V = 1 kg m2s−3A−1.
So, the newton per coulomb is the kg m s−2÷ A s = kg m s−3A−1,
which is the same as the volt per metre kg m2s−3A−1 ÷ m = kg m s−3A−1.

(g) Let [F ] = [ραAβuγ ]. The dimensions of the quantities are

[F ] = [MLT−2], [ρ] = [ML−3], [A] = [L2], and [u] = [LT−1].

So
[
MLT−2

]
=
[(

ML−3
)α

L2β
(
LT−1

)γ] [
MαL2β+γ−3αT−γ

]
=[

Mα L2β+γ−3α T−γ
]
.

It follows by equating the powers of the dimensions M , L, and T respectively,
that

M : 1 = α
L : 1 = 2β + γ − 3α
T : −2 = −γ.

so α = 1, γ = 2, and β = 1. Thus [F ] =
[
ρAu2

]
. In fact the form used by

aeronautical engineers is F = 1
2CLρAu2 where CL is a dimensionless number

called the lift coefficient which depends on many parameters including the shape
of the wing. So we were right.

(h) The dimensions of the quantities are

[P ] =
[
FL−2

]
=
[
ML−1T−2

]
[ρ] =

[
ML−3

]
[µ] =

[
ML−1T−1

]
[D] = [L]
[L] = [L]
[u] =

[
LT−1

]
so

M

LT 2 =
(

M

L3

)α(
M

LT

)β

Lγ+δ

(
L

T

)ε

= Mα+β L−3α−β+γ+δ+ε T−β−ε.

Equating the powers of M , L, and T give the three equations required.
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(i) We write α = 1 − β, ε = 2 − β, and

γ = −1 + 3α + β − δ − ε = −1 + 3(1 − β) + β − δ − (2 − β), so γ = −β − δ.

Then [P ] =
[
ρ1−βµβD−β−δLδu2−β

]
=

[
ρu2
(

µ

ρuD

)β (
L

D

)δ
]

as required.

( j) For P to be proportional to L, we require the power of L to be the same as
P , so our equation on the right must contain L1. This means that δ = 1, and

our equation simplifies to [P ] =

[
ρu2
(

µ

ρuD

)β
L

D

]
=

[
ρu2L

D

(
µ

ρuD

)β
]

as

requested.

7.6 Error analysis

(a) (i) 100% × 0.2 ÷ 3.03 = 6.6%
(ii) 100% × 0.02 ÷ 2.34 = 0.85%
(iii) 100% × 0.24 ÷ 24.3 = 0.99%
(iv) 100% × 3 × 10−22 ÷ 1.602 × 10−19 = 0.19%.

(b) Standard deviation is 1.41 mV; mean is 35.14 mV.
So we shall take 1.41 mV as our absolute uncertainty, and calculate the relative
uncertainty as 100%×1.41÷35.14 = 4.0%. To one significant figure the absolute
uncertainty is 1 mV, and the relative uncertainty is 4%.

(c) The worst case scenario is if both heights are over estimated (or both are
underestimated). This gives a total height of 7.7m + 2.2m = 9.9m, which
is 0.3 m higher than the height expected if the measurements were correct
(7.5m + 2.1m = 9.6m). We quote our expected aerial height above the ground
as 9.6 ± 0.3m.
Thus the absolute uncertainty of the total height is the SUM of the individual
uncertainties.

(d) We get the largest possible value for my daughter’s mass if we take the largest
value for the total mass (74.9 kg) and the smallest value for my mass (63.0 kg).
We would then conclude that my daughter’s mass was 11.9 kg. This is 0.4 kg
higher than her mass would be if we ignored the uncertainties and calculated
74.7 − 63.2 = 11.5kg. Accordingly we quote the expected mass as 11.5 ± 0.4kg.
As with addition in (c), the absolute uncertainty is the SUM of the individual
uncertainties.

(e) Redoing part (c), rather than take the absolute uncertainty as 0.2+0.1 = 0.3 m,
we calculate it as

√
0.22 + 0.12m = 0.22 m.

Redoing part (d), rather than take the absolute uncertainty as 0.2+0.2 = 0.4kg,
we calculate it as

√
0.22 + 0.22kg = 0.28 kg.

(f) If the angle is equal to 90◦, the distance will be
√

102 + 202 cm = 22.4 cm. If the
angle is less than 90◦ the distance will be less than 22.4 cm, while if the angle
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is obtuse the distance will be larger than 22.4 cm. Therefore we would expect
the distance to average out at 22.4 cm. This implies that we would expect
a 10 cm error and a 20 cm error, when combined, to average to a 22.4 cm
error, even though we know that at worst the rods/errors will line up, and we
will be left with a 30 cm error. This is the justification for adding errors in
quadrature.

(g) (i) The uncertainty of the SUM. Here, instead of adding the nine uncertainties
as 9×1 µT = 9 µT to get the uncertainty in the sum, we add in quadrature

as
√

9 × (1.0 µT)2 = 3.0 µT.
(ii) The uncertainty of the MEAN. The mean is equal to the sum of the mea-

surements divided by the number of measurements (9). Given that we know
the number of measurements exactly, the uncertainty in the mean will be
equal to the uncertainty in the sum divided by the number of measure-
ments, and is accordingly 3.0 µT ÷ 9 = 0.3 µT if the uncertainty of the
sum is calculated in quadrature.

(h) (i) Expected time = 87.3 km ÷ 92 km/hr = 0.949 hr = 56 min 56 s.
(ii) Longest time = Largest distance ÷ smallest speed = 87.8 km ÷ 91 km/hr

= 0.965 hr = 57 min 53 s.
(iii) Absolute uncertainty in the time is given by our answer to (ii) minus our

answer to (i) and is accordingly 0.016 hr or 57 s. Expressed as a relative
uncertainty this becomes 100% × 0.016 ÷ 0.949 = 1.7% (to 2SF).
The relative uncertainty in the distance is 100% × 0.5 ÷ 87.3 = 0.6%.
The relative uncertainty in the speed is 100% × 1 ÷ 92 = 1.1%.
Thus we note that the relative uncertainty in the time is equal to the SUM
of the RELATIVE uncertainties in distance and speed.

(i) Using the result we have just noted, the relative uncertainty in the resistance
will be the sum of the relative uncertainties of current and voltage.
The relative uncertainty in the voltage is 100% × 0.03 ÷ 6.43 = 0.5%.
The relative uncertainty in the current is 100% × 0.1 ÷ 7.5 = 1.3%.
So we expect the relative uncertainty in the resistance to be 1.3%.
The value of the resistance is 6.43 V ÷ 7.5 mA = 857 W, and this is subject to
a 1.3% error.

( j) When we calculate the kinetic energy we need to square the speed. This means
multiplying the speed by itself, so we add the relative uncertainty in the speed
to itself (i.e. multiply it by 2) to get the relative uncertainty in the kinetic
energy. Given that the speed has a 8.8% error, we expect the kinetic energy to
have a 17.6% error.

Let us check this. If there were no error, the kinetic energy would be 5.78 J.
If the speed were at its highest permissible value (3.7 m/s) the kinetic energy
would be 6.85 J. This is 18.4% higher. Thus our rule is approximately correct.

(k) First, we note that df/dx = nxn−1. Then we substitute this into our equation for
relative uncertainty to get (1/f)(df/dx)δx×100% = (1/xn)nxn−1 δx×100% =
n (δx × 100%/x), which is equal to n multiplied by the relative (percentage)
error in x.
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(l) First we note that ∂f/∂x = y and ∂f/∂y = x. We substitute these into our
equation for the relative uncertainty to get (1/f)(∂f/∂x)δx+(1/f)(∂f/∂y)δy =
(1/xy)yδx + (1/xy)xδy = (δx/x) + (δy/y), which is equal to the relative un-
certainty in x added to the relative uncertainty in y (where we have not used
percentages just to keep the equations cleaner).

7.7 Locating centres of mass

(a) Each disc has a volume ∆V = πr2∆x. However,
r

x
=

R

X
. So,

∆V = π
R2

X2 x2∆x.

The mass of this volume element is just ρ∆V . Now let us use the expression:

∑
i

∆miri =

(∑
i

∆mi

)
Rcm.

along the x-axis since this is a symmetry axis of our cone and its centre of mass
must lie upon it. So

(∑
ρπ

R2

X2 x2∆x × x

)
x̂ = MRcm,

which becomes an integral in the limit as ∆x → ∞

MRcm =

(
ρπR2

X2

∫ X

0
x3dx

)
x̂ =

ρπR2

X2

[
x4

4

]X
0
x̂ =

ρπR2X2

4
x̂.

The volume of our cone is 1
3πR2X so M = 1

3πR2Xρ, which means that

Rcm =
(

3
4
X

)
x̂,

which is a point that is 1/4 of the height of the cone above the base.
(b) The easiest way to approach this quite difficult problem is to calculate the

centre of mass of one of the discs and this should give us a rule to locate the
centres of all other discs that make up the cone. The complication of having
half the cone in one material and the other half in some other material means
that the centre of a disc will be located in the top half of the disc (since 0
≤ y ≤ R, ρ = 2ρo and −R ≤ y < 0, ρ = ρo). Let us look at the centres of mass
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z-axis

y-axis

R

∆y

z

y

Fig. A.5

of the semicircular laminae that make up the base of the cone. The equation of
this circle in Cartesian coordinates (z, y) is

z2 + y2 = R2.

The centre of mass of the semicircle above the z-axis can be obtained by adding
up all the contributions of mass from strips like the one shown in Figure A.5.
The volume ∆V of one of these strips is

∆V = 2
√

R2 − y2 × ∆y × ∆x.

Applying the general expression
∑
i

∆miri =
(∑

i

∆mi

)
Rcm we have

∑
2
√

R2 − y2 × ∆y × ∆x × y × 2ρo =
πR2

2
∆x × 2ρo × yCM ,

which becomes an integral as ∆y → ∞:

yCM =
4

πR2

∫ R

0
y
√

R2 − y2dy = − 4
3πR2

∫ R

0

d

dy

(
(R2 − y2)

3
2

)
dy,

which is easily integrable:

yCM = − 4
3πR2

[
(R2 − y2)

3
2

]R
0

=
4R

3π
.

The centre of mass of the semicircular lamina below the axis will also be this
distance below the z-axis, so it is now just a question of locating the centre of
the combined object the circular disc made up of a material that is twice as
dense in the top half than the bottom half.

If A is the centre of mass of the top lamina and B is the centre of mass of
the bottom lamina then the fact that the mass of the top lamina is greater by
a factor 2 means that the centre of the circular lamina is 1

3 of d away from A,
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z-axis

y-axis

R

A

B

d

Fig. A.6

which means that the centre of mass of the circular lamina is located at yCM

(Figure A.6)

yCM =
4R

9π
.

Therefore the line joining all the centres of masses of all the discs making up
the cone will have an equation:

y =
4R

9Xπ
x.

7.8 Rigid body dynamics

(a) The hint tells us to have a look at the results of workshop 3.1.5 on vector triple
products. You will also need to have some knowledge of matrix multiplication,
dealt with in 3.1.2, to understand this solution. If you are less than familiar
with either of these concepts please have a go at the two other workshops before
attempting to go through this solution. In 3.1.5 we saw that

a× (b× c) = (a · c)b− (a · b)c

so

ri × mi(ω × ri) = mi((ri · ri)ω − (ri · ω)ri),

which can be expanded to give:

ri × mi(ω × ri) = mi

⎛
⎝r2

i

⎛
⎝ωx

ωy

ωz

⎞
⎠− (xiωx + yiωy + ziωz)

⎛
⎝xi

yi
zi

⎞
⎠
⎞
⎠
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and may be rearranged to

ri × mi(ω × ri) = mi

⎛
⎝r2

i

⎛
⎝ωx

ωy

ωz

⎞
⎠−

⎛
⎝x2

iωx + yixiωy + zixiωz

xiyiωx + y2
i ωy + ziyiωz

xiziωx + yiziωy + z2
i ωz

⎞
⎠
⎞
⎠ .

Taking out the vector ω we have that L becomes

L =

⎛
⎜⎜⎜⎝
∑
i

mi(r2
i − x2

i )
∑
i

−mixiyi
∑
i

−mixizi∑
i

−mixiyi
∑
i

mi(r2
i − y2

i )
∑
i

−miyizi∑
i

−mixizi
∑
i

−miyizi
∑
i

mi(r2
i − z2

i )

⎞
⎟⎟⎟⎠ω.

(b) The sphere is rotating about the z-axis only then

L =

⎛
⎜⎜⎜⎝

ωz

∑
i

−mixizi

ωz

∑
i

−miyizi

ωz

∑
i

mi(r2
i − z2

i )

⎞
⎟⎟⎟⎠ ,

as ωx = ωy = 0, and the sphere is symmetric, so∑
i

−mixizi =
∑
i

−miyizi = 0

as there will always be an element at +ri that will cancel with an element at
−ri and vice versa. Therefore,

L =

⎛
⎜⎝

0
0

ωz

∑
i

mi(r2
i − z2

i )

⎞
⎟⎠ =

⎛
⎝ 0

0
Izzωz

⎞
⎠ ,

where

Izz =
∑
i

mi(r2
i − z2

i ) =
∑
i

ρr2
i sin θi ∆r ∆θ ∆ϕ(r2

i − z2
i ),

which is of course only an approximation until it becomes an integral in the
limit when ∆r → 0,∆θ → 0,∆ϕ → 0:

Izz = ρ

∫∫∫
r2 sin θ dr dθ dϕ × (r2 − z2) = ρ

∫∫∫
r2 sin θ dr dθ dϕ × r2 sin2 θ.

(c) This integral may be performed by calculating the integrations in the three
separate variables and multiplying the three results together:

Izz =
∫ R

0
r4dr

∫ π

0
sin3 θdθ

∫ 2π

0
dϕ =

[
r5

5

]R
0

[
− cos θ +

cos3 θ

3

]π
0

× 2π =
8πρR5

15
.



Chapter 7 7.8 217

(d) Using determinants∗

vi · vi = vi · (ω × ri) =

∣∣∣∣∣∣
ẋi ẏi żi
ωx ωy ωz

xi yi zi

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ωx ωy ωz

xi yi zi
ẋi ẏi żi

∣∣∣∣∣∣ = ω · (ri × vi).

So

K =
∑
i

1
2
mivi · vi =

∑
i

1
2
ω · (ri × mivi) =

∑
i

1
2
ω · (ri × pi) =

1
2
ω · L,

which is of course,

K =
1
2
ω · Iω.

For our sphere this collapses to

K =
1
2
Izzω

2 =
1
2

8
15

πρR5ω2.

(e) If M =
4
3
πR3ρ then,

Izz =
8πρR5

15
=

2
5
MR2.

Let us assume the z-axis of the sphere is the axis it rotates about. The torque ap-
plied by F causes a rotational acceleration (dωz/dt) as the sphere rolls down
the slope. The size of the torque is just the force (F ) times the perpendicular
distance from the axis (R) so it is just FR, but our vector equation tells us that

r× F =
d

dt
(r× p);

that is, the torque is the rate of change of angular momentum L. However, we
have already seen that the magnitude L of L for a sphere rotating about its
z-axis is

L = Izzωz,

so

r× F = Izz
dωz

dt
ẑ,

∗As before, those of you who have already met determinants will appreciate this, those of you who
have not can verify that vi · (ω × ri) = ω · (ri × vi) by expanding it out in full.
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and

FR = Izz
dωz

dt
=

2
5
MR2 dωz

dt
⇒ F =

2
5
MR

dωz

dt
.

Acceleration down the slope is then given by Newton’s second law:

Ma = Mg sinα − F,

where Mgsinα is the component of the weight down the slope and F , the friction
force, acts up the slope opposing the motion of the sphere. With no slip the speed
of the sphere down the slope is related to the angular speed by,

v = ωR ⇒ a = R
dωz

dt
⇒ dωz

dt
=

a

R
.

Combining all this,

a = g sinα − 2
5
a ⇒ a =

5
7
g sinα.

7.9 Parallel axes theorem

(a) By Pythagoras AC (which is the perpendicular distance of the element from
the new axis) is just AB2 + BC2. Now AB = d and BC = rsinθ, so

AC =
√

d2 + r2 sin2 θ,

and so everywhere we previously had r2(the square of the distance of the element
from the axis) we need now to put in AC2. So,

I ′
zz =

∫∫∫
dMAC2,

The mass elements are still given by

∆M = ρ∆V = ρr2 sin θ∆r∆θ∆ϕ,

hence

I ′
zz = ρ

∫∫∫
(r2 sin2 θ + d2)r2 sin θdrdθdϕ,

which of course collapses to

I ′
zz = Izz + Md2

as d is a constant and ρ
∫∫∫

r2 sin θdrdθdϕ = M .
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7.10 Perpendicular axes theorem
(a) For small ∆r the area of a ring is just the circumference around the ring mul-

tiplied by the thickness ∆r. The mass ∆M of this ring is just:

∆M = (2πri∆rσ),

so the moment of inertia of this mass about the z-axis is ∆Mr2
i , which of course

means that

∆Izz = (2πri∆rσ)r2
i .

(b) Summing up all these in the limit as ∆r → ∞ leads to the integral:

Izz = 2πσ

∫ R

0
r3dr = 2πσ

[
r4

4

]R
0

=
2πσR4

4
⇒ Izz =

1
2
MR2

as M = πR2σ.
(c) Izz =

∑
i

mir
2
i =
∑
i

mi(x2
i + y2

i ) =
∑
i

mix
2
i +
∑
i

miy
2
i = Iyy + Ixx

The symmetry of the disc means that Ixx = Iyy so Ixx = Iyy =
Izz
2

=
1
4
MR2.

7.11 Orbital energy and orbit classification
(a) r = R1 + R2 and m1R1 = m2R2. Solving for one say R1 in one of these and

substituting the result into the other expression leads to

R1 =
m2

(m1 + m2)
r and R2 =

m1

(m1 + m2)
r.

(b) V 2
1 =

(
dR1

dt

)2

+ ω2R2
1 =

m2
2

(m1 + m2)2

((
dr

dt

)2

+ ω2r2

)
=

m2
2

(m1 + m2)2
v2,

and

V 2
2 =

(
dR2

dt

)2

+ ω2R2
2 =

m2
1

(m1 + m2)2

((
dr

dt

)2

+ ω2r2

)
=

m2
1

(m1 + m2)2
v2,

so
1
2
m1V

2
1 +

1
2
m2V

2
2 =

1
2

m1m2

(m1 + m2)
v2.

(c)
E =

1
2
m1V

2
1 +

1
2
m2V

2
2 − Gm1m2

r
,

so

E =
1
2

m1m2

(m1 + m2)
v2 − Gm1m2

r
⇒ E

m1m2

(m1 + m2)

=
v2

2
− G(m1 + m2)

r
.
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(d)
v× h =

(
dr

dt
x̂′ + rωŷ′

)
× hẑ′ = −dr

dt
hŷ′ + rωhx̂′,

so
(e) (v× h) · (v× h) = h2v2.

(f) v2

2
− G(m1 + m2)

r
=

G2(m1 + m2)2

2h2

(
(1 + 2e cos θ + e2) − 2(1 + e cos θ)

)
,

so

E

µ
=

G2(m1 + m2)2

h2 (e2 − 1).



Constants

Avogadro number NA 6.022 × 1023 mol−1

Boltzmann constant k 1.381 × 10−23 JK−1

Charge on one electron e 1.602 × 10−19 C

Electric permittivity of free space ε0 =
1

µ0c2 8.854 × 10−12 Fm−1

Gas constant (ideal gas) R 8.314 Jmol−1K−1

Gravitational constant G 6.673 × 10−11 Nm2kg−2

Gravitational field strength at Earth’s
surface (typical)

g 9.807 Nkg−1

Magnetic permeability of free space µ0 4π × 10−7 Hm−1

Mass of Earth ME 5.977 × 1024 kg
Mass of electron me 9.109 × 10−31 kg
Mass of proton mp 1.673 × 10−27 kg
Mass of Sun MS 1.989 × 1030 kg
Planck constant h 6.626 × 10−34 Js
Radius of Earth (mean) RE 6.371 × 106 m
Radius of Earth’s orbit (mean) RSE 1.496 × 1011 m
Radius of Moon’s orbit (mean) REM 3.844 × 108 m
Speed of light in vacuum c 2.998 × 108 ms−1
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Index

absolute uncertainty, 147
acceleration

centripetal, 56
due to gravity, 4
uniform, 4
vector, 11

activation energy, 125
activation process, 125
adiabatic, 117, 119
alternating current, 105
amplitude

complex, 106
angular frequency, 79
angular momentum, 152

conservation, 153
angular velocity, 59
arc length, 55
argument

of complex number, 83
atmospheric pressure, 125
Avogadro number, 129

Boltzmann
constant, 116
Law, 125, 127

calculus
differentiation, 3
integration, 8
second derivative, 5

capacitor, 35
in a.c. circuit, 108

carnot
cycle, 119
engine, 119
theorem, 118

centres of mass, 19, 150
centrifugal force, 64
circuit Analysis

a.c. circuits, 111
by loop current, 104
d.c., 102
phasor method, 109
using phasors, 114

closed system, 20
complex Amplitude, 106
complex conjugate, 83
complex Numbers, 81
components, 14
conic sections, 67

polar coordinates, 67
conservation

linear momentum, 23
coordinate

spherical polar, 137
Coriolis force, 64
Coulomb’s law, 47
current

alternating, 105
electric, 99

dead weight fraction, 141
delta, 1
derivative

partial, 40, 89
second, 5

dimensional Analysis, 144
displacement, 13
distance, 5
dot product, 32
drift velocity, 99
dummy variable, 8
dynamics, 17

of a rigid body, 152

eccentricity, 66
efficiency of a heat engine, 122
elasticity, 24
electrostatic field

in a capacitor, 48
of a charged wire, 47
of a point charge, 46

ellipse, 67
energy, 32

conservation, 116
in a field, 32
in a wave, 91
in an electrostatic field, 49
in an oscillation, 80
internal, 116
kinetic, 32

entropy, 123
equilibrium point, 81
error Analysis, 147

field, 29
conservative, 42, 43
electrostatic, 29, 35, 43, 44–9
electromagnetic, 44
gravitational, 29–32, 34–5, 50
lines, 44, 45
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field (Continued)
magnetic, 52, 109
non-uniform, 36

field strength, 30
flow equation, 99
force, 18

centrifugal, 64, 65
centripetal, 64
Coriolis, 64
fictitious, 64

frequency, 54
angular, 54, 79

fridge, 118

gamma, 131
gas

ideal, 116
perfect, 116, 129

grad, 41
gradient function, 41
gravitational field, 50, 52, 67

heat capacity, 130
heat engine, 118
heat reservoir, 118
hyperbola, 67

ideal gas, 133
impedance, 102, 106

matching, 92
of a wave, 91

impulse, 22
inductor, 109
integral, 8

line, 37
setting up, 136
surface, 51
volume, 137

interference
of a wave, 87

irreversible processes, 124
isochoric, 117
isothermal, 117

Kelvin scale, 121
Kepler problem, 66
Kepler’s laws

first law, 66, 70
second law, 66, 74
third law, 66, 75

kinematics, 1
on a circular path, 54

Kirchhoff’s circuit laws
first law, 103
second law, 103

law of falling bodies, 1, 25
line integral, 37

evaluating, 37
logarithms, 138

magnetic field
of a long straight wire, 37

magnetic Field, 52
magnitude, stellar, 96
matrices

column, 11
rotation, 56

mechanics
linear, 1
rotation, 54

modulus
of complex number, 83

molecules
diatomic, 131
monatomic, 131

moment of inertia, 154
momentum, 17

law of conservation, 20
multistage rocket, 141

Newton’s laws
empirical law of collisions, 24
of motion, 20

Ohm’s Law, 101
orbit

classification, 159
energy, 159

orbits, 66
circular, 73
elliptical, 73
hyperbolic, 73
parabolic, 73

orthogonal
matrices, 57
transformations, 57

oscillation
damped, 85
energy within, 80
harmonic, 80

parabola, 14, 67
parallel axis theorem, 155
partial derivative, 40, 89
Path Difference, 88
payload fraction, 141
pendulum, 144
period, 54

of orbital motion, 75
perpendicular axis theorem, 157
phase difference, 88
phase factor, 79
potential

electric in a circuit, 100
electrostatic, 35
energy, 32
gravitational, 35

power, 36
in a.c. circuit, 106
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power factor, 108
principle of relativity, 21
process

adiabatic, 117, 119, 132
irreversible, 124
isochoric, 117
isothermal, 117, 131
reversible, 123

projectiles, 11

radians, 54
reactance, 106
reaction, 20
reduced mass, 160
relative uncertainty, 148
resistance, 106

electrical, 101
resultant, 15
reversible processes, 123
Reynold’s number, 147
right-hand screw rule, 61
rockets, 140
rotated coordinates, 56
rotating coordinate frames, 58, 62
rotating vectors, 58

scalar product, 32
semi-major axis, 66
semi-minor axis, 66
simple differential equations, 9
simple harmonic motion, 80
speed

average, 2
instantaneous, 3

stellar magnitude, 96
surface integral, 51

temperature, 121
thermodynamic temperature, 121
thermodynamics

first law, 116, 125
gamma, 131
second law, 117

torque, 153
transformation of coordinates, 57

uncertainty
absolute, 147
of mean, 149
relative, 148

unit conversion, 143

vector
acceleration, 11
acceleration in rotating frames, 62
addition and subtraction, 15
displacement, 13
product, 58
radius, 54
relative, 16
resultant, 15
rotating, 58
scalar product (dot product) 32
triple product, 61
vector product (cross product) 58
velocity, 11

vector product, 58
vector triple product, 61
velocity

angular, 59
drift, 99
increment, 141
vector, 11

velocity distribution, 126
voltage, 100

wave
energy carried by, 91
equation, 89–91
impedance, 91
on a string, 89
plane in, 3–d, 94
power, 91
spherical, 95
travelling in, 1–d, 86
using complex numbers, 84
vector, 95

wave equation, 89–91
wavenumber, 87
work, 32, 117
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