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Foreword: Statistical Versus
Scientific Inferences

Psychology is one of the heavier consumers of statistics. Presumably, the
reason is that psychologists have become convinced that they are greatly
aided in making correct scientific inferences by casting their decision-
making into the framework of statistical inference. In my view, we have
witnessed a form of mass deception of the sort typified by the story of the
emperor with no clothes.

Statistical inference techniques are good for what they were developed
for, mostly making decisions about the probable success of agriculture,
industrial, and drug interventions, but they are not especially appropriate
to scientific inference which, in the final analysis, is trying to model what
is going on, not merely to decide if one variable affects another. What
has happened is that many psychologists have forced themselves into
thinking in a way dictated by inferential statistics, not by the problems
they really wish or should wish to solve. The real question rarely is
whether a correlation differs significantly, but usually slightly, from zero
(such a conclusion is so weak and so unsurprising to be mostly of little
interest), but whether it deviates from unity by an amount that could be
explained by errors of measurement, including nonlinearities in the scales
used. Similarly, one rarely cares whether there is a significant interaction
term; one wants to know whether by suitable transformations it is possible
or not to get rid of it altogether (e.g., it cannot be removed when the data
are crossed). The demonstration of an interaction is hardly a result to be
proud of, since it simply means that we still do not understand the nature
and composition of the independent factors that underlie the dependent
variable.

Model builders find inferential statistics of remarkably limited value. In
part, this is because the statistics for most models have not been worked
out; to do so is usually hard work, and by the time it might be completed,
interest in the model is likely to have vanished. A second reason is that
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Foreword

often model builders are trying to select between models or classes of
models, and they much prefer to ascertain where they differ maximally
and to exploit this experimentally. This is not easy to do, but when done
it is usually far more convincing than a fancy statistical test.

Let me make clear several things I am not saying when I question the
use of statistical inference in scientific work. First, I do not mean to suggest
that model builders should ignore basic probability theory and the theory
of stochastic processes; quite the contrary, they must know this material
well. Second, my objection is only to a part of statistics; in particular,
it does not apply to the area devoted to the estimation of parameters.
This is an area of great use to psychologists, and increasingly statisticians
have emphasized it over inference. And third, I do not want to imply
that psychologists should become less quantitative and systematic in the
handling of data. I would urge more careful analyses of data, especially
ones in which the attempt is to reveal the mathematical structure to be
found in the data.

R. Duncan Luce (1989)
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Preface

After completing my Ph.D. in physics, I became interested in social sci-
ences. I had published in nuclear physics (Taagepera and Nurmia 1961)
and solid state (Taagepera et al. 1961; Taagepera and Williams 1966),
and some of my graphs were even reprinted (Hyde et al. 1964: 256–8;
Segré 1964: 278). As I shifted to political science and related fields, at
the University of California, Irvine, I still continued to apply the model-
building and testing skills learned in physics.

The transition was successful. Seats and Votes (Taagepera and Shugart
1989), in particular, received the 1999 George Hallett Award, given to
books still relevant for electoral studies 10 years after publication. The
book became part of semi-obligatory citations in the field. It was less
obligatory to actually read it, however, and even less so to understand it.
Felicitous phrases were quoted, but our quantitative results were largely
overlooked. Something was amiss.

Moreover, publishing new results was becoming more of a hassle. When
faced with quantitatively predictive logical models, journal referees would
insist on pointless statistical analyses and, once I put them in, asked to
scrap the logical models as pointless. It gradually dawned on me that we
differed not only on methodology for reaching results but also on the very
meaning of “results.”

Coming from physics, I took predictive ability as a major criterion
of meaningful results. In social sciences, in contrast, unambiguous
prediction—that could prove right or wrong—was discounted in favor of
statistical “models” that could go this way or that way, depending on
what factors one included and which statistical approach one used. Social
scientists still talked about “falsifiability” of models as a criterion, but
they increasingly used canned computer programs to test loose, merely
directional “models” that had a 50–50 chance of being right just by
chance.
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At first, I did not object. Let many flowers bloom. Purely statistical data
processing can be of some value. I expected that predictions based on
logical considerations, such as those in Seats and Votes, would demonstrate
the usefulness of quantitative logical models. But this is not how it works
out, once the very meaning of “results” is corrupted so as to discount
predictive ability. Slowly, I came to realize that this was a core problem
not only in political science but also within the entire social science
community.

Computers could have been a boon to social sciences, but they turned
out to be a curse in disguise, by enabling people with little understanding
of scientific process to grind out reams of numbers parading as “results”,
to be printed—and never used again. Bad money was driving out the
good, although it came with a price. Society at large still valued predictive
ability. It gave quantitative social scientists even less credence than to
qualitative historians, philosophers, and journalists. Compared to the
latter, quantitative social scientists seemed no better at prediction—they
were just more boring.

Giving good example visibly did not suffice. It became most evident
in June 2004 as I observed a student at the University of Tartu present
another mindless linear regression exercise, this time haughtily dismissing
a quantitatively predictive logical model I had published, even while that
model accounted for 75% of the variation in the output variable. Right
there, I sketched the following test.

Given synthetic data that fitted the universal law of gravitation near-
perfectly, how many social scientists would discover the underlying reg-
ularity? See Chapter 2 for the blatantly negative outcome. Like nearly all
regularities in physics, the gravitation law is nonlinear. If there were such
law-like social regularities, purely statistics-oriented social science would
seem unable to pin them down even in the absence of random scatter!

This was the starting point of a paper at a methodology workshop
in Liège, Belgium: “Beyond Regression: The Need for Logical Models”
(Taagepera 2005a). Inspired by a list of important physics equations
pointed out by Josep Colomer, I located a number of differences in the
mathematical formats usual in physical and social sciences (see Chapter 5)
as well as in the meaning of “results”(see Chapter 7).

Upon that, Benoît Rihoux invited me to form a panel on “Predictive
vs. Postdictive Models” at the Third Conference of the European Consor-
tium for Political Research. Unusual for a methodology panel, the large
room in Budapest was packed as Stephen Coleman (2005), Josep Colomer
and Clara Riba (2005), and I (Taagepera 2005b) gave papers. While we
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discussed publishing possibilities during a “postmortem” meeting in the
cafeteria of Corvinus University, Bernard Grofman, a discussant at the
panel, suggested the title “Why Political Science Is Not Scientific Enough”.
This is how the symposium was presented in European Political Science
(Coleman 2007; Colomer 2007; Grofman 2007; Taagepera 2007a, b).

It turned out that quite a few people had misgivings about the excessive
use and misuse of statistical approaches in social sciences. Duncan Luce
told me about his struggles when trying to go beyond naïve linear regres-
sion (see Chapter 1). James McGregor (1993) and King et al. (2000) in
political science and Aage Sørensen (1998) and Peter Hedström (2004) in
sociology had voiced concerns. Geoffrey Loftus (1991) protested against
the “tyranny of hypothesis testing.” Gigerenzer et al. (2004) exposed the
“null hypothesis ritual.” Bernhard Kittel (2006) showed that different sta-
tistical approaches to the very same data could make factors look highly
significant in opposite directions. “A Crazy Methodology?” was his title
(see Chapter 7).

Writing a book on Predicting Party Sizes (Taagepera 2007c) for the Oxford
University Press presented me with a dilemma. Previous experience with
Seats and Votes showed that if I wanted to be not only cited but also under-
stood, I had to explain the predictive model methodology in appreciable
detail. The title emphasized “Predicting,” but the broad methodology did
not fit in. It made the book too bulky. More importantly, the need for
predictive models extends far beyond electoral and party systems, or even
political science. This is why Making Social Sciences More Scientific: The Need
for Predictive Models became a separate book. While many of the illustrative
examples deal with politics, the general methodology applies to all social
sciences.

Methodological issues risk being perceived as dull. I have tried to
enliven the approach by having many short chapters, some with provoca-
tive titles. Some mathematically more demanding sections are left to
chapter appendices. To facilitate the use as a textbook, the gist of chapters
is presented in special introductory sections that try to be less abstract
than the usual abstracts of research articles.

Will this book help start a paradigm shift in social science methodol-
ogy? I hope so, because the alternative is a Ptolemaic dead end. Those
social scientists whose quantitative skills are restricted to push-button
regression will put up considerable resistance when they discover that
quantitatively predictive logical models require something that cannot be
reduced to canned computer programs. Yes, these models require creative
thinking, even while mathematical demands as such often do not go
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beyond high-school algebra. Creative thinking is what science is about.
This is why the shift may start precisely among those social scientists who
best understand the mathematics underlying the statistical approaches.
Among them, unease with limitations of purely statistical methods is
increasing. We shall see.

Many people have wittingly or unwittingly contributed to this book in
significant ways. I list them in alphabetical order, with apologies to those
whom I may have forgotten. They are Mirjam Allik (who also finalized
most of the figures), Rune Holmgaard Andersen, Lloyd Anderson, Daniel
Bochsler, Stephen Coleman, Josep Colomer, Lorenzo De Sio, Angela
Lee Duckworth, John Ensch, John Gerring, Bernard Grofman, Oliver
Heath, Bernhard Kittel, Arend Lijphart, Maarja Lühiste, Rikho Nymmik,
Clara Riba, Benoît Rihoux, David Samuels, Matthew Shugart, Allan Sikk,
Werner Stahel, Mare Taagepera, Margit Tavits, Liina-Mai Tooding, Sakura
Yamasaki, and the monthly Akadeemia (Estonia). Elizabeth Suffling, Louise
Sprake, Natasha Forrest, Gunabala Saladi, Ravikumar Abhirami, and
Maggie Shade at Oxford University Press have edited the book into techni-
cally superb form. My greatest thanks go to Duncan Luce who graciously
agreed to have an excerpt of his published as Foreword to this book, and
who also pinned down various weak aspects of my draft. The remaining
shortcomings are of course my own.

Rein Taagepera
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1

Why Social Sciences Are Not
Scientific Enough

� This book is about going beyond regression and other statistical
approaches. It is also about improving their use. It is not about “replac-
ing” or “dumping” them.

� Science is not only about the empirical “What is?” but also very much
about the conceptual “How should it be on logical grounds?”

� Statistical approaches are essentially descriptive, while quantitatively
formulated logical models are predictive in an explanatory way.
I use “descriptive” and “predictive” as shorthand for these two
approaches.

� Social scientists have overemphasized statistical data analysis, often
limiting their logical models to prediction of the direction of effect,
oblivious of its quantitative extent.

� A better balance of methods is possible and will make social sciences
more relevant to society.

� Quantitatively predictive logical models need not involve more com-
plex mathematics than regression analysis. But they do require active
thinking about how things connect. They cannot be abdicated to
canned computer programs.

Social sciences have made great strides during the last 100 years, but now
a cancer is eating at the scientific study of society and politics—excessive
and ritualized dependence on statistical data analysis in general and linear
regression in particular. Note that cancer cells are our own cells, not alien
invaders. They just proliferate into places where they have no business to
be and crowd out more useful cells. Descriptive statistical data analysis, too,
is welcome at its proper place, but it has crowded out the quantitatively
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Limitations of Descriptive Methodology

explanatory approaches at those stages of research where logical thinking
is called for. It is time to restore some balance, so as to bring to completion
research that presently all too often stops before reaching the payoff
stage.

From psychology to political science, pressure is heavy to apply sim-
plistic statistical approaches, such as linear regression and its probit and
logit extensions, to any and all problems, to the exclusion of quantitative
approaches based on logic. Duncan Luce, one of the foremost mathe-
matical psychologists, told me about his struggle to publish an article by
Folk and Luce (1987). The authors evaluated a data plot (fig. 3 in their
published version) and decided that the nature of the problem called
for log-linear analysis (table 2 in the published version). The editors,
however, most likely on the advice of reviewers, insisted on replacing
it by straight linear analysis (table 1 of Folk and Luce 1987). The best
the authors could do was to fight for permission to retain their own
analysis along with the linear, even while they considered the latter
pointless.

Luce (1988) has protested against “mindless hypothesis testing in lieu
of doing good research: measuring effects, constructive substantive the-
ories of some depth, and developing probability models and statistical
procedures suited to these theories.” James McGregor (1993) in political
science and Aage Sørensen (1998) in sociology have stressed that applying
only statistical methods to any and all problems is not the way to go.
Sociologist James Coleman (1964, 1981) strongly proposed the use of
substantive rather than statistical models, but in Peter Hedström’s opin-
ion (2004) often did not apply his own precepts, yielding to the rising
hegemony of statistical analysis. I have met similar pressures in political
science.

The result is that social sciences are not as scientific as they could be.
It is not that the methods presently used are erroneous—they are just
overdone. Imagine members of a formerly isolated tribe who suddenly
run across a metal tool—a screwdriver. They are so impressed with it that
they use it not only on screws but also to chisel and to cut. If pointed
out that other people use other tools for those purposes, they respond
that other people, too, use screwdrivers, which proves their value. They
argue that the materials they use differ from those of other people and are
uniquely suitable for screwdrivers. If the cut is scraggy, it just shows they
are working with extraordinarily difficult materials. They are absolutely
right in claiming that there is nothing wrong with the tool. But plenty is
wrong with how they are using it. Abraham Maslow (1966: 15–16) put it
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more succinctly: “It is tempting, if the only tool you have is a hammer, to
treat everything as if it were a nail.”

Actually, those proficient in statistics are not happy either about the
superficial ritual ways to which statistics is reduced in much of social
sciences. A recent editorial in the Journal of the Royal Statistical Society
(Longford 2005) deems much of contemporary statistics-based research
a “junkyard of unsubstantiated confidence,” because of false positives.
Ronald Fisher (1956: 42) felt that it was unreasonable to reject hypotheses
at a fixed level of significance; rather, a scientific worker ideally “gives
his mind to each particular case in the light of his evidence and his
ideas.” Geoffrey Loftus wrote of “the tyranny of hypothesis testing in
the social sciences” (1991) and tried to reduce the mindless reporting of
p-, t- or F -values after becoming editor of Memory & Cognition (1993)—
apparently to little avail. Gigerenzer et al. (2004) feel that not much would
be lost if there were no null hypothesis testing. So the cancer of ritualized
statistics crowds out not only methods other than statistical but also more
thoughtful uses of statistics.

I have no quarrel with purely qualitative studies of society. But essen-
tially qualitative studies should not feel obliged to insert ritualized quan-
titativeness that often looks like a blind man pinning a tail on a cardboard
donkey. If some people wish to take the word “science” in social science
seriously, they better do science.

The direct purpose of this book is to offer methods that go beyond
statistics, but it also deals with better ways to use statistics. Social sciences
have been overusing a limited range of statistical methods, much to the
exclusion of everything else. By doing so, an essential link in the scientific
method has been largely neglected, ignored, and dismissed.

Omitting One-Half of the Scientific Method

Science stands on two legs. One leg consists of systematic inquiry of
“What is?” This question is answered by data collection and statistical
analysis that leads to empirical data fits that could be called descriptive
models. The second leg consists of an equally systematic inquiry of “How
should it be on logical grounds?” This question requires building logically
consistent and quantitatively specific models that reflect the subject matter.
These are explanatory models.

One does not get very far hopping on one leg. If we omit “What
is?” we are left with mythology, religion, and maybe art. If we omit
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“How should it be?”, we are left with stark empiricism. It could lead to
Tycho Brahe’s description of planetary paths but not to Johannes Kepler’s
elliptical model. It could lead to the Linnean nomenclature of plants but
not to Darwinian evolution. Such empiricism has been the main path
of contemporary social science research. My goal is to restore to social
sciences its second leg. Explanation must complement description.

All this requires qualifications. “Should be” (on logical grounds) is
distinct from “ought to be” (on moral grounds). One is subject to verifica-
tion, the other may not be. Also, legs will not stand if left unconnected. It
does not suffice that some scholars ask “What is?” while others ask “How
should it be?” They also must intercommunicate. Science is a continuous
dialogue, a spiral that rises with the synergy of “What is?” and “How
should it be?” It means that construction of explanatory models can in
principle precede systematic data collection, and in quite a few cases does
so. Even religion does not completely avoid the question “What is?” It
just addresses it less systematically than science. Sooner or later, systematic
inquiry involves a quantitative element. This addition does not abolish
the need for systematic qualitative thought. To the contrary, it requires
qualitative rigor.

When it comes to models, note the stress on quantitativeness. Predicting
merely the direction does not suffice. Every toddler tests the fact that
objects fall downwards, but it does not make him or her a scientist.
The science of gravity began when Galileo asked: “How fast do objects
fall?” soon followed by Isaac Newton’s “Why do they fall precisely like
that?” Social sciences certainly have reached their Tycho Brahe (1546–
1601) point—painstaking collecting of data. But have they reached their
Johannes Kepler (1571–1630) point? Kepler broke with the belief that all
heavenly motions are circular. Statistical modelers fool themselves if they
think they are more Kepler than Brahe, just because they call statistical
data fits “empirical models.”

Neglecting the explanatory half of the scientific method hurts today’s
social sciences severely. Valuable research stops in its tracks, just short
of reaching fruition, because the authors are satisfied to publish pages
of regression coefficients (or worse, only R2), without asking: “Are these
coefficient values larger or smaller than I would have expected? What
kind of interaction do they hint at?” This is incomplete science.

Such science is also unimpressive for outsiders, sociopolitical decision-
makers included. How much attention do politicians pay to political
science or other social sciences? We all know. Of course, there was a time
when engineers did not have to pay attention to physics, nor physicians
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Table 1.1. Predictive vs. descriptive models

Main
question

Nature Core
method

Mathematical
format

Direct output Indirect output

How? Descriptive Statistical data
analysis

Generic statistical Nonfalsifiable
postdiction

Limited-scope
postdiction-based
prediction

Why? Explanatory Logical
considerations

Subject-specific
conceptualization

Prediction
falsifiable
upon testing

Broader
substantiated
prediction

to biology. Science becomes useful to practitioners only when it has
reached a somewhat advanced stage of development. The question is:
Do social sciences contribute to society and politics all they can, at their
present stage? The answer is “no,” if social scientists refuse to espouse a
major part of scientific thinking.

It does not mean that we must start from scratch. We are well prepared
for a “Brahe-to-Kepler” breakthrough. Social scientists have accumulated
enormous databases, and statistical analysis has helped to detect major
connections and clarify the underlying concepts. Thanks to this accu-
mulation, we could now vastly expand our understanding of society and
politics with relatively little effort, once we realize that one further step
is needed and often possible—adding quantitatively predictive logical
modeling to the existing essentially descriptive findings.

Description and Prediction

A major goal of science is to explain in a way that can lead to substantiated
prediction. Such an explanation consists of “This should be so, because,
logically. . . . ” In contrast, there is no explanation in “This is so, and that’s
it.” Table 1.1 presents the basic contrasts in the two approaches. It owes
much to Peter Hedström (2004) and needs more detailed specifications in
chapters that follow.

Descriptive models arise from the question “How do things interact?”
The core method is statistical analysis of existing data, picking among
generic statistical formats. The direct output consists of equations that
describe how variables interrelate statistically, on the basis of input data.
Strictly speaking, these equations apply only to the cases that entered
the statistical analysis in the first place. They are “postdictive” in that
one is “predicting” the past as seen in the data (Coleman 2007). They

7



Limitations of Descriptive Methodology

are not subject to falsification, given that they merely describe what
is. If the sample analyzed can be considered representative of a wider
universe, then a limited-scope prediction could legitimately be proposed.
The question remains: On what basis can a descriptive model be con-
sidered applicable outside the data-set it was based on? Unless a logical
explanation is supplied, such prediction is based on postdiction plus an
act of faith. Whenever new data are added, the regression equation shifts
somewhat, leading to a slightly different prediction.

To say that statistical approaches are essentially descriptive is at once
too narrow and too broad. They are more than just descriptive in allowing
us to predict outcomes for cases outside the initial data-set, as long as
we feel (on whatever grounds) that these cases are of the same type.
On the other hand, statistical approaches are less than fully descriptive
of the data-set supplied because they only respond to questions we have
the presence of mind to ask.

Statistical approaches do not talk back to us. If we run a linear regres-
sion on a curved data cloud, most computer programs do not print out
“You really should consider curvature.” When we omit a factor that
logically should enter but is swamped out by random noise, the pro-
gram does not whisper “Choose a subset where it could emerge!” When
the researcher fails to ask relevant questions, the statistical approach
produces an incomplete description, which might even be misleading.
Characterizing statistical approaches as “essentially descriptive” tries to
even out their expanding into prediction in some ways, yet falling short
of even adequate description in other ways. From where can we get the
questions to be posed in the course of statistical analysis? This is where
the conceptual “How should it be on logical grounds?” enters.

Explanatory models arise from questions such as “Why do things inter-
act the way they do?” or even “How should we expect them to interact,
without knowing how they actually do?” The core method is consid-
eration of logical connections and constraints. Their conceptualization
imposes mathematical formats that are specific to the given subject.
The direct output consists of predictive equations that could prove false
upon testing with data. Given that prediction is substantiated on logical
grounds, successful testing with even limited data allows for prediction in
a broader range. Such prediction is relatively stable when new data with
extended range are added.

Quantitatively formulated logical models are essentially predictive in
an explanatory way. Prediction can follow from other approaches too,
such as adequate description or nonquantitative logic. Still, predictive
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Why Not Scientific Enough

ability marks a major contrast between quantitative logical models and
the core of statistical approaches. Therefore, this book uses “descriptive”
and “predictive” as shorthand.

The Laws of Physics Were Discovered Without
Statistical Hypothesis Testing

Stephen Coleman (2007) compares the role of statistical analysis in
medical research, economics, and physics. Medical research has used
statistics more extensively than many social sciences, and with more
controls and replication. Yet, now it is finding an alarming rate of
“false positives,” where statistically “significant” differences are not con-
firmed upon replication. Advances in econometrics have not led to better
theories, and Popper’s idea of theory falsification has run into major
roadblocks.

“It bears repeating that the laws of physics were discovered without
statistical hypothesis testing” (Coleman 2007). Indeed, physicists do what
psychologists have found comes naturally to humans. When trying to
explain events, people start with causal models, rather than acting like
“naive social scientists” by drawing inferences from observed covariation
(Ahn et al. 1995, Coleman 2005). Coleman argues that we must develop
causal models that make definitive predictions—predictions that clearly
test and differentiate between alternative theories. Chapter 7 returns to
this issue.

Solid predictive laws are few in social sciences. Is it because there are few
to be found or because our standard methods lead us astray? A simple test
with data that fit the universal law of gravitation (described in Chapter 2)
intimates that quite a few predictive models may beg to be found, if only
we were conditioned to look for them.

Reversing the Roles of Scientist and Statistician

The purely statistical approach reverses the usual roles of scientist and
statistician, as stressed by Hedström (2004), echoing Aage Sørensen:

The proper division [of labor] should be one in which sociological theory suggests
a mathematical model of a social process and statistics provides the tools to
estimate the model, not, as is common today, that statistics provides models that
sociologists use as ad hoc models of social processes. (Hedström 2004)
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Properly, the social scientist should start with some idea about the social
process at hand. The researcher should try to express this process as a
quantitative model that connects the variables involved in a substantive
way, most often leading to algebraic equations. The social scientist also
supplies the data. It is then up to the statistician to propose the proper way
to transform the data into a form suitable for testing, to test the model,
and to determine the numerical values of open parameters, if there are
any. The goal is not “hypothesis testing” in a narrow sense of statistical
data analysis but verifying a substantive model (cf. Coleman 1981: 5). This
is what should be.

In the purely descriptive approach, however, the social scientist aban-
dons to the statistician the choice of the model. Instead of looking into
the nature and constraints of the specific social situation, the statistician
does what statisticians are supposed to do: choose a generic statistical
format (ordinary least squares, probit, logit, . . . ) that most fits the general
statistical configuration of the data. Social framework is out of the picture.
Often, the social scientist himself plays at being an amateur statistician.
It can make it even worse because some methodological safeguards a
professional statistician would apply are omitted. The basic flaw remains:
conceptual model building has been abdicated. It must be brought back
because describing the world is only one part of science. It must also be
explained.

Thus, the goals of the statistician and the scientist are both legitimate
but they often diverge. What is the endpoint for the statistician may be
only a starting point for the scientist, who asks: What can I do with this
result in a wider context?

We Can Do Better than That

Social sciences must advance in two directions. First, they must go beyond
statistical approaches, into model building. Second, they must clean up
their use of statistics, by reducing misapplications of its method as well as
misinterpretations of its results. Many social scientists have been building
models and using statistics in appropriate ways, but they have been a
minority. My evaluation applies to the predominant current in social
sciences.

Any science remains incomplete if it limits itself to a descriptive “This
is” and does not ask “Why is it the way it is?” One cannot just throw all
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conceivable factors into a grand regression equation. Passive descriptive
thinking is made easy by computerization and canned statistical pro-
grams. It has enabled mindless number crunching to be published, while
impeding creative predictive thinking. But it comes with a price. Most
numbers published in social sciences are dead on arrival: Once printed,
they are never used for anything (as documented in Chapter 7).

Omitting one-half of the scientific method might not be of concern if
social sciences nonetheless enjoyed high prestige in society and among
decision-makers in particular. We know how it actually is. Physical sci-
ences get respect because they have produced usable results ever since
they emerged from under the shadow of alchemy and astrology. They
have done so by making full use of predictive models. Social scientists
can continue to stick to a restricted set of methods, publish in a not
very cumulative way, have little impact on the real world, and suffer from
physics envy. But we can also do better than that.

Quantitatively predictive logical models have proven themselves in
natural sciences and can help in social sciences. Statistical methods still
enter. Along with qualitative insights, they serve a purpose in exploratory
inquiry at the one end of research, preparing ground for constructing
logical models, and they later serve in testing them. But in between,
science needs the type of explanation that can lead to more specific
prediction than “if x is up then y is down.”

Social sciences may be ripe for a breakthrough toward broader and
more productive methods. It is a matter of widening the tool kit. We can
build on present achievements by incorporating more of the approaches
proven in natural sciences. Does it mean junking what has been done
up to now? No. Examples presented in this book (especially Chapters 4
and 16) suggest that much of the existing descriptive research could be
put on firmer predictive grounds with relatively little new effort. It is
not a question of starting from scratch but bringing to fruition existing
research. True, it will require more emphasis on thinking, of the type
that cannot be abdicated to computers. Addiction to canned statistical
programs must be reined in, and social scientists must break with the
belief that most social relationships are linear. It can be done.

The next three chapters document a serious limitation of the descriptive
method and offer a quick idea of what the predictive models are about.
Thereafter, Chapters 5–7 elaborate on the critique of one-sided depen-
dence on descriptive methods. It is the one-sidedness that is criticized,
not the inherent value of such methods when properly applied. Chapters

11



Limitations of Descriptive Methodology

8–13 present in more detail some approaches to building quantitatively
predictive logical models—and some successes in using them. Finally,
Chapters 14–18 bring about a synthesis of predictive and descriptive
approaches.

Appendix to Chapter 1

Previous Attempts to Make Social Science More of a Science

A tension sometimes surfaces between qualitative and quantitative approaches to
studying society in a broad sense. I stand squarely in the middle, witness four of
my books which include no quantitative analysis (Taagepera 1984, 1993, 1999a;
Misiunas and Taagepera 1993) and two others that do (Taagepera and Shugart
1989; Taagepera 2007c). There are many ways to do good social scholarship, and
they differ in more than one basic aspect. Bernard Grofman (2007) has presented a
2 × 2 × 2 breakdown for political studies, which may apply more broadly: analytic
and quantitative versus humanistic and interpretive; empirical versus normative;
and theoretical versus applied. He finds examples for each of the resulting eight
cells.

I have no quarrel with any of them, even while the approach stressed in this
particular book is empirical, quantitative, and theoretical (with some application
in institutional engineering). All sorts of approaches to the study of society can be
carried out well or poorly. My point is that if some people wish to take the word
“sciences” in social sciences seriously and focus on empirical, quantitative, and
theoretical aspects, they better make the most of it. And yes, I expect it to lead
to major breakthroughs. Regarding prospects of breakthroughs following other
approaches, I simply take no stand.

Purposeful attempts to make social science more of a “genuine” science in the
image of natural sciences have occurred over at least two centuries. Grofman
(2007) reviews the successive tides in American political science. They all ebbed,
which may seem to bid ill for my present attempt. I will soon point out a major
difference that gives hope. Of course, the previous ebbs hardly were complete—
there was some lasting effect. The use of statistics was introduced, and fact was
separated from value. Behavioral and game theoretical models added new perspec-
tives, even while they did not turn out to be solutions to everything. They all came
to be included into “political science as usual” (Grofman 2007).

Among social sciences, political science has sought methodological or concep-
tual inspiration from and through other social sciences, mainly sociology, eco-
nomics, and social psychology. Statistics has been an outside field from which all
social sciences have drawn. Biology and chemistry have offered less inspiration,
apart from evolutionary game theory. As the oldest among natural sciences,
physics has appealed to some social scientists ever since Auguste Comte, but it
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also has meant many naïve attempts to apply superficial analogies—which have
discredited such an approach. Hence, my drawing on physics will raise hackles,
and should do so. In response, it is time to point out a major difference.

Typical attempts to make any or all social sciences more scientific have mainly
pointed out promising avenues to be followed in the future: Let us discuss
methodology, get together a sufficient mass of researchers (and grants), and great
findings will follow. When the actual findings prove modest, great expectations
turn into great disappointment so that even the findings achieved may be unduly
discounted. In my case, in contrast, results came first and methodological argu-
ment last. Over decades, I have devised and tested a number of relationships,
often interlocked, based on logical considerations (see Chapters 10 and 11). They
qualify as laws in the strict scientific sense of not only presenting a quantitative
relationship but also a theoretical model to explain why such a relationship should
prevail.

There is no vague promise here. I refrained from offering a methodology until
I had enough proof that it not only can produce but actually has produced some
results in some subfields of social sciences. Are these results sufficiently broad to
offer the methodology for consideration over a wider range? This is discussed
in Chapter 17. Methods with some results should be taken more seriously than
methods offered with promise only. This is so, in particular, when the present
methods lead to limited results.
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2

Can Social Science Approaches Find
the Law of Gravitation?

� When a number of social scientists were given synthetic data that fitted
the universal law of gravitation with negligible error, they all missed the
underlying pattern.

� Yet they found results satisfactory and complete by the current social
science norms: high R2 and high degree of significance of input factors.

� The design of this experiment can be criticized, but it still should give
us pause. If some social phenomena existed that were of the form
most prevalent in physics, then the quantitative methods currently
dominant in social sciences might not suffice to discover them.

Statistical approaches such as regression apply quite widely. Regardless of
where the numerical data come from and what they represent, regression
analysis almost always can be carried out. The degree of fit to some simple
generic relationship (most often linear) can always be expressed, and
statistical significance can be estimated.

Much of the statistical analysis published in social science journals
could be carried out without knowing what the given set of numbers is
about. It helps, of course, to know both the subject matter and statistical
methods, so as to choose the most promising among the panoply of
statistical approaches, but canned programs enable one to carry out basic
multilinear regression quite automatically. Quite a few published studies
go no further.

Applied physics and engineering also use statistical analysis extensively,
but there it comes on top of basic laws that mostly are not linear. Even
when the broad pattern is curved, linear analysis can be applied over
sufficiently short ranges. Indeed, even a circle can be approximated by
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a straight line if the segment is sufficiently short. But what is a suffi-
ciently short range? Linear approximations can be applied properly only
when the broad nonlinear picture is known. If such broader relation-
ships existed in the social realm and if some of them were of the form
most prevalent in physics, could linear analysis or anything else in the
usual tool kit of social scientists discover them? If not, then all we do
might be playing around with descriptive approximations to unknown
laws.

James McGregor’s Question

In his “Procrustus and the Regression Model,” James McGregor (1993)
raised the possibility of restrictive methods in political science. His
approach was to take random data that fitted three laws of nature per-
fectly and analyze these data by linear regression. He concluded that the
underlying laws did not become apparent. The laws considered were the
following. Galileo’s law of falling objects expresses distance (d) fallen from
a rest position as function of time (t): d = at2, where a is a constant. Boyle’s
ideal gas law, V = RT/P , connects volume (V) to absolute temperature
(T) and pressure (P ), R being a constant. Newton’s law of gravitation
expresses the force of gravitational attraction (F ) between two bodies in
terms of the masses of these bodies (M and m) and the distance (r ) between
them: F = GMm/r 2, G being the universal constant of gravitation. As is
the case with most variables in physics, the factors in these equations do
not add or subtract—they rather multiply and divide. (Chapter 5 expands
on this major difference, compared to social science practices.)

A most unsettling aspect for McGregor (1993) was that, by the usual
social science criteria, linear analysis seemed to work just fine! Indeed, R2

was .52 for gases and as high as .97 for falling objects. Such values would
make social scientists quite happy. For them, nothing would point to the
need to go any further, even while they would miss the essential.

It could be claimed that some other social scientists might have used
further methods McGregor omitted. For falling objects, all that was
needed was to take the square of the input variable, something social
scientists are familiar with—except that once linear analysis yielded an R2

of .97, there would hardly be any incentive to go any further. Gases and
gravitation involve division, an operation less familiar to social scientists.
Still, it is conceivable that some more sophisticated statistical methods
could figure it out. Of course, taking logarithms of all the variables, prior
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to linear regression, would clinch it. But would social scientists automati-
cally include such an option?

A more open-ended test would be to submit such data to a number
of social scientists proficient in data analysis. Ask them to analyze these
data, using whatever methods they consider suitable, and see whether
they can discover the underlying pattern. This is what I did with the
law of gravitation. The objective was to see what social scientists would
do with the data and how the results would compare with the actual
relationship.

Those engaged in natural sciences may legitimately protest that such
blind analysis is not the way science proceeds. One has to know what
the data are about, so that raw data can first be transformed according to
some logical constructs, before statistical analysis is applied. In particular,
before linear regression is used, data must be converted into a form where
all the inputs logically enter in linear way, which may or may not be easy.

Yes, logical model-building should precede statistical analysis. However,
the hard fact is that this is not general practice in social sciences. Here,
regression tends to be applied as if all raw inputs did enter linearly. When
products, logarithms, or squares of some variables are also thrown in, this
tends to be done on the basis of statistical configuration of the data—
or just to see what happens, without a substantive model to justify it.
Therefore, offering unidentified data to social scientists and asking them
to try to elucidate the relationships among the variables arguably does
not unduly restrict the methodological range of what they would do with
identified social data.

The Universal Law of Gravitation

My test was based on the aforementioned universal law of gravitation:
F = GMm/r 2, one of the three laws used by McGregor (1993). This law is
one of the most basic in classical physics. Replacing the masses M and
m by two electric charges, the same equation (with a different constant)
also expresses the force of attraction or repulsion between two electri-
cally charged bodies. Its multiplicative format is typical in physics. It is
also typical that the law involves one—and only one!—constant, deter-
mined experimentally. The numerical value of this constant of gravitation
depends on the units of force, mass, and distance used. It is calculated
by reversing the previous equation: G = Fr2/Mm, and plugging in known
masses, distance, and force. It is a universal constant. This means that, for
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any combination of masses, distance, and force, the same value of G has
been found to apply, within the range of experimental error.

At the time this law was discovered, several centuries ago, the statistical
methods on which today’s social scientists so heavily depend hardly
existed, not to mention computers that enable us to apply these methods
with great speed. With our present tools, it should be much easier to
detect such an underlying pattern, when one is given data where random
fluctuation does not mask the pattern too heavily. So, if I generated
some data to fit an equation of the form y = Gx1x3/x2

2 almost perfectly
and submitted it for analysis by social scientists, would they discover the
underlying pattern?

For the purposes of such a test, the format of the law of gravitation had
the following desirable features. It involves three input variables. When
only two variables are multiplied, any program that automatically tests for
the standard “interactive” term (xi xj ) could easily detect the relationship.
The equation also involves a division—an operation that will be seen
to be absent from the social scientists’ toolbox (Chapter 5). Given that
many regressions in social research involve at least three input variables,
a three-variable law should otherwise present no excessively complex
challenge.

The Test

The proposed data-set included 25 values of 3 input variables labeled x1,
x2, and x3, all selected essentially randomly by picking the last 2 digits
of successive entries in a telephone book, excluding 00 and 01. The cor-
responding values of the output variable, labeled y, were calculated from
y = 980x1x3/x2

2 , with 2-digit precision. In other words, force was coded as
y, masses (or electric charges) were coded as x1 and x3, respectively, and
distance r was coded as x2. The constant was chosen such as to keep y
larger than 1 in all cases. Table 2.1 shows the resulting synthetic data.

To repeat, the data for x are essentially random numbers ranging from
2 to 99. The values of y come from y = 980x1x3/x2

2 , with values rounded
off to integers. The resulting error is within ±0.2%, except for Case F
(2%). Apart from this rounding-off error, I introduced no distortions
so as to simulate random error. Thus, the underlying pattern was easy
to detect, compared to usual measurement data. Moreover, the pattern
involved only multiplication, division, and exponents. If one had the
idea of taking the logarithms of all the variables, the result would be
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Table 2.1. Synthetic data where y = 980x1x3/x2
2

x1 x2 x3 Y

A 89 36 45 3,028
B 77 50 69 2,083
C 35 65 36 292
D 7 53 61 149
E 2 33 66 119
F 8 95 27 23
G 25 99 96 240
H 55 92 24 153
I 27 10 67 17,728
J 83 59 85 1,986
K 19 82 81 224
L 19 39 78 955
M 69 30 16 1,202
N 69 65 31 496
O 18 54 84 508
P 87 52 57 1,797
Q 32 72 98 593
R 8 37 49 281
S 58 23 3 322
T 48 41 50 1,399
U 80 92 74 685
V 24 35 33 634
W 28 65 79 513
X 37 35 36 1,066
Y 56 18 10 1,694

log y = log 980 + log x1 − 2 log x2 + log x3, so that linear regression of loga-
rithms would fit almost perfectly (R2 = .99). In this sense, discovery of the
underlying relationship was made easy. Relationships that involve addi-
tion on top of multiplication and exponents, plus some error, would be
much harder to ferret out by regression or any other statistical approach.

On the other hand, finding the underlying relationship was made
more difficult by the relatively narrow range of input data—only from
2 to 99, for all three variables. With more extended ranges, system-
atic relationships become more evident and R2 tends to improve. How-
ever, in contrast to experimental sciences, in social sciences, we all
too often face precisely this limitation: We may be restricted to tan-
talizingly narrow ranges of input variables, with no ways to widen
them.

These numbers were sent to 38 social scientists, mainly in political
science, with the following wording: “Attached is an Excel data file for
25 cases. Included are three input variables (x1, x2, x3) and one output
variable (y). I have my ideas about the way the ‘y’ might be connected
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to the x-es, but I do not want to influence you by telling you what the
variables are. Try to make sense out of this possible relationship.”

The eight individuals or pairs who graciously responded ranged from
advanced Ph.D. students to senior professors, mainly in comparative pol-
itics, but also in economics. Appendix 2 shows three responses (some of
them shortened), indicating statistical skills clearly beyond basic canned
OLS analysis. One extremely sophisticated approach cannot be described
for fear of identifying the author. Most other respondents indicated briefly
that they tried various multiple regression type approaches, with no clear-
cut results. Oral comments indicate that quite a few more researchers
tried their hand at the data but did not respond in view of inconclusive
results.

The Negative Outcome

No respondent discovered the pattern of the law of gravitation. Yet,
very high correlations were found, especially when one eliminated some
presumed “outliers” (that fully fit the actual law!). Depending on the
approach, R2 ran mainly from .70 to .90. It surpassed .98 in one approach
that eliminated outliers. This may be the most unsettling aspect of the
test, given that an R2 as high as .70 is most social scientists’ dream
and would preclude further inquiry. McGregor’s concerns (1993) are con-
firmed.

By the current social science norms, the results were satisfactory and
complete. Every respondent correctly found that y increases with increas-
ing x1 and x3, while decreasing with increasing x2. All input factors looked
significant, and R2 was high. Yet they all missed the underlying pattern.
(The sample excluded students who actively work with me on quanti-
tatively predictive logical models; one of them, with a civil engineering
background, did find the relationship.)

McGregor (1993) pointed out that, unless logical model-building pre-
cedes statistical analysis, the latter may lead to two types of error. (1)
One may miss a very real nonlinear relationship by assuming a linear
or otherwise inadequate format that leads to low R2 and low statistical
significance. (2) Conversely, a high R2 may result from an essentially
linear approach, lulling us into complacent satisfaction while missing the
essential. The latter was the case here. High levels of statistical significance
may go hand in hand with little conceptual significance and vice versa, as
will be discussed in detail later on (Chapter 4). The respondents reported
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a profusion of coefficient values, quite different from each other. Given
such dispersal, none of them could be firm steppingstones for further
research—they are doomed to remain endpoints (as expanded on in
Chapter 7).

Does it mean that today’s social scientists could not discover an inverse
square law, if it applied to some social phenomenon, even when random
error is practically zero? Several reservations can be voiced. The sample of
social scientists was small and nonrandom. The number of responses was
low. By restricting input data to the range 2–99, I inadvertently suggested
that these might be percentages. Without this impression, some respon-
dents might conceivably have been goaded into trying some other meth-
ods. So, in retrospect, I should have multiplied all the random inputs by
3, which would not have altered the output. It just so happened that one
of the random outputs (case I in Table 2.1) was much higher than the rest,
justifying its deletion as a suspicious outlier. In hindsight, maybe I should
have doctored the random sample so as to have several high outputs.

The use of blind data is debatable. One of the respondents later felt that
I was misleading them by presenting error-free data as real data, by not
stating that they were generated by a formula, and by implying that they
were of a political nature (simply by my being a political scientist). Yes,
if I had said “These data, including what look like outliers, fit a formula
exactly,” then an R2 of .90 would not have stopped the inquiry. But the
planets did not tell Kepler either: “Our motion actually fits a pretty simple
formula. Just try to find it.”

Even with these reservations, the starkly negative outcome should
make us pause. If some social phenomena did follow quantitative laws
of the format most frequent in physics (as shown in Chapter 5), then the
quantitative methods currently dominant in social sciences just might
not suffice to discover them.

Does It Matter?

This is not a critical experiment—too much in its design can be ques-
tioned. It cannot be concluded that social sciences flunk the gravitation
test. At most, the test might serve as a warning light.

But even if the present dominant methodology should flunk a test with
a better design, does it matter? It depends on whether relationships with
a multiplicative format can occur in the social realm. Few such laws are
known. Is it because there are none to be found or because our standard
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methods lead us astray? If there are none, because of deep differences in
the nature of physical and social phenomena, then the potential failure
reported here is of no consequence. But if they can occur, then the
negative outcome of the gravitation test could mean that we might have
missed out on significant social relationships as well. Chapters 10 and 11
present a number of well-tested quantitatively predictive logical models
for sociopolitical phenomena. Most of them do follow the multiplication–
division–exponent format of the law of gravitation. Hence, this format
does occur in the social realm. Chapter 14 asks whether these relation-
ships could have been discovered by statistical analysis. It will be seen
that a most basic input factor would not emerge as significant, from raw
data, not to mention finding the logical shape of the relationship.

College students seem to undervalue social sciences “as legitimate sci-
entific enterprises,” compared to physical sciences (Hill 2004). To improve
the standing of social sciences, Hill’s approach is to debunk presumable
myths about the solidity of physical sciences. To which Ozminkowski
(2005) replies: “However, pointing to the weaknesses of ‘the other guy’
does not help in building respect for social sciences.”

When, given the same data, one discipline offers a predictive law of
nature, while the other offers descriptive regression coefficients and R2,
the reception is likely to be different not only among college students
but also among the public at large and sociopolitical decision-makers. Is
this the best social sciences can do? Are they doomed to remain eternally
immature disciplines (cf. Oren 2005; Strakes 2005; Hill 2005)? I do not
think so. The next two chapters offer some guidelines for constructing
predictive models, followed by a specific example.

Appendix to Chapter 2

Typical Analyses of Gravitation-Like Data Offered by Social Scientists

Response A
I first ran a correlation matrix between all four variables and then a multivariate
regression. Then I tried creating composite variables by multiplying pairs of depen-
dent variables to see if including these new variables in a multivariate regression
would improve predictive power or fit. Then, I looked for max and min values on
each independent variable to see what is happening at the extremes. My next step,
if I had had the time, would have been to create a small 3 way cross-table, with
polychotomous categories on each of the x variables (high, medium, low) and
mean y values in the cells.
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Response B
We looked at Tukey’s exploratory data guides and observed that the value of y
has a positive relation on x1, x3, and negative on x2, the relation is decreasingly
increasing, and there is one anomalous extreme value (I ). We thus chose the
logarithm of y, for which we found the following relation: ln y = 5.95 + 0.028x1

− 0.038x2 + 0.024x3 with R2 = .76.
Variant: If the extreme I value is eliminated, we have some improvement, with

R2 = .83. Alternative: We could also choose the squared root of y, which produces
the following: (y)1/2 = 17.67 + 0.36x1 − 0.30x2 + 0.19x3 with R2 = .43, which is not
very good. Only if the value I is eliminated, then for the latter relation, R2 = .80,
which is good but still not as good as the logarithmic relation under the same
condition.

[My comment: This analysis came close. The respondent did take the logarithm
of y, because of its wide range, but not of the input variables. If one wanted
to use the results of this analysis to calculate y directly from the input data,
the reported expression ln y = 5.95 + 0.028x1 − 0.038x2 + 0.024x3 corresponds to
y = 384(1.028)x1 (1.024)x3 (1.039)x2 . This expression is far more complex than the
actual y = 980x1x3/x2

2 , and it would take a real fancy logic to justify such a rela-
tionship, compared to multiplication and division and simple exponents.]

Response C
Controlling for case number 9 [case I in Table 2.1]: reg y x1 x2 x3 case 9

Source

Modal
Residual

283855969
3575223.44

4
20

70963992.1
178761.172

Total 287431192 24 11976299.7

Y Coef. Std. Err. t P>⏐t⏐ [95% Conf. Interval]

x1
x2
x3

case9
_cons

3.180685
4.070628
3.563831
480.729

295.9571

6.56
−3.89
2.64

34.06
1.08

0.000
0.001
0.016
0.000
0.291

14.23186
−24.33244
1.982713
15368.47

−296.5168

27.50145
−7.350077
16.85076
17374.04
938.1947

20.86665
−15.84126
9.416735
16371.25
320.389

SS df MS Number of obs  =            25
F(     4,        20  =     396.98
Prob  >   F         =     0.0000
R-squared         =     0.9876
Adj R-squared   =      0.9851
Root MSE         =      422.80

[Adjusted R2 ranging from .707 to .877 were obtained when excluding number 9;
or normalizing y (natural logs), while controlling, not controlling, or excluding
case 9.]
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How to Construct Predictive Models:
Simplicity and Nonabsurdity

� Predictive models should be as simple as one can get away with. This
parsimony is what “Occam’s razor” is about.

� Predictive models must not predict absurdities even under extreme
circumstances.

� As Sherlock Holmes put it: Eliminate the impossible, and only one
possible outcome may remain. This goes for science, too. Show how
things cannot be related, and only one acceptable form of relationship
may remain—or very few.

� Quantitative predictions are more valuable than merely directional
ones.

� Agreement with a quantitatively predictive model is not tied to R2.
� All too many variables are interdependent rather than “independent”

or “dependent.” So it is safer to talk about input and output variables
under the given circumstances.

The purpose of this book is to help social sciences to become more of an
exact science. This term does not mean that every result is given with
three decimals. Exact science rather means striving to be as exact as possi-
ble, under the given conditions—and specifying the likely range of error.
In the beginning, this range of possible error may be huge. It is acceptable
if there is some basis for gradually improving our measurements and
conceptual models.

Nothing would stifle such advance more than advice to give up on
quantitative approaches just because our first measurements involve a
wide range of fluctuation or our conceptual model does not agree with
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the measurements. A three-decimal precision will never be reached, if
one refuses to work out problems approximately, at first. Exact science
means being as exact as possible at the given stage of research and thus
making it possible to be more exact in the future. This applies not only to
measurements but also to conceptual approaches. How should we start?
Start with a story.

Galileo and the Peasant of Tuscany

A peasant near Florence was told that a scholar named Galileo is trying to
determine how various objects fall. “Those learned men really know how
to make simple things complicated,” the peasant said. “I could have told
him offhand that things fall downwards.”

It was hard to explain to him that all he knew was directionality of the
motion, and that there was more to know. In mathematical language,
the peasant was satisfied with the knowledge that dx/dt < 0, when we
count x from the center of the Earth and t is time. In contrast, Galileo
wanted to figure out the entire functional form x = f (t), and for all
bodies.

Galileo basically found that an object dropped from a height x0 falls
as x = x0 − (g/2)t2, where g is a positive number. This equation tells us,
indeed, that dx/dt = −gt is negative, confirming the peasant’s insight. But
it tells us much more. Galileo soon determined that the value of g is pretty
much the same for all objects in all places. It is basically a worldwide
constant on the surface of the Earth.

When the peasant was told that Galileo’s work enables us to measure
the gravitational pull of the Earth, he yawned. When told that this way
we can predict how soon things dropped from the tower of Pisa reach the
ground, he said: “So what? I already knew they reach the ground pretty
quickly. Who needs more?” Then the peasant grinned slyly: “By the way,
if this thing is a feather, it may never fall, until it’s out of sight. So this
fellow Galileo’s finding is not only useless but doesn’t even always work.
So much for your constant of gravity!”

Before one could tell him about second approximations that deal with
air friction and all that, he was off to have some wine at the local tavern. It
could as well have been a faculty club for those social scientists who stop
their work at the very point where Galileo’s began: They test a directional
prediction and are oblivious of the functional form. They verify the sign
of dy/dx, and do not see the need to determine y = f (x). I have culled the
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peasant’s wisdom from journal reviewers’ responses to my efforts to go
beyond directionality.

To be sure, the directionality of social relationships is not always as
obvious as that of a falling lead ball. In social data, the analogues of lead
balls are often outnumbered by the analogues of feathers, flies, and flat
leaves, which do not follow the simple equation x = x0 − (g/2)t2. Thus, it
is sometimes a genuine social science achievement to show that x actually
does affect y, and in a certain direction.

The problem is that, in the course of the effort to determine directional-
ity, the need to proceed to the Galileian level all too often gets forgotten.
It does not suffice to show that more food leads to more sense of well-
being or that more votes lead to more seats. Like Galileo, one has to ask:
“How much more?” or “How many more?”

Once one goes quantitative, an inquiry may talk back to you and say:
“You are asking the wrong question!” Initially one may ask: “How fast
do falling objects fall?” Quantitative inquiry will soon tell you that the
speed of a falling object is not constant but increases the longer it falls.
So the corrected question becomes “With what acceleration do objects
fall?”

Galileo found a nonlinear relationship. He would have been on the
wrong track, if he had blithely assumed that all relationships y = f (x) are
linear: x = a + by. This is an assumption all too many social scientists take
as an article of faith. More often than not, such an assumption is on
shaky logical grounds (as explained in Chapter 8). We live in a largely
multiplicative world.

Directional Versus Quantitative Predictions

All predictions are not equally precise. A vague prediction is easier to
verify, but it also is less useful. In particular, we must distinguish between
directional and quantitative predictions. The latter offers a specific func-
tion y = f (x), which enables us to calculate the values of y for any given
values of x. In contrast, the directional prediction (dy/dx positive or
negative) leaves the values of y widely open. A test by regression may
confirm a directionally predictive hypothesis regarding the effect of x, but
the regression equation is postdictive regarding the other components of
y = f (x). It might or might not offer a starting point for developing a
predictive model on logical grounds, but it is not yet a predictive model
by itself, except in the limited directional sense.
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Figure 3.1. Best linear fits to different patterns that all satisfy the directional
prediction dy/dx < 0

Figure 3.1 illustrates the observation that the directional prediction
dy/dx < 0 is all too easy to satisfy. The hunch (“hypothesis”) may be that y
decreases with increasing x. All three data-sets satisfy this loose directional
prediction. Indeed, one-half of the lines we draw at random would
satisfy it.

Yet the three data-sets send quite different messages. Data-sets A and B
correspond to very different slopes and intercepts. Furthermore, pattern B
is clearly curved, so that the linear fit misrepresents reality severely, even
while R2 remains quite high. The data-set C fills in a triangular space.
Pretending that it is a linear pattern also misrepresents reality.

A further difficulty arises when only positive values (and zero) have
meaning for x and y. Indeed, quite a few variables of interest to social
scientists cannot possibly take negative values. For sufficiently high values
of x, the regression lines for all three data-sets would lead to negative
values of y—which is an absurd proposition when y cannot conceptually
go negative.

Now suppose that, for some logical reason, we feel that y might be
inversely proportional to x. This means predicting y = k/x, where k is
a positive constant of unknown numerical value. Figure 3.2 shows the
corresponding family of curves, produced by assigning various different
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Figure 3.2. Curves for quantitative model y = k/x, and an unsatisfactory data-set

values to k. Note that these curves do not predict negative y for any
positive x, and thus avoid absurdity. They all fit the directional prediction
of negative slope (dy/dx < 0), given that y = k/x leads to dy/dx = −k/x2,
but they demand much more. Could the previous data-sets A, B, and C in
Figure 3.1 satisfy y = k/x?

It can be checked that pattern A, although it looks straight, actually
roughly agrees with the model (with k = 2), over the short range of data.
The curved pattern B may look close to the family y = k/x, but when
shown transposed to Figure 3.2, it clearly diverges. Indeed, this data-
set would require that k in y = k/x be 0.5 at low x but around 1.5 at
high x. It might fit better with y = k/x0.5. (The general two-parameter
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family,y = k/xa, is discussed in Chapter 8.) The highly dispersed pattern
C actually fits (with k = 0.25), albeit with a low correlation coefficient of
around R2 = .25.

The first message is that data-sets that easily satisfy the directional
prediction need not satisfy a more specific functional prediction. Actually,
I constructed patterns A and C so that they would roughly fity = k/x. Most
randomly picked patterns would not fit.

A second message is that agreement with a quantitatively predictive
model is not tied to R2. Indeed, it is precisely the very lack of scatter
in pattern B that leads to its clear disagreement with the model y = k/x.
If it were more diffuse, like C, it might have the benefit of the doubt.
For descriptive data fits, the correlation coefficient is the only measure
of goodness. For quantitatively predictive models, in contrast, even a
diffuse agreement with the predicted functional shape is better than a
clean pattern of a wrong shape. This is a feature to which we will return
(Chapters 4 and 6).

Finally, note that linear fits (y = a + bx) involve two adjustable coeffi-
cients (a and b). In contrast, y = k/x (that might fit the sets A and C)
involves only one (k). This expression is more parsimonious. We get more
bang for less buck.

Quantitatively Predictive Logical Models

This is the time to specify what I mean by “quantitatively predictive
logical models.” Why do we need such a long specification? All predic-
tive logical models are not quantitative—they can be merely directional.
Today’s social sciences are full of such vague predictions. Conversely, all
quantitatively predictive models are not based on logical considerations—
regression equations can be used for quantitative prediction, albeit with
grave reservations. Today’s social sciences are full of such “empirical mod-
els” where every new regression produces a different equation and hence
a different prediction.

When this book talks of the need for predictive models, it has in mind
predictive models that are both quantitatively predictive and based on
logical considerations—like the law of gravitation. It does not imply that
their predictions are precise, as further known or unknown factors may
enter. The path of gliding feathers cannot be predicted on the basis of
law of gravity alone. Predictions based on such models always carry the
qualification ceteris paribus—everything else remaining the same, or “in
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the absence of other factors.” They differ from statistically based descrip-
tive models in that we can know under which conditions the logical
models can or cannot apply. Indeed, Galileo showed that when air is
pumped out, feathers do fall like stones. We can also combine different
simple models in a logical way so as to predict under more complex
conditions.

Quantitatively predictive logical models include all models that can
be introduced without input of numerical data, based solely on broader
general notions. This is a more specific term than “theoretical” or “for-
mal” models, but broader than “substantive models,” as used by Sørensen
(1998) and Hedström (2004). This is so because the logical considerations
used may be much broader than specifically sociological or psychologi-
cal. At times, I feel more comfortable talking about conceptual models,
instead of logical models, without making a clear distinction.

Simplicity and Avoidance of Absurdity

Even when convinced of the need to go beyond descriptive methods, how
do we go about in constructing quantitatively predictive logical models?
The inconvenient truth one has to face is that one has to shed reliance on
canned computer programs that make dependence on statistical meth-
ods so painless (and often correspondingly fruitless). One has to think.
One has to consider broad conceptual constraints and the specific social
framework of the problem on hand, which differs for each problem.
Nonetheless, the following broad guidelines can be offered:

1. Predictive models should be as simple as one can get away with
(parsimony).

2. Predictive models must not predict absurdities.

The following advice might be called the Sherlock Holmes principle: Elim-
inate the impossible, and only one possible outcome may remain. This
goes for science as well as for solving murder cases. Show how things
cannot be related, and only one acceptable form of relationship may
remain—or very few. How does one develop an eye for detecting the
impossible? It often means consciously making note of things that one
has taken so much for granted that one does not see them. Later chap-
ters offer specific examples and, by doing so, help developing such
skills.
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Occam’s razor tells us to eliminate from consideration all that is not
essential to the issue. This notion of parsimony goes back many centuries
and was essential for development of physical sciences, to the point where
physical scientists use it automatically, without mentioning it. They first
go after the most general and only gradually flesh it out with more details.
In contrast, computer-addicted social scientists all too often throw into
their regressions whatever variables they can imagine. “The more, the
merrier” has tended to supplant Occam’s razor, once the latter has been
given lip service in the introductory course on the scientific method. Does
a colleague suggest another variable? “OK, I’ll put it in the regression.”
This is the verbatim response I jotted down at a conference, January 14,
2005, where the respondent had entered all his variables linearly. If it were
a physics conference, the reaction might be “OK, I’ll try to work it into
the model.”

This is a point where the statistician’s and the scientist’s goals diverge.
From the statistical point of view, it often makes sense to add variables, as
it improves parameters such as unadjusted R2. From the scientific point of
view, Occam’s razor helps to pin down the essential, before further factors
are gradually introduced. When introduced too early, such factors muddle
up the basic relationships.

Some social science journal referees aggressively push the statistician’s
approach on their colleagues, insisting that further factors be introduced.
This is the wrong way to go. Factors that do not impose themselves logi-
cally and affect prediction only to a minor degree should be omitted. In
different ways, Occam’s razor and the Sherlock Holmes principle involve
the same idea: Predictive models should be as simple as one can get away
with.

A complementary requirement is that predictive models must not pre-
dict absurdities. In particular, if, for a conceptually possible value of x,
the model predicts a conceptually impossible value of y, the model must
be modified. As the number of teachers increases, illiteracy goes down.
One may try a downward-sloped linear model, and it may fit actual data
just beautifully. But at a very high number of teachers it will predict
negative illiteracy! This is the problem pointed out in Figure 3.1. Such an
implication is conceptually unacceptable, even if the number of teachers
at which the absurdity appears is “unrealistically” huge. The model must
be modified. Avoidance of absurdities is an aspect of the Sherlock Holmes
principle: eliminate the impossible. This issue is revisited in Chapter 5.

Contradiction is one aspect of absurdity. Logical models must avoid
internal contradictions. Mathematician Richard Hamming (1980) has

30



How to Construct Predictive Models

argued that Galileo might have determined that all bodies must fall at the
same speed (in the absence of friction and other forces) by reasoning, even
before testing it experimentally. The existing wisdom was that heavier
bodies fall faster. But if one connects fairly small and hence light stones
with string or glue, how would they know that now they must fall faster?
When do two pieces become a single one? The only noncontradictory
conclusion is that speed cannot depend on the weight as such.

Similar thought experiments have played a major role in natural sci-
ences. Galileo could have reached the right conclusion this way. We have
no hard evidence that he consciously did, because he had the luxury of
another option—experimentation. Of course, he would not have started
to experiment unless he had some doubts in the first place, but he could
experiment relatively easily. But what about those social disciplines where
experimentation is difficult? Should we not place even more emphasis
on using our brain power? Logical models have to be tested, but it
is so much easier to find a suitable test once one knows what one is
looking for.

Most Variables Are Interdependent, Not “Independent”
or “Dependent”

It makes more sense to talk of input and output variables under the given
circumstances rather than inherently “independent” and “dependent”
variables, because all too many variables are interdependent. Causal direc-
tion may vary. Sometimes the existing number of teachers affects literacy,
and sometimes existing literacy affects the number of teachers. An exist-
ing party system may strongly affect the choice of electoral system, but
later the electoral system preserves the party system. The terms “input”
and “output variables” indicate their respective roles in the moment’s
context, without passing judgment on some inherent dependence or
independence.

Ideal Gas Law and Engineering Freshmen

To continue with model building methodology in the abstract would suit
people who already have a feel for what it means. But quantitatively
predictive logical models are novel to many social scientists, so their
use needs substantive illustration. Therefore, the next chapter addresses
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a specific problem: electoral volatility. A more abstract presentation of
model building methodology continues later on (Chapter 8).

A warning is due. The reader may at first have great reservations about
the approach proposed in the next chapter, be it for volatility or for any
other social science issue. I can empathize because I remember my first
exposure to logical models. It came in Walberg Building of Chemical
Engineering, University of Toronto. We were 84 freshmen. The profes-
sor presented a simple model that led to the aforementioned Boyle’s
law. We looked at each other in bewildered disbelief. Some laughed,
nervously. This was ridiculous! Molecules were reduced to spheres of
zero volume and diameter, yet they had mass. They bounced randomly
off one-dimensional walls. The ideal gas law did emerge, but the pro-
cedure looked fake, contrived somehow to reach a previously known
conclusion.

What did we expect? At secondary school, we had accepted PV = RT
as inherited wisdom. We had been told that it agreed with empirical
measurements—well, to a degree, as real gases lead to somewhat different
outcomes. We were satisfied with these assurances and did not ask for
a more reasoned foundation. But if, nonetheless, we were given what
pretended to be a logical justification, we expected something more com-
plex. It could not be so ridiculously simple, with simplicity bought at the
expense of making patently unrealistic assumptions, such as zero-volume
spheres in a one-dimensional world!

How did we gradually come to accept it? Right away, van der Waals
adjustments were added to the ideal gas law, granting volume to mole-
cules, etc. This went beyond secondary school physics. We came to see
how relatively small adjustments could turn the law for ideal gases into
something that looked more realistic as a model and fitted many actual
gases in practice. This way, we slowly began to grasp the predictive power
of a method that dared to start from a situation simplified to an unrealistic
degree and then added further realistic features only gradually.

Two less commendable considerations helped us to accept the method.
First, we knew that what we were taught was the authoritative method in
physical sciences. If one did not accept it, one would have to drop out or
become a closet dissident. Second, even the van der Waals adjustments
made our calculations so much more laborious (this was precomputer
age!) that we came to appreciate the practical advantages of keeping our
models as simple as possible—the simplest we could get away with and
still make some predictions. The context is quite different in today’s social
sciences. The logical model approach is as yet far from authoritative,
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and computer programs reduce the urge to keep things simple. If com-
puters had existed in year 1600, the traditional Ptolemaic circles moving
along circles may have competed with the new-fangled Keplerian ellipses
indefinitely.

The model to be presented next has none of the importance of the
ideal gas law. It was chosen as an example because of its simplicity. Still,
it has the same ingredients I encountered as a freshman. Furthermore,
the refined model presented thereafter faintly echoes the van der Waals
adjustments, in the sense of making the coarse model slightly more
realistic—and more involved mathematically.
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Example of Model Building:
Electoral Volatility

� The foremost mental roadblocks in predictive model building are
refusal to simplify and reluctance to play with extreme cases and their
means. These roadblocks have little to do with mathematical skills.

� “Ignorance-based” models focus on conceptual constraints and extract
the most out of near-complete ignorance. They ask: What do we already
know about the situation, even before collecting any data?

� Eliminate the “conceptually forbidden areas” where data points could
not possibly occur.

� Locate the conceptual “anchor points” where the value of x imposes a
unique value of y.

� Once this is done, few options may remain for how y can depend on
x—unless you tell yourself “It can’t be that simple.”

� Dare to make outrageous simplifications for an initial coarse model,
including as few variables as possible. Leave refinements for later sec-
ond approximations.

� A low R2 may still confirm a predictive model, and a high one may
work to reject it.

This chapter develops a quantitatively predictive logical model for a
specific issue—volatility of voters and its conceivable dependence on the
number of parties that run. Why this particular topic? It so happens that
here the model is mathematically very simple, at least in first approxi-
mation. Indeed, this is one of the relatively few cases where the model
has the linear form so familiar to social scientists. Thus, the reader’s
attention can focus on model-building skills, without being distracted
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by a possibly unfamiliar mathematical format. This is important for
countering the impression that model-building skills are largely math-
ematical. A good grasp of high school and college mathematics helps
of course, but many skills and mental roadblocks in model building are
elsewhere.

A coarse approximate model is constructed first, expanding on an ear-
lier shorter version (Taagepera 2007b). A second approximation follows,
leading to a more refined model. Some broad contrasts emerge between
predictive and descriptive approaches.

Constructing a Coarse “Ignorance-Based” Model

Volatility (V) stands for the percentage of voters who switch parties from
one election to the next. When more parties run, voters have more
choices for switching. Hence, if the number of parties (N) has any effect
on volatility of voters at all, it should be in the upward direction. In
mathematical terms, we would expect dV/dN > 0. This is a directionally
predictive logical model.

A technical side issue is how to measure the number of parties when
some are large and some are small. Here, the effective number of com-
ponents is used: N = 1/”(v2

i ), where vi is the fractional vote share of the
ith party (see Taagepera 2007c: 47–64). Since we compare two elections,
N should be taken as the average N at these two elections, assuming that
these are not excessively different.

Another side issue concerns the occasional voter. Voters may switch
parties, but they also may switch to not voting at all. For simplicity, we
first omit the “party of nonvoters.” We can make it more complex later
on.

The first mental roadblock in model building may set in at this
point: refusal to simplify. Ah, the reader may say, you are naive or cheating.
You ignore the hard reality that there are always people who sometimes
vote and sometimes do not. In the words of a critical journal referee
regarding a different topic: “I am skeptical that there is much value of
operating at such a high level of generality. Huge amounts of real-world
variation are consigned to nowhere.” Actually, model building consigns
them to a much better place, namely the next-level analysis. Making
things complex is easy; the challenge is to simplify, to ferret out the
essential. This is what Occam’s razor is about. Galileo’s study of falling
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bodies would have gotten nowhere if he had worried about feathers right
from the beginning. He did not ignore feathers but consciously put them
aside for a while. Note that reluctance to simplify has nothing to do with
mathematical skills.

So we have the directional model dV/dN > 0. What should we do next?
This may look self-evident to many social scientists. Collect data, run
a linear regression V = a + bN, and see whether the slope dV/dN = b is
positive. If it is, the directional model is confirmed. Report the numerical
value of slope b, its level of significance, correlation coefficient R2, and
possibly also intercept (a). Case closed. But hold it.

Are the resulting numerical values of a and b in a reasonable range,
or are they surprisingly high or low? Such questions are rarely asked in
today’s social sciences, where the attitude tends to be that what is, is. Is
not science about finding out what the world is like, leaving what it should
be to religion? Right? Wrong.

Recall that science is very much about what should occur when some
inevitable or plausible assumptions are made. Science is about such logical
consequences. Of course, the expected outcomes must face a reality check.
This is when data collection and statistical analysis enter, at a later stage.
Let us first ask: What do we already know about volatility and parties, even
before collecting any formal data?

The first response might be that, without data, we know nothing.
But this is not so. We often take some of our knowledge so much for
granted that we do not even realize how much we know. Teasing the
most out of what we know can lead to a quantitative model that is
based on near-complete ignorance, yet is of considerable predictive value.
For short, I have called such models “ignorance-based models” (Taagepera
1999b).

The first step in constructing quantitatively predictive models often
echoes the aforementioned advice by Sherlock Holmes: Eliminate the
impossible, and a single possibility may remain—or at least the field is
narrowed down appreciably. As a starter, delineate the field in which data
points could not possibly lie.

Volatility cannot be less than 0 or more than 100%. The number of
parties (N) cannot be less than 1. These conceptually forbidden areas are
shown in Figure 4.1, where volatility is graphed against the number of
parties. All this may look so obvious as not be worth three sentences, but
it has consequences that are not so obvious. At this point, we assume that
at least one party obtains some votes in both elections. This restriction
excludes from consideration the unlikely situation where a single party
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Figure 4.1. Individual-level volatility of votes vs. effective number of electoral
parties—conceptually forbidden areas, anchor point, and expected zone

has all the votes in one election but loses them all to a brand new party
in the next election.

Next, observe that there is a conceptual extreme case. Suppose only one
party runs at the first election, and only the same party runs at the next
one. This means that N = 1, and switching to another party is impossible.
Hence, volatility must be 0. This point (N = 1, V = 0) is marked in Figure
4.1 with a black triangle. It is a conceptual anchor point. At N = 1, even a
slight deviation of V away from 0 would violate logic.

A second mental roadblock may enter here: reluctance to play with
extreme cases that rarely or never arise in practice. One may argue that
talking about one-party elections is beside the point, because democratic
countries always have more than one party running. Logical models,
however, must not predict absurdities even under extreme conditions.
Again, this mental roadblock has nothing to do with mathematical
skills.

If V increases with N, our simplest tentative assumption could be linear
increase: V = a + bN. But the anchor point adds a constraint. All acceptable
lines must pass through the anchor point. For N = 1, we must have V = 0.
Plugging these values into V = a + bN yields 0 = a + b, so that a = −b. This
means that, among the infinite number of upward sloping straight lines,
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only those will do where the intercept equals the negative of slope:

V = −b + bN = b(N − 1).

Without any input of data, the conceptual anchor point approach
has already narrowed down the range of possibilities. Instead of two
unknowns (a and b), we have only one. This is a tremendous advance
in parsimony.

Now we move to shakier grounds. Consider a high effective number of
parties, say N = 6, which is rarely reached. The reader may share a gut
feeling that even with such a high number of parties to choose from, not
all voters will switch parties. If so, then V = 100% at N = 6 would be a
highly surprising outcome, although it is not conceptually impossible. The
line V = b(N − 1) that passes through this point is shown in Figure 4.1.
It requires that 100 = b(6 − 1); hence b = 100/(6 − 1) = 20. Thus, the equa-
tion of this line is V = 20(N − 1). Any data point located above this line
would be highly surprising, although we cannot completely exclude the
possibility, in contrast to the conceptually forbidden areas. Hence, this
zone is marked as a surprise zone in Figure 4.1.

So V = 20(N − 1) is about the highest value of V that would not utterly
surprise us, at given N. Do we also have a lowest value? We do not. Even
with a very high number of parties, it is still conceivable that party loyalty
of voters could be complete. Thus, no limit higher than V = 0 can be
proposed, meaning a horizontal line in Figure 4.1.

Without any real data input, we have now narrowed the reasonably
expected zone of occurrence of data points to the cone between the lines
V = 20(N − 1) and V = 0. In the absence of any other knowledge, we have
no reason to expect the actual line to be closer to either of these two
extremes. Therefore, our best guess would be the average of the likely
extremes, meaning V = 10(N − 1). This line is also shown in Figure 4.1.

A third mental roadblock may enter here: reluctance to take the mean
of the extremes. Suppose N = 4. Then V = 20(N − 1) yields V = 60 while
V = 0 yields 0. This is an awfully wide range. How could we assert that V =
10(N − 1) = 30 is more likely than any other number between 0 and 60?
Is it not time to acknowledge that “We just do not know”? This would be
a mistake. We still do know something. Our best “minimax bet” would
be the mean of the extremes. The central values within the range would
surprise us less than the extremes. True, the mean slope b = 10 actually
stands for b = 10 ± 10, which implies a huge range of possible error. Still,
this entire range of b, from 0 to 20, means a considerable reduction in
possibilities, compared to the directional model “I’ll accept any positive
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slopes.” Once more, reluctance to use the mean of the extremes has little
to do with the mathematical skills needed for calculating the mean.

Testing the Coarse Model

Before resorting to any data, we have reached a predictive model based on
near-complete ignorance:

V ≈ 10(N − 1).

Compared to the directional model dV/dN > 0, this one predicts volatility
much more specifically. If we ask “What volatility would you predict when
N = 4?” the directional model dV/dN > 0 would answer: “Any positive V
will do.” Such a model is bound to be right, but its predictive value is nil
because it covers too much ground. It is a qualitative model—or a semi-
quantitative, if you really stretch it. In contrast, the model V = 10(N − 1)
would answer: “V will be roughly around 30.” This prediction may be
off by ±30, upon testing with data, but it does offer a specific value. In
this sense, this is a quantitatively predictive model. It is not “deterministic”
in the sense of claiming that all data points will fall on the specific
line. It rather expresses the expectation that about one-half the points
will fall above and about one-half of the points will fall below the line
V = 10(N − 1).

In sum, this model makes two distinct predictions, one very precise and
the other quite fuzzy:

1. If any straight line fits at all, the prediction a = −b is absolute,
due to respect for the conceptual anchor point. When regression
with V = a + bN is carried out, this model predicts that the two
adjustable constants/coefficients will have exactly the same numer-
ical value, with changed sign. If the values of b and −a differed
appreciably, it would sink the model, the more so if R2 is high. On
the other hand, if they pretty much agree, then we really should
repeat the regression with V = b(N − 1), which respects the anchor
point and has only one adjustable coefficient, rather than with
V = a + bN, where a and b can vary separately, ignoring the anchor
point.

2. The prediction that slope b would be around 10, in contrast, is
extremely fluid. It means: “If you force me to guess at a specific
number, I would say 10.” Even values appreciably different from 10
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would not impair the basic model. They would just help to specify
the numerical value of b, to be plugged into the model V = b(N − 1).

Only at this stage would we need some data, so as to test the predictions
a = −b (exactly) and b ≈ 10 (approximately). But we do not yet need
to run a regression. All we need is the mean N and mean V for a set
with many data points. Plug these means into V = b(N − 1), and b is
determined as b = mean V/(mean N − 1). We will see how close b is to 10.
For the first and crucial prediction, we will have to regress with V = a + bN
and see whether a/b = −1, say within ±0.1.

A uniform data-set is available from Oliver Heath (2005), for state-level
elections in India (1998–99). Many parties competed in some of these
states, while few did in some others. Mean N = 3.65 and mean V = 31.6
lead to b = 11.9, a result within 20% of our very coarse expectation of 10.
This input of still limited information (mean N and V only) enables us to
predict more precisely that

V = −11.9 + 11.9N.

The actual best fit reported by Heath (2005) is

V = −9.07 + 11.14N [R2 = 0.50].

At N = 1, it would yield V = 2.07. On a 0–100 scale, this is rather close
to the conceptually required V = 0. The ratio a/b = −9.07/11.4 = −0.80 is
within 20% of the conceptually required value, −1.00. The scatter of data
around the best-fit line is appreciable, and the R2 for V = −11.9 + 11.9N
is almost as high as it is for the best-fit line. Therefore, the difference may
well be due to random fluctuation in data. The quantitatively predictive
model V = b(N − 1) is confirmed within ±20%, with b specified as 11.9
rather than the initial estimate of 10. For most practical purposes, this
would be close enough.

Refined Ignorance-Based Model

It may look quite impressive how close our predictive model came to
the descriptive best-fit line. This model, however, involves a conceptual
flaw, right from the beginning. For simplicity’s sake, we assumed a linear
increase, which led to V = b(N − 1). The attentive reader may have noticed
that any such upward line would project to a volatility of more than
100% for a sufficiently high number of parties. When V = −11.9 + 11.9N,
it would surpass 100% whenever N > 9.34. True, hardly any party systems
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have such a high effective number of parties, but remember: “Predictive
models must not violate logic even under extreme conditions.”

So we will have to refine the model. We must avoid predictions that
extend into the forbidden area V > 100. This refinement requires some
facility with exponential equations. A quick overview of the latter is given
in the Appendix to Chapter 8. Some readers may wish to bypass the next
section and simply accept its results.

This is the point where elementary school mathematics no longer
suffices. The wonder is how far we have proceeded with little beyond
arithmetic. Possible mental reservations against this approach have little
to do with mathematical skills.

As an output variable approaches a conceptual ceiling, further increase
in the input variable that drives it finds it ever harder, so to say, to achieve
any further increase. The simplest way to express this extremely general
phenomenon mathematically is dy/dx = k(C − y), where C is the ceiling
value for y, and k is an adjustable “rate constant” (see Chapter 8 for
more details). This “differential equation” says that further increase in y is
proportional to the remaining distance between y and the ceiling. Integra-
tion leads to a nonlinear equation: y = C[1 − A e−kx]. It is an exponential
equation where A is a constant that depends on the initial conditions.
This equation applies, among others, to the amount of a new element
produced by radioactive fission, over time x. The ceiling is imposed by
the initial amount of fissionable material.

Now consider volatility. At a large number of parties, a further increase
in the number of parties can be expected to become ever less efficient
in inducing further volatility. The general exponential equation becomes
V = 100[1 − A e−kN], where the anchor point V = 0 at N = 1 requires that
1 − A e−k = 0 and hence A = ek. The result is

V = 100[1 − ek e−kN] = 100[1 − e−k(N−1)].

How could such a predictive model be tested? It would be inappropriate to
use straight linear regression, which would return us to the coarse linear
model. However, the nonlinear equation above can be transformed into
linear by transposing and taking natural logarithms:

ln
(

1 − V
100

)
= −k(N − 1).

This means that linear regression against N must be carried out on ln
(1 − (V/100)), not on V itself.
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In the case of Heath’s data (2005) for state-level elections in India,
the rate constant k can be calculated by plugging in the mean N (3.65)
and the mean ln(1 - (V/100)). The latter is around −0.384, by my rough
calculations. For these means, k = 0.384/(3.65 − 1) = 0.145, so that the
model predicts

V = 100[1 − e−0.145(N−1)].

How Precisely Can the Number of Parties Predict Volatility?

Figure 4.2 shows the data points (from Heath 2005) and the curves for
the exponential model, the coarse linear model, and the empirical linear
fit. The latter two models pass by definition through the point of mean
N and V. The exponential curve does not but comes close, because
the mean ln((V/100) − 1) corresponds to V = 31.9, close to the mean
V = 31.6 Above this point, the empirical linear fit lies between the two
models. At lower values, the three curves can hardly be distinguished.
With this degree of data scatter, all three approaches yield about the
same R2.

It can be seen from Figure 4.2 that the coarse model works about as well
as the refined one throughout the usual range of volatility. Hence, we can

V = 100(1− e−0.143(N −1) )

V = 11.9(N
−1)

V = −9.07+11.14N
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Figure 4.2. Individual-level volatility of votes vs. effective number of electoral
parties—data and best linear fit from Heath (2005), plus coarse and refined pre-
dictive models
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use the simpler model, as long as we keep in mind its limitations. This is
a general observation: One must be aware of the refined model, so as to
know when a simplification can be used. In physics, classical mechanics is
more convenient to handle than the relativistic, and it does well, as long
as speeds fall much short of the speed of light. For volatility, the coarse
model is more convenient and does well, as long as there are effectively
less than five parties.

It would be simplistic to expect that the effective number of parties
alone fully determines volatility. Numerous other factors obviously enter.
Therefore, the precision of the model should not be exaggerated. While
11.9 is the slope in the coarse model that happens to fit the Indian
data, we should round it off to 12 for the purpose of broader worldwide
prediction, and introduce a likely error range (ε):

V = (12 ± ε)(N − 1).

How large a range of fluctuation could we expect? If we estimated the
slope b on the basis of a single individual state in India, the results could
range from 1.4 to 21.4, meaning 12 ± 10. For many elections under roughly
the same conditions, a coarse rule of thumb would suggest an error equal to
the square root of 10, which is about 3. Thus, my prediction for the range
of average slopes in other countries is

V = (12 ± 3)(N − 1),

provided that India’s political culture corresponds to an average tendency
of voters to switch parties. The Indian voter is reputed to be unusually
prone to change parties, but this impression may arise from the rather
large number of parties available.

How does this outcome differ from the descriptive linear regression
equation, V = −9.07 + 11.14N? The quantitatively predictive model could
in principle have been devised prior to any input of data. This means
that it is not specific to India—it is expected to apply to all countries,
albeit with a wide range of error. The Indian data just helped specify
the slope b and verify that a/b = −1.00. The equation V = (12 ± 3)(N − 1)
makes a universal quantitative prediction, with a specified range of likely
variation.

In contrast, the regression equation deals solely with a particular set
of Indian data. It offers the best fit to these data, with several deci-
mals. It is the best way to postdict for these data—but for these data
alone. Of course, it is a useful starting point for pondering the broader
implications of the parameter values obtained. One could have done
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Table 4.1. How does the number of parties (N) affect volatility (V )?—predictive and
descriptive approaches (modified from Taagepera 2007b)

Predictive Descriptive

Incipient model: V = f (N), dV /dN > 0 Incipient model: V = f (N), dV /dN > 0
How might things connect? Do not prejudge, beyond asking “Is dV /dN > 0?”
1. Limits, and anchor point V (1) = 0. Get data!
2. (N − 1) switching options → try V

proportional to (N − 1)
Run regression

3. High slope unlikely → b < 20 Report regression equation: V = 11.14N − 9.07
Quantitatively predictive model:

V = bN − b; 0 < b < 20 → b ≈ 10
Hypothesis dV /dN > 0 proven

Gather and transform data in the light of
the model: mean N and
V → V = 11.9N → 11.9

No further prediction to test

Test the predictive model with data: →
close agreement. Could have been
appreciably off, but did not

Any coefficient values are accepted

the regression first, observe that |a| = 9.07 and b = 11.14 are remarkably
close, and wonder whether there might be some logical reason for it.
This is how I reacted upon seeing the analysis by Heath (2005), and
the coarse model immediately took shape. Unfortunately, social scientists
who deal with regressions all too often neglect such follow-up. Hence,
they stop short of extracting the quantitative maximum out of their
results.

Why would social scientists limit themselves to confirming merely the
direction of impact (dV/dN > 0, in this case) when they also measure
and publish its quantitative extent? One of the reasons may be that
automatic fitting with V = a + bN introduces two distinct parameters, a
and b, which makes comparison of data-sets hard. Seemingly, one would
have to compare both slopes and intercepts. Here, the quantitatively
predictive model simplifies comparisons by indicating that one parame-
ter alone should suffice to characterize the relationship in various party
systems.

The Main Contrasts Between Predictive
and Descriptive Approaches

Table 4.1 reviews the main contrasts between the predictive and descrip-
tive handling of the sample problem, volatility. Beyond the incipient
directional model (dV/dN > 0), the descriptive researcher would proceed
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immediately to data analysis. The predictive model builder would ask:
Can we make the model more specific? How might things connect logi-
cally?

Following the Sherlock Holmes principle of eliminating the impos-
sible, the predictive model starts by specifying the boundary condi-
tions. It then considers further logical constraints, which leads to a con-
ceptual anchor point. A number of simplifying assumptions may have
to be introduced at this point. Next, one may look for the simplest
equation that satisfies all logical constraints. Predictive models rarely
can be linear without violating some boundary conditions, but linear
approximations can be used, as long as one specifies their range of
applicability.

The next step often concerns the plausible range of values of coefficients
and constants in the model. Not just any positive values of slope b are
acceptable in this case. So a range is established, such that values out-
side this range would surprise us. Given nothing but such a range and
asked to guess at b, our best minimax bet would be the mean of the
extremes.

Now, and only now, do we have to enter limited data into the predictive
model, although we can enter data earlier, too, to inspire and guide model
construction. Merely inserting the mean values of N and V leads to a
full predictive model. Here, the numerical value of the single coefficient
derives from this minimal data input, while the format is based on rea-
soning alone. Only past this stage would detailed data enter, for testing
the predictive model through regression. In general, models must first be
transformed into a linear form, before linear regression makes sense, but
here the coarse model already is linear.

Heath (2005) exemplifies well the descriptive approach to the same
issue, asking merely: “Do multiparty systems have higher levels of volatil-
ity than two-party systems?” The conceptual model is limited to this
cautious question about the direction of impact. Linear regression imme-
diately follows. The format used, V = a + bN, is not based on the specifics
of the issue on hand. Linear regression is just what many social scientists
tend to apply automatically to any relationship—it is a Pavlovian reflex.
No expectations are voiced about how steep or shallow the slope might
be, or what value the intercept might have. The numerical values in
the regression equation derive fully from the data and from nothing
else. Coming after data analysis, this equation represents a postdictive
model.
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Figure 4.3. Individual-level volatility of votes vs. effective number of electoral
parties—truncated data (from Heath 2005) and two models that fit the data and
the anchor point

Can Data with Low R2 Confirm a Model?

For descriptive (or directionally predictive) models, the answer is “no,”
because data are all there is. Any slope b in the regression equation y =
a + bx is accepted, as long as the sign of b is right. The only concern is
how closely the data points crowd along the regression line. If R2 is low,
one has nothing.

Such a situation is illustrated in Figure 4.3. The data shown in Figure 4.2
has been truncated by omitting the one point with the highest and the
four points with the lowest number of parties. Visibly, the best fit line
now is almost horizontal. The slope might be slightly negative or positive,
and R2 is below 0.1. As far as descriptive analysis is concerned, all one
could do is to report no correlation between V and N, and that is the end
of it.

The outcome is quite different when we use the same data to test the
predictive model V = b(N − 1), where we expect a slope around 10. The
new mean values of N and V are 3.87 and 35.3, respectively (as compared
to 3.65 and 31.6 with the full data-set). The new estimate of slope is
b = 35.3/2.87 = 12.3, hardly different from the previous 11.9. The expec-
tation that slope is around 10 is confirmed, regardless of the low value of
R2. It would be nice to obtain a high correlation coefficient, but this is
hardly essential.
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It does not mean that the model V = b(N − 1) is equally well confirmed
by the truncated data-set as by the full one. The difference between
R2 ≈ .1 and R2 = .50 still matters. Suppose someone makes a logical argu-
ment for a square root model, V = a(N − 1)0.5. Such a model is shown
in Figure 4.3, along with the linear. It is fitted to go through the mean
point, and it respects the anchor point (1;0). The truncated data could not
discriminate between the two models, while the full data-set fits the linear
model better. While not able to give preference to the linear model, the
truncated data-set would still confirm that this simple model is plausible,
until proven otherwise. It would take a much higher R2 to discriminate
between the linear and exponential models in Figure 4.2.

What distinguishes the predictive approach from the descriptive, in the
context of Figure 4.3, is that the descriptive approach has nothing but the
10 actual data points at its disposal. When these points show no pattern,
we effectively have a single point with some scatter around it. This is the
data configuration in Figure 4.3. In contrast, the predictive approach adds
the virtual data point at N = 1, V = 0. This addition of the anchor point
may look weak, in the absence of real data at this location. Actually, it is
extremely strong and precise, given our certitude that if we should ever
get data points where N = 1.00, then every single one of them would have
V = 0.00, with no margin of error.

Thus, even when R2 = 0 for the actual data points, the predictive
approach has not one but two very distinct points at its disposal, and two
points determine a line. In the absence of any further knowledge, we can
use this line as a first approximation for a predictive model. It would be
less than optimal to refuse to do so and say “We cannot predict anything”
when we actually can—within a margin of error. The extent of the scatter
of points in Figure 4.2 (or 4.3) gives us an idea about the extent of possible
error.

Actually, there is a situation where one might be happier with a lower
R2 (cf. discussion of Figure 3.2). This is when the best fit curve deviates
from the predicted. In such a case, more scatter would leave more hope
that further data might bring the observed pattern closer to the expected.
This would be so only from the viewpoint of trying to preserve the
existing model. There may be no need to preserve it. A high R2 around an
unexpected curve offers valuable guidance for adjusting the model.

In sum, there are more important considerations than high R2, if one
wants to make sense of nature. R2 indicates by how much a regression
equation accounts for some variance in y for given x, in a statistical sense.
However, a high R2 alone does not explain anything in a substantive sense
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that would allow prediction for other data-sets. It is nice to have a high R2

(provided the best fit curve agrees with the model), but even a scattered
data cloud does not sink a predictive model predicated on anchor points
far away from the data cloud. A low R2 may just indicate that the observed
range of the input variable is too narrow to bring the trend into evidence,
against a noisy background. One should then try to find ways to extend
the range over which the model is tested.

On a broader note, data are not sacrosanct. They may be systematically
distorted by some pervasive factors not included in the model, like the
effect of gravity is by air friction. Or the data may not refer to the concept
in the model but to a related, yet distinct concept. If one has a logically
well-founded model, the first reaction to contradictory data might well be
“Damn the data, full speed ahead!” One can sometimes outrun torpedoes
and data. Later, of course, more suitable data must be located. Chapter 13
elaborates on this issue.

Some General Features of Constraint-Based Models

Quantitatively predictive logical models can at times be constructed prior
to any input of data. Most often, however, some initial data inspire or
guide model building, although these data might be much more limited
than what would be eventually needed for serious testing. Oftentimes,
even a cursory graphing brings out a pattern that makes one ask “Why?”
This is the way the graph of volatility versus number of parties in Heath
(2005) made me look for the reasons behind the regularity observed.

In building models, our choices are constrained in a highly constructive
way by conceptually forbidden areas, where no data points can exist, and
anchor points, through which the expected average curve must pass. The
scientific quest for relationships need not establish that nature or God has
chosen one particular form; it often suffices to show that any other choice
would run into contradictions. Entering a forbidden zone or missing an
anchor point would be among such contradictions. Let us review how
such considerations entered the model for volatility.

1. Use boundary conditions, ceilings, and other logical constraints;
establish anchor points.

2. Look for the simplest set of equations that does not violate the logical
constraints.
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3. Wonder about the possible range of values of coefficients and con-
stants. Some limits are firm, while some are fluid. It may look unsci-
entific to use such vague limits, but the reverse is true: It is not
good science to ignore obvious limitations just because we cannot
pin them down with two-digit precision. They still exist.

4. Use the means of data to estimate some coefficients in the predictive
model. This step goes beyond dataless prediction but still precedes
regression.

Continuity

The notion of continuity has been implicitly linked here to that of anchor
points. In macroscopic natural or social phenomena, a small change in
x mostly brings a small change in y. This means that the path from
one anchor point to another (or to a conceptual ceiling) must form a
continuous curve. Discontinuities do occur, for example, in aerodynamic
theory (at speed of sound) and in utility theory. However, they are rather
rare in macroscopic phenomena. At the microscopic level, the seemingly
continuous electric current consists of discrete electrons and water flow
has discrete molecules, but for large quantities of such particles, the micro-
level granularity can be overlooked. Similarly, an electorate consisting
of discrete voters can be treated as a continuous quantity, as long as
there are thousands of them. One has to be cautious, of course, of not
inadvertently stepping into territory where “granularity” can make a
difference.

Note that the presumption of continuity applies to much of statistics as
well. We presume quasi-continuity whenever we try to fit a distribution
of discrete entities by a smooth normal curve (or other continuous curve),
rather than as a discontinuous histogram.

Changes in slope (dy/dx) also tend to be continuous, and the same
goes for the “slope of the slope” (d2y/dx2) and the higher deriva-
tives (dny/dxn). Moreover, the curves are expected to go monoton-
ically up or down (dy/dx > 0 everywhere or dy/dx < 0 everywhere),
unless there is a reason for reversal. If the data should present an unex-
pected kink in the pattern, the data should be checked. If the kink
remains, the underlying reason must be discovered and worked into the
model.
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Conclusions

This specific example has introduced terms like forbidden areas, anchor
points, and ceilings. It has illustrated the differing significance of the
degree of correlation (R2, in particular) when data is all we have (descrip-
tive models) and when we also have a predictive model that goes beyond
predicting directionality. Chapter 8 presents such notions in a more
systematic form. Of course, a constraint-based approach is not the only
one to building logical models. Chapter 11 expands into various model-
building methods that were not needed in the specific case of volatility.

Appendix to Chapter 4

Further Refinements and Aggregate Volatility

Further improvement in predicting volatility may go in several directions. Data
may be improved, addressing the “party of nonvoters” and the sticky problems
that arise from party splits and fusions. Further input variables may be introduced.
If further factors appreciably reduce the remaining variation in volatility, it may
turn out that volatility’s relationship to the number of parties deviates significantly
even from the exponential model. In this case, one would have to review both the
way the number of parties is measured and the way it could interact with volatility.

The term “interact” is used here on purpose. Up to now, we have proceeded as if
causality were one-directional, the number of parties affecting volatility. This need
not be so. Those who consider forming a new party may be encouraged if they
know that voters are highly volatile and may easily switch to a new party. Thus,
volatility may indirectly affect the number of parties.

Could further work show that some other factor is actually more important than
the number of parties? Heath (2005) found that the number of parties accounts for
one-half of the variation in volatility (R2 = .50). This suggests that we have pinned
down the major determinant of volatility, or at least one of two major ones, as
no other single factor can account for more, unless it is a factor that affects the
number of parties and also affects volatility directly.

All previous models refer to individual level volatility (VI ). This can be deter-
mined only by exit polls where voters are asked their present and previous party
preference—and hope that the answers fit the facts. It is much easier to determine
the aggregate volatility (VA), based on how the vote shares of parties change from
one election to the next. This is a lower number than VI , because voters switching
from party B to party C and vice versa may cancel out. It may also be of more
interest. How could we estimate VA?

In principle, aggregate volatility could range from 0 (full cancelling out of
individual shifts) to VI (no cancellation at all). Hence, it can be expected to be
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around one-half of the individual volatility, on the average. On the strength of
the model for VI and the value of slope constant b = 12 specified by the Indian
individual volatility data, we can presume that the slope would be around 6 in a
coarse model for aggregate volatility, as long as N remains moderate:

VA ≈ (6 ± 1.5)(N − 1).

When initially constructing this model for aggregate volatility, I desisted from
collecting any data. This way, it would truly represent a purely theoretical quanti-
tative prediction regarding aggregate volatility, derived from data on individual
volatility. Since then, Mainwaring and Torcal (2006) have reported aggregate
volatility figures that lead to slopes ranging from 2 to 7 in the case of stable
democracies. The slope can reach 15 in early elections in new democracies.
Full testing remains to be done. Then we will now how close the prediction
above was.
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Physicists Multiply, Social Scientists
Add—Even When It Does Not Add Up

� Most physics equations include few variables, which multiply or divide.
In contrast, regression equations favored in social sciences often have
many variables in additive–subtractive strings, with division almost
unknown.

� Most physics equations include at most one freely adjustable constant,
which has a substantive interpretation. Regression equations have more
freely adjustable constants/coefficients than variables, and these coeffi-
cients lack substantive interpretation.

� Physics rarely offers alternate equations for the same phenomenon,
with a different set of input variables and constants. This is frequent
in regression analysis as practiced in social sciences.

� Physics expressions avoid inconsistencies and absurdities even for
extreme cases. Social scientists often accept them.

� Physics equations are presented with prediction in mind. Tables of
regression coefficients in social sciences reflect postdiction and often
preclude even that.

� Physicists specify likely error ranges on predictions and present only
meaningful decimals. Social scientists report correlation coefficients
and often print meaningless decimals.

� Physics equations are reversible and transitive. Standard regression
equations are unidirectional—different equations lead from y to x and
from x to y. They are also nontransitive—regressing y on x and then z
on y differs from regressing z on x directly.
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� Hence, physics equations can form interlocking networks to join vari-
ables in a unique way, while standard regression equations cannot.

Physics and social sciences differ appreciably in typical mathematical
format used for describing regularities. It has implications for what is
considered a publishable result. This chapter describes the differences in
format. The next two chapters point out how it affects falsifiability and
even the very meaning of “results.”

Table 5.1 shows the 20 “greatest equations ever” in physics (Crease
2004), based on an inquiry to which 120 readers of Physics World
responded. They considered simplicity, practicality, and historical rele-
vance for advancement of science. These top equations range from as
simple as 1 + 1 = 2 to Fourier transforms. Josep Colomer (2007) observes
that physics has traditionally been “the model” for economics, which in
turn has been a widely applauded model for other social sciences. Hence,
“This list of physics equations can be taken as a benchmark to identify
crucial properties of mathematical formulae that should also be found in
other disciplines with similar scientific ambition” (Colomer 2007). The

Table 5.1. The 20 equations voted the most important for physics
(Crease 2004), by rank

Euler’s equation ei  = −1
Maxwell’s equations ∇.D = Ò, ∇.B = 0, ∇ × E = ∂B/∂t,

∇ × H = ∂D/∂t + J
∗Newton’s Second Law F = ma
Pythagorean theorem a2 + b2 = c2

Schrödinger’s equation Hÿ = Eÿ
∗Einstein’s equation E = mc2

Boltzmann equation S = k ln W
One plus one 1 + 1 = 2
Principle of least action ‰S = 0
∗DeBroglie’s equation P = h/Î

Fourier transform F (x) = f (k)e2kx dk
∗Einstein’s general theory of relativity GÏÌ = 8GTÏÌ
∗Circumference of a circle C = 2r
Dirac equation i „∂ÿ = mÿ

Riemann zeta function Ê(s) = �[ps/(ps − 1)]
∗Hubble’s Law v = H0d
∗Simplest ratio a/b = c/d
∗Ideal gas law PV = nRT
Balmer series 1/În = R [1/22 − 1/n2]
∗Planck’s equation E = hÌ

Asterisks mark the ones that follow the pattern y = a�xbi
i .
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following expands on his observations as well as a conference paper of
mine (Taagepera 2005a).

Multiplication–Division Versus Addition–Subtraction

Nine of the 20 equations in Table 5.1 follow a common mathematical
format: Any variable can be obtained by multiplication/division of one
or more other variables, possibly multiplied by a constant. This general
format is y = a�xbi

i , where � stands for “product,” the exponents bi are
integers or simple fractions (mostly 1, 2, and 1/2), positive or negative,
and a is a constant. When reduced to basic dimensions (length, time, etc.),
only integer values ranging from −4 to +4 remain (Krantz et al. 1971: 455).
The remaining 11 equations in Table 5.1 follow no common format. Thus,
while y = a�xbi

i is by no means the only format, it is the most salient one.
This multiplicative format implies a linear format for the logarithms of

the variables: log y = log a + ”bi log xi . While log a can have any value, the
values of bi are largely limited to ±1, ±2, ±1/2, and mathematical con-
stants such as . The implications of this major restriction are discussed
in a later section.

In contrast, the most prevalent quantitative format in today’s social
sciences is linear regression of input variables, either directly as ordinary
least squares (OLS) or after a standard transformation such as probit or
logit. Factor analysis also maintains an essentially linear character. The
general format is y = a + ”bi xi , where a is usually called “the constant”
or “intercept,” while the bi are called “slope,” “coefficient,” or simply
“b.” Any values of bi can occur and are usually accepted, in contrast to
the limited options for bi in log y = log a + ”bi log xi that follows from the
multiplicative format.

To visualize the difference, compare the universal law of gravitation,
F = GMm/r 2 (cf. Chapter 2) with a typical outcome in social sciences:
s = 12.906 − 0.477V0 + 1.172E + 8.680I . The latter is the Baseline Model in
a study of presidential accountability (Samuels 2004) that I will use later
(Chapter 16) as an example of how existing descriptive research can be
upgraded to predictive. Here s is vote swing for the incumbent’s party, V0

is its percent vote in previous election, E is percent change in GDP/capita,
and I is a dummy variable that depends on whether the incumbent presi-
dent runs for reelection. The gravitation equation assumes a broadly simi-
lar form when logarithms are taken: log F = log G + log M + log m− 2 log r ,
but here all the slope coefficients are small integers.
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Among the aforementioned 20 physics equations, addition occurs
explicitly in 1 + 1 = 2 and a2 + b2 = c2, and implicitly at least in Maxwell’s
equations (compacted sums of partial derivatives) and Fourier series (lim-
iting form of a sum). It is striking, however, that no addition of variables-
cum-coefficients (bi xi ) occurs. (See Appendix to Chapter 5 for occurrence
of addition in physics in a broader sense.) In contrast, such linear concate-
nation is a standard workhorse in social sciences. It is all too often treated
as the only game in town.

Division: Widespread Versus Absent

It is quite unremarkable that the arithmetic operation of division occurs
in physics equations. What is remarkable is its absence from regression
analysis as practiced in social sciences. Nothing prevents inclusion of
interactions that divide one input variable by another (xi/xj ), but it
just is not done. If xi enhances y while xj reduces it, linear regression
automatically construes this relationship as subtraction (ai xi − aj xj ). The
actual interaction might well be a division (xi/xj ), but it cannot show up
on its own. Is not it odd that we heavily depend on a format that never
produces a division?

In contrast to division, social scientists do practice multiplication. They
may on purpose add a product of two (or more) variables to the linear
expression: y = a + ”bi xi . + c1x1x2 + . . . . They then say they add an “inter-
action term” or simply that “I interact the [A] and [B] variables” (e.g.,
in Samuels 2004). Implicitly, the product of variables is proclaimed the
only form of interaction that matters. This is the case in sophisticated
elaborations on the “interaction term” by Brambor et al. (2006), and
Braumoeller (2004), apart from end notes. Thus, the broad notion of inter-
action is narrowed down to only one out of innumerable ways variables
can interact—and do interact in physics equations.

Minor transformations of variables prior to regression do occur in social
sciences. Social scientists sometimes take the logarithm of some variable
or include its square. Remarkably, they rarely include the inverse of a
variable (1/xi ). Yet the output variable may conceivably be linearly related
to 1/xi (cf. Figure 3.2). If so, then trying to fit it with xi essentially
replaces division by subtraction. It reduces the degree of correlation, but
this should be our least concern. Much more important, it may miss the
essential nature of the relationship. Remember the nondiscovery of the
gravitation law (Chapter 2), despite preservation of satisfactory R2!
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A special multiplicative form occurs in multi-attribute utility theory
(Keeney and Raiffa 1976: 234–8; Fishburn 1977): (1 + cy) = (1 + cx1)(1 +
cx2), which can be reduced to y = x1 + x2 + cx1x2. The latter may look like
addition plus standard “interaction term,” but it has crucial restrictions.
It is far from y = a + b1x1 + b2x2 + cx1x2 where any values of a, b1, and b2

are acceptable. As in the usual multiplicative expression, there is only one
adjustable coefficient, c. Duncan Luce points out (personal communica-
tion, July 2007) that this is the only polynomial that can be transformed
into a multiplicative form.

In sum, social scientists do not always approximate potentially multi-
plicative relationships by sums, but they all too frequently approximate
potential divisions by subtractions. Many of us behave as if the arithmetic
operation called division had not yet been invented.

Notation for Variables and Constants: One Letter
Versus Several

It follows from frequency of multiplication in physics that the usual con-
vention of algebra is respected: abc stands for multiplication a × b × c. If
one runs out of letters and other symbols, subscripts or apostrophes might
be used. In contrast, social scientists often prefer multi-letter designations
for variables and constants.

Thus, many political scientists prefer to designate the “effective number
of parties” (used in Chapter 4) as ENP even while Laakso and Taagepera
(1979) used N2 or simply N when they introduced this notion into polit-
ical science. The multi-letter abbreviation presumably makes it easier to
remember its meaning. It does not matter, as long as one limits oneself to
addition. Physicists, however, would tend to interpret ENP as multiplica-
tion of three quantities: E times N times P—the same way they read GMm
in F = GMm/r 2. As we later (Chapter 10) reach expressions like (MS)1/4, in
a definitely social science context, it becomes apparent how confusing the
notation might become, if each of the quantities M and S were designated
by a multi-letter abbreviation.

The Number of Variables per Equation: Occam’s Razor
Versus Garbage Can

Basic equations in physics rarely involve more than three input vari-
ables. This is so because physicists have found it advantageous to break
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Physics:
sequential
interaction 

Today’s social
sciences:
simultaneous
impact is assumed

x1
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Figure 5.1. Typical ways variables interact in physics and in today’s social science

up problems into smaller pieces. Most often it results in a sequence of
equations of varied formats (though most often multiplicative) where
each equation involves only a few variables (cf. Table 5.1). New variables
gradually enter the sequence, as Figure 5.1 shows in a highly schematized
way. (See the Appendix at the end of this chapter for an actual example.)
Each step applies Occam’s Razor.

In contrast, today’s social scientists often throw numerous input vari-
ables into a single regression equation. While many regressions in social
sciences have as few as a single input variable, more than 15 variables
are included at times. As basic interaction pattern, it is assumed that all
inputs affect the output simultaneously (see Figure 5.1). Occam’s Razor is
broken, thrown away and replaced by a garbage can that fits everything.

This does not mean that social phenomena involve inherently more
numerous variables than the physical. Physicists just try to break up
complex processes into a sequence of steps, each of which involves
few variables. Quantitative social scientists tend to follow a contrary
approach.

Imagine a cook assembling all the ingredients shown in a cookbook
recipe, piling them together, passing them untreated through a blender,
and calling the result a meal. It may work for gazpacho but for little
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else. Usually, ingredients must be processed separately, before they are
successively introduced while cooking the meal. One must think how
items relate to each other. This advice applies to science too. In particular,
thinking about forms of relationships among various factors is at the
core of quantitatively predictive logical models. In contrast, throwing all
variables simultaneously into a grand regression is blender approach. All
too often the output is inedible.

Are Dummies Dumb?

One special type of variables used in social science regressions is “dummy
variables,” for example, 0 for males and 1 for females, both preceded
by a coefficient bi , like any other variable. Sometimes it goes beyond
dichotomy, for example, 0 for Muslims, 1 for Catholics, and 2 for
Protestants. An extreme case I have seen replaced the variable “Age” (the
effect of which may be nonlinear) by a string of dummies: 0 for ages 0–9,
1 for ages 10–19, etc.

There are no basic physics equations of comparable format (even when
reduced to a linear form by taking logarithms). This is not the way
positive and negative electric charges enter, or solids, liquids, and gases,
or anything else. I cannot vouch for engineering applications, but once
again, these are largely applications of more general laws over short
ranges.

When going beyond dichotomies, the ordering of categories plays an
arbitrary role. The dummies “0 for Muslims, 1 for Catholics, and 2 for
Protestants” implicitly assume that Catholics are somehow intermediary
between Muslims and Protestants. But even in the case of dichotomies,
physicists would consider the effect of electric charge or biosocial gen-
der in separate models rather than blithely assuming that one of the
categories adds a fixed amount to the outcome. The use of dummies is
questionable in many cases I have seen.

The Number of Freely Adjustable Constants/Coefficients:
Too Many Notes

Maybe Mozart’s music did not suffer from “too many notes,” as the
Emperor of Austria supposedly claimed, but standard data analysis in
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social sciences definitely suffers from “too many coefficients.” Having
many freely adjustable coefficients makes data fitting easier, compared to
a single one, but the profusion of coefficients destroys their conceptual/
substantive significance. It is a direct result of replacing Occam’s razor
with a multivariable garbage can.

By a freely adjustable constant or coefficient, I mean one that can take
any value, large or small, without raising objections. Basic physics has few
of them. (More can arise in applications.) Recall that the exponents bi in
physics equations of format y = a�xbi

i tend to be small integers, simple
fractions, or mathematical constants. Such nonadjustable constants tend
to have a theoretical basis. The number of the remaining freely adjustable
constants/coefficients is extremely limited. There is usually only one
per equation, such as G in the gravitation law. Such a constant has a
substantive interpretation—or at least a dimensional one (see Appendix
to Chapter 13). Being scarce and substantive, these constants are not
anonymous but tend to have names: universal constant of gravitation,
Planck’s constant, etc. Note that not a single one among the equations
in Table 5.1 has more adjustable constants or coefficients than input
variables.

The reverse is true for the linear regression format y = a + ”bi xi , favored
in social sciences. It has by definition more freely adjustable constants and
coefficients than input variables—one bi for each xi , plus a. The number
of variables themselves can be large, so that regression equations with
more than 15 coefficients and constants can be observed. Even more
coefficients per variable pile up when multiplicative “interaction terms”
or other modified terms are added. These coefficients mostly lack direct
substantive interpretation—they are statistical entities, not conceptual.
In contrast to the sparse constants in physics equations, these prolific
coefficients do not have names. Why bother naming them? Who would
use these names?

It matters both for parsimony and potential substantive explana-
tion whether the same degree of statistical fit is obtained with one
adjustable coefficient (such as G in F = GMm/r 2) or with four (such as in
y = a + b1x1 + b2x2 + b3x3). If R2 is equally high, then the former expres-
sion accounts for the same variation using fewer coefficients. Thus, the
efficiency per coefficient is higher. (This is most often so even with
adjusted R2.) Even more important, parsimony also makes it more likely
that a logical path or process can be found to explain how the input
should affect the output. Relationships are more diffuse in four-coefficient
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equations. The likelihood that all coefficients could be worked into
a logical model is reduced, and the numerical values of coefficients
are less likely to have permanence beyond the data set that generated
them.

Even with the same initial number of freely adjustable coefficients,
the multiplicative y = kxa

1xb
2 . . . may have advantages over the additive

y = a + b1x1 + b2x2 + . . . We may find that its exponents are close to small
integers or simple fractions. Suppose linear regression of logarithms
yields y = 64x1.76

1 x−1.17
2 x0.87

3 x0.07
4 x−0.15

5 . Even if the last two exponents are
statistically “significant,” it makes sense to see how much fit is pre-
served when rounding the exponents to 2, −1, 1, 0, and 0, respec-
tively, resulting in y = kx2

1 x3/x2. (Note that k is likely to shift away from
64.)

Here, parsimony is increased by eliminating two input variables. The
remaining three may make some conceptual sense. Rounded-off values of
the exponents might be tested with other data sets. In case of successful
fit, the number of freely adjustable coefficients might be reduced con-
clusively, and their numerical values might acquire broader significance.
At the early stage of research, x4 andx5 would just clutter up the main
relationship. Only when this main relationship is logically explained
would it be time to consider possible secondary effects. Instead of garbage
can regression, there is sequential analysis.

This is not to say that linear regression of logarithms resulting from
y = kxa

1xb
2 . . . is an advisable way to proceed under most conditions. It

is still overly mechanical. But it just may lead to conceptual ideas.
In contrast, coefficient values close to integers have no special signif-
icance in a linear concatenation of variables themselves. Here, profu-
sion of adjustable coefficients is irreducible when numerous variables
are introduced together. One should always consider dropping the vari-
ables that improve the fit in only a minor way, even when they are
“significant” in a statistical sense. Such variables often stop looking
significant when a further, logically unrelated variable is added to the
regression.

Such instability (“lack of robustness”) suggests that not all statistically
significant variables are meaningful in a logical sense—a feature all too
often neglected in social sciences. Statistical significance expresses at best
the probability that the correlations found are not due to random chance
(see Chapter 6 for further reservations). Occasional correlation may well
be random coincidence, unless a logical connective process can be estab-
lished. This brings us to the next contrast with physics.
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Alternate Equations for the Same Phenomenon: It is the
Butler—Unless the Younger Uncle is Included

For a given phenomenon, physics may give complex sequences of equa-
tions and also simplified approximations for them, but it rarely gives
competing alternatives with a different set of input variables and con-
stants. Competing models for the same phenomenon do arise at times,
but then the issue is not considered resolved until a single model emerges,
either by discarding all but one or by integrating competing approaches,
such as the wave-particle nature of light. Either way, a single way to
calculate the output variable emerges.

Published social research follows this pattern only part of the time.
One encounters many articles that offer several alternative regression
equations for the same output variable (or closely related ones), adding
or omitting some input variables or “interaction terms.” These are parallel
expressions for the same output. The output may be shown impacted by
only one input (x1 → y) or by three in various combinations (x1 → y ← x2

or x3 → y ← x2) or simultaneously: y ← x(x1, x2, x3), as in Figure 5.1.
Among such alternatives, the numerical value and statistical significance
of the coefficient for the same input variable can differ appreciably. Such
competing results are presented as different “empirical models” for the
same phenomenon. All too often, the authors take no stand on which one
should be preferred for the purposes of prediction or how their priority
ranking could be tested.

To offer several “empirical models” often means that none is offered.
Imagine concluding a detective novel as follows: The probability of the
butler having done it is significant if one leaves out the younger uncle, but
becomes nonsignificant if uncle is included, with R2 being around .60 for
both “models.” An analysis that happily stops at this stage would satisfy
neither Sherlock Holmes nor physicists. Most important, such analysis
offers little to social and political decision-makers looking for scholarly
advice. “Why do we tolerate long tables of numerous equations instead
of just the one (or few) that really address the central question? Hardly
anything is more annoying than reading a paper that has ten or twelve
different “models” with this or that variable dropped or added, but with
no real reason given” (Matthew Shugart, personal communication, March
2007).

Exceptions to this broad statement occur. The same behavioral laws may
give rise to several distinct representations. But most parallel “empirical
models” have no justification.

61



Limitations of Descriptive Methodology

A perennial concern in physics has been to determine what remains
constant in the midst of change—hence the notion of constants of
motion and laws of conservation (of energy, mass, momentum, electric
charge, etc.) that apply universally or under specified conditions. When
several regressions for the same phenomenon are considered, one should
compare the numerical values of coefficients for the same input variable,
so as to locate some points of stability and constancy. Social scientists
rarely do so. As a variable is regressed in the company of various other
variables, any fluctuation in the numerical values for its coefficient all too
often is deemed acceptable. This issue is handled in constructive detail
later on (Chapter 16).

Conceptual Consistency: Concern Versus
Acceptance of Absurdity

If the expression for a relationship produces contradictory or otherwise
absurd results for some values of input variables, physicists are concerned.
This is so even when these input values are outside the usual range,
because conceptual consistency is at stake. Any inconsistency calls for
modifying the expression so as to encompass all extreme cases. Models
must not predict absurdities.

In contrast, social scientists often disregard such concerns. Consider a
pure two-party system and suppose the linear fit S = 2V − 50 expresses
well the relationship between the observed percentages of seats (S) and
votes (V) of parties. My observation is that most social scientists would
accept such a model even while it predicts minus 50% seats for zero votes,
and an equally absurd 150% seats for 100% of votes. Their reasoning is
that in practice the votes for either party always remain in the range
from 30 to 70%, so what would happen at V = 0 or V = 100 is supposedly
irrelevant.

Not so. Faced with the same issue, physicists would ask “but what
if?” and would insist on finding a modified expression that satisfies
the conceptual boundary conditions “V = 0 → S = 0” and “V = 100 → S =
100,” while being close to S = 2V − 50 when V is around 50%. These
conditions are satisfied by S/(100 − S) = [V/(100 − V)]2, which leads to
S = 100V2/(2V2 − 200V + 10, 000). Note that this form is essentially mul-
tiplicative.
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Prediction Versus Postdiction

Scientific knowledge means ability to predict (in deterministic or prob-
abilistic terms). This is possible with physics equations at several levels.
Consider again the gravitation law F = GMm/r2. Whenever the variables
M, m, and r and the constant G are given, F can be predicted (within the
limits of experimental error).

But there is also prediction in a wider sense. The constants in sev-
eral law-like expressions may be connected. Thus G, combined with the
mass (ME) and radius (rE) of the Earth, leads to gravity acceleration (g)
on the surface of the Earth: g = GME/r 2

E . Gravity acceleration, in turn,
also occurs in T = 2(L/g)0.5, the formula for the period (T) of simple
pendulum of length L. Thus, two laws that involve some of the same
variables or constants can combine into a new testable relationship.
Prediction can turn out wrong. The model may not fit, either because
it is faulty or because factors extraneous to the model enter. Devia-
tions from prediction beg for explanation, which may lead to further
insights.

Empirical regression equations rarely offer such creative inconsistencies.
Almost any values of regression coefficients are deemed acceptable in
today’s social sciences, unless a variable that is expected to have a plus
sign turns out to have a minus sign. There is no deviation from prediction
when there is no prediction.

The argument could be made that all studies do not aim at building
predictive models (see the Appendix to Chapter 15). The objective may
be a tentative estimation whether a linkage is causal or not, in which
case only the slope coefficient and degree of significance would matter. If
accepted, this argument would highlight another contrast with physics. A
mere claim that two variables are linked, without giving the mathematical
form of the relationship (and hence ability to calculate one from the
other) would not go far in physics.

The problem goes deeper and would remain, even if social scientists got
into the habit of always using a single regression equation to plug in new
cases. There simply tend to be too many freely adjustable coefficients.
Anonymous regression coefficients, having existence only for a particular
data set, inherently have little explanatory ability. Their large number, as
compared to the sparse adjustable constants in physics equations, may
make data fitting more precise, but there is a price to pay: No con-
stants of a more durable nature emerge that could join several disparate
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phenomena. Without such unifying features, deeper explanation and the
resulting prediction remain illusory.

Reporting Dispersion: Range of Error Versus
Correlation Coefficient

Measurements are reported in physics with absolute or relative error
indicated—which usually means the range of standard error. The same
is done when new numerical values are inserted into existing equations.
Correlation coefficients are offered quite rarely.

In social sciences, in contrast, an indicator of degree of dispersion is
almost a must—most often it is a variation of R2. It is sometimes given
even while the equation for the best fitting curve to which it refers is
not fully reported (by omitting the intercept). What about the range of
expected error when plugging in new data? The question does not arise
when no such use of regression results is envisaged.

The different formats for reporting dispersion in physics and social
sciences are directly tied in with attitudes toward prediction. If one pre-
dicts, one must indicate the precision of such prediction. If one does
not predict, looser concerns take over, including convention. King et al.
(2000) note that jargon like “the coefficient on education was statistically
significant at the 0.05 level” is common in social sciences but yields little
usable information. As an alternative that makes sense, they offer “Other
things being equal, an additional year of education would increase your
annual income by $1,500 on the average, plus or minus about $500.” Note
the numerically specific estimates, plus range of reasonable uncertainty.

The Number of Decimals Reported: Meaningful Versus
Meaningless

The number of decimals reported matters in natural sciences. The rule is:
Show no meaningless ciphers. Decimals within the range of likely random
error do not add to knowledge—they merely clutter up the place. In
contrast, “the more the merrier” seems to be the custom in social sciences.
This contrast may need elaboration.

Instead of indicating the likely error range of a numerical value explic-
itly, such as b = 0.37 ± 0.01, natural sciences make use of the very number
of ciphers reported. Thus b = 0.37 roughly implies b = 0.37 ± 0.01 while
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b = 0.370 would imply a more precise b = 0.370 ± 0.001. But what about
b = 370? Is it meant to indicate b = 370 ± 1 or b = 370 ± 10? The solution is
to use the “scientific notation” where b = 370 ± 1 becomes b = 3.70 × 102

while b = 370 ± 10 becomes b = 3.7 × 102. By the same token, b = 0.370
becomes b = 3.70 × 10−1. In sum, the integer part is reduced to a number
from 1 and 9, and the number of decimals indicates likely error.

In today’s social sciences, coefficients and indices are most often shown
with a profusion of decimals, simply because the computer spits them out.
In what does R2 = .5273 differ from R2 = .53? The extra decimals are pure
ballast. Social scientists routinely sin against the norm that meaningless
ciphers must not be shown.

In the other direction, they sometimes omit meaningful ciphers.
Around 2002, Kazakhstan had 16.7 million people and the Netherlands
had 16.0 million people. In social sciences, these figures may be reported
as 16.7 million and 16 million, respectively, because many social scientists
erroneously think that terminal zeros are not worth reporting. Indeed,
some computer programs aimed at social scientists routinely erase such
zeros, and one must fight the computers to restore them. To a scientist,
in contrast, reporting 16.7 million and 16 million would convey that the
number was less precisely known for the Netherlands—only as 16 ± 0.5.
Of course, The World Almanac and Book of Facts 2002 goes the opposite
way, reporting 16,731,303 people for Kazakhstan and 15,981,472 for The
Netherlands—a ridiculous degree of fake precision.

Reversible and Transitive Versus Unidirectional and
Nontransitive

Most physics equations are algebraic. This means they are reversible,
using algebraic transformations. One usually applies the gravitation law
to calculate the attraction force when masses and their distance are given:
F = GMm/r 2. But for such a calculation the numerical value of gravita-
tional constant G is needed. How does one find it in the first place? By
applying the law in the reverse direction, to known masses, distance,
and also known force: G = Fr2/Mm. Later on, the mass (m) of a newly
discovered planet can be found, if one knows the mass of the Sun (M),
their distance and the Sun’s force of attraction on the planet (which itself
can be calculated from its observed trajectory): m = Fr2/Gm.

In contrast, one cannot reverse a regression equation, because every
graph of x and y actually has two distinct regression equations: y on x
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and x on y. Unless R2 = 1.00, they differ. This crucial feature, well known
to statisticians, seems little known among social scientists. We must use
regression equation y = a + bx to calculate y for a given value of x, but we
must use the regression equation x = a′ + b′y to calculate x from y. If we
use the value of y resulting from the first calculation, we do not get back
the original value of x!

It follows from this unidirectionality that ordinary regression lacks tran-
sitivity. This means that if we regress z on y and then y on x, the resulting
values of z differ from those obtained from direct regression of z on x. In
contrast, most physics laws come in the form of algebraic equations that
are transitive. Here, we can calculate z from x either directly or passing
through y—and we do get the same result. All this is explained in more
detail in Chapter 12, and a way out is offered. It is extremely important
for the following reason.

Interlocked Equations Versus Isolates

The overall format in physics is a network of interlocked equations—
cf. Figure 5.1. Each equation has few variables, but the same variables
recur in many equations. We have seen how F = GMm/r 2 leads to gravity
acceleration g = GME/r 2

E which, in turn, also enters the simple pendulum
formula, T = 2(L/g)0.5. Electricity has charge, force, field intensity, and
voltage connected through short equations—see Figure 5.2 as discussed
in the Appendix to Chapter 5—and this network continues to current
intensity, resistance, capacitance, induction, etc. Indeed, most variables
in physics are interlocked, however distantly. The quest for a “theory of
everything” aims at completing such interlocking. (See Chapter 14 for
misunderstandings of “TOE” in social sciences.)

In contrast, interlocked relationships are few in social sciences. When
today’s social scientists pile a large number of input variables into a single
equation, some of them (such as literacy or per capita GDP) may occur
in a large number of regressions. Yet the output variables remain dis-
connected. It is hard to establish basic relationships on purely empirical
grounds in the first place—they require logical grounding. But even if
individual relationships were developed on the basis of regression equa-
tions, they could not possibly be interlocked because standard regression
equations are nontransitive. A cumulative science where relationships
interlock can develop only on the basis of transitive equations.
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Figure 5.2. A sequence for introducing new variables in electricity

The patterns in physics and today’s social sciences are akin to those
of railroads in Europe and Africa. Europe has an interconnected net-
work. From a given station on the continent, one can go to almost
any other, just by changing trains. In Africa, most railroads start from
a port city and end in hinterland, without connecting. Are networks
of interlocking equations inherently impossible in social sciences, like
railroads between separate islands in Indonesia? Or have the connections
not been established because social scientists have not had the urge to
look for them and the use of nontransitive equations makes connections
unfeasible? At least one insipient interlocking network now exists—see
Chapter 10.

Conclusions: Parsimony Versus Profusion

Table 5.2 reviews the contrasts presented. They are numerous and could
have two reasons. Social and physical data may differ in their nature, call-
ing for different treatment. Alternatively, today’s social science, beguiled
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Table 5.2. Typical mathematical formats in physics and in today’s social sciences

Physics Social sciences

Basic operation Multiplication/division:
y = a�xbi

i , leading to
addition/subtraction of
logarithms:
log y = log a + ”bi log xi

Addition/subtraction:
y = a + ”bi xi .

Division of variables Usual rare
Variables per equation Rarely more than 3 Often more than 3
Freely adjustable coefficients

1. Per equation Usually 1 Always more than 1
2. Per variable At most 1 Always more than 1

Alternate equations for same
phenomenon

Avoided Presented often

Conceptual inconsistency Cause for concern Accepted
Prediction Prime objective Neglected
Measure of dispersion Likely error, plus or minus Correlation coefficient
Number of decimals Indicates range of error Meaningless
Nature of equations Algebraic, reversible Unidirectional, irreversible
Transitivity of equations Transitive Nontransitive
Networks of interlocking

equations
Ubiquitous Absent

by easy access to computerized statistics, may have neglected the aspects
of scientific procedure that go beyond statistical analysis. Later chapters
will sort it out.

Physics deals more in ratio variables and social sciences more in softer
variables, but this is a difference in degree rather than in kind. Even when
using ratio variables, today’s social sciences restrict themselves largely to
statistical approaches. The Appendix to Chapter 13 deals with the issue
of different kinds of variables. For the moment, let us just observe that
the mathematical formats are quite different, for whatever reason. The
multiplicative format, so frequent in physics, is largely absent from the
usual tool kit of social scientists. Physics uses sequential reasoning and
applies parsimony in variables and coefficients at each step. In contrast,
today’s social science all too often shovels a profusion of variables and
coefficients into a single regression equation. Some other contrasts follow
directly, while some look separate.

Actually, social scientists do follow the principle of parsimony as long as
they stick to qualitative methods. At this level, they tend to include few
input variables. Multiple regression is the devil’s favorite tool to induce
social scientists to dump parsimony. Do not blame the tool. Blame those
who misuse it.
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Physicists Multiply, We Add

Appendix to Chapter 5

Multiplication, Addition, and Ranking in Physics

Both addition and multiplication play of course roles in physics, and they are
interlocked. The generalizations made in the section on “Multiplication–Division
Versus Addition–Subtraction” need qualifications. Physics measurements are both
additive and multiplicative (Krantz et al. 1971: 10; Luce et al. 1990: 19–20). Even
the term “laws of physics” covers additive concatenations in at least two ways.
One involves logarithmic transformation of multiplicative equations, as pointed
out in the main text. The other concerns linear partial differential equations.
Such expressions for laws of physics include sums of constants times differentials
of different orders. Thus, multiplication and addition are incorporated in such
expressions and, indeed, in the very definition of a derivative. The solutions
of differential equations sometimes involve only multiplication of variables, but
other types of solutions abound and at times explicit solutions do not exist. This
becomes prevalent in quantum physics.

Besides using concatenation (including addition) and conjoint structure (includ-
ing multiplication) physics even offers aspects where neither is possible, such
as hardness (Luce 2005: 230). The operational definition for hardness of solids
is which of two materials scratches the other. Thus, a ranking can be achieved,
with no additive or multiplicative ability. This feature applies to many variables
in social sciences. In sum, while rising to the level of multiplication, physics has
not left behind addition or even sheer ranking. It just places more emphasis on
multiplication—markedly more so.

An Actual Sequence in Physics—Basic Electricity

The sequential interaction pattern in Figure 5.1 is perforce schematized. Figure 5.2
shows the actual sequence in which a standard physics textbook, Modern University
Physics (Richards et al. 1960: 381–437) introduces new variables relating to electric
charges, fields, and potential (voltage).

Charges (q and q ′) and their distance (r ) determine the force (F ) of attrac-
tion/repulsion through F = kqq′

/r 2. Force and charge define the electric field
intensity (E ) through E = F/q ′. Electric potential energy (Ep) comes next. It could
be defined on the basis of electric intensity, in conjunction with charge and
distance, through Ep = Erq. This is shown as broken arrows in Figure 5.2. The
textbook, however, finds it simpler to revert to charge and distance alone, through
Ep = kqq′

/r . Potential energy and charge define electric potential (V), through
V = Ep/q. The potential gradient (Es) is defined as change of V over distance s:
Es = −dV/ds. These variables are not just formal way stations in deducing potential
from charge. The textbook offers examples of how each variable comes handy in
various applications.
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In contrast to the scheme in Figure 5.1, where new variables keep entering,
Figure 5.2 has the same ones (q and r ) re-entering in different roles. Hence, the
chain can be replaced by a more parsimonious presentation of how new variables
enter. The bottom of Figure 5.2 shows this interlocking. Only the links used in
defining new variables are shown.

Actually, interlocking is complete in the sense that any of the variables (apart
from Es) could be expressed in terms of any other two or three variables, for
example, V = Er and V = Fr/q. This means that different textbooks may introduce
variables in a different order. What they all have in common is sequential intro-
duction of equations that involve only a few variables at a time. The result is
an interlocked pattern, in contrast to the radial scheme for multiple regression
approach, shown at the bottom of Figure 5.1.

Strikingly, the entire network makes do with a single constant (k). The latter
is needed to connect mechanical units (force) to electrical units. The number of
freely adjustable constants is much less than one per equation or per variable, in
blatant contrast with regression equations.

Schemes like the ones in Figure 5.2 are not shown in physics texts. The format
is taken for granted, and students internalize it early on. My scheme involves
various simplifications, such as omitting vector notation and using k instead of
its equivalent, 1/(4Â0). They do not affect the argument.
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All Hypotheses Are Not Created Equal

� Bones and hypotheses should remain hidden.
� The null hypothesis offers close to null prediction.
� Directional hypotheses are easy to satisfy and offer correspondingly

vague predictions.
� Quantitative hypotheses (models) are hard to satisfy. They are the only

hypotheses/models that offer quantitatively falsifiable predictions.
� Having “p = .01” does NOT mean confirmation in 99% of replications.
� The customary hypothesis-testing recipe in social sciences, “hypothesis

→ data collection → testing → acceptance/rejection,” is only a single
cycle in an ascending spiral:

Initial hunch (qualitative hypothesis) → limited data collection →
→ quick testing → quantitatively predictive model (quantitative

hypothesis) → further data collection → testing → refined model
→ testing → further refining of model or data → testing . . .

The previous chapter pinned down a number of differences in mathemat-
ical format customary in physics and in social sciences. Would a shift to
a multiplicative format go a long way to enable social scientists to detect
patterns such as the one for gravitation law, if similar patterns existed in a
social context? This could happen only in some lucky instances. Regress-
ing logarithms of variables instead of variables themselves is still pretty
mechanical and mindless. One has to think in terms of logical models.
Chapter 4 pointed out some mental barriers to such thinking. There is
another: fixation on “hypothesis” as the magical word. Hypothesis is a
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useful concept, but only when substance is built into it. Mere incantation
of the term will not do.

Of Bones and Hypotheses

Social science students are told early on that “hypothesis testing” is the
core of scientific procedure. Formulate a hypothesis, gather data, test
the hypothesis, and either accept or reject it. This is indeed the basic
framework of science—its skeleton, if you will. It is good for people to
have bones, but it is bad if the bones show. So it is with the hypothesis
testing cycle: it better remain hidden (Taagepera and Shugart 1989: 252).
Compare the basic textbooks in physics and social sciences. The word
“hypothesis” is more prominent in social sciences, while physics applies
hypothesis testing in a subtler way, without parading the word itself.

In the early phase of research, the cycle often works on an informal
level. The starting point might not even be more specific than a wild goose
chase: “If I collect this kind of data and graph this versus that, something
interesting may appear.” The aficionados of the null hypothesis might
reword it as “ . . . nothing interesting will appear.” One may also start with
a more specific hunch based on qualitative observation, which may be
quickly checked by further casual observations or thought experiments:
“If I follow up on this hunch, to what result would it lead under this
or that special or extreme condition?” One may call it a loose “testing”
of the hunch, but the usual result is neither acceptance nor rejection
but modification of the initial wording. Such an informal short cycle
may be repeated many times over, with increasing collection of data and
increasing specification of the hypothesis.

The trouble with explicit formulation of a formal hypothesis too early in
the game is that it may destroy these “micro-cycles” of hunch-following,
locking research into one long and hollow cycle of collecting extensive
data for testing an insufficiently specific hypothesis. Moreover, in today’s
social sciences, the hypothesis is often couched in a sterile either/or
format. But what if it is neither this nor that? What if it is an unex-
pected third way? Being open to the unexpected is essential for scientists;
yet an excessively formal hypothesis formulation tends to fixate on the
expected alternatives. In the case of null hypothesis, it fixates on a single
expectation. Cycles and sub-cycles in scientific procedure are discussed in
more detail in Chapter 14. For the moment, only the connection between
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hypothesis and falsifiability is addressed, covering some ground that has
already been touched upon.

The Dance Around the Null Hypothesis

All hypotheses are not created equal. Some are qualitative, easy to satisfy,
and offer only fuzzy predictions. Some others are quantitatively spe-
cific, hence immeasurably harder to satisfy, and offer specific predictions
(Figure 6.1).

The least detailed is the famous null hypothesis—famous among social
scientists, that is, but less so among physicists. Its focus is on disprov-
ing that some effect is due to chance. As early as 300 years ago, John
Arbuthnot (1710) successfully proved that the excess of male over female
births cannot be attributed to chance (Gigerenzer et al. 2004). Therefore,
he considered proven that it was due to divine providence. And that is the
catch: Rejecting the null hypothesis does not confront one’s pet hypoth-
esis with various alternatives. “The focus is on chance; to test substantive
alternative hypotheses is not an issue” (Gigerenzer et al. 2004).

What I call the “null ritual” consists of three steps: (1) set up a statistical null
hypothesis, but do not specify your own hypothesis nor any alternative hypoth-
esis, (2) use the 5% significance level for rejecting the null and accept your
hypothesis, and (3) always perform this procedure. (Gigerenzer 2004)

One may well disprove the null hypothesis that Bob does not feel better
when drinking milk, but it does not prove the positive hypothesis “Milk

NULL HYPOTHESIS 

DIRECTIONAL HYPOTHESIS

EMPIRICALLY BASED QUANTITATIVE
HYPOTHESIS/MODEL

LOGICALLY BASED QUANTITATIVE
HYPOTHESIS/MODEL

Easy to
satisfy 

Fuzzy
prediction 

Hard to
satisfy Specific

prediction

Figure 6.1. The hierarchy of hypotheses
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is good for Bob” unless a causal process is established. Many alternative
hypotheses must be considered. He may drink milk only at times when
he feels good anyway—at breakfast or when it is warm. Drinking it at
other times may have no effect or even a negative effect. Bob may feel
good when not dehydrated, and milk just happens to contain water. Or
drinking milk might make him drink less whiskey. Rejecting the null
hypothesis says little about the validity of a given positive hypothesis,
compared to various alternatives. “If there is one single severe problem
with the null ritual, then it is the fact that hypothesis is in the singu-
lar. Hypothesis testing should always be competitive” (Gigerenzer et al.
2004).

Null hypothesis testing is just one statistical tool among many. Yet an
editor of Journal of Experimental Psychology, Arthur Melton (1962), made
it a necessary condition for acceptance of papers. Gigerenzer et al. (2004)
call such rigidity “statistical ritual rather than statistical thinking” and
document that the “null ritual” was “fabricated in the minds of statistical
textbook writers in psychology and education” rather than emerging with
any renowned statistician such as Sir Ronald A. Fisher (1935). In their use
and misuse of statistics, much of social sciences remain at the level of
Arbuthnot’s divine providence: “What if there were no significance tests?”
(Harlow et al. 1997). “Not much would be lost, except in situations in
which we know very little,” Gigerenzer et al. (2004) bluntly answer.

Directional Hypotheses

Even if a genuine connection is established by significance tests, we
only get to know that x has some impact on y. In mathematical terms:
dy/dx =/ 0. It says nothing about the direction of impact, much less about
its intensity. It is nice to learn that drinking milk has an effect on my
digestion, but as a guide for action it is worthless until I know at the very
least whether it would make me better off or worse. Indeed, dy/dx =/ 0
allows for either direction or even both at once. Meeting a woman may
never leave Jim cold: He always finds her either beautiful or ugly.

The next level of detail comes with directional hypothesis. It predicts that
increasing x will increase y (dy/dx > 0) or decrease y (dy/dx < 0). Suppose
the prediction is that drinking milk will improve my digestion. Now it
becomes a guide for action. But how much do I have to drink? If a clear
positive effect requires 100 L per day, forget it. This means we need to
know not just the sign of the slope dy/dx but also its intensity: dy/dx = b.

74



All Hypotheses Are Not Created Equal

It may also be that drinking two glasses has a positive effect but drinking
10 L no longer increases positive impact while producing negative side
effects. Mathematically, dy/dx > 0 at small x but dy/dx < 0 at large x.
We can presume that dy/dx = 0 occurs at some intermediary value x0, an
optimal stage still to be determined.

Quantitative Hypotheses and Models

To be of use as guide for action, we need a hypothesis more detailed
than a directional one. Going beyond dy/dx > 0 or dy/dx < 0, we need
the entire shape of the function y = f (x)—which is usually not a linear
function over a wide range of x. Only then can we know how much
milk to drink. Here we have the beginnings of a quantitative hypothesis.
Of course, further factors may matter. Drinking milk may be good in the
morning but less so in the evening. Mathematically, y = f (x, t), within a
24-h interval. This functional form represents a more detailed quantitative
hypothesis. It may be based on sheer empirical observation or on some
logical reasons why milk acts as it does.

When advancing beyond null and directional hypotheses, our quan-
titative hypothesis may become quite complex in mathematical form
plus various restrictions in its use. However, a “complex hypothesis” may
sound odd to some of those social scientists who are conditioned to
simple directional hypotheses. Therefore, it might be safer to talk about
testing quantitative models rather than quantitative hypotheses. The term
“model” carries its own risks in social sciences (see the Appendix to
Chapter 6), but there is no way to avoid it.

Quite a few manuscript reviewers for social science journals are unable
to distinguish between directional and quantitative hypotheses/models.
Once the direction has been confirmed, such people see no point in
finding the functional form of the relationship and the logical rea-
sons behind it. For them, Galileo and the peasant of Tuscany are
on par.

Degrees of Falsifiablility and Usefulness

The more detailed our hypothesis or model is, the more difficult it
becomes to satisfy it—but also the more useful it becomes as a guide
for action or further study (cf. Chapter 3). Rejecting a null hypothesis
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means confirming an utterly vague predictive model: “Something will
happen.” We may confirm that red sunsets do mean a change of weather
tomorrow—for colder or for warmer. Verifying a directional hypothesis
tells us a bit more. Suppose I predict “Red sunsets mean colder weather.”
Compared to the null hypothesis, the directional one reduces the possible
outcomes by about one-half—but no more. Given that the chances of
temperature remaining exactly the same are slim, I have an almost 50%
probability of being right just by random chance. If, however, I offer
a more specific model that predicts that a given degree of redness will
result in a drop of more than 10 degrees, my chances of being right
by random chance are severely reduced. If the model withstands such
increased jeopardy, then it is so much more valuable as guide for choosing
proper clothing.

A directional model can be valuable for preliminary studies but leaves
the field much too open. A quantitatively predictive model predicts how
much y corresponds to how much x. The more specific the model, the
more valuable it is, if confirmed—and the harder it is to confirm. Recall
the previous norm that “Hypothesis testing should always be competi-
tive” (Gigerenzer et al. 2004). It becomes less stringent for more complex
models. They sort of compete against themselves by making so specific
predictions that it is unlikely that a different model would predict exactly
the same specifics. However, data with wide scatter may leave room for
many models—cf. Figure 4.3.

A regression equation based on sufficient data seems to qualify as
quantitatively predictive, conditional on “all other factors remaining
the same”—ceteris paribus. “But how do we know that all ceteris remain
paribus?” as my colleague Bernie Grofman (2004) is fond of asking. This
is when “How things should be?” enters. If we know why x affects y to the
extent it does, then we also have a better idea of which conditions could
alter this extent.

This is why the goal of social sciences should be to develop quan-
titatively predictive models which are logically grounded rather than
merely empirical. All too many social science projects that go beyond the
null hypothesis are satisfied with a directional hypothesis. They should
proceed beyond it.

Can the given model be proven inadequate? Is it “falsifiable”? It is
difficult to declare a regression-based “empirical model” false, when
the underlying directional hypothesis involves only a loose prediction.
The R2 can be disappointingly low, but as long as the slopes bi have the
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expected signs, the form y = a + �bi xi as such cannot be declared false
within the range of data used. Even when the data cloud y versus x
shows a blatant curvature (such as data-set B in Figure 3.1), many political
scientists unflinchingly put a straight line through the cloud.Curvature is
even easier to ignore when no graphs are shown (see Chapter 15).

Science deals with falsifiable statements. Few statements are as unfal-
sifiable as “Everything happens as God wills it,” but linear regression
“models” offer fair competition. Whatever is, is. The coefficients in such
a “model” are based on data and hence cannot be tested with the same
data. When tested with different data, their numerical values are likely to
change. Hence, a regression equation is untestable beyond directionality,
meaning it is unfalsifiable.

In contrast, the logically based model can be tested. It can be proven
false. This can in principle happen the more easily, the more narrowly the
functional shape and the possible values of constants and coefficients are
specified. To the extent it passes, such a model has predictive value and
may reflect underlying processes.

False Positives: “p = .01” Does NOT Mean Confirmation
in 99% of Replications

It was pointed out earlier (Chapter 1) that medical research is finding an
alarming rate of “false positives.” This means that statistically “signifi-
cant” differences are not confirmed upon replication. In many subfields
of social sciences, too, factors reported significant “at the 99% level”
(p < .01) in one regression often are reported only as “p < .05” or even
nonsignificant at the 5% level in some other. Such discrepancies should be
extremely rare—literally 1 out of 100, if p < .01 really meant replication
in 99% of the cases, as it often is interpreted. How come discrepancies are
visibly more frequent than that?

False positives can arise from “delusions about the meaning of p < .01,”
as Gigerenzer et al. (2004) put it. They offered students and instructors
of psychology six false statements about the null hypothesis and found
that quite a few accepted them as true. All these misperceptions go in the
direction of mistakenly increasing our confidence in the meaningfulness
of results.

Only one of these statements is addressed here. Suppose a simple
independent means t-test indicates that the result is significant (t = 2.7,
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df = 18, p = .01). Is it true that “You have a reliable experimental finding
in the sense that if, hypothetically, the experiment were repeated a
great number of times, you would obtain a significant result on 99% of
occasions?” Among German psychology instructors not teaching statis-
tics, 49% incorrectly responded “yes,” and 37% did so even among those
teaching statistics (Gigerenzer et al. 2004). Incorrect answers rose to 60%
in the UK (Oakes 1986).

Why does not the above statement hold? Because of “model uncer-
tainty” (Coleman 2007). The statement would hold “only if one knew that
the null hypothesis was true” (Gigerenzer et al. 2004), which itself cannot
be asserted on the given basis. Recall Arbuthnot’s divine providence. “The
statistical method assumes that the model being tested is correct. When
the model is in doubt, the whole business is off to a wrong start. This is
the best argument for having a logical or theory-based model” (Coleman,
private communication, July 2007).

Coleman (2007) observes that “False positives—findings statistically
significant results that are not actually true—appear to be much more
common than previously recognized,” from medical research to social sci-
ences. He points out that a recent editorial in the Journal of the Royal Statis-
tical Society (Longford 2005) deems much of contemporary statistics-based
research a “junkyard of unsubstantiated confidence,” precisely because of
false positives.

The Tennis Match Between Data and Models

We began with the time-honored recipe “hypothesis → data collection →
testing → acceptance/rejection.” It oversimplifies the interaction between
model and data. The actual interaction looks like a tennis match. Super-
ficial data inspire the first coarse logical model. The model may suggest
looking for different data that better correspond to what the model is
about. It may also suggest looking for data at very low or very high values
of x, because random fluctuations may blur the logically expected trend
when the range of x is short. On the other hand, discrepancies between
model and data may also motivate search for a more refined model. Some
hidden assumptions may have entered the first round of model building
and must be explicitly stipulated. Thus, the coarse model for volatility
in Chapter 4 implicitly assumed that any positive values of volatility are
acceptable, even those surpassing 100%.
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It may also happen that the model works, but some data points are
erroneous and need weeding out. If one works with weights of peas and
one of them is off by three standard deviations, then probably a bean has
slipped in. It would be unreasonable not to discard it, out of excessive
respect for data. “Newton Fudged” is the title of a short piece in Scientific
American (1973)—he manipulated observations to fit his models. Such
data manipulation is a no–no by modern research standards. But true,
Newton’s calculations proved better than the data. The moral is: Report
all data, but do not consider all data sacrosanct. If the model and data do
not fit, either can be at fault.

In sum, scientific research most often looks like an ascending spiral,
within which the recipe “hypothesis → data collection → testing →
acceptance/rejection” represents a single cycle:

Initial hunch (qualitative hypothesis) → limited data collection →
→ quick testing → quantitatively predictive model (quantitative

hypothesis) → further data collection → testing → refined model →
testing → further refining of model or data → testing . . .

Conclusions

Table 6.1 reviews some general contrasts between predictive and descrip-
tive approaches, as typified in physics and today’s social sciences, going
back to some features presented already in Chapter 1. Where physicists
ask “How much effect does x have on y?” social scientists tend to limit
themselves to a much looser “Does x have any effect on y?” Some of
this vagueness is inevitable under nonlaboratory conditions, but social
scientists have become so acclimatized that they tend to forget the “how
much” part even when it can be answered. The utmost they all too often
venture to propose is “If x goes up, then y goes down/up,” meaning that
the slope b = dy/dx is negative/positive.

While the predictive approach truly tests a specific model, the statistics-
based approach tests at best the direction of the effect. The result is
passively descriptive to the point of rarely even asking how steep this slope
should or could reasonably be. Whatever slope pops up from regression
is reported, without pondering whether it makes sense or what it may
tell us. Given that a large proportion of random outcomes can satisfy the
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Table 6.1. Predictive vs. descriptive models (modified from Taagepera 2007b)

Predictive models Descriptive models

Fields of major
occurrence

Physics Today’s social sciences

Broad question How much effect? Is there an effect?
Hypothesis level Quantitative Directional

How should y be related to x? Does x impact y?
What is the form of y = f (x)? If x goes up, does y go down?
The sign of dy/dx is not enough. The sign of dy/dx suffices.

Model building Think about relationship → most often
nonlinear combinations of variables,
frequently multiplicative.

Do not think much, just assume a
simple mathematical form, often
linear concatenation.

Testing/analysis Try to transform into linear format, or
use conceptually suitable nonlinear
testing.

Feed relatively raw data into linear
regression, and analyze it
statistically.

End point Two-way functional equation, may fit
into a transitive sequence.

One-way regression equation,
cannot fit into transitive sequence.

“Falsifiability” Strict. Even at high R 2, the presumed
functional form can prove to be
wrong.

Loose. Even at low R 2, format
y = a + �bi xi cannot be declared
false, as long as dy/dx has the
expected sign.

Value High falsifiability → the presumed
model may reflect underlying
processes.

No falsifiability → no explanatory
power. Whatever is, is.

directional model, its degree of falsifiability is loose. Correspondingly, it
has little explanatory or predictive power.

Appendix to Chapter 6

Devaluation of the Term “Model” and of Model Testing

A prominent social scientist writes me: “When I read an abstract preceding an
article which starts with ‘I present a model . . . ,’ I usually read no further than
that!” One reason for such skepticism is that all too many “models” in social
sciences remain qualitative or directional and hence are nontestable or cheaply
testable. Those quantitative models that do go beyond directionality often are
not tested beyond directionality or using a few convenient illustrative examples.
Indeed, some subfields seem to have a tacit agreement between model builders and
empiricists not to tread on each others’ territory.

This means that impressive theoretical models are not faced with data and
hence are safe against refutation. It also makes such models useless, which may
explain the reaction to the term “model” above. On the other side, empiricists are
left free to call statistical best fits “empirical models”—another devaluation of the
term. They, too, can hardly be refuted. Due lip service is given to model testing
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as the core of scientific procedure, but in practice it is all too often reduced to
directional testing.

The social scientist who devises a theoretical model and also submits it to
quantitative testing faces double jeopardy. First, agreement of nonlaboratory data
with models is bound to be limited. Second, he may irk both pure modelers
and pure empiricists. A journal with Theoretical in its title recently returned such
a manuscript without even sending it out to reviewers, because it soiled the
purity of theory with testing. This journal is proud to publish only untested
theory.

The reviewers of empirically minded journals, on the other hand, at times
mistake a theoretically predicted curve for a botched-up statistical best fit, as
they seemingly recognize only “empirical models.” When they do recognize the
theoretical nature of the model tested, they are liable to say that it fits the test data
worse than the best statistical fit to these particular data—which is of course the
case by definition. How could a predictive model for all data of the given type fit
better than a postdictive fit based of these particular data, if the statistics is handled
competently?

The alliance of pure modelers and pure empiricists against testing of models may
suit both in the short run. But it cannot lead to science with predictive ability.
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Why Most Numbers Published in Social
Sciences Are Dead on Arrival

� Physicists, like people in general, start with causal models. Social scien-
tists stand apart by often starting with empirical models.

� Depending on statistical method used, a variable may look “significant”
in opposite directions. Only a logical model can tell which way it
actually acts.

� The numbers published in physics are steppingstones for further
inquiry, because they are few and other researchers often make use of
them. The numbers published in social sciences are endpoints, because
they are profligate and, once printed, hardly anyone makes use of them.

� Astronomy could not develop without overcoming the Ptolemaic syn-
drome of reducing all motion to circular. Social sciences must overcome
their syndrome of reducing all relationships to linear.

� Given the dearth of laboratory-quality data in social sciences, even
more emphasis should go into predictive modeling, so as to make the
most of scarce and messy data. Paradoxically, the reverse has become
the fashion.

Imagine a mental activity where the norms of thinking differ both
from everyday thinking and the scientific one. Imagine a scholarly dis-
cipline where lots of numbers are printed but hardly any are read.
This chapter describes such an activity and discipline. It documents
to which extent the practices described do occur in social sciences in
general and in political science in particular. It says nothing about
the durability of qualitative finding in social sciences. Numbers are the
issue.
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Table 7.1. Thinking patterns during the course of solving an intellectual problem

Everyday Physics Today’s social
thinking thinking science thinking

Preliminary observation Preliminary observation Preliminary observation
How might things connect? How might things connect? Do not prejudge: get data!
Qualitative causal model

(loose predictive model)
Quantitative causal model

(precise predictive model)
Run regression

Pick affirmative evidence,
overlook the contrary

Gather and transform data in
the light of the model, test
predictive model

Report regression equation
(descriptive model)

Loose predictive model not
systematically tested →
hard to prove wrong

Precise predictive model
systematically tested → can
prove to be wrong

No predictive model to test
→ little that could prove to
be wrong

= low falsifiability = high falsifiability = low falsifiability

Everyday and Scientific Thinking—and How Today’s Social
Sciences Fit In

Scientific thinking differs from everyday thinking. If today’s social science
thinking differs from that in physics, it might be thought to be so because
it still harbors features from everyday thinking. Surprisingly, Coleman
(2005, 2007) suggests the reverse. Thinking in natural sciences is in many
ways closer to everyday thinking, compared to what passes for scientific
in social sciences. Table 7.1 shows the three-way similarities and contrasts.

In contrast to descriptive models that predominate in today’s social
sciences, both everyday and natural science thinking tend to operate by
predictive models. Psychological research by Ahn et al. (1995) indicates
that most people do not first observe covariation and then construct
empirical models, like today’s social scientists tend to do. People rather
construct causal models first, asking how things might be connected, and
then start looking for supporting evidence (Coleman 2007). This is also
how major advances in natural sciences have proceeded, but with some
important differences.

First, people in general tend to act as defense lawyers for their pet
models. They emphasize supporting evidence and overlook the contrary.
In contrast, scientists try to act as impartial judges when gathering and
weighing evidence. Second, they try to make their models specific—and
hence those models take a mathematical form. The prediction soon comes
so specific that it is hardly possible that data might confirm the model by
random chance. The more specific the predictive model, the less statistical
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machinery is needed to test it. Note that the predictive model may also
affect the way data are collected or transformed prior to testing.

All this is all too often missed in social science analysis. A directional
hypothesis tends to be the limit of predictive precision, before one rushes
on to data analysis. One could understand such hurry, if social sciences
had a surplus of good-quality data, compared to natural sciences, but
the reverse is the case. Physicists can generate extensive relatively clean
data under laboratory conditions, yet they do not expect passive data
crunching alone to lead them to the laws of nature. Experimental findings
serve mainly to guide predictive modeling.

Given the dearth of laboratory-quality data in social sciences, even more
emphasis should go into predictive modeling, so as to make the most of
scarce and messy data. Paradoxically, the reverse has become the fashion.

A Crazy Methodology?

This is the title of a study by Bernard Kittel (2006) in International Sociology,
reacting to Nancy Cartwright’s claim (2002: 142) that the “methodology
is crazy” in macro-quantitative social science research. Kittel observes
that “Currently the use of quantitative data and pooled time-series cross-
section regression methods seem to be more or less a precondition for
publication in most reputed social science journals.” He assumes that “An
important reason for the popularity of this approach is related to social
scientists’ attempts to mimic the natural sciences or, at least, economics
[my italics], in order to defend the relevance of their research to audiences
outside the social science community.”

This is a fitting description. Two features stand out. First, mimicking
is poor science. Yes, one should be inspired by more developed scientific
disciplines, but it must go beyond superficial mimicking of external forms.
It must aim at understanding the deeper reasons behind the forms, so
that one gets a feel for what can or cannot be adopted under which cir-
cumstances. Second, even this mimicking of outer forms has been carried
out unbelievably poorly, as the comparison of mathematical formats in
Chapter 5 shows.

The reason is the quick shift of focus, even for mimicking, from nat-
ural sciences to “at least” economics, itself reduced to econometrics.
This shift overlooks the fundamental ways in which the econometric
approach itself differs from that of physics, in mathematical format and
in underlying thinking. By the various contrasts highlighted in Chapter 5,
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Table 7.2. Total government expenditure in % of GDP: How can it be predicted?

Model 1 Model 2 Model 3 Model 4 Model 5
Pooled OLS Two-way FE Two-way Two-way FD + one-way

FE + PW FE + LDV FE(T)

Lagged output — — — 0.91∗∗∗ 0.23∗∗∗

Unemployment 0.93∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.02 0.40∗∗∗

GDP/cap. growth −0.90∗∗∗ −0.51∗∗∗ −0.20∗∗∗ −0.36∗∗∗ −0.21∗∗∗

Dependency ratio −0.445∗∗∗ 1.33∗∗∗ 0.93∗∗∗ 0.08 0.44∗∗∗

Left cab. portfolios 5.80∗∗∗ −1.26∗∗∗ −0.20 −0.22 0.04
Christ. Dem. portf. 2.88∗∗ −0.78 0.30 −0.42 −0.07
Trade 0.13∗∗∗ 0.02 −0.02 −0.03∗∗ −0.03
Low-wage imports −0.16∗∗∗ 0.34∗∗∗ 0.11∗∗∗ 0.03∗ 0.02
Foreign direct investment 0.09 0.14 −0.10 −0.01 −0.12∗

Intercept (constant) ?? ?? ?? ?? ??
R2 .58 .94 — .99 .46

Condensed from Kittel (2006). ∗· ≤ .10; ∗∗· ≤ .05; ∗∗∗· ≤ .01.

Shown in bold are those variables which are statistically highly significant in opposite directions, depending on
method used.

much of economics qualifies as social science. Could economists pin
down the gravitation law? Those few in my very unrepresentative sample
(Chapter 2) could not. By seeking inspiration in economics, the blind may
have been seeking insights from the half-blind.

When comparing different societies, one “assumes that law-like rela-
tionships between social phenomena not only exist, but do so at the
aggregate level of nation-states independent of time and space” (Kittel
2006). One aims to “causally explain and predict societal phenomena by
relying on statistical and econometric techniques.” Yet, it runs into vari-
ous difficulties that lead Kittel (2006) to wonder about a “crazy method-
ology.” A main difficulty in dealing with complex macro-phenomena by
means of statistical analysis is lack of robustness of the coefficient values
when model specification is varied.

Earlier chapters have pointed out that coefficient values and their sta-
tistical significance vary enormously when further input variables are
introduced. Kittel (2006) goes one better by keeping exactly the same
input variables and changing only the statistical approach. The output
variable is total government expenditure. Table 7.2 reproduces his results
in an abbreviated form. Coefficient values are shown, but I have omitted
their standard errors. (These errors range from one-tenth to triple of
the coefficient values.) Also, I have rounded off the coefficients to two
decimal places, correcting for the bad habit of social scientists to report
meaningless decimals, those within the range of standard error.
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Detailed explanation of variables and methods used is not given here—
for these, see Kittel (2006) and Kittel and Winner (2005). Suffice to
know that all these methods are reasonably well known and considered
legitimate. The question that concerns us here is: How could we predict
(or at least postdict) the output variable from such a table of presumed
“results”? The immediate answer is “We just can’t,” simply because Kittel
(2006) omits the intercept term (which I have inserted in Table 7.2 as
“??”). But assume that this gap is filled. What could we then predict/
postdict?

The answer still is: hardly anything. A high Dependency Ratio strongly
and significantly reduces the output variable (Model 1)—or it strongly and
significantly enhances it (Models 2, 3, and 5), or has no effect (Model 4).
The same applies for the impact of Left Cabinet Portfolios and Low-wage
Imports. Depending on the model, such an input variable can either
increase or decrease the output—yet always “significantly”! Pick your
choice. Or leave the picking to sociopolitical decision-makers who need
advice to make hard decisions. See how impressed they are with such
ambiguous achievements by social sciences!

Kittel (2006) concludes: “The most striking observation is that findings
in macro-quantitative research lack robustness.” This evaluation draws on
various other concerns, too, but the one highlighted here should suffice.
Note that this havoc takes place when the same input variables are used!
It may be better masked when some variables are added or replaced, as
all too often is the case in today’s social science analyses, but the lack of
meaning can only deepen. This applies to levels of significance, coefficient
values, and even the direction of impact. Recall the discussion of false
positives in Chapter 6.

Is it a crazy methodology? Do not blame methodology. Blame people
who misapply it, trying to replace the logical model building phase of
scientific research with statistics.

Do Social Sciences Face a Ptolemaic Syndrome?

The irony is that, at the level of statistical sophistication shown by
Kittel (2006), the mathematical effort required may well exceed what
it would take to build a logical model that could then be properly
tested by statistical approaches. (Exceptions occur in psychology and eco-
nomics.) There are precedents for scholars sticking with a simple format
and rejecting a more complex one, even when the repeated application
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of the simple format eventually leads to more complex convolutions,
and even so still fails to account for all the observations. Consider the
following.

Ptolemaic astronomy considered circle the perfect closed curve and
also took geocentricity as self-evident. An ellipse that did not center on
the Earth failed in both respects. But attempts to fit the observed paths
of planets forced astronomers to construct circles whose centers moved
along circles whose centers moved along circles. This epicyclic approach
eventually became vastly more complex than what it tried to avoid—the
Keplerian ellipse with one focus at the Sun.

Do many social scientists act as if the straight line were the perfect
shape, not to be questioned? Plenty of complex statistical methodology is
superimposed on a tacit linear assumption. It is time to ask whether social
sciences face a Ptolemaic syndrome.

The Meaning of Published Results: Steppingstones
Versus Endpoints

The contrast between dearth of coefficients/constants in physics equa-
tions and their profusion in social science equations was established in
Chapter 5. Its main features are worth repeating, because the conse-
quences reach far. Basic physics equations rarely have more than two or
three input variables. Longer logical sequences are broken up into several
interlocking equations. In contrast, the regression equations used in social
sciences pretty often include long concatenations of variables.

The number of numerical constants and coefficients in a regression
always surpasses the number of variables, because each variable has its
own slope coefficient, in addition to the intercept constant. The resulting
profusion of numerical values is multiplied when several regression equa-
tions are published for the same output, with slightly different input vari-
ables. In contrast, the number of freely adjustable constants/coefficients
in physics equations hardly ever exceeds the number of variables. Most
often, there is only one adjustable constant. Also, physics strives to elim-
inate competing models for the same phenomenon.

The implications are momentous. Physicists tend to view the reported
numerical results and equations as steppingstones for further inquiry.
Numerical values of constants are published sparsely, with the idea of
other people using them. When the findings are of sufficient interest,
other researchers soon retest them, and the resulting numerical values of
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Table 7.3. The number of constants/coefficients vs. their impact (modified from
Taagepera 2007b)

Physics Social sciences

Number of input variables per
equation

Rarely more than 3 Often more than 3

Number of completely freely
adjustable constants/
coefficients

Few. At most as numerous as
input variables

Many. Always more numerous
than input variables

Alternate equations for same
phenomenon

No competing alternatives Often several regressions are
given, with slightly different
variables

Later use of numerical values
of constants

Same constant values often
used over and over

Once published, practically
never used again for
anything

Do they have names? Some do It is out of question
The meaning of published

numerical results
Steppingstones Endpoints

→ Cumulation of quantitative
knowledge

→ Only qualitative
cumulation of knowledge

constants are compared. Knowledge cumulates on a quantitatively precise
level, where even minor discrepancies can trigger new inquiries. Some
constants are so frequently used that they are given names.

In contrast, the profligate numerical values of regression and correlation
coefficients reported in social sciences are endpoints. None of them has a
name, because those reams of computer-produced numbers are practically
never used again for anything. Once printed in journals, not even their
authors take another look at them. They are dead on arrival.

The more regression “models” are offered for the same output vari-
able, the more fleeting the numerical values of coefficients become. The
numbers are crunched but not digested. While physics has cumulation
of quantitative knowledge, any such cumulation in today’s social sci-
ences remains largely qualitative—or semi-quantitative at best. Table 7.3
resumes the inverse relationship between the number of numerical values
published and their impact.

Does this Description Fit the Present Practices
in Social Sciences?

Are social sciences really so addicted to regression analysis and related
descriptive methods? Do the features described here represent the main
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line? Even if they do, how frequent are the redeeming exceptions? An
appreciable part of social science publications do not pretend to be
quantitative, and they are subject to other quality norms. The question
here is, what do social scientists presently do when they do apply quanti-
tative approaches to numerical data?

The only field I have systematically investigated is political science. Its
flagship journal, the American Political Science Review, is a highly selective
journal that publishes less than 10% of the manuscripts submitted. The
criteria used presumably select for what is presently considered the best in
political science. Inspection of the “Articles” section, from 2002 to 2004,
shows the following.

Out of a total of 116 articles, 62 involved some numerical data treat-
ment, the rest being qualitative studies, proofs of theorems, constructions
of indices, or numerical data tabulation without further analysis. Among
these 62 articles, 47 (i.e., 76%) used OLS, probit, logit, and other essentially
linear regression approaches to input variables. The remaining 15 used a
variety of other methods.

Was this regression analysis really so linear? Out of the 47 articles that
used regression, 30 stuck with purely linear format. The other 17 had at
least one “interaction term” of form xi xj , or some other nonlinear feature.
No squaring of a variable was observed. Were these articles oblivious
of division? None included a division of one variable by another, or
the inverse of a variable. Only a couple took the logarithm of one or
several input variables. No article took the logarithms of all the vari-
ables (input and output) so as to correspond to the multiplicative format
y = a�xbi

i .
The number of input variables ranged from 1 up to at least 19. The num-

ber of freely adjustable constants/coefficients always exceeded the number
of input variables in the given equation. Several alternative regressions
for the same or fairly similar output variables were offered in quite a few
articles, which enhanced the ratio of numerical values of coefficients per
input variable. I did not notice any comparisons of the numerical values
of regression coefficients for the same input variable (or related ones) in
different regression. If any such comparisons occurred, they were rare.

The precise proportion of articles that used several regressions for the
same output variable was hard to pin down. The prize may go to Helmke
(2002), who offers logit models for judicial antigovernment votes in
Argentina under military rule and under two presidents. There seem to
be only three output variables, but I may have missed subtle differences.
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A total of 33 logit models are tabulated, with a total of 101 different
numerical values of constants and coefficients, 44 of them statistically
significant at p ≤ .01. The number of input variables in a single regression
is mostly 1, but it reaches 19 in one regression.

Is regression really used so little for quantitative prediction or even post-
diction? Regression coefficients invariably were reported in tabular form
rather than in an equation, suitable for plugging in numerical inputs. I
did not notice a single occasion where an article applied the numerical
coefficient values to calculate the expected value for a case outside the
initial set. Indeed, 10 studies (21% of all studies that used regression!)
failed to report the numerical value of the constant (“intercept,” a), thus
making prediction for specific cases impossible. The frequent occurrence
of such omissions suggests that not only authors but also reviewers and
editors do not pay attention to whether the results can be applied for
prediction.

Correlation coefficients or other measures of dispersion were reported in
all cases. No standard errors seemed to be reported, but I may have missed
some. On the positive side, I did not locate any conceptual inconsistencies
in these particular articles.

Do political scientists really make so little use of numerical values of
regression coefficients, once published? I did not notice a single occasion
where an article referred to the numerical coefficient values from a previ-
ously published regression. The numbers published in the American Polit-
ical Science Review look indeed like endpoints rather than steppingstones
toward further research.

As for quantitatively predictive logical models, I did not notice any.
It could mean that none were submitted, or that they were blocked by
regression-minded reviewers—recall the experience of Folk and Luce in
psychology (see Chapter 1). It can be documented that some reviewers
recommend rejection because they mistake logical models for poorly
executed regressions. They are liable to say that the equation proposed
“does not even yield the obvious best fit”—which means they mistakenly
compare the degree of fit of an a priori model for any data of the given
type to the a posteriori statistical fit of a particular data-set.

Other political science journals do not seem to offer a markedly differ-
ent picture, except that some of them have tolerated the use of logical
models. Is it different in some other disciplines in social sciences? My
casual inspections do not suggest so, but I would welcome evidence to
the contrary.
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Conclusion: We Must Do Better than That

Three social scientists climbed up the mountain to consult with the Wise
One. One had analyzed some data and found that Pearson correlation
coefficient was R = −.21, and the relationship was significant at the .01
level (two-tailed). The Wise One plugged his computer to his solar-
powered batteries, ran the SPPS program, and announced: “Your result
is significant indeed.” The other social scientist had also crunched similar
data and found that the correlation was significant at the .01 level, but R
had the opposite sign: R = +.31. Once more, the Wise One ran his program
and announced: “Your result is significant.”

The third social scientist, a mere novice, piped up: “But how can y
significantly increase and decrease with x at the same time?” The Wise
One spoke: “Your question is a set of n = 1 and therefore by definition
devoid of statistical significance.” The novice was happy and said: “Now
I know that I can have my cake and eat it too in a statistically significant
way.” Some answers I have received in response to such concerns have
been more elaborate in terms of statistical sophistication but no more
convincing.

Nothing is wrong with statistical methods such as linear regression.
Plenty is wrong with the way these methods have been overused and
misused in social sciences. The limitations of complete dependence on
descriptive methodology have been expounded in Chapters 5–7. Throw-
ing all conceivable factors into a grand regression equation will not do.
We must and can do better than that. The next six chapters pick up on
Chapters 3 and 4, explaining various aspects of logical model building
and offering examples. The mathematics involved is no more complex
than what is needed to use statistics without misusing it—and there are
overlaps. The payoff is in predictive results that are useful to society and,
incidentally, can earn respect for social sciences.
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8

Forbidden Areas and Anchor Points

� How much air and food does one need to survive? Adding “Air plus
Food” would falsely tell us that one could do without air, if food is
plentiful! We must not add but multiply: Survival depends on Air times
Food.

� The outcomes of sociopolitical processes often depend on the factor
in shortest supply. This consideration makes multiplication of factors
superior to their addition

� Naïve linear regression may not detect all relationships between physi-
cal or social factors, because most of them are curved.

� When x and y can conceptually take only positive values, linear regres-
sion should be carried out on their logarithms, not on the numbers
themselves. This corresponds to fitting y with x raised to a power (an
exponent).

� Various other constraints lead to exponential, simple logistic and more
complex patterns. These functional forms most often leave parameters
to be determined empirically.

Every specific problem requires different creative approaches to model
building. No general recipe can be worded and converted into a canned
computer program. One has to think. Still, some features occur frequently.
This chapter presents some general guidelines for developing certain types
of quantitatively predictive logical models. Conceptual constraints such
as boundary conditions on input and output variables impose specific
and usually nonlinear relationships among them. This is so, in partic-
ular, when variables can take only positive values (or zero)—which is
frequently the case. The importance of boundary conditions has been
stressed by Gary King (1997).
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Here, I present a selection of relatively simple and widely occur-
ring situations, where some areas are conceptually forbidden and some
anchor points are conceptually mandatory. The norm of continuity (see
Chapter 4) requires curves to join the various anchor points. Their slopes,
too, must be continuous. Given the social scientists’ excessive trust in
linear relationships, I pay special attention to the extent straight lines can
or cannot satisfy conceptual constraints.

Even simple situations quickly involve some high school and college
mathematics, if one wants to follow their implications systematically. In
particular, familiarity with exponent notation and logarithms is needed.
The Appendix to Chapter 8 offers a simplistic introduction, kept to the
bare minimum. If the mathematics becomes overly hard at the first read-
ing, one may take the results on faith and move on to later sections.
Once the usefulness of such models becomes apparent, it would supply
motivation to internalize the mathematics needed.

For those proficient in mathematics, on the other hand, all this may be
old hat. Indeed, the outcomes cover a fair part of the generic approaches
used by statisticians. All too many social scientists are not aware of the
simple constraints that underlie these generic forms, treating them as
somehow mysteriously given. Many substantive situations involve such
constraints, and being aware of them helps to determine when a given
format can or cannot be used. It should become second nature to a model
builder in social sciences to pin down such constraints and delimit the
field of remaining options accordingly.

The following is limited to the situation where a single output variable
(y) is suspected of being affected by a single input variable (x). The
extension to several variables is discussed at the end of the chapter.

No Forbidden Areas: Linear Relationships

As a starting point, assume that both x and y are such that they can
conceptually range from minus to plus infinity. This means a two-
dimensional field open to functions y = f (x), with no conceptually for-
bidden areas whatsoever. All sorts of functional forms are allowed, but
we should favor the simplest, unless something precludes it. Here, the
simple linear relationship y = a + bx applies, unconstrained, because one
can pass lines with any slopes dy/dx = b through any point (x0; y0). This
is the simplest family of acceptable curves. It corresponds to the “interval
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group” in Stevens’s (1946) classification of scale types (Luce et al. 1990:
113), except that it also allows for b < 0.

When x and y can conceptually range from minus to plus
infinity, then linear regression should be carried out. This
corresponds to fitting y to a linear function of x.

By so doing, we do not assert that y is a linear function of x, but we test for
this possibility. Oftentimes it works, but sometimes it does not, because
other constraints and conditions enter. In the following, we introduce
some usual constraints.

Only Positive Quadrant Allowed: Fixed Exponent Relationships

Many variables of direct or indirect interest to social scientists cannot
take negative values: population, telephones per capita, usual inequality
indices, the numbers of votes, parties, and social cleavages. These variables
may reach 0 or, in the opposite direction, be so much larger than 1 that
there is no limit short of infinity, at least in first approximation. These are
“ratio scale variables.” For them, only one quadrant of the previous field
remains allowed: x ≥ 0 and y ≥ 0.

Most straight lines that pass through a given point (x0; y0) in this
allowed quadrant are conceptually disallowed. All downward sloping lines
(b < 0) are forbidden, because at sufficiently high values of x, they would
predict negative values of y. Even among the upward sloping lines, those
with negative intercepts (a < 0) are also forbidden, because at sufficiently
low positive values of x, they would predict negative values of y. Such
lines are acceptable only for coarse models and as approximations over
short ranges of x.

With most straight lines disallowed, we should look for the simplest
family of curves that is fully acceptable. This means that all curves belong-
ing this family and passing through any given point (x0; y0) of the positive
quadrant avoid absurdities, such as negative y for an allowed value of x.
The fixed exponent function satisfies this condition:

y = Axk,

where k can take any real values and A = y0/xk
0 is positive. For any positive

x, we get a positive y. This family of curves corresponds to the “log-
interval (power) group” in Stevens’s (1946) classification of scale types
(Luce et al. 1990: 113) except that it also allows for k < 0.
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Figure 8.1. Fixed exponent functions—the simplest full family of curves allowed
when x and y are conceptually restricted to positive values

Without loss of generality, we can take x0 and y0 as units of quantities
x and y, respectively. This means shifting from x and y to X = x/x0 and
Y = y/y0. Now the equation is simplified to

Y = Xk.

It can be shown that the slope dY/dX has a rather simple functional form:

dY
dX

= k
(

Y
X

)

slope is proportional to the ratio of variables. Figure 8.1 shows the corre-
sponding pattern of curves. It fills the entire quadrant.

The curves in Figure 8.1 all pass through the point (1;1), which divides
the positive quadrant into four regions, depending on whether X and Y
are larger or smaller than 1. The curves fall into two groups. For k > 1,
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these curves can be characterized as quasi-parabolic, as they include the
positive halves of the parabolas Y = X2 and Y = X0.5. They all begin at
(0; 0), and they fill the lower left and upper right regions defined by (1; 1).
As a special case, they include the straight line, Y = X. For k < 0, on the
other hand, the curves can be characterized as quasi-hyperbolic, as they
include one branch of the hyperbola Y = 1/X = X−1. These curves fill the
upper left and lower right regions.

Variables of interest in social sciences often are nonnegative and have
a conceptual anchor point at (0; 0): When x is 0, y also must be 0. If so,
then only the curves with positive k are possible. This is readily visible in
Figure 8.1.

Which path is the likeliest for a continuous curve that must start at
(0; 0) and pass through (1; 1)—or any point (x0; y0) in the general format?
The paths Y = Xk are the simplest paths mathematically. Using such paths
in our models would certainly make it easier for students of social sci-
ences. But do socially interesting variables know math, so as to follow
these paths? They often behave as if they did. The reason is that any
deviation from the fixed exponent equation would reflect the existence
of some further constraint or condition that pulls the slope away from
the simple value k(Y/X). Later, we will consider such cases. But if we are
not aware of any further constraints, our best bet is to assume a fixed
exponent function, until proven otherwise.

In contrast, assuming a linear function would be among our worst bets.
In particular, any downward sloping straight line is bound to run into
the forbidden negative area. Whenever data indicate a downward slope, a
straight line fit will not do as a model for conceptually nonnegative quantities,
except as an empirical approximation over short ranges of x. In such cases,
a division, y = A/xk, with positive A and k, is the simplest conceptually
acceptable format.

The simplest single function with such a format is the hyperbola,
y = A/x. It implies that x = 0 leads to y → infinity. If such an outcome
is not acceptable on conceptual grounds, then more complex curves must
be used. For instance, suppose that y decreases with increasing x in the
usual range of x but also must be 0 when x = 0. A curve of the form
y = Ax/(x + 1)2 might be considered. When x = 0, y is 0. But when x is large
(x 	 1), then y = Ax/(x + 1)2 ≈ A/x.

How can testing by linear regression be used for nonnegative quan-
tities? It requires first a transformation of both variables, so that their
relationship becomes linear. Taking logarithms does the trick. Indeed,
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when y = Axk, then the logarithms of x and y are linearly related:

log y = log A + k log x.

This means that any curve y = Axk in the positive quadrant is related to
a line in the open two-dimensional field. Given that log 1 = 0 and log 0
tends to minus infinity, we can “map” the entire positive quadrant into
the entire two-dimensional field, by taking the logarithms of x and y.
Such a “mapping” means that for every point in the positive quadrant,
there is a corresponding point in the entire field. The resulting lines fill
the entire two-dimensional field, unconstrained. This means that through
any point (log x0; log y0) one can pass lines with any slopes k.

When x and y cannot conceptually take negative values, then
linear regression should be carried out on their logarithms,
rather than on x and y themselves. This corresponds to
fitting y to a fixed exponent function of x.

By so doing, we do not assert that y is a fixed exponent function of x,
but we test for this possibility. Oftentimes it works, but sometimes it does
not, because other constraints and conditions enter. Simply regressing y
on x would lead to conceptual absurdities whenever the slope is negative,
because such regression line would extend into the prohibited negative
values of y. So would those positive regression slopes that lead to negative
values of y for any positive x.

Statistics and econometrics textbooks (e.g., Studenmund 2001: 203)
recommend using the fixed exponent form instead of the linear when
the statistical configuration of data calls for it. But even before any data
are collected, we know that the linear approach should be rejected for
conceptual reasons when x and y cannot take negative values.

Recall that a naïve introduction to exponents and logarithms is given
in the Appendix to Chapter 8. For a given data-set, it enables the reader
to determine the numerical values of constants in y = Axk.

Two Quadrants Allowed: Exponential Relationships

We now backtrack to the situation where the output variable y cannot
take negative values, while the input variable x can take any real values.
This is the case, in particular, when a nonnegative variable changes over
time. Now two quadrants of the entire two-dimensional field remain
allowed: −∞ < x < +∞ and 0 ≤ y < +∞.
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Under such conditions, all sloping straight lines are forbidden, because
they would predict negative values of y either at sufficiently high or
sufficiently low values of x. The only acceptable line through a given point
(x0; y0) in these two quadrants would be the one with zero slope (y = y0

for any x). Straight lines are acceptable as approximations over short
ranges, but they cannot be part of refined conceptually based models.
In particular, y = a + bt, where t is time, is impossible over sufficient time
spans when y cannot take negative values.

With straight lines disallowed, we should again look for the simplest
alternative family of curves that is fully acceptable—even while recogniz-
ing that there is an infinite number of other possibilities. It is supplied by
the exponential function

y = Aekx = A exp(kx),

where k can take any real values and A must be positive. The expression
“exp x” is an alternate way to write ex, where e = 2.718 . . . is the basis
of natural logarithms. Like  = 3.1416 . . . , it is a universal constant in
mathematics. If we want y to have a certain value y = y0 when x has a
given value x0, then use A = y0 exp(−kx0).

One should watch the position of x in the equation. In the previous
one-quadrant situation, x had a fixed exponent: xk. In the present two-
quadrant situation, in contrast, x itself is exponential to a fixed number:
ex. It matters.

Without loss of generality, one can shift from x and y to X = x − x0 and
Y = y/y0, respectively. Now the equation is reduced to

Y = ekX = exp(kX).

The slope dY/dX of this curve has a truly simple functional form—the
slope is proportional to the output variable:

dY
dX

= kY.

As X increases, Y increases at an increasing rate. In the reverse direction, as
X decreases, Y decreases at a decreasing rate. As Y approaches 0, its further
decrease rate dY/dX also approaches 0; therefore Y can never reach zero
level. In other words, restriction of Y to only positive values is implicit in
the model dY/dX = kY.

Figure 8.2 shows the corresponding patterns. Given that e0 = 1, the
curves Y = exp(kX) all pass through the point (0; 1). This point divides the
two positive-Y quadrants into four regions, depending on whether X is
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Figure 8.2. Exponential functions—the simplest full family of curves allowed
when y is conceptually restricted to positive values while x is not

negative or positive and whether Y is smaller or larger than 1. The curves
fall into two groups. For k > 1, the curves have positive slopes, and they
fill the lower left and upper right regions defined by (0; 1). For k < 0, the
curves fill the upper left and lower right regions.

Previously, restriction to the positive quadrant alone gave special status
to the point (0; 0), which frequently functions as a conceptual anchor
point. No such special points exist when two quadrants are allowed.
Instead, there is a special exclusion point: no exponential curve with a
finite k and passing through (0; 1) can pass through (0; 0).

What is the likeliest path of a continuous curve that must pass through
(0; 1) in Figure 8.2—or any point (x0; y0) in the general format? The paths
Y = exp(kX) are the simplest mathematically. This is not to say that all
relationships between unbounded x and bounded y must be exponential,
but this is the simplest format they can follow. The linear format is
impossible, except as a short-range approximation. If variables of interest
in social sciences are conceptually restricted to two quadrants, yet do not
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follow the exponential pattern, it usually means that there are further
constraints, and we better find out what they are.

How can testing by linear regression be used when x can take any real
values, while y can conceptually take only positive values? All regression
lines y versus x would lead to negative values of y for some values of x.
This conceptual absurdity can be avoided by taking the logarithms of y
(but not of x!), before regressing. When y = A exp(kx), then the natural
logarithm of y is linearly related to x:

ln y = ln A + kx.

Hence, the exponential curves in the two positive-y quadrants can be
mapped into straight lines in the entire two-dimensional field, by taking
the logarithms of y. These lines cover the entire two-dimensional field,
unconstrained. This means that through any point (x0; ln y0) one can
pass lines with any slopes k.

When x can take any values, while y can conceptually take
only nonnegative values, then linear regression against x
should be carried out on the natural logarithm of y, rather
than on y itself. This corresponds to fitting y to an exponen-
tial function of x.

By so doing, we do not assert that y is an exponential function of x, but
we test for this possibility. Oftentimes it works, but sometimes it does
not, because other constraints and conditions enter. One can actually use
logarithms to any basis B, but then the equation above becomes log y =
log A + kx/ ln B.

The converse situation, where the input variable x cannot take neg-
ative values, while the output variable y can take any real values, is
not discussed here. It tends to occur relatively rarely. The format is y =
A + k ln X. For linear regression, y should be regressed against ln x, not x
itself.

Some confusion in terminology should be pointed out. The mathemat-
ics and physics texts I have checked call y = A ekx an “exponential function
of x.” Some statistics and econometric texts call y = A + k ln X a “semilog
function of x” and ln y = A + kx an “alternative semilog form” (e.g., Stu-
denmund 2001: 207–9). It is the latter that corresponds to the exponential
function, y =A ekx. The mathematics and physics texts designate xa as “x
to the power a,” and a series a0 + a1x + a2x2 + a3x3 . . . as a “power series.”
However, calling y = Axk a “power function” or “power relationship” has
met resistance by some social scientists who deal with political power. So
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I have settled here for “fixed exponent relationship.” Studenmund (2001:
203–6) refers to it as “double-log function,” given that it corresponds to
log y = log A + k log x.

Two Quadrants Partly Allowed: Logistic Relationships

Sometimes the input variable x can take any real values, while the output
variable y can take neither negative values nor positive values beyond
some ceiling value y = C. This is the case, in particular, when x is time
and y is a percentage. Now only parts of two quadrants of the entire two-
dimensional field remain allowed: −∞ < x < +∞ and 0 ≤ y ≤ C. This is
the constraint that underlies the logit and probit programs in statistics.

Once more, all sloped straight lines are conceptually disallowed. In
particular, y = a + bt, where t is time, is impossible over sufficient time
spans. The simplest family of acceptable curves that pass through a point
(x0; y0) in the allowed zone can be deduced from the simplest form for the
slope dy/dx that expresses the two constraints:

dy
dx

= k
(
1 − y

C

)
y.

Recall that restriction of y to only positive values is implicit in the expo-
nential model dy/dx = ky. Multiplication of ky by (1 − y/C) adds a further
restriction of y to values less than C. Indeed, as x increases beyond the
level C/2, y starts to increase at a decreasing rate, given that this rate
is proportional to 1 − y/C. As y approaches C, the difference 1 − y/C
approaches 0 and hence the increase rate dy/dx approaches 0. Therefore,
y can never reach C. This way, the restriction of y to values between 0 and
C is implicit in the model dy/dx = k(1 − y/C)y.

Integration of dy/dx = k(1 − y/C)y leads to the “simple logistic equa-
tion” (although it may not look very simple!):

y =
C

1 + Ae−kx
,

where k can take any real values and A must be positive. If we want y
to have a certain value y = y0 when x has a given value x0, then use
A = [(C − y0)/y0] exp(+kx0). The corresponding curve has been described
as a “drawn-out S.” For given ceiling C and basic rate constant k, a single
starting point (x0; y0) defines the entire curve.

How can testing by linear regression be used in such a case? The simple
logistic equation is connected to the linear function in the following way.
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Consider the ratio of the distances of y to its two limits: (y − 0)/(C − y).
The simple logistic function yields (y − 0)/(C − y) = (1/A)ekx, which is an
exponential function. Taking logarithms on both sides of the equation
results in a linear equation in x:

ln
[

y
C − y

]
= − ln A + kx.

For y = y0 when x = x0,

ln
[

y
C − y

]
= − ln

[
y0

C − y0

]
− kx0 + kx.

Before linear regression against x can be applied, y must be transformed
in this way.

When x can conceptually take any values, while y can range
from 0 up to a positive ceiling C, then linear regression
against x should be carried out on the logarithm of y/(C
− y), rather than on y itself. This corresponds to fitting y to
a simple logistic function of x.

By so doing, we do not assert that y is a simple logistic function of x, but
we test for this possibility. Oftentimes it works, but equally often it does
not, because other constraints and conditions enter.

With C = 1, the transform is reduced to ln[y/(1 − y)]. This is the trans-
formation that the logit program in statistics carries out automatically.
The probit program yields a fairly similar curve, but starting from quite
different premises (normal error function), not discussed here.

The logistic model has substance when y actually can take values rang-
ing between 0 to C, as is the case for growth curves of organisms and
innovations. When something can take only values 0 or 1 and y repre-
sents probability of either outcome, then the probit approach makes more
conceptual sense, but either way, such regression may become a model
without meaning. Steve Coleman puts it as follows, based on Kennedy
(1998: 239–40):

The idea that one can model binary choices with a continuous function makes
regression possible but skirts the idea that one should actually have a reasonable
theory or model of binary decision making. This is just a more complex case of
social scientists skipping the messy business of theory to go straight to data analy-
sis. As much as one can complain about mindless linear models, logistic models
are this same problem multiplied. They also have serious statistical problems in
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estimating coefficients because models are very sensitive to errors in specification.
Also there is no universally accepted measure for goodness of fit. (Steve Coleman,
personal communication, July 2007)

Constraints on Three Sides

Constraints on three sides can occur in various ways. Consider the one
where both x and y are constrained to the positive quadrant, and y
also has a finite ceiling C: 0 ≤ x < +∞, 0 ≤ y ≤ C. This is the situation
for volatility, in Figure 4.2. All sloping straight lines would stray into
forbidden areas. As in the previous case, the simplest way to let y approach
the ceiling, without ever reaching it, is to make the slope proportional to
the remaining distance to the ceiling:

dy
dx

= k(C − y),

where k is positive. This differential equation corresponds to an exponen-
tial approach to the ceiling:

y = C(1 − e−kx) + y0,

where y0 is the value of y when x = 0. Alternatively, it can be written as

y = C − C exp[k(x0 − x)],

where x0 is the value of x for which y = 0. In Figure 4.2, x0 = 1. The
resulting pattern can be deduced from Figure 8.2. Take the bottom right
region alone, and reverse the direction of y. The shapes obtained are akin
to the one for the refined model in Figure 4.2.

Testing by linear regression again requires first a transformation of the
output variable. The equation above can be expressed as

ln(C − y) = (ln C + kx0) − kx.

Hence, the logarithm of (C − y) is a linear function of x.

When x can conceptually take any nonnegative values, while
y can range from 0 up to a ceiling C, then linear regression
against x should be carried out on the logarithm of (C − y),
rather than on y itself. This corresponds to fitting C − y to
an exponential function of x.
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By so doing, we do not assert that C − y is an exponential function of
x, but we test for this possibility. It often works, but not always, because
other constraints and conditions enter.

Constraints on All Four Sides

Finally, consider the case where both x and y are nonnegative and have
finite ceilings: 0 ≤ x ≤ D, 0 ≤ y ≤ C. This is so, in particular, whenever
both x and y are in percentages—or fractional shares that cannot surpass
1. By taking D and C as units, this case can always be reduced to 0 ≤ X ≤ 1,
0 ≤ Y ≤ 1, without loss of generality. Here, the share of acceptable straight
lines is limited. It can be shown that the only lines y = a + bx that have
an allowed value of Y for every allowed value of X are those that satisfy
both 0 ≤ a ≤ 1 and 0 ≤ a + b ≤ 1. The simplest family of curves that is
acceptable depends on the nature of the conceptual anchor points. Two
cases occur rather frequently.

Two anchor points. It may be that minimal and maximal Y must corre-
spond to minimal and maximal X, respectively. Consider, for instance,
female literacy (F ), which is usually lower than male literacy (M): F ≤
M. (We will overlook exceptions that occur at very high literacy.) Also
0 ≤ F ≤ 1 and 0 ≤ M ≤ 1. If so, then a country with zero male literacy
(M = 0) must also have zero female literacy, because F ≤ 0. Also, a coun-
try with full female literacy (F = 1) must also have full male literacy,
because 1 ≤ M. This would mean two anchor points, (0; 0) and (1; 1).
Then the simplest fully allowed family of curves is F = Mk, or more
generally,

Y = Xk, [2 anchor points]

with k ≥ 0. It includes the line Y = X as a special case that corresponds to
k = 1—and this is the only acceptable straight line. We found the same
equation when the entire top right quadrant is allowed. The ceilings just
limit the pattern to the one in the bottom left region of Figure 8.1.

Three anchor points. There may also be a further constraint that adds a
central anchor point. For instance, in any two-party system, zero votes
(X) must lead to zero seats (Y), and 100% of the votes must lead to 100%
of the seats. Furthermore, in an unbiased system, 50% votes must lead
to 50% seats. These three anchor points appear in Figure 8.3 as (0; 0),
(0.5; 0.5), and (1; 1). Even the simplest curve cannot be very simple when
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Figure 8.3. The simplest full family of curves allowed when x and y are conceptu-
ally restricted to the range from 0 to 1, with three anchor points—(0; 0), (0.5; 0.5),
and (1; 1)

it must participate in a three-gate slalom. The simplest family that joins
the three anchor points is

Y =
Xk

Xk + (1 − X)k
, [3 anchor points, no bias]

where k can take any positive values. It can also be expressed more
symmetrically as

Y
1 − Y

=
[

X
1 − X

]k

.

When k = 1, Y = X—and this is the only straight line acceptable. As k
ranges from zero to infinity, the curves fill in the lower left and upper
right quadrants in Figure 8.3. (The other two quadrants correspond to
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k < 0, which would impose Y = 1 for X = 0, and vice versa, contrary to
our assumptions.)

The slope is also more complex than in the previous cases. It can be
shown that

dY
dX

= k
(

Y
X

) [
1 − Y
1 − X

]
.

The slope is proportional to the ratio of the variables times the ratio
of their complements. It is always positive or 0, for k > 0, When X = Y =
0.5, the slope equals k. When X = 0 or X = 1, the slope is 0 for k > 1; it
tends toward infinity for k < 1. (For k < 0, dY/dX ≤ 0 and the opposite
anchor points (0;1) and (1;0) would be imposed.)

In the context of votes and seats, dY/dX > 0 means that more votes lead
to more seats, as we would expect. Further restriction may be imposed.
Nearly all electoral systems avoid favoring smaller parties at the expense
of larger ones. It means that for the smaller party we expect Y ≤ X and for
the larger one, Y ≥ X. This constraint restricts k even further, to k ≥ 1. It
eliminates the top left half of the remaining lower quarter, and also the
bottom right half of the remaining higher quarter, as shown in Figure 8.3.
Any acceptable curve must be squeezed into the two remaining triangular
areas.

By now, the allowed area is so tight that there is preciously little squiggle
room away from the simplest family of curves, once the best fitting
value of k is determined. As an example, the curve for k = 3 is shown
in Figure 8.3. The actual patterns need not follow the simplest curves,
but usually they do. Any deviation would need explanation in terms of
further constraints or factors.

The lowest allowed value of k, k = 1, leads to Y = X, meaning perfectly
proportional representation in the case of elections. When k tends to
infinity, the curve in Figure 8.3 tends to the vertical line at X = 0.5,
meaning that the larger party gets all the seats—or the only seat at stake,
in the case of presidential elections.

This relationship applies in various contexts, whenever two and only
two components split the total. Nor does it have to be an unbiased system.
If X = 0.5 leads to Y = 0.5 + b′, then b′ represents a bias away from 0.5. It
can be positive or negative. The allowed triangles in Figure 8.3 would shift
and bend accordingly, and the simplest family of curves is

Y =
Xbk

Xbk + (1 − Xb)k
, [3 anchor points, bias exponent b]
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which can also be expressed as

Y
1 − Y

=
[

Xb

(1 − Xb)k

]
.

Here, the exponent b is connected to bias b′ as b = − log 2/ log(0.5 + b′). For
unbiased system, b = 1. The expression for slope dY/dX is fairly complex.

Overview: Logically Predicted Forms, Empirically
Determined Parameters

Table 8.1 offers a summary, depending on how the input (x) and output
(y) variables are constrained from covering the entire range from minus
infinity to plus infinity. In the case of patterns that cannot be linear on
conceptual grounds, extracting most out of the data requires prior trans-
formation of y and/or x, before linear regression makes sense. Even so,
caution is advisable. These transformations may distort the distribution
of random error, leading to extra problems.

Various other types of constraints and anchor points can of course
occur, depending on the specific issue. Still, it is remarkable how many
sociopolitical relationships fit the above description, at least as a first
approximation.

As more constraints enter, a linear approach becomes ever more hope-
less, and even the simplest curved solutions become more complex.
Sometimes constraints impose a single equation, with no wiggle room

Table 8.1. Simplest formats resulting from conceptual constraints on ranges of occur-
rence of input and output variables

Number of constraints Simplest format expected Test by linear regression

None Linear y on x
One: x unconstrained, y positive (or

zero)
Exponential log y on x

Two: both x and y positive (or zero) Fixed exponent log y on log x
Two: y ranging from 0 to a ceiling, C Simple logistic log[y/(C − y)] on log x
Three: x positive, y ranging from 0 to a

ceiling, C . Anchor point (0; 0)
Reversed exponential log(C − y) on x

Four: both x and y ranging from 0 to a
ceiling. Two anchor points: (0; 0) and
(C ; C ′)

Fixed exponent log y on log x

Four: both x and y ranging from 0 to a
ceiling. Three anchor points: (0; 0),
(C ; C ′), and an intervening one

Elongated S-shaped More involved
transformation of x
and y
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whatsoever, true to Sherlock Holmes’s ideal. In most cases, however,
only the mathematical format is prescribed or strongly suggested by the
nature of the problem, including conceptual restraints, while one or more
parameters are to be determined empirically.

It would be a mistake to think that such lack of full specification is pecu-
liar to social sciences and represents a weakness for a theoretical model.
Physics is full of empirically determined constants. In the aforementioned
law of gravitation, the universal constant of gravitation (G) is determined
empirically. Indeed, it could not be otherwise, whenever quantities lack
a natural unit value (see the Appendix to Chapter 13). As for social
sciences, in Coleman’s (1981: 5) and Sørensen’s (1998) view, models with
a free parameter represent the general case for what they call substantive
models.

Empirically determined parameters offer strength as much as weak-
ness. Parameter k in the aforementioned equation Y = Xk/[Xk + (1 −
X)k] enables us to express various situations for party seats and votes.
When k = 1, it means perfect proportional representation. When k = 3,
it expresses a moderate attrition of the minority in some parliamentary
elections with single-seat districts. Finally, k → infinity corresponds to
the stark attrition in presidential elections, where any number of votes
short of plurality is translated into zero seats. Thus, empirically deter-
mined values of exponent k represent a measure of how disproportional a
system is.

The essential part of a predictive model is that it predicts a functional
form for the relationship among the variables, such as the exponential
form in the refined model for volatility, V = 100[1 − e−k(N−1)]. In this func-
tional framework, empirically determined constants may be embedded,
such as the constant k in the model above, as well as parameters that
express the impact of various external conditions. If a later study should
enable us to explain these constants themselves in still more fundamental
terms, so much the better—it expands our predictive power. But the main
thing is prediction of the functional form of the interaction.

Several Input Variables

The preceding discussion dealt with the situation where an output vari-
able (y) is affected by a single input variable (x). Often we have reason to
believe that several input variables matter. Should we combine them by
addition or multiplication? It depends.
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Annihilating Factors

Consider how much air (A) and food (F ) one needs for survival and well-
being (S). An addition “Air plus Food” (S = a + bA + cF) would erroneously
tell us that one could do without air, if food is plentiful! Models must
not predict absurdities. To reflect reality, we must multiply rather than
add when the inputs are “annihilating” in the sense of a single zero input
reducing the output to zero. Simple multiplication “Air times Food” (S =
kAF) still leaves quite a few loose ends, but it at least tells us that either
zero air or zero food would be lethal.

The outcome often depends heavily on the factor in the shortest sup-
ply. This consideration makes multiplication of factors superior to their
addition in much of sociopolitical decision-making and related scholarly
analysis. An underlying theoretical reason is that survival, food, and air
are all quantities that cannot take negative values. The next section,
however, warns us that nonnegative quantities need not always lead to
simple multiplication.

Note further that the misleading S = a + bA + cF needs three adjustable
constants/coefficients, while S = kAF may need only one. The philoso-
phy of adding everything often piles up numerical constants/coefficients
of doubtful significance, muddling the analysis. Adding an “interaction
term,” cAF, would be of only limited help. Indeed, in the presence of
random error, the best fit with S = a + b1 A + b2 F + cAF may still leave a
slim possibility of survival without air, if food is plentiful. One must have
the good sense to make the coefficients a, b1, and b2 exactly zero even if
it reduces R2.

The simple approximation S = kAF fails when both inputs are plen-
tiful. A surplus of air and food would improve chances of survival at
a decreasing rate. This could be expressed by S = [1 − exp(−A/A0)][1 −
exp(−F/F0)], which at low A and F reduces to S = kAF, where k = 1/A0 F0).
Such a second-approximation elaboration evolves from the multiplicative
format, not from the additive.

In more abstract terms, consider two input variables, x and z. In princi-
ple, they could affect y in an infinite variety of combinations y = f (x, z),
the simplest being addition/subtraction (y = a + bx − cz), multiplication
(y = axz), and division (y = ax/z). The approach depends on the problem
on hand. Some options are excluded or made awkward by the range of
values the variables can conceivably take.

When all three variables can range from minus to plus infinity, the lin-
ear pattern y = a + bx + cz may well be the most suitable, because various
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other forms run into difficulties with negative values. In particular, y = axz
would presume that a product of negative values of x and z produces the
same value of y as a product of positive x and y—which may or may not
make sense for the given phenomenon.

In contrast, when all three variables can range only from zero to plus
infinity (x ≥ 0, z ≥ 0, and y ≥ 0), the picture is reversed. The restrictions
noted previously for the quadrant x ≥ 0 and y ≥ 0 apply again. Most of
the straight lines y = a + bx + cz that pass through a given point (x0; z0; y0)
are disallowed. In particular, all downward sloping lines (b < 0 or c < 0)
are forbidden, because at very high values of x or z, respectively, they
would predict a negative value of y.

The simplest family of curves that remains entirely in the allowed
region is the product of x and z to some fixed exponent: y = Axbzc, where A
is a positive constant and exponents b and c can take any positive or neg-
ative values. Note that a negative exponent means division. Once more,
the logarithms of the variables are linearly related: ln y = a + b ln x + c ln z,
where a = ln A.

The preceding observations can be extended to any number of variables
that cannot take negative values. The linear equation y = a + ”bi xi leads to
conceptual inconsistencies avoided by the multiplicative form y = a�xbi

i ,
which can be linearized by taking logarithms: ln y = a + ”bi ln xi . Few laws
of physics, however, multiply/divide more than three input variables, and
the same can be expected for social relationships.

Enhancing Factors

Now consider the following problem, inspired by Daniel Bochsler’s (2006)
research. The number of treaties (T) between Swiss cantons may be
enhanced by commonalities of border (B), language (L), and religion
(R). However, these quantities are measured, they have natural zeros
(complete lack of commonalities and treaties), and they cannot take
negative values. Nonetheless, a model T = kBLR would be absurd, as it
would suggest that no treaties would occur even among neighbors unless
they have some commonality of language and religion. Here, in contrast
to the air and food example, none of the input factors are annihilating.
Their presence enhances an output that could be positive even when one
of the factors is nil.

How could we model such a situation? One simple possibility involves
four constants: T = T0(1 + B/b)(1 + L/ l)(1 + R/r ). Here, T0 is the base value
of T when all input variables are zero. Positive constants b, l, and r are the
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values of B, L, and R that double the out put. In the complete absence of
common border, language, or religion, the corresponding term becomes
1 and does not affect the outcome. But if several inputs are positive, they
magnify each other’s impact.

Here, simple logarithmic reduction to linearity is not possible. The
model could be decomposed into an addition of T0 plus three linear
terms, three pair-wise multiplicative terms and a jointly multiplicative
term T0BLR/(blr). We may seem to be back to a linear regression plus
“interaction” terms, with a total of eight constants/coefficients. The latter,
however, cannot take just any odd values. They all are combinations
of the basic four coefficients (T0, b, l, and r ) and thus are subject to
constraints. The simple model above is confirmed only if the coefficient
values found by multiple regression do satisfy these constraints.

Recall (from Chapter 5) the special multiplicative form that occurs in
utility theory (Keeney and Raiffa 1976: 234–8; Fishburn 1977): (1 + cy) =
(1 + cx1)(1 + cx2). It can be reduced to y = x1 + x2 + cx1x2. This expression is
akin to the one above, with only two input variables and with only one
adjustable coefficient.

These examples should caution us. We cannot unthinkingly multiply
all input variables together just because they are restricted to nonnegative
values. We must consider whether they are “annihilating” in the sense of
a single zero input reducing the output to zero. If this is not the case, such
inputs must enter in a different way.

Conclusions: Why Would the Simplest Forms Prevail?

I have highlighted the models based on ignorance—or rather near-
ignorance, teasing the most out of what we know about constraints. Con-
ceptually forbidden zones, anchor points, and continuity are important
parts of our knowledge—knowledge we often take so much for granted
that we do not even notice it, and hence fail to draw conclusions. Asking
what would happen under extreme conditions can lead to insights, even if
we agree that such extremes will never materialize. When the impossible
is eliminated, the possible emerges with more clarity.

When proposing for consideration simple nonlinear mathematical
forms, I may seem merely to dilute blind adherence to linear models. So
a couple of models are offered, instead of a single linear one. Why should
we expect that, among the many mathematical formats that satisfy some
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obvious constraints, precisely the simplest ones would apply? Physicist
Eugene Wigner (1960) addressed a similar issue regarding natural sciences,
which he implicitly reduced to physics alone.

His answer is that the physicist is a somewhat irresponsible character.
If he finds that the relationship between two variables is close to some
well-known mathematical function, he jumps to the conclusion that this
is it, simply because he does not know any better options. Yet, it is eerie
how often this irresponsible approach works out, as if mathematics were
indeed the language in which nature speaks to us. Wigner (1960) deals
with natural sciences only. It may not work in social sciences, but how
would we know without giving it a try?

The models are presented here as equations devoid of an “error term.”
It by no means implies that they are rigidly “deterministic.” They are
deterministic for the mean outcomes even while they may be probabilistic
for individual cases—like the equations for mean positions in quantum
mechanics. For given x, the resulting value of y indicates the expected
median of actual values, with one-half above and one-half below this
level. In the absence of any other knowledge, it is more productive to
use such a model rather than say that we do not know. If actual data tell
us otherwise, this additional knowledge will have to be worked into the
model.

Measures of degree of scatter, such as R2, are the only measures of
goodness for descriptive models, but they are less important for predictive
models, where the location of data points in relation to the predicted
mean expectation is critical (cf. Chapter 4), not their location regarding
the actual empirical mean. When actual data (A) are regressed on the
values predicted by a model (P ), we expect not just any line A = a + bP
but specifically a = 0.00 and b = 1.00 so that A = P . If this is the case, then
the predictive model holds even if R2 is low. The reverse is also true: If
a and/or b deviate markedly from 0 and 1, respectively, then the model
needs revision, especially so when R2 is high for this best-fit line.

The essential part of a predictive model is the predicted functional form
of relationship among the variables. The model may include a constant or
parameter, to be determined empirically. Due to conceptual constraints,
predictive models rarely are linear. Linear approximations are useful in
preliminary work, along with graphical representations, to get a feel for
the empirical pattern. They are also useful at the very end, as practical
simplifications. In order to know when a simplification can be used, one
must be aware of the refined model.
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Appendix to Chapter 8

Getting a Feel for Exponents and Logarithms

Many graduate students and even professors in social sciences seem ill at ease with
exponents and logarithms. They may recall that “When numbers are multiplied,
their logarithms add,” but they have not internalized it, and hence they hesitate
using logarithms. A simplistic introduction may help.

Exponents of 10
We use 103 as shorthand for 10 × 10 × 10. Thus, 103 = 1, 000. More generally, the
“exponent” a in 10a is the number of zeros that come after “1.” It follows
that 101 = 10. Also 100 = 1, given that here “1” is followed by no zeros. It may look
counterintuitive, yet this is the only consistent way to interpret 100.

If we multiply 100 by 1,000, we get 100,000. Using exponents, we have
102 × 103 = 105 = 10(2+3). This is how multiplication turns into addition. When
multiples of 10 are multiplied, their exponents are added:

10a10b = 10a+b.

When multiplying 100 by itself 3 times, we get 100 × 100 × 100 = 1, 000, 000. In
the exponent notation, 102 × 102 × 102 = (102)3 = 106. Thus

(10a)b = 10ab.

If we divide 10,000 by 10, we get 1,000. Using exponents, 104/101 = 103 = 10(4−1).
Division of numbers leads to subtraction of exponents:

10a/10b = 10a−b.

Now consider the reverse situation: Dividing 10 by 10,000 yields 1/1,000 = 0.001.
The previous rule makes it correspond to 101/104 = 101−4 = 10−3. The −3 corre-
sponds to the number of zeros that precedes “1.” It also means that

10−a =
1

10a
.

If we divide 100 by 100, we get 1. It corresponds to 102/102 = 102−2 = 100. This
confirms that

100 = 1.

Fractional exponents of 10
The next question may sound crazy: What could 101/2 or 100.5 stand for? By the
previous rule, it would mean “1” followed by one-half of a zero! It seems to make
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no sense. But hold it! When multiplying 100.5 by itself, the previous rule yields
10, given that we have 100.5 × 100.5 = 100.5+0.5 = 101. But this is the very definition
of square root of 10, which is 3.16: we have 3.16 × 3.16 = 10. Thus, 100.5= 101/2

stands for square root of 10. Figuratively, it is as if 3.16 were “1” followed by
one-half of a zero.

Similarly, the cube root of 10 is the number that leads to 10 when multiplied by
itself 3 times. It is 2.154, because 2.1543 = 10. We could then argue that 2.154 is
somehow like “1” followed by one-third of a zero, because 101/3 × 101/3 × 101/3 =
101/3+1/3+1/3 = 101 leads to “1” followed by a full zero.

But if 3.16 is “1” followed by one-half of a zero, and 2.154 is “1” followed by
one-third of a zero, then 3.00 should be “1” followed by somewhat less than one-
half of a zero, if we want to be consistent.

Fact is, we can actually assign an exponent of 10, a sort of a “fractional number
of zeros,” to any number between 1 and 10. For instance, 2 is 10 with exponent
0.30. How can we prove it? Note that 210 = 1, 024, which is quite close to 1, 000 =
103. Thus, 210 ≈ 103. Put both sides of the equation to exponent 1/10: (210)1/10 ≈
(103)1/10. Multiplying through leads to 2 ≈ 100.30.

This “fractional number of zeros” to follow “1”—this is what we call decimal log-
arithm, designated as “log.” Thus, log 3.16 = 1/2 = 0.500, log 2.154 = 1/3 = 0.333,
and log 2 = 0.30. By definition, 10log 2 = 2. More generally, for any number a,

10log a = a.

What could the logarithm of 5 be? We have 5 × 2 = 10. Hence, 10log 5 × 10log 2 =
10log 10. This means that log 5 + log 2 = log 10 = 1. If log 2 ≈ 0.30, then log 5 ≈ 1 −
0.30 = 0.70. We conclude that 5 ≈ 100.70.

What about the logarithm of a number larger than 10, such as 316? Given that
316 = 3.16 × 100, log 316 = log 3.16 + log 100 = 0.50 + 2 = 2.50. There are ways to
calculate the logarithms of any numbers between 1 and 10 precisely. Once we
know these, we know the logarithms of all numbers—just do what we did for 316.
We divided by multipliers of 10, until the number fell between 1 and 10. Then we
took the log of that number and added to it the number of zeros in the multiplier
of 10.

What are logarithms good for?

They turn multiplications and divisions into additions and subtractions. AB = C
can be written as 10log A10log B = 10log C . By the rules for exponents, we also have
10log A10log B = 10log A+log B . Hence, AB = C corresponds to log A + log B = log C.
Also, log(A2) = log(AA) = log A + log A = 2 log A. More generally,

log(Am) = mlog A.

Note that m enters here, not log m.
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But who needs going through logarithms, when one can do the multiplication
directly? True, we can easily do the multiplication Am, as long as m is an integer. But
consider something like y = 2.2(0.2)0.47. It will be shown soon that we do face such
expressions in model building, yet we cannot compute them directly. However, we
can take logarithms on both sides: log y = log 2.2 + 0.47 log 0.2.

How do we find the logarithms of such numbers? On a usual pocket calculator,
log 2.2 is found by entering “2.2” and pushing the LOG/10x key. (On some
calculators, one must push LOG, “2.2” and “=.”) This way, we get

log y = log 2.2 + 0.47 log 0.2. = 0.342 + 0.47(−0.699) = 0.013.

Once we have log y = 0.013, we take the “antilog” of 0.013, meaning 100.013. On
a usual pocket calculator, we find 100.013 by entering 0.013 and pushing the “2nd

function” and LOG/10x keys. We obtain y = 100.013 = 1.03.
This is a most important property of logarithms: They turn exponent expres-

sions, which we cannot compute directly, into multiplications: y = xm corre-
sponds to log y = m log x.

Most pocket calculators offer a shortcut for 2.2(0.2)0.47. Enter 2.2, push “×”
(MULTIPLY), enter 0.2, push yx, enter 0.47, push “=” so as to get 2.2(0.2)+0.47 = 1.03
directly.

When do we need such calculations? When x and y can take only positive value,
it was observed that the simplest model to satisfy these constraints is y = Axk.
Given a data-set with such constraints, which numerical values of constants A
and k would correspond to this data-set?

Calculations of constants in y = Axk

Consider a set such as set B in Figures 3.1 and 3.2, which may fit y = Axk. Suppose
the following two points can be taken as typical: y = 2.2 for x = 0.2 and y = 0.8 for
x = 1.7. How can we determine the constants A and k?

Plug these coordinates into y = Axk. The two points give us

2.2 = A(0.2)k and
0.8 = A(1.7)k.

Divide member by member, so as to make A cancel out: 2.2/0.8 = (0.2)k/(1.7)k.
This means 2.75 = (0.2/1.7)k = (0.118)k. Take logarithms on both sides: log 2.75 =
k log 0.118. Insert numerical values of logarithms: 0.439 = k(−0.930). Hence
k = −0.47.

Now the previous 2.2 = A(0.2)k becomes 2.2 = A(0.2)−0.47. Multiply on both sides
by (0.2)+0.47. We get 2.2(0.2)+0.47 = A(0.2)−0.47(0.2)+0.47, and the latter simplifies to
A. Calculate 2.2(0.2)0.47 the way we did in the previous section. We obtain A = 1.03.
We previously found k = −0.47. In sum, y = Axk becomes y = 1.028x−0.47. This is
the equation for this data-set, assuming that the two points were typical.
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We should check our result for calculation mistakes. We used (0.2; 2.2) to
calculate A. Now plug the x value of the other point (1.7; 0.8) into y = 1.028x−0.47.
We get y = 1.03(1.7)−0.47 = 0.80, in agreement with original data. Therefore, most
likely no mistakes have been made.

How do we decide which two points to choose for calculating the constants
in the equation? The best way is to regress log y on log x, pick two points on
this regression line, far away from each other, and plug them into log y = log A +
k log x. Visually choosing two actual points as “typical” is an approximation that
sometimes suffices.

Exponents of numbers other than 10, and logarithms on other bases
The formulas established for exponents of 10 apply to any number n. In particular,
nanb = na+b and na/nb = na−b, leading to n0 = 1 and n−a = 1/na. Also (na)b = na.b. It
follows that the bth root of n is n1/ b Combining with (na)b = na.b leads to bth
root of na isna/ b.

These relationships frequently enter model building and testing.
Logarithms can be established on bases other than 10. The only one needed for

models in this chapter is the “natural logarithm,” designated as “ln,” based on
e = 2.718 . . . The previously established relationships apply: AB = C corresponds to
ln A + ln B = ln C, and y = xm corresponds to ln y = mln x. Note that ln 10 = 2.3026
and log e = 0.4341. When log x means logarithm to the base 10, then we always
have

ln x = 2.3026 log x,

and conversely,

log x = 0.434 ln x.

Most pocket calculators have separate keys for LOG (and 10x) and LN (and ex).
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9

Geometric Means and Lognormal
Distributions

� Geometric means are often more meaningful than arithmetic means,
because they are closer to the central figure (median). Take three
incomes, 4, 10, and 100 units. The arithmetic mean (38) depends too
much on the largest income. The geometric mean (16) is closer to the
median.

� To calculate the arithmetic mean of n numbers, add them, then divide
by n. For the three numbers above, (100 + 10 + 4)/3 = 38. For geometric
mean, multiply them, then take the nth root. For the three numbers
above, enter 100 × 10 × 4 = 4,000 on a pocket calculator, push key “yx”,
enter 3, push key “1/x,” push key “ = ” and get 4,0001/3 = 15.87 ≈ 16.

� When x and y can conceptually take only positive values, their distrib-
utions cannot be normal and may be lognormal.

� This discrepancy becomes serious when running a normal distribution
yields a standard deviation larger than one-half of the mean. In such a
case, one should dump the normal fit and try a lognormal fit instead.

The previous chapter showed that conceptual constraints impose specific
and usually nonlinear relationships among the variables. It follows from
such nonlinearity that the central tendency is often better expressed by
geometric than by arithmetic means. By the same token, lognormal data
fits often are called for, instead of desperate attempts to fit data into a
Procrustean normal distribution.

The simple instructions above for calculating geometric means were
included on the recommendation of a prominent social scientist, one
with sufficient self-assurance to acknowledge that he or she did not know
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how to calculate the geometric mean of more than two numbers on a
pocket calculator. For one person who dares to ask for such advice, there
must be many more who dare not ask. Yet without ability to calculate
geometric means without the help of computer programs one may not
develop a feel for what they represent and when to use them.

Arithmetic Versus Geometric Means

What often most interests us is the median. The median means a size such
that half the cases fall below and half above it. But we often calculate
the arithmetic or geometric mean, instead, because they are simpler to
calculate.

To calculate the arithmetic mean (A) of n numbers, add them, then
divide by n. For geometric mean (G), multiply them, then take the nth
root; this is possible only for all numbers positive. It can be shown that
G ≤ A in all cases. Their relation to the median (M) varies. Most often
G < M < A, but both A and G can be smaller than M—as for 9, 10, 10—or
larger than M—as for 10, 10, 11. Which mean should we use? Consider
the following two cases.

What is a meaningful average weight of mammals? Humans might be
close to median, since one can think of many smaller and also many
larger animals. Consider a small mammal such as a mouse (about 3 g),
a human (some 100 kg), and a large mammal such as a blue whale (some
30 tons). Take the mean you are most used to, the arithmetic mean, and
what do you get? We get 10 tons (plus a few negligible kilograms)—which
corresponds to another pretty large whale. All other species would look
less than average. The geometric mean, on the other hand, would be
21 kg, closer to 100 kg.

Now take the average population of members of the United Nations.
The total population of these nearly 200 countries is about 6 billion. The
arithmetic mean is 30 million. Yet less than 40 countries reach 30 million.
The other 160 look less than average.

In both cases, the geometric means come closer to what we often really
look for—the median. It may often seem unclear when to use the arith-
metic and when the geometric mean. When negative values can occur,
only the arithmetic mean can be used. When the variables can take only
positive values, however, the geometric mean is preferable in principle. It
is mandatory when the smallest and largest values differ by several orders
of magnitude, unless one truly wishes to focus on whales and neglect
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mice and men. The reasons for this claim derive from previous chapter
and will be explained further. But let us first consider another specific
illustration.

As I was completing high school in Marrakech, the first Moroccan upris-
ings against the French “protectorate” took place in Casablanca. My friend
Jacques Favreau, with family ties in high military circles, asked me to
guess how many people actually were killed. My answer went roughly as
follows. “The French official figure reported in the newspapers is 40. Our
Moroccan servant says the native rumor mill talks of several thousand.
Take this to mean 4,000. The geometric mean of 40 and 4,000 is 400.” It
turned out that I was off only by 100, compared to the confidential army
estimate, which was about 300.

Jacques said I was the only person he knew who would use such an
approach. But when in 2004 I asked 40 undergraduates at the University
of California, Irvine to offer their best guess, the median guess was 600,
much closer to the geometric mean, xG = 400, than to the arithmetic
mean, xA = 2,020.

The model behind such everyday wisdom is equal distortion. When we
do not know which side is more credible, our best guess is that both sides
exaggerate in opposite directions, by the same multiplicative factor k (not
by the same additive amount!). For the unknown number of deaths (x) in
Casablanca, this means that x = 40k and also x = 4, 000/k, which leads to
k = 10 and x = 400. It implies that both sides distort reality by the same
factor 10. The median estimate of the UCI students, 600, suggests they
were more suspicious of the government (deemed to understate the figure
by a factor of 600/40 = 15) than of the rumor mill (deemed to overstate it
by a factor of only 4,000/600 = 6.7). Maybe the students fed in some ideas
about the ongoing war in Iraq.

I delve on this incident because the analogous choice between arith-
metic and geometric means is essential for some predictive models, yet
some of my colleagues seem suspicious of the geometric mean, as if
the arithmetic mean were the only honest one in all circumstances. But
apply arithmetic mean to Casablanca riots: xA = 2,020. This would mean
claiming that the rumor mill only doubles the number of the dead,
while the government grossly understates it by a factor of 50. The UCI
undergraduates have more common sense than that.

It matters which mean we choose. It can make an enormous difference
in conclusions of many analyses—and the resulting policy decisions.
Per capita GNP represents the arithmetic mean. Here, one millionaire
outweighs a thousand paupers. If per capita GNP is reported as 10,000
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Table 9.1. The relationships of arithmetic mean (xA), median (xM), and
geometric mean (xG ) as the ratio of largest to smallest entry widens

Values of x xA xM xG

1 1 1 1
1, 2 1.5 1.5 1.4
1, 2, 5 2.7 2 2.2
1, 2, 5, 10 4.5 3.5 3.2
1, 2, 5, 10, 20 7.6 5 4.6
1, 2, 5, 10, 20, 50 14.7 7.5 5.2
1, 2, 5, 10, 20, 50, 100 26.9 10 10.0

0, 1, 2, 5, 10, 20, 50, 100 23.5 7.5 0
Adding the smallest nonzero reading:
1, 2, 3, 6, 11, 21, 51, 101 24.5 8.5 9.0
Subtracting the smallest nonzero reading: 23.5 7.5 8.0

pounds it would be grossly mistaken to imagine that one-half the people
earn more than 10,000 pounds and one-half earn less. Actually, only
about one quarter surpass this level. The median income is much lower
than the mean, and the geometric mean comes close to the median.

Table 9.1 illustrates the relationship between the means and the
median. Many countries have coins or bills of 1, 2, 5, 10, 20, 50, and
100 units. These numbers have roughly uniform multiplicative spaces
between them—2, 2.5, 2, 2, 2.5, and 2, respectively. As we combine such
values over ever wider ranges, the geometric means remain close to the
medians, while the arithmetic means exceed the medians ever more—
they heavily reflect the size of the largest single component. It can be seen
that one has to be on guard when the highest reading surpasses the lowest
by more than a factor of 10. When this ratio reaches 100, the arithmetic
mean most likely tells us little about the median. This simplistic example
has its pitfalls, but it conveys the main story.

The sticky point comes when one of the readings is a perfect zero. Con-
sider the median number of telephones per capita for member countries
of the United Nations. The geometric mean is likely to reflect the median
better than does the arithmetic mean. However, if a single country fails
to have a single telephone, the geometric mean drops to zero. The effect
is illustrated in the bottom part of Table 9.1. Here, the geometric mean
becomes meaningless, while the arithmetic mean still exceeds the median
heavily. What should we do?

One operational way is to add the smallest nonzero reading to every
reading, as shown at the bottom of Table 9.1. Then take the geometric
mean and subtract the added part. The resulting pseudo-geometric mean
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is close to the median in the given case. This coarse approach is awkward
in a mathematical sense, but it tends to reflect the median.

Normal Versus Lognormal Distributions

The ability of the arithmetic mean to reflect the median is very much
connected to whether a normal distribution is possible. When a variable
x can in principle extend from minus to plus infinity, random values
of x may be distributed according to the so-called normal distribution
(although many other distributions are also possible). What is so normal
about it? It is a prime example of an “ignorance-based model.” When no
finite values are excluded in principle, because there are no conceptual
lower or upper limits, the very absence of any further knowledge leads to
the equation for normal distribution:

f (x) = [1/2)0.5Û] exp[−(x − xA)2/2Û2].

The functional form is prescribed by our ignorance, but the values of
arithmetic mean (xA) and standard deviation (Û) are not specified in the
normal model. These parameters are determined empirically.

When some social data are normally distributed, we do not ask about
the specific social factors that cause such a form of distribution. We accept
the idea that such a distribution tends to happen precisely in the absence
of any causal factors. Obviously, we are interested in the numerical values
of the parameters that specify the given normal distribution—arithmetic
mean and standard distribution—because these are the parts that convey
substantive meaning. They may need explanation, or they may be of help
in explaining something else.

A nice feature of the normal distribution is that the arithmetic mean
equals the median and the mode (the point with the highest frequency of
occurrence). We do not have to keep separate track of them. In contrast,
the geometric mean may not be defined. This is so because a normal
distribution may include negative readings.

The picture changes drastically when x can conceptually take only
positive values, however small or large. Now the distribution of x cannot
be perfectly normal, because the normal curve includes negative values.
Try fitting the number of telephones per capita in member countries of
the United Nations with a normal distribution. You would find that the
standard deviation exceeds the mean. This would imply that more than
1/(2e) = 18% of the countries have a negative number of telephones!

124



Geometric Means and Lognormal Curves

Unfortunately, printing such absurdities has been acceptable in social
sciences.

When x can take only positive values, the arithmetic mean, median,
and mode may no longer be equal. The median still tells the same story
as before: one-half of the cases are above the median. But the arithmetic
mean is heavily affected by the largest values. One person with a yearly
income of 10,000,000 pounds would weigh as much as 1,000 people with
an income of 10,000 pounds.

The problem subsides when we shift from values of x, which cannot
be negative, to the logarithms of these values. These logarithms range
from minus infinity (for x = 0) to plus infinity and hence can be normally
distributed. In terms of decimal logarithms, the person with 10,000,000
pounds would contribute 7 while a person with 10,000 contributes 4,
which is not an overwhelming difference. In Table 9.1, the logarithms of
1, 2, 5, 10, 20, 50, and 100 are 0, 0.3, 0.7, 1, 1.3, 1.7, and 2, respectively,
and their mean agrees with their median.

Now take the antilog of the arithmetic mean of the logarithms. The
result is precisely what we call the geometric mean. And the normal dis-
tribution of log x corresponds to what is called the lognormal distribution
of x itself. In principle, whenever x is quasi-continuous and can take only
positive values, a lognormal (rather than normal) distribution of x may be
expected (although other distributions are also possible). The geometric
mean can be expected to correspond to the median, while the arithmetic
mean exceeds the median.

Still, normal distribution fits practically as well as the lognormal in
many cases where x can take only positive values. When does it happen?
The ratio of standard deviation to the arithmetic mean serves as a warning
signal. Suppose data are fitted to normal distribution, and the standard
deviation found is comparable to or even larger than the arithmetic
mean. Then a normal fit is unacceptable, because it implies that negative
values do occur. A lognormal fit (or still something else) should be tried
instead.

On the other hand, if the arithmetic mean is many times larger than the
standard deviation, one does not have to worry—the zero point is so far
away that it might as well be minus infinity, as far as this particular normal
distribution is concerned. This is the case, for example, for the heights of
adult women. When the ratio of standard deviation to the (arithmetic)
mean is smaller than one-half, one is on reasonably safe grounds—normal
distribution differs little from the lognormal and the arithmetic mean can
be used as a proxy for the median (and for the geometric mean). One
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should dump the normal fit and try a lognormal fit instead when standard
deviation exceeds one-half of the mean.

Even without formally fitting data with normal distribution, the fol-
lowing coarse test usually works. If the ratio of the largest to the smallest
reading (both positive) is less than 10, then normal distribution differs
little from the lognormal and the arithmetic mean can be used as a proxy
for the median. If it is larger than 10, it becomes risky, unless the number
of readings is very large.

Limpert et al.’s “Lognormal Distributions across the Sciences: Keys and
Clues” (2001) shows more thoroughly why the lognormal distribution
is often the better model, and why normal distribution has nonetheless
been unduly popular. In particular, they introduce the notion of multi-
plicative standard deviation (s∗) and use it, in conjunction with median, to
describe the basic properties of the lognormal distribution. Tabulating 61
examples, ranging from geology and medicine to linguistics and social
sciences, they find s∗ ranging from 1.03 to 33.15, with a median of
1.85.

Conclusions

Geometric means often express the central tendency better than arith-
metic means. For the same reason, lognormal data fits often are called
for, instead of desperate attempts to fit data into a Procrustean normal
distribution. The following advice applies, with some reservations.

� In the absence of any other information, if a variable can range from
minus to plus infinity, a normal distribution is our best bet, implying
that the arithmetic mean is close to the median. (In the presence of
further information, the bet may be off.)

� In the absence of any other information, if a variable can have only
positive values, a lognormal distribution is among our best bets,
implying that the geometric mean is close to the median. (In the
presence of further information, the bet may be off—we may have a
gamma distribution or something else.)

� However, if one tries a normal fit and standard deviation turns out
less than one-half of the mean, then one might use this normal
distribution. If standard deviation exceeds one-half of the mean, the
normal fit should be abandoned in favor of lognormal.
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� If negative values are conceptually excluded but zero values do occur,
then neither distribution can fit. Neither mean adequately reflects the
median, but a pseudo-geometric mean might approximate it.

� When there are grounds to hesitate between the arithmetic and geo-
metric means, using the median might be the safest way, although it
is awkward to calculate.

Appendix to Chapter 9

Dice and Distributions

The additive and multiplicative effects on distributions can be demonstrated with
the help of ordinary dice. Limpert et al. (2001) suggest two dice, but three dice
lead to more convincing results. Throw three dice and record both the sums and
products of the three numbers. Repeat 25–100 times. The sums will approach a
normal distribution, except at the extremes, where values of less than 3 and more
than 18 cannot occur. The median can be expected to be 10 or 11, with arithmetic
mean in that range. The products will have a visibly skewed distribution that
approaches the lognormal, except at the extremes, where values of less than 1
and more than 216 cannot occur. The median can be expected to be 27 or 30 (as
products of numbers 1–6 cannot be 28 or 29), with geometric mean in that range.

When only two dice are used, the expected distribution of sums is a symmetrical
triangle with peak frequency at 7 points and the base ranging from 1 to 13. Hence,
the product is distributed in a not quite lognormal way. Combining three or
more random numbers, the normal and lognormal patterns establish themselves
quickly. This is so even when there are only two outcomes (as in heads and tail)
rather than six (as with dice).

“Log-Lognormal” Distributions

Are there variables for which one would have to take logarithms not once but
twice, before their distributions are turned into normal ones? One could expect
such “log-lognormal” distributions when the conceptual lower limit is not 0 but 1.
Taking logarithms once would shift this limit to 0, and taking it once more would
shift it to minus infinity, as required for normal distribution. Note that natural
logarithms are mandatory when taking logarithms twice. For a given base, log x/ln
x is constant, but log(log x)/ln(ln x) is not.

One such variable is precisely the multiplicative standard deviation s∗ devised
by Limpert et al. (2001): It must be at least 1 by definition. And indeed, I find
that graphing the 61 values of ln(s∗) based on their table of s∗ still leads to
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a skewed distribution that looks lognormal. Graphing ln[ln(s∗)] leads to a fairy
symmetrical distribution that approximates the normal. It centers roughly at the
second logarithm of the actual median, lnln 1.85 = −0.49, with standard deviation
0.40. The corresponding median of ln(s∗) is ln 1.85 = 0.61, and its multiplicative
standard deviation is exp(0.40) = 1.49. Finally, what might be called the “expo-
nential standard deviation” of s∗ itself is expexp(0.40) = 1.49. This means that the
range corresponding to standard deviation of the normal distribution of lnln s∗

extends from 1.851/1.49 = 1.51 to 1.851.49 = 2.49.
Other continuous quantities that cannot fall below 1 include the effective

number of parties (N), used in Chapter 4. Indeed, Rekha Diwakar (personal com-
munication, November 2007) finds that the distribution of ln N still has a tail
toward higher values of N, although less marked than it is for the distribution of
ln N. A fairly symmetric distribution, close to normal, is obtained with lnln N.
The data involves 7,005 district level observations in Indian elections 1952–2004,
as analyzed by Diwakar (2007).

Mapping Any Limited Range on the Entire Range of Real Numbers

A normal distribution of x requires conceptually that all real values of x be possible,
from minus to plus infinity. We have seen that 0 < x < ∞ can be mapped into
−∞ < X < +∞ by taking X = ln x, and 1 < x < ∞ can be mapped into −∞ < X <

+∞ by taking X = lnln x. A broader question is: How can such mapping be done
for any constraint B < x < A, where B and A are real numbers? (The issue is more
complex for B ≤ x ≤ A.) An ad hoc way to proceed is the following. There is no
guarantee that these mappings would lead to a normal distribution—they merely
make it conceptually possible.

The upper limit A can always be mapped into +∞ in many ways; one of the
simplest is x′ = 1/(A − x). Then 1/(A − B) < x′ < ∞. Mappings to the interval (1;∞)
are also possible; one of the simplest, when B < x, is x′′ = (A − B)x′ = (A − B)/
(A − x).

Further mapping into −∞ < X < +∞ can be achieved in several ways. The
aforementioned X = lnlnx′′ = lnln[(A − B)/(A − x)] is the simplest conceptually, as
it keeps repeating the same transformation (taking logarithms). In terms of compu-
tational ease, it is simpler to use X′ = ln[(A − B)/(A − x) − 1] = ln[(x − B)/(A − x)].

In particular, if 0 < x < 100, as is the case for many measures using percentages,
then A = 100 and B = 0. Hence X = lnln[(100)/(100 − x)] and X′ = ln[(x)/(100 −
x)]. Suppose that the median value of x is xmed = 75. Then its distribution might
correspond to a normal distribution of X = lnln[(100)/(100 − x) around a mean
and median of Xm = lnln[(100)/(100 − 75)] = lnln4 = 0.33. Or it might correspond
to a normal distribution of X′ = ln[(x)/(100 − x)] around a mean and median of
X′ = ln[(75)/(100 − 75)] = ln 3 = 1.10. It remains to be tested whether either map-
ping leads to normal distribution, for a given distribution of x. But without prior
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mapping into the range −∞ < X < +∞, an attempt to fit with normal distribution
is conceptually flawed from the beginning.

“Less-than-Lognormal” Distributions

A puzzling case is the distribution of populations (P ) of sovereign states (of which
there were 190, as of 1993). This population should have a lower limit at 0. As
expected, the arithmetic mean (32 million) exceeds the median (5.4 million), and
the distribution has a long tail toward higher values. However, the geometric mean
(4.1 million) falls below the median, and the distribution of ln P has a clear
tail toward lower values. To obtain a symmetrical distribution, we should take
logarithms, but not all the way, so to say.

A function lnnx can be defined, where ln0x = x, ln1x =ln x, and ln2x =lnln x.

Fractional values of n correspond to going part-way toward taking logarithms
(Taagepera 1973). By taking ln0.58 P for the sovereign states, a normal distribution
can be obtained, with center corresponding to 5.6 million. However, it would
correspond to a lower limit on P not at 0 but around –0.5 people!
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Example of Interlocking Models:
Party Sizes and Cabinet Duration

� Interlocking networks of equations, based on logical models, are possi-
ble in social sciences.

� Partial evidence for such a possibility is offered by a sequence of models
that ties mean duration of governmental cabinets first to the number
of parties and then to the number of seats in the electoral district and
the entire representative assembly.

The overall format in physics is a network of interlocking equations
(cf. Chapter 5). Each equation has few variables and constants, but the
same ones may recur in many equations. (This is the underpinning of
dimensional analysis, briefly discussed in the Appendix to Chapter 13.)
Are such networks inherently impossible in social sciences? Or have none
been found because social scientists have no urge to look for them and the
nontransitive nature of regression equations makes it hard? The shortest
proof that such networks are possible in social sciences is to present one,
albeit with some reservations.

From Assembly Size and District Magnitude to Mean
Duration of Cabinets

If a democratic political system had to be characterized by a single num-
ber, it would be the number of parties in the representative assembly, best
expressed by the effective number of parties (N) as defined in Chapter 4.
Among the many political and even socioeconomic features that it affects,
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the mean duration of government cabinets (C) clearly matters, because
it influences the time span over which policies are implemented in a
consistent way. The larger the number of parties, the shakier the cabinets
tend to be.

The number of parties, in turn, depends on two institutional factors:
assembly size and electoral district magnitude. The magnitude (M) of an
electoral district is the number of seats allocated in it. It can range from 1
(single-seat districts) to the number of seats (S) in the entire representative
assembly. A larger district magnitude enables more parties to win seats. At
given magnitude, a larger assembly offers more parties a chance to be
represented.

During the last quarter-century, a chain of logical models has been
established to connect cabinet duration to the effective number of parties
and the latter to assembly size and electoral district magnitude. Assembly
size itself depends on population (P ). The dominant causal pattern acts
through two intervening variables. The first is the number of seat-winning
parties (N0), that is, the number of parties that have at least one seat
in the assembly. It is the largest number by which the party system in
the assembly could be characterized. The second intervening variable
is the fractional seat share of the largest party (s1). It can be shown that
the inverse of s1, designated as N∞, is the smallest number by which
the party system could be characterized. The effective number is always
in between: N∞ ≤ N ≤ N0. The main causal chain is shown in Figure 10.1.
Note similarities and differences with the typical sequences in physics
(Figures 5.1 and 5.2).

The logical models and empirical evidence for each stage are presented
in detail in Predicting Party Sizes: The Logic of Simple Electoral Systems
(Taagepera 2007c). The present overview gives the equations without
proof, indicating only the type of model used. Boundary conditions enter
repeatedly.

SP

C

M

N0 Ns1

Figure 10.1. The main causal sequence leading from population, assembly size,
and district magnitude to mean duration of cabinets
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In a single district with M seats, at least one and at most M parties
can win seats: 1 ≤ p ≤ M. In line with the reasoning in Chapter 9, the
geometric mean of these extremes is the most likely number of par-
ties (subject to certain conditions): p = M1/2. For the number of seat-
winning parties in the entire assembly, assembly size imposes another
set of limits: 1 ≤ N0 ≤ S. Combination with district level limitations
leads to

N0 = (MS)1/4.

If so, then N0/(MS)1/4 = 1.00 is expected, on the average, in the absence
of any other information. The observed median is 1.15 for 16 single-seat
systems and 1.12 for 14 simple multi-seat systems (Taagepera 2007c: 117).

The number of seat-winning parties restrains the largest party’s frac-
tional share to the range between the mean share and all the seats:
1/N0 ≤ s1 < 1. The likeliest share is the geometric mean of the limits:
s1 = N−1/2

0 . If so, then s1N1/2
0 = 1.00 is expected, on the average, in the

absence of any other information. The actual median is 0.985, for 604
elections in 24 countries (Taagepera 2007c: 123). The N0 = (MS)1/4 above
then leads to

s1 = (MS)−1/8.

If so, then s1(MS)1/8 = 1.00 is expected, on the average, in the absence of
any other information. The actual geometric mean is 0.985 for 30 single-
seat systems and 1.068 for 16 multi-seat systems (Taagepera 2007c: 125,
128).

The effective number of parties, in turn, is constrained by the largest
share. The logical limits are somewhat complex, but their geometric mean
can be approximated as N = s−4/3

1 . It follows from previous s1 = (MS)−1/8

that

N = (MS)1/6.

If so, then N/(MS)1/6 = 1.00 is expected, on the average, in the absence
of any other information. The actual geometric mean is 1.036 for
14 single-seat systems and 0.953 for 11 multi-seat systems (Taagepera
2007c: 153).

Graphs showing these relationships are given in Taagepera (2007c:
118, 123, 126, and 129). Let us restate the overall pattern without using
equations. The “seat product” MS imposes constraints on the largest con-
ceivable number by which the party system could be characterized. The
latter, in turn, imposes constraints on the smallest conceivable number by
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Table 10.1. Logical connections (and R 2 of logarithms) between characteristics of
party systems (Taagepera 2007c: 129, 153, 171)

Seat product,
MS

Seat-winning
parties, N0

Inverse of largest
share, N∞ = 1/s1

Effective
number (N)

Seat-winning parties N0 = (MS)1/4 —
Inverse of largest share

(1/s1)
N∞ = (MS)1/8

(0.51)
N∞ = N1/2

0 —

Effective number N = (MS)1/6

(0.51)
N = N2/3

0 N = N4/3
∞ —

Cabinet duration (years) C = 42/(MS)1/3

(0.24)
C = 42/N4/3

0 C = 42/N2/3
∞

(0.35)
C = 42/N2

(0.77)

which the party system could be characterized. Finally, the latter imposes
constraints on the intermediary effective number. The chain ranging from
MS to N involves no empirically determined constants. Hence, all later
variables in the deductive chain can be directly connected to the seat
product.

The logical models are quite different for connections to total popula-
tion at the one end of the chain and to cabinet duration at the other. Both
models consider the number of communication channels. As explained in
next chapter, the outcomes are the cube root law of assembly sizes, S = P 1/3,
and the inverse square law of cabinet duration, C = k/N2, where the constant
k is empirically determined as k = 42 years.

The way N is connected to seat product MS suggests an inverse cube
root relationship between mean cabinet duration and the seat product (in
years): C = 42/(MS)1/3. While the number of parties cannot be prescribed
by law, the seat product can. Thus, the latter equation makes institutional
design possible, at least in principle.

The equations in the first column of Table 10.1 connect all output
variables to MS. The top entries in each column show the connections
between the successive variables in the deductive chain. Further down,
the table shows the equations between ever more distant variables.

These relationships are multiplicative. Hence, linear correlation analysis
must be carried out on the logarithms of the variables. In parentheses,
Table 10.1 shows some resulting values of R2. As the development of
models proceeded, testing was carried out on somewhat different data
collections, and not all links have been subjected to separate correlation
analysis. Nonetheless, the main pattern is apparent: The values of R2 tend
to decrease as the logical distance between the variables increases, so that
more random fluctuation enters.
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Why the Role of Assembly Size Can Emerge
only from Logical Modeling

In this sequence of models, the role of assembly size highlights the limita-
tions of regression in detecting truly significant factors. With the marked
exception of Lijphart (1994), students of electoral systems have largely
neglected assembly size. It may come as a surprise, therefore, that it
features in the seat product at an equal level with district magnitude,
the impact of which has long been recognized. The difference lies in
their respective ranges. Because M ranges from 1 to several hundreds,
its effect emerges with clarity from linear regression (especially when log
M is used, as many political scientists do, because of its wide range). In
contrast, S ranges only from 60 to 650 for countries above 1 million
people. Therefore, its impact cannot emerge from raw regression over
such a short range, as random fluctuation overshadows the systematic
effect.

Only when logical model building suggests that assembly size should
matter, is there motivation to look for special situations where the model
could be tested. First, one is motivated to extend the range of S, by
digging up data for oft-neglected tiny island countries, with parliaments
as small as S = 10 for St. Kitts. Second, the study could be restricted to the
relatively numerous single-seat systems, where the competing impact of
M is eliminated and the model is simplified. I will focus on s1 = (MS)−1/8,
which becomes s1 = S−1/8. We cannot run most sociopolitical relations
under laboratory conditions. This makes it even more advisable to select
data and try to extend their range in the light of logical thinking. This
issue is revisited in Chapter 14.

Under such better controlled conditions, does the impact of assembly
size on the largest seat share emerge? If it were merely a descriptive data
fit, success would be considered modest, as the scatter around the best
linear fit (log s1 vs. log S) remains large: R2 = .26 (Taagepera and Ensch
2006; Taagepera 2007c: 126). But it is not just a data fit. A prediction was
made on logical grounds: s1 = 1.00S−0.125. How well is this prediction con-
firmed? The best linear fit of logarithms corresponds to s1 = 0.915S−0.108.
On a log–log graph (Taagepera 2007c: 126), this line is almost indistin-
guishable from the predicted. The predicted line yields R2 = .245—hardly
less than the R2 = .256 for the best statistical fit.

It comes as no surprise that many other factors and random fluctuation
also affect the largest share, so that R2 is low. The point is that the average
impact of assembly size is predicted extremely closely. This is another
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example where the logical model is strongly confirmed even while R2

is low (cf. Chapter 4, “Can Data with Low R2 Confirm a Model?”).

Causal Direction and Complex Systems

Under usual circumstances, institutional structure is a given (assembly
size and district magnitude). It exerts pressure on party system and mean
cabinet duration to conform to these constraints. During introduction of
democracy, however, the existing party constellation largely determines
which district magnitude is chosen, so as to preserve the party constel-
lation. Even later, if factors external to the party system happen to pro-
duce undesirable outcomes, such as a sequence of unusually short-lived
cabinets, then the electoral system may be altered. Hence, causality is
two-directional in an asymmetric way vaguely reminiscent of punctuated
equilibrium in biological evolution. Gradual adjustment of party system
to electoral system over long periods may be interrupted by rather sudden
adjustment of electoral system to party system.

The sequence of models presented applies directly only to simple elec-
toral systems where all seats are allocated in separate districts, using
standard proportional representation formulas or “first-past-the-post.”
Actually, some seats are often allocated outside the basic districts, or high
legal thresholds are applied, so that district magnitude cannot be unam-
biguously specified. Exclusion of such more complex electoral systems is
of little concern when establishing the basic pattern. Feathers in the wind
are special cases where factors besides gravity enter. Similarly, complex
electoral systems add further factors to the basic institutional variables,
the effect of which must be established first.

Is It an Interlocking Network?

The rather unusual format of most steps in the sequence should give us
concern. No empirically adjustable constants or lateral variables enter as
we proceed from MS to N. Instead of a spreading network of equations,
or a chain that introduces a new factor or constant at each link (cf.
Figures 5.1 and 5.2), a single long chain extends from seat product to
mean duration of cabinet. Such pattern is unusual in physics.

The typical equation in an interlocking network combines one or a
few separate input variables with an empirically determined constant.
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Recall Figures 5.1 and 5.2, and the constants R and G in laws of
ideal gas P = RT/V and gravity F = GmM/r2. In the present chain, only
C = k/N2 follows this format. Elsewhere, the seat product is a single
block that merely takes different exponents. The cube root law of
assembly sizes (S = P 1/3) also lacks an empirically determined constant.
It would seem that here we have, in a sociopolitical context, even
more rigidly determined interactions than are usual in physics. How
come?

Part of the answer is that here we deal with counting units that have
no physical dimensions, such as length and time. Whenever physical
dimensions enter, an empirically determined constant is needed to make
the connection dimensionally sound (see elaboration in the Appendix to
Chapter 13). Among our electoral variables, only cabinet duration has the
physical dimension of time. Given that 1/N2 is a pure number, a constant
k, with dimensions of time, is needed to make the equation C = k/N2

dimensionally consistent. Its numerical value depends on units chosen:
k = 42 when dealing in years but k = 500 when dealing in months.

Time or length intervals have no natural unit (unless some such unit
develops at quantum level). In contrast, population and seats do have a
natural counting unit: one person or one seat. In this sense, they belong
to a special subclass of ratio quantities: In addition to a natural zero, they
also have a natural “one.” This feature explains why relationships devoid
of a constant can exist among such quantities. It does not say, however,
that all relationships between quantities with counting units must lack
constants.

The dearth of constants in the chain described is related to its one-
dimensional nature. The constant k in C = k/N2 could conceivably recur
in other contexts. If so, then lateral connections could be opened. With-
out such constants, lateral connections are less likely. Predictive models
often predict only a mathematical format, a functional relationship, leav-
ing parameters to be determined empirically (cf. end of Chapter 8). For
establishing linkages, this feature is rather an advantage that we miss in
the present case.

To show that interlocking networks of equations can occur in social sci-
ences, it would be more convincing to present a multidimensional pattern
of interactions rather than a single long chain of logical models. Still, such
a chain is much better than nothing. Each individual link in the chain is
logically grounded and can be separately tested empirically. Regardless of
the one-dimensional configuration of the network, its linkages still reflect
a basic feature of the usual pattern in physics.
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All Predictive Models are not “Substantive”

When given a bag of green peas, I can predict with fair confidence that
their weights are distributed lognormally—and roughly normally, when
the largest peas are no larger than twice the smallest. This prediction is
based on nothing “substantive” in a biological sense. It does not look
into some biological process by which peas “coordinate” their weights so
as to collectively oblige the lognormal equation. The prediction is soundly
based nonetheless. Note that it deals only with the mathematical format.
To predict the mean weight of peas and the standard deviation is another
matter.

The exponential model of volatility in Chapter 4 is only faintly more
substantive, in terms of social processes. The only arguably political sub-
stance enters when claiming that volatility is bound to be 0 when only
one party runs. The upper limit of 100% is not substantive, for it applies
to any values expressed as percentages of a maximum. The tendency
of dV/dN to be proportional to the distance from a conceptual ceiling
on V is not specifically social either. The model does not look into any
process by which voters “coordinate” their shifts among parties so as to
collectively oblige the model. This model still offers a theoretical basis for
prediction.

This is why I prefer to talk of “quantitatively predictive logical models”
rather than “substantive models” like Sørensen (1998) and Hedström
(2004) do. Specifically social substance does enter some predictive mod-
els, but oftentimes these models depend on much broader conceptual
notions—like anchor points, ceilings, and continuity. Such models cer-
tainly qualify as “theoretical,” given that the predicted functional form is
not empirically determined.

When features like anchor points suffice, insistence on substantive
explanation in a narrowly social sense is as sterile as looking for a bio-
logical explanation for the size distribution of peas. It becomes especially
sterile when coupled with the suggestion that, since the predictive model
is not substantive anyway, one might just as well disregard it and throw all
conceivable factors into a multiple regression. This would make it worse,
because regression analysis is the least substantive approach conceivable.
Using the example of factors that correlate with individual earnings,
Sørensen (1998) has called it the “gas station” approach to theorizing:

This model, in fact, proposes a theory where each person receives x dollars from
education, y dollars from family background, q dollars from gender, and z dollars
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from class. All of it adds up to the persons’ yearly earnings. We can imagine people
walking around pumps in a large gas station, getting something from each of the
pumps. (Sørensen 1998: 248, via Hedström 2004)

I do not know whether Sørensen would be satisfied with the causal sub-
stance in the models presented in this book. But these models certainly
make predictions on general, nonempirical grounds, in quantitative detail
that can be contradicted by data.

Conclusions

Can interlocking networks of equations occur in social sciences? The
example given here indicates that they may, on the basis of logical
models. (Chapter 12 will show that such networks are impossible on the
basis of usual regression approaches.) An important implication is that
informed social intervention is possible. We know more than just the
direction of the effect. We can estimate how much change in M is likely
to induce a desired degree of change in C, on the average.

The sequence of models presented has the shortcoming of being a one-
dimensional chain. Following up on the previous analogy with European
and African railroads (Chapter 5), this sequence still looks like a single
track. It penetrates much deeper into hinterland but still does not estab-
lish any side connections. Nonetheless, this sequence of models exhibits
many other features of an interlocking network. At the level of descriptive
analysis, variables like population and number of parties have been found
to be statistically significant for numerous other outputs. To the extent
that quantitatively predictive logical models can be constructed for these
relationships, a multi-dimensional network of connections may develop.

At the present stage, it may be seen as wishful thinking. But let us
also consider wishful thinking in the opposite direction—asserting that
interlocking networks of logical models, as found in physics, cannot
possibly develop in social sciences. The sequence presented here should
make it pretty hard to hold on to such an article of faith.
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Beyond Constraint-Based Models:
Communication Channels and
Growth Rates

� The number of communication channels may well turn out to be a
major building block in constructing quantitatively predictive logical
models in social sciences. It does determine representative assembly
sizes and mean durations of cabinets.

� Some physical and social processes involve minimization or maximiza-
tion of some quantities.

� Models for various processes can be formulated as differential equa-
tions, especially those that express rates of change in time, space, etc.

� The related notions of entropy and information have applications in
social sciences.

� Some quantities are conserved during changes. We should try to deter-
mine them.

� Avoidance of logical inconsistencies may impose a unique expression
for some social processes.

Among the multiplicity of ways to build quantitatively predictive logical
models, this book has up to now focused on boundary constraints and
anchor points as starting points for “ignorance-based models.” This was
prominent in the Sherlock Holmes principle (Chapter 3) and the intro-
ductory example of electoral volatility (Chapter 4). The approach was
systematized later on (Chapter 8) and had implications for the use of
geometric means (Chapter 9). Most models in the sequence presented in
Chapter 10 use this approach.
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This approach to model building is relatively simple mathematically
and enters frequently, at least as a reality check. So it was worth introduc-
ing it in some detail. However, by now I run the risk of being pigeon-holed
as another one-method person. Am I as much addicted to constraint-
based solutions as some others are addicted to linear regression? It is
time to point out briefly some other approaches I have used. The topics
range from economics (trade/GNP ratios) to history (number of separate
polities). This smorgasbord by no means covers the entire range of what
is possible, but it extends the menu. Each social phenomenon has to be
approached on its own.

The Number of Communication Channels

Society consists of individuals that interact. Hence the number of com-
munication channels could be expected to be one of the most important
factors in social sciences. On the micro level, individuals who dispose of
more communication channels toward others tend to have more influ-
ence and power. Whom one knows matters. On the macro level, the
number of communication channels is central to the aforementioned
inverse square law of cabinet duration and cube root law of assembly sizes
(Chapter 10), as will be shown shortly.

When a family has two children, the parents may have to adjudicate
1 potential conflict channel between them. With the advent of a third
child, this number explodes to 3. I bear witness that this is so, indeed!
Thus the number of communication channels (c) among n actors matters.
The general formula is

c =
n(n − 1)

2
.

Indeed, each of the n actors connects to each of the remaining n − 1. This
makes for n(n − 1) channels. But each channel has been double counted,
approaching it from both ends. Hence we must divide by 2. It is easy to
check that the formula agrees with the inter-child channels.

This formula may well turn out to be a major building block in con-
structing quantitatively predictive logical models in social sciences. For
large n, it simplifies into c ≈ n2/2. Under some circumstances, we may
have to distinguish between one-way and two-way channels, etc., intro-
ducing slight but important modifications.
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Inverse Square Law of Cabinet Duration

When a representative assembly has n roughly equal-sized parties, the
number of potential conflict channels among them is c = n(n − 1)/2. Cab-
inets break down because of conflicts. The simplest assumption is that
doubling the number of conflict channels cuts the duration of cabinets
into half. The simplification c = n2/2 can be used even when the number
of parties is small, because intra-party conflicts also enter. It leads to an
inverse square relationship between the mean duration of cabinets (C)
and the number of parties. When the total number of parties is replaced
by their effective number (N), the outcome is

C =
k

N2
.

The constant k is empirically determined, like constant G is in the law
of gravitation. Indeed, the law itself looks somewhat akin to the law of
gravitation in form, but the reasons are quite different and no analogy
should be sought.

For 35 polities analyzed in Lijphart (1999), the best linear fit to logC =
logk − 2 logN is obtained with k = 42 years, which is in the ballpark of the
maximum length of a political career (Taagepera and Sikk 2007; Taagepera
2007c: 165–75). The predictive model

C =
42 years

N2

is theoretical regarding the functional shape and empirical regarding the
constant. The OLS regression line of logC versus logN corresponds to
C = 31.3 yrs/N1.757. While the empirical slope 1.757 may look appreciably
shallower than the predicted 2.00, the predicted slope accounts for almost
as much variation, with R2 = .77 as compared to R2 = .79 for the best fit.
As social sciences go, this is a high correlation. The corresponding graphs
are shown in Taagepera (2007c: 165–75).

One might expect an even better agreement when the total number of
parties is replaced by the number of parties within the cabinet itself, but
surprisingly, the fit worsens appreciably. An important implication is that
the pull from outside the cabinet matters as much as internal conflicts.
Two broader issues are discussed in later chapters. First, is the actual
exponent really lower than 2.00? Chapter 12 shows it may be an artifact
of standard OLS regression—and this has wider ramifications. Second,
several ways have been proposed to measure the duration of cabinets and
the number of parties (when some are large and some are small). Have we
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been cheating by picking a particular combination of indices? Chapter 13
addresses this issue, and again wider implications emerge.

Cube Root Law of Assembly Sizes

A major reason for having representative assemblies is to reduce to a
manageable level the number of communication channels involved in
decision-making. Even in a small country of 1 million people, the total
number of communication channels among them approaches a trillion
(1012). The use of a representative assembly carves out two much smaller
subsets of channels: those in the assembly and those from representa-
tive to constituents. For a given politically active population (Pa), which
assembly size (S) would minimize the total work load on one particular
representative? As a first approximation, we may assume that this work load
is proportional to the number (n) of relevant communication channels.
With a very small assembly, the representative would have a low number
of assembly channels but a huge number of constituency channels. With
a very large assembly, the reverse would be the case.

It is a matter of setting up the function n = f (S) and applying differ-
ential calculus to determine the value of S that minimizes n, for a given
population Pa. Each representative has (Pa/S) − 1 constituency channels
making demands on her or him. She or he has also S − 1 channels to the
other members. At first glance, this S − 1 may seem the total number of
assembly channels making demands on her or him. The resulting assem-
bly size that minimizes n would be approximately S = P 1/2

a , an unrealistic
size. Even a country of 1 million people would have an assembly of 1,000
members! Something must be missing. On closer thought, representatives
do not just talk and listen to other representatives. They also need to
“listen in” when other representatives interact. There are (S − 1)(S − 2)/2
such interactions that a representative needs to monitor. With this addi-
tion, the work load is minimized when

S = (2Pa)1/3.

The details of model and testing are given in Taagepera (2007c: 189–
90, 198–200) and in more detail in Taagepera and Shugart (1989:
173–83).

What is a politically active population? One may consider voters or
the entire adult population, but the degree of literacy is also found to
affect assembly size. A fair fit is obtained when Pa is operationalized
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as literate working age population. For countries with reasonably high
literacy, Pa is fairly close to one-half of total population (P ). Hence the
simple approximation

S = P 1/3.

Minimizing or Maximizing a Function

Minimizing a mathematical function is a widespread method in physics.
We also practice it in everyday life. How do we behave when walking over
a meadow and encountering a plowed stretch? If it is easy to walk on,
we will continue in an almost straight line, but if it is awfully muddy and
time-consuming, we would try to cross at almost right angle to the plowed
zone. This is so because we subconsciously try to minimize the total time
the trip takes.

This is how light travels through a window pane. When it hits at an
angle, it passes through glass at a lesser angle, and then continues through
air at the original angle. It does so because its speed is lower in glass than
in air, and light behaves as if it chose the angle that minimizes the total
travel time. It does not “choose,” of course, but it effectively behaves as if
it did. Physics has equations to calculate the precise shift.

This is an example of how unanimated nature tends to act to minimize
or maximize certain features. (I will not go into the reasons.) The same
is observed with humans in the case of assembly size. Populations that
start with relatively small assemblies often increase them within a few
decades to fit the cube root of their population. This was the case for the
United States from 1790 on (Taagepera and Shugart 1989: 175) and for
the European Parliament in 1964–2004 (Taagepera 2007c: 260). Countries
have not been aware of the underlying minimizing principle, any more
than light is while crossing a window pane. Yet by trial and error countries
gravitate toward the cube root law.

Minimization or maximization of some quantity y as an input x varies
means devising the function y = f (x) and then looking for the value of
x at which y = f (x) neither decreases nor increases, that is, the slope is
zero. This is done by calculating the derivative dy/dx and then finding
the value of x for which dy/dx= 0. Note that the existence of a mini-
mum or maximum implies that these functions are nonlinear—as most
relationships are (cf. Chapter 8). Kochen and Deutsch (1969) used this
approach for optimal decentralization, offering a model for the number
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of warehouses that minimizes the combination of storage and delivery
costs. Unfortunately, it seems not to have been tested empirically. Many
opportunities to use this approach in social sciences may have been
missed by researchers being unfamiliar not only with differential calculus
(where help can be sought) but also with the very notion of minimiza-
tion/maximization.

Rate Equations

Rather than try to express how things are interrelated macroscopically,
it is often easier to construct models of how the outputs change when
inputs are altered to a tiny degree. They have exceedingly different forms,
depending on the specific issue.

Lanchester (1956) considered battle losses over short time intervals.
Richardson (1960) studied arms races by setting up rates in time (dx/dt
and dy/dt) for the arms budgets x and y of two countries:

dx/dt = ky − ax + g
dy/dt = lx − by + h.

What it says is that the other side’s arms budget is seen as a threat that
induces the country to increase its own arm budget (hence positive signs
of k and l), while the already existing budget is a burden that induces
the country to reduce it (hence negative signs in front of a and b). The
constants g and h express the steady impact (positive or negative) of all
sorts of other factors. Making dx/dt = 0 defines a stability line where the
country with budget x feels no urge to change its existing arms budget,
and similarly for dy/dt = 0.

It is hard to find suitable data to determine the numerous constants
in such equations, before they can be used to predict the future course
of arms races. Arms races just do not maintain sufficiently stable con-
ditions long enough. Even more serious, it is difficult to distinguish
mutually induced arms races from arms build-ups through domestic self-
stimulation. But the rate equation approach as such has been much too
fruitful in physical sciences to be written off in social sciences. A few
social science examples follow. Two involve change over time (number
of polities and world population), while the third starts out with change
over distance (trade/GNP ratio).
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Effective Number of Polities over 5,000 Years

The effective number (N) of polities (separate political entities) has tended
to decrease over millennia. The simplest model is constant relative rate
(percent rate) of decrease over time (t):

(dN/N)
dt

= −k,

where the rate constant k is to be determined empirically. This is another
ignorance-based approach. When we have no idea of whether the relative
rate (dN/N)/dt increases or decreases as the number N changes, our
best average guess is that it remains the same. In other words, rate of
decrease in N is proportional to N itself: dN/dt = −kN. Integration leads
to exponential decrease:

N = ae−kt,

where a is a constant that depends on initial conditions. The correspond-
ing curve becomes a straight line when logN is graphed against t (cf.
Chapter 8).

We could actually have obtained this result more quickly by using
boundary conditions, as in Chapter 8. Given that 0 < N < +∞ and −∞ <

t < +∞, two quadrants are allowed, and the simplest allowed family of
curves is N = ae−kt. But it is worthwhile to point out the constant relative
rate approach, when we do not know if this rate goes up or down.

The number of polities could be based on their areas (A) or populations
(P ), leading to different numbers and rate constants. These numbers (NA

andNP , respectively) can be predicted to be interrelated as

NP = N1/2
A ,

for the following reason. Large polities that most affect the effective
number tend to form in the most densely populated areas. Hence the
population-based number of polities can be expected to be lower than the
area-based number of polities: NP ≤ NA. For any given NA, the lowest limit
on NP is 1. This would be the case if almost the entire world population
were concentrated on a single state in a single fertile valley. (Nile valley
4,000 years ago came close.) Therefore, 1 ≤ NP ≤ NA. In the absence of
any other information, our best guess for NP is the geometric mean of
the extremes. The resulting square root relationship satisfies a conceptual
anchor point: if NA = 1, then also NP = 1. If NP = N1/2

A , then we must have
kP = kA/2 and aP = a1/2

A in the exponential decrease equations N = ae−kt.
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The actual best fit lines (logN vs. t in centuries BC/AD) correspond to
(Taagepera 1997)

NA = 1300e−0.19t(R2 = 0.90)
NP = 31e−0.08t(R2 = 0.68).

Here 0.19/2 = 0.085 is indeed close to 0.08, and 13001/2 = 36 is fairly close
to 31. These equations indicate the following average trend, over the last
5,000 years. The effective number of polities has been reduced by one-
half every 3.6 centuries on the basis of area and every 8.7 centuries on the
basis of population.

The width of the random fluctuation zones around these averages sug-
gest that a single world state has a nil probability prior to 2600 AD, while
a bipolar world (NA = 2.0) could briefly occur by 2200 AD. Compared to
the average secular trend, our present world is slightly overconcentrated
regarding areas, but not regarding populations. This bodes ill for some
of the largest sparsely populated polities: They may split up. All extrap-
olation is speculative of course, until we can logically explain why the
halving times are around four and nine centuries. Still, when guessing at
when “history will end,” the best we can do is look at all the history we
have got and extrapolate, very skeptically.

World Population Growth

Up to 1970, world population growth was faster than would be predicted
by the exponential model dP/dt = kP. It is as if the rate “constant” k itself
increased over time, during the last 20 centuries, or even the last million
years. This growth could be modeled in terms of interaction between
population (P ) and technology (T). Both grow basically exponentially,
but the rate “constants” depend on the other factor:

dP/dt = (kTm)P
dT/dt = (hP n)T.

Integration yields a quasi-hyperbolic equation:

P = A/(D − t)M.

Here A, M, and D are constants. A fair fit with the widely disparate esti-
mates of world population from −4,000 to +1970 was obtained (Taagepera
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1976a) with

P =
50 billion

(2005 − t)0.74
.

Adding saturation effects, one could postpone the “doomsday,” D, where
the population would approach infinity (Taagepera 1979). The corre-
sponding empirical constants could not be estimated until the slowdown
in growth actually set on, in the 1970s. By now, this can be done, to
some extent. The shift away from quasi-hyperbolic growth has been quite
sudden, reflecting a sharp onset of depletion of resources (including water
and space). Recent growth fits the simple logistic model (cf. Chapter 8)

dP
dt

= k(1 − P/C)P,

where the ceiling (C) is the maximum sustainable size. It is still difficult to
estimate the numerical value of C. Progress is being made toward fitting
the hyperbolic and logistic parts of growth into a single model.

Trade/GNP Ratio

How is a country’s trade related to its size? Consider the extreme cases.
If a country occupied the entire world, its foreign trade would be zero:
Imports/GNP = Exports/GNP = 0. On the other hand, if a country con-
sisted of a single family, all their monetary transactions would be foreign
trade, so that Imports/GNP = Exports/GNP = 1. In the actual intermediary
cases one would hence expect trade/GNP to decrease with increasing
country size. The same conclusion can be reached in a different way. If
two countries join, their reciprocal trade would stop being international,
so that the combined trade/GNP decreases.

To build a model, one can start with the differential equation used in
physics for absorption of any flux of particles emanating from a point
source in homogenous surroundings. The change in flow intensity (I )
with distance (r ) from the source is proportional to I itself:

dI
dr

= −kI,

where k is the absorption constant of the surrounding matter. Consider
the goods produced by factories as such a flux, absorbed by customers.
Whatever flow continues beyond a country’s border is export. The larger
the country, the more goods are absorbed before reaching the border. The
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Export/GNP ratio results from integrating the absorption of production
by sources spread all across the country. A number of simplifying assump-
tions enter and only an approximate solution is possible (Taagepera
1976b). As measure of country size, a shift from geographical area to
population improves results, as one might expect, given that customers
absorb goods, not square kilometers.

Within the population range of actual countries, the following rough
approximations to the model were found to fit (Taagepera and Hayes
1977):

Imports/GNP = 40/P 1/3(R2 = .69)
Exports/GNP = 30/P 1/3(R2 > .5).

Imports exceed exports in most countries, with the difference paid for in
services, export of labor, etc. The combined equation for trade applied
within a factor of 2 in 92% of the cases:

Trade
GNP

=
70

P 1/3
.

This is the fractional ratio when P is the number of people. When pop-
ulation is entered in millions of people, the result is in percent. These
approximations would not apply to very small or very large populations.

What is this model good for? It helps us to evaluate whether a country’s
trade is out of line with its size. China’s low trade/GNP ratio in the 1970s
was often interpreted as isolation, while in reality it largely expressed
its large population. Of course, countries with different production pro-
files have different trade profiles. With about the same population, Saudi
Arabian oil travels further than Romania’s more diversified products.
In fact, the model allows us to estimate a “characteristic absorption
number”—the number of people a country’s flow of goods encounters
before it is reduced to 1/e = 0.37 of its original intensity.

Avoidance of Logical Inconsistencies: The Law
of Minority Attrition

A social process may be such that only one mathematical form can express
it without running into logical inconsistencies. Compared to constraints
imposed by anchor points and forbidden areas, avoidance of various
other inconsistencies is a somewhat different application of the Sherlock
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Holmes principle (Chapter 3): Eliminate the impossible, and only one
outcome may remain. The law of minority attrition is one example.

If women are in minority at some lower echelon where positions are
numerous, they tend to be an even smaller minority at higher echelons
where positions are fewer. This sequential attrition applies to various
sorts of minorities (Taagepera 2007c: 201–23). Minor parties in first-past-
the-post elections may get a fair percentage of votes but a much lower
percentage of seats. It goes beyond social selection processes. In volleyball,
the total share of points won by the loosing team tends to exceed its share
of games won.

In all such cases, the expected average outcome is expressed by the law
of minority attrition, which also implies boosting the share of the larger
components. In terms of seat and vote shares of parties A and B in a first-
past-the-post system, it is

sA

sB
=

(
vA

vB

)n

,

with

n =
log V
log S

,

where V is the total number of votes cast and S is the total number of
seats available. This exponent n increases as the number of seats decreases,
which accentuates minority attrition. For a pure two-party constellation,
exponent n is actually the same as constant k in Figure 8.3.

For calculations of seat shares, it is more practical to replace the first
equation by the following equivalent, where the summation is over all
parties that receive votes:

sA =
vn

A∑
vk

i

,

For degree of agreement with women’s shares, party shares, and volleyball
scores, see Taagepera (2007c: 208–13, 221–3). The law predicts that if
women’s share in the US House (S = 435) is about 5%, it would drop to
about 2% in the US Senate (S = 100). This was the case in the early 1980s.

The derivation of the attrition law is based on avoidance of logical
inconsistencies (Taagepera 2007c: 216–19). When more than two compo-
nents (e.g., parties) are involved, sA/sB = (vA/vB)n is the only relationship
between sA/sB and vA/vB that avoids inconsistency. With more than two
stages (e.g., voters, electoral college, and final assembly), n = f (V)/ f (S) is
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the only relationship between n, V, and S that avoids inconsistency. The
proof that logV is the only acceptable form of f (V) follows similar lines.

A special aspect of minority attrition law is allocation of seats to mem-
ber states in organizations like the Parliament of the European Union.
Here two principles clash: representation proportional to population and
equal representation of all member states. The compromise depends on
the assembly size (S) as compared to the number of members (N) and
total population (P ). Conceptual extreme cases S = 1, S = N, and S = P
lead to (Taagepera and Hosli 2006; Taagepera 2007c: 255–68)

sA =
P n

A∑
P k

i

where

n =
(1/ log S − 1/ log N)
(log 1/P − 1/ log N)

.

If S = 1, the single seat goes to the largest member; if S = N, each member
gets one seat; and the more S approaches P , the more representation
proportional to population is approached. From the very beginning up
to the Treaty of Nice, this pattern was followed by seats in the European
Parliament (with n ranging from 0.67 to 0.72) and by voting weights
in the Council of the European Union (with n ranging from 0.41 to
0.52). Instead of minority attrition, here we have minority enhancement,
because “a member is a member.”

The City–Country Rule: The Number of Components and the
Number of Items in the Top Component

If the reader has a fair number of publications in scholarly journals, she
or he may wish to carry out the following test. Count all the scholarly
journals in which you have published. Also count your articles in the
journal in which you have published most. Are these two numbers fairly
equal? Now multiply either of these numbers by its natural logarithm.
How close do you get to your total number of publications?

For large numbers, it tends to come close. Chapter bibliographies in
Political Science: The State of the Discipline II (Finifter 1993) cite 281 journals
at least once, and the most-cited journal is cited 317 times. The total
citations are 1,834, while 281(ln281) = 1,584 and 317(ln317) = 1,826.

The underlying reason is the well-known rank-size rule, first observed
for city populations (P ) and ranks (r ) in a country. The size (Pr ) of the
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r th ranked component tends to be the size of the largest component (P1)
divided by the rank:

Pr =
P1

r
.

This rule fits the rankings of many quantities, but far from all, and
the underlying reasons remain unclear. For the last component by size
(rank L) it means PL = P1/L. Suppose this last component consists of
one natural unit (one person, one citation), so that PL = 1. Then 1 = P1/L
implies that the rank of the last component equals the size of the largest
component: L = P1. This is why the number of journals in which you have
published may equal the number published in the top journal.

Total population (P ) results from summation P = ”Pr = ”P1/r over all
components, from 1 to L. It can be approximated by integration, leading
to

P = P1 ln P1 = L ln L .

This also means that total population can in principle be estimated from
the population of any component of known rank:

P = rPr ln(rPr ),

but the error can be large in practice.
In the geographical context, this relationship was called the city–

country rule (Taagepera and Kaskla 2001), as it connects the country’s
population to the population of its cities. An important consequence is
that we can reverse the equation and use the population of the country
to predict the populations of all cities (or the distribution of your articles
among journals). We can thus quickly tell whether the actual city popu-
lations are large or small, compared to this comparison base. Empirically,
the largest city in the country tends to exceed the expectations—the so-
called primacy effect.

This relationship may be of use in other social contexts that involve
ranking of components by their size. We would, however, stand on firmer
ground if we could understand the reason for the occurrence of the rank-
size rule. Only then can we predict under which conditions it can be
expected to occur. A partial explanation in terms of an ignorance-based
model exists (Taagepera 2002).
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Conserved Quantities

The notion of conservation covers broad grounds. It expresses the notion
that nothing vanishes or appears unexplainably. In accounting, the
amount of cash in the box must agree with sums received and sums
paid out. Physics has laws of conservation of energy, matter, momen-
tum, electric charge, etc. These quantities remain constant during various
processes. Now consider the law of minority attrition. It can be expressed
as (logS) log(sA/sB) = (logV) log(vA/vB)n = c. Here c is a quantity conserved
during the attrition process.

In party sizes (Chapter 10), the expression s1N1/2
0 = 1 might be consid-

ered a sort of a conservation law: The value of this particular combination
of the number of seat-winning parties and the share of the largest party
tends to be conserved. The same applies to the product of rank and popu-
lation of a city within a country: rPr = P1—this product is conserved as one
goes to cities at different ranks. In accounting and physics, conservation
may be considered absolute, while s1N1/2

0 = 1 and rPr = P1 express only
the average tendency. This difference must be kept in mind, but it is no
grounds for disregarding a useful notion.

Conclusions

No canned computer programs can exist for constructing quantitatively
predictive logical models. Each social phenomenon has to be approached
on its own. Still, some concepts and methods keep popping up in a variety
of contexts. The broad principle of avoiding inconsistencies and impos-
sibilities enters practically all the examples offered here, in obvious or
hidden ways. It mostly remains unstated in natural sciences, because it is
taken for granted. It is transmitted to students through oral interaction in
laboratories and field work rather than textbooks and lectures. For social
sciences, my experience indicates that it often has to be made explicit.

Some approaches represent simple logic cast in mathematical language,
such as avoidance of logical inconsistencies. Some hark back to physics,
such as the notion of conservation of certain quantities during trans-
formations. Intensity of a flow is a concept common to movements of
people, goods, water, and neutrons, and the same broad dispersal and
absorption models apply to all of them. The interrelated notions of
entropy and information can be powerful (Coleman 2004), even while
no examples are presented in this book.
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Minimizing or maximizing a quantity is widely used in physics. It is
often also the goal of human activity. Optimal decentralization (Kochen
and Deutsch 1969) and assembly size are examples. Mathematically,
minimization involves differentiating a function, which brings us to the
panoply of differential equations as bases or tools for model building.

Expressing the rates in time is a widespread approach. Here it has been
applied to arms races, decrease in the number of polities, and world
population growth. The equations differ, depending on the problem, but
workhorses like exponential and simple logistic equations often enter as
building blocks. Note that they emerged in Chapter 8 as the simplest
responses to conceptually forbidden areas.

Rates need not be rates in time. For the trade/GNP ratio, the central
issue is the rate of decrease of some flow intensity in an absorbing space.
The distance from which a university draws its students has similarities.
So have labor flows toward metropolises.

The number of communication channels is a more specifically social
notion. It enters in expressing phenomena as diverse as sizes of repre-
sentative assemblies and mean durations of cabinets. Many other social
interactions must be affected by this number.

Regularities in ranking patterns pop up in quite different contexts. They
seem to tell us something about the underlying processes. Yet we still have
a poor handle on what they tell us.
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Why We Should Shift to
Symmetric Regression

� For scattered data, Ordinary Least-Squares (OLS) regression produces
two quite distinct regression lines: one for y versus x and another for
x versus y. Both may differ appreciably from what your eyes tell you.
Together, they define a single value of R2.

� The more data are scattered, the more the OLS regression line, y against
x, takes on a shallower slope than what your eyes tell you. “The OLS
regression line is not a trend line.” It is a mixed measure of slope and
scatter.

� If data are scattered, OLS regression of y against x will disconfirm a
model that actually fits. Hence good statistics can be death of good
science.

� The OLS lines cannot form a system of interlocking of models, because
they are not unique, cannot be reversed, and lack transitivity.

� Scale-independent symmetric regression avoids these problems of OLS,
by offering a single, reversible, and transitive equation. It is extended
here to multivariable regression.

� Symmetric regression is still merely regression. When linear regression
amounts to mechanical data crunching, it remains so even when sym-
metric regression is used.

Even when the variables are transformed so that a linear relationship can
be expected, testing by linear regression is not as straightforward as it
might seem. Several ways to regress exist, and the Ordinary Least Squares
(OLS) falls short in a serious way.
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An essential aspect of logical model building is that various models form
an interlocking network, as was illustrated for electricity in Figure 5.2 and
for electoral rules, parties, and cabinet duration in Figure 10.1. One could
use the seat product MS to calculate the effective number of parties (N),
and then use N to calculate the mean cabinet duration (C). Alternatively,
one could calculate C directly from MS, and the result would be the same.
This is so because the models are expressed in terms of algebraic equations
that have the property of transitivity.

In contrast, OLS regression equations lack transitivity. The model proposes
linear relationships between the logarithms of MS, N, and C. Yet, regress-
ing logN on log(MS) and then regressing logC on logN would not give the
same result as regressing logC directly on log(MS), whenever R2 is not a
perfect 1.00.

This property, known to statisticians but much less to social scientists,
makes it impossible to build interlocking networks on the basis of OLS
regression equations.

This chapter elaborates on this problem with OLS and some related
ones. More important, it also offers a way out in the form of symmetric
linear regression, which has transitivity. More specifically, it is scale-
independent symmetric regression. It was called the “impartial line” by
astrophysicist Gustaf Strömberg (1940) who may have been the first to
use it, and is termed “reduced major axis” in von Eye and Schuster (1998:
219–25). I extend it to multivariable regression.

The Standard OLS Regression Line Is Not a Trend Line

Figure 12.1 illustrates the core of the problem with some survey data. It
shows Estonian respondents’ ratings of their country’s legal system versus
their ratings of the Parliament, on a 0 to 10 scale. One might expect
that many who completely distrust one of these institutions might also
completely distrust the other, and the same might go for complete trust.
In other words, (0; 0) and (10; 10) could be proposed as conceptual anchor
points. In the actual graph, (0; 0) is heavily populated indeed, and (10; 10)
is more populated than the neighboring combinations. Visually, the best
fitting curve is close to the diagonal, y = x, with slope 1. But when we
proceed to test this hunch by standard OLS regression, we find that the
OLS “best fit” line has a slope shallower than 1, misses the anchor points,
and does not agree with our visual impression.
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Figure 12.1. The OLS regression line underreports the expected slope, whichever
way you graph the two variables (modified by Lühiste from Lühiste 2007)
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The reader might recollect having noted such discrepancy when first
introduced to regression and reluctantly becoming used to it when reas-
sured that it is all right. Is it? “Don’t trust your eyes” is risky advice. Claims
of an optical illusion must be demonstrated, not just asserted. But even
more is in store.

It would be as justified to graph the same data in the reverse direction,
Parliament versus legal system, as shown in Figure 12.1b. Then one finds
an OLS line that has a shallower slope than 1 on that graph—but that
would mean a slope steeper than 1 when transposed on the previous
graph! Whichever variable you take as y, the OLS slope is less steep than
what your eyes tell you!

Why is it so? When x = 0, a few scattered points with positive y do
occur, while no counterbalancing points with negative y can exist. This
imbalance pushes the OLS line up at x = 0. The reverse happens at x = 10,
so the regression slope becomes shallower than the visual best fit. Reverse
the position of the variables, and OLS regression tilts in the opposite
direction. Note that R2 is the same for both graphs.

Standard OLS regressions of y on x and x on y yield different lines.
This is so whenever correlation coefficient R2 is less than a perfect 1.00.
Neither line is what you might draw in as visual best fit line. As Peter
Flanagan-Hyde (2006) puts it: “The least-squares regression line is not
a trend line.” This fact is well known to statisticians but much less so
to social scientists, because most introductory statistics texts for social
sciences do not highlight it, if they mention it at all. Welcome exceptions
include Huck and Sandler (1984: 60–1), von Eye and Schuster (1998: 209–
25), and Kennedy (1998: 141).

One of the few social science works where both regression lines are
shown is The Bell Curve (Herrnstein and Murray 1994: 559–66). The
example in their mathematical appendix deals with weight and height
of people. It first shows weight regressed on height and presents it as
“the best possible straight line passing through the cloud of points—the
mathematically ‘best’ version of the line you just draw in by intuition”
(1994: 562). Yet the very next page acknowledges that it is NOT the line
you would draw in by intuition: “Linear relationships don’t always seem to
fit very well [their italics]. The best-fit line looks as if it is too shallow”
(1994: 563).

To their credit, Herrnstein and Murray (1994: 565) later do show both
regression lines. They argue that one line responds to “How much does
weight increase with height?” while the other responds to “How much
does height increase with weight?” This is not quite that simple when
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scatter is large, as will be shown later on, but it is good statistics for
limited purposes. Yet, it presents momentous problems to science based
on quantitatively predictive logical models, for the following reasons.

Why Good Statistics Can Be Death of Predictive Science

Suppose a logical model actually fits, but with appreciable random scatter.
For given values of input variables, one can regress the actual output
values (yA) on those predicted by the model (yM). The model is validated, if
the best fit is yA = yM, meaning a line yA = a + byM where the slope is b = 1
and the intercept is a = 0. Deviations from these values would indicate
discrepancies between model and reality.

But should we regress yA on yM or, in the reverse direction, yM on yA?
It should not matter, yet two different regression lines result. Regress the
actual values yA on model-predicted yM, and you will find that the slope
falls short of 1, meaning that yA rises slower than yM. The model seems
disproved. Now regress yM on yA, and you will again find that the slope
falls short of 1, but now it means that yM rises slower than yA! How
can it be that yA rises slower than yM, which itself rises slower than yA?
(The intercepts also deviate from 0 in conflicting directions.) Either way,
any logical model that actually fits is declared faulty by standard OLS
regression, if scatter is large.

One does not have to regress expected values against the actual. The
paradox arises whenever a linear relationship with a specified slope is
expected. Consider two actual dilemmas from studies of party politics.

The first one comes from Chapter 11. Based on considerations of the
number of communication channels, the predictive model C = k/N2 con-
nects the mean cabinet duration (C) with the effective number of parties
(N). Taking the logarithms yields logC = log42 + 2 logN when k is in years.
This means a slope s = 2.00 is predicted. Empirically, the slope for regres-
sion of logC on logN is found to be only 1.76 (Taagepera and Sikk 2007),
falling short of 2.00. The reverse regression logN on logC yields a slope
corresponding to 1/s. It is found to be 0.45; hence s = 1/0.45 = 2.23—
which exceeds 2.00. Either way, R2 = .79. Is the predicted slope 2.00
confirmed or disconfirmed? If disconfirmed, is it so because it is too low
or too high?

Much earlier, Taagepera and Grofman (1985) proposed that “Parties
minus issues equals one”: N − I = 1, where N is again the effective number
of legislative parties and I is the number of issue dimensions on which
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parties disagree. The logic behind this extremely simple model is the
following. In the complete absence of issues (I = 0), there is no reason
to expect more than a single catchall party. The model predicts that
every new issue dimension tends to create one additional party of some
significance. It works in the reverse direction too. When N parties exist
for historical reasons, they tend to keep approximately N − 1 issue dimen-
sions salient in inter-party debate so as to preserve minimal distinctions
among themselves.

The corresponding data from Lijphart (1984) included 22 polities, with
mean I = 2.53 and mean N = 3.37. Hence mean (N − I ) = 0.844, just 16%
short of the predicted 1.00. The prediction was

N = 1.00 + 1.00I . [logical model]

Regressing N on I yielded

N = 1.264 + 0.834I . [N on I, R2 = 0.56]

Here the slope 0.834 falls short of the predicted 1.00 (by 18%), while
the constant 1.264 exceeds the predicted 1.00. However, Taagepera and
Grofman (1985, note 4) also reported regressing I on N, with a result that
would correspond, upon algebraic rearrangement, to

N = −0.370 + 1.481I . [I on N, and again R2 = 0.56]

In contrast to the previous equation, here the slope 1.481 exceeds the
predicted 1.00 (by 48%), while the constant −0.370 falls short of the
predicted +1.00.

So which way is it? Is the slope predicted by the logical model too low
or too high, as compared to the data? It cannot be both! At the time,
Taagepera and Grofman (1985) could only observe that the predicted line
fell in between the two regression lines (except near the point where these
lines cross). Given the two-way interaction between N and I , there is even
more motivation than in the previous example to take some sort of a
mean of the two regressions. How should such a mean be taken? The
answer is symmetric regression, to be presented soon.

When researchers testing a quantitatively predictive logical model are
unaware of the double regression line trap, they are likely to run a single
regression and mistakenly conclude that the model is deficient even when
this is not so. Moreover, the standard OLS equations cannot form an
interlocking system of equations, because they are not unique. This is
why good OLS statistics can be death of predictive science.
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The Directionality of Standard OLS Equations

Recall that algebraic equations propose unique relationships between
variables. They are reversible. Symbolically,

(x → y) = (y → x). [algebraic equations]

They also have transitivity. One can calculate z from x directly, or z from y
and y from x, and the result is the same. Symbolically,

(x → y → z) = (x → z). [algebraic equations]

This requirement is indispensable, if one wants to construct a knowledge
system consisting of equations that interlock. When it comes to standard
OLS, it has the following interrelated problems.

1. OLS regressions of y on x and x on y yield different lines whenever
correlation coefficient R2 is less than 1.00. Symbolically,

(x → y) =/ (y → x). [OLS regression equations]

The difference is large when R2 is low. Both regression lines are
reported in conjunction with the same R2, which itself does not
depend on the direction of regression.

2. OLS regression equations are not consistent in transfer whenever cor-
relation coefficient R2 is less than 1.00. Combining the regression
equations z on y and y on x does not yield the same result as
regressing z on x directly. Symbolically,

(x → y → z) =/ (x → z). [OLS regression equations]

The difference can be large when some of the R2 are low. Hence it is
impossible to base an interlocking system of equations on standard
OLS regression.

3. If one tests a theoretically supported law, and the data actually fit,
the slope of the OLS regression line y-on-x is always shallower than the
actual slope, relative to the x-axis, whichever variable one decides to
designate as x. This is so whenever correlation coefficient R2 is less
than 1.00. The difference is appreciable at low R2. If one tests the
validity of such a law, such regression could hence lead to unfounded
negative conclusion.

The Appendix to Chapter 12 offers illustrations that may help to get a
feel for how these problems with standard OLS come about. The reason
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behind them is that standard OLS regression equations are unidirectional.
This is so because regression y-on-x minimizes the sum of the squares
of vertical distances from data points to the line, while x-on-y does the
same for horizontal distances. Hence the least square formula used is
asymmetric in x and y (see mathematics in the Appendix to Chapter 12).
Using equality signs in OLS regression equations is misleading, as it falsely
implies two-way equivalence. The regression equation of y on x should be
shown as y ← a + bx, not as y = a + bx. This is different from regression
equation of x-on-y, which should be shown as x ← a′ + b′x.

Yet, both regressions yield the same R2, because the formula for calcu-
lating R2 is symmetric in x and y. The correlation coefficient is related
to neither of the regression lines separately but combines the slopes of
the two regression lines. Indeed, if b is the slope of y-on-x relative to the
x-axis, and b′ is the slope of the reverse x-on-y relative to the other axis
(y-axis), then

bb′ = R2.

This striking relationship flows directly from the definitions of b, b′, and
R2, but I have not noticed it spelled out in any statistics book.

When both slopes are measured relative to the x-axis then the slope of
x-on-y becomes b′′ = 1/b′ so that

b
b′′ = R2.

Thus R2 is the ratio of the slopes of regressions y-on-x and x-on-y, when
the latter are measured relative to the same axis. Since their ratio (R2)
is positive, b and b′′ have always the same sign—both lines go up, or both
go down. As R2 never exceeds 1, b′′ cannot be smaller than b : b′′ ≥ b. This
means that the slope of regression x-on-y is always steeper than the slope of
regression y-on-x, relative to the x-axis, for R2 < 1.

At a perfect R2 = 1, the two lines fuse. As R2 decreases, the two regres-
sion lines move apart from each other and toward positions parallel to the
two axes. At R2 = 0, the y-on-x line is horizontal, while the x-on-y line is
vertical, so that the two lines are orthogonal to each other.

The relationship bb′ = R2 offers a simple way to estimate R2 from
graphed data. Eyeballing on the graph often enables one to estimate the
two best fit slopes, y-on-x and x−on-y, fairly accurately. (For x-on-y, the
graph must be turned 90◦.) Then, to obtain R2, one multiplies the two
slopes, keeping in mind that b and b′ stand for the slopes relative to
different axes.
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Scale-Independent Symmetric Regression—A Single Line,
with Transitivity

Several modification of standard OLS regression are available, so as to
yield a single equation regardless of the direction of regression. In this
sense they are symmetric. They all are reversible. However, most of
them are not transitive, because they are not scale-independent. This
means that when the scale for y is doubled (with the scale for x remain-
ing the same), the visual slope is not doubled. In contrast, the slope
is doubled in standard OLS, and thus the relationship to the scale is
preserved.

Scale dependence affects orthogonal regression, devised early on by Pear-
son (1901), which minimizes the sum of squares of orthogonal distances
from data points to the regression line. (Recall that regression y-on-x
minimizes the sum of squares of vertical distances from points to the
line.) It is also called major axis regression (von Eye and Schuster 1998:
210–33) and principal components line (Gelman and Hill 2007: 57–8). Scale
dependence also affects the bisector regression, which halves the angle
between the two standard regression lines, as described in von Eye and
Schuster (1998: 220–5).

The only scale-independent symmetric regression seems to be what has
been called “impartial line” (Strömberg 1940) and “reduced major axis regres-
sion” (Kermak and Haldane 1950; von Eye and Schuster 1998: 220–5).
Thus it seems to be the only regression that could lead an interlocking
system of equations, because it is both reversible and transitive. It mini-
mizes the sum of the products of vertical and horizontal distances from
data points to the regression line.

This scale-independent symmetric regression, reversible and transitive,
seems to be “the mathematically ‘best’ version of the line you just draw
in by intuition”—the description Herrnstein and Murray (1994: 562) mis-
takenly apply to standard OLS. Yet one hardly finds the term “symmetric
regression” in indices of statistics textbooks, and an entire chapter on
it can be found only in Regression Analysis for Social Sciences by von Eye
and Schuster (1998: 209–36). They observe (1998: 230) that “In spite of
its obvious benefits and its recently increased use in biology and astro-
physics, symmetric regression is not part of standards statistical software
packages,” and offer the means for computing the “reduced major axis
solution” (1998: 233–5). However, there is a quick way to calculate the
symmetric slope whenever one already has R2 and the standard OLS slope.
It goes as follows.
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If b is the slope of OLS regression y-on-x in relation to the x-axis, and
b′ is the slope of x-on-y in relation to the same axis, then the geometric
mean (B) of these slopes can be calculated:

B = ±(bb′′)1/2.

This is the slope of the scale-independent line symmetric with respect
to the direction of regression, as presented in Strömberg (1940: 157). It
must have the same sign as b and b′′. It can also be calculated from OLS
regression y-on-x plus R2, without resorting to reverse regression. It results
from previous b/b′′ = R2 that

B =
b

|R| .

The slope of the symmetric regression line is the slope of OLS regression
y-on-x, divided by the absolute value of correlation coefficient R. The
absolute value of R must be used so as to give B the same sign as b and b′′

have. Similarly,

B = b′′|R|
Direct calculation of the symmetric slope from data is practically as simple
as for the standard OLS, except for minding the ± sign:

B = ±
[∑

(yi − Y)2/∑
(xi − X)2

]1/2
,

where X and Y are the means of xi and yi , respectively. The sign of B
is the same as for b and R, as it emerges from the summation ”(yi − Y)
(xi − X). The full equation for the scale-independent symmetric regression
line is

y = [Y − BX] + Bx.

It can be inferred from R2 and the one-directional OLS regression equa-
tion, provided that the means X and Y also are given. This line satisfies
the norm of transitivity:

x → y → z is the same as x → z (see the Appendix to Chapter 12).

Recall the two examples from an earlier section. Regression of C on N
yielded an exponent 1.76, while the reverse regression N on C gave 2.23.
The geometric mean is 1.98, very close to the predicted 2.00 by the model
C = k/N2. This is too good to be true in most cases of logical model testing.
The other example leads to a more realistic degree of fit.
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For this other model, N = 1 + I , symmetric regression yields N = 0.57 +
1.11I . Let us compare the various equations, rounding all coefficients off
to 2 decimals:

OLS regression, N on I : N = 1.26 + 0.83I .
Model : N = 1.00 + 1.00I .

Symmetric regression : N = 0.57 + 1.11I .
OLS regression, I on N : N = −0.37 + 1.48I .

The symmetric equation indicates that the theoretically expected slope is
off by 11%, not 17 or 48%, as the separate OLS regressions would suggest.
The model is confirmed within this appreciably lower level of error, which
also affects the intercept.

For testing algebraically formulated predictive models, the following
general advice emerges. Transform the model into a linear form. If no
other way is possible, the line yactual = yexpected is available when no para-
meter values have to be determined. Run symmetric regression. The usual
value of R2 still applies. Problems may arise when the random error term
is not normally distributed, but at least one avoids systematic underesti-
mating of slope.

When scales are transformed so that the scale-independent symmetric
regression line slope is ±1 (i.e., ±45◦ angle), then the orthogonal and
bisector approaches lead to the same result. This outcome is obtained
when the data are transformed in such a way that mean x and mean y
are zero and the sum of squares of xi equals the sum of squares of yi (see
the Appendix to Chapter 12).

Unemployment Versus Inflation Versus Unemployment:
The Two Phillips Curves

The well-known Phillips (1958) curve connects inflation (I ) and unem-
ployment (U ). Following up on Sargent (1999), Colomer (2007) points
out that there are two ways to read it. The classical or monetarist view
implies that decreasing unemployment increases inflation: Udown → I
up. The Keynesian view implies that when the government purposefully
allows higher inflation, it will reduce unemployment: I up → U down.
Both views agree that dU /dI < 0. However, the first approach leads to
regression I -on-U , while the second leads to regression U -on-I . Different
slopes result from OLS.
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In Colomer’s illustrative example (2007), a 5 percentage point decrease
in U leads to a 5 percentage point increase in I (thus slope is −1
relative to U -axis), while a 10 percentage point increase in I leads to
a 5 percentage point decrease in U—thus slope is −1/2 relative to I -
axis, meaning a slope −2 relative to U -axis. The apparent conclusion
is that the economic processes involved are unidirectional, presumably
because the “monetarist” effect is direct, while the “Keynesian” effect is
indirect.

This is possible in principle. It would be akin to hysteresis cycles in
magnetism: It takes a stronger magnetic field to demagnetize a body than
to magnetize it in the first place. But recall that “Whatever slope you
predict is too high, if you believe OLS regression.” The contrast in Phillips
curves is precisely in that direction. The illustrative results correspond to
b = −1 and b′′ = −1/2, so that b′′ = −2.00 and R2 = bb′′ = 0.50. Then the
symmetric slope relative to U -axis is B = b/|R| = −1/0.501/2 = −1.41.

Some hysteresis cannot be excluded for the unemployment–inflation
cycle. One would have to determine the symmetric slope separately for
periods where the government is deemed to intervene or to abstain.
Different values of B may emerge. Until this is shown to be the case,
it is more likely that the apparently unidirectional economic process is
an artifact of using unidirectional regression. This observation may also
apply to testing Okun’s law regarding unemployment and Gross Domestic
Product (Prachowny 1993).

It has been tacitly assumed here that the relationship of inflation and
unemployment is linear. An exponential relationship U = Ae−kI is more
likely, given that U cannot go negative while I can do so (cf. Chapter 8).
However, a linear approximation might be sufficient over a limited range,
as was the case for volatility in Chapter 4.

More than One Input Variable

Standard OLS is often applied to more than one input variable. How can
the symmetrical approach be applied to regression with several variables?
I have not found an explicit answer in published work. According to
my calculations, shown in the Appendix to Chapter 12, multivariable
symmetric regression of y on x, z, etc., corresponds to

y
/ [∑

(yi − Y)2
]1/2

= A ± x
/ [∑

(xi − X)2
]1/2

± z
/ [∑

(zi − Z)2
]1/2

± . . .
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and hence

y = a ±
[∑

(yi − Y)2
/ ∑

(xi − X)2
]1/2

x ±
[∑

(yi − Y)2
/ ∑

(zi − Z)2
]1/2

z ± . . .

Here A and a are constants, and X, Y, Z, . . . are the mean values of
x, y, z, . . . , respectively.

When taking the square roots, proper signs +/− must be inserted, as
they emerge from the summations ”(yi − Y)(xi − X), ”(yi − Y)(zi − Z), etc.
For instance, if y = K x/z is expected on logical grounds, we should run
symmetric regression of actual logy against logx and logz. The expectation
is logy = k + 1.00 logx − 1.00 logz, that is, one expects that, with proper
sign, [”(yi − Y)2/”(xi − X)2]1/2 is close to +1.00 and [”(yi − Y)2/”(zi −
Z)2]1/2 is close to −1.00.

With a single input, a simple relationship exists between the OLS slope,
the slope of the symmetric regression line, and R2: B = b/|R|. With more
than one input, no such relationship can exist. One would again expect
that the standard OLS coefficients fall short of the respective coefficients
for symmetric regression, especially when R2 is low, but I have not inves-
tigated the multi-input situation fully.

Connection to Scientific Practices

Physical scientists are accustomed to think in terms of interdependent
variables, rather than dependent and independent ones. Some scientific
relationships are indeed multidirectional. Take the law of ideal gases.
It could be written R = PV/T, if one wants to determine the value of
the universal constant (R) in the first place. It could also be written as
PV = RT, if one wants to calculate the impact on pressure (P ) and volume
(V), when temperature (T) is changed from outside. It could also be
written as P/T = R/V, if one wants to calculate the impact on pressure
and temperature when volume is changed from the outside.

However, physical scientists think interdependence even when the law
clearly follows a causal direction and could not be visualized in the
reverse. Such is the case for the gravitation law, where force is a dependent
quantity determined by masses and their distance. Should such laws
be written with an arrow, like chemical reactions, rather than equality
sign? Maybe we should be surprised that one gets away implying a two-
directional causal path where only one causal direction makes sense. Yet,
without transitivity, how could one construct a network of interlocking
relationships?
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This has implications for the future of social sciences. As long as
social sciences depend heavily on standard OLS and related unidirectional
regression methods, they are bound to face disconnected bits and pieces
of relationships, because with OLS, x → y → z is NOT the same as x → z.
If one wants to stick to regression equations as a major tool, symmetric
regression offers a way out, at least to the extent of supplying nondirec-
tional equations that satisfy the transitivity requirement.

Is Standard OLS Slope a Mixed Measure of Slope and Scatter?

When is scale-independent symmetric regression preferable to standard
OLS? From the viewpoint of statistical concerns, Kennedy (1998: 26, 141)
suggests the following approach. Regress y-on-x when measurement errors
in y are relatively large, compared to those in x. When the opposite
is the case, regress x-on-y. If the ratio of error variances is unity, use
orthogonal regression. The trouble for the statistician is that these errors
are usually not known well enough. The deeper trouble for the scientist is
the unidirectional nature of equations.

The symmetric approach (in its scale-independent form) is definitely
advisable when causality can act in either direction, at least under some
circumstances. But suppose it is absolutely clear which is the independent
variable. Could then standard OLS be preferable?

It may seem to depend on the purpose. If a logical model is tested and
the value of its free parameter must be determined, then standard OLS
would underestimate the actual slope. However, if the purpose is solely
to postdict y empirically, for given x, then standard OLS may seem the
way to go. But not so fast! Consider what happens when one omits a few
data points with extreme values of x and y, as was done in Figure 4.3 as
compared to Figure 4.2. Obviously, R2 decreases. But what happens to the
slopes of symmetric and standard OLS regression lines?

The slope of the symmetric regression line will change randomly, but it
could not get systematically steeper or shallower, given that it is neutral
toward reversal of y- and x-axes. The slope of the OLS line, y-on-x, how-
ever, will tend to decrease with decreasing R2, because it has to approach 0
as R2 approaches 0. The slope of the other OLS line, x-on-y, will of course
get steeper, approaching the vertical slope of the y-axis.

Thus, Herrnstein and Murray (1994: 565) are right when saying that one
of the OLS lines does “respond” to “How much does weight increase with
height?” while the other “responds” to “How much does height increase
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with weight?” But it would be mistaken to conclude that when these
lines respond, they respond with unique answers to these questions. It also
depends on the degree of scatter.

Graph the precise areas of countries in South America in square kilo-
meters versus their areas in square miles. The data points fall on a line
y = 2.590x, or inversely, x = 0.3861y, with R2 = 1.00. Now add random
scatter to both area measures, and repeat this experiment several times.
The symmetric regression line will wobble around y = 2.590x, but its
average slope will approach 2.590, the more times the experiment is
repeated. In contrast, the average slope of the OLS regression line y-on-x
will be steadily lower than 2.590. The more one increases random scatter,
the shallower the slope will tend to become.

If we did not know the relationship between square kilometers and
square miles, such a determination would distort the relationship in
one direction when we go from square miles to square kilometers and
in the opposite direction when we go from square kilometers to square
miles. Such distortion is less obvious in the case of social data where
we do not know the slope ahead of time, but it is equally real. If
we wanted to correct for this scatter dependence, we would have to
divide the apparent OLS slope by R—which amounts to using symmetric
regression.

With R2 we have a pure measure of lack of scatter in the sense that it
does not tell us anything about the slope of the data cloud. The slope of
the scale-independent symmetric regression line is a unique measure of
the slope. The slopes of the two standard OLS lines split away from this
slope in a scatter-dependent way. It follows from previous B = b/|R| and
B = b′′|R| that b = B|R| and b′′ = B/|R|. Hence, as R2 decreases from 1 to 0,
b decreases from B to 0, while b′′ increases from B toward infinity. Like
R2 is a pure measure of lack of scatter, the symmetric slope B is a pure
measure of slope. In contrast, the standard OLS slopes are mixed measures of
slope and scatter.

When we ask “How much does weight increase with height?”, the
standard OLS regression responds: “It depends on how scattered your
data are.” If you measure x and y with very rough rulers you get one
slope. If you repeat the measurements with more refined rulers so that
random measurement error is reduced, scatter also is reduced, and you
get a steeper slope, even while the means of x and y remain about the
same. My conclusion is that scale-independent symmetric regression may
always be preferable to standard OLS. Of course, when scatter is small
(R2 > .90), symmetric and standard OLS regressions differ little.
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Cautionary Note: Symmetric Regression Is Still
Merely Regression

It might be wrongly concluded that shifting from OLS to scale-
independent symmetric regression will do the trick and one can save
oneself the effort of thinking in terms of how things should connect. No,
one cannot escape that easily from thinking. Consider volatility (Chapter
4) in the light of symmetric regression.

The coarse linear model, based on the anchor point V = 0 for N = 1,
predicts V = b(N − 1). Knowing only the mean values of V and N leads
to V = −11.9 + 11.9N. The best OLS fit V-on-N was reported by Heath
(2005) as V = −9.07 + 11.14N [R2 = .50]. From this we can calculate the
best OLS fit N-on-V as corresponding to V = −49.7 + 22.3N. Tilting the
graph in Figure 4.2 by 45◦, one can see that this looks indeed like the best
fit of N-on-V. It is grossly off the conceptual anchor point. But so is the
symmetric regression line, though to a lesser degrees. Its calculation yields
V = −25.90 + 15.8N. Here OLS, V-on-N, looks preferable to symmetric
regression.

However, the line that one should take the most seriously is the one
based on the anchor point and the means of V and N. This is the logically
supported model (at low N), fitted to the data. It corresponds to the
symmetric regression line one would obtain when adding to the actual
data points an infinite number of virtual data points at the anchor point,
thus forcing the regression line to go through the anchor point. The
basic point is that any regression that does not respect conceptual anchor
points is inadequate.

Appendix to Chapter 12

Three Interconnected Problems with Standard OLS

Same R2, but Two Distinct OLS Regression Lines
We faced two distinct regression lines in Figure 12.1. Figure 12.2 illustrates it with
the simplest possible example—only three points: A (−4; −1.5), B (2; −1.5), and
C (2; 3). The mean of xi is X = 0 and the mean of yi is Y = 0. No generality is lost
by having the means at (0; 0), because any data-set can be transformed to such an
effect, by subtracting the means from all xi and yi .

The OLS regression line, y versus x, is the line that minimizes the sum of
the squared vertical differences between these data points. This sum is visibly
minimized when the line passes through A and halfway between B and C. This
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Figure 12.2. The same data-set yields two distinct regression lines—y vs. x and x
vs. y

OLS regression line is the dotted line in Figure 12.2:

y = 0.375x.

When we regress in the reverse direction, x versus y, the axes should be reversed.
On the existing graph, OLS minimizes the sum of the squares in the hori-
zontal x dimension. This sum is minimized when the line passes through C
and halfway between A and B. That OLS regression line is the dashed line in
Figure 12.2:

x = 0.667y.

The correlation coefficient is the same, whichever way one approaches the prob-
lem:

R2 = .25.

The two regression lines cross at the mean values (X; Y) but diverge elsewhere.
This is not an artifact of this simple data-set. The degree of divergence of the
two regression lines would be the same for any data-set where R2 = .25. Which
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equation should we use? If we deduce y from x, we must use y = 0.375x, but
if we deduce x from y, we must use x = 0.667y. Thus, y = 0.375x really stands
for y ← 0.375x, while x = 0.667y stands for x ← 0.677y. Using equality signs in
the OLS regression equations falsely implies two-way equivalence. Algebraically,
with a genuine equality sign, the dotted line x = 0.667y would be equivalent to
y = 1.5x, not to y = 0.375x. But we cannot carry out such algebraic transformations
on standard OLS regression equations.

We may check that R2 is the ratio of the slopes of regressions y-on-x and x-on-y,
when the latter are measured relative to the same axis. In Figure 12.2, b = 0.375
and b′′ = 1/0.667 = 1.5, so that b/b′′ = 0.25 = R2.

All Roads Do Not Lead to the Same Rome

Take any data-sets for x, y, and z where some of the R2 between them are rather
low, and you can easily verify that x → y → z is not the same as x → z for standard
OLS. As a simple illustration, return to Figure 12.2 and add a data-set zi identical
to xi . Then the means of zi , xi , and yi are Z = X = Y = 0. As we go directly from x to
z, the regression line is simply z = x and R2 = 1. But what happens as we go from x
to y and then from y to z?

We go from x to y using y = 0.375x. We go from y to z using z = 0.667y, because
regression z-on-y is the same as x-on-y. We end up with z = 0.667(0.375x) = 0.25x,
rather than z = x. We have multiplied the previous value of x by R2. If we accept
this value of z as a new value of x (because of z = x) and continue to deduce z from
x, we spiral in toward X = Y = Z = 0, the intersection point.

Suppose you take a walk out of Rome, and then return. Imagine your surprise
when you find you do not get back to where you started! Also, when going
to Naples directly, you end near a beach, but when you take a detour through
Benevento, the Naples you reach may be far from the sea. It makes travel most
uncertain. This is what standard OLS regression does to your data, because it is
unidirectional.

Whatever Slope You Predict Is too High

Figure 12.1 showed that OLS regression y-on-x underestimates the slope relative
to the x-axis, while reverse regression x-on-y overestimates the slope relative to
the same axis. The nature of this artifact may become clearer from the example in
Figure 12.3.

Suppose you compare the defense budgets of two competing countries, and the
model predicts y = x, which also means x = y. You have no more reason to graph
y versus x than x versus y. By the same token, regression in one direction cannot
be preferred to the other. Suppose the actual points show some variation: (5; 10),
(10; 5), (10; 15), (15; 10), (15; 20), (20; 15). The means of xi and yi are X = Y =
12.5.
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Figure 12.3. The two OLS regression lines under- and over-report, respectively, the
expected slope

The pattern is visibly symmetrical regarding the predicted line, y = x, and a sat-
isfactory statistical analysis should confirm it. However, when using standard OLS
to regress y-on-x, the four central points relative to the x-axis balance themselves
out and would lead to y = x, with slope 1.00; but the single point on the left pulls
upwards, while the single point on the right pulls downwards. So the regression
line (dashed line in Figure 12.3) has a shallower slope than 1.00, relative to the
x-axis.

Now look at it from the viewpoint of regressing x on y. The four central points
relative to the vertical y-axis balance themselves out and would lead to x = y, with
slope 1.00; but the single point at the bottom pulls toward the right, while the
single point at the top pulls toward the left. So the regression line (dotted line in
Figure 12.3) has a steeper slope than 1.00, relative to the x-axis. All three lines cross
at mean x and y (12.5; 12.5).

This is not an artifact peculiar to Figure 12.3. To bring out the underlying reasons
in the most vivid way, only 6 points were shown, none of them on the line y = x. If
one is uneasy about this peculiar configuration, one can add as many points as one
would like on the line y = x. The R2 would improve and the two regression lines
would move closer to each other, but the qualitative discrepancy would remain.
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Shift to Symmetric Regression

The Mathematics of Symmetric Regression

Basic Equation
The OLS linear regression of y on x yields a line y = a + bx such that

b =
∑

(yi − Y)(xi − X)∑
(xi − X)2

and a = Y − bX, where X and Y are the mean values of xi and yi , respectively.
Conversely, the regression of x on y yields a line x = a′ + b′y such that

b′ =
∑

(yi − Y)(xi − X)∑
(yi − Y)2

and a′ = X − b′Y. Either way, the correlation coefficient is

R =
[∑

(yi − Y)(xi − X)
] / [∑

(xi − X)2
∑

(yi − Y)2
]1/2

and

R2 =
[∑

(yi − Y)(xi − X)
]2 / ∑

(xi − X)2
∑

(yi − Y)2.

In contrast to the expressions for b and b′, the one for R2 is symmetrical in x and
y. An important implication of these definitions is that R2 equals the product of
the slopes of regression lines relative to the axis on which the regression is carried out:

b′b = R2.

When both slopes are measured relative to the x-axis, then the slope of x-on-y is
b′′ = 1/b′, so that

b
b′′ = b′b = R2.

Note that b, b′, b′′, and R are either all positive or all negative.
The equation for the reverse regression (x on y), x = a′ + b′y, corresponds in the

y versus x format to y = (−a′/b′) + (1/b′)x. Consider the line passing through (X; Y)
and having as slope (B) the geometric mean of the slopes b′′ = 1/b′ of this line and
b in y = a + bx:

B = ±(bb′′)1/2.

Here B has the same sign as b and b′′. In view of b/b′′ = R2, we have

B =
b

|R|
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and

B = b′′|R|.

Direct calculation of B from data is straightforward, except for the ± sign:

B = ±{bb′′}1/2 = ±{b/b′}1/2 =

= ±
{[∑

(yi − Y)(xi − X)
/ ∑

(xi − X)2
] / [∑

(yi − Y)(xi − X)
/ ∑

(yi − Y)2
]}1/2

= ±
[∑

(yi − Y)2/ ∑
(xi − X)2

]1/2
.

The line with slope B that passes through (X; Y) is y = A + Bx, where A = Y − BX.
Hence the equation of this line is

y = [Y − (b/|R|)X] + (b/|R|)x.

Symmetry Toward the Axes and Transitivity

The formal proof that the equation y = [Y − (b/|R|)X] + (b/|R|)x is symmetric
toward the axes, reversible and transitive, while the standard OLS is not, is avail-
able from rtaagepe@uci.edu

Orthogonal Regression Becomes Equivalent to Scale-Independent Symmetric
Regression when Data Are Normalized

OLS regression of y on x aims at minimizing the sum of squares of vertical
distances of data points to a line, ”(ƒyi )2. Instead, one could try to minimize the
sum of squares of the shortest distance from data points to the line. This means
orthogonal regression. Unfortunately, the resulting line is scale dependent. Indeed,
as the relative scales of y and x are altered, the line that previously corresponded
to the shortest distance from a data point to the line no longer does.

There is one privileged scale, though, the only one that makes the two usual
OLS lines symmetric with respect to the axes. Here b′ = b and hence B = ±1, so that
the symmetric regression line is at 45◦ to the axes. The transformation consists of
shifting to xj = (xi − X)/[”(xi − X)2)1/2] and yj = (yi − Y)/[”(yi − Y)2]1/2. This way
the OLS regression lines cross at (0; 0). Moreover, ”y2

j = ”x2
j = 1.

Formal proof is available from rtaagepe@uci.edu that such a shift makes the two
standard OLS lines symmetric with respect to the axes and that slope 1 minimizes
the sum of squares of the shortest distance from data points to the line.

More than One Input Variable

With only one input variable (x), the symmetric regression is y = a + Bx, where
dy/dx = B = [”(yi − Y)2/”(xi − X)2]1/2. Transposing the latter yields

dy/
[∑

(yi − Y)2
]1/2

= dx
/ [∑

(xi − X)2
]1/2

.
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Shift to Symmetric Regression

When more input variables are introduced, y = a + Bx + Cz + . . ., and dy =
(∂y/∂x)dx + (∂y/∂z)dz + . . ., where ∂y/∂x is the partial derivative of y with respect
to x. It follows from the above that

∂y/∂x = [(yi − Y)2/”(xi − X)2]1/2, ∂y/∂z = [”(yi − Y)2/”(zi − Z)2]1/2, etc. In sum,
multivariable symmetric regression is

y = a ±
[∑

(yi − Y)2/ ∑
(xi − X)2

]1/2
x ±

[∑
(yi − Y)2/∑

(zi − Z)2
]1/2

z ± . . . ,

where X, Y, Z, . . . are the mean values of x, y, z, . . . , respectively. When taking
the square roots, we must insert the proper signs +/−, as they emerge from the
summations ”(yi − Y)(xi − X), ”(yi − Y)(zi − Z), etc.
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13

All Indices Are Not Created Equal

� Models are tested with data, but also data are tested by agreement with
conceptual models.

� When competing indices exist to measure the same phenomena, one
should use the ones that agree with logically supported prediction.
These indices need not be philosophically “truer” measures of the
underlying concepts. They are just more useful for prediction.

� The choice between two accepted ways to measure cabinet duration
and three ways to measure the number of parties illustrates this advice.

� Clearest results emerge when symmetric regression is used for testing.

Whichever way predictive models may be set up, they are tested with
data. In the light of the data, the model may have to be modified or even
abandoned. It is a widely accepted norm that one can not argue with data.
I disagree. Measurements are imperfect. Indices may not show what they
are meant or thought to show. Testing models by agreement with data is
only part of the game—data also are tested by agreement with models.
More precisely, the way data are generated and processed is tested.

Give Preference to Indices That Best Fit a Logically
Expected Relationship

Let us return to the relationship between mean cabinet duration and
the number of parties, presented as C = k/N2 in Chapters 10 and 11.
The logical model does not refer to specific indices. It merely posits an
inverse square relationship between conceptual quantities: (cabinet dura-
tion) = k/(number of parties)2. It does not tell us how “cabinet duration”
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and “number of parties” are to be measured. Thus, it really means a
relationship between a suitable measure of cabinet duration and a suit-
able measure of number of parties. A recurring problem in sciences is
how to measure quantities that correspond to ideal concepts. We face it
here.

We saw in Chapter 10 that there are several ways to measure the number
of parties. Actually, one can base such a measure on

∑
pm

i , using any value
of m, ranging from 0 (which leads to what was designated as N0) to infinity
(which leads to what was designated as N∞). What was called the effective
number of parties (N) corresponds in this notation to N2. There may be
still other ways to define a measure of the number of parties. There are
also several ways to define and measure cabinet duration. Which indices
should we choose, among the several alternatives?

My brief answer may at first glance look antithetic to the scientific
method: Give preference to the indices that best fit a logically expected
relationship. This may look like cooking the data—but it is not so. All
ways to measure conceptual quantities are not created equal. Some are
more useful than others. A major criterion for usefulness of an index is
how it links up with something else, because only such linkages make
prediction possible. Science is about establishing patterns, so that we can
predict. Logically supported patterns are preferable to merely empirical,
because knowing why a prediction works increases our confidence in
it. It enables us to apply prediction in uncharted territories—and avoid
applying it when the logical presumptions are absent.

Suppose that, on logical grounds, we expect a relationship y =
k/x2 between abstract concepts x and y. Suppose several indices
(X1, X2, . . . Y1, Y2 . . . ) compete to stand for x and y, respectively. Suppose
that one and only one pair of indices, say X2 and Y1, comes close to
confirming y = k/x2. Then this pair stands out as the only one that offers
logically supported predictability.

The likelihood that Y1 = k/(X2)2 might fit by random coincidence is
vanishingly small when data points are numerous and cover a fair range,
because y = k/x2 is only one among a multitude of downwards-sloping
possibilities, ranging from y = a − bx to y = k/(x4 − b), and so on. Chances
are good that a logically expected and quantitatively specified relation-
ship is for real, if one of the many combinations of alternative indices
confirms it.

But even more is confirmed than the relationship itself. If the com-
bination X2 with Y1 confirms the expected relationship and no other
combination does, then X1 and Y1 themselves appear that much more
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useful. Hence their positions are reinforced as privileged measures of
concepts x and y, respectively.

More often than not, indices that aim at measuring the same concept
are somewhat correlated. Therefore, if one of the Y is connected to X2, so
may be the others. Indeed, some other Y may conceivably correlate with
X2 even slightly better than Y1, if one swears by R2, but if the relationship
found does not have the expected functional form, then this Y is not the
preferred one.

The Need for Symmetric Regression

This is where symmetric regression becomes essential. Consider again the
relationship between mean cabinet duration and the number of parties.
Three measures of the number of parties have been used before: N∞,
N2, and N0. They all correlate with each other and hence with cabinet
duration. The exponents n in C = k/Nn correspond to the slopes on log–
log graphs. Consider OLS regression of logC on logNm, where Nm stands
successively for N∞, N, and N0. The exponent n is found to be 2.14 for
N∞, 1.76 for N2, and about 0.93 for N0.

On the face of it, the exponent for N∞ looks closest to the logically
expected 2.00. However, Chapter 12 has demonstrated that standard
OLS regression systematically underestimates slopes, as compared to the
theoretically predicted ones. The reverse regression of logNm on logC
must also be taken in account, and it yields different slopes. Taking the
geometric mean of the two slopes (with respect to logNm axis) corresponds
to symmetric regression. With this adjustment, N2 offers an almost perfect
fit to the expected 2.00—the mean exponent is 1.98.

The three measures for the number of parties are logically connected by
N2 = N2/3

0 and N2 = N4/3
∞ (Table 10.1). If N2 fits C = k/N2, it leads to expec-

tations C = k/N4/3
0 and C = k/N8/3

∞ . Table 13.1 shows the actual outcomes.
For all three measures of the number of parties, OLS regression of logC on
logNx yields lower values of exponent n than predicted. Yet the reverse
regression of logNm on logC yields higher values of n than predicted.
The geometric means of the two come relatively close to predictions. The
slopes for N0 are shown in parentheses, because they are not measured but
approximately derived from known MS and the relationship N0 = (MS)1/4.
The exponents for C versus MS, shown at the bottom of Table 13:l, are
discussed in the Appendix to Chapter 13.
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Table 13.1. Degree of agreement with predictive models of mean cabinet duration for
standard OLS and symmetric regressions of logarithms

Nx Predicted OLS regression Symmetric Deviation (%) from R 2

exponent regression prediction
C on Nx Nx on C

N2 −2.00 −1.76 −2.23 −1.98 −1 .79
N∞=1/s1 −2.67 −2.14 −4.05 −2.94 +10 .53
N0 −1.33 (−0.93) (−3.10) (−1.70) (+28) (.30)
MS −0.33 −0.23 −0.77 −0.43 +28 .30

When N2 is assumed to be the proper index for the number of parties
in C = k/N2, then it can be seen in Table 13.1 that the predicted exponent
8/3 = 2.67 for N∞ is also confirmed within 10%. The more uncertain result
for N0 deviates from the expected 4/3 = 1.33 to a larger extent. The logical
connection to cabinet duration is most direct for N2, followed by N∞ and
then by N0. Not surprisingly, R2 decreases in the same order. In contrast,
if one assumes N∞ or N0 to be the proper index for the N in C = k/N2,
nothing falls into place.

Now consider the measures of cabinet duration. Lijphart (1999: 132–3)
uses two distinct ones. “Average cabinet life I,” devised by Dodd (1976),
is the more lenient one. A cabinet is considered to last when its partisan
composition does not change. As long as the same parties or groupings
participate, the same cabinet is considered to continue. Lijphart (1999)
observes mean durations ranging from 1.3 to 31 years. This is the measure
that confirms the model C = k/N2, when used in conjunction with the
effective number of parties, N2.

A much more stringent measure (“Average cabinet life II”) considers
a cabinet terminated not only when its party composition changes but
also upon an election, a change of prime minister, or a shift in cabinet
type (minority, minimal winning, or oversized coalition). By these criteria,
Lijphart (1999) observes mean durations ranging from 1.0 to 4.8 years. In
particular, frequency of elections puts a severe upper limit on the range.

For data in Lijphart (1999: 132–3), the linear fit of logarithms corre-
sponds approximately to Life II = 1.15(Life I)0.45 when (and only when)
both are measured in years. Scatter is so wide that Life II can be approx-
imated with the square root of Life I. This purely empirical relationship
depends on the time units used.

Correspondingly, the best fit of Life II with effective number of parties is
quite close to Life II = 7 years/N. Here R2 is not much lower than for Life
I = 42 years/N2, but there is a huge difference. The exponent “2” in Life I
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comes from a logical model, while the exponent “1” in Life II = 7 years/N
lacks such an explanation. Combining Life II with the other measures of
the number of parties leads to exponents of about 4/3 for N∞ and 2/3
for N0. Both fall much short of the expected 8/3 and 4/3, respectively.
Thus Life II combined with the effective number of parties is the only
combination of measures of cabinet duration and number of parties that
fits the model C = k/N2. These indices emerge as the best connected
measures of mean cabinet duration and number of parties, respectively.
They are the only ones that offer logically supported prediction, even
while all other combinations of indices also offer empirical correlations.

Conclusions

When competing indices exist to measure the same phenomena, it is
advisable to use the ones that agree with prediction based on logical
models. No claim is made that these indices are “truer” measures of the
underlying concepts in a philosophical sense. They are just more useful
for prediction.

The mean duration of cabinets and the number of parties offer a handy
illustration, because there are at least three ways to measure the number
of parties and two accepted ways to measure duration. The results emerge
the clearest when symmetric regression is used for testing. Thus, this
illustration adds to the ones in Chapter 12 in pointing out the systematic
shortcomings of one-directional OLS regression.

Appendix to Chapter 13

The Inverse Cube Root Relationship of Cabinet
Duration and the Seat Product

An inverse cube root relationship between mean cabinet duration (C) and the seat
product (MS) was suggested in Table 10.1: C = 42/(MS)1/3. While the number of
parties cannot be prescribed by law, the seat product can. Thus the latter equa-
tion makes institutional design possible, at least in principle. Is this relationship
sufficiently firm to be called a law?

In Table 13.1, the exponent 0.23 resulting from OLS regression of logC on
log(MS) falls 30% short of the expected 1/3 = 0.33. This is what happens when R2 is
low and unidirectional OLS is used. Reverse regression of log(MS) on logC produces
a correspondingly high slope of 0.77 (relative to the MS-axis). The geometric mean
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is 0.43. This is still 28% higher than the expected 0.33. Here the shift to symmetric
regression does not improve the fit.

The model C = 42 years/(MS)1/3 still predicts mean cabinet duration within
a factor of 2 for 19 cases out of 25. The six widely deviant cases are spread
evenly: Botswana, Spain, and the Netherlands are above the predicted zone, while
Mauritius, Papua-New Guinea, and India are below. Either we may tentatively
accept the inverse cube root relationship as basis for uncertain prediction and
institutional design or we would have to abstain from prediction altogether.

Dimensional Analysis

Chapter 10 hinted at a major difference between physics and social sciences.
Physics has many dimensional quantities that emerge from measuring, while
social sciences have many purely numerical quantities that emerge from counting.
“Dimensional analysis is a method whereby physicists, engineers, and biologists
often can arrive at the form of physical law simply by knowing exactly which
variables are relevant—of course, that is a great deal to know” (Luce 1989: 262).
The following tries to give a sense of what is involved, in simple terms. For full
treatment, see Krantz et al. (1971: 454–544) and Luce et al. (1990: 307–26).

Counting and measuring differ fundamentally. Counting presumes existence of
a natural unit, such as “one cow” or “one vote.” Measuring involves comparison
with a standard which most often is arbitrary, such as a month or a dollar. One
can use different measuring units (such as years or euros), and it often makes no
difference, as long as one specifies the units. In contrast, counting by half-cows or
dozens of votes looks unjustified. (Sometimes both approaches could make sense—
or both may have difficulties. One peasant may own five fat cows with total weight
2,500 kg, while another may own eight starved cows with total weight 2,000 kg.
Which one can be considered wealthier depends on many factors.)

Most numerical values in physics emerge from measuring rather than counting.
They are not pure numbers but products of a pure number and a unit of mea-
surement. When units change, their number also changes, and the usual rules of
multiplication apply. This means that the same time interval can appear as 120
times one second or 2 times one minute, given that 1 times one minute equals
60 times one second.

Different physical quantities have mutually incompatible dimensions. This
means that seconds and meters cannot be added or subtracted, while seconds
and minutes can, subject to a nondimensional multiplier of 60 s/min. However,
even quantities with disparate dimensions can be multiplied and divided, and
sometimes the outcomes have conceptual meanings. Thus, distance divided by
time interval is what we call velocity. Such a division must involve both pure
numbers and units. For instance, 10 km divided by 2 h equal (10/2)(km/h) =
5 km/h. We must divide units as well as the numbers—and the outcome must
fit dimensionally.
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Most physical quantities can be reduced to a multiplicative combination of 4
basic dimensions, often conventionally shown in square brackets: length [L], time
[T], mass [M], and electric charge [Q]. In dimensional terms, any volume is [L3],
any velocity is [L/T], and any acceleration is [L/T2]. Equations must balance not
only in numbers but also in dimensions (and hence units). Thus Newton’s second
law, force = mass × acceleration, implies that the dimension of force is [Force] =
[M][L/T 2] = [ML/T2].

The universal law of gravitation, f = GMm/r2, involves a universal constant, G.
The latter cannot be a pure number, because the transposition G = fr2/Mm implies
that [G] = [ML/T2][L2]/[M 2] = [L3/MT2]. At the end of complex calculations, a
dimensional check is advisable. If dimensions do not fit, there is bound to be a
mistake.

Dimensions always come in small integers (Krantz et al. 1971: 455). Even if a
formula involves a square root, the outcome has integer basic dimensions. Thus
the time period (T) for the swing of a simple pendulum is T = (L/g)1/2, where L
is the length of the pendulum and g is gravitational acceleration toward the Earth.
Dimensionally, T is {[L]/[L/T2]}1/2 = [T], as it should be.

In contrast, most quantities in social sciences are nondimensional, symbolized
here as [0], if needed. In the inverse square law of cabinet duration, C = k/N2, the
effective number of parties is a pure number: N = [0]. Since C has time dimension,
the constant k also must be k = [T]. Money is the only widespread, uniquely social
science quantity that might be dimensional. Like mass, it is a quasi-continuous
variable that has a natural zero but lacks a natural unit. In contrast, in the
expression for the number of seat-winning parties, N0 = (MS)1/4, all quantities
are zero-dimensional, based on counting (however indirectly, in the case of the
effective number of parties). In exponential growth or decay, y = Aekt, output y
may stand for a dimensional measure or a pure number based on counting units,
and the constant A must have the same units. Since exponent kt can only be a
pure number—kt = [0]—it must be that k = [1/T].

This brings us to the notion of uniformity in units: At analogous positions in
the same equation, the same counting units must be used. For instance, effective
number of legislative parties can be calculated from N2 = (”Si )2/”(Si )2, using for
Si either numbers of seats for different parties or their percent shares or fractional
shares—but the same measures must be used at the top and the bottom. While
such a requirement may look self-evident in this simple example, it may be missed
in more complex expressions.

If linear regression is used, it must be kept in mind that regression units may not
be pure numbers even while they may look so in a computer printout. Suppose the
output y is a pure number. If x1 stands for GNP/capita [money], then its regression
coefficient a1 must have the compensatory dimension [1/money]. Its numerical
value depends on whether euros or dollars are used.

Two measures of cabinet life presented in this chapter were observed to be
related as Life II = 1.15(Life I)0.45 when both are measured in years. When
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converted to months, it becomes Life II = 0.30(Life I)0.45. It is bad enough that the
constant depends on units used, even when the same unit is used for Life I and
Life II, but dimensionally things become really awkward: [T] = [c][T]0.45. It means
that the constant (be it 1.15 or 0.30) must have the dimension of [c] = [T]0.55! One
might be better off in trying to fit the relationship with Life II = k(Life I), even if it
makes R2 much worse. At least the dimensions would be kept simple.

Sometimes it helps to divide a variable by a constant rather than multiply,
because then the variable and the constant have the same dimensions (or quasi-
dimensions—see below). For this reason the number of treaties in the Appendix
to Chapter 8 was expressed as T = T0 (1 + B/b) (1 + L/l) (1 + R/r ) rather than
T = T0 (1+b′B) (1 + l′L) (1 + r′R). This way, the constants b, l and, r can be char-
acterized as the values of B, L, and R that double the output. The multiplicative
constants (b′, l′, and r′) offer no such simple interpretation. Remember: meaningful
constants are better than anonymous. In the case of Life II above, however, this
approach does not work either.

Let us return to the basic feature involved in dimensional analysis. Measured
quantities of different types often can be multiplied or divided together to yield
new meaningful quantities. Kilometers and hours combine to yield velocities
in kilometers-per-hour. This property is not inherently restricted to measured
quantities. Measured and counted quantities can combine in a similar way, such
as GDP yielding “per capita GDP.” Counted quantities can also combine among
themselves. In some elections, each voter has more than one vote that he or she
can use. The actual votes cast per person (v) can be expressed as v = V/P where V
is the number of votes and P the number of people participating. All these entities
have zero dimension, yet they combine like dimensional quantities in velocity =
distance/time. There is sort of quasi-dimensionality.

Such quasi-dimensionality just might become a useful notion in social sciences.
It could bring some of the benefits Luce (1989: 262) has in mind in the quote
above. Presently, however, dimensionality tends to set apart the basic building
blocks in physics and in social sciences.
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14

From Descriptive to Predictive
Approaches

� Routine statistical approaches are essentially descriptive, giving answers
within a narrow range of questions. Quantitatively formulated logi-
cal models force us to ask further questions and are predictive in an
explanatory way.

� Descriptive approaches are not conducive to detection of social laws,
especially if one simultaneously feeds in variables which actually con-
nect sequentially.

� Rather than a single sequence of “hypothesis testing,” scientific proce-
dure involves repeat cycles where predictive and descriptive approaches
enter intermixed.

� Hopes of a unified “theory of everything” emerge mainly at dawn
(philosophers’ stone!) and at high noon of a discipline. In its late
morning, scientists are too busy casting cumulative and interlocking
knowledge into more limited theories of something.

� Directional models and reams of numbers ground out by canned com-
puter programs must make room for quantitative models and sparse
conceptually grounded constants.

Much quantitative work has been produced in social sciences during
the last 50 years, adding to our qualitative understanding of social
processes and data collection. Yet the payoff has been far from optimal,
because of overemphasis on analysis in a narrowly statistical sense, often
reduced to mindless ritual, and relative neglect of conceptual model build-
ing. We need both more thoughtful use of statistics and going beyond
statistics.
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Routine statistical approaches are essentially descriptive, giving answers
within the range of questions we ask. They do not talk back to us. If
we ask for linear regression, the program does not print out “You really
should consider curvatures.” When we analyze mean cabinet duration on
the basis of district magnitude, the program does not whisper “Include
assembly size too!” From where can we get the questions to be posed in
the course of statistical analysis? This is where the conceptual “How should
it be on logical grounds?” enters.

Quantitatively formulated logical models are essentially predictive in an
explanatory way. They produce not only answers but also new questions.
Expanding the predictive approaches by no means implies dumping the
descriptive ones. There is nothing wrong with statistical methods. Plenty
is wrong with the way these methods have been misused and overused in
social sciences. Mixed strategies are often the most efficient. So let us see
how to mix them.

Could Statistical Approaches Find Social Laws?

This book asked early on (Chapter 2) whether the present-day social
science approaches could find the law of gravitation. The test presented
could legitimately be criticized on two accounts: the use of blind data
and asking social scientists to find something outside their realm. Well,
Chapter 10 offers a set of empirically tested logical models that connect
eminently social science variables—institutional inputs and political out-
puts. The corresponding data are widely available. Could these predictive
results of logical modeling be obtained by descriptive methods?

We may have to specify what constitutes a worthwhile result. Potential
for informed social intervention could be a major aspect. Various inter-
mediary links in the sequence presented are of intellectual interest but
cannot lead to action. It is nice to know that mean duration of cabinets
is strongly connected to the number of parties, but this number cannot
be changed by decree, even if there should be consensus that cabinet
durations in the given country are too short. Institutional inputs such as
assembly size (S) and district magnitude (M) are another matter. They can
be altered by legislative decision, in principle, so as to alter outputs such
as number of parties and mean duration of cabinets (C). The equation
C = 42 (MS)−1/3 in Table 10.1 enables the legislators to manipulate these
institutions so as to alter the average output not only in the desired direc-
tion but also to a desired degree. This simple model has a considerable
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range of error, but measures to reduce it exist (Taagepera 2007c), and
future refinements can be expected.

This potential for institutional engineering is a prime practical payoff
in the given case. It opens ways for informed social intervention, some-
thing that would justify expenditures on political science in the eyes of
decision-makers. Abstract studies of classical mechanics received a major
boost when they could be applied to improve the accuracy of artillery.
I hate to draw this analogy, and rulers may be more interested in guns
than institutional reform, but practical payoff cannot be ignored. How
well could the conventional social science approach serve this purpose in
this particular instance?

Political scientists have tried to connect cabinet durability to a huge
number of factors—see review by Grofman and van Roozendaal (1997).
Among the variables that deal with the number and size of parties and
electoral districts, it could have been noticed early on that mean duration
of cabinets (C) seems to go

1. up with increasing seat share of the largest party (s1);
2. down with increasing effective number of parties (N);
3. down with increasing district magnitude (M).

Faced with such a directional model, a conventional social scientist would
automatically set up the regression equation C = a + bs1+ cN + dM. This is
precisely what Sørensen (1998) called the gas station approach (Chapter
10)—buying a little bit of extra duration with the largest share, a little
bit of (negative) duration with number of parties, etc. Among the input
variables, N is likely to emerge as statistically “significant,” but so may
one or even both of the other variables.

Note that no dependence on assembly size can be detected with raw
empirical data, because of its limited range of variation (cf. Chapter 10).
This impact, prominent in the conceptual model C = k(MS)−1/3, cannot
emerge until one starts looking for it on conceptual grounds and designs
the inquiry accordingly. Hard-boiled empiricists may feel that what is
hard to detect can be neglected, but this would be poor science. Ask
physicists who have spent decades pinning down the elusive neutrino
and gravitational waves.

No explanatory pattern in a conceptual sense could emerge from
C = a + bs1 + cN + dM, any more than it did from the regression analy-
sis of gravity pseudo-data (Chapter 2). This is so not only because no
conceptual explanation is sought in the first place but also because the
regression approach is hardly conducive to it. Beyond straight regression,
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a competent statistician would inquire into correlations between s1, N,
and M. These correlations are of course strong, but they are nonlinear:
s1 = (MS)−1/8, N = (MS)1/6, and N = s−4/3

1 , respectively (cf. Table 10.1). If
only linear correlations are looked for, they may or may not appear
significant. The following outcomes may materialize.

If two of the inputs are eliminated through linear autocorrelation, these
would be M and s1, given the much more direct connection of C with N.
The outcome would be C = a′ − c ′ N, with positive c ′ and a quite satis-
factory R2. Such regression would misinterpret the inverse relationship
as a subtractive one. The conventional researcher would not discover the
inverse square relationship of C to N, unless exposure to physics models
has conditioned him or her to taking logarithms of all variables. Statistical
data configuration alone would not call for it. It may suggest “logging” C
but not N, because the range of N is quite limited. Logging C would lead
to ln C = a′′ − c′′N and hence C = Ae−c′′ N. In the absence of full logarithmic
transformation of data, the inverse relationship would be misinterpreted
as a decreasing exponential. Either way, no hope for informed social
intervention emerges, because the number of parties cannot be altered by
fiat.

Now suppose that linear autocorrelation eliminates only one of the
inputs. The casualty would most likely be s1, as the logical connection
between N and M is more remote in the causal chain, thus reducing
autocorrelation. The outcome may have the form C = a − cN − dM (where
elimination of s1 alters all coefficients). If the wide range of M is noticed,
one might shift to its logarithm: C = a − cN − d ln M. If the range of C
is also deemed wide, one may use ln C = a − cN − d ln M and hence C =
Ae−cN/Md.

Either way, the actual sequential relationships C = k/N2 and N =
(MS)−1/6, which combine to C = k(MS)−1/3, are scrambled into a single “gas
station” equation. The term in M could offer some institutional engineer-
ing ability, but success would be severely limited, because interaction of
M with assembly size is ignored and changes in M would also alter N in a
way not specified in the regression equation.

However, it may turn out that increasing district magnitude might
seem to increase cabinet duration. This is so because the logical impact
of M through M → N → C is preempted by inclusion of N. The residue
is mostly random effect of secondary factors which could add up to a
positive or negative d in C = Ae−cN/Md. Such random residues should
not look statistically “significant,” but sometimes they do—cf. Kittel’s
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Figure 14.1. Logical sequence and “gas station approach” for mean duration of
cabinets

(2006) experiment in Chapter 7 and discussion of statistical significance
in Chapter 6.

So as to improve the fit, the conventional researcher might add more
ingredients to the gazpacho. One may introduce further variables that
might have some impact. Not only assembly size but also duration of
the democratic regime, and a dummy for presidentialism might come
to mind. In Sørensen’s (1998) terms, more pumps are added to the gas
station—see Figure 14.1. The R2 may increase marginally, leaving the
impression that one is “explaining” ever more, while actually the picture
is muddled up even further.

The conclusion is that descriptive approaches alone are not conducive
to detection of social laws that follow the multiplicative pattern frequent
in physics. More broadly, they are not conducive to detection of any
sequential connections, by definition, because they mistakenly replace
sequence by simultaneous combination.
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Could Statistical Approaches Distinguish between Multiple
Modes of Causation?

Previous section has shown that multivariate regression alone cannot
figure out social laws when sequential processes are involved. Replacing
A → B → C with simultaneous inputs A → C ← B royally confuses the
issue. In Sørensen’s gas station analogy, one would try to buy gasoline
from pumps A and B, without realizing that pump B merely transmits
what it gets from pump A. There is another situation where the gas station
analogy enters. When pumps A and B are distinct, your car engine might
work as well on gas purchased from either of them alone. In other words,
it might be that A → C under some circumstances and B → C under
some others. Once again, A → C ← B would confuse the issue. When an
outcome sometimes results from one cause and sometimes from another,
multivariate regression duly parcels it out among them, as if they acted
together.

Multiple roads can lead to the same endpoint. Sometimes called equi-
finality in social science literature (Ragin 1987; Schneider and Grofman
2006), it is taken as obvious by chemists. Different chemical reactions can
lead to the same final products. Water is a byproduct in a multiplicity
of reactions. Chemists would be concerned only about the opposite—
when the same starting materials lead to different reaction products,
under apparently identical conditions. They would then look for what
is different in the conditions, rather than call it “path dependence” and
let it be. Once more, dependence on computer programs will not do. One
has to think and build predictive models.

What Is Theory?

Given the extreme contrast between the physics approach and such a gas
station approach, how come that the physicists’ notion of a unified “the-
ory of everything” (TOE) has struck a chord among some social scientists?
What does it tell us? We have to specify what theory means.

My high school philosophy of science course in Marrakech taught me
that “theory” has a quite opposite meaning in science, compared to
everyday speech (Figure 14.2). In science, theory is the combination of
many interlocking laws, themselves conceptually grounded and empiri-
cally tested. It is the endpoint, the ultimate roof. In everyday speech, in
contrast, “It’s just a theory” means it is just a hunch, even less firm than
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Theory

Theory

Science : Theory is the
ultimate roof

Social sciences : Could
‘theory’ mean either? 

Popular : ‘Theory’ is the ground
under a nonexisting house

Figure 14.2. The opposite meanings of “theory”

a well-worded hypothesis. What I later encountered in physics agreed
with this lesson in philosophy. Webster’s New Collegiate Dictionary (1981)
covers the range, from “an unproved assumption” to “a plausible or
scientifically acceptable general principle or body of principles offered to
explain phenomena.”

But what does “theory” mean in social sciences? The following exam-
ple from political science may be indicative. For understandable reasons
(complexity and fluidity of the subject, plus limited ability to exper-
iment), the achievements of political science are more reminiscent of
physics before than after Newton. (If this is not so, then who is the New-
ton of political science?) Yet, “Does Comparative Politics Need a TOE?”
(Wallerstein 2001) was a lead essay in the newsletter of the Comparative
Politics section of the American Political Science Association. In that essay,
“theory” seems synonymous to “paradigm” or “conceptual framework.”
Its comparisons with relativity and quantum mechanics happily overlook
the respective stages of development. How could the thought of a TOE
emerge?

Hopes for a unified “theory of everything” emerge mainly at dawn
and high noon of a discipline. In its late morning, scientists are too
busy turning cumulative and interlocking knowledge into more limited
theories of something. The quest for a TOE began with the alchemists’
notion of philosophers’ stone. A single chunk of it could produce gold,
youth, etc. Such a quest faded as physical sciences began to produce
more modest but usable predictions. After the advent of not only New-
ton and Maxwell but also Einstein, Bohr, and Schrödinger with their
theories of something, physicists began to look for a unified theory for
all physical phenomena, semi-jokingly dubbed the “theory of every-
thing.” In contrast, biologists have little time left for a “theory of life,”
busy as they are with exciting studies of something, such as the human
genome.

193



Synthesis of Predictive and Descriptive

When their “something” does not look predictive and cumulative, some
social scientists are tempted to latch on to the label “TOE,” given that
the more fitting term, philosophers’ stone, has lost its glamor. But at this
stage, dreams of a unified theory sound like “alpolitics,” something more
analogous to alchemy than chemistry. To be more than a philosophers’
stone, a unified theory presumes a basis in firmly established partial
theories—and political science is as yet far from that stage. The interlock-
ing predictive models for party sizes and cabinet duration come closest
to a theory of something, but the single strand pattern (instead of a
crisscrossing network) is a limitation.

Throughout social sciences, the term “theory” remains ambiguous.
Sometimes, a mere directional model is presented as “theory” even
before being tested. More often, it is so qualified after directional testing.
Similarly, a “law” could mean either something conducive to quanti-
tative prediction or merely a vague tendency expressed in a felicitous
wording. Sometimes “theory” is presented as more diffuse than “law”:
It is “a very general set of propositions from which others, including
‘laws’, are derived” (Achen and Snidal 1989). It can be seen as even
weaker than “hypothesis”: “A theory is a set of interconnected assump-
tions. . . . From the theory, we derive one or more hypotheses” (Souva
2007).

A hallmark of science at the level of partial theories is cumulative-
ness. Successive paradigms build on each other rather than replacing
previous ones. Relativistic mechanics adds specifications to the New-
tonian rather than refuting it. Wave and particle approaches to light
combine in a synthesis that defies everyday common sense. The last
major notion fully dumped in physics was ether, two centuries ago. In
contrast, many social sciences offer a succession of fashions parading as
paradigms. Cumulativeness proceeds chiefly at the data collection level.
(It might correspond to the Tycho Brahe stage in astronomy.) There is
one difference, compared to the quest for philosophers’ stone: In social
sciences the paradigm is not stable but may change every quarter-century
or so.

Analogies with more developed sciences may offer a useful road map
when the location of various social sciences within the general scheme
of development of sciences is fixed realistically. Borrowing the term
“unified theory” from the physicists’ current quest and pretending that
social sciences, too, have already several proven and stable theories in
need of unification is mania grandiosa. Let us first establish reasonably
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firm quantitative laws (in a scientific sense), and with a sufficiently
interlocking set of such laws, some theories of something will eventually
emerge.

As for conceptual frameworks, they are inevitable at any stage. Any
empirical inquiry is guided (or misguided) by some such framework,
explicit or implicit. Empirical findings, in turn, affect the concep-
tual framework, but the latter may have appreciable inertia. Thus,
the Ptolemaic framework in astronomy yielded to the Keplerian with
great reluctance. This implies that major breakthroughs may come from
researchers at the fringes of accepted paradigms. From this viewpoint,
the frequent shifts in dominant frameworks, such as Wallerstein (2001)
and Grofman (2007) observe in political science, may speed up the
process. If one is out of fashion, one may only have to wait for
25 or twice 25 years to have one’s findings seriously considered. It
may also offer entry points to something more cumulative and hence
lasting.

Cycles and Sub-Cycles in Scientific Procedure: At what Stages
Do Predictive and Descriptive Approaches Enter?

In physical sciences, statistical approaches enter mainly in the applied
phase. Engineers fine-tune the workings of natural laws for specific con-
ditions. These laws are mostly nonlinear in form. Over sufficiently short
distances, however, any curve can be treated as a straight line—even a
circle! Here multi-variable linear regression makes sense, provided one
understands what one is doing. This means being aware of the broad laws
and the extent of the range over which they can or cannot be linearly
approximated. These underlying laws themselves, however, cannot be
discovered by statistical approaches alone. Trying to do so is a dead end,
be it in physical or social sciences. Discovering natural or social laws
requires thinking about how things might hang together. The sooner
social scientists reach this insight, the sooner social sciences can become
sciences with some ability to predict.

The scientific method includes creativity, which by definition cannot
be reduced to a cookbook formula or a computer program. It may mean
creation of new methods, but often it is a matter of creative choice
among existing building blocks to pick and combine. The broad approach
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Figure 14.3. Cycles and sub-cycles in scientific procedure

that underlies the thinking in this book was briefly presented earlier
(Chapter 6) as an ascending spiral:

Initial hunch (qualitative hypothesis) → limited data collection →
→ quick testing → quantitative predictive model (quantitative

hypothesis) → further data collection → testing → refined
model → testing → further refining of model or data → testing . . .

Figure 14.3 fleshes it out, without claiming that this is the only way to
see it. The scientific method may look somewhat different to different
people.

We start with qualitative observations about apparent or possible rela-
tionships among phenomena. In a relaxed way, we try to find measurable
features that express some hopefully essential aspects of these phenom-
ena. We do not expect an operational measure to express the entire
essence of notions like “literacy,” “individualism” or “power.” Humbly,
we feel lucky if our measure has hopes to express something about such
notions. It is an observation-based hunch.

Some quick and superficial data collection would follow, so as to get
a “fingertip feel” for the data (Fingerspitzengefühl, as political scientist
Harry Eckstein used to put it in our private conversations). This includes
a feel for the range of occurrence of various variables and their possible
interactions. Does y always decrease with increasing x, or is it messier than
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that? Could it first go up and then down? The more manual is this stage,
the more one may get a feel for the data. Entering data into a table by
hand might be preferable to typing them into a computer. The same goes
for graphing.

At this stage, quantitatively predictive modeling could but need not
begin. A testable hypothesis may be worded, or it could remain only a
diffuse quasi-model. It might even be a wild goose chase with no more
specific “hypothesis” than reconnoitering the terrain and hoping to gain
further serendipitous insights. As a result, the initial hypothesis may be
specified or reworded, leading to a repeat of the previous cycle. Or an
empirical regularity may surface, leading to questions “Why?” and “Over
which range is it valid?” It may lead to a philosophical clarification of the
underlying concepts.

At the same time, broader data collection might take place. It may
include further variables that might conceivably affect the outputs either
directly or by modifying the direct inputs. Linear regression and other
standard descriptive approaches could be applied at this stage of prelimi-
nary investigation, so as to sort out the most promising factors. Yet, one
has to keep in mind that a low degree of linear relationship does not
necessarily exclude a variable—it may be related strongly in a nonlinear
form which is to be found by predictive modeling. Conversely, a strong
showing by a variable that logically does not fit in suggests it might be a
proxy for some other, more meaningful factor. The model may consist of
several stages, each involving only a few variables. At this stage, statistical
analysis is not an end in itself but a way to supply thinking material for a
logical model.

Once a quantitatively predictive logical model has been devised, statis-
tical methods enter again, this time for testing the model. However, now
the testing is not done on raw input variables but on their transforms.
This is why “model testing” is preferable to “hypothesis testing,” a term
which has been devalued in social sciences to mean nothing more precise
than directional testing on raw inputs.

If linear regression is to be used in model testing, then the variables
must first be transformed in the light of the model so that linear rela-
tionships could be expected. It is not always easy. When there are no free
parameters, one can regress actual values against the predicted ones and
vice versa, expecting both y = 0 + 1.00x and x = 0 + 1.00y—which means
that symmetrical regression (Chapter 12) must be used. But when the
regression itself must be used to calculate the parameters, transformation
may become difficult.
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If testing does not confirm the model, not only the model may be
reformulated but also the data may be revised. Either way, the testing
cycle is repeated. Once testing is highly successful, a law in the scientific
sense might result. Finally, combination of many interlocking laws may
lead to a theory as a grand roof.

In sum, linear regression and other descriptive approaches have their
place in preliminary investigation at the one end and in testing logi-
cally established quantitative models at the other. In between, descrip-
tive approaches alone are disastrous when they substitute for logical
modeling.
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Recommendations for Better Regression

� Take seriously the introductory advice by most introductory texts of
statistics: graph the data and look at the graph so as to make sure linear
regression makes sense from a statistical viewpoint.

� Graph more than the data—graph the entire conceptually allowed area
and anchor points so as to make sure linear regression makes sense from
a substantive viewpoint.

� If using linear regression, report not only the regression coefficients and
the intercept but also the ranges, mean values, and medians of all input
variables.

� Symmetric regression has advantages over OLS. But fully reported and
symmetric regression is still merely regression.

� Look up further recommendations in the Conclusions.

Establishing a quantitatively predictive logical model is never automatic.
One has to understand the nature of the problem on hand. It is easy to
give such general advice, but it is not very helpful. How does one start?
What is the first practical step, for a person who knows the statistical
methods to some extent but has no idea where to go beyond that? This
chapter addresses the issue of starting from scratch, or almost so, and
making the most of statistical approaches.

Data: Graph It!

This is the advice all good introductory statistics texts offer (e.g., King
et al. 1994; Berry and Sanders 2000). Take them seriously! Once this advice
is given, these texts assume that you have followed it, and they focus on
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Table 15.1. Four data-sets that lead to the same linear fit and R 2

when linear regression is (mis)applied

X y1 y2 y3 y4

4.00 4.26 3.10 5.39 6.00
5.00 5.68 4.74 5.73 5.75
6.00 7.24 6.13 6.08 5.50
7.00 4.82 7.26 6.42 5.25
8.00 6.95 8.14 6.77 5.00
9.00 8.81 8.77 7.11 7.50

10.00 8.04 9.14 7.46 10.00
11.00 8.33 9.26 7.81 9.75
12.00 10.84 9.13 8.15 9.50
13.00 7.58 8.74 12.74 9.25
14.00 9.96 8.10 8.84 9.00

Source for y1 to y3: Anscombe (1973); y4 is my own addition.

All yn vs. x have the same properties: mean x = 9.00; mean y = 7.50, R = .82; R 2 =
.67; regression line y on x: y = 3.00 + 0.50x. Regression line x on y corresponds to
y = 0.75 + 0.75x, and symmetric regression line is y = 1.9 + 0.61x.

data for which linear analysis is justified. The introductory text may later
address the issue of fitting nonlinear data configurations, but it may do it
so briefly as to leave the mistaken impression that linear configurations
are the rule and curved configurations rare exceptions. The reverse is the
case, once forbidden areas are taken into account.

Various patterns where linear analysis would ignore reality were pre-
sented in Figures 3.1 and 3.2. The matter is so important that it is worth
offering further cautionary examples. Anscombe (1973) has published
a splendid collection of four data-sets which look identical in standard
linear regression. Three of them are shown in Table 15.1 (y1, y2, y3), along
with an addition of my own (y4). They all have the same mean and range
of the input variable, the same mean and approximately the same range
of the output variable, the same respectable linear correlation coefficient
(R = .82, R2 = .67), the same OLS regression lines y-on-x and x-on-y, the
same symmetric regression line, etc. Yet linear regression makes sense in
only one of the four data-sets, as jumps to the eye the moment these data
are graphed in Figure 15.1.

It can be seen that linear regression looks acceptable for y1 because
the data cloud is uniformly dispersed, with no visible curvature. In the
case of y2, the points fit neatly on a parabolic-looking curve, and a
corresponding transformation should be applied before statistical testing.
The transformation could be based on statistical considerations, but this is
also prime time for asking why this is so that y first rises and then falls with
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Figure 15.1. Graphing the data from Table 15.1 checks on whether linear regres-
sion makes sense
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increasing x. Data-set y3 has 10 points perfectly aligned, while one point
is a blatant outlier which clearly does not belong and should be omitted.
The statistical justification for deletion is that it deviates by more than 3
standard deviations. One should also try to figure out how it came to be
included in the first place. Maybe there is a typo.

All these three data-sets have the same x values, ranging uniformly
from 4 to 14. In contrast, Anscombe’s (1973) fourth data-set (not shown)
had 10 points with the same value of x and hence forming a vertical
line, plus a single point elsewhere. I have replaced it in Table 15.1 and
Figure 15.1 with another data-set (y4) where x ranges from 4 to 14. This
set, too, has the same mean x, mean y, regression equations, and R2 as
the rest. When graphed, a pattern emerges that is far from a rising straight
line. We observe two distinct populations where y actually decreases with
increasing x, plus an isolate. This pattern should make us wonder about
the underlying structure.

Graph More than the Data!

Graphs should include not only the data but also boundary conditions,
anchor points, and sometimes the equality lines. Only then can the data
be seen in a wider perspective conducive to model building. In particular,
when both x and y are in percentages, entire ranges from 0 to 100%
should be shown.

This was effectively the case in Figure 12.1, which also illustrates
two general features. First, linear regression oblivious of conceptual con-
straints can lead to viewing as deviant some data points that eminently
do fit. Second, drawing in the equality line may offer a handy comparison
level, even when there is no reason to expect equality of y and x. Some
simple patterns that may make sense were discussed in Chapter 8.

Figure 15.2 (reproduced from Taagepera 2007c: 71) illustrates the need
to graph more than the data. It shows the “proportionality profiles” for
elections in two countries: advantage ratio (% seats/% votes) graphed
versus the percentage of votes. As far as the data are concerned, the range
beyond 60% could be omitted—and often mistakenly is. When graphing
only the US data, the range below 30% would also seem superfluous, and
the range of advantage ratio could be restricted to 0.7 to 1.2. Indeed,
many computer programs impose the ranges 30 to 60 and 0.7 to 1.2.
The empirical “best fit” OLS line would be calculated, along with R2 and
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Figure 15.2. Proportionality profiles for elections in New Zealand and the United
States: data and conceptual range (from Taagepera 2007c: 71)

some measure of significance. This line would extrapolate to a very high
advantage ratio near 100% votes and a negative advantage ratio (implying
negative number of seats) near 0% votes. However, much food for thought
emerges the moment the entire allowed range is included in the graph—0
to 100% votes and 0 to much above 1 for the advantage ratio, as shown
in Figure 15.2.

Once the full conceptual range is included in the graph, we are moti-
vated to ask what the advantage ratio would be for zero votes. It would
be expected to lead to zero seats. This may look like an indeterminate
zero/zero, but consider the percentage of votes tending toward zero. At
sufficiently few votes, any electoral system would allocate zero seats, so
that the advantage ratio becomes zero. This is a lower anchor point.

We would also be motivated to ask what the advantage ratio would be
for 100% votes. Such a party would be expected to win 100% of seats—
but no more! This means an advantage ratio of only 1.00. This is an upper
anchor point. It is then easy to establish that a > 100%/v is a conceptually
forbidden area, as indicated in Figure 15.2.

In sum, the linear OLS fit becomes untenable. The curve must bend
up toward the point (0; 0) at low values. It also must bend down toward
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(100; 1) at high values of votes. One could draw in such a curve, free-
hand, and one would not be far off from the curve shown, which is based
on a logical model (see Taagepera 2007c: 201–11).

Consider Graphing by Hand

Figure 12.1 further illustrates some problematic features that canned
graphing programs may present. When graphing on a computer, one may
find that the program used imposes an autoformat mood that refuses to
extend the scale beyond the range of actual data, or extends it excessively,
and also refuses to enter the equality line.

The scales shown on the two axes in Figure 12.1 run from less than 0
to more than 10, although the ratings involved can go only from 0 to
10. Hence the borders shown are wider than the conceptual limits. In the
given case the entire conceptually allowed space is filled with data points,
however sparsely, so that the conceptual limits stand out visually despite
not being shown. With fewer data points, however, visual impression
can be quite misleading, by suggesting that extreme cases do not occur
when they actually do. This is the case, for instance, with several graphs
in Arend Lijphart’s excellent Patterns of Democracy (1999: 193, 214, 229,
and 241). The author tells me that his original graphs were restricted to
the conceptual limits, but they were altered during the publishing process
so as to look nicer by some nonscientific criteria. Thus, even those of us
who know better have to struggle against the dictates of computerized
graphing.

The autoformat of graphing programs usually can be overridden, but
some overrides need fair computer skills. Small wonder then that students
sometimes offer technical restrictions as something one has to yield to
and accept. This is not so. Computers are supposed to help us do science,
not hamper us. If a canned program restricts research, look for a more
flexible one. If none can be found at the moment, do the graphs by hand.
As an alternative, one may copy the computer graph in a sufficiently
reduced form so that one can add by hand the conceptual limits (and
the equality line, if it makes sense).

There are some broad advantages in doing graphs by hand, on paper
with a square grid. My experience is that students who graph by hand
understand graphs better and notice more detailed implications, com-
pared to those who let the machine do the job. This understanding
becomes crucial when graphing on logarithmic scales is required, as is
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the case whenever relationships have the form y = axb or y = aekx. All too
many social science students cannot take in the information contained in
printed graphs of such format unless they have graphed data themselves
on old-fashioned “fully log” or “semi-log” graph papers.

When the data involve more than one input variable, simple two-
dimensional graphing can use only one input at a time. A second input
variable can be introduced by color-coding data points as Low, Medium,
or High for that variable. Approximate best fit curves for these sub-
groups can yield some ideas on how this second input affects the output.
Constraints imposed by the second input can be shown in a similar
way.

One may run an exploratory multivariable linear regression (preferably
the symmetric version) so as to get some rough idea of which variables
matter the most. Then the output can be graphed against some of the
inputs, to check that there is no curvature or some other odd feature akin
to those in Figure 14.1. There are statistically more elegant ways to do it,
but the power of eyeballing should not be undervalued. This is so even
when one truly understands the statistical methods one uses, including
their limitations—and even more so when this is not the case. The grav-
itation test in Chapter 2 serves as a warning: There is no guarantee that
multifactor linear regression can pin down the underlying processes, but
it is one way to proceed in exploratory research.

Turning the Pattern Linear

Once the pattern of data plus conceptual anchor points and boundary
conditions has been established, one should look for an explanation in
terms of a quantitatively predictive logical model. One may or may not
succeed at the moment. Either way, the data should be transformed into
a format where linear regression or some other standard statistical proce-
dure (e.g., logit or probit) makes sense. If a logical model is proposed and
it involves no free parameters, one could graph the actual values against
the expected ones and run symmetric linear regression. If no model can
be proposed, some empirical transformation may be found, such as the
ones in Chapter 8, which transforms the data cloud and the anchor points
into something not outrageously far from linear shape.

Many statistical approaches go beyond linear regression, but I will focus
on the latter, because a fair share of quantitative publications in social
sciences uses something based on or closely related to OLS version of
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linear regression. Thus any issues raised in this context have wider impli-
cations. Preferably, OLS should be replaced by symmetric linear regression
(Chapter 12), but either way, regression results should be reported in such
a way that other researchers can make the most of them. This is not so
self-evident.

How to Publish Regression Results

Why do we publish regression coefficients? What is the purpose of getting
into print tables that sometimes fill an appreciable chunk of the total
space in an article? We presumably want to let other scholars know about
our research and enable them to make use of it (hopefully leading to
entries to our benefit in their citation index). The eventual overall outcome
of such joint effort should be some cumulative knowledge useful to
society and/or decision-makers. If so, then how come that a statistician
recently told me that many social science papers look qualitative, with
statistical analysis added as an afterthought or decoration?

A colleague once told me that the purpose of publishing statistical stuff
is to satisfy grant-giving outfits, even while “everyone knows that it is
meaningless.” Most of us do not play such a cynical game, but many
may respectfully follow a mysterious tradition. Publishing regression coef-
ficients is just what we are supposed to do, so as to fit the commonly
accepted norm. Trouble is that the game earns us little respect outside the
profession, if it produces no useful results. We can do better than that.

When we publish regression coefficients, then why do we do it? There
might be goals less demanding than quantitative prediction (precise or
imprecise) or at least postdiction. This issue is discussed in the Appendix
to Chapter 15. What is certain is that publishing of regression coefficients
becomes mandatory if we want to give our colleagues (and ourselves)
some predictive/postdictive capability beyond the direction of impact.
“When a, b, . . . are the given numerical values of variables A, B, . . . our
best guess for the numerical value of y would be y = b0 + bAa + bBb + . . . ,

where b0 is the intercept, and the other bi are the regression coefficients
for A, B, . . . .” This is predictive in an explanatory way, if there is a logical
model, and at least postdictive (cf. Chapter 1), if no logical model can be
found. Moreover, regression coefficients can sometimes supply a starting
point toward a quantitatively predictive logical model (see Chapter 16).

Enabling predictions is a major intellectually supportable reason for
spending printed space on numerical values of regression coefficients. If
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Table 15.2. A typical table of regression results

Independent variables NV NS

Effective threshold (T ) −0.03∗∗ −0.05∗∗

Log assembly size (logS) 0.12 0.12
Intercept 4.07 3.66
R 2 .11 .30
Adjusted R 2 .08 .28

∗Statistically significant at the 5% level.
∗∗Statistically significant at the 1% level.

we publish them, we might as well do so in the most fruitful way. It will be
seen that even a little upgrade of present practices would go a long way.
The advice has been around at least since Gary King’s Unifying Political
Methodology: The Likelihood Theory of Statistical Inference (1989).

The example in Table 15.2 is excerpted from a case (Lijphart 1994: 108)
that already is among the better ones, as it does include all the regression
coefficients, intercept included. Standardized coefficients, t-values and
some output variables have been omitted here, and the labels for variables
have been modified. Only two input variables have been kept: effective
threshold of representation (T), and the logarithm of assembly size (logS).
The output variables are the effective numbers of parties (as defined in
Chapter 4), based respectively on votes (for NV) and on seats (for NS). The
database can be inferred from other tables in Lijphart (1994), and this
comes in handy in the course of the following discussion.

This table means that the average outputs for given inputs can be cal-
culated from NV = 4.07 + 0.12 log S − 0.03T and NS = 3.66 + 0.12 log S −
0.05T, respectively. For a given electoral system, one could look up the
actual values of T and S, and calculate the best estimates for N from these
equations. But Table 15.2 indicates that S is not statistically significant.
Then why should we have to look up its specific values when we want
to calculate NV and NS? The values of S are random and could as well be
replaced by the mean value of S for the cases used in regression (King 1989:
105)—if we knew this mean value. The problem is that Table 15.2 does not
report the mean values of the input variables. Despite King’s (1989) advice
to include them, this has not been part of general practice—and this is
precisely my point. The way regression coefficients are customarily published,
one cannot use them for prediction, short of looking up lots of input data which
the author has found to be nonsignificant.

The present example was chosen because in this case the data in other
tables in Lijphart (1994) enables me to estimate the geometric mean of
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S. It is around 148 seats. (The median is 158.) With substitution log S =
log 148 = 2.17, the previous equations become NV = 4.07 + 0.12 × 2.17 −
0.03T = 4.33 − 0.03T and NS = 3.66 + 0.12 × 2.17 − 0.05T = 3.92 − 0.05T.
If one graphs N versus T, these are the best fit equations.

It is extremely important to note that one can no longer use the inter-
cept values listed in Table 15.2, once one omits variable S. This would be
akin to assuming 0.12 log S = 0 for the average assembly, which is the case
when the assembly has only one seat—an obvious underestimate. When
one omits nonsignificant variables, the new intercept must include the
average effect of the omitted variables. All linear (and similar) regression
results worth publishing should report not only the regression coefficients
and the intercept but also the mean values of all input variables.

Why require also the mean values of significant factors? There are
four reasons. The first is uniformity of reporting. Second, when there
are several statistically significant factors, we may wish to focus on only
one, using the mean values of the others. This is what we would do, in
particular, when graphing the output against one of the inputs, so as to
detect possible nonlinear relationships (King 1989: 105). Third, reporting
the y-on-x regression equation plus R2 enables one to calculate the x-on-y
and symmetric regression lines (Chapter 12), provided that the means are
also given.

The fourth reason is that all too often there are many ways to assign a
measure to a conceptual variable (cf. Chapter 13). Social science authors
are not very good at specifying which measure they are using, especially
when they personally are used to one of them, to the exclusion of all
others. Thus, an author may describe a variable as party system “frac-
tionalization” while actually reporting the effective number of parties (N)
rather than the Rae-Taylor fractionalization index (F ). Since F varies from
0 to 1 while N varies from 1 upwards, reporting the mean value helps to
clarify which measure was used in the given regression equation.

But even more should be reported. In response to a draft of this section,
Steve Coleman suggests that the domain (range) of all input variables
should be reported. This is indeed desirable, as it would tell us over
what range the model can reasonably be used to estimate outputs. In the
present case, S ranges from 60 to 630 (logS ranging from 1.8 to 2.8) and
T (in percent) from 0.1 to 35.

A zero value may be well outside these domains, as is the case here for
logS. If so, then minor changes in data may cause large fluctuations in
the value of the intercept. As a result, the intercept may look statistically
“not significant” even at the 5% level. This is the case in Table 15.2. I have
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Table 15.3. A typical table of regression results, with suggested complements

Independent variables Domain
(Range)

Mean Median Coefficients for

NV NS

Effective threshold (T ) 0.1 to 35 11.6 7.0 −0.03∗∗ −0.05∗∗

Log assembly size (logS) 1.8 to 2.8 2.2 2.2 0.12 0.12
Intercept 4.07 3.66
R 2 0.11 0.30
Adjusted R 2 0.08 0.28

∗Statistically significant at the 5% level.
∗∗Statistically significant at the 1% level.

encountered arguments that such a “nonsignificant” intercept should be
omitted from estimates of outputs, but this would mean assigning a zero
value to the intercept, which often makes no sense at all. Intercepts 4.07
and 3.66 in Table 15.2 might conceivably be off by ±0.1 or even ±1,
but assuming them to be 0 would lead to practically all estimates of the
number of parties to be negative. We must avoid absurdities.

In addition to arithmetic mean, the median should be reported, because
a disagreement between mean and median serves as a simple warning
light to show that the actual relationship is not linear. In the case of Table
15.2, data in Lijphart (1994) confirm that mean and median of logS are
both 2.2, but for T the mean (11.6) strongly exceeds the median (7.0). The
corresponding curvature appears when graphing N versus T (not shown
here). It suggests that linear regression should be applied to logT rather
than T. This idea is reinforced when one notes that effective threshold
cannot be negative.

Table 15.3 expands the previous table to include the suggested comple-
ments. In sum, we can easily improve on the customary format of report-
ing, so as to make the published results much more useful for estimates
of outputs, for graphing the average patterns, for calculating reverse and
symmetric regression lines, and for resulting comparison with analysis of
other data-sets. It also helps in devising logical models, something not
followed up in this example. The general recommendation is as follows.

All linear (and similar) regression results worth publishing should report
not only the regression coefficients and the intercept but also the ranges,
mean values, and medians of all input variables.

Steve Coleman raises one further point that goes back to Fisher (1956:
42): “Personally I find it annoying when people only report what is
significant at certain p levels, usually p < .05, which is a not very helpful
convention and more of a historical accident of statistics. I prefer the
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actual p value so I can make up my own mind” (Steven Coleman, personal
communication, June 2007). It might take little extra room to add this
information too.

Conclusion: Ten Recommendations for Running
and Reporting Linear Regression

Statistical analysis and regression in particular can be done better than it
often has been done in social sciences, by following a few simple recom-
mendations. For those based on arguments presented in other chapters,
these chapters are briefly indicated.

1. Use regression only for exploratory research and for testing quantitatively
predictive logical models. These are the early and the late phases in
research process. Do not even think of using regression for model
construction itself (cf. Chapter 14).

2. Graph possibly meaningful relationships, so as to avoid running linear
regression on inappropriate data configurations. First, this means taking
seriously the introductory advice by most statistics texts: graph the
data and look at the graph so as to make sure linear regression
makes sense from a statistical viewpoint. Second, graph more than
the data—graph the entire conceptually allowed area and anchor
points so as to make sure linear regression makes sense from a
substantive viewpoint.

3. Replace the practice of profusion of variables by the principle of parsi-
mony. Having more than two or three input variables in a regression
disregards Occam’s razor (cf. Chapters 3 and 5). Use sequential
equations rather a single melting pot. Avoid dummy variables.

4. When regression makes sense at all, replace unidirectional by symmetric
regression (cf. Chapter 12).

5. Distinguish between statistical significance and substantive meaningful-
ness (cf. Chapter 6).

6. Avoid “asterisk syndrome”—report actual significance levels rather
than p < .01 and p < .05.

7. Report not only regression coefficients and the intercept but also the
ranges, means, and medians for all input variables.

8. Report only one of the many regressions you might run, the one you
deem the most meaningful (cf. Chapter 5 and 7).
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9. Run separate regressions for low, median, and high thirds of those
“control variables” you really deem meaningful, not just statistically
“significant.” This is a loophole for item 8, an afterthought that
may be debatable.

10. Do not use these recommendations blindly. Think. There can be excep-
tions. Know what you do and do what you know.

It should not be concluded that following this advice would make indis-
criminate application of statistics acceptable. When linear regression
amounts to unjustified data crunching, it remains so even when the
results are fully reported, symmetric regression is used, etc.

Appendix to Chapter 15

How NOT to Publish Regression Results

One rarely encounters articles that show only the correlation coefficient R2, omit-
ting the regression coefficients. Rather frequently, however, intercept is omitted.
I will first address the information value (or lack thereof) of such presentations,
followed by more general discussion.

I Have a Well-Fitting Relationship but Will Not Tell You What It Is
In his study of volatility (as reported in Chapter 4), Heath (2005) observes that
earlier studies (Pedersen 1983; Bartolini and Mair 1990) also obtain a positive
relationship with the number of parties but his has a higher R2. He could not
compare his best-fit equation to previous ones, because these earlier studies only
reported correlation coefficients, without giving the substantive equation relative
to which the R2 is calculated. Now imagine Galileo reporting the R2 for speeds of
falling bodies, while omitting the equation to which it relates! If this had been the
practice in physics, we would not have computers in the first place, with which
even those averse to mathematics can calculate the R2.

It may be argued that one might want to see if a set of variables “explains”
an outcome better than another set, by comparing their R2, without aiming
at prediction. But what does an “explanation” stand for, if devoid of ability to
predict? In the case above, if all authors obtained roughly the same intercept
and slope in V = a + bN, we would have a solid empirical regularity even if all
of them found low values of R2. The numerical values of a and b would still look
reproducible. On the other hand, if they all got high R2 but for wildly different
regression lines, then we would have nothing, unless we could introduce some
other factor to explain the discrepancy. In such a case, high values of R2 would
actually enhance the confusion (cf. Chapter 4, section “Can data with low R2

confirm a model?”).
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Correlation coefficients are pointless in the absence of equations. It should be realized
that even the worst-quality data fit equation is worth more than an excellent value
of R2, reported devoid of the substantive equation to which it applies. If a physicist
reported R2 alone, he would meet blank stares: You say you have good quality
results, but what are the results? The practice of reporting R2 without the equation
to which it refers has fortunately become rare. The cult of R2 carried to that point
would pull any journal down to the level of pseudo-scientific formalism.

What Can One Predict Without Intercept?
The argument can be made that some types of predictions can be made without
the intercept. In many applied situations one is concerned with the change in
output variable (y) when an input variable (x) is changed marginally (by an
amount ƒx). For any given starting position (x0; y0), if we know the regression
slope b, we supposedly can infer that at x1 = x0 + ƒx we would have y1 = y0 + bƒx.
No knowledge of intercept seems needed. To what extent does it hold?

Consider a regression line with positive slope, as shown in Figure 15.3. The
regression slope is the property of the data-set as a whole. As such, it is likely to
apply to typical points, those at or close to the regression line, such as point A in
Figure 15.3. Starting from A, a marginal increase in x is likely to move us to a point
A1, on the regression line.

But what about an outlier, such as point B? How sure can we be that a movement
parallel to the regression line would take place, to point B1, as application of slope
b would lead to? The location of B could result from a random disturbance off the
general pattern, which represents a sort of equilibrium. If so, then an increase in x
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Figure 15.3. Will outliers follow the regression slope?
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may exert no pressure at all on B to move further upwards, and the outcome might
be point B2. In the absence of any further information, our best guess would be
that the actual slope would be somewhat less than b. Conversely, an outlier in the
opposite direction, such as C, might move parallel to the regression line, to point
C1, but it might also move with a steeper slope than b, to a point such as C2, if its
outlier position was due to a random disturbance off the general pattern.

In sum, the more the starting point is off the regression line, the more the slope
of a marginal change is likely to deviate from regression slope b. The likely direc-
tion of deviation, downwards or upwards, is such as to have the point approach the
regression line. We are safe to use b only when the starting point is reasonably close
to the regression line. (I will not go into the mathematics of what is “reasonable.”)
How do we know that the point we start from is not a marked outlier? We have to
compare it to the regression line—which means we have to know intercept a.

Estimating the change in y for a marginal change in x on the basis of regression
slope alone is based on the tacit assumption that the starting point is close to the
regression line. Even in the absence of intercept, we can of course try to do our best.
When not knowing whether our starting point deviates upwards or downwards
from the regression line, our best guess is indeed that it is on this line. But why
omit reporting the intercept, when this information is readily available and would
enable the users of one’s results to avoid the risk of predicting on the basis of an
outlier?

Why do We Publish Regression Coefficients?
When we publish regression coefficients, then why do we do it? If the purpose
is merely to report which factors have a “significant” effect on the output and in
which direction, then it can be done in briefer form. No reporting of regression
coefficients is needed for rejecting the null hypothesis or confirming a directional
hypothesis—except for proving that one has actually carried out the statistical
analysis. Beyond such reasons of transparency of analysis, one may just report
which factors have a statistically “significant” positive effect, and in which direc-
tion. Printing regression coefficients would be superfluous for these purposes.
These coefficients are needed only when one wants to make predictions.

This claim of mine has raised many hackles. Goals are asserted to exist that do
not involve quantitative prediction but still need presentation of numerical values
of coefficients. One may highlight a specific relation in a way that falls short of a
strong quantitative interpretation, yet could not easily be summarized with only
significance and direction. The objective may be to describe the general shape of
causal relationships, rather than precise point estimates, so I am told.

All right, I can backtrack a little. There might be goals that fall between direction-
ality and quantitative prediction. I might even think of examples in physics where
such goals served a purpose—but only a temporary purpose while looking for pre-
dictability. It would be surprising if a large part of social sciences remained in that
stage of development without need or possibility to proceed toward prediction.
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Even purely empirical regressions equation could be predictive at least in a
limited sense. If one plugged into it values of input variables for a case not included
in the original regression, then the predictions could be compared to the actual
values of the output variable—and deviations could occur. Calculation of predicted
output values for new cases is the simplest to visualize and to carry out when the
regression equation y = a +

∑
bi xi is written out, with the actual numerical values

of coefficients inserted. Then it is easy to plug in the values of input variables
for a new case. (The procedure is most direct for OLS, while requiring a standard
conversion of variables in the case of logit and probit.) But this is not the usual
format in social sciences. Most authors present coefficients bi in a table, not within
an equation.

Now suppose one asked the author of such an article: “OK, when for a given
country we have x1 = 30, x2 = 0.7 and x3 = 273, what is your best guess for the
value of y for this country, on the basis of your table?” One may have doubts
about some social scientists’ ability to answer such a question, because in quite a
few cases the constant (a) is omitted from their table (cf. Chapter 7), so that no
answer is possible.

When such omissions can occur in published social science work, it strongly
suggests that neither authors nor reviewers have prediction in mind. If an article
includes several different “empirical models” for the same output variable, each
would produce a somewhat different answer. Take your pick. Offering many com-
peting answers amounts to offering none. For physics students, plugging values
into a given formula is the lowest type of exercise, devoid of much thinking. But
to what extent have social science practices reached even that stage?
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Converting from Descriptive Analysis
to Predictive Models

� The results of existing statistical analysis can sometimes be used to
estimate the parameters in quantitatively predictive logical models.
This is important, because it expands the value of previously published
work in social sciences.

� Inferring logical model parameters in this way may require more
involved mathematics than direct testing.

Suppose one already has analyzed the problem extensively from the
statistical angle. When one wants to proceed to logical model building,
how much can one extract from published statistical data analysis rather
than start from scratch? Echoing Freedman (1987), Hedström (2004) feels
that “estimating parameters of models that do not mirror substantive
causal processes can only rarely be expected to yield valuable insights
into causal process.” Directly, this looks so, indeed. Indirectly, something
might be scavenged. This applies foremost to quantities with a natural
zero, implying a ratio scale. Conversion is more difficult for opinion
polls and ratings, where the zero is set arbitrarily. The importance of this
difference will emerge in Chapter 17.

The following example from recent literature shows that sometimes
descriptive analysis already does include the ingredients for a predictive
model. Here constants of the predictive model can be inferred from the
regression coefficients, and the outcome casts new light on the meaning
of these regression coefficients. The example also shows that a predictive
model of a multiplicative format can sometimes be constructed even
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when this seems precluded at first glance by lack of a natural zero for
some variables.

Votes for the Incumbent

The study of presidentialism and accountability by Samuels (2004) is a
good example of competent linear regression analysis. It posits the follow-
ing baseline model for gain or loss of votes for the incumbent president’s
party:

s = V1 − V0 = a + b1V0 + b2 E + b3[I ].

Here s is “vote swing” for the incumbent’s party, defined as the difference
between percent votes shares in initial and later elections (V0 and V1,
respectively). Impact of economy, E , is operationalized as percent change
in GDP/capita, and I is a dummy variable: I = 0 when the incumbent pres-
ident’s party presents a new candidate, while I = 1 when the incumbent
runs for reelection.

A total of 13 different regressions result when Samuels (2004) distin-
guishes between concurrent and nonconcurrent executive and legisla-
tive elections, introduces further input variables, and adds multiplicative
interaction terms. Out of these 13 equations, 8 have I = 1. The values
of R2 range from .12 to .39. Each regression involves 2 to 4 input vari-
ables and 1.33 to 1.67 constants/coefficients per input variable. It adds
up to a total listing of 64 numerical values of freely adjustable con-
stants/coefficients. Their numerical values cover a wide range. Depending
on the inputs, a ranges from 3.0 to 18.2, b1 from −0.18 to −0.56, b2 from
−0.5 to +1.3, and b3 from 4.9 to 9.6.

Are these profligate and widely disparate values another instance of
numbers dead on arrival in printed journal (Chapter 7)? It will be seen
that quite a lot can be converted into something more stable. The “crazy
methodology” can lead to something that makes sense.

Constructing a Predictive Model

How could we build a predictive model for the loss of votes? Since s and
E can take positive or negative values, a multiplicative format (as high-
lighted in Chapter 5) may seem precluded. A shift in variables, however,
makes it possible. Samuels (2004) observes that
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1. the incumbent president’s party tends to lose votes even when econ-
omy remains stable (i.e., when E = 0);

2. running the incumbent president improves the party’s chances; and

3. an expanding economy improves the chances of the incumbent’s
party. Let us try to express these observations quantitatively, as sim-
ply as possible.

Consider first the simplified situation where economy is stable and there
is no reelection of incumbent president. The subsequent vote share can be
expected to depend on the initial vote share: V1 = f (V0). The simplest way
to specify this function is to assume that subsequent vote is proportional
to the initial vote: V1 = V0/p, where the penalty constant (p) must be larger
than 1.

If the party runs the incumbent, this outcome is multiplied by a reelec-
tion bonus (r ), which must be larger than 1. Then V1 = V0(r/p). Here r/p
represents the total penalty-bonus constant in the case of reelection at
constant economy.

Addition-oriented social scientists may point out that it is even simpler
to subtract a penalty p′ and add a reelection bonus r′, leading to V1 = V0

− p′ + r′. The difficulty is that it could lead to a negative V1 at sufficiently
low V0. Extremely low initial votes for a presidential party certainly are
rare, although presidents at times do emerge from quite small parties
when two-round elections are used. More important, logically grounded
models must not predict absurdities even at unrealistically extreme values.
The same observation supports a multiplicative approach as we next
address the impact of economy.

The impact of economy can be entered by comparing GDP/capita (g)
before and after, that is, multiplying the previous outcome by g1/g0. This
ratio exceeds 1 for an expanding economy and falls short of 1 for a
shrinking one. Its impact on votes need not be proportional, so it should
be entered with an exponent, n, which must be positive. The overall
multiplicative model then is

V1 = V0(g1/g0)n(r/p).

Taking logarithms reduces this model to a linear format suitable for linear
regression, so as to determine the numerical values of the constants:

ln V1 = ln V0 + n ln(g1/g0) + ln r − ln p.

Note that, despite my skepticism regarding dummy variables (Chapter 5),
lnreffectively amounts to the coefficient of a dummy variable.
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Guessing at the Values of Constants in the Model

This model has three adjustable constants (n, r , and p), compared to four
in Samuels’s baseline linear regression equation (2004). Moreover, here
the constants have specific meanings and none are quite freely adjustable.
Indeed, the penalty constant in the case of a new presidential candidate
(p) cannot be less than 1—otherwise it would become a bonus. We would
also be surprised, if more than one-half of the votes were lost (p > 2),
although this is by no means a firm conceptual boundary (cf. Chapter 4).
We could express it as

1 < p <∼ 2.

If forced to offer a specific value, I might offer the geometric mean:
p ≈ 1.4. The reelection bonus (r ), when an incumbent president runs
again, must also be more than 1, if it is to be a bonus, but it would surprise
us, if reelection of the incumbent added 50% to the votes for the party.
Hence

1 < r <∼ 1.5.

If forced to offer a specific value, I might offer r ≈ 1.2, so that r/p ≈
0.86. But a further concern enters. The limits above would suggest
that the vague limits on r/p are ∼ 1/2 < r/p <∼ 1.5. Yet we may feel
surprised if running the incumbent president fully abolishes the gen-
eral incumbency penalty, hence we may feel that the upper limit on
r/p is 1. If so, then ∼1/2 < r/p < 1 would lower my average guess to
r/p ≈ 0.70.

The exponent n expresses whether a given change (g1/g0) in economy
affects the change in votes (V1/V0) more than proportionately or less. It
certainly must be positive—otherwise the incumbent party would get a
bonus for poor economy. In the other direction, it would be surprising if
economy entered with a very high exponent, so we might surmise that

0 < n <∼ 2.

In the absence of any knowledge about the direction of deviation from
proportional effect, the average guess would be n = 1.

The attentive reader may have noticed another restriction. When
the highest non-surprising values of r and n and the lowest non-
surprising value of p are introduced in the model, V1 could surpass 1
(100%) even for a fairly modest value of V0. Building avoidance of this
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possibility into the model would complicate it, so I will neglect it in
first approximation. Once the empirical values of the constants are deter-
mined, however, we must check that they do not lead to V1 > 1 even for
V0 = 1.

In sum, the multiplicative model predicts not only a functional rela-
tionship but also the limits on acceptable values of the constants. While
some of these limits are flexible, deviations far beyond the expectations
would motivate a reexamination of the model. In contrast to the freely
adjustable coefficients and intercept in regression equations, the present
model has not a single completely freely adjustable constant—which
makes the model eminently falsifiable.

One further prediction enters. Samuels’s study (2004) includes both
presidential and legislative elections. The presidential elections should be
more sensitive than the legislative ones to the performance of the incum-
bent president. Hence one would expect the values of all constants to be
equal or higher in executive elections. This merely directional prediction
can also be tested.

Inferring Predictive Model Constants
from Regression Coefficients

The best-fitting values of constants in the previous model should be
calculated directly from data such as used by Samuels (2004), using linear
regression of logarithms, as shown above. However, it can be shown (see
the Appendix to Chapter 16), that in the present case the additive format

s = V1 − V0 = a + b1V0 + b2 E + b3[I ]

used by Samuels (2004) can be connected to the predictive model when
some simplifying assumptions are made. Then the numerical values of
regression coefficients reported by Samuels can be used to estimate the
constants in the predictive model, as shown in Table 16.1.

The exponent n for impact of economy is quite erratic in executive
elections and exceeds the expected range. All other constants have values
well within the expected acceptable ranges. They are more conservative
(i.e., closer to 1) than my guestimates based on the geometric means of
non-surprising ranges.

The observed ranges of numerical values for incumbent penalty (p)
and reelection bonus (r ) and their combined effect (r/p) are remarkably
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Table 16.1. Approximate values of constants in predictive model for vote loss by incumbent’s party, calculated
from regression coefficients in Samuels (2004)

Approximate incumbency
penalty (p)

Approximate re-election
bonus (r )

Approximate
ratio r/p

Approximate GNP/
capita exponent (n)

Acceptable range 1 to ∼2 1 to ∼1.5 ∼0.5 to 1 0 to ∼2
Geometric mean 1.4 1.2 0.70 to 0.86 1 (arithmetic)

All regressions in Samuels (2004)
Range 1.07 to 1.25 1.10 to 1.21 0.92 to 1.01 –1.04 to +2.56
Median, executive 1.22 1.19 0.96 2.32
Median, legislative 1.16 1.11 0.93 1.38
Median, overall 1.19 1.17 0.95 1.6
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limited, in contrast to the disparate regression coefficient values reported
in Samuels (2004). How can widely dispersed values of regression con-
stants lead to less dispersed values of constants in the predictive model?
The Appendix to Chapter 16 shows how it happens that conversion
to regression constants magnifies small variations in constants of the
predictive model.

As expected, executive elections do have values of constants that exceed
those for legislative elections, but these small differences can be due to
random error. If so, then the overall median values of the constants may
have broader validity. For instance, they might fit the loss of votes by the
incumbent prime minister’s party in parliamentary regimes—something
that remains to be tested. The generalized model would then be approxi-
mately

V1 = V0(g1/g0)1.6[1.17]/(1.19),

where “[1.17]” applies only in case of reelection of the incumbent.
What does this expression tell us? When economy remains stable and

the incumbent does not run again, her or his party tends to bag only
1/1.19 = 86% of its previous votes. When the incumbent does run, her
or his party tends to lose only 2 to 5% (see below). When GDP/capita
changes by a certain ratio, it affects votes with a higher ratio. The coef-
ficients in regression equation such as Samuels’s (2004) Baseline Model,
s = 12.906 − 0.477V0 + 1.172E + 8.680[I ], do not offer such direct inter-
pretation (except arguably for E ).

The vagueness “2 to 5%” above has the following reason. The ratio
of median r and median p in Table 16.1 is 1.17/1.19 = 0.98, while the
median of r/p derived from individual regressions is 0.95. The model fails
at very high V0 and economic growth, leading to V1 larger than 100%. It
is possible to guard against such possibility, but it would make the model
somewhat more complex.

The numerical values in Table 16.1 are approximations based on sim-
plifying assumptions applied to the regression coefficient values reported
in Samuels (2004). The actual best-fitting values of constants would
have to be calculated directly from linear regression of logarithms, ln
V1 = lnV0 + nln (g1/g0) + lnr − lnp. This is of course the proper course to
follow, if one designed the project from scratch. The present exercise
shows that something may be salvageable even later on, with some loss of
precision.
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Would such a fit of logarithms yield higher R2 than those based
on regression of s = V1 − V0 = a + b1V0 + b2 E + b3[I ] as used by Samuels
(2004)? It should, if the predictive model applies and the linear format
is only an approximation for it. The difference may not be appreciable,
however. The payoff is not in precision of fit to particular data-sets.
It is in developing average constant values that (a) have a substantive
interpretation and (b) might apply to many data-sets, yet yielding an R2

not much inferior to that of the best fit for a particular set.

Conclusions

The results of existing statistical analysis can sometimes be used to esti-
mate the parameters in quantitatively predictive logical models, once
these are constructed. This should keep at bay the specter that an
expanded methodological scope could mean junking much of what has
been done up to now, making published work and entire careers obsolete.
This would be an unfounded concern.

An unusually simple example was presented earlier, in Chapter 4. The
one presented here is more realistic, in terms of complexity. Setting up
the predictive model was fairly straightforward, and so would be testing
it with linear regression of logarithms of variables. Inferring its con-
stants or parameters from those of published linear regression required
more involved mathematics—but it could be done. This is important,
because it expands the value of previously published work in social
sciences.

The reader may see a contradiction with Chapter 14. Here descriptive
results could be reinterpreted in terms of a predictive model, however
indirectly. The difference is that the predictive model used here happens
to involve no sequential stages. All variables considered act directly on the
output. In contrast, district magnitude acts on cabinet duration through
the intermediary of number of parties.

So let us qualify the previous assertion. Descriptive approaches can be
conducive to detection of social laws, if these laws introduce all variables
simultaneously. In contrast, descriptive approaches are not conducive
to detection of social laws, if these laws introduce variables sequen-
tially, while the descriptive approach feeds them in simultaneously. One
would not know whether this is the case unless one builds a logical
model.
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Appendix to Chapter 16

Connection Between the Regression Coefficients in Samuels (2004)
and the Constants in the Predictive Model

How does the model V1 = V0(g1/g0)n(r/p) fit in with the linear regression equation
s = V1 − V0 = a + b1V0 + b2 E + b3[I ]? The logarithmic form of the model can be
transposed to

ln(V1/V0) = n ln(g1/g0) + ln r − ln p.

Recall the well known mathematical approximation ln(1 + x) ≈ x when −1 <<

x << 1. When the vote swing s = (V1 − V0) is small, then ln(V1/V0) = ln(1 + s/V0) ≈
s/V0. Also, when the percent change (E ) in GDP/capita is small, ln(g1/g0) = ln[1 +
(g1 − g0)/g0] = ln(1 + E/100) ≈ E/100. The result is

s/V0 = ln r + nE/100 − ln p,

and hence

s = V0 ln r + V0nE/100 − V0 ln p.

Compare this expression with the linear regression equation by Samuels (2004):

s = a + b1V0 + b2 E + b3[I ].

They would be identical, if b2 E = V0nE/100; b3[I ] = V0 ln r ; and a + b1V0 = −V0 lnp.
Assume that the first two components are relatively minor, so that we can approx-
imate the actual value of V0 in those components by its median value, which is
around 50% for an average presidential party. Then

n = 2b2

and

r = exp(b3/50).

Assume further that the relatively small intercept a0 is due to random error and
replace (a + b1V0) by the line with zero intercept that yields the same fit at V0 =
50%. This leads to

p = exp(−b1 − a/50).

Plugging in the regression coefficients values from Samuels (2004) yields the values
shown in Table 16.1.
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How can widely dispersed values of regression constants in the linear fit corre-
spond to less dispersed values of constants in the predictive model? The correspon-
dences above are not linear. This is why small variations in the constants of the
predictive model can be magnified in conversion to regression constants. As for
the regression intercept a, it is extremely unstable because most data are around
V0 = 50% and even a slight random tilt alters the intercept appreciably.
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Are Electoral Studies a Rosetta Stone
for Parts of Social Sciences?

� Fully developed scientific disciplines tend to be explained in terms of
other sciences, which hence may be considered more fundamental.

� The degree of quantitative formalism has tended to increase over time
in all sciences, with physics and biology ahead of social sciences, and
history behind.

� Whether social sciences can eventually achieve the predictive precision
of natural sciences is a moot question. What matters is whether some
aspects of social sciences can be made more predictive and, in this sense,
more like natural sciences.

� Electoral studies look akin to natural sciences in having many variables
with a natural zero (ratio variables). This makes them amenable to
certain types of logical model building, setting them apart from other
social sciences.

� Still, plenty of ratio variables occur in other social sciences too, and
here electoral studies may offer valuable methodological tips.

� From temperature to political involvement, looser scales sometimes
have a way to turn into ratio scales, if we dare to play with them.

Rosetta stone, unearthed in 1799, made deciphering of Egyptian hiero-
glyphic script possible, because it featured the same text in hieroglyphic,
simplified demotic, and Greek scripts. It did not solve all the problems
of Egyptology, but it represented a major breakthrough, sort of a key to
hieroglyphs. Could some aspects of predictive methodology developed in
electoral systems offer vaguely analogous openings for some other parts
of social sciences?
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How come I see precisely my own subfield as having special qualities
worthy of emulation? It may look self-aggrandizing. The sequence in
time, however, was the reverse. I was motivated to switch from physics
to institution-oriented electoral studies, rather than some other aspects of
social sciences, because it offered a wealth of ratio variables on which one
could build. Elsewhere, I could develop a number of individual models—
for the number of polities, trade/GNP ratio, etc. (cf. Chapter 11)—but they
remained isolated. Only in electoral and party studies did an interlocking
network begin to take shape.

Trouble is, this in itself makes electoral studies an atypical subfield. The
more it looks like physics, the less it may look like typical social science.
To address such issues, we have to start with a much broader framework.

Interconnections of Scientific Disciplines

Full-fledged sciences are connected in a logical order. While they may
initially develop in isolation, they eventually begin to be explained in
terms of some other sciences, which hence may be considered more fun-
damental. Mathematics may do without physics, but physics cannot do
without mathematics. Chemistry and physics separated two centuries ago,
but nowadays application of quantum physics makes it possible to calcu-
late the probability of getting chemical reactions and select their products
for interesting properties, without having to produce and test all these
products in the laboratory. Molecular biology, in turn, is increasingly
grounded in chemistry, and the likely biological properties of potential
pharmaceutical products can be calculated. Thus a third approach—in
calculo—is added to the traditional in vivo and in vitro.

The chain extends toward social sciences. Neurobiology offers deeper
understanding of cognitive processes. A fully developed cognitive sci-
ence (psychology) may eventually supply a more solid foundation to
anthropology, sociology, economics, political science, and even history.
In which order these disciplines may explain each other remains to be
seen.

Figure 17.1 shows these direct connections. Each successive discipline
is shown with a larger script and a wider box, to reflect increasing com-
plexity. The box sizes also roughly coincide with the current number of
publications, which expands as we go from mathematics to chemistry,
with biology rapidly catching up. This expansion may extend to cognitive
and social sciences, shown as dashed boxes because they are still far
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MATHEMATICS

PHYSICS

CHEMISTRY

BIOLOGY

COGNITIVE SCIENCES

SOCIAL SCIENCES

Figure 17.1. Direct interconnections of scientific disciplines

from maturation. Figure 17.1 might be redrawn as a cactus with roots
in mathematics and each successive segment larger than the previous
one.

Remote inputs, not shown in Figure 17.1, complement the direct
connections. Every discipline uses mathematics, sometimes in a form
different from its antecedent discipline. Biophysics complements chem-
istry’s input into biology. Physics and chemistry might enter cognitive
processes in a way that bypasses biology as such. Such remote influences
extend to social sciences in the form of analogies, common dimen-
sionalities, and specific methods. The notions of velocity and accelera-
tion were developed in physics, with x in dx/dt and d2x/dt2 meaning
length, but they can be applied with other meanings of x. The effects
of size are especially prone to inspiration from physics, even when
the size considered is not physical. Thus the observed decrease of the
trade/GNP ratio with increasing country size could be predicted quan-
titatively by a model of absorption of commodities by customers. This
is in analogy with absorption of physical particles in a nuclear reactor
(Chapter 11).
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Not to be excluded are influences in the other direction. Infinite
matrices were first used by quantum physicists, who needed them, despite
their mathematically questionable nature. This successful application
induced mathematicians to regularize the status of infinite matrices.
Understanding cancerogenous mechanisms has also led to new challenges
in mathematics. Such feedback may arise among any disciplines. It may
be hard to imagine how biology might affect physics or cognitive sciences
chemistry, but it is too early to discount such possibilities completely.

Evolution of Quantitative Formalism

Each discipline has tended to proceed from description and directional
prediction toward more quantitative approaches and predictive ability.
A coarse index of quantitative formalism illustrates such a shift toward
quantitative approaches (Taagepera and Shugart 1989: 240–1). The first
step is to determine the percentages of articles in major journals that
include at least one data-based table, data-based graph, or any type of
mathematical equation. The index of quantitative formalism is the mean
of these three percentages.

Physics and chemistry (which were not clearly distinguished) started
with an index value of less than 10% in 1800 and surpassed 70% in 1980.
Biology, psychology, and economics all took off from about 20% in 1900,
but then they diverged. While biology surpassed 60% in 1980, psychology
leveled off around 45%, and economics only slowly reached that level. In
political science, the index remained around 10% as late as in 1960, but
then it rose sharply before leveling off at 40%. Since 1920, history has
moved slowly from 5% to 20%. (See graphs in Taagepera and Shugart
1989: 240–1.)

Historically, tables came first, equations followed, and graphs came last,
partly due to technical difficulties in printing. It may come as a surprise
that, as late as the early 1800s, such formats were still little used in physics
and chemistry. Each new discipline entering the quantitative phase of its
development has tended to adopt quantitative formalism faster than the
preceding disciplines, but exceptions and even reversals occur.

The three components enter the index of quantitative formalism to
different degrees. In political science around 1980, for instance, the
index was propelled upwards by the use of tables (65% incidence) and
held down by equations (35%) and graphs (under 30%). This difference
reflected an emphasis on reporting results of data analysis in the form
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of tables of correlation coefficients rather than full regression equations,
not to mention predictive models. The use of graphs remained rare,
compared to natural and cognitive sciences. The use of equations was
less frequent in political science than in physical sciences and eco-
nomics but actually more frequent than in some biology and psychology
journals.

The type of equations used differs. In physics, they often express the-
oretical models to be tested against data, and economics approaches this
pattern. In sociology and political science statistical expressions predom-
inate. Here the dearth of model-based equations contributes to low inci-
dence of graphs, given that graphs are often used to compare theoretical
predictions and data.

A minimal use of quantitative formalism does not indicate, of course,
its extent and sophistication. Sometimes, an advance in quantitative-
ness can actually lower the formal index. Thus, the equation for the
effective number of parties used to be presented whenever this number
was invoked. It is now considered so standard that the formula is often
not spelled out—which would contribute to a decrease in the incidence
of “equations.” Nonetheless, the index of quantitative formalism offers
some idea of when the various disciplines started to pay attention to
quantitative approaches and what the comparative levels have been. In
this light, Figure 17.1 may reflect adequately the sequence of scientific
development or maturity of various disciplines.

Can Social Sciences Achieve the Degree of Predictive Ability
of Natural Sciences, and Does It Matter?

While conceivably expanding as outlined at the bottom of Figure 17.1, it
remains to be seen whether social sciences can eventually match natural
sciences in predictive theory. It may seem that physics laws are “true
for all times,” while economics and other social sciences depend on a
socioeconomic context that keeps changing. If so, then each historical or
contemporary episode should be “interpreted as the application of general
principles to unique contexts” (Arrow 1985). To which Colomer (2007)
replies: “Actually, physics laws do not predict the future in an uncondi-
tional sense. They merely say that if certain conditions are fulfilled, then
certain outcomes can be expected.”

Physicists themselves are the first to wonder why anything like “laws
of nature” exists and why we are able to discover them (Schrödinger
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1932). Eugene Wigner (1960) anchors this phenomenon in the property
of invariance, applied in two senses. First, laws such as those initiated
by Galileo and leading to the universal law of gravitation are valid
everywhere. Second, these laws include only a small number of factors,
regardless of many other factors that also could have an effect.

Wigner (1960) argues that physics would be impossible if the relevant
factors were not small in number. In his view, the scientist’s skillfulness
and inventiveness expresses itself largely in ferreting out which factors
are essential to the process and which are marginal. Gravity does not
ignore feathers rising in the air, but Wigner admires Galileo’s ingenious
ability to focus first on relatively heavy bodies. Such exclusion may look
self-evident only in retrospect. Physical world in Galileo’s time looked
as multifactorial as social world may look to us. Even in the absence
of multivariable regression, he could have spent his time expressing the
“richness” of the world in erudite classifications, but he opted for Occam’s
razor instead.

Physicists are cautious about the range of application of their laws. In
cosmology, the permanence of even the most basic laws of physics is not
taken for granted. Time and space frames are narrower in biology, and
still more so in social sciences, but this may be a question of degree rather
than kind.

The influence of the observer on the observed is arguably stronger in
social than in natural phenomena. It enters deepest in quantum physics.
How does this compare with people using their knowledge of law of grav-
ity to circumvent its impact and start flying “like birds”? Our awareness of
laws of biology has enabled us to develop antibiotics, to which microor-
ganisms respond with tactics of their own, changing the biosphere in
ways that cannot always be anticipated. When people become aware of
laws that govern social interactions, they may find ways to circumvent
them. The fading of the “cube law” of Anglo-Saxon elections in UK may
be one example (Taagepera 2007c: 214). In this respect, the difference
between social and natural sciences is fuzzy.

Asserting that social sciences can eventually achieve the predictive
precision of natural sciences represents an act of faith—as does the oppo-
site assertion. We need not present the issue in such an either/or way.
What matters is whether some aspects of social sciences can be made
more predictive than they are now and, in this sense, more like natural
sciences. It is the direction of development that matters, not the eventual
parity or non-parity of outcomes. As far as electoral and party studies
are concerned, considerable advances have been made during the last
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20 years, as partly reviewed in Chapter 10. The usual rules of thumb for
extrapolation suggest further advances during the next 10 years.

Are electoral studies typical of social sciences, or are they bound to
remain a marked exception? They are both. I will start with “electoral
exceptionalism” and then reconnect the electoral studies to broader social
sciences.

How Electoral Studies Look More Akin to Natural Sciences

Within social sciences, descriptive “empirical models” (statistical data fits)
have predominated over predictive “formal models” to a larger degree
than is the case in more developed disciplines. Even when formal models
do occur they can take different forms. Thus, in political science they
come mostly as rational choice models on the one hand and as institu-
tional models in electoral and party systems on the other. The two rarely
meet.

Rational choice depends on preference orderings, where the strength of
preferences is hard to measure ahead of the time. I will not try to disentan-
gle what is postdiction and prediction in that field. In contrast, electoral
studies deal with quantities more recognizably similar to those in natural
sciences. This makes it possible to develop vaguely similar methodological
approaches, but it also may put electoral studies somewhat apart from the
rest of social sciences.

Natural sciences largely deal with variables with defined intervals. This
means that the differences a − b can be uniquely defined. Most often these
variables also have defined ratios, which means that the ratio a/b can be
defined. Such ratio variables imply the existence of a natural zero. Time,
length, and voltage have no natural zero points, but time, length, and
voltage intervals do. In social sciences, utility and psychophysical theories
also use ratios of differences of the form (z − r )/(x − r ).

Electoral systems largely deal with counting variables—votes and
seats—which do have natural zeroes. They even have a natural unit: one
vote or one seat. This is something few physical variables have, until
one proceeds to count elementary particles. The number of parties has
a natural zero, but interval presents problems, because parties differ in
size and other properties of interest, in contrast to electrons and seats.
The effective number of parties has defined intervals and zero point,
but its inability to take values between zero and one leads to special
difficulties.
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Some differences between variables used in natural sciences and
institution-oriented electoral studies are considerable. They pale,
however, when compared to the differences that enter when one consid-
ers the types of variables used in opinion measurements, power relations,
and preference rankings common in sociology as well as the rest of polit-
ical science. People could be asked to indicate their ideological location
or their country’s degree of corruption on a scale ranging from 0 to 7 or
from −10 to +10. Both scales are arbitrary. There is no natural zero. The
interval is also doubtful, because people may distinguish between fine
details of ideology in the center while they may lump different degrees
of extremism together—or vice versa. Who is to tell which intervals are
properly equal? (Actually, there may be ways, but this is a subtler issue
to be considered in the next section.) Social sciences methodology has
developed largely with such softer scales in mind.

Thus, as far as the nature of data is concerned, the dividing line between
natural and social sciences may seem to put electoral studies on the side
of natural sciences. This means that various model-building approaches
reminiscent of natural sciences are possible in electoral studies—those
based on logical constraints, in particular. These methods have been
slower to develop in electoral studies than they could have been, because
by habit, political scientists have applied methodology devised for soft
scales, without noticing further opportunities offered by firmer scales.

This book—and Chapter 8 in particular—has presented some of the
predictive methods that apply in electoral studies, thanks to the existence
of ratio variables. Pointing out the nature of variables helps to explain
why such predictive models came about in electoral studies rather than
somewhere else in social sciences. But it also builds an apparent barrier
to the spread of such methods elsewhere. This is the gist of a panel dis-
cussion in European Political Science, where Taagepera (2007a, b), Coleman
(2007), and Colomer (2007) take a rather optimistic view, while Grofman
(2007) stresses the marked difference in the nature of variables. What may
work in institution-oriented electoral studies arguably could not spread
beyond.

How Temperature Became a Ratio Variable

Actually, ratio scales do occur in social sciences rather frequently, even
outside electoral studies. In opinion studies, people are often asked yes/no
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questions, and the percentage of affirmative answers is reported. Here
we have a scale with a well-defined zero and the maximum, analogous
to percentages of votes or seats, and the same broad model-building
approaches apply. We even have a well-defined midpoint between zero
and the maximum. Electoral data may not be utterly different from other
social data.

Moreover, scales sometimes have a way to turn themselves firmer.
Take temperature. The various scales used by Fahrenheit, Reaumur, and
Celsius bear witness to the absence of an obvious zero in early studies.
Measurement of temperature started with determination of the extent
to which fluids like alcohol or mercury expand when heated. There was
no fixed zero, and even the interval was doubtful. Ice-cold water shrinks
rather than expand when heated, up to 4◦C. Hence, one could not be
certain about uniformity of expansion in other liquids. It took tenacity
and optimism to work with such an ill-defined quantity as temperature.
Gradually, the existence of an interval scale was confirmed.

But this was not the end of it. When temperature (t) relative to an arbi-
trary zero was compared to the product of gas pressure (P ) and volume (V)
in a closed system, a linear relationship was observed: PV = Rt + a, where
R and a are constants. It could also be expressed as PV = R(t + b), where b
is another constant, with dimensions of temperature (for dimensionality,
see the Appendix to Chapter 13). Empirically, b was found to be +273◦C.
It pointed to −273◦C as the temperature at which PV = 0, so that either
pressure or volume would become zero. This conceptual limit defined
the absolute zero below which temperature could not fall. Measuring
temperature based on this zero point turned it into a ratio variable (T),
so that the ideal gas law was simplified to PV = RT. Later interpretation
of temperature as measure of vibration of molecules gave it a deeper
meaning, far beyond the understanding of Celsius and Fahrenheit.

Note that the initial formulation followed a linear form reminiscent
of linear regression approach, but with a crucial difference: Pressure and
volume were not entered in an additive way. When pressure was observed
to increase with increasing temperature but decrease when volume is
allowed to increase, it was not automatically formulated as P = a + bt − cV
or P + cV = a + bt. This would have led to a dead end. More thought was
given to how the variables connected. Once PV = Rt + a was established,
the partly additive format could be changed into purely multiplicative
by shifting the arbitrary zero in temperature to a more meaningful
location.
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How Electoral Studies Could Still Be a Rosetta Stone
for Some Parts of Social Sciences

Some soft scales used in social sciences could eventually turn firmer,
vaguely analogous with the evolution of temperature. Is affirming it a
mere declaration of faith, or do we have examples? Here recent work by
Lorenzo De Sio (2006a, b, 2008) may be path-breaking.

Campaign gimmicks and personal appeal of candidates may sometimes
induce a socialist to vote for a rightist candidate, and vice versa. De Sio
posits and tests the hypothesis that less involved voters are easier to
nudge into voting contrary to their ideology. Political science has devel-
oped “spatial models of voting” which express various dimensions of an
“interest space.” In contrast, De Sio considers a two-dimensional “polit-
ical space” where the ideological left–right dimension is complemented
by a dimension of political involvement (both using an arbitrary scale
converted to 0 to 1). It matters that he tests not a merely directional but a
quantitative prediction. The result is a set of parameters that characterize
various electorates in Italian regions (De Sio 2006a, 2008) and the United
States (De Sio 2006b). These parameters can be used for comparisons with
further electorates.

De Sio proceeds as if he dealt with quantities that have a natural zero
and a maximum. Such quantities can always be converted to the interval
0 to 1. He applies the simplest family of curves that join 3 anchor points,
complementing them with a bias factor (cf. Chapter 8). Regarding sub-
stantive research, this is an excellent example of predictive modeling that
applies conceptual constraints. But the methodical implications reach
much further.

The point is that the quantities De Sio (2006a, 2008) uses are actually
measured on eminently soft scales. The ideological self-positioning on the
left–right dimension was originally done on the standard 10-position L–R
ruler. A true zero could correspond to a perfectly extreme leftist stand
beyond which one cannot go. This is different from the lowest category
into which one can place oneself. As for political involvement, a compos-
ite index was constructed, based on political knowledge and self-declared
interest. The possible answers for frequency of political discussion were
“never, a few times a year, a few times a month, a few times a week, every
day”—and similarly for the other components. It is hard to claim that
such intervals are equal on any scale.

Treating such scales as if they were not only interval scales but also
ratio scales represents an act of faith comparable to that of physicists
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who began to measure temperature. It may be condemned by purists of
measurement theory as unwarranted—and rightly so, from their view-
point. But venturing into messy terrain is part of advancing science. If
the type of work done by De Sio should show a consistent deviation from
predictions, it might or might not suggest a rescaling of the Left–Right
scale or a revision of the compound scale for political involvement. Either
way, the validity of the resulting scale would be reinforced.

There may not be right or wrong ways to measure something, but some
ways are more conducive to predictions about relations among variables—
which makes them more useful (Chapter 13). De Sio’s work suggests that
some predictive modeling approaches that apply in principle only to ratio
variables can, with a mix of caution and optimism, be applied to variables
measured on softer scales. If so, then the predictive approaches developed
for electoral systems could indeed be a Rosetta Stone for some other parts
of social sciences.

Conclusions

Institution-oriented electoral and party studies are unusual in social sci-
ences by dealing with a large number of ratio variables. This is why an
interlocking network of logical models has begun to form there rather
than elsewhere. On the other hand, these studies are part of social inquiry
and face the common problems of non-laboratory sciences, plus a social
scene that keeps changing. This is why they may offer more insights,
compared to natural sciences, of what approaches could be transferable
to social sciences. There remains, however, the issue of dimensionality
(see the Appendix to Chapter 13). It tends to set apart the basic build-
ing blocks in physics and in most of social sciences, electoral studies
included.
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Beyond Regression: The Need
for Predictive Models

� Society needs more from social sciences than they have delivered. More
can be done, and this book offers openings.

� To the society at large, quantitative social scientists presently seem
no better at prediction than qualitative historians, philosophers, and
journalists—they just look more boring.

� Computers could be a boon to social sciences, but they have turned out
a curse in disguise, by enabling people with insufficient understanding
of scientific process to misuse canned computer programs to grind out
reams of numbers parading as “results,” to be printed—and hardly ever
used again.

� One may discard this book on the basis of errors of detail, but the
problems it points out will still be there. Unless corrected, they will
lead social sciences to a Ptolemaic dead end.

The ruling emperor of social sciences has no clothes. His quantitative garb
is largely make-believe. The Foreword by Duncan Luce calls it “a form of
mass deception.”

Our qualitative understanding of social phenomena has expanded
beyond recognition, during the last 100 years. It has produced durable
results. Yet, social sciences have not become as scientific as this basis
would allow them to be, because they have overemphasized descriptive
statistical analysis to the detriment of conceptual model building. They
must rethink their understanding of the scientific process and what con-
stitutes “results.” At the moment, all too many social science publications
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end where Galileo began, satisfied with proving a directional model and
not proceeding to quantitative models.

Science combines the empirical “What is?” with the conceptual “How
should it be on logical grounds?” Describing the world is not enough. It
also must be explained. Quantitatively predictive logical models are at the
core of science, and a discipline that ignores this core is not science. A
better balance of methods is possible and will make social sciences more
relevant to society.

The scientific process does not consist of a single chain going from a
simplistic “hypothesis” to purely statistical testing. It involves interplay
between models and data, a rising spiral where both data and models
may be modified. These evolving models must be substantive or broadly
logical. They should be quantitative, not merely directional. Statistical
data fits should not masquerade as “empirical models.” This misleading
term should be forgotten.

In natural sciences, quantitative prediction is a major criterion of
meaningful results. The very meaning of “results” has been corrupted in
social sciences, as quantitative prediction is discounted in favor of merely
directional prediction. To be usable for sociopolitical decision-making or
as basis for further research, results should offer specific averages and
ranges of error. King et al. (2000) offer two contrasting examples (cf.
Chapter 5). Expressions like “the coefficient on education was statistically
significant at the 0.05 level” most often hide the absence of usable results.
As an alternative that makes sense, they offer “Other things being equal,
an additional year of education would increase your annual income by
$1,500 on the average, plus or minus about $500.”

This is good description that makes some sense to decision-makers and
to the public at large, in contrast to the jargon in the earlier expression.
But it still involves no explanation of how education brings about such
an outcome, and why it does so to the given degree and not much less
or much more. As far as theorizing is concerned, it still is what Aage
Sørensen called the “gas station” approach (cf. Chapter 10). Without
conceptual models, we cannot know how the advantages of education
would translate to other countries or remain valid in the country where
the empirical data were collected. We should not restrict ourselves to

mindless hypothesis testing in lieu of doing good research: measuring effects, con-
structive substantive theories of some depth, and developing probability models
and statistical procedures suited to these theories. (Luce 1988)
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We must distinguish between the roles of scientist and statistician in the
course of research (cf. Chapter 1):

The proper division [of labor] should be one in which sociological theory suggests
a mathematical model of a social process and statistics provides the tools to
estimate the model, not, as is common today, that statistics provides models that
sociologists use as ad hoc models of social processes. (Hedström 2004)

Otherwise we are reduced to a “crazy methodology” (Kittel 2006) of
statistical games which clumsily tries to mimic natural sciences and ends
in a caricature of science (cf. Chapter 7).

Computers could have been a boon to social sciences, but they have
turned out a curse in disguise, by enabling people with insufficient under-
standing of scientific process to misuse canned computers programs. They
ditch Occam’s razor in favor of “garbage can regression” and grind out
reams of numbers parading as “results,” to be printed—and never used
again.

Social sciences depend heavily on methods unable to detect not only
the law of gravitation (Chapter 2) but also the determinants of mean
cabinet duration (Chapter 14). Can we continue to depend on methods
unable to detect such regularities? Of course we can. Bad money can
drive out the good, but at a price. Why should sociopolitical decision-
makers and the public at large pay any attention to such games? Society
still values predictive ability. Presently, it gives quantitative social scien-
tists even less credence than to qualitative historians, philosophers, and
journalists. Compared to the latter, much of present quantitative work in
social science seems no better at prediction—it is just more boring.

Unease about the trends of recent decades in social sciences has been
voiced by many thoughtful people, as illustrated by the quotes above.
Whenever such concerns go beyond observing the limits and dead ends
of the presently prevailing practices, they point toward more emphasis on
theorizing, in contrast to statistical analysis. The specific expressions may
differ. I add my voice, trying to offer some specifics that do no exclude
various others.

There are ways to widen our methodological scope, both for tack-
ling new problems and for reworking previous findings. Whenever the
nature of variables suggests it, logarithms of all input and output vari-
ables should be taken before linear regression is run (Chapter 8)—and it
should be symmetric regression (Chapter 12). This approach corresponds
to testing the multiplication–division format so frequent in natural sci-
ences (Chapter 5). But this would still be mechanical. It is essential that
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more effort be directed to constructing detailed logical quantitative mod-
els, with their types indicated by the nature of the problem on hand
(Chapters 3, 4, and 8–11).

Our logical models must go beyond predicting the direction of effect—
they must specify its quantitative extent (Chapter 6). Quantitatively
predictive logical models need not involve more complex mathematics,
compared to regression analysis. But they do require active thinking about
how things connect. The major intellectual challenge is in daring to
make outrageously simple assumptions, out of which systematic logical
conclusions can be drawn in a quantitative way (Chapter 8).

Expanding quantitatively predictive logical modeling by no means
implies dumping the descriptive approaches. One can build on their
achievements and go beyond them (Chapters 15 and 16). Mixed strategies
are often the most efficient. However, “mixed” does not mean gazpacho
but judicious sequential insertion of various factors. Regression and other
statistical approaches enter mainly in preliminary investigation and in
final testing (Chapter 14). In between, quantitatively predictive logical
models must take over.

One reason why some methods of natural sciences find it hard to diffuse
to social sciences is dearth of people with training in both. Compared to
physics students, graduate students in social sciences tend to have less
facility in basic algebra, of the type often needed for building simple
logical models. Maybe it is time to introduce some undergraduate level
interdisciplinary programs, where students get a good two year’s worth of
physics training, are at the same time introduced to social sciences, and—
this is essential—are encouraged to apply their physics skills to social phe-
nomena. I have described (Chapter 3) how some engineering freshmen
were taken aback when introduced to the ludicrously naïve-looking model
for ideal gas law. Two years later, such approaches would look natural
to them. Some aspects of basic methodology are not explicitly taught
to students of natural sciences, nor could they. Rather, they are instilled
indirectly. It is harder to do it with social science graduate students who
already are set in their statistics-oriented ways.

This book goes beyond a critique of the existing dominant approach.
Most of it deals with constructive complements that have yielded specific
predictions in some aspects of social sciences and could do so in some
others. While this approach is not new, it certainly has been neglected.

As this book covers extensive ground, it can most likely be charged with
a number of acts of omission and commission. Its mathematical terminol-
ogy may not always be orthodox—this is the wording of an experimental
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physicist who switched to social science. Further examples of well-tested
quantitative models exist in social sciences, mainly in economics and
psychology—many empirical ones and some with a logical foundation.
I have not tried to cover the entire terrain. I would be delighted if further
sequentially connected models could be pointed out, to offer company to
the seat product-cabinet duration sequence (Chapter 10).

It may be claimed that I have exaggerated the overdependence on sta-
tistical analysis in social sciences and the predominance of simple linear
regression. One may also detect errors of detail and clumsy expressions
that may be interpreted as erroneous. On such basis, one may discard this
book, if one so chooses. But the problems it points out will still be there.
Society needs more from social sciences than they have delivered. More
can be done, at the present stage of factual knowledge. The alternative is
a Ptolemaic dead end.
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