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Introduction

For more than a century, the properties of gaseous flows have been systematically
analysed, both for the basic knowledge itself and for practical applications. This
endeavour can be viewed from two aspects: firstly, the analysis of the elementary
or microscopic phenomena of gaseous media, belonging to ‘atomic and molec-
ular physics’; and secondly, the study of macroscopic processes, incorporating
‘fluid mechanics’. These fields have developed separately, with connections made
with only the ‘kinetic theory of gases’. As for applications, impressive strides have
been made, especially in the domain of aeronautics and astronautics.

These applications are indeed at the origin of the increased interest in high-
enthalpy gas flows, related to supersonic and hypersonic flight as well as to laser
and plasma flows. In these flows, the important energies involved give rise to high
temperatures and then to chemical processes such as the vibrational excitation of
molecules, dissociation, ionization, and various reactions. As a consequence, the
connection between microscopic and macroscopic aspects, mentioned above,
has been considerably reinforced.

Analysis of the coupling and interaction between chemical phenomena and
aerodynamic processes is the subject of this book. This subject has previously
been dealt with in several relatively old general textbooks1 and also more exten-
sively in several others.2 The present book is not intended to replace the previous
ones, nor to present an exhaustive study of this field, but to analyse the essential
features of non-equilibrium phenomena which generally result from the inter-
action between processes often possessing characteristic times of the same order
of magnitude. Thus, the properties of gaseous flows at high velocity and/or at
high temperature cannot be described using local ‘state’ quantities, and depend
on their ‘history’, thus constituting typical non-equilibrium media.

The book is divided into two parts. Part I includes the statistical descrip-
tion of a gaseous reactive medium, starting (Chapter 1) with the elementary
interactions between the particles of the medium, and the evolution equations,
either at a semi-microscopic level (Boltzmann equation) or at the macroscopic
level (fluid mechanics equations). Particular solutions of these equations are

1 For a general and detailed understanding of subjects and methods exposed in the first part, the
reader may refer to Refs. 1–8, and for the second part, Refs. 80–84 and 99–100.

2 An insight into the themes of the first part may be found in the “Proceedings of the Rarefied Gas
Dynamics Symposiums, RGD”, organized and published every two years since 1958. In the same way,
the topics treated in the second part are detailed in the “Proceedings of the International Symposiums
of Shock Waves, ISSW”, also biennial since 1967.
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developed in Chapter 2, especially those corresponding to an ‘equilibrium state’
(Maxwell–Boltzmann distribution, for example) and also‘non-equilibrium solu-
tions’ essentially related to the excitation of the vibrational levels of the molecules
or chemical reaction processes. These solutions are called ‘zero-order solutions’
and correspond to ‘closed’ gaseous media, i.e. they are ‘dominated’ by the inter-
molecular collisions or by only a few of them. Then, in Chapters 3 and 4,
first-order solutions are developed, and the resulting transport properties are
determined for pure gases as well as for mixtures, taking into account exter-
nal influences; these solutions correspond to a linearized non-equilibrium of
zero-order solutions. Chapter 5 is also devoted to properties of the first-order
solutions (transport and relaxation) in media considered in non-equilibrium
at zero order, taking into account also the possible interaction between chem-
ical processes, such as vibration–dissociation coupling. Finally, in Chapter 6,
a general method of modelling the reactive gas flows is proposed (generalized
Chapman–Enskog method), whatever the degree and type of non-equilibrium
may be.

In Part II, also composed of six chapters, the macroscopic properties of the
reactive flows are analysed, mainly by way of typical examples. In Chapter 7,
the general equations governing the reactive flows are thus presented, as well
as the main dimensionless characteristic numbers and various typical flows.
Some of these flows, such as shock waves, unsteady flows, and boundary layers,
are thoroughly examined in Chapter 8. Chapters 9 and 10 are entirely devoted
to inviscid and dissipative reactive flows, exemplified by flows behind strong
shock waves, expansion flows in supersonic nozzles, and hypersonic flows along
bodies. The non-equilibrium character of these flows is emphasized and its
influence on aerodynamic and physical parameters is examined, as well as the
exchanges with adjacent media. Chapter 11 is reserved for the description and
operation of experimental facilities generating non-equilibrium flows, shock
tubes, and shock tunnels and for the corresponding measurement techniques.
Finally, in Chapter 12, the experimental results concerning the relaxation times,
vibrational populations, reaction rates, and so on are interpreted and compared
to results given by various models. Concrete examples of non-equilibrium flows
in simulated planetary atmospheres are also presented.

No detailed quantitative result is given in the book insofar as many data can
be found in the numerous references cited in the text. There is also no exhaustive
development of various processes such as ionization and plasma flows requiring
significant developments. In the same way, topics that are omitted include the
physics of the gas–wall interaction as well as the interaction between the radiation
and the flow. Use is made of the results of the quantum analysis of molecular and
atomic processes without derivation. Moreover, no detailed numerical analysis
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of the equations is described, and must be found in the references. From a
general point of view, and as mentioned above, this book is essentially devoted
to a general analysis of non-equilibrium phenomena and processes, illustrated
by examples and supported by the Appendices, which develop and highlight
particular points in detail.

A portion of this book is an outgrowth of several graduate and undergrad-
uate courses and is directed towards students possessing a basic knowledge of
thermodynamics, statistical physics, and fluid mechanics. Other more special-
ized topics constitute the result of studies led by the author and his coworkers in
the analysis, modelling, and experimental simulation of non-equilibrium flows,
often in the framework of particular applications to space science. Thus, this
book may also be of interest for scientists and engineers engaged in research or
industry related to these applications and, of course, for people wishing to gain
knowledge in the domain of reactive flows.

The author is grateful to his coworkers, essentially students, who, while prepar-
ing their theses, have contributed to the progress and/or the investigation of
numerous topics presented herein. All cannot be mentioned here, but their
contribution can be appreciated in the extensive citations to their work in the
bibliographic references. The author is particularly grateful to J.G. Meolans for
his direct contribution to various theoretical subjects exposed here, to D. Zeitoun
for the numerical processing of various problems,and also to L.Z. Dumitrescu for
his participation in many experiments. Thanks are also owed to N. Belouaggadia
for her contribution to the editing of Chapters 5 and 6.

The suggestions and corrections brought to the initial text by G. Duffa and
J.C. Lengrand have been quite pertinent, and these contributors have to be
thanked for the significant improvements brought to this text; furthermore,
without the (friendly) insistence of G. Duffa, this book would probably never
have been written. Many thanks are also due to G. de Terlikowska for having read
the complete manuscript and bringing substantial improvements to it.

Finally, the author expresses his deep gratitude to B. Shizgal for reading the
English adaptation of the French edition and for his many helpful comments.
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General Notations

Only the more commonly used symbols are defined here. A few symbols listed
below may have more than one or two meanings; other very specific symbols are
defined in the text where they are used.

Scalar symbols are in italic, vectorial symbols in bold italic , and tensorial ones
in BOLD BLOCK CAPITAL.

a ideal speed of sound

ak,l
i,j , a

i,j
k,l collision rates for transitions i, j → k, l , and k, l → i, j

cp , cq mass concentration of component p, of component q
C total effective cross section, specific heat per molecule
CT , CR , CV translation, rotation, vibration specific heats
CTR CT + CR
CTRV CT + CR + CV
D binary diffusion coefficient
e average energy per mass
E average energy per molecule
ET , ER , EV average translation, rotation, vibration energies
f distribution function
Fi incident energy flux (normal to a wall)
gi statistic weight of level i
h Planck constant (6.63 × 10−34 J · s), enthalpy per mass unit
i, j , k, l internal energy levels
ir , iv , . . . rotation, vibration energy levels
I average quantum number
I unit tensor
J rotation quantum number
jp , jq mass flux of component p, component q
k Boltzmann constant (1.38 × 10−23 J · K−1), reaction-rate constant
kD , kR dissociation, recombination-rate constants
KC equilibrium constant
mp mq mass of particle p, particle q
m, mr average mass of a particle, reduced mass of two particles
M molar mass, Mach number
n particle density
N unit vector normal to a surface S
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Ni incident particle flux (normal to a wall)
p static pressure
pr relaxation pressure
p, q component p, component q
P Prandtl number
P stress tensor
q heat flux
QR , QV rotation, vibration partition functions
r generalized spatial coordinate
r , θ semi-polar coordinates
R gas constant (R/M )
R universal gas constant (8.32 J · K−1)
S surface area, cross section
t time
T temperature
TT , TR , TV translation, rotation, vibration temperatures
TTR , TTRV translation–rotation, translation–rotation–vibration

temperatures
Up diffusion velocity of species p
V macroscopic velocity
ẇp mass production rate of species p
x , y , z Cartesian coordinates
Xp molar concentration of component p
X quantity X in equilibrium, mean value of quantity X
α accommodation coefficient
γ intermode exchange coefficient, wall recombination coefficient,

specific-heat ratio
ε ‘small parameter’ (ε � 1)
η bulk viscosity coefficient
θR , θV , θD rotation, vibration, dissociation characteristic temperatures
λ mean free path, conductivity coefficient
λT , λR , λV translation, rotation, vibration conductivity coefficients
λTR λT + λR
λTRV λT + λR + λV
µ viscosity coefficient
ν characteristic frequency
ρ mass density
τ characteristic time, relaxation time
τ shear stress
ξp , ξq concentration of component p, (np/n), of component q, (nq/n)
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Subscripts and Superscripts

C chemical reaction
D dissociation
e electronic, equilibrium conditions
el elastic collisions
f forward reaction, frozen conditions
g gas (at a wall)
i, ir , iv , . . . internal, rotational, vibrational level
in inelastic collisions
p, q component p, component q
r ,R backward reaction, rotation
R recombination
T translation
v ,V vibration
TR, TV translation–rotation, translation–vibration exchanges
VV, Vr vibration–vibration, resonant exchanges
w wall
wr adiabatic wall
∗ dimensionless quantity

Abbreviations

BGK Bathnagar–Gross–Krook
CE Chapman–Enskog
DSMC direct simulation Monte Carlo
GCE generalized Chapman–Enskog
LT Landau–Teller
MBE Maxwell–Boltzmann–Euler
MS mixed solution
NS Navier–Stokes
SNE strong non-equilibrium
SSH Schwarz–Slavsky–Herzfeld
STS state-to-state
T, TR, TRV translation, translation–rotation, translation–rotation–vibration
TV, VV, Vr translation–vibration, vibration–vibration, resonant
WCU Wang–Chang–Uhlenbeck
WNE weak non-equilibrium
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Notations to Part I

a, b, d , f , g , l , x expansion terms of the corresponding coefficients
A,B,D, F ,G, L,X of the perturbation of the distribution
function

b impact parameter (binary collision)
d molecule diameter (hard sphere model)
EVD , EVR vibration energy loss due to dissociation, recombination, or

reaction (per molecule)
F energy flux
g relative velocity of two particles
G centre of mass velocity of two particles

H (n)i...n Hermite polynomials
I differential effective cross section
J collisional term (Boltzmann equation)
K parameter of the Treanor distribution, collisional integral

(Gross–Jackson method)
N number of vibrational levels, molecule flux

Pk,l
i,j probability of the transition i, j → k, l

P Wang-Chang–Uhlenbeck polynomials

Qk,l
i,j average probability of the transition i, j → k, l

S Sonine–Laguerre polynomials
up peculiar velocity of particles p
νp velocity of particles p
V intramolecular potential, vibration–dissociation coupling

factor
w reduced peculiar velocity
W root-mean-square velocity
Z collision frequency (for one particle)
Z0 collision number per unit time
α azimuthal angle of deviation
α,β, γ , δ, λ collisional integrals
εi , εj , . . . internal energy of a molecule on the level i, on the level j , . . .
γ non-dimensional peculiar velocity

ε reduced internal energy balance



4 NOTATIONS TO PART I

� perturbation of the distribution function, intermolecular
potential

θ reference time
�p quantity related to a particle p
� eigenfunctions of the collisional operator[
�p
]

collisional balance of the quantity�p
� solid angle of deviation
χ angle of deviation

Subscripts

c continuum regime
fm free molecular regime
m, n, q, r , s, t expansion orders for translation, rotation, and vibration

modes (0 or 1)

Superscripts

′ relative to a quantity after collision
0,1 expansion orders
m, n, q, r , s, t expansion orders for translation, rotation, and vibration

modes (0 or 1)
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Statistical Description and
Evolution of Reactive Gas
Systems

1.1 Introduction

The macroscopic representation of gaseous media is based on their discrete
structure and is deduced from the behaviour of individual particles such as
molecules, atoms, and so on1−7. A statistical description is therefore necessary
in order to explain the properties and the evolution of these media, particularly
when reactions are included.

This description is essentially based on two general principles:

• The first arises from the large number of particles in these gaseous systems for
a large pressure range including rarefied as well as compressed gases (Table
1). A statistical description is therefore used whereby the macroscopic quan-
tities are determined from appropriate local ‘averages’ over a large number of
particles.

• The second observation, valid for about the same pressure range, is that the
particles themselves experience only infrequent ‘collisions’. Thus, they may
be considered independent except as regards collisions which have a charac-
teristic duration τC much smaller than the mean time between collisions τel
(Table 1).

These observations enable us to define a local ensemble of particles possess-
ing a definite ‘state’ which may be modified by particle collisions spreading
information in the medium.
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Table 1. General parameters for air4.

Air τel (s) τC = √
C/g (s) λ (cm) n (cm−3)

1 10−9 10−13 10−5 1019

2 10−11 10−13 10−7 1021

3 10−5 10−13 10−1 1013

1. Normal conditions (105 Pa, 300 K)
2. Compressed air (107 Pa, 300 K)
3. Atmosphere (100 km altitude).

1.2 Statistical description

Let us consider a gaseous medium consisting of various particles (molecules,
atoms, ions, and so on) of different species p having a velocity v and an internal
energy ε. In a semi-classical formulation, the velocity variable is continuous
(−∞ < v < +∞) whereas the internal energy defined in Appendix 1.2 is
quantized with discrete levels i, each corresponding to a rotational state ir and a
vibrational state iv , denoted collectively as

i = (ir , iv) (1.1)

If we take the independence of particles into account, we may define a prob-
ability density for the particles of level i and of species p having the velocity vp
and located at the coordinate r at the instant t . This probability density fip is
called the distribution function, with

fip = fip(r , vp , t ) (1.2)

The probable number of these particles in the differential volume dr dvp dt
is equal to

fipdvp dr dt (1.3)

Knowledge of the distribution function is therefore key to the statistical
description of a gaseous system. A deterministic macroscopic description may
also be deduced from this knowledge, since the moments of the distribution
function are macroscopic variables. Thus, if �ip(vp , r , t ) is a particular prop-
erty of an individual particle, the corresponding macroscopic quantity � (r , t )
is given by

n�(r , t ) =
∑
p

∑
i

∫
vp

fip�ipdvp (1.4)

where n represents the total number density of the particles.



1.2 STATISTICAL DESCRIPTION 7

Other moments obtained by integrating over the velocity space, without sum-
ming over the species or levels, provide the properties of particles p in the level i.
The sum over the levels gives quantities specific to the molecules p. Analogously,
the sum over the rotational levels gives properties dependent on the particles p
in the vibrational level iv and so on.

1.2.1 State parameters

Thus, the ‘state’ quantities, which include mass, momentum, and energy, are
defined as follows:

Mass density ρ:

ρ =
∑
i

∑
p

∫
vp

fipmpdvp =
∑
p

ρp (1.5)

where ρp represents the mass density of each component p. Here, ρp = npmp ,
with

np =
∑
i

nip =
∑
i

∫
vp

fipdvp (1.6)

Thus, np and nip respectively represent the ‘population’ (number density) of
the particles p and, among them, those in the level i.

n =
∑
p

np (total number density)

and
ρ = nm

wherem represents the mean mass of the particles, i.e.m = 1
n

∑
p
npmp .

Average or macroscopic velocity V :

ρV =
∑
p

∑
i

∫
vp

fipmpvpdvp =
∑
p

ρpV p (1.7)

Thus, V represents the mass barycentric velocity of the flow and V p the
average velocity of the species p, with

ρpV p =
∑
i

∫
vp

fipmpvpdvp (1.8)
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The ‘thermal’ or ‘peculiar’ velocity of each particle, independent of the average
velocity, is represented by up = vp − V so that U p = V p − V represents the
diffusion velocity of the species p at the macroscopic level, with∑

p

ρpUp = 0 (1.9)

Average energy of the particles, E :

nE =
∑
p

∑
i

∫
vp

fip

(
1

2
mpu

2
p + εip

)
dvp (1.10)

This energy is independent of the mean velocity and is composed of a transla-
tional energy connected to the peculiar velocity, ET , and an internal energy. This
energy is the sum of the rotational energy ER and of the vibrational energy EV ,
with

nET =
∑
p

∑
i

∫
vp

fip
1

2
mpu

2
pdvp (1.11)

The internal energies of each species may also be defined as

npERp =
∑
ir

∫
vp

fipεir pdvp =
∑
ir

nir pεir p (1.12)

npEVp =
∑
iv

∫
vp

fipεiv pdvp =
∑
iv

nivpεiv p (1.13)

and

E = ET + ER + EV = ET +
∑
p

ξp(ERp + EVp) (1.14)

where ξp represents the number concentration of the component p.

General comments on state properties

The definition of one single mean quantity for the translation energy inde-
pendent of the type of particle is generally possible if these particles are not too
‘different’. The case of an electron–ion–atom mixture, for example, requires a def-
inition of the translation energy for each species or group of species (heavy and
light particles, for instance). Such mixtures are considered here only exceptionally
(for example, partially ionized plasmas).
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From the definition of ET , the translational temperature T is defined as

ET = 3

2
kT (1.15)

This definition implies that there is no preferential direction,which is generally
the case; exceptions, however, may exist, such as in supersonic expansions of
rarefied gases or when polar molecules are affected by magnetic fields.

For each internal mode of the molecules, the corresponding energy Erp , Evp
may, under specific conditions, give rise to the definition of a particular tem-
perature associated with either the rotational or vibrational degrees of freedom;
these situations are examined in Chapters 2 and 3.

1.2.2 Transport parameters

Owing to the constant movement of the particles, local fluxes take place. At the
macroscopic level, they correspond to possible exchanges of various quantities
which characterize ‘transport phenomena’. Just as the state quantities give the
description of a system at each point r and at each instant t , the transport
quantities characterize local and instantaneous exchanges; thus, they represent
local flux densities, independent of the mean velocity V . If the exchanges of
fundamental quantities only—mass, momentum, and energy—are taken into
account, the following transport quantities may be defined:

Mass flux:

jp = ρpUp =
∑
i

∫
vp

fipmpupdvp (1.16)

where jp represents the mass diffusion flux of species p. The total flux, of course,
is zero, i.e. ∑

p

ρpUp = 0 (1.17)

The same applies for a pure gas.

Momentum flux:

P =
∑
p

∑
i

∫
vp

fipmpupupdvp (1.18)

This quantity (1.18) represents the total momentum flux: it is a symmetri-
cal second-order tensor corresponding to the ‘internal’ forces of the medium



10 CHAPTER 1 REACTIVE GAS SYSTEMS

(Newton’s law), due to the momentum exchanges between the mean streamlines
of the flow. As is well known, the diagonal terms represent the stresses normal
to the considered surface element (normal N), and the others the tangential
stresses. Thus, the force acting on this element, τ , is such that

τ = N · P (1.19)

Energy flux (or ‘heat flux’):

q =
∑
p

∑
i

∫
vp

fip

(
1

2
mpu

2
p + εip

)
updvp (1.20)

Particular energy fluxes can also be defined. Thus, the kinetic energy flux (or
translation energy flux) is equal to

qT =
∑
p

∑
i

∫
vp

fip
1

2
mpu

2
pupdvp (1.21)

In the same way, the rotational energy flux specific to the species p is

qR =
∑
i

∫
vp

fipεir pupdvp (1.22)

and the vibrational energy flux is such that

qV =
∑
i

∫
vp

fipεiv pdvp (1.23)

General comments on transport properties

The momentum flux proper to each species has no real interest in the framework
of the general conditions indicated above, since the stresses are essentially due to
the motion of particles. The same applies to the translational energy flux of each
species and, as seen above, the temperature itself. In contrast, internal energy
fluxes are very sensitive to the nature of the species (Chapters 3 and 4).

Particular hypotheses

The previous definitions, necessary but purely descriptive, mask a complex and
changing reality arising from the importance of collisions, collisions between
particles of the medium and between these particles with the outside medium
through interfaces or ‘walls’. Thus, these collisional processes contribute to mass,
momentum, and energy exchanges between adjacent media, the information of
which is transmitted by interparticle collisions.
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Other external influences, such as gravity, electric, or magnetic fields, capable
of modifying the trajectory of the particles are not taken into account here.

Furthermore, the long-range behaviour of the interparticle interaction poten-
tial is generally neglected in the statistical description of the medium in order to
preserve the notion of a mean free path between collisions; as a consequence, a
cut-off is generally used in the expression of these potentials (Appendix 1.3).

Finally, as a result of the previous observations, the collisions generally involve
only two partners, and they are called binary collisions.

1.3 Evolution of gas systems

As previously discussed, the system under study evolves because of the collisions;
the problem is therefore the determination of the evolution equation of the
distribution function.

1.3.1 Boltzmann equation

The formal variation of the distribution function along the streamlines of the

particles is simply
dfip
dt , corresponding to a variation of the probable number

of the particles in the elementary generalized volume
dfip
dt dvp dr dt , with d

dt =
∂
∂t + vp · ∂

∂r .
This variation is due only to the collisions; thus, if we call Jdvp dr dt the

collisional balance of these particles (species p, internal level i, and velocity vp ,
at the generalized coordinate r and at the instant t in the volume dvp dr dt ),
we have

dfip
dt

= J (1.24)

In this formulation, the collisional term J characterizes the collisions between
particles of the medium, whereas those with the outer medium constitute
boundary conditions for the distribution function.

Equation (1.24) is the so-called Boltzmann equation, from which, in prin-
ciple, it is possible to determine fip and, therefore, the macroscopic quantities
previously defined and thus to know the evolution of the system. However, it is
also possible to obtain equations of evolution of these macroscopic quantities
from the Boltzmann equation without solving it, and even without knowing the
details of the collisional term J .



12 CHAPTER 1 REACTIVE GAS SYSTEMS

1.3.2 General properties

The system may be considered isolated, so that the principle of conservation for
mass, momentum, and energy leads to the following results:∑

p

∑
i

∫
vp

Jmpdvp = 0

∑
p

∑
i

∫
vp

Jmpvpdvp = 0

∑
p

∑
i

∫
vp

J

(
1

2
mpv

2
p + εip

)
dvp = 0 (1.25)

Thus, whatever transformations and exchanges may occur in the interactions,
these total collisional balances are null.

The same does not apply, of course, to partial balances of mass, momentum,
and energy, or for total or partial balances of other quantities. Thus, for example,
the collisional balance of the number of particles p in level i, that is

∫
vp
J dvp , is

not generally zero. Similarly, the total balance of the number of particles p, that
is
∑
i

∫
vp
J dvp , is not zero in a reactive medium.

1.3.3 Macroscopic balance equations

After multiplying the Boltzmann equation (1.24) successively by mp ,mpvp , and
1
2mpv

2
p + εip , integrating over the velocity space and summing over the levels

and the species, we obtain the macroscopic balance equations for mass, momen-
tum, and total energy. Taking the expressions (1.25) into account, we find the
equations in the following classical forms:

∂ρ

∂t
+ ∂ · ρV
∂r

= 0

ρ
dV

dt
= −∂ · P

∂r

ρ
de

dt
= −∂ · q

∂r
− P:

∂V

∂r
(1.26)

with the definitions d
dt = ∂

∂t + V · ∂
∂r and e = E

m .
Equations (1.26) should enable us to determine the state quantities ρ,V , e,

but at this stage, the transport quantities P and q are unknown. One solution
might be to deduce the evolution equations of these last quantities from the
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Boltzmann equation, but the corresponding collisional balances are not zero and
are difficult to evaluate. Furthermore, higher-order moments of the distribution
function appear in these equations and require other assumptions.4,8,9 However,
the so-called methods of n moments are widely used, requiring a larger number
of macroscopic equations, (n = 13, n = 20, . . .; Appendix 4.5).

From a macroscopic point of view, it seems simpler to restrict ourselves to the
three equations (1.26) for well-defined physical situations and to try to obtain
information on the distribution function so as to close the system of equations
(1.26) (Chapters 2 and 3).

Moreover, it is often important to know the evolution of the ‘intermediate’
quantities, such as the species concentrations and/or the population of the
internal levels, especially the vibrational states; these quantities may also be
determined from macroscopic equations deduced from the Boltzmann equation.
Thus, the population of the level i of the species p, nip , is given by the follow-
ing equation obtained by integrating the Boltzmann equation over the velocity
space:

∂nip
∂t

+ ∂ · nipV p
∂r

=
∫
vp

J dvp (1.27)

The evolution of the population of the vibrational levels is obtained by
summing Eqn. (1.27) over the rotational levels. Thus, we have

∂nivp
∂t

+ ∂ · nivpV p
∂r

=
∑
ir

∫
vp

J dvp (1.28)

Equivalently, the evolution of the population of the species p is obtained by
summing Eqn. (1.28) over the vibrational levels iv ; the equation giving the mass
density of the species p is then

∂ρp

∂t
+ ∂ · ρpV p

∂r
=
∑
iv

∫
vp

J mpdvp (1.29)

The collisional terms of Eqns (1.28) and (1.29) respectively represent the
rate of change of the population of the level iv (of the species p) and the mass
production rate of the species p due to collisions; these terms will be developed
later in Chapter 2.

Before examining the possible methods of solving the Boltzmann equation
and the associated macroscopic conservation equations, it is necessary to develop
the collisional term, at least partially, by analysing the various possible types of
collision, their frequency, and the resulting consequences.



14 CHAPTER 1 REACTIVE GAS SYSTEMS

1.4 General properties of collisions

The media considered here generally consist of molecules, atoms, and occasion-
ally ions and electrons. After collision between two particles (sometimes three),
there may be transformation or creation of species, with change of internal state
and velocity: then, the collision is called reactive; it is called inelastic if there is
change of internal state and velocity only, and elastic if only the velocities of
particles are modified. The elastic and inelastic collisions concern two particles
only, p and q, identifiable before, during, and after the collision; they are typically
binary collisions (p′ = p, q′ = q). The reactive collisions may involve several
particles and intermediate components during the ‘reaction’ (Chapter 9).

1.4.1 Elastic collisions

In a large ‘moderate’ temperature range, most collisions are elastic: the relative
velocities are relatively low, the collisions are not too violent, and only trans-
lational energy exchanges can occur, without modification of the internal state
of the interacting molecules. The same applies to atoms under the ionization
threshold and, more generally, in the case of monatomic gases.

The problem is the determination of the velocities of both particles after
the interaction given the velocities before collision and the impact parameter
b (Fig. 1). In the (isolated) system consisting of just two particles, the usual
principles of conservation of mass, momentum, and energy apply; thus, we may

q
g

b

p

�

g�

a

�

Figure 1. Collision parameters.
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write the following relations between quantities before and after collision:

mp +mq = mp +mq

mpvp +mqvq = m′
pv

′
p +m′

qv
′
q

1

2
mpv

2
p + 1

2
mqv

2
q = 1

2
mpv

′2
p + 1

2
mqv

′2
q (1.30)

The quantitiesmp ,mpvp ,
1
2mpv

2
p are ‘collisional invariants’.

From the momentum conservation equation in (1.30), also valid during the
collision, we deduce that the centre of mass velocity of the two particles G =
mpvp+mqvq
mp+mq remains constant. Thus

G = G′ (1.31)

The motion of the centre of mass is therefore rectilinear and uniform during
and after the collision. From the energy conservation equation (1.30), we can also
deduce that the modulus of the relative velocity before collision, g = vp − vq , is
preserved, that is

g = g ′ (1.32)

Two unknowns still need to be determined in order to find the directions of
the velocities after collision, for example the angles χ (deviation angle) and α
(azimuth angle) (Fig. 1), which completely determine the relative directions of
g and g′. To do this, it is necessary to analyse the trajectory of the particles in
the interaction zone, and therefore to take into account the forces acting on the
particles in this zone.

In the case of elastic collisions, it is possible to assume that the interaction force
between particles p and q,F pq , depends on their distance r only (Appendix 1.3),
that is, a spherical potential ϕ is defined such that

F pq = −F qp(r) = −dϕ
dr

(1.33)

Considering neutral particles only, this force is repulsive for short distances
and attractive for long ones. Thus, in the interaction zone, only the repulsive
force is important and governs the collision. Of course, in the case of complex
molecules and inelastic collisions, the interaction potential is not spherical and
generally depends on the relative orientation of the interacting particles.

In the present case, we have

F pq = mq
dvq
dt

= −mp dvp
dt

= −F qp (1.34)
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Then

mr
dg

dt
= F pq

with
mr = mpmq

mp +mq
(reduced mass)

Therefore

d

dt
(r ∧ g) = 0 (1.35)

Thus, the plane P including the relative velocity of particles p and q and their
distance r remains normal to a constant vector during the interaction. This plane
is moving parallel to itself (Fig. 2), so that the collision process may be described
in this plane (Fig. 3).

Therefore, applying the energy conservation principle and Eqn. (1.35), we
finally obtain the deviation χ , that is

χ = π − 2

∞∫
rmin

(
r4

b2
− 1 − 2φr2

mrb2g 2

)−1/2

dr (1.36)

where b is the impact parameter (Fig. 3).

q

p

P P P

G
G

Figure 2. Plane collision.

g�

b�

y

p

�

r

q

u

um

b

g

x

Figure 3. Relative trajectory for a plane collision.
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The straight line θ = θmin is a symmetry axis for the trajectory, where dr
dθ = 0;

r = rmin then represents the minimum distance between particles (Appendix
1.3). As the collision is planar, we have α = ε and b′ = b (Fig. 3).

The interaction is therefore completely determined if the potential ϕ (or its
repulsive component) is known (Appendix 1.3). For the simplest model (rigid
elastic sphere model), an explicit value for χ is obtained:

χ = 2Arccos
b

d
if b ≤ d

χ = 0 if b > d (1.37)

with

d = dp + dq
2

(1.38)

In this case, the deviation is independent of the relative velocity of the particles.
More generally, for more complex potentials, from Eqn. (1.36) we have

χ = f (ϕ, b, g ) (1.39)

Finally, in the case of elastic collisions, a complete deterministic description
of the collision is available.

1.4.2 Inelastic collisions

In this type of collision, the exchange between particles include not only trans-
lation energy but also internal energy (essentially, rotational and vibrational
energy). These collisions therefore concern molecules. The peculiar velocities
are higher than in the case of elastic collisions.

The conservation equations for mass and momentum (1.30) are still valid, but
the energy conservation equation is written in the following form:

1

2
mpv

2
p + εip + 1

2
mqv

2
q + εjq = 1

2
mpv

′2
p + εkp + 1

2
mqv

′2
q + εlq (1.40)

which includes the possible transition (i → k) for the molecule p and (j → l)
for the molecule q. Then, the collisional invariants are

mp ,mpvp ,
1

2
mpv

2
p + εip (1.41)

with

g 2
pq = g

′2
pq + 2


ε

mr
(1.42)
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where


ε = εkp + εlq − εip − εjq
kT

(internal energy balance) (1.43)

The less energetic collisions involve translation–rotation exchanges only (TR
collisions), since the rotational levels are closely spaced (Appendix 1.2). During
these collisions, it is possible that only one interacting molecule changes its level
(kr = ir , lr 	= jr ), or both molecules (kr 	= ir , lr 	= jr ), when the elastic collisions
(TT collisions) involve translation energy exchange only.

The more intense collisions involve rotational and vibrational exchanges.
There are translation–vibration (TV) collisions, in which only one molecule
changes its vibrational level (kv = iv , lv 	= jv), and vibration–vibration (VV) col-
lisions, in which both molecules change their vibrational level (kv 	= iv , lv 	= jv).
Generally, in this last case, one molecule gets excited to an upper level, while the
other goes to a lower state. The transitions may be monoquantum or polyquan-
tum,depending on the intensity of the collision. One important class of collisions
is that of resonant collisions (Vr collisions), in which the molecules seem to
exchange their level (kv = jv , lv = iv).

1.4.3 Reactive collisions

These collisions are intense enough to create new species (dissociation, ioniza-
tion, various reactions). They are of course more complex than the previous
ones. The general conservation principles are still valid, but more than two par-
ticles and intermediate components may be involved; energy is also necessary
to break chemical bonds and to create activated species. Collisional invariants,
however, exist, such as the number of atoms or the global electrical neutrality: a
number of examples are detailed in later chapters.

1.5 Properties of collisional terms

1.5.1 Collisional term expressions

The above classical and deterministic description of the collisions does not give
indications of the probability of occurrence. Thus, a probability P must be
assigned to each particular type of collision. As a general example, at low tem-
perature, the probability of elastic collisions is practically equal to one, but it
decreases with increasing temperature, when the probability of inelastic colli-
sions, and then reactive ones, increases. It is then possible, at least formally,
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to take this probability into account in the collisional term of the Boltzmann
equation.

Elastic and inelastic collisions

A target particle p in level i and with the velocity vp ‘collides’ with a probable
number of particles q in level j and with the velocity vq , that is, per unit time and
unit volume, fjqdvq . These particles cross the elementary section b db dε with

the relative velocity g (Fig. 1). Then, if P
kp,lq
ip,jq is the probability for a particle p to

pass from a level i to a level k while the particle q passes from a level j to a level
l , the probable number of particles colliding with a molecule p on level i is

Zip =
∑
kp,jq,lq

∑
q

∫
b,ε,vq

P
kp,lq
ip,jq fjqgb db dε dvq (1.44)

where Zip is the collision frequency of a molecule ip .
The total number of particles ip ‘lost’ by collisions per volume and time unit

is therefore equal to

JPdvp =
∑
kp,jq,lq

∑
q

∫
b,ε,vq

P
kp,lq
ip,jq fipfjqgb db dε dvq dvp = Zipfipdvp (1.45)

Analogously, the probable number of particles ip gained by collisions is

JGdv
′
p =

∑
kp,jq,lq

∑
q

∫
b′,ε′,v′

q

P
ip,jq
kp,lqf

′
kpf

′
lqg

′b′db′ dε′ dv′
q dv

′
p (1.46)

The variation of the probable number of particles ip with velocity vp along
the streamlines, per unit volume and unit time, is equal to the corresponding
collisional balance of the Boltzmann equation and is given by

dfip
dt
dvp = JGdv

′
p − JPdvp (1.47)

In the case of elastic collisions, we have b′ = b, g ′ = g , ε′ = ε and
dv′
p dv

′
q = dvp dvq (Appendix 1.3).

Then, Eqn. (1.47) becomes

dfp
dt

= J =
∑
q

∫
b,ε,vq

Pel
(
f ′
p f

′
q − fpfq

)
gb db dε dvq (1.48)

and is independent of internal levels.
As mentioned above, when the temperature is not too high, it may be assumed

that Pel is equal to 1.
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For inelastic collisions, it is also commonly assumed that they are reversible,
so that we can write

P
kp,lq
ip,jq gb db dε dvp dvq = P

ip,jq
kp,lqg

′b′db′ dε′ dv′
p dv

′
q (1.49)

This hypothesis may indeed mask some properties that are dependent on the
relative orientation of the interacting molecules. However, in this framework, we
can write for the inelastic collisions

dfip
dt

=
∑
kp,jq,lq

∑
q

∫
b,ε,vq

P
kp,lq
ip,jq (f

′
p f

′
q − fpfq)gb db dε dvq (1.50)

This equation (Wang-Chang–Uhlenbeck equation) of course includes elastic
collisions. Thus, the symmetry of the direct and inverse processes is assumed,
which is not valid for the non-degenerate energy modes (rotation mode,
for example). Nevertheless, when the asymmetry effects (magnetic field, wall
vicinity, etc.) are negligible, this hypothesis may be considered valid.

Reactive collisions

The diversity of all possible types of reactive collisions does not allow us to
write general expressions for the collisional terms in the Boltzmann equation.
However, probabilities may also be defined, and in each case, the collisional term
may be developed. Examples are presented in the next chapters.

Collision cross sections

The flux of particles crossing the elementary area bdb dε in the region of
influence of a particle ip may be found again in the elementary solid angle
d� = sinχdχ dα (Fig. 1). Thus, taking into account the probability of various
exchanges (velocity, level, species), we have

Pb db dε = I sinχdχ dα (1.51)

Here, I , a proportionality factor, has the dimension of a surface and is called
the differential cross section. It characterizes the type of collision as P . The
collisional term of the Boltzmann equation (1.24) may then be written as∑

kp,jq,lq

∑
q

∫
�,vq

I
kp,lq
ip,jq

(
f ′
p f

′
q − fpfq

)
g d� dvq (1.52)

For moderate temperatures, the elastic collisions are dominant, so that we
have Pel ∼ 1, b db dε = Ield�, and

P = I

Iel
(1.53)
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1.5.2 Characteristic times: collision frequencies

If the collisional term of the Boltzmann equation is decomposed into a sum of
specific terms corresponding to the main collision groups mentioned above, we
can write

dfip
dt

= Jel + Jin + Jc (1.54)

Every group, of course, may be also subdivided into other particular collision
types (Chapter 2), but starting from Eqn. (1.54), we may assign a characteristic
time (or frequency) to each group. Taking Eqn. (1.47) into account, Eqn. (1.54)
may be written in the quasi-non-dimensional following form:

1

θ

df ∗
ip

dt∗
= 1

τel
J ∗el +

1

τin
J ∗in + 1

τc
J ∗c (1.55)

where τel , τin , τc represent probable characteristic times between, respectively,
elastic, inelastic, and reactive collisions, with Zel = 1/τel , Zin = 1/τin , Zc = τc .

These times depend on respective ‘populations’ and on collision processes
(Appendices 1.2 and 1.3). Here, θ is a reference time, chosen according to the
specific problem under consideration.

Thus, Eqn. (1.55) may give rise to a ‘hierarchy’ between the various types of
collisions according to their respective characteristic times, that is, according to
their average global probability. This property is used in the next chapters. As
mentioned above, there are many particular types of collisions, with different
probabilities. A typical example is represented by collisions populating a par-
ticular energy level and those depopulating this level. Thus, in an environment
where the temperature increases, the probability of depopulating the fundamen-
tal vibrational energy level is much higher than the inverse process, and the
corresponding characteristic time may be very short.

Of course, it is possible to evaluate the mean collision frequencies undergone
by one particle, these quantities representing moments of the distribution func-
tion. Thus, the mean collision frequency undergone by a particle p, Zp , is such
that

npZp =
∑
i

∫
vp

fipZipdvp

or

npZp =
∑

ip,kp,jq,lq

∫
vp ,vq

fipfjqg dvp dvq

∫
�

I
kp,lq
ip,jq d� (1.56)
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The second integral of Eqn. (1.56) depends on collisions only: it is called the
total cross section:

C
kp,lq
ip,jq =

∫
�

I
kp,lq
ip,jq d� = C(g ,ϕ) (1.57)

The mean change per second of a property �ip of the particle p,
�p , due to
the collisions is such that

np
�p =
∑

ip,kp,jq,lq

∑
q

∫
vp ,vq

fipfjqg dvp dvq

∫
�

(� ′
kp −�ip)I kp,lq

ip,jq d� (1.58)

The second integral of Eqn. (1.58) depends only on the collisions and not on
the populations. It is the total cross section for the change in the property �ip
that is caused by the collisions. This change is also equal to∑

ip

∫
vp

J�ipdvp (1.59)

Similarly, the collision frequency Z undergone by any particle of the mixture
is such that

nZ =
∑
p

npZp =
∑
i,p

∫
vp

fipZipdvp (1.60)

and

n
� =
∑
p

np
�p (1.61)

Other expressions are defined in Appendix 2.3.

Appendix 1.1 Elements of tensorial algebra

Vectors

The tensorial product ab of the vectors a
(
ax , ay , az

)
and b(bx , by , bz ) is a dyadic

or second-order tensor aibk , written in Cartesian coordinates as⎛⎜⎜⎜⎝
axbx axby axbz

aybx ayby ay bz

azbx azby azbz

⎞⎟⎟⎟⎠
with ab 	= ba, except when a is parallel to b.
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Example

The tensorial product of the symbolic vector ∂
∂r

(
components ∂

∂x ,
∂
∂y ,

∂
∂z

)
and of the vector

V, (u, v ,w), that is, ∂V
∂r , is written in Cartesian coordinates as⎛⎜⎜⎜⎜⎜⎜⎝

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

⎞⎟⎟⎟⎟⎟⎟⎠
The contracted tensorial product of ab is a · b, obtained by setting the indices i = k, then
summing over i:

a · b =
∑
i

aibi

This product is a scalar quantity (scalar product).

Example

Divergence of V, ∂ ·V
∂r ,

(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
.

Of course, if b is a scalar quantity, ab is a vector.

Example

Gradient of b, ∂b
∂r

(
components ∂b

∂x ,
∂b
∂y ,

∂b
∂z

)
.

Second-order tensors

These are represented by a 3×3 matrix; they are from the type ab (dyadic) or
from the type W, that is, in Cartesian coordinates:⎛⎝ Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz

⎞⎠
This tensor is symmetrical if Wij = Wji .

Example

Stress tensor P.
A transposed tensorW is obtained by reversing rows and columns.
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Example

∂V
∂r is the transposed tensor of

∂V
∂r . A symmetrical tensor

∂V
∂r is obtained by putting

∂V
∂r

= 1
2

(
∂V
∂r

+ ∂V
∂r

)
This tensor becomes non-divergent by subtracting one-third of its trace, that is

0

∂V
∂r

= ∂V
∂r

− 1
3
∂ ·V
∂r

I

where I is the unit tensor.

I =
⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
The isotropic tensors belong to the type kI.

Example

Pressure pI.

Vector–tensor products

The tensorial product aW or abc is a third-order tensor aiWjk or aibj ck .
The contracted tensor a.W is obtained by setting i = j and summing over i.

The result is a vector with components
∑
i
aiWik .

Examples

a) Vector ∂ · P
∂r

(
components ∂ · Px

∂r ,
∂ · Py
∂r ,

∂ · Pz
∂r

)
, where Px (with components τxx , τxy , τxz) is

the vector associated with the first line of the tensor P equal to⎛⎝ τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞⎠
b) Vector V · ∂V

∂r with components V · ∂u
∂r ,V · ∂v

∂r ,V · ∂w
∂r .

c) Scalar ∂ · (P ·V)
∂r = ∂ · (Px ·V)

∂x + ∂ · (Py ·V)
∂y + ∂ · (Pz ·V)

∂z .
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Tensor–tensor product

The tensorial product WW′ is a fourth-order tensor, the contracted product
W · W′ is a second-order tensor with components

∑
i
WijW ′

ij , and the dou-

bly contracted tensor W : W′ is a scalar quantity (sum of the homologous
components).

Example

P :
∂V
∂r

= τxx ∂u
∂x

+ · · ·

Miscellaneous results

W · a = a · W

a · I = I · a = a

I : I = 3

I : W = W : I = Wxx +Wyy +Wzz

0
W = W − 1

3
I(I : W)

0
W :

0

W′ = 0
W : W′ = W :

0

W′

(ab) · d = a · (bd)
d · (ab) = (d · a)b

b · (a · W) = (ba) : W

(ab) : (cd) = (ac) : (bd) = (a · d)(c · b)

Appendix 1.2 Elements of molecular physics

Generalities

Only a few fundamental elements necessary for the understanding of the physics
of non-equilibrium gaseous media are presented here. They essentially concern
the properties of the molecules which constitute the most numerous particles
of the media considered here, the other being atoms or, occasionally, ions and
electrons.
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The specific energy of a particle p on a level i,εip , may be roughly considered as
the sum of a translation energy εtp = 1

2mpu
2 and of an internal energy composed

of a rotational energy εir p and of a vibrational energy εiv p ; it may also include a
reference energy ε0. This does not exclude the interactions between the energy
modes, generally included in the expressions of energies. Similarly, the particles
are assumed to be in the fundamental electronic level; exceptions are given in
Chapter 12, where molecules in different electronic levels are considered.

Of course, the molecules possess only rotational and vibrational energies.
Thus

εip = εtp + εir p + εiv p + ε0 (1.62)

By multiplying Eqn. (1.62) by fip , integrating over the velocity space, and
summing over levels i, we may obtain the mean energy per molecule p,Ep , that is

Ep = ETp + ERp + EVp + E0
p (1.63)

The mean energy per particle of the mixture E is such that

nE = nET +
∑
P

np(ERp + EVp + E0
p ) (1.64)

The mean mass energy of the species p is

ep = Ep
mp

= eTp + eRp + eVp + e0
p (1.65)

If cp = ρp
ρ

is the mass concentration of the species p, the mean mass energy of
the mixture is

e =
∑
p

cpep (1.66)

and ρe is the mean volume energy.
The possibility of separating the electronic and atomic wave functions (Born–

Oppenheimer approximation) gives us a way to analyse the energy modes and
states of the molecules separately.

Translational energy

We consider the translational mode of the molecules or atoms moving ‘freely’
without any outer force field. The analysis of the corresponding Schrödinger
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equation gives a spectrum of eigenvalues corresponding to translation energy
levels εt = 1

2mu
2 that are very close as compared to the quantity kT ; thus, this

energy may be considered non-quantified and may be classically written in the
following form:

ET = 3

2
kT , eT = 3

2

k

m
T = 3

2
RT (1.67)

with

R =
∑
p

cpRp and Rp = R
Mp

(1.68)

Rotational energy

A physical model must be defined for this energy mode. The simplest one is to
consider the molecule as a rigid rotator independent of vibration; this hypothesis
is essentially valid for diatomic molecules. Thus, from the Schrödinger equation,
it may be deduced that the energy of the rotational levels is

εJ = J (J + 1) h2

8π2I
(1.69)

where, traditionally, J is the rotation quantum number (denoted here also as ir ),
and I is the moment of inertia of the molecule. It is usual to denote

h2

8π2I
= hνr (1.70)

where νr represents the rotation frequency of the molecule. Then, a ‘rotational
characteristic temperature’ θR may be defined, so that

hνr = kθR

and

εJ = kθRJ (J + 1) (1.71)

The rotational levels are close enough to have εJ+1 − εJ � kT , which cor-
responds to very low characteristic temperatures θR of a few degrees K and to
frequencies νr in the far infrared.

It is also found that every level J corresponds to (2J + 1) possible states
(degeneracy) and therefore has a statistical weight gJ = 2J + 1.

A more elaborate model, necessary for the interpretation of the emission
spectra (Chapter 12), takes into account the molecular vibration which modifies



28 CHAPTER 1 REACTIVE GAS SYSTEMS

the moment of inertia. As the corresponding period is generally much smaller
than the rotation period (νr � νv), we have, for the diatomic molecules:

εJ = J (J + 1)BV − J 2(J + 1)2DV (1.72)

with

BV = h2

8π2I
− α

(
v + 1

2

)
+ · · ·

DV = DV=0 − β
(
v + 1

2

)
+ · · ·

where I is the average moment of inertia, and α , β are constants.

Vibrational energy

The eigenvalues obtained from the Schrödinger equation, when considering
molecules as vibrating springs (harmonic oscillator model) are such that

εv =
(
v + 1

2

)
hνv (1.73)

where v is the vibration quantum number (denoted here also as iv).
The energy levels are equidistant, and we have

εv+1 − εv = hνv = kθV (1.74)

where νv represents the characteristic vibrational frequency and θV the ‘vibra-
tional characteristic temperature’ of the considered species. This temperature is
relatively high; thus, approximately, we have

θVN2 � 3395 K θVO2 � 2275 K

θVCO � 3120 K θVCN � 2980 K

θVNO � 2740 K θVH2 � 6335 K

The frequencies νv generally correspond to the near infrared spectrum
(examples in Chapter 12). The reference level is ε0 = hνv

2 .
For ‘moderate’ temperatures, only the lowest levels are significantly popu-

lated (Chapter 2), and the harmonic oscillator model is a good approximation,
particularly for diatomic molecules. For more complex molecules, several vibra-
tional modes coexist, the number of modes increasing with the atomicity of
the molecule. For linear triatomic molecules, as a first approximation, the ener-
getic contribution of each mode may be added. Thus, for CO2, there are three
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vibrational modes (Appendix 10.4), and one of them (the bending mode) is
degenerate (gV = 2), with

θV1 � 1980 K (symmetrical mode ν1)

θV2 � 960 K (bending mode ν2)

θV3 � 3380 K (asymmetrical mode ν3)

At higher temperatures, when T ∼ θV, or when the degree of dissociation is sig-
nificant, the population of the high levels may be important, and an anharmonic
oscillator model is necessary (Fig. 4). Then, taking into account a molecular
Morse potential V = de{1 − exp[−a(r − re)]}, we have for the vibrational
energy

εV = hνv

[(
v + 1

2

)
− xe

(
v + 1

2

)2
]

(1.75)

with

xe = hνv
4de

Other higher-order terms
(
v + 1

2

)n
may be added in Eqn. (1.75), correspond-

ing to more realistic potentials.
When r ∼ re (low levels), the harmonic model is recovered, with a =

πνv

√
m/
de for homonuclear diatomic molecules. For heteronuclear molecules,

m is replaced bymr (reduced mass of particles).

re

ED

r

�0

�

hvv

Figure 4. Energy diagram of the fundamental electronic level. · · · Harmonic oscillator, Anharmonic
oscillator.
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When V → de , we have r → ∞, which corresponds to the dissociation
energy Ed . In the same way as we have hνv = kθV, we also have de = kθD, where
θD represents the ‘dissociation characteristic temperature’. Thus, for example, we
have θDO2 � 59000 K and θDN2 � 113000 K.

The vibrational levels, therefore, are closer and closer when approaching
the dissociation threshold. Thus, ED represents the formation energy of the
corresponding atom (reference: ε0 = hνv

2 ).
Most molecules of interest include between 30 and 45 levels; thus, the molecule

O2 possesses 32 levels (but only 27 up to ED with the harmonic oscillator model).
The vibrational and rotational levels of a diatomic molecule are schematically

represented in Fig. 5. The difference between the vibrational levels is relatively
important, and for each level the same rotational levels are present. One level i,
therefore, represents one pair of levels (ir , iv). Then, the population of the level
iv of the species p is

nivp =
∑
ir

nip =
∑
ir

∫
vp

fipdvp (1.76)

Analogously, the total population of the level ir is

nir p =
∑
iv

nip =
∑
iv

∫
vp

fipdvp (1.77)

Therefore, the population of the species p is

np =
∑
iv

nivp =
∑
ir

nir p (1.78)

iv + 1

iv – 1

iv

ir

ir

i = (ir, iv)

Figure 5. Scheme of molecular energy.
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and the corresponding mean energies ERp and EVp are

npERp =
∑
ir

nir pεir p and npEVp =
∑
iv

nivpεiv p (1.79)

Electronic energy

As indicated above, the results concerning the rotational and vibrational ener-
gies are valid only for the fundamental electronic level (state �). For the other
electronic levels (�, 
 . . .), which may be occupied at high temperature, the
potential curves are more complex than those represented in Fig. 4. Then, it is
necessary to take into account the motion of electrons with particular quantum
numbers, such as �, characteristic of the angular momentum of the electrons,
and S, characteristic of the spin angular momentum. Similarly, the interaction
with the rotation is represented by a special quantum number K : an example
for CN is presented in Chapter 12, corresponding to transitions between two
electronic states and to frequencies located in the ‘visible’ part of the spectrum.
Then, an electronic spectrum is composed of rotation–vibration bands includ-
ing numerous lines corresponding to ‘possible’ combinations of the quantum
numbers.

However, the large majority of the flows or situations considered in this book
(except in Chapter 12) do concern the fundamental electronic state, for which
� = S = 0, so that only one single ensemble of vibrational levels is to be consid-
ered. Similarly, atomic particles are generally assumed to lie on the fundamental
electronic level and to possess only translation energy.

Appendix 1.3 Mechanics of collisions

Spherical models of molecular interaction

As previously defined, we have

F pq(r) = −F qp(r) = −dϕ
dr

Model of rigid elastic spheres

Each molecule p is considered as a sphere of diameter dp . The collision takes
place when

r = dp + dq
2

= d
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Figure 6. Rigid sphere model.

r � d

r � dw = 0

w � �

w

d r

This potential is a crude representation of the repulsive forces, with the col-
lision consisting of a specular elastic reflection of the molecules (Figs. 6 and 8).
Here, d is of the order of 10−8 cm.

Model of repulsive centres

The potential has the following form:

ϕ = K

rs−1
(1.80)

Though being approximate, this potential, however, is not as ‘hard’ as the
previous one. The realistic values for s are between 9 and 12. The value s = 2 is
characteristic of the Coulomb potential (plasmas). The potential corresponding
to s = 5 is called the Maxwell potential and, though being non-realistic, is widely
used because of its simplifying properties in many calculations (Appendix 3.4).

Lennard-Jones potential

This is the closest model to reality, taking the attractive and repulsive forces into
account, i.e.

ϕ = d

rn
− e

rm
(1.81)

For non-polar molecules, we have

ϕ = 4ε

[(
d

r

)12

−
(
d

r

)6
]

(Fig. 7) (1.82)

For intermolecular collisions, it is clear that the spherical potential models are
valid only for relatively large distances. However, the repulsive part may also be
modelled by a sum of exponential terms roughly representing the interactions
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Figure 7. Lennard-Jones potential.

d r

�

w

between all atoms of both interacting molecules. Thus, we have

ϕ = ϕ0

∑
k,m

exp
(
− rkm
l

)
(1.83)

where ϕ0 represents the spherical part, l a characteristic action distance, and rkm
the respective distances between the atoms k of one molecule and the atoms m
of the other.

Mechanism of the elastic collision

From the conservation equations (1.30),we haveG′ = G,g ′ = g , and r∧g = K .
Then, the interaction may be represented in a plane perpendicular to a

constant vector K including g and r (plane interaction with α = 0).
In this plane, a coordinate system attached to the particle p is chosen, and the

motion of the particle q relative to the particle p (fictitious particle of massmr ),
is analysed (Fig. 3).

In polar coordinates (r , θ), the relative velocity g has a normal component drdt
and a tangential component r dθdt .

The conservation equations for the energy and kinetic momentum during the
interaction are the following:

1

2
mr

[(
dr

dt

)2

+
(
r
dθ

dt

)2
]

+ φ(r) = 1

2
mrg

2 = const.

mr (r ∧ g) = mrr
2 dθ

dt
= mrbg = mrb

′g ′ (1.84)
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Figure 8. Collision of rigid elastic spheres.
p

q b

�

g�

g

um

Then b′ = b, and eliminating the time t from these equations, we obtain the
equation of the trajectory:

θ =
r∫

∞

(
r4

b2
− r2 − 2ϕr4

mrb2g 2

)
dr (1.85)

If the potential is purely repulsive, a minimum approach distance rmin is found
corresponding to dr

dθ = 0; then θ = θmin, and the trajectory is symmetrical about
this straight line.

The deviation χ is equal to π − 2θmin.
With the rigid elastic sphere model (Fig. 8), we have

θmin = π
2

and χ = 0 for b > d

sin θmin = b

d
and χ = 2Arccos

b

d
for b ≤ d

The differential cross section I is equal to d2

4 and the total cross section C to
πd2. They are independent of the relative velocity g .

It is important to note that the equations governing the interaction are
reversible, so that, for the ‘inverse’ collision v ′

p → vp , v ′
q → vq , we have

G′ = G , g ′ = g , b′ = b , d�′ = d�

and

dvp dvq = dv′
p dv

′
q = dG dg (1.86)

because the Jacobian of the transformation is equal to 1.

Particular properties of the collisional term

If �ip is a quantity related to a molecule p in the level i, the total variation of the
quantity� due to a collision is equal to

� ′
kp +� ′

lq −�ip −�jq (denoted [�])
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From the symmetry of the operators, we may deduce the following equality:∑
p

∑
i

∫
v

J�dv = −1

4

∑
p

∑
i

∫
v

J [�] dv (1.87)

In particular, if �ip is a collisional invariant, the total collisional balance
is zero.



TWO

Equilibrium and
Non-Equilibrium Collisional
Regimes

2.1 Introduction

For particular physical systems, it is relatively easy to obtain expressions for the
distribution function from which the macroscopic evolution of these systems
may be determined. The conservation equations (1.26) can be closed and a solu-
tion sought. Thus, if we consider an ‘isolated’ medium exchanging no mass,
momentum, or energy with the background, the evolution of this medium is
due only to like collisions between the particles of the medium. This is approx-
imately true for any system ‘sufficiently’ far from its boundaries. The collisional
term of the Boltzmann equation is then dominant, and the evolution of the
distribution function is determined by collisions. The boundaries of the system
play a geometrical role only.

Thus, given some reference or observation time, if all types of collisions (elas-
tic, inelastic, reactive, and so on) have characteristic times shorter than this
reference time, they all participate in the determination of the distribution func-
tion. This corresponds to a ‘general’ collisional regime called the ‘equilibrium
state’ of the system. If, however, only a few types of collision have this property,
they provisionally determine the structure of the distribution function and the
other types acting over a longer timescale, contributing to a further evolution of
the system towards the equilibrium state. During this period of transition, the
system is in a ‘non-equilibrium state’ but remains in the collisional regime.

In this chapter, we examine various equilibrium and non-equilibrium
situations, each one depending on a particular dominant type of collision.
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2.2 Collisional regimes: generalities

From a general point of view, if the Boltzmann equation (1.24) is written in a
non-dimensional form, as done in Chapter 1, we have, without separating the
various types of collision:

1

θ

df ∗

dt∗
= 1

τ
J ∗ or

df ∗

dt∗
= 1

ε
J ∗ (2.1)

where τ represents the characteristic time between collisions, θ is a reference
time, and ε = τ/θ is the Knudsen number.

As the non-dimensional starred quantities, including the operators, are gen-
erally of the order of 1, the relative order of magnitude of both terms of the
Boltzmann equation is given by the ratio ε. Thus, if the time between collisions
remains much smaller than the reference time, that is if ε � 1, the Boltzmann
equation is reduced to:

J = 0 or JP = JG (balance null) (2.2)

The collisional term therefore determines the distribution function. The
regime is called the ‘collisional regime’, and the other influences, arising for
example from the background, are negligible, except of course the geometrical
conditions.

Conversely, the collisionless regime, called the ‘free molecular regime’, is such

that dfdt = 0 and corresponds to rarefied media (ε � 1) (Appendix 6.6). The
intermediate or ‘transitional’ regimes correspond to ε ∼ 1.

Eqn. (2.2), which governs the collisional media, in spite of its simplicity hides
a complex reality, arising from the different characteristic times of collisions, as
discussed in Chapter 1. Thus, Figs 9 and 10 show the temperature variation of
the characteristic times τT , τR , τV , and τD corresponding to collisions for the
exchange of translational energy,1 rotational energy,10 vibrational energy,11 and
dissociation,12 respectively, for pure gases N2 and O2. In these figures, we can
see that the characteristic times generally decrease with temperature because of
the increasing effectiveness of the collisions with temperature. It is also clear that
there exists a separation of these times of at least one order of magnitude, which
may serve to classify them in specific categories. As already indicated in Chapter 1,
this property is used in the analysis of non-equilibrium flows. There is, however,
an exception for O2, whose characteristic times of vibrational relaxation and
dissociation become relatively close at high temperature.

In the study of the collisional regimes, which is the subject of this chapter,
we must proceed by stages; initially, the simplest systems, such as pure gases
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Figure 9. Translation, rotation, vibration, dissociation characteristic times (nitrogen).
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Figure 10. Translation, rotation, vibration, dissociation characteristic times (oxygen).

with only elastic collisions, are considered. This simple case is a classic example
which gives concrete and precise results for the properties of the corresponding
flows. Other more complex systems are then considered such as gas mixtures,
polyatomic gases, relaxing and reactive mixtures, and so on.

2.3 Pure gases: equilibrium regimes

In this case, we have p′ = p = q′ = q, and the molecules may have different
internal energies (Appendix 1.2). We consider here monatomic or diatomic gases,



2.3 PURE GASES: EQUILIBRIUM REGIMES 39

which constitute the great majority of physical situations. The generalization to
polyatomic gases does not present fundamental differences (Chapter 10).

2.3.1 Monatomic gases

These particles exchange only translational energy, and the index designating the
internal state is not required. The collisions are elastic if the relative energy in a
binary collision is below the threshold for ionization. In the collisional regime,
we have

Jel = 0 (2.3)

since

εel = τel/θ � 1

The properties of these collisions (Chapter 1) are such that Eqn. (2.3) can be
written ∫

�,vb

(
f ′
a f

′
b − fafb

)
Iel d� dvb = 0 (2.4)

The indices a and b are used to distinguish the two particles in a binary
collision.

An obvious solution of Eqn. (2.4) is

f ′
a f

′
b = fafb (2.5)

or

Log f ′
a + Log f ′

b = Log fa + Log fb

Therefore, Log f is a ‘collisional invariant’, which is a linear combination of
the standard invariants for this type of collision (Chapter 1), that is,m,mv, and
1
2mv

2. Thus, we have

Log f = Am + B ·mv + C
1

2
mv2

where A, B, C depend only on r and t . These parameters are related to the
macroscopic quantities n,V , andT , which are connected to f by their definitions
(Chapter 1). Thus, taking into account the properties of the Eulerian integrals
(Appendix 2.6), we find that

f = n
( m

2πkT

)3/2
exp

(
−mu

2

2kT

)
(2.6)

where u = v − V , and n = n(r , t ), V = V (r , t ), T = T (r , t ).
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This Gaussian distribution is called a local Maxwellian distribution; it is spher-
ically symmetric in u. This form, known as ‘normal’, depends on the individual
speed v via u = v − V , and on r and t via n, V , and T .

The conservation equations of the macroscopic quantities (1.26) do not con-
tain additional unknown factors, since P and q may be expressed as functions of
n, u, and T , given the expression of f in Eqn. (2.6). Thus we have

P = nkT I and q = 0

The quantity p = nkT (= ρRT ) is the hydrostatic pressure, a scalar quantity
representing only the ‘internal’ forces in the fluid. The heat flux is null: these
results are in accordance with the assumption of an isolated system, character-
istic of the collisional regime. Finally, the conservation equations are the Euler
equations written in the following way:

∂ρ

∂t
+ ∂ · ρV
∂r

= 0

ρ
dV

dt
+ ∂p
∂r

= 0

ρ
de

dt
+ p
∂ ·V
∂r

= 0 (2.7)

with

p = ρRT and e = 3

2
RT (2.8)

These equations are first-order equations in r and t , which follows from the
assumption of isolated system. The evolution of the system is given by the above
equations (2.7) together with specific initial and boundary conditions.

In summary, a pure gas with only elastic collisions and isolated (or little
influenced by the external conditions) is governed by a Maxwellian distribution
and the Euler equations. Such a system corresponding to a collisional regime is
said to be in ‘equilibrium’. It is shown (Appendix 2.1) that, if it is disturbed in a
specified way, it evolves spontaneously to this state of equilibrium.

Remarks

• Energy includes energy of translation only.

• Here, ddt = ∂
∂t + V · ∂

∂r , and not, as in the Boltzmann equation, ∂
∂t + v · ∂

∂r .

• Other properties of the Maxwellian distribution relating to the collision
frequency, the mean velocities, and so on, are presented in Appendix 2.2.
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• The ratio εel = τel/θ is the Knudsen number, which, to some extent,
determines the degree of rarefaction of the gas.

2.3.2 Diatomic gases

The collisions include elastic collisions (T), collisions with translation and rota-
tion exchanges (R), and collisions with translation, rotation, and vibration
exchanges (V), with different characteristic times. In the collisional regime, we
have εT , εR , εV � 1, so that all characteristic times are much smaller than the
reference time (τT , τR , τV � θ). Then

JT + JR + JV = 0 or JTRV = 0 (2.9)

As in the monatomic case, taking into account the assumptions of Chapter 1,
a solution of Eqn. (2.9), that is, Log fi , consists of a linear combination of the
corresponding collisional invariants, that is,m, mv, and 1/2mv2 + εir + εiv . This
last invariant is a trivial invariant for the collisions T and R, for which εiv remains
constant. Using the definition of n, V , and T as before, that is

n =
∑
ir ,iv

∫
v

fidv nV =
∑
ir ,iv

∫
v

fiv dv
3

2
nkT =

∑
ir ,iv

∫
v

fi
1

2
mu2dv

we obtain for fi

fi = n
( m

2πkT

)3/2
exp

(
−mu

2

2kT

)
gir exp

(−εir/kT )
QR

exp
(−εiv/kT )
QV

(2.10)

where

QR =
∑
ir

gir exp

(−εir
kT

)
and QV =

∑
iv

exp
(
− εiv
kT

)
Here, QR and QV are, respectively, the partition functions for rotation and

vibration (sum of the states), and gir is the statistical weight of the ir rotational
level (Appendix 1.2).

The quantities n, V , and T are given, as in the preceding case, by the Euler
equations, which are formally identical to the above equations (2.7). However,
the definition of the energy E appearing in these equations is different, because
here it is the sum of all energies, that is:

ρe = nE =
∑
ir ,iv

∫
v

fi

(
1

2
mu2 + εir + εiv

)
dv = n(ET + ER + EV )
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with

nER =
∑
ir

εir

∫
v

fidv =
∑
ir

nir εir

nEV =
∑
iv

εiv

∫
v

fidv =
∑
iv

niv εiv

However, from Eqn. (2.10), we can see that each type of energy ET , ER , EV
depends only on one temperature, that is the temperature of translation T ,
which thus becomes the temperature common to the three modes of translation,
rotation, and vibration.

In these expressions, the populations nir , niv deduced from the expression of
fi (Eqn. (2.10)) are the following:

nir = n
gir exp

(−εir/kT )
QR

and niv = n
exp

(−εiv/kT )
QV

Thus, the velocity distribution is Maxwellian, as for the monatomic case, and
is called a Maxwell–Boltzmann distribution defined with one temperature. An
H theorem may also be demonstrated in this case. We also have p = nkT
and q = 0.

Remarks

The expressions for rotational and vibrational energies can be developed by
taking into account the models suggested in Appendix 1.2. Thus, the classical
model for rotation leads to the well-known result (Appendix 2.3):

ER = kT

If, for vibration, the harmonic oscillator model is chosen, we also find the
following analytic result (Appendix 2.3):

EV = kθv
exp(θv/T )− 1

However, it is not always possible to use this model, in particular at
high temperatures, when it is necessary to use the anharmonic model
(Appendix 1.2).
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2.4 Pure diatomic gases: general
non-equilibrium regime

Diatomic gases dominate the physical systems encountered for non-equilibrium
flows at high speeds and high temperatures. In many situations, indeed, the
reference time θ can be relatively small; it can be, for example, the average
transit time of the fluid particles along a model or in a duct, or the duration of
an aerodynamic disturbance. Referring to typical characteristic times of Figs 9
and 10, θ can be of the order of τV or even smaller, while remaining generally
higher than τT and τR , except in particular cases, such as with a very rarefied gas.
If we thus consider this general case, and if we combine the collisions T and R,
we can define a time τTR much lower than θ , so that εTR � 1, and

JTR = 0 (2.11)

A solution of Eqn. (2.11) is determined as previously with the collisional
invariants specific to TR collisions, that is:

m, mv , and
1

2
mv2 + εir

so that we find,1,13 as a solution of Eqn. (2.11):

fi = niv

( m

2πkT

)3/2
exp

(
−mu

2

2kT

)
gir exp

(−εir /kT )
QR

(2.12)

with

n =
∑
iv

niv

The quantities n, V (or u), and E are always given formally by the Euler
equations (with p = nkT , q = 0). However, in the expression for the total
energy E , the vibrational part eV (or EV per molecule) cannot be expressed as a
function of T and remains unknown at this stage, depending on the unspecified
vibrational populations niv , since

EV = 1

n

∑
iv

niv εiv

Thus, if the distribution (2.12) is an equilibrium distribution for transla-
tion and rotation (Maxwell–Boltzmann), with ET + ER = 5

2kT , the same
does not apply for the vibrational mode. In order to determine the vibrational
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distribution, the two following cases should be distinguished:

• τV � θ , (εV � 1). The vibrational population does not change during the
reference time, and EV remains constant (dEVdt = 0 in the Euler equations).
The flow is said to be ‘frozen’. This is the opposite case to the equilibrium
regime.

• τV ∼ θ , (εV ∼ 1). It is necessary to start again from the Boltzmann equation
in which we have JTR = 0. Since the collisional invariants of JTR are not the
same as those of JV , we have

dfi
dt

= JV (2.13)

Both terms of Eqn. (2.13) have the same order of magnitude, and the flow is
in vibrational non-equilibrium.

In this last case, if Eqn. (2.13) is integrated in the velocity space v and
summed over the rotational levels ir , we obtain the equations of evolution of
the vibrational populations, that is:14

∂niv
∂t

+ ∂ · nivV
∂r

=
∑
ir ,j ,k,l

∫
�,vi ,vj

(
f ′
k f

′
l − fi fj

)
I k,l
i,j g d� dvi dvj (2.14)

We define

ak,l
i,j = 1

ninj

∫
�,vi ,vj

fi fj I
k,l
i,j g d� dvi dvj

and

a
i,j
k,l = 1

nknl

∫
�,vi ,vj

f ′
k f

′
l I
k,l
i,j gd�dvidvj

thus Eqn. (2.14) is written

∂niv
∂t

+ ∂ · nivV
∂r

=
∑
ir ,j ,k,l

nknla
i,j
k,l − ninja

k,l
i,j (2.15)

Here, ak,l
i,j and a

i,j
k,l represent the equilibrium collision-rate coefficients cor-

responding to the transitions i, j →← k, l , and therefore are independent of the
populations. These rates may also be defined independently of the assumption
of the reversibility of the collisions, and other formulations are possible for Eqn.
(2.15) (Appendix 2.4). Then, if the structure of the distribution function (2.12)
is taken into account, a general relation between direct and inverse collision rates
may be found, that is:

a
i,j
k,l = ak,l

i,j exp(
ε) (2.16)
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with


ε = εk + εl − εi − εj
kT

(collisional balance of internal energy)

Equation (2.16) is called the detailed balance condition.
If the rotational populations are assumed to be in equilibrium (2.12), Eqn.

(2.15) may be written in a more symmetrical way4 (Appendix 2.4):

∂niv
∂t

+ ∂ · nivV
∂r

=
∑
jv ,kv ,lv

nkv nlv a
iv ,jv
kv ,lv

− niv njv a
kv ,lv
iv ,jv

(2.17)

where the summations over the rotational levels have been implicitly made.
These equations (one for each level), called relaxation equations, close the

system of Euler equations in the non-equilibrium case (εV ∼ 1). They formally
give the evolution of the populations from which the vibrational energy EV
can be deduced. To complete these equations, it is necessary of course to use a
physical model for the collision rates.

Harmonic oscillator model

As previously discussed, this model is valid only at‘moderate’ temperatures,when
the highest vibrational levels are not significantly populated. The transitions TV
are ‘active’, as the transitions VV give a null vibrational balance. The rates of
collision are thus of the type akviv or aivkv and can be expressed as functions of a0

1
(rate of de-excitation 1 → 0). Thus

aiviv+1 = (iv + 1) a0
1

and

a
iv+1
iv

= aiviv+1 exp

(
−θv
T

)
(detailed balance) (2.18)

Moreover, the transitions are supposedly monoquantum,therefore kv = iv±1.
With these assumptions, we find (Appendix 2.4) that the relaxation equations

(2.17) may be replaced by only one equation concerning the energy of vibration
EV . This equation is obtained by multiplying Eqn. (2.17) by εiv and summing
over the levels. The equation is the Landau–Teller equation:15

dEV
dt

= EV − EV
τV

(2.19)

where EV is the equilibrium vibrational energy at the local temperature T , and
τV is a ‘relaxation time’ equal to[

na0
1

(
1 − exp

θv

T

)]−1

(2.20)
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The variation of the vibrational energy is thus proportional to its local devia-
tion from the equilibrium. The extreme cases may be easily deduced from Eqn.
(2.19). Thus:

If
τV

θ
→ ∞ then

dEV
dt

→ 0 (frozen case)

If
τV

θ
→ 0 then EV → EV (equilibrium case)

Equation (2.19) thus makes it possible to close the Euler system, assuming
that the vibrational relaxation time is known, either from experiment (Chapter
12) or from theory. According to Eqn. (2.20), τV is inversely proportional to n,
and thus we can generally write

τV = 1

P
f (T )

For a very large temperature range and many gases, we have11,15,16

τV p ∼ T−1/3 (2.21)

The order of magnitude of τV is given in Chapters 9 and 12.

Remarks

The non-equilibrium solutions are not ‘stable’ solutions within the meaning of
the H theorem but correspond to transitional solutions and take account of the
selected timescale. If, after a non-equilibrium period (caused for example by a
disturbance), the system is left to itself, it gradually finds again an equilibrium
Maxwell–Boltzmann distribution (isolated system).

Another cause of the variation of the vibrational populations is the sponta-
neous emission of radiation, but this variation is much lower owing to a very
different characteristic time.

2.5 Pure diatomic gases: specific
non-equilibrium regimes

Collisions involving vibrational exchanges do not have the same probability
(Chapter 9): thus, TV exchanges in which only one molecule changes its level
are generally dominant at high temperature and for the highest levels, whereas
VV exchanges are more probable at low temperature and for the low levels (we
are then close to the conditions of validity of the harmonic oscillator model). As
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for the resonant collisions Vr, which represent a particular case of VV collisions,
they are the most probable in the majority of situations. These various cases and
their consequences are successively examined below.

2.5.1 Dominant TV collisions

These collisions, of course, include the T and R collisions (trivial TV collisions).
Then:

JTV = 0 (2.22)

The corresponding collisional invariants are the usual invariants only,m, mv
and 1

2mv
2 + εir + εiv , so that for fi we find the equilibrium Maxwell–Boltzmann

distribution (Eqn. (2.10)), with the corresponding Euler equations (Eqn. (2.7)):
TV collisions are thus sufficient to establish an equilibrium regime.14

2.5.2 Dominant VV collisions

In this case, we have

JVV = 0 (2.23)

As in the previous case, the VV collisions include the T and R collisions.
Then, the collisional invariants are not only the usual invariants m, mv, and
1/2mv2+εir+εiv , but also the quantum number itself, iv . If we assume, as is gener-
ally the case, that the transitions are isoquantum (and generally monoquantum,
with n =1), we have

iv + jv = (iv ± n)+ (jv ∓ n)

The consequence is a Maxwell–Boltzmann distribution for translation and
rotation, as in the previous cases, and a Treanor distribution for the vibrational
population:17

niv = n
exp

(−εiv/kT + Kiv
)∑

iv exp
(−εiv/kT + Kiv

) (2.24)

The macroscopic parameter K is unknown, as are n, V , T , and requires a
single relaxation equation to close the Euler system. Thus, starting again from
the Boltzmann equation with JVV = 0, we have

dfi
dt

= JTV
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Multiplying this equation by the invariant iv , integrating over the velocity
space, and summing over all levels, we obtain the following relaxation equation,
in which only the monoquantum transitions are taken into account:

dIV
dt

= [exp (−K )− 1]
∑
iv

aiviv+1niv+1 (2.25)

Here, IV represents a ‘mean quantum number’, defined by the following
relation:

nIV =
∑
iv

niv iv

Therefore, IV is connected to the parameter K by this definition. The Euler
system and the relaxation equation (2.25), in which a physical model must be
introduced, constitute a closed system giving the quantities n, V , T , as well as
the populations niv and the vibrational energy EV .

The Treanor distribution has the property to present a minimum. It is therefore
theoretically possible to obtain a ‘population inversion’ when niv+1 > niv . This
condition is widely known to produce an inversion resulting in laser action. The
inversion conditions are thus fulfilled when

K >
εiv+1 − εiv

kT

This inversion, in fact, occurs for high levels with a small energy gap and
generally occurs to a significant degree in the case of a mixture in which one of
the components ‘feeds’ the high levels of another component by VV exchange
(CO2/N2 mixture for example; Chapter 10).

Returning to the physical model, if we adopt the harmonic oscillator model,
with εiv = ivhνv , we may write

K − hνv
kT

= − hνv
kTV

because generally we have K � hνv
kT .

Thus, a particular ‘vibrational temperature’ TV is defined, so that it is also
possible to define a Boltzmann distribution such as

niv = n
exp

(
−εiv/kTV)∑

iv

exp
(
−εiv/kTV) (2.26)

The Treanor distribution is thus reduced to a Boltzmann non-equilibrium
distribution at a temperature TV different from T . This distribution does
not give any population inversion. The relaxation equation (2.25) is reduced
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to the Landau–Teller form of equation (2.19), with, moreover, EV =
EV (TV ) and EV = EV (T ); the equations giving IV and EV are equivalent, εiv
becoming a collisional invariant (it is proportional to iv).

The parameterK is thus related to anharmonicity and non-equilibrium,which
thus highlights the importance of the physical model in the analysis of non-
equilibrium flows. Simple models, such as the standard harmonic oscillator
model, if they are useful in giving a qualitative description, can sometimes mask
significant aspects of these flows.

2.5.3 Dominant resonant collisions

Here, the anharmonic oscillator model is considered.
These collisions, denoted Vr, are a particular type of VV collisions. Here,

iv → jv and jv → iv , which represents a strict vibrational exchange. This type
of exchange is very probable in particular at low temperature. Thus we have

JVr = 0 (2.27)

The corresponding collisional invariants arem,mv, 1
2mv

2 + εir + εiv , and εiv .
Here, iv is also invariant, but not independent, since if εiv is invariant, iv is also
invariant, the reverse not being true, except with the assumption of the harmonic
oscillator. The corresponding distribution is, as previously discussed, a Maxwell–
Boltzmann distribution for the translation and rotation; for the vibration,
we have

niv = n
exp

(
−εiv/kTV)∑

iv

exp
(
−εiv/kTV) (2.28)

This distribution is identical to that of the preceding case, which included
the assumption of the harmonic oscillator, but here it does not depend on the
physical model. Thus it is possible to define a vibrational temperature inde-
pendently of the model. The relaxation equation necessary to close the Euler
system is obtained by multiplying the Boltzmann equation by the invariant εiv
and integrating and summing. This equation is written

n
dEV
dt

=
∑
iv

εiv

∫
v

(JTV + JVV )dv (2.29)

with

EV = 1

n

∑
iv

εiv exp
(
−εiv/kTV)

QV (TV )
(2.30)
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and
QV (TV ) =

∑
iv

exp
(
−εiv/kTV)

In the JVV term, the Vr collisions are absent. The result, developed for
monoquantum transitions,13 is presented in Appendix 2.5.

2.5.4 Physical applications of the results

The preceding results can be applied to flows for which the gas presents an
important degree of non-equilibrium (downstream from shock waves, super-
sonic expansions, and so on; see Chapter 7); however, before adopting a model,
it is necessary to consider its field of validity in practical cases. Thus, for exam-
ple, at low temperature, as already discussed, VV collisions are most probable
for the low levels. For the higher levels, TV collisions are more probable at high
temperature (Chapter 9, Figs 43 and 44).

This example shows the limit of the preceding results deduced from a too
rigid scheme. The separation into groups of levels inevitably presents some
arbitrariness and may not be easily derived from a general method. In the same
way, in a spatial or temporal evolution, the state of the system can be successively
dominated by different types of collisions. Finally, the various types of collision
can have similar probabilities, prohibiting any separation into different groups.
In these cases, it is necessary to use the general relaxation equations (2.17) with
collision rates deduced from theory or reliable experiments.

2.6 Gas mixtures: equilibrium regimes

As previously discussed, only those gases that have a simple structure, that is,
essentially mono and diatomic gases in binary mixture, are considered in order
to point out the main characteristics of a gas mixture flow. A generalization
to more complex mixtures is examined within the framework of examples in
Chapters 9 and 10.

2.6.1 Mixtures of monatomic gases

For a mixture of two species p and q with only elastic collisions, the Boltzmann
equation specific to the species p is written

dfp
dt

= JTpp + JTpq (2.31)
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where the collisions pp and pq are taken into account. There is a similar equation
for the species q.

In the collisional regime (θ � τTpp , τTpq), we therefore have

JTpp + JTpq = 0 (2.32)

The solutions of Eqn. (2.32) are the classical collisional invariants mp ,mpvp ,
and 1

2mpv
2
p . Taking into account the definitions of the usual macroscopic

quantities (Chapter 1), we obtain for fp the following Maxwellian distribution:

fp = np
( mp

2πkT

)3/2
exp

(
−mpu

2
p

2kT

)
(2.33)

A similar expression for the species q is obtained. The Euler equations (2.7)
remain valid for the mixture, with

p = pp + pq = (np + nq)kT = nkT

q = 0

Up = 0

In particular, there is no diffusion of species, and the conservation equation
of the species is written

∂np
∂t

+ ∂ · npV
∂r

= 0 or
∂ρp

∂t
+ ∂ · ρpV

∂r
= 0 (2.34)

There is of course a similar equation for the species q.
For mixtures of monatomic gases with components of very different mass

(plasmas, for example), this solution may be not valid, and transitional non-
equilibrium situations are possible.

2.6.2 Mixtures of diatomic gases

Without repeating in detail the preceding reasoning, if all characteristic times
of translation, rotation, and vibration specific to each species or interspecies are
much smaller than the reference time, the distribution of the species p is an
equilibrium Maxwell–Boltzmann distribution:

fip = nip
( mp

2πkT

)3/2
exp

(
−mpu

2
p

2kT

)
(2.35)

with

nip = np
exp

(−εip/kT )
QR (T )QV (T )

(2.36)
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The Euler equations and the species conservation equations (2.34) are still
valid. In the definition of the total energy E , all types of energy are present.

The mixture of a monatomic gas and a diatomic gas in the collisional regime
possesses respective distributions identical to the cases above. The classical exam-
ple is that of a gas of molecules and atoms arising from the dissociation of these
molecules in the equilibrium regime (Chapter 6).

2.7 Mixtures of diatomic gases in vibrational
non-equilibrium

Typical non-equilibrium situations involve the vibrational mode, as in the case
for pure gases. However, even for a binary mixture, many cases are possible,
depending on the relative scale of characteristic times. Thus, for the component
p, there are two TV characteristic times, corresponding respectively to colli-
sions pp and pq, i.e. τTVpp and τTVpq , and two VV characteristic times, i.e. τVVpp
and τVVpq .

Generally, the probabilities of the VVpp and VVpq collisions and particularly
of the resonant collisions Vrpp and Vrqq are high, as for pure gases. Thus, a
vibrational temperature TVp for the component p, and a temperature TVq for
the component q, can be defined. This results from the solution of the following
equations:

JVrpp = 0 and JVrqq = 0 (2.37)

Taking into account the specific invariants of these collisions (2.27), we have

fip = np
( mp

2πkT

)3/2
exp

(
−mpu

2
p

2kT

)
gir p exp

(−εir p/kT ) exp
(
−εiv p/kTvp)

QR (T )QV
(
TVp

)
(2.38)

and a similar function forfiq .
The relaxation to equilibrium is due to TVpp and TVpq collisions, which may

have different characteristic times, and also to the VVpq collisions, ensuring a
coupling between the components. This coupling may also accelerate the relax-
ation to equilibrium if τVVpq is very short. Then, there is a quasi-single relaxation
(with TVp � TVq). If not, both gases evolve quasi-independently. Two exam-
ples illustrating these two cases are discussed in Chapters 9 and 12 (N2/O2 and
CO/N2). With the definition of vibrational temperatures, it is not necessary to
solve the equations (2.17), but only the global relaxation equation giving EVp ,
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that is:

np
dEVp
dt

=
∑
ivp

εivp

∫
vp

JVpdvp =
∑
ivp

εivp

∫
vp

(
JTVpp + JTVpq + JVVpq

)
dvp

(2.39)

This equation should be coupled with the Euler equations, also valid in this
case. With the assumption of the harmonic oscillator model,15,18 we obtain an
analytic expression for this equation given in Appendix 2.5, which depends on
all involved relaxation times.

The generalization to a mixture of several mono and diatomic gases (for
example, the case of air at high temperature) generally requires simplifications
(Chapter 9).

2.8 Mixtures of reactive gases

Here, we successively examine the cases of mixtures of reacting gases without
and with internal energy modes.

2.8.1 Reactive gases without internal modes

Only reactive collisions and elastic collisions take place. As, generally, τT � τC

(Figs 9 and 10) in the collisional regime, we have for the species p

JTp = 0 (2.40)

and the corresponding Maxwellian distribution function, i.e.

fp = np
( mp

2πkT

)3/2
exp

(
−mpu

2
p

2kT

)
(2.41)

The Euler equations are therefore valid, and the evolution equations for the
species p are formally given by Eqn. (1.28), that is:

∂np
∂t

+ ∂ · npV
∂r

=
∫
vp

JCpdvp (2.42)

Or, after multiplying bymp :

∂ρp

∂t
+ ∂ · ρpV

∂r
= mp

∫
vp

JCpdvp = ẇp
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with ∑
p

mp

∫
vp

JCpdvp =
∑
p

ẇp = 0

If the characteristic reaction time is short compared to the reference time,
Eqn. (2.42) is reduced to

ẇp
mp

=
∫
vp

JCpdvp = 0 (2.43)

which corresponds to zero balance for the creation of each species: we are then
also in the case of equilibrium for the chemical reactions.

The development of the preceding relations can be made only for particular
cases, given the diversity of the possible reactions (see Chapters 9 and 10, for
example).

We consider the example of only one chemical reaction corresponding to
collisions between two components p and q that gives two other components p′
and q′, i.e.

p + q →← p′ + q′

The chemical balance of the species pcan be written

ẇp
mp

=
∫
vp

JCpdvp = krnp′nq′ − kf npnq

with the following definitions for the forward kf and backward kr rate
coefficients:

kf =
∫

�,vp ,vq

fpfq
npnq

I
p′,q′
p,q gpqd� dvpdvq =

∫
vp ,vq

fpfq
npnq

C
p′,q′
p,q gpqdvpdvq

kr =
∫

�′,vp′ ,vq′

fp′ fq′

np′nq′
I
p,q
p′,q′gp′q′d�′dvp′dvq′ =

∫
vp′ ,vq′

fp′ fq′

np′nq′
C
p,q
p′,q′dvp′dvq′

where C
p′,q′
p,q and C

p,q
p′,q′ represent the total cross sections of the direct and reverse

reactions respectively.
The rate coefficients kf and kr depend on the reactive collision cross sections

and on the translational distribution functions but not on the species concen-
trations. They can also be called Arrhenius rate constants, which depend only on
the temperature T and the reaction model. Thus we have

∂np
∂t

+ ∂ · npV
∂r

= krnp′nq′ − kf npnq (2.44)
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In the case of chemical equilibrium (ẇp = 0), we have

kf
kr

= np′nq′

npnq
= Kc (T ) (2.45)

Here, Kc (T ) is the equilibrium constant of the reaction, dependent only on
the temperature.

Equations (2.44) or (2.45), coupled with the Euler equations, enable us to
determine the concentrations of the components.

2.8.2 Reactive gases with internal modes

In this case, the species conservation equation is written

∂np
∂t

+ ∂ · npV
∂r

=
∑
ip

∫
vp

JCpdvp

With the same example as in the preceding case, we have∑
ip

∫
vp

JCpdvp = krnp′nq′ − kf npnq

with

kf =
∑

ip jqkp′ lq′
ξipξjq k

kp′ lq′
ip jq

and kr =
∑

ip jqkp′ lq′
ξkp′ ξlq′ k

ipjq
kp′ lq′

(2.46)

Here, k
kp′ lq′
ip jq

and k
ipjq
kp′ lq′

are the reaction-rate constants per level. They are

independent of the populations.
If the distribution is a Boltzmann distribution at a temperature T , then kf

and kr depend only on that temperature. The same of course applies for the

equilibrium constant Kc = kf
kr

, and the relation (2.45) remains valid. If not, kf
and kr depend on the populations and thus possibly on non-equilibrium. If, as
usual, the rotational mode is in equilibrium but not the vibrational mode, we
have (omitting the indices of species):

ni
niv

= nir
n

= exp
(− εirkT )
QR

and

kf =
∑
iv jv kv lv

ξiv ξjv k
kv lv
iv jv

(2.47)
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where

kkv lviv jv
=

∑
ir jr kr lr

exp
(
− εir+εjrkT

)
(
QR

)2 kklij

is the vibrational reaction constant, independent of the populations. We have
similar relations for kr .

Finally, therefore, the constants kr and kf may depend on non-equilibrium and
in particular on the vibrational temperatures TVp and TVq . A related example is
given by the dissociation–recombination reactions (Chapter 5).

Appendix 2.1 The H theorem

A geometrically closed domain D is considered. It containsN identical particles
of a pure gas undergoing elastic collisions and specular reflections with the wall.
Thus, the distribution function of the reflected particles differs from that of the
incident particles only by its sign; there is thus no ‘exchange’ with the external
medium. Among N particles, Na have velocity va at the coordinate ra in the
elementary volume δv = dvadra . The generalized element of volume in a 6N
dimension space is (δv)N , and the probability of finding this distribution is
equal to

W = N !∏
a
Na !(δv)

N (2.48)

where N !∏
a
Na ! represents all possible combinations for identical particles.

With Stirling’s approximation, we have

LogW = −
∑
a

NaLogNa

As there is a large number of particles, the summations may be replaced by
integrations, so that we have

LogW = −
∫
D

∫
va

faLogfa dra dva = −H (2.49)

From this relation, the entropy SD of the domain may be defined as

SD = k LogW

then
SD = −kH
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Equation (2.49) depends only on the time, so thatH = H (t ). In order to know
its temporal evolution, the Boltzmann equation is multiplied by

(
1 + Logf

)
and

integrated in the domain D and the velocity space. Taking into account the
symmetry properties (1.87), we find

dH

dt
= −1

4

∫
D

∫
va ,vb

(
Log

f ′
a f

′
b

fafb

) (
f ′
a f

′
b − fafb

)
gI d� dr dva dvb (2.50)

It can easily be seen that the integral is always positive or null, so that if there
is an initial disturbance in the system, H always decreases until cancelling out:
the corresponding ‘stable’ state is obtained for

f ′
a f

′
b = fafb

We then have a Maxwellian distribution (2.6), and this state may be considered
the‘equilibrium’state of the system. It is of course possible to generalize this result
to the case of polyatomic gases, to mixtures, reactive or not, and so on.

Appendix 2.2 Properties of the Maxwellian
distribution

In the case of a pure gas dominated by elastic collisions (Maxwellian regime),
we have

f = n
( m

2πkT

)3/2
exp

(
−mu

2

2kT

)
In addition to the Euler equations, characteristic of this regime, particular

quantities used in the following chapters can be calculated.

Average peculiar velocity U

The mean peculiar velocity is zero, but the average of U is

U = 1

n

∫
v

fu dv

From the properties of the Eulerian integrals (Appendix 2.6), we have

U =
(

8kT

πm

)1/2

(2.51)

This value is independent of n.
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Average quadratic velocity W

We have

nW 2 =
∫
v

fu2dv

so that

W =
(

3kT

m

)1/2

= 1.086U (2.52)

These velocities U andW may be compared to the sound speed a in an ideal
gas (Chapter 8), that is:

a =
(
γ kT

m

)1/2

(2.53)

with γ = CT+k
CT

, the ratio of specific heats in a gas with elastic collisions, for
which

CT = dET
dT

= 3

2
k, γ = 5

3
, and a =

(
5kT

3m

)1/2

Comparing Eqns (2.51) and (2.53), we see thatU and a have comparable val-
ues. This is not surprising, since macroscopic disturbances (arising for example
from external media) can be propagated only by collisions.

Collision frequency Z

For a pure gas, we have (1.56),

nZ =
∫

�,va ,vb

fafbgI d� dva dvb

With the variable change va , vb → g,G, taking into account the properties
of the Eulerian integrals (Appendix 2.6) and using the rigid elastic sphere model(
I = d2

4

)
, we find that

Z = 4nd2
(
πkT

m

)1/2

= τ−1
el (2.54)

The order of magnitude of the mean free path λmay thus be found, i.e.

λ ∼ U

Z
=
(√

2πnd2
)−1

(2.55)
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With this model, the total number of collisions per second Z0 is

Z0 = 2n2d2
(
πkT

m

)1/2

= n

2
Z (2.56)

In the same way, the total number of collisions per second in a binary mixture
p, q is equal to

Z0 = npnq

(
dp + dq

2

)2 (8πkT

mr

)1/2

(2.57)

Appendix 2.3 Models for internal modes

Rotational mode: rigid rotator model

The equilibrium Boltzmann distribution for a diatomic gas is

ER =
∑
ir

nir εir
n

= gir εir exp
(−εir/kT )

QR(T )
(2.58)

with (Appendix 1.2):

gir = 2ir + 1

εir = hγr ir (ir + 1) = kθr ir (ir + 1)

QR =
∑
ir

gir exp
(−εir/kT ) =

∑
ir

(2ir + 1) exp

[
−θr
T
ir (ir + 1)

]
If we assume a continuous rotational spectrum because the rotational levels

are close, we have, setting x = ir (ir + 1):

ER = kθr

⎡⎣ ∞∫
0

x exp

(
−θr
T
x

)
dx

⎤⎦⎡⎣ ∞∫
0

exp

(
−θr
T
x

)
dx

⎤⎦−1

so that we find

ER = kT (2.59)

The rotational specific heat CR is then

CR = dER
dT

= k
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Vibrational mode: harmonic oscillator model

With the ground state ε0 = hνv/2, and εiv = ivhνv = ivkθv , EV = ∑
iv

niv
n εiv ,

we have

EV = kθv

⎡⎣∑
iv

iv exp

(
−iv θv

T

)⎤⎦ [QV (T )]
−1

where

QV (T ) =
∑
iv

exp

(
−iv θv

T

)

Setting iv = n and exp
(
−θv/T) = x , we have EV = kθv

∑
n
nxn∑

n
xn .

When n → ∞, then
∑
n
xn → (1 − x)−1,

∑
n
nxn → x/(1 − x)2, and then

EV = kθv

exp
(
θv
/
T

)
− 1

(2.60)

For T � θv , we obtain the classical limit

EV → kT (2.61)

The corrections brought to relations (2.59) and (2.61) by the effects of
rotation–vibration interaction (vibrating rotator, anharmonic oscillator; see
Appendix 1.2) are sufficiently weak so that we can neglect them here.

Appendix 2.4 General vibrational
relaxation equation

Effects of rotational transitions

The general relaxation equation giving the vibrational populations (Eqn.
(2.15)) is

∂niv
∂t

+ ∂ · nivV
∂r

=
∑
ir ,j ,k,l

(
nknla

i,j
k,l − ninja

k,l
i,j

)
As the rotational distribution is in equilibrium, we have

ni
niv

= nir
n

= exp
(−εir/kT )
QR(T )

(2.62)
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Substituting (2.62) in (2.15), and separating the summations over both modes,
we obtain for the left-hand side of this equation:

∑
jv ,kv ,lv

∑
ir ,jr ,kr ,lr

[
nkv nlv exp

(
−εkr + εlr

kT

)
a
ir ,iv ,jr ,jv
kr ,kv ,lr ,lv

− niv njv exp

(
−εir + εjr

kT

)
akr ,kv ,lr ,lv
ir ,iv ,jr ,jv

]
[QR(T )]−2

Finally, the relaxation equation (2.15) may be written in the following
symmetrical form (Eqn. (2.17)):

∂niv
∂t

+ ∂ · nivV
∂r

=
∑
jv ,kv ,lv

(
nkv nlv a

iv ,jv
kv ,lv

− niv njv a
kv ,lv
iv ,jv

)

with

a
iv ,jv
kv ,lv

=
⎡⎣ ∑
ir ,jr ,kr ,lr

exp

(
−εkr + εlr

kT

)
a
ir ,iv ,jr ,jv
kr ,kv ,lr ,lv

⎤⎦ [QR (T )]
−2

and a similar expression for akv ,lv
iv ,jv

.
In Eqn. (2.17), the vibrational collision rates take into account all possible

rotational transitions.

Various forms of the vibrational relaxation general equation

The previous form (Eqn. (2.17)) is simple and symmetrical. It also has the advan-
tage of allowing us to separate the terms related to the populations (ni , nj , nk , nl)

from those depending on the collision itself (ak,l
i,j , a

i,j
k,l). Other forms that are

sometimes physically clearer are also possible.
Later on, in order to simplify the form of the expressions, the vibrational

indices are omitted.
Thus, if Qk,l

i,j is the mean probability of an inelastic collision, and Z is the
collision frequency, we have

ak,l
i,j = Z

n
Qk,l
i,j (2.63)

For moderate temperatures, Z may be considered the frequency of elastic
collisions, so that Zk,l

i,j = ZQk,l
i,j represents the frequency of inelastic collisions.
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The production term
∑
j ,k,l
ninja

k,l
i,j may then be written

∑
j ,k,l

Z
n ninjQ

k,l
i,j , where

Z

n
is the mean number of collisions undergone by one particle per

second
Z

n
nj is the mean collision frequency between one particle and

particles nj
Z

n
njni is the mean collision frequency between particles ni and

particles nj∑
j ,k,l

Z

n
ninjQ

k,l
i,j is the mean number of particles ni having undergone a

transition i → k per collision and per second.

Appendix 2.5 Specific vibrational
relaxation equations

Landau–Teller equation

If we only take into account the monoquantum transitions, the general relaxation
equation (2.17) after multiplication by εiv and summation over iv may be written

n
dEV
dt

=
∑
iv ,jv

εiv

(
niv+1nja

iv
iv+1 − niv njv a

iv+1
iv

+ niv−1njv a
iv
iv−1 − niv njv a

iv−1
iv

)
(2.64)

Taking into account Eqn. (2.18), we have

1

a0
1

dEV
dt

=
[

exp

(
−hνv
kT

)
− 1

]∑
iv

ivhνvniv + nhνv exp

(
−hνv
kT

)

As EV = 1
n

∑
iv

ivhνv , and EV = hνv exp
(
− hνv
KT

)
1−exp

(
− hνv
KT

) , we find

dEV
dt

= na0
1

[
1 − exp

(
−hνv
kT

)] (
EV − EV

)
(2.65)

This is the Landau–Teller equation.
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Relaxation equation with dominant VV collisions

The relaxation equation is the following:

n
dIV
dt

=
∑
iv

iv

∫
v

JTV dv

Keeping only the monoquantum transitions, we find∫
v

JTV dv = n2[1 − exp(−K )]
(
niv+1a

iv
iv+1 − niv a

iv−1
iv

)
(2.66)

Equation (2.25) is easily deduced from Eqn. (2.66), i.e.

dIV
dt

= [exp(−K )− 1]
∑
iv

aiviv+1niv+1

Dominant resonant collisions

Starting from the following relaxation equation:

n
dEV
dt

=
∑
iv

εiv

∫
v

(JTV + JVV ) dv

and keeping only monoquantum transitions, we find

n
dEV
dt

= n
∑
iv

niv+1a
iv
iv+1

(
εiv+1 − εiv

)
×
{

exp

[
− (
εiv+1 − εiv

) ( 1

kT
− 1

kTV

)]
− 1

}
−
∑
iv ,jv

niv+1njv a
iv ,jv+1
iv+1,jv

(
εiv+1 − εiv

)
×
{

exp

[
− (
εiv+1 + εjv − εiv − εjv+1

) ( 1

kT
− 1

kTV

)]
− 1

}
(2.67)

The first term of the right-hand side of Eqn. (2.67) represents the balance of
the TV collisions and the second that of the other VV collisions.

If we adopt the harmonic oscillator model, we again find the Landau–Teller
equation.

Relaxation equations for a binary mixture of diatomic gases

With the harmonic oscillator model for each component p and q, we have the
relations (Eqn. (2.18)) for the collision rates TVpp and TVpq. For the collision
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rates VVpq, we have the following relation:

a
ip+1,jq−1
ip ,jq

= jq(ip + 1)a
1p ,0q
0p ,1q

(2.68)

The vibrational energy balance is zero for the collisionsVVpp andVVqq, which
enables us to define vibrational temperatures specific to each component TVp
and TVq and thus distribution functions of type (2.28).

The general relaxation equation for the component p is

np
dEVp
dt

=
∑
ivp

εivp

∫
v

(
JTVpp + JTVpq + JVVpq

)
dv (2.69)

and there is a similar equation for the component q. Finally, we have

dEVp
dt

=
(
ξp

τTVpp
+ ξq

τTVpq

) (
EVp − EVp

)
+ ξq

kθvqτVVpq

[
EVq

(
EVp + kθvp

)
exp

(
θvq−θvp
T

)
−EVp

(
EVq + kθvq

) ]
dEVq
dt

=
(
ξp

τTVqp
+ ξq

τTVqq

) (
EVq − EVq

)
+ ξp

kθvpτVVpq

[
EVq

(
EVp + kθvp

)
exp

(
θvq−θvp
T

)
−EVp

(
EVq + kθvq

) ]
(2.70)

For the relaxation times, we have the following relations:

τTVpp =
{
na

0p,p
1p,p

[
1 − exp

(
−θvp
T

)]}−1

τTVpq =
{
na

0p,q
1p,q

[
1 − exp

(
−θvp
T

)]}−1

(2.71)

and similar expressions for τTVqq and τTVqp 	= τTVpq :

τVVpq = τVVqp = 1

na
1p,0q
0p,1p

exp

(
θvq − θvp

T

)
(2.72)

Knowledge of these five relaxation times is thus necessary to solve the system
of Euler and relaxation equations. Examples are presented in Chapter 9.

For mixtures of several gases, there is an important number of possible
collisions, so that approximations become necessary (Chapters 9 and 10).
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Appendix 2.6 Properties of the Eulerian integrals

Integrals including only scalar quantities

+∞∫
−∞

x2n exp
(−kx2) dx = (2n − 1) (2n − 3) · · · 5.3

2n

( π

k2n+1

)1/2

= 2

∞∫
0

x2n exp
(−kx2) dx

∞∫
0

x2n+1 exp
(−kx2) dx = n!

2kn+1

Integrals including vectors and second-order tensors

(Vector u: components ux , uy , uz . Tensor B independent of u.)

+∞∫
−∞

f (u) du = 0 if f (u) is an odd function

+∞∫
−∞

f (u) u2
x du =

+∞∫
−∞

f (u) u2
y du =

+∞∫
−∞

f (u) u2
z du = 1

3

+∞∫
−∞

f (u) u2du

+∞∫
−∞

f (u)uu du =
⎛⎝1

3

+∞∫
−∞

u2f (u) du

⎞⎠ I and

+∞∫
−∞

f (u)
0
uu du = 0

+∞∫
−∞

f (u) u2
xu du = 1

3

+∞∫
−∞

f (u) u4du and

+∞∫
−∞

f (u) u4
xdu = 1

5

+∞∫
−∞

f (u) u4du

+∞∫
−∞

f (u) u2
xu

2
y du = 1

15

+∞∫
−∞

f (u) u4du and

+∞∫
−∞

f (u)uu

(
0
uu : B

)
du

= 2

15

0

B

+∞∫
−∞

f (u) u4du



THREE

Transport and Relaxation in
Quasi-Equilibrium Regimes:
Pure Gases

3.1 Introduction

The solutions presented in the preceding chapter concern only purely collisional
regimes, but may include non-equilibrium flows. These regimes do not take
into account the influence of the exchanges with the background: this means
that these flows are relatively far from the boundaries or interfaces limiting the
domain. As already discussed, these boundaries play a geometrical role only.

This is of course not entirely realistic for non-isolated media limited by bound-
aries or interfaces. However, in continuum flows, the influence of the background
is generally important in the immediate neighbourhood of these boundaries and
is relatively weak elsewhere. Therefore, we may consider that in these zones the
collisions between particles remain dominant for the determination of the dis-
tribution function, but that this function is somewhat influenced by the outer
medium. From these considerations, it seems logical to expand the distribution
function in a series of a ‘small’ parameter, chosen as the ratio of a characteristic
time between collisions and a reference time, that is, the parameter ε = τ/θ ,
defined in Chapter 2, and to search for solutions of higher order in ε.

The difficulty lies,however, in the fact that there are generally several character-
istic times with different orders of magnitude, so that non-equilibrium situations
may occur. Thus, we will examine a number of these situations representative of
realistic flows and will try to obtain sufficiently general solutions.

3.2 Expansion of the distribution function

3.2.1 Definition of flow regimes

If we consider only two characteristic times14 (we will see below that this is
generally sufficient) τI and τII , which differ by a different order of magnitude,
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and if we name JI and JII the respective corresponding collisional balances, the
Boltzmann equation may be written in the following way:

df ∗
ip

dt∗
= 1

εI
J ∗I + 1

εII
J ∗II (3.1)

where

εI = τI
θ

and εII = τII
θ

As we consider regimes close to the collisional regime, we set εI � 1, (τI � θ).
Collisions of type I are then dominant, that is they take place during the shortest
timescale. The ‘small parameter’ ε is therefore equal to εI , ε = εI .

Expanding the distribution function in a series of this parameter and stopping
at the first order, we have

f ∗
ip = f ∗0

ip + εf ∗1
ip

or in a dimensional form

fip = f 0
ip(1 + ϕip) (3.2)

with

ϕip � 1

At the zeroth order of the distribution function, we therefore have

J 0
I = 0 (3.3)

The Maxwell–Boltzmann–Euler (MBE) solutions are deduced from this
equation.

The order of magnitude of τII as compared to θ remains to be defined, without
necessarily comparing it to τI . Three cases are possible:

τII � θ , τII ∼ θ , τII . � θ

Case 1: τII � θ , (εII ∼ 1
ε

� 1
)

In Eqn. (3.1), the term εII does not appear at zero order or first order in the
expansion of the distribution function; we then have the following system giving
the zero-order and the first-order solutions successively:

J 0
I = 0

df 0
ip

dt
= J 1

I

(3.4)

The regime is frozen for collisions of type II, and only collisions of type I are
efficient in the determination of fip . They are dominant for the determination
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of the zero-order solution (solution of type MBE) and also in the first-order
linearized equation (3.4), which must be solved to obtain ϕip .

Case 2: τII � θ , (εII ∼ ε � 1)

In Eqn. (3.1), the term εII appears at the same level as εI , and therefore at the
zero and first-order levels. Thus, we have to solve the following system:

(JI + JII )0 = 0

df 0
ip

dt
= (JI + JII )1

(3.5)

Both types of collision appear at the same level in the zero and first-order
solutions. Therefore, they play the same role in the determination of the zero and
first-order solutions. At zero order, we find again the equilibrium MBE solutions
of the preceding chapter. Here, the first-order solution of the linearized equation
(ϕip) remains to be determined.

Case 3: τII ∼ θ , (εII ∼ 1)

The system of equations that corresponds to zero and first-order solutions may
be written

J 0
I = 0

df 0
ip

dt
= J 1

I + J 0
II

(3.6)

Typically, the zero-order solution is out of equilibrium for type II collisions,
as described in Chapter 2 However, these collisions do influence the first-order
solution, which we have yet to find here.

Whatever the zero-order solution is, the first-order solution is out of equi-
librium. In this third case, in which the zero-order solution is already out of
equilibrium, it brings a supplementary non-equilibrium. This non-equilibrium
remains weak because of the linearization. From a mathematical point of view,
the linearization presents advantages because of the use of efficiently tested
computational methods.

3.2.2 Classification of flow regimes

The three cases presented above may hide complex situations. First, the indices
I and II represent various types of collisions, either simple (T, R, V, C), complex
(TR, TRV, and so on), or particularized (VV, resonant, and so on); thus the
specific situations are numerous.
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It is therefore necessary to distinguish zero-order solutions describing purely
collisional regimes from those requiring a first-order expansion because of the
influence of the background. Thus, at zero order, as seen in Chapter 2, there
are equilibrium regimes for which all types of collisions are efficient during
the considered timescale, and there are non-equilibrium regimes for which
only some of them are efficient during the same timescale. Then, as the first-
order solutions themselves bring a weak non-equilibrium, we distinguish the
‘strong non-equilibrium’ regimes (SNE), corresponding to regimes already out
of equilibrium at zero order, and the ‘weak non-equilibrium’ regimes (WNE),
corresponding to regimes in equilibrium at zero order.19

Furthermore, each type of regime may apply to one or several types of col-
lisions. For example, we call (WNE)I+(SNE)II a weak non-equilibrium regime
for type I collisions and a strong non-equilibrium for type II collisions. If, as
a standard example, we consider the case of a pure gas in a strong vibrational
non-equilibrium, we call this case (WNE)TR+(SNE)V. In the same way, if the
chemical non-equilibrium is significant at zero order and if the vibrational non-
equilibrium is less important, we call this regime (WNE)TRV+(SNE)C, or simply
(WNE)V+(SNE)C, and so on.

3.3 First-order solutions

For the above three cases, we therefore must try to determine the perturbation
solution ϕip of the first-order linearized equation. The first step is to replace the
‘anonymous’ type I and II collisions with realistic collisions T, R, V, C, and so on,
and to place them into the above schemes (WNE, SNE). The second step is to
examine all possible cases, which are numerous and sometimes complex.

We proceed with increasing complexity by first analysing cases 1 and 2 (frozen
and WNE cases for pure gases) in this chapter. Then the same cases for mixtures
are analysed in the following chapter (Chapter 4), and the SNE cases (case 3) are
studied in Chapter 5.

We begin with pure gases with elastic collisions T, constituting the collisions
of type I, in absence of any other collision. This classical case, from a histori-
cal point of view, is the methodology generally used for the determination of
the first-order distribution function (Chapman–Enskog method). Strictly, this
case concerns only monatomic gases. Then the case of diatomic gases including
only one internal active mode (rotation) is examined, which corresponds to a
moderate temperature range for these gases, assuming an equilibrium distribu-
tion at the zeroth order of the distribution function (WNE case). The same case
(WNE) for diatomic gases with two internal modes (rotation and vibration) is
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finally treated; the general transport terms and their usual approximations are
also presented.

3.3.1 Pure gases with elastic collisions: monatomic gases

Chapman–Enskog Method

Only one type of collision is considered here, and the corresponding index is
omitted. The above first system (Eqn. (3.4)) is then written

J 0 = 0
df 0

dt
= J 1

(3.7)

with f 0 = n
( m

2πkT

)3/2
exp

(
−mu2

2kT

)
(Eqn. (2.6)), which is the solution of the

equation J 0 = 0, and with

J 1 = J 1[ϕ] =
∫
�,vb

f 0
a f

0
b (ϕ

′
a + ϕ′

b − ϕa − ϕb)Iel g d� dvb (3.8)

However, in the expression for f 0, the macroscopic quantities n, V , T are
defined with f 0 and not with f . Thus, we have

n =
∫
v

f 0dv, nV =
∫
v

f 0v dv, and
3

2
nkT =

∫
v

f 0 1

2
mu2dv (3.9)

From a physical point of view, this implies that, from the local values of n, V ,
T (when measured, for example), a fictitious equilibrium distribution is rebuilt
for the computation of the perturbation ϕ. From a mathematical point of view,
this introduces constraints in the first-order solution, that is:∫

v

f 0ϕ dv = 0,

∫
v

f 0ϕv dv = 0, and

∫
v

f 0ϕ
1

2
mu2dv = 0 (3.10)

The first-order linearized equation of the system (Eqn. (3.7)) is a Fredholm
equation with the following integration conditions:∫

v

�
df 0

dt
dv = 0 (3.11)

This means that the solutions� of the homogeneous equation J 1 = 0 must be
orthogonal to the inhomogeneous part of the complete equation of the system
(Eqn. (3.7)). It is easy to see that these solutions are the classical invariants of
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elastic collisions and that therefore the conditions (3.11) are nothing else than
the Euler equations, so that these integration conditions are fulfilled.

The calculation of df
0

dt is obtained by using the Euler equations (Eqn. (2.7)) to
eliminate the time derivatives, so that we obtain the following expression:

1

f 0

df 0

dt
=
(
mu2

2kT
− 5

2

)
1

T

∂T

∂r
·u+ m

kT

∂V

∂r
:

0
uu (3.12)

With the conditions (3.10) and the expression (3.12) for df
0

dt , the unknown ϕ
in J 1 may be written in the form

ϕ = A
1

T

∂T

∂r
·u+ B

∂V

∂r
:

0
uu (3.13)

whereA(u, r , t ) andB(u, r , t ) are unknown scalar quantities which are respective
solutions of the following equations:

J 1[Au] = f 0
(
mu2

2kT
− 5

2

)
u

J 1
[
B

0
uu

]
= f 0 m

kT

0
uu

(3.14)

The general method of solving the above equations (3.14) consists2 of expand-
ing A and B in eigenfunctions of the operator J 1. It may be shown that
these eigenfunctions constitute an orthogonal basis and that the eigenvalues
are negative4 (Appendix 3.1). However, they are not known for an arbitrary
interaction potential, except for a Maxwellian potential V (r) ∼ r−4 (not really
realistic): in this case, the (discrete) eigenfunctions are the Sonine–Laguerre
polynomials5 (Appendix 3.1). Then, the best we can do is to expand A and B in
this basis, taking into account the expressions of the right hand side of the above
equations (3.14). Thus

A =
∞∑
m=1

am(r , t )Sm3/2

(
mu2

2kT

)

B =
∞∑
m=0

bm(r , t ) Sm5/2

(
mu2

2kT

) (3.15)

From the conditions (3.10), we deduce: a0 = 0.

On the other hand, we have: S1
3/2

(
mu2

2kT

)
= 5

2 − mu2

2kT and S0
5/2

(
mu2

2kT

)
= 1. It

is then clear that the first term of each expansion is dominant, the others giving
only corrective terms after important calculations.



72 CHAPTER 3 QUASI-EQUILIBRIUM REGIMES: PURE GASES

The terms am and bm can be computed in a classical way for the orthogonal
expansions (Appendix 3.1). Thus, they may be written as functions of ‘collisional
integrals’ αm

′
m and βm

′
m , i.e.

αm
′

m =
∫
v

J 1
[
Sm3/2u

]
· Sm′

3/2u du

βm
′

m =
∫
v

J 1
[
Sm5/2

0
uu

]
: Sm

′
5/2

0
uu du (3.16)

with αm
′

m = βm′
m = 0 form 	= m′.

Stopping the expansions at the first term, we have

α1
1 = −8n2

(
kT

m

)
〈γ 4 sin2 χ〉

β0
0 = −16n2

(
kT

m

)2

〈γ 4 sin2 χ〉 (3.17)

with the following notation:

〈· · · 〉 =
(
kT

πm

)1/2 ∫
�,γ

exp(−γ 2)γ 3(· · · )I d� dγ (3.18)

where γ =
√

m
2kT g (non-dimensional relative velocity).

We find13

a1 = −15

2

nkT

m

1

α1
1

= − 15

16n
〈γ 4 sin2 χ〉−1

b0 = −10
nkT

m

1

β0
0

= − 5

8n

( m
kT

)
〈γ 4 sin2 χ〉−1 (3.19)

The first-order distribution function may then be developed and, at the first
order of the expansion of the Sonine–Laguerre polynomials, we have for ϕ:

ϕ = − 5

8n

1

〈γ 4 sin2 χ〉
[

3

2

(
mu2

2kT
− 5

2

)
u · 1

T

∂T

∂r
+ m

kT

0
uu :

∂V

∂r

]
(3.20)

Remarks

• We indeed find a negative sign for the eigenvalues (inverse of coefficients am
and bm).
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• In the collisional integrals 〈. . .〉, the parameters of the collision do appear, so
that these integrals depend on the collisional model and, of course, on the
‘state’ of the gas (species and temperature).

• The use of two indices for the collisional integrals seems unnecessary here,
because of the orthogonal properties of the expansion terms. It is, however,
necessary in the case with internal modes (Section 3.3.2).

• The coefficients a1 and b0 depend on the same collisional integral 〈γ 4 sin2 χ〉.

Transport terms: Navier–Stokes equations

The transport terms in the conservation equations (1.26) may now be calculated
in order to obtain a closed system in the same way as the Euler system at zero
order.

The mass flux is clearly null (pure gas).
For the momentum flux, we have

P =
∫
v

f 0(1 + ϕ)muu dv = pI +m

∫
v

f 0ϕuu dv = pI + P′ (3.21)

With the properties of this type of integral (Appendix 2.6), we obtain for P′:

P′ = −5

4

kT

〈γ 4 sin2 χ〉

0

∂V

∂r
= −2µ

0

∂V

∂r
(3.22)

This relation shows that there is a linear relationship between a part of the

stress tensor P′ and the strain rate tensor

0

∂V
∂r (Newton’s law). Here, µ is the

viscosity coefficient, equal to

µ = 5

8

kT

〈γ 4 sin2 χ〉 (3.23)

or

µ = −RpTb0 = 10

(
nkT

m

)2

kT (β0
0 )

−1 (3.24)

It depends on the nature of the gas, its temperature, and the collision model.
For the heat flux, we have

q =
∫
v

f 0ϕ
1

2
mu2u dv (3.25)
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With the properties of this integral (Appendix 2.6), we obtain

q = −75

32

k

〈γ 4 sin2 χ〉
kT

m

∂T

∂r
= −λ∂T

∂r
(3.26)

This relation also shows the linear relationship between the heat flux (trans-
lation energy flux) and the temperature gradient (Fourier’s law). Here, λ is the
conductivity coefficient, equal to

λ = 75

32

k

〈γ 4 sin2 χ〉
kT

m
(3.27)

or

λ = −5

2
Rpa1 = 75

4

(
nkT

m

)2

k
(
α1

1

)−1
(3.28)

After putting these expressions into the conservation equations (1.26), we
obtain a closed system (Navier–Stokes system), which may be written in the
following form:

∂ρ

∂t
+ ∂ · ρV

∂r
= 0

ρ
dV

dt
= −∂p

∂r
− ∂

∂r

⎛⎜⎜⎝2µ

0

∂V

∂r

⎞⎟⎟⎠
ρ
de

dt
= ∂

∂r
·
(
λ
∂T

∂r

)
− p
∂ ·V
∂r

+ 2µ

0

∂V

∂r
:
∂V

∂r
(3.29)

with p = nkT and e = 3
2
kT
m . Here, µ and λ are given by Eqns (3.23) and (3.27)

respectively.
This is a second-order system, which takes into account the influence of the

background by means of the ‘boundary conditions’.
For a complete determination of the system, an interaction potential model

must be defined (Appendix 1.3) and introduced in the coefficients µ and λ. In
fact, their ratio does not depend on this model, or on the temperature, at least at
the chosen level of approximation. Thus, we have

λ

µ
= 15

4

k

m
(3.30)

As the translational specific heat is equal to 3
2
k
m

(
= de

dT

)
, the Prandtl number

P (Chapter 7) is such that

P = µ
λ

(
3

2

k

m
+ k

m

)
= 2

3
(3.31)

Experiments have validated this remarkably constant value.



3.3 FIRST-ORDER SOLUTIONS 75

As for the influence of the collision model on the coefficients µ and λ,
two models only are considered here: the rigid sphere model below and the
Maxwellian interaction potential in Appendix 3.4. Thus, for the rigid sphere
model, we have

〈γ 4 sin2 χ〉 =
(
kT

πm

)1/2

2πd2

therefore

µ = 5

16d2

(
mkT

π

)1/2

and

λ = 75k

64d2

(
kT

πm

)1/2

(3.32)

It is interesting to note that from the measurement of a macroscopic parameter,
generally µ, we can obtain the other (λ) and, at least, the order of magnitude of
a microscopic parameter d

(
d ∼ 10−8cm

)
.

Thus, these coefficients vary with temperature asT
1/2 for an interaction poten-

tial considered to be ‘too hard’, and as T for a Maxwellian potential which is
considered ‘too soft’ (Appendix 3.4). Of course, the reality is between these two
extreme cases.

Finally, these coefficients, depending on the temperature of the medium but
not on its density, are connected to the response of this medium to external
dynamic and thermal perturbations. Therefore, they are related to the relaxation
times of the system. As in the present case there are only elastic collisions, these
coefficients depend on τel . Thus, as an example, with the rigid sphere model,
assuming that the value of τel remains close to its value in the Maxwellian regime,

that is, 1
4nd2

(
mkT
π

)1/2
, we have

µ = 5

4
τelp

and

λ = 75k

16m
τelp (3.33)

3.3.2 Pure diatomic gases with one internal mode

As seen above, the rotational and vibrational characteristic times may be quite
different. First, we consider the case of a single excited internal mode, that is, the
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rotational mode, assuming that the vibrational mode is frozen: this corresponds
to realistic situations at ‘moderate’ temperatures. The approach of the problem
is also more gradual. Thus, assuming τTR � θ , we have

J 0
TR = 0

df 0
i

dt
= J 1

TR (3.34)

with i = ir only.
As in Chapter 2, (Eqn. (2.12)), a Maxwell–Boltzmann distribution f 0

i is the
zero-order solution, i.e.

f 0
i = n

( m

2πkT

)3/2
exp

(
−mu

2

2kT

)
gir exp

(−εir/kT )
QR

The Euler equations are still valid, with

E = ET + ER =
∑
i

∫
v

f 0
i

(
1

2
mu2 + εir

)
dv = E(T ) = 5

2
kT

The temperature T is a ‘measure’ of the total energy, defined with the zero-
order distribution function, like n and V .

Extension of the Chapman–Enskog method

Using the expression of f 0
i (Eqn. (2.12)) and, as above, eliminating the time

derivatives by means of the Euler equations, we have

1

f 0
i

df 0
i

dt
=
(
mu2

2kT
− 5

2
+ εir − ER

kT

)
1

T

∂T

∂r
·u+ m

kT

∂V

∂r
:

0
uu

+
[

2

3

CR
CTR

(
mu2

2kT
− 3

2

)
− k

CTR

εir − ĒR
kT

]
∂ ·V
∂r

Comparing with the case of elastic collisions, a supplementary term with ∂ ·V
∂r

appears. Then, the perturbation ϕi may be written in the general form

ϕi = Ai
1

T

∂T

∂r
·u+ Bi

∂V

∂r
:

0
uu+Di ∂ ·V

∂r
(3.35)
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so that we have to solve the following equations:

J 1 [Aiu] = f 0
i

(
mu2

2kT
− 5

2
+ εir − ĒR

kT

)
u

J 1
[
Bi

0
uu

]
= f 0

i
m

kT

0
uu

J 1 [Di] = f 0
i

[
2

3

CR
CTR

(
mu2

2kT
− 3

2

)
− k

CTR

εir − ĒR
kT

]
(3.36)

As before, the unknownsXi = Ai ,Bi ,Di are expanded in orthogonal functions
close to the eigenfunctions of the operator J 1, taking into account the term on
the right-hand side of each of the above equations (3.36). The inclusion of
an internal mode modifies the treatment used for monatomic gases with only
elastic collisions. Thus, we add a set of polynomials Pni

( εir
kT

)
, introduced by

Wang-Chang and Uhlenbeck20 for the internal degrees, to the Sonine–Laguerre
polynomials S. They are built on the same model (Appendix 3.1), so that the
complete basis is

Xi =
∑
m,n

xmn�
r
mn (3.37)

with

�rmn = Smr

(
mu2

2kT

)
Pni

( εir
kT

)
(3.38)

The indices m and n respectively correspond to the translation and rotation
modes.

The computation of the coefficients xmn is the same as above (Appendix 3.1).
Thus, amn , bmn , dmn , respectively, are functions of the collisional integrals αm

′n′
mn ,

βm
′n′

mn , δm
′n′

mn , defined in the following way:

αm
′n′

mn =
∑
i

∫
v

J 1 [�3/2
mn u

] ·�3/2
m′n′u dv = αmnm′n′

βm
′n′

mn =
∑
i

∫
v

J 1
[
�5/2
mn

0
uu

]
·�5/2

m′n′
0
uu dv = βmnm′n′

δm
′n′

mn =
∑
i

∫
v

J 1 [�1/2
mn

]
�

1/2
m′n′ dv = δmnm′n′ (3.39)

Keeping only the first term of the expansions�00,�01, and�10, the integration
conditions resulting from the definition of n, V , and T give

a00 = d00 = 0
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and the first non-zero terms a10, a01, b00, d10, and d01 are given by the following
expressions:

a10α
10
10 + a01α

10
01 = −15

2

nkT

m

a10α
01
10 + a01α

01
01 = 3

CR
k

nkT

m

b00 = −10
nkT

m

(
β00

00

)−1

d10 = CR
CT
d01 = −n

(
CR
CTR

)2 (
δ10

10

)−1
(3.40)

Then, the expression for ϕi is

ϕi =
[
a10

(
5

2
− mu2

2kT

)
+ a01

(
εir − ER
kT

)]
u · 1

T

∂T

∂r
+ b00

0
uu :

∂V

∂r

+

⎡⎢⎢⎣d10

(
3

2
− mu2

2kT

)
+d01

(
εir − ER
kT

)
⎤⎥⎥⎦ ∂ ·V
∂r

The expressions for the collisional integrals α10
10, α10

01

(
= α01

10

)
, α01

01, β00
00 , δ10

10 are
given in Appendix 3.3 as functions of integrals 〈· · · 〉, with

〈· · · 〉 =
(
kT

πm

)1/2 ∑
i,j ,k,l

n̄i n̄j
n2

∫
�,γ

exp
(−γ 2)γ 3(. . .)I k,l

i,j d� dγ (3.41)

Transport terms: Navier–Stokes equations

As before, the mass flux is null.
For the momentum flux, we have

P = pI + P′

with

P′ = −2µ

0

∂V

∂r
−η∂ ·V
∂r

I (3.42)

Here,µ is the dynamic viscosity coefficient:

µ = 5

8

kT

〈γ 4 sin2 χ −
εrγ 2 sin2 χ + 1
3 (
εr )

2〉 (3.43)
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or

µ = −RpTb00 = 10

(
nkT

m

)2

kT
(
β00

00

)−1
(3.44)

with 
εr = εkr+εlr−εjr−εir
kT (non-dimensional collisional balance of internal

energy).
The bulk viscosity coefficient η is:

η = kT

2n

(
CR
CTR

)2 1

〈(
εr )2〉 (3.45)

or

η = pd10 = −nkT
(
CR
CTR

)2 (
δ10

10

)−1
(3.46)

Comparing the dynamic viscosity due to TR collisions (3.43) with that due
only to collisions T (3.23), we have

µTR

µT
= b00

b0
= β0

0

β00
00

= 〈γ 4 sin2 χ〉T
〈γ 4 sin2 χ − (
εr )γ 2 sin2 χ + 11

8 (
εr )
2〉TR

(3.47)

In the stress tensor (3.42) there is a term of dynamic viscosity that is similar
(but not equal) to that due to elastic collisions (3.23), and also a term specific
to the internal energy (bulk viscosity η). Therefore η is directly connected to
inelastic collisions.

The heat flux q is the sum of a translational flux qT and a rotational flux qR ,
thus

q =
∑
ir

∫
v

f 0
i ϕi

1

2
mu2u dv +

∑
i

εir

∫
v

f 0
i ϕiu dv = qT + qR

Finally, we obtain

qT = −λT ∂T
∂r

and qR = −λR ∂T
∂r

(3.48)

where λT and λR are the translational and rotational conductivity coefficients
respectively, such that

λT = −5

2
Rpa10 and λR = pCR

m
a01 (3.49)

where a10 and a01 are given by the system (3.40) and are functions of the integrals
α10

10, α01
01, and α01

10

(= α10
01

)
, given in Appendix 3.3.

The transport coefficients µ, η, λT , and λR are in fact functions of only three
collisional integrals and not five, as specified above (Appendix 3.3).
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The Navier–Stokes equations, deduced from the conservation equations
(1.26), are different from the monatomic case, and they are

∂ρ

∂t
+ ∂ · ρV
∂r

= 0

ρ
dV

dt
= −∂p

∂r
− ∂

∂r

⎛⎜⎜⎝2µ

0

∂V

∂r
+η∂ ·V
∂r

⎞⎟⎟⎠

ρ
de

dt
= ∂ ·
∂r

(
λ
∂T

∂r

)
− p
∂ ·V
∂r

+ 2µ

0

∂V

∂r
:
∂V

∂r
+ η

(
∂ ·V
∂r

)2

(3.50)

with p = nkT , e = 5
2
kT
m , λ = λT + λR , and µ, η, λT , and λR given respectively

by Eqns (3.43), (3.45), and (3.49).

Rotational non-equilibrium: characteristic times

In the Navier–Stokes system, as in the Euler system, one single temperature
is used common to the translational and rotational modes, and the system is
indeed closed. However, if we compute separately the translational and rotational
energies ET and ER , we obtain the following expressions:

ET = 1

n

∑
i

∫
v

f 0
i (1 + ϕi)1

2
mu2dv = ET

(
1 − d10

∂ ·V
∂r

)

ER = 1

n

∑
i

∫
v

f 0
i (1 + ϕi)εir dv = ER

(
1 + d01

∂ ·V
∂r

)
(3.51)

Of course, we again have ET + ER = ET + ER , since

d10 = CR
CT
d01 = 2

3
d01

However, at the first order of the expansion, a non-equilibrium appears
between the translational and the rotational modes (3.51); then a distinct
temperature may be defined for each mode, i.e. TT and TR , so that

ET = 3

2
kT and ER = kTR (3.52)

In principle, because of the linearization, this non-equilibrium is weak and is
given by the above relations (3.51) and not by means of a relaxation equation
(Chapter 2). These relations are independent of the Navier–Stokes system and
may be calculated after having solved this system.
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As easily seen, the non-equilibrium is related to the bulk viscosity η, since η =
pd10, so that this coefficient is representative of this non-equilibrium, owing to
the definition of one single temperature T for both modes at the zeroth order of
the distribution function. Thus, at first order, a (weak) non-equilibrium appears
by means of this transport coefficient. This non-equilibrium is sensitive to the
acceleration of the fluid (proportional to ∂ ·V

∂r ). Finally, as d10 is homogeneous to
a time (like d01), it seems logical to connect it to a phenomenological relaxation
time τR , used for example in the interpretation of data with a Landau–Teller type
equation21 (Chapter 2):

dER
dt

= ER (TT )− ER
τR

(3.53)

with ER (TT ) = kTT and ER = ER (TR) = kTR
Thus, we have

dTR
dt

= TT − TR
τR

An equation of this type may also be deduced from the Boltzmann equation
in an approximate way by multiplying this equation by εir then integrating and
summing. Thus, we obtain

n
dER
dt

+ ∂ · qR
∂r

=
∑
ir

∫
v

(
J 0 + J 1) dv (3.54)

If we neglect the flux term and assume that the system (3.34) may be applied

to Eqn. (3.54), i.e. J 0 = 0 and J 1 = df 0
i
dt , we obtain from the expression of

df 0
i
dt :

dER
dt

= −kT CR
CTR

∂ ·V
∂r

(3.55)

Eliminating ∂ ·V
∂r with one of the above relations (3.51), we obtain

dER
dt

= k

CTR

ER (T )− ER
d01

(3.56)

Thus, CTRk d01 = 5
2d01 may be considered a phenomenological relaxation time

τ ′R . However, the reference temperature for ER is not the same in Eqns. (3.56)
and (3.53). This may be easily corrected, because we may write

ER (T )− ER = CT
CTR

(
ER (TT )− ER

) = 3

5

(
ER (TT )− ER

)
(3.57)

so that Eqn. (3.56) may be rewritten in the following way:

dER
dt

= ER (TT )− ER
τR
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This equation is identical to Eqn. (3.53), with

τR = C2
TR

kCT
d01 = C2

TR

kCR
d10 = C2

TR

kCR

η

p
(3.58)

or

τR = 25

6
d01 = 25

4
d10 = 25

4

η

p

Here, d10, d01, and η have been connected to a relaxation time τR . This time is
also connected to the collisional integral 〈(
εR)2〉, since

τR = CR
2nk

〈(
εr )2〉−1

and finally, the rotational non-equilibrium may be written

ER − ĒR
ĒR

= d01
∂ ·V
∂r

= kCT
CTR

∂ ·V
∂r
τR (3.59)

A relaxation equation strictly identical to Eqn. (3.53) may be obtained by
linearizing the right-hand side of Eqn. (3.54) and retaining only the zero-order
terms (Appendix 3.5).

3.3.3 Pure diatomic gases with two internal modes

When the temperature is higher than in the above cases, the vibrational mode
is excited, and assuming that the collisions T, R, and V have characteristic times
much smaller than θ , we have the following system, without any assumptions
regarding the relative orders of magnitude of τR and τV :

J 0
TRV = 0

df 0
i

dt
= J 1

TRV (3.60)

The zero-order solution is the MBE distribution function (Eqn. (2.10)), with
a unique temperature for the three modes.

The expression for ϕi is written in Appendix 3.2, as well as the equations giving
the coefficients Ai , Bi ,Di .

Generalities and transport

The first-order solution is not entirely developed here; structurally it does not
differ from the solution corresponding to one internal mode. The addition of
the vibrational mode adds only one more term, similar to the rotational term
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in f 0
i and

df 0
i
dt ; in principle, therefore, it is sufficient to replace εir by εir + εiv ,

and CR by CRV , or CTR by CTRV , in the various terms, such as in the transport
terms.

However, it is important to emphasize that, in the expression for internal non-
equilibrium, we can define only a unique internal temperature that is common
to both internal modes Tin . Of course this temperature is inaccurate and is of no
interest, because the two modes relax differently. Therefore, it is better to separate
the modes in the expression of ϕi , that is, in the coefficientsXi (Ai , Bi , Di). Thus,
we set

Xi =
∑
m,n,q

xmnq�
r
mnq

with

�rmnq = Smr

(
mu2

2kT

)
Pnir

( εir
kT

)
P
q
iv

( εiv
kT

)
(3.61)

and P
q
iv

represents the Wang-Chang–Uhlenbeck polynomials similar to Pnir . It is
then possible to take into account the possible hierarchy between τR and τV ,
since generally τV > τR.

The Navier–Stokes equations (3.50) remain valid with the following transport
terms, obtained when considering only the first terms of the expansions:

µ = nkT

(
kT

m

)
b000

η = nkTd100

λ = λT + λR + λV (3.62)

λT = 5

2

nm

T

(
kT

m

)2

a100, λR = nkT
CR
m
a010, and λV = nkT

CV
m
a001

As in the case of one internal mode, the definition of a unique temperature
T for the three modes at zero order leads to the presence of the bulk viscosity.
However, when the vibrational mode is out of equilibrium at zero order (Chapter
2), we will see (Chapter 5) that the bulk viscosity concerns only the T and R
modes.

The systems of equations for the coefficients a, b, and d are developed
in Appendix 3.2, as well as the corresponding collisional integrals. The usual
conditions on the first-order solution give a00 = d00 = 0.



84 CHAPTER 3 QUASI-EQUILIBRIUM REGIMES: PURE GASES

Rotational and vibrational non-equilibrium: characteristic times

The definitions of the peculiar energies ET , ER , and EV to first order are

ET = ET

(
1 − d100

∂ ·V
∂r

)
, ER = ER

(
1 + d010

∂ ·V
∂r

)
, and

EV = EV

(
1 + d001

∂ ·V
∂r

)
(3.63)

with, as before, the energies defined with a common temperature T at zero
order:

ET + ER + EV = ET + ER + EV

The coefficients d100, d010, and d001, appearing in the equation system pre-
sented in Appendix 3.2, may be written in terms of three collisional integrals
only, i.e.

δ010
010 = −2n2〈(
εr )2〉, δ001

001 = −2n2〈(
εv)2〉, and

δ001
010 = −2n2〈(
εr
εv)〉 (3.64)

The first two integrals of Eqn. (3.64) may be easily related to rotation and
vibration relaxation times respectively; thus, we have

τR = CR
k

[
2n〈(
εr )2〉

]−1
and τV = CV

k

[
2n〈(
εv)2〉

]−1
(3.65)

The third integral of Eqn. (3.64) is characteristic of a coupling between the
internal modes, but as this coupling has not been taken into account up to now,
it seems reasonable to neglect this term. Furthermore,
εr
εv can take positive
or negative values, thus giving a small ‘average’ value as compared to the other
two terms, which are always positive. The expressions of d100, d010, and d001 may
be simplified, and taking into account the definition of τR and τV (Eqn. (3.65)),
we have

d100 = k

C2
TRV

(CRτR − CV τV )

d010 = k

C2
TRV

(CTV τR − CV τV )

d001 = k

C2
TRV

(CTRτR − CRτV )

In these relations, the characteristic times τR and τV appear in a quasi-
symmetrical way, which is normal because up to now no hierarchy appears
in the internal modes. Now, if we take into account the fact that τV is generally
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much greater than τR , we can neglect the term that includes τR in the expression
of d001, and we find that the vibrational non-equilibrium is equal to

EV − EV � CTRCV
C2
TRV

kT
∂ ·V
∂r
τV (3.66)

However, this is valid only if the vibrational mode is significantly excited
(CV ∼ CR). This non-equilibrium is thus ‘logically’ proportional to τV .

Furthermore, we have

d100 + d010 = k

CTRV
τR

This sum does not depend on τV and is of the order of magnitude of τR , so that
the relative differences between the translational and rotational non-equilibrium
deduced from Eqn. (3.63) are small.

It is therefore interesting to consider the relative non-equilibriums, and in
order to examine them conveniently (but qualitatively), we may write the dif-
ferences between the temperatures of each mode, as deduced from Eqn. (3.63),
assuming temporarily that CV is constant. Thus, we find

TT − TR
T

= − k

CTRV

∂ ·V
∂r
τR

TT − TV
T

= − k

CTRV

∂ ·V
∂r
τV

TR − TV
T

= − k

CTRV

∂ ·V
∂r
(τV − τR)

It is then clear that TT and TR remain close, since TT − TR has the order of
magnitude of τR when both TT −TV and TR −TV have the order of magnitude
of τV . We may therefore conclude that it is often possible to define a common
temperature TTR for the translational and rotational modes, with

TTR − TV
T

= − k

CTRV

(
τV − CR

CTR
τR

)
� − k

CTRV
τV (3.67)

This property, confirming that vibrational non-equilibrium may be impor-
tant, is widely used below.

Bulk viscosity may then be written as

η = nkTd100 = nk2T

C2
TRV

(CRτR + CV τV ) � nk2T

C2
TRV

CV τV (3.68)

The validity of Eqn. (3.68) depends, however, on a significant excitation of the
vibrational mode (CV ∼ CR), as for Eqn. (3.66).



86 CHAPTER 3 QUASI-EQUILIBRIUM REGIMES: PURE GASES

At the same level of approximation, the vibrational non-equilibrium per level
niv − n̄iv appearing at the first order may also be calculated (Appendix 3.6).

Remark

It is clear that not taking into account the hierarchy between τR and τV in the
expansion leads to further approximations, as developed above. Otherwise, it
would be necessary to expand the distribution function up to the second order,
which would bring insurmountable difficulties.

Usual approximations for transport terms

The relatively complex expressions of the transport terms for a gas with inelas-
tic collisions and the difficulty of knowing accurately the corresponding cross
sections have led to the development of approximate expressions for these trans-
port terms. In contrast, many computational results about collisional integrals
are available3 for elastic collisions.

These approximations are essentially based on the assumption that the colli-
sional balance of internal energy is statistically small compared to the kinetic
energy collisional balance. Therefore, the exchanges between both types of
energy, without being negligible, are not very important.22In particular this
means that the internal relaxation times are much larger than the times between
elastic collisions. The terms of the order 1

τ 2
R

and 1
τ 2
V

, as well as those of type

〈
εR
εV 〉 are neglected.
Of course, this assumption is valid only for ‘moderate’ temperatures, for which

the collisions are not too ‘strong’, for example including only monoquantum
transitions in vibrational exchanges. It is then possible to write some of the
transport terms (the more complex ones) as functions of other transport terms
that are more accessible by calculation or experiment.

This type of simplification essentially concerns heat fluxes. Thus, we find the
following expressions for the heat transfer coefficients:

λT = 5

2
µ
CT
m

[
1 − 5

4

µ

CTp

(
CR
τR

+ CV
τV

)
+ ρ

2CTp

(
CRDR
τR

+ CVDV
τV

)]

λR = ρDR CR
m

[
1 − µ

2τRp

(
ρDR
µ

− 5

2

)]

λV = ρDV CV
m

[
1 − µ

2τV p

(
ρDV
µ

− 5

2

)]
(3.69)
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where DR and DV are respectively given by the following relations:

DR = 3

8

CRT

nm

[〈(
εir − ER
kT

)(
εir − εjr
kT

)
γ 2 −

(
εkr − εlr
kT

)
γ · γ ′

〉]−1

(3.70)

DV = 3

8

CVT

nm

[〈(
εiv − EV
KT

)(
εiv − εjv
kT

)
γ 2 −

(
εkv − εlv
kT

)
γ · γ ′

〉]−1

(3.71)

These quantities are called ‘energy diffusion coefficients’, for rotation and
vibration respectively,by analogy with the mass‘self-diffusion’coefficient defined
in Chapter 4, i.e.

D = 3kT

8nm

(〈γ 2 − γ · γ ′〉)−1
(3.72)

A still more drastic hypothesis consists of also neglecting the terms that include
1
τR

and 1
τV

and assimilating the energy diffusion coefficients to the self-diffusion
coefficient. Then

λT = 5

2
µ
CT
m

, λR = ρDCR
m

, and λV = ρDCV
m

(3.73)

These expressions constitute the ‘modified Eucken corrections’.22,23 Thus,
schematically, the heat flux may be considered to be the sum of a translational
heat flux, closely related to the momentum flux (viscosity), as for monatomic
gases and rotational and vibrational heat fluxes, which have a diffusive character.

As for the other transport coefficients, represented by µ and η, in the present
framework, µ is rather close to µT (Eqn. (3.47)), which is not surprising, since
the process of momentum transfer is related to these coefficients. As for η, it has
already been related to the relaxation times τR and τV (Eqn. 3.68)).

Finally, from Eqns (3.43), (3.45), and (3.62), we have µ
η

∼ τT
τR

or µ
η

∼ τT
τV

,
depending on the degree of excitation of the internal modes.

These approximations, without being entirely justified, give more than qual-
itative expressions for the transport terms, particularly in the case of a weak
internal non-equilibrium (WNE case), as considered here.

Appendix 3.1 Orthogonal bases

Eigenvalues and eigenfunctions of the operator J 1

If we consider only the case of elastic collisions, the eigenvalues x−1
m of the

operator 1
f 0 J

1 [�] and the corresponding eigenfunctions�m are defined by the
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equation
1

f 0
J 1 [�n] = x−1

n �
n

Multiplying by f 0�m and integrating with respect to u, we have∫
u

�mJ 1 [�n] du =
∫

�,ua ,ub

f 0
a f

0
b �

m
a

(
�

′n
a +� ′n

b −�na −�nb
)
gI d� duadub

With integral symmetry properties, this term may be written∫
u

�nJ 1 [�m] du
and therefore J 1 is self-adjoint, and the eigenvalues are real. We have

x−1
m

∫
u

f 0�m�ndu = x−1
n

∫
u

f 0�n�mdu

which shows the orthogonality of the eigenfunctions � with the weight
function f 0.

We also have∫
u

�mJ 1 [�m] du = x−1
m

∫
u

f 0 (�m)2
du

= −1

4

∫
�,ua ,ub

f 0
a f

0
b

(
�

′m
a +� ′m

b −�ma −�mb
)2
gI d�dua dub

This shows that the eigenvalues x−1
m are negative, like the coefficients

am , bm . . ..

Bases of orthogonal polynomials

Sonine–Laguerre polynomials

The definition of the Sonine–Laguerre polynomials is

Smr (x) =
m∑
p=0

(−x)p (r +m)m−p

p! (m − p
)!

They satisfy the following orthogonality relation:

∞∫
0

xn exp (−x)Smn Sm′
n′ dx = � (n +m + 1)

� (m + 1)
δmm′
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Thus, for example, we have

S0
r (x) = 1, S1

1/2 (x) =
3

2
− x2, and S1

3/2 (x) =
5

2
− x2

Wang-Chang and Uhlenbeck polynomials

These polynomials are derived with the general formula

Pni (εi) = εiPn−1
i −

n−1∑
t=0

∥∥εiPn−1
i Pti

∥∥
at

Pti

with at =
∥∥∥(Pti )2

∥∥∥
Thus, the zero and first-order polynomials are

P0
i

( εi
kT

)
= 1 and P1

i

( εi
kT

)
= εi − Eint

kT

with a0 = 1 and a1 =
∥∥∥(P1

i

)2
∥∥∥ = Cint

k

They satisfy the following orthogonality relation:∑
i

Pni P
n′
i exp (−εi) = an

Q (T )
∂nn′

They are derived from the model of Sonine–Laguerre polynomials (P0
i =

S0
r = 1). At first order, they are proportional to the non-equilibrium for the

concerned quantity.

Coefficients of the expansions and collisional integrals:
calculated example

As an example,13 we take the expansion of the unknown A (Eqn. (3.15)):

A =
∑
m

am�
m

The first equation of the system (3.14) is written

J 1 [Au] = J 1

[∑
m

am�
mu

]
= f0

(
mu2

2kT
− 5

2

)
u
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Multiplying both sides of this equation by �mu and taking into account the
orthogonality of the basis function, we obtain for the coefficient am :

am =
∫
u
f 0
(
mu2

2kT − 5
2

)
u ·�mu du∫

u
J 1 [�mu] ·�mu du

Thus, for the coefficient a1 (or a1
1), with�1 = S1

3/2

(
mu2

2kT

)
, we have

a1
1α

1
1 =

∫
u

f 0
(
mu2

2kT
− 5

2

)2

du

with

α1
1 =

∫
u

J 1
[(
mu2

2kT
− 5

2

)
u

]
·
(
mu2

2kT
− 5

2

)
u du

or

α1
1 =

∫
�,ua ,ub

f 0
a f

0
b

m

2kT

(
−u′2

b u
′
b − u

′2
a u

′
a + u2

bub + u2
aua

)

×
(

5

2
− mu2

a

2kT

)
uaIg d� duadub

After the change of coordinates,ua ,ub → G,g,we develop f 0
a f

0
b , and integrate

over G (Eulerian integrals). We thus obtain

α1
1 = − 8n2

√
π

(
kT

m

)3/2 ∫ ∞

0
exp

(−γ 2)γ 7I sin2 χd� dγ

with

γ =
√
m

kT

g

2
(non-dimensional relative velocity)

The numerator of a1
1 is equal to 15

2
nkT
m , so that

a1
1 = − 15

16n
〈γ 4 sin2 χ〉−1

with the notation

〈· · · 〉 =
(
kT

πm

)1/2 ∫
�,γ

exp
(−γ 2)γ 3(· · · )I d� dγ

The other coefficients a, b, d . . . and the collisional integrals α,β, δ · · · are
computed in the same way.
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Appendix 3.2 Systems of equations for a, b, d
coefficients

Diatomic gases

One internal mode (rotation)

Cramer system for the coefficients amn

a10α
10
10 + a01α

01
10 = −15

2

(
nkT

m

)
a10α

01
10 + a01α

01
01 = 3

CR
k

(
nkT

m

)

Coefficients bmn and dmn

b00β
00
00 = −10

(
nkT

m

)
d10δ

10
10 = −n

(
CR
CTR

)2

= d01δ
10
10

(
CR
CT

)

Two internal modes (rotation, vibration)

Expressions of
df 0
i
dt and ϕi

With the relation (2.10), we have

1

f 0
i

df 0
i

dt
=
(
mu2

2kT
− 5

2
+ εir − ĒR

kT
+ εiv − ĒV

kT

)
1

T

∂T

∂r
·u+ m

kT

∂V

∂r
:

0
uu

+
[

2

3

CRV
CTRV

(
mu2

2kT
− 3

2

)
− k

CTRV

(
εir − ĒR
kT

+ εiv − ĒV
kT

)]
∂ ·V
∂r

Then

ϕi =
[
a100

(
5

2
− mu2

2kT

)
+ a010

(
εir − ĒR
kT

)
+ a001

(
εiv − ĒV
kT

)]
1

T

∂T

∂r
·u

+ b000
∂V

∂r
:

0
uu+

[
d100

(
3

2
− mu2

2kT

)
+ d010

(
εir − ĒR
kT

)
+ d001

(
εiv − ĒV
kT

)]
∂ ·V
∂r
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Cramer system for the coefficients amnq

a100α
100
100 + a010α

010
100 + a001α

001
100 = −15

2

(
nkT

m

)
a100α

100
010 + a010α

010
010 + a001α

001
010 = 3

CR
k

(
nkT

m

)
a100α

100
001 + a010α

010
001 + a001α

001
001 = 3

CV
k

(
nkT

m

)
For b000, we have

b000β
000
000 = −10

(
nkT

m

)
Cramer system for the coefficients dmnq

d100δ
100
100 + d010δ

010
100 + d001δ

001
100 = −n CR

CTRV

d100δ
100
010 + d010δ

010
010 + d001δ

001
010 = −n CV

CTRV

The third equation necessary for solving this system is not independent of
the two above, but it is replaced by the following equation arising from the
integration conditions.

CTd100 = CRd010 + CV d001

Appendix 3.3 Expressions of the
collisional integrals

Monatomic case

αm
′

m =
∫
u

J 1
[
Sm3/2u

]
· Sm′

3/2udu and βm
′

m =
∫
u

J 1
[
Sm5/2

0
uu

]
: Sm

′
5/2

0
uu du

In particular, we have

α1
1 = −8n2

(
kT

m

)
〈γ 4 sin2 χ〉

β0
0 = −16n2

(
kT

m

)2

〈γ 4 sin2 χ〉

with 〈· · · 〉 =
(
kT

πm

)1/2 ∫
�,γ

exp
(−γ 2)γ 3 (· · ·) Iel d� dγ
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Diatomic case

One internal mode (rotation)

αm
′n′

mn =
∑
i

∫
u

J 1 [�3/2
mn u

] ·�3/2
m′n′ u du = αmnm′n′

βm
′n′

mn =
∑
i

∫
u

J 1
[
�5/2
mn

0
uu

]
: �5/2

m′n′
0
uu du = βmnm′n′

δm
′n′

mn =
∑
i

∫
u

J 1 [�1/2
mn

]
�

1/2
m′n′ du = δmnm′n′

Thus, we have

α10
10 = −8n2

(
kT

m

) 〈
γ 4 sin2 χ − (
εr ) γ 2 sin2 χ + 11

8
(
εr )

2
〉

α01
10 = α10

01 = −5n2
(
kT

m

)
〈(
εr )2〉

α01
01 = −8n2

(
kT

m

) 〈
εir − ER
kT

(
εir − εjr
kT

γ 2 − εkr − εlr
kT

γ · γ ′ − 3

2
(
εr )

)〉
β00

00 = −16n2
(
kT

m

)2 〈
γ 4 sin2 χ − (
εr ) sin2 χ + 1

3
(
εr )

2
〉

δ10
10 = −2n2〈(
εr )2〉

with

〈· · · 〉 =
(
kT

πm

)1/2 ∑
i,j ,k,l

n̄i n̄j
n2

∫
�,γ

exp
(−γ 2)γ 3 (. . .) I k,l

i,j d� dγ

There are relations between these five integrals. Thus,

α10
10 = m

2kT
β00

00 + 5

3
α01

10

and

δ10
10 = 2

5

m

kT
α01

10

Two internal modes (rotation, vibration)

The α integrals

α
m′n′q′
mnq =

∑
i

∫
u

J 1
[
�3/2
mnqu

]
·�3/2

m′n′q′udu = αmnqm′n′q′
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Thus, we have

α100
100 = −8n2

(
kT

m

) 〈
γ 4 sin2 χ − (
εr +
εv) γ 2 sin2 χ + 11

8
(
εr +
εv)2

〉

α010
100 = −5n2

(
kT

m

)
〈(
εr )2〉

α001
100 = −5n2

(
kT

m

)
〈(
εv)2〉

α010
010 = 8n2

(
kT

m

) 〈
εir − ER
kT

3

2
(
εr )− γ 2 εir − εjr

kT
+ γ · γ ′ εkr − εlr

kT

〉

α001
001 = 8n2

(
kT

m

) 〈
εiv − EV
kT

(
3

2

εv − γ 2 εiv − εjv

kT
+ γ · γ ′ εkv − εlv

kT

)〉

α001
010 = −8n2

(
kT

m

)

×

⎡⎢⎢⎢⎣
3
2〈
εr
εv〉 +

〈
εir − ER
kT

εiv − Ev
kT

γ 2 + εkr − ER
kT

εkv − EV
kT

γ
′2
〉

−
〈(
εir − ER
kT

εkv − EV
kT

+ εkr − ER
kT

εiv − EV
kT

)
γ · γ ′

〉
⎤⎥⎥⎥⎦ ,

with

〈· · ·〉 =
(
kT

πm

)1/2 ∑
i,j ,k,l

n̄ir n̄jr n̄iv n̄jv
n4

∫
�,γ

exp
(−γ 2)γ 3 (. . .) I k,l

i,j d� dγ

The β integral

β
m′n′q′
mnq =

∑
i

∫
u
J 1

[
�5/2
mnq

0

uu

]
:

0

uu du = βmnqm′n′q′

Thus we have

β000
000 = −16n2

(
kT

m

)2 〈
γ 4 sin2 χ − (
εr +
εv) γ 2 sin2 χ + 1

3
(
εr +
εv)2

〉
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The δ integrals

δ
m′n′q′
mnq =

∑
i

∫
u

J 1
[
�1/2
mnq

]
�

1/2
m′n′q1du

δ100
100 = −2n2〈(
εr +
εv)2〉
δ010

100 = −2n2 [〈(
εr )2〉 + 〈(
εr
εv)〉
]

δ001
100 = −2n2 [〈(
εv)2〉 + 〈(
εr
εv)〉

]
δ010

010 = −2n2〈(
εr )2〉
δ001

010 = −2n2〈(
εr
εv)〉
δ001

001 = −2n2〈(
εv)2〉
There are clear relations between the integrals δ, so that only three of them

are independent.

Appendix 3.4 Influence of the collisional model on
the transport terms

In the case of elastic collisions, we compare the expressions obtained for the vis-
cosity coefficient in two extreme cases: the rigid sphere model and the Maxwellian
potential model (Appendix 1.3). This comparison is also valid for the heat
conductivity coefficient.

The case of the rigid sphere model has already been examined in Chapter 3,
where we found (Eqn. (3.32)):

µ ∼ T 1/2

More generally, for a purely repulsive potential ϕ = K
rs−1 , the deviation χ may

be written, from Eqn. (1.36):

χ = π − 2

βmin∫
0

dβ[
1 − β2 − 1

s−1

(
β
δ

)s−1
]1/2

where

β = b

r
and δ = bmg 2

4 (s − 1)K



96 CHAPTER 3 QUASI-EQUILIBRIUM REGIMES: PURE GASES

Here, βmin corresponds to the minimum distance rmin given by the equation

1 − β2
min − 1

s − 1

(
βmin

δ

)s−1

= 0

Then, the collisional integral J = ∫
b,ε,vb

(
f ′
a f

′
b − fafb

)
gb db dε dvb becomes

J =
(

4 (s − 1)K

m

) 2
s−1

∫
δ,ε,vb

(
f ′
a f

′
b − fafb

)
g
s−5
s−1 δ dδ dε dvb

It is clear that, for a Maxwellian potential (s = 5), the relative velocity g dis-
appears from the integral and that, therefore, the expression gb db dε = Ig d�
does not depend on g .

We have also seen (Eqn. (3.23)) that

µ ∼ T

〈γ 4 sin2 χ〉 ∼ T 1/2∫
�,γ

exp
(−γ 2

)
γ 7 sin2 χ I d� dγ

which may also be written

µ ∼ T 1/2∫
�,γ

exp
(−γ 2

) γ 7

g Ig d� dγ

We know that Ig d� does not depend on g , and we have g ∼ T−1/2

γ
; therefore

µ ∼ T

In the same way, we have
λ ∼ T

As seen above, with the rigid sphere model, we find that µ and λ are pro-
portional to T 1/2 (Eqn. (3.32)). As already emphasized, the reality is of course
between these extreme models.

Appendix 3.5 Linearization of the relaxation
equation

The general relaxation equation giving the populations (2.14) is

∂ni
∂t

+ ∂ · niV
∂r

=
∑
j ,k,l

∫
v

Jdv
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Considering first only one internal mode, we have at zero order (setting K for
the term

∑
j ,k,l

∫
v
J 0dv):

K =
∑
j ,k,l

nknl

∫
�,ui ,uj

exp
[
− m

2kT

(
u2
k + u2

l

)]
I k,l
i,j g d� duiduj

−
∑
j ,k,l

ninj

∫
�,ui ,uj

exp
[
− m

2kT

(
u2
i + u2

j

)]
I k,l
i,j g d� dui duj

With
ε = εk+εl−εi−εj
kT , we have

K =
∑
j ,k,l

[
nknl exp (
ε)− ninj

] ∫
�,ui ,uj

exp
[
− m

2kT

(
u2
i + u2

j

)]
I k,l
i,j g d� dui duj

After the change of variables
(
ui ,uj

) → (G,g), we find

u2
i + u2

j = 2G2 + g 2

2
and ∞∫

0

exp
(
− m

kT
G2
)
G2dG =

√
π

4

(
kT

m

)3/2

(Appendix 2.6)

Finally:

K = 4π

(
nkT

m

)3/2 ∑
j ,k,l

[
nknl exp (
ε)− ninj

] ∫
�,g

exp

(
−mg

2

4kT

)
I k,l
i,j g

3 d�dg

Now, we assume a Boltzmann distribution at a temperature Tint close to T ,
and we linearize the terms that include Tint − T ; independently, we obtain a
relaxation equation (giving Eint = 1

n

∑
i niεi) by multiplying Eqn. (2.14) by εi

and summing over the levels. Setting Cint = dEint
dTint

, for this equation we have

dEint
dt

= Eint − Ēint
Cint

4πn

TQ

( m

4πkT

)3/2 ∑
i,j ,k,l

εi (
ε) exp

(
−εi + εj

kT

)

×
∫
�,g

exp

(
−mg

2

4kT

)
g 3I k,l

i,j d� dg

Using the property (1.87),∑
i,j ,k,l

εi . . .

∫
�,g

. . . = −1

4

∑
i,j ,k,l

kT (
ε) . . .

∫
�,g

. . .
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and setting, as before, γ = ( m
2kT

)1/2
g , we obtain a relaxation equation identical

to Eqn. (3.53), that is:
dEint
dt

= Ēint − Eint
τint

with

1

τint
=
(
kT

πm

)1/2 2nk

Cint

∑
i,j ,k,l

n̄i n̄j
n2
(
ε)2

∞∫
0

exp
(−γ 2) γ 3I k,l

i,j d� dγ

This expression is identical to the relation (3.59) obtained for the rotational
mode. It is of course possible to apply this equation to the vibrational mode,
with the rotational mode in equilibrium.

Appendix 3.6 Vibrational non-equilibrium
distribution

The non-equilibrium vibrational populations may be determined from the
general formula

niv =
∑
ir

∫
v

f 0
i (1 + ϕi) dv

or, after some calculation:

niv = n̄iv

[
1 + d001

(
εiv − ĒV
kT

)
∂ ·V
∂r

]
It is important to note that an integration condition is related to the definition

of n but not to the definition of niv , since this definition is

n =
∑
i

∫
v

f 0
i dv

so that ∑
iv

(
niv − n̄iv

) = 0

Using Eqn. (3.63) to eliminate d001, we may write niv as a function of EV − ĒV ,
that is:

niv = n̄iv

[
1 +

(
EV − ĒV
CVT

)(
εiv − ĒV
kT

)]
(3.74)
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Thus, with an equilibrium value ĒV (T ) assumed between εn and εn+1, if the
non-equilibrium corresponds to a vibrational temperature TV > T (that is,
EV > ĒV ), the levels lower than (or equal to) εn are underpopulated compared
with an equilibrium distribution, and of course, vice versa forTV < T . However,
we must be careful in the application of the formula (3.74), as it represents a
linearized non-equilibrium and is therefore valid only close to equilibrium.

From Eqn. (3.66), we can also write

niv = n̄iv

[
1 + kCTR

C2
TRV

τV
∂ ·V
∂r

(
εiv − EV
kT

)]
The population of the rotational levels could be described in the same way.



FOUR

Transport and Relaxation
in Quasi-Equilibrium
Regimes: Gas Mixtures

4.1 Introduction

Quasi-equilibrium regimes (WNE regimes), discussed in the previous chapter,
correspond to first-order solutions for the distribution function of pure
monatomic and diatomic gases. This distribution function has a zero-order solu-
tion which represents complete equilibrium. Similarly, in this chapter we start
from zero-order equilibrium distributions and develop the first-order solutions
for binary gas mixtures. The complexity of computations is of course increased
and becomes tedious. The principles and methods remain based on an exten-
sion of the Chapman–Enskog method.1−3,24,25However, alternative methods are
briefly developed in Appendices 4.4 and 4.5.

We first consider monatomic gas mixtures and then extend the analysis to
mixtures of diatomic gases with internal energy modes which can be signifi-
cantly excited. Approximate expressions for transport and relaxation terms are
also given. These expressions are generally sufficiently accurate and provide
a clear physical interpretation. Finally, the case of reactive mixtures, in equi-
librium at zero order, is also examined in the framework of well-established
approximations.

4.2 Gas mixtures with elastic collisions

4.2.1 Chapman–Enskog method

We consider the mixture of two monatomic gases p and q. As discussed in
Chapter 2, the Boltzmann equation for the distribution function of component
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p is written

dfp
dt

= Jp (4.1)

where
Jp = Jpp + Jpq

If we assume that the characteristic times for p−p collisions and p−q collisions
are much smaller than the reference time, the expansion of the function fp =
f 0
p

(
1 + ϕp

)
gives the following system:

J 0
p = 0

df 0
p

dt
= J 1

p (4.2)

and we have a similar system for the component q.
The zero-order solution of the system (4.2), f 0

p (as well as f 0
q ) is the Maxwellian

distribution (2.33), completely defined by the Euler equations and the conserva-
tion equation for the species (2.34). The macroscopic quantities np , nq , V , and
T are defined using f 0

p and f 0
q .

The first-order solution is given by

J 1
p

[
ϕp
] = J 1

pp + J 1
pq

where

J 1
pp =

∫
�,vpb

f 0
paf

0
pb

(
ϕ′
pa + ϕ′

pb − ϕpa − ϕpb
)
I
pp
el gppd� dvpb

J 1
pq =

∫
�,vqb

f 0
paf

0
qb

(
ϕ′
pa + ϕ′

qb − ϕpa − ϕqb
)
I
pq
el gpqd� dvqb (4.3)

As before, the subscripts a and b correspond to interacting molecules. Of
course, we have similar terms for J 1

q

[
ϕq
]
.

After elimination of time derivatives, we have

1

f 0
p

df 0
p

dt
=
(
mpu2

p

2kT
− 5

2

)
1

T

∂T

∂r
·up + mp

kT

∂V

∂r
:

0
upup + 1

ξp
up · tp (4.4)

with the terms in ∂T
∂r and ∂V

∂r similar to those for pure gases. These terms are at
the origin of conduction and viscosity phenomena, respectively. There is also a
supplementary term, i.e. tp , with

tp = ∂ξp
∂r

− (
ξp − cp

) 1

p

∂p

∂r
(4.5)
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If ϕp is written as

ϕp = Ap
1

T

∂T

∂r
·up + Bp

∂V

∂r
:

0
upup +Lpup · tp (4.6)

the coefficients Ap ,Bp , Lp are given by the following integral equations:

J 1
p

[
Apup

] = f 0
p

(
mpu2

p

2kT
− 5

2

)
up

J 1
p

[
Bp

0
upup

]
= f 0

p

mp
kT

0
upup

J 1
p

[
Lpup

] = f 0
p
n

np
up (4.7)

As in the case for pure gases,Ap and Bp are expanded in the basis set of Sonine
polynomials (Eqn. (3.15)) and Lp in the same way as Ap , that is:

Lp =
∞∑
m=0

lpm (r , t ) Smp3/2

(
mpu2

p

2kT

)
(4.8)

The coefficients apm , bpm , lpm are expressed as functions of collisional integrals
corresponding to collisions p−p and p−q, that is (Appendix 4.2):(

α
pm
pm

)
pp

,
(
α
qm
pm

)
pq

,
(
α
pm
qm

)
pq

for the coefficients apm(
β
pm
pm

)
pp

,
(
β
qm
pm

)
pq

,
(
β
pm
qm

)
pq

for the coefficients bpm(
λ
pm
pm

)
pp

,
(
λ
qm
pm

)
pq

,
(
λ
pm
qm

)
pq

for the coefficients lpm

We have of course similar expressions for the coefficients aqm , bqm , lqm .
If the expansion is truncated at the first term, we obtain the following system

for the coefficients ap1 and aq1, since we have ap0 = aq0 = 0:

ap1

[(
α
p1
p1

)
pp

+
(
α
p1
p1

)
pq

]
+ aq1

(
α
p1
q1

)
pq

= −15

2

npkT

mp

aq1

[(
α
q1
q1

)
qq

+
(
α
q1
q1

)
pq

]
+ ap1

(
α
q1
p1

)
pq

= −15

2

nqkT

mq
(4.9)

For bp0 and bq0, we have

bp0

[(
β
p0
p0

)
pp

+
(
β
p0
p0

)
pq

]
+ bq0

(
β
p0
q0

)
pq

= 10
npkT

mp

bq0

[(
β
q0
q0

)
qq

+
(
β
q0
q0

)
pq

]
+ bp0

(
β
q0
p0

)
pq

= 10
nqkT

mq
(4.10)
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and for lp0 and lq0

lp0

[(
λ
p0
p0

)
pp

+
(
λ
q0
p0

)
pq

]
+ lq0

(
λ
p0
q0

)
pq

= 3
nkT

mp

lq0

[(
λ
q0
q0

)
qq

+
(
λ
q0
q0

)
pq

]
+ lp0

(
λ
q0
p0

)
pq

= 3
nkT

mq
(4.11)

The definition of the collisional integrals α,β, λ is given in Appendix 4.1.

4.2.2 Transport terms: Navier–Stokes equations

As in the case for pure gases, momentum flux P and heat flux q are developed
in order to close the conservation equations (1.26), but the term Up (diffusion
velocity of the species p), appearing in the conservation equation of this species,
is also used, i.e.

∂ρp

∂t
+ ∂ · ρpV p

∂r
= 0

with
V p = V + Up

Thus, for the momentum flux, we have

P =
∑
p

mp

∫
vp

f 0
p (1 + ϕp)upupdvp

or

P = nkT I + 2(kT )2
(
np
mp
bp0 + nq

mq
bq0

) 0

∂V

∂r
(4.12)

which may also be written as

P =
∑
p

⎡⎢⎢⎣ppI + 2(kT )2
np
mp
bp0

0

∂V

∂r

⎤⎥⎥⎦ (4.13)

where pp = npkT represents the partial pressure of component p.
Thus, as in the case for pure gases, we can write

P = pI − 2µ

0

∂V

∂r
(4.14)

with
p =

∑
p

pp = nkT (static pressure)
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and
µ = (kT )2

∑
p

np
mp
bp0 (dynamic viscosity coefficient)

where the coefficients bp0 are deduced from the solution of system (4.10).
For the mass flux jp = ρpUp , we have

Up = 1

np

∫
vp

f 0
p ϕpupdvp (4.15)

and with the expression for ϕp (Eqn. (4.6)), we find

Up = kT

mp
lp0tp = kT

mp
lp0

[
∂ξp

∂r
− (ξp − cp)

1

p

∂p

∂r

]
(4.16)

In high-temperature gas dynamics, we may generally assume that, for mixtures
of gases that have comparable molecular masses,63 the pressure gradient term
in Eqn. (4.16) is negligible in comparison with the term of the concentration
gradient. Thus, we can write

Up = kT

mp
lp0
∂ξp

∂r
(4.17)

This expression is generally written in terms of the binary diffusion coefficient
Dpq , so that

ρpUp = −nmpmq
m

Dpq
∂ξp

∂r
(Fick’s law) (4.18)

where

Dpq = − ρ
n2

npkT

mpmq
lp0 (4.19)

As we have ρpUp + ρqU q = 0, then

Dpq = Dqp (4.20)

and
nplp0 = nqlq0

with
ξp + ξq = 1

The coefficients lp0 are deduced from the solution of the system (4.11) and
from the relation (4.20), arising from the definition of V (Appendix 4.1).

For the heat flux, we have

q =
∑
p

∫
vp

f 0
p ϕp

1

2
mpu

2
pupdvp
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and we find that

q = −5

2
(kT )2

[(
np
mp
ap1 + nq

mq
aq1

)
1

T

∂T

∂r
−
(
np
mp
lp0 − nq

mq
lq0

)
tp

]
(4.21)

with

tp = −tq = ∂ξp
∂r

Thus, the heat flux is the sum of a conduction term that is proportional to
the temperature gradient and of a diffusion term (since tp ∼ Up), essentially
because of the concentration gradient. We write

q = −λ∂T
∂r

− ρD
∑
p

hp
∂cp
∂r

(4.22)

with

hp = ep + pp
ρp

= 3

2

kT

mp
+ kT

mp
(enthalpy per unit mass of the component p)

(4.23)

cp = mp
m
ξp (mass concentration of the component p) (4.24)

λ =
∑
p

5

2

np
mp
(kT )2

ap1

T
(thermal conductivity coefficient) (4.25)

and

D = Dpq = Dqp = − ρ
n2

npkT

mpmq
lp0 (binary diffusion coefficient) (4.26)

The coefficients ap1 are deduced from the solution of the system (4.9)
(Appendix 4.1).

Remarks

• The diffusion flux qd = −ρD∑
p
hp
∂ξp
∂r is also written

qd =
∑
p

hpjp =
∑
p

ρphpUp (4.27)

This flux corresponds to the total available energy (enthalpy) ‘transported’ by
diffusion.

• The first-order expansion of Lp (4.7) gives null terms, but at the second order
there is a term that includes ∂T

∂r , corresponding to the ‘thermal diffusion’. Here

this term is therefore neglected, as is the term that includes ∂p
∂r .
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• For D, we find (Appendix 4.1)

D = Dpq = 3kT

16nmr
〈γ 2 − γ · γ ′〉−1 (4.28)

where mr = mpmq
mp+mq (reduced mass). Thus, if p = q (pure gas), we can define

a ‘self-diffusion’ coefficient Dpp , such as

Dpp = 3kT

8nmp
〈γ 2 − γ · γ ′〉−1 (4.29)

even in the absence of diffusion velocity. This coefficient, however, presents
some similarity with the diffusion coefficients of internal energy (Eqns (3.70)
and (3.71)), explaining the approximations made in Chapter 3 (Eqn. (3.73)).

With the definition of various quantities for a mixture (Chapter 1) and that
of the above transport terms (µ, λ, D), the first two Navier–Stokes equations
(conservation of mass and momentum) are identical to those for a pure gas
(3.29), but the conservation equations of energy and of species p are respectively
written

ρ
de

dt
= ∂ ·
∂r

⎛⎝λ∂T
∂r

+ ρD
∑
p

hp
∂cp
∂r

⎞⎠− p
∂ ·V
∂r

+ 2µ

0

∂V

∂r
:
∂V

∂r
(4.30)

ρ
dcp
dt

= ∂ ·
∂r

(
ρD
∂cp
∂r

)
(4.31)

Remark

The above results may be generalized to the case of a multinary mixture by
considering that, for diffusion, only two types of particles are taken into account
(for example, heavy and light particles). Then, one single diffusion coefficient is
used, as long as the condition

∑
p ρpUp = 0 is satisfied. Then, the Navier–Stokes

equations remain identical to the case of a binary mixture. This approximation
is widely used in the case of complex mixtures (Chapter 7).

4.3 Binary mixtures of diatomic gases

4.3.1 One internal mode

Transport terms

As the situation with an internal mode can be treated in the same way as in the
preceding sections, the analysis and results are not discussed in detail here. Thus,
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we analyse only briefly the case in which the rotational energy mode alone is
excited.

In the same way, the temperature non-equilibrium appearing at the first order
is treated only for the vibrational mode (Section 4.3.2), since the translational
and rotational temperatures remain close to each other (Chapter 3).

The zero-order distribution is given by Eqn. (2.35), so that we can write the
perturbation ϕip in the form

ϕip =
[
ap10

(
5

2
− mpu2

p

2kT

)
+ ap01

(
εir p − ERp

kT

)]
up · 1

T

∂T

∂r
+ bp00

0
upup :

∂V

∂r

+
[
dp10

(
3

2
− mpu2

p

2kT

)
+ dp01

(
εir p − ERp

kT

)]
∂ ·V
∂r

+ lp0up · tp (4.32)

where the coefficients ap , bp , dp , lp are defined in Appendix 4.1, and by ap00 =
dp00 = 0.

A similar expression holds for ϕiq .
As before, we can write the transport terms as functions of these coefficients.
For the stress tensor, we have

P = pI − 2µ

0

∂V

∂r
−η∂ ·V
∂r

I (4.33)

with

p = nkT =
∑
p

pp (static pressure) (4.34)

µ = − (kT )2
∑
p

np
mp
bp0 = − (RT )2

∑
p

ρpbp00 (dynamic viscosity coefficient)

(4.35)

η = kT
∑
p

npdp10 = p
∑
p

ξpdp10 (bulk viscosity coefficient) (4.36)

The diffusion velocity is equal to

Up = kT

mp
lp0tp � kT

mp
lp0
∂ξp

∂r
(4.37)

Despite the similarity of these terms with those of the monatomic case, the
corresponding collisional integrals include terms related to inelastic collisions.

As in the case for pure gases, the heat flux term is the sum of a translational
flux and a rotational flux:

q = qT + qR
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with

qT = −5

2
(kT )2

∑
p

np
mp

(
ap10

1

T

∂T

∂r
− lp0

∂ξp

∂r

)

qR = (kT )2
∑
p

np
mp

(
ap01

1

T

∂T

∂r
+ lp0

∂ξp

∂r

)
(4.38)

Each type of flux is the sum of a conduction flux and a diffusion flux, that is:

q = −λ∂T
∂r

− ρD
∑
p

hp
∂cp
∂r

(4.39)

where
λ = λT + λR

and

λT = (kT )2
∑
p

np
mp

5

2T
ap10

λR = (kT )2
∑
p

np
mp

1

T
ap01

D = − ρ
n2

nplp0kT

mpmq
(4.40)

Navier–Stokes equations

Now we can write the Navier–Stokes equations for this type of mixture: the first
two equations for mass and momentum conservation are formally identical to
the equations for pure diatomic gases (3.50). The species conservation equation
is also formally identical to that for monatomic gas mixtures (1.29). As for the
energy equation, it may be written in the following form:

ρ
de

dt
= ∂ ·
∂r

⎛⎝λ∂T
∂r

+ ρD
∑
p

hp
∂cp
∂r

⎞⎠− p
∂ ·V
∂r

+ 2µ

0

∂V

∂r
:
∂V

∂r
+ η

(
∂ ·V
∂r

)2

(4.41)

with

e =
∑
p

cpep =
∑
p

cp
Ep
mp

= 5

2
RT , hp = ep + pp

ρp
= 7

2

kT

mp
, and

h =
∑
p

cphp = 7

2
RT .

Here, p = ρRT and µ, η, λ,D are given by the relations (4.35–4.40).
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Rotational non-equilibrium

As shown previously for pure gases, we have

ERp = ERp

(
1 + dp01

∂ ·V
∂r

)
(4.42)

The corresponding calculations are not developed here. They are practically
identical to those developed below for the vibrational mode, which is of greater
interest because of a stronger non-equilibrium. Thus, dp01 may be connected to
various relaxation times (τTRpp , τTRpq , τRRpq . . .). As these times are short compared
to the reference time, we generally retain only three global times, firstly and
secondly τRp and τRq , characterizing the TR exchanges of the species p and
the species q respectively, retained independently of the collisional partner; and
thirdly τRpq = τRqp , characterizing the RR exchanges between species. This
simplification is used to obtain the transport term expressions presented below
(Appendix 4.3).

Simplification of transport terms

Assuming, as in the case for pure gases, that the collisional balance of internal
energy is small compared to the kinetic energy balance, the collisional integrals
α, β, δ, λ may be simplified and written as functions of macroscopic physical
quantities (Appendix 4.2). In the same way, the transport terms may be expressed
as functions of these quantities26 (Appendix 4.3).

4.3.2 Two internal modes

The results concerning the Navier–Stokes equations, the transport terms, and
their simplified expressions can be deduced from the preceding results, but their
formal complexity renders them quite unpresentable in the framework of this
book. However, the expression for ϕip is given in Appendix 4.1. Furthermore, the
expressions for the transport terms may be deduced from Eqns (4.33)–(4.38),
written for one mode, by replacing, respectively, bp00 by bp000, dp10 by dp100, ap10

by ap100, and ap01 by ap010 in µ, η, qT , and qR . The term for the vibrational heat
flux must also be added, that is:

qV = kT
∑
p

np
mp
EVp

(
ap001

1

T

∂T

∂r
+ lp0

∂ξp

∂r

)
Only the development for the first-order vibrational non-equilibrium is

therefore presented below.
As previously discussed, the presence of two or more species induces the defi-

nition of energies specific to each species. Thus, for example, for the vibrational
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energy of the species p in equilibrium at zero order, we have EVp = EVp(T ), and
at this order no definition of a specific vibrational temperature is necessary, in
contrast to the first order, for which we have

EVp = EVp

(
1 + dp001

∂ ·V
∂r

)
(4.43)

We may also define a vibrational temperature specific to the component p, if
we assume a Boltzmann distribution for the vibrational population. Thus,

EVp = EVp
(
TVp

)
(4.44)

This is, however, a pure hypothesis, or a convenience.
In Eqn. (4.43), the term dp001 is part of a 6 × 6 Cramer system and, with usual

simplifications, may be written as a function of the following five collisional
integrals:27

〈
ε2
vpp〉pp , 〈
ε2

vqq〉qq , 〈
εvp
εvq〉pq , 〈
εvp
εvpq〉pq ,
and 〈
εvq
εvpq〉qp (4.45)

These integrals are defined and developed in Appendix 4.1. If I1, I2, I3 are
combinations of these integrals, also defined in Appendix 4.1, we find from Eqn.
(4.43):

EVp − EVp

EVp
= kCTRCVp

C2
TRV

I1

⎛⎝1 + ξq I2 − I1
CVp
k I3 + ξp CVpCVq

I2 + ξqI1

⎞⎠ ∂ ·V
∂r

(4.46)

and a similar expression for EVq − EVq .
With the same procedure used for pure gases, we can relate the collisional

integrals to phenomenological relaxation times. To do that, we may linearize the
general relaxation equation for mixtures (2.39), or we may develop an approx-
imate relaxation equation by means of the usual Chapman–Enskog expansion.
The result is identical, and we find:27

dEVp
dt

=
[

2n
k

CVp
ξp〈
ε2

vpp〉pp + 4n
k

CVp
ξq

(〈
εvpq
εvp〉pq
−〈
εvp
εvq〉pq

)] (
EVp − EVp

)
+ 4n

k

CVq
ξq〈
εvp
εvq〉pq

(
EVq − EVq

)
(4.47)

From the structure of Eqn. (4.47) we can identify the integrals 〈· · · 〉 with
collision frequencies and therefore their inverses with characteristic relaxation
times. Thus, as in the case for pure gases, the quantity 2n k

CVp
〈
ε2

vpp〉pp represents
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the inverse of a relaxation time connected to vibrational exchanges (essentially
TV) between the molecules p. Therefore, we define:(

τTVpp

)−1 = 2n
k

CVp
〈
ε2

vpp〉pp
Similarly, for the molecules q:(

τTVqq

)−1 = 2n
k

CVq
〈
ε2

vqq〉qq

The quantity 4n k
CVp

〈
εvpq
εvp〉pq is associated with the relaxation of EVp −
EVp but also with that of EVq − EVq . Therefore, it participates in the coupling
between the vibrational energy relaxations of the components p and q. We can
thus relate this quantity to the characteristic time corresponding to the VV
exchanges between the molecules p and q, that is:(

τVVpq

)−1 = 4n〈−
εvp
εvq〉pq (4.48)

This definition of
(
τVVpq

)−1
without the term k

CVp
is necessary in order to

obtain a symmetrical expression for the equation, giving
dEVq
dt , with τVVpq = τVVqp .

Thus, Eqn. (2.39) becomes

dEVp
dt

=
(
ξp

τTVpp
+ ξq

τTVpq
+ k

CVp

ξq

τVVpq

) (
EVp − EVp

)− k

CVq

ξq

τVVpq

(
EVq − EVq

)
(4.49)

Of course, a similar equation for
dEVq
dt may be written.

These relaxation equations have a structure analogous to (2.70), obtained for
a mixture of gases with molecules considered as harmonic oscillators.

Now the vibrational non-equilibrium equation (4.46) may be written as
functions of the phenomenological relaxation times defined above. Setting

τ−1
Vp = ξp

τTVpp
+ ξq

τTVpq
and τ−1

Vq = ξq

τTVqq
+ ξp

τTVqp
(4.50)

we have

EVp − EVp

EVp
= kCTR
C2
TRV

τVp

⎛⎝1 + ξq τVq − τVp
CVp
k τ

VV
pq + ξp CVpCVq

τVq + ξqτVp

⎞⎠ ∂ ·V
∂r

(4.51)

EVq − EVq

EVq
= kCTR
C2
TRV

τVq

⎛⎝1 + ξp τVp − τVq
CVq
k τ

VV
pq + ξq CVqCVp

τVp + ξpτVq

⎞⎠ ∂ ·V
∂r

(4.52)
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where τp and τq represent global relaxation times for the components p and q,
respectively, corresponding to the TV exchanges, whatever the collisional partner
may be. The first term of the right-hand side of Eqns (4.51) and (4.52) represents
the TV relaxation of each component, as in the case for a pure gas, and the second
term represents a VV relaxation coupling between the components. We can again
find the two extreme cases already discussed in Chapter 2 concerning the order
of magnitude of τVVpq : if this time has a sufficiently large value, both gases relax

quasi-independently. On the other hand, if τVVpq is small, then TVp � TVq and
the gases relax quasi-simultaneously (‘resonant’ gases).

4.4 Mixtures of reactive gases

As discussed above, starting from a zero-order equilibrium solution, we have the
following system for the distribution function of the species p:

(JTRVC )
0
p = 0

df 0
ip

dt
= (JTRVC )1p (4.53)

The zero-order solution f 0
ip is difficult to obtain from the first equation of the

system (4.53), because of the coupling between the various types of collisions.
However, we can easily obtain a particular solution resulting from the solution
of the following equations written instead of (JTRVC )

0
p = 0, i.e.

(JTRV )
0
p = 0 and J 0

Cp = 0 (4.54)

This solution corresponds to an equilibrium Maxwell–Boltzmann distribution
for the modes T, R, and V (Eqn. (2.38)) and an equilibrium chemical distribution
(Eqn. (2.45)). At the macroscopic level, the solution corresponds to the Euler
equations for n, V , T and to the equation ẇp = 0 for the species p (examples
given in Chapter 2).

Then, at first order, we can have an approximate solution corresponding to
realistic situations widely considered (examples given in Chapter 10). Thus, for

ϕip , we consider that the solutions resulting from the equation
df 0
ip

dt = (JTRV )1p are
the same as those obtained above, with the same Navier–Stokes equations and
the same transport terms. Furthermore, we assume that the p equations ẇp = 0
govern the composition of the mixture at zero order. This leads to the conclusion
that the chemical production of species is the dominant process for the balance
of these species, so that convection and diffusion are negligible. Physical and
mathematical interpretations are given in Chapter 7.
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Appendix 4.1 Systems of equations for the
coefficients a, b, l, d

Binary mixtures of monatomic gases

System for Ap

1∑
m=0

apm

[(
α
pm
pm

)
pp

+
(
α
pm
pm

)
pq

]
+

1∑
m=0

aqm
(
α
pm
qm

)
pq

=
∫
vp

f 0
p

(
mpu2

p

2kT
− 5

2

)
up · Smp3/2updvp

with
ap0 = aq0 = 0, ap1, and aq1, given by Eqn. (4.9)(

α
p1
p1

)
pp

=
∫
vp

J 1
pp

[
S1
p3/2up

]
· S1
p3/2updvp

(
α
p1
p1

)
pq

=
∫
vp

J 1
pq

[
S1
p3/2up

]
· S1
p3/2updvp

(
α
p1
q1

)
pq

=
∫
vp

J 1
pq

[
S1
p3/2up

]
·updvp (4.55)

System for Bp

The coefficients bp0 and bq0 are given by the system (4.10), with the right-

hand side corresponding to the quantity
∫
vp

f 0
p
mp
kT

0
upup :

0
upup dvp and to the

symmetrical quantity integrated over vq . We also have(
βP0
p0

)
pp

=
∫
vp

J 1
pp

[
0

upup

]
:

0
upup dvp

(
β
p0
p0

)
pq

=
∫
vp

J 1
pq

[
0

upup

]
:

0
upup dvp

(
β
p0
q0

)
pq

=
∫
vp

J 1
pq

[
0

uquq

]
:

0
upup dvp (4.56)
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System for Lp

The coefficients lp0 and lq0are given by the system (4.11), with right-hand sides
corresponding to the quantity

∫
vp

f 0
p
n
np
up ·updvp and to the symmetrical quantity

integrated over vq .
However, the two equations are not independent, and another equation is

necessary. This may be obtained by using the condition ρpUp + ρqU q = 0,
which can be written simply as

nplp0 = nqlq0

Thus

lp0

(
λ
q0
p0

)
pq

+ lq0

(
λ
p0
q0

)
pq

=
∫
vp

f 0
p
n

np
up ·updvp

with (
λ
p0
p0

)
pq

=
∫
vp

J 1
pq

[
up
] ·updvp

(
λ
p0
q0

)
pq

=
∫
vp

J 1
pq

[
uq
] ·updvp (4.57)

and with the result

lp0 = − 3

16

mp +mq

npm
〈γ 2 − γ · γ ′〉−1 (4.58)

Binary mixtures of diatomic gases (one internal mode)

System for Aip

Aip =
1∑

mn=0

apmnψ
3/2
pmn with ψ

3/2
pmn = Smp3/2

(
mpu2

p

2kT

)
Pnip

( εip
kT

)
Keeping only the first terms, and remembering that ap00 = aq00 = 0, we

obtain the following system for the coefficients ap10, ap01, aq10, aq01:

1∑
m+n=0

apmn

[(
α
p10
pmn

)
pp

+
(
α
p10
pmn

)
pq

]
+ aqmn

(
α
p10
qmn

)
pq

= −15

2

npkT

mp

1∑
m+n=0

apmn

[(
α
p01
pmn

)
pp

+
(
α
p01
pmn

)
pq

]
+ aqmn

(
α
p01
qmn

)
pq

= 3
npkT

mp

CRp
k



APPENDIX 4.1 SYSTEMS OF EQUATIONS FOR a, b, l, d COEFFICIENTS 115

1∑
m+n=0

aqmn

[(
α
q10
qmn

)
qq

+
(
α
q10
qmn

)
pq

]
+ apmn

(
α
q10
pmn

)
pq

= −15

2

nqkT

mq

1∑
m+n=0

aqmn

[(
α
q01
qmn

)
qq

+
(
α
q01
qmn

)
pq

]
+ apmn

(
α
q01
pmn

)
pq

= 3
nqkT

mq

CRq
k

(4.59)

with (
α
pm′n′
pmn

)
pp

=
∑
i

∫
vp

J 1
pp

[
�

3/2
pmnup

]
·�3/2

pm′n′up dvp

(
α
pm′n′
pmn

)
pq

=
∑
i

∫
vp

J 1
pq

[
�

3/2
pmnup

]k
i

·�3/2
pm′n′up dvp

(
α
pm′n′
qmn

)
pq

=
∑
i

∫
vp

J 1
pq

[
�3/2
qmnup

]l
j
·�3/2

pm′n′up dvp (4.60)

System for Bip

Bip = bp00

This system is formally identical to the monatomic case (Eqn. (4.10)), with
the addition of an index of 0 to the coefficients b and to the integrals β, with

(β
p00
p00 )pp =

∑
i

∫
vp

J 1
pp

[
0

upup

]
:

0
upup dvp

(β
p00
p00 )pq =

∑
i

∫
vp

J 1
pq

[
0

upup

]k
i

:
0

upup dvp

(β
q00
p00)pq =

∑
i

∫
vp

J 1
pp

[
0

upup

]l
j

:
0

upup dvp (4.61)

System for Dip

Dip =
1∑

mn=0

dpmn�
1/2
pmn

Here, we have dp00 = 0, and the coefficients dp10, dp01, dq10, dq01 are given
by a system identical to that giving the coefficients a (Eqn. (4.59)), provided we
replace the coefficients a with d , the integrals α (Eqn. (4.60)) with the integrals

δ (Eqn. (4.62)), and the right-hand sides respectively with −np CRCTR , −np CRpCTR
,
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−nq CRCTR , − CRq
CTR

. The δ integrals are given by the following expressions:

(δ
pm′n′
pmn )pp =

∑
i

∫
vp

J 1
pp[�1/2

pmn]�1.2
pm′n′dvp

(δ
pm′n′
pmn )pq =

∑
i

∫
vp

J 1
pq[�1/2

pmn]ki �1.2
pm′n′dvp

(δ
pm′n′
pmn )pq =

∑
i

∫
vp

J 1
pq[�1/2

pmn]lj�1.2
pm′n′dvp (4.62)

System for Lip

This system is formally identical to the monatomic case (Eqn. (4.11)), with the
addition of an index of 0 to the coefficients l and to the λ integrals, with(

λ
p00
p00

)
pp

=
∑
i

∫
vp

J 1
pp[up] ·updvp = 0

(
λ
p00
p00

)
pq

=
∑
i

∫
vp

J 1
pq[up]ki ·updvp

(
λ
p00
q00

)
pq

=
∑
i

∫
vp

J 1
pq[uq]lj ·updvp = 0 (4.63)

Binary mixtures of diatomic gases (two internal modes)

The expression for ϕip is

ϕip =
[
ap100

(
5

2
− mpu2

p

2kT

)
+ ap010

(
εir p − ERp

kT

)
+ ap001

(
εiv p − EVp

kT

)]

× 1

T

∂T

∂r
·up + bp000

∂V

∂r
:

0
upup

+
[
dp100

(
3

2
− mpu2

p

2kT

)
+ dp010

(
εir p − ERp

kT

)
+ dp001

(
εiv p − EVp

kT

)]

× ∂ ·V
∂r

+ lp0tp ·up (4.64)

The formulae giving the coefficients become intricate and therefore are not
described in detail here. For example, the systems giving the coefficients a and
d become 6 × 6 systems including 6 × 9 collisional integrals. This calculation
is left to the reader, as the computations represent an extension of the case with
one single mode.
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Only a few results for the coefficient Dip =
∞∑
mns
dpmns�

1/2
pmns are given here, as

well as the collisional integrals necessary for the determination of the linearized
vibrational non-equilibrium. Thus, using approximations discussed in Chapter
3, the 6 × 6 system giving the coefficients dp100, dp010, dp001, dq100, dq010, dq001

may be simplified. For dp001, we find the relation appearing in Eqns (4.43) and
(4.46), with


εvpp = (εkvp + εlv p − εiv p − εjv p)/kT

εvp = (εkvp − εiv p)/kT

εvpq = (εkvp + εlv q − εiv p − εjv q)/kT and 
εvq = (εlv q − εjv q)/kT

and with

I−1
1 = 2np

k

CVp
〈(
ε)2vpp〉pp + 4nq

k

CVp
〈
εvp
εvpq〉pq

I−1
2 = 2nq

k

CVq
〈(
ε)2qq〉qq + 4np

k

CVq
〈
εvq
εvpq〉qp

I−1
3 = −4n〈
εvp
εvq〉pq

We also have

〈· · · 〉pq =
(
kT

2πmr

)1/2 ∑
i,j ,k,l

nir pnivpnjr qnjvq
n4

×
∫
�,γpq

exp
(
−γ 2

pq

)
γ 3
pq (· · ·) I kp,lq

ip,jq d� dγpq (4.65)

Appendix 4.2 Collisional integrals and
simplifications

The integrals below apply to the binary mixtures of diatomic gases with one
excited internal mode (rotation). The integrals corresponding to the monatomic
case are, of course, obtained by cancelling the terms depending on the internal
energy. The integrals corresponding to diatomic gases with two internal modes
(rotation, vibration) may be obtained by replacing εi or εir with εir + εiv . Then,
the simplifications used for pure gases (Chapter 3) may be applied. However,
as discussed above, the phenomena related to the vibrational non-equilibrium
cannot be correctly developed in this way. It is then preferable to separate the
contribution of each energy mode in the expansions themselves (Chapter 3).
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The α integrals

These integrals appear in the system corresponding to Eqn. (4.59) giving the
coefficients a and therefore also in the heat flux (Eqn. (4.38)). This 4 × 4 system
includes 2 × 12 integrals symmetrical with respect to p and q. These 12 integrals
are developed below, first in their general form as functions of integrals 〈· · · 〉,
then in an approximate form with the usual simplifications. Thus, we have(
α
p10
p10

)
pp

= −8n2
p
kT

mp

〈
γ 4 sin2 χ −
εrppγ 2 sin2 χ + 11

8

(

εrpp

)2
〉
pp

� −5ξp
npkT

mp

(
nkT

µp
+ 5

6

CRp
k

(
τRTpp

)−1
)

(
α
p01
p01

)
pp

= 8n2
p
kT

mp

〈
εir p − ERp

kT

(
γ · γ ′ εkr p − εlr p

kT
− γ 2 εir p − εjr p

kT
+ 3

2

εrpp

)〉
pp(

α
p10
p01

)
pp

=
(
α
p01
p10

)
pp

= −5n2
p
kT

mp

〈(

εrpp

)2
〉
pp

� −5

2
ξp
npkT

mp

CRp
k

(
τRTpp

)−1

= −3ξp
npkT

mp

CRp
k

(
kT

mp
(Dpp)

−1 + 1

2

(
τRTpp

)−1
)

(4.66)

(
α
p10
p10

)
pq

= −16npnq
kT

mp

(
mq

mp +mq

)3

×

⎡⎢⎢⎢⎢⎣
(

30
4

(
mp
mq

)2 + 25
4

) 〈
γ 2 − γ · γ ′〉

pq − 5
〈
γ 2

(
γ 2 − γ · γ ′)〉

pq

+
〈
γ 3

(
γ 3 − γ ′3 cosχ

)〉
pq

+ 2
mp
mq

〈
γ 2

(
γ 2 − γ ′2 cos2 χ

)
−1

6

(

εrpq

)2
〉
pq

⎤⎥⎥⎥⎥⎦
� −3

npnq
n

(
kT

mp

)2 ( mq
mp +mq

)2
[(

15

2

(
mp
mq

)2

+ 25

4

)
− 3B∗

pq

]
D−1
pq

− 20npnq
kT

mq

(
mq

mp +mq

)3 kT

µ′
pq(

α
p01
p01

)
pq

= 16npnq
kT

mp

mq
mp +mq

×

⎡⎢⎢⎣
3
2
mp
mq

〈

εrp

(
εir p−ERp
kT

)〉
pq

+
〈
εir p−ERp
kT

(
εkr p−ERp
kT γ γ ′ cosχ − εir p−ERp

kT γ 2

)〉
pq

⎤⎥⎥⎦



APPENDIX 4.2 COLLISIONAL INTEGRALS AND SIMPLIFICATIONS 119

� −3
npnq
n

kT

mp

×
[
kT

mp

CRp
k
D−1
pq + mp

mp +mq

(
CRp
k

(
τRTpq

)−1 +
(
τRRpq

)
− 1

)]
(
α
p10
p01

)
pq

=
(
α
p01
p10

)
pq

= −20npnq
kT

mq

(
mq

mp +mq

)2

〈
εrpq
εrp〉pq

� −5
npnq
n

kT

mq

(
mq

mp +mq

)2 CRp
k

(
τRTpq

)−1

(
α
p10
q10

)
pq

= 16npnqkT
mr(

mp +mq
)2

×

⎡⎢⎢⎣
55
4 〈γ 2 − γ · γ ′〉pq − 5〈γ 2

(
γ 2 − γ · γ ′)〉

+〈γ 3
(
γ 3 − γ ′3 cosχ

)
〉pq

−2〈γ 2
(
γ 2 − γ ′2 cos2 χ

)
− 1

6

(

εrpq

)2〉pq

⎤⎥⎥⎦
� 3

npnq
n

(
kT

mp +mq

)2 (55

4
− 3B∗

pq

)
D−1
pq − 20npnq(kT )

2

× mr(
mp +mq

)2

(
µ′
pq

)−1
(4.67)

(
α
p01
q01

)
pq

= 24npnq
kT

mp +mq
〈
εrp
εrq〉pq

� 3
npnq
n

kT

mp +mq

(
τRRpq

)−1

(
α
p10
q01

)
pq

= −20npnq
kT

mq

(
mq

mp +mq

)2

〈
εrq
εrpq〉pq

� −5
npnq
n

kT

mq

(
mq

mp +mq
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(4.68)
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By analogy with pure gases, the term µ′
pq may be considered a ‘fictitious

viscosity’; we also find that µ′
pq = µp when p = q.

The non-dimensional quantity B∗
pq is such that

B∗
pq =

1/3

[
5
〈
γ 2

(
γ 2 − γ · γ ′)〉− 〈

γ 3
(
γ 3 − γ ′3 cosχ

)〉
pq

]
〈
γ 2 − γ · γ ′〉

pq

(4.69)

We also have 12 symmetrical integrals, obtained by exchanging the indices p
and q in the preceding integrals.

The β integrals

These integrals appear in the (2×3) system giving bp00 and bq00 in a symmetrical
way. Therefore, they also appear in the coefficient of dynamic viscosity. Thus(
β
p00
p00

)
pp

= −16

(
npkT

mp

)2 〈
γ 4 sin2 χ − γ 2 sin2 χ

(

εrpp

)+ 1
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(

εrpp
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〉
pp
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(4.70)

The other three integrals are obtained by exchanging the indices p and q.



APPENDIX 4.2 COLLISIONAL INTEGRALS AND SIMPLIFICATIONS 121

The δ integrals

The δ integrals appear in the system giving the coefficients d , and therefore in the
bulk viscosity and in the rotational non-equilibrium. There are 2 × 12 integrals
in the system. We have

(
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p10

)
pp

=
(
δ
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)
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=
(
δ
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)
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=
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2
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=
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(4.71)

The other 12 integrals are obtained by exchanging the indices p and q.
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The λ integrals

See Appendix 4.1.

Appendix 4.3 Simplified transport coefficients

The expressions for these coefficients are given for binary mixtures of diatomic
gases with one excited internal mode (rotation). It is easy (but tedious) to deduce
the equivalent expressions for monatomic gases and for diatomic gases with two
modes.

Dynamic viscosity

From the definition, we have

µ = −ρp
(
kT

mp

)2

bp00 − ρq
(
kT

mq

)2

bq00

Thus, we find28 that

µ =

〈
ξpξq(µ

−1
p + µ−1

q )+ 2
[
n
(
mp +mq

)]−1
D−1
pq

+2
(
ξpmp − ξqmq

)2 (
mp +mq

)2
(
µ′
pq

)−1

〉

〈 ξpξqµ−1
p µ

−1
q + 2

[
n
(
mp +mq

)]−1
D−1
pq

(
ξ 2
pµ

−1
p + ξ 2

qµ
−1
q

)
+ 2

(
mp +mq

)−2
(µ′
pq)

−1
(
ξ 2
pm

2
pµ

−1
p + ξ 2

qm
2
qµ

−1
q

)
+4ξpξq

[
n
(
mp +mq

)]−1
D−1
pq

(
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)−1

〉 (4.72)

Thus, the dynamic viscosity of a binary mixture µ (= µpq)may be expressed
as a function of:

• the dynamic viscosity of each component µp and µq

• the binary diffusion coefficient Dpq

• a fictitious viscosity µ′
pq , related to a momentum transfer p→← q.

Bulk viscosity

From the definition, we have η = (
npdp10 + nqdq10

)
kT . Thus, we find28 that

η = CR
CTR

p

×
CRpCRq
k

(
ξp
τRp

+ ξq
τRq

)
+ (
ξpCRp + ξqCRq

)
τ−1
Rpq(

CT + ξpCRp + ξqCRq
) (CRpCRq

k2
1

τRpτRq
+ ξp CRpk 1

τRpτRpq
+ ξq CRqk 1

τRqτRpq

) (4.73)
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The bulk viscosity of a binary mixture η(= ηpq) depends therefore on
relaxation times previously defined:

• The TR relaxation time of species p, τRp .

• The TR relaxation time of species q, τRq .

• The RR relaxation time p→← q, τRpq (= τRqp).

Thermal conductivities

Translational thermal conductivity

From the definition, we have

λT = 5

2
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(
npk
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mq
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)
We find20 that

λT = 75

4
k

×
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]
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(ξp−ξq)2
µ′
pq

+3
[
n
(
mp +mq

)2
Dpq

]−1 [
2ξpξq

(
55
4 − 3B∗

pq

)
+ mp

mq
ξ 2
p + mq

mp
ξ 2
q

]〉

〈
25ξpξq
µpµq

+ 9mr
n2(mp+mq)3

[
Q∗
pqQ

∗
qp −

(
55
4 − 3B∗

pq

)2
]
ξpξq

D2
pq

+ 100mr
(mp+mq)2µ′

pq

(
mpξ2

p

µp
+ mqξ2

q

µq

)
+ 15
n

⎧⎨⎩
ξ2
p

mq

(
mp

mp+mq
)2 Q∗

qp

µp
+ ξ2

q

mq

(
mq

mp+mq
)2 Q∗

pq

µq

+ 4mr
(mp+mq)4

[
m2
pQ

∗
qp +m2

qQ
∗
pq − 2mpmq

(
55
4 − 3B∗

pq

)]
ξpξq

µ′
pq

⎫⎬⎭

〉
(4.74)

with

Q∗
pq = 5

4

[
6

(
mp
mq

)2

+ 5

]
−3B∗

pq , Q∗
qp = 5

4

[
6

(
mq
mp

)2

+ 5

]
−3B∗

qp , and B∗
pq = B∗

qp

From this formula, we again find the Eucken approximation (Eqn. (3.73)) for
pure gases (ξp = 1, ξq = 0), that is, λT = 15

4
k
mµ.

Rotational thermal conductivity

From the definition, we have

λR = −npkT
mp

CRpap01 − nqkT

mq
CRqaq01
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We find28

λR = npCRp

ξpD
−1
pp + ξqD−1

pq

+ nqCRq

ξqD
−1
qq + ξpD−1

pq

(4.75)

This expression corresponds to the Eucken approximation for pure gases. A
similar expression is of course found when the vibrational mode is excited.

Appendix 4.4 Alternative technique:
Gross–Jackson method

Among the approximate solutions of the Boltzmann equation relevant to gaseous
media close to equilibrium, the Gross–Jackson method is a perturbation method
which may be applied to non-collisional regimes and thus is independent of the
definition of a ‘small parameter’.29 Thus, starting from a zero-order solution,
a first-order solution is derived by successive approximations with a linearized
collisional term. At each level of approximationN , the collisional operator L(ϕ)
is such that

L (ϕ) = K (N )(ϕ)− α(N )ϕ (4.76)

where, as in the case for the Chapman–Enskog method, ϕ is the perturbation of
the zero-order distribution function f 0. Here,K (N ) is an operator with a limited
discrete spectrum, and α(N ) is a constant intended to represent terms of order
higher than N .

The case of a pure gas with only one internal mode (rotation) is treated here.30

The case of gases with two internal modes or the case of mixtures do not present
any further major difficulty.

Starting from the Wang-Chang–Uhlenbeck equation (1.50) with a symmetri-
cal collisional operator, and considering a zero-order solution f 0

i in equilibrium
(Eqn. (2.10)), we try to find the perturbation ϕi such that fi = f 0

i (1 + ϕi).
For the same reasons as those discussed for the Chapman–Enskog method, ϕi
is expanded in the basis of the following functions, without defining a ‘small
parameter’:

ϕi =
∑
lmn

Almn� lmni Y l (4.77)

with Almn = Almn (r , t ) and Y l (Waldmann irreducible tensors6) such that

Y 0 = 1, Y 1 = w, Y 2 = ww − 1

3
w2I = 0

ww
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and

ψ lmni = π
1/2

2bn

[
m!(

1 +m + 1
2

)!
]1/2

Sml+1/2

(
w2) Pn (Ei)

where

w =
( m

2kT

)1/2
u, Ei = εi

kT
, b0 = 1, b1 = CR

k
Here, Sml+1/2 and Pn are respectively the Sonine and Wang-Chang–Uhlenbeck

polynomials.
The functions � lmni satisfy the orthogonality condition:∑
i

∫
w

exp
(−w2 − Ei

)
� lmni Y l� lm

′n′
i Y ldw = 1

4
π1/2QRδmm′δnn′

∫
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(
Y lY l

w2l

)
d�

(4.78)

The first few basis functions are

�000
i = 1, �100

i =
(

2

3

)1/2

, �010
i =

(
2

3

)1/2 (3

2
− w2

)
�110
i =

(
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15

)1/2 (5

2
− w2

)
, �001
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(
Ei − ER

)
�101
i =

(
2k

3CR

)1/2 (
Ei − ER

)
, �200

i =
(

4

15

)1/2

The coefficients Almn may be written as functions of the perturbations of the
macroscopic moments δM . Thus, using the notation of Chapter 3, we have

A000 = 0

A010 = −
(

3

2

)1/2 TT − T

T
= −

(
3

2

)1/2

δTT

A001 =
(
k

CR

)1/2 ER − ER
kT

=
(
k

CR

)1/2

δER (= δTR)
Other relations may be obtained from the definition of other quantities, such

as the fluxes. Thus, A200 = ( 15
4

)1/2
δP. In the same way, the definition of the

population of the levels i gives the following relation:∑
i

A001�001
i Y 0 = ni − ni

ni
= δni

We write the linearized collisional operator J 1 [ϕi] in the form

J 1 [ϕi] = f 0
i

n

π3/2Q
L [ϕi]
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with

L [ϕi] =
∑
j ,k,l

∫
�,wj

exp
(
−w2

j − Ej
) (
ϕ′
k + ϕ′

l − ϕi − ϕj
)
gI k,l
i,j d� dwj (4.79)

Using the expansion of ϕi (Eqn. (4.77)), we expand L
[
� lmni Y l

]
in the basis

of the functions �rsti Y
r . Thus, we obtain

L [ϕi] =
∑
rmn
rst

ArmnK rmnrst �
rst
i Y

r (4.80)

where r = l , because of the assumed symmetry of collisions, and with

Krmnrst =
∑
i,j ,k,l

∫
�,wi ,wj

exp
(
−w2

i − w2
j − Ei − Ej

)
�rsti Y

r
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′rmn
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l Y
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4

∫
4π

Y rY r

w2r
i

d�
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g I k,l
i,j d� dwidwj

We also have Krmnrst = Krstrmn . These integrals are algebraically related to the
integrals α, β, δ . . . , or 〈. . .〉 appearing in the Chapman–Enskog method.

Equation (4.80) is rearranged according to the sequence r + 2m + 2n, r +
2s + 2t , and for a chosen value of N , we replace those terms that have an order
r + 2m + 2n and r + 2s + 2t higher than N with αN δmsδnt , where αN is an
arbitrary constant. Thus, we have

L(N ) [ϕi] =
∑

r+2m+2n≤N
r+2s+2t≤N

ArmnK rmnrst �
rst
i Y

r +
∑

r+2m+2n>N

αNA
rmn�rmni Y r

(4.81)

By analogy with the ‘Maxwellian’ molecules which have a spectrum of
eigenfunctions comprising the functions �rmY r , we may choose αN so that
αN = KN00

N00 . However, these models give a non-null balance for elastic collisions

for populations of the level i, that is, (
ni)el = ni
ni

∑
2t>N

A00t KN00
N00el�

00t
i Y 0.

Therefore, the diagonalization constant αN must be written

αN = KN00
N00 − KN00

N00elδr0δm0
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Then, with the expansion (Eqn. (4.77)) for ϕi , the model equation for the
operator L may be written

L(N ) [ϕi] =
∑

r+2m+2n≤N
r+2s+2t≤N

{
Armn

[
Krmnrst − (

KN00
N00elδr0δm0

)
δmsδnt

]}
�rsti Y

r

+ KN00
N00 ϕi − KN00

N00elδni (4.82)

Now we are able to write models of any order N . Of course, their accuracy
increases with N , but so also does their complexity.

The gas properties are obtained by replacing J 1 with the approximation J (N ) =
f 0
i

n
π3/2Q

L(N ) [ϕi] in the first-order equation
df 0
i
dt = J 1, where 1

f 0
i

df 0
i
dt is given in

Chapter 3.
The first-order model (N = 1) includes only one collisional integral and does

not satisfy the conservation of energy. The second-order model (N = 2) satisfies
the three conservation laws; it also gives the correct viscosity coefficients, but it
is necessary to use the model N = 3 in order to obtain a correct modelling of
energy fluxes.

Here we give only the expression for the model with N = 2, which may be
used in many applications, i.e.

L(2) [ϕi] = −K 200
200el

(
δni − εir − ER

kT
δTR

)
− K 200

200

×
[(

3

2
− w2

)
δTT + εir − ER

kT
− ϕi

]
+ K 010

010in

×
[(

3

2
− w2

)
(δTR − δTT )+ 3k

2CR
(δTR − δTT )

(
εir − ER
kT

)]
(4.83)

This model (N = 2), gives in particular a correct description for the rotational
non-equilibrium (the model N = 3 gives the same result). Thus, multiplying

the equation
df 0
i
dt = J (2) by εir − ER , integrating over the velocity space, and

summing over the levels, we find that the rotational non-equilibrium is given by
the formula

ER − ER

ER
= CR
C2
TR

1

K 010
010in

∂ ·V
∂r

(4.84)

This formula presents a clear connection with Eqn. (3.51) deduced from
the Chapman–Enskog method. We may thus verify that the integral K 010

010in is
proportional to a collision frequency, as are the other K integrals, and that
K 010

010in ∼ (τR)−1.
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To sum up, the Gross–Jackson method, initially developed for molecules with
Mawellian interaction potential31 has been progressively extended to polyatomic
gases30 and to gas mixtures.32 ForN ≥ 3, the method gives a detailed description
of the dynamics of gases. The method may also be applied when the zero-order
solution is out of equilibrium,14 and may be used for non-collisional regimes.
The method is often easier to use than the Chapman–Enskog method, but it
becomes increasingly complex whenN ≥ 3. Furthermore, since it is a linearized
method, it may describe only those situations that are close to the zero-order
solution of the distribution function.

Appendix 4.5 Alternative technique:
method of moments

As already discussed, in the case of elastic collisions, the distribution function f
may be written in the following form:

F
(
v,M 0,M 1, . . .Mn . . .

)
(4.85)

where the momentsMn are functions of r and t .
Then, if � is a function of v, we obtain an infinite system of equations for an

infinite array of moments by replacing the expression (4.85) in the equation∫
�
df

dt
dv =

∫
�Jdv (4.86)

Thus, the Boltzmann equation is equivalent to an infinite system of macro-
scopic equations.

An approximate solution consists of representing the distribution function by
a finite number of moments composed of macroscopic quantities A (r , t ). As
these equations are not closed, an approximate form for F in Eqn. (4.85) must
be found in order to close the system.

One possible form consists of expanding the distribution function in a series
of orthogonal polynomials8 such as the Hermite polynomials H (n)i,j ,...,n , that is:

f = f 0
(
a0H (0) + a1

i H
(1)
i + 1

2
a2
ijH
(2)
ij + · · · + 1

n!a
n
ij...nH

(n)
ij...n

)

Setting w = u
√
m/kT and g (w) = 1

n

(
kT
m

)3/2
f , these polynomials

are orthogonal with respect to the weighting function g 0 (w) =
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(2π)−3/2 exp(−w2/2), and the first four correspond to the following tensors:

H (0) = 1, H (1)i = w , H (2)ij = 0
ww = wiwj − δij , and

H (3)ijk = vivjvk − (
viδjk + vjδik + vkδij

)
The contraction of H (3)ijk is H (3)i = w

(
w2 − 5

)
.

Using only H (0), H (1)i , H (2)ij , H (3)i in the expansion, we can find the cor-
responding coefficients anij ..n from the orthogonality properties of Hermite
polynomials. These coefficients may be expressed in terms of the first moments
of the distribution function, that is:

a0 = 1, a1 = 0, a2
ij = P′

p
, and a3

i = 2q

p

√
m

kT

Finally, at this level of approximation, the expression of the distribution
function is

f = f 0
[

1 + 1

2p

( m
kT

)
P′ :

0
uu+

( m
kT

)( m
kT

u2

5
− 1

)
q ·u

]
(4.87)

From Eqns (4.86) and (4.87), we can thus obtain a set of macroscopic
equations including the three usual conservation equations (1.26) and two other
equations giving P′ and q. This system comprises the ‘13 moment equations’.8

However, closure of the system is ensured only if we consider Maxwellian
molecules (Appendix 1.3), because of the collisional terms that appear in the
last two equations.4

In this case, these last two equations may be written in the following form:

∂P′

∂t
+A+ P′

τ
= 0 (4.88)

∂q

∂t
+ B + 2

3

q

τ
= 0 (4.89)

where A and B are terms that include space derivatives, and τ is a quantity
related to the collisional terms that have the dimension of time (Maxwellian
molecules): τ may be considered as the relaxation time of the corresponding
processes.

We may note that the expression of the distribution function (Eqn. (4.87))
does not involve an expansion in a series of a ‘small’ parameter, as is the case
for the Chapman–Enskog expansion. Thus, independently of the approximate
character of this expression, it may be applied to any type of flow.

However, for small Knudsen numbers (τ → 0), the influence of the history
of the flow decays rapidly, so that, by integrating Eqns (4.88) and (4.89), we have
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the solutions

P′ = −τA+ τ ∂τA
∂t

+ · · · (4.90)

q = −3

2
τB + 9

4
τ
∂τB

∂t
+ · · · (4.91)

Retaining only the first terms of the right-hand side of these equations and
only the lowest-order moments in A and B, we obtain

P′ = −2τp

0

∂V

∂r

q = −15

4

k

m
τp
∂T

∂r

Comparing with the corresponding results obtained from the Chapman–
Enskog expansion, we can write

µ = τp and λ = 15

4

k

m
τp

Thus, as already shown (Appendix 3.4),we find a linear dependence ofµ and λ
with T (Maxwellian molecules). We again find the Navier–Stokes equations by
this method, but with an approximate value for the transport coefficients.

Retaining the second-order terms of the right-hand side of Eqns (4.90)–(4.91),
we obtain higher-order conservation equations equivalent to those correspond-
ing to the second-order terms of the Chapman–Enskog expansion (Burnett
equations4).

With the present method, it is possible to retain more moments in the expan-
sion: for example, in the ‘20 moment equations’, all third-order terms are taken
into account.4 Other developments of the method are available.33



FIVE

Transport and Relaxation in
Non-Equilibrium Regimes

5.1 Introduction

The first part of this chapter is devoted to cases for which the collisional char-
acteristic times may be very different to the previous cases analysed in Chapters
3 and 4 (WNE cases). Thus, the regimes analysed here correspond to case 2
defined in Chapter 3 (Eqn. (3.6)), that is, to SNE regimes. The zero-order distri-
bution function is then out of equilibrium, and examples of this were given in
Chapter 2. Here, first-order solutions are developed with the Chapman–Enskog
method. These solutions present important differences from the WNE case, and
rather than completely developing the solutions, the differences are emphasized
primarily for the transport terms.

First, we consider vibrational non-equilibrium regimes at zero order; this is
a typical case frequently encountered in high-temperature flow. We analyse the
consequences for transport in these regimes, and at the same level of approxima-
tion, we observe that the transport terms are generally simpler than in the WNE
case because of the similarity between the zero-order solutions of the frozen case
and non-equilibrium cases (Chapter 3). The chemical non-equilibrium case
(SNE)C is then examined, distinguishing two cases for the vibrational mode,
that is, (WNE)V or (SNE)V . In both instances, the resulting vibration–chemistry
interaction is pointed out, and consequences on the reaction-rate constants and
vibrational non-equilibrium are analysed.

5.2 Vibrational non-equilibrium gases: SNE case

5.2.1 Pure diatomic gases

This is a general case: the translational and rotational modes are in equilibrium at
zero order (for both modes one single temperature is defined),but the vibrational
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mode is out of equilibrium (τV ∼ θ). Therefore, according to case 3 of Chapter 3,
we have

J 0
TR = 0 (5.1)

df 0
i

dt
= J 1

TR + J 0
V (5.2)

We may generally include the resonant VV collisions in the TR collisions, since
their vibrational collisional balance is null (
εv = 0). Thus, a vibrational tem-
perature TV can be defined, and a Boltzmann distribution at this temperature
may be assumed at zero order (Eqn. (2.28)). In the same way, this temperature is
given by one single relaxation equation (2.29), coupled with the Euler equations.

Taking into account the expression for
df 0
i
dt − J 0

V , which is the non-
homogeneous part of the linearized equation (5.2) (Appendix 5.1), we may
write the perturbation ϕi in the following form:4,14

ϕi = Ai
1

T

∂T

∂r
·u+ Bi

∂V

∂r
:

0
uu+Di ∂ ·V

∂r
+ Fi

1

TV

∂TV
∂r

·u+ Gi (5.3)

The difference with the WNE case with two internal modes (Appendices 3.2
and 3.3) lies in the splitting of the corresponding term Ai into two terms. One
term, Ai , includes the contribution of the translational and rotational modes,
and another term, Fi , includes the contribution of the vibrational mode out of
equilibrium at zero order. As Ai and Fi are connected to the heat fluxes, we may
anticipate a structural modification of these fluxes with respect to the WNE case.
A new term, Gi , also appears because of the vibrational non-equilibrium. The
equations to be solved are then the following:

J 1
TR [Aiu] = f 0

i

(
mu2

2kT
− 5

2
+ εir − ER

kT

)

J 1
TR

[
Bi

0
uu

]
= f 0

i
m

kT

0
uu

J 1
TR [Di] = f 0

i

[
2

3

CR
CTR

(
mu2

2kT
− 3

2

)
− k

CTR

εir − ER
kT

]

J 1
TR [Fiu] = f 0

i
εiv − EV
kTV

u
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J 1
TR [Gi] = f 0

i

n

[
1

CVTV

εiv − EV
kTV

− 1

CTRT

(
mu2

2kT
− 3

2
+ εir − ER

kT

)]

×
⎛⎝∑

i

εiv

∫
v

J 0
V dv

⎞⎠− J 0
V (5.4)

The method of solution is similar to the one described in Chapters 3 and 4.
Ai , Bi , Di , Fi , and Gi are expanded in the Sonine–Laguerre and Wang-Chang–
Uhlenbeck polynomials (3.61). Keeping only the first terms of these expansions,
and taking into account the constraints and various simplifications previously
discussed, we obtain the systems of equations for various coefficients as given in
Appendix 5.1 with the corresponding collisional integrals.

First, we observe that the terms in Di(d100 and d010) and in Bi(b000) are iden-
tical to those of the WNE case with one internal mode (rotation), without any
contribution of the vibrational mode, including the corresponding collisional
integrals δ100

100 and β000
000 , as if this mode was frozen. Therefore, b000 and d100 (with

d010 = CT
CR
d100) are given by Eqn. (3.40). In contrast, the terms for Ai and Fi

depend on the vibration, but in the corresponding collisional integrals (arising
from J 1

TR), the cross sections do not depend on the vibration (Appendix 5.1).
Only the term Gi depends on this mode and on its relaxation. Thus, we find

g100 = CR
3
2k
g010 = −

CR
CTRkT

∑
i
εiv
∫
v
J 0
V dv − 1

4

∑
i

εr

∫
v
J 0
V dv

CTR
CR
δ100

100

(5.5)

The order of magnitude of g100 is τR/τV , as expected, since δ100
100 ∼ τ−1

R .

Transport terms

From the previous computations, we find the following expression for P:

P = pI − 2ρ

(
kT

m

)2

b000

0

∂V

∂r
− p

(
d100
∂ ·V
∂r

+ g100

)
I (5.6)

Thus, as for the WNE case, there is a term with the dynamic viscosity µ where

µ = nkT

(
kT

m

)
b000 (5.7)

and a bulk viscosity term

η = nkTd100 (5.8)

which are identical to the WNE case with one mode, without any contribution
of the vibrational mode.
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As usual, in the diagonal terms of P, there is the static pressure p = nkT , but a
new term appears; this term, pr = −nkTg100, called the ‘relaxation pressure’,4,14

depends on the vibrational relaxation and has an order of magnitude τR/τV . An
approximate expression14 for this term is proposed below (Eqn. (5.27)).

The heat flux term qmay be written q = qT + qR + qV , with

qT = −5

2
Rp

(
a100
∂T

∂r
+ T

TV
f100
∂TV
∂r

)
qR = CR

m
p

(
a010
∂T

∂r
+ T

TV
f010
∂TV
∂r

)
qV = CV

m
p

(
TV
T
a001
∂T

∂r
+ f001

∂TV
∂r

)
(5.9)

where CV = CV (TV ).
Thus, each peculiar heat flux depends on both temperature gradients

T and TV . We may write

qT = −λT ∂T
∂r

− λTV ∂TV
∂r

qR = −λR ∂T
∂r

− λRV ∂TV
∂r

qV = −λVTR ∂T
∂r

− λV ∂TV
∂r

(5.10)

The conductivity coefficients λ may be expressed as functions of collisional
integrals including only TR collisions (Appendix 5.1).

After insertion of the expressions of P and q in the conservation equations
(1.26), we obtain a Navier–Stokes system closed with a relaxation equation for
eV , that is:

ρ
deV
dt

+ ∂ · qV
∂r

=
∑
i

εiv

∫
v

(
J 0
V + J 1

V

)
dv (5.11)

In comparison with the zero-order equation, Eqn. (5.11) contains two sup-
plementary terms: a term of vibrational flux ∂ · qV

∂r and a ‘production’ term∑
i εiv

∫
v
J 1
V dv. In principle, these terms are known but depend on the phys-

ical model chosen for the vibrational transitions. An example is proposed in
Appendix 5.2.

As for the rotational non-equilibrium that occurs at first order, it is of course
identical to the WNE case with one mode (rotation) (Chapter 3).
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5.2.2 Mixtures of diatomic gases

We consider here only binary mixtures (p and q). This is the case described in
Chapter 2 at zero order, and in Chapter 4 as a WNE solution. Thus,we find aspects
of the ‘strong’ vibrational non-equilibrium analogous to pure gases, but with
several types of relaxation characterized by two vibrational temperatures, and
the presence of diffusion phenomena. Complex expressions are then expected,
particularly for the transport terms.

The system of equations to be solved is the following:

J 0
TRp = 0

df 0
ip

dt
= J 1

TRp + J 0
Vp (5.12)

with

JTRp = JTRpp + JTRpq
JVp = JVpp + JVpq (5.13)

As in the case for pure gases, the resonant VV collisions (between molecules
of each species) are included in the TR collisions in order to define vibrational
temperatures TVp and TVq . As discussed above, the zero-order solution is given
by Eqn. (2.38) and the relaxation equations by Eqn. (2.69) for the general case,
and by Eqn. (2.70) for the harmonic oscillator model.

We use the expression of
df 0
ip

dt −J 0
Vp and write the perturbationϕip in the form:28

ϕip = Aip
1

T

∂T

∂r
·up + Bip

∂V

∂r
:

0
up up +Dip ∂ ·V

∂r

+ Fip
1

TVp

∂TVp
∂r

· up + Gip + Lipup · tp (5.14)

Each of these six terms has a particular physical meaning, and in view of the
gradient associated to each term, it is clear that the coefficients Aip , Bip ,Dip , Fip ,
Gip , and Lip are respectively connected to the following transport terms:

• Translational and rotational thermal conductivities

• Dynamic viscosity

• Bulk viscosity

• Vibrational thermal conductivity

• Relaxation pressure

• Diffusion coefficient.
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The corresponding complex computations are left to the reader following
the procedure of the previous calculations. However, the general structure of
the transport terms included in the Navier–Stokes equations is given below
as functions of the non-null first coefficients of the usual expansions. These
coefficients themselves are functions of collisional integrals obtained from the
Cramer systems given in Appendix 5.3. As in the case for pure gases, most of these
coefficients are identical to those of the WNE case developed for one internal
mode (TR collisions), with the exception of the coefficients Fip and Gip , which
are directly connected to the flux and to the production of vibrational energy.
Thus, we have

Up = kT

mp
lp000
∂ξp

∂r
(5.15)

P = pI − 2
∑
p

ρp

(
kT

mp

)2

bp000

0

∂V

∂r
−
∑
p

npkT

(
gp100 + dp100

∂ ·V
∂r

)
I

(5.16)

with

µ =
∑
p

ρp

(
kT

mp

)2

bp000 and η = kT
∑
p

npdp100 (5.17)

pr = −
∑
p

npkTgp100

q =
∑
p

(qTp + qRp + qVp) (5.18)

with

qTp = −5

2
Rppp

(
ap100

∂T

∂r
+ T

TVp
fp100

∂TVp
∂r

− lp000
∂ξp

∂r

)
qRp = pp

mp

[
CRp

(
ap010

∂T

∂r
+ T

TVp
fp010

∂TVp
∂r

)
+ ERplp000

∂ξp

∂r

]
qVp = pp

mp

[
CVp

(
TVp
T
ap001

∂T

∂r
+ fp001

∂TVp
∂r

)
+ EVplp000

∂ξp

∂r

]
(5.19)

We deduce from the above equations (5.19) the expressions of the thermal
conductivities λTp and λTVp (in qTp), λRp and λRVp (in qRp), λVTRp and λVp (in
qVp), and also the expressions of the diffusion fluxes of the particular energies.
Finally, we can write:

q = −λ∂T
∂r

−
∑
p

(
λVp
∂TVp
∂r

+ ρDhp ∂cp
∂r

)
(5.20)
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with

hp = eTRp + pp
ρp

+ eVp = 7

2

kT

mp
+ eVp (5.21)

λ =
∑
p

(
−5

2
Rpppap100 + pp

mp
CRpap010 + pp

mp
CVp

TVp
T
ap001

)
(5.22)

λVp = −5

2
Rppp

T

TVp
fp100 + pp

mp
CRp

T

TVp
fp010 + pp

mp
CVpfp001 (5.23)

D = − ρ
n2

kT

mpmq
nplp0

Here, eVp is given by a relaxation equation similar to Eqn. (5.11) that includes
the VV and TV exchanges between the species.

Finally, the conservation equations include the usual Navier–Stokes equations
written with the above transport terms, the species conservation equation (4.31),
and the vibrational relaxation equation (5.11), in which the first-order term of
production (∼ τR/τV ) is usually neglected.

5.2.3 Usual approximations: SNE case

The above expressions for the transport terms may be simplified as in Chapter
3 with the assumption that the collisional internal energy balance is small com-
pared to the kinetic energy balance. Moreover, as most collisional integrals
involve only TR and VV exchanges with 
εV = 0, we again find expressions
already obtained in Chapters 3 and 4.

Pure gases

We have:

µ = µTR � µT
η = ηTR � kCR

C2
TR

τRp

λT = 5

2
µ
CT
m

(
1 − 5

4

µ

CTp

CR
τR

+ ρ

2CTp

CRDR
τR

)
λR = ρDR CR

m

[
1 − µ

2τRp

(
ρDR
µ

− 5

2

)]
(5.24)

λV = ρDV CV
m

(5.25)
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Here, λV has a simpler form than λT and λR , because the vibrational energy
remains frozen and diffuses only by virtue of the TR collisions (included inDV ).
A further and more drastic approximation (Chapter 3) leads toDR � DV � Dpp .

Within the framework of these approximations, λTV , λRV , and λVTR are
negligible, which is equivalent to writing the heat fluxes in their traditional
forms:

qTR = −λTR ∂T
∂r

, qV = −λV ∂TV
∂r

(5.26)

With the harmonic oscillator model, assuming that only co-linear collisions
are efficient (
εR = 0), we obtain from Eqn. (5.5) the relaxation pressure:

pr = −n kCR
C2
TR

τR

τV

(
EV − EV

)
(5.27)

The order of magnitude of this term is of course τR/τV , and pr is proportional
to the vibrational energy non-equilibrium.

Gas mixtures

We have:

µ = µTR (Eqn. (4.72))

η = ηTR (Eqn. (4.73))

Equations (4.74) and (4.75) give λT and λR .

λVp � npCVp(
ξp
Dpp

+ ξq
Dpq

) and λVq � nqCVq(
ξq
Dqq

+ ξp
Dpq

) (5.28)

λTVp � λRVp � λVTRp � 0 (5.29)

The expression of pr , including the harmonic oscillator model, is given in
Appendix 5.4.

5.3 Mixtures of reactive gases: (SNE)C case

5.3.1 (SNE)C + (WNE)V case

In a non-equilibrium reactive gas mixture, chemical reaction times are generally
longer than the times characteristic of the T, R, V collisions (Figs 9 and 10), so
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that, for a molecular species p, we can write

J 0
TRVp = 0

df 0
ip

dt
= J 1

TRVp + J 0
Cp (5.30)

This corresponds to a WNE case for the vibrational mode and a SNE case
for chemistry, that is (WNE)V+(SNE)C. A weak vibrational non-equilibrium
therefore appears at first order.

At zero order, we have an equilibrium Maxwell–Boltzmann distribution at
temperature T and the corresponding Euler equations including the species
conservation equations (2.44).

At first order, the perturbation ϕip may be written in the following form:

φip = Aip
1

T

∂T

∂r
·up + Bip

∂V

∂r
:

0
upup +Dip ∂ ·V

∂r
+ Gip + Lipup · tp (5.31)

As before, we again find coefficients with the same physical meaning. Here,
however, Aip , Bip , Dip , and Lip are functions of collisional integrals including
T, R, V collisions, as in the WNE case with two internal modes; moreover, the
relaxation of the chemical term is included inGip . Therefore, the transport terms
in the Navier–Stokes equations are identical to the WNE case with two internal
modes (Chapter 4), with the exception of a relaxation pressure term connected
to Gip . Like Dip , this term is expanded in the polynomial basis �1/2

mnq , that is,

Gip = ∑
mnq

gmnq�
1/2
mnq , and is given by the following equation:

J 1
TRVp

[
Gip

] = f 0
ip

⎡⎢⎣
ẇp
ρp

− ẇp
nmpCTRV T

(
ERp + EVp − 3

2kT
)

×
(
mpu2

p

2kT − 3
2 + εir p−ERp

kT + εiv p−EVp
kT

) ⎤⎥⎦− J 0
Cp

As in the case of the vibrational non-equilibrium, the collisional integrals
included inGip are the same as inDip (Appendix 5.3), and the relaxation pressure
is then given by the relation

pr = −
∑
p

npkTgp100 (5.32)

The following species conservation equations have to be added to the Navier–
Stokes equations:

ρ
dcp
dt

− ∂

∂r
·
(
ρD
∂cp
∂r

)
= ẇp =

∑
ip

∫
vp

(
J 0
Cp + J 1

Cp

)
dvp (5.33)
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And the vibrational non-equilibrium appearing at first order12 (see Eqn.
(3.63)) is equal to

EVp = EVp

(
1 + d001

∂ ·V
∂r

+ g001

)
(5.34)

We have similar relations for ET and ER .
An important point lies in the development of the production term in Eqn.

(5.33) since the expression of this term remains formal in the general case. Thus,
typical examples are analysed below.

Dissociation of a pure diatomic gas (dissociation phase)

The first and simplest example is the case of a dissociating pure diatomic gas
(Chapter 2), according to the following reaction, written with the neglect of
possible recombination and other types of dissociation (Chapter 9):

M2 +M2 → 2M +M2 (5.35)

We have a mixture with two species: molecules p and atoms q. Thus,

ẇp
mp

=
∑
ip

∫
vp

JDpdvp = −kDn2
p (5.36)

with
JDp = J 0

Dp + J 1
Dp

The dissociation-rate constant kD (Chapter 2) is equal to

kD =
∑
ip ,jp

ξipξjp

∫
vip ,vjp

f 0
ipf

0
jp

nipnjp
I
q
ip ,jp
gipjp d� dvipvjp =

∑
ip ,jp

ξipξjp kDipjp (5.37)

where kDipjp represents the dissociation-rate constant per level, independent of
the population.

Assuming that the dissociation of a molecule does not depend on the
collisional partner and on the rotational levels, we have

kD =
∑
ivp

ξivp kDivp

after summation over the levels jvp , and where kDivp = kDivp (T ) does not depend
on the vibrational populations.

Moreover:

ξivp = 1

np

∑
irp

∫
vp

f 0
ip

(
1 + ϕip

)
dvp (5.38)
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After some calculation,12 we find

kD = kD

[
1 −

(
g001 + d001

∂ .V

∂r

)(
EVp − EVDp

kT

)]
(5.39)

where kD = kD (T ) represents the dissociation-rate constant at zero order
(vibrational equilibrium), and EVD is the mean vibrational energy per molecule
lost because of the dissociation. With the expressions for g001 and d001given in
Appendix 5.4 and in Chapter 3, we can calculate kD to first order.

We observe that the order of magnitude of the non-equilibrium term in

Eqn. (5.39) is τV /τD , because τD ∼ (
npkD

)−1
. We can eliminate the term

g001 + d001
∂ ·V
∂r with the aid of Eqn. (5.34), so that the dissociation-rate constant

may be connected to the vibrational non-equilibrium, that is:12

kD = kD

[
1 + EV − EV

EV

EVD − EV
kT

]
(5.40)

where the indices p have been omitted.
Now, if we define the vibration–dissociation coupling factor V (T ,TV ) =

kD(T ,TV )
kD(T )

, we have

V = 1 +
(
EV − EV

EV

)(
EVD − EV

kT

)
(5.41)

Here, EVD can be calculated from its definition. Thus we have

EVD =
∑
i
εiv
∫
v
J 0
D dv∑

i

∫
v
J 0
Ddv

=

∑
iv

εiv niv kDiv∑
iv

niv kDiv
(5.42)

An oscillator model must now be introduced in the expression of kDiv
(Appendix 5.5). Thus, assuming that the dissociation can occur from any
vibrational level with an equal probability34 (‘non-preferential model’), we have

kDiv = kD
Qv

exp
(−εiv/kT ) 1

N
(5.43)

whereN is the number of levels. Of course, other choices are possible,34 but this
model is valid at high temperature. Furthermore, with the harmonic oscillator
model, if we assume that the result of the collision does not depend on the
nature and the state of the partner, we find (Appendix 5.5) a value for EVD close
to 0.5ED and, for the anharmonic oscillator model, a value close to 0.45EVD ,
where ED represents the dissociation energy. Using these data, an example of the
computation of V (T ,TV ) for N2 is presented in Fig. 11 for a given temperature
T , with TV varying from 0 to T .
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Figure 11. Vibration–dissociation factor V for nitrogen, T = 2 × 104 K. A: (SNE)C + (WNE)V case:
Non-preferential anharmonic oscillator model34, B: (SNE)C + (WNE)C case: Preferential model

35,−U =
ED
/
6k, C: Semi-empirical model36.

Dissociation of a pure diatomic gas (dissociation–recombination phase)

If we take into account the reverse (backward) reaction of the dissociation
reaction (Eqn. (5.34)) (recombination), we have

M2 +M2 →← 2M +M2 (5.44)

This recombination reaction may be important in expanding flows or in situ-
ations close to chemical equilibrium. To zero order, the production term of the
molecular component p (Chapter 9) may be written as follows:∑

ip

∫
vp

J 0
Cpdv = ẇp

mp
= kRnpn

2
q − kDn

2
p (5.45)

For the component q (atoms), we have

J 0
Tq = 0

df 0
q

dt
= J 1

Tq + J 0
Cq (5.46)

with ∫
vq

J 0
Cq dvq = −mp

mq

∑
ip

∫
vp

J 0
Cp dvP (5.47)

To first order, the structure of ϕip is the same as in the previous case, with the
same collisional integrals in Aip ,Bip ,Dip , Lip . Only the coefficientGip is different
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because of the term J 0
Cp , so that the relaxation pressure is also different (Appendix

5.4); in particular, this pressure disappears close to chemical equilibrium.
The first-order production term may be written in the following simple form:

kRnpn
2
q − kDn

2
p (5.48)

with kD and kR given by formulae similar to Eqn. (5.40), that is:

kD = kD

[
1 +

(
EV − EV

EV

)(
EVD − EV

kT

)]
kR = kR

[
1 +

(
EV − EV

EV

)(
EVR − EV

kT

)]
(5.49)

And for EV , we have the relation given by Eqn. (5.34). Moreover, assuming as
before that the result of the collision does not depend on the partner, we have:

EVD = EVR (5.50)

This is true only to zero order (TRV equilibrium).
It is also important to observe that the relation given by Eqn. (2.45) remains

valid in the (weak) non-equilibrium region, that is:

Kc = kD
kR

= kD

kR
(5.51)

The case of several reactions

For the dissociation of a diatomic gas, we must add the following reaction
(reaction 2) to the reaction given by Eqn. (5.44) (reaction 1):

M2 +M →← 3M (5.52)

In the balance of species p, we must therefore add the corresponding term
ẇ(2)p to ẇ(1)p . The rate constant k(2)D is modified exactly as k(1)D . However, we may

generally assume34,37 (Chapter 9) that the recombination-rate constant k(2)R is
not influenced by the vibrational non-equilibrium (collisions between atoms);
therefore, we have

k(2)R = k
(2)
R

Thus, the relation given by Eqn. (5.50) and therefore that by Eqn. (5.11) are
no longer valid.

In the case of several reactions, the balance of each species must take
into account the various interactions (vibration–dissociation, vibration–
recombination, and vibration–reaction) in the same way. An example is given
in Chapter 9 for high-temperature air. Formulae of the same type as Eqn.



144 CHAPTER 5 TRANSPORT AND RELAXATION IN NON-EQUILIBRIUM REGIMES

(5.49) may therefore be applied to all reactions involving at least one molec-
ular component.108 Finally, only atom–atom recombination-rate constants are
not modified.

5.3.2 (SNE)C + (SNE)V case

For very high temperatures, we have τV ∼ τC . This is particularly true for O2

at temperatures higher than 104 K (Fig. 10). In that case, we must consider a
simultaneous non-equilibrium for vibration and chemistry. We thus have the
following system for component p:

J 0
TRp = 0

df 0
ip

dt
= J 1

TRp + J 0
Vp + J 0

Cp (5.53)

It seems unnecessary to completely develop the computations, because the
transport terms are functions only of TR collisions. Thus, the corresponding
results obtained in the WNE case with one internal mode are valid (Chapter 4).
We must then take into account the two terms J 0

Vp and J 0
Cp for the Gip term only

(Appendix 5.4).
At first order, the chemical source term interacts with only the rotational mode.

Thus, its order of magnitude is τR/τC , which is practically negligible. Therefore,
the vibration–chemistry interaction is present at zero order.

Therefore, the Euler equations should be closed by a vibrational energy con-
servation equation giving EVp , or TVp if we accept the usual assumption of
including the resonant VV collisions in the TR collisions. In the same way, a
species conservation equation is necessary.

Dissociation of a diatomic gas (dissociation phase)

If we consider the example of a dominant dissociation reaction (Eqn. (5.35)),
the species conservation equation is written for zero order in the following form:

∂np
∂t

+ ∂ · npV
∂r

= ẇp
mp

=
∑
ip

∫
v

J 0
D dv = −k0

Dn
2
p (5.54)

Thus, neglecting the influence of the collisional partner, summing over the
rotational levels, and omitting the index p, we have:

k0
D =

∑
iv

ξ 0
iv kDiv = k0

D (T ,TV ) (5.55)
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with

ξ 0
iv = exp

(−εiv/kTV )
QV (TV )

Now a physical model for the dissociation (per level) must be defined: thus,
for kDivp , if we adopt the ‘non-preferential’ model (Eqn. (5.43)), we obtain:34

k0
D (T ,TV )

kD (T )
= V (T ,Tv) = QV (T )QV (Tm)

NQV (TV )
(5.56)

with
1

Tm
= 1

TV
− 1

T

As previously pointed out, there is no significant additional interaction to first
order.

The vibrational relaxation equation giving EVp may also be developed from
the Boltzmann equation, i.e.

∂
(
npEVp

)
∂t

+ ∂ · (npEVpV )
∂r

=
∑
ivp

εivp

∫
v

J 0
V dv +

∑
ivp

εivp

∫
v

J 0
D dv (5.57)

The first source term on the right-hand side of Eqn. (5.57) arises from the TRV
collisions. Thus, for example, if the harmonic oscillator model is used, this term

is equal to np
EVp−EVp
τV

. The second term corresponds to the vibrational energy

loss and is therefore equal to E0
VD

ẇp
mp

= −E0
VDk

0
Dn

2
p . Finally, we find:12

dEVp
dt

= EVp − EVp
τV

+ (
EVp − E0

VD

)
k0
Dnp (5.58)

The calculation of E0
VD , presented in Appendix 5.5, gives the result

E0
VD = kTm

dQV (Tm)

dTm
(5.59)

For fixed T , E0
VD is shown versus TV in Fig. 12 for various models.

Dissociation of a diatomic gas (dissociation–recombination phase)

With the reaction given by Eqn. (5.44), we have the species conservation equation

∂np
∂t

+ ∂ · npV
∂r

= k0
Rnpn

2
q − k0

Dn
2
p (5.60)

and the following vibrational relaxation equation:
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Figure 12. Vibrational energy lost per dissociation for nitrogen (E0VD/ED). A: (SNE)C +(WNE)V case:
Non-preferential model12, B: (SNE)C +(SNE)V case: Non-preferential model

34, C: (SNE)C+(SNE)V case:
Preferential model35 (−U = ED/6k), D: (SNE)C+(SNE)V case: Preferential model

35 (−U = ED/3k;
E: Physical model38.

dEVp
dt

= ĖVp + (
EVp − E0

VD

)
k0
Dnp − (

EVp − E0
VR

)
k0
Rn

2
q (5.61)

where ĖVp is the vibrational energy production due to non-reactive collisions.
As before with Eqn. (5.56), we find

k0
D = VkD

If we assume k0
R = kR (T ) (Chapter 9), we have, in the non-equilibrium zone:

k0
D

k0
R

	= Kc

which is in contrast to the (SNE)C + (WNE)V case.
Taking into account the equilibrium conditions, we have

E0
VR = E

0
VD = lim

(
E0
VD

)
Tm→∞

As before, for the harmonic oscillator model, we obtain

E
0
VD = EVD � 0.5ED

Of course it is possible to take the reaction given by Eqn. (5.52) into account.
Generalization to a higher number of reactions may be achieved without

particular difficulties. For exchange reactions, however, EVD or EVR have to be
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replaced by a term EVC corresponding to the vibrational energy lost (or gained)
by the considered species because of the reaction. This term, similar to EVD , may
be written as a function of the activation energy EC (Chapter 9).

Thus, the vibration–dissociation interaction takes place at zero order and, as
already pointed out, the first-order terms are generally negligible (∼ τR/τV ).

The models (SNE)C+(SNE)V and (SNE)C+(WNE)V are used in concrete cases
(shock waves, nozzle expansions, and so on) in Chapter 9.

Appendix 5.1 Pure gases in vibrational
non-equilibrium

Expression for
df 0

i
dt

df 0
i

dt
=
(
mu2

2kT
− 5

2
+ εir − ER

kT

)
1

T

∂T

∂r
·u+ m

kT

∂V

∂r
:

0
uu

+
[

2

3

CR
CTR

(
mu2

2kT
− 3

2

)
− k

CTR

εir − ER
kT

]
∂ ·V
∂r

+ εiv − EV
kTV

1

TV

∂TV
∂r

·u

+
[

1

CVTV

εiv − EV
kTV

− 1

CTRT

(
mu2

2kT
− 3

2
+ εir − ER

kT

)]
1

n

×
∑
i

εiv

∫
v

J 0
V dv

Equation systems for the coefficients a, b, d, f, g

Cramer system for the amnq coefficients

a100α
100
100 + a010α

010
100 = −15

2

(
nkT

m

)
a100α

100
010 + a010α

010
010 + a001α

001
010 = 3

CR
k

(
nkT

m

)
a010α

010
001 + a001α

001
001 = 0 (5.62)

The determinant of this system is equal to


 = α100
100

(
α010

010α
001
001 − α001

010α
010
001

)− (
α010

100

)2
α001

001
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Thus, we have

a100 = − 1




nkT

m

[
15

2

(
α010

010α
001
001 − (

α001
010

)2
)

− 3
CR
k
α100

010α
001
001

]
a010 = 1




nkT

m

(
15

2
α010

100α
001
001 + 3

CR
k
α100

100α
001
001

)
a001 = − 1




nkT

m

(
15

2
α010

100α
001
010 + 3

CR
k
α100

100α
001
010

)
(5.63)

with
a000 = 0 and α001

100 = 0 (resonant collisions)

For b000, we have

b000 = b00 = −10
nkT

m

(
β00

00

)−1
(Appendix 3.2) (5.64)

Cramer system for the fmnq coefficients

f100α
100
100 + f010α

010
100 = 0

f100α
100
010 + f010α

010
010 + f001α

001
010 = 0

f010α
010
001 + f001α

001
001 = 3

CV
k

nkT

m
(5.65)

We find the same collisional integrals as in the system of the a coefficients,
with the same determinant. Therefore, we have

f100 = 1



3
CV
k

nkT

m
α010

100α
001
010

f010 = − 1



3
CV
k

nkT

m
α100

100α
001
010

f001 = 1



3
CV
k

nkT

m

(
α100

100α
010
010 − (α100

010)
2)

with
f000 = 0

Cramer system for the dmnq coefficients

We simply have (Appendix 3.2):

d100 = d10 = −n
(
CR
CTR

)2

δ10
10

d010 = d01 = −CTCR
C2
TR

δ10
10 (5.66)
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and
d000 = 0 and δ001

001 = 0

Cramer system for the gmnq coefficients

We have the same integrals as in the system of the d coefficients. However, the two
equations of the system are not independent, but another equation is provided
by the integrability conditions, and we have

g100δ
10
10 + g010δ

01
10 = − 1

kT

CR
CTR

∑
i

εiv

∫
v

J 0
V dv + 1

4

∑
i


εr

∫
v

J 0
V dv

CTg100 = CRg010 (5.67)

Finally, we find for g100 the relation given by Eqn. (5.5).

Expressions of the collisional integrals

α100
100 = α10

10, α010
100 = α100

010 = α01
10 and α010

010 = α01
01 (Appendix 3.3)

α001
010 = α010

001 = −2n2 kT

m

×
〈[
εkr − εlr
kT

γ
′2 + εir − εjr

kT
γ 2 −

(
εir − εjr
kT

+ εkr − εlr
kT

)
γ · γ ′

]
εiv − εjv
kTV

〉
α001

001 = −8n2 kT

m

〈
εiv − EV
kTV

εiv − εjv
kTV

(
γ · γ ′ − γ 2)〉

α001
100 = 0

Appendix 5.2 First-order expression of the
vibrational relaxation equation

The vibrational relaxation equation for a pure gas may be written in the following
way after having developed the production terms

∑
i,j ,k,l
εiv
∫
v
(J 0
V + J 1

V )dv:

n
dEV
dt

+ ∂ · qV
∂r

=
∑
i,j ,k,l

εiv

∫
�,vi ,vj

(
f 0
k f

0
l − f 0

i f
0
j

)
gij I

k,l
i,j d� dvidvj

+
∑
i,j ,k,l

εiv

∫
�,vi ,vj

[
f 0
k f

0
l (ϕk + ϕl)− f 0

i f
0
j

(
ϕi + ϕj

)]
× gij I

k,l
i,j d� dvidvj (5.68)

Here, I k,l
i,j includes the vibrational transitions.
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The conservation of energy in the collisions gives

f 0
k f

0
l = f 0

i f
0
j exp

[

εv

(
1 − T

TV

)]
If we use the harmonic oscillator model, or if we linearize the zero-order

production term, we obtain the following result (Eqn. (2.19)):∑
i,j ,k,l

εiv

∫
vv

J 0
V dv = n

EV − Ev
τV

In the first-order production term, only d100
∂ ·V
∂r + g100 in the expression of

ϕi gives non-zero terms which are connected to the rotational relaxation time τR
(Eqn. (3.53)). If we also take into account the usual approximations (
ε � γ 2),
and if we define a characteristic time τ ′V connected to the diffusion of vibrational
energy τ ′V ∼ D m

kT , we finally obtain:39

dEV
dt

+ 1

n

∂ · qV
∂r

= EV − EV
τV

{
1 + CR

C2
TR

[(
CT − k

τV

τ ′V

)
τR
∂ ·V
∂r

− CV
τR

τV

]}

− CRCV
C2
TR

kT
τR

τV

∂ ·V
∂r

(5.69)

The correction terms have an order of magnitude τR/τV or τR/θ .

Appendix 5.3 Gas mixtures in vibrational
non-equilibrium

Equation systems for the coefficients a, b, d, f, g, l

With the simplifications deduced from the properties of collisional inte-

grals
(
α
p001
p100 = αp001

q100 = δp001
p100 = δp001

q100 = 0
)

, and from the usual approximations(
α
p001
p010 = αp001

q010 = δp001
p010 = δp001

q010 � 0
)

, we obtain the following systems:

System for the apmnq coefficients

ap100

[(
α
p100
p100

)
pp

+
(
α
p100
p100

)
pq

]
+ ap010

[(
α
p100
p010

)
pp

+
(
α
p100
p010

)
pq

]
+ aq100

(
α
p100
q100

)
pq

+ aq010

(
α
p100
q010

)
pq
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= −15

2
np
kT

mp

ap010

[(
α
p010
p100

)
pp

+
(
α
p010
p100

)
pq

]
+ ap010

[(
α
p010
p010

)
pp

+
(
α
p010
p010

)
pq

]
+ aq100

(
α
p010
q100

)
pq

+ aq010

(
α
p010
q010

)
pq

= 3np
kT

m

Crp
k

ap001

[(
α
p001
p001

)
pp

+
(
α
p001
p001

)
pq

]
+ aq001

(
α
p001
q001

)
pq

= 0 (5.70)

We also have, of course, three similar equations for the species q.

System for the fpmnq coefficients

fp100

[(
α
p100
p100

)
pp

+
(
α
p100
p100

)
pq

]
+ fp010

[(
α
p100
p010

)
pp

+
(
α
p100
p010

)
pq

]
+ fq100

(
α
p100
q100

)
pq

+ fp010

(
α
p100
q010

)
pq

= 0

fp100

[(
α
p010
p100

)
pp

+
(
α
p010
p100

)
pq

]
+ fP010

[(
α
p010
p010

)
pp

+
(
α
p010
p010

)
pq

]
+ fq100

(
α
p010
q100

)
pq

+ fq010

(
α
p010
q010

)
pq

= 0

fp001

[(
α
p001
p001

)
pp

+
(
α
p001
p001

)
pq

]
+ fq001

(
α
p001
q001

)
pq

= 3np
kT

mp

CVp
k

(5.71)

We also have three similar equations for the species q.

System for the bpmnq coefficients

bp000

[(
α
p000
p000

)
pp

+
(
α
p000
p000

)
pq

]
+ bq000

(
α
p000
q000

)
pq

= 10np
kT

mp

bq000

[(
α
q000
q000

)
qq

+
(
α
q000
q000

)
pq

]
+ bp000

(
α
q000
p000

)
pq

= 10nq
kT

mq
(5.72)
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System for the dpmnq coefficients

dp100

[(
δ
p100
p100

)
pp

+
(
δ
p100
p100

)
pq

]
+ dp010

[(
δ
p100
p010

)
pp

+
(
δ
p100
p010

)
pq

]
+ dq100

(
δ
p100
q100

)
pq

+ dq010

(
δ
p100
q010

)
pq

= −np CR
CTR

dp100

[(
δ
p010
p100

)
pp

+
(
δ
p010
p100

)
pq

]
+ dp010

[(
δ
p010
p010

)
pp

+
(
δ
p010
p010

)
pq

]
+ dq100

(
δ
p010
q100

)
pq

+ dq010

(
δ
p010
q010

)
pq

= −np CR
CTR

We also have two similar equations for the species q, but these four equations
are not independent (the sum of the first and the third is equal to the sum of
the second and the fourth). Thus, one of these is replaced by an integrability
condition involving Dip , that is:∑

p

np
(−CTpdp100 + CRpdp010

) = 0 (5.73)

System for the gpmnq coefficients

This system is similar to the previous one, with the same collisional integrals,
thus:

gp100

[(
δ
p100
p100

)
pp

+
(
δ
p100
p100

)
pq

]
+ gp010

[(
δ
p100
p010

)
pp

+
(
δ
p100
p010

)
pq

]

+ gq100

(
δ
p100
q100

)
pq

+ gq010

(
δ
p100
q010

)
pq

= ξp CTp
k

∑
p,i
εiv p

∫
vp

J 0
Vpdvp

CTRT

gp100

[(
δ
p010
p100

)
pp

+
(
δ
p010
p100

)
pq

]
+ gp010

[(
δ
p010
p010

)
pp

+
(
δ
p010
p010

)
pq

]

+ gq100

(
δ
p010
q100

)
pq

+ gq010

(
δ
p010
q010

)
pq

= −ξp CRp
k

∑
p,i
εiv p

∫
vp

J 0
Vpdvp

CTRT

We also have two similar equations for the species q; as before, one of these
equations must be replaced by the following integrability condition:∑

p

(−CTpgp100 + CRpgp010
) = 0 (5.74)
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Collisional integrals

The α integrals

These include only the collisions TR and VVr; most of them are developed in
Appendix 4.2 (one internal mode). Thus, we have(
α
p100
p100

)
pp

=
(
α
p10
p10

)
pp

,
(
α
p010
p010

)
pp

=
(
α
p01
p01

)
pp

, and
(
α
p100
p010

)
pp

=
(
α
p10
p01

)
pp(

α
p100
p100

)
pq

=
(
α
p10
p10

)
pp

,
(
α
p010
p010

)
pq

=
(
α
p01
p01

)
pq

, and
(
α
p010
p010

)
pq

=
(
α
p01
p01

)
pq(

α
p100
q100

)
pq

=
(
α
p10
q10

)
pq

,
(
α
p010
q010

)
pq

=
(
α
p01
q01

)
pq

, and
(
α
p100
q010

)
pq

=
(
α
p10
q01

)
pq(

α
p010
q100

)
pq

=
(
α
p01
q10

)
pq

,
(
α
p100
p001

)
pp

= 0, and
(
α
p100
p001

)
pq

= 0

With the usual approximations, we also have(
α
p100
p001

)
pq

=
(
α
p010
p001

)
pq

=
(
α
p001
q001

)
pq

=
(
α
p100
q001

)
pq

=
(
α
q100
p001

)
pq

= 0(
α
p001
p001

)
pp

= 8n2 kT

mp

〈
εiv p − EVp
kTVp

(
εkvp − εlv p
kTVp

γ p · γ ′
p − εiv p − εjv p

kTVp
γ 2
)〉

� −3n2
p

(
kT

mp

)2 CVp
k

1

nDpp(
α
p001
p001

)
pq

� −3npnq

(
kT

mp

)2 CVp
k

1

nDpq

The β integrals

In the same way, we have(
β
p000
p000

)
pp

=
(
β
p100
p100

)
pp

,
(
β
p000
p000

)
pq

=
(
β
p00
p00

)
pq

, and
(
β
p000
q000

)
pq

=
(
β
p00
q00

)
pq

The δ integrals

(
δ
p100
p100

)
pp

=
(
δ
p010
p010

)
pp

=
(
δ
p100
p010

)
pp

=
(
δ
p10
p10

)
pp

, and
(
δ
p100
p100

)
pq

=
(
δ
p10
p10

)
pq(

δ
p010
p010

)
pq

=
(
δ
p01
p01

)
pq

,
(
δ
p100
p010

)
pq

=
(
δ
p01
p01

)
pq

, and
(
δ
p100
q100

)
pq

=
(
δ
p10
q10

)
pq(

δ
p010
q010

)
pq

=
(
δ01
q01

)
pq

,
(
δ
p100
q010

)
pq

=
(
δ
p10
q01

)
pq

, and
(
δ
p010
q100

)
pq

=
(
δ
p01
q10

)
pq
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δ
p001
p001

)
pp

=
(
δ
p100
p001

)
pp

=
(
δ
p010
p001

)
pp

= 0 and
(
δ
p001
p001

)
pq

=
(
δ
p100
p001

)
pq

=
(
δ
p010
p001

)
pq

= 0(
δ
p001
q001

)
pq

=
(
δ
p100
q001

)
pq

=
(
δ
p010
q001

)
pq

= 0 and
(
δ
q100
p001

)
pq

=
(
δ
q010
p001

)
pq

= 0

Appendix 5.4 Expressions of g coefficients and
relaxation pressure

Pure gases in vibrational non-equilibrium

Gi = g100

(
3

2
− mu2

2kT

)
+ g010

(
εir − ER
kT

)
g000 = 0

The term g001is not involved
(
δ001

001 = 0
)
.

g010 = CT
CR
g100; g100 is given by Eqn. (5.5), and an approximate value of pr/p =

−g100 is given by Eqn. (5.27).

Gas mixtures in vibrational non-equilibrium

Gip = gp100

(
3

2
− mpu2

p

2kT

)
+ gp010

(
εir p − ERp

kT

)
The system involving the g coefficients is given in Appendix 5.3.

The term gp001 is not involved, since
(
δ
p001
p001

)
pp

=
(
δ
p001
p001

)
pq

= 0.

With the usual approximations, gp100 = gq100, and

pr = −
∑
p

npgp100kT

With the hypotheses of Chapter 4 concerning the rotational relaxation times
τRp , τRq , and τRpq , we find:

pr = − 1

CTR

∑
p,iv

εiv p

∫
vp

J 0
Vp dvp

×
CRpCRq
k

(
ξpCRp
τRq

+ ξqCRq
τRp

)
+ (ξpCRp+ξqCRq)

2

τRpq(
CT + ξpCRp + ξqCRq

) ( CRpCRq
k2τRpτRq

+ ξpCRp
kτRpτRpq

+ ξqCRq
kτRqτRpq

)
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Here,
∑
ivp

εivp
∫
vp

J 0
Vpdvp may be developed in the framework of the harmonic

oscillator model (Chapter 2).

Mixtures of reactive gases

(WNE)V + (SNE)C case (dissociation)

Gip = gp100

(
3

2
− mpu2

p

2kT

)
+ gp010

(
εirp − ERp

kT

)
+ gp001

(
εivp − EVp

kT

)

Gq = gq1

(
3

2
− mqu2

q

2kT

)
Here, gq1 ∼ τTq/τC is negligible.
The system giving the gp coefficients is the following (omitting the index p):

−CTg100 + CRg010 + CV g001 = 0(
g100 + g010

)
δ010

010 = A(
g100 + g001

)
δ001

001 = B (5.75)

Then

g100 = A
CR
CTRV

(
δ010

010

)−1 + B
CV
CTRV

(
δ001

001

)−1

g010 = A
CTV
CTRV

(
δ010

010

)−1 − B
CV
CTRV

(
δ001

001

)−1

g001 = −A CR
CTRV

(
δ010

010

)−1 + B
CTR
CTRV

(
δ001

001

)−1

with

A =
[
ERp − ERD

kT
− ξp CRp

k

(
ERp + EVp − ET

CTRVT

)]
ẇp
mp

B =
[
EVp − EVD

kT
− ξp CVp

k

(
ERp + EVp − ET

CTRVT

)]
ẇp
mp

δ010
010 = −np CRp

k
τ−1
R , δ001

001 = −np CVp
k
τ−1
V

We see that

g100 + g010 ∼ τR
τD

and g100 + g001 ∼ τV
τD
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Then

pr = −npkTg100 � k

CTRV
kτV B ∼ τV

τD

(SNE)V + (SNE)C case

The system for the g coefficients is reduced to

−CTg100 + CRg010 = 0

g100δ
010
100 + g010δ

010
010 � ẇp

mp
∼ np
τD

(5.76)

Since

δ010
100 ∼ δ010

010 ∼ np
CRp
k
τ−1
R

we then have

g100 ∼ τR/τD ∼ g010 (negligible quantity)

Appendix 5.5 Vibration–dissociation–recombination
interaction

Interaction models

Non-preferential model

The dissociation-rate constant per vibrational level, kDiv , is defined in Chapter 2
and by Eqn. (5.37).

The probability for a dissociating molecule in level iv is equal to

piv = niv kDiv
nkD

(5.77)

If there is no preferential level, we have piv = 1
N , and

kDiv = (
ξiv
)−1 kD

N
(5.78)

If we assume that the rotational mode is in equilibrium, kDiv depends only on
T , and we have

kDiv = kD
N

QV
exp

(−εiv/kT ) (5.79)
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Preferential model

The dissociation probability for a molecule in level iv is proportional to

exp
(
−ED−εiv

kU

)
, where −U is a characteristic temperature, a priori unknown

(if −U → ∞, we again find the non-preferential model).
We also know that the collision rate of molecules that have an energy higher

than ED − εiv is
niv
n exp

(
−ED−εiv

kT

)
.

Then

piv = C
niv
n

exp

[
−ED − εiv

k

(
1

U
+ 1

T

)]
(5.80)

If the vibrational population is out of equilibrium, we have

niv
n

=
exp

(
− εiv
kTv

)
QV (TV )

As
∑
iv

piv = 1, we have

C = QV (TV )

QV (TF )
exp

[
ED
k

(
1

T
+ 1

U

)]
Thus

piv =
exp

(
− εiv
kTF

)
QV (TF )

(5.81)

and

kDiv = piv kD
(niv
n

)−1

so that we obtain the non-equilibrium value for kD :

kD = kDiv

(niv
n

)
p−1
iv

For equilibrium conditions, TV = T , TF = −U , and piv eq = exp(εiv /kU)
QV (−U ) ;

therefore:

kD = kDiv piv eq
exp

(−εiv/kT )
QV

(5.82)

and

kD

kD
= V (T ,TV ,U ) = QV (T )QV (TF )

QV (TV )QV (−U ) (5.83)
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When U → −∞, QV (−U ) = N , and we again find the previous model,
with

kD

kD
= QV (T )QV (Tm)

QV (TV )N
and

1

Tm
= 1

TV
− 1

T
(5.84)

The difficulty lies in the choice of the temperature –U , which is a state variable
(U = F (T )). An example of a representation of V is given in Fig. 11 for a value
of −U equal to ED/6k. For higher temperatures, however, the non-preferential
model is adequate.

Vibrational energy lost per dissociation act

This energy is defined by the following relation, after summation over the
rotational levels and the levels jv :

EVD =

∑
iv

εiv
∫
v
JDdv∑

iv

∫
v
JDdv

=

∑
iv

εiv niv kDiv∑
iv

niv kDiv
(5.85)

(WNE)V + (SNE)C regime

At zero order, if we use the non-preferential model, we have

EVD = EVD = 1

N

∑
N−1

εiv .

And with the harmonic oscillator model, we obtain

EVD = 1

N

∑
N−1

kθv iv = kθv (N − 1)

2
(5.86)

For example, for nitrogen: N = 33, θv = 3354 K, and ED = 1.56 × 10−19 J,
so that

EVD = 0.47ED

For oxygen: N = 27, θv = 2239 K, and ED = 8.19 × 10−19 J, so that

EVD = 0.49ED

With the anharmonic oscillator model, εiv is given in Appendix 1.3, with

hνv = kθv = 4.69 × 10−20 J, hνvxe = 2.87 × 10−22 J, and

hνvye = 1.49 × 10−25 J (for nitrogen)

hνv = 3.14 × 10−20 J, hνvxe = 2.40 × 10−22 J, and

hνvye = 1.08 × 10−24 J (for oxygen)
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Then, for nitrogen:

EVD = 0.46ED , with N = 45

And for oxygen:
EVD = 0.44ED , with N = 32

Here, EVD may also be calculated at first order, with

niv = niv

[
1 +

(
d001
∂ ·V
∂r

+ g001

)(
εiv − EV
kT

)]
= niv

[
1 +

(
EV − EV

EV

)(
εiv − EV
kT

)]
And we find8

EVD

EVD
= kD
kD

{
1 +

(
EV − EV

EV

)[
θv

T

(
2N − 1

3

)
− EV
kT

]}
(5.87)

An example of this expression (nitrogen) is shown in Fig. 12 (with kD
kD

given

by Eqn. (5.40)) and compared with other results.

(SNE)V + (SNE)C regime

At zero order and with the non-preferential model, kD is given by Eqn. (5.84).
For EVD , we have from Eqn. (5.85):

E0
VD =

∑
iv

εiv exp
(
− εiv
kTm

)
∑
iv

exp
(
− εiv
kTm

) (5.88)

This expression may be written in the form of Eqn. (5.59), and with the
harmonic oscillator model, we find

E0
VD

k
= θv

exp
(
− θv
Tm

)
− 1

− N θv

exp
(
−N θv
Tm

)
− 1

(5.89)

For nitrogen, this expression is also represented in Fig. 12.



SIX

Generalized Chapman–Enskog
Method

6.1 Introduction

This chapter is devoted to the presentation of a generalized Chapman–Enskog
method (GCE), applicable to those cases where the degree of non-equilibrium is
unknown, and thus GCE can include those WNE and SNE cases which apply only
within their range of validity. In practice, a flow is rarely maintained either in an
equilibrium or a non-equilibrium state. A classical example is a flow subjected to
a strong aerodynamic disturbance, such as a shock wave, and which is initially out
of equilibrium but tends ultimately to an equilibrium state. It is thus necessary
that the expansion of the distribution function describes the passage from one
regime to another. This may be carried out with the GCE method, which is
indeed a matching method.

This method is then applied to the cases previously employed: pure gases
and gas mixtures in vibrational and chemical non-equilibrium. General meth-
ods of the analysis of flows including simultaneous vibrational and chemical
non-equilibrium are then proposed. These flows represent significant cases in
hypersonic regimes, and examples are given in the following chapters.

6.2 General method

As pointed out in the introduction, in many applications concerning high-
speed flows, the more or less progressive passage from non-equilibrium zones
to equilibrium zones (or vice versa) cannot always be described by solving the
Boltzmann equation as performed in the preceding chapters. These zones of
transition are, however, correctly taken into account at the zeroth order of the
distribution function, i.e. at the macroscopic level, by the Euler equations, which
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are closed with the relaxation equations (vibrational or chemical). For example,
solutions of the equation J 0

I = 0 may tend in space or time to an equilibrium
solution of the equation J 0

II = 0, because the collisions of type I are generally
particular collisions of type II. The examples previously given in vibrational or
chemical non-equilibrium cases illustrate this behaviour (niv → niv , EV → EV ,
and so on).

The situation differs at the first order of the distribution function, because the
corresponding equations are basically different, since they utilize different types
of collision at the different orders. Thus, the non-equilibrium SNE solutions
cannot tend to the WNE quasi-equilibrium solutions, since the former include
collisions only of type I whereas the latter include collisions of type I and II
(Eqns (3.5) and (3.6)). The Navier–Stokes equations are formally the same in
both cases, but the transport terms are of course different, since they include
different collisions. Moreover, there are relaxation equations in the SNE cases
and not in the WNE cases (Table 2, Appendix 6.1). Therefore a matching method
is essential to pass from one solution to the other.40 The frozen case is of course
not affected.

This method adds the first-order collisional term of type II in the first-order
equation of the SNE system (Eqn. (3.6)). Then, this system becomes41

J 0
I = 0

df 0
ip

dt
= J 1

I + J 0
II + J 1

II (6.1)

Thus, the supplementary term J 1
II , negligible far from the equilibrium, is

included in the first-order solution when the medium tends to equilibrium.
Thus, we again find the SNE case when J 1

II → 0 and the WNE case when
J 0
II → 0.

To sum up, we have a zero-order non-equilibrium situation for type II colli-
sions, that is, of SNE type governed by the Euler and relaxation equations, which
also cover equilibrium situations. At the first order, we can also describe situ-
ations covering simultaneously equilibrium and non-equilibrium regimes for
type II collisions.

Two important examples previously treated either as SNE cases or as WNE
cases are examined below. First is the case of a pure gas flow in vibrational
non-equilibrium,and the second case is that of a reactive flow in the dissociation–
recombination regime. The generalization to more complex cases does not differ
in principle.



162 CHAPTER 6 GENERALIZED CHAPMAN–ENSKOG METHOD

6.3 Vibrationally excited pure gases

The GCE solution must describe the vibrational non-equilibrium and equilib-
rium regimes at zero and first order. Thus, we have the following system:

J 0
TR = 0

df 0
i

dt
= J 1

TR + J 0
V + J 1

V (6.2)

At zero order, we have for f 0
i Eqn. (2.12), with the corresponding Euler

equations and the relaxation equation (2.29) if we include resonant VV col-
lisions in the TR collisions. This solution fits the equilibrium solution (Eqn.
(2.10)) when τV → 0.

At first order, the difficulty arises from the structure of the term J 1
V , which is

strongly different from J 1
TR . Thus:

J 1
TR =

∑
j ,k,l

∫
�,vj

f 0
i f

0
j

(
ϕk + ϕl − ϕi − ϕj

)
I k,l
i,j (TR) gij d� dvj

J 1
V =

∑
j ,k,l

∫
�,vj

[
f 0
k f

0
l (ϕk + ϕl)− f 0

i f
0
j (ϕi + ϕl)

]
I k,l
i,j (V ) gij d� dvj

Here, I k,l
i,j (TR) and I k,l

i,j (V ) represent the cross sections of the TR and V

collisions respectively; f 0
i (the solution of J 0

TR = 0) is built with the colli-
sional invariants of TR collisions, which are partially different from those of V
collisions.

In contrast to the operator J 1
TR , the operator J 1

V is not self-adjoint, and its
eigenvalues are unknown. It is, however, possible to split it into two parts. Thus:

J 1
V = J A1

V + JNA1
V

where J A1
V is a self-adjoint operator such as

J A1
V = 1

2

∑
j ,k,l

∫
�,vj

(
f 0
k f

0
l + f 0

i f
0
j

) (
ϕk + ϕl − ϕi − ϕj

)
I k,l
i,j (V ) gij d� dvj (6.3)

The eigenvalues of J A1
V are the collisional invariants of type II collisions.

The non-self-adjoint operator JNA1
V is

JNA1
V = 1

2

∑
j ,k,l

∫
�,vj

(
f 0
k f

0
l − f 0

i f
0
j

) (
ϕk + ϕl + ϕi + ϕj

)
I k,l
i,j (V ) gij d� dvj

(6.4)
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The order of magnitude of this operator is smaller than J A1
V and therefore may

be neglected at the first order of the distribution function.40

The system given by Eqn. (6.2) may then be rewritten as follows:

J 0
TR = 0

df 0
i

dt
= J 1

TR + J 0
V + J A1

V (6.5)

The expression of ϕi is the same as in the corresponding SNE case (Eqn.
(5.3)), and the equations giving the coefficients Ai , Bi , Di , Fi , and Gi are given
in Eqn. system (5.4), in which the operator J 1

TR is replaced by
(
J 1
TR + J A1

V

)
but

the right-hand sides of these equations are identical. For the coefficients a, b, d ,
f , and g , we therefore have the same systems of equations (Appendix 5.1), but
collisional integrals that include J A1

V must be linearly added to those that include
J 1
TR . Thus, we have integrals specific to TR collisions, 〈· · · 〉TR , and integrals

specific to V collisions, 〈· · · 〉V , that is:

〈· · · 〉TR =
(
kT

πm

)1/2 ∑
i,j ,k,l

⎡⎢⎣nir njr
n2

∫
�,γ

exp
(−γ 2) γ 3 (· · ·) I k,l

i,j (TR) d� dγ

⎤⎥⎦
(6.6)

〈· · · 〉V =
(
kT

πm

)1/2

×
∑
i,j ,k,l

⎧⎪⎨⎪⎩nir njr niv njvn4

1

2

⎡⎢⎣ 1 + exp
(

εv

(
1 − T

TV

))
× ∫
�,γ

exp
(−γ 2

)
γ 3 (· · ·) I k,l

i,j (V ) d� dγ

⎤⎥⎦
⎫⎪⎬⎪⎭

(6.7)

where

nir
n

= exp
(− εirkT )

QR(T )

niv
n

=
exp

(
− εiv
kTv

)
QV (TV )

and


εv = εkv + εlv − εiv − εjv
kT

	= 0

With the harmonic oscillator model, we have
εv = hνv
kT .

The collisional integrals α, β, δ involved in the expression of the coefficients
a, b, d , f , and g are presented in Appendix 6.1.
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6.3.1 Transport terms

Of course, the Navier–Stokes equations are valid, but the expressions for the
transport terms are defined below:

The formal expression of the stress tensor P is the same as in the SNE case
(Eqn. (5.6)), with a dynamic viscosity coefficient µ equal to

µ = nkT

(
kT

m

)
b000 = −10

(
nkT

m

) (
β000

000

)−1
(6.8)

with b000 and β000
000 given in Appendix 6.1. Thus

µ = 5

8
kT

[ 〈γ 4 sin2 χ − (
εr ) γ 2 sin2 χ + 1
3 (
εr )

2〉TR
+〈γ 4 sin2 χ − (
εr +
εv) γ 2 sin2 χ + 1

3 (
εr +
εv)2〉V
]−1

(6.9)

or, in condensed form (with obvious notations):

µ = 5

8
kT [〈φ〉TR + 〈φ〉V ]−1

We can also write

µ = µTR 1

1 + R
where R = 〈φ〉V

〈φ〉TR .

Thus, if the vibration is frozen (no V collision), we again find the SNE case
(R = 0), and we have

µ = µTR
If TV → T , we again find the WNE case, with 〈φ〉TR + 〈φ〉V = 〈φ〉TRV . Thus

µ = µTRV
For the bulk viscosity η, we have

η = nkTd100 = −nkT
(
CR
CTR

)2 (
δ100

100

)−1
(6.10)

with δ100
100 = −2n2

[〈(
εr )2〉TR + 〈(
ε)2〉V
]

(Appendix 6.1), and
ε = 
εr +

εv .

As before, if we set R′ = 〈(
ε)2〉TR
〈(
εr )2〉V , we have

η = ηTR 1

1 + R′ (6.11)

Thus, we find a bulk viscosity term that includes the SNE and WNE solu-
tions. In fact, this term exists because the rotational mode has been assumed in
equilibrium at zero order (Chapter 3).

When TV → T , we have η→ ηTRV .



6.3 VIBRATIONALLY EXCITED PURE GASES 165

There is also a relaxation pressure term pr equal to

pr = −nkTg100 (6.12)

where g100 is given by Eqn. (5.5), in which δ100
100 is given by Eqn. (6.32).

Then

pr = (
pr
)
TR

1

1 + R′ (6.13)

Thus, in the SNE regimeR′ � 0 and pr = (
pr
)
TR , whereas close to equilibrium

the numerator of g100 tends to zero and pr → 0, which is the result found in the
WNE case.

Remarks

If the rotational mode is also assumed out of equilibrium at zero order (including
a rotational relaxation equation), no bulk viscosity or relaxation pressure terms
appear. The rotational and vibrational non-equilibria are governed by relaxation
equations.

As for the heat fluxes, the relations given by Eqn. (5.9) remain valid, but in the
coefficients a and f , the integrals 〈· · · 〉 have to be replaced by 〈· · · 〉TR + 〈· · · 〉V
(Appendix 6.1).

6.3.2 Approximate expressions of heat fluxes

It is interesting to find the ‘matching’ between the SNE and WNE expressions
of heat fluxes simplified with the hypotheses already used (
ε � γ 2, harmonic
oscillator model). Thus, we find41

λT = 5

2
µ
CT
m

{
1 − 5

4

µ

CRp

[
CR
τR

+ CV
τV

TV
T

QV
QV

1

2

×
[

1 + exp

(
hνv
kT

(
1 − T

TV

))]]
+ ρ

2CTp

(
CRDR
τR

)}
with

QV =
[

1 − exp

(
−hνv
kT

)]−1

and QV =
[

1 − exp

(
− hνv
kTV

)]−1

(6.14)

λTV = 5

4

ρµ

mp

CVDV
τV

TV
T

QV
QV

1

2

{
1 + exp

[
hνv
kT

(
1 − T

TV

)]}
(6.15)

λR = ρDR CR
m

[
1 − µ

2τRp

(
ρDR
µ

− 5

2

)]
(6.16)
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λRV � 0 (6.17)

λV = ρDV CV
m

{
1 − ρDV

2τV p

QV
QV

1

2

[
1 + exp

(
hνv
kT

(
1 − T

TV

))]}
(6.18)

λVTR = 5

4

ρµ

mp

CVDV
τV

TV
T

QV
QV

1

2

{
1 + exp

[
hνv
kT

(
1 − T

TV

)]}
= λTV (6.19)

When TV → T , we again find the relations of the WNE case (Eqn. (3.69)), and
when τV → ∞, we again find the relations of the SNE case, equivalent to the
WNE case with one internal mode (rotation), itself deduced from the relations
given in Eqn. (3.69).

We can see that the term which includes the vibrational non-equilibrium,
TV
T
QV
QV

1
2

{
1 + exp

[
hνv
kT

(
1 − T

TV

)]}
, has a weak influence on the values of

λT and λR which practically depend only on T . Similarly, the values of
λTV and λRV are small compared to λT and λR (∼ τ−1

V ). In contrast, the vibra-
tional conductivityλV strongly depends on the non-equilibrium,essentially with
the term CV = CV (TV ), whereas the term λVTR

(∼ τ−1
V

)
is small compared to

λV . Examples of curves (λV = f (T ,TV )) are represented in Fig. 16 (a) and (b).

6.4 Extension to mixtures of vibrational
non-equilibrium gases

The SNE solutions have been more or less developed in the previous chapters.
Here, then, we merely give the general outline for the GCE solutions. Thus, for
a binary mixture in vibrational non-equilibrium at zero order,28 we have the
following system for the component p:

J 0
TRp = 0

df 0
ip

dt
= J 1

TRp + J 0
Vp + J A1

Vp (6.20)

with

J A1
Vp = 1

2

∑
j ,k,l

∫
�,vjp

(
f 0
kp
f 0
lp

+ f 0
ip f

0
jp

) (
ϕkp + ϕlp − ϕip − ϕjp

)
I
kp ,lp
ip ,jp
(V ) gipjp d� dvjp

+ 1

2

∑
j ,k,l

∫
�,vjq

(
f 0
kp
f 0
lq

− f 0
ip f

0
jq

)(
ϕkp + ϕlq − ϕip − ϕjq

)
I
kp ,lq
ip ,jq
(V )gipjq d� dvjq

(6.21)
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The complete expressions of the transport terms included in the Navier–
Stokes equations cannot be given here, but their approximate expressions may
be deduced from the preceding formulations. Thus, the vibrational conductivity
for the component p has the following expression:

λVp = nDppCVp

1 + ξq
ξp

Dpp
Dpq

+ mp
kT

QVp
QVp

(
1
2
Dpp
τTVpp

+ ξq
ξp

mp
mp+mq

Dpp
τTVpq

)
1
2

{
1 + exp

[
− hνvp

kT

(
1 − T

TVp

)]}

+ ξq
ξp

mp
kT

mp
mp +mq

QVq
QVp

Dpp
τVVpq

1

2

{
1 + exp

[
−hνvp
kT

(
1 − T

TVp

)]
exp

[
−hνq
kT

(
1 − T

TVq

)]}
(6.22)

with τTVpp , τTVpq , τVVpq given by Eqns (2.71) and (2.72).
Examples are represented in Figs 17 and 18.

6.5 Reactive gases

The GCE method is applied to reactive gas mixtures in the case where we may
assume that, for the molecular components, the vibrational mode is weakly
disequilibrated. This is a (GCE)C + (WNE)V case that includes all chemical
regimes (equilibrium and non-equilibrium) and that represents a general case
in hypersonic flow, extending the (SNE)C+(WNE)V case of Chapter 5.

For the component p, the relations of Eqn. (5.29) become

J 0
TRVp = 0

df 0
ip

dt
= J 1

TRVp + J 0
Cp + J A1

Cp (6.23)

The zero-order solution, the structure of ϕip , and the systems of equations
giving the coefficients a, b, d , g , and l are the same as in the corresponding
(SNE)C case. However, the operator J 1

TRVp must be replaced by J 1
TRVp + J A1

Cp ,
so that the collisional integrals depending on TRV collisions, that is α, β, and
δ, must be replaced by the integrals αTRV + αC , βTRV + βC , and δTRV + δC
respectively.

Considering the case of a dissociating pure gas, as in Chapter 5, we easily find
the first-order expression for the dissociation-rate constant kD , i.e.

kD = k0
D

[
1 −

(
g001 + d001

∂ ·V
∂r

)(
EVp − EVDp

kT

)]
(6.24)

with
k0
D = kD
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Equation (6.24) is formally identical to Eqn. (5.39), but the coefficients
g001 and d001 include the integrals

(
δ001

001

)
TRV + (

δ001
001

)
C , with(

δ001
001

)
TRV = −2n2〈(
εvp)2〉 (6.25)

Taking into account the expression of J A1
Cp , we also find

(
δ001

001

)
C =

(
EVp − EVD

kT

)2

ẇp (6.26)

Thus, setting R
′′ = (δ001

001)C
(δ001

001)TRV
and (∼ τV

τC
), we obtain

d001 = (d001)TRV
1

1 + R′′ and g001 = (
g001

)
TRV

1

1 + R′′ (6.27)

We find similar relations for the other collisional integrals; thus, for example,
we have

(
δ010

010

)
TRV = −2n2

p

〈(

εrp

)2
〉

and
(
δ010

010

)
C =

(
ERp − ERD

kT

)2

ẇp (6.28)

For vibrational energy EVp , we obtain the same formal expression as
Eqn. (5.34). Thus, we arrive at the conclusion that the relation between the
dissociation-rate constant kD and the vibrational energy EV is the same as in the
(WNE)V+(SNE)C case, that is:12

kD = kD

[
1 −

(
EV − EV

EV

)(
EV − EVD

kT

)]
(6.29)

Far from chemical equilibrium, we again find the (WNE)V+(SNE)C case of
Chapter 5 and, in particular, the same transport coefficients.

Close to equilibrium, ẇp → 0 and pr → 0. The other transport terms remain
close to the corresponding terms without chemical reaction, i.e.

µ = (µ)TRV , η = (η)TRV , λ = (λ)TRV
The preceding simplifications concerning these terms may eventually be used.

In particular, whether or not a sample is in the equilibrium regime, we know
that µTRV � µTR � µT . The value of η depends on the degree of excitation
of internal modes and is proportional to the corresponding relaxation times.
Finally, for heat fluxes, various expressions have been given, in particular in the
non-equilibrium regime (Chapter 5).
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6.6 Conclusions on non-equilibrium flows

At the end of this chapter, a general problem is posed: which equations must be
used in order to describe as accurately as possible the flows in vibrational and
chemical non-equilibrium?

The (WNE)V + (GCE)C case examined in the present chapter seems to be a
valid answer to this question, provided τV is smaller than τC , or as previously
stated, if they are of the same order of magnitude. The regions where strong
vibrational non-equilibrium prevails are excluded, for example the zones just
behind the shock waves.

The (SNE)V + (SNE)C case, described in Chapter 5, would cover these zones at
the Euler level while taking into account the vibration–dissociation interaction,
including various models, preferential or not. However, at the Navier–Stokes
level, the transport terms depend only on the TR collisions! A (GCE)V + (GCE)C

method should be used, but would raise many difficulties.
An alternative solution,42 called the‘mixed solution’(or MS model), consists of

using the Navier–Stokes equations closed using species conservation equations
and vibrational relaxation equations ((5.60) and (5.61)). Thus, this solution
starts from an SNE model but keeps the hierarchy τV ≤ τC by using the reaction-
rate constants of the type of Eqn. (5.40), which take into account the vibration–
reaction interaction. In the same way, in the relaxation equations, the source
terms EVD . . . are calculated at first order (Eqn. (5.87)), and for the transport
terms, the relations given by Eqns (6.9)–(6.11) and (6.14)–(6.19) are used. The
regions in very strong non-equilibrium are of course excluded, as are the Navier–
Stokes equations themselves.

In the applications treated in the second part of this book, this last solution is
generally used (Chapter 7, Appendix 7.1), but it is of course not always necessary
to take into account vibrational and chemical non-equilibrium simultaneously
(Chapters 9 and 10).

Appendix 6.1 Vibrationally excited pure gases

Comparison of the WNE and SNE methods (summary)

A summary of the comparison is presented in Table 2, including equations,
corresponding regimes, and respective transport terms.
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Table 2. Comparison of the WNE and SNE methods for non-dissociated pure gases.

Method WNE SNE

Zero order J0TRV = 0
TRV equilibrium, with single
temperature T .
Euler equations.

J0TR = 0
TR equilibrium, with
common temperature T .
Vibrational non-equilibrium, with
temperature TV .
Euler equations, with vib. relaxation
equation.

First order
df 0i
dt = J1TRV
Weak RV non-equilibrium.
Navier–Stokes equations.

df 0i
dt = J1TR + J0V
Weak R non-equilibrium.
Navier–Stokes equations, with vib.
relaxation equation.

Transport Transport terms µ, η, λ
depending on TRV
collisions.
Heat fluxes depending on the
gradient of T .

Transport terms µ, η, λT , λR, λV
depending on TR collisions.
Heat fluxes depending on the gradients of T
and TV .

GCE method: equation systems and collisional integrals

The equation system (6.5) is equivalent to an SNE regime, with the coefficients
a, b, d , f , and g given in Appendix 5.1. However, the collisional integrals α, β,
δ are different, since they represent here sums of integrals 〈· · · 〉TR and 〈· · · 〉V
(Eqns (6.6) and (6.7)). Thus, in the systems given by Eqns (5.63), (5.64), (5.65),
and (5.66), we have the following expressions for these integrals:

The α collisional integrals

α100
100 = −8n2 kT

m

×
[ 〈γ 4 sin2 χ − (
εr ) γ 2 sin2 χ + 11

8 (
εr )
2〉TR

+ 〈
γ 4 sin2 χ − (
εr +
εv) γ 2 sin2 χ + 11

8 (
εr +
εv)2
〉
V

]
α010

100 = −5n2 kT

m

[〈(
εr )2〉TR + 〈(
εr ) (
εr +
εv)〉V
]

α001
100 = −5n2 kT

m
[〈(
εv) (
εr +
εv)〉V ] because 〈(
εv)〉TR = 0

α010
010 = 8n2 kT

m

⎡⎣ 〈(
εir−ER
kT

) (
3
2
εr + εkr−εlr

kT γ · γ ′ − εir−εjr
kT γ 2

)〉
TR

+
〈(
εir−ER
kT

) (
3
2
εr + εkr−εlr

kT γ · γ ′ − εir−εjr
kT γ 2

)〉
V

⎤⎦
(6.30)
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α001
010 = −2n2 kT

m

×

⎡⎢⎢⎣
〈
εkr−εlr
kT γ

′2 + εir−εjr
kT γ 2 −

(
εir−εjr
kT + εkr−εlr

kT

)
εiv−εjv
kTV

γ · γ ′
〉
TR

+〈3
2 (
εr ) (
εv)+ εkr−εlr

kT
εkv−εlv
kTV

γ
′2 + εir−εjr

kT
εiv−εjv
kTV

γ 2

−
(
εir−εjr
kT

εkv−εlv
kTV

+ εkr−εlr
kT

εiv−εjv
kTV

)
γ · γ ′〉V

⎤⎥⎥⎦
α001

001 = 8n2 kT

m

⎡⎣ 〈
εiv−EV
kTV

εiv−εjv
kTV

(
γ · γ ′ − γ 2

)〉
TR

+
〈
εiv−EV
kTV

(
3
2
εv + εkv−εlv

kTV
γ · γ ′ − εiv−εjv

kTV
γ 2
)〉
V

⎤⎦

The β collisional integral

β000
000 = −16n2

(
kT

m

)2

×
[ 〈γ 4 sin2 χ − (
εr ) γ 2 sin2 χ + 1

3 (
εr )
2〉TR

+〈γ 4 sin2 χ − (
εr +
εv) γ 2 sin2 χ + 1
3 (
εr +
εv)2〉V

]
(6.31)

The δ collisional integrals

δ100
100 = −2n2 [〈(
εr )2〉TR + 〈(
εr +
εv)2〉V

]
δ010

100 = −2n2 [〈(
εr )2〉TR + 〈
εr (
εr +
εv)〉V
]

δ001
100 = −2n2 [〈
εv (
εr +
εv)〉V ]

δ010
010 = −2n2 [〈(
εr )2〉TR + 〈(
εr )2〉V

]
δ001

010 = −2n2 [〈(
εr ) (
εv)〉V ]

δ001
001 = −2n2 [〈(
εv)2〉V ] (6.32)

Appendix 6.2 Transport terms in
non-dissociated media

Viscosities, conductivities (equilibrium case)

As an example, results of the calculations forµ and η are represented as functions
of temperature in Fig. 13 (a) and (b), for nitrogen and oxygen respectively, below
the threshold of significant dissociation.28
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Figure 13. (a) Viscosity coefficients (nitrogen); (b) Viscosity coefficients (oxygen).

We observe that the coefficients µ and η are close to each other, but the asso-
ciated gradients may be very different (Chapter 8), and of course the same is true
for the corresponding terms in the conservation equations.

An example28 of the calculation of µ for a N2/H2 mixture from Eqn. (4.72) is
represented in Fig. 14 and compared to the values given by a barycentric formula

often used for mixtures43,
(

1
µ

= ξp
µp

+ ξq
µq

)
. The thermal conductivity λ of the

same mixture in equilibrium, calculated from Eqns (4.74) and (4.75), is also
represented in Fig. 15.

Thermal conductivities (non-equilibrium GCE case)

As pointed out above, vibrational conductivity is strongly influenced by the non-
equilibrium: examples of the calculation of λVp in a mixture (air)28 for nitrogen
and oxygen (Eqn. (6.22)) are represented in Fig. 16.

Note that the collisional integrals necessary for the preceding calculations
have been dealt with in many references (see, for example, Refs. 3, 44, and 45).
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Figure 14. Viscosity of the mixture N2/H2 (ξH2 = 0.8). A: Ref. 28; B: Ref. 43.
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Figure 15. Thermal conductivity of the mixture N2/H2 (ξH2 = 0.65). A: Ref. 28; B: Ref. 43.

For a given collisional model, these integrals depend on temperatures T and
TV only.

Appendix 6.3 Example of gases with dominant
VV collisions

In this case, the system successively giving f 0
i and ϕi is the following:

J 0
VV = 0

df 0
i

dt
= J 1

VV + J 0
TV (6.33)
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Figure 16. (a) Vibrational conductivity of nitrogen in a mixture (air). A: TV = 3000 K, B: TV =
1000 K, C: TV = 800 K, D: TV = 500 K, E: TV = T . (b) Vibrational conductivity of oxygen in a
mixture (air). (Notation of Fig. 16(a)).

The distribution function f 0
i , as discussed in Chapter 2 (Eqn. (2.24)), includes

a vibrational population niv , so that

niv
n

= exp
(− εivkT + Kiv

)
Q′
V

(6.34)

with

Q′
V =

∑
iv

exp
(
− εiv
kT

+ Kiv
)

As also pointed out in Chapter 2, the macroscopic parameter K character-
izes anharmonicity and non-equilibrium effects. These effects, however, may be
separated if we write K in the following way:

K = ε1
k

(
1

T
− 1

θ1

)
(6.35)
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where ε1 represents the vibrational energy of the first level. So, we have

niv
n

=
exp

(
− ε1ivkθ1

)
exp

(
ε1iv−εiv
kT

)
Q′
V

(6.36)

Thus, the non-equilibrium is represented by the first factor and the anhar-
monicity by the second. Here, θ1 may be considered the ‘temperature’ of the first
level.

The zero-order relaxation equation is Eqn. (2.25). If we linearize this
equation,46 we write niv = niv

[
1 + K

(
iv − IV

)]
, which takes the more classical

following form:

dIV
dt

= IV − Iv
τ ′V

(6.37)

with

τ ′V = I 2
V − I

2
V∑

iv

aiviv+1niv+1

(6.38)

At first order, we have

φi = Ai
1

T

∂T

∂r
·u+ Bi

∂V

∂r
:

0
uu+Di ∂ ·V

∂r
+ Fi

1

θ1

∂θ1

∂r
+ Gi (6.39)

In addition to the Navier–Stokes equations, we have the following relaxation
equation:

dIV
dt

+ ∂ · qIV
∂r

=
∑
iv

iv

∫
v

(
J 0
TV + J 1

TV

)
dv (6.40)

where qIV represents a ‘mean quantum number flux’, such that

qIV = −λ′ ∂T
∂r

− λ′′ ∂θ1
∂r

(6.41)

In the right-hand side of this equation, the second term is dominant.

Appendix 6.4 A simplified technique: BGK method

In the Boltzmann equation, the collisional term J tends to bring the system back
to an equilibrium state. It may then be modelled as the corresponding term of a
classical relaxation equation (Landau–Teller, for example). Therefore, if we write
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that it is proportional to the deviation from the equilibrium distribution, for a
gas with elastic collisions47 we have

df

dt
= J = f 0 − f

τ
(6.42)

where τ is a relaxation time characteristic of these collisions, that is, of the order
of τT . This non-linear equation is called the Bathnagar–Gross–Krook (BGK)
equation.

Assuming a constant value for τT , we can obtain a solution, approximate but
qualitatively correct, by expanding the distribution function as in the CE method,
that is, f = f 0 (1 + ϕ). Thus, at zero order we have f = f 0, with Euler equations
including the macroscopic quantities n,V , T defined using f 0. At first order, we
have

ϕ = −τT 1

f 0

df 0

dt
(6.43)

and the Navier–Stokes equations, with

P = pI − 2µ

0

∂V

∂r

q = −λ∂T
∂r

where

µ = τTp and λ = 5

2

k

m
τTp (6.44)

For the Prandtl number, however, we find a value of 1 (instead of 2/3). This is
not surprising, since we are using only one characteristic time. ‘Refinements’ are
of course possible13 (τT depending on T ; the BGK equation modified to show a
correct value for the Prandtl number, and so on).

For polyatomic gases, we can use two timescales, τTR and τV for example, and
we may write the BGK equation in the following form:48,14

dfi
dt

= f 0
iTR − fi
τTR

+ f 0
iTRV − fi
τV

(6.45)

where f 0
iTR and f 0

iTRV represent the translation–rotation equilibrium distribu-
tion function and the translation–rotation–vibration equilibrium distribution
function respectively.

As we generally have τV ∼ θ � τTR , we can expand fi as before. Thus, we
have at zero order

fi = f 0
iTR (6.46)
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This corresponds to the solution given by Eqn. (2.12), with niv given by Eqn.
(2.28) if the VV resonant collisions are included in the TR collisions. The corre-
sponding Euler equations are closed with a relaxation equation of the following
classical type:

dEV
dt

= EV − EV
τV

(6.47)

However, here we have EV = EV (TTRV ), and not EV = EV (TTR) as in the
Landau–Teller equation.

The first-order solution is

ϕi = −τTR 1

f 0
i

df 0
i

dt
+ τTR
τV

(
f 0
iTRV − f 0

iTR

)
(6.48)

The corresponding Navier–Stokes equations include the following transport
terms:

P = pI − 2µ

0

∂V

∂r
−η∂ ·V
∂r

I (6.49)

with

µ = τTRp (see Eqn. (3.33)) (6.50)

η = 2

3

CR
CTR
τTRp (see Eqn. (3.58)) (6.51)

and
q = qT + qR + qV

with

qT = −τTR 5

2

k

m
p
∂T

∂r
= −5

2
µ
k

m

∂T

∂r

qR = −τTR CR
m
p
∂T

∂r

qV = −τTR CV
m
p
∂TV
∂r

(6.52)

These formulae should also be compared with those of Eqn. (3.69).
Here, we have

T = TTR and pr = 0. (6.53)

The first-order relaxation equation has the usual form, i.e.

dEV
dt

= 1

n

∂ · qV
∂r

+ EV − EV
τV

(6.54)

Here also, we have EV = EV (TTRV ).
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Appendix 6.5 Boundary conditions for the
Boltzmann equation

In Chapter 2, boundary conditions were used for the Boltzmann equation in
order to define an isolated system (Appendix 2.1).

More generally, spatial boundary conditions can play an important role in
solutions of the Boltzmann equation. Thus, as discussed in Chapter 2, far from
the boundaries of the domain under study, the collisions between particles deter-
mine the structure of the distribution function (collisional regime). Close to the
boundaries, the solutions of Chapman–Enskog (CE) type are influenced by the
walls or interfaces that define the domain limits. It is therefore clear that, in the
‘immediate’ neighbourhood of the boundaries, the influence of the background
on the distribution function is dominant. Thus, near the boundaries, we have
to consider a region, called the Knudsen layer (Fig. 17), in which the CE solu-
tions are not valid. However, this region is limited to a few mean free paths,
so that in the continuum regime, it remains very close to the boundaries. The
processes inside this region, however, may influence the boundary conditions for
the conservation equations.

As the Navier–Stokes equations are widely used in gas dynamics, it seems
natural to extend their validity up to the regions close to a wall or boundary. We
take into account the existence of the Knudsen layer in the boundary conditions
(y = 0) by considering that, while the state of the gas at y = 0 is different from
the wall conditions (temperature, velocity, and so on), it is of course related to
these same conditions.4,5,49

Thus, we must reconsider the complete Boltzmann equation in the Knudsen
layer with a gas–wall interaction model at y = 0 and a CE distribution for
y → +∞ as boundary conditions.

Here we give only an approximate solution to the problem by considering
that the Knudsen layer is so thin that the incident molecules (going towards the

Collisional regime

CE regime

Wall

y

Knudsen layer

Figure 17. Various regimes near a wall.
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wall) have a CE distribution. For a molecular gas with elastic collisions without
macroscopic velocity, the problem is reduced to finding the gas temperature ‘at
the wall’ (where y = yg ), which serves as a boundary condition for the system of
Navier–Stokes equations and is characteristic of the thermal exchange between
the gas and the wall at the temperature Tw .

The incident molecules at yg have then a distribution derived from Eqn. (3.20),
such that

f = f 0
[

1 − 15

16

1

nT 〈γ 4 sin2 χ〉
(
mu2

2kT
− 5

2

)
∂T

∂r
·u
]
g

(6.55)

corresponding to the heat flux:

qg = −75

32

k

〈γ 4 sin2 χ〉
(
kT

m

)
∂T

∂r
(6.56)

The total energy flux due to the incident particles Fi is

Fi =
∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
1

2
mu2uy f duxduyduz (6.57)

where the coordinates x and z are in the plane of the wall. Therefore

Fi = nkT

(
2kT

m

)1/2

+ qg
2

(6.58)

where the first term originates from the Maxwellian part of f , and the second
from the non-Maxwellian part. In order to determine the state of the molecules
reflected by the wall with an energy flux Fr , a statistical interaction model must
be used. Thus, we define an ‘accommodation coefficient’ α as follows:

α = Fi − Fr
Fi − Fw

(6.59)

where Fw would represent a reflected energy flux corresponding to molecules
with an average temperature Tw equal to the wall temperature; these molecules
are ‘fully accommodated’, that is, the wall (i.e. the background) has a domi-
nant influence. In this case, Fr = Fw and α = 1; we say that the reflection is
diffuse.

On the other hand, if Fr = Fi , we have α = 0, and the wall plays only a
geometrical role; there is no exchange, and we again find the ‘specular reflec-
tion’ discussed in Chapter 2. Generally, the practical situations are intermediate
between these extreme cases, which may mask a complex physical reality.

Here, Fw may be easily calculated with f 0
w . In the same way, if we have no mass

exchange, we have, for the incident molecule flux Ni and for the reflected fluxes
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Nr and Nw :

Ni = Nr = Nw = ng

√
kTg
2πm

= nw

√
kTw
2πm

Then we have
(
n
√
T
)
g

=
(
n
√
T
)
w

.

Finally, we find the following relation between Tg and Tw (Maxwell–
Smoluchowski):

Tg = Tw + qg
2 − α
α

(
πm

2kTw

)1/2 1

nwk
(6.60)

This relation constitutes the boundary condition for the gas temperature ‘at
the wall’ (y = 0). It is called a ‘temperature jump’. When the heat flux is null
(qg = 0), the accommodation coefficient is also null (α = 0). Of course, for
high gaseous density, we again find Tg = Tw .

If the gas has a macroscopic velocity V , we similarly find a residual velocity ‘at
the wall’, called ‘slip velocity’, equal to

Vg =
(

2

mkT

)1/2 1

nw

(
µ
∂V

∂y

)
g

(6.61)

Thus, the slip velocity and the temperature jump are proportional to the
normal velocity and temperature gradient, respectively.

More rigorous methods may of course be carried out; one involves solving the
Boltzmann equation in the Knudsen layer by using the BGK collision operator
approximation50 (Appendix 6.4): however, the result is not very different, since
Eqn. (6.60) remains valid, except that the term involving α is replaced with the
term 2−aα

α
, where a = 0.82.

Other more sophisticated methods such as the direct simulation Monte
Carlo method (DSMC; Appendix 6.7) give more accurate results, particularly
in the case of low-density flow.51The main problem, however, remains how to
model the gas–wall interaction while also taking into account possible physical
processes52,53 (adsorption, metastable states, and so on).

For polyatomic gases, the problem is more complicated because of a possi-
bly different accommodation coefficient for each energy mode and because of
possible exchanges between modes during the interaction process with the wall.
This last point is related to the ‘catalytic property’ of the wall, favouring these
exchanges more or less. Examples are presented in Chapter 10. If we assume an
equilibrium distribution in the Knudsen layer and a single accommodation coef-
ficient, we obtain for the temperature jump a formula identical to the previous
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case with a value for a varying from 0.82 for the case without internal energy to
0.86 for complex molecules.54

In the case of reactive flows, the phenomenon of catalycity becomes very
important55,56 and may have a strong influence on the gas–wall thermal
exchanges. Examples are also given in Chapters 10 and 12.

Appendix 6.6 Free molecular regime

In contrast with the collisional regime (Kn → 0), the free molecular regime
corresponds to collisionless flow (Kn → ∞), for which, in the case of identical
monatomic particles, we have

df

dt
= 0 (6.62)

In the absence of external forces, the flow preserves its initial distribution
along the streamlines. The presence of obstacles does not modify the upstream
flow, since there is no possible information in the absence of collisions.

Therefore the main problem is to calculate the possible exchanges between an
obstacle and this flow. Assuming that the upstream distribution is Maxwellian
(for example the case of a rapid expansion from a tank), the distribution function
of the incident particles is the following:

f∞ = n∞
(

m

2πkT∞

)3/2

exp

(
− mu2

2kT∞

)
The incident fluxes of the particlesNi , of the momentumP i , and of the energy

Fi , may be written respectively in the following forms (Appendix 6.5):

Ni =
+∞∫

−∞

0∫
−∞

+∞∫
−∞

f∞v∞ydv∞xdv∞ydv∞z

P i =
+∞∫

−∞

0∫
−∞

+∞∫
−∞

f∞mv∞vydv∞xdv∞ydv∞z (6.63)

Fi =
+∞∫

−∞

0∫
−∞

+∞∫
−∞

f∞
1

2
mv2∞vydv∞xdv∞ydv∞z
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So we find the following expressions:4,57

Ni = n∞
(
RT∞
2π

)1/2 [
exp

(−S2
θ

)+ π1/2Sθ (1 + erfSθ )
]

Pni = ρ∞RT∞
[
π−1/2Sθ exp

(−S2
θ

)+ (1 + erfSθ )

(
1

2
+ S2

θ

)]
Pτ i = ρ∞RT∞S cos θ

[
π−1/2 exp

(−S2
θ

)+ Sθ (1 + erfSθ )
]

Fi = ρ∞ (RT∞)3/2 (2π)−1/2 [(S2 + 2
)

exp
(−S2

θ

)
+π1/2

(
S2 + 5

2

)
Sθ (1 + erfSθ )

]
(6.64)

with

S = V

(2RT∞)1/2
=
(γ

2

)1/2
M∞ and Sθ = S sin θ

where θ represents the local angle between the wall and the flow.
As before, we can define accommodation coefficients for momentum and

energy (Appendix 6.5). Thus for example, if we define a coefficient α for energy,
the reflected flux may be written

Fr = Fi − α (Fi − Fw)

The heat flux to the obstacle is then

qw = α (Fi − Fw)

If we also have Ni = Nr = Nw (no mass transfer), we find for the heat flux:

qw = 2WiRα (Twr − Tw) (6.65)

where Wi = mNi represents the incident mass flux and Twr the adiabatic
temperature of the wall (obtained for qw = 0), that is:

Twr = 1

4R

[
V 2 + RT∞

(
4 + 1

1 + ϕ
)]

(6.66)

with

ϕ = exp
(−S2

θ

)
π1/2Sθ (1 + erf(Sθ ))

Of course, the minimum heat flux is obtained in the case of a plane wall
(θ = 0), for which we have

Twr = T∞
(

1 + S2

2

)
= T∞

(
1 + γ

4
M 2∞

)
(6.67)
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Therefore, Twr is always higher than the stagnation temperature of the
continuum regime, T0 (Chapter 7).

Accommodation coefficients are also defined for the normal and tangential
components of the strain, i.e.

αn = Pni − Pnr
Pni − Pnw

and αt = Pti − Ptr
Pti

which, in principle, enables us to know the pressure acting on the body, i.e.

p = Pni + Pnr = (2 − αn) Pni + αnPnw
as well as the tangential force per surface unit:

τ = Pti − Ptr = αt Pti
The complete formulae are easily deduced from the preceding expressions.
The intermediate regime between the collisional and the free molecular

regimes (called the transitional regime) is more difficult to investigate. In
fact, only DSMC methods are efficient. However, by considering the formu-
lae obtained for the heat flux in the continuum regime (Chapter 8) and in free
molecular flow, i.e. qw ∼ (Twr − Tw), we obtain a reasonable approximation for
heat flux in the transitional regime, with the following formula written for the
corresponding Stanton numbers (Eqn. (7.34)):

1

St
= 1

Stc
+ 1

Stfm
(6.68)

where Stc and Stfm represent the Stanton numbers in the continuum and free
molecular regimes, respectively.

Appendix 6.7 Direct simulation Monte
Carlo methods

Rather than using ‘conventional’ equations to describe the state and evolution
of a gaseous system, it is possible to simulate the behaviour of the system by
directly considering an ensemble composed of several thousands or millions of
molecules: the position, velocity, and internal state of each molecule are ‘mem-
orized’ then modified with time by simultaneously following the molecules
during their movement and taking into account their mutual interaction or
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their interaction with the domain boundaries. This method can be defined as
an algorithm which, at each iteration, operates on a sample of N molecules with
the distribution f (r , v , t ) and generates a new sample of molecules with the
distribution f (r , v , t +
t ).

The physical domain is decomposed in a net of cells 
r that include N
molecules and have small dimensions compared with the distance along which
the macroscopic quantities ‘significantly’ vary. Thus
r ≤ λ.

The choice of 
t is essential. The basic assumption lies in the uncoupling of
the displacement phase from the collision phase, as in the Boltzmann equation,
which takes into account these processes separately. Thus, the Monte Carlo
simulation consists of the repetition, in each cell, of the following procedure:

• All particles are displaced by the distance they should cover during 
t with
their initial velocity v.

• The collisions which should have occurred during 
t are taken into account
by a random process; the velocities (and the internal states) of the involved
molecules are thus modified but not their location.

Here, 
t must not be too large, in order to respect the scheme of the
displacement–collision separation. A choice criterion is to take it small as com-
pared to the mean collision time, i.e. Z
t < 1. The state of the molecules in
the neighbourhood of the frontiers changes according to the chosen gas–wall
interaction model. Macroscopic quantities such as state and transport parame-
ters are calculated by averaging the corresponding quantities over the velocities
and internal states of the N molecules of each cell.

Of course, the main problem is to correctly treat the collision process. Various
methods are available,58–60 one of which is briefly described below.58

The mean collision number during
t is

Ncoll = Z0
t = n

2
Z
t (6.69)

where Z is given by Eqn. (1.56), which may also be written Z = nCg , with usual
notations. Therefore, in the volume element 
r , during 
t the mean collision
number is the following:

Nc = N

2
n C g
t

The difficulties arising from the computation of Cg in 
r may be overcome
by using a ‘time counter’, incremented with a time
tc at each collision between
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two molecules that have a relative velocity g such that


tc = 2

nNCg

Thus, the collision number Nc is determined by the following ‘criterion’:

Nc∑
i=1


tc (i) ≥ 
t (6.70)

In particular, for elastic collisions with a spherical interaction potentialϕ (r) =
K
rs−1 (Eqn. (1.80)), we have


tc = 2

N

[
π β2

0

(
(s − 1)K

mr

)2/(s−1)

ng s−5/s−1

]−1

(6.71)

where β0 is the maximum value of the dimensionless impact parameter β = b
r

(cut-off). For the rigid elastic sphere model, we have


tc = 2

N nπd2g
(6.72)

The couples of interacting particles must then be determined. The collision
probability being proportional to the relative velocity, an ‘accept–reject’ method
is used. Thus, the value of gmax is determined in each cell, a number X is drawn
(0 < X < 1), and if g/gmax is smaller than X , the collision is rejected, other-
wise it is accepted. In this last case, the counter time is increased in 
tc , and
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Figure 18. Temperature profiles across a shock wave [Ms = 8, (nA/nHe)a = 0.1]. : T, . . . : THe,
: TA ; a: upstream, b: downstream.
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the post-collision velocities are computed. The procedure is repeated until the
criterion given by Eqn. (6.70) is verified.

The particles interacting with the domain boundaries are treated in a similar
way. Finally, the moments are computed. The case of inelastic collisions requires
a particular treatment, and various models have been proposed.60,61

The DSMC methods have raised considerable interest and contribute to solv-
ing problems for which the Navier–Stokes equations are invalid (shock structure,
Knudsen layer, transitional and rarefied regimes, and so on).

As a simple example, Fig. 18 shows the evolution of the temperatures of the
components of a monatomic gas mixture (He/A) across a shock wave, result-
ing from a DSMC computation.62,63Thus, defining a specific temperature for
every species, we may observe the different behaviour of the two species and, in
particular, a temperature overshoot for the heavy component.

Appendix 6.8 Hypersonic flow regimes

It may be interesting to get an overview of the equations and methods used in
the analysis of hypersonic flows as functions of velocity and density (altitude),

Equilibrium Non-equilibrium

Boltzmann

Navier-Stokes
Euler

T.B.L. L.B.L.

Collisional regime

10–3

75 100 125 Altitude (km)

Knudsen number (~l/R)

10–2 10–1 1021 10

Free molecular regime

V.S.L. No slip Slip

Vlassov

D.S.M.C

Figure 19. Mathematical and physical models for hypersonic flows. V.S.L.: Viscous shock layer, L.B.L.:
Laminar boundary layer, T.B.L.: Turbulent boundary layer, D.S.M.C.: Direct simulation Monte Carlo method.
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Figure 20. Examples of hypersonic trajectories. Trajectories (H.G.: Hypersonic glider), – – –
Equilibrium stagnation temperature (Eq. Temp.), . . . 10% dissociated species.

and an overview of the physical processes taken into account.64 Thus, for air,
Fig. 19 gives qualitative information about the domain of validity of various
equations and methods for a large range of Knudsen numbers. Similarly, Fig. 20
shows the domains where chemical processes for N2 and O2 are significant at
the stagnation point of a re-entry body.
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PART II

Macroscopic Aspects and
Applications
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Notations to Part II

Amn Einstein coefficient (radiative transition n → m)
Ap symbolic notation for species p
B magnetic induction
C ρµ/ρeµe

Cf skin-friction coefficient
C ′ specific heat (per unit mass)
Cp specific heat at constant pressure (per unit mass)
Da Damköhler number
E Eckert number
Eu Euler number
f ′ u/ue (dimensionless velocity)
Fp vibrational number of the component p
g h0/h0e (dimensionless stagnation enthalpy)
h0 stagnation enthalpy (per unit mass)
I spectral line intensity, ionization energy (per particle), MHD

interaction parameter
J current density
Kp equilibrium reaction constant (partial pressures)
L reference length, Lewis number
M Mach number, mean molecular mass
Mp molecular mass of the component p
n,N unit vector normal to a surface
Nu Nusselt number
Np mole fraction of the component p
P Prandtl number
P ,Q Riemann parameters
r body radius, recovery factor
R element of vibration matrix
Re Reynolds number
Rh Hartmann number
S Schmidt number, entropy (per unit mass), cross section
St Stanton number
u longitudinal component of flow velocity V
v transverse component of flow velocity V
ẇVp mass production rate of vibrational energy (component p)



192 NOTATIONS TO PART II

ẋ chemical production rate of the quantity x
X distance from the diaphragm (shock tube)
zp cp/cpe (dimensionless concentration)
α dissociation rate, absorption rate
α,β unit vectors
β dimensionless quantity related to the pressure gradient
γ ,Cp/C ′ (specific-heat ratio)
δ characteristic thickness of boundary layer
φ shape parameter of spectral line
� dissipation function
λ wavelength
µp chemical potential of the component p (per unit mass)
µ0 magnetic permeability
νnm frequency corresponding to the transition n → m
νp stoichiometric coefficient of the component p
σ electrical conductivity
τ stress tension
ξ , η boundary layer coordinates

Subscripts

0 reference state, stagnation condition
1, 2 medium 1, medium 2
A, A2 related to atoms A, to molecules A2

c charged species, critical value (sonic condition)
e edge of boundary layer, electronic state
f frozen state
id ideal model
m averaged quantity
r related to a reflected shock wave
s related to an incident shock wave, exit condition (nozzle)
t turbulent
∞ free-stream conditions

Superscripts

j 0: plane flow, 1: axisymmetric flow
p constant pressure
∗ dimensionless quantity, excited state
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Abbreviations

CFL Courant–Friedrich–Levy
HP, LP high pressure, low pressure
LLD Levy–Lees–Dorodnitsyn
MHD magnetohydrodynamics
RH Rankine–Hugoniot
SSD shock stand-off distance
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SEVEN

General Aspects of Gas Flows

7.1 Introduction

The results presented in the preceding chapters give a detailed description of the
flows of reactive gas mixtures, and in this chapter, we clarify the main points
relating to this description. First, we revisit the general Navier–Stokes equations
governing these gas systems, and provide a somewhat different point of view,
related to the concept of a ‘continuous medium’.

The fluid dynamic equations thus describe gas flows, possibly unsteady
and multidimensional, generally dissipative, i.e. viscous, conductive, and dif-
fusive, composed of reacting species and in thermodynamic and chemical
non-equilibrium.

These governing equations, including the species conservation equations
and the vibrational relaxation equations (Appendix 7.1), are then written in
a dimensionless form: in these equations, ‘dimensionless numbers’ appear which
represent ratios of particular forces or energies, thus characterizing the relative
intensity of the phenomena or processes considered. Depending on the order of
magnitude of these numbers, we can define specific flow regimes corresponding
to the dominance of various processes.

In the last part of the present chapter, a number of basic flows are discussed;
they are generally used as reference flows in the following chapters. However, the
classical flows of traditional gas dynamics are described in Chapter 8.

7.2 General equations: macroscopic
aspects and review

The three state quantities related to the concepts of mass, momentum, and
energy, that is, ρ (or n), V , and e, are defined in Chapter 1, and in princi-
ple, they are determined from the conservation equations (1.26) and (1.29).
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In these equations, the transport quantities Up , P, and q characterizing the
local exchanges of mass, momentum, and energy are also present. These quan-
tities may be expressed as functions of gradients of the corresponding state
quantities dependent on the system under study. They can have different forms
as explained in Chapters 3–6. A recapitulation of these equations and related
equations are presented in Appendix 7.1.

7.2.1 Comments on the transport terms

Diffusion velocity

The mass flux of species p may be written in the following general form:

jp = ρpUp = ρ
∑
q

MpMq

M 2
Dpq
∂ξq

∂r
(7.1)

As previously discussed, the ‘multinary’ diffusion coefficients Dpq may often
be reduced to a binary coefficient D (Eqn. (4.18)).

Stress tensor

From a macroscopic point of view, the velocity gradients generate transforma-
tions of an elementary volume called the ‘fluid particle’. These transformations
consist of a deformation without any change in volume, and a dilatation without

deformation. Thus, we define a tensor of deformation rate ∂V
∂r equal to

∂V

∂r
= 1

2

(
∂V

∂r
+ ∂V
∂r

)
(7.2)

and a deformation rate tensor without volume change

0

∂V
∂r , equal to

0

∂V

∂r
= ∂V
∂r

− 1

3

∂ ·V
∂r

I (7.3)

and a dilatation rate tensor

∂ ·V
∂r

I (7.4)

The viscosity coefficientsµ and η are then the proportionality factors between
the viscous part of the stress tensor P′ = P − pI and the deformation and dilata-
tion rates (Eqns (3.42) and (4.33)). These linear relations correspond to the
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first-order linear Boltzmann equation. In particular, they explain the simplifica-
tions resulting from the hypothesis of ‘incompressible’ flow, characterizing low
velocity flows

(
∂ ·V
∂r = 0

)
.

Heat flux

As discussed in Chapters 3 and 4, there is a conduction (or thermal) flux qc
related to the various temperature gradients (T , TV . . .) and a diffusion flux qd
transporting the local ‘internal energy’. This energy is the sum of translational,
rotational, and vibrational energies plus stored potential energy (pressure): this
sum constitutes the available energy or enthalpy. Thus:

qd =
∑
p

ρp

(
ep + pp

ρp

)
Up =

∑
p

ρphpUp (7.5)

7.2.2 Particular forms of balance equations

Other forms of the usual conservation equations may shed light on diverse
processes. Thus, multiplying the momentum conservation equation (1.26) by
V , we obtain

ρ
d

dt

(
V 2

2

)
= V · ∂ · P

∂r
(7.6)

From Eqn. (7.6) we see that the rate of change of the kinetic energy of a fluid
particle (along streamlines) is equal to the work done by the ‘internal forces’ (per
unit time). This work may also be written

V · ∂ · P

∂r
= ∂ · (pV )

∂r
+ ∂ · (P′V

)
∂r

− p
∂ ·V
∂r

− P′ :
∂V

∂r
(7.7)

The first two terms of the right-hand side of Eqn. (7.7) represent the part
of this work that is exchanged with neighbouring particles and done by the
pressure p and by the viscous strain P ′, respectively. The third term represents
the dilatation work due to the pressure, and the fourth term is the part of the
work ‘lost’ or dissipated (heat) because of the friction. This last term is called the
dissipation function�, with

� = −P′ :
∂V

∂r
(7.8)

Another form of the energy conservation equation (1.26) may be obtained
from the definition of enthalpy h = ∑

p
cphp = e + p

ρ
, that is:

ρ
dh

dt
= dp

dt
− ∂ · q
∂r

− P′ :
∂V

∂r
(7.9)
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with
dh =

∑
p

cpdhp +
∑
p

hpdcp

For a reactive mixture in thermodynamic equilibrium (TRV equilibrium), we
have

dhp = (C ′
TRVp + Rp)dT = C

p
TRVpdT (7.10)

where

C ′
TRVp = dep

dT
= CTRVp

mp

Here, C
p
TRVp = C ′

TRVp + Rp is the specific heat at constant pressure. Then

dh =
∑
p

cpC
p
TRVpdT +

∑
p

hpdcp = C
p
f dT +

∑
p

hpdcp (7.11)

Where C
p
f = ∑

p cpC
p
TRVp is the ‘frozen’ specific heat at constant pressure. In

Eqn. (7.11), the first term arises from the temperature variations, and the second
is from the concentration variations, so that in a non-reactive mixture of ‘perfect’
gases only the first term is present; this explains the use of the word‘frozen’ forC

p
f .

In the same way, for a system in vibrational and chemical non-equilibrium,
we have

dhp = C ′
TRpdT + C ′

VpdTVp + RpdT = C
p
TRpdT + C ′

VpdTVp

or

dh = C
p
TRf dT +

∑
p

cpC
′
VpdTVp +

∑
p

hpdcp (7.12)

where C
p
TRf = ∑

p
cpC

p
TRp , in this case, represents the frozen specific heat at

constant pressure.
A stagnation enthalpy h0 may also be defined, with

h0 = h + V 2

2
= e + p

ρ
+ V 2

2
(7.13)

Thus, h0 represents the total available energy. The corresponding balance
equation is the following:

ρ
dh0

dt
= ∂p
∂t

− ∂ · q
∂r

− ∂ · (P′V
)

∂r
(7.14)

We see that, in a non-dissipative steady flow, the stagnation enthalpy is
preserved along the streamlines.
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7.2.3 Entropy balance

For a gaseous reactive system, despite the previous conservation equations con-
stituting a closed set, it is interesting to consider the entropy balance of the
system.

Analogously with e and h, we have for the entropy per unit mass S:

S =
∑
p

cpSp + S0

therefore

dS =
∑
p

cpdSp +
∑
p

Spdcp (7.15)

From Gibbs’s theorem, we can define the entropy variation of the component
p, dSp , so that TdSp represents the variation of the ‘reversible’ energies. Thus
we have

TdSp = dep + pd

(
1

ρp

)
(7.16)

where ep corresponds to TRV equilibrium.
Then, the entropy balance equation may be written

T
dS

dt
= de

dt
+ p

d

dt

(
1

ρ

)
+
∑
p

(
SpT − hp

) dcp
dt

(7.17)

where hp − SpT = µp represents the chemical potential of the species p.
By using the energy conservation equation, we may write Eqn. (7.17) in the

following form:

T
dS

dt
= − 1

ρ

∂ · q
∂r

− 1

ρ
P′ :
∂V

∂r
−
∑
p

µp
dcp
dt

(7.18)

where
dcp
dt is given by the species conservation equations (5.33).

Therefore, the entropy variation in a reactive flow is due to conduction,
diffusion, dissipation, and chemical reactions. Thus, during all energy transfor-
mations taking place in such a medium (for example: kinetic energy ⇔ potential
energy; internal energy⇔chemical energy), there are ‘losses’. The losses are par-
ticularly important either when the medium is ‘dissipative’ (high values for µ,
η, λ , D) or when the gradients of flow quantities are important. Similarly, the
expression for dSdt is given in Appendix 7.1 for the case of vibrational and chemical
non-equilibrium.

The medium is ‘isentropic’ if the entropy is preserved along the streamlines
(dSdt = 0): this is equivalent to the approximation of a ‘perfect fluid’ for which
conduction, diffusion, dissipation, and chemical production are negligible. This
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is the case when, for example, velocity, temperature, and concentration gradients
as well as the chemical production of species are small. In this case, the medium
is chemically frozen or in equilibrium (ẇp = 0).

The flow is ‘homoentropic’ if the entropy remains constant in the whole
medium.

The connection between the entropy S and the quantity H = − SD
k may be

noted (Chapter 2); as we have dH
dt ≤ 0, we have dS

dt ≥ 0, and the stable solution

corresponds to dH
dt = dS

dt = 0 (equilibrium).

7.2.4 Boundary conditions

Solving the system of Navier–Stokes equations as well as species evolution
equations and/or vibrational relaxation equations requires coherent boundary
conditions depending on the particular physical problem under study. Because of
the dissipative terms, we observe that the equations have second-order derivative
terms relatively to V , e (or T ), and cp .

The boundary conditions at interfaces in particular are of great importance,
not only for knowledge of the flow but also for the determination of mass,
momentum, and energy transfers across these interfaces. Rigorously, the con-
ditions at an interface represent the coupling between the media located on
each side and, therefore, include relations between the quantities governed by
equation systems specific to each medium. Generally, we thus need two relations
for each quantity governed by second-order differential equations. In fact, the
influence of one medium (often the solid phase) is usually simply given by inter-
face conditions or wall conditions considered as boundary conditions for the
gaseous phase. This point of view is generally adopted later. However, examples
of the simultaneous treatment of conservation equations in both media are given
in Appendices 7.2 and 7.3; they correspond to important practical cases.

Thus, if the mass transfer at the level of an interface is null (general case), the
normal velocity of the gas is also null. If the normal component is finite, this
arises from an injection, suction,or physical process such as melting,evaporation,
sublimation, or chemical reaction between both media.

For momentum transfer, it is clear that such a transfer occurs when there
is a mass transfer due to a normal velocity. Otherwise, a specific condition for
longitudinal velocity in the plane of the interface is required: this condition may
be either the equality for the velocity of each medium at the interface or a value
imposed by one of them (flow velocity null on a solid wall, for example). The
wall skin friction is then deduced from this condition. In a few cases (transitional
flows, for example), a ‘slip velocity’ should be taken into account (Appendix 6.5).
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The energy transfer, knowledge of which is generally important, depends on
many parameters, such as the conductivity of the medium adjacent to the gas flow
and its specific energetic level. Moreover, in a reactive medium, the interfacial
heat flux depends on the catalytic properties of the interface in relation to the
chemical reactions.

The various boundary conditions briefly discussed above have applications in
all the cases or examples treated later.

7.3 Physical aspects of the general equations

As discussed above, the terms of the general equations represent the quantitative
influence of the various phenomena involved in the different balances. Thus, it
is important, before solving the Navier–Stokes system, to know a priori the order
of magnitude of their relative importance in order to at least simplify the system.

The general method used involves writing each physical quantity as the prod-
uct of a dimensionless quantity and of an estimated average value (called the
‘characteristic’ or ‘reference’ value) taken by this quantity in the physical prob-
lem under study. This characteristic value gives the order of magnitude of the
corresponding quantity, whereas the dimensionless values remain of the order
of 1. Thus, in the balance equations, including n terms and written with these
dimensionless quantities, there are dimensionless groups of characteristic quan-
tities in n−1 terms. The value of these dimensionless numbers, in principle
well-known, gives the relative order of magnitude of the different terms and
therefore the relative importance of the corresponding phenomena.

However, finding the value of the characteristic quantities a priori is not always
an easy task, because sometimes the corresponding quantities may vary strongly
in space and time, so that it is necessary in each case to define the problem clearly.

7.3.1 Characteristic quantities

The independent variables r and t are made dimensionless with the character-
istic length and time L0 and t0 respectively, so that

r∗ = r

L0
and t∗ = t

t0

Independently of the particular problem under consideration, we choose
L0 and t0 so that L0 = V0 t0, where V0 represents the characteristic velocity,
with V ∗ = V

V0
.

Thus, L0 represents the distance covered during the time t0 by a fluid particle
that has velocity V0.
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It is probably not necessary to enumerate the other characteristic quan-
tities, except maybe for the temperature, since its definition must take into
account eventual important thermal exchanges with the background. Thus, if
the estimated temperature of the interface is Tw , and if T0 is a characteristic tem-
perature of the gaseous medium under study, we may choose a dimensionless
temperature as

T ∗ = T − T0

Tw − T0
= 
T


T0

Of course, in this case, the transport terms are chosen in the same way. Below,
we also examine the choice of the characteristic pressure p0.

7.3.2 Dimensionless conservation equations

As discussed above, those regions that include strong gradients such as shock
waves or Knudsen layers are excluded from the domain of validity of the Navier–
Stokes equations. Thus, we may assume that the differential operators of these
equations do not change the order of magnitude of the corresponding quan-
tities. Then, in order to obtain dimensionless equations, we simply replace
each quantity by the product of their characteristic value by the dimensionless
corresponding quantity.

The mass conservation equation remains formally unchanged, i.e.

∂ρ∗

∂t∗
+ ∂ · (ρ∗V ∗)

∂r∗ = 0 (7.19)

If we do not make any particular assumption (incompressible flow ρ = const.,
for example), both terms of Eqn. (7.19) have the same order of magnitude.

The momentum conservation equation may be written in the following way,
without external forces:

ρ∗ dV ∗

dt∗
= − 1

Eu

∂p∗

∂r∗ − 1

Re

∂ · P′∗

∂r∗ (7.20)

In this equation, µ and η are referenced to µ0, and the relaxation pressure is
neglected.

Two groups of characteristic quantities appear in Eqn. (7.20), the Euler
number Eu and the Reynolds number Re, with

Eu = ρ0V 2
0

p0
and Re = ρ0V0L0

µ0
= ρ0V 2

0 /L0

µ0V0/L2
0

(7.21)

The balance of forces acting on a fluid particle represented in Eqn. (7.20)
includes the inertial force (left-hand side), generating kinetic energy and pres-
sure, and viscosity forces (right-hand side), so that the inverse of the Euler



7.3 PHYSICAL ASPECTS OF THE GENERAL EQUATIONS 203

and Reynolds numbers represent the ratio of pressure and viscosity forces,
respectively, to the inertial force.

In the expression of Eu, the choice of p0 must take into account the change of
pressure between its stagnation value (or its ‘reservoir’ value) and its average local
value. The difference is essentially due to the transformation of this energy into
kinetic energy. Thus, these energies have generally the same order of magnitude,
so that the Euler number remains of the order of 1.

In contrast, the Reynolds number may take very different values depending
on whether the viscosity forces (stress, friction) are more or less important in
comparison with the inertial force or whether the viscous energy exchanged is
more or less important in comparison with the kinetic energy.

The energy conservation equation in the form of Eqn. (7.9) may be easily
written in a dimensionless form, and assuming thermodynamic equilibrium, we
have

ρ∗ dh∗

dt∗
= ρ∗Cp

∗
f

dT ∗

dt∗
+ ρ∗∑

p

h∗
p

dcp
dt∗

= E
dp∗

dt∗
+ 1

ReP

∂ ·
∂r∗

(
λ∗ ∂T

∗

∂r∗

)

+ 1

ReS

∂ ·
∂r∗

⎛⎝ρ∗D∗∑
p

h∗
p

∂cp
∂r∗

⎞⎠+ E

Re
�∗ (7.22)

Here, a reference enthalpy h0 has of course been chosen, with h0 = C
p
f 0T0.

The case with simultaneous vibrational non-equilibrium is treated in
Appendix 7.1.

In Eqn. (7.22), we find the Reynolds number and the other following
dimensionless numbers:

Eckert number : E = V 2
0

C
p
f 0T0

� p0

ρ0C
p
f 0T0

(7.23)

Prandtl number : P =
C
p
f 0µ0

λ0
(7.24)

In a reactive flow, this is a ‘frozen’ Prandtl number.

Schmidt number : S = µ0

ρ0D0
(7.25)

Thus, we see that the groups of terms E , 1
ReP , 1

ReS , E
Re represent ratios of

pressure energy (or kinetic energy), conduction energy, diffusion energy, and
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viscous dissipation energy respectively to the enthalpy transported (convected)
in the flow.

Of course, the order of magnitude of the ratio of two peculiar energies
appearing in Eqn. (7.22) is obtained by writing the ratio of the correspond-
ing dimensionless groups. Thus, for example, the ratio of the kinetic energy to
the energy dissipated by viscosity is equal to E

/ E
Re = Re. We again find this ratio

in the momentum conservation equation.
The species conservation equation may be written in the following dimen-

sionless form:

ρ∗ dcp
dt∗

= 1

ReS

[
Da ẇ∗

p + ∂ ·
∂r∗

(
ρ∗D∗ ∂cp

∂r∗

)]
(7.26)

In addition to the preceding numbers Re, S, a new number appears, i.e.

Da = ẇp0L2
0

ρ0D0
(7.27)

Here,Da is the Damköhler number.
Thus, in Eqn. (7.26), DaReS gives the order of magnitude of the ratio of the mass

rate of species p created by chemical reactions to the mass rate transported in the
flow, that is ẇp0

/
ρ0V0
L0

. Similarly, 1/ReS represents the ratio of the transported
mass rate to the diffused mass rate. This ratio, of course, has also been found in
the energy balance equation.

7.3.3 Dimensionless numbers: flow classification

In the following, we examine the physical meaning of the dimensionless numbers
defined above, and we analyse the consequences of their order of magnitude on
the structure of conservation equations.

Reynolds number

The Reynolds number is related to a characteristic length which may vary consid-
erably according to the specific problem under consideration. Thus, practically,
it may vary from 10−1 to 107.

Independently of those (rare) cases in which the viscous terms are predomi-
nant (Stokes–Oseen flow, for example), there are many flow regimes where the
convection and pressure terms have the same order of magnitude as the viscous
terms. This is particularly the case for high-speed flows, more or less rarefied, in
wind tunnels or in real flight at high altitude.

For denser flows, the Reynolds number referring to a characteristic dimension
of the flow may be high enough to neglect the viscous terms. Independently of the
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stability problems that may then arise (see Appendix 8.3, for example), we again
find the approximation of ‘perfect fluid’. This approximation of course may also
be applied to the energy conservation equation in which conduction, diffusion,
and dissipation terms may be neglected when Prandtl and Schmidt numbers (as
well as the Eckert number) are of the order of 1, which is the general case for
gases: the conservation equation system is then the Euler system, closed using
the species conservation equations in which the diffusion term is also neglected.
The influence of chemical reactions disappears only if Da � ReS, that is if
ẇp0 � ρ0V0

L0
. In this case, the species mass rate created by chemical reaction is

very low compared with the mass rate transported in the flow.

Eckert number

When the value of this term is low, the average kinetic energy of the fluid is not
very important compared with the internal energy transported by convection.
This is for example the case for cooling flows at moderate velocities in exchangers
or for flows behind strong shock waves (Chapter 9). Then, for a flow without
chemical reaction, the energy conservation equation is simply written

ρC
p
f

dT

dt
= ∂ ·
∂r

(
λ
∂T

∂r

)
(7.28)

This equation is all the more ‘exact’, as the Prandtl number is small.
The case of high Eckert numbers corresponds generally to high-velocity flows

where compressibility effects are important and the viscous dissipation non-
negligible. These effects are of course increased if the Reynolds number is small,
that is, for example, for low-density flows. Generally, however, the Eckert number
remains of the order of 1.

Prandtl and Schmidt numbers

These two numbers are essentially related to the state of the fluid and are, at least
directly, independent of the velocity.

The product Br = EP (Brinkmann number) represents the ratio of the
energy dissipated by viscosity to the conduction energy. Equation (7.28) cor-
responds to the case Br � 1, whereas the case Br � 1 corresponds to viscous
and non-conductive flows. Similarly, the product ES represents the ratio of the
energy dissipated to the diffusion energy. The product Pe = ReP is the Peclet
number.

The ratio of the Prandtl number to the Schmidt number is the Lewis number L,
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L = P

S
=
ρ0D0C

p
f 0

λ0
=
ρ0D0C

p
f 0T0/L2

0

λ0T0/L2
0

(7.29)

which represents the ratio of diffusion energy to conduction energy.

Damköhler number

In reactive gas flows, the order of magnitude of the Damköhler number deter-
mines different flow categories. As pointed out above, it represents the ratio of
chemical reaction rates to the diffusion velocities, and Da

ReS represents the ratio of
chemical reaction rates to the macroscopic velocities (convection).

Thus, if DaReS � 1, the convection term may be neglected. Moreover, if the value
of Da is much higher than unity, the species conservation equation reduces to

ẇp = 0 (7.30)

In this case, we have a flow in chemical equilibrium. The reaction rates are
much faster than the diffusion and convection velocities. The local concen-
trations are then determined only by the chemical reactions, which, however,
depend on local parameters given by the Euler or Navier–Stokes equations.

The opposite case corresponds to frozen flows: the reaction rates are too slow
to have an influence on the local concentrations which preserve their value along
the streamlines if the Reynolds and Schmidt numbers are not too low.

Non-independent dimensionless numbers

There are numbers widely used but in fact non-independent; they are combina-
tions of the previously defined numbers but may also represent ratios of forces
or energies.

We have seen examples with Lewis and Peclet numbers. Another well-known
dimensionless number is the Mach number M , important in gas dynamics
because its value delimits flow regions with different characteristics (Chapter
8). Thus, for a perfect gas in TRV equilibrium, we have

M = V0

a0
=
(
V 2

0

�RT0

)1/2

=
(

E

� − 1

)1/2

(7.31)

with

� = C
p
TRV

C ′
TRV
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Other dimensionless numbers

Independently of the dimensionless numbers related to external forces (gravity,
magnetic field, and so on), there are numbers simply used for the representation
of values of a particular quantity (in a complex situation) by comparison with
values we would obtain in a simpler well-known (but virtual) situation.

Thus, at an interface, we define a skin-friction coefficient representing the
transfer of longitudinal momentum in a dimensionless form: for example, in
the case of a solid wall limiting the flow, this coefficient is chosen as the ratio
of the modulus of the stress tension in the plane of the wall τw to a reference
‘dynamic pressure’ 1

2ρ0V 2
0 (Chapter 8), i.e.

Cf = τw
1
2ρ0V 2

0

(7.32)

Similarly, the normal component of the heat flux qw referenced to a purely
conductive reference flux λ0
T0

L0
is written in the form of the Nusselt numberNu,

defined as

Nu = −qw
λ0
T0/L0

(7.33)

Here, qw may also be referenced to a transported (convected) reference heat
flux ρ0C

p
f 0V0
T0: in this way, we define the Stanton numbers St as

St = −qw
ρ0C

p
f 0V0
T0

(7.34)

This way of representing the characteristic quantities of a process (heat
flux, skin friction, and so on) may be simply deduced from a dimensional
analysis independent of the conservation equations. An example is given in
Appendix 7.4.

7.4 Characteristic general flows

A few simple typical flows are often used as reference flows, and their essential
aspects are described below.

7.4.1 Steady flows

These are also called permanent flows
(
∂
∂t = 0

)
: the flow quantities depend on

spatial coordinates only.
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Global balances

It is sometimes unnecessary to know the details of the flows or the ‘profiles’
of various quantities. Global balances are then sufficient and are applied to a
finite volume of fluid D limited by a closed surface S by integrating the general
equations in D. Thus, the mass conservation gives∫

D

∂ · ρV
∂r

dr = 0 or

∫
S

ρV ·NdS = 0 (Ostrogradski theorem) (7.35)

The global mass flux is null if there is no mass source in D.
For the momentum, we have∫

D

ρV · ∂V
∂r

dr = −
∫
D

∂ · P

∂r
dr (7.36)

With the continuity equation, we deduce the following equation:∫
S

ρVV ·NdS = −
∫
S

P ·NdS (7.37)

This is the ‘momentum theorem’, the basis of the theory of propellers, wind
engines, jet engines, and so on: the momentum flux is equal to the sum of forces
(here, internal forces only) applied to the system.

Finally, for energy, we have∫
D

∂ · ρV h0

∂r
dr = −

∫
D

∂ ·
∂r

(
q + P′ ·V ) dr (7.38)

or ∫
S

ρV h0 ·NdS = −
∫
S

(
q + P′ ·V ) ·NdS (7.39)

For a perfect fluid, the right-hand side of Eqn. (7.39) is null.

Perfect fluid flows

dh0

dt
= 0 (7.40)

That is:

h0 = e + p

ρ
+ V 2

2
= const. (7.41)

Total enthalpy is preserved along trajectories. Temperature T0 and pressure
p0 are the ‘reservoir’ temperature and pressure respectively (V = 0). The
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flow is ‘isoenergetic’, and Eqn. (7.40) shows only the possible transformations
undergone by a perfect fluid without losses.

A similar equation arises from the momentum conservation equation, that is,
along trajectories: ∫

dp

ρ
+ V 2

2
= const. (7.42)

with

dh = dp

ρ

For an isentropic flow (perfect fluid in equilibrium), h is a function only of T ,
and p = ρRT . Therefore p = f (ρ), and we have

dp

ρ
=
(
dp

dρ

)
S

dρ

ρ
(7.43)

with (
dp

dρ

)
S

= g (T )

This term, of course, depends on the gas species.

7.4.2 Unsteady flows

One basic problem concerns the propagation of waves in gaseous media. If these
waves are assumed to be of weak intensity, their behaviour may be deduced from
the continuity and momentum equations of the Euler system, since in that case,
the regime remains isentropic. Then, we can linearize the quantities p, ρ,T from
the values of p0, ρ0,T0 corresponding to the medium at rest (V0 = 0), so that
p = p0 + p̃ and so on. Then we find the following equation:

∂2ρ̃

∂t 2
=
(
dp

dρ

)
S

∂2ρ̃

∂r2
(7.44)

where
∂2X

∂r2
= ∂ ·
∂r

(
∂X

∂r

)
We find similar equations for p̃, Ṽ , T̃ , and so on.
We set (

dp

dρ

)
S

= a2 (7.45)

where a depends on temperature and on gas species.
The solutions of Eqn. (7.44) have the following form:

ρ̃ = F (r − at )+ G (r + at ) (7.46)
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and a represents the speed of propagation of these small perturbations (sound
velocity). Each term of the right-hand side of Eqn. (7.46) represents a ‘simple
wave’ propagating without deformation towards r > 0 and r < 0 respectively
(spherical waves). Developments concerning this type of wave in a moving
medium are given in Chapter 8.

7.4.3 Simplified flow models

One-dimensional approximation

In many cases, in particular for ‘internal’ flows (limited by walls), there is a
preferential direction, or principal direction, of the flow.

For an isentropic flow, we may then assume that the flow quantities depend
only on this direction (x for example). In fact, they represent an average value in
each cross section S (x) of the flow, that is pm (x) , Tm (x) . . ., and so on. Then,
the Euler equations remain valid except for the continuity equation, which must
be modified by writing the mass flow rate conservation, i.e.∫

S

ρV ·Nds = ρmVmS = const. (7.47)

The momentum conservation equation is written as follows:

Vm
dVm
dx

= − 1

ρm

dpm
dx

= −a2
m

1

ρm

dρm
dx

(7.48)

In dissipative and fully developed flows, a one-dimensional approximation is
also usable by defining average transport terms characterizing the average energy
dissipation or momentum and energy exchange with the background. Typical
and simple examples are represented by Fanno and Rayleigh flows.

Two-dimensional approximation

Two-dimensional flows may be described using a coordinate system depending
on the flow geometry. The most usual examples are the ‘plane’ flows (Cartesian
coordinates x , y or polar coordinates r , θ) and the axisymmetric flows (semi-
polar coordinates r , z). Examples are given in the next chapters.

Another type of description of some flows uses ‘intrinsic’ (or ‘natural’) coor-
dinates consisting of trajectories s and straight lines normal to these trajectories,
n, with

s = sα and n = nβ (7.49)

where α and β are unit vectors.
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Then we have

V = dr

dt
= ds

dt
α = Vα (7.50)

and

dV

dt
= d2r

dt 2
= dV

dt
α + V

dα

dt
= dV

dt
α + V 2

R
β (7.51)

where R is the local curvature radius of the trajectory.
For a permanent isentropic flow, the components of the momentum equation

on s and n are, respectively:

ρV
∂V

∂s
= −∂p

∂s
and ρ

V 2

R
= −∂p

∂n
(7.52)

Thus, when the curvature of the flow is not very important, the pressure is
constant along perpendicular lines to the trajectories. Furthermore, as we have
∂S
∂s = ∂h0

∂s = 0, we also have

T
dS

dn
= dh0

dn
+
(
V

R
− ∂V
∂n

)
V (7.53)

Here, ζ = V
R − ∂V

∂n is the flow ‘vorticity’, and if the total enthalpy is con-
stant (general case), the entropy change is due to this vorticity, representing the
dissipative exchange factor between the fluid trajectories.

7.4.4 Stability of the flows: turbulent flows

When, among other factors, the Reynolds number of a dissipative flow increases
beyond a ‘critical’ value, the flow becomes unstable and typically unsteady.
The resulting perturbations present varying frequencies but generally small
amplitudes; the structure of the flow, however, is completely modified. The
deterministic preceding equations remain locally valid but not at all suitable.
A statistical analysis may be generally applied, and the flow is then considered as
the superposition of an ‘average’ (but fictitious) flow and of a fluctuating flow.

The description of the average flow is of course essential for knowledge of
the global properties. However, between the fictitious streamlines of this flow,
mass, momentum, and energy exchanges take place because of these fluctuations.
Turbulent transport processes are then induced by these exchanges and are added
to molecular transport phenomena. They become generally dominant, and their
modelling is necessary. Complete description of these turbulent flows is beyond
the scope of this book, but an overview of a few of them, sometimes encountered
in gas dynamics, is given in Appendix 8.3. We should be aware that such a
statistical treatment is not always possible, because of the non-random character
of certain types of fluctuations.
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Appendix 7.1 General equations: review

Navier–Stokes equations

Mass balance :
∂ρ

∂t
+ ∂ · (ρV )

∂r
= 0 (7.54)

Momentum balance : ρ
dV

dt
= −∂p

∂r
+ ∂ ·
∂r

⎛⎜⎜⎝2µ

0

∂V

∂r

⎞⎟⎟⎠+ ∂

∂r

(
η
∂ ·V
∂r

)
(7.55)

Energy balance: ρ
dh

dt
= dp

dt
− ∂ · q
∂r

+

⎛⎜⎜⎝2µ

0

∂V

∂r
+η∂ ·V
∂r

I

⎞⎟⎟⎠ :
∂V

∂r

(7.56)

with

p = ρRT
h = e + p

ρ

p =
∑
p

pp , ρ =
∑
p

cpρp , R =
∑
p

cpRp , h =
∑
p

cphp

hp = ep + pp
ρp

= eTRp + eVp + RpT = 7

2
RpT + eVp

q = qTR +
∑
p

qVp = −λTR ∂T
∂r

−
∑
p

λVp
∂TVp
∂r

− ρD
∑
p

hp
∂cp
∂r

In the case of thermodynamic (TRV) and chemical equilibrium, we have

eVp = eVp and
(= f (T )

)
(7.57)

q = −λTRV ∂T
∂r

− ρD
∑
p

hp
∂cp
∂r

(7.58)

since

TVp = T
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and

ẇp = 0 (7.59)

In thermodynamic equilibrium but in chemical non-equilibrium, Eqns (7.57)
and (7.58) remain valid, but Eqn. (7.59) is replaced by

ρ
dcp
dt

= ẇp + ∂ ·
∂r

(
ρD
∂cp
∂r

)
(7.60)

In a general way, ẇp is given by Eqn. (9.36) when several reactions are
involved. The rate constants of these reactions must eventually take into account
vibrational non-equilibrium (Chapters 5 and 9).

In thermodynamic and chemical non-equilibrium, Eqn. (7.59) must be
replaced by Eqn. (7.60), and Eqn. (7.57) by the following:

ρp
deVp
dt

= ẇVp − ∂ · qVp
∂r

(7.61)

with

qVp = −λVp ∂TVp
∂r

− ρDeVp ∂cp
∂r

The source term ẇVp takes into account the vibrational balance of the TV and
VV collisions and that of the reactive collisions (Chapters 5 and 9).

The preceding equations take into account the simplifications pointed out
in the first part of this book. In particular, the heat fluxes due to the different
energy modes depend only on the corresponding temperature gradients, and the
relaxation pressure is neglected. However, the neglected terms may be consid-
ered as perturbations and eventually calculated (Chapter 9). Physical models are
also necessary for calculating the terms ẇp and ẇVp ; thus, a few of these were
presented above (Chapter 5).

Dimensionless vibrational relaxation equation

In dimensionless form, Eqn. (7.61) may be written

ρ∗
p

de∗Vp
dt∗

= ẇVp0L0

ρ0eVp0V0
ẇVp + λVp0

ρ0CVp0V0L0

∂ ·
∂r∗

(
λ∗Vp
∂T ∗

Vp

∂r∗

)

+ D0

V0L0

∂ ·
∂r∗

(
ρ∗D∗e∗Vp

∂cp
∂r∗

)
(7.62)

The group of terms Xp = ẇVp0L0

ρ0eVp0V0
represents the ratio of the vibrational

energy rate created by collisions to the vibrational energy rate transported in
the flow. The ratio of this created energy rate to the diffused vibrational energy
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rate defines, as in the case of the species conservation equation, a ‘vibrational
Damköhler number’DaV , such that

DaV = XpReS

The dimensionless relaxation equation may then be written

ρ∗
p

de∗Vp
dt∗

= 1

ReS

[
DaV ẇ

∗
Vp + ∂ ·

∂r∗

(
1

LVp
λ∗Vp
∂T ∗

Vp

∂r∗ + ρ∗D∗e∗Vp
∂cp
∂r∗

)]
(7.63)

where LVp = ρ0D0CVp0

λVp0
is the ‘vibrational Lewis number’ of the species p, repre-

senting the ratio of the diffused vibrational heat flux to the conducted vibrational
heat flux. This number is generally of the order of 1, as are most of the other
dimensionless numbers.

In the energy conservation equation governing a flow in vibrational and
chemical non-equilibrium (not written here), we find a (non-independent)
dimensionless number, that is the ratio of the frozen Lewis number to the
vibrational Lewis number:

Fp = C
p
TR0λVp0

CVp0λTR0
= Lf
LVp

(7.64)

The number Fp is called the ‘vibrational number’ of the species p.

Entropy balance in thermodynamic and
chemical non-equilibrium media

In such media, the Gibbs relation may be written

TdSp = deTRp + ppd

(
1

ρp

)
(7.65)

We also have the following obvious relations:

TVpdSVp = deVp

µTRp = eTRp + pp
ρp

− TSTRp

µVp = eVp − TVpSVp

µp = µTRp + µVp
Then, we find the following balance:

T
dS

dt
= de

dt
+ p

d

dt

(
1

ρ

)
+
∑
p

[
µp
dcp
dt

+ (
T − TVp

) d
dt

(
cpSVp

)]
(7.66)
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Figure 21. Frozen Prandtl and Lewis numbers (air).
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Figure 22. Vibrational number (nitrogen in air).

In thermodynamic equilibrium, we again find Eqn. (7.17).
We can also develop Eqn. (7.66) by using the energy and species conservation

equations and the vibrational relaxation equations.

Representation of dimensionless numbers

As an example, the frozen Prandtl and Lewis numbers for air, i.e.

Pf =
µC

p
TRf

λTR
and Lf =

ρDC
p
TRf

λTR
(7.67)

are represented in Fig. 21.
Similarly, the vibrational number for nitrogen in air is shown in Fig. 22. The

computations for moderate temperatures are made from results obtained in
preceding chapters.28
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In the same temperature range, we observe that these numbers remain
practically constant (no chemical change).

Appendix 7.2 Unsteady heat flux at
a gas–solid interface

It is often important to determine the unsteady wall heat flux qw(t ) arising from
a gaseous medium that has a characteristic temperature higher than that of the
wall material (generally insulation material). This may be done by measuring
the temperature increase 
Tw (t ) of a thin metallic film deposited on the wall.
This temperature increase induces a resistance variation and therefore a voltage
variation if the film is crossed by a constant electric current. The problem is
therefore to find a relation between qw(t ) and
Tw (t ).65,66

To do this, we assume a one-dimensional heat conduction in the wall material
normal to the gas flow (coordinate y ; the wall surface is at y = 0). If ρs , cs ,
and λs are the density, specific heat, and thermal conductivity of the material,
assumed to have constant values, we can write the energy equation in the solid in
the form

ρs cs
∂Ts
∂t

= λs ∂
2Ts
∂y2

(7.68)

with initial and boundary conditions:

t = 0 Ts = Ta

y → ∞ Ts → Ta

y = 0 q = −
(
λs
∂Ts
∂y

)
0

= −qw

Equation (7.68) may be easily solved, for example with the Laplace–Carson
transformation, so that the relation between qw and
Tw may be written

qw
Ks

= 
Tw0√
t

+
t∫

0

(
d(
Tw)

du

)
(t − u)−1/2 du (7.69)

with
Tw0 being the temperature increase at t = 0, eventually non-zero (passage

of a shock wave, for example), and with Ks =
√
ρs csλs
π

.
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We may also transform Eqn. (7.69) in order to avoid the use of the derivative
of an experimental quantity. Thus, we find

qw
Ks

= 
Tw (t )√
t

+ 1

2

t∫
0


Tw (t )−
Tw (u)
(t − u)3/2

du (7.70)

Two important practical cases should be pointed out:

• If the heat flux is constant
(
qw = q0

)
from t = 0, we simply have:


Tw = 2q0

π

√
t

Ks
(7.71)

and the temperature increase is parabolic.

• If the heat flux is proportional to t−1/2 (Chapter 8), we have:


Tw = const. (7.72)

The finite heat capacity of the film may be the cause of a time lag in the
temperature signal (Chapter 11).

Remark

The theoretical determination of an unsteady heat flux in a non-reactive gas
flow is generally carried out by assuming either a constant wall temperature
(conductive material) or a zero heat flux (insulating material, adiabatic wall).
In the first case, the wall temperature increase is supposedly null so that the
calculated temperature increase, deduced from the computed heat flux 
Tw , is
compared to the measured value of 
Tw . This increase of course must be low
enough to validate the result of the computation. Iterations may be necessary.

Appendix 7.3 Gas–liquid interfaces

Compared with the gas–solid interfaces, the gas–liquid interfaces pose more
problems, essentially because the momentum transfer may give rise to instabili-
ties of these interfaces and modifications of their structure. A typical example is
the gravity flow of a liquid film along the wall of the inner cylinder in the annular
space separating two vertical concentric cylinders, while a gaseous counterflow
goes upwards along the outer cylinder67 (Fig. 23). For high gas velocities, a part
of the film may be swept along upwards, and the interface undergoing important
stresses may warp.
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Figure 23. Outline of a gas–liquid interface.

L

G
r
Interface

R = f (z, t)
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The usual Navier–Stokes equations written in cylindrical coordinates r , z are
intended to govern the flow of each phase k (l : liquid; g : gas). The matching
conditions at the interface essentially concern the momentum transfer. Thus,
if uk and vk are the axial and transverse components of the velocity Vk in each
phase, we have at the interface:

u = uk

vk = ∂f
∂t

+ uk
∂f

∂z

where R = f (z , t ) represents the equation of the interface, and k = (
l , g

)
.

If we neglect mass exchanges and surface-tension effects, the momentum
balance at the interface is simply

nl · Pl + ng · Pg = 0 (7.73)

where nl and ng represent the vector units normal to the interface. The compo-
nents of this equation on the tangent plane and on the straight line normal to
the surface respectively give two conditions for the components of the velocity
at the interface, i.e. for a monatomic gas and an incompressible liquid:

µl
[
2 (vlr − ulz ) fz + (vlz + ulr )

(
1 − f 2

z

)]
= µg

[
2
(
vgr − ugz

)
fz + (

vgz + ugr
) (

1 − f 2
z

)]
and

pl − 2µl
[
vlr − (vlz + ulr ) fz + ulz f

2
z

] (
1 + f 2

z

)−1

= pg − 2µg
[
vgr − (

vgz + ugr
)
fz + ugz f

2
z

] (
1 + f 2

z

)−1
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where the indices r and z correspond to derivatives with regard to these variables
respectively.

If the two phases have very different average temperatures, the energy balance
at the interface may be written

q l ·nl + qg ·ng = 0 (7.74)

These equations are difficult to solve, and generally only approximate solutions
are available, including a periodic structure of the interface, which constitutes
an ideal case. Stability analyses are also necessary in order to understand the
influence of various parameters.68

The importance of this problem is particularly clear in the following two
examples. The first example concerns the security problems of nuclear reactors
where the metallic coating of the fissile nuclear material contained in vertical
cylindrical ‘needles’begins to melt and flows downwards. This flow interacts with
an upwards gaseous flow resulting from evaporation of the cooling liquid.69

The second example is somewhat different and concerns the entry of a hyper-
sonic vehicle into a dense atmosphere.70 If the entry is too ‘steep’, the thermal
coating of the vehicle may melt from the stagnation point where thermal transfer
is most intense. Then, a molten film flows along the vehicle and interacts with
the gaseous flow.

In both cases, if there is no mass transfer between phases (no wrench), energy
and momentum transfers are important, the structure of the interface changes,
surface waves appear, and the flowing liquid may solidify again in colder zones.

Appendix 7.4 Dimensional analysis

In situations where the use of the general conservation equations is difficult
(complex geometry, for example) but where experiments may be carried out, the
problem is how to relate the measured quantity to the characteristic quantities
of the flow. A dimensional analysis may then be used, and the non-dimensional
quantity is found to depend on characteristic dimensionless numbers such as
those defined above.

As an example, if the measured quantity is the wall heat flux qw , we first list
the general parameters that have an influence on this flux. Thus, a priori, these
parameters are V , characteristic velocity of the fluid, L, characteristic length
(duct or body), ρ, Cp ,µ, λ, state and transport properties of the fluid, and

T = T0 − Tw , characteristic temperature difference between the fluid and the
wall. We may then write

qw = f
(
V , ρ, L,Cp ,µ, λ,
T

)
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Assuming a dependence of qw in the form of product of terms, we have

qw = K V xρy Lz Cptµu λv
Tw (7.75)

where K is an undetermined constant.
If each physical quantity is written as a function of the fundamental quantities:

massM , lengthL, time ϑ , temperature T , we write

qw ∼ Mϑ−3, V ∼ Lϑ−1, ρ ∼ ML−3, Cp ∼ L2ϑ−2T−1,

µ ∼ ML−1ϑ−1, and λ ∼ MLϑ−3T−1

Putting these expressions into Eqn. (7.75) and equating the homologous
exponents, we obtain the following system:

y + u + v = 1

x − 3y + z − u + 2t + v = 0

x + u + 2t + 3v = 3

t + v − w = 0

We can eliminate four exponents from this system, for example x , y , z , v , so
that we obtain

qw = KρVCp
T (Re)z (P)u−w (E)1−w

where Re, P , and E are the dimensionless numbers previously defined.
More generally, we can therefore write

St = f1 (Re, P , E)

We find a similar equation for the Nusselt number, i.e.

Nu = f2 (Re, P , E)

Thus, a priori, we know how to express and to represent the experimental
values of the heat flux. Any other experimental quantity, of course, may be
similarly analysed.

Appendix 7.5 Generalities on total balances

Control volume

In a general unsteady regime, if we consider a ‘control volume’ D, limited by a
closed surface S, the total rate of change Ã of a local extensive property a is equal
to the sum of the rate of change of the property inside D and of the net flux of
this property across S, i.e.
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Ã = ∂

∂t

∫
D

a dr +
∫
S

aV ·Nds (7.76)

Thus, if a = ρ, ρV , ρh0, without external forces, we obtain the following
global conservation equations:

∂

∂t

∫
D

ρ dr +
∫
S

ρV ·NdS = 0

∂

∂t

∫
D

ρV dr +
∫
S

ρVV ·NdS +
∫
S

P ·NdS = 0

∂

∂t

∫
D

ρh0dr +
∫
S

ρV h0 ·NdS +
∫
S

(
q + P′ ·V ) ·NdS = 0 (7.77)

In the steady regime, we again find Eqns (7.35)–(7.37).

Control mass

Instead of a given volume D, let us consider a given fluid mass71 (‘control
mass’) contained at an instant t in a volume D (t ). The total variation dA

dt of
a corresponding local property a is equal to

dA

dt
= d

dt

∫
D(t )

a dr

After a few transformations, we obtain

dA

dt
=

∫
D(t )

(
da

dt
+ a
∂ ·V
∂r

)
dr =

∫
D(t )

∂a

∂t
dr +

∫
S(t )

aV ·NdS (7.78)

The principles of mass, momentum, and energy conservation may of course
be applied to this mass of fluid, and from Eqn. (7.78), we can easily find the
corresponding conservation equations. Moreover, as Eqn. (7.78) is valid for any
volume, we can again find the usual ‘local’ conservation equations.

Equation (7.78) constitutes the ‘transport theorem’.

Appendix 7.6 Elements of magnetohydrodynamics

The general conservation equations (Eqns (7.54)–(7.61)) do not take into
account the influence of external forces capable of modifying the structure of the
flows. It is clear that the gravitational forces are generally negligible in high-speed
flows. Then, only electric and magnetic fields can have a significant influence on
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gaseous systems that include charged species, either in the case of ‘natural’ ioniza-
tion, arising from high temperatures encountered in high-enthalpy flows, or in
the case of ‘artificial’ ionization produced by external sources (electric discharge,
seeding, and so on).

It is beyond the scope of this book to propose a detailed description of
ionized media, which may be found in many books dealing with ‘plasma
physics’,72–75 but in the present framework of reactive flows, the general aspects
of ‘magnetohydrodynamic flows’ (MHD flows) cannot be ignored.

The behaviour of ionized gas flows including molecules, atoms, ions, and
electrons may be derived from the Boltzmann equation, as may that of other
reactive gas mixtures, without or with the presence of external fields. In this case,
the usual set of moment equations may be closed by other equations governing
the electromagnetic parameters appearing in the moment equations.76–78

As it is practically impossible to account for all phenomena related to the rel-
ative movement and interactions of charged particles, to a first approximation,
we consider that the net charge density is null, that is, the plasma is electrically
neutral. Similarly, the displacement current is neglected compared to the con-
duction current. Moreover, a linear Ohm’s law is used to connect the current to
the electric field, thus neglecting the influence of the electronic pressure gradient
and the Hall effect.79

Thus, we have the following macroscopic conservation equations:

∂ρ

∂t
+ ∂ · (ρV )

∂r
= 0 (mass conservation) (7.79)

ρ
dV

dt
= −∂ · P

∂r
+ J ∧ B (momentum conservation) (7.80)

where B is the total magnetic field, and J ∧ B is the Laplace force.
With a simplified Ohm’s law, we have

J = σ (E + V ∧ B) (7.81)

The energy conservation equation is written as follows:

ρ
dh

dt
= dp

dt
+
∑
p

∂ ·
∂r

(
λp
∂Tp
∂r

)
−
∑
p

∂ ·
∂r

(
ρpUphp

)+�+ J 2

σ
(7.82)

This equation differs from its usual form by the term depending on the electric
current (Joule heating) and by the conduction terms where a possible non-
equilibrium between electrons (temperature Te) and heavy species (temperature
Ti)may occur.

Of course, particular momentum and energy equations for the various species
may be derived from the Boltzmann equation.79
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Equations (7.79)–(7.82) are closed with the Maxwell equations, i.e.

∂

∂r
∧ B = µoJ with

∂ ·B
∂r

= 0 (7.83)

∂

∂r
∧E = −∂B

∂t
with

∂ ·E
∂r

= 0 (7.84)

Some other possible forms of the previous equations are often used. Thus,
using Eqn. (7.83), the J ∧B term in the momentum equation (Eqn. (7.80)) may
be written

J ∧ B = 1

µo
B · ∂B
∂r

− ∂

∂r

(
B2

2µo

)
(7.85)

so that, defining the tensor T = −BB
µo

+ B2

2µo
I, Eqn. (7.80) becomes

ρ
dV

dt
= −∂ ·

∂r
(P + T) (7.86)

where B2

2µo
is the ‘magnetic pressure’, which is added to the static pressure p.

Eliminating E from previous equations, we obtain a single equation for the
evolution of B:

∂B

∂t
= ∂

∂r
∧ (V ∧ B)+ 1

µoσ

∂2B

∂r2
(7.87)

where the right-hand terms comprise a convective term and a diffusive term.
The above closed equation system necessitates explicit expressions for the state

and transport terms requiring ‘appropriate’ physical models.
Writing Eqns (7.80) and (7.87) in a dimensionless form, we find new

dimensionless numbers, such as

Rh = B0L0

√
σ

µo0
(Hartmann number)

which is associated with the J ∧ B term in the momentum equation (Eqn.
(7.80)), and

Rσ = µo0σ0V0L0 (magnetic Reynolds number)

which is associated with the diffusion term of Eqn. (7.87).
Numerous applications of the MHD equations are encountered in many fields

of physics for practical purposes: plasma confinement by magnetic fields in
controlled thermonuclear research (pinch effect), electric energy extraction from
seeded plasmas (MHD generators), acceleration of ionized flows by cross electric
and magnetic fields, and so on.

A simple example of the action of external fields on the boundary layer of an
ionized gas flow is presented in Appendix 8.7.



EIGHT

Elements of Gas Dynamics

8.1 Introduction

‘Traditional’ gas dynamics is based on a very simple physical gas model that,
nevertheless, can provide a qualitative description of gaseous high-speed flows.
In the past, this description has been made without taking into account high-
temperature effects encountered, for example, in flows related to the flight of
hypersonic vehicles in dense atmospheres.

Thus, before examining ‘real gas effects’ resulting from these high temper-
atures, it is necessary to give a brief presentation of the general features of
high-speed flows based on this simple physical ‘ideal model’.

For this model, there is no chemical reaction, equilibrium is assumed, and
moreover, specific heat is assumed to be constant. Vibrational energy is therefore
neglected or assumed to be fully excited. This model simplifies the conservation
equations, and despite its roughness, it may give a qualitatively correct descrip-
tion of high-speed flows. Thus, with this model, we can analyse the steady or
unsteady Eulerian flows, associated wave systems, discontinuities such as shock
waves or contact surfaces, and strong gradient dissipative flows.80–82 The essen-
tial results about these flows are presented in this chapter, while the limitations
of this ideal gas model are also pointed out.

8.2 Ideal gas model: consequences

In the definition of internal energy dE = CdT , (de = C ′dT ), we assume with
this model that specific heatC is constant. Thus,we can have the following values:
(1) C = CT = 3

2k for a monatomic gas; (2) C = CTR = 5
2k for a diatomic gas

at moderate temperatures; (3) C = CTRV = 7
2k for a non-dissociated diatomic

gas at high temperature; and (4) any constant value related to a particular case.
Then, dh = CpdT , where for the first three preceding cases, we have

respectively Cp = C
p
T , Cp = C

p
TR , Cp = C

p
TRV .
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The essential simplification resulting from this assumption concerns the
energy conservation equation, which for a perfect gas may be written (Eqn.
(7.42)):

CpdT = dp

ρ
(8.1)

From Eqn. (8.1), we can deduce the equivalent following relations:

p

ργ
= const.,

T

ργ−1
= const., and

p

T γ /γ−1
= const. (8.2)

where γ = Cp/C .
A simple expression for sound velocity a may also be found. Thus, from Eqn.

(7.45), we have

dp = a2dρ

so that

a2 = γRT = γ p
ρ

(8.3)

where γ = 5
3 , γ = 7

5 , γ = 9
7 for the three preceding cases, respectively.

Thus, for the steady flow of an ideal perfect gas, taking into account Eqn.
(7.41), we have

T0 = T + mV 2

2Cp
= T

(
1 + γ − 1

2
M 2

)
(8.4)

where T0 is the ‘stagnation temperature’ (V = 0).
We have also the following relations:

p0 = p

(
1 + γ − 1

2
M 2

)γ /γ−1

ρ0 = ρ
(

1 + γ − 1

2
M 2

)γ /γ−1

(8.5)

The local Mach numberM and the ratio of specific heats γ are the dimension-
less variables characterizing these types of flow (steady, isentropic, ideal). The
complete determination of the flow also requires the solution of the continuity
equation depending on the specific problem under study.
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8.3 Isentropic flows

8.3.1 One-dimensional steady flows

The relations of Eqns (7.4) and (7.5) are valid along the abscissa x in a cross
section S (x) of the quasi-one-dimensional flow described in Chapter 7. The
continuity equation (7.47) simply becomes

d (ρVS)

dx
= 0 (8.6)

The Hugoniot relation is then deduced, i.e.

dV

V
= 1

M 2 − 1

dS

S
(8.7)

Knowing S (x), we can calculate the local average velocity V (x) and the other
quantities using the relations of Eqns (8.4) and (8.5).

Thus, two different regimes are defined: a subsonic regime (M < 1) and a
supersonic regime (M > 1). The sonic (or critical) value for the Mach number,
M = 1, is obtained for the minimum of the cross section SC . From Eqn. (8.7), we
see that a subsonic flow upstream from the minimum cross section accelerates
in the convergent part and slows down in the divergent part. The inverse is of
course true for an upstream supersonic flow. The passage through a minimum
cross section may correspond to the sonic regime if the pressure at the exit of
the divergent part is ‘sufficiently’ low.

An application of these properties may be found in nozzles that include a
convergent part and a divergent part connected by a throat (minimum cross
section). At the exit of the nozzle, we may thus obtain a supersonic flow with a
Mach number depending only on the ratios S/SC and γ (Appendix 8.2).

Well-known approximate expressions for pressure (Bernoulli) may easily be
deduced from Eqn. (8.5) forM � 1.

8.3.2 Multidimensional steady flows

In the case of internal flows, according to the type of nozzle (plane or axisymmet-
ric), we use of course the most convenient coordinate system: either a Cartesian
coordinate system x , y or a polar system r , θ for plane flows, and a cylindri-
cal system r , z for axisymmetric flows. However, the expected improvement
with respect to the one-dimensional case is not very important with the ideal
gas model, because this type of flow requires a realistic model that takes into
account the influence of the walls (Chapter 10). The same is true for external
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flows (around bodies), which must be computed with realistic boundary condi-
tions. The ideal gas model is generally used for relatively simple flows in order
to point out the essential features of these flows.

8.3.3 One-dimensional unsteady flows

This classical case enables us to understand the propagation of waves in gaseous
flows, especially in the supersonic regime, and to develop a computational
method for the corresponding flows.83,84

Starting from the continuity and momentum equations written for one-
dimensional unsteady flow (one single velocity component u along x), we have

∂ρ

∂t
+ ∂ρu
∂x

= 0

∂u

∂t
+ u
∂u

∂x
= − 1

ρ

∂p

∂x
(8.8)

Using the relations

p = ρRT and dp = a2dρ

we obtain the following equations:

∂

∂t

(
u ± 2

γ − 1
a

)
+ (u ± a)

∂

∂x

(
u ± 2

γ − 1
a

)
= 0 (8.9)

Thus, in an x , t plane along the directions u + a and u − a, called ‘character-
istics’, that is, dxdt = u ± a, the quantities P = u + 2

γ−1a and Q = u − 2
γ−1a

(Riemann variables) remain constant.
Setting d+

dt = ∂
∂t + (u + a) ∂

∂x and d−
dt = ∂

∂t + (u − a) ∂
∂x (variations along

u + a and u − a respectively), we have:

d+P
dt

= 0 and
d−Q
dt

= 0 (8.10)

For an isentropic flow, we also have dS
dt = 0 along the trajectories dx

dt = u.
These trajectories are also characteristic directions.

Thus, P , Q, and S remain constant along the corresponding characteristics.
Of course, in the homoentropic case, S is constant everywhere.

A numerical computational method may be deduced from these properties
in the case of simple flow configurations, and constitutes the basis for actual
numerical solvers. Examples are given in Appendix 8.1.
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Physical aspects

In a flow-fixed coordinate system, it is clear that the characteristic directions
represent the directions along which the perturbations propagate provided that
the corresponding waves have a small amplitude, analogous to sound waves.
For example, these perturbations may arise from boundary conditions. As seen
above, we can distinguish the P waves and the Q waves.

The most classical example concerns the one-dimensional propagation of
these waves in a tube in which perturbations may take place, such as cross
section discontinuities, reflections on the end wall, and the variation of entry
conditions. An important application is found in shock tubes (Chapter 11).

Thus, we consider a tube where u and a are constant everywhere (uniform
state). If, for example, a pressure perturbation occurs upstream, a wave u + a
propagates downstream and modifies the local value of the pressure p, so that

P = u + 2

γ − 1
a is constant along u + a

Q = u − 2

γ − 1
a is constant everywhere

Therefore, u and a are constant along P , so that the waves propagating in
an unperturbed region have characteristics which are straight lines in an x ,
t diagram. The same is true for Q waves if the perturbation originates from
downstream.

We can distinguish the expansion waves (or rarefaction waves) and the com-
pression waves, depending on whether they bring a pressure decrease or an
increase. In the preceding example, if the perturbation is an expansion wave, the
pressure, and therefore the temperature (Eqn. (7.45)), decrease locally; the sound
speed a is then also decreasing, and asQ is constant, the velocity u decreases also,
as well as u + a. The successive P waves propagate more and more slowly, and
in an x , t diagram, the expansion wave as a whole is composed of a divergent
bundle of characteristics.

Of course, the opposite is true for a compression wave: in this case, each wave
element propagates in a medium where the temperature increases, so that its
velocity increases. The characteristics may then merge and form a wavefront,
through which macroscopic quantities undergo a discontinuity. This constitutes
the process of the formation of a shock wave, also provoking an entropy change,
whereas the flow remains isentropic in the case of an expansion wave.

Simple examples, including various types of interaction, are presented in
Appendix 8.3. The computation of more complex flows is of course carried out
using numerical techniques, but the general features of such flows are consistent
with the present scheme.
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8.4 Shock waves and flow discontinuities

As discussed above, in an unsteady flow, waves of small amplitude (acoustic
waves) may coalesce and create a discontinuous front or shock wave. On each side
of the front, the flow may remain Eulerian, but the properties discontinuously
change across the shock wave, which propagates with a supersonic velocity with
respect to the upstream medium. The ‘thickness’ of the shock wave is limited
to a few mean free paths, so that a strong non-equilibrium prevails within the
shock wave (ε ≥ 1), which therefore cannot be described with the Navier–Stokes
equations when the Mach number of the shock wave (defined with respect to
the sound speed in the upstream medium) is greater than 1.1–1.2. For a realistic
description, direct Monte Carlo simulations,58 or simplifying assumptions such
as BGK29 or Mott-Smith85approximations, are necessary.

Shock waves are also present in supersonic steady flows, particularly in front
of various objects placed in these flows, or similarly in front of vehicles moving
at supersonic speed. This is because the perturbations arising from the presence
of the obstacle cannot propagate upstream and the corresponding waves coa-
lesce in front of the obstacle. They give rise to a steady shock wave depending
on the shape of the obstacle and on the flow conditions. However, in the sub-
sonic regime, the perturbations can travel upstream and progressively reduce the
velocity of the flow.

8.4.1 Straight shock wave: Rankine–Hugoniot relations

In order to conveniently examine the essential macroscopic properties of shock
waves, we consider the typical case of a wave normal to the direction of the flow
(called a straight shock wave) and appearing for example in a one-dimensional
flow in a tube. If, after the coalescence of compression waves, the shock wave
moves in a medium that has constant properties, its velocityUs remains constant,
and the coordinate system may be fixed to the shock wave, which is equivalent
to a steady regime in this system (Fig. 24).

Assuming an Eulerian flow on each side of the shock wave (regions 1 and 2),
we have a Maxwellian distribution for the velocities. Without any hypothesis

u1

p1,r1,T1 p2,r2,T2 p2,r2,T2 p1,r1,T1

u2 v2 = Us – u2 Us = u1

(a) (b)

Figure 24. Flow with straight shock wave. (a) Steady shock wave; (b) Unsteady shock wave.
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concerning the energy, equilibrium or non-equilibrium, we obtain equations
relating the quantities of regions 1 and 2 by writing the conservation of mass,
momentum, and energy flow rates through the shock wave, i.e.

∑
i,p

∫
vp

f 0
ip(1)vpx

∣∣∣∣∣∣
mp
mpvpx
1
2mpv

2
p + εip

∣∣∣∣∣∣ dvp =
∑
i,p

∫
vp

f 0
ip(2)vpx

∣∣∣∣∣∣
mp
mpvpx
1
2mpv

2
p + εip

∣∣∣∣∣∣ dvp
(8.11)

Thus, we find

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2

h1 + u2
1

2
= h2 + u2

2

2
(8.12)

Equation (8.12) constitutes the Rankine–Hugoniot relations and can also be
obtained from the conservation equations (Eqns (7.36)–(7.38)). Thus, the prop-
erties of medium 2 may be determined from those of medium 1 and from the
shock-wave velocity, a priori known. The enthalpy h2 should be expressed as a
function of the expected characteristics of medium 2, whether reactive or not,
and whether in or out of equilibrium.

8.4.2 Ideal gas model

In the case of the ideal gas model considered in this chapter, we find simply:

ρ2

ρ1
= u1

u2
= γ + 1

γ − 1 + 2/M 2
s

p2

p1
= 1 + 2γ

γ + 1

(
M 2
s − 1

)
(8.13)

T2

T1
= 1 + 2 (γ − 1)

(γ + 1)2
(
M 2
s − 1

) (
γ + 1

M 2
s

)
(8.14)

Moreover, the stagnation temperature remains constant across the shock wave
(conservation of energy), i.e.

T01 = T02 (8.15)

For the flow Mach number behind the shock wave, we have

M2 = (γ − 1)M 2
s + 2

2γM 2
s − (γ − 1)

< 1 (8.16)
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Thus, the flow is subsonic in region 2 (in the coordinate system attached to
the shock wave).

According to the chosen example, we have γ = 5
3 , 7

5 , or 9
7 .

In the hypersonic regime (Ms → ∞), we have

p2

p1
→ ∞ and

T2

T1
→ ∞ (8.17)

but

ρ2

ρ1
→ γ + 1

γ − 1
and M2 →

(
γ − 1

γ + 1

)1/2

(8.18)

For high temperatures, these results are obviously academic (Chapter 9).
WhenMs → 1, we again find the relations for the isentropic flow.
If we calculate the entropy of each medium from Eqn. (7.17), for the ideal gas

model, we find

S2 − S1 = RLog
p01

p02
= RLog

[
p1

p2

(
T2

T1

)γ /γ−1
]

(8.19)

where p0 is the stagnation pressure of each medium (Eqn. (8.5)).
We also have

S2 > S1 and p02 < p01

Other properties of shock waves are given in Appendix 8.3, along with various
interaction processes.

8.5 Dissipative flows

The computation of dissipative flows, internal or external, is of course made
with the Navier–Stokes equations, and various results, essentially obtained by
numerical methods and taking into account realistic physical models, are given
in Chapter 10.

However, the general features of such flows are presented below, owing to the
concept of the ‘boundary layer’ suggested by Prandtl.

8.5.1 Domain of influence: boundary layer

As previously discussed, dissipative phenomena are particularly important in
the neighbourhood of interfaces separating the flow under study from the
background, and they are connected in particular to the transverse gradients
of various quantities. It is therefore often convenient to consider two distinct
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regions in a flow: one relatively far from the interface (wall, body, and so on)
where the gradients are weak enough to neglect the corresponding dissipative
phenomena (perfect fluid), and another region close to this interface where these
gradients are important (Prandtl). Of course, this separation is not always pos-
sible, in particular in the case of fully developed regimes (narrow tubes) and in
the case of flows where the dimensionless quantities Re, P , S are small.

We therefore consider non-developed regimes, such as the flow around a
body (Fig. 25). The first challenge is to define the domain of influence of the
dissipative effects along the body.83 The solution may be found from the conser-
vation equations themselves. Thus, in these equations, we neglect effects other
than strictly dissipative effects such as compressibility and chemical production
(E ∼ 0,Da → ∞, and so on), and we assume a constant value for all coefficients
µ, λ,Cp . . .. Then, keeping only those terms that depend on transverse gradients,
we find the following equations for the conservation of momentum, energy, and
species respectively:

du

dt
= µ
ρ

∂2u

∂y2

dT

dt
= λ

ρCp
∂2T

∂y2

dcp
dt

= D
∂2cp
∂y2

(8.20)

u

ue

dv

x

y

Figure 25. Development of the boundary layer along a body.
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These equations are diffusion equations and illustrate the analogy between
the transfer of mass, momentum, and energy.

Now we write these equations in a dimensionless form as in Chapter 7. How-
ever, the dimensionless transverse coordinate y∗ is defined as y∗ = y

δv
, where δv

is a boundary layer ‘characteristic thickness’. Thus, we obtain for the momentum
equation along the body (x coordinate and L characteristic length):

du∗

dt∗
= 1

Re

(
L2

δ2v

)
∂2u

∂y2
(8.21)

with

Re = ρ0V0L

µ0

We may deduce from Eqn. (8.21) that the dissipative effects related to viscosity
are important in a region that is close to the body and that has a thickness δv ,
such that

δv

L
∼ 1√

Re
(8.22)

This relation defines the boundary-layer domain.
The other two equations (energy, species) are also written in a dimensionless

form (Chapter 7) by setting y∗ = y
δt

and y∗ = y
δc

, where δt and δc represent
characteristic thicknesses for the ‘temperature boundary layer’ and the ‘con-
centration boundary layer’ respectively, that is, regions where conductive and
diffusive effects are important. Thus, we find

δt

L
= 1√

ReP
,
δc

L
= 1√

ReS
, and

δc

δt
∼ √

L (8.23)

The values of P and S (and L) are thus characteristic of the thickness of the
various boundary layers: velocity boundary layer (or dynamic boundary layer),
temperature boundary layer (or thermal boundary layer), and concentration
boundary layer. These values also give the order of magnitude of their relative
importance. When P = S = 1 (= L), all boundary layers have a comparable
thickness. Furthermore, the concept of the boundary layer becomes meaningless
when Re → 0 (rarefied gases, for example; Appendix 6.6).

8.5.2 General equations: two-dimensional flows

The concept of boundary layer enables us to simplify the Navier–Stokes
equations. These simplifications are made below for steady plane and axisym-
metric flows, which represent characteristic examples.
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Plane flow

Starting again from the Navier–Stokes equations, we assume that the body along
which the boundary layer is developing does not present any discontinuity
and that its curvature is relatively weak, i.e. the curvature radius K−1 is large
compared with the characteristic boundary layer thickness δ. In an intrinsic
coordinate system x , y (Fig. 25), the differential elements dx ′ = (

1 + Ky
)
dx and

dy ′ are then approximately equal to the Cartesian orthogonal elements dx and
dy , respectively.

Applying the previous assumptions related to the boundary layer concept(
δ
L = ε � 1 and Re ∼ 1

ε2

)
, at each point of the boundary layer we have x � y ,

u � v , ∂
∂y � ∂

∂x , which means that the transverse dimensions and velocities are
small compared with the longitudinal dimensions and velocities respectively, and
that, as discussed previously, the transverse gradients are much more important
than the longitudinal gradients.

The Navier–Stokes equations are written in a dimensionless form as in
Chapter 7 by taking the Eulerian quantities defined at y = 0 as characteris-
tic quantities assumed known (subscript e). Neglecting the terms of order ε and
higher-order terms, we find simplified expressions for the components of the
momentum equation along x and y axes, that is:

ρu
∂u

∂x
+ ρv ∂u

∂y
= −∂p

∂x
+ ∂

∂y

(
µ
∂u

∂y

)
(8.24)

∂p

∂y
= 0 → p = pe (x) (see Eqn. (7.52)) (8.25)

Therefore, the pressure is constant through the boundary layer and has the
same value as in the outer (Eulerian) flow, thus depending only on x .

As we also have 1
ReP ∼ 1

ReS ∼ ε2 and E ∼ 1, we obtain for the energy and
species conservation equations the following expressions, respectively:

ρu
∂h

∂x
+ ρv ∂h

∂y
= dpe
dx

+ µ
(
∂u

∂y

)2

+ ∂

∂y

(
λ
∂T

∂y

)
+ ∂

∂y

⎛⎝ρD∑
p

hp
∂cp
∂y

⎞⎠
(8.26)

ρu
∂cp
∂x

+ ρv ∂cp
∂y

= ∂

∂y

(
ρD
∂cp
∂y

)
+ ẇp (8.27)

The continuity equation remains unchanged and may be written in the
following form:

∂ρu

∂x
+ ∂ρv
∂y

= 0
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Axisymmetric case: general equations

For an axisymmetric flow, we can use the spatial coordinates r (transverse) and
z (longitudinal). Thus, if u and v are the components of the velocity V on z and
r , respectively, the continuity equation becomes

∂ρur

∂z
+ ∂ρvr
∂r

= 0 (8.28)

When the curvature of the wall is small, we may assume ∂
∂r ∼ ∂

∂y , ∂
∂z ∼ ∂

∂x ,
and r = r0, where r0 represents the radius of the body cross section.

A general form of the continuity equation, valid in plane and axisymmetric
cases, is then

∂ρurj

∂x
+ ∂ρvr

j

∂y
= 0 (8.29)

with j = 0 (plane case) and j = 1 (axisymmetric case).
The other equations remain unchanged (Eqns (8.24)–(8.27)).

Global and interfacial quantities

When the quantities inside the boundary layer are determined, we can calculate
the interfacial quantities, characteristic of the exchanges with the background
(Cf , Nu, or St ). We can also calculate the global quantities characteristic of the
‘losses’ due to the presence of a boundary layer. They are generally expressed
as characteristic thicknesses; thus, the assumed Eulerian flow would undergo a
mass loss rate calculated by writing that the mass flow rate through the boundary
layer is equal to the mass flow rate of an Eulerian flow (with ue = const.) along
a fictitious wall located at a distance δ∗ from the real wall, so that

δ∫
0

ρu dy = ρeue
(
δ − δ∗) (8.30)

then

δ∗ =
δ∫

0

(
1 − ρu

ρeue

)
dy =

∞∫
0

(
1 − ρu

ρeue

)
dy (8.31)

Thus,δ∗, called displacement thickness, represents a mathematically and phys-
ically well-defined quantity contrary to the characteristic thickness δ. It is of
course smaller than δ, but it has the same order of magnitude if, as is generally
the case, δ is located at an ordinate y such that u/ue = 0.99.
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In the same way, other thicknesses may be defined, such as the momentum
rate loss θ , equal to

θ =
∞∫

0

ρu

ρeue

(
1 − u

ue

)
dy (8.32)

These thicknesses are different, but they have the same order of magnitude
(P ∼ S ∼ 1), so that in general we use only one of them, the simplest one, δ∗,
corresponding to a virtual modification of the body geometry for the outer flow.

Vibrational non-equilibrium case

Here, if the momentum and continuity equations are unchanged (Eqns (8.24),
(8.25), and (8.29)), the energy and relaxation equations for a pure gas may be
written respectively as

ρ
dh

dt
= dpe
dx

+ ∂

∂y

(
µ

P

∂h

∂y

)
+ ∂

∂y

[
µ

P
(L − 1)

∂eV
∂y

]
+ µ

(
∂u

∂y

)2

ρ
deV
dt

= ρ ėV + ∂

∂y

(
L

P
µ
∂eV
∂y

)
where P and L are frozen Prandtl and Lewis numbers, respectively.

Appendix 8.1 Method of characteristics

One-dimensional or quasi-one-dimensional unsteady flows, along with steady
two-dimensional flows, may be computed by the method of characteristics,
which is directly derived from the principles presented in Section 8.3.3.

As a simple example, we consider the case of the isentropic one-dimensional
unsteady flow of an ideal gas presented above. In the x , t plane, we start from
an initial data line, for example at t = t0, where all flow quantities are known,
and we write the equations dxdt = u ± a, dxdt = u, d+Pdt = 0, d−Qdt = 0 in a finite
difference form in order to compute the flow at time t0 +
t .

Thus, in Fig. 26, the P wave starting from point (1) intersects the line t0+
t at

point (3) where a trajectory
(
dx
dt = u

)
and aQwave may be defined,coming from

points (4) and (2) respectively. After successive interpolations and iterations, the
coordinates and state of point (3) are determined. It is of course necessary
to ensure that the CFL (Courant–Friedrich–Levy) criterion86 is satisfied and
therefore
t ≤ 
x/a.
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Figure 26. Characteristic mesh (current point).
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Figure 27. (a) Characteristic mesh (shock wave); (b) Characteristic mesh (contact surface).

This computation applies to current points of the field. If this field is limited
by a moving shock wave or a contact surface, as is common, the type of mesh is
different close to these boundaries.

Thus, for a moving shock wave, we have meshes represented in Fig. 27(a),
where the Rankine–Hugoniot relations are used at point (3) on the shock tra-
jectory. In the same way, for point (3) along a contact surface, we use the fact
that the pressure and velocity are the same on each side of the contact surface
(trajectories T and T′), and we also use the properties of a Q wave (Fig. 27(b)).

This method has been generalized to non-isentropic flows and non-
equilibrium flows; it can also take into account various boundary conditions
(geometry, physical conditions, and so on).

Appendix 8.2 Fundamentals of supersonic nozzles

A gas contained in a reservoir at a pressure p0 is expanded in a convergent–
divergent nozzle up to a tank where the pressure is equal to pS (pS < p0)

(Fig. 28).
In the convergent part of the nozzle, the flow is subsonic, and the pressure

decreases up to a value pC at the throat. If the exit pressure pS is sufficiently



238 CHAPTER 8 ELEMENTS OF GAS DYNAMICS

Reservoir

p0

pC

Throat

Divergent part
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x

1

Supersonic regime
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Shock wave

ps1/p0

ps2/p0

T0

V0 = 0

x

pc/p0

p/p0

Convergent part

Subsonic regime

Figure 28. Scheme and running of a supersonic nozzle.

low, (pS < pS1) we obtain sonic conditions at the throat, i.e. MC = 1 and
pC/p0 = (2/γ − 1)γ /γ−1. Then, the mass flow rate is maximum, the regime
is supersonic in the divergent part of the nozzle, and the relative exit pressure
pS2/p0 depends only on the cross section ratio S/SC .

If pS2 < pS < pS1, the flow,first supersonic in the divergent part, then becomes
subsonic through a stationary shock wave.

We can easily verify that a maximum velocity is attained when the total stag-
nation enthalpy (available energy) is transformed into kinetic energy. It should
also be noted that these results remain qualitative, because of dissipative and real
gas effects (Chapter 10).
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Appendix 8.3 Shock waves: configuration and
kinematics

Only a few general results are presented here. They are derived from the solution
of the equations given above; difficulties which might be encountered generally
arise from the particularities of each specific problem.87–88

Stationary shock waves

Flows around obstacles

The shock waves appearing in front of obstacles placed in supersonic flows may
take different shapes and structures, depending on the type of obstacle and flow
conditions.

If the flow of an ideal gas undergoes only a deviation of a constant angle α
(wedge or cone, for example), the corresponding shock wave forms at a constant
angle β to the free stream direction (Fig. 29).

The shock wave is said to be ‘oblique’, and the parameters of flow region 2 may
be easily deduced from the free stream parameters (region 1) by applying mass
and momentum conservation equations to the part of the flow normal to the
shock wave. The tangential component of the velocity remains constant across
the shock wave, as does the stagnation enthalpy. Thus, we have

ρ1u1 sin β = ρ2u2 sin (β − α)
u1 cosβ = u2 cos (β − α)

p1 + ρ1u
2
1 sin2 β = p2 + ρ2u

2
2 sin2 (β − α)

h1 + u2
1

2
= h2 + u2

2

2
(8.33)

After solving this system, we see that, given a free stream Mach number, there
exists a maximum angle α beyond which there is no solution, that is, the shock

u1 u2

b

a

Figure 29. Attached shock wave.
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A

Figure 30. Detached shock wave.

I
R R

N SC

I

a

Figure 31. (a) Regular reflection; (b) Mach reflection.

wave is detached from the model. Similarly, given an angle α, the shock wave is
detached beyond a maximum value of the free stream Mach number.

In the case of a‘blunted’model, the shock wave is always detached (Fig. 30),and
in general, the flow must be computed numerically. The flow separates into two
parts on each side of stagnation point A and is subsonic in the neighbourhood
of this point. A few examples of more complex geometries are presented in
Chapters 9 and 10.

Shock wave reflection

A stationary incident shock wave I is reflected by a wall and becomes a shock wave
R. The flow, after having crossed this wave system, is parallel to the wall, as can
be seen in Fig. 31(a). The application of the relations of Eqn. (8.33) is sufficient
to know the parameters of the emerging flow (regular reflection). When angle α
is larger than a certain value for a given free stream, the problem has no solution
of this type. However, a configuration similar to Fig. 31(b) represents a possible
solution confirmed by experiment. We thus have a ‘Mach reflection’ that includes
a quasi-normal wave N, a triple point, a reflected wave R, and an interface (or
contact surface SC) separating the gas that has crossed the wave N from the gas
that has crossed the waves I and R. This contact surface represents a discontinuity
for temperature and velocity (and entropy) but not for pressure; therefore, in
reality, it is a zone of important vorticity.
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Figure 32. (a) Shock wave collision; : Contact surface; (b) Shock wave merging. – – – : Fluid
trajectories.

Unsteady shock waves

One-dimensional case: interactions

The processes are generally visualized in an x , t diagram. A few examples are
presented below.

Shock wave collisions

The problem is how to determine the location and intensity of the two reflected
shock waves R1 and R2 (and downstream conditions) in relation to the incident
shock waves I1 and I2.The entropy value is different for the fluid particles that
have respectively crossed the shock waves I1, R1 or I2, R2; therefore, a contact sur-
face develops from the intersection point of the incident shock waves (Fig. 32(a)).

This contact surface represents a discontinuity for temperature and density
but not for pressure and velocity.

Merging of two shocks

After merging, the shock waves I1 and I2 constitute a unique shock wave I more
intense than I1and I2. The interaction process is completed by a simple wave
system centred at the intersection point, and by a contact surface (Fig. 32(b)).

Simple wave catching a shock wave

The rarefaction waves R weaken the shock wave I, and the flow is no longer
isentropic (Fig. 33(a)). Of course, compression waves would reinforce it (see
example in Chapter 11).

Shock wave–interface interaction

A shock wave I1 catches a contact surface SC1; there is a transmitted shock I2.The
coherence of downstream conditions is operated by a contact surface SC2 and
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Figure 33. (a) Simple wave catching a shock wave; (b) Shock–interface interaction.

either by a simple wave OS (Fig. 33(b)) or by a shock wave (see example in
Chapter 11).

Two-dimensional case

Many interaction problems (shock–shock, shock–model, shock–boundary layer,
and so on) give rise to specific, and often complex, wave structures; examples are
given in Chapter 11.

Appendix 8.4 Generalities on the boundary layer

The boundary layer considered as a perturbation

The equations of the boundary layer are second-order equations with respect to y
and therefore require two boundary conditions along a normal to the wall, while
they are first-order equations with respect to x and require only one longitudinal
boundary condition. This last condition is generally given at x = 0, the starting
point of the boundary layer (stagnation point, for example).

Along y , we generally have known boundary conditions (or assumed known)
on the body (y = 0). For example, the velocity is zero on a solid wall, the
temperature or the heat flux may be imposed, or the species concentrations may
be known from the catalytic nature of the wall. The second condition is given by
the ‘outer flow’ considered as a non-dissipative flow and also assumed known.
From a mathematical point of view, this flow provides the boundary conditions
for y → ∞. However, this Eulerian flow varies along y , and the ‘correct’ value
for the various quantities must be chosen. The solution is given by the concept
of boundary layer itself, which, considered as a narrow region, may also be
considered as a perturbation of the outer flow and thus may be determined by a
‘perturbation method’.89,90 Therefore, we proceed as follows:
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1. An Euler flow is calculated around the model (or along the wall) with cor-
responding boundary conditions. Thus, we have no condition for velocity
(except geometrical) or for temperature and concentrations at the wall.

2. In the natural coordinate system chosen for the boundary layer, from the
preceding calculation we deduce the values of the flow parameters at y = 0,
which depend only on x , i.e. ue (x) , he (x) , cpe (x). These values are then
considered to be boundary conditions

(
y → ∞)

for the quantities inside the
boundary layer, at least for those requiring two conditions along y .

3. The boundary layer flow is then computed generally with a method presented
below. The ‘losses’ (mass, momentum, energy, and so on) due to the boundary
layer are also calculated, and the Euler flow is recalculated by taking into
account these losses (or corresponding thicknesses). Several iterations may
be necessary, depending on the specific flows under consideration.

4. Pressure and transverse velocity have a particular behaviour, since they appear
as first-order derivatives in the boundary-layer equations. Thus, for the trans-
verse component of the velocity, there is no matching with the outer flow, but
its value is always low. As for the pressure, it is known from the Eulerian flow,
since

∂p

∂x
= ∂pe
∂x

= −ρeue due
dx

(8.34)

Therefore, the wall pressure measurements do not depend on the presence of
the boundary layer and are representative of the outer pressure field.

More detailed methods providing a better matching with the outer flow are
also available.91 Curvature effects may also be taken into account.

Method of solution

Despite the fact that today, with modern computers, the complete Navier–Stokes
equations may generally be solved, economic considerations or physical interest
often induce engineers or researchers to solve the boundary-layer equations
coupled with the Eulerian outer system.

These equations are of parabolic type and are strongly coupled. They also
present mathematical and physical singular points (for example, stagnation
points). Thus, in the past, coordinate transformations have been proposed and
developed. They may suppress the singular points and simplify the integration
field.70,90 All these transformations may be reduced to a unique one, that is
the LLD (Levy–Lees–Dorodnitsyn) transformation presented below. The main
points of this transformation are the following:
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• The starting point of the boundary layer (singular point) at x = 0 is
transformed into a starting line.

• The parabolic domain is transformed into a quasi-rectangular domain where
the thickness of the boundary layer is quasi-constant.

• The transformation is independent of the dimensional character of the
boundary layer (plane or axisymmetric).

• Obvious simplifications appear in the equations for the treatment of particular
cases (for example, self-similar solutions).

New coordinate system: momentum equation

Now, we must find the transformation
(
x , y

) → (ξ , η) with the above
characteristics.

At x = 0, we must have a differential equation depending on only one variable,
for example η (starting line), so that at this point we must also have ξ = 0, which
leads to the following change:

ξ = ξ (x) and η = η (x , y
)

(8.35)

Thus, ξ becomes a longitudinal variable. Moreover, in order to have a quasi-
rectangular integration domain, ηmust be a quasi-self-similar variable (∼ y/δ).

For any flow parameter F , we may write from Eqn. (8.35):

∂F

∂x
= ∂F
∂η

∂η

∂x
+ ∂F
∂ξ

dξ

dx
and

∂F

∂y
= ∂F
∂η

∂η

∂y
(8.36)

It is also convenient to define a stream function ψ , so that the continuity
equation is satisfied, that is:

ρurj = ∂ψ
∂y

and ρvr j = −∂ψ
∂x

(8.37)

Setting

u

ue
= ∂ψ
∂η
F (8.38)

we have
∂η

∂y
= ρuer jF (8.39)

where F = F
(
x , y

)
is an unknown function. We therefore have

η = ρeuer j
y∫

0

ρ

ρe
F dy (8.40)
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Now, in order to obtain explicit relations between
(
x , y

)
and (ξ , η), we need

two equations which, in principle, may be defined arbitrarily. Equation (8.40)
provides the motivation to define one of these. If η has to be a kind of self-similar
variable, the function F must depend only on x (or ξ). Then, we easily verify that,
in the incompressible case, we have η/y = G (x); in the compressible case, we
obtain a similar relation η/Y = H (x) after having applied the transformation

Y =
y∫
0

ρ
ρe
dy (von Mises). Therefore, we have

η = ρeuer jF (ξ)
y∫

0

ρ

ρe
dy (8.41)

where the terms ρeuer jF (ξ) depend only on x (or ξ). Now, for convenience
we set

u

ue
= ∂f
∂η

= f ′ (ξ , η) (8.42)

where, conventionally, the differentiation is with respect to η.
Equation (8.38) then becomes

ψ = f (ξ , η)

F (ξ)
(8.43)

Now, in the momentum equation (8.24), we replace the variables u and v by
the variables f and F with the help of Eqns (8.37), (8.41), and (8.43), and we set
C = C (ξ , η) = ρµ/ρeµe .

Then the momentum equation may be written in the following form:

1

ue

due
dξ

(
ρe

ρ
− f ′2

)
− ff ′′ 1

F

dF

dξ
+ ρeµeuer2j

(
dξ

dx

)−1

F2 (Cf ′′)′
= f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ
(8.44)

Finally, we must choose the explicit dependence of F on ξ . Equation (8.44)
hints at defining F such that 1

F3
dF
dξ = K = const.

If, arbitrarily, we choose K = −1, a possible form for F is F = 1√
2ξ

.

Finally, another arbitrary condition must be found in order to com-
pletely define the transformation: taking into account Eqn. (8.42), we can set

ρeµeuer2j
(
dξ
dx

)−1 = K ′. Moreover, choosing K ′ = 1, we at last obtain the
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following relations for ξ and η:

ξ =
x∫

0

ρeµeuer
2jdx

η = ρeuer j(
2
x∫
0
ρeµeuer2jdx

)1/2

y∫
0

ρ

ρe
dy (8.45)

These equations define the LLD transformation.
The transformed momentum equation is then written as follows:(

Cf ′′)′ + ff ′′ + 2ξ

ue

due
dξ

(
ρe

ρ
− f ′2

)
= 2ξ

(
f ′ ∂f ′

∂ξ
− f ′′ ∂f

∂ξ

)
(8.46)

This third-order equation enables us to determine f . Equation (8.46) is,
however, coupled with the energy equation (with ρ and µ). Furthermore,
three boundary conditions along η are necessary. Without mass transfer, we
generally have

f = f ′ = 0 at η = 0 (8.47)

f ′ → 1 when η→ ∞ (8.48)

We may also verify that, at ξ = 0, we must solve an ordinary differential
equation (variable η).

Transformation of the other equations

Instead of using the energy equation in the form of Eqn. (8.26), we generally use
Eqn. (7.14), which, in the boundary layer, may be written

ρu
∂h0

∂x
+ ρv ∂h0

∂y
= ∂

∂y

(
µ

P

∂h0

∂y

)
+ ∂

∂y

[
µ

(
1 − 1

P

)
∂

∂y

(
u2

2

)]

+ ∂

∂y

⎡⎣µ
S

(
1 − 1

L

)∑
p

hp
∂cp
∂y

⎤⎦ (8.49)

It may be noted that in this equation only one transport coefficient, µ,
explicitly appears, and this coefficient is not very sensitive to non-equilibrium
(Chapter 3). The other transport terms appear in their usual dimensionless
form also weakly sensitive to temperature and non-equilibrium (see examples in
Fig. 21).
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Now, the application of the LLD transformation (Eqn. (8.45)) to Eqn. (8.49)
leads to the following:

(
C

P
g ′
)′

+ fg ′ + E0e

[(
1 − 1

P

)
Cf ′f ′′

]′
+
⎡⎣C
S

(
1

L
− 1

)∑
p

hpecpe
h0e

z ′p

⎤⎦′

= 2ξ

(
f ′ ∂g
∂ξ

− g ′ ∂f
∂ξ

)
(8.50)

where

g = g (ξ , η) = h0

h0e
, zp = zp (ξ , η) = cp

cpe
, and

E0e = u2
e

h0e
(Eckert number)

with g and zp → 1 when η→ ∞, and with wall conditions (η = 0) depending
on the specific problem (see, for example, Chapter 10 and Appendix 8.4).

The species conservation equation (8.27) is transformed into the following:(
C

S
z ′p
)′

+ fz ′p − 2ξ

cpe

(
f ′zp

dcpe
dξ

− ẇp
ρρeµeu2

e r
2j

)
= 2ξ

(
f ′ ∂zp
∂ξ

− z ′p
∂f

∂ξ

)
(8.51)

Of course, the vibrational relaxation equations may also be transformed if
necessary (see, for example, Chapter 10).

These strongly coupled equations are generally solved numerically, and the
inverse transformation gives the flow parameters in the physical plane (x , y) as
well as the global quantities defined above. Simple cases, more or less classical,
are presented in Appendix 8.5.

Appendix 8.5 Simple boundary layers: typical cases

Self-similar solutions

As used to be common, we may try to find solutions depending only on the
variable η, that is, self-similar solutions valid in the whole boundary layer. These
solutions, however, exist only for precise cases in which the terms depending on
ξ are negligible.70

Here we examine the case of pure gas flows without chemical reaction or
vibrational non-equilibrium. The case of reactive boundary layers is presented
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in Chapter 10. Thus, if there are self-similar solutions for f and g , we must solve
the following two equations:(

Cf ′′)′ + ff ′′ + β
(
T

Te
− f ′2

)
= 0(

C

P
g ′
)′

+ fg ′ = E0e

[(
1

P
− 1

)
Cf ′f ′′

]′
(8.52)

with

β = β (ξ) = 2ξ

ue

due
dξ

(8.53)

When the functions f and g are found, we may compute the dimensionless
interfacial quantities Cf and Nu from the following relations:

Cf = 1
1
2ρeu

2
e

(
µ
∂u

∂η

)
w

(
∂η

∂y

)
w

= 2r jµe√
2ξ
Cwfw

′′

Nu = x

T0e − Tw

(
λ
∂T

∂η

)
w

(
∂η

∂y

)
w

= r juex√
2ξ
ρw

g ′
w

1 − gw
(8.54)

We can generally assume that the outer flow is isoenergetic (h0e = const.;
Chapter 7), but C , β, P , ue , and Te may depend on ξ . Taking into account the
previous results, we assume that P is constant. It remains to analyse the influence
of the external conditions resulting from the configuration of the flows based on
these last two assumptions.

Flow without pressure gradient

Two-dimensional case: equations and results

This is the classical flow along a flat plate or along a wedge in the supersonic
regime. Thus, we have

β = 0, ue = const., and Te = const.

The momentum equation (8.46) becomes(
Cf ′′)′ + ff ′′ = 0 (8.55)

It is possible to modify the variable η (Eqn. (8.45)) so as to include C . Thus,
we have

η = ρeuer
j

√
2Cξ

y∫
0

ρ

ρe
dy (8.56)
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Then, Eqn. (8.55) reduces to

f ′′′ + ff ′′ = 0 (Blasius equation) (8.57)

This equation has often been solved with the boundary conditions of Eqns
(8.47) and (8.48). Thus, we obtain for fw ′′ a value equal to 0.47. The skin-friction
coefficient is therefore equal to

Cf = 0.66 (Rex)
−1/2 (8.58)

A posteriori, we see that the variable η has indeed an order of magnitude
of y/δ.

In this case, the energy equation (8.50) may easily be solved for a constant wall
temperature Tw and with the assumption of the ideal gas model (Cp = const.).
Then, we have

g ′′ + Pfg ′ + E0e (P − 1)
(
f ′f ′′)′ = 0 (8.59)

First assuming P = 1, we see the proportionality between the stagnation
temperature distribution (or the static temperature for a low Mach number) and
the velocity distribution. This constitutes the ‘Reynolds analogy’; this is of course
not surprising, since the corresponding boundary layers have similar thicknesses.

Another consequence is found for the Nusselt number, i.e. Nux = Cf Rex
2 . We

obtain the same result when E0e ∼ 0 (low velocity or stagnation point).
In the more realistic case where the Prandtl number is constant but different

from 1, the integration of the energy equation leads to a quasi-analytic expression
for the temperature distribution as a function of velocity distribution. For the
wall heat flux, we obtain

qw = −λwρwue√
2Cwξ

f ′′P
w

I (P)
(Tw − Twr ) (8.60)

where Twr = Te
(

1 + u2
e

CpTe
PJ (P)

)
is the ‘recovery temperature’ (i.e. wall tem-

perature for a zero heat flux). Approximate expressions are often used, such as
f ′′Pw
I (P) � fw ′′P1/3 and r = 2PJ (P) � P1/2 (recovery factor). Finally, we find

Nux = 0.33P1/3Re1/2
x (8.61)

For P = 1, we have Twr = T0e , which means that the conduction effects
compensate the dissipation effects.

Physical interpretations

When there is no wall heat flux, the boundary layer is an isolated system since
the heat flux is also zero at the external boundary. At every boundary-layer cross
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section, there is a total energy rate equal toCpT0e . For P > 1, we haveTwr > T0e ,
and the energy dissipated by viscosity in the external part of the boundary layer
between δd and δt (where T = Te) is recovered by conduction close to the wall.
The opposite is the case for P < 1 (the present case of gases).

When the wall temperature is constant, the system is no longer isolated, and
depending on the relative values of Tw ,Te , and T0e , the temperature distribution
may be non-monotonic. This is the case with high-speed flow arising from the
expansion of a compressed hot gas (T0e � Te ∼ Tw). The gas in the boundary
layer tends to recover the stagnation temperature, and this tendency is increased
by conduction, since δt > δd . However, close to the wall, the influence of the wall
heat flux and viscous dissipation tend to decrease the temperature. Therefore,
there is a maximum for the temperature, which sometimes may be of importance
(Chapter 10).

Axisymmetric case: cone without incidence

In the supersonic regime, if θ is the semiangle of the cone, we have

ξ = ρeµeue x
3

3
sin2 θ

with r = x sin θ , and where ue , pe ,Te are constant. We also have

η =
(

3ρeµe
2Cuex

)1/2
y∫

0

ρ

ρe
dy (8.62)

We may then obtain the following values for the skin friction and the heat
flux:

τw = √
3τwpp , and qw = √

3qwpp (8.63)

where τwpp and qwpp represent the corresponding values of the flat plate with the
same outer conditions.

Flows with pressure gradient

Stagnation point

For this, we have x = ξ = 0, ue = 0, duedx = const. = K , β = 1
j+1 , and r ∼ x

Therefore, self-similar solutions may be found for the transformed equations,
that is:

f ′′′ + ff ′′ = 1

j + 1

(
f ′2 − ρe

ρ

)
g ′′ + Pfg ′ = 0 (8.64)
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Figure 34. Variation of fw ′′ with β.

Figure 35. Variation of g′
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General case

The numerical solutions obtained92 for β 	= 0 lead to values for fw ′′ (propor-
tional to the skin friction) and for g ′

w (proportional to the wall heat flux) shown
in Figs 34 and 35.

When the pressure gradient is ‘adverse’ (compression β < 0), the boundary
layer becomes unstable and separates when fw ′′ = 0 (Fig. 34); the separation is
favoured by a ‘hot’ wall.

For a given value of β, fw ′′ and g ′
w are strongly influenced by the value of

T0e/Tw . For a ‘cold’ wall, however, they do not depend significantly on the
pressure gradient (particularly g ′

w and therefore the heat flux). In many cases,
this may constitute the basis of simplifications.

We may also note that, for low-speed flows, we find the Falkner–Skan equation
for the momentum conservation equation, i.e.

f ′′′ + ff ′′ + β (1 − f ′2) = 0 (8.65)
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Appendix 8.6 The turbulent boundary layer

Important problems related to turbulence are beyond the scope of this book.
The phenomenon of turbulence is characterized by the emergence of instability
in flows when the deterministic process of the streamlines of ‘laminar’ flows
seems to be destroyed. Vortex structures arise and diffuse in the flow, so that
the various quantities seem to show a random variation in time and space and
appear to reproduce the molecular agitation at the macroscopic level. It also
seems that statistically distinct average values could be discerned for these flow
quantities. However, the structure of turbulent flow depends on the ‘history’ of
the flow and generally is not a ‘local’ phenomenon,93 so that the turbulence may
be considered as a non-equilibrium phenomenon.

However, in a boundary layer where the transverse gradients are important,
a relative homogenization occurs, and the boundary layer may be considered
in near equilibrium and dominated by production–dissipation processes. Fur-
thermore, in high-speed gas dynamics, the turbulence is generally not fully
developed. Here, therefore, we restrict ourselves to a brief analysis of this type of
turbulence.

Among the instability factors, the values of the pressure gradient and the
stagnation temperature (β and T0e/Tw) can play an important role in the
laminar–turbulent transition. However, the Reynolds number remains the main
factor, so that when its value becomes sufficiently high, the transition may occur
in various forms; one example of which is given in Chapter 11.

Statistical analysis of homogeneous turbulence

Therefore, assuming random fluctuations, we may consider turbulent flow as
the superposition of a mean flow and an unsteady fluctuating flow. Then, each
scalar flow quantity F (density, temperature, and so on) may be written as

F = F + F ′′ (8.66)

with

F ′′ = 0

The mean value F is defined in a timescale long enough to be significant but
short enough to exclude the eventual unsteadiness of the mean flow. Moreover,
if we take into account the compressibility of the flow, the mean velocity is a
mass-weighted-averaged quantity (such as for a mixture in kinetic theory).94,95
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Thus, for a component ui , we have

ũi = ρui
ρ

(8.67)

with

ui = ũi + u′
i and ρu′

i = 0

Similarly, we can define the other quantities F such that

F = F̃ + F ′

Of course, the engineer is essentially interested in knowing the mean flow
(deterministic description), which, however, depends on correlations between
fluctuating quantities.

In order to describe this mean flow, we can use the Navier–Stokes equations
that remain locally valid, and replacing each quantity by a sum given either by
Eqn. (8.66) or Eqn. (8.67), we take the time average of the terms appearing in the
resulting equations, which in fact represent moment equations of the Navier–
Stokes equations.95 Thus, we obtain mean continuity, mean momentum, mean
energy, and mean species conservation equations in the following forms for a
two-dimensional steady boundary layer:

∂

∂x

(
ρ urj

)
+ ∂

∂y

(
ρvr j

)
= 0

ρ u
∂u

∂x
+ ρv ∂u

∂y
= −dp

dx
+ ∂

∂y

(
µ
∂u

∂y
− ρu′v ′

)
ρ u
∂h0

∂x
+ ρv ∂h0

∂y

= ∂

∂y

⎡⎣µ(1 − 1

P

)
u
∂u

∂y
+ µ
P

∂h0

∂y
− ρh′

0v
′ + µ

S

⎛⎝1 − 1

L

∑
p

hp
∂cp
∂y

⎞⎠⎤⎦
ρ u
∂cp
∂x

+ ρv ∂cp
∂y

= ∂

∂y

(
µ

S

∂cp
∂y

− ρc ′pv ′
)

(8.68)

These equations take into account the usual hypotheses of the boundary layer.
They present a formal similarity with those of the laminar boundary layer (Eqns
(8.24)–(8.29)). However, ‘turbulent transport’ terms appear: They are added to
the molecular transport terms and generally have much higher values. They must
be determined or modelled in order to close the equation system (Eqn. (8.68)).
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Examples of boundary-layer modelling

Closure of the system of Eqn. (8.68) may be operated by assuming a functional
dependence between the turbulent transport terms u′v ′, h′

0v
′ and c ′pv ′ and the

parameters of the mean flow. Thus,by analogy with kinetic theory,we can express
these terms in the form of products of mean quantity gradients and ‘turbulent
transport coefficients’ (Boussinesq), i.e.

ρu′v ′ = −µt ∂u
∂y

ρh′
0v

′ = −µt
Pt

∂h0

∂y

ρc ′pv ′ = −µt
St

∂cp
∂y

(8.69)

Here, µt , λt = Pt
Cpµt

and Dt represent viscosity, conductivity, and diffusion
turbulent coefficients respectively, and Pt and St are the corresponding Prandtl
and Schmidt numbers. However, the above represents only a first step in the
modelling, since these coefficients are unknown.

Algebraic models

If we continue the analogy with kinetic theory, for which the viscosity coefficient
µmay be expressed as a function of the mean free path λ and the mean velocity
U (Chapters 1 and 3), i.e. µ = ρλU , we may assume

µt = ρ lmVt (8.70)

where lm is a characteristic ‘mixing length’ (Prandtl) and Vt a characteristic
fluctuating velocity, both depending on the flow structure. In the framework of
the same analogy, we assume

Vt = lm
∂u

∂y

Therefore

µt � ρ l2m
∂u

∂y
(8.71)

The dependence of lm on y remains to be defined, but a linear dependence is
often sufficient.

Generally, the other coefficients are modelled in their form of turbu-
lent Prandtl and Schmidt numbers, which strongly depend on the flow
configurations.
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Models with one or several moment equations

In the boundary layer, experiments have shown that the mixing-length hypoth-
esis is valid and could explain the boundary-layer structure. The more sophisti-
cated models are marginally better but more complex to implement. However,
the non-local nature of the turbulence may be taken into account with evolution
equations of characteristic quantities (moment equations).

Thus, if V 2
t represents an average value of the turbulent kinetic energy, that

is V 2
t ∼ k = (1

2u
′2 + 1

2v
′2 + 1

2w
′2), we can obtain a transfer equation for k

from the moment equations for u′2, v ′2,w ′2. Thus, with the usual assumptions,
we have

ρ u
∂k

∂x
+ ρv ∂k

∂y
= −ρu′v ′ ∂u

∂y
− ∂

∂y

(
ρkv ′ + p′v ′

)
− µ

(
∂u′
∂y

)2

(8.72)

↑ ↑ ↑ ↑

Convection Production Diffusion Dissipation

The terms of this equation require development; for example, they may be
modelled as gradient terms or analysed by dimensional considerations.

We can also use other moment equations as an evolution equation of the

dissipation term ε = µ
(
∂u′
∂y

)2
. The system of Eqn. (8.68) and the evolution

equations for k and ε constitute the k − ε model largely used in engineering
calculations.

Appendix 8.7 Flow separation and drag in MHD

As discussed in Appendix 7.6, ionized gas flows can be modified by electromag-
netic forces proceeding from external magnetic and electric fields.96,97 In the
following, we analyse a very simple MHD flow around an obstacle with the aim
of ‘improving’ the flow, that is, delaying (or suppressing) the boundary-layer
separation and, as far as possible, reducing the drag of the obstacle.

Thus, we consider the steady incompressible plane flow of an ionized gas
around an insulating cylinder (radius R) with an applied constant magnetic
field BA normal to the flow98 (Fig. 36).

Assuming that the induced magnetic field may be neglected (Rσ � 1) and
that we can divide the flow into an inviscid part and a boundary layer, the MHD
equations are strongly simplified and, in the inviscid flow, may be written in the



256 CHAPTER 8 ELEMENTS OF GAS DYNAMICS

Figure 36. MHD flow around a circular cylinder.

BA

R
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following dimensionless form:

∂ ·V ∗

∂r∗ = 0 (8.73)

V ∗ · ∂V
∗

∂r∗ = −∂p
∗

∂r∗ − IV ∗ (8.74)

where

r∗ = r

R
, V ∗ = V

V∞
, p∗ = p

ρV 2∞
, B∗ = B

BA

and where I is an ‘interaction parameter’, the ratio of the Laplace force to the
inertial force, that is:

I = σB
2
AR

ρV∞
Thus, fluid particles are slowed down by the electromagnetic force, and assum-

ing as usual that the inviscid flow is irrotational, the Laplace force field derives
from a potential φ, i.e.

∂φ∗

∂r∗ = IV ∗

The velocity field is not modified,but the momentum equation (8.74) becomes

p + 1

2
ρV 2 + φ = K

where K is a constant. This is the generalized Bernoulli equation (see Eqn.
(7.13)).

If we compute the pressure coefficient on the cylinder, that is, Cp = p−p∞
1/2ρV 2∞

,

we find

Cp = Cp0 − 4I cos θ

where Cp0 = 1 − 4 sin2 θ is the pressure coefficient without a magnetic field,
so that Cp > Cp0 on the windward side, and Cp < Cp0 on the leeward side.
The pressure decreases from the stagnation point up to a point corresponding
to θ = Arc cos (I/2), which is located on the leeward side, instead of θ = π

2
without a magnetic field. If I = 2, the pressure gradient remains negative up
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to the downstream stagnation point. As a consequence, we expect the boundary
layer to remain attached all along the cylinder (Appendix 8.4).

This conclusion must be confirmed by a computation of the boundary layer.
Thus, the corresponding dimensionless equations may be written:

∂u∗

∂x∗ + ∂v
∗

∂y∗ = 0

u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = −dp
∗

dx∗ + 1

Re

∂2u∗

∂x2
− Iu∗

with

−dp
∗

dx∗ = u∗
e
du∗
e

dx∗ + Iu∗
e

and where x∗ = x/R, y∗ = y/R, u∗ = u/V∞, v∗ = v/V∞.
After having applied the usual LLD transformation, the above boundary

equations are solved, and the skin-friction coefficient Cf (Eqn. (7.32)) is
computed, with the following result:

Cf = 1√
Re

4 sin2 θ√
1 − cos θ

fw
′′

The quantity Cf
√
Re = F (θ) is plotted in Fig. 37 for three values of the inter-

action parameter I ; thus, skin friction cancels out at the downstream stagnation
point for values of I larger than 2.5, for which no separation therefore occurs.
Without a magnetic field, separation takes place for θ � 110◦.

Of course, these results are approximate because of the interaction between
the inviscid flow and the boundary layer, which becomes relatively thick on
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2

0
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�

C
f
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e

�

Figure 37. Skin-friction coefficient along a cylinder. : I = 0 , · · · : I = 1, : I = 2.5.
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the leeward side. Thus, when taking this interaction into account, or making a
complete Navier–Stokes calculation, we find the separation point at θ � 80◦
without a magnetic field (value confirmed by experiment), so that values for I
larger than 2.5 are necessary to avoid any separation.

As for the drag, the viscous part is indeed very small, but contrary to the case
without a magnetic field, there is a non-null pressure drag equal to 2πµV∞R2

h ,

where Rh = √
IRe is the Hartmann number. This drag may take important

values, so that the application of an‘appropriate’electric field should be necessary
for reducing (or suppressing) this drag.



NINE

Reactive Flows

9.1 Introduction

In this chapter, we examine the interaction of the chemical processes taking
place in gaseous media with the flow parameters. We first consider separately the
equilibrium regimes (Da → ∞) and the non-equilibrium regimes (Da ∼ 1).
Frozen cases, in which the influence of chemical reactions is negligible (Da ∼ 0),
correspond to flows analysed with methods for traditional gas dynamics, a few
examples of which were presented in Chapter 8.

The influence of vibrational kinetics on flow is also discussed when it repre-
sents the only process at a moderate temperature or when chemical reactions
occur at the same time (Chapter 5).

The developments presented in this chapter are not entirely new,83,99 and they
include a summary of the main elements necessary for understanding reactive gas
flows. Examples of simple flow modelling are also presented. These are essentially
Eulerian flows behind relatively intense shock waves or expanding Eulerian flows
in supersonic nozzles, exemplified here to point out the influence of ‘real gas
effects’ on corresponding flows. Hypersonic flows around models are analysed
in Chapter 10 in the framework of dissipative regimes.

9.2 Generalities on chemical reactions

The problem of reactive collisions was discussed in Chapter 2 in connection
with the Boltzmann equation, and definitions of binary reaction-rate constants
and equilibrium constants were also given. In this chapter, these notions are
generalized to any type of reaction but are applied only to the macroscopic level.

In fact, we must derive the source term ẇp included in the species conservation
equations (7.60). We therefore consider the reactions of the following type taking
place in a homogeneous gaseous phase:∑

p

νpAp →← 0 (9.1)
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where νp represents the stoichiometric coefficient of componentp in the reaction,
andAp is the symbolic notation for species p. Conventionally, νp < 0 and νp > 0
correspond to the ‘reactants’ and ‘products’ of the reaction, respectively.

Consequently, there exists a similarity relation between the values of the molar
concentrations Xp = np/N of the components, that is:

dX1

ν1
= dX2

ν2
= · · · = dXp

νp
= · · · = dZ (9.2)

The entropy variation dSc due to the reactions (in TRV equilibrium) may be
deduced from Eqn. (7.18), that is:

dSc = − 1

T

∑
p

µpdcpc (9.3)

where dcpc represents the concentration change of species p due to the reactions.

9.3 Equilibrium flows

9.3.1 Law of mass action: chemical equilibrium constant

For Da → ∞, we have ẇp = 0 and dSpc = 0.
The species conservation equation is (formally) uncoupled from the other

conservation equations, so that the species concentrations must be inde-
pendently found. These concentrations, however, depend on local conditions
governed by the other equations.

As we have cp = XpMp/ρ, we can deduce from Eqns (9.2) and (9.3) the
relation

∑
p
νpµpMpdZ = 0. With the definition for the chemical potential per

mole of the species p, µ̂p = µpMp , we have∑
p

νpµ̂p = 0 (9.4)

This relation (Eqn. (9.4)) constitutes the ‘law of mass action’, from which we can
obtain another relation involving the concentrations. Thus, taking into account
the expressions (Eqns (7.16) and (7.10)) for Sp and hp respectively, we have

µp = µ0
p + RpT Log pp (9.5)

where µ0
p is a function of T only. Now, applying Eqn. (9.4), we find

�
p
p
νp
p = Kp (9.6)
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where Kp depends only on T . From Eqn. (9.6), we can deduce the partial pres-
sures of the components. Then, since pp = XpRT , we can obtain a relation
between the molar concentrations, that is:

�
p
X
νp
p = Kc (9.7)

where Kc = Kp/(RT )
∑
p νp also depends only on temperature. Here, Kc is

the equilibrium constant of the reaction. We can then calculate the enthalpies
hp and h. However, the relations giving cp and Np (molar fraction equal toXp/ρ)
also depend on the pressure.

The reactions are endothermic or exothermic according to whether they
absorb or give energy (heat of reaction) to the surroundings. This is equiva-
lent to an enthalpy variation per mole equal to 
Ĥ = ∑

p νphp : this represents
the enthalpy balance of the reaction, which may be easily related to Kp by the
following relation (Van’t Hoff):

d

dT
(Log Kp) = 
Ĥ

RT 2
(9.8)

As
Ĥ varies little with T , we can obtain an approximate expression for Kp :

Kp � A exp
(
−
Ĥ/RT

)
(9.9)

where A is a constant.
Therefore, the value of the equilibrium constant can be deduced from a

measurement of 
H .

9.3.2 Examples of reactions

Example 1: Single reaction

We consider the following bimolecular reaction:

A+ B →← C + D
(
or: C + D − A− B →← 0

)
(9.10)

We can represent this reaction in an energetic diagram (Fig. 38 for the exothermic case).
An important application concerns the dissociation of diatomic molecules: for high tempera-

tures, molecular collisions may give rise to the following dissociation reaction:

A2 + A2 →← 2A+ A2 (9.11)

The dissociation is an endothermic process (and the recombination is exothermic). We have

Ĥ = ÊDA2 , where ÊDA2 is the dissociation energy per mole. We can therefore calculate the
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Figure 38. Energetic diagram of the reaction A + B � C + D�E: Direct activation energy; �E: Inverse
activation energy (
H = �E − �E)

equilibrium concentrations of the components A2 and A, the enthalpy of the mixture, and its
equation of state.
As usual, we set cA = α (dissociation rate) and cA2 = 1− α.
With the law of mass action, we have

p2A
pA2

= Kp and consequently
4α2

1− α = Kp
p

= KcRT
p

(9.12)

that is

α = α (p, T )
With the approximate relation (Eqn. (9.9)), we have Kp � A exp (θDA2/T ), where θDA2 =

ÊDA2/RA2 is the characteristic temperature of the dissociation of molecule A2. Thus, for oxygen
we have θDO2 � 59 500 K, and for nitrogen θDN2 � 113 000 K. It is clear that α begins to
be important at much lower temperatures. In fact, the dissociation of oxygen is significant from
2000 K.
From Eqns (9.9) and (9.12), we may find a universal (but approximate) relation for diatomic

molecules at a given pressure,83 that is:

α = α (θDA2/T )
We also obtain the expression of the enthalpy of the mixture from its definition, that is:

h = αhA + (1− α) hA2 (9.13)

A reference enthalpy must be chosen; here, as usual, we choose the molecular state at T = 0,
so that, in the definition of enthalpy, we must take into account the formation enthalpy of atoms
h0A = ÊDA2/MA2 = RA2θDA2 . Therefore, for h, we have

h = α
⎛⎝h0A +

T∫
0

Cp
AdT

⎞⎠+ (1− α)
T∫
0

Cp
A2
dT (9.14)
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The continuation of the calculation depends on the chosen physical model and on the tem-
perature range. Thus, for example, when T � θVA2 , we also obtain a universal relation for the
reduced enthalpy, that is:

h
RA2θDA2

= F
(
θDA2

T

)
The equation of state for the mixture may be written in the following form:

p = ρRT = (1+ α) ρRA2T (9.15)

At higher temperature, the atoms and molecules may be ionized by the following process:

A+ A→← A+ + A+ e (9.16)

This type of reaction may also be considered a particular case of the general reaction (Eqn.
(9.1)) with an equilibrium constant, a characteristic ionization temperature, and so on. The
energies involved are generally expressed in electronvolts (eV), where 1 eV corresponds to about
11600 K.

Example 2: Mixture of reactive gases

A typical example is that of air at high temperature. For temperature in the range 7–8000 K,
we may assume that there are three dissociation–recombination reactions and one ionization
reaction,7 that is:

O2 +M →← O+ O+M
(

Ĥ = 5.1 eV

)
N2 +M →← N+ N+M (9.8 eV)

NO+M →← N+ O+M (6.5 eV)

NO+M →← NO+ + e +M (9.25 eV) (9.17)

Here,M represents any species of the mixture, that is, O2, N2, O, N, NO, NO+, or e.
Thus, we have a mixture with seven species. The concentrations of these species may be

deduced from the law of mass action (Eqn. (9.7)), that is:

X2o
Xo2

= Kcl and
X2N
XN2

= Kc2

XNXo
XNO

= Kc3 and
XeXNO+

XNO
= Kc4 (9.18)

To these four relations, we can add two conservation equations for the N and O atoms (molar
concentrations per unit mass of the mixture), that is:

2NO2 + NO + NNO + NNO+ = 2
(
NO2

)
0

2NN2 + NN + NNO + NNO+ = 2
(
NN2

)
0

(9.19)
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where Np = Xp/ρ, and where (Np)0 is the initial mole number (assumed known) of the species
p per unit mass of the mixture.
A seventh relation is deduced from the electric neutrality of the mixture, that is:

NNO+ = Ne (9.20)

From these seven equations, we may obtain the mixture composition as a function of tem-
perature and pressure. At higher temperature, more reactions must be taken into account
(Appendix 9.2).
The enthalpy and the other thermodynamic functions of the mixture may then be computed,

as well as the equation of state.

9.3.3 Examples of equilibrium flows

Flow behind a shock wave

The high temperatures attained behind shock waves give rise to processes of
excitation of internal modes,dissociation,and chemical reactions. Fluid particles,
after crossing a shock wave, tend to an equilibrium situation which may be
determined a priori from the upstream conditions but also from the shape and
the intensity of the shock wave. For a straight shock wave, the Rankine–Hugoniot
conditions (Eqn. (8.12)) give the downstream equilibrium conditions if we use
adequate expressions for the enthalpy h.

Thus, for a pure diatomic gas, with vibrational excitation and dissociation,
we use Eqn. (9.14). Figures 39 and 40 show the variation of the density and
temperature ratios ρ2/ρ1 and T2/T1 with the shock wave Mach numberMs and
with upstream conditions p1,T1, for oxygen and nitrogen; they are compared to
the corresponding values obtained for an ideal gas100 (Eqns (8.13) and (8.14)).

Flow in supersonic and hypersonic nozzles

When the reservoir conditions include high values for pressure and temperature,
the rapidly expanding flow in a nozzle cannot generally preserve an equilibrium
state; the corresponding equilibrium solution therefore represents only a theo-
retical reference. As in the case for a shock wave, a realistic expression for hmust
be used in the conservation equations.

For the quasi-one-dimensional case, a rough calculation may be carried out,
as with the ideal gas model, i.e. with Eqns (7.47), (7.48), and (7.40), that is:

ρuS = const., h0 = const., and ρudu + dp = 0

If p, ρ, and T decrease along the nozzle because of the transformation of the
various types of energy into kinetic energy,M increases, and u tends to a limiting
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Figure 40. Temperature and density ratios (straight shock wave) for nitrogen (Notation as Fig. 39).

value. The temperature, however, remains higher than in the ideal case because
the chemical system tends to adapt itself to the local conditions and because the
recombination favoured by the expansion is an exothermic process. We also note
that the flow at the throat is sonic as for the ideal gas model.
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9.4 Non-equilibrium flows

Flows in chemical and/or vibrational non-equilibrium were analysed from a
fundamental statistical point of view in the first part of this book. Here, we
generalize or apply the results obtained in the first part to concrete and complex
situations requiring a macroscopic approach. As in the previous sections, we first
examine chemical non-equilibrium situations and vibrationally relaxing flows
separately and then the situations where both processes occur simultaneously.

Applications to characteristic Euler flows are also presented in order to empha-
size the importance of real gas effects and the influence of the physical models.

9.4.1 Chemical kinetics

Regarding equilibrium flows, we must develop the source term ẇp , but from the
complete species conservation equation (7.60). With Da ∼ 1, we have either a
high value for ReS, in which case we use the Euler system, or a low value, for
which we use the Navier–Stokes system. In either case, all equations must be
solved simultaneously.

Assuming TRV equilibrium, we consider the following general chemical
reaction, involving only non-ionized species:∑

p

ν′pAp →
∑
p

ν′′pAp (9.21)

where ν′p and ν′′p are positive coefficients in contrast to the form of Eqn. (9.1).
The molar rate of disappearance of the species p per unit volume is related to

the reaction rate dZ by Eqn. (9.2), that is:

Ẋ dp = ν′p
dZ

dt
(9.22)

From Section 9.3.1 (law of mass action), it is clear that we have

dZ

dt
= kf �

p
X
ν′p
p (9.23)

where the proportionality factor kf is called the rate constant of the reaction
(Eqn. (9.21)), similar to the rate constant defined in Chapter 2. We then have

ẇp = kf ν
′
pMp�

p
X
ν′p
p (9.24)

The rate constant kf = kf (T ) is proportional to the total collision rate,
which, at moderate temperature, can be considered the elastic collision rate
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(Appendix 2.2). Among these collisions, only those that have a rate constant
proportional to exp(−Ê/RT ) are energetic enough to start a reaction (Appendix
9.3), so that we may generally write (Arrhenius):

kf = Cf T
n exp

(
−Ê
RT

)
(9.25)

Similarly, a rate of appearance of the species p may be defined, i.e.

Ẋ ap = kf ν
′′
pMp�

p
X
ν′′p
p (9.26)

For a reversible reaction such as
∑
p ν

′
pAp

kr
�
kf

∑
p ν

′′
pAp , the balance ẇp is equal

to

ẇp = Mp

(
ν′′p − ν′p

)(
kf �

p
X
ν′p
p − kr �

p
X
ν′′p
p

)
(9.27)

In that case, for equilibrium conditions (ẇp = 0), we again find the relation
of Eqn. (9.7) as long as the TRV equilibrium is maintained:

�
p
X
ν′′p−ν′p
p = kf

kr
= Kc (T ) (9.28)

From Eqns (9.25) and (9.28), we deduce that the rate constant of the reverse
reaction of Eqn. (9.21) has the following form:

kr = CrT
m (9.29)

Example 1: Dissociation of a diatomic gas

This example is typical (Chapter 5), and we have

A2 +M
kf
�
kr
2A+M (9.30)

Thus we find

ẊA = 2(kf XA2XM − krX2AXM) (9.31)

with

kf = Cf T
n exp

(
θD

T

)
(9.32)

and finally

ẇA = 2MAkfXM

(
XA2 − 1

Kc
X2A

)
(9.33)



268 CHAPTER 9 REACTIVE FLOWS

Example 2: Reacting gas mixture

One example of this is air at high temperature.
Considering a mixture of n species p involving r reactions, we have for themth reaction:

n∑
p=1
ν′pmAp

kfm
�
kbm

n∑
p=1
ν′′pmAp (9.34)

The total balance of the species p due to all r reactions is

Ẋp =
r∑

m=1

(
Ẋp
)
m =

r∑
m=1

(
ν′′pm − ν′pm

)(
kfm

n
�
p=1

X
ν′pm
p − krm

n
�
p=1

X
ν′′pm
p

)
(9.35)

and in TRV equilibrium, we have

Ẋp =
r∑

m=1

(
ν′′pm − ν′pm

)
kfm

(
n
�
p=1

X
ν′pm
p − 1

Kcm

n
�
p=1

X
ν′′pm
p

)
(9.36)

so that

ẇp = MpẊp

9.4.2 Vibrational kinetics

In principle, the fundamental problem is how to determine vibrational popu-
lations in various situations involving vibrational relaxation and their influence
on flow quantities. To do this, it is necessary first of all to know or to determine
the individual TV and VV transition probabilities. Fortunately, it is not always
absolutely necessary to make such calculations, and ‘global’ methods based on
realistic models are often used (Chapter 2). These may give sufficiently accurate
results, particularly when only macroscopic flow parameters are required. Some-
times, it is also necessary to make further assumptions, particularly in complex
situations where several reactive components are involved. Examples of such
calculations in specific cases (shock waves, expansion flows) are given below.

Global models

Many models derived with global methods have been presented and used for
relaxation times τTV (pure gases and mixtures) and τVV (mixtures) in the general
framework of the harmonic oscillator model.11 Thus in Fig. 41, particular results
for TV relaxation times (N2/N2, O2/O2, O/O), deduced from SSH (Schwarz–
Slavsky–Herzfeld) modelling,15 are shown. As indicated in Chapter 2, they show
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Figure 42. Examples of VV relaxation times.

a linear dependence of the product pτTV withT 1/3. In particular,we point out the
efficiency of the O2/O collisions. However, in view of the experimental results, the
model may be questioned both at high temperature, because in these conditions
polyquantum transitions may occur, and at low temperature for which the long-
range effects of the interaction potential may be important.

In Fig. 42, values for τVV in mixtures N2/O2 and CO/N2, deduced from the
same model, are also shown.

In addition, this model is not completely correct for VV transitions
(Chapter 12). However, qualitatively, it shows the different characteristics of
these two mixtures, essentially due to the quasi-resonant CO/N2 collisions: the
spacing between the vibrational levels is nearly the same for these two molecules,
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in contrast to the N2/O2 case. Thus, the VV relaxation time τVV is relatively small
for the CO/N2 case, and this mixture relaxes essentially as a pure gas.

For mixtures composed of more than two components, the harmonic oscil-
lator model enables us to simplify the general relaxation equation (2.39). In
particular, we may take into account all TV collisions by using the following
barycentric formula:

1

τTVp
=
∑
q

ξq

τTVpq
(9.37)

where τTVp represents an ‘average’ relaxation time for the species p.

STS Models

In principle, the determination of the individual collision rates ak,l
i,j , called the

State to State (STS) approach, gives a detailed description of vibrational non-
equilibrium flows and does not depend on approximate global models. The STS
method must be used when particular exchanges are preferential, as is the case
for gas-dynamic lasers (CO2/N2, · · · ). However, when we need to know only the
macroscopic flow parameters, the complexity of the STS method may not justify
its use.

STS models are available for TV and VV exchanges.17,101−103 Thus, Figs 43
and 44 show the variation of a few collision rates with the vibrational quantum
number for N2 and O2, respectively. As pointed out in Chapter 2, we observe that,
for moderate temperatures, the VV transitions are dominant for the lowest levels
and the TV transitions for the highest levels. Moreover, as the resonant transitions
represent the most probable transitions, we therefore validate the definition of a
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Figure 43. TV and VV collision rates (N2 − N2, T= 1000 K).
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‘vibrational temperature’, at least for not too high temperatures and for situations
where the vibrational population is essentially concentrated in low levels.

9.4.3 General kinetics

As already discussed, vibrational kinetics is generally faster than chemical kinetics
(Figs 9–10). Vibrational and chemical non-equilibriums may, however, coexist,
for example in situations where non-equilibrium processes start simultaneously,
such as behind strong shock waves. A statistical analysis of the resulting inter-
action between both processes was presented in Chapter 5. Thus, the chemical
rate constants depend on the vibrational populations, and therefore, the relax-
ation equations are modified by the chemical reactions. The application of the
corresponding models analysed in Chapter 5 is carried out below within the
framework of specific examples of non-equilibrium flows.

9.5 Typical cases of Eulerian non-equilibrium flows

9.5.1 Flow behind a straight shock wave

Vibrational kinetics: pure gases

For relatively weak shock waves, there are generally no chemical reactions, only
vibrational excitation, and the corresponding equilibrium is attained after a
number of collisions, depending on density and temperature. Therefore, behind
the shock wave there exists a vibrational non-equilibrium region generally
governed by the Euler equations, closed by the (level by level) balance equations
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(Eqn. (2.15)). For one-dimensional flow behind a straight shock wave moving
at constant speed, we can use the Rankine–Hugoniot relations (Eqn. (8.12)) and
the Landau–Teller equation written in a shock wave fixed coordinate system,
that is:

u
deV
dx

= eV − eV
τV

(9.38)

The relaxation time τV represents the TV exchanges (examples of which are
shown in Fig. 41). At x = 0 (just behind the shock wave), the flow quantities
are vibrationally frozen (Rankine–Hugoniot relations for an ideal gas), and the
vibrational energy is the same as that upstream from the shock wave. Then,
after solving the Rankine–Hugoniot system and Eqn. (9.38), we obtain the flow
parameters T (x) , eV (x), and so on. For increasing values of x , the equilibrium
state is approached. These equilibrium conditions of course correspond to the
intensity of the shock wave and upstream conditions, so that they can be a
priori determined independently of the relaxation (Section 9.3.3). Moreover, if
we assume that the resonant collisions are dominant, we can define a vibrational
temperature TV (x), that evolves from its frozen value to the equilibrium value
when TV = T . An example104 of the evolution of temperatures T and TV is
presented in Fig. 45, where we observe that they vary significantly, mainly of
course TV . As the pressure varies little in the relaxation zone (which is also the
case for the velocity), density ρ increases significantly, so that many experimental
determinations of τV are based on the measurement of this parameter as well as
on eV measurements (Chapter 11).
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Figure 45. Evolution of temperatures and density ratio behind a shock wave (nitrogen,Ms = 6.12, pi =
3947 Pa, Ti = 295 K).



9.5 TYPICAL CASES OF EULERIAN NON-EQUILIBRIUM FLOWS 273

Vibrational kinetics: gas mixtures

In the case of a binary mixture, when the gap between the vibrational levels of the
components is rather different (N2/O2 mixture, for example), the VV exchanges
are difficult, and both components tend to evolve independently to equilibrium
with two distinct vibrational temperatures TVN2 and TVO2. In contrast, as dis-
cussed in Section 9.4.2, if the VV exchanges are easy (N2/CO case for which
θVN2 ∼ θVCO, for example), the coupling is important, and both gases evolve to
equilibrium quasi-simultaneously

(
TVN2 ∼ TVCO

)
: the TV relaxation times are

close, and τVV
CO−N2

is small (Chapter 12).
Thus, an example of the variation of temperatures for a N2/O2 mixture (air)

behind a straight shock wave is shown in Fig. 46(a) with and without VV
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Figure 46. (a) Spatial variation of temperatures behind a shockwave in air (Ms = 8, p1 = 102 Pa, T1 =
271 K). A: Temperature T, B:TVO2 (without VV), C:TVO2 (with VV), D:TVN2 (with VV), E: TVN2 (without VV).
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Figure 46. (b) Spatial variation of temperatures behind a shock wave in air (Ms = 25, p1 =
102 Pa, T1 = 205 K). (Notation of Fig. 46(a)).
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collisions. We observe that, for relatively moderate temperatures (shock wave
Mach number equal to 8), the evolution of the vibrational temperatures for
O2 and N2 is different (τTVN2

� τTVO2
). However, at higher temperatures (Fig.

46(b)), the dominant influence of the TV collisions, and therefore their effi-
ciency, tends to accelerate the process of relaxation, and the evolution of the
vibrational temperatures with and without VV collisions are comparable. We
also observe that, because of the VV collisions, the relaxation of N2 is accelerated
while the relaxation of O2 is slowed down.

We may also note that the use of STS methods does not bring important differ-
ences in the evolution of the macroscopic flow quantities, even if the vibrational
population does not have a Boltzmann distribution. An example of the evolution
of vibrational populations behind a shock wave, with and without dissociation,
is presented in Appendix 9.1.

Chemical kinetics

If we consider that, at high pressure and temperature, vibrational equilibrium is
attained just behind the shock wave (at x = 0), chemical reactions take place in
TRV equilibrium conditions, and therefore, the chemical rate constants depend
only on the temperature common to the three modes (Arrhenius) from the
chemically frozen case.

As an example, we consider the case of a shock wave in an oxygen–nitrogen
mixture (21–79%). In a Mach number range 10–25 (characteristic of the re-entry
of a space shuttle into Earth’s atmosphere), the following chemical reactions must
be taken into account:105−106

N2 +M � N +M

O2 +M � 2O +M

NO +M � N + O +M

N2 + O � NO + N

O2 + N � NO + O

O2 + N2 � 2NO (9.39)

with M = N2, O2, NO, N, O. Thus, there are 15 dissociation–recombination
reactions and 3 exchange reactions that include the rate constants kf and kr of the
same type as those of Eqns (9.25) and (9.29), which, in principle, are known.105

By solving the Rankine–Hugoniot system and the species conservation

equations u
dcp
dx = ẇp , we can determine the variation of the concentrations as
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well as that of the flow quantities from the frozen state (x = 0) to the equilibrium
state.

In fact, for re-entry conditions in the high-altitude atmosphere (high temper-
ature, relatively low pressure), the vibrational relaxation of N2, O2, and NO and
the vibration–chemistry interaction must be taken into account. Furthermore,
for the highest Mach numbers, the molecular and atomic components may be
ionized (Appendix 9.2).

With regard to the vibration–chemistry interaction, the dissociation-rate
constants are modified according to Eqn. (5.39), and the recombination and
exchange-rate constants by similar formulae. However, for recombination reac-
tions involving only atoms as reactants, it is difficult to know the vibrational
level of recombined molecules, so that we consider that the corresponding
reaction-rate constants kr depend only on the translation temperature of
the atoms, that is kr (T ) (Section 9.5.2): this corresponds to generally used
assumptions.34,37 We may also note that this hypothesis involves only 4 reac-
tions among the 36 reactions of the system of Eqn. (9.39) and that, moreover, the
recombination reactions become really important only close to the equilibrium
state.

An example of the modification of the dissociation-rate constants due to
vibrational relaxation is shown in Fig. 47 (a) and (b) for nitrogen and oxygen
respectively behind a shock wave in air.107,108 These values are compared to their
corresponding values without interaction106 (Arrhenius) and to those deduced
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Figure 47. (a) Dissociation-rate constants of nitrogen behind a shock wave in air (Ms = 25, p1 =
8.5 Pa, T1 = 205 K); A: kD Arrhenius, B: kD with interaction, C: kD empirical.
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Figure 47. (b) Dissociation-rate constants for oxygen behind a shock wave in air (Conditions and notation
of Fig. 47(a)).

from an empirical model widely used.36 We easily understand that the equilib-
rium Arrhenius values are deeply modified when we observe that the vibrational
temperatures vary from about 300 K to 6500 K in the chosen example.

The variation of the temperatures and species concentrations corresponding
to this example is represented in Fig. 48 (a) and (b), respectively. These results
are deduced from the solutions of the Rankine–Hugoniot system, the species
conservation equations, and the relaxation equations in which the vibration–
chemistry interaction, as described above, has been taken into account.

This interaction contributes to slowing down the chemical reactions and to a
decrease of the temperature. We may also note the existence of a minimum for
TVO2,which is due to an important dissociation rate of O2 from the highest vibra-
tional levels and then compensated by exchanges with the other components of
the mixture. This minimum does not appear when the interaction is neglected
or in the case of pure gases.

The temperature TVN2 exhibits a maximum because of the relatively slow
relaxation of N2, whereas the concentration of N atoms increases monotonously.
The concentration of O atoms also presents a maximum owing to the rapid
relaxation and dissociation of O2, then decreases following the decrease in T .
The maximum observed in the evolution of the NO concentration is due to the
successive phases of formation and dissociation.

As for possible ionization, in the Mach number range considered above (10–
25), the ionization rate is about 1%, so that this process can be considered as
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Figure 48. (a) Spatial variation of temperatures behind a shock wave in air (Conditions of Fig. 47(a)).
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Figure 48. (b) Spatial variation of concentrations behind a shock wave in air (Conditions of Fig. 47(a)).

a perturbation. Thus, concentrations of the ionized species may be determined
from the conditions given by the preceding calculation. However, for practical
applications related to communications with re-entry vehicles, it is important to
determine these concentrations (Appendix 9.2).
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9.5.2 Flow in a supersonic nozzle

This type of flow also represents a relatively simple example of non-equilibrium
flow. The main aerodynamic features of this flow were presented in Chapter 8.

If we assume equilibrium reservoir conditions (gas at rest with high pressure
and temperature), the temperature and density of the gas expanding into the
nozzle quickly decrease, the initially dissociated gases tend to recombine, and
the vibrational energy tends to decrease. However, if the characteristic recom-
bination times and/or the vibrational relaxation times have the same order
of magnitude as the characteristic flow time in the nozzle, the flow is out of
equilibrium. Thus, there is a‘freezing’of the concentrations as well as of the vibra-
tional energy, corresponding to values higher than those for local equilibrium
conditions.

An estimation of the freezing processes may be obtained from the quasi-
one-dimensional equations (7.47), (7.48), and (7.40), closed by the species
conservation equations and by the vibrational relaxation equations.

Example 1: Vibrational kinetics

A simple example is shown in Fig. 49 (a) and (b), concerning a non-dissociated nitrogen flow in a
nozzle of small dimensions. The macroscopic flow quantities (temperatures, Mach number) along
the nozzle are determined by the classical Landau–Teller equation (Fig. 49(a)): we observe that
the vibrational energy freezes at a high value.
In Fig. 49(b), this frozen value (curve A) is compared to the corresponding value deduced

from a computation of the probabilities of vibrational transitions, taking into account the
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Figure 49. (a) Spatial variation of temperatures along a supersonic nozzle
[
S/Sc = 1 + tg2α (x −

xc/Rc)2
]
. (Nitrogen, T0 = 2400 K, p0 = 107 Pa, xC = 0.5 cm, RC = 0.1 cm, α = 8◦).
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Figure 49. (b) Spatial variation of vibrational energy along a supersonic nozzle. A: Landau–Teller, B:
Non-spherical interaction, C: Equilibrium (Conditions of Fig. 49(a)).

anharmonicity of the molecules and the non-sphericity of the intermolecular potential (curve B;
Appendix 1.3).109 In this last case, the freezing level is clearly lower (about 10%) than in the
Landau–Teller case, because the vibrational exchanges, especially the VV exchanges, tend to
re-equilibrate the system. Curve C of Fig. 49(b) would correspond to the local equilibrium.

Example 2: Vibrational and chemical kinetics

As another example,101 we consider a partially dissociated nitrogen flow,with reservoir conditions
T0 = 10 000 K, p0 = 28 × 106 Pa, α = 0.4. Vibrational energy and N-atom concentration
quickly freeze in the divergent part of the nozzle. When the vibration–recombination interaction
is not taken into account, curve A (Fig. 50(a)) represents the evolution of the atom concentration
along the nozzle (withArrhenius constants and Landau–Teller model). The MS model (Section 6.6)
derived from the (SNE)C+(WNE)V model gives, for the atom concentration, a freezing level that
is slightly lower (curve B, Fig. 50(a)), because the recombination-rate constant of reaction 1 (Eqn.
(5.44)) is more important (high level of vibrational energy), but also because no coupling has
been assumed for reaction 2 (Eqn. (5.52)). The (SNE)C+(SNE)V model, defined also in Chapter 5,
cannot be applied without further hypothesis, such as by assuming that the relation Kc = kR/kD
remains valid.
Similarly, the STS approach does not greatly modify the freezing level of the atom con-

centration (curve C, Fig. 50(a)) or the flow quantities. However, the spatial variation of the
vibrational populations may be determined in this way (Fig. 50(b)). Thus, we observe a Boltz-
mann distribution close to the throat because, in the convergent part of the nozzle, the
flow is practically in equilibrium. Downstream, the lowest levels preserve a quasi-Boltzmann
distribution (in fact, close to a Treanor distribution) and freeze at a high temperature level. In
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Figure 50. (a) Dissociation rate along a supersonic nozzle (nitrogen, RC = 0.5 cm, Ss/Sc = 4489, L =
3.42 m, T0 = 10 000 K, p0 = 28× 106 Pa). (A: Landau–Teller–Arrhenius, B: MS model, C: STS model).
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Figure 50. (b) Vibrational population distribution in a supersonic nozzle I: x = 0.0015 m, II: x =
0.50 m, III: x = 3.42 m (Conditions of Fig. 50(a)).

contrast, if the population of the high levels also preserves a quasi-Boltzmann distribution, this
corresponds to a much lower temperature level—in fact, close to the local equilibrium.
In summary, therefore, the assumption kR = kR (T ) seems credible and is validated by

experimental results (Chapter 12).

We may also think that the energy arising from the recombination reactions
cannot be found in rotational or vibrational form in the recombined molecules
without these molecules undergoing a new dissociation.99 We cannot find this
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energy in a radiative form,because the spontaneous transition characteristic time
is much longer than the vibration period. Furthermore, as ternary collisions are
rare, we may assume a two-step scheme of following type:

A + A � A∗∗
2 then A∗∗

2 +M � A∗
2 +M

Therefore, theM particle possesses an important kinetic energy.
Most experimental nozzles are either conical or ‘contoured’ (that is, a

priori computed with aerodynamic and physical models). Therefore, a two-
dimensional calculation of the flow is necessary. This does not question the
preceding results, which remain qualitatively valid in the central part of the
nozzle. A two-dimensional Euler computation, however, gives a more detailed
description110 of the flow but requires boundary-layer corrections (or a com-
plete Navier–Stokes computation must be made, as reported in Chapter 10).
The Euler computations are nonetheless useful, and they are relatively fast and
inexpensive, particularly for complex mixtures. A typical example is presented
below.

Example 3: Airflow in an axisymmetric nozzle

An Euler computation of the airflow expanding into a nozzle that has a conical divergent part is
thus carried out, starting from equilibrium reservoir conditions for which the dissociation rate of
oxygen is important. An example of isomass flux lines111 close to the throat (where the boundary
layer is very thin) is shown in Fig. 51, pointing out the ‘source effect’ of the throat.

Figure 51. Airflow close to the throat of a nozzle (isomass flux lines). (Flow from left to right) (RC =
0.175 cm, α = 15◦, T0 = 6000 K, p0 = 107 Pa, ξO = 0.16, ξNO = 0.09, ξN = 0.01, ξO2 = 0.02).
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Figure 52. Oxygen vibrational temperature in a nozzle (RC = 0.3 cm, α = 10◦, air, T0 = 6500
K, p0 = 1.53× 106 Pa).

From a similar computation, Fig. 52 shows isothermal lines for the vibrational temperature of
oxygen in the nozzle.110 However, the freezing level of 1500 K given by this Euler computation is
not realistic, because of the presence of a non-negligible boundary layer in the divergent part.Thus,
in Fig. 73 of Chapter 10, for the same nozzle, we compare the frozen values for TVO2 and TVN2
obtained in the Euler and Navier–Stokes regimes.112

9.5.3 Flow around a body

The Euler computations of high-speed flows around bodies cannot give a quanti-
tative description of all parameters,nor can they in particular solve the important
problem of exchanges between the flow and the body (Chapter 10). However, as
for the internal flows, they do give correct general features of the real gas effects.

(a) (b) (c)

Figure 53. Isothermal lines of hypersonic flow around a hemisphere-cone body (M∞ = 17.9, T∞ =
231 K, p∞ = 10 Pa).
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Thus, shown in Fig. 53 are the isothermal lines of a hypersonic airflow
around a hemisphere-cone body, deduced from an Euler calculation. In par-
ticular, these lines show the location of the detached shock wave in front of the
body when assuming frozen flow (a), non-equilibrium flow (b), and equilibrium
flow (c), for the same upstream free flow.113Thus, important differences may be
observed.

Appendix 9.1 Evolution of vibrational populations
behind a shock wave

An example of the evolution of the vibrational populations of a diatomic gas
(oxygen) behind a straight shock wave is analysed. Two situations are considered:
the first concerns a temperature range 600–2000 K for which dissociation may
be neglected, and the second has a temperature range 2000–5000 K in which
vibrational excitation and dissociation occur simultaneously.114

An STS method is used with the values of individual transition probabilities
for the ‘bound–bound’ transitions115 and dissociative transition ‘bound–free’
probabilities using a preferential model discussed in Chapter 5.

In the first case, the relaxation equations are given by Eqn. (2.17) or, taking
the relative populations niv/n as variables, by the following equations:

d

dt

(niv
n

)
= Z (O2 − O2)

∑
jv ,kv ,lv

(nkv nlv
n2

P
iv ,jv
kv ,lv

− niv njv
n2

Pkv ,lv
iv ,jv

)
(9.40)

In the second case, taking into account the presence of O atoms, we write the
population evolution equations as follows:

dciv
dt

= Z (O2 − O2)

cO2

[ ∑
jv ,kv ,lv

(
ckv clv P

iv ,jv
kv ,lv

− civ cjv P
kv ,lv
iv ,jv

)

+
∑
jv ,lv

(
2c2

Oclv P
iv ,jv
D,lv

− civ cjv P
D,lv
iv ,kv

)]

+ Z (O2 − O)

⎡⎣∑
kv

(
ckv P

iv
kv

− civ P
kv
iv

)
+ 2cO2P

iv
D − civ P

D
iv

⎤⎦ (9.41)

where the mass concentrations are the unknowns, and where the index O2 has
been omitted for the concentrations of molecular-level populations.
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These equations are coupled with the Rankine–Hugoniot (RH) relations and
with a species conservation equation, for example O species, that is:

dcO
dt

= Z (O2 − O2)

cO2

⎡⎣ ∑
iv ,jv ,kv ,lv

(civ cjv P
D,lv
iv ,kv

− 2c2
Oclv P

iv ,kv
D,lv
)

⎤⎦
+ Z (O2 − O)

⎡⎣∑
iv

(
civ P

D
iv − 2c2

OP
iv
D

)⎤⎦ (9.42)

The evolution of vibrational populations deduced from these equations is
compared to that obtained from global models, such as the Landau–Teller model
(model A) or the Treanor model (model B). Moreover, in order to appreciate
the relative influence of the TV and VV transitions, a particular computation
is carried out with Eqns (9.41) and (9.42), but excluding the VV transitions
(model C).

9.1.1 Evolution without dissociation

For conditions without dissociation, Fig. 54 (a) and (b) show the evolution of
the populations of the fourth and sixteenth vibrational levels respectively behind
a shock wave in oxygen (Ms = 6, Tf � 2200 K, and Te � 1900 K).

Behind the shock wave, at x = 0, 99% of the total population is in level 0,
but in equilibrium conditions, the population of level 0 represents only 68%,
whereas the population of the first level n1 increases from 0.32% to 21%. We also
observe that the populations of the lowest levels (such as level 4) computed with
various models are nearly the same, except with the Landau–Teller model. This
confirms that we have a non-Boltzmann distribution in the non-equilibrium
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Figure 54. (a) Relative vibrational population of the fourth level behind a shock wave (oxygen,Ms = 6,
T1 = 278 K, p1 = 140 Pa; A: Landau–Teller, B: Treanor, STS: state to state, T: temperature).
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Figure 54. (b) Relative vibrational population of the sixteenth level behind a shock wave (Conditions of
Fig. 54(a); A: Landau–Teller, B: Treanor, C: without VV collisions, STS: state to state, T: temperature).

region, which is particularly true for the high levels. However, the differences
between the models increase with increasing level.

These results also show that the Treanor distribution is very close to the STS
model, while model C (no VV collisions) overestimates the populations, thus
pointing out the ‘regulating’ role of the VV collisions.

9.1.2 Evolution with dissociation

For conditions with dissociation, Fig. 55 (a) and (b) represent examples of the
evolution of populations of the fourth and seventeenth levels respectively behind
a shock wave in oxygen (Ms = 10, Te � 3000 K).

In these conditions, vibrational relaxation is very rapid compared to chemical
evolution (τV � τD), so that both processes are clearly separated: there is an
initial phase of a rapid increase in the vibrational populations of those levels
that are equal to or higher than 1, practically identical for all levels and corre-
sponding to a chemical ‘incubation phase’ (vibrational relaxation), followed by
a slow decrease in populations up to the equilibrium values (chemical phase). In
contrast, as expected, the population of level 0 decreases during the first phase
and then slowly increases up to its equilibrium value.

For the low levels (the fourth is represented in Fig. 55(a)), all models are
equivalent, whereas for the high levels (the seventeenth is represented in Fig.
55(b)), models A, B, and C overestimate the populations in comparison with
the STS model, which once more points out the importance of the VV collisions
reducing the effect of the TV collisions.

As already discussed, if the populations (especially those of the high levels) are
sensitive to the models, the macroscopic quantities depend very little on them.
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Figure 55. (a) Relative vibrational population of the fourth level behind a shock wave (oxygen, Ms =
10, T1 = 271 K, p1 = 390 Pa; notation of Fig. 54(b)).
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Figure 55. (b) Relative vibrational population of the seventeenth level behind a shock wave (Conditions
of Fig. 55(a); notation of Fig. 54(b)).

Appendix 9.2 Air chemistry at high temperature

9.2.1 Air chemistry in equilibrium conditions

As indicated in Section 9.5.1, in the Mach number range 10–25, we must
take into account 18 reactions (9.39), with equilibrium constants having the
following form:

Kc = CTc exp (−θc/T ) (9.43)

where θc = θD for the dissociation reactions.
This important number of reactions does not lead to a number of equations

higher than unknown quantities. For example, the equilibrium constant Kc18 is
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a function of preceding reaction constants, that is:

Kc18 = N2
NO

NO2NN2

= Kc1Kc2
K 2
c3

(9.44)

The air composition for equilibrium conditions is represented in Fig. 56(a)
and (b) for two pressures. Of course, for better accuracy, other species (Ar, CO2,
and so on) should be taken into account.

9.2.2 Ionization phenomena

Behind a straight shock wave, in the same Mach number range as before (10–25),
the only source of electrons is from the reaction of Eqn. (9.17) and reactions of
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associative type,105 the more efficient of which are the following:

O + N � NO+ + e−

O + O � O+
2 + e−

N + N � N+
2 + e− (9.45)

If we consider the different peculiar velocities of heavy species and electrons,
the rate constants of the forward reactions depend on T , and those of backward
reactions on Te .

The cross sections of these reactions are small, so that the electronic density
ne increases slowly behind the shock wave. However, as soon as the number
of electrons becomes ‘significant’, new reactions start (reactions by impact of
electrons), the most important of which are

O + e− � O+ + 2e−

N + e− � N+ + 2e− (9.46)

Then, there is a steep increase in the electron density, known as the ‘avalanche
process’.

As the density of ionized species simultaneously increases, charge exchange
reactions may take place. The most important of these are

O + O+
2 � O2 + O+

N2 + N+ � N+
2 + N

O + NO+ � O+ + NO

N2 + O+ � N+
2 + O

N + NO+ � N+ + NO

O2 + NO+ � O+
2 + NO

NO+ + N � N+
2 + O (9.47)

These reactions may be sensitive to vibrational non-equilibrium as long as the
corresponding relaxation is not over.

It is of course necessary to know the evolution of the electronic temperature
Te , which can be deduced from the corresponding energy balance equation.
If we neglect the dissipative processes, charge separation effects, and radiative
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phenomena,116–118 we can write this equation as follows:

d
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ṅec
k

(9.48)

The first three terms on the right-hand side of Eqn. (9.48) represent the
balance of elastic collisions with neutral species s and with charged particles c ,
the balance of inelastic collisions with molecules p, involving rotational then
vibrational energy; the meaning of various quantities involved is given in the
nomenclature at the start of this part of the book.

An example116of the spatial variation of electronic temperature Te , electronic
density ne , and concentrations of the main ionized species behind a shock wave
is given in Fig. 57 (a) and (b) and Fig. 58 respectively: the maximum observed in
the evolution of ne may be easily explained by successive phases of the creation
and disappearance of electrons.

Sometimes it may be necessary to take into account the electronic excitation of
neutral particles. Then,we generally suppose117 that there is equilibrium between
the distribution of the excited electronic states and that of free electrons, so that
we assume that there ‘exists’ only one temperature Te ; a common electronic
energy, ee , of free and bound electrons is therefore defined such that

ρee =
∑
q

ρeeeq

0
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T 
(1

04 K
)
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2 4 6 8
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Figure 57. (a) Spatial variation of temperatures behind a shock wave in air (Ms = 25,
T1 = 250 K, p1 = 8.5 Pa).
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where q includes all species and electrons.
Equation (9.48) is then slightly modified.
Another consequence of the presence of electrons is the possibility of energy

exchange between the electrons and the vibrational mode of the molecules,
ionized or not.102 Then for example, in the Landau–Teller equation (2.19), a
new term must be added on the right-hand side, which can be written in the

following simplified form:
Evp(Te )−Evp
τevp

Appendix 9.3 Reaction-rate constants

If we again consider the example of Chapter 2 (Section 2.8.1), we have the
following bimolecular reaction:

P + Q → P ′ + Q′
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and

ẇp
mp

= −kf npnq

where, neglecting the internal modes, we have

kf =
∫

�,vp ,vq

fpfq
npnq

I
p′,q′
p,q gpqd� dvpdvq =

∫
vp ,vq

fpfq
npnq

C
p′,q′
p,q gpqdvpdvq

Independently of the determination of the cross sections, which constitutes
an important difficulty, we can obtain a general expression for kf which may be
used for the correlation or representation of the experimental results.99

The reactive collision rate kf represents one part of the total collision rate,
assimilated to the elastic collision rate kel , that is:

kel =
∫

�,vp ,vq

fpfq
npnq

gpqd� dvpdvq

Among these collisions, we consider to be reactive collisions those that
correspond to values for relative velocity that are higher than a value denoted g∗.

With a Maxwellian distribution and a rigid sphere model (Appendix 2.2), we
obtain for kel :

kel =
(
dp + dq

2

)2 (8πkT

mr

)1/2

The rate of collisions for which gpq ≥ g∗, is equal to

k∗ = kel

(
1 + mrg 2∗

2kT

)
exp

(
−mrg

2∗
2kT

)
It is more significant to consider that the collision is reactive when the com-

ponent of the relative velocity parallel to r is higher than a value g∗∗; then we
simply have

k∗∗ = kel exp

(
−mrg

2∗∗
2kT

)
We can relate the quantity mrg 2∗∗

2 to an activation energy per molecule εa ;
therefore

kf ∼ k∗∗ ∼ kelS exp
(
− εa
kT

)
The exponential term may be considered the probability of a reactive colli-

sion. Moreover, the term S may take into account the relative orientation of the
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colliding molecules (steric factor). However, in consideration of the restrictive
hypotheses of the present analysis, a more general formula of the type of Eqn.
(9.25) is often used.

Appendix 9.4 Nozzle flows

In Chapters 3 and 4, linearized expressions (WNE) for vibrational non-
equilibrium were derived (Eqn. (3.66) for pure gases, and Eqns (4.51) and (4.52)
for binary mixtures). If we apply these results to a particular nozzle flow, we
obtain an evolution of the vibrational energy along the nozzle,119 shown in
Fig. 59, where it is compared to the evolution given by a global model (SNE,
Landau–Teller).

It is not surprising to observe that the WNE freezing level is lower than the
SNE freezing level; moreover, this level is not really a plateau but rather an
inflexion point, so that, further along the nozzle, the vibrational energy tends to
its local equilibrium value. There is indeed some competition in the expression
of EV between the increasing term τV

C2
TRV

and the decreasing term CVT
du
dx , which

becomes dominant (dudx → 0).
For smaller angles of the conical divergent part of the nozzle, the difference

between the freezing levels is less important, but for angle values higher than
4–5˚, the WNE freezing values oscillate about the corresponding SNE value.
Then, we must be aware of the conditions for applying the WNE method, that

is τV
θ

� 1. In a nozzle, we have θ ∼
(
du
dx

)−1
, so that close to the throat we have

τV
θ

∼ 10−2, but we rapidly attain the limit of the validity of the WNE method in
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the divergent part. From a practical point of view, in usual supersonic nozzles,
the divergence angles are 8–10˚ or higher.

We may also note that the choice of an oscillator model is not very important,
and the freezing level remains practically the same for a harmonic or an anhar-
monic model (for the latter, it is 1–2% higher). This is not true for the molecular
interaction model, which influences this level significantly (Fig. 49(b)). Similarly,
the choice of a model for the relaxation time itself may also be important for the
freezing level, and its value may vary significantly (Chapter 12).



TEN

Reactive Flows in the
Dissipative Regime

10.1 Introduction

In the preceding chapter, the basics of reactive flows were presented and applied
to simple situations to highlight the main features of the interaction between
physical–chemical phenomena and aerodynamic processes. The determination
of more complex flow fields constitutes the subject of the present chapter, with
a view to examining realistic and practical situations. Even if the geometrical
configurations of these flows are simple, dissipative effects are taken into account,
as are the correlative exchanges with the background: thus, the Navier–Stokes or
boundary-layer equations constitute the essential means to obtaining an accurate
description of these flows.

We successively examine dissipative flows in chemical equilibrium (flat plate,
stagnation point), and then non-equilibrium flows for which the boundary con-
ditions, particularly chemical conditions, play an important role: this is the case
for catalytic phenomena which govern wall heat flux processes.

Vibrational non-equilibrium boundary layers, which present specific features
and influence chemical kinetics, are studied in the second part of the chapter. In
the final part, typical examples of dissipative supersonic and hypersonic flows in
nozzles, around various bodies, or in mixing zones are presented.

Some specific problems of importance, such as accommodation and exchange
phenomena in Knudsen layers, generalized Rankine–Hugoniot relations behind
intense shock waves, and quantitative data on particular transport coefficients,
are discussed in the Appendices. The details of the kinetics of vibrational
exchanges in gas-dynamic lasers are also presented here.

Finally, this chapter would be incomplete without giving the principles and
general features of numerical methods often used to solve the Navier–Stokes
equations.
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10.2 Boundary layers in chemical equilibrium

We first consider the simple case of flows in complete equilibrium (TRV and
chemical equilibrium) and particularly the flow of a dissociating pure diatomic
gasA2 (Chapter 9). The most important problem is the determination of the wall
heat flux and its comparison with the corresponding frozen heat flux (without
dissociation; Chapter 8).

To this purpose, we consider the boundary-layer equations ((8.24)–(8.26)
and (8.29)), and the species conservation equation ẇp = 0, which, in this case,
becomes αp = F (T ) (Eqn. (9.12)), where α is the dissociation rate. Enthalpy h
is given by Eqn. (9.14), and the component of the heat flux along an axis normal
to the wall, qy , which includes conduction and diffusion fluxes, may be written
as follows:

−qy = λ∂T
∂y

+ ρD (hA − hA2

) ∂α
∂y

(10.1)

since
∂p

∂y
= 0

As we have

h0
A �

T∫
0

(
C
p
A − C

p
A2

)
dT

we can write

−qy � (λ+ λR)∂T
∂y

= λe ∂T
∂y

(10.2)

where λR = ρDh0
A
dα
dT is called the ‘reaction conductivity’, and λe = λ + λR is

the apparent conductivity.
Now, we consider the typical cases of the flat plate and the stagnation point.70

10.2.1 The flat plate

Here, we have ue = A, p = pe = B, and α = α (T ), whereA and B are constants.
As µ,D, and λe depend only on T , we have

dh = CpdT (10.3)

with

Cp = Cp (T ) � C
p
f (T )+ h0

A
dα

dT
(10.4)
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We can also define an ‘apparent’ Prandtl number Pe such that

Pe = Cpµ

λ+ λR � P

⎡⎣Cpf
Cp
(1 − L)+ L

⎤⎦−1

(10.5)

where L is the frozen Lewis number equal to
ρDC

p
f

λ
, and P is the frozen Prandtl

number equal to
C
p
f µ

λ
.

We then have a complete formal analogy between the equations of the dissoci-
ated boundary layer (in equilibrium) and the equations of the frozen boundary
layer (Eqns (8.55) and (8.59)).

Therefore, assuming analogous hypotheses (Pe is constant), we find a skin-
friction coefficient that is practically equal to Eqn. (8.58) and therefore not very
sensitive to the dissociation, and a wall heat flux which, in view of Eqn. (8.60),
may be written:

qw =
(ρwµwue

2x

)1/2
fw

′′P−2/3
e (hwr − hw) (10.6)

As Pe is not very different from P , the influence of the dissociation appears

essentially in the term hwr − hw � he − hw + r u
2
e

2 . Moreover, as the recovery
factor r depends weakly on α, the dependence of the heat flux on the dissociation
is mainly found in the term he − hw , with

he − hw =
Te∫
Tw

[
αC

p
A + (1 − α)CpA2

]
dT + h0

A (αe − αw) (10.7)

Thus, the last term of the right-hand side of Eqn. (10.7) represents the direct
contribution of the dissociation to the wall heat flux. As this term is proportional
to the difference of the dissociation rates in the outer flow and at the wall, it may
be important for a significantly dissociated flow (0 < αe < 1) along a ‘cold’ wall
where the atoms are recombining (catalytic wall, αw � 0).

10.2.2 The stagnation point

x = ξ = 0, ue = 0,
due
dx

= K (const.), j = 1 (axisymmetric body)

This case is an important example for the heat flux, which can take high values
when the upstream flow is hypersonic (re-entry of space shuttles). Of course, we
assume that T0e � Tw (cold wall).
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It is clear (Chapter 8) that there are similarity solutions for the transformed
boundary-layer equations (Eqn. (8.64)), if we include C in the transformation
formula giving η (Eqn. (8.56)), and if we use Eqn. (9.12) giving α.

If we are essentially interested in the heat flux, we may neglect the pressure
gradient term in Eqn. (8.64) in view of Fig. 35, so that, assuming Pe = const.,
we have to solve the following system:70

f ′′′ + ff ′′ = 0

g ′′ + Pefg
′ = 0

α = α (T ) (10.8)

This system is equivalent to the system used for the flat plate in Chapter 8
(with E0e = 0). Therefore, we have the same expressions for fw ′′ and g ′

w . For the

heat flux, taking into account the relation giving η, that is,
(
∂η
∂y

)
w

=
(

2Kρw
µw

)1/2
,

we have

−qw = (2Kρwµw)1/2 fw ′′P−2/3
e (h0e − hw) (10.9)

with

h0e − hw =
T0e∫
Tw

[
αC

p
A + (1 − α)CpA2

]
dT + h0

A (α0e − αw) (10.10)

As T0e � Tw , the heat flux may be very important if the stagnation enthalpy
is high (and therefore the upstream velocity) and if the (cold) wall is catalytic.

This result suggests that we should consider the case of a frozen boundary layer
for a dissociated gas at a stagnation point. In this case, the species conservation
equation is reduced to a diffusion equation, that is:

z ′′ + Sfz ′ = 0 (10.11)

with z = α
αe

(Chapter 8).
The corresponding momentum equation may be written as follows, neglecting

the pressure gradient term as above:

f ′′′ + ff ′′ = 0

And for the energy equation, we have

g ′′ + Pfg ′ = (1 − L) z ′′ (10.12)

with the usual boundary conditions:

η→ 0, f = f ′ = 0, g = gw , z = zw
η→ ∞, f ′, g , z → 1
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These equations are easily solved, and assuming that for a cold wall we have

(hA − hA2)w � h0
A , the wall heat flux −qw =

(
λ∂T
∂η

+ ρD ∂α
∂η

)
w

(
∂η
∂y

)
w

may be

written in the following approximate form:

−qw = (2Kρwµw)1/2 fw ′′P−2/3 [h0e − hw + h0
A

(
L2/3 − 1

)
(αe − αw)

]
(10.13)

For a cold wall, it is clear that, quantitatively, this expression differs little from
Eqn. (10.9), which corresponds to the equilibrium case; it is then apparent that
in the non-equilibrium case the heat flux will have approximately the same
value.120,121

Therefore, the heat flux is not very sensitive to the boundary layer ‘chemical
regime’ but essentially to the temperature difference T0e − Tw and also to the
dissociation rate difference α0e − αw . This last term may be important if, as
discussed above, the wall is catalytic. With a view to eventually reducing this part
of the heat flux, it is necessary to examine the catalytic properties of the wall for
the recombination of the impinging atoms.

10.2.3 Reactive boundary layer and wall catalycity

When the boundary layer is frozen or in non-equilibrium, a layer of non-
recombined atoms may be found close to the wall if the recombination reactions
are inhibited by the non-catalytic properties of this wall, so that the heat flux
may be reduced.

Assuming that the recombination process is fed by the diffusion of atoms
towards the wall, we have122(

ρD
∂α

∂y

)
w

= (kRρα)w (10.14)

We also assume that the wall is ‘cold’ enough to lay down a negligible atom
concentration in the catalytic case.

Here, kR is the recombination-rate constant, which is dependent on the gas–
wall coupling (kR → 0: non-catalytic wall; kR → ∞: catalytic wall) and
corresponds to the following reaction, taking place after the adsorption of atoms:

A + A−s → A2 + s (Eley–Rideal process)

or to the reaction

A−s + A−s → A2 + 2s (Langmuir–Hinshelwood process)

where s is a site for an atom A−s on the wall surface.
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From Eqn. (10.14), we deduce the following expression:

z ′w =
(ρwµw

2K

)1/2 kRw
ρwD

zw (10.15)

The solution of Eqn. (10.11) is still valid, so that

z ′w = fw
′′S1/3 (1 − zw) (10.16)

We deduce from Eqns (10.15) and (10.16) an expression for z ′w , that is:

z ′w = fw
′′S1/3� (10.17)

with

� =
[

1 + fw
′′ (2Kµw)1/2

S2/3ρ
1/2
w kRw

]−1

(10.18)

Here, � = 0 and � = 1 correspond to the non-catalytic and to the fully
catalytic case, respectively.

Finally, for the wall heat flux, we find

−qw = (2KCρeµe)1/2 fw ′′P−2/3 [h0e − hw + (
L2/3�− 1

)
h0
A (αe − αw)

]
(10.19)

For� = 1, we again find Eqn. (10.13).
For� = 0, in Eqn. (10.19), we find the ‘thermal contribution’ only.
We may also define a recombination coefficient γA, representing the ratio of

the net mass rate created at the wall to the incident mass flux, that is:55

γA = (kRρA)w
mANA

where NA , incident atom flux, is equal to nAw
√

kTw
2πmA

(Appendix 6.5). Thus,

we have

kRw = γA
√
kTw

2πmA

From measurements of γA carried out for various temperatures (Chapter 12),
we can deduce the activation energy εA for the corresponding reaction, with

γ = γ0 exp

(
− εA
kTw

)
It is also possible that the energy arising from the recombination is not entirely

transmitted to the wall in the form of a heat flux qcw : a chemical accommodation
coefficient β may then be defined as being equal to qcw/NAEDA2 .
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10.2.4 Boundary layer along a body

Numerical solutions are generally used in solving the complete Navier–Stokes
equations between the detached shock wave and the body (see below).

However, approximate solutions may be found from the stagnation point
along the body. Assuming, for example, a flat-plate similarity (quasi-
independency of g ′

w with the pressure gradient) and L = 1, we find an
approximate expression for qw along the body, that is:123

qw
qw0

= 1

2

ρeµe

(ρeµe)0
uer

2K−1/2

⎛⎝ x∫
o

ρeµe

(ρeµe)0
uer

2dx

⎞⎠1/2

(10.20)

where the subscript 0 is relative to the stagnation conditions.
Owing to the expansion process along a convex body, the heat flux decreases

quickly along this type of body.

10.3 Boundary layers in vibrational
non-equilibrium

Several examples of vibrationally relaxing boundary layers are presented below:
they are representative of the interaction between non-equilibrium phenomena
and dissipative processes. Moreover, in the third example, the consequences on
the chemical rate constants are pointed out.

10.3.1 Example 1: boundary layer behind a moving shock wave

We consider the boundary layer developing along a flat plate behind a straight
shock wave moving at constant speed124 (Fig. 60). The one-dimensional inviscid
flow, which was analysed in Chapter 9, is vibrationally relaxing. The boundary-
layer equations are solved between this Eulerian flow and the wall, which is
assumed to be at constant temperature and catalytic for the vibration. In the
shock wave fixed coordinate system, the two-dimensional boundary layer is
stationary and then described by Eqns (8.57) and (8.59) and a Landau–Teller
relaxation equation, which, in the transformed coordinate system ξ , η, may be
written for a non-dissociated pure gas in the following form:(

Lf
Pf
Cε′

)′
+ f ε′ = 2ξ

(
ε − ε
ρeµeu2

e τV
+ f ′ ∂ε
∂ξ

+ ε′ ∂f
∂ξ

)
(10.21)

with
ε = eV

eVe
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Figure 60. Boundary layer behind a moving shock wave (x = Ust − X).
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Figure 61. Temperature distribution across the boundary layer (nitrogen, Ms = 5, Ti = 295 K, pi =
104 Pa). – – – –Translation–rotation temperature; Vibrational temperature. A: x = 0 cm, B: x =
0.2 cm, C: x = 1 cm.

The temperature distribution across the boundary layer may be deduced from
these equations, and Fig. 61 shows distributions of T = T (η) and TV = TV (η)
for increasing distances x from the shock wave. The evolution of the energetic
vibrational non-equilibrium is also represented in Fig. 62. Thus, we observe that
a maximum becomes visible while the inviscid flow is close to equilibrium: this is
because of longer relaxation times in the boundary layer, where the temperature
is lower than outside but the pressure is the same.

10.3.2 Example 2: boundary layer in a supersonic nozzle

Assuming that the boundary layer in the divergent part of a nozzle develops from
the throat (Fig. 63), we can also calculate energetic vibrational non-equilibrium
(for a non-dissociated pure gas) in this boundary layer:125 as at the throat, the
flow is generally in TRV equilibrium (Chapters 8 and 9), the flow entering the
boundary layer has a high temperature. Assuming a cold catalytic wall, there
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Figure 62. Energetic vibrational non-equilibrium across the boundary layer (Conditions and notation of
Fig. 61).
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Figure 63. Scheme of boundary layer in a nozzle.
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Figure 64. Energetic non-equilibrium distribution across the boundary layer of a supersonic nozzle
(nitrogen, conditions of Fig. 49(a)). A: x = 2 cm, B: x = 16 cm, C: x = 80 cm, D: x = 120 cm.

is a rapid freezing of the vibrational energy (Fig. 64), while the inviscid flow
is close to equilibrium. Thus, close to the throat, there is a maximum for the
non-equilibrium across the boundary layer (curve A). Further in the nozzle, this
maximum tends to decrease, while, as expected, the freezing becomes important
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outside; therefore, we have distributions along the nozzle represented by curves
B, C, and D.

10.3.3 Example 3: boundary layer behind a reflected shock wave

Behind a reflected shock wave at the end wall of a tube (Fig. 65), the relaxation
is more complex than it is behind an incident shock wave, since the reflected
shock wave may propagate in a relaxing gas. If we do not take into account
the presence of side-wall boundary layers, the inviscid flow behind the reflected
shock wave may be computed by a method of characteristics: thus, an example
of successive TR temperature distributions is shown in Fig. 66. These result
from a competition between relaxation and attenuation effects (the shock slows
down), and a minimum appears in the distributions. Close to the end wall,
a boundary layer develops, essentially because of the important temperature
difference between the gas and the wall, since the flow velocity is very small
behind the reflected shock wave.

The computation of this boundary layer (Appendix 10.3), gives the time
evolution of the temperature distributions T and TV and of the energetic
non-equilibrium126 (Fig. 67). The unsteady inviscid conditions give a partic-
ular character to these distributions: thus, the non-equilibrium decreases first
between the shock and the wall during the first instants following the shock
reflection. Then, with increasing time, a minimum appears close to the wall,
so that in the outer part of the boundary layer, we have TV < T as usual
behind a shock, while in the inner part, we have a freezing zone where TV > T
appears and develops until the inviscid flow is in equilibrium. This behaviour
results from competition between a diffusion characteristic time of the excited

y

1

2 3
t

Figure 65. Scheme of boundary layer developing at the end wall of a tube (Physical plane and y , t
diagram). 1: Incident shock, 2: Reflected shock, 3: Boundary layer.
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Figure 66. Temperature distributions behind a reflected shock wave (nitrogen,Ms = 12, p1 = 200 Pa).
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Figure 67. Vibrational non-equilibrium distributions across the boundary layer (Conditions of Fig. 66),

ψ =
[
2
∫ t
0 ρeµedt

]−1/2 ∫ y
0 ρ dy . Time after reflection:A: 25µs, B: 500µs, C: 900µs. Full line: Catalytic

wall. Dotted line: Non-catalytic wall.

molecules going towards the end wall and a relaxation time that is longer in the
colder zone. This occurs even when the wall is catalytic for the vibrational mode
(TVw = Tw).

When the reflected shock wave is more intense, dissociation also takes place,
but the vibrationally frozen zone is still present, so that, in the inner part of
the boundary layer where TV > T , the dissociation-rate constant kD is higher
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Figure 68. Dissociation-rate constants across the boundary layer (Conditions and notation of Figs 66
and 67).

than its local equilibrium value kD : thus, Fig. 68 represents an example of the
variation of the ratio kD/kD across the boundary layer, and a maximum is clearly
visible for a catalytic wall.127

If the wall is non-catalytic
((
∂TV
∂y

)
w

= 0
)

, the freezing zone is of course

more important, the non-equilibrium does not present any minimum, and the
vibrational non-equilibrium increases up to the wall. The same is of course true
for the ratio kD/kD (Fig. 68). We may also verify that the rate constant itself, kD ,
seems to behave in an anomalous way, since it increases up to the wall, while the
temperature is decreasing.

10.4 Two-dimensional flows

The solutions of the Navier–Stokes equations, including chemical reactions and
vibrational non-equilibrium, generally give realistic and complete descriptions
of many flows, without the need for other assumptions than those related to
physical and chemical processes (various models). These equations are there-
fore extensively used in more or less complex situations connected to practical
problems. A few examples are presented below.

10.4.1 Hypersonic flow in a nozzle

Experimental simulations of hypersonic flows are generally carried out in nozzles
requiring computation prior to any construction. In particular, the flow at the
nozzle exit, where various bodies are placed, necessitates such computations.
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The general characteristics of nozzle flows have already been described in the
preceding chapters pointing out the vibrational and chemical non-equilibrium
inherent to the hypersonic regime.

A typical example is presented below: a scheme of the nozzle is shown in
Fig. 69, and the reservoir conditions are given in Table 3. The hypersonic flow
at the exit of the nozzle is intended to reproduce conditions close to those
encountered by a re-entry body in high atmosphere.112

A Navier–Stokes computation including the species conservation equations
and vibrational relaxation equations enables us to determine the complete flow in
the nozzle and especially at the exit. Various results are shown in Figs 70–73; thus,
in Fig. 70, iso-Mach lines are represented with a clearly visible boundary layer.

In Fig. 71, the variation along the nozzle of transverse TR temperature dis-
tributions is shown: the first distribution, A, is close to the throat, the third, C,
is at the exit, and an intermediate distribution is labelled B. In the same figure,
the corresponding distributions of TVN2are also shown, in order to point out
the evolution of the non-equilibrium. The temperatures TVO2 are, of course,
evolving more rapidly, but the trend is similar.

throat

rc

L

axis

R(x) exit

x

b

a

Figure 69. Scheme of the nozzle.

Table 3. General characteristics of the nozzle

Geometrical characteristics

α β rc (cm) L (m) SS/SC
45◦ 10◦ 0.3 1.13 4444

Reservoir conditions

T0 (K) p0 (Pa) cN2 cO2 cNO cN cO

6500 153×106 0.69 0.05 0.16 0.005 0.095

Wall conditions

Tw = 600 K Catalytic wall
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Figure 70. Iso-Mach lines in the nozzle (
M = 0.25).
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In Fig. 72, the evolution of the O2 concentration is shown: this concentration
continues to evolve in the boundary layer along the nozzle, while the frozen level
is attained in the inviscid flow.

The evolution of the temperatures TVN2
, TVO2

along the axis of the nozzle is
represented in Fig. 73 for comparison with the evolution of the same temper-
atures obtained with an Euler computation (Chapter 9): in that latter case, we
observe that the freezing levels are higher, since the expansion is quicker.

10.4.2 Hypersonic flow around a body

Example 1

The proposed present example consists of a steady hypersonic airflow around a sphere-cone
model101 (nose radius RC ): the free stream is assumed to be in vibrational and chemical
equilibrium, and the wall is non-catalytic (Table 4).
The distribution ofmass concentrations along the stagnation line of the body is shown in Fig. 74.

The results are consistent with what could be expected: we observe a decrease in concentrations
of O2 and N2 from the shock towards the wall, then an increase for N2 due to the dissociation of
NO and to the non-catalycity of the wall; there is a maximum for the NO concentration (formation
then dissociation).
From this computation, we can deduce the shock stand-off distance (distance between the

shock and the body along the stagnation line). This quantity is sensitive to non-equilibrium
(Chapter 9) and can be compared to experimental values (Chapter 12).

Example 2

Within the framework of another example (experimental plane X38) and for free stream conditions
given in Table 5, the distribution of T and TVN2 along the stagnation line is shown in Fig. 75,
where a rapid relaxation may be observed.101 The influence of the wall catalycity on the heat
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Table 4. Example of hypersonic flow

RC (cm) T∞(K) p∞(Pa) V∞(m/s) M∞ Tw (K)

3.5 811 192 5010 8.9 300
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Figure 74. Distribution of mass concentrations along the stagnation line (Conditions of Table 3).

Table 5. Free stream conditions for X38

M∞ V∞(m/s) T∞(K) p∞(Pa) Altitude (km)

20 6105 231 12 52
25 7310 205 4 73
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16 Shock
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 (
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0
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Figure 75. Distribution of temperatures T and TVN2 along the stagnation line of X38 (M∞ = 20).

flux may also be observed in Fig. 76, where the distribution of the N concentration along the
stagnation line is shown. The use of a partially catalytic coating (curve NC) significantly reduces
the heat flux in comparison with a fully catalytic wall (curve C).
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Figure 76. Distribution of N concentration along the stagnation line of X38 (M∞ = 25,C : catalytic case,
NC: non-catalytic case).

Table 6. Stagnation and free stream conditions for the shock tunnel128

T0 (K) P0 (MPa) M T (K) TV (N2) (K) TV (O2) (K)

6000 18 7.25 420 2120 900
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Figure 77. Temperature distributions along the stagnation line (Conditions of Table 6).
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Example 3

A somewhat different example is given by the airflow around a hemisphere-cylinder (nose radius
5 cm) placed at the exit of a shock tunnel nozzle,128 where, as we know, the free stream is in
strong non-equilibrium (conditions in Table 6). The computation of the axisymmetric flow around
the body is made by using the MS vibration–reaction model developed in Chapter 6.
The evolution of temperatures along the stagnation line (Fig. 77) shows that the non-

equilibrium effects are strongly reduced because the vibrational temperature freezes at a high
level in the free stream (Table 6).

10.4.3 Mixtures of supersonic reactive jets

Another type of reactive flow is represented by gas-dynamic lasers in which
gaseous components are reacting and can create ‘population inversions’ in their
internal energy modes (electronic, vibrational, and so on). As is well known,
these particular non-equilibrium conditions are required to obtain a laser effect
(Appendix 10.4). The experimental equipments used for this purpose are of vari-
ous types because of the differing nature of the reacting media and that of the effi-
ciency of the ‘pumping’ processes used to maintain the population inversion.129

The proposed present example is a gas-dynamic CO2/N2 laser using the pop-
ulation inversion of the vibrational modes of CO2. This inversion is obtained
from the interaction of a vibrationally excited nitrogen flow and a jet of car-
bon dioxide (mixed with other chemically neutral gases):130 this interaction is
characterized by a quasi-resonant VV transfer (Chapter 2) between the excited
nitrogen molecules and the highest vibrational mode of the carbon dioxide,
which therefore becomes ‘overpopulated’ (Appendix 10.4). The reactive mixture
is then expanded (therefore frozen) in a laser cavity, where the laser effect is
obtained from the de-excitation of the carbon dioxide.

It is therefore essential, in particular so as to increase the efficiency of the react-
ing mixture, to understand the flow field, for which a Navier–Stokes computation
is necessary.

There are two steps in the process: first an excited nitrogen flow is expanded
into a nozzle and mixed with a CO2-expanded flow in a ‘premixing nozzle’
(Fig. 78), then this mixture is mixed again with another carbon dioxide flow in
the laser cavity. Figure 78 shows a basic cell of the whole set-up, which includes a
large number of similar cells. The geometry is quasi-three-dimensional because
it also includes an expansion in the direction normal to the plane of the figure in
order to preserve a partial freezing. In the cavity, the laser line corresponding to
the vibrational transition ν3 → ν1 and to the rotational transition corresponding
to the P14 branch, i.e. 10.6 µm, is amplified.
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Figure 78. Scheme of gas-dynamic laser. 1: CO2/Ar/He/H2 nozzle (T0 = 500 K, p0 = 105 Pa), 2: N2
nozzle (T0 = 500 K, TV0 = 3000 K, p0 = 105 Pa), 3: Premixing nozzle, 4: Laser cavity (H = 0.305 cm).
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Figure 79. Isobars (10−2 Pa) in the laser cavity.
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Figure 80. Isotherms (K) in the laser cavity.

A few results of the Navier–Stokes computation are presented in Figs 79 and
80. The flow-field isobars (Fig. 79) are characteristic of the mixtures of super-
sonic jets, including oblique shock waves at the exit of nozzles, reflecting on the
symmetry axis and attenuating because of the divergence of the cavity. Similarly,
the isotherms (Fig. 80) show the development of the boundary layers coming
from the nozzles. The optical running of the cavity is presented in Appendix 10.4.
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Appendix 10.1 Catalycity in the vibrational
non-equilibrium regime

As in the case of dissociated flows, there is also a catalycity problem for the
vibrational mode of the molecules impinging on a wall: thus, a vibrational
catalycity may be defined with the extreme cases TVw = Tw (catalytic case) and(
∂TV
∂y

)
w

= 0 (non-catalytic case). The problem, however, may be approached in

a somewhat different way.
We consider the boundary layer of a pure gas in vibrational non-equilibrium

and the corresponding Knudsen layer (Appendix 6.5). At the (macroscopic) level
of the wall, vibrational exchanges may occur, either with the wall or with the TR
mode of the gas molecules (considered as a whole). We can therefore define
two accommodation coefficients specific to each mode (TR and V), that is, αTR
and αV , and two exchange coefficients TR→V and V→TR, that is, γTR and
γV . We also assume that the energy exchanged with the wall or between modes
is proportional to the corresponding available energy. For example, the rate of
TR→V energy exchange QTR→V is such that QTR→V = γTR (Fi − Fw) and so
on. It is necessary of course to take into account the exchanged energy between
the molecular modes when writing the balance of each type of energy of the gas
with the wall.

Now if, as before (Appendix 6.5), we write the balance of molecule and energy
fluxes through the Knudsen layer, we obtain the following expressions54,131 for
the TR and V ‘temperature jumps’ at the wall,
T and
TV , that is:


T = T − Tw = 1

A

[
F (αTR , γTR , γV ) qTR − G (αV , γTR , γV ) qV

]
w (10.22)


TV = TV − Tw = 1

B

[
F (αV , γV , γTR) qTR − G (αTR , γV , γTR) qV

]
w

(10.23)

with

A = nwk

(
2kTw
πm

)1/2

and B = CV
2
nw

(
2kTw
πm

)1/2

F (a, b, c) = 2 (1 − c)− a (1 − b − c)

2a (1 − b − c)

G (a, b, c) = b

a (1 − b − c)
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The coupling between
T and
TV is pointed out in these expressions, which
depend on both heat fluxes.

A simple application enables us to determine the influence of these coeffi-
cients on the wall heat flux. Thus, we consider the boundary layer in vibrational
non-equilibrium developing at the end wall of a tube behind a reflected shock
wave (Appendix 10.3). We apply to the corresponding equations the boundary
conditions given by Eqns (10.22) and (10.23), and because of the vibrational
freezing, we assume that γV = 0 (dominant TR → V exchanges).

Independently of the numerical solution of the equations, we can obtain a
general idea of the relative importance of the three coefficients αTR ,αV , and γTR
by linearizing the equations and considering only the short times following the
shock reflection: thus, we obtain an analytic expression for the total heat flux
qw = (

qTR + qV
)
w , that is:

qw(
qw
)
γTR=0

=
1 + γTR

(
2αV

2−αV − 1
)

1 + γTR αTR
2−αTR

(10.24)

where
(
qw
)
γTR=0 represents the heat flux without exchange.

Equation (10.24) is represented in Fig. 81.
Thus, it appears that the intermode coupling gives the (theoretical) possibility

of obtaining a wall heat transfer more important than without exchange (γTR =
0) if αV is greater than αTR . The case of αV � αTR , however, seems more
realistic and is experimentally confirmed (Chapter 12), so that it is similar to
the case of a dissociated but frozen boundary layer on a non-catalytic wall.
The importance of the heat flux then depends on the exchange coefficient γTR
(Chapter 12).

0

1

qw / (qw)gTR = 0

aV = 0

aV = 1aTR < aV

aV (2–aTR)

aTR (2–aV)

aTR > aV

1 gTR

Figure 81. Influence of the exchange coefficient γTR on the wall heat flux behind a reflected shock wave.
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Appendix 10.2 Generalized Rankine–Hugoniot
relations

Behind intense shock waves, the gradients of various quantities are important
enough to be taken into account at x = 0,and therefore, for the balance equations
across the shock wave, it is necessary to use the Navier–Stokes equations
(Chapman–Enskog distribution) rather than the Euler equations (Maxwellian
distribution), which may then be used for x > 0. The corresponding relations or
‘shock slip’ conditions constitute the generalized Rankine–Hugoniot relations:
in the most general case of vibrational and chemical non-equilibrium, they may
be easily deduced from the general Navier–Stokes equations (Chapter 8) writ-
ten in the following one-dimensional form, using only µ and η as dimensional
transport variables:

d

dx
(ρu) = 0

d

dx
(ρuu) = −dp

dx
+ d

dx

[
(2µ+ η) du

dx

]
d

dx
(ρuh0) = d

dx

{
2µ+ η
Pf

[
dh0

dx
+ (
Pf − 1

) d
dx

(
u2

2

)]}

+ d

dx

⎡⎣∑
p

(
Lf − 1

) 2µ+ η
Pf

hp
dcp
dx

⎤⎦
+ d

dx

⎡⎣∑
p

(
Fp − 1

) 2µ+ η
Pf

deVp
dx

⎤⎦
d

dx

(
ρucp

) = ẇp + d

dx

(
2µ+ η
Pf

Lf
dcp
dx

)
d

dx

(
ρucpeVp

) = ẇVp + d

dx

[
2µ+ η
Pf

(
Lf eVp

dcp
dx

+ Fpcp
deVp
dx

)]
(10.25)

with

Pf = 2µ+ η
λTR

C
p
TR , Lf = ρDC

p
TR

λTR
, LVp = ρDC

p
Vp

λVp
, and

Fp = C
p
TRλVp

CVpλTR
= Lf
LVp
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The following ‘shock slip’ relations (generalized Rankine–Hugoniot relations)
may then be written at x = 0, instead of the classical Rankine–Hugoniot
relations (Eqn. (8.12)). Of course, frozen conditions are assumed for species
concentrations and vibrational energies.

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 −

[
(2µ+ η) du

dx

]
2

ρ1u1

(
h1 + u2

1

2

)
= ρ2u2

(
h2 + u2

2

2

)
−
{

2µ+ η
Pf

[
dh0

dx
+ (
Pf − 1

) d
dx

(
u2

2

)]}
2

−
⎡⎣∑

p

(
Lf − 1

) 2µ+ η
Pf

h
dcp
dx

⎤⎦
2

−
⎡⎣∑

p

(
Fp − 1

) 2µ+ η
Pf

deVp
dx

⎤⎦
2

ρ1u1cp1 = ρ2u2cp2 −
(

2µ+ η
Pf

Lf
dcp
dx

)
2

ρp1u1eVp1 = ρp2u2eVp2 −
[

2µ+ η
Pf

(
Lf eVp

dcp
dx

+ Fpcp
deVp
dx

)]
2

(10.26)

Appendix 10.3 Unsteady boundary layers

When the boundary layer moves at constant velocity, the coordinate trans-
formation presented in Appendix 8.4 may be applied. Otherwise, a somewhat
different transformation must be used in order to preserve the advantages
enumerated in Appendix 8.4.

As an example, we take the unsteady one-dimensional boundary layer behind
a reflected shock wave (Section 10.3.3, Fig. 65). We can assume that the velocity
is small and therefore that the viscosity effects are negligible (Ee ∼ 0). For a pure
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gas in vibrational non-equilibrium, we therefore have

∂ρ

∂t
+ ∂ρu
∂y

= 0 and
∂p

∂y
= 0, → p = pe (t )

dh

dt
= ∂

∂y

(
λTR
∂T

∂y
+ λV ∂TV

∂y

)
+ ∂pe
∂t

and

ρ
deV
dt

= ẇV + ∂

∂y

(
λV
∂TV
∂y

)
(10.27)

Similar considerations to those of Appendix 8.4 lead us to use the following
transformation (von Mises):

t̃ =
t∫

0

ρeµedt and ψ = ρe(
2t̃
)1/2

y∫
0

ρ

ρe
dy (10.28)

Here, ψ (as η) represents a transverse coordinate in the boundary layer,
and the integration domain is quasi-rectangular. After solving the transformed
equations, we obtain the time evolution of the flow quantities. The case with
chemical reactions does not present further difficulty, and in the continuum
regime, the accommodation is quickly negligible (the time constant is exam-
ined in Chapter 12). Thus, in the absence of chemical reactions, the wall heat

flux remains close to a conduction flux, that is qw = (
ρCpλ

)1/2 Te−Tw√
π t

∼ A√
t
,

and therefore the increase in wall temperature 
Tw is practically constant
(Appendix 7.2).

If the Navier–Stokes system is not solved, the influence of the boundary layer
on the inviscid flow may be taken into account.132 The displacement thickness
is negative and therefore provokes an attenuation of the reflected shock wave,
but this effect is generally negligible in comparison with other effects such as the
relaxation or the presence of side-wall boundary layers (Chapter 11).

Appendix 10.4 CO2/N2 gas-dynamic lasers

Vibrational model for the CO2/N2 system

The average temperatures in the nozzles and laser cavity are moderate (200–
2000 K), so that we can use a simplified physical model that includes only a
few vibrational levels (Figs 82 and 83); the population of higher levels is lower
than 1%.
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v1 symmetrical mode  �1 =1980K
O C O

NN

v2 bending mode (degenerate)  �2 =960K

v3 asymmetrical mode  �3 =3380K

Nitrogen (v4 mode)  �4 =3354K

Figure 82. Vibrational modes of CO2 and N2.
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Figure 83. First vibrational levels of CO2 and N2.

If we take into account the diagram of Fig. 83, the dominant exchange
processes are the following:

TV exchanges:

CO∗
2 (ν2)+M → CO2 +M

(
667 cm−1

)
N∗

2 +M → N2 +M
(
2331 cm−1

)
CO2/CO2 VV exchanges:

CO∗
2 (ν3)+M → CO∗∗∗

2 (ν2)+M
(
416 cm−1

)
CO∗

2 (ν1)+M → CO∗∗
2 (ν2)+M

(
102 cm−1

)
CO2/N2 VV exchanges:

CO∗
2 (ν3)+ N2 → CO2 + N∗

2

(
18 cm−1)

The last, quasi-resonant, reaction is at the origin of the laser effect (10.6 µm).
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Vibrational relaxation equations

Starting from the general relaxation equation (Eqn. (2.17)), written for each iv
level of each m mode (m = 1, 2, 3 for CO2; m = 4 for N2), we multiply each
equation by εivm and sum over the levels (represented in Fig. 83). Thus, we obtain
four equations for the average vibrational energy of each mode eVm. If we adopt
the harmonic oscillator model, these equations can be written in the following
form, where qm represents the number of vibrational quanta of the modem per
unit volume, that is, qm = nVm

EVm
hνm

:

dqm
dt

= qm − qm
τTV

+
∑
n

km
gmτVVmn

×
[
qknn

(
qm + 1

)km exp

(
knθVn − kmθVm

T

)
− qkmm

(
qn + 1

)kn]
(10.29)

where hνm = kθVm , and kn is the number of quanta exchanged in a transition.

Small-signal gain coefficient

The relative intensity variation of radiation that has a wave number ω crossing
a dz layer of a gaseous medium is equal to dI/I = α (ω) dz , where α (ω) is the
amplification coefficient of the medium if α is positive (Lambert–Beer law).

For a medium composed of molecules in levels ir , iv and for radiative tran-
sitions 
iv = ±1 and
ir = +1 (R branch) or 
ir = −1 (P branch), the
coefficient α (ω) is equal to

α (ω) = C (ir , iv) ρNφω (ir , iv)

(
gb
gh
niv+1,ir±1 − niv ,ir

)
(10.30)

Here, C(ir , iv) is the absorption cross section per molecule and per unit solid
angle, gb and gh are the eventual degeneracy of low and high states respectively,
and φ is a shape parameter that takes into account the broadening of the line
(Doppler and collisional effects). We generally have a Boltzmann distribution
for the rotational population, that is:

nir
n

= gir
QR

exp
(
− εir
kT

)
Therefore, there is an amplification if we have

gbniv+1,ir±1 > ghniv ,ir (10.31)

This inequality involves a population inversion.
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Figure 84. Variation of average small-signal gain
along the cavity.
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The emission line used here corresponds to the transition 001 → 100 (P
branch, wavelength 10.6 µm). The average small-signal gain coefficient across
the cavity is shown in Fig. 84, where we observe a strong increase along the cavity
(1% at the inlet to 4% at the outlet) despite local decreases due to compression
zones (Fig. 79).

Appendix 10.5 Transport terms in the
non-equilibrium regime

Those transport terms that are the most sensitive to non-equilibrium condi-
tions, that is relaxation pressure and vibrational conductivity, are analysed and
developed in typical cases such as expansion flows and flows behind shock
waves.

Relaxation pressure

As discussed in Chapter 5, this transport term appears only when some physi-
cal or chemical processes are in equilibrium and others are in non-equilibrium
(at the zeroth order of the distribution function). Thus, for example, this term
appears when the rotational mode is in equilibrium and the vibrational mode
in non-equilibrium, or when all internal modes are in equilibrium but the
chemistry is in non-equilibrium.

We have seen that, in the first case, pr/p is of order τR/τV , and in the sec-
ond case it is of order τV /τC . For typical cases, however, a more quantitative
estimation of the relaxation pressure is proposed below.
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Figure 85. Relaxation pressure and temperatures along a supersonic nozzle (Conditions of Fig. 49(a)).

Vibrational non-equilibrium flow in a supersonic nozzle

We consider the nozzle flow corresponding to Fig. 49(a), Chapter 9 (nitrogen:
T0 = 2400 K and p0 = 107 Pa). We apply Eqn. (5.27), giving an approximate
expression for pr/p, and the values found along the nozzle14 are represented in
Fig. 85: the corresponding curve presents a maximum close to the throat of the
nozzle, since pr/p is null in the reservoir and decreases strongly in the divergent
part where the relaxation time rapidly increases. However, the value of pr/p
remains low and may be neglected in this type of flow.

Flow behind a straight shock wave

Considering a reactive mixture in vibrational equilibrium but in chemical
non-equilibrium at zero order (Chapter 5), we calculate the relaxation pres-
sure behind a straight shock wave116 (Appendix 5.4). An example is given
in Fig. 86 for an intense shock wave in air (Ms = 25). Thus, close to the
shock wave, the ratio pr/p is about 3% and decreases rapidly, becoming neg-
ligible 1–2 cm from the shock wave. This ratio is smaller still for lower Mach
numbers.

Vibrational conductivity

In a vibrational non-equilibrium flow, vibrational conductivity λV is very sen-
sitive to vibrational temperature TV (Chapter 5).28 An example of such a
calculation is represented in Figs 87 and 88 for the vibrational conductivity
of nitrogen λVN2 behind a shock wave in air and for two Mach numbers, 8 and



322 CHAPTER 10 REACTIVE FLOWS IN THE DISSIPATIVE REGIME

0

10–1

p
r
/p

10–3

10–5

10–7

4 8 12
x (cm)

Figure 86. Relaxation pressure behind a shock wave in air (Conditions of Fig. 47(a)).
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Figure 87. Vibrational conductivity of nitrogen behind a shock wave in air (Ms = 8, T1 = 271 K,
p1 = 102 Pa).

0

12

8

4

0

3

2

1

0
2 4 6 8 10

x (cm)

T,TV (104K ); lVN2
 (10–2W ·m–1·K –1)

TV 

lV 

T

Figure 88. Vibrational conductivity of nitrogen behind a shock wave in air (Ms = 25, T1 = 205 K,
p1 = 8.5 Pa).
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25. Thus, in Fig. 87 (Ms = 8), the trend of λVN2 is similar to the evolution ofTVN2 ,
that is the conductivity increases in the relaxation zone while the temperature T
decreases. For Ms = 25 (Fig. 88), because of the rapid relaxation, TVN2 quickly
becomes equal to T and then decreases with T , so that λVN2 presents the same
behaviour. For λVO2 , the behaviour is similar, but the evolution is faster.

Appendix 10.6 Numerical method for solving the
Navier–Stokes equations

Because the steady Navier–Stokes equations are of hyperbolic–elliptic type, they
are relatively difficult to solve. However, if they are written in an unsteady form,
they are of hyperbolic–parabolic type, and simpler solving methods can therefore
be used.

Let us consider the general case of an axisymmetric hypersonic non-
equilibrium airflow, which has been greatly analysed above.112 In a cylindrical
coordinate system (x , y), the unsteady governing equations of the flow are the
Navier–Stokes equations, with mass conservation equations for each chemical
species (1: N2; 2: O2; 3: NO; 4: N; 5: O) and two vibrational energy relaxation
equations for N2 and O2 (NO can be assumed to be in vibrational equilibrium).

This system of ten equations is solved by a non-iterative implicit
finite-difference scheme with a flux splitting technique in the implicit
operator.133,134This method is chosen in order to overcome two main difficul-
ties: the first is the stiffness of the problem due to the chemical and vibrational
processes, and the second is the necessity of using fine meshes near the walls in
order to take into account the boundary-layer effects. After discretization, the
linear system with a block-pentadiagonal matrix is solved by a Gauss–Seidel line
relaxation method.135 This implicit approach also enables us to use a larger inte-
gration time step than that imposed by the CFL condition, and then to reduce
CPU time. Details on the method are given below.

Thus, the ten governing equations may be expressed in the following vectorial
form:

∂U

∂t
+ ∂F
∂x

+ ∂G
∂y

+H = 	 (10.32)

where the conservative vector U includes the unknown quantities

U = [ρs(s = 1 · · · 5), ρu, ρv , ρe, ρi eVi (i = 1, 2)]

Here, F and G are vectors that include the convective fluxes (FC ,GC ) and
the diffusive fluxes (FD ,GD) in each direction, x and y . The vector H includes
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the axisymmetric terms of the equations, and 	 includes the chemical and
vibrational energy source terms.

The x , y physical plane is transformed in a rectangular (ξ , η)plane by a suitable
transformation depending on the geometry of the flow, and the system is solved
by an implicit finite-difference scheme: assuming that the flow parameters are
known at time n
t , for each node (i, j) of the grid including iM × jM points, at
the time step (n + 1)
t , the system may be written as follows:

δUn+1


t
+ DF n+1


ξ
+ DGn+1


η
+H n+1 = 	n+1 (10.33)

where δUn+1 = Un+1 − Un and D/
 represent finite-difference operators.
Each vector 
 of Eqn. (10.33) is linearized, so that


n+1 = 
n +
(
∂


∂U

)n
δUn

where ∂

∂U represents the Jacobian matrix of the vector
 relative to the vectorU .

Splitting the vectorsFC andGC into a positive and a negative part, the system
(Eqn. (10.33)) is equivalent to[
1 +
t

(
D−An+

ξ

+ D+An−

ξ

+ D−Bn+

η

+ D+Bn−

η

+ D2Mn
V


ξ 2
+ D2NnV

η2

+Dn −Cn
)]

× δUn+1 = 
Un

where


Un = −
t
(
DF n


ξ
+ DGn


η
+H n −	n

)
(10.34)

and D, D+, D− are the central, forward, and backward difference operators
respectively, while A+,A−, B+, B−,MV ,NV ,D, and C are the Jacobian matrices
of FC+, FC−,GC+,GC−, FV ,GV ,H , and� respectively.

After discretization, the system (Eqn. (10.34)) may be written as a pentadiag-
onal matrix linear system:

 

Ai,jδU
n+1
i,j +  

Bi,jδU
n+1
i,j+1 +  

Ci,jδU
n+1
i,j−1 +  

Di,jδU
n+1
i+1,j +

 

Ei,jδU
n+1
i−1,j = 
Uni,j

(10.35)

By solving this system for a given value of i, we can obtain the vector δUn+1
i,j

for all j values. For this purpose, at each time step, a predictor–corrector scheme
is used, and the system (Eqn. (10.35)) is solved by a Gauss–Seidel line relaxation
method with alternating sweeps in backward and forward ξ directions.
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With this algorithm, we must use suitable boundary conditions depending on
geometrical and physical conditions. A few thousand grid points are generally
required.

For example, for the nozzle analysed in Section 10.4.1, a mesh of 60 × 80 grid
points is used, with 
xmin = 3 × 10−4 m and 
ymin = 2 × 10−8 m. Owing
to the implicit method used here, during the iterative procedure the integration
time step increases from 1 to 103
tCFL, and steady state is obtained after about
7000 iterations.



ELEVEN

Facilities and Experimental
Methods

11.1 Introduction

The experimental study of non-equilibrium gas flows requires the design, cre-
ation, and operation of specific facilities and the development of particular
diagnostic techniques.

Although they give interesting and timely results and are designed to test
particular equipment or to explore specific situations (an example is given in
Appendix 11.1),136 we will not discuss here experiments concerning the actual
flights of space probes and vehicles. It is probable that, in the future, new data will
be provided by this type of experimentation, leading to further developments of
space vehicles.

Most experiments are carried out in ground-based facilities which can generate
non-equilibrium flows. These facilities generally require vital equipment and
investment. The essential purpose is to create high-enthalpy gas flows undergoing
more or less intense perturbations (shock wave, rapid expansion, and so on), so
that, as analysed in the preceding chapters,physical and chemical processes evolve
on a timescale equal to or longer than the characteristic flow timescale.

Two main types of facilities are used, depending on the type of phenom-
ena or the processes analysed. Thus, if the analysis of physical and chemical
processes is considered essential, simple facilities such as shock tubes generat-
ing one-dimensional, non-dissipative flows are used. In contrast, if simulating
the conditions of real flight is required, facilities such as arc and shock tunnels
generating hypersonic flow around various bodies must be used. We should
also mention here plasma generators, which are an example of more complex
high-enthalpy equipment.
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11.2 The shock tube

The simplest model of a shock tube consists of creating in a tube of constant
(circular or rectangular) cross section a moving shock wave generating a flow at
high temperature and out of equilibrium. Ideally, this flow is one-dimensional
and non-dissipative.100,137–141

11.2.1 Simple shock tube theory

Schematically, a tube initially containing the test gas (low-pressure chamber)
is separated by a diaphragm from another chamber (high-pressure chamber or
driver section) containing another gas (driver gas). After the rupture of this
diaphragm, the driver gas, acting as a piston, expands into the low-pressure
chamber and generates a shock wave which propagates in the test (driven) gas
(Fig. 89(a)). The shock wave gives to the test gas a violent acceleration, which

High pressure
chamber Low pressure chamber

Diaphragm

Time t

Rarefaction waves Interface

Shock wave

Pressure
Temperature

P4

T4

T3

T2

T1

P1

P3 =P2

3

2

14

(a)

(b)

(c)

Figure 89. Shock tube: principle and operation. (a) Simple shock tube; (b) Wave system in a shock tube;
(c) Pressure and temperature distribution at a given time t.
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is accompanied by a jump in temperature, pressure, and density (Chapters 8
and 9). Physical and chemical processes can then start and possibly evolve to
their equilibrium state.

The test-gas flow is limited by a contact surface (or interface) separating it
from the driver gas (Fig. 89(b)), and in current installations a few metres long,
this flow generally lasts a few hundred microseconds. In the assumed absence of
dissipative phenomena, the shock wave preserves a constant speed, and there-
fore, in a reference frame fixed to this shock wave, the flow is one-dimensional
and stationary. Moreover, if the rupture of the diaphragm is assumed to be
instantaneous, a system of centred rarefaction waves develops in the expanding
driver gas (Fig. 89 (b) and (c)). In addition, pressure and velocity are preserved
through the interface, whereas temperature and density undergo a discontinuity
(Chapter 8).

As also discussed in Chapter 8, the flow parameters of the test gas (region 2 of
Fig. 89(b)) can be deduced from the initial quantities (region 1) and from the
shock-wave velocityUs (more precisely, the Mach numberMs = Us/a1). This is
why measurement of the shock-wave velocity is fundamental to attaining further
experimental data and must be carried out in the low-pressure chamber.

Principles of a simple shock tube

We can generally assume that the driver gas behaves as an ideal gas (γ is constant)
and that the expansion is an isentropic process in the form of centred waves. This
is justified because the driver gas is often a monatomic gas and the temperature
is relatively low during the expansion; exceptions are mentioned below.

Thus (see Chapter 8), across the centred wave system (Fig. 89), the quantity
u + 2a

γ−1 remains constant, and we have

2a4

γ4 − 1
= 2a3

γ4 − 1
+ u2 (11.1)

because γ3 = γ4, u2 = u3 (interface), and u4 = 0 (high-pressure chamber).
We also have

p4

p2
=
(
a4

a3

)2γ /γ 4−1

with p2 = p3 (11.2)

so that

p4

p2
=
(

a4

a4 − γ4−1
2 u2

)2γ 4/γ 4−1

(11.3)
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Here, u2 and p2 are related to the initial conditions of the test gas (p1,T1) by
the RH relations (Eqn. (8.12)). In the frozen case (γ1 = γ2), we obtain from
Eqns (8.13), (8.14), and (11.3):

p4

p1
=

γ1−1
γ1+1

(
2γ1
γ1−1M

2
s − 1

)
[
1 − γ4−1

γ1−1
a1
a4

(
Ms − 1

Ms

)]2γ4/γ4−1
(11.4)

This expression gives the intensity of the shock wave (Ms) as a function of
the initial conditions in both chambers, but under restrictive conditions (ideal
gas). This is why it is preferable to determine the flow quantities 2 from the
measured velocity of the shock wave, as indicated above. However, Eqn. (11.4)
gives a qualitatively correct idea of the importance of the various parameters.
Thus, in order to obtain the highest possible Mach number, the ratio of initial
pressures p4/p1 must be as high as possible, which is intuitive, but the ratio a4/a1

must also be maximum. In particular, when p4
p1

→ ∞, Ms → γ1+1
γ4−1

a4
a1

. Thus, for
a given test gas, we see the advantage of using a light and hot gas as a driver gas.
We can also deduce from Eqn. (11.4) the maximum expected values for Ms in
the case of a given gas pair.

These results are qualitative if chemical processes are significant behind the
shock. Thus, the shock Mach number must be generally deduced from assumed
equilibrium conditions behind this shock (Figs 39 and 40, for example), and of
course, the maximum values forMs are lower than those given by Eqn. (11.4).

Technological limitations and constraints

As already indicated, the test-gas flow between the shock wave and the interface
has a very short duration and can be disturbed by the various wave systems which
propagate in the tube because of its limited dimensions. Thus, the rarefaction
waves moving up in the driver section after the rupture of the diaphragm are
reflected at the end of this chamber and then move back down (while acceler-
ating), until they potentially overtake the interface and the test gas (Fig. 118).
Similarly, the incident shock wave may be reflected at the end of the tube and may
interact with the incident test-gas flow: this last point is not always a disadvan-
tage (Section 11.2.3). However, if we take into account these configurations, it is
of course possible (see calculations in Appendix 11.2) to optimize, for example,
the duration of the test-gas flow at a given abscissa along the tube (such as at the
test section) independently of the disturbing phenomena described below.
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11.2.2 Disturbing effects

Obviously, this ideal scheme of operation corresponds only roughly to reality,
and various phenomena contribute to somewhat modify this scheme and have
an influence on the analysed non-equilibrium phenomena. The most significant
effects concern the perturbations related to the presence of the wall boundary
layer and, to a lesser extent, those arising from the non-instantaneous rupture of
the diaphragm.

Wall boundary layer

The boundary layer which develops along the walls of the shock tube between the
incident shock and the interface acts like a well for the non-dissipative part of the
test gas, and a loss of this gas occurs through the interface in the boundary layer
(Fig. 90). This is because the boundary layer of the driver gas has a negligible
thickness since the value of the Reynolds number is much higher than the value
of the test-gas flow (low temperature, high density). This leads to a deceleration
of the shock wave, an acceleration of the interface, and thus a non-constant
value of the flow quantities. This unsteady regime tends to a stationary limiting
regime, theoretically obtained when the total mass flux through the shock wave
is equal to that lost through the interface inside the boundary layer. This last
mass flux increases because the separation distance between the shock wave and
the interface initially increases (Fig. 89). The shock wave and the interface in the
limiting regime have the same (constant) velocity, but the flow quantities, while
being stationary, vary between the shock and the interface.

An example of a calculation of the trajectories of the shock wave and contact
surface is shown in Fig. 91 in the case of a low initial pressure for which the
boundary layer is laminar.142–144 For higher values of the initial pressure, the
boundary layer is turbulent, but approximate models are available.145,146

These effects are all the more significant as the initial pressure and the cross
section of the tube are lower (low value for Re). Moreover, the hot gas loss across

Interface
Us

Usue0

Boundary layer Shock wave

Figure 90. Scheme of flow in a shock tube (Coordinate system fixed to the shock wave).
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Figure 91. Spatial variation of the shock wave and the interface (Driver gas: Helium;Test gas: Argon: p1=
132 Pa, T1= 293 K,Ms(id)= 4).

the interface tends to create a pressure gradient normal to the wall and therefore
tends to give to the interface an increasingly convex form (Fig. 94).

Non-instantaneous opening of the diaphragm

In a ‘real’ shock tube, the shock wave is not instantaneously created but is formed
by coalescence of the compression waves that arise during the progressive open-
ing of the diaphragm,and thus the shock wave accelerates little by little (Appendix
8.1) a long time after the diaphragm has completely opened. Several metres of
tube are often required to obtain a shock at constant speed.

Various models of this acceleration phase exist, which simultaneously take
into account the mechanical opening process, the presumably isentropic and
stationary flow through the aperture, the recompression stationary shock, and
the successive compression waves that propagate downstream and progressively
accelerate the shock wave.147 Thus, knowing the total duration of the diaphragm
opening, the initial pressure ratios of the driver gas and test gas, and their
composition,148,149 it is possible to describe the acceleration phase of the shock
wave and the related properties of the flow. The shock wave is thus strongly
accelerated close to the diaphragm until reaching a maximum speed; it then
slows down slowly up to the ideal value150 given by Eqn. (11.4) (Fig. 92). The
acceleration phase is all the shorter as the ratio of the initial pressures is higher,
the driver gas is lighter, and the total opening time topen is shorter.

Combined effects of boundary layer and diaphragm opening

The result of the simultaneous action of the preceding effects is an initial accelera-
tion of the shock wave followed by a continuous deceleration. The predominance
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Figure 92. Influence of the opening time of the diaphragm on the evolution of the shock wave (air/air,
p4/p1 = 17 700, A: topen = 300ms,B: topen = 600µs).
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Figure 93. Example of a shock wave profile (air/air, p4/p1 = 2134, p1 = 526 Pa, topen = 618ms).
A: Experimental,152 B: Computation without boundary layer,150 C: Computation with boundary layer.151

of one or the other effect depends on the experimental conditions. An exam-
ple of a computational result of spatial variation of the shock wave151 is shown
in Fig. 93 and compared with an experimental evolution.152 We can observe a
drastic variation due to low initial pressure and the use of air as a driver gas.
This variation is naturally less marked for more ‘usual’ conditions (higher initial
pressure, light driver gas, and so on).

Particular experimental aspects

Boundary layer and two-dimensional effects

Heat flux measurements by hot wire afford the possibility of distinguishing the
passage of the shock wave, the interface, and more qualitatively, the boundary
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layer.153 Thus, in Fig. 94, a sequence of the flow structure at three successive
abscissas along a shock tube is presented: the convexity of the interface is clearly
visible as well as its quasi-final shape in the limiting regime practically reached
at the last abscissa. Moreover, the contact surface is not really a discontinuity but
rather a turbulent mixing zone.
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Figure 94. Evolution of the structure of a shock tube flow. Time origin: Passage of the shock wave (air/air;
idealMs = 3.80; p1 = 130 Pa).



334 CHAPTER 11 FACILITIES AND EXPERIMENTAL METHODS

a

b

c

d

Figure 95. Oscillogram of wall temperature in a shock tube (200 µs/div.; a: Incident shock wave, b:
Transition, c: Interface, d: Reflected shock).
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Figure 96. Experimental evolution of the transition in a shock tube (S: Shock wave, C: Contact surface (+),
x:Transition). (a)Ms = 5.7; p1 = 921 Pa; Rel = 64×104 m−1; (b)Ms = 3.8; p1 = 6934 Pa; Rel =
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Transition in the boundary layer

The laminar–turbulent transition may be determined with thin platinum heat
flux gauges154,155 placed flush with the wall and therefore sensitive to the
boundary layer regime (Fig. 95).

With several gauges placed along the shock tube, it is possible to follow the
evolution of the transition point.156 We observe that it strongly depends on the
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Figure 97. Reflected shock wave (a) Stationary coordinates, (b) Shock-fixed coordinates.

Reynolds number per unit length Rel : thus, for low values of Rel , the transition
appears in the form of large structures called‘turbulent spots’, which are regularly
created along the tube and regress towards the contact surface (Fig. 96(a)). For
higher values of Rel , the size of the disturbances decreases, and their frequency
increases, so that a compact transition front appears little by little and moves at
the same speed as the shock (Fig. 96(b)).

A precise and general stability criterion is difficult to define, but regimes of
global stability can, for each type of installation, be experimentally defined,156

apparently independently from the shock wave Mach number.

11.2.3 Reflected shock waves

At the end of a closed tube, the shock wave is reflected and comes back into
the gas already compressed and heated by the incident shock wave. Thus, there
is a further increase in the temperature, pressure, and density of the test gas,
which, in principle, affords more favourable conditions in which to start chemical
processes. Moreover, in theory, the gas is without velocity behind the reflected
shock waves (region 5, Fig. 97(a)).

Generalities

Of course, the gas parameters of region 5 of Fig. 97(a) (frozen or in equilibrium)
may be computed using the usual RH relations (Eqn. (8.12)) across the reflected
shock wave in a coordinate system fixed to this wave (Fig. 97). If the ideal gas
model is used, we obtain the following analytical relations for the pressure and
temperature ratios as functions of p2/p1. This pressure ratio itself is simply
related toMs (Eqn. (8.13)):

p5

p2
= γ + 1 + (2 − p1/p2)(γ − 1)

γ − 1 + (γ + 1)(p1/p2)
and

T5

T2
= p5

p2

[
γ + 1 + p5/p2(γ − 1)

γ − 1 + (γ + 1)p5/p2

]
(11.5)

The velocity of the reflected shock waveUr is given by the following relation:

Ur = 2Us
γ − 1 + p1/p2

γ + 1 − (γ − 1) p1/p2
(11.6)
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Figure 98. Wave systems generated by the interaction of the reflected shock and the interface. (a) Over-
tailored case, (b) Under-tailored case, (c) Tailored case.

For a ‘real’ gas (in equilibrium), the values obtained for p5 and T5 are of course
lower.

Disturbing effects

As in the case of the incident shock, various aerodynamic processes can disturb
the test gas downstream from the reflected shock.

One of the disturbing effects relates to the interaction of the reflected shock
and the contact surface: this interaction is summarized in Fig. 98.

Three interaction cases are possible: either the reflected shock is partially
reflected on the interface in the form of shock (case a) or in the form of rarefac-
tion waves (case b), or it crosses the interface without reflection (intermediate
case c). In all three cases, a shock wave propagates into the driver gas. In the
first two cases, which are the most common, the properties of the test gas down-
stream from the reflected shock are modified, and the useful test time can be
strongly reduced, whereas the test time is theoretically very large in the third
case, in which the interface comes to rest (‘tailored case’). This occurs, however,
only for quite precise initial conditions (for example, forMs = 6 in the case of a
gas pair He/N2).157 Nevertheless, if chemical processes are to be analysed behind
the reflected shock, the tailored case represents the best experimental condition.
Complete calculations corresponding to the above three cases can be carried out
by using the methods presented in Chapter 8.

This scheme itself is disturbed by the presence of the boundary layer devel-
oping along the side walls downstream from the incident shock.158 Under the
action of the reflected shock, this boundary layer tends to separate from the wall
(too-low stagnation pressure), and a gas ‘bulb’ is created on which the reflected
shock adopts a structure in λ (Mach reflection, Chapter 8). This phenomenon
(Fig. 99) is all the more accentuated as the gas atomicity is high (small γ value).
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Figure 99. Scheme of interaction between the reflected shock and the boundary layer.

Figure 100. Evolution of wall temperatures at the
end wall of a shock tube. A: Non-centred gauge, B:
Centred gauge.
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Then, the propagation of the reflected shock is obviously affected, and across the
‘feet’ of the λ shock, there remains a gas velocity component directed towards the
end of the tube. This disturbs (primarily cools) the test gas. Moreover, as experi-
mentally confirmed, when the reflected shock encounters the interface, the driver
gas itself flows along the side walls, preceding the central part159 (Fig. 100).

11.2.4 General techniques: configurations and operation

It is not the objective here to describe the technologies used in the construction
of shock tubes, or to examine in detail the operation conditions. Instead, the
intention is simply to present an outline of the existing or possible configurations,
techniques, and devices used to obtain intense shock waves.

General design features

As described above, the ‘simple’ shock tube composed of two chambers repre-
sents the majority of existing installations. However, these installations differ
according to the type of studies planned. Thus, for example, tubes with circu-
lar cross sections, which are easier to construct, lend themselves less easily to
visualizations than those with square or rectangular cross sections. Moreover,
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these require a transition section between the high pressure (HP) cham-
ber (of circular cross section for safety reasons) and the low pressure (LP)
chamber.

As already discussed, the length of both chambers is important when opti-
mizing the flow test time because of the various wave systems and end-wall
reflections. Moreover, a third chamber, of large size and placed downstream
from the low pressure chamber, is often used when experiments are limited
to the flow downstream from the incident shock. This chamber (dump tank),
separated by a second diaphragm from the driven section and in which high
vacuum conditions prevail, makes it possible to obtain after the conclusion
of experiments a low residual pressure, useful in the case of high pressure
and/or combustible driver gases (H2) or in the case of toxic test gases (CO,
CN, and so on). The residual initial pressure, obtained after pumping, espe-
cially in the test section, must be sufficiently low (10−2–10−4Pa) so as to
have no influence on the purity of the test gas, particularly for spectroscopic
studies.

The diaphragms separating the HP and LP chambers are generally metallic:
aluminium or copper for moderate pressures in the HP chamber (lower than 107

Pa), and steel for higher pressures. They can be composed of plastic for lower
pressures. The metallic diaphragms are scored (cross-shaped scores with variable
depths of 1/2 to 2/3 of their thickness) and calibrated to open at well-defined
pressures. We thus obtain a dispersion of the incident shock Mach number which
does not exceed 1%. Generally, for moderate pressures, the diaphragms break
themselves by increasing the pressure of the HP chamber. For more precision,
and especially in the case of very high pressures, a double-diaphragm system is
used: it consists of a small chamber inserted between the HP and LP sections
and in which the pressure is the intermediate of these two chambers. The sudden
pumping of this chamber produces a precise and reproducible bursting of the
diaphragms for given conditions.

Configurations: performances

Various possibilities exist to improve the performances of the simple shock tube,
i.e. to increase the incident shock Mach number: these possibilities are briefly
described below. Most of them are put into practice.

Area reduction close to the diaphragm

The HP chamber has a section larger than that of the LP chamber: there is a
quasi-stationary expansion of the driver gas in the area transition zone, which
increases the efficiency of the thrust. From a classical calculation,141 we define a



11.2 THE SHOCK TUBE 339

parameter g equal to

g = (p4/p1)A4/A1=1

(p4/p1)A4/A1

(11.7)

so that the tube with varying cross section is equivalent to a tube of constant
cross section working with an initial pressure ratio equal to g · p4/p1 and an
initial sound velocity ratio equal to

a4/a1 · g (γ4−1)/2γ 4 (11.8)

It should be noted that the increase in the Mach number is significant.

Double-diaphragm shock tube

A third section is added to the LP chamber and is used as the test section. It is
separated from the intermediate chamber by a diaphragm on which the shock
wave is reflected before breaking it, thus creating conditions of high pressure and
temperature in the gas of this chamber. This gas is used as a driver gas for the
test gas of the third section. In this case, the Mach number is significantly higher,
but the test time is greatly reduced (Fig. 101).

It is also possible to use the expanded gas of the intermediate chamber as the
test gas in the supersonic or hypersonic regime.160

Combustion shock tube

The increase of the sound speed in the driver gas can be obtained not only by
using a light gas but also by raising its temperature. One effective way is to create
combustion in the HP chamber.

HP chamber

t

x

�t

Intermediate chamber Low pressure chamber

Figure 101. Principle of double-diaphragm shock tube.
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This combustion is generally achieved by using a stoichiometric mixture of
hydrogen and oxygen diluted in helium (approximately 70%). The main diffi-
culty is in obtaining a uniform combustion without detonation; this is generally
realized with a significant number of spark plugs arranged in spiral along the
HP chamber. The gain in Mach number, however, is partially compensated by a
stronger deceleration of the shock wave, caused by the sharp pressure fall after
the combustion and also sometimes by a rebound of the ‘petals’ of the diaphragm
on the side walls.

An alternative solution is the precise creation close to the diaphragm of a
detonation wave that propagates upstream in the HP chamber: this results in
a better uniformity for the pressure and temperature in the driver gas after the
diaphragm ruptures.161

Free-piston shock tube

The fast compression of a light gas is also a means for increasing the pressure
and temperature of this gas, used as a driver gas. This compression is carried
out by a piston launched at high speed in a tube serving as a compression
chamber: the compressed hot gas ensures that the diaphragm ruptures. This
method is undoubtedly the most efficient process of creating a shock wave of
high intensity.162

A diagram of this device is shown in Fig. 102. In a first chamber (tank R),
a gas (generally air) is compressed up to several hundred atmospheres and,
owing to a double-diaphragm system D1–D2, pushes a piston P (10 to 500 kg),
which compresses the driver gas (generally helium or a helium–argon mixture)
of the HP chamber. The diaphragm D3, which must be initially calibrated and
is located at the end of this chamber, is then ruptured, creating a shock wave in
the LP chamber. After the rupture, the piston continues to move and maintains a
pressure sufficiently high to delay the propagation of rarefaction waves towards
the LP chamber.

Of course, the piston must be rapidly stopped for safety reasons and also to
avoid a rebound.163–165

R HP LP

D1–D2
D3

P

Figure 102. Diagram of a free-piston shock tube.
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In addition, special configurations of the piston are used to attain a continuous
rise in pressure at the end of the HP chamber and thus to obtain a reproducible
rupture of the D3 diaphragm. An example of such an operation, in the form
of an x , t diagram (trajectory of the piston, wave systems),166 is presented in
Appendix 11.2.

Important shock Mach numbers (10–25) are thus generated in gases or gas
mixtures representative of various planetary atmospheres (Chapter 12).

11.2.5 General methods of measurement

Only those methods of measuring usual flow parameters such as pressure, den-
sity, heat flux, and traditional visualization techniques are briefly discussed here,
and they are illustrated by a few examples. Methods specific to non-equilibrium
flows are described in Chapter 12.

Pressure measurements

The range of the pressures to be measured is very important, from a few hundred
pascals downstream from relatively weak shocks that propagate in gases with low
initial density, up to 107–108 Pa downstream from reflected shocks.

Piezoelectric-type gauges with response times often shorter than 1 µs are
generally used, either directly flush with the wall (for the lowest pressures and
for short-duration flows, or inside a cavity connected to the wall by a small
pipe (for the highest pressures or in corrosive or fluctuating atmospheres). Two
extreme examples are given in Fig. 103 (a) and (b).167,168

Heat flux measurements

Measurements are generally carried out with thin metallic films (platinum),
deposited on an insulating support whose resistance varies with temperature.
Thus, after calibration, the surface temperature of the support may be obtained
(Appendix 7.2). Mounted flush with the wall of a shock tube, if the bound-
ary layer is laminar and non-reactive, the temperature rise is quasi-constant
downstream from the incident shock (Appendix 10.3) and downstream from
the reflected shock on the end wall of the tube, before the arrival of eventual
disturbances (Fig. 100). On a body placed in the steady flow, where the heat
flux is constant (during the useful test time), the temperature rise is parabolic
(Fig. 104).
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Figure 103. (a) Pressure records on shock tube wall (with filter). A: Gauge flush with the wall, B: Gauge
in cavity. (b) Pressure record at the end wall of a shock tube (with filter).
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Figure 104. Temperature records along a cone in a shock tube flow.

For very important heat fluxes, special thermocouples are used, which give
similar temperature signals. Other methods are also used (Appendix 11.3).

Density measurements

The density change across the shock (ρ2 − ρ1) and its evolution, for example in
a relaxation zone, is measured with a fringe system created by the interference
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Figure 105. (a) Scheme of a Mach–Zehnder interferometer. A: Light source, L1, L2: Semi-silvered mirrors,
M1,M2,M3: Mirrors, F: Slit, C: Camera; (b) Fringe system.

of light beams crossing the tube (Fig. 105(a)). If this change corresponds to a
displacement of k fringes, we have for a tube of width L and wavelength λ:

kλ = (n2 − n1) L (11.9)

The index of refraction n is proportional to the density ρ, that is:

n − 1 = Kρ (Gladstone–Dale relation) (11.10)

where K depends only on the nature and temperature of the gas and on the
wavelength.

Then we have

ρ2 − ρ1 = kλ

KL
(11.11)

The interferometer that is generally used is of Mach–Zehnder type (Fig.
105(a)),and the interfering beams cross the tube,one in the test gas flow, the other
in the undisturbed zone. The quantity λ/KL may be determined from a prelim-
inary calibration. Interferograms are obtained either by using a monochromatic
light source of short duration (0.1–1 µs) or by using a continuous source and
a high-speed sweeping camera with a slit perpendicular to the flow in order to
obtain y , t diagrams (Fig. 105(b)).

Visualizations

Visualizations can be carried out by interferometry, as described above. They
are then quantitative (density measurements). More qualitatively, the significant
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and different deviation of light rays crossing the shock tube by flow regions of
different densities affords the possibility of visualizing those flow areas presenting
density gradients, in particular the shock waves. This is the schlieren technique,
also associated with fast photography or cinematography (x , t or y , t diagrams).
Examples of shock tube flows169 are thus represented in Figs 106–109.

In Fig. 106, the flow around a wedge is shown at four successive instants after
the passage of the incident shock wave: (a) during the phase of flow establish-
ment, (b) during the stationary phase of the ‘hot’ test gas flow, (c) on arrival of
the mixing zone (interface), and (d) in the (turbulent) expansion of the driver
gas, where we observe that the local Mach number is much higher than during
the test-gas flow.

Two other examples are shown in Fig. 107, where the incident shock wave
is propagating along a striate dihedron, and in Fig. 108, which is a schlieren
photograph of the detached shock wave (and relaxation zone) in front of a
cylinder.

(a) (b)

(c) (d)

Figure 106. Flow around a wedge (semiangle 15◦) (air/air,Ms = 3.86, p1 = 130 Pa) (θ : Instant after
the passage of the shock wave). (a): θ =23 µs, (b): θ =100 µs, (c): θ = 700 µs, (d): θ = 1300 µs.
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Figure 109 illustrates an experimental x , t diagram of the shock wave reflection
at the end of a tube: regular reflection for a shock wave in argon (Fig. 109(a)) and
Mach reflection for a shock wave in carbon dioxide (Fig. 109(b)). This last type
of reflection, as discussed above, results from the separation of the boundary
layer.

A simpler method consists of using the self-luminosity of the high-
temperature flows: an example is provided in Fig. 110 (a) and (b), representing x ,
t diagrams of the reflection of a shock wave and its interaction with the contact
surface (over-tailored case).

Figure 107. Incident shock wave propagating along a striate wedge (Carbon dioxide,Ms = 4.0, p1 =
130 Pa, M2 = 2.35).

Figure 108. Carbon dioxide flow around a cylinder (Conditions of Fig. 107).
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(a) (b)

Figure 109. Reflection of a shock wave at the end wall of a shock tube (x, t diagram). (a): Argon,
Ms = 3.30, p1 = 790 Pa; (b): Carbon dioxide,Ms = 3.40, p1 = 1315 Pa. s: Incident shock, r: Reflected
shock, r′: Secondary shocks, f: Front of the bifurcated shock, f′: Rear of the bifurcated shock.

(a) (b)

Figure 110. Reflected shock wave at the end wall of a shock tube (x, t diagram). (a): Argon, Ms =
5.20, p1 = 395 Pa; (b): Argon,Ms = 6.10, p1 = 395 Pa] (Incident wave: right→left; x: 4 cm/div., t:
100µ s/div.).
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11.3 The hypersonic tunnel

11.3.1 Generalities

As specified in the introduction of this chapter, non-equilibrium flows can be
generated with a high-pressure hot gas, assumed to be in equilibrium, then
quickly expanded in a nozzle in order to obtain a hypersonic flow at low TR
temperature but in chemical and/or vibrational non-equilibrium.

The processes used to obtain a gas at high temperature are generally of two
types of heating: by a turning arc in a pressurized atmosphere170 or by a shock
wave in a shock tube.157,171 Installations with a continuous arc also exist.

In the arc tunnels, it is possible to obtain very important reservoir temperatures
and very high pressures in an important gas mass. The gas is then expanded in
a nozzle until reaching hypersonic Mach numbers and also important Reynolds
numbers with a rather long test time (about several milliseconds): the flow can
thus more or less satisfy similarity criteria for studies of models, probes, vehicles,
and so on. The main disadvantage is the relatively high rate of pollution of the
flow—and the significant cost of the installation.

11.3.2 The hypersonic shock tunnel

Principle

In the latter part of this chapter, we describe in more detail the principle of the
shock tunnel derived from the shock tube concept. Thus, the gas downstream
from the incident shock wave can be directly expanded in a nozzle placed at
the end of the shock tube. The flow can then become hypersonic on exiting the
divergent part of the nozzle. However, this process is seldom used for various
reasons, primarily because of the very short test time. It is better to use the gas
downstream from the reflected shock as a reservoir gas. In theory, it is at rest,
in equilibrium, and at high temperature and pressure during a relatively long
time in the ‘tailored’ conditions (Section 11.2.3). Thus, at the exit of the nozzle,
we can expect test times of about one millisecond. The main drawbacks arise
from the possible pollution of the test gas by the premature arrival of the driver
gas (Section 11.2.3) and from the ‘starting process’ of the nozzle lasting a non-
negligible time. Thus, the duration of the ‘useful’ (stationary) test time is only a
few hundred microseconds, even for relatively large installations. A diagram of
a free piston shock tunnel is given in Fig. 111.



348 CHAPTER 11 FACILITIES AND EXPERIMENTAL METHODS

Air tank

Piston

Compression
chamber

D1–D2 D3 D4

Shock tube

Dump tank

Test Section

Nozzle

Figure 111. Scheme of a free-piston shock tunnel.

Operation

At the rupture of the diaphragm D4, a shock wave propagates in the nozzle,
compressing the residual gas of the expanding chamber (dump tank), initially at
very low pressure. Another shock wave, known as a secondary shock, is formed
downstream to ensure the continuity of pressure, with the test gas expanding
into the nozzle. This shock interacts with the very thick boundary layer of the
residual gas (Mach reflection) but is pulled downstream by the test-gas flow,
the stationary expansion phase of which constitutes the useful part of the flow,
analysed for example in Chapters 9 and 10.

Traditional nozzles, known as ‘contoured’ or ‘adapted’ nozzles, used in super-
sonic ideal gas flows are difficult to use in hypersonic non-equilibrium flows
because they are in fact ‘adapted’ only for conditions close to one single point
of operation. Thus, they are generally replaced by nozzles that include a conical
divergent part. These nozzles require a suitable convergent–divergent connec-
tion but are simpler to build and more easily calculable. However, they also suffer
from some defects (Appendix 11.6).

Calibration

Measurements of stagnation pressure (Pitot pressure) with small probes placed
normally to the flow are used to validate flow computations and to determine
the non-dissipative part of the test section, in particular at the exit of the nozzle,
where the models are placed. An example128 of the distribution of Pitot pressure
is shown in Fig. 112. This pressure is practically insensitive to non-equilibrium
and physical models. These measurements may also give an idea of the effective
duration of the useful test time.

Measurements of static pressure and wall heat flux generally complete our
knowledge of nozzle flow. Thus, an example of the distribution of wall pressure
for an airflow along a hypersonic nozzle is shown in Fig. 113172 and is com-
pared with the pressure calculated by taking into account non-equilibrium and
by assuming that the boundary layer is laminar (Chapter 10). The agreement
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appears reasonable, but it does not allow us to solve the problem of the influ-
ence of vibrational coupling, which, in any case, appears to be barely significant
(Chapter 5).
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Figure 114. Wall heat flux distribution along a hypersonic nozzle172 (Nozzle of Fig. 113; air; Ms =
5.76, p0 = 23× 106 Pa, T0 = 3530 K). •: Experimental points.

Similarly, an example of the wall heat flux distribution along the same nozzle
is shown in Fig. 114. The flux decrease observed along the nozzle approximately
corresponds to that computed with a laminar boundary layer. However, in the
distribution, we observe local increases similar to those observed in a shock tube
and which correspond to the appearance of turbulent spots that seem to quickly
spread: this would also correspond to the longitudinal variation of the Reynolds
number, which, initially growing (because of the increasing distance), passes by
a maximum and then decreases very quickly, mainly because of the decreasing
density, so that it is difficult to find here a definite transition.

Appendix 11.1 Experiments in real flight

Until now, most experiments in real flight (shuttles) have mainly consisted of
measuring pressure and heat flux so as to validate the calculation methods pre-
sented in Chapter 10 and to test the catalytic properties of materials for thermal
coating.

As an example, Fig. 115 shows the characteristics of the STS2 shuttle flight
(altitude, speed, and so on) with time during the re-entry phase into Earth’s
atmosphere,136 where t = 0 corresponds arbitrarily to the altitude of 120 km.

Surface temperature measurements along the symmetry line of the windward
side of the shuttle were carried out during this re-entry. Heat fluxes were deduced
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from these measurements and compared with calculations similar to those of
Chapter 10 and made with different values for the recombination-rate coefficient
of oxygen atoms at the wall, kAw . An example of the time evolution of these
fluxes at two different x coordinates is shown in Fig. 116. The experimental
values are in agreement with those calculated with kAw = 100 cm/s (value before
correction of trajectory) and confirms the good behaviour of the protection
material (reaction-cured glass (RCG) coating) used. However, a phenomenon of
ageing was observed during the following flights.
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We can also notice the specific evolution of heat fluxes showing the competi-
tion between the altitude (or density) and the velocity, and highlighting a critical
maximum value at an altitude of 60–65 km (M∞ ∼ 20–25).

Another experiment consisted of replacing the preceding coating of two ‘tiles’
by a fully catalytic coating placed at the reduced x coordinates 0.15 and 0.40. The
distribution of the wall temperature along the intrados, measured and calculated,
is shown in Fig. 117 at two instants of the re-entry. A very strong increase
in the temperature at these two x coordinates may be observed that is even
higher than that given by an equilibrium calculation, because of the ‘excess’ of
non-recombined atoms upstream from these tiles.

Appendix 11.2 Optimum flow duration in a
shock tube

Within the framework of the ideal shock tube theory, it is possible to determine
the maximum duration of a test-gas flow, taking into account the constraints
imposed by the length of the HP and LP chambers, the nature of the driver
gas and of the test gas, and so on, or conversely, to determine these quantities
by taking into account the desired time of measurement (test time). This is
obviously independent of the other ‘disturbing’ phenomena (boundary layer,
diaphragm, transition, and so on).

Figure 118 is a diagram of the interaction of various wave systems in a shock
tube, where τm represents the maximum duration of the test-gas flow at an
abscissa Xm , independently of the possible arrival of the reflected shock.
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With the method of characteristics (Chapter 8), we can show100 that the
maximum useful test-gas flow ends at a time tm equal to

tm = 2l

a4

[
1 − γ4 − 1

γ1 + 1

a1

a4

(
M 2
s − 1

M 2
s

)]− γ4+1
2(γ4−1)

(11.12)

The corresponding abscissa Xm and the maximum flow duration τm are then
respectively equal to

Xm = tm
2a1(M 2

s −1)
(γ1+1)M 2

s

τm = tm
[
1 − 2(M 2

s −1)
(γ1+1)M 2

s

] (11.13)

Thus, for given conditions, a length of the LP chamber longer than Xm is
useless (without reflected shock) and even prejudicial.

Appendix 11.3 Heat flux measurements in a
shock tube

A commonly used technique of heat flux measurements is the thin film heat
gauge method (Section 11.2.6), combining good sensitivity and short response
time. However, in the case of constant heat flux (for example in the unperturbed
test-gas flow), other methods, presenting specific advantages, may be used. This
is the case for the techniques of ‘hot wire’ and luminescent sulphides briefly
presented below.
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Figure 119. Example of hot wire records (200 µs/div.) (driver gas: nitrogen; test gas: argon) (p1 =
130 Pa, T1 = 293 K, Ms = 3.30, X = 5.70 m). Upper signal: Hot wire at the tube centre (y =
2.50 cm), Lower signal: Hot wire near the tube side-wall (y = 0.3 cm).

When a thin wire, crossed by a constant (small) electric current, is placed
in the hot flow of a shock tube, its temperature increases, and the thermal
balance of the wire, assumed to behave as a calorimeter, gives an exponential
increase in temperature until an ‘equilibrium’ value is obtained. As the corre-
sponding time constant is generally much longer than the test-gas flow duration,
the voltage signal (proportional to the temperature) is quasi-linear (Fig. 119),
and the heat flux may be deduced.153 Another advantage of this technique is
the possibility of testing the local structure of the flow. Thus, it is possible to
detect the arrival of a shock wave, a contact surface, or even (qualitatively) a
boundary layer. The flow structure presented in Fig. 94 derives from hot wire
measurements.

Another less conventional method consists of using the properties of lumines-
cent materials such as zinc sulphides, for which the luminescent signal depends
on their temperature.173 This property may be evidenced by depositing a thin
layer of sulphide upon a platinum thin film which is used as a heat source and
a thermometer. Excited by a continuous UV light source, the sulphide emits a
luminescent line (3500 Å for SZn (Cu)). The platinum film is crossed by a con-
stant current for 1 ms, and the sulphide layer gives an emission line, the intensity
of which is shown in Fig. 120 and compared to the film temperature signal. Thus,
a calibration may be operated.

An application to the measurement of heat fluxes along a hemisphere-cylinder
is made in a shock tube. Seven measurement points are placed along the model
from the stagnation point (θ = 0◦) up to θ = 90◦, and the (relative) heat flux
values are shown in Fig. 121.
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Figure 120. Luminescent signal of ZnS(Cu) (upper signal) and temperature signal of the film (lower signal)
(Wall heat flux: 100W / cm2, 2 ms/div).
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Figure 121. Distribution of heat transfer along a hemisphere-cylinder (Driver and test gas: Air, p1 =
260 Pa, Ms = 3.02, R = 2 cm).

Appendix 11.4 Shock–interface interactions

As already discussed, in reality a contact surface is a turbulent mixing zone
(‘contact zone’) between driver gas 3 and driven gas 2 (Fig. 89). The width and
heterogeneity of this zone depends on the difference of the densities of both
gases (in fact on the Atwood number (ρ3 − ρ2)/(ρ3 + ρ2). Independently of the
contact-surface–boundary-layer interaction (Section 11.2.2), the shape of the
contact surface front changes along the tube because of the growth of turbulent
instabilities within the mixing region,174,175 starting from initial perturbations
due, for example, to diaphragm or boundary-layer effects.

When perturbed by the reflected shock wave, the contact zone undergoes
a deceleration (Section 11.2.3) and becomes more unstable depending on
the importance of the deceleration, so that after interaction the mixing zone
thickens.176
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Figure 122. Experimental (x,t) diagram of shock–interface interaction (p4CO2 = 1520 Pa, p1A =
p1He= 925 Pa,MsAr= 5.83,MsHe= 3.20). : Exp. shock wave, – – –: Exp. interface.

These processes are observed in experiments carried out in a double-
diaphragm shock tube (Section 11.2.4) with the gas combinations H2/CO2/He
and H2/CO2/Ar and identical initial conditions.177 Growth of the contact zone
is determined by measuring the intensity of the IR emission (centred on the
4.3 µm wavelength) arising from the asymmetric vibrational mode of CO2,
experimental results of which are presented in Fig. 122.

Thus, as expected, we observe that the contact zone behind the incident shock
wave is thicker, and more turbulent and heterogeneous, in the CO2/He case
compared to the CO2/Ar case. After the interaction with the reflected shock, the
contact zone thickens more in the CO2/Ar case than in the CO2/He case, because
the deceleration is stronger (we are close to the ‘tailored’ conditions); however,
the CO2/He contact zone remains as unstable as before the interaction.

Note that processes related to interface instability may be important in
problems of laser-induced nuclear fusion.

Appendix 11.5 Operation of a free-piston
shock tunnel

Analysis of the operation of a hypersonic free-piston shock tunnel can be carried
out by starting from the one-dimensional and unsteady Euler equations applied
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Figure 123. Scheme of operation and computation of a free-piston shock tunnel.
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Figure 124. (x, t) Pressure diagram in a closed compression chamber (a: Piston trajectory, b: Rear shock
wave).

to each element of the tunnel. It is indeed misleading and expensive to use the
Navier–Stokes equations to gain an overview of the operation of such a tunnel.

An example of the result of such a calculation166 is presented below, corre-
sponding to the diagram of Fig. 123. We consider here the successive phases of
the running process and analyse each in turn.
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Figure 125. (x, t) Velocity diagram in a compression chamber and a shock tube (a: Piston, b: Incident
shock wave, c: Reflected shock wave).

Thus, considering first the phase of compression by the piston, without any
rupture of diaphragm 2 of Fig. 123, an x , t diagram of the isobars in the com-
pression chamber can be obtained (Fig. 124). This diagram shows the trajectory
of the piston, including its rebound close to the diaphragm, the strong compres-
sion in front of this piston, and the shock wave being formed at the rear during
the rebound phase.

Similarly, if the rupture of diaphragm 2 of Fig. 123 is taken into account, we
obtain an x , t diagram of isovelocity lines as presented in Fig. 125, which shows
the piston slowing down (without rebound) after the rupture of diaphragm
2, with the shock wave propagating in the shock tube and reflecting on
diaphragm 3.

Appendix 11.6 Source flow in hypersonic nozzles

The use of nozzles with a divergent conical part is justified by a straightforward
calculation of the corresponding hypersonic flow (Chapter 10). However, they
are not free from defects, the main one leading to a ‘conical’ (or ‘spherical’) flow.
This defect is called the ‘source effect’, as though the flow in the divergent part of
the nozzle is from a source point. Thus, the flow quantities vary not only along
the nozzle but also in the test section and therefore along a body that could be
placed there.
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It is of course possible to take the source effect into account by interpreting the
experimental results. Thus, the results of pressure measurements along a sharp
cone and along a blunted cone placed without incidence at the exit of a conical
nozzle of semiangle θ = 12.5◦ are illustrated in Fig. 126 so as to highlight clearly
the source effect.178 These results are compared with those deduced from an
approximate calculation assuming a uniform and conical flow.
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Relaxation and Kinetics in
Shock Tubes and Shock
Tunnels

12.1 Introduction

The aim of this chapter is to provide the reader with characteristic and repre-
sentative data of relaxation processes and chemical kinetics in shock tubes and
shock tunnels. Thus, experimental data on relaxation times, reaction-rate con-
stants, and catalytic properties are presented and compared with the results of
various theoretical models. Their effects on non-equilibrium flows are discussed,
as well as the limit of their reliability. Of course, more complete or detailed results
can be found in the specialized literature.

First, various results concerning vibrational relaxation are presented. A general
outline is given regarding global relaxation times, as they can be deduced from
macroscopic measurements of density and total vibrational energy and inter-
preted by using relaxation equations of Landau–Teller type. We then discuss
results concerning the determination of state-to-state transition probabilities
obtained with spectroscopic methods such as spontaneous Raman diffusion or
absorption of lines characteristic of selected vibrational transitions. A few results
of the measurement of vibrational populations in hypersonic nozzle flows are
then presented. These results seem to put an end to a polemic on the relaxation
times which could depend on the type of non-equilibrium flow, i.e. compression
or expansion flows. Measurements of vibrational catalycity are also presented,
showing the relative inefficiency of the exchanges between the vibrational mode
and the wall.

For chemical kinetics, particular examples presented include the kinetics of
complex reactions downstream from intense shock waves propagating in mix-
tures representative of planetary atmospheres. The methods of measurement
used in these cases (essentially time-resolved emission spectroscopy) are also
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presented, as well as a comparison of experimental results with theoretical
models.

12.2 Vibrational relaxation

The purpose of most measurements is to determine global relaxation times
defined by using the Landau–Teller model, since this model is widely used in the
computer codes of hypersonic flows. These include TV relaxation times for pure
gases, and TV and VV relaxation times for mixtures (Chapter 2). More precise
measurements aim to determine transition probabilities and the evolution of
vibrational populations in the relaxation zone downstream from a shock wave
(incident or reflected), thus providing a comparison with theoretical models.

12.2.1 Relaxation times: general methods

Pure gases

For the determination of global relaxation times, the system of RH equations
(Eqn. (8.12)) is used, coupled with the Landau–Teller equation (Eqn. (9.38))
in which the relaxation time τV is regarded as unknown. The measurement of
one macroscopic parameter is thus in theory sufficient to determine τV (p,T )
at each point of the zone of relaxation: the most sensitive quantities to the
non-equilibrium are mainly the density ρ and the total vibrational energy EV .

Experimental techniques

Density measurements are made by using the interferometric method briefly
described in Chapter 11. An example of an interferogram obtained downstream
from the incident shock wave is shown in Fig. 105(b): the density profiles in the
non-equilibrium zone are then deduced from the fringe system.104

The vibrational energy is deduced from the intensity of infrared (IR) emission
due to the rotation–vibration lines of polyatomic molecules that have a perma-
nent dipole such as CO. Thus, if we suppose that the vibrational distribution
remains Boltzmann-like in the non-equilibrium zone, the intensity emitted by
all the monoquantum transitions (fundamental) is proportional to the global
average vibrational energy and the biquantum transitions (overtone) give a sig-
nal proportional to the square of this energy (Appendix 12.1). An example179 of
the time evolution of the intensity of the bands centred on 4.6 µm and 2.3 µm,
corresponding respectively to the fundamental and the overtone coming from
the flow downstream from a shock wave in CO, is represented in Fig. 127. A
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Figure 127. Infrared emission signals in CO (Ms = 5.63, p1 = 2500 Pa)142. A: Fundamental; B:
Overtone.

calibration of the equipment is necessary because the IR detector is sensitive to
the emitting region before the arrival of the shock wave in the test section as it
is visible in Fig. 127 (curve A). The time evolution of EV is deduced from these
recordings.

An alternative method also valid for homopolar molecules involves the mea-
surement of the intensity of a Raman line of a gas subjected to laser radiation.
It is thus possible to know the evolution of the vibrational energy but also the
populations of the levels concerned (Section 12.2.2).

Results

It is possible to determine τV by solving the RH system and an equation of
LT type, and with an experimental curve ρ (t ) or EV (t ). Many results are thus
obtained in the temperature range 500–5000 K and for a range of τV of 0.2 µs
–1 ms.11,180 However, these results are of two types:

a) Those for which only one (average) value for τV is retained in each exper-
iment, in spite of the temperature variation during the experiment. These
results are the oldest but also the most numerous results (method a).

b) Those for which the local variation of τV during the experiment is taken
into account. These results are in theory more accurate, but some care in the
interpretation of data has to be taken (method b).181

The representation of the results is obviously based on the LT–SSH model
(Chapter 5), which leads to the following approximate dependence of τV p on T .
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τV p ∼ F (T ) exp
(
T−1/3) (12.1)

where F(T ) depends weakly on T , so that we can write

Log
(
τV p

) = AT−1/3 + B

Another type of representation of the results is provided by the use of the
quantity P0

1 , the average probability of de-excitation for the molecules in the

first level,180 or of the quantity Z 0
1 = (

P0
1

)−1
, the probable number of TV

collisions necessary for this de-excitation. From Section 2.4, we have

Z 0
1 ∼ g (T ) exp

(
T−1/3) (12.2)

with τV = Z 0
1 /Z , where Z is the collision frequency.

Method a:

As an example, the average values of the relaxation times obtained for N2 and
O2 are shown in Fig. 128. The following points may be emphasized.

For temperatures higher than 500 K, the dominant term of Eqn. (12.2) is the
exponential term. The linear dependence of Log Z 0

1 with T−1/3 is clearly verified
for N2 and O2 and for many other gases.

For lower temperatures, the significant curvature of the graph, which is due
to the attractive part of the interaction potential, is underestimated by the SSH
theory.

For temperatures higher than 5000 K (not shown), few experimental results
are available, and the extrapolation of SSH curves leads to values of τV which
may become lower than those of elastic collision times! Empirical corrections
are obviously possible182 (Appendix 12.2), but it is quite unlikely that the LT–
SSH correlation is valid for these temperatures, taking into account the possible
multiquantum transitions, the effects of dissociation, and so on.

Method b:

If we exclude the values of τV obtained at the end of the relaxation zone where
EV → EV and dEV

dt → 0, there is agreement between the LT–SSH representation
and the experimental results. Despite experimental uncertainties, these results
validate this type of representation (sometimes questioned) and can contribute
to give a more precise value of the slope of the LT–SSH straight line (see the
example for CO in Fig. 129).179

Mixtures

Many binary mixtures have been studied, and the corresponding relaxation times
τTVpq have been determined with similar experimental methods and represented
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with LT–SSH diagrams (Chapters 3 and 9; Appendix 12.2). From these results,
we can use in the case of more complex mixtures the barycentric formula (Eqn.
(9.37)) for the relaxation times τTV . For the relaxation times τVV , various models,
including the SSH model, are used (Chapter 9).
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As an example of the experimental determination of relaxation times at mod-
erate temperature without dissociation, we consider the quasi-resonant mixture
CO–N2; knowing the relaxation times τTVCO−CO and τTVN2−N2, and taking into
account Eqn. (2.70), we must determine τTVCO−N2 and τVVCO−N2. If we assume
a Boltzmann distribution for each gas at two temperatures TVN2 and TVCO, two
different types of measurement are necessary. However, if we use the standard
SSH formula (Eqn. (12.1)), that is, Log (τV p) = ACO−N2T

−1/3 + BCO−N2, two
experiments of the same type with different conditions are enough to determine
A and B. Thus, taking into account experimental uncertainties, we find

ACO−N2 � ACO−CO and BCO−N2 � BCO−CO

so that τTVCO−N2 � τTVCO−CO.
The same is true for other TV relaxation times between gases of similar

molecular masses
(
τTVN2−O2 � τTVN2−N2, and so on

)
.

From this result, experimental interpretations give results for τVVCO−N2 ,
shown in Fig. 130, where we can see that they deviate significantly from the
SSH curve.183,184
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Figure 130. VV relaxation times for CO/N2. (Experimental points), : SSH.
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12.2.2 Vibrational populations

Experiments in a shock tube

Rigorously, as already pointed out, the evolution of vibrational populations
does not generally take place according to a Boltzmann distribution, and conse-
quently, the concept of vibrational temperature does not have a physical meaning.
Thus, it is preferable to determine these populations directly by experiment. The
measurements are essentially made in two ways: either by Raman diffusion104

(spontaneous or stimulated, though this last technique has not been applied in
shock tubes), or by infrared absorption.185

Spontaneous Raman diffusion

When molecules initially in levels iv and iv+1 are excited by a line of frequency
ν and intensity I (Fig. 131), they re-emit diffusion lines of frequency ν − 
ν
(Stokes lines) and ν +
ν (anti-Stokes lines), with respective intensities IS and
IAS , such that

IS
I

∼ niv and
IAS
I

∼ niv+1

The recording of these quantities in the relaxation zone affords the possibility
of following the evolution of the populations niv and niv+1, with a calibration
operated in the equilibrium region. A powerful light source is necessary, and
generally only the lowest levels (usually the most populated) are accessible.

A scheme of the experimental assembly is shown in Fig. 132. The intensities
of the exciting line and anti-Stokes line corresponding to the transition 1 → 0
are recorded, and taking into account the relaxation equation of the population
n1 (Eqn. (2.17)), we can obtain the collision rate a0

1 (and thus Z 0
1 ). Such a

measurement realized in nitrogen gives values of Z 0
1 , which confirms the global

measurements (Fig. 128). Similar measurements concerning upper levels will of
course be necessary.

Infrared absorption

The absorption coefficient α of a medium made up of heteropolar molecules
and crossed by a spectral line corresponding to a transition iv , ir → iv +1, ir −1
(P branch) is given by an expression of the type of Eqn. (10.30) as a function of
the population of the levels concerned; if we assume a Boltzmann distribution
for the rotational levels, this expression can be written as

αir ,iv = A0
1

(
8πω2

ir ,iv

)−1
(
νiv+1,iv

ν1,0

)3 (Riv+1,iv

R1,0

)2

φ

(
niv+1

nir−1

n
− niv

nir
n

)
(12.3)
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For the same vibrational transition, there is a similar equation for the
absorption coefficient αjr ,iv corresponding to another rotational transition
jr → jr − 1.

From the measurement of the two coefficientsαir ,iv andαjr ,iv , it is thus possible
to deduce the populations of the levels iv and iv + 1, since we have

niv
n

= A1αir ,iv + B1αjr ,iv

niv+1

n
= A2αir ,iv + B2αjr ,iv (12.4)

� � – �� � � + ��

 �EV = h� �

i� = 1

i� = 0

(a) (b)

Figure 131. Principle of spontaneous Raman diffusion. (a) Stokes line; (b) Anti-Stokes line.
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Monochromator

Ruby laser (6943 Å)

As line (5976 Å)

Figure 132. Scheme of Raman set-up (nitrogen).
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In this system, the four coefficients A1, A2, B1, and B2 depend on spec-
tral parameters, generally well-known, and on macroscopic flow parameters
(T , ρ, . . .). The flow parameters depend very little on the vibrational distri-
bution model (Chapter 9), so they are calculated before solving Eqn. (12.4),
assuming for example a LT–SSH model. Thus, the coefficients αir ,iv and αjr ,iv
may be determined as well as the evolution of the vibrational populations, which
may be compared with global distribution models (Boltzmann, Treanor, and so
on).

As an example, measurements of the absorption coefficient α are carried out
downstream from incident shock waves in carbon monoxide, CO, for various
vibrational transitions, each including two rotational transitions.186 The scheme
of the experimental set-up is presented in Fig. 133: it includes a CO monomode
laser (centred at 3.6 µm), capable of separating the rotation–vibration lines. The
wavelengths are measured by a spectrometer, and for each line of the P branch
corresponding to the vibrational transitions from 3 → 2 up to 7 → 6, the
intensity I crossing the shock tube and the reference intensity I0 are measured
by IR detectors (InSb). The Mach number range lies between 4.5 and 7, which
corresponds to an equilibrium temperature range 1500–3000 K.

Figure 134 shows an example of the recording of the difference of relative
intensity
I = I − I0 of two P lines corresponding to the vibrational transition
4 → 3 in the relaxation zone. The evolution of the coefficient α is deduced from
this recording and finally also the relative population of level 3, which is shown
in Fig. 135. Also in Fig. 135, the evolution of the relative population of level 6 is
represented. From these experiments, the following comments may be made.

The population of the lowest levels cannot be accurately determined from
these measurements, because the schlieren effect, owing to the gradient of refrac-
tion index, important just downstream from the shock wave, primarily affects
the first levels. The significant results thus concern only those levels equal to
or higher than the third level. Because of the very small initial population of

Shock
tube

InSb

InSb

CO laser

Spectrometer

Figure 133. Scheme of IR absorption set-up.
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Figure 134. Evolution of the relative absorbed intensity for two rotational lines of the vibrational transition
4 → 3 (CO:Ms = 5.57, T1 = 291 K, p1 = 196 Pa).

these levels, this population starts to grow significantly one ‘incubation time’
after the passage of the shock wave, which, in these experiments, is about a few
microseconds.

The experimental evolution of the population of these levels is relatively close
to an evolution of Treanor type (higher in the relaxation zone and lower close to
equilibrium). It remains, however, much higher than a Boltzmann distribution,
the difference increasing with the level. Thus, we have experimental confirmation
of the theoretical results presented in Chapter 9 (Appendix 9.1).

The characteristic time for reaching equilibrium for those levels equal to or
higher than 3, including the incubation time, remains close to the total relaxation
time, and this is essentially due to TV collisions, as discussed above.

Experiments in a shock tunnel

For global measurements, we can ‘historically’ distinguish the measurements
carried out in shock tubes (compression) and those carried out in the nozzle of
shock tunnels (expansion). Contradictory results have been obtained in the two
types, though a synthesis of the results now seems to be generally accepted.

One of the main difficulties of conducting measurements at the nozzle exit
of shock tunnels arises from the low density of the flow, which is essentially the
price to be paid for the generation of a hypersonic flow. Thus, the techniques
used in shock tubes (interferometry, IR emission or absorption) are not efficient,
except in front of an obstacle—but here the gradients are important.
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Figure 135. Evolution of the relative population of the third and the sixth vibrational level (CO:Ms = 5.60,
T1 = 293 K, p1 = 196 Pa). : Experimental, Treanor, : Boltzmann.

This is why methods used in the past to determine global relaxation times were
indirect measurements (sodium or chromium line reversal, inclusion of tracers,
Rayleigh diffusion, and so on). The general conclusions of these studies were that
the vibrational relaxation times deduced from these measurements were much
lower than those deduced from measurements in shock tubes and, thus, that the
flow at the nozzle exit was much closer to equilibrium than that calculated using
the values of relaxation times determined in shock tubes. A large dispersion of
values of τV also resulted from these data.187–189

As no plausible explanation could justify these results, direct measurements of
vibrational populations in nitrogen were realized by spontaneous Raman diffu-
sion initially in a nozzle of area ratio A/AC = 12 (nozzle A), inserted in a shock
tube,190 and then in a shock tunnel nozzle (nozzle B) of larger dimensions191

(A/AC = 164). Experimental devices, though very different in detail, were in
overall conformity with the diagram of Fig. 132.

For the first example quoted here, the recorded Raman spectrum is shown in
Fig. 136 (a), and the corresponding vibrational distribution (up to the fifth level)
in (b). It is thus clear that this distribution is close to a Boltzmann distribution at
the frozen vibrational temperature 2230 K found from a classical LT calculation
(Chapter 10), including the values of relaxation times determined in shock tubes,
which is confirmed in Fig. 137, where the evolution of the temperature along
the nozzle is shown. Therefore, independently of the experimental uncertainties
(relatively important), no significant difference appears between the relaxation
times determined in compression and those determined in expansion regimes.
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Figure 137. Measured and computed temperatures along the nozzle (nozzle A). (Conditions of Fig. 136).

For direct measurements in a shock tunnel (nozzle B), the degree of purity
for the gases employed is not too high, and vibrational ‘overpopulations’ are
observed for levels higher than 3, which may be attributed to an excitation caused
by the presence of impurities that are inevitably present in large installations.
However, as observed in Fig. 138(a), the distribution for the first three levels is
close to a Boltzmann distribution at the frozen vibrational temperature 2153 K,
corresponding to the temperature given by a NS–LT calculation with values for
relaxation times measured in shock tubes, which confirms the results obtained
with nozzle A.

Moreover, a similar measurement carried out at the exit of the nozzle B in
front of a model finds that the vibrational temperature calculated as above is
about 600 K191 (Fig. 138(b)).
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Figure 138. (a) Relative vibrational populations at the exit of nozzle B. (A/AC = 164, L = 70 cm),
(T0 = 2900 K, p0 = 1.70× 107 Pa). •: Exp., TV = 2153 K, · · · T = 270 K (equilibrium). Excitation
by dye laser (500 nm). (b) Relative vibrational populations at 4 mm in front of a model (Nozzle B, – – –
T0 = 600 K, TV = 600 K, •: Exp.).

12.2.3 Vibrational catalycity

As previously discussed (Appendix 10.1), for the transitional regime, it is possible
to define two accommodation coefficients αTR and αV for modes TR and V ,
respectively, and two exchange coefficients γTR and γV , respectively, for the
exchanges TR → V and V → TR. In theory these coefficients can be deduced
from measurements of wall heat flux qw (Appendix 10.1) and therefore from the
variation of wall temperature
Tw (Appendix 7.2).

Thus, if we measure
Tw(t ) at the end wall of a shock tube behind the reflected
shock, we obtain signals similar to those in Fig. 139 (a) and (b). We thus compare
these signals with those resulting from a Navier–Stokes calculation that includes
boundary conditions (Eqns (10.22) and (10.23)). However, in this case, we can
neglect the exchanges V → TR, so that we assume γV � 0. Then, iteratively
varying the values of the three other coefficients αTR , αV , and γTR , we finally
calculate theoretical curves that within a‘confidence interval’fit the experimental
curves. Obviously, the ‘response time’ of the temperature probes192 (Chapter 11)
must be much shorter than the timescale of the accommodation and exchange
phenomena.

Such measurements have been made193 with test gases N2 and CO2. As a first
observation, we may point out that no theoretical curve can coincide with the
experimental curve for non-negligible values ofαV ,which leads to the conclusion
that the wall (here made up by the thermometric probes in glass or ceramics) is
non-catalytic for the vibration, i.e. αV � 0.

For nitrogen, it is easy to conduct measurements for conditions where the
vibrational excitation is negligible (low shock Mach number); then there is only
one coefficient to be determined: αTR . Thus, a value of 0.50 is found for αTR .
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Figure 139. (a) Wall temperature evolution at the end wall of a shock tube (N2, Ms = 3.94,
p1 = 1.25 × 104 Pa). •: Experiments, : Calculation with αTR = 0.70, γTR = 0.80, αV = 0;
– – – : Calculation with αTR = 0.50, γTR = 0.70, αV = 0.
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Figure 139. (b) Wall temperature evolution at the end wall of a shock tube (CO2, Ms = 3.94, p1 =
300 Pa). •: Experiments, – – – : Calculation with αTR = 0.66, γTR = 0.80, αV = 0; : Calculation
with αTR = 0.70, γTR = 0.85, αV = 0.

Incidentally, we may point out that the value found for argon is αTR = 0.75,
in conformity with older measurements.192 Now, when nitrogen is vibrationally
excited, the best agreement is obtained with αTR = 0.70 and γTR = 0.80 (Fig.
139(a)), which shows a significant TR–V coupling, which can modify the value
of αTR .
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Figure 140. Wall heat flux behind an incident shock wave in CO2. •: Experimental points.

For carbon dioxide, the best agreement is obtained for the following
‘confidence intervals’ (Fig. 139(b)):

γV � 0, 0.66 < αTR < 0.70, and 0.80 < γTR < 0.85

TR–V coupling is thus also significant for CO2.
In order to confirm these results in the continuum regime (essentially the

vibrational non-catalycity), measurements of wall heat flux are carried out
downstream from an incident shock wave in CO2, and the values obtained (cor-
responding to the plateau of 
Tw) are compared with those deduced from
calculations of simplified flows: flow assumed in equilibrium (denoted EE), flow
assumed frozen (denoted FF), and flow assumed frozen in the boundary layer
with non-catalytic wall for the vibration and in equilibrium outside (denoted
EF) (see Fig. 60). Thus, we observe (Fig. 140) that the experimental points are
in reasonable agreement with the results of this last calculation, thus confirming
the wall non-catalycity for the vibration194 (Chapter 10).

12.3 Chemical kinetics

12.3.1 Dissociation-rate constants

More than in other fields, the results of chemical kinetics obtained in shock tubes
have in the past suffered from measurement techniques that were often indirect
(for example, interferometry) or incomplete (emission, absorption, or the like).
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The consequence was a large variation in such results, which also arose owing to
the methods used for data reduction.

However, there exist a large number of reaction-rate measurements,100,140,168

in particular for dissociation reactions carried out behind incident and reflected
shock waves.

A few results of measurements of dissociation-rate constants kf in standard
gases such as O2 and N2 are provided in Figs 141 and 142. These have been
obtained by interferometry and UV absorption. They approximately obey the
general relation kf = Cf T

n exp (−ED/kT ) (Chapter 9).
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Figure 143. Measured values of dissociation-rate constant (CO2 and CN).196

In fact, at the lowest temperatures, an ‘incubation time’ is observed, which
is due to vibrational relaxation (Chapter 9), since in this case the vibrational
relaxation and dissociation proceed on different timescales. For ‘moderate’ tem-
peratures, the data giving kf must be interpreted by taking into account the
interaction of the dissociation and vibration that proceed on the same timescale.
At still higher temperatures, the vibration can be assumed to be in equilibrium,
and a ‘one temperature’ physical model can again be used.

More accurate measurements of dissociation-rate constants for O2 and N2

in an excess of argon (thus at quasi-constant temperature) have been obtained
from absorption measurements of the characteristic spectral lines (130.5 nm for
O and 156.1 nm for N) of oxygen or nitrogen atoms.196 The same technique can
be used to determine the rate constant of any reaction releasing O, N, or C atoms.
Thus, in Fig. 143, the dissociation-rate constants of CO2 and CN are shown.

12.3.2 Time-resolved spectroscopic methods

The time-resolved emission spectra of particular species downstream from a
shock wave can allow us not only to ascertain the kinetics of the formation
or destruction of these species but also to validate (or not validate) complex
calculations of chemical kinetics in which these species are involved. The record-
ing of these spectra (or parts of spectra) during one single experiment clearly
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Figure 144. Scheme of optical arrangement for time-resolved emission measurements.

constitutes significant progress compared to the recordings of one or a few
particular lines, as were often made in the past.140

An example of such an experiment197 is represented in Fig. 144. The radiation
emitted by the shocked gas is focused to a monochromator equipped with a
high-resolution holographic grating. At the exit, a streak unit equipped with a
CCD camera enables the recording of a significant part of the analysed spectrum.
An example of such a recording is shown in Fig. 145. From these pictures, it is
possible to extract the variation of the line intensities as functions of time or
wavelength.

Three examples of complex chemical kinetics are now presented.

N2/CH4/Ar mixture

The study of this mixture (92%N2, 3%CH4, 5%Ar) has two objectives. It is of
interest theoretically since the reactions developing downstream from a strong
shock wave include the production of the radical CN, with the emission of an
intense violet band spectrum (Appendix 12.3), so that it is possible to attempt
to validate kinetic models for this mixture (Appendix 12.5). The second interest
is practical since this mixture constitutes the atmosphere of Titan, which is a
satellite of Saturn and was the ultimate target of the Cassini–Huygens probe.
The entry of the probe into this atmosphere required knowledge of the radiating
heat flux, which is essentially due to CN.198,199
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Figure 145. Example of streak image (
v = 0 CN band of the mixture CH4/N2/Ar) (Us = 5560 m/s,
p1 = 220 Pa).

Experiments are based on the recording of the spontaneous emission related to
the electronic transition B2�+ ↔ X 2�+ of CN and more precisely to the
v =
0 sequence of this transition, which is known to have the strongest intensity
(streak image, Fig. 145).

It is thus possible to deduce from this image the intensity profiles of the
lines as functions of the wavelength (Fig. 146) or of the distance to the shock
(Fig. 147).197,200

In the case considered here, we can observe an ‘abnormal’ behaviour of the
spectrum at its maximum intensity, the 1-1 band having a high intensity com-
pared with the 0-0 band. This tends to disappear, however, with increasing
distance from the shock. We also observe an important maximum intensity
presented by the various bands close to the shock (overshoot), due to the
non-equilibrium.

The experimental relative vibrational populations (up to the level v = 8)
may also be estimated by using an iterative method (Appendix 12.3). It is then
necessary to use a rotational temperature given by the computation (Appendix
12.5), since the intensity of a rotational line corresponding to a given electronic
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of Fig. 145).
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transition is proportional to the population of the excited levels, that is, assuming
TR = T :

n
(
e ′, v ′, j ′

) = K
(
2j ′ + 1

)
exp

(
− εir
kT

)
n
(
v ′) (12.5)

where no assumption is made a priori on the population of the level v ′.
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(Conditions of Fig. 145).

Thus, the experimental relative vibrational populations corresponding to the
case of Fig. 145 may be determined as shown in Fig. 148. This confirms the
preceding results showing a non-Boltzmann distribution close to the shock and
then a tendency to a Boltzmann distribution.

In addition, a theoretical spectrum can be calculated starting from the kinetic
model of Appendix 12.5 by taking into account the broadening of the lines
caused by the Doppler effect and by the pressure effect (Voigt profile) as well as
by convolution from the ‘slit functions’ of the measurement system (see example
in Fig. 149). By comparing the theoretical and experimental spectra, a very good
agreement is obtained in the Boltzmann zone (see example in Fig. 150, where
TV = 9300 K ± 500 K).

However, the results of other experiments carried out at higher pressure lead
us to consider that the vibrational distribution remains non-Boltzmann along
the whole observed distance (a few centimetres) and disagrees with the numerical
calculations (Appendix 12.4).

CO2/N2 mixture

Similar experiments (spectrum
v = 0 of CN) have been carried out in a mix-
ture of 70% CO2and 30% N2. In this case, the vibrational distribution is always
a Boltzmann distribution, and the evolution of the vibrational temperature is in
relatively good agreement with calculations (Appendix 12.5) (Fig. 151).
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Pure CO

The same type of experiment has also been carried out with CO as a test gas to
visualize the
v = 0 and
v = +1 bands of the electronic transition A3�g ↔
X 3�u of the C2 molecule (Swan bands), because the intensity of these bands
is low in the preceding mixtures. The comparison of measured and calculated
spectra shows only global agreement. The differences observed on individual
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lines may be due to the lack of data for spectral parameters of the C2 molecule at
high temperature (Fig. 152). Agreement is much better for the evolution of the
intensity integrated over the whole spectrum (Fig. 153).

12.3.3 Chemical catalycity

Similar to the experiments described above for vibrational catalycity, the deter-
mination of the recombination coefficient γ and/or the recombination-rate
constant at the wall, kRw , has been obtained starting from measurements of
wall heat flux, either in arc tunnels or in real flight.
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Other types of measurement of γ , as well as of β, the chemical accommodation
coefficient (Chapter 10), have been carried out in RF plasma reactors using
spectroscopic methods (LIF, actinometry) and calorimetric techniques.

The values found for γ vary greatly depending on the techniques used and
the nature and state of the materials tested.201,204 Thus, for example for atomic
oxygen, these values are about 10−2 on metallic surfaces (which are quickly
oxidized) and about 10−3 on non-catalytic materials such as silicon carbide
(SiC), for which β � 0.5.

From these measurements, we can deduce a specific recombination rate kRw
equal to γβ(kT/2πm)1/2 (Chapter 10). Thus, for example at 300K, for O2/Ag
we find kRw � 220 cm/s, and for O2/SiC we find kRw � 15 cm/s. These values
increase with temperature, highlighting a progressive change in the mechanism
of recombination, of Eley–Rideal type for temperatures less than 900K, and of
Langmuir–Hinshelwood type for temperatures in the range 900–1200 K.205

12.3.4 Hypersonic flow around bodies

Flows around various bodies (dihedral, cylinder, sphere, and so on) have been
studied in shock tunnels, in particular from density measurements by inter-
ferometry. Thus, experiments with a sphere206 have been compared with the
computations based on physical and numerical models presented in Chapters 5
and 10.

A parameter relatively simple to measure, and sensitive to non-equilibrium,
is the shock detachment distance
 (or shock stand-off distance, SSD) between
the shock and the body along the stagnation line.
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Table 7. Shock detachment distance in front of hemisphere-cylinders (airflow,
shock tunnel).

Conditions R (mm) 
/ R (measured) 
/ R (computed)

1
h0 = 10.4 MJ/kg 25 0.129 0.133
p0 = 18 MPa 50 0.121 0.127

2 12.5 0.136 0.132
h0 = 4.8 MJ/kg 25 0.130 0.128
p0 = 18 MPa 50 0.120 0.126

Thus, Fig. 154 shows SSD measurements over a sphere at the exit of a shock
tunnel206 and SSD values computed with a numerical axisymmetric model
including the vibration–reaction model developed in Chapter 5.128 In fact,
dimensionless SSD values are reported as a function of a similarity parame-
ter, called the ‘reaction-rate parameter’ �, issued from a one-dimensional flow
model206,207 (� = 0: frozen flow;�→ ∞: equilibrium flow).

Other SSD measurements have been made in front of hemisphere-cylinders
(nose radius R) placed in an airflow at the exit of a shock tunnel nozzle (M = 7;
see Tables 6 and 7 and Fig. 77 of Chapter 10). Experimental values are deduced
from holographic interferometry and schlieren photography,128 and computed
values are obtained from the same physical model as in the preceding example.108

A third example of SSD values is given in Fig. 155, where the experimen-
tal values are from measurements in a ballistic range,208 and those labelled
‘present model’are from computations similar to the preceding cases.128 They are
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also compared to computations obtained from a semi-empirical model (Park’s
model106).

Finally, in the three quoted examples, the agreement between measured and
computed SSD values remains within 5%.

Appendix 12.1 Generalities on IR emission

Molecules such as CO that have a permanent dipole moment can spontaneously
pass from a vibrational level i to a level j . This spontaneous emission, generally

in the infrared spectrum, is characterized by the Einstein coefficients A
j
i related

to the probability of this transition. With the harmonic oscillator assumption,
only monoquantum transitions occur, and we have:

Ai−1
i = iA0

1 (12.6)

For two-quantum transitions, related to the anharmonicity of the molecule,
we can write:

Ai−2
i = i (i − 1)

2
A0

2 (12.7)
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If we assume that self-absorption can be neglected, the intensity emitted by
the totality of the monoquantum transitions of an ‘active’ component p, i.e. I1,
is proportional to the number of oscillators, that is:

I1 ∼
∑
i

Ai−1
i ni ∼ A0

1

∑
i

ini (12.8)

Then, I1 ∼ npEVp (or ∼ ρcpeVp per unit volume).
Similarly, for the two-quantum transitions, we have:

I2 ∼
∑
i

Ai−2
i ni ∼

∑
i

i (i − 1)ni (12.9)

Assuming a Boltzmann distribution for ni at temperature TV , we have:

I2 ∼
∑
i

i (i − 1) exp

(
−i θv
Tv

)
and applying the results of Appendix 2.3, we find:

I2 ∼ (
npEVp

)2
(12.10)

Appendix 12.2 Models for vibration
relaxation times

The (popular) Millikan and White model11 on TV relaxation times takes into
account many experimental results and the SSH theory. Thus, for a relaxation
time τTVpq (where q may be equal to p), we have:

pτTVpq = exp
[
0, 0016µ̃1/2

pq θ
4/3
vp

(
T−1/3 − 0, 015µ̃1/4

pq

)
− 18, 42

]
(12.11)

where µ̃pq is the reduced molecular mass (in g/mole) and p is the pressure (in
atmospheres).

For a mixture,
(
τTVp

)−1 = ∑
q

ξq

τTVpq
(Eqn. (9.37))

The approximate equation (12.11), valid between 500 and 8000K, may be
corrected182 when the temperature is close to 20 000K by adding to τTVpq an

elastic collision time (Chapter 2), that is τ elp � (
nqσpcp

)−1
, where σ is a cross

section equal to 10−17
(50000

T

)2
, and cp is an average characteristic velocity equal

to
(

8kT
πµpq

)1/2
. Then, for T ≥ 20 000 K, we have:

τTVpq = τTVpq(MW ) + τ elpq (12.12)
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Other formulae, more or less empirical, may be found in the literature
(Chapter 9), and the same is true of VV relaxation times.

Appendix 12.3 Simulation of emission spectra

The interpretation of experimental spectra corresponding to the emission of
electronic transition bands obtained downstream from intense shock waves (CN
or C2, for example) requires comparison with calculated spectra in order to
obtain physical parameters (primarily temperatures, possibly concentrations).
Here, a few indications about the calculation of these spectra are given.209–213

Structure of emission bands

The internal energy of a molecule E is such that

E = EE + EV + ER (12.13)

By comparison with Eqn. (1.63), Eqn. (12.13) takes into account electronic
energy EE , since in the present chapter we consider molecules in an excited
electronic state. In terms of wave number (cm−1), Eqn. (12.13) may be written

T = Te + G + F (12.14)

where Te , G, and F represent the electronic, vibrational, and rotational con-
tributions respectively. The wave numbers of the spectral lines corresponding
to a transition between two electronic states and possibly two vibrational and
rotational states are such that

ν = (
T ′
e − Te

′′)+ (
G ′ − G ′′)+ (

F ′ − F ′′) (12.15)

for a transition between an upper state (denoted by ′) and a lower state (denoted
by ′′).

Given an electronic transition, νe = T ′
e−Te ′′ is constant, as given a vibrational

transition, the following quantity is also constant:

νv =
[
ω′
e

(
v ′ + 1

2

)
− ω′

ex
′
e

(
v ′ + 1

2

)2

+ · · ·
]

−
[
ωe

′′
(
v ′′ + 1

2

)
− ωe ′′xe ′′

(
v ′′ + 1

2

)2

+ · · ·
]

(12.16)

(See Eqn. (1.75) for an anharmonic oscillator.)
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Therefore, for a given value of νe + νv = ν0, all possible rotational transitions
constitute a single band, for which we have

ν = ν0 + F
(
J ′
)− F

(
J ′′
)

(12.17)

For a vibrating rotator, the term F(J ) is written in the form

F (J ) = BvJ (J + 1)− DvJ
2 (J + 1)2 + · · · (12.18)

(See Appendix 1.2.)
Here, Bv and Dv depend on the vibrational and electronic state, that is:

Bv = Be − αe
(
v + 1

2

)
+ · · ·

Dv = De − βe
(
v + 1

2

)
+ · · · (12.19)

We can therefore develop F and determine the wave numbers of the rotational
lines for a vibrational and electronic transition.

Taking into account forbidden transitions, we eventually obtain a P branch
(
J = −1), a Q branch (
J = 0), and an R branch (
J = +1). Spin splitting
may also occur, so that we define a new rotational quantum number K , with
J = K + S and J = K − S.

An example is represented in Figs 156 and 157 for the molecule CN.

Intensity of emission lines

The intensity of a spectral line (energy emitted per second), Imn , coming from
Nn molecules in the initial state, is defined as

Imn = NnhνnmA
m
n (12.20)

The transition probability Amn (Einstein coefficient) may be expressed as a
function of the matrix element of the dipole moment, and for an electronic
transition n′ → n′′ we have

I
n′′v ′′j ′′
n′v ′j ′ = 64π4cν4

3
|Re|2 qv ′v ′′

Sj ′

2j ′ + 1
N
(
n′, v ′, j ′

)
(12.21)

expressed in 107 W/(cm3sr), and where |Re|2 is the matrix element of the
moment of the electronic transition, qv ′v ′′ is the Franck–Condon factor, and Sj ′
is the Hönl–London factor. These spectral parameters are generally well known.
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Figure 156. Potential curves for CN.

If we have a Boltzmann distribution, we can write

N
(
n′, v ′, J ′

) = N0

(
2J ′ + 1

)
Qtot

exp

[
−hc
k

(
F
(
n′, v ′, J ′

)
TR

+ G
(
n′, v ′)
TV

+ ν
′
e

Te

)]
(12.22)

Broadening of lines

The ‘ideal’ spectra obtained using the preceding expressions are composed of
monochromatic lines. In reality, however, these lines are broadened depending
on the conditions prevailing in the gas: molecular velocities, collisions, lifetimes,
pressure effects, electric and magnetic fields, and so on. The majority of these
broadenings are of Gaussian or Lorentzian type and can be generally taken into
account by a single Voigt profile.

In addition to the broadening due to the gas itself, it is necessary to take
into account a global ‘apparatus function’ in the calculation of the spectrum, for
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comparison with the experimental spectrum. This function, generally because of
the non-negligible width of the slits, introduces a convolution of the spectrum,
but the function can be experimentally determined.200

An example of a calculated spectrum for CN is shown in Fig. 149.

Comparison of measured and computed spectra

The iterative method is summarized in the chart of Fig. 158.
It is also possible to determine the temperature TR from the ratio of the inten-

sities of two rotational lines of the same vibrational transition (Eqns (12.21) and
(12.22)). Similarly, the temperature TV can be determined from the ratio of the
intensities of two rotational lines of two different vibrational bands. Therefore,
from the measurement of the intensity of three suitably selected lines, these tem-
peratures (insofar as they can be defined) can be determined, as well as their
evolution.214

However, because of the monochromator dispersion and the overlapping of
the lines, the inaccuracy of TR and TV values is significant (about 30%). Com-
parisons with computed values,215 however, given in Fig. 159, show qualitative
agreement.
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Appendix 12.4 Precursor radiation in shock tubes

The strong luminosity of the hot gas behind the shock wave may induce an
important radiation on the gas ahead of the shock, so that the gas molecules may
absorb this radiation and re-emit their own radiation.100

An example is given in Fig. 160, which shows the signal given by a photomul-
tiplier sensitive to near ultraviolet and the visible spectrum (2500–6500Å) and
registering the passage of all luminous phenomena during an experiment in a
shock tube.200

This experiment corresponds to that of Fig. 145 with the N2/CH4/Ar mixture
as a test gas. Thus, we observe a strong precursor signal before the arrival of the
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shock wave. This radiation is essentially composed of ultraviolet light and is not
registered by the monochromator–streak unit ensemble (Section 12.3.2). In the
same figure, we also observe the radiation due to the mixing zone at the arrival
of the driver gas.
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Despite the precursor radiation strongly decreasing just before the passage of
the shock wave, it is probable that the electronic state of the molecules upstream
from the shock is modified and therefore also the vibrational distribution of
each state. The macroscopic parameters, however, may not be affected. Further
studies on the subject are desirable.
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Figure 161. Evolution of species concentrations behind a shock wave in N2/CH4/Ar (Us = 5600 m/s,
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Appendix 12.5 Examples of kinetic models

Calculation of the flow downstream from a shock wave, presented in Chapter 9,
is applied here to various mixtures by taking into account the physical processes
involved, that is, chemical reactions, vibrational relaxation, interactions, and so
on.

The results are used to calculate the emission spectra of CN and C2 and for
comparison with experimental spectra.

N2/CH4/Ar mixture

For this mixture, 24 reactions are taken into account,215 with the following 20
species:

H2, N2, C2, CN, NH, CH, CH2, CH3, CH4, H, N, C, Ar,
H+, N+, C+, Ar+, CN+, N+

2 , and e

It is possible, however, that other species such as C3 can also be taken into
account.

An example of the evolution of the mass fractions of neutral species is shown
in Fig. 161 (initial concentrations: N2: 92% ; CH4: 3% ; Ar: 5%).

CO2/N2 mixture

For this, 19 reactions are taken into account,216 with the following ten species:

CO2, CO, C, C2, CN, O2, O, N2, N, and NO
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Figure 163. Influence of values of the rate constants on the evolution of the C2 concentration.
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An example of the evolution of the mass fractions is given in Fig. 162
(CO2: 70% ; N2: 30%).

Pure CO

Five reactions are taken into account200 for pure CO, with the following four
species:

CO, C2, C, and O

The influence of the chosen values of the rate constants,216–218 particularly
on the concentration of C2,is important (Fig. 163).
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Accommodation
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chemical kinetics, 274
equilibrium chemistry, 263, 286
ionization, 287

Blow-down tunnel
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Boundary conditions
Boltzmann equation, 178
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behind a reflected shock, 303
equilibrium (in), 295
general equations, 233
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chemical, 298, 382
vibrational, 313, 372

Chemical reactions, 259
Collision cross-section

differential, 20
total, 22

Collision frequency
definition, 19
elastic, 19
inelastic, 20, 62
Maxwellian regime, 58

Collision rate, 44, 270
Collisional integrals, 72, 78

mixture, 117, 153
pure gas, 92, 149, 163, 170

Collisional invariants, 15, 17, 47

Collisions
elastic, 14, 19, 33
generality, 14
inelastic, 17
models, 31
reactive, 18
resonant, 49
TV, VV, 47

Concentrations
mass, 105
molar, 16, 260
number density, 8

Conductivity
approximate expressions, 86, 123, 137, 165
pure gases, 74, 134
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Control
mass, volume, 220

Cramer systems
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Density, 7
Diaphragm

opening time, 351
Diffusion

binary, 106
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self-diffusion, 87

Dimensionless numbers
Brinkmann, 205
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Knudsen, 37
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Reynolds, 202
Schmidt, 203
Stanton, 207
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Direct simulation
Monte-Carlo methods, 183
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Distribution function
Boltzmann, 41
Maxwell, 39
Maxwell–Boltzmann, 41
Treanor, 47
Vibrational non-equilibrium, 43
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Emission

infrared, 385
line intensity, 388
measurements, 361
simulation, 387
spectra, 376

Energy
definitions, 8, 26
electronic, 387
flux, 10
rotation, 27
translation, 26
vibration, 28

Enthalpy
component, 105
mixture, 197
stagnation, total, 198

Entropy
definition, balance, 199, 214

Equilibrium
equilibrium rate constant, 55, 260
regimes, 68, 295

Equations
Boltzmann, 11
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Landau–Teller, 45, 361
Navier–Stokes, 74, 80, 212
particular forms, 197
relaxation, 44, 319
total balances, 220

Exchange
coefficients, 313
measurement, 372

Flow regime
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free molecular, 181
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Flows
around a body, 308
dissipative, 231
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isentropic, 199, 226
nozzle (in), 292, 305
one-dimensional, 226, 227
reactive, 259
stagnation point, 296
two-dimensional, 210

Gas-dynamic laser, 311, 317

H theorem, 56
Heat flux

interface, 216
measurement, 341, 353
translation, rotation, vibration, 10
wall, 249

Ideal gas, 224
Interaction

shock–shock, 241
shock–interface, 242, 355
vibration–dissociation, 141
vibration–reaction, 275
vibration–recombination, 142

Interaction potential
Lennard–Jones, 32
Morse, 29
repulsive centre, 32
rigid elastic sphere, 31

Interface
gas–gas, 241, 327
gas–liquid, 217
gas–solid, 216

Interferometry, 342

Kinetics
air, 263, 274
chemical, 266, 374
models, 394
vibrational, 271, 300

Line broadening, 389

Magnetohydrodynamics
equations, 221
example of flow, 255

Mass action (law of), 260
Mass flux, 104, 196
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Methods
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Chapman–Enskog (CE), 70, 100
Generalized Chapman–Enskog (GCE), 160
Gross–Jackson, 124
moments (of), 128

Mixtures
binary, 100
CO2/N2, 380, 394
diatomic gases, 106
monatomic gases, 101
N2/CH4/Ar , 377, 394
reactive gas, 53, 112

Models
harmonic oscillator, 28
kinetic, 394
rigid rotator, 27
turbulent boundary layer, 254

Momentum flux, 9

Non-equilibrium
rotational, 80
vibrational, 84

Nozzle
calibration, 349
hypersonic, 305
ideal gas, 237
source effect, 358
supersonic, 237, 277

Numerical methods
direct simulation Monte-Carlo, 183
method of characteristics, 236
unsteady methods, 323

Polynomials
Hermite, 128
Sonine–Laguerre, 88
Wang-Chang–Uhlenbeck, 89

Pressure
hydrostatic, 40
measurements, 341
relaxation, 134, 320

Quantities
characteristic, 201
state, 7
transport, 9

Rate constants
dissociation, 140
reaction, 54
recombination, 142

Real flight, 350
Relaxation time

characteristic, 21
rotation, 81
vibration, 46, 361

Shock tube
boundary layer, 330
configurations, 338
free piston, 340
measurements, 341
perturbations, 330
precursor radiation, 391
reflected shock, 334
simple, 327
test time, 352
visualizations, 343

Shock tunnel
calibration, 348
free piston, 348
reflected shock, 347
simulation, 356

Shock wave
generalized Rankine–Hugoniot, 315
ideal gas, 230
interactions, 241
oblique, 329
Rankine–Hugoniot relations, 229
reflection, 240
straight, 229

Similarity solutions, 247
Specific heat

rotation, vibration, 59
translation, 74

Spectroscopy
absorption, 366
emission, 377
Raman, 366

Stress tensor, 196
Supersonic jets, 311

Temperature
jump, 180
measurement, 392
rotation, 80
translation, 9
vibration, 48

Test time
shock tube, 352
shock tunnel, 348

Total balances, 208
Transition probability, 19
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Transport
quantities, 9

Turbulence
boundary layer, 262

Velocity
diffusion, 150
macroscopic, 7
mean quadratic, 58
slip, 180
thermal, 8

Vibrational populations
determination, 366
evolution, 44, 283

Vibrational relaxation
general equations, 45
linearization, 96
mixtures, 52
particular equations, 46

Viscosity
approximate expressions, 122
bulk, 79
dynamic, 73




