Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © Tony Cotton 2014 The moral rights of the authors have been asserted First published in 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this work in any other form and you must impose this same condition on any acquirer British Library Cataloguing in Publication Data Data available 978-0-19-839464-8 13579108642 Paper used in the production of this book is a natural, recyclable product made from wood grown in sustainable forests. The manufacturing process conforms to the environmental regulations of the country of origin. Printed in The United Kingdom ### Acknowledgements The publishers would like to thank the following for permissions to use their photographs: Cover photo: Patryk Kosmider/Shutterstock, P26: Matt Slocum/ Associated Press, P73: inan avci/OUP, P91: Shutterstock, P111: Hemant Mehta/In dia Picture/Corbis/Image Library, P120: Dreamstime.com, P139a: Matteo Festi/Shutterstock, P139b: Steven Mayatt/Shutterstock, P139c: Shutterstock, P139d: Fotolia, P139e: Martin Bech/Shutterstock, P139f: Mayovskyy Andrew/Shutterstock, P139g: Andrey Armyagov/ Fotolia, P139h: Shutterstock. Although we have made every effort to trace and contact all copyright holders before publication this has not been possible in all cases. If notified, the publisher will rectify any errors or omissions at the earliest opportunity. Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work. | Unit | Number and Place Value | I | Unit | Addition and Subtraction | 57 | |------|---------------------------------|----|------|------------------------------------|-----------| | 1 | Engage | | /4 | Engage | | | L | 1A Place value | 2 | 4 | 4A Adding and subtracting | 58 | | | 1B Number properties | 6 | | three-digit numbers | | | | 1C Estimation and rounding | 10 | | 4B Adding and subtracting | 62 | | | 1D Number sequences | 13 | | money | | | | Connect | 16 | | 4C Using negative numbers | 66 | | | Review | 17 | | Connect | 69 | | | | | | Review | 71 | | Unit | Fractions and Decimals | Iq | | | | | 9 | Engage | | Unit | Multiplication and Division | 73 | | 4 | 2A Equivalent fractions | 20 | | Engage | | | | 2B Fractions and decimals | 24 | 3 | 5A Multiplying by a | 74 | | | 2C Mixed numbers and | 28 | | two-digit number | | | | improper fractions | | | 5B Dividing three-digit | 77 | | | 2D Ratio and proportion | 31 | | numbers by two-digit | | | | 2E Percentages | 33 | | numbers | | | | Connect | 35 | | 5C Division with remainders | 80 | | | Review | 36 | | 5D Using the arithmetical | 83 | | | | | | laws for multiplication | | | Unit | Mental Calculation | 37 | | and division | | | 7 | Engage | | | Connect | 87 | | | 3A Mental strategies for | 38 | | Review | 88 | | | addition and subtraction | | | | | | | 3B Mental strategies for | 41 | Unit | Shapes and Geometry | qı | | | multiplication and division | | 6 | Engage | | | | 3C Using known facts to | 44 | O | 6A Classifying polygons | 92 | | | derive new ones | | | 6B Properties of 3D shapes | 98 | | | 3D Doubling and halving | 48 | | 6C Making 2D | 102 | | | 3E Mental strategies for | 53 | | representations | | | | division of two-digit | | | of 3D shapes | | | | numbers by single-digit | | | 6D Drawing angles, and | 105 | | | numbers | | | angles in a triangle | | | | Connect | 55 | | Connect | 107 | | | Review | 56 | | Review | 109 | | Unit | Position and Movement | Ш | Unit | Area and Perimeter | 153 | |------|---|-----|----------|---|-----| | 7 | Engage | | 10 | Engage | | | | 7A Reading and plotting coordinates | II2 | 10 | 10A Area and perimeter of rectilinear shapes | 154 | | | 7B Reflections and rotations | 116 | | 10B Estimating areas of | 157 | | | Connect | 120 | | irregular shapes by | | | | Review | 121 | | counting squares | | | | | | | 10C Calculating areas | 162 | | Unit | Length, Mass and Capacity | 123 | | and perimeters of | | | 2 | Engage | | | compound shapes | | | O | 8A Selecting and using | 124 | | Connect | 166 | | | appropriate units of measure | | | Review | 169 | | | 8B Converting units | 128 | Unit | Handling Data | 171 | | | of measurement | | 11 | Engage | | | | 8C Using scales and | 132 | T T | 11A Handling data | 172 | | | constructing accurately using measures | | | 11B Probability | 179 | | | Connect | 136 | Glossary | • | 182 | | | Review | 137 | | • | | | Unit | Time | 139 | | | | | | Engage | | | | | | 9 | 9A Converting between units of time | 140 | | | | | | 9B Using the 24-hour clock and timetables | 144 | | | | | | 9C Calculating time intervals including time zones | 146 | | | | | | Connect | 149 | | | | | | Review | 150 | | | | ### Number and Place Value ### Discover ### Place value game | | Millions | Hundred
thousands | Ten
thousands | Thousands | Hundreds | Tens | Units | |-----------------------------------|----------|----------------------|------------------|-----------|----------|------|-------| | Largest
number | | | | | | | | | Smallest
number | | | | | | | | | Number
nearest to
5 million | | | | | | | | | Number
nearest to
8 million | | | | | | | | • Use a set of 0–9 digit cards. 0 l 2 3 4 5 6 7 8 q - Choose a card. - Write the digit in a column in the grid. (You cannot change this at a later stage.) - Replace the card. - Choose a card again. - Write this digit in a column in the grid. - Repeat until all the spaces are full. - Now complete the following in words: The largest number was The largest possible number with these digits is The smallest number was The smallest possible number with these digits is The number nearest to 5 million was The number nearest to 5 million possible with these digits is The number nearest to 8 million was The number nearest to 8 million possible with these digits is ### • Repeat the place value game: | | Hundreds | Tens | Units | Decimal point | Tenths | Hundredths | |-----------------------------|----------|------|-------|---------------|--------|------------| | Largest
number | | | | • | | | | Smallest
number | | | | • | | | | Number
nearest
to 10 | | | | • | | | | Number
nearest
to 100 | | | | • | | | | • | Now complete the following in words | |---|-------------------------------------| | | The largest number was | The largest possible number with these digits is The smallest number was The smallest possible number with these digits is The number nearest to 10 was The number nearest to 10 possible with these digits is The number nearest to 100 was The number nearest to 100 possible with these digits is ### 1A Place value ### **Explore** ### Multiplying by 10, 100 and 1000 - Use a calculator for this activity. - Put any four-digit number into your calculator. - Write the number in the place value grid below. - Multiply the number by 10. - Write the answer in the place value grid. - Multiply the number by 100. - Write the answer in the place value grid. - Multiply the number by 1000. - Write the answer in the place value grid. - Repeat this for two other four-digit numbers. | Millions | Hundred thousands | Ten
thousands | Thousands | Hundreds | Tens | Units | |----------|-------------------|------------------|-----------|----------|------|-------| • | Now complete these phrases: | | |---|-----------------------------------|-----| | | When you multiply by 10 the digit | s i | When you multiply by 10 the digits move _____ | places | to th | ne . | | | |--------|-------|------|--|--| | Proces | | | | | When you multiply by I00 When you multiply by 1000 _____ # Number and Place Value ### Dividing by 10, 100 and 1000 Use a calculator for this activity. - Put any three-digit number into your calculator. - Write the number in the place value grid below. - Divide the number by 10. - Write the answer in the place value grid. - Divide the number by 100. - Write the answer in the place value grid. - Divide the number by 1000. - Write the answer in the place value grid. - Repeat this for two other three-digit numbers. | Hundreds | Tens | Units | Decimal point | Tenths | Hundredths | Thousandths | |----------|------|-------|---------------|--------|------------|-------------| | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | •: | | | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | • | | | | | | | | •: | | | | | | | | • | | | | | Now complete these phrases: | | | |---------------------------------------|---------------|-----| | When you divide by I0 the digits move | places to the | | | When you divide by I00 | | - 2 | | When you divide by 1000 | | | ### 1B Number
properties ### Discover ### Prime and composite numbers A **factor** of a number is a number that divides exactly into that number. For example $2 \times 3 = 6$ so 2 and 3 are factors of 6. A **prime number** is a number that has only two factors: itself and I. You can use 'the sieve of Eratosthenes' to find all the prime numbers up to IOO. Eratosthenes was an Ancient Greek mathematician. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | q | 10 | |----|--|---|---|---|---|---|---|---| | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Ιq | 20 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 92 | 93 | 94 | 95 | 96 | 97 | 98 | qq | 100 | | | 12
22
32
42
52
62
72
82 | 12 13 22 23 32 33 42 43 52 53 62 63 72 73 82 83 | 12 13 14 22 23 24 32 33 34 42 43 44 52 53 54 62 63 64 72 73 74 82 83 84 | 12 13 14 15 22 23 24 25 32 33 34 35 42 43 44 45 52 53 54 55 62 63 64 65 72 73 74 75 82 83 84 85 | 12 13 14 15 16 22 23 24 25 26 32 33 34 35 36 42 43 44 45 46 52 53 54 55 56 62 63 64 65 66 72 73 74 75 76 82 83 84 85 86 | 12 13 14 15 16 17 22 23 24 25 26 27 32 33 34 35 36 37 42 43 44 45 46 47 52 53 54 55 56 57 62 63 64 65 66 67 72 73 74 75 76 77 82 83 84 85 86 87 | 12 13 14 15 16 17 18 22 23 24 25 26 27 28 32 33 34 35 36 37 38 42 43 44 45 46 47 48 52 53 54 55 56 57 58 62 63 64 65 66 67 68 72 73 74 75 76 77 78 82 83 84 85 86 87 88 | 12 13 14 15 16 17 18 19 22 23 24 25 26 27 28 29 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 52 53 54 55 56 57 58 59 62 63 64 65 66 67 68 69 72 73 74 75 76 77 78 79 82 83 84 85 86 87 88 89 | - Use this IOO square to make a sieve of Eratosthenes: - I is not a prime number. It only has one factor. Circle the number I. - The number 2 is a prime number. Shade the number 2. - The number 2 is a factor of the multiples of 2. The multiples of 2 are not prime numbers. Cross out all the multiples of 2. - The number 3 is a prime number. Shade the number 3. - The number 3 is a factor of the multiples of 3. The multiples of 3 are not prime numbers. Cross out all the multiples of 3. - The number 5 is a prime number. Shade the number 5. - The number 5 is a factor of the multiples of 5. The multiples of 5 are not prime numbers. Cross out all the multiples of 5. - Repeat with the other prime numbers. Each time start with the next prime number. - Now list all the prime numbers up to 100: | Prime numbers: | 2. | 3. | 5. | 7. | | | |----------------|----|----|----|----|--|--| | | | | | 15 | | | 6 A composite number is a number which has more than 2 factors. You can divide all composite numbers into prime factors. You can use a factor tree to find the prime factors of any number. Example 80 80 has factors 2 and 40 2 is a prime factor of 80 40 40 40 has factors 4 and 10 5 4 is not a prime number 4) (10 10 is not a prime number $\mathbf{4}=\mathbf{2}\times\mathbf{2}$ 2 2 $10 = 2 \times 5$ 2 is a 2 and 5 are prime factor prime factors So $80 = 2 \times 2 \times 2 \times 2 \times 5$ 2, 2, 2 and 5 are the prime factors of 80. Now find the prime factors of these numbers: 150 36 75 ### 1B Number properties ### **Explore** Finding factors of two-digit numbers This shows that you can write I2 as 3×4 . We say that 4 and 3 are factors of I2. They divide exactly into I2. How many ways can you arrange I2 cubes? Find all the different ways. Then complete this sentence: The factors of I2 are Repeat this for 18, 24, 36 and 49 cubes. Write the factors: The factors of 18 are _____ The factors of 24 are _____ The factors of 36 are _____ The factors of 49 are # Number and Place Value ### **Common multiples** • Complete this Venn diagram: Common multiples of 4 and 6 < 50 Multiples of 4 < 50 The numbers in both multiplication tables are the common multiples of 4 and 6. • Write the common multiples less than 50 of these numbers: 3 and 7 _____ 2 and 10 _____ Multiples of 6 < 50 5 and I2 _____ 6 and 9 _____ 2, 3 and 5 _____ ### 1C Estimation and rounding ### Discover - Use a set of 0–9 digit cards. - Select four cards. - Use these four digits to make I5 different four-digit numbers. - Order the numbers smallest to largest. - Write the numbers in the table. For example: I pick 3, 5, 7, 9. I make 5379, 9357, 7539, and so on. | Number | Number rounded
to nearest 10 | Number rounded
to nearest 100 | Number rounded
to nearest 1000 | | |--------|---------------------------------|----------------------------------|-----------------------------------|--| | 5379 | 5380 | 5400 | 5000 | | | 7359 | 7360 | 7400 | 7000 | | | 9357 | 9360 | 9400 | 9000 | | | | Number | Number rounded
to nearest 10 | Number rounded
to nearest 100 | Number rounded
to nearest 1000 | |---|--------|---------------------------------|----------------------------------|-----------------------------------| Į | | l | | | ### 1C Estimation and rounding ### **Explore** - Use a set of 0–9 digit cards. - Select four cards. - Use these digits to make as many different four-digit numbers as you can. - Write them here: My four digits are _____ All the possible numbers are _____ I know I have found all the possibilities because _____ - Round all the numbers to the nearest 10. - Use your numbers to make correct statements: ### Placing numbers on empty number lines • Use 0-9 digit cards. 12 - Pick four cards to make a four-digit number. - Label the ends and the middle of the empty number lines. - Write the number in the correct place. - Repeat this for each empty number line. # Number and Place Value ### 1D Number sequences ### Discover This is a famous sequence. It is called the Fibonacci sequence. 1, 1, 2, 3, 5, 8, 13, 21, How do you make the next number in the sequence? · Write your answers in the spaces. The next three numbers in the sequence are _______ The rule for generating the sequence is _____ A Fibonacci type sequence has 4 and 18 as the first two terms. What is the 7th term? • Find as many Fibonacci type sequences as you can that contain the term 75. Examples 5, 35, 40, 75 and 23, 26, 49, 75 Here is the start of a sequence: | Position | Ĩ | 2 | 3 | 4 | 5 | 6 | 7 | |----------|---|---|----|----|----|----|----| | Number | 5 | q | 13 | 17 | 21 | 25 | 29 | The rule for generating the sequence is: You generate this sequence by adding 4 to the previous number. | • | Write | the rule | for | generating | the | sequence | in | each | table. | |---|-------|----------|-----|------------|-----|----------|----|------|--------| |---|-------|----------|-----|------------|-----|----------|----|------|--------| | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|----------|---|----------------|---|---|---|---| | Number | <u> </u> | 1 | 1 3 | | | | | You generate this sequence by _____ | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|----|----|----|---|---|---|---| | Number | 55 | 25 | -5 | | | | | You generate this sequence by _____ | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|-----|-----|-----|---|---|---|---| | Number | 0.8 | 1.6 | 2.4 | | | | | You generate this sequence by _____ • Make your own sequences in these tables. Give them to a partner to solve. | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|---|---|---|---|---|---|---| | Number | | | | | | | | You generate this sequence by _____ | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------|---|---|---|---|---|---|---| | Number | | | | | | | | You generate this sequence by _____ ### 1D Number sequences ### **Explore** My number is a three-digit number. divisible by 5. - Play 'Crossing the Circle' and 'Making Groups' as a whole class. - Then complete these sentences: The sum of two
even numbers is _______ The sum of two odd numbers is _____ The difference between two even numbers is _____ The difference between two odd numbers My number is a prime number. My number is The product of two even numbers is The product of two odd numbers is Write two more general statements about even and odd numbers: ### 1 Number and place value ### Connect This is a cuboid made with 48 cubes: How many different cuboids can you make with 48 cubes? Choose another starting number to let you make a lot of different cuboids. Why did you choose this number? Which starting numbers will only let you make a single cuboid? ### Practions and Decimals ### **2A Equivalent fractions** ### Discover How many ways can I make a quarter? How many different ways can we share this chocolate between four of us? I think we get six pieces each. Yes — but there are lots of different ways of doing it. Do we always get a quarter each? You could have a row of six pieces or two rows of three pieces. Draw three different ways to divide the chocolate bar into quarters. | • | Use the fraction wall to write fi | ve | |---|-----------------------------------|----| | | equivalent fractions for these: | | | equ | ivaterit | Huction | s ioi tilese | i. | |----------------------|----------|---------|--------------|----| | $\frac{1}{2}$ is equ | uivalen | t to | | | | • | Comp | lete | these | sentences | |---|------|------|-------|-------------| | | | | | Jenice need | Fractions are equivalent to each other if You can find an equivalent fraction by ### **2A Equivalent fractions** ### **Explore** I. Complete the grid. Choose your own fractions for the last three rows. | Fraction in its simplest form | Fraction in
words | Equivalent fraction | Equivalent fraction | Diagram | |-------------------------------|----------------------|---------------------|---------------------|---| | <u>3</u>
5 | Three-fifths | <u>6</u>
10 | <u>q</u>
15 | 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, | | | | | <u>50</u>
100 | | | | Four-fifths | | | | | | | | | 410, 410, 410, 410, 410, 410, 410, 410, | | | One-quarter | | | | | 3/4 | | 9
12 | | | | | | | <u>4</u>
12 | 22 | The fraction $\frac{3}{5}$ is equivalent to - | 6 | |---|----| | $\frac{3}{5}$ is in its simplest form. | 10 | 2. Find pairs of equivalent fractions in this list: $$\frac{1}{4}$$, $\frac{3}{12}$, $\frac{4}{10}$, $\frac{9}{12}$, $\frac{5}{6}$, $\frac{2}{5}$, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{10}{12}$, $\frac{6}{12}$ - For each pair mark the correct position on the number line. - Write the fraction in its simplest form above the number line. - Write the equivalent fraction below the number line. $$\frac{1}{2}$$, $\frac{3}{8}$, $\frac{5}{6}$, $\frac{1}{4}$, $\frac{7}{8}$, $\frac{3}{4}$ To order this set of fractions, use equivalent fractions. For example: $\frac{3}{4} = \frac{6}{8}$ so $\frac{3}{4} < \frac{7}{8}$ The correct order, starting with the smallest, is: 3. Order these sets of fractions. Start with the smallest. $$\frac{3}{4}$$, $\frac{10}{12}$, $\frac{5}{12}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{2}{3}$ $$\frac{4}{5}$$, $\frac{3}{10}$, $\frac{1}{2}$, $\frac{9}{10}$, $\frac{2}{5}$ ### 2B Fractions and decimals ### Discover Complete the tables below by changing the fractions to decimals. Then write a sentence about what you notice. | Fraction | | 1/4 | | <u>2</u>
4 | | 2 | <u>3</u> | | 4/4 | | <u>5</u>
4 | | |--------------------|-----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------|---------------|----------|------------------|-----------------| | Decimal equivalent | Fraction | | <u>1</u> | | <u>2</u>
5 | | | <u>3</u> | | $\frac{4}{5}$ | | <u>5</u>
5 | | | Decimal equivalent | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | Fraction | <u> </u> 8 | | <u>2</u>
8 | <u>3</u> | | 4 8 | <u>5</u>
8 | | <u>6</u>
8 | <u>7</u> | | 8 | | Decimal equivalent | Fraction | <u> </u>
 12 | <u>2</u>
12 | <u>3</u>
I2 | <u>4</u>
12 | <u>5</u>
12 | <u>6</u>
12 | 7
12 | 8
12 | 9
12 | 10
12 | <u> </u>
 12 | <u>12</u>
12 | | Decimal equivalent | | | | | | | | | | | | | I notice that _____ • Try this with other families of fractions and their decimal equivalents. ### 2B Fractions and decimals ### **Explore** - I. Write five fractions between 0 and I in the table. - Write down their decimal equivalents. | Fraction | | | | |--------------------|--|--|--| | Decimal equivalent | | | | 2. Complete this table to show fractions and their decimal equivalents: | 0.3 | <u>3</u>
10 | three-tenths | |-------|------------------|-------------------| | 0.30 | 30
100 | hundredths | | 0.300 | | thousandths | | 0.7 | | tenths | | 0.70 | <u>70</u>
100 | | | | 700
1000 | | | | <u>q</u>
10 | | | | | ninety-hundredths | | 0.900 | | | What do you notice about these fractions and their decimal equivalents? - 3. Here are the results for the Men's 100 m final in the Olympics in 2012. - In the blank table, write the results in order. Start with the fastest time. | Athlete | Time (seconds) | |------------------|----------------| | Ryan Bailey | 9.88 | | Yohan Blake | 9.75 | | Usain Bolt | 9.63 | | Justin Gatlin | 9.79 | | Tyson Gay | 9.80 | | Churandy Muranda | 9.94 | | Asafa Powell | 11.99 | | Richard Thompson | 9.98 | | Athlete | Time (seconds) | |---------|----------------| 1 | - **4.** Here are the results for the women's high jump final. - In the blank table below, write the results in order. Start with the highest jump. | Athlete | Height of jump
(metres) | | | |-------------------|----------------------------|--|--| | Burcu Ayhan | 1.87 | | | | Brigetta Barrett | 2.03 | | | | Ruth Beita | 1.89 | | | | Anna Chicherova | 2.05 | | | | Irina Gordeeva | 1.93 | | | | Emma Green | 1.95 | | | | Tia Hellebaut | 1.99 | | | | Chaunte Lowe | 1.97 | | | | Melanie Melfort | IP.I | | | | Airine Palsyte | 1.90 | | | | Svetlana Radzivil | 1.94 | | | | Svetlana Shkolina | 2.02 | | | | Athlete Height of jump (metres | |--------------------------------| ### 2C Mixed numbers and improper fractions ### Discover There are ten students in your class. They come into the classroom one at a time and stand behind one of the three chairs. They cannot change their position. Students behind each chair share the chocolate on that chair. Where should they stand to share out the chocolate as fairly as possible? Draw or write your solution here: - I. a) You have three pizzas to share with a friend. How much pizza do you get each? - b) Two more friends arrive. How much pizza do you get each now? - 2. a) The next day your dad buys five small cakes. He divides the cakes into thirds. You take it in turns to eat some cake. The table below shows how much cake everyone eats. Complete the table to see how much is left for you. | | Number
of cakes
eaten | Number of cakes left | |-------------|-----------------------------|----------------------| | | None | 5 | | Dad | 1 <u>1</u> | $3\frac{2}{3}$ | | Mum | <u>2</u>
3 | | | Big brother | 1 <u>2</u> | | | Big sister | <u>2</u>
3 | | | You | | | | τ | he ta | ible L | Jelov | ٧. | | |---|-------|--------|-------|----|--| Amount of cake eaten | Amount of
cake left | |-------------|----------------------|------------------------| | | None | | | Dad | | | | Mum | | | | Big brother | | | | Big sister | | | | You | | | 3. a) Three people are eating chapatis. They eat $\frac{3}{4}$ of a chapati each. How many chapatis do they eat in total? b) Five people are eating pizza. They eat $\frac{1}{2}$ of a pizza each. How many pizzas do they eat in total? d) Seven people are eating cookies. They eat $\frac{1}{3}$ of a cookie each. How many cookies do they eat in total? 4. Draw a picture to show each of these fractions: A fraction between $1\frac{1}{2}$ and 3 A fraction smaller than 5 A fraction larger than $\frac{3}{4}$ A fraction smaller than $I_{\frac{3}{4}}$ 2 - Find pairs of equivalent fractions in this list. - Write one fraction from each pair above the line in its correct place. - Write the other fraction below the line in its correct place. $$\frac{10}{16}$$, $\frac{5}{8}$, $\frac{7}{6}$, $1\frac{2}{3}$, $\frac{20}{12}$, $1\frac{1}{2}$, $1\frac{1}{6}$, $\frac{15}{10}$ 0 ### 2D Ratio and proportion ### Discover You can buy green paint from two companies. Paint A is made up from blue and yellow paint in the ratio I: 4. Paint B is made up from blue and yellow paint in the ratio I:7. You can mix blue and yellow to make different shades of green. Paint A and Paint B are in the same size tins. PAINT Paint A Paint B You are making different shades of green. You don't want to use too much paint! How many tins of paints A and B do you need to make green paint with these ratios of blue to yellow? - 1:5 1:6 - **2.** You want to paint another room orange. Orange paint is made up from yellow and red paint. Paint C Paint D Paint C is made up from red and yellow in the ratio 1:4. Paint D is made up from red and yellow in the ratio I: 9. What is the minimum number of tins of paints C and D you need to make orange made up from red and yellow in the following ratios? | I : 5 | | | | |-------|--|--|--| | I : 6 | | | | | 1:7 | | | | | I : 8 | | | | **3.** Make up a similar question for your partner to solve: You want to paint another room | | paint is made up | | |-----------|-----------------------|--------------| | | s made up from | • | | | in the
ratio | | | Paint F i | s made up from | | | and | in the ratio | | | What is | the minimum number | of tins | | of paint | s E and F you need to | make | | | made up from _ | | | and | in the follow | ving ratios? | | | | | | : | | | ### 2D Ratio and proportion ### **Explore** I. I use this paint to paint my bedroom walls. To make the colour I want I use one tin of blue paint for every two tins of white paint. I need twelve tins of paint to cover all the walls. How many tins of blue paint do I need? _____ How many tins of white paint do I need? _ The pattern uses one black tile for every two white tiles. My room is six tiles wide and twelve tiles long. - a) How many black tiles do I need? - b) How many white tiles do I need? - I buy 39 tiles in the correct ratio. How many white tiles do I buy? 3. To make a fruit drink for three people, I mix fruit juice and water in the ratio I part fruit juice to 3 parts water. This makes 200 millilitres of fruit drink. - a) How much fruit juice do I need for six people? - b) How much water do I use for 150 millilitres of fruit juice? - I. Here are three circles. - Shade in 25% of the first circle. - Shade in 50% of the second circle. - Shade in 75% of the third circle. 2. The total number of marks in a test is 80. The table shows some possible marks out of 80. • Complete the table to show the equivalent percentage scores: | Marks | Percentage | |-------|------------| | 80 | 100% | | 70 | | | 60 | | | 55 | | | 45 | | | 40 | | | 20 | | | 10 | | | 8 | 10% | | 4 | | | 2 | | | I | | | 0 | 0% | # **2E Percentages** # Explore • Complete this table: | Fraction | Decimal fraction | Percentage | Percentage as an area | |---------------|------------------|------------|-----------------------| | 10 | 0.1 | 10% | | | <u> </u> 5 | | | | | 1/4 | | | | | 3 10 | | | | | <u>2</u>
5 | | | | | 1/2 | | | | | <u>3</u>
5 | | | | | 7 10 | | | | | 3/4 | | | | | <u>4</u>
5 | | | | | I whole | | | | ### 2 Fractions and decimals ### Connect You are a shopkeeper. You sell the following items: | Item | Usual selling price | Cost price | |---------|---------------------|------------| | T-shirt | 6 dollars | 2 dollars | | Shorts | 8 dollars | 3 dollars | | Jeans | 14 dollars | 10 dollars | | Sandals | 5 dollars | 2 dollars | You reduce the price of these items in a sale. You reduce: one item by 10% one item by 15% one item by a quarter one item by a half. Last year you sold these items in the following proportions: | Item | Percentage sales | | | |----------|------------------|--|--| | T-shirts | 40 | | | | Shorts | 30 | | | | Jeans | 20 | | | | Sandals | 10 | | | Which items do you reduce by which percentage? Write a presentation to explain your decision to your class: I reduce ______ by _____ % because _____ | I reduce | by | % | |----------|----|---| | because | | | | I reduce | by | % | | because | | | | I reduce | by | % | | because | | | # 2 Fractions and decimals ### Review - Write or draw fractions or percentages in the empty squares. - Cut the cards out. - Use the cards to play the memory game with your partner. | 0.8 | 1/2 | 60% | | |---------------|---------------|------|--------------------| | | 75% | | 7
10 | | | | | | | 50% | <u>4</u>
5 | 0.75 | | | | 80% | | 0.7 | | <u>3</u>
5 | | 0.5 | | | <u>3</u>
4 | | 70% | | # 3 Mental Calculation # 3A Mental strategies for addition and subtraction | | Discover | | |---|--|---| | | I. I am thinking of two whole numbers that add up to 20. What could they be? | Can you explain your strategy? | | | | | | | | | | | | | | | 2. I am thinking of two numbers. | | | | Each number has one decimal place. | | | | The two numbers add up to 2. | | | | What could they be? | 3. I am thinking of two numbers. | | | | Each number has one decimal place. | | | | The two numbers add up to I. | | | | What could they be? | | | | | | | | | To work out a pair of numbers with two decimal places that add up to I: | | | | I. | | | 4. I am thinking of two numbers. | | | 8 | Each number has two decimal places. | I know that this is correct because | | | The two numbers add up to I. | | | | Write down ten possibilities for the two numbers. | | ### Adding two-digit and three-digit numbers 5. This table gives the numbers of students in each class in a school. Find two different ways to work out the total number of students in the school. | Class | Number of students | |--------------|--------------------| | Kindergarten | 42 | | Grade I | 28 | | Grade 2 | 35 | | Grade 3 | 33 | | Grade 4 | 35 | | Grade 5 | 33 | | Grade 6 | 27 | 6. This table shows how many people got on and off a bus at each stop. | Stop | Number
getting
on bus | Number
getting
off bus | |----------------|-----------------------------|------------------------------| | Bus Station | 38 | 0 | | Cinema | q | 5 | | School | 15 | 3 | | Temple | II | 12 | | Shopping Mall | 26 | 14 | | Riverside | 7 | q | | Sports Stadium | 3 | 24 | Read the information out to your partner. Ask your partner to write down how many people are on the bus when it leaves the Sports Stadium. Ask your partner to tell you their answer. Did you get the same answer? # 3A Mental strategies for addition and subtraction ### **Explore** 1 2 3 4 Use the digits I, 2, 3, 4 and 5 once and only once. - Make a sum with two numbers. For example: I23 + 45 = I68 - Make a sum with three numbers. For example: I2 + 34 + 5 = 5I - Make a subtraction with two numbers. For example: 312 - 54 = 258 - I. Use the digits I, 2, 3, 4 and 5 once and only once. Find: - a) the largest sum with two numbers - b) the largest sum with three numbers - c) the smallest sum with two numbers - d) the smallest sum with three - e) the largest difference between two numbers _____ - f) the smallest difference between two numbers ____ - g) the largest answer you can get using all the cards - h) the smallest answer you can get using all the cards - The answer is II2. What is the calculation? Write down ten different calculations involving two-digit and three-digit numbers and addition and subtraction: - a) = II2 - b) = II2 - c) = II2 - d) = II2 - e) = II2 - f) = II2 - g) = II2 - h) = II2 - i) = II2 - j) = II2 - 3. Can you find a quick way to add together all the numbers from I to I00? # 3B Mental strategies for multiplication and division ### Discover I. Here is 36 as an array: How many different ways can you draw 36 as an array? • Sketch them here: 2. Repeat question I for the numbers 24, 28, 32 and 40: ### 3. Complete these calculations: | 15 × 9 = | 15 × II = | |-----------------|-----------| | I6 × 9 = | I6 × II = | | I7 × 9 = | I7 × II = | | 18 × 9 = | 18 × II = | | $Iq \times q =$ | Iq × II = | | 20 × 9 = | 20 × II = | | 2I × 9 = | 2I × II = | What do you notice about the answers? Complete these sentences: - a) A quick way to multiply any number by 9 is to _____ and then ____ - b) A quick way to multiply any number by II is to _____ and then ____ - **4.** Work in groups to find rules for **divisibility** for each of the times tables. Then write down the rules in this table. | Multiplication table | Rule | |---------------------------|------| | A number divides by 2 if | | | A number divides by 3 if | | | A number divides by 4 if | | | A number divides by 5 if | | | A number divides by 6 if | | | A number divides by 7 if | | | A number divides by 8 if | | | A number divides by 9 if | | | A number divides by I0 if | | # 3B Mental strategies for multiplication and division ### **Explore** - Complete these tables - First do the calculations in your head. - Then check your results with a calculator. - Then complete the sentences. - I. Multiplying pairs of multiples of 10 | × | 10 | 30 | 50 | 60 | 90 | |----|----|----|----|----|----| | 10 | | | | | | | 20 | | | | | | | 30 | | | | | | | 40 | | | | | | | 70 | | | | | | To multiply multiples of ten I ### 2. Multiplying near multiples of 10 | × | 10 | 30 | 50 | 60 | |----|----|----|----|----| | Id | | | | | | 21 | | | | | | 39 | | | | | | 41 | | | | | | 51 | | | | | | 69 | | | | | | qı | | | | | To multiply near multiples of ten I # 3. Multiplying by numbers with one decimal place | × | 18 | 25 | 40 | 80 | |-----|----|----|----|----| | 0.2 | | | | | | 0.4 | | | | | | 0.8 | | | | | | 0.6 | | | | | | 0.5 | | | | | | 0.9 | | | | | | 0.7 | | | | | To multiply by numbers with one decimal place I _____ # 3C Using known facts to derive new ones ### Discover I. Complete this multiplication table: | × | 0.25 | 0.5 | 2 | 5 | 10 | 20 | 50 | 70 | 90 | 100 | |----|------|-----|---|---|----|----|----|----|----|-----| | 3 | | | | | | | | | | | | 6 | | | | | | | | | | | | q | | | | | | | | | | | | 10 | | | | | | | | | | | | 30 | | | | | | | | | | | | 60 | | | | | | | | | | | | 70 | | | | | | | | | | | Talk to a partner about how you completed the table: First I _____ and then I ____ 2. Make a multiplication table for your partner to complete. • Use numbers that link to help your partner complete the table: | × | | | | | | |---|--|--|--|--|--| 17 times table | Reason | |----------------|---| | I × I7 = | | | 2 × I7 = | | | 3 × I7 = 5I | $3 \times 10 = 30$ and $3 \times 7 = 21$ and $30 + 21 = 51$ | | 4 × 17 = | | | 5 × I7 = | | | 6 × I7 = | | | 7 × I7 = | | | 8 × I7 = | | | 9 × 17 = | | | 10 × 17 = | | # 3C Using known facts to derive new ones #### Discover - I. Roll a dice twice to make a two-digit number. - Write the number in the table. - Then double the number and write the answer in the table. Was it 'easy' or 'hard'? Tick the column and explain why. Two examples are shown. | Digits | Number | Double | Easy | Hard | Reason | |--------|--------|--------|----------|----------
--| | 2, I | 21 | 42 | / | | This is easy because I double 20 then add 2 . | | 5, 6 | 56 | II2 | | / | Because it goes over 100. I double 50 and double 6, then add the answers together. | - 2. Roll a dice three times to make a three-digit number. - Write the number in the table. - Halve the number and write the answer in the table. Was it 'easy' or 'hard'? Tick the column and explain why. Two examples are shown. | Digits | ts Number Half of the number | | Easy Hard | | Reason | | |---------|------------------------------|----|-----------|--|---|--| | 1, 6, 2 | 162 | 81 | / | | This is easy because half of 160 is 80 and half of 2 is 1. Then I add them. | | | 9 | |----------| | ⋦ | | 0 | | ĭ | | ⇉ | | a | | \vdash | | 0 | | 2.2 | | Μ. | | ㅈ | | ~ | | ₽. | | 0) | | 7 | | Ħ. | | 0 | | \Box | | | | 5, 5, 6 | 556 | 278 | / | Because it is a bigger number. I know that half of 500 is 250, and half of 50 is 25, and half of 6 is 3. Then I add them. | |---------|-----|-----|----------|---| # 3. Complete this table. Explain how you calculated the answers. | Question | Answer | Strategy | |-------------|--------|----------| | Double 2.44 | | | | Double 7.5 | | | | Halve 2.44 | | | | Double 3.2 | | | | Halve 3.2 | | | | Halve 6.88 | | | | Double I4.8 | | | | Halve 25.6 | | | | Halve 2.44 | | | | Double 35.9 | | | ## 3D Doubling and halving ### **Explore** I. These are the prices of clothes in a shop: Shorts 18 dollars T-shirt I5 dollars Sandals 24 dollars - a) You buy two T-shirts and two pairs of shorts. How much does this cost? - b) Your friend buys one pair of sandals and four T-shirts. What do they spend? - c) All items are half price in a sale. What is the total cost of one pair of shorts, one T-shirt and one pair of sandals? - d) Write two more questions for your friends. Include doubling or halving. • Complete the prices on these shopping lists: 200 g Banana 50 g Mango 400 g Pomegranate SHOPPING LIST 150 g Banana 300 g Mango 150 g Pomegranate 50 g Banana 200 g Mango 200 g Pomegranate 300 g Banana 175 g Mango 300 g Pomegranate - 3. Use the Fish Stew recipe to write two questions that you can solve mentally. - Include doubling and halving in your questions. - Make your questions as hard as you can. - Ask your friends your questions. # Fish Stew (Serves 4) 300 g fish 2 cloves of garlic I teaspoon cumin 200 g tomatoes I pepper \frac{1}{2} lemon # **3E Mental strategies for division of two-digit numbers** by single-digit numbers ### Discover • Use these numbers to make up calculations. 3 4 6 q • In each calculation, divide a two-digit number by a single-digit number. Use a \div sign. You can use each digit more than once. For example: Division by 3 with a **remainder**: $4I \div 3 = I3 \ r \ 2$ Division by 3 with no remainder: $96 \div 3 = 32$ • Complete the table: | | Calculation | Answer | Reason | |---------------------------------|-------------|--------|--------| | Division by 4 with no remainder | | | | | Division by 4 with a remainder | | | | | Division by I with no remainder | | | | | Division by 6 with a remainder | | | | | Division by 9 with a remainder | | | | | Division by 6 with no remainder | | | | | Division by 3 with a remainder | | | | | Division by 3 with no remainder | | | | | Division by 9 with no remainder | | | | # **3E** Mental strategies for division of two-digit numbers by single-digit numbers ### **Explore** - Write a 'revision guide' page to explain the strategies for dividing a two-digit number by a single-digit number. - Include examples with a remainder and without a remainder and an example with a decimal point. How to divide two-digit numbers by single-digit numbers ## 3 Mental calculation ### Connect - I. Complete this addition grid with your digits. - Roll a dice nine times and fill the cells one at a time. - Then add the three numbers. For example: 24 . 6 31 . 2 54 . 1 109 . 9 Play with your friends. The winner is the person with the answer nearest to 100. 2. Complete this subtraction grid. Roll a dice and fill the cells one at a time. For example: 26.5 - 15.2 = 11.3 Play with your friends. The winner is the person with the answer nearest to 10. - - - 3. Complete this multiplication grid. Roll a dice and fill the cells one at a time. For example: $262 \times 4 = 1048$ Play with your friends. The winner is the person with the answer nearest to 1000. 4. Complete this division grid. Roll a dice and fill the cells one at a time. For example: $66.2 \div 5 = 13.24$ Play with your friends. The winner is the person with the answer nearest to 10. Mental Calculation # 3 Mental calculation ### Review Make a set of loop cards like the ones below to play with your friends. You can take them home and play with your family. | I am 0.5 | I am 42 | I am 75 | I am 84 | |---------------------|---------------------|--------------------|-----------------| | Who is 29 + 13? | Who is 98 – 23? | Who is 6 × 14? | Who is I20 ÷ 6 | | I am 20 | I am 76 | I am II3 | I am 162 | | Who is I9 + 57? | Who is I36 – 23? | Who is 9 × 18? | Who is 100 ÷ 4? | | I am 25 | I am 19.8 | I am 3.2 | I am 3.5 | | Who is 2.8 + 17? | Who is 5.5 – 2.3? | Who is 0.5 × 7? | Who is 180 ÷ 4? | | I am 45 | I am 191 | I am 83 | I am 27 | | Who is II5 + 76? | Who is 89 – 6? | Who is 10 × 2.7? | Who is 66 ÷ 3? | | I am 22 | I am 3.89 | I am 5 | I am 137 | | Who is 1.56 + 2.33? | Who is 15.5 – 10.5? | Who is 100 × 1.37? | Who is 8 ÷ 16? | # Addition and Subtraction ### **Engage** Each letter stands for a digit. What does each letter represent? Oh, so 'E' could represent 7. One plus two is four what does it mean? Should we try some examples? We can't do this mentally. > Do you think the units column adds up to more than 10? 57 Addition and Subtraction # 4A Adding and subtracting three-digit numbers ### Discover - Look at each of these calculations. Can you work them out mentally or do you need to use a paper and pencil method? - · Explain your answers. Example: 56.8 + 24.5 But it is easier to do a column addition: Line up the decimal places. $$\begin{array}{c} 56.8 \\ + 24.5 \\ \hline 81.3 \end{array}$$ 10 carried is 80. 8 tenths add 5 tenths is one unit and 3 tenths. Write down 3 and carry the I unit into the units column. 6 add 4 and the I carried is II. Write down I unit and carry one IO. The answer is 81.3. 1. $$152.7 + 14.1$$ | 3. 983.7 + 419.8 | 4. II5.5 — I6.2 | | |-------------------------|-------------------|--------------------------| | 5. IOI — I7 | 6. 5I.52 + I3.II | | | 7. I2I.78 + I9.44 | 8. 452.2 — I34.8 | | | q. 52.12 + 9.57 | IO. 147.9 + 321.6 | Addition and Subtraction | | | | 59 | # 4A Adding and subtracting three-digit numbers ### **Explore** - Use the digits 4, 5, 6, 7, 8, 9 to make two three-digit numbers. - I. What is the smallest possible sum? - 2. What is the largest possible sum? **3.** Create sums with the answer as close as possible to each of the numbers in the table. For example: for 900: 576 + 489 = 1065 Can you make a sum closer to 900? | 900 | 1200 | | |------|------|--| | | | | | 1300 | 1400 | | | | | | | 1500 | 1600 | | | | | | | 1700 | 1800 | | | | | | | /. | Chark | thosa | calcu | lations. | |----|-------|-------|-------|----------| | 4. | CHECK | ulese | cuicu | tutions. | If they are correct, 'tick' them. If there is an error, explain where the student has made a mistake. | 985 | 27.5 | |-------------|---------------| | - 668 | +42.6 | | 317 | <u>69.II</u> | | 456 | 38.9 | | + 845 | + 46.5 | | <u>1291</u> | <u>85.4</u> | | 876 | 76.5 | | - 459 | - <u>32.8</u> | | <u>417</u> | <u>43.7</u> | | 76.5 | 576 | | - 32.8 | + 345 | | <u>44.3</u> | <u>921</u> | | 346 | 1007 | | + 504 | - 9 | | <u>840</u> | <u>9998</u> | # 4B Adding and subtracting money ### Discover - Use a set of 0–9 digit cards to create I0 different additions and subtractions in the grids below. - Then work them out. They are all money calculations. For example $$53.72 + \frac{14.68}{68.40}$$ | \$ | Tens | Units | | Tenths | Hundredths | |----|------|-------|---|--------|------------| | | | | • | | | | + | | | • | | | | | | | • | | | | \$ | Tens | Units | | Tenths | Hundredths | |----|------|-------|---|--------|------------| | | | | • | | | | + | | | • | | | | | | | • | | | | \$ | Tens | Units | | Tenths | Hundredths | |----|------|-------|---|--------|------------| | | | | • | | | | + | | | • | | | | | | | • | | | | | \$ | Tens | Units | | Tenths | Hundredths | |---|----|------|-------|---|--------|------------| | Г | | | | • | | | | L | _ | | | • | | | | | | | | • | | | | \$ | Tens | Units | | Tenths | Hundredths | |----|------|-------|---|--------|------------| | | | | • | | | | + | | | • | | | | | | | • | | | | _ | | Units | | Tenths | Hundredth | |----|-------|-------|---|--------|--------------| | _ | | | • | | | | | | | • | | | | | | | | | | | \$ | Tens | Units | | Tenths | Hundredth | | | | | • | | | | + | | | • | | | | | | | • | | | | \$ | Tens | Units | | Tenths | Hundredth | | | | | • | | | | _ | | | • | | | | | | | | | | | \$ | Tens | Units | | Tenths | Hundredths | | | | | • | | | | + | | | • | | | | \$ | Tens | Units | | Tenths | Hundredths | | - | iciis | Onics | • | Tentis | Tranar catri | | _ | | | | | | | | | | • | | | # 4B Adding and subtracting money ### **Explore** - Read each of these word problems. - Write down the **operation** you need to do to solve the problem. - Then solve the problem. - You post two parcels.
One parcel weighs 3.56kg. The other parcel weighs 4.82kg. - a) What is the total weight of the parcels? - b) How much heavier is the heavier parcel than the other parcel? The classroom wall is I5.7m long. The whiteboard is 2.2m long. The noticeboard is 3.5m long. How much space is left on the wall? 3. You have a 15 gigabyte (GB) Internet download allowance per month. You use 1.85GB downloading music and 3.65GB downloading movies. How much of your allowance do you have left? - 4. In a 4 × 100 m relay race the four runners' times are 13.46 s, 14.15 s, 12.52 s, 11.99 s. - What is the total time for the race? - 5. a) You buy a DVD and a game. How much do you spend in total? - b) You buy a CD and a DVD.You pay with a \$50 note.How much change do you receive? 6. Make up two more questions to ask your friends using the prices from question 5. # 4C Using negative numbers ### Discover I. a) Match the following temperatures to the thermometers: London 17°C Moscow -4°C Oslo -8°C Bangkok 35°C Dubai 42°C b) Choose six cities around the world. Use the Internet to find the average temperature for each city in December. Draw the temperatures on the thermometers below. Find three positive temperatures and three temperatures below zero. | | | | | | 5 | | |---|---|---|---|---|---|--| i | P | 2 | ı | ī | | | | п | | | | | | | | 2. | Looka | t vour | matched | thermometers | and | cities i | in a | uestion I | la) | | |----|--------|--------|---------|----------------|-----|----------|-------|-----------|-----|--| | ۷. | LOOK G | t your | matthea | the monte ters | unu | CICICS | 111 4 | ucstion i | u | | a) I fly from Bangkok to London. What is the change in the temperature? b) Does the temperature rise or fall between Dubai and Bangkok? By how much? c) Does the temperature rise or fall between London and Moscow? By how much? d) Does the temperature rise or fall between Moscow and Oslo? By how much? _____ 3. Look at this table of temperatures: | City | Temperature in January | | |-----------|------------------------|--| | Anchorage | | | | London | -2 | | | Omykan | ⁻ 45 | | | Rio | | | | Sydney | 28 | | | Tunis | | | | Cairo | | | | Bangkok | | | Use the following clues to complete the table. - Anchorage is 10 degrees colder than Omykan. - Rio is 38 degrees warmer than London. - Tunis is 12 degrees colder than Sydney. - Cairo is 59 degrees warmer than Omykan. - Bangkok is 4 degrees colder than Rio. # 4C Using negative numbers ### **Explore** For each of the following statements circle the correct answer. The statements are either 'Always true', 'Sometimes true' or 'Never true'. | You ac | dd two | negativ | <mark>e</mark> numbers. | | |----------------------------|--------|---------|-------------------------|--| | You get a negative answer. | | | | | You add a negative number and a positive number. You get a positive answer. $$(-3) + (-2)$$ $$(-3) + (+6)$$ Always / sometimes / never Always / sometimes / never You subtract a positive number from a negative number. You get a negative answer. You subtract a negative number from a negative number. You get a negative answer. $$(-7) - (+9)$$ $$(-4) - (-6)$$ Always / sometimes / never Always / sometimes / never You subtract a positive number from a positive number. You get a negative answer. You subtract a negative number from a positive number. You get a positive answer. $$(+8) - (+15)$$ $$(+8) - (-6)$$ Always / sometimes / never Always / sometimes / never # 4 Addition and subtraction ### Connect The tables show water supply and demand in the Middle East and North Africa. Supply is how much water is available. Demand is how much water is needed. ### 2010 | Demand (km³) | | Supply (km³) | | |--------------|-----|---------------|-----| | Irrigation | 213 | Surface water | 171 | | Urban | 28 | Ground water | 40 | | Industry | 20 | | 48 | | Total | | | | ### 2050 | Demand (in km³) | | Supply (in km³) | | |-----------------|-----|---------------------|-----| | Irrigation | 251 | Surface water | 215 | | Urban | 88 | Cura van di vanta u | ICO | | Industry | 41 | Ground water | 168 | | Total | | | | - a) Find the totals. Then write them in the tables. - b) What is the difference between supply and demand in 2010? _____ - c) What is the predicted difference between supply and demand in 2050? _____ ### 2. Premier League Attendances: | Club | Average attendance | To nearest thousand | |-------------------|--------------------|---------------------| | Manchester United | 75 528 | 76 000 | | Arsenal | 60 079 | | | Newcastle United | 50515 | | | Manchester City | 47 017 | | | Liverpool | 44 731 | | | Chelsea | 41435 | | | Sunderland | 40 601 | | | Everton | 36 182 | | Complete the table. Then calculate: - a) the total attendance for these eight clubs _____ - b) the difference in attendance between Manchester United and Manchester City _____ - c) the difference in attendance between Liverpool and Everton _____ - d) the difference in attendance between Newcastle United and Sunderland _____ - e) the difference in attendance between the Manchester clubs (United and City) and the Liverpool clubs (Liverpool and Everton) ### 4 Addition and subtraction ### Review - Write an example question for each of the following. - Exchange your questions with a friend. - Mark your friend's answers and correct any errors. An addition involving one place of decimals. Write an addition that you solve using a written method. An addition involving one place of decimals. Write an addition that you solve using a mental method. A subtraction involving one place of decimals. Write a subtraction that you solve using a written method. A subtraction involving one place of decimals. Write a subtraction that you solve using a mental method. An addition involving two places of decimals. Write an addition that you solve using a written method. An addition involving two places of decimals. Write an addition that you solve using a mental method. A subtraction involving two places of decimals. Write a subtraction that you solve using a written method. A subtraction involving two places of decimals. Write a subtraction that you solve using a mental method. # Multiplication and Division Engage There are different ways to work it out. How can you calculate 286 \times 29? | • | other provides | 0 00000000 | | | **** | |---|----------------|------------|------|------|------| | • | | | | | | | | | | | | | | • | × | 20 | 9 | | | | | 200 | 4000 | 1800 | 5800 | | | • | 80 | 1600 | 720 | 2320 | | | | | | | | | | • | 6 | 120 | 54 | 174 | | | • | | | | 8294 | | | • • | | | | |-----|----------|----------|------| | • | 286 × 29 | | | | • | | 200 × 20 | 4000 | | • | | 80 × 20 | 1600 | | • | | 6 × 20 | 120 | | • | | 200 × 9 | 1800 | | • | | 80 × 9 | 720 | | • | | 6 × 9 | 54 | | • | | | 8294 | Which do you think is easiest? | • | | |---|-----------------| | • | | | • | 286 | | • | × 29 | | • | 5720 (286 × 20) | | • | 2574 (286 × 9) | | • | 8294 | | | | Which do you think is quickest? # 5A Multiplying by a two-digit number ### Discover **I. Partition** to multiply the following: a) $$346 \times 7 = ($$ a) $$346 \times 7 = (\times 7) + (40 \times) + (\times 7) =$$ b) $$\$4.92 \times 3 = (4 \times 3) + (0.9 \times) + (\times 3) =$$ • Complete the sentences below to help them: | × | 40 | 7 | | |-----|-------|------|-------| | 300 | 12000 | 2100 | 14100 | | 60 | 2400 | 420 | 2820 | | 5 | 200 | 35 | 235 | | | | | 17155 | This multiplication shows 365 \times _____ I2 000 in the top left box is the answer to 300 imes _____ The first column contains 300, 60 and 5 because 2820 is written across from 60 because The answer I7 I55 is calculated by _____ Show by estimating that the answer is sensible: Multiplication and Division 3. Complete these empty boxes to calculate 523 \times 47: | × | | 7 | | |-----|-------|-----|-----| | 500 | 20000 | | | | | | 140 | 940 | | 3 | | 21 | | | | | | | Show by estimating that the answer is sensible: **4.** Calculate 426×82 using the grid below: | × | | | |---|--|--| | | | | | | | | | | | | | | | | Show by estimating that the answer is sensible: 5. Your friend does not understand how to carry out column multiplication. Complete the sentences below to explain it to them: 21120 is the answer to _______ 1056 is the answer to ______ I get 22176 by ______ **6.** Write a set of instructions to calculate 415×27 using a column method: You set the multiplication out by _____ First you multiply ______ by _____. This gives you ______. Then you multiply _____ by ____. This gives you _____. Then you add _____ and ____. This gives you _____. You can check the answer by _____. # 5A Multiplying by a two-digit number **Explore** 4 5 6 7 8 You can use these digits to make a product. For example: $$45 \times 768 = ?$$ $$67 \times 548 = ?$$ What is the largest product you can make using the digits 4, 5, 6, 7, 8? - Use each digit only once. - Use the column method to do the calculations. # 5B Dividing three-digit numbers by two-digit numbers ### Discover I. Your friend does not understand how to calculate 845 ÷ 13. Complete the following sentences to explain the method to them: $$60 \times 13 = 780$$ $5 \times 13 = 65$ You write _____ inside the box and _____ outside ____ because ______. I tried 60 imes I3 first because _____ I know $5 \times 13 = 65$ because _____ The answer is 65 because _____ You can check the answer by _____ 2. Fill in the blanks to calculate 756 ÷ 14:)756 700 Show that the answer is correct using a multiplication: First you write the division like this Then you estimate _____ You write the answer underneath the _____ and ____ rou write the answer underneath the ____ Then you have to _____ Finally you _____ You check your answer by _____ # 5B Dividing three-digit numbers by two-digit numbers ### **Explore** - I. The answer to a division problem is 1331. -
Use the digits 2, 3, 4 and 5 to find the question. - Use a written method to show that you are correct: - 2. The answer to a division problem is 52. - Use the digits 0, 2, 5 and 6 to find the three-digit dividend and the single-digit divisor. - Use a written method to show that you are correct: - 3. The answer to a division question is 15. - Use the digits 0, 1, 2, 7 and 8 to find the three-digit dividend and the two-digit divisor. - Use a written method to show that you are correct: - 4. The answer to a division question is 28. - Use the digits 0, 1, 2, 4 and 5 to find the three-digit dividend and the two-digit divisor. - Use a written method to show that you are right: **5.** Make up a question like question 3 or 4. Give your question to a friend to solve. # 5C Division with remainders ### Discover Write down four different division calculations with an answer including remainder 3. For example: $$45 \div 7 = 6 \text{ r } 3$$ (Because $7 \times 6 = 42$ so there are 3 left over.) a) _____ b) _____ c) _____ d) _____ Write down four different division calculations with an answer including remainder ³/₄. For example: $$43 \div 4 = 10\frac{3}{4}$$ (Because $4 \times 10 = 40$ and there are 3 left over. We are dividing by 4 so that leaves $\frac{3}{4}$. a) _____ b) _____ c) _____ d) _____ 3. Complete the following sentences to explain how to carry out this calculation: $$\frac{15.6}{5)7^28.30}$$ This calculation shows how to work out 78 ÷ _____? I write 'I' above the '70' because _____ The next calculation is $28 \div 5$ because The answer is 15.6 because _____ 4. Write down two calculations where you multiply a three-digit number with one decimal place by a single-digit number. Work out your calculations: 5. Write down the division calculation to match each multiplication you wrote in question 4: # **5C Division with remainders** ### **Explore** - I. Imran wants to get a good deal at the shop. - Work out how much each item costs. - Circle the better deal for each item. a box of 10 or \$4.47 for a box of 6 Cakes: \$8.12 for a box of 4 or \$12.84 for a box of 6 O CONTROLO C Washing Powder: \$18.92 for a 2 kg box or \$50.54 for a 7kg box Juice: \$14.35 for a 5-bottle pack or \$19.39 for a 7-bottle pack Fizzy Drink: \$14.32 for an 8-can pack or \$8.25 for a 5-can pack - 2. Use the price of the better-value pack to work out the cost of: - a) 4 ice lollies # 5D Using the arithmetical laws for multiplication and division ### Discover - I. Is each statement 'sometimes true', 'always true' or 'never true'? - Circle the correct answer. - Give examples to show that you are correct: I can add numbers in any order and I always get the same answer. I can subtract numbers in any order and I always get the same answer. sometimes true / always true / never true sometimes true / always true / never true I can multiply numbers in any order and I always get the same answer. I can divide numbers in any order and I always get the same answer. sometimes true / always true / never true sometimes true / always true / never true a(b + c) is always the same as ab + ac. $\frac{a+b}{c}$ is always the same as $\frac{a}{c} + \frac{b}{c}$ sometimes true / always true / never true sometimes true / always true / never true | 2. W | ork in pairs. | |--------------|---| | | Research the meanings of the following mathematical terms. Complete these sentences: | | | associative law means | | | | | | | | or e | xample | | | | | Γhe c | commutative law means | | | | | | | | or o | xample | | or e | xample | | | | | he o | distributive law means | | | | | | | | or e | xample | | | | # 5D Using the arithmetical laws for multiplication and division # **Explore** I. Change the order of the numbers to calculate each answer more easily: For example: $$12 \times 16 \times 5 = 12 \times 5 \times 16 = 60 \times 16 = 960$$ a) $$20 \times 18 \times 5 =$$ b) $$15 \times 13 \times 10 =$$ c) $$18 \times 25 \times 4 =$$ d) $$5 \times 15 \times 2 =$$ e) $$4 \times 26 \times 5 =$$ 2. Use the distributive law to make these calculations easier to work out: For example: $$46 \times 8 = (40 + 6) \times 8 = (40 \times 8) + (6 \times 8) = 320 + 48 = 368$$ $$27 \times 6 =$$ $$38 \times 5 =$$ $$62 \times 9 =$$ **3.** Find the missing number in each equation: - **4.** Try these number puzzles. Some are correct and some are not correct. - Change the puzzles that are not correct so that they work. - Explain how the correct puzzles work. - a) Think of a number. Add 3. Multiply by 2. Subtract 6. Divide by 2. Your answer is your start number. For example, I think of 7: $$7 + 3 = 10$$ $$10 \times 2 = 20$$ $$20 - 6 = 14$$ $$14\,\div\,2\,=\,7$$ So this works for 7. Does it work for other numbers? b) Think of a number. Add 3. Multiply by 2. Subtract 3. Divide by 2. Your answer is your start number. c) Think of a number. Multiply by 3. Add 9. Divide by 3. Subtract 3. Your answer is your start number. d) Make up a number puzzle like the ones above. Give your puzzle to your friends to try. # 5 Multiplication and division ### Connect Your class wants to make smoothies to sell to the school. The food you need to buy is: ### SHOPPING LIST Mango cost: \$1.70 per kilogram Guava cost: \$1.60 per kilogram Banana cost: \$1.20 per kilogram > Yoghurt cost: \$0.75 a litre One bottle of smoothie uses: 500 g mango 250g guava 250 g banana 200 ml yoghurt - I. How much does it cost to make I bottle of smoothie? - 2. How much does it cost to make 20 bottles of smoothie? - 3. How much does it cost to make 50 bottles of smoothie? - 4. How much does it cost to make 100 bottles of smoothie? - 5. You have \$50. How many bottles of smoothie can you make? - 6. You want to make a small profit to buy some new equipment for school. - a) How much do you sell I bottle for? - b) You offer a discount for 25 bottles. How much do you sell 25 bottles for? # 5 Multiplication and division # Review I. Choose two different methods to divide 3824 by I6.Under each calculation write an explanation of your method: 2. Choose two different methods to multiply 337 by 23. Under each calculation write an explanation of your method: 3. Write down three different division questions with an answer ending in 0.6: 4. Write down three different division questions with an answer that has remainder 7: # 6 Shapes and Geometry # **6A Classifying polygons** ### Discover I. Here are some pairs of shapes: - Copy the shapes onto card and cut them out. - Use one pair of shapes. - Move one shape slowly on top of the other shape. - Stop when the shape is half on top of the other shape. - What shape is the covered part? - · What shape is the uncovered part? - Sketch the shapes below and name them: Repeat for the other pairs of shapes: 2. Repeat the exercise with these pairs of shapes. What shapes are the uncovered/covered parts? 3. Circle and name the overlap shapes that you can find: # **6A Classifying polygons** # **Explore** Draw a different triangle in each section of this table and write its name. Are there any sections with no possible triangle? Explain why. | | No right angles | One right angle | |-------------------|-----------------|-----------------| | No sides equal | | | | Two sides equal | | | | Three sides equal | | | 2. Draw a different polygon in each section of this table and write its name: | | Regular | Irregular | |---------------|---------|-----------| | Triangle | | | | Quadrilateral | | | | Pentagon | | | | Hexagon | | | | | No parallel sides | One pair of parallel sides | Two pairs of parallel sides | |--------------------------|-------------------|----------------------------|-----------------------------| | No equal sides | | | | | One pair of equal sides | | | | | Two pairs of equal sides | | | | - 4. Draw the correct shapes in the second column of this table. - Write at least three properties for each shape: | Name of shape | Drawing | Properties | |----------------------|---------|------------| | | | • | | Circle | | • | | | | • | | | | • | | Equilateral triangle | | • | | | | • | | | | • | | Isosceles triangle | | • | | | | • | | | | • | | Scalene triangle | | • | | | | | | Name of shape | Drawing | Properties | |--|---------|------------| | Rectangle | | • | | | | • | | Square | | • | | | | • | | Kite | | • | | | | • | | Parallelogram | | • | | a. a | | • | | Rhombus | | • | | Kiloliibus | | • | | Regular pentagon | | • | | Regular pentagon | | • | | Terroquilar hove re- | | • | | Irregular hexagon | | • | | | | • | | Regular octagon | | • | | | Ĺ | J | 4 | |---|-----------|------|----| | | Ė | 2 | ī | | | 2 | U | ı | | , | τ | 7 | ١ | | | 2000 | D | | | | CITIC | מ | | | | r | ٦ | ı. | | | • | 1 | | | | 0 | - | 2 | | | 000 | 1 | 2 | | | 000 | 1000 | 2 | | | COCT | 100m | 2 | | | COLLIC | 100m | | | | COLLICITA | a mo | | | 5 . C | omplete these senter | ices: | | | | |--------------|-----------------------|--------|--|--|--| | | Draw examples of t | | | | | | | shape is a polygon if | | | | | | Thes | e shapes are polygor | is: | A sho | ape is not a polygon | if | | | | | Thes | e shapes are not poly | /gons: | ### Discover You can use clay and straws to make models of 3D shapes. For example: Here is a cube and its model: You need 8 balls of clay and I2 straws to make the model of the cube. · Make models of these shapes: How many balls of clay do you need for each shape? How many straws do you need? square pyramid tetrahedron (triangular pyramid) hexagonal prism triangular prism - Write your answers in the table. - Make three models of 3D shapes of your own. - Add your shapes to the table. 98 | Shape | Number of balls of clay | Number of straws | |----------------------
-------------------------|------------------| | Cuboid | | | | Triangular prism | | | | Square-based pyramid | | | | Tetrahedron | | | | Hexagonal prism | | | | | | | | | | | | | | | | | | | # **6B Properties of 3D shapes** # **Explore** 100 I. Complete this table to show the properties of each 3D shape: Can you find an example of each shape in your classroom or the local environment? | | Number of vertices | Number of edges | Number of faces | Example | |--------------|--------------------|-----------------|-----------------|---------| | Cube | | | | | | Cuboid | | | | | | Pyramid | | | | | | Sphere | | | | | | Hemisphere | | | | | | Cone | | | | | | Cylinder | | | | | | Prism | | | | | | Tetrahedron | | | | | | Octahedron | | | | | | Dodecahedron | | | | | 3. Draw three different prisms: **4.** Draw three different cylinders: # 6C Making 2D representations of 3D shapes ### Discover I. This is the **net** of a cube cut into two parts: - Make a copy of the two parts of the net on squared paper. - Use the two parts to make the net of a cube. - Draw three different ways: - 2. Open your interesting-shaped box so that you can see the net. - Draw the net: - 3. Make a small-scale model of your box so that the length, width and height of the new box are exactly half the size of those of the original box. - Sketch this net and write the dimensions: 4. What do you notice about the volume of the new box compared with the original box? # 6C Making 2D representations of 3D shapes # **Explore** You can join four cubes together in lots of different ways. For example: The front elevation is: The side elevation is: You can draw this arrangement on isometric paper like this: The plan view is: - Use five cubes to make three different models. - Complete this table: Model I Front elevation Side elevation 103 ## 6D Drawing angles, and angles in a triangle #### Discover - Make triangles on your 9-peg circular pinboards. - Draw your triangles on the pinboards below. - Label the acute angles 'a'. - Label the obtuse angles 'o'. - Label the reflex angles 'r'. ## 6D Drawing angles, and angles in a triangle #### **Explore** - I. Find three reflex angles, three acute angles and three obtuse angles in your classroom. - Measure your angles using your angle measurer and a protractor. - List your angles in ascending order in this table: | Type of angle | Location | Angle size | |---------------|----------|------------| - 2. Find four different triangles in your classroom. - Measure the angles. - Use the angles to draw accurate sketches of your triangles: #### Connect You want to design a new playground for the local kindergarten. In your playground include: a balance beam, a climbing frame, swings and a hopscotch game. #### Tasks: - I. Design the balance beam. - What is the best 3D shape to use for the balance beam? - Think about how to make the beam stable. - What angles will you use? - 2. What shapes will you include in the climbing frame? - 3. Design a hopscotch game. - Use at least three different 2D shapes. 4. Make a 3D model of the swings. Think about how to make the swings stable. What angles will you use? **5.** Draw a sketch of the playground to illustrate your results: ## 6 Shapes and geometry ### Review - Find at least two 2D and two 3D shapes in your classroom. - Draw them in the table below. - Write clues so that your friends can guess what the objects are. | Photo or drawing of object | Clues | |----------------------------|-----------| | | l. | | | 2. | | | 3. | | | 4. | | | 5. | | | I. | | | 2. | | | 3. | | | 4. | | | 5. | | | <u>l.</u> | | | 2. | | | 3. | | | 4. | | | 5. | | | I. | | | 2. | | | 3. | | | 4. | | | 5. | | | I. | | | 2. | | | 3. | | | 4. | | | 5. | ## Position and Movement ## 7A Reading and plotting coordinates #### Discover - Draw a plan of your classroom on the coordinate grid below. How can you find the centre of the classroom? - Place the centre of the classroom at the **origin** (0, 0). For example: Sohm is sitting at (-3, 2). The teacher's desk is at (0, 5). - 1. - 2. - 3. - 4. - 5. ## 7A Reading and plotting coordinates #### **Explore** - Draw a different polygon in each grid so that each polygon has a vertex in each quadrant. - Label the vertices with their coordinates. - Give your partner the coordinates for your shapes from question I. - Ask your partner to use the coordinates to draw the shapes in their grids. - Ask your partner to write the name of the shape under each grid. - Follow your partner's instructions to draw shapes on the grids below. ## **7B Reflections and rotations** #### Discover Look at this piece of art: • Write down all the **reflections**, **rotations** or **translations** that you can see: Make a piece of art. Include shapes that are reflected, translated and rotated. ## **7B Reflections and rotations** #### **Explore** - Draw a simple shape on a piece of card. For example: - Cut your shape out. - Place your shape on the grid, with one straight edge against the y-axis: -10 5 . 4 ## 7 Position and movement #### Connect 120 Look at the logos below: - Design a logo for your school. - Use repeated simple shapes. - Draw your logo on the grid below so that it is easy to reproduce: | | | | | | | / | | | | | | |---|---|----|--|--|--|---|--|--|---|--|--| | | | L, | T | | | | | | | | | 2 | 1 | | | | | - | <u>, </u> | # Position and Movement ### 7 Position and movement #### Review - Design a poster to explain all the important terms from this Unit. You and your friends can use this poster to remember these terms. - Include images to illustrate the meanings of the following terms: origin coordinates quadrants line of symmetry axis of symmetry mirror line reflection translation rotation clockwise anti-clockwise # Length, Mass and Capacity ## 8A Selecting and using appropriate units of measure #### Discover I. Complete this table. Write down objects that you can use these units to measure: | Unit | Object | |------------|--------| | kilometre | | | metre | | | centimetre | | | millimetre | | | tonne | | | kilogram | | | gram | | | milligram | | | litre | | | centilitre | | | millitre | | (Miles) In the USA they use miles to measure distance. A **kilometre** is $\frac{5}{8}$ of a mile. Write similar sentences which include the following units: 2. Sometimes we use different units of measure called 'Imperial units'. - a) (Feet) - b) (Inches) - c) (Pounds) - d) (Ounces) - e) (Pints) - 3. In a group, choose an animal and find out facts about it. - Prepare a presentation. - Include the following information: The animal weighs... The animal has a length of... The animal can run/fly/swim at a speed of... ## 8A Selecting and using appropriate units of measure ## **Explore** I. Draw a line to connect each description to the correct measurement on the right. | i. Draw a line to connect each description to the correct meas | arement on the right. | |--|-----------------------| | Tallest building: Burj Khalifa | 65km per hour | | Smallest animal: Kitti's hog-nosed bat | 6650km | | Fastest animal: cheetah | 149 600 000 km | | Longest river: the Nile | 830 m high | | Distance from the Earth to the sun | 3.4 kg | | Tallest human: Robert Wadlow | 3 cm long | | Weight of a blue whale | 5 ml | | Weight of an egg | I litre | | Weight of a cubic centimetre of sand | 53 g | | Weight of an average baby | 190 tonnes | | Capacity of a large carton of fruit juice | 2.6 g | | Capacity of a teaspoon | 2.34 m | **2.** Write a sentence for each fact. Include a comparison. The height of Burj Khalifa is about the same distance as two laps round an athletics track. A baby weighs about the same as 1000 cubic centimetres of sand. ## **8B** Converting units of measurement #### Discover - Work in pairs. - Convert the **units of measure** and complete the tables. - Find an object, or think of an object, as an example for each measurement. #### I. Length | Metres | Centimetres | Millimetres | Object | |---------|-------------|-------------|--------| | | | l mm | | | | | I0 mm | | | | | 34.5 mm | | | | 50.7cm | | | | | 75 cm | | | | 0.855 m | | | | | 10.3 m | | | | | 150 m | | | | ### 2. Capacity | Litres | Centilitres | Millilitres | Object | |-------------|-------------|-------------|--------| | | | 3.2 ml | | | | | 8 ml | | | | | 57.8 ml | | | | 25.9 cl | | | | | 68.7 cl | | | | 0.55 litres | | | | | I5.2 litres | | | | | 50 litres | | | | ### 3. Weight | Kilograms | Grams | Milligrams | Object | |-----------|-------|------------|--------| | | 0.5 g | | | | | 0.85g | | | | | | 220 mg | | | | | 325 mg | | | 0.050 kg | | | | | 0.750 kg | | | | | 22.5 kg | | | | | 175.5 kg | | | | What did you notice about converting between units? I noticed that when you convert from ______ to _____ you _____. ## 8B Converting units of measurement #### **Explore** - I. The width of a currant is approximately 3 mm. How many currants can you fit on the length of: - a) your desk _____ - b) your classroom _____ 2. 100 g of uncooked lentils contains 25 g of protein. How much do you weigh (in grams)? How much protein does your bodyweight of lentils contain? A can of fizzy drink has a capacity of 25 centilitres.A gallon is approximately 4.5 litres How many cans of fizzy drink fill a jug with a capacity of I gallon? ## 8C Using scales and constructing accurately using measures Discover I think that my height is 4 times the circumference of my head. Is this true? • Use this table to record your measurements: | Circumference of head | Height ÷
circumference of head | |-----------------------|--------------------------------| Circumference of head | 132 I discovered that your height is approximately times the circumference of your head. ## 8C Using scales and constructing accurately using measures I. • Mark each of these rulers to show the measurement: a) 28 cm b) 4.5 cm c) 0.5 cm d) II.5cm 2. - Mark each of these measuring jugs to show the measure: - a) 170 ml b) 890 ml c) 35 ml d) 250 ml 3. This scale shows 825 g: - Mark these scales to show the weights: - a) 950 g b) 15g c) 520 g d) 430 g - Draw lines next to these measurements: Draw your lines accurate to the nearest millimetre. - a) 10.7cm - b) 5.3 cm - c) 1.2 cm - d) 15.8 cm - e) 12.5 cm ## 8 Length, mass and capacity You are working for a pie-making company. The pastry rolling machine rolls out rectangles of pastry that measure Im by 75 cm. The circular base of a pie has a diameter of 8 cm. The circular top of a pie has a diameter of 4 cm. How can you cut the pastry to make the maximum number of pies? Draw a diagram to show your solution: A pie contains 25 ml of filling. The filling is sold in jars of 250 ml. How much filling do you need to fill all of the pies you make? How many jars of filling do you need to buy? ## 8 Length, mass and capacity ### Review - Colour the boxes with matching measures in the same colour. - Fill in the empty boxes with two new sets of matching measures. | 1 , | | 3 | | |--|-------------|--|--------------------| | 2.5 m | 7/10 litre | 2.4 kg | cm | | 0.6 kg | | ∏uitre | 2 <mark>1</mark> m | | 250 ml | 0.015 litre | 600 000 mg | | | Come in the contract of co | 2.5 m | 0.02 m | 700 ml | | 0.7 litre | | I.5 cl | 0.25 litre | | 2400 g | | 2 <mark>2</mark> kg | 250 cm | | 2 cm | 600 g | | | | I5 ml | | E THE STATE OF | 20 mm | ## 9 Time I sleep for 8 hours a night. How many hours will I sleep for in my whole life? It is impossible to live for a million seconds. How many hours will I spend in school in total? It is always night-time somewhere in the world. How many minutes have there been so far this year? I can think of **IO** different clocks or timers I see in a normal day. | | 100 | number | benday | andresday | Durelay | Kiday | saturday | meday | |--|-----|--------|--------|-----------|---------|-------|----------|-------| | 07 - | 11 | | | | 1 | 2 | 3 | 4 | | * * * * * * * * * * * * * * * * * * * | 35 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | 16 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 09 | 10 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 3 A + A + T +
+ 10 11 12 13 14 13
(a 17 18 19 20 21 12
23 24 25 28 27 28 27 | 66 | 26 | 27 | 28 | 29 | 30 | 31 | | ## 9A Converting between units of time #### Discover I. On a digital 24-hour clock, at certain times, all the digits are consecutive. **88:54** The same times shown on an analogue clock: How many times like this are there between: - a) 23:00 and 05:00? _ - Record your answers as analogue times and digital times: | • | | d 13:00?
your ans | | | mes and di | gital time | s: | | | |------|------------|-------------------------------|-------|-------------|------------|------------|----|--|---| L.4.2 | | | | | | | | د ۱۵ | م برسامانه | نحامنحم لمم | int! | | | | | | | | | | nd midni g
your ans | | naloque tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | _ | | | | | | nalogue tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | | | | | | | nalogue tir | mes and di | gital time | s: | | | ### 9A Converting between units of time | - | | | | |-----|---|----|-----| | | • | | - | | | u | LO | Ire | | 100 | | | | I. Complete this table: | Number of centuries in a millennium | | |---|----| | Number of decades in a century | | | Number of years in a decade | 10 | | Number of months in a year | | | Number of weeks in a year | | | Number of days in a week | 7 | | Number of hours in a day | | | Number of minutes in an hour | | | Number of seconds in a minute | | | Number of milliseconds in a second | | - Use the information in the table to answer these questions: - 2. How many days old are you? 3. How many seconds have there been in this year so far? ### 9B Using the 24-hour clock and timetables | Di | iscover | |----|---| | • | Complete these timetables . | | | Use the 24-hour clock . | | | Use each timetable to write down five facts. | | Fo | or example: Lunchtime is from 12:30 to 13:30. | | | A school day | | •• | A school day | | | | | | | | | a) | | | b) | | | c) | | | d) | | | e) | | | | | 2. | A holiday | | | | | | | | | g) | | | b) | | | | | | | | | d) | | | e) | | 3. | A school trip | | | | | | | | | | | | a) | | | b) | | | c) | | | d) | | | | ### 9B Using the 24-hour clock and timetables ### **Explore** You are the manager of a bus company. You need to design a route for buses to bring students to your school and take them home. There is also a community centre at your school. The community centre offers classes that start at II:00 and I3:00. The last bus leaves the bus station at 19:30. - Draw a map below to show the route the bus will take. On
your map include: - six different bus stops including the school and the bus station - the time taken between each stop - a circular route. **2.** Now complete this timetable for the journeys: Your buses leave at IO different times. | В | us Station | | | | | | |---|------------|--|--|--|--|--| | S | top I | | | | | | | S | top 2 | | | | | | | S | top 3 | | | | | | | S | top 4 | | | | | | | S | top 5 | | | | | | | В | us Station | | | | | | ### 9C Calculating time intervals including time zones ### Discover • Look at this map of international time zones around the world: • Use this map to write down ten facts: 2. 3. 4. 5. 6. 8. q. _____ 10. ### 9C Calculating time intervals including time zones | 1000 | | | |------|----|-----| | LVE | 10 | - | | EXI | | 182 | | | | | - I. What is the best time to telephone your friend in Australia? - 2. Your friend in California goes to bed at 22:20. What time is this where you live? - 3. You come home from school at 16:00. What time is this for your friend in the UK? - **5.** Your class is twinned with a class in Madagascar. When is the best time to have a Skype conversation? - 6. a) Complete this table to show the times in different cities of the world. - b) Add two cities that you would like to visit. | Home | 00:00 | 02:00 | 04:00 | 06:00 | 08:00 | 10:00 | 12:00 | 14:00 | 16:00 | 18:00 | 20:00 | 22:00 | |--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | New
York | | | | | | | | | | | | | | Tokyo | | | | | | | | | | | | | | Sydney | | | | | | | | | | | | | | Cape
Town | | | | | | | | | | | | | | Bangkok | د) | You fly from New York to Tokyo. | |----|--| | C) | The flight takes 14 hours. | | | It departs at 09:30. | | | What time (local time) do you arrive in Tokyo? | | | what time (total time) as you arrive in longs. | d) | You fly from Cape Town to Sydney. | | ω, | It takes 13 hours 45 minutes. | | | You depart at 22:30. | | | What time (local time) do you arrive in Sydney? | e) | You fly from Sydney to Bangkok. | | | The flight takes 9 hours 15 minutes. | | | You depart from Sydney at 13:15. | | | What time (local time) do you arrive in Bangkok? | You are planning a school trip to an island. You cannot reach the island when the tide is high. You cannot depart from school until 08:30. You must be back at school by 19:30. The journey to the coast takes 45 minutes. You want to spend at least 4 hours on the island. You have four possible dates to choose from for the trip. This timetable shows the times when the tide is high: | 5 July | 08:00-10:00 | 15:00–17:00 | |---------|-------------|-------------| | I2 July | 10:00–12:00 | 17:00–19:00 | | 19 July | 12:00–14:00 | 19:00–21:00 | | 26 July | 14:00–16:00 | 21:00–23:00 | I. How long can you spend on the island on each of these days? - 2. Which is the best day for your school trip? __ - Write the timetable below. 3. Why is this the best day for the trip? ### 9 Time | - | | | | |----|----|---|---| | 10 | | - | | | п | ин | - | w | | • | Write five questions to test | your friends on wha | it they have l | earned during this Unit. | |---|------------------------------|---------------------|----------------|--------------------------| |---|------------------------------|---------------------|----------------|--------------------------| • Include a solution for each method and illustrate the method. | 1. | Telling | the | time | on | ana | loque | and | diaital | clocks | |-----|---------|-----|------|------|-----|-------|-----|---------|--------| | 7.7 | | | | 1000 | | | | | | b) _____ c) ______ d) e) _____ ### 2. Converting between units of time a) _____ b) _____ c) _____ d) _____ e) _____ ### 3. Using the 24-hour clock a) _____ b) _____ c) _____ d) e) _____ | 4. Using timet | tables | | | |----------------|---------------------|--|---| | | | | | | b) | | | | | | | | | | | | | | | | | | ~ | | e) | | | | | | national time zones | | | | a) | | | | | b) | | | | | c) | | | | | d) | | | | | e) | ### 1 Area and Perimeter ### Engage Every shape with a perimeter of 24 cm has the same area. There are lots of different shapes with the same area. I double the perimeter. The new area is always double the original area. t Every shape with the area 16 cm² has the same perimeter. I don't think that is always true. ### 10A Area and perimeter of rectilinear shapes ### Discover A farmer has 24 metres of wire fencing. He wants to enclose the maximum possible **area** of land to allow his goats to graze. What shape of area do you advise him to enclose? Investigate a range of rectangles and other rectilinear shapes like these: - Draw two different rectilinear shapes with the following areas. - Write the **perimeter** under each shape. - I. Area of 36 cm² ### 10B Estimating areas of irregular shapes by counting squares ### Discover - On the squared paper below draw round your open hand. - Count the squares to find the area. | | | | | | 8 | | | | | | |---|--|--|--|--|---|--|--|--|--|--| ď | | | | | | | | | | | - Complete this table. - Use 15 other students' measurements. The hand length is from the top of the wrist to the tip of the middle finger. | Friend's name | | | | | | |----------------|--|--|--|--|--| | Area of hand | | | | | | | Length of hand | | | | | | | Friend's name | | | | | | | Area of hand | | | | | | | Length of hand | | | | | | | | raw a se | | | ea ag | jainst | leng | th. | | | | | |----------------|----------|---------|---------|-------|--------|------|-----|--|--|--|--| | is the | ere any | correto | ition : | - | + | de la constant | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | - | | | | 7 | ### 10B Estimating areas of irregular shapes by counting squares ### **Explore** - Write the area of each piece of the tangram on the diagram above. - Sketch five different shapes using pieces of the tangram: - I. An arrangement using three pieces: ### 10C Calculating areas and perimeters of compound shapes ### Discover You can represent data in different ways so that it is easier to understand. The example below shows an example of a three-country continent. The countries all share a border with each other. They are surrounded by sea. In this view, the areas of countries A, B and C are shown as 18, 8 and 24 million km² (so each square represents 2 million km²). - Draw a new view of these countries to show different information. - Represent countries A, B and C as having populations of 40, 36 and 24 million people. Make sure that you can recognise each country and its position. Keep the shapes and positions of the countries relative to each other as similar to the original as possible. 162 | | | | | | 2 | | | | | | |--|------|--|---|--|---|--|--|--|--|--| - | | | | | | | | | | | | - | 4 | | | | | | | | | | 11 4 | | | | | | | | | | ### 10C Calculating areas and perimeters of compound shapes ### **Explore** You work for a company that sells stock cubes. You sell the stock cubes in packs of I2, 24, 40 and I00. I stock cube is a 2 cm cube. - Use cubes to model the size of the boxes that you need to make to hold the stock cubes. - Include two different possibilities for each. - Sketch the nets of each of the boxes below. - Under each net write the **surface area** (total area of net) and the perimeter. - I. Nets for I2 cubes: a) b) ### 10 Area and perimeter # Connect • Draw a scale drawing of your classroom below: You decide to buy four cupboards. The dimensions of their bases are: A: 1.5 m by 0.5 m B: 2m by 0.75m C: Im by 0.75 m D: 2.5 m by 0.5 m - Decide where you want to put the cupboards in the room. - Draw them onto your scale plan. You want to tile the classroom floor using three different colours of tile. All tiles are squares of side 0.5 m. They cost: blue tiles \$20 per square metre red tiles \$25 per square metre patterned tiles \$32 per square metre • Draw three different designs for the classroom floor. • Work out the cost for each design. Design I Design 3 Design 2 ### 10 Area and perimeter - Use the box below to sketch ideas for a poster. - In your poster explain the key terms from this Unit. - Draw pictures and label them with the following words: length, width, height, depth, breadth edge, perimeter, circumference area, surface, face square centimetre (cm²), square metre (m²), square millimetre (mm²) ## **Handling Data** ## Defining my question What are we interested in finding out? List all your ideas here: 172 Pick one question you are particularly interested in and write it here: | Our question is: | | |------------------|--------------------------| | Source | Information we found out | - | | | | | | | | | | | | Carrying ou | ıt a survey | | |---------------------
---------------------------------|--| | Our survey q | uestion is: | | | | | | | | | | | These are qu | estions that we will ask people | | | l | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8. | | | | | g the following people: | | | Group | Number of people asked | Reason for asking this group of people | | Group | Number of people asked | Reason for asking this group of people | | |-------|------------------------|--|---| Group | Group Number of people asked | Group Number of people asked Reason for asking this group of people | These are the results of our survey listed in a **frequency table**: | Here are our | results | | | | | | | | | | |--------------------|--------------|--|-----|-------------|--|-------|---|--|-------|------| | We used a | | | her | | | | | | | | | we asea a <u> </u> | | | | | | .aasc | | | | | | We chose no | t to use a . | | | | | | | | _ bec | ause | ++ | | | | | | - | ++- | ļ., | · · · · · · | ## 11A Handling data | Ou
— | r question | is: | | | | | | | |---------|-------------|--------------|------------|---------|--|--|--|--| | Ou | ır reason f | or asking | this quest | ion | | | | | | We | wanted t | o ask this o | question b | ecause: | WŁ | nat we fou | nd out fro | m resear | ch | | | | | | | r research | | | ··· | What we found out from our survey | |---| | We found out from our survey that: | | | | | | | | | | | | | | | | What we found out | | So, we now know that: | | So, we now know that. | | | | | | | | | | | | | | | | Another question we would like to ask based on our findings | | Now we would like to ask this question: | | | | | | | | | | | | | # Iandlin #### 11B Probability #### Discover • Play the Great Horse Race game with your friends. | Horse | | Winning post | |-------|--|--------------| | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8 | | | | q | | | | 10 | | | | Ш | | | | 12 | | | You play the game again. Which horse do you choose as a winner? Why do you choose this horse? Which horse do you definitely not choose? Why do you definitely not choose this horse? What is the probability that horse number 5 wins? ### 11B Probability #### Explore #### I. Complete this table: | Chosen outcome | Equally likely outcomes | Number of possible required outcomes | Probability
fraction | Probability as percentage | |---|---|---------------------------------------|--|-------------------------------------| | Rolling an even number on a 6-sided dice | I can roll I, 2, 3, 4 , 5 or 6 | There are 3 even
numbers (2, 4, 6) | There are 3 chances out of 6 so the probability is $\frac{3}{6}$ (or $\frac{1}{2}$) | $\frac{1}{2}$ is the same as 50% | | Rolling an even total on two 6-sided dice | | | | | | Rolling a number less than 4 on a 10-sided dice | | | | | | Picking a 7 or a 9 out of a pack of cards | | | | | | Picking a Jack,
Queen or King
out of a pack of
cards | | | | | | | т. | |----|-------| | | Iand | | 30 | lling | | | Data | | | | | a) | | |----|-----------------------| | b) | 0 (impossible) | | c) | <u>2</u> 5 | | d) | | | e) | 90% | | f) | I (certain to happen) | #### Glossary arc average Here are five numbers ranging from 3 to 9: 3 3 4 6 9 The **mean** is 5 because. $\frac{3+3+4+6+9}{5} = 5$ The median is 4 because it is the middle value. The **mode** is 3 because it occurs most often. | - | _ | | | | |---|----|----|---|---| | R | ia | C | 0 | a | | U | IU | 13 | C | u | centilitre _____ 100 centilitres = I litre 100 cl = 1l Icl = 10 ml I centilitre = $\frac{1}{100}$ litre # circumference #### common multiple 12 is a **common multiple** of 3 and 4. It is also a common multiple of 6 and 2. #### composite number 18 is a **composite number** because it can be written as 3×6 or 2×9 . 3 and 7 are not composite numbers. #### concentric concentric circles concentric squares #### correlation positive correlation no correlation cross-section The **cross-section** of a cylinder is a circle. decade I decade = 10 years 10 decades = I century decimal equivalent Here are some decimal equivalents: $$\frac{1}{10} = 0.1$$ $\frac{2}{10} = 0.2$ $\frac{4}{100} = 0.04$ directed numbers negative numbers positive numbers | dividend | 3 | |----------|------------------| | | divisor ←——4)124 | | : | | | | dividend | | divisor | 31 → quotient | |---------|----------------------| | | divisor ←——4)124 | | · | | | | ∀
dividend | dodecahedron regular dodecahedron equal chance (even chance, fifty-fifty chance) equally likely event factorise $42=2\times3\times7$ Factorising the number 42. foot (plural feet) I foot = I2 inches 3 feet = I yard I foot $= 30.48 \, \text{cm}$ | front elevation | |-----------------| | | identical **Identical** shapes can be in different positions. inch (plural inches) ____ I2 inches = I foot I inch = 2.54 cm # interior angle interior angle ← **International Date Line International Date Line** international time zones II a.m. New York 5 p.m. Rome 7 p.m. Riyadh 188 intersect These arcs intersect in two places. 189 isometric drawing kite loss Price paid to buy an item: \$10 Price received selling the item: \$8 Loss: \$2 #### mean Here are five numbers ranging from 3 to 9: 3 4 6 The total is $\frac{3+3+4+6+9}{5} = \frac{25}{5} = 5$. The **mean** is _____ | nedian | | |--------------|--| | 5. 50 ° W | Here are five numbers ranging from 3 to 9: | | | 3 3 4 6 9 | | | The median is 4 because it is the middle value. | | | | | illisecond | | | | _ | | | 1000 milliseconds = I second | | | | | peration key | | | | - 789 456 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | 16 ounces = I pound I **ounce** = 28.3 grams 16 oz = 1 lb | parallelogram | | |---------------|--| | | The arrowheads show which sides of the parallelogram are parallel to each other. | | plan view | | | | plan view | | plane | horizontal plane | | <u></u> | vertical plane oblique plan | I pound = 16 ounces 1**lb** = 16 oz 1 lb = 453.59 g 1 kg = 2.204 **lb** # prime factor The factors of 24 are I, 2, 3, 4, 6, 8, I2, 24. The **prime factors** of 24 are 2 and 3. prime number These are the **prime numbers** less than 20. profit Buy for \$3 Sell for \$50 Profit: \$15 random 192 | rectilinear | | | | | |-------------|---|---------------------|-------|--| | | | | | | | | | | | | | | r | ectilinear s | hapes | | # recurring Some recurring decimals: This number is called 'zero point three **recurring**'. $\frac{22}{7} = 3.1428561428561 \rightarrow$ The digits 142856 keep repeating. ## reflex angle # rhombus rhombus scattergram 2 3 4 5 6 7 8 scattergram showing scattergram showing scattergram showing positive correlation negative correlation no correlation side elevation side elevation The **surface area** of a cube is 6 times the area of each of its faces. I **tonne** = 1000 kilograms I **tonne** = 100 kg | symmetry | A kite has symmetry | A parallelogram has | | | |--|---------------------|----------------------|--|--| | | about a line. | rotational symmetry | | | | | about a line. | about a point. | | | | <u>19</u>
38 | | Company of Particles | | | | | | A pyramid has | | | | | | rotational | | | | | A cuboid has symmet | try symmetry | | | | | about a plane. | about an axis. | | | | | | | | | | tangram | a tar | a tangram puzzle | | | | | | | | | | thousandth | | T | | | | | | | | | | - | | | | | | <u>, </u> | I <i>r</i> | 100 | | | | | 10 | | | | | | | | | | | | | | | | | tonne | | | | | rotation translation reflection trapezium trapezium right-angled **trapezium** isosceles **trapezium** volume A 1cm cube has a volume of $I \cdot I \cdot I cm^3 = Icm^3$. A 2 cm cube has a volume of $2 \cdot 2 \cdot 2 \text{ cm}^3 = 8 \text{ cm}^3$. yard 2 I **yard** = 3 feet I yard = 36 inches I **yard** = 91.44 cm Oxford International Primary Maths is a complete six year primary maths course that takes a problem solving approach to learning maths, engaging students in the topics through asking questions that make them think, and activities that encourage them to explore and practise. Each topic is approached using the following five steps: - A big question to Engage students and get them thinking - Starter activities to **Discover** the key elements of the topic - Problems and practice to allow them to Explore how the concept is used in everyday life - Fun, collaborative groupwork to Connect the strands of a topic together, and - Review pages that
allow both student and teacher to check their progress #### Also available: 9780198394709 We are working with Cambridge International Examinations towards endorsement for this title. OXFORD UNIVERSITY PRESS How to get in touch: web www.oup.com/eme email schools.enquiries.uk@oup.com **tel** +44 (0)1536 452610 **fax** +44 (0)1865 313472