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PREFACE

Among the features of mathematical thought that most invite the philosopher’s attention is its regimentation of justificatory
procedures; its canonization of proof as the preferred form of justification. This regimentation is made the more striking by
the fact that it is clearly possible to have other kinds of justification (even some of very great strength) for mathematical
propositions; a fact which at least suggests that concern for truth and/or certainty alone cannot account for the prominence
given to proof within mathematics. This being so, arriving at some understanding of the nature and role of proof becomes one
of the primary challenges facing the philosophy of mathematics. It is this challenge which forms the motivating concern of
this volume, and to which it is intended to constitute a partial response (on a variety of different fronts).

One possibility, of course, is that it signifies nothing distinctive in the epistemic aims of mathematics at all, but is rather the
outgrowth of certain purely social or historical forces. However, since regimentation of justificatory practice is the kind of
thing that is at all likely to arise only out of consideration for epistemic ideals, to attribute it to nonepistemic, socio-historical
factors would require special argumentation, and there is currently little if any reason to suppose such argumentation might be
given. Thus, accounts of the ascendancy of proof in mathematics that make appeal to some epistemic ideal(s) would appear to
be more promising.

One consideration which seems to have weighed heavily in favor of proof as the preferred form of justification is the
traditional concern of mathematics for rigor. This drive, in turn, seems to have derived from one of two (in some ways
related) impeti. The first of these—an old and persistent one, with a bloodline reaching from Aristotle through Leibniz and on
down to Frege —s based on the idea that the aim of a justification is not merely, nor even primarily, to establish the certainty
of its conclusion, but rather to identify the metaphysical grounds or origins. This induces a hierarchy of truths at the base of
which are located the ur-truths or axioms. The epistemic ideal is to be able to trace a given truth all the way back to the ur-
truths which found it, thus obtaining a complete account of why it is true. Rigor is essential to this enterprise because, without
it, one cannot get a clear distillation of those truths that are being used (and perhaps even need to be used) to ground a given
truth.

A historically more influential idea—also associated with Aristotle (in particular, with his conception of a deductive or
demonstrative science), as well as with Euclid and, in the modern period, with Descartes—has a less metaphysical, more
purely epistemic foundational thrust. It too searches for ultimate truths, but not in the sense of final metaphysical grounds of
truth. Rather, it seeks to find premises that are epistemically ultimate—truths, that is, that are (at least in certain respects)
epistemically unsurpassed. In this type of scheme, the axioms are not taken to be metaphysically responsible for the truth of
the theorems, though there is still a sense in which they may be said to show why they (i.e. the theorems) are true.

More recently, these traditional conceptions have given way to less foundationally oriented conceptions of mathematical
justification. Axioms are no longer taken as giving the metaphysical grounds for the theorems. Nor are they taken to be
insurpassably, or even insurpassedly, evident. Rather, they are seen only as being evident enough (i) to make a search for
further evidence seem unnecessary, or perhaps (ii) to remove sufficiently much of whatever rational doubt or indecision it
seems possible and/or desirable to remove from the theorems, or maybe just (iii) to be attractively simple and economical, and
evident enough to serve the purposes at hand, etc.

This shift away from foundationalist conceptions of justification has not, however, brought with it an associated shift away
from rigor. Indeed, with the vigorous development of techniques of formalization that has taken place in this century,
demands for rigor have increased to a point where it is now the reigning orthodoxy to require that, to be genuine, a proof must
be formalizable. This emphasis on formalization is based on the belief that the only kinds of inferences ultimately to be
admitted into mathematical reasoning are logical inferences (i.e. inferences which themselves make appeal to no
mathematical subject-matter), and the conviction that the only way ultimately to be assured that one’s reasoning does not make
use of unrecognized assumptions is to divest it of all appeals to meaning—even the meaning of logical terms.

These emphases on the role of logic in mathematical reasoning and the ability to arrive at a verifiable description of
mathematical reasoning that does not make use of appeals to meaning, together with the question of how best to account for
their epistemological purposes, are matters of central concern to the essays in this volume. The rightful role of logical



inference in proof is a common theme of the papers by Burgess, Helman, Tieszen, and Tragesser; the latter suggesting that
logic has little if any role to play in proof, the others suggesting what end up to be one form or another of the contrary view.

Burgess and Helman argue for views which see classical logic as occupying a place of central importance in mathematical
reasoning. For Burgess this is a result of the fact that classical logic gives that account of the inferential structure of
mathematical reasoning which fares best with respect to two desiderata which he takes to form the prime determinants of any
satisfactory theory of math-ematical reasoning; namely, (i) whether it gives an empirically successful (if also idealized)
description of the natural epistemic behavior of mathematicians, and (ii) whether it uses a method of description which itself
is amenable to precise mathematical investigation and elaboration. These desiderata are emphasized because Burgess takes
them to be essential to truly scientific account of proof, and he takes that to be the kind of theory of proof that we ought to be
most intent upon producing.

In Helman’s argument, the importance of logic to proof is derived from a structural similarity which he sees as existing
between systems of abstract proofs (modulated by an equivalence relation defined on them), on the one hand, and systems of
information employed in assessing the justification of beliefs, on the other. This structural similarity arises from the fact that a
justification for a conclusion is identified by reference to justifications for its ultimate premises. Helman suggests that the
structure thus induced between premise-justifications and conclusion-justifi- cations may correspond to a certain kind of
algebraic structure exhibited by systems of abstract proofs, which algebraic structure then gives rise to the rules of logical
inference. If this is right, then a description of this justificational structure would serve as a means of interpreting the
corresponding algebraic structure, and so would provide an epistemological basis for logic.

Tieszen’s paper implies a brief for a kind of intuitionist logic— though this arises only to the extent that it is called for by
his more basic commitment to a Husserlian epistemology for proof, which conceives of it as fundamentally a case of
intention-fulfillment. Since intentions are directed toward prepositional contents, and since such contents are quite often
“composite” in character, it is natural to look for a logic of intention-fulfillment that is induced by the component-composite
relationships that exist between the contents of simpler and more complex intentions. It is this sort of logic that Tieszen
sketches, and so, like Helman, he can be seen as looking for a logic based on certain basic structural features of
(mathematical) justification.

Issues of formalization form another point at which the interests of several of the papers published here converge.
Regarding the question of the formalizability of mathematical reasoning, the papers by Tieszen and Tragesser present
negative responses (though only when mathematical proof is considered in its justificatory capacity and not as, say, the object
of some metamathematical inquiry such as that of proving consistency). Burgess and Helman suggest the opposite view.

For Tieszen, epistemically genuine proof is unformalizable because it is essentially an experience—specifically, an
experience of the fulfillment of an intention. For Tragesser, genuine proof is not formalizable by the usual means because
such formalized proof tends to mask, or at least not properly to bring out, the element of understanding that is crucial to it and
which renders the logical inferences that typify formalized proof epistemically otiose.

Taking the opposite view, Helman, as previously noted, argues that there is a profound connection between the epistemic
structure of a proof and that logical structure which comes to be highlighted through its formalization. Thus, a proofs lacking
the sort of logical structure revealed in its formalization(s) is tantamount to its lacking the sort of structure that Helman
suggests is a deep and deeply important part of justificatory reasoning in mathematics.

Burgess, too, suggests an opposing view since, on his view, a proof which is not (at least in a suitably broad sense)
formalizable is not accommodatable to the methodological constraint governing the scientific investigation of proof; namely,
that it be “mathematizable” (i.e. open to investigation by a method possessing the kind of precision that typifies modern
science). (It is perhaps worth noting in passing, however, that such a defense for formalization does not in and of itself make a
case for the “effectively decidable” character of the common formalization of such basic metamathematical relations as “formula
x is derivable from formulae y in system z.” Mathematically precise but not effectively decidable versions of such notions are
well known from the literature.)

Different concerns regarding formalization form the foci of the three papers on Gödel’s theorems that appear in this volume
(namely, those by Isaacson, Auerbach and myself). The concern of Isaacson’s paper is whether PA is an adequate (i.e. sound
and complete) formalization of a certain kind of truth possessable by sentences formulable in the language of PA. As is well
known, of course, Gödel’s First Theorem shows that PA cannot be a complete formalization of the classical truths formulable
in its language. The premise of Isaacson’s paper, however, is that this does not rule out the possibility that there are other
interesting notions of truth with respect to which PA is complete. Indeed, Isaacson claims to have found one in a certain
epistemic notion of truth which he calls “arithmetic truth.”

Isaacson produces inductive evidence for the claim that this notion of truth is formalized by PA by considering the effects of
adding various ω -rules to the latter. Specifically, he argues that (i) those ω -rules which constitute forms of inference
sanctioned by his notion of truth add nothing to PA, and (ii) those ω -rules that do add something to PA are not sanctioned by
this notion of truth. He concludes, therefore, that what look to have been possible means of upsetting the fit between PA and
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“arithmetic truth” (namely, the various ω -rules examined) in fact are not, and that this gives us (further) inductive support for
regarding the former as a complete formalization of the latter.

In his paper “How to say things with formalisms,” David Auerbach’s general concern is that of determining what is
required for adequate representation of formal notions of proof. More specifically, since the conditions for adequate
representation, being dependent upon the purposes for which a representation is wanted, cannot be expected to be invariant,
he is concerned to defend those conditions (the so-called “Derivability Conditions”) that are typically used to prove
generalized versions of Gödel’s Second Theorem. His defense, in effect, is to say that these conditions are satisfied by any
representation of a usual definition of formal proof that preserves its (i.e. the definition’s) structure or form. He then goes on
to argue that preservation of this definitional form is a good thing, and that therefore Gödel’s Second Theorem is a stable
accompaniment of good representation of the basic metamathematical notions.

My paper considers a different kind of motive for violating the Derivability Conditions; namely, that which is promoted not
by modifications of what is to count as an adequate representation of a notion of formal proof, but rather by modifications of
the very concept of theory (and proof) itself. The particular study here is set in the context of a more general discussion of
Hilbert’s Program; specifically, one centered on the question of whether an argument against Hilbert’s Program might better
be based on Gödel’s first rather than his second theorem—an idea that has been suggested by several people writing on the
subject. The basis for this suggestion, at least in part, appears to be due to a difference in the stability of the two theorems
which may be described roughly as follows: Gödel’s Second Theorem is sensitive to the kind of modification alluded to two
sentences ago while Gödel’s First Theorem is not. Hence, the latter would appear to be the more stable of the two
phenomena, and thus the preferable basis for an argument against Hilbert’s Program.

In opposition to this, I argue that the conservation condition ruled out by the first theorem is an unreasonable constraint to place
on Hilbert’s systems of ideal mathematics. This, of course, leaves the second theorem to contend with and so, continuing a
line of argument initiated in my earlier book on the subject, I go on to indicate certain gaps in the alleged refutation of
Hilbert’s Program from the second theorem, in particular those resulting from failure adequately to take account of the
possibilities of merging Hilbert’s instrumentalistic conception of ideal proof with various nonmonotonic, “consistency-
minded” conceptions of proof.

Matters of a somewhat broader epistemological nature arise in the papers of Parsons and Tragesser. Parsons considers a
question taken up earlier by Poincaré. It concerns the character of impredicative reasoning and its overall place in the
production of justifi cation in mathematics. Of particular concern is whether impredicative reasoning is, by its very nature,
viciously circular, as Poincaré alleged. At first sight, one might take this to be a somewhat peripheral concern in the
philosophy of mathematics, but Parsons produces an argument with quite the contrary effect. On his view, impredicative
reasoning turns out to be surprisingly pervasive. Even the most basic arithmetical concept formation, he argues, is
impredicative in certain respects. And from this he draws the conclusion that unless we are prepared to adopt a very hard line
regarding the possibility of mathematical knowledge (in particular, one that would rule out much of elementary arithmetic), we
cannot accept Poincaré’s unfavorable view of the epistemological character of impredicative reasoning. Thus, on Parsons’
view, skepticism regarding impredicative reasoning brings with it a much more general skepticism concerning mathematical
knowledge.

Tragesser takes up the old question concerning the character of the warrant produced by mathematical proof. He argues
that (i) well-described possible proofs have the same epistemic force as actual proofs, and that (ii) this fact gives rise to a
fundamental distinction between empirical and mathematical warrant since, on his view, a well-described possible empirical
warrant does not have the same epistemic force as an actual empirical warrant. He then uses this argument to provide a basis
for asserting the necessity of mathematical theorems on the grounds that, if a well-described possible proof of p suffices for
its actual proof, then there can be no possible proof of the denial of a proven proposition p—a state of affairs from which he
believes the necessity of p follows.

With the exception of the papers by Parsons and myself, none of the essays appearing here has been published before, and
Parsons’ is a substantial revision of its forerunner. This represents a lot of hard work done specifically for this volume, and I
should like to express my sincerest thanks to the contributors for all their efforts. My thanks also to Michael Byron, who
corrected the proofs and compiled the index for this collection. They have made my job as editor both a pleasure and a
privilege, and I am grateful to them all.

Michael Detlefsen
Notre Dame, Indiana

December 1990 
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1
PROOFS ABOUT PROOFS A DEFENSE OF CLASSICAL LOGIC

Part I: the aims of classical logic

John P.Burgess

Let us remember that we are mathematicians…
Hilbert

SUMMARY

The aims and claims of classical logic are expounded, in preparation for its defense against the counterclaims of non-classical
logic.

INTRODUCTION

The question, “Which is the right logic?” invites the immediate counter-question, “Right for what?” Hence a defense of
classical logic must consist of two parts: (i) a preparatory exposition of the general aims of classical logic, and (ii) a defense
against specific counterclaims of nonclassical logics. The present paper contains the first part of such a defense, expounding
and defending a conception of the aims of classical logic.

According to this conception, the object and the method of investigation of classical logic are both mathematical proof.
Given its mathematical method, it must be descriptive rather than prescriptive, and its description must be idealized. The
appropriateness of its idealization is to be evaluated by the success of its application in the investigation of its object, the
scope and limits of mathematics.

The conception just indicated, and expounded below, will be defended as being both historically and scientifically
important: historically, because it approximates the conception of the founders of classical logic; scientifically, because it
attributes to classical logic an object of investigation of considerable importance, and because its method of investigation of
that object has had considerable success. Attacks on classical logic based on the attribution to it of some different aim are
misconceived, according to the line of defense to be erected in the present paper.

Detailed consideration of specific logics usually conceived of as alternatives to the classical, such as partial, many-valued,
relevance/relevant, intuitionistic, free, and quantum logics, will be deferred to a projected sequel.

I

Classical logic is to be conceived of as having mathematical proof as its object of investigation. Specifically, its object is
classical, as opposed to constructivist, mathematics; and deduction as distinguished from axiomatics, how proofs proceed as
distinguished from where proofs begin.

Traditional logic was a theory of deduction: in part, as in the Sophistic Refutations, deduction as practiced in philosophical
debate; and in part, as in the Prior Analytics, deduction as practiced in mathematical proof. Classical logic was developed by
Frege, Peano, Russell, Hilbert, Skolem, Gödel, Tarski, and other founders as an extension of traditional logic mainly, if not
solely, about proof procedures in mathematics. This point is so clear from the contents, and indeed the very titles, of their
major works that it perhaps need not be argued here.

Nor ought it to be needful to argue the scientific importance of deduction in classical mathematics as an object of
investigation. It ought not to be necessary to argue the importance of rigorous deduction in mathematics, or of rigorous
deductive mathematics in science. Yet in the present climate of opinion, what ought not to be necessary perhaps is. For much
of the recent philosophical literature on mathematics and science, by authors otherwise as diverse as Lakatos (1976), Kitcher
(1984), and Tymoczko (1987), has, to put it positively, emphasized factors other than rigorous deduction. As this trend in the
recent literature has been partly a reaction against and corrective to an overemphasis on rigorous deduction in earlier literature,
any defense of the continued scientific importance of the object of investigation of classical logic must begin by
acknowledging that other factors are also important in the investigation of mathematics and the role it plays in science. 



First, it must be acknowledged that the requirements of rigor pertain to the context of justification, publication for
collective evaluation by a community of colleagues, and not to the context of discovery, private mental processes of individual
researchers. No one discovers a theorem by first discovering the first step of the proof, second discovering the second step of
the proof, and so on. The role of inductive, analogical, heuristic, intuitive, and even unconscious, thought in the context of
discovery has been emphasized by all mathematicians discussing mathematics, and notably in the books of Hadamard (1954)
and Polya (1954). Much the same point is at issue in the dicta of Poincaré, “The sole function of logic is to sanction the
conquests of intuition,” and Weyl, “Logic is a hygiene we practice to keep our ideas healthy.” As regards the context of
discovery, the claim, much repeated in the recent literature, that thought processes in the mathematical sciences resemble
those in the empirical sciences, would be entirely acceptable, did it not tend to suggest, what has not been established, that the
thought processes of scientific discovery do not resemble those of artistic creation. For it seems, rather, that science is most
clearly distinguishable from art in the context of justification, or rather, in having a context of justification, and that there
rigorous proof is clearly distinguishable from systematic observation or controlled experiment.

Second and third, it must be acknowledged that as one moves from pure to more and more concretely applied mathematics,
and from present-day to more and more remotely past mathematics, one eventually reaches a point where rigorous proof is
less and less insistently demanded. The cases of applied and of past mathematics are related, inasmuch as past mathematics
tended to be closer to applications in science. As regards rigor in proofs, the standards of Euler were far lower than those of
Weierstrass. And it must be acknowledged that this is not because Euler was some mere obscurantist. Applications often
cannot wait for rigorous proof. Indeed, it is a commonplace that the calculus, essential to modern science, would never have
been developed if Newton and Leibniz had held themselves to a standard as high as that of Weierstrass.

What perhaps needs to be emphasized in the present climate of opinion is that, inversely, Weierstrass was not some mere
pedant, and that applications often must wait for rigorous proof—or rather, new applications often emerge from the attempt to
supply rigorous proof to the mathematics of old applications. Indeed, it is also a commonplace that the differential geometry
and functional analysis applied in relativistic and quantum physics would never have been developed if Reimann and Hilbert
had held themselves to a standard no higher than that of Euler. The period of about a century during which the standards of
present-day pure mathematics have been in force is a small fraction of the history of civilization, but it is a largish fraction of
the history of science. It is a period during which progress in mathematics has been cumulative, by addition of new theorems,
while that of empirical science has been often radically revisionary, by amendment of old theories. This is an important
difference, and one that will be overlooked by any approach that attends too exclusively to factors other than rigorous proof,
to the most concrete applications, or to the most remote past.

Fourth, however, it must be acknowledged that, even in the context of publication in present-day pure mathematics,
theorems and proofs are not everything. Principles resisting rigorous statement, conjectures resisting rigorous proof, with
inductive, analogical, or heuristic arguments for them, and increasingly often computer verifications, simulations, or
explorations, can also be found. In this regard the column of Wagon (1985) and its sequels must especially be cited. Enforcement
of a high standard of rigor consists less of excluding such material from the literature than of assigning it a subordinate place,
and especially of distinguishing it clearly from proofs of theorems. Wagon’s column holds far more human interest than the
typical theorem-proof-theorem-proof paper in a technical journal. So, too, do the studies, so common in the recent literature,
emphasizing discovery, or applications, or the past. But scientifically, investigation of such factors belongs inevitably within
the domain of the so-called human or soft studies, disciplines like psychology, sociology, history. To attend too exclusively to
factors other than rigorous proof is to overlook the one factor that is susceptible to being investigated mathematically.

II

Classical logic is to be conceived of as having mathematical proof as its method of investigation. Its founders were all by
education, and all but Russell by profession, mathematicians, and they never forgot it. This is so clear from their major works
that it perhaps need not be argued here. 

What do need clarification are the consequences of a conception of classical logic as a mathematical logic, a discipline
similar in method to mathematical physics or mathematical economics (differing from them only in that its object is the very
process of mathematical proof of which it and they are instances, giving it a self-referential character). One consequence is
that, like mathematical physics, it deals with an idealization of reality. Its artificial languages are conspicuously simpler in
grammar than natural languages, for example. No more than mathematical physics is mathematical logic to be condemned
just for being unrealistic or idealized. Rather, like mathematical physics, it is to be evaluated by the success of its
applications.

Another consequence is that, like mathematical economics, it provides descriptions rather than prescriptions, although,
again like mathematical economics, its results can serve as minor premises in arguments with prescriptive major premises
leading to prescriptive conclusions. Since the distinction between descriptive and prescriptive as applied to logic may be
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unfamiliar, and since the claim is often repeated in the recent literature that logic is a normative, not a factual, discipline, some
elaboration on this point is perhaps desirable.

Whenever a community has a practice, the project of developing a theory of it suggests itself. When the practice is one of
evaluation, a distinction must be made between descriptive and prescriptive theories thereof. The former aims to describe
explicitly what the community’s implicit standards have been: the theory is itself evaluated by how well it agrees with the
facts of the community’s practice. The latter presumes to prescribe what the community’s standards ought to be: the
community’s practice is evaluated by how well it agrees with the norms of the theory. Logic, according to almost any
conception, is a theory dealing with standards of evaluation of deduction, much as linguistics deals with standards of
evaluation of utterances. The distinction between descriptive and prescriptive is familiar in the case of linguistics: no one
could confuse Chomsky with Fowler. It is not less important in the case of logic.

The familiar case of linguistics can help clarify a point about intuition important for logic. The data for descriptive
theorizing consist of evaluations of members of the community whose evaluative practices are under investigation (e.g.
“That’s not good English”). These evaluations are of particular examples, not general rules. For even if it is supposed that
members of the community, in making their evaluations, are implicitly following rules (e.g. even if it is supposed that
grammatical rules are “psychologically real”), it cannot be supposed that they are capable of bringing these rules to explicit
consciousness (e.g. how many lay native speakers of English can correctly state the phonetic rules for forming plurals?).
Indeed, they are seldom acquainted with the technical jargon (e.g. “gerund”) in which such rules are stated. Moreover, even
the evaluations of particular examples are usually not stated in technical jargon: a negative evaluation will be primarily one of
overall infelicity (e.g. “That isn’t said”), and only secondarily if at all an indication of the dimension of infelicity involved
(e.g. “ungrammaticality” as understood by professional linguists, as distinguished from overcomplexity, too obvious untruth
or truth, etc.). While there is the least danger of bias when the data consist of spontaneous evaluations of spontaneous
examples, in order to gather enough data elicited evaluations of contrived examples must be used. Indeed, theorists who are
themselves members of the community (e.g. native English speakers investigating the grammar of English) often use their
own impressions of the felicity or infelicity of particular examples as their main source of data. Such impressions are intuitions
in an everyday sense, impressions of whose source and grounds one is unconscious. Intuitions in this sense are notably fallible
and corrigible, especially in the case of a theorist out to establish a pet theory. If they conflict with the intuitions of other
theorists, and especially if they conflict with the evaluations of unbiased lay members of the community, they must be
retracted or at least restricted (e.g. to a dialect, rather than the whole language). To insist on them even given conflicting data
(e.g. “People talk that way all the time, but it’s wrong”) would be to engage in prescriptive theorizing.

To apply this point to logic: descriptive logic is a branch of what has been called naturalized epistemology, epistemology so
conceived that the epistemologist becomes a citizen of the scientific community, appealing to the results of the (other)
sciences, and perhaps his or her own “intuitions” as a member of the community, in attempting to explain its practices from
within; prescriptive logic is a branch of what may be called alienated epistemology, epistemology so conceived that the
epistemologist remains a foreigner to the scientific community, evaluating its practices from without, attempting to provide a
foundation for them or a critique of them, appealing perhaps to “intuitions” conceived of as fundamental critical insights from
some extra-, supra-, or preter-scientific source of wisdom.

III

A conception of classical logic as a descriptive logic may be implicit in the conception of classical logic as a mathematical
logic, as a branch of mathematics and hence of science; but no clear, detailed, explicit account of the distinction between
descriptive and prescriptive logic, such as has just been attempted, is present in the major works of the founders. Nonetheless,
in defense of the historical importance of such a conception, it can be argued that the work of the earlier founders is at least
not explicitly prescriptive, and that that of the later founders is implicitly descriptive.

Such a claim may seem most doubtful in the case of Frege, whose work may seem so much a part of the process of
increasing the standards of rigor in mathematics from Eulerian to Weierstrassian levels that was under way in his day. Yet
even in his case half a dozen points can be cited in opposition to any interpretation according to which he was mainly
concerned to prescribe to mathematicians a new notion of what constitutes full rigor.

First, the process of increasing the standards of rigor was itself less a matter of a new notion of what constitutes full rigor
than of a new policy about how much rigor should be demanded. Mathematicians in Euler’s day were less unaware of the fact
that they were not demanding of themselves the highest standard of rigor, than unworried about it. Many quotations in the
pertinent chapters of the standard history by Kline (1972), such as the following from d’Alembert (p. 619), illustrate this
point: “More concern has been given to enlarging the building than to illuminating its entrance, to raising it higher than to
giving proper strength to the foundations.”
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Second, in the process of increasing the standards of rigor, logicians, few in number and marginal in status, had little
influence; and Frege seems to have been painfully aware of this fact. Hilbert is here the exception who proves the rule, since
his great influence derived entirely from his great eminence in branches of mathematics other than logic.

Third, Frege himself, in the opening sections of the Grundlagen (1953), cites increasing the standards of rigor not as
something that ought to be done but rather as something that is being done. He attempts to motivate his own project by
appealing to an already accepted adage to the effect that in mathematics nothing capable of proof should be accepted without
it.

Fourth, his own project was less concerned with securing the rigor of the steps that lead from one theorem to the next than
with pushing back the starting point for theorem proving. Work of Dedekind and others was already achieving a reduction of
the theory of real numbers to the theory of natural numbers, and an axiomatization of the latter theory; the work of Frege
would achieve a reduction of the theory of natural numbers to the theory of classes, and an axiomatization of the theory of
classes.

Fifth and sixth, he compares the relation of his ideography to natural language with the relation of an optical instrument to
the naked eye. With this simile he simultaneously acknowledges the appropriateness of natural language for most
mathematical work but insists on the importance of ideography for his own project. It is important there because, as the
example of Euclid shows, it is hardest to uphold rigor when dealing with the most elementary material. All this, and the
concluding sections of the Grundlagen, which advertise the Grundgesetze, suggest an interpretation of Frege’s conception of
classical logic less as a new standard of rigor than as a new instrument for checking that the old standard of rigor has really
been upheld in material where appearances are least to be trusted: what occurs in the Grundlagen is a proof; what occurs in
the Grundgesetze is a proof that it is a proof.

Russell can perhaps be interpreted in the same way, with the Principles standing to the Grundlagen as the Principia stands
to the Grundgesetze. Peano cannot be so interpreted. He advocated the actual use of his pasigraphy by the mathematical
community. But then he also advocated the use of his Latino (a rival of Esperanto) by the general public; so his attitude may
be considered eccentric. After the time of Brouwer and the founding of the first nonclassical logic, the distinction between
descriptive and prescriptive became clearer, especially in the work of the school of Hilbert.

Hilbert’s Program involved conceding to the constructivists that much of classical mathematics is meaningless, but
insisting that most of it is useful. To establish the latter point, it would be proved constructively that any statement that is
meaningful constructively and provable classically is also provable constructively. To accomplish this it would suffice to
prove constructively that no contradiction is provable classically. In accomplishing this, Russell’s work is accepted as
providing for classical mathematics (only) a “description of its methods—the good and the bad,” in the words of the opening
paragraph of a position paper by Hilbert’s spokesman von Neumann (1983). Thus classical logic is not endorsed
prescriptively as valid, but at most pragmatically as useful.

Hilbert’s conception has been severely criticized by Kreisel (1983) on several grounds. One is that, by requiring that proofs
about proofs, even about classical proofs, must be constructive proofs—a restriction perhaps appropriate for the one
application Hilbert envisioned, but not for others—he created an obstacle to other applications. Classical logic is to be
conceived of as useful for a variety of applications and not just a proof of noncontradiction, as with Hilbert, or a proof of
reducibility (of number theory to class theory), as with Frege. The restriction Hilbert imposed on proof theory was indeed
ignored in the development of model theory, in Skolem’s Transfer Theorem, Gödel’s Completeness Theorem, and Tarski’s
Compactness Theorem. It is perhaps only with Tarski (the present author’s academic great-grandfather) and his conception of
“the methodology of the deductive sciences” that one arrives at the conception of classical logic that has been expounded in
the present paper.

Setting aside the question of extrinsic or historical importance, the intrinsic or scientific importance of such a conception of
a “merely” descriptive logic might be questioned by prescriptive logicians. Though detailed consideration must be deferred, it
may be mentioned that the tale of Aladdin warns us that it is unwise to trade old lamps for new until the comparative powers
of the lamps have been thoroughly and exactly investigated. Thorough and exact investigation of the comparative powers of
classical and constructivist logic and mathematics, in the work of Kreisel, Kleene, Feferman, Troelstra, Friedman, Simpson,
and others, using classical logic as an idealized description of deductive practice in classical mathematics, has been and
remains a main area of application of mathematical logic to epistemology. 

IV

Russell’s discovery of paradoxes and Gödel’s discovery of incompleteness show that Frege’s project and Hilbert’s Program
fail if considered solely and strictly in terms of their original intentions—though to have inspired the work of Russell and of
Gödel is to have achieved more success than most intellectual enterprises can boast of. Hence classical logic must be
evaluated by the success of other applications than those envisioned and intended by its original founders. In this connection
it must be conceded that much of what is classified as mathematical logic today has no applications to epistemology. Some of
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it (e.g. complexity theory, a branch of recursion theory) is applied to technology; most of it (e.g. degree theory, the main trunk
of recursion theory) seems puristic. There remains the comparative investigation of the powers of the classical and the
constructivist approaches, alluded to above. But perhaps the applications of most immediate pertinence to the work of
mainstream mathematicians are those concerned with the scope and limits of classical or mainstream mathematics. The
theorem of Gödel and Cohen,

(*) There is no proof or disproof in the classical logicians’ sense, no formalized proof or disproof, of CH in ZFC.

or rather, the thesis inferred therefrom,

(#) There is no proof or disproof in the classical mathematicians’ sense, no unformalized proof or disproof, of the
continuum hypothesis in mainstream mathematics.

as well as similar work of Jensen, Solovay, and others, advises working mathematicians not to waste their time attempting to
settle questions that are undecidable. One of Kreisel’s complaints about Hilbert was that his “proof theory” could be more
accurately entitled “provability theory,” since it is mainly a theory about the existence, rather than other properties, of proofs.
Theorems like (*) form so large a part of mathematical logic today that “unprovability theory” might be an even more
accurate title.

Clearly the importance of such work in large part depends on the legitimacy of the inference to theses like (#). And this in
turn clearly in large part depends on the appropriateness or adequacy of formalized ZFC as an idealization of unformalized
Zermelo-Fraenkel set theory, and of the appropriateness or adequacy of Zermelo-Fraenkel set theory as an idealization of the
starting point for deductions in mainstream mathematics. The former point seems unproblematic, since Zermelo-Fraenkel set
theory is already semi-formal. The latter point may seem unproblematic, too, since Zermelo-Fraenkel set theory, or some
variant, has a semi-official status in mainstream mathematics, appearing in the first volume of the encyclopedia of Bourbaki,
and in popular textbooks like Halmos (1960).

Yet ever since the seminal paper of Benacerraf (1965), the philosophical literature has contained many expressions of
puzzlement and perplexity over the role of set theory in mathematics. As Benacerraf observes, though Frege’s reduction of
numbers to classes or sets failed, others, due to Zermelo, von Neumann, and others, have succeeded. It seems that none of the
various reductions of or surrogates for, say, the real numbers in set theory can be accepted as an account of what working
mainstream mathematicians “really mean” by real numbers. Indeed, Halmos himself, in presenting material on one approach
to reduction or system of surrogates, urges his readers to “learn it and forget it.” And it does seem that the majority among the
minority of working mainstream mathematicians who have learned it have forgotten it.

All this shows that a pure theory of sets like the Zermelo-Fraenkel theory is only an idealization of or approximation to
mainstream or classical mathematics. It does not follow that there is any need for puzzlement or perplexity over the legitimacy
of the inference from (*) to (#). On the contrary, what the reductions— whether Zermelo’s or von Neumann’s or another’s—
show is this: if one started not from the pure theory of sets but rather from a mixed theory of sets and real numbers, then in the
mixed theory one could prove that the system of real numbers is isomorphic to a system of set-theoretic surrogates. The two
systems share all properties that are preserved under isomorphism, and hence all properties of mathematical interest. Moreover,
the properties that the real numbers could be proved to possess in the mixed theory are the same as the properties the
surrogates could be proved to possess in the pure theory. Thus in investigations of what is provable or unprovable, the pure
theory can be considered instead of the mixed theory: it is an adequate and appropriate approximation or idealization for
purposes of “unprovability theory,” even though not an accurate account of what anyone “really means.”

Needless to say, the legitimacy of the inference from (*) to (#) also depends on the adequacy and appropriateness of
classical logic as an idealization of or approximation to the working mainstream mathematical community’s implicit
standards for evaluating deductions. More precisely, the inference may be problematic unless what is deducible from what in
the mathematicians’ intuitive sense coincides with what is deducible from what in the logicians’ technical sense. This thesis
about deducibility might be called “Hilbert’s Thesis.” It parallels “Church’s Thesis” about computability in the intuitive and
in the technical sense. In defending this thesis, it must be conceded, indeed emphasized, that it only asserts that from the
existence of a deduction or proof in the mathematicians’ sense the existence of a deduction or proof in the logicians’ sense
may legitimately be inferred (and conversely, though the converse is not required for the legitimacy of the inference from (*)
to (#)). As an account of other aspects or factors in the mathematicians’ sense of proof, the logicians’ sense of proof may be
quite inaccurate, inadequate, and inappropriate. To illustrate this point it may be desirable to revert briefly to the topic, alluded
to in an earlier section, of the influence of computers on mathematical practice. Indeed, it has often been suggested in the
recent literature that this influence may be changing the mathematicians’ sense of proof; and so it is perhaps necessary to
emphasize that the status of Hilbert’s Thesis is not being affected by any such changes as may be occurring.
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One development has been the advent of “computer-assisted proofs,” where calculations too long and complex for a human
mathematician are done by machine, and what is published is the program for the machine and a report of its output, but not
the whole output itself, which no human mathematician could check. While projects for having computers generate whole
proofs have enjoyed only limited success in specialized contexts, allowing computers to assist with parts of proofs consisting
of numerical or symbolic calculations has led to the announcement of solutions to some long-outstanding problems, notably
the Four Color Problem in topology (for which see Appel and Haken (1986)). Most working mainstream mathematicians seem
to accept that this problem has been solved, and speak of the “Four Color Theorem,” not the “Four Color Conjecture.” It can
be—and has been, by Tymoczko and others—argued that the acceptance of “computer-assisted proofs” constitutes a change
in the mathematicians’ sense of what it is to give a proof. Indeed, it could be argued that rejection of “computer-assisted
proofs” would also have constituted a change, since the mathematicians’ sense of proof was formed before the advent of
computers and before the question arose. What needs to be emphasized is that there has been no change affecting the status of
Hilbert’s Thesis. Indeed, the calculations left to the computer are much more like formalized proofs than are the conceptual
parts of the proof undertaken by the human mathematician. Since computers are more reliable in checking long calculations
than are human mathematicians in checking even short ones still done by hand, the quality of the evidence provided by the
publication in the mathematical literature of a “proof” for the existence of a “proof” in the logicians’ sense has not been
decreased by the acceptance of assistance from machines.

Another development has been the advent, perhaps more as a theoretical possibility than a practical actuality, of “zero-
knowledge proofs.” Such a “proof” is a performance that makes it almost certain that the performer possesses a proof that,
say, a certain natural number is composite rather than prime, but provides no information about such aspects of the proof as,
say, what the factors of the natural number in question are. Renaissance algebraists used to give performances making it
almost certain that they possessed algorithms for, say, solving quartic equations, without giving any information about most
aspects of the algorithm. (They simply announced the solutions to many quartic equations posed to them as problems.) Such
performances were not accepted as “giving an algorithm,” and it may be doubted whether, if giving “zero-knowledge proofs”
became common, it would be accepted as “giving a proof.” But even if it were, and the mathematicians’ sense of “proof were
thereby changed, since the proofs the possession of which are made almost certain by such performances are formal proofs, or
close to it, the status of Hilbert’s Thesis would not be affected.

Even the best discussion by a commentator on the relation between proofs in the mathematicians’ sense and proofs in the
logicians’ sense, such as that of Steiner (1975), will do less to convince a doubter of the truth of Hilbert’s Thesis than will
working through the formal proofs in Principia Mathematica, then the quasi-formal proofs (less and less formal in later and
later volumes) in Bourbaki, and then informal proofs in the technical journals. For those not prepared to undertake this effort,
the testimony of mathematicians who are not logicians, but who have examined the matter, may carry some weight.

Cohen was awarded the Fields Medal, the nearest equivalent to a Nobel Prize in mathematics, for his work; and surely not
just for the technical virtuosity of the proof of (*), but also for the historical importance of (#). Thus the committee awarding
this honor on behalf of the mathematical community, a committee composed entirely of nonlogicians, in a sense has evaluated
the inference from (*) to (#) as legitimate. For that matter, Cohen himself, before and after his award-winning work, was an
analyst rather than a logician, and presumably undertook to work on (*) because he was satisfied that from it (#) could
legitimately be inferred. It is true that a few fanatical antilogicians among the category theorists have been overheard (by the
present author among others) to say that the problem was not really solved until Cohen’s work had been redone by one of
them; but even this bizarre evaluation is an aspersion more on the proof of (*) than on the inference to (#). Most nonlogicians
who have undertaken the effort to examine the matter, such as the prominent algebraic geometer Manin (1977), have been
entirely positive in their evaluations.

The mathematical community as a whole has accepted the advice of the inference from (*) to (#) and abandoned any
attempts to solve by mainstream methods a question mathematical logicians have inferred to be undecidable. The work of the
few who are exceptions to this generalization bears all the signs of being the work of crackpots. Some mathematical logicians
have continued to work on the undecidable questions, but not in the sense of trying to settle them by mainstream methods.
Rather, their work is an exploration of proposed novel axioms. In this connection, the work of the self-styled “cabal” of
Kechris, Martin, Moschovakis, Steel, Woodin, and associates requires special mention. The response of most working
mathematicians to such work has in one way disappointed mathematical logicians. For the inference that a question is
undecidable without novel axioms has very often been followed, not by an increased interest on the part of nonlogicians in the
novel axioms, but rather by a decreased interest in the undecidable question, and even an evaluation of the whole branch of
mathematics in which it arises as peripheral. Perhaps no different response is to be anticipated unless and until what has been
done for the Continuum Hypothesis is done for something like the Reimann Conjecture. The disappointing current response,
however, involves no aspersion whatsoever on Hilbert’s Thesis. It is, if anything, an overenthusiastic acceptance of the advice
of mathematical logicians that one will be wasting one’s time if one attempts to solve certain questions. It is, if anything, a
backhanded testimony to the success of classical logic in the kind of applications at which it aims according to the conception
expounded in the present paper.
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CONCLUSION (OR TRANSITION TO THE PROJECTED PART II)

Most commentators on nonclassical logics, from Haack (1974) onwards, divide them into the extraclassical, “supplements” to
or “extensions” of classical logic, and the anticlassical, “rivals” or “alternatives” to classical logic. The latter classification,
however, needs to be subdivided.

On the one hand, there are prescriptive critiques of logical practice, mainly addressed not to the world’s dozens or scores of
logicians, but rather to its thousands and myriads of mathematicians and scientists, or even its millions and billions of laypeople.
On the other hand, there are descriptive critiques of logical theory. The traditional version of intuitionistic logic is an example
of the first kind. The original version of relevance/relevant logic seems an example of the second kind.

According to the conception expounded in the present paper, not only the logics usually classified as extensions, but also
those among the logics usually classified as alternatives that are of the first, prescriptive, practical kind, are directed toward
aims different from those of classical logic. Only the alternatives of the second, descriptive, theoretical kind question the
success of classical logic in achieving its aims as here conceived.

This is a distinction to which insufficient attention has perhaps been given in the literature. Detailed consideration of it in
connection with specific nonclassical logics must be deferred. But clearly the conception expounded in the present paper
leaves much room for nonclassical logics of the first kind, and little room for anticlassical logics of the second kind. When
this point is accepted, the defense of classical logic is half (but as yet only half) complete. 
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2
PROOFS AND EPISTEMIC STRUCTURE

Glen Helman

SUMMARY

The point of application of logic to epistemology is usually thought to lie in the concept of an argument. Here an attempt is
made to deepen the connection between the two fields by means of the concept of a proof. Specifically, the structure of proofs
is compared with the structure of the information employed in assessing the justification of belief.

Arguments serve epistemic assessment by presenting information about the believer’s reasoning, but the information
required for judging the belief cannot be exhausted by argument. The epistemic role of an argument should instead be
understood by analogy with pointing: an argument serves to indicate a justification for its conclusion. The importance of
information both about global features of the current body of belief and about the sources of the belief whose justification is
being assessed suggest that what an argument indicates is a fragment of an epistemic biography. The biographical fragments
associated with various contemporary beliefs are related, but these relations are neither genetic nor constitutive; in particular,
we should not suppose that some are constructed out of others.

Biographical fragments are objects associated with arguments on epistemic grounds. On the side of logic, a relation of
equivalence holding between proofs of the same conclusion by essentially the same means will induce equivalence classes which
may be thought of as abstract proofs. These abstract proofs form a domain structured by operations corresponding to rules of
proof. The structure of this domain may be interpreted in part by operations familiar from theories of constructions (pairing,
functional abstraction, etc.). But we can expect no constructive interpretation of the structure corresponding to a full system
of rules for classical logic, and we are left to look elsewhere for an account of the domain of abstract proofs.

So both epistemology and logic can profit from an identification of abstract proofs with the biographical fragments needed
for the assessment of belief. Epistemology gains a way of articulating (some of) the relations among these fragments while
logic gains an interpretation of the equivalence of proofs and rules of proof. But a variety of issues must be faced before the
identification can be secured. Few of these issues are settled here, but they are explored in a number of directions. One of
these concerns the epistemic role of the logical constants and the significance that may be given to the validity of arguments.

The application of logic to epistemology is usually understood to have its locus in the concept of an argument. Arguments
are used in the justification of belief and they are open to logical evaluation. The applicability of logic is secured if we have an
account of this evaluation which shows its importance for epistemic assessment. Semantic accounts of deductive validity do
just this, and the various approaches to inductive argumentation attempt something similar.

Still, we may hope for a deeper connection between the two fields. Each enriches and extends the concept of an argument
for its own purposes. The needs of epistemic assessment are not met by the simple citation of certain beliefs as premises. We
also need information about global features of the whole body of belief and about the specific way a belief comes to be held.
So, although an argument may be cited in justifying a belief, the justification cannot consist of the argument alone. For its
part, logic extends the concept of an argument to that of a proof. Proofs provide information about the ways that conclusions
are reached from premises that is unnecessary if our only interest is in the validity of arguments. However, the study of proof
has been fruitful enough to give its objects an independent standing, and it has led to suggestions for relations of reduction
and equivalence which structure the domain of proofs.

One way to deepen the connection between logic and epistemology is to compare the structure of proofs to the structure of
the information employed in assessing the justification of belief. In outline, such a comparison may proceed as follows. The
concepts of a simple argument and of a proof are each subsumed by the more general concept of a possibly compound
argument, an argument which may have the internal structure of a proof while containing nondeductive steps. The epistemic
role of such an argument may be understood by analogy with the use of descriptions in ostension: it helps to identify a
justification for its conclusion by reference to justifications of its ultimate premises. The possibility of such relative
identification implies that justification has a structure. It is this structure that we may compare with the algebraic structure
which is exhibited by a system of proofs modulo a relation of equivalence between proofs. If the structure of justification is



the same as that found in proofs, a description of justificatory structure can serve as an interpretation of rules of proof and of
the equivalence of proofs formed using these rules. It can thus provide an epistemic foundation for logic.

In attempting to fill out this sketch, we will consider first the epistemic function of argument and then the structure exposed
in proofs by a relation of proof equivalence. Finally, we will survey the issues that must be faced if we are to ascribe the
structure of proofs to features of epistemic justification and employ this structure in an interpretation of proofs.

I.
ARGUMENT AND THE JUSTIFICATION OF BELIEF

The function of arguments

When an argument is used to justify a belief, it serves to present information which is needed to assess the beliefs justification.
And it is to the nature of this information that we must look to find the epistemic function of arguments. In the discussion to
follow, we will presuppose a concept of justified belief as distinct from knowledge. No attempt need be made to settle the relation
between the two; we need only assume the difference between these concepts to lie in the range of information needed for
their application. A belief may be recognized as justified on the basis of a proper part of the information that would be needed
to recognize it as knowledge. The information needed is roughly that part of the information needed for the assessment of
knowledge for which our primary source is the believer’s testimony (though there is no need to assume that this testimony is
incorrigible or that it concerns internal states and processes). We will also assume that the partial information needed to assess
the justification of a belief determines what further information is relevant to assessing it as knowledge. This assumption will
enable us to focus on the structure of justification, with the expectation that this is mirrored by the structure of grounds of
knowledge.

The information needed to assess the justification of a belief includes both the evidence for the belief and the use of this
evidence in reasoning.1 In the absence of either sufficient evidence or effective use of this evidence, a belief may simply be a
guess. Accordingly, we may drop the distinction between evidence and its employment and speak simply of reasoning,
understanding this to include any starting point in evidence. It is information about reasoning (in this sense) that is the basis
for the assessment of justification and is the believer’s contribution to the assessment of knowledge.

Information about one’s reasoning is often presented in an argument. Of course, a single-step argument from one or more
premises may not suffice to make clear one’s reasoning for a belief. The obscurity that remains can lie in either the reasoning
for a premise or in the step from premises to conclusion. In both cases, the simple argument may be elaborated to a compound
argument either by presenting an argument for a premise of the original argument or by articulating the step from premises to
conclusion by inserting one or more intermediate conclusions. The full range of arguments (in the sense in which we will use
the term here) includes such compounds and also compounds which involve the use of hypothetical assumptions or
generalization on singular terms. As a result, proofs in a system of natural deduction will count as arguments formally
presented though, of course, arguments will not generally proceed according to formal rules and will usually contain steps
that are not deductive.

Now, how do arguments serve to inform others of one’s reasoning? The simplest account would be that one’s reasoning for
a given belief can be fully represented, in principle at least, by a certain completely elaborated argument. The same reasoning
could be explained in practice by one of the many less elaborate approximations to this ideal argument, and such explanations
could be understood simply as cases of ellipsis. However, this account of the function arguments entails a very strong sort of
epistemic atomism. If an argument is completely elaborated, its premises and individual steps must be elementary in the sense
that no further elaboration is ever needed. In order for every argument to have a complete elaboration, there must be a supply
of elementary premises and elementary steps of argument which suffice to represent in full the reasoning for any belief,
justified or not. There are familiar and serious difficulties with such a view. Some of these will be cited later, but we will
assume now that they are clear enough to render implausible any account of argument as an elliptical presentation of
reasoning.

Although we may not, even in theory, take reasoning to be completely represented by argument, we must still account for
the fact that one’s reasoning can be presented in practice by arguments of varying degrees of elaboration. There is an analogy
here with the use of descriptions in ostension. While it is generally impossible to replace a demonstrative uniformly by a
description with no demonstrative components, descriptions can play an important role in helping us indicate the object
referred to. Moreover, when a simple description fails, we are led to replace it by a more elaborate one, the simple “that book”
becoming, for example, “that red book on the far right of the top shelf.”

Let us follow this analogy and speak of an argument as serving to indicate reasoning. A simple argument indicates the
reasoning for its conclusion by reference to the reasoning for its premises. It can succeed in this only if the reasoning for its
premises is clear without aid of argument. What we have for each premise is only the analog of a pure demonstrative inflected
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by nothing but a statement of the premise. And the way that the reasoning for the conclusion is related to that for the premises
must also be clear. Obscurity of either sort may be attacked by elaborating the argument, thereby providing a more detailed
description of the reasoning. Demonstrative elements will remain in the premises and the individual steps of the argument;
but, once an argument is elaborated in such a way that the referents of all its demonstrative elements are clear, the reasoning
for its conclusion will have been identified.

Epistemic biography

But what is it that we are able to identify in this way? The most that can be said in general is that one’s reasoning is one’s
biography from an epistemic point of view. The need to cast our net this wide can be seen in three steps. First, we must grant
that, in assessing a beliefs justification, information about the other currently held beliefs is needed both to distinguish
between evidential and nonevidential beliefs and to assess the strength of nondeductive arguments. The next step to epistemic
biography is the observation that even the whole body of current belief cannot be assessed in isolation but must be judged
with respect to its past. The final step is to note that the information needed about past belief cannot be limited to the features
of one preceding body of belief; that is, even changes from one body to another can be assessed only in the light of beliefs at
other times. The first of these steps can be based on standard arguments for the contextual character of both the evidential
status of beliefs and the strength of nondeductive inference.2 The second and third steps are less securely part of common
philosophical wisdom and deserve further comment.

Both concern the need for information about the past. Without information about previous history, the only judgments we
can make about someone’s beliefs concern such features as consistency, simplicity, and the tightness of explanatory
connections. Let us group these features together under the label of “coherence.” Although it may be less generally granted, it
also seems true that one may not adopt just any coherent set of beliefs, even one that is maximally coherent. Coherence is a
much richer notion than consistency, but it still leaves much room for variety in belief. And it may not be reasonable for me to
now hold one quite coherent set of beliefs if I have just held another very different one. Of course, radical changes in belief
may be reasonable; but arbitrary changes are not, even when the resulting body of belief is entirely coherent. And, given this,
the assessment of my current beliefs depends in part on information about those in my past.

The final step to epistemic biography is the observation that this information about the past cannot be limited to information
about a single preceding set of beliefs. Such information would be sufficient to specify fully a change in belief, but even a
change cannot be assessed on internal grounds alone. We need information about both preceding and intervening stages,
about both the historical background for the change and about its course. Different changes will be justified depending on
whether a given body of belief is or is not justified with respect to its past. A goal of conservation that we may wish to govern
any change from a justified set of beliefs may not be appropriate when the initial beliefs are unjustified; stubbornness in error
does not have the value of resoluteness in justice. But we can assess the justification of the body of belief preceding the change
only if we have information about its history. Information about the course of a change is also important. A change that seems
reasonable when assessed only in terms of its beginning and end will look very different if closer inspection shows it to be the
net result of a number of entirely arbitrary steps.

Now, the biographical information needed to assess belief is not only extensive in the ways just surveyed; it is also rich. A
mere chronology of beliefs held, however complete it is, will not be enough. We need to have an account not only of which
changes have occurred but also of why they have occurred. In assessing a change, we cannot confine ourselves to comparing
the contents of the resulting body of belief with those in the past. We must go on to ask, for example, whether a new belief is
added as a perceptual judgment, an inference, or a guess. And there is no reason to think that information about which beliefs
are held before and after the change will settle these questions. Since people have beliefs about their reasoning, some of the
beliefs produced by the change may concern the reasons for its occurrence. It is also true that the believer’s testimony will
always be our primary source of information. But, in the end, it is what the reason for the change is, not what it is believed to
be, that is crucial for epistemic assessment.

While the assessment of an individual belief requires, in principle, information about the whole of the believer’s epistemic
biography, this information need not be exhaustive. When we consider the contemporary context of a belief, our questions
concern only the truth of certain generalizations about this context; we may need to know, for example, that there is no belief
that defeats a certain presumption. Such information need not include full details about which beliefs are held. The same will
be true of information needed about past beliefs and about the processes and procedures by which the beliefs have developed.
A figure may help here. To assess a belief, we must understand its place in the wider society of belief, and for this it is not
enough to know a family tree of premises on which it is based. We need information about the whole body of belief and its
history, but we do not need to know these things in full detail.

An argument, then, serves to indicate certain biographical information concerning the belief that is its conclusion, and it
does so by reference to similar information concerning its premises. Such relative identification presupposes relations among
these collections of information. That there should be such relations is not surprising since the information relevant to the

10 PROOFS AND EPISTEMIC STRUCTURE



premises and the conclusion is all drawn from the same biography and, moreover, from a biography that is structured by an
account of the development of belief. As an example of the sort of relation of collections of information we can expect to
find, consider a prediction of a future event which arises by generalization on past experience. An account of the prediction’s
origin will be part of the believer’s overall epistemic biography and will serve to tie the biographical information relevant to
the prediction to the information relevant to beliefs about the past. Furthermore, this kind of inductive connection is
sufficiently common for the believer to hope to indicate it simply by offering an argument for the belief about the future with
particular beliefs about the past as its premises.

In addition to connections among fragments of biographical information which reflect the genesis of various beliefs, there
are connections which derive from the fact that epistemic biography, like any biography, is a theoretical construction. Some
features of the structure of epistemic biography will be artifacts of general constraints on theories of this sort. For example, if
we ascribe to someone a belief in a conjunction, we will generally also ascribe beliefs in the conjuncts; and the portions of the
constructed biography relevant to each of the three beliefs will stand in a particular relation as a result. We need not suppose
that constitutive connections of this sort are sharply distinguished from the genetic connections already noted, and the details
of the interrelation of these two sorts of connection can be left unsettled here. The point is simply that we can expect
epistemic biography to be subject to the general principle that both the properties of the subject matter and the exigencies of
theoretical construction affect the structure of theoretical understanding and the structure of the knowledge it produces.

A final caveat is in order. While genetic and constitutive factors may lie behind the relations among partial biographies,
these relations should not themselves be thought of as either genetic or constitutive. In the first place, beliefs in the premises
and conclusion of a given argument are contemporary and are each assessed with respect to the same body of belief in light of
the same history. So the bodies of information relevant to the assessment of the individual beliefs are not ordered temporally
although they may stand in atemporal relations which reflect the genetic information they contain. Second, while we ascribe
some beliefs because we ascribe others and thus constitute epistemic biography in part by stipulation, we do not thereby
construct some partial biographies out of others. All partial biographies stand on the same level of abstraction as aspects of
the full epistemic biography seen from different perspectives. These aspects may be related in ways which reflect the
constitution of the biography as a whole, but such relations are themselves no more constitutive than are the relations among
different views of a physical structure.

There are a number of further issues regarding the structure of epistemic biography that are relevant to the function of
argument and the application of logic, but these will become apparent only when we have considered the structure of proofs.
So let us recall that the sort of argument we have been considering can be presented formally as a proof in a natural deduction
system, possibly with nondeductive steps, and go on for now to look at proofs from a formal point of view.

II.
THE STRUCTURE OF PROOFS

Although there seems to be an intuitive concept of equivalence applying to proofs—one which is employed, for example, in
judging the originality of mathematical work—most technical developments of the idea have been by-products of other
concerns. The two principal sources are the theory of normalization for natural deduction proofs and various attempts to find
in proofs yet another instance of the general constructions of category theory.3 Our purposes here will be served by
considering only a few general features of proof equivalence, which may be motivated directly without developing either a
theory of normalization or the relevant ideas of category theory. The substance of the discussion will not be new, and it will
stop far short of a full development of the concept of proof equivalence.4 We will sketch the abstract structure of proofs only
in the detail needed to permit comparison with the structure of epistemic biography.

We will assume that the proofs take the form of derivations in a system of natural deduction with the usual introduction and
elimination rules for logical constants, but with one stipulation about the form of these derivations which will be a help in
describing their structure: a proof may contain distinct undischarged assumptions of a given formula, and such assumptions
can be reidentified in different proofs. This assumption has the consequence that two proofs may differ solely in the way their
undischarged assumptions match those of some third proof. In particular, for each formula A, there may be many (and we will
assume that there are infinitely many) degenerate proofs each of which consists solely of an undischarged assumption of A.
And these proofs will be spoken of as the assumptions of A. Any undischarged assumption of A in a more complex proof will
be matched with one of these and regarded as an occurrence of it as a subproof. Discharged assumptions in different proofs
will not be identified, so distinctions among proofs may disappear with the discharge of assumptions.5 Under these
conventions, undischarged assumptions are entirely analogous to free variables; and discharged assumptions have a status
analogous to that of bound variables when we do not distinguish formulas which differ only in their choice of bound variables.
In the following, “D” (perhaps with a subscript or primes) will serve as a variable ranging over proofs, with
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(and, in linear form, “D:A”) used to indicate the conclusion. Variables for assumptions will take the form “[A]”, with the
primes orsubscripts added to the brackets when we wish to consider distinctassumptions of the same formula.

Abstract proofs

We may assume that proof equivalence is restricted to proofs of the same conclusion. Given this restriction, each equivalence
class of proofs modulo proof equivalence will have a definite conclusion. Since proofs may contain undischarged assumptions
(which may be thought of as placeholders for accepted premises or nonlogical axioms), there will be proofs (indeed, infinitely
many) for each formula. Our notation for the relation of proof equivalence will be “~,” and both “D/~” and boldface “D” will
be used for the equivalence class of D (so that , or D=E, if and only if ). An equivalence class of proofs with conclusion A can
be thought of as an abstract proof of A, a way of proving A which has been abstracted from its various syntactic
presentations.

Proofs can be combined by using a proof D1 of a formula A to support an assumption of A in another proof D2. In doing
this, we elaborate an argument by offering an argument for one of its premises. This operation can be thought of syntactically
as the substitution of a proof for an assumption of another proof; in the following,

(linearly, “D2(D1/[A])”) will serve as notation for D2 with D1:A substituted for [A]. Let us assume that substitution preserves
equivalence both of proofs which are substituted and of proofs in which substitution occurs. That is, we will adopt the
following principles.

1 Functionality: If D1~D2, then D(D1/[A])~D(D2/[A]), i.e.

2 Generality: If D1~D2, then D1(D/[A])~D2(D/[A]), i.e.

The first tells us that if we substitute each of two equivalent proofs of a formula A for an assumption of A in some proof, then
the results are equivalent. According to the second, if we substitute a proof of a formula A for an assumption of A in each of
two equivalent proofs, then the results are equivalent. The two together enable us to define an operation

of substitution for abstract proofs. To apply this function we choose concrete representatives D and Dω of the abstract proofs D
and Dω, carry out ordinary concrete substitution and then abstract again by ~.

The consequences of these assumptions for the abstract structure of proofs are best seen in a somewhat different form. A
concrete context D(−/[A]) in which substitution can take place determines a function which maps each proof Dω:A to the result
D(Dω/[A]) of substituting it in this context. It also determines an abstract context D(−/[A]) and a corresponding function
defined on abstract proofs of A. Indeed, the assumptions above are equivalent to the claim that, for any abstract proof D and
assumption [A], there is a function h([A], D) on abstract proofs of A such that

The function h([A], D) can be seen as representing the way that the substituted abstract proof is used in the abstract context D
(−/[A]).

The operation of substitution and the principles of functionality and generality can be extended to the case of several
assumptions, justifying the definition of many-place functions h([A1]1,…, [An]n, D). The upshot is that for each argument
with premises A1,…, An and conclusion B, there is a collection of n-place functions each of which applies to any sequence of
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abstract proofs of A1,…, An to yield an abstract proof of B. Each such function represents, in abstraction, the effect of a proof
when it is combined with proofs of certain of its assumptions. We will refer to these functions also as abstract proofs and
distinguish abstract proofs for arguments from abstract proofs of sentences by referring to the two sorts as hypothetical and
categorical abstract proofs, respectively.

This gives us the basic framework of the abstract structure of proofs, a family of domains together with a family of function
spaces defined over them. Each of the domains contains the categorical abstract proofs of a given formula, and each of the
function spaces contains the hypothetical abstract proofs for a given argument. Additional structure will reflect the various
ways proofs are compounded out of subproofs.

Rules of proof

Let us first see how rules appear in the abstract structure of proofs. The key assumption here is that a rule preserves
equivalence for proofs to which it is applied. This assumption has the consequence that an operation on abstract proofs is
associated with each rule; however, the form that this operation takes will depend on whether or not the rule discharges
assumptions. A rule which does not discharge assumptions (e.g. the introduction rule for conjunction) is a scheme which draws
a conclusion from premises of a certain related form. We can find an associated operation on abstract proofs for a particular
choice of premises and conclusion by considering a proof in which the rule is applied directly to assumptions. For example,
given proofs D1:A and D2:B, let &I(D1, D2) be the proof of A&B by &-introduction on the conclusions of D1 and D2. Any
proof &I(D1, D2) can be thought of as the result of substituting D1:A and D2:B in a proof &I([A], [B]) that consists of an
application of &I to assumptions of A and B. 

The principle of functionality thus enables us to define an operation &I on equivalence classes by

This operation will apply to any pair of categorical abstract proofs, and its restriction to proofs of particular formulas A and B
will be a hypothetical abstract proof for the argument from A and B to A&B.

A rule which discharges assumptions in proofs of one or more of its premises also has an associated operation. However, this
operation does not apply to categorical abstract proofs of the premises in question but instead to hypothetical abstract proofs
which represent the ways in which the discharged assumptions are used in proofs of the premises. For example, an instance of
the introduction rule for the conditional applies to a proof D:B, discharging an assumption [A] to yield a proof ω I([A], D) of
Aω B. The associated operation applies to an abstract hypothetical proof for the argument from A to B to yield an abstract
categorical proof of Aω B. In the case of rules which do not discharge assumptions, the existence of corresponding operations
was a consequence of the principle of functionality; but, for the case of rules which do discharge assumptions, we must make
specific assumptions about the conditions under which the proofs that result from their application are equivalent.

In the case of ω I, it is natural to assume that ω I([A]1, D1) and ω I([A]2, D2) are equivalent if D1 and D2 use the
assumptions [A]1 and [A]2, respectively, in equivalent ways. That amounts to the assumption that ω I([A]1, D1) and ω I([A]2,
D2) are equivalent if h([A]1, D1)=h([A]2, D2). Given the principle of generality, we can get the same effect by the following
principle of proof equivalence.6

An operation ω I on hypothetical abstract proofs may then be defined by7

Operations on abstract proofs can be associated with other assumption-discharging rules in a similar way. 
The rules for quantifiers which generalize on proofs, like and ω E introduce a still different sort of structure. For these we

need to consider entities that might be called general abstract proofs, both categorical and hypothetical. In the simplest case,
an abstract proof of A general with respect to a variable x assigns to each term t an abstract proof of A (t/x), the result of
substituting t for x in A. This sort of abstract proof can be thought of as representing a way that a proof employs the denotation
of a term, and a rule (like or ω E which enables us to generalize on parametric terms will be associated with an operation that
applies to general abstract proofs. Since this enrichment of the structure contributes nothing especially significant for our
purposes here, we can continue to focus solely on the case of prepositional logic.

The principles we have considered so far concern only connections between the equivalence of component proofs and the
equivalence of proofs as a whole. They do not imply any categorical claims about the conditions under which proofs are
equivalent; indeed, they hold for the relation of syntactic identity in addition to many broader relations. More substantial
principles are clearly of interest for a full account of the equivalence of proofs, but their interest for the project at hand lies
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primarily in the form we can expect them to take; and this can be seen in a few simple examples. One natural equivalence
concerning the rules for conjunction is the following: &Ei(&I(D1, D2))~Di for i=1, 2, i.e.

(where &Ei is the case of &-elimination that derives Ai from A1&A2). That is, if we derive a conjunction A&B from proofs of
A and B individually by the introduction rule and then go on to conclude one of the two by the elimination rule, the result is
equivalent to our original proof of the individual conjunct. The elimination rule undoes the effect of the introduction rule up to
proof equivalence. Read right to left, this is what Prawitz (1971) calls a reduction law for conjunction in his account of
normalization for natural deduction proofs. Another natural principle tells us that introduction undoes the effect of
elimination: &I(&E1 (D), &E2(D))~D (where D:A&B for some A and B), i.e. 

Read right to left, this is what Prawitz calls a law of expansion. It tells us that any proof of a conjunction is equivalent to a
proof by &I (where &I is applied to the results of applying the two forms of &E to the original proof).

When we abstract, these and similar principles become equations between abstract proofs which state algebraic laws for the
operations corresponding to rules of proof. To see the form these laws take in the case of conjunction, let us define a function
&E from abstract proofs of conjunctions to pairs of abstract proofs by

In the example above, the first principle enables us to recover (up to equivalence) the proofs to which &I has been applied by
applying &E1 and &E2. It follows that &I is a one-to-one function on pairs of abstract proofs and, moreover, that the
operation &E is a left inverse for &I (i.e. we have &E(&I(D1, D2))=(D1, D2)). The second principle can be read to say that
the operation &I is a function onto the abstract proofs whose conclusions are conjunctions (since every such abstract proof
contains a concrete representative proof by &I) and, indeed, that &E is a right inverse for &I. The two principles together
then tell us that the operations corresponding to conjunction rules are mutual inverses and provide a one-to-one
correspondence between pairs of abstract proofs and abstract proofs of conjunctions. Abstract proofs of conjunctions can thus
be thought of as coding pairs of proofs in the way numbers can code pairs of numbers.

Something similar happens with ω . We have assumed that � I is an operation that carries hypothetical abstract proofs to
abstract proofs of conditionals. Natural principles of proof equivalence can be stated which will characterize it as 1–1 and
onto. Abstract proofs of conditionals can then be understood to code hypothetical abstract proofs, a proof of Aω B coding a
function from proofs of A to proofs of B. Although natural, these principles can be a matter of controversy, as can those for
the &-rules. And the situation is even less settled in the case of other logical constants.8 But the key point for our purposes is
that the principles which might be accepted for specific rules of proof can be given the form of algebraic laws for the
corresponding operations.

Let us pause again now to collect what has been said about the structure of abstract proofs. It can be thought of as a many-
sorted algebra with a domain assigned to each formula and each argument and with various operations, each defined for
certain domains. The laws which give the specific character of the structure are of three sorts. First, there are principles which
tell us that the domains associated with arguments consist of functions. That is, among the operations of the structure are
application operations (with varying numbers of places) which apply the hypothetical abstract proofs associated with
arguments to abstract proofs of the premises of these arguments. Along with these operations come principles of identity for
hypothetical abstract proofs. These are consequences of an extensional criterion of identity which states that two proofs for an
argument are identical if they yield the same proof of its conclusion no matter what proofs of its premises they are applied to.

A second sort of law for the structure implies the existence of certain hypothetical abstract proofs. For example, abstract
proofs for arguments from A to B and from B to C may be composed as an abstract proof for the argument from A to C. These
laws follow from the fact that there is a hypothetical abstract proof h( [A1]1, …, [An]n, D) associated with each concrete proof
D and list of assumptions [A1]1,…, [An]n. Although these laws can be given an algebraic form, they can be stated most simply
as asserting closure of the structure under a form of definition for which concrete natural deduction proofs provide the
notation.
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Finally, as a third group of laws, we have the algebraic principles which state relations among the distinguished operations
corresponding to rules of proof (such as the fact that &I and &E are mutual inverses). These provide filling for the framework
outlined in laws of the first two sorts and reflect the specific features of a given system of proof.

It is important to remember that we may take hypothetical abstract proofs to be functions individuated extensionally only if
we are granted certain assumptions about the existence of categorical abstract proofs. In particular, a substantial supply of
such proofs is needed, and this supply must include proofs that will count as nondeductive. This can be seen most easily with
regard to negation. A natural choice of principles of equivalence for negation rules yields a one-to-one correspondence on the
abstract level between the proofs of negations ¬A and the proofs of arguments from A to a contradictory conclusion ω , the
reductions of A to absurdity. Given this correspondence, there can be distinct abstract proofs of a given negation ¬A only if
we have a variety of abstract proofs for reductions of A to absurdity, and we can have this variety only if we admit a number of
abstract proofs of the logical falsehood ω . This requirement is satisfied by the structure of abstract proofs as it has been
described here because among the proofs from which we abstract are those containing undischarged assumptions, giving us an
abstract proof corresponding to each assumption [ω ] of absurdity.9

The abstract proofs that do count as deductive will include at least one categorical proof for each logical truth and at least
one hypothetical proof for each valid argument, but not all abstract proofs for logical truths and valid arguments will count as
deductive. The purely deductive abstract proofs are the categorical abstract proofs corresponding to concrete proofs all of
whose assumptions are discharged and any hypothetical abstract proof h([A1]1, …, [An]n, D) corresponding to a concrete
proof D whose undischarged assumptions are among the assumptions [A1]1, …, [An]n. Each of these abstract proofs can be
identified uniquely by reference to the basic operations of the structure which correspond to rules of proof, and therefore each
has a distinguished status comparable with the status of the basic operations. On the other hand, the various assumptions of a
given sentence are not distinguished by the structure; a mapping can preserve the structure while carrying one assumption into
another.10

Interpreting the abstract structure

Once we have such an algebraic description of the structure of proofs under proof equivalence, we can cut its tie to a specific
realization by abstract proofs. It is then possible to work in the other direction, interpreting rules of proof by the operations of
the structure and attempting to assign each proof an object in the structure as its denotation. It will be possible to produce this
assignment if we have stated enough closure conditions on the structure. And, if we have stated a large enough body of
algebraic laws, any two equivalent proofs will receive the same denotation for any assignment to their undischarged
assumptions. Further, since proofs under the relation of proof equivalence provide one instance of the structure abstracted
from them, any proofs that always receive the same denotation must be equivalent. So, if we have described the algebraic
structure we find in abstract proofs in sufficient detail, this structure, once it is abstracted, can be used to characterize the
relation of proof equivalence.

Of course, for such an account of proof equivalence to be enlightening, we need not only an independent description of the
abstract structure but also an independent understanding of its significance. In the case of intuitionistic logic, this can be
provided by a theory of constructions. Many such theories have been proposed in the last fifty years, but all derive from
Brouwer’s idea that mathematical language is an instrument for communicating mathematical constructions. In Heyting’s
formulation of this, a mathematical assertion reports either the completion of a mathematical construction or the possession of
a general method for such construction. The construction or method itself is the proof of the assertion in an abstract sense; a
verbal proof provides a description of it. These ideas can be developed as an account of the significance of logical connectives
by associating with each connective a particular relation holding between the constructions for compound sentences formed
using the connective and the constructions for the components of these sentences. According to one common way of doing
this (which is close to Heyting’s informal accounts of the connectives) the construction associated with a conjunction is an
ordered pair of constructions and the construction associated with a conditional is a function from constructions to
constructions.11

So understood, constructions are mathematical objects which comprise a structure of the general sort needed to interpret
proof equivalence in the way outlined above. However, this way of understanding the abstract structure of proofs is not open
for classical logic. The extra content of the notion of a construction over that of an abstract proof is to be found in a close tie
between the constructions associated with sentences and those associated with terms. Together they form a single system of
mathematical objects. But when the structure of proofs contains an operation corresponding to classical indirect proof, this tie
is loosened. An indirect proof is indefinite but not because it specifies a ground for its conclusion in an indefinite way, for
there need not exist any alternative definite construction of this conclusion. The indefiniteness lies rather in the ground itself,
which is without definite ties to the constructions which may be given for terms. And any concept of “construction”
sufficiently liberal to encompass such indefinite grounds will be empty of the special content suggested by Brouwer’s ideas.
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A second problem with the interpretation of abstract proofs as constructions is that it arranges the domains of proofs for
various formulas in a hierarchy of increasing abstraction—as spaces of pairs, function spaces, and so on—according to the
logical forms of their conclusions. This makes it difficult to generalize the structure of proofs from the case of mathematical proof
to a wider range of grounds for belief. A consideration of the full range of sources of knowledge will show that the most
obvious divisions among grounds for beliefs do not parallel the logical structure of these beliefs. So if the structure of abstract
proofs were to be interpreted as a hierarchical structure of grounds for belief, we would have to suppose that there was a
canonical source for any belief which depended only on its logical structure, a source which was often obscured by an
apparent source (in testimony, for example, or in a sort of reasoning which was not the characteristic one for beliefs with that
logical structure). Something like this idea of canonical grounds for beliefs has been advanced by Dummett on the basis of
general considerations regarding the nature of meaning which, for him, tell against a holistic epistemology of the sort which
was assumed in the first section of this paper.12 We will not pursue the matter in any depth here. Suffice it to say that
Dummett’s arguments support the ascription of a hierarchical structure to abstract proof only at the cost of holding that the
range of beliefs relevant to the justification of a given belief is bounded relative to the logical complexity of the belief being
justified (though it must be added that this is something he would count not as a cost but as a benefit).

The two problems with the concept of a construction meet in the interpretation of rules of inference. The operations
corresponding to rules of intuitionistic logic (apart from the doubtful case of ex falso quodlibet) are just the operations which
define the hierarchy of constructions (pairing and projection operations for the &-rules, and so on). Accordingly, these rules
may be held to reflect the intrinsic nature of the constructions which form their input and output. However, specifically
classical rules like indirect proof cannot be understood in this way. To give a uniform interpretation of all the rules of
classical logic, it seems best to regard the operations corresponding to these rules as applying to domains which are all on the
same level of abstraction. Such operations may be deemed pairing and projection operations, for example, in virtue of their
algebraic properties; but, if so, they should be compared with coding and decoding operations rather than with operations
which construct and dismantle mathematical objects.

If we hope to use proofs to model features of classical reasoning about empirical matters, we must look to something other
than mathematical constructions as an interpretation of the abstract structure of proofs. So let us turn again to the structure
which we found to lie behind the use of argument in the justification of ordinary empirical belief.

III.
THE STRUCTURE OF EPISTEMIC BIOGRAPHY

The upshot of the first section was that the function of argument is to aid in the relative identification of those collections of
biographical information by which beliefs are assessed. This presupposes that the relevant fragments of epistemic biography
exhibit a structure which is sufficiently rich to make the relative identification possible. But the structural features this implies
are still a far cry from the domains of objects and functions exhibited by categorical and hypothetical abstract proofs, to say
nothing of the operations corresponding to rules of proof. This gap will be closed only by a more detailed theory of epistemic
structure. In this final section, we will consider the commitments involved in the acceptance of a theory which interprets
abstract proofs by a structure claimed to be implicit in the nature of epistemic justification.

A theory of this sort may be sketched in outline as follows. We begin by positing certain epistemic objects, the reasons for
beliefs. These are the collections of partial biographical information with respect to which beliefs are assessed. The relative
identification of a reason for an argument’s conclusion with respect to reasons for its premises is embodied in a function from
reasons to reasons which we will call an inference. The structure which supports the use of argument in the justification of
belief consists of domains of reasons for various sentences and inferences for various arguments together with the operation
of applying an inference to reasons for its premises. When we identify reasoning as deductive, we distinguish further structure,
picking out certain reasons and inferences and also further operations on reasons and inferences. It is these distinguished elements
of deductive structure that serve to interpret rules of proof, and their algebraic properties are expressed in the relation of proof
equivalence. Proofs are equivalent on this theory when they denote the same reason for their common conclusion and do so
always—that is, for any association of reasons with their undischarged assumptions and in any structured biography.

Both the kind of information constituting epistemic biography and the structure of this information are determined by the
norms which govern the assessment of belief. Let us assume that these norms take the form of general epistemic principles
without attempting either to state such principles or to offer any account of their source or ground. As norms, these epistemic
principles are external to the actual workings of belief formation and change but not without connection to them. For, as they
concern human belief, they must reflect the character of human cognition. And since they provide maxims for our judgment,
they will be reflected in the development of our beliefs to the extent that this process is consciously reasoned. Still, it is
important to remember that, as norms, they are to a degree independent of human reasoning generally and, especially, of the
reasoning of any one individual. So a structured biography ascribed in accordance with these principles is not simply a
description of one life of reason. It is this in part, but the form of the description reflects comparison with other biographies
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and subsumption under general principles. These external constraints on the character of epistemic biography not only render
its structure accessible to abstract description but also determine certain features of this structure.

Reasons and inferences

Now let us see what we are committed to if we ascribe to epistemic biography a structure comparable with that of abstract
proofs. We will first consider issues concerning the framework of reasons and inferences, turning later to those concerning the
deductive operations defined on this framework.

The most fundamental commitment is to the articulation of epistemic biography into individual reasons. One basis we can find
for this articulation is the sufficiency of partial information about a biography when an individual belief is being assessed: we
need only know the aspect of the biography seen from a certain perspective. This is a consequence of the generality of epistemic
principles. An assessment of a belief holds no matter how we vary the biographical details which are not relevant to this
assessment, and the information which is relevant can be located in the context of different epistemic biographies.
Furthermore, a single biography can comprise bodies of information which are independent in their relevance to the
assessment of a given belief in the sense that each can maintain its identity in the absence of the others. In general, it is the
possibility of the re-identification of bodies of information in different biographical contexts which supports the individuation
of reasons. While reasons need not take the form of paradigmatic biographical fragments from which all biographies are built,
we can expect information to be articulated in a way that facilitates comparison of biographies. Thus we speak of richer
reasoning in terms of “more reasons” rather than “a more extensive reason” because the various individual reasons may each
be independently comparable with collections of information in other biographies. A belief may be assessed with respect to
any one of a number of reasons for it which are found in the believer’s biography (though, to assess the believer fairly, we must
look at all the reasons for which the belief is held and somehow weigh the good against the bad).

The comparison of biographies implicit in epistemic principles does more than support the identification of individual
reasons within biographies. It fills out biographies with what we may call virtual reasons. These are reasons that are in some
way available although not embraced. When someone—Holmes, say—does and someone else, Watson, does not base a
conclusion A on evidence that both share, a virtual reason corresponding to Holmes’s reasoning stands as a supplement to
Watson’s real biography. And this is so whether or not Watson holds the belief A for other reasons. To extend an earlier
figure, reasons are like social roles and virtual reasons are like roles that go unfilled.

The status of virtual reasons (like that of unfilled roles) is an embarrassment to the theorist. They arise from comparison of
biographies but are of course not part of an actual biography. Neither should they be considered part of a
counterfactual biography since the changes necessary to accommodate them as real reasons could alter the character of the
reasons they are to stand alongside. Virtual reasons are best thought of as the various ways that beliefs, whether held or not,
can be related to the actual biography. As such, they are subject to biographical constraints, and a reason in one biography
may not be matched by even a virtual reason in another. My real reasons for beliefs about the events of my parents’ childhood
will not be supplemented by virtual reasons corresponding to direct perceptual evidence. Nevertheless, the range of virtual
reasons is wide and their presence is crucial to any uniformity in the structure of epistemic biographies.

The reasons, real and virtual, found in a biography stand in a system of relations. Most important here are the relations that
enable us to explain reasons by arguments, relations that support the relative identification of reasons. We assume that such
relations take the form of what we are calling inferences, i.e. total functions from reasons for the premises of an argument to
reasons for its conclusion. There are two parts to this assumption—that the relations are partial functions and that they are
indeed total.

In assuming that the relations supporting relative identification are partial functions, we assume that when we grasp the step
from premises to conclusion in an argument we grasp a general way of specifying a reason for the conclusion relative to
reasons for the premises. This reflects what was said in the first section about the role of arguments. An argument serves to
indicate a reason for its conclusion, and this reason is determined by the reasons for the premises together with the step from
premises to conclusion. And it is only when the step from premises to conclusion has some degree of generality that we can
speak of two components combining to determine a reason for the conclusion. The nearest alternative to the use of partial
functions would be to divide the step from premises to conclusion into two elements—a relation (not necessarily functional)
between reasons for the premises and reasons for the conclusion and a choice of the one among those reasons for the
conclusion which stand in this relation to the indicated reasons for the premises. In these terms, our employment of partial
functions amounts to the assumption that the generality in the step from reasons for premises to a reason for the conclusion
lies not only in the relation between reasons for premises and reasons for the conclusion but also in the choice of a particular
reason for the conclusion. 

Beyond assuming that an inference is a functional relation, we assume that any inference indicated by an argument is
defined on each choice of reasons for the argument’s premises, that it is total with respect to these premises. Only if
inferences are total will the indication of the inference and the indication of the reasons for the premises be independent of
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one another. The range of reasons to which a nontotal inference would apply would be narrower than that indicated by its
premises since among the reasons for its premises there would be reasons on which the inference was not defined. In the
presence of nontotal inferences, arguments would not suffice by themselves to mark the articulation of reasoning since the
grounds for the applicability of nontotal inferences to reasons could not be indicated simply by listing premises.

The assumption that inferences are total is in part a simplifying assumption, enabling us to dispense with any representation
of domains of definition beyond the type of structure provided by premises and conclusions. But this assumption also
involves an ascription of further structure, for we must assume that there are a sufficient number of total inferences to make it
feasible to limit our consideration to them alone. And given the assumptions we will make about the deductive structure
reflected by the conditional, these two aspects of the assumption are closely intertwined. In order for even the distinguished
deductive inferences corresponding to instances of modus ponens to be total, only total inferences can be coded by reasons for
conditionals. For an inference by modus ponens is defined only when the inference coded by the reason for the major premise
A→ B applies to the reason for the minor premise A; so the inference from A→ B and A to B by modus ponens can be total only
if every inference coded by a reason for A→ B is total.

But these grounds for assuming totality do not support a general denial of the existence of nontotal inferences or a denial of
the importance of such inferences to the structure of epistemic biography. Indeed, nontotal inferences are likely to be of
interest for a wider study of this structure because of the very feature that leads us to ignore them here: their applicability is
sensitive to differences among reasons for the same belief. Nor is the assumption of totality forced on us by any difficulty in
generalizing the structure we describe here to partial functions. The reason for not pursuing this generalization is rather that it
would contribute nothing to our understanding without an account of the features of reasons on which the application of
nontotal functions depend and the way these features are indicated by argument. Any such an account is well beyond the
scope of our discussion here.

A total inference identifies a reason, real or virtual, for its conclusion with respect to any choice of reasons, real or virtual,
for its premises. The presence of virtual reasons is important here, for we cannot expect the real reasons of a biography to be
closed under all the total inferences we ascribe to it in the course of epistemic assessment. This is so especially in the case of
deductive inferences; virtual reasons fill out the biography with the results of applying a deductive inference in cases where
the conclusion of the inference is not believed or is not believed for the reason that the inference identifies. Given virtual
reasons, deductive inferences may be ascribed to all biographies. That is, we may regard any extension of one’s grounds for
belief by deductive reasoning as being always available, whether or not it is actually employed. There is some idealization
here, for there is some deductive reasoning that is beyond my biological capacity as surely as is direct visual evidence of my
parents’ childhood. But greater realism concerning this point would leave us still with a wide range of virtual reasons derived
from deductive inferences.

If the range of generality of inferences was limited to real and virtual reasons for their premises, it would be possible to
state a principle of extensionality which provided conditions for the identity of inferences. Inferences could be counted as
identical when they had the same premises and conclusion and identified the same reason for their conclusion with respect to
any choice of reasons for their premises. But this would limit the variety of inferences associated with a given argument by
the variety of reasons for its premises and conclusion, and such a limitation does not accord well with the function of
inferences. A total inference serves to justify an argument considered hypothetically, as the step from its premises to its
conclusion; it must show how one infers the truth of the conclusion from the truth of the premises. For this, it is not enough to
indicate reasons for the conclusion only with respect to those choices of reasons for the premises that are compatible with one
given biography. The generality of the inference must be tied directly to the premises themselves in a way that transcends the
limited variety of reasons any one person might have for them. Consequently, we should not regard inferences as extensional
with respect to real and virtual reasons. 

On the other hand, in the structure of abstract proofs described in the last section, hypothetical abstract proofs were
functions individuated extensionally. Although this feature of the structure of abstract proofs is not necessary for the
interpretation of proofs and proof equivalence, some general laws of identity for inferences are needed. There are ways of
formulating such laws without assuming extensionality for inferences with respect to real and virtual reasons or assuming any
other explicit criterion of identity for inferences. Category theory provides one framework for doing this. An alternative
approach is to extend the range of reasons by introducing indeterminate reasons and to then state an extensionality principle with
respect to this wider range. This is analogous to the approach taken with abstract proofs, in which the equivalence classes [A]/
~ of assumptions serve as indeterminate abstract proofs and enable us to treat hypothetical abstract proofs as functions
individuated extensionally. And although the use of indeterminate reasons is somewhat artificial and may seem a mere
technical convenience, it is in accord with the natural idea that assuming the truth of something for the sake of argument is in
some way comparable with having a reason for believing it. But there is no need to decide between the use of category theory
and the use of indeterminate reasons. The important point here is the negative one: we do not assume that inferences are
individuated extensionally with respect to real and virtual inferences.
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Deductive structure and validity

We thus assume that all epistemic biographies share an articulation into reasons and inferences; they share a structure
consisting of a collection of reasons for each sentence, a collection of inferences for each argument, and operations which
apply inferences to reasons. We also assume that the domains of inferences and reasons satisfy certain closure conditions. Our
assumption that inferences are total could be phrased as the assumption that these domains are closed under application. We will
also assume that inferences are closed under the operation of composition for many-place functions. A third, somewhat
degenerate, example of a closure condition is provided by the assumption that any argument whose conclusion is already one
of its premises will have as one of the inferences associated with it in any epistemic biography the trivial projection inference,
an inference which simply repeats the reason for this premise as a reason for the conclusion. The operations of application and
composition together with the projection inferences constitute a structure that appears in all epistemic biographies as the most
basic part of their deductive structure.

The inferences distinguished by this basic structure alone are all projection inferences (with identity inferences from one
premise as a special case). A richer structure which distinguishes a wider range of deductive inferences appears when we
consider specific logical constants. Besides distinguishing further inferences (and certain reasons) as deductive, this structure
will provide further deductive operations on reasons and inferences, the introduction and elimination rules for conjunction and
the conditional for example. And the structure will satisfy certain closure conditions comparable with those holding for
abstract proofs. Indeed, proofs themselves provide a notation for referring to these distinguished reasons, inferences, and
operations on them. However, there is no need to limit the deductive structure to logics that admit complete systems of proof.
That is, we need not assume that the elements and operations constituting deductive structure may all be generated from some
limited group corresponding to rules of proof. Although it is natural to assume that only logics with complete systems of
proof are epistemologically significant, the theoretical framework we are considering does not force us to be dogmatic about
the point.

Now, just what are we committed to in assuming that epistemic biography has a distinguished deductive structure? This
assumption is of a different order from those ascribing an articulation into reasons and inferences. Those assumptions further
specified the structure exhibited by the data of epistemic biography as it is used to assess justification. Although our
specification of that structure has employed both idealization and representational artifice, each component has its own
pedigree in epistemic principles. But we cannot expect to find such accounts for the individual elements of deductive structure
piecemeal; we must look for a general rationale for the structure as a whole.

One way of finding this rationale is to consider a corresponding characterization of deductive validity; an argument is
deductively valid if and only if there is some deductive inference associated with it. We are led immediately to ask for the
connection between this characterization and the usual semantic one. More generally, we may ask for the connection between
the deductive structure of any given biography and the semantics of the language in which beliefs are expressed. A short answer
is that the connection comes by way of the epistemic roles of various elements of the language (logical particles, for example)
through the expression of these roles in the general laws governing the deductive structure of all biographies. However, this
invites still more questions. Although we cannot hope to settle them here, we may begin to discuss the issues raised under two
headings—first, the connection between semantics and the general laws of deductive structure and, second, the connection
between these general laws and their realization in the deductive structure of particular biographies.

First let us note that the distinction between deductive and nondeductive inferences has a direct epistemological motivation.
This is based ultimately on the possibility of several different reasons for a given belief, a possibility which brings with it both
the need to identify the reason (or reasons) for which a belief is held and the possibility of associating a variety of inferences
with the same argument. Now, not all the various inferences that may be associated with a given argument need have the same
epistemic status, even when the argument is valid on semantic grounds. Without considering the epistemic evaluation of
inferences in detail, it is clear that one important (though not essential) feature of a good inference is that it preserve epistemic
quality of reasons that is, that the reason for its conclusion that it yields on application to given reasons for its premises never
be epistemically worse than the worst of the reasons for its premises.

Now, consider a trivial argument from A to A. As one of its corresponding inferences, it has the identity function on reasons
for A, an inference which can hardly fail to preserve epistemic quality. But the identity inference is not the only one associated
with an argument from A to A. For example, I may conclude “Some mammals have been dogs” from itself by the genetic
principle that any dog is the offspring of two dogs and the classificatory law that all dogs are mammals. And a material
inference like this cannot be expected to preserve the epistemic quality of reasons to which it is applied. The reason for the
conclusion it identifies will reflect not only the reason for the premise to which it is applied but also the grounds on which I
accept the genetic and classificatory principles that support the inference. Comparing this inference with an identity inference
associated with the same argument, we see a general distinction among inferences which is both epistemologically significant
and naturally associated with deduction.
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We need not take the preservation of epistemic quality to be the defining characteristic of deductive inferences. Indeed, we
can find our rationale for a distinguished deductive structure by reversing the dependence and understanding epistemic quality
to be preserved by deductive inference because epistemic evaluation always respects deductive structure. That is, we should
regard deductive structure as an order ascribed to epistemic biography prior to its evaluation rather than as one deriving from
that evaluation. Consequently, the linguistic elements which play a role in the description of deductive structure acquire their
role through ties to the ways in which structure is ascribed to the data of epistemic biography as this biography is constituted.
For example, reasons for conjunctions are ascribed as codes for pairs of reasons for their conjuncts. Epistemic evaluation
respects such coding, and so epistemic quality will be preserved by the inferences which exploit it (e.g. those corresponding to
the &-rules). If we are to attribute deductive structure to any features of logical constants, its roots should be found in this sort
of tie to the ascribed structure of epistemic biography.13

Part of what is needed, then, to answer our original question is an understanding of the connection between the epistemic
and semantic roles of linguistic elements. And this seems inseparable from a wider understanding of the connection between
epistemic norms and the semantics of the language in which belief is expressed—or, more briefly, the connection between
knowledge and truth. Truth, like justification, is a necessary condition for knowledge and it might be regarded as a derivative
concept complementary to justification: just as justification is what epistemic norms enable us to assess when we know only
the believer’s reasons, truth is what they enable us to assess when we know all but these reasons. From this perspective,
semantic laws may be derived from epistemic norms. On the other hand, we might hope to characterize knowledge as securely
or reliably true belief, holding epistemic norms to be derived from semantics with an eye to the exigencies of human
cognition. But whether we work out such a derivation in one direction or the other, or find some more complex connection
between semantics and epistemic norms, it is here that we should look for a connection between the usual semantic
understanding of deduction and the general laws of deductive structure. No account of the epistemic significance of logical
constants can be satisfactory except as part of an answer to these larger questions.

The second half of the original problem lies in the connection between these general laws and their particular realizations.
If the first half concerned the relation of epistemology to semantics, this concerns its relation to psychology. The realization
of the elements of deductive structure in particular biographies is not a purely psychological matter. An epistemic biography
is ascribed as a part of the assessment of belief. It is how one’s life counts in an epistemic reckoning. As a result, its structure
can be as much a stipulation as a discovery. But the life that is assessed has a psychological reality, and the character of this
reality affects the nature of the break between abstract laws of structure and their particular instantiations.

If we were semantically omniscient beings who differed only in contingent experience, the deductive structure of biography
could be considered pure stipulation. We might suppose that epistemic norms simply directed us to construe the lives of those
we evaluate in this form. But people do not always believe the deductive consequences of their beliefs. In the terms adopted
here, the result of applying a deductive inference to real reasons may be only a virtual reason. And these deductive lapses can
be traced neither to epistemically stipulated form nor to the material of contingent experience. In order for them to occur at
definite points in an epistemic biography, there must be a tie between deductive structure and particular psychological
histories. We must be able to connect deductive inferences to the processes and procedures by which beliefs have actually
developed in order to locate the failures. The connection need not be simple, and there is certainly no reason to suppose that we
could identify special deductive processes (or even deductive procedures outside the rare cases of explicit reasoning by rules
of proof). But the connection must still exist; it is the tie between two familiar aspects of deduction, something which does no
more than make explicit the implicit and yet may count as a genuine accomplishment.

This has been at most a preliminary survey of issues regarding the connection between the semantic characterization of
validity and the one offered here; it does no more than indicate the terrain through which this connection runs. Its course has
been left unmarked, but that should not be taken to cast doubt on either characterization. Both are natural and any obscurity in
their relation should be ascribed to the concept of deduction itself. However, such obscurity may still occasion doubts about
the project in which we have been engaged. There is an attitude towards these matters, finding perhaps its purest expression in
the later work of Wittgenstein, according to which the appearance of obscurity at the heart of reason can be traced to attempts
to discover fundamental structures in thought when any structure, as a product of thought, has only a derivative and limited
significance.

Such doubts strike the account given here especially hard because more is claimed in talk of deductive structure than in talk
of deductive consequence. Formally, our discussion has accorded a foundational status not only to rules of proof but also to
principles of proof equivalence. While this in itself entails few commitments concerning the specific nature of these rules and
principles, we have been committed to their existence. Even so, not everything that has been said above rests on the propriety
of distinguishing deductive structure. One aim of this essay has been to suggest that the range of concepts employed in
understanding deduction ought to be enriched in a way that reflects its epistemic role. In the specific account offered here, a
universal and apodeictic character has been granted to deduction and elaborated further. If deduction has limits, the range of
concepts needed to draw them can only be richer still.14
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NOTES

1 An extended argument for a somewhat stronger claim is offered by Audi (1983).
2 Classical references for these two points are Sellars (1956) and Quine (1953), respectively.
3 A suggestion motivated by normalization is offered by Prawitz (1971: 257) and another by Stenlund (1972: ch. 5). Szabo (1978)

develops the category-theoretic approach in detail; a somewhat different treatment of quantifiers is suggested by Lawvere (1969).
4 My own suggestions for the case of first-order logic with identity appear in Helman (1983).
5 These conventions can be implemented by regarding an assumption as a pair consisting of a formula and a natural number. After

discharge, the numbers may be taken to indicate the points in the proof at which the discharged assumption occurs (as in a common
informal notation for tree-form natural deduction proofs), but the numbers of discharged assumptions have no further significance for
the identity of the proof.

6 To see the full generality of this, note that the conventions concerning discharged assumptions imply a syntactic identity between D)
and for any assumption [A]→ not appearing in D.

7 An argument for the legitimacy of this definition may be appropriate. Suppose that Choose representative concrete proofs D1 and D2,
and let [A] be an assumption of A that appears undischarged in neither. Now the same hypothetical abstract proof is associated with
the contexts and so The principle of replacement in ω I then tells us that the proofs are equivalent, and the remark of the preceding
note tells us that they are identical, respectively, to the proofs It follows that the abstract proofs are identical.

8 There is a divergence here between the approaches based on normalization and those based on category theory. It can be extreme in
the case of classical logic; see Szabo (1978: ch. 10). A way to a middle ground is suggested by Seely (1979) and another by Helman
(1983).

9 Of course, we must know that the laws we have assumed to govern the structure of abstract proofs also admit a sufficient number of
abstract proofs for each conclusion. That is a genuine concern since apparently innocuous assumptions about proof equivalence can
have the consequence that all proofs of a given conclusion are equivalent. However, such trivialization can be shown to have been
avoided only when a full set of principles of proof equivalence has been adopted, so we will not do either here. (Helman (1983)
provides the needed argument for one way of filling out the present framework.)

10 This suggests that we might hope to characterize the deductive abstract proofs directly on the abstract level as those which are
invariant in some sense. This problem is akin to the problem of similarly characterizing the functions definable in the typed lambda
calculus. For the latter, see Plotkin (1980) and Statman (1983).

11 For a discussion and further references, see Sundholm (1983).
12 See, for example, Dummett (1978), especially pp. 312ff. Chapter 7 of Dummett (1977) contains one of a number of extended

discussions of related issues.
13 This role need not be regarded as conferring a constructive meaning on the constant (the example of conjunction can be misleading in

this respect). The role in deductive structure played by a compound formed using the constant need not be characterized solely by its
inferential relations to logically simpler sentences.

14 I owe thanks to Emily Grosholz, Jay Garfield, and Willem de Vries for comments on earlier drafts.
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3
WHAT IS A PROOF?

Richard Tieszen

SUMMARY

“What is a proof?” distinguishes several philosophical accounts of proof: formalist, platonist, empiricist, Wittgensteinian, and
cognitive or phenomenological accounts. The paper then focuses on the cognitive account. On this view, a proof is what
provides evidence or justification in mathematical experience, where there is no “evidence” apart from the actual or possible
experience of evidence. That is, there cannot be any kind of recognition-transcendent “evidence.” Following Arend Heyting,
it is argued that a proof is a fulfillment of a mathematical intention, where the concept of an “intention” is to be understood in
terms of a theory of intentionality. This view is considered in some detail, including the parallels drawn by Heyting, Kolmogorov,
Martin-Löf and others between the proof/proposition relation and proof as the realization of an expectation, or as the solution
of a problem, or as a program satisfying a particular specification. Some formal developments of this conception of proof are
briefly described, as is its relation to existing model-theoretic approaches to intuitionistic logic and arithmetic.

Consider some of the philosophical answers to the question put in the title of this paper. One answer, common especially to
some logicians, is that a proof is a finite configuration of signs in an inductively defined class of sign configurations of an
elementary formal system. This is the formalist’s conception of proof, the conception on which one can encode proofs in the
natural numbers. Then for any elementary formal system in which one can do the amount of arithmetic needed to arithmetize
proof, and metamathematics generally, one can prove Gödel’s incompleteness theorems. Gödel’s theorems are often described
as showing that proof in mathematics, in the formalist’s sense, is not the same thing as truth, or that syntax is not the same
thing as semantics.

The formalist’s conception of proof is quite alien to many working mathematicians. The working mathematician’s
conception of proof is not nearly so precise and well delineated. In fact, it is not so clear just what a proof is on the latter
conception, but only that it is not, or not only, what a strict formalist says it is. In mathematical practice proofs involve many
informal components, a kind of rigor that is independent of complete formalization, and some kind of “meaning” or semantic
content. Another philosophical answer to the question, that of the (ontological) platonist, is that a proof is a mind-independent
abstract object, eternal, unchanging, not located in space-time, and evidently causally inert; On this view a proof is certainly
not an inductively defined syntactic object, and one might think of a proof as something not created but rather discovered by a
mathematician. For an intuitionist, a proof is neither a syntactic object nor an abstract object. Rather, a proof is a mental
construction, a sequence of acts that is or could be carried out in time by the mathematician. For Wittgenstein and
philosophers like Dummett, a proof is a linguistic convention, a type of linguistic practice or usage. One could also
distinguish empiricist, pragmatist, and other philosophical accounts of proof. On an empiricist account, for example, an
inference from premises to conclusion in mathematics would be part of the fabric of our empirical knowledge. It would not be
different in kind from our knowledge in the physical sciences.

What I would like to do in this paper is to discuss in some detail what I shall call the cognitive, or phenomenological,
dimension of proof. The cognitive or phenomenological dimension of proof, as I shall understand it, concerns the role of
proof in providing evidence or justification for a mathematical proposition, evidence that we would not possess without a
proof. (Although I shall emphasize the “cognitive” aspects of proof in what follows I do not take this to imply that proof is
independent of social or cultural determinations.) I mean to use the term “evidence” in such a way that there is no such thing
as evidence outside the actual or possible experience of evidence. One can get some sense of the concept of “evidence” that I
have in mind by reflecting on what is involved when one does not just mechanically step through a “proof with little or no
understanding, but when one “sees,” given a (possibly empty) set of assumptions, that a certain proposition must be true.
Anyone who has written or read proofs has no doubt at one time or another experienced the phenomenon of working through
a proof in such a mechanical way and knows that it is distinct from the experience in which one sees or understands a proof.
My contention is that one can only be said to have evidence in mathematics in the latter case, although there are clearly
differences in degrees of evidence. What is the difference between the two experiences just mentioned? The difference can
apparently only reside in our awareness in the two cases, for nothing about the strings of symbols we write or read changes or



has to change in order for the experience to occur. To give a rough description, one might say that some form of “insight” or
“realization” is involved as is, in some sense, the fact that the proof acquires “meaning” or semantic content for us upon being
understood.

I would argue that a “proof” in this sense ought not to be viewed as just a syntactic object, or as a mind-independent object.
It is also not something reducible to linguistic behavior along the lines of behaviorist psychology, for the sensory stimulus
involved underdetermines the experience. Consider, for example, what is generally thought to be a difficult proof written in a
book on number theory. No doubt people will experience this proof in quite different ways, even though it is the same
stimulus that irritates their nerve endings. (And if the stimulus is not the same, or is not something that goes on at their nerve
endings, then there are grave difficulties for the behaviorist about what it could be.) If this is possible then there is more to their
experience than meets their sense receptors. It follows that the “proof” could not be a function of only what they receive at
their nerve endings. Their responses will instead be determined by what they receive at their nerve endings plus what they
actually “see” or “experience.” It is necessary to make allowances, that is, for differences in the mental states or processes
that are involved between stimulus and response, and it is these mental states or processes that determine whether or not one
in fact has a proof. One needs an account of cognition according to which mental states can themselves be the effects of
stimuli and/or other mental states, in addition to being the causes of other mental states and/or responses.

My aim in this paper then is to outline and argue for a theory of proof which does justice to what I am calling the cognitive
dimension of proof. I believe that neither formalism, empiricism, pragmatism, platonism nor any of the other “isms” in the
philosophy of mathematics, with the exception of intuitionism on some counts, does very well with the cognitive aspect of
proof, even though it is essential for understanding mathematical knowledge. 

I

A passage from some recent work of the logician Martin-Löf (1983–4:231; cf. Martin-Löf 1987:417) does a good job of
capturing the cognitive or phenomenological aspect of proof that I wish to discuss. Martin-Löf says that

the proof of a judgment is the evidence for it…thus proof is the same as evidence…the proof of a judgment is the very
act of grasping, comprehending, understanding or seeing it. Thus a proof is, not an object, but an act. This is what
Brouwer wanted to stress by saying that a proof is a mental construction, because what is mental, or psychic, is
precisely our acts…and the act is primarily the act as it is being performed, only secondarily, and irrevocably, does it
become the act that has been performed.

(Martin-Löf 1983–4:231)

In the work from which this passage is drawn Martin-Löf is emphasizing the intuitionistic view that a proof is a cognitive
process carried out in stages in time, a process of engaging in some mental acts in which we come to “see” or to “intuit”
something. Proof, on this conception, is in the first instance an act or a process; only secondarily does it become an object.
The conception of proof that Martin-Löf is describing is found very strikingly, as he notes, in Heyting’s identification of
proofs (or constructions) with fulfillments of intentions in the sense of Husserl’s philosophy (Heyting 1931). On this view, the
possession of evidence amounts to the fulfillment of mathematical intentions. I agree completely with Martin-Löf’s remark
(Martin-Löf 1983–4:240–1) that Heyting did not just borrow these terms from Husserl but that he also applied them
appropriately. Thus, as a first approximation, I propose to answer our opening question as follows:

1 A proof is a fulfillment of a mathematical intention.

Likewise, provability is to be understood in terms of fulfillability. In one fell swoop this embeds the concept of proof in a
rich phenomenological theory of mental acts, intentionality, evidence, and knowledge. To understand philosophically what a
proof is one must understand what the fulfillment of a mathematical intention is. Let us therefore first consider the concept of
a mathematical intention. 

The concept of an intention is to be understood in terms of a theory of intentionality. Many cognitive scientists and
philosophers of mind believe that intentionality is a basic, irreducible feature of cognition, certainly of the more theoretical
forms of cognition. Intentionality is the characteristic of “aboutness” or “directedness” possessed by various kinds of mental
acts. It has been formulated by saying that consciousness is always consciousness of something. One sees this very clearly in
mathematics, for mathematical beliefs, for example, are beliefs about numbers, sets, functions, groups, spaces, and so on. By
virtue of their “directedness” or referential character, mental acts that are intentional are supposed to be responsible for
bestowing meaning, or semantic content.
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A standard way to analyze the concept of intentionality is to say that acts of cognition are directed toward, or refer to
objects by way of the “content” of each act, where the object of the act may or may not exist. We might picture the general
structure of intentionality in the following way:

where we “bracket” the object because we do not assume that the object of an act always exists. Phenomenologists are famous
for suggesting that we “bracket” the object, and that we then focus our attention on the act (noesis) and act-content (or
noema), where we think of an act as directed toward a particular object by way of its content (or noema). Whether the object
exists or not depends on whether we have evidence for its existence, and such evidence would be given in further acts carried
out through time.

We can capture what is essential (for our purposes) to the distinction between act and content by considering the following
cases: a mathematician M might believe , that , or know , that or remember that , where is some mathematical
proposition. In these cases different types of cognitive acts are involved—believing, knowing, remembering—but they have
the same content, expressed by . The act-character changes, but the content is the same. Of course the content may also vary
while the act-character remains the same. The content itself can have a structure that is quite complex. Also, when we say that
the content is “expressed” by we shall mean that the mathematical proposition is an expression of the content of a
particular cognitive act. Thus, there is a direct parallel between intensionality, a feature of language or expression, and
intentionality, a feature of cognition, insofar as we are restricting attention to those expressions which are expressions of
cognitive acts. We should not necessarily expect, for example, substitutivity salva veritate and existential generalization to
hold for inferences involving expressions of intentions.

We could regiment our understanding of what forms can take in terms of the syntax of first-order theories. Thus when we
say that an act is directed toward an object we could express this with the usual devices of first-order theories: individual constants
and bound variables. For example, a mathematician might believe that Sa for a particular S and a particular a, or that (ω x)Sx
for a particular S and a particular domain of objects D. can also have the form ()Sx, and so on. The restriction to first-order
theories is not necessary however. In fact, there are good reasons for considering higher types of intentions and their
fulfillments, but I shall not discuss this matter in any detail here.

The idea that an act is directed toward an object by way of its content has a direct analog in the thesis in intensional logic
and mathematics that intension determines extension. We should comment on this thesis now in order to forestall some possible
misunderstandings of the intentionality of cognitive acts. In particular, when we say that intension “determines” extension, or
that an act is directed toward a particular object by way of its content, should we take this to mean that the act-content
provides a “procedure,” an algorithm, or a “process” for determining its extension? To answer yes, without qualification,
would lead to a view of knowledge that is far too rigid. We shall say that the manner in which intension determines extension
is one of degree, and is a function of the intention itself, background beliefs, contextual factors, and the knowledge acquired
up to the present time. In the growth of knowledge intensions or concepts are themselves modified and adjusted at various
stages as information and evidence is acquired. Thus, a “procedure” by which the referent of a given intention is fixed might
be quite indeterminate or quite determinate, depending on how much knowledge one has acquired, or how much experience
one has, with the objects in question. A belief about an object may be quite indeterminate, but even so we usually have at
least some conception of how to go about improving our knowledge of the object.

We said in 1 that a proof is the fulfillment of a mathematical intention. One can think of mathematical intentions, or
cognitive acts, as either empty (unfulfilled) or fulfilled. The difference between empty and fulfilled cognitive acts can be
understood as the difference between acts in which we are merely entertaining conceptions of objects and acts in which we
actually come to “see” or experience the objects of our conceptions. We shall elaborate further on the distinction in
Sections III and IV. Philosophers familiar with Kant will recognize the similarity here with the Kantian distinction between
conception and intuition (Kant 1973). On a Kantian view, knowledge is viewed as a product of conception and intuition. Of
course this kind of distinction is not specific to Kant. It has a long history, in one form or another, in philosophy. But we might
modify somewhat a famous remark of Kant, and say that in mathematics intentions (directed toward objects) without proofs
are empty, but that proofs without intentions (“aboutness,” and meaning or semantic content) are blind (as is perhaps the case
in strict formalistic or proof-theoretic conceptions of proof). Knowledge is a product of (empty) intention and proof. In
particular, the objects of acts of mathematical cognition need not exist, and we would only be warranted in asserting that they
do exist if we have evidence for their existence. Proof is the same as evidence. Thus, as we noted above, another way of
putting the distinction is to say that acts of cognition are “fulfilled” (or perhaps partially fulfilled) when we have evidence,
and “unfulfilled” when we do not have evidence. Cognitive acts must be (at least partially) fulfilled if we are to have
knowledge of objects. We have many beliefs and opinions in mathematics, but we only have proofs, that is, evidence, for some
of these. Given our remarks about intentionality and fulfillment we should say that a necessary condition for a mathematician
M to know that  is that M believe , and that M’s belief that  be produced by a cognitive process— proof—which gives
evidence for it.
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To say that proof is a “process” in which an intention comes to be fulfilled is to say that it is a process of carrying out a
sequence of acts in time in which we come to see an object or in which other determinations relevant to the given intention are
made. This obviously places some constraints on the notions of proof and evidence, and on what can count as justification for
beliefs about objects in mathematics. The process must be one a human being can carry out, on the analogy of carrying out
procedures to solve problems in the empirical sciences, or else we will have unhinged the concept of evidence for objects from
anything that could count as evidence for human beings, that is, from anything that humans could experience. Thus, for
example, human beings can evidently not experience an infinite number of objects in a sequence of acts in a finite amount of
time. One might think of mental acts, like computations, as taking place in linear time of type ω . No doubt there is a sense in
which we can perform classical deductions in linear time of type ω , but to leave the matter there would be to miss the point.
For it might be asked whether we can construct the objects these deductions may be about in linear time of type ω , or whether
we can execute operations (functions) involved in the propositions of the deduction in this time structure. The constraints on
proof must be imposed all the way through the components of the propositions in a proof if we are to avoid a recognition-
transcendent concept of evidence. Having said that much, however, I would argue that there are degrees and types of evidence
provided by proof. We should pause over this point for a moment.

II

We said that it is the function of a proof to provide evidence. But what kind of evidence? Intentions may be fulfilled in
different ways or to different degrees. For knowledge in general we could consider the presence or absence of the following
types of evidence: a priori evidence; evidence of “necessity”; clear and distinct evidence; intersubjective evidence; and
“adequate evidence.” In mathematics a fine-grained approach to questions about the adequacy of evidence is already found in
proof theory, where proofs are ranked in terms of computational complexity and other measures. The classifications of proofs
that result are surely relevant to questions about the “processes” which produce M’s belief that . As we are viewing the
matter, if one insists on a “feasible” proof, a finitist proof, an intuitionistic proof, or a predicative proof, one is insisting on a
certain kind of evidence.

There are many philosophical arguments about whether proofs provide a priori knowledge, and whether they provide
knowledge in which a conclusion follows with “necessity” from its premises. One could also discuss degrees of clarity and
distinctness of proofs, and other matters like simplicity, length, as it relates to reliability, and elegance. I would like to set
these questions aside here, however, since they do not pose problems specific to the conception of proof that I am discussing.
Rather, I would like to comment on two issues that are especially important to the view of proof as the fulfillment of certain
kinds of cognitive acts. First, one of the principal concerns about the kind of characterization of proof given in 1 has been that
one then perhaps makes the concept of proof a private, subjective matter, that one flirts with solipsism. One often hears, for
example, that Brouwer’s conception of proof was solipsistic. Second, if there are constraints on what can count as evidence
then what is the status of classical proof?

Concerning the first question, the identification of proof with the fulfillment of mathematical intentions is perfectly
compatible with viewing mathematics as a social activity, and it need not entail solipsism. Arguments for the possibility of
understanding cognition without falling into Cartesian difficulties go back at least as far as Kant. In spite of Brouwer’s other
references to Kant, it is a basic theme of Kant’s philosophy that human beings are so constituted that their fundamental
cognitive processes are isomorphic. This explains why there is intersubjective agreement in elementary parts of mathematics,
and it shows that the investigation of cognition or intentionality need not entail commitment to personal, introspective reports,
in the style of introspectionist psychology. Proof, on this view, is not a species of introspection. Recent work in cognitive
science depends on a similar approach to cognition.

Thus, it could be argued that there is no such thing as a “proof” that could in principle be understood by only one person,
for that would contradict the hypothesis of a universal, species-specific mental structure which makes scientific knowledge (in
particular, mathematics) possible in the first place. It is not as if a proof is some kind of subjective mental content to which only
one person has direct access. There have been views according to which a proof is just such a subjective mental content, but
philosophers like Frege and Husserl went to great pains to refute them, correctly I believe, in their critiques of psychologism.
The view of proof I would like to defend is definitely not psychologistic. Thus, as I construe 1, it is incoherent to suppose that
speaking of an intention as fulfilled for a particular mathematician is not dependent on the possibility of fulfillment of the same
intention for other mathematicians. Note that this does not, however, entail that there has to in fact be intersubjective
agreement at all times and all places on all mathematical propositions. It entails only that intersubjective agreement is
possible. Where de facto intersubjective agreement about a proof exists, knowledge is thought to have a firmer evidential
foundation. This is one source of the “objectivity” of proof. The import of these remarks is perhaps best appreciated in
connection with phenomena like Dedekind’s famous “proof” of the existence of infinite systems, Hilbert’s original solution to
Gordon’s problem, the history of “proofs” of Fermat’s last theorem, and so on.
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Concerning the second question, one might ask, for example, whether our view entails that classical proofs do not deserve
to be called proofs at all. It is a delicate matter to state a position on this question that will not immediately lead to objections.
Let us consider a traditional (weak) counterexample of the type that constructivists raise for the classical notion of proof.
These counterexamples proceed by showing how the assumption that we have a (classical) proof of a certain kind would
imply that some unsolved mathematical problem has been solved. And of course even if the particular problem chosen were
to be solved, the significance of the counterexamples comes from the fact that it is possible to produce reductions to an
endless number of other unsolved mathematical problems. Thus, for example, consider the decimal expansion of → , and let An
be the statement that “the nth decimal of →  is a seven and is preceded by 6 sevens.” Then what could it possibly mean to say
that is provable? We would need to have a proof either that provides us with a natural number n such that An or that shows us
that no such n exists. Since no such evidence is available we ought not to accept the principle of the excluded third, that is, we
do not have evidence of its necessity. Or one could say that to accept it is to suppose that we have evidence or knowledge that
we in fact do not possess. In some of the constructivist literature the principle is referred to, aptly, as the “principle of
omniscience.” In my book, Mathematical Intuition (Tieszen 1989), I have likened it to an “ideal of reason” in a Kantian
sense, so that one could view it as an epistemically illegitimate (when applied beyond certain bounds) but unavoidable
postulation of human reason, one which might nevertheless sometimes serve a purpose in human affairs.

If does not hold, we can also see that ought not to be acceptable. Thus, in a system of proof like the Gentzen-Prawitz
intuitionistic system of natural deduction (e.g. Prawitz 1965), one does not have indirect proofs of the form 

If proof is to be defined as in 1 then, following our description of the difference between empty and fulfilled intentions, one must
be directly presented with an object, or at least possess the means for becoming so presented. In an indirect proof in this form
of an existentially quantified proposition one has nothing more than the contradiction obtained by assuming that an object
satisfying some condition does not exist. This is not the same thing as seeing the object itself, and so cannot count as
fulfillment of the intention directed to the object. Might one think of such “existence proofs” as at least providing “indirect
evidence” for the existence of an object? In some contexts in mathematics it appears that this would be reasonable, because
one might later find a constructive proof. Thus, in such contexts one might regard propositions proved by such means (as
opposed to provably objectless propositions) as conditional or hypothetical assertions about objects for which evidence might
be found at some later point in time. But there are some indirect proofs for which it appears that constructive proofs could not
in principle be found. Consider, for example, the prospects for a constructive version of Cantor’s indirect proof of the
existence of nondenumerable totalities. Some philosophers might be tempted to adopt a form of fictionalism in the case of
such “objects.” However, we should perhaps not rush headlong into mathematical fictionalism in the presence of such
purported proofs. Perhaps the best thing to say, in answer to our question, is not that such proofs are not part of some
deductive structure, or of some systems of rules of reason, but rather that the evidence for objects simply thins out so
significantly in these kinds of “proofs,” as in some proofs that employ the excluded third, that one cannot hope for them to
provide assurances of reliability, or consistency in our reasoning. They represent reason unbound or unconditioned, and hence
are subject to the possibility of antinomies or paradoxes. Interestingly, there have been serious concerns about evidence even
in the highest reaches of transfinite set theory. Thus, Gödel (Gödel 1964), for example, distinguishes the “iterative” from the
“logical” conception of set and suggests that proofs in set theory about sets as objects in the iterative hierarchy do possess
some degree of reliability.

III

The concept of proof described in 1 admits of substantial elaboration. Among other things, the distinction between empty and
fulfilled intentions can be looked at in a number of ways. Fulfillments of intentions, in Husserl’s philosophy, are also
understood as realizations of expectations (Tieszen 1989). One can already see the foundations for this in ordinary perception.
In ordinary perception I may have a conception of some object without actually seeing it, so that the intention directed to the
object is empty. Even so, I could not help but have some expectations about the object, given the set of background beliefs I
would have acquired up to that stage in time. The empty intention, that is, can be viewed as a set of anticipations or
expectations about the object which are determined by background beliefs, memories, and so on, at that stage in time. Having
such expectations is a fundamental feature of human cognition, especially in contexts where one is attempting to acquire
knowledge. Then the expectation(s) may either be realized or not. Attempting to gain knowledge about an object, that is, is
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like realizing certain expectations about the object. Of course one’s expectations may have to be corrected or refined in the
growth of knowledge.

The same structure is present in mathematical experience. Thus, we can think of mathematical propositions (which we are
viewing as expressions of intentions) as expressions of expectations. The fulfillment of the intention is the realization of the
expectation. We can therefore say that

2 A proof is a realization of a mathematical expectation,

where we take 2 to be true if and only if 1 is true. Speaking of a proof as a realization of an expectation, that is, should not
be separated from the meaning that these terms have in a theory of intentionality. Note that while provability here is the same
as “realizability,” we do not mean readability in Kleene’s sense. Kleene’s realizability interpretations are distinct from the
intended interpretation of intuitionistic logic and arithmetic, even though they do give some insight into what it means for a
proof to be a realization of an expectation. 

Note, incidentally, that on the view we are discussing there is a similarity in cognitive structure which cuts across
perceptual and mathematical knowledge, so that there are some interesting analogies between evidence and justification in
these two domains, even if some different types of evidence might be involved.

Kolmogorov’s interpretation (Kolmogorov 1932) of propositions as problems or tasks, and proofs as solutions, provides
another way to look at the difference between unrealized and realized expectations, or unfulfilled and fulfilled intentions.
Heyting and Kolmogorov later took their interpretations to be equivalent. This appears to be perfectly sensible when one
reflects on how people attempt to acquire knowledge. Attempting to acquire knowledge about an object is like solving a
certain problem about the object. One solves the problem, or fails to solve it, by carrying out certain acts in time that will
improve one’s knowledge. This is done in a way that is evidently rule governed, for we do not just go about it randomly. The
way one solves a problem has parameters which are based on the beliefs one has acquired up to the present time. One might
then, by reflection, develop some insight into the rule-governed structure of the process. Thus, we can also say

3 A proof is the solution of a mathematical problem,

provided we take this to be true if and only if 1 is true. I do not believe it would be possible to do justice to the cognitive or
phenomenological dimension of proof if one were to separate the concepts of problem and solution in 3 from a theory of
intentionality.

The point about intentionality is especially important to keep in mind in the final remark I would like to make about the
proof/ proposition relation. It has recently been suggested by Martin-Löf (1982) that the characterizations of proof in 1–3 are
equivalent to saying that

4 A proof is a program which satisfies a particular specification.

That is, the procedure or method by which I fulfill an intention can be viewed as a program which satisfies a given
specification. Viewing 1 and 2 in terms of 4 puts us directly in the middle of many interesting issues at the intersection of
constructive mathematics, cognitive science, and artificial intelligence. Note especially that if 4 iff 1 then it would be begging
some important philosophical questions in cognitive science and artificial intelligence to identify the notion of a program in 4
with that of a machine-computable program, e.g. Turing machine computable. If we did so, for example, it could be argued
that our conception of proof is reducible to the formalist’s conception that we briefly described at the beginning of the paper.
It would be better, in thinking of a program as a method for fulfilling an intention, to use Errett Bishop’s idea of “person
programs” (Bishop 1967). Of course intuitionists have never been willing to uncritically identify human computation with
machine computation, and this is reflected by the status of Church’s Thesis in intuitionistic mathematics. Human programs,
that is, methods for fulfilling intentions, may involve some kind of intrinsic intentionality, irreducible semantic content,
consciousness, representational character, gestalt qualities, indeterminateness, implicit content, qualitative content, and so
forth. Thus, provided we start with the concept of a program as a method of fulfilling an intention, 4 can also be taken as an
answer to the question put in this paper.

One might ask what the implications of this view are for the kinds of “proofs” provided by automated or mechanical
theorem proving. One answer would be to point out how counterintuitive it would be to suppose that machines could possess
“evidence” in the sense in which we have been using this term. For that would imply that machines must be able to
“experience” evidence. But machines do not experience anything or have intentionality, or at least they do not have intrinsic
intentionality. One might therefore argue that automated proofs provide evidence only derivatively, only insofar as the proofs
are interpreted and understood by beings with intentionality. Another answer would be to say that the problem whether
machines might possess intentionality or not, or be capable of experience or not, is undecided at this stage in time. That is, that
the principle of the excluded third is not provable for these propositions.
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IV

It is possible to develop some of the foregoing ideas in detail in formal theories of proofs or constructions. I do not mean to
suggest, however, that any particular formal theory will adequately capture the concept of proof in 1. In Martin-Löf s work the
ideas are developed by way of the conception of “propositions-as-types” (e.g. Martin-Löf 1984). Martin-Löf s work is in the
tradition of work by Girard, Troelstra, Howard, Lambek, Läuchli, Curry, and others. There has been a great deal of very recent
research along these lines, especially in the computer science community, by de Bruijn, Reynolds, Coquand and Huet, and
others. Kreisel and Goodman also did some early work on a theory of constructions, using a different approach. What these
approaches have in common is the effort to directly interpret proofs as algorithmic processes (acts) or objects. In this respect
they are similar to nonstandard interpretations of intuitionistic logic and arithmetic like Kleene’s realizability interpretations or
Gödel’s Dialectica interpretation. The algorithmic theories can be contrasted with the semantic or model-theoretic
interpretations of intuitionistic logic and arithmetic, starting with the earliest topological models up through Beth and Kripke
models (see for example van Dalen and Troelstra 1988). While the model-theoretic interpretations are thought to be more or
less artificial by intuitionists they none-theless capture some of the aspects of proof that we have been discussing. Let us
briefly consider an example of how some of the ideas we have been discussing can be (partially) formalized in each type of
approach.

In recent work on intuitionistic type theory Per Martin-Löf has developed what can be looked at as a theory of proofs which
is motivated by the kind of philosophical account of proof discussed above. The concept of proof is formalized in a typed ω -
calculus, which can be viewed as an abstract programming language. The ω -calculus is especially natural in this setting since
it is about functions as rules, rather than as graphs, and thus represents the idea of a process of going from argument to value
as coded by a definition, an idea which also preserves something of the “intensional” flavor of the notion of proof. Martin-Löf
s system uses four basic forms of judgment, among which are the two that “S is a proposition,” and “a is a proof (construction)
of the proposition S.” One can read these equivalently as, respectively, “S is an intention (expectation),” and “a is a method of
fulfilling (realizing) the intention (expectation) S.” Let us abbreviate this as “a:S.” On this reading the meaning of the logical
constants, for example, can be explained as follows. We use ω  for that which is such that there is no a such that a:ω . That is,
ω  is a false or absurd intention like 1=2. A method of fulfilling the intention 

(a) consists of (a, b) where a:S and b: T;
(b) consists of i(a) where a:S or j(b) where b:T;
(c) consists of (→ x)b(x) where b(a):T provided a:S;
(d) consists of (→ x)b(x) where b(a):Sa provided a is an individual;
(e) (ω x)Sx consists of (a, b) where a is an individual and b:Sa;
(f) ¬S is an abbreviation of “Sω ω

Martin-Löf, like Dummett (Dummett 1977), Prawitz (e.g. Prawitz 1978), and others, distinguishes canonical from
noncanonical proofs and notes that this list shows methods of canonical form only. That is, it gives an explanation of what
constitutes a “direct” proof of a proposition formed by means of one of the constants. The meaning of a proposition is thought
to be given by what counts as a canonical proof of it (see, for example, Sundholm 1986; Prawitz 1978). In the case of
conjunction, for example, a canonical proof of S →  T consists of a proof of S and a proof of T. A noncanonical (“indirect”)
proof in intuitionistic mathematics is a method or program for obtaining a canonical proof. Every introduction rule, in
Gentzen’s sense, gives a canonical proof, while elimination rules give noncanonical proofs to their conclusions. Thus, think
of the right-hand side of each clause as the premise and the left-hand side as the conclusion of an introduction rule. A
canonical proof is one which has a form by which it can be directly seen that it follows from one of the rules. Martin-Löf s
type theory as a whole is developed as a set of formation, introduction, elimination, and equality rules. Thus, for example, the
introduction rule for natural numbers is

1010 is not obtainable by the rule even though it is an element of N. But we know we can bring it to the form a→ for some Or
consider a proposition like We know how to obtain a canonical proof. A noncanonical, and shorter, proof would be to show
that by mathematical induction (which is an elimination rule in Martin-Löf s system) and then instantiate (which is also an
elimination rule).

Consider how one could justify the following conditional using the clauses It might be helpful to think of how the proof of
the conditional would look in a proof tree or in a Fitch-style system of natural deduction. Let . That is, a is a proof that
converts any proof (b, c) of S →  T into a proof a((b, c)) of U We would like a method of fulfilling (realizing) the intention
(expectation) (S→ (T→ U)), so let d:S and e:T. Define a construction k such that k(d):T→ U. That is, (k(d))(e):U. We should
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set , so that, using the functional abstraction operator and . The proof needed for the conditional is a construction which
carries a into A:, that is, → ade.a((d, e)).

As another example consider Let  b is a proof of Saω ω . Suppose . Then c(a):Sa, and hence . Thus, . So the proof needed
for the conditional is .

In order to do some mathematics one can carry this approach further by developing, as Martin-Löf does, formation,
introduction and elimination rules for finite sets, natural numbers, lists, and various predicates defined by transfinite induction
and recursion. There are a number of variations on this kind of theory in the literature, as well as a type-theoretic
interpretation of constructive Zermelo-Fraenkel set theory, and connections with other theories.

As an example of the semantic or model-theoretic approach, consider the notion of proof in 1 in the context of Kripke
models. Kripke models are especially nice for providing the kinds of weak counterexamples that are the staple of
intuitionism. A Kripke model is a triple where A is an inhabited partially ordered set (species), D is a mapping from A into a
collection of inhabited sets, and I is a mapping defined on pairs of elements of A and predicate symbols, or pairs of elements
of A and constants such that (for → , →  →  A)

(a)
(b) for k-ary P
(c)

For 0-ary predicate symbols where

D(I) is the “domain function.” The interpretation of a first-order language by a Kripke model is defined inductively. We
suppose that the language contains constants for all elements of and suppose a is denoted by . Where only closed formulas are
considered, we have the following definition:

(a)
(b)
(c)
(d)
(e) for no → ,
(f) iff for all → → →  and for all b→ D(→ ),
(g) iff there is an → → D(→ ) such that
(h) iff for all

is usually read as “→  forces S,” or “S is true at → .” On the basis of 1, we can read it as “S is fulfilled at → .” It is worthwhile to work
through each of the clauses (a)-(h) to see what they mean on this interpretation. Intuitively, we think of mathematical research
as progressing in stages in time. We view S as the expression of an intention, and the elements of A as stages in time at which
we may or may not have evidence about such intentions. We should have a partial ordering of the stages and not, for example,
a linear ordering, because at a given stage there will typically be for a mathematician M various possibilities about how his/
her knowledge might progress. M might even stop attempting to gain knowledge altogether. We think of M as not only having
evidence for truths at given times, but also as possibly acquiring evidence for objects as time progresses. The models also
postulate a monotonicity condition on fulfillment: intuitively, M does not forget at later stages when S is fulfilled at some
earlier stage, and once a conclusion is reached no additional information will cause it to be rejected. This represents a certain
idealization of human knowledge. If the intention expressed by S at stage a is not fulfilled, then we may think of it as empty.
To say the intention is empty does not mean that S is not directed for M, or not meaningful for M, but only that at →  it is not
fulfilled. Hence we can speak of empty and fulfilled intentions or cognitive acts at a given stage in time. Intentions that are
empty at one point in time may later come to be fulfilled, or frustrated. By viewing the models as tree models in the standard
way one gets a graphic representation of fulfilled and empty intentions in alternative courses of possible experience. As in our
discussion of 2, intentions S that are empty can be under stood as expectations or anticipations. To say that →   S is thus to say
that the expectation expressed by S is realized at → .

Now define K  S iff for all →   A, →   S; and  S iff, for all K, K  S. Also,  S iff in each K such that if, for all 
, , then K  S. It is known that  in intuitionistic first-order logic iff  S. For Kripke models, proof of a
proposition amounts to fulfillment in all models. One might relate this to the sense of “necessity” that a proof is supposed to
provide, that is, not just fulfillment in some models but fulfillment in every model, or in every model in which assumptions
are fulfilled. The countermodels provided by Kripke semantics to some propositions of classical logic show that we do not
have evidence for the necessity of those propositions. However, the proof that is classical. A constructive completeness proof
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has not been forthcoming. One could view Beth and related models as variations on capturing some of the ideas we have been
discussing.
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4
HOW TO SAY THINGS WITH FORMALISMS

David Auerbach

SUMMARY

Recent attention to “self-consistent” (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel
Second Incompleteness Theorem and its effect on Hilbert’s Program. The traditional rendering and consequence is defended
with new arguments justifying the intensional correctness of the derivability conditions.

I

The conception of formalism as uninterpreted, but interpretable, systems that was wavering into focus during the 1920s
achieved clarity in Gödel’s 1931 paper. The historical irony here is that while this clarity fulfilled one of Hilbert’s demands for
firm foundations, the Gödel results themselves have been seen as frustrating Hilbert’s central epistemological desire.

Due in part to Hilbert’s vagueness in formulating his demands, and in part to the subtlety of the issues involved, there
remains an ongoing debate as to whether the First Incompleteness Theorem scuttled Hilbert’s Program, whether only the
Second did, or whether neither did. Leaving detailed exegesis of Hilbert aside, I propose to investigate some very general
issues that arise in the course of such debate.

Hilbert wanted to save mathematics from Kronecker’s constructivist critique, a critique made pointed by the antinomies of
set theory. Hilbert, however, shared some of Kronecker’s basic epistemological scruples and thus proposed, on one
interpretation of his project, to salvage the nonconstructivist part of mathematics by making it meaningless but helpful.

This instrumentalist reading of Hilbert is arguable. Or rather, “meaningless” might be taken only as Fregean meaningless.
It is not that the nonfinitary mathematics is true because, inter alia, its terms refer, but that its terms refer because it is true.
The Hilbert Program then aims at making sense of this notion of truth prior to reference. This would make Hilbert what we
would now call a meaning-holist. For present purposes I need not choose between these Hilberts; the common core is the
claim that the theorems of mathematics get all of their acceptability from system-wide considerations and not from the one-by-
one truth of the theorems or axioms. His enduring insight was that the representation of theories about infinitistic matters as
finitistic objects (formalisms) gave one a finitistic handle on the nonfinitistic. Here is the standard story in brief.

Some parts of mathematics are about finite objects and finitistically establishable properties of them. The “upper bound” on
this conception of finitary mathematics is the notion of the “potentially” infinite, as exemplified by the sequence of natural
numbers. (It is, of course, a matter of some dispute as to how to mark precisely, in extension, this distinction.) This part of
mathematics the Hilbertian treats contentually: questions of truth and belief arise and, roughly speaking, it has a Fregean
semantics continuous with that of nonmathematical concrete language.

The rest of mathematics consists of ideal pseudo-statements whose only role is the efficient and secure calculation of
contentual statements. (The noninstrumentalist Hilbert would put this: the rest of mathematics consists of ideal statements
whose truth is explicated by their role in the efficient and secure calculation of contentual statements.) Hilbert wanted to
assuage Kronecker’s epistemological doubts that rendered ideal sentences problematic. But Hilbert thought that they
possessed a significance insofar as they were useful in deriving real statements. This usefulness arises because a finitistic
proof of a real sentence might be unfeasibly long or difficult, whereas a proof that took a shortcut through the infinite might
be shorter or at least easier to find.1 Along with this explanation of the usefulness of the ideal, Hilbert needed a certification of
its safety: that is, that there is no ideal proof of a false real proposition. This is real-soundness.

Hilbert saw the then nascent conception of formalism as vital at this point. If ideal proofs could be finitistically represented
as manipulations of concrete symbols and strings of symbols, then a real proof about ideal proofs becomes a feasible notion.
Hilbert also thought that the combinatorial properties of concrete symbols were the real content of arithmetic; in this way the
entire actual content of mathematics becomes metamathematical. All real mathematics is about symbols (and finitary systems
of symbols). This answers Kronecker’s complaint that the content of mathematics should be exhausted by the elementary
theory of numbers.



The Hilbertian would like a finitistic proof of real-soundness; however, real-soundness of T implies consistency of T and, if
T includes finitistic reasoning, T cannot prove T’s consistency. So finitistic proofs of real-soundness are a forlorn hope and
the epistemological goal of Hilbert’s Program is unattainable.2

There are two related matters in this brief story that I wish to disinter. The first is the cavalier manner in which talk of
mathematics is replaced by talk of formal theories—in which theorems about formalisms are used to motivate conclusions
about mathematics proper. The second is the very much related issue of the sense in which consistency is expressed in a
formalism. These are not only hard to get straight, but positions on these matters are often difficult to extricate from the
viewpoint being argued. I will be arguing that once these buried matters are exhumed and examined, we will be able to safely
rebury Hilbert’s Program.

II

In an earlier paper,3 I argued that there is a considerable distance between the technical result about formalisms that Gödel
sketches in Theorem XI and since known (in various generalized forms) as the Gödel Second Incompleteness Theorem and its
standard gloss. The standard gloss states that no sufficiently strong formal system can prove its own consistency or (as above)
T cannot prove T’s consistency, for Ts that extend PA. Note that the first theorem makes no claim about the content of its
underivable sentence. What would smooth the path from the mathematical theorem to the philosophical gloss are the Positive
Expressibility Thesis (PET) and the Negative Expressibility Thesis (NET):4

PET The underivable (in T) sentence of the Gödel Second Incompleteness Theorem does express consistency.
NET No derivable (in T) sentence expresses consistency.

Detlefsen (1986), in an intriguing resurrection of Hilbert’s Program, argues that NET has not been established. He exploits the
fact that special problems arise in looking for a satisfying account that would establish PET and NET. These problems, and
technical machinery for ameliorating them, have recently become more widely known. I sketch them here, focusing on Peano
arithmetic and its formalization PA.

In proving the First Incompleteness Theorem a formal predicate is constructed that numeralwise expresses is a derivation
of, and from this predicate is constructed the famous Gödel sentence. Letting Prf(x, y) be an arbitrary predicate that numeralwise
expresses is a derivation of, the Gödel sentence is where k is the Gödel number of a formula provably (in PA) equivalent to Many
formulas numeralwise express is a derivation of, and any of them will suffice for the First Theorem. If we now construct as a
plausible candidate for a consistency sentence, we get the problem that some such sentences are trivial theorems. The classic
example uses Rosser’s derivability predicate5 but other constructions have been studied.

So either NET is false or we can find some reason to exclude Rosser-type predicates. Now we can find some ways to
exclude them; but in the insightful and important Chapter IV of Detlefsen (1986) it is argued that these ways are not reasons.

The way that Detlefsen considers descends from the HilbertBernays derivability conditions. In particular, the formalization
of what Detlefsen calls local provability completeness, LPC, plays the crucial role. LPC is simply

LPC      If
and its formalization is6

F-LPC     
F-LPC is, of course, familiar in modal guise, as it appears in modal treatments of provability: Detlefsen argues that no

argument for the necessity of F-LPC, as a condition on correct derivability predicates, works.
It is instructive to look at an untenable attempt at establishing NET, due to Mostowski, to see what can go wrong.

Mostowski’s goal is to justify F-LPC by seeing it as part of the project of representing as many truths about provability as
possible.

Bew(x) is naturally viewed as the existential generalization of Prf(x, y) where Prf represents the derivability relation. Here
“represents” has the purely technical meaning of “strongly represents” or “numeralwise expresses”—whenever a is a
derivation of b, is a theorem and whenever a is not a proof of b, is a theorem. This enforces the extensional adequacy of the
representation of is a derivation of, but does not yield F-LPC.

But not all truths are particular, that is, numeralwise, truths. So perhaps we should demand that all truths concerning
provability be represented. The first stumbling block is that Gödel theorems show the impossibility of this for precisely the
case in point. So we weaken the demand to one that as many truths as possible be represented.

But for the latter proposal to make sense we have to construe it as demanding that certain truths be represented. But which?
An answer that lists F-LPC is circular with respect to the project at hand, which was justifying F-LPC. (Any variation on a
purely quantitative approach that subsumes F-LPC will run into the following problem: we will not be able to codify any truth
about unprovability. Any assertion of unprovability is tantamount to consistency.)
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Detlefsen is certainly right about this strategy (as well as those of Prawitz and Kreisel-Takeuti) of justifying the derivability
conditions. Those strategies, as Detlefsen demonstrates,7 attempt to prove too much. We can do better by attempting less and
relocating disputes about F-LPC to their proper philosophical arena. I will return to this claim in Section V.

III

Under what conditions do we legitimately ascribe meaning to the formulas of a formalization; and what do these conditions
permit by way of inference concerning the subject matter of the ascribed meaning? To make this both concrete and simple:
what justifies the (correct) claim that in formalized Peano arithmetic we can prove that 2 is less than 3 or that addition is
commutative? In much of what follows there is a tedious dwelling on standard technical moves that in technical contexts are
treated off-handedly or invisibly; here, for philosophical purposes, we linger over them.

What makes the formalism we call Peano arithmetic arithmetic is more than the formalism; we do not need something as
sophisticated as the Skolem-Löwenheim theorem to tell us that uninterpreted formalisms are uninterpreted.

Formal languages permit many interpretations, and except for perhaps in some contingent historical sense, no interpretation
is privileged other than by stipulation. Furthermore, for purposes that exceed mere consideration of truth conditions in an
extensional language, the nonidentity of ways of giving the interpretation is relevant. Note that this extends to the
interpretation of quantification, via the specification of the domain.8

We will want an account of “ways of giving” to extend naturally to allow the usual overview of the First Theorem as
proceeding by constructing a formula that says that it is not derivable; and of the Second Theorem as demonstrating the
nonderivability of consistency. (The First Theorem actually has very little to do with interpretation. It is best seen as a remark
about formalisms, independent of their possible interpretations, and the machinery necessary to prove it is indifferent to any
rich sense of interpretation. Thus Rosser’s proof of the First Theorem does not proceed “by constructing a formula that says it
is not derivable.” But this is precisely the desirable expected result yielded by the intensional account being developed.) To
avoid using the awkward “ways of giving” and the already otherwise employed “interpretation,” I will use “reading” to talk
about the richer sense of interpreting formulas sketched here.

The recasting of the language of formalized arithmetic so that we can plausibly say that a certain sentence of arithmetic(!)
says that ω  is a quantifier, that G says that G is not provable, that ConT says that T is consistent, is not accomplished directly,
by paralleling the arithmetic case.

As with arithmetic we start with the informal language, a piece of technical but natural language, with which we theorize
about the syntax of formalisms. This language has terms for such entities as , ω , and predicates like is a formula, is a derivation
from, etc. The objects that this language treats of include the symbols of PA and pairs and sequences of them. Following
Boolos, we call the language the language of Syntax and the informal theory we couch in it is Syntax.

We do not directly specify a reading of the language of PA in terms of the language of Syntax. The syntactic reading of PA
is, unimportantly, parasitic on the arithmetic interpretation.9 We first set up a correspondence between the objects of PA and
the objects of Syntax. This is Gödel numbering. This is used to induce a correspondence between the terms and formulas of
PA and the names and predicates of Syntax. The initial correspondence, at the level of the primitives of Syntax, is extension
respecting—a term of PA corresponds to a name in Syntax by denoting the Gödel number of the object denoted by that name.
Definitional compounds in Syntax are then merely mimicked in PA. The initial coextensiveness guarantees the various useful
meta-theorems about this re-reading of PA: sentences of PA are derivable in PA only if their counterparts are demonstrable in
Syntax.

This correspondence makes no mention of the axiomatization of PA; the same old extensional interpretation of PA now
induces a way of reading the formulas of PA as syntactic remarks. It is, of course, a different collection of predicates of
(conservative extensions of) PA that will be of reading interest; typically, those whose extensions are the usual syntactic
categories and which have “natural” readings into Syntax.

We abet and exploit the closeness of the correspondence by using, for certain terms and formulas of PA, orthographic
cousins of their syntactic counterparts.10 A rather large amount of Syntax can be mirrored in PA; crudely speaking, it is the
Gödel Second Incompleteness Theorem that puts an upper bound on what can be mirrored.

It may strike the reader that there is a freedom here that was not present in the arithmetic interpretation of PA. Certainly,
the strict copying into the language of PA of definitions and proofs in Syntax constrains the correspondence between PA and
Syntax more than mere co-extensiveness would. But no analogous strictures were stated concerning the primitive
correspondences from which the whole is built up. But there are such strictures. The term that corresponds to a name in
Syntax is a numeral of PA. Without such a stricture the Gödel theorems would not be forthcoming and certain
quantificational facts about provability would not even be statable.

Let Bew(x) be a formula of PA that results from a long series of definitions in PA, as just outlined, such that we can read Bew
(x) as “x is derivable.” We can read it like this because (i) in the standard interpretation it is true of just the (Gödel numbers
of) theorems; and (ii) it was built up in PA by mimicking the standard definitions of formula, axiom, variable, free for, etc. in
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Syntax. It is notable that condition (i) can hold without condition (ii) and that some formulas for which condition (i) but not
condition (ii) hold are sufficient for a proof of G1 but not of G2.11 

IV

I have sketched an arithmetic reading of the language of PA and a syntactic reading of the same language. Thus the very same
formula can be read in either way. While these readings concern, so far, the language of PA, the justification of their
strictures develops from the use to which we put formalisms (i.e. language as well as axioms and a notion of derivation).

A use to which we put formalisms is the “capturing” of facts about the intended reading. One aim is to characterize a
syntactic mechanism that isolates formulas whose readings are true. (This is the successful component of Hilbert’s Program.)
We do this by specifying the notion of a derivation. Furthermore, we often have in mind the additional requirement that being
a derivation reflect the notion of proof in a straightforward way: readings of derivations should be proofs. This is the
epistemological applicability requirement:

EAR If A is informally provable from the principles that T
formalizes, then A is derivable in T; and derivations of
A in T formalize proofs of A.

Our account of “boldfacing,” via structure-sensitive readings, yields EAR, establishing PET and NET. The real work, in
particular cases, is giving enough sense to the boldface mapping to support EAR. Since is provable is an intensional predicate
the need for a structure-sensitive notion, sketched above as a “reading,” should be no surprise.12

Built into our characterization of the reading of formulas of PA as arithmetic and as syntactic was a respect for logical form.
Thus, if Fa is read as “14 is even,” then ω xFx is read as “something is even.” When we add a notion of derivation to that
language of PA to get PA proper we also obtain a useful result: there will be a derivation of ω xFx from Fa.

We need beware a potential confusion. In giving the syntactic reading of the language of PA we did not use a notion of
derivation; derivation merely happened to be one of the notions of the theory, Syntax, into which we were reading the
formulas of PA. Derivation makes a second appearance, which we are now noting, as a part of PA, the neutral formalism.
More precisely, we now consider the full-fledged notion of is a derivation (of PA), complete with specification of the usual
axioms. 

The usefulness of our structure-sensitive readings exceeds the modest consequence that theorems of PA tell us truths of
Syntax; the surplus value is that the derivations of PA correspond to proofs in Syntax. So the appropriate start to a
justification for the usual gloss of the Gödel Second Incompleteness Theorem amounts to the observation that any purported
proof of CONPA, using the machinery formalized in PA, would give us a derivation of CONPA, which is what the purely
technical result tells us cannot happen.

Here is the situation so far. Extension-respecting readings of PA are inadequate even for explicating the representation of
arithmetic statements in PA. Structure-respecting readings reflect our actual practice in reading formal formulas, and the
somewhat devious case of the syntactic reading of the formulas of PA was partially detailed. When we add the usual
axiomatization in PA we get useful meta-theorems linking the derivability of certain formulas in PA with the establishment of
theorems of (informal) Syntax. (Similarly, but less to the present point, we get useful meta-theorems linking the derivability
of certain formulas in PA with the establishment of (informal) arithmetic.)

I now need to link the observations of Section II with those of Section III. One fact Syntax can prove about Bew is that if ω PAA
then ω PAA Bew([A]). So PA, insofar as it is adequate to Syntax, ought to be able to derive if ω PAA then ω PABew([A]). In
other words,

F-LPC
where the notation used reflects the stipulations of note 11. And, of course, F-LPC holds because the way we constructed

Bew13 excludes Rosser-style predicates. Thus, this justification of F-LPC does not depend on the Mostowski, Kreisel-Takeuti
or Prawitz arguments that Detlefsen rightly criticizes. However, in considering arguments for F-LPC, and hence for NET,
Detlefsen presents positive arguments against F-LPC; it is to those that I turn in the next section.

V

The notion of reading partially14 developed above is the only viable candidate I know that explains the uses to which we put
formalisms. As I read Detlefsen, his real quarrel is not with such a notion, nor even with constructions of Bew that guarantee
F-LPC. I think he thinks that even if EAR is true it has no deleterious effect on the instrumentalist Hilbertian. For, quite
simply, the Hilbertian is not interested in the same notion of proof that we are.
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Hilbertians should grant that F-LPC is an unarguable fact about any Bew that really represents derivability—and further
grant that this notion of derivability nicely captures the classical notion of proof. The Hilbertian’s radical proposal is that our
classical notion of proof needs amendment and it is that amended notion that belongs in the construction of a consistency
sentence (cf. Detlefsen 1986:121ff.). But this is prior to any formalization. The derivability conditions appear because
Detlefsen finds inspiration for an amended concept of proof in the Rosser predicates.

Detlefsen is careful to say that he is not, for various reasons, proposing any particular Rosser-style concept of proof as a
candidate for Hilbertian proof. He does, however, regard them as good models for the right sort of approach to proof on an
instrumentalist basis; and he defends Rosser proofs against certain objections (see Detlefsen 1986:122ff.).

Nonetheless, I think the peculiar nature of such a notion of proof is worth dwelling on, particularly since our rich notion of
a reading suggests a useful heuristic for thinking about derivability predicates.

Confronted with a derivability predicate that does not satisfy F-LPC we have reason to be wary about statements made that
utilize it. Consider Edna, whose set of beliefs concerning formalisms is precisely characterized by our syntactic reading of PA.
Amongst her beliefs are beliefs about PA. When Edna says that if A is derivable in PA then it is derivable in PA that that A is
derivable in PA, we have every reason to believe her. For, by our stipulation about the nature of Edna’s beliefs, this amounts
to F-LPC. If challenged, Edna can demonstrate F-LPC, having at her command the power of induction and the inductive
definitions of Syntax.

Edna’s situation differs from Ralph’s. Ralph’s set of beliefs is also partly characterized by PA together with a deviant
syntactic reading: Ralph’s beliefs about formalisms are characterized in terms of some Rosser-style derivability predicate.
That is, when Ralph uses derivable in a belief we read it as a Rosser-style predicate. Unlike Edna, Ralph believes that
CONPA, although our report of this would be less misleading if we said: Ralph believes that CON*PA. Note that CONPA and
CON*PA are distinct, nonequivalent sentences of PA. In fact, an even less misleading report of Ralph’s belief is:

Ralph believes that the largest consistent subsystem15 of PA is consistent.
That PA is consistent and Ralph’s belief that the largest consistent subsystem of PA is consistent are radically different

beliefs, although PA is the largest consistent subsystem of PA. Leopold, a skeptic about PA’s consistency, would hardly be
reassured by Ralph’s assertion of his belief, once he understood the content of Ralph’s belief. Nor, of course, can Edna
reassure him since she does not believe that PA is consistent. Of course, properly understood, neither does Ralph. Neither
Edna nor Ralph have the right de re belief about PA necessary to assuage Leopold’s worries.

We know that

1 Ralph can use his notion of derivability to prove anything Edna can, and
2 Ralph knows that his notion of derivability will never produce a proof of ω .

But Ralph does not know 1.
The recommendation that we reform our mathematical practice and replace the canonical notion of derivability with a

Rosser-style one will indeed assure us, quite easily, of consistency. But that epistemic gain is offset by the epistemic loss
occasioned by not knowing what it is that is consistent.

The epistemic trade-off is most easily seen by looking at Feferman’s version of a Rosser system. Taking some enumeration
of the (infinitely many) axioms of PA, we can define the notion of an initial set of axioms. Then let R={x|x is a finite, initial,
consistent set of axioms} be Ralph’s version of the axioms of PA. R is the set of axioms of PA. Ralph’s notion of derivation
now has the following character.16

In reasoning about the formalism derived from R, Ralph generates ordinary derivations, d1, d2, d3, .… If di’s last line is ω .
he goes back and tosses out all derivations using axioms no smaller than the largest one in di. He proceeds, always tossing out
such derivations, and every time a derivation of ω  is encountered the toss-out procedure is repeated. An R-derivation is a
derivation that is never tossed out. 

Ralph can decide whether a given derivation is an R-derivation, although neither he nor Edna can know that all derivations
are Rderivations. Leopold cannot rationally worry that R-derivation is insecure. But he can, and will, be skeptical about the
extent of Ralph’s knowledge.

The instrumentalist can reply that this is just fine; a secure system of unknown extent is better than an insecure system of
known extent. Without direct quibbling about the insecurity of PA, I would point out that our (nontechnical) interest in the
system produced by R-derivations (or similar Rosser systems) is proportional to the strength of our belief that it is co-
extensive with PA. But the stronger this belief, tantamount to consistency of PA, the less reason to bother with R-derivations.

The instrumentalist’s perfectly coherent option here is to point out a divergence of interests—that “our” interest is not hers.
Detlefsen’s Hilbertian can live happily with a possibly pared down ideal mathematics, even one of unmappable extent. The
instrumentalist is under no obligation to lay claim to our “secret” knowledge of the co-extensiveness of PA with the Rosser
system. The merits (and demerits) of this choice, however, lie beyond the scope of this paper.17
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A final point about the double role of PA. Unless one takes seriously the way in which the syntactic reading of PA yields a
notion of a formalism talking about formalisms that include it, needless puzzles arise about the need for F-LPC. A useful way
of looking at this involves the related “puzzle” about proofs of the Gödel Second Incompleteness Theorem for systems
weaker than PA.

Typically, the first theorem is shown to hold for extensions of Q (a finitely axiomatizable system) or perhaps for some
other weak system like PRA. The conditions on a system, needed for a proof of the Gödel First Incompleteness Theorem, are
well known and simple to state. The Gödel Second Incompleteness Theorem, however, is stated in full generality for
extensions of a much stronger system than Q, namely PA. Of course the technical reason for this is that F-LPC will not be
available in weaker systems; but it is worth seeing why, conceptually, this is not a mere ad hoc contrivance.

What underlies the presence of F-LPC is an ability to deal with formalisms by being able to comprehend the essentially
inductive definition of a formalism. Before Ralph learned as much as he did, his syntactic beliefs were characterized, not by
PA, but by Q. Similarly with Edna. We maintain, for the moment, the same readings of their beliefs.

What should Leopold make of the beliefs about PA or Q entertained by the younger Ralph or Edna? They do not have any.
What should we make of Edna’s possible belief represented by CONQ? First of all she will not believe it.18 The delicate
question, however, is how we should read it or Ralph’s deviant version (which he can derive). In this case neither Edna nor
Ralph know what they are talking about; they do not know the first thing about formalisms. Neither of them understand (have
beliefs about the defining characteristics of) formalisms in general or PA or Q in particular. They cannot even entertain the
propositions about PA’s or Q’s consistency. To read these weak systems as making remarks about formalisms would be to
misconstrue what they are capable of telling us.

NOTES

I would like to thank Harold Levin, Louise Antony, Joe Levine, and members of the Triangle Language and Mind Group for
helpful discussions and Michael Detlefsen for useful comments on an earlier version.

1 Detlefsen (1986) elaborates this in terms of human capabilities and the possible divergence between humanly natural modes of
reasoning and correct modes of reasoning. This should be contrasted with the treatment of these same matters by Hallett (1989).

2 Let T be a system of ideal mathematics and let S be a finitistically acceptable theory of real mathematics. There is some question as
to whether real-soundness should be taken as: [Real (A) & ω SA] or as the weaker [Real (A) & A. On the second formulation there
can be real sentences not decided by S, and if T proves them this does not obligate S to prove them. This is one way for a Hilbertian
to argue the irrelevance of the First Incompleteness Theorem—the Gödel sentence, though real, is not finitistically established.
Detlefsen (1990) points out that the weaker version of soundness is the plausible one.

3 Auerbach (1985).
4 From this point forward I will use the convention of boldfacing to indicate that a formal object is being referred to as well as, in the

appropriate contexts, to indicate that the formal object is the formal representation of the nonbold informal term. Consider the
simplest case: 2 names the numeral for 2. We shall be concerned with constraints on boldface mappings, particularly those that yield
the useful 2ω the only even prime, although 2=the only even prime. Ultimately we want:

CON(PA) is not derivable; hence CON(PA) is not provable by methods formalized by PA,

as a consequence of an adequate notion of boldfacing.
The word “derivation” will apply to certain formal objects, while “proof refers to those unformalized items discovered in the daily

practice of working mathematicians.
5 Let Prf’ be

which reads “x is a derivation of y and there is no smaller derivation of the negation of y.” For consistent formalisms
like PA, Prf� is co-extensive with Prf and numeralwise expresses what Prf does. A more

The result of replacing Prf with either Prf’ or Prf” in the “consistency” formula is a trivial theorem. This dooms
numeralwise expressibility as a sufficient condition for capturing dicta. See Auerbach (1985) for more details.

6 See note 11.
7 See Chapter IV of Detlefsen (1986).
8 Logic texts and the technical literature are often careless about the intensional aspect of interpretation. Mates contains a brief

discussion of this. Boolos, in the chapter on Peano arithmetic in the forthcoming second edition of Boolos (1978), is explicit: “S
expresses the commutativity of addition because it is, as we suppose, interpreted in accordance with the usual interpretation N of PA,
as we standardly give that interpretation.”
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9 It need not be this way. One could directly formalize Syntax in its own suitable language and prove the Gödel theorems directly for
(and in) it. As far as I know it is never done quite this way. However, some approaches are certainly in this spirit; Smullyan’s various
abstract versions of the Gödel theorems are based on stripped down formalizations of Syntax and the detailed framework for dealing
with the Gödel results in a purely syntactical manner is supplied by his Theory of Formal Systems. Computability Theory, Semantics,
and Logic Programming by Melvin Fitting is a recent modern treatment that avoids the arithmetic route.

10 Examples help:

where and are the numerals for the Gödel numbers of those symbols.
11 If F is a sentence of PA, how do you write in PA that F is a theorem? stripped down Rosser-style predicate is Prf”: Well, F has a

Gödel number; call it f. Furthermore, there is a term in PA that names f, in fact many. We define [F] as the numeral for f. The
standard way to write in PA that F is a theorem is Bew([F]). It is not in general true, if t is a term that denotes f, that Bew([F]) ω  Bew
(t) is a theorem. If we restrict ourselves to terms for provably recursive functions then the biconditional is a theorem.

Now suppose that F is an open sentence of PA. As it stands, both Bew(x<y) and Bew([x<y]) are syntactic nonsense; we would like
to give sense to such a formula so that we could say Bew(x<y) is true of (2, 4). Well, what do we want this to mean? Presumably that
a certain sentence is a theorem. Not just any sentence with terms denoting 2, 4 and a formula whose extension is is less than, but the
sentence 2<4. So we make Bew([F]) be true of some sequence of numbers just in case the substitution of the standard numerals for
those numbers into F results in a theorem. Note that machinery like this is necessary even to make sense of F-LPC and to define all
the appropriate varieties of term substitution.

12 Note the following feature of the boldface mapping. Let A be a sentence of English in the vocabulary of the arithmetic interpretation
of T; and let the arithmetic formula it interprets be A. Suppose A is a theorem of T. Now let S be a rewriting of A into the vocabulary
of the syntactic theory of T, constrained (only) by co-extcnsiveness, with the presumed Gödel numbering as the basis. Facts: Any
such S is true. S need not be A. Indeed, S need not be a theorem. Moreover, if A were a non-theorem, S might be a theorem.

13 My construction of Bew, based on faithfulness to the notion of reading the formula syntactically, descends from the rigorous account
of Feferman (1960). This assures us, modulo a concern about the representation of the axioms, of F-LPC.

In Feferman’s generalization of the Gödel Second Incompleteness Theorem, the boldface mapping (in Feferman dotting an
expression corresponds to our boldface) of complex syntactic notions is achieved by straightforward transcription of their (often
inductive) definitions. In particular, the derivabiliry predicate is a complex formula that encodes a usual textbook definition of is a
derivation of. The basis of such a definition is the set of axioms. This definition of is a derivation of is the same across all
formalisms, save for reference to the axioms. (One assumes a fixed logical apparatus.)

How is reference to the axioms handled? Since there are, in the case of PA, infinitely many axioms, they are formalized via an
open sentence. Many distinct open sentences will numeralwise express the same set of axioms; this creates the same state of affairs
sketched above with respect to variant (and deviant) proof predicates. Only certain of the open sentences that numeralwise express
the axioms of T really express the axioms of T. Feferman is able to characterize a property, being an “RE-formula,” that guarantees
correctness. The “RE” terminology comes from “recursively enumerable.” In this case, it roughly means that the formula has the form
of an RE definition; it does not mean (just) that the set picked out is recursively enumerable, but that it is picked out in a way that
guarantees that the extension is recursively enumerable. Feferman (1960) and Monk (1976) give the details.

Those who have slogged through Gödel’s original paper, or some other detailed proof, will remember that a great deal of trouble is
taken, not merely to define, in arithmetic, the right syntactic categories but to define them in certain ways: in particular, with bounds
on the quantifiers. The purpose of this is to insure, not just that the sets defined are numeralwise expressible, but that the very form of
the definition guarantees it. So a prover of the First Theorem shows that the definitions pick out numeralwise expressible sets by
adverting to the form of the definitions. When the prover in question is PA itself, as in the context of the Second Theorem, we need a
formalization of appropriate form. This, in effect, is what Feferman gives us with REformulas. An RE-formula is one that
canonically, as a matter of form, picks out a recursively enumerable set.

This approach individuates formalisms by their “presentation”—and co-extensive presentations are not intersubstitutable in the
context of the Second Theorem.

More precisely: if ω (x) is a formula that numeralwise expresses the axioms of T, a proof predicate can be constructed in a standard
way from a. Since many as numerically define the same set of axioms, different formal proof predicates will be defined for the same
axioms, one for each a. Deviant as are bizarre ways of presenting the axioms— bizarre enough to carry a trivial assurance of
consistency.

14 “Partially,” because I do not think enough has been said about the initial steps in the assignment; in particular the role of numerals as
proper names has been left unexamined here. I leave that for another paper, where I will take up a somewhat different defense of the
derivability conditions. There I will argue that Mostowski should not have aimed at all truths and settled for some, but rather should
have aimed at analytic truths and gotten them all.

15 Many different notions of subsystem will do here. Ralph need understand very little about the notion of subsystem; no more, in fact,
than the bare terminology suggests. For concreteness the following will do: the nth subsystem is the formalism characterized by the
axioms <n. PA is not finitely axiomatizable, and so will have infinitely many subsystems in this sense. Some more details are
supplied below.

16 Cf. Visser[1989].
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17 Detlefsen, in a private communication, has pointed out to me that Detlefsen (1990) contains a discussion of this point. Detlefsen
emphasizes the conceptual separability of “locative” concerns (what are the theorems) and “quality-control” concerns (soundness).
Given this separability it is open to the Hilbertian to demand different sorts of evidence in the two cases. Detlefsen makes the case
that the Hilbertian need not give a finitary answer to both concerns.

18 See Bezboruah and Shepherdson (1976). 
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5
SOME CONSIDERATIONS ON ARITHMETICAL TRUTH AND THE

ω -RULE
Daniel Isaacson

I dedicate this paper to my mother, Ruth E.Isaacson.

SUMMARY

This paper explores a notion of arithmetical truth with respect to which it is claimed that Peano arithmetic is complete. A
proposition in a language of arithmetic is arithmetical in the sense at issue here if its truth or falsity is perceivable directly on
the basis of an articulation of our grasp of the fundamental nature and structure of the natural numbers, or directly from
statements which themselves are arithmetical. The claim that Peano arithmetic is complete with respect to this notion of
arithmetical truth is tested by considering whether the ω -rule in some form which allows determination of the truth value of a
proposition undecided by Peano arithmetic can itself be arithmetically justified.

If everything provable in a given system for arithmetic is true, then the truth condition for the universal quantifier validates
extension of that system of arithmetic by one application of the ω -rule. It is argued, however, that the claim that everything
provable in Peano arithmetic is true, while itself true, is not arithmetically true, and similarly for the weaker claim, sufficient
to validate one application of the ω -rule to prove a true statement where , that for each natural number n, if then . It is then
noted that the ω -rule is validated by ω -consistency, but that ω -consistency of Peano arithmetic, even restricted to primitive
recursive formulas, is not arithmetically justifiable, since ω 0 transfinite induction or ω 1-reflection and equivalently the
ParisHarrington statement are none of them arithmetical. We then consider extension of Peano arithmetic by the finitely
applied ω -rule, in which the infinitary condition of the premise of the ω -rule is finitely expressed by a single sentence using
the arithmetized proof predicate for Peano arithmetic. But extension of Peano arithmetic by this form of the ω -rule is
equivalent to extension of Peano arithmetic by ω 0 transfinite induction, and so still not arithmetical. If this rule is restricted to
primitive recursive formulas, its justification as an extension of PA is tantamount to establishing the consistency of PA, again
not arithmetical. We then consider the extension of finitistic (primitive recursive) arithmetic by the finitely applied ω -rule, and
see that this extension is equivalent to transfinite induction of order type ω ω , which is indeed arithmetically justifiable, since it
is provable in Peano arithmetic, but also thereby this extension proves nothing not already provable in PA. Finally we consider
some hybrid forms of the finitely applied → -rule potentially intermediate between the two already considered and find that,
insofar as they are arithmetically justifiable, they prove nothing beyond Peano arithmetic, and insofar as they extend Peano
arithmetic, they are not arithmetically justifiable.

The conclusion is that this investigation reflects the stability of this notion of arithmetical truth and its coincidence with
Peano arithmetic, and also thereby encourages the view that we have identified a natural type within the space of mathematical
knowledge.

I.
ARITHMETICAL TRUTH

In an earlier paper (1987) I adumbrated a conception of arithmetical truth with respect to which the first-order axiom system of
Peano arithmetic was to be seen as complete. Given the existence of sentences in the language of arithmetic which are not decided
by Peano arithmetic, it must be, of course, that on this conception being expressible by a sentence in a first-order language of
arithmetic (say with nonlogical constants 0, S, +, •, <) does not itself render a proposition arithmetical, though this condition
is indeed necessary (that a proposition, to be arithmetical, must be expressible in a first-order language in which quantification
is over the natural numbers reflects the minimum condition that an arithmetical proposition must be about the natural
numbers).1 The further (inductive) condition for a proposition to be arithmetical is that its truth or falsity be perceivable
directly on the basis of an articulation of our grasp of the fundamental nature and structure of the natural numbers, or directly
from statements which themselves are arithmetical.



Expressed in these terms, the notion of a statement in the language of arithmetic being arithmetical is epistemic. It has to do
with the way in which we are able to perceive the statement’s truth or falsity. At the same time, insofar as this concept proves
cogent, its extension admits precise determination, namely as the set of sentences whose truth is decided by Peano arithmetic.

The axioms of Peano arithmetic are arithmetical in this sense, in that they are expressed in a first-order language of
arithmetic, and are directly perceivable as true from our grasp of the fundamental nature and structure of the natural numbers,
articulated in our understanding of the natural numbers as the smallest structure closed under a one-to-one operation of
succession and containing an element itself not a successor of any element2 (note that this categorical characterization is
second-order).

A proposition expressible in the language of arithmetic is nonarithmetical when its truth, or if it is false that of its negation,
cannot be seen directly from our grasp of the basic structure of the natural numbers, and any proof of it uses concepts whose
properties required in the proof are not themselves graspable in purely arithmetical terms. Such concepts are hidden, in not
occurring overtly in the expression of the proposition in the language of arithmetic but being nonetheless present, as revealed
in the proof of the proposition. They are higher-order in a sense which I will discuss presently. In the case of the Gödel sentence
for Peano arithmetic, the hidden concepts are provability in the formal system of Peano arithmetic and, most crucially,
consistency of Peano arithmetic. That is, to perceive the truth of the Gödel sentence (presented purely in the first-order
language of arithmetic) we must understand that it expresses the condition that this sentence is not provable in this given formal
system and see that this formal system is consistent. To cite another example of incompleteness of Peano arithmetic, let me
also mention Goodstein’s theorem, which asserts finiteness of sequences of natural numbers generated by a given simple
effective operation. Determination of the truth of this result is by the perception that Goodstein sequences of natural numbers
code descending sequences of ordinals less than ω 0, along with the perception that an ω 0 linear order is a well-ordering.

I want to claim that if a proposition expressed in the language of arithmetic has a derivation in first-order logic from
arithmetical propositions, then it is itself arithmetical. (This claim possibly needs qualification in respect of truths occurring as
the conclusion of unsurveyably long derivations in first-order logic; I discuss this point in Section 6 of my (1987) paper.) It
might be argued, against this view, that dependence on logical derivation renders a proposition non-arithmetical, in the sense
being urged here, since the justification of logical deduction is in terms of the general concept of truth, rather than from our
basic conception of the natural numbers. I will address this issue briefly here, and also say something more on it later, in
Section III.

The point is that an account of arithmetical truth can, and indeed must, proceed from the basis that we understand the
language of arithmetic. This language includes the specifically arithmetical notions of “zero,” “successor,” “plus,” “times,”
and possibly others, which we understand through our grasp of the structure of the natural numbers. But it also must include
such notions as “and”, “or,” “not,” “if…then… ,” “all,” “some.” Our grasp of the latter notions validates the principles of first-
order logic. Insofar as we understand the first-order language of arithmetic, we are in possession of a basis for perceiving the
correctness of the principles of first-order logic, as well as the truth of each axiom of Peano arithmetic as it applies to the
structure of the natural numbers. Accordingly, each (or at least each surveyably derivable) theorem of Peano arithmetic is
arithmetical.

The question then arises whether more than the truths of Peano arithmetic, indeed whether every truth expressible in the
language of arithmetic, is arithmetical in the sense I am attempting to establish. A way to test the thesis that arithmetical truth
coincides with the axioms of Peano arithmetic and their logical consequences is to consider means by which truths in the
language of arithmetic not provable in Peano arithmetic may be established as true. In this paper I will focus on one family of
cases, based on the ω -rule, which gives rise to arguments purporting either to obliterate or to redraw this claimed boundary
between arithmetical and nonarithmetical.

Before turning to the main discussion, I want to cite, by way of elucidating the idea of such a boundary, some general
remarks by Gödel on the techniques and principles needed to decide statements undecided in Peano arithmetic which are
nonetheless finitistically meaningful in Hilbert’s sense, in particular the (standardly) arithmetized consistency statement for
Peano arithmetic. The issue here is whether such statements can be decided arithmetically.

Any reasoning which is finitistic in Hilbert’s sense is arithmetical, in the sense at issue here. Hilbert declares (1925:376–7)
that

the only tool at our disposal in this investigation is the same as that used for the derivation of numerical equations in the
construction of number theory itself,

and this passage goes on to claim that

it is possible to obtain in a purely intuitive and finitary way, just like the truths of number theory, those insights that
guarantee the reliability of the mathematical apparatus.
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Hilbert underestimated the complexity of finitistic reasoning required for this purpose and so did not anticipate the need for
abstract principles to organize that complexity. The point for the present discussion is that extensions of Hilbert’s finitism
which offer the possibility of establishing the results called for by Hilbert’s Program by providing such abstract principles are
not only non-finitistic, they are also non-arithmetical, in the sense at issue in this paper.

Gödel, citing Bernays, separates out as distinct elements of Hilbert’s conception of real (inhaltlich) mathematics the
constructivist strand and the finitist strand and considers that it is the demand for the second of these which must be dropped
(1958: 245). The constructivity which is achieved is nonfinitistic in Hilbert’s sense by its reliance on abstract rather than
purely concrete principles. Gödel characterizes the abstract concepts beyond finitary mathematics needed, in particular, to
prove consistency of formal number theory in the following terms (this passage is the opening paragraph of his (1958) paper,
as translated and revised (1972)):

P.Bernays has pointed out [footnote omitted] on several occasions that, in view of the fact that the consistency of a formal
system cannot be proved by any deduction procedures available in the system itself, it is necessary to go beyond the
framework of finitary mathematics in Hilbert’s sense in order to prove the consistency of classical mathematics or even
of classical number theory. Since finitary mathematics is defined [footnote: see Hilbert’s explanation in 1925:170–3 (pp.
376–9)] as the mathematics of concrete intuition, this seems to imply that abstract concepts are needed for the proof of
consistency of number theory. An extension of finitism by such concepts was explicitly suggested by Bernays (1935:69
(p. 271)). By abstract concepts, in this context, are meant concepts which are essentially of the second or higher level,
i.e. which do not have as their content properties or relations of concrete objects (such as combinations of symbols), but
rather of thought structures or thought contents (e.g., proofs, meaningful propositions, and so on), where in the proofs
of propositions about these mental objects insights are needed which are not derived from a reflection upon the
combinatorial (space-time) properties of the symbols representing them, but rather from a reflection upon the meanings
involved.

This passage expresses the notion of higher-order I have in mind in the idea that non-arithmetical proofs of statements in the
language of arithmetic are those which require higher-order concepts.3

Arithmetical truth does inherently involve higher-order abstract concepts in the sense Gödel speaks of here, namely (as we
have already noted) those which characterize the natural numbers as the smallest structure closed under a one-to-one mapping
and containing an element which does not lie in the range of that mapping. The axioms of Peano arithmetic are seen as true on
the basis of this higher-order conception, and are thereby arithmetical. The limit to being arithmetical is that no other
meanings (= abstract concepts) than those which articulate our conception of the structure of the natural numbers enter into
the perception of truth. Hence any statement whose truth can be perceived on the basis of axioms from Peano arithmetic
without appeal to any further higher-order concepts is arithmetical. The abstract principles which are constructive but not
finitistic by which, for example, the consistency of Peano arithmetic can be proved (such as transfinite induction over a
primitive recursive natural well-ordering of order type ω 0, or primitive recursion in higher types), are not only not finitistic,
they are not arithmetical. The nonarithmetical nature of transfinite induction of order type ω 0 is discussed in Section IV. For
now, we should note that there is no reason in general to expect constructivity to fall within the domain of the arithmetical.
Constructivity is an ideal to which we may aspire in any (or for that matter all) areas of mathematics, for example in the
theory of the real line. The concepts which are the vehicle of our understanding in a given domain of constructive
mathematics will not necessarily include and certainly may not be restricted to those by which we understand the structure of
the natural numbers and their arithmetic.

The axioms of Peano arithmetic are what result from interpreting the second-order variables of the categorical
characterization of the structure of the natural numbers as ranging over sets of natural numbers definable in a (first-order)
language of arithmetic which is strong enough to express all primitive recursive functions (e.g. with 0, S, +, • as function
symbols). This is to say that the most natural way of reading off arithmetical truths from the most perspicuous higher-order
characterization of the structure of the natural numbers results in the axioms of Peano arithmetic. Argument is still needed to
establish that no other higher-order expression of the conception of natural number, or other way of extracting arithmetical truths
from that conception, could result in perceiving the truth of a statement in the language of arithmetic lying beyond Peano
arithmetic.

It is conceivable that the cogency of this characterization of arithmetical truth could be rendered compelling by results from
mathematical logic, say as showing that Peano arithmetic is the weakest first-order theory obtained by restricting second-
order variables in the principles of any categorical higher-order characterization of the structure of the natural numbers to
properties which are definable in a first-order language strong enough to express all primitive recursive functions (though
were such a result to obtain, some philosophical argument would still be called for to establish from it the coincidence of
Peano arithmetic with our intended notion of arithmetical truth). We do not have a characterization result for Peano arithmetic
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of the strength and generality of the one I have just suggested, though there are strong partial results in this direction by A.J.Wilkie
(1981, 1987); also of great interest in this regard is recent work by Richard Kaye (1989).

This line of investigation is not the one which I pursue in this paper. Rather, I am concerned to motivate the idea that Peano
arithmetic coincides with arithmetical truth by first arguing, as we have already considered, that every statement provable in
Peano arithmetic is arithmetical, and then to confront specific arguments based on various forms of the ω -rule which purport
to show that arithmetical truth lies beyond Peano arithmetic. Refuting these counterclaims does not thereby establish the
correctness of the position they would have refuted, but I think that consideration of these arguments does provide a test of the
central claim of this paper. In the process of seeing why and how these arguments fail to refute it, we understand better the
content of the claim, and the claim gains in strength through being sustained in face of these would-be refutations. 

II.
THE � -RULE

The ω -rule, in its basic form, is the (infinitary) rule of derivation which licenses the inference, for any formula “A(x)” in the
language of arithmetic:

where the formulas of the premise include, for each natural number n, the substitution instance of “A(x)” with the formal numeral
n (underlined arabic numerals and variables will be taken to signify formal numerals for natural numbers, which for natural
number n consists in the n-fold iteration of the successor function applied to zero; “A(n)” signifies the result of substituting
for “x” in “A(x)” the formal numeral corresponding to the natural number n). The ω -rule gives rise to many reformulations
and refinements. It is beyond the scope of this paper to consider them all. I will sketch certain main developments and
consider in detail a central line of argument as it bears on the nature and extent of arithmetical truth.

Tarski appears to have been the first person to formulate the ω -rule (see Feferman (1986:213)), which he discussed in 1926
and presented in a lecture in 1927, though he did not publish the idea until 1933 (1933b: 294 (see also p. 279, footnote 2);
1933a: 259– 61 (see p. 260, footnote 1)). Hilbert formulated the ω -rule, in an implicitly constructive form, in 1931 (193 la:
491–2) (this seems to be the first published formulation of the rule), and used it further in that year (1931b).4 Given the
relative timing of this work of Hilbert and Gödel’s discovery of incompleteness in formal systems for arithmetic (1931a), it is
natural to wonder whether Hilbert’s idea to use the ω -rule in his (1931a) paper was in response to the Gödel incompleteness
theorems, or whether he had come to it for other reasons. Feferman considers this question carefully (1986: 208) and
concludes that the available evidence offers no clear-cut answer. The ω -rule was formulated by Carnap in 1934 and 1935
(1934: Section 14, p. 38; and 1935) (the latter paper, originally intended as part of the former, was incorporated, with slight
modifications, into its English translation (1937), as Sections 34a– i). In Carnap’s case it is clear that he is resorting to the ω -
rule directly in response to the Gödel incompleteness results (see, for example, Carnap 1937:39, first paragraph). Carnap’s
interest was in establishing a criterion of analyticity by which all the truths of arithmetic, and of mathematics in general, are
analytic (which in light of Gödel’s discovery of incompleteness could not, of course, be accomplished in terms of deduction
from any usual axiom system).

The fundamental property of the ω -rule, in its basic formulation, is that when added as a rule of consequence to any system
of arithmetic strong enough to decide atomic formulas (so in particular Peano arithmetic), the resulting system is complete
with respect to all truths expressible in the language of arithmetic. This fact is established by a simple induction over the
logical complexity of formulas in the language of arithmetic, with the base case given by the condition that the initial system
decides atomic formulas, and the induction step for the universal quantifier given precisely by the ω -rule (Carnap establishes a
version of this result by this argument (1937: Theorem 14.3, p. 40)).5

A considerable amount of research on the ω -rule has explored the interplay between constructivizations of it and
completeness/ incompleteness with respect to true sentences in the language of arithmetic. The first substantial investigation of
metamathematical properties of this rule seems to be that by Rosser (1937). Rosser considers a syntactically finite form of the
rule, obtained by expressing within arithmetized syntax the hypothesis that all numerical substitution instances of a formula
“A (x)” are provable in a given axiomatic system, and he obtains Gödel-type incompleteness theorems for axiomatic systems
extended by finite iteration of this rule. Shoenfield (1959) shows completeness for a system with iteration of a constructivized
version of the infinitary ω -rule, where at each application of the ω -rule (codes of) proofs of the numerical instances are
generated by a recursive function. Feferman (1962) establishes a completeness result for transfinite iteration of the
syntactically finite form of the ω -rule considered by Rosser (1937), with the iteration indexed by a path through the
constructive ordinals. The result is sensitive to the path taken; Feferman and Spector (1962) show the existence of
incompleteness for iterations along paths.
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Not immediately relevant to present considerations is an aspect of the ω -rule which has been important in
metamathematical research over the past forty years, namely that arithmetical systems with the ω -rule admit cut-elimination
(while systems with ordinary induction do not). In application of this fact, the embedding of formal systems of arithmetic into
semi-formal systems with the ω - rule (with constructive bounds given by assignment of recursive ordinals to the resulting
proof trees) has been established as an important technique for investigating derivability in formal systems of arithmetic.6

Before taking up the main argument of the paper in the next section, I want to conclude this section with a few further
historical remarks on the naming and provenance of the ω -rule. The designation “ω -rule,” now more or less standard, seems
particularly apt, given the universal acceptance of ω  as the designation of the natural numbers ordered by succession
(introduced by Cantor (1883:195)) and the standard usage of the related designations of “ω -consistency” and “ω -
completeness.” So far as I am aware, the term “ω -rule” occurs only some thirty years after the rule was first formulated,
introduced in publications of Andrzej Mostowski and his co-workers (Sundholm (1983:1:3); see Grzegorczyk, Mostowski,
and Ryll-Nardzewski (1958) (the actual phrase there is “rule ω ,” e.g. in footnote 1 and (6) on p. 190)). This usage is
established in Shoenfield (1959).

The designation introduced by Tarski is “the rule of infinite induction” (see Tarski 1933b: 294; 1933a: 259). This phrase
was used by Mostowski in his earlier writings (e.g. 1947:100) and also by Schütte (1951, 1960:168) (though in 1977 Schütte
omits any descriptive designation and refers to this rule among the basic inferences of his system PA* just as (S2.0*)).
Hilbert, in his introduction of the ω -rule (1931a) gives it no characteristic name, merely calling it “a new rule of inference”
(1931a: 491–2). Later (1931b) he designates it as “Transfinite axiom and inference schemata,” reflecting the fact, which he notes,
that with this rule the usual rule for the universal quantifier corresponding to introduction of the universal quantifier can be
subsumed, “transfinite axiom” being already his term for that rule, as in Hilbert (1931a: 490).7 Carnap formulates the ω -rule
without any descriptive designation, labeling it DC2 (1937:38), one of the two rules of Direct Consequence for his Language
I.

It seems clear that Tarski and Hilbert were the first to formulate versions of the ω -rule, and that each did so independently
of the other. Was Carnap’s formulation of the ω -rule also arrived at independently? Carnap does not claim that it was, and the
chronology of the work suggests that it was not. Carnap’s personal contact with Tarski began in February 1930, when Tarski
visited Vienna to give several lectures, “chiefly on metamathematics” (Carnap 1963:30). Given the issues of common
interest, one would suppose that Tarski mentioned his idea of “infinite induction” in the discussions they had at that time, if
not in his lectures. In November 1930 Carnap visited Warsaw for a week, giving three lectures and “had many private
conversations and discussions,” including with Tarski (Carnap 1963:30–1). The main idea for Logical Syntax of Language
came to Carnap in January 1931, and he set out his Language I for this investigation in the spring of that year (1963:53–4).
Meanwhile Hilbert had formulated the ω -rule in a lecture to the Philosophical Society of Hamburg in December 1930 and
published in 1931 (1931a). The contents of this paper were described to Gödel by Bernays in a letter of 18 January 1931
(Feferman 1986:209), and later that year Gödel published (1931b) a review of Hilbert (193 la). From Carnap’s close contact
with Gödel in discussing these issues during this period (Carnap 1963:53), one might suppose that Gödel would have told
Carnap of Hilbert’s formulation of this new rule at that time. See also Carnap’s acknowledgment in the foreword to Logische
Syntax der Sprache (1934) (1937:xvi): “On the standpoint and method of syntax, I have, in particular, derived valuable
suggestions from conversations with Tarski and Gödel.”

Given this seeming likelihood that Carnap’s (1934) use of the ω -rule occurred in the wake of knowing of Hilbert’s and
Tarski’s formulation of the rule, the terms in which Carnap refers to Hilbert’s and Tarski’s formulations are puzzling. I am
grateful to Saul Kripke for the thought that this puzzlement may be resolvable by supposing that, despite the contrary
suggestion of circumstances, Carnap had formulated the ω -rule himself before he learned of either Hilbert’s or Tarski’s
formulations.

Carnap (1934) refers to Hilbert’s use of the ω -rule (193 la, b), as well as Herbrand’s (1931), and also notes that “Tarski
discusses Hilbert’s rule (‘Rule of infinite induction’ (1933b: 111))—he himself had previously, in 1927, laid down a similar
one” (Carnap 1937:173). He also mentions in this passage his own rule DC2, but refrains from noting that DC2 is a version of
the rule previously formulated by Hilbert and Tarski, and indeed does not discuss any connection between Hilbert’s and
Tarski’s rule and his own, either to point out similarities, except implicitly,8 or to draw attention to differences. If Carnap had
formulated his rule DC2 as a result of hearing of the idea for it in the work of Hilbert and Tarski which he cites it would be
most odd, and out of character, in my impression of Carnap (from his publications, and from biographical accounts of him by
others) for him not to make explicit acknowledgment of this fact here. On the other hand, if he had arrived at the idea of this
rule before he heard of the earlier work of Hilbert and Tarski, he could not acknowledge them in this way, but it also seems
compatible with his character that he would not wish explicitly to claim independence, as detracting from the acknowledgment
he does make of their work. So we are left with the ambiguous juxtapositions of the passage cited.9 I conclude that we may
take this passage as implicitly conveying that Carnap had arrived at his formulation of the ω -rule independently of the earlier
formulations by Hilbert and Tarski.
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Rosser (1937) decides to call the ω -rule “Carnap’s rule” (p. 129). He cites Carnap (1935: bottom of p. 173, which
corresponds to 1937:106). He also observes (footnote 3) that “This same rule appeared in a paper by Hilbert (1931a: 491,
lines 13– 18),” and goes on to justify his choice of appellation with the remark, “However, Hilbert did practically nothing
with the rule.” This ostensible justification for preferring Carnap to Hilbert in this honorific matter does not seem well based.
In any case, Rosser’s naming of the rule in favor of Carnap has not been followed.

Another name cited in the development of the ω -rule is that of Novikov. Shoenfield (1959:405) states that “this rule [where
we require the existence of an effective method of obtaining a proof of A(n) when n is given] was suggested by Novikoff,”
and Mostowski (1966:70) speaks of “the effective rule ω  (first proposed by Novikov).” Neither of these attributions refers to
publication by Novikov.

III.
CLAIM THAT THE COMPLETENESS OF THE � -RULE OBLITERATES THE ATTEMPTED

DISTINCTION BETWEEN ARITHMETICAL AND NON-ARITHMETICAL TRUTH

The basic argument to be considered in this paper runs as follows. The correctness of the ω -rule is a consequence of our
fundamental conception of natural number. Accordingly, in the same way in which this conception validates each axiom and
so also each theorem of Peano arithmetic, and thereby renders them arithmetical, the ω -rule is validated, and also thereby its
consequences. But its consequences include all true sentences expressible in the language of arithmetic. Hence there is no
distinction to be drawn between arithmetical and non-arithmetical among the true propositions expressed in the language of
arithmetic.

For the argument just given to have its intended force, the ω -rule must be justified arithmetically, in the sense at issue here.
There is an argument which seems to provide the required justification. Before we consider it, we need to articulate the ω -rule
more clearly by giving explicit (finite) expression to its premise, avoiding the locution “and so on” signified by the use of
“…” in our original formulation (as at the beginning of Section II). We may try the following. For each formula “A(x)” in the
language of arithmetic:

But this cannot be right. The force of the ω -rule as a rule of inference consists in its licensing the conclusion from being able
to establish each statement of the form “A(n)” This force would be lost if establishing the premise meant establishing that, for
each natural number n, A(n) since then concluding would come to nothing more than stipulating that the domain of
quantification is taken to be the natural numbers.

The premise to the ω -rule must be rather that each formula of the form “A(n)” is provable in some given system or theory.
Let us call the given theory T. We are particularly interested in the case when T is Peano arithmetic, but for this stage of the
discussion nothing turns on which particular theory T might be. We can express the ω -rule as follows. For each formula “A
(x)” in the language of arithmetic:

This formulation is an expression of the original ω -rule, with the difference that reference to the basis on which numerical
substitution instances are established is made explicit, in terms of a given system T, and also that the first formulation overtly
relies upon our knowledge that the natural numbers correspond to numerals of the form S… S0, generated by finite iteration of
the successor function applied to 0, while in the second formulation this knowledge is left tacit, within our grasp of universal
quantification over the natural numbers and their numerals.

Suppose we know that

(1) Every sentence provable in the system T is true in the structure of the natural numbers.

We can then establish the ω -rule as an extension of T, as follows. Assume the premise of the ω -rule, i.e.

(2) For each natural number n,

From (2), by (1), we have

(3) For each natural number n, “ ” is true.
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The following is the clause for the universal quantifier in the inductive definition of truth, in the case where each element of
the domain is denoted by a canonical term of the language (so that the induction can be directly on the truth predicate, rather
than having to be done via the satisfaction relation):

(4) For every element d of the domain, “ ” is true (in the given domain) if and only if “” is true (in that domain),

where “d” signifies the canonical term of the language which denotes the element d of the domain.
Condition (3) and half of the biconditional of (4), specialized to the case of the domain of natural numbers, yields

(5) “” is true in the domain of the natural numbers.

The basic adequacy condition on any truth predicate, “… is true,” is the schema (Tarski’s “Convention T”)

(6) “p” is true if and only if p.

Line (5) and the appropriate instance of (6) yields

(7) ,

interpreted in the domain of the natural numbers. The derivation of (7) from (2) is by the ω -rule.
We now must consider whether this derivation is arithmetical, in the sense at issue here. In the account of this notion given

in Section I it was argued that arithmetical truth is closed under (firstorder) logical consequence. By this condition, each of the
inference steps of the given derivation is arithmetically acceptable. 

Accordingly, the issue comes down to the arithmetical acceptability or not of our assumption (1), and the two principles
from the general theory of truth, (4) and (6).

The closure of arithmetical truth under first-order logical consequence carries with it commitment to acceptance of the
general theory of truth, since the fundamental property of logical consequence is preservation of truth,10 and, accordingly, this
notion of arithmetical truth will encompass (4) (for example in validating the principle of universal generalization) and (6).11

There is then the question of assumption (1), that everything provable in the system T is true in the structure of the natural
numbers. Let us consider this assumption specifically in respect of Peano arithmetic.

Here is an argument which purports to establish on an arithmetical basis that everything provable in Peano arithmetic is
true in the structure of the natural numbers. The point is that in seeing the axioms of Peano arithmetic as true on the basis of
an articulation of our grasp of the fundamental nature and structure of the natural numbers, and that derivation in first-order
logic preserves truth, we see that the axioms and theorems of Peano arithmetic are true in the structure of the natural numbers;
and seeing this fact in this way establishes it arithmetically, in the sense of this paper. If this point is accepted, then, by the
preceding derivation, the ω -rule is not only correct, but arithmetically correct.

In reply, I agree (indeed have insisted) that we do see the truth in the structure of the natural numbers of each axiom and
theorem of Peano arithmetic, and that (as already argued) this is done in such a way as to render these truths arithmetical, in
the sense at issue in this paper. But what is required for discharging the assumption of the above derivation of the ω -rule is to
establish the single claim that every axiom and theorem of Peano arithmetic is true in the structure of the natural numbers. The
latter claim is established, not from the fundamental properties of the natural numbers, but from reflection upon our
understanding of those fundamental properties. Such a process of reflection is, in the sense I have been using this notion,
higher-order, and insofar as it is essential to validating the ω -rule, that rule is higher-order.

Why does being higher-order in this way count against being arithmetical? After all, our understanding of the basic concept
of natural number is itself inherently higher-order. I am not denying, indeed certainly consider, that we can see that all the
axioms and theorems of Peano arithmetic are true in the structure of the natural numbers, but the point is that doing so is a
step beyond our grasp of the basic structure of the natural numbers, and so violates a constraint of minimality. What is
arithmetical must be expressible in the first-order language of arithmetic (as remarked in the opening paragraph of this paper)
and be perceivable as true just from our understanding of the basic concept of natural number. In the second stage of the
process of establishing the fact that all axioms and theorems of Peano arithmetic are true in the structure of the natural
numbers, we proceed beyond the body of truths initially perceivable as true from our understanding of the basic concept of
natural number by the further process of reflecting upon the fact that the axioms arrived at by this first process are, by that
process, seen as true in the structure of the natural numbers. In this second process of reflection, what we are reflecting upon
is not the basic concept of the natural numbers, but our initial process of reflection upon that concept.

The attempted justification of every instance of the ω -rule given above, in the form of deriving (7) from (2), proceeds from
a single premise, the statement (1). I want now to consider this argument with a weaker premise, namely just enough of the
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condition given by (1) as applies to a particular instance of the ω -rule, namely for a given formula “A(x)” such that for each
natural number n, but (for example the Gödel formula). The required condition is the following.

(8) For every natural number x, if , then “” is true,

where signifies the formula which results from substituting the numeral corresponding to the natural number x for the free
variable in the formula “A(x)” or, equivalently,

(9) For every natural number x, if , then

From our preceding discussion, we have agreed that for each axiom and theorem of Peano arithmetic we see its truth in the
structure of the natural numbers in such a way as to render its truth arithmetical. Accordingly, for each natural number n, the
implication,

(10
)

If PA,

is arithmetically justified (we here require the fact that, by assumption of the case being considered, for each natural number n, 
so that the truth of the consequent of each such conditional is arithmetically justified). Does (10) provide a justification of (9)?
To suppose so would be to invoke the ω -rule, as applied to the predicate

An argument which relies upon the general correctness of the ω -rule cannot provide justification of it. Nor can this argument
be part of a justification of the ω -rule by use of induction over the complexity of the predicate to which the rule is applied,
since the predicate for which the ω -rule must be assumed here is more complex than, and indeed contains as a part, the
predicate with respect to which application of the ω -rule is being justified. Again we see that establishing each axiom and
theorem of Peano arithmetic as arithmetically true does not thereby establish the required property of Peano arithmetic which
would give arithmetical justification to the ω -rule.

The set of premises for application of the ω -rule in its infinitary form is an ω -sequence, reflecting that this rule is to do with
the natural numbers and not some other structure. Is such specificity to the natural numbers sufficient to make the ω -rule
characteristic of the natural numbers, and thereby arithmetically justified, despite the failure of the arguments we have
considered above? It might be claimed that it is, as demonstrated by the fact that the principle of induction is a consequence
of the ω -rule (if we have A(0) and then by n-fold application of  elimination and modus ponens there is, for each n, a proof
of A(n) hence, by the ω -rule, 12 The seeming force of this argument dissipates, however, with the observation that the
derivation of induction from the ω -rule makes essential use of induction, within our (informal) meta-theory, in establishing, as
is required for application of the ω -rule, that for each natural number n there exists a proof of A(n) the induction step of the
argument being that if we have derivations of A(n) and of A(n)ω  A(n+1) then we have a derivation of A(n+1)). The ω -rule
transmits the arithmetical principle of induction from the metatheory to the object theory, but does not itself illuminate the
principle of induction by articulating a basis on which it can be seen to hold in the structure of the natural numbers. 

IV.
JUSTIFICATION OF THE � -RULE FROM � -CONSISTENCY

The notion of ω -consistency was introduced by Gödel (1931: 173) as a soundness condition on formal axiom systems
containing arithmetic, from which it follows that the negation of the sentence Gödel showed how to construct for the given
system is not provable in that system. A system T with terms (numerals) for the natural numbers is said to be ω -consistent if
there is no formula “A(x)” in the language of T for which , …, ,…and The first Gödel incompleteness theorem establishes the
existence of consistent but ω -inconsistent theories in the language of arithmetic.13

ω -consistency with respect to primitive recursive formulas (generally called 1-consistency; cf. Smorynski (1977:851–2)) of
Peano arithmetic immediately entails soundness of the ω -rule for primitive recursive formulas as an extension of Peano
arithmetic, as follows. Let “A(x)” be a primitive recursive formula, for which …, … . Suppose that not Then since “¬A(x)” is
primitive recursive for “A(x)” primitive recursive, and Peano arithmetic is complete with respect to ω 1-truth, PA . But in that
case PA would be 1-inconsistent. Hence , which is to say that the conclusion of the ω -rule for a primitive recursive formula
follows from its premises on the assumption that PA is 1-consistent.14

Clearly extension of Peano arithmetic by the ω -rule for primitive recursive formulas is complete with respect to ω 1-truth in
the language of arithmetic, that is, a proper extension of Peano arithmetic. Hence if 1-consistency of Peano arithmetic can be
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arithmetically justified, in the sense at issue in this paper, then the claim that Peano arithmetic is complete with respect to
arithmetical truth is refuted. Before we face this question, let us first observe that the argument we have just considered
straightforwardly carries on up the arithmetical hierarchy,15 by appealing to ω -consistency of extensions of PA generated by
successively justified forms of the ω -rule, as follows (so that all truths expressible in the language of arithmetic come within
its scope).

Let

PAn+1=PAn+one application of the ω -rule for ω n-formulas.
Lemma: For each n, PAn is complete with respect to ω n-truth.
Proof: By induction on n.
n=0. This case is the claim that PA is complete with respect to true primitive recursive sentences, which it is.
Induction step, n>0, and assume that the result holds for all k<n. Let be a true ω n-sentence (so A(x) is a ω n−1-formula).

Since is true, for each natural number m, A(m) is true. There are two cases.
Case 1: n=1. Then A(m) is primitive recursive. Since PA is complete for true primitive recursive sentences, PA ω  A(m).

Hence by one application of the ω -rule for primitive recursive formulas,
.

Case 2: n>1. Then where B(x, y) is a ω n–2-formula. Since is true, there exists a natural number k such that B(m, k) is true. By
the induction hypothesis, PAn−2 is complete with respect to ω n−2-truths, so . Then by existential introduction in PAn–2, .
Clearly for any k, , so . Since is ω n-1, the ω -rule for ω n−1-formulas with substitution instances provable in PAn−1 yields , which
is to say that , as required.

Corollary: For each n, PAn is complete with respect to ω n+1-truth.
Proof: Let → xA(x) be a true ω n+1-sentence. Then there is some natural number k such that A(k) is true, and since it is ω n, by

the Lemma, Then by existential introduction in PAn, .
Proposition: For every natural number k, if PAk is ω -consistent, then the following form of the ω -rule is sound:

i.e. if the premise is true, then the conclusion is true (in the structure of the natural numbers).
Proof: Let A(x) be a ω k formula such that, for every natural number Suppose that is not true, i.e. is true. This is a ω k+1-

sentence. By the Corollary to the Lemma, . But this contradicts the assumed ω -consistency of is true.
It is immediate that, for any theory T, if T has an ω -model, that is, is true in a structure whose domain is the natural

numbers, then T is ω -consistent,16 so that a way to show a theory ω -consistent is to show that it has an ω -model. Our
discussion in the previous section shows, however, that there is little prospect of giving an arithmetical justification that Peano
arithmetic, or any infinitely axiomatized subsystem of it, is true in the structure of the natural numbers (has an ω -model).
While the condition of having an ω -model is sufficient for ω -consistency, it is not necessary, that is, there are ω -consistent
theories which have no ω -model.17 Hence we should now consider other means of establishing ω -consistency, and in
particular the 1-consistency of Peano arithmetic. Can 1-consistency of Peano arithmetic be established arithmetically, that is,
can it be perceived directly on the basis of an articulation of our grasp of the fundamental nature and structure of the natural
numbers, or in terms of statements which are themselves arithmetical?

Using the proof-theoretic techniques of Gentzen, 1-consistency of PA can be established from ω 0 transfinite induction (see
Girard 1987:419–21). So the question for us now must be, can ω 0 transfinite induction be given arithmetical justification? I
hold that it cannot.

We consider the situation in which we obtain a primitive recursive relation on the natural numbers which constitutes a
wellordering of order type ω 0 on the natural numbers by coding as natural numbers the notations for ordinals <ω 0 written in
Cantor normal form in base ω . So long as we see that this is how we have obtained this primitive recursive relation, we are
able to see that this relation is well-founded and hence see the correctness of the principle of induction over that relation. We
depend here on our set-theoretic understanding of the notion of ordinal and in particular our proof of the Cantor normal form
theorem. But these notions are not part of our understanding of the structure of the natural numbers. On the other hand, it is
clear that we can obtain transfinite ordinals in purely arithmetical terms, for example the ordinal ω +ω  by defining the relation
that all even numbers are less than all odd numbers, with less than between numbers of the same parity as ordinary less than.
Similarly, we can code ordered n-tuples of natural numbers by a single number and then order the codes lexicographically, to
obtain an ordering of order type ω n which again we can see directly to be a well-ordering.

The question is then whether by further steps of this kind, of building up from below, we can arrive at apprehension of the
wellfoundedness of the primitive recursive ordering of codes of the totality of ordinals less than ω 0. The answer to this
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question seems to be no. Gödel (1958, 1972) offers arguments which are indicative as to why it is not possible to build up to ω 0

induction from statements and forms of argument already established as arithmetical. He is there concerned with concrete
knowledge (in Hilbert’s sense) rather than the notion of arithmetical understanding which I am attempting to elucidate, but, as
I discussed at the end of Section I, the points he makes in this connection carry over to the present discussion.

For the validity of the inference-scheme of recursion up to ω 0 can surely not be made open to direct inspection, as for
example it can be with ω 2. More precisely, it is no longer possible to take in with the mind’s eye the many different
ways in which descending sequences may be structured, so that one cannot know by inspection that each such sequence
must break off. In particular if one comes to know it by moving step by step from lower to higher ordinals, this will not
constitute knowing it by inspection. It will merely be’an an abstract knowledge, gained with the help of higher-order
concepts.

(Gödel 1958:243)

Gödel (1972:273) amplified this point with the following observation:

The concretely evident steps, such as → → → 2, are so small that they would have to be repeated ω 0 times in order to reach
ω 0.

For the issue of being arithmetical, we must also consider the possibility of justifying ω 0 induction “from above,” that is,
directly from our grasp of the structure of natural numbers (in the way that the axioms of Peano arithmetic are validated),
rather than by building up from below, as so far discussed. It seems clear that Dedekind’s characterization of the structure of
the natural numbers does not do this. What is immediately obtainable from that characterization is induction with respect to
the less than relation generated by the operation of succession, that is, ω  induction. But ω 0 induction is not derivable from ω
induction. There will be statements other than the Dedekind sentence which also characterize the structure of the natural
numbers and yield ω 0 induction. However, from our point of view, these are characterizations of a well-ordering of order type
ω 0 (or greater) from which the natural number structure of order type ω  can be extracted. In this clear sense, they are an
expression of our grasp not of the structure of the natural numbers, but of some other more complex structure.

The two stages of the preceding discussion indicate that ω 0 induction is not arithmetical, not by the induction clause of the
inductive definition of arithmetical truth, nor by the base condition.

No transfinite induction weaker than ω 0 can prove the 1-consistency of Peano arithmetic, since transfinite induction for any
ordinal less than ω 0 is provable in Peano arithmetic. Nevertheless, the 1-consistency of Peano arithmetic is weaker than ω 0

induction. Measure of relative strength is given by the result of Kreisel and Levy (1968: Section 6, in particular Theorem 12)
establishing that extension of Peano arithmetic by the uniform reflection principle18 for PA is equivalent (has the same
theorems as) extension of Peano arithmetic by the schema of transfinite induction with respect to a natural well-ordering of
order type ω 0 for all formulas in the language of arithmetic.

The 1-consistency of Peano arithmetic is equivalent to ω 1-local reflection (see Smorynski 1977:852). Reflection principles
are successively stronger as they go up the arithmetical hierarchy. So ω 0 induction is stronger than the 1-consistency of Peano
arithmetic in that it proves statements which are stronger than the 1consistency of PA. We might look then for a more economical
proof of the 1-consistency of PA, as the test of our claim concerning the boundary of arithmetical truth.

The Paris-Harrington statement is equivalent to ω 1-reflection (and this equivalence is arithmetical, that is, provable in Peano
arithmetic) (see Paris and Harrington 1977:1141) and so to the 1-consistency of Peano arithmetic. I have earlier claimed that
the Paris-Harrington statement is nonarithmetical (Isaacson 1987: 162–3). Such considerations, of their very nature, cannot be
decisive since one cannot survey exhaustively all possible proofs of a given statement. However, at least the known proofs of
the Paris-Harrington statement are visibly non-arithmetical in the sense at issue here, and there is no reason to expect that any
further proof may be obtained which does not depend upon nonarithmetical properties of higher-order concepts.

These considerations conclude our investigation of the possibility of giving arithmetical justification of the ω -rule (or as
restricted to primitive recursive formulas) as an extension of Peano arithmetic by establishing the ω -consistency (or 1-
consistency) of Peano arithmetic. Considerations of the previous section ruled out accomplishing arithmetical justification by
establishing that all such formulas provable in Peano arithmetic are true in the structure of the natural numbers. In this section
we considered the use of ω 0 induction, and of more economical means, but found them all to lie beyond what is arithmetically
justifiable. These considerations do not exhaust the possibilities of attempting to justify some form of the ω -rule, and in the
next two sections I turn to consider restriction of the ω -rule in terms of conditions on establishing the premise of the rule.
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V.
CONSIDERATIONS ON THE FINITELY APPLIED � -RULE IN RELATION TO

ARITHMETICAL TRUTH

The motivating idea at this stage of our investigation is to formulate the ω -rule so as to render it more genuinely (usably) a
rule of proof. If we are to make use of the ω -rule in establishing the truth of a given proposition in the language of arithmetic,
we must have some perception which justifies us in accepting each one of the infinitely many premises of the form Since the
theory T is axiomatic, its proof relation can be arithmetized by a (primitive recursive) predicate, “PrfT(x,y) y)”, so that the
premise of an application of the ω -rule, for the formula “A(x)”, is (finitely) expressible in arithmetized syntax by the
condition

A single effective (provable) application of the ω -rule as an extension of PA can be finitely expressed, for a given formula “A
(x)”, as the inference step 

Before turning to consider the issue of arithmetical justification of such forms of the ω -rule, I want to discuss a question
concerning this reliance on arithmetization of syntax. Finite formulation of the ω -rule by use of arithmetization of syntax in this
way gives us a means of expressing precisely the condition that we have for each natural number n a proof of A(n). But does
this appeal to coding rule out the finitely expressed ω -rule as arithmetical in my intended sense? After all, the proof relation
becomes “hidden” by being expressed in arithmetized syntax, and containing hidden concepts seems to be characteristic of
non-arithmetical truths in the language of arithmetics, as in my earlier remarks on the nonarithmetical nature of the Gödel
sentence.

I consider that use of coding does not, per se, render a notion or a proposition non-arithmetical. With respect to the Gödel
sentence, perception of its truth does indeed require recognition that, via coding of syntax in arithmetic, it expresses that this
sentence is unprovable in the given axiom system but more to the present point, it requires perception that the axiom system is
consistent, and it is this property (actually equivalent to the truth of the Gödel sentence) which cannot be perceived
arithmetically (this point will be discussed further at the end of this section). In the case of the finitely expressed ω -rule, the
use of coding of syntax in arithmetic constitutes an inherently apt and precise way to express what we explicitly intend as an
effectively applied ω -rule. The issue as to the arithmetical justification of the effectively applied ω -rule turns not on how it is
expressed, but in what terms we can establish the truth of principles which validate this rule. The point may be illustrated by
considering the formulation of induction as a rule of inference: “if A(0) is provable and is provable, then conclude The
predicate “… is provable” does not belong to the language of arithmetic per se, but formulating the rule of induction in these
terms does not render it non-arithmetical.

Carnap (1934, 1937:173) remarks that “there is nothing to prevent the practical application of such a rule” in the course of
his discussion of Hilbert’s rule and Tarski’s infinite induction. He does not elaborate how he considers practical application to
be carried out, but one supposes he must have had in mind something like the formulation given above. Carnap offers this
point as a contrast to Tarski’s view on the infinitary nature of the rule (Tarski 1933b: 295) (Carnap quotes part of the
following passage):

It may be remarked in passing that such a rule, on account of its “infinitistic” character, departs significantly from all
rules of inference hitherto used, that it cannot easily be brought into harmony with the current view of the deductive
method, and finally that the possibility of its practical application in the construction of deductive systems seems to be
problematical in the highest degree.

Tarski, in a footnote at this point, observes the relevance to this problem of metamathematical considerations but seems not to
be offering the point as a means of addressing the problem:

In contrast to all the other rules of inference the rule of infinite induction is only applicable if we have succeeded in
showing that all sentences of a particular infinite sequence belong to the system constructed. But since in every phase of
development of the system only a finite number of sentences is “effectively” given to us, this fact can only be
established by means of metamathematical considerations.

However, in his paper of 1936 Tarski clearly does consider that treating the premise of the ω -rule metamathematically renders
it a genuinely usable rule of inference (p. 411):
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such a rule [which always leads from true sentences to true sentences, but cannot be reduced to the old rules] is the
socalled rule of infinite induction according to which the sentence A can be regarded as proved provided all the
sentences A0, A1,… An,… have been proved. But this rule, on account of its infinitistic nature, is in essential respects
different from the old rules. It can only be applied in the construction of a theory if we have first succeeded in proving
infinitely many sentences of this theory—a state of affairs which is never realized in practice. But this defect can easily
be overcome by means of a certain modification of the new rule. For this purpose we consider the sentence B which
asserts that all the sentences A0, A1,… , An,… are provable on the basis of the rules of inference hitherto used (not that
they have actually been proved). We then set up the following rule: if the sentence B is proved, then the corresponding
sentence A can be accepted as proved. But here it might be objected that the sentence B is not at all a sentence of the
theory under construction, but belongs to the so-called metatheory (i.e. the theory of the theory discussed) and that in
consequence a practical application of the rule in question will always require a transition from the theory to the
metatheory. In order to avoid this objection we shall restrict consideration to those deductive theories in which the
arithmetic of natural numbers can be developed, and observe that in every such theory all the concepts and sentences of
the corresponding metatheory can be interpreted…

It appears that Hilbert, in his first formulation (193 la) of the ω -rule, had in mind establishing by metamathematical
considerations that the infinitely many premises of the ω -rule hold, since he gives as a license for taking as a basis for further
deduction the condition that “it has been shown that the formula A(z) is a correct numerical formula when z is any given
numeral” (p. 491). The expression of this premise cannot be by the technique of arithmetization, as we have used it, since
Hilbert (strangely) did not have the idea of arithmetization of syntax. But the conceptual basis of Hilbert’s Program is the
recognition that formal derivability is a concrete operation of the same character as computation with numbers. The condition
that every numerical instance of a given formula is finitistically provable is for Hilbert a finitistically meaningful statement,
for which he would then also have the expectation that, if true, it would be finitistically provable. The form we have given to
the ω -rule in the present case would, it seems, be quite acceptable to Hilbert (even though he did not arrive at that formulation
himself), with the one proviso that it must be required that the premise be established finitistically, for which the condition of
being provable in Peano arithmetic is then clearly too weak. In the next section we will consider the arithmetized ω -rule with
the condition that the premise be finitistically provable. Herbrand’s (1931) formulation of the ω -rule, following Hilbert
(1931a), makes, the finite expressibility and finitistic provability of the premise fully explicit (p. 624):

Let A(x) be a proposition without apparent variables [i.e. quantifier-free]; if it can be proved by intuitionistic procedures
that this proposition, intuitionistically considered, is true for every x, then we add to the hypotheses.

It may be worth remarking that Hilbert’s second formulation of the ω -rule (1931b: 121) drops the finite expression of the
premises, and what he gives then is indeed the infinitary ω -rule:

If the statement A(z) is correct (richtig) whenever z is a numeral, then the statement holds; in this case is said to be
correct.

Can the finitely applied form of the ω -rule as an extension of Peano arithmetic be given arithmetical justification? I claim that
it cannot. Feferman (1962:276, Theorem 2.19(i)) establishes the equivalence of extending an arithmetical system which is
either PA or a recursively enumerable extension of PA by this form of the ω -rule (Feferman’s Definition 2.16(iv), p. 274)
with extending that system by the closely related, but prima facie stronger, schema (Definition 2.16(iii)) (stated here for the
case of PA)

and also the seemingly yet stronger schema (Definition 2.16(v))

These two schemata constitute versions of the uniform reflection principle for Peano arithmetic.
As cited already in our discussion in the previous section, Kreisel and Levy (1968: Section 6, in particular Theorem 12)

prove that extension of Peano arithmetic by the uniform reflection principle for PA is equivalent to (has the same theorems
as) extension of Peano arithmetic by the schema of transfinite induction with respect to a natural well-ordering of order type
ω 0 for all formulas in the language of arithmetic. Hence justification of extension of Peano arithmetic by the finitely applied ω -
rule is tantamount to justification of ω 0 transfinite induction. But in the previous section we gave arguments to the effect that
ω 0 transfinite induction cannot be established arithmetically, which accordingly then also show that the finitely applied ω -rule
as an extension of Peano arithmetic cannot be established as arithmetical.
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Even though, as we have now seen, the finitely applied ω -rule over Peano arithmetic is not arithmetically justifiable, it
remains possible that a limited form of it might be. Let us consider the case where it is restricted to primitive recursive
formulas. In Section IV we considered the basic ω -rule with this restriction and found reasons to consider that it could not be
arithmetically justified. We should begin by noting that, on the face of it, this form of the finitely applied ω -rule as an
extension of Peano arithmetic is weaker than the correspondingly restricted basic ω -rule as an extension of Peano arithmetic
since its premise is stronger; that is, not only that for each natural number n,  but that this fact is itself provable in PA:

Despite the apparent relative weakness (below we shall establish that this apparent weakness is actual), this restricted form of
the rule is still strong enough to give a proper extension to Peano arithmetic. In particular, the Gödel sentence for PA is
provable from it as follows19 (see Feferman 1962:275 for the corresponding point for Con(PA)).

Let g be the Gödel number of the Gödel sentence for PA, which is then equivalent to
Claim:
The claim is established by the following argument within PA.
(1) Assume
By arithmetized syntax, it is provable in PA that
(2) and so, from (1) and (2),
(3) Con(PA).
By arithmetization in PA of the first half of the First Incompleteness Theorem,
(4) Con(PA)

,
so, from (3) and (4),
(5) .
Then by -elimination, from (5),
(6) .
Arithmetization of syntax in Peano arithmetic yields completeness of provability in PA with respect to true ω 1-formulas

with free variables, which includes primitive recursive formulas, and this fact is itself provable in Peano arithmetic (see
Smorynski 1977:844), so

(7) We have then, from (6) and (7),
(8) which is the negation of our assumption (1). We discharge that assumption by concluding its negation, and so have
(9) on no assumptions. Then from (9) by -introduction,
(10) as required.
Here we have an example of how the ostensibly infinite set of premises of an application of the → -rule can be established

by finite means. Were the present case of the ω -rule arithmetically justifiable, the claimed completeness of Peano arithmetic
with respect to arithmetical truth would be refuted by this derivation of the Gödel sentence for PA.

While this form of the ω -rule properly extends Peano arithmetic, it is still relatively weak (as earlier we noted prima facie
grounds for expecting it to be), in particular weaker than the basic ω -rule restricted to primitive recursive formulas (which as
an extension of Peano arithmetic is complete with respect to  truth). Here is an example of a true sentence not
provable in PA+finitely applied ω -rule for primitive recursive formulas.20 Let as a schema, with A(x) restricted to primitive
recursive predicates. Clearly T is an axiomatic extension of PA and so has a primitive recursive proof predicate PrfT(u, v).
Suppose, . Then by pure predicate logic, . This formula expresses the consistency of T which, since T is consistent, cannot, by
Gödel’s Second Incompleteness Theorem, be provable in T. So the supposition is false, that is

We now face the question whether the finitely applied ω -rule restricted to primitive recursive formulas can be given
arithmetical justification. The key to answering this question is that justification of this rule is equivalent to establishing the
consistency of Peano arithmetic. We see this fact as follows.

Feferman (1962) establishes the equivalence of extending PA by the finitely applied ω -rule with extending PA by uniform
reflection (p. 276, Theorem 2.19(i)) (which we have made use of earlier). Feferman’s proof immediately yields that extension
of PA by the finitely applied ω -rule restricted to primitive recursive formulas is equivalent to the extension of PA by uniform
reflection over PA for primitive recursive formulas. But this extension proves the consistency of PA, since it includes as an
instance

which is equivalent to , that is, Con(PA). Indeed this extension is equivalent to Con(PA), since uniform reflection over Peano
arithmetic for ω 1-formulas is provable from Con(PA) (see Smorynski 1977:846, Theorem 4.1.4) and includes uniform
reflection over Peano arithmetic for primitive recursive formulas as a special case. Hence justification for extending Peano
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arithmetic by the finitely applied ω -rule restricted to primitive recursive formulas is tantamount to establishing the consistency
of Peano arithmetic. The question we then face is whether the consistency of Peano arithmetic can be established
arithmetically, in the sense at issue here.

The property of consistency is weaker than that of 1-consistency, for which we have already considered, and answered in
the negative, the question of arithmetical justification. Though consistency is a weaker property, the available means by which
we may establish it are closely similar to those for establishing 1-consistency. Proof theoretically, there are techniques based
on appeal to transfinite induction of order type ω 0. We have earlier found reasons to consider that transfinite induction of order
type ω 0 cannot be given arithmetical justification. Model theoretically, consistency of a theory follows from the existence of a
model for that theory (and conversely, by the completeness theorem for firstorder logic). We can see that Peano arithmetic has
a model, namely the structure of the natural numbers. But I have argued in Section III that this perception is a result of
reflecting upon the process by which each axiom of Peano arithmetic is perceived as arithmetically true and that such higher-
order reflection is nonarithmetical.

In its basic form, the ω -rule is validated by our understanding of the truth condition for the universal quantifier in the
particular case of the structure of the natural numbers, conjoined with the perception that all the numerical instances of the
premise of an instance of the ω -rule, by being provable, are true. The condition of consistency of PA which validates the
extension of PA by the finitely applied ω -rule restricted to primitive recursive formulas is weaker than that soundness
condition on provability in Peano arithmetic. At the same time, it is strong in relation to what can be achieved with this form
of the rule. Consider the example of the proof of the Gödel sentence for PA by use of this form of the rule. The Gödel
sentence for PA is equivalent to the arithmetized consistency statement for PA (with respect to the natural arithmetized proof
predicate). Hence it cannot be claimed that the proof of the Gödel sentence by use of this case of the ω -rule gives us an
understanding of the basis of its truth which previously we lacked. To the extent that we have a justification for applying this
rule, we already have a basis for seeing the truth of that sentence.

These considerations highlight the fact that the ω -rule, while ostensibly a means by which to establish truths beyond a given
theory, requires for its justification perceptions which already justify those further truths. On this basis one can see that the ω -
rule, in the forms so far considered, does not extend the domain of arithmetical truths beyond Peano arithmetic.

VI.
(ALMOST) FINITISTIC APPLICATION OF THE (� -RULE IS ARITHMETICAL, BUT IT DOES

NOT EXTEND PEANO ARITHMETIC

There is one further facet of the relationship between the ω -rule and arithmetical truth which I want yet to consider in this
paper, namely the situation when the ω -rule (finitely expressed, as discussed in the previous section) is used to extend
finitistic arithmetic.21

The issues which were the initial motivation for investigation of the finitistically applied ω -rule are not directly those being
addressed here. The original question was whether, in face of incompleteness revealed by Gödel’s results, some suitably
constructive application of the ω -rule could yield a proof of a true ω 1-statement in the language of arithmetic not provable in,
for example, Peano arithmetic, which could then be seen to be established finitistically, as the realization of Hilbert’s
Program calls for. Such a possibility is relevant to the present discussion insofar as a statement’s being proved finitistically
renders it arithmetical (as noted in Section I). Hence if, for example, the consistency statement for Peano arithmetic can be
arrived at in these terms, it could not be correct to claim that Peano arithmetic is complete with respect to arithmetical truth.

Following Ignjatovic (1988), we may term what is provable by one application of the finitely expressed ω -rule extending
finitistic arithmetic as “almost finitistically provable.” Following Ignjatovic in following Tait (1981), we may identify
finitistic provability with provability within primitive recursive arithmetic (PRA).22 Accordingly, a ω 1-statement in the
language of arithmetic is almost finitistically provable if it is provable in PRA extended by the rule

We must consider first the question whether this finitistically restricted ω -rule can be arithmetically justified (I shall argue
that it can be) and then whether it properly extends Peano arithmetic (we shall see that it does not). The first step is to extend
slightly the result from Feferman (1962:276, Theorem 2.19(i)) which we made use of in the previous section. Feferman states
this result for Peano arithmetic and extensions of Peano arithmetic. The argument he gives goes through equally well, however,
for weaker systems, in particular for primitive recursive arithmetic. Hence adding to PRA the effective ω -rule as formulated
above yields a system which is equivalent to adding the uniform reflection principle (in either of its formulations) to PRA.
PRA plus the uniform reflection principle over PRA is equivalent to extending PRA by the schema of transfinite induction of
order type ω ω . This result is the analog for PRA of the result from Kreisel and Levy (1968) cited in the previous section for
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PA, that extension by uniform reflection and extension by ω 0 transfinite induction are equivalent. But transfinite induction of
order type ω ω  is provable in Peano arithmetic. I have argued in Section I that everything provable in Peano arithmetic is
arithmetical, so this last result tells us that almost finitistic provability (for statements of any logical complexity) is
arithmetically justified. But at the same time, it also tells us that anything provable by these means lies within Peano
arithmetic.23

It may seem that there is a form of the effectively applied ω -rule lying midway between the case considered in the previous
section and the case we have just now considered, namely extension of PA by the rule

This rule is, on the face of it, stronger than the rule we have considered in this section since it allows the substitution instances
of the given formula to be proved in PA, rather than the more stringent condition that they must be proved in PRA. At the same
time, it appears to be weaker than the rule of the previous section in that it has a seemingly stronger premise, namely that the
condition that all substitution instances of the given formula be provable must itself be proved in PRA, rather than just in PA.
So there is the prima facie possibility that it could still be arithmetically justifiable and yet prove something beyond Peano
arithmetic. It does in fact prove something beyond Peano arithmetic, namely, for example, the Gödel sentence, as is easily
verified by checking the proof using the corresponding form of ω -rule given in the previous section (the properties of
arithmetized syntax, including provable ω 1-completeness, required in the proof all hold for PRA as well as PA). However, this
form of the rule is no more arithmetically justifiable than the form of the rule considered in the previous section, since in fact
they are equivalent. Suppose that

Since PrfPA(x, y) is a primitive recursive predicate, there is a total recursive function f such that . But Nelson (1971) has
extended Shoenfield’s completeness result for the recursive ω -rule to the primitive recursive ω -rule. Modifying this proof,
there exists a primitive recursive function h such that . The functions provably total in PRA (ω 1-PA) are precisely the
primitive recursive functions. Hence

It may appear that this last form of the rule can be strengthened to the previously considered and arithmetically justified:

in the case when “A(x)” is a primitive recursive predicate. The idea would be that since PRA is complete with respect to true
primitive recursive formulas, if then for “A(n)” a primitive recursive formula. Hence if num(z))), then But from the truth of
this conditional, it does not follow that if PRA  then PRA This inference would hold if PRA  But then by univer-sal
instantiation, and so, by contraposition, Since then But So then which is impossible by the Gödel theorem. Finally, we may
note that the particular derivation in PA, and (as we have noted) also in PRA, given in Section V, of cannot be simply
modified to yield a proof” of since we would then start with the assumption

(1ω)
and would need to modify the second step of the argument to
(2ω)
which would then yield
(3ω) Con(PRA).
But this is not adequate for the next step of the argument, which proceeds via
(4) Con(PA)
For the argument to carry on at this point we would need Con(PRA)ω Con(PA), which we have noted cannot be proved in

PA.
These last stages of the discussion may be taken to illuminate the sharpness of the boundary between arithmetical and non-

arithmetical within the domain of statements in the language of arithmetic. The finitely expressed ω -rule as an extension of
Peano arithmetic, restricted to a primitive recursive formula, proves some but not all true ω 1-statements not provable in PA,
but we also saw that it is not arithmetically justifiable. The finitely expressed ω -rule as an extension of primitive recursive
arithmetic is arithmetically justifiable but also fails to prove anything not already provable in Peano arithmetic. We then
considered hybrids of these two forms of the ω -rule, potentially intermediate between them, and found that in each case the
result fell decisively on one side or the other of the divide between these two forms.
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VII.
CONCLUDING REMARKS

The aim of this paper has been to test the thesis that Peano arithmetic is complete with respect to an epistemic notion of
arithmetical truth by considering the nature of the ω -rule in proving truths beyond Peano arithmetic. The question has been
whether the ω -rule, either in its basic form or in some restricted more constructive version, can be given arithmetical
justification, in the sense being considered here, and in a case where it can be, whether it provides derivations of truths in the
language of arithmetic not provable in Peano arithmetic.

Sections I and II were introductory. In Section III we considered an argument based on the close connection between the ω -
rule and the clause for the universal quantifier in an inductive definition of truth over the structure of the natural numbers
which appeared to provide arithmetical justification to the ω -rule. The key element of this argument was the global reflection
principle for Peano arithmetic, that everything provable in Peano arithmetic is true in the structure of the natural numbers. I
argued that its justification from our basic conception of the structure of the natural numbers requires a second-order process
of reflection which renders it non-arithmetical in the sense at issue. We saw also that uniform reflection could be used in this
argument but that the extension from what was clearly arithmetically justified to the required principle was precisely an
instance of the ω -rule. We also noted that while the principle of induction is justifiable from the ω -rule, the justification itself
requires use of induction, so that the ω -rule was not thereby shown to be characteristic of our conception of the structure of
the natural numbers.

In Section IV we turned to justification of the ω -rule from ω -consistency. A theory which is true in the structure of the
natural numbers is ω -consistent, but the considerations of the preceding section showed that the ω -consistency of Peano
arithmetic could not be established arithmetically in this way. We noted then that, while being true in the natural numbers is a
sufficient condition for ω -consistency, it is not necessary, and we turned to consider other ways of establishing this property,
and then also considered establishing just the 1-consistency of PA, as a means of validating the ω -rule as restricted to
primitive recursive formulas. We noted that this could be done by use of transfinite induction of order type ω 0, and I then
offered arguments that transfinite induction of order type ω 0 cannot be justified arithmetically. While no weaker form of
transfinite induction can establish the 1-consistency of PA, ω 0 transfinite induction is stronger than the 1-consistency of PA in
that it proves reflection principles stronger than the 1-consistency of PA. The 1-consistency of PA is equivalent to ω 1-local
reflection, which in turn is equivalent to the Paris-Harrington sentence. While it is not possible to say definitively that the
latter statements cannot be proved arithmetically, the given proofs of the Paris-Harrington sentence arguably are not, and the
strong soundness property of ω 1-reflection suggests that considerations akin to those in Section III will apply here also.

In Section V we considered the extension of Peano arithmetic by the finitely applied ω -rule. We noted that extension of
Peano arithmetic by this form of the ω -rule is equivalent to extension of Peano arithmetic by ω 0 transfinite induction, seen by
earlier arguments not to be arithmetically justifiable. There then remained the possibility that a restricted form of the finitely
applied ω -rule as an extension of Peano arithmetic might be arithmetically justified, and we considered the restriction to
primitive recursive formulas. We saw by an example that this case is weaker than the ordinary ω -rule restricted to primitive
recursive formulas, which we had considered in the previous section, but that it is still strong enough to generate a proper
extension to Peano arithmetic by deriving the Gödel sentence. We then saw that justification of this form of the rule is
tantamount to establishing the consistency of Peano arithmetic. Hence its use to establish the Gödel sentence, which is
equivalent to Con(PA), cannot represent a gain in arithmetically justified truth.

The final step was to consider, in Section VI, the finitely applied ω -rule as an extension of finitistic arithmetic, which we
took as primitive recursive arithmetic. We noted that extension by this form of the rule is tantamount to transfinite induction of
order type ω ω , which is arithmetically provable, but thereby everything provable with this form of the rule is already provable
in Peano arithmetic. 

I conclude that the investigation we have followed here shows the stability of this notion of arithmetical truth and its
coincidence with Peano arithmetic. The ω -rule, which appears initially as a powerful tool for extending beyond provability in
Peano arithmetic, turns out to require for its justification, so far as the rule does extend Peano arithmetic, acceptance of modes
of argument which themselves lie beyond arithmetical truth. As we weaken the rule, we find that the justification required
becomes comparable with what can be achieved with the rule, and when finally we have weakened it sufficiently to achieve
arithmetical justification, what it then proves falls within Peano arithmetic.

These considerations encourage the view that we have identified a natural type within the space of mathematical
knowledge. The enterprise here might be compared with the identification of finitistic mathematics with primitive recursive
arithmetic (Tait 1981), and of predicative with hyperarithmetic (Kreisel 1960, 1962; Feferman 1964).24

I conclude with the observation that this paper answers a question raised by Tarski (1936). Following discussion of the
nature of the ω -rule (infinite induction), Tarski considers (p. 412) that this rule
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does not deviate essentially from the [ordinary] rules of inference, either in the conditions of its applicability or in the
nature of the concepts involved in its formulation or, finally, in its intuitive infallibility (although it is considerably more
complicated),

and he then remarks that

It would be interesting to investigate whether there are any objective reasons for assigning a special position to the rules
ordinarily used.

The present paper provides an affirmative answer to Tarski’s question.

NOTES

This paper owes its existence to the stimulus of a point put to me by Richard Shore from his critical and constructive reading
of my 1987 paper (I hope later to address other issues which he raised). I have as well greatly benefited from discussions with
Aleksandar Ignjatovic and from being able to read a preprint version of his paper on the ω -rule. Both of them also read a first
draft of this paper and gave me comments which have been an immense help in my further work on it. In arriving at my
(1987) formulation of the notion of arithmetical truth, I am especially indebted to Alex Wilkie for stimulation and
understanding. In the present work I have benefited very much from patient answers to my questions by William Craig, Robin
Gandy, Aleksandar Ignjatovic, Richard Kaye, Georg Kreisel, Saul Kripke, Stan Wainer and Alex Wilkie, and from discussion
following my presentation of an earlier version of this paper to the Oxford logic seminar and to an Oxford philosophy
discussion group, from which Timothy Williamson then helpfully gave me written comments. Benito Müller kindly assisted
me with translation, and William Ewald generously made available his translation of Hilbert (1931a). George Boolos offered
useful emendations to the “final” draft. I am deeply grateful for all this help, and to Michael Detlefsen for occasioning this
paper by his invitation to contribute to this collection and for his ever kind patience and encouragement while I worked on it,
to the philosophy department of the University of California at Berkeley, whose hospitality (continuing beyond the semester
when I was a visiting professor) generously provided the setting which enabled me to write the first draft of this paper, and to
Kassandra for her encouragement and the delight she took in the progress of this work.

1 I will talk about “the language of arithmetic” elliptically for “the chosen (first-order) language of arithmetic” (which might, for given
purposes, include, besides the constants 0, S, +, •, symbols for other or even all primitive recursive functions, and/or various
predicate symbols).

2 This expression of our grasp of the structure of the natural numbers was set out by Dedekind (1888) (see also his letter to Keferstein
(1890)). Frege’s (1884, 1879) treatment of the natural numbers is mathematically equivalent to Dedekind’s, though somewhat
differently motivated and developed.

3 This formulation by Gödel must have been a key source for me of this notion, as I used it in 1987, even though at the time of writing
that paper I seem not to have had it explicitly in mind.

4 Hilbert’s rule was taken up by Jacques Herbrand (1931:624) (Group D of his axioms of arithmetic). The constructive restrictions
implicit in Hilbert’s formulations are spelled out by Herbrand. (Herbrand’s paper is dated “Göttingen, 14 July 1931.” Hilbert
presented his paper (1931b) to the Gesellschaft der Wissenschaften zu Göttingen on 17 July 1931. Herbrand’s fatal mountaineering
accident occurred on 27 July 1931.)

5 He there talks about sentences of his Language I being analytic or contradictory, but that dichotomy for Carnap (1934) corresponds
exactly to true or false in the structure of the natural numbers.

6 See Schütte (1951: he there cites Hilbert (1931a); and 1960:168); for a more recent account see Schwichtenberg (1977).
7 At one point, Tarski (1933:279, fn 2) refers to the ω -rule as “the rule of transfinite induction.” I assume this is a verbal slip, where he

meant to have written his usual designation of the rule as “infinite induction,” and should not be taken as echoing this usage by
Hilbert. (Tarski cites Hilbert (1931a), which does not contain this usage, and makes no reference to (1931b), which does, when he
remarks, in footnote 1 on p. 295, that “the rule of inference mentioned has recently been discussed by D.Hilbert”.)

8 The similarity which is implicit in Carnap’s discussion in the passage in question is that these rules are all cited as not being d-rules,
“d” for derivation, to which most systems are restricted, but are c-rules, that is, rules of consequence—see Carnap (1937:39) for
discussion of the distinction between derivation and consequence.

9 There is similarly ambiguous juxtaposition on p. 197, where Carnap notes that, with his rule is a consequence of the collection of
sentences A(t), and then goes on to observe that “in the other languages which we have mentioned, on the contrary, the same thing is
not true for the universal operators… (unless Hilbert’s new rule is laid down),” again refraining from drawing an explicit connection
between his rule DC2 and Hilbert’s rule.

10 Compare the opening lines of Frege (1918): “The word ‘true’ indicates the aim of logic as does ‘beautiful’ that of aesthetics or
‘good’ that of ethics. All sciences have truth as their goal; but logic is also concerned with it in a quite different way from this. It has
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much the same relation to truth as physics has to weight or heat. To discover truths is the task of all sciences; it falls to logic to
discern the laws of truth.”

11 Richard Shore noted in discussion with me the commitment to general properties of truth which follows from my characterization of
arithmetical truth as closed under logical deduction (though the context of his point was somewhat different than it is here).
Sundholm (1978:1) considers the basic ω -rule to be “nothing but the -clause in the (substitutional) truth-definition for [sentences in
the language of arithmetic].” However, we shall see now in further discussion of the preceding derivation that the ω -rule and the
clause for the universal quantifier in an inductive definition of truth, while closely related, are not identical.

12 It has indeed been claimed that the ω -rule is more basic, or elementary, than the principle of induction. Lopez-Escobar (1976) opens
his paper with the remark that “from an intuitive point of view the ω -rule [he gives it as we had it at the beginning of Section II] is a
much simpler rule to justify than its finitary cousin, the rule of induction: From A(0) and to conclude .”

13 Tarski (1933b: 288–9) also shows how to construct examples of theories which are both consistent and ω -inconsistent (which he
claims in footnote 2, p. 279, he had already presented in a lecture in 1927, while eschewing any claim that he “already knew then the
results later obtained by Gödel or had even foreseen them”).

14 Compare this entailment with the remark by Tarski (1936: p. 258, fn 1) in which he equates the ω -consistency of a class of sentences
in a language for arithmetic with the condition that this class remains consistent after a single application of the ω -rule (infinite
induction).

15 A primitive recursive formula is said to be both ω 0, and ω 0. A formula A is said to be ω n+1 if there is a ω n-formula B such that A
is equivalent to , and A is ω n+1 if there is a ω n-formula B such that A is equivalent to (cf. Smorynski 1977:843).

16 If , then since T has an ω -model, is true in the structure of the natural numbers, which is to say that, for some natural number is true
in the natural numbers, that is, A(k) is not true, which means that .

17 As shown by the following example: Let T be the theory PA+ arithmetization of “this sentence, when added to PA, produces a system
which is ω -inconsistent.” The following is a heuristic argument to show that T is ω -consistent and has no ω -model. If the sentence
added to PA did produce an ω -inconsistency, it would be true (in the structure of the natural numbers). But in that case it would not have
produced an ω -inconsistency when added to PA, by the argument in note 14. So it must be that it does not produce a ω -inconsistency
when added to PA, which is to say that the theory in question must be ω -consistent. But then the added sentence is false, so the whole
theory cannot be true in the natural numbers, that is, has no ω -model (Kreisel 1955).

18 A reflection principle for a given system T is an assertion of the soundness of that system which in global terms would be the
statement

For every sentence A in the language of T, if A is provable in T, then A is true.
(Compare supposition 1 of Section III.) For any theory T to which Tarski’s theorem on the undefinability of truth is applicable,

such a global reflection principle cannot be expressed in the language of T. We can express soundness of T locally in the language of
T by a schema using the proof relation PrfT(x,y) from arithmetized syntax, and where  signifies the Gödel number of the formula
“A,” namely:

for each sentence (closed formula) in the language of T.
While global reflection for T cannot be expressed in the language of T, it is possible to parametrize infinite classes of sentences of

the form {A(0), A(S0), …, A (n),…} by use of a universally quantified variable, resulting in this version of uniform reflection, where
sub(u, v) is the primitive recursive function of arithmetized syntax which yields the numerical code of the formula which results from
substituting the term whose code is v in place of the (only, or specified) free variable in the formula whose code is u, and num(z)
gives the code of the formal numeral for the natural number z:

(compare supposition 9 of Section III). For ω 1-statements local reflection and uniform reflection over Peano arithmetic
are equivalent (see Smorynski (1977:846, Theorem 4.1.4)), though in the general case uniform reflection is strictly
stronger than local reflection (Feferman 1962:276, Theorem 2.19(ii)).

Reflection for a formal system is in general a stronger condition of soundness than consistency (heuristically, someone can be
untruthful but still be consistent). Local reflection for ω 1-formulas does not follow from consistency (Feferman 1962:274–5, Lemma
2.17(ii)) since, in particular,

by the Gödel Second Incompleteness Theorem. However, local reflection for ω 1-formulas is implied by consistency
(Hilbert (1928:474) sketches the essential idea for this implication, which lies at the heart of Hilbert’s Program). Global
reflection is stronger than consistency already for ω 1-statements, since for G the Gödel sentence, is consistent but does
not satisfy global reflection since ¬G is false.

19 I am grateful to Aleksandar Ignjatovic and Robin Gandy for kindly explaining this result to me.
20 I am grateful to Richard Kaye for this example.
21 This case of the ω -rule is studied by Aleksandar Ignjatovic (1988). My discussion here is dependent on his illuminating ideas and

results.
22 PRA is a formalization of the quantifier-free arithmetic established by Skolem (1923), whose language must contain a primitive

function symbol for each primitive recursive function (see for example Girard (1987:66–7) for such a formalization). For present
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purposes PRA is comparable to a system of Peano arithmetic in which the induction schema is restricted to ω 1-formulas, which I will
here term ω 1-PA, since the provably total functions of ω 1 ,-PA are precisely the primitive recursive functions (see Wainer 1990), so
that yA(x, y) if and only if there is a primitive recursive function f such that PRA . In the following discussion I shall continue to
speak of PRA, as it is conceptually, in terms of finitistic constructivity, the more fundamental system (also it is neater to print), but I
will mean ω 1-PA, since that system allows expressions with quantifiers.

23 While almost finitistic provability via this effective use of the ω -rule does not constitute an extension of Peano arithmetic, it does
give a proper extension of PRA. In particular, Con(PRA), by Gödel’s Second Incompleteness Theorem not provable in PRA, is
almost finitistically provable (see Ignjatovic (1988:13, Corollary 1); this result corresponds to the provability of the Gödel sentence
for PA (and similarly for Con(PA)) by use of the arithmetized ω -rule for PA, which we looked at in the latter part of Section V).

24 There is a difference in the historical situation of the present project from the two just cited, namely that in those cases the conceptual
notions pre-dated in philosophical discussion the systems offered as their precise realizations. The notion of arithmetical, which here
and in Isaacson (1987) I have argued is to be identified with Peano arithmetic, does not seem previously to have been singled out for
consideration.
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6
THE IMPREDICATIVITY OF INDUCTION

Charles Parsons

SUMMARY

It has been frequently objected to the reduction of mathematical induction to a definition first proposed by Frege that it is
impredicative in that its development requires second-order logic or set theory with impredicative comprehension
assumptions. The present paper develops an observation of Michael Dummett that a similar impredicativity remains if
induction is treated not as a definition but as integral to an informal explanation of the predicate “natural number” (N), even
though full second-order logic may not be used, for example if we think of the introduction of N as an inductive definition.

The argument for this claim applies to the case of natural numbers a well-known one for the impredicativity of “generalized
inductive definitions” such as Kleene’s definition of the class O of recursive ordinal notations. Such generalized inductive
definitions are impredicative according to the persuasive analysis of predicativity given by Solomon Feferman and Kurt
Schütte.

The observation that the notion of natural number is already impredicative is not an objection to this analysis, which was
intended to capture the notion of predicativity given the natural numbers. But it seriously weakens the case for the claim,
deriving from Poincaré’, that impredicativity is a sign of a vicious circle and altogether to be avoided.

Poincaré and others who followed him assumed a conception of sets or classes as extensions of predicates antecedently
understood. It is argued that the use of generalized inductive definitions by constructivists such as Lorenzen is consistent with
this conception; in this sense it is predicative, although not in the Feferman-Schütte sense.

We consider very briefly the objection that the claim that the notion of natural number is impredicative relies on a
questionable notion of conceptual truth.

According to Gottlob Frege and many logicists since his time, the principle of mathematical induction is a consequence of
the definition of natural number. Let “Na” mean “a is a natural number” and let A(x) be an open sentence. Then we can take
the principle as a rule of inference that enables us to go from the premises

to the conclusion A(t), for any term t. In effect, Frege defined “Na” as

and then, given his logic (a form of second-order logic), the principle of induction is indeed a derived rule.
A frequently voiced objection to Frege’s view of induction is that the application of his definition requires the second-order

logic to be impredicative. It must allow the instantiation of predicates containing second-order quantifiers for F in the
definition of “N.” We can see this if we reflect that, in order to carry out even elementary proofs in number theory, we need
to apply induction in cases where the predicate A(x) contains the predicate “N,” which, ex hypothesi, has been defined by
second-order quantification.

I shall use the term “second-order entity” as a neutral term for whatever our second-order variables range over. Different
interpretations will make them Fregean concepts, prepositional functions, sets, classes, or attributes. The point is that a logic
in which Frege’s definition yields the instances of induction needed even for elementary arithmetic must allow instantiation
for a universal quantifier of predicates containing quantification over all secondorder entities; thus these entities are taken to
include some defined in terms of quantification over all of them, a totality to which they themselves belong.1

Different attitudes have been taken concerning the force of this objection, depending on one’s view of impredicativity in
general. The most widely held view is perhaps that it is an objection to taking full second-order logic to be truly logic, in the
sense of consisting of rules that are basic to all reasoning about objects in general. Such second-order logic includes,



implicitly or explicitly, assumptions as to when a predicate expresses or stands for a second-order entity. In particular, it
assumes that predicates containing quantifiers over such entities do so. Such assumptions are in effect comprehension axioms
and have an existential character; they are not essentially different from existence axioms for sets or classes.

The thesis of the present note is that the impredicativity that arises from Frege’s attempt to reduce induction to a definition
is not a mere artifact of Frege’s strategy of reduction. As Michael Dummett observed some years ago, the impredicativity—
though not necessarily impredicative second-order logic—remains if we regard induction in a looser way, as part of the
explanation of the term “natural number.”2 If one explains the notion of natural number in such a way that induction falls out
of the explanation, then one will be left with a similar impredicativity. The same holds for other domains of objects obtained
by iteration of operations yielding new objects, beginning with certain initial objects. It seems that the impredicativity will
lose its significance only from points of view that leave it mysterious why mathematical induction is evident. A conclusion I
wish to draw from this simple observation is that some impredicativity is inevitable in mathematical concept formation.3 This
contradicts the once-influential view deriving from Poincaré that it is a clear sign of a vicious circle. At the end of the paper I
will comment on some recent views of impredicativity, particularly those of Lorenzen and Feferman.

I

Induction appears to be implicit in our concept of natural number, but there are other ways of capturing this idea than Frege’s
explicit definition. One way that avoids some of the difficulties of Frege’s is viewing the predicate “natural number” as
introduced by an inductive definition. Some would find the term “definition” inappropriate here, and it is not essential. What
we have is a system of rules which serves to explain a newly introduced predicate. Unlike an explicit definition, these rules do
not lead to the eliminability in principle of the predicate from contexts in which it occurs, but other arguments can be given for
their adequacy. We will assume that we understand the term “0” and an operation S leading from x to its successor Sx. Terms
of the form “SS… S0” behave like singular terms, but I do not wish to take this too strictly, since I want my remarks to apply
to a situation where variables for numbers are substitutional. Moreover, where such variables are understood objectually, nothing
is to turn on any claim to the effect that what these terms denote are really natural numbers rather than elements of some other
model of arithmetic. My remarks should apply to any instance of the structure of natural numbers, in particular intuitive models
such as Hilbert’s strings of strokes.4 This is in keeping with the widely held view that the natural numbers are given only by
their structure.

Our conception of the natural numbers is of what is obtained by beginning with 0 and iterating the successor operation.
Frege tried to capture this by an explicit definition; the present approach undertakes to capture it by rules. Obviously it allows
us to assert that 0 is a natural number and that Sx is a number if x is. Hence we have the following “introduction rules”:

Now these rules are understood as the canonical way of arriving at statements to the effect that something is a natural number;
it is only by virtue of them that something is a natural number. Thus a common way of stating inductive definitions is by
giving rules like these and then saying something like, “Nothing is a number except by these rules.” That amounts to taking N
to be minimal so that the introduction rules hold. But now suppose A(a) is a predicate for which the introduction rules hold:

Then A(a) must be true of any natural number. But that is just the induction principle. It can be given the form of an
“elimination rule” for N, that is, a rule of inference that from the above two premises with the additional premise Nt allows
inference of A(t).5

There is a very natural picture that arises here. If x is a number, then by the introduction rules, if we begin with 0, then by a
succession of steps from y to Sy we reach x. Then by a parallel succession of steps, we can show that A(y) holds for each y
figuring in the construction, and therefore that A (x) holds. In fact, for each x we can construct a formal proof of A (x) by
beginning with A(0) and building up by modus ponens, using A(x)→ A(Sx). As a proof of induction, this is circular: the
“construction” of x by a succession of steps is itself inductively defined, and it is by a corresponding induction that it is
established that A holds at each point in the construction. Nonetheless, it is still useful for meta mathematical arguments
concerning induction in formalized theories, and it is no worse than arguments for the validity of elementary logical rules.

Now evidently the state of affairs that made Frege’s definition require impredicative logic also obtains in the present
setting: in order to apply the induction rule to prove significant generalizations about numbers, we will have to use predicates
containing the predicate “N.” As originally offered, as a principle cashing in our intention that the numbers should be what is
obtained by the introduction rules and those alone, the principle refers to arbitrary predicates, without any assumptions having
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been made about what counts as a predicate. Like the principles of predicate logic itself, we have a purely formal
generalization about predicates, which is not a generalization over a given domain of entities and could not be, since it is not
determined what predicates will or can be constructed and understood. If our explanation of the natural numbers is successful,
then we do understand “N” as a predicate and indeed as describing a possible domain for quantification; that is, we are able to
understand quantifiers restricted to N. But this means that the impredicativity of Frege’s definition survives in the present
setting, since we have explained “N” in part by a formal generalization about predicates, which has to admit as instances
predicates containing “N” itself.

Our situation can be described as follows. The readily available alternatives to something like the inductive-definition
model of the concept of natural number (with or without the Fregean reduction) would be to give it an explanation that is
blatantly circular, such as, the natural numbers are what is obtained by beginning with 0 and iterating the successor operation
an arbitrary finite number of times, or to take the concept of natural number as given and the principle of induction as evident
without any explication connecting it with the concept of natural number. Either alternative seems to me a counsel of
philosophical despair that leaves us with no motivation for the principle of induction. Below, however, we will consider some
alternatives from set theory. The explanation we have includes a generalization about predicates that includes the predicate
“N” in its scope.

In interpreting both Frege’s definition and our characterization by rules of the predicate “N”, one can ask what is the range
of the first-order variables. In some applications of inductive definitions, all the definition aspires to do is to define a predicate
of objects of a previously given domain and so we can take first-order quantifiers to be understood in some independent way.
Frege himself seems to have assimilated his own case to this one in assuming that first-order quantification is quantification
over all objects, in an absolute sense independent of the particular context of inquiry. Such a view is not very persuasive now.
Should we still interpret our explanation of the notion of natural number as picking out the natural numbers from a previously
given domain? One might reply that our conception of the natural numbers is that of a structure and therefore does not give
individual identities to the objects playing the role of 0, 1, 2, etc.; therefore there should be no unique answer to the question
from what domain the natural numbers are picked out or even whether there is one. The generality with which we have
proceeded is in keeping with this structuralist view and therefore cannot exclude the case where there is a previously given
domain. Some instances of the structure of natural numbers are substructures of others, and we might describe such
substructures by inductive definitions.

However, to assume that this is always the case is to assume that some infinite structure is given to us independently of our
knowledge of the kind of structure the natural numbers instantiate. This may be a domain of mathematical objects such as sets.
Or one may, as in nominalist views, claim that one can find in the physical world a realization of the structure of natural
numbers, which is therefore to be described by quantifiers ranging over some domain of physical objects. Either of these
alternatives has its difficulties, which it would take us too far to go into.6 My main point concerning the impredicativity of
induction is independent of whether the natural numbers (or a representative of their structure that is of some basic
significance) are a class of previously given objects.

If there is no such previously given infinite structure, then it is as if we had arrived at the concept of natural number by
pulling ourselves up by our conceptual bootstraps, so as to understand the notion of some such structure and convince
ourselves of its possibility without having in advance the conception of a domain of objects from which the objects of the
structure are picked out.

In my view this is possible for an intuitive model such as the Hilbertian one. Let us suppose for the moment that “0”
denotes the symbol “|” (as a type, understood as a spatial configuration), and that, from a given x, Sx is the result of adding
another “|” on the right. Then the objects of the model are strings such as 
Now evidently this interpretation presupposes that every such string can be extended by the addition of another “|.” In my
earlier discussion (1979–80:156–8) I argued that this is intuitively evident. Both this proposition and the statement that, for
any x, Nxω N(Sx), obtained from the second introduction rule, are general statements about strings, but they are not obtained
by induction. The variable in the second introduction rule is in a way more inclusive than variables over numbers. The
thought-experiment that verifies that every string can be extended does not depend on any insight into the specific totality of
such strings; this is shown by the fact that in the sense in which a new “|” can be added to any string, it can be added to any
bounded geometric configuration.

Although the generality of the variable “x” in the second introduction rule is more inclusive than a variable over numbers
(in the present setting, strings), I do not want to say that it ranges over a more inclusive totality of objects. There would not be
a convincing answer to the question what that totality is. We could specify the range as something like “object given in space
or time.” But this very general rubric might go with quite different ways of individuating such objects. The generality is akin
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to the kind of generality Husserl called “formal,” characteristic of formal logic. In a sense, we used free variables with a
generality interpretation without yet knowing what they ranged over.

If this is our situation, then the impredicativity of induction arises more sharply than before, because it is induction that
cashes in our conception of the totality of strings and therefore gives us a predicate that can serve to define the range of variables
of quantification that can be used in the formation of predicates.7 Stated as a general principle, induction is about “all
predicates.” The predicates that we use are defined by means of basic relations, logical connectives, and quantification over N
and other domains that we might come to subsequently. Induction is thus inherently impredicative, because without it we do
not have a definite domain for our quantifiers, but we cannot apply it without taking predicates involving quantification over
this domain as instances.

It will no doubt occur to the reader that as an “inductive definition” of “N” the introduction rules and the induction
principle are incomplete, no matter what resources are deployed for the formation of predicates. Even to obtain the elementary
theory of 0 and S, we need the two additional axioms

which intuitively express the fact that if the successor operation has been applied a number of times beginning with 0, then its
application will still yield something new. Evidently, since they contain identity, they are bound up with the individuation of
the objects of the domain. In the Hilbertian intuitive model, the notion of type provides the principle of individuation (Parsons
1979–80:153–6), and these axioms seem evident enough on intuitive grounds. But other points of view about them are
possible, such as Lorenzen’s that they are admissible rules once one has introduced the equality predicate in a similar
inductive way.8 These axioms raise many questions, but space does not permit us to go into them here.

We must not take the impredicativity of induction as implying the legitimacy or unavoidability of full second-order logic.
Given a domain D for individual variables, full second-order logic is naturally understood by taking second-order variables to
range over all subsets of D. It requires that the “predicates” of objects in D should be closed under second-order
quantification. Nothing we have said implies this; indeed our picture should suggest rather the opposite, that the “predicates”
talked of in the induction rule are a quite open-ended and indefinite totality, depending on linguistic and conceptual resources
of whose limits we have no real conception. That would raise a question whether second-order quantifiers, in particular their
use to define new predicates as in second-order logic, can have a definite sense. My own view is that any such sense that
would license impredicative logic must derive from the concept of set.9 That such second-order logic is not forced upon us at
this point is shown by the fact that a mathematics that assumes the concept of natural number but from there on is strictly
predicative is perfectly coherent.

Before going on I want to consider an objection to our thesis suggested, though not in the end endorsed, by Alexander
George.10 He proposes a set-theoretic definition of “natural number”.

This definition is a revision of a well-known one due to Quine.11 The sets in the range of “y” can be assumed to be finite, thus
specifiable independently of the class of natural numbers itself. George thus claims that the definition is predicative. George
then observes, however, that impredicative instances of the schema of separation will be needed to derive induction for
predicates containing quantifiers.

To the claim that the Quinean definition of the natural numbers is predicative, one can also reply that it is so only because
the notion of finite set is assumed. George’s claim that the above definition is predicative is justified only if “y” is explicitly
restricted to finite sets. George does this by a distinctive style of variable for finite sets. To stick to the usual first-order
framework, however, I will modify the definition to

where “Fin y” means “y is a finite set.”
Once one allows oneself the notion of finite set, it seems one should be allowed to use some basic forms of reasoning

concerning finite sets. It then becomes possible to reply to George’s reply to his objection. The following schema is a natural
principle of induction on finite sets:

12
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If we assume this schema and a parallel principle of recursion, which allows for given terms →  and x the introduction of a
function symbol f satisfying the equations

13

then by recursion we can introduce the cardinal number of a set:

We can now define the natural numbers in an obvious way:

and now induction on natural numbers is straightforwardly provable using induction on finite sets. In this whole development,
no set existence assumptions are used except the basic ones giving finite sets: Ø and b  [c] for given b, c. Given the theory
of finite sets, the definition of natural number and the derivation of induction meet any reasonable standard of predicativity.

As a defense of the claim that induction on natural numbers is after all predicative, this exercise is hardly impressive. What
has been assumed about finite sets will just reinforce the reply that although perhaps one can escape the impredicativity of
induction on natural numbers, one merely throws the matter back to the notion of finite set, where the same problems will
arise. And indeed the assumptions about finite sets used above will clearly give rise to a parallel argument for the
impredicativity of Zermelo’s induction principle.

One might seek to escape this conclusion by relying on a settheoretic definition of finite set and a derivation from it of the
above induction and recursion schemata. Questions might be raised about the predicativity of these definitions. But in any
event the procedure faces the same difficulty as that raised by George about his proposed definition of the natural numbers: for
A containing quantifiers, impredicative instances of separation will be needed to derive induction on finite sets.14

There is a positive lesson from our exercise, however. The conclusion that the notion of natural number is predicative
relative to that of finite set brings out a relativity of the notion of predicativity, to the conceptual apparatus that is taken as
given. This is illustrated further when we consider some discussions of predicativity in the logical literature.

II

Up to now our main argument has consisted essentially in applying to the case of the natural numbers a well-known argument
for the impredicativity of inductive definitions. This was applied in particular to so-called “generalized inductive definitions”
in which the introduction rules for an inductively defined predicate P may contain general statements involving P. A general
form of such definitions consists, for a formula A(P, x) containing the predicate P to be introduced but otherwise only
previously understood vocabulary, of the introduction rule 

and the induction principle (elimination rule)

which expresses the idea that P is minimal so as to satisfy the condition given by the introduction rule. Such a means of
introducing a new predicate is not always coherent. A sufficient condition is that A should be monotonic, that is, that

should hold for all P, Q. I will assume this in what follows.
If P is introduced in this way, we can think of its extension as built up in stages, indexed by ordinals. At stage 0 the

extension P0 is empty; P→ +1a holds if and only if A(P→ , a); for a limit ordinal ω , P→ a hold if an only if, for some → <→ , P→ a
holds. Monotonicity implies that, if → <→ , then P→ a implies P→ a. If an →  is reached such that P→ +1=Pω , then P→  remains
unchanged for all further → , and we can take Pa as P. Moreover, assuming the underlying domain to be a set, there will be
such a “closure ordinal,” for if the closure ordinal has not been reached by stage a, then a must be of cardinality no greater
than that of the domain. Thus in set theory, we can prove that monotonic inductive definitions yield welldefined predicates.15

A simple example of such a “definition,” relevant to our argument, is that of the notion of accessibility for a relation R of
natural numbers, which we will assume to be a linear ordering. Intuitively, “Acc(a)” means that transfinite induction holds for
the relation it can therefore be given an obvious second-order explicit definition. In the inductive definition, the introduction
rule takes the form
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whereas the elimination rule or induction principle says that, if A(x) satisfies the above closure condition, then it holds for all
accessible numbers, that is,

In proof theory, beginning with Gerhard Gentzen’s 1936 proof of the consistency of first-order arithmetic, transfinite
inductions up to certain countable ordinal numbers have been regularly used. 

These ordinals can be represented arithmetically by primitive recursive orderings of the natural numbers. If R is such an
ordering, in many cases the notion of accessibility can be used for formal derivations of transfinite induction; standard
derivations in texts on proof theory can be recast in the form.16

However, one comes rather quickly to need to use instances of the induction schema where the formula A(a) contains
“Acc,” so that again impredicativity enters. For this kind of reason it has been argued that this and other important generalized
inductive definitions are impredicative. For example, in the course of presenting his own analysis of predicativity, Solomon
Feferman offers such an argument for the impredicativity of the usual definitions of Kleene’s set O of recursive ordinal
notations.17 In the case of Acc, applications of it to prove transfinite induction for shorter well-orderings (such as one of type
ω 0 that might be used for Gentzen’s or another proof of the consistency of arithmetic) can be replaced by other methods that will
be recognized as predicative. But this will no longer be true for longer orderings.18

The sense of “predicative” in which these last remarks hold is captured by the beautiful and persuasive analysis of
predicative provability of Feferman and Schütte.19 According to this analysis, generalized inductive definitions like that of “Acc”
and O are impredicative principles of proof. I shall not enter here into the details of the analysis, which are complex. It turns
on looking at transfinite iterations of different methods of enlarging the means of expression and proof of formal systems. The
key condition is that if some such method of enlargement is iterated through a transfinite sequence of stages, the stages can be
antecedently recognized to be well-ordered. But at no point is any restriction placed on ordinary induction on natural numbers.
The considerations advanced above might suggest a doubt as to whether what is predicative according to this analysis really is
so. However, in one respect pressing this point would misconstrue the intent of the analysis. What it is intended to capture is
predicativity given the natural numbers, where the problem of predicativity is raised in the first instance about reasoning about
sets of natural numbers, and then perhaps extended to further reasoning about sets and functions. Thus Feferman writes:

According to this [the predicative conception], only the natural numbers can be regarded as “given” to us.… In contrast,
sets are created by man to act as convenient abstractions…from particular conditions or definitions.20

(Feferman 1964:1–2)

Feferman and others have suggested that an analysis of predicativity should describe the concepts and principles that are in
some way implicit in the conception of natural number. The manner in which reasoning about classes, sets, or functions is
allowed is based on the conception of classes as extensions of predicates, and so a generalization about classes (or sets) must
be cashable as a generalization about the predicates of which the classes are the extensions. Such generalizations about
predicates will be semantical in character, involving satisfaction or truth. Thus semantic reflection, or what Lorenzen some
years ago called “logical reflection,” is the manner in which second-order entities are understood.21 By semantic reflection I
mean passing from statements using a certain vocabulary to statements applying semantic notions (reference, truth,
satisfaction) to that vocabulary. From Tarski’s indefinability theorem, it follows that for classical theories semantic reflection
is an enlargement of one’s means of expression.22

One can obtain considerable strength by iterating such reflection into the transfinite, as in the construction of the ramified
hierarchy. But on the Feferman-Schütte conception, the iteration is constrained by the requirement that its stages (ordinals) be
given in advance as well-founded. In contrast, a generalized inductive definition like that of O or “Acc” allows objects to fall
into the extension on the introduced predicate by iteration of the introduction rule (according to the above-described iterative
process), but the stages needed, if one does not take them as given from set theory, are described only by the definition itself
or another comparable one. This is exactly parallel to the situation with the natural numbers.

The Feferman-Schütte conception of predicative mathematics is constructed from elements that are very basic and deeply
entrenched parts of our conceptual apparatus: either first-order logic or a second-order logic with quite minimal
comprehension assumptions, the notion of natural number, and semantic reflection. Describing the limits of what can be
accomplished by these means not only was a technical achievement but served to delineate a natural conceptual boundary.
Some of the discussion of constructivity and predicativity in the immediately preceding period shows the lack of a clear
distinction between this apparatus and a more generous conception that would extend it at least by certain generalized
inductive definitions. Feferman’s criticism of Lorenzen and Wang on this point is justified (Feferman 1964:5). However, I
shall argue that the distinction can be seen as one between two senses of predicativity.
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If one grants a certain impredicative character to ordinary induction, the issue between Feferman and the earlier writers
appears in a somewhat different light. It is hard to see how a mode of concept formation which involves a “vicious circle” in
the case of generalized inductive definitions does not involve such a circle in the case of the natural numbers themselves.
Granted, then, that Feferman has correctly characterized the limits of predicativity relative to the natural numbers, the case
that the traditional arguments deriving from Poincaré show that this is the limit of acceptable mathematics is weakened.

Lorenzen usually characterized his position as “constructivist” or “critical” (in the writings cited in notes 6, 18, and 20) and
to that extent did not depend on a particular interpretation of predicativity. However, he did specifically claim that generalized
inductive definitions are predicative, though to be sure in a joint paper.23 Clearly, my view is that this claim is mistaken.
However, at this point one should make another distinction. The primary sense of impredicativity applies to sets or classes,
and they are said to be impredicatively defined if they are given by abstracts involving quantification over some totality of
sets to which they themselves belong. This extends readily to other cases; for example Russell’s diagnosis of the semantical
paradoxes involves pointing out that sentences such as “The proposition expressed by my present utterance is false” or “Every
proposition asserted by a Cretan is false,” asserted by Epimenides the Cretan, when taken naively, purport to express
propositions that are in the range of their own quantifiers. In the present case, inductive definitions are said to be
impredicative because they involve introducing a predicate by rules or axiom schemata such that expressions containing the
predicate itself have to be admitted as within their scope. All these cases are of the type where the question of a vicious circle
was raised by Poincaré, Russell, and Weyl.

However, if we reflect on the motives of the original critique of impredicativity, an underlying conception was that classes
or sets are extensions of predicates and therefore that the circle lay in speaking of sets that could not be extensions of
predicates antecedently understood. This conception is quite clear in the writings of Poincaré and Weyl.24 In the case of
Russell it is perhaps not so clear because of his unclear conception of the relation of prepositional functions to language.
However, his original adoption of a vicious-circle principle was as a guiding principle in the construction of a “no-class”
theory, in which classes were to be eliminable by contextual definition, and propositional functions were treated in a
completely predicative way.

Historically, what has served to defuse the critique of impredicativity is set-theoretic realism, with its attendant
abandonment of the ideas that sets are extensions of predicates in a given language, so that the domain of sets one can
quantify over has to be seen as potential, expanding as one’s linguistic resources expand, in particular by quantifying over
totalities of sets previously arrived at. Russell took the realistic attitude in a somewhat half-hearted way in introducing his
axiom of reducibility, of which he said that it accomplishes “what common sense effects by the admission of classes.”25

To return to Lorenzen, it is quite clear that he is especially concerned to avoid this set-theoretic realism, what he calls
“naive” concepts of set, relation, and function.26 His concept of set is just the one that underlies the critique of Poincaré and
Weyl, even though the issue of a “vicious circle” does not occupy the center of his attention.

Since it is generally agreed that there is a coherent conception of “constructive” mathematics which goes beyond the
predicative as characterized by Feferman and incorporates theories of generalized inductive definitions but which still does not
presuppose settheoretic realism, it might seem that our discussion can just end with the observation that Lorenzen held such a
constructive conception. However, in my view there is still a remark worth making, which justifies to some extent the use of
the word “predicative” by Lorenzen and Myhill. Constructivists have not always been very explicit about the relation of
higher-order entities to language; indeed Brouwer’s own radical view that mathematics is essentially independent of language
works against such clarity, particularly in his notion of species (i.e. class). The term “impredicative” was used by Poincaré
because of his view of sets or classes as essentially extensions of predicates;27 in a terminology I have used elsewhere, the
language of classes serves as a means of generalizing predicate places in a language. But then that the classes in the range of a
generalization should be the extensions of predicates antecedently understood is entirely natural. Now if we call “predicative”
such a view of classes, the question arises whether it is violated by inductive definitions. If it is not, it will give a sense in
which Lorenzen’s view is predicative and a divergence of two possible meanings of predicativity.

Now it is characteristic of the inductive definitions we have been considering that they are introductions of predicates and
not in the first instance definitions or characterizations of sets. Because semantic reflection comes so readily to us, once we
have understood such a predicate as the natural number predicate or an accessibility predicate we will almost immediately talk
of its extension. However, there is an essential conceptual order here which places the understanding of the predicate before
the apprehension of its extension as an object. There is, to be sure, a subtle difference between the situation we are
envisaging, where we eschew set-theoretic realism and treat the inductive rules themselves as giving us understanding of the
predicate, and a situation where one assumes set theory and where moreover what is being introduced is a predicate of objects
in a domain that has been recognized to be a set. In the latter case the axiom of separation implies that there is a set that is its
extension; there is therefore a proof of its existence which does not use any semantic concept (as indicated above). At least if
one is prepared to hold that particular instances of a schema like the axiom of separation can be seen to be true independently
of the general principle, it follows that semantic reflection does not enter into one’s insight that there is such a set as .
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However, this does not change the essential point: that one’s understanding of the predicate is prior to the insight that the set
exists.

Thus in my opinion Lorenzen does not violate the limitations of his own concept in admitting generalized inductive
definitions, and the divergence of two senses of predicativity does indeed exist. Though this observation is a partial defense of
Lorenzen against Feferman, clearly the meaning of the term “impredicative” underlying both Feferman’s analysis and the
earlier part of this paper is so firmly entrenched that it is now the more appropriate way to use the term, particularly since
there is no ready alternative term for the same idea. 

In these remarks I have bypassed an issue about the status of higher-order entities in constructive mathematics. According
to many constructivists, the notion of function enters essentially into the interpretations of quantifiers, even over such objects
as numbers. The context in which the issue arises is explanation of the meaning of statements in intuitionistic theories in
terms of what would count as a proof of them, worked out formally in theories of constructions.28 In intuitionistic
mathematics, we no longer have the mutual reducibility of the notions of set and function which obtains in classical
mathematics. A theory may be compatible with the idea of sets and classes as arising by semantic reflection and still depend
on a notion of function of a different nature. In my view this issue primarily affects the claim of the sort of conception I have
been discussing to be constructive, which has not been a primary concern in the present paper. At all events the conception of
function that on this view would be required is weaker than the set-theoretic conception in that the functions that would have
to be assumed are intuitively effectively calculable.

Finally, since this paper was originally written for Sidney Morgenbesser, I cannot evade completely a nagging doubt that I
am sure would arise in his mind. The model that played the principal role in my argument can be described as one in which
induction is constitutive of the meaning of the term “natural number.” But, one will ask, is there even a fact of the matter as to
what belongs to the meaning of “natural number” as opposed to merely being true (even if necessarily) of all natural
numbers? Does not my discussion flirt rather dangerously with the notion of “conceptual truth” or “meaning postulate”?

A proper reply to this objection would require a paper in itself. I will confine myself to some brief remarks. First, even if
this model is taken literally it still does not remove every “factual” aspect from the principles of arithmetic: that we
understand a concept explained in this way and have consistency in its applications is not something we could establish by
other more evident or fundamental principles; our possession of a concept of number is a sort of Faktum der Vernunft. That
state of affairs would obtain even if it were shown that the principles of mathematics are analytic, in the sense of being true by
virtue of the meaning of the terms in them.29

Second, my argument has taken the form of claims that impredicativity emerges from certain explanations of the
meaning of “natural number.” In the explanations that I emphasized, induction is directly part of the explanation. But I do not
wish to be committed to the thesis that induction is “constitutive of the meaning of ‘natural number’” independently of any
such explanation. My remarks on some set-theoretic proofs of induction were meant to show that impredicativity will turn up
in the context of a variety of such explanations. Still, one is left with the somewhat unsatisfying situation that one has to
verify this one explanation at a time, and the possibility exists that someone will turn up a new explanation that will avoid it.
Fairly long experience seems to me to make this highly unlikely.30

Third, in the present context a purely dialectical reply to the objection is possible: if there is no such fact of the matter in
the case of the concept of natural number itself, then on the same grounds there should be no such fact of the matter in the
case of notions introduced by generalized inductive definitions. Thus, the thesis of Section II of this paper, that as far as the
specific issue of the impredicativity goes ordinary induction is in the same boat as these higher inductions, still stands.

NOTES

Revised and expanded version of a paper that appeared in Leigh S. Cauman, Isaac Levi, Charles Parsons, and Robert
Schwartz (eds), How Many Questions: Essays in Honor of Sidney Morgenbesser (Indianapolis, IN: Hackett, 1983). Copyright
© 1983 by Leigh S. Cauman, Isaac Levi, Charles Parsons, and Robert Schwartz. Reprinted by permission of the editors and
Hackett Publishing Company.

I wish to thank Isaac Levi and Wilfried Sieg for comments helpful for the original version, and Michael Detlefsen and
Alexander George for comments and suggestions useful for the present version.

1 This observation about proofs using Frege’s definition is reinforced by the fact that, in a ramified second- or higher-order logic, if
one defines the natural numbers in Frege’s way with the second-order quantifier having a definite level or order, then there will be
instances of induction of higher level that will not be provable. See Myhill (1974), p. 21. Essentially Myhill’s result was stated, with
only the briefest indication of a proof, in Wang (1962), p. 642. Kurt Gödel had observed that Russell’s attempt to prove the contrary,
in Appendix B of the second edition of volume I of Principia Mathematica (1925), is fallacious; see Gödel (1944), pp. 145–6.

2 Michael Dummett (1978), p. 199. Dummett does not apply his remark to issues concerning predicativity and inductive definitions in
general (see below). 
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3 This seems to be Dummett’s view. Commenting on the result mentioned in note 1, Myhill remarks that if one’s “mathematical
philosophy” is classical,

one would reason that the result shows that impredicativity is present in mathematics from the very beginning, i.e. the
natural numbers, and that consequently any philosophy of mathematics which repudiates impredicative definitions ipso facto
repudiates mathematics itself.

(Myhill 1974:27)

Taken strictly, this claim is very questionable, since a classical view of mathematics hardly requires that the notion of
natural number be understood by an explicit definition. If one replaces “impredicative definitions” by the vaguer term
“impredicative notions,” then an argument for Myhill’s claim would require something like the (earlier) observation of
Dummett that we are elaborating.

On the other hand Myhill seems to think that the constructivist could avoid this conclusion. The view defended below is that he
could do so only at the price of a dogmatic view of the clarity of the notion of natural number and the evidence of mathematical
induction.

4 Hilbert and Bernays (1934). The sense in which this model is intuitive is discussed in my “Mathematical intuition” (Parsons 1979–80).
5 As our terminology suggests, the introduction rules and induction can serve as introduction and elimination rules for “N” in a

naturaldeduction formalization of arithmetic. In such a formulation, the antecedent A(x) in the second premise of induction can be
replaced by a premise to be discharged.

6 But see my “The structuralist view of mathematical objects” (Parsons forthcoming).
7 This seems to be the view of Dummett (1978).
8 Lorenzen(1955), p. 134.
9 Parsons (1983), pp. 216–17.

10 George (1987). See also George (1988), pp. 141–3.
11 Quine (1969), pp. 75–7. On some difficulties with Quine’s (simpler) version, see George (1987), p. 516, and Section 6 of Parsons

(1987).
12 This is a reformulation of an induction principle discovered by Zermelo; see Zermelo (1909). It can be proved in set theory from any

one of several definitions of finite set; cf. Levy (1979), p. 77, and Parsons (1987), Sections 3 and 4.
13 The parameter “a” can obviously be replaced by a longer, or empty, list of parameters. In a formal theory, we would need to provide

for the possibility that the last argument of f is not a finite set, presumably by legislating a throwaway value. In the following
application, we assume definition by cases.

14 The same is true of a very interesting set-theoretic proof of induction given by George Boolos (1985), based on an argument due to Dana
Scott to prove the axiom of foundation in a theory in which there are variables for partial universes (collections of sets obtained at
various “stages” of the iterative conception). Boolos assumes a notion of number, but the assumptions about it are minimal except
that numbers serve as stages at which sets are “formed.” But for this he assumes a comprehension principle Spec (p. 471), and the
whole argument turns on the use of the notion of groundedness (p. 472), which makes the use of impredicative instances of Spec
unavoidable.

Boolos is not concerned with the question of predicativity but rather with the claim that his assumptions are “significantly less
inductive in character” than mathematical induction or other principles that have been used to derive it. The significance of Scott’s
argument and Boolos’s use of it certainly deserves further discussion.

Scott’s original presentation is in “Axiomatizing set theory” (1974). See also Shoenfield (1977).
15 For information concerning generalized inductive definitions and their importance for proof theory see Feferman and Sieg (1981).

Cf. also Aczel (1977). This informative article is not as introductory as its title would suggest.
16 For example, this is true of the derivations in Section 21 of Schütte (1977), which are predicative by the Feferman-Schütte criterion

discussed below, and of those in Section 22 of Schütte (1960), which are not. On the latter, cf. his “Logische Abgrenzungen des
Transfiniten” (1962), p. 110. To handle the ordering dealt with in Section 29 of Proof Theory (1977), one needs arbitrary finite
iteration of inductive definitions.

All these orderings are primitive recursive, and their elementary properties can be proved in primitive recursive arithmetic. It is in
the problem of deriving transfinite induction that the constraint of Gödel’s Second Incompleteness Theorem shows itself. Gentzen’s
proof, for example, can be carried out with a single instance of induction on an ordering of order type ω 0. Thus this instance cannot be
derived in first-order arithmetic.

17 Feferman (1964), p. 5.
18 If the inductive definition of accessibility is our only means of proof beyond arithmetic, we need to use the elimination rule with

predicates containing “Acc” even in some cases that are clearly predicative given the natural numbers. Does this cast doubt on our
argument for the impredicativity of ordinary induction? In the present situation, such prima facie impredicativities can be replaced by
other methods of proof. For example, one can use ramified second-order logic (i.e. second-order logic with the second-order
variables assigned levels, so that the variables of a given level can be interpreted to range only over second-order entities defined by
means of quantifiers of lower levels), where, if transfinite levels are needed, they can be antecedently shown to be well-founded. No
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such alternatives are in sight in the case of ordinary induction. Nonetheless, some further logical analysis to reinforce this point
would be desirable.

19 Feferman (1964). This is still the best source for his motivating ideas and for the statement of the most basic technical results,
although his analysis is refined and extended in later papers.

Schütte offered an analysis based on the same basic ideas and obtained independently some of the relevant technical results but did
not carry the matter as far as Feferman, mainly because the only form of predicative analysis that he considered was based on the ramified
hierarchy. In “Logische Abgrenzungen” (1962) he presents his ideas very clearly and describes his results informally.

20 Schütte is not so explicit on this point.
21 Lorenzen (1958), p. 244. In recent work Feferman has explored the idea of “reflective closure” of theories, to capture the idea of

“closing” a theory under semantic reflection. Predicative analysis as he has previously described it turns out to be what he calls the
“strong reflective closure” of first-order arithmetic. See his forthcoming “Reflecting on incompleteness.”

22 Semantic reflection and its role in mathematics are discussed in considerable detail in Mathematics in Philosophy (Parsons 1983),
particularly Essays 1, 3, 8, and 9.

23 Lorenzen and Myhill (1959), pp. 47–8. Hao Wang also proposes that generalized inductive definitions be included in predicative
theories, for example, in Wang (1962), Section 5. On p. 644, there is intimation of a ceteris paribus argument like that of the present
note.

24 Though I find it clear enough, in Poincaré it is not quite so explicit, or so clearly disengaged from other considerations such as
rejection of the actual infinite, perhaps because of his negative attitude towards symbolic logic. But he makes quite clear that he
expects sets to be definable, most explicitly in the first essay of Dernières Pensées (1913); see especially the criticism of Cantor’s
diagonal argument in Section 6.

For Weyl, see the analysis of the concept of set in Das Kontinuum (1918), Section 5, and its polemical use in “Der circulus
vitiosus in der heutigen Begründung der Analysis” (1919).

25 Russell (1956), p. 81.
26 Lorenzen (1958), pp. 246–7.
27 The first version of this paper said that the term was “coined” by Poincaré. George (1987) pointed out that Poincaré credits the

introduction of the term to Russell (p. 514).
28 One sees this clearly in W.W.Tait’s characterization of the mathematics that can be obtained without presupposing a general concept

of function. See Tait (1981). The most elaborate theory of the kind I am alluding to is Per Martin-Löf s intuitionistic theory of types;
see Martin-Löf(1984).

29 Cf. Kurt Gödel’s rather cryptic discussion of the analyticity of the axioms of Principia near the end of “Russell’s mathematical logic”
(Gödel 1944). The connection between this possibility and Quinean criticisms of analyticity is commented on briefly in my
introductory note to the paper in Collected Works, vol. II, pp. 115–17. Similar issues are discussed interestingly in a larger context in
Wang (1985).

30 We also have to remember, as Hilary Putnam reminded me, that arithmetic was part of mathematics for many centuries before the
principle of mathematical induction was formulated. (It apparently dates from the seventeenth century.) This consideration raises a
number of questions that I cannot deal with here. One would have to investigate explanations of the notion of natural number that
were given in the earlier times and inquire how clearly they differentiated the natural numbers from other number systems. That such
an explanation was ever given that would meet later standards of adequacy is very doubtful.
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7
THREE INSUFFICIENTLY ATTENDED TO ASPECTS OF MOST
MATHEMATICAL PROOFS: PHENOMENOLOGICAL STUDIES

Robert S.Tragesser

“Baroque” is the name of one of the forms of the syllogism; the eighteenth century applied it to certain excesses in
the architecture of the century before.

Borges

We do not learn to demonstrate from the manuals of logic, but from the books which are full of demonstrations, which
are the mathematical and not the logical.

Galileo

SUMMARY

This essay is primarily concerned to make the following points:
1 that formal-logical structure is not essential to mathematical proof and, at times, can even serve to conceal the important

role that understanding plays in it,
2 that a well-described possible proof can have the same epistemic benefits as an actual proof (thus showing that a clear

line is to be drawn between mathematical and empirical warrant and providing a promising direction to pursue in trying to
explain the a priori character of mathematical knowledge),

and 
3 that a proof or chain of proofs cannot leave anything unproved, contrary to the common idea that proofs must begin with

assumptions that are not themselves proven.
These facts point to difficulties in regarding proofs either as themselves being formal-logical derivations or as being

satisfactorily represented by them. The formal-logical model idealizes away aspects of proof that are vital to mathematical
thought, particularly obscuring the complex role that understanding plays in it.

In their more important parts the phenomenological studies to follow seek to point out the following.
First, formal-logical rules can be significantly superfluous to mathematical proof. This is contrary to the idea many have—

philosophers rather than mathematicians—that proofs just are constituted by steps appealing to such rules. It will be seen that
the steps of many (indeed, virtually all) proofs which are to be found around and about in the world cannot be regarded as
following, as being structured by, the laws of familiar logical calculi (even in the supposedly “formalist” tract, David
Hilbert’s Foundations of Geometry (1971)), but are nevertheless clearly valid, as clearly valid usually as steps in logical
calculi governed by formal-logical syntactical rules, perhaps even more clearly valid. This tends to confirm, say, John
Locke’s view about the superfluousness of “syllogistic”—although the formal-logical has its uses (as Leibniz would have
insisted), principally today in metalogical/metamathematical investigations (which may themselves lead to mathematical
invention, as in the creation of nonstandard analysis) as well as in computer science. But, most importantly, the representation
of proofs by means of formal calculi conceals the deep role that understanding plays in proof. Any adequate philosophy of
mathematics must come to grips with this role of understanding. Outside of mathematics, this phenomenon of most
mathematical proofs not following in outline the structure that would be required by familiar formal-logical calculi also suggests
that those who too easily read a logical syntax into ordinary language ought well to have second thoughts.

Second, our studies will strongly suggest that a (well-described) possible proof will do for an actual proof in that to have
had sufficient understanding of a possible proof in order to see that it is a possible proof of a theorem is, in effect, to find that
the theorem considered has a proof. This as far as I know is a hitherto unnoticed trait of proofs. 

1 It sharply distinguishes proof as a warrant from empirical evidence as a warrant—to contemplate a (well-described)
possible empirical warrant (such as an experiment and its results) and to find that, if such occurred, it would indeed be a
warrant for such and such an assertion, will not lead to the conviction that the assertion has a warrant (the experiment has
to be performed, the results thereby secured).



2 That trait of possible proofs enables us to give a rough but highly promising idea for a characterization of mathematics—
mathematical problems are problems that can be solved “in one’s head.” Proofs have the trait of possibility sufficing for
actuality by virtue of their being artifices of the understanding— that such artifices are available for mathematical
problems is what enables the problems to be solved “in one’s head.” This peculiarity of mathematical problems obviously
enables us to elaborate a sense in which mathematical truths are known a priori (because proofs are artifices of the
understanding), but also the sense in which sound mathematics yields necessary truths—since possible proof in a sense
suffices for actual proof, if there is a possible proof for s, then there is no possible proof for Negs.

Third, proofs or chains of proof can leave nothing unproved. This is contrary to the idea that proofs must begin with
assumptions not themselves proven. But, for example, Hardy and Wright’s An Introduction to the Theory of Numbers (1979)
makes no mention of axioms, of unproven assumptions, and yet one does not have the sense that the proofs are somehow
logically incomplete by virtue of unproven assumptions not having been set out as such. It is understanding that stands in for
unproven assumptions. It is pointed out that reasoning, in arithmetic, centering on assertions “take the least number such
that…” is justified on the basis of the understanding of the system of numerals; the very fact that the logical analysis of such
assertions leads to second-order assertions shows that the logical account of the least number principle does not give an adequate
representation of our understanding, our understanding on which arithmetic, number theoretic, reasoning is based, and so
must be understood as based on our intuitive understanding of our numerals!

Those three traits of proof, elaborated below, make it difficult to regard proofs, as many do regard proofs, and as I
have remarked, either as just derivations in formal systems or as satisfactorily supposed to be such derivations. The
conception of proofs as formal derivations enabled David Hilbert (1965) to implement his idea of having a mathematical
theory of proof (on a par, as he put it, with the philosopher’s philosophical theory of reason or the physicist’s physical theory
of experimental apparatus). It also permits—not to their benefit—philosophers of mathematics principally interested in
ontology to ignore proof, treating of formallogical systems instead. As to the ontologists, since proof is the principal means by
which the mathematician comes to the truth, it would seem that proof as it occurs in living or written mathematics should be of
intense interest for in proofs could be found what mathematics presupposes about its objects. But more importantly than all of
this, as I have also remarked, in fact such idealization of proofs as formal-logical derivation, as the traits indicated above and
developed below reveal, idealizes away aspects of proofs vital to mathematical thought, aspects giving deep clues to its nature
— most especially the deep, complex, and multifarious role of understanding in mathematical thought.

The idea of phenomenological work in philosophy

The idea of phenomenological study is notoriously difficult to articulate in any refined way, and I shall not attempt this.
Crudely, the idea in the case of mathematical proofs is to go back to the things themselves, to actual proofs, and think them
through, look at them this way and that, sound them out, try to see what makes them tick—rather than proceeding through
some idealization or theoretical representation of proof. On my view, Edmund Husserl’s “transcendental phenomenology”1

was an attempt to provide grounds for the conviction that what might be learned in this way would have objective content, but
I am only interested in the practice of phenomenology, in the way that Edmund Husserl’s Logical Investigations (1913) was
only interested in practicing phenomenology.2 It is doubtless so that what can be managed by way of phenomenological
studies will have conjectural and idealizing elements (will be fallible), but it is part of the phenomenological attitude to evade
these as much as one can (and it takes a lot of work to learn how to evade them). In any case, the phenomenological way of
proceeding in philosophy is the very opposite of that way of proceeding espoused by, for example, David Lewis (1986)
justifying a metaphysical claim—“Because the hypothesis is serviceable, and that is reason to think that it is true…. “Further
discussion of the virtues of doing philosophy on a basis of phenomenological studies and the vices of doing it on the basis of
“serviceable hypotheses”—the pseudo-scientific methodology—will be found inter alia below. The main thing is that the
phenomenological attitude is one of craving genuine understanding and of not relenting in this quest, of not settling for merely
serviceable hypotheses, until all roads that could possibly lead to better understanding have been followed down to their very
ends.

I.
HOW MATHEMATICIANS GET BY (BETTER) WITHOUT FORMAL-LOGICAL RULES

Formal-logical rules, such as logical rules of inference, can be significantly superfluous to mathematical proof. Consider, as we
shall, the opening development in Hilbert’s Foundations of Geometry (editions from 1899). Despite its almost successful
attempt to set down adequate and adequately stated axioms for the development of Euclidean geometry and, above all, its
emphasis on what we would now call metamathematical or metalogical themes (e.g. independence, consistency), Hilbert does
not set out a logical syntax and, a fortiori, does not give formal-logical rules, laws. In his textbook with Wilhelm Ackermann
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Principles of Mathematical [Theoretical] Logic (Grundzüge der Theoretischen Logik) (editions from 1928), where logical
syntaxes and logical rules and rules of inference are set out and studied, a distinction is made between purely intuitive logical
thinking and logical thinking reflected and conducted in a logical calculus (p. 1), such as they provide, a calculus in some
strong sense adequate to the needs of mathematical demonstration, unlike the Aristotelian syllogistic. It was, of course,
Gottlob Frege (in work from 1879 through 1893) who made possible the writing out of mathematical demonstrations by a
wholly (as he said) logically “gapless method,” and it was, among others, Giuseppe Peano (from circa 1889) who made this
feasible (by, among other things, a better notation)—made feasible the presentation of mathematical disciplines/theories in
terms of a logical calculus. In any case, Hilbert’s Foundations of Geometry contains “purely intuitive logical thinking”—
thinking unembedded in a logical calculus. And it is not at all as if, but for a proper symbolization and mentioning rules of
inference, say, the Foundations is in effect or at just one remove from being written out in a logical calculus—a close look at
the proofs there show that things stand quite otherwise, and this is generally how it is with mathematical demonstrations, even
when they make a pretense of being formal-axiomatic. The question, then, is, how does intuitive logical thinking manage, in
the main, to sustain valid logical inferences? If one were satisfied with a philosophical methodology such as espoused by
David Lewis (quoted above), then perhaps one might, as for example Gilbert Harman (1973) did, simply propose that our
brains, at an unconscious level, just are performing the syntactical operations. But the attitude of those to whom
phenomenological work in philosophy appeals is that just having serviceable hypotheses is rankly unsatisfying when a better,
more direct, and genuine understanding might be available. That is, we want a more direct and satisfying answer to the
question of how “intuitive logical thinking”—rather than demonstration via a logical calculus—works, ticks, the answer of
Harman et al., that we are really thinking in a logical calculus at the unconscious level of the computation or computer
language of our brains being quite unsatisfying, unsatisfying because not based on anything like insightful understanding secured
from the study of the generally formal-logic free proofs in mathematics. In any case, in order to give us a wider perspective on
the problem of how we manage to make logically valid inferences without appealing to or otherwise explicitly utilizing logical
rules of inference, a little more history is useful before our phenomenological work proper.

“I think,” wrote John Locke,

everyone will perceive in mathematical Demonstrations, that Knowledge gained thereby, comes shortest and clearest
without Syllogism.

(Locke 1975:672)

Locke not only held that in mathematical demonstrations knowledge comes shortest and clearest without syllogism (as
everyone can see), but, further,

Syllogism serves our Reason [in that it shows] the connexion of [intermediating ideas between premisses and
conclusion] in any one instance and no more; but in this, it is of no great use, since the Mind can perceive such
connexion where it really is, as easily, nay, perhaps better without [Syllogism].

If we observe the Actings of our own Minds, we shall find, that we reason best and clearest, when we only observe the
connexion of the [ideas], without reducing our Thoughts to any Rule of Syllogism.

(Locke 1975:670)

As was said, Hilbert distinguished between “purely intuitive logical thinking” and “logical thinking [as] reflected in a logical
calculus.” Indeed, as also remarked, Hilbert’s own Foundations of Geometry does not give either logical rules of inference or
any other sort of logical laws. That is, it develops geometry by means of “purely intuitive logical thinking.” Logical thinking
as reflected in a logical calculus would proceed via rules of inference and logical laws (as well as a logical syntax) given
beforehand. The difference is plain. In the case of intuitive logical thinking one somehow sees that (although perhaps in some
complex way) one thing follows from another without appealing to rules of inference; but in the case of thinking via a logical
calculus one sees that given one thing, and then successively applying the logical rules, such and such other things
calculatively result. It is an interpretation of those rules that one thing will thereby logically follow from the other, but one
need not understand this in order to see that the rules have been followed. In order to be able to find that one thing results from
applying logical operations/rules to another one need not see that one thing is thereby validly deduced from those others. What
we are interested in is the phenomenon of finding that one thing is validly inferred from others without seeing that the one
thing calculatively results from applying valid, formal-logical rules of inference (anything but, pace Harman’s claim that we are
performing such calculations whether we know it or not).

Leibniz (1981:479) gave us a useful concept here, that of “formal.” The principal trait of a formal argument is that the form
of reasoning has been demonstrated in advance as being correct. He gives as examples not only rules and fixed complexes of
syllogism, but also formal algebraic reasoning, such as the use of the justified quadratic formula, or formal reasoning in
infinitesimal analysis, such as the justified law that the differential of a sum is the sum of the differentials (p. 479). An
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important trait of such reasoning is that it can proceed by the forms alone, “with no need of anything to be added.” Thus we might
distinguish between formal and informal reasoning and, specifically, between formallogical and informal-logical reasoning.
Formal-logical reasoning corresponds to reasoning Hilbert characterized as reasoning reflected in a logical calculus, while
informal-logical reasoning corresponds to what Hilbert called “purely intuitive logical thinking.” Notice that formal reasoning
includes reasoning with, for example, proven correct algebraic formulas, such as the quadratic formula for calculating the
roots of quadratic equations. The term “logical” in “formal-logical” and “informal-logical” carries the specific connotation
that the argument turns on something verbal, on verbal representation. Thus a formal-logical form is crucially structured by,
or is otherwise supervenient on, linguistic form, although this need not be true of “the formal” generally, as in algebra or
infinitesimal analysis.

Locke is claiming that, as anyone can see, in mathematical demonstrations in which knowledge comes shortest and
clearest, such knowledge will come by informal reasoning (and this is not to say that all knowledge coming by informal
reasoning will be knowledge that thereby comes shortest and clearest). Just antecedent to those remarks Locke observed,

If Syllogism must be taken for the only proper instrument of reason and means of Knowledge, it will follow, that before
Aristotle there was not one Man that did or could know any thing by Reason; and that since the invention of
Syllogisms, there is not one of Ten Thousand that doth.

But God has not been so sparing to Men to make them barely two-legged Creatures, and left it to Aristotle to make
them Rational.… God has been more bountiful to Mankind than so. He has given them a Mind that can reason without
being instructed in the Methods of Syllogizing. The Understanding is not taught to reason by these Rules; it has the
native Faculty to perceive the Coherence, or Incoherence of its Ideas I say not this any way to lessen Aristotle…who did
in this very invention of Forms of Argumentation, wherein the Conclusion may be shown to be rightly inferred, did
great service against those, who were not ashamed to deny any thing. And I readily own, that all right reasoning may be
reduced to his Forms of Syllogism. But yet I think without any diminution to him I may truly say, that they are not only,
nor the best way of reasoning, for the leading of those into Truth who are willing to find it, and desire to make the best
use of their Reason, for the attainment of knowledge.

(Locke 1975:671–2)

There is no doubt that Locke is right—we reason well, and ubiquitously men reason, without appeal to rules of inference.
Leibniz seems to agree with Locke in this and corrects and in a sense reinforces Locke by pointing to logical inferences that
could not be represented in terms of syllogistic reasoning that was then available (in contrast with what is available post
Frege). Leibniz does not follow Locke in his assessment of the low value of formal and formal-logical reasoning, and Locke
thinks that all right reasoning may be reconstructed syllogistically. The point is that both Locke and Leibniz recognize that
inferential reasoning can be carried out on the basis of understanding without appeal to formallogical laws; and, to repeat,
Leibniz’s example of valid inferences that cannot be reconstructed in then known syllogistic shows in a very particular way
that Leibniz admitted inference that was based on understanding rather than formal-logical rules—presurhably the
understanding that would as it were prove the formal-logical laws, recalling that for Leibniz (and this is the usage we have
adopted here) something formal is a form of reasoning that has been “demonstrated in advance” as being correct.

So the suggestion emerges that there is a strong distinction to be made between formal-logical and informal-logical
reasoning, wherein the former appeals to logical laws and the latter makes no appeal to laws of logic whatsoever, not even
covertly, so that such reasoning is misrepresented if formal-logically represented. It is possible to reason logically without
utilizing a formal logic indeed, as several times remarked, it is what we and, in particular, mathematicians do almost all the
time. But how do we manage this, and what is the relation between informal-logical reasoning and formal-logical reasoning?
Certainly our consideration of LockeLeibniz might suggest that the understanding on which informal reasoning trades is the
or a basis for the choice of formal-logical rules, the basis for “demonstrating” those rules in advance, for convincing ourselves
of their correctness, a kind of convincing that of course does not itself require (circularly) rules of inference, but
understanding only.

Locke and Leibniz gave examples of demonstrations proceeding without appeal to any syllogism, to any rule of inference.3

But examples from David Hilbert’s highly deductive but formal-logic free Foundations of Geometry will serve us better. It
would be especially valuable for us to have examples of arguments that turn heavily on logical words or concepts but
definitely without appeal to formal-logical laws.

One of Hilbert’s axioms is (I.3):

There exist at least three points that do not lie on a line.

Now one of the things I want to make a point of is that, as Locke and Leibniz recognized, the understanding can stand in for
formal logic and, indeed, that the occasions on which it does this can sometimes (maybe frequently) form grounds for
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justifying insightfully certain logical laws, so I want to dwell a moment on the statement of this axiom, using it as a first
occasion for showing how the understanding can indeed stand in for logic.

Notice that anyone who is acutely logic-minded will find this axiom highly, maddeningly, polysemic, while someone who
is geometry-minded will not. The logic-minded will ask, does this mean that there are three points, none of which lie on a line
at all, or does it mean that there are three points such that, for any given line, not all three points lie on the given line, or could
it even mean that there is one line on which three or more points do not lie?

Had the axiom been expressed in a familiar symbolism of quantificational logic, there would not have been that ambiguity.
But someone geometry-minded would not have especially noticed the ambiguity since they would have it in mind that it could
not happen that two points were not on a line. Here is a case where understanding keeps one from finding ambiguity in statements
which form a logical point of view are ambiguous. That is, understanding stands in for, and serves part of the purpose of,
formallogical precision. It is perhaps worth remarking that there is a familiar experience of a very logic-minded person
without much mathematical understanding coming to mathematical texts and finding them indeed maddeningly polysemic or
confused, whereas they are not so to the mathematician because understanding governs the reading and writing of the texts
more than the literal on which the logic-minded tend to focus. (I remember very vividly working with two mathematicians,
and one was confounding me until I discovered that his statement of a theorem, if logically analyzed, would have a universal
qualifier followed by an existential quantifier, but he was clearly proving a theorem which he believed himself to have stated
that had the quantifiers the other way around. I said some version of, “You mean ‘there is/for all’, not ‘for all/there is,’” and
he replied, rather more indifferently than sourly, “whatever,” and the other mathematician was not in the least appalled. The
other mathematician in effect said to me, don’t be a dope, he couldn’t possibly have meant “for all/there is.” The misstatement
stayed on the blackboard for at least three weeks.) But it would be wrong, or not at all necessarily true, to say anyone but I
had the correct statement somewhat in mind. Hilbert, for example, might never have stated that ambiguous axiom
unambiguously. Understanding keeps things under control.

But let us now consider the theorem from Hilbert’s Foundations together with a restatement of the axiom in the direction of
greater logical informality—the greater the deviance from the routines of the usual formal quantificational logic, the more we
will be able to see how, in the spirit of Locke, we could cogently reason before Aristotle or, for us, Gottlob Frege. Warning: It
is extremely important that one distinguish sharply between the phenomenologically presented informal reasoning and its
highly reconstructed formal-logical representation, that one not suppose that, in the presence of the former, one is also in the
presence of the latter.

Axiom I.3: At least three points do not lie on a line.
Theorem A: At least one point is not on a given line.
I want to look at three proofs or demonstrations of this theorem from that axiom. The first two are highly informal, though

the second is more elaborate. The third is as nearly formal as I have patience to give.
Proof I: Otherwise all points would be on that line, contradicting the axiom that at least three points are not on a line.
Proof II: The only way the theorem could fail us is if all points were on some given line. But if all points were on one line,

it could not be that some three points are not on a line, contradicting the axiom.
In order to give the more formal proof, we need a more formal statement of the theorem,
Theorem A:.
Proof III:

1 Suppose. 

From 4:
8 x1 on L, x2 on L, x3 on L.

But this contradicts 7.
Each step of this (almost) formal-logical demonstration can be regarded as being determined and justified according to a (to

us, now, familiar) formal-logical law specified in advance, for example, “not for all is some not” or “not-not-p is p.” In that
case the only understanding required for checking or following the demonstration is that such a rule applies at each step.

However, as Locke rather vigorously observed, one can think through the steps 1–8 informally, seeing that each step is
justified independently of, wholly ignoring, the rules—as perhaps the reader has done! Thus, I can find it obvious or evident
that “not all” just is the same thing as “some not.” I find this by virtue of my understanding of “not all” (I will discuss below
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the matter of how one might not have just this understanding). This is the same sort of understanding that enabled me to find
in the case of, say, Proof I that “The only way the theorem could fail is if all the points were on the given line,” except that in
this case there is no familiar formal-logical law that directly covers the inference (a matter— one central to our concerns here
—also to be discussed below). It is by that sort of understanding that both Proof I and Proof II go through, are convincing.
Gottlob Frege, in his The Basic Laws of Arithmetic (1967), provides an expression of the informal understanding justifying
considered formal-logical laws. For example, for modus ponens:

[MP] “from A and Aω B, infer B” is valid since if B were false and A true, Aω B would be false, but Aω B is given as
true.

Such a use of understanding is not in any awkward or circular sense a use of logic to justify logic,4 but a use of understanding
to demonstrate or justify formal-logical laws, for the justification of formal-logical laws may itself, even though reasoned,
nevertheless not draw on formal-logical laws, but, rather, on the understanding. It might be thought that the argument [MP],
suitably unpacked or expanded, involves an instance of modus ponens, that it uses the very rules it means to justify. But this is
wrong. It is a deep confusion to suppose that our understanding were exploiting formal-logical laws to justify such. The
priority of understanding to formal-logical rules is, as I have suggested, evident in the case of Proofs I and II which do not
manifest the pattern of demonstrations of familiar formal-logical laws or of laws we are readily prepared to formulate.

In the case of the near formal-logical Proof III we can indeed so deploy our understanding that we do not need to appeal to
formallogical laws. Indeed, here we can regard this understanding as justifying those rules. It might be thought that no such
justification of a general rule would be forthcoming if what is being justified is a step involving one or two particular
propositions. But one easily secures generality by noticing that the justification of the particular logical operation does not
depend on the other parts of the syntax of the considered proposition.

When we ask what the understanding is an understanding of, perhaps the best we can say is, for example, the understanding
is an understanding of “not all,” resisting going on to say something like “words” or “meanings.” That there is such
understanding is undeniable. Crudely: otherwise there would not have been any man that reasoned before Aristotle/Frege.
Especially one could not be compelled by Proofs I and II which are quite estranged from any pattern fitting familiar formal-
logical laws. And yet we, and at least mathematicians, make such inferences hourly. Even if it is true that explanations must
come to an end somewhere and we have to say, we just understand, still, in the case of, say, “not for all is the same as some
not,” the understanding is not above criticism, not immune to refinement and bolstering.

For example, a Brouwer/Heyting intuitionist/constructivist would claim such an “inference” invalid because you could in
general end up asserting the existence of something for which the proof of the assertion provides no means for giving in any
more definite a way. But we can notice by looking at the intentions which control the use of “not all” in the above context
that one’s attitude is that all the points are there, all the lines are there, and all relations between them are already settled or
fixed or cast. It is by pointing out this attitude that one points to an important aspect of one’s understanding by virtue of which
“not for all is the same as some not” holds. If one realized that the domain over which quantification was being performed
was somehow unfinished or in growth or otherwise changing, then an inference based on an understanding of “for all” etc.,
that yielded that “not for all is the same as some not” would not be valid, quantification taken in that sense would therefore be
inappropriate. I do not mean to make light of a subtle and difficult issue. The point here is just that the use or meaning of an
expression for logical operations does not compel us to accept inferences made according to rules based on the understanding
of that sense as valid. Rather, we are free to “project” (Wittgenstein’s word) and vary the sense of logical operations
according as other reflections (such as insight into the nature of the domain being reasoned about) demand.

The question arises, by virtue of what understanding are Proofs I and II taken to be cogent, sound, valid? If we look at how
those proofs differ from the more nearly formal Proof III, we find that the complexities of quantifiers that get into the formal
proofs are evaded in the first two informal proofs (I and II), and thus if we look for what enables us to evade those quantifier
constructions, we will find a way in which understanding is standing in for formal-logical rules of inference. In the informal
proof the cogency of the considerations rests on the understanding of the expressions “at least one,” “at least three,” “a given”
which work to enable one to evade the classical quantificational structure. One could perhaps formulate a syntax and formal-
logical laws that could be used to give those proofs a more faithful reconstruction or representation than Proof III, but one
would expect that we could not generally use these now formalized devices to serve all the purposes classical quantificational
structure serve. It might be conjectured that Proof II, while valid, is not so much less rigorous than the more formal Proof III
as it is shorter because it evades the more general logical structure formal, classical quantificational logic brings with it.
Locke, I think, was right—the informal proofs are generally shorter because we can generally manage to substitute less
general, weaker, logical devices for those for which we have nice formal-logical laws. I do not know how to argue for this
before we have at hand the results of a delicate and wide-ranging study of such informal logic devices as those involved in
Proofs I and II. But I will let this stand as one conjecture as to why informal proofs are shorter.
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Here, to conclude this topic, is an illustration of the use of pictures as a logical device from Hilbert’s Foundations of
Geometry. Certainly one use of pictures in geometry texts is to help you see that something is true of the figures drawn. But
another use, which is not noticed, which is indeed the use Hilbert puts them to in his Foundations, is to provide a way for the
understanding to stand in for logic, albeit not here in a way that would enable one to found a formal-logical law. Hilbert’s
proof of the theorem really consists of a demonstration of three lemmas by which it is clear from the picture that the theorem
follows. The lemmas give all the facts that are needed from geometry. What is missing are the complex logical operations by
which they would be formally brought together and made to yield the theorem, operations that involve, among other things, a
lot of fussing around with quantifiers. By virtue of our understanding of the content of the propositions of the theorem and the
lemmas, the picture enables us to see how/why the lemmas yield the theorem and, indeed, furthermore, how and why the
axioms yield the theorem.

Theorem 3. For two points A and C there always exists at least one point D on the line AC that lies between A and C.
Proof: By virtue of the axiom which says that there exists three points not on a line, there exists a point E not on the line

AC.
By virtue of the axiom which says that for any two points A, E, there is a third point F on the line AE, E between A and F,

there exists on AE a point F such that E is a point of the segment AF.
By the same axiom and the axiom that says of any three points on a line there exists no more than one that lies between the

other two, there exists on FC a point G, and G does not lie on the segment FC.
Given the axiom which says, if three points A, B, C do not lie on a line and if a is a line which passes through a point of the

segment AB, the line a also passes through either a point of the segment AC or a point of the segment BC, it follows that the
line EG must then intersect the segment AC at a point D.

The proof consists of actually four lemmas. These lemmas are put together via Figure H to yield the construction of the
point required by the theorem. Here the picture stands in for that complex and messy formal-logical construction that would
bring the four lemmas together to yield the theorem. The understanding that yields the aptness of the picture stands in for the
formal logical construction. In any case, these are some of the ways in which the understanding stands in for the formal logic.
In fact, so compelling and in its own way rigorous is Hilbert’s proof that we might very well have grounds to suspect
something wrong with any formallogical analysis which led to the claim that the theorem did not logically follow from the
axioms.

II.
WHY POSSIBLE PROOFS ARE ACTUAL PROOFS AND THE NECESSITY OF

MATHEMATICAL TRUTHS

It could be said that mathematics is the activity of looking for problems which could be completely solved in one’s head, of
trying to solve and actually solving such problems more or less or in principle in one’s head, and, most splendidly, of
throwing oneself at problems for which it could turn out that no one’s head is quite big enough. It is a not altogether unwarranted
suggestion that mathematics had its origins in the discovery that some practical problems which could have been solved by

Figure H
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observation could also be solved, somehow even more powerfully or cogently or compellingly, just by thinking, by puzzling
things out. For example,

Of any three (normal) people, at least two will be of the same sex. This conclusion could have been reached by some sort
of inductive generalization after conducting an empirical study of a large number of groups of three people. Or it could have
been reached by a moment’s a priori reasoning (e.g. “Given three people, in the worst possible case one person of the three
would be male, one other female, but then the third would be either male or female, in either case giving two males or two
females …”).

Perhaps, indeed, mathematics had its origins in a recreation or an agon, in contests in which participants contrived and
solved those riddles without pun or metaphor which we call “brain teasers,” in puzzles that could be solved just by puzzling
them out. If mathematics most broadly conceived is indeed the discipline of contriving and solving, ever more elaborately and
systematically, problems that can be solved by wit alone, by just puzzling out without having to go out into the world and
taking a look, then we have here ready-to-hand the perhaps most genuine sense in which “mathematical knowledge” is a
priori. What remains is to attempt to characterize that sense in a philosophically careful way, and it is this that shall be
attempted here. It is exactly because mathematical problems are problems that can be solved in one’s head, and for which the
true or right solutions can be seen to be the true or right solutions entirely by wit alone through that device called “proof,”
that mathematical knowledge is a priori knowledge and is strongly protected against those of an empiricist cum naturalistic
bent who would seek to deny this.

It has turned out that in order to articulate, develop, that just now roughly characterized sense in which mathematical
knowledge is a priori, it is useful to introduce the concept of a certain sort of ideal language, that of “an a priori grounded
language.” Naturally occurring mathematical languages tend to fall short of this ideal, while certain artificial languages, in
particular languages of constructive mathematics, seem to match the ideal.

A priori groundedness

“Warrant” as used here is always a warrant for the assertion of a sentence. The existence of a warrant warrants, grounds,
authorizes, sanctions, certifies, validates…the asserting of the correlated sentence. Generally, a warrant for asserting a
sentence does not assure the truth of the sentence but is sufficient to give an air of reasonableness to its assertion. 

A language L as a whole has the trait of being a priori grounded if, and only if, there is no possibility of there being a
warrant for the negative5 Negs of a sentence s of L if it is possible that there be a warrant for s. If s could have a warrant, then
Negs could not have a warrant. I do not mean only that its negative could not have a warrant at the same time, but that it could
not (possibly) have a warrant at all. Nothing could warrant the assertion of Negs—nothing could make it reasonable to assert
Negs.

Count as necessary and sufficient conditions for there being a possible warrant (or, better, that there possibly is a warrant)
for the assertion of a sentence s

1.1 that we could in principle have a description so finely detailed that we could see from the description that,
1.2 were there something fitting that description, it would serve as a warrant for the assertion of the sentence s, and
1.3 the description misses out on no trait or aspect or attribute of the warrant by virtue of which it is a warrant for

asserting that s.
Letting “s,” as noted, range over sentences of a language L, ω  over descriptions (not usually in L), write W[ω , s] for the
relation of warrants. Then (keeping in mind that saying there is a ω  is to say that there is a description and not to say that there
is something that fits the description),

1.1ω if W[ω , s], then there is a possible warrant for asserting that s (although there need not be an actual warrant).
1.2ω if W[ω , s] and there is something x that fits the description ω , then x is a warrant for asserting that s.

1.3ω [a priori groundedness] L is a priori grounded if, and only if, for all sentences s of L, if there is a ω  such that W[ω ,
s], then there is no description ω ω such that W[ω ω, Negs].

1.4ω [a posteriori groundedness] L is a posteriori grounded if, and only if, for some sentence s of L, there is a ω  such
that W[ω , s], and there is a ω ω such that W[ω ω, Negs].

1.5ω a sentence s of L is a priori grounded just in case for some ω , W[ω , s], and there is no ω ω such that W[ω ω, Negs].
1.6ω a sentence s of L is a posteriori grounded just in case for some ω , W[ω , s] and there is a ω ω such that W[ω ω, Negs].

The idea that there ought to be such descriptions available if a warrant is to be possible is a common and natural one;
for example, Phillip Kitcher uses the presumed unavailability of such descriptions as part of his arguments against intuition as
a source of a priori knowledge:

If someone proposes that intuition be divorced from the sensuous then we have a right to ask for a description of the
process of intuition which will enable us to identify it and to determine whether it can serve as an a priori warrant for
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mathematical beliefs. Lacking a description of this kind, it is unclear that the proposal amounts to a theory of
mathematical knowledge at all, much less a theory of a priori mathematical knowledge.

(Kitcher 1984:52)

There are certainly complications arising with this notion of the possible warrants, the idea of the ω , the nature of the relation
(s?) W, and so on, which would have to be treated on a fuller account. There is, for one, the just encountered problem of
whether it is a reasonable demand that warrants be elaborately describable. Another problem is that of how descriptions ω  can
come to be found to bear the relation W to sentences s. Is it that we derive such descriptions on the basis of our understanding
of s, for example, unpacking verification conditions out of that understanding and then imagining different ways in which
they might be filled? Ought general methodological principles of rational inquiry, such as cultivated by, for example, Isaac
Levi (1973) play a systematic role in deciding for what pairs of warrant descriptions and sentences the relation W holds? And
ought there not to be more said about what sorts of descriptions could compose the ω s? Surely not, for example, descriptions “the
circumstance that s is true.” Then there could be no a priori grounded languages since we would have “the circumstance that s
is true” as a possible warrant for s and “the circumstance that Negs is true” as a possible warrant for Negs. It is easy to banish
such cases by various devices, but difficult to work out a criterion that would allow in descriptions only of the sort that from
them you could see that such a thing that would fit the descriptions is possible (the description would have to be something
like a full imagining of the thing). But, fortunately, for the applications I will make of these notions here, I will not have to go
much into these problems.

In any case, the notion of an a priori grounded language is clearly a strong notion. With such a language L we can associate
a theory TL consisting of all those sentences of L having a possible warrant. TL would be a theory which could have no
competition since any actually grounded theory would be a subtheory of TL. In this case it would seem that we could just go
ahead and assert TL. It would seem—although this must be discussed below—that where there are no alternative or
disjunctive possibilities (as there are not when, for example, there are no possible grounds for Negs), no possible way of
finding for any sentence s of TL that the assertion of Negs could be reasonable, the discovered possibility will suffice. In this
case we may then speak of TL as an a priori grounded theory. That is, in an a priori grounded language L there is a warranted
theory TL such that

1.1ω  any other warranted theories in L are subtheories of T1;
1.2ω  any theory in L which is not a subtheory6 of TL could not possibly be warranted;

1.3ω  the theory TL is warranted by default. (There is not even a possibility of there being grounds for the assertion of any
sentences of L not in TL.)

The question of pressing interest is, of course, whether or not mathematical languages are a priori grounded. If they are, then
we would have a way of understanding the sense in which mathematical knowledge is a priori knowledge, namely, the mere
description (which may be empty) ω  such that W[ω , s] suffices for asserting that s. We would also have a sense in which
mathematical truths are necessary on some assumption that truth is assimilated to proof,7 since if there is a possible proof for
s, there would be no possible proof for Negs (it is not possible that s is not true).

Consider that a posteriori groundedness of sentences seems to be characteristic of empirical propositions. We must look to
experience to decide among them because we are presented with exclusive alternatives. For a sentence s vulnerable to
empirical grounds for its assertion, we can usually think of what would confute s and of what would refute s; and we can
think out, characterize, describe, those possible grounds or warrants in great detail. Thus one might describe in thoroughgoing
detail how a (perhaps nonexisting) meter is constructed, connected, and calibrated so that one can see from this that, for some
sentence s,

(c) if the meter registers significantly below 2.72, then s, but 
(d) if it reads significantly above 2.72, then Negs.
In the case of the description of the meter etc. together with the antecedent of (c) we have a description ω  such that W[ω , s]

whereas in the case of the description of the meter etc. together with the antecedent of (d) we have a description ω ω such that W
[ω ω, Negs].

The circumstance of mathematical propositions differs quite markedly from that of empirical propositions. Warrants in
mathematics usually come in the guise of proofs. Thus a typical possible warrant is given by a thoroughgoing description ω  of
what? Of “something” such that, were it actual, it would be a proof (see 1.1– 1.3 above). But in the case of mathematics,
having in hand such a thoroughly detailed description of a “possible” proof would be tantamount to actually having in hand a
proof! Here is a description of a possible warrant (a possible proof) for the assertion that the nth root of 2 (n>1) is irrational:

It is said that the natural numbers are the numbers 1, 2, 3, 4, …, and the (positive) rational numbers are given by
expressions of the form
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where p and q are natural numbers with no common factors.
It is pointed out that every natural number can be uniquely written (up to order) as the product of natural numbered

powers of prime numbers, so that

can be taken to be in the form

It is then observed that

and then noted that the numerator and denominator will still have no common factors. From which it is to be noticed
that if

is a rational number which is not a natural number (qω 1), then raising it to the nth power cannot yield a natural number.
It will then be noticed that it follows immediately that if a natural number does not have an nth root among the natural
numbers, it does not have an nth root among the rational numbers.

It will then be noticed that 2 can have no nth root among the rational numbers for it has none such among the natural
numbers, so that, as now can be said, the nth root of 2 is irrational.

Now here is the important point. To understand this description sufficiently to answer the question,

Could this possibly be a proof of the considered proposition? That is, for this description as ω , does it hold that
W[ω , The nth root of 2(n> 1) is irrational]!

is in effect to have seen a proof of the proposition. We would therefore certainly not expect to have such a detailed description
of both a possible proof and a possible disproof of a theorem! It is as if a proof need only have a formal cause, needing no
material cause.

We would then certainly expect mathematical languages to be a priori grounded. In particular, if one of our living
mathematical languages were discovered to be a posteriori grounded, this would be indicative of a flaw, for then we could in
effect prove of some sentence of that language both itself and its negative (granting that, as lightly argued for above, to have a
description ω  of a proof is tantamount to having a proof). Roughly, the reason that mathematical languages should have this
trait at all is that mathematics is spawned by cultivating ‘the field of problems that can be solved in one’s head, by wits alone.
These turn out to be problems for which the solution can be seen to be the solution by virtue of understanding alone. Proofs
are just artifacts of the understanding. This is why possible proofs can stand in for actual proofs, so that the difference
between actual and possible proofs is the difference of whether or not quotation marks are in place. But for a possible proof,
exactly because proofs are an artifact of the understanding, to understand what is between the quotation marks sufficiently to
see that it would be a possible proof of the proposition at issue is just to have sufficient understanding to find that, really, we
must say that the proposition is proved.

This said, a much more delicate treatment of “possible proof” is needed. For the remainder of this section I will set out
some ideas toward such a treatment, and the next section (III) will continue the matters a bit further.

Relative a priori groundedness and proofs

To have a warrant for asserting something is not generally to thereby have completely adequate assurance of truth—having
good grounds for asserting something does not preclude the possibility that what is asserted is false. The considerations above
were based on the identification of the possible warrants of assertion of sentences of mathematical languages with possible
proofs. It is a very interesting, distinctive, and little noticed trait of proofs that a possible proof (as we have characterized
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possible proofs in terms of descriptive language) is tantamount to an actual proof, and this has some interesting consequences
for understanding the sense in which mathematical knowledge is a priori knowledge—it is a priori because possibility does
suffice. At the same time the notion of an a priori grounded language gives us an idea of the sense in which mathematical
propositions are necessary—if there being a possible proof for s entails there being no possible disproof of s; something that
is possibly true (under these circumstances) is then not possibly false.

However, our identification of possible warrants with possible proofs is complexly problematic (although sorting things out
can be rewarding). Warrants as understood generally do not necessarily clinch truth (otherwise we should have, for example,
few or no empirical warrants). Now proofs are at least supposed to clinch the truth of what is proven. So might we not have
warrants for mathematical propositions that are not proofs or, for that matter, proofs that do not clinch truth? About the latter,
whatever the attitude toward proofs in mathematical practice (the ordinary mathematician supposes them to clinch truth), in
fact proofs cannot be said with certainty to clinch truth in the sense of being absolutely beyond criticism, absolutely airtight.
For example, our proof that the nth root of 2 (n>1) is irrational certainly has many gaps, including the there unproven
assumption of the unique (up to order) representations of natural numbers by products of powers of primes. It is so familiar a
point as to be a banality of the subject that, no matter how madly we try to fill in the gaps, there will be something unproven
(but see Section III below). On this usual line of thinking, then, a rigorous proof will contain unproven assertions, which
assertions are presumed to be based on warrants other than proof (typically presumed warrants—intuition such as “self-
evidence” or considerations of fruitfulness of assumption). Our conviction that mathematical languages, if not desperately
flawed, are a priori grounded depended on our identification of possible warrants with possible proofs, but these last
considerations suggest that there are possible warrants occurring in mathematical practice that are not proofs. Indeed, John
Stuart Mill, Kurt Gödel, Hilary Putnam, and many others have allowed that there are possible warrants that are not possible
proofs. Gödel, for example, was open to intuitions providing warrants and to the satisfaction of an albeit not precisely
formulated criterion of highly fruitful consequences as providing warrants for new axioms. Putnam, drawing on the work of
Polya, has pointed out that inductive evidence is sometimes available for mathematical propositions.

It takes no heavy thinking to see that, indeed, not only can we have warrants that are not proofs, but we can have possible
warrants (which are not possible proofs) for some sentences s of mathematical languages and also such possible warrants for
the Negs, so that after all they are not a priori grounded but rather a posteriori grounded (see 1.4ω, 1.6ω). We might, however,
introduce the idea of a relatively a priori grounded language. Although a language L may be such that it is a posteriori
grounded, it may be feasible to impose standards on warrants so that, in fact, for any sentence s only the possible warrants of
it or the possible warrants of Negs, but not both, fall within the standards. This is perhaps a rather “ho hum” idea since it
might be thought that any language where warranted assertion is an issue might be reducible to a relatively a priori grounded
language by the imposition of some standards or other. To make the idea interesting we ought to select peculiarly
mathematical standards. And indeed there is a natural choice, namely, possible proof! The problem we immediately confront
is to distinguish proofs from other sorts of warrants, to distinguish possible warrants which are possible proofs from other
sorts of possible warrants. But no sooner do we confront this problem than a serious step toward a solution to it suggests
itself.

Possible proofs are those possible warrants given by a ω  for which ω  suffices for actuality, having, as we shall say, the
PAproperty (possibility is sufficient for actuality property): to have a description ω  which is a possible proof of s and to
understand it sufficiently to see that W[ω , s] is in effect to actually have a proof of s.

An ideal mathematical language is such that
1 if ω  is a possible warrant for a sentence s (of that language) and ω  has the PA-property, then there is no possible

warrant with the PA-property for Negs, and
2 for every sentence s or Negs, there is a possible warrant ω  with the PA-property.

The mathematical languages in which we operate at least have the trait that we cannot decisively show that both 1 and 2 hold
(one way of demonstrating 1 holding would be to show the consistency of TL for the language L of set theory—see 1.1ω  −1.3ω
above); but, of course, it may in some instances be the case that one or the other do not hold. Roughly speaking, the language
of set theory is a case in point. Of the continuum hypothesis CH we do not know whether or not there is a possible proof of
CH, a possible proof of NegCH, or a possible proof of CH & NegCH.

There must be some further qualifications on what counts as a description with the PA-property. For example, the
description,

One visually sees a figure shaped like ω .

certainly has the PA-property relative to possible warrants for the sentence,
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There is a figure shaped like a triangle.

We can rule out such descriptions by the demand that the warrantability of the assertion of a sentence not be dependent on the
existence of a description of a possible warrant for it (although we would still require for possible warrants that a description
of the required sort—see 1.1–1.3 above—be available). 

All this said and done, there might well by now be grave doubts about actual mathematical proofs having the trait of
lending themselves to descriptions having the PA-property. After all, did I not point out that it is even a banality of the subject
that proofs have holes, that those holes are at best filled by appeal to warrants that are not possibly proofs, such as the appeal
to intuition? Consider, indeed, the last. Descriptions giving us at least possible mathematical warrants in which there is an
appeal to intuition by way of warranting some assumptions, from which perhaps elaborate deductive inferences are made, will
have as a clause in the description something to the effect “Here, to begin with, find or see that s” or “There is an actual
intuition by virtue of which it is seen that s.” These mere descriptions, however, will hardly do for a warrant. Possibility is not
as good as actuality. One needs to actually have the intuition, to actually find or see that s.

But, I challenge, might such a circumstance indicate that in going on to include such a clause as “There is an actual
intuition by virtue of which it is seen that s” in the description supposedly constituting a possible warrant, a possible ground,
one has gone beyond proof? I think that there is a way of making yes to this question the proper and even natural answer.
Isaac Levi (1973:2– 6) (among others) has distinguished between local and global justification, and I would propose that, in
mathematics, proofs are the central tool of local justification:

In science, justification of belief is demanded only when the need for such justification arises in the context of specific
inquiries. Philosophers have often been discontent with justification in this “local” sense. Like Descartes or some of the
contemporary writers who worry about choosing between “conceptual schemes,” many philosophers occupy themselves
with efforts at the more “global” justification of the totality of beliefs held at a given time.

(Levi 1973:1)

The evident (if such there be) is evidence in local inquiry because all parties to the inquiry agree that such beliefs do not
stand in need of justification.… To include H in the evidence requires that (a) at the time of the inquiry H be believed
true, and (b) at that time, critical scrutiny of H in the light of new evidence be considered pointless.…

(Levi 1973:5) 

However, it will be part of my considerations that mathematics is peculiarly distinct among modes of rational inquiry. Levi
had gone on to remark,

the central problem of a theory of local justification or rational belief is the establishment of criteria for determining
which of the relevant answers to a given question, on the evidence available, is the best. These criteria do not determine
what questions are raised or what evidence is available. Rather they reveal features of legitimate inference that are invariant
over broad categories of local inquiries, regardless of the questions and the evidence peculiar to each individual problem.

(Levi 1973:5)

What is peculiar about mathematics is that it is a tacit, always operative, ideal of mathematical thinking to be free of the need
for such a theory of local justification or rational belief—the tacit ideal is that if, for a piece of ongoing, active mathematics,
there is a genuine use for a theory of local justification good for scientific or rational inquiry generally, then that piece of
mathematics is deeply flawed, most likely in its very conception, in its very language. In particular, I would want to suggest
that, whereas this would not be an especially reasonable ideal outside of mathematics, it is a reasonable ideal within
mathematics. One way of expressing that ideal is to say that the language of an ideal piece of mathematics ought to be
relatively a priori grounded, where the standard of admissible warrants is that they have the PA-property.

Now, do actual proofs have the PA-property?
Answering this question in any thorough, rigorous way will require rather extended phenomenological studies, at the very

least in order to learn how to formulate the PA-property more exactly. In the remainder of Section II and in Section III, I want
to initiate such studies in the simplest cases.

We learn the plus and times tables for the nonnegative integers 0, 1, …, 9 and then use standard algorithms for summing
and multiplying larger numbers via arabic, 10-ary numerals, algorithms reducing such summing and multiplying to those plus
and times tables. Those of us who were not good students, had bad memories or were otherwise disrespectful of authority had
to work out or keep working out the sums and times tables for ourselves. The sums we worked out using fingers or desks in
the classroom or panes of glass in the window or trees outside the window. The times tables were a bit trickier, especially if
one did not have a sense of the commutativity of multiplication, for example, working out 7 times 8 (having understood 7
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times 8 as eight 7s) by having noticed that 10 times 8 (eight 10s) is 80 and then subtracting eight 3s. In any case, for summing,
computing sums depended on correlating 1-ary numerals and 10-ary numerals. It is safe to say that, down to the dawn of time,
sums, whatever the numeral system, were computed in terms of things as 1-ary numerals counted in the numeral system of
interest (10-ary arabic for us). The elementary arithmetic truths that were thus given are of such a nature that, as Hilbert in
effect observed, a more rigorous proof (such as, for example, Frege was after) would have to rely on principles or a proof
procedure which was more problematic, that is, it would not be so much a test of the elementary arithmetic truths (composing
the sum tables, say) that they followed from such principles and proof procedures, but, rather, it would be more a test of those
principles and proof procedures that they yielded up the arithmetic truths (and not at all their contradictories).

Consider this supposedly possible proof that 3+6=27:

Description of the proof that 3+6=27:
The numerals from one to twenty-seven are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27.

Now consider this description of the supposedly possible proof that 3+6=9:

Description of the proof that 3+6=9:
The numerals from one to twenty-seven are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27.

Thinking through what is described in the first case it becomes brutally clear that what is described could not be a warrant for
3+6=27 since 1, 2, 3, 4, 5, 6, 7, 23, 27 is not an initial sequence of the 10-ary arabic numerals and so does not rightly count
the components of the 1-ary numeral 111111111. Therefore after all the description does not amount to a possible proof; the
description does not give us a possible warrant. But in the case of the second description, one not only finds that such a thing
would warrant asserting that 3+6=9, but, after checking it over a couple of times, one cannot imagine a way in which it might
be flawed, and here one must mean genuinely or fully imagine so that one could actually test out whether or not the flaw is
present. The first description gives us a sense of the sort of thing that could go wrong (miscounting or abuse of numeration),
but nothing like that has gone wrong in the case of the second. Most importantly, one cannot not imagine a possible warrant
for Neg3+6=9, such as a possible warrant for 3+6=27, where some miscounting has not occurred—which is to say that one
cannot imagine a possible warrant for Neg3+6=9.

In the case of the second description, it clearly has the PAproperty.

III.
PROOFS WITHOUT UNPROVEN ASSUMPTIONS

The thesis here is that by and large proofs in mathematics do not involve unproven assumptions. Some proofs contains
assumptions, but it is also the case that they are typically proved elsewhere. This thesis will be rather less successfully
articulated and developed than the topics in Sections I and II. The topics of the first two sections could have been developed—
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and I hope that this is clear— in considerably more detail and over a far wider range of example and consideration. The insights
and strategies of analysis important to the development of Section III are not in place—there is rather more phenomenological
work yet to be done here. The major block is that philosophers have not yet secured a sufficiently powerful and subtle sense
of the understanding. Mainly I will consider some very simple (but nevertheless not easy) examples, hoping that they might
prove suggestive to the reader. But let me be just a bit clearer about what the thesis is.

Given a mathematical proof. Typically this proof will depend on theorems or lemmas that have been proven elsewhere. The
thesis being considered here in Section III is that, typically, if we trace backwards we will find that, in the end, there have
been no unproven assumptions. I actually mean by this something which might look weaker, but, if you think about it, is not—
there is nothing in the proof that needs to be proved. Of course what I have in mind is that there are no postulates underlying
mathematical proof. Mathematical demonstration is, typically, not founded on unproven assumptions. Of course, it is sometimes
of interest to a mathematician to derive consequences of, say, the postulates of mathematical ring or field theory (or
whatever). So one can consider, perhaps, that here, at least, the mathematician is proving something on the basis of postulates.
But is this so? It might be thought that postulates framing natural numbers or sets or calculable functions might somehow be
evident on the basis of certain semi-mental entities usually called “concepts.” And this is not implausible. But the concepts of
mathematical groups, rings, fields, etc., emerge from the isolation of significant mathematical structures and really cannot be
thought of as somehow available in advance through concepts giving a basis on which axioms characterizing those structures
would be evident. But what is important from our present point of view is that the proof that such and such follows from, say,
the field axioms is not the same as a formal derivation from the axioms (gapless formal-logical derivations are extremely rare
and usually far too long) but, rather, a proof that either there is a formal derivation or else a proof that the theorem follows
from the axioms, as in Hilbert’s Foundations of Geometry. Such proofs will typically not contain unproven assumptions—
assumptions in need of proof, or so I claim. Even in the case that what is at issue is a formal-logical system, a given formal-
logical derivation will not count as a proof of its own existence; rather, that it is a correct formal-logical derivation is
something that must be demonstrated, and certainly not by a formal-logical derivation! By what then? by a series of
observations that lets us see/find that it is a formal-logical derivation of a sentence from the axioms according to given rules
of inference. Where there is a formalaxiomatic system, the genuinely mathematical theorems and proofs are not formal
derivations from the axioms (generally, mathematicians do not want to see such things!) but rather proofs that there exists
such and such a formal derivation of such and such from such and such axioms according to such and such rules. Far from
formal derivations being adequate to represent proofs, they themselves as it were need proofs—need to be proved to exist!8

For such formal derivations, such proofs may differ more or less only in complexity from proofs of elementary arithmetical
identities. For this reason and also just because it seems we must begin by looking at such simple cases, I want to continue the
studies begun above of proofs of elementary arithmetic identities, claiming the superiority of finger-counting demonstrations.

About such demonstrations it will seem that there is nothing there in need of being proved.
The treatment of demonstrations of simple arithmetic identities to be sketched really requires something like a philosophy

of arithmetic behind it if it is to have much force, so some remarks in this direction might help. In his Foundations of
Arithmetic, Frege had argued that numbers are substance-like entities, “self-standing” entities (Section IV: “Every single
number is a self-standing object.”). Dedekind (1963:68) had argued that numbers are the abstract relata of a certain relational
structure—there is nothing more to them than that they are such relata. Neither would have thought it at all correct that
numerals are numbers. But the last is the view of Lebesgue (1966:12–19), who was nevertheless fully and acutely aware of
those philosophical views that made this identification seem absurd.

We can easily imagine…the need to compare two collections led man to counting, that is, the comparison of two
collections with a single standard collection—the collection of the words in a certain phrase. These words are called
numbers.

In our Hindu-Arabic 10-ary numerals,

each numeral encodes a standard collection, a number of things, a standard number of things. For example 7 encodes the
collection, 

     {0 1 2 3 4 5 6}

and 0 encodes the collection

     { }.

A number is an answer to the question,

     How many?
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The as it were most basic answer to this question is,

     This many: (and now give a collection).

     How many hands do you have?

     This many: {0 1}

     or

     2 (for short)

Lebesgue remarks,

It is not the word number that we need to explain but rather the sentences in which that word appears. For instance,
consider the following sentences: Two collections have the same number; two collections do not have the same number.
Now, this is precisely what was explained at the outset in describing the operation of numbering a collection. Thus, we
remove any reason for metaphysical fears.

(Lebesgue 1966:16)

In the spirit of Lebesgue’s conception of number, here is a proof of 6+5=11 having no assumptions in need of proof:  
Beyond exploring such examples in greater depth one might turn to Hardy and Wright’s An Introduction to the Theory of

Numbers. There, number theory is developed without the formulation of axioms. But do they covertly appeal to axioms? Just
as Hilbert did not covertly appeal to rules of inference, but, rather, his inferences rested on an understanding, an insightful
understanding, which was prior to, independent of, rules of inference, but on which rules of inference might be based—
intuitive logical thinking he called it—so Hardy and Wright do not covertly appeal to axioms, but, rather, their proofs rest on
an understanding which is prior to axioms. But just as the patterns of deductions given by Hilbert are not structured as if by rules
of inference (we have seen how Hilbert’s quite certain use of pictures results in deductions significantly evading such patterns),
so there are no neat axioms in Hardy and Wright standing just off-stage and cueing the proofs. There is, rather, a fluid
understanding of number variously deployed. A close look at the opening of the text gives some idea of the way in which
understanding stands in for axioms. Well, just consider a part of the proof of

Theorem 1. Every positive integer, except 1, is a product of primes.
Proof: Either n is prime, when there is nothing to prove, or n has divisors between 1 and n. If m is the least of these

divisors, m is prime; for otherwise…
Indeed, throughout the work Hardy and Wright speak of the least positive or nonnegative integer having some property.

They are not, however, appealing to “the least number principle,” even tacitly:

[LNP] Any property holding of a positive integer holds of a least positive integer.

or
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Any non-empty set of positive integers contains a least integer.
It might be thought that they are appealing to the understanding of the nonnegative integers being totally ordered, and to

something more understood than formulable in a way adequate to that understanding. The curious thing is that, if we try to
rigorously formulate this idea, what is supposedly understood, we have, it seems, to draw on a concept that is not first-order
expressible, namely Every nonnegative integer is preceded by a finite number of integers. However, the notion of a finite number
or collection or set at issue here is such that it results from an attempt to capture something otherwise understood, the peculiar
trait of the collections encoded by the (say) Hindu-Arabic decimal numerals for the nonnegative integers, a trait instantly or
immediately handed over by the nature of the numerals and that makes it available for Hardy and Wright to say, without so
much as hinting at the presence of a derivation from an unproven postulate for which “If m is the least of these integers…”
would be elliptic. It is an obvious trait of the familiar Hindu-Arabic 10-ary numerals that for any numeral there is a next
largest and for any numeral except 0 there is a next smallest, and that going from one numeral stepwise to the next largest one
can get to any larger numeral, and that going stepwise to the next smallest one can get to any smaller numeral. This makes it
obvious that there is a least number qua numeral having any property had by some number qua numeral. Now this
understanding is logically flawed, as Frege rather elaborately pointed out. One should not mistake numerals for numbers, or
confuse the two. At the same time, in doing arithmetic or number theory, it is not at all likely that this ostensible confusion
leads to any arithmetically false theorems. Furthermore, the attempt to replace an understanding based on numerals, for
example, replacing such notions as “going stepwise to the next smallest one can get to…,” by a more objective wholly
mathematical notion (e.g. in terms of order, logically characterized finiteness, etc.) must answer to that logically more
confused understanding based on obvious traits of numerals, or the taking of numbers as numerals. That logically confused
understanding is nevertheless cogent enough to generate number theory. It is only when we replace that understanding with
logically, objectively formulated principles, such as the least number principle or mathematical induction, that we end up with
assumptions in need of proof, with a need for axioms or postulates themselves unproven and, as in the case of arithmetic, if
evident at all, most likely evident (which is not to say objectively certain) by virtue of reference back to a more confused, but
cogently managed, understanding. This is not the same thing as saying that that understanding is above criticism, and there is
no assurance that such understanding may fail to keep the mathematics based on it from falling into real mathematical
confusions as Euler’s deployment of infinitesimals eventually led to irremovable mathematical confusions about higher-order
differentials.9 But it is to point out the sort of basis all but ubiquitously present in mathematics enabling proofs to go through
without unproven assumptions.

While it is even obvious, if one thinks about it for a moment, that such passages as cited in Hardy and Wright indicate a
background of understanding which does not at all have the form of the presence of presumed derivations from hidden and
unproven assumptions—an understanding making it possible for there to be proofs which contain no assumptions in need of proof
—it will be a highly significant act of presumably phenomenological philosophy to discover how to satisfyingly characterize
or represent that understanding (rather than just appealing to it), even a great philosophical advance to learn how to
characterize it satisfyingly, for it seems that the only conventional way of representing it is to radically misrepresent it by just
setting out postulates or axioms and derivations therefrom. It is worth noticing that the otherwise extremely acute Frege when
confronted with just this characterizational problem lapsed into one of his few genuinely idiotic remarks, namely “everyone
recognizes the same geometrical axioms, even if only by his behavior…” (Frege 1967:35). (It is the “even if” that is so
troublesome.)

Summing up, it might be said that reasoning in arithmetic, centering, for example, on assertions “take the least number such
that…,” is justified on the basis of the understanding of the system of numerals; the very fact that the logical analysis of such
assertions leads to second-order assertions shows that the logical account of the least number principle does not give an adequate
representation of our understanding, our understanding on which arithmetic or number theoretic reasoning is based, and so
must be understood as based on our more intuitive understanding of our numerals as sketched above. That is, logical
representation is but one sort of representation and may not be adequate to represent the understanding on which our
mathematical reasonings and proofs are in fact founded!

Finally, it is worth pointing out that in recent work W.W.Tait has been uncovering a way of construing proof in classical
mathematics as construction, in this measure freeing proof from assumptions in need of proof (Tait 1986a, b). (However, it is
questionable that this is a phenomenologically adequate account of proof rather than a rational reconstruction of it.) 

NOTES

1 From the point of view of the present paper, perhaps the most useful work in English introducing some of the main ideas of Husserl’s
transcendental phenomenology in the spirit in which it was set out, a kind of baseline work to get one’s thinking started, is
Sokolowski (1974).
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2 For the development of my particular way of practicing phenomenology (albeit much improved in the present studies) and other
background, see Tragesser (1977, 1984).

3 Locke (1975), p. 672; see the amusing comments in Leibniz (1981), p. 477.
4 I must thank Hidé Ishiguro for pointing out that many philosophers, presumably because they fail to distinguish the formal from the

informal in the senses set out above, virtually by reflex would assess Frege’s argument or demonstration as using logic to justify
logic and therefore not a sound argument/demonstration.

5 In order to avoid clutter (relying on the reader to see how things would go), I here and elsewhere avoid worrying about the
circumstance where NegNegs is not equivalent to .s.

6 I understand “subtheory” in such a way that any theory is a subtheory of itself.
7 See Tait (1986a).
8 An analogous point about the way in which intuition gets into more formalistic accounts of constructive mathematics is made by

Charles Parsons.
9 See Bos (1974).
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8
ON AN ALLEGED REFUTATION OF HILBERT’S PROGRAM USING

GÖDEL’S FIRST INCOMPLETENESS THEOREM
Michael Detlefsen

SUMMARY

In this paper it is argued that an instrumentalist notion of proof such as that articulated in Hilbert’s notion of ideal mathematics
is not obliged to satisfy the conservation condition that is generally presented as a constraint on his program. A weaker and
more plausible soundness condition is then identified and shown not to be counter-exemplified by Gödel’s First Theorem. In
the final section, attention is focused on the question whether there is room within an instrumentalist framework for a
noncumulative (in current jargon “nonmonotonic”) conception of ideal proof or, equivalently, whether an instrumentalist
theory might be better thought of as a method for selecting beliefs (theorems) than as a fixed set of beliefs (theorems). The
potential importance of this issue for correctly judging the bearing of Gödel’s Second Theorem on Hilbert’s Program is
considered.

I.
INTRODUCTION

For some time now, it has been a virtual constant of the literature on Hilbert’s Program (HP) to maintain that Gödel’s work
demonstrates its untenability. The “demonstration” typically given is one which proceeds from Gödel’s Second
Incompleteness Theorem (G2) and the claim that HP requires the sort of consistency proofs that it (i.e. G2) rules out.
However, more recently (cf. Kreisel 1976; Prawitz 1981; Simpson 1988; Smorynski 1977, 1985, 1988) it has become
increasingly common to claim that Gödel’s First Incompleteness Theorem (G1) affords a refutation of HP, and that this
refutation is at least as good as (and perhaps even better than) that based on G2. Thus, one finds such claims as that “the First
Incompleteness Theorem…effectively kills Hilbert’s programme; the Second Incompleteness Theorem is merely a
refinement” (cf. the introduction to Smorynski 1988), and “it was the First and not the Second Incompleteness Theorem that
killed Hilbert’s Programme” (cf. 1985:10).

Like the G2-based argument, the G1-based argument proceeds by producing a “requirement” for HP. This requirement is
then shown to be ruled out by G1. In the case of the G1-based argument, however, the requirement is not one of consistency,
but rather one stating that what HP identifies as “ideal” mathematics must be a conservative extension of what it identifies as
“real” mathematics. G1 is then said to show that this conservation requirement cannot be met, the upshot being that G1 is
sufficient, and hence G2 not necessary, for the destruction of HP.

We disagree with this argument. G1 does not “kill” HP, and thus does not diminish the critical importance that the G2-
based argument has for any attempt to establish a link between the defeasibility of HP and Gödel’s work. In saying this,
however, we are not intending to suggest that the G2-based argument against HP is successful; indeed, we have argued at
length elsewhere (cf. Detlefsen 1986) to the contrary. Our aim is rather to affirm the pivotal status of the G2-based argument
and thus to focus attention on it. We are thus making a proposal concerning what we take to be the proper focus of work
aimed at determining the effect of Gödel’s work on HP. The objectives of the present paper, then, are first to show that the
G1-based argument is mistaken, and second to indicate what the main issues are that must be addressed by any rationally
convincing evaluation of the bearing of Gödel’s work on HP.

In connection with the first objective, we focus our attention on the role which the G1-based argument assigns to the
conservation condition, and on the other alleged constraints on ideal theorizing which are then supposed to lead to its
violation. We argue that both the conservation condition itself, as well as the other constraints on ideal theorizing which are
taken to underlie its violation, are mistaken.

Regarding the second objective, our concern is mainly with the different conditions which G1 and G2 place on the
(encoded) notions of proof, provability, etc. The conditions required by G2 are not satisfied by various theories or “theory-
like” arrangements of proofs and theorems which nonetheless do satisfy the conditions required by G1. Chief among these, so
far as our interests are concerned, are various types of theories which incorporate consistency constraints into the very



conditions on proof, provability, etc. We call these theories “consistency-minded,” and we maintain that some of them
constitute plausible ways in which the Hilbertian might go about constructing his ideal theories.

There are two broad types of such systems: those introduced in Rosser (1936) (and studied and refined in Kreisel and
Takeuti (1974), Guaspari and Solovay (1979), Visser (1989) and Arai (1990, on the one hand, and those introduced by
Feferman (1960) (and studied in Jeroslow (1975) and Visser (1989)), on the other. Roughly speaking, the former (which we
refer to as Rosser systems) begin with a class of would-be proofs and an ω -ordering defined on them, and require that, to be
genuine, a would-be theorem must be determined neither to deny nor to be denied by any would-be theorem whose would-be
proof precedes it in the given ordering of the would-be proofs. (Note that, since this requirement involves comparison of only
the last line of the given would-be proof with that of its finitely many predecessors in the given ω -ordering, it is effectively
executable.)

Similarly, the latter type of systems (“Feferman systems,” in our terminology) makes use of a class of would-be axioms and
an ordering defined on them, and demands that for a would-be axiom to be genuine it must be consistent with the whole class
of wouldbe axioms which precedes it in the given ordering. This in turn gives rise to a notion of proof which requires that, to
be genuine, a would-be proof must be such that its “largest” axiom (i.e. the one lying farthest out in the above-mentioned
ordering) is consistent with the class of all “smaller” ones. (This means that, unlike Rosser systems, Feferman systems are not
effective since, by Church’s Theorem, there is no effective way of carrying out the consistency check they require. However,
in Jeroslow (1975) (and again in Visser (1989)), ways of obtaining effective systems based on Feferman-like ideas are
suggested. Jeroslow calls these systems “Experimental Logics” since their axioms are, in a sense, determined by a trial-and-
error procedure.)

Because (at least some of) these consistency-minded theories seem to represent sensible strategies of theory construction
for the Hilbertian, and because they at the same time violate certain of the conditions required for the proof of G2, they raise
the question of whether these conditions are something to which the Hilbertian is committed by the nature of his enterprise.
That these conditions hold for the usual sorts of systems but not for their consistencyminded counterparts should cause us to
ask why the Hilbertian should be seen as committed to building his systems of beliefs in the usual static manner (where
demonstrated consistency with previously accepted beliefs is not a condition on admitting a proposition as a new belief (i.e.
theorem)) rather than in the more dynamic way suggested by the consistency-minded modes of construction. The answer, we
believe, is that there is no reason; and this raises the question of whether G2 applies to Hilbert’s Program per se, or only to
those versions of it which needlessly restrict themselves to theory construction of the usual static variety.

We believe that this is an open question; and the primary objective of this paper is not to solve it, but rather to convince the
reader of its seriousness, and to lay the philosophical groundwork necessary for a fruitful discussion of it. In this way, we
hope to establish a general philosophical framework capable of serving as a guide to further work on the subject.

These, then, are the objectives of the paper. Its plan is as follows. In the next section we attend to preliminaries, setting
forth a correct account of Hilbert’s real/ideal distinction, which plays a central role in determining what sort of soundness
condition it is appropriate for the Hilbertian to place on ideal mathematics. In Section III, we give an analysis and critique of
the G1-based refutation of HP. Finally, in Section IV, we attempt to lend some perspective to the refutation of the G1-based
argument given in Section III by showing what happens when attention is shifted back to the G2-based argument. Our belief
is that the possibility of a consistency-minded conception of the Hilbertian’s ideal theorizing may afford a way for the
Hilbertian to carry out his program unimpeded by G2. At any rate, this is an alternative we think merits serious investigation
and whose philosophical groundwork we intend to prepare.

II.
THE REAL/IDEAL DISTINCTION

In order to gain a proper understanding of the G1-based argument against HP, it is necessary to begin with a proper
understanding of Hilbert’s well-known (if not always well-understood) distinction between real and ideal mathematics.
Hilbert himself seems to have intended this distinction to mirror the familiar distinction (of days gone by) between
observation and theory in the natural sciences,1 according to which observational evidence acts as a constraint on proper
theorizing in this sense: no proper natural scientific theory can admit as consequences statements whose falsehood can be
established by observational means. In this way, observation statements (i.e. statements whose truth is decidable by
observational means) function to control theorizing in the natural sciences.

Construing the real/ideal distinction in parallel fashion, real proofs occupy the role of observational evidence, and ideal
propositions the role of theoretical sentences, so that the real proofs function to control ideal theorizing in the same way that
observational evidence controls theorizing in natural science. Hence, just as no adequate natural scientific theory is permitted
to have observationally falsifiable consequences, so too no proper ideal theory is permitted to have consequences whose
falsehood can be established by real (i.e. finitary) means.2
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Hilbert seems to have viewed both natural scientific theory and ideal mathematics instrumentalistically. Thus, in drawing
the analogy between ideal mathematics and theorizing in physics (1927:475) he says that

a theory by its very nature is such that we do not need to fall back upon intuition or meaning in the midst of some
argument. What the physicist demands precisely of a theory is that particular propositions be derived from laws of
nature or hypotheses solely by inferences, hence on the basis of a pure formula game, without extraneous considerations
being adduced.3

For Hilbert, then, ideal sentences do not have any genuine semantical or justificatory standing of their own. They do not
express propositions but are rather part of a formal calculary device (the system of ideal proofs or derivations) whose purpose
is the timely and efficient derivation of sentences (namely, real sentences) that do have such semantic and epistemic
standing.4

Smorynski (1988) is a reaction to this way of understanding the real/ideal distinction. His idea is to replace “the old
dichotomy between finitary propositions and transfinite, or ideal formulae” with a new “trichotomy” which distinguishes
three types of propositions; namely, real propositions, finitary general propositions, and ideal propositions (cf. pp. 58–9). In
this new trichotomy, the real propositions are identified with equations relating terms for primitive recursive functions and/or
fixed numerals and their finite propositional combinations. Their character is described as that of being “directly contentual
assertions verifiable by direct computation.” Their epistemological significance is that of “affording a control on the results of
formal mathematical proofs.” Thus, their epistemological role is like that of experimental or observational controls in the natural
sciences, and they therefore play the same basic role played by the reals in the old dichotomous scheme.

The elements of the third category of the “new” trichotomy— the so-called ideal propositions—are also conceived of in the
usual way. They are said not to be genuine propositions at all, but rather mere formulas, and are said to bear the same relation
to the reals as the theoretical elements of an instrumentalistically conceived natural science bear to the observation statements
which pertain to it. Here, however, this relationship is apparently taken to be given not by the sort of soundness condition
stated above (namely that requiring that the theoretical elements not generate any observationally falsifiable consequent), but
rather by a conservation condition requiring that any observational proposition derivable by theoretical means also be
provable by observational means. At any rate, Smorynski maintains that in order for a given ideal theory T to be adequate, all
real sentences provable in T must also be provable by real means (cf. p. 64). Of course, since the reals on Smorynski’s
scheme are all finitarily decidable propositions, there is no essential difference between his condition of real-conservation and
the usual condition of real-soundness.

In its first and third categories, then, Smorynski’s trichotomy follows fairly closely the usual view of the real/ideal
distinction. The novelty comes with his second category, the so-called finitary general propositions (or “fgps,” for short). These
are generalizations such as “for all numerals n, n+1=1+n.” According to Smorynski, the fgps, like the real propositions, are
supposed to be meaningful. Moreover, like the real propositions, they are said to be capable of finitary proof (albeit by what
are called “schematic methods”). What distinguishes them from real propositions, says Smorynski (cf. pp. 59–60), is that they
are infinite conjunctions of real propositions, and, as such, function as the “laws” of mathematical science. This is taken to be
important because it is assumed that every genuine science must have laws (cf. Hilbert’s (1925:376) comment that the science
of mathematics is neither exhausted by nor reducible to equalities and inequalities).

Fgps thus seemingly have dual status; in their office as universal laws, they occupy the place of “theoretical” elements,
while in their role as objects of finitary proof, they function as “controls” on ideal theorizing (and thus are to be included in
the scope of the conservation condition as propositions which must be provable by finitary means whenever they are provable
by ideal means).5 We are thus left with the suggestion that the theoretical part of mathematics is a mixed bag, partly realist in
character (owing to the genuineness of the finitary general propositions), and partly instrumentalist in character (owing to the
merely “computational” status of the so-called ideal propositions).

Many questions concerning this trichotomous conception of the real/ideal distinction are left unanswered by Smorynski.
(For example, if the fgps, like the reals, are subject to finitary proof, why is it only the latter and not the former which
function as evidensory controls on ideal theorizing? If, on the other hand, the fgps do not function as controls, then why
should ideal theorizing be required to be conservative with respect to them? Moreover, are the fgps propositions or
prepositional schemata? And how, exactly, do they compare with the ideal propositions?) Of more immediate concern than
this, however, are the inaccuracies and confusions upon which it is built.

The chief culprit in all this is the introduction of the “new” category of fgps, which Smorynski sees as being based on two
grounds. The first is the aforementioned idea that every genuine science must have laws (cf. pp. 59–60). Smorynski takes
Hilbert to have been referring to a realm of “laws” (namely, Smorynski’s fgps) when he spoke of that part of mathematics that
cannot be reduced to numerical equations. In another place, however (cf. Hilbert 1927:471), Hilbert put his point more
carefully. There he characterized mathematics not as the adjunction of an equational part and a set of contentual laws
(Smorynski’s fgps) related to the equations as theory to data, but rather as the adjunction of real and ideal methods where the
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latter are related to the former as theory to data. Indeed, he says explicitly that what is essential for a genuine science of
mathematics is not a realm of contentual laws (like Smorynski’s fgps), but rather the use of ideal methods (“scientific
mathematics becomes possible only through the introduction of ideal propositions”). 

Thus it seems that what Hilbert had in mind when he spoke of a part of mathematics that is essential to its being a science
and is not reducible to numerical equations is ideal mathematics, and not, as Smorynski suggests, a realm of contentual laws
lying somewhere between ideal mathematics and elementary equalities and inequalities. Likewise, when he spoke of the
equational part of mathematics as forming a control on the part of mathematics not reducible to it, this was just a loose, and
somewhat sloppy, way of saying that the noncontentual part of mathematics (i.e. ideal mathematics) is to be constrained by
the contentual part (including those reals that are not numerical equations as well as those that are!) in a way similar to that in
which theory is to be constrained by observational data in the natural sciences.

This way of reading allows us to make sense of the previously quoted remark (Hilbert 1927:475) in which he compared
theorizing in mathematics with theorizing in the natural sciences. There he stressed the idea that a theory “by its very nature”
is supposed to eliminate the need “to fall back on intuition or meaning in the midst of an argument” and to allow argument to
proceed “on the basis of a pure formula game.” This is just another way of saying that what is essential to science is not
contentual laws, but ideal propositions and derivations. Smorynski’s fgps, being contentual laws, could not function as part of
a “pure formula game.” Therefore, it is doubtful that they are what Hilbert had in mind when he spoke of an essential,
nonequational component of the science of mathematics.

Smorynski’s first ground for introducing the “new” category of fgps is thus implausible. Still, it is better than his second
one, which contends that the new category of fgps is needed in order to make sense of Hilbert’s views concerning the
difference in meaningfulness between fgps, on the one hand, and existential generalizations, on the other. As is well known,
Hilbert emphasized the asymmetry of these two kinds of propositions, treating the former but not the latter as meaningful, an
attitude which has often puzzled students of Hilbert (myself included). Smorynski claims that if one reads Hilbert as
advocating a separate category (separate, that is, from the reals and ideals) for the fgps, then one can make perfect sense of
this otherwise puzzling view. The argument given for this claim is the following (pp. 59–60).

Real propositions do not exhaust the class of finitistic prop ositions. There are also what I shall call here the finitary
general propositions—assertions of the form “for every numeral n, n+1=1+n”, which Hilbert would have written in
Leipzig as the free-variable formula,

The general assertion “is from the finitist point of view incapable of being negated” because the negation (“for some
numeral n…”) “cannot be interpreted as a combination, formed by means of ‘and’, of infinitely many numerical
equations”. [It may seem odd that infinite conjunctions are finitistic assertions. However, i. one cannot seriously
consider any science which does not propose universal laws, ii. there are finitary schematic methods of proof, iii.
consistency, which must be proven finitistically, is such a universal assertion, and iv. it was his existential theorems that
Hilbert had been criticized for.]

Anyone familiar with the passage from which Smorynski’s paraphrase is wrested will immediately see that something has
gone wrong. Hilbert did not view finitary generalizations as infinite conjunctions; indeed, he presented infinite conjunctions
as quintessential cases of nonfinitary propositions. He therefore would not have used nonequivalence to an infinite
conjunction as a standard for establishing the nonfinitary character of existential generalizations. What Smorynski has done,
then, is to produce an interpretation of the “paraphrased” remarks that is not only different from, but, indeed, the very
antithesis of, what Hilbert in fact said.

This mistaken interpretation of Hilbert is the result of a simple misreading of the relevant texts. To locate the mistake, we
shall quote the passage from which Smorynski’s paraphrase is taken, first the German original and then its standard English
translation.

Wir stoßen also hier auf das Transfinite durch Zerlegung einer existentialen Aussage, die sich nicht als eine
OderVerknupfung deuten läßt. Desgleichen kommen wir zu transfiniten Aussagen, wenn wir eine allgemeine, d.h. auf
beliebige Zahlzeichen sich erstreckende Behauptung negieren. So ist z. B. die Aussage, daß, wenn a ein Zahlzeichen ist,
stets

sein muß, vom finiten Standpunkt nicht negationsfähig. Dies können wir uns klar machen, indem wir bedenken, daß diese
Aussage nicht als eine Verbindung unendlich vieler Zahlgleichungen durch “und” gedeutet warden darf, sondern nur als
ein hypothetisches Urteil, welches etwas behauptet für den Fall, daß ein Zahlzeichen vorliegt.
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That is the German original from Mathematische Annalen, 95 (1926), 173. Now follows Bauer-Mengelberg’s translation from
van Heijenoort (1967:378), with which we agree.

Thus we encounter the transfinite when from an existential proposition we extract a partial proposition that cannot be
regarded as a disjunction. In like manner we come upon a transfinite proposition when we negate a universal assertion,
that is, one that extends to arbitrary numerals. So, for example, the proposition that, if n is a numeral, we must always
have

is from the finitist point of view incapable of being negated. This will become clear for us if we reflect upon the fact
that [from this point of view] the proposition cannot be interpreted as a combination, formed by means of ‘and’, of
infinitely many numerical equations, but only as a hypothetical judgement that comes to assert something when a
numeral is given.

The crucial phrase is “diese Aussage nicht als eine Verbindung unendlich vieler Zahlgleichungen durch ‘und’ gedeutet
werden darf (translated as “the proposition cannot be interpreted as a combination, formed by means of ‘and,’ of infinitely
many numerical equations…,” by Bauer-Mengelberg, although the “the” would probably better—if less mellifluously—be
translated as “this”). And the crucial question regarding this phrase is this: to which “Aussage” (proposition) is Hilbert
referring?

The answer, of course, is that he is referring to the proposition “for every numeral n, n+1=1+n,” and what he is saying about
it is that it cannot be interpreted as an infinite conjunction. This simple and obvious reading, however, is directly opposed to
Smorynski’s. He takes the “diese Aussage” of the passage quoted to refer not to “for every numeral n, n+1=1+n,” but rather
to its denial! Thus, according to Smorynski, what Hilbert was saying when he wrote “diese Aussage nicht als eine Verbindung
unendlich vieler Zahlgleichungen durch ‘und’ gedeutet werden darf is that the unbounded existential proposition “for some
numeral n, n+1ω 1+n” (i.e. the denial of the fgp “for every numeral n, n+1=1+n”) cannot be interpreted as an infinite
conjunction, and that it is on this account that it is nonfinitary in character.

Thus, like his first ground, Smorynski’s second ground for introducing the fgps is mistaken. Hilbert’s classification of
universal generalizations as meaningful and (unbounded) existential generalizations as meaningless was not due to any belief
on his part that the former but not the latter are infinite conjunctions. Hilbert did not take universal generalizations to be
infinite conjunctions. Nor did he take interpretability as an infinite conjunction to be a criterion of finitary meaningfulness;
indeed, he was of the contrary opinion.

Smorynski’s chief mistake is a failure to properly recognize the ways in which Hilbert saw the real propositions as being
subdivided. His basic—and most important—distinction was that of separating the problematic from the unproblematic reals.
When a finitary proposition or expression is such that one cannot apply the full range of classical logical operations to it
without generating a nonfinitary proposition, then it is what Hilbert broadly referred to as “problematic.” But not all problematic
finitary propositions are problematic for the same reasons. A bounded existential quantification like “there is a prime greater
than p but less than p!+1” is a problematic real proposition because it classically implies the unbounded existential
quantification “there is a prime greater than p,“which is not a finitary proposition (cf. Hilbert 1925:377–8).

Finitary generalizations, too, are problematic, but for a different reason. When a finitary generalization is negated, one does
not get a finitary proposition at all (nor even a finitary propositionschema). One gets instead an ideal proposition (which is
neither a genuine proposition nor a proposition-schema, but rather some sort of formula or computational device). Thus
finitary generalizations are problematic because the classically valid law of excluded middle cannot freely be applied to them
(cf. Hilbert 1925:378).6

This, in brief, is Hilbert’s account of finitary generalizations. It shows what, in Hilbert’s view, separates finitary
generalizations from other finitary propositions, and why, contrary to what Smorynski suggests, they are to be seen as forming
a subcategory of the reals rather than a separate category alongside them. It does not, however, say what is supposed to separate
finitary generalizations from ideal generalizations. We must therefore briefly address this question.

On Hilbert’s view what sets the two apart is the different ways in which they are instantiated. Part of this difference
consists in the different character of the instances themselves; or, rather, the differences between the expressions substituted
for the variables in producing instantiations of finitary generalizations and ideal generalizations. Hilbert characterized this
difference as follows (cf. Hilbert 1931:194):

Es sei hier daran errinert, daß die Aussage (x)F(x) viel weiter reicht als die Formel F(z), wo z eine beliebig vorgelegte Ziffer
ist. Denn im ersteren Falle darf in F(x) für x nicht bloß eine Ziffer, sondern auch ein jeder in unserem Formalismus
gebildete Ausdrück vom Zahlcharakter eingesetzt werden.7
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Smorynski presents this as the whole of Hilbert’s distinction between finitary and ideal generalizations, saying that the
difference between the two is that the former take only numerals (and other finitarily well-defined terms) as substituends of the
variables, while the latter also admit “meaningless infinitary constructs” as substituends (cf. Smorynski 1988:63–4). But
though this is part of the difference between finitary generalizations and ideal propositions, it is not the whole difference, nor,
as we shall now attempt to show, even the major difference.

Hilbert repeatedly stressed the fact that there are formulas like “1+x=x+1” which, though perhaps interpretable as finitary
generalizations, are nonetheless ideal propositions. One example of this (cf. 1925:379–80) is the formula “x+y=y+ x” This
formula, he says, is admissible from the finitist point of view as expressing the generalization that for all (finitarily well-
defined) numerals m, n, m+n=n+m. Yet despite this fact, he says, “x+y=y+x” is still an ideal proposition.

His reasons for saying this are important both for understanding the nature of ideal propositions and for seeing what it is
that essentially separates them from finitary propositions (or proposition-schemata). Hilbert focused on the question of what
governs the use of a given formula or proposition; specifically, whether it is the rules of some formal procedure (a “proof
pro cedure,” in his terminology), on the one hand, or consideration of the content of the proposition expressed by the formula
in question, on the other. An ideal formula, he says, is not such that its use is guided by appeal to the content of any
proposition that the formula in question might (under an assumed semantics) express. Rather it is governed by a given system
of rules of “algebraic” or syntactical manipulation. The use of a finitary formula (or proposition-schema), on the other hand, is
guided by the considerations of the content (including its evidentness) of the proposition which it (under a given finitary
interpretation) expresses.

It follows from this that what determines whether a formula like “1+x=x+1” is finitary or ideal is not whether, under a
specified interpretational scheme, it expresses a finitary proposition or proposition-schema. Nor is it whether the substituends
for the variables of the formula are restricted to the class of finitarily well-defined terms. Rather, it is whether the use of the
formula is governed by the rules of a formal “proof procedure,” or by considerations of the content of the proposition which it
expresses. This seems to be what Hilbert had in mind when he insisted that (cf. 1925:380)

even when a proposition, so long as it is combined with some indication as to its contentual interpretation, is still
admissible from our finitist point of view, as, for example, the proposition that always

where m and n stand for specific numerals, we do not select this form of communication but rather take the formula

This is no longer an immediate communication of something contentual at all, but a certain formal object, which is
related to the original finitary propositions

and

by the fact that, if we substitute numerals 2, 3, 5, and 7, for a and b in that formula (that is, if we employ a proof
procedure, albeit a very simple one), we obtain these finitary particular propositions. Thus we arrive at the conception
that a, b, =, and +, as well as the entire formula

do not mean anything in themselves, any more than numerals do. But from that formula we can indeed derive others; to
those we ascribe a meaning, by treating them as communications of finitary propositions. If we generalize this
conception, mathematics becomes an inventory of formulas—first, formulas to which contentual communications of
finitary propositions [hence, in the main, numerical equations and inequalities] correspond and, second, further
formulas that mean nothing in themselves and are the ideal objects of our theory.8

In short, then, a formal proof procedure whose substitutions are restricted to those in which a variable-occurrence is replaced
by a numeral or other finitarily well-defined term is, for all that, still a formal proof procedure. And that is why “1+x=x+1”
functions as an ideal formula when one obtains “1+3=3+1” from it by appealing to a simple proof procedure which calls for
substitution of the numeral “3” for the variable “x” (cf. the passage from Hilbert (1927) quoted in note 8). If the use of a formula
is governed by such a procedure, then it functions (in that context) as an ideal formula, regardless of whether the substituends
for its variables are finitarily well-defined. If, on the other hand, a formula like “1+x=x+1” is used to formalize a piece of
reasoning that is based on considerations of the content of the proposition it expresses, then, in Hilbert’s view, it functions as
a real formula. The critical question is thus whether a formula is used to formalize a proposition which plays a role in a
contentual argument, or whether it is used sheerly as an element in a formal “computational” procedure.

(Actually, things are more complicated than even the above remarks would indicate. For Hilbert may have assumed that
when we employ a formula like “1+x=x+1” in an ideal way (i.e. as part of a proof procedure), its logic (syntactically
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speaking) is classical logic. If this is so, then, since classical quantification is quantification over objects rather than objects-
as-referred-to-in some-particular-way, the substitution class for “x” would have to be the wider class including terms which
are not finitarily welldefined. Perhaps Hilbert had some such assumption in mind; at any rate, it seems to fit with his idea that
the point of having ideal methods in mathematics is to preserve the natural and efficient rules of classical logic.)

Hilbert’s real/ideal distinction thus consisted of a major division between the real and the ideal propositions, and a minor
(sub)division of the real propositions into problematic and unproblematic. In this scheme, the finitary generalizations are
merely one particular type of problematic real proposition and not, as in Smorynski’s account, a separate class of elements
standing alongside the reals and the ideals, nor even a third subcategory of the reals standing alongside the subcategories of
problematic and unproblematic. Failing to see this, Smorynski misses the basic point of Hilbert’s subdivision of finitary
thought; namely, that of separating those finitary elements whose logic abides by the “natural” principles of classical
reasoning (the so-called “unproblematic” reals) from those (the problematic) whose logic is the more cumbersome and less
“natural” one of finitary reasoning. Missing this basic point, he thus confuses both the general character of Hilbert’s
conception and its underlying motivation.

III.
THE G1-BASED ARGUMENT AGAINSTHILBERT’S PROGRAM

With the above discussion of the real/ideal distinction as background, we may now address the main concern of this paper,
namely, the G1-based argument against HP. Smorynski (1985: 3–4) presents this argument as follows.

Hilbert’s Programme can be described thus: There are two systems, nowadays called formal theories, S and T of
mathematics. S consists of the finite, meaningful statements and methods of proof and T the transfinite, idealized such
statements and methods. The goal is to show that, for any meaningful assertion G, if T G then S G. Moreover, this
is to be shown in the system S.

Gödel destroyed Hilbert’s Programme with his First Incompleteness Theorem by which he produced a sentence
satisfying a sufficiently narrow criterion of meaningfulness and which, though readily recognized as true—hence a
theorem of the transfinite system T, was unprovable in S. In short, he produced a direct counterexample to Hilbert’s
desired conservation result.

In order to properly evaluate this argument, it will prove useful to give a more explicit version of it. As a step in this direction,
we may begin by noting that, in Smorynski’s argument, the ideal theory T is treated as representing a norm for ideal
theorizing; that is, it is taken to be an ideal theory which proves those sentences that an ideal theory ought to prove. These real
sentences, on Smorynski’s view, are those which are “readily recognized as true.” The norm in operation here is thus a type of
completeness constraint requiring that an ideal theory be complete with respect to those real sentences in its language that are
readily recognizable as true.

The assumption that T has this normative status is critically important to the success of Smorynski’s argument. This is so
because (i) it is only in its capacity as a prover of the recognizedly true real sentences that T can be said to prove the Gödel
sentence G, (ii) it is only in its capacity as a prover of G that T can be shown (by appeal to G1 for S) to prove a real sentence
not provable in S,9 and (iii) it is only because T proves some real sentence not provable in S that it fails to be conservative and
hence subject to the sort of defense to which Smorynski takes HP to be committed. The basic thrust of Smorynski’s argument,
then, is that an ideal theory is deficient if it fails to prove every recognizable real truth (formulable in its language) as a
theorem, and that a deficiency of this sort would be roughly as serious as a violation of conservation. Thus, ultimately, the G1-
based argument is intended to present a dilemma to the following effect: the Hilbertian’s ideal theories must either fail in their
obligation to prove all true real sentences (formulable in their respective languages), or they must fail to be conservative with
respect to real mathematics. Either way, HP fails.

We find this argument unconvincing for two reasons which we shall now briefly sketch and discuss in greater detail below.
The first of these concerns the assumption (hereinafter referred to as Smorynski-completeness) that, to be adequate, an ideal
theory must prove all recognizedly true real sentences of its language. On an instrumentalist conception of ideal mathematics
(which is what we take the conception adopted by the Hilbertian to be), the goal of ideal theorizing is the relatively modest one
of proving more efficiently what real theorizing would only prove less efficiently. Specifically, there is no basis in the
Hilbertian’s instrumentalistic program for requiring that the ideal theory prove more real results than the real theory that it is
intended to replace. This being so, there is no evident need for the ideal theory T to prove a given sentence unless S also
proves it. As shall be argued below, this feature of the Hilbertian’s program calls the legitimacy of Smorynski-completeness
into doubt.

Our second concern regarding the G1-based argument centers on its demand (henceforth referred to as the conservation
condition) that ideal mathematics be a conservative extension of real mathematics. The likening of the role of real proof to that
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of observational verification in the natural sciences suggests that the basic constraint on ideal theorizing is that of a soundness
condition requiring that ideal mathematics not prove any real theorem that is refutable by real means. But whereas such a
soundness condition naturally gives rise to a corresponding conservation condition in the case of observation statements, it
does not do so in the case of real propositions. Hence, the conservation condition is called into doubt.

These then, in outline, are our two main objections to the G1-based argument. We shall develop each in greater detail
below. Each, we believe, is sufficient by itself to refute the G1-based argument. However, our concern is not so much to
refute that argument as to understand it and its limitations. Since both objections promise to contribute something to this, both
would seem to be worthy of the more detailed discussion we now give them.

In order for a theory belonging to ideal mathematics to be adequate, must it be complete with respect
to the true real sentences formulable in its language?

In order to answer this question, we must begin by clarifying what is meant by “true real Sentence,” and our claim is that it is
a classical rather than a constructive (specifically, a finitaryconstructive) notion of truth that is involved in here. Thus, what
Smorynski-completeness demands is that all classically true real sentences formulable in L(T) also be provable in T. 

That this is the way that Smorynski-completeness should be understood is apparent from the fact that the notion of truth
appearing in it must be the same as that according to which G is true, and that notion of truth is the classical one. The intent of
Smorynski-completeness is clearly to lay down a requirement on ideal mathematics which T fails to satisfy by failing to prove
G. But what makes G true is the truth of its instances, not its provability by finitary means. Hence, it is only classically and not
constructively (in particular, not finitarily) true. Consequently, T’s “failure” to prove G can only be counted as a “failure” to prove
all classically true real sentences formulable in its language; which means that Smorynski-completeness must be seen as the
requirement that an ideal theory T prove all classically true real sentences formulable in its language.

The significance of this fact for our argument is that it clarifies the possible defenses for Smorynski-completeness as a
constraint on ideal theorizing. In particular, it shows us that it cannot merely be seen as an attempt to enforce a simple
strength requirement on T to the effect that T be powerful enough to codify the whole of finitary reasoning. This is clear from
the fact that the theorems of finitary reasoning are not at all the same as the classically true real sentences formulable in L(T),
since the latter clearly include sentences that do not belong to the former. What we must now consider is whether there is some
other justification for it.

We believe that there is not, and that this is clear from the instrumentalist character of HP. Smorynski-completeness is
attractive to a realist, since one of the realist’s primary duties in constructing a theory is to bring all truths pertaining to its
subject matter under its purview. But the responsibilities of the instrumentalist are different. His task is to replace a less
efficient means for identifying a given body of truths with a more efficient one. But that creates no obligation for him to prove
anything more than is provable by the more cumbersome methods that he would replace. Once this point is properly
appreciated, the inappropriateness of Smorynski-completeness as a criterion of adequacy for ideal theorizing is apparent.
Since G is not provable by real means, there is no reason why an ideal theory—whose aim is to improve upon the efficiency of
real methods of proof—should be required to prove G either. 

Should ideal mathematics be a conservative extension of real mathematics?

The central idea of the argument of the preceding subsection can readily be extended to provide the starting point for the
argument of this one. This extended idea runs as follows: since (i) the Hilbertian’s chief obligation is to the efficiency and
reliability of his ideal systems, and since (ii) there is no apparent connection between these properties and the ability of an
ideal system to decide every real proposition formulable in its language (this being suggested especially by the fact that
finitary reasoning does not itself decide every real sentence), it follows that (iii) there is like-wise no apparent reason to
demand that an ideal theory decide every real proposition formulable in its language. The significance of this conclusion for
the present argument is as follows: without a requirement of the finitary decidability of real sentences, the usual conservation
condition cannot be derived from the more basic requirement of soundness in the way typical of scientific theories generally.

(Demanding that an ideal theory T decide the same range of real sentences as is decided by its real counterpart S is not at
all the same thing as demanding that T decide all real sentences formulable in L(T). This is so because S itself might not, and
indeed typically does not, decide all real sentences formulable in L(T). The Gödel sentence G is a good example. Thus, T may
have the scope necessary to serve as a replacement for S (i.e. T may decide every real sentence decidable by S) even if it does
not decide every real proposition formulable in its language.)

We begin our argument by noting that the most important feature of S (=real mathematics) is its (presumed) epistemic
authority. By this we mean that it is supposed to be the final judge concerning the truth or falsity of real sentences. Its veracity
is thus treated as assured, which means that any real proposition it decides must be decided in the same way by any ideal
theory which also decides it.
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This condition on the real results of ideal reasoning does not, however, imply the conservation condition. It is one thing to
say that any real proposition ω  which S decides must be decided in the same way by T, if T decides it, and quite another to say
that S must prove every real proposition ω  provable in T. The reason for this divergence is, of course, that S may not decide ω
at all; in which case, respect for the epistemic authority of S provides no reason to demand that ω  be provable in T only if it is
also provable in S. To put it another way, when S does not decide ω  T cannot transgress against the authority of S by deciding
ω  Thus, under such circumstances it is freed from the obligation to adhere to the conservation condition. We conclude, therefore,
that the conservation condition is too strong, and should be replaced by the following weaker condition.

(Weak Conservation) For every real sentence r of L(T) such that r is decided by S, if r is provable in T, then r is provable
in S.10

If one’s account of real sentences and finitary reasoning allows that there are real sentences that are not finitarily decidable
(i.e. not S-decidable), then the weaker condition just stated entails no obligation to prove of those real sentences that they are
provable in T only if provable in S. Thus, in particular, it does not entail an obligation to prove that G is provable in T only if
it is provable in S. Nor, indeed, does it require that this even be true. The unprovability of G in T therefore does not constitute
a counterexample to Weak Conservation. Consequently, even if (contrary to the argument of the preceding subsection) T were
required to prove G in order to be an adequate ideal theory, G’s unprovability in S would not constitute a violation of the
more appropriate condition of Weak Conservation.

To allay the suspicions of those who are drawn to the usual conservation condition, it is necessary to offer some
explanation of why, despite its ultimate indefensibility, the ordinary conservation condition should nonetheless prove so
alluring. Our attempt at doing so begins with a very basic tenet of Hilbert’s Program; namely, the alleged analogy, mentioned
earlier, between the epistemic roles played by observation in physics and real proof in mathematics. This analogy suggests,
albeit falsely, that if conservation with respect to observational consequences is a reasonable condition to place on a physical
theory,11 then conservation with respect to real consequences ought to be a reasonable condition to place on an ideal mathematical
theory. Thus, the reasoning continues, if it can be shown that conservation with respect to observational consequences is a
reasonable condition to place on physical theorizing, it should follow that conservation with respect to real consequences is a
reasonable condition to place on the Hilbertian’s ideal theorizing.

One can, of course, argue quite convincingly that conservation with respect to observational consequences is a reasonable
condition to place on physical theorizing. The argument begins by noting that in physics (as in natural science generally)
observation is granted a place of special epistemic privilege; by which it is meant that the theoretical elements of physics are
not at liberty to oppose that which is established by observational means. This epistemic subordination of theoretical proof of
observational verification is expressed as a principle of observational soundness, which is then taken to constitute a condition
of adequacy on any body T of theoretical reasoning in physics:

(OS) For any observation sentence O, if T proves O, then O cannot be observationally falsified.

From (OS) as a starting point, it is possible to argue for the following principle of observational conservation,

(OC) For any observation sentence O, if T proves O, then O is verifiable by observational means,

by adding to (OS) the further premise that observation sentences are (by their very nature?) supposed to be decidable by
observational evidence. If, as (OS) requires, no observational consequence O of T can be observationally refuted, and every
observation sentence is observationally decidable, then every observational consequence of T must be observationally
provable. Hence, (OC) follows from (OS) and inherits its plausibility.

Can a similar defense for a condition of real-conservation on ideal theorizing be given? A condition of real-soundness
would appear to be no less defensible a constraint on ideal theorizing than (OS) is on physical theorizing:

(RS) For any real sentence r, if T proves r, then r cannot be refuted by real means (i.e. ¬r is not provable in S).

But in order to get a condition of real-conservation from (RS), one requires an additional premise stating that every real
sentence is decidable in S; and such a premise is false—at least if one counts such sentences as G as real.12 It is therefore
impossible to base a case for real-conservation on the presumed need for real-soundness in the same way that a case for
observational complete ness can be based on a presumption of need for observational soundness.

We conclude our discussion of the conservation condition by briefly considering a possible objection to the argument just
given. This objection focuses on that feature of real sentences which is responsible for the above-noted separation of real-
conservation from real-soundness, namely, their undecidability by real means. It has, moreover, both a conceptual and a
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historical side to it. On the conceptual side, it holds to a constructivistic understanding of real propositions (including those
generalizations which Hilbert referred to as “hypothetical judgements”) and maintains that such a view demands that
genuinely real propositions be decidable by finitary means. On the historical side, it would maintain that Hilbert was
originally committed to the finitary decidability of real propositions and present G1 as having refuted that belief. Hence, it
views Hilbert’s original Program as having based a commitment to real-conservation on a deeper commitment to real-
soundness, and therefore sees G1 as destroying that hope.

On the textual-historical side, there is the well-known remark in the “Mathematical Problems” address claiming that “every
definite mathematical problem must necessarily be susceptible of an exact settlement, either in the form of an actual answer to
the question asked, or by a proof of the impossibility of its solution and there-with the necessary failure of all attempts [to
solve it]” (1901:444, brackets added). This same theme was sounded in Hilbert (1925), in the famous claim stating that in
mathematics there is no ignoramibus. If “definite problems” are just real propositions in interrogative form, it is hard to see
how Hilbert could have counted undecidability proofs as settling genuine problems while also holding the position that every
real proposition must be finitarily decidable. Since propositions stating the undecidability of a given proposition by various
means were held by Hilbert to be genuine propositions, this suggests that he would not have accepted the view that all
genuine (=real) propositions must be finitarily decidable.

These textual points aside, however, it is doubtful that a constructivist semantics for real propositions should equate
meaningfulness with finitary decidability. On a constructivist account, a user of the language is said to know the meaning of a
real sentence r when for every proof (respectively refutation) ω  of r, she would recognize ω  as such were she to be presented with
it. This does not imply, however, that real (i.e. meaningful) sentences are finitarily decidable—not even if it is assumed that
the only kinds of proofs or refutations of real sentences there are are finitary. That this is so follows from the fact that being in
a position to recognize a proof or refutation of r were one to be presented with it does not require knowing how to prove or
refute it. Ability to tell of a given proof whether or not it is a proof or refutation of r does not imply ability to actually generate
such a proof or refutation. There is thus no reason to maintain that, on a constructivistic account of their meaning, real
sentences must be finitarily decidable.

Since, then, there are textual reasons for denying that Hilbert held the view that real propositions are finitarily decidable,
and conceptual reasons against such a view regardless of its textual pedigree, it seems only charitable to withhold attributing
such a view to Hilbert. We therefore reject the suggestion that he was committed to the finitary decidability of real
propositions and that his commitment to real-soundness should therefore be seen as engendering a commitment to real-
conservation.13

IV.
CONCLUSIONS

The argument of the preceding section defeats the G1-based argument against HP. In so doing, it re-focuses attention on the
G2-based argument. This, we believe, is all to the good, since it calls attention to those problems which represent the deepest
philosophical issues concerning Gödel’s theorems and their implications for Hilbert’s Program, issues on which the literature
including the philosophical literature—has been strangely silent. At bottom, the central question is “What is an
instrumentalist theory?” We shall argue that the proof of G2 (in particular, the familiar Derivability Conditions) places
constraints on what is to count as an ideal theory that are unwarrantedly strict. Moreover, we shall argue that the G2-based
argument against HP fails to properly distinguish two very different concerns regarding instrumentalist theories; namely, (i)
whether they prove all they need to prove in order to be adequate replacements for the real theories that they are supposed to
replace, and (ii) whether they prove only such real theorems as are not refutable by real means. Specifically, it fails to take
proper account of the fact that the Hilbertian instrumentalist requires a finitary proof only of (ii) and not of (i), and that the
two should therefore not be merged into a single condition to be finitarily proven.

Once a suitably liberal standard of what is to count as an instrumentalist theory is adopted, and once it is realized that,
though the Hilbertian may have need of a finitary proof of the real-soundness of his ideal theories, he has no similar need for
finitary assurance that they prove all of what he wants them to prove, the force of the G2-based argument is dissipated. Such,
at any rate, is our thesis, though our basic aim is not so much to establish it as to call attention to those deeper philosophical
issues from which it arises.14

These issues can perhaps best be got at by considering the differences between the conditions which the proofs of G1 and
G2 place on their underlying notions of theory. The proof of G1 makes only minimal demands. It is concerned only with the
content of a theory; i.e. with what it proves. Specifically, it demands only that the theory in question contain enough recursive
number theory to weakly represent the set of (Gödel numbers of) its theorems.15 One might therefore say that the notion of
theory presupposed by the proof of G1 is one which identifies a theory with the set of theorems that it proves, and whose only
additional constraint is that it contain enough recursive number theory to represent that set.
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G2, on the other hand, makes more extensive demands on the notion of theory. Its proof depends not only on a theory’s having
the right content, but also on that content’s having been admitted as such by a certain type of procedure. Two theories T1 and
T2 may contain exactly the same entities in a given metamathematical category (e.g. the category of formulas, axioms, proofs,
or theorems) and yet differ significantly with respect to the conditions used to quantify items for membership in it.

To illustrate what we are talking about, let us recall the examples of consistency-minded theories mentioned in the
introduction and how they contrast with the standard conception of a formal axiomatic theory. On the standard conception, the
basic metamathematical categories pertaining to a theory (e.g. those of formulas and axioms) are defined inductively, and the
remaining categories (e.g. that of the theorems) are defined in terms of these. One begins the definition of a basic category by
exhibiting a finite set of basic members, and then identifying the remaining members with those items that can be generated
from the basic members (perhaps taken in combination) by applying (in some instances iteratedly) certain specified syntactical
operations to them. The application of these operations is, moreover, supposed to be selfcontained in a certain sense.
Specifically, it is supposed that in order to determine of a given item whether it belongs to the category in question, one need
only attend to the syntactical traits of its constituents and their arrangement and not (even potentially) to the syntactical
characteristics of other items.

Consistency-minded theories are different. They begin with metamathematical definitions of the standard sort, but then add
various conditions which, broadly speaking, are consistency conditions of one or another sort. Thus, to take the Rosserian
variant of consistency-minded theories as an example, one begins with a theory T, defined in the standard way, and forms the
Rosser variant TR of it by adding to the standard definition of proof a constraint to the effect that the last line of a proof-in-TR

not be the contradiction of the last line of any proof-in-T which precedes it in a given ω -ordering of the proofs-in-T.16 Thus,
the category of proofs-in-TR is generated by a different testing or qualifying procedure than the category of proofs-in-T, and
that is what we mean by saying that the category of proofs-in-T is generated or governed by a different admission procedure
than the (possibly coextensive) category of proofs-in-TR.

Such differences separating the admission procedures for the various metamathematical categories of T from those of TR

will not have any effect on whether G1 holds for them. It will hold either of both or of neither, depending on whether T
proves enough number theory to weakly represent the class of (Gödel numbers of) its theorems. Such differences, however,
can have a decisive effect on whether G2 applies equally to both T and TR, since the proof for G2 is sensitive to the character
of the admission procedures for the various metamathematical categories pertaining to a given theory.

What this means is that G2 applies not to sets of theorems (or even sets of proofs!) but rather to sets of theorems-as-
admittedby-a-particular-type-of-procedure. This raises the possibility—of crucial importance to the present discussion—that
there might be nonstandard ways of generating sets of theorems and proofs that are not covered by the proof of G2, but which
nonetheless constitute perfectly sensible conceptions of theory for the Hilbertian instrumentalist. Were this to be so, the
Hilbertian would be free to construct ideal theories not ruled out by G2, and having the same content as those that are. At any
rate, this would seem to be a possibility worth looking into.

These last remarks point out why it is so important to get clear about the success of the G1-based argument against HP. For
if the G1-based argument were correct, then the prohibition against the Hilbertian would be one bounding the strength or
content of his ideal theories (i.e. one fixing limits on what his ideal theories could be capable of proving) and not just one
restricting the mode according to which that content is to be generated. If, on the other hand, the G1-based argument is not
successful, and the basis of evaluation for HP must accordingly be shifted to G2, then the focus of concern is not one
concerning strength or content, but rather one concerning mode of generation (with respect to which the Hilbertian may well
have flexibilities that he does not have with respect to the strength of his ideal theories). We regard this as a difference of
potentially great significance, and one which makes the investigation of consistency-minded modes of theorizing
imperative.17

Perhaps the most basic issue raised by the possibility of consistency-minded theorizing is this. Are theories to be viewed
extensionally (i.e. as sets of beliefs) or intensionally (i.e. as methods or procedures for selecting beliefs)? The good theory, of
course, both targets particular propositions for belief and does so by bringing them under a method which testifies to their
beliefworthiness. Let us refer to the first of these two components of good theorizing as the locative component and the
second as the methodological component.

Neither component, by itself, is sufficient for good theorizing. A good theory is not a mere “list” of propositions to believe,
with no credential provided to attest to their belief-worthiness. Likewise, a good theory is more than sheer method with no
means given for finding a set of particular propositions that are to be believed.18

All this may seem so elementary as to scarcely be worth mentioning. Why then do we emphasize it so? The answer is that
it points to an important yet easily overlooked truth concerning the Hilbertian’s project; namely, that the locative and
methodological features of theorizing are separable. In order to defend a given body of ideal theorizing, the Hilbertian must
know something about both its locative and its methodological features. But what he must know about them—and this is the
important point—is different. Regarding the methodological element, what he must know is that it is real-sound (i.e. that all
of the real sentences it decides are decided in the same way by finitary means). Furthermore, this must be made apparent by

98 PROOF, LOGIC AND FORMALIZATION



finitary means if his use of ideal method is to avoid the threat of “diluting” the knowledge that he might otherwise obtain by
forswearing the use of ideal methods and sticking to (the presumably less efficient) real methods. A gain in efficiency is not
so attractive if it brings with it a corresponding drop in the epistemic quality of the more efficiently attained “knowledge.”
The Hilbertian thus proposes to replace the object-level real proofs of a given real sentence ω  with a meta-level real proof of ω
that is composed of two elements: (i) a real metamathematical proof that ω  is provable in the ideal system T (which would
consist in producing a proof of ω  in T), and (ii) a real metamathematical proof showing of ω  that, if it is provable in T, then it
is also provable by real means at the object-level.19

Having this sort of control over the quality of his ideal methods assures the Hilbertian instrumentalist that their use will not
engender “dilution” (i.e. will not result in an epistemic product of a quality lower than what could have been attained by
sticking to the real methods that the ideal methods in question are intended to replace), and this is what he needs to know.20 What
the Hilbertian demands of the locative component of a given ideal theory T is that it replicate the locative capacity of that
body R of less efficient real reasoning which it is intended to replace. In other words, the Hilbertian must be able to show that
every sentence provable in R is also provable in T.21 However, the Hilbertian has no need for finitary assurance that a
proposed ideal replacement extensionally simulates the real reasoning it is to replace. Hence, he is under no obligation to
prove finitarily that each theorem of R is a theorem of T.

This is significant because though the move from a standard ideal theory T to one of its consistency-minded variants Tω

generally affords a greater measure of control over the quality of its real theorems, this increase in methodological control
brings with it a consequent loss in ability to prove (by means codifiable in T, and hence, typically, by finitary means) the
extensional equivalence of T and Tω ’.22 But, as the reasoning of the preceding paragraph suggests, this “loss” is not disabling
for the Hilbertian. His primary obligation with regard to the content or locative component of Tω  is to show that it replicates R,
not T. And even if he were able to do this only by first proving the extensional equival ence of Tω  and T, all that would follow
from his inability to prove the latter fact finitarily is his subsequent inability to finitarily show that Tω  replicates R. But this is
no impediment to his program since what he needs a finitary proof of is not the replication of R by Tω , but rather the Weak
Conservation with respect to R of Tω . With respect to the replication of R by Tω , all he needs is convincing evidence, not
finitary proof.23

Thus, the general fact that one cannot finitarily prove the theorem-wise equivalence of consistency-minded theories and
their standard counterparts gives no reason why the Hilbertian should not use consistency-minded construction techniques for
his ideal theories. It poses no obstacle to his getting the kind of control over the locative element of theorizing that he needs,
and, since the usual techniques are susceptible to G2 in a way that the consistency-minded techniques are not, it also affords him
an advantage over the standard techniques when it comes to managing the methodological factor. This does not, however,
show— what is a very difficult question, and one which we are currently not in a position to resolve24—that moving to
consistency-minded techniques of theory construction will actually allow one to carry out HP. Nonetheless, it does suggest
that part of the traditionally pessimistic view of the Hilbertian’s prospects is due to an unwarrantedly narrow conception of
how ideal theories should be constructed, a conception which is built into the very fabric of the Derivability Conditions
governing G2, and which systematically ignores the possible benefits to the Hilbertian of adopting consistency-minded modes
of ideal theorizing.

NOTES

This paper was first published in the Journal of Philosophical Logic 18, 1990, © 1990 Kluwer Academic Publishers.
Reprinted by permission of Kluwer Academic Publishers. The author wishes to thank the Alexander Von Humboldt
Foundation for its generous financial support.

1 Cf. Hilbert (1927:475) for an explicit statement of the analogy between physical theory and ideal mathematics. Smorynski too (cf.
1988:59) adopts this view. Thus he quotes the remark from Hilbert (1925) that the science of mathematics is not reducible to its real
elements, but that it must always yield correct real results, and then goes on to say that one can see in this remark the view that
“Mathematics is an abstract theoretical science subject to numerical control just as physics is an abstract theoretical science subject to
experimental control.”

2 Throughout this paper, when we speak of an ideal proof we shall generally mean an ideal proof of a real sentence.
3 In noting that, on the instrumentalist conception, ideal proofs “yield” (via evaluation in a real metamathematical scheme), rather than

constitute, justifications, the question is naturally raised as to why they should be of any epistemic interest. Why, that is, should one
be interested in producing justification through the indirect means of ideal proof rather than through the direct means of real proof?
Such questions, however, apply as well to the realist conception; for one can as well ask “Why should we be interested in pursuing
justification for observational statements through the indirect means of theoretical arguments rather than through the more direct
means of observation?”

In the empirical sciences, the question is perhaps a little easier to answer than in mathematics. For there, at least sometimes, the
whole idea is to not be in a position to observationally settle a question (e.g. when it is the empirical effects at ground-zero of a
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nuclear explosion that are in question). Other times, it might not be disutility, but rather possibility, feasibility, cost, and/or
inconvenience that would make an alternative to observational justification attractive. In any event, there must be something about
justification via use of ideal methods (be they instrumentalistically or realistically conceived) that makes it attractive as an alternative
to real justification. In Hilbert’s case this has to do with what might broadly be termed “efficiency.” On his view, there is a difference
between the laws according to which our minds operate most efficiently (namely the laws of classical logic), and the laws according
to which finitary (i.e. real) truth works (i.e. finitistic logic). This is the epistemological predicament of the human who seeks
mathematical knowledge. Hilbert’s project was to provide a way out of the predicament by showing that we can enjoy the benefits of
efficiency of (ideal) classical reasoning without sacrificing the accuracy of (real) finitary reasoning.

4 There are those (e.g. Gentzen 1936, 1938; Prawitz 1981) who have opted for a more realistic interpretation.
5 On p. 64, Smorynski says that, ignoring subtleties, “we can say that Hilbert said the following: Let S be a formal system of finitary

arithmetic and let T be some system of transfinite mathematics. Suppose S proves the consistency of T…. Then: For any universal
assertion G, if T G then S G.” The latter is the conservation condition referred to in the text. It makes finitary general
propositions function like data or controls on ideal (i.e. transfinite) mathematics, because it forces every finitary general proposition
proven in the ideal theory to be corroborated by finitary means.

6 The interested reader may consult Detlefsen (1986: chs I, II) for further discussion of Hilbert’s views of problematic reals (and some
of the difficulties associated with them).

7 My translation: “It should be remembered here that the proposition (x)F(x) extends much farther than the formula F(z), where z may
be any one of the specified numerals. For in the first place, one is permitted to substitute for x in F(x) not just a numeral, but any one
of the expressions in our formalism that is constructed from numerical terms….”

(Note that here “(x)F(x)” plays the part of an ideal generalization, and “Fz” the part of a finitary generalization.)
8 In this quotation, I have used the Latin characters “m,” “n,” where Hilbert used Gothic characters. The same general view is

presented in Hilbert (1927:469–70), and there his example is exactly the same formula that Smorynski uses (though he writes it as “1
+a=a+1” instead of “1+x=x+1”).

algebra already goes considerably beyond contentual number theory. Even the formula

for example, in which a is a genuine number-theoretic variable, in algebra no longer merely imparts information about
something contentual but is a certain formal object, a provable formula, which in itself means nothing and whose proof
cannot be based on content but requires appeal to the induction axiom.

The formulas

which can be verified by contentual considerations, can be obtained from the algebraic formula above only by a proof
procedure, such as formal substitution of the numerals 3 and 7 for a, that is, by the use of a rule of substitution.

9 Since Smorynski’s argument depends upon T’s proving G, it is clear that G cannot be the Gödel sentence for T. What may be less
clear is what theory (or theories) it is of which G is supposed to be the Gödel sentence. As we shall see in a moment, the key
constraints on G are that it be (classically) true and not provable in S. Thus, if we take S to stand for a formalization of finitary
number theory, G might be taken to be the Gödel sentence of S. For taken in that way, S is true and hence consistent. Hence, its
Gödel sentence is not provable in it. Hence, its Gödel sentence is (classically) true. This makes it clear, however, that G might just as
well be taken to be the Gödel sentence of any extension of finitary number theory that is clearly consistent.

10 Stated a little more formally, this conservation condition reads as follows (where T is the ideal system whose conservation is to be
proven, S the formalism representing finitary reasoning, and “ ” and “ ” stand for provability in T and S respectively):

For any real sentence ω  of L(T) such that ω  is decidable in S, 
11 Here, in speaking of a physical theory that is conservative with respect to its observational consequences, we mean a physical theory

which is such that every observation statement it implies is also verifiable by observational means.
12 Nor is a gambit like Smorynski’s distinction between real and finitary general propositions of any use here. What Smorynski (1988)

calls “real sentences” are all decidable by finitary means. What he classifies as “finitary general propositions,” however, are not,
since G is treated as a finitary general proposition. However, the conservation condition is supposed to apply to finitary general
propositions (cf. the formulation of conservation on p. 64 of Smorynski 1988) as well as to real propositions. Such a conservation
condition is no more derivable from a corresponding soundness principle (i.e. a principle of soundness extending to Smorynski’s
finitary general propositions as well as to what he calls the real propositions) than (RC) is derivable from (RS). Hence, our argument
would not be undone by employing Smorynski’s scheme of distinctions.

13 This, of course, implies neither that Hilbert did not hold that the real sentences were, as a matter of contigent fact, finitarily decidable
(though, as indicated by the earlier textual remarks, it is questionable that he did), nor that he was not surprised by Gödel’s proof. It
is to say only that such a belief, if held at all by Hilbert, was nonetheless extraneous to his program and not one of its essential tenets.

14 Detlefsen (1986:120–4) contains the only sustained argument for the adequacy of consistency-minded theories (in particular, Rosser
variants) as models of instrumentalist theorizing. Aside from that, the only indications of awareness of the possible inappropriateness
of the view of theory that is presupposed by the Derivability Conditions are in Kreisel and Takeuti (1974), Jeroslow (1975), and
Kreisel (1980). The former (pp. 47–8) write that the consistency-minded variant of Rosser provides “a neat model for Wittgenstein’s
speculations” on the nature of rule-following. Jeroslow treats the consistency-minded theories of Feferman (1960) as based on a trial-
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and-error conception of theory construction. Finally, Kreisel (1980:173) contains the statement that Rosser variants “mirror quite
well, albeit crudely, an essential method used in practice for checking proofs: comparison with background knowledge…”

15 A set of numbers ω  is said to be weakly representable in T if there is a formula ω  of L(T) of one free variable such that for every
natural number (where “n” is the standard term in L(T) for n).

16 When we speak of the Rosser system TR “starting with” a standardly defined system T, we are supposing that the standardly defined
system T serves as a specification of a body of standard ideal derivations whose advantages we should somehow like to incorporate
into our consistency-minded replacement TR of R. It should thus be clear that there is nothing sacrosanct about building consistency-
minded theories from standard ones, and that we would only do so in those cases where we were convinced of their utility as ideal
instruments. 

17 How serious are the bounds on the strength of the Hilbertian’s ideal theories that are induced by Gödel’s work? The so-called
“reverse mathematics” of Friedman and Simpson attempts to show that it is not as bad as might be thought. They have proven that
there are systems embodying a substantial portion of classical mathematics all of whose ω 2 theorems are provable in PRA; and Sieg
(1985) has subsequently shown how to prove this by finitary means. The idea behind reverse mathematics (and, presumably, the
inspiration for its name) is to begin with a particular body of results believed to form the core of classical mathematics (and hence to
be an indispensable part of the ideal systems of the Hilbertian), and thence to find the weakest possible set of axioms for proving
these. In that way, one ends up with a set of axioms that is (at least conceptually speaking) equivalent to the theorems to be proven,
rather than simply strong enough to entail them (and perhaps much stronger than what is really needed). One thus stands to eliminate
the unnecessary strength present in the usual axiomatizations, and this may in turn enable him to more nearly approximate Hilbert’s
goal of a finitary soundness proof for ideal mathematics.

(I am not so sure, however, that the notion of “necessary strength” tacitly employed by the advocates of reverse mathematics is the
correct one. Simpson, at least, thinks that Hilbert was simply out to save classical mathematics. Hence, he takes the starting point of
Hilbert’s Program (and thus of reverse mathematics) to be some body of classical results, which must be preserved. I, however,
regard this as incorrect. Hilbert did want to preserve classical mathematics, but this was not for him an end in itself. What he valued
in classical mathematics was its efficiency (including its psychological naturalness) as a means of locating the truths of real or
finitary mathematics. Hence, any alternative to classical mathematics having the same benefits of efficiency would presumably have
been equally welcome to Hilbert. There may, of course, be no such alternatives, and it may even be that Hilbert believed this. But
regardless of whether this is true (and who knows whether it is), it would still be misleading to describe Hilbert’s goal as that of
preserving classical mathematics.)

Another strategy for getting a more accurate (and conservative) estimate of the Hilbertian’s ideal commitments may be found in
Detlefsen (1986: chs III, V). The idea there is also a sort of “reversing” strategy, one, however, which starts not from what is taken to
be essential to classical mathematics (qua mathematics) but rather from what is judged to be the instrumentally useable portion of
ideal mathematics. It begins with the belief that only some of the proofs in the usual ideal systems will be efficient enough to provide
any advantage in efficiency to the Hilbertian instrumentalist; others will either be too long to be useable as an instrument, or they will
not afford any advantage in efficiency over their real counterparts. In principle, such proofs could be eliminated from the ideal
systems without any cost to the instrumentalist (i.e. without any loss in the efficiency of the ideal system). The fragment of the system
remaining after such eliminations is what the instrumentalist is really responsible for, and his soundness proofs ought therefore
ideally to be aimed at them rather than the usual systems. In essence, then, the idea is to start with the instrumentally gainful ideal
proofs and work backward to a minimal system capturing them.

Like the “reverse mathematics” of Friedman and Simpson, this approach to Hilbert’s Program attempts to revive it by being more
exact (and conservative) about the strength required for ideal mathematics. This concentration on the strength of the theories needed
by the Hilbertian should be contrasted with our present emphasis, which is to raise the question of what happens to Hilbert’s Program
when one leaves the strength of the usual ideal theories intact, but alters the mode according to which they are generated. It may be,
however, that the best way to develop Hilbert’s Program would be to combine elements of both sorts of approaches; that is, to modify
both the strength of the Hilbertian’s ideal commitments and their mode of generation.

18 The locative and methodological elements may not, of course, be so cleanly defined. In particular, the locative element of a theory
may also play a role in its methodological control over beliefs. Generally speaking, this will happen when there is a means of judging
the quality of particular outputs of the locative element that is independent of that sponsored by the general description we have of
the quality of its outputs. To take an example, we might believe of a set of wellconfirmed empirical generalizations that they are true
and that the logic we use to derive observational consequences from them is truthpreserving. Still, we have an independent means
(namely, observation) of evaluating those consequences. And if that independent means sponsors a contrary judgment, it might even
cause us to reassess the judgment of quality based on the general qualitative description we have of the locative element (namely,
that the generalizations concerned are true, and/or the logic for manipulating them truth-preserving). When part of our access to the
epistemic quality of the locative element is of this “consequentialist” type, the general description we have of its epistemic quality
will not form the whole of its methodological element.

But though this is true and may even be typical of theories, it is important not to lose sight of the need for a description of the
locative element (i.e. a methodology) that gives a general assessment of its output. For the whole idea behind a theory typically is
that we either cannot or do not want to try to gain independent access (i.e. access not provided by following the prescribed method of
belief-selection) to the outputs of the locative element. Thus, for example, an empirical theory is desirable just because we do not
have timely and/or sufficiently safe and economical observational access to its observational consequences. Likewise, for the
Hilbertian, ideal mathematics is desirable precisely because we do not have suitably efficient access to the truths of mathematics via
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real proof. Thus, having independent access to the epistemic quality of the outputs of the locative element of a theory does not
eliminate the need for a general assessment of its outputs.

19 Where does the proof referred to in (ii) come from? In particular, what sort of soundness principle does it come from? In the last
section, we argued that the Hilbertian is not committed to the usual conservation condition since he is not responsible for proving of
real sentences that are finitarily undecidable that they are provable by ideal means only if they are also provable by real (i.e. finitary)
means. Thus, he need not show of each real sentence formulable in the language of a given ideal theory T that it is provable in T only
if it is also provable by real means. This restricted soundness principle, however, can only give rise to a proof of the sort referred to
in (ii) when it can also be shown that the real sentence for which one has an ideal proof (by (i)) is decidable by real means, and this is
something the ideal theorizer would like to avoid having to show (since he has no general finitary procedure for doing so).

There is, however, a more congenial alternative modification of the usual conservation condition which would seem to be
available. The idea behind this alternative is that the Hilbertian has no need to show of real sentences that are not decidable by the
ideal theory he is defending that they are provable in it only if they are also provable by real means. This is so because he will most
assuredly not make use of any ideal proofs of such sentences; and if he cannot make use of them, there is no reason why they should
be included within the scope of his soundness condition. Modified accordingly, the Hilbertian’s obligation reduces to that of showing
(finitarily), of each real sentence decidable in the ideal theory he is defending, that it is provable in that theory only if it is provable
by real means. Such a restricted soundness condition, in concert with proof referred to in clause (i), affords the Hilbertian a proof of
the sort referred to in (ii).

20 For a refinement and extension of these brief remarks concerning the threat of epistemic “dilution” and its place in the Hilbertian’s
thinking, see Detlefsen (1986: chs I, II).

21 Note that here R need not be identified with finitary reasoning per se. It is only that body of finitary reasoning that is to be replaced
by the ideal system T, and this might not constitute the whole of finitary reasoning. Indeed, the Hilbertian is not committed to holding
that the whole of finitary reasoning ought to be replaced; there might, after all, be cases of finitary reasoning whose efficiency cannot
be improved upon by any known ideal means. These possible differences between R and the whole body of finitary reasoning also
indicate that it would be a mistake to demand (by way of a soundness principle) of the real sentences provable in T that they should be
provable in R.

22 To show this, one appeals to (a) G2 for T, (b) a premise to the effect that if the theorem-wise coextensivity of T and Tω  were provable
in T, then “Con(Tω )ω Con(T)” would also be provable in T, and (c) the fact that Con(Tω ) is provable in T.

23 Note that even with standard (as opposed to consistency-minded) theories, one does not have finitary control over the locative
element, since one cannot show finitarily that they do not prove some absurdity.

24 Hilbert’s Program, as I understand it, requires only a proof of the realsoundness of the instrumentally gainful ideal methods (i.e. those
ideal derivations which are (i) short and simple enough to be of some use by agents with our cognitive limitations (possibly with the
assistance of realizable computing machines), and (ii) more efficient than any available real proof of the same result). This, however,
requires that we have some sort of “complexity metric” for rating (and comparing) the complexity of real and ideal proofs. There are,
of course, various complexity metrics that have found their way into the proof-theoretic literature, and the recent literature in
theoretical computer science has produced even more. Yet all these complexity metrics seem to be designed to measure a general
type of complexity that might be called “verificational complexity”; that is, the type of complexity that is encountered in determining
of a given syntactical entity whether or not it is a proof in a given system of proofs. It seems, however, that what the Hilbertian is
chiefly concerned with is not verificational, but rather “inventional” complexity; that is, the type of complexity that is encountered in
coming up with a proof in the first place (as opposed to verifying of a given item that it is a proof). This is strongly suggested by
Hilbert’s statement (1927:475) that his

formula game is carried out according to definite rules, in which the technique of our thinking is expressed. These rules form
a closed system that can be discovered and definitively stated. The fundamental idea of my proof theory is none other than to
describe the activity of understanding, to make a protocol of the rules according to which our thinking actually proceeds.
Thinking, it so happens, parallels speaking and writing: we form statements and place them one behind another. If any totality
of observations deserves to be made the object of a serious and thorough investigation, it is this one.

If this way of looking at Hilbert’s Program is right, then, in order to properly evaluate it, a metric for inventional
complexity would have to be developed. Since, however, we are far from being able to do this, we are equally far from
being able to give a definitive evaluation of Hilbert’s Program—the traditional negative arguments and more recent
positive proposals (e.g. reverse mathematics) notwithstanding. Much basic philosophical work remains to be done.
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