

The Rhetorical Nature of XML

The Rhetorical Nature of XML is the first volume to combine rhetoric,
XML, and knowledge management in a substantive manner. It serves as a
primer on XML and XML-related technologies, illustrating how the naming
of XML elements can be understood as a rhetorical act, and detailing the
essentials of knowledge management practices that illustrate the need for
intelligently conceived databases in organizations. Authors J.D. Applen and
Rudy McDaniel explain how technical knowledge and rhetorical knowledge
are symbiotic assets in the modern information economy, emphasizing
that skilled professionals and apprentice learners must not only adapt to
and become adept with new technological environments, but they must also
remain aware of the dynamic social and technological contexts through
which they communicate. Applen and McDaniel use this subject as a catalyst
to encourage interdisciplinary connections and projects between experts in
fields such as technical communication, digital media, library science,
computer science, and information technology.

The authors demonstrate techniques for working with XML in inter-
disciplinary projects with attention to single sourcing and content management.
Interviews with practitioners working with XML for research and in industry
are also included, to illustrate how XML is currently being used in a variety
of disciplines, such as technical communication and digital media. Combining
applied theory and XML technology to solve real-world problems in
technical communication and digital media, this work provides an entry point
for students and practitioners who do not have an extensive background in
markup languages, enabling them to begin developing user-centric projects
using XML.

Visit the book’s companion web site: http://rhetoricalxml.com/

J.D. Applen is an associate professor of English at the University of Central
Florida. His scholarly interests include XML and archiving, knowledge
management, hypertext theory, the history of texts and technology, and the
rhetoric of science and technology. He received his doctorate from the
University of Arizona.

Rudy McDaniel is an assistant professor of Digital Media at the University
of Central Florida. His research interests include XML, narrative theory,
video game technologies, and knowledge management frameworks. He
received his doctorate from the University of Central Florida’s Texts and
Technology program.

The Rhetorical Nature
of XML
Constructing Knowledge in
Networked Environments

J.D. Applen
Rudy McDaniel
University of Central Florida

First published 2009
by Routledge
270 Madison Ave, New York, NY 10016

Simultaneously published in the UK
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Routledge is an imprint of the Taylor & Francis Group,
an informa business

© 2009 Taylor & Francis

All rights reserved. No part of this book may be reprinted
or reproduced or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage or retrieval system, without permission
in writing from the publishers.

Trademark Notice: Product or corporate names may be trademarks
or registered trademarks, and are used only for identification and
explanation without intent to infringe.

Library of Congress Cataloging in Publication Data
Applen, J.D.

The rhetorical nature of XML/J.D. Applen, Rudy McDaniel.
p. cm.

1. XML (Document markup language). 2. Rhetoric.
3. Technical communication. I. McDaniel, Rudy. II. Title.
QA76.76.H94A69 2009
006.7�4—dc22 2008046966

ISBN13: 978–0–8058–6179–2 (hbk)
ISBN13: 978–0–8058–6180–8 (pbk)
ISBN13: 978–1–4106–1536–7 (ebk)

ISBN10: 0–8058–6179–3 (hbk)
ISBN10: 0–8058–6180–7 (pbk)
ISBN10: 1–4106–1536–7 (ebk)

This edition published in the Taylor & Francis e-Library, 2009.

To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.

ISBN 0-203-86945-1 Master e-book ISBN

Contents

List of Illustrations vi
Preface ix
Acknowledgments xi
Abbreviations xii

Introduction: XML, Knowledge Management, and
Rhetoric 1

1 Knowledge Management and Society 6

2 Introduction to XML 41

3 Semantics and Classification Systems 95

4 The Visual Rhetoric of XML 131

5 Advanced Concepts in XML 174

6 Focused Implementations 215

7 XML and Your Career 299

Appendix A: ACHRE—Executive Summary 323

Appendix B: RAX Form 334

Appendix C: Source Code for CMS 336

Appendix D: Source Code for Single Sourcing Demo 364

Copyright Credits 380
Index 383

Illustrations

Figures

2.1 Personal Information Hierarchy 45
2.2 Hello World 48
2.3 Hello World with Style Sheet 49
2.4 Standalone Memo 59
2.5 “Immediatefamily.xml” in Microsoft Internet Explorer® 63
2.6 “Immediatefamilyattributesidref1.xml” in Microsoft

Internet Explorer® 70
2.7 “Immediatefamilyentity.xml” in Microsoft Internet

Explorer® 76
2.8 Screenshot of “achre1.xml” in Microsoft Internet

Explorer® 84
2.9 Screenshot of “achre2website.xml” in Microsoft Internet

Explorer® 87
2.10 Screenshot of “achre_seal.xml” in Microsoft Internet

Explorer® 93
4.1 Formatting Using HTML 137
4.2 Browser Output of Relative Font Size 146
4.3 Cascading in Action 147
4.4 DIV Tag and Small-Caps CSS 148
4.5 Relative Positioning in CSS 151
4.6 XML Content with No Style Sheet 154
4.7 XML Content with Missing Style Sheet 155
4.8 XML with CSS 156
4.9 Block-level Formatting 157
4.10 Fully-formatted XML Data 158
4.11 CSS and Visual Rhetoric 160
4.12 XML Garden File 166
4.13 XML to HTML Conversion Results 170
5.1 Schema Validation Results 185
5.2 Tree Representation of “person.xml” 189
5.3 Anchored Tags (First Link Clicked) 197
5.4 Anchored Tags (Second Link Clicked) 198

5.5 Anchored Tags (Third Link Clicked) 198
5.6 Concept (Specialized from Topic) 204
5.7 Task (Specialized from Topic) 205
5.8 Reference (Specialized from Topic) 207
6.1 XAMPP Control Panel 222
6.2 Htdocs Directory 223
6.3 Localhost in Browser 226
6.4 Test PHP Document 227
6.5 Browser View and Source View 236
6.6 Source View of Function with Attribute Support 238
6.7 Newsfeeds in Mozilla Firefox® 248
6.8 Adding a Live Bookmark 249
6.9 Live Bookmarks in Action 251
6.10 HTML Add News Form 252
6.11 Add News Form (With Sample Data) 257
6.12 Article Added Message 257
6.13 News Display with New Item Added 258
6.14 Use Case Diagram 264
6.15 Content Management System Step 1a 271
6.16 Asset Upload Screen 271
6.17 Content Management System Step 1b 272
6.18 Content Management System Step 2a 273
6.19 Content Management System Step 2b 274
6.20 Content Management System Step 3 274
6.21 XSL Transformation 277
6.22 Custom Parser View 278
6.23 4-Column XSLT View 279
6.24 4-Column View using Custom Parser 279
6.25 Asset Management System (AMS) 1.0 282
6.26 AMS 1.0 Sample Menus 283
6.27 Single Sourcing Step 1 289
6.28 Single Sourcing Step 2 290
6.29 Single Sourcing Step 3 290
6.30 Single Sourcing After XSL-T 291
6.31 Single Sourcing Parser, Step 1 292
6.32 Single Sourcing Parser, Step 2 292
6.33 Single Sourcing Parser, Step 3 (Beginning User View) 292
6.34 Single Sourcing Parser, Step 3 (Advanced View) 293

Tables

2.1 Syntax Options for Child Elements 57
3.1 Semantic, Generic, and XML Entity Descriptions for

the DOE’s “ACHRE—Executive Summary” 116
5.1 URI Examples 178
5.2 Absolute Terms 196

Illustrations vii

5.3 XPointer Examples 200
6.1 Parser Design File Structure 269
6.2 Bottom-Up Analysis for Single Sourcing System 285
6.3 Single Sourcing File Structure 286

viii Illustrations

Preface

In The Rhetorical Nature of XML we describe and connect eXtensible
Markup Language (XML) authoring, the processes that show how we
acquire and share knowledge, and rhetoric. We do this to show how these
practices, both humanistic and technological, allow us to thoughtfully name,
arrange, and distribute the information that we store in archives. This book
is interdisciplinary and we imagine our audience will include students,
professors, and professionals in the fields of technical communication, digital
media, information technology (IT), library science, and management
information systems. In this effort, we have employed selected ideas from
theorists and practitioners working in these fields.

In the field of technical communication and rhetorical studies, we have
many thoughtful colleagues who have challenged us to consider our
audience(s) and have demonstrated how the social construction of language
shapes our communication practices. Others have reminded us of the need
for technical communicators to expand their skills and understand how to
use, and not be used by, new communication technologies. Additionally,
technical communicators are mindful of how the advent of single sourcing
has changed the way we produce and reuse documentation. We have also
seen why it is important to understand classification systems and our
colleagues in the field of library science have much to offer us as we are all
being called on to organize and archive ever larger collections of documents.

Under the aegis of the World Wide Web Consortium (W3C), XML tech-
nologies have been evolving and there are many books and online sources
that illustrate how to produce syntactically correct code. Like HTML, much
of XML is about using tags to mark up documents for display on the World
Wide Web. Unlike HTML, though, XML places the responsibility for the
naming of tags on the document author. This enables the technology to go
far beyond what HTML is able to do as it is not merely a presentation
language, but rather a semantic language. With HTML, Internet documents
have formatting and display instructions. With XML, Internet documents
have embedded meanings.

These semantic capabilities of XML are what make this language so
important for technical communicators, media professionals, archivists, and
business practitioners to understand. They are also what make the

application of rhetoric to a computer language a useful pursuit. By under-
standing the nature of classification and rhetorical strategy, and by
controlling the representation of meaning within documents, one can create
powerful systems for packaging data and transmitting it from one computer
to another in any number of domains.

There are numerous models and descriptions that show how XML can
be manipulated, and we are seeing more documentation on how eXtensible
Style Sheet Language Transformations (XSLT) and Cascading Style Sheets
(CSS) can transform code to produce accessible and visually appealing
documents. Document Type Definitions (DTDs) and XML schema provide
us with additional powers of validating and standardizing data for exchange
over computer networks. We study the phenomena of XML-encoding,
XML-transformation, and XML-parsing from a rhetorical slant.

We draw significantly from prior work in knowledge management.
Theorists have given us insights into how knowledge is acquired, generated,
modified, applied, and passed on to others and they have provided us with
a number of case studies that describe how this has worked. The value of
tacit knowledge has been recognized, and, coupled with explicit knowledge,
we can better understand it as an important element of all that we bring to
our work. The ecology of workplace environments has been detailed, as has
the manner in which communities of knowledge workers work to apply
new technologies. We can learn much from these practices as we strive to
create more meaningful and useful systems of classification and categoriza-
tion using XML.

It is our hope that The Rhetorical Nature of XML allows people to better
see the connections between these fields. We believe that there is a place in
technological studies for rhetoric, and that there is a place in the humanities
for XML.

J.D. Applen and Rudy McDaniel

x Preface

Acknowledgments

The authors wish to thank several anonymous reviewers who provided input
and feedback on early drafts. This feedback helped us enormously with the
revision and editing process. We also want to thank our editor, Linda
Bathgate, for her enthusiasm for this project and for her overall dedication
to the field of technical communication. Jenny Draper provided additional
proofreading for the final draft, which we appreciate.

J.D. Applen: For their support and encouragement, I would like to thank
my family members who live too far away from me on the West coast—
from San Diego, California, to Olympia, Washington, and points in between.
I would also like to thank my colleagues in the Technical Communication
Program at the University of Central Florida for their advice and counsel:
Melody Bowdon, Paul Dombrowski, Madelyn Flammia, Mary Ellen
Gomrad, Dan Jones, Karla Kitalong, and Blake Scott.

Rudy McDaniel: I would first like to thank my family and especially my
wife, Carole, for her assistance with graphic design and even more so for
putting up with me during the writing of this book. I also want to thank
my two-year-old son, Brighton, for reminding me of both the importance
of clear communication and the joy of technological discovery. Many folks
at UCF have been influential to me during this project and I owe gratitude
to Clint Bowers, Terry Frederick, Jon Friskics, Charlie Hughes, Bob Kenny,
José Maunez-Cuadra, Mike Moshell, Joe Muley, Dan Novatnak, Phil Peters,
Sae Schatz, Eileen Smith, Stella Sung, Natalie Underberg, David Vickers,
and Jeff Wirth for good conversations and helpful ideas. Steve Fiore
continually reminds me of the importance of interdisciplinarity and, even
though he is a philosopher, I very much enjoy our conversations. Dawn
Trouard has been a mentor to me from the beginning and I am grateful for
her many years of tutelage. From my years working in the English
Department, I am also thankful for the many technical communicators J.D.
mentions above, especially Paul Dombrowski, my graduate advisor, for
letting me write an English Department dissertation half filled with XML
code.

Abbreviations

AA Arthur Andersen
ACHRE Advisory Committee on Human Radiation Experiments
AIDS Acquired Immune Deficiency Syndrome
AJAX Asynchronous JavaScript and XML
API application programming interface
CMPM Cast Member Performance Management
CMS content management system
CPMS Cast Performance Management System
CSS Cascading Style Sheets
DITA Darwin Information Typing Architecture
DOE Department of Energy
DOM Document Object Model
DTDs document type definitions
E4X ECMAScript for XML
EA Electronic Arts
EAD Encoded Archival Description
EPSS electronic performance support system
FIEA Florida Interactive Entertainment Academy
FTP File Transfer Protocol
GDP Gross Domestic Product
GRID Gay-Related Immune Disorder
GUID globally unique identifier
HHS U.S. Department of Health and Human Services
ICD International Classification of Diseases
IDE integrated development environment
ISARs information storage and retrieval systems
IT information technology
KXDC Knowledge Extraction from Document Collections
MORPGs multi-player online role playing games
NLP natural language processing
NIC Nursing Interventions of Classification
OASIS Organization for the Advancement of Structured

Information Standards
OeB Open eBook

PHP Hypertext Preprocessor
PHP-FI Personal Home Page Tools / Forms Interpreter
POS point of sales
QMS Quality Management Standards
RAX Ad Hoc Rhetorical Analysis of XML
RSS Really Simple Syndication (also Rich Site Summary)
RTF Rich Text Format
SAX Simple API for XML
S-FTP Secure File Transfer Protocol
SGML Standard Generalized Markup Language
SIDS sudden infant death syndrome
SME subject matter experts
SVG scalable vector graphics
TEI Text Encoding Initiative
URI Uniform Resource Indicator
URL Uniform Resource Locator
URN Uniform Resource Name
VRML Virtual Reality Modeling Language
W3C World Wide Web Consortium
WHO World Health Organization
XBRL eXtensible Business Reporting Language
XDA XML Document Design Architecture
XDM XPath data model
XHTML eXtensible Hypertext Markup Language
XML eXtensible Markup Language
XPath XML Path Language
XSD XML Schema Definition
XSL eXtensible Style Sheet Language
XSL-FO eXtensible Style Sheet Language Formatting Objects
XSLT eXtensible Style Sheet Language Transformations

Abbreviations xiii

Introduction
XML, Knowledge Management,
and Rhetoric

Purpose

This book is about three subjects which may at first seem very different
from one another: the eXtensible Markup Language (XML), knowledge
management, and rhetorical theory. Our goal in writing this book is not to
claim that these topics are all exactly alike, but rather to explain how
technical knowledge and rhetorical knowledge can work together in
knowledge management practices for the modern information economy. The
modern workplace is a challenging environment. Not only must skilled
professionals and apprentice learners constantly adapt to and become adept
with new technological frameworks, but they must also consistently be aware
of the dynamic social and political contexts through which they communi-
cate. The semantic power of XML, coupled with an understanding of
knowledge management and the rhetorical situation, is something that can
be harnessed in order to create more humanistic and compelling frameworks
for information and knowledge exchange.

Our premise in writing this book is quite simple: although there are many
excellent texts on learning to develop using XML, these texts are generally
syntax-centric and do not integrate the broader rhetorical context of user
needs and the social context of information. Our goal is to use this subject
matter as a catalyst to encourage interdisciplinary connections and projects
between experts in a diverse array of fields. We mention several of these
fields in the Preface. It is also our hope that this book will provide an entry
point for students and practitioners without an extensive background in
markup languages to begin developing projects using XML. A prior
knowledge of HTML is helpful, but not absolutely necessary as we spend
some time in Chapter 2 addressing the differences between these two markup
languages.

The subject of XML is vast in scope, and we do not cover every component
of the XML specification in exhaustive detail. We believe that we provide
enough information about the technology to allow readers to complete
creative and useful projects using XML, and we also include XML activities
or questions at the end of each chapter which encourage discussion and

synthesis of these ideas. These questions and activities can also be used as
starting points for semester-long projects in both the theoretical (e.g.,
rhetorical analysis) and applied (e.g., technical production) domains.

While our aim has been to make this book as accessible as possible, we
do cover some more technical material in several project examples that we
discuss in Chapter 6. In this chapter, we discuss some basic program-
ming concepts and explain why these skills are important for those wishing
to learn about XML parser design. Since we are dealing with interactive
technologies and XML, which was actually designed as a language for
computers to communicate back and forth with, the humanistic component
of computer-mediated communication is only one side of the interactive
conversation that occurs between human beings and information tech-
nologies (IT). It is important that we understand, or at least be aware of,
the computational side of things along with the rhetorical and the social
context of information.

When we do discuss programming, however, we annotate and describe
these programs in great detail and we offer the source files for down-
load on our accompanying website. Though applied computer science is not
a domain traditionally associated with information design (Albers “Intro-
duction” 4–6), we feel that this basic competency with programming
concepts is important both for the holistic reason stated above and because
it allows one to design her own customized information and knowledge
management systems rather than having to rely on existing products which
may not be flexible enough to accommodate certain types of projects.
Because we do focus rather heavily on the design elements of informational
systems in the second half of the book, we extract and apply ideas from the
domains of both information design and information architecture, which in
and of themselves already share a good deal of overlap (Mazur 25).

The first five chapters of this book focus on the ways we can think about
data and then organize this data in rhetorically meaningful ways using
XML. By understanding the basic rules of syntax and validation, one gains
an understanding of how data is typically packaged and processed in IT
systems and how XML can be used as a tool for computer-to-computer
communications. By understanding the complex social and psychological
spaces through which meaning is negotiated in rhetoric, one becomes aware
of the limitations of purely data-driven approaches and of the complexities
involved in the relationships between data, information, knowledge, and
cognition. The latter two chapters then focus on more specific examples of
XML and XML parsers at work in real world types of problem solving and
present some advice from practitioners working with XML in industry
and research environments.

Chapter Overviews

Chapter 1 discusses knowledge management from various perspectives and
explains how both explicit and tacit knowledge can be transferred using

2 XML, Knowledge Management, and Rhetoric

social networks, computational technologies, or combinations of these two
methods of communication. In addition to a review of literature from
knowledge management and technical communication, we also discuss
perspectives on socially constructed knowledge and consider applied know-
ledge management at work in large corporations. In order to demonstrate
how human expertise and technology can be paired to improve efficiency
and communication in technical environments, we discuss successful appli-
cations of this methodology such as the Eureka project used by Xerox.

To help us build the types of knowledge transfer systems we write about
in Chapter 1, we need to understand both top-down and bottom-up models
of design. We describe these approaches conceptually and study the nuts
and bolts of XML and information encapsulation in Chapters 2 and 3.
Chapter 2 serves as a gentle introduction to XML and explains the differ-
ences between elements, attributes, namespaces, and parsed or nonparsed
character data. We also explain the differences between well-formed and
valid XML and provide several examples of XML documents in order to
illustrate the semantic capabilities of this language. Additionally, we show
how XML can impose a hierarchical structure on collections of data.

Chapter 3 then discusses more sophisticated implementations of XML
and applies some of the organizing heuristics from library science, knowledge
management, and technical communication to guide how we think about
the artificial formation of elements and attributes based on our real world
observations. Using historical examples, we describe in significant detail the
practice of naming and arranging objects in classification schemes. How a
group of professionals decides to name objects and then arrange them is a
reflection of the rhetorical conventions that channel the thinking of these
professionals and shapes their fields. We can also see how the granularization
process works and how we can combine our knowledge of rhetoric and
XML to solve real world problems using applied methodologies such as
single sourcing.

Chapter 4 extends the rhetorical analysis of XML to the visual domain
and considers specific formatting technologies such as Cascading Style Sheets
(CSS) and eXtensible Stylesheet Language (XSL) as transformative tools
for the document designer and information architect. We consider some
fundamental ideas about visual rhetoric as it relates to XML and provide
several tutorials that illustrate how to use style sheets and style sheet
transformations with XML documents. We discuss why knowledge of visual
style can be as important as the knowledge of the actual data.

Chapter 5 is focused on advanced technologies and the ways in which
specialized constructs such as namespaces can be used to counter problems
of recognition and collision. This chapter also includes a discussion of
emerging XML technologies such as the specialized languages for linking and
searching within XML documents. A majority of this chapter is dedicated
to the discussion of schema definitions, which enable communication pro-
fessionals to use a special syntax for verifying the integrity of their
documents. Chapter 5 also includes a discussion of DocBook and DITA, the

XML, Knowledge Management, and Rhetoric 3

Darwin Information Typing Architecture, two particular frameworks that
are often used by technical communicators working with XML.

Chapter 6 serves as a synthesis of many of the rhetorical theories and
XML technologies and applies them to specific informational problems. Even
with the power that comes from knowing about the rhetorical situation and
how elements of environment, user needs, and content interact to form
complex relationships of interaction and communication, one cannot simply
build an XML database with carefully crafted entities and wait for the
problem to be solved. Instead, one must also carefully consider the manner
in which these elements are to be manipulated and acted upon by human
or technological agents. As Michael Albers notes:

As an immature technology, research into all aspects of XML are
needed, but we must not forget that the real usefulness lies not in pulling
data out of a database, but in using it afterwards in a manner which
fits the user’s real-world goals and information needs.

(“Complex Problem Solving”: 266)

So, while it is important to recognize and understand the intricacies of
knowledge representation through XML, the distributional and transactional
aspects of XML are also important to consider. By distributional, we mean
the function performed by software that allows XML data to be distributed
from one computer to another, or from a content author to her audience(s)
in a computer-mediated fashion. We use the term transactional to refer to
the process by which XML content is packaged, processed, and transmitted
using collections of logical rules and conditional processing. Both of these
roles are fulfilled by a special software system known as a parser. This
chapter applies three different rhetorical models: an ad hoc analysis, a
three-stage information design analysis, and a bottom-up approach, in order
to guide the construction of customized parsers for the purposes of newsfeed
distribution, content management, and single sourcing.

The last chapter, Chapter 7, examines some uses of XML in the real world
by various types of technical professionals. In this chapter, we include
interviews from several types of professionals who have used XML in their
own careers for a variety of knowledge management purposes. We also
discuss how XML might play a role in several different types of careers and
provide summaries of each chapter in condensed format.

Website

To meet the technological needs of our readers, a repository of XML tools
and tutorials, links of interest, and sample documents is housed on our
accompanying website at www.rhetoricalxml.com. Please visit this website
to obtain the code examples and XML tools mentioned in the chapters.

4 XML, Knowledge Management, and Rhetoric

References

Albers, Michael J. “Introduction.” Content & Complexity: Information Design in
Technical Communication. Eds. Michael J. Albers and Beth Mazur. Mahwah, NJ:
Lawrence Erlbaum Associates, 2003. 1–13.

–––– “Complex Problem Solving and Content Analysis.” Content & Complexity:
Information Design in Technical Communication. Eds. Michael J. Albers and Beth
Mazur. Mahwah, NJ: Lawrence Erlbaum Associates, 2003. 263–83.

Mazur, Beth. “Information Design in Motion.” Content & Complexity: Information
Design in Technical Communication. Eds. Michael J. Albers and Beth Mazur.
Mahwah, NJ: Lawrence Erlbaum Associates, 2003. 15–38.

XML, Knowledge Management, and Rhetoric 5

1 Knowledge Management and
Society
Evaluating the Convergence of
Knowledge and Technology

Chapter Overview

The advent of technology has altered the working environment of the
technical communicators, information technologists, and library scientists.
In this chapter, we will show how these communication professionals can
expand their skillsets and better integrate themselves in their organizations.
Additionally, communication professionals can be more critical about the
way they can use technology and be more active consumers of it. One of
the insights we will provide is how knowledge is socially constructed in a
community of professionals, and this will allow these stakeholders to claim
a greater role in the workplace.

We will also describe the basics of knowledge management and show,
using case studies, how it has been successfully implemented. To do this,
we will discuss how the tacit and explicit knowledge(s) that people in a
community possess can lead to the generation of new knowledge.
Additionally, the metaphor of “information ecology” will be examined to
deepen our understanding of how knowledge can be better managed and
produced.

Understanding Technology and Information

In an attempt to empower technical communicators, Johnson-Eilola, Selber,
and Selfe have encouraged this community to see the rapid advances in
computer technology as an opportunity to effect change, and that to
accomplish this change, they need to think in critically informed ways about
how they use this technology. This need is driven by the fact that the pace
of deploying these technologies in the workplace is accelerating and this
phenomenon challenges technical communicators to hurriedly adopt new
applications, thus cutting into their ability to examine their practices
critically. Moreover, it is becoming clear that the key factors associated with
computers depend on the histories, contexts, and relationships that people
who design and use these products have with technology as much as on the
hardware and software themselves.

For example, hypertext is a medium that allows for a new emphasis on
the roles of the reader and the writer and it can function as a contractive
or expansive communication technology (Johnson-Eilola and Selber 125).
A contractive technology assumes that in a communication between sender
and receiver, information is packaged into “discrete, ideally unambiguous
chunks,” and that the reader is essentially a passive receiver of information;
the reader has no choice but to read the “chunk” and understand it as a
self-contained unit that has reference outside it. In contrast, the expansive
mode of communication is in effect when the transfer of information is a
process in which readers construct and deconstruct pieces of information,
putting them into a context that is in part a function of the social and
political environment in which they are working. Expansive communication
is a recursive process that takes the “user, designer, technology and context”
into consideration. Not to see communication technology in this recursive
perspective suggests a “technological determinism” where technology can
only be used to send and receive one kind of message regardless of the needs
of the people involved in the process (Johnson-Eilola and Selber 121).

Based on the premise that the design of a system has already been set by
the engineers who built it, technical communicators have been traditionally
relegated to learning just enough about a part of the system so they can
explicate it clearly. Technical communicators are usually not understood as
“authors”; at best, they are translators of the information that has been
generated by others before them. This perception results from our culture’s
practice of attributing single ownership to those who are believed to have
invented, designed, or written something that is not to be altered. However,
when technical writers engage in their work, it is understood that they are
always “adding, deleting, changing, and selecting meaning” (Slack, Miller,
and Doak 31) within the context of the communication medium they are
employing to meet the needs of their audience. Their work is not neutral;
they are authors, even when they write in a manner that makes their
articulations seem invisible. It is as if the writers of technical documentation
never really had something to do with constructing the meaning of the
technology and how to use it, that this has already been decided by those
who initially designed and constructed the technology. However, authorship
comes with some responsibility. When they are articulating meaning, they
need to think critically about the ethical responsibility of their work. Who
they work for and what they communicate also matters (Slack, Miller, and
Doak 32).

If technical communicators do not understand this and continue to
document practices as mere translators, the ability of the user to employ
the technology in an expansionist sense will be undermined (Johnson-Eilola
247). For example, hypertext products are generally framed in industry in
“strictly automating terms”; users are asked to follow a series of steps to
get a predetermined result that the technology can offer without teaching
and encouraging its use for potential tasks not imagined by its designers
(Johnson-Eilola and Selber 124). Traditional forms of documentation

Knowledge Management and Society 7

manual production also assume that the same practice will be followed by
the passive readership of the documentation.

Echoing Robert Reich, Johnson-Eilola asks that technical writers work
to promote themselves as “symbolic-analysts” where their skills include the
manipulation of information, which requires a greater understanding of it
in the abstract (245–6). This challenge is built on the premise that we have
moved from an industrial to an information economy where technical
writers are to a greater degree producing knowledge products. Instead of
taking the traditional approach by breaking down problems into small and
discrete parts, such as a list of tasks that many software documentation
professionals are asked to describe, a symbolic-analyst would work to make
meaning out of information with an awareness of the larger system and its
ability to serve them and the people who use their products. We feel that
one way of describing the work of symbolic-analysts is: 1) identifying what
constitutes relevant and meaningful information, 2) breaking this informa-
tion down into specific elements, 3) providing names for these elements,
and 4) contextualizing these elements of information to best meet the
rhetorical needs of their audiences. While XML technology by itself does
not perform this work, it does serve as a robust tool that would allow for
the storage and transmission of this kind of work performed by symbolic-
analysts, and we will be demonstrating this in the chapters that follow.

Michael Hughes describes how technical writers can have a greater
role in an organization by engaging in “critical reverse engineering.” For
example, if a technical communicator is asked to document a software
application, she would interact with the screen elements and think about
how the consumer’s similar interaction would add value for the user and
make the tasks the user engages in easier and more efficient (281). By “critical
reverse engineering” a product, the technical communicator could raise some
questions and even challenge some of the software designer’s assumptions.
These questions might also better allow the designer to more clearly explain
the design of the software so it can be better documented for the end user.

If technical communicators are engaged in this kind of process, they
become part of the overall design team that works towards a final product.
Hughes has observed that what is initially thought to be an end product
evolves into something different because of the many different people and
groups of people with different skills who work on a product from its initial
conception to its final state. Because these groups do not work on the product
at the same time, but work on it in different combinations of individuals
at different stages, understandings of what the end product is often vary.
Because of this, emergent understandings of the product come about, but
not by everyone at the same time. This allows some people who receive a
partially conceived and constructed product to ask questions of those who
have already done some work on the project. When a technical writer asks
“Why does this do that?” to a designer in an effort to just get the
documentation right, the technical writer is working in the “information
domain” (275). When she does it in an effort to create a dialogue with the

8 Knowledge Management and Society

other members of the design team, she is contributing to the thinking of
the design team as a whole and working with its members to create new
knowledge, a greater challenge and opportunity than just transferring
information (Hughes 282–3). This socially constructed knowledge can
ultimately lead to a better product for the consumer, the end user.

Communication professionals need to ask themselves how the social and
political context affects the use of the technology they are using, whether
it be hypertext or XML, and how this context supports their ability to use
this technology in an expansive manner. Wick (2000) challenges technical
communicators to claim their role in the knowledge management game by
emphasizing their considerable theoretical understanding of rhetoric and
ability to communicate within, between, and across different sectors of an
organization. To expand on Wick’s premise, we believe that because
technical writers are professionals who can go out, acquire information from
people skilled in disciplines different from their own, then synthesize,
organize, and explicate this information for different audiences in such a
manner that people can understand and use it to meet their unique needs,
they are at the center of an organization’s knowledge and can be knowledge
managers.

To become more proficient at knowledge management, communication
professionals have to look beyond their roles as architects of documents
and developers of technological applications that are employed to produce
and add value to texts. They also need to recognize their ability to help
professionals throughout organizations interact with each other and to
utilize knowledge from others inside and outside their organization. This
knowledge can be shared in a manner that enhances or leverages not just
the physical and financial resources of an organization, but its knowledge
capital as well: “information assets and knowledge capital seem to be
governed by a different law of economic returns: investment in every
additional unit of information or knowledge created and utilized results in
a higher return” (Malhotra “Knowledge” 13). The more people who
contribute to and take from a knowledge network, the greater the value of
the network.

Social Construction and Paradigms

Johnson-Eilola, Selber, and Selfe (1999) have asked technical writers to
adopt a more critical understanding of communication technologies so they
can be wiser consumers of these products and assume the roles of more
effective symbolic-analytic workers. To better engage in this pursuit, they
can benefit from examining how the use of tools and their relationship to
the materials, assumptions, and methods of the scientific community
contribute to the culture of research activity.

In the scientific community, Kuhn tells us that there is something invisible
at work beneath the thinking of any group of scientists who agree on a
methodology that can be used to explore the perplexing structure of nature:

Knowledge Management and Society 9

Though many scientists talk easily and well about the particular
individual hypotheses that underlie a concrete piece of current research,
they are little better than laymen at characterizing the established bases
of their field, its legitimate problems and methods. If they have learned
such abstractions at all, they show it mainly through their ability to do
successful research. (47)

What Kuhn calls “normal science”—the science that uses the existing and
agreed upon tools, materials, procedures, and assumptions to answer the
kinds of questions and produce the appropriate results within the context
of the reigning socially constructed paradigm—can take place without
scientists realizing what are the bases of their belief systems. Things just
seem “right” in the context of a socially constructed paradigm. In modern
science, the paradigms that scientists utilize are often based on what the
tools and materials they are employing can measure.

For Kuhn (185–7), each scientific paradigm shared by a scientific
community is based on four socially constructed elements:

• Every community member believes in the same “symbolic general-
izations.” The mathematical entity F = ma (force equals mass times
acceleration) establishes that there are three algebraic variables that can
be manipulated for the puzzle-solving operations of modern physics that
would reveal the way nature operates.

• Every community also has a set of “shared commitments,” or a belief
in models that furnish the group with, among other things, the type of
metaphors and analogies that can be accepted. Aristotelian mechanics
found that movement of material bodies could be adequately explained
by just assuming that it was in their “nature” to do so, as if material
bodies had a natural attraction to what was understood as “the center
of the universe.” What really made these bodies “fall” was never
entertained as a legitimate scientific question in Aristotle’s day.

• The “shared values” of a community describe the social beliefs that
scientists in a community agree on. These could be something as
straightforward as the argument(s) that “science should (or need not)
be socially useful.”

• “Shared exemplars” in a community of scientists are the agreed upon
examples and “problem-solutions.” These include the laboratory
exercises and homework or exam questions used in the education of
students.

Kuhn sees great value in the establishment of “normal science” paradigms
that are built on these four elements. They allow a scientist to look at nature
and test with great precision, and, more importantly, they provide a scientist
with a theoretical basis from which to generate hypotheses. When consid-
ering a certain body of data, scientists engage in activity that “tells a story”

10 Knowledge Management and Society

that makes sense within the context of prevailing theories that allows them
to produce the claims or results that seem sensible. If they can produce such
claims, they can assert that their work has scientific value and thus get it
published or receive further support from corporate management. Without
these hypotheses, scientists would not know what to test for or how to
interpret their results; they cannot even begin to practice science.

However, Kuhn draws our attention to these elements above as they often
go unchallenged, thus producing an invisible set of practices that channel
the way scientists think. If we still adhered to Aristotle’s idea that the
movement of material bodies could be adequately explained by referring to
their “nature,” scientists would not be able to develop the hypotheses and
perform the experiments that allowed them to accurately gauge the effects
of gravity and relativity. Another example of a socially constructed paradigm
can be seen in the practice of biology and the way it is affected by Darwin’s
Theory of Evolution. Biologists who are interested in understanding the
distribution of organisms in the field often design their experiments around
the underlying assumption that species live where they live because they
have out-competed rival species. It is often difficult for well-trained biologists
to think of other reasons that might describe why certain species exist where
they are found because of the powerful influence of evolutionary theory,
another “shared commitment.”

Every once in a while, a perceptive scientist, engineer, or other professional
who is well trained in a certain way of thinking and performs an experiment
using the ideas that she has internalized via the “normal science” paradigm
comes up with an answer that does not fit neatly within it. She might perform
the experiment several more times and still come up with the same anomaly.
If this scientist points out this anomaly and suggests that the reigning
paradigm in the field must be modified or entirely thrown out in favor of
a new paradigm that explains some element of nature better, she is often
met with resistance. A few scientists might also join in and support this
scientist’s arguments, while others in the field cling to the existing paradigm.
This is when we see major arguments and changes within a field; this is
where we see a scientific revolution. This is not to say that normal science
is necessarily detrimental; in fact, it is through the use of the methods of
normal science that we find anomalies. Normal science gets in the way when
we cling to it and fail to realize that from time to time we are going to have
to reexamine our assumptions and modify our theoretical approaches.

Similarly, the writers cited in the first section of this chapter ask technical
writers to examine the unchallenged assumptions they adhere to as they use
communication tools and methods of documentation that explain com-
munication technologies and products to others. For example, Selfe and Selfe
have suggested that IBM’s DOS system leads us to believe that hierarchical
ways of organizing knowledge are better than more intuitive methods (491).
We could extend this insight to understand how this “logical” system or
“shared commitment” would lead communication professionals to believe

Knowledge Management and Society 11

that the only information that they should be documenting is information
that can be captured in a table, ordered list, or set of definitions, not the
kind of tacit knowledge that people possess which connects or explains
procedures and ideas that are difficult to reduce to a numbered list. Tacit
knowledge is what we learn from making mistakes, developing our own
workarounds that better describe how something can be done, and learning
how to survive and even flourish by experiencing the complexity of our
work cultures, things that cannot be taught to us by a book or a trainer. If
technical writers assume the role of symbolic-analytic workers, they can
better understand how what they are told to believe is true is in fact a social
construction. This construction allows technical writers to convey knowledge
in a certain way, but perhaps keeps them from a critical understanding of
their present methods and from employing alternative techniques that might
better allow them to share other kinds of knowledge.

As certain tools or materials become adopted by community, whether
they be Microsoft® Office 2007 applications or a certain organism, their
use instills a series of socially constructed or unquestioned assumptions
that allows those who use them to be able to better articulate the claims
they make; the “logic of justification or discovery” seems more apparent or
“right” (Griesemer 52). For example, the common fruit fly, Drosophila, is
still widely used in university laboratories as the primary tool for teaching
students of biology just how genetic traits are passed from generation to
generation; Drosophila has become, in Kuhn’s terminology, a “shared
exemplar.” Microsoft® Office tools have now become shared exemplars in
today’s universities: students learn how to produce spreadsheets, present
tables, plot graphs, and crunch large bodies of numerical data using
Microsoft Excel®.

Clark and Fujimura, like Kuhn, ask scientists to expand their vision of
the scientific process by paying attention to all of the elements of research;
“tools, jobs, and rightness” are a function of the socially constructed
situation in which science is done (6). In fact, they are co-constructions of
the interplay between the elements of the work situation, and sometimes
the distinction between these elements becomes blurred. For example,
Clark and Fujimura ask “What is a technology versus a material versus
a theory?” and “When is a scientist a technician, when is a technician a
scientist, and when are both technologies?” We could extend this to the
field of technical communication by asking “What is a technology versus
information versus an organizational strategy?” and “When is a technical
communicator a technician, and when is her work shaped by the
technologies she employs?” (6).

Analogously, communication professionals should know how the business
practices of Microsoft® executives have allowed their Windows® operating
system and applications to gain a near monopoly as the tools used in
government, education, and industry, and why they are now the primary
tools used by technical communicators. They should also understand how
tacit knowledge can be either captured or excluded by these tools.

12 Knowledge Management and Society

Tacit Knowledge

Michael Polanyi believes that much of the valuable knowledge we possess
is tacit knowledge, which is a kind of knowledge that we cannot really
convey to others in totality and perhaps it is a kind of knowledge we take
for granted. For example, we know how to recognize the subtleties of
someone’s mood by the way their face appears, but it is difficult to explain
how we are able to do this (“Tacit” 5), or as Polanyi famously declares,
“we can know more than we can tell” (“Tacit” 4). After working in an
organization for a while, we just know how things are done. This is apparent
when someone new comes into our workplace and we can tell by the
questions she asks of us that we have learned something while employed
there, but what we have learned is not from a manual we read or a training
session we attended. It is also something we would not have thought to
write down.

Polanyi held that tacit knowledge has greater value than explicit know-
ledge, knowledge that has been written down and codified, as all knowledge
stems from it. Tacit knowledge comes about from the process of indwelling,
where we engage ourselves in a problem and cull from large body of
information and sensory stimuli what we feel we need to know about it. It
is important to understand that while tacit knowledge might come to us
through sources we do not always readily identify, acquiring tacit knowledge
is an active process.

We might have been taught to believe that the scientific method is based
solely on objective knowledge and techniques. When followed step-by-step
and in a completely lucid fashion, this method has lead scientists to the
great discoveries that have changed our civilization. While Polanyi makes
the point that people actively search for answers to difficult questions,
he characterizes the method of scientific problem solving as one that is
infused with intuition: “The scientist’s intuition can integrate widely dis-
persed data, camouflaged by sundry irrelevant connexions, and indeed
seek out such data by experiments guided by a dim foreknowledge of the
possibilities that lie ahead” (Polanyi “Science” 31). Science, according to
Polanyi, who was an accomplished physical chemist before he became
interested in philosophy, is more subjective than many of its practitioners
will admit, and, in some ways, Polanyi’s view of science is similar to Kuhn’s
in this regard.

In his study of the manner in which managers make their decisions,
Baumard asks “Why do some managers consider far fewer alternatives than
others when arriving at their decisions? Is it a question of flair (intuition)
or expertise?” (Baumard 65). He supports his discussion by explicating how
the Greeks used the term “metis” to describe conjectural or tacit knowledge
(Baumard 65). Metis is that type of knowledge that is constantly shifting
and ambiguous, a knowledge that comes from a source that is not readily
identifiable. Greek philosophers “usually passed over” any mention of how
metis might have inspired their own ideas “in silence or hostility” because

Knowledge Management and Society 13

to admit to it would undermine the seemingly rigorous or rational arguments
that shaped the existing communicative genres they were required to use in
order to be recognized in their profession. The Greek philosophers were
famous for using the Socratic method—where they went through a series
of careful “logical” steps—to come to their conclusions. However, they did
acknowledge that metis constituted a possible way of knowing (Detienne
and Vernant 3).

As an instance of metis in action, Baumard cites the Intelligence News-
letter, which has published “difficult-to-obtain insights” about the world
of espionage (Baumard 139). Without the resources of the CIA, this small
French publication bases its research on a careful examination of major
newspapers and press releases from government officials throughout the
world. These sources can be “full of contradictions, internal opposition and
cliques,” and that “what is not said allows one to follow what is meant”
(Baumard 142). One accomplished contributor to the newsletter, Maurice
Botbol, navigates these resources with “a ‘floating eye’—not necessarily
attached to the pursuit of anything precise, but navigating left and right,
collecting elements of sense; always uncertain, unstable, even disordered”
(Baumard 147). Utilizing his tacit assumptions, Botbol was able to make a
connection between an ambassador with dubious credentials and the
assassination of an opposition leader in the Seychelles. This demonstrates
how information that initially seems ambiguous can be shaped using our
conjectural thinking into meaningful ideas.

Knowledge Management

Because of the regimentation and rules of many organizations, they may
not be the most suitable settings for augmenting the tacit knowledge of
individuals. However, they still value these nonexpressed knowledges of
individuals, and this is most evident when a person leaves an organization.
When she leaves, she takes with her a know-how that cannot be captured
in a job description or manual. Thus organizations do value tacit knowledge
and work to understand the questions below (Baumard 77):

• How can tacit knowledge be used or exploited?
• How can tacit knowledge be systematized?
• How can organizations “protect, enrich, and use tacit knowledge”

when they are faced with an ambiguous or perplexing situation?

Organizations also maintain large bodies of tacit knowledge through their
“ceremonies, rites, traditions, and communities of practice” (Baumard 77).
The maintenance of this tacit knowledge base allows a community to gain
an identity and to be aware of how this identity changes with the addition
of new members and the exit of existing members. Choo refers to this aspect
of tacit knowledge as “cultural knowledge,” where an organization’s identity

14 Knowledge Management and Society

is framed for its members with the following questions: “‘What kind of
organization are we?’ ‘What knowledge would be valuable to the organiza-
tion?’ and ‘What knowledge would be worth pursuing?’” (396). These ques-
tions allow an organization’s members to examine not only what they
know, but how their organization can look forward and grow.

All too often, enabling knowledge creation has been relegated to deploying
better IT and management tools. To think of knowledge creation in
management terms implies the attitude that managers can control the
process, thus undermining the ability of people to bring the best of their
own insights and creativity to a situation (Von Krogh, Ichijo, and Nonaka
4).

People who want to take action need to feel that they can take advantage
of their own tacit assumptions and create knowledge for their own specific
requirements, and, for this to occur, an enabling context needs to be in place
(Von Krogh, Ichijo, and Nonaka 178). Von Krogh, Ichijo, and Nonaka
employ the term “ba” to describe this enabling context, a “shared space”
that can be thought of as a “network of interactions” (178). The concept
of ba unifies mental, virtual, and physical spaces and differs from “ordinary”
interactions in that it allows for the potential generating “individual and
or collective knowledge creation.” To make the environment stimulating,
there should be a degree of variety, redundancy, and “creative chaos” (178);
people need to hear an array of ideas, revisit ideas in different contexts, and
understand that ambiguity is not readily resolved with ideas that fit easily
into a preconceived pattern.

One of the key features of an enabling context is that a non-competitive
atmosphere is created. In a hypercompetitive environment, individual
members are more likely to behave in a critical manner which would under-
mine the ability for a supportive exchange of ideas between people (46).
Instead, an environment that allows for people to “live” with an ongoing
exchange of ideas that are related to the general subject area or mission
of a corporation needs to be fostered. Working in this environment, also
referred to as “indwelling,” allows people to “dwell” on more than one
perspective at the same time, thus enabling them to commit themselves to
“an experience, an idea, to a concept, or to a fellow human being” (Von
Krogh 58).

Explicit information provided by organizations in manuals, memos, and
training sessions eventually becomes internalized by their members and the
personal modification of this explicit information turns it into tacit infor-
mation. Eventually, this knowledge becomes part of the conversation carried
within an indwelling community and opens up new perspectives and
exchanges. Thus, managers need to understand that not every piece of
corporate information can or should be codified in an explicit fashion (Von
Krogh, Ichijo, and Nonaka 182). This will better enable the ongoing accumu-
lation of new knowledge (183) and application of it to completely new fields
(185).

Knowledge Management and Society 15

These features of an enabling environment are summarized below. An
enabling environment:

• Allows for a dynamic network of interaction;
• Creates a non-competitive atmosphere;
• Values both explicit and implicit information.

While these criteria are designed to frame the interactions of people in
business settings, they can be readily transferred to a Web environment to
enable patrons who desire to seek, create, exchange, and perform actions
tailored to their own agendas.

Knowledge Creation

In the The Knowledge Creating Company, Nonaka and Takeuchi describe
in some detail through case studies how both tacit knowledge of employees
and explicit knowledge—knowledge such as statistics and company policies
that are formally documented and in place—all come together to increase
the knowledge base of a company’s ongoing “knowledge spiral.” They
discuss four different kinds of knowledge transfer: tacit knowledge to tacit
knowledge through socialization, tacit knowledge to explicit knowledge
through externalization, explicit knowledge to explicit knowledge through
combination, and explicit knowledge to tacit knowledge through
internalization. Below is a summary of these four phenomena, and in a few
places, we have added some of our own insights and examples to enhance
what Nonaka and Takeuchi write.

Tacit Knowledge to Tacit Knowledge by Socialization

Experience is how we acquire tacit knowledge, and socialization is the
process by which we pass on ideas or shared mental constructs and technical
know-how. Often we acquire tacit knowledge without being told in a formal
setting how to do something or hearing someone else explain how things
are best done. You might have taken on a new job, gone through some
training, and then begun your work in earnest only to find out that many
things you needed to know were not passed on to you during training.
Instead, by talking to and working with your co-workers, you learned
exactly how to do your job best.

Nonaka and Takeuchi have reported on several practices that exemplify
socialization. For example, it is the practice at Honda to conduct “brain-
storming camps” where members of a corporate unit who are engaged in
developing a new product meet outside the workplace, usually at a resort
inn, to discuss the project (63). The participants socialize at this site; they
eat, drink, and engage in other group activities. This allows for a more
informal atmosphere that enhances group discussions about how people see

16 Knowledge Management and Society

the problems they are facing and how they might be solved. Anyone can
offer criticism, but only if the criticism comes with constructive advice about
how something might be done better or thought of in a different way. These
events bring to light new ways of thinking about a problem as they allow
for the harvesting of unique and tacit insights from people who might be
reluctant to voice their ideas in a more traditional setting.

Learning how customers feel about a company’s products has better
enabled NEC to produce computers that are more likely to fit the needs of
its consumers, another example of socialization. At BIT-INN, NEC’s display
service center in the part of Tokyo where many electronic retailers set up
shop, the concerns, needs, and ideas of the customers who frequented this
store and were interested in improved NEC computer products were
recorded and passed on to management.

Tacit knowledge can also be acquired by means other than dialogue
between people. Discovering and internalizing tacit knowledge can be done
by observing and engaging in the practices of others. In order to design a
better bread-making machine, top executives and engineers for the
Matsushita Electric Industrial Company asked a master bread baker if they
could apprentice with him. By observing and imitating the master baker,
they discovered that the best way to prepare the dough for bread was to
add a little twist to it when stretching it, and this practice was replicated
in the machine that they eventually designed. The master baker did not
explain what had taken him years to learn; like many physical skills that
seasoned professionals possess, the subtle details were such that the
Matsushita professionals could only learn them by engaging in a process
and observing his technique (Nonaka and Takeuchi 63–4).

Tacit Knowledge to Explicit Knowledge by Externalization

Externalization is where we take the tacit knowledge that we possess and
convert it into explicit forms that are expressed in forms such as metaphors,
concepts, and models. Perhaps the most common method of externalization
is writing.

We all know that writing enables us to communicate to the outside
world the thoughts that we have. The most brilliant ideas die with the genius
that came upon them if she is incapable of conveying these ideas to others.
However, writing is not only the means of explaining forcefully and cogently
the ideas we have, but also a way of finding out what we know. We see
writing as a way of ordering our thinking, of visually presenting in front
of us a systematic pattern of the tacit and explicit information we hold,
information that is a part of us, concerning a certain subject or idea.
Furthermore, writing is thinking, and this thinking can lead us beyond what
you already know. Writing thoughtfully demands that we take the abstract
thoughts and intuitive tacit knowledge that have been bouncing around
behind our eyes and then convert them into language. Because the thinking

Knowledge Management and Society 17

required in good writing is so absorbing, new ideas are often generated.
This is thinking of the highest order. Not only is writing a means of
communication, it is an extremely powerful catalyst for our thoughts.

Externalization is the primary method of knowledge creation; from tacit
knowledge comes explicit knowledge—knowledge that is easier to identify,
know, and use (Nonaka and Takeuchi 66). As we have shown, the process
of writing is a solitary means of externalizing our ideas, and we believe that
Nonaka and Takeuchi extend this basic process by illustrating how ideas
can be generated by group dialogue or reflection. Both deductive and
inductive reasoning methods can inform this process of externalization. For
example, Mazda executives decided that the general guideline for all Mazda
products was that all of their products should “create new values and present
joyful driving pleasures” (qtd. in Nonaka and Takeuchi 64), and at the
same time, they also wanted to produce a new vehicle for the U.S. market
that would make Americans feel that Mazda was an innovative company.
Using the deductive technique where a general idea contributes to a specific
concept or practice, this general Mazda maxim was refined by the research
and development group to produce a more specific guideline that they
should build an “authentic sportscar” that was “exciting and comfortable
to drive,” which eventually began the process that led to the Mazda
RX-7. Additionally, induction—the process of taking specific pieces of
information and contributing to a general idea—also contributed to this
product. A dialogue with both customers and car experts who offered their
specific concerns allowed Mazda engineers to understand what they generally
desired in a car that, up until this point, was not available to them. The
specifics were the conversations and ideas of the experts and consumers,
and this supported the general idea of producing a comfortable sports car.

Nonaka and Takeuchi like to point out how metaphors in general and a
kind of metaphor, an analogy, can help us tease out associations between
things and thereby let us better understand them. People use analogies to
point out the concrete similarities between two ideas to better make a point
or understand a concept. For example, physician William Hervey, the first
to devise a theory of the way blood circulates in humans, compared this
process with the way sap circulates in a tree to keep it alive. At the time,
people knew about the way trees sustained themselves, and therefore, it was
a reasonable and understandable extension of their thinking to imagine a
similar process for humans (Crowley and Hawhee 176). An analogy allows
us to bring reason to problems we are trying to solve by allowing us to see
the similarities between things.

Nonaka and Takeuchi point out most other kinds of metaphors make
more intuitive connections between things and work on a more symbolic
level (66). We draw attention to perhaps one of the most common meta-
phors, “Love is like a rose.” While we cannot make as neat a correspondence
between two things with a standard metaphor like we can with an analogy
between the circulation of sap and blood, metaphors do allow us to find

18 Knowledge Management and Society

abstract similarities between two things. For example, love is extraordinarily
beautiful like a rose, but its thorns, like love, can hurt us at times. Applying
this metaphor perhaps better allows us to understand how these two almost
contradictory elements can have something to do with this complex emotion.

When Canon decided to produce a personal copier, the design team
members knew that they would have to produce them at a much lower cost
than commercial copiers. To do this, they would have to make the copying
drum of the new machine replaceable as this was the source of ninety percent
of maintenance problems. For design and economic purposes, the drum
needed to be made of aluminum and there were drawn out discussions on
how this could be produced efficiently. Finally, the head of the design team
handed everyone a beer can one day and asked the engineers to compare
the process currently used to produce this container, which was rather
inexpensive, to one that they might use for the copying drum. This analogy
gave them a starting point; they could quickly see the similarities between
the two processes, but they could also begin identifying the differences and
what would need to be changed to produce this item. This use of analogy
engaged the tacit assumptions held by the engineers as they imagined
applying the process of building an inexpensive beverage container to a
reasonably priced part of a complex industrial product.

The concept of metaphor was used to imagine how cars should be
constructed at Honda. The engineers decided to think of an automobile not
as a construct of human engineering, but as an “organism” that would
“evolve” over time to best suit the needs of humans. At the time, Detroit
manufacturers designed cars to look a certain way—to be long, low, and
stylish. This would best draw customers to them, and this way of thinking
worked well for some time. However, the ability to ask “What will the
automobile eventually evolve into?” (Nonaka and Takeuchi 65) allowed
the Honda professionals to come up with the idea that cars are built for
human comfort, that a “minimum space be given to mechanics and the
maximum space for passengers” (Nonaka and Takeuchi 65).

Much of tacit knowledge can be turned into explicit knowledge through
the use of figurative language such as analogies and metaphors, and Nonaka
and Takeuchi see the progression from metaphor to analogy to a model as
the most effective way to achieve this (66). Starting with the metaphor of
the automobile as an organism that evolves to better meet the needs of
humans, the concepts of “man-maximum, machine-minimum” and the
geometrical shape that best allows for the most volume with the least
amount of surface area, the sphere, were put into play as an analogy. The
process of exploring the commonalities of these two concepts and reconciling
some of the differences between them literally reshaped the way cars should
be built and produced a new model. Instead of long and low, cars should
be shorter and taller or more spherical, and the physics of this shape allowed
Honda to build cars that were lighter, stronger, more comfortable, and less
expensive to manufacture.

Knowledge Management and Society 19

Explicit Knowledge to Explicit Knowledge by Combination

Taking explicit knowledge—knowledge that is already known and written
down or recorded in some other way—and reconfiguring it for different
purposes into other forms of explicit knowledge so it can be more readily
used, is what Nonaka and Takeuchi refer to as combination.

The explicit knowledge that one starts with in this process can be
knowledge from sources such as databases, documents, and intranets. By
identifying existing explicit knowledge sources and reorganizing them for
different uses from which these sources were originally intended, we can
see how combination works. For example, knowledge learned at universities
can be thought of as combined knowledge as it is usually found in textbooks
that have been produced by professors who have read many scholarly
articles and other books in a field and then shaped and distilled and thus
recombined the knowledge in them for students.

Combination in the business world is often seen when middle-level
managers reconfigure data in corporate databases or reshape a corporate
vision generated by upper level executives so that new practices are put into
play. Middle managers at Kraft Foods have demonstrated this practice of
combination by reusing data that was originally for one purpose so they
could accomplish another task. Their POS or point of sales database, which
was designed to determine what products are selling well in various stores
or regions, is also used to devise new sales techniques. By reformulating the
data from categories that describe pricing, space needs, consumers, and
merchandising criteria, this has allowed for sales promotions in certain
markets and the designation of certain mixes of Kraft products in a practice
known as “micro-merchandising” that reveals the demands of customers
for each store or region. (68)

Middle-level professionals can also take corporate visions and combine
them with their immediate tasks to hone the corporate vision from which
the tasks are built on. Nonaka and Takeuchi detail how top-level executives
at Asahi breweries decided that the phrase “live Asahi for real people” and
“Asahi will provide natural and authentic products and services for those
who seek active minds and active lives” would be their overarching vision
(68). Middle-level engineers then developed Asahi Super Dry beer based on
their concept of “richness and sharpness” which was their interpretation of
the grand corporate vision. This in turn enhanced and made more specific
the larger vision and also enabled the company to adopt new production
techniques based on combining techniques; the information that was
extracted from the corporate vision was adopted for the specific needs of
technical professionals who used it to develop a new product, and the
information based on the “richness and sharpness” concept further shaped
the company’s original vision.

20 Knowledge Management and Society

Explicit Knowledge to Tacit Knowledge by Internalization

When we take in explicit knowledge by “embodying” it or “learn by doing,”
we are making it our own so we can use it; we are internalizing it (69).
Tacit knowledge can be gained through the processes mentioned above:
socialization, externalization, and combination. To enable an organization
to have the most robust knowledge management culture, all tacit knowledge
gained and that which resides in people needs to be passed on to others
through internalization.

Documented knowledge can lead people to understand, to internalize,
what it is to have been involved at a personal level in some process or field
of information. For example, GE documented help requests and questions
from customers who called in to its Answer Center in Louisville, Kentucky.
By reviewing these complaints, a GE product development team could later
acquire tacit knowledge as they would learn like those originally taking
the calls in the Answer Center would. This knowledge enabled the team to
build a database of over 1.5 million potential problems and their solu-
tions. Additionally, new product development specialists would also have
conversations with veteran members of their team and visit and speak with
representative telephone operators who originally fielded the complaints,
thus re-experiencing the knowledge of these two groups so they could
internalize this information.

During hard economic times in the early 1990s, Osamu Tanaka voiced
the fears of the executives of Matsushita Electrical Industrial Corporation,
who had become concerned that their employees were working too many
overtime hours that did not yield significant productivity or creativity:
“How can anyone be creative if he works until twelve midnight everyday?
People’s sense of value is rapidly changing. You cannot make original
products just by looking at plans at the office every night” (qtd. in Nonaka
and Takeuchi 118).

To internalize the idea for the employees that they could be more efficient
by eliminating overtime hours and increasing personal time, they had their
hours reduced to 150 hours a month and, ultimately, to 1,800 hours a year.
Some of the major tacit realizations of the Matsushita employees were that
they could not continually make design changes in products being developed
and that face to face meetings had to be cut back in favor of computerized
communications. More than policy changes, these new “sense of values”
or new embodied practices became part of the way work was done (119).

Oftentimes we hear stories or anecdotes about a practice or insight from
others who are clearly articulating their knowledge, and then we take these
stories and construct our own work habits. Nonaka and Takeuchi point to
the many “mental models” that are captured by articles and books written
by Japanese executives and business journalists about their lives and the
culture of their corporations. In the United States today, there are whole
sections of bookstores where one can find the memoirs, how-to books, and
biographies written by or about contemporary business executives and

Knowledge Management and Society 21

culture that reflect the same kinds of tacit knowledge that, when studied,
can become embodied by those seeking to adopt new strategies and practices.

Technical Communication and Knowledge

Michael Hughes expands on the theories of tacit and explicit knowledge by
using the work of W.C. Howell which describes these types of knowledge
on the learning process. Additionally, Hughes connects these ideas to
technical communication. There are four major states in the learning process
according to Howell (Hughes 278):

• “Unconscious incompetence” is when we are not even aware that we
lack a certain kind of competence or skill, or that one even exists.

• “Conscious incompetence” describes the position we are in when we
know we lack a certain skill.

• “Conscious competence” illustrates how we identify knowledge we
have discovered and then use it or document it.

• “Unconscious competence” is when we know how to do something and
apply it without even thinking about it.

Hughes asks us to replace the following words in Howell’s depiction of the
learning process: “competence” should be replaced with “knowledge,”
“incompetence” should be inserted in place of “ignorance,” “conscious”
should be substituted with “explicit,” and “tacit” should take the place of
“unconscious.”

Thus we have the following comparisons:

• Unconscious incompetence becomes tacit ignorance.
• Conscious incompetence becomes explicit ignorance.
• Conscious competence becomes explicit knowledge.
• Unconscious competence becomes tacit knowledge.

In doing this, Hughes gives us another way of looking at the range of learning
states that describe the technical communicator’s need to be aware of what
are more in line with what Nonaka and Takeuchi theorize. At one end of
the spectrum, tacit ignorance, we have some end users or customers who
buy products who do not even know where to start learning about something
or what really needs to be known, and technical writers are often challenged
to derive information from experts who are at the other end of the spectrum,
tacit knowledge, who really know how to do something, but really do not
understand that they know this. These subject matter experts (SME) just
take it for granted that what they know is simple and that everyone else
knows it, and it is the job of technical communicators to harvest this
information and explain it for beginners (Hughes 278).

Hughes applies the theories of Nonaka and Takeuchi by showing how
technical writers can contribute to an organization’s knowledge spiral.

22 Knowledge Management and Society

Nonaka and Takeuchi describe the durability of knowledge; this is how
fixed the knowledge is within the organization. For example, if someone
possesses a lot of tacit knowledge and then leaves the organization, the
knowledge leaves the company and is thus not very durable. When know-
ledge is socially constructed by the interactions of group members within
an organization, if one person leaves the company, the others remaining
will still possess much of the knowledge this person held and they can pass
on information to others (Hughes 279).

When knowledge is passed on from individuals to groups and from
groups to entire organizations, this “escalation” makes the knowledge more
durable, allows the knowledge to be scrutinized by more people and thus
perhaps challenged and validated, and it also allows for greater knowledge
transfer within an organization. In this last example, Hughes suggests that
if technical communicators produce a style template for documenting know-
ledge, this template can by adopted by other members in the organization
who are not technical communicators. This process of tacit knowledge that
moves from individuals and becomes the explicit knowledge that resides in
groups ultimately increases the organization’s knowledge assets and produces
more durable knowledge.

Deploying Knowledge Management: Intranets and Extranets

An intranet can be likened to an Internet that is deployed within an
organization. The advantage of an intranet is that it can be protected by a
security firewall that excludes people from other organizations who might
be trying to steal ideas from their competitors. In contrast to the Internet,
firewalls can also be better maintained by IT professionals and they can be
set up to exclude “malicious or intrusive” software. Also, intranets allow for
the storage of company documents in a well-organized manner and reduce
the need for paper-based distribution of material which can allow for better
access to material and save an organization money (Callaghan 3–4).

An extranet is an intranet that has its protective firewall set up so some
people who are not organization members have access to some or all of the
content on the corporation’s intranet. This might be for customers who need
extra information about an organization’s products (Callaghan 4).

It is easy to see how these systems can support knowledge management
activity as they can store, arrange, and allow easy access to information
and knowledge in an organization as they are dedicated to an organization’s
specific needs.

Corporate-Wide KM Systems

To stay competitive with other corporations by being more efficient in
disseminating information, CoreTech introduced an intranet in the mid-
nineties that eventually crossed all layers of the organization (Callaghan 67).
The company is in the IT solutions business and is hierarchically structured;

Knowledge Management and Society 23

the information flowed from senior management, to middle-level manage-
ment, and then was disseminated by the managers of each individual work
unit, oftentimes verbally. Additionally, there was information such as project
reports that were exchanged horizontally between individual team members,
their immediate manager, and their group members. One of the reasons
that the intranet grew was that most employees were technically savvy as
the company’s main line of work is to help other companies find creative
solutions to IT problems.

Before the intranet was introduced, information was presented in paper
documents, which can hamper productivity as paper documents are not
really organized in a database system; they just pile up on the desks of most
people, are often thrown out when the information in the document might
be useful at a later date, and are not automatically indexed where they can
be retrieved later if needed.

The implementation of the intranet was devised by the CoaT office,
which was dedicated only to this project. This was beneficial in that the
structure of the early intranet at CoreTech did not need to have to go through
committees in all branches of the corporation for approval; it was just put
in place by the CoaT people.

The CoreTech intranet allows people to publish their own websites so
personnel information could be catalogued, and also gave access to Quality
Management Standards (QMS) of specific work area standards, organiza-
tional charts, summaries of company business strategy, and company news
(74). Ongoing projects, outcomes of previous projects, and information on
directors and senior managers were also included. A “Desktop Directory”
was implemented on the intranet so specific employees, their job titles,
and their location and work areas could also be found out. The “where-
abouts” or what each employee would be doing for the following four weeks
could also be discovered (75).

Seventy-eight percent of the CoreTech’s members agreed that the intranet
allowed them to work more efficiently. It can be argued that the most
important element of the intranet was that all employees with access to it
had “equal access” to whatever they felt they needed; the previous hier-
archical system that was in place was bypassed as people did not have to
wait for their managers to disseminate important information after it came
down to them from above. The middle-level managers were not in control
of what information their employees would be able to know. Also important
was that employees could contact senior managers directly, bypassing
middle-level managers.

During a period when there was a possible merger of CoreTech and
another company, information on the ongoing negotiations was distributed
to the employees so they could feel that they were in the loop, which was
very effective according to a senior level manager:

[I]t was allowing people to share in where the company was going and
to share in where the company was going fairly swiftly after the decisions

24 Knowledge Management and Society

had been made, decisions were being made in the morning and the
information was coming out either that afternoon or the next morning
on the intranet. So people were getting to know very, very quickly and
I think they felt part of the company and that was information
management at its best, it was the impact of IT at its best, it was the
opening up where the company was. (qtd. in Callaghan 76–7)

That all of the workers could know more than just hearsay made them feel
more connected to the company. The Director of Global Sales liked the
intranet as he used his “Ask Bill” element of his intranet website to get
feedback from anyone in his division, regardless of position. The intranet
also allowed people to be more proactive in finding others in the company
who might be able to assist them, and it broke down barriers between levels
in the overall organization. One manager commented that it put people in
contact with information and knowledge, but it also put “people in contact
with people” (qtd. in Callaghan 102).

There was a downside to this more open flow of information. For some
middle-level managers, they felt less control over their employees as they
lost the power one receives when she is given control over choosing what
information to convey from the top of the company. However, one middle-
level manager commented that it gave him more time to concentrate on
getting their teams to accomplish their goals.

The initial intranet had many websites constructed by employees who
produced information that they thought would be of value to other members
of CoreTech. In April of 1999, it was decided that all of the company’s
Web pages would be migrated to a new server, and only those websites
that met a specific official criteria would be allowed on the intranet. This
produced a negative response by some members of the organization who
were concerned that they were never consulted about what information
standards should be adhered to. They made the point that official organiza-
tion policy needed to be standardized, but that did not mean that other
contributions had to be kept off of the intranet. One engineer defended
the right for all contributions by employees be accessible by saying: “[W]hat
will it take to make ‘the powers that be’ listen to the USERS, not pro-
viders of the intranet, and actually give them what they want?” (qtd. in
Callaghan 92).

One of the counterarguments made by management of this policy was
that all users of the intranet needed to be sure that the information is up
to date and accurate. Another comment was that while the Internet is
anarchic, intranets need to be more controlled and that there needs to be a
balance between the creative ideas of people and some degree of control
(94). While this section on intranets and extranets shows how knowledge
management practices can be actually put into place, the next section
demonstrates a framework for thinking about how information can be better
balanced for the needs of people.

Knowledge Management and Society 25

Information Ecology

In biological studies, ecology is the study of the interrelationships of the
many living species, both plant and animal, found in an ecosystem. In their
book Information Ecology, Nardi and O’Day expand this concept into
complex systems of information in a way to frame the relationships between
people with different skills, technology, values, and the individual human
relationships that people have with the IT they use every day. What is key
here is that all of these elements have an effect on the uses of technology
and that they cannot be studied independently to understand how an
ecosystem of information functions.

They use this metaphor as all too often we look at one element of
technology and are often unaware of how it really is used by people in certain
contexts. To say that an organization will now be functioning at a higher
capacity because a new software system is put into play or that a new genera-
tion of computers and the way they are networked will improve efficiencies
is not necessarily true. We all have our own relationship with our computers;
we set our computers up to work in the way we feel they meet our needs.
The interaction between people regarding their technologies is also a key
factor. People will use technology in different ways, and people also learn
from each other when they engage in work using their computers.
The use of technology is employed in specific ways in specific settings: educa-
tors, students, engineers, and executives all have their own way of using
technology.

It is important to view the IT we use as “tools.” The use of the word
tool for a technology is important as it challenges designers of the tools to
imagine how the end users might use them when they design them (Nardi,
30). All too often, designers forget this and design overly complicated tools
that really do not replace traditional technologies efficiently. Some people
come to meetings with laptops and take notes with them, while others are
just as comfortable applying pen or pencil to paper. Some people do their
taxes using the many available software packages available, while others
are comfortable just using a calculator. Some educators have experimented
with building a curriculum around the use of students doing all of their
work on laptops, but this does not take into account all of the problems
that laptops might bring with them.

In a New York public school system, long term studies revealed that the
basic learning achievement scores of students who were provided with
laptops were no better than those who engaged in traditional learning
technologies: blackboards, pens, books, and paper. With laptops, the
networks broke down, students tended to wander off on their own, teachers
had to work too hard teaching the basic software packages and this got in
the way of teaching their course material, students could more readily
exchange answers on tests, and laptops broke down all too often. The cost
of classes built around students with individual laptops was also much higher
than the cost of a traditionally outfitted school (Hu). Designing a tool that

26 Knowledge Management and Society

has great potential does not necessarily mean that in certain technical eco-
systems it will really prove to be useful.

Nardi and O’Day tend to be optimistic about the use of technology in
certain ecosystems, but they also make a point that they also review the
spectrum of theorists who are concerned about the implementation of
technology into our lives. Employing the ideas of Bruno Latour, Nardi and
O’Day point out that when we use machines to communicate, “Prescriptions
are written into technologies when they are designed.” As Selfe mentioned
earlier, Nardi and O’Day tell us that technologies have an “authority and
presence” by the way they are designed (32). They ask certain things of us.
Sometimes, there is a large gap between what the intentions of the designers
of the technology imagine how a technology can and should be used and
how it is actually employed.

Nardi and O’Day point out some of the concerns of Jacques Ellul, who
is troubled by the institution of technology. More specifically, technology
integrates what he refers to “technique” in our culture, and technique in
Ellul’s mind creates a mindset in our culture that we need to always be
working towards greater efficiency, but are doing so blindly, and, because
of this, we do not consider the potential negative side effects:

Technique has become autonomous; it has fashioned an omnivorous
world which obeys its laws and which has renounced all tradition.
Technique no longer rests on tradition, but rather on previous technical
procedures, and its evolution is too rapid, too upsetting, to integrate
into older settings. (qtd. in Nardi 34)

In the example above regarding the New York school system, many
traditional elements might have been lost had there not been some studies
done to support the idea that notebook pedagogy was working. Students
might learn to type better, but they also might have lost the ability to look
at a teacher, one human working hard to help students understand what
they need know to be successful, and concentrate and listen to what the
teacher is trying to say. Birkerts has posited the idea that individual
subjectivity, being aware of ourselves and our thinking relative to others,
is diminished in this kind of network environment:

One day we will conduct our private and public lives within networks
so dense, among so many channels of instantaneous information, that
it will make almost no sense to speak of the differentiation of subjective
individualism. (267)

Some might argue that the technology could be improved—that the com-
puters could be sturdier, and the software easier to manipulate by the
students and teachers—but we would just be adding on to “previous
technical procedures” and the valuable lessons that we have learned from
listening to people and taking directions in “real time” would still be lost.

Knowledge Management and Society 27

As mentioned before, when Nardi and O’Day liken systems of IT to an
ecosystem, they mean to point out that the relationships of many different
entities depend on one another for that system to form and remain in place.
As a technological metaphor, this does not mean that there are certain
entities at the top of a technological food chain who survive by eating smaller
entities. What they mean is that people with a diversity of skills and positions
in organizations play complementary roles. Without designers of software
or IT professionals, IT would not exist or be put in place. If it were not for
people who were served as the consumers of technology, there would never
be a market and demand for such services, nor there any feedback loops
that would allow the designers and technicians to improve and implement
the technologies. In this last example, we see the concept of coevolution in
operation.

When a new technology is put in place in an organization such as a new
intranet that allows everyone to be connected and to send messages and
share ideas with each other, the members who are asked to use the system
learn some new skill and evolve to a more technically proficient level. When
the system is flawed to some extent, the designers become more aware of
how humans use machines and strive harder to make their products more
convenient and useful.

The metaphor of information ecology asks that we see that everyone in a
system is of value, but there are certain keystone species that are needed to
make the system work. One example of a keystone species, according to Nardi
and O’Day, would be the teachers who train employees how to use a newly
implemented technology. Without them, the employees would face too steep
a learning curve to even begin using some technologies.

In some biological ecosystems, one species might in fact become extinct,
but this does not necessarily mean that the ecosystem will fall apart. In some
business organizations, one unit in the organization might be phased out;
its members might be given their notices or retrained to do another kind of
work. However, in both examples, a keystone species is essential for the
ongoing evolution of the system, be it a biological or information ecosystem.

Buchanan further refines the notion of keystone species by noting that
they are usually connected to many of the other entities in an ecosystem
(153). In a biological system, a keystone species might be one that many
other species within the ecosystem depend on for food. If the environment
was significantly altered by some change in the climate and this species died
out, so would the other species who were connected to it. In an organization,
those who teach the technology well might be thought of as connected to
many others in an organization. In addition to training the end users of a
technology, they might also serve as the liaisons between executives in
organizations, the middle-level managers, and the designers of the technology
as they are in the best position to see what are the strengths and weaknesses
of the information systems that are deployed in an organization. Regarding
information systems, they are a keystone species. In Chapter 3, we will

28 Knowledge Management and Society

discuss the role of communication professionals who assume the position
of knowledge managers by implementing XML technologies across an
organization’s branches. We will show how these knowledge managers can
be likened to keystone species.

Technology also acquires its value in different “localities” by where it is
placed and who uses it and how it is set up to fit within an organization’s
environment. How a technology is utilized is not so much determined by
who sets up the technology, but by how the end users use it. They assume
the “responsibility” and take advantage of the “opportunity” to use
technologies in the environment they work in. They construct the “identity”
of the technology via these practices (Nardi and O’Day 55). For example,
a desktop computer that works at the same speed and has the same office-
use styled software is referred to differently in varying environments. The
same kind of computer can be used for payroll in a small business, and a
computer in a library can function as a replacement for a card catalogue
and provide library access to Internet resources that are related to their
research. These computers in these two environments would be referred to
differently, even given different names, as how they are named “identifies
what it means to people who use it” (54).

When contrasted to the often used term “community,” Nardi and O’Day
assert that the ecological metaphor allows them to better illustrate how a
technology is employed in an organization (56). “Community” is often used
to describe a group of people who have more similarities than differences,
whereas an ecological system built around communication technologies
implies that there are many different kinds of people who might be working
to the same end, but who play different roles and have different skill sets.
Ecological systems are dynamic in that while they might be complex and
in equilibrium, they are always changing or evolving. In a complex biological
system with many species, the relative numbers of each species might
change, but as long as the keystone species remain in place, they will be in
equilibrium. In the complex ecology of a large organization, people might
be asked to move to a different division and/or be retrained to take on a
different task to meet the organization’s needs in a dynamic economy.

Nardi and O’Day also acknowledge that the presence of a technology
can impose itself on people who use it as Ellul would suggest, but feel that
if the members of each local element of the larger ecological system are
aware of this and take the initiative to use the tool in the way that meets
their needs, that they can claim a technology as their own and to make it
fit it in with their own needs. A new technology should not be met with
“resistance”; end users should be invited to come to a new technology with
the spirit of “engagement” and “participation” (57).

While it seems obvious to say that librarians are a keystone species in a
library, Nardi and O’Day go to some length to describe how they occupy
this position and how their work extends deep into the information ecology
of several industrial settings, including the Hewlett Packard Library and the

Knowledge Management and Society 29

Apple Research Library. One of the points they make is that when these
librarians work with non-library professionals in these organizations, their
work practices are often “idiosyncratic”; what they do cannot be boiled
down to a set of hard and fast rules that can be described in a simple opera-
tions manual as every patron these librarians work with have very specific
needs and personal work habits (83). This also challenges the librarians to
better tailor the available technologies to the specific needs of their clients.

In both libraries, librarians would receive requests from the professionals
they worked with, sometimes by phone, fax, or e-mail, and sometimes in
person. They would interview their clients and ask for some specifics that
helped them better refine their research. The librarians would make an initial
search to cull the information they felt the client could use, and, if needed,
they would do a second round of searching. Oftentimes clients needed
guidance in choosing more specific search terms as the fields these pro-
fessionals engage in are cutting-edge and the new search terms come into
play. More specific search terms lead to more focused results. In this way,
librarians helped professionals “understand their own needs” better (88);
the nature of searching for information often helped the clients understand
“more about what they want[ed]” (89). Oftentimes the needs of the pro-
fessionals might be a bit vague at first and they needed to engage in
conversations with the librarians about their needs, and the recursive nature
of a search for specific information. The going back and forth from client
to search technologies, and then back to the client, exemplifies how the
information ecology of these organizations works.

The information ecology of these organizations is built around pro-
fessionals such as engineers and business people working with librarians
who are continually learning how to use and teach the use of new informa-
tion resources. The librarians need the stimulation of their patron’s requests
to compel them to stay relevant in an organization, and the professionals
who work with the librarians do not need to spend all of their time learning
about what new databases have come into play in their fields.

Oftentimes, librarians will specialize in certain fields of inquiry such as
chemistry or business (93) and will acquire working relationships with their
patrons where they begin to acquire knowledge of what each specific client
is interested in (96–102). When not performing a specific search for a client
who needs information right away, librarians can be on the lookout for
new databases and setting up “canned searches” with “agents” for new
information they feel might be of value to clients and then alerting them to
it. This personal engagement meets the needs of many organizations that
are on the cutting-edge of research and development:

Because access to information is a fundamental need in today’s world,
it must be supported to the fullest, which means a living, breathing com-
munity of helpful people at the ready. The human touch will become
more, not less, important as online information resources grow and infor-
mation resources grow and information access tools proliferate. (92)

30 Knowledge Management and Society

The point here is that no one can do it alone; there is a symbiotic relationship
between all of these professionals as they all need each other to advance to
organization’s overall needs.

Chun Wei Choo describes in greater detail the process through which
information professionals can work with subject matter experts to assist in
adding to the knowledge of an organization. For example, “harvesting” the
tacit knowledge that an organization’s employees possess can start with
something as simple as collecting and updating the resumes of an
organization’s employees so they can seek out in house help if they need
to. They can also alert employees to upcoming conferences, training courses,
projects, and assignments. Information professionals could take it even
farther by creating an “electronic yellow pages” that consisted of the skillsets
of each employee and put them in an organization’s intranet. They could
ask for some indication of the “breadth and depth” of knowledge that each
person possesses regarding each skill that is listed and the contact
information for each employee (367).

In addition to formally classifying the skills of an organization’s em-
ployees, Choo sees information specialists as those who can also perform
the following tasks:

• Writing and editing “raw knowledge” so it is accessible to others.
• Indexing, producing subject headings, using links for cross

referencing, and designing metadata.
• Packaging and publishing and then distributing through corporate

sources such as CD-ROMs, intranets, and subject-oriented search
software.

• Constructing and managing the information architecture for the
content while paying special attention to the style and classification
schemes so that they are appropriate for the organization. (398)

All of the skills listed become part of the overall information ecology of
an organization; while performing these tasks, information specialists are
working with other professionals to grow and shape the organization’s
knowledge base. The metadata—or data about data—that information
professionals would be working with could include such things as “project
names, project stage, product names or categories, authors, departments,
[and] dates” (399), and we see these as elements that could be coded and
warehoused using XML.

While information specialists can perform all of the tasks above and
need to understand the basic kinds of information that each division within
an organization needs, Owen makes it clear that these specialists need to
understand that people should not depend on them for all their knowledge
needs; instead, they are there to enhance the information ecology of an
organization by getting professionals to help develop and contribute to their
own systems of knowledge so they can exchange information with each other.

Knowledge Management and Society 31

The traditional role of a librarian-styled knowledge broker needs to be
downplayed because it suggests that an organization’s professionals must
always go to this person to find “available knowledge on a single item basis
. . . to provide a knowledge item whenever required” (Owen 13). This is
based on what Owen sees as a “fundamental principle of knowledge
management,” which is to remove the “intermediary” between the know-
ledge and the user of the knowledge. For example, engineers should be
exchanging tacit knowledge generated by other engineers, and managers
should do the same with managers: “knowledge management is more
focused on the flow and interchange of knowledge, and therefore on
knowledge channels and networks, than on the management of ‘knowledge
objects’ as distinct entities” (Owen 14). If possible, there should be a robust
ecology where people can look to ideas outside their work units without
always having to go through an information professional.

The most explicit kinds of information—facts, figures, and documented
corporate rules—are not really what a knowledge worker needs when she
is not able to move forward and solve a problem. Knowledge management
workers need access to more tacit forms of knowledge such as background
information on a project or client, examples of analyses, best practices,
arguments about relevant corporate projects and issues, opinions, methods,
and procedures (Owen 12). This is where the tacit knowledge that can be
used to solve thorny problems is needed when professionals are at a loss
and need help, and perhaps this kind of knowledge is best understood and
conveyed by the professionals who specialize in specific work practices.

In addition to the information specialist tasks that Choo provides, Owen
suggests some more specific activities:

• Generate a typology or systematic classification scheme of employee
profiles, current projects, lists of clients and contacts, external
knowledge databases.

• Provide indexing standards for subject domain models or subject
descriptors such as keywords and a thesaurus.

(Owen 15)

Information specialists can also create knowledge profiles or “cluster”
knowledge objects for the following:

• Combine all knowledge that pertains to a specific employee or
general job designation that describes the work of more than one
employee.

• Cluster knowledge that is relevant for a project team.
• Identify knowledge that would aid an organization’s members in

their encounters with external contacts.
• Find all general knowledge that would be relevant to an

organization’s employees.
(Owen 15)

32 Knowledge Management and Society

While Owen does not use the phrase “information ecology” as Nardi and
O’Day do, he is clearly describing how an information specialist can help
implement one. Again, his emphasis is more on inviting organization
members to make it a habit to input or “publish” their tacit knowledge
when they have something to offer and extracting tacit knowledge from the
resources identified above when they need it, to create “a ‘knowledge chain’
which links authors with users, through which knowledge flows from one
to another” (14). While we can see information specialists working to help
combine knowledge specific to organization members, their activities are to
facilitate knowledge building and dissemination between organization
members.

Information and its Integration into Social Systems

Echoing Nardi and O’Day, Brown and Duguid are interested not so much
in the growth of technology, but rather ask that we pay more attention to
how technology is deployed in its social context before we design it, thus
making it more useful:

The ends of information, after all, are human ends. The logic of
information must carry the logic of humanity. For all of information’s
independence and extent, it is people, in their communities,
organizations, and institutions, who ultimately decide what it all means
and matters. (18)

They point to the fact that some technologies, while perhaps looked upon
by their designers as elegant and valuable, really create more problems than
they solve. Some organizations implement software that is so complex that
it takes more time to learn how to use it than the value its designers believe
it will deliver to the end user. Additionally, one of the problems with
knowledge management is that all too often organizations are able to
warehouse large quantities of information, but, in doing so, they fail to make
distinctions between quantity versus quality information. Brown and Duguid
point to one study that shows that “information production” grows at fifty
percent a year, but our personal consumption of information is growing at
1.7 percent a year, and this latter figure has “natural limits” (XIII).

The overall point that Brown and Duguid emphasize in their book, The
Social Life of Information, is that we have to look beyond the technology
and see how individuals and groups of individuals encounter it, and how
the social nature of information exchange between people supports the use
of technology.

In the early nineties, business reprocessing engineering was thought to be
the method that saved companies that were not as efficient as they could
be. This reeingineering trend looked at companies linearly; one part of a
process is done by one part of the company, then another takes on its part
of the project, then another does the same until the organization finally has

Knowledge Management and Society 33

the product out the door and to the consumer. Each sector of a corporation
was examined in terms of its inputs and outputs, but little attention was
paid to the actual workings within each sector and how they related to other
sectors. This worked well for some workers who engaged in procurement,
shipping, and receiving where the work tasks are relatively straightforward
and easily measured. However, problems arose in the divisions within
corporations where the tasks that needed to be done were more complicated,
ones that were less “clearly defined” (93).

In the health insurance claims sector, the claims adjusters who worked
with the patients who applied for benefits were commanded to do their jobs
in a certain manner from executives in sectors of the organization that were
above them. These directions did not take into account the many nuances
of these tasks. For example, the claims adjusters saw that sometimes similar
claims provided different reimbursements and there were difficulties in
figuring just who qualified for claims. These difficulties were “traced to
clashes over meaning and sense making” (96).

While the process model might look efficient on a flow chart to company
executives, it is difficult for those who have to deal directly with the public.
Getting the job done for practicing claims adjusters can be just as much a
“craft” as the work of the physicians who perform their services on the
patients (97). In Nardi and O’Day’s view, the local culture of the processors
had been overlooked and not given any credibility, thus creating a flawed
information ecology. The claims adjusters had to look to their local
colleagues for guidance that might, at times, run against the directives aimed
at them from on high (98). Practice at the local level needs to inform an
organization’s overall process, but this is often overlooked by managers who
want a top-down process system that does not recognize the “lateral ties”
between divisions and workers within divisions as these are considered “non-
value adding” practices by management.

It is often the case that documentation produced to train people how to
do their work is written by people who do not explain why workers are
asked to perform specific tasks so they can learn to troubleshoot or deal
with the unanticipated problems that always come up. In a study done on
copy machine technicians who represented Xerox, as in the claims adjusters
study, the technicians had to learn from each other. The adjusters in the
health insurance agencies most likely work in the same workspace and can
more readily find a peer to help them, but the Xerox technicians had to go
out on their own into the offices of other organizations to service the
machines, and thus their work was “highly individual” in that they were
out in the field alone. As there was no scheduled time in each technician’s
day to meet each other, they began to meet for breakfast, lunch, or even
dinner to exchange information about the way they figured out how to go
beyond what the manuals said and fix the copy machines. In the process
model of organization management, this social “chatter” was never built
in; it was assumed that the technicians were proficient because they were

34 Knowledge Management and Society

trained and provided exemplary documentation. In reality, the ability of the
technicians to do their work properly was based on the social life they
established with each other (Brown and Duguid 102–3).

In both these examples above, the focus has been not so much on
information, but in know-how or knowledge. Brown and Duguid are quick
to point out that oftentimes knowledge management is only associated with
giving people access to information. Knowledge is different than information
in three ways in Brown and Duguid’s estimation:

• First, knowledge implies that there is a knower. Someone has
processed some information and really knows how to do something
or how to get something done, not just learned a fact or figure.

• Second, knowledge is hard to pass on to someone else. In the Xerox
examples above, the technicians had to meet often and discuss the
problems they were encountering and then explain their reasoning
to their colleagues. What they learned was hard, and it took the
give and take of human interaction to allow them to transfer it.

• Third, knowledge is hard to assimilate. The Xerox technicians had
to struggle with their tasks, to venture questions, to hear and also
learn by explaining their own ideas to others to acquire the real
knowledge that the manuals they were provided with could not
(119–20).

Brown and Duguid see the shift from an information economy to a
knowledge economy as one that is a shift towards people or knowers,
something from which the process model of business, in seeking greater
efficiency, was moving away from. Sometimes, people speak of knowledge
management in terms of information, not intellectual knowledge capital,
and this allows them to feel that they can store mere information in an
online database or intranet and thus they have produced a robust knowledge
management system. In the Xerox technician example, it was hard won
knowledge that was gained through experience in the field and then
transferred by human interaction that allowed for the increased competence
of these technicians, not just information that consisted of what one would
find in a manual written by non-practitioners.

Several Xerox engineers worked to implement a database system, the
Eureka project, which sought to expand the best practices developed by the
technicians in their local communities. Starting with technicians who serviced
Xerox machines in France, they began to build a body of knowledge based
on their insights that could be viewed by using the French Minitel system,
the national phone company, which could be accessed with a small keyboard
and viewed on a local display monitor. This was met with some resistance
from the Xerox management. Even though there was documented success
in the social meetings with the technicians, Xerox executives still maintained
the process model that reinforced the value of sticking to the documentation
provided to the workers and their initial training. Xerox managers were

Knowledge Management and Society 35

concerned that “a single flawed” tip that made its way into the system would
prove too costly (57).

To counter this concern, inputs from any technician were screened by a
validator, a product specialist for Xerox France, to make sure that it was
of value. If the tip was deemed of value, the validator worked with the
technician to make sure that all the relevant information was captured and
explained properly (Bobrow and Whalen 51). In the following chapters, we
will reveal how communication professionals can construct document type
definitions (DTDs) and schema, both essential XML technologies, so that
data entered into a content management system (CMS) better meets specific
and valid standards. Below is a generic sample of a tip submitted by a
technician that was stored in the database:

• Diagnosing unusual, costly failures—Bimetallic corrosions builds
up on A and causes intermittent failures that seem to be in B.
Replacing B makes the problem seem to go away because A is
moved in installation. First clean A, and later replace by new gold-
plated AA, available as Part #1234.

• Workarounds—Paper cut in a dry environment causes excessive
jams on baffle Q. Putting Mylar tape from tool kit on edge will
ease problems.

• Easing the job—To make it easier to adjust M, paint white-out on
back wall near M.

(Bobrow and Whalen 52)

Part of the success of the Eureka project was due to pieces of information
such as the one above. Depending on the product serviced, the efficiency of
the technical support people improved by five to twenty percent when
contrasted to other European divisions of Xerox. The technicians would
often use the Eureka program before they even arrived on site because, based
on initial information from the client, they were often able to make sure
that they picked up a part that might be needed for the machine before they
left. The implementation also decreased the amount of calls the technicians
had to make to their supervisors and sped up the learning curve for new
employees.

Because of this success, a similar system was deployed in a Xerox division
based in Canada. To input and access data, the technicians used laptop
computers. The Canadian technicians were provided with a monetary
incentive to input a valid suggestion, whereas in France this was not the
case. A single search engine was designed, dedicated to the Xerox techni-
cians, called SearchLite, which was fast and easy to use. Following the
success of this program, the Eureka system was deployed in the United States
in 1997. By 1999, there were 2,000 validated tips put in place with 9,000
“solves” recorded based on information American and Canadian techni-
cians were able to find using the system.

Eureka served as an able diagnostic tool for problems that arose in the
field, and even if Eureka did not provide a “precise solution” for a particular

36 Knowledge Management and Society

problem, it did allow technicians to “rule out certain sources of trouble”
when they collaborated with each other (Bobrow and Whalen 56). As one
technician reported:

Eureka isn’t so much as an end, but a beginning. Someone will call over
the radio with a fault code like “I’m having 12–142s,” and I can look
it up in Eureka and scroll through common causes. It’s faster to find it
in Eureka than it is to go in and fire up the documentation CD for the
repair procedures here.

(qtd. in Bobrow and Whalen 55)

The bottom-up approach is in play here; for this technician at least, the
data that was warehoused by other like technicians was of greater value
than the documentation the corporation had compiled. Not only did Eureka
serve to solve problems in the field, it also served as a learning tool. One
technician pointed out “Whenever I download new Eureka data, I like to
see what guys are doing. I look through the tips and bulletins. It teaches
me a lot” (qtd. in Bobrow and Whalen 56). In this way, Eureka served to
further embed itself in the culture of Xerox technicians and helped produce
an enabling environment that Von Krogh describes above.

Following this success, Eureka II was implemented, which was a
worldwide deployment of this system via the Internet. Part of understanding
the concept of the social life of information is that sometimes there is
resistance by managers who oversee operations and who favor the top-down
approach. Bobrow and Whalen make the point that they were able to finally
implement a full fledged search system into Xerox’s world operations
because they started small and in foreign markets, working under the radar
of the company’s Worldwide Customer Service branch. When they
implemented Eureka II, some managers wanted to use a standard Web
browser such as Internet Explorer® in place of SearchLite, but this would
have been a problem because there are so many versions of this. Additionally,
when a world wide version of Eureka was implemented, Eureka II, the
managers saw it as a large investment and wanted to see certain proven
efficiencies met to meet their schedule. Some of these schedules could not
be met in the initial stages. It was also difficult to get funding from some
divisions to train the technicians to use Eureka, despite its promise of
greater efficiency in the long run. The corporation also could have benefited
more had there been an effort to take some of the better technician generated
solutions back into versions of succeeding corporate documentation that
was initially used to train and guide technicians. The Eureka II system and
corporate documentation existed as separate bodies of information (Bobrow
and Whalen 57–8).

However, Eureka II has proven to be successful in many ways. As of this
writing, there are now 50,000 tips in the collection (PARC), and Eureka
can store information in eight languages, validators are bilingual, and all
tips that have been validated are translated into English (Barth 7). Eureka

Knowledge Management and Society 37

has saved the service definition as much as 100 million dollars in service
costs (Brown and Duguid 112). The sales division of Xerox has also shown
interest in developing its own Eureka-like system for its sales professionals.

Research on Knowledge Extraction from Document Collections (KXDC)
is presently in play at Xerox. The focus at PARC is on natural language
processing (NLP), language that technicians might put into database that
is not a formal computer language, like the language we use when we use
Google for a search. KXDC researchers are also working to clean up the
database of tips by eliminating redundancy, obsolescence, and contradictory
tips, and their long term goal is to create a “knowledge fusion” capability
that would allow for the creation of composite documents from many
different documents that list a series of possible tips that would relate to
the needs of the technicians (PARC 2). We will show in Chapter 3 how
documents that are tagged in XML code can serve as single source entries
that organizations could employ to accomplish these tasks.

Discussion Questions

1. Using Kuhn’s terminology, what are some of the “symbolic
generalizations,” “shared exemplars,” “shared commitments,” and
“shared values” that the community of people whom you are working
with or are studying with hold? Is there a “normal science” in your
field that, while helpful, also goes unchallenged?

2. What tacit knowledge(s) do you possess that you have taken for granted
and that could be of value to others? Whether you are a student or a
professional, think of the things you already know that you have shared
with others that you learned by doing something that was not explained
to you explicitly before you attempted the task. What kinds of tacit
knowledge have been passed on to you from other students or peers
that have been of value to you?

3. How does the metaphor of “information ecology” better allow you to
understand the nature of the way knowledge is produced and enhanced?
How might it allow us to better challenge more hierarchical ways of
distributing knowledge?

4. Describe what Brown and Duguid mean by the “social life of infor-
mation.” How does it better describe how knowledge is consumed and
distributed by workers in large organizations? Think about the social
dimension of knowledge in your life. What do you know that has been
gained via social interactions with your peers?

References

Barth, Steve. “Eureka! Xerox Has Found It.” Field Force Automation Magazine.
April, 2000. http://choo.fis.utoronto.ca/mgt/KM.xeroxCase.html.

Baumard, P. Tacit Knowledge in Organizations. London, England: Sage Publications,
1999.

38 Knowledge Management and Society

Birkerts, Sven. “Into the Electronic Millenium.” Cyberreader. 2nd ed. Victor Vitanza,
ed. Needham Heights, Massachussetts: Allyn and Bacon, 1999. 257–69.

Bobrow, Daniel G., and Jack Whalen. “Community Knowledge Sharing in Practice:
The Eureka Story.” Reflections. 4.2 (2002): 47–59.

Brown, John Seeley, and Paul Duguid. The Social Life of Information. Boston,
Massachussetts: Harvard Business School University Press, 2000.

Buchanan, Mark. Nexus. New York: W.W. Norton, 2002.
Callaghan, James. Inside Intranets and Extranets: Knowledge Management and the

Struggle for Power. New York: Palgrave Macmillan, 2002.
Chun, Wei Choo. “Working With Knowledge: How Information Professionals Help

Informational Professionals Help Organizations Manage What They Know.”
Library Management. 21.8 (2000): 395–403.

Clark, Adele, and Joan Fujimura. “What Tools? What Jobs? Why Right?” The Right
Tools for the Job: At Work in Twentieth-Century Life Sciences. Adele Clark and
Joan Fujimura, eds. Princeton, NJ: Princeton University Press, 1994. 3–44.

Crowley, Sharon, and Debra Hawhee. Ancient Rhetorics for the Modern Student.
2nd ed. Boston: Allyn and Bacon, 1999.

Detienne, M., and J-P Vernant. Cunning Intelligence in Greek Culture and Society.
Sussex, England: Harvester Press, 1978.

Griesemer, James. “The Role of Instruments in the Generative Analysis of Science.”
The Right Tools for the Job: At Work in Twentieth-Century Life Sciences. Adele
Clark and Joan Fujimura, eds. Princeton, NJ: Princeton University Press, 1994.
47–76.

Howell, W.C. Information Processing and Decision Making (Human Performance
and Productivity). Mahwah, NJ: Lawrence Erlbaum Associates, 1982.

Hu, Winnie. “Seeing No Progress, Some Schools Drop Laptops.” New York Times.
May 4, 2007.

Hughes, Michael. “Moving from Information Transfer to Knowledge Creation: A
New Value Proposition for Technical Communicators.” Technical Communi-
cation. 49.3 (2002): 275–85.

Johnson-Eilola, Johndan. “Relocating the Value of Work: Technical Communication
in a Post-Industrial Age.” Technical Communication Quarterly 5. 3.2 (1996): 245–70.

Johnson-Eilola, Johndan, and Stuart Selber. “After Automation: Hypertext and
Corporate Structures.” Electronic Literacies in the Workplace: Technologies of
Writing. P. Sullivan and J. Dautermann, eds. Urbana, IL and Houghton, MI:
National Council of Teachers of English and Computers and Composition Press,
1996. 115–41.

Johnson-Eilola, Johndan, Stuart Selber, and Cynthia Selfe. “Interfacing: Multiple
Visions of Computer Use in Technical Communication.” Three Keys to the Past:
The History of Technical Communication. T. C. Kynell and T. Moran, eds.
Stamford, CT: Ablex, 1999. 197–226.

Kuhn, Thomas. The Structure of Scientific Revolutions. 2nd ed. Chicago: University
of Chicago Press, 1970.

Malhotra, Yogesh. “Knowledge Management for e-Business Performance: Advancing
Information Strategy to ‘Internet Time.’ ” Knowledge Management and Business
Model Innovation. Yogesh Malhotra, ed. Hershey, PA: Idea Group Publishing,
2001. 2–15.

Nardi, Bonnie A., and Vicki L. O’Day. Information Ecologies: Using Technology
with Heart. Cambridge, Massachusetts: MIT Press, 1999.

Knowledge Management and Society 39

Nonaka, Ikujiro, and Hirotaka Takeuchi. The Knowledge Creating Company: How
Japanese Companies Create the Dynamics of Innovation. New York: Oxford
University Press, 1995.

Owen, John M. “Knowledge Management and the Information Professional.”
Information Services and Use. 10.1 (1991) 7–16.

PARC Research. “Knowledge Extraction from Document Collections.” December
29, 2007. www.parc.xerox.com/research/projects/knowledge_extraction/default.
html

Polanyi, Michael. Science, Faith, Society. Riddel Memorial Lectures. London:
Geoffrey Cumberlege, Oxford University Press, 1946.

Polanyi, Michael. Tacit Dimension. Garden City, NY: Anchor Books, 1946.
Selfe, Cynthia, and Richard Selfe. “The Politics of Interface: Power and its Exercise

in Electronic Contact Zones.” College Composition and Communication. 45.4
(1994): 481–504.

Slack, Jennifer, David J. Miller, and Jeffrey Doak. “The Technical Communicator
as Author: Meaning, Power, Authority.” Journal of Business and Technical
Communication. 7.1 (1993): 12–36.

Von Krogh, G, Ichijo, K., and Nonaka, I. Enabling Knowledge Creation: How to
Unlock the Mystery of Tacit Knowledge and Release the Power of Innovation.
Oxford, New York: Oxford University Press, 2000.

Wick, Corey. “Knowledge Management and Leadership Opportunities for Technical
Communicators.” Technical Communication. 47.4 (2000): 515–29.

40 Knowledge Management and Society

2 Introduction to XML
A Primer on the eXtensible
Markup Language

Chapter Overview

Thus far, we have discussed the basics of knowledge management and
presented some case studies to show how it has been employed in
organizational settings. In this chapter, we will discuss the basic concepts
of XML technology so we can begin to see how we can store information
using an object-oriented language. We will illustrate how basic XML
elements need to be written and then demonstrate how they can be arranged
in a DTD and why DTDs are of value. We will also show how we can use
XML entities to breakdown a significant text document into modular units
and then reconstitute parts of it as needed.

Because we will learn in this chapter how elements can be identified,
named, and then organized or encapsulated relative to other elements in
DTDs, we will be better prepared to discuss the rhetorical nature of XML
that we cover in Chapter 3 and the chapters that follow. This will also enable
us to understand how we can employ single sourcing methods that we will
explain in Chapter 3.

The Value of XML

In this section, we will describe the differences between HTML and XML
and show what tasks can be accomplished with the use of each respective
language. HTML became very popular very quickly as it was easy to learn.
Essentially, when one is using HTML, one is acting like a typesetter and
layout artist of traditional printing mediums like newspapers, books, posters,
and pamphlets. For instance, the HTML tags that you put around words
make them look a certain size, character, color, and font. If we want to
make the word “and” in a file appear in italics as and, we would place an
opening and closing set of italic tags around it: <i>and</i>. Additionally,
HTML can position these words on a website relative to other words and
images; one could make the words and sentences span all the way across
the page, put them in columns, or wrap them around an image.

The other great thing about HTML is the way it allows us to make links
from one document to another document with such ease. This is perhaps

the most defining feature of HTML. In traditional print materials, we
could see that a writer was referencing a certain source with the use of
formal MLA, APA, and CBE citation styles, and we could also be referred
to an additional insight provided by a footnote at the bottom of a page,
but we never really “go” to another page or source. HTML changed this
and provided us with options to link to other sources that were available
to us.

However, HTML has its limitations. We could produce these hypertext
documents for the Internet so all with access to them could see them, but
these documents were rather static in regard to their information or data.
However, this is not the case with XML. While HTML is about typesetting
text and images, XML is about identifying, separating, and recombining
specific data that we might need for our own purposes. With XML, we can
employ software that would allow us to search and retrieve specific data
we are looking for if this data has been marked or coded in XML.

XML allows us to locate and extract or point to specific pieces of data
that might exist in a large database or a website. In HTML, we cannot be
very precise about the data we are trying to locate. In XML, we can create
our own tags for the kinds of specific information we think is import-
ant and then reuse these tags for different purposes. We can also exchange
this information with others with much more efficiency. If we just used
HTML for our information, the best we can do is say something like
“Go to the link on this website, look around for awhile, and find what you
need.”

When parts of a larger document have been coded using XML and
they exist in an external source such as an organization’s database, we can
locate the specific parts or sections of the document and reuse them
for more specific purposes. This does not work well with HTML. XML is
sometimes referred to as an object-oriented language because the docu-
ments that are stored in external databases are often referred to as objects.
When you produce an XML document, you are singling out or referring to
these objects and using them as you need to for whatever project you are
working on.

Unlike HTML, XML allows us to design our own markup tags. In the
HTML example above, italics are marked with the <i> tags. This is an
HTML tag that all browsers recognize and HTML professionals have used
since the earliest days of the World Wide Web. However, we cannot define
specific HTML tags for our own needs. In XML, if we want to mark up
the “summary” sections of documents, or designate the “average tempera-
ture recorded in the city of Orlando in March,” we could designate tags
such as <summary> or <average_temperature_March_Orlando> tags. Note
that we are not quite contrasting the same kinds of tags above because the
italics tags used in HTML are for formatting text while the “summary” and
“average temperature in a city in March” tags are for describing specific
information or data. XML is about designating content, and HTML is about
how the content is to be arranged and how it looks.

42 Introduction to XML

XML Declarations

You should start an XML document with an XML declaration. The
following is the simplest form of a declaration:

<?xml version=”1.0”?>

The reason you should use a declaration is to indicate that the document
you are producing is an XML document and that the software that will be
processing your files, such as a browser, will properly read it as such. This
declaration is also saying that the XML version you are using is 1.0.

You can also add other instructions such as a standalone attribute:

<?xml version=”1.0” standalone=”yes”?>

You would use this to signify that the document you have written can stand
by itself, that it is complete, and that it is not necessary to import other
files outside this document. There is other information that you can add
between the <? and the ?> tags that will be read as processing instructions.
For example, style sheets are processing instructions that “tell” the software
how your XML encoded information is to look on a screen. Style sheets
will be covered in Chapter 4.

Elements

Elements are the basic coding units for XML documents. An element consists
of tags that describe the actual information itself. For example,

<birthday>July 27, 1980</birthday>

is a complete element. The tags are <birthday> and </birthday>, and they
label and characterize the information: July 27, 1980. Also, the closing tag
is different from the opening tag in that it must include a forward slash or
“/” before the name you have chosen to describe the information.

To choose a proper name, you have to start with a letter or an underscore
character (“_”). Within the name you can use letters, numbers, underscore
characters, hyphens (“-”), or dots (“.”). Spaces between any of these letters,
numbers, underscores, hyphens, or dots in the names you choose to represent
information are not allowed; this violates the syntax rules of XML. You
can put underscores between words so they make semantic sense as we do
in the example, <average_temperature_March_Orlando>. We discuss other
semantic naming strategies in Chapter 3 and naming strategies for coding
in Chapter 6.

When you design XML element tags, you can use upper case letters, lower
case letters, or you can mix them up. For example, you could use <DATE>,
<date>, or <Date>. However, once you have decided on a tag, it must be
written out consistently in the document. For example, using <birthday> as

Introduction to XML 43

the opening tag and closing with </Birthday> will not work. You can get
away with mixing up the case of letters in HTML, but not in XML. We
will use various mixtures of lowercase and uppercase element names in the
XML examples used in this book, but the opening tags and closing tags
must always use the same patterns for case.

Organizing Elements

When organizing elements, they need to be properly nested. This means
that if you code an opening element, and then code another element that
follows, the second element must be closed off before closing off the first
element. This is illustrated in the following example:

<personal_information>
<birthday>July 27, 1970</birthday>
</personal_information>

The second element, <birthday>, is closed off before the first element,
<personal_information>, is closed.

Root Elements and Hierarchies of Elements

All XML documents have one root element, which is the element that
contains all of the other elements. In the simple example below, the root
element is “person.”

XML is written in a tree form where there is a hierarchy of elements with
some elements nested within other elements. The nested elements are called
“child” elements, and they are nested or encapsulated within “parent”
elements. There is not a limit on the size of an XML document; it can have
as many parent and child elements as the situation requires.

<person>
<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>

<spouse>Donna Raymond</spouse>
<daughter>Jennifer Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>

</immediate_family>
</person>

The hierarchical tree for the XML code that represents the personal
information for John Raymond is represented in Figure 2.1.

44 Introduction to XML

Note how this tree visually illustrates the organization rules we have
discussed so far. All of this information is nested under one root element,
“Person,” and there is one parent element, “Immediate Family,” that
represents certain family members that are its child elements: “Spouse,”
“Son(s),” and “Daughter(s).” These three child elements are encapsulated
within the parent element.

To be able to show up on a browser or other kind of interface, XML
must usually be “well formed” which means that it must conform to the
syntactic rules governing elements and other XML content. If we used the
closing tag </immediate family> above without an underscore character
between “immediate” and “family,” our XML code would not be well
formed and would not work.

When XML code is “well formed,” this means something different than
when XML code is “valid.” Being valid means that all of the elements in
an XML coded document have to conform to a “DTD.” We will discuss
DTDs later in this chapter.

Writing Comments

Sometimes it helps to be able to make some comment in the middle of the
XML code that you are writing, but this is not information that you want
to be represented on the screen as it is not part of the essential information
your document was designed to provide. Any comment written between a
“<!—” and an “—>” will only show up if you look at the actual XML code
itself, not on a display screen such as a browser.

For example, if someone who produced the code wanted to leave a name
in case someone like a fellow employee could contact him or her later if
there were any questions, this person could write the following comment:

<!—written by J. Keller->

Here is how it looks in some code:

Introduction to XML 45

Immediate familyName

Spouse Son(s) Daughter(s)

Person

Birthday City of birth State of birth

Figure 2.1 Personal Information Hierarchy

<personal_information>
<birthday>July 27, 1970</birthday>
<!—written by J. Keller—>
</personal_information>

Now we know that “J. Keller” was the one who wrote this. Comments like
this can be inserted anywhere between elements in XML code.

Text Editors

As with HTML, when you write XML code, you will need a text editor. A
text editor will allow you to save a file in plain text. This means it will not
add any extraneous code to the code you write, and, therefore, the software
that will eventually read your work will not be confused, so to speak.

There are many free text editors available. Perhaps the most popular is
Microsoft® Notepad. We also recommend more robust text editors with
syntax highlighting and other useful features, such as EditPlus, on the
resources section of our website.

XML Parsers

A tree-based type of XML editor is even better suited to composing XML.
Because the most minor error in XML will keep it from being read by
whatever software you are using, it is a good idea to use an XML editor
because it will more readily alert you to a problem you might have in your
code. Additionally, most text editors use varying colors for different parts
of your code and indent the code you produce to show how some elements
are nested within other elements. Many XML editors, such as Microsoft®

XML Notepad, are also free.

Other Software for Displaying XML

The most common software programs for displaying XML coded documents
in raw form are most likely browsers such as Microsoft Internet Explorer®

or Mozilla Firefox®. When you see the XML code displayed in raw form
in these browsers, it will look very much like the XML you coded using a
text editor without any distinguishing design features; it will still have the
XML tags in place around the information in your XML coded document
and you will not see any aesthetic features such as attractive fonts or
thoughtfully employed white space used to separate different bodies of
information. To format your XML code in a fashion that makes it look
like you really want it to, you have to pair it with eXtensible Style Sheet
Language Transformations (XSLT) code or a CSS style sheet, and this is
something we will cover later on in Chapter 4.

Web browsers are not the only kind of software that will allow code to
display properly. For example, some organizations have their own XSLT

46 Introduction to XML

coding that allows for the information in your code to show up in a table
or nicely rendered print document. For our purposes in this chapter, we
will be displaying XML without any XSLT coding.

Writing and Viewing an XML Document

Now it is time to make a basic XML document and then view it using a
Web browser. There are many kinds of software that will open up an XML
document as described directly above, and we are just using a Web browser
as virtually every computer has at least one. Below is a simple XML
document. Open up Notepad or EditPlus and type in the following
information.

<?xml version=”1.0” standalone=”yes”?>
<hello>
Hello world!
</hello>

After you have done this, you need to save this file. To do this properly,
you need to save it as an XML file, or with an XML extension (.xml). Please
follow these directions:

1. Pull up Notepad.
2. Go to “File” in the upper left hand corner of the Notepad screen, then

hit “Save”.
3. Make sure that you get rid of any information in the “File name” box

that is already there such as “*.txt”. This box should be empty.
4. In the file name box, type in “hello.xml”. Make sure that in the “Save

as type” box that it says “Text Documents”.
5. Following this, hit the “Save” button in the lower right hand side of

the Notepad screen. Make sure you save it in a place where you can
find it. If you are using Microsoft Windows®, you can save it to the
desktop.

6. Pull up a browser such as Microsoft Internet Explorer®.
7. Go to “File” in the upper left hand corner, and depending on whatever

browser you have chosen, choose “Open” or “Open file”. Find your
file and click on it.

You should see the XML displayed as shown in Figure 2.2.
As you can see, the browser is showing the XML code you wrote. If you

want to see how this code looks with some simple style information, you
need to add a little more XML code. You will also need to add a cascading
style sheet (CSS) by producing the following file in an editor and saving it
in the same file as your “hello.xml” document:

hello {display: block; font-size: 30pt; font-weight:
bold;}

Introduction to XML 47

Save this file separately as “hello.css”, and then add the following line to
your hello.xml document: <?xml-stylesheet type=“text/css” href=“hello.
css”?>. Thus, we have the following code:

<?xml version=”1.0” standalone=”no”?>
<?xml-stylesheet type=”text/css” href=”hello.css”?>
<hello>
Hello world!
</hello>

Save this as “hellostylesheet.xml” to differentiate it from the “hello.xml”
document.

After saving this file, pull it up again and you will see how it will allow
you to produce text in a browser without the surrounding XML tags (see
Figure 2.3).

Now you see “Hello World!” without the XML tags because we added
simple style sheet instructions. CSS will be covered in more depth in Chapter
4, and for the rest of this chapter we will not be employing them in our
code.

Using Attributes in Elements

As mentioned previously, one of the strengths of XML is that we can
carefully define our information by the way we choose to name our elements.
We can even give our elements greater specificity by adding attributes within
an element.

48 Introduction to XML

Figure 2.2 Hello World

For example, here is one way of capturing the following information with
XML elements:

<person>
<gender>male</gender>

<name>John Raymond</name>
</person>

We could also capture the same information by adding the attribute of
gender to the person element:

<person gender=”male”>
<name>John Raymond</name>

</person>

One advantage of doing this is that we can reduce the complexity of our
element tree. We still can note that John Raymond is a male, but with fewer
tags. Because we are using an attribute in the opening tag, “gender=‘male’”,
we do not have to put it in the closing tag, “</person>”.

If we wanted to be able to distinguish different currency types when using
XML code to designate the cost of something, we could write:

<cost_currency=”dollars”>250</cost>

or

<cost_currency=”pounds”>250</cost>

Introduction to XML 49

Figure 2.3 Hello World with Style Sheet

A document that we have stored in an XML database could be further
distinguished by the group of people it was originally sent to:

<memo_distribution=”all”>

or

<memo_distribution=”accounting department”>

In the example directly above, “memo” is the element name, “distribution”
is the attribute name, and “accounting department” is the attribute value.
The attribute value always needs to be in quotes. In this case, we might use
one of the memo with attribute tags such as the ones above as a root element
and have other elements nested within it.

When naming attributes, the same rules apply as for naming elements
properly. For example, an attribute name can only start with an underscore
or a letter.

An element can contain more than one attribute, but you cannot have
more than one attribute with the same name. If you use child elements, this
is not the case. In the “Root Elements and Hierarchies of Elements” section
above, you can see that the <son> element was used twice because in this
example, there are two sons in the Raymond family.

As a general rule, attributes are best for self-referencing metadata, or
metadata about particular elements. One can go into the code and see
precisely what was meant by the element when there is an attribute. In the
memo example above, we can tell by looking at the tags that it was sent to
either “all” or to the “accounting department.” We can also see that the
“250” between the <cost_currency> tags are in dollars, not pounds or yen.

Empty Elements

Empty elements are used when you want to include information that does
not have any text between the element tags but still needs to be included
in the XML code to make it valid. Often it is used for images such as jpegs
or gifs. For example, if you wanted to mark a place in your XML coding
for an image of the Declaration of Independence, you would need to use
the following empty element:

<image filename=”Declaration_of_Independence.jpeg”/>

In this example, there is no need for closing tags. All we need is a name
that describes what we want to include, “image filename”, an equals sign,
then the name of the graphic in quotes. In an empty element, you need to
add a forward slash “/” before you close it off. To actually embed the image
of the actual Declaration of Independence, we would have to use some other
information that will be covered later when we discuss “unparsed entities.”

50 Introduction to XML

Special Symbols

There are five symbols that you cannot write out in XML as you normally
would. Instead, you have to write them out in the following manner:

• A left angle bracket or less than sign (<) needs to be written out as <
• A right angle bracket or greater than sign (>) needs to be written out

as >
• An ampersand (&) needs to be written out as &
• A single quote or apostrophe (‘) needs to be written out as '
• A double quote (“) needs to be written out as "

The following would not work:

<restaurant>Jake’s Place</restaurant>

Instead, here is what you would write:

<restaurant>Jake's Place</restaurant>

There is only one ampersand in the text of the Declaration of Independence,
and if we were to code it properly, the following would not work:

cruelty & perfidy

Instead, we would write the following:

cruelty & perfidy

DTDs

In the previous sections we discussed how elements can be designed and
organized in an effort to represent the information we want in an XML
document. In these exercises, we did not base a code on an established DTD.
However, it is generally better to have a DTD associated with your XML
coding as it will better allow you to:

• view and more easily understand the basic structure of a body of data
without looking at the actual data itself,

• construct standardized applications using XML documents,
• practice single sourcing by reusing and recombining parts of many

documents,
• challenge people in an organization to write their XML code to conform

to one well-designed structure,
• and enable professionals to better exchange XML documents with each

other.

Introduction to XML 51

When the organization of your XML elements conforms to the structure
of the DTD you or someone else defined, it is considered “valid.” Note that
this is different than being “well formed,” which we mentioned earlier in
the chapter. To be well formed, an XML coded document needs to conform
to the basic syntactic rules of element design that we have already described.
For example, a document that does not use “&” for an ampersand or
does not properly close off elements would not be well formed. A document
can be well formed, but not be considered valid, because the elements in it
do not conform to the structure of a DTD.

This section will illustrate how DTDs specify the elements that will be
allowed in documents and how these elements need to be related to one
another. It is important to understand that DTDs contain no empirical data
or information that might be needed; they contain only metadata, or data
describing other data. For example, DTDs never house information such as
the birthday or birthplace of a specific person. Instead, DTDs show us how
to model knowledge and what is in fact the allowable information structure
for an XML document. A DTD will not tell us about specific birthdates
and birthplaces, but it can tell us that there is a place to include birthdates
and birthplaces in a specified XML coded document with properly arranged
elements. Valid XML code contains all the designated elements in the order
required by the DTD. It forbids tagged elements that are not declared in
the DTD, and a DTD describes the hierarchical structure that XML elements
must adhere to so it can be read by an XML parser.

XML parsers in most Internet browsers and other software not necessarily
related to the Internet will be able to search and represent specific data coded
in XML. This is not the case for information that is coded in HTML code.
In HTML, you might be directed to a website that has a large document in
it, whereas XML will allow you to find one particular part of a document
and extract it and use it for your own purposes. You will learn how to use
some of these extraction techniques using associated XML technologies like
XML Path Language (XPath), XLink, and XPointer in Chapter 5.

In HTML, you might be able to find an entire table of data, whereas if
something is coded in XML, you can find and extract information in a
specific cell in a table, say the data for rainfall in a specific city in a specific
month. Browsers will be able to focus on the hierarchical structure
designated by the DTD which lays out the strict syntactical ground rules
for a specific application. The DTD prescribes and efficiently organizes the
data in a document so they can be properly read or parsed by browsers and
other forms of software.

For a simple memo, we might want to include in our DTD the elements
such as author, addressee, subject, date, and text as these are the standard
organizing features of this traditional business document:

<!ELEMENT memo (author, addressee, subject, date, line+)>
<!ELEMENT author (given_name, family_name)>
<!ELEMENT given_name (#PCDATA)>

52 Introduction to XML

<!ELEMENT family_name (#PCDATA)>
<!ELEMENT addressee (given_name, family_name)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT line (#PCDATA)>

The DTD demands a strict hierarchy, and this is similar to how the elements
described in the previous section describe information and how it should
be nested in other information. For example, in this DTD, “memo” is the
root element and “author”, “addressee”, “subject”, “date”, and “line+”
reside under the memo element. Also, the “given name” and “family name”
of the “authors” and “addressees” is embedded under the author and
addressee elements.

In a DTD, the required elements must be named within “<!ELEMENT”
and “>” code, the opening and closing tags.

The #PCDATA code that follows each named element stands for “parsed
character data.” PCDATA is data content and needs to be represented in
alphanumeric characters which can include spaces along with entities such
as “&”. It is content data that the XML document holds and does not
include any XML markup. The plus sign “+” that follows the designated
element “line” in the first line of code above means that for a memo coded
in XML that conforms to this DTD, there must be a least one line, and
there could be more.

DTDs declare which elements must be in a document and the order in
which these tags need to be embedded inside one another. In essence, they
allow us to “say” things like “First you must designate that this is a memo.
Then you must provide the author’s name, but you do this in the following
order: given name, then family name. Following this, you do the same for
the addressee’s name in the same order: given name, then family name.
Continuing on, you must provide the subject, date, and the actual line or
lines of the memo, and these three bodies of information must follow in
this order and are separate from one another.”

XML code that contains the actual information in a database such as
“John Raymond” needs to follow the arrangement set by the DTD that
defines the arrangement of a database’s information. Below is some XML
code using properly nested elements that would be used to store actual
information in a fashion that would be considered valid by the hierarchy
indicated by the DTD above:

<memo>
<author>

<given_name>Condoleezza</given_name>
<family_name>Rice</family_name>

</author>
<addressee>

<given_name>Colin</given_name>

Introduction to XML 53

<family_name>Powell</family_name>
</addressee>
<subject>Speech</subject>
<date>September 22, 2001</date>
<line>Please read the speech the President will give
tonight.</line>
<line>It might surprise you.</line>
</memo>

Between the XML tags above we have actual textual content that is stored
as data and can be extracted as information for a specific purpose. We know
that this memo has been addressed to Colin Powell, and we can see that it
was authored by Condoleezza Rice. We can see that the subject is Speech,
and that the date is September 22, 2001.

Note the plus sign “+” that follows the designated element “line” in the
first line in the DTD code above: <!ELEMENT memo (author, addressee,
subject, date, line+)>. This indicates that for a memo coded in XML that
conforms to this DTD, there must be a least one line. In this very short
memo there are two lines that are separated by: “Please read the speech the
President will give tonight” and “It might surprise you.” The “+” allows
us to add as many lines as we want.

Rules for Designing DTDs

DTDs are templates that list all of the elements that need to be in an XML
document and how they are arranged or embedded relative to one another.
Again, a DTD does not contain any real information that one might be
looking for in a search; it is a structure that describes how the elements of
information are to be arranged.

As you can see in the DTD for the memo example above, the first line is,

<!ELEMENT memo (author, addressee, subject, date,
line+)>

What this first line is saying is that the root element of a document in this
specific database must be <memo>, and that between the <memo> and
</memo> tags, there also has to be opening and closing author tags,
addressee tags, subject tags, date tags, and line tags. The comma “,” that
separates each of these items indicate that the XML coded elements in this
line must follow this order.

We can also see from this DTD that there must be both <given name>
and <family name> tags nested under both the author tags and the addressee
tags:

<!ELEMENT author (given_name, family_name)>
<!ELEMENT given_name (#PCDATA)>

54 Introduction to XML

<!ELEMENT family_name (#PCDATA)>
<!ELEMENT addressee (given_name, family_name)>

In the fourth line that designates “addressee”, we do not have to follow
with the “given name” and “family name” declarations like we did with
“author” because we have already described them under “author” and noted
that they contain (#PCDATA). The XML parsers in the software that you
use will recognize these two declarations.

We also need a few remaining elements for our XML coded documents
to still be valid given this DTD, but they do not have any other elements
embedded within them. The required elements are subject, date, and line:

<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT line (#PCDATA)>

The lines that do have (#PCDATA) in them are ones that describe elements
that will have data embedded in them. For example, “Speech” is information
that can be typed between <subject> and </subject>, and “September 22,
2001” can be typed in between <date> and </date> elements because of the
(#PCDATA) code. In the lines of the DTD above that do not have
(#PCDATA) included, textual information cannot be included; these lines
only describe how elements should be organized. In the element above,
<!ELEMENT author (given_name, family_name) >, it tells us that the parent
element is “author” and that there are two child elements, “given_name”
and “family_name” that should be embedded within the “author” element.
However, there is no (#PCDATA) in this line. This can also be said for the
root element, memo, which contains no (#PCDATA).

In a previous example before the memo example directly above, we used
the following information to describe a body of information that captured
what we wanted to know about a “person”:

<person>
<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>

<spouse>Donna Raymond</spouse>
<daughter>Jennifer Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>

</immediate_family>
</person>

Introduction to XML 55

The DTD for this example would be:

<!ELEMENT person (name, birthday, city_of_birth,
state_of_birth, immediate_family)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (spouse*, daughter*, son*)>
<!ELEMENT spouse (#PCDATA)>
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT son (#PCDATA)>

Note that in the line that describes the need for the “person” root element
and the line that describes the “immediate family” element line, there is no
(#PCDATA) coding. This line of coding only tells us what elements must
be nested under it.

The asterisk “*” symbol that follows “spouse”, “daughter”, and “son”
in the DTD above symbol specifies zero or more occurrences of an element.
In this case, it means that if in fact the person being described does not have
a spouse, son, or daughter, that this is not something that will be coded in
the XML elements and is in fact still valid. To generalize, the asterisk sign
means that an element can appear once or not at all. It can also indicate,
as in the case of sons and daughters, that there can be more than one of
these particular elements in valid XML elements.

We could rewrite the DTD above using the pipe or “|” sign if we wanted
to designate that only one of the two elements listed in the DTD can show
up. For example, if we wanted to designate that either the wife or husband
be designated as opposed to spouse, this would be a more accurate way of
capturing the specifics of a person’s personal data. Instead of,

<!ELEMENT immediate_family (spouse, daughter, son)>,

we could write,

<!ELEMENT immediate_family (wife | husband, daughter,
son)>.

When the code shows up on a screen for viewing, it would designate that
the person named was either the wife or husband of the person named, not
just the spouse.

If we wanted to indicate in our DTD that there is an element that does
not necessarily have to be included in XML coded information, we would
put a question mark “?” behind it. For example, if we had an ELEMENT
in the code above for “ethnicity”, a piece of data that is oftentimes not filled

56 Introduction to XML

out on forms by people for personal or political reasons, we could code our
first DTD line like this:

<!ELEMENT person (name, ethnicity?, birthday, city_of_birth,
state_of_birth, immediate_family)>

Table 2.1 shows the syntax options for designating the number of children
in the <!ELEMENT > tags of a DTD.

Combining Document Type Declarations, Document Type
Definitions, and XML Coded Information

Now we will code a basic XML file with a document type declaration that
designates a specific DTD that our XML code will be validated against. To
be clear, a document type declaration is not the same thing as a document
type definition or DTD, which we have covered above. This might sound
confusing, but this is something that needs to be understood as this is part
of the XML universe.

In this example, we are going to declare an internal DTD with our
document type declaration. This means that we are going to indicate what
specific DTD we want our XML code to be validated against. It is a way
of our asking if the actual code we produced measures up to the rigor of
the DTD we originally designed.

Now we are going to add an XML declaration that we covered in a
previous section. For this document it will be “<?xml version=“1.0”
standalone=“yes”?>”.

In addition, we have to add a document type declaration that will
specifically designate the DTD that our XML code will have to be validated
against. Here are the basics of a document type declaration:

<!DOCTYPE memo [
]>

The “!DOCTYPE” is telling the parser that this is a document type
declaration, and that the root element of the DTD that it is referring to is
“memo.” Between the brackets “[]”, we put the DTD that we have designed
that tells us in our memo example just what elements belong and how they

Introduction to XML 57

Table 2.1 Syntax Options for Child Elements

* Can have zero or more children
+ Can have one or more children, but, if it does, it must only occur once
? Does not have to occur at all
| Either one or the other, but not both

should be ordered. Taking the group of DTD <!ELEMENT> tags from
above, we would have:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE memo [
<!ELEMENT memo (author, addressee, subject, date, line+)>

<!ELEMENT author (given_name, family_name)>
<!ELEMENT given_name (#PCDATA)>
<!ELEMENT family_name (#PCDATA)>
<!ELEMENT addressee (given_name, family_name)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT line (#PCDATA)>

]>

Next we want to add the XML coded data to complete our XML file. Again,
taking from above and adding our data to the DTD, our complete XML
document would look like this:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE memo [
<!ELEMENT memo (author, addressee, subject, date, line+)>

<!ELEMENT author (given_name, family_name)>
<!ELEMENT given_name (#PCDATA)>
<!ELEMENT family_name (#PCDATA)>
<!ELEMENT addressee (given_name, family_name)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT line (#PCDATA)>

]>
<memo>

<author>
<given_name>Condoleezza</given_name>
<family_name>Rice</family_name>

</author>
<addressee>

<given_name>Colin</given_name>
<family_name>Powell</family_name>

</addressee>
<subject>Speech</subject>
<date>September 22, 2001</date>
<line>Please read the speech the President will give
tonight.</line>
<line>It might surprise you.</line>

</memo>

58 Introduction to XML

Save this file as a text file, and make sure you add an .xml extension to it.
Name it “memo1.xml”. You should also note that we added one extra line
to our XML file. Next, pull this up in a browser or an XML Editor.

If you go to “View”, then to “Source” in Microsoft Internet Explorer®,
you will see not only what you see in the Figure 2.4, but also the DTD that
we wrote for this memo.

External DTDs

In the XML document above, everything we needed was provided in
the same file: the document type declarations, DTDs, and XML coded
information. This is why we wrote in the XML declaration that it was a
standalone document. We did this when we wrote “yes” after “standalone”.
However, it is possible to designate a DTD that is stored as a separate file
on a hard drive, and thus it would not be combined in the same document
declarations and XML coded data we wrote above in the “standalone”
document. This separate DTD could also be stored on an Internet server.
To do this we have to make an external DTD file.

First, we have to save the following DTD that was presented before in
an editor such as Notepad, but instead of a .txt extension that we would
use for text file, or an .xml extension we would use for XML data, we need
to save our file with a .dtd extension so that the software we will be using
will know that this is in fact a DTD. Type in the following DTD in an editor
and save it as “memo1.dtd”.

Introduction to XML 59

Figure 2.4 Standalone Memo

<!ELEMENT memo (author, addressee, subject, date,
line+)>
<!ELEMENT author (given_name, family_name)
<!ELEMENT given_name (#PCDATA)>
<!ELEMENT family_name (#PCDATA)>
<!ELEMENT addressee (given_name, family_name)
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT line (#PCDATA)>

Now we will produce the same XML document with the same elements
and attributes, but we will be using a reference to the “memo1.dtd” in the
document type declaration that we just constructed rather than an internal
DTD.

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE memo SYSTEM ”memo1.dtd”>
<memo>

<author>
<given_name>Condoleezza</given_name>
<family_name>Rice</family_name>

</author>
<addressee>

<given_name>Colin</given_name>
<family_name>Powell</family_name>

</addressee>
<subject>Speech</subject>
<date>September 22, 2001</date>
<line>Please read the speech the President will
give tonight.</line>
<line>It might surprise you.</line>

</memo>

Save this file as written above as “memo1standalone.xml”. In this file, we
changed just two things. We changed the XML declaration from

<?xml version=”1.0” standalone=”yes”?>

to

<?xml version=”1.0” standalone=”no”?>

We also changed the document type declaration (not to be confused with
a DTD) to

<!DOCTYPE memo SYSTEM ”memo1.dtd”>

60 Introduction to XML

We got rid of all of the <!ELEMENT> tagged data, and added,

SYSTEM ”memo.dtd”

The inclusion of the word SYSTEM asks the software we will be using to
refer to the “memo1.dtd” we have stored in the same file. If you open the
“memo1standalone.xml” file in Microsoft Internet Explorer®, it should
have the same XML content displayed as the “memo1.xml” document.

External DTDs on a Website Server

We can also place a DTD on a server on the Internet and refer to the URL
where it has been placed. For example, we placed the “memo1.dtd”
document on this book’s accompanying website as a file, and in the coding
below, you can see that we referred to the URL after SYSTEM. The title
for the document below is “memo1.xml”.

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE memo SYSTEM ”www.rhetoricalxml.com/ch2/memo1.dtd”>
<memo>

<author>
<given_name>Condoleezza</given_name>
<family_name>Rice</family_name>

</author>
<addressee>

<given_name>Colin</given_name>
<family_name>Powell</family_name>

</addressee>
<subject>Speech</subject>
<date>September 22, 2001</date>
<line>Please read the speech the President will
give tonight.</line>
<line>It might surprise you.</line>

</memo>

The advantage of this external file approach is that you can have easy access
to the DTD, and anyone who might also be working with you can access
this DTD by just referring to a website where it was stored. We have already
pointed out that making a DTD available to a group of people allows for
an organization to have a model for a well-designed document. Again, if
you pull this up in Microsoft Internet Explorer®, it will look the same as
the “memo1standalone.xml” and “memo1.xml”.

Including Simple Attributes and Attributes with Unique Values

Earlier we described some simple attributes, which we likened to metadata
for elements. We can also use attributes in DTDs to better represent the

Introduction to XML 61

information we are coding. Below is a DTD followed by some XML coded
data that does not contain any attributes.

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE person [

<!ELEMENT person (year_recorded, number_of_immediate_family_
members, name, birthday, city_of_birth, state_of_birth,
immediate_family)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_members,
spouse, daughter+, son+)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ELEMENT spouse (husband | wife)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT son (#PCDATA)>
]>
<person>

<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>

<number_of_immediate_family_members>
5
</number_of_immediate_family_members>
<spouse>

<wife>Donna Raymond</wife>
</spouse>
<daughter>Jennifer Raymond</daughter>
<daughter>Ashley Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>

</immediate_family>
</person>

Save this, the DTD and the XML code above, as “immediatefamily.xml”.

62 Introduction to XML

In Figure 2.5, Donna Raymond shows up as the “wife” of John Raymond.
In the DTD above, note the elements that we used to describe the gender
distinctions for spouses:

<!ELEMENT spouse (husband | wife)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>

The pipe element “|” in this DTD dictates that if there is a spouse, there
must be just one, and that it will be either a husband or wife. We can replace
the three line part of the DTD above with a reconfigured <!ELEMENT>
line that we see in the first line below, followed by an attribute, which is
the second line below:

<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >

To write an attribute for a DTD, we start with “<!ATTLIST” tag, then
we follow it with the name of the tag that will identify the additional
information. In this case it is “spouse id”. We need to follow this with the
value or values which will be “husband” or “wife,” and we will use the
pipe “|” symbol again to distinguish them. You can think of the pipe symbol
as the “or” in “husband or wife.” Then we will follow with “#IMPLIED”
to say that there does not necessarily have to be a husband or wife for the
“person” we are describing, and close it off with a “>”.

Introduction to XML 63

Figure 2.5 “Immediatefamily.xml” in Microsoft Internet Explorer®

We could also rewrite the following line from the DTD above,

<!ELEMENT number_of_immediate_family_members (#PCDATA)>

and replace it with the following:

<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED>

The reason we added “#REQUIRED” is that we needed to indicate that
this piece of data cannot be omitted in the XML document. We could omit
the husband and wife information because perhaps there was an immediate
family, but maybe the parents in the family were divorced or one of them
had passed away, and this is why we used the #IMPLIED attribute. Also
note that we are using CDATA attribute type which tells us that the attribute
values will not have any quotation marks (“”), less than signs (<), or
ampersands (&). CDATA stands for character data.

We can also add additional information using the #FIXED attribute that
is different than “#REQUIRED” or “#IMPLIED” attributes:

<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>

The code that shows up as a #FIXED attribute needs to be present in a
DTD even though all it is telling us is that all of the data for this file was
acquired in 2006 and no other year. When one reviews this DTD that has
this particular piece of information, it does state to the people who originally
designed the DTD or people who are adding to it that all of the data for
this “person” DTD was acquired and coded for the year 2006. This fulfills
the original goal of adding some attributes that provide to professionals
some more information about the data’s elements. Who knows, the
Raymond family might have had a new family member added after this
year, so knowing that this data might be dated is of value. Additional uses
of fixed attributes might include XML code written for a company intranet
that would state the name of the company and/or the division within the
company.

What follows is the revamped version of the XML document above with
attributes:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE person [
<!ELEMENT person (year_recorded, name, birthday,
city_of_birth, state_of_birth, immediate_family)>
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthday (#PCDATA)>

64 Introduction to XML

<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_
members, spouse, daughter+, son+)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED >
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT son (#PCDATA)>
]>
<person>

<year_recorded>2006</year_recorded>
<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>
<number_of_immediate_family_members>5</number_of_
immediate_family_members>
<spouse>
<wife>Donna Raymond</wife>
</spouse>
<daughter>Jennifer Raymond</daughter>
<daughter>Ashley Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>
</immediate_family>

</person>

Save this file as “immediatefamilyattributes.xml” and view it using Internet
Explorer®. Then select the “View Source” option in the browser and you
can see the altered DTD with the attributes that reveal more about the
specific nature of the XML coded data.

Defining Attributes with Unique Values using ID Attributes

Sometimes we might have a large XML database with some values that are
identical and we will need to differentiate between them. In the examples
above, we might have more than one John Raymond in our database, and,
therefore, we will need to designate between all of the “John Raymonds.”
We could also use designations that suggest unique values for information
such as customer codes; we could designate customers who have the same
first and last name as separate pieces of data.

Introduction to XML 65

Relational database systems handle the potential problems of data duplica-
tion by using what they define as a “primary key” for each individual row
or record in a database. In XML, we can use a similar approach. To do
this, we would add “ID” to reference a particular value that we do not
want to repeat in the database, one that is unique. Using the ID attribute
does not work with a #FIXED designation. Usually, it is associated with
#REQUIRED attribute, but it can also work with the #IMPLIED attribute.

In the “person” DTD example we have been using, we are going to use
the ID attribute for only the following elements: name, spouse (husband or
wife), daughter, and son. Here is how they would now be coded:

<!ELEMENT name (#PCDATA)>
<!ATTLIST name id ID #REQUIRED>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id ID (husband | wife) #IMPLIED >
<!ELEMENT daughter (#PCDATA)>
<!ATTLIST daughter id ID #REQUIRED>
<!ELEMENT son (#PCDATA)>
<!ATTLIST son id ID #REQUIRED>

Now we are going to add some specific designations to the XML coded
elements in the “person” file. The attribute value must follow the conven-
tions of XML; it can be anything we would like as long as we use only
alphanumeric symbols (letters or numbers) without any whitespace between
them. Use an underscore “_” if you do want to use an attribute value that
would normally have whitespace between letters, words, or numbers.

<name ID=”ra01”>John Raymond</name>
<wife ID=”ra02”>Donna Raymond</wife>
<daughter ID=”ra03”>Jennifer Raymond</daughter>
<daughter ID=”ra04”>Ashley Raymond</daughter>
<son ID=”ra05”>Jeffrey Raymond</son>
<son ID=”ra06”>Casey Raymond</son>

Putting it all together in a standalone XML document with these changes
in the DTD and XML code, we would have the following file:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE person [
<!ELEMENT person (year_recorded, name, birthday,
city_of_birth, state_of_birth, immediate_family)>
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name id ID #REQUIRED>

66 Introduction to XML

<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_members,
spouse, daughter+, son+)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED >
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT daughter (#PCDATA)>
<!ATTLIST daughter id ID #REQUIRED>
<!ELEMENT son (#PCDATA)>
<!ATTLIST son id ID #REQUIRED>
]>
<person>

<year_recorded>2006</year_recorded>
<name ID=”ra01”>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>

<immediate_family>
<number_of_immediate_family_members>5</number_of_immediate_
family_members>

<wife ID=”ra02”>Donna Raymond</wife>
<daughter ID=”ra03”>Jennifer Raymond</daughter>
<daughter ID=”ra04”>Ashley Raymond</daughter>
<son ID=”ra05”>Jeffrey Raymond</son>
<son ID=”ra06”>Casey Raymond</son>

</immediate_family>
</person>

Save this file as “immediatefamilyattributesid.xml” and review it in
Microsoft Internet Explorer®.

IDREF Attributes

IDREF attributes work, to some extent, like the links we find in HTML
documents. They illustrate in the <!ELEMENT> tags specific relationships
between some or all of the elements you have defined. We might want to
provide information that links sets of information together. In the example
we have been using, we could use IDREFs to link up the entire Raymond

Introduction to XML 67

family. The IDREFs must refer to the ID attributes that are already defined
in the same DTD. You can have some of the IDREFs refer to more than
one ID attribute.

IDREF attributes allow us to see the metadata of some of the relationships
that might not show up in the tree structure when we view the document
through XML software. The relationships can be viewed in the source code
that you see using Notepad and in a browser. Below is the coding with
IDREFs integrated into the <!ELEMENT> tags:

<!ATTLIST name id ID #REQUIRED>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_members,
spouse, daughter+, son+)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED >
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT daughter (#PCDATA)>
<!ATTLIST daughter id ID #REQUIRED mother IDREF #IMPLIED
father IDREF #IMPLIED>
<!ELEMENT son (#PCDATA)>
<!ATTLIST son id ID #REQUIRED mother IDREF #IMPLIED father
IDREF #IMPLIED>
]>
<person>

<year_recorded>2006</year_recorded>
<name ID=”ra01”>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>
<number_of_immediate_family_members>5</number_of_
immediate_family_members>

<wife ID=”ra02”>Donna Raymond</wife>
<daughter ID=”ra03” mother=”ra02” father=”ra01”>
Jennifer Raymond</daughter>
<daughter ID=”ra04” mother=”ra02” father=”ra01”>
Ashley Raymond</daughter>
<son ID=”ra05” mother=”ra02” father=”ra01”>
Jeffrey Raymond</son>

68 Introduction to XML

<son ID=”ra06” mother=”ra02” father=”ra01”>Casey
Raymond</son>

</immediate_family>
</person>

Save this file as “immediatefamilyattributesidref.xml” and review it in
Microsoft Internet Explorer®. You can have some of the IDREFs refer to
more than one ID attribute. As you can see, we have designated who the
mother and father is in the son and daughter elements.

Thus far in the “person” XML coding, we have structured our code so
it can only store information about either a father or a mother and their
sons and daughters if in fact they have any. If we wanted to be able to
compile information for anyone in the Raymond family, we would have to
restructure our code. Below is the DTD with the appropriate IDREF
designations for Ashley Raymond:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE person [
<!ELEMENT person (year_recorded, name, birthday,
city_of_birth, state_of_birth, immediate_family)>
<!ELEMENT year_recorded (#PCDATA)>
<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name id ID #REQUIRED>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_members,
father?, mother?, spouse?, daughter*, son*)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED >
<!ELEMENT father (#PCDATA)>
<!ATTLIST father id ID #REQUIRED>
<!ELEMENT mother (#PCDATA)>
<!ATTLIST mother id ID #REQUIRED>
<!ELEMENT sister (#PCDATA)>
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT brother (#PCDATA)>
<!ATTLIST brother id ID #REQUIRED>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT daughter (#PCDATA)>
<!ATTLIST daughter id ID #REQUIRED mother IDREF #IMPLIED
father IDREF #IMPLIED>

Introduction to XML 69

<!ELEMENT son (#PCDATA)>
<!ATTLIST son id ID #REQUIRED mother IDREF #IMPLIED father
IDREF #IMPLIED>
]>
<person>

<year_recorded>2006</year_recorded>
<name ID=”ra03”>Ashley Raymond</name>
<birthday>February 26, 2001</birthday>
<city_of_birth>Minneapolis</city_of_birth>
<state_of_birth>Minnesota</state_of_birth>
<immediate_family>

<number_of_immediate_family_members>5</number_of_
immediate_family_members>

<father ID=”ra01”>John Raymond</father>
<mother ID=”ra02”>Donna Raymond</mother>
<sister ID=”ra04”>Jennifer Raymond</sister>
<brother ID=”ra05”>Jeffrey Raymond</brother>
<brother ID=”ra06”>Casey Raymond</brother>

</immediate_family>
</person>

Save this as “immediatefamilyattributesidref1.xml”. It should look like the
screenshot shown in Figure 2.6.

Using the same DTD that we used above, but changing the XML
information values, we could store information for Donna Raymond, Jeffrey
Raymond, or Casey Raymond. That we put question marks after “father”

70 Introduction to XML

Figure 2.6 “Immediatefamilyattributesidref1.xml” in Microsoft Internet Explorer®

and “mother” signals that this coding would work for Donna Raymond;
“father” or “mother” would not show up in the XML coding as we have
designed this database for the immediate family, but her husband, sons, and
daughters would show up with their attendant IDREFs.

<!ATTLIST year_recorded id CDATA #FIXED ”2006”>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name id ID #REQUIRED>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (number_of_immediate_family_members,
father?, mother?, spouse?, daughter*, son*)>
<!ELEMENT number_of_immediate_family_members (#PCDATA)>
<!ATTLIST number_of_immediate_family_members id CDATA
#REQUIRED >
<!ELEMENT father (#PCDATA)>
<!ATTLIST father id ID #REQUIRED>
<!ELEMENT mother (#PCDATA)>
<!ATTLIST mother id ID #REQUIRED>
<!ELEMENT sister (#PCDATA)>
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT brother (#PCDATA)>
<!ATTLIST brother id ID #REQUIRED>
<!ELEMENT spouse (#PCDATA)>
<!ATTLIST spouse id (husband | wife) #IMPLIED >
<!ATTLIST spouse id ID #REQUIRED>
<!ELEMENT daughter (#PCDATA)>
<!ATTLIST daughter id ID #REQUIRED mother IDREF #IMPLIED
father IDREF #IMPLIED>
<!ELEMENT son (#PCDATA)>
<!ATTLIST son id ID #REQUIRED mother IDREF #IMPLIED father
IDREF #IMPLIED>
]>
<person>

<year_recorded>2006</year_recorded>
<name ID=”ra02”>Donna Raymond</name>
<birthday>March 26, 2001</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>

<number_of_immediate_family_members>5</number_of_
immediate_family_members>

<husband ID=”ra01”>John Raymond</husband>
<daughter ID=”ra03”>Ashley Raymond</daughter>
<daughter ID=”ra04”>Jennifer Raymond</daughter>

Introduction to XML 71

<son ID=”ra05”>Jeffrey Raymond</son>
<son ID=”ra06”>Casey Raymond</son>

</immediate_family>
</person>

Label this “immediatefamilyattributesidref2.xml” and see how it looks in
Internet Explorer®.

Namespaces

As we have already noted, XML allows us to exchange or combine data
with others with some ease. In some cases, we might want to combine XML
coded data from two or more databases devoted to the storage of similar
or complementary types of information. The problem with this is that some
of the elements from the different databases might have the same name, but
these elements could mean different things and this would make the
information we were trying to compile useless.

In a hypothetical example, what if professionals who were compiling XML
coded data from the World Health Organization (WHO) and the U.S.
Department of Health and Human Services (HHS) were using information
from both sources and there were some “collisions” between some identical
element tags because these tags had different semantic meanings? For
example, perhaps the concept of “death by natural causes” has different
meanings in the two databases but they both used the tags <natural_causes>
to describe their meanings. One organization might determine that if a person
dies of a heart attack at age sixty-five in a given country in a given year that
this person died of a natural cause. Another organization might assume that
this should not be included in “death by natural cause” data; it might attribute
this to “death by heart disease.”

To declare a namespace, we need to start with the xmlns attribute which
is easy to remember as the “ns” stands for “namespace.” Then we give it
a value with a Uniform Resource Indicator (URI). The convention is to use
the Uniform Resource Locator (URL) of the organization for this as it is
convenient and we can be sure that there is only one of them.

For example, to indicate a declaration for namespace associated with the
WHO, we would use,

xmlns=”www.who.int/en/”

For the HHS, we would use,

xmlns=”www.hhs.gov/”

While the address that we use to identify namespaces looks like we are
using some external website and trying to extract some information from
it, we are just using this convention to give the namespace a unique name.

72 Introduction to XML

Our hypothetical element tags would look like this for the HHS data:

<natural_causes xmlns=”www.hhs.gov/”>4.65 million
</natural_causes>

If the WHO compiled data that did not include death by heart disease,
we might use the following tags:

<natural_causes xmlns=”www.who.int/en/”>3.44 million
</natural_causes>

We are using elements with the same name, “natural causes,” but with
different namespace declarations. We might imagine that it would be easier
to change all of the tags from one of the databases to better reflect a different
meaning instead of acknowledging the different sources of information with
namespace declarations. For example, we could use <natural_causes_and_
heart_failure> for the HHS data, even though this might be a bit unwieldy.
However, this might not be easy because there could be so many different
documents in some institutional databases and this would prove impractical.
Also, it is to our advantage to indicate the source of different sets of data,
and namespaces allow us to do this.

In the following XML code we illustrate how a namespace can be used
to indicate that the data on causes of mortality is from the WHO. The WHO
namespace is in the

<cause_specific_per_one_hundred_thousand_population>

tag and this indicates that all of the data such as mortality by cause of “non-
communicable diseases” and “injuries” is encapsulated within this element
and is from the WHO source.

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE health_status_mortality [
<!ELEMENT cause_specific_per_one_hundred_thousand_population
(HIV-AIDS, TB_HIV_negative_people, TB_HIV_positive_people) >
<!ELEMENT HIV-AIDS (#PCDATA)>
<!ELEMENT TB_HIV_negative_people (#PCDATA)>
<!ELEMENT TB_HIV_positive_people (#PCDATA)>
<!ELEMENT age-standardized_mortality_rate_per_one_hundred_
thousand_population (non-communicable_disease, cardiovascular_
disease, cancer, injuries)>
<!ELEMENT non-communicable_disease (#PCDATA)>
<!ELEMENT cardiovascular_disease (#PCDATA)>
<!ELEMENT cancer (#PCDATA)>
<!ELEMENT injuries (#PCDATA)>

Introduction to XML 73

]>
<health_status_mortality>

<cause_specific_per_one_hundred_thousand_population
xmlns=”www.who.int/en/”>

<HIV-AIDS><10</HIV-AIDS>
<TB_HIV_negative_people><1</TB_HIV_negative_people>
<TB_HIV_positive_people><1</TB_HIV_positive_people>
</cause_specific_per_one_hundred_thousand_population>
<age-standardized_mortality_rate_per_one_hundred_
thousand_population>
<non-communicable_disease>460</non-communicable_disease>

<cardiovascular_disease>188</cardiovascular_
disease>
<cancer>134</cancer>
<injuries>47</injuries>

</age-standardized_mortality_rate_per_one_hundred_
thousand_population>

</health_status_mortality>

Save this file as “whomortality1.xml” and review it in a browser. You can
see that we used the “<” special symbol to indicate the less than “<”
sign. In Chapter 5 we will come back to this example and further develop
namespaces to show how they can be used with other technologies.

Entities

Internal General Entities

The XML documents we have been working on so far have been your basic
standalone XML files where the information can be described in one
complete XML coded file with the option of having an internal or external
DTD to validate it against. One of the simplest uses of entities is to attach
boilerplate kinds of information to XML documents so you would not have
to keep repeating the same information for every file you compiled in XML.
These are called internal general entities. In the upcoming “person” example,
you will see that we added the following line of code:

<!ENTITY contact ”This data compiled and copyrighted by State
Census Bureau. To contact, phone at (555) 555-5555 or e-mail
at sctstats@sct.gov.”>

We then indicated where we wanted this “contact” information that is
within the quotes placed in our <!ENTITY> tags above by writing “contact”
between a “&” and a “;”. This shows up as “&contact;” in the code listing,
right before the “</person>” tag.

74 Introduction to XML

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE person [
<!ELEMENT person (name, birthday, city_of_birth,
state_of_birth, immediate_family)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birthday (#PCDATA)>
<!ELEMENT city_of_birth (#PCDATA)>
<!ELEMENT state_of_birth (#PCDATA)>
<!ELEMENT immediate_family (spouse, daughter+, son+)>
<!ELEMENT spouse (husband | wife)>
<!ELEMENT husband (#PCDATA)>
<!ELEMENT wife (#PCDATA)>
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT son (#PCDATA)>
<!ENTITY contact ”This data compiled and copyrighted by State
Census Bureau. To contact, phone at (555) 555-5555 or e-mail
at sctstats@sct.gov.”>
]>
<person>

<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>
<immediate_family>

<spouse>
<wife>Donna Raymond</wife>

</spouse>
<daughter>Jennifer Raymond</daughter>
<daughter>Ashley Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>

</immediate_family>
&contact;

</person>

Save this file as “immediatefamilyentity.xml” and then review it in Microsoft
Internet Explorer®. You should see the image captured in Figure 2.7.

As you can see in Figure 2.7, the contact information does not show up
in quotes, nor is it surrounded by tags as the other information is. The value
of this technique (using entities) is that it allows us to more easily represent
information that needs to show up on every document. Once the DTD is
established, we would only need to write “&contact;” in the same place as
we begin to add other “persons” to this document. Also, if any of the contact
information changed—the phone number, the e-mail address—we would only
have to make changes in the DTD above and not in every XML document
coded with the information for every “person” in our database.

Introduction to XML 75

External General Entities

The power of XML in part derives from the fact that XML documents can
be coded in such a way where we can select from many different files that
might be in one or more databases to produce a larger document composed
of these files. This is one of the real values of XML; we can build from
external general entities.

In the following extended example, we are going to breakdown a longer
document into a series of units or modules and label them as entities. The
document is published by the U.S. Department of Energy (DOE) and is
entitled “Advisory Committee on Human Radiation Experiments—
Executive Summary.” We have a print copy of this document included in
Appendix A at the end of this book.

Type in or access from our website the following separate modules. Save
them as instructed at the end of each module. Each of the separate modules
starts with an opening <module> tag, and ends with a closing </module>
tag.

To start with our first entity, type in the following and save it as
“achre_publication_information.ent.” ACHRE is our acronym for “Advisory
Committee on Human Radiation Experiments.” To better differentiate
between each module, we have added “begin” and “end” markers
surrounding each module. Be sure to start each module with <module> and
end with </module>.

76 Introduction to XML

Figure 2.7 “Immediatefamilyentity.xml” in Microsoft Internet Explorer®

Begin Publication Information Entity.

<module>
<title>PUBLICATION INFORMATION</title>
<para>The Final Report of the Advisory Committee on Human
Radiation Experiments (stock number 061-000-00-848-9),
the supplemental volumes to the Final Report
(stock numbers 061-000-00850-1, 061-000-00851-9, and
061-000-00852-7), and additional copies of this Executive
Summary (stock number 061-000-00849-7) may be purchased
from the Superintendent of Documents, U.S. Government
Printing Office.
</para>

</module>

End of Publication Information Entity.

Save as “achre_publication_information.ent”.

Begin Telephone Orders Entity.

<module>
<line>All telephone orders should be directed to:</line>
<line>Superintendent of Documents</line>
<line>U.S. Government Printing Office</line>
<line>Washington, D.C. 20402</line>
<line>(202) 512-1800</line>
<line>FAX (202) 512-2250</line>

</module>

End of Telephone Orders Entity.

Save as “usgpo_telephone_orders.ent.” USGPO is our acronym for U.S.
Government.

Begin Mail Orders Entity.

<module>
<line>All mail orders should be directed to: </line>
<line>U.S. Government Printing Office</line>
<line>P.O. Box 371954</line>
<line>Pittsburgh, PA 15250-7954</line>

</module>

End Mail Orders Entity.

Save as “usgpo_mail_orders.ent”.

Introduction to XML 77

Begin Internet Archives Entity.

<module>
<para>An Internet site containing ACHRE information
(replicating the Advisory Committee’s original gopher)
will be available at George Washington University.
The site contains complete records of Advisory Committee
actions as approved; complete descriptions of the
primary research materials discovered and analyzed;
complete descriptions of the print and non-print
secondary resources used by the Advisory Committee;
a copy of the Interim Report of October 21, 1994,
and other information. The address is www.seas.gwu.edu/
nsarchive/radiation. The site will be maintained by the
National Security Archive at GWU.</para>

</module>

End Internet Archives Entity.

Save as “achre_internet_archives.ent”.

Begin Printing Location Entity.

<module>
<line>Printed in the United States of America</line>

</module>

End Printing Location Entity.

Save as “usgpo_printing_location.ent”.

Begin Creation of Advisory Committee Entity.

<module>
<title>THE CREATION OF THE ADVISORY COMMITTEE</title>
<para>On January 15, 1994, President Clinton appointed
the Advisory Committee on Human Radiation Experiments.
The President created the Committee to investigate
reports of possibly unethical experiments funded by the
government decades ago.</para>
<para>The members of the Advisory Committee were fourteen
private citizens from around the country: a
representative of the general public and thirteen experts
in bioethics, radiation oncology and biology, nuclear
medicine, epidemiology and biostatistics, public health,
history of science and medicine, and law.</para>

78 Introduction to XML

<para>President Clinton asked us to deliver our
recommendations to a Cabinet-level group, the Human
Radiation Interagency Working Group, whose members are
the Secretaries of Defense, Energy, Health and Human
Services, and Veterans Affairs; the Attorney General;
the Administrator of the National Aeronautics and Space
Administration; the Director of Central Intelligence;
and the Director of the Office of Management and Budget.
Some of the experiments the Committee was asked to
investigate, and particularly a series that included
the injection of plutonium into unsuspecting hospital
patients, were of special concern to Secretary of Energy
Hazel O'Leary. Her department had its origins in
the federal agencies that had sponsored the plutonium
experiments. These agencies were responsible for the
development of nuclear weapons and during the Cold War
their activities had been shrouded in secrecy. But now
the Cold War was over.</para>
<para>The controversy surrounding the plutonium
experiments and others like them brought basic questions
to the fore: How many experiments were conducted or
sponsored by the government, and why? How many were
secret? Was anyone harmed? What was disclosed to those
subjected to risk, and what opportunity did they have for
consent? By what rules should the past be judged? What
remedies are due those who were wronged or harmed by the
government in the past? How well do federal rules that
today govern human experimentation work? What lessons
can be learned for application to the future? Our Final
Report provides the details of the Committee's
answers to these questions. This Executive Summary
presents an overview of the work done by the Committee,
our findings and recommendations, and the contents of the
Final Report.</para>

</module>

End Creation of Advisory Committee Entity.

Save as “achre_creation_of_advisory_committee.ent”.

Begin President’s Charge Entity.

<module>
<title>THE PRESIDENT'S CHARGE</title>
<para>The President directed the Advisory Committee to
uncover the history of human radiation experiments during

Introduction to XML 79

the period 1944 through 1974. It was in 1944 that the
first known human radiation experiment of interest was
planned, and in 1974 that the Department of Health,
Education and Welfare adopted regulations governing the
conduct of human research, a watershed event in the
history of federal protections for human subjects.</para>
<para>In addition to asking us to investigate human
radiation experiments, the President directed us to
examine cases in which the government had intentionally
released radiation into the environment for research
purposes. He further charged us with identifying the
ethical and scientific standards for evaluating these
events, and with making recommendations to ensure that
whatever wrongdoing may have occurred in the past cannot
be repeated. We were asked to address human experiments
and intentional releases that involved radiation. The
ethical issues we addressed and the moral framework we
developed are, however, applicable to all research
involving human subjects.</para>
<para>The breadth of the Committee's charge was
remarkable. We were called on to review government
programs that spanned administrations from Franklin
Roosevelt to Gerald Ford. As an independent advisory
committee, we were free to pursue our charge as we saw
fit. The decisions we reached regarding the course of
our inquiry and the nature of our findings and
recommendations were entirely our own.</para>

</module>

End President’s Charge Entity.

Save as “presidents_charge.ent”.

Begin Committee’s Approach Entity

<module>
<title>THE COMMITTEE'S APPROACH</title>
<para>At our first meeting, we immediately realized that
we were embarking on an intense and challenging
investigation of an important aspect of our nation's
past and present, a task that required new insights and
difficult judgments about ethical questions that persist
even today. </para>
<para>Between April 1994 and July 1995, the Advisory
Committee held sixteen public meetings, most in
Washington, D.C. In addition, subsets of Committee

80 Introduction to XML

members presided over public forums in cities throughout
the country. The Committee heard from more than 200
witnesses and interviewed dozens of professionals who
were familiar with experiments involving radiation.
A special effort, called the Ethics Oral History Project,
was undertaken to learn from eminent physicians about
how research with human subjects was conducted in the
l940s and 1950s.</para>
<para>We were granted unprecedented access to government
documents. The President directed all the federal
agencies involved to make available to the Committee any
documents that might further our inquiry, wherever they
might be located and whether or not they were still
secret.</para>
<para>As we began our search into the past, we quickly
discovered that it was going to be extremely difficult
to piece together a coherent picture. Many critical
documents had long since been forgotten and were stored
in obscure locations throughout the country. Often they
were buried in collections that bore no obvious
connection to human radiation experiments. There was no
easy way to identify how many experiments had been
conducted, where they took place, and which government
agencies had sponsored them.</para>
<para>Nor was there a quick way to learn what rules
applied to these experiments for the period prior to the
mid-1960s. With the assistance of hundreds of federal
officials and agency staff, the Committee retrieved and
reviewed hundreds of thousands of government documents.
Some of the most important documents were secret and
were declassified at our request. Even after this
extraordinary effort, the historical record remains
incomplete. Some potentially important collections
could not be located and were evidently lost or
destroyed years ago.</para>
<para>Nevertheless, the documents that were recovered
enabled us to identify nearly 4,000 human radiation
experiments sponsored by the federal government between
1944 and 1974. In the great majority of cases, only
fragmentary data was locatable; the identity of subjects
and the specific radiation exposures involved were
typically unavailable. Given the constraints of
information, even more so than time, it was impossible
for the Committee to review all these experiments, nor
could we evaluate the experiences of countless individual
subjects. We thus decided to focus our investigation on

Introduction to XML 81

representative case studies reflecting eight different
categories of experiments that together addressed our
charge and priorities. These case studies included:
</para>

<list>
<line>experiments with plutonium and other atomic bomb
materials</line>
<line>the Atomic Energy Commission's program of
radioisotope distribution</line>
<line>nontherapeutic research on children</line>
<line>total body irradiation</line>
<line>research on prisoners</line>
<line>human experimentation in connection with nuclear
weapons testing</line>
<line>intentional environmental releases of
radiation</line>
<line>observational research involving uranium miners and
residents of the Marshall Islands</line>

</list>
<para>In addition to assessing the ethics of human radiation
experiments conducted decades ago, it was also important to
explore the current conduct of human radiation research.
Insofar as wrongdoing may have occurred in the past, we needed
to examine the likelihood that such things could happen today.
We therefore undertook three projects:</para>
<list>

<para>A review of how each agency of the federal
government that currently conducts or funds research
involving human subjects regulates this activity and
oversees it.</para>
<para>An examination of the documents and consent forms
of research projects that are today sponsored by the
federal government in order to develop insight into the
current status of protections for the rights and
interests of human subjects.</para>
<para>Interviews of nearly 1,900 patients receiving out-
patient medical care in private hospitals and federal
facilities throughout the country. We asked them whether
they were currently, or had been, subjects of research,
and why they had agreed to participate in research or had
refused.</para>
</list>

</module>

End Committee’s Approach Entity.

Save as “achre_committees_approach.ent”.

82 Introduction to XML

DTDs for Documents with General Entities

Now we have to write a DTD that is a little different than the ones we have
seen before. This will include the list of entities that we describe above.
Note that the entity tags are similar to element tags, but we start with
“<!ENTITY” and close with “>”. We are also using the “SYSTEM” marker
that we have used before.

<!ELEMENT achre_executive_summary_radiation_experiments
(title?, module+)>
<!ELEMENT title (#PCDATA)>
<!ENTITY achre_publication_information SYSTEM ”achre_
publication_information.ent”>
<!ENTITY usgpo_telephone_orders SYSTEM ”usgpo_telephone_
orders.ent”>
<!ENTITY usgpo_mail_orders SYSTEM ”usgpo_mail_orders.
ent”>
<!ENTITY achre_internet_archives SYSTEM ”achre_internet_
archives.ent”>
<!ENTITY usgpo_printing_location SYSTEM ”usgpo_printing_
location.ent”>
<!ENTITY achre_creation_of_advisory_committee SYSTEM ”achre_
creation_of_advisory_committee.ent”>
<!ENTITY achre_presidents_charge SYSTEM ”achre_presidents_
charge.ent”>
<!ENTITY achre_committees_approach SYSTEM ”achre_committees_
approach.ent”>
<!ELEMENT module (title?, heading?, line?, para?, line?,
list?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT line (#PCDATA)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT list (para?, line?)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT line (#PCDATA)>

Note that we have also put in several <!ELEMENT> tags as we usually
do in a DTD for a “title” and “module.” Within the modules, we have title,
heading, para, line, and list to better allow us to granularize the information
in the ACHRE—Executive Summary. We put a “?” sign after all of the
elements as we might or might not have include them in any of the modules
as they all are unique. Save this as “achre1.dtd”.

Introduction to XML 83

Document Type Declaration

Here is our Document Type Declaration for our ACHRE—Executive
Summary document coded in XML:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE achre_executive_summary_radiation_experiments SYSTEM
”achre1.dtd”>
<achre_executive_summary_radiation_experiments>
<title>Advisory Committee on Human Radiation Experiments:
Executive Summary</title>
&achre_publication_information;
&usgpo_telephone_orders;
&usgpo_mail_orders;
&achre_internet_archives;
&usgpo_printing_location;
&achre_creation_of_advisory_committee;
&achre_presidents_charge;
&achre_committees_approach;
</achre_executive_summary_radiation_experiments>

Save this as “achre1.xml”.

84 Introduction to XML

Figure 2.8 Screenshot of “achre1.xml” in Microsoft Internet Explorer®

As you can see, this is a not a standalone document as we are referring
to an external DTD, “achre1.dtd”, and to external entities that are
referenced within it. In this case, all of these coded documents—the entities,
DTD, and XML coded files—need to be placed in one file on your computer.

Note that we have placed all of the external entities we have described
in a listing below the title tags. When we do list these entities, we always
place an ampersand “&” before them and a semicolon “;” after them. For
example, the first one is,

&achre_publication_information;

We can see that the root element in the document type declaration is,

<achre_executive_summary_radiation_experiments>

If all of these elements are in the same file, you can pull up the entire
document in Internet Explorer® by clicking on “achre1.xml”. A screenshot
of the “achre1.xml” file is found in Figure 2.8.

Using an External DTD and External Entities on a Website

If we placed our DTD for this document and all of the entity modules on
a website as opposed to a single file on our computer, we would have to
change both our DTD and XML files. The DTD would look like this:

<!ELEMENT achre_executive_summary_radiation_experiments
(title?, module+)>
<!ELEMENT title (#PCDATA)>
<!ENTITY achre_publication_information SYSTEM ”www.
rhetoricalxml.com/ch2/achre1/achre_publication_information.
ent”>
<!ENTITY usgpo_telephone_orders SYSTEM ”www.rhetoricalxml.com/
ch2/achre1/usgpo_telephone_orders.ent”>
<!ENTITY usgpo_mail_orders SYSTEM ”www.rhetoricalxml.com/ch2/
achre1/usgpo_mail_orders.ent”>
<!ENTITY achre_internet_archives SYSTEM ”www.rhetoricalxml.com/
ch2/achre1/achre_internet_archives.ent”>
<!ENTITY usgpo_printing_location SYSTEM ”www.rhetoricalxml.com/
ch2/achre1/usgpo_printing_location.ent”>
<!ENTITY achre_creation_of_advisory_committee SYSTEM
”www.rhetoricalxml.com/ch2/achre1/achre_creation_of_advisory_
committee.ent”>

Introduction to XML 85

<!ENTITY achre_presidents_charge SYSTEM ”www.rhetoricalxml.com/
ch2/achre1/achre_presidents_charge.ent”>
<!ENTITY achre_committees_approach SYSTEM ”www.rhetoricalxml.
com/ch2/achre1/achre_committees_approach.ent”>
<!ENTITY achre_historical_context SYSTEM ”www.rhetoricalxml.
com/ch2/achre1/achre_historical_context.ent”>
<!ELEMENT module (title?, heading?, line?, para?, line?,
list?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT line (#PCDATA)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT list (para?, line?)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT line (#PCDATA)>

Save this file as “achre1website.dtd”. Note that to reference the external
entities that now reside on an Internet Web server, we have to include the
URL and the name of the entity after SYSTEM. A new XML file looks like
this:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE achre_executive_summary_radiation_experiments SYSTEM
”www.rhetoricalxml.com/ch2/achre1/achre1website.dtd”>
<achre_executive_summary_radiation_experiments>
<title>Advisory Committee on Human Radiation Experiments:
Executive Summary</title>
&achre_publication_information;
&usgpo_telephone_orders;
&usgpo_mail_orders;
&achre_internet_archives;
&usgpo_printing_location;
&achre_creation_of_advisory_committee;
&achre_presidents_charge;
&achre_committees_approach;
&achre_historical_context;
</achre_executive_summary_radiation_experiments>

Save this file as “achre1website.xml”. Observe that instead of just referenc-
ing the DTD file, “achre1.dtd”, that was stored in a file on our computer,
we are referencing this DTD file that is now on the Internet Web server
that supports The Rhetorical Nature of XML website. Thus, we now have
SYSTEM “www.rhetoricalxml.com/ch2/achre1/achre1website.dtd”. The
advantage of this practice is that it allows members of a large organization
to share and extract or point to DTDs and entities with greater ease.

86 Introduction to XML

In order to demonstrate how facile this system is, we can exclude some
of the entities in our XML document below and add one or more entities.
If we only wanted to extract “the committee’s approach” and we also
wanted to add “the historical context” documents in our document, we
would have the following entities listed:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE achre_executive_summary_radiation_experiments SYSTEM
”www.rhetoricalxml.com/ch2/achre1/achre1website.dtd”>
<achre_executive_summary_radiation_experiments>
<title>Advisory Committee on Human Radiation Experiments:
Executive Summary</title>
&achre_committees_approach;
&achre historical context;
</achre_executive_summary_radiation_experiments>

Save as “achre2website.xml”. A screenshot of the “achre2website.xml” file
is shown in Figure 2.9.

Introduction to XML 87

Figure 2.9 Screenshot of “achre2website.xml” in Microsoft Internet Explorer®

If we had a long list of entities and DTDs that were stored in our hard
drives or on an external server, we could pick and choose just what modules
we would need to produce a specific document for our needs. This shows
how entities can be employed by technical communicators who are drawing
from previously written documents, a practice known as single sourcing. We
will cover this practice in some detail in Chapter 3 and again in Chapter 6.
Below is the DTD for an expansion of the file’s Document Type Declaration
for our ACHRE—Executive Summary. You will need to go to our website,
www.rhetoricalxml.com, to extract all of the additional “key recommenda-
tions,” “key findings,” and “advisory committee’s legacy” entities. There are
thirteen of them:

<!ENTITY achre_internet_archives SYSTEM ”achre_internet_
archives.ent”>
<!ENTITY usgpo_printing_location SYSTEM ”usgpo_printing_
location.ent”>
<!ENTITY achre_creation_of_advisory_committee SYSTEM ”achre_
creation_of_advisory_committee.ent”>
<!ENTITY achre_presidents_charge SYSTEM
”achre_presidents_charge.ent”>
<!ENTITY achre_committees_approach SYSTEM ”achre_committees_
approach.ent”>
<!ENTITY achre_historical_context SYSTEM ”achre_historical_
context.ent”>
<!ENTITY achre_key_findings_human_radiation_experiments SYSTEM
”achre_key_findings_human_radiation_experiments.ent”>
<!ENTITY achre_key_findings_intentional_releases SYSTEM
”achre_key_findings_intentional_releases.ent”>
<!ENTITY achre_key_findings_uranium_miners SYSTEM ”achre_key_
findings_uranium_miners.ent”>
<!ENTITY achre_key_findings_secrecy_and_the_public_trust SYSTEM
”achre_key_findings_secrecy_and_the_public_trust.ent”>
<!ENTITY achre_key_findings_contemporary_human_research SYSTEM
”achre_key_findings_contemporary_human_research.ent”>
<!ENTITY achre_key_findings_current_regulations_on_secrecy
SYSTEM ”achre_key_findings_current_regulations_on_secrecy.ent”>
<!ENTITY achre_key_findings_other_findings SYSTEM ”achre_key_
findings_other_findings.ent”>
<!ENTITY achre_key_recommendations_apologies_and_compensation
SYSTEM ”achre_key_recommendations_apologies_and_compensation.
ent”>
<!ENTITY achre_key_recommendations_uranium_miners SYSTEM
”achre_key_recommendations_uranium_miners.ent”>
<!ENTITY achre_key_recommendations_improved_protection SYSTEM
”achre_key_recommendations_improved_protection.ent”>

88 Introduction to XML

<!ENTITY achre_key_recommendations_secrecy_and_national_
security SYSTEM ”achre_key_recommendations_secrecy_and_
national_security.ent”>
<!ENTITY achre_key_recommendations_other_recommendations SYSTEM
”achre_key_recommendations_other_recommendations.ent”>
<!ENTITY achre_advisory_committees_legacy SYSTEM ”achre_
advisory_committees_legacy.ent”>
<!ELEMENT module (title?, heading?, line?, para?, line?,
list?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT line (#PCDATA)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT list (para?, line?)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT line (#PCDATA)>

Save this file as “achre.dtd”. Below is the expanded XML file:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE achre_executive_summary_radiation_experiments SYSTEM
”achre.dtd”>
<achre_executive_summary_radiation_experiments>
<title>Advisory Committee on Human Radiation Experiments:
Executive Summary</title>
&achre_publication_information;
&usgpo_telephone_orders;
&usgpo_mail_orders;
&achre_internet_archives;
&usgpo_printing_location;
&achre_creation_of_advisory_committee;
&achre_presidents_charge;
&achre_committees_approach;
&achre_historical_context;
<title>Key Findings</title>
&achre_key_findings_human_radiation_experiments;
&achre_key_findings_intentional_releases;
&achre_key_findings_uranium_miners;
&achre_key_findings_secrecy_and_the_public_trust;
&achre_key_findings_contemporary_human_research;
&achre_key_findings_current_regulations_on_secrecy;
&achre_key_findings_other_findings;
<title>Key Recommendations</title>
&achre_key_recommendations_apologies_and_compensation;
&achre_key_recommendations_uranium_miners;
&achre_key_recommendations_improved_protection;

Introduction to XML 89

&achre_key_recommendations_secrecy_and_national_security;
&achre_key_recommendations_other_recommendations;
&achre_advisory_committees_legacy;
</achre_executive_summary_radiation_experiments>

Save this file as “achre.xml”. If you open this in Microsoft Internet
Explorer®, you will see how easy it is to expand by pointing to or referencing
different DTDs and entities. Note that this file is not based on files that
were extracted from a website. Instead, it is based on files that are on a
hard drive. You can download all of these files and put them on your
computer by going to our website, www.rhetoricalxml.com.

Parsed and Unparsed Entities

So far, we have been talking about parsed data, which is information that
is analyzed by XML parsers to determine if it is valid. Parsed data is usually
text, and all the examples we have been using have been examples of text.
Unparsed data can also be text, but usually it refers to data like graphics
saved as .jpegs and .gifs.

Remember the parsed entity we used in the “person” form earlier in the
chapter:

<!ENTITY contact ”This data compiled and copyrighted by State
Census Bureau. To contact, phone at (555) 555-5555 or e-mail
at sctstats@sct.gov.”>

We start with “<!ENTITY” and end with a “>” and we first type in an
abbreviation such as “contact” that will be referenced later in the XML
coded information. Then we follow with the actual text that is the
information in the entity. If the entity information is not included in the
DTD of the standalone document, we would use SYSTEM to indicate this.

In unparsed entities, we use a similar method, but instead we have to add
“NDATA” and follow this with some notation that describes the
information we are going to be using.

For example, if we wanted to include the seal of the ACHRE, we would
use the following entity in our DTD:

<!ENTITY achre_seal SYSTEM achre_seal.gif NDATA GIF>

If you go to our website, www.rhetoricalxml.com, you will find this graphic
entitled “achre_seal.gif”. When we place this .gif graphic in the body of
XML data, we cannot use the code that we typically use for entities, which
would be “&achre_seal;”. Instead we would use, in this example, the
following code:

90 Introduction to XML

<GRAPHIC SOURCE=achre_seal_gif/>.

We will also have to add information in the DTD to tell the browser just
what kind of tool it will need to use to allow the graphic to show up. This
is because this information is unparsed or not presented as regular XML
code. To do this, we have to provide another line of code in the DTD that
indicates the notation for the graphic.

<!NOTATION gif SYSTEM ”image/gif”>

Note that we start with a <!NOTATION tag here, then describe the kind
of extension that will be needed to allow the graphic to show up. In this
case, as in the <!ENTITY declaration above, we will need to use “gif.” Then
we put SYSTEM in as this entity was not described in its entirety in the
DTD. Following this, we have to describe the content information, which
in this case is “image/gif.”

Next, we have to place an empty element in the DTD code to mark where
in the structure of the document our graphic will show up. Remember that
empty elements contain no information; they just serve as markers. Below
is the empty element we will use:

<!ELEMENT graphic EMPTY/>

It is important to put a forward slash at the end of an empty element so
the software does not look for a closing tag.

To finish our unparsed entity coding in this example, we need declare an
attribute for this graphic in our DTD:

<!ATTLIST graphic source ENTITY #REQUIRED>

Putting it all together as a single document, here is what we now have:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE achre_executive_summary_radiation_experiments [
<!ELEMENT achre_executive_summary_radiation_experiments
(title?, module+)>
<!ELEMENT title (#PCDATA)>
<!ENTITY achre_publication_information SYSTEM ”achre_
publication_information.ent”>
<!ENTITY usgpo_telephone_orders SYSTEM ”usgpo_telephone_
orders.ent”>
<!ENTITY usgpo_mail_orders SYSTEM ”usgpo_mail_orders.ent”>
<!ENTITY achre_internet_archives SYSTEM ”achre_internet_
archives.ent”>
<!ENTITY usgpo_printing_location SYSTEM ”usgpo_printing_
location.ent”>

Introduction to XML 91

<!ENTITY achre_creation_of_advisory_committee SYSTEM ”achre_
creation_of_advisory_committee.ent”>
<!ENTITY achre_presidents_charge SYSTEM ”achre_presidents_
charge.ent”>
<!ENTITY achre_committees_approach SYSTEM ”achre_committees_
approach.ent”>
<!ENTITY achre_historical_context SYSTEM ”achre_historical_
context.ent”>
<!ELEMENT module (title?, heading?, line?, para?, line?,
list?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT line (#PCDATA)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT list (para?, line?)>
<!ELEMENT para (#PCDATA)>
<!ELEMENT line (#PCDATA)>
<!ENTITY achre_seal SYSTEM ”achre_seal.gif” NDATA GIF>
<!NOTATION gif SYSTEM ”image/gif”>
<!ELEMENT GRAPHIC EMPTY>
<!ATTLIST GRAPHIC SOURCE ENTITY #REQUIRED>
]>
<achre_executive_summary_radiation_experiments>
<GRAPHIC SOURCE=”achre_seal”/>
<title>Advisory Committee on Human Radiation Experiments:
Executive Summary</title>
&achre_publication_information;
&usgpo_telephone_orders;
&usgpo_mail_orders;
&achre_internet_archives;
&usgpo_printing_location;
&achre_creation_of_advisory_committee;
&achre_presidents_charge;
&achre_committees_approach;
&achre_historical_context;
</achre_executive_summary_radiation_experiments>

Save this file as “achre_seal.xml”. The graphic will show up if you have
coded your style sheet properly and whether or not the browser you are
using is set to display unparsed entities. We will discuss style sheets in greater
detail in Chapter 4. In Figure 2.10, you can see that the graphic is placed
at the top of the document, above the title.

92 Introduction to XML

Activities

1. As an alternative to the extended “person” examples we have gone
through in this chapter, design your own set of element tags for college
students at the university you attend. For example, one element might
serve to define a student’s major. What might be the specifics of a
database that would serve both the students and a university’s
administration professionals? Make sure that the DTD that defines your
tagging system is sophisticated enough so that some tags are embedded
within other tags. Also, assign each student an ID attribute. After you
have done this, check out your code using Internet Explorer®.

2. Reconstitute the IDREF example of the Raymond family that we have
been working with, but make Casey Raymond the “person” in your
example.

3. Breakdown the U.S. Declaration of Independence into at least six
separate entities—there are plenty of copies of it online. Name the
entities as you see fit. For example, you might name the first section
the “usdipreamble.ent”. Be specific in your naming of each section; let
the names you choose for the tags accurately reflect the content. After

Introduction to XML 93

Figure 2.10 Screenshot of “achre_seal.xml” in Microsoft Internet Explorer®

designing these entities, construct a DTD for this document, and then
assemble all of the entities and check it on Internet Explorer®.

4. Take any document from your field of study and break it down into a
set of entities. For example, most scientific reports are broken down
into the following sections: the introduction, background, materials and
methods, results, and conclusion. Any genre will do. If you want,
include a graphic from the document you choose to code. If you have
access to any server space, use the “SYSTEM URL” method for storing
your entities.

Works Consulted

Castro, Elizabeth. XML for the World Wide Web. Berkeley, California: Peachpit
Press, 2001.

Ethier, Kay, and Alan Houser. XML Weekend Crash Course. New York: Hungry
Minds, 2001.

Harold, Elliotte R. XML Bible. Foster City, California: IDG Books Worldwide, 1999.
United States Department of Energy. “Advisory Committee on Human Radiation

Experiments—Executive Summary.” August 2, 2007.
http://hss.energy.gov/healthsafety/ohre/roadmap/achre/summary.html

94 Introduction to XML

3 Semantics and Classification
Systems
Single Sourcing and Methods for
Knowledge Managers

Chapter Overview

In the first two chapters, we discussed the fundamentals of knowledge
management and XML coding. In this chapter, we will explain how
communication professionals can apply theories of semantics to better
describe how we can name and arrange XML elements relative to one
another. We will accomplish this by illustrating how objects have been
identified, named, and classified in some historical and contemporary
contexts to reveal the benefits of properly arranging complex bodies of
information. Equally important, we also describe the potential hurdles we
might encounter as knowledge managers when we engage in classifying
practices because complex bodies of information are rhetorical constructs
that need to address the needs of different audiences. To further explicate
how to contextualize knowledge using XML technologies, we will review
a series of concrete organizing methods and provide specific examples drawn
from the fields of technical communication, knowledge management, and
library science that will allow us to meet the rhetorical needs of our
audiences.

The Semantic Web

In Weaving the Web, Tim Berners-Lee writes about his fascination with the
way words are defined by other words and that information is really defined
by other information that it is related to. He takes it a little further when
he writes “There is little else to meaning. The structure is everything” (12).
What he means by structure is that things derive their meaning by how they
are situated in regards to other things. He provides the example of how the
cells in our brain are, by themselves, just cells, but because they are connected
to other things, or other cells, they form the basis of all that we know.

Often we take for granted just how much we know, especially when it
comes to language. For example, early in his career, Berners-Lee tried to
design a computer program that would understand language the way all of
the connected cells in our brains allow us to understand language. He “asked”
the computer the question “How much wood would a woodchuck chuck if

a woodchuck could chuck wood?” The computer “replied” with “How much
wood would a woodchuck chuck if a wood chuck chuck chuck wood wood
chuck chuck chuck . . .” (Berners-Lee 13). Of course, we know as humans
that this is just a clever tongue twister with no real answer, but the computer
was not sophisticated enough to see it as such as it really “tried” to provide
an answer that really looked, in part, like the question it was asked. We can
see that “would” and “wood” sound the same, but we can distinguish their
meaning by the syntax, or order of the words in the question, and the spelling
of each word. When we hear someone say this, we know that the word
“chuck” can stand alone as a verb, but it can also be part of a word,
“woodchuck,” and mean something entirely different. We can discern the
semantic differentiation of these words by the way they are connected to each
other in this sentence.

Berners-Lee’s interest in connections led him to develop the early technical
elements that served as the basis for the WWW. When he was working at
CERN, a particle physics laboratory in Switzerland, he developed a program
he called ENQUIRE, which allowed physicists who were working on
different projects to share information with one another. Later, he worked
with others to establish the standards that would allow computers to connect
to one another across the world and form the basis for the Internet. What
Berners-Lee now advocates is that computers and programs that run on
them become more sophisticated so they create more than just an
“information space” where people can send e-mail and look at websites.
The next step for the Internet is to create a “Semantic Web” where databases
in computers connect better to other databases. This vision has been partially
realized as we have seen ever more sophisticated search engines evolve such
as the ones that support Google. But we could have an even more robust
Semantic Web if we included specific metadata that better allowed for more
precise and far reaching searches into the databases of organizations that
were willing to make their information accessible.

Usually, databases are relational, which means that they have bodies of
information set in different columns that are tied together. For example,
the information in the columns could be rainfall measurements, barometric
pressure, and temperatures on certain dates in certain cities or geographic
regions. This makes sense to us that these columns would be tied together
as rainfall varies by factors such as geography, date, and barometric pressure
(Berners-Lee 180). They are called relational databases as the informa-
tion is semantically tied to other information, and this is what provides
their meaning. For this to happen, we need information that is coded in
such a way where we can readily access this information. HTML can direct
one to a basic website with lots of information, but it is not very good at
directing us to specific parts of large websites, or, even more promising,
databases that usually warehouse much more information. Berners-Lee sees
XML as the universal coding language that allows us to search for XML-
tagged information based on the semantics used to tag the information,
tags such as <barometric_pressure> (Berners-Lee 181). HTML has been

96 Semantics and Classification Systems

successful because anyone can use it and no one owns it. This can be also
said for XML. If we can all agree on one language for one purpose, whether
it is HTML for layout or XML for storing data, the greater incentive will
exist for companies to build software technologies that can recognize and
decode this language. Thus more people will use a specific language to build
their own websites or databases, and more of us will have access to the
information they encode in these sources.

This leads us back to the idea of words being defined by other words and
words or specific designations being used to define information. Seeking data
from a number of databases would be more successful if the Semantic Web
was facile enough to do things like equate “mean-diurnal-temperature” with
“daily-average-temperature” (Berners-Lee 186). A meteorologist knows
that these two phrases indicate the same thing and might be interested in
acquiring such data. Over time, the Semantic Web could “learn” to under-
stand that these two phrases mean the same thing through “inference
languages.” XML namespaces can also be used to allow people to combine
data that might be tagged or named differently (Berners-Lee 188). We
talked about namespaces briefly in Chapter 2, and we will return to that
topic in more detail in Chapter 5.

While XML-related technologies will eventually enable us to realize
Berners-Lee’s concept of the Semantic Web, we still have to remember that
what information is made available in databases and the relationship
between pieces of information will serve as the basis for this phenomenon.
It is not just about the technologies; it is about how humans make rhetorical
choices about naming and arranging the things they named between each
other. In Chapter 2, we described how we can use XML tags to name pieces
of data and how these pieces of data were structurally related to each other
in DTDs. In the sections that follow, we will illustrate how the practice of
identifying, classifying, and arranging objects and concepts relative to each
other in other forms of information storage and representation is by its very
nature a rhetorical endeavor.

Classification Systems

A conventional, Aristotelian classification scheme sets up binary, either-or
relationships between objects; if something does not belong in one category,
we can put it in an opposing category as it is not characteristic of the first
category (Bowker and Star 62). Things are often defined by negation—they
present features or qualities when examined that other things do not and
this determines how they are different from other objects.

Cicero, who followed Aristotle and benefited from his work, described
this method of classification in Topics: “when you have taken the feature
which the thing you want to define shares with other things, continue along
this a route until a peculiar property is established which cannot be applied
to any other thing” (Topica 29). To define a word using Cicero’s method,
we designate the class or genus of things that the word can be part of, and

Semantics and Classification Systems 97

then determine how it differs from all the members of the class that it has
been grouped in (Crowley and Hawhee 216). The differences, one discovers,
allow for a more specific definition of the word; it designates the term in
its most particular form or species.

If we were going to use this method to define what a hybrid car is, we
would first group it as a general member of the car class. Hybrids have
similarities with all other cars such as they have four wheels, are built for
transporting humans, and have steering wheels. Like some other cars,
hybrids get very good gas mileage, but even here, there are a few hybrids
that cannot claim this as a distinguishing feature. However, hybrids clearly
differ from standard internal combustion powered cars in that they are
powered, in part, from an electric engine that works in concert with the gas
engine. Some hybrids can be distinguished from other hybrids because they
employ regenerative brakes that capture and then transfer the kinetic energy
that is normally lost when the driver puts on the brakes back to the battery.

However, the methods by which we distinguish differences between things
are often a bit fuzzier than the binary method. In prototype theory, we
already have a broad understanding of what something is and we do not
have to whittle away at it to discover the similarities and differences that
the thing possesses relative to other things as we do in the hybrid example
above. Cognitive scientists and psychologists interested in computer science
and, in particular, artificial intelligence, have long acknowledged the capacity
of the brain to function in this fashion. They have created their own term—
schema—to apply to this type of template-based model of knowledge storage
(Schank and Abelson). Prototype theory follows this same idea. By sitting
in a chair, we know what it is without asking specific questions to determine
how it differs from everything else in the universe. In effect, we have a
prototypical sense for what a chair is, and this sense allows us to identify
a variety of different looking objects as chairs. The decisions we make when
we design classification systems are often based on prototypes. Michel
Foucault makes light of this practice by quoting a passage from a short
story by Jorge Luis Borges where a “certain Chinese encyclopedia” has a
classification scheme where:

animals are divided into: (a) belonging to the Emperor, (b) embalmed,
(c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray dogs, (h)
included in the present classification, (i) frenzied, (j) innumerable, (k)
drawn with a very fine camelhair brush, (1) et cetera, (m) having just
broken the water pitcher, (n) that from a long way off look like flies.

(xv)

Borges often wrote short stories that describe the way we become trapped
in our own fictions or arrangements of the things in the world. While most
prototypical systems are based on thinking that is not as whimsical as the
example from Borges, this passage does stretch our imagination a bit and
demonstrates different patterns of subjectivity. Perhaps there are or have been

98 Semantics and Classification Systems

people from some cultures who feel it is important to distinguish between
animals that belonged to the leader or “Emperor” of a country from other
animals. It is easy to see that animals that are “tame” or “frenzied” might
be of special importance to humans as they are ones we could or could not
domesticate, but this classification is based on human needs, not the intrinsic
nature of the animal. The phrase “included in the present classification” at
first sounds appropriately objective, but it perhaps suggests how we can get
caught up in absurd bureaucratese. Is this phrase really suggesting any possible
division that is useful?

Classification systems affect the way we view the world. When we review
a classification system that neatly arranges objects, a pattern emerges and
this gives us the feeling that nature is stable and ordered and manageable.
To be considered valid, classification systems must appear objective and
Aristotelian.

In what Foucault calls the Classical Age (the seventeenth and eighteenth
centuries, which most historians call the Age of Reason), he tells us that
scholars believed that language was transparent, that language could describe
the differences and similarities among things so people could perfectly
arrange and thus understand the order of things.

Language neatly parses or arranges the universe in a way that gives us
the feeling of control over it. Foucault thus sees language as a repressive
institution that keeps us from understanding all the things that it cannot
adequately convey given its present net of words and the syntactical
structures that arrange these words into identifiable constructs of meaning.
In Foucault’s “archaeology,” he attempts to establish a theoretical machinery
that exposes this phenomenon “primarily [through] the play of analogies
and differences” (160), or, as we described above, the manner in which we
think of naming and classifying things using binary thinking.

All structures of thought—myth, religion, science, philosophy—rely on
the ability of language to name and order things. These structures of thought
are based on what Foucault calls an “episteme,” the prevailing foundation
of language or discourse that propels the “thinking” of an age and extends
this foundation into other systems of order. For example, the history of
living forms in the natural history of the Age of Reason was based on the
visual ordering in tables used to show the relationship between different
species in the study of natural history. This was based on the belief that
language was the temporal ordering of thought. Thought itself was not
believed to be a temporal entity; thought was organic, mushed together,
something that existed behind the eyes of a subject as a distinct, instantan-
eous, happening-all-at-once entity. Language was believed to be the analysis
of thought, the placing of words into an order that produced sentences that
were eventually placed into paragraphs, essays, and books that explained
the ideas of the writer. This “profound establishment of order in space”
(Foucault 83) emphasized the visual “order of things,” thus instituting in
the field of natural history the practice of similarly ordering plants and
animals along the continuum of the table. Here, the morphological structures

Semantics and Classification Systems 99

that could be seen on these plants and animals—the shape of the neck, the
relative size of the leaf compared to the stem that attaches it to the stalk—
were examined and used to show how species were similar or different from
one another.

On a visual and systematic level, there were strains in the Classical
episteme that could be seen as arising out of the same concerns brought out
above at the linguistic level. As the practice of nomination (the naming of
objects) became more complex, it became more difficult to ascertain the
specific characteristics that were needed to place an organism on a table in
a contiguous relation to other organisms. The character of animals became
more amorphous and incomplete when it became obvious that for every
physical similarity that described the relationships between samples that were
to be studied and classified, there were many more differences that became
“visible” because of the attention to visual analysis. Animals with similar
morphological structures might be able to fit neatly into a natural historian’s
scheme of things, but there were glaring differences that could be seen when
two animals were placed side by side on a table—a table that approximates
the periodic tables chemists use today—that read left to right and top to
bottom like the pages of the books that tried to capture the reasoning of
scholars. Natural history could not be described as neatly as the syntactical
arrangement of words in sentences the grammarians of the Classical Age
were trying to prescribe.

In conventional terms, an ideal classification is a “spatial, temporal, or
spatio-temporal segmentation of the world” that arranges information
according to the following criteria (Bowker and Star 10, 11):

1. The rules of classification are consistent. For consistency, there must be
a clear ordering rule or set of rules that can be used to place every
constituent part in the system in its place. Using the criteria of origin
and descent allows for a consistent ordering of a genealogical record.
All one needs is to determine when someone was born and who her
parents were. Sorting our e-mail correspondences can be determined by
the time we received them, thus creating a consistent classification
scheme.

2. There is no overlap between separate categories. All entities “neatly and
uniquely fit” into one place in the classification scheme; they are
“mutually exclusive.” For example, there can be only one first-born son
from one set of parents, and, with this distinction, one place in a
classification chart that this first-born son alone will fit in. We can also
see in the periodic table of elements that there is only one element that
can fit in one place that is designated for the one element with only two
valence shells that contain two electrons in the first valence shell and
six electrons in the second valence shell. This element is oxygen.

3. A system of classification is designed to cover everything. Each
classification scheme completely encompasses the world it purports to
describe. In the periodic table of elements, all known elements have a

100 Semantics and Classification Systems

position or place, and all elements that will be discovered in the future
or have been described theoretically and are slated to be produced in
a laboratory have a place set aside for them. This would be true of a
system used to describe how all of the botanical systems that exist; all
non-animal living species need to have a “place” where can be seen on
a chart relative to all other botanical species.

While in theory it seems logical that these three criteria should be adhered
to when we design classification systems, in practice it is not always easy
to do this. In the next section, we will demonstrate some of the difficulties
in classifying objects in the real world.

The ICD

The International Classification of Diseases (ICD) has been employed by
the world’s public health officials to chart the nature, frequency, and
geographic origins of diseases and causes of death in human populations
since the late nineteenth century. The ICD has been modified regularly since
the 1890s, and the latest version, ICD-10, came out in 1990. A detailed
study of these changes by Geoffrey Bowker and Susan Star, in concert with
the work of others on the practices employed in information mapping, can
be used to better understand the technology of storage and retrieval systems
in computer technologies: “the history of the ICD attaches directly to the
development of information processing technology this century” (126).

Their study of the ICD also illustrates how classification systems arise
and change to fit multiple social worlds and the manner in which diseases
are characterized. In many cases, this has never been easy. For example,
some medical professionals see cancer as a disease that is localized in one
part of the body that is sufficiently dealt with by cutting it out, while others
see it as a cause of a patient’s entire immune system being weakened. If the
“seat” of the disease—where it presents or is found on the body—is the
determining factor for where we place it in a classification scheme, we would
have two different ideas about how this disease is to be classified.

Additionally, Bowker and Star demonstrate how classification systems can
become so entrenched in our thinking that they become “invisible,” thus
undermining our ability to adapt them as future needs or insights arise. When
physicians fill out death certificates that become the sources of the ICD data,
the classification system steers them towards associations between diseases
and their causes, but keeps them from imagining other possible causes of
diseases. For example, if there are only three causes listed for a particular
disease, this implicitly suggests that there could be no other causes than the
three listed. This phenomenon is analogous to the patterns of thinking
scientists fall into when they practice what Kuhn refers to as “normal
science.”

Even if classification systems are invisible and keep us from thinking
outside of them, there is a real need for complete and well-organized

Semantics and Classification Systems 101

classification systems. This is evident in the case of the ICD and data
collection from death certificates as it allows public health officials to better
invest resources to healing the afflicted. However, just listing every possible
cause of death on a form is not enough. If every known disease is listed as
a potential cause of mortality, the system would be unwieldy and would
increase in “randomness” as physicians would not take the time to review
and properly fill out the forms or really understand the nature of every
disease category. Conversely, if we include too few categories in a classifi-
cation scheme, the information is not useful. If doctors were only allowed
to indicate that death was from “natural causes” or “accident,” we would
not be able to track disease trends that affect mortality. We need some
middle ground where we can have enough identifiable diseases in the ICD
data banks to yield specific enough information that would allow for better
policies and practices by medical organizations and physicians (Bowker and
Star 159).

Even if we have a reasonable amount of known diseases listed on the
death certificate, allowing the many hard working physicians of the world
to document the diseases they see, there can be some problems with classifi-
cation schemes. These classification systems need to be open and dynamic
so they can accommodate new diseases or record more about existing
diseases if they become more accurately diagnosed and characterized. When
new ways of thinking come along, we can either fit them into the “other”
category that we so often find on forms, which is not really helpful, or we
can alter our meaning systems to better include these ideas or objects in our
classifications (Lemke 177).

One way of structuring the ICD to make it more dynamic and useful
would be to include a category for the material surroundings of the patient
who might acquire a certain disease—e.g., poor housing or economic
circumstances as contributing elements of tuberculosis. This would validate
the epidemiological value of this association by suggesting that there
might be a connection or connections between poor ventilation systems, or
older and potentially toxic building materials, and tuberculosis. However,
even this potential opening up of the classification scheme might implicitly
exclude, as traditional understandings of classification systems go, the
potential connection between newer building materials and tuberculosis if
these variables are not related in the meaning system of the ICD. If there
is no way to connect rates of tuberculosis and recently built living quarters,
the physicians who fill out the forms or researchers who analyze the
information might not make a connection between these elements. This
would make it harder for professionals to imagine and/or win support for
funding that would support a study of these elements (Bowker and Star 82).
Likewise, if classification schemes did not allow for the connection of
sudden infant death syndrome (SIDS) to both social and environmental
causes, researchers would not be able to use the data to construct research
studies (Bowker and Star 69). Classification schemes that have this effect
are invisible systems that do not draw attention to their subjective nature

102 Semantics and Classification Systems

because their description of reality is more likely to become uncritically
accepted as “true,” but it might exclude ideas that are also of value.

There are many socially constructed variations of disease classification
schemes and they can be seen as the product of the needs and compromises
of a variety of stakeholders, those who have a personal or professional
investment in the way the ICD is designed:

• Statisticians who are concerned with epidemiological trends are not
concerned with isolated occurrences of diseases, while public health
officials concerned with the potential outbreak of the bubonic plague
or Ebola would want to be aware of any one documented case (Bowker
and Star 70).

• For practicing physicians, carefully filling out a cause of death form
cuts into their time that they can be spending with other patients, but
statisticians feel that careful data collection eventually yields important
results (Bowker and Star 144).

• Physicians are more likely to spend more time filling out a form of a
younger person who has passed away than an older one (Bowker and
Star 145).

• Medical specialists want to see an emphasis on different strains of
diseases, whereas public health statisticians want to see “broader, action-
oriented” categories on nutritional deficiencies and environmental
factors that would allow them to propose new policies (Bowker and
Star 145).

• When the ICD was first established, statisticians wanted it to only contain
200 categories that would not change. Additionally, the diseases were
to be classified by their seat—or where in the body they are found—as
opposed to what caused the diseases as the later distinction is not always
easy to determine. This simplicity would insure the stability of the table’s
categories so the occurrences of specific diseases could be compared and
studied across the decades (Bowker and Star 145–6).

• Spanish authorities wanted diseases to be classified in a fashion that
would better allow public officials to react to them. The categories they
distinguished were, 1) general and sporadic, 2) epidemic, 3) imported,
4) common to people and animals, and 5) professional intoxications
(Bowker and Star 146).

• Some statisticians wanted social-biological factors such as violent death
be given prominence on the list so they could more readily distinguish
what deaths were caused by external causes (Bowker and Star 146).

• Insurance companies wanted disease data to be correlated with the ages
of patients and when their “compulsory” medical insurance began, but
this was difficult as there is no standard across countries for this (Bowker
and Star 147).

• Late nineteenth-century German chemical companies were the first to
document causes of death. One of the categories relevant to them was
based on whether or not the patient had worked inside or outside.

Semantics and Classification Systems 103

Another asked physicians to determine if the patient had handled certain
substances (Bowker and Star 147).

• For pharmaceutical companies, the list of diseases is important because
it dictates just what their products are good for and therefore, what
will sell. Because birth control pills have the side effect of increasing
blood pressure, they can be prescribed as a drug that can be used for
low blood pressure, or hypotension, with the “side effect” of keeping
a patient from getting pregnant. Because hypotension is listed as a
disease, physicians can prescribe contraceptives to patients so they can
practice birth control. In Catholic countries like Spain where there are
religious restrictions against birth control, it is easier to gain the benefit
of this side effect (Bowker and Star 147).

In contrast to the examples above where one group of stakeholders insist
on one way of classifying or naming something for their epidemiological or
political needs, the creation of boundary objects, objects classified under
different categorical headings, enables different communities of stakeholders
to use the same piece of data for their own specific purposes (Star “Structure”
50). For example, hospital attendants might be asked to record certain
symptoms that are commonly associated with epilepsy to aid the physicians
so they can adjust a patient’s medication. This data might also be compiled
in a larger database that could offer insights to researchers who are working
to construct general theories about brain function. The same data recorded
by the attendants would have different meanings to different communities,
and as boundary objects, would still be of value to both groups.

Similarly, the “dagger and asterisk” system of footnoting has been intro-
duced in recent versions of the ICD to cross-reference particular diseases
so it can be noted that they reside in more than one category. This allows
for more dynamic histories of a disease, one that would allow different com-
munities to more readily understand the disease in terms of their own
experience with it (Bowker and Star 73). For example, tuberculosis does
not have a single cause, nor does it originally show up in the same part of
the body. To properly reflect its ever changing or protean nature, it needs
to exist in more than one category (Bowker and Star 73). A dagger or asterisk
by the name of the disease as it is listed can show up at the bottom of the
page before a footnote to indicate that this disease is also listed on another
page in the ICD.

Designation or naming practices also contribute to the spin inherent in
invisible systems. All qualifiers such as “presumably” and “possibly” were
once to be removed from disease descriptions in death certificates even if
they accurately reflected the equivocal or uncertain nature of a physician’s
diagnosis (Bowker and Star 81). Additionally, in early versions of the
ICD, the geographical site of a disease’s first documentation became part
of its name. In later versions, this was often replaced by a generic place and
then a cause; we would go from “Baghdad boil” to “urban cutaneous” to

104 Semantics and Classification Systems

a general agent that might bring about the disease. Similarly, gone is the
practice of using the name of the researcher who first identifed, or patient(s)
who first suffered with, the disease. In general, we have moved from “places
visited,” “heroic sufferers,” and “great doctors,” to abstractions (Bowker
and Star 80).

When Gay-Related Immune Disorder (GRID) was later designated as
Acquired Immune Deficiency Syndrome (AIDS), the potential for different
cultural associations of the disease was made possible. No longer does
the name of this condition specifically call to mind one group of people and
their lifestyle, and researchers and physicians will not always be asked to
associate the causes of this disease by just saying or thinking about the
name of the disease. The acronym AIDS also stands for a more informative
description of the disease; the effect of the disease is that it attacks the
immune system, and people with this disease are not born with or are
genetically predisposed to it. They “acquire” it.

In later recent versions of the ICD, the context of the disease is also deemed
to be important. In the ICD-10, a series of criteria that described the
patient’s housing situation was added to better reflect the social condition
of the afflicted and the disease. Criteria such as the quality of heating
and ventilation, whether or not the person lived alone, was impoverished,
or was homeless added a sociological dimension. Also, the kind of work
performed in the medical laboratory in the diagnosis of a disease also
became part of the classification scheme. For example, there were separate
categories for tuberculosis confirmed “histologically,” “sputum micro-
scopy,” and “culture only.” In the ICD-9, if a patient mentions that she
has epilepsy, the classification designation is “with intractable epilepsy.”
However, if a patient states that she has migraines, the designation is “with
intractable migraines, so stated.” The “so stated” suggests that for migraines,
patients are viewed with some “suspicion” and cannot always be counted
on for completely accurate diagnoses. In these last two context-based
classifications, the patients are removed from the “ownership of their
conditions” (Bowker and Star 84).

Legal distinctions are also factors in determining certain classifications.
The general definitions of blindness in the ICD-9 range from “profound
impairment” to “unqualified visual loss” to “legal blindness, as defined in
the United States.” In the United States, legal blindness is described as “severe
impairment,” whereas for the WHO, which determines international defini-
tions of blindness, “profound impairment” serves as the standard (Bowker
and Star 84).

Bowker and Star refer to these sorting and classifying phenomena as the
principle of convergence, the “double process by which information artifacts
and social worlds are fitted to each other and come together,” or converge
(82). Information artifacts constitute the social world of those who use them
to exchange ideas as they are the bricks and mortar of discourse, the
language they use to communicate in their field, and through formal and
informal discussion of their work, professionals also create a language that

Semantics and Classification Systems 105

augments these artifacts as they fulfill their need to make sense of what they
are interested in. This concept of convergence can be likened to Thomas
Kuhn’s theories about how the language of science comes into being and
shapes the discourse scientists use to explain their ideas and understand
nature.

Below are three overarching ideas that Bowker and Star ask us to be
mindful of when designing classification schemes (324–5):

1. We need to understand that classifying is a practice where we have more
than one audience. To be effective we need to allow for some
“ambiguity” in our designations. For example, we will have some
boundary objects, objects that are understood to have different meaning
to various constituencies. To assume that every element in a classification
must reside in only one specific space and cannot show up in several
spaces would undermine this practice.

2. It is important to be aware of “residual” categories, categories that are
often referred to in classification schemes as “other.” Residual categories
have much to do with the categories that do show up in a classification
scheme as they are like the “silences in a symphony” that makes a pattern
of the music (Bowker and Star 325). In the example above regarding the
Nursing Interventions of Classification (NIC), there are many practices
that nursing professionals engage in that are not represented. Perhaps
explaining the change in condition of a patient to a visiting family
member when the primary physician is not around could be considered
an example of this kind of work. It is not necessarily an intervention that
a nurse can get credit for in her daily routine, and it is the kind of task
that professionals perform in their day that fit into this residual category
—an important, yet undesignated task that falls between the cracks.

3. We need to remember who initially contributed to the system and what
might have been some of the initial uncertainties, political tensions, and
tradeoffs that went in to them; usually, classification schemes are difficult
to design, and there are competing interests and compromises. When
these systems have an “invisible infrastructure” or are “black boxed,”
we are not cognizant of the process by which they came into being and
we are less likely to question them. For example, when the NIC was
first devised, it failed to designate nursing tasks that were thought to
be invisible. Some work “just gets done,” but it is not really noticed.
Work such as “inserting oral or nasal airways, as appropriate” (Bowker
and Star 234) might be considered an essential procedure on a patient
during the course of a nurse’s shift, something that can be checked off
on a chart and be visible. Being “available to listen to a patient’s
feelings” (Bowker and Star 235) might be considered as something that
should not be checked off on a chart; it is an invisible practice, but an
important practice. Knowing this history and that there were varying
opinions and debate about what should be in the NIC allows us to
understand that it was designed by humans; that while useful, it does

106 Semantics and Classification Systems

not capture everything that a nurse does that is of value; and that it
can be challenged and redesigned. When classification systems are not
understood in this way and are seen as “invisible infrastructures,” those
who work with or are affected by them feel left out of any participation
in policy making (Bowker and Star 325).

The way we organize and work with each other is closely tied to the
technical aspects of storage and retrieval. The physical repositories of
information and data entry artifacts of infrastructures—the hardware,
software, GUIs, ledgers, and forms—channel the values and philosophies
of organizations. For the ICD, they provide the “large-scale organizational
memory” that supported decisions regarding the control of diseases and the
allocation of resources (Bowker and Star 36).

The determining dimensions of information infrastructures that shape
and are shaped by classification systems are based on the relationships of
language, technology, and work culture (Star and Ruhleder 4). Infra-
structures “occur” when they can be readily employed by those for their
own purposes—they are more than just substrates that are set out for use.
As we have become accustomed to using telephones, faxes, and e-mail,
our language as it relates to time and distance has changed as have our
relationships with each other. Formal infrastructures often give way to local
knowledge and practices that existed before they were imposed.

The ICD has employed such local knowledge and practices via the
workarounds employed by health care professionals to meet the needs of
changing populations. In earlier forms of the ICD, a single cause of death
was preferred on death certificates as it made it easier to compile statistically.
As longevity increased in some populations, the underlying cause of death
was more likely to consist of multiple disease processes, and therefore
attending physicians began listing several of these processes in the category
“Disease or condition directly leading to death” on death certificates.
Because of this workaround practice, an “antecedent causes” category was
added to the form, thus allowing for the designation of “Morbid conditions,
if any, giving rise to the above cause” (Bowker and Star 73). Renal failure
could be listed as the disease relating directly to death and diabetes could
be the antecedent cause, thus allowing for a more accurate representation.

For an infrastructure to work, it must foster a sense of a democratic
community of producers and consumers of information. For this to happen,
the minimum technical threshold for its use must be acquired and within
the abilities of the audiences who will be asked to use them (Star and
Ruhleder 125).

A classification strategy tells a story that identifies its architect(s). Likewise
the genres of organization communication indicate the organizing practices
of the individuals who use them. The purpose and rhetorical situation that
define a type of discourse (a memo, a list, a letter of recommendation) serve
as the basis for the rules that define these genres. These rules both constrain
the classifying nature of these documents, and are also altered by the social

Semantics and Classification Systems 107

practices of the individuals who use them (Yates and Orlikowski “Genres”
306). Additionally, the genre repertoire—the array and relative proportion
of various discursive forms utilized by the community—tells us much about
the social structure of a community, the way it defines itself relative to
outsiders, the way in which the community evolves, and how the genres
help to stabilize a community’s practices (Yates and Orlikowski
“Repertoire” 546).

In the DOE’s “Advisory Committee on Human Radiation Experiments—
Executive Summary” that we coded in XML in Chapter 2 and will be
discussing in the coming sections, we can imagine how the general
arrangement of sections in the executive summary genre of organizational
communication could have influenced the writers. Executive summaries
should be clear and concise to meet the needs of a busy executive or citizen
who desires to understand the substance and scope of a much longer report.
That there is a “Publication Information Section” in this executive summary
reinforces in rhetorical fashion the idea that the public has a right to this
information and they can acquire it if its members so choose. This can be
thought of as a standard and stabilizing element in this genre. However,
executive summaries of larger reports might not necessarily have a substantial
“Creation of the Advisory Committee Section” in them, but for this report,
it was deemed necessary by the writers because it rhetorically underscores
the idea that private citizens with wide ranging expertise were given the
authority to go to great lengths to honestly assess and possibly expose a
violation of trust between a government and its citizens in decades past. To
counter this violation of trust, this section indicates that great care was
taken in fairly establishing and composing the committee. The specific
names of each XML entity in the summary could also reflect the rhetorical
choices made by its writers. In the next section we discuss single sourcing
because it establishes a methodology for breaking down information into
discrete units and then reassembling them depending on the informational
needs of specific audiences.

Single Sourcing

Single sourcing is the practice of using one document for different outputs.
For example, a legal disclaimer that warns that a product is only to be used
within the accordance of the directions that are included can be stored in
a file and used in all of a company’s documentation for all of its products.
A description of general safety precautions that one should always be
mindful of when using a company’s products can be stored as a single
sourced file. When software products are upgraded to another version,
many of the same operations of the newest version of the software are the
same as those in the previous version, such as directions that describe how
to open up a file. If this task has been single sourced, it does not have to
be rewritten and can be reused in the documentation for the latest version

108 Semantics and Classification Systems

of the software. The XML modules used in the DOE’s “Advisory Committee
on Human Radiation Experiments—Executive Summary” in Chapter 2 can
be thought of as documents that could be reused in future documentation
efforts.

Perhaps one of the greatest values of single sourcing is that some writing
that has already been done by one writer or group of writers in one part
of an organization does not have to be redone by another writer or group
of writers in the same organization. There is already some existing
documentation that they can draw on for their own needs. All too often,
professionals in organizations write in isolation from others, and this is
referred to as the “silo trap” (Rockley “Managing” 5). It is as if people are
isolated in silos and cannot leverage the hard work of others that work in
different departments of an organization.

To enable professionals to be able to find documentation that has already
been produced by others, the information has to be written with reuse in
mind and stored in a CMS that would allow relatively easy access to this
information. Later, in Chapter 6, we will spend more time discussing CMSs
and building a simple CMS and parser using XML. For now, it is only
necessary to understand that a CMS is a system for transporting modular
data from one location to another and for facilitating search and access to
the content stored within.

In order for the information in a CMS to be searchable, members of
different branches within an organization have to be able to agree on the
kinds of information they can use that would benefit everyone. Equally
important, the organization’s members have to be aware of the semantic
differences of the elements of information that might be in play between
the different branches.

Single sourcing can mean using the same documents or parts of documents
that have already been written and are stored on a technical communicator’s
hard drive. Sometimes the content is modified for a particular audience or
medium such as a manual or a website (Williams 321). The phrase “write
once, publish many times” is often invoked when discussing single sourcing.

Today, this phrase still holds, but single sourcing is now supported by
the application of XML coding and CMSs. Ann Rockley asserts that
technical communicators are going through a paradigm shift because the
advent of this practice and technology are asking us to think of information
as “objects” that are “referenced” in and then “drawn” from a database
to become part of a document (Rockley “Impact” 189). This paradigm
shift means that we are getting away from thinking about single sourcing
as cutting and pasting from legacy documents that have already been in
use before. Instead, we are moving from a document-centered to an object-
oriented way of thinking about information (Williams 321). Now,
information can be coded in XML and thus packaged in modular elements
that reside in databases, like those we discussed in Chapter 2. These elements
can be drawn and arranged as needed with the use of DTDs.

Semantics and Classification Systems 109

According to Rockley, there are four levels of single sourcing that help
illustrate this paradigm shift. Level one single sourcing, “Identical Content,
Multimedia,” describes the practice of using content from one medium, say
a printed manual, and then taking the same content and putting it in
another medium such as a PDF file or an online Web page. This raises the
concern that perhaps the content that was in the original form is not
necessarily suited for the other. If a large paper-based document is just made
into a PDF file, this does not really work as well as it might in an online
environment where information is better broken down into smaller elements
and linked. When users in the online environment see a large PDF file, they
cannot maneuver well within it as they have to scroll up and down through
a large document and often end up just printing out the entire PDF document.
If any updates need to be made on content, this means that the updates have
to be made both in the print manual and the online PDF file, which makes
for more work. Also, in the original print manual, the graphics that are
included might be embedded appropriately in the written text, whereas in
an online environment, it might be best to have the written text presented
with links to the attendant graphics, thus giving the viewer the option of
reviewing the graphics or not. If the online presentation is just a PDF
document, this does not take advantage of the way links can make access to
the graphics an option.

Level two single sourcing, “Static Customized Content,” is the practice
of taking single sourced content and then modifying it for different platforms
or audiences. Improving on the practice described in the example above,
this would mean that the traditional paper-based manual would be
transferred to a website in a way that best takes advantage of this electronic
medium. The original document would be broken down into a number of
links to specific parts, and these parts would be linked accordingly, thus
giving the viewer the navigational choices on the website that would make
it easier to view on the screen.

Some companies manufacture suites of products that use some of the same
documentation for similar functions. Microsoft® Office, for example,
contains Excel®, PowerPoint®, and Word®, and some of the documentation
for some operations in each of these software programs can be reused as
they are the same. However, new specific directions on the different software
programs would have to be added to ensure that they are properly docu-
mented. Software programs are often upgraded, but most of the original
descriptions for using their functions remain the same and these can be single
sourced when documentation for later versions is updated.

There are multiple information products for products such as training
materials, online help, reference cards, and user guides that can use the same
core material, but then be modified for each of these mediums. Additionally,
single-sourced information can be employed and then tailored for different
audiences, ranging from novice to expert.

What is most significant about level two single sourcing is that technical
communicators are writing with the idea that they will be asked to write

110 Semantics and Classification Systems

and be able to later extract modular units or objects for different uses. This
is in contrast to the level one example where an entire document is
transferred in total to another medium with little thought to changing its
form to best meet the need of the medium.

“Dynamic Customized Content” describes level three single sourcing.
In this scheme, each user has the content customized for her own needs.
Users log in and are presented with information that serves their specific
profile. Oftentimes this information is generated because each user is
asked to fill out a form that describes her needs. User needs are also
identified by the use selection patterns they engage in when viewing a site
and additional material is sent to them based on relevance. In Chapter 6,
we will also build a simple level three single sourcing project to go along
with our CMS project. In this content, we ask users to self-select their own
individual skill levels based on “beginning,” “intermediate,” or “advanced”
categories.

This practice of single sourcing coupled with customer profiles, metadata,
and databases has been most notably implemented by e-commerce; perhaps
Amazon.com is the most widely known commercial example of this
technology. But Rockley holds that this can also be used in industrial
settings. Here “information is drawn from a database, not from static, pre-
built files of information” that assumes all patrons are the same (Rockley
“Impact” 191).

Level four single sourcing is built on an electronic performance support
system (EPSS) that builds on level three technologies by providing users
with support material such as usage questions and training manuals that
are tailored to their needs “before they know they need it” (191). EPSS
technology generates profiles of each individual so that her needs can be
anticipated. This technology can be used by online vendors or an
organization’s intranets.

Rockley contends that the team approach to producing documentation
in a single sourcing environment will be the likely outcome of this tech-
nology. Because writers will not be relegated to rewriting old documentation,
but will instead be asked to produce new single source elements for features
of new products or new versions of products, their work will not be
“boring.” Also, when a single sourced document is changed in a database,
it means that this element is changed in different media or “wherever it is
used” (192).

Primary and Secondary Modules

Kurt Ament further articulates how we can use single sourcing methods to
breakdown information into modular units that can be readily used and
reused as needed. While Ament is not writing about the use of XML and
CMS systems exclusively, we can see how parts of his method can aid us
as we employ these technologies.

Semantics and Classification Systems 111

Ament distinguishes between two different levels of content: the document
level and the element level. At the document level, we have full bodied
productions such as print manuals that are linear in arrangement. They
consist of many smaller parts arranged in a specific order.

At the element level, he asks us to think of modular building blocks such
as lists, paragraphs, or sections of documents that can stand alone and be
used as needed in the production of larger documents. While Ament does
not use the term “element” like we did in Chapter 2 when we were describing
the basic XML encapsulating units, this is not necessarily an inaccurate
comparison as we can use XML to tag lists and paragraphs. Though Ament
is not talking specifically about XML, his ideas are certainly relevant to this
discussion.

The first step in producing a single-sourced array of content is to identify
the specific modules, both primary and secondary, that will constitute the
larger document. Primary modules are the most common building blocks
of larger documents, and secondary modules are usually contained in
primary modules (Ament 26). Below we illustrate the basic primary modules
and list the secondary modules that Ament identifies:

Definition lists. Definition lists can be broken down into the following kinds
of lists:

• Component lists consist of the hardware that go into making up a
product such as monitor, CPU, and printer.

• Terminology lists consist of proprietary terms, terms that an organ-
ization has exclusive rights over such Network Node Manager, or
public domain terms that are in use to describe terms such as File
Transfer Protocol (FTP) (Ament 63).

Glossaries. Glossaries are master lists that include all of the component lists
and terminology lists for a given document and are usually found at the
end of a traditional document or as a separate link in hypertext page. They
may include all items from all definition lists that can be found within a
larger document.

Procedures. Procedures are descriptions of the ordered steps one takes to
perform a task. Ament describes four kinds of procedures (118):

• Single-step procedures involve just one task. It might be something as
simple as creating a password for an organization’s intranet. They
consist of imperative commands that tell someone precisely what to do.

• Multi-step procedures are a set of single-step procedures and should be
arranged in an ordered list. Such a procedure might be how to locate
the login page of a corporate intranet, create a user name, and then
create a password so one can log in successfully.

112 Semantics and Classification Systems

• Superprocedures are compilations of other procedures. Ament suggests
that if any procedure contains more than nine steps, it should be
converted into a superprocedure.

• Subprocedures explain steps in superprocedures.

Processes. Processes are similar to procedures in that they describe a method
for performing a task, but they are usually narrative in structure. As opposed
to procedures that tell the user the specific text that needs to be entered in
a software program, they describe in general terms how one might solve a
problem. For example, a process could be an extended example of how to
use a search engine on an intranet. If a basic search does not work, then
perhaps the user needs to reconsider the word choices she has made.
Research has shown that the best time to educate a user about the search
process is after an initial search has failed or otherwise frustrated the user
(Morville and Rosenfeld 182). Perhaps an advanced search option is
available in the intranet’s architecture and this can be utilized to better
educate the user and advance their needs.

Topics. Topics are written to describe the “who, what, when, where, or
why” (Ament 26, 140). Topics could serve to answer the following ques-
tions. Below are some questions we generated using XML as the basic
subject:

• Who should learn XML?
• What is XML?
• When should an organization employ XML technology?
• Where is XML technology best implemented in an organization?
• Why should an organization employ XML?

Topics can answer these questions by employing forms such as “argument,
description, exposition, or narration” (Ament 26, 141). Here are some
examples we came up with of how these forms might be used using XML
technology as the basic subject:

Argument. Persuading executives and co-workers that in the long term,
employing XML technology will save the organization money by making
it more efficient.

Description. Illustrating how XML elements look. One could present some
simple XML coded elements of existing documentation such as product
descriptions.

Exposition. Explaining the logic behind the building of a DTD. Exposition
could also include the best practices that were posted by the Xerox service
personnel who contributed their ideas to the Eureka project that we
described in Chapter 1. Tables, itemized lists, or definition lists are often
used in exposition.

Semantics and Classification Systems 113

Narration. Explaining how to perform a task in “sequential or chronological
order” (Ament 141). For example, one could explain how to go about
gathering information and deciding how many XML elements needed to be
included in a DTD in paragraph form or an ordered list.

Troubleshooting Scenarios. Presenting problems that come up and their
solutions. The problems can be explained in topic form and the solutions
can be presented as the procedure one uses to rectify the problem. Examples
could include the many ways an XML document is declared invalid and
the solutions could include how one can rewrite the XML code to match
the requirements of the DTD. As we described in Chapter 1, problems with
copy machine repair and their solutions can also be thought of as trouble-
shooting scenarios, as can problems that come up when claims adjusters
for insurance companies process a claim.

Ament tells us that primary modules usually include secondary modules,
and these secondary modules include figures, itemized lists, notes, and
tables (27).

Information Product and Element Models

Rockley uses the phrase “information product model” to describe the basic
features of an organization’s document. These features differ from the
rhetorical forms that Ament describes in his primary and secondary modules.
For example, an information product model for a press release would
contain a subject, date, contact, body, and website address. The basic
features of an information product model can be broken down further into
“element models.” For the press release element model, we would add the
following features: a corporate description (short), announcement, product
description, features, benefits, quote, corporate description (long), and
availability (“Managing” 168).

While Rockley does use the term “element” in element model and does
discuss XML elements and how they are tagged, she is not necessarily
equating the two concepts. For example, the PCDATA that would make
up the XML elements that described the actual month, day, year, and the
first and last name of the contact for a press release are referred to as base
elements. But the same information for these pieces of information that could
be stored in Microsoft Word® and Adobe FrameMaker® files are also
referred to as base elements in Rockley’s organizing strategy (171). Rockley
does not use the term element like we have been using it; we have been
using this element only to describe XML elements that follow the rules of
XML syntax.

“Semantic information,” according to Rockley, is information that
describes the “specific meaning” of information such as “ website address”
or “product description.” This use of the word “semantic” is somewhat
different than Tim Berners-Lee’s use of the word in his Semantic Web;
Berners-Lee wants to be sure that certain words or phrases used to describe

114 Semantics and Classification Systems

an object in one computer’s database can be equated to the same thing that
might have a different word or phrase to describe it, even though both
objects are the same thing. In the example we used before, “mean-diurnal-
temperature” can be recognized as the same thing as “daily-average-
temperature.”

For Rockley, “generic information” refers to descriptions of information
that do not tell us anything about the content of the information like
“semantic information” does. Rather, generic information tells us about
the information’s basic form. For example, “para,” “line,” “list,” and
“title” would be generic tags. We know that some information will be
presented in paragraph form when we see “para,” but have no idea what
the information might be about (“Managing” 170).

In Table 3.1 we organize our information using Rockley’s method to illus-
trate how we can distinguish between the semantic and generic information
for the DOE’s “Advisory Committee on Human Radiation Experiments—
Executive Summary.” Additionally, we have added a column that tells us the
name of the XML entity that we have coded because it more specifically
illustrates how we could store a number of modules in a database and extract
or point to these single-sourced elements for our own purposes. The informa-
tion product model for this document is in all caps form in the left hand
column and consists of the following:

• Publication Information
• Creation of the Advisory Committee
• President’s Charge
• Committee’s Approach
• Historical Context
• Key Findings
• Key Recommendations
• What’s Next: The Advisory Committee’s Legacy.

The basic features in this information product model could be used to
describe other committees that were asked to perform specific tasks by a
sitting president or government official.

We can see from Table 3.1 that the element model descriptions such as
“Current Regulations on Secrecy in Human Research and Environmental
Releases” present a further granularization and specificity of meaning that
might distinguish this executive summary from others. In the right hand
column we have the corresponding XML entity, “achre_key_findings_current
_regulations_on_secrecy.ent”, and its content is easy to discern because of
the way we named it; it has something to do with ACHRE, it is in the “key
findings” section of this committee’s executive summary, and it is further
distinguished because it contains information on “current regulations on
secrecy.” We can also see from the generic column in Table 3.1 that this entity
contains a heading, list, and paragraph(s).

Semantics and Classification Systems 115

116 Semantics and Classification Systems

Table 3.1 Semantic, Generic, and XML Entity Descriptions for the DOE’s
“Achre—Executive Summary.”

Semantic Generic XML Entity Name

ACHRE: Executive Summary
PUBLICATION INFORMATION module achre_publication_information.ent

title
para(s)

USGPO Telephone Orders module usgpo_telephone_orders.ent
line(s)

USGPO Mail Orders module usgpo_mail_orders.ent
line(s)

ACHRE Internet Archives module achre_internet_archives.ent
para(s)

USGPO Printing Location module usgpo_printing_location.ent
line(s)

CREATION OF THE module achre_creation_of_advisory_
ADVISORY COMMITTEE committee.ent

title
para(s)

PRESIDENT’S CHARGE module achre_presidents_charge.ent
title
para(s)

COMMITTEE’S APPROACH module achre_committees_approach.ent
title
para(s)
list
lines(s)
para(s)
list
para(s)

HISTORICAL CONTEXT module achre_historical_context.ent
title
para(s)

KEY FINDINGS title
Human Radiation Experiments module achre_key_findings_human_

radiation_experiments.ent
title
list
para(s)

Intentional Releases module achre_key_findings_intentional_
releases.ent

list
heading
para(s)

Uranium Miners module achre_key_findings_uranium_
miners.ent

heading
list
para(s)

Semantics and Classification Systems 117

Table 3.1 continued

Semantic Generic XML Entity Name

Secrecy and the Public Trust module achre_key_findings_secrecy_and_
the_public_trust.ent

heading
list
para(s)

Contemporary Human module achre_key_findings_contemporary
Subjects Research _human_research.ent

heading
list
para(s)

Current Regulations on Secrecy module achre_key_findings_current_
in Human Research and regulations_on_secrecy.ent
Environmental Releases heading

list
para(s)

Other Findings module achre_key_findings_other_
findings.ent

heading
para(s)

KEY RECOMMENDATIONS title
Apologies and Compensation module achre_key_recommendations_

apologies_and_compensation.ent
heading
para(s)
list
para(s)

Uranium Miners module achre_key_recommendations_
uranium_miners.ent

heading
list
para(s)

Improved Protection for module achre_key_recommendations_
Human Subjects improved_protection.ent

heading
list
para(s)

Secrecy: Balancing National module achre_key_recommendations_
Security and the Public Trust secrecy_and_national_security.ent

heading
list
para(s)

Other Recommendations module achre_key_recommendations_
other_recommendations.ent

heading
para(s)

WHAT’S NEXT: THE module achre_advisory_committees_
ADVISORY COMMITTEE’S legacy.ent
LEGACY title
Interagency Working Group Review heading

para(s)
Continued Public Right To Know heading

para(s)

Adding the name of the entity that would reside in a database in the same
row as the semantic information used to describe it illustrates how we could
make available in table form the single source modules that could be used
and reused to produce other documents and form other XML documents
with their own DTDs for different audiences. We can also accomplish this
process without using separate entities for each module. We take this
alternate approach in Chapter 6 when we develop our single sourcing parser
project.

In the next section, we will discuss how we can employ these single
sourcing methods as knowledge managers.

Organizing Knowledge as Knowledge Managers

As we have seen in our discussions in Chapter 1, professionals in organ-
izations now realize that the knowledge of their employees is their greatest
asset, but because this intellectual capital is catalogued in the minds of
people, it can be challenging to direct and leverage. To better take advantage
of this, organizations are instituting knowledge management systems so that
this intellectual capital, like traditional forms of capital, is more readily
available to all members of the organization. Repositories of knowledge in
areas such as product design, technical support, employee skills, customer
relations, and problem diagnosis can be analyzed and better utilized to
decrease costs and increase revenues. This only occurs, however, if the
knowledge management systems can be accessed by everyone.

For example, Arthur Andersen (AA), an international business auditing
and consulting firm, employs a Proposal Toolbox, an online repository of
proposals its members have submitted to their business clients (Dutta and
De Meyer 390). This tool enables their consultants to reutilize parts of these
proposals and also allows them to collaborate with the primary writers of
each proposal as needed. Additionally, AA stores the general correspondence
and intermediate work-in-progress documents in a file system dedicated to
each client being served and all Arthur Andersen employees are granted
access to this file. This supports the one-firm concept where teams of
consultants work “across practice, across offices, and across countries
if necessary.” This allows them to better leverage their human capital as it
reinforces informal networks of people exchanging their insights and skills.

The knowledge that a healthy organization possesses can be divided into
four categories (Zack 25–7):

• Declarative knowledge is knowledge about things—the empirical data,
terminology, and distinctions between ideas and objects important to
the business of the firm.

• Procedural knowledge describes how things are done in an
organization—the bureaucratic, industrial, or legal steps that need to
be performed in a prescribed sequence.

118 Semantics and Classification Systems

• Causal knowledge includes the why of things, and might include
factors that influence product quality or customer relations. These
factors are often best described by stories or narratives of a corporation’s
employees.

• Relational knowledge is the awareness of how the declarative,
procedural, and causal elements of knowledge above relate to one
another. Evolving new products or establishing relationships with new
clients is often most readily accomplished by a fusing of existing
resources and skills that the company possesses.

The last three forms of knowledge in this list—procedural, causal, and rela-
tional knowledge—can include elements of tacit knowledge that we discussed
in the first chapter. The most complex form is relational knowledge and it
is often the knowledge that we acquire by articulating or describing and
documenting our activities within and across the organizations we work in.

Knowing the kinds of knowledge is one thing, but to collect, store, and
transmit knowledge is another. Additionally, organizations need to show
workers how they can share their knowledge, and this can be done by
designating professionals as knowledge managers. For example, each local
office of Arthur Anderson has its own knowledge manager who oversees
the collection and dissemination of archived knowledge (Dutta and De
Meyer 392). When a project has been completed, project team members are
asked to write reports for the knowledge manager summarizing what they
have learned and to identify the best practices that they have come across
in their client’s organization. This knowledge is then passed on to AA global
knowledge managers who filter, distill, and then apply this to firm-wide
knowledge bases.

In an attempt to bring together employees in large organizations with
specific skill sets, Microsoft® has employed a “knowledge map” (Davenport
and Prusak 75–7). This is a complex undertaking because an individual’s
knowledge is multifaceted and it changes over time. The five major com-
ponents for building and maintaining a knowledge map include:

1. Building an organization-wide structure of varying knowledge
competencies and levels.

2. Describing the skill sets needed for different tasks.
3. Gauging the performance of different employees after a project is

completed.
4. Integrating these knowledge competencies in an online information

system.
5. Connecting this information to training programs.

Explicit competencies are those that describe an employee’s ability to use
certain tools such as Excel® or SQL 9.0. Higher order competencies, implicit
competencies, characterize the abstract reasoning skills that an employee
might possess. Some of these implicit skills included “Knowledge of Data

Semantics and Classification Systems 119

Warehousing” and “Network Administration” (Conway). This knowledge
mapping system describes 137 implicit competencies and 200 explicit
competencies.

We discussed in Chapter 1 that there is a strategic difference between
information and knowledge, and human attention is what is all too often
left out of the equation that allows us to distinguish between information
and knowledge (Malhotra “Knowledge” 8). Below, Davenport and Prusak
(113–14) describe the tasks that knowledge managers will need to undertake
to accomplish this:

• Advocate the value of knowledge management systems so that they
become integrated into the organization’s culture.

• Oversee the implementation of the firm’s knowledge management
infrastructure.

• Find and negotiate with the appropriate external providers of
information that would best suit the needs of their corporation. For
example, Monsanto provides its scientists with external market data
that allows them to take the initiative in developing new products
(Davenport and Prusak 129).

• Suggest and critique methods that describe how knowledge creation can
be undertaken in endeavors such as market research and business
strategy development.

• Implement ways to measure the value of the information stored in the
organization’s knowledge repository.

• Create standards for knowledge managers within organizations.
• Identify the kinds of knowledge bases the firm can best utilize and the

types of knowledge in which the firm is in short supply.

To better leverage an organization’s human capital, Malhotra asks that
we fine tune our ideas regarding knowledge management (Malhotra
“Deciphering” 60). Like the community of professionals who worked to
produce and evolve the ICD, organizations are communities of humans
that can provide diverse meanings to the outputs generated by existing
technological systems. Diverse interpretations allow the potential for
“constructive conflict mode(s) of inquiry” (60). For this to happen, we need
an information architecture that includes categories and metaphors that
allow us to better identify skills and competencies of an organization’s
employees (60). For example, the AA Proposal Toolbox is a metaphorical
description that allows people to understand that there are “tools” in
existence, and if they are shared and utilized thoughtfully, they might better
allow someone to accomplish the task of writing an effective proposal. On
a metaphorical level, Microsoft’s “knowledge map” suggests that there is
knowledge “out there” in the organization, and if it can be located on the
“map,” it can be utilized effectively. It also suggests that a corporation’s
knowledge belongs to everyone, not just one individual (Davenport and
Prusak 76).

120 Semantics and Classification Systems

Malhotra (“Deciphering”) also asks professionals to recognize the value
of tacit knowledge, human creativity, and imagination. To do this, technical
professionals need to implement technical architectures that allow them to
be more social, open, flexible, and respectful of individual users. Addi-
tionally, they need application architectures that serve their problem-solving
needs as opposed to merely allowing for the (re)generation of output
transactions of simple archived data. Because workers at AA are able to
access the past proposals that have proven successful and then make contact
with their colleagues in different AA corporate offices who generated these
proposals, this enables these workers to exchange and leverage, for example,
their tacit ideas about the different clients/audiences for whom they were
working. A proposal for a defense contractor in Denmark might have to
amplify certain concerns that are important to people working in this
particular European business culture. Someone who wrote a proposal for
an American dot.com corporation that specialized in disseminating
information about agricultural markets might be able to suggest rhetorically
effective techniques that she intuitively understood worked best for the needs
of this unique corporate culture. The environments that workers find
themselves situated within are often complex social constructions that
cannot be learned from a book. When hard-to-come-by knowledge is not
articulated and shared between an organization’s members, it means that
others will have to “relearn” this knowledge on their own, which can be
costly and inefficient. Finding someone with the know-how one needs can
be facilitated with a well-integrated knowledge management infrastructure.

Prevailing practices that implicitly suggest that “this is the way things are
done” need to be de-emphasized (Malhotra “Deciphering” 60). To plan for
the future, technical communicators need to free themselves from the idea
that they use a limited number of ideas that, while perhaps effective in the
past, might not be as effective in contemporary markets that demand
continual innovation. We believe that if technical writers and other com-
munication professionals take on the role of knowledge managers, they need
to be mindful of the way explicit and tacit knowledge is identified and named
within and between different divisions of organizations. In other words, if
they are aware of Kuhn’s four socially constructed elements—the symbolic
generalizations, shared commitments, shared values, and shared exemplars
that shape their work environments—they can be more cognizant of how
the brand of knowledge management that Malhotra advocates might be
implemented to affect change.

Knowledge Management and Information Science

Now that we know the rudiments of XML, we can see how it can be used
to organize specific elements of information and thus produce useful
knowledge. One of the best ways to understand the nature of the knowledge
that knowledge managers are trying to manage is by finding out how it is

Semantics and Classification Systems 121

articulated across different branches of an organization, closely examining
it, and then breaking it down into its essential components. These practices
are what one is compelled to do when producing XML code, and com-
munication professionals can expand their territory into the realm of
knowledge management by learning how to model knowledge via XML.
Using XML offers them a way to provide not just data, but data with con-
text. XML can then be used to directly support knowledge management
practices, since we can think of knowledge as data with context.

XML allows professionals to connect with each other, or more precisely,
with each other’s databases. XML compels them to reexamine just what
information is of value to their organizations. As Berners-Lee and others
have pointed out, it also makes it easier to search within different databases
for specific information they might need as opposed to information that is
encoded in HTML or embedded in a traditional database.

Previous work on the required skills for data reporting using widely-
employed spreadsheet tools see it as much a rhetorical enterprise as a
procuring of discrete facts. To support the transmission and production of
knowledge, information gathered from databases needs to be presented in
meaningful patterns that meet the audience’s needs, especially when tabular
data is the sole content of the message. To do this, we need to know, in
terms of rhetorical invention (Mirel),

• the value of the electronic data,
• the meaning of the data relationships, and
• the appropriate level of detail required to meet the needs of the audience.

Problems that could result from a lack of attention to these ideas include
information overload, overly narrow content, random data, unprocessed
data, and unintelligible data (Mirel 99–100). Procuring appropriate data so
one can best meet the needs of an audience “is only feasible if the data are
set up in a special way to allow writers to retrieve data from different data-
bases” (Mirel 104).

Information scientists and archivists have understood for some time that
the best way to organize data and concepts in information storage and
retrieval systems (ISARs) is by indexing and abstracting them. Traditional
metadata indices and summaries can be effectively employed in the syntax
of the object-oriented languages like XML, and this practice will demand
a more sophisticated ordering and labeling of objects because they will serve
as the single source of data that will support more than one body of text.

If text indices and the rules of extraction utilized by an electronic indexing
system are not apparent, the researcher can be similarly unaware of the
system’s limits. In this case, a user might be led to the false belief that there
is no information available that might meet her unique research needs. When
a researcher is trying to make new connections to other fields or ideas by
tapping existing but unknown documents and does not have any concrete
notion of what search terms that lead to potentially useful texts, a search

122 Semantics and Classification Systems

system cannot aid in this endeavor if there is 1) an indeterminacy (or
uncertainty) in the representation or words chosen to indicate the objects
in a document by indexers or, 2) an indeterminacy of chosen search terms
employed by the researcher who is performing the research (Blair 237).
It is also important to remember that unless a system’s users are librarians,
researchers, or specialized professionals such as attorneys performing
patent searches, they are not going to spend the time learning how to craft
perfect queries and complex Boolean expressions (Morville and Rosenfeld
181). We must therefore invest even more effort into the indexing of
our data.

A simple description of the physical object is not enough. As Stam has
stated, what is important is “the significance of the piece—a concept
representing a perceiver’s judgment—based on any one of several criteria”
(6). The groups of indices that need to be evolved include the signs, signifi-
cation, and social context of, in Stam’s example, an art object. In her
depiction of the difficulty of cataloging fiber art, an emerging style of
sculpture that curators had yet to evolve a descriptive vocabulary, Lunin posits
that to capture the essence of any artform one must understand and describe
the breakthrough that the artist experiences that precipitates the
unprecedented artform. Additionally, new terminology needs to be evolved
and disseminated that best describes, in this case, just what materials are being
used in this artform. Even though art that was constructed from “art fabric”
came into play soon after World War II, it was only in the seventies and
eighties that terms such as “textiles,” “fiber,” and “fiberwork” appeared in
art journals as accepted indicators of an artform. From this insight, one can
decide on the set of indices that could account for the relevance of the artistic
intent, materials, techniques, and the aesthetic elements such as line, form,
unity, balance, and emphasis.

We might say that communication professionals/knowledge managers
should devise a search system that includes a wider array of indexical
elements. This would allow for a greater array of accepted terms that would
point to a useful document. But in practical terms, we should be also be
aware of going too far the other way when we are extracting indexical
elements—to index every possible nuance of a document might bury some
of the key elements in a text and also lead prospective researchers to believe
that there are sources in existence that really do not amount to much. We
all have put a few search terms into Google or a university library search
system that we thought would be useful, but have come up with thousands
of documents that we had to wade through that have nothing to do with
our research needs.

Morville and Rosenfeld remind us that recall, or the total number of
relevant documents retrieved over the total number of relevant documents
in the collection, is inversely related to precision, or the number of relevant
documents retrieved over the total documents in the collection (159). In
other words, we cannot often return lots and lots of extremely high-quality
results. We either sacrifice recall to gain precision or return more total

Semantics and Classification Systems 123

documents and have less precise results. When building searchable collections
for the World Wide Web, this is another reason that speaks to the import-
ance of building metadata indices with the appropriate level of granularity
but without obscuring useful data at the expense of being overly detailed.

As we have shown above in the extended description of how diseases are
classified by Bowker and Star and how indexing professionals need to be
selective when they choose the semantic elements that name objects so as
to better enable researchers to find relevant information, judging what
constitutes a relevant indicator of an object/text is a function of the needs
of our audience. The list below summarizes the basic questions professionals
need to consider when indexing complex documents (O’Connor 56), and
it can be modified and implemented by knowledge managers who are
working within an organization to decide how different elements of
knowledge can be tagged using XML:

1. How many elements should be extracted from various bodies of infor-
mation?

2. Which elements should be extracted?
3. Should the elements be extracted in their natural form or translated?
4. Should elements be in their natural order or constructed order?
5. Should generalizations of individual concepts take place?
6. What are the rules that guide extraction?

Answering these questions challenges knowledge managers to identify the
many small parts that make up the whole of their material, but it also
calls upon them to think about how the material needs to be organized in
the hierarchy of a DTD. Moreover, breaking information down into its
elementary parts and then asking themselves if they are in fact “objects”
also challenges professionals to more critically frame their use of object-
oriented languages such as XML (Price 71). This parallels Kuhn’s concern
that scientists thoughtfully examine the essential nature of the socially
constructed elements they are working with before they deploy them; if they
ask if something is in fact an object, what they are doing is asking themselves
if a “symbolic generalization” that is commonly believed to be of value in
a socially constructed environment really meets their needs.

For example, there is a small but vocal minority of economists who
challenge the prevailing socially constructed notion of how they should gauge
the economic health of our nation. It is traditionally thought that the value
of all goods and services in one year should be added together to determine
our gross domestic product (GDP). The larger the GDP, the healthier the
economy. However, economists with environmentalist leanings believe
that certain goods and services should be subtracted from the GDP if they
are in fact employed to clean up the environment. If a large portion of
the economy is devoted to cleaning up the mess people generate in the
production of other goods and services, our standard of living is actually
diminished; we have fewer goods such as homes and services such as medical

124 Semantics and Classification Systems

care available to us that offer comfort. While this idea did not come about
because the Department of Commerce decided to employ XML technology,
it describes how knowledge managers might always be thinking about the
potential for including new objects into such a complex matrix, objects such
as goods and services devoted to environmental restoration. In the context
of O’Connor’s heuristics directly above, this example asks that knowledge
managers working with economists consider whether or not environmental
costs should actually be made into an XML object or element (whether
or not it should be “extracted”) and actually used to calculate the GDP
formula. These professionals are also asking how objects relate to one
another hierarchically (one object would be subtracted from the added value
of the other objects), and it challenges the very idea that there is a set natural
order of elements that they can all agree on to determine what we know as
our standard of living.

Additionally, it would be naïve to assume that one professional could
code data in such a way that all potential users would find the information
meaningful. The problem with this is that different organizations (and
branches within organizations) have their own take on just what the
information in their databases means, and the more databases that are
linked, the greater the potential for confusion.

To better manage the differences in an organization’s setting, information
professionals need to collaborate by articulating their needs with the needs
of others across different branches of their organizations. If people are
willing to work out the formatting of data for each application with each
other, there would be no problem, but this takes a considerable amount of
time. The greater the number of people seeking to connect with each other,
the greater the effort of negotiating their differences in perspective.

Knowledge managers also need to understand that the strength of XML
as a tool can also be its weakness. While XML allows them the ability to
more ably store and transfer information, if they do not implement an
integrated design method in the early stages of their development phase,
they run the risk of creating a system that is too complex and trouble-ridden
to use effectively.

One method for using XML efficiently is to create an architecture that
represents how an organization does business. To do this, knowledge
managers need to see an XML Document Design Architecture (XDA) as
something that is set up in three layers (Simon 130):

• a conceptual layer,
• a logical layer,
• and a physical layer.

To develop a conceptual layer, knowledge managers need to acquire all
of the documents that are currently in use throughout their organization.
By doing so, they might be able to identify and combine certain documents,
and also come to realize that there are other kinds of documents not in use

Semantics and Classification Systems 125

from which they could benefit. This would yield a better sense for how their
organization is represented via texts and data.

To understand the logical layer, knowledge managers need to determine
the data that their documents commonly contain, and define how these
pieces of information can be set in document data element types. For
example, a memo would contain the elements that described the author(s),
person(s) addressed, subject, date, and text. A spreadsheet that describes
the annual economic activity of our nation would contain elements such as
GDP, durable goods, nondurable goods, services, and perhaps even goods
and services devoted to cleaning up the environment.

The physical layer would consist of the DTDs that the knowledge
managers develop. These DTDs would designate which elements are to be
used for each application and how they relate to one another.

What is key here is that each layer is kept separate so problems that might
arise from creating too complex a database can be mitigated. As work is done
on each layer, information should be analyzed for comprehensiveness,
consistency, and redundancy. If this development process is adhered to,
problems will be detected at each level or layer before they are sent on to
the next level, thus eliminating wasted time spent on refurbishing the entire
information architecture at a later date (Simon 131).

Chapter Summary

Once organizational information is available, teaching the organization’s
members how they can access it for their own articulation needs can also
be part of the responsibility of technical communicators/knowledge
managers and other communication professionals. Making sure this
information is understandable is also important, and this is something that
technical communicators are well practiced in. Historically, technical
communicators have produced documentation for disparate audiences, and
part of their work has always been to ensure that documents they turn out
are used by others. Additionally, technical communicators working as
knowledge managers can also keep people updated on new information as
it is made available on databases that could potentially assist them with
their work (Dick), and as technical communicators have been traditionally
assigned the task of updating and disseminating documentation, this task
would mirror their traditional responsibilities.

Creating a culture is one thing. To employ knowledge management
systems in organizations also requires significant costs as some organization’s
members will have to devote their workdays to these endeavors. Other
organization members not officially designated as members of knowledge
management teams will also be asked to input their ideas into databases,
thus drawing them away from their other responsibilities. However, there
are significant long term benefits:

• Knowledge management allows communication professionals to be
more aware of the differences between branches of a large organization

126 Semantics and Classification Systems

and challenges them to redouble their efforts to articulate their ideas
across different sectors of an organization.

• Knowledge management, as has been said before, better allows
professionals to leverage the knowledge capital of an organization.
New people do not have to be hired or work does not have to be farmed
out to expensive consulting firms to solve a problem that an existing
organization member already has experience dealing with, and new ideas
and perspectives can be exchanged by members within an organization.
This practice in general allows communication professionals to under-
stand the value of seeking help from others in their organizations
and would facilitate collaborative efforts in general, thus reducing the
phenomenon of what Rockley refers to as “silo traps.”(“Managing” 5)

• If used wisely, XML also allows professionals to reexamine previous
technologies that they might have taken for granted. As stated above,
XML technology demands that professionals who use it think about
the very nature of data, how data is often embedded within other data,
and it demonstrates the weaknesses of other technologies that would
not allow them to do this with such ease. XML technology also allows
them to understand, relative to previous technologies, that knowledge
bases can be added to and/or reconfigured, as Johnson-Eilola, Selber,
and Selfe might suggest (“Interfacing”); this allows professionals to be
more critical of technology because they do not always have to accept
the output of information gathering and representing technologies to
which they are presently tied to in the workplace. Communication
professionals working as knowledge managers can work with others in
their organizations to rewrite the XML code.

• The very nature of XML allows technical communicators to think
critically about knowledge. It demands that they break information
down and reconsider its value; they are more than just translators of
information as Slack, Miller, and Doak would hope. As many of the
critics in the first section of the first chapter would want, it also
challenges all members of an organization to become more critical
about the way they organize information; they can become “symbolic-
analysts” (Johnson-Eilola “Relocating”). They can also become more
aware of the socially constructed elements that constitute the workplace
and that govern what they think of as successful work (Kuhn 47).

Because successful technical communicators/knowledge managers possess
the collaborative and interpersonal skills that their field has traditionally
demanded, they would do well in helping to establish a culture that
encourages employees to deposit information and take advantage of the ideas
of their co-workers as it would indicate to all that everyone’s ideas are
valued. In their role as knowledge managers, communication professionals
could help facilitate this environment.

Semantics and Classification Systems 127

Discussion Questions

1. Consider a relatively complex PDF file or document that has been saved
in Word®. After reviewing what Rockley describes as “level two single
sourcing, ‘static customized content’” that we describe in this chapter,
decide how you would break it down into its essential components and
reconstitute it as a document that would be easily navigable in a website
environment. How many parts of the document would exist as separate
links? How would you link them together? How might you breakdown
the separate components of this document into single source documents
that could be stored in a database for reuse?

2. Using the questions we ask in the Discussion Questions 1 exercise
directly above, how might Ament’s description of primary and secondary
modules better allow us to understand how we can breakdown or
granularize parts of a larger document so it could be reconfigured for
a Web environment or a set of single source modules?

3. Review the six rules of extraction that O’Connor provides and then
apply them to some of the efforts illustrated in the evolution of the
ICD. How do these rules allow us to better understand this process?
For example, when O’Connor asks that professionals make a decision
about what elements should be extracted from a body of data, what
does he mean by elements in the context of disease classification
efforts? Symptoms? Cause of death? The circumstances that describe
the environment in which a patient lives? How many of these elements
should be named and classified? How do O’Connor’s rules allow us
to imagine the many factors that go into designing classification systems?

References

Ament, Kurt. Single Sourcing: Building Modular Documentation. Norwich, NY:
William Andrew Publishing, 2003.

Berners-Lee, Tim. Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web. New York: HarperCollins, 2000.

Blair, David. “Indeterminacy in the Subject Access to Documents.” Information
Processing and Management. 22.3 (1986): 229–41.

Bowker, Geoffrey, and Susan Star. Sorting Things Out: Classification and Its
Consequences. Cambridge, MA: MIT Press, 2000.

Conway, S. Personal E-mail Communication. GPM-Knowledge Management,
Microsoft Co. January 13, 2002, 8:48 pm.

Crowley, Sharon, and Debra Hawhee. Ancient Rhetorics for Contemporary Students,
Second Edition. Boston: Allyn and Bacon, 1999.

Davenport, Thomas, and Laurence Prusak. Working Knowledge. Boston, MA:
Harvard Business School, 1998.

Dick, Kevin. XML: A Manager’s Guide. Reading, MA: Addison Wesley. 2000.
Dutta, Soumitra, and Arnoud De Meyer. “Knowledge Management at Arthur

Andersen (Denmark): Building Assets in Real Time and Virtual Space.” Yogesh
Malhotra, ed. Knowledge Management and Business Model Innovation, Hershey,
PA: Idea Group Publishing, 2001. 284–401.

128 Semantics and Classification Systems

Foucault, Michel. The Order of Things. Trans. Alan Sheridan. New York: Vintage,
1973.

Johnson-Eilola, Johndan. “Relocating the Value of Work: Technical Communication
in a Post-Industrial Age.” Technical Communication Quarterly 5. 3.2 (1996):
245–70.

Johnson-Eilola, Johndan, and Stuart Selber. “After Automation: Hypertext and
Corporate Structures.” Electronic Literacies in the Workplace: Technologies of
Writing. P. Sullivan and J. Dautermann, eds. Urbana, IL and Houghton, MI:
National Council of Teachers of English and Computers and Composition Press,
1996. 115–41.

Johnson-Eilola, Johndan, Stuart Selber, and Cynthia Selfe. “Interfacing: Multiple
Visions of Computer Use in Technical Communication.” Three Keys to the Past:
The History of Technical Communication. T. C. Kynell and T. Moran, eds.
Stamford, CT: Ablex, 1999. 197–226.

Kuhn, Thomas. The Structure of Scientific Revolutions. 2nd ed. Chicago: University
of Chicago Press, 1970.

Lemke, Jay. Textual Politics: Discourse and Social Dynamics. London: Taylor and
Francis, 1995.

Lunin, Lois. F. “Analyzing Art Objects for an Image Database.” Challenges in
Indexing Electronic Text and Images. R. Fidel, T. Bellardo Hahn, E. M.
Rasmussen, and P. J. Smith, eds. Medford: American Society for Information
Science, 1994. 57–72.

Malhotra, Yogesh. “Deciphering the Knowledge Management Hype.” The Journal
for Quality and Participation. 21.4 (1998). 58–60.

–––– “Knowledge Management for E-Business Performance: Advancing Informa-
tion Strategy to ‘Internet Time.’” Knowledge Management and Business Model
Innovation. Yogesh Malhotra, ed. Hershey, PA: Idea Group Publishing, 2001.
2–15.

Mirel, Barbara. “Writing and Database Technology: Extending the Definition of
Writing in the Workplace.” Electronic Literacies in the Workplace: Technologies
of Writing. Patricia Sullivan and Jennie Dautermann, eds. Urbana, IL and
Houghton, MI: National Council of Teachers of English and Computers and
Composition Press, 1996. 91–114.

Morville, Peter, and Louis Rosenfeld. Information Architecture for the World Wide
Web. Sebastopol, CA: O’Reilly, 2007.

O’Connor, Brian C. Explorations in Indexing and Abstracting: Pointing, Virtue,
and Power. Englewood: Libraries Unlimited, 1996.

Price, Jonathan. “Introduction: Special Issue on Structuring Complex Information
for Electronic Publication.” IEEE Transactions on Professional Communication.
40.2 (1997): 69–77.

Reinhart, Tobias. Cicero’s Topica. Oxford: Oxford University Press, 2003.
Rockley, Ann. “The Impact of Single Sourcing and Technology.” Technical

Communication. 28.2 (2001): 189–93.
Rockley, Ann. Managing Enterprise Content. Indianapolis: New Riders, 2003.
Schank, Roger C., and Robert P. Abelson. Scripts, Plans, Goals, and Understanding:

An Inquiry into Human Knowledge Structures. Hillsdale, NJ: Lawrence Erlbaum,
1977.

Simon, Solomon H. XML: eCommerce Solutions for Business and IT Managers.
New York, NY: McGraw-Hill, 2001.

Semantics and Classification Systems 129

Slack, Jennifer, David J. Miller, and Jeffrey Doak. “The Technical Communicator
as Author: Meaning, Power, Authority.” Journal of Business and Technical
Communication 7.1 (1993): 12–36.

Stam, Deirdre C. “The Quest for a Code, or a Brief History of the Computerized
Cataloging of Art Objects.” Art Documentation 8.1 (1989): 7–15.

Star, Susan. “The Structure of Ill-Structured Solutions: Heterogenous Problem-
Solving, Boundary Objects and Distributed Artificial Intelligence.” M. Huhns and
L. Gasser, eds. Distributed Artificial Intelligence 2. Menlo Park, CA: Morgan
Kaufman, 1989. 37–54.

Star, Susan and Karen Ruhleder. “Steps Toward an Ecology of Infrastructure:
Design and Access for Large Information Spaces.” Information Systems Research
7.1 (1996): 111–34.

Wick, Corey. “Knowledge Management and Leadership Opportunities for Technical
Communicators.” Technical Communication 47.4 (2000): 515–29.

Williams, Joe D. “The Implications of Single Sourcing for Technical Communi-
cators.” Technical Communication 50.3 (2003): 321–7.

Yates, Joanne, and Wanda Orlikowski. “Genre Repertoire: The Structuring of
Communicative Practices in Organizations.” Administrative Science Quarterly.
39.4 (1994): 541–74.

–––– “Genres of Organizational Communication: A Structurational Approach to
Studying Communication and Media.” Academy of Management Review 17.2
(1992): 299–326.

Zack, Michael. “If Managing Knowledge Is the Solution, Then What Is the
Problem?” Knowledge Management and Business Model Innovation. Yogesh
Malhotra, ed. Hershey, PA: Idea Group Publishing, 2001. 16–36.

130 Semantics and Classification Systems

4 The Visual Rhetoric of XML
Using CSS and XSL to Format
and Display XML Projects

Chapter Overview

In this chapter we consider the visual dimension of XML data manipula-
tion by examining technologies such as CSS and the XSL. As document
authors or knowledge managers, it is important that we understand both
how to organize and classify data in a careful way and how to enable access
to that data in an aesthetically pleasing fashion. The visual dimension of
information presentation is especially important considering the massive
amounts of unformatted raw data destined for the World Wide Web that
is available in organizations. Some organizations also have historical data,
or “legacy data,” that needs to be shaped into a presentable form for a
corporate website, brochure, or newsletter. As we discussed in Chapter 2,
creating accessible knowledge management systems involves selecting the
appropriate amount of detail for our particular audiences. Visualization
techniques are useful when trying to focus user attention on particular facets
of data or when trying to highlight salient parts of an XML database for a
particular community.

CSS is a style sheet language that is compatible with both HTML and
XML, while XSL is a family of style sheet and transformation languages
used specifically and exclusively with XML data. These languages are
important to understand because they allow one to separate metadata des-
cribing the data itself (or its content) and the shape that data should take
(or its form) into two different logical files or locations. Subsequently,
the task of writing semantic XML tags can be separated from the task of
writing visual XML style sheets, which is helpful since these procedures
require different skills and abilities. In many companies, graphic designers
will handle the CSS or XSL and technical communicators or program-
mers will handle the construction of XML code. It is useful, however, to
understand the basics of both techniques as these individuals must work
together as a team in order to produce rhetorically effective documents.

Fortunately, the mechanics behind style sheets and their associated data
files are straightforward. Since semantic coding and visual coding tasks
are separated, one updates the original XML document to change or add
new semantic tags and uses external CSS or XSL files to change display

information using formatting tags. In other words, when the data inside an
XML or HTML file needs to be changed, it is only necessary to alter the
HTML or XML file containing that data. This could be done by adding new
tags into the file or by removing or changing existing tags or the data residing
within them. When the visual formatting or layout of this data needs
changing, one then alters the CSS or XSL file containing the instructions
relevant to the data’s formatting and visualization. The concept is simple,
but bears repeating as it is critically important: style sheet languages make
it possible to consider the visual formatting and display instructions
independently from the document’s data content. Rhetorically speaking, this
separates what is being communicated in an XML document from how it is
communicated. The semantic XML tags describe what and the CSS and XSL
technologies describe how.

Under this divided model, HTML or XML files contain the data and the
CSS or XSL style sheets contain instructions specifying how to present or
re-present that data. These instructions are stored in external files that are
linked from XML documents; this is done in the same way an author would
link a DTD or declare a namespace. While it is possible in CSS to use both
semantic and display tags in the same file, this defeats the purpose of
entirely separating content from form and can be both technically and
rhetorically confusing for the document author. Also, this is only possible
in HTML documents and not in XML documents.

In order to ease into a description of the new syntax required by CSS and
XSL, we first consider some of the rhetorical facets of imagery and visual
communication. Next, we outline some simple examples of how to use
technologies such as CSS with a simple HTML document and then with
one of the XML documents from Chapter 2. Finally, we discuss the more
sophisticated XSL, which allows a document creator to translate one XML
document into another—a process that is useful for a variety of tasks such
as when one is using data across multiple contexts or presenting for multiple
audiences.

Rhetoric, Imagery, and XML

While the “division of content and form” strategy of CSS has proven wildly
successful in the maintenance and upkeep of large websites, it also poses
some interesting rhetorical questions. For example, what does it mean to
have purely descriptive information that is abstracted entirely away from
its presentation? How is the interpretation of a message changed when that
message is presented in a visual style that is very much in contrast with the
data? Style is one of the original rhetorical canons, and for good reason.
Classical rhetoricians used the term elocutio to refer to the stylistic com-
ponents of persuasive speech and rhetorical style has since been broadened
to include textual and electronic styles of shaping language. What classic
and modern rhetoricians have discovered is not surprising: the style of a

132 The Visual Rhetoric of XML

message, whether delivered orally, in writing, or electronically, can be as
important as, if not more important than, the message itself. At the very
minimum, style is an element of electronic rhetoric that we cannot forget
about as it influences everything from how corporate ethos is presented to
how trust is established and maintained with online consumers.

Stylistic concerns have been part of the rhetorical tradition for thousands
of years, dating back to the Romans and beyond. For example, in addition
to the historical notoriety garnered from his military conquests and his
financial support of a young Julius Caesar, the Roman general and politician
Marcus Crassus (115–53BC) was notable for criticizing the division between
philosophy, or what he characterized as “wise thinking,” from rhetoric, or
his term for “elegant speaking” (Whitburn 45). There has always been a
great deal of interest in the differences and similarities between philosophy
and rhetoric, but it is certain that one does not always need to be a wise
person and a careful thinker in order to be a persuasive communicator.
Particularly in the electronic age, there are a variety of ways to shape one’s
message to seem more appealing than it might be if considered on its
intellectual merit alone.

If we consider rhetoric as a means of persuasion, then it is obvious that
the visual style of a message is a very important part of its rhetorical con-
stitution. It is sometimes unfortunate, but by separating a wise thought from
its elegant packaging, it is true that we remove some of the persuasive veneer
that often prompts the recipient of a message to receive it favorably (or, in
rhetorical situations that strive for agency from an audience, to move from
passive observer to active participant).

Think of trying to purchase an automobile based purely on the
quantitative (numerical) parameters of its mechanical and electrical
components. Buying one Sport Utility Vehicle over another might not seem
to be such a difficult choice when comparing raw data such as gas mileage
and storage capacity. The aesthetics of the vehicles, though, cannot be
overlooked or ignored. Furthermore, when this quantitative information is
filtered through a carefully crafted rhetorical presentation such as a television
commercial or commercial website, a consumer’s decision to act may be
much more based on emotion (one’s reaction to the beauty of the vehicles)
than logic (one’s analysis of the superiority of one vehicle over another in
terms of performance or maintenance data). In general, consumers want the
vehicle that is filled with adventurous and beautiful people, or the one that
reliably tows a railroad trailer up a mountain in the middle of a tornado,
or the one that accelerates down a roadway racing a computer generated
cheetah. These are all visual expressions which are carefully crafted to link
positive consumer emotions such as happiness, sexual desire, or excitement
with the vehicles being advertised.

We can think of this vehicle purchasing example from the context of XML
and databases. The professionals in charge of such advertising presentations
carefully use different data sets like advertising demographics and statistically

The Visual Rhetoric of XML 133

arranged consumer buying habits in order to select the best times and
channels for television commercials and the optimal websites on which to
place their promotions. The vehicle’s statistics and specifications are carefully
screened for target demographics (young adults are especially targeted as
they have the potential to be long term and active consumers) and only the
most impressive facts and figures are likely to show up in an advertisement.
The data is then given an entirely new rhetorical life when surrounded
by visual spectacles such as those produced by mass media on television or
in film.

The same is true for an advertisement on the World Wide Web. When
we store the vehicle’s data in an XML file and that data’s formatting
instructions in a CSS or XSL file, we can give full attention to the data when
structuring knowledge representations and then turn our attention to the
display of that data when we construct the style sheet. For instance, a
product specialist or engineer could choose to create a special attribute
named advertisingReady and set that attribute’s value to true for all facts
or figures that are useful in promotional materials. A graphic designer could
then choose to focus his or her attention on creating a visual aesthetic that
is pleasing to the eye and frames the vehicle in an appropriate way for the
audience. This divided technique makes sense because these two domains
often have entirely different sets of parameters. What something is is often
quite different than how something looks.

Knowledge managers must be aware that visual content is another
powerful layer that can be used (or misused) to communicate with audiences
and facilitate information exchange within an organization. Not surprisingly,
much of our knowledge about the visual communication process comes from
the field of advertising. In television or print advertising, images are
effectively used to set the tone or mood of a message without the need for
written annotation or dialogue. Think of a dark and gloomy castle and the
emotions and thoughts that this environment conveys. Now, think of a busy
city park on a summer day. By varying a few pictorial elements and aesthetic
approaches, an author can predispose her audience to a certain manner of
thinking or feeling before the primary message is even presented. Then, when
actors appear on the television screen or text is emblazoned across a
magazine spread, the message—which is generally to purchase a given
product or endorse a particular brand, individual, or community—is that
much more powerful and memorable.

Recent research into consumers’ experience with imagery examines how
the images used in advertising communicate through coded representational
systems. Many of our earliest “writing” systems, such as cave paintings,
were formed using pictographic representations of reality. An interesting
finding from contemporary advertising research is that certain types of
imagery may convey uniform messages, though these messages are not
always predictable. In one experiment, Linda Scott from Oxford University
and Patrick Vargas from the University of Illinois at Urbana-Champaign

134 The Visual Rhetoric of XML

varied images of a cat, a sunset, and a set of abstract paintings in order to
gauge consumers’ reactions to these pictures as they applied to a particular
product (facial tissues). Using a sample of seventy-seven undergraduate
students, they found that the differing images communicated simple, but
consistent, rhetorical messages to a variety of participants. For instance,
the image of a fluffy cat communicated colorlessness, softness, absorbency,
high price, and fragility. A sunset communicated colorfulness, softness, and
absorbency. While some of these outcomes were to be expected, others, such
as the ability of the fluffy cat to communicate high price and fragility, were
less predictable. In this study, Vargas and Scott demonstrated that the state-
ments generated by participants went “well beyond resemblance to an
object or the sensory effects of formal features” (353).

What is particularly fascinating about the Scott and Vargas study is that
even abstract images were found to communicate specific features and elicit
certain emotional responses from participants. When students were asked
to record their observations of the abstract O’ Keeffe painting Black Spot
No. 2, respondents sometimes read soft colors as communicating softness,
but almost always read the curvature of the lines as communicating this
quality. In addition, they noted that the black object at the bottom of the
painting was an indicator of strength and that the shading technique was
used to communicate absorbency.

Another interesting rhetorical dimension of visual design is found when
considering the cultural differences of one’s audience. Certain colors, images,
texts, and patterns may work very well for one culture and at the same time
be off-putting or even offensive to another group of individuals. For example,
in August of 2007, the BBC News reported a story in which the U.S.
military distributed soccer balls to the Khost province of Afghanistan
(Leithead online). While the soccer balls were intended to be gifts for Afghan
children to enjoy, they featured flags of various countries, including the flag
of Saudi Arabia. This flag contains an image of the shahada, one of the five
pillars of Islamic faith. To Islamic residents, kicking this soccer ball would
be the equivalent of kicking a Bible to a Christian—a highly offensive and
blasphemous act.

As the soccer ball example shows, even the act of embedding flags or
other nationalistic materials into one’s product, which seems at first to be
rather innocuous, is complicated when internationalization is involved.
When developing a product with an international audience, it is necessary
to carefully research the ideological beliefs and values of individuals from
each culture that will be accessing or viewing your materials. Fortunately,
websites that take advantage of CSS or XSL can address issues of multi-
culturalism simply by providing a separate external style sheet for different
geographic locations and then allowing the user to specify the region from
which they are accessing your content. A single database can then be
expressed through different templates to better serve disparate international
audiences that need access to the same data source.

The Visual Rhetoric of XML 135

Addressing Visual Complexity

In order for a practitioner to address the many rhetorical challenges of
visualization, she needs to be aware of text-based technologies like CSS and
XSL that are used to represent XML data in a visually appealing fashion
or to transform it into another form more suitable for humans to read.
Unlike HTML, which does not force one to differentiate between descriptive
and formatting markup, XML information is purely descriptive. In other
words, XML describes what the data is and how it is arranged, but it does
not prescribe how that data should be presented to a human. While a
fundamental goal of XML is to make data machine-readable, there are many
situations in which this content must be made human-readable as well.

The computers interpreting XML files have no need for sophisticated
graphics and pleasing aesthetic themes, but this lack of visual sophistica-
tion is rhetorically damaging when XML information must be interpreted
or examined by a human user rather than a computer. For instance, think
about how important first impressions are when encountering something
new—a new restaurant you are planning to eat in, a new person you are
meeting for the first time, or a new home you are planning to rent or pur-
chase. That first visual encounter leaves a lasting impression that directly
influences how you interact with that new space or person in the future. A
particularly bad impression might lead you to avoid this person or place
altogether. This relates to prototype theory and cognitive schema, which
we discussed in Chapter 3. We form mental models of the world which
influence how we perceive our environment based on previous experiences
and complex psychological interactions between emotions, social relation-
ships, and cognition. These mental models are not necessarily true or
representative of a person or location, but they will nonetheless influence
and dictate how we think and act when faced with repeated encounters.

The same type of process holds true for our visits to websites, particularly
in regards to aesthetics. Researchers have found that visual elements have
a significant impact on how credible or reliable an online information source
is perceived to be—the online ethos of a website (Warnick 262). Our prior
experiences with well-designed and visually appealing websites have trained
us to be more willing to engage with and see authority in new online
resources with attractive visual styles. For this reason, it is important that
we consider some of the supportive visual technologies of XML.

CSS

CSS are powerful textual documents used for specifying the layout and
formatting of Internet documents. In contrast to XML, which describes only
the data, CSS is used to describe how that data should appear when rendered
in a Web browser. Since CSS is now the preferred method for formatting
and displaying HTML content, we will begin this chapter by examining the
ways in which CSS and HTML work together.

136 The Visual Rhetoric of XML

Using CSS with HTML

By combining CSS with HTML, one can mimic the separation between
content and form that is enforced by XML documents. This is exactly what
happens when professional designers construct large websites. However, this
was not always the case. Historically, it was possible (and, in fact, is still
possible) to use HTML documents without CSS files for websites and to
simply include additional HTML tags and attributes for formatting within
each content page. For instance, try typing the following code example into
your text editor. Save the file as “ch4_ex1.html” and load this file into your
Web browser.

<html>
<head>
<title>Welcome to Cascading Style Sheets</title>
</head>

<body>
<h1>This is an example of a first order heading.
</h1>
<h2>This is an example of a second order heading.
</h2>
<p>This is an example of a normal paragraph.
<u>Here is some green,
underlined text.</u>
</p>

</body>
</html>

When viewing this example in your browser, you will see something similar
to the screenshot shown in Figure 4.1. (As the screenshots in this text are
in black and white, you may wish to visit the text’s accompanying website
at www.rhetoricalxml.com to see the screen captures in full color. For now,

The Visual Rhetoric of XML 137

Figure 4.1 Formatting Using HTML

just recognize that in a Web browser the last underlined sentence shown in
the screen capture would also be displayed as green text.)

Although it is certainly handy to be able to add formatting tags directly
to HTML files, this technique is difficult to manage with large websites that
have numerous content pages that are distributed over multiple file locations.
The next step would be to include CSS code within the HTML document.
Although this is still not as easy to manage as external style sheets, it does
move us one step closer to separating content from form. Now, we will use
CSS to create the same effect.

The same code rewritten to take advantage of CSS tags is shown here:

<html>
<head>
<title>Welcome to Cascading Style Sheets</title>
<style type=”text/css”>

.greenunderline
{
color: green;
text-decoration: underline;
}

</style>
</head>

<body>
<h1>This is an example of a first order heading.
</h1>
<h2>This is an example of a second order heading.
</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some green,
underlined text.</p>

</body>
</html>

This new file can be saved as “ch4_ex2.html” if you are working along with
the examples. The first thing to notice about this revised code is that we
have added an additional element within the <head> portion of the
document. This style definition is what a designer uses to specify visual and
layout information that can then be used to arrange or format the
information within the HTML document. In this case, we have chosen to
create what is known as a class, or special selector reference, named
.greenunderline. This class definition contains two CSS triplets that are each
made up of a selector, property, and value. In fact, CSS documents are
composed entirely of these triplets, which are collectively referred to as the
“rules” of the document. Each rule specifies how a given unit of information,

138 The Visual Rhetoric of XML

such as the color of the font, should be formatted upon encountering a
selector of that type within the hypertext document.

In this example, .greenunderline is the selector, color, and text-decoration
are the properties, and “green” and “underline” are the values. Since there
is no .greenunderline element built into the standard HTML library, this
means that the HTML page is expecting us to define a customized point of
reference using our own named selector. In essence, this is precisely what
a class is: a means of defining our own selector elements which can then be
used either in addition to or in replacement of standard HTML elements.

The general structure for a collection of CSS rules is to first list the selector
name, which may be an HTML element such as P, BODY, H1, or H2 or
even a custom class like .greenunderline, then define a list of one or more
custom values which can be applied to the properties of that selector. The
list of values and properties will be encapsulated by curly brackets (braces)
immediately following the named selector. So, the general structure of a
CSS rule looks something like this:

SELECTOR
{
PROPERTY: VALUE 1, VALUE 2, ... , VALUE N;
}

It is also possible to associate multiple selectors with a single rule. This is
done by adding the additional selector elements after the first element using
a comma to separate them. The multiple selector format looks like this:

SELECTOR 1, SELECTOR 2, ... , SELECTOR N
{
PROPERTY: VALUE 1, VALUE 2, ... , VALUE N;
}

This syntax allows a content developer to apply a single CSS rule to multiple
selectors. For example, to write a CSS rule that sets the font face of data
within the P, H1, H2, H3, and TD elements to Arial, one could use the
following syntax in order to save space within the CSS file:

P, H1, H2, H3, TD
{
font-family: Arial;
}

In a situation like this, where elements share common properties and will
be using the same values, it makes sense to combine multiple rules into a
single CSS rule definition. Otherwise, we would be needlessly repeating the

The Visual Rhetoric of XML 139

same instruction for these elements. Specialized rules for textual data within
these elements can always be applied using a rule that is defined later in the
document (this is the cascading part of CSS, discussed later in the chapter).
Once these CSS rules have been defined, we will need a way of linking these
rules to the tags in our HTML or XML document. Let us return to our
original HTML example, reprinted here:

<html>
<head>
<title>Welcome to Cascading Style Sheets</title>
<style type=”text/css”>

.greenunderline
{
color: green;
text-decoration: underline;
}

</style>
</head>

<body>
<h1>This is an example of a first order heading.
</h1>
<h2>This is an example of a second order heading.
</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some green,
underlined text.</p>

</body>
</html>

The next thing to note about this example is that we have slightly modified
the <p> tag surrounding the sentence “Here is some green, underlined text.”
This tag has been replaced with <p class=“greenunderline”>. We have added
the class=“greenunderline” directive to instruct the browser that this
particular paragraph should be formatted according to the rules assigned
to that descriptor. We can define as many additional rules as we like. The
rules can be found in one of three places:

1. In a special block of text found between the head opening and closing
tags (<head> and </head>) of the HTML document (as shown in this
example).

2. Inline with the HTML selector. An example of this sort would look
something like: <p style=“color: green”>Here is some green text.</p>.
While useful when documents need to be self-contained, this method
can quickly become cumbersome as it requires the style directive to be
applied to each and every tag in which a style sheet will be used.

140 The Visual Rhetoric of XML

3. In a separate, external CSS file linked from the HTML document using
a special instruction in this format: <link rel=“stylesheet” type=“text/
css” href=“stylesheet_filename.css”> where “stylesheet_filename.css” is
the name of the external file containing your CSS rules. This instruction
would also appear between the <head></head> tags of the HTML
document. For websites containing many CSS rules, this is the preferred
method as it enables one to quickly locate, add, and revise rule triplets
as needed. The external file means that one will not need to wade
through embedded HTML data in order to find a CSS rule for a
particular HTML element; all the CSS rules will be in one place.

Loading the revised document into your Web browser using any of these
methods will yield the same exact results as shown previously in Figure 4.1.
Nothing has changed except for the mechanism working behind the scenes.

At this point, we may want to further customize the visual presentation
of our document. We can therefore rewrite the code once more as we see
here:

<html>
<head>
<title>Welcome to Cascading Style Sheets</title>
<style type=”text/css”>

h1
{
font-size: 18px;
color: red;
font-family: Helvetica, Arial, Sans-Serif;
font-weight: bolder;
text-decoration: underline;
}

h2
{
font-size: 15px;
color: blue;
font-family: Times New Roman, Times, Serif;
font-weight: bold;
text-decoration: italic;
}

p
{
font-size: 13px;
color: black;
}

.greenunderline
{

The Visual Rhetoric of XML 141

color: green;
text-decoration: underline;
}

</style>
</head>

<body>
<h1>This is an example of a first order heading.
</h1>
<h2>This is an example of a second order heading.
</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some green,
underlined text.</p>

</body>
</html>

Save this file as “ch4_ex3.html”. In this example, we see that CSS allows a
designer to take advantage of built-in selectors such as <h1>, <h2>, and
<p> as well as to create custom selectors such as the .greenunderline class
we have been using. You can open this file in your browser to see how
easily these styles are applied to default HTML selectors.

The CSS specification contains a large library of properties. Using the
font-family property, a designer can specify the preferred font for rendering
text on a Web page. Commas are used to specify additional font choices in
descending order; if the first choice is not installed on the reader’s computer,
it will follow the series in order until it finds a selection that is installed.
For this reason, the last choice in the series is usually a very general value
such as Sans-Serif or Serif. These selections will apply any available Sans-
Serif or Serif fonts to the text.

The color property is used to manipulate the color of the text surrounded
by selected HTML tags indicated in the CSS rule. For instance, the CSS
code shown previously specifies that all level 1 heading (<h1>) text should
be red. Level 2 headings (<h2>) should be blue, paragraph (<p>) text should
be black, and our special class named .greenunderline will produce green
and underlined text in the browser.

Hexadecimal Color Codes and CSS Properties

Hexadecimal color codes such as #FFFFFF (white), #000000 (black), or
#FF0000 (red) can be used with properties that accept color values. The
RGB color model used by HTML allows a designer to specify precise
combinations of reds, greens, and blues in order to generate millions of
different colors (assuming the person viewing your site has a 32-bit video
card). The pattern for generating a hexadecimal color is the pound symbol
(#) followed by two digits representing the red intensity, two digits repre-
senting the green intensity, and two digits representing the blue intensity.

142 The Visual Rhetoric of XML

_ _ _ _ _ _ or # R R G G B B

Since the numbers are encoded in hexadecimal, the following chart can be
used to find the highest and lowest intensities.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
lowest highest

intensity intensity

In this numbering system, once A is reached, it simply continues counting
forward so that A=10, B=11, C=12, D=13, E=14, and F=15. “Hexadecimal”
means that each position in a hexadecimal number is a power of sixteen
rather than a power of ten, as we see in the decimal system we use every
day. So, just as the number 255 in decimal can be expressed in powers of
ten from right to left (100 × 5 + 101 × 5 + 102 × 2 = 255) so can this number
be expressed in hexadecimal using only two digits (161 × 15 + 160 × 15 =
255 decimal = FF hexadecimal).

Using this system, the full range of allowable color codes for the color
value as used in CSS (or any other HTML color specification) is from
#000000 (red=0, green=0, and blue=0) to #FFFFFF (red=255, green=255,
and blue=255). Though this system allows for a very wide range of colors
(approximately 16 million, or 255 × 255 × 255) not all colors are considered
to be “Web safe” or “browser safe” colors. For more information on good
color values to use, try a Google search on “Web safe HTML colors.” In
the earlier days of Web development, 216 colors were identified as cross-
operating system and cross-browser compatible. Today, most computers
have at least a 16-bit video card and many more colors are safe to use.

Font Sizing

The font-size property accepts several different units of measurement in order
to change the size of displayed text on a Web page. Values for this property
can be either absolute, meaning the sizes are compared to a default size
table stored in the user’s browser, or relative, meaning that the size is
specified relative to the font size of the parent element. Units for font-size
values can be given in ems, points, and pixels. The example code shown so
far uses pixels to specify the font-size property’s value. This is an example
of an absolute size.

One way to achieve relative sizing is to use the em unit to specify size
values. Ems are textual units that use the size of the surrounding text as a
reference point to adjust the property applied to a selector. The CSS code
shown here adds a new class named .importantText that sets the font size
to twice as large as the font size of the surrounding element. If we wanted
to instead make this text one and a half times as large as its parent element
we would use the code font size: 1.5em rather than font size: 2em. Consider
the following CSS code:

The Visual Rhetoric of XML 143

<style type=”text/css”>
h1

{
font-size: 18px;
color: red;
font-family: Helvetica, Arial, Sans-Serif;
font-weight: bolder;
text-decoration: underline;
}

h2
{
font-size: 15px;
color: blue;
font-family: Times New Roman, Times, Serif;
font-weight: bold;
text-decoration: italic;
}

p
{
font-size: 13px;
color: black;
}

.importantText
{
font-size: 2em;
}

.greenunderline
{
color: green;
text-decoration: underline;
}

</style>

What is nice about this code is that the font’s size will now be adjusted
relative to any parent element. This means that regardless of where the text
appears—in a heading, subheading, or paragraph—it will always appear at
twice the height of its parent element’s font size. We can then use this new
class by adding the following HTML code:

<h1>This is an example of a
first order heading.</h1>
<h2>This is an example of a
second order heading.</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some <span class=
”importantText”>green, underlined text</p>.

144 The Visual Rhetoric of XML

The full listing for this code now looks like this:

<html>
<head>
<style type=”text/css”>

h1
{
font-size: 18px;
color: red;
font-family: Helvetica, Arial, Sans-Serif;
font-weight: bolder;
text-decoration: underline;
}

h2
{
font-size: 15px;
color: blue;
font-family: Times New Roman, Times, Serif;
font-weight: bold;
text-decoration: italic;
}

p
{
font-size: 13px;
color: black;
}

.importantText
{
font-size: 2em;
}

.greenunderline
{
color: green;
text-decoration: underline;
}

</style>
</head>
<body>
<h1>This is an example of a
first order heading.</h1>
<h2>This is an example of a
second order heading.</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some <span class=
”importantText”>green, underlined text.</p>
</body>
</html>

The Visual Rhetoric of XML 145

In this example, the .importantText class is applied to units of text within
parent elements such as H1, H2, and P using a special HTML entity known
as SPAN. We will learn more about SPAN and the similar tag DIV later in
this chapter. See Figure 4.2 for the browser output of this file or type it in
yourself (save as “ch4_ex4.html”) and see how it looks in your browser.

Classes and Cascading

Returning briefly to our original example, there are some other things we
should notice about how classes are used. First, note that the CSS rules
sometimes use a slightly different syntax than traditional HTML code. For
instance, to combine our new class with the CSS rule we have defined for
the <h1> selector, we would need to type in the HTML code shown here:

<body>
<h1 class=”greenunderline”>This is an example of a first
order heading.</h1>
<h2>This is an example of a second order heading.</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some green, underlined
text.</p>

</body>

A screen capture showing what this code looks like can be seen in Figure
4.3. You can see in this instance we are no longer using the .importantText
class but that we are instead applying parts of both the H1 selector’s CSS
definition and of the .greenunderline selector’s class definition.

146 The Visual Rhetoric of XML

Figure 4.2 Browser Output of Relative Font Size

This combinatory feature is what makes CSS so powerful. It is the
cascading part of CSS. When you type in this new example and load it into
your Web browser (save as “ch4_ex5.html”), you should notice that the text
encapsulated by the <h1> tags is now rendered exactly the same as before,
only in green. In other words, it has retained the properties defined by our
original <h1> rule (the 18 pixel font size, the Helvetica font face, the
bold and underlined text), but it has replaced the original red font color with
the green color specified by our class. We also saw this phenomenon at work
in our .importantText class example when portions of text were rendered
in the same color and font-face as their parent elements, but were doubled
in size as specified by the 2em value for font-size.

We can think of the mechanism behind CSS as a virtual waterfall. At the
top of the waterfall, or the beginning of the CSS definition, an author defines
certain formatting characteristics and visual layout properties for elements.
It is entirely possible for these elements to retain the exact same properties
when they reach the bottom of the waterfall, or the end of the CSS definition.
It is equally possible, however, that these elements might be changed as they
make their way down the waterfall (perhaps by splashing into abutting
rocks, if we continue the metaphor). The important thing to remember
is this: any original properties that are not redefined further downstream
will remain in place when the bottom of the waterfall is reached. Only
subsequent CSS properties applied later in the CSS definition will alter the
appearance and layout of elements already imbued with formatting
instructions. In this way, document-wide consistency can be maintained at
the beginning of the document and further customization is made possible
as sub-selectors, classes, and special elements pick up their customized and
individualized instructions further down the waterfall, or further down the
CSS hierarchy.

The Visual Rhetoric of XML 147

Figure 4.3 Cascading in Action

Block-Level Elements

CSS can easily be applied to entire groups of HTML elements. Using what
is called a block-level element, it is possible to surround entire groupings
of HTML tags in order to assign those groupings particular layout or
formatting instructions. Block-level formatting is applied using the HTML
DIV element. The <div> tag basically functions as a container for other
HTML tags. The code below encapsulates the heading and paragraph tags
using a single unit and then applies the font variant property to display all
text in small caps (see Figure 4.4). If you would like to try this code on
your own, simply replace everything between the <body> and </body> tags
in “ch4_ex5.html” with the code below and resave the new file as
“ch4_ex6.html”.

<div style=”font-variant: small-caps;”>
<h1>This is an example of a
first order heading.</h1>
<h2>This is an example of a
second order heading.</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some <span class=
”importantText”>green, underlined text</p>.

</div>

In certain situations, you may also want to group a number of elements
within a block-level element in order to provide custom formatting for
smaller units of information. For instance, you may want to apply CSS rules

148 The Visual Rhetoric of XML

Figure 4.4 DIV Tag and Small Caps CSS

to several sentences within a large paragraph that has already been formatted
according to the style bound to the <p> tag. This can be accomplished using
the SPAN element in HTML.

Using DIV and SPAN for Web 2.0 Applications

DIV and SPAN elements are useful for designing “Web 2.0” XML appli-
cations that continuously refresh the browser in the background, without
explicit instructions from the user. “Web 2.0” is a name given to sites that
are highly interactive, depend largely on social and community interaction
and contributions, and utilize cutting-edge technologies such as asyn-
chronous XML to push the envelope of the online experience. Visualization
is often an important part of Web 2.0, since the normal cues (such as
the icon in the browser showing a refresh animation) no longer apply to
the exchange of data between server and client computers. In other words,
a user no longer needs to press a submit button and then wait for a result:
the results are retrieved in the background and the user can continue
browsing other areas of the website. A creative use of visual rhetoric is
therefore necessary to guide the visitor through the interactive experience
with signposts or to otherwise highlight salient points within a formatted
listing of data.

The technologies enabling Web 2.0 interactivity have been around for
many years and they often make use of traditional tags such as <div> and
 as well as technologies such as client-side JavaScript. Client-side
JavaScript is special programming code that is run on the client’s computer
rather than on the Web server which hosts the content. While a detailed
explanation of how this process works is outside the scope of this text, a
brief outline is provided here to demonstrate how important it is to under-
stand the <div> and CSS tags when working with HTML and XML
for Web 2.0:

1. An HTML page is created and certain portions of the page are
earmarked for dynamic content by surrounding them with <div> or
 tags.

2. JavaScript is used along with an XML-encoded communication stream
to update the content inside these earmarked locations by accessing a
special property of the DIV or SPAN element known as innerHTML.

3. The innerHTML property allows JavaScript to dynamically add HTML
content within the DIV or SPAN areas of the HTML page without
reloading the page in the user’s browser.

An example of this dynamic refreshing is a page that does not require the
user to click the refresh button in order to see new content loaded from an
XML file or other data source. Google Maps was a pioneer in this area and
created a map that pulled new information from a data repository without
requiring the user to continually refresh her browser. The updated data was

The Visual Rhetoric of XML 149

pulled in asynchronously using JavaScript code and provided the user with
a “seamless” map that could be panned and zoomed without the traditional
lag-time associated with page reloading.

The framework which allows this process to happen is referred to as
AJAX, or Asynchronous JavaScript and XML. AJAX was made famous in
the Web development community by Jesse James Garrett (Garrett online)
and further popularized by its use in popular websites such as Google Maps,
Google Suggest, Netflix, and Flickr.

CSS Positioning

Thus far, we have been using CSS largely as a tool for formatting text. In
addition to formatting, the CSS specification also contains a powerful set
of properties that can be used for layout purposes. In other words, CSS can
also be used for positioning and arranging content. The main positioning
property used by CSS is aptly named position. Like the font-size property
we discussed earlier, the position property can also be used in a relative or
absolute fashion. Relative positioning will position content relative to its
normal position, while absolute positioning will position an element any-
where on the page according to exact coordinates. A third value enables
fixed positioning, which will position an element relative to the browser
window. Relative and absolute positioning are nothing new to the experi-
enced graphic designer or technical communicator; in fact, even popular
word processing programs such as Microsoft Word® include options for
relative or absolute positioning of images and other content.

In order to use positioning in CSS, one must pair the position property
with offset values for left, right, top, or bottom margins. The position
property will specify the mode of positioning used by the browser and the
offset property will read a value that can then be used to line up and place
the content. When working with positioning properties, it is helpful to
visualize the browser window as a grid composed of pixels (as it actually
is) and then calculate how far in one direction or another you may wish to
move a given element. When content is unknown in length or quantity,
it is helpful to use relative positioning as this can adapt to different situa-
tions depending on the amount of text already on the page. For example,
if “footer” content such as a time modification stamp or contact information
is embedded at the bottom of each page, relative positioning allows a
designer to always position the footer relative to where the last block of
text ends on a page. With absolute positioning, one runs the risk of having
certain units of text overlapping or otherwise ending in unexpected positions.

The next code example includes a CSS property added to the h2 selector
in order to define some relative positioning. This example includes an offset
of 50 pixels from the left hand border of the parent element (or the leftmost
browser boundary if the selector does not reside within a DIV or SPAN
element or other HTML structure such as a table).

150 The Visual Rhetoric of XML

h2
{
font-size: 15px;
color: blue;
font-family: Times New Roman, Times, Serif;
font-weight: bold;
text-decoration: italic;
position: relative;
left: 50px;
}

Let us return to our earlier HTML code example, which uses this h2
selector:

<body>
<h1>This is an example of a first order heading.</h1>
<h2>This is an example of a second order heading.</h2>
<p>This is an example of a normal paragraph.
<p class=”greenunderline”>Here is some green, underlined text.</p>

</body>

Using this HTML, the Web browser will now display the h2 text with an
offset of 50 pixels from the left hand border, as shown in Figure 4.5. If you

The Visual Rhetoric of XML 151

Figure 4.5 Relative Positioning in CSS

are working along on your own, replace the previous h2 CSS code from
“ch4_ex6.html” with this new h2 definition and save the new file as
“ch4_ex7.html”.

Positioning can be tricky in CSS, particularly when working with browser
idiosyncrasies. It is a good idea to gradually develop the CSS and test it
frequently using various Web browser software. This is more helpful than
developing the entire style sheet for a single browser such as Internet
Explorer®, Firefox®, or Safari® since you can never fully predict the types of
browsers that will be used by your visitors. You can, however, make some
informed guesses and try to cater to the most widely used and popular software.

To view an example of “putting it all together” in terms of positioning,
font size, and modularization of classes with HTML, you can visit the text’s
accompanying website in order to study its style sheet code or download
the example CSS files from this chapter. It is helpful to see how the various
elements of style sheets combine together in order to create a unified, con-
sistent, and (we hope) rhetorically appealing aesthetic. This code demon-
strates many of the properties we have discussed in this chapter as well as
new properties such as margin, width, height, border, padding, and so forth.
A dedicated CSS reference manual is a necessity for any information designer
working with visualization on the World Wide Web.

The many properties of CSS and the ability of this technology to influence
the rhetoric of a website is perhaps best demonstrated in “live” fashion
through a website such as the CSS Zen Garden. A link to this website is
provided in the Additional Online Resources at the end of this chapter and
a visual rhetoric activity using CSS Zen Garden is also outlined in the end-
of-chapter activities. You may wish to visit the sites listed in the Additional
Online Resources section of this chapter to browse through the full listing
of CSS properties and to see some examples of these properties in use.
Additional resources are also available as links from this text’s website. We
next consider the ways in which CSS can be used with XML for different
rhetorical purposes.

Using CSS with XML

Although XML provides its own customized version of a visual formatting
language, which we will learn about later in this chapter, you can also use
standard CSS with XML-encoded data. To link an XML document to a CSS
file, include the following line below your XML version declaration:

<?xml-stylesheet type=”text/css” href=”filename.css”?>

“Filename.css” should be replaced with the name of the CSS file you are using
to format your XML information. The type attribute is used to set the type
of document being linked. In this case, we are explicitly telling the browser
or parser that we are including a document with textual information—
specifically, a CSS file.

152 The Visual Rhetoric of XML

Before illustrating the use of CSS with XML, let us return briefly to the
issue of rhetorical significance in XML-encoded information. One of the
easiest ways to quickly indicate importance or magnitude of data is to use
big, bold colors or other visually distinctive techniques. XML data on its
own, in an unformatted state, gives equal weight to each segment of data.
We can, however, use CSS techniques to format and display data according
to particular criteria. We might want to highlight a special-of-the-day on
an online menu, indicate sale prices for a warehouse application, or highlight
new titles in an online video game collection. CSS makes all of these tasks
very simple.

We can follow the video game example further to see how XML and CSS
integrate. Let us imagine a video game enthusiast with a passion for playing
video games of all genres and platforms. Her collection has grown out of
hand and she needs a robust information architecture to better manage her
collection and preserve her sanity when she wants to find a particular game.
If this video game enthusiast were to encode her video game collection using
XML, she could develop a series of elements such as GAME, TITLE,
DEVELOPER, and GENRE to better classify and organize her collection
by building facets important to her own informational needs. She could then
develop XML tags for these elements along with an external style sheet
named “gamestyle.css” that she could gradually edit in order to influence
how the information looked when it was retrieved from her XML database
and displayed on her computer screen. After adding a few games, her initial
XML file would look something like this:

<<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/css" href="gamestyle.css"?>
<xbox360-collection>

<game>
<title>BioShock</title>
<developer>2k Games</developer>
<purchase_cost>59.99</purchase_cost>
<genre>First Person Shooter</genre>
<release_year>2007</release_year>

</game>
<game>

<title>Nhl 2k9</title>
<developer>Visual Concepts</developer>
<purchase_cost>59.99</purchase_cost>
<genre>Sports</genre>
<release_year>2008</release_year>

</game>
<game>

<title>Street Fighter IV</title>
<developer>Capcom</developer>
<purchase_cost>59.99</purchase_cost>

The Visual Rhetoric of XML 153

<genre>Fighter</genre>
<release_year>2009</release_year>

</game>
</xbox360-collection>

Note that the gamer is using an encoding attribute of ISO-8859–1, which
is a standard character encoding of the Latin alphabet. The rest of the code
shown in this example should be familiar by now as it contains only
elements, the XML version declaration, and the external style sheet instruc-

154 The Visual Rhetoric of XML

Figure 4.6 XML Content with No Style Sheet

tion. If you are working along with the example, save this XML file as
“Ch4_gamelist.xml”.

If our hypothetical gamer were to remove the external style sheet
instruction found in the second line of code, she would see the output shown
in Figure 4.6 when viewing her XML code in a Web browser.

Adding the missing line back in, though, produces a very different output,
which is shown in Figure 4.7. So, what has happened here? Now that we
have linked the style sheet to the XML document, the browser knows that
it is being told to render the content within the XML file according to a
specific and precise set of visual formatting instructions. When the external
style sheet is missing, as in Figure 4.6, the XML tags are ignored and only
the character data within them is displayed. Although the XML output
shown in Figure 4.7 is admittedly not very impressive, it does now contain
a linked style sheet. No style information is shown only because we have
not yet provided any CSS rules for that style sheet.

In order to have more visually appealing output, the gamer needs to create
the “gamestyle.css” file and save it in the same directory as the XML file
(or otherwise modify the href attribute to point to an alternate directory).
The gamer might begin by adding a formatting command to display text
within the title elements in a red, bolded, Helvetica font. That CSS rule
looks like this:

title
{
color: red;
size: 18px;
font-family: Helvetica, Arial, Sans-Serif;
font-weight: bold;
}

The Visual Rhetoric of XML 155

Figure 4.7 XML Content with Missing Style Sheet

The rule is applied in exactly the same way as it would be in an HTML
file. In this case, title is the selector, and color, size, font family, and font
weight are the properties. Red, 18px, bold, and the list of fonts are values.
As you might expect, the output of this rule will be similar to that shown in
Figure 4.7, with the exception of the new rule being applied to the data inside
the <title> tags. The output of “gamestyle.css” is shown in Figure 4.8.

In order to make this more readable, the gamer should add block-level
formatting instructions to add spacing before and after the XML tags.
By adding a CSS rule which specifies the value block for the display property,
she will be instructing the browser to add a line break both before and after
the content of that element. The new code looks like this:

title
{
color: red;
size: 18px;
font-family: Helvetica, Arial, Sans-Serif;
font-weight: bold;
display: block;
}

This file should be saved as “gamestyle2.css” if you want to test this out
on your own computer. Also, to view the updated output in your browser,
do not forget to change the linked CSS file name from the original “Ch4_
gamelist.xml” document (the linked filename should now be “gamestyle2.
css” rather than “gamestyle.css”). At this point, our game collector can
enforce the modular and hierarchical representation of XML data in a visual
fashion, by using line breaks to show the manner in which each catalog
item is encapsulated. Her page so far is captured in Figure 4.9.

156 The Visual Rhetoric of XML

Figure 4.8 XML with CSS

Though the display has improved, the information represented in devel-
oper, purchase_cost, genre, and release_date is still pasted together on a
single line. To finish her style sheet, she can add another CSS rule to format
and apply block-level formatting to each of these elements.

developer, purchase_cost, genre, release_year
{
color: blue;
size: 14px;
font-family: Helvetica, Arial, Sans-Serif;
display: block;
position: relative;
left: 10px;
}

Here, in “gamestyle3.css”, she is applying the same style to four different
selectors by separating them with commas before the opening curly bracket
of the CSS property and its value list begins. The new output (Figure 4.10)
now reflects the encapsulation of information within each game container
as defined in her original XML file. This is accomplished using both block-
level formatting for spacing as well as relative positioning to offset each
unit of text 10 pixels from the left hand margin.

At this point, the gamer has a structured XML file for archiving her list
of games as well as a separate mechanism for viewing this list in a browser
in a fashion other than the typical XML hierarchy produced by default in
a Web browser (as you will see if you refer back to Figure 4.6). When adding
new games to her database, she does not need to worry about the details
of formatting and layout. These CSS rules will automatically be applied to
any new game element within the XML catalog. Similarly, if she were to
change the formatting or layout options of her display page, she would not
need to worry about changing anything in the XML data file. She would

The Visual Rhetoric of XML 157

Figure 4.9 Block-level Formatting

only need to modify the linked external style sheet. This convenience is
another advantage of separating semantically meaningful content from its
visual presentation.

As a final example of using CSS with XML, let us consider the side-by-
side comparison of two visual representations of this video game data as
produced by more sophisticated style sheets. Here is a new style sheet that
can be saved as “gamestyle4.css”:

title
{
background: url(images/icon_1.gif) no-repeat;
color: #000;
font-family: Astonished;
font-size: 55px;
font-weight: bold;
padding-left: 15px;
margin-top: 25px;
display: block;
}

developer, purchase_cost, genre, release_year
{
background: url(images/bg_1.gif) repeat-x;
color: #BD1A8D;

158 The Visual Rhetoric of XML

Figure 4.10 Fully-formatted XML Data

font-family: Astonished;
font-size: 24px;
font-weight: bold;
border: 1px dashed #000;
padding: 3px 3px 3px 10px;
margin: 3px;
display: block;
position: relative;
left: 10px;
}

In this CSS code, we see that additional formatting and layout instructions
have been provided in order to generate a more substantial aesthetic for
our XML document. Most notably, we are using a new CSS property, named
url, to embed small images into the background of each element. In this
case, “icon_1.gif” is a small circle that fades from purple to white and
“bg1.gif” is an even smaller image containing a gradient that fades from
gray to white. This image is tiled across the background of each developer,
purchase_cost, genre, and release_year element.

Here is the last style, which should be saved as “gamestyle5.css”:

title
{
background: #CCDEF3 url(images/bg_2.gif) no-repeat;
color: #000;
font-family: Georgia;
font-size: 28px;
border: 2px dotted #207AD3;
padding-left: 15px;
margin-top: 25px;
display: block;
}

developer, purchase_cost, genre, release_year
{
color: #4F4F4F;
font-family: arial;
font-size: 14px;
font-weight: bold;
border-bottom: 1px dotted #34A047;
border-left: 1px dotted #34A047;
padding: 3px 3px 3px 10px;
margin: 5px;
display: block;
position: relative;
}

The Visual Rhetoric of XML 159

Note the changes that are introduced in “gamestyle5.css”. We are no
longer using the original graphic for the background image, but we are
instead using a new image named “bg_2.gif”. This is a blue gradient that
will be used as a background for the title text of each element. In addition,
we have changed the font from “Astonished” for all elements to “Georgia”
for the title and “Arial” for the additional elements. Font sizes have been
reduced and borders and padding have been slightly adjusted.

The output from this comparison of “gamestyle4.css” (on the left) and
“gamestyle5.css” (on the right) is shown in Figure 4.11. Although each Web
page is using the same exact XML data with only minor variations in
imagery, the two presentations clearly present different rhetorical messages.
By carefully varying the stylistic rules contained within these two new
CSS files (“gamestyle4.css” and “gamestyle5.css”) an author is able to craft
different presentation packages for different informational purposes and
audiences.

The left panel of the screen capture in Figure 4.11 (“gamestyle4.css”) uses
a more ornate style and might cater to a younger audience or even to the
collector herself (if used internally for her personal collection). A non-
standard and slightly unusual font is used, which makes the textual

160 The Visual Rhetoric of XML

Figure 4.11 CSS and Visual Rhetoric

information stand out and seem more impactful. Bolder purple colors (which
you can see on our website in the color version of Figure 4.11) suggest excite-
ment and energy. Not surprisingly, conversion to grayscale (resulting in the
image you see produced in this book) alters the rhetorical subtext yet again,
and the overall aesthetic presentation could be described as gloomy or even
apocalyptic (the shaky style used by the primary font is mildly suggestive
of instability and disorder).

We could read even further into the rhetorical message of the left panel
if we so desired; for instance, we might compare the visual style with the
rhetorical substance of each game that is represented by the textual XML
tags. In Bioshock, which is a first person shooter game that takes place under-
water, the visual message is somewhat consistent with the textual content.
The shaky font can be associated with water droplets and the overall
aesthetic is certainly consistent with the dark and gloomy artistic style
found in most video games of this type. NHL 2K9, on the other hand, is a
sports game which would not fit so well with this type of design. So, in
terms of an overall strategy for formatting and layout, this visual style would
be more suitable for some games than others. Obviously, it is not always
feasible to create separate CSS rules for every XML element in a document,
but it is certainly possible to find a visual strategy that works well across
the entire document to display information in a fashion suitable for your
audience and for their informational needs.

On the right hand side of this screen capture, however, a more con-
ventional design is used by “gamestyle5.css”. This type of aesthetic is more
common in corporate settings and would probably be more likely to blend
in with existing website content. In the online version shown on our website,
the blue color is calming and nonthreatening, but even in the grayscale
version printed here, the visual style is shown to be smoother and less
chaotic. Most audiences will be familiar with the Arial and Georgia fonts
and will interpret the overall aesthetic as more traditional and “corporate”-
looking. Clean lines suggest confidence and conformity. Several rhetorical
questions can be generated from this side-by-side comparison:

• If each of these websites were selling products, which site would you
be more likely to purchase from?

• Which website would your parents be more likely to purchase from?
Which would teenagers be more persuaded by?

• What do the fonts suggest about the ethos of the author? Do both sites
appear to be constructed by credible and trustworthy authors?

• How does each website influence your emotions? Is one more boring
than the other? Do either of the sites make you feel a certain way? If
so, how might companies take advantage of these feelings?

As we have shown in this example, even when working with primarily
textual documents such as XML, we can generate and respond to different
rhetorical situations simply by varying our use of rules and properties in

The Visual Rhetoric of XML 161

CSS. Even small images can produce large rhetorical changes in a document.
Oftentimes, the selection and application of an appropriate visual style is
one of the most complicated and time consuming tasks for an XML author.
When possible, it is very helpful for technical document authors and graphic
designers to work together closely during this part of the design process to
ensure a consistent rhetorical message and an optimal mode of presentation
for XML content.

See the Additional Online Resources section of this chapter for links to
additional online examples of CSS in action and for a link to a full listing
of all CSS properties. We will focus the remainder of this chapter on a style
sheet language developed specifically for XML: the XSL.

XSL

Although using CSS with XML will work just fine, it is also useful to learn
to use XSL as that technology was developed from the ground up by the
W3C specifically to provide an accompanying style sheet language for XML.
In the first half of this chapter, we explained that style sheets for HTML
are generally straightforward to work with. One needs only to decide upon
a series of rules to define the functionality of a CSS and then to decide how
to implement that sheet, either directly within their HTML document, or
by using an externally linked file.

Unfortunately, the same process in XML is slightly more cumbersome, if
only for the number of acronyms and abbreviations one must be familiar
with in order to implement XML style sheets: XPath, XPointer, XSL, XSLT,
and eXtensible Style Sheet Language Formatting Objects (XSL-FO) are just
a few of the most important ones we discuss here. We will briefly define
XPath and XPointer in this chapter, but these will be explained in more
detail in Chapter 5.

Like CSS, XSL is a style sheet language, but it is specifically designed for
XML documents. XSL is made up of three parts:

1. XPath, which is a language for navigating in XML documents.
2. XSL-FO, which is a language for formatting XML documents. XSL-

FO is also referred to simply as XSL.
3. XSLT, which is a language for transforming XML documents.

XPath is a language that is used to access and describe certain parts of
an XML document. Using what are known as path expressions, XPath
allows a document designer to create formulaic instructions for accessing
portions of an XML document. XPath is therefore concerned with navigating
XML content.

XSL-FO is to XML what CSS is to HTML. XSL-FO, which stands for
eXtensible Style Sheet Language Formatting Objects, is now simply known
as XSL. XSL-FO and XSLT are often used together to both format and
transform XML data from one form to another.

162 The Visual Rhetoric of XML

In the remainder of this chapter, we focus on XSLT. XSLT is perhaps
the most powerful subset of XSL because it deals with transformations. A
transformation can be defined as the movement of XML data from one file
format into another. Let us begin our look at XML transformations by
considering a new XML document named “Ch4_garden.xml”:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!— Chapter Four example using XSL —>
<!DOCTYPE garden [

<!ELEMENT garden (fruit|vegetable)*>
<!ELEMENT fruit (name,supplier,units_available,price_unit,
price)>
<!ELEMENT vegetable (name,supplier,units_available,price_
unit,price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT supplier (#PCDATA)>
<!ELEMENT units_available (#PCDATA)>
<!ELEMENT price_unit (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

<garden>
<fruit>

<name>Vine Red Tomatoes</name>
<supplier>Henderson Farms</supplier>
<units_available>45</units_available>
<price_unit>Bushel</price_unit>
<price>25.00</price>

</fruit>
<fruit>

<name>Watermelon</name>
<supplier>Rand Melon Supply</supplier>
<units_available>350</units_available>
<price_unit>Individual</price_unit>
<price>1.50</price>

</fruit>
<vegetable>

<name>Green Leaf Lettuce, Black-seeded Simpson
</name>
<supplier>A&H Local</supplier>
<units_available>2000</units_available>
<price_unit>Individual</price_unit>
<price>.25</price>

</vegetable>

The Visual Rhetoric of XML 163

<vegetable>
<name>Green Leaf Lettuce, Grand Rapids</name>
<supplier>A&H Local</supplier>
<units_available>700</units_available>
<price_unit>Individual</price_unit>
<price>.65</price>

</vegetable>
</garden>

This example is both well-formed and valid as it adheres to a DTD within
the file (refer back to Chapter 2 if you need a refresher course on DTDs)
and is syntactically correct. Although this is a perfectly valid hierarchy of
information that might be useful for a grocer looking to assess his inventory,
it is much easier for a computer to “read” than a human (see Figure 4.12).

By using an XML style sheet, we can transform this XML content into
normal HTML content by using XSL code. XSL documents are similar to
XML documents except they end in the “.xsl” file suffix and are crafted
using a special set of XML elements and attributes designed for the
transformation process. We transform XML documents by creating an XSL
document that searches our XML content for patterns and then applies a
template to replace XML tags with HTML tags. Here is what the XSL
document “Ch4_garden.xsl” looks like in its entirety:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”www.w3.org/1999/XSL/
Transform”>

<xsl:template match=”/”>
<html>

<head>
<title>Fruits and Vegetables</title>

</head>
<body>

<!— transform fruits into a table —>
<h1>Fruits</h1>
<table border=”1”>
<tr>

<th>Name</th><th>Supplier</th>
<th>Units</th><th>Pricing Unit
</th>
<th>Price</th>

</tr>
<xsl:for-each select=”garden/fruit”>

<tr>
<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”supplier”/></td>

164 The Visual Rhetoric of XML

<td><xsl:value-of select=”units_available”/>
</td>
<td><xsl:value-of select=”price_unit”/></td>
<td><xsl:value-of select=”price”/></td>

</tr>
</xsl:for-each>
</table>

<!— next, transform veggies —>
<h1>Vegetables</h1>
<table border=”1”>
<tr>

<th>Name</th><th>Supplier</th>
<th>Units</th><th>Pricing Unit
</th>
<th>Price</th>

</tr>
<xsl:for-each select=”garden/
vegetable”>

<tr>
<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”supplier”/></td>
<td><xsl:value-of select=”units_available”/>
</td>
<td><xsl:value-of select=”price_unit”/></td>
<td><xsl:value-of select=”price”/></td>

</tr>
</xsl:for-each>
</table>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Now, we will move through this document and explain each part of the
code. First, we provide our XML declaration as usual:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”www.w3.org/1999/XSL/
Transform”>

In this case, we are using UTF-8 encoding, which is an 8-bit Unicode
Transformation Format that can encode Unicode characters. Unicode is a
set of around 100,000 characters which can display most of the world’s
pictographic symbols. Using Unicode gives us much flexibility in working

The Visual Rhetoric of XML 165

166 The Visual Rhetoric of XML

Figure 4.12 XML Garden File

with international languages or other specialized applications that require
non-Latin character sets.

In the second line of code, we link to a special namespace using the
“xmlns” attribute and the “xsl” prefix. This information tells the parser
that we will be linking all xsl prefixed tags to the XSL namespace. Name-
spaces are described in more detail in the next chapter.

<xsl:template match=”/”>

The <xsl: template match=“/”> code looks for the root element in the XML
document. It will then insert the HTML tags, data, and the comments that
begin with <!— and end with —> into the browser or parser.

The template tag and match attribute are used for searching for specific
tags within the XML file and then applying a template of HTML or XML
code to those particular tags or their data. In this case, we are just searching
for the document or root element and then adding in code to create a new
HTML document and begin a table that will hold the fruits from the XML
file. In HTML, the <tr> tags are used to create new table rows, the <th>
tags are used to create table heading columns, and the <td> tags are used
to create normal table columns. We include a value of 1 for the table border
attribute to visually reflect the separations between columns, rows, and
headings. The HTML code we need so far looks like this:

<html>
<head>

<title>Fruits and Vegetables</title>
</head>
<body>

<!— transform fruits into a table —>
<h1>Fruits</h1>
<table border=”1”>
<tr>

<th>Name</th><th>Supplier</th>
<th>Units</th><th>Pricing Unit</th>
<th>Price</th>

</tr>

Our next task is to extract the data from the fruit elements and display
it in the HTML table we have created. We can use the “for-each” XSL tag
to accomplish this along with an XPath expression for the select attribute.
The “for-each” tag acts as a looping mechanism to find each data node that
is of type garden, then fruit. The front slash is used to show the progression
down the XML hierarchy and is used in XPath to search for particular
elements within the document tree. The parser will then follow down the
XML tree looking for each element of type garden, fruit, and then extracting

The Visual Rhetoric of XML 167

the data from the children elements using the “value-of” tag and the “select”
attribute. The “value-of tag” instructs the parser to remove the values of
the name, supplier, units_available, price_unit, and price elements and paste
them in between new table columns <td> and </td>. This entire process will
be repeated for each garden, fruit element within the XML document.
Finally, the fruits table will be closed using the standard </table> HTML
tag. Here is the new code with the XSL instructions added:

<xsl:for-each select=”garden/fruit”>
<tr>

<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”supplier”/></td>
<td><xsl:value-of select=”units_
available”/></td>
<td><xsl:value-of select=”price_
unit”/></td>
<td><xsl:value-of select=”price”/></td>

</tr>
</xsl:for-each>

</table>

This process is then repeated for the vegetable elements. The only detail
that has changed here is that the parser will be searching for elements of
type garden, vegetable rather than garden, fruit. Here is the code for the
vegetables:

<!— next, transform veggies —>
<h1>Vegetables</h1>
<table border=”1”>
<tr>

<th>Name</th><th>Supplier</th>
<th>Units</th><th>Pricing Unit</th>
<th>Price</th>

</tr>

<xsl:for-each select=”garden/vegetable”>
<tr>

<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”supplier”/></td>
<td><xsl:value-of select=”units_
available”/></td>
<td><xsl:value-of select=”price_
unit”/></td>
<td><xsl:value-of select=”price”/></td>

</tr>
</xsl:for-each>

</table>

168 The Visual Rhetoric of XML

At this point, all of the vegetables and fruits have been extracted from
the XML document. The remainder of the code closes the open HTML tags
and then the XSL template tag that was used to select the document root
at the beginning of this process. Finally, the style sheet tag is closed so that
the document is fully well-formed (syntactically correct). Here are the last
few lines of XSL:

</body>
</html>
</xsl:template>
</xsl:stylesheet>

Now, we must find a parser that is capable of applying our transformation
to our original data file. This XSL transformation can be applied auto-
matically, by linking the XSL style sheet to the XML file, or manually, by
using an XML editor such as XML Blueprint to apply the style sheet and
preview the results. To link the style sheet directly to the XML file, we must
add the following line to the top of the XML file:

<?xml-stylesheet type=”text/xsl” href=
”stylesheet_name.xsl”?>

The first attribute, type, specifies that the linked document will be textual
and will contain XSL content. The next, href, specifies the exact filename
of the document to be linked. So, for this example, the beginning of our
XML file now looks like this:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!— Chapter Four example using XSL —>
<?xml-stylesheet type=”text/xsl” href=
”Ch4_garden.xsl”?>

<!DOCTYPE garden [
<!ELEMENT garden (fruit|vegetable)*>
<!ELEMENT fruit (name,supplier,units_available,price_unit,
price)>
<!ELEMENT vegetable (name,supplier,units_available,price_
unit,price)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT supplier (#PCDATA)>
<!ELEMENT units_available (#PCDATA)>
<!ELEMENT price_unit (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

When we open this file in Mozilla Firefox®, we now see the familiar
HTML output shown in Figure 4.13. We have effectively applied a style

The Visual Rhetoric of XML 169

sheet to transform a document from XML to HTML format. This output
can then be further customized and beautified using CSS.

XSL transformations are capable of transforming one XML document
into another XML document, or for translating XML documents into
several other types of formats such as eXtensible Hypertext Markup
Language (XHTML), scalable vector graphics (SVG), or Virtual Reality
Modeling Language (VRML) —not just HTML. This transformative feature
is useful when knowledge management systems must exchange their data
across networks; in general, the systems must agree upon a common set of
elements and attributes and then one document must be transformed into
a format suitable for interpretation by the other system. The ability of XSL
transformations to produce any XML-based file format, such as an SVG
image file or a VRML file makes this technology extremely powerful and
well-suited for advanced knowledge management systems that are
implemented using the World Wide Web.

We will return to the topic of XSL in Chapter 5 when we discuss advanced
technologies such as XLink, XPath, and XPointer. Since the XSL family
contains such a complex and powerful language for transformation and
formatting, we need to study some advanced topics such as XML
namespaces and XLink before approaching this topic in more detail.

170 The Visual Rhetoric of XML

Figure 4.13 XML to HTML Conversion Results

Chapter Summary

Knowledge of visual formatting techniques is very important for those
wishing to convey a professional ethos using the World Wide Web as a
delivery medium. CSS allow a designer to quickly and efficiently make
enterprise-wide changes to what graphic designers call the “look and feel”
of a website or portal. Without technologies such as CSS and XSL, making
global changes to visual themes would be a more arduous task. Though
XSL has a more complicated syntax than CSS, it is better suited for traversing
and applying formatting rules to the embedded tags contained within XML
data.

CSS and XSL also make websites more efficient: since the code can be
stored in external files and linked a single time from each page, the additional
time needed to find commands within each file in the site’s hierarchy can
be trimmed away. Less text in each file means a smaller file size, which in
turn means faster loading and transfer times between server and client
computers. Overhead is therefore reduced in several different ways.

The front half of this book was primarily focused on theoretical ideas
about how information and knowledge can be structured and studied from
multiple perspectives and contexts. It also contained an introductory tutorial
on XML and DTDs. Starting with this chapter, we began our transition
into some of the more advanced technical topics related to XML
technologies. These technical topics introduce powerful tools for knowledge
managers and professional communicators who wish to work with very large
data sources or who hope to build knowledge management tools and
practices that span large organizations. With that in mind, we will continue
to discuss some of the more advanced topics in XML such as schema, XPath,
and namespaces in Chapter 5. Following this last look at XML in isolation,
the remainder of the book will focus on fully realized implementations of
XML, including three custom-designed XML parsers, and will conclude by
examining the ways in which XML may be useful to one’s career and
studying an interview of five practitioners who use XML in their professional
workplaces.

Discussion Questions

1. What additional rhetorical decisions must a writer make when
constructing a site for an international audience? How might visual
elements need to be tweaked in order to be appropriate for one culture
or another? Discuss some specific examples.

2. Write down some of the rhetorical characteristics of different categories
of websites (banks, activism websites, environmental agencies,
commercial vendors, book stores, etc.) Can you identify common visual
characteristics or styles that apply to these categories? In what ways
are these characteristics effective or ineffective?

The Visual Rhetoric of XML 171

3. Using recent news stories as inspiration, discuss a situation in which
the visual rhetoric of a situation led one or more audiences to interpret
that situation in a certain way. How might visual elements be changed
in order to adjust those first impressions towards another perspective?

4. Consider the problem of negotiating meaning across different organiza-
tional units. What types of informational tasks must be performed in
order for one data source to work successfully with another? Using ideas
from Chapter 1, make a list of the various factors that may influence
the way in which certain informational units are created and/or sup-
pressed in the visual translation from one data format to another.

Activities

1. Find a popular website such as CNN, Slashdot, or MSNBC.com and
view the source of the home page. See if you can find the location of
the linked CSS file. View its source. How is this website handling the
separation of descriptive and visual content?

2. Build a simple Web page based on the examples provided in this chapter.
Experiment with CSS properties such as font size, font family, and color
to design several different external style sheets for your page. Link each
sheet to your site using the method explained in this chapter. Watch
how quickly and easily you can change the entire visual dimension of
your page simply by changing a line of HTML code.

3. Visit the Visual Rhetoric Portal at www.tc.umn.edu/~prope002/visual
Rhet.htm. Browse through some of these examples and write down how
visual elements provide a rhetorical framework for the messages
contained in these texts. How might these sites differ with different
visual themes and formatting? Are the styles of these sites appropriate
for the types of messages they are trying to communicate? Load up
several different examples at the CSS Zen Garden and discuss these sites
using your knowledge of visual rhetoric.

4. Download the “Ch4_garden.xml” file from the website or find the
example you saved on your computer earlier in this chapter. Experiment
with the “Ch4_garden.xsl” file to produce different transformations of
this data. Can you transform the fruits to be listed in an unordered list?
Can you make all of the vegetables italicized and bold? Try using your
knowledge of HTML, CSS, and XML to produce more sophisticated
transformations using the garden example or any of your own XML
examples from Chapter 2 or your own projects.

References

Garrett, Jesse James. “Ajax: A New Approach to Web Applications.” October 8,
2006. http://adaptivepath.com/publications/essays/archives/000385.php.

Leithead, Alastair. “ ‘Blasphemous’ Balls Anger Afghans”. 2007. BBC News.
Retrieved August 27 2007. http://news.bbc.co.uk/2/hi/south_asia/6964564.stm.

172 The Visual Rhetoric of XML

Scott, Linda M., and Patrick Vargas. “Writing with Pictures: Toward a Unifying
Theory of Consumer Response to Images.” Journal of Consumer Research 34.3
(2007): 341–56.

Warnick, Barbara. “Online Ethos: Source Credibility in an ‘Authorless’ Environ-
ment.” American Behavioral Scientist 48.2 (2004): 256–65.

Whitburn, Merrill D. Rhetorical Scope and Performance: The Example of Technical
Communication. Stamford: Ablex, 2000.

Additional Online Resources

1. W3C CSS tutorial: www.w3.org/Style/Examples/011/firstcss
2. A list of all CSS properties listed alphabetically: www.blooberry.com/indexdot/css/

propindex/all.htm
3. A list of HTML hexadecimal color codes: http://html-color-codes.com
4. CSS Zen Garden: www.csszengarden.com
5. W3C Schools XSLT tutorial: www.w3schools.com/xsl
6. W3C XML Path Language (XPath) Recommendation: www.w3.org/TR/xpath
7. W3C Schools XSL-FO Tutorial: www.w3schools.com/xslfo/xslfo_intro.asp
8. W3C XSL Page: www.w3.org/Style/XSL
9. XML Blueprint Software: www.xmlblueprint.com

The Visual Rhetoric of XML 173

5 Advanced Concepts in XML
Namespaces, Schemas, XLink,
XPath, XPointer, DITA, and
DocBook

Chapter Overview

So far, we have seen the ways in which XML can be used to structure data
in rhetorically meaningful ways and then display that data in a visually
appealing fashion. In this chapter, we will learn about some of the advanced
tools and techniques available to technical communicators and other
professionals working with XML. We provide an overview of several
advanced topics and show how they are important to the overall landscape
of rhetorically thoughtful XML design.

We combine these topics into a single chapter largely because of their
interrelationships. For example, one cannot easily work with schemas
without understanding namespaces. Similarly, it is impossible to get very
far with XLink or XPointer without understanding how XPath expressions
are formed. For this reason, we have grouped these topics into a single unit.
Our last two topics in this chapter, DITA and the DocBook language, are
popular implementation schemes based on XML. DITA and DocBook are
used for authoring, organizing, and delivering structured technical informa-
tion. They operate using DTDs or schema for validation and are useful in
single sourcing applications and for building CMS.

Although this chapter is named “Advanced Concepts in XML,” none of
the material discussed here is particularly complex or confusing in principle.
While the basic ideas behind these principles are easy, the syntactical
implementation can be somewhat difficult to grasp, at least at first. When
mastered, however, these techniques add a significant amount of flexibility
to a document creator’s repertoire. For this reason, we feel it is important
to introduce these topics and to discuss them at least from a broad
perspective. Once one is exposed to the basics of namespaces, schemas, and
the other “x-languages” (XPath, XPointer, and XLink), it is easy to develop
further competency with these techniques based on the particular needs of
one’s own projects. Similarly, a basic understanding of DITA and/or
DocBook provides a document author with a standardized repertoire of
element names and a common encapsulating strategy that allows information
to be reused and shared with different types of parsers and translation tools.
DITA and DocBook also require authors to chunk information into discrete

units; this practice helps to develop the types of rhetorical skills necessary
for this alternate form of writing and the technical skills necessary for
working in structured writing environments.

Namespaces

In Chapter 2, we discussed how namespaces can be used to differentiate
between common names stored in different databases. Specifically, we dis-
cussed how namespaces could be used to differentiate between XML
elements used for the WHO and the HHS. In this chapter, we will further
examine namespaces in order to understand how they integrate with more
advanced concepts associated with XSL, XLink, XPath, and XPointer.

As we learned in Chapter 2, an XML namespace is an encapsulating unit
that defines the scope in which particular elements are defined and used.
This encapsulating unit is virtual in the sense that it is created by a line of
code that tells an XML parser or software program which XML document
to use as a point of reference when looking at elements and attributes.
Namespaces are not unique to XML. In fact, many programming languages
(such as C++) have long used namespaces to differentiate between repeated
names in programs that might have different meanings in different
algorithmic contexts. Knowledge managers also need to be familiar with
this convention as there are numerous situations in which different
organizational groups may use their own jargon or terminology to refer to
the same concept or idea from a particular perspective. This issue is especially
important when document designers need to combine multiple XML
documents into a single database or into a unified collection of databases.

The W3C writes about this problem in terms of “recognition” and
“collision.” When multiple tag collections are using the same element names
to describe their data, the software programs that interpret and act upon
that XML data may have a hard time determining the correct way to react.
Recognition and collision problems both contribute to a sense of rhetorical
ambiguity in that they obfuscate meaning and complicate the process of
working with combined documents.

A recognition problem is experienced when XML tags are used outside
of the original document in which they are defined, perhaps resulting in
their misinterpretation or misuse. For example, consider a situation in which
the logistics manager of a grocery store chain needs to combine the main
grocery database with an engineering reference database. The manager
wants to investigate a new method for manufacturing the crates that are
used to ship apples from her main warehouse in Kansas to a particular store
location anywhere in the United States. The engineering process is somewhat
complicated and requires a substantial amount of information from both
databases. From the main grocery database, she needs information about
typical stocking demands for different store locations, the life cycle of
perishable goods, classes, and categories of apples and the typical bushel

Advanced Concepts in XML 175

weights for these categories, and other types of information relevant to the
shipping process. From the engineering database, she needs to select
information describing the capacity of certain box sizes, the placement and
locations of screw holes, the amount of raw materials necessary for the
production of the crates, and so forth.

In this example, a recognition problem could be encountered for any of
the XML tags defined for the individual items residing in the original
grocery store or engineering databases. The new combined database might
be unable to properly classify element names such as “apple_type” and
values such as “Earligold”, “Delicious”, and “Fuji”, which are meaningful
names and values only within the master grocery database. Similarly,
the new combined database might not recognize engineering elements like
“screw_type” and values such as “wood”, “machine”, and “sheet metal”.
Recognition problems like these are common when multiple XML docu-
ments are combined into new forms. Without a means of linking a traveling
XML document to its original starting point, the original context of meaning
from which that document emerged is impossible to recognize.

A collision problem is found when multiple tags with the same name
but different semantic meanings are present in the same document. For
instance, in the example above, the grocery and engineering databases might
each have used the tag <type> to describe both apples and screws. In this
case, how would the new document be able to tell one element from another
without requiring a detailed examination of the element’s associated
information? Another example might be the element “produce”. This
element could refer to a noun (as in a specific type of food) in the grocery
database and a verb (as in the act done to manufacture a product) in the
engineering database. Without a mechanism for defining these elements
within their original contexts, the combined database has no way of easily
differentiating one meaning of an element from another.

Collision problems are also problematic when different libraries use
different DTDs or schemas to enforce the validity of the data. A namespace
is a mechanism for removing this ambiguity and for addressing both the
recognition and the collision problems. A namespace therefore serves as the
link from traveling XML documents to their original, contextually-rich, and
properly named and identified locations. Much like a passport defines a
traveler’s country of origin (and, by rhetorical association, her likely primary
language, her cultural characteristics, and certain societal conventions like
the form of currency she uses and certain legal rights she may hold) a
namespace provides a link from XML documents back to their carefully
defined origins. However, namespaces are much more precise than passports
in that they clearly and unambiguously define the meaning of elements as
they were originally created by a document designer. A certain amount
of guesswork, generalization, and stereotyping is involved when trying to
learn about a person from her passport profile, but when we use a
namespace, we can be directed to the actual source of the data where we
can inspect it. For example, we could determine in the example we just

176 Advanced Concepts in XML

described just what is meant by the term “<type>”. Is it an apple, or a screw,
or something else entirely? Because of this rhetorical power, namespaces
are critically important when any problems of recognition or collision are
likely to occur.

The importance of clear and precise language in combined documents is
also important considering the interdisciplinary practices of the many
different discourse communities that use XML to communicate information.
For example, in certain scientific communities, there are words that have
different meanings depending on the discourse community in which they
are used. Even a general word like “research” may have different contextual
meanings to a group of biologists, librarians, psychologists, or sociologists.
A biologist may immediately think of laboratory data and microscope slide
imagery, a librarian might associate the word with a thorough literature
review, a psychologist with empirical data and experimental designs, and a
sociologist with field studies and focus groups.

A namespace is nothing more than the XML equivalent of stating “I am
talking about this word X from the context of Y,” where Y represents a
particular group’s or organization’s point of view. To continue our example,
using a namespace would be like stating “I am talking about the word
‘research’ from a librarian’s point of view.” We now have a better idea about
what this word “research” entails in this context—performing electronic
searches, using the card catalog, or perhaps even poring over old volumes
looking for a specific passage of text. By switching our namespace from
“librarian” to “psychologist,” we would then alter the various connotations
associated with the word. We would then think about different activities
and tasks associated with psychologists, such as working with participants
and performing statistical analysis on various types of data sets. These
perceptions and generalizations may or may not be accurate, but with
XML, we can provide very clear and unambiguous guidelines without
falling prey to the same types of biases and stereotypes we as humans are
susceptible to.

In the case of an ambiguous reference, the XML namespace definition
defines the context in which a particular element or attribute exists. For
instance, it is perfectly likely that both an XML document and an HTML
document would contain a TITLE element. In order to differentiate between
the HTML <title> tag and the XML <title> tag, a namespace can be used
to identify which DTD (or schema, as we will learn about later in this
chapter) should be consulted in order to enforce the validity of that tag.
You may recall from Chapter 2 that a valid XML document is one that
conforms to the requirements of its DTD or schema; a well-formed XML
document is one that is written according to the syntactical requirements
of XML.

An XML namespace definition is recognizable through the special XML
attribute “xmlns”. Xmlns is a “reserved” word, meaning that it cannot be
used as a user-defined name for an element or attribute and that it has special
meaning for XML parsers. The value of this xmlns attribute will be a URI,

Advanced Concepts in XML 177

which is defined by The Internet Society Network Working Group in the
RFC 3986 standards document as a sequence of characters that identifies
an online or physical resource. Most Internet users are probably most
familiar with the URIs used to identify addresses on the World Wide Web,
though URIs can also hold addresses used for FTP or even the clickable e-
mail links used to launch a mail client from a website. Examples of URIs
are shown in Table 5.1.

As discussed in RFC 3986, a URI can be further decomposed into the
well known URL as well as the somewhat lesser known Uniform Resource
Name (URN). URLs contain more information than URNs in that the
protocol requires that in addition to identifying a resource by name, URLs
must also “provide a means of locating the resource by describing its
primary access mechanism (e.g., its network ‘location’)” (The Internet
Society online). While these details are important to document experts
working on Internet technologies or network protocols, most professionals
will do well simply to remember that URI is a more general form of URL,
or that a URL is a more specific instance of a URI that includes a mechanism
for network location. Many people confuse the two, so it is useful to know
the difference.

The W3C Recommendation of August 16, 2006 specifies that XML
namespaces are composed of the xmlns attribute, a namespace prefix, and
a URI value. An example namespace declaration is found in Chapter 2 and
is repeated here to illustrate the basic syntax:

xmlns=”www.hhs.gov/”

It is important to remember another important fact about namespaces:
the URI associated with a namespace is simply an identifier and does not
contain any information that must be extracted by the XML file or used to
verify the validity of the markup. In other words, there is no special file
that will be downloaded from the Health and Human Services website
and inserted into our XML file. This is merely an expanded name used to
further qualify and classify the code into different units and to avoid

178 Advanced Concepts in XML

Table 5.1 URI Examples

URI Example Description

www.rhetoricalxml.com a URI for the website of this book

mailto:rudy@mail.ucf.edu a URI used to launch an e-mail client

tel:+1–888–555–1234 a URI used to hold a telephone number

urn:oasis:names:specification: a URI using a URN
docbook:dtd:xml:4.1.2 rather than a URL

potential conflicts or misrepresentations. It is also a useful scaffold for a
human reader that may be examining the data and looking for a resource
from which to gather more information about it.

Returning to our previous example from Chapter 2, we can see how to
link a given element to our namespace:

<natural_causes xmlns=”www.hhs.gov”/>
4.65 million
</natural_causes>

In this instance, we are including a prefix to indicate that the <natural_
causes> tag is defined within the HHS namespace. If a similar natural_causes
element was used by the WHO or even by the default XML file we were
working in, this namespace declaration would specify to the XML processor
exactly which XML tag we were referring to.

To see a second example illustrating why namespaces are important in
XML documents, we can return to our XSL example from Chapter 4. The
first two lines of that example are repeated here:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”www.w3.org/1999/XSL/Transform”>

Note that the line immediately following the XML declaration uses the
xmlns namespace declaration to bind the URI “www.w3.org/1999/XSL/
Transform” to the prefix “xsl”. This allows the parser to recognize that
any elements using the “xsl” prefix should be treated according to the XSL
Transform conventions. These conventions can be found by following the
included URI, though, at the time of writing, this page only leads to a place-
holder for an eventual XSL schema definition (we discuss schemas in the
next section). Ideally, the URI would lead to a page with documentation
describing the allowable actions a parser can take and the rules it must follow
when executing a transformation on an XML database. Although the URI
does not provide DTD or schema information about the XSL tags, it does
provide the parser with an exact and unambiguous encapsulating unit (or
perspective) from which to examine these particular tags. In addition, an
individual reviewing the code would have the option to visit this URI in
order to learn more about the XSL specification.

Schemas

The XML Schema Language, also known as the XML Schema Definition
(XSD), provides a means for describing the structure and required contents
for an XML document. Eric van der Vlist describes them as a formal-
ization of the constraints, expressed as a set of rules, which apply to XML

Advanced Concepts in XML 179

documents (1). Although they can be used for various tasks such as
describing ontologies (shared vocabularies of terms referring to the same
concept), helping to guide support systems for XQuery (another emerging
language), binding data to database-driven applications, or helping with
guided editing tasks; their most popular use by far is as an additional
mechanism for validation (van der Vlist 1–4). We discuss two popular
schemas for technical document authors, called DocBook and DITA, at the
end of this chapter.

Schemas are similar to DTDs, which were discussed in Chapter 2. Like
DTDs, schemas are used to verify the validity of XML data and to ensure
that XML information is structured according to a set of precise specifi-
cations. Unlike DTDs, however, schemas are unique in that they are written
in the same XML syntax used by the data they describe. Because they must
be expressed using XML’s rules, schemas require a different syntax than
DTDs.

Like DTDs, XSDs/schemas are a collection of rules that specify the
patterns allowed in XML documents. They contain rules that define
the elements and attributes allowed in the document and their data types,
the order and number of child elements, and the default values and rules for
repetition for each child element. One of the primary advantages of XSDs
over DTDs is that schemas provide better support for validating data types
such as strings of characters, numbers, or even specialized patterns (such as
what one might produce for a date or postal code). In addition, since XSDs
are specified in native XML code, they are more intuitive for a document
designer already working with XML. This is in contrast to the makeup of
DTDs, which use their own special language and rules. With schemas, we
can use the same rules as we use with XML to produce well-formed
(syntactically correct) documents.

Simple and Complex Types

XML schemas differentiate between complex types, which are elements that
contain other elements, and simple types, which are elements that do not
contain other elements. For example, consider the following segment of
XML code from Chapter 2:

<memo>
<author>

<given_name>Condoleezza</given_name>
<family_name>Rice</family_name>

</author>
<addressee>

<given_name>Colin</given_name>
<family_name>Powell</family_name>

</addressee>
<subject>Speech</subject>

180 Advanced Concepts in XML

<date>September 22, 2001</date>
<line>Please read the speech the President will give
tonight.</line>
<line>It might surprise you.</line>

</memo>

In this example, the memo element is a complex type because it contains
other tags such as <author>, <addressee>, <subject>, <date>, and <line>.
Similarly, addressee is a complex type because it contains the tags <given_
name> and <family_name>. The tags <given_name> and <family_name>,
however, are simple types because they do not contain any additional tags.

We can use an XSD to replace the DTD we created in Chapter 2. Here
is that original code, which used a DTD and contains an XML file that was
created using that DTD template:

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE health_status_mortality [
<!ELEMENT health_status_mortality (cause_specific_per_
one_hundred_thousand_population, age-standardized_
mortality_rate_per_one_hundred_thousand_population)>
<!ELEMENT cause_specific_per_one_hundred_thousand_
population (HIV-AIDS, TB_HIV_negative_people, TB_HIV_
positive_people) >
<!ELEMENT HIV-AIDS (#PCDATA)>
<!ELEMENT TB_HIV_negative_people (#PCDATA)>
<!ELEMENT TB_HIV_positive_people (#PCDATA)>
<!ELEMENT age-standardized_mortality_rate_per_one_
hundred_thousand_population (non-communicable_disease,
cardiovascular_disease, cancer, injuries)>
<!ELEMENT non-communicable_disease (#PCDATA)>
<!ELEMENT cardiovascular_disease (#PCDATA)>
<!ELEMENT cancer (#PCDATA)>
<!ELEMENT injuries (#PCDATA)>
]>
<health_status_mortality>
<cause_specific_per_one_hundred_thousand_population>
<HIV-AIDS><10</HIV-AIDS>
<TB_HIV_negative_people><1</TB_HIV_negative_people>
<TB_HIV_positive_people><1</TB_HIV_positive_people>
</cause specific per one hundred thousand population>
<age-standardized_mortality_rate_per_one_hundred_
thousand_population>
<non-communicable_disease>460</non-communicable_disease>
<cardiovascular_disease>188</cardiovascular_disease>

<cancer>134</cancer>
<injuries>47</injuries>

Advanced Concepts in XML 181

</age-standardized_mortality_rate_per_one_hundred_
thousand_population>
</health_status_mortality>

By using the alternate syntax required by schemas, we can rewrite this
example using more specific constraints. To begin, we include our standard
XML declaration and then bind the “xs” prefix to the namespace found at
“www.w3.org/2001/XMLSchema” (the W3C’s recommendation for XML
Schema).

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”www.w3.org/2001/XMLSchema”>
.../...
</xs:schema>

After the schema namespace has been defined in the example above, we
must specify a collection of complex and simple types that describe the
allowable content and ordering rules for elements contained within this XML
document. Our root element in this example is health_status_mortality, so
our schema needs to first address this element. Since this is a complex type
containing additional elements, the <xs:complexType> tag is used immedi-
ately following the <xs:element name=“health_status_mortality”> tag in the
schema document.

Sequencing

Following this same example, we next use the <xs:sequence> tag to specify
the sequential sub-elements (or children) associated with that parent element.
These are listed in the order in which they must appear in the XML
document. In this case, the children elements are named cause_specific_
per_one_hundred_thousand_population and age-standardized_mortality
_rate_per_one_hundred_thousand_population, each of which are also
complex types, because they too contain sub-elements.

The full version of our schema document now appears as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”www.w3.org/2001/XMLSchema”>
<xs:element name=”health_status_mortality”>

<xs:complexType>
<xs:sequence>
<xs:element name=”cause_specific_per_one_hundred_
thousand_population”>

<xs:complexType>
<xs:sequence>

<xs:element name=”HIV-AIDS” type=”xs:string”>
</xs:element>

182 Advanced Concepts in XML

<xs:element name=”TB_HIV_negative_people” type=
”xs:string”></xs:element>
<xs:element name=”TB_HIV_positive_people” type=
”xs:string”></xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name=”age-standardized_mortality_rate_per_
one_hundred_thousand_population”>
<xs:complexType>
<xs:sequence>
<xs:element name=”non-communicable_disease” type=
”xs:integer”></xs:element>
<xs:element name=”cardiovascular_disease” type=
”xs:integer”></xs:element>
<xs:element name=”cancer” type=”xs:integer”></xs:element>
<xs:element name=”injuries” type=”xs:integer”>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

XML schema documents are saved using the .xsd file extension. If you want
to try editing this document on your own computer, you can save it as
“ch5_health.xsd”.

Enforcing Data Types

In the previous example, we added specific instructions limiting the types
of data that can be accepted by our elements. For example, the TB_HIV_
negative_people and the TB_HIV_positive_people elements are designed to
accept string data, which will accept sequences of characters, numbers, or
combinations thereof. Examples of strings include the text “this is a string,”
and the text “strings can have numbers like 23 as well as special sequences
like < or >.” It is important to use strings for these elements’ data types
because these particular elements may need to contain less than or greater
than symbols, as shown in our sample XML file. The <non-communicable_
disease>, <cardiovascular_disease>, <cancer>, and <injuries> tags, on the
other hand, restrict their data to integer numbers (negative or positive
whole numbers) only. Examples of integers include the numbers 14, –5, 0,
and 137. The number 14.23 is not an integer.

Advanced Concepts in XML 183

Finally, we need to provide a directive in our XML file to instruct the
parser to use our schema document when validating our XML. The XML
file with this directive (“ch5_health.xml”) is shown here:

<?xml version=”1.0” encoding=”UTF-8” ?>
<health_status_mortality xmlns:xsi=”www.w3.org/2001/
XMLSchema-instance” xsi:noNamespaceSchemaLocation=”health_
status_mortality.xsd”>

<cause_specific_per_one_hundred_thousand_population>
<HIV-AIDS><10</HIV-AIDS>
<TB_HIV_negative_people><1</TB_HIV_negative_people>
<TB_HIV_positive_people><1</TB_HIV_positive_people>
</cause_specific_per_one_hundred_thousand_population>
<age-standardized_mortality_rate_per_one_hundred_
thousand_population>

<non-communicable_disease>460</non-communicable_
disease>
<cardiovascular_disease>188
</cardiovascular_disease>
<cancer>134</cancer>
<injuries>47</injuries>

</age-standardized_mortality_rate_per_one_hundred_
thousand_population>

</health_status_mortality>

Validation using Schema

After an XML file has been linked to a schema, we can use any XML parser
with schema support to validate our XML document, just as we would do
with a DTD. The output from one such software application is shown below
in Figure 5.1. Note that the Output Window now displays a message
indicating that our XML file has been found valid according to our
“health.xsd” schema.

When validation fails, the parser should return an error showing what
part of the document is in violation of the schema. If we were to change
the value of the data contained within the <cardiovascular_disease> tag, for
instance, to “<188” (which equates to “<188” after the HTML entity is
translated) the validation should fail, because the less than symbol is not
an integer. Indeed, running that new input against the schema returns the
following error:

XML Document is not valid against XML Schema
Error parsing ’<188’ as integer datatype. The element:
’cardiovascular_disease’ has an invalid value according to
its data type.

184 Advanced Concepts in XML

Cardinality

Cardinality, or the number of times in which an element may occur, is
enforced using the minOccurs and maxOccurs attributes. Recall from
Chapter 2 that DTDs enforce cardinality using special characters such as
the plus symbol “+” and the asterisks “*”. To specify the appropriate
cardinalities with schema, we must provide numeric values for the
minOccurs and maxOccurs attributes. To show that an element can occur
as many times as we wish, we use the special value “unbounded.” Here is
some schema code that we could use to ensure that the number of cancer
elements specified in an XML document should be at least two, with no
upper limit:

<xs:element name=”cancer” type=”xs:integer” minOccurs=”2”
maxOccurs=”unbounded”></xs:element>

Unless we returned to our original XML document and added an
additional <cancer> tag, the example we presented earlier would no longer
be a valid document. Since we are now asking for at least two cancer
elements and we only provide one in our earlier example, we would need

Advanced Concepts in XML 185

Figure 5.1 Schema Validation Results

to either change the value of the minOccurs attribute to “1” or add an
additional cancer element to our XML document.

Named Types

Another powerful feature of XML schemas is found in their ability to inherit
from primitive data types (such as strings) and then extend these data types
into new forms by adding restrictions or additional parameters. We discussed
in Chapter 3 how XML is considered to be an object-oriented language;
since schemas are written in XML, they too are object-oriented. This
capacity for inheritance is a fundamental property of object-oriented design
(we discuss inheritance more later in this chapter when we describe DocBook
and DITA).

Named types are important because they allow us to impose even more
restrictions on our data, which is something a DTD cannot do by default.
For instance, if we wanted to make sure that any numbers entered for injuries
under the <age-standardized_mortality_rate_per_one_hundred_thousand_
population> tag were between three and six digits long, we could create a
new type named injuryType that was derived, or inherited from, our
standard string type. We are using a string rather than an integer because
although our data type is indeed a number, the minLength and maxLength
attributes are only available to named types derived from strings. Our
schema definition for this type looks like this:

<xs:simpleType name=”injuryType”>
<xs:restriction base=”xs:string”>

<xs:minLength value=”3”></xs:minLength>
<xs:maxLength value=”6”></xs:maxLength>

</xs:restriction>
</xs:simpleType>

We can then link our element defined in the XML schema to this new
named type using the code that follows. It is important to notice that we
do not use the namespace prefix “ns” with the named types we create. This
is because these items are not associated with the W3C’s schema data types,
but with our own that we define in our own local (document level)
namespace. We do not need to use a different namespace prefix because the
local namespace is assumed if no explicit prefix is provided. This named
type must also be created outside the <xs: element name=“health_status_
mortality”> element. It should be in between the prefix definition and the
health_status_mortality element.

Here is the code to link the named type with our element:

<xs:element name=”injuries” type=”injuryType”>
</xs:element>

186 Advanced Concepts in XML

With this new named data type, we provide additional feedback to any
XML document creator that tells them when the data they are entering is
not correct according to the schema. For example, using the injuryType
named data type we define above, our schema expects to see a string that
is between three and six characters in length. If an author were to
accidentally type “10” as opposed to “100,” they would be presented with
an error message similar to this (the specific error message may vary
according to the parser one is using): “minLength constraint failed. The
element: ‘injuries’ has an invalid value according to its data type.” Likewise,
if they typed a value that was too long, such as “1000000,” they would see
an error message similar to this one: “maxLength constraint failed. The
element: ‘injuries’ has an invalid value according to its data type.”

Using custom patterns, we can build our schema to enforce an even greater
degree of control upon our documents. For example, if we wanted to create
an ID attribute that was ten digits long and accepted only digits ranging
from zero to five, we could add a new named type called “idPattern” that
looks like this:

<xs:simpleType name=”idPattern”>
<xs:restriction base=”xs:string”>

<xs:pattern value=”[0-5]{10}”></xs:pattern>
</xs:restriction>

</xs:simpleType>

The numbers provided in the brackets, [0–5], specify the allowable range
that these numbers can have in the XML document. A user can type in the
values 0–5. The number in the curly braces, {10}, specifies that a total of
ten digits must be provided. So, using the pattern restriction imposed above,
the value “0123450123” would be accepted as valid data because it contains
only the digits zero through five and is a total of ten digits long. The value
“0123456789” would be rejected because it contains the values “6,” “7,”
“8,” and “9,” all of which are outside the allowable range of characters.
Similarly, the value “01234” would be rejected because it is too short.

As we can see from these examples, named types are useful for customizing
the default data types used in the W3C recommendation for schemas. They
allow us to further customize the length of string data and to enforce
custom patterns for element values. As knowledge managers, such capa-
bilities are useful for helping data providers to understand precisely what
should be entered into XML documents as well as for troubleshooting any
errant data that may be entered by mistake.

To review, schemas function exactly like DTDs in principle, but they are
advantageous in that they are written using the same well-formed syntax
of the XML documents they are verifying. In other words, they are required
to use the same syntax as general XML documents. They also provide
additional mechanisms for specifying more precise data types. Another

Advanced Concepts in XML 187

useful side benefit of using a native XML format is that XSL transformations
can now be applied to schema, making it easy to transform one schema
into another or even to display the schema using HTML elements such as
tables or lists.

XPath

It is common for some large XML documents to contain hundreds or even
thousands of elements and attributes. Even with a potent XML editor that
has the capability to display the relationships between elements in a graphical
hierarchy, it can be a challenge to locate certain elements or attributes that
are nested deep within the database of elements. The XPath provides a means
for locating information at any point within an XML document.

Recall the garden example from the previous chapter. In a wild and
overgrown garden, it can be difficult to locate the precise areas in which
fruits and vegetables are planted. Using this garden example as a metaphor,
XPath can be likened to a planting grid overlay that shows exactly where
every item was originally planted and provides a map showing that particular
plot in relation to other items in the garden. A better analogy is perhaps
the classical problem of finding hidden pirate treasure. A treasure hunt is
simply not possible without some general directions leading one to likely
search locations. In other words, X marks the spot, but without a good
treasure map (and the ability to read it) there is not a very good chance of
finding that buried gold. Similarly, with XPath, you have to understand the
syntax in order to find the (potentially valuable) buried information within
an XML document.

XPath refers to the elements and attributes within an XML file as nodes.
The node concept is likely familiar to HTML designers; nodes of information
are often arrived at through the process of “chunking” in which similar items
are grouped together on the same page, providing for a rough encapsulation
of semantic content. We discussed this in detail in Chapter 3 when we
considered different types of classification systems such as Aristotelian
(binary), psychological, and linguistic strategies. In the XPath data model
(XDM), there are seven different kinds of nodes that can be used to classify
data. These seven types are called document, element, attribute, comment,
namespace, text, and processing nodes.

Document nodes are the highest level, or “root,” elements that encapsulate
an XML document. As you would expect, element nodes contain informa-
tion about elements, and attribute nodes contain information about
attributes. Similarly, namespace nodes encapsulate namespace information
and comment nodes encapsulate comments. Text nodes contain XML
character content. Finally, processing nodes contain special XML processing
instructions.

In addition to nodes, XPath uses components known as axis specifiers to
specify the direction in which an XML document should be traversed.

188 Advanced Concepts in XML

Types of axis specifiers include ancestor, ancestor-or-self, attribute, child,
descendant, descendant-or-self, following, following-sibling, namespace,
parent, preceding, preceding-sibling, or self. These specifiers are included
in XPath expressions to specify the routes to be taken when traversing an
XML tree.

An XPath expression is composed of three parts:

1. An axis specifier, which provides the direction to travel within the
document hierarchy.

2. A node test, which specifies the types of nodes (comments, text,
processing information, or any/all of these) that should be considered
during the trip.

3. A predicate expression, which uses square bracket notation to further
filter the sequence, if necessary.

In order to create an expression, one must combine the “steps” required to
move from one node to another and separate them using the “/” character.

To understand how XPath works, it is important to remember the tree
analogy from Chapter 2. Here we learned that an XML file can be repre-
sented as a family tree with parent elements, children elements, and siblings
(nodes that are on the same level of the hierarchy). The following code is
reprinted from the “person.xml” example in Chapter 2. As reflected in Figure
5.2, the spouse, daughter, and two son elements are all considered siblings
since they reside on the same level of the hierarchical tree. In the XML code,
these elements are all defined “beneath” the immediate_family element. This
representation of XML elements in a hierarchical format is also known as
the Document Object Model, or DOM.

<person>
<name>John Raymond</name>
<birthday>July 27, 1970</birthday>
<city_of_birth>Des Moines</city_of_birth>
<state_of_birth>Iowa</state_of_birth>

Advanced Concepts in XML 189

Immediate familyName

Spouse Son(s) Daughter(s)

Person

Birthday City of birth State of birth

Figure 5.2 Tree Representation of “person.xml”

<immediate_family>
<spouse>Donna Raymond</spouse>
<daughter>Jennifer Raymond</daughter>
<son>Jeffrey Raymond</son>
<son>Casey Raymond</son>

</immediate_family>
</person>

This family tree analogy is important to help understand the traversal
procedure when working with axis specifiers in XPath. For example, if we
wanted to create an XPath expression to find the data contained in the
<name> tag, we would use the child axis specifier twice. The expression
would look like this:

/child::person/child::name

We could also use the shorthand version of this XPath query and write this
new expression as follows:

/person/name/

Or, we could use the fully qualified version in this fashion:

/person[1]/name[1]

In each case, the XPath expression leads us to the element containing the
text “John Raymond”. A more complicated task is to find all of the
descendants of the immediate family element. In this case, our XPath query
is formed using the descendant axis specifier:

/child::person/descendant::immediate_family

This resolves to

/person[1]/immediate_family[1]

in shorthand form and returns “Donna Raymond”, “Jennifer Raymond”,
“Jeffrey Raymond”, and “Casey Raymond”.

If we wanted only to access the node in which the value “Casey Raymond”
is stored, we could use this XPath syntax:

/child::person/child::immediate_family/child::
son[last()]

In this example, we are using a special predicate expression named “last()”
that will select the last node in the document hierarchy with this element

190 Advanced Concepts in XML

name. If we know the exact number of elements named “son”, we could
also use indexed notation to provide an XPath expression that is easier to
remember:

/person[1]/immediate_family[1]/son[2]

Many parsers have XPath support built in, since this syntax makes it so
convenient to locate nodes buried within the document hierarchy. For large
XML libraries with complex, nested structures of information, XPath
expressions are indispensable for document designers. As with namespaces,
XPath expressions are also valuable when multiple XML documents are
combined together for a specific informational purpose. When an author
needs to search a document that he or she did not originally create, XPath
simplifies the process of accessing buried nodes by using a specific syntax
that will work equally well for all well-formed XML documents.

Linking in XML

The XML Linking Language, or XLink, is a set of standards that defines
rules for linking XML elements. In HTML, links provide the hyper part of
hypertext, allowing a document’s reader to navigate between and beyond
documents and websites in a nonlinear—and usually nonhierarchical—
fashion. Navigation between documents would be found in documents that
link to one another; we might describe navigation beyond documents as
navigation integrated with multimedia or video components or navigation
linked to virtual worlds like Second Life (Linden Research online) or There
(Makena Technologies online). This ability to link to unforeseen document
media types as well as to an enormous amount of existing textual documents
is what makes hypertext so powerful.

Links are what drive the connectivity of the Internet’s documents on a
technical level. Similarly, they also contribute to the rhetorical dimensions
of online document sharing. Jay David Bolter suggests that because of their
ability to define relationships and meaningful connections among various
electronic resources, the links themselves “constitute the rhetoric of the
hypertext” (29). The decentralized nature of hypertext and the grassroots
community involvement that often surrounds new ideas on the Web is
directly attributable to the nature and functionality of hyperlinks. This was
another fundamental idea Tim Berners-Lee expressed and that we observed
at the genesis of the hypertext markup language. Aside from the constraints
imposed by one’s employer, there is no central authority that approves or
disapproves one’s linking to a particular resource or making connections
between one organizational unit and another in cyberspace. Depending on
the country in which one lives, access to these outside resources may be a
problem, however. In other words, the links can be made, but not necessarily
followed.

Advanced Concepts in XML 191

Though they are in contrast to the rigid taxonomical structure of pre-
defined classification systems, many emergent types of knowledge manage-
ment can benefit from the freedom of hypertext linking practices. For
example, social bookmarking websites like del.icio.us provide a means for
likeminded individuals to discover new resources and make new connections
to existing sources based upon the browsing and linking habits of other
individuals on the World Wide Web. These resources can then be presented
to other users using metadata and common keywords that identify and
classify themes within the linked resources. In this case, knowledge is
encapsulated using the interests of compatible individuals rather than some
existing framework for information classification. Since much language and
terminology on the Internet is organic and evolves over time, social
bookmarking sites are useful for keeping track of resources that refer to a
specific subject or topic using contemporary language, or for finding
resources that may be particularly popular during a given moment in time.
Though additional keywords may be necessary to update a resource with
its most recent descriptors, it makes more sense to open this keyword
generation mechanism to the general public rather than relying on a single
organization or individual to keep the database updated.

Functionally speaking, links are remarkably simple considering their
ability to connect source materials from any networked location. They
provide connections between resources that exist on computers residing
anywhere in the world. The difficulty of moving objects from one location
to another in physical space is irrelevant to a hypertext link. The same
physical hardware and networking standards that connect computers
through the Internet enable a seamless and oftentimes transparent browsing
experience from one resource to another, unless a resource has been removed
or otherwise secured from the general public.

Linking in HTML

To understand the concepts behind XLink, it is important to first understand
how links work in traditional HTML documents. There are different types
of links used in HTML. First, there is the traditional clickable link that is
formed using an <a> element. The format of this link looks like this:

This is a link to the text’s
website

If you are not familiar with hand coding links in HTML, you might try
typing this example into a text document and saving it as “links.html”. Open
the document in your Internet browser to see how the link is rendered from
HTML text to a clickable hyperlink. In this case, the reader of a hypertext
document needs to explicitly click the fragment of text that says “This is a
link to the text’s website” in order to “follow” the originating link to its
targeted destination. Here, clicking on the link leads the reader to the
companion website for this book.

192 Advanced Concepts in XML

Relative and Absolute Linking

Links in HTML can be relative or absolute. Relative links are links that are
defined relative to a particular location on the server computer. For example,
a link defined

Link to notes<a>

is relative. If one were to create this link and store it in a file named
“relative.html”, one’s browser will attempt to find a directory named
“xmlstuff” and a file named “xmlnotes.html” within whatever current
directory “relative.html” resides in.

Absolute links, on the other hand, specify an exact path. To make this
example absolute, we could rewrite it as follows:

Link to notes<a>

This example can be saved as “absolute.html”. With absolute linking, we
are clear about exactly where a resource is located and we specify a precise
server name (or directory path).

In general, relative links are useful for developing HTML files when they
need to be moved from a local computer to a server computer. This makes
them fairly portable. One must be careful with the direction of slashes, as
they may need to change direction depending on the type of server computer
the files reside on (Windows and Linux servers use different notation for
path expressions, for example). Absolute links are useful when certain
files are deeply nested in multiple locations but they all refer to the same
navigational content, or when a clear and unambiguous pathname is
necessary for security reasons. They are also useful when the developer does
not have control over the installation location of the HTML files. For
example, if you tried these examples yourself, you should notice that the
“relative.html” file does not contain a working link (unless you painstakingly
recreated the “xmlstuff” directory and the “xmlnotes.html” file or
downloaded this directory to your local hard disk drive) while the
“absolute.html” file does work (assuming our Web server is online and
functioning properly). This is because your relative link was searching for
the files on your local computer while the absolute link was searching
for the files on our website’s server.

Linking Images and Multimedia

Another type of link used in HTML is found when resources are loaded
into the document from outside files such as JPEG, GIF, PNG, WAV, MIDI,
SWF, or MP3 files. These types of links are usually loaded automatically
and do not require the reader to click on anything in order to connect to

Advanced Concepts in XML 193

the new resource. The exception to this is found when a browser plugin is
missing or outdated; when this happens, the reader may need to explicitly
click a link to download the updated software.

Here is an example of this second type of link:

If you would like to test this second example, create a new file named
“links2.html” and type in the line of code above into that file. Save it on
your computer along with the image file (or change the image name to reflect
an image already on your local computer). You can download the test image
named “achre_seal.gif” from our website (the file is listed with the Chapter
5 content). Save this image file in the same directory and see what happens
when you load the file into your browser. You should see the official seal
for the ACHRE. If you see a broken image icon, you may not have the
image file stored in the same directory as your HTML file. In this case, you
should include the path name in your filename or copy the image into the
same directory as your HTML file.

XLink

XLink, the XML Linking Language, provides additional options for working
with hyperlinks in XML documents. In addition to the simple links
supported by HTML, XLink supports extended links for tying multiple
resources together. XLink became a W3C Recommendation in June of
2001.

A basic XML file containing a set of XLinks is shown below. Note the
use of the “xmlns” directive to link the “xlink” prefix to the W3C’s official
XLink website.

<?xml version=”1.0” encoding=”utf-8”?>
<xml_resources xmlns:xlink=”www.w3.org/1999/xlink”>
<homepage xlink:type=”simple” xlink:href=”http://xml.
silmaril.ie/”>The XML FAQ Page</homepage>
<homepage xlink:type=”simple” xlink:href=”www.rhetoricalxml.
com”>Rhetoricalxml.com</homepage>
<homepage xlink:type=”simple” xlink:href=”http://html-
color-codes.com/”>Hexadecimal Color Chart</homepage>

</xml_resources>

You can see that the “xlink” prefix in this example is specifying two
different attributes: “type” and “href”. The “href” attribute functions
exactly like the “href” attribute in HTML; it contains a normal URL string

194 Advanced Concepts in XML

which is an Internet Web address. The type attribute, though, is something
unique to XLink. Assigning this attribute a value of “simple” means that
the link is a traditional HTML link—clicking the link will lead directly to
the resource specified in the href attribute. We could also add an xlink:
show=“new” attribute that would instruct the parser to open these resources
in a new window, much like the target=“new” attribute of HTML (if you
have not used this particular attribute in HTML before you should try
adding it to your “links1.html” file and observing what happens).

Unfortunately, due to some political problems between XML developers
and XML enthusiasts and problems with backwards compatibility, XLink
has not made as much progress as other associated XML technologies like
XSD and XPath. One of the major problems is that it uses a new syntax
for links, making the traditional HTML linking syntax (e.g.,) mostly incompatible. XLink is, however, implemented
in some widely used electronic communication languages, such as the
eXtensible Business Reporting Language (XBRL) and some versions of the
DocBook schema. For this reason, it is wise to be familiar with the syntax
and to understand this recommendation of the W3C. XPointer, which we
discuss in the next section, is also somewhat unstable in terms of
implementation and adoption, but it is worthwhile to study how it works
as it too has implications for the technical manipulation of combined
documents.

XPointer

The XML Pointer Language, or XPointer, is a notation system for XML
that is even more specific than XLink. It allows one to access nodes that
may be buried deep within XML databases, using an addressing system with
precise syntax. Like HTML links, these addresses can be specified in absolute
or relative terms. In an absolute addressing scheme, the pointer will return
a result independent of the location of other terms (such as the current
location of the pointer in the XML document or DOM). In Learning
XML, Erik T. Ray discusses the four types of absolute location terms used
with XPointer: id(), root(), origin(), and html() (84). Each of these
terms can be used to point to commonly accessed parts of an XML document
(see Table 5.2).

In a relative addressing scheme, the location of a referenced element is
dependent upon the current location within the XML hierarchy. XPointer
contains four different specifications:

1. A framework which specifies the basic functionality of the language.
2. An addressing methodology for positional elements.
3. A scheme for namespaces.
4. A scheme for XPath-based addresses.

Advanced Concepts in XML 195

The framework for XPointer builds upon XPath and enables direct access
to fragments within an XML document. Although it is currently lacking in
mainstream browser support, XPointer has some interesting implications
for document design that bear discussing.

The basic idea behind XPointer is to enable extended URLs in XML links
that allow a parser to directly access information that may be buried deep
within the XML document. The concept here is not new; in HTML, the
same sort of feature can be enabled by using the anchor tag and name
attribute. For example, consider the following simple HTML document:

<html>
<head><title>Anchored Tag Examples</title></head>
<body>

<h1>Anchored Tag Examples</h1>
<p>This is a simple demonstration of using anchored tags
to directly access different portions of an HTML document
in a browser. By default, a link to this page will open
up this document as you might expect, with the heading at
the top of the page and then the paragraph text (the
content you are reading now) following after that. Using
the anchored links shown below, however, will position
the page so that the tagged information using the name
attribute appears at the top of the browser window. Give
it a try!</p>
Content Node 1
<p>If this were a real document, some information about
the content 1 node would be displayed here.</p>
Content Node 2
<p>If this were a real document, some information about
the content 2 node would be displayed here.</p>

Click here to access
the HTML document as usual

196 Advanced Concepts in XML

Table 5.2 Absolute Terms

Absolute Term Description

Id Points to an element within the XML document with a given
id attribute.

Root Points to the root node of the XML document (the top of the
document).

Origin Points to the element from which a pointer is originating.

Html Used with HTML documents to locate named anchor or link
elements.

Click here
to access Content Node 1
Click here
to access Content Node 2

</body>
</html>

Save this file as “anchored_example.html” and open it in your browser.
Click on the various links and you will see how the anchor tag and name
attributes function in normal HTML documents. Since there is not very
much text displayed on this page, you may need to experiment with your
browser window’s size in order to see the true effects. Screenshots taken
after the various links have been clicked are shown in Figures 5.3–5.5. Note
the way in which direct access to the inner portions of the HTML document
is enabled through the use of named anchors within the document.

This simple example showcases the ability of an HTML document to link
to embedded information that is buried within a page’s nest of tags and
attributes. XPointer is the equivalent of a named anchor, but for XML
documents. The basic structure of an XPointer is even the same: a URL,
followed by the hash symbol (#), followed by a named identifier. The
XPointer is actually more powerful, though, in that it can link to any element
within an XML document, rather than just to the <A> element, which is

Advanced Concepts in XML 197

Figure 5.3 Anchored Tags (First Link Clicked)

198 Advanced Concepts in XML

Figure 5.4 Anchored Tags (Second Link Clicked)

Figure 5.5 Anchored Tags (Third Link Clicked)

what HTML is limited to. XPointer can also be used to point to sets of
elements or even to ranges of text between nodes in an XML document.
Several different examples of XPointer in use are shown in Table 5.3. These
XPointers are being used to access portions of the XML document “garden.
xml”, which is slightly revised from Chapter 4 and reprinted here with minor
modifications. Specifically, the name element from the Chapter 4 version
has been turned into an id attribute in this version. The id attribute is then
used as a point of reference for our XPointers.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!— Chapter Five example —>
<garden>

<fruit id=”Vine Ripe Tomatoes”>
<supplier>Henderson Farms</supplier>
<units_available>45</units_available>
<price_unit>Bushel</price_unit>
<price>25.00</price>

</fruit>
<fruit id=”Watermelon”>

<supplier>Rand Melon Supply</supplier>
<units_available>350</units_available>
<price_unit>Individual</price_unit>
<price>1.50</price>

</fruit>
<vegetable id=”Green Leaf Lettuce, Black-seeded Simpson”>

<supplier>A&H Local</supplier>
<units_available>2000</units_available>
<price_unit>Individual</price_unit>
<price>.25</price>

</vegetable>
<vegetable id=”Green Leaf Lettuce, Grand Rapids”>

<supplier>A&H Local</supplier>
<units_available>700</units_available>
<price_unit>Individual</price_unit>
<price>.65</price>

</vegetable>
</garden>

As is evident from Table 5.3, XPointer can use XPath expressions for locat-
ing particular elements within an XML hierarchy. The two languages work
well together and can be used to maximize the efficiency with which
particular data nodes can be extracted from an XML database.

Since browser support for the XML Pointer Language is still shaky, it is
difficult to experiment much with XPointer without using a custom XML
parser or a specialized tool designed for this purpose. XPointer was also

Advanced Concepts in XML 199

briefly hindered in its evolution from a working draft to a W3C Recom-
mendation in 2003. A 2001 article by Leigh Dodds suggests that a Sun
Microsystems patent is partly to blame for the slow implementation of
XPointer (online). This legal issue is an excellent example of the complex
rhetorical space constantly being negotiated between open source Web
technologies and large technical corporations. Though XML thrives on
notions of interoperability and communication between disparate
organizations, the complex legal and political contexts of information can
make these endeavors much more complicated than they originally appear
to be.

In the final section of this chapter we focus on two advanced validation
technologies that are used in structured writing and single sourcing environ-
ments. These two technologies are DocBook and DITA. Both DocBook and
DITA are used in writing environments to help XML authors maintain
consistency, standardization, and interoperability. Each has both DTD and
schema methods of validation.

DocBook and DITA

Overview

There are numerous frameworks, DTDs, schema, and architectures designed
to help with the standardization and distribution of XML-encoded content.
In this section, we briefly discuss two products—DocBook and DITA—that
may be of particular interest to readers working with large technical
documents. It should be noted that these are only two popular products in
this area; there are numerous other software products and technology suites

200 Advanced Concepts in XML

Table 5.3 XPointer Examples

URL Structure Description

garden.xml#xpointer(id(“Watermelon”)) An XPointer that points to the fruit with
an id of “Watermelon” in the XML
document.

garden.xml#xpointer(/garden/1) An XPointer that points to the first fruit
element in the XML document.

garden.xml#xpointer(/1/2/1) An XPointer that points to the supplier
element contained within the second
fruit element.

garden.xml#xpointer(//vegetable) An XPointer that points to all elements
named vegetable in the XML document.

garden.xml#xpointer(id(“Watermelon”). An XPointer that locates the first
descendant(1) descendant element of the element with

an id of “Watermelon.” This would
point to the supplier element in this
example.

that can be used for adding structure, standardization, and portability to
XML documents. We also do not cover these two products in great detail
as there are many technical tutorials on the World Wide Web that do a
great job of explaining their intricate details, inner workings, and syntax
(we provide links to some of these websites at the end of this chapter). We
do, however, want to introduce these two tools as some of the advanced
toolsets available to document authors.

Though their comparison can spur debate among different camps and
groups of XML enthusiasts, DITA and DocBook are in fact very similar.
Both offer sets of standards for dealing with XML documents, both are
used to encode technical information using XML, and both have schemas
and DTDs available to validate documents for properly formed and ordered
content. Both have style sheets enabling DocBook or DITA-compliant XML
files to be transformed into human readable file formats such as XHTML
or PDF. Perhaps most importantly, both technologies have contributed to
the progress of structured writing as a viable communication strategy in
software documentation and technical writing.

DocBook and DITA are especially useful as tools for using in single-
sourcing applications, which we learned about in Chapter 3. Recall the motto
for single sourcing: “write once, publish many times.” In order to enable
this type of single sourcing system, one needs to plan for a specific type of
authoring that includes a focus on chunking, modularity, and structured
writing. Unfortunately, this shift from a traditional “craftsman model” of
writing to a modular type of writing introduces some significant challenges.
For example, as Norman Walsh and Leonard Muellner note, structural
authoring introduces an entirely new process for authoring information, a
process very different from the traditional approach of using a word
processor to create a single, linear document (8). They also discuss the added
expense of authoring tools and, since structured writing separates semantics
from appearance, the additional work and expertise required to create
effective style sheets (8). Traditional roles and professional contexts are also
influenced by single sourcing writing procedures (see Michael Albers’ Single
Sourcing and the Technical Communication Career Path for a detailed
discussion of the professional implications of this shift for technical
communicators).

Both DITA and DocBook are quite popular and do a fine job of addressing
some of the rhetorical problems that are introduced when any document
author is free to create his or her own set of tags. One such problem is the
creation of multiple tags that refer to the same concept or unit of informa-
tion as referenced in different documents—we discussed these types of issues
at length in Chapter 3. We can think of this issue as a tradeoff between
rhetorical power and interoperability between systems. While XML is a stand-
ardized language, the languages generated by XML are not. As Priestley,
Hargis, and Carpenter note, “when you create a new markup language (using
XML to define its markup and rules), you shut yourself off from interchange
with the rest of the world; when you adopt a standard markup language,

Advanced Concepts in XML 201

you lose the benefits promised by content-specific markup” (354). In this
sense, you are both empowered (in terms of your ability to choose any
semantic identifiers you feel are appropriate for your data) and limited (in
terms of a loss of ability for wider outside recognition) by the extensible nature
of XML.

One of the primary benefits of using DocBook or DITA is that you can
take advantage of standardized tags at a more general level while still
having some amount of flexibility and customization available at a more
specific level. Often this is accomplished through inheritance relationships.
An inheritance relationship is when a basic information type (such as a node
designed to store general definitions for a technical vocabulary) is specialized
to take on a particular informational need. Using this strategy, general
descriptors that are commonly used by document creators (such as author
name, title, subtitle, and so on) can be standardized, while these specialized
nodes can be invoked to handle custom needs.

For example, a general definition node defined using a schema or DTD
could be designed to hold elements such as an identifier (the name of the
term being defined), a list of keywords (a list of descriptive terms used as
additional metadata), and a definition (the extended definition in paragraph
format). For the sake of this example, let us call this module “vocab_term”.
This structure might work well for eighty percent of all cases in a technical
document. For the other twenty percent, however, there might need to be
an additional element to hold cross referencing information and a place-
holder for an image link. These definitions would need to include additional
text describing where similar concepts were discussed in a document as well
as a visual representation of the concept being described. Rather than
creating an entirely new structure for these cases, the new module, which
we will call “vocab_term_crossref_image”, can inherit the base features of
the more general “vocab_term” module and then specialize or customize
this base module with different features. The “vocab_term” module is
therefore fairly interchangeable, while the “vocab_term_crossref_image”
module is less interchangeable, but quite specialized.

Like namespaces, inheritance is a feature that has a long history with
advanced programming languages and it is a key characteristic of modular
document design (sometimes called object-oriented document design).
Features such as inheritance allow a document designer to still create exten-
sible documents, but also to use standards for those document components.
This helps when these deliverables need to be recognized and interpreted
by other parsers outside the namespace of one’s immediate project.

An in-depth analysis of DITA and DocBook is beyond the scope of this
book (though we do suggest several useful online resources for any inter-
ested readers at the end of this chapter). Since these tools are often used
by technical communicators and information architects working with
XML, however, it is useful to understand at least some of the basic concepts
behind them. We will first consider the central strategies behind the DITA
architecture.

202 Advanced Concepts in XML

DITA

The DITA is an XML-based architecture named in part after the famous
natural scientist Charles Darwin. Darwin used many classification techniques
over his long career as a scientist and author of biological and geological texts.
DITA, developed by IBM in early 2001 and originally introduced as a series
of technical articles, is used for writing and managing information using a
predefined set of information structures that are broken down into topic types
named tasks, concepts, and references. Each of these topic types is derived
from a more general module, named “topic.” Document authors create new
types in DITA through a process called specialization (Priestley, Hargis, and
Carpenter 358). Specialization is DITA’s answer to the process of inheritance
as it allows one to inherit base elements and then specify new elements
according to particular informational needs. This also helps to explain the
name for this technology since inheritance and specialization were key ideas
guiding the research of Charles Darwin. DITA 1.0 was formally approved
as an OASIS standard in 2005 and DITA 1.1 followed in 2007.

DITA DTDs and schemas carefully enforce the organization of topics.
The DITA topic type uses only three required elements: an id attribute, a
title, and a body. The id element contains an identifier for the topic module
and the title contains a title for the module. The body tag contains any
number of elements and will likely contain many HTML elements that are
used for formatting and displaying text. For example, the body element
might contain numerous HTML tags such as (to bold text), <p> (to
create a new paragraph), <table> (to begin a table), and (to begin an
unordered list).

An important feature of DITA is the standardization of XML element
names. Although DITA uses a specific vocabulary for the authoring process,
the topic modules (as well as elements derived from the topic modules) are
all represented using standard XML. So, a general topic module using the
required elements will always look something like this:

<?xml version=”1.0” encoding=”utf-8”?>
<topic id=”1”>

<title>A Compelling Title</title>
<body>A <i>body</i> element with some tags and
HTML markup code.</body>

</topic>

In addition to the three required elements of id, title, and body, the topic
can also optionally contain additional elements such as shortdesc (which can
be used to provide a short description), prolog (which can hold additional
metadata), and related-links (which can hold a collection of links that are
similar in nature to a particular module). Elements within DITA topics are
further specialized into three different types: concepts, tasks, and references.
In each of these data structures, the root element (formerly named topic) is
renamed to concept, task, or reference (see Figures 5.6–5.8).

Advanced Concepts in XML 203

In Figure 5.6, we see that the concept type is very similar to the topic
type. The primary difference is that the body element in topic is renamed
to conbody in the concept type. Concept elements answer “what is this?”
types of questions. These element types are used for introducing background
information about a subject. A concept module looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE concept SYSTEM ”concept.dtd”>
<concept id=”toaster_overview”>
<title>Introduction to the SuperChar 3000</title>
<shortdesc>The SuperChar 3000 is a deluxe toaster manufactured
to the highest quality standards. It is capable of
simultaneously toasting 32 slices of bread using four heat
settings.</shortdesc>
<conbody>

<p>SuperChar 3000 Models:</p>

SuperChar 3000a (Base Model)
SuperChar 3000b (High-Speed Model)
SuperChar 3000c (Collector’s Edition)

</conbody>
</concept>

204 Advanced Concepts in XML

topic

related-links

title

shortdesc

prolog

metadata

body

p

section

example

concept

related-links

title

shortdesc

prolog

metadata

conbody

p

section

example

Figure 5.6 Concept (Specialized from Topic)

In this example, we are linking the “concept.dtd” file (DITA’s concept
DTD) in the second line of code. We use this DTD to validate our document
and make sure it is acceptable using DITA’s list of rules and allowable
element names. DITA also includes XSD schema files, so we could also
choose to validate our XML file using a schema by linking the schema file
using the techniques described earlier in this chapter. As we covered schema
in detail here in Chapter 5, we use DTDs with these XML examples as a
review in linking DTD to XML files.

Figure 5.7 shows how the task type is specialized from the topic type.
The task type is more specialized than the concept type because its purpose
is more action-oriented than descriptive. Task types are used to store

Advanced Concepts in XML 205

topic

section

example

related-links

title

shortdesc

prolog

metadata

body

p

ol, ul, di

table

task

step

cmd

title

shortdesc

prolog

metadata

taskbody

prereq

context

steps

result

example

postreq

related-links

Figure 5.7 Task (Specialized from Topic)

information related to procedures and contain entities useful for performing
actions related to a specific action. They answer “how do I do this?” types
of questions. For example, Figure 5.7 shows that the taskbody entity contains
a subentity named steps; each steps entity then holds information related
to substeps and commands. A context element is used to provide background
information about the task. A sample task module looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE task SYSTEM ”task.dtd”>
<task id=”toast_test”>
<title>Making Toast with the SuperChar 3000: Testing Your
Toaster</title>
<taskbody>

<context>After the toaster has been installed, you need
to add some bread and run a test toast cycle to make sure
the heating settings are acceptable.</context>
<steps>
<step><cmd>Add up to 16 slices of bread to the
toaster.</cmd></step>
<step><cmd>Adjust heat settings using the red rotary
knob. Turn the knob clockwise to increase heat
intensity.</cmd></step>
<step><cmd>Press the black lever on the right hand side
of the SuperChar 3000 down firmly. This will engage the
toasting mechanism.</cmd></step>
<step><cmd>Wait patiently until your toast is done.
Repeat the heat adjustment cycle as necessary until your
bread is toasted to your satisfaction.</cmd></step>
</steps>

</taskbody>
</task>

The specialization of a reference module from the topic type is revealed
in Figure 5.8. References are useful for describing the properties and features
of a system, device, or program. They are also useful for representing other
types of structured collections, such as recipe databases or bibliographies.
A reference module looks like this:

206 Advanced Concepts in XML

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE reference SYSTEM ”reference.dtd”>
<reference id=”toaster_features”>
<title>SuperChar 3000 Specifications</title>
<refbody>
<refsyn>Italicized features are only available in the deluxe
models (versions b and c).</refsyn>
<properties>

<property>
<proptype>Slice Capacity</proptype>
<propvalue>16</propvalue>
<propdesc>Number of bread slices that can be
toasted at once.</propdesc>

</property>
<property>

<proptype>Special Features</proptype>
<propvalue>High-capacity bread load, precision
engineered parts, three year warranty, <i>super-
fast toasting cycle</i></propvalue>
<propdesc>Special features used in this product
line.</propdesc>

</property>
</properties>
</refbody>
</reference>

Advanced Concepts in XML 207

topic

related-links

title

shortdesc

prolog

metadata

body

simpletable

section

example

reference

related-links

title

shortdesc

prolog

metadata

refbody

properties

refsyn

example

Figure 5.8 Reference (Specialized from Topic)

The reference type is similar to the concept type in its renaming of the
body element to a more precise variant (in this case, refbody). It extends
the topic by adding in new elements to handle properties, property values,
and descriptions. It also includes a special element, named “refsyn,” that
enables a document author to include special notes regarding syntax that
pertain to the information contained within the reference element.

DITA Maps

Once a collection of DITA topics has been authored, it is arranged using a
DITA map. DITA maps contain nested lists of topicrefs, which are links to
DITA topics. A sample DITA map looks something like this:

<map id=”toaster” title=”toaster instructions”>
<topicref href=” toaster_overview.xml” type=”concept” />
<topicref href=”toaster_features.xml type=”reference” />
<topicref href=”toast_test.xml” type=”task” />

</map>

DITA maps can then be used to select different modules for different
informational needs. Unique DITA maps can also be created to group
together different topics for specific types of formatted output. The full
process of compiling and linking a DITA project is somewhat complicated
(it involves, among other things, installing the Java Development Kit). You
can, however, download the test files from our website along with the
individual DTDs for concept, task, and reference types. These can be used
to validate the individual files for adherence to the DITA specification for
each type.

Since DITA uses standard XML syntax for its encoding, it can be translated
to numerous file formats, which makes it especially useful for documentation
tasks. Custom software is available for this purpose. For example, the DITA
Open Toolkit, an open source program, is able to generate formatted output
types such as PDF, DocBook, and Rich Text Format (RTF). See the
“Additional Online Resources” section of this chapter for a link to the full
listing of output formats supported by DITA.

DocBook

DocBook is a validation tool (available in both DTD and schema format)
maintained by the Organization for the Advancement of Structured
Information Standards (OASIS), a not for profit consortium that is involved
with advancing several sets of standards related to XML and XML languages.
The very first versions of DocBook were designed as DTDs for the more
general Standard Generalized Markup Language (SGML), though XML
versions soon followed. Both XML and its cousin HTML were designed using
the SGML specification. SGML is an international standard that specifies how
markup languages should be defined (Walsh and Muellner 3).

208 Advanced Concepts in XML

DocBook is used to validate the form and structure of XML content
according to a set of rules defined by the schema’s authors (in this case,
the OASIS DocBook Technical Committee). DocBook uses elements and
organizational strategies derived from printed text, so it is a popular tool
for authoring books or documentation projects with complex content (such
as software language manuals or computer hardware reference books).
Though this book was not written using the DocBook standard, it certainly
could have been. The claim has been made that DocBook is probably the
most widely used XML documentation format in use today (Miller and
Clarke 179).

The full specification of DocBook can be overwhelming for beginners. It
contains hundreds of elements and specific rules about how these elements
should be combined and ordered within documents. There is, however, a
simplified version of DocBook that is more accessible to novice users. This
version, known as the Simplified DocBook Document Type, contains a
smaller number of elements and was originally designed to have the same
number of tags and the same expressive power as HTML (OASIS online).
At the time of this writing, though, the Simplified DocBook Document Type
was available only in DTD format.

While it is certainly possible to learn about DocBook by accessing the
current DTD or schema directly and reading through the elements, attributes,
entities, and rules (and we encourage you to do so), it can still be confusing
for beginners, even in the simplified version. It is much easier to follow a
brief example that uses only a few of the available elements in the DocBook
specification. Here is a very simple example of some content marked up
using valid Simplified DocBook XML code:

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE article PUBLIC ”-//OASIS//DTD Simplified DocBook
XML V1.1//EN” ”www.oasis-open.org/docbook/xml/simple/1.1/
sdocbook.dtd”>
<article>

<title>SuperChar 3000 User Guide</title>
<subtitle>A Toaster for the New Millennium</subtitle>
<articleinfo>

<author>
<firstname>John</firstname>
<surname>Doe</surname>

</author>
<authorblurb>

<para>
John Doe is a toast lover and technical
communicator from Orlando, Florida.

</para>
</authorblurb>

</articleinfo>

Advanced Concepts in XML 209

<section>
<title>Introduction</title>
<para>The SuperChar 3000 is a deluxe toaster
manufactured to the highest quality standards.
It is capable of simultaneously toasting 32 slices
of bread using four heat settings.</para>

</section>
</article>

If you would like to try editing the file and adding additional tags, you
can download this file (“ch5_docbook.xml”) from our website. While this
is admittedly a very primitive application of DocBook, it does allow us to
see why the DocBook DTD is so useful. First, note that all of our information
is contained within an element named article. Within this element, we can
create a structured article using the types of information normally associated
with smaller documents (author name, blurb, sections, section headings,
paragraphs, and so forth). Although we can provide a sense of order to our
document by manually placing sections after one another in the XML file,
we are also creating modular containers for certain sections that can be
reused as parts of other documents. For example, the introductory paragraph
describing the toaster’s features in the user manual might be repurposed as
an advertisement for the user manual of another home appliance from the
SuperChar product line.

We now also have a means for ensuring consistency and dealing with
potential ontological collisions with our element names. For instance, note
that the XML tag used to hold the authors last name is typed in as
<surname>. If we were to try using a <lastname> tag for this element, our
XML file would be marked as invalid, since the DocBook DTD is expecting
to see that information encapsulated using the <surname> tag. This
consistency is especially important in collaborative structured writing
environments where multiple authors may be contributing to different
sections of our document.

Like DITA, DocBook has numerous XSLT style sheets already created
for it, so translating DocBook documents into other formats such as
XHTML or PDF is common practice. More information about DocBook
and its uses can be found in Norman Walsh and Leonard Muellner’s
DocBook: The Definitive Guide. There is much more to be learned about
this robust validation toolset and we have only scratched the surface in this
overview.

Chapter Summary

In this chapter, we considered some of the more advanced topics and
technologies associated with XML. Although the syntactical requirements
of these technologies are often challenging, there are real world equivalents
to these procedures that we all use on a daily basis, and that enable us to

210 Advanced Concepts in XML

interact with one another more efficiently and collegially. For example, we
all communicate with one another using common vocabularies, social
behaviors, and protocols, and these protocols may change from one
discourse community to another. By using such tools as namespaces, schema,
XLink, XPath, and XPointer, we are giving computers the same tools for
recognition, seeking, searching, and verification that we ourselves use to
evaluate the credibility and accessibility of our information sources. By being
aware of existing and robust schema and DTD architectures, such as
DocBook and DITA, we learn to use interchangeable tags and coding
strategies that will allow multiple, different databases to be recognized and
used for structured writing tasks. These predesigned DTDs and schemas are
valuable for authors working with large combined documents that frequently
undergo revision. They are also useful in single sourcing applications.

As we began to see in this chapter, there are new issues introduced when
we combine, share, and repurpose XML documents for the sake of
information sharing and knowledge dissemination. Fortunately, the World
Wide Web has given us an efficient and stable mechanism for exchanging
our XML documents with one another. Unfortunately, since our computers
do not yet understand human language, we must describe our online
information with semantic language that is meaningful for computer
programs. This is the idea behind the Semantic Web as expressed by Tim
Berners-Lee that we discussed earlier in Chapter 3. However, human agency
is still very much involved in this process—the act of selecting, grouping,
and managing XML tags during information authoring is still fundamentally
a rhetorical act, even if the final product will be processed mostly by
computer software programs.

It is this processing stage that we will focus on in Chapter 6. To explore
the concepts behind XML processing, we will build some basic XML
applications using a custom parser written in an open source Internet
scripting language. Though this process is more cumbersome than using a
prepackaged XML parser, a standard Web browser, or existing validating
architectures, such as DocBook or DITA, it ultimately gives the designer
even more control and flexibility when using XML for a specific purpose.
Mastering advanced technologies associated with XML, such as the topics
presented in this chapter, is an important first step for forward-thinking
technical communicators and information architects looking to design
websites or technical documents for Web 2.0 and the Semantic Web.

Discussion Questions

1. Identify several terms that have different meanings in different discourse
communities. In what ways are problems of recognition and collision
handled? What mechanisms exist in the real world for dealing with these
inconsistencies? Are these mechanisms at all similar to the way that
namespaces function in XML?

Advanced Concepts in XML 211

2. Jay David Bolter suggests that links contribute largely to the rhetoric
of hypertext. What other types of hypertext elements influence the
rhetorical context of information, and in what ways? For example,
how do bulleted lists force a designer to begin thinking about com-
partmentalization and modularization of content? How do the bold
and italics tags influence the rhetorical style of one’s message? Refer to
Chapter 4 if necessary and consider the rhetorical implications of
separating form from descriptive content.

3. In our discussion of XPointer, we explained that a legal patent from
Sun Microsystems held up the formal W3C Recommendation for
XPointer. What other types of legal issues have hindered developments
on the World Wide Web, and how have these issues influenced the
credibility (ethos) of the involved stakeholders? How have these issues
been resolved? If necessary, do some research on your own and take
some notes to be used for discussion.

Activities

1. Revisit your university student and personnel database from Chapter 2.
Replace the DTD you designed in that example with an XSD (schema).
Prepare a short document discussing the advantages and disadvantages
of each method (a simple bulleted list for each category would be a good
start).

2. Create your own version of the “anchored_example.html” file from this
chapter and create several types of links (internal and external links as
well as absolute and relative links). Now, consider the limitations of
traditional HTML links in relation to the level of control in an XML
document. How would a working XLink implementation help to solve
these problems?

3. Using the same student and personnel database mentioned in Activity
One, write XPath expressions to select the following nodes:
a. All students referenced in the XML file
b. All faculty members referenced in the XML file
c. The e-mail addresses of all students
d. The e-mail addresses of all faculty members
e. The name of the last student listed in the XML file
f. The name of the last faculty member listed in the XML file

4. Find some real world examples of DITA or DocBook being used in
technical documentation by performing a keyword search with your
favorite search engine. After finding some information on these products,
answer the following questions:
a. What challenges do these architectures pose to the creation and

distribution of technical content?
b. How would using one of these tools differ from using one’s own

custom library of XML elements and attributes?

212 Advanced Concepts in XML

c. What are the advantages and disadvantages of DITA as compared
to DocBook? Are the products competitors? Is one better suited
than the other for addressing particular types of rhetorical situations
or serving particular types of audiences?

5. In this chapter we discussed DITA and DocBook, two sources of
standards for XML documents. Research some additional sources of
XML-based standards, such as TEI (Text Encoding Initiative), OeB (Open
eBook), and EAD (Encoded Archival Description). Make note of the
major features of these standards and list some of the applications of these
standards for specific purposes. Write a short essay that:
a. explores the intersections and relationships between rhetoric,

specific discourse communities (librarians, archivists, scientists, etc.),
and the standardization of XML content, or,

b. provides an overview of one of these technologies and discusses its
use for a particular type of project. Why are standards necessary
for this type of project?

References

Albers, Michael J. “Single Sourcing and the Technical Communication Career Path.”
Technical Communication 50.3 (2003): 335–43.

Bolter, Jay David. Writing Space: Computers, Hypertext, and the Remediation of
Print. 2nd ed. Mahway, New Jersey: Lawrence Erlbaum Associates, 2001.

Del.icio.us. July 23, 2008. <http://del.icio.us/>.
Dodds, Leigh. “XPointer and the Patent.” 2001. O’Reilly XML.com. November 6,

2007. <www.xml.com/pub/a/2001/01/17/xpointer.html>.
Linden Research, Inc. “Second Life: Official Site of the Free 3D Online Virtual

World.” July 23, 2008. <http://secondlife.com/>.
Makena Technologies, Inc. “There: The Online Virtual World that is Your Everyday

Hangout.” July 23, 2008. <www.there.com/>.
Miller, Dick R., and Kevin S. Clarke. Putting XML to Work in the Library: Tools for

Improving Access and Management. Chicago: American Library Association, 2004.
OASIS. “The Simplified DocBook Document Type.” 2004. The OASIS Technical

Committee. July 22, 2008. <www.oasis-open.org/docbook/specs/cs-docbook-
simple-1.1.html>.

Priestly, Michael, Gretchen Hargis, and Susan Carpenter. “DITA: An XML-Based
Technical Documentation Authoring and Publishing Architecture.” Technical
Communication 48.3 (2001): 352–67.

Ray, Erik T. Learning Xml. Sebastopol, CA: O’Reilly, 2001.
The Internet Society. “Uniform Resource Identifier (Uri): Generic Syntax.” 2005.

The Internet Society Network Working Group. October 28, 2007. <http://
tools.ietf.org/html/rfc3986>.

van der Vlist, Eric. Xml Schema. Sebastopol, CA: O’Reilly, 2002.
W3.org. “Namespaces in Xml 1.0 (Second Edition).” 2006. W3C. October 31, 2007.

<www.w3.org/TR/REC-xml-names/>.
W3Schools.com. “Introduction to XML Schemas.” November 4, 2007. <www.

w3schools.com/schema/schema_intro.asp>.
Walsh, Norman, and Leonard Muellner. Docbook: The Definitive Guide. Sebastopol,

CA: O’Reilly & Associates, 1999.

Advanced Concepts in XML 213

Additional Online Resources

1. DITA Downloads: www.ibm.com/developerworks/web/library/x-dita6/x-dita_
downloads.html

2. DITA Online Community: http://dita.xml.org
3. DITA Open Toolkit: http://dita-ot.sourceforge.net
4. DITA Output Formats: http://dita.xml.org/output-formats
5. DITA Resources for Beginners: http://dita.xml.org/wiki/resources-for-beginners
6. DITA Users Group: www.ditausers.org
7. DocBook: The Definitive Guide: www.docbook.org
8. OASIS: www.oasis-open.org
9. Simplified DocBook DTD: www.docbook.org/xml/simple/1.1

10. The DocBook Project: http://docbook.sourceforge.net
11. Validator for XML Schema: www.w3.org/2001/03/webdata/xsv
12 W3C XML Path Language (XPath) 2.0: www.w3.org/TR/xpath20
13. W3C XML Schema Primer: www.w3.org/TR/xmlschema-0
14. W3C XML Schema: www.w3.org/XML/Schema.html
15. W3C XPath Data Model (XDM): www.w3.org/TR/xpath-datamodel/#dt-node
16. W3C XPointer Framework: www.w3.org/TR/2002/PR-xptr-framework-

20021113
17. W3C XPointer Working Draft: www.w3.org/TR/xptr
18. XML schema tutorial: www.w3schools.com/schema/default.asp

214 Advanced Concepts in XML

6 Focused Implementations
Using PHP to Design Custom
Parsers for XML Projects

Chapter Overview

At this point in the book, we have learned about theoretical models for
thinking about data representation and information exchange as well as about
applied technologies for encoding and representing modular units of data.
We will now learn to synthesize these ideas in order to solve problems in an
applied environment. This chapter discusses XML parsers and then
introduces three examples of XML parsers that can be used to process and
act upon particular XML elements and attributes as they are scanned from
a file. The first and simplest example uses existing XML files—structured as
Really Simple Syndication (RSS) newsfeeds—as source content for a basic
news display page that is used to update website visitors about news or events
in a streaming fashion. This means that the content is pushed out to the users
automatically—they can then choose whether or not to activate the link and
receive more detailed content.

When we discuss our second parser example, we outline a process for
creating a CMS for keeping track of digital assets. Here we outline a process
for building such a system using only XML and plain text files as our data
sources. One of the benefits of such a system is that its data store is portable
and does not require any special software in order to be accessible.

The final parser example involves building a single sourcing system for a
software documentation project. As we construct this parser, we revisit the
ideas discussed in Chapter 3 to observe specific ways in which XML can
be used as a supporting technology for single sourcing systems. This shows
how content can be repackaged and repurposed to serve different rhetorical
and informational needs for end users of varying skill levels. As we discussed
in more detail in Chapter 3, this is an example of what Ann Rockley calls
a level three, or “Dynamic Customized Content” single sourcing system.

This chapter is the lengthiest in the book because it involves applying
many of the topics we have discussed to specific, real world types of
problems. In order to create a useful XML parser, we must understand the
general problem space as well as the rhetorical implications of our
informational decisions. In addition, to truly understand the informational
context of a metadata system, we must work on both sides of the equation:

as information designers, producers, or information architects; and as
hypothetical consumers or end users of the system. In these roles we must
rely upon our technical acumen, our usability knowledge, and our under-
standing of rhetoric.

The technical challenges of working with custom-designed parsers can be
considerable. Like the aesthetic dimension we discussed in Chapter 4, the
programmatic demands of building custom parsers often require a different
type of thinking than we are used to. For instance, since machines are now
an audience we must serve, we need to figure out how to write the XML
data rather than just how to read it. We cannot assume a human will be
writing all of the XML code for the parsers we design. In addition to building
software that is able to read and act upon metadata, we generally must also
include capabilities for writing metadata and for translating user-generated
content into XML elements and attributes that our parser can understand.

Many organizations and authors are resistant to editing raw XML files
directly using a text editor. For one thing, it is reassuring for an author to
have a graphical user interface between herself and the XML document when
she is adding content or metadata. Familiar graphical interfaces are always
less intimidating than raw XML files for non-expert users. For another,
computers do not make mistakes, as long as they are programmed correctly.
So, it is much less likely that a computer would incorrectly code an XML
file than a human user who has to deal with phone calls, unexpected office
visits, multitasking, other projects, and any number of other unforeseen
distractions. While there still may be an opportunity to introduce error
during content addition, at least syntactical errors related to the correct
structuring of XML tags can be minimized.

In each of the three projects we discuss in this chapter, we include both
an XML writer and an XML reader, or parser. Due to the length of the
code samples for the latter two projects, we discuss only portions of the
code within this chapter and include the unabridged code listings in
Appendices C and D. The full code for our first example, though, is shorter
and somewhat less complicated. It is therefore included within this chapter
in its entirety.

While we believe that studying these coded examples will provide much
insight into the computational side of the interactive cycle between human
users and XML databases, we also want to point out that the coded examples
in this chapter will be challenging for readers without a background in
computer programming. In particular, the examples we provide for the
CMS (Project 2) and the single sourcing demonstration (Project 3) are
admittedly more complicated than the shorter XML examples we discussed
in previous chapters—even those advanced topics in Chapter 5. Rather
than reducing the complexity of these examples, we chose to include them,
and also to provide significant commentary in areas which might be
difficult for some readers to understand. The unabridged code listings in
Appendices C and D are also heavily commented (marked up with additional
explanatory text) throughout. We hope that these projects will serve as rough

216 Focused Implementations

prototypes or starting points for individuals hoping to complete applied
projects, but without a good idea of how to get started with using XML
content for solving real world types of problems. Our intent is for this chapter
to serve as a cookbook of sorts for the theorist–practitioner or symbolic-
analyst who wishes to take advantage of XML techniques in order to
advance and improve knowledge management techniques in his or her own
organization.

XML Parsers

An XML parser is a software program or a component of a software
program that processes and acts upon one or more XML documents. It
specifies precise procedures to be followed when particular XML elements
or attributes are encountered. For example, in a grocer’s database, a parser
might be designed that would iterate, or make continued cycles through,
the XML document’s hierarchy of inventory elements. The parser could be
programmed to print out the data content of every element with an
onsale=“true” attribute value and an instock=“true” attribute value to a
special Web page listing the daily specials. This software program acts as
the critical link between an XML repository and any users who are looking
to extract information from that collection of metadata. For customers
looking for grocery items on sale, the XML document itself would not
provide that information in an accessible and meaningful way. Instead, a
document designer would rely upon a rule-based software program to
iteratively pass through the XML content and extract any items that were
coded as being both on sale and in stock. This is what the parser does. The
parser can then apply CSS formatting or XSL transformations in order to
tailor that information for particular audiences.

Minimal XML parsers are built into Internet browsers, like Microsoft
Internet Explorer®, but more comprehensive browsers are also available. A
parser may be commercially distributed, such as the parsers designed by
IBM or Oracle for the Java programming language, or it can be open source
and freely available, such as the popular Expat XML parser for the C
programming language. It can also be validating, with support to check
XML data against a defined DTD or schema, or non-validating, without
this support. It is possible to develop customized parsers based on the needs
of one’s own projects or informational needs; in this chapter, this is the
approach we take. We choose to discuss examples of custom-defined parsers
in order to demonstrate the flexibility and customization possible when one
builds their own non-validating or validating XML parser.

The parser is vitally important for an information designer to understand
because this alone determines what the end users, readers, or audiences
actually see based on their interface decisions. Details like element names
and schema validation are largely irrelevant to most information seekers.
What they are looking for is a clear and direct path to the information they
need. They would like the information revealed in the interface they are

Focused Implementations 217

using at the time, not hidden in an unfamiliar file format with (seemingly)
complicated XML notation. As Michael Albers notes in his introduction to
the edited collection Content and Complexity, the best interface is the one
that disappears, leaving the information clearly defined without distractions
from the interface (6). Thus, a parser has a vital, but difficult, duty: to make
the structure and syntax of the XML document disappear by interpreting
this content and structuring it in a visually and rhetorically appealing
fashion for the audience that hopes to extract information from it.

Recall from Chapter 4 that XML has evolved as a syntactically standard-
ized language for computers to exchange as a means of internetwork
communication. When a human tries to interpret this data, she may easily
become lost in the clusters of code from DTDs, schemas, elements, attributes,
and style sheet instructions that reside in a typical XML file. It is the parser’s
job to translate this complex language into something a human being can
more readily interpret and understand. This may involve transforming the
XML file into an HTML file using XSLT, moving XML content from its
hierarchical form into a more digestible tabular representation, or even using
sophisticated visual display techniques to graphically represent the data
stored within a document.

The role of the XML parser is often downplayed or even overlooked
entirely in XML literature. This is true for a variety of reasons. For one
thing, as noted previously, XML parsers can come in a variety of flavors
and packages. In addition to being validating or non-validating; custom-
designed, open source, or commercial; parsers can range from complex
generalized graphical user interface applications for Windows, Macintosh,
or Linux to more application-specific and portable implementations that
run entirely on the World Wide Web in a language such as Perl, Java, or
Hypertext Preprocessor (PHP). For another, designing and building a usable
parser is more complex than writing an XML file. This is because parsers
are implemented using programming or scripting languages that contain
entirely new sets of syntactic rules that one must learn how to use. A third
reason is that parsers are sometimes considered to be rather dull and boring.
Since XML is all about data, the parser may be viewed as a mere tool or
vessel to hold or transport this data and it can be difficult to understand
why the parser is so rhetorically significant.

Some of these things are true. Standard parsers are rather boring, and
there does not seem to be much rhetorical substance to a standard software
utility that simply reprints XML content from a file to a user’s browser
window. With a customized parser, however, software is used to extend
and shape the messages embedded in XML files in new and exciting
directions. By specifying how, when, and under what circumstances data
can be extracted from elements and attributes, the parser is analogous to
the ancient Greek rhetor. The classical rhetorician could deliver a speech
that was either stunningly powerful or woefully ineffective. Only with
appropriate decisions in regard to arrangement, style, and delivery would
the audience be receptive to the speech. The parser similarly adds an element

218 Focused Implementations

of agency to XML. It must also follow the rules of arrangement, style, and
delivery to effectively present information to an audience. In this sense, it
can be seen as something more than a mere vessel, since it has this ability
to transform and manipulate data on the fly. Parsers specify the expressive
and rhetorical potential of XML documents. More robust and flexible
parsers have more rhetorical potential.

Because of the importance parsers play in the discursive flow of
information between machines and humans, we believe it is important to
understand both the technical underpinnings of XML parsers and the
rhetorical ideas that can be used to build customized parsers for one’s own
research or professional projects. With this importance in mind, we spend
a good deal of time in this chapter discussing both theoretical preproduction
strategies and the applied programmatic skills necessary to build rhetorically
capable XML parsers.

Rhetorical Approach

As this book is fundamentally about the rhetoric of XML, we approach
each of the three parser projects in this chapter using two phases. In the
first phase, we discuss some of the rhetorical considerations that are
important when making decisions about how to best serve our anticipated
audiences using metadata. We employ three different rhetorical heuristics
in these examples, from an ad hoc rhetorical analysis of user needs in the
first example to specific rhetorical strategies taken from information design
research used in the second example. We then use a distillation of our ideas
from Chapter 3 in the third example.

We include these three different strategies in order to demonstrate the
unique pairings that emerge when different applied technologies are paired
with different rhetorical perspectives. These pairings generate distinct
perspectives on the information ecologies and stakeholders that are involved
in a communicative act. The second phase of each project is then concerned
with a detailed technical discussion of how to use available technologies to
design a parser capable of serving these informational needs. This combined
approach embodies the spirit of the theorist–practitioner and symbolic-
analyst that we believe is so important for technical professionals working
with XML tools and technologies.

These rhetorical considerations are especially important when designing
the parsers, even primitive parsers like the ones we discuss in this chapter.
Why is this? As we discussed previously, because XML is often a format
that is communicated from computer to computer rather than from
computer to human, it is the parser that takes on the heavier burden of
presenting meaningful information to a human user. The parser must reshape
the information that has been culled from an XML document or merged
from multiple metadata sources.

Though it is overly reductive and simplifies the complex social nature of
information, the traditional communicative paradigm is a useful construct

Focused Implementations 219

for understanding the role of the parser in a rhetorical act. The model
described here uses a “contractive” view of technology wherein an informa-
tion “receiver” is seen in a relatively passive role and information itself is
chunked into discrete and unambiguous units (see Chapter 1 for a discussion
of contractive versus expansive communication technologies). When com-
municating using XML, an information “sender” is responsible for thinking
carefully and logically about how to structure data in a fashion that facili-
tates the extraction of useful information from a data source. The message
itself then resides as potential within the XML document that this sender
creates. It is the parser’s responsibility to enable the extraction of information
from the collection of data that exists in the document. This further facilitates
the formulation of new knowledge through the combination process (explicit
to explicit knowledge transfer) as defined by Nonaka and Takeuchi and
discussed previously in Chapter 1.

On the other end of the transaction, a “receiver” will attempt to locate
nodes of data that are contextually relevant and useful for a specific type
of task. The parser is therefore the final instrument that can be used to shape
a message before it is interpreted by a receiving agent. When artifacts from
the XML document are presented to the user along with their selected
information (artifacts such as snippets of code describing elements or their
relationships), this “extra” information serves as communicative “noise”
that reduces the quality or fidelity of the message itself. In other words, the
XML rules and relationships are irrelevant to most information seekers and
only serve to confuse or frustrate them in their quest for information. The
parser must transform raw XML content into a message interpretable by
an individual.

Technological Approach

Because of its affordability, availability, relative ease of use, support for
XML, and popularity, we chose to use the server-side Internet embedded
scripting language known as PHP for the three project exercises in this
chapter. Server-side means that the language requires a special software
program on the server in order to run correctly. The server will “preprocess”
the script files and return normal HTML code to users’ browsers. We will
introduce PHP later in this chapter and explain why it is a good choice
when learning how to construct custom XML parsers for your projects. We
also provide a simple overview of PHP and its associated XML capabilities.
It should be noted, however, that different languages have different strengths
and weaknesses as parsers. For example, the Java programming language
would be a better choice for working with an object-oriented application
that required XML data integration and validation. Similarly, if a Web-
based application was designed that needed to minimize strain on the server
computer, a client-side alternative such as JavaScript might be a better
solution. Client-side means that the code runs directly in the users’ browsers
and that it does not require any special server software. The ability of XML

220 Focused Implementations

to integrate with such a large variety of programming and scripting language
further speaks to its importance as an agent of interoperability and structured
communication.

Although PHP is very forgiving to beginning programmers, we recognize
that not all readers will have a background in programming concepts such
as looping, repetition, and working with complex data structures (although
some of these concepts were discussed in Chapters 4 and 5 with advanced
topics such as XSL transformations). For this reason, we have designed the
examples in this chapter to be as modular as possible. In many cases, you
can copy and paste code from these examples and modify a few variables
(which we will discuss shortly in this very chapter) in order to implement
working, but customized and personalized, versions of these parsers for your
own projects. The parsers can then be reconfigured to work with your own
XML data sources. You can also see a listing of the full source code for
Projects 2 and 3 at the end of this book in Appendices C or D, or you can
download the source code for each project from this text’s accompanying
website.

Getting Started

In earlier chapters, the examples we presented could be typed up in any
editor capable of saving in the plain text format—Notepad, Wordpad,
BBedit, XML Notepad, Dreamweaver, Stylus Studio, XMLBlueprint, or
XMLSpy, to name a few popular editors. In this chapter, however, you will
need to use a specific software suite in order to follow along with the
examples. This is because we are moving from a more abstract domain of
data representation into the application-specific domain of data parsing.

The first specific software we will be using in this chapter is called PHP.
We will discuss PHP in more detail soon, but, for now, just know that PHP
is a software program that runs on a server computer. When the server com-
puter’s Web server (sometimes known as an http daemon) encounters files
of a particular type (generally files that end in the “.php” suffix), it sends
these files to PHP for processing. PHP then filters out the programming
instructions, executes them, and returns normal HTML code to any client
computers that are requesting pages stored on the server. This is a very
important thing to note, because it allows PHP files to be served to any
computer capable of processing HTML code, even older browsers without
the latest plug-ins and security updates. This ability to return standard HTML
files to client computers, as generated from complex programming scripts
on a server computer, is a major benefit of server-side languages like PHP.

The next software program we will be relying upon is Apache. Apache is
the world’s most popular Web server. Apache supports PHP integration, but
PHP will also work with several other configurations of operating systems
and services, including Windows Server distributions running Internet
Information Services. For our purposes, we will use Apache as our Web server
and PHP as our scripting language. Rather than setting up a high-capacity

Focused Implementations 221

rack mounted server and opening it to multiple computers on the Web, we
will in effect be installing a virtual “web server” on a local computer such
as a desktop PC or laptop. This allows us to test and develop the parser
without immediately releasing what may be incomplete or untested parsers
to the entire Web community. The installation program we will be using to
set up our development computer is called XAMPP, which is an integrated
installation package developed by a group of individuals calling themselves
the Apache Friends Network.

XAMPP is an Apache distribution. A distribution is a custom installation
suite that can be installed on one’s computer. XAMPP comes preconfigured
with support for PHP, MySQL, and Perl. At the time of this writing, the
distribution could be downloaded from www.apachefriends.org/en/xampp.
html. We will update the link on our associated website if this should change,
but you should also always be able to find the latest version simply by
searching for the keyword “xampp” using your favorite search engine.

If you would like to follow along and build the examples in this chapter
on your own, you should download and install XAMPP. While we will not
cover the installation in detail here, we do provide a link on our website to
detailed installation instructions for various operating systems. After you
install the software, you should start the XAMPP control panel. Figure 6.1
is a screenshot of the Windows version of the XAMPP control panel. There

222 Focused Implementations

Figure 6.1 XAMPP Control Panel

are versions available for other operating systems, but they will look
somewhat different. Macintosh users may already have Apache and PHP
installed and may need only to activate the Apache service.

If you used the default settings in Windows during installation, the
XAMPP control panel is likely in a program group named “Apache Friends.”
Start the XAMPP control panel and make sure the Apache service is running.
If it is not running, click the “Start” button to initiate the service. If you
are using a firewall, you may need to click “Allow” or “Unblock” in your
firewall software to enable the service when it starts for the first time. You
will not need to use any of the services other than Apache to build the XML
parsers in this chapter.

There are a few important things to note about Apache Web server when
installing it for the first time. First, when you save HTML or XML or PHP
files that you would like to be accessible by the service, you need to save
them in a special directory that Apache has access to. By default, this
directory is “c:\xampp\htdocs” on a PC computer. You can create folders
within this directory and then navigate to files saved within that folder using
your Internet browser. In Figure 6.2, we have created a folder named
“xmlparsers” that will be used to house our three projects for this chapter.

Focused Implementations 223

Figure 6.2 Htdocs Directory

You should create the same folder on your own hard drive (“c:\xampp\
htdocs\xmlparsers”) if you wish to follow along with the three parser design
exercises.

The second important note about Apache concerns the way in which hyper-
text, XML, or PHP files are opened from a browser. To view a saved file,
you will need to open the URL “http://localhost/folderpath/filename”, where
folderpath is the folder structure you have created in the htdocs folder, and
filename is the PHP, HTML, or XML file you have saved within that folder.
Mechanically speaking, the “http://localhost” portion of the URL tells
Apache to look inside the default htdocs folder (in our case, “c:\xampp\
htdocs”) when processing and displaying documents.

Finally, note that the direction of slashes changes when we are talking
about online documents versus documents on our local hard drives. In
general, directory paths on Windows machines are indicated using back-
slashes, while Internet (and Unix/Linux) directories use the forward slash
to show a file’s location within a directory hierarchy. It is certainly confusing
at first, but easy enough to fix through trial and error experimentation.
If you forget the rules and a file does not seem to be loading up in your
browser, try changing the direction of the slashes as a first step in the
troubleshooting process.

If you have been reading the chapters in order, you may be wondering
why all this fuss is necessary. For example, in the sample exercises from
Chapters 2 through 5, it was possible to save the practice files to a folder
anywhere in “My Documents” or on the Desktop and then open them and
view them in your browser. The difference here is that now we need a
preprocessor to perform some server-side manipulation on our documents
before they are sent to a browser. Without a Web server running in the
background and handling these documents from a special directory, this
would not be possible.

If you are fortunate enough to have access to a hosting account with
support for PHP and remote access through FTP or a similar mechanism,
you could use that server to test out these examples as well. In that case,
you would need to save in the default directory for HTML files and be sure
to use the file suffix (generally “.php”) that your hosting company has
associated with PHP. You would also use the normal URLs associated with
your domain rather than “http://localhost”. If you choose to test your files
on a remote host, you do not need to download and install XAMPP.
Everyone else, though, will need XAMPP to build the practice projects.

In addition to XAMPP (or a remote server with Apache and PHP access),
you should also consider downloading a full-featured text editor with
features such as syntax highlighting, line number display, and an HTML
toolbar. Your default XML editor may or may not work for this; if it
supports syntax highlighting for PHP files, you are in good shape. If not,
you should look around for an additional text editor to use when configuring
your parser. You can find a list of text editors for PHP on the rhetoricalxml.com
website. The examples for this chapter were produced using EditPlus for

224 Focused Implementations

Windows, which is a comprehensive text editor with syntax highlighting,
FTP, and S-FTP (secure FTP) support. It also includes a seamless Web
browser that runs from within the text editor and an HTML toolbar.
EditPlus supports syntax highlighting for other file formats, including XML,
which makes it a good choice for editing our source XML files.

In order to verify that your setup is working correctly, perform the
following test. First, open your text editor and type the following text into
a new document:

<html>
<head>

<title>Test PHP Document</title>
</head>
<body>

<?php echo ”My first XML parser is coming soon!”; ?>
</body>
</html>

Be careful with the syntax. Blocks of PHP begin with the <?php sequence
and end with the ?> sequence. Note that we can nest PHP tags within HTML
tags, as we did here within the body tags. We could also add an <h1> tag
before the beginning of the PHP statement and a closing tag </h1> at the
end of the statement in order to display the text in a large heading format.
You need to be sure to include the semicolon after the end of the second
quotation mark. This symbol is used in PHP to indicate the end of certain
types of statements (excluding special types of control structures, like loops).

Save your file with the name “test.php”. Since your file is now using the
.PHP file suffix, your text editor should recognize the file contents and display
color coding for your document, which makes it easier to spot errors and
inconsistencies in your file. In this case, since we already created a subfolder
named “xmlparsers” within our htdocs document root directory, we are
going to save the file in “c:\xampp\htdocs\xmlparsers\test.php”. Next, open
up your preferred Web browser and navigate to “http://localhost” by typing
that URL into the location bar of your browser.

If XAMPP is installed correctly, the URL will redirect to “http://localhost/
xampp” and you should see a screen similar to that shown in Figure 6.3.
This screen provides access to demonstration applications and provides
useful links to additional documentation and security information. This
version of XAMPP also provides information about the current version of
PHP that is running on the server. Here, we are using PHP version 5.2.6
and XAMPP version 1.6.7.

Since the test document is saved within a subdirectory of the “htdocs”
directory, we must provide additional information to the browser in
order to navigate to our test document. The full directory path of our
file is “c:\xampp\htdocs\xmlparsers\test.php” and the full URL is “http://

Focused Implementations 225

localhost/xmlparsers/test.php”. It is important to understand that the
“http://localhost” portion of the URL is equivalent to the “c:\xampp\htdocs”
portion of the local directory. This means that any directory structures you
create within the htdocs directory on your local computer must be mirrored
in the URL when you are testing out your documents.

Loading “http://localhost/xmlparsers/test.php” into your browser should
produce the same output as that shown in Figure 6.4.

If you are not able to produce this screen on your own, these are some
likely problems:

• XAMPP is not installed successfully. Check the XAMPP documentation
for troubleshooting tips and detailed installation instructions.

• The XAMPP service is not started in the XAMPP control panel. Make
sure the service is running by ensuring that the text “running” appears
next to the Apache checkbox in the XAMPP control panel. Refer back
to Figure 6.1 if necessary.

• You are not saving your files in the correct directory or you are not
typing the URL correctly into your browser. Check each of these things
carefully. If you do not remember the document directory you used
during installation, you can try using your computer’s search feature
and searching for a folder named “htdocs”. Then, you can save your
files directly into this directory and they will resolve to “http://local
host/folderpath/filename” as we discussed earlier in this chapter.

226 Focused Implementations

Figure 6.3 Localhost in Browser

If you are able to produce this screen on your own, you have managed to
install XAMPP successfully and you have learned how to save files into the
correct directory and load them into your browser for testing. Congratula-
tions. In the next section, we will briefly introduce PHP and SimpleXML
and then we will design our first XML parser using a combination of these
two resources with the aid of a preliminary rhetorical analysis.

PHP

PHP is an Internet-embedded scripting language. PHP evolved from a
language known as PHP-FI, which was written by Rasmuf Lerdorf in 1995
(Php.net online). PHP-FI originally stood for Personal Home Page Tools /
Forms Interpreter. You can read more about the history of PHP from the
link provided in the Additional Online Resources section of this chapter,
but, for now, just know that PHP has been a popular scripting language
for building dynamic websites on the World Wide Web for many years.

For several reasons, PHP is a good language to use when designing an
XML parser. First, it is extremely popular and widely available in many
different distributions (it will run on many different types of servers).
Second, it is open source and freely available. Third, and most important
for our purposes, PHP has a very intuitive means for working with XML
hierarchies. As of PHP version 5, the SimpleXML application programming
interface (API) was introduced. SimpleXML makes formerly tedious XML

Focused Implementations 227

Figure 6.4 Test PHP Document

tasks much easier to accomplish, and, as a result, we will use this API for
the first XML parser we build.

For our XML parsing purposes in this chapter, it is not necessary to
understand the intricacies of the PHP scripting language. We have designed
the examples to be modular and portable; they should only require the
modification of a few variables and XML data sources in order to be
implemented and extended for additional types of projects. For this reason,
we do not spend a great deal of time discussing the programming syntax
of PHP. There are many good texts on this subject, including the online
documentation available at www.php.net and countless other technical
reference books you can pick up at your local bookstore or online. You can
also download and study the source code for this chapter’s examples from
www.rhetoricalxml.com. We provide numerous comments in order to show
what the code is doing when working with XML documents.

Though we will not spend much time discussing all of the programmatic
peculiarities and intricacies of PHP, we will introduce some basic concepts
that will help you to understand the examples presented in this chapter.
What we present here is an accelerated and abbreviated guide to PHP which
contains only the basic techniques you need to know when building an XML
parser. The first concept we discuss is the variable.

Variables

A variable is a type of data structure that can take on multiple values (a
variable might hold the value 12,100, “Tim Berners-Lee,” or TRUE). In
PHP, the use of variables is simplified from other languages in that the type
of the variable, which may be an integer whole number, a string, a character,
or a Boolean TRUE/FALSE value, is not explicitly assigned when it is
declared. You can recognize a variable in PHP because it will be a unique
name preceded by a dollar sign ($). Here are some examples of variables
with values as declared in PHP.

<?php
$numberOfElements = 10;
$xmlVersion = 1.0;
$numberOfAttributes =100;
$xmlFileName = ”test.xml”;
$xmlErrorChecking = TRUE;
$xmlAttributeCharacter = ’Z’;
?>

Syntax

When writing PHP scripts, one must use a special syntax, or a collection
of standard rules for defining instructions in a way that the PHP software
can understand. Many of these rules are evident even in this brief variable
declaration code example. One syntactical rule common to PHP and other

228 Focused Implementations

server side scripting languages is the use of delimiters to indicate where PHP
code begins and ends. The dollar sign preceding variable names is an
example of a delimiter with a special meaning. When a dollar sign is
encountered in a document, PHP expects the string of characters following
that symbol to be a variable name.

The use of delimiters is important because PHP code and HTML or
XHTML code often share the same document files. Sometimes, CSS and
JavaScript code is also included in the same file. With up to four (or more)
languages residing in a single document, there needs to be some mechanism
for differentiating between them so that the Apache software can properly
process the document files. This is why delimiters are so important. The
PHP code is offset from HTML code using the open and close delimiters.
Specifically, the five characters <?php begin a PHP sequence and the two
characters ?> end a PHP sequence. When Apache encounters the special
PHP delimiters within a document, it sends the document to the PHP
software for preprocessing. PHP will then send back a standard document
file that any browser can process.

Another syntactical issue to be aware of is the use of semicolons.
Semicolons are used in PHP to terminate certain types of instructions. For
instance, a semicolon is used to “end” each variable declaration and
assignment. They are also used at the end of common processing tasks like
providing output to the screen. Consider this code, which uses delimiters
and semicolons:

<?php
$personsName=”Tim”;
print(“Hello. ”);
print(“<i>How are you, $personsName?</i>”);
?>

Save this file as “hello.php” in your “xmlparsers” directory. Load it in your
browser by navigating to “http://localhost/xmlparsers/hello.php”. As you
can see, these three instructions create a variable and then print two lines
of HTML code. This HTML code is then used to print a greeting to your
browser using bold type and the sentence “How are you, Tim?” in italicized
type. The name “Tim” is stored in a variable named $personsName, with
the dollar sign acting as a delimiter. Try changing the value of this variable
to your own first name and refreshing your browser.

Next, notice the semicolon delimiters. The semicolon at the end of each
statement alerts PHP to look for the next instruction after the previous
statement had finished processing. One must be very careful with semi-
colons as missing semicolons are the source of much frustration for beginning
programmers. Try removing the semicolon after the first print instruction.
You will see that PHP returns an error because it has encountered a new
instruction without realizing that the first instruction was complete. This is
known as a parse error.

Focused Implementations 229

CamelCase

If you look closely at the variable names from our previous PHP code
examples, you may recognize that there is a pattern dictating how new words
in the name sequences sit next to one another. Specifically, the first word of
the sequence is in lower case, and each new word in the sequence then has
its first letter capitalized to visually separate the words without having to use
any spaces. Programmers do this because spaces are not allowed in PHP
variable names, but multiword variable names are more descriptive and easier
to understand. So, a variable that someone wants to name “cost of living in
Seattle” becomes $costOfLivingInSeattle. This practice of writing is known
as CamelCase, or camel case, and is used by many script authors to visually
simplify the process of recognizing when multiple words are used in variable
names. Some programmers differentiate even further between lowerCamel
Case, as is used in these examples, and UpperCamelCase, in which the first
letter of the first word is also capitalized.

Another variable naming strategy is to use the underscore symbol to
separate words, as in $number_of_elements rather than $numberOfElements.
Both practices are acceptable and this is largely a stylistic choice on the part
of the document designer or programmer.

Data Typing

Since PHP uses what is called dynamic typing, the types of data that are
assigned to specific variables are determined by the symbolic composition
of the data themselves. For instance, 10 is recognized as an integer number,
so the $numberOfElements variable “knows” there are certain types of
arithmetic operations that can be performed upon this variable. Similarly,
$xmlFileName is assigned a value using quotation marks, so the PHP
interpreter will know that this particular variable is a string, or sequence
of characters, that can call upon PHP’s string processing library. This library
can then determine useful information like the length of the string, or
whether or not a particular character in the string is capitalized. In our
previous variable example, we also have a few additional data types.
$xmlVersion holds a floating point number (a number with a decimal
component), $xmlAttributeCharacter holds a single character (observe that
single quotes are used to encase the character rather than the double quotes
used with strings), and $xmlErrorChecking holds a Boolean value, which
can hold the values true or false only.

Arrays and Loops

A more complex data structure, which does require a special keyword when
it is created, is the array. An array is an ordered collection of data stored
in a single data structure. In some languages, arrays must be composed
entirely of like data types (all numbers or all strings, for instance). In PHP,
you can mix data of different types and store them all in the same array.

230 Focused Implementations

When building XML parsers, it is useful to have a good grasp of arrays
because multiple XML elements of the same name are often loaded into a
single array to make iteration and access to the data contained with the
elements that much easier to accomplish.

Arrays in PHP are recognizable through the use of the “array” keyword.
In order to create an array with the member variables 1, 12, 256, and 300,
we would write a line of code like this:

$myArray = array(1,12,256,300);

Just like the other variable types we discussed so far, arrays too must end
in semicolons after they are defined. To access or print out the values stored
within the array, you use the name of the array followed by square brackets
and a numerical index indicating the position of the member element in the
array. PHP begins its indexing at the number zero, so the following notation
is used to access the elements in this example:

$myArray[0] contains the number 1
$myArray[1] contains the number 12
$myArray[2] contains the number 256
$myArray[3] contains the number 300

You can also loop through an array automatically using a “for loop” or
a special type of loop known as a “foreach loop.” The foreach loop allows
a designer to access or modify array elements without needing to know the
exact size of an array and without having to declare the index positions of
each and every element inside the array. A simple foreach loop to print the
contents of $myArray would look like this:

<?php
foreach ($myArray as $memberElement)

{
echo $memberElement.”
”;
}

?>

This code generates the following output:

1
12
256
300

Functions, Arguments, and Variable Scope

A function is another important concept to understand in PHP. A function
is an ordered and encapsulated collection of statements that can be accessed

Focused Implementations 231

using a common function name from within the body of a PHP script.
Functions range from simple, with no return value and no ability to receive
information from the body of the script, to highly complex, with multiple
input arguments and multiple methods for affecting data outside the
encapsulated confines of the function’s definition. Arguments are special
variables that a function uses to interface with other functions or with other
parts of a program. They are used to pass data back and forth. When a
function executes, values are passed from the main body of the program to
the arguments and then the function can use these values for their own
calculations. Functions in PHP are declared using the reserved keyword
“function.” An example of a function in PHP is shown here:

<?php
function buildXmlElementTag($elementName, $pcData)

{
$string = ”<”.$elementName.”>”;
$string .= $pcData;
$string .= ”</”.$elementName.”>
\n”;
echo $string;
}

?>

Though this example is fairly straightforward, there are a few additional
syntactical items that will be unfamiliar to beginners. First, the echo
statement is an output statement used by PHP to print strings and variable
values. It is similar to the print command we used earlier, but it does not
require the parentheses. Output statements are those statements which
generate some type of information that is printed to the user’s browser, to
a text or binary file, or to a special console or terminal window in the
operating system.

Second, the period (.) in PHP is used as the concatenation operator, which
glues data together. The concatenation operator is used to combine strings,
characters, numbers, or variables. In this example, we use the period to glue
the different pieces of the $string variable together in order to assemble the
XML tag as a single unit. Finally, the \n that is pasted at the very end of
this variable is a special character sequence used in many programming
languages to indicate a new line. By including this \n sequence, we ensure
that each element tag generated by the function after a previous tag will
begin on a new line. This makes it easier to observe our HTML output
using the View-Source functionality of a browser. The
 is an XHTML
compliant break tag that will also make the tags appear on new lines in
HTML view. In other words, the \n creates a new line in source view, and
the
 creates a new line in HTML view. Note the extra space between
the r character and the forward slash character in the break tag. This
notation is necessary for the document to validate according to the XHTML
parser, and is a convention used for nonpaired tags in XML (tags without

232 Focused Implementations

ending tags). The $elementName and $pcData arguments are used to copy
values from outside the function that can be used inside the function as
parts of the string that is glued together. In this case, these arguments hold
the element name and the element data value. Putting all of this together,
we have a very primitive element creation function named buildXmlElement
Tag that automates the XML code writing process for new elements. This
function allows a document designer to focus on more interesting problems
like element naming and categorization rather than the repetitive task of
writing the same XML element name over and over again.

The backslash in general is another delimiter that is useful to know
about. The backslash is used as an escape character to indicate to the
PHP interpreter that a special character follows which should be treated
differently from that character as it usually exists. We will see some
additional uses of the escape character in our second function example,
where it is used to differentiate between the quotation marks used for the
attribute value in the element tag and the quotation marks used to indicate
to PHP when a string has ended. Many other programming languages make
similar use of the backslash to indicate escape characters or escape sequences.

Our buildXmlElementTag function enables a designer to use PHP to build
a simple XML element with no attributes. In order to “call” the function,
or ask it to execute, the designer will use the name of the function followed
by parentheses and two argument values to use as assigned values for
variables. Arguments are values that the function expects to receive and
that it will use as values to copy into the variables declared in the argument
list. In this case, the first argument value will be stored in the variable named
$elementName and the second argument value will be stored in the variable
named $pcData. Both of these variables are called local variables because
the values contained within these named variables are only accessible from
within the function’s namespace. The function’s namespace is the body of
code in between the beginning and ending curly braces.

Functions are another area of confusion for beginning programmers, and
for good reason. It is difficult to understand the relationship between outside
variables, or variables that are used in the main body of a program, and
inside variables, or variables that are used within the scope of a function
body. Variable scope, or the areas of a script in which variables can be
“seen” and accessed, is an important concept to understand when thinking
about functions and variables. With outside variables, the scope is described
as “global.” This means that functions cannot access the values of these
variables, but the main body of the program can. With variables defined
inside functions, the scope is described as “local.” This means that only the
function itself can see and manipulate variables, but the code outside the
function cannot access the variables’ values. So, how does a function
communicate with the main body of the program? Arguments handle the
mapping between global and local variables. Consider the first line of our
function definition:

Focused Implementations 233

function buildXmlElementTag($elementName, $pcData)

In this function, $elementName and $pcData are arguments. Since
$elementName and $pcData are local variables, the global variables from
the main body of the program are “passed” to the function and then
converted to local variables that can be used from within the function’s
namespace. Let us assume we had two global variables named $myElement
and $myData that were defined earlier in the body of a PHP program. In
order to send these values to our function, we would include them in the
function call, like this:

buildXmlElementTag($myElement, $myData)

Arguments that are passed as parameters handle the conversion between
outside and inside variables, but it is not always clear how this happens.
Often, this process is better understood through applied examples. In this
case, if we wanted to create a tag for an XML element named AUTHOR
which contains the data “Benjamin Franklin”, we would call the function
in the following fashion using literal values:

<?php
buildXmlElementTag(“author”,”Benjamin Franklin”);
?>

We could also call the function using variables, as we described earlier. This
new code looks like this:

<?php
$elementName = ”author”;
$pcData = ”Benjamin Franklin”;
buildXmlElementTag($elementName,$pcData);
?>

In either case, the HTML output produced by this function is identical. Here
is the output produced by either of these function calls:

<author>Benjamin Franklin</author>

Because our function uses generic arguments to construct this string, we
can call it as many times as we like, with as many different strings as we
like. For example, if we wanted to list several additional signers of the
Declaration of Independence, we could add the following function calls to
our document:

<?php
buildXmlElementTag(“author”,”Benjamin Franklin”);

234 Focused Implementations

buildXmlElementTag(“author2”,”John Adams”);
buildXmlElementTag(“author3”,”Thomas Jefferson”);
?>

A side-by-side screen capture showing the output of these function calls is
shown in Figure 6.5. The left hand image shows how this content would
appear in Mozilla Firefox®, while the right hand image shows the content
from the View Source perspective. Since we have not included the XML
version directive at the beginning of the file, the content is rendered in plain
text (the browser does not recognize the generic author tags we are using)
rather than in the collapsible and expandable XML tree document hierarchy
we have seen in previous chapters. Since we now have the ability to directly
create XML tags on the fly using this function, we could potentially use
this procedure as an interface for one of our XML parsers.

Functions and Default Arguments

While our previous function has its uses as a simple tag generator, it would
be even more powerful if it also had the ability to create attributes for our
XML elements. Fortunately, it is not difficult to add this functionality in
PHP. A new function, which supports attributes in addition to elements, is
shown here:

function buildXmlElementTagWithAttribute($elementName, $pcData,
$attributeName=””, $attributeData=””)

{
$string = ”<”.$elementName;
if ($attributeName != ””)

{
$string .= ” ”.$attributeName.”=
\””.$attributeData.”\””;
}

$string .= ”>”;
$string .= $pcData;
$string .= ”</”.$elementName.”>
\n”;
echo $string;
}

This function is slightly more complex, but it is also more powerful. By
using what are known as default arguments in our $attributeName and
$attributeData arguments, we have now ensured that this function can be
called with two, three, or four arguments. If the third argument ($attribute
Name) or the fourth argument ($attributeData) is missing, the function
will simply substitute the default values (in this case, the empty string “ ”)
for these arguments. This means that if we call the new function with our
original values containing elements and data with no arguments, the function
will still work.

Focused Implementations 235

Logical Control Using If Statements

In addition to the default arguments, this new function also introduces a
new concept: logical control. Using a control structure known as an “if
statement,” the PHP function can now operate conditionally depending on
the value of variables within the program. If statements evaluate the
expression in parentheses and then execute the following code fragment
depending on whether or not that expression evaluates to true. So, for
example, an if statement might check to see if a variable’s value was greater
than ten. If so, it would execute the instructions surrounded by curly
brackets immediately after the if statement. If not, it would ignore these
instructions. Else statements can be used with if statements to provide
alternate instructions in case the if condition is not true. This statement
would take the following form in PHP:

if ($variable > 10)
{
echo ”The value is bigger than ten!”;
}

else
{
echo ”The value is not bigger than ten!”;
}

Returning to our modified function, we see that the following if statement
is used:

if ($attributeName != ””)
{
$string .= ” ”.$attributeName.”=

\””.$attributeData.”\””;
}

In this case, the variable being evaluated is called $attributeName. The !=
part of this statement is a special expression in PHP which means “not
equal to.” So, this conditional portion of the code is ensuring that the

236 Focused Implementations

Figure 6.5 Browser View (left) and Source View (right)

$attributeName value is not equal to the empty string. This means that the
concatenation operation defined within the curly brackets will only be
performed if the $attributeName variable contains some value (is not empty).
This means that the function will include the attribute and its associated
value only if data for these items has been provided to the function by way
of the function call. The escape sequence \” (a backslash followed by a
quotation mark) is also used within the body of the if statement to differen-
tiate between quotation marks for the attribute value and the quotation
marks PHP usually uses to discern the end of a string.

We will see many additional uses of the if and else statements later in
this chapter when we build our XML parser projects.

Calling Functions with Default Attributes

Here are some new function calls we can use with our newly created
buildXmlElementTagWithAttribute() function. These function calls will list
some of the other signers of the Declaration of Independence along with
additional information about these individuals:

<?php
buildXmlElementTagWithAttribute(“author”,”Benjamin Franklin”,
”ageAtSigning”,70);
buildXmlElementTagWithAttribute(“author2”,”John Adams”,
”futurePresidentNumber”,2);
buildXmlElementTagWithAttribute(“author3”,”Thomas Jefferson”,
”futurePresidentNumber”,3);
buildXmlElementTagWithAttribute(“author4”,”Stephen Hopkins”);
?>

The new output in source view for this function is revealed in Figure 6.6.

PHP and XML

While if statements, loops, variables, and functions are all very useful, they
are not the reason we chose to use PHP for our XML parser design exercises.
PHP has very good built-in support for XML, and it is especially important
for parser designers to know about PHP’s XML processing capabilities.
Specifically, PHP supports XML using the following technologies:

1. SimpleXML: SimpleXML is a PHP extension for parsing and adding
to XML documents using XML-to-object mappings. XML documents
are turned into object-oriented data structures that can be manipulated
in an algorithmic fashion. This process is discussed in more detail in
the next section of this chapter. SimpleXML is usually the easiest
extension to use when working with XML in PHP. We will use
SimpleXML in Project 1.

Focused Implementations 237

2. Simple API for XML (SAX): SAX is a lightweight and relatively easy
to use API that parses an XML file from top to bottom. SAX is slightly
more complicated than SimpleXML, but adds some additional
functionality. SAX is used in Project 2.

3. DOM API: Like SAX, the DOM is also an API, but DOM is more
sophisticated than SAX in that it builds a full document tree in memory
based on an XML file. The DOM is very powerful and supports
validation, but it is also difficult to use and can be resource intensive
for large XML documents. DOM is our API of choice in Project 3.

Because of these robust XML-handling capabilities and its relatively slight
learning curve, PHP is a good language to consider when designing your
own customized XML parsers for very specific informational tasks. We will
use PHP for the examples in this chapter, but more experienced programmers
wishing to design XML parsers may also want to consider fully object-
oriented languages such as Java or C++ in addition to PHP.

SimpleXML and Object-Oriented XML

SimpleXML is a popular extension to PHP which provides a toolkit for
mapping XML documents into objects that can be directly manipulated by
the PHP scripting language. Objects are data structures that have support
for both variables and functions, both of which can be encapsulated into a
common namespace usable by any instances of those objects. Objects are
particularly handy for us as document designers because, as we mentioned
in Chapter 3, it has been predicted that we will be moving from document-
centered to object-oriented ways of thinking about information and
information design (Williams 321). Key concepts which affect both the
technological and rhetorical domains of object-oriented information design
include encapsulation and information reuse.

Object instances are created from object definitions, or classes, which
specify the exact functions and variables available to an object’s namespace
once it has been defined. It is helpful to think of classes as blueprints and

238 Focused Implementations

Figure 6.6 Source View of Function with Attribute Support

objects as buildings. Classes are recognizable through the use of the class
keyword in PHP, while objects are recognizable through the use of the new
keyword, which instructs the PHP interpreter to allocate memory for a new
object with enough room to hold the variables and functions defined in the
class definition. To complicate things further, variables defined inside objects
are known as properties, and functions defined inside objects are known as
methods. Once an object has been declared, its properties and methods can
be accessed using the special notation -> followed by the name of the
property or method. For instance, if a property named squareFootage
resided within an object named $houseInstance, it would be accessible using
this notation:

$houseInstance->squareFootage

To demonstrate how the translation from an XML document to a
SimpleXML object works, we will present a basic example. Consider the
following XML file:

<?xml version=”1.0” encoding=”utf-8”?>
<contact_manager>

<employee>
<first_name>Pierre-Francois</first_name>
<last_name>LuCerne</last_name>
<extension>1001</extension>
<e-mail>pfl@rhetoricalxml.com</e-mail>
<birthday>Dec 12, 1949</birthday>

</employee>
<employee>

<first_name>Julia</first_name>
<last_name>Rodriguez</last_name>
<extension>1726</extension>
<e-mail>jr23@domain.com</e-mail>
<birthday>September 3, 1964</birthday>

</employee>
<employee>

<first_name>Joe</first_name>
<last_name>Smith</last_name>
<extension>2488</extension>
<e-mail>joe_smith@rhetoricalxml.com</e-mail>
<birthday>July 23, 1978</birthday>

</employee>
</contact_manager>

Once PHP has loaded this XML document using the SimpleXML
extension, the above XML file will be translated into an object (or, in this
case, an object containing an array of objects) that PHP can manipulate.

Focused Implementations 239

The XML document is then accessible using the standard object property
notation we discussed previously. Using this example file, the XML is
translated into the following data structure:

SimpleXMLElement Object [employee] => Array
(

[0] => SimpleXMLElement Object
(

[first_name] => Pierre-Francois
[last_name] => LuCerne
[extension] => 1001
[e-mail] => pfl@rhetoricalxml.com
[birthday] => Dec 12, 1949

)
[1] => SimpleXMLElement Object

(
[first_name] => Julia
[last_name] => Rodriguez
[extension] => 1726
[e-mail] => jr23@domain.com
[birthday] => September 3, 1964

)

[2] => SimpleXMLElement Object
(

[first_name] => Joe
[last_name] => Smith
[extension] => 2488
[e-mail] => joe_smith@rhetoricalxml.com
[birthday] => July 23, 1978

)

)

Though this looks rather complicated and intimidating, it is actually very
logical in terms of access to elements and their data. We need only to follow
the paths down the XML hierarchy in order to access particular elements
and their data. Assuming our XML data was loaded into an object named
$xmlObject, here are some PHP commands that can be used to directly print
XML data from this example:

<?php
// print out Pierre-Francois
echo $xmlObject->employee[0]->first_name;
// print out 1726
echo $xmlObject->employee[1]->extension;

240 Focused Implementations

// change 1726 to 2556
$xmlObject->employee[1]->extension = ”2556”;
// print out 2556
echo $xmlObject->employee[1]->extension;
?>

We will show how to load an XML document into PHP using SimpleXML
when we discuss the first project in the next section. For now, you just need
to understand that the SimpleXML extension translates an XML document
tree into an object structure with the tree’s elements embedded as objects
or object properties. This is extremely handy when designing parsers because
it gives us a predictable and unambiguous syntax for accessing XML
elements, attributes, and data values when working in a programmatic
environment.

SimpleXML is enabled by default in PHP version 5 and above and its
functions can be called directly from any PHP script with this toolkit enabled.
We discuss some specific examples of SimpleXML in use later in this chapter,
but, for now, here is a general overview of some of what it can do:

• Translate XML documents from a tree-based hierarchy into an object
that can be handled by PHP’s standard object-oriented handling
procedures;

• Load XML documents from separate files or directly from string
variables;

• Convert DOM documents into SimpleXML objects.

Our review of Apache, PHP, and SimpleXML is now complete. Each of
these technologies is quite complex; we only touched briefly upon some
major features that readers should be aware of as we move through our
parser design examples. In the remainder of this chapter, we will discuss
these technologies as potential solutions for different types of informational
needs. We move from a relatively easy problem in the first project to more
complex information design problems in the second and third projects.
Regardless of the level of technical difficulty, each project requires a similar
amount of rhetorical consideration in both the preproduction (planning)
phase as well as in the postproduction (revision and fine tuning) stage. For
the most part, we focus on the preproduction and design phases, but we
do suggest some ideas for postproduction activities and discussion prompts
in the questions at the end of the chapter.

Project 1: RSS Parser

Even when designing a simple parser such as one to display newsfeeds on
a website, it is important to think about the rhetorical considerations of the
communicative act. While it can be useful to begin this rhetorical inquiry

Focused Implementations 241

from a particular perspective, perhaps by considering the classical rhetorical
canons or using a rhetorician’s theoretical model as a starting point, it can
also be advantageous to simply take a step back and consider the
informational context based on one’s prior knowledge. This may include
one’s immediate knowledge of the data source and of the users who will
need to be accessing this data or adding to it. We describe this approach
as an ad hoc rhetorical analysis because it does not necessarily have wider
applications outside the immediate scope of a particular project.

The first and foremost question asked before selecting a parser, or deciding
to build your own custom parser, is obvious: who is the intended audience
for this information? A general list of rhetorical considerations is outlined
in the Ad Hoc Rhetorical Analysis of XML (RAX) form included in
Appendix B. The questions from this form are repeated here for the sake
of this sample exercise:

• Who is my primary audience?
• Who are the secondary and tertiary audiences?
• What is the purpose of this metadata system?
• What are the informational needs of my audiences?
• How should the information be arranged and presented for this

audience?
• What kinds of backgrounds will my audiences possess? Will they have

a high literacy level? What about their level of technical literacy? What
style will work well for these needs?

• What vocabularies will my audiences use to identify relevant elements
and data nodes within the XML hierarchy?

There are many more rhetorical questions that can be asked here. These
will depend entirely on the context of your project. For example, if you are
building a parsing system to manage newsfeeds for a hospital, you will need
to ask questions that examine the tradeoffs between privacy and accessibility
and make document design decisions that are both ethically and legally
justifiable. We suggest using this form as a starting point and adding to or
adjusting it according to the needs of your own project and audience.

For this project, we are going to create personas to help us visualize an
imaginary information context. Personas are fictitious characters that we
can create in order to help us visualize the demographic characteristics and
informational needs of a typical user. In this exercise, we will create personas
for both the designer and for his audience. Our designer persona, Mr. Joe
Smith, is a document designer who wishes to build a news communication
system for a local newspaper’s website. His contact is Ms. Shirley Brown,
senior managing editor, who will serve as our primary audience persona.
Using the RAX form, Joe produces the following answers to the survey:

• Who is my primary audience? My initial primary audience member will
be Ms. Brown, who will review the system I build for appropriateness

242 Focused Implementations

and sustainability. Once approved, the primary audience will be those
townspeople who visit the newspaper’s website and wish to be updated
about breaking news.

• Who are the secondary and tertiary audiences? Secondary and tertiary
audiences include visitors from other locales, administrators in the
newspaper office, and perhaps friends and family members I cajole into
helping me troubleshoot my system.

• What is the purpose of this metadata system? The purpose of this system
is to provide timely news titles and descriptions of breaking news stories
that can then direct visitors to the full text versions of those articles.

• What are the informational needs of my audiences? The audiences will
need to know the title, date, description, and URL of the full length
articles. In addition, the titles and descriptions should be meaningful
without requiring too much cognitive investment (reading) from visitors
who might be casually browsing the newsfeed. Newspaper writers and
editors may need access to directly modify the XML newsfeed document
without having to resort to manually editing the XML file.

• How should the information be arranged and presented for this
audience? The information parsed from the XML file should be
displayed in a fashion that visually separates one news article from the
next and uses standard HTML conventions to indicate hypertext links
and descriptive titles for these links. The article descriptions should be
listed hierarchically under each of their parent item elements within the
news article directory.

• What kinds of backgrounds will my audiences possess? Will they have
a high literacy level? What about their level of technical literacy? What
style will work well for these needs? I don’t yet have information on
the typical demographic profiles of the newspaper’s readership, but this
is a great question to ask Ms. Brown when I meet with her next week.

• What vocabularies will my audiences use to identify relevant elements
and data nodes within the XML hierarchy? Audiences will come from
varied backgrounds, but will likely expect standard journalistic style.
This will, in part, address the stylistic concerns of the previous question.

Based on Joe’s responses, we can extract the following four design
parameters from this rhetorical analysis exercise:

1. The XML file we use for the newsfeed should contain, at the very least,
elements to hold:
a. information about the news article title,
b. a longer description,
c. a date of publication, and
d. a link to the full article on the newspaper website.

2. The data extracted from the XML file should be displayed in a visually
appealing and hierarchical fashion and should include semantically
meaningful title tags linked to the full news articles. Beneath each title,

Focused Implementations 243

the system should include the description element with a brief
description of what the news article is about.

3. The project needs to contain functionality for both retrieving XML data
(for the audience of news story readers) as well as inserting new XML
data (for the audience of news staffers who will be adding to the news
repository).

4. A journalistic style, or a style that is as neutral and objective as possible,
is necessary for the news data contained within the elements. This
particular rhetorical consideration, however, is more relevant to the
writers of the stories than to the designer of the metadata system, so it
will not pose many design challenges. We do not need to adopt a strict
journalistic style for our test XML file, since that is only a temporary
data source that we will use to develop the application and ensure that
the tagging and structure format is compatible.

In terms of technical implementation, the first thing we will do for this
project is build an XML file that can be used for testing. The XML file for
this particular purpose does not need to be very complex. It only needs to
contain elements to hold those informational needs Joe identified in his
rhetorical analysis. Based on these needs, a sample XML file with some
fictional news story data might appear as so:

<?xml version=”1.0” encoding=”utf-8”?>
<news_articles>

<article id=”1”>
<title>Bear Loose on Freeway</title>
<description>A 750-pound grizzly bear was found wandering
around aimlessly on Interstate 4 this afternoon.
Officials are attempting to goad the bear into an Animal
Services' truck but have not had any luck with this
so far.</description>
<url> www.rhetoricalxml.com/rssparser/news.php?id=1</url>
</article>
<article id=”2”>
<title>Stock Market Plunges</title>
<description>The stock market has taken another hit due
to rising prices in agriculture (corn and wheat) and in
the oil industry. Nasdaq has dropped 600 points and the
S&P500 dropped 300 points.</description>
<url> www.rhetoricalxml.com/rssparser/news.php?id=2</url>
</article>
<article id=”3”>
<title>Toddler Saves Pet Turtle from 10-foot
Gator</title>
<description>A three year old boy saved his pet turtle,
named Harold, from a 400-pound alligator on Tuesday.

244 Focused Implementations

The turtle had wandered down from the boy's home
into a nearby swamp region.</description>
<url> www.rhetoricalxml.com/rssparser/news.php?id=3</url>
</article>

</news_articles>

Though this is a perfectly acceptable XML file, it does not yet meet the
schema requirements of a valid RSS document. RSS is a particular type of
XML file that uses a collection of specialized tags to present information
in a standardized format. Since they use standard element and attribute
names, RSS feeds can be read by a variety of RSS news readers or even by
browsers such as Mozilla Firefox®. Because of this, RSS is a logical format
for Joe to use in his newsfeed parser application. According to RSS, the
toplevel element should be named “channel” rather than “news_articles.”
In addition, each article should be named “item” rather than “article,” and
we can provide additional information using a channel description and title
tag. The URL element needs to be renamed to GUID, which stands for
“globally unique identifier.” We can remove the ID attribute since the
GUID will provide a unique reference for each item. Finally, we need to
encapsulate all of the data in an additional tag named RSS with a version
attribute value of 2.0. This new and revised XML file appears here in proper
RSS format:

<?xml version=”1.0” encoding=”utf-8”?>
<rss version=”2.0”>
<channel>
<title>Joe's Test Newsfeeds File</title>
<description>Local news from your community.</description>

<item>
<title>Bear Loose on Freeway</title>
<description>A 750-pound grizzly bear was found
wandering around aimlessly on Interstate 4 this
afternoon. Officials are attempting to goad the
bear into an Animal Services' truck but have
not had any luck with this so far.</description>

<guid> www.rhetoricalxml.com/rssparser/news.
php?id=1</guid>
</item>
<item>

<title>Stock Market Plunges</title>
<description>The stock market has taken another hit
due to rising prices in agriculture (corn and
wheat) and in the oil industry. Nasdaq has dropped
600 points and the S&P500 dropped 300 points.
</description>
<guid> www.rhetoricalxml.com/rssparser/
news.php?id=2</guid>

Focused Implementations 245

</item>
<item>

<title>Toddler Saves Pet Turtle from 10-foot Gator
</title>
<description>A three year old boy saved his pet
turtle, named Harold, from a 400-pound alligator
on Tuesday. The turtle had wandered down from the
boy's home into a nearby swamp region.
</description>

<guid> www.rhetoricalxml.com/rssparser/news.
php?id=3</guid>
</item>

</channel>
</rss>

If you would like to follow along with this example on your own, you should
first create a folder named “rssfeed” in your “xmlparsers” folder. Then,
you need to save this XML file as “rss_feed_sample.xml” within your
“c:\xampp\htdocs\xmlparser\rssfeed” folder (or the appropriate folder
containing the htdocs directory on your own XAMPP installation). You can
also download the Project 1 files from the website and extract them to this
directory.

Next, we need to build the parser in PHP. Using the SimpleXML
functionality we discussed previously, we know that the first thing we need
to do is to load the XML file into an object that PHP can manipulate. Since
SimpleXML is such an easy API to manipulate, this process only involves
a few steps.

Here are the contents of the PHP file (save this as “displayNews
Previews.php”) that we will be using as a parser:

<?php
/* This variable sets the name for the news parser */
$newsWidgetName = ”News Widget 1.0”;

/* This variable holds the name of the XML source file */
$xmlFileName = ”rss_feed_sample.xml”;

/* load the XML structure into an object (data structure) */
$xmlHierarchy = simplexml_load_file($xmlFileName);
?>

<html>
<head>

<title><?php echo $newsWidgetName; ?></title>
<link rel=”alternate” type=”application/rss+xml”
title=”News Feed RSS” href=”<?php echo $xmlFileName; ?>”>

</head>

246 Focused Implementations

<body>
<h1><?php echo $newsWidgetName; ?></h1>
<p>Here are some recent news articles from the XML data
file named <?php echo $xmlFileName; ?>. Click on any
article title to view the full news article associated
with that news feed.</p>

<?php
foreach ($xmlHierarchy->channel->item as $article)

{
echo ””;
echo ”guid.”\”>”;
echo $article->title.””;
echo ””;
echo ””.$article->description.””;
echo ””;
echo ””;
}

?>

</body>
</html>

We will not discuss each line of PHP code presented here, but we will
touch upon a few new concepts that were not covered in the PHP tutorial
earlier in this chapter. First, note the comments in the file, which begin with
a /* character sequence and end with the */ sequence. The comments here
describe the purposes of the first three variables used in this script. Comments
are used heavily both in this first project and in the content management
and single sourcing projects later in the chapter.

In PHP, there are three styles of comments that can be used. First is the
/* beginning sequence and */ ending sequence that we have already seen.
These are good to use when comments span multiple lines, or when you
want to temporarily deactivate large chunks of code so that you can
troubleshoot or debug areas of your program. PHP also supports single line
comments using either double forward slashes: // or the hash mark: #.
Comments are important in PHP just as they are in HTML as they provide
a space for designers to make notes or annotations explaining why code
was created a certain way. Each of the comments below would be valid
according to PHP:

/* This is a comment that takes up more than one line. Note
that we must close it when we are done. */

// This is also a valid single line comment in PHP.

This is a valid single line comment, too.

Focused Implementations 247

The next important line in the Project 1 script begins with the text link
rel=“alternate”. This line of code links the XML newsfeed into the document
so that newsreaders can recognize the document and bookmark the feed
accordingly. Figure 6.7 shows the RSS parsing application’s output so far
as displayed in Mozilla Firefox®. Firefox® is a useful browser for this type
of application as it enables a person to bookmark RSS feeds with “live”
streaming XML information.

Finally, look at the line that begins with the variable $xmlHierarchy and
contains the function simplexml_load_file(). This function is used by the
SimpleXML extension to load the XML document into an object. This line
of code executes the XML document to PHP object conversion as we
discussed in the previous section of this chapter. This function expects a
single argument: the name of the XML file to be loaded. We set this filename
using the $xmlFileName variable, so we are “passing” the name of this
variable as the function’s argument.

$xmlHierarchy = simplexml_load_file($xmlFileName);

248 Focused Implementations

Figure 6.7 Newsfeeds in Mozilla Firefox®

From this point on, our XML information will be navigable and accessible
as an object-oriented data structure. To make things easy on us, SimpleXML
will automatically convert the names of our elements into object properties
so that we can easily remember how to navigate to different parts of our XML
hierarchy in an object-oriented fashion. As you can see from the previous
code listing, we are doing just this when we refer to the element <item> inside
the element <channel> by accessing the object property in this fashion:
$xmlHierarchy->channel->item.

Live bookmarks are added in Mozilla Firefox® by clicking the small orange
icon to the right of the URL and to the left of the outlined star in the address
bar. This will bring up the screen shown in Figure 6.8. Once the live
bookmark has been added, residents in Joe’s community will be able to
access streaming news information directly from their browsers. This is

Focused Implementations 249

Figure 6.8 Adding a Live Bookmark

efficient from a usability perspective, since the residents do not need to
navigate to a new page unless they wish to view a detailed news article
linked from one of the item elements in the RSS file. Live bookmarks in
action are shown in Figure 6.9.

You can type this code in on your own or download the example file
from this text’s accompanying website. Save this file as “displayNews
Previews.php” and store it in the same local directory as your XML file.
Test this file out in your browser by navigating to “http://localhost/xml
parsers/rssfeed/displayNewsPreviews.php”.

If the file is not in the same directory as the PHP script, you will receive
a warning message similar to this one:

Warning: simplexml_load_file() [function.simplexml-load-file]:
I/O warning : failed to load external entity ”rss_feed_
sample.xml” in C:\xampp\htdocs\xmlparsers\rssfeed\
displayNewsPreviews.php on line 9.

This means you need to move the XML file named “rss_feed_sample.xml”
into the same directory as your PHP file. Otherwise, you should see the
same browser screen that was shown earlier in the News Widget 1.0 screen
capture (Figure 6.7).

At this point, we have a working XML parser built to show the output
of an XML file structured as a RSS newsfeed. We can act upon specific
input, which may be elements or attributes, in order to create a sophisticated
handling system for our document. To do this, we are using the following
algorithm, or precise set of instructions, for the XML handling portion of
our script:

250 Focused Implementations

Figure 6.9 Live Bookmarks in Action

While (new elements of type item are available)
Begin an unordered list
Look for child elements named title, description, and
guid. When these elements are found, the data inside the
guid element and title element is used to construct the
hyperlink in the form of [title
data] where [guid] and [title data] are placeholders
for the data extracted from these tags.

Begin an embedded unordered list
Print out the data from the description tag
as an indented list item below each title
item and link
End embedded unordered list

End unordered list
End While

Revisiting our original design specifications and goals, we see that only
half of Joe’s news system has been implemented. He still needs a mechanism
to add news articles directly into the XML document. This feature will
eventually be used by news staffers to add new articles. Fortunately,
SimpleXML provides support for adding child elements and attributes
through its addChild() and addAttribute() functions. Even with these helpful
functions, the task of writing to the XML file is slightly more complicated
than the task of reading from the XML file. This is primarily because we
now must build in support for file input and output as well as work more
intimately with the SimpleXML object structure.

The first component that is necessary to add XML writing capability is
an HTML form, which will be composed of text input fields and a
mechanism for sending data from those fields to a processing page. We can
see from our XML file that the elements associated with the news articles
include ITEM, TITLE, DESCRIPTION, and GUID. New items should be
added automatically to the existing XML file, so we should collect values
for title, description, and GUID from the person entering this information.
A simple HTML form designed to support this process is shown here:

<html>
<head>
<title> Joe's Test News Page: Add News </title>
</head>
<body>
<form method=”post” action=”update_rss_xml.php”>
<table>
<tr>

<td>News Title:</td>
<td><input type=”text” name=”title” size=”50”></td>

</tr>

Focused Implementations 251

<tr>
<td>Description:</td>
<td><input type=”text” name=”description” size=”50”></td>

</tr>
<tr>

<td>GUID:</td>
<td><input type=”text” name=”guid” size=”50”></td>

</tr>
</table>

<input type=”submit” value=”Add News”>
</form>
</body>
</html>

Name this file “update_news.html” and save it in the same directory you
have been working in throughout this example project. Figure 6.10 shows
what this HTML code produces in a browser.

After the HTML form is designed, we need to build a script that will take
data from the form’s text input fields and store these values as variables.
As you may recall from the beginning of this chapter, even the earliest version
of PHP, PHP-FI, contained built-in support for forms, so PHP is designed
for precisely this type of activity. Since our form is using the POST method
to submit its data, the process of mapping the text fields to variables is rather
simple. We define the variables we wish to use and then access an associative
array, or a special type of array that uses strings for keys rather than
numbers, by providing the text field names as indices. The associative array
for variables submitted using the POST method is named $_POST, which

252 Focused Implementations

Figure 6.10 HTML Add News Form

is a shortcut for $HTTP_POST_VARS. The code to access individual values
from the form fields looks like this:

$title = $_POST[“title”];
$description = $_POST[“description”];
$guid = $_POST[“guid”];

There are two types of methods one can use when submitting forms: GET
or POST. Both are highly useful and the experienced Web designer or
information architect will often find themselves using both. In the GET
protocol, the variables sent from a form are appended to the end of a URL
string. Example URLs which have been submitted from forms using the GET
method look something like this:

www.rhetoricalxml.com?var1=radish&var2=20&var3=a

In this system, the question mark symbol is used to indicate the first
variable name and the equal symbol links that first variable name to a specific
value. Subsequent variables names are appended to the URL using the
ampersand, with their values continuing to use the equal sign for mapping
purposes. So, the previous URL would enable the following variables and
values to be parsed from its textual address string:

var1 (containing the value ”radish”)
var2 (containing the value 20)
var3 (containing the value ’a’)

We can access GET variables in the same fashion as POST variables, but
we use $HTTP_GET_VARS or $_GET as the associative array names
instead of $HTTP_POST_VARS or $_POST. To assign the three values
above to PHP variables, we could therefore use the following code:

$var1 = $_GET[“var1”]; // $var1 now contains ”radish”
$var2 = $_GET[“var2”]; // $var2 now contains the number 20
$var3 = $_GET[“var3”]; // $var3 now contains the character ’a’

If one uses the POST method, these variables are not appended to the
URL and are instead passed to the script behind the scenes. GET is handy
when the inner page of a website needs to be bookmarked for later use, or
when the variables being passed to an XML parser should be transparent.
Since the values are clearly visible in the URL string, the entire data set is
clearly visible and able to be bookmarked. This could be a potential security
problem since the designer might not want all of these variables to be
viewable by any user of the Web page. POST is useful when the page should
not be able to be bookmarked, or when large amounts of data need to be

Focused Implementations 253

passed from a form to a script or parser. This is because the amount of data
GET can append to the URL is limited to the maximum size of a URL string,
which varies from browser to browser.

The full code that is used to take the information from our simple form
and build new elements into our news story XML file is shown here:

<html>
<head>
<title> Joe's Test News Page: Results Page </title>
</head>
<?php
/* This code will get the form's data variables */
$title = $_POST[“title”];
$description = $_POST[“description”];
$guid = $_POST[“guid”];

/* This variable holds the name of the XML source file */
$xmlFileName = ”rss_feed_sample.xml”;

/* This function will read the contents of an XML file */
/* and store those contents as a string */
function getXMLFileContentsAsString($filename)

{
$xmlStringData = file_get_contents($filename);
return($xmlStringData);
}

/* This function will write the new XML structure */
/* into a permanent file on the hard disk drive */
function writeNewXMLFile($filename,$content)

{
$handle = fopen($filename, ”w”);
if ($handle)

{
fwrite($handle,$content->asXML());
}

if (fclose($handle))
return TRUE; // successful!

else
return FALSE; // not successful!

}
/* Call the function to get the XML content as a string */
$xmlString = getXMLFileContentsAsString($xmlFileName);

/* Create a new SimpleXMLElement object */
$xml = new SimpleXMLElement($xmlString);

254 Focused Implementations

/* Add our new child element to this object */
$newItem = $xml->channel->addChild(‘item’);
$newItem->addChild(“title”, $title);
$newItem->addChild(“description”, $description);
$newItem->addChild(“guid”, $guid);

echo ”<body>”;

/* Now, we need to write this structure back out to our XML file
*/
if (writeNewXmlFile($xmlFileName, $xml))

{
echo ”<p>Your news article has been added.</p>”;
echo ”<p>Click ”;
echo ””;
echo ”here to visit the main page.</p>”;
}

else
{
echo ”<p>Sorry, but there was a problem adding your
article.</p>”;
}

echo ”</body>”;
echo ”</html>”;
?>

Figures 6.11–6.13 show how this script works in terms of the user
interface. First, in Figure 6.11, a user enters the title, description, and GUID
data into the allocated text fields using the HTML form. Next, in Figure
6.12, the script returns a page indicating the data has been successfully added
to the XML file. Finally, Figure 6.13 shows the new data after it has been
inserted into the XML file and re-parsed by our original news display script.

Our new XML file after this additional news item has been added looks
like this:

<?xml version=”1.0” encoding=”utf-8”?>
<rss version=”2.0”>
<channel>
<title>Joe's Test Newsfeeds File</title>
<description>Local news from your community.</description>

<item>
<title>Bear Loose on Freeway</title>
<description>A 750-pound grizzly bear was found
wandering around aimlessly on Interstate 4 this
afternoon. Officials are attempting to goad the

Focused Implementations 255

bear into an Animal Services' truck but have
not had any luck with this so far.</description>

<guid> www.rhetoricalxml.com/rssparser/news.
php?id=1</guid>
</item>
<item>

<title>Stock Market Plunges</title>
<description>The stock market has taken another
hit due to rising prices in agriculture (corn and
wheat) and in the oil industry. Nasdaq has dropped
600 points and the S&P500 dropped 300
points.</description>

<guid> www.rhetoricalxml.com/rssparser/news.
php?id=2</guid>
</item>
<item>

<title>Toddler Saves Pet Turtle from 10-foot
Gator</title>
<description>A three year old boy saved his pet
turtle, named Harold, from a 400-pound alligator
on Tuesday. The turtle had wandered down from the
boy's home into a nearby swamp
region.</description>

<guid> www.rhetoricalxml.com/rssparser/news.
php?id=3</guid>
</item>

<item><title>Internet Radio is in Trouble</title><description>
The Internet radio industry is facing serious problems
due to the new advertising structure proposed by the
FCC.</description><guid> www.rhetoricalxml.com/rssparser/news.
php?id=4</guid></item></channel>
</rss>

Note that the new ITEM element and its associated children elements are
now added to the bottom of the file. Unfortunately, there is no easy way
to preserve formatting using the SimpleXML API. We have much greater
control of formatting when we directly write to a text file, as we do in the
content management example and single sourcing examples discussed in the
next section, but, unfortunately, this process is more complex and involves
using character sequences such as \n (new line) and \t (tab) to build our
XML documents line by line.

At this point, our discussion of the first parser example is complete. There
are several additional modifications that could be made to improve this
script. In particular, a timestamp and date element, which RSS does indeed
support, would be a helpful addition. It would also be useful for the script
to automatically create the GUID tag so that the user would not need to

256 Focused Implementations

look up the previous item’s GUID in the XML file. If this were a real
document designer working with a real client, there would likely be an
additional follow up meeting where the beta product was demonstrated to
the client and additional modifications were negotiated after that initial
meeting. As it stands, however, Joe can rest easy knowing that his rhetorical
analysis was sufficient to satisfy the needs of his hypothetical boss, Ms.
Brown.

All of the files for the RSS newsfeed parsing project can be downloaded
from the www.rhetoricalxml.com website. We encourage you to download
the source files and experiment with adding functionality and customizing
the XML file to meet the needs of your own projects. If you do not currently
have a project to work on, or if you are simply wishing to learn more about
SimpleXML, try making the modifications mentioned in the previous

Focused Implementations 257

Figure 6.12 Article Added Message

Figure 6.11 Add News Form (With Sample Data)

paragraph. This will improve your understanding of PHP and perhaps help
you to better recognize this scripting language’s potential use as a tool for
building customized XML parsers.

For our next project, we consider a parser with more functionality and
more complexity: a CMS. Parts of the CMS will then be reused for our final
parsing example, which is a basic single-sourcing application.

Project 2: CMS

Now that we have discussed the simplest approach to both rhetorical
analysis and the technical implementation of an XML parser, we will move
on to an example that is slightly more challenging in both domains. A CMS
is a software program that allows content to be collected from one or more
users and then distributed to one or more audiences in its original form or
in a reconfigured form. Andreas Mauthe and Peter Thomas describe a CMS
as one that handles both the essence of the data, or the raw data itself, and

258 Focused Implementations

Figure 6.13 News Display with New Item Added

the metadata that describes that content (4–5). The idea here is to try and
capture the gist of the content by considering the items and deciding upon
a reasonable set of representative characteristics to encode and then associate
with them using metadata. This can be done automatically, when certain
descriptive characteristics can be extracted from digital files, or manually,
when a person considers an item individually and determines which facets
should be represented in the metadata. Oftentimes, CMSs will combine
human knowledge with technological support systems. That is the approach
we follow in this example.

Typically, CMSs pair a graphical user interface with a database. This
structure allows selected individuals with certain privileges to insert
information into the database while other users with other types of privileges
can extract information from the database. While many online CMSs use
relational databases for this task, which we discuss in Chapter 3, we will
be creating a system that uses XML as the primary data source. When we
move into our technical discussion of how to build our simple CMS, we
will be focusing on the SAX API for PHP. SAX supports XML parsing in
a streaming fashion, parsing linearly from the top of a document to the
bottom.

The particular type of CMS we will build for this project is a digital asset
management system. An asset is a digital file that has value in a particular
informational context. For example, if an information designer creates a
glossy brochure to advertise a new software product, that person might need
to create new image files in Adobe Photoshop® and then import them into
a program like Adobe PageMaker® or FrameMaker®. Once the image files
are added to the brochure, the document creator may store these images
on her own hard disk drive for perpetuity. If this particular employee ever
leaves the company or forgets about these files, the potential information
represented by these data files is lost.

This is a problem of durability, as we discussed in Chapter 1; at the
individual level of knowledge, information is not very durable and may in
fact be considered volatile as any group and organizational knowledge built
atop this foundation may come crumbling down. For instance, if the Web
development team later decided to create a new promotional website based
on this brochure, they might assume that all of the original layered Photo-
shop files were available somewhere in the company archives. Without the
critical employee being available to hand over these files from their hard
disk, the Web team would quickly realize that the plan of work and the
various milestones they had planned for were neither plausible nor
achievable. The repercussions of this simple loss of individual knowledge
would be felt from the Web team, to management, to eventually the
customers that would be purchasing this new product.

Our goal, then, is to build a simple media asset system for this type of
organization. This system can be implemented in a distributed corporate
setting. Rather than storing files separately on employee computers,

Focused Implementations 259

individuals working on various projects can use such a system to store all
assets in a centralized location with meaningful metadata to facilitate
location and retrieval. The metadata can also be used to allow various groups
within the organization to recognize the different types of information
produced by each group and to better understand ways in which information
can be exchanged between units.

The example we will create for this project could be used in a small
organization that uses document types such as plain text, Microsoft Word®,
Adobe Acrobat® PDF, and image types such as GIFs and JPEGs. With some
minor customization, it could be extended to handle more complicated types
of assets such as layered Photoshop® files or audio/video recordings.

Rhetorical Analysis

For our rhetorical analysis of this project, we could use a variety of different
approaches, including the use of the ad hoc rhetorical analysis document
mentioned in the previous example, to define the parameters of our parser.
Or, we could choose to adopt a more formal rhetorical model.

For the sake of discussion, let us consider one such formal model that
was created by the famous rhetorician Kenneth Burke. Burke’s dramatist
rhetoric studies the rhetorical situation from five different dimensions: act,
scene, agent, agency, and purpose. Collectively, these dimensions are known
as Burke’s pentad, or, sometimes, as the dramatist pentad. From a dramatic
perspective, this delineation makes perfect sense. When watching a play or
reading an immersive novel, we find ourselves caught up in the relationships
the protagonist has with the world around him. These relationships may
engender within the reader feelings of adventurousness, humor, sadness, or
excitement.

While Burke’s rhetorical ideas are influential and important, his pentad
is probably not the best tool for our task at hand: building a well-designed
CMS. Burke’s system was designed to study the motives of human agents,
from the heroes acting inside the boundaries of fiction to the political
orators asking an audience for an explicit call to action. While XML
certainly may involve notions of act, scene, agent, agency, and purpose, a
CMS will generally not have much dramatic substance with which to apply
these Burkian strategies. We will, however, see how XML can be paired
with dramatist rhetoric and technology when we discuss one of the real
world XML examples in Chapter 7. One of our interviewees uses XML as
a tool to help train cast members for interactive, dramatic performances.

In this particular CMS, the persuasive appeal of our technology is
somewhat more subdued than what we might see in an analysis using
Burke’s pentad. This does not lessen the usefulness of this instrument as a
tool for the construction and organization of knowledge, however. On the
contrary, we find that Burke’s pentad, when applied to a different problem
solving context, may be particularly useful for thinking about the process

260 Focused Implementations

of metadata design and distribution. Although we will not use it to guide
the construction of our CMS here, it may be very useful in other contexts
in which dramatic content is more predominant. We will return to this theme
in Chapter 7.

So how do we choose a more appropriate rhetorical model to guide the
information design process for this project? For the purposes of building a
CMS, we can apply a model that has been specifically developed for informa-
tion design. Saul Carliner’s physical, cognitive, and affective framework is
well-known for breaking information design problems down into three
dimensions (45):

• The physical dimension, which involves specific things like page design,
screen layout, and production decisions;

• The cognitive dimension, which is concerned with the thinking users
do as they engage with an information source; and,

• The affective dimension, which deals with emotional and motivational
elements and how they influence the communication process.

Carliner’s framework is useful here because it can be used in a generative
fashion to produce rhetorical questions related to the ways in which users
physically interact with, think about, and feel about information. These
questions can then be used as guides to help a designer make informed deci-
sions about how the XML parser will function. Rather than arbitrarily
linking together scripting code, metadata, and GUI components, a designer
can plan out an effective information delivery system by carefully considering
the questions an information seeker may have when looking for informa-
tion. Beginning a project by looking at these types of questions rather than
thinking about the raw metadata first is known as a “top-down” approach
(Morville and Rosenfeld 44). This type of design process is largely concerned
with trying to anticipate and cater to the informational needs of expected
users.

Physical Design Dimension

Using Carliner’s model, we will attempt to predict our users’ informational
needs by separating the three dimensions of information design into sets of
associated questions. We can begin with the physical dimension. Since the
physical dimension is concerned with characteristics such as page layout
and design, this dimension is mostly focused on the ways in which the user
will move through the asset management system. Here are some paired
questions and answers that can help us with physical interface design:

• How will users upload assets? We will provide a Web-based form that
allows users to upload and store files.

Focused Implementations 261

• Which types of assets will be supported? Our CMS will support five
file types: plain text (.txt) files, Microsoft Word® (.doc) files, Adobe
Acrobat® (.pdf) files, and selected image (.gif and .jpg) files.

• How will users search and find previously uploaded assets? We will
display assets and associated metadata in a tabular fashion and provide
hyperlinks to existing assets.

• How will users move from one section of the CMS to the next? We
will provide a guided series of steps leading users through each
procedure.

• How will users recognize their current location in the asset management
system? We will provide clear labels to show the steps associated with
each procedure.

• How will users know which types of metadata to supply for each
uploaded asset? We will use drop down lists and selection boxes to
provide appropriate metadata tags for each asset. Assets will be classified
by their user-given name and description, filename, category, a list of
years during which they were used, and their media type.

Cognitive Design Dimension

We can now consider the cognitive dimension, which is often the most
difficult and comprehensive design exercise because it involves getting inside
our users’ heads, or trying to anticipate what they will be thinking about
when they are using our product. Any page or document that requires too
much cognitive processing from the user is inherently less usable than one
with an intuitive and familiar interface.

In this particular project, we need to think about the cognitive implications
of an XML parser. Here, paying careful attention to best practices from
usability research will help us to create a more intuitive and less cognitively
demanding CMS. For example, in his well known book Don’t Make Me
Think: A Common Sense Approach to Web Usability, Steve Krug writes
that his first law of usability is “don’t make me think”: websites should be
“self-evident. Obvious. Self-explanatory” (11). Krug justifies this law by
noting three behaviors of Internet users that have surfaced from his own
observations, as well as the research of usability experts such as Jakob
Nielsen. Specifically, he mentions these three facts:

1. Readers scan Web pages rather than reading them fully. Because we
are often in a hurry or otherwise distracted by a myriad of virtual (e.g.,
advertisements or instant messages are loading on the screen) or real
world (e.g., the phone is ringing) cues, we quickly scan pages in order
to try and find familiar elements based upon recognizable, physical
design cues or snippets of familiar text (22–3). Our CMS interface
should then use standardized labels and familiar interface components
in order to support this scanning behavior and reduce cognitive
load.

262 Focused Implementations

2. Readers do not make optimal Web browsing choices. Instead, they
choose the first reasonable choice they come across, a behavior known
as “satisficing” (24). This means that the typical user will not weigh
and measure each interface item presented by our CMS in order to make
the best possible decision about how it should be used. Instead, she will
quickly scan the interface for the first reasonable option that seems like
it might lead her to an acceptable outcome.

3. Readers do not figure out how things work before they use them. They
tinker with them and muddle through as best they can without fully
understanding them or reading instructions (26). This suggests that our
CMS should have built-in mechanisms to deal with improper input or
other interface decisions that might lead a user astray.

The cognitive dimension helps us to refine our initial ideas about physical
interface design into a format that is easy for our audience to use. We do
not want to ask them to think deeply about their every decision to click a
button or access a dropdown menu. Carliner suggests that the cognitive
design process follows a series of five steps (48–52). These steps are outlined
as follows:

First, designers must analyze needs (48). We can imagine a hypothetical
person to help us analyze needs, as we did when we created Joe Smith for
the first example in this chapter, or we could develop use case diagrams,
which are behavioral diagrams that show the relationship between hypo-
thetical users and goals in a system. For our CMS, we will use a generalized
use case diagram, as shown in Figure 6.14. Here, we see that there are two
different types of users, or “actors,” as they are known in use case parlance.
The first type of actor, labeled “production,” represents those users working
on production tasks such as document creation. The second type of actor,
labeled “management,” represents users more concerned with locating
existing assets and less concerned with the creation and annotation process.
Our use case diagram therefore provides a detailed and unambiguous sketch
of which tasks are likely to be performed by which users. This diagram tells
us that producers will need access to all functionality, while managers will
only need access to select and view tasks.

For your own projects, you can create use case diagrams from a variety
of software programs such as Microsoft Visio® or SmartDraw, or by using
online diagramming software such as the suite offered by Gliffy.com (see
additional online resources). You can also draw use case diagrams by hand.
In this case, you can sketch out the actors and tasks on a sheet of paper
and then use arrows to show the relationships between the two entities. The
use case diagram shown in this chapter was generated by a program named
SmartDraw.

Carliner’s next step in the cognitive design process is to set specific goals
for the project. These goals can be business or content related and should
include an evaluation component to ensure that these goals are being met

Focused Implementations 263

through the information system. For our CMS, the fundamental business
goal is to improve the efficiency and productivity of different organizational
groups by sharing assets and reducing redundancy and duplicity. In other
words, we want the assets produced by one group to be available to other
groups who may need to use the same files or documents for another type
of project. This process can be facilitated by knowledge managers in the
manner that we described in Chapter 3.

Content related goals describe tasks a reader should be able to complete
after interacting with the system (Carliner 49). Our primary content
related goal for the CMS is to build a system that users can use to upload
and search for assets. The evaluation of such a system would need to be
implemented in a longitudinal fashion and would depend largely on the
institutional context and the number of departments or divisions using
the CMS.

After goals have been set, we must choose the form of our communication
project. Form is related to genre. In rhetorical terms, genre refers to the
typical and repeated responses that emerge over time and through space
(Carliner 49). This is intrinsically related to the prototype theory we discuss
in Chapter 3. Although genre is something traditionally associated with
literary canons or stylistic conventions, we can also have genres associated
with locations or even products. For example, the typical patterns of

264 Focused Implementations

Production

Upload
Asset

Management

Add
Collection

Add
Metadata

Select
Collection

View
Assets

Figure 6.14 Use Case Diagram

behavior of someone using an ATM machine will be much different than
the behaviors of someone using their bank’s online website to check their
finances from home. Similarly, groups of people eating at a restaurant will
exhibit similar normalized responses and expectations based on social
conventions and the particular type of restaurant in which one is dining.
By making our genre clear to users, we reduce their cognitive loads because
they have prior expectations and familiarity with the process according to
that defined genre. In this project, our genre for the CMS is an interactive,
form-driven website; users will expect to see things like submit buttons, text
fields, and procedural instructions and labels on such a site.

The next step in the cognitive design process is to prepare the design of
our communication project. Depending on the complexity of a project
and its specific genre, the design documents can vary to a great degree. For
the CMS, we will devise an information map that shows the relationship
between different files and the audiences that will need to use these files.
Later, after we have considered affective design elements and a few
additional cognitive design parameters, we will create simple algorithms that
illustrate how the XML parser and the XML writer’s modules will work.

To prepare our information map, we should consider our audiences. Since
our content producers will be the individuals who produce unique assets,
this audience will be tasked with the uploading and tagging of content. Other
organizational groups, such as management, will then need access to the
CMS as “readers” so that they can find appropriate assets and distribute
these assets to other groups that may need them. In addition, all producers
should have access to these files for those situations in which management
is not directly involved in the process. We can therefore divide our overall
project into two main chunks, or units. The first unit will be composed of
functionality to add and tag assets. The next unit will be composed of files
that can search existing assets, parse these assets, and then display associated
metadata information. Producers will need access to both units while
management will only need access to the second unit.

Finally, we must set project and product guidelines. Carliner notes that
product guidelines include editorial guidelines, production specifications, and
technical specifications, while project guidelines include questions of
schedule, budget, and staff (51). We will include several of the product
guidelines in our communication design information map. These items will
include technical details such as file names and file types as well as rhetorical
details such as audience and purpose. Our information map is presented a
bit later in Table 6.1.

Affective Design Dimension

Lastly, we will consider the affective dimension of information design in
order to produce a final set of rhetorical questions. Affective in this context
is a psychological term that refers to the experience of feeling or emotion.

Focused Implementations 265

Affective design elements deal with issues such as motivation, attention, and
satisfaction. In other words, even if the information is available and
accessible, will users feel like using it?

To some extent, affective design can be linked to product aesthetics and
the visual dimension of information as we discussed in Chapter 4. For
example, Donald Norman is well known for exploring these types of affec-
tive and aesthetic issues in regards to the psychological implications of
everyday objects. In his 2005 book Emotional Design: Why We Love (or
Hate) Everyday Things, he writes about Japanese researchers Masaaki
Kurosu and Kaori Kashimura, who found that despite different types of
ATM machines having identical buttons and functionality, the Japanese
ranked the ATM machines with more attractive buttons and screens as being
easier to use than the ATM machines with less attractive layouts (17). These
findings were then replicated, with even stronger results, when Israeli scientist
Noam Tractinsky repeated this experiment by translating the Japanese
instructions into Hebrew (18). Norman relates the aesthetic dimension of
design into the affective dimension by claiming that since attractive things
make us feel good, an attractive product will make us feel good and allow
us to think more creatively (19). Creative thinking is important for a user
when she needs to react to unexpected problems that may come up during
a product’s use, or when she needs to extend or customize tools in order
to use them in ways the original developers did not anticipate.

Returning to our efforts to build an affectively usable CMS, we need to
create some guiding questions that will help us to better plan our parser.
Affective rhetorical questions related to our CMS can be formulated as
follows:

• How can we deal with issues such as attention and motivation?
• How can we keep our users focused on the task at hand?
• What can we do to make the interaction process as pleasurable as

possible?
• How can we reduce anxiety through our informational decisions?
• How can we create a simple interface that contains enough information

for its users, without being overwhelming, and that is at the same time
pleasing and familiar?

In order to address these affective issues, we should design our interface
to provide clear instructions. We should clearly indicate how many steps
are required to complete each operation. This helps reduce anxiety and gives
our users an idea of how much investment is required to accomplish a task
using our CMS. Additionally, when our parser eventually sorts through our
XML file and creates a navigable list of assets, it should clearly demonstrate
the value added by having such a content repository. This will create feelings
of satisfaction for the users who find this material and realize they will not
have to reinvent the wheel for their own project. We can expect that the

266 Focused Implementations

most pleasurable moment for users will be found in the instant they discover
that someone else has already done the work they were charged with. Upon
realizing this, they will recognize that they need only to download an
existing asset and make minor modifications to it in order to solve their
problem.

These issues of consistency, labeling, and organization are important for
us to address and undoubtedly help us to improve the moods and feelings
of our users. Additional improvements can always be made with the help of
professional graphic designers. For real world applications of this system,
graphic designers need to be involved early in the design process. These skilled
artists provide valuable expertise in aesthetics and design and contribute
meaningfully to the overall affective usability of an information product.

Preproduction Design Tasks

Since we are building a working CMS to store typical production assets,
we need to move from an abstract and conceptual idea of our CMS to a
more applied blueprint by using the information from our rhetorical analysis.
We will use this information to construct a rudimentary Web form that
allows us to gather data from our production archivists. To do this, we
need to apply the rhetorical and technical information we have collected so
far to build our initial design documents.

Using the information collected in our analysis, we know that we have
several initial facets to our data: name, filename, category, media type, years
used, and description. In addition, we should have some unique identifier
associated with each asset to differentiate items from one another. As in
the prior example, we can fashion a rough algorithm to help us with the
sequencing and design of our XML writer and parser. First, we will use the
following algorithm for the writer:

While (new assets exist to be added)
Find the asset ID number of the last asset added to the
system.
Display an upload form to allow for the storage of the
file.
After the file has been uploaded, display an additional
form to collect the metadata for the file.
Assign the asset ID number to allow for unique
identification of each asset in the collection.
Increment the current asset ID number to the next
available asset ID number in case more assets need to be
added.

End While
After all assets have been added and annotated with metadata,
provide a mechanism for writing all temporary data to an XML
document.

Focused Implementations 267

Our reader algorithm is even simpler. This series of instructions specifies
how our parser will iterate through our XML database and display relevant
information about the asset collection. This algorithm looks like this:

If (one or more asset collections exist)
Provide the user with a form to select the desired XML
file containing the asset collection.
Open and parse the XML file.
Display each asset contained in the XML file along with
its associated metadata.

End If

Now that we have precisely defined the steps needed for the storage and
retrieval of assets, we can concentrate on additional preproduction tasks by
specifying how various pages will be constructed and making production
decisions concerning our file and directory structure. Here we will combine
guidelines for the physical dimension with the cognitive dimension by
crafting a table which specifies parameters for the project. Specific columns
for data concerning audience and primary purpose, which directly relate to
cognitive interactions, can be combined with information about directory
structure, file type, and file name, which relate to physical interactions. One
way of constructing such a grouping is shown in Table 6.1. These files are
listed in roughly the same order in which they will be processed by first the
XML writer and then the XML parser.

Based on this table, we see that we will have a total of eleven files, three
of which are dynamically generated. We can now add logic to these files by
writing our scripts in PHP. The source code for each of these files is shown
in Appendix C. You can also download these files from our accompanying
website. If you would like to follow along with this example on your own
computer, you should perform the following steps:

1. Make sure that XAMPP is installed and in working order. Instructions
for installing XAMPP are given earlier in this chapter (p. 222).

2. Create a new directory named “cms” within your xmlparsers directory
in the XAMPP program directory. By default, this directory would be
created in “c:\xampp\htdocs\xmlparsers\cms”.

3. Create empty files with the filenames shown in Table 6.1. Type in the
source code shown in Appendix C that corresponds to each file name.
Alternately, you can simply download the Project 2 zip file from our
website and extract all of the files into your newly created CMS
directory.
a. In the root directory, you should have six PHP files: “add_asset_

metadata.php”, “finalize_assets.php”, “parse_xml.php”,“process_
asset_metadata.php”, “select_xml.php”, and “upload_asset.php.”

b. You should also have an HTML file named “upload_asset.html”
in the root directory.

268 Focused Implementations

Focused Implementations 269

Table 6.1 Parser Design File Structure

File Name Purpose File Type Audience(s)

upload_ This document allows users to upload HTML Production
asset.html files from their computer using a document

Web-based form.
upload_ This file checks that the asset is a PHP Production
asset.php supported type. It handles the reading script

and writing of asset IDs. It also performs
basic error checking and handles the
physical process of moving uploaded files
into the appropriate directory.

asset_ This temporary file stores the unique id Plain text None
buffer.txt number of the most recently added asset. document (works

“Asset_buffer.txt” is the default file name, behind the
but this can be changed. scenes)

add_ This script provides users with a second PHP Production
asset_ form for assigning metadata to the script
metadata.php uploaded asset.
process_ This script checks the metadata for any PHP Production
asset_ errors and then writes the metadata to a script
metadata.php temporary file. It provides links which

allow the user to either add more
individual assets or to write all existing
asset metadata to an XML file.

metadata_ This temporary file stores the metadata Plain text None
buffer.txt information for each asset in a temporary document (works

file. After all assets have been uploaded, behind the
this file will be parsed in order to create scenes)
the final XML file. “Metadata_buffer.txt”
is the default filename, but this filename
can be changed.

finalize_ This script loops through the temporary PHP Production
assets.php metadata file and obtains the asset script

identification and metadata information
associated with each asset. These items
are then transferred to a valid XML file.

asset_ This dynamically generated XML XML None
collection_ document houses the entire asset document (works
mmmDD collection in one encapsulated unit. Each behind the
yyyy.xml asset will be wrapped in individual ASSET scenes)

element tags with associated metadata
embedded within.

select_xml.php This script displays any available XML PHP Production,
files that exist in the default document script Manage-
directory. It displays a dropdown list that ment
enables a user to select any of these
available files for parsing.

parse_xml.php This script parses the selected XML file PHP Production,
using the SAX extension for PHP. Each script Manage-
asset found in the XML file will be listed ment
along with its corresponding metadata.

asset_ This is an XSL stylesheet file that is used XSL None
collection_ to display the XML file in HTML format. document (works
transform.xsl It will loop through the XML file and behind the

display each HTML item in tabular format. scenes)

c. There will be three directories in the root directory as well: “assets”,
“metadata”, and “sample assets”. The XSL transformation sheet,
“asset_collection_transform.xsl”, should be in the “metadata”
directory. If you are creating your files manually, you should also
create the assets directory and the metadata directory manually and
place the “asset_collection_transform.xsl” file in the metadata
directory as described above.

4. From the root CMS directory, open the “upload_asset.html” file in your
browser by navigating to “http://localhost/xmlparsers/cms/upload_asset.
html”. This is the first file you will need to access when uploading files
to the CMS. Follow the instructions to add assets and view your asset
collection using the built-in XML parser.

Building the Interface

Recall that the first task in our writer algorithm involved providing an upload
form to the user. This form allows the user to select a file for storage in the
CMS. Our initial Web form for this task needs to look something like
the page shown in Figure 6.15. We are not concerned much with aesthetics
at this early stage—though, as Donald Norman reminds us, such issues
certainly need attention at some point. At this moment, however, we are
more interested in building basic functionality and establishing an easy to
use interface. We are also careful to indicate the number of steps necessary
to complete this process as we planned for this in our rhetorical analysis.
This will help with both the affective and cognitive dimensions of our user
interactions since the user will know precisely how much investment is
required of her.

In order to create this form in HTML, we need to use the code for
“upload_asset.html” that is listed in Appendix C. Note the use of the
HTML comments beginning with <!— and ending with —> in order to
explain different portions of the code. This format for comments is different
from the PHP conventions, but is the same format used for XML comments.

Although this CMS could be used to harvest many different types of assets,
we specified during our preproduction phase that we would only accept
PDF, DOC, GIF, JPEG, and TXT documents. So, we provide these
instructions to the user as well. Figure 6.16 shows the bottom portion of
this form after a user has selected an asset to upload. In this case, she is
uploading a file named “sample_brochure.doc”.

After the file has been uploaded and processed by this initial script, the
user is provided with information concerning the asset’s new name and
recognized file type. She is then given the option to proceed to Step 2, as
shown in Figure 6.17.

In Step 2, the user is taken to the “add_asset_metadata.php” page and
given the opportunity to provide metadata for the uploaded asset. Here,
several pieces of information are added automatically by the CMS in order
to reduce cognitive and affective strain on the user. As Figure 6.18 reveals,

270 Focused Implementations

the asset’s id, media type, and filename are automatically added by the
system. In addition, a default asset name is provided, though this can be
changed by the user if she so desires. Finally, the “Years Used” selection
will default to the current year. The user is only required to provide
categories, additional years, and an asset description. For this example, we
have typed in a brief description and selected “New Media”, “Print”, and
“Epsilon Project” as sample categories. These categories could represent
different divisions of an organization or different internal project names.

Focused Implementations 271

Figure 6.15 CMS Step 1a

Figure 6.16 Asset Upload Screen

We also selected the additional year “2005” to indicate that this sample
brochure was used in both the year 2005 and the year 2008, which is the
current year in which this form is being filled out.

What this form is doing is collecting data from a production team member
that describes the “essence” of the asset by assigning metadata to it. Upon
collecting this information, the form sends this data to a new page, named
“add_asset_metadata.php”. This page takes the data points and translates
them into variables, then it glues them together into a single string entity
separated by the sequence ***. Commas are used to separate multiple
values that are related to the same entities. This notation is important
because it will be used to construct the XML file later and the script will
need to know where one element ends and the next begins. We will use the
same convention in our single sourcing project later in the chapter. The idea
is to construct a running buffer file that can then be accessed incrementally
when it is time to create the final XML document.

After this process is finished, the “add_ asset_metadata.php” script
attempts to initiate a file connection and write this data to a temporary file.
Using our example data, the temporary buffer file contains a single line that
looks like this:

1***asset1.doc***asset1***New Media, Print, Epsilon
Project***2008, 2005***MS-Word Document***This is a sample
brochure idea that was shown to clients before the new Epsilon
2.0 software was released. It needs a bit more work before it
can be sent to the printer.

272 Focused Implementations

Figure 6.17 CMS Step 1b

After all assets have been added, the user is given the option to click on
a link to “finalize all assets” and finish the process (Figure 6.19). Or, she
may choose to return to Step 1 and continue adding assets for this particular
collection. Once all assets have been uploaded, she can click on the “finalize
all assets” link to produce the XML file. What this final step will do is take
the information from the temporary buffer file and construct the XML
document containing all assets.

After all assets have been uploaded and annotated with metadata, the
user is given the option to finalize her collection and write the temporary

Focused Implementations 273

Figure 6.18 CMS Step 2a

buffer file out into a permanent XML document (Figure 6.20). She then has
the option to:

a. View the collection immediately using an XSL transformation that
builds an HTML file from the XML document,

b. Begin a new asset collection which will have its own associated XML
document, or,

274 Focused Implementations

Figure 6.19 CMS Step 2b

Figure 6.20 CMS Step 3

c. Select an XML document to parse using the built-in CMS parser, which
is a more sophisticated version of the table presented by the XSL
transformation.

After the asset collection is finalized, an XML document is dynamically
created from within the CMS system. An example XML file created by the
system is shown next. You will see that many of the form elements from
Figure 6.18 have been directly translated into XML elements and attributes
in our database. This example file also contains several additional assets
that were entered using the CMS system.

<?xml version=”1.0” encoding=”utf-8”?>
<!— XML Asset Collection Document —>
<!— Automatically generated by Content Management System —>
<!— Created on Aug192008 —>
<?xml-stylesheet type=”text/xsl” href=”asset_collection_
transform.xsl”?>
<!DOCTYPE asset_collection [

<!ELEMENT asset_collection (asset)*>
<!ELEMENT asset (id,filename,name,category,years,
media,description)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT filename (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT years (#PCDATA)>
<!ELEMENT media (#PCDATA)>
<!ELEMENT description (#PCDATA)>

]>

<asset_collection>
<asset>

<id>1</id>
<filename>asset1.doc</filename>
<name>asset1</name>
<category>New Media, Print, Epsilon Project
</category>
<years>2008, 2005</years>
<media>MS-Word Document</media>
<description>This is a sample brochure idea
that was shown to clients before the new
Epsilon 2.0 software was released. It needs
a bit more work before it can be sent to the
printer.</description>

</asset>

Focused Implementations 275

<asset>
<id>2</id>
<filename>asset2.pdf</filename>
<name>asset2</name>
<category>New Media, Print, Epsilon Project
</category>
<years>2008, 2005</years>
<media>Adobe PDF Document</media>
<description>This is the PDF version of the
Epsilon product brochure.</description>

</asset>
<asset>

<id>3</id>
<filename>asset3.txt</filename>
<name>asset3</name>
<category>New Media, Print, Gamma Project,
Epsilon Project</category>
<years>2008, 2005</years>
<media>Plain text Document</media>
<description>These are some printing notes
from the Gamma Project that might also be
useful for the Epsilon project.</description>

</asset>
<asset>

<id>4</id>
<filename>asset4.jpg</filename>
<name>asset4</name>
<category>Epsilon Project</category>
<years>2007</years>
<media>Image File</media>
<description>JPEG logo for the Epsilon
project. Red text with drop
shadow.</description>

</asset>
<asset>

<id>5</id>
<filename>asset5.jpg</filename>
<name>asset5</name>
<category>New Media, Print, Advertising
</category>
<years>2007</years>
<media>Image File</media>
<description>This is a JPEG of the logo for
the new Epsilon 2.0 software.</description>

</asset>
</asset_collection>

276 Focused Implementations

Although we do include a DTD file in our dynamically generated XML
document, our SAX parser does not have the ability to validate our
document using this internal DTD. With the DTD added, however, we are
making our document more extensible by specifying the pattern that should
be used for adding new data or elements to the file should this ever need
to be done manually. In addition, if this asset document ever needs to be
exchanged with another computer or merged into another XML file, the
DTDs of this document and the receiving system could better understand
one another based on this information.

After it is created, this XML file can then be directly transformed using
an XSL transformation (Figure 6.21) or parsed using our more robust CMS
parser (Figure 6.22).

At first glance, the custom-designed parser in Figure 6.22 looks almost
identical to the HTML listing we see in Figure 6.21 when we load the XML
file directly and initiate its XSL transformation. In fact, it is useful to know
that much of the hard work involved with building a customized parser can
be minimized by using an XSL transformation as we do here. There are,
however, subtle differences in the amount of flexibility we have available
to us when parsing the document. The primary advantage of using our own
custom parser in this instance is that we can take advantage of PHP’s built-
in functions to perform additional error checking and validation on our

Focused Implementations 277

Figure 6.21 XSL Transformation

data. For instance, using our customized script, the CMS parser here will
check and verify that a file exists before providing a link to the asset. The
XSL transformation does not perform this check and could potentially lead
a user to a broken link.

For example, if we were to remove the files “asset4.jpg” and “asset5.jpg”
from our assets directory, we would create a situation in which our users
might encounter broken links, or links to resources that no longer exist.
Compare the two versions of our parser shown in Figures 6.23 and 6.24.
In Figure 6.23, we see that links for assets 4 and 5 exist even though the
files they are linking to are no longer accessible. In Figure 6.24, our parser
has detected these anomalies and indicates to the user that these files are
missing. It also removes the links to these resources so that broken links
are no longer potential frustrations for the user. This contributes to a better
information design along all three dimensions: physical, since the links are
now more accurate; cognitive, since we improve the satisficing process by
only providing meaningful links; and affective, since potential frustrations
and annoyances are minimized or even outright eliminated.

278 Focused Implementations

Figure 6.22 Custom Parser View

Focused Implementations 279

Figure 6.23 4-Column XSLT View

Figure 6.24 4-Column View using Custom Parser

During maintenance periods, a quick scan of the asset list allows a user
to determine which files have been removed or relocated and then to either
remove those assets from the system (which would need to be done manually
with our current CMS) or otherwise track down the assets and restore them
to the assets directory.

Like the RSS feed parser we created in our first project, this CMS project
could also be improved upon. For example, for large asset collections, there
would need to be some mechanism for adding pagination so that only a
small number of records are shown on each page. Also, it would be helpful
to have an automated editing function to revise or add to existing metadata,
as well as an automated delete function to remove assets no longer in the
system. Lastly, it would be useful to perform a postproduction rhetorical
analysis on this system to ensure that the physical, cognitive, and affective
design parameters were effectively achieved as outlined during the planning
phase of this project. Additionally, in a real production environment, it is
always a good idea to perform some usability testing involving real human
participants rather than relying too much on hypothetical personas and use
case diagrams.

Fortunately, some of the work we have done for this large project
can carry forward into our final project, which is a single sourcing
demonstration. Project 3 is designed to show one way of creating a very
basic level three single sourcing system that can modularize and repurpose
XML content based on self-selected user skill levels.

Project 3: Single Sourcing System

While we discussed single sourcing technologies in Chapter 3, we will
review a few of the important points about single sourcing here before
building our third and final XML parser. First, we need to agree upon a
common meaning for single sourcing so that we can build an XML parser
that is in line with this conceptual idea. We will use the definition of single
sourcing that is offered by the Society for Technical Communication’s Single
Sourcing Special Interest Group. This definition is cited by Joe D. Williams
in his 2003 literature review of the single sourcing literature. Williams writes
that single sourcing is “using a single document source to generate multiple
types of document outputs; workflows for creating multiple outputs from
a document or database” (321).

Next, we need to understand why single sourcing is useful to technical
communicators and other professionals working with large volumes of
textual data. We discussed many of these reasons in Chapter 3, but we will
mention them again here. Ann Rockley notes that single sourcing technol-
ogies, or structured writing methodologies in general, offer the following
benefits (350):

• The ability to unify content and ensure that content can be used (and
reused) for a variety of informational needs;

280 Focused Implementations

• A standardized system for working in collaborative authoring environ-
ments;

• A framework for delivering electronic documents through automation,
using information processing technologies; and

• The potential for cost and time savings through the use of more efficient
techniques in terms of both the authoring and reuse of documents.

Like Rockley, Locke Carter agrees that single sourcing can provide benefits
in terms of cutting costs, boosting revenue, creating more efficient means
of production and distribution, and adding flexibility to the document
design process. He also notes that single sourcing can result in an increase
in the quality of products and a “faster responsiveness to a constantly
changing marketplace” (317). Both the improvements in quality and market
reaction time can be largely linked to the fact that content can be updated
from a central location and then streamed to ancillary media using single
sourcing technologies.

On the other hand, Carter also warns that document designers must be
cautious of single sourcing technology because this process disrupts the
traditional craftsman process of designing documents individually, for a
specific context and audience, from start to finish. In Carter’s words, single
sourcing “puts pressure on the seemingly stable constructs of the writer and
the document in ways that many previous innovations have not” (318).
Because of this pressure, we must be careful when considering the complex
rhetorical spaces formed by document developers, media, and potential
audiences. In situations where writers and document designers are comfort-
able with using single sourcing and the same content is generally reused
among various distribution media, single sourcing may be a good process
to consider. When circumstances call for subtle and distinct voices to emerge
from these various documents, however, or when content is highly special-
ized and idiosyncratic, single sourcing may not be such a good idea. In these
types of situations, a general CMS may be a better choice if you are aiming
for the automation and electronic distribution of information.

If single sourcing is a strategy well-suited for your own organizational
culture and its associated information ecology, then you can use XML as
a major part of your implementation. XML makes it simple to precisely
define which modules of data can be reused across documents and how that
data should appear within each individual document. Our primary goal in
single sourcing is to write our source content once, then provide access to
different configurations of this content using customized views. Building a
parser for this type of task requires an analysis of our different user categories
and their associated viewpoints, as discussed in the next section.

Now that we have considered some important caveats related to the design
of single sourcing systems, we can begin this project’s rhetorical analysis.
Since single sourcing technologies are commonly used to develop software
documentation, we will be extending the example of our content manage-

Focused Implementations 281

ment system from Project 2 by adding some documentation to the project.
Rather than using the Web-based version of that project that we discussed
in Project 2, we will be using a small Microsoft Windows® version of
the application named Asset Management System (AMS) 1.0 to better
distinguish our online documentation from the product itself. The default
AMS 1.0 interface is captured in Figure 6.25.

Though AMS 1.0 is a working application that we developed using the
Microsoft Visual Basic® programming language, we will not go into any of
the code details here as we intend to use this only as a demonstration of a
software program that could be documented with an online single sourcing
system. Online documentation continues to be a good option for software
developers because it is cheaper to develop. It requires no media and there
is usually only a small expense associated with Web hosting. This type of
documentation is also easier to maintain, requiring only updates to the online
documentation files rather than the shipping out of new CD documentation
every time a new update or software release is launched.

282 Focused Implementations

Figure 6.25 Asset Management System (AMS) 1.0

This application mimics the functionality of the CMS we created in
Project 2 with the exception that it is designed to generate the XML
metadata only. In other words, it will handle the XML file creation, but it
does not manage and store the assets themselves. Using this application, a
person can add asset metadata one item at a time by providing details about
the assets, their categories, the years during which these assets were used,
and their media types. AMS 1.0 is designed with several toolstrip menus
and submenus to better reflect the typical GUI applications that have
different feature levels for different types of users (see Figure 6.26). You
can download this sample application from the text’s website and enable
the default configuration by using these toolstrip menus and navigating to
Tools, Options, Load All Defaults. Or, you can enable these same defaults
by pressing the control key, the alt key, and the letter “a” key all at the
same time when the application is active on your screen. Choose “Yes” when
you are asked to erase all existing categories.

In a fully developed single sourcing system, we would document each of
these features in separate modules and then pull in only those feature des-
criptions deemed appropriate for a particular type of user and the common
tasks associated with that type of user. In this project, we will add single
sourcing functionality for an introductory help module.

In terms of functionality, the AMS 1.0 software imitates the Web interface
we designed for Project 2 and produces the same type of well-formed XML.

Focused Implementations 283

Figure 6.26 AMS 1.0 Sample Menus

It generates an identical XML structure with two exceptions. First, it does
not include a DTD, since the application itself does not do any validation.
(Our single sourcing system, however, does support validation since the
new DOM API we are using allows us to validate against an internal DTD.)
Also, the AMS 1.0 application does not include the filename tag as this
is used solely for asset storage purposes, which is not a feature of this
particular product. Rather, this type of application could be used when
access to Apache or PHP was not available to an archivist. Of course there
is a tradeoff in that the application was designed for the Windows operating
system and other operating systems are not supported. In addition, the
software requires .NET runtime libraries. These are specialized collections
of code which users running older version of Windows may not have
installed.

Now that we have an idea of the functionality of the software and the
module that we will be documenting, we can try yet another type of
rhetorical anlaysis, which is a bottom-up approach. This is in contrast to
the top-down approach we used for Project 2. In a bottom-up approach,
we start with the data rather than the predicted informational needs of our
audience. This type of rhetorical analysis is more concerned with finding
the appropriate level of granularity with which to surround a unit of text
and finding the means of combining and repurposing these textual units in
a manner that is compatible with our informational needs.

In Chapter 3, we used a simple table to divide the XML entities used for
the DOE’s ACHRE to show how they could be modularized for use in a single
sourcing system. This table separated information into semantic, generic, and
XML entity classifications. Here, we will do the same thing using some units
of text that describe the functionality of our AMS 1.0 software from three
different skill level perspectives. We will also add a fourth column which will
indicate which modules we need to include when displaying each
informational node of text. The result is shown in Table 6.2.

In contrast to our Chapter 3 example, we will be parsing our XML from
a single document rather than from a collection of external entities. We do
this not because it is inherently better, but simply to demonstrate that a
single sourcing system does not necessarily have to separate all units of text
into separate physical files.

Though simple, this analysis can help us to write the core of our single
sourcing parser. It tells us how information should be presented to an
audience member according to the skill level of the individual and the
complexity of the material. The information in this table translates to the
following simple algorithm:

If the Introduction topic has been selected
If the skill level is ”beginning”
Display module ”ib”
Else if the skill level is ”intermediate”

284 Focused Implementations

Display module ”ib” and module ”ii”
Else if the skill level is ”advanced”
Display all three modules: ”ib”, ”ii”, and ”ia”
End If

With this algorithm now developed, we can design our parser’s file
structure and borrow portions of the writing component from Project 2.
Table 6.3 shows the files that we will be using for the single sourcing
demonstration. Like the CMS from Project 2, we have a mixture of HTML,
PHP, XML, TXT, and XSL files being used in this system. Since we are
automatically creating the ID based on what we developed earlier in Table
6.1, we can also reduce the number of files we need by two and simplify
the writer component for this new parser.

Here are the steps to follow if you would like to recreate this project on
your own. Interestingly enough, these instructions that you are reading now
can be considered single sourced from our prior CMS example since they
are describing the same process and only modifying a few units of text here
and there in order to be compatible with Project 3. This is the type of reuse,
combination, and repurposing that makes the single sourcing methodology
so powerful for situations in which certain units of information are used in
multiple places.

First, you will need to create a new directory named “ss” that will hold
the third parser. If you are using the default XAMPP settings on a Windows
computer, the full path to this directory will most likely be “c:\xampp\htdocs\
xmlparsers\ss”. Next, you should follow the steps below to install the single
sourcing demo on your own computer.

1. Make sure that XAMPP is installed and in working order. Instructions
for installing XAMPP are given earlier in this chapter.

Focused Implementations 285

Table 6.2 Bottom-Up Analysis for Single Sourcing System

Semantic Unit Generic XML ID Name Modules to
Unit Include

Introduction module module introduction_beginner: ib
written at the beginner’s
level ib

Introduction module module introduction_intermediate: ib, ii
written at the intermediate
user’s level ii

Introduction module module introduction_advanced: ib, ii, ia
written at the advanced
user’s level ia

286 Focused Implementations

Table 6.3 Single Sourcing File Structure

File Name Purpose File Audience(s)
Type

add_module. This document allows users to HTML Writers
html write documentation modules document

for particular software
features.

process_module. This file does some basic error PHP Writers
php checking and adds the script

documentation module to a
temporary buffer file. It then
provides the writer with links
to add new modules or to
finalize the XML documentation
file.

ss_buffer.txt This temporary file stores the Plain text None
unique id number, title, skill document (works
level, and documentation text behind the
for each software documentation scenes)
module.

finalize_modules. This script loops through the PHP Writers
php temporary buffer file and obtains script

the documentation information
for each module. These items are
then transferred to a valid XML
file.

documentation. This dynamically generated XML None
xml document houses the entire document (works

documentation collection in one behind the
encapsulated unit. It includes an scenes)
internal DTD for validation with
the DOM parser.

parse_xml.php This script parses the selected PHP End Users
XML file by skill level to display script (Production)
the appropriate documentation and Writers
modules for the given user type. (Testing)
It applies a simple algorithm to
provide additional advanced
information to skilled users.

ss_allmodules_ This is an XSL stylesheet file that XSL Writers
transform.xsl is used to display all documentation document

modules that currently exist in the
XML file in HTML format. It
displays a hierarchical structure
using unordered lists.

2. Create a new directory named “ss” within your xmlparsers directory
in the XAMPP program directory. By default, this directory would need
to be created in “c:\xampp\htdocs\xmlparsers\ss”.

3. Create empty files with the filenames shown in Table 6.3. Type in the
source code shown in Appendix D that corresponds to each file name.
Alternately, you can simply download the Project 3 zip file from our
website and extract all of the files into your newly created single sourcing
directory.
a. In the root directory, you should have three PHP files: “process_

module.php”, “finalize_modules.php”, and “parse_xml.php”.
b. You should also have an HTML file named “add_module.html”.
c. There should be a single directory named “metadata” that exists

in the root directory. The XSL transformation sheet, “ss_
allmodules_transform.xsl”, should be in the “metadata” directory.
If you are creating your files manually, you should create the
metadata directory manually and place the “ss_allmodules_
transform.xsl” file in the metadata directory as described above.

4. From the root single sourcing directory, open the “add_module.html”
file in your browser. This is the first file you will need to access when
using the single sourcing demo. Follow the instructions to add
documentation modules and later to view your documentation using
the built-in XML parser.

As we mentioned previously, since we have already designed a perfectly
good writer module for Project 2, we can adapt this model to our current
needs without much trouble. If you review the source code for the single
sourcing demonstration that is provided in Appendix D and compare it to
the code in Appendix C, you will note that the writer component is very
similar to the one we used for the CMS. In fact, as we note in Chapter 3,
a single sourcing system is really a specialized instance of a CMS anyway,
so this makes sense. Our modified parser is what will distinguish our single
sourcing system from the AMS we built in Project 2. As with the CMS
example, the first step in actually using the system involves typing in some
data and submitting a Web form (Figure 6.27).

The second step of the writing process is also very similar to the
mechanism from our CMS example. The user is provided with an option
to continue adding documentation modules or to finalize the master
documentation database by writing it to an XML file (Figure 6.28).

After the user has returned to Step 1 and proceeded to add two more
modules (intermediate and advanced) for our “Introduction” feature, she
is rewarded with this XML file being generated by our custom single
sourcing application:

<?xml version=”1.0” encoding=”utf-8”?>
<!— XML Single Sourcing Documentation File —>

Focused Implementations 287

<!— Automatically generated by Single Sourcing Demo —>
<!— Created on Aug192008 —>
<?xml-stylesheet type=”text/xsl” href=”documentation_
transform.xsl”?>
<!DOCTYPE documentation_modules [

<!ELEMENT documentation_modules (module)*>
<!ELEMENT module (id,feature,skill_level, documentation)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT feature (#PCDATA)>
<!ELEMENT skill_level (#PCDATA)>
<!ELEMENT documentation (#PCDATA)>

]>
<documentation_modules>
<module>
<id>introduction_beginner</id>
<feature>introduction</feature>
<skill_level>beginner</skill_level>
<documentation>Asset Management System 1.0 is a tool for
organizing and labeling collections of organizational
documents. You can use this system to add asset labels for
categories and media and to assign a list of years during which
that asset may have been used. In addition, you can provide a
detailed description of the asset and why it may have long term
importance for your organization. To get started with AMS 1.0,
click the \”Tutorial\” link from this help file.
</documentation>
</module>
<module>
<id>introduction_intermediate</id>
<feature>introduction</feature>
<skill_level>intermediate</skill_level>
<documentation>This program supports many features such as
user-configurable fields for categories, year ranges, and media
types. In addition, the program includes options for clearing
all fields or for restoring defaults using the (Tools, Options,
Reset) menus from the Tools menubar. Messages concerning
program operations are displayed in the Status: field.
This field is directly above the Asset Name dropdown menu in the
AMS interface. </documentation>
</module>
<module>
<id>introduction_advanced</id>
<feature>introduction</feature>
<skill_level>advanced</skill_level>
<documentation>Advanced features include the ability to use
keyboard shortcuts and to import and export settings using XML

288 Focused Implementations

files. Keyboard shortcuts for common commands are found in the
Keyboard Shortcuts section of this help system. Program options
default to verbose mode for extra warnings and customized
messaging from the AMS system. To disable verbose mode, see
Disabling Verbose Mode in the list of help
topics.</documentation>
</module>
</documentation_modules>

We now have three different documentation modules that we can use for
our AMS software. According to the rubric developed during our rhetorical
analysis, we will assume the beginners will need the beginner text only. We
can then repurpose the beginner’s text module by combining it with the
intermediate and advanced users’ modules and repurpose the intermediate
user’s module by combining it with the advanced user’s module. The final
outcome in terms of document delivery will then look like the coding shown
on the next page.

Focused Implementations 289

Figure 6.27 Single Sourcing Step 1

• Beginners: receive “beginner” module;
• Intermediate users: receive “intermediate” and “beginner” modules;
• Advanced users: receive “advanced”, “intermediate”, and “beginner”

modules.

After she finishes writing these modules, our hypothetical user is taken
to Step 3, which is shown in Figure 6.29.

290 Focused Implementations

Figure 6.28 Single Sourcing Step 2

Figure 6.29 Single Sourcing Step 3

At this point, the author has the choice of viewing the data through an
XSL transformation, starting a new documentation collection from scratch,
or parsing the documentation file using a customized single sourcing parser.
The parser for this application is found in the “parse_xml.php” file in
Appendix D. Note how the script moves the user through the authoring
process in an iterative and recursive fashion, allowing her to make selections
and then return back to the same script any number of times until the
documentation is complete. It then performs some simple XML parsing using
the XML DOM model by looking at the data stored within each <skill_level>
element and determining if it matches the current informational needs at
the skill level self-selected by the user. The PHP code to access a particular
DOM node looks like this:

/* First, get any skill level nodes (there is actually only
one) associated with each module */
$skillLevels = $module->getElementsByTagName(“skill_level”);
/* Now, get the value associated with that node. This will be
”beginner”, ”intermediate”, or ”advanced.” */
$skillLevel = $skillLevels->item(0)->nodeValue;

Focused Implementations 291

Figure 6.30 Single Sourcing After XSL-T

292 Focused Implementations

Figure 6.31 Single Sourcing Parser, Step 1

Figure 6.32 Single Sourcing Parser, Step 2

Figure 6.33 Single Sourcing Parser, Step 3 (Beginning User View)

Final output from this system can be seen using the XSL transformation
(Figure 6.30) which shows all documentation modules, or by using the
customized single sourcing parser, which shows a beginner’s navigational
sequence in Figures 6.31–6.33. Note how the informational needs of a
beginning user (Figure 6.33) are different from those of an advanced user
(Figure 6.34) and how the system attempts to anticipate and meet the needs
of both users according to our bottom-up rhetorical analysis.

Although this is a very simple example of a single sourcing system, it does
demonstrate the fundamental idea behind repurposing textual nodes. It also
shows how an XML parser can manipulate multiple content modules that
are written once and then combined using different permutations in order
to support different user views or perspectives. Studying the code in
Appendix D will give you a better idea of the basic mechanics behind a
primitive level three single sourcing system.

Chapter Summary

This chapter introduced the PHP scripting language and demonstrated how
PHP and its associated XML libraries can be leveraged in order to build
custom XML parsers. By building these custom parsers, we were able to
put to use both the ideas about knowledge management and rhetoric we
have been discussing in the first half of the book as well as some of the
technical skills we discussed in the second half. Although this is probably

Focused Implementations 293

Figure 6.34 Single Sourcing Parser, Step 3 (Advanced View)

the most technically demanding chapter in the book, it is also rhetorically
demanding in that instead of just thinking about rhetoric and information
design, we were asked by these projects to apply ideas about audience and
context to specific examples shaped from common types of informational
needs on the World Wide Web. Moving from the abstract to the concrete
often requires an additional amount of planning and thinking that can be
time consuming and difficult, but that additional effort is always worthwhile
as a long term document design strategy. Though we considered both top-
down rhetorical strategies (Projects 1 and 2) and a bottom-up rhetorical
strategy (Project 3), in reality, most designers will find that the best approach
will incorporate both of these strategies into the design process. It is
important to understand the needs and backgrounds of your users because
everything they think, feel, and physically touch during a session will play
a part in the interactions between your communication product and these
users. Likewise, as a developer, information architect, and knowledge
manager, you need to think about the data themselves in order to produce
XML content that is robust, flexible, extensible, and transferable from one
domain into another.

The theorist–practitioner model was stressed throughout our three
examples because it is so important to the professional communicator
working with XML technologies. On the theoretical side, one must recognize
that the humanistic elements of information management and design are
often overlooked for the sake of technical efficiency or simplicity. We need
to be aware of this and be ready to consider the persuasive characteristics
of information design just as we consider the technological issues. Humans
are emotional, fallible, and oftentimes unpredictable, and our software
programs need to be designed to take these factors into account.

On the practitioner side, we need to recognize that by relying on pre-
existing parsers, our creative potential and expressive capacities are limited
by the designs of other companies or other individuals. Only by immersing
ourselves in the low-level programming of XML parsers can we truly design
an interactive system for dealing with XML code in exactly the way we
want. Existing parsers work wonderfully for validating code and communi-
cating standardized information over networks, but to truly explore the
capacity of XML as an expressive language will inevitably require a greater
degree of control and flexibility that general parsers can provide. Similarly,
the process of building customized CMSs or single sourcing systems that
flex and bend with the organic movements of a distributed organization
will necessitate some amount of technical creativity on the part of the parser
designers.

Although this chapter is heavy in programming code and syntactical
complexity, we want to conclude by reminding our readers that the XML
parser design process is not just about programming or coding scripts. The
skilled professionals who build such systems must be aware of these technical
details, but as we have stressed in this chapter, they also must pay attention

294 Focused Implementations

to the larger rhetorical context of the information transfer process. For
instance, what groupings will emerge in terms of audiences, skills, and
information-seeking patterns? How will these groups differ on both sides
of the parsing process, where one side is concerned with adding data to the
repository and the other side is focused on retrieving useful information
from this data store? Is a certain type of information being privileged at the
expense of other types, and, if so, what are the implications of such a
strategy? By considering these elements as well as building skills in informa-
tion architecture and scripting, one can supplement the technical with the
humanistic, the logical with the artistic. The document designer or
information architect with skills in audience analysis and other forms of
rhetorical acumen will inevitably find themselves in greater demand as new
Internet technologies increasingly push us closer to Berners-Lee’s vision of
a distributed, yet integrated, Semantic Web.

In Chapter 7, our final chapter, we will explore some case studies focused
on XML in the real world and discuss how XML plays a role in various
types of careers. We will see how researchers and industry experts use XML
to structure, manage, and communicate data that has meaning within
specific professional contexts.

Discussion Questions

1. This discussion question contains two parts:
a. In a small group, discuss the specific information that is gathered

through the RAX instrument. What rhetorical considerations are
well-represented, and which areas are lacking?

b. Assume you are part of a team that is called upon to build an XML
database for an environmental agency. The database will be used
to keep track of particularly heinous industrial business practices
that may have severe environmental consequences. This XML file
needs to contain internal information useful to the environmentalists
as well as information that will be distributed to the public by way
of the agency’s website. Discuss how you will need to modify the
RAX survey to better suit the needs of this particular project.

2. Compare Projects 1 and 2 from this chapter. How do CMSs and single
sourcing systems relate to one another? What are the similarities and
differences? What other examples of CMSs do you use in your own
information-seeking habits?

3. Under what conditions might it be better to present more information
to beginning users rather than less in a single sourcing system? In
Project 3, why did we choose to reverse this convention and present
more information to users that had a higher level of skill?

4. Revisit Chapter 3 and read about Rockley’s four levels of single sourcing.
Our example in this chapter was a level three single sourcing system.
What changes would we need to make to this application to move it

Focused Implementations 295

towards a level four system, or an EPSS? Discuss the advantages and
disadvantages of such a system over a dynamic customized content (level
three) implementation.

Activities

1. Download the sample XML file and PHP files for Project 1 from the
book’s website. Using XAMPP, test the news syndication system and
see if you can get it working. Experiment with adding additional news
stories to the XML file and try adding the file as a live bookmark in
Mozilla Firefox®. What happens when you remove or rename the
elements in the newsfeed XML file? Experiment with the XML file and
try adding some additional elements and attributes from the RSS
specification page at www.rssboard.org/rss-specification.

2. Design an HTML form with two text fields and a submit button.
Send the form data to a PHP script named “process.php”. In the
“process.php” file, write some code to display the variables back to the
user in different formats (heading1, from within a table, using italics,
and so on). Experiment with changing the form method from GET to
POST and see what changes occur in your script. Once you have
mastered this, try to use SimpleXML to add the information from your
PHP form to an XML file (hint: check the appendices for some sample
scripts that deal with writing to text files).

3. Download the CMS Project 2 example files from this text’s website.
Research “include files” in the PHP documentation and modify this
project to use an include file to display the redundant information that
appears in the various project files. For example, you might choose to
include the HTML tags that begin a new document in a “header.inc”
file and the HTML tags that end a new document in a “footer.inc” file.
Consider how the process of using include files forces you to think about
information on a larger scale rather than focusing on the “document
level” of granularity. How does the use of include files help to create
a more efficient CMS?

4. Download the AMS 1.0 software from our website. Experiment with
writing documentation modules for some of the features that were not
discussed in this chapter. What design considerations are you asked to
make when writing content that you know will be reused in multiple
contexts for multiple users?

5. Using the documentation produced in the previous question, incorporate
this new module into the single sourcing demo project. Discuss how
the single sourcing demo project could be improved based on the ideas
of Rockley, Carter, and Williams that were discussed in this chapter.

296 Focused Implementations

Sample Group Project: Hi-Tek Inc.

Assume you are working for Hi-Tek Inc., a large international organization
that manufactures cellular phone accessories. Hi-Tek’s primary manufac-
turing plant is located in Chicago, but your group has recently been asked
to create a substantial amount of written material explaining Hi-Tek’s plan
for a partial relocation overseas. The purpose of this material will be to
explain how this relocation will affect Hi-Tek employees in participating
(relocating) divisions.

In order to produce versions of this material rapidly in several different
formats, your group will need to use a single sourcing methodology. As a
class, determine which information needs to be included in order to meet
the needs of this audience of Hi-Tek employees. Next, define some standard
XML elements to use for each type of information as it is stored in its central
location. For instance, you might choose to use an <international_employee>
element to wrap around each affected employee and a <domestic_employee>
element to indicate non-affected personnel.

In smaller groups of 4–5 students, each group then needs to consider a
specific type of delivery document from the following list:

a. a printed memorandum,
b. an e-mail,
c. a page for Hi-Tek’s standard operating procedures,
d. a Web page,
e. a brochure page, or
f. a prerecorded telephone message.

As you think about your selected format, consider the following questions:

• Does this format require any additional XML tags to be stored in the
central information repository? If so, what are they?

• How would a DTD or schema be helpful in the collaborative XML
creation process?

• How can a database table be used to single source your information?
Could a database be used instead of XML? In conjunction with XML?

• What XSL transformations would be useful for these various
informational needs?

After initial procedures have been created, discuss as a class the best way
to facilitate the transfer of XML data from a single, central repository to
each group’s selected format.

References

Albers, Michael J. “Introduction.” Content & Complexity: Information Design in
Technical Communication. Michael J. Albers and Beth Mazur, eds. Mahwah, NJ:
Lawrence Erlbaum Associates, 2003. 1–13.

Focused Implementations 297

–––– “Complex Problem Solving and Content Analysis.” Content & Complexity:
Information Design in Technical Communication. Michael J. Albers and Beth
Mazur, eds. Mahwah, NJ: Lawrence Erlbaum Associates, 2003. 263–83.

Burke, Kenneth. A Grammar of Motives. Berkeley: University of California Press,
1969.

Carliner, Saul. “Physical, Cognitive, and Affective: A Three-Part Framework for
Information Design.” Content & Complexity: Information Design in Technical
Communication. Michael J. Albers and Beth Mazur, eds. Mahwah, NJ: Lawrence
Erlbaum Associates, 2003. 39–58.

Carter, Locke. “The Implications of Single Sourcing for Writers and Writing.”
Technical Communication 50.3 (2003): 317–20.

Krug, Steve. Don’t Make Me Think! A Common Sense Approach to Web Usability.
2nd ed. Berkeley, CA: New Riders, 2006.

Mauthe, Andreas, and Peter Thomas. Professional Content Management Systems.
Chichester, West Sussex: Wiley, 2004.

Morville, Peter, and Louis Rosenfeld. Information Architecture for the World Wide
Web. Sebastopol, CA: O’Reilly, 2007.

Norman, Donald A. Emotional Design: Why We Love (or Hate) Everyday Things.
New York, NY: Basic Books, 2005.

PHP.net. “Php: Xml Parser Functions.” 2007. November 11, 2007. <http://us2.
php.net/xml>.

Rockley, Ann. “Single Sourcing: It’s About People, Not Just Technology.” Technical
Communication 50.3 (2003): 350–4.

Williams, Joe D. “The Implications of Single Sourcing for Technical
Communicators.” Technical Communication 50.3 (2003): 321–7.

Additional Online Resources

1. EditPlus Download: www.editplus.com
2. Gliffy.com: Online Diagramming Software: www.gliffy.com
3. PHP.net History: http://us.php.net/history
4. PHP.net Introductory Tutorial: http://us2.php.net/tut.php
5. PHP.net SimpleXML Functions: http://us2.php.net/simple_xml
6. PHP.net website: www.php.net
7. RSS 2.0 Specification: www.rssboard.org/rss-specification
8. XAMPP Download: www.apachefriends.org/en/xampp.html
9. XML in PHP5: What’s New? http://devzone.zend.com/node/view/id/1713#

Heading13

298 Focused Implementations

7 XML and Your Career
XML and Knowledge
Management at Work in
Interdisciplinary Contexts

Chapter Overview

The first section of this final chapter serves as a review and an overall
summary of the book’s first six chapters. In this section, we review the
concepts from our earlier chapters and then discuss how these ideas translate
to skills that are used in various careers in industry and research. Each
chapter is briefly summarized and its key ideas are revisited here.

In the second section of this chapter, we suggest that XML is an important
technology for many types of professionals—but especially document
designers and professional communicators working in digital environments
—to be familiar with in the workplace. In particular, we look at careers in
technical communication, technical editing, digital media, library science,
and interdisciplinary research. Professionals working in these fields are
likely to see a continued growth in the use of XML and its associated
technologies for solving problems in these types of domains.

The last portion of this chapter includes the results of an interview session
we conducted with five professional individuals who use specific XML
documents for various tasks in research and industry. As we discuss these
interviews, we weave in ideas from the first six chapters of the book in order
to discuss the unique ways that XML can be used to frame and represent
data about the world. We hope that this final chapter helps readers to
synthesize some of the theoretical content and apply the practical ideas of
this book to see how XML solves real world, practical types of information
design problems. To aid in this transition from theory to practice, we will
summarize the first six chapters before moving on to our interview and
discussion.

Chapter Reviews

In Chapter 1, we discussed several reasons why it is important for technical
communicators to be familiar with XML. In particular, we noted the ideas
of Johnson-Eilola, Michael Hughes, Corey Wick, and others who suggest
that expertise in knowledge management technologies empowers these
professionals to exercise a greater role in their industries and advance both

themselves and the profession of technical communication. The ability of
communication professionals to add, delete, change, and select meaning from
units of information, as Slack, Miller, and Doak suggest, is an integral part
of what employees in a knowledge economy are asked to do.

Chapter 1 also defined additional ways in which what we might call
metaknowledge management (knowledge about knowledge management)
and XML acumen can be critical skills in a variety of different fields and
for a variety of different rhetorical purposes. We discussed the ways in which
disciplines frame knowledge and the importance of histories, contexts, and
social relationships in representing knowledge and facilitating information
exchange. In studying examples such as the original Eureka project and
Eureka II that were used by the Xerox corporation, we observed the com-
bination of applied techniques from IT and theoretical concepts from social
constructionism. These examples were provided to show how seemingly
incompatible ideas from theory and practice can coexist to create a usable
knowledge management system. We also discussed how a bottom-up
approach that focused on large amounts of warehoused data turned out to
be more useful to these technicians than even the existing documentation
compiled by the corporation.

Chapter 2 introduced XML and explained how this markup language is
different from its more ubiquitous cousin, HTML. We discussed how XML
gives knowledge workers power by allowing them to provide semantic and
ontological metadata that describes what the data is, rather than simply
how it should appear on the computer screen. This distinction is critical
and is reinforced by the definition of metadata itself: data that is about, or
describes, other data. The idea of XML as an object-oriented language was
touched upon and proved to be an important concept later in the book when
we discussed the implications of information modularity, encapsulation, and
reuse.

The remainder of Chapter 2 focused on the building blocks of XML:
declarations, elements, attributes, entities, and DTDs. It included a discussion
of the proper syntactical techniques for using these components in the
document design process. We explained that well-formed XML is XML
that is syntactically correct and meets the specifications designed by the
World Wide Web consortium, and that valid XML is XML that meets
the requirements for positioning, sequencing, and naming elements and
attributes that are specified by an internal or external DTD. For beginners
without much experience in coding, or for those readers with Web design
experience in HTML but not in XML, this chapter explained how to
construct XML documents using these rules of well-formedness and validity.
Several examples were then provided which showed XML at work in real
documents such as the Final Report of the ACHRE. By breaking this
document down into modules, paragraphs, lists, and titles, we saw the
implications of using XML to modularize content so that it can be packaged
and repurposed for modern electronic communication systems.

300 XML and Your Career

In Chapter 3, we wove in additional rhetorical threads as we discussed
the Semantic Web and how XML technology can be used to create more
intelligent networks of humans and computers. Classical classification
schemes from Aristotle and Cicero were used to show how the same types
of strategies at play in dividing and describing XML information have long
been used in other contexts because human cultures have always been
interested in describing the ways in which things are similar and dissimilar
to one another. We also employed the work of scholars such as Berners-
Lee, Foucault, Kuhn, Bowker, and Star to illustrate the rhetorical implica-
tions of naming and classifying objects. Following this, we demonstrated
how XML is a technology that draws on these rhetorical phenomena.

We also introduced prototype theory in Chapter 3 to explain how
individuals use cognitive shortcuts to help store new experiences. These
shortcuts facilitate the comparison of old experiences to new situations based
on similarities and common patterns. Cognitive psychologists have studied
this process carefully and use terms like scripts, frames, and schemas to
further explore this type of experiential encoding. We applied some of these
ideas from this chapter later in Chapter 6 when we designed our custom
parsers. Finally, in Chapter 3 we spent some time talking about single
sourcing systems and the importance of this methodology to certain types
of distributed writing situations. Many of these ideas about single sourcing
also carried over to Chapter 6 when we moved into additional applied
examples of parser design.

In the beginning of Chapter 4, we discussed the rhetorical implications
of separating content from its form and discussed why this is such an
important concept for the XML document designer to understand. We
associated the presentation of a document with its style and explained how
traditional rhetors often separated rhetoric from philosophy by looking at
the former as “elegant” speaking and the latter as “wise” speaking
(Whitburn 45). With XML, we must be careful to remember that the format
itself is just a set of guidelines for building structured data sources. The
ways in which we format and display that content for an audience to read
has significant implications for the credibility of the message itself, as well
as for the credibility or ethos of any associated authors. No matter how
wise our message might be, without an elegant presentation, it often loses
its impact and effectiveness.

Chapter 4 then picked up where Chapter 2 left off and continued a
discussion of some of the technical facets of XML. We learned ways to
format and display XML that allow us to take advantage of the rhetorical
power of carefully designed visualization techniques and aesthetic designs.
In particular, we encountered two different techniques that we can use to
format and display XML content: CSS and the XSL. We walked through
several examples that were formatted using these techniques and the chapter
concluded with an introduction to style sheet transformations, which enable
document designers to transform an XML document into other types of

XML and Your Career 301

presentation formats. These formats include other types of XML documents,
HTML or XHTML documents, PDF documents, SVG documents, VRML
documents, and many others.

Some advanced topics related to XML were discussed in Chapter 5. We
returned to the importance of namespaces, which we briefly introduced in
Chapter 2, by explaining how these encapsulating units are designed to deal
with problems of collision and recognition. These problems occur when
multiple data sources or elements are combined into single documents,
leading to the possibility of ambiguity or redundancy with named entities.
Schemas were introduced as an alternate means for validating XML
documents using a syntax that is itself also written in XML.

The XPath and XLink languages were also covered in Chapter 5. These
technologies are used to link to or access data embedded within XML
documents using a standard notation. Given the importance of XML as a
core technology in what Berners-Lee has referred to as the Semantic Web,
these languages will continue to grow in popularity as they enable different
databases to connect over networks and negotiate meaning at precise
node locations using virtual roadmaps. For instance, an XML parser charged
with compiling two XML libraries into a single collection might be faced
with a recognition problem if one document used the element name
ZIP_CODE and another used the element name POSTAL_CODE. To resolve
this issue, a simple XPath expression can be used by the parser to identify
the offending elements from deep within the documents’ hierarchies, then
XLink can be used to refer the reader to a link or style guide with preferred
nomenclature, which might be listed in the namespace definition of the
original XML documents. Additionally, XLink can direct the parser to a
customized URL with a script designed to handle these types of collision
issues automatically.

In the previous chapter, Chapter 6, we assembled our knowledge of
rhetoric, XML, and knowledge management and set to work building some
applied, real world examples of parser systems. We wrote about how parsers
are often not given the attention they deserve because they are seen as unsexy
or irrelevant. Parsers are in fact very important to the transactional and
distributional acts of communication that occur using XML data, but they
are so wide ranging and diverse that they are hard to characterize using a
simple set of parameters. To demonstrate the wide variety of parsers that
can be used with XML and explore the rhetorical implications of parser
design, we designed three different types of Web-based parsers and used
three different rhetorical strategies to guide their design.

For our first parser project, we used personas to develop an information
context in which an individual was tasked with developing a system to
handle streaming news information using RSS feeds. Using an ad hoc
rhetorical analysis and the SimpleXML extension for PHP, we constructed
a parser and an XML writer program without using a great deal of
computational overhead. The second and third examples, which were parsers

302 XML and Your Career

designed to function as CMSs, were slightly more sophisticated. We used a
top-down design process following Saul Carliner’s physical, cognitive, and
affective design dimensions for the second project. Then, we followed a
bottom-up approach for the third project by conceptualizing the data nodes
as a heuristic for guiding the interface design and gradually adding layers
of complexity to our parser. The general CMS required stepping up to the
SAX parser and designing a more robust writer module, while the third
project took advantage of the full-featured DOM extension for PHP.

XML and Your Career

Throughout this book, we have discussed examples of XML and rhetoric
taken from a variety of disciplines, from technical communication, to library
science, to digital media and IT, to the biological and health sciences. Here,
we are more explicit as we elaborate on just a few of the many professions
in which we believe XML is likely to play an ever important role:

1. The technical communicator. While not all technical communicators
will find themselves working directly with XML, the newest software
products used in the field of technical communication, from Adobe
FrameMaker® to the latest Microsoft® Office suite, are increasingly using
XML to structure internal file formats and facilitate network exchange
using the Internet. In addition, distributed teams of writers continue to
use technologies such as CMSs and single sourcing methodologies
to overcome the rhetorical and technical challenges imposed by the
absence of a common location. We saw in Chapter 6 that these
technologies can be driven by XML data sources.

2. The technical editor. Although technical editing is obviously a subset
of technical communication, the technical editor is one professional in
particular who may find herself using XML to a greater extent. As
Michael J. Albers notes, technical editors routinely find themselves
editing content that has been contributed by multiple authors and
written from multiple locations (191). Editing these documents requires
particular skill in understanding how to create coherent and consistent
documents from these multiple source materials (192). It is therefore
important for technical editors to understand XML for two reasons.
First, it is likely that the materials being assembled from multiple
authors may be encoded in XML format, and an editor will need to
know how to enforce validity within these XML files in order to ensure
consistency and coherence from these authors. Second, many of the skills
that are associated with XML content creation, such as knowledge
representation/encoding and the ability to define an appropriate level
of granularity for chunked information, are also important for the
technical editor to possess. These skills are useful for assembling a single
document from multiple sources.

XML and Your Career 303

3. The digital media practitioner. Digital media professionals will continue
to find themselves on the cutting edge of technology, utilizing the latest
software to produce media assets for industries as wide ranging as film
and animation, Web development, sound and audio recording, and
modeling and simulation. As several of our interviewees note later in
this chapter, XML has some definitive advantages as a data source for
these types of projects over other technologies such as relational
database management systems. From working with Web 2.0 projects
using AJAX methodologies to building new innovative frameworks for
managing filming locations in preproduction film tasks, digital media
practitioners will continue to have plenty of opportunities to use XML
and associated XML technologies.

4. The library scientist. Even before the Dewey Decimal System was
invented by Melvil Dewey in the late nineteenth century, library
scientists were pioneering innovative new methods for classifying data
and creating taxonomical structures of information. Better methods for
storage and retrieval are important issues for librarians, particularly as
the amount of electronic information stored in digital files continues to
grow exponentially. While XML is not the only metadata system used
to classify and annotate information, it is a widely used and popular
format. Experience with XML is an important skill for these pro-
fessionals to have or to work towards obtaining.

5. The interdisciplinary professional or researcher. Because of its focus on
standardization and its ability to easily carry from one computing
system to another, interdisciplinary researchers are likely to continue
using XML as a lightweight and portable scripting solution to annotate
or standardize projects and papers.

Interview Overview

Over a two month period, we collected interviews from five professionals
working in various fields. We interviewed a college professor, two technical
communicators, a software engineer, and one individual who is both a
professor and a software developer for a large video game development
company. Each of these individuals varies in their background education,
familiarity with XML, and occupation, but all have used XML to some
degree in various types of projects. We specifically sought a diverse pool of
experts to form our interview panel in order to better reflect the wide variety
of uses XML has in research and industry.

The ten interview questions asked respondents to reply with information
about ways in which they have personally used XML to solve problems for
particular types of tasks. In addition to standard questions about their
backgrounds and job descriptions, we asked these experts to respond to
specific technological questions about validation, transformation, and
parsing. We also asked them to tell us why they chose XML to solve these

304 XML and Your Career

problems. Though the interviews were conducted individually, we reprint
the responses to each question here one after another in order to show the
differences between these experts and their informational needs and to
show how they each chose to apply XML technologies in unique ways. After
the responses, we include a brief commentary and holistic summary of the
interview process.

Participant Biographies

Our first interview participant, Bill Albing (BA in our interview), works as
a knowledge developer for FarPoint Technologies in Morrisville, North
Carolina. He is co-founder and editor-in-chief of KeyContent.org, which is
an online portal with articles about XML, single sourcing, and other
innovative technologies used in the field of technical communication. Bill
has over fifteen years’ experience in engineering and technical writing and
enjoys applying his expertise to the design of wikis, XML, and other aspects
of Web 2.0 to his work at FarPoint. He has presented on the topic of XML
numerous times at a number of venues.

Our second participant, Sherry Steward (SS), has been working with
markup languages since the early days of SGML. Sherry is currently Director
of Applied Research and Life Cycle Support for a simulation and training
company in Orlando, Florida. Sherry is tasked with managing specialty
engineering disciplines, integrated logistics support services, technical
documentation development, and simulation and training projects for
military acquisitions. Her specialty is Interactive Electronic Technical
Manuals, legacy data conversion, and intelligent technical documentation.
She has a Ph.D. in Texts and Technology from the University of Central
Florida.

Our third participant, Professor J. Michael Moshell (JMM), has a
background in digital media and computer science, which he taught from
1975 through 2000. He served as the founding Program Director for Digital
Media at the University of Central Florida in 2002, and as Division Head
from 2002 to 2005. Michael’s interests converge on the use of graphics,
games and the Internet for the creation of situations where students learn
from one another. Michael received his Ph.D. in Computer Science from
Ohio State University in 1975.

Before joining the Florida Interactive Entertainment Academy (FIEA) as
a faculty member, our fourth interviewee, Michael Gourlay (MG), worked
as a Senior Software Engineer at Electronic Arts (EA) as the lead graphics
programmer on the popular football video game Madden ’06. He was also
lead programmer on the NASCAR game series for several years and received
a patent for algorithms he developed for interactive, high-bandwidth
online applications. Prior to joining EA, he performed scientific research
primarily using computational fluid dynamics and the world’s largest
massively parallel supercomputers. His previous research includes work with

XML and Your Career 305

nonlinear dynamics in quantum mechanical systems and atomic, molecular,
and optical physics. Michael received his degrees in physics and philosophy
from Georgia Tech and the University of Colorado at Boulder.

Our final interviewee, Thomas Gorence (TG), works for Integrity Arts &
Technology/i.d.e.a.s., an innovative spin-off company that was originally
owned by Disney-MGM Studios. I.d.e.a.s. stands for imagery, design,
editorial, art, and sound, and the company employs an interdisciplinary
blend of musicians, writers, filmmakers, programmers, designers, editors,
teachers, engineers, and artists (Integrity Arts & Technology, Inc. online).
After working for the United States Air Force as a computer programmer,
Thomas attended Full Sail for digital media design. Thomas has been
programming computers since the age of thirteen, when he taught himself
the language QBASIC, and has also worked at a recording studio as an
audio engineer and producer.

Interview Questions

Question 1: Briefly describe your job, your day to day duties, and
your role within your organization.

BA: At FarPoint, I am responsible for the product documentation of a range
of software components that we sell to application developers, mostly who
use Microsoft Visual Studio® as a development environment; this means
I’m responsible for production and maintenance of the deliverables as well
as the development of the original content. FarPoint is a small software
components manufacturer and our best selling product is a .NET spread-
sheet component that gives software applications spreadsheet and grid
capability.

For about a half dozen products, much of the product documentation,
including an API reference (or class library documentation) is automatically
generated from source code comments (which is XML tagged) and the actual
structure of the software. There are also sets of procedural (tasks) docu-
mentation and tutorials that I develop to explain the range of uses of the
product. Beyond the strictly technical documentation, I also develop case
studies, technical white papers, and a range of marketing literature from
data sheets to e-mail newsletters to blog entries. For each product there are
two forms of compiled help, one of which integrates with the Microsoft
Visual Studio® development environment. We also produce a set of PDF
files (for users to print, since we no longer provide hard copy user manuals),
a Read Me, and Web-viewable versions of all this content. In my spare time,
I am editor-in-chief of a groupware-based website that is the basis for a
professional association, KeyContent.org.

SS: I am the director of applied research and life cycle support for a simulator
company where I am responsible for the overall supportability of training

306 XML and Your Career

devices and simulators designed and manufactured by DEI. Several products
are necessary to support and operate these simulators throughout the
product life cycle, and as such, I direct the functional areas responsible for
the reliability, maintainability, and availability of electronic components. I
also handle logistics support analysis and provisioning, system safety,
technical documentation, and training.

The technical documentation we develop is used by our customers to
operate and maintain the training devices and to buy spare parts as needed.
The operation and maintenance data is delivered in a traditional technical
manual print format; however, it is also delivered as an Electronic Technical
Manual or an Interactive Electronic Technical Manual. When we deliver
this format, manual data is tagged in XML or SGML so that it can be
manipulated and used in mobile environments. I also direct the applied
research efforts, most of which are focused on supportability process
improvement or expanding simulator capability.

JMM: I work as a Professor of Digital Media. In this capacity I design and
teach courses, conduct research projects, write grant proposals, develop new
curricula, and serve on University committees.

MG: I have two jobs: I am a research associate at the University of Central
Florida in the graduate program FIEA. Here, I create curriculum for the
program and teach graduate students how to make interactive media (such
as video games and military simulations). I also do research. My other job
is as a Senior Software Engineer for EA where I write software for video
games including Madden NFL, NASCAR, and several other games. Among
many other things, I wrote the visual effects system used by many EA Sports
titles including Madden, NCAA, NASCAR, NFL Tour, Fight Night Big
(a.k.a. Pummel), Euro Cup, and FIFA Street. I also wrote the network
application layer architecture used by Madden and NASCAR.

TG: I am the lead developer and programmer in the graphics department
for i.d.e.a.s./Integrity Arts. I am involved with creating technical specifica-
tions, project maintenance, documentation, testing, and deployment. My
day to day duties usually involve Adobe Flash® development (ActionScript
programming), PHP/MySQL development, and graphic design.

Question 2: Please describe a project in which you have used XML.

• What was the purpose of this project, and who was the audience?
Were there multiple authors?

• What was your design process like?
• Did you use any brainstorming tools or audience analysis techniques

to help structure your XML hierarchy or did you “code from
scratch”?

XML and Your Career 307

• Did the structure of your XML document (e.g., its elements and
attributes and the relationships between them) remain the
same throughout the duration of the project, or were revisions
necessary?

BA: Our product documentation and the automation of its generation is
based on the use of XML. From the source code comments in C# (Authors’
Note: C# is the “C Sharp” programming language) code files, which are
done in XML tags, to the import of snippet example code, which is kept
in XML tagged text files, to the transformation of FrameMaker® authored
content from XML to HTML, XML is key to the product documentation
process. Much of the XML process is standardized and defined. The source
code comments are Microsoft® conventions. Some of the XML was
developed by me and somewhat resembles the organization of types of
documentation that is now seen in DITA with Tasks, Reference, and Topic
types. We regularly extend the XML format with an eye towards having
the new parser continue to accept older files. Most of the time, we add to
the existing XML format and rarely change something so drastically that
old files fail to work with the new parser.

SS: We use XML for the development of an electronic tech manual using
Microsoft Internet Explorer® as the browser. Our process begins with
requirements analysis and planning, design of the XML structure and
interactive features, XML tagging and DTD development, test, and
implementation. We generally have a technical writer who collects and
analyzes the data for the technical manual, but we may have another person
set up the XML structure and actually tag the content. Most of the time,
this process is driven by schedule, cost, and complexity. Our design and
audience approach is based mostly on military specifications and the user
environment. Sometimes, we do make adjustments to the structure after the
document is tested by the user, but these adjustments are rarely anything
substantial.

JMM: The Cast Member Performance Management (CMPM) Project
involves developing a theory and practice for managing the behavior of
actors in learning-oriented multi-player online role playing games
(MORPGs). A central tool of CMPM is the Cast Performance Management
System (CPMS), a distributed Java and PHP application that coordinates
the activities of online actors. The purpose is to provide new ways of using
computer game technology for learning in K-12 and university education.
Its ultimate audience will be the students in schools and universities around
the world, we hope. My graduate student and I are authoring these materials,
with help from “seasonal labor” (semester-long student projects). We coded
from scratch, but the structure is based on a formal model that we call the
Scenario Segment Guide. The structure of our documents (there are several)

308 XML and Your Career

are constantly evolving as we implement the Java and PHP code and test
the resulting system.

MG: At FIEA and EA we use XML in nearly all games to describe many
forms of data including visual effects. The purpose of the projects is to
entertain, and the audience includes anybody who plays or develops video
games. Video game software (e.g., the “engine” and asset conditioning
software) effectively has four sets of users, each with different requirements:
End users who play the games or potentially modify them, artists who supply
artistic content (“assets”) used in the game, producers and level designers
who supply various other kinds of content such as layout and high-level
descriptions of autonomous behavior, and other programmers who author
everything else. Typically a modern video game for a current console has a
team of anywhere from 30 to 150 people.

The design process is somewhat formal and includes several phases,
starting with the game pitch. After the pitch is approved then preproduction
starts, which includes research, design, and prototyping. We have employed
various tactics including traditional and more recent methods. We used to
spend about six to eight weeks writing design documents, then spent the
rest of the year writing software. More recently we have started to adopt
techniques resembling “SCRUM,” where we alternate between design and
production. For other parts of the project we have used brainstorming tools
such as MindMap, but the XML formats usually derive from higher level
requirements of the software design. Often the XML layout has a direct
analogy to the classes used to implement the software.

More recently, we have had a push towards designing the XML separately
from the implementation so that we could in principle have file formats that
outlive and span across any given implementation so that even if we have
multiple competing engine implementations then at least they could share
their file formats. In practice, we have not adopted that practice yet. We
regularly extend the XML format with an eye towards having the new parser
continue to accept older files. Most of the time, we add to the existing XML
format and rarely change something so drastically that old files fail to work
with the new parser.

TG: A recent example project involving XML would be a trivia application.
Basically, this application is composed of a list of multiple-choice questions
and feedback depending on whether the person got the question right or
wrong. The purpose of the project was to create an interactive educational
exhibit that could randomly select a question from an external file. This file
could easily be updated by someone without knowledge of programming.
The design process usually starts with planning, followed by the design of
the XML file structure itself. A common tool I use for almost all XML
applications is known as ECMAScript for XML, or for short, E4X. It
makes parsing and searching the information within an XML file much

XML and Your Career 309

easier. For most trivia projects, the format stays the same. The main element
tags are TRIVIA (the main “wrapper” tag), QUESTION (to “wrap” each
question) and ANSWER (child nodes of QUESTION tag). For each set of
ANSWER tags inside a QUESTION tag, one of those elements has a
“CORRECT” attribute. This format is extremely simple, and rarely needs
any revisions. If a revision is needed, it would only be for a special case,
such as adding time limits to certain questions.

Question 3: Why did you choose to use XML rather than another
technology (such as a relational database)?

BA: For two reasons. First, the industry is moving towards more machine-
independent and platform-independent, semantically meaningful ways of
tagging content. Second, the tools we are using, that are generally used by
our industry, are using XML and HTML. For instance, we use FrameMaker®

because it’s an industry-accepted authoring tool for large amounts of
content. And we generate XML from there because we can easily transform
it into HTML without the need for third party tools. You used to have to
buy Quadralay WebWorks or other tools (and some people still do) but we
found we can get around that by transforming (using XSLTs) the raw XML
ourselves and making HTML. Another reason is that Microsoft Visual
Studio® (the development environment often used by software developers)
uses XML in the source code for putting in comments. So, we can use tools
such as Innovasys Document! X to generate documentation automatically,
grab the XML, and generate HTML. So it is natural for us to work with
XML since it is part of how software developers do their code comments.

SS: Our choice is based on customer requirements and standards.

JMM: First, XML is uniquely low-cost. The concept can be explained in
minutes, and you can immediately begin to build documents with an
ordinary word processor. Second, tools exist in Java, in PHP, and indeed
in most major programming environments that make it easy to transform
XML into data structures that are used within the telecommunication and
graphical display elements of our programs.

MG: We do use relational databases for other kinds of information,
especially where we need to execute sophisticated relational queries on the
data. XML works well when we need some text format which describes
some asset, usually in some static way. We like XML because parsers for
it are readily available; the format is familiar to most programmers and
some non-technical people so humans can modify the file format in the
absence of a specialized authoring tool.

TG: XML tends to be more of a “standard” format, in that an XML file
has a definitive structure and a definitive set of data, no matter what is

310 XML and Your Career

accessing the XML file (whether it be a website, Adobe Flash® animation,
software, text document, etc.). Using the E4X function library I mentioned
previously, I can also bring many of the benefits of a relational database to
XML (specifically, search queries and linking multiple entries to each other).
While XML will not replace relational databases, it can emulate their
function. So, in most cases, I choose to go with XML, unless there are
performance issues.

Question 4: What process did you use to author your XML content?
Did you use any tools or software programs (including software that
auto-generates XML code)?

BA: We use Adobe FrameMaker® to author a good deal of documentation,
mostly User’s Guide topics and procedural tasks. This allows us to output
XML which we then transform into HTML. That is half of it. The other
half is automatically generated API Reference (class library) documentation.
If your software product has a public interface (called an API) then you
have to publish information about that interface.

Often if the software is big, you do not want to write it by hand and there
are tools for generating it automatically. This happens when the tool looks
at the source code comments and the structure of the software itself and builds
pages of documentation. So with these two parts, the User’s Guide and the
API Reference, we have a complete document set. XML is used throughout.
The final output of both parts is a set of HTML pages which are then
combined into a compiled help file. Also, from Adobe FrameMaker® we can
make printable PDFs of the User’s Guide.

SS: We use Notepad for most of our XML tagging. Sometimes we use the
built-in editors that come with the authoring environment, but it is easier
to use Notepad. I know that many of the tools have all the bells and whistles;
however, I can work faster in Notepad.

JMM: There are three principal XML documents in our system: the Scenario
Model, multiple Session Records, and Session Logs. A Scenario Model is
constructed manually. Currently, we use word processing, but we could use
a syntax-directed tool to automatically build well-formed and valid code.
We just have not done so yet. Session Records are automatically constructed
from the Scenario Model by the Java application. The Session Record
contains the particulars of a particular “run” of the game: who played what
roles, which goals and learning objectives have been met, what reconfigura-
tions of the user interface have been made (e.g., boxes dragged around the
screen, etc.). Session Logs are also automatically generated by the Java
application. They record all changes to the system’s state, as well as all
dialogue that occurred through the built-in text chat system.

XML and Your Career 311

MG: We use multiple methods to author the XML. Initially, the systems
had their data described procedurally, at which point we made the decision
to read the descriptions from a file. Instead of authoring the files from scratch
we wrote serialization methods to output the existing descriptions in XML
form. Subsequently, people modified the XML files using regular text editors.
Later, people developed several specialized authoring tools to modify and
author XML files either directly or indirectly. It is common for games to
have in-game “tweakers” which update the data structures directly after
which the classes containing the data can serialize the data out to XML.

TG: All of my XML is coded with a regular text editor, such as Notepad.
There are many tools to make coding easier via color-coded syntax and
auto-completing phrases; however, I have not found anything that works
much better than the traditional copy and paste workflow.

Question 5: What type of parser (SAX, DOM, etc.) did you use for your
project?

• Was this parser commercially available, or did you build it?
• Why did you choose this parser, and were there any particular

advantages or disadvantages to it?

BA: We use the SAXON processor with our home-grown XSLTs to convert
our raw XML into either finished HTML files or text files (snippets) that
are brought into generating HTML files later in the process. We also use
Innovasys Document! X to automatically generate a lot of HTML
documentation of the product. We then combine the automatically generated
HTML along with the XML-to-HTML files of human-authored content to
make a completely compiled online help system for our customers.

SS: Our authoring environment is furnished by the government. The environ-
ment includes a built-in editor, parser, reader, and style sheet editor. These
tools are basic; they don’t include many of the convenient functions found
in high-end commercial authoring environments. They work well, but the
author needs to know the document markup language and structure fairly
well in order to make the tools efficient.

JMM: I wrote my own ad hoc XML processor in Java, based on DOM4J.
It is open source. I chose it because it easily integrates with Java in the Eclipse
integrated development environment (IDE).

MG: We usually use SAX (for in-game use), but sometimes DOM (usually
for tools used internally). At EA, we use a parser written internally because
we have to use software developed by EA employees or for which we have
obtained licenses. The process of obtaining a license is cumbersome and we

312 XML and Your Career

generally need to modify source code so that we can control the memory
footprint since most games ship on fixed memory systems. At FIEA, we use
an open source parser called Expat. Here we have more limited resources
and Expat serves our needs adequately.

TG: Being an Adobe Flash® project, there are a few different ways to parse
the data. Adobe Flash® 8 and earlier (ActionScript 2.0) has an awkward
way of parsing XML information, so I normally rely on a custom class called
XMLConstruct made for ActionScript 2.0. Adobe Flash® 9 (ActionScript
3.0), however, has built-in functions to parse XML, including the E4X
library. The aforementioned XMLConstruct class was created by a group
of developers at Indivision.net. The ActionScript 3.0 parser is built into the
new Adobe Flash® CS3 commercial software.

Using the XMLConstruct parser is extremely advantageous in that it allows
you to refer to a specific XML element (also known a “node”) by name as
opposed to by number. For example, without the XMLConstruct class, to
refer to an element, it would look something like this:

myNode = myXML.childNode[0].childNode[1].
nextSibling;

Using the XMLConstruct class, the same result could be attained using this
syntax:

myNode = myXML.trivia[0].question[1].answer;

Question 6: Did you use style sheets or transformations with your XML
documents? If so, which types?

BA: Yes, we wrote our own DTD to handle a small set of elements in our
procedural documentation (User’s Guide) and our own XSLT that
transforms the XML of our procedural documentation into HTML. We also
use a separate XSLT to transform many snippets which are in XML into
individual text files that are pulled into a larger process that inserts the text
(code snippets) into pages of automatically generated documentation.
(Authors’ note: see our online website for some examples of the DTDs and
the XSLTs that Bill’s company uses.)

SS: Yes, we use both DTDs and style sheets in the documentation. Any
formatting or manipulation is done using the style sheet editor.

JMM: Not yet. We are evolving the DTD for our CMPM dialect (we call
it cpXML) but as yet the parsing is ad hoc, driven by the architecture of
our Java application.

MG: Not usually.

XML and Your Career 313

TG: Typically, I do not use style sheets or transformations with my XML
documents. Any formatting or manipulation is done after the information has
been parsed by the parent application (in most cases, this is Adobe Flash®).

Question 7: How did you validate your XML documents, if at all?
Did you use DTDs, Schema, or another method?

BA: The XML that we output from Adobe FrameMaker® is valid XML.
We do not have a separate step in our process of validating the XML. We
use a DTD that we wrote in-house, and FrameMaker® does any validating
that is needed. The authoring process indicates invalid XML when we
author, so by the time we get to production, it is all valid XML.

SS: We use a DTD that is based on the military standard most of the time,
but we also use the built-in parser. Both seem to work well.

JMM: Again, we handle this by producing error messages within our Java
code if the DOM4j system objects to any well-formedness issues. In this
way, we report any validation issues when our internal scanner fails to
understand a structure.

MG: At EA, the tools teams sometimes employ validation facilities built
into the DOM parser.

TG: When using Adobe Flash®, the only validation needed is standard error
checking. If the application works, and is bug-free, the XML is considered
valid. When dealing with XML for websites (for example, RSS feeds), then
many different tools are used for validation, my favorite being the W3C
online validator.

Question 8: In your mind, what are the primary strengths and
weaknesses of XML as a communications technology?

BA: XML, as we use it, is great for human use: it is a tagging language that
makes sense. And it is scalable. We only need a few elements, so we can
use a small DTD that we wrote in-house. We do not need a behemoth like
DocBook. XML is flexible and easy to work with. We wrote our own XSLTs
and avoided using third party software that would have cost the company
lots of money. XML is about putting content in containers with meaningful
names. A topic contains a subtopic that contains a paragraph. Simple
enough.

SS: The strengths are flexibility, portability, and the ability to use it without
buying expensive tools.

JMM: The strengths are broad acceptance and simplicity. The weakness is
that there is no systematic way to find relevant namespaces. It sometimes
seems like luck and accident when one finds good ontologies.

314 XML and Your Career

MG: The primary strength I see is that customizing a parser for XML is
extremely easy, especially when using a SAX-based parser which mostly
entails writing callbacks and a simple push-down automata. Usually, we
can get away with finite-state automata and occasionally employ a stack to
handle recursive elements, which are rare. A primary weakness is that it is
verbose, so although editing by hand is straightforward, it takes a much
larger number of keystrokes. Also, reading XML is slightly harder than
reading other declarative languages. Writing procedural phrases in XML is
especially cumbersome.

TG: The strengths of XML include its open text format, its ability to be
edited using standard text editors, and the ease of reading and editing the
information. The weaknesses are directly related to its strengths: being a
physical file format, it can create issues with performance, especially if many
different applications are trying to read from the same file at once. This is
where a standard database would be ideal.

Question 9: What skills and competencies are important to technical
professionals wishing to learn more about XML and XML-related
technologies? Aside from learning the subject matter itself, would you
recommend any additional fields of study or particular coursework?

BA: The challenge with using XML and content is to know how to structure
your content. What is each piece of content, and in what container does it
belong? Once you have figured out that, then you can reuse content, you
can organize the content, and you can transform and filter the content.
Whether you have a database, a CMS, or just raw files, you can work with
XML in a myriad of ways. But, being familiar enough with the content to
know how to structure it into containers: that is the essential skill needed
for working with XML. The tools will grow and will help you with that
task, so there are no specific tools you need to know up front.

SS: In the case of designing electronic manuals, users are looking for user-
friendly interfaces and useful information. A working knowledge of docu-
ment markup languages is extremely useful, including knowing how to
design and develop DTDs, style sheets, interface prompts, and dialogue. An
XML or SGML electronic technical manual is a technical information
database that stores data in modules and provides access to numerous
media and external databases. It would be beneficial for students to learn
how to develop structural diagrams so that they can see the hierarchy and
sequence and nested elements visually. I believe database design or basic IT
principles would be very helpful to students who are interested in doing
more than just tagging and manipulating text in XML.

JMM: In our case, computer science has been very useful. We haven’t tried
to use tools that might be appropriate for non-programmers, since our

XML and Your Career 315

principal objective has been to build our own software. For many or most
XML users, programming should not be a requirement. The tools appro-
priate to these audiences are not yet part of our repertoire.

MG: I teach (or review with) my students the basics of formal language
theory and the Chomsky hierarchy, which applies to parsing in general.
I also teach my students how to use a SAX-based parser and they are
required to implement a parser that they use in a game engine that they
write. People dealing with any parser should understand the fundamentals
of automata, specifically finite-state and push-down.

TG: A good understanding of the concepts of database redundancy and
database design are essential in being efficient with XML, or any database
at all, for that matter. A working knowledge of HTML would also be
extremely helpful, since XML could be easily considered a regular HTML
page, with custom tags as opposed to predefined ones. XML has so many
uses that additional fields of study are too numerous to count; however, I
will emphasize some of the particulars I brought up earlier in the interview.
E4X is one of the most powerful tools for dealing with XML data, and
learning how to use it should be a top priority for anyone involved with XML.
XML also allows you to emulate any number of database designs, including
single-linked-lists, double-linked-lists (also known as graphs) and many
others. Understanding the differences between various database structures
is the best recommendation I could give. Sometimes database design (or, in
this case, XML file structure) is such a blank sheet of paper, it is hard to know
where to start.

Question 10: Are there any other comments or thoughts about your
project you would like to share?

BA: XML is the foundation technology, the underlying tool, the Tupperware
containers in which to put information, and, by doing so, free it from
previous constraints in delivery, presentation, and maintenance. It is the basis
of content management and information reuse and single sourcing—or it
can be. The concept of putting information (content) in containers is one
of the key concepts of using XML. There are so many uses of XML today.
The uses of e-commerce and electronic transactions are growing and prob-
ably driving the use of XML more than our meager efforts to contain
technical content in documentation. The new buzzwords are informatics
and analytics (really just information and analysis, with machine-reading
thrown in), which are made possible by XML and XML-related technol-
ogies. Here are some exciting new applications of XML:

• Small companies are using XML databases behind their websites and
manufacturers are publishing their catalog of millions of parts on the
Web using XML.

316 XML and Your Career

• CMSs offer complete control to an organization by allowing authors
and SMEs to check out content and revise it.

• RSS is a way for newspapers and other organizations to share their
news.

• Portals within an organization, the next generation of Intranet, allow
employees to access company information throughout an organization.

• The genome project and ongoing DNA research is an example of the
huge amounts of information that are being tagged. Medline is a
comprehensive literature database of life sciences and biomedical
information.

SS: In the case of electronic technical manuals, I think XML is better suited
for technical document collections or technical manuals that require constant
revisions rather than one time developments.

JMM: XML has proven to be much easier to work with than I anticipated.
The tools such as DOM4j and PHP’s SimpleXML just seem to work reliably
and on the first try. This makes projects move much faster than some other
technologies.

MG: In game development, it is useful to have compact file formats
that parse very quickly. Since XML is a text format, it is fundamentally
slow to parse. Some XML parsers have subsystems that partially pre-parse
and generate a binary file format that has a direct relationship to XML. It
is important for interactive applications to have access to tools such as that.

Interview Discussion

As we can see from these interviews, XML is used for a variety of different
applications in industry and research. Our respondents used it for purposes
ranging from encoding materials for interactive electronic technical manuals
to guiding a metadata system in order to direct the work of interactive
performance cast members and dramatic performers in a research setting.
Though the interviews stand fairly well on their own, we do want to high-
light ten emergent themes that have come out of these responses:

1. There are many different tools, software programs, and technical
protocols that are associated with XML technology or that support or extend
this technology in some capacity. Several of these technologies have been
mentioned earlier in the book, but some have not. From the interviews, we
see professionals working with XML using Microsoft Visual Studio.NET®,
C#, Java, Eclipse, Adobe Flash®, Adobe FrameMaker®, and with several
other custom programs or authoring environments. The sheer number of
possibilities available for both authoring tools and parsing tools suggests
that this markup language has a promising future ahead.

XML and Your Career 317

2. DITA is a popular XML-based framework for authoring and distrib-
uting technical information. Like DocBook, a markup language for technical
documentation, it can be used to modularize content using a set of
preexisting procedures and tags that are built into the DTD. Both DITA
and DocBook are very popular and will likely continue to grow in popularity
as content management and single sourcing become even more common in
software documentation processes. We discuss DITA and DocBook in more
detail in Chapter 5.

3. XML can be used to allow programmers and technical communicators
to work more efficiently with one another. As Bill noted, some of the
software he uses automatically generates comments in XML format. These
comments can then be harvested using special software and then be
incorporated as part of the documentation. When both programmers and
technical communicators speak the same language (i.e., XML), there is
bound to be a better working environment for both groups.

4. Despite the best laid plans of the document designer, outside forces will
sometimes determine the actual course of action for projects in the real
world. Sherry stated this most succinctly in the interview when she stated,
“our choice is based on customer requirements and standards.” Here we
could perhaps use quotation marks around the word “choice” to show that
this is not really a choice in many instances, but rather a set of parameters
that one must adhere to in order to win a contract or actually be hired to
complete the work. She later stated that even her authoring environment
was imposed by the government! Whether these requirements are imposed
by the customer, by the client, or by the capabilities of your team, it is an
unusual case in industry when one can simply proceed doing things “the
way they should be done.” Being aware of these political forces, and being
prepared to defend and justify one’s design decisions, is another important
rhetorical skill that one should be aware of in industrial settings.

5. Not all XML authors use validation, but the option is nice to have.
Several of our respondents indicated that they did use an internal DTD to
validate their XML documents, but others indicated that they did not do any
type of validation, or that they simply made sure the data was good enough
to work in whatever program they were using to parse it. This shows that
despite the inherent ability of XML to be validated against a DTD or schema
document, it is not always necessary, nor practical, to do so for all types of
applications.

6. The biggest perceived benefit of using XML was the language’s low
overhead in terms of its minimal cost, shallow learning curve, and its ability
to run on multiple platforms under multiple operating systems and hardware
configurations. Michael Gourlay also noted that parsers are readily available

318 XML and Your Career

for XML, which is an important consideration. Even though one can
certainly design their own custom parsers, as J. Michael Moshell indicates
that he did in his interview (and as we write about in some detail in Chapter
6), the resources (time, money, and experience) for such a task are not always
readily available.

7. Despite the availability of expensive authoring tools and other
sophisticated suites for handling XML, many authors profiled in this
interview preferred to use old-fashioned text editors for authoring their XML
content. We agree that text editors are useful for the authoring component,
though it is nice to have support for validation and transformation testing
for more sophisticated types of documents. We provide some links to useful
XML authoring tools, of both the plain text and validating variety, on our
website.

8. In terms of education and skill development, many interviewees noted
that computer science skills, particularly in database design, are important
when working with XML parsers. Michael Gourlay also mentions the
importance of understanding automata theory and formal language hier-
archies, which are common topics in computer science. For less technically
demanding types of operations, the key skill noted is the ability to visualize
how information should be broken down into modular units and the
experience to know which elements should be used for which types of data.
Additionally, expertise from technical communication and library science
courses should provide skills and competencies in learning how to achieve
proper levels of granularity within an XML document. Many of these skills
will often come with experience in working on applied projects.

9. Though we did not explicitly ask any questions about knowledge
management, it is clear that XML is being used by these individuals in
varying capacities to deal with this very issue. From the explicit knowledge
model used by Thomas in his trivia application, which directly asked users
whether or not they knew an answer to a question, to the more implicit
and tacit model used by J. Michael Moshell in his CMPM system, these
XML projects all functioned under the assumption that the XML data would
help to facilitate and transfer knowledge among an organizational group
and its members. As both Bill Albing and Michael Gourlay noted, XML
helps to improve the durability and scope of knowledge by standardizing
and encapsulating communication and organizational tasks in distributed
teams. This could be done by bringing programmers and technical
communicators together using a shared language, as Bill noted. Or, it might
be done by helping to facilitate the design documents used in the “SCRUM”
sessions that alternate between design and production tasks in a game
design cycle, as Michael Gourlay discussed in regards to modern game design
techniques.

XML and Your Career 319

10. The future of XML looks very bright. As we see the beginnings of
Berners-Lee’s Semantic Web on the horizon, it is clear that XML will be
the driving force and harbinger of many next generation Internet and
network technologies. Technologies such as AJAX will continue to emerge
and drive innovation towards more user-centered and reader-centered types
of communication on the World Wide Web. In addition to its implications
for the Semantic Web, XML’s use in mobile technology also reveals that
this language is gaining in popularity and becoming a more mature and
stable platform upon which to build distributed applications. Though XML
continues to experience some trouble imposed by political battles over
proprietary formats, it seems clear that these issues will eventually be
worked out and the language will continue to grow and evolve in a
meaningful fashion.

Chapter Summary

This chapter presented the results of an interview which captured informa-
tion about how XML is used by professionals in different fields and
occupations. It also summarized the key concepts from this book and
explained how knowledge management, XML, and rhetoric can function
as synergistic elements and building blocks for modern technical
communication.

Having discussed knowledge management, XML, and rhetoric throughout
this book, we can now take a step back and see how these various com-
ponents work together (and sometimes against one another) in the
professional life of a practitioner working in the Information Age. We have
stressed two primary themes throughout this book:

1. Students and scholars who wish to deliver usable and effective communi-
cation products in our digital economy must be theorist-practitioners as well
as symbolic-analysts (we discuss this more in Chapter 1). This involves
understanding both technological issues as well as the larger social, cultural,
and critical contexts that inform and surround these technologies. In the case
of XML, it involves both understanding the nuts and bolts of how this
markup language functions as well as understanding the inherent tension
between the way knowledge is actually constructed in the real world (through
messy, socially mediated, and often unquantifiable processes), and how our
information systems lead us to believe knowledge is created (through the
acquisition of a greater number of neat, packaged information units). In other
words, we can never manipulate pure units of knowledge, but only the
imperfectly defined and socially constructed symbols that represent aspects
or facets of this knowledge. These symbols are defined from a particular
shared perspective or a particular set of social conditions with its own
idiosyncratic list of linguistic limitations, affordances, and parameters.
Despite the limitations of this practice, the ability to work with and apply

320 XML and Your Career

such semantic symbols is extremely important, since it is all we have. In
addition, understanding the tension between these two models of thought
about knowledge transfer—social constructionism and logical positivism
—allows us to build better networks for knowledge dissemination that
consider both the social and technological dimensions of tacit and explicit
knowledge transfer.

2. Rhetoric is a powerful tool and technique for improving our symbolic-
analytic skills. By its very nature, rhetoric asks us to think about the
communication process in a formal way, by considering our audience, our
communicative intent, and the potential sources of noise that may disrupt
the integrity of our messages. In digital environments, this noise may take
the shape of bad usability decisions or it may even be produced by
improperly developed classification schemas. Understanding how to leverage
rhetorical tools to our advantage helps us to improve our knowledge
management systems, even when such systems are driven by IT and digital
computers—tools that were far in the future when classical rhetors debated
science and philosophy in the streets of Greece and Rome.

As this is the concluding chapter, we invite readers to continue this dialogue
using the online resources associated with this text. These include our
companion website at www.rhetoricalxml.com, our Wiki site with user-
contributed and editable content (including these interview questions), and
the “contact us” mechanisms listed online or in this book. We would be
pleased to hear about how you are using XML in your own studies and
careers and we hope that reading this book is only the beginning of your
own quest to learn more about knowledge management, rhetoric, and
technical content creation using modern Internet technologies.

Discussion Questions

1. Besides the ways we mention in this chapter, what other applied
situations can you describe that involve the convergence of knowledge
management strategies and rhetoric? Do these two elements apply to
any social or organizational interaction? How can XML assist in cap-
turing these types of interactions?

2. Carefully read through the survey questions that interviewees were
asked to respond to in this chapter. What is the overall rhetorical intent
of this survey? Now, based on the ideas you have read about in this
book and your own project work and experience, think about how you
would revise the interview above to include additional questions related
to XML, or how you would extend the interview to also gather explicit
data about the knowledge management practices used in an organiza-
tion. Does this change the survey’s rhetorical context? If so, how has
the rhetorical intent changed based on your modifications?

XML and Your Career 321

3. Aside from our own discussion of the XML interview, what other trends
or ideas emerge from this collection of ideas from XML practitioners?
How do these interviews illustrate the similarities or differences between
these different careers? Are there any potential problem areas that
might emerge if these different professionals were tasked to work on
the same type of problem together? What disciplinary boundaries
are at play here? If necessary, refer back to Chapter 1 and read about
Thomas Kuhn’s ideas about “normal science” to help guide your
answers here.

Activities

1. Find a professional working in your anticipated occupational field that
uses XML somehow in his or her career. Conduct a brief interview with
this person using the original questions from this chapter or the
questions you have written in response to Discussion Question 2. Bring
your questions in to share with your classmates.

2. Using your knowledge about XML and the rhetorical design process,
write a short proposal for a project in which you could use XML in
your own studies or line of work. Include rough physical design
parameters for your project including a total number of anticipated files,
elements, and Web pages. Also, include an audience analysis and a
summary of any cognitive or affective design issues that you may need
to deal with during the project. Your total proposal should be between
five and seven pages and should include a timeline for completion as
well as other traditional proposal elements (any budget issues, technical
resources, and so forth).

References

Albers, Michael J. “The Technical Editor and Document Databases: What the
Future May Hold.” Technical Communication Quarterly 9.2 (2000): 191–206.

Albing, Bill. Personal interview. December 19, 2007.
Carliner, Saul. “Physical, Cognitive, and Affective: A Three-Part Framework for

Information Design.” Content & Complexity: Information Design in Technical
Communication. Michael J. Albers and Beth Mazur, eds. Mahwah, NJ: Lawrence
Erlbaum Associates, 2003. 39–58.

Gorence, Thomas. Personal interview. November 27, 2007.
Gourlay, Michael. Personal interview. November 27, 2007.
Integrity Arts & Technology, inc. “I.D.E.A.S.” 2006. December 24, 2007. www.

integrityarts.com/index.php
Moshell, J. Michael. Personal interview. November 21, 2007.
Steward, Sherry. Personal interview. December 21, 2007.

322 XML and Your Career

Appendix A
ACHRE—Executive Summary

Publication Information

The Final Report of the ACHRE (stock number 061-000-00848-9), the
supplemental volumes to the Final Report (stock numbers 061-000-00850-
1, 061-000-00851-9, and 061-000-00852-7), and additional copies of this
Executive Summary (stock number 061-000-00849-7) may be purchased
from the Superintendent of Documents, U.S. Government Printing Office.

All telephone orders should be directed to:
Superintendent of Documents
U.S. Government Printing Office
Washington, D.C. 20402
(202) 512-1800
Fax (202) 512-2250
8 a.m. to 4 p.m., Eastern time, M-F

All mail orders should be directed to:
U.S. Government Printing Office
P.O. Box 371954
Pittsburgh, PA 15250-7954

An Internet site containing ACHRE information (replicating the Advisory
Committee’s original gopher) will be available at George Washington Uni-
versity. The site contains complete records of Advisory Committee actions
as approved; complete descriptions of the primary research materials dis-
covered and analyzed; complete descriptions of the print and non-print
secondary resources used by the Advisory Committee; a copy of the Interim
Report of October 21, 1994, and other information. The address is www.
seas.gwu.edu/nsarchive/radiation. The site will be maintained by the
National Security Archive at GWU.

Printed in the United States of America

The Creation of the Advisory Committee

On January 15, 1994, President Clinton appointed the ACHRE. The
President created the Committee to investigate reports of possibly unethical
experiments funded by the government decades ago.

The members of the Advisory Committee were fourteen private citizens
from around the country: a representative of the general public and thirteen
experts in bioethics, radiation oncology and biology, nuclear medicine,
epidemiology and biostatistics, public health, history of science and medicine,
and law.

President Clinton asked us to deliver our recommendations to a Cabinet-
level group, the Human Radiation Interagency Working Group, whose
members are the Secretaries of Defense, Energy, Health and Human Services,
and Veterans Affairs; the Attorney General; the Administrator of the
National Aeronautics and Space Administration; the Director of Central
Intelligence; and the Director of the Office of Management and Budget. Some
of the experiments the Committee was asked to investigate, and particularly
a series that included the injection of plutonium into unsuspecting hospital
patients, were of special concern to Secretary of Energy Hazel O’Leary. Her
department had its origins in the federal agencies that had sponsored the
plutonium experiments. These agencies were responsible for the development
of nuclear weapons and during the Cold War their activities had been
shrouded in secrecy. But now the Cold War was over.

The controversy surrounding the plutonium experiments and others like
them brought basic questions to the fore: How many experiments were
conducted or sponsored by the government, and why? How many were
secret? Was anyone harmed? What was disclosed to those subjected to risk,
and what opportunity did they have for consent? By what rules should the
past be judged? What remedies are due those who were wronged or harmed
by the government in the past? How well do federal rules that today govern
human experimentation work? What lessons can be learned for application
to the future? Our Final Report provides the details of the Committee’s
answers to these questions. This Executive Summary presents an overview
of the work done by the Committee, our findings and recommendations,
and the contents of the Final Report.

The President’s Charge

The President directed the Advisory Committee to uncover the history of
human radiation experiments during the period 1944 through 1974. It was
in 1944 that the first known human radiation experiment of interest
was planned, and in 1974 that the Department of Health, Education, and
Welfare adopted regulations governing the conduct of human research, a
watershed event in the history of federal protections for human subjects.

324 Appendix A: ACHRE—Executive Summary

In addition to asking us to investigate human radiation experiments, the
President directed us to examine cases in which the government had
intentionally released radiation into the environment for research purposes.
He further charged us with identifying the ethical and scientific standards
for evaluating these events, and with making recommendations to ensure
that whatever wrongdoing may have occurred in the past cannot be repeated.

We were asked to address human experiments and intentional releases
that involved radiation. The ethical issues we addressed and the moral
framework we developed are, however, applicable to all research involving
human subjects.

The breadth of the Committee’s charge was remarkable. We were called
on to review government programs that spanned administrations from
Franklin Roosevelt to Gerald Ford. As an independent advisory committee,
we were free to pursue our charge as we saw fit. The decisions we reached
regarding the course of our inquiry and the nature of our findings and
recommendations were entirely our own.

The Committee’s Approach

At our first meeting, we immediately realized that we were embarking on
an intense and challenging investigation of an important aspect of our
nation’s past and present, a task that required new insights and difficult
judgments about ethical questions that persist even today.

Between April 1994 and July 1995, the Advisory Committee held sixteen
public meetings, most in Washington D.C. In addition, subsets of Committee
members presided over public forums in cities throughout the country. The
Committee heard from more than two hundred witnesses and interviewed
dozens of professionals who were familiar with experiments involving
radiation. A special effort, called the Ethics Oral History Project, was under-
taken to learn from eminent physicians about how research with human
subjects was conducted in the l940s and 1950s.

We were granted unprecedented access to government documents. The
President directed all the federal agencies involved to make available to the
Committee any documents that might further our inquiry, wherever they
might be located and whether or not they were still secret.

As we began our search into the past, we quickly discovered that it was
going to be extremely difficult to piece together a coherent picture. Many
critical documents had long since been forgotten and were stored in obscure
locations throughout the country. Often they were buried in collections that
bore no obvious connection to human radiation experiments. There was no
easy way to identify how many experiments had been conducted, where
they took place, and which government agencies had sponsored them.
Nor was there a quick way to learn what rules applied to these experiments
for the period prior to the mid-1960s. With the assistance of hundreds of
federal officials and agency staff, the Committee retrieved and reviewed

Appendix A: ACHRE—Executive Summary 325

hundreds of thousands of government documents. Some of the most
important documents were secret and were declassified at our request. Even
after this extraordinary effort, the historical record remains incomplete.
Some potentially important collections could not be located and were
evidently lost or destroyed years ago.

Nevertheless, the documents that were recovered enabled us to identify
nearly 4,000 human radiation experiments sponsored by the federal
government between 1944 and 1974. In the great majority of cases, only
fragmentary data was locatable; the identity of subjects and the specific
radiation exposures involved were typically unavailable. Given the
constraints of information, even more so than time, it was impossible for
the Committee to review all these experiments, nor could we evaluate the
experiences of countless individual subjects. We thus decided to focus our
investigation on representative case studies reflecting eight different
categories of experiments that together addressed our charge and priorities.
These case studies included:

• experiments with plutonium and other atomic bomb materials
• the Atomic Energy Commission’s program of radioisotope distribution
• nontherapeutic research on children
• total body irradiation
• research on prisoners
• human experimentation in connection with nuclear weapons testing
• intentional environmental releases of radiation
• observational research involving uranium miners and residents of the

Marshall Islands.

In addition to assessing the ethics of human radiation experiments
conducted decades ago, it was also important to explore the current conduct
of human radiation research. Insofar as wrongdoing may have occurred in
the past, we needed to examine the likelihood that such things could happen
today. We therefore undertook three projects:

• A review of how each agency of the federal government that currently
conducts or funds research involving human subjects regulates this
activity and oversees it.

• An examination of the documents and consent forms of research projects
that are today sponsored by the federal government in order to develop
insight into the current status of protections for the rights and interests
of human subjects.

• Interviews of nearly 1,900 patients receiving out-patient medical care
in private hospitals and federal facilities throughout the country.
We asked them whether they were currently, or had been, subjects of
research, and why they had agreed to participate in research or had
refused.

326 Appendix A: ACHRE—Executive Summary

The Historical Context

Since its discovery one hundred years ago, radioactivity has been a basic tool
of medical research and diagnosis. In addition to the many uses of the x-ray,
it was soon discovered that radiation could be used to treat cancer and that
the introduction of “tracer” amounts of radioisotopes into the human
body could help to diagnose disease and understand bodily processes. At the
same time, the perils of overexposure to radiation were becoming apparent.

During World War II the new field of radiation science was at the center
of one of the most ambitious and secret research efforts the world has
known—the Manhattan Project. Human radiation experiments were
undertaken in secret to help understand radiation risks to workers engaged
in the development of the atomic bomb.

Following the war, the new Atomic Energy Commission used facilities
built to make the atomic bomb to produce radioisotopes for medical research
and other peacetime uses. This highly publicized program provided the
radioisotopes that were used in thousands of human experiments conducted
in research facilities throughout the country and the world. This research,
in turn, was part of a larger postwar transformation of biomedical research
through the infusion of substantial government monies and technical
support.

The intersection of government and biomedical research brought with it
new roles and new ethical questions for medical researchers. Many of these
researchers were also physicians who operated within a tradition of medical
ethics that enjoined them to put the interests of their patients first. When
the doctor was also a researcher, however, the potential for conflict emerged
between the advancement of science and the advancement of the patient’s
wellbeing.

Other ethical issues were posed as medical researchers were called on by
government officials to play new roles in the development and testing of
nuclear weapons. For example, as advisers they were asked to provide
human research data that could reassure officials about the effects of
radiation, but as scientists they were not always convinced that human
research could provide scientifically useful data. Similarly, as scientists, they
came from a tradition in which research results were freely debated. In their
capacity as advisers to and officials of the government, however, these
researchers found that the openness of science now needed to be constrained.

None of these tensions were unique to radiation research. Radiation
represents just one of several examples of the exploration of the weapons
potential of new scientific discoveries during and after World War II.
Similarly, the tensions between clinical research and the treatment of patients
were emerging throughout medical science, and were not found only in
research involving radiation. Not only were these issues not unique to
radiation, but they were not unique to the 1940s and 1950s. Today society
still struggles with conflicts between the openness of science and the preserva-
tion of national security, as well as with conflicts between the advancement
of medical science and the rights and interests of patients.

Appendix A: ACHRE—Executive Summary 327

Key Findings

Human Radiation Experiments

• Between 1944 and 1974 the federal government sponsored several
thousand human radiation experiments. In the great majority of cases,
the experiments were conducted to advance biomedical science; some
experiments were conducted to advance national interests in defense or
space exploration; and some experiments served both biomedical and
defense or space exploration purposes. As noted, in the great majority
of cases only fragmentary data are available.

• The majority of human radiation experiments identified by the Advisory
Committee involved radioactive tracers administered in amounts that
are likely to be similar to those used in research today. Most of these
tracer studies involved adult subjects and are unlikely to have caused
physical harm. However, in some nontherapeutic tracer studies involving
children, radioisotope exposures were associated with increases in the
potential lifetime risk for developing thyroid cancer that would be
considered unacceptable today. The Advisory Committee also identified
several studies in which patients died soon after receiving external
radiation or radioisotope doses in the therapeutic range that were
associated with acute radiation effects.

• Although the AEC, the Defense Department, and the National Institutes
of Health recognized at an early date that research should proceed only
with the consent of the human subject, there is little evidence of rules
or practices of consent except in research with healthy subjects. It was
commonplace during the 1940s and 1950s for physicians to use patients
as subjects of research without their awareness or consent. By contrast,
the government and its researchers focused with substantial success on
the minimization of risk in the conduct of experiments, particularly with
respect to research involving radioisotopes. But little attention was paid
during this period to issues of fairness in the selection of subjects.

• Government officials and investigators are blameworthy for not having
had policies and practices in place to protect the rights and interests of
human subjects who were used in research from which the subjects could
not possibly derive direct medical benefit. To the extent that there was
reason to believe that research might provide a direct medical benefit to
subjects, government officials and biomedical professionals are less
blameworthy for not having had such protections and practices in place.

Intentional Releases

• During the 1944–74 period, the government conducted several hundred
intentional releases of radiation into the environment for research
purposes. Generally, these releases were not conducted for the purpose
of studying the effects of radiation on humans. Instead they were usually

328 Appendix A: ACHRE—Executive Summary

conducted to test the operation of weapons, the safety of equipment,
or the dispersal of radiation into the environment.

• For those intentional releases where dose reconstructions have been
undertaken, it is unlikely that members of the public were directly
harmed solely as a consequence of these tests. However, these releases
were conducted in secret and despite continued requests from the public
that stretch back well over a decade, some information about them was
made public only during the life of the Advisory Committee.

Uranium Miners

• As a consequence of exposure to radon and its daughter products in
underground uranium mines, at least several hundred miners died of
lung cancer and surviving miners remain at elevated risk. These men,
who were the subject of government study as they mined uranium for
use in weapons manufacturing, were subject to radon exposures well
in excess of levels known to be hazardous. The government failed to
act to require the reduction of the hazard by ventilating the mines, and
it failed to adequately warn the miners of the hazard to which they
were being exposed.

Secrecy and the Public Trust

• The greatest harm from past experiments and intentional releases may
be the legacy of distrust they created. Hundreds of intentional releases
took place in secret, and remained secret for decades. Important
discussion of the policies to govern human experimentation also took
place in secret. Information about human experiments was kept secret
out of concern for embarrassment to the government, potential legal
liability, and worry that public misunderstanding would jeopardize
government programs.

• In a few instances, people used as experimental subjects and their
families were denied the opportunity to pursue redress for possible
wrongdoing because of actions taken by the government to keep the
truth from them. Where programs were legitimately kept secret for
national security reasons, the government often did not create or
maintain adequate records, thereby preventing the public, and those
most at risk, from learning the facts in a timely and complete fashion.

Contemporary Human Subjects Research

• Human research involving radioisotopes is currently subjected to more
safeguards and levels of review than most other areas of research
involving human subjects. There are no apparent differences between
the treatment of human subjects of radiation research and human
subjects of other biomedical research.

Appendix A: ACHRE—Executive Summary 329

• Based on the Advisory Committee’s review, it appears that much of
human subjects research poses only minimal risk of harm to subjects.
In our review of research documents that bear on human subjects issues,
we found no problems or only minor problems in most of the minimal-
risk studies we examined.

• Our review of documents identified examples of complicated, higher-
risk studies in which human subjects issues were carefully and
adequately addressed and that included excellent consent forms. In our
interview project, there was little evidence that patient-subjects felt
coerced or pressured by investigators to participate in research. We
interviewed patients who had declined offers to become research
subjects, reinforcing the impression that there are often contexts in
which potential research subjects have a genuine choice.

• At the same time, however, we also found evidence suggesting serious
deficiencies in aspects of the current system for the protection of the
rights and interests of human subjects. For example, consent forms do
not always provide adequate information and may be misleading about
the impact of research participation on people’s lives. Some patients
with serious illnesses appear to have unrealistic expectations about the
benefits of being subjects in research.

Current Regulations on Secrecy in Human Research and
Environmental Releases

• Human research can still be conducted in secret today, and under some
conditions informed consent in secret research can be waived.

• Events that raise the same concerns as the intentional releases in the
Committee’s charter could take place in secret today under current
environmental laws.

Other Findings

The Committee’s complete findings, including findings regarding experiments
conducted in conjunction with atmospheric atomic testing and other
population exposures, appear in Chapter Seventeen of the Final Report.

Key Recommendations

Apologies and Compensation

The government should deliver a personal, individualized apology and
provide financial compensation to those subjects of human radiation
experiments, or their next of kin, in cases where:

• efforts were made by the government to keep information secret from
these individuals or their families, or the public, for the purpose of

330 Appendix A: ACHRE—Executive Summary

avoiding embarrassment or potential legal liability, and where this
secrecy had the effect of denying individuals the opportunity to pursue
potential grievances;

• there was no prospect of direct medical benefit to the subjects, or inter-
ventions considered controversial at the time were presented as standard
practice, and physical injury attributable to the experiment resulted.

Uranium Miners

• The Interagency Working Group, together with Congress, should give
serious consideration to amending the provisions of the Radiation
Exposure Compensation Act of 1990 relating to uranium miners in
order to provide compensation to all miners who develop lung cancer
after some minimal duration of employment underground (such as one
year), without requiring a specific level of exposure. The act should also
be reviewed to determine whether the documentation standards for
compensation should be liberalized.

Improved Protection for Human Subjects

• The Committee found no differences between human radiation research
and other areas of research with respect to human subjects issues, either
in the past or the present. In comparison to the practices and policies of
the 1940s and 1950s, there have been significant advances in the federal
government’s system for the protection of the rights and interests of
human subjects. But deficiencies remain. Efforts should be undertaken
on a national scale to ensure the centrality of ethics in the conduct of
scientists whose research involves human subjects.

• One problem in need of immediate attention by the government and
the biomedical research community is unrealistic expectations among
some patients with serious illnesses about the prospect of direct medical
benefit from participating in research. Also, among the consent forms
we reviewed, some appear to be overly optimistic in portraying the likely
benefits of research, to inadequately explain the impact of research
procedures on quality of life and personal finances, and to be incompre-
hensible to lay people.

• A mechanism should be established to provide for continuing inter-
pretation and application in an open and public forum of ethics rules
and principles for the conduct of human subjects research. Three
examples of policy issues in need of public resolution that the Advisory
Committee confronted in our work are: (1) clarification of the meaning
of minimal risk in research with healthy children; (2) regulations to cover
the conduct of research with institutionalized children; and (3) guidelines
for research with adults of questionable competence, particularly for
research in which subjects are placed at more than minimal risk but are
offered no prospect of direct medical benefit.

Appendix A: ACHRE—Executive Summary 331

Secrecy: Balancing National Security and the Public Trust

Current policies do not adequately safeguard against the recurrence of the
kinds of events we studied that fostered distrust. The Advisory Committee
concludes that there may be special circumstances in which it may be
necessary to conduct human research or intentional releases in secret.
However, to the extent that the government conducts such activities with
elements of secrecy, special protections of the rights and interests of
individuals and the public are needed.

Research involving human subjects. The Advisory Committee
recommends the adoption of federal policies requiring:

• the informed consent of all human subjects of classified research. This
requirement should not be subject to exemption or waiver;

• that classified research involving human subjects be permitted only
after the review and approval of an independent panel of appropriate
nongovernmental experts and citizen representatives, all with the
necessary security clearances.

Environmental releases. There must be independent review to assure that
the action is needed, that risk is minimized, and that records will be kept
to assure a proper accounting to the public at the earliest date consistent
with legitimate national security concerns. Specifically, the Committee
recommends that:

• Secret environmental releases of hazardous substances should be
permitted only after the review and approval of an independent panel.
This panel should consist of appropriate, nongovernmental experts and
citizen representatives, all with the necessary security clearances.

• An appropriate government agency, such as the Environmental
Protection Agency, should maintain a program directed at the oversight
of classified programs, with suitably cleared personnel.

Other Recommendations

The Committee’s complete recommendations, including recommendations
regarding experiments conducted in conjunction with atmospheric atomic
testing and other population exposures, appear in Chapter Eighteen of the
Final Report.

What’s Next: The Advisory Committee’s Legacy

Interagency Working Group Review

The Interagency Working Group will review our findings and recom-
mendations and determine the next steps to be taken.

332 Appendix A: ACHRE—Executive Summary

Continued Public Right To Know

The complete records assembled by the Committee are available to the public
through the National Archives. Citizens wishing to know about experiments
in which they, or family members, may have taken part, will have continued
access to the Committee’s database of 4,000 experiments, as well as the
hundreds of thousands of further documents assembled by the Committee.
The Final Report contains “A Citizen’s Guide to the Nation’s Archives:
Where the Records Are and How to Find Them.” This guide explains how
to find federal records, how to obtain information and services from the
member agencies of the Interagency Working Group and the Nuclear
Regulatory Commission, how to locate personal medical records, and how
to use the Advisory Committee’s collection.

Supplemental volumes to the Final Report contain supporting documents
and background material as well as an exhaustive index to sources and
documentation. These volumes should prove useful to citizens, scholars, and
others interested in pursuing the many dimensions of this history that we
could not fully explore.

Appendix A: ACHRE—Executive Summary 333

Appendix B
RAX Form

Use this form as a brainstorming and planning tool when designing custom
XML presentation systems or parsers.

• Who is my primary audience?

• Who are the secondary and tertiary audiences?

• What is the purpose of this metadata system?

• What are the informational needs of my audiences?

• How should the information be arranged and presented for this
audience?

• What kinds of backgrounds will my audiences possess? Will they have
a high literacy level? What about their level of technical literacy? What
style will work well for these needs?

• What vocabularies will my audiences use to identify relevant elements
and data nodes within the XML hierarchy?

Appendix B: RAX Form 335

Appendix C
Source Code for CMS

File 1: upload_asset.html

<!—
Project: Content Management System.
Component: Writer (File 1 of 5).
Filename: ”upload_asset.html”.
Purpose: Display a form with simple instructions and a file
upload field.
—>
<!—
Note that we are using the XHTML document type and namespace
for our HTML form page. This could just as easily be done in
normal HTML, but using XHTML is useful because it asks us to
make the same syntactical decisions (using well-formed code)
that we will need to make when writing our XML documents.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>

<body>
<h1>Simple Content Management System</h1>
<h2>Step 1a: Upload Asset</h2>
<p>This simple content management system will accept uploaded
files (assets) that are of the following type: MS-Word document,
Adobe PDF document, plain-text document, GIF image, or JPEG
image. The process to add an asset is relatively simple and is
composed of three steps:</p>

Step One: Upload your asset using this page.
Step Two: Add associated metadata.

<p>(Repeat steps one and two until all files have been
updated and annotated.)</p>

Step Three: Export your final asset list to an XML
document.

<!—
This form will ”post” the data, or send it behind the scenes
to the file specified in the action attribute. In this case, it
goes to a file named upload_asset.php. Note the enctype=
”multipart/form-data” which is a special encoding instruction
that is used to configure the form for file uploading.
—>
<form enctype=”multipart/form-data” method=”post” action=
”upload_asset.php”>
<table>

<tr>
<td>Asset File:</td>
<!— This is a form filename field. It allows us to
upload files from our computer to a server. —>
<td><input type=”file” name=”asset” size=”35” />
</td>

</tr>
</table>

<!—
When the submit button is pressed, the filename will be
sent to the upload_asset.php page. Only files of size 100k
or smaller will be allowed (this is what is specified in the
value=”100000”).
—>
<input type=”hidden” name=”MAX_FILE_SIZE” value=”100000” />
<input type=”submit” name=”submit” value=”Upload Asset” />
</form>
</body>
</html>
<!— End of ”upload_asset.html” file —>

File 2: upload_asset.php

<!—
Project: Content Management System.
Component: Writer (File 2 of 5).
Filename: ”upload_asset.php”.

Appendix C: Source Code for CMS 337

Purpose: Process the uploaded asset, rename it, and move it to
the assets directory.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>
<body>
<h1>Simple Content Management System</h1>
<h2>Step 1b: Upload Results Page</h2>
<?php
/*
The $bufferFilename variable is used to store the name of the
temporary file we will be writing to. For this exercise, this
file needs to be in the same directory as this script, but it
could be changed by including the directory path as part of
this variable.
*/
$bufferFilename = ”asset_buffer.txt”;

/*
This array defines the different types of files our CMS supports.
*/
$supportedTypes = array();
$supportedTypes[] = ”image/gif”;
$supportedTypes[] = ”image/jpeg”;
$supportedTypes[] = ”image/pjpeg”;
$supportedTypes[] = ”application/msword”;
$supportedTypes[] = ”text/plain”;
$supportedTypes[] = ”application/pdf”;
/*
This array is used to map the appropriate file extensions onto
our assets.
*/
$fileSuffixes = array();
$fileSuffixes[“image/gif”] = ”.gif”;
$fileSuffixes[“image/pjpeg”] = ”.jpg”;
$fileSuffixes[“image/jpeg”] = ”.jpg”;
$fileSuffixes[“application/msword”] = ”.doc”;
$fileSuffixes[“text/plain”] = ”.txt”;
$fileSuffixes[“application/pdf”] = ”.pdf”;
/*

338 Appendix C: Source Code for CMS

This function will open the asset ”buffer” text file to obtain
the index id number of the last added asset.
*/
function getLastAssetNumber($filename)

{
/* open in ”read only” mode. If file doesn’t exist,
the CMS will treat this asset as the first item in the
collection. */
if ($fp = @fopen($filename, ”r”))

{
/* read the last asset number */
$lastAssetNumber = fgets($fp);
}

/* if this number is not available, then return zero as
the last asset number */
if (empty($lastAssetNumber)) $lastAssetNumber = 0;
/* this will be either zero (new collection) or some
number N of previously existing assets */
return($lastAssetNumber);
}

/*
This function will open the asset ”buffer” text file and write
the index id number of the most recently added asset.
*/
function writeNewAssetNumber($filename, $newNum)

{
$fp = fopen($filename, ”w”); // open in ”overwrite” mode
$bytes_written = fputs($fp, $newNum.”\n”);
}

/*
The first thing we will do when uploading our asset file is
to access the temporary filename from the special $_FILES
array that is automatically created by PHP based on the ”FILE”
form element submitted on the prior page. This filename is
stored in an index named [x][“tmp_name”] where x is the name
of the form field specified in the form. In this case, it is
named ”asset”. We can also obtain the type of file using the
[“type”] index (this value may be slightly different in
browsers other than Internet Explorer).
*/
$originalFileName = $_FILES[“asset”][“name”];
$fileName = $_FILES[“asset”][“tmp_name”];
$fileType = $_FILES[“asset”][“type”];
/*
Here, we will get the file suffix (.doc, .pdf, etc.) which can
help to minimize problems with certain browsers not recognizing

Appendix C: Source Code for CMS 339

the default file types correctly. First, the explode function
will turn the file name into an array split by where the period
appears. For example, if the filename was ”information.doc”,
then $temp[0] would contain the value ”information” and
$temp[1] would contain the value ”doc”. So, we store the suffix
into a variable named $fileSuffix.
*/
$temp = explode(“.”,$originalFileName);
$fileSuffix = $temp[1];
/*
Next, we need to make sure this variable contains data.
If not, we provide a link back to the previous page and ask
the user to enter data for the filename field. The $errors
variable will keep track of total errors and if this variable
is greater than zero, the user will be asked to go back and
provide any missing data.
*/
if (empty($fileName))

{
echo ”A valid filename is required!
”;
$errors++;
}

/*
Here is the part where we check the total errors and redirect
the user if need be.
*/
if ($errors == 1)

{
echo ”There was an error with your data.
”;
echo ”Please go back
to correct it!
”;
}

else
{
/*
This code will check to make sure the file type is
supported for our content management system (jpg, gif,
doc, txt, or pdf)
*/
/* If so, we need to try and process the uploaded
file. */
if (in_array($fileType, $supportedTypes) || ($fileSuffix ==
”doc”))

{
/* find the number of the last added asset */

340 Appendix C: Source Code for CMS

$lastAssetNumber = getLastAssetNumber
($bufferFilename);

/* add one to it so that it will be unique */
$currentAssetNumber = $lastAssetNumber + 1;

/* tell the user the calculated file type */
echo ”File is type: $fileType.
”;

/* find the correct file suffix to use (e.g., .pdf or
.doc) */
$newFileSuffix = $fileSuffixes[$fileType];

/* if unable to find new file suffix, use the existing
file suffix */
if (empty($newFileSuffix)) $newFileSuffix = ”.”
.$fileSuffix;

/* create a new filename based on assetX.Y
(X=new id number, Y=suffix) */
$newFileName = ”asset”.$currentAssetNumber.
$newFileSuffix;

/*
Assuming everything is okay, move the uploaded
file to the assets directory and provide a link to
step 2.
*/
if (move_uploaded_file($fileName, ”assets\\
$newFileName”))

{
echo ”Asset added as ”.$newFileName.”.”;

/* Call the function we defined at the top
of this page to write the asset number to a
text file */
writeNewAssetNumber($bufferFilename,
$currentAssetNumber);
?>

<!— This code will display a link to the
next step in the process, which is adding
metadata. —>
<p>Click here to go to Step 2 and <a href=
”add_asset_metadata.php?asset_id=<?php echo
$currentAssetNumber; ?>&asset_filename=

Appendix C: Source Code for CMS 341

<?php echo $newFileName; ?>”>add metadata for
this asset.</p>
<?php
}

else
{
/* If the file is unable to be uploaded,
provide an error message */
echo ”Unable to add asset ”.$fileName.”.”;
}

}
else

{
/* If there is a problem with the file type, display
an error message for the user. */
echo ”Sorry, but $fileType is not a supported file
type.
”;
}

}
?>
</body>
</html>
<!— End of ”upload_asset.php” file —>

File 3: add_asset_metadata.php

<!—
Project: Content Management System.
Component: Writer (File 3 of 5).
Filename: ”add_asset_metadata.php”.
Purpose: Add associated metadata for uploaded assets.
—>
<!—
We need to first obtain the asset identifier that is sent from
the upload page. We will use this identifier in our form below
to indicate the ID for a particular asset. Since we are
passing this information through the URI, we need to use the
GET protocol. We will also grab the asset's filename using
the same method.
—>
<?php
$assetId = $_GET[“asset_id”];
$assetFilename = $_GET[“asset_filename”];
$temp = explode(“.”,$assetFilename);
$defaultName = $temp[0];
$suffix = $temp[1];

342 Appendix C: Source Code for CMS

switch($suffix)
{
case ”doc”:

$mediaType = ”MS-Word Document”;
break;

case ”pdf”:
$mediaType = ”Adobe PDF Document”;
break;

case ”gif”:
case ”jpg”:

$mediaType = ”Image File”;
break;

case ”txt”:
$mediaType = ”Plain text Document”;
break;

default:
$mediaType = ”Unknown Media”;
break;

}

?>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>
<body>
<h1>Simple Content Management System</h1>
<h2>Step 2a: Add Asset Metadata</h2>

<!—
This form will ”post” the data, or send it behind the scenes
to the file specified in the action attribute. In this case, it
goes to a file named process_asset_metadata.php
—>
<p>When selecting categories and years, hold down the control
key to select multiple values.</p>
<form method=”post” action=”process_asset_metadata.php”>
<table>

<tr>
<td>Asset Id:</td>
<!— This is a simple text field that is ”read only”.
The value is sent from the uploading
form. —>

Appendix C: Source Code for CMS 343

<td colspan=”3”><input type=”text” readonly name=
”asset_id” value=”<?php echo $assetId; ?>”></td>

</tr>
<tr>

<td>Asset Filename:</td>
<!— This is a simple text field that is ”read only”.
The value is sent from the uploading
form. —>
<td colspan=”3”><input type=”text” readonly
name=”asset_filename” value=”<?php echo
$assetFilename; ?>”></td>

</tr>
<tr>

<td>Asset Name:</td>
<!— This is a simple text field —>
<td colspan=”3”><input type=”text” name=
”asset_name” value=”<?php echo $defaultName;
?>”></td>

</tr>
<tr>

<td valign=”top”>Asset Category:</td>
<!— This is a drop down field —>

<td><select name=”asset_category[]” size=”10” multiple>
<option value=”New Media”>New Media</option>
<option value=”Print”>Print</option>
<option value=”Management”>Management</option>
<option value=”Advertising”>Advertising</option>
<option value=”Alpha Project”>Alpha Project</option>
<option value=”Beta Project”>Beta Project</option>
<option value=”Gamma Project”>Gamma Project</option>
<option value=”Delta Project”>Delta Project</option>
<option value=”Epsilon Project”>Epsilon Project</option>
<option value=”Needs Revision”>Needs Revision</option>
</select>
</td>

<td valign=”top”>Years Used:</td>
<!— This is a drop down field —>
<td>
<select name=”asset_years_used[]”size=”10”
multiple>

<?php
for ($i = 2010; $i > 2000; $i—)

{
if (date(“Y”) == $i)

echo ”<option value=\”$i\” selected>$i</option>”;
else

344 Appendix C: Source Code for CMS

echo ”<option value=\”$i\”>$i
</option>”;
}

?>
</select>

</td>
</tr>
<tr>

<td>Asset Media Type:</td>
<!— This is a simple text field —>
<td colspan=”3”><input type=”text” name=
”asset_media_type” value=”<?php echo $mediaType;
?>”></td>

</tr>
<tr>

<td>Asset Description</td>
<!— This is a textarea, which provides more room
for writing —>
<td colspan=”3”><textarea name=”asset_description”
rows=”5” cols=”45”></textarea></td>

</tr>
</table>
</body>

<!—
When the submit button is pressed, each of the values typed
into the text fields and the textarea form will be stored in the
names associated with each form element (asset id, asset
filename, asset_name, asset_category, asset_media_type, and
asset_description).
—>
<input type=”submit” name=”submit” value=”Add Asset Metadata”>
</form>
</html>
<!— End of ”add_asset_metadata.php” file —>

File 4: process_asset_metadata.php

<!—
Project: Content Management System.
Component: Writer (File 4 of 5).
Filename: ”process_asset_metadata.php”.
Purpose: Checks metadata for errors and then writes out
metadata to a temporary file.
—>

Appendix C: Source Code for CMS 345

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>

<title> Simple Content Management System </title>
</head>
<body>
<h1>Simple Content Management System</h1>
<h2>Step 2b: Metadata Results Page</h2>
<?php
/*
The $bufferFilename variable is used to store the name of the
temporary file we will be writing to. For this exercise, this
file needs to be in the same directory as this script, but it
could be changed by including the directory path as part of
this variable.
*/
$bufferFilename = ”metadata_buffer.txt”;
/*
The first thing we will do is to grab the various
characteristics of our asset from the form.
*/
$assetId = $_POST[“asset_id”];
$assetFilename = $_POST[“asset_filename”];
$assetName = $_POST[“asset_name”];
$assetMediaType = $_POST[“asset_media_type”];
$assetDescription = $_POST[“asset_description”];
$assetCategory = $_POST[“asset_category”][0];
$assetYearsUsed = $_POST[“asset_years_used”][0];
/*
Next, we need to make sure these variables all contain data.
If not, we provide a link back to the previous page and ask
the user to enter data for all fields. The $errors variable
will keep track of total errors and if this variable is greater
than zero, the user will be asked to go back and provide any
missing data.
*/
/* If the asset ID is missing, show an error message. */
if (empty($assetId))

{
echo ”Asset id is missing!
”;
$errors++;
}

/* If the asset name is missing, show an error message. */
if (empty($assetName))

{

346 Appendix C: Source Code for CMS

echo ”Asset name is required!
”;
$errors++;
}

/* If the asset filename is missing, show an error message. */
if (empty($assetFilename))

{
echo ”Asset filename is required!
”;
$errors++;
}

/* If the asset category is missing, show an error message. */
if (empty($assetCategory))

{
echo ”Asset category is required!
”;
$errors++;
}

else
/* Otherwise, loop through and add a comma to separate
each category */
{
foreach($_POST[“asset_category”]as $cat)

{
if (empty($temp))

$temp = $cat;
else

$temp = $temp.”, ”.$cat;
}

}
$assetCategory = $temp;
/* If no years are selected, show an error message. */
if (empty($assetYearsUsed))

{
echo ”Asset year is required!
”;
$errors++;
}

else
/* Otherwise, loop through and add a comma to separate
each year used */
{
foreach($_POST[“asset_years_used”] as $year)

{
if (empty($temp2))

$temp2 = $year;
else

$temp2 .= ”, ”.$year;
}

}

Appendix C: Source Code for CMS 347

$assetYearsUsed = $temp2;
/* If the asset media type is missing, show an error message.
*/
if (empty($assetMediaType))

{
echo ”Asset media type is required!
”;
$errors++;
}

/* If the asset description is missing, show an error message.
*/
if (empty($assetDescription))

{
echo ”Asset description is required!
”;
$errors++;
}

/*
Here is the part where we check the total errors and redirect
the user if need be.
*/
if ($errors > 0)

{
echo ”There were one or more errors with your data.

”;
echo ”Please <a href=\”javascript:history.back()
\”>go back button and correct your input!
”;
}

else
{
/*
What we are going to do now is to ”glue” the variables
together into a single line using the PHP concatenation
operator, which is the period (.) In order to keep each
variable distinct, we will use the character sequence
*** to separate each entry.
Also, a \n (newline escape sequence) is used to make each
additional entry begin on a new line.
*/
$gluedString =

$assetId.”***”.$assetFilename.”***”.$assetName.”***”.$assetCate
gory.”***”.$assetYearsUsed.”***”.$assetMediaType.”***”.$assetDe
scription.”\n”;

/*
Now, we create a connection to the second buffer text
file; the first argument is the filename and the second
argument is the ”mode”. ”a” mode means ”append” and new
text content will be added to the end of the file.

348 Appendix C: Source Code for CMS

$fp is a variable that holds the ”link” or connection
to the file that we open and then sends this link to the
fwrite function for the purpose of writing data to the
file.
*/
if ($fp = fopen($bufferFilename,”a”))

{
/* This will write the glued string to the file */
if (fwrite($fp, $gluedString))

{
echo ”Asset added to buffer file!
”;
/* This closes the file after the writing
is done */
fclose($fp);
}

else
/* This is displayed if the file cannot be
written to */
{
echo ”There was an error adding your asset.

”;
echo ”Please check the file permissions for
your buffer file.
”;
echo ”The buffer filename is:
”.$bufferFilename.”.
”;
}

}
else

{
echo ”Unable to open asset metadata file!”;
}

}
?>
<p>Click here to return to Step 1 and <a href=”upload_asset.
html”>add another asset.</p>
<p>Click here to proceed to Step 3 and <a href=”finalize_
assets.php”>finalize all assets by writing them to an
XML file.</p>
</body>
</html>
<!— End of ”process_asset_metadata.php” file —>

File 5: finalize_assets.php

<!—
Project: Content Management System.

Appendix C: Source Code for CMS 349

Component: Writer (File 5 of 5).
Filename: ”finalize_assets.php”.
Purpose: Loops through metadata file and writes out all assets
and their associated metadata to a valid XML file.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>
<body>
<h1>Simple Content Management System</h1>
<h2>Step 3: Generate XML Document</h2>
<?php
/*
The $bufferFilename variable is used to store the name of the
temporary file we will be reading from. For this exercise, this
file needs to be in the same directory as this script,
but it could be changed by including the directory path as
part of this variable. The $xmlOutputFilename will be the
name of the file used to store our XML collection. Note that
this default filename will automatically append the current
month (in the format Jan, Feb, Mar, etc.) day, and year
(in four digit format) to the latter half of the filename.
*/
$bufferFilename = ”metadata_buffer.txt”;
$metaDataDirectory = ”metadata\\”;
$xmlOutputFilename = ”asset_collection_”.date(“MdY”).”.xml”;
/* This function writes the beginning of the XML file using UTF-
8 (Latin) encoding */
function startXMLdocument($xmlString)

{
$xmlString = ”<?xml version=\”1.0\” encoding=\”utf-8\”
?>\n”;
$xmlString .= ”<!— XML Asset Collection Document —>\n”;
$xmlString .= ”<!— Automatically generated by Content
Management System —>\n”;
$xmlString .= ”<!— Created on ”.date(“MdY”).” —>\n”;
$xmlString .= ”<?xml-stylesheet type=\”text/xsl\”
href=\”asset_collection_transform.xsl\”?>\n\n”;
return($xmlString);
}

/*
This function writes the document type definition (DTD) as well
as the top level asset_collection container to the XML file

350 Appendix C: Source Code for CMS

*/
function insertDTD($xmlString)

{
$xmlString .= ”<!DOCTYPE asset_collection [\n”;
$xmlString .= ”\t<!ELEMENT asset_collection (asset)*>\n”;
$xmlString .= ”\t<!ELEMENT asset (id,filename,name,
category,years,media,description)>\n”;
$xmlString .= ”\t<!ELEMENT id (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT filename (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT name (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT category (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT years (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT media (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT description (#PCDATA)>\n”;
$xmlString .= ”]>\n\n”;
$xmlString .= ”<asset_collection>\n”;
return($xmlString);
}

/*
This function closes the asset_collection container
*/
function endXMLdocument($xmlString)

{
$xmlString .= ”</asset_collection>\n”;
return($xmlString);
}

/*
This function will loop through the temporary buffer file
and find each asset and its metadata. It can tell where one
asset ends and another begins because they are each separated
by newlines (or the \n character sequence). It can also
tell where one element ends and the next one begins by the
*** character sequence. Each asset is converted into an XML
element with its values written out into the XML file as
character data.
*/
function addAssetCollection($filename,$xmlString)

{
if ($filecontents = file($filename))

{
$xmlString = startXMLdocument($xmlString);
$xmlString = insertDTD($xmlString);
foreach($filecontents as $singleLine)

{
$line = explode(“\n”,$singleLine);
$units = explode(“***”,$line[0]);

Appendix C: Source Code for CMS 351

$xmlString .= ”\t\t<asset>\n”;
$xmlString .= ”\t\t\t<id>”.$units[0].”
</id>\n”;
$xmlString .= ”\t\t\t<filename>”.$units[1].”
</filename>\n”;
$xmlString .= ”\t\t\t<name>”.$units[2].”
</name>\n”;
$xmlString .= ”\t\t\t<category>”.$units[3].”
</category>\n”;
$xmlString .= ”\t\t\t<years>”.$units[4].”
</years>\n”;
$xmlString .= ”\t\t\t<media>”.$units[5].”
</media>\n”;
$xmlString .= ”\t\t\t<description>”.
$units[6].”</description>\n”;
$xmlString .= ”\t\t</asset>\n”;
}

$xmlString = endXMLdocument($xmlString);
return($xmlString);
}

else
{
echo ”Unable to open file!”;
}

}
/*
This function handles the actual writing of the XML document
to a permanent file. It will use the same metadata directory
and filename as specified by the variables at the top of this
script.
*/
function writeXMLFile($metaDataDirectory, $fileName, $xmlString)

{
$fp = fopen($metaDataDirectory.$fileName, ”w”);
if ($bytesWrittenToFile = fwrite($fp, $xmlString))

{
echo ”XML file created successfully!
”;
return TRUE;
}

else
{
echo ”There was a problem writing to file.
”;
echo ”Here is the XML content:
<pre>
$xmlString</pre>”;
return FALSE;

352 Appendix C: Source Code for CMS

}
}

/*
Here is where the addAssetCollection is ”called” to create
the XML string that will be written to the permanent file.
For now, the entire XML document will be stored in a temporary
string variable named $xml.
*/
$xml = addAssetCollection($bufferFilename, $xmlString);
/*
This segment of code writes the XML string to a permanent file.
If it is unable to create the file, the error message defined in
the writeXMLFile function will be displayed.
*/
if (writeXMLFile($metaDataDirectory, $xmlOutputFilename, $xml))

{
echo ”
”;
echo ”Click here to <a href=\””.$metaDataDirectory.$xml
OutputFilename.”\”>view your collection using an XSL
transform.
”;
echo ”Click here to begin
a new asset collection.
”;
echo ”Click here to select an
XML file to parse using the CMS parser.”;
}

?>

</body>
</html>
<!— End of ”finalize_assets.php” file —>

File 6: select_xml.php

<!—
Project: Content Management System.
Component: Reader/Parser (File 1 of 2).
Filename: ”select_xml.php”.
Purpose: Selects the XML document to send to the parser.
—>
<?php
/*
This variable holds the name of the directory containing the
metadata for the content management system */
$metaDataDirectory = ”metadata”;
/*

Appendix C: Source Code for CMS 353

This variable would need to be modified to run on non-Windows
operating systems. This is a system command that will list the
current files with an XML extension. The /b characters tell the
system to print this information in ”bare” mode with only
filenames in the output. This system will also work only if the
XML documents are stored in metadata directory as defined in the
$metaDataDirectory variable.
*/
$directoryListingCommand = ”dir /b {$metaDataDirectory}*.xml”;
/*
This command will load the results from this system command
into an array. Each filename will be stored in a separate index
location in the array. Explode is a special function in PHP
that will figuratively blast apart (or tokenize) a string based
upon the character used as the first argument to the explode
function. For instance, in this usage, the explode command
will take the string returned from the system directory command
and then separate it into individual units according to where
new lines are indicated in the string (recall that the
\n character sequence indicates a new line in PHP). These
individual units are then stored in an array named ”files” which
is iterated through below in order to list each file as a
selection in the drop down menu.
*/
$temp = ’$directoryListingCommand’;
$files = explode(“\n”,$temp);
?>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>
<body>
<h1>Simple Content Management System</h1>
<h2>Select XML File</h2>
<form method=”get” action=”parse_xml.php”>
<?php
if ($files[0] == ””)

{
echo ”There are no XML files to select. Click <a href=\
”upload_asset.html\”>here to create a library.

”;
}

else
{

354 Appendix C: Source Code for CMS

?>
<select name=”inputFilename”>
<?php
foreach ($files as $file)

{
if ($file <> ””) echo ”<option value=\””.
$file.”\”>”.$file.”</option>”;
}

?>
</select>
<input type=”submit” value=”go”>
<?php
}

?>
</form>
</body>
</html>
<!— End of ”select_xml.php” file —>

File 7: parse_xml.php

<!—
Project: Content Management System.
Component: Reader/Parser (File 2 of 2).
Filename: ”parse_xml.php”.
Purpose: Parse the XML document and display the assets
according to type.
—>
<?php
/*
The $rootPath variable is used to indicate the full file path to
the asset files on your hard drive. This is necessary for the
parser to check that the asset file exists. This check occurs
later in the script. The $metaDataDirectory variable holds the
value for the directory containing the XML files.
*/
$rootPath = ”c:\\xampp\\htdocs\\xmlparsers\\cms\\”;
$metaDataDirectory = ”metadata\\”;
?>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Simple Content Management System </title>
</head>
<body>

Appendix C: Source Code for CMS 355

<h1>Simple Content Management System</h1>
<h2>Asset Collection</h2>
<?php
/*
This section of code will check to see if an input file has been
specified through the URI (e.g.
parse_xml.php?inputFilename=test.xml). If not, the parser will
display an error message and will exit. ”Exit” is a special
PHP function that will exit the script completely and display a
message if a failure is encountered.
*/
if (isset($_GET[“inputFilename”]))

$inputFilename = $_GET[“inputFilename”];
else

exit(“No input file is specified. Please specify an input
file using by appending a question mark at the
end of this filename and then including the name of the
XML file (e.g. parse_xml.php?inputFilename=test.xml). Or,
you can also use the built-in directory browser
available here.”);

?>
<!— This will display the name of the current document being
parsed —>
<hr />
<p>Parsing document named ”<?php echo $inputFilename; ?>”.
</p>
<?php
/*
The startElement function is the function that will be called
whenever a beginning XML tag is encountered. For instance,
if the parser is currently parsing an element named ”<asset_
collection>”, the parser will jump to the block of code
specified by the case ”asset_collection” condition. In PHP, the
switch statement works like a series of IF statements where the
same value is being compared in each condition. In this case,
we are looking at the $name variable's value and printing
code to the browser depending on which XML element is currently
being processed.
*/
function startElement($parser, $name, $attributes)

{
switch($name)

{
case ”xml”:

return;
break;

356 Appendix C: Source Code for CMS

case ”asset_collection”:
echo ”<table border=\”1\”width=\”640\”>”;
echo ”<tr>”;
echo ”<th>Id</th>”;
echo ”<th>Filename</th>”;
echo ”<th>Asset name</th>”;
echo ”<th>Categories</th>”;
echo ”<th>Years Used</th>”;
echo ”<th>Media</th>”;
echo ”<th>Description</th>”;
echo ”</tr>”;
break;

case ”asset”:
echo ”<tr>”;
break;

default:
echo ”<td>”;
break;

}
}

/*
This function is used to display the character data that is
encapsulated within each element tag. Global is a special
keyword in PHP that enables a function to access a variable
defined outside the scope of the function. In this case, we
need to use the $rootPath variable that is defined at the top of
this script. Next, we use the eregi function to scan the
$value variable and look for any files that end with .jpg, .gif,
.doc, .pdf, or .txt. These will be the asset files themselves
rather than the metadata annotations. We are checking these
files because we need to do some special error checking to make
sure the assets actually exist before we provide links to them
(see next comment below).
*/
function characterData($parser, $value)

{
global $rootPath;
if (eregi(“[.]jpg|[.]gif|[.]doc|[.]pdf|[.]txt”,$value))

{
echo $value;
$longFileName = $rootPath.”assets\\”.$value;

/*
This segment of code will check to verify that a file actually
exists on the hard disk drive before providing a link to it.
If a file is missing, the text ”missing” will be displayed
instead. This is an advantage to using a custom designed

Appendix C: Source Code for CMS 357

parser rather than simple XSL transformations in that we can
use built-in functions like this for additional error checking.
*/

if (file_exists($longFileName))
echo ”
<a href=\”assets/”.$value.”\”
target=\”_blank\”>$value”;

else
echo ”
(missing)”;

}
else

{
echo $value;
}

}
/*
The endElement function is the function that will be called
whenever an ending XML tag is encountered. For instance,
if the parser is currently parsing an element named
”</asset_collection>”, the parser will jump to the block of
code specified by the case ”asset_collection” condition.
In PHP, the switch statement works like a series of IF
statements where the same value is being compared in each
condition. In this case, we are looking at the $name
variable's value and printing code to the browser
depending on which XML element is currently being processed.
If </asset_collection> is parsed, this tells us that the
collection is now entirely scanned and we can go ahead and
close the table using the HTML tag </table>.
*/
function endElement($parser, $name)

{
switch($name)

{
case ”xml”:

return;
break;

case ”asset_collection”:
echo ”</table>”;
break;

case ”asset”:
echo ”</tr>”;
break;

default:
echo ”</td>”;
break;

}

358 Appendix C: Source Code for CMS

}
/*
The function xml_parser_create() is used to create a new parser
in PHP. It then returns a ”resource handle” which is a special
variable that can be referenced from that point on when working
with the parser. In this case, our resource handle is stored
in a variable named $xml.
*/
$xml = xml_parser_create();
/*
The XML_OPTION_CASE_FOLDING option is used to make sure that
the parser does not transform all elements into uppercase when
parsing an XML document. Since XML is case-sensitive, leaving
case folding on, which is the default, could cause problems
when parsing the file. Here, setting this option to ”false”
means that the parser will leave lowercase or mixed case
elements as they were originally created.
*/
xml_parser_set_option($xml, XML_OPTION_CASE_FOLDING, false);
/*
This function is used to specify functions that should be
called when starting elements and ending elements are
encountered in the XML hierarchy. We have defined these
functions, named startElement() and endElement() in the
top portion of this code. Anytime a new beginning element
(e.g. <asset>) is encountered, the startElement function will
be called and the code can perform conditional actions based
on the name of the element. Then, when an ending element
(e.g. </asset>) is processed, the endElement function is
called.
*/
xml_set_element_handler($xml, ”startElement”, ”endElement”);
/*
This function is very similar to the one above, but instead of
creating a function to handle elements, it creates a function
to handle the character data itself. For example, when values
that exist between XML element tags are processed, these values
are sent to the function defined here. In this case, we named
it characterData().
*/
xml_set_character_data_handler($xml, ”characterData”);
/*
This block of code will read the file into memory and then
attempt to parse it. If the file is not found, an error message
will be displayed to the user. Similarly, if the file is unable
to be parsed (which could be due to malformed XML content or

Appendix C: Source Code for CMS 359

file corruption) a secondary error message will be displayed.
The ampersand (@) in front of the file_get_
contents() function is used to suppress warning messages.
Since we are already providing error messages in the case of a
failed operation, we don't need to clutter the user's
browser with additional warnings from PHP.
*/
if ($xmlString = @file_get_contents($metaDataDirectory.
$inputFilename) or die(“Input file not available.”))

{
xml_parse($xml, $xmlString);
}

else
{
echo ”Error. Unable to load input file for parsing.

”;
}

?>

Select Different Asset Database

Begin New Asset Collection

</body>
</html>
<!— End of ”parse_xml.php” file —>

File 8: asset_collection_transform.xsl

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”www.w3.org/1999/
XSL/Transform”>
<!—
Project: Content Management System.
Component: XSL Transform (File 1 of 1).
Filename: ”asset_collection_transform.xsl”.
Purpose: Transform an XML asset collection into an HTML-based
tabular table format.
—>
<xsl:template match=”/”>
<html>
<head>
<title> Content Management System: Current Asset Collection

</title>
</head>

<body>

360 Appendix C: Source Code for CMS

<!— transform assets into a table —>
<h1>Asset Collection</h1>
<table border=”1”>
<tr>

<th>Id</th>
<th>Filename</th>
<th>Name</th>
<th>Categories</th>
<th>Years Used</th>
<th>Media</th>
<th>Description</th>

</tr>
<xsl:for-each select=”asset_collection/asset”>
<tr>

<td><xsl:value-of select=”id”/></td>
<td><xsl:value-of
select=”filename”/>
</td>
<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”category”/></td>
<td><xsl:value-of select=”years”/></td>
<td><xsl:value-of select=”media”/></td>
<td><xsl:value-of select=”description”/></td></tr>

</xsl:for-each>
</table>
</body>

</html>
</xsl:template>
</xsl:stylesheet>
<!— End of ”asset_collection_transform.xsl” file —>

File 9: metadata_buffer.txt (sample)

1***asset1.doc***asset1***New Media, Print, Epsilon
Project***2007, 2005***MS-Word Document***This is a sample
brochure idea that was shown to clients before the new Epsilon
2.0 software was released. It needs a bit more work before it
can be sent to the printer.
2***asset2.pdf***asset2***New Media, Print, Epsilon
Project***2007, 2005***Adobe PDF Document***This is the PDF
version of the Epsilon product brochure.
3***asset3.txt***asset3***New Media, Print, Gamma Project,
Epsilon Project***2007, 2005***Plain text Document***These are
some printing notes from the Gamma Project that might also be
useful for the Epsilon project.

Appendix C: Source Code for CMS 361

4***asset4.jpg***asset4***Epsilon Project***2007***Image
File***JPEG logo for the Epsilon project. Red text with drop
shadow.

File 10: asset_collection_Dec192007.xml (sample)

<?xml version=”1.0” encoding=”utf-8”?>
<!— XML Asset Collection Document —>
<!— Automatically generated by Content Management System —>
<!— Created on Dec192007 —>
<?xml-stylesheet type=”text/xsl” href=”asset_collection_
transform.xsl”?>

<!DOCTYPE asset_collection [
<!ELEMENT asset_collection (asset)*>
<!ELEMENT asset (id,filename,name,category,years,media,
description)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT filename (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT years (#PCDATA)>
<!ELEMENT media (#PCDATA)>
<!ELEMENT description (#PCDATA)>

]>
<asset_collection>

<asset>
<id>1</id>
<filename>asset1.doc</filename>
<name>asset1</name>
<category>New Media, Print, Epsilon Project
</category>
<years>2007, 2005</years>
<media>MS-Word Document</media>
<description>This is a sample brochure idea
that was shown to clients before the new
Epsilon 2.0 software was released. It needs
a bit more work before it can be sent to the
printer.</description>

</asset>
<asset>

<id>2</id>
<filename>asset2.pdf</filename>
<name>asset2</name>
<category>New Media, Print, Epsilon Project
</category>

362 Appendix C: Source Code for CMS

<years>2007, 2005</years>
<media>Adobe PDF Document</media>
<description>This is the PDF version of the
Epsilon product brochure.</description>

</asset>
<asset>

<id>3</id>
<filename>asset3.txt</filename>
<name>asset3</name>
<category>New Media, Print, Gamma Project,
Epsilon Project</category>
<years>2007, 2005</years>
<media>Plain text Document</media>
<description>These are some printing notes
from the Gamma Project that might also be
useful for the Epsilon project.</description>

</asset>
<asset>

<id>4</id>
<filename>asset4.jpg</filename>
<name>asset4</name>
<category>Epsilon Project</category>
<years>2007</years>
<media>Image File</media>
<description>JPEG logo for the Epsilon
project. Red text with drop shadow.
</description>

</asset>
</asset_collection>

Appendix C: Source Code for CMS 363

Appendix D
Source Code for Single Sourcing
Demonstration

File 1: add_module.html

<!—
Project: Single Sourcing Demo.
Component: Writer (File 1 of 3).
Filename: ”add_module.html”.
Purpose: Add a documentation module to our master XML file.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Single Sourcing Demo: Add Documentation Module

</title>
</head>
<body>
<h1>Single Sourcing Demo</h1>
<h2>Step 1: Add Module</h2>
<p>Select a feature to document, then enter the skill
level your documentation is most appropriate for. Type your
documentation, then click ”Submit Documentation” to add your
content to the master XML document.</p>
<form method=”post” action=”process_module.php”>
<table>

<tr>
<td>Feature:</td>
<td><select name=”feature”>

<option value=”introduction”>
Introduction</option>
<option value=”tutorial”>Accessing the
Tutorial</option>
<option value=”tutorial”>Adding Assets
</option>

</select>

</td>
</tr>
<tr>

<td>Skill Level:</td>
<td><select name=”skill_level”>

<option value=”beginner”>Beginner
</option>
<option value=”intermediate”>
Intermediate</option>
<option value=”advanced”>Advanced
</option>

</select>
</td>

</tr>
<tr>

<td>Documentation:</td>
<td><textarea name=”documentation” rows=”10”
cols=”55”></textarea>
</td>

</tr>
</table>

<input type=”submit” name=”submit” value=”Submit
Documentation”>
</form>
</body>
</html>
<!— End of ”add_module.html” file —>

File 2: process_module.php

<!—
Project: Single Sourcing Demo.
Component: Writer (File 2 of 3).
Filename: ”process_module.php”.
Purpose: Checks metadata for errors and then writes out
metadata to a temporary file.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>

<title> Single Sourcing Demo: Process Documentation
Module </title>

</head>
<body>

Appendix D: Source Code for Single Sourcing Demo 365

<h1>Single Sourcing Demo</h1>
<h2>Step 2: Module Results Page</h2>
<?php
/*
The $bufferFilename variable is used to store the name of the
temporary file we will be writing to. For this exercise, this
file needs to be in the same directory as this script, but it
could be changed by including the directory path as part of
this variable.
*/
$bufferFilename = ”ss_buffer.txt”;
/*
The first thing we will do is to grab the various
characteristics of our software documentation from the form.
*/
$feature = $_POST[“feature”];
$skillLevel = $_POST[“skill_level”];
$documentation = $_POST[“documentation”];
/*
In this example, rather than using another buffer file to
keep track of the number of the most recently added module,
we will create a module identifier by gluing together the
feature being document with the skillLevel. So, a typical
module ID would look something like ”introduction_beginner”
or ”introduction_advanced”.
*/
$moduleId = $feature.”_”.$skillLevel;
/* If the feature information is missing, show an error
message. */
if (empty($feature))

{
echo ”Feature is required!
”;
$errors++;
}

/* If the skill level description is missing, show an error
message. */
if (empty($skillLevel))

{
echo ”Skill level description is required!
”;
$errors++;
}

/* If the documentation is missing, show an error message. */
if (empty($documentation))

{
echo ”Documentation is required!
”;
$errors++;

366 Appendix D: Source Code for Single Sourcing Demo

}
/*
Here is the part where we check the total errors and redirect
the user if need be.
*/
if ($errors > 0)

{
echo ”There were one or more errors with your data.
”;
echo ”Please go
back button and correct your input!
”;
}

else
{
/*
What we are going to do now is to ”glue” the variables
together into a single line using the PHP concatenation
operator, which is the period (.) In order to keep each
variable distinct, we will use the character sequence
*** to separate each entry. Also, a \n (newline escape
sequence) is used to make each additional entry begin
on a new line.
*/
$gluedString =
$moduleId.”***”.$feature.”***”.$skillLevel.”
***”.$documentation.”\n”;
/*
Now, we create a connection to the second buffer text
file; the first argument is the filename and the second
argument is the ”mode”. ”a” mode means ”append” and new
text content will be added to the end of the file.
$fp is a variable that holds the ”link” or connection
to the file that we open and then sends this link to the
fwrite function for the purpose of writing data to the
file.
*/
if ($fp = fopen($bufferFilename,”a”))

{
/* This will write the glued string to the file */
if (fwrite($fp, $gluedString))

{
echo ”Software documentation module added to
buffer file!
”;
/* This closes the file after the writing is
done */
fclose($fp);

Appendix D: Source Code for Single Sourcing Demo 367

}
else

/* This is displayed if the file cannot be
written to */
{
echo ”There was an error adding your
documentation.
”;
echo ”Please check the file permissions for
your buffer file.
”;
echo ”The buffer filename is: ”.
$bufferFilename.”.
”;
}

}
else

{
echo ”Unable to open buffer file!”;
}

?>
<p>Click here to return to Step 1 and <a href=
”add_module.html”>add another module.</p>
<p>Click here to proceed to Step 3 and <a href=
”finalize_modules.php”>finalize all documentation
modules by writing them to an XML file.</p>
<?php
}

?>
</body>
</html>
<!— End of ”process_module.php” file —>

File 3: finalize_modules.php

<!—
Project: Single Sourcing Demo.
Component: Writer (File 3 of 3).
Filename: ”finalize_modules.php”.
Purpose: Loops through metadata file and writes out all
documentation modules to a valid XML file using DOM.
—>
<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Transitional//EN”
”www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”www.w3.org/1999/xhtml”>
<head>
<title> Single Sourcing Demo: Finalize Modules </title>
</head>
<body>

368 Appendix D: Source Code for Single Sourcing Demo

<h1>Single Sourcing Demo</h1>
<h2>Step 3: Generate XML Document</h2>
<?php
/*
The $bufferFilename variable is used to store the name of the
temporary file we will be reading from. For this exercise, this
file needs to be in the same directory as this script, but it
could be changed by including the directory path as part of
this variable. The $xmlOutputFilename will be the name of the
file used to store our XML documentation.
*/
$bufferFilename = ”ss_buffer.txt”;
$metaDataDirectory = ”metadata/”;
$xmlOutputFilename = ”documentation.xml”;
/* This function writes the beginning of the XML file using UTF-
8 (Latin) encoding */
function startXMLdocument($xmlString)

{
$xmlString = ”<?xml version=\”1.0\” encoding=
\”utf-8\”?>\n”;
$xmlString .= ”<!— XML Single Sourcing Documentation
File —>\n”;
$xmlString .= ”<!— Automatically generated by Single
Sourcing Demo —>\n”;
$xmlString .= ”<!— Created on ”.date(“MdY”).” —>\n”;
$xmlString .= ”<?xml-stylesheet type=\”text/xsl\”
href=\”ss_allmodules_transform.xsl\”?>\n\n”;
return($xmlString);
}

/*
This function writes the document type definition (DTD) as well
as the top level documentation container to the XML file
*/
function insertDTD($xmlString)

{
$xmlString .= ”<!DOCTYPE documentation_modules [\n”;
$xmlString .= ”\t<!ELEMENT documentation_modules
(module)*>\n”;
$xmlString .= ”\t<!ELEMENT module (id,feature,
skill_level, documentation)>\n”;
$xmlString .= ”\t<!ELEMENT id (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT feature (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT skill_level (#PCDATA)>\n”;
$xmlString .= ”\t<!ELEMENT documentation (#PCDATA)>\n”;
$xmlString .= ”]>\n\n”;
$xmlString .= ”<documentation_modules>\n”;

Appendix D: Source Code for Single Sourcing Demo 369

return($xmlString);
}

/*
This function closes the documentation container
*/
function endXMLdocument($xmlString)

{
$xmlString .= ”</documentation_modules>\n”;
return($xmlString);
}

/*
This function will loop through the temporary buffer file
and find each asset and its metadata. It can tell where one
asset ends and another begins because they are each separated
by newlines (or the \n character sequence). It can also
tell where one element ends and the next one begins by the
*** character sequence. Each asset is converted into an XML
element with its values written out into the XML file as
character data.
*/
function addDocumentationCollection($filename,$xmlString)

{
if ($filecontents = file($filename))

{
$xmlString = startXMLdocument($xmlString);
$xmlString = insertDTD($xmlString);
foreach($filecontents as $singleLine)

{
$line = explode(“\n”,$singleLine);
$units = explode(“***”,$line[0]);
$xmlString .= ”\t\t<module>\n”;
$xmlString .= ”\t\t\t<id>”.$units[0].”</id>
\n”;
$xmlString .= ”\t\t\t<feature>”.$units[1].”
</feature>\n”;
$xmlString .= ”\t\t\t<skill_level>”.
$units[2].”</skill_level>\n”;
$xmlString .= ”\t\t\t<documentation>”.
$units[3].”</documentation>\n”;
$xmlString .= ”\t\t</module>\n”;
}

$xmlString = endXMLdocument($xmlString);
return($xmlString);
}

else
{

370 Appendix D: Source Code for Single Sourcing Demo

echo ”Unable to open file!”;
}

}
/*
This function handles the actual writing of the XML document
to a permanent file. It will use the same metadata directory
and filename as specified by the variables at the top of this
script.
*/
function writeXMLFile($metaDataDirectory, $fileName, $xmlString)

{
$fp = fopen($metaDataDirectory.$fileName, ”w”);
if ($bytesWrittenToFile = fwrite($fp, $xmlString))

{
echo ”XML file created successfully!
”;
return TRUE;
}

else
{
echo ”There was a problem writing to file.
”;
echo ”Here is the XML content:

<pre>$xmlString</pre>”;
return FALSE;
}

}

/*
Here is where the addDocumentationCollection is ”called” to
create the XML string that will be written to the permanent
file. For now, the entire XML document will be stored in a
temporary string variable named $xml.
*/
$xml = addDocumentationCollection($bufferFilename, $xmlString);
/*
This segment of code writes the XML string to a permanent file.
If it is unable to create the file, the error message defined in
the writeXMLFile function will be displayed.
*/
if (writeXMLFile($metaDataDirectory, $xmlOutputFilename, $xml))

{
echo ”
”;
echo ”Click here to <a href=\””.$metaDataDirectory.
$xmlOutputFilename.”\”>view your documentation using an
XSL transform.
”;

Appendix D: Source Code for Single Sourcing Demo 371

echo ”Click here to begin a
new documentation collection.
”;
echo ”Click here to parse
the documentation file using the single sourcing
parser.”;
}

?>
</body>
</html>
<!— End of ”finalize_modules.php” file —>

File 4: parse_xml.php

<!—
Project: Single Sourcing Demo.
Component: Reader/Parser (File 1 of 1).
Filename: ”parse_xml.php”.
Purpose: Creates an interactive browsing system for our
documentation file based on user-selected skill level.
—>
<?php
/*
The $rootPath variable is used to indicate the full file path to
the documentation files on your hard drive. The
$metaDataDirectory variable holds the value for the directory
containing the XML files.
*/
$rootPath = ”c:\\xampp\\htdocs\\xmlparsers\\ss\\”;
$metaDataDirectory = ”metadata\\”;
$xmlOutputFilename = ”documentation.xml”;
/*
These two variables will be used to hold the skill level and
module information once they have been selected by the user
using the unordered (bulleted) list display on the page.
*/
$selectedSkillLevel = $_GET[“skill_level”];
$selectedModule = $_GET[“module”];
/*
The purpose of this function is to list all skill levels
currently available. To add new skill levels, simply append
their names to the end of the $skillLevels array.
*/
function listSkillLevels()

{
$skillLevels = array(“Beginner”,”Intermediate”,
”Advanced”);

372 Appendix D: Source Code for Single Sourcing Demo

echo ”<p>Please select the skill level that best reflects
your computing experience.</p>”;
echo ””;
foreach ($skillLevels as $sl)

{
echo ””;
/* This creates a link such that when we click on
it, the skill level value is passed along with it!
*/
echo ”<a href=\”parse_xml.php?skill_level=
{$sl}\”>”;
echo $sl;
echo ””;
echo ””;
}

echo ””;
}

/*
The purpose of this function is to list all documentation
features (topics) currently available. Each topic must have
all three skill level modules (beginner, intermediate, and
advanced) available in order for this to work correctly.
To add new topics, simply append their names to the end of
the $completedModules array (e.g. array(“Introduction”,
”Topic 2”,”Topic 3”)...).
*/
function listTopics($skill)

{
$completedModules = array(“Introduction”);
echo ”<p>Please select a topic to browse.</p>”;
echo ””;
foreach ($completedModules as $module)

{
echo ””;
/* This link will pass along both selected module
and skill level information to the parser */
echo ”<a href=\”parse_xml.php?module=
{$module}&skill_level={$skill}\”>”;
echo $module;
echo ””;
echo ””;
}

echo ””;
}

if (isset($selectedSkillLevel))
{

Appendix D: Source Code for Single Sourcing Demo 373

if (isset($selectedModule))
{
/*
This block of code will execute if BOTH skill
level and module have been selected by the user.
For this example, we are creating a DOM parser.
*/
$xml = new DOMDocument();
/* Load the file using the path, directory, and XML
filename specified at the top of this script */
$xml->load($rootPath.$metaDataDirectory.
$xmlOutputFilename);
/*
With the DOM, we can now use our DTD to validate
our XML document!
*/
if ($result = @$xml->validate())

{
/* This block of code will ”run” only if
the XML document has successfully passed
validation. */
echo ”<h1>”.$selectedModule.”</h1>”;
/* Using the DOM model, this will select all
DOM nodes with the tag name ”module” */
$modules = $xml->getElementsByTagName
(“module”);
/* This will loop through each node in an
iterative fashion. */
foreach ($modules as $module)

{
/* First, get any skill level nodes
(there is actually only one) associated
with each module */
$skillLevels =
$module->getElementsByTagName
(“skill_level”);
/* Now, get the value associated with
that node. This will be ”beginner”,
”intermediate”, or ”advanced.” */
$skillLevel = $skillLevels->item(0)
->nodeValue;
/* This will check to see what value
was contained in the node. */
switch(strtolower($selected
SkillLevel))

{

374 Appendix D: Source Code for Single Sourcing Demo

/* If beginner skill level is
selected, show only that skill
level's content */
case ”beginner”:

if ($skillLevel ==
”beginner”)

{
$node =

$module->getElementsByTagName(“documentation”);
$doc = $node->
item(0)->nodeValue;

echo
”<p>”.stripslashes($doc).”</p>”;

}
break;

/* If intermediate skill level is
selected, show that skill level
content plus beginning level
content */
case ”intermediate”:

if ($skillLevel ==
”beginner” || $skillLevel
== ”intermediate”)

{
$node = $module->getElementsByTagName
(“documentation”);

$doc = $node->
item(0)->nodeValue;

echo ”<p>”.
stripslashes
($doc).”</p>”;

}
break;

/* If advanced skill level is
selected, show both prior skill
levels plus advanced content */
case ”advanced”:
if ($skillLevel == ”beginner” ||
$skillLevel == ”intermediate” ||
$skillLevel == ”advanced”)

{
$node = $module->
getElementsByTagName
(“documentation”);
$doc = $node->
item(0)->nodeValue;

Appendix D: Source Code for Single Sourcing Demo 375

echo ”<p>”.strips
lashes($doc).”</p>”;
}

break;
default:

echo ”<p>Error: unable to
provide documentation for
skill level $selected
SkillLevel.</p>”;
break;

}
}

echo ”Back Home
”;
}

else
{
echo ”<p>Error: the documentation file was
unable to validate against its internal DTD.
There is likely a problem with the XML
documentation file. Please contact technical
support!</p>”;
}

}
else

{
/* Show the list of available topics and embed
the provided skill level into the links */
listTopics($selectedSkillLevel);
}

}
else

{
/* Show the list of currently available skill levels */
listSkillLevels();
}

?>
<!— End of ”parse_xml.php” file —>

File 5: ss_allmodules_transform.xsl

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”www.w3.org/1999/
XSL/Transform”>
<!—
Project: Single Sourcing Demo.

376 Appendix D: Source Code for Single Sourcing Demo

Component: XSL Transform (File 1 of 1).
Filename: ”ss_allmodules_transform.xsl”.
Purpose: List ALL documentation modules in HTML.
—>
<xsl:template match=”/”>
<html>
<head>

<title> Single Sourcing Demo: All Documentation Modules
</title>

</head>

<body>
<!— list all documentation modules in an unordered list
—>
<h1>Documentation Modules</h1>

<xsl:for-each select=”documentation_modules/module”>
Id: <xsl:value-of select=”id”/>

Feature: <xsl:value-of select=”feature”/>
Skill Level: <xsl:value-of select=
”skill_level”/>
Documentation: <xsl:value-of select=
”documentation”/>

</xsl:for-each>

Back
</body>

</html>
</xsl:template>
</xsl:stylesheet>
<!— End of ”ss_allmodules_transform.xsl” file —>

File 6: ss_buffer.txt (sample)

introduction_beginner***introduction***beginner***Asset
Management System 1.0 is a tool for organizing and labeling
collections of organizational documents. You can use this
system to add asset labels for categories and media and to
assign a list of years during which that asset may have been
used. In addition, you can provide a detailed description of
the asset and why it may have long term importance for your
organization. To get started with AMS 1.0, click the
\”Tutorial\” link from this help file.

Appendix D: Source Code for Single Sourcing Demo 377

introduction_intermediate***introduction***intermediate***This
program supports many features such as user-configurable fields
for categories, year ranges, and media types. In addition, the
program includes options for clearing all fields or for
restoring defaults using the (Tools, Options, Reset) menus from
the Tools menubar. Messages concerning program operations are
displayed in the Status: field. This field is directly above the
Asset Name dropdown menu in the AMS interface.

introduction_advanced***introduction***advanced***Advanced
features include the ability to use keyboard shortcuts and to
import and export settings using XML files. Keyboard shortcuts
for common commands are found in the Keyboard Shortcuts section
of this help system. Program options default to verbose mode
for extra warnings and customized messaging from the AMS
system. To disable verbose mode, see Disabling Verbose Mode in
the list of help topics.

File 7: documentation.xml (sample)

<?xml version=”1.0” encoding=”utf-8”?>
<!— XML Single Sourcing Documentation File —>
<!— Automatically generated by Single Sourcing Demo —>
<!— Created on Dec222007 —>
<?xml-stylesheet type=”text/xsl”
href=”ss_allmodules_transform.xsl”?>
<!DOCTYPE documentation_modules [

<!ELEMENT documentation_modules (module)*>
<!ELEMENT module (id,feature,skill_level, documentation)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT feature (#PCDATA)>
<!ELEMENT skill_level (#PCDATA)>
<!ELEMENT documentation (#PCDATA)>

]>

<documentation_modules>
<module>

<id>introduction_beginner</id>
<feature>introduction</feature>
<skill_level>beginner</skill_level>
<documentation>Asset Management System 1.0
is a tool for organizing and labeling
collections of organizational documents.
You can use this system to add asset labels
for categories and media and to assign a list
of years during which that asset may have

378 Appendix D: Source Code for Single Sourcing Demo

been used. In addition, you can provide a
detailed description of the asset and why it
may have long term importance for your
organization. To get started with AMS 1.0,
click the \”Tutorial\” link from this help
file.</documentation>

</module>
<module>

<id>introduction_intermediate</id>
<feature>introduction</feature>
<skill_level>intermediate
</skill_level>
<documentation>This program supports many
features such as user-configurable fields for
categories, year ranges, and media types.
In addition, the program includes options for
clearing all fields or for restoring defaults
using the (Tools, Options, Reset) menus from
the Tools menubar. Messages concerning
program operations are displayed in the
Status: field. This field is directly above
the Asset Name dropdown menu in the AMS
interface. </documentation>

</module>
<module>

<id>introduction_advanced</id>
<feature>introduction</feature>
<skill_level>advanced</skill_level>
<documentation>Advanced features include the
ability to use keyboard shortcuts and to
import and export settings using XML files.
Keyboard shortcuts for common commands are
found in the Keyboard Shortcuts section of
this help system. Program options default
to verbose mode for extra warnings and
customized messaging from the AMS system.
To disable verbose mode, see Disabling
Verbose Mode in the list of help
topics.</documentation>

</module>
</documentation_modules>

Appendix D: Source Code for Single Sourcing Demo 379

Copyright Credits

Microsoft®, Word®, Windows®, Excel®, Visual Studio®, Visual Basic®, and
Internet Explorer® are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Microsoft® product screenshot(s) reprinted with permission from
Microsoft Corporation.

Mozilla® and Firefox® are registered trademarks of the Mozilla
Foundation. Mozilla Firefox® screen captures are used in accordance with
the Mozilla Trademark Policy (www.mozilla.org/foundation/trademarks/
faq.html).

Specific Credits

Additional individual credits and permissions are listed below, arranged by
chapter.

Cover Image

Cover image by Carole McDaniel.

Chapter 1

Portions reprinted from Applen, J.D. “Technical Communication, Know-
ledge Management, and Xml.” Technical Communication 49.3 (2002):
301–13. Used with permission from Technical Communication, the journal
of the Society for Technical Communication, Arlington, VA, U.S.A.

Chapter 2

Advisory Committee on Human Radiation Experiments, Executive Sum-
mary, reprinted with permission from the United States Department of
Energy.

Chapter 3

Portions reprinted, with permission, from Applen, J.D. “Extensible Mark-
up Languages and the Remediation of Abstracting and Indexing Strategies.”
IEEE Transactions on Professional Communication 44.3 (2001): 202–6.
© 2001 IEEE.

Portions reprinted, with permission, from Applen, J.D. “Disease
Classification and the Organization of Large-Scale Web Sites.” IEEE
Transactions on Professional Communication 44.4 (2001): 186–90. © 2001
IEEE.

Portions reprinted, with permission, from Applen, J.D. “Tacit Knowledge,
Knowledge Management, and Active User Participation in Web Site
Navigation.” IEEE Transactions on Professional Communication 45.4
(2002): 302–6. © 2002 IEEE.

Portions reprinted from Applen, J.D. “Technical Communication,
Knowledge Management, and Xml.” Technical Communication 49.3
(2002): 301–13. Used with permission from Technical Communication, the
journal of the Society for Technical Communication, Arlington, VA U.S.A.

Chapter 5

Screenshot of XMLBlueprint used with permission of Mr. Gerbin Abbink.
Images shown in Figures 5.6–5.8 were taken from the DITA Topics

Tutorial (www.ditausers.org/training/DITATopics/) by Mr. Bob Doyle. Used
with permission.

Chapter 6

Screenshots of XAMPP control panel and XAMPP home page used with
permission of Mr. Kai Seidler.

Chapter 7

Interview with Dr. J. Michael Moshell printed with permission.
Interview with Dr. Michael Gourlay printed with permission.
Interview with Dr. Sherry Steward printed with permission.
Interview with Mr. Bill Albing printed with permission.
Interview with Mr. Thomas Gorence printed with permission.

Copyright Credits 381

Achre see Advisory Committee on
Human Radiation Experiments
(Achre)

Acquired Immune Deficiency Syndrome
(AIDS) 105

activities 93–4, 172, 296, 322
Ad Hoc Rhetorical Analysis of XML

(RAX) 4, 219, 242, 260, 295, 302;
form for 334–5

advertising 133–4, 210, 256, 259,
262

Advisory Committee on Human
Radiation Experiments (ACHRE)
76–93, 208–9; entity descriptions for
115–17; executive summary 323

Albers, Michael 2, 4, 201, 218, 303
Ament, Kurt 111–14
analogy 10, 18–19, 99; see also

metaphor
Apache 221–4, 229, 241, 284
Apple; Apple Research Library 30;

Macintosh 218, 223
application programming interface

(API) 227–8, 238, 246, 306, 311
Aristotle 10–11, 97, 99, 188, 301
Arthur Andersen (AA) 118, 121
Asahi beer 20
Asynchronous JavaScript and XML

(AJAX) 150, 304, 320
attributes 3, 48–50, 60; defining 65–7;

IDREF attributes 67–72; simple
61–5; unique 61–7

“ba” 15
Baumard, Philippe 13–14
Berners-Lee, Tim 95–7, 114, 122, 191,

211, 295, 301–2, 320
biology 11–12, 26, 28–9, 103, 177,

203, 303, 324
Bobrow, Daniel 36–7

bold 47, 141, 144–5, 147, 151, 153,
155–6, 158–9, 161, 172, 203, 212,
229

Bolter, Jay David 191, 212
Borges, Luis 98
bottom-up approach 4, 37
Bowker, Geoffrey 97, 100–1, 124, 301
brainstorming 16, 308–9, 334; see also

knowledge creation
bread 17, 204–10
Brown, John Seeley 33, 35, 38
browsers 46–7, 52, 152, 217, 235, 245,

248–9
Buchanan, Mark 28
business reprocessing engineering 33

Callaghan, James 23, 25
CamelCase 230
Canada 36
Canon 19
careers 6
cascading style sheets (CSS) x, 3, 46,

48, 131–2, 136, 301; and block-level
elements 148–9; and color 142–3;
and font size 143–6; in HTML, using
137–42; and layout 150–2;
mechanics of 131–2; and rhetoric
121, 131, 134–5; and visual
complexity 136; in XML, using
152–62

Cast Member Performance
Management (CMPM) 308, 313

Cast Performance Management System
(CPMS) 308

CD-ROMs 31, 37
chemistry 13, 30, 100
Chun, Wei Choo 14, 31–2
citation styles 42
classification schemes 3, 32, 97–101,

304; of diseases, example of 101–9

Index

CMS see content management systems
(CMS)

color 41, 46, 135, 137–45, 147, 151,
153, 155–9, 161, 172; color-coding
225, 312; hexadecimal codes for
142–3

combination 16, 20–1, 220
communication; between computers 2;

and hypertext 7; writing as 17; see
also semantics

communities see socially constructed,
knowledge as

competence, knowledge and 22
competitiveness 15–16
computer science 2, 98, 305, 315,

319; see also careers
constructive criticism 17;

see also socially-constructed,
knowledge as

consumers see end users
content management systems (CMS) 4,

109, 111, 262, 264, 266–75, 278,
280, 287; Content Management
System project 258–80; source code
for 336–63

Content Management System project
258–80; source code for 336–63

contractive technology 7, 220
copy machines see Canon, Eureka,

Xerox
CoreTech 23–5
critical reverse engineering 8
Crowley, Sharon 18, 98

Darwin, Charles 11
Darwin Information Typing

Architecture (DITA) 3–4, 174, 180,
186, 200–2, 203–8, 210–13, 308,
318

databases 4, 20–1, 24, 30, 302;
designing 315–16, 319; employees,
classifying skills of 30–2; relational
310–11; using XML for 4, 42, 50,
65, 131, 153, 179, 195, 200, 216,
268, 274, 287, 295–7, 316

deconstruction 7
Department of Energy (DOE) 76,

108–9, 115–16, 284, 324
digital media practitioners 304
discussion questions 38, 128, 171–2,

211, 293, 321–2
Davenport, Thomas 119–20
DITA see Darwin Information Typing

Architecture (DITA)
DIV tag 146, 148–50

Doak, Jeffrey 7, 127, 300
DocBook 3, 174, 178, 180, 186, 195,

200–2, 208–13, 314, 318
Document Design Architecture (XDA)

125
document designers 3, 162, 175–6,

180, 191, 202, 217, 230, 233, 238,
242, 257, 281, 294–5, 299–301,
318; XML Document Design
Architecture (XDA) 125;
see also visual style

Document Object Model (DOM) API
238, 284

document type declarations 57, 59–66,
84–5, 88

document type definitions (DTDs) 36,
41, 45, 51–4, 57–9, 126, 217–18,
277, 284, 286, 300, 308, 313–15,
318; predesigned 200–11; for entities
74–5, 83–92; external 59–65, 74,
300; rules for designing 54–7, 113;
see also document type declarations;
Darwin Information Typing
Architecture (DITA); DocBook

Dreamweaver 169, 173, 221
Duguid, Paul 33, 35, 38

ECMAScript for XML (E4X) 309,
311, 313, 316

ecology see information ecology
economics 9, 19 21, 29, 102, 124–6;

information economy 1, 8, 35;
knowledge economy 35, 300

ecosystems 26–8; see also information
ecology

education 10, 12, 304, 308–9, 319
Electronic Arts (EA) 305–7
electronic performance support system

(EPSS) 111
element model 114, 115
elements; described 43–6; element

model 114, 115; empty 50
Ellul, Jacques 27, 29
employees, classifying skills of 30–2;

see also careers
end users 8–9, 22, 26, 29, 33, 215–17,

286, 309
entities; document type definitions

(DTDs) for 83–90; types of 74–82;
unparsed 91–3

error messages 187, 314, 342, 346–8,
353, 356, 359–60, 366, 371

ethics 7, 242, 324–7, 331
Eureka project 3, 35–6, 113, 300;

Eureka II 37–8, 300

384 Index

evolution, theory of 11; see also
Darwin Information Typing
Architecture (DITA)

expansive technology 7, 9, 220
Expat 217, 313
explicit knowledge x; generates explicit

knowledge 20–3; generates new
knowledge 6; becomes tacit
knowledge 15, 21–2; compared to
tacit knowledge 13, 16; see also
combination; externalization;
knowledge creation; knowledge,
nature of; socially-constructed,
knowledge as; tacit knowledge

eXtensible Business Reporting
Language (XBRL) 195

eXtensible Hypertext Markup
Language (XHTML) 170, 201, 210,
229, 232, 302

eXtensible Markup language (XML); as
communication tool 8; compared to
HTML 41–2; declarations 43, 57,
59–60, 166, 179, 182; as object-
orientated language 41–2, 122, 186,
202, 220, 237, 238–41, 249, 300;
Schema Definition (XSD) 179–88,
302, 314; special symbols in 51, 75;
text editors 46–7, 169, 188, 221,
224–5, 312, 315, 319; uses of 42;
valid 3, 52, 177, 269, 286, 300, 314;
value of 41–2; version 42, 152, 154,
253; well-formed 3, 164, 169, 177,
180, 187, 191, 283, 300, 311, 314;
writing, outlined 47–8; XLink 52,
170, 174–5, 191, 192, 194–5,
211–12, 302; youth of 4; see also
attributes; elements; namespaces

eXtensible stylesheet Language (XSL) 3,
135, 162–70, 301; eXtensible
Stylesheet Language Formatting
Objects (XSL-FO) 162–3; eXtensible
Stylesheet Language Transformations
(XSLT) x, 46, 162–3, 173, 210, 218,
279, 310, 312–14

externalization 16, 17–19, 21
extranets 23, 25

F = ma 10
FarPoint 305–6
File Transfer Protocol (FTP) 178, 224–5
finance see economics
Firefox® 46, 152, 235, 245, 248–9
firewalls 23, 223
Florida Interactive Entertainment

Academy (FIEA) 305, 309, 313

font 41, 46, 139, 141–2, 144–5, 147,
151, 155–6, 158–61, 172; variants
148

Foucault, Michel 98–9, 301
FrameMaker 114, 259, 303, 308,

310–11, 314, 317
France 35–6

GE 21
globally unique identifier (GUID) 245,

251–2, 255–7
Google 38, 96, 123, 143, 149–50
granularization 3, 83, 115, 124, 128,

284, 296, 303, 319

Hawhee, Debra 18, 98
Health and Human Services,

Department of (HHS) 72–3
health insurance 34
Hervey, William 18, 189
heuristics 3, 124–5, 303
Hewlett Packard Library 29
Honda 16, 19
Howell, William 22
HTML see hypertext markup language

(HTML)
Hughes, Michael 8–9, 22–3, 299
hyperlinks 41–2
hypertext, nature of 7
hypertext markup language (HTML);

cascading stylesheets in 137–42;
compared to XML 41–2; hyperlinks
41–2, 192–4; limitations of 42; prior
knowledge of 1; SPAN 146, 149, 150

IBM 11, 203, 214, 217
Ichijo, Kazuo 15
IDREF attributes 67–72
indexing 24, 31–2, 122–4, 191, 231;

see also classification schemes
industry 2, 7, 8, 12, 19, 21, 29, 111,

118, 295, 304, 310, 317–18
information; different from knowledge

35; social systems and 33–8
information architecture 2, 3, 120–1,

126, 153, 202, 211, 216, 253,
294–5; see also classification systems;
indexing; information design

information design 1, 30–3, 152, 216,
217, 219, 238, 241, 294; and
computer science 2; customizing 2;
stages of 4, 261, 265, 278, 299; see
also information architecture

information ecology 6, 26–33, 34, 281;
as metaphor 26, 28–9, 38

Index 385

information product model 114–15
information science and knowledge

management 122–6
information specialists 31–3
information storage and retrieval

systems (ISARs) 122
insurance sector 34, 103, 114
integrated development environment

(IDE) 312
integrity 3
interface 4, 45, 216–18, 232, 235, 255,

259, 261–3, 266, 270–80, 283, 303,
315; see also application
programming interface (API); visual
style

internalization 16, 21
International Classification of Diseases

(ICD) 101–8
interviews 304–17; discussion of

317–20
intranets 20, 23–5, 28, 31, 35, 64,

111–13, 317
italic 41–2, 141, 144–5, 151, 172, 207,

212, 229, 296

Java 217–18, 220, 238, 308–14, 317;
Asynchronous JavaScript and XML
(AJAX) 150, 304, 320; development
kit 208; JavaScript 149–50, 220,
229, 304

Johnson-Eilola Johndan 6–9, 127, 299

keywords 32, 192, 202, 212, 222,
230–2, 239

knowledge; and competence 22;
different than information 35;
dissemination, examples of 30–2;
durability of 23; mapping 119–20;
nature of 13–14; profiles 32; and
technical communication 9, 22–3; see
also explicit knowledge; information
ecology; socially-constructed,
knowledge as; tacit knowledge

knowledge capital 9, 35, 127
Knowledge Creating Company, The see

Nonaka, Ikujiro; Takeuchi, Hirotaka
knowledge creation 15, 16–18, 120;

and chaos 15; see also brainstorming
knowledge economy 9, 35, 300
knowledge exchange , XML empowers

1
knowledge, explicit see explicit

knowledge
Knowledge Extraction from Document

Collections (KXDC) 38

knowledge management 3, 6, 118–21;
corporate-wide 23–5; customized
systems of 2; deploying 23–5;
information needed for 32; and
information science 122–6l removes
intermediary between knowledge and
user 32; of tacit knowledge 14–16;
technical communicators perform 9,
22–3; see also technical knowledge

knowledge networks, size of 9
knowledge, tacit see tacit knowledge
Kraft Foods 20
Kuhn, Thomas 9–13, 38, 101, 106,

121, 124, 127, 301, 322

libraries 29–30, 123; library science 3,
6, 95, 230, 303–4, 319; personal
engagement in 30–1; traditional role
downplayed 32; “yellow pages”,
electronic 31; see also information
specialists

linking 41–2, 192–3; see also XLink
Linux 193, 218, 224
literature reviews
logic see reasoning

Malhotra, Yogesh 9, 120–1
manuals; for cascading style sheets

(CSS) 152; documentation 7–8, 34–5,
37, 209–10; Interactive Electronic
Technical Manuals 306–8, 315–17;
and single sourcing 109–12; training
13–15, 30, 34–8; see also Eureka
project; Xerox

mapping technology 119–20
mathematics 10
Matsushita Electric Industrial Company

17, 21
Mazda 18
metadata 31, 50
metaphor 10, 17–19, 120; information

ecology as 26, 28–9, 38; see also
analogy

“metis” 13–14
Microsoft® 308; Internet Explorer®

46–7, 59, 61–3, 67, 69–70, 75–6, 84,
87, 90, 93, 217; Notepad 46–7, 59,
68, 221, 311–12; Office 12, 110,
114, 150, 260, 262, 303; Visio® 263;
Visual Basic® 282; Visual Studio®

306, 310, 317; Windows® 12, 47,
193, 218, 221–5, 282, 284–5

Miller, Dick 7, 127, 209, 300
minitel 35
Mirel, Barbara 122

386 Index

modules, primary and secondary
111–14

Morville, Peter 113, 123, 261
Mozilla® see Firefox
multi-player online role playing games

(MORPGs) 308

namespaces 3, 72–4, 97, 132, 170–1,
174–9, 182, 186, 188, 191, 195,
201, 211, 233–4, 238, 302, 314

Nardi, Bonnie 26–30, 33–4
natural language processing (NLP) 38
NEC 17
new technologies see emerging

technologies
New York 26–7
news 14, 41, 131, 172, 215, 241–57,

296, 302, 317
newsfeeds 4, 215, 241–57, 296, 306
Nonaka, Ikujiro 15–23, 220

O’Day, Vicki 26–30, 33–4
object-orientated languages 41–2, 122,

186, 202, 220, 237, 238–41, 249,
300

Oracle 217
Organization for the Advancement of

Structured Information Standards
(OASIS) 203, 208–9

overtime 21
Owen, John M. 31–3

parsers 46, 217–19; customized 4,
171, 200, 211, 216; described 4,
46, 52, 90, 217–18; instructions
for 167–9, 175, 177, 179, 184;
and rhetoric 219–20; support
XPath 191; technical approach
to 220–1; see also Content
Management System project;
error messages; Expat; PHP
Hypertext Preprocessor; Really
Simple Syndication (RSS); RSS
Parser Project; Simple API for
XML; Single Sourcing System
project

philosophy 13–14, 99, 133, 301,
321

PHP-FI (Personal Home Page Tools/
Forms Interpreter) 227, 252

PHP Hypertext Preprocessor 218,
220–6, 246–8, 268–72, 284–7, 291,
293, 296, 302–3, 307–8; arrays and
loops 230–1; CamelCase 230; Cast
Member Performance Management

(CMPM) 308, 313; Cast
Performance Management System
(CPMS) 308; data typing 230;
described 227–8; functions,
arguments, and variable scope
231–7; PHP-FI (Personal Home
Page Tools/Forms Interpreter) 227,
252; SAX API (Simple API for
XML) 259, 317, 317; syntax
228–9; variables 228; and XML
237–41, 310

point of sales (POS) database 20
politics 1, 7, 57, 104, 106, 195, 200,

318, 320; and technical
communication 9

Polanyi, Michael 13
primary and secondary modules

111–14
programming 2
Prusak, Laurence 119–20
psychology 2, 98, 136, 177, 188, 266,

301

Quality Management Standards (QMS)
24

radiation see Advisory Committee on
Human Radiation Experiments
(Achre)

readers, hypertext and 7
Really Simple Syndication (RSS) 215,

280, 296, 302, 314, 317; RSS parser
project 241–58

reasoning 18
recognition 3
Reich, Robert 8
religion 99, 104, 135
resumes 31
rhetorical models 4, 122, 132–6,

219–20
Rhetorical Nature of XML, The,

website for 4
rhetorical theory; technical knowledge,

relationship with 1, 9
Rich Site Summary 317
Rockley, Ann 109–11, 114–15, 127–8,

215, 280–1
Roman Empire 133
Rosenfeld, Louis 113, 123, 261
RSS see Really Simple Syndication

(RSS)
RSS Parser project 241–58

scalable vector graphics (SVG) 170,
302

Index 387

Schema Definition (XSD) 179–88;
cardinality 185–6; enforcing data
types 183–4; sequencing 182–3; types
180–2, 186–8; validation 184–5

science; “normal science” 10–11, 38,
101, 322; provides tools for technical
communicators 9–10; subjectivity
10–11, 13; see also biology;
chemistry; evolution, theory of

Scott, Linda 134–5
SCRUM 309, 319
searching 3, 30–1, 36–7, 42, 52, 109,

122–4, 164, 167–8, 177, 188, 191,
193, 211, 226, 262, 264–5, 311;
“canned searches” 30; search engines
36, 96, 113, 123–4, 143, 212, 222

SearchLite 36–7
secondary modules 111–14
Secure File Transfer Protocol (S-FTP)

225
Selber, Stuart 6–7, 9, 127
Selfe, Cynthia 6, 9, 11, 27, 125
Selfe, Richard 11
Semantic Web, The 95–7, 211, 295,

301–2, 320
semantics ix, 1, 3, 41, 72; and

information 8; Semantic Web, The
95–7, 211, 295, 301–2, 320; and
World Wide Web (www) 95–7; see
also communication

servers 25, 59, 61, 86, 88, 94, 149,
171, 193, 220–5

shared commitments 10–11, 38, 121
shared examples 10, 12, 38, 121
shared values 10, 38, 121
Simon, Solomon 125–6
Simple API for XML (SAX API) 259,

317
single sourcing ix, 3–4, 38, 41, 51, 88,

108–11, 215; dynamic customized
content 111, 215, 296; electronic
performance support system 111,
296; identical content 110; primary
and secondary modules 111–14;
Single Sourcing System project
280–93; source code for 364–79;
static customized content 110, 128

Single Sourcing System project 280–93;
source code for 364–79

Slack, Jennifer 7, 127, 300
Social Life of Information, The see

Brown, John; Duguid, Paul
socially-constructed, knowledge as 1–3,

8–12, 16–17; constructive criticism
17; inside and across organizations 9,

29–31; and paradigms 9–12; shared
commitments 10–11, 38, 121 ;
shared examples 10, 12, 38, 121;
shared values 10, 38, 121; symbolic
generalizations 10, 38, 121, 124; see
also competitiveness; explicit
knowledge; knowledge networks, size
of; tacit knowledge

SPAN 146, 149, 150
special characters 41, 185; alpha-

numeric 43; Unicode 166–7
special symbols 51, 75
Standard Generalized Markup

Language (SGML) 208, 305, 307,
315

Star, Susan 97, 100–1, 124, 301
style see style guides; visual style
style guides 42
subject matter experts (SMEs) 31, 317
sudden infant death syndrome (SIDS)

102
symbolic-analysts 8–9, 12, 320
symbolic generalizations 10, 38, 121,

124
syntax 2, 3

tacit knowledge; acquiring 13, 16;
becomes explicit knowledge 17–19;
compared to explicit knowledge 13,
16; generates new knowledge 6, 13,
15; and knowledge management 32;
learnt from making mistakes 12; and
socialization 16–17; use of
discouraged 15; see also
combination; explicit knowledge;
externalization; knowledge creation;
knowledge, nature of; socially-
constructed, knowledge as

Takeuchi, Hirotaka 16–23, 220
technical communicators 303, 304,

318–19; assumptions made by 9,
11–12; and critical reverse
engineering 8–9; ethical responsibility
of 7; and information organization
33–8; as knowledge managers 9,
22–3; not authors 7; and software
designers 8; technology empowers ix,
6, 8–9

technical editors 303–4
technical writers see technical

communicators
technology; alters working environment

6, 28; assists knowledge transfer 3;
contractive 7, 220; critical use of 6;
expansive 7, 9, 220; human

388 Index

interaction with 6, 33–8; limits of in
knowledge creation 15–16, 33;
locality of 29; pace of change in 6

text; bold 47, 141, 144–5, 147, 151,
153, 155–6, 158–9, 161, 172, 203,
212, 229; italic 41–2, 141, 144–5,
151, 172, 207, 212, 229, 296; size 41,
47, 141, 143–7, 150–2, 158–60, 172;
see also color; font; special characters

text editors 46–7, 169, 188, 221,
224–5, 312, 315, 319; see also
Dreamweaver; Notepad

thesauri 32
three-stage information design analysis

4
trees 18, 189

Unicode 166–7
Uniform Resource Indicator (URI) 72,

178–9
Uniform Resource Locator (URL) 61,

72, 86, 178, 194, 196, 199, 224–6,
243, 245, 249, 253–4, 302

Uniform Resource Name (URN) 178

validation 2
van der Vlist, Eric 179–80
Vargas, Patrick 134–5
Virtual Reality Modeling Language

(VRML) 170, 302
visual style 3, 131–6; see also imagery;

interface
Von Krogh, Georg 15, 37

Web 2.0 149, 211, 304, 305
website for The Rhetorical Nature of

XML 4

Whalen, Jack 36–7
Wick, Corey 9, 299
Wiki websites 305
Windows Server 221
working environment 6, 127, 318;

competitiveness in 15–16; improving
21; see also careers; knowledge
management

World Health Organization (WHO)
72–3, 105, 175, 179

World Wide Web 42
World Wide Web Consortium (W3C)

162, 175, 178, 182, 186–7, 194–5,
200, 212, 300, 314

writers see hypertext
writing 17–18

XAPMM 222–7, 246, 250, 268, 285,
287, 296

Xerox; Eureka project 3, 35–6, 113,
300; Eureka II 37–8, 300

XML Document Design Architecture
(XDA) 125

XML see eXtensible markup language
(XML)

XSL see eXtensible stylesheet Language
(XSL)

XPath 52, 162, 167, 170–1, 174–5,
188–91; XPath data model (XDM)
118

XPointer 52, 162, 170, 174–5,
195–200, 211–12

XLink 52, 170, 174–5, 191, 192,
194–5, 211–12, 302

XSL see eXtensible Stylesheet Language

“yellow pages”, electronic 31

Index 389

	Book Cover
	Title
	Copyright
	Contents
	Illustrations
	Preface
	Acknowledgments
	Abbreviations
	Introduction: XML, Knowledge Management, and Rhetoric
	1 Knowledge Management and Society: Evaluating the Convergence of Knowledge and Technology
	2 Introduction to XML: A Primer on the eXtensible Markup Language
	3 Semantics and Classification Systems: Single Sourcing and Methods for Knowledge Managers
	4 The Visual Rhetoric of XML: Using CSS and XSL to Format and Display XML Projects
	5 Advanced Concepts in XML: Namespaces, Schemas, XLink, XPath, XPointer, DITA, and DocBook
	6 Focused Implementations: Using PHP to Design Custom Parsers for XML Projects
	7 XML and Your Career: XML and Knowledge Management at Work in Interdisciplinary Contexts
	Appendix A: ACHRE—Executive Summary
	Appendix B: RAX Form
	Appendix C: Source Code for CMS
	Appendix D: Source Code for Single Sourcing Demonstration
	Copyright Credits
	Index

