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Preface

Operations research, which is concerned with the efficient allocation of scarce
resources, is both an an and a science. The art lies in the ability to depict the concepts
efficient and scarce in a well-defined mathematical model of a given situation. The
science consists in the dernvation of computational methods for solving such models.
As with the first edition. this second edition introduces readers (o both aspects of
the field.

Since the optimal allocation of money, manpower, encrgy. or a host ol other
scarce factors, is of importance to decision makens in many traditional disciplines,
the matenal in this book will be useful to individuals from a vanety of backgrounds
Therefore, this outline has been designed both as a textbook for students wanting
an mtroduction 1o operations rescarch and as a reference manual from which
practitioners can oblain specific procedures.

Each chapter is divided into three sections. The first deals mainly with methodol-
ogy; the exception is Chapter 1, which is concerned exclusively with the modeling
aspects of mathematical programming. The second section consists of completely
waorked out problems. Besides clanfying the techniques presented in the first section,
these problems may cxpand them and may also provide prototype situations for
understanding the art of modeling. Finally, there is a section of problems with answers
through which readers can test their mastery of the material

To meet the growing demands of the operations rescarch courses, we added to
the second edition the dual umplex method, the revised simplex method, sensitivity
analysis, and the trailblazing Karmarkar algorithm. This edition also features new
chapters in the arcas of project planning using PERT/CPM, inventory control, and
lorecasting.

A background in matrix algebra is sulficient for most of the material in this book,
although some differential calculus is required for the nonlinear search techniques.
A first course in probability is a prerequisite for the material on PERT, inventory
control, forecasting, game theory, decision theory, dynamic programming. Markov
chamns. and queucing.

We would be remiss in our duty if we do not thank our family members Evelyn
Bronson, and Amirtha, Revathi, and Sathish Naadimuthu for thewr mvaluable
patience, understanding. and support duning this project. We would hke to acknowl-
edge our respective deans — Dr. Dano Cortes of the University College and Dr. Paul
Lerman of the Samuel J. Silberman College of Business Administration—for their
support of this book. We are also grateful to the graduate business assistants—
Adisreenivasa Reddy Bannuru, Luisella Basso, Sanjay Bhatnagar, Snchal Daterao,
Ricardo De Bedout, Tori Franc, Ramesh Naropanth, In-Jae Park, Nazim Tagiev,
anrd Yue-Ling Yu—Tfor their assistance in the preparation of the manuscript. We are
particularly indebted to the editorial and production stafll of Professional Book
Group McGraw-Hill for their help in bringing this project to fruition.

RicHarn Brossos
Govinpasas NAADDMUTHU
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Chapter 1

Mathematical Programming

OPFTIMIZATION PROBLEMS

In an optimization problem one socks to maximue or mimmize a specific quantity, called the objective,
which depends on a finite number of input variables These vanables may be independent of one another,
or they may be related through one or more comstrainiy.

Example 1.1 The problem
minimize: = x] + x]
subject toc x; —x; =)
Xy 21

i an optimization problem for the objective = The input variables are x, and x,, which are comtrained in two
ways x; must exceed x; by 1, and also x; must be greater tham or equal 10 1 It is desired to find values for the
input variables which minimize the sum of their squares, subject to the imitations imposed by the constraints.

A mathematical program is an optimuzation problem in which the objective and constraints are given
as mathematical functions and functional relationships (as they are in Example 1.1). Mathematical
programs treated in this book have the form

optimize: = fin, Xg....%,)
subject to: g (x;, 35 . ... %)) [ b,

Palxy g0 m) | S ) By

.......... coeee ) mf oo (.1
=
PR ENE S % ) B

Each of the m constraint relationships in (/.]) involves one of the three signs <, =, 2. Unconstrained
mathematical programa are covered by the formalism (/.7) if each function g, is chosen as zero and each
constant b, is chosen as zro.

LINEAR PROGRAMS
A mathematical program (/.J) is linear if f{x,. x5, ....x,)and cach gdx,. %y ... . X )i= 12, ....m)
are lincar in each of their arguments—that i, if
S Xge ooy Xy) = €% + Xy + - + 6,X, (1
and
P Xgee v oo Xg) ™= @ Xy 4 QX3 400 + X, (1.3)
where ¢ and a; (=1, 2,....m; j=1,2,...,n) are known constanis.
Any other mathematical program is aoalincar. Thus, Example 1.1 describes a nonlincar program, in
view of the form of 2.

|
Copyrighted Material



MATHEMATICAL PROGRAMMING [CHAP, |

INTEGER PROGRAMS

An imeger program is a hnear program with 1the additional restriction that the mput vanables be
mtegers. Il is not necessary that the cocfficients in (/.2) and (/7). and the constants in (1.7 also be
integers, but this will very often be the case.

QUADRATIC PROGRAMS

A quadratic program s a mathematical program in which each constraint s lincar—that i, cach
constraint function has the form (/.3}—but the objective is of the form

£ 95 SO T z E CoXix, + E i x, i1.4)
(LR W Lk | =]
where ¢, and d, are known constants.

The program given in Example 1.1 is quadratic. Both constraints are linear, and the objective has
the form (/.4), with n = 2 {iwo variables), ¢,, = Loz = ey, = ege = Land o, = d; = 0.

FPROBLEM FORMULATION

Optimization problems most often are stated verbally. The solution procedure is to model the
problem with a mathematical program and then solve the program by the technigues described in
Chapters 1 through 15 The following approach is recommended for transforming a word problem into
a mathematical program:

STEFP I Determine the quantity to be optimized and express it as a mathematical function. Doing so
serves 1o define the input variables.

STEP 2. Identify all stipulated requirements, restrictions, and limitations, and express them mathe-
matically. These requirements constitule the constraints

STEFP i Express any hidden conditions. Such conditions are not stipulated explhicitly in the problem
but arc apparent from the physical situation being modeled. Generally they mvolve non-
negativily or integer requirements on the input vanables.

SOLUTION CONVENTION

In any mathematical program, we seck a solution. If a number of equally optimal solutions exist,
then any one will do, There is no preference betwern equally optimal solutions if there fs no preference
stipulated in the constraints,

Solved Problems

L.l The Village Butcher Shop traditionally makes its meat loaf from a combination of kean ground
beel and ground pork. The ground beef contains 80 percent meat and 20 percent fal, and costs
the shop 80¢ per pound; the ground pork contains 68 percent meat and 32 percent fat, and costs
60¢ per pound. How much of each kind of meat should the shop use in each pound of meat loaf
if it wants to minimize its cost and to keep the fat content of the meat loaf to no more than 25

percent?
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1.2

The objective is to minimize the cost (in cents), ¢, of a pound of meat loaf, where

= = 50 times the poundage of ground beel used plus 60 tmes the poundage of ground pork used
Defining

x, = poundage of ground beef used in each pound of meat loal

vy = poundage of ground pork used in each pound of meat loal

we eapress the objective as
minimize: = = B0y, + Olx; {n

Each pound of meat loal will contain 0.20x, pound of fat contributed from the beefl and 0.31x, pound
of lut contributed from the pork. The total fat content of a pound of meat loal must be no greater than

0251b. Therefore,
0.20x, + 032x, <025 (N

The poundages of beel and pork used n each pound of meat loal must sum 10 1; hence
4=l (R

Finally, the butcher shop may not use negative guantities of either meat, so that itwo hidden constramis
are x; = 0 and x; > 0. Combining these conditions with (/) (2). and (¥), we obtain

minimire 3= B, + 60y
subject 1x 0.20x, + 0.32x, < 025 i)

Lt x=l
with:  all variables nonnegative
System (4) is a lincar program. As there are ooly two vanables, a graphical solution may be given

Solve the linear program (4) of Problem 1.1 graphically.

See Fig 1-1. The frasible region—the set of points (x,, x;) satisfying all the constraints, including the
nonnegativity conditions—is the heavy line segment in the figure. To determine £*, the minimal value of 2,
we arbitrarily choose values of 2 and plot the graphs of the assoctated objectives. By choosing 2 = 70 and
then = T4, we obtain the objectives
respectively. Their graphs are the Jdashed lines in Fig 1-1. 1t s scon that :* will be asumed at the upper
endpoint of the feasible segment, which is the intersection of the two lines

ﬂ.lﬁ:.-l-ﬂ.!h,-w and l|+.'l;-l

=9
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Simultancous solutlon of these equations gives a7 = 7 10 x% = § | X henee.
2% BT 12N - BONS 120 = TIOTE

A furniture maker has & units of wood and 28 h of free time, in which he will make decorative
screens. Two models have sold well in the past, so he will restrict himsell to those two. He estimates
that model 1 requires 2 units of wood and 7 h of ime, while model 1l requires | umit of wood
and & h of time. The prices of the models are $120 und 580, respectively. How many screens of
cach model should the lurniture maker assemble if he wishes to maximize his sales revenue?

The objsctive i 1o maumize revenue (in dollarsi which we demate as =

= = 120 times the number of model | sereens produced plus X0

times the number of model 11 screens produced

Letting

v, = number of model 1 sereens 1o be produecsd

vy & number of model 11 screens to be produaced
we express the obpective as

matimize == 120y, + 80, i

The furniture maker i subject 10 8 wood constramt. As cach model | requires 2 umits of wood. 1x,
units must be allocated to themn, hkewise. 1v; units of wood must be allocated to the model 11 wreens
Hence the wood constraint i

g+ X356 (B

The furniture maker also has a time constrainl. The model | screens will consume Ty hours and the
model 11 screens Bx, hourc and o

Tay «Ex; < 25 ih

It is obvious that negative quantitics of either screen cannot be produced. so two hidden constraimis
are x, >0 and 1. > 0 Furthermaore. since there 1 no revenue derived from partially completed screens
another hidden condition s that v, und v; be imtegers. Combining these hidden conditions with (/1 (24
and (J1 we obtain the mathematical program

mauimize: = |2, + My,
sobjctto: 2y, + G <h n
Toy =K £ 28
with:  all varmbles nonnegatinve and imtegral
System (4) is an integer program. As there are only two vanables, 4 graphical solution may be given

Give a graphical solution of the integer program (4) of Problem 1.3

See Fig. 1-2 The feasable regon is the set of imteger points imarked by crosses) within the shaded arca
The dashed lines are the graphs of the objective function when = » arbitranly given the values 240, 130,
and 380, It is seen that the =-line through the point i3, 00 will furnish the desired mavimum; thus. the furniure
maker should assemble 1hree model 1 icreens and no model 1] screend. for a mavimum revenue of

=% = |23 - B0 = S360

Observe that this optimal answer is mot achseved by first solving the assoauted lingar program (the
same problem without the mteger constrainish and then moving 10 the dosest feasible mieger point. In fact,
the feasihle region for the assocuated lincar program s the shaded area of Frg. 1-2. 30 the optimal solution
occurs at the arcled corner point. But at the closest feasible integer pornt. (L 11 the objective function has
the value z = 12042} + RN 1) = $320 or $40 less than the true optimum

An alternate solution procedure for Problem 1.3 is given in Problem 78
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Fig. 12

Universal Mines Inc. operates three mines in West Virginia. The ore from each mine is separated
into two grades before it is shipped; the daily production capacities of the mines, as well as their
daily operating costs, are as follows:

High-Grade Ore, | Low-Girade Ore, | Operating Cost,
tona/day tons/day $1000/day
Mine | 4 4 X
Mine 11 6 4 n
Mina (11 I (] 18

Universal has commitied itsell to deliver 54 tons of high-grade ore and 65 tons of low-grade
ore by the end of the week. It also has labor contracts that guarantee employees in cach mine a
full day's pay for each day or fraction of a day the mine is open. Determine the number of days
each mine should be operated during the upcoming week if Universal Mines is to fulfill its
commitment al minimum total cost.
Let x,, x;, and x,, respectively, denote the numbers of days that mines I, I1, and 111 will be operated
during the upcoming week. Then the objective (measured in units of $1000) is
minimire: = 2Mx;, + 22x; + 181, i
The high-grade ore requirement s
“|+h|+r]EH i2)
and the low-grade ore requirement is
h|+‘:=+ﬁljz“ (£}

As no mine may operale a negative number of days, three hidden constraints are x; = 0, x; > 0,and x, > 0
Moreover, as no mine may operate more than 7 days in a week, three other hidden constraints are v, < 7.
x; < T.and v, < 7. Finally, in view of the labor contracts, Universal Mines has nothing 1o gain in operating
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a mine for pan of a day; comsequently, 1, x; and x, are required to be micgral Combining the ndden
condions with (/1 (7% and (3), we obtain the mathematical program

minimize == M, + 2x, < I8y,
subject toc Ay, + by 4+ 1, >4
Ay, & da; » by, =68

L £ 7 i)
Xy = 7
s 7
with:  all vanables nonnegative and integral
System (4) is an inteper program; its solution i determined in Problem 7.4,

A manufacturer is beginning the last week of production of four different models of wooden
television consoles, labeled 1, 11, 111, and 1V, each of which must be assembled and then decorated.
The models require 4, 5, 3, and 5 h, respectively, for assembling and 2. 1.4 3, and 3 h, respectively,
for decorating The profits on the models are 87, 87, S&_ and 89 respectively. The manufacturer
has 30000 b available for assembling these products (750 assemblers working 40 h wk) and
20000 h available for decorating (500 decorators working 40 h wki How many of each model
should the manufacturer produce dunng this last week to manimize profit? Assume that all units
made can be sold

The objective i 10 maximize profit (in dollars), which we denivte s = Seining

v, = number of model | consoles 1o be produced in 1he week

x; = number of model 1l consoled o be produced in the wesk
xy = number of model 111 consoles to be produced in the week
1, = number of miadel IV consoles 1o be produced in the week

we can formulate the objective as
maximize == Ty, + Tos & By, = By, i1

There are constraints on the total time available for avsembling and the total ume avadable for
decorating. These are. réspectivelyv. modeled by

dny o+ Sx; 4 vy 4 Sy, < 3OO00 )
3]* . ti‘-’ - !l_- - 3.‘.‘5 muﬂ ‘j’

As negative quantities may not be produced, four hidden constraints are v, = 01 = 1, 1 1, 31 Addinonally,
since this is the last week of production, partially completed models a1 the week's end would remain
unfinished and 10 would generate no profit. To avold such posabilies. we require an integral value for
cach vanable. Combrning the hidden conditions with (/1. 17), and { 11 we ebtain the mathematiwcal program

maximize: = Ty, = Top + By, + 9x,
subject tar du = Sug e Iy + Sy, < JO000
2y w 18x; = My, + Mx < 20000
with.  all sarables nonnegative and integral
System (4) is an integer program: iy solution is determined i Problem 6.4

i)

The Aztec Refining Company produces two types of unleaded gasoline. regular and premium,
which it sells to its chain of service stations for $12 and $14 per barrel. respectively. Both types
are blended from Aztec's inventory of refined domestic oil and refined foreign o, and must meet
the following specifications:
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Maximum Mimmum Maximum Minimum
Vapor Octane Demand, Deliverics,
Pressure Ratng bbl'wk bl wk
Regular 23 K& 1100 000 50000
Premium 1 93 20000 S000
The characteristics of the refined oils in inventory are as follows
Vapor Octane Inventory, Cost,
Pressure Ratng b % bhi
Domestic 25 K7 40000 L}
Foreign s 98 0 000 15

What quantities of the iwo oils should Aztec blend into the two gasolines in order to maximize
weekly profit?

Set

xy = harrels of domestic blended into regular

x3 = barrels of foreign blended into regular

vy = harrels of domestic blended into premium

t, ™ barrcls of foregn blended into premium
An amount x, + x; of regular will be produced and generate a revenoe of 12(x; + x;k an amount x, + x,
of premium will be produced and generate a revenue of 14(x, + x,). An amount x, + v, of domestic will
be used, at u cost of B(x; + x,k an amounl x; + x, of foreign will be used, at a cost of 18x; + x,) The
total profit, 2, is revenue minus cost:

maximize: == 125, + x50 + 1d{x; 4 x5,) — Bix; + x5) = 18(x; + x,)
-h'-h;‘l'h_‘-:. ‘lh

There are limitations imposed on the production by demand, avalability of supphes, and specifications
on the blends. From the demands,

X, + %y € 100000 (mavimum demand for regular) 12)
Xy + 1,5 20000 (mavimum demand for premium) 1)
K+ 12 50000 (mmimum regular requited) 4)
Ay +xgz 5000 (mnimum premium required) (3)
From the availahility,
x4 xy < 40000 (domestic) %)
Xy + Xy % 60000  (forcign) (7

The constituents of a blend contribute 10 the overall octane rating according to their percentages by waight;
likewise for the vapor pressure. Thu, the octane rating of regular is

x x
L ] ST

Xy *+ X3 X, + Xy
and the requiremen) thal this be at least 88 leads to
%, — 10s; <0 )

Similarly, we oblain:
by, — Sx, <0 (premium octane constraint) b



MATHEMATICAL PROGRAMMING

Ixy = Bxy 0 (regular vapor-pressure constraint)

3x, = Bx, €0 (premium vapor-pressure constraint)

[CHAP. 1

(o
(1

Combining (/) through (//) with the four (hidden) nonnegativity constraints on the four variables, we

obtain the mathematical program
maximize

subect 1o

with:

rmdy, = Ay + 6x; — X,
X, + Xy < 100000
Ny o+ x5 0000
T, <+ Ky = 40000
I3 + A, 5 60000

x; — |0n, = 0
fx, —5x,< O
2x, — Bx, <= 0
dey=Bx, s 0
X+ X > 50000
B+ Xga= 5000
all vanables nonnegative

System (1) s a lincar programy, its solution is determined in Problem 1.7

(FA

I8 A hiker plans to go on a camping trip. There are five items the hiker wishes to take with her,
but together they exceed the 60-Ib weight limit she feels she can carry. To assist hersell in the

selection process, she has assigned a value to each item in ascending order of importance:

ltem | 2 3 4 L}
Weight, Ib 52 23 L1} 15 7
Yalue 100 0 10 1% 15

Which items should she take to maximize the total value without exceeding the weight restriction?
Letting x, (i = 1,2, }, 4, 5) designate the amount of item | 1o be taken, we can formulate the objective as

mazimize := 100x, + 60x, + 70x, 4 15x, & 15x,

The weight limitation i

52x; + Ih; + Wxy + 15, + Ty, < 60

Since an item either will or will not be taken, cach variable must be cither | or 0. Such conditions are
enforced if we require each variable 10 be nonnegative, no greater than |, and imegral. Combining these
constraints with (/) and (2), we obtain the mathematical program

matimire = 100x, + 60x; + 70x; + 152, + 152,

subject 1o S2x, & 2hx; + 38k, 4 150, + Ty, < 60

X

.1

L -
Ky -

Xy <

Xy <

with: all variables nonnegative and mntegral

[0

(1

in
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System (1) is an integer program; its solution m determined in Problem 67 and again in Problem
19.21.

A 24-hour supermarket has the following minimal requirements for cashiers:

Period 1 2 L 4 5 s
Time of day

(24-h clock) 37 | ™11 =15 | 1519 | 19-21 | 23-]
Minimum No 7 0 14 2 10 5

Period | follows immediately after period 6. A cashier works eight consecutive hours, starting at
the beginning of one of the six penods. Determine a daily employee worksheet which satisfies the
requirements with the least number of personnel

Setting x, (| = 1,2, .., 6) equal to the number of cashiers beginming work at the start of period [, we
can model this problem by the mathematical program

minimize =X, + X3 + X5 + X+ Xy + X,
subject 1oc  x, x> 17
x4+ x5 =0
Xy + Xy =14 in

Xy + Xy =0
Xy * Xy z10
Ky + X, = §

with: all variables nonnegative and integral

System (/) is an integer program; its solution is determined in Problem 6.1

A cheese shop has 20 1b of a seasonal fruit mix and 60 Ib of an expensive cheese with which it
will make two cheese spreads, delux and regular, that are popular during Christmas week. Each
pound of the delux spread consists of 0.2 Ib of the fruit mix and 0.8 Ib of the expensive cheese,
while each pound of the regular spread consists of 0.2 Ib of the fruit mix, 0.3 Ib of the expensive
cheese, and 0.51b of a filler cheese which is cheap and in plentiful supply. From past pricing
policies, the shop has found that the demand for each spread depends on its price as follows:

D, =190-25P, and D, =250 - S0P,

where D denotes demand (in pounds), P denotes price (in dollars per pound), and the subscripts
| and 2 refer to the delux and regular spreads, respectively. How many pounds of each spread
should the cheese shop prepare, and what prices should it establish, if it wishes 10 maximize
income and be left with no inventory of either spread at the end of Christmas week?
Let x; pounds of delux spread and x; pounds of regular spread be made. If all product can be sold,
the objective is 10
maximize = Pix, + Pux, (1)
Now, all product will indeed be sold (and none will be left over in inventory) if production does not exceed
demand, ie, if x; < D, and x; < D;. This gives the constraints
X +23° <190 and x;+ S0P 5250 (2
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From the avaldabality of from mi,

02, +02x; 5 20 i
and from the avarlabelsty of expemuve cheese,
D%y, « 03x; < &0 (4

There s no comtramt on the fller choose, snce the shop has as much as it needs. Finally, netther production
nor price can be scgative; so four dden comtraints are v, 20, v, >0, P, > 0 and P, > 0 Combinng
these conditions wath (/) through (4L we obtam the mathematical program

mavimire = Py, « P,

subject tr 02w, + O 2u, = X
0Ky, + O3, < 80 I.Iil

X + 5P, = 190

L + SOP; < 250

with  all vanables nonnegative
System 1Y) is a quadratic program in the vanables vy, vy P, and P, It can be uimphfied o we note
that for any fised positive v, and x; the olyective function increases as cither P, or P; increases. Than, for
& mavimum, P, and P, must be such that the constramis 1.7) become equations, shereby Fy and P; may be
eliminated from the olyoctive function. We then have a quadratic program m v, and v,
mavimize : o= (76 — 008y, )y, « (% - 002%,)x;
mh: llh.illlt;im
08y, + 03y, < &0 B
withe n, amd v, nonncgative
which n eauly sohed graphcally.

B Ri, 03, =&

Bls, ¢ 2s, = 20
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112

Give a graphical solution of the quadratic program (6) of Problem 1.10.
For graphing purposes, it is convenient 1o complete the square in the objective function, yielding
maximize == 6738 — 004y, — 95 — 00X x; ~ 129)°
which s equivalent 10
mimimize. @ = 004(x, — 95 + 002x, — 125/ ()

Since the constraints are lincar, the feasible region s bounded by straight lines; it appean shaded
Fig. 1-3. For any particular value of &, (1) defines an ellipse centered at (95, 125), and two such cllipses ane
shown in Fig. 1-3 as dashed curves, The minimum value of & will correspond 1o that ellipse defined by (/)
which is tangent 1o the line

nu..u. +.=.HH.H.“H -h-
To find the point of tangency, we equate the slopes of the ine and the ellipse,
EH nlﬂ.u HH.H- .l-ﬂ“u

..-l.n = l._ and S B e mee—
v, L_.n_ Xy — 128
obtained by implicit differentiation (2) and (1), respectively; this gives
Xy = 2x, - 65 ()

Solving (2) and (J) simultancously gives the optimal solution 10 Problem |10
x} = 55 1b of delux spread 13 = 45 Ib of regular spread

A plastics manufacturer has 1200 boxes of transparent wrap in stock at one factory and another
1000 boxes at its second factory, The manufacturer has orders for this product from three different
retailers, in quantities of 1000, 700, and 500 boxes, respectively. The unit shipping costs (in cents
per box) from the factorics 1o the retailers are as follows:

Retaller | Retailer 2 Retailer 3

Factory | 14 13 i
Factory 2 13 13 12

Determine a minimum-cost shipping schedule lor satislving all demands from current inventory.

Writing x;, (i = 1.2; j = 1.2, 3) for the aumber of boxes 10 be shipped from factory | to retadler j, we
have as the objective (in cents)

minimize: 2= Jdx,, 4+ 13x,; + 105, + 1x;, + 10x,, + 12x,,
Since the amounts shipped from the factories cannot exceed supplies,
Ky + Xyp 4 X5y S 1200 (shipments from factory 1)
Kyy + Xgg + 23y < 1000 (shipments from lactory 2)
Additionally. the total amounts senl to the retailers must meet their demands; hence
K+ &3y = 1000 (shipments to retailer 1)
Ny # xgy 2 700 (shipments to retailer 1)
Nyy + ¥y = 300  (shipments to retailer 3)

Since the total supply, 1200 + 1000, equals the total demand, 1000 + 700 + 500, each inequality constraint
can be tightened 10 an equality Domng so, and including the hidden conditions that no shipment be negative
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and no box be spint for shipment. we obtain the mathematical program

minimize: == Mx,; + 135, & Wy, + 130, = 135, + 125,

subject tol X, + X;; +1;; - | 200
Ky = K3p + Ky, = [0O0
Ty + Xy = 1000 i
iz * A5 - 00
Xin + Apy = NN

with: all variables nonnegatove and integral
System (/) 15 an integer program; its solution 1= determined in Problem 7.3 and agam in Problem 8.6

A 400-meter medley relay involves four different swimmers, who successively swim 100 meters of
the backstroke, breaststroke, butterfly, and freestyle. A coach has six very fast swimmers whose
expected times (in seconds) in the individual events are given in Table 1-1.

Tabke 1-1
Event | Evem 2 Evern 2 Event 4
(backstroke) (breaststroke) | (butterfly) ifreestyle)
Swimmer | B3 73 (2] LT
Swimmer 2 &7 70 (41 X
Swimmer ) s p A ] o e
Swimmer 4 BT 75 T i
Swimmer 3 | B 75 T
Swimmer b 4 7 it 0

How should the coach assign swimmers 10 the relay so as 10 mimmize the sum of their times?

The objective 15 to minimize total time, which we denote as 2. Using double-subscripied vanables v,
=12 _. & j=1234) w0 designate the number of times swimmer | will be aisigned 1o event j, we
can formulate the objective as

m‘m - - ﬁ‘s]“ " ?EEI: = &3.., s o .!.-'"'I.I‘ - ﬁ?l:‘ - - m‘h] - ﬂ.‘“
Since no swimmer can be assigned 10 more than one event,

Ly * 'l._-'iu"!.,.".il
ITRE S TR AL TR P 3

‘q.. L ‘..: - Wy = ‘-Mil

Since cach evenl must have one swimmer assigned 1o i, we also have

Kpy * Mgy + Ny + Xy # Ngy # Ny = |

Niat Kaa+ Mg+ M= Ngyu ™|

Thete 10 concraints, combined with the objective and the hdden conditions that esach vanmable be
nonnegative and integral, comprise an integer program It selution s determined in Problem 94

A major oil company wants to build a refinery that will be supplied from three port cities. Port
B is located 300 km cast and 400 km north of Port A, while Port C 1s 400 km cast and 100 km
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Morth §
“i—-
- f’
1
N I, __-_-_—l-ﬂ-cl
—
X= =
AN = f‘rh..q'
e
Fa
* #a
" Fa
F i
Als i i i i i i i -
lT 1] b g o A b i L] [
Fig. 14

south of Port B. Determine the location of the refinery so that the total amount of pipe required
to connect the refinery 1o the ports 18 minimized.

The objective is tantamount to minimizing the sum of the distances between the refinery and the thres
portx. As an aid 1o calculating this sum, we extablish a coordinate system, Fig. 1-4, with Port A as the onigin.
In this sysiemn, Port B has coordinates (300, 400) and Port C has coordinales (700, 3000 With {x,. 1)
designating the unknown coordinates of the refinery, the objective

minimire: = /] + x} 4 x, = J00)F & (x; — 400 + /(x, — P00 + (x; — 300) i
There are no constraints on the coordimales of the refinery nor any hidden condions; for example. a
negative value of x, uignifies only that the refinety should be placed west of Fort A. Equation (/) i a

nonlincar, unconstruined, mathematical program. its solution is determined in Problem 11.1]1. Sex alwo
Problem .26,

An individual has $4000 to invest and three opportunities available 10 him. Each opportunity
requires deposits i 51000 amounts; the investor may allocate all the money to just one
opportunity or split the money between them. The expected returns are bulated as follows:

Dottarn Invested
0 1000 2000 3000 000
Return from Opportunity | 0 2000 S000 B0 TOO0
Return from Opportumty 2 0 1000 3000 6000 TOO0
Return from Opportunity 3 0 1000 40000 000 R0

How much money should be invested in each opportunity to obtain the greatest total return?

The objective i (o masvimizs total return, denoted by = which 1 the sum of the retums from each
opportunity. All investments are restricted to be integral multiples of the unit $1000. Letting fix) (i= 1,2 3
denote the return (in thousand-dollar units) from opportunity | when x units of money are invested in it
we can rewrite the returns table as Table 1.2

Defining x, (i = 1, 2, 3) as the number of units of money invested i opportunity |, we can formulale

the objective as

maximire: == fi(x,)+ flxg) + filxy) i
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Table 1-2
x
0 ! 2 3 3
f

filx) 0 2 3 L 7

filx) 0 ! 3 6 7

Silx) 0 I 4 § 8

Since the indnadual has only 4 units of money 10 Invest.

Ntxsda, 4 Ty |

Augmenting (/) and (1) with the hidden conditions that x,. v, and 1, be nonncgative and miegral we
ablain the mathematical program

maximize == filx, ) & fulngd & i)
subjecttor Ay + A+ 8,54 5
with:  all vanables nonnegative and inlegral

PMotting 14 x) against x for cach lunction gives a graph that i not a straight line. Therefore. system (1)
i a nonlincar program; its sodubion is determined in Problem 191

Supplementary Problems

Formulate but do not solve mathematical programs that modzl Problems 116 through 125

Lié Fay Klein had deseloped two types of handerafied, sdult games that she sells to department dtores
theoughout the country. Although the demand for these games excoeds her capacity 1o produce them, My
Klein continues 1o work alone and 1o imit her workweek 1o 50 h Game | takes 3.5 h 10 produce and brings
a profit of 528, while game 1l requires 4 h to complete and brings a profit of $31. How many games of cach
fvpe should Me Klein produce weekly il her obsective is 1o maximige total profin®

LIT A pet store has determined that cach hamater should recerve at beast 0 wnits of protetn, 100 units of
carbobydrates, and 20 units of fat datly Il the store carries the sia 1ypes of feed shown in Table 1-3, what
blend of feeds satinfies the requitements at minimum cost (o the store™

Table 1-3

Protem, Carbohvdrates Fat. Ciost,

Feed ity oe wnits 02 s o2 ¢ oz
A 20 1] 4 -
H i I " i
(8 41 a0 4] 5
I3 40 15 1 i
E 45 0 9 [
F ) o | 10 E
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L8

1.20

L.

A local manufactuning firm produces four different metal products, each of which must be machined, polished,
and assembled. The specific e requirements (in hours) for each product are a follows

Machiming. h | Poluhing. h | Asembling. h

Product 1

Product 11
Product 111
Product 1V

s B B
et Bl == ==
-l =

The firm has available to it on a weekly hasis 480 h of machine time, 400 h of polishing time, and 400 h of
assembly time. The unit profits on the products are $6, 34, 36, and 38, respectively. The firm has a contract
with a distnibutor 1o provide 50 units of product | and 100 units of any combination of products 11 and 111
each week. Through other customers, the firm can sell cach week as many units of products 1, 11, and 111
as it can produce, but only a maximum of 25 units of product IV. How many units of each product should
the firm manufacture each week to meet all contractual obligations and maximize its 1otal profit? Assume
that any unfinished pieces can be completed the following week

A caterer must prepare from five fruil drinks in stock 500 gal of & punch contamning a1 least 20 percent
orange jwce, 10 percent grapefruit juice, and 5 percent cranberry juice. I inventory data are as shown below,
how much of cach fruit drink should the caterer use to obtain the required composition al minimum total
cosl?

Orange Girapefruit Cranberry Supply. Cost,

Juice, %, Juice, ®, Juice, %, gal $/gal
Drink A 40 40 0 200 1.50
Drink B 5 10 20 400 07s
Drink C 100 0 0 100 200
Drink D 0 100 0 S0 1.75
Drink E 0 0 0 BOO 025

A town has budgeted 3250000 for the development of new rubbish disposal arcas. Seven sites are available,
whose projected capacities and development costs are given below., Which sites should the town develop?

Site A B C D E F G

Capacity. tons 'wk ] T 135 15 I ] 5

Cost, $1000 M5 2 W M H WU W

A semiconducior corporation produces a particular solid-state module that it suppbes lo four different
tebevision manufacturers. The module can be produced at each of the corporation’s three plants, although
the costs vary because of differing production efficiencies at the plants. Specifically, it costs $1.10 to produce
a module at plant A, 3095 at plant B, and 51.03 a1 plant C. Monthly production capacities of the plants
are 7500, 10000, and 8100 modules, respectively. Sales forecasts peoject monthly demand at 4200, 300,
6300, and 2700 modules for televiion manufacturers 1, 11, 111, and 1V, respectively. If the cost {in dollars)
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for shipping a mod ule from a factory 1o a8 manufacturer i as shown below, find a production schedule that
will meet all needs at minimum total cost.

I " mn v

Aol o1y 0 019
B |0I12 o om0 04
C ni4 i3 ni2 0.1%

The manager of a supermarket meat department finds che has 200 Ib of round steak, K00 Ib of chuck steak,
and | 50 Ib of pork sn stock on Saturday morning. which she will use 1o make hamburger meat, picnic pattes,
and meal loal The demand for each of these ems always exceeds the supermarket’s supply. Hamburger
meat must be at lenst 20 percent ground round and 50 percent ground chuck (by weight), picnic patties
must be at least 200 percent ground pork and 50 percent ground chuck. and meeat loaf must be at least 10
percent ground round. 30 percent ground potk, and 40 percent ground chuck . The remainder of each product
18 an inexpensive nonmeat filler which the store has in unlimied supply. How many pounds of each product
should be made if the manager desires 1o minimize the amount of meat that must be stored in the supermarket
over Sunday?

A legal frm has accepted five new cases, cach of which can be handled adequatcly by any ome
of its five juntor pariners. Due to differences in experience and expertite, however, the junior partners would
spend varying amounts of time on the cases. A servor partner has extimated the time reguirements (in hoars)
s shown below-

Case | Case 2 Case 3 Cane 4 Case §
Lawyer | 145 12 130 94 1s
Lawyer 2 80 63 LU 4 L
Lawyer 1 121 107 93 &9 94
Lawyer 4 1% E3 i1 L' 1ns
Lawyer § 97 15 120 L 11

Determine an optimal asugnment of cases 1o lawvers such that each junior partner receives a different case
and 1he total hours expended by the firm 15 minimired.

Recreational Motors manufactures golf carts and snowmobiles at its three plants. Plant A produces 40 golf
carts and 35 snowmobiles daily: plant B produces 65 golf carts daily, but no snowmobilex: plant C produces
33 snowmobiles daily, but no goll carte. The costs of operating plants A, B, and € are respectively 5210000,
$190 000, and $152000 per day. How many dayy (including Sundays and holidays ) should each plan: operate
during September to fulfill a production schedule of |50 golf carts and 1100 snowmobiles a1 minimum
cowt? Assume that labor contracts require that once a plant s opened. workers must be paid for the entire day.

The Futura Company produces two types of farm fertiluers, Futura Regular and Futura's Bewt Futura
Regular n composed of 28°, active ingredients and 75%, inert ingredients. while Futura's Best contuins 407
active mgredients and 607, inert imgredients. Warchouse facilities limit inventories 10 500 tons of active
ngredients and |1 200 tons of inert mgredsenty, and they are completely replenished once a week.

Futura Regular s similar to other fertilizers on the market and s compentively priced at §250
per ton, At this price, the company has had no difficulty in selling all the Futura Regular it produces. Futura's
Best, however. has no competition. and so there are no constraints on 1ty price. Of course. demand does

depend on price, and through past expenence the company has determined that price P (in dollars) and
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demand D (m 1ons) are related by P = 600 — D. How many tons of each type of fertilizer should Futura
produce weekly in order to maximire revenue?

126  Explain why the following constitutes an analog solution to Problem [ /4. Imagine that Fig 14 represents
the top of a 1all 1able Small holes are bored through the tabletop at points A, B, and C The three
three lengths of string are joined in & knot, which lies on the tabletop: the three free ends are run
the holes, and, underncath the tabletop. three equal weights are hung from them. Then, assuming
friction. the equahbrium powtion of the knot gves the optimal location of the refinery.

H



Chapter 2

Linear Programming: Basic Concepts

A method for solving hincar programs involving many vanables is described in Chapter 3. To initialize
the method, one must transform all inequality constraints into equalities and must know one feasible,
nonnecgative solulion.

NONNEGATIVITY CONDITIONS

Any vanable not already constrained to be nonncgative i replaced by the difference of two new
variables which are so constrained. (See Problem 26.)
Linear constraints (Chapter 1) are of the form:

f_i‘ a,x; ~ b, @a.n

where ~ stands for one of the relations <, >, = (not necessarily the same one for each (). The constants
b, may always be assumed nonnegative.

Example 2.1 The constraint 2, ~ Ju, # 4x, £ — 5 is multiphed by — | 10 obtamn ~ 2y, + Ju; — dx; 2 5, which
has a nonnacgatne nghi-hand ade

SLACK VARIABLES AND SURPLUS VARIABLES

A lincar constraint of the form ¥ a,x, < b, can be converted into an cquality by adding a new,
nonnegative variable 10 the left-hand side of the inequality. Such a vanable s numerically equal to the
difference between the right- and lefi-hand sides of the inequality and is known as a slack variable. It
represents the waste involved in that phase of the system modeled by the constraint

Ezxample 2.1 The first constraint in Problem 16 »
day » dny + Jx, + Sy, £ MO

The keft-hand sde of the inequality modehs the 1otal number of hours used 10 amemble all televinon comoles, while
the nght-hand ude n the total number of hours available The imequality i trandormed into the eqeation

du; & Sx; % Qn; &+ Sx, + x, = 3000
by adding the slack varable 1, 1o the lefi-hand sde of the incquality Here «, represents the number of assembly
hours available 1o the manufacturer bul pot used.

A linear constraint of the form ¥, x, = b, can be converted into an equality by subtracting a new,
nonnegative variable from the lefi-hand side of the inequality. Such a vanable is numernically equal 1o
the difference between the left- and right-hand sides of the inequabity and 5 known as 4 surplus variable.
It represents excess imput into that phase of the system modeled by the constramt

Ezsample 23 The fint constraint i Problem 1.3 i

dy; + buy » x5 > 8
The left-hand sde of thes imequality represents the combened output of high-grade ore from three mines. while the
nght-hand sde 1 the mimmum tonnage of such ore required 1o meet contractual obligations. Thes megualny

Copyrighted Material
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tramsformed into the equation
Ay, +bx; + 3, —x, =84

by subtracting the surplus vanable x, from the efi-hand side of the inequality. Here 1, represents the amount of
high-grade ore mined over and above that needed to fulfill the contract

GENERATING AN INITIAL FEASIBLE SOLUTION

After all inear constraints (with nonnegative nght-hand sides) have been transformed into equalitics
by introducing slack and surplus variables where necessary, add a new vanable, called an artificial
varighle, 1o the lefi-hand side of each constraint equation that does not contain a slack vanable Each
constraint equation will then contam aither one slack vanable or one artificial vanable. A nonnegative
mitial solution to this new set of constraints is obtained by setting cach slack vaniable and each arntificial
varable equal to the right-hand side of the equation in which it appears and setting all other vaniables,
including the surplus variables, equal to zero.

Example 2.4 The set of constrainis
O+ < )

du, +5x; 2 &
Tuy 4 Bxy = |§

n transformed into a system of equations by adding a slack vanable, x,, 10 the lefi-hand ude of the firm constram
and subtracting a surplus vanable, x,. from the lefi-hand ude of the second constramt The new system i

-‘."‘;l:"'ll = )
‘J."'ht —-—Ny= B (2.3)
T, + 8%, =18

If now artificial variables x, and x, are respectively added 1o the lefi-hand sides of the last two constraints in system
(2.7}, the constraints without a slack variable, the result is

Ny + Iny + x, = )
dn, + 3x, - Ny + Ky = b
Ty + Bxy +x,=13

A nomnegative solution to this last system is x, = 3, x, = 6, x, = 15 and x, = x; = x, = 0 (Notice, however, that
x; = 0, x; = 0 is nor & solution to the onginal set of constraints )

Occasionally, an initial solution can be generated easily without a full complement of slack and
artificial variables. An example is Problem 2.5,

PENALTY COSTS

The introduction of slack and surplus vanables alters neither the nature of the constraints nor the
Artificial variables, however, do change the nature of the constraints. Since they are added 10 only one
side of an equality, the new system is equivalent (o the old system of constraints if and only if the artificial
variables are zero. To guarantee such assignments in the optimal solution (in contrast to the initial
solution), artificial variables are incorporated into the objective function with very large positive
coeflicients in a minimization program or very large negative coefficients in a maximization program,
These coefficients, denoted by either M or — M, where M is understood to be a large positive number,
represent the (severe) penalty incurred in making a unit assignment to the artificial variables.
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In hand calculations, penalty costs can be left as + M. In computer calculations, M must be assigned
a numencal value, usually a number three or four times larger in magnitude than any other number in

the program.

STANDARD FORM

A lincar program is in standard form if the constraints are all modeled as equalities and if one feasible
solution is known. In matrix notation, standard form is

oplimize: == C'X
subject to: AX =8B 2.3
with X=0
where X is the column vector of unknowns, including all slack, surplus. and aruficial variables: C7 is
the row vector of the corresponding costs; A is the coefficient matrix of the constraint equations; and B
1% the column vector of the nght-hand sides of the constraint equanions. [ Nore: In the remainder of this
book. vectors will normally be represented as one-columned matnices, and we shall simply say "vector”™
mstead of "column vector.” Superscript T designates transposition. ] If X, denotes the vector of slack

and artificial vanables only, then the initial feasible solution is given by X, = B, where it s understood
that all vaniables in X not included in X, are assigned zero values

LINEAR DEPENDENCE AND INDEPENDENCE

A set of m-dimensional vectors, [Py Py.... Pl is limearly dependent if there exist constants
Rye Xjssone 3,. not all zero, such that

I|P‘ . o =IF: g pl by, 1.?. = ) 124

Example 2.5 The set of S-dimensional vectors
HLiooo). [Loooo)’, ool Lo). (o1 000)")

is lincarly dependent. since

| i rn n] [o
| 0 0 I i
~jJjoj+1]J]O0]+0 1]+2]0]|=]0
0 0 1 0 ]

Theorem 2.1: Every set of m + | or more m-dimensional vectors is linearly dependent.

A set of m-dimensional vectors, [Py, Py, ... . P, |, is lincarly independent if the only constants for which
(24) holds are 3, = 3, =--- =%, = (. (See Problems 27 and 28

CONVEX COMBINATIONS

An m-dimensional vector P is a convex combimation of the m-dimensional vectors P, Py, ... P il
there exist nonnegative constants f,, f.. ..., f, whose sum s 1. such that

PP+ P+ + P, (25
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Example 28 The 2-dimenwonal vector [$/3, 96]" is a convex combination of the vectors (1, 1]7, [3,0)", and

11,2 bocaume HEHE BRI

Given two m-dimensional vectors, P, and P;, we call the set of all convex combinations of P, and
P, the line segment between the two vectors. The geometnical significance of this term is apparent in the
case m = 3,

CONVEX SETS

A set of m-dimensional vectors is convex if whenever two vectors belong to the set then so too does
the line segment between the vectors

Exampie 2.7 The disk shaded in Fig 2-1(a) 15 a convex set since the line segment between any two of its points
(2-dimensional vectors) is wholly within the disk. Figure 2-1(b) is not convex; although R and 5§ belong 1o the shaded
wet, there exist points, such as T, belonging 1o the line segment between R and § which are not part of the star.

Line scgment
btween ® and
r
T
{a) (b

Fig. 2-1

A vector P is an extreme point of a convex set if it cannot be expressed as a convex combination of
two other vectors in the sct; that is, an extreme point does not lic on the linc scgment between any other
two vectors in the set.

Example 2.8 Any point on the circumference of the disk in Fig. 2-1(a) s an extreme point of the disk.

Theorem 2.2:  Any vector in a closed and bounded convex set with a finite number of extreme points
can be expressed as a convex combination of the extreme points.

Theorem 2% The solution space of a set of simultancous linear equations is a convex set having a finite
number of extreme points.

EXTREME-POINT SOLUTIONS

Let & designate the sct of all feasible solutions to the linear program in standard form, (2.3); that
is, & is the set of all vectors X that satisfly AX =B and X = 0. From Theorem 2.3 and from the fact
that convex sets intersect in convex sets (Problem 2.17), it follows that & is a convex set having a finite
number of extreme points.
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Remark I: The obpctive function attams its optimum (either mavyimum or minimum) at an exireme
point of 7, provided an optimum exists. (See Problem 2 15)

Remark 2 Il A has order m x 0 im rows and n columnsi, with m < n, then extreme points of 7
have at least w — m zero components. (See Problem 219

BASIC FEASIBLE SOLUTIONS

Denote the columns of the m « n coefficient matrix A in system (2.3 by A Ay . AL respectively.
Then the matrin constraint equation AX = B can be rewnitien in the vector form

A FAA A =B (26

We emphasize that the A-vectors and B are known m-dimensional vectors: we wish 1o find nonnegative
solutions for the vanables vy, x; . ... x,. We shall suppose that m < » and that rank A = m. which
mcans that at least one collection of m A-vectors is lincarly independent.

A basic feasible solution 10 (26) i1s obtained by setting n — m of the v-variables equal to zero and
finding a nonncgative solution for the remaiming v-vanables, provided the m A-vectors corresponding

to the x-vanables not set equal 10 zero are hincarly independent. The v-variables not inttially set equal
to sero are called hasic ruriables. If one or more of the hasic vanables turns out 10 be zero, the basic

feasible solution s degenerate; i all the basic vanables are positive, the basic feauible solution is
mondegenerate. (See Problems 213, 214, and 2.15)
Remarks | and 2 above can be strengthened us follows:

Remark 1 The objective function attains its optimum a1 a basic feasible solution.

Remark 2 The extreme points of # are precisely the basic feasible solutions. (See Problems 219 and
2.200)

It follows that the standard linear program can be solved by secking among the basic feasible
solutions the onels) at which the objective is optimized. A computationally efficient procedure for doing
s0 1s described in Chapter 3

Solved Problems

L1 Put the following program in standard matrin form;
maximee &= N + A;
subject ty v, 4+ Sx, < §
v, + x; <4
with: «, and x, nonncgalive

Addmg slack variables v, and 1. respectively. to the left-hand sdes of the comstraints, and including
these new varables with sero cost cocthaents in the obypective. we have

manimize s x4 ap w0y« g

subpect tx a1, + Sv; 4 ¥, -

b T S T = a,=4d

h

with: all vanahics nonnegating
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Singe cach constram! equation contamns a slack vanable, no arttfical vanables are required, an mitial feasible
solution is ¥y = 5, x, = 4, x; = x; = 0 System (/) is in the standard form (2.3) if we define

X =[x, x5 55 %7 C=[11.00)"
[y 1o 8] e=i]  we[Z]

21  Put the following program in standard form:
maximize: @ = Blx, + 60x,
subject to:  0.20x, + 0.32x, <025
X, + X;= |
with: x, and x; nonnegative
To convert the first constraint into an equality, sdd & slack variable x, 10 the left-hand side. Since the
second constraint, an equation, does not contain a slack vanable, add an artificial varmable 1, 1o its left- hand
side Both new variables are included in the objective function, the slack variable with a zero cost coefficient
and the artificial variable with a very large negative cost coefficient, yielding the program
mazimize o= 80, + 80x; + Ox, — Mx,
subgect toc O20x, + 0.32x; 4 x, = 028
x; + Xy v i;= |
with: all variables nonncgative
This program is in standard form, with an initial feasible solution x, =025, x, = |, x; = x; =0

23  Redo Problem 22 if the objective is to be minimized.

The only change is in the cost coeflicient associated with the artificial vanable; it becomes + M instead
of =M.

14  Put the following program in standard form:
maumize = Sy, + lx;
subject toc 6x, + x; 2> 6
dx, + ;212
5+ 4
with: x, and x; nonnegative

Subtracting surplus vanables x,, x,, and x,, respectively, from the lefi-hand sides of the constraints, and
including cach new variable with a zero cost coefficient in the objective, we obtain

maximize: = Sx, + 2x; + Ox; + Ox, + Ox,

“hm “"“ Xy = Xj - §
'..l|+ll. = Ky - |2
-‘."'h: = Ky = 4

with:  all vanables nonnegative
Since no constrainl equation contains a slack varable, we neat add anificial vanables x,. x. and ¥,
respectively, to the lefi-hand sides of the equantions. We alwo include these vanables with very large negative
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cost coefficients in the obsective. The program becomes
mavimize = Sx, + 2xg + Ox,y + Ox, + Oxy = My, = Mx. = My,

subject b By, + x; - N, N, = 6
l."'h: - Xy - iy = 4

with:  all varables nonnegative

This program s in standard form. with an initial feasible solution 5, = 6, v« = 12, Ky =4 ¥, = x; = 1, =
= xyg =0

Put the following program in standard matrix form:
minimize: == x, + ly; + My,
subject 1o 3y, +4x, 5§
j‘tl+'tl +'ﬁ~1,-1
hl +"—"1’2
with:  all variables nonnegative
Adding a slack variable v, 1o the lefi-hand side of the first constraint. subtracting a surplus varable

1y from the left-hand side of the third constramnt, and then adding an aruficial vanable 1, oaly 10 the
left-hand ude of the third constramnt, we obtain the program

minimize: = x, + 2x; & duy 4 O, = On, + My,

subject tor  1x, +dy, - v, = 3
Suy, + a; + 0y, -7
l.‘.l-l + ‘-t:. -y . = F

with:  all vanables nonnegative

This program i in standard form. with an mitial feauble solution v, = 5, 1, = T, Ly, = ayma, =0
I has the form of system (7.9) if we define

Xw[x,. 0% % ¥y %] C=[1,2200M]}

NEEERE N

In this case, x; ¢an be used to generate the initial solution rather than adding an aruficial variable 10
the second constraint 1o achieve the same result. In general, whenever a vanable appears in one and only
one constraint equation. and there with a positive coefficient. that vanable can be used to generate part of
the initial solution by first dividing the constraint equation by the positive coefficient and then setting the
variahble equal to the nghi-hand ude of the equation. an arificial vanable need not be added 10 the
cquation

bd =i

Putting the following program in standard form:
minimize: = 285x, + Mx,
subject to: dx, +Tx; 2 |
Bx; +5x;2 3
6x; +9x; 2 =2



CHAP. 2) LINEAR PROGRAMMING: BASIC CONCEPTS 23

7

Since both x; and x; arc unrestricted, we set x, = x, — x, and x; = x, — x,, where all four new
vanables are required 1o be nonnegative. Substituting these quantities into the given program and then
multiplying the last constraint by — | to force a nonnegative right-hand side, we obtain the equivalent

Program- )
minimize: = 25x;, — 2x, + 30x, - Wx,

subgect 1o:  dxy —dx, + Tog— Ty 2 1
By —Bu, + Sxy—Sx, 23
=By 4+ b, — 9y +9x, <2
with: all variables nonnegative
This program is converted into standard form by subtracting surplus variables x, and x,, respectively, from
the left-hand sides of the first two constraints; adding a slack variable x4 10 the lefi-hand side of the third

constraint, and then adding artificial vanables x,, and x,,, respectively, to the lefi-hand sides of the first
Iwo consiraints, Doing so, we oblain

minimize: = 25x; — 28x, + Ix, — M0x, + Ox, + Ox, + Ox, + Mx,, + Mx,,

subject to:  dx; — dx, + Tx; — Ty — x5 + X8 = |
l‘j_h..+5:j_h. = Xg "'III']
=fx, + 6x, = Ix, + Ix, + Xy -

with:  all vanables nonnegative
An initial solution (o the program in standard form is

Determine whether [[1,2]7,[2,4]"} is lincarly independent.
Calling the two vectors P, and P,, it is obvious that P, = 2P,, or
P, +(~1)Py =0
Thus the given set of vectors is linearly dependent (not linearly independent).

Is {[1,1,3, 177, (1.2, 1,1]",[1.0,0,1]7} linearly independent?
For these vectors, (2.4) becomes

I 1 1 0 o+ +a,=0
1 2 ol _19 @ + 2a, =0
] T R BT e K R K ® ey =0
1 | 1 o+ G +3;,=0

The first three equations (the fourth is redundant) have 3, = 3, = x, = 0 as the only solution. Therefore,
the given set of vectors is lincarly independent.

A vector Q is a linear combination of the vectors Q,,Q,...,Q, if there exist constants
Jl.n‘:,...,ﬁ..lﬂd‘lhl

Q=4,Q, +8,Q;+ - +4,Q,
Show that the set of vectors (P, Py, ..., P,} is linearly dependent if and only if one of the vectors
18 a linear combination of the rest.
WP =8P+ -+ 8. P, +8.,P.,+ -+ 4P, inwhich some or all of the &'s may be zero, then
P+ w8 P+ (=P +6, P 4+ -+ 4P =D
and so the set is linearly dependent.
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On the other hand. if the set s hnearly dependent. let 2, be the first nonrero cocfficent in (2 4) Then,

PaOP, s+ ,,.+("'j)n..+ +(")r.

- -3,

ve. PP s a hncar combination of the remaming vectors

210 Determine whether [1, 2. 3)" is a linear combination of
a1y (L X2

It 1s not. any lincar combination of the throe vectorns must have its firt and third components equal
(More generally:

1 I i - d+d;+ 2, =
3 1 1 b ;‘.#ﬂ_.#:}.-_‘
But this sccond system has no solution )

211 Prove that of (P, P, ..., P,) & a incarly independent sct of vectors and P is a vector such that
PuY P, and P=V 4P

=1 i®h

Subtracting the two representations, we obtam
Yi,=dp=0

which is (5/) with 3, = ¢, ~d, and n=r. Since P, P, .. . P, are hincarly independent, it follows that
=d=0otc,=d 1j=1L2%....r)

212  Write the constraint equations of the following lincar program in the vector form (26)
minimize: ;= 2x, + 3x; + xy 4 Ox, & Mx, + Ox,
subject to: X, 4+ 2x, 4 2%, - %X, + X, =}
v, + x4 dx, Xy =0
with:  all vanables nonnegative

p--h-m‘E']T]“'[]“‘[ Iu“ '[E]'“

213  Determine whether [1,0,1,0,0,0]" is a basic feasible solution to the lincar program given in
Problem 2.12.

Although all s components are noancgative, the proposed solution i not basse. The vectors A, and
A, assocusted with the v-vanables not set equal to zero are not lincarly independent | Problem 27
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Determine whether [1,0,0,0,2,4]7 is a basic feasible solution to the linear program given in
Problem 212

The coefficient matrix A, comprising the column vectors A, through A, has order 2 x 6 Thercfore,
a bauic feanible solution must have at least 6 — 2 = 4 zero components (vanabiles), which is not the case here.

Find two different basic feasible solutions to the lincar program given in Problem 2.12.

Since n — m = 4, a bauc feanible solution will have four x-variables set equal to rero. With x; through
1, made zero, the vector constraint equation becomes

1 0 3
ofa]+~{1]-]
which has the (nonnegative) solution x, = 3, x, = & Since A, and A, are lincarly independent, the complete
solution, [0,0,0,0, 3, 6], is basic. Here the basic variables are x, and x,. and since both of them are postive,
the solution 1 also nondegencrate.
To obtain a second basic feasible solution, we set ¥, = x, = xy = x, = (|, whereupon the vector

B W X

Solving this equation for x, and x, we find x, = J and x; = 0 The corresponding A-vector, A, and A,
are lincarly independent, 5o the complete solution, [3,0,0,0,0,0]", is basic. The basic variables are x, and
x; and since one of them i zero, the solution » degenerate.

w-mmmmm 7]7 is a convex combination of the set {[3,6])7.[ -6, 9]%.[2. 1]".
[-1,1]7)
For these vectors, (2.%) becomes

QR HC IR

-6 + 20, - =0
6, +9, + fi+v =T

To thewe equations we add a third condition,
Bi+Bithh+h=] 2)

We must determine whether there exist somnegative values of 8, §,, ;. and §, that simultancously satisfy
(1) and {2). Solving these equations, we obtain

A=+ 88 By=§ - &b, By =(-19/16)8,
with f, arbitrary. The chowce fi, = 0 i lorced, giving
Bi=i By = fy=0 fo=0
as an acceptable set of constants. Thus, [0, 7]" is a convex combination of the given set of four vecton

o

Il 2 and & are convex sets, show that their intersection 2 ~ # is a convex sel

Let X and Y be any two vectors in 2~ . Then the line segment between X and ¥ s in 2 (because X
and Y are in 2, and # is convex) and it is in # (similarly). Thues, the line segment is in 2 ~ &, and o 2~ &
i conver
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In the case that # and # are convex polyhedra (have finnely many extreme ponish, it 1 miwtively
obsiows that the intersection b also a conven polyhedron.

Prove that the objective function £ = f(X) = CTX of sysiem (2.4) assumes its optimum (say, a
minimum) at an extreme point of &, provided a mimimum exists and ¥ is bounded.

Il a minimum exists. then there cunts & point X, € ¥ soch that
fiXg) 5 fIX) forall XE ¥ o

M X, b an extreme point ol ¥, we are done. If not, we must produce an extreme pomt X, such that

SO = f(Xs)
Now, & has only a finite number of extreme points we designate them as X, Xy - X, Becavse 7

is bounded (as well as being closed), Theorem 2.2 ensures that X, can be written as a convex combination
of these extreme points;, Le., there exist nonnegative #, () = 1. 2. . . p) whose sum is |, such that

Xe = i& (A Y

=

Le the minsmum of f(X) over the exireme points be assumed a1 X, By (/L FIX,) < fINS) But

f(Xg) = I( f #,I,)- f BX)z fﬂ,ﬂx.u fiX.) f B, =rix.) (2
=1 =i = =1
Consequently, f{X,) » (X} and so there s an extreme point, namely X_. at which 1(X) assumes it
mnemum
According 1o the fundamental Wawrstran theorem (Theorem 101 | 2 continuous function — o partcular,
a hincar function such as f(X)}—actually assumes a minimum value on a closed and bounded repon. Wi
conclude that the standard hnear program always posscsses an eatreme-pomt optimal solution when 7 1
bounded. If b not bounded. the optimum may not cust, however. of it does exnt. 1t s agan assumed at
an exireme point

ﬁMlhltMﬂﬂtrmpmntﬂ.&f has at least n — m zero components and is a baiuc feasible
solution.

Let X =[x, x5 . .. 5,]" be an extreme point of . Without loss of generality, we can assume that
the x-vanables have been indered 3o that x,. vy .. .. %, (r < n) are posstive and all subsequent components
of X, if any, are sero. Since X € #, we have AX = B, which, as a comsequence of x, = 0 for j > r, can be
written in the vector form

Y xA =8 i
11
We first show that the vectors A, involved in (/) are lincarly independent. Assume they are not. Then
there exists constants 3,95, ... 2, lnul:lum.iuﬂlhu
i'r"‘i" (F4)

"=

Let @ be a powtive number: thea (/) and () pve

L] ]
Yi,«miA, =B and Y (y,~ta)A =B (4

= i=

If @ is chosen small enough so that x, + ffs, and x, — thy, remam positive for all j= 1.2 . .r, then it
follows directly from (3) that

Xy=[v, o+, = ... .0, +0p.00. . .0)
Xy =[x, = .5, —bay....x,~0a,00....0)

are distinct elements of . But then X = IX, + IX;, which is impowible, since X is an extreme point of 7.
Thus, (A Ay .. A, muast be a linearly independent set.
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Singe the vectors are m-dimenuonal, it follows from Theorem 2.1 that there can be a0 more than m of

them which are hincarly independent: accordingly, r < m. But all components of X past the rih one are rero
hence X must have at least n = m zefo components.
In case r = m. the above proofl 61 once sstablichss that X s & basic feauble swolution. If ¢ < m, we can

always (supposing rank A = m) identify m — r zero components of X such that thew corresponding A-vecton
combine with A, A .... A, 10 make up a lincarly independent set. Thus, once more, X is a basic feauble
solution.

Prove that every basic feasible solution is an extreme point of .

Let X be 3 basic feasible solution. Then, X € % and at least m — m of the components of X are zero
Without loss of generality, we can assume that the x-vanables have been indexed so that the postive

components of X appear fint:
X=[x, x5....x,00...,0)" o
withx, >0()= 1,2 .. .s)and s < m. Consequently, the equality AX = B can be written in the vecior form
i A =B

Fwi

where, as a result of X being basic. the set (A, Ay .. . A,] s lincarly independent (see Problem 2.15)
Assume that X is mof an extreme point of ¥. Then X can be expressed as a convex combination of two
other points in ¥
I-l.‘.iﬂ;l; where :. "] '-I-"

Since the components of X, and X; are nonncgalive, and the condtants §, and J, are strictly positive, it
follows from (/) and () that the last » — 1 components of X, and X; also are zero. Therelore,

I. -[f..rb....r"u'.u.---..n]’ lj - [‘il'tﬂ"-l‘-t“n"-tu]' {jl
In view of (J), AX, = B and AX; = B 1ake the vector forms

L
f'_i.:,.u,-l ad T dA =B

Using the result of Problem 211, we conclude that ¢, = 4, whence X, = X, This contradiction establhes
that X ix, in fact, an extreme pownt.

Show that the initial solution X, generated in this chapter is a basic feasible solution.

The set of A-vecton corresponding to the mitial solution are the columns of the m x m identity matrix,
which are linearly independent.

Supplementary Problems
Put each of the following programs in matrix standard form.

minimize: = Ix, = x, + dx,
subject toc  Sx; 4 2ng = Jny = =7
Iy =2+ 55 B
with: x, nonnegative
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maumize == [0y, » lln,
subject tor  x; + vy, 5 150
Yx, + dx; < N0
6y, + x5 178

witht  x, and v; nonnegatinve

Problem 2.2} with the throe constraint inequalibes reversed

minimire: = dx, + 2y, o da, + b,
subject 10 N, + 2y 4+ N+ 8, = 1000
1y + 334 Jxy + T, = 1500

with  all vanables nonnegaine

minimire: o= Bx, « Juy ¢ dy,
subject t: x, + By + x; = 10
2o, + dx; 4, w18

with:  all vanuables nonnegative

manimize: 2w Tx, + 2uy # dn, e 0,

mﬁ 1'1“"1‘; - ]
5]'1"“'..: -:l,.-lﬂ
X, * X, = [

with:  x;, v, and x, nonnegalive

minimize: == 0y, + 2v; = u,
subgect tox %, & x; < %0
L z 10
e, < M0

ez 7

N o+ N+ ay =60

with.  all vanables nonncgative

Determine graphically whether [1. 2]7 s a conver combination of [1.1]7 and [2. - 1]"

Write the comstraint equations for the following lincar program i vector form:

minimize: o= x, + Jup o+ O, + Mix, + Ox,
subject 102 x, + 2ny; =0, =}

h‘ '.".l‘ -'.".‘i-‘

with  all vanabies nonncgative

[CHAP. 2

Determine whach of the following vectors are basic feanable solutions to the hnear program of Problem 2. 30

Ate any of the bavi feasble solutions degenerate”
W@ [(L100,0)" (B [A0,000)" () [0.0306])

W) [0.0.328)7
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Write the constraint equations for the following linear program in vector form:
maximize: = x, + Doy + Juy 4+ dx, 4 Doy + Oxg + Ox,

'uw'a:- I.+h]+.|+]x‘+lj -‘
1‘.*’ Ky “"!-‘.l + Xg =9
—-X, 4+ X3+ X + 1y =0

with:  all vanables nonnegative

Determine which of the following vectors are basic feasible solutions to the linear program of Problem 231
Are any of the basic feasible solutions degeneraic?

(a) [3,3,0,0.000]" (¢) [0,0,0.3,00.0) (&) [10,00871)
(b) [%2%0,1,000)" () [0.0,0,0990]" (f) [0.0,9,009 -9

Prove that if a lincar function assumes its minimum al two different points of a convex sot, then it assumes
this minimum oa the entire line segment between the points.

Prove that every nonempty subset of a lincarly independent set of vectors i itselfl incarly independent.

Prove that any set of vectors containing the rero vector is lincarly dependent.



Chapter 3

Linear Programming:
The Simplex and the Dual Simplex Methods

THE SIMPLEX TABLEAU
The simplex method is a matrix procedure for solving lincar programs in the standard form
optimize: = C"X
subjectt: AX =B
withh X220

where B > 0 and a basic feasible wolution X, is known (Problem 2.21). Starting with X,. the method
locates successively other basic feasible solutions having better values of the objective, untl the optimal
solution is obtained. For minimization programs, the simplex method utilizes Tableau 3-1. m which €
designates the cost vector associated with the vanables in X,

xl‘
{-l
ll:l cb l‘ l
C'=Cla -CiB
Tableau L1

For maximization programs, Tableau 3-1 apphes if the elements of the bottom row have their signs reversed.

b

Exampis 3.1 For the minimizanion program of Problem 2.3, C, = [0, 2 M1 Then,
c’ .t-[!:_wnu]~[u'u][q

1] i o

| u 1.1
£ O

12 4

=[1,2,3,0.0,M] - [10 + 8A. 2, M, u]-[ 9 — BAL 0, =9 - 93,0, M, 0]

4 1
6 0
e D
gAML O -
~CiB = -[0, % H]I: J- -4 = 2\l

and Tableau 3-1 becomes

1) X3 Y Ly s b
1 3 3 0 0o A |
% 0 3 0 4 i 0 o $
Xy 2 5 I 6 i 0 0 ?
vw M ) 0 9 o -1 1 3
~9—BM O =9-9M O M O | 14 -2y

Cupyrigﬁed Material
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A TABLEAU SIMPLIFICATION

Foreach j (j = 1,2....,n), define z, = CJA,, the dot product of C, with the jth column of A. The
jth entry in the last row of Tableau 3-1 is ¢, — 2, (or, for a maximization program, z; — ¢,), where ¢, is
the cost in the second row of the tableau, immediately above A,. Once this last row has been obtained,
the second row and second column of the tableau, corresponding to C and C,, respectively, become
superfluous and may be eliminated.

THE SIMPLEX METHOD

STEP | Locate the most negative number in the bottom row of the simplex tableau, excluding the
last column, and call the column in which this number appears the work column. If more than
one candidate for most negative numbers exists, choose one.

STEP 2. Form ratios by dividing cach positive number in the work column, excluding the last row,
into the clement in the same row and last column. Designate the element in the work column
that yields the smallest ratio as the pivor element. If more than one clement yields the same
smallest ratio, choose one. If no clement in the work column is positive, the program has no
solution.

STEP i Use elementary row operations to convert the pivot element to | and then to reduce all other
elements in the work column to 0,

STEP 4. Replace the x-vanable in the pivot row and first column by the x-variable in the first
row and pivol column. This new first column is the current set of basic variables (see
Chapter 2).

STEP 5. Repeat Steps | through 4 until there are no negative numbers in the last row, excluding the
last column.

STEP 6. The optimal solution is oblained by assigning to each vanable in the first column that value
in the corresponding row and last column. All other variables are assigned the value zero.
The associated :*, the optimal value of the objective function, is the number in the last row
and last column for a maximization program, but the negative of this number for a
minimization program.

MODIFICATIONS FOR PROGRAMS WITH ARTIFICIAL VARIABLES

Whenever artificial variables are part of the initial solution X, the last row of Tableau 3-1 will contain
the penalty cost M (see Chapler 2). To minimize roundoff error (see Problem 1.6), the following
modifications are incorporated into the simplex method; the resulting algorithm is the rwo-phase method.
Change 1: The last row of Tableau 3-1 is decomposed into two rows, the first of which involves those

terms not containing M, while the second involves the coefficients of M in the remaining
terms.

Example 3.2 The last row of the tableau in Example 1.1 is
-G=-8M O =9-9M 0O M 0 -M4-2M
Under Change 1 it would be transformed into the two rows
=9 0 =9 000 =4
-8 0 -9 010 =2

Change = Step | of the simplex method i1s applied 10 the last row created in Change | (followed by
Steps 2, 3, and 4), until this row contains no negative elements. Then Step 1 is applied to
those elements in the next-to-last row that are positioned over zeros in the last row.
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Change & Whenever an artificial vanable ccases to be basic—ie., is removed from the first column of

Change &
Change 5

the tableau as a result of Step 4 it is deleted from the top row of the tableau, as s the entire
column under it. (This modification simplifics hand calculations but s not implemented in
many compuler programs |

The last row can be deleted from the tableau whenever 11 contams all zeros.

I nomzero artificial variables are present in the final basic set, then the program has no
solution. (In contrast, zero-valued artificial vanables may appear as basic vanables in the
final solution when one or more of the original constraint equations is redundant.)

THE DUAL SIMPLEX METHOD

The (regular) simplex method moves the mitial feasible but nonoptimal solution to an optimal
solution while maintaining feasibility through an iterative procedure. On the other hand, the dual simplex
method moves the initial optimal but infeasible solution 10 a feasible solunon while maintaining
optimality through an merative procedure.

Ireravive procedure of the Dual Simplex Merhod:

STEP I:

STEP 2:

STEP 3.

STEP 4

STEP §:

STEP &

Al

Rewnite the hnear programming problem by expressing all the constraints in < form and
transforming them into equations through slack vanables.

Exhibit the above problem in the form of a simplex tableau. If the optimality condition is
satisfied and one or more basic vaniables have negative values, the dual simplex method is
apphcable.

Feasiblity Condition: The basic variable with the most negative value becomes the departing
variable (D.V.1 Call the row in which this value appears the work row. If more than one
candidate for D.V. exists, choose one.

Optimality Condition: Form ratios by dividing all but the last clement of the last row of
¢, = 2, values (mimimization problem) or the z, - ¢, values (maximization problem) by the
corresponding negative cocfficients of the work row. The nonbask vanable with the smallest
absolute ratio becomes the entenng vanable (EV.). Designate this clement in the work row
as the pivol clement and the corresponding column the work column. If more than one
candidate for EV, exists, choose one. If no element in the work row is negative, the problem
has no feasible solution.

Use elementary row operations to convert the pivot element 1o 1 and then to reduce all the
other clements in the work column to zero.

Repeat steps 3 through 5 until there are no negative values for the basic vanables.

Solved Problems

maximize: = x, + 9x; + x,
subject to:  x, + vy + Jx; € 9
3, + 2x; 4 2x, < 1S
with: all vanables nonnegative
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This program is put into matrin standard form by first introducing slack variables x, and x, in
the first and second constramt mequaliies, respectively, and then defining

X =[x, x5 X5 Xe 1,]7 Cu[L91.00])
12310 9 %
"[3 220 l] "[u] "'[:,]

The costs associated with the components of X, the slack vanables, are zero; hence C, = [0,0]".
Tableau 3-1 becomes

Xy, K3 K3 Xyg X

I 9 1 0 o
x; O 1 2 3 1 0 9
xg O 3 2 2 0 1 15

To compute the last row of this tableau, we use the tableau umplification and first calculate each 2, by
inspection: it is the dot product of column 2 and the jth column of A. We then subtract the corresponding
cost ¢, from 1t (maximization program). In this case, the second column is rero,and s0 2, - ¢, = 0~ ¢, = —¢,
Hence, the bottom row of the tableau, excluding the last element, is just the negative of row 2 The lant
clement in the bottom row is smply the dot product of column 2 and the final, B-column, and %0 it too b
rero. At ths point, the second row and second column of the tableau are superfluous Eliminating them, we
obtain Tablcau | as the complete initial tableau.

b o | 5B & X H 5 5 L X
X, 1 r o L 9 Xy y2 1 32 yr o 92
Xy 3 2 2 0 1 15 Xy 2 0 =1 -1 1 f
=cx | =1 -9 -1 0 0 0 Mmoo 32 92 0 | M2
Tabless 1 Tablean 2

We are now ready 1o apply the simplex method. The most negative element in the last row of Tableau
I s ~ 9, corresponding to the x ;<column; hence this column becomes the work column. Forming the ratios
9/1 = 45and 15/2 = 1.5, we find that the element 2, marked by the asterisk in Tableau 1., is the pivot element,
unce it ywelds the smallest ratio. Then, applying Steps J and 4 to Tableau |, we obtain Tableau 2 Since the
last row of Tableau 2 contains no negative elements, it follows from Step 6 that the optimal solution s
x§ = 9/2, x3 = 6, x] = 5] = xJ = O, with :* = 8172

1n minimize: = 8B0x, + 60x,
subject to:  0.20x, + 0.32x, < 025
x; + xym |
with: x, and x; nonnegative

Adding a slack variable x, and an artificial varnable x, 10 the first and second constraints, respectively,
we convert the program (o standard matrix form, with

:.[lnlh-“hli]' C = [80,60,0,M]"

S S L sl B )



LINEAR PROGRAMMING: SIMPLEX AND DUAL SIMPLEX METHODS [CHAP 3

Substituting these matnces, along with C, = [0, M]", im0 Tableau 3.1, we obtain Tableau 0 Since the
bottom row involves M, we apply Change 1; the resulting Tableau 1 s the initial tableau for the two-phise
method.

L] 1] 0 MM
X 0 0 032 I b nis
i M | 1 LI | |
BO=M 6D-M 0 0 - A
Tableaw 0
Xy Ay 1y L ¥ L Ly Xy
Xy 02 o032 1 0 025 Xy 0 o> 1 0ns
Ty 1" | 0 1 1 L 1 1 0 |
(e, =20 B0 & 0 0 (1] 0 - 0 T
=] =1 0 0 - | L1 0 0 0
Tablean 1 Tableau 2

Using both Step | of the simplex method and Change 2, we find that the most negative element in the
last row of Tableau | (excluding the last column) s — 1, which appears twice. Arbitranly selecting the
Npcolumn as the work column, we form the rathos 025 0.20 = 1 25 and | 1| = |. Singe the clement 1. sturred
in Tabicau 1. yiclds the smallest ratio, it becomes the prvot. Then, applying Steps ¥ and 4 and Change 1 to
Tableau 1. we gencrate Tableau 2 Observe that x, replaces the artificial vanable v, in the first column of
Tableau 2, so that the entire v ,-<olumn 5 abient from Tableau 2 Now, with no artilicial vanables in the
first column and with Change 3 implemented, the last row of the tableau should be all reros. It i and by
Change 4 this row may be deleted, giving

0 - 0 —50

as 1he new last row of Tableau 2

Repeating Sieps | through 4, we find that the v <column is the new work column (recall that the last
clement in the last row 15 excluded under Siep 1) the starred clement tn Tableau 2 i the new pivot,
and the elementary row operations yield Tableau 3, in which all calculations have been rounded 1o four
significant figures. Since the last row of Tableau 3, excluding the last column, contains 0o negative elements,
it follows from Step 6 that x§ = 05833, x7 = 04167, ] = 13 = O with =* = 7167 (Compare with Problem

1.2)

L1 X Xy
x| o 1 xm 04167
% | 1 0 -pam 0.8533
0o o 1667 - T1.67

Tableau 3
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i maximize: 2= 5x, + 2x,
subject to: 6x, + x; 2 6
4, + Ix; 2 12
Xy +dxyg = 4
with: all vanables nonnegative

This program is put into standard form by introducing surplus variables x,. x,, and x,, respectively,
in the constraint inequalitics, and then artificial wariables x,. x,, and x, respectively, in the resulting
equations. Then, applying the two-phase method and rounding all calculations to four significant figures,
we generale sequentially the following tableaux, in cach of which the pivot element is marked by an asterisk.

X Ky Xy Xg Xy Xy Ay Ty
$ 2 0 0 0 -M -M -M
Xy =M 6* 1 =1 0 0 1 0 0 (]
Xy =M 4 3 0 -1 0 0 1 0 12
xg =M 1 r | 0 (1 S | 0 0 i 4
(2, — &) -5 =2 0 0 0o 0 0 0 0
=11 =6 1 1 1 ] 0 0 -
Tableau |
Xy Xy Xy X, Xy Xy iy
x I 01667 -01667 0 ©0 0 0 :
Xy 0 233) 06668 —1 o 1 0 ]
% 0 183* 01667 0 -1 0 | 3
0 -=1L167 -0R335 0 o 0 o0 5
0 -4166 <0833 | 1 0 o =11
Tabiesa 2
X, X Xy Xy Xy Xy
X, 1 0 =0I1819 0 0oes 0 ann
Xy 0 0 04546 -1 1273 1 4.181
X, o 1 0.050594 0 -08456 0 1637
0o o -0.7274 0 0837 O 6910
0 0 - 04548 1 =121 0 ~4.180

Tablean 3
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x; Xy iy L Ny
Xy I 0 0214 007144 0 04lsd
x O 1 03T -07ss 1 3284
X 0 1 028 -042 0 149
0 0 -0%50 -050 (i} S|
0o 0 =00m O 0001 0 00008
Tablean 4
X, Ky Xy s Xy
i 400 © -3 |1 © 000
X5 160 0 -2000 0 1 g9t
' 6000 1 1000 0 0 6001
700 1] - 200 L] L] 1200
Tablesu &

Tabicau 4 o the first 1ableau contaiming no artificial varables in its first column. henoe. with Change
} implemented, the last row of the tablean should be pero. To within roundofl errors it is 2ero, so we delete
1t from the Tableau Tableau 5, however, presents a problem that cannot be ignored the work column is the
v y-column and all the elemnents in that column are negative’ It follow s from Step 2 that the onginal program
has no solution. (It is casy to show graphically that the feasible region i infinite and that the objective
function can be made arbitranly large by choosing feasible points with arbitrarnily large coordinates. )

maximize. = lx; + Ix,
subjecttoc  x, + v, 5 2
bx, & dy, > 24
with:  all vaniables nonnegative
This program i put in standard form by miroducing a slack vanable x; to the first constrami, and

both a surplus vanable x, and an amifical varuble x, 10 the woond constraimt. Then Tableau 31, with
Change 1. becomes Tabieau |

L Xy Xy =K Xy
J o 0 =N L X X X X
X3 O " 2 1 o o0 3 Xy I 3 1 0 0 3
Xy =M t 4 0 -1 | 4 Xy N =8 =6 =] | 2
@-ex | -2 -3 0 0 0 0 o 1 2 oo | 4
-6 =4 0 1 o -2 L] X (] 1 0 -12
Tablean 1 Tablean 2

Applying the two-phase aigorithm 1o Tableau | (the pivot clement is starred). we generate Tableau 2
Now, there are no negative entrics i the last row of Tableau 2. and in the aext-to-last row there s no
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negative entry postioned above a zero of the last row. Thus, the two-phase method ugnals that optimabty
has been achieved But the nonsero artificsal vanable x, i still basic! By Change . the onginal program
has no wiution. (In ths case 7 b emply, as the constraint inequalitics and the noanegativity conditions

cannot be wtnfied umultancousdy )
s maximize: = —x,
subject to;:  dx, — 2x; —dx, 4+ 6x, - %35 O
—dx, +2x3 - X3 ~-Bx,-x35 0
- dxy = 2xy =~ x,~%35 0
X+ X X34 X, < 1
—-X; = Xy= Xy=— XN, < =1

with:  x,, x;, X, X, nonnegative

Since xy s unrestnicted, we sel 1y = ¥, = ts, where both x, and x, are nonncgative; then all variables
are nonnegative. We multiply the last constraint by — |, thereby forcing a positive right-hand wide. Finally,
we achieve standard form by adding slack vanables x, through x,,, respectively, to the left-hand sides of
the first four constraints, and subiracting surplus varable x,, and adding antificial variable x;; to the
Ieft-hand side of the last constraint. The initial tableaw for the two-phase method is Tableau |, from which
are derived Tableaux 2, 3, . .., & From Tableau 3 oa, the bottom row is permanently nonnegative, and Step
1 of the umplex method is restricied 1o those elements of the next-10-last row that are situated above the
reros of the last row. From Tableau 6,

W=l f=011667 =07 J=01801] afe=al-—ate-1900M

with #* = 1.93134
Xy L ¥ Xy 1, i, Xq Ay Ly Xyp Xy X3 Xy,
0 1] L] [ S | 1 1] L] (1] L] 0 —-M
Xg (i} ¥ ]l =i & =1 | | (] (1] (1] (1] (1] L]
Ky 0 - 2 =1 =8 =1 | 0 ] (1] (i} a 0 o
e 0O 0 =3} =2 =1 =1 | 1] o 1 a i} o (i}
X 9 1 1 1 1 [1] 0 0 (1] 0 | (i} o i
Xy —-M | 1 1 1 1] g o o (i} 0 =1 1 |
=k 0 0 0 0 1 =1 0 1] 0 (1] (i} 0 (i}
=1 =] =1 =] 0 0o o0 (1] (1] o 1 0 -
Tablesu |
LY Xy Ty 1 Xy Xy Ay Xy Xy Xyy Xyg Xy
x5 |1 0666667 -1.3331) 2 -0333313 0313333 0333y 0 0 o 00 (1]
iy | 0 —Dbbb6E8 -£133132 0 -233131 23111) 133313 1 0 O oo o
Kl 0 -3 =2 =] -1 1 (1] o1 0 0o 0
X, 1 0 166667 23000 <1 033333 03X 03 D0 0 1 00O |
x| 0 | BabET 230313 =1 03331333 0333133 oM o 0 o0 =11 1
(i} 0 (i} i | =1 (1] 060 0 00 (1]
i - 1666667 -=2131111 1 =0331111 333313 033333 0 0 O 1 0 1=1

Tableaw 1
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L X3 X3 L A Xy Ty e Xyp Eny Xz %ai
¥, 1 025715 0 142857 0142857 O142857 042857 0 0 05143 0 o0 0571428
X | @ JABSTIS O -1TIAJR 142857 142457 0428571 1 0 271427 00 271417
Xl 0 =157142 0 =185714 =0714286 0714286 -0285714 0 1 0857144 0 0 0857144
xy | 0 0714288 | 0428572 0042857 0142857 0142857 0 0O 0428572 0 0 0428572
X3] 0 (i} i} 0 (i} o (i} 0O o -1 =1 1 o
L] (i1} 1] [} | -1 o Do 1] oo o
0 (i} 0 o (i} i ] o 0 o 1 1 0 (1]
Tableau 3
1 Xy Xy Xy Xy Xy Ty iy LT Xy Xy Xy
Ky 0S8131Y 0 0 ) 0 0 00686647 D03 00166668 0183133 a 0 LR RRRE]
L ~0083332 | 0 O g0 01533311 s =-02831111  D116667 0 o 01168667
(™ 1.33313 g oD =11 i Dty 7 1 0. N7 19134 n o 193334
xy 0499990 o 1 0 00 0200000 ~010 000000 0. 700000 0o 0 0
Xy 1] 0 0 0 D0 0 0 1] =] =] 1 (i}
1311 0 D O b 0 0 Ottty 59 00 OTININY 1933 0D o 19133
0 b DO o0 1] 0 0 1 1 0 a
Tablesu &
36  Solve the following program using the simplex method without any of the modifications (such a

procedure is known as the Big M method) and show how roundofl could affect the answer:

i
subject to:

sm =Bx, 4+ Mx, - bx,
Xy = Any + Sx,md
3, #Jxy;—4x, 26
with:  all vanables nonnegative
This program is put in standard form by imtroducing the surplus vanabie x, in the inequality constramt
and then artificial varables x, and x, in the two equality constrainis. Substituting the appropriate coefficients

into Tableau 3-1 and then applying the simplex method directly, with all calculations rounded to four
ugnificamt figures and with the pivot elements dessgnated by stars, we generate successively Tableauy |

through 4.
X L F] Xy LM Xy L
-3 3 -® 0 -M -M
xg =M ] -3 5 (1] 1 0 4
x, —-M 3 -4 =1 0 1 [
(2, = ;¥ -6M+8 =) -M+é6 M O 0 - 10M

Tablesu 1
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A7

Xy Xy Xy Ya Xy e
Xy 0 =136 58 0.2 1 =02 18
X3 1 06 -08 -02 0 02 12
0 J6M-=78 =SEM+124 -D2M+18 0 12M =16 =28M =95
Tablesn 2
ll- :: '. l,. I-' I-
Xy 0 -06207 | 0.03448 01724 ~ 003448 04828
X, 1 010M* 0 =017 01379 01724 1.586
0 -01033 0 LIn M-21138 M-LIT2 =159
Tabless 3
X, XKy X L Ty Xy
Xy 6003 0 1 =100 1000 10.00 10.00
Xy 9671 1 © = 1687 134 1667 1534
090 o0 o 09998 M-2 M-099% = 1401

Tableau 4

Since M designales a large positive number, all the entries in the last row of Tableau 4, excluding the
entry in the last column, are nonnegative. The optimal solution, therefore, can be read directly from it as
x = 1000, x§ = 1534, and all other variables zero, with :* = — 1401,

The quantity M in the previous calculations could be left as a letter only because those calculations
were done by hand Had a computer been used, a large numencal value would necessanly have been
substituted for M, say, M = 10000. Then, assuming again that all numbers are rounded to fowr significant
figures, the bottom row of Tableau | becomes

— 60 000 -3 = 10000 10000 0 0 = 100 000

Note that the additive constants + 8 in the first entry and +6 in the third entry are lost in roundofl. The
bottom row of Tablcau 2 becomes

0 36000 = SR000 = 2000 12 000 = 15 000
while the bottom row of Tablcau 1 s
(1] 0 0 0 10000 10000 0

which signals optimality! The erroncous optimal solution would be read from Tableau 3 as x] = 04828,
xf = 1.586, and all other variables zero, with :* = 0,

This roundofl problemn does not occur in the two-phase method since the terms that do not involve
M are separated from those that do, making it impossible for the M-terms to “swamp™ the others.

Solve Problem 1.7.

Using the mathematical program defined by system (/) in Problem 1.7, we mtroduce slack vanables
xy through x,,. one cach to the first cight inequality constrainty, surplus vanables x,, and x,,. one cach
10 the last two inequality constramty, and artifical variables x, , and x, . one cach 1o the last two constraints.
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Entering the appropriate coefficients into Tableau 3-1 and using Change |, we get Tableau 1. Then, applying

the two-phase method, we generate Tableaux 2, ..

= 377273 bbl, % = 122727 bbl, x§ = 22727 bbl. x3 = 2727.3 bbl, with =* = $§25000,

42
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Under this optimal production schedule, Artec will produce xf + 1% = 50000 bbl of regular having a
vapor pressure of 225 and an octane rating of ¥9.7. It will also produce x§ + 1 = 5000 bbl of premium
having a vapor pressure of 19.5 and an octane rating of 910 Thus, it will produce exactly the amount needed
10 meet its mmimum supply requirements, and no more To do so, Actec will use xf + x} = S0000 bbl of
its domestic inventory—all it has—and x? + xJ = 15000 bbl of its foreign imventory

38  Demonstrate the validity of the simplex method by solving Problem 3.2 algebraically.
The program in standard form is
minimize = By, + 60, + Ox, + Mx,
subgect tor 0. 20x;, + 032x, + x, - 02§
X, + L x| irn
with:  all vanables nonnegative

mthmm:mmlm:hmuhwn-umhbhlud--zr.m:nt
equations), so that an extreme point of the feasible region & must have at least n — m = 2 zero components.
Since the minimum must occur al an extreme point, these are the only candidates we need consider.

An initial extrome-point solution 1o system (/) is x, = x;, = 0, 1, = 025 v, = |, We determine whether
this solution can be improved by writing the objective function solely in terms of those vanables currently
set equal to rero, here x; and x; (We are assured that the consiraint equations can be solved for x; and
vy i terms of x, and x; because our extreme-point solution i & basic feasible solution.) Solving the second
constraint equation for v, and wubstituting in the obyective function, we oblain

o (B0 = Mjx; « (60 = Mjx; + M i

Compare system (/) with Tableau 0 of Problemn 12, and note how () is given by the bottom row of the
tableau.

In the current solution, ¥, = x; = 0 and, from (7} : = M. The obyective function can be reduced
substantially if either x, or x; s allowed 10 become positive, we arbitranly select x,. Now, the first constraint
in system (/) limits x, t0 no more than 0.25/0.20 = |25 units, if the remaining variables are 1o remain
nonnegative; while the second constraint limits x; to no more than | unii, for the same reason. Since both
constraints must be satisfied. x, can be no larger than | unit. Setting x, = 1, which s tantamount 1o sciting
xy; = xy = 0, we obtain from the constraint equations x, = 005 These values constitute the new extreme-
point (hasic) solution 10 the program.

The artficial variable 1, was introdeced imtially oaly 1o provide a first solution. Uluimaiely. this vanable
must be rero. Since we now have a solution 1o the program in which x, = 0, we can omit this vanable from
further conuderation and restrict ourselves (o the program

mimmize: @ = 80x, + 60x; + Ox, (£
subject toc 020, + 0L02x; + x, = 025 4)
Ay + Xy - | 5

with:  all vanables nonnegative
of which an extreme-point solution (x, = |, x; = 0, x, = 005) is known. Observe that this modified
program has o = J vanables and m = 1 coastramnt equations, so that extreme points mus! posscss al least
3 = 2 = | zero-valued variables
To determine whether the starting solution for the new program can be immproved. we solve (f) the
equation that restricted x, —for x; and substitute the result mto (J) and (4). The program becomes

minimize: = Ox; = Nix, + Ox, + 50 (L]
subject 1o 012z, + x, = 005 in
-l." 1] -I il'l

with:  all vanables nonnegative
Compare this program with Tableau 2 of Problem 1.2
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In the current solution, x; = 0, and it follows from (6) that ; = 80 It ts obvious from this equation,
however, that = will be reduced if x, is increased. Constraint (7) himits x; to 008 012 = $/12 if the other
vanables are to remain nonnegative; while (8) kmits 1, to |, Since both constraints must be obeyed, x,; cannol
be increased beyond §/11 Setting x; = 5/12, which forces x, = 0, we find from (8) that x, = 712 This s
the new extreme-point solution to the program.

To determine whether this solution can be improved, we solve ( T)—the equation that restricted v, —for
x; and substitute the result in (8) and (§). The program becomes

minimize: == 0x, + Ox; + 166.7x;, « 7167 19
subjpect to xy 4+ B33y, = 04167 (Im
x, — 8333, = 05833 (n

with:  all vanabies nonnegative

Equation (10} is just {7) divided through by 0.12 Compare the form of this program with Tableau 3 of
Problem 3.2.

In the current solution, x; = 0, so it follows from (¥) that = = 7167 It also follows from (¥) that no
positive allocation to x, will reduce z below this value In fact. any such allocation will increase = Thus,
the current solution is an optimal one.

Use the dual simplex method 1o solve the following problem.
minimize: == 2x, 4+ x; + 1x,
subjecttor x; —dx; +x; =4
e, + x;+x,<8
Xy -x; 20
with: all vanables nonnegative
Expresung all the constrants in the < form and adding the slack variables, the problem becomes:
minimize: = Jx, + x3 + Jvy + On, & Oxg + Ox,

subject by — x; + 2xy = Xy + A, - -4
1’1“" X3+ X, * Ay - X
- X - Xy +x,= 0

with: all vanables nonncgative

Xy Ky Xy X X X,

X, -]* 2 -1 | 0 (1] -4

Xy d | 1 0 1 0 L]

Xa = | 0 | O 0 1 0

(e, =3,k 2 1 30 0 0 0
Tableau 1

Since all the (¢, = =) values are nonnegative, the above solution i optimal However, it i infeasible because
it has a nonpositive value for the basic vanable x,. Since x, m the only nonpositive variable, it becomes the
departing variable (D.V.).
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Xy Xy Xy X, Xy X

(¢; = z,) row: : 1 I} 0 o0 0O
Ky FOW -1 2 =1 1 0 0
absolute ratiox 2 = - - -

Since x, has the smallest absolute ratio, it becomes the entering variable (EV.) Thus the clement 1,
marked by the asternk, becomes the pivot clement. Using clementary row operations, we obtain Tableau 2.

X X3 Ay X Xy Xy
5 o % =t 2 ¥ B 0
X, a =2 2 -1 0 1 +
Tableau 2

Since all the variables have nonnegative values, the above optimal solution is feasible. The optimal and
feasible solution is x§ = 4, x§ = 0, x§ = 0, with * =&

L0  Use the dual smplex method to solve the following problem.
maximize: = —2x, — Ix;
subjecttoc  x; +x; 2 2
Ix, + x, < 10
y+x;< 8B

with: x, and x; nonncgative
Expressing all the constraints in the < form and adding the slack variables, the problem becomesx:
mavimize: = —2x, — 3x; + Ox, + Ox, + Oxy

subject tox  —x; — x; + X, -2
hl+l|; +I,‘ = [0

with: all vanables nonnegative

Xy X3 Xy Xy Xy
“ I T T T =
X | 1] | 0 10
5 T X
(2, =,k 2 3 ' 0 0 0
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Since all the (=, — «,) values are nonnegative, the above solution 1 optimal. However, it is infeasible because
it has a nonpositive value for the basic varable x, Since v, s the only nonpositive vanable. it becomes the

departing variable (DV)
Xy X3 Xy Ny %
iz, = ;) row: : 3 o 0o 0
Ly TOW - =1 i 0 (1]
absolute ratiox: 3 i

Since v has the smallest absolute ratio, 1t becomes the entermg variable (EV. ) Thus the chement ~ 1,
marked by the asternk, i the pivot clement. Using elementary row operations. we obtan Tableauw 2

X XIs LY . Xy
Xy | I =1 0 O 2
Ny 0 =1 2 1 0 (]
Ny n (1] I 0 f
==k (1] 1 2 0 0 -l
Tablean 2

Since all the vanabies have nonncgative values, the above optimal solution is feasible The optimal and
feasible solution is 37 = L AT =0 with:* = -4

L1 Use the dual simplex method to solve the following problem.

mimmize; = =dx; + v, + 2y + Sx,
subject o x, 4+ ey 4+ v, 4 x> 8

Ay - X+ 8- 2 1

g+ Xp+ X3 +3x,210

with:  all variables nonnegative
Esptessifig all the cofstraints in the < form and adding the slack vanables. the problem becomes
minimize :-41,+1:,4..;,+5:.+n.',+u-.f.-nn

—J.t,+ xXp=Swy 4w, * = =]
~dny = Xp= xy=1y, * Xow =0

with:  all vanables nonmegative

L1 Xy Ay LM Xy Ay U=
L1 -] =2 =} =] 1 0 o -3
Xy -2 I =5 I L o |
L3 -2 =1 =1 =3 0 0 1 - 10
1':'—:]:- 4 3 2 5 o 0n (1] i

Tableau |
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Since all the (¢, — 2,) values are nonnegative, the above solution is optimal. However, it is infeasible because
it has nonpositive values for the basic vanables x,, x,, and x,. Since x, has the most nonpositive value, it
becomes the departing vanable (D.V.).

. Xy Xy X, Xy Xg L 2

(c; — ;) row: 4 k] 2 £ 0 0 0O
Xy POV -2 =1 =1 =% 0 0O
absolutc ratios: 2 | 2 3 - - =

—

Since x, has the smallest absolute ratio, it becomes the entering variable (EV.). Thus the element -~ 3,
marked by the asterisk, becomes the pivot element. Using elementary row operations, we obtain Tableau 2.

Xy X3 Ky Xg X3 X Xy
Xy -1 =531 =81 o 1 0 -1 -5
Xy -8/3 2y -1/ 0 0 1 1/3 -13/3
X, /3 /3 17 i1 @& ¢ =13 10/3
e, =5k 23 4/3 1/3 0o 0 o0 513 =50/3
Tableau 2

Since 1, has the most nonpositive value, it becomes the departing variable (D.V.).

I Ky X Xy g X m, Xy

(e; = 2;) row: 20 4N /3 0 0 0 =513
X TOW -83 3 -3 0 0 1 1/3
absolule ratiox 1/4 - 116 - - - -

Since x, has the smallest absolute ratio, it becomes the entering variable (E.V.). Thus the clement — 16/3,
marked by the asterisk, becomes the pivol element. Using elementary row operations, we obtain Tableau 3.

X Xy Xy X, Xy Xy Xy
e I 2 @9 1 <in =\ 12
X3 17 =118 1 0 0 =316 =1/16 1¥16
X 11 94 0 1 O 1/16  15/48 147/4%
G@-2r | v2 324 0 0 o e myas | -sma
Tableau 3

Since all the variables have nonnegative values, the above optimal solution is feauible The optimal and
feasible solution is x] = 0, x§ = 0, x§ = 13/16, xJ = 147/48, with =* = §1}/48.

312 Use the dual simplex method to solve the following problem.
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matimize: = —x, - X3 — 3,
subject to: x4 2xg 4 dx, =2
2x; + x3+5x,<3
Xy 4+ 2%; + Ix, < 3
with: all vanables nonncgative
Expressing all the constraints in the < form and adding the slack variables, the problem hecomes

maximize = —x, — x; — v, 4 Ox, + 0x, + Oy,

subject tor — x, — 2u; —4dx; + 3, - =2
2y + x5+ 5x, + Xy - 3
Xy + xy + Ixy “xy=- 1}

with:  all varables nonnegative

X; A L1 By Xy XN,
i -1 -1* =i 1 (1] 0 .
Xy 2 1 $ 0 1 O 3
Xa | 2 3 0 0 | L
Tableau |

Since all the (2, = ¢,) are nonnegative, the above solution is optimal. However. it is mfeasible because 1 has
& nonpositive value lor the variable x,. Since v, is the only nonpositive variable, it becomes the departing
vanable iDV.)

t. 1’: ", ‘. ‘j ‘:'

12, = ;) row: I 1 3 0 o0 o
urow, | -1 =2 -4 1 0 0
absolute ratiox I 12 34 - -

Since x; has 1he smallest absolute ratio, it hecomes the entening vamable (EV ) Thus the element -2,
marked by the asterisk, is the pivot element. Using elementary row operations, we obtam Tablean 2

1 Xy Xy i Ky Ay
Xy 12 0 1 =12 0 0o i
L < 0 k. 172 | )] ]
Xé 0 0 - | 1 i |
(2, =) 12 0 I B2 0 0 -1
Tableau 2

Since all the vanables have nonnegative values, the above optimal solution 1 feasible. The optimal and
feasible solution is af = 0, x7 = |, x} = 0, with :* = = |.
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113 Use the dual simplex method to solve the following problem.

minimize: = 2x; + x;
subject to:  x, 4+ x; =4
Ixy —x3 23

with: x, and x; nonnegative

The above problem ts rewritten as follows:

minimize: 2= lx, + X,
subjectioc  x, + 1, <4
N+xzzd
-2l

wilke =, and x; nonnegalive

Expressing all the constraints in the < form and adding the slack vanables. the problem becomex:

rrinim e :-111 +.'I!;+lh,.+h, +DI’

subject toc Xy + X3+ Xy = 4
- Xy~ Xy + Xy = -4
-hl‘PIj Xy m =]

with: all vanables nonnegative

Xy Xy Xy X3 X4
Xy l | 1 0 O 4
Ka -] =1* 0 1 0 =4
Xy -2 1 6 0 1 -3
e =2} 2 1 0 0 © 0

Tableau 1

Since all the (¢, — z,) values are nonnegative, the above solution is optimal. However, it is infeasible because
x, and xy have nonpositive values. Since x, has the most nonpositive value, it becomes the departing variable
(DV.)L

(e, = 2;) row: 2 1
X, TOw; -] =]
absolule ratios: 2 I -

Singe x; has the smallesi absolule ratio, it becomes the entering variable (EV.), Thus the clememt =1,
marked by the asterik, becomes the pivot element. Using clementary row operations, we obtain Tableau 2
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11 .\-: !:; t‘_ ."1,
Xy g & 1T @ 1 i
Xz l 1 a4 0 =1 4
X -3* 0 0 t 1 ~7
e, - 2,): ¥ g e W ! -4
Tableau 2

Since ¥ s the only nonpositive viinable, il becomes the departing vanable (D.V.),

X K3 E; X, Xg

fc; = ;) row: i1 ¢ © 0 I
Xy FOW -3 0 o 1 |
abaclule ratios: L -

Obviouwsly v, hecomes the entering variable EV. (rule: the variable with the smallest a.luqluu: ratio is the

EV.).
X X3 Iy Xg Xaq
% o 0 1 | 0 0
%3 0 1 6 =33 13 5
. b oD oo =i =i 13
T @ 0 0 43 13 ~1973
Tableau 3

Since all the wirables have nonnegative values, the above optimal solution w feasible. The optimal and
feasible solution is x§ = 7/3, x§ = §/3 with =* = 19/3,

114 Use the dual simplex method to solve the following problem.
minmmize: * = 6x; + lx; + 4x,
subjectto: X, + 6x; 4 x, = 10
2x; + Iy + x3= 15
with: all variables nonnegative
The above problem s rewritten as (ollows:
minimiee: o= 6x, + Ix, + dx,
subject . &, + 6x; 4 x, = 10
x; + by 4 x5 > 10
2+ 3y 41, < 18
Iy + Iy + x4, =15
with:  all varmables nonnegative
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Expressing ull the eonstraints in the = form and adding the slack vanables. the problem becomes

mirmmize: == bix, + 3x; + 4oy + Qg + Oxy+ Oxg + O

subject Lo XNy By 4 Ny 4oy = 10
- %y =By —xy + Xy = |0

20y 3y + Xy + Xy = |5

- 1%y — 3Ixn; — xy + x4 m 13

with: all variables nonnegative

Xy t Xy Xy Xy Xg Xn

Xz i 6 1 1 o o 0 10

Ky -1 =6 -1 0 1 a 0 =10

Ya 2 3 1 ¢ 0 1 0O 15

2 -2 =3 <1 ¢ 0 0 | =15
Tablean 1

Sinee all the (¢, — z;) values are nonnegitive, the above solution s optimal. However, it is micasible because
ty and v have nonpostive values. Since «, has the most nenpositive valug, it becomes the departing variable

{EAH]
Xy %3 Xy Xg iy i K3
ey — ) riow: i 3 ¢ O o 0 0
v TOW! -7 <31 -1 O © D 1
absokite ratios: i 1 d - - -

Simce v, has the smallest ratio, «f becomes the entering variable (E.V.). Thus the element — 3, marked by
ihe nstensk, becomes the pivol element. Usitg elementary row operations. we oblain Tableau 2.

X Ky X3 Xa Xy Xy b ]
xa - o =1 i L 2 —20
Xy 3 i 1 (1] | 0 -2 H
0 n g a A | | 0
i3 e . | /3 0 0 0 -—=i/3 5
{cj = 2;) 14 0 P 9 0 @ ! —15
Tablean 2

0y — 2p) row: 4 0 i 6 2 o 1
Xy TUW, -3 0 - 1 0 0 2
absplute ratins: 43 - L]
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Since x; has the smallest absolute ratio, it becomes the entering vanable (EV.) Thus the clement -3,
marked by the asterik, becomes the pivot element. Using elementary row operations. we obtain Tableau 3.

N X3 Xy L Ty @, s
Y, I o 43 =13 0 0 =23 203
Yy o 0 0 [ (R 0
Ve 2 0 0 0 o | [ 0
N D 1 1% 29 0 0 19 $9
(e, = 2,¥ 0 0 53 43 0 0 ny | -1293
Tablean 3

Since all the variables have nonnegative values, the above optimal solution & feasible. The optimal and
feasible solution s 7 = 203, x} = 59, «f =0, with :* = 125 3.

Supplementary Problems

Lise the sumplea of two-phase method 1o solve the following problems.

Als MANIMIAE. T = ¥ + X;
subjectior v, + Sx. < §
2y, = x;54

with: 1. ¥, nonnegaine

RN [ maximire = Jy; « dx,
subjecttoe 3y, + x50
2y + M, 59

with:  x,, v nonnegaline

\

A minime = v+ Iy,
subject e v, = M. =11
:.‘* - .‘: 2“

with: &, x; nonnegative

RN L mavime = =X, = A,
subjecttor v, = 2. = SO00
Sy, = bz = 12000

with: ¥, v: nonndgative

AL manimize 5= v + . - 3y,
subpctic v+ ;- 5

O+ yelyy=l

I, + 2,6 x,24

with:  all vanables nonnegative
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i minimize = ldy, + 1dxg & Llxy & D3x, & 13xy & 12x,
subject toc ¥, + x; + ¥, = | 200
Xy + Xy + xg = 1000
Xy + X = 1000
Xy * Xy = 700
Xy + xy= 500

with:  all variables nonnegative

2

Problem 221
Problem 2.25.
Problem 2.24.
Problem 226
Problem 21.28.
Problem 1.7, but with inventones of §0000 bbi of domestic oil and 20000 bbi of foreign oil.
Problem 1.17.
Problem 1.18.

Problem 1.19.

t § E & EREEGR

Problem 1.22

Use the dual simplex method to solve the following problems.

i minimize: = Ix, + x,
subjectto: Ix, + x; 2 4
11*-‘::“

with: x,, x; nonnegalive

in minimize: = Sx, + Mx; + x,

subjecitoc —x; 4+ x5+ 3522
Xyt Xy — Xy =4
with:  all variables nonnegative

in minimize: 3= x, + 2x; + Jx,
subjectto:  x;, = 2x; 4+ x32 1
I, ~dx; +6x, <8
20, = dx; + 2x3 €2
with:  all variables nonnegative
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matimize 1= —4x;, - Ix;
subject tor x; + x; =2
N+ zd
with:  x,, x; nonnegative
manimipe = -3, — dry - Sx,
subject o %, + X3 s
N4l b= 9
Xy + Xy 4
with: all vanables nonncgative

minkmize: 7= lx; + 9x;
subjcitoc  x, + Jn; 26
2y 4+ Jx; 29

with:  x,, x; nonnegative

maximize. = Sx, + x; + Jx, + 2x,
subject to: 2wy 4 Jng 4 by 4+ N =0
Gy + g+ S+ I, 28
A, + 60y + X3+ Ix x4
with:  all varmbles nonnegative
MALMUE = —X; — X3 = X,
subject e x; + 1, < 10
X+ Ip+az b
Xy = 2
with:  all vanables nonnegative

minimie : = —%51; - x;
subject xS, 4 x; 2 10
X+ ey = b

with  x,, x; noancgative

mimmire = Kx, + 9x;
wbectioc x, = Ixy =2
X+ xpzh

with: &, x, noanegative

maumise = 2x, + 4y, + 3,
subject i N, #+ X+ Ay = K
K= =i 8
Sx, +5x, 4+ x,228
with:  all variables noancgative

[CHAP. 3
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maximze: o= By, + Sy + fory
subject o 2x, + 5y + Ix, > 60
K +Xy= X215

with:  all variables nonnegalive



Chapter 4

Linear Programming: Duality and Sensitivity Analysis

Every linear program in the vanables x,, xy, ..., x, has associated with it another linear program
in the vaniables wy, wy, ..., w, (where m is the number of constraints in the original program), known
as its dual. The original program, called the primal, completely determines the form of its dual

SYMMETRIC DUALS
The dual of a (primal) lincar program in the (nonstandard) matna form
minimizee :=C'X
subject 1o AX 2B 4.5
withh X>0

is the lincar program

maximizee :=B'W
subject 1. ATW < C 4.0
with Wz=0

Conversely, the dual of program (4.2) 1s program (4./). (Sec Problems 4.1 and 4.2)

Programs (4.7) and (4.2) are symmetrical in that both involve nonnegative variables and inequality
constraints; they are known as the symmetric duals of cach other. The dual vanables w,, w,., ..., w_ are
sometimes called shadow coses,

DUAL SOLUTIONS

Theorem 4.1 (Duality Theorem): If an optimal solution exists to either the primal or symmetric dual
program, then the other program also has an opumal solution and the two objective
functions have the same optimal value.

In such situations, the optimal solution to the primal (dual) is found in the last row of the final simplex
tableau for the dual (primal), in those columns associated with the slack or surplus variables (see Problem
4.3). Since the solutions to both programs are obtained by solving either one, it may be computationally
advantageous to solve a program’s dual rather than the program itself (See Probiem 44.)

Theorem 4.2 (Complementary Slackness Principle):  Given that the pair of symmetne duals have optimal
solutions, then if the kth constraint of one system holds as an inequality—i.c., the associated
slack or surplus vanable is positive—the th component of the optimal solution of its
symmetric dual is zero.

{See Problems 4.11 and 4.12)

56
Copyrighted Material
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UNSYMMETRIC DUALS

For primal programs in standard matrix form, dusis may be defined as follows:

Primal Pual
minimize. :=C"X maximize: :=BTW )
subject to; AX =8B 4.4) subject to: AW < C
with X =0
maximize: z=C"X minimize: :=B™W (4.6)
subject to: AX =8B (4.5) subject 10: A'W = C
with: X =0

(Sce Problems 4.5 and 4.6.) Conversely, the duals of programs (4.4) and (4.6) are defined as programs
(#.3) and (4.5), respectively, Since the dual of a program in standard form is not itsell in standard form,
these duals are unsymmerric. Their forms ure consistent with and a direct consequence of the definition
of symmetnc duals (see Problem 4.5),

Theorem 4.1 15 valid for unsymmetne duals 1oo. However, the selution to an unsymmetnc dual s
nol, in general, immediately apparent from the solution 1o the primal; the relationships are

Wl = ClAg ] or W* ={A])'C, (4.7}
X*7 = Bl or X*=A;'RB, (4.5)
In (4.7), C, and Ay are made up of those elements of € and A, in either program (4.3) or (4.5), thal

correspond to the basic veriables in X*; in (4.8), B, and A, are made up of those elemems of B and A,
in either program (4.4) or (4.6}, that correspond 1o the hasic rariables in W*. (See Problem 4.7.)

SENSITIVITY ANALYSIS

The scope of linear programming does not end at finding the optimal selution 1o the hnear model
of a real-life problem. Sensitivity analysis of linear programming continues with the optimal solution to
provide additional practical insight of the model Since this analysis examines how sensitive the optimal
solution is to changes in the coefficients of the LP model, it ix called sensitivity analysis. This process is
dlso known as postoptimality analysis because il starts after the optimal solution is found. Since we live
in a dynamic world where changes occur constantly, this study of the effects on the solution due 1o
changes in the data of a problem is very useful

In general, we are interested m finding the effects of the following changes on the optimal LP solution:

(1) Changes in profit/unit or cost/unit {(cocfficients) of the ohjective function.
() Changes in the availability of resources or capacities of production/service centers or limits on
demands {requirements vector or RHS of constraints).
tin) Changes in resource reguirements/units of products or activitics (fechnological coefficients of
variables) in constraints.

tivli Addition of a new producl or gctivity (variable).
(v} Addition of a new constraint.
The sensitivity analysis will be discussed for lincar programs of the form:
maximize; z=CTX
subject to: AX < B
with: X =0

where X is the column vector of unknowns: C7 is the row vector of the corresponding costs (cost vector):
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A is the coeflicient matrix of the constraints (matrix of technological coefficients); und B is the column
vector of the nghi-hand sides of the constraints (requiremeénts vector).

To fix our ideas, the sensitivity analysis concepts will be exemplified through the lollowing numerical
problem:

maximize: == 20x, + 10x;
subject to:  x, + 2x, < 40
Ixg + 2, = 60
with: x, and x, nonnegative
This program is put into the following standard form by introducing the slack variables ¥, and x
maximize: == 20x, + 10x; + Ox, + Ox,
subject 1o:  x, + Ix; + X, = 40
Ix; + 2x, + 1, = 60
with: all varables nonnegative
The solution for this problem is summanzed ps follows;

Initial Simplex Tableuu:

xy 0 1 2 9 40
% 0 3 2 0 1 6
(z;—eyk -2 -0 0 0 0
Final Simplex Tablenu:
X Xy Ty Xy

xy D ] 4/3 1 =1/3 . |
X B ! 23 0 1/3 20
(=, — ok 0 W03 0 2073 400

Since the last row of the above tableau contains no negative elements, the optional solution is x§ = 20,
x7 =, with z* = 400,
For clanty of exposition, the five types of modifications are illustrated case by case below:

Example 4.7 Maodification of the cost vector CF

() Coeflicients of the nonbasic vamables
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Ler the new walue of the cost cocfficent cormesponding 10 the nonbasic variable xy; be 15 instcad of 10,

The corresponding simplex tableac is

X s Ty k9

H) 15 0 o
x; O 0 43 1 =13 n
x; 10 I 73 0 13 .
f2— ¢ 0 -3 0 2003 | 4w

Sinve {22 — o) = () the pew solutieon s aol aptimal. The regular dmiplex method i used 10 reaprimize the prablem,

slarting with x; a3 the entering varable
The new optimal 12bleau is

i X Xy Ay

N 15 1]
xs 15 0 [ M =14 13
X 20 i g =12 12 10
{2 =eyk LU 54 254 425

The aptrmal solution is xT = |0 x} = |5 with =* = 425§

ih) Coetbicients of the basie vamahles

L&t the cost cocflicient of the basic variable x; be changed from 20 1o 10, Then the simples tableau becomes

X, X3 Xy Xy

10 L1 0 ]
x O 0 43 1 -1 20
%, 0 | 23 1] 13 20
(2= ok 0 -3 0 10:3 200

Sinee Iy —g) < O, the new solution 15 not optimal. The regular simplex method is resorted to for reoplimization,

first by entenng x,.
The new oplimal tablenu i

L1 K3 Xy Xa

w o0 0
ks 10 1] ] J4a -1/4 13
¢, 10 b0 =12 2 10
(g, — o)) 00 s2 52 250

The optimal solution is x7 = (0, xf = 15, with =* = 250
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Example 4.2 Modification of the requirements vector B

Let the RHS of the second constraint be changed [rom 60 1o 130

Then X; = 5™ 'B becomes
(x,) (‘l =1 lﬂ) (—.’r I.'.!)
X, {i] 173 130 43 173
Since x4 < 0, the new solution is not feasible. The dual smplex method wsed (o clear the infeisibility siarting with

the following tableaw:

L 4 [] -1:1 X k| .’._‘
0 10 Ll 0

xy O o L3 | =33 3133
n X I 067 i 033 43113
- &) 0 3133 0 .67 66,67
The new final tableau i
Ny Xy Xy Ky
k|| 1] ] i
%, O B =& =3 3 10
v, M £ =3 b 4
2, — ek 0 3 X LI

The optimal and feasible solution s x7 = 4, x¥ =0, with z* = B}l
Example 4.3 Maodification of the mairix of coefficients A

The problem becomes more complicated, when the technological coefficients of the basic vanables are
considered This &5 because here the matrix under the sturting solution changes. In this case, it may be easier 1o
solve the new problem than resort to the sensitivity analysis approach. Therefore our analysis is limited to the case
of the coeffictenis of nonbaxic variables only.

Let the technological coefficients of x; be changed from (2, 2)7 1o (2, 1)".

Then the new technologicnl coefficients of 1. in the optimal smplex tableau of the original primal problem are

given by
" =13\ /A
’ F"(ﬂ I.fJXl)-(IfJ)

Hence the pew simplex tableay becomes

"1 '-I' L Ny

20 I L] 0 0
% 0 0 s53* 1 -13 20
vy X0 1 13 0 13 0
-k | 0 -ma o 203 | o
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Since here (23 = r2) < 0, the new solunhion is oot optimal, Agan the regular ssmplex method s resorted to for
recplimizaton, first by entéring x,.

The new optimal tableau 15

X ] LT X

210 i ]
6 10 0 1 M i 12
x, 20 | i —1/5 5 16
{z;=¢;) 0o 0 2 & 440

The optimal solution is =¥ = 16, x5 = 12, with :* = 440
Exampile 4.4 Addition of o vanable
L&t a new vanable v, be added to the onginal problem. This is accompansed by the addition 10 A of a column
P, =13 1) and to €7 of 8 component ¢, = M, Thus the new problem becomes
maxmize  : = Mx, + §0x; + Jix,
subpct o0 x; + 2a; + Iy, = 40
ey # 3, + x, <60
with:  all variables nonnegatve
Then the technological coefficients of x, in the optimal tableay are

1 =133 M)
il | iy Yo
g (n 1,.]X1) I (l,.-:g

The eorresponding (=, — ;) = (8340} + (L 3IN20) — 30 = TO/3.
Thus the modified simplex tableau is

%y Gl | X5 Xy Y4

0 1o 30 a 0

x;, 20 | i3 Wy 0 1/3

AREY

i
x, O 0 47 g3 1 =13 |
|

5-ck | 0 w03 -3 0 203

Now entering the varable x,. the regular simples method s applied 1o obtain the following optimal tabloau

Xy X3 K % Ny

2™ 10 W 0 0
Y% 30 0 12 1 ¥ -18 | 152
Y 20 1 12 0 -18 ¥ | 32
2, — ek 6 15 0 08 308 575

The optimal salution is 1§ = IT.5 3 = 0, x = 7.5, with z® = 575,
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Example 45 Addition of a consiraint

If & new construint added o the sysiem is not active, it & calked a secondury or redundunt condtinint, and the
optimality of the problem remalns unchanged. On the other hand, i the new constraint s active, lhj current optimal
solution becomes infeasible. \

Let va consider the ciase of the addition of an active constriint. vie, 2y, + 3x; 2 3w the | problem
The current optimal solutipn (xF = ), x5 = 1) does not satisly the above new constraml and hence begomes
infeasible. Therefore, add the new constraint to the cwrreni optimal tubleau. The new slack vanable is v, The new
simplen tableau is

X L] Xy Xy X5
| 10 0 0 0
xu 0 0 43 1 -3 0 0 '
, M 24 0 123 0 20
v, 0 = =& O 0 9 — 50
(2, — ¢k 0 103 o0 p | T | 400 |

By wsing the row opcrations, the coefficient of v, m the new constraint is made 7ero. The modified tablenn hecomes

LT XA Ly L .\"

20 o L1 0 1]

x3 O ] 413 [ =13 0 mn
X, N i 3 0 13 0 20
Xg 0 0 =53* 0 23 1 = |
g — ekt 1] 103 (i} b T 40

The dual simplex method s used to overcome the infeasibility by departing the variable v, The gew tableau i

L X3 Xy x, Xy

0 10 0 0
x, 0 0 @ 3 1% 45 {
x, M { o © 38 25 16 '
x 10 B 1 6 =¥ -3 [
iz, — ok O 0 0 b ? W0

The above tableau gives the optumal and feasible solution us x3 = 16, 8 = 6. 53 = 12, with * =/350

Solved Problems

4.1  Determuine the symmetric dual of the program
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4.3

minimize: == 5%, + I, + x4
subject to: 2x, + 3x; + x, 2 20
6, + Bxy + 3x, > 3
Txg + %3+ Ix, 240
Xy 2xg 4+ Ax, > 50
with: all variables nonnegative

i)

Thas program has the form ol (4.0) Ns dual, of the form (#.7), is found by taking the opposite optimum,
interchanging B and C, transposing A, and reversing the comiraint ineguilitics:
maximize; == Xhw, + Wwy + 40w, + She,
subject ton 2w, & By 4 Ty 4 Wy < 5
Iw, + Bwy 4+ wy#2n, <2 i)
wy + Sws + Juy + 4wy < |
with: #fl varables nonnegative

Muole that the primal, program (1), contains three variables and four constraimts, while its dual, program
{2}, contains four vanables and three constramis,

Determine the symmeinc dual of the program
maximize: = 2x, + Xy
subjpect tor x4+ Sxy < 10
X, +3Ix;= 6 )
Ixy + 2x. < B
with: all vanables nonnegative
Thus program has the form (4.2), with x-variables replacing w-variables. Proceeding as in Problem 4.1,
we generate its dual, (4.1), with w-variables replacing x-variables:
mmimize: 3= 10w, + bw; + Bw,
subject o w4+ owy 4wy =2
Sy & dwy + 2wy 2 |
with: all variables nonnegative

Show that both the primal and dual programs in Problem 4.2 have the same optimal value lor
z. and that the solution of cach is imbedded in the final simplex tableau of the other.

Introducing slack varables x . x,, and v, respectively, in the constraint inequalities of program (/) of
Problem 2.2, and then applying the simplex method 10 the resulling program. we generale sequentiully
Tableaux | and 2

slock tairfohles

X X5 K. O
+ H““
‘ 2 1 0 B 1 I, ¥y Xy K, Xy
w0 1 i § ¥ % D 19 Xy 0 4 1 0 =12 ] &6
ty O I U I i b Xg ] 2 0 1 -2 2
¥y U [ e L 0 I 5 Xy | i i 1] i2 4
ey L= <t 10 2 0 0 1 0 0 §

"h-.——-..,....———-'
sedution (o the dual
Tablean 1 Tableaw 2
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The solution @ the primal i obtained from Tableay 2 a8 xf = 4, x7 = 0, with ** = 8 Thesolution o the
dual program is found in the last row of this wbleaw, in those columny assoctated with the slack variables
for the primal. Here, wt = 0, w] = 0, and wi = 1,

We can solve the dual directly by introducing surplus variables w, and w,, and artifical variables w,
and w, to program (1) of Problem 4.1, and then applying the two-phase method, which genérates Tableaux

| A S
"y Wy L Wy Wy Wy W, IH‘P_‘.I ruriatles
w6 & 0 0 M M w, Wy Wy W W
w, M ! t 2 -t BN B 1 we: | =4 =5 B 4t I i
we M Ll E] ’, g =t o 1A 1 Wy 12 12 1 =2 0 1
lr.—:J! 1] [ ] o D O @ i i ] 0 4 LU — N
% -4 -4 1 10 D -3
sorluilam v fhe primal
Tableau 1’ Tablean 4°
The solution to the dual & read from Tableau 4 45 wi=wl=0 wi= 1, with :*= —(—§)=§&

The solution to the primal is found in the last row of this tableau, in those columms associmted with the
surplus vanables 11 is the same solution a5 found previously.

MInImize: == X; + X;+ X3 + ¥, + N5 + X,
subject to:  x, +xg2 7
X, + Xz =X

a4+ Xy =14

Xy + x4 =z

Xy + Xy =10

Xo + X2 8

with: all variables nonnegative

To solve this program directly would require the introduction of 12 new vanables, six surplus and
six artificial, and the application of the two-phase method A simpler approach is 1o consider the dual
progranm

maximize: == Tw, + Whw, + ldwy 4 Mw, + 10w, + 5w,
subject lo: W, 4wy < |
Wy Wy <1
Wy 4+ Wy |
Wy oy < |
Wy + Wy = |
Wy + Wz
with: all varmables nonnegative
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4.6

LS wy L W oy L - Wy Wy Wy Wy Wy

7 2 14 20 I 5 ¢ 4 0 4 0 0
we D i I 0 0 o o | % © ¢ 0 o I
Wy L 0 * i 0 0 0 1 0 L i 0 I
wy 0 0 0 i [ ¢ o o 0 t o o O© I
wey DO i 0 i l 1 & o 0 ¢ 1 0 o |
w,, O b0 0 © 1 1 0 @& @& 0 31 0 I
weg O ! 0 o o o 1 o 0 0 0 o0 | 1
0 =5 i X0 f4 B 10 5 o o4 0 0 0 0 0

Tableau |
slock rariables
P

- ]

Ll wa Wy W, L Wy W Wy Wy W, Wiz
", ' 1 4 -1 o 0 © I -1 0 00 0 0
Wy 0 TR 00 0 10 0 0 0 I
Wy | i i} | 0 = L] 0 0 | - B L] 0
g [ i 0o i i L 0 0 o 1 0 0 I
"5 i 1] I [ 1 =1 0 i) 1 o | u
“ l o @ T I ! I D o0 ! ]

il

-[ 1 0 4 L1 0 o . 1% 0 0D 0 5 43

L. _—

T 4
solflario e the prirmal
Tableau §
Thes system is put in standard form by introducing only six new varables, all slack. Doing so and then
applymg the amplex method, we successively generate Tableaux 1, .., 5 Tableau § signals optimalny for
the dual program, so the optimal solution to the primal is found in the last row of this tablesu, in those

columns associated with the slack variables. Specifically, =7 = 2, x5 = 18, x} =0, x5 = 20, x? = 0, xJ = §,
with =* = 45

Determine the dual of the program
maximize: = x; + Ix; — Ix,
subject 1o:  dx; + Bx; + 6xy = 2§
Tey +5x; 4+ 93, =30
with:  g4li variables nonnegative

This program has the form (4.5} its unsymmetric duil is given by (4.6) as

minimize: == 25, + 0w,
subiject to: 4w, + Twy 2 |
By + 5wy > 3
By + Qw2 =12

Determine the dual of the program

minimize: == Mx; + x; 4+ Oxy; + Ox, + Mx; + Mx,
subject 1o X, + X3 — X4 + X4 =7
2x, + 1x, - Xa +x =8

with: all varizbles nonnegative
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As this program has the form (4.3), its unsymmetric dual i given by (4.4) as

maximire 1= 7w, + 8w;

subject 1

Wy w5 3
W+ 3wy <]
—w, <0
= W=l

Wy < M
w5 M

[CHAP. ¢

Becnuse the third and fourth constramts are equivalent 1o w; = 0 and w; = 0, and because the fifth
and sisth contraints simply require the variabies to be finite (a condition that is always presupposed), the

duil program can be simplified to

maxume
subject to;

with:

r=Tw; + Bw,
w, +Inws g3
L 1'}";51
Wy oand w, nonnegative

47  Venly (4.7) and (4.8} for the programs of Problem 4.5,

The primal program can be solved by the two-phase method if artificial variables x, and x, réspectively,

are first added to the lefi-hand sides of the constraint equabions. Tableaux 1, ..., 4 resalt
Ay :l:] ""j X& Xy
1 3 -3 =M ~M
DR l 6 1 i 28
Xy —M 7 5 0 I 0
‘:J B EJj: _I “3 1 fl I} ﬂ
=l =13 =15 0 0 =355
Tubleaw 1
X, X3 Xy
Xy 0 1 01668 | 1528
X, 1 0 L1&? 1193
0 0 b6 1177
Tablean 4

The dual program was put into standard form in Problem 26 (with 1 replacing w%). Applying the

two-phase method o that program, we gencrate Tableaux U, .., 3. It follows from Tableau 4 tha
xf = 1193, x7 = 1528, ¥} = 0, with z* = 7.777. It follows from Tableau 3 that ’

wi = wi — wl = 04444

Wi m Wl —wi= ~01111

with :® = —(~7.778) = T.778. Note that the values of the objective for both the primal and the dual are
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identical except (or roundoff error.

Wy Wy Wy Wy Ws Wy Wy W Wy,
25 -25 30 —30 L1 (1 {l Af M
Wie M 4+ -4 b =7 =] 0 0 ] 1] |
Wy L) b3 -8 5 = g =1 i 0 I i
Wy i -t 6 -4 9 0 0 1 0 0 i
(e, = 34 25 -2 w30 0 e 0 1 L i
i3 2 12 S 1 i 0 1] 1 4
Tublean 1"
l'l'j Wy L1 5 '!.'II [11 ] "Il! W
g I 1 ] L] 01389 — {1944 L] 04444
g 0 { 1 I g2 itll ] 011t
Wiy i 0 0 L] - 1167 ~ 0 1667 1 3067
1] i i 0 L1g9s 1.52% L] -T7.778
Tablean 3

To verify (4.7, we note that the basic variables in X*® are x; and x,; hence (4.7) becomes

Wer < (1, 3]['_: “] 1n[|_33[_5’“ “’“’]-[mm, —4/36] = [04444, —0.1111]

5 736 —436
To verdy (4.8}, wie nole that the basie variables in W™, az given in Tableau ¥, are wy, wp. and wy: hence
{4.4) becomes
4 -7 0] -5/36 736 0
X*"=[25 -30,0])] ¥ -5 O =[5 -30,0]) -R36 43 0
-6 9 1 423 636 1

= [115/36, 55736, 0] =[3.194, [.528, 0]

48  Show that the form of the unsymmetric dual is uniguely determined by the form of the symmetric
dual.

Consuder program (4.7). with an m = o matra A Since the equality constraint AX = B is equivalent
to the two inequutity constrmints AX > B and AX < B, and since this second inequality can be rewritien as
AX z» — B program (4.5) 5 equivalent 1o

mimimize: z =C"X
subject 10 AX = B i)
with: X >0

SR

Program (/) has the form (4.1); it symmetric dual is given by (4.2) [with U writien instead of W) as
maximize. := BTU
subject i;: AU <C (2
with: U0
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Partitioning U into two m-dimensional vectors, U, and Uy, and using the definitions of A and B, we muy
rewrite () us
- .l £ 5

mavimize: = [B', —l‘][u'] =BYU, - U,
r |

J ¥
subject to:  [AT, _a'][:ﬁ'] =Af(U, - Uy)sC “

.

with: U, =0 and U, >0

Finally, defining W = U, - U,, and noting that the difference of two nonnegalive vectors i not itself
restricted in wgn, we pul (7], which is the dual of program (4.7), into the form
maximize: = = B"W

; (41
subject to: A'W g C

This last system w precisely program (4.4)

Repeating all the above steps with the words “maximize” and “munimize” interchanged and with the
inggualines reversed in the main constraints, we may also shows that the dunl of program (9.5) is program
(48],

Prove that il X 18 any feasible solution to program (4, /) and il W is any feasible solution to program
(4.2), then C'X = B'W,

If X is a feasible solution Lo (4./). then AX > B. Premultiplying this inequality by the nonnegative vecior
W', we obtain W'AX = W'B, which is equivalent 1o

WIAX = B'W (n

snce WTB is a sealar
If W is a feasible solution of (4.2), then A™W < €. or W'A < C". Postmultiplying by the nonnegative
vertor X, we obiain

WIAX < "X [
Together, (/) and (2) imply C'X > B'W

Given that A in program (4./) is m x n, let x,, ;. %, . 3.. .., X,., be surplus vanables introduced
in the program to render the constraints equalities; and let w, . ;. Weoq .- W, be slack
variables introduced in program (4.7) for the same reason. Let =, and z; be the values of the
objective functions of programs (4./) and (4.2), respectively. Show that

] m

E 1,}"'!11 T }: Wilges = 5 — 33 {f}
i=1 i=1

Program (4./) takes the form

mimimise 5 =0, + ey + Oy + 0+ 0N,

subjeot iy Xy + oy 4o b B X — Xyeg = bk,
flg Xy + gy + 1t il X, . PR = by
Oy Xy + UagXy + 57" % O Xy - . _=h

with:  all variables nonnegative

Multiplying the ith constraint equation of this program by w, (i = |, 2 ..., m) and summing the results, we
oblain

L] - -
Y oaxw = ¥ xpoiwm Y bw,
1= =} = |

| e |
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4.11

412

Subtracting this equation from

we pel

L} BT = o
E £y — L }__ /%, + i_ Xy Wy =3y = E o w
J= 1 im] fm} i=i iw ]
which can be rewntien as
5 (e )y + § nmmsi= 5 o
FL N Y =1 i= | =

Program (4 2} 1akes the form

makimize; zp=hpe, Foo kb bowg + 0w, + Oy +o -+ Dwgoy

subject tr iy Wy 4 Ay Wy S b g W Wiy -
WyyWy = Oyyiy + ===+ A, * Waes =y
dll“l iy HagWy ="' % Il‘“"._  VWamea =Fa

with:  all variables noancgative
Solving for the slack vamables w_ ., , (= 1,2 ....¢m) in the program, we find

-
H‘H_‘ = l-"_ }_ 'I]”“']
=1

Substituling this result inte (), and noting that

L]
=3 hw,
LR |
we obtan (1)

Prove the complementary slackness principle ( Theorem 4.2),

For optimal solutions X* and W* of programs (£./) and (4.2), respectively, relation (/] of Prohlem
4.1 becomes

] L
Y afwho+ ) whal, =0
=K L |
the rught-hand side being 0 because of Theorem 4. 1. As gach varmble mn the above eguation 15 nonnegitive,
the mdividual summands must vamish; that is,

xfwg., =0 {j=01L21....n) and Wil =0 (i=12....m)

On the Jeft is the product of the jth component of X* with the jth sluck varable of program (473 if either
term is positive, the other must be sero. On the right i the product of the ith component of W* with the
itk surplus variable of program (4. 1) if either term is positive, the other must be zero.

Lse the results of Problem 4.3 to verily the complementary slackness principles.

Considenng the optimal iableau for the primal program (Tableau 2), we find that the finst two slack
varbles, ¢, and 1, are pogitive (v, = b and x, = 2); henee the first two dual variables, w, and w,, should
be rero. They are. We als find for the third dusl varnable, w, = 1. 8mee it is postive, the third slack variable
i the primal, 5. should be zero too. N is,

Mext condder the optimal tableaw for the dual program (Tableau 4') The woond surplus varable, wy,
18 positive; hence the second primary variable, x,. should be zero, [t is. In addition, the first primal variable,
vy, I8 positive; so the firs surplus viriable in the dunl system, w,. should be zoro oo, I i
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4.13  Consider the following lincar program.
minimize: == —x; + 2x; + 3x,
subject tr.  —x; + X; + Xy = 3
X+ 2+ x5 10
with:  all vanables nonnegative

The optimal simplex lablesu for the standard form of the above problem (with surplus variable x,,
artificial variable 1,, and slack varable x,) is

X X3 Ky L Xy g

- | 2 3 0 M 1]
i 2 =T T 0 3
% 0 3 B =¥ 3 =4 | 4
(t, ~ 2, 1 @ 4 X M=) '8 | =&

If the ohjective function coefficient of the nonbasic vanable x, is changed from —1 to -il. find the new
optimum solution through sensitivity analysis, -
The new simplex tableau becomes

x. .I:: ‘1 'i ":i J:l

=3 1 i i M 0
Xy 2 = ! ko= I 0 3
X 0O » o - 2 —2 | 4
ey — 2,k -1 0 1 2 M-2 D -6

Since (c; = 2,) < B, the new solution & not optimen]. The regular simplex method « used 1o reoptimize the
problem, starting with 5, as the entenng varisble
The new optimal tabdeau &

LT &3 Ky g LY . ™

-3 1 1 i M L)
¥ iy 0 1 i3 =13 13 13 13,3
v; =} 10 -3 13 -3 1A 47
{e,— 2 1 =23 B3 M-85 13 | -HA2

The optimal solution 15 ¥§ = 4/3, ¥§ = 13/3, with =* = 1413

4.14 Consider the following linear programming (LP) problem.
maximize: == 3x; + Ix,
subject to:  4x, + 3x, < |20
%, +3x, = 60
with: x; and x; nonnegative
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The aptimal simplex tableau for the dtandard form of the above program (with slack vamables x,
andd x,) 08

rl x a TJ .‘,‘,

£, 3 T 075 02 o £l
x, D 0 235 -0 | M)
g~k 0 025 075 0 9

If the objective function cosificienl of the basic variable ¥, s changed from 3 (o 1, find the new oplimum
solution through sensitivity aonalysis,
The new simplex tableau becomes

L L x5 iy
| 2 i ]

X I 0.75 015 0 0

¥ 0 0 It -nis 1 30

bz —e J 0 —-p23 02y 0 30

Since (2, = ¢;) < (L the new solution 5 not optimal. The regular simplea method is used to reoptimize the
problem, starting with x, as the entering variable.
The new optimal tableau is

{1 AT; ‘J I_._ .
P2 0 0 !
x | 1 0 0333 ~-0333 20.00
xs 2 g 1 =811 0,444 1313
bz =) 0 0 =001 —0556 |] 46,67

The optimal solutton is x§ = 2000, &7 = 13.33, with =* = 46.67.

415  Copsider the following LP problem.

maXImizs ==3'I| +ha+“;‘1
subject to: 2y + 3, - xys 12
X, + x;4+ e, < 10

with:  all variables nonnegative
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The optimal simplex ableau for the standard form of the above problem iwith slack variables x, and x.) is

:-. 11 .{J .l., Ii

2 4 0 0
x, 3 1 4 © 04 02 (.5}
N, 4 0 =02 1 -02 04 L6
=) 0 4 D 04 22 268

Ii the objective function s changed to maximize: = = v, 51, + 8« find the new optimal solution through
senvitivity analysis
The new simplex tablean becomes

%y 1 I 14* 0 04 02 6.8
x; 8 0 =02 1 =02 G4 L6
(2, = &y 0 -%2 0 =12 34 19.6

Since pot all iz, = ¢ ) values are nonnegative, the new solution is not optimal. The regular simplex method
i used to reoptimize the problem, starting with x; as the entenng vanable.
The new optimal tableau is

L Ty X Ky Ty

| § 8 0 0
L 0743 1 0 (L2857 01428 486
X3 Di428 0 1 —01428 04286 257
- o) a7 0 0 0» 414 4486

The optimal solution is x7 = 0, x% = 486, x§ = 157, with =* = 44.86.

4.16 Consider the following linear program.

maximize: == x; + 9, 4+ x,
subject 1o x; + Qx4+ dx, < 9
Iy + 2+ 283 < 15
with: all variables nonnegative
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The optimal simplex tableau for the standard form of the above problem (with stack vanables x, and

val, T8

Xy 9 05 1 15 05 0 45
Xy 0 2 0 i = ‘
(55— 35 0 125 45 O 0.5

If the new objective function is to maximize: = = fx, + x; + 135, find the new optimal solution by the
sensilivily analysis approach.
The new simplex 1ablean becomes

'i'l .‘: 'ﬂ'.. :"‘ .-‘H

& 1 65 1 15 05 0 | 45
xy 0 ¥ o =1 =1 9 3
{2, = €, -55 0 ~135 05 0 | ‘as

Since now ull (z; ~ ¢;) values are nonnegative, the new solution is nol optimal. The regular simplex. method
ts wsed to reopluimize the problem, starting with &, as Lhe entering vanable
The new optimal tableau 5

Xy Ay Xy X4 L
& i i5 1] 1]

X 18 0 0871 | 042 —0.14} 1714

x, & I 0286 0 (286 G429 K57

(z; = oy 0 42 0 am 0429 48 86

The optimal solution is x§ = 3857, xF =0, x§ = 1704, with 2* = 4886

417 Consider the following LP problem,

maximize: o= 25x; + 20x,
subject to: 3x, +4x, < T0
Bx, + 5x, < 150

.5 20

with:  x, and x; nonnegative

The optimal simplex 1ablean for the standard form of the above problem (with slack varables x,, x,
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and x,) is as follows:

¥y X Xy Xa Xy
25 M [t 0 (1]
xy M L | 4T —01765 O 4706
xi 25 1 0 —02%4) M35 0 14, 70549
Xy L] o 0 — L4706 n176% | 135294
z—éx | 0 o0 208 23 0 | 49706

Suppase the requirements vector i changed from (70, 130, 200" 1o (100, 60, 3)". Using the sensitivity analyses
approach, find the new optimai solution.
~0.18 0} /100 Ll
024 U)( iﬂ) .—-( —l-!j_
0ig | i -3

X;=5"'B becomes x| = —029
Xg -04a7

Since ¥, and x, arc negative, the new solution ¥ not feasible. The dual simples method is used 1o clear the

infensibility starting with the following tabléau and departing the most negative varable xq

lt !: 11 .l.‘ 1‘
5 0 0 0
X3 W 0 1 04T -0176 0 3.2
¥, 2 D —0294 0235 0 | -146
Xy ] 0 o ~0471* o 1 -332
(2, =¥ (1 07 1355 0 3590
The new final tableau is
Ir X3 Xy Xa Xy
23 0 0 0 n
%, M o 1 0 o ! 3,000
n ¥ 1 o 0 0128 —062% 5.625
5y, 0D 0 0 1 -0378 -—-2115 THH2S
(5=¢,) 0 0 0 3128 4375 | 200628

The optimal and feasible solution is x§ = 5628, x% = 100, with =* = 200.625.

4.18 The optimal solution to the standard form of the following LP problem

maximizes == 35x; + 50x,
subject to:  4x, + 6x, < 120
X+ X< 20

¢, + I, < 4

with: x, and x; nonnegative
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is given below with slack vanables x,. x,. and xy:
L Xa Xy Xa Xy
5 50 0 0 0
x5 0 0 0 1 0 -2 40
X; 3% 1 0 O 3 -l 20
x; %0 0 1 0 =2 [
(2, = &) O ¢ 0 3 3 700

75

If the RHS of the constrants is changed from (120, 20, 40)7 to (75, 15, 30)7, find the new optimum

Ay l
.‘1_ =0
Xy L

Sinee x, and x, are negative, the new soluton w ol feasible, The dual simplex method i5 used to clear the

solution by applying seositivity analysis,

Xy =5 'B becomes (

infeasibality starting with the following tableau snd departing the most negative varable x,.

i
i

-2

)

]
15
S0

(-

|I Xy %3 Ky Xy Xy

¥ W o0 i ]
o ] t i ] | L] -2 — 29
X A3 1 1] 0 3 -1 — |y
N 0 1 0 -2 1 25
(=) O 0 o 5 15 K}

The new final tablesy is

" lj -\_‘ I‘ X

35 i {
L i 0 o —-05 0 1 125
Ny 35 | 0 -5 i 0 75
x; 50 0 | o =2 0 73
(2, =k 0 a0 15 5 0 G375

The optimal and feaable solution i x7 = 7.5, x7 = 7.5, with =® = 5175,

4,19  Given the LP problem below

maximizc:

subject to:

with:

e Jy 4 3x,

X, +2x; < B

i, +2x, £ 15

v, and x, nonnegative,
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consider the following optimal thleau of its standard form. where x, and x, are slack variables.

Xy X3 Xy x,

& 3 0 0
x; 3 2 1 075 —0325 125
X 2 I 0 00 050 150
5,—ex | 0 0 125 025 | 1378

If the mew requirements vector is (4, 2007, find the new optimal solution by the sensitivity analysis

proced ure.
% 075 -025\( 4 -2
(-n) 3 ( ~0.50 Mﬂ)(m) g ( u)
Singe x; <0, the new solution & not Teasible. The dual simples method s used 10 clear the infeasibility
starting with the following tableau and departing the negative vanable x,.

X; = 5 'B becomes

Xy X X3 Xa
2 3 i ]
x3 3 o 1 075 —025 -2
% | 0 0350 0.50 K
(5, — ek 0 0 125 02 io
The new final tableau is
2 3 [} S
I.“ ﬂ D — - 3 I '
X, 2 I 2 I & 4
2=k 0 1 2 0 K

The optimal and fesisible solution s xF = &, %% = (0, with z® = 8,

Consider Problem 4.13. If the RHS of the first constraint i1s changed from 3 to 7, find the new
optimum solution through sensitivity analysis,

rmsmseonn (9)=(_0 Y)-()

Since &y < 0, the new solution 15 not feasible. The dual simplex method is used to clear the infeasibility
starting with the following tableau and departing the negative vanable «,.

] Xa
-1 2 i ] M 0

x; 2 =t T 0 7
Y 0 3 8 <= ¥ = i -4
(e, = 2,) T 3 M-2 0 14
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The new final wableaw is

‘l 1: i'| 1‘ t! "‘
-1 1 i M 1]
|
L 2 1 1] I -1 | L]
vy 3 I =3 1 -2 s =1 4
(e, — 2} 4 0 0 4+ M=4 1 | -1

The opumal and feasible solution is 47 = 0 2% = 3, ¥} = 4, with =* = Ik,

41  Consider Problem 4.14. Il the RHS of the constraints 15 changed from (120, 60) to (120, 25), find
the new optimum solution through sensitivity analysis.

i) %y [ 025 0 l!ﬂ'_ ?rﬂ)

Xy =§ 'B becomes (h)_(auﬂ I)(Jj =5

Since vy < 0, the pew solutton w not leasible. The dual simplex method 15 used fo clear the infeasibility
starling with the following 1ableiu.

'|.| Ka '|.._|| "l

5 2 0 0
& 3 | v o3 w3 @ A0
6, O 0 225 -03258% | -5
(z,—ck | 0 025 075 0 9%

The new final tableaw 15

.'ﬁ-| 'l-j "J. ‘u_

S T

v 3 15
x5 0 il -9 1 4 0

o=

| )
T 1

(=) | O 10 ¥ | 78

The optimal and feasible solution s x7 = 25, x3 = 0, with :* = 75

422 The optimal tableau for the standard form of the following LP problem

maximize: == 3x, + x;
subject tor X, + X:<6
hl + ]I: E E

with:  x, and x; nonnegative

is as follows. where x; and x, are slack variables
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Xy Ky Xy X

3 1 0 0
f_' 'u u' "’Ils l -ﬂ-i 2
B 3 | IS 0 05 4
(z;— 5k (] i5 0 1.5 12

Suppose the constraint coefficients of x, are changed from (1, 3)" 10 (2. 0)". By usm: the sensitivity
analysis approach, find the new optimal solution.

The new constraint coeflicients of x; in the optimal simples tableau of the original primal problem are

given by
1 =052 z
- l — =t
s=(; “osfa)~(0)
The new simpley wbleau becomes
li t! Ij L ¥
3 1 (1] 0
Xy 0 * 1 0% 2
% 3 | 0 0 0.5
':;—rrl: n _I n |-5 lz

Binee (1; — eg) =0, the new solution 8 nol optional. The regular simplex method (s resorted 1o for
reaptimization, first by enlering x,

The new optimal (ableay is

t' Ky Xy Xi

L 0 0
% | 0 1 05 -2 |
Xy 3 1 o 0 .50 4
(2, -k 0 0 0% 125 13

The optimal solution i x7 =4, T = 1, with z* = 1},

Consider Problem 4.14. If the technological coefficients of x; are changed from (3, 3)7 10 (2 1)7,
find the new optimal solution through sensitivity analysis.

The new technological coethicients of x; in the optimal simplex tableau of the onginal primal problem are

sz 1No)=(os)
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The new simplex tableau becomes

X X3 Xy Xy

3 2 0 0
x 3 I 0.5* 025 o0 30
x; 0 ] 05 -02% | 30
1 0 -05 075 O 90

Sineg dz; — o) <= O, the new solution &5 not optimal, The regular simplex method s resored w for
reopiimization, first by enlenng x,.
The new optimal tableau is

£y X2 X2 Xy |

3 2 ] 0
£y 2 d i s 0 &0
e, 0 -] D =05 1 0
{z,— X [ i | i 120

The optimal solution is x7 = 0, 7 = 6, with z® = 120

424  Consider Problem 4.13. If the technological coeflicients of x, are changed from (=1, 1)" to (2. 17,
find the new optimum solution through sensitivity analysis.

The new technological coefficzents of =, in the optimal simplex tableau of the original primal problem

are given by
; I 0y 2)
87 n(-: |)(|)n(-—3)

The new smplex tableau becomes:

Xy £z X Xa Yy Ay
-1 2 3 ] M 0
Xy 2 & 1 | I [ L] 3
x, 0 -3 9 | . =12 [ 4
(e, =2k -5 0 [ ! M~1 0O ~ 6
Since i, — =) <1, the regular simplex method is not optimal. The regular simplex method 18 resorted 10
lor reoplimization, first by entering x,.
The new optimal tablegu is

% —1 | 2 1 0 & 1 10

xe O 6 2 3y ¢ =1 3 17
1

(e, —2,) 0 4 4 0 M 1 | 10

The optimal solution is x* = 10, x3 =0, x3 =0, with =* = — 10,
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425 A new variable x, is introduced in Problem 4,13 through the addition to A of a column (2. — 17
and to €7 of a component ¢; = 1. Find the new optimum solution through sensifivity analysis

The new problem becomes
maximize: = —x; + v+ I+ x
sibject to: —X;, + X3+ 5, + 2,2 1]
-+ 2xy +xy— x; =< 10
with:  all vanables nonnegative
The technological cocflicients of x, in the optimal tableau are

i S

The corresponding (2, = ) = | = [(2H2) + (0§ -51] = =1,
The modified simplex tableau s

Ay &y A b Xa X3 e

=1 2 3 1 0 M 0
% 2 -1 i 1 2 - 10 3
% 0 L P, =1 =3 2 =1 1
(e; =2 | 0 1 =3 2 NM=-2 D —h

The regular simples. method is applied to reoptimize the problem, starting with x, as the entering variable
The mew optimal tableai

Xy K3 Ky X, Xy X3 Xy
=1 2 3 1 o M O

W 0 3 2 ¥ =% % 9 13
%~ i 3 3 0 =1 1 2 2
(e, — =, 0 4 4 0 0 M 10

The optimal solution is xF =23, x3 =0, x{ =0, ¥} = 13, with z* = <10,

426 A new varnable v, is mtroduced in Problem 4,14 through the addition to A of a column B, = (2, 2)!
and 10 C" of a component ¢, = 2. Find the new optimum selution through sensitivity analysis

The new problem becomes
muximze: o= Ix; + Ixy + Iy
subject toc 4x, + Jx, + 2y < | )
X+ dng 4+ 1y, = 60
with:  all variables nonnegative
The technological coefficients of x, in the optimal tableau are

025 0y2\ (oS
o | = '
= (-u.zs IXE) (|5)

The corresponding {2, — ¢} = [(AHES) + (0N 1.5)] — 2 = —(:5,
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The modified simples tablean i

T X3 X X5 Y,
2 2 0 0
T I 075 0 025 0 £
x. O 0 23 15 -0 | 0
(5; =&, )t 0 025 -05 075 0 )

The regular simplex method = applied 1o reoptimize the problem, stariing with x, as the entering varuble.
e new optimal lableau is

BOX % Xy Ny
v 3 F i 0
S
v 3 |1 0 o om -0 | W
x 2 il 0 LS | -017 067 | 0
I
=k | 0 1 0 067 a3 | 100

The optivsal solution is x3 = 20, x¥ =0 xf = 20, with :* = 100,

427 Ifa new constrainl x, + x, > 2is added 1o Problem 4.13, find the new optimum solution through
sensitivity analysis.

The current optimal solution (57 =0, x2 = 1) does not satsly the new constraint and hente becomes
infeasible. Add the new constraint 1o the current optimal 1ableau. The new slack varuable is x- and the new
simplex tableaw s

‘| t: "_I ."_t :l.! rti X+

-1 2 3 0 M 0 0
X 0 3 6 -1 p 2 1 @ | 4
= 0 -1 0 —I* i 0 0 1 -2
ep=a;k 1 0 [ 2 M-2 O 0 —h

The dual simplex method is used to overcome the infeasibiliny by departing the variable xy, The new tableaw is

."l L Ny Ly ¥y . K=

= 3 3 1] 0 0
X3 4 I -2 1 L | 1 0 | I
Y, 0 4 00 2 =2 1 -1 ﬁ
x; 3 T T 0 0 -1 2
e, —5,) o0 0 1 M-21 0 | -8

The above tableau gives the optimal solution a8 ¥ =0, x§F = |, «§ = 2, with 2* = K,
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428 If a new constraint x, < 25 is added 1o Problem 4.14, find the new optimum solution through
sensitivity analysis.

The current optimal solution (x] = 30, x3 = () does not satisfy the new constraint and hence becomes
infeasible, Add the new constraint 1o the curremt optimal tableau. The new slack variable i$ x, and the new
simplex tableau is

o 3 1 0% 025 0 0 0
X, @ 0 225 -035 | 0 0
xy 0 1 0 0 0 1 25
(5~ €,k 0 025 078 0 O 90

By using the row operations, the coefficient of x, in the new constraint is made zero. The modified tableau
becomes

Xy X3 Ky Ky K«

L 2 0 0 0
X, 3 1 0.75 023 0 0o 0
xg O 0 224 =028 1 O 30
Xt O 0 —07s -22% 0 | -5

The dual simplex method is used to overcome the infeasibility by departing the vanable xg
The new tableau is

xy 3 1 0 o o 1 25
x, 0 0o o -1 | 3 15
t; 2 O 1 03 0 13 .67
(2, = &% D 0 067 0 033 | s3I

The above tableau gives the optimal and (casible solution as x§ = 2§, x} = 667, with =* = BE11,

429 Consider the following linear program,

minimize: == x, — Ix; — x,
subject tox X, + x;+x; <6
X, = 2x; <4

with:  all variables nonnegative
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The optimal solution for its standard form is given by the following tableau, where x, and x,
are slack vanables.

X ] .T bl .t 1 T 4 .t ol

] <2 ~1 0 0

x =211t ¢ 11 @ 6
s 0] 3 0 2 2 1 16
elax |3 & ¥ % o

If the new constraint — x, + 2x, > 415 added to the problem, find the new optimal solution using
sensitivity analysis,

The current optimal solution (£ = 0, ¥% = 6, x7 = 0) dpees not satsfly the new constraint and hence
becomes infeasible. Add the new constrainl to the current optimal tableau. The new slack variable is x, and
the new simaplex tableau bs

IF I: Ky LY 11 ..I."_

i1 -2 -1 @ ¢ 49O
xp =2 1 I 1 1 o0 © &
% 013 0 2 2 0 16
x, 0 0 T =20 0 i -4
fe, =k 3 ] I 2 0 ¥ 12

By using the row operations, the cocficient of x; in the new constrmint 15 made zero. The modificd
tabledu becomes

%, Xz X3 X2 X3 X

] =1 =1 a 0 0

B o=% Y 1 F 1 4 8 6
Xu 0 ] 0 F: i 1 0 16
X2 O -1 @ =3 i 0 ~10
-2 | 3 0 1 2 0 0 12

The dual smplex method 15 wsed 1o overcome the infeasibility by departing the variable x,
The new tableau &

x X3 Xy g Xs Xp

| -2 =1 U i i
w -2 | 067 1 0 067 © 033 | 267
L 1] 133 1] 0 133 |} 067 913
x =1 033 0 1 033 0 —03i3 133
e, —z,) 267 i 0 167 0 033 RBeT

The above tableai gives the optimal and feasible solutions ay x7 = 0, 7 = 267, £ = 133, with :* = — K67
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Supplementary Problems

In problems 430 through 4.34, determine the disals of the given programs.
4.30 mipime: == 13x, + J6x; + B0x,
subject 1 2w, + by, + Sx, > 4
dx, + gy + xy32 10
g+ Xat x> 6
with:  all vamables nonnegative
4.3 minimize: = 3x, + 2x; + x5+ 2x, + 3,
subject (or  Ta, 4+ S, + Xyt 26
Agxy — 1%y + 2iy 4+ Ing2 §
Xy =By 4 Ixg 4+ Ta, + 52,7
with:  all varsables nonnegative
an maximize: = by, — X3 + Ix,
subject to: Twy 4 Vg + 3x, 5 28
2k, + B 4 6xy < 30
e, + &3+ Tay=<35
with:  all variables nonnegative

433 maximize: = [0x, + 150, + 2x, + 25x,
subject tpy Bx, +Bx; - 0y + 5, =06
ix, +iny—x, =M
with: all variables nonnegative
4. minmizeE F o= ¥, 4 I, 4+ X,
subject 1o N+ k=1

Ig, b Ex ik Inyg =i

with: all vanables nonnegative

435  Show (hai the progrum given in Problem 430 has (he same optimal value as its dual by solving both
programs directly.

436  Find the opumal solution 1o the pragram given in Problem 4,31 by solving it doal

437 Determing the symmetric dual of the program given in Problem 3.3, Solve the dival dirgetly and thereby

verify that if either a primal or its symmetric dual has feasible solutiona but not optimum, then the other
has no fensible solotion,

438 By finding the unsymmetric dual of the progrim
minimizes = =i, — Xy
fubject 1o: %, —x;= §
i =~ X3=—3

with:  all vanables nonnegative

show that it is possible for both a primal and s dual 10 have no feasible solutions
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444

447

448

452

4.51

454

Lise the results of Prohlem 4.4 to verify the complementary slackness principle,
Verify (4. 7) and (4.8) for the program griven in Problem 4 34

Prove that f X, and W, are feasible solitions of programs (4.7) and (4.7), respectively, such that
C'X, = B"W,, then X, and W, are optimal solutions to their respective programs

Consider Prohlem 4.13. 17 the objective function cocfficienl of the basie variable x, is changed from 2 to 4,
find the new optimum- salution through sensivity analysis

Consider Problem 404, 1 the objective function coefficient of the nonbasic vanable x; is changed from 2
to 4, find the new optimum solution through sensitivity analysis.

Consider Problem 4.15. Using sensttivity analysis, find the optimum solution for each of the following new
objective functions 10 be maximized:
(g 2=x, +4x; + 4y (=32 424 Jng (o)z=2y, + 3¢, + Ta,

Consider Probiem 4.16. Using sensitivity analysis, find the optimum solution for each of the following new
ohjective functions to be maximzed:
(a) z=5x; 4 x4 xy (B} 2=3x, + Ty + 1220 (e)z=Tx; + x5+ Hx,,

Consider Problem 4.17. Using sensitivity analysis, find the optimum solution lor cach of the ollowing new
requirements veclors: _
fa) (80, 120, 20)"; (b} (50, 150, 200"; (e} (90, 150, 5)"

Consider Problem 4,18, Using sensitivity analysis, find the optimum solution for each of the following chan ges
uf the specific elemenis of the requirements vechor:

@) the RHS of the first constraint is reduced from 120 1o T

{b) the RHS of the second constraint is reduced from 20 to 10,

() the RHS of the third constraint is increased from 40 1o 35

Conuder Problem 419 Using sensitivity analyus, find the optimum solution for each of 1he followmg new
RHS vectors for the constrainis:
{a) (6, 2007, (b) (20, 15)T (cW16,8)7

Conuder Problem 413 Using sensitivity analyus, find the optimum solution for each of the following new
req uirements veclons:
(@) (L2007, () 15,1007; (e) (3. 9)".

Conmsider Example 4.2, Using seasitivity analysis, ind the optimum solution Tor cach of Lhe following new
RHS vectors for the constraimes:
(a) 1306007 (h) (30,300 () (15, 60)".

Consider Problém 4.16. Using sensitivity amalysis, find the optimum solution for each of the following
changes in technological coefficents of vanables In constraints:

fa) change in a, from 1 o —1;

b} change in a,, from 210 5

{c} change n a;, from 3100

Consmder Problem 4.22. I the technological cocfficients of x; are changed from (1, 3 1o (1, 0.5), find the
new optimum salution through seositivity analysis.

Conuder Problem 4.14. Suppose the coefficients of x; in the constraints are changed from (3. 3)" w (1, 2)7,
find the new optimum solution through sensttivity analysis,

Consider Problem 4.13. Let the consiraini coefficients for the variable ¢, be changed from (1, 1)7 w0 (1, 3)".
Lising the sensitivity analysis approach, obtain the new oplimum solution.
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Consider Problem 4.22. Suppose a new activity x, s added 1o objective function and consteint coefficients
as follows:

() oy = d, ity5m 2, gy =2

Ih.'! L'y -'ﬁ.ﬂ'“ = ] sy -}

Using sensativity analysis, find the new optimum solation for each of the above two cases.

Consider Problem 4.15. A new variable x; is introduced in objective function and constraint coefficients as
follows:

) op =2, a0y, =], 0y, =]

(b)) eom=8a,=% as=1

For each of the above two cuses, find the new optimum solution through sensitivity analysis

Consider Problem 4.29. Using sensitivity analyss find the new optimum solution for addition of each of the
following constraints separately:

fa) 25, + x5+ %, =8

b x, +Ey=1

Consider Problem 4,15, For mdividual mtroduction of each of the following constrainis, find the new
optimum solution through sensitivity analyses:

fa) 3x, + 2x; +x. 5 16

M x, + % > 5

fcd 2x, 4+ x, + %= 1K



Chapter 5

Linear Programming: Extensions

THE REVISED SIMPLEX METHOD
Consider the following linear programming problem in standard matnx form:

mitximize: :=C"X
subjectio; AX =8
with: X=0

where X 15 the column vector of unknowns, including all slack, surplus, and artifical vanables; C' is
the row vector of corresponding costs; A is the coefficient matrix of the constraint equations; and B is
the column vector of the right-hand side of the constraint equations. They arc represented as follows:

t!‘l l.--l E1 [. ﬂl1 ﬂi: . p ﬂ1.
Xz £3 B, 0 Gy Bz v @
X = C= B = 0= A= 3
X, f n B,/ U gy Ty vve B

Let X, = the column vector of basic vanables, C{ = the row vector of costs corresponding to Xg, and
S = the basis matnx corresponding to X,.

ETEP | ENTERIMNG VECTOR P,
For every nonbasic vector P, calculate the coeflicient
z;—¢;= WP, — ¢, (maximization program), or
¢, — 2; = ¢; — WP, {minimization program), where W = C{§ \.
The nonbasic vector P, with the mosi negative coefficient becomes the enterning vecior (E.V.),
P.
If more than one candidate for EV. exsts, choose one.
SFEP 2. DEPARTING VECTOR P
(a) Calculate the current basis Xs: X¢=5"'B
{b) Corresponding 10 the entering vector B, calculate the constraant coethoients 1,;
y =S8R,

¢} calculate the rutio &

X}
Ii=m'm{= ']".ti,,:a-lll},a'= Ny —

Fai

The departing vector (D.Y.), B, is the one that satisfies the above condition.
NOTE: If all r, = 0, there s no bounded solution for the problem. Stop.

87
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STEFP 3: NEW BASIS:

See =ES7 where E = (w,,....0_ 0.0 0,)

ql

: -r—".,l.flalr
f

Note, n= 'I'_: . where g = =

:
—dfi=r

N ra

and u, is & column vector with | in the ith element and 0 in the other (m — 1) elements
Set §' = 8. and repeat steps | through 3, until the following optimality condition is satisfied.
-y = 0 imaxmmzanon problem), or
¢; = 2, = 0 (minimization problem)
Then the optimal solution is as follows:
Xy =8B, :=CX;

KARMARKAR'S ALGORITHM

The simplex method of lincar programming finds the optimum solution by starting at the ongin
and moving along the adjacent corner points of the feasible solution space. Although this technigue has
been successhul in solving LP problems of various sizes, the number of iterations becomes prohibitive
for some huge problems. This is an exponential time algorithm.

On the other hand, Karmarkar's interior point LP algorithm is a polynomial time algorithm. This
new approach finds the optimum solution by starting at a trial solution and shooting through the interior
of the feasible solution space. Although this projective algorithm may be advantageous in solving very
large LP problems, it becomes very cumbersome for not-so-large problems. In this section, we will
illustrate Karmarkar's concepts through some small problems.

Consider the following form of the linear programming problem:

minimize: = C'X
subject ;. AX =0
1X=1
Xz0

where X iz n eolumn veclor of size m: C i an intzper column vector of size w1 s a unil row vector of
size m; A is an integer matrix of size (m = n), n 2 2
In addition, assume the following two condilions:

I. Xg=(l/n,...,1/n)is a feasible solution.
2 minimum 2 = 0

SUMMARY OF KARMARKAR'S ITERATIVE PROCEDURE

I. Prelimimary Step:
k=10

Xo=(ln...,0/n}"

a=(n-=1)3n
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2. [Keeration k:
{o) Define the felowing:
) Yo=K,
W) Dy = diagl X, ]. which 1s the diagonal matrix whose diagonal consists of the elements of X,.
iiiiy P = ("?‘)
ivi C=C™D,

ih} Compute the [ollowing
i C,=0-P"(PP")"'PICT
Note: If Cp = 0, any leasible solution becomes an optimal solution. Stop.

() ¥..=Y,—ar G

G,
ﬁ'-l-i] K.. = {D;T"q-”“l']t\.nl-}
liv) z=C"X,.,
v) k=k+1

i(vi} Repeat iterntion & until the objective functior (=) value s less than a prescribed tolerance ¢

TRANSFORMING A LINEAR PROGRAMMING PROBLEM INTO KARMARKAR'S
SPECIAL FORM

Consider the following linear program in the matrix form:
minimize z=C"X
subjectto: AX 2 B
withh:  Xz=0
The simplified steps of converting the above problem into Karmarkar's special form are as follows:

1. Since every primal linear program in the vanables x,, x,.. .., x, has associated with it a dual linear
program in the variables w,, wy, ..., w_ (where m is the number of consiraints in the onginal
program), write the dual of the given primal problem as shown below:

maximize: z=B"W
subjectioc: ATW < C
with; W=0

2 {a) Introduce slack and surplus variables to the primal and dual problems.
{b) Combine pnimal and dual problems.

3. {(a) Introduce a bounding constraint
Ix+Yw=<K

(K should be sufficiently large to include all feasible solutions of the original problem.)
{p) Introduce a slack vanable s in the bounding constraint and obtain the following equation:

Yx+rw+s=K

4. {a) Introduceadummy variable d (subject to the condition d = 1) to homogenize the constraints.
{b) Replace the equations

Yo +¥w+s=K
and d = 1
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with the followmng equivalent equations;
Yx+YXw+s-Kd=0

amd Y 5, + Y w+s+d=(K+1)
5, Introduce the following transformations so as to obtain one on the RHS of the Iastﬁm;uathm
,={K+l)ypji=L3....m+n .
W, = (K% Dpepepi=hL 2 ....om+n
F=(K + 1)¥1at1n+1

d={K+ 1)V 1ms2a02
6. Introduce an artificial vanable v, ;.4 (to be minimized) in all the eguations such that the sum
of the coefficients in each homogeneous equation is zero and the coefficient of the uéiﬁ:inj variable

in the last equation is one,
The resultant probiem 15 in Karmarkar's special form,

Solved Problems

Use the revised simplex method to solve the following problem.
rm I0x, 4 11x,

51
MAximize
subject to: x, + 2x; < 150
Ix; +4x;, < 200
6x, + x, 5175
with: x, and x; nonnegative

This program is put i standard form by introducing the slack varables x,, x,, and x4,
== 10x, + llx; + 0x; + 0x, + Ok,

maximize;
subject lo: &) + 2x; + &y = |50
3w, & A, + xg — 200
By, + x, + xy= 75
with; all vanables nonnegative
i3 2 'k 0 o { 150"
P,-:(i .F,=(4 ,I’,=(D).F¢= 1 .I’,n{ﬂ).B=[1’fl'IJ
[ | 0 1 1, 173
Imiviafizarion:
I'F = "tll':-l'l .l.j,:lt, [—; = I;U.“..UI
I @ I
0 1 Dl

5"‘{?1-"‘;.?,"-'-5-:"(
B I
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frevation No. [:
The nonbasic vectors are P, and P,.

{0} Emering Veclor:

W= CJS " = (0,0,0) = (0,0,0)

P 2
{2, = €45y = c3) = WP, Py} = (e, ¢3) = {0, E}_D{l 4] =00, 1) ={~=10, =11}
6 |

Since the most negative coefficient corresponds 10 P, it becomes the entering vector (EV.)

ikl Departing Vector:
150
X;=S"'B=1B=8B=| 200

175

Since the minimum ratio corresponds to Py, it hecomes the departing vector (DLV.)

i) MNew Basis:
[t
LEY ] -4 f =12
= I = I-l) l=( Ill'.)il Eq{.'ll!'i.}l
faz ~1/4 -1/4
_[‘J
| Fag

L =1/2 @
5;.1: ES '=FEl=E=]|1 1/4 0
0 =14 1

Summary of Heration No, |
X; =% x5 %) C3=1(0,11,0

Neration No. 2:
Mow the nonbasic vectors are Py, and Py

1 =12 9
Wa=CIS'=(0 1104 0 4 0] =(0,11/4,0)

fa} Entering Vector

0 ~14 1
§

(2) = €ps2a = Co) = W(P, By) = (cy, €0) = (0, 11/4,000 3 1] = (10,0) = (=T7/4,11/4)
6 0

Since the most negative coeficient corresponds to P, It becomes the entenng vector (EV.).

9l
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1 —-12 o\/1%0 50
:.-s-'n-(n i/4a ofl200]=| 50
0 =14 1N 125
1 =12 o\/1 —172
eene(s 8 9034
0 -—-i/4 1/\6& 2174

50 125
14" 214

{b) Departing Vector;

lumin{—. }-— 300,21

Since the minimum ratio corresponds (o Py, it becomes the departing vector (LY.L

(c) New Basix
rl'l- i l_r‘:
i 4 1] I"‘ :;'IE I
- oo L) e [ _'.i_"r.‘. =] —1/7T |: E = (8, 9, 9)
T 21/4 421

1 0 271\ =1/72 0O 1 =121 2
si=gs'=l0 1 —12 {0 14 o]l=|0 227 -7
i 0 -—=1/4 1 0 - |21 42
Summary of lteration Mo, 2
x_r“ {111 l;--‘ﬂ'r'p EI = (0, 11, 10}

heeration No. 1:
Now the nonbasic veciors are Py and P,

(a) Entering Vector:

1 =11/2 2/21
WeCE "= (011,104 0 27 =17 | ={0,8751/3)
0 -lfdl 4/21
0 0
1 0

Since all the coefficients are nonnegative, the above step gives the optimal basis. The optimal values of the
variables and the objective function are as follows:

Xy 1 -1 221\ [ 150 130021
(:,)=5"l= 0 217 =17 || 200] = 2Z57
Xy 0 =1 42 \1s 500/21

1300/21
r=CIXy = (0, 11, 100 228/7 | = 177513
S00/21
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52  Use the revised simplex method to solve the following problem.
minimize: == 3Ix, + 2x, + dx; + bx,
subjectto:  x, + 2% 4+ X3+ x; = X0
x; + x3+ 3x; + Tx, 2 150
with: all variables nonnegative

This program is put 1o standard form by introducing the surplus variables xy and x., and the artificial
variables ¥, and x,.

mimmize: == 3, + Ixy + dxy + b, 4+ Oxy + Mr, + 0x. + Mxy
subject br Xy + Zny o+ Xy b Xy - Xy + X, e L)
2%, 4+ xg 4+ 3x, + 1, — Xy + Xp = 1500

with:  all vartables nonnegative

b= (y) 1= () ro=(3) m= () m= () = ()
(o=

Initializarion:
X o= (x5 Cl = (M M)
) 1 0
S=(FPRi=1=5 "n(n IJ
frevarion Na. I:

The nonbasic vectors are P, P, P, P, P,, and P,
{a) Enlering Yector
WaClS ' (M, M) = (M, M)

h’r = --||.I': = ::. f] ] '.".. ‘.I- - :... {'1 - :,4 Ei,- = :1'. —= 1{'1. I‘I. t]q I'.,.. flp f]:'_ w‘Ph F:. P]a. F,‘p P.a F'-"

I ¥ 1 =l 0
- ll- = '
orss0o-om(y 1 4 1 Ty _T)

wm (=30 43, ~IM+ 2 <4M + 4, —BM + & M, M)
Smce the mosl negative coefficient corresponds to Py, it becomes the entenng vector (E.V.)
ik} Departing Veolor:

= SR = = B o=
X;=S 'B=IB=B (mm'

@ = min} 1000, 1500/7} = 15007
Since the mimimum ratio corresponds 1o Py, it becomes the departing vector (LY.

1000 i

(r} New Basis
~lea
’ll li_t.ll? L
i 1 ¢ ( L'?)' Rt
fya
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Summary of lteration No. 1
Xs = (e x)"; C = (M.6)

leeration No, 1:
Now the nonbasic vectors arc P, P, P, Py, Py, and P,
{a) Entening Vector:
1 -7
W=0_C - 5 = (M.6/T - ,1
s M ﬁ(ﬂ I.I’T) (M, 6 MT

(€ = 240 €3 = 23 €3 = 33 €4 = 2gu €y = T3, €3 = Iy} = (€4, €30 €30 Cpe €30 €5} = WP, Py, Py By, Py, )
- (12,4 M00)~(M&7-MT

- (I 2 1 0 =1 ﬂ)
2 1 3 1 D =1
= (=SM/7+ 977, —13M/T + 8/7, =4M/T + 10/7,
SM/T=6/T.M, —M/7T+6/7)
Since the most negative coefficient corresponds to Py, it becomes the enterng vector (EV.)

ib) Departing Vector:

1 =T\ 1000
-, - - 7. T) == ,'1' e
X;=S§'B (ﬂ L ) (1000 — 1500/7, 1500/7) = (S500.7, 1500,7)

-,-s-'r.-(' -1/7 1)_(|1H)
0 FEFAN 1/7
. |5%00/7 15007 | 5500 S500
"““{TT;T‘W} “‘{T-‘“} 3
Since the minimum ratio corresponds 1o P,, it becomes the departing vector (D.V,).

(€} MNew Banx
_I_ 1
[ 137 ( 13
= = - E=n.
L ] ::_! _,l_f'rl —113 iy )
fsa 137

w1 qu —tﬂ)_( 73 -m;)
Sore =15 (—m: WA e -1/ 13
Summary of leration No 2

Il = [xr .t...,r: CI - {2. ‘]

lreration No, J:
Now the nonbasic vectors are P, P, Py, Py, Py, and P,

(4) Entering Vector

m =y

- FI-.
=Gl "“’(-ms 213

) = (8/1110/13)
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(€)= 24, € = 20, €y = 23,04 = Zp. Ca = 24, €7 = 29} = (0}, €y €3, O, €4, C=) — WP, Py, P, Py Py )
= (3, M, 4 M00) (813 10/13)
:(l 1 ¥ & -1 ﬂ)
2 0 3 1 0 =1
= 10/13, =8/13 + M, 14/13, =10/13 + M,
B/13, 10/13)

Since all the coefficients are nonnegative, the above step gives the optimal basis. The optimal values of the
variables and the obpective [unction are as lollows:

(r,‘ -s-*n-( 7713 —|.-13)(|um)_(ssm,u)
.':J —113 23Masoo)  \2000013
5500/13

2= CIXy= (2,6 o

) = 2300013
53  Use the revised simplex method to solve the following problem.
maximize: 2= 2x; + Ix; + 4x,
subjectto:  x; 4+ x;3 4 x3=1
X, + X3+ dey=12
Ix, +2x; 4 x324
with: all vanables nonnegative

This program is put in standard form by introducing the slack vanable x,, the surplus variable x,. and
the artificial varinblés x, and v,

maximizes 2= 2x, + Jx; + dxy + Ox, - Mx, + Ox, — Mx,

subject to: %, + x4 x; +x, =1
x4+ x4+ Ixy + Xy -2
3:1+1r;+ Xy —1.;.-1-,1;,1:..1

with:  all variables nonnegative

oo 30

&
Initiafization:
1 0 O
X; = (xg, X5, x9)"; Cl = (0, ~M, =M S=(P,PP=I=5""'=|0 1 0O
0 0 1
Ireration No, 1:

The nonbasic vectors are Py, P, P, and P,.
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i) Emenng Veclor:

W=CI8 ' =0 —M, —MI=(0-M -M)

e s
b = ==
- -
|
=)

5y =2y — Oty = O By — 0y) = WP, Py, Py B = (o, £3005068) = 10, = M, —H{

= (2. 3.4,0)
=(-4M -2 -IN -3 -IM -4 M)
Since the most negative coefficient corresponds to P, it becomes the entering vector (E.V.).
ib) Departing Vector

1 !
:IE,=S"I=II=H={2); t,=5"1".=[|"1=l’t-(l)
4 3

0 =min{1/1,2/1,4/3} = |

Since the minimum ratio corresponds (o Py, it becomes the departing vector (D.V.)

fc) New Basis:
t
i I 1
gu| T w| =] =] =10 Eerenw)
* =3/ -3

f‘.

1 0 0
SJA-H'-EI-E-(—l | Il)
-3 0 1

Summury of lieration Mo. 1:
xi-l-'!lF'l’l 't'l’r; EI-{Iq —M._M}

freration No, 1:
Now the nonbasic vectors are Py, Py Py, and P,

{a) Entering Vector:

I 0 0
W-c.'s"-{:.-u.-.u(-l I n)-tla-m.*u.—m
=3 0 1
t:’. -f‘.-.': ‘rl':l -l."..:. -EQJ-W‘P_‘. Flurjq r‘l — I"ﬁ g l':.-l'gi

111 0
=11+4H,—H.—Ml(ﬂ 1 2 u)—m.s.tm
e 2 1 -l

adM +IM-=1LM-2 M)
Since pll the coefficients are nonnegative, the above step gives the optimal basia, The optimal values of the
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(5-+=-(3 3 396G

Since the optimum solution includes artficial vanables xq and x4 al positive values (x; = 1, x- = 1) there
ts ni Feagible solution.

variables are as follows:

54 Use the revised simplex method to solve the following problem.
maximize: == 2x, + X,
subject to:  x, 4+ x, 53
x, + x;<5
X, +3x; <6
with: x, and x, nonnegative
Thes program is put in standard form by introducing the slack variables x,, =, and x,.

maximige: 2= 2x, + %3 + Ox + 0x, + Ox,

gubject to: %, + X3+ Xy |
2, + X3 + x, =5
Xy +3x,y +xy=0

with: all variables nonnegative

oo

Initiafizarion;
15"“{:;,..1:.,-1!}( c!' =i:ﬂ.ﬂ..ﬂ]
1 © 0
S=(FPPi=1=8""'=}]0 1| 0
a o 1
Ireravion No, [:

The nonbasic veclors are P, and P,
ta} Entering Vector
W=C5"'=(0001={0.00)

| |
(5, =cn5— =W, P) - l:'.,t;}zlﬂ,ﬂ.ﬂl(l 1) —i&l)=i—3 -1
13

Since the mos negative coefficlent corresponds to P, il becoines the entering vector (E.V.).
ihy Departing Vector:

3 1
1;=£"H=IH=B=(S); I.=S'1F+—IF.-F.-(Z)

f i
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= mjﬂ{:.lig_ﬁ} - 5
e z

Since the minimum ratio corresponds to Py, it becomes the departing vector (DY)

() MNew Basis
=3
l‘]" =112
= — - Lj2:: E = {u;, g, m,)
L .y
=135
L
i -2 0
3“_,L=_'=H=EI ] 12 0
o =12 1
Summary of leration No. 1:
X5 = (x5, x;, x5)"; Cf=10,20)
Mrevation Ne, 1:

Mow the nonbasic vectors are Fy nnd By,

(a) Entering Yector:

I =12 0
W=CIs '=@02000 12 0]=(010

0 =z 1
o 1
[I"‘_ﬂp:;_"f;]EW{F.h-r;}_"Ehf]":{nlit 1 1 '[&.”'“.m
o 3

Since all the coefficients are nonncgative, the above step gives the optimal basis. The optimal values of the
variables and the objective function are as follows:

' I —=1/2 0\/3 1/2 i1
(.::)-E"B-(ﬂ 112 0 (i)-(ﬂi); :-E{I,Iiﬂlu{ﬂ/ﬂ-i
X o =12 1 T 7

Use the revised simplex method to solve the following problem.
minimize: 2= x, + X
subject to:  x; + 3x; £ 12
I+ 53213
Xy — xy= 3
with: x, and x, nonnegative

This program is put in standard form by introducing the slack vanable x,, the surplus vamable x,, and
the artificial vanables v, and x,.
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mmimize: =, + x; + 0x; + O, + Mx, + Mx,

subject 100 X, # Jx. 4 xy =12
Ix; + x; — Xy + Xy = 13
X — Xy = 3

with:  all varables nonnegative

e oG9

Imitiafization:
Xy = {xy, x5, 0,0 Ci = (0. M. M)
1 0 0
S=(P.P.P)=I=5"'=[0 1 0O
0 0 1
frerarioe Neo. I:

The nonbasic vectors are P, P, and Py,
{2) Entering Vector

WeCiS™' = (0. M, M) = (0. M, M)

1 3 1]
0, —ap ey =Tty ==l cnrs) = WP, P, Po) = (1, 1,00 = (0, H,H{] 1 =1
1 -1 i

=(—4M + 1, =2M + I, M}
Since the most negative coefficient corresponds to P,. it becomes the entering vector (ELV,),

it} Deparing Vector:

12 i
X;=§ 'n=m=“=(”): e 'P-=m="‘w(])

3 |

t2 13 3
Peming—,—, =]
1 3 l}

Since the mimmum ratio corresponds to Py, it becomes the deparning vector (DY)

!—t“ F I
I'." I —I
— by 3
n= - - =| —3 E ='I“-|||:|p‘l
fsi I 1
1 |
Iy |
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Summary of lieration Ne. |
x: = (¥, %5, '¢||T|' r*"l' a0, M, 1}

Treration No, I:
Now the nonbasic vactors are P, Py and P,

fal Emermng Vector

1 0 =1
W=Cis ' =(0 M, h(u | —3) - (O M, | — IM)
0 o0 I
i 3 0
h’"h h :n-"-'.' - :t,l'. _:._I:"Erm ":.l-q,i_ WI'I',.F;. i.‘,lle. F.ﬂ!— “:'q .“.1 3” D ! = E
1 —1 ik

- (AM — 1, —4M + 2, M)
Since the most negative cocflicient cormesponds to Py, it becomes the entering vector (EV.),
ihi  Departing Yedtor:

L 0 =112 g | O =1 ") 4
HS;E :HI[G 1 "!) !.! =[-‘i ¥ l!_~==5"l",= H ! —IJ 1 := 4
W0 RN Y, 3 oo PR -1

94 |
#==nin{-.-,—l=|
44" |
Sinee the minimum catio corresponids to Py, it becomes the departing vector (LY.L
fc] Mew BHas;
—tya
'T’ —4/4) ~1 1 =1 o\f1 0 -1y /1 ~1 2
g = = |= !-d’:(l.ﬁ; Sn=|0 14 00 1 -3 =[E} 14 =14
‘;‘ 14/ 14 0 14 N0 o0 ) 0 1/4 174
=¥y
Fsz |

I

Summary of leration Mo,
::,‘:-l:-’||!1..x|br:. C{""ru. 11!_'

ftevation No, 3:
Now the nonhasie vectors are Py, Py and Py

fa]  Enmtermg Vector
1 -1} 2
Wa=CI5 =1, t){ 0 14 =34 =012 -2
O 14 1/4

““ — :‘...l'. — :g.l',._ — :._] ’l"l_fk.l.ﬁ..l.'-l — Wﬂ'_. F“_h.]

0 o o
e (M, M0 =01/ -1280 | - I] = (124 M =12+ M 1/
1 0

Since all the coefficeents are nonnegative, the above step gves the oplimal basis. The optimal values of the
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variables and the objective function are as follows:
X3 1 -1 2 12 5 5
% |=8""B=|0 14 -a)l13]=|1}; 2= CiXgm (0, 1LIN1] =S5
% 0 14 14/\ 3 4

56 Use the revised simplex method to solve the following problem.

maximize: = Tx, + Ix; + 3x, 4+ x,

subject 1o:  2x; + Tx; = 7
Sx; + Bxy + 2x, =10

with: all variables nonnegative
This program is put in siandard form by introducing the antificial variables x. ¥, and x.

maximize, =Tz, + 2xy + I, + 0, — Mx, — Mx, — Mx.

subject ty 2%, + Ty + Xq - 7
Sx, + Bx, +2x, + X4 =10
X % Xy + x5y = 11

with:  all vuriables nonnegative

Gl -3

Imitializurion:
I O 0
Xy = [y, X, £4)7 CI - (=M, =M, = MY, Su(P,P,P)=l=sS'a(d | 0
0 40 1
Ireration No, [:

The nonbasic vectors are Py, Py, Py, and Py
{m) Entering Yector:
W=CIS"=(-M M -MI={-M,-M -M)
(20 = €10 23 = €3, 23 = €3, 2 = £) = WP, P Py, P) — (61, £3.€5,60)

2 7T 0D
a(-M.-M,-M\5 B 0 2|-0.230D

I 0 1
@ (=8 =7, =15M =1, ~M = ), =1IM =1}

Since the most negative coeffcient corresponds to Py, it becomes the entering vector (EV.),
ih} Departing Vector:

7
;=S 'B=IR= lw(H})
1
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L=5S"F,=IP=P w(E)
SIS

Smce the minimum ratio corresponds to Py, it becomes the departing vector (DLV.),

e} MNew Hasis
' N
lsz 7 7
—ta| | _8 8
L] tos 3 7 E=i(yu,u,)
=13 i
. 0
Summuary of Heration No, 1;
Xs = (x5 Xp X} Cl=(2 -M,—M)

Treration No, 1;
MNow the nonbasic vectors are Py, Py, Py, and P,

(o) Entering Yeutor:

T O 0
K
WaCl§'=(2 -u.-n( ~8/7 1 u)-(“. H.—H.—M)

o0 i '
(=) = Cpdy = Cge 3 = Cyu T4 — £ ) = WP Py P PL) — (040 05 03 €4)
21 00
-(H_:“.—H.—HX! 0 0 2)—1‘.‘.'.+M.!.II
1 @ 1 ©

=({—=45/7=26M/7,2/7+ 15M/T, =M =1 =3IM - |)
Since the most pegative coefficient corresponds to Py, it becomes the entering vector (EV.)
(b} Departing Yecior;

yr o0 0N/ 7 1 7T 0 o 7
Ns=5""B=| —&7 1 ojj10)=| 2] h=5"'"F =] —-8T 1 n(s = l!ﬁ)
(1] 0 17yl 4] i D 1 1
‘-miﬂ{-l— _:_ u}nlt‘
2/719/77 1 19
Since the minimum ratio corresponds 1o Py, it becomes the departing vector (D.Y.)
el MNew Basim
=¥ =27 _E
[ 19/7 19
= 7 &
L) ¥ 19/7 16 = (g, ., 0y)
=l | :

foy 19/7 L
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4T 0 0 1133 =219 0
(-ﬂf? | 0)=| -8/19 719 0
01

1 =219 0
ScL=FES'=(0 7149 0
0 8119 =19 |

0 =7/19 U

Summary of lteraton Mo, X
X = {x,, 1, x40 CI=(11 —-M)

lteration No. 3;
Now the nonbasic vectors are Py, Pu, Py, and P,.

() Emering Vevtor:

A =19 0
W=CIS""'=(27, ~M) -8/19 7119 D) = (—BM /19— 322/133,45/19 + TM/19, — M)
By =719 1

I:ﬂ' = L :’ = i':.. )y — Cypmg— l.lj - “I{P‘q Fj- P_]w- F‘I = l"lgq L "'41
0 1 00
=(=8M/19=322/133,45/19 + TM/19, =MX 1! © 0O 2
a 0o 1

—{=M.-M. 11
= [45/19 + J6M /19, 1IM /19 = 322719, — M — 1. T1/19 + 1AM/19)

Since the mosi negalive coetlicient corresponds to B, it becomes the enlermg vector (EV.)

35133 =219 0\ 7 105/133
x,-:s-'n:-(-u_-rq 719 0f 10) = 14/19

v 819 T8 1/ \ 11 195,19

3313 =219 oo 0
= —819 1719 0jj0|=|0
R/19 =7m 1\ |
; { l'i!:l?} 195
B = mang -, — — =
19

(k) Departing Yector:

Since the minimum ralio corresponds to Py, it beeosmes the deparling vector (DY,

e} Mew Basis
=Fis 0
fra 1 (H‘)
_.'II.} n
g=- S| == =] Q) E = {u,, u. q)
1 { '
|ty I
I o 0 I5/133 =2/19 @ A3 =21 4
SSl=Es'=|l0 1 0 $19 719 0] =| -8/19 7/19 0
0 0o B9 -9 1 819 -7 1
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Summary of ltertion No, X

Ky = (x5 %, %30"; Cl=@273

frevation No. 4:
Now the nonbasic vectors are P, Py, P, and Py.

() Entering Vector

3133 -2/19 O
W=ClS'=(27.3) —8/19 /19 0] =(-218/133,24/19,3)
B8 =T/ 1

Bop — Cpefa— Eaqy Ty — By T — Tg) = WIF, Py 5, By} — (g £5,.65)

0 1 0 0O
=(—218/133,24/19, 3§ 1 0 @ 2| —(—M,—M, -

0 o 1
= (M 4+ 24/19. M - 218/133, M + 3, 29/19)

[CHAP. §

M, 1}

Since all the coefficients are nonnegative, the above step gives the optimal basis. The optimal values of the

varinbles and the ohjective function are as follows:

X3 35133 219 0\/ 7 7895
s |=8'B=| 819 719 o) 10| =| .78
x 819 =119 /At 10,263

ITEH
s CIXg= (27,3 7368 | = 37.5262
10,263

Carry out the first two iterations of Karmarkar's algonthm for the following problem.
minimize: = 2x; — X,
subject tor x; — 2x; + xy =0
X+ X3+ xy=]
with: all vanables nonnegative

kmn 'y Step:

Xo=(/m ..., Um" = (/3,103,413

r=1fnlr = 1) =133 — 1) = 1,6
a=(n—1)3n=(3—1)/(33) =29

frevation

Yo = Xo = (1/3, 1/3, UNT

D, = diag! X,) = diag{1/3, 173, 1/1]
A=(lL=LInC" =(0,2 =1)

ADg = (1, =2, 1) diag{1/3, 1/3, 1/3] ={1/3, =2/3, I/3)

G (m.) : (m -2 m)
1 | | 1

C=CTD, = (0,2, = 1) diag{1/3, 1/3, 1/3] = {0, 2/3, =1/3)

0667 0O 15 i
- PP -
= ( 1] J‘} ol ( 0 9-3']3)
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05 0 05
I"'[PP'F'Pn(ﬂ 1 l‘:-)

s 0 05
Cp=[1-P(PP") 'ﬂtf = {0.167. 0, —0.167)"
ICel = JIB167) + 0 + {—0.167) = 0.2362

2901//6
2

Cp
Yoo=Yo—ar —— =(1/3,1/3, /)T - - {0167, 0, —0.167)" = (0.2692, 0.3333, 0.3974)"

|CP}
X, = Y, = (02692, 0.3333,0.3974)"
2= C'X, = (0,2, — 102692, 03333, 0.3974)" = 0.2692
k=0+1=1

frevation i:
D, = diag!X,} = diag{0.2692, 0.3332, 0.3974)
C=CD, = (0,2 —1)diag{0.2692, 0.3333, 0.3974) = {0, (L6666, —0.3974)
AD, = (I, —2,1) diag{0.2692 03333, 0.2974] = (02692, —0.6666, 0.3974)
P ( m.‘) ] (n.zﬁﬂz — 0 6666 u.zm-t)
. I I I
675 O . !
Prf-(““ u}_ o ._(IMI 0 )
0 3 0 031
0441 0067 0492
PYPP")" 'P=| 0067 0992 -00%
0492 -0059 0567
Cp =1~ P7(PPT) 'I']E‘rumljt -0.018, -0.132)7
1Cpl = 0151 + (—0018) +(—0.132)" = 0.2014
Ca e (29K1//8)
You =¥ o= (173, 143, 173) -
o= G, F = 02014
= {(,2653, 03414, 0.3928)"

D,Y,.. = ding{0.2692, 03313, 0.3974}(0.2653,0,3414, 0,3928)7 = (0.0714,0,1138, 0,1561)"
1D, Y, = 0.3413

DY
X;= 1w (0,209, 0.3334, 0.4574)7
z2=CTX; = (0,2 — 1402092, 03334, 04574)" = 02094

(151, —0.018, —0.132)7

DY,

Carry out the first two iterations of Karmarkar's algorithm for the following problem.

minimize: : = X,

subject to: x, —2x; + x, =0

Xp 4 Xyt Xyl
with: all variables nonnegative

Prvlimimary Step:
k=0
Xow (Uin. ., 1/m)T = (173, 13, 1727
r=dlmn—=1)=1//33-1)= 1;\,.".5,
o= — 133n =43 — 1}/{3N3}=2/9
Frerarion 0:
Yo=Xo = (1/3,1/3, 1I/3)"
Dr sl dll‘ x,l L dliEJ*JJ I I-!i II'I-IF

A=(l =21} C" =(1,0,0)
ADy = (1, =2, 1) ding{1/3, 1/3, 1/3) = {1/3, =2/3, 1/3)
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()12 -0 )

C=C"'D, = (1,0,0) diagl /3, 173, 1/}} =(1/3,0,0)
G (a.m n} Pohyia (l,s 0 )
0 3 0 0333
0 0 05
r’tPF’I‘P-(D 1 u)
5 0 05
Cp=[l-P(PPT) 'PICT = (0L167,0, -0.167)"
1Cp) = JI016TH + (0)F + ( —0.167) = 0.2361
Cp — (/9006
Voo = Yo o B (/3,173 A =
X, = Y,,. = (0.2691, 0.3333,0,3975)"

2= CTX) = (1, 0,000.2691, 03333, 0.3975)" = 0.2691
ko= -1

(0167, 0, 01677 = (03691, 0.3313, 439757

frerasion 1:
D, = diag|X,| = diag|0.2691, 03333, 0.3975}
C=C"D, =(1,0,0)diag{0 269103333, 0.3975] = 02691, 0,0)
AD =1, =2, 1) duag{D 2691, 03333, 0.3975) = (L2691, —D.6666, 0.1975)
P (A.D,] (umm — . 5666 ﬂ.l'r'}'fi)
[ i [ |

0aTs 0 | 482 i
¥ o
Fx: _(, 0 ]): gk ( 0 nju)

0441 0067 0492
PUPP'y 'P=| 0067 0992 0059
0492 —D0S9 0567
Cp=[1 - P'{PP'y 'P]CT = (0181, — 0018, —0.132)"
1Cpll ILIST) + (—0018) 4 (—0.132)" = 02014
Vi Yy e -Cr- = (1331 — (2/91//6)
§Cpl 2004
= (02653, 03414, 0.3927)7
D,Y,,. = diag[0.2691, (.3333, 0.3975)(0.2651, 0.3414, 0.3927)7 « (00714, 0,11 38, 0.1561)"
DY, = 03]}

DY
Np= T = (02092, 03334, 04574)
3 "}Iv-:‘ '

re= CTX, = (10 0N02029, (L3334, 04574) = 02082

{0151, —QO18, —0132)°

59  Carry out the first two iterations of Karmarkar's algorithm for the following problem.
minmize @ =x; — 2x; + Ix,
subjectto! x; — 2%y — 2xy + Yy, =0
X, —3x; — 3x; 4+ 5x, =0
X, + X+ Xy+ Xyw= |
with:  all variables nonnegative
Prefimingry Seep:

k=1
Xp=tl/m ... 0/m)% =(1/d4,1/4 1/4, 114)"
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ro= I.I'Jn{n — 1= |Ir',h.-“4.f.i - 1) = 1‘.-‘;'13
g={(n—1}3n=[(4 —1)idid) = 1/4

Tterarfon 0;
\In L xu - [If‘4| Illlql I.""r i.lllil-r
D, = diag|{X,} = diag(1/4, 1/4, 1/4, 1/4}

. <2 =4 3} .
l-(l 3 _3 5. C'=(1,-2013)

1 =2 =2
“D“‘{l =¥ =3
14 -4 -—2/4 144
Fd(‘mq]-(lﬂ ~-3/4 =34 5;4)
. | 1 1 |
C=C"D, =11, =2,0 3)diag/1/4, 1/4, 1/4, 1/4} = (1/3, ~2/4,0,3/4)

1125 175 0O B8 -% 0
PP =| 175 275 0O}: (PPT) ' =| -56 % 0

4 =2/4 -=2/4 3;4)

i |
iagl1/4,1/4, 1/4 =
5)&'“{' R 174,144, 14} (].fd -3/4 =34 5/4

0 0 4 \ 0 0 o032
1 0 0 0
_ 0 05 05 0
PPT)~ P =
CAREE 0 05 05 0
0 0 0 1

Cp = [1 - PT(PP")"'PICT = (0, —0.25,0.25,0)'
Cpll = J(—0.25)" + (0.25) = 03536
Ce ; (a1 12)
o= Yo—mr T = (14, 14, 14 1T - 20N
Y- o ”'}Cp-l ( .-'I ] 0.3536
= (0,250, 0,301, 0.199, 0,250y
{0.250, 0301, 0.199, 0.250)"
(1, — 2.0, 3)0.25, 0.301. 0.199, 0.25)" = 0.398
1

{0, —0235 025 0)"

X

nes

C'X,
0+1

LI

= ta

frerarion I:

D, = diag!X,) = ding]0.25, 0,301, 0.199, 0.25)

C=C"D, =1{1, 20, 3) diag{0.25, 0301, 0.199, 0.25} = (0.25, —0.602, 0, 0.75)

mn(l -2 =2 3} 025 -0682 -0 075
VA = =3 3 025 -0903 0597 1.25

AD.' (MS 0602 —0398 075
r=( ‘): 025 -0903 —0597 ::.'s)
: 1 1 1 |
1146 1781 0 87674 —55837 O
PP’ = ( 1781 2797 ﬂ); (PP ! = (—55.31‘! 5918 0 )
0 0 4 0 ] 0.25
0995 —0045 0055 —0.00%
~d3 0505 0485 0045
0055 0435 0405 0055
~0005 —0045 0055  0.99%
Cp=[1—-PI(PP") 'PICT = (—0:022, —0.193, 0237, —0.022)7
1Cpll = (=002 + (0193 + (0.237F + (-0022)° = 0.3072

)dihg[ﬂ.!i 0.301, 0.199,02%) = (

PPP ) 'P=
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e i aaime AHOKN/12)
Yor =¥y "ec,u (174,14, 1/4,1/4) 53072
- (0.2552, 02954, 0.1941, 0.2552)F
D,Y,., = diag|0.25, 0,301, 0.199, 0.25(0.2552, 0.2954, 0.1943, 0.2552)"
= {(.063%, 0,089, 0.0357, 0.0638)"
ID,Y,,. = 02553

Kym ::;‘;'I“ = (0,25, 0349, 0.152,0.25)"
i Fmrw
:=C"X; = (1, —2,0, IN0.25 0.349, 0152, 0.25)" = 0.302

(—0022, —0.193,0.237. —0,028)"

Carry out the first two iterations of Karmarkar's algonthm for the following problem.

mmi:ﬂ'h: I|+:'.'..'€:+I],—-|.‘r.=ﬂ
subject to: 2x; + X3 + 2xy — Sx, =0
X, + Xz3—2x,=0
.'L't+.'\'.;+ .t_l"l' .'H.‘_IF.I.
with: all variables nonnegative
k=10 .
Ko = (1/m ... /m" = (1/4, 1/4,1/4, 1/4)"
roe by nin — 1) = 184 = 1) = 1//12
g=(n—=1)In= (4= 1134 = 1/4
Irevation 0;
Yo =Xo=(1/4 1/4, 1/4, 1/4)7
D, = diag|X,;} = diag{1/4,1/4,1/4,1/4]

21 2 -8 . .
A—(l g _:} C'=(1,21,-4

21 2 =5 GO s 24 14 24 -5/
m,-(T o *z)ﬁug‘!.-l, 1/4, 1/4, 1/4) .(m 5 Tl -1.-4)
24 14 24 ~_m)

p.(“?‘)n(l.w 0 14 -214

1 1 I 1
C=C'Dy= (1,21, —4) ding] 14, 1/4, 1/4, 1/4) = (1/4,2/4, 1/4, —1)
2125 0875 0O 12 -2 0
ﬂ"n(um 0.375 u): IH"!"=(—IE 68 u)
0 0 4 0 0 025
0ns o 05 0
. o 1 0 O
PP Pl as 0 as o
0 L] L] ]

Cp=[1-PPP')"'P]C" = (0,0,0,0)" =0

Singe Cp = 0, any foasible solution is an optimal solution.
Y. = Xo= X, =(1/4, 1/4, 1/4, 1/4)"

:=C"X, = (L2 1, 414, /4. 1/4, 1/4)" =0

Carry out the first two iterations of Karmarkar's algorithm for the lollowing problem.
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minimize: = = 3x, — 6x, + 5x; + 4x,
subject to: x; = X3 + Xy = X, =0
Xy +1—"2+I} —4.'[5=ﬂ

X + IJ"'I;‘I' -t.l+ .r,-ﬂ
with: all variables nonnegative

Preliminary Step:
k=1

Xo = (1/n, .. I/m)" = (1/5, 18, 175, 1/5, 1/5)
re=1l/mn = 1) =155 = 1) =1/,/20
g=(n—1In={5=1}/(IN5=4/15

Ireration 0:
Yo = Xo = (15, 1/5, 1/5; 1/5, 1/5)'
D, = diag!X,! = diag] 15, 1/5, 1/5, 175, 1/5)

4 [N T R [ "
A=(] & _‘). CV = (3, —6.50.4)

L E0F =1 B a2 —-02 02 -02 0
AD, = d 1/5, 1S, 15, 1/5,1/5] m
° (I 21 o —4) ing{1/ AR (-EIJ 04 02 O —u.s)

. 02 02 02 -02 O
Pn("?"]-(m—: 04 02 D —ux)
1 1 | 1 1

C=C'D, = (3 —0,5 0.d)drag 1/5, 1/5 175, 15, /8] =(3/5, —6/5,1,0.4/5)

o 0 0 £.25 0 0
PPT=| D 088 UJ: (PP')" ' =] 0O LI1¥ 0O

\ D g 5 0 0 o

0495 004l 0495 -0050  ODI

a0l 0632 | 045 —0.164
PIPPT) 'P=| 0495 0041 0495 —0050 0018

—0050 0450 —0050 0450 0200

008 —0164 OOIR 0200 0927
Cp = [1 - P{PP) 'P]C" = (—0.158, —0.376, 0.242, 0.460, —0.167)"
Cpl = /=058 = (—0376) + (0.242)° + (0.46)° + (—0.167)* = 0.6815
Yo=Yy —or .{.‘!.-" = (1/5 /5 /5, 1/5 1/5)T = (1-1_5.!(.]5}_33}] (=058, —0.376, 0,242, 0.4860, —0.167)"

ICpl 0.6815

= (0,214, 0.233, 0.1 79, 0160, 0,21 57
X, =Y, =(0.214,0233 0179, 0.160,0215)"
£ C'K, = {1 =6 50, 440214, 0223, D.IH.EL‘:ED,U.J'!!F w 0 0999
k=D + | = 1

leerairon I:

D, = diag(X,| = diag{0.214 0.233,0.179, 0.160, 0215
C=CTD, = (3 =65 0.4)diag{0.214,0233, 0.179, 0.160, 0.215) = (0.624, — 1.398, 0.895, 0, 0.860)

i ol B =
'm'"{s 11 0

({'I.EI-I -0233 0179 D60 0 J

U]
‘) diag{0.214, 0233, 0.179, 0.160, D.215]

0214 DA&E 0179 0 = (LR6

B 0214 —02313 0179 —0160 il
F.( : *) =| 0214 D466 0179 0 —OR&)
1 I I 1 1
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0158 —-0.031 O 6377 189 L
PP = ( -0.03] 1.035 n); (PP") ' = (um 0972 DJ
0 0 5 0 0 0
0554 0011 04% 0025 -0014
001l 0716 0023 0424 -0U%2
PYPP") 'P=| 0496 0023 0448 0012 0021
—0025 0424 0012 0363 0226
0014 —0152 0021 0226 0919
Cp=[1 - PT(PP") 'PIC" = (- 0162, —0279, 0.190, 0.403, —0.152)"
1Cp | = /1=0.162)° + (—0279) + (0.190) + (0.403)° + (—0.152)' = 0.5707

n<707 i 162, 279, 0L190, 0400, —0.152)

Cy
Yoew = Yy —&r — 7 m (1/5, 1/5,1/5,1/5,1/5)" -
— #I-FI (1/5.1/5, /8, /%)

s
= {0.217,0,229, 0.180, 0.158, 0.216)7
D,Y,.. = diag{0214, 0.233,0.179,0.160, 0.215}(0.217, 0.229, 0.180, 0.138, 0.216)"
= (L0464, (0.0534, 00322, 0.0252, 0.0464)7
m,y,,, = 0236

(4]
X, = Tl'ff“i = (02279, 0.2623, 0.1582, 0.1238, 0.2279)"

[ I Yacw

2= CTX; = (3, —6, 5,0,4)(0.2279, 0.2623, 0.1582, 0.1238, 0.2279)" = 0.8125

512 Carry out the first two iterations of Karmarkar's algorithm for the following problem.

minimize: 2= 2x, + Xy + Ix, — x,
subject to: 2x, + X; + 2x; — 2x,— 3x; =0
2K, - Xy+ Xy—2xy=0
X+t X3+ x4+ xg=0

with: all variables nonnegative

S

Xa={1/n,.... Um)" = (1/5, 1/5, 1/5. 1/5, 1/5)"
ru 1= 1) = 1//55 = 1) = 1/,/20
g=(m—=1)In=(5 = 1)/(3U5) =4/15
lteravion 0:
Yo=Xa=(1/51/S 1/5 V/5 1/S)'
D, = diag{X,! = diag|1/5, 1/5, 1/5, 1/5, 1/5)
PO - - C' =212 -2.0
A B - 1 =2 = :
2 1 3 =3 =3\ 4 02 04 —-04 -—06
.M:rl,-(2 S | _z)dn;i!fiﬂi.lfi.lfﬁ,lﬁl-(M i i —u.-t)

AD 04 02 04 04 =06
P= ( “) =(04 0 -02 02 -04
L 1 | 1 1 1
CmCTDy = (21,2 -2 .0)diag{1/5 1/5, 1/5,1/5, 1/5] = (0.4,0,2. 04, —0.4,0)
D88 024 0O 1L.3SBT -—0HIS2 O
PP = ( Nn24 04 D): PPy ' = ( ~08152 16891 O )

0 0 3 0 0 02
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06348 0.2435 n.1130 0.2870 —0.2783
02435 0254) 03413 0.0587 01072

PYPP") 'P=] 01130 03413 06674 02674 0.1457
02870 00587 —0.2674 0.6674 0.2543

-02783 0102 0.1457 0.2543 0,7761
Cp = [1 = PY(PP") 'P]C” = (0.167, —0.0613, —0.0874, —0.1526, 0.1343)7
ICp iy (0167)F + (—00613)° + (—0.08T4F + —u.'ﬁiﬁﬁ%’{@i'miﬂ = (12839
i i
Y. = Yo —ar HE:; = (175 1/5 1/5,1/5 1457 - EW
x (0167, =0.0613, ~0.0874, —0.1526,0.1343)7
= {(.1649,0.2129, 0.2184, 02321, 0.1718)"
X, =Y, =({0.1649.02129 0.2184, 02321, 0.1718)"

:=C'X, =(2.1,2, =200 (0.1649, 0:2129, 02184, 0.2321, 0.1718)" = 0.5154
k=f+]=|

fieration [:

[}, = diag| X, | = diag]{0.1649, 0.2129, 0.2184, 0.2321, 0.1718]}

C=C"D,=(2 1.2, -2.0) diagl0 1649, 02129, (2184, 02321, 01718} = {03298, 0.2179 043168, — 04642,
1]

-
- —“2

: -3
A, -:r(,r :; 1 | _Jd'mg{ﬂ.tﬁdﬂ'. 02129, 0.2184, 0.2321, G.1T18}

({L’IM 02129 04368 —D4642 —-5.515-1)

“loaws 0 -02184 02321 03436
AD (njm 02129 04368 —D4642 05154
P=( ‘)= 03298 0 —~0.2184 02321 -03436
1 Ey " | ! | 1
(0826 00827 O f 1242 03128 O
PP’ n( 00827 03284 u)-. PP ! =-‘ —0.3128 31239 n.)
v 0 0 5 . 0 0 02

06069 02653 0134 0.2730 -0.2765
02653 02563 0.3300 00618 00866

PTiPP")"'P = 01314 03300 06456 =0.2736 0.1663
0273 00618 —02736 0.7033 0.2355

—02765 00866 0.1665 0.2355 0.7879

Cp = [1 - PT(PP") 'PICT = (01425, —0.0446, —0.0858, —0.1214,0.1093)"
ICpl = (0.1425)7 + (—0.0446)° + {~00858)° + (-0.1214)7 + (0.1093) = 0.2374

, cae B e e o CASKLY0)
Yor = Yo ”IIL'..I {175, 1/5, 1/5; 1/5, 1/5) 5357
% {01425, ~ 0.0446, —~ 0058, —-0.1214, 0.1093)7
= (01642, 0.2112, 0.2216, 0.2305, 0.1725)7
D,Y.,. = diag[0.1649,0.2129, 0.2184, 0.2321, 0.1 718}{0. 1642, 0.2112, 0.2216, 0.2305, 0.1725)7
= (00271, 00450, 00484, 00535, 00296)7
1D,Y,,. = 0.2036

DY,
Xy = 2% o (0.1330,0.2209, 02377, 0.2628, 0.1456)"

TD, Y.

2= CTX; =(2 1,2, —2 0)(0.1330, 0.2209, 0.2377, 0.262K, 0.1456)" = 0.4367

513 Convert the [ollowing problem into Karmarkar's special form:
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maximze: = = 1x, + X,
subjectto: x; + x; €3
X —x;<13
with:  all variables nonncgative
|. Dual of the given problem.
minimize, £ = Sw, + 3wy
subject to: W, + wy; > 2
Wy —wy = |
with: nll variables nonnegative

2 Introduction of slack and surplus variables and combination of primal and dual pmbl?m.
Ky + X%+ Xy =5 Wy Wy — Wy =2
X=X Xy =]} Wy =y = wy = |

2%, + x; = 5w + Iw;
witl:  all variables nonnegative
3 Addiion of a houndary constraint with alack variable 5
Ny + x4 xy=5 Wy bWy = Wy = 2
=% +x,=3 W, —wy—wy=1
e, 4 %y = Gy = Iwa =0

5 +
Yo+ Y wes=K
P ]

im]
with:  all varihbles nonnegative
4. Homuogenized equivalent sysiem with dummy vartable J.
Xyt Aet Xy =Sdm W Wy = wy =2 =0
Ky —x+a,— =0 Wy —we—Wy— d=10
Iy + x5 = 5wy = Jw; =0
i X+ i w,4+i—-Kd=0

i =g

& i
E.\.,-i-zn',-q-a-rd-ll:lf-rll

=l LA
with: all variahles nonnegative
5 Imireduction of the ransformations.
y={K+1)y. J=1.. .4 s (K + 1y
w, =K+ . i=1. .4 d=(K + )y
The above tranaformatons yield the following system:
ith+rh—We=U Vet ¥ — ¥ e =0
Vi=¥s+ Po=Be=0 Vs=Ye—=Ja— V=0
¥y + ¥y =3y =3y, =0
i V= Kygp =

with: all variables nonnegative

[CHAP 5
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6 Introduction of the artificial variable with appropriate constraint coefficients.
G Fur
subject to; ¥ ¥t Fs— Spe + 1y =0
Yi= ¥ ¥e=3ye+ 2y =0
Yot Ya— ¥s—2a+ ¥ =0
¥Ya= Yo = Vo= VYio+ 2y, =0
vi + ¥a— vy = Yy 4 Sy, =0
]
E Yi— Ryjo + (K =y =0
Py B
E ¥y =1
=t
with;  all variahles nonnegative

5.14 Convert the foliowing problem into Karmarkar’s special form:
maxmize: X, + 4x,

subject to:  x; + Ix, < 10
20, + 3Ix; = 20

p < b6
with: all variables nonnegitive
1. Dual of the given problem
minimize: 10w, + 20w, + 6w,
subjecttoe. Wy + Iwp w321
2wy + dw, =4
with:  all variahlés nonnegative

L Introduction of slack and serplis variables and combination of primal and dual problems
0o+ 3y +a,= 0 wy+ dwy iy —wy =1
N+ I+ a, =20 2wy 4 Iwy = wy =4

X +x.= B
X+ Ay = 10w, + 20wy + by
withe all variahles nonnegative
3. Addition of & boundary constraint with slack variable s
X+ 2+ 1, =10 Wy + 2wy + oWy — oy =1
2y, + ke, 4 x, =N 2wy 3wy —wy=d
Ay +As= B
x4 dx; — (0w, — 20wy — bw, = 0
i X+ i w4 s=K
=1 L=1
with:  all variables nonnegative
4. Homogenized equivalent system with dummy variable 4.
N+l + ;= 10d=0 witdwy+wy,—w,—d=0
ey + 35, + x5, - Ml =00 2wy + 3wy —wy —dd =0
Xy + Xg — B =m0
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Il+"|.l'="|tﬂ¥'-zﬂh’:"ﬁ*1“ﬂ

. 5
Y+ Y wmtas-Kd=0

= § [ |

5
Y+ Y w+s+d=(K+1)

i=F f=1
with:  alll variahles nonnegative
5. Introduction of the rransformations,
=K+, J=L..,5 b (K o+ 1)y,
wm (K4+Dpgppi=....5 d=(K + 1)y,
The following transformations yield the following system:
Yoty =10y =0 Y+ et Ya—Yo—rua=0
2y + 3+ ¥y — Wy ;=0 e+ 1= Yo —Ap: =0
¥y * ¥y =By, =0

i1
E_}'n""ﬂ}‘i,::"n

i=i
i3
Yu~i
=1
with: all varinhles nonnegative
6. Introduction of the artificial variable with appropriate constraint coefficients.
minimize ¥,
aubject 10 ¥y ok Ay oy = 10y + 0y =0
Zyp+ My 4 ya— Wy + My, =0
Py 4+ ¥y =6y 45, =0
Fat2ystya=Fo = ha—2py=0
e+ I —Fo—d4wy =0
¥+ 4y — 10y, — Nys — byg + 3y =0

11
E, =Ky +{K=1)y,=0
r=1

."rp’:'l

" 1

i

with:  all variables nonnegative

Convert the following problem into Karmarkar's special form:
mimmize: == ¥x; + 4x;
subject te:. x, 4 2x, > 8
2, = Ix; <6
5,4+ %325

with:  all variebles nonnegative
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The given primal problem is rewritten as follows:
minmmize: == lx, + 4x,
subject ton ,+ix:> R
—-2xy + My 2 —b
Xi+ x3e 3
with: all variables nonnegative
1. Dual of the given problem,
maximizer 7= 8w, — 6w, + 5w,
subject tor w, — 2w, w1
2wy + Iwy, vy s d
with:  all vanables nonnegairve
2 Introduction of sluck and surplus variables and combination of primal and dual problems.
B+l —x= 8§ Wy = Twy + Wy + Wy =]
2y 4 Iy —x, = —6 2wy + 3wy + oWy + Wy =4
X+ Ey—xy= §
Ix, + 4z, = 8w, — 6wy + Jw,
with: all vanables nonnegative
1. Additon of a boundary constraint with sliack varable 5.
Xy+lny=xy= B Wy — 2wy + Wy =1
=+ 3y —x,=—b 2wy Jwy ey Wy =4
X +8y—%y= §

3x, + 4xy — Bw; + 6wy — Swy =0

i:‘+iw,+:—.ﬁ

P=t =1
with: all varables nonnegative
4. Homogenized equivalent system with dummy vanable .
Xy + 2y —x, —Rd=10 wy— e, +wy 4w, — =0
w3 -k v Od =m0 w4 Jwy + wy +wy —dd =0
L+ Ay —xy—S5d=0

3.‘1 +4.E:-EH'| +ﬁﬂ'!‘—5'}ﬂﬂ

¥ §
L+ Y w+i-Kd=0
1= =

- ] ]
Yo+ YwrssdmiK+1)
=7 imj

with: all vanables nonmegative
5. Introduction of the irandformations
g=(K+1y, j=1...3 s=(K + 1)y,
W, = (K + Dysapfml....5 dw(K 4 )y



116

sl6

LINEAR PROGRAMMING: EXTENSIONS

The above trunsformations yheld the following system:

M+ 2rg—yy—Byjy=0 Ya=2ys + Vg py— Iy =0
=2y +Ipg— ya+ by =0 pg # Ips o+ yu+ Yoa =4y ;=0
Vit ¥y =¥y =S80 =0
Iy, 4+ dpy —Byy + byy = Sy m O

il
E Y= ’:!"h'l-u

=1

i3
E n=1

=f

with:  all variables nonnegative
6. Introduction of the artificial vanable with appropriate constraint coefficients

minmeEe: ¥,y
subject 1o ¥+ 20— 5y — 8By + By =0
=2y + Wy =y + By — by =10
Fi ¥ =¥ =W + 4y =0
Yo =2+ ¥ut Yo = Wia + 24y =0
et I+ Vot Fro ==y =0
Iy + 4y — By, — by — Sy =0

i
E =Ky + (K _”h'u=u
=1

EJ‘.-I

with: all variables nonnegative

Convert the following problem into Karmarkar’s special form:

mmize: = 12x, + 26;, + Blx,
subject to:  2x, + bx; + 5x, > 4
dx, + 2+ 3210
X4+ X+, 6

with: all variables nonnegative

I. Dual of the given problem.

muximize = =4dw, 4+ 10w, + bw,
subject tor 2wy 4 dwy 4 w2 12
Gw; + 2wy + w, < 26
Jwy + wy 4w, <8O

with:  all variables nonnegative

[CHAP. §
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2, Introduction of slack and surplus variables and combination of primal and dual problems.

Iy tbxy iy —x= 4 2wy +dwy 4wy + wy =12
dx) + ey 4+ Xy — X5 = 10 6w, + 2wy 4+ Wy + we =20
x,+.:',+1r,-—_r_- ] ‘5“-.+H:+:"+w‘“*}

1.1.‘. - -ﬁxl -+ mt‘ =4”t + l".h'z -+ E-'!'I'j
with:  all varables nonnegative
3 Addition of a boundary construint with stack vanable 5

Iz +6x; + 55, —x,= 4 Dwy A dwy + w4y = 12
aAxg + I+ = xy =10 fw, + 2wy + wy + wy =26
N+ Kygbdyy-xge= 6 Swy 4+ Wy + 2wy + wy =80

125, + 26x; + Blx, — dw, — 10w, — 6w, =0

'ﬂli L]
Y5+ %Y wea=K
i

-=

-

with: all vanables nonnegative

4, Homogenized cquivalent sysiem with dummy variable d.

2, + 65y + 5, — vy —dd =0 2wy +dwy + wy+wy— =0
dup 4 iy + 6y - %= 104 =0 Bwy + 2w, + Wy +ows =2l =0
N F 2y —xg—6d=0 Swy+ wy+ 2wy +wy—80d =0

12x, + 26x, + 80x, — 4w, — 10w; — 6w, =0
L "
Y+ Y¥wmasr—Kd=0
i= g ek

@ &
E N+ E w,+s+d=(K +1)

V=l =1

with: nll vanahles nonnegative
5, Introduction of the transformations
;=(K+Ny J=L....6 s=(K+ 1)y,
w=(K+ 1¥gspf=l....0 if=(K + lly4

The above transformations vield the following system:

2+ by + 6y =y, —dy, =0 s Ay + Vot Yig = 12)y3 =0
A+ 4y — ¥ — 0y, =0 Bys + ys + e+ iy — by =10
¥yt ¥+l -y by =0 Spr 4 pa+ g4 yyy ~ B0y =D

11}’1_ + .Hllj'; ES Hﬂr; ek “:l}’n —Byg=10
I8

E ¥i— Kya=0

i=1

Eh"l

=l

with:  all variables nonnegutive
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6, Introduction of the srtificial varmable with appropriate constram! coeflicients.

IMINIMIZE:  §

subject tor Iy, =0y, + oy — v, — 13w, =0

Ay, v Tyg + 9y = pa = 10x, + dyy =D

Nty -y =0y + =0

=+ A+ Vot Vig — 1200 + 495 =0

bur+ 2yg + Ve + ¥y — 200, + lby,, =0

Spr b wa b e b s — B0y 4 TiW =D

12y, + 26yy + 80y, — dy, — 10y, — 6y — 98w,y < O

i3
Y n—Kpu+(K=1hy,s=0

=i
is
E yy= !
i=j

with: all vanables nonnegaiive

517  Convert the following problem into Karmarkar's special form:
manimize: ©=2x; + Ix, 4+ x, + 4x,
subject to:  dx, + Ix; + x3 + x, < 10
3x, + 2xy — X, < B
with: all vanables nonnegative
I. Duasl of the given problem.
mimmize: 10w, + $w,
subject tor dw, + dwy > 2
By + dwy >3
W) =1
Wy — w4

with:  all vanables nonnegative

2. Introduction of slack and surplus vangbles and combination of prima! and dual problems.

dx, 4 I+ x4 5, + x5= 10 dwy + Iy — Wy =2
Iy My = A, +x,= B Jwy + 2wy — ey =13
wy = wy =1
Wy — W — Wy =4
2+ Ing b oy Ay = [Ty + By
with:  all variubles nonnegative
3. Addition of a boundary constraint with slack variahle 5.

4y + I+ x4 2+ 19 =10 dwy + Jw; — wy =1
Iy + xy —x, 4+ xy= B Iy 4 Dwy = wy o]
“:'1_“"|=1

W= Wy =Wy =4

[CHAP. 5
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2oy + g+ v, = 10w, — By =0
. s
Y54 ¥Y¥wmes=K
i=1 i=1
with. all variables nonnegative
Homogenized equivalent sysiem with dummy sariahle J.

g+, + i+, — =0 dw, + 3w, —wy; — =0
I, Iy =, b xy—Mf =0 Iy + 2wy —wy— M=
w, —w, —d=10

nh—wj—wh—u—ﬂ

Iy + Iy + x4 4, — 10w, — 8w, =10

[ L}
Yo+ Ywes—Ki=0

=1 =]

-
Y+ Y wrs+d=(K+1)

il

with: all variahles nonnegative

Imtreduction of the rransformations

g=(K+ Uy, i=L. .6 s=(K + 1)y,
*JH{E +I:JIE+J|-;="I|. a 1h J=IK+ I}}'l‘

The above trunsformationd yield the following tystem:

Ay, + 3y et g+ ¥y = 10y, =0 Ay + g = ¥g =2y =

I+ =yYa+ ye—3ru=0 e+ 20— Yio— =10

Y= V= V=0
Y= tu = Fa— 4 =0

2+ A+ VA = 10, — By =0

13
E ¥i— Ky =10

with:  all variables nonnegative

Introduction of the arificial variable with appropriate constraint coefficients.

minimize:
subject lo:

Vis
Attt ety = 10y,=0
I+ = Yat Ve =B+ 3y =0
A+ W —ya—WMa— 41 =0
I+ e — Yoo — Wia—Fus =0
¥i=Yuu=Via+t =0
Fr—Fa—Viz—4na+ 390 =0

20+ s+ Y+ dyy = W0, —Bpy + Byi3=0
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1%

E ¥ = Kyye +

(K = 13)y,5=0

with: all vanables nonnegative

Supplementary Problems

Ulse the revised simplex method to solve the following problems.

518

819

522

maximtee

subject 10

with
MaXAMIZE;

subject to

with:

muKimize

subpect o

wiih;

subject to;

with:

MR ImiTE:

subject Lo

with:

frinimize

subject 1o

with:

g = fx; + Ix; + 4x,
X, +6x, 4+ x,< 10
2y + Iy xy £ 18

all veriables nonnegntive

T=3x; + 2xs + X3
3w, + Iy =7

—2x, + ;21
Yoy, + ;4 2x, S B

all variables nonnegative

f=x; + 1xy + 3x,

- 2x, + 1351
I, + 2y 4+ x,;59
vy + 1+ ;s 6

all varisbles nonneguative

r=%5x, + Ix,
2, + Ix; 59

—4x; + Ixy = 1
I, + x; 26
X, =13

«, and x, nonnegative

=%, — %y + 47,
Ix; —Ix3+ X353
K +Ixn, <5
all variables nonnegative

== hix, + Ixry + 4x,
T +bx; 4+ 1,=10
2x, + Ixsy b Ty = 13

all variables nonnegative

[CHAP. 3
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Carry out the first two iterations of Karmarkar's algocithm for the lollowing problems,

5.4

529
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minimze:

subject Lo

with:

gy = 2ny— Xy
4+ xptx=h
x; = 2%y =4
all variables nonnegative

minimize: 2= x, + 2x,

subgectto:  x; + dx; =3

In, =4, 26
a-lr'*‘ 1:53

with: %, and x, nonnegative

minImise;

subect to:

with:

M fimiee:

subject 1o

with:

minimize:

luhjeu Lo

with:
mininie
subject 1o
with:
minimire:

subject fo:

with

2= 0k + 25y = x,
x; + Xy =50
£y 4 Xy 210
Xy + xy £ 30
3t%e 1
%y o+ Xy b Xy =60

all vanables nonnegative

=X, + x4+ Iny
X, + N
Xy= g+ 3,200
2%, + 2y~ x32 10

all variahles nonnegative

i'i-'lh
Xy +I:‘;‘Ij‘lﬂ
Xy *x:i" #"-]

all varizbles nonnegative

g =1
‘.‘t’; -+ I: _lxl '=u

all vaniables nonnegative

==X
1’[.—1;—1‘;#1}
I|+I.1+j]=l

all variables nonnegative

121
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minmize: = 2x; + x; — 2%,

subject toc &) = Jx, = x5 4 2a, =0
X +xy— 2, =0
X+ Xp+xy+ ny=]

with: all varfables nonnegative

minimize; s —x, + 0y + 3,

subject lo: x; < xp —xy = xy=00
Xy X3+ %3 =3x;, =0
N4 x4 a4 xp=1

with:  all vanahles nonnegative

minimize, == x, — 3x; + Sx,

subjectto: %, — x; 4%, — x, =0
3xy, — 2wy 4 @y — 1, =0
T+ La+a 4+ x,=1

with:  all variables nonnegative

mimmze: T =X, + Xy 4+ X, — 2n

subject 1o, x;, — X3+ Xy 4 x,— 2y =D
:|_-\:]+:—t] —l‘!’q-ﬂ

£+ Xybxad xg=]

wilh: all variables nonnegative

MIMMHEE, = X, + 3X; — 1%,

subject to:e %, — 2uy + 3y - ey =0
h1+ A3 _I‘_hq’=“

Ky My Mgty xym]

with: all variables nonnegative

Convert the following problems inte Karnsarkar's special form.

minimize; == x; + 25,
mbject tor x; + 3x; = |
X, 4+ xyz= 9

with: x, and x; nonnegative

masimize = 1x; 4 x,
subct i & + xysd
I, + 1,455
O+ sé
with: x, and x, nonnegative

[CHAP, 5
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838 maximize: = 5x, + 3z,
subject Lo 20y + Ix, €9
—dx; + 2, <
Ix,+ x: 26
Xy <3

with:  x, and 1, nonnegative

559 maximize: = 5%, — x; + 4x,
subject to:  3x; — 2x; + x5 13
Xy + 3,5
with:  all variables nonnegative

B.40 minimize: :=x, — lx; — x,
subject o x; + X;+x;, 56
.t| E— 2‘; 54

with:  all variables nonnegative

541 maximize: = Ax; + i; + X,
subject to: 3x, + 2%, =7
e +3n, e |
x4 x3+ 2,58

with: all variables nonnegative

542 minimize: =X, + X3 + 2x,
subjectlo:  x, + x;< 18
X, - Xp+5x;210
2ey 4+ 2xg = x32 10

with: all vartables nonnegative

43 minimize: == Xy ¢ Iny 1 dxy +Gxy
subject to: %, + Ixy, + 13+ x = 1000
Loy + xp+ 3y + Txy 2 1500

with: all variables nonnegative

44 minimize: == 3x; + vy 4+ x5 + 2x, + Ixg
subgect to: 2x, 4+ Sx, + Xy+ Xo2b
dx,—Ixy+ 2x, + Ix 2§
By — 0%y 4 Ik; + Ty + 5x, <7
with:  all variables nonnegative



Chapter 6

Integer Programming: Branch-and-Bound Algorithm

FIRST APPROXIMATION

An integer program is a linear program with the added requirement that all variables be integers
{sec Chapter 1), Therelore, a first approximation to the solution of any integer program may be obtained
by ignoring the integer requirement and solving the resulting linear program by one ol the technigues
already presented. If the optimal solution to the linear program happens to be integral, then this solution
15 also the optimal solution to the original integer program (see Problem 6.3). Otherwise—and this s
the usual situation—one may round the componenis of the first approximation to the nearest feasible
integers and obtain o second approximarion, This procedure is often carnied out, especially when the first
approximation involves large numbers, but it can be inaccurate when the numbers are small (see Problem
6.5)

BRANCHING

If the first approximation contains a variable that is not integral, say x7, then || < x7 < i;, where
i, and i, are consecutive, nonnegative integers, Two new integer programs are then created by augmenting
the original integer program with either the constraint x; < i, or the construinl x; > {;. This process,
called branching, has the effect of shrinking the feasible region in o way that eliminates from further
consideration the current nonintegral solution for x; but still preserves all possible integral solutions to
the original problem. (See Problem 6.8.)

Example 6.1 As a first approximation 1o the integer program
maximeess == 10x; + x,
subject tae  2x; 4+ 3xg 5 11 ia.r)
with: x; and x, nonnegitive and integral

we consider the associated linenr program oblained by deleting the integral requirement. By graphing, the solution
is readily found to be x7 = 55 xT =0, with :* = 35 Since § < x7 < 6, branching creates the two new intcger

programs

maximize:s = llx, + x.

subject toe  2x, <4 Sx; < 11
ek (6.2)

X, < §

with: x, and x, ronocgative and miegral

maximizt: = 10x, + 1y

subject to: 2x; 4+ 5x;, < 11
e L 1 1 60

%, > 6
with: =, and x, nonnegative and mtegral
For the two integer programs created by the branching process. first approximations are obtamed
by again ignoring the mteger requirements and solving the resulting linear programs. If either first
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approximation is still nonintegral, then the miteger program which gave nse to that first approximation
becomes a candidate for further branching.

Example 6.2 Lismg graphical metheds. we find that program (#.0) has the first approxmation x} = 3, x1 =102,
with z* = 50.2, while program {6 3) has no feasible solution, Thus, program (6.7} is a candidate for further branching.
Since 0 < =¥ < |, we augment (6.2} with either x; < 0 or x; = |, and obtain the two new programs

miximize: == 10x, + ¥

subject to:  2x; +5x; < 1
Xy < 35 {6.4)

ns< 0

with: x, and x; nonnegative and integral
(in which ¥, = 0 s forced ) and

maximize, == Ix; + x;
subject tor v, + Sxy < 11
Xy < 35 6.5
ne |l
with: x, and x, nonnegative and integral

With the integer requirements ignored, the solution 1o program (6.4) 15 x7 = §, 13 =0, with z* = 50, while the
solution te program (6.5 15 x7 = 3, x4 = |, with z* = 3. Since both these first approximations are integral, no
further branching s required

BOUNDING

Assume that the objective function is to be maximized. Branching continues until an integral first
approximation (which is thus an integral solution) is obtained. The value of the objectve for this first
mtegriil solution becomes a lower bound for the problem, and all programs whose first approximations,
mtegral or not, yield values of the objective function smalier than the lower bound are discarded.

Example 6.3 Program (4.4) possesses an integral solutiom with 2* = 5 hence 30 becomes a lower bound for the
problem. Program (6.5) has a solution with =* = 3]. Since 31 is less than the lower bound 30, program (6.5) &
elimmated from further consideration, and would hore been so efiminated even §f its firse approximation had been
nonintegral

Branching continues from those programs baving nonintegral first approximations that give values
of the objective function greater than the lower bound. I, n the process, a new integral solution is
uncovered having a value of the objective function greater than the current lower bound, then this value
of the objective function becomes the new lower bound. The program that vielded the old lower bound
is eliminated, as are all programs whose first approximations give values of the objective lunction smaller
than the néw lower bound, The branching process contuinues until there are no programs with nonintegral
first approximations remaining under consideration. At this point, the current lower-bound solution is
the optimal solution to the onginal integer program.

If the ohjective function is to be minimized, the procedure remains the same, except that upper bounds
are used. Thus, the value of the first integral solution becomes an upper bound for the problem, and
programs are eliminated when their first approximate z-values are greater than the current upper hound.
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COMPUTATIONAL CONSIDERATIONS

Omne always branches from that program which appears most ncarly optimal When there are a
number of candidates for further branching, one chooses that having the largest =-value, if the objective
function is to be maximized, or that having the smallest =-value, il the objective fusiction is o be
minimised.

Additional constraints arc added one at a ume. If a first approxmmation mvolves more than one
nomintegral variable, the new constraints are imposed on that variable which is furthest from being an
integer: Le., that variable whose fractional part 5 closest 10 0.5 In case of a ne, the solver arbitranly
chooses one of the variables.

Finally, it is possible for an integer program or an associated linear program to have more than
one oplimal solution. In both cases, we adbere to the convention adopted m Chapter 1, arbitrarily
designating one of the solutions as the optimal one and disregarding the rest. '

Solved Problems

61  Draw a schematic diagram (tree) depicting the results of Examples 6.1 through 63,

=50

Fig. 61

See Fig. 6-1. The onginal integer program, here (6. /), is designated by a circled 1, and all other programs
formed through branching are designated in the order of rheir creation by circled successive integera. Thua,
programs (6.2} through (6.5) are designated by circled 2 through 5, respectively. The fimt approximate
solulion 1o esch program 8 wntlen by the circle designating the program. Esch circle (program) is then
connected by u line to that circke (program) which gencrated it via the branching process. The new constraint
that defined the branch is written above the line. Finally, a large cross s drawn through a arcle i the
correaponding program has been eliminated from further consideration. Hence, branch 5 was eliminated
because it was not leasble; branch 5 was chminated by bounding in Example 6.3 Singée there are no
noninlegral branches left to consider, the schematio diagram indicates that program 1 is solved with x7 = 3,
xt =0 and »* = 50

6.2 maximize: == 3x; + 4x;
subject to: 2x, + x, =6
2%, + Ix;, <9

with: x, and x, nonneganve and inicgral
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Neglecting the integer requirement, we obtain x§ = 225, x§ = LS, with :* = 1275, as the solution 1o
the associated linear program. Since x§ is further from an integral value than x§, we use it 10 generate the
branches x, < l and x; > 2.

Program Program 1
masimize 2= lx, + dx; maximize: == Ix, + dux,
subject to: 2x; + x;, <6 subject tx Qx, 4+ x; <6

2, + My, 29 x, + ;59
51 2l

with: x,, x; nonnegative with: x,, x, nonnegative
and integral and integral

The first approximation 1o Program 2 is x = 25 x3 = 1, with z* = 11.5; the first approximation 1o
Program J is x? = 1.5, xf = 2, with :* = 125 These results are shown in Fig 6-2 Since Programs 2 and
3 both have nonintegral first approsimations, we could branch from either one; we choose Program 3 because
it has the larger (more nearly optimal) value of the objective function. Here | < x§ < 2, so the new programs
are

Program 4 Program I
maumire = Jx, + dx; maumize = Jx, + dx;
subject to: 2x; + x; 6 subjeci loc 2x, + %, 56

e, +dx; <9 ey + M, €9
!‘2‘2 I‘I‘I
Xy <1 X, 22

with:  x,. x; nonnegative with:  x,, x; noancgative
and integral and integral

There is no solution to Program § (it is infeasible), while the solution to Program 4 with the integer
constraints ignored s x7 = |, af = 7/}, with 2* = 121} See Fig 62 The branching can continue from
either Program 2 or Program 4; we choose Program 4 since it has the greater z-value. Here 2 < 3§ < ), %0

™=113 'i.lt

Fig 62
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the new programs are
Program & Program =

manmize o= Iy, + dy; masimize o= 3y, + dy;
subjct to 2x, ¢+ ;56 subgect 1 Jx, + x; 56
2, + In; 59 2, + .59

-"]'12 '12.‘

X5 <1 X - |

‘]51 -‘;EJ’

with: x;, x; nonnegative with: v, v; nonnegative
and integral and miegral

The solution 1o Program 6 with the imeger constraints ignored is x7 = L1 = Lowith :* = 1] Since this
is an integral solution, 2 = || becomes a lower bound for the problem. any program yielding a =-value
smaller than 11 will henceforth be ehminated. The first approvimation to Problem 7is «f = 0, x8 = }, with
2* = 12 Since this i an integral solution with a =-value greater than the current lower bound, & = 12 becomes
the new lower bound, and the program that gencrated the old lower bound. Program 6, n chimunated from
further consideration, as is Program 2. Figure 62 now shows no branches left to conuder other than the
one corresponding 1o the current lower bound Consequently, this branch gives the optimal solution to
Program I: x§ = 0, x¥ = 3, with :* = 12

Solve Problem 1.9.

Dropping the integer requirements from program (/) of Problem 1.9, we solve the assocuated linear
program first, 10 find (see Problem S4) xf = 2, x? = I8 s = 0, &3 = 20 42 = 0, x2 = & with :* = 45,
This is the first approximation. Since 1t i integral. however, it s also the optimal solution to the original

inleger program

Solve Problem 16

Ignoning the micger requirements in program (4) of Problem 1.6, we obtain 1§ = 17 = 0 1] = 1666467,
x§ = 5000, with =* = $5000, as the first approximation. Since «§ m not miegral. we branch 1o 1wo new
programa. and solve cach with the inleger constraints ignored. The results are indicated in Fig 6-1 Program
) possesses an integral solution with a z-value greater than the s-value of Program 2 Consequently, we
climinate Program 2 and accept the solution 1o Program 3 as the optimal one 17 = | xT = 0L 1§ = 1667,
x5 = 4999, with :* = §33000

* = 39N h

[N N 1

Fig. 6}

Discuss the errors involved in rounding the first approximations to the original programs in
Problems 6.2 and 6.4 to integers and then taking these answers as the optimal ones.
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07

The first approximatiom in Problem 6,2 was x} = 225, x§ = L5, We wish 1o round to the closest
integer point in the feasible region. Now, of the four integer pomnts surrounding the first approximation, only
one, (2, 1}, 15 found to e in the feasible region. Thus we take x7 = 2, x§ = |, with a corresponding =* = 10,
us the proposed optimal solutron. The true optiimal solution was found as =* = 12 thus the rounded solution
deviates from the true solution by more than 16 percent.

The first approximation in Problem 6.4 was x§ = x? = 0, x7 = 1666.67, «7 = 5000 Rounding x§ down,
1o remain feasible, we obtain 17 = x3 = 0, xT = 1666, x3 = 5000 as the estimated coordinates of the optimal
sohition, The corresponding z-value, $54996, deviaies from the true solution, #® = S55000, by less than
D008 percent

minimize: =X, + X,
subjectlo:  Ix; 4+ ey = §
12, + 5x, < 30
with: x, and x, nonnegative and integral

A first approximation 1o this program s 17 = 2.5, x} =0, with * = 2.5, Rounding x} up, thereby
remaining feasible, we have x§ = 3, x% = 0, with :* = 3, a8 an estimate of the optimal solution 10 the original
program. Observe, however, that for integral values of the variables, the objective function must isell be
imegral. The z-value for the first approximation, z* = 2.5, provides a lower bound for the optimal objective;

consequently, the optimal objective cannot be smaller than 3. Since we have an estimate which attains the
value 3, the estimate must be optimal; ie, x7 = 1, x? =0, with z* = },

Solve the knapsack problem formulated in Problem 1.8

The smplex methed could be used to find the first approximation for program (7) of Problem 1.8, A
miare efficient procedure is the following:

The crical facior in determining whether an ilem 15 taken is not its weight or value per se but the
ratio of the two, its value per pound. We denocte this (actor as desirability, adjoin it to the data, and construct
Tahle &-1, where the items are listed 0 order of decreasing desirability. To obtam the opumal solution to
the knapsack problem with the integer constraints ignored, we simply take as much of each item as possible
{without exceeding the 604b weight limit), beginning with the most desirable, It follows from Table 6-1 that
the first approximation coasists in all of item 2 (the most desirable onel, all of item 3 (the next most desirable
itemn), and b of ikem I xT=0x¥=Lxf =305 =0 xF =1, with z® = 135

Table 61
Ttem Weright, Ib Vilue Desirability,
value Tk
2 23 1] 261
5 T t5 214
3 is T 206
1 52 1K} 192
F | 15 LS 1.00

Since this first approvmation is nonintegral, we branch by awgmenting the original constrainis with
gither x, = 0 or x; = |. Before domg so, however, we note that since x,; is required (o be nonnegative, the
construint v, < 0 can be tightened to x, = (; and since at most one of an dem will be taken, the construint
X3 = | can be tightened to xy = 1. This is indicated in the tree diagram, Fig. 6-4.

Dropping the integer requiremems. we determine the oprimal selotions w both Programs 2 and 3 in
Fig. &4, wing Table 6-1 1o find the best mixn consistent with the constraints. For Program 2, we oblain
A om IOVE2, xt m LoxY = xf w0, xF o= ], with =% = 13289, and for Program 3, 27 =0, xf = |, x7 = |,

xf w ), v = 377, with z% = 13428
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Continuing the branch-and-bound process, we complete Fig 6-4. The first integral solution is obtained
in Program 8 with =® = 90 A second integral salution is obtained in Program 10, with =® = 130, Since this
second 2-value is larger than the first, we eliminate Program 8, as well as Programs 9 and 11. Program 5,
however, possesses a z-vilue greater than the current lower bound, so that we must still branch from it. The
resulting Program |2 has a 2-value smaller than 130, while Program 13 is infeamible; henge they oo ame
eliminated. We remain with only Program 10; therefore, its solution—take only itema 2 and 3, for a total
value of | 30-—is the optimal solution,

Much of the branch-and-bound process might have been avoided. We know In advance thay either
Ky =0 o0f xy= 1 in the optimal solution. If x;, = 0, then Program 2 coincides with the orginal program,
and the =-value 11269 oblained when the integer requirements are dropped (thereby expanding the feasible
region ) must be greater than, or at least equal o, the true optimum. Similarly, if x; = 1, we se¢ from Program
3 that the true optimum cannol exceed 134,28, Whichever the case, we are nssured Lhat the true optimum
16 less than 135, But, for integral values of the variables, = is integral, in fact, it is 8 multiple of 5, since Lhe
vislues of the iems are multiples of 5. Therefore, the true optimum 15 at most 130, Now, rounding the first
approximaie solution 1o Program 3 gives x} = O, x% = |, x§ = |, x} = (L x} = 0, with * = | M} Consequently,
this solution is oplimal,

Discuss the geometrical significance of making the first brunch in Problem 6.2,

The leasible region for Problem 6.2 with the integer requirements ignored is the shaded region in Fig
b-S{ak the feasible region for Problem 6.2 as given s the set of all integer points (marked with crosses)
belonging to the shaded region. The first approximation s the circled extreme point.

As o mesult of branching, the feasible region for Program 2, with the integer constraints ignored, i
Region | in Fig 6-5(h), whercas Region I in the same figure represents the feasible region for Program 3
with the integer requiremenis neglected. Observe that Regions 1 and Tl 1ogether contain all the feasible
integer points of Fig. 6-5(a), and only those integer points, Hence, if the original integer program has an



INTEGER PROGRAMMING: BRANCH-AND-BOUND ALGORITHM

131

i)

ih)

Fig. 6-2

optimal solutton (as it does, in this case), that solution will be optimal for one of the two new integer
programs, Conversely, i the twe new integer programs haee optimal solutions, one of these solutions (the one
with the larger -valie, in the case of a maximization problem) will be opiimal for the original integer program.
The validity of the bounding technique follows from the pareathetical remark just made

Supplementary Problems

Salve the lollowing problems by use of the branch-and-bound algorithm.

6.9 miximise
subgect to

with:
maximize:

subject 1o

6.10

with:
mazimize

subject o

b.11

with:

fm x4+ 21ny 4 1y

2k, + Jxy + 3, 5 11

all varables nonnegative and integral
t=x+ M4+ 45,

I+ 20,4+ Xy +4x,210

Ixy #Ixg+lxy 4+ Sxy s 5

all variables nonnegative and integral
= 2%, 4+ 10x; + x4

Sx; + 2x; + x;5 15

ik, + X3+ Txy <20

X4 dng 4+ 2x < 25

all varinhles nonnegative and integral
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6l2

613

6.14
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minimire: == 10x, + 2x; + 11x,
subject to:  2x, + Tag 4+ xym 4
Sx, +8x, —2x, =17

with: all vanables nonpegative and integral

Problem 1.20.

Solve Problem 6.7 by applying the branch-and-bound algorithm directly to program (3) of Problem 1.8 and
compare this procedure with the approach taken in Problem 6.7



Chapter 7

Integer Programming: Cut Algorithms

Al each stage of branching in the branch-and-bound algorithm the current feasible reguon (for the
current program with integer restrictions ignored) 18 cut into two smaller regions (one of them may be
emply) by the imposition of two new constraints derived from the firsi approximation (o the current
program. This splitting 15 such that the optimal solution to the current program must show up as the
aptimal solution to one of the two new programs (Problem 6.8). The cut algorithms of the present
chapler operate essentially in like fashion. the only difference being that a single new constraint is added
at each stage, whereby the feasibie region i1s diminished without being split.

THE GOMORY ALGORITHM
The new constraints are determined by the following three-step procedure. (See Problem 7.5.)

STEF 1: In the current final simplex 1ablesu, select one (any one) of the nonintegral variables and,
without assigning zero values to the monbasic variables, consider the constraint equation
represented by the row of the selected vanahble.

Exampie 7.1 The simplex 1ableau

X, Xy Xy X Ky
Xy 12 0 1 =13 12 1172
Xg 172 1 0 =1 14 1

4 ¢ 0 1 4 2512

gives the opimal seluten (1e., the current first approximation} as x§ = 1172, x§ = 1, with each of the nonbasic
vartables x¥, xJ, and x7 set equal to zero. The noninteger assignment for x5 came from the first row of the tableau,
which represents the constraint

o LI TR LV P (7.1

STEF 2: Rewnte each fractional coefhcient and constant in the constraint equation obtained from Step
| as the sum ol an integer and a positice fraction between 0 and 1. Then rewrite the equation
s0 that the lefi-hand side contains only terms with fractional coefficients {and a fractional
constant), while the nght-hand side contains only terms with integral coefficients (and an
integral constant),

Example 7.2 FEquation (7./) becomes

(=l + b+ + =3+, + 0+ Hea=5+1
o
it =5+ x - + 3x, (7.2)

STEP 4. Require the left-hand side of the rewritten equation Lo be nonnegative. The resulting inequality
15 the new constraint.

133
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Example 7.3 From (7.J),

o + i-""q- +in-12 ix, + i-"-l +ix 24

o
8

is the new constraint.

COMPUTATIONAL CONSIDERATIONS

Computing time is saved by appending the new constraint ineguality obtained from: Step 3 to the
constraint equations described in the current final simplex tableau rather than to the algebraicaily
equivilent constraints given in the original program. (See Problem 7.1.)

The Gomory cul algorithm may not converge; that is, an mtegral solution may not be obtained
regurdless of the number of ilerations. Generally, however, il the algorithm does converge, it converges
reasonably quickly. For this reason, an upper limit on the number of iterations (o be attempled is often
established before the computation is initiated. If the integral solution is not obtained within this bound,

the algorithm is abandoned.
There are no theoretical reasons for choosing between the Gomory and brangh-and-bound

algorithms, The branch-and-bound algorithm is the newer of the two procedures, and appears to be
fuvored slightly among practitioners.

Solved Problems

7.1 maximize: = Ix, + x;
subject to:  2x; + 3x; < 17
Ix; + 2%, < 10
with: x, and x,; nonnegative and integral

()

lgnoring the integer requirements and applying the simplex method to the resulting linear prognim,
wie obtain Tuhleau 1 as the optimal tableay after one iteration,

Ay &3 Ny LT :. t] n.j ‘q, j:'_
Xy 0 13 1 =2 3 X3 6 0 1 =52 e 1772
x: I 23 @ 13 10/3 X, 1 0 a0 0 13 3
X3 o0 1 0 12 =i 12
L] I3 0 2 20/3
0 a i 12 12
Tablenu | =
Tablean 2

The first spproximation 10 program (1), therefore, is xf = 10/3, x% = 31/3, 1} = x} = (. Both x} and x3
are nonintegral, Arbitrarily selecting x, we consider the constraint represented by the second row of Tabieao
I, the row defining x7; namely,

P T L
Writing each fraction as the sum of an integer and a fraction between 0 and 1, we have
X # 0+ 5+ 0+, =3+ or iy 4+ o, —f=3-x
Reguiring the left-hand side of this equation to be nonnegative, we obtain
fo;+ =120 or g+ a2
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as the new consiraint. Rewniting the constraints of the origmal prograom (/) in the forms suggesied by
Tabbeau | and adding the new constraint, we generale the new program

manimize: 1= Ix, + 1y + Ox, + 0x,

subject {o: Wy + x5 —fxam 3P

x, + §xs +ix, =12 ()
l".: ‘I' .'I"‘E :

with: all variables nonnegative and integral

A surplus vanable, x4, and an anificial vanable, ©,, are introduced nto the iequahity constraint of (1),
and then the two-phise method is applied, with x, x,, and x, as the initia! set of basic variables. The optimal
Tableau 2 is obtained afler only ane ieration. The first approximation 1o program (2) is thus x} = 3,
£f = 1/2, 7= 1771, x] = x¥ = L. Choosing x¥ to generate the new constraint, we obtain from the third row
of Tableau 2

b+ s =420 or B, + Kg = |

This. comhined with the consteaints of program (2) m the forms suggested by Tableau 2, mves the new

MiEEEr program
masimize: = 2x; + £; + Ox; + Ox, + Ox,
subject to: Xy — 1%y 4 Ylxg = Y
€ + fxg= 3
1 i - L;.I
.‘: 3 '!"4 - !]-! - !

X+ g |

with:  all variables nonnegative and integral

Ignonng the integer constraint and applying the two-phase method 1o program (3), with x,, x;, x5, and x,
(urtificial) as the initial basic sel. we obtuin the optimal Tableau 3,

Xy %3 ¥ Xy Xy Ay
Ky 0 1 =133 0 116 2073
X, 1 i R —1/3 0 13 83
¥y 0 | i 1 i -1 |
Xy 0 9 0 1 I —1 |
o o 13 0 1/6 193

Tableaw 3

A new ileration of the process is sturted from x§ = B3 in Tableau ). This results in a program whose
solution is integral, with &7 = 3, af =0, and z* = 6 This solutios is then the optimal solution to integer
program (£},

T.2 Discuss the geomelrical significance of the first added constraint in Problem 7.1.
Initially. the feasible region consists of all points in the first quadrant having integral coorndinates that
salisly
I+ 5x, =17 and s, +2x; = 10

These are the points marked by crosssxr in Fig. 7-1(a),
The constraim added to the original program (/) was 2x; + x, 2 1: it led 1o program (2). Solving the
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S

2y, # 5 =17

Ay, 4 Iv,= 100

&y &y

Fig. 7-1

second constraint equation of program (7) for x, and substituting the result into the new constraint, we have
2x; # (10 = Ix; —2xz) 2 1 or =3
The effect of imposing x, < 3 is indicated in Fig 7-1(b} a small piece containing the current first
approximation is sliced off the feasible region. No integer point, however, is lost
73  Solve Problem 1.1
The first approximation to this inleger program (see Problem 3,20 with the wvariables refabeled) is
xfy = 700, xF; = 500, x3, = 1000, x}; = x3; = xJ, = 0, with z* = 27600¢ Since this first approximation is
integral, it i also the optimal solution to the imeger program. Under this optimal schedule, 700 boxes will
be shipped from factory 1 to retailer 2, 500 boxes from factory | to retailer 3, and 1000 boxes from factory
2 1o reraller 1. The ol shipping cost is $276
74  Solve Problem 1.5.
Program (4) of Problem LS, brought into standard form, is

misimize: 7= 0%, + 12x; + 18x, + Ox, + Ox, + Ox, + Ox, + Ox, + Mx, + Mx,,

subject to: dx; + 6+ Xy — X, + Xg =54
dx, + 4dx; + 6x, — Xy 4 x5 =65
Xy + x4 = 7 i
X3 + X = ]
Xy + Xy = 1

with: all varables nonnegative and integral

Ignonng the nteger restrichons and solving this program by the two-phase method, we obtain Tableau |
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[

1.6

after three iterations. The first approximation to program (/) is thus x} = 1.75, x7 = 7, x} = 5, with z* = I79.

.'l:l ":1 .Ij x. x’ .'I:. 11 I'
X, I 0 0 -03 0005 0 —16 O 1.75
5 | 6 6 1 02 =02 o0 04 @ 5
L 60 0 O 03 005 1 16 0 5315
X o0 1 0 o o 0 I 0 7
Xy 0 o o 032 0z 0 —04 | 2
o 0 0 24 25 0 28 0O - 119
Tablean 1

Now, this first approximation may be rounded to the feasible integral solution x;, =2, x, =7, x; = §,
with = = 284, Il folfows that the desired minimum cpnnot exceed 284, O the other hand, referring to the
origmal program {4} of Problem 1.5, we se= thal for integral values of the variables = is an even nteger;
hemce. in view of the lower bound :* = 279 provided by the first approximation. the minimal = cannot be
less than 280, Therefore, the minimal = can only be 280, 282, or 284, and we are guaraniced that the error
committed in taking (2, 7.5)" as the optimal solution is at worst

04 —
D vy,
284}

iStarting from Tableay |, one finds after six iterations of the Gomory algorithm that (2, 7, 5)7 is in fact
the optimal solution.)

Develop the Gomory cut algorithm.

Consider the optimal tablean that results from applying the simples method to an integer program
with the integer requirements ignored, and sssume that one of the basic vanables, x,, is nonintegral, The
constramt equation corresponding to the tableau row that determined x, must have the form

X+ Y Y=Y il

where the sum is over all nonbasic variables. The y-terms are the coefficients and the constant term appearing
i the tableau row determining x,. Since x, is obtained from (f) by setting the nonbasic variables equal 1o
o, it follows thut y, is also nonintegral,

Write esch y-term in (/] as the sum of an integer and a nonnegative fraction Jess than 1

vy =i+ I and Yo=ig+ fo
Some of the f, may be zero, but £, s guaranteed to be positive. Equation (/) becomes
Xy #E{J,+ f)x; =iy + Jo
or
4 Y i, —ig=f—-Y fix; (3]

If each x-variable is required 1o be micgral, then the left-hand side of (2) is intcgral. which forces the
righi-hand side ulso 1o be integral. Bul, since cach [, and x; is nonnegative, 50 too is & fjx;. The right-hand
side of (7} then 13 an integer which s smaller than a positive fraction kess than [; that is, a nonpositive integer.

Iﬂ_Eﬂ'tlsu or E,ﬂxj'fntn

This s the new constraint in the Gomory algorithm.

Dievelop another cut slgorthm.

Consider (/) of Problem 7.5 If cach nonbasic variable x; is zero, then x, = y, is nonintegral If x, is
o become imteger-valued, then at least one of the nonbesic x; must be made different from zero. Since all
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variables are reguired o be nonnegative and integral, o follows that al least one nonbasic yurable must be
made greater than or equal 1o 1. This in turn imphes that the sum of ull the nonbasic vanables must be
rndde greater than or equal 1o L If this condition is used ds the new constraint to be sdjoingd 1o the original

integer program, we have the cut algorithm first suggested by Danzig.

7.7 Use the cut algorithm developed in Problem 7.6 to solve

M X e

subject o

Introducing slack varmables x; and x, and then solving the resuliing program, with the inleger

withe

11. - I:‘E—-ﬁ

Ay + Ik =9

requrements 1gnored, by the simplex method, we oblain Tableaun |

©, and ¥, nonnegative and integral

I| Ly ".l L]
5y | 0 DTS —In25 225
. 0 I - 0.5 0.3 1.3
{ 0 2% 1.25 12758
Tableau |

The first approximution is, therefore, x§ = 215, x% = L5, which is nol integral. The non
xy und x4, 50 the new consiraint is ¥, + x; > | Appending this constraint 1o Tableau |, after
of surphus variable X, and wrificial vurmtﬂc wg, did solving the resulting program by the mrn-phm miathod,

we gencrale Tableaw 2,

Xy X b .l.'! is L] 4
%, I B8 8 -1 Q78 E
X 0 10 1 —0f 2
%, P o 1 1 -1 |
0 ] 0 I 024 1225
Tableau 2

It follows from Tablean I that x§ = 1.5, 2% = 2, ¥ = 1, with x, and x, nonbasic. R!ﬁ:l: this solation
i nonintegral. we ke x; + 1y = | as the new constrami. Adjoining this consiraint o Ta
introcluction of surplus vaniable x, and artificial varmabie 5, and solving the mullmn
two-phase method. we generate Tableau 3

.'C. 'tl tl Ny .l! .'l:., |
X 1 0 0 =175 O 0,75 1 075
w | 0 1 0 15 0 -0s 2
X, b 0 1 2 @ =i 2
¥y 6 o n | 1 -1 1
0 0 0 nrs 0 024 1225
Tableau 3

———

ic variables are
¢ introduction

o 1, after the
agram by the
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T8

7.0
1
T2

7.13

From Tableau 3. the current optimal solution is aonintegral, with nonbasic varables =, and x,. The
new constraint i thus x, 4+ v, = 1. Adjoining i 10 Tableau 3 and solving the resulting program by the
two-phase method, we obtain x} = 0, x? = 3, with 2* = 1 Since this solution is integral, it is the optimal
iwlution to the original integer program

Supplementary Problems

Use the Gomory algorithm (o
maximize = x; + 9%, + 3,
subject toc xy + x4 x5 9
Iy 4 2x, 4 2%y < 15

with: all vanables nonnegative and integral
Solve Problem 1.3 by the Gomory algorithm,
Solve Problem 6.9 by the Gomory algonthm
Solve Problem & 10 by the Gomary algorithm
Solve Problem 611 by the Gomory algorithm.

Solve Problem 6.9 by the cut algonthm of Problem 7.6,



Chapter 8

Integer Programming: The Transportation Algorithm

STANDARD FORM

A transportation probiem involves m sowrces, each of which has available o, (i = 1, 2., . .. m) units of
a homogeneous product, and n destinations, each of which requires b, (j = 1,2, .., m units of this
praduct, The numbers a; and b, are positive integers, The cost ¢, of trunsporting one unit of product
from the ith source to the jth destination is given for each { and j. The objective i8 10 develop an integral
transportation schedule (the product may not be fractionalized) that meets all demands from current
invenlory sl 8 minimum totzl shippmg cost,

It is assumed that total supply and total demand are equal: that is,

E ﬂ'l - E !:..'- "?.F'
imi j=1

Equation (§./} is guaranteed by creating either a fictitious destination with a demand equal to the surplas
if total demand is less than total supply, or a fictitious source with a supply egual to the shortage if toral
demand exceeds total supply {see Problem .10

Let x,; represent the (unknown) number of units to be shipped from source i to destination j. Then
the standard mathematical model for this problem 15

- L
mimmize; 7 = E E iy
i=1 =1

subject 1o "T = {d=1...,0)
i ' (8.2)

-
Y xy=b (J=1,..., M)
=1

with: all x,, nonnegative and imtegral

THE TRANSPORTATION ALGORITHM

The first approximation 1o system (4.2) 15 always inlegral (see Problem 7.3}, and therefore i always
the optimi] solution. Rather than determining this first approximation by & direct apﬁlmlmn of the
simplex method, we find it more efficient to work with Tableau 8-1. All entries are self-explunatory, with
the exception of the terms u; and v;, which will be explained shortly. The iransporiation digorithm is the
simplex method specialized to the format of Tableau ¥-1; as vsual, it nvolves

(1) finding an imitial, basic feasible solution;
(i) testing the solution for optimality:
{m) mproving the solution when it is not optimal; and
{iv) repeating steps (i) and (i) until the optimal solution is obtained.

140
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[restinations
1 2 3 n Supply ;
I‘. 1 1 £y 4 t'1 ¥ cr"
I |
Xy Xz X513 Ty iy |
L] 1 f"! f]] :J‘
: | |
%11 %32 LT t Faa ay Wy
l -
rz_ E——
Cal Cag Cma -
- |
'xﬂi l'..; A i -l_ ﬂ. H-
Iemand b, by by " b,
¥y ty Fs by e Uy
Tablesu 8-1

AN INTTIAL BASIC SOLUTION

Northwest corner rufe.  Beginning with the (1. 1) cell in Tableau -1 (the northwest corner), allocale
10 X, a5 many units as possible without violating the constraints. This will be the smaller of @, and b,.
Thereafter, continue by moving one cell to the right, if somez supply remams, or, il not, one cell down.
At each step, allocate as much as possible to the cell {variable) under consideration without violating
the constraints: the sum of the ith-row allocations cannot exceed a,, the sum of the jth-column allocations
cannot exceed by, and no allocation can be negative. The ullocation may be zero. See Problem 8.3,

Vogel's method. For each row and cach column having some supply or some demand remaining,
calculate its difference. which is the nonncgative difference between the two smallest shipping costs «;
associated with unassigned variables in that rew or column. Consider the row or column having the
largest difference; in case of a Ge, arbitranly choose one. In this row or column, locate that unassigned
variable {cell) having the smallest unit shipping cost and allocate 10 it as many units as possible without
violating the constraints. Recalculate the new differences and repeat the above procedure until all
demands are satisfied. See Problems 8.5 and 8.6.

Vanables that are assigned values by either one of these starting procedures become the basic
variables in the imtial solutron. The unassigned vanables dare nonbasic and, therefore, zero. We adopt
the convention of nol entering the nonbasic variables in Tableau 8-1—they are understood to be
zero—and of indicating basic-variable allocations in boldface 1ype.

The northwest corner rule is the ssimpler of the two rules to apply. However, Vogel's method. which
takes into account the unit shipping costs, usvally results in a closer-to-optimal starting solution (see
Prioblem X.5).

TEST FOR OPTIMALITY

Assign one (any one) of the u, or ¢v; in Tableau 8-1 the value zero and calculate the remaining o,
and v, so that for each basic variuble u, + v, = ¢,,. Then, for each nonbasic variable, calculate the quantity
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¢y = i, = v, 17 all these latter quantities are nonnegutive, the current solution is optimal; otherwise, the
current solution is not optimal. See Problems 8.4 and 88

IMPROVING THE SOLUTION

Definition: A loop 15 a sequence of cells in Tableau 8-1 such that: (i) each pair of consecutive cells
lie in erther the same row or the same column; (1) no three consecutive cells he in the same
row or colummn; (i1} the first and last cells of the sequence lie in the same row or column;
(1v) no cell appears more than once in the sequence.

Example 8.1 The sequences |(1, 23, (1, 43, (2, 45, (2, 6), (4, 6), (4, 20} and [(1, 33, (1, 6), (3, 6) (3, 10 (2 1), (22),
(42 (4. 4002, 4), (2, 3] illustrared in Figs, 8-1 and 82 respectively, are loops. Note that a row or column can have
more thiin two cells in the loop {us the second row of Fig 8-2), bul no more than two can be consecutive

1 £ |3 4 3 .1 | 2 3 4 5 &
|
1 e | ] | B P L |
i 1l [ :
i 4 .3
& 1
2 i oi---la 1| oo (@ ‘
0 1 1 H
. ] L b i 2
r ¥ ¥ V
3 : i | L-l--i- ---pl- --q--i-_-l.
L] ] i "
; = L [
| i 1 i
4 @ 1--t--rp--1-@ 4 L TR |
Fig, B-1 Fig. B-1

Consider the nonbasic variable corresponding to the most negative of the quantities ¢, — w, — r,
calculated in the test for optimabty; it s made the incoming variable, Construct a loop consisting
exclusively of this incoming variable (cell) and current basic varinbles (cellsh. Then allocate o the
incoming cell as many units as possible such that, after appropriate adjustments have been made to the
other cells in the loop, the supply and demand constraints are not viclated, all allocations remain
nonnegative, and one of the old basic variables has been reduced 1o zero (whereupon it ceases to be
hasic). See Problem 5.4.

DEGENERACY

In view of condition (§./), only n + m — | of the constraint equations in system (4.2) arg independent.
Then, by Problems 2.19 and 2.20 a nondegenerate basic feasible solution will be characterized by positive
values for exactly n + m — | basic vanables. Il the process of improving the current basic solution
results in two or more current basic variables being reduced (o zero simultaneously, only one is allowed
to become nonbasic (solver’s choice, although the variable with the largest unit shipping cost is preferred).
The other variable(s) remains (remain) basic, but with a zero allocation, thereby rendering the new basic
solution degenerate

The northwest corner rule always gencrates an imtial basic solution (Problem 8.2k but it may fail
to provide n 4+ m — | positive values { Problem 8.3), thus yielding a degenerate solution, If Vogel's method
i used, and does not vield that same number of positive values, additional vanables with zero allocations
must be designated us basic (see Problem 8.6). The choice is arbitrary, to a point: basic variables cannot
form lopps, and preference is usually given to variables with the lowest associted shipping cosis
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Improving u degenerate solution may result in replacing one basic vanable having a zero value by

another such. (This occurs at the first improvement in Problem 8.4.) Although the two degenerate
solutions are effectively the same—only the designation of the basic variables has changed, not their
villues—the additional iteration is necessary for the transportation algorithm to proceed.

K1

Solved Problems

A car rental company is faced with an allocation problem resulting from rental agreements that
allow cars to be returned to locations other than those at which they were onginally rented. At
the present ume, there are two locations (sources) with 15 and 13 surplus cars, respectively, and
four locations (destinations) requiring 9, &, 7, and 9 cars, respectively. Unit fransportation costs
(in dollars) between the locanons are as follows:

st esi [rest ent
3 4

1 e

-

Source | 45 I7 | 'Y}
Source 2 i I8 19 N

Set up the initial transportation tableau (Tableau 8-1) for the mimmum-cost schedule.

Since the total demand (9 4 6 + 7 + 9 = 1) exceeds the tolal supply (15 + 13 = 28), o dummy source
is created having & supply equal to the 3-unit shonage. [n realily, shipmenis from this Betitious souree nre
never made, so the associated shipping costs are taken as zoro. Positive allomtions from this source to a
destination represent cars that cannol be deliversd due 1o a shoriage of supply; they are shortages a
destination will expenence under an opumal shipping schedule.

For this problem, Tableau &-1 becomes Tableau 1A. The x,,. w, and v, are pot entered. since they are
unknewn al the moment

Diestinations
| 2 i 4 Supply u
45 17 21 3
| 15
14 I8 19 kY|
2 13
E _F ]
0 1] 0 0
{dummy} ] = 1
Demand 9 ] T L)
:Jj ]
2 |

Tablean 1A
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For an m x n transportation tableaw, show that the porthwest corner rule evaluates n 4+ m — |
of the vanubles.

Observe that after treating the (1, 1) cell, the rule = applicd in the same form 10 2 SI.IthIEIHL the new
northwest corner being either the original (1, 2) cell or the origmal (2, 1) cell. Suppose then (mathematical
imductien) that the result helds for the subtablean, which is either m o« (n — 1) orim — 1} » i- In cither caswe,
i+ m— 2 varigbles are ¢viluated m the subtableay, so that

fHm—2+% | =8+~ |

variables are evalowied 1n the wbleau Since the result obviously holds whea & = m =1, the prool by
induction is complete

Use the northwest corner rule 1o oblain an witiol allocation to Tableaw 1A.

We begin with «,, and assign it the mimmam ol o, = 15and b, =9 Thus, x,; = 9, ledving six surplis
cary al the first source. We next move one cell to the right and assign x,, = & These two allogations together
exhawst the supply ot the first source, so we move one oell down and consider x,; Observe, however, that
the demind at the second destination has been satished by the v, allocation. Since we cannot deliver
addivtonal cars o 1 withoul exceeding i demand, we must assign xy, =0 and the move one cell 1o the
right. Contmuing in this manner, we ohtam the degenerate solution (fewer thand + 1 - 1 = ﬂ_pminw eniries)
depicted in Tallean 1B,

! 2 3 4 Supply | W
45 17 21 )
1 I5
L) L]
L4 1B 9 k| |
2 13
L} 7 ]
0 0 0 0 *
{dummy) 3 k|
ki
i
Demand 9 & 1 9
']
Tablean 1K

Solve the trunsportation problem descnbed in Problem §.1.

To determine whether the initial allocation found in Tableau 18 s optimal, we first calulate the terms
iy ol oy with respect 1o the basic-variable cells of the lablegu. Arbiirarily choosing u; = D ($ince the second

row contuing more basic variables than any other row or column. this choice will simplify thecomputations),
wie lind

2Declk  wytri=cy O+ =18% or p=18

(2, 7) exll Wy + Ty m Cyy, Otiym 19, or ry=19

(2, 4) cell My 40y =y, O4p,=31, or p =1

(1, 3} oall: Mty =gy, o+ B=17 or = -]
i, 1) cell M+ ™y =l +r=d5 or p, =46
(3, 4) cell: Wy + 0=y Wm+3=0 o w=-3
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These values are shown in Tablean 1C. Next we calculate the quantities ¢, — u, — ¥, for each nonbasic-
wariable cell of Tableau 18

(L 3) cell Ca=ly =ty =(=])=19=3
(1,4 cell Cla— Uy —ty=MW-—={=1}=-¥ =0
el &y —wp—n=1—-0-—3=-32
i3, 1) ol Cyy =Hy=0y =0=({=3)-46= =15
{3, 2} el Cyr— Uy =py=0=[=3)= 8= 13
13, 3) cell Cyy =y =ty =0=(=3)=19=12

These results also are recorded 1n Tableau 1C. in parentheses.

[ 1 : | 3 4 Supply | u,
-HJ 17 21 1
I T 15 - |
14 18 19 3
2 13 0
[—22) 4 e [} T [
o o | 0O 0
{dummy) 3 3 -3
| -~ 15) (13 (12 3
Demand 9 -] 7 g
Y, 46 18 19 3l

Tableau 1C

Since ul least one of these (o) — & — v -values s pegalive, the current solution s not optimal and a
betier solution can be oblaimed by incrensing the allocation to the variable {cell) having the largest negative
entry. here the (2, 1) cell of Tableau 1C. We do so by placing a boldface plus sign (signaling an increase) in
the (2 1) cell und identifying a loop contmining, besides this cell. only basic-vanable cells. Such a loop is
shown by the heavy lings in Tableau 1€, We now mcrease the allocation to the (2, 1) el as much as posable,
simultanzously sdjusting the other ¢ell allocations m the loop so0 as not 1o violate the supply, demand, or
nonnpeganvity constraints, Any positive allocation to the (2, 1) cell would lorce x4 1o become negative. To
avoid this, but siill make x., basic, we assign x,, = [} and remove x,, from our 21 of basic varinbles, The
new basic solution, also degenerate, is given 10 Tableau 1D,

We now check whether this solution 15 optimal. Work ing directly on Tableaw 1D, we first calculate the
mew s and ¢, with respect 10 the new bamic vanables. and then compute ¢, — &, — ¢, for each nonbasic-
varnble cell, Again we arbitranly choose u, = 0 since the second row contaims mere hasic vanobles than
any other row or column. These resulis ure shown in parentheses in Tableau 1E Since twoe eninies are
negative, the current solution is nol optimal, and a better salution can be obinined by increasing the allocation
to the (1. 4) éell, The loop wherehy this is accomplished is indicated by heavy lines in Tableau 1E; it consista
of the colls (1, 40 (2. 4% 02, 1), and (1, 1) Any amount added 1o cell (1, 4) musi be simultaneously subiracied
from cells 11, 1) and (2, 4) and then added to cell (2 1) 50 a3 not to violate the spupply ~demand construints
Therefore, no more thin six cars can be added to eell (1, 4) withow [oreing v, negative. Consequently, we
renssign ¢, = 4, muke the appropriute adjusimenis in the loop, and remove %, us & baske variable, The
new, nondegencrate basic wolution s shown in Tableau 1F.
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| 2 3 o Supply M,
45 17 2 30
] 15
9 [
144 15 19 k' | i
2 13
0 7 6 i
0 0 | 0 . 0
(dummy) 3 3
3
Demand g [} 7 o
¥
Tablesa 103
| 2 3 4 Supply |
45 17 | B}
1 3 (—29) (=33 15 31
9 +
i L
14 18 19 3 | \
F | i3 7 13 .| 0
0 - [ |
0 0 o o | -
{dummy]j 3 i i =1]
(17 (45) {12) 3
Deemand 9 f 7 g9
B, 14 ~14 19 3
Tableau 1E

After ome Murther optimality (est {negattve) and consequent change of basis, we obinin Tableau | H,
which ulso shows the results of the optimality Lesi of 1he new bassc solution, [t is seen that edch o — ity = ¥,
ts noanegulive. hence the mew solution 5 optimal, That &5, xfy =6, AT, = 3, xP,; =6, «f, =9, ¥ =4
1, = 1, with all other variables nonbasic and, thereflore, mero. Furthesmore, '

™ =617+ M21) + 6(30) + 14} + A1+ 30) = §547

The fact that some positive allocanon comes from the dummy source indicates that ot all demands
cun be met under this optinal schedule. In particular, destination 4 will receive thnee fewer caps than it noeds.
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1 2 k| 4 Supply i,
45 17 21 k1]
I | 15
3 6 &
14 1% | 19 1
2 13
] 7
0 0 n 1]
{dummy) 3 i
3
Demand 2 B 7 9
Ty
Tableau 1F
1 2 3 4 Supply u,
45 17 21 30
1 15 0
{291 [} 3 B
14 18 | 19 kY|
i 13 -2
9 (3 F] (3
0 | ] i} 0
(dummw)d [ [T 1 -30
(14) (13} {9 3
Demand 9 i 7 9
9 16 17 2 30
Tablean 1H

described in Problem 8.1,

147

Use Vogel's method to determine an mnitial basic solution 1o the transportation problem

The two smallest costs im row | of Tableaw 1A are 17 and 21; thewr difference is 4. The twosmallest
costy i row 2 are 4 and 18; their difference is alsa 4 The two smallest costs in row 3are both 0 so their
difficrence is 0, Repeating this analysis on the columns, we generate the diferences shown heside Tablean
3A. Since the largest of these differences, indicated by u f, occurs in colomn 4, we locate the varable (eel)
in this column kaving the lowest unit shipping cost and allocate to it as many units as possible. Thus vy, = 3,

exhausting the supply of source 3 and eliininating row 3 from further comsideration,

We now compute the differences for each row and column anew, without reference 10 the elements in
raw 3 The results are shown beside Tableau 5B, where the entry X for the second difference in row 3 menns
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P 2 i | 4 Supply B, TMFFERENCES
| 45 17 | 2 kN

1 1% 4
14 18 19 i

2 o 13 4
| o o nq_ 0

(dummy) 3 | 3 . 0

k|
Demand g f T 9

B
L

DIFFERENCES 14 17 19 30t

Tahlean 5A
1 2 3 4 Supply n DIFFERENCES
s |0 21 30
I ' 15 4 4
14 1% 19] 3
2 : —— D b= 13 4 4
1
—’r 9
| 0 0 0 0
(dummy) 3 | i 3 0 X
3

Demand | 9 6 7 g

DI JI_

DI ERENCES 4 17 19 0t

it ] 2 |
Tablean 5B

stmply that this row has been eliminated. The largest difference appears in column 1. and the variablke in
this column baving the smallest cost & 1y, (since row 3 s no longer under consideration), We Sssign v, = 9,
thereby satisfving the demand of destination | Accordingly, column 1 will not be involved in the ensuing
culculabions

With row 1 and colemn | climinated, the new differcnces are shown beside Tableau SC, where, agair,
an X indicates that a computation was not required. The largest difference oceurs in row 1, and the variablz
m this row having the lowest unit cost 15 x5 Note that even if ¢;, bad been less than 17, k;, would not
haive been seloctod here, sinoe it falls n a column thial has been eliminated, We set 5, = 6, (hereby mecting
the demand of destination 2 and removing column 2 from further caleulations.

With row 3 and columns | sod 2 no loager considered, the new differences are shown bessde Tablena
S0 The langest difference occurs in row 2, and the smallest cost in that row and in columns enll under
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1 Supply 1 DIFFERENCES
45 17 n 30
[ 15 4 4 4t
fi
I#J I8 19 3
- Ml g 13 4 4 1
i
0 ] (1] 0
(dummy) 3 3 g X X
3
Demand 9 fi 7
l'j
DFFERENCES 14 17 19 Mt
it
X
Tablean 5C
1 i 4 Supply i DHFFERENCES
a5 17 | an
| 13 4 4 9
14 J' 18 19 31
3 13 4 1
9
0 0 ] i
{dummy) 3 3 0 X X
Demand Q [ T ]
¥
DIFERENCES 14 17 19 I
31t | |
X 1 !
X X |
Tableau 5D

consideration is 19. Consaquently, we assign x5, = 4, which with the earlier assignment x5, = 9 exhausts the
supply of source 2 and removes row 2 from further consideration.

With rows I and 3 eliminated, we no longer can calculate differences for the remaining columns. This

15 a signal that the remaining allocations are uniquely determined, Here we must set x, = 3 and x,, = 6
if we are to meet ull demands withou! exceeding supplies. The rosult is the allocation shown in Tableau | H,

which was determined in Problem 5.4 to be optimal
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Use the transportation algorithm to solve Problem 1.12.

Since total supply equals total demand, no fictitious source or destination need be ereated, and the
transportation tablean becomes Tableau 6A. Applying Vogel's method and wing the same notation as
adopted in Problem 8.5 we arcive at Tableau 6B afier the second set of differences have boen calkculated.
There is a two-way tie for the largest differcnce. A good procedure @ 1o scan ench candidate, here row |
(with column 1 eliminnted) and column 1, for that varmble with the lowest unil cost. Agsin there is a lie,
s we arbitranly select x, ;. Setting x,, = 700 satisfies the entire demiand of destination 2 and, along with
the previous allocation 10 x, y. exhausts the supply of source 1. With columns 2 and 3 and row | eliminated,
the remaining allocation, xy, = 1000, is uniguely determined, and Vogels method thus leads 1o Tableau 6C.
This solution, however, is not complete, as only three of the necessary § + 2 — | = 4 basig variables have
been identified. We arbitranly select x5, = 0 as the fourth basic variable, since it s the unsssigned vartable
with the lowest unil cost and since its inclusion as & basic variable does not generate & loop with the
previously defined basic variables. The result is the basic solution, necessanily degencrate, given in Table 6D.

We now test this solution for optimality, working directly on Tablesu 61X it is not optimal. Tmproving
it, we obtain the allocation shown in Tableay 6E, which is optimal. Thus, 73 = 700, 7, = 300, x7, = 1000,
AT = xY; = x%, = 0, with
% = TOOELI) + SOO(11) + 1000013) = 27 6008 = 5276
Mote that this optimal allocation is identical to the initial allocation: only the destgnatipn of the basic
variables hax changed

| F i Supply W
14 13 11
| 1200
13 13 12
2 H{EE1]
Demand 10040 00 500
L]
Tablean 6A
1 2 1 Supply u, DIFTERENCTS
14 13 11
| 12000 ar |
00
13 13 12
z 1000 I 0
Demand 110000 TO0 500
By
HFFERESNCTS 1 ] 1
1 1] X

Tableau 68
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1 2 3 Supply b, DIFFERENCES
14 | 13 1
! 1200 ® 1t
700 5[
13 | 13 12
2 10K 1 (1]
1000
Demiand 10008 00 50
I
CIFFERENCES 1 i |
| 1] X
Tablean o
| F 3 Supply i,
14 I3 u|
| 1200 ]
1
13 13 12
2 1000 1
10 | = 1] & ep—
Demand L 700 00
b 12 13 1!
Tablean 613
| 2 k Supply ("8
14 13 11
1 1200 0
(1) Tod 00
13 13 12
F i 1000 i
T (1] (n
Demand 1 0 T 500
v 13 13 1

Tableas 6E

151
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Find the unsymmetric dual to system (8.2) with the integer requirements ignored,
The primal constrainis may be written as the (m + n} = mn system

-r-“+"'+|=u =.L

Xyy Fo - N =1

i)
it + X5 o = b,
X2 + %35 + Xz =by
Xyn + Xia + X -:bl

It is seen that each column of the cocfficient matrix A contains exactly two 1's; spectfically, column
(f= 1y 4 jhasa | in row { and a | in row m 4+ §, Then, the {60 = 1)e 4 jTth dusl constrnint, as given in
(5.4), involves only the ith and (m + jith dual variables. Denoting the dual variables by w,, 4, .. ., 4, 5,
.o oy 0, this constraint is samply

My & U S - ymes  L=Ch)

and the complete dual program is expressible as

maximize, = Enu‘-r Ebn,
= li‘]

subject to; W, + ;S € l!—l.l....,m;;'=ll.2..
Program (7} has matrix form {(£.4) with
.-l[l:lh.,._ﬂ"bh..._ll.]r C-{f”.('”r. '-"1-!"-1:!"'IEJ.-!"'F"'-I-"'!*:—]

and W =[UT, ¥T}7.

Use the result of Problem 8.7 to validate the optimality test in the transportation algorithm.

Let X=X Xyp 0000 Xppe-isKmppeoos Xy )| De any feasible solution to the primal program, (8.2),
and W be any leasible solution 1o the dual program, (2} of Problem 8.7 in matrix form; [t follows from
Problem 4.9 that

C'Xz=B'W ar E E CpXy = I: iy + Z by, i1
=1 et
and it is easy to show (compare Problem 4.41) thot if (/) holds with equality, X and W are aptimal solutions
to their respective programs,
MNow, suppose that the transportation algorithm has produced a tableau for which numbers u and of
can be computed which have the followmg properties: (4) for each cell (i, /) comtaining a basic variable x
{whether positive or zem), uf + vf = ¢,; (b) for each cell (i, /) containing a nonbasic variable, xJ = 0,
e + e} = ¢, Then X" 5 a feasible solution to the primal program snd W* is a leasible solution 1o the
dual program. Morcover, using the primary construint equations, we have

faw-% (’E g)e=5 Suny  wna Taeed (i =n)-r.' =3 ¥ opap

-l"tﬂ""l .|-|-| J= = II[’I:
Conseguently,

™
}: cyxl (2
=1

l“‘Tl

E ael + }: bt = E E (uf + 07 )xf} =

=3 =g j=) I

the last equahty following from properties (a) and (b) above. But (2) s just (/) for X* and W*, holding
with equality. Hence, X* is optimal for the transportation problem (and W* is optimal for the dual problem).
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Supplementary Problems

Set up o transporiation tableau for Problem 1.21 and then use the transportation algorthm o determne
an optimal production schedule.

Use the transportation algonthm 1o solve Prablem 1,23

A regionnl airline can buy its jet fuel lrom any one of three vendors. The airling™s needs for the upcoming
month a1 eseh of the three airports o serves are 100000 gal a1 airport 1. 180 000 gal a1 arport 2, and
AS0000 gal at mirpert X Each vendor can supply fuel to each airport at a price (in cents per gallon) given
by the following schedule:

Airport 1 Ajrport 2 Adrport 3
Wendor | 92 g9 90
Vendor 2 %1 1 a5
Vendor 3 87 30 92

Each vendor, however, s imited 1o the total number of gallons i can provide during any one month. These
capacities are 320000 gal for vendar 1, 270000 gal for vendor 2. and 190000 gal for vendor 3, Determine a
purchasing policy that will supply the airline’s requiremenis 2l each airport al mintmum total cost

A baking firm can produce u specialty bread in efther of its two plants, as follows:

Production Capacity, Praduction Cinst,
Plant loaves ¢/ loafl
A 2500 23
B 2100 15

Four restaurant chuins are willing 1o purchase their bread: their demands and the prices they are willing
to pay arc as follows:

Maximum Demand, Price Offered,
Chain loaves ¢/ loaf
| { B0 39
2 2304 37
] 550 4
4 1750 36

The ¢ost (in cents) of shipping 2 loaf from a plant (o g restiurant chain is given in the following table

Chain 1 Chain 2 Chain 3 Chain 4
SRl L= e 0 e i
Plant A fr . 4] 9
Plant B {2 i 8 - |

Determine a delivery schedule for the buking form that will maximize its total profit from this bread,
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Two drug compames have mventories of 1.1 and 0.9 million doses of » purticular flu vaccine, and an epidemic
af the My seems imminent in three cities. Since the flu could be ftal to senior citizens, it is Imperative that
they be vaccinated first; others will be vaccinated on a first-come-first-served basis while the vaccine supply
lasts. The amounty of vaocing (in millions of doses) each city estimates it could administer are s follows:

City 1 City 2 City 3

To Elders 0.325 {0.260 L1%s
To Others 0.750 0800 0650

The shipping costs (in cents per dose) between drug compames and cities are as follows:

City 1 City 2 City 3
Company | 3 ) [
Company 2 | 4 7

Determine 4 minimum-cost shipping schedule which will provide cach city with at least enough vaccine 1o
care for ils senior citizens, (Hinr: Divide each cily into two destinalions, semior citizens and others. Create
a dummy source. Make the shupping costs from the dummy to the senjor-citizen destinations prohibitively
high, effectively guaranteging no shipments along those links )

Prove that if the costs in any row or any column of a transportation tableau are uniformly reduced by the
same number (positive or negativel, then the resultant problem has the same optimal solution as the
original problem.



Chapter 9

Integer Programming: Scheduling Models

PRODUCTION PROBLEMS

Producrion problems involve a singie product which is to be manufactured over a number of successive
time peniods to meet prespecified demands. Once manufactured, units of the product can be either shipped
or stored. Both production costs and storage costs are known. The objective is to determine a production
schedule which will meet all future demands at minimum total cost {which is 1otal production cost plus
total storage cost, as total shipping cost s presumed fixed). (See Problem 9.1.)

Production problems may be converted into transportation problems by considering the time periods
during which production can take place as sources. and the ume periods in which units will be shipped
as destinations. The production capacities are taken to be the supplies. Therefore, x;, denotes the number
of units to be produced during time period i for shipment during time period j, and ¢y 15 the unit
production cost during time period i plus the cost of storing a unit of product from time period i until
time period j. Since units cannot be shipped prior to being produced, ¢;; is made prohibitively large for
{ > | Lo force the corresponding x; 1o be zero.

TRANSSHIPMENT PROBLEMS

A transshipment problem, like a transportation problem, involves sources, having supphes, and
destmations, having demands. In addition, however, it also involves juncrions, through which goods can
be shipped. Such junctions may be distinct from sources and destinations, or a source or destination
may also function as a junction. Umit shipping costs are given between all directly accessible locations,
and the objective is to develop a transportation schedule that will meet all demands at minimum total
cosl. {See Problems 9.2 and 9.3.)

Transshipment problems may be converted into transportation problems by making every junction
both a source and a destination. As in the transportation algorithm, total supply is presumed equal to
total demand; of this is not true initially, a fictitious source or destination is added. Thus, the total number
of units in the system is given either by the sum of the supplies or by the sum of the demands. Each
junciton is assigned a supply equal to its onginal supply (or zero, if the junction did not originally
coincide with a source) plus the total number of units in the system; and it is assigned a demand equal
to its original demand (or zero, if the junction did not onginally coincide with a destination) plus the
total number of units in the system, These assignments allow for the possibility that all units may pass
through a given junction. The cost of transporting | unit from a junction (considered as a source) 1o
itself (considered as a destination) 18 zero. Those units that do not pass through a junction under the
optimal schedule will appear as allocations from the junction to itself.

ASSIGNMENT PROBLEMS

Assignment problems involve scheduling workers 10 jobs on a one-to-one basis (more generally, they
involve permutations of a set of objects). The number of workers is presumed equal to the number of
Jobs—a condition that can be guaranteed by creating either fictiious workers or jobs, as needed—
and the time ¢; required by the ith worker to complete the jth job (or, the value of the ith object
in the jth position) is known. The objective is to schedule every worker to a job so that all jobs are

155
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completed in the minimum total time (or, 10 find the permutation that has the greatest total value),
(See Problem 9.4.)

Assignment problems can be converted into transportation problems by considering the workess as
sources and the jobs as destinations, where all supphes and demands are equal (o 1. A solution procedure
mare efficient than the general transportation algonthm iz the Humgarian method. which vses only the
cost matrix, Tableau 9-1. as input. There are four steps:

Jobs
1 2 3 fi
1 Eyi Ei3  Cpa Cia
E 2 €pj €33 Ep Cia
3 €y €33 Cay Cra

- S e SRS

n Cujf Ca3 Cua Com

Tableau %1

STEF |: In each row of Tableau 9-1, locate the smallest element and subtract it from every element
in that row, Repeat this procedure for each column (the column minimum is determined
after the row subtractions). The revised cost matrix will have ot least one zefo in every row
and column.

STEP !: Determine whether there exists a feasible assignment involving only zero costs in the revised
cost matrix, In other words, find if the revised matnix has n zero entries no two of which are
in the same row or column. If such an assignment exists, it is optimal If no such exists, go
o Step 1.

STEP 1- Cover all zeros in the revised cost matrix with as few horizontal and vertical lines as possible.
Each horizontal line must pass through an entire row, cach vertical line must pass through
an entire column; the total number of lines in this minimal covering will be smaller than n,
Locate the smallest number in the cost matrix not covered by a line, Subtraict this number
from every element not covered by a fine and add it to every clement covered by two hines,

STEP 4; Return to Step 2.

See Problem 9.5. According to a basic result in graph theory, the number of lines required in Step 3 will
be precisely equal to the largest number of zeros in the revised matrix such that no two of them are in
the same row or column.

THE TRAVELING SALESPERSON PROBLEM

This problem involves an individual who must leave a base location, visit n — | other locations (each
once and only once), and then return to the base. The cost of traveling between ecach pair of locations,
€ 18 given with ¢, not necessarily equal to ¢y, The objective is to schedule a minimum-cost itinerary.
Since what 15 important is the circuit executed by the salesperson, it is purely a matter of convenience
which of the n locations is designated the base.

An assignment problem may be associated with each traveling salesperson problem, us follows.
Arbitrarily label the locations involved in the (raveling salésperson problem with the intégers |, 2, ...
Consider a se1 of n "workers”™ and a set of n "jobs.™ The cost of an assignment, ¢, is the cost of traveling
directly from location { to location j. It is clear that every feasible solution 1o the traveling salesperson
problem corresponds to a feasible solution to the associated assignment problem. However, the
assignment problem will possess feasible solutions (corresponding 1o noncyclic permutations) which do
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not represeni a feasible solution of the traveling salesperson problem. The optimal selution of the
associated assignment problem serves as a first approximation to the solution of the traveling salesperson
problem. We apply the Hungarian methed to the cost matrix of the assignment problem {which is the
same as the matnx of the salesperson problem), and if the result corresponds 1o a feasible itinerary, that
itinerary must be optimal. If not, a variant of the branch-and-bound method (Chapter 6) may be used
1o create two new assignmen! problems which between them contain the optimal solution of the traveling
salesperson problem.

Branching 1s on the matrix element ¢, where p — ¢ 15 any one of the assignments in the current
first approximation (which, by hypothesis, does not reflect a feasible itinerary). One new cost matrix 15
obtained by replacing ¢ by a prohibitively large number; the other new matrix is obtained by replacing
4 (1he transposed element), as well as all elements in the pth row or gth column except ¢ itscli, by a
prohibitively large number.

Branch-and-bound procedures are computationally impractical for large problems involving hundreds
of locations, so a number of “near-optimal”™ algorithms have been devised for such situstions. (See
Problem 9.7.) The objection 1o near-optimal procedures is that, although they are quite good generally,
they ¢an, in particular instances, generate very poor approximations to the optimal solution, (See Problem
9.9)

Solved Problems

9.0 Ao industrial firm must plan for cach of the lour seasons over the next vear. The company’s
production capacities and the expected demands (all m units) are as follows:

Spring Summer | Fall Winter
Demand 250 100 TI 400 500
!
Regular
Capacity i L] 300 350
Owerlime
Capacity 1060 1 100 150

Regular production costs for the firm are §7.00 per unit. the unit cost of overtime vanies seasonally,
being $8.00 m spring and fall, $9.00 in summer, and $10.00 in winter.

The company has 200 units of invenlory on January 1. but, as it plans to disconlinue ihe
product at the end of the year, it wants no inventory after the winter season. Units produced on
regular shifts are not available for shipment during the season of production; generally, they are
sold during the following season. Those that are not are added to inventory and carried forward
at a cost of $0.70 per unit per season. In contrast, units produced on overtime shifis must be
shipped in the same scason as produced. Determine a production schedule that meets all demands
al minimum lotal cost.

Time peniods during which production can take place are the overtime shifts for the four seasons, and
the regular shifts for the first three scasons, Each of these seven periods becomes a source, and 1o them we
add an eighth source, initial inventory, since it 1oo can supply goods. The total supply is 1450 uans. Time
peniods in which products will be required are the four scasons, these become the destinations, with a total
demand of 1230 unite. Since total supply exceeds total demand, o fictitions destination must be created, with
i demand equal to the 200-unit excess
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Positive allocations from s spurce o the fictitious destination represent units that could be produced
by the source but will not be, because they are not needed, Since all units in initial inventory already have
been produced, a positive allocation from initial inventory 1o the dumimy must be avoided. This is done by
assigning a prohibitively large number (S10000) s the assoctated unit cost. All other costy associnted with
the dumrmy are, ds usual, taken 1o be pero.

Onher allocations which must be avoided are also assigned prohibitively lurge costs. These include
shipments from regular shifts to the current season or 1o earlier seasons, and shipments from overtime shifts
to any but the current season, Costs assoctated with the initial inventory are future camrying costs only,
since production costs und past carrying charges have already been incurred and cannol be minimized The
remiining cost entries are simply the production costs plus the storuge charges.

Applying the trunsportation algorithm to this problem, we obtain Tableau | as the optimal tableaw. It
follows that the spring demand will be met by using all 200 units from inventory and 50 units from overtime
production in the spring. The summer demand is met from the regular spring shift. The full demand is met
by 300 umts from the regular summer shift plus 100 units from overtime production in the (il The winter
demand is satisfied by using 100 units made in the spring on a regular shift and stored, plus 350 units from
the regular fall production and 50 units produced in the winter on an overtime shift.

Spring Summer Fall Winter Brummy Supply iy
Regular | 10000 | | 7.00 1.70 | 8.40 | 0
(Spring) | (9991.60) 100 (0 100 1.60) 200 840
Regular | 10000 | | 10000 | | 700 7.0 | o |
(Summer) | (999430) | (9993.70) 300 0 (2.30) 300 770
Regular | 10000 | | 10000 10000 | | 700 | o |
{(Fall) (9995) (999440) | (999370) is0 (3 350 7
e 070 | 140 | 210 10000 |
Inventory | 200 (0.10) (0.10) @10) | (10008 200 2
Overtime |_8.00 wooo | | oo | | 10000 0 |
(Spring) 50 (9991.40) | (999070) |  (9990) 50 100 10
Overtime |_10000 | | 900 | wooo | | 10000 | | o]
(Summer) (9] {080 (9990 70) (F9590) 50 b 1] 10
Overtime L 10000 | | 10000 | | #00 | 10000 | | 0|
(Fall) (9993.30) | (999270) 108 999130) |  (1.30) 100 870
Overtime | 10000 | | 10000 | | w000 | | 000 | 0]
(Winter) | (9992) | (999140) | (999070) 50 100 150 10
Demand 250 100 400 500 200
o -2 ~ 1,40 -0.70 0 ~10

Tableau |

A corporation must transport 70 units of a product from location | (o locations 2 und 3, in the
amounts of 45 and 25 units, respectively. Air [reight charges ¢, (in dollars per umit) between
lociations served by the air carnier are given in Table 9-1, where dotted lines signify that service
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Table 9-1

J

1 2 3 4
i
1 3R 56 4
2 I8 g
3 | %% 17 19
a4 | 34 19

i

Fig. 9-1

is not available, Determine a shipping schedule that allocates the required number of goods to each
destination al a minimum total freight cost. No shipment need be flown directly, shipmenis
through intermediate points are allowed.

This problem is depicted schematically by Fig. 9-1, whercin supplies are indicated by positive, and
demands by negative, numbers. Notice that, despite the symmetry of Table 9-1, the freight rates arc nat
proportional to distance. Location 4 is a pure junction. Locations 2 and 3 serve as both destinanons and
junctions {goods can be shipped from location | to location 3 through location 2, and from 1 1o 2 through
11, whils location | serves as both a source and 2 juncuon, Since it could never be optimal to ship goods
from location | and have them refurn at some later lime. only to be shipped out again. the problein can be
simplified by not allowing shipments re locatton 1. thereby restricting it to being solely a source.

For application of the tramsportation algorithm, we increase the supply and demand of every
junction ~locations 1, 3, and 4 by the total number of units in the system, T wvnits. Also, we defin:
Fag = gy @ SI000, (o force sero shipments over the nenexistent routes 2 — 4 and 4 - 2, and define
C23 = O3y = 44 & (L The transportation algodthm produces the optimal Tablena 2 Thus, 45 units will be
shipped from location | directly 1o Jocation 2, satisfyving its demand, while the remaining 25 units will be

Dhesstin thons
2 a 4 Supply b
kL] 56 4
! 45 ()] 5 70 0
o | 2] [ 10000]
2 70 {12) {10 004) 70 -1
7 0 19
3 (423 T0 {38) m ~53
woo| [19] o |
4 (9996) 15 45 0 -4
Demand 115 93 i)
" iR 53 M

Tablenu 2



160

9.3

INTEGER PROGRAMMING: SCHEDULING MODELS [CHAP. %

shipped (rom location 1 o location 4, wher¢upon they will be forwarded (o location 3 Note thal
*1; = x§; = T0, indicating that {all) T wnits avoid passing rhrough these locations. Similarly, x§, = 45
signifying that 45 of the 70 wnits are not shipped through location 4,

For the data of Fig 9-2. determine & shipping schedule that meets all demands at a minimum
total cost.

Fig. 9-2

Locations | and 2 sre sources, while locations § and 6 are destinations. Location 3 & both & source
and a junction, whereas location 4 serves both as a destination and a junction. Because 1oftal supply s 180
units but total demand i only 105 units, location 7 is created as a dummy destination with a demand ol
180 — 105 = 75 units, Since every junction is made both a source and i destination, by adding 180 units to
both its supply and its demand, the transportation tableau will invelve sources 1, 2, 3, 4, and destinations
N4, 5 6, 7. Besides the costs given in Fig. 9-2, we have zero as the cost from a junction (as @ soorce) to ixell
(as o destination). sero a5 the ¢ost from any source (o the dummy, and an excessive amount (S10000) 4
the cost over any nonexistent fink (eg. | — 6}

Tableau 3 15 the optimal transportabon tablenu. Location 3 receives 2 units from location | and 7
units from location 2, whereupon it redistributes these units along with its own initial supply of 15 units 1o
locations 4, 5, and 6. Alter all demands have been satisfied, location | will remain with 75 units, indicated

Destinations
3 4 5 6 | (dummy) 7 | Supply i

3 10000 8 107000 0

] b (9994) (1 19993) 7 93 3
2 7 10 (0 101000 0

2 0 2) (9994) (9994) (1 70 2
0 3 4 4 0

1 L] L] 1] 45 3) 195 ]
10000 o 10000 2 0

4 (H0D03) 180 (9999) (1 6] 180 -3

Demand 180 210 30 45 75

B 1] ] 4 4 =3

Tablean 3
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LX |

in Tableaw 3 by the allocanon from location 1 1o the dummy. The asllocabions x%, = 90 and xI; = 180 am
book entnies signifying the numbers of units that do not pass throogh junctions 3 and 4, respectively.

Solve Problem 1.13 by the Hungarian method

Table -1 of Problem 1,13 is expanded 10 make the number of eveals equal to the number of swimmers;
the resuit s Tableay 44 As psual, costs {times) associaled with the dummiey, events 5 and 6, are taken 1o
be zero. The rationale here is that events 5 and 6 do not exist, so they can be completed in rero lime
swimmers assigned to these events will be the ones not entéred i the four-swimmer relay.

The Hungurian method 8 initiated by subcacting 0 from every row of Tableau 4A and then subtracting
65, 69, 63, 35 1), and O from columns | through & respectively, this generates Tableau 4B. Since this matmnx
dioes nol contain a zero-cost feasible solution, we cover the ensting Zeros by as few horizgontal and vertical
lines as possible. One such covering s thay shown in Tablcau 4B; anomiber, cqually good, is obwained by
replacing the line through row 3 by a line through column 4 The smalkst uncovered clement is 1, appearing
in the (1, 1} position. Subtracling | from every uncovered chkement in Tableau 4B and adding 1 to every
element covered by two lines—the (1, $). (L &), (3. 51 (3, 6) (%, 5} and (5, 6) elements—we arrive al Tableau
40

Tableau 4C also does not contain a feasible zero-cost assignment Repeating Step 1 of the Hunganan
method, we determine that 1 5 again the smallest uncovered element. Subtracting ot from each uncovered
element and adding it (o every element covered by two lines, we obtam Tableau 4D, which does contain a
feasible rero-cost assignment, 1s indicated by the starred entries. Thus an optimal allocation is swimmer |
o event | (backsiroke), swimmer 2 1o event 3 (butterfly), swimmer 3 1o event 4 (lreesiyle), and swimmer 3
o event I {breaststroke), swimmers 4 and 6 are not entered in the modley, The minimum 1otal time (in
scconds) 15 caloulated from Tableav 4A as

-'""L'” *f;*‘l‘{'l“{fi:"ﬁ5+ﬁ5+ 5‘5 fﬁq"*—:ﬁl

This solution, hewever, i not the only optimal one. An equally eptimal assignment can be oblained from
Tableau 40> assign swimnmer [ loevent 3 and swimmer 2 to event 1, leaving the other assignmenls unchanged.

Events
i 2 3 4 5 @ ! 2 3 4 5 &
| 6 73 63 57T 0 0 1
Ez 7T 0 65 £ 0 0 2
3 68 T2 69 55 0 0 3
gd 67 75 0 9 0 0 4
5 71 6 15 57 0 O 5
L 6 1 e 5 0O 0 0
Tablean 44
1 2 3 4 5 6 1 2 3 4 5 6
1 -2} I 0 5 0o 2 2 2
2 1 & |:h_ 2 0 0 o 1 0 0
3 +——5—8—F1—+ i 3 4 6 0 2 2
4 I § & 3 9 ¢ 4 0 35 5 2 0 0
5 ﬁTuzll 5 s 0 11 1 1
[ k| ? 3 [ & > 1 1 20 (il

Tableaw 4C Tubleau 4D
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Verify the Hungarian method.

As 0 consequence of Problem & 14 (remember that the assignment problem is a special transponation
problem), Step | of the Hungarian method does not alter the optimal assignment, but simply provides a
cost matrix with smaller entries. Since each clement in this new cost matrix i nonncgative, a zero-cost
assignment, if feasible. must be optimal. Thus Step 2 of the method, If no rero-cost feasihle solution exists,
then the zeros in the current cost matrix are not well distributed,

Step 1 is a procedure for redistributing and, perhups, introducing additional zeros. The operations
involving ¢, the smallest (positive) cost not covered by a line in the current matrix, replace the current matrix
by a new nonnegative matrix such that (i) the element ¢ fiself is replaced by a zero, (ii) those old zeros
covered by a single line are retatned, and (i) the rest of the old zeros are eplaced by & Bul since these
operations are equivalent to subtracting ¢/2 from cach uncovered row and each uncovered column, and
adding ¢/2 Lo esch covered row and each covered columm, Problem B.14 once more gulrnniees that the
optimal assignment is unaliered.

Xanadu National Airlines offers an excursion at one low price that allows a person to cover its
entire service route. The ticket, which is valid for two weeks from the date of purchase, carries
the following restriction: No city on the route can be revisited except the city of origin, which
can be the last stop on the excursion. A foreign tourist, presenily in city 1 (the capital), wishes
to see provincial cities 2, 3, and 4, before returning 1o the capital; she decides to travel on the
airlines. Flight tmes (in minutes) between the cities of interest are given in the table below, where
dotted entries signify that service between corresponding locations is not available. Determine an
acceptable itinerary which will minimize her total flight time.

Cities | 2 ) 4 | 2 3 4
1 " 68 5 3 i oo 65 53 e
2 65 .-+ 55 2 65 10000 95 10000
3 5 8 = 31 3 53 Die LLE T} 3
4 M e B 4 o 10000 81 10000

Tableau 6A

We begin by replacing each dotied entry in the tmetable by an exorbitant number of prohibit
assignments to those links under an optimal itinerary. The result is Tableau 6A. Applying the Hungarian
method (o this tableay, we obtain (on the second application of Step 2) the assignment indicated by the
starred clementy; namely, | = 4,4 = 1,2 = X 3 = 2, This iv nor a valid itinerary, for it setums the (ouns
to city | immediately afier her fimt stop in city 4

| 2 3 4 1 2 k| 4
I 10000 b65* 53 10000 1 10oD0 10000 10000 @ 37*
2 fs nooa 95 10000 2 65" 10000 95 10000
3 53 o5 \opon B1® 3 53 95* 10000 10000
4 e 10000 LB 10000 4 100K 10000 Hi* 10 (00
Tableau 6B Tableau 60

We now hrarch on the starred element ¢, = 17 of Tableau 6&4 The first hranch ix effacted by replacing
14 by a prohibitively large number, as shown in Tableau 68, The second branch i effected by replacing
€ay. the transposed clement, as well as all elements in the fourth row or first column except ¢, itsell, by a
prohibitively large number. This is done in Tableau 6C
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Applying the Hungarian method to each of these two new codt matrices scparately, we obtain vahd
iticerarses for both: | = 2,2 = 3, 3 — 4, 4 — |, with a cost of 278 min, for Tableau 6B;and 1 — 4,4 = 3,
3 = 2,2 - |, with a cost of 278 min, for Tahleau 60 Both solulions are optimal. Indeed, whenever the cost
matrix is symmetric, an optimal circuit remains optimal when described in the opposite sense.

Develop a “near-optimal™ algorithm for the traveling salesperson problem.

We develop the nearest-reighbor method. based on the principle of sequentially selecting the cheapest
remaining link such that its inclusion does not complete a circwit oo sbon.

STEP 1: Locate the smallest element in the cost matrix (break ties arbitranly), arcle it, and mnclude the
correspanding link in the tinerary.

STEP 2: I the newly circled element is ¢, replace oll other elements in the pth row and all other clanents
in the gth column, as well us the ransposed element ¢ ,, by a prohibitively large number

STEP i  Locaic the smallest uncircled element m the latest cost matnx. Tentatrvely adjoin ils correspond-

ing bmk to the (incomplete) tinerary. If the resulting iinerary 15 Eeasible, circle the designated
cost and go to Step §.

STEP & If the resulting ttinetary ix infeasible, remove the latest link from the itinerary and replace its
corresponding cost by a prohibitively large number, Geo 1o Step 3.

STEP 5: Determine whether the itinerary is complete. If 10, accept it as the near-optimal one. Il not, go
to Step 2.

Step 2 ensures that a location, ance lefi, will not be left again, and that a location, once entered, will not be
entered again. Hence, the tentative itinerary of Step 3 will be feasible, unless it contains o circuit of fewer
thati o links.

Use the nearest-neighber method (Problem 9.7) to find 4 near-optimal, traveling salesperson
itnerary. if the cost matrix is given by Tableau SA.

3 ®0 105 165 1000 35 8 105 |65

I - i

2 15 ... 45 20 K0 2 35 000 45 0 80

2 8 45 w75 1 B0 45 o0 M 7S

4 05 20 W0 - 60 4 s N 30 100 60

5 65 80 75 &0 s | 188 % 75 60 1000
Tableau BA Tableas 8B

We first replace the dotied entries in the cost matrix with a prohibitively large number (1000), thereby
obtuning Tableau 8B. The smallest entry m this tableaw s either ¢y, or ¢, ,. Arbitranly choosing ¢,,, we
circle it indicating that we have accepted link 2 — 4 as part of the final itinerary. We then replace all other
elements in the second row and all other elements m the feurth column, as well as the transposed elzment
€42, by 1000, The result i= Tableau 8C.

The smallest ungircled element in Tableaw 8C is ¢, , = 30, Adjoining link 4 — 3 1o the currenl incomplete
itmerary, we have the (still incomplete) itinerary 2 -4, 4 - 3, which is leasthle. Consequently, we
circle ¢4y and replace all other elements in the fourth row and all other elements in the third column of
Tahbleau BC, as well as ihe transposed element ryq, by 1000, The result is Tableau 8D,

The smallest uncircled element in Tableau 8D is ¢, ; = 35, Adjoming link | — 2 to the current incomplete
itimerary, we generaie ithe flinerary 1 = 3, 2 =4, 4 = X, which is feasible. Consequently, we cirde ¢,
iind replace all other elements in the first row and all ather elements in the second column of Tableau 8D,
as well as the transposed element ¢y, by 1000, The result is Tableau BE

Contimung with the algorithm, we generate soquentially Tablenux BF and 3G, The itinerary indicated
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LA s e ) e

1 2 3 4 5 [ 2 3 F 5

10040 15 80 1000 165 1 1000 3 1000 1000 165

000 1000 1000 @) 1000 2 1000 1000 1000 @) 1000

B0 45 1000 D00 75 3 M 45 1000 1000 75

105 1000 30 1000 60 4 o0 1000 @0 1000 1000

165 80 75 1000 1000 5 165 0 1000 1000 1000
Tableau BC Tableaa KD

by the circled cleménts in Tableau BG—namely, | =2 2 =4, 4 =3, 1 = 5§ 5 - |—is complete and
15, therefore, the near-optimal one. 1t 1otal cost s

=35+ 204 75+ 30 4 165 =323

Sec ulso Problem 917

L T o

t 2 ¥ @& B r 2 % & 3

w00 G 1000 1000 1000 I 000 @9 1000 1000 1000

1000 1000 1000 @) 1000 2 1000 1000 1000 @) 1000

80 1000 1000 1000 75 3 00 1000 1000 1000 @9

oo 1000 G 1000 1000 4 o 1000 & 1000 1000

165 1000 1000 1000 1000 5 165 1000 1000 1000 1000
Tableau KE Tableau 8F

1000 (3 1000 1000 1000
1000 1000 1000 @0 1000
1000 1000 1000 3
000 1000 @O 1000 1000

A B Ged b

Tablean HG:

99  Apply the nearest-neighbor method 1o Problem Y.6.

The smallest entry in Tablean 6A, an initial cost matrix for this problem, s either ¢, or ¢, We
arbitrarily circle ¢,, and then replace all other clements i the first row, all other clements in the fourth
column, and ¢, by a prohibitively large number. The result is Tableas 9A

| pd 3 4 1 2 3 4

b b -

10000 10000 10000 @)
10000 10000 95 10000

5595 10000 10000 ) 10000 10000 10000
10000 10000 Bl 10000 10000 10000 Bl 10000

Tableaw 94 Taldean 9i

10000 10000 10000 (D
65 10000 95 10000

s L S o=
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LAl

Applving the nearest-neighbor algonthm 1o Tableau 9A. we obtam Tubleau 98 with the partially
completed itinerary 3 — 1, | — 4 The smallest entry in Tableau 98 s ¢, = 81. Adjoiming link 4 — 3 to the
curren! mmerary viclds 4 — 3, 3 = |, | = 4, which = not feasible. smoe it 15 a circurt that omits gty L
Accordingly, we do not accept 4 — 3 as part of the final winerary, and we replace its cost, oy, with a large
number. The result is Tableaw 9C,

1 2 } 4 | 2 i 4
| 10000 10000 10000 @ ! oo 10000 10000 G
2 10000 10000 95 10000 2 10000 0000 @) 1000
3 G 10000 10000 10000 i € 10000 10000 10000
4 0000 10000 10000 10000 4 W00 (0000} 10000 10000
Tablean 9C Tableau 9D

Continuing with the algorithm, we oblain afier iwo more terations Tableau 9D. The near-optimal
solution suggesied by the oreled cost elements is | = 4.4 » 2. 2 =3, 3 = |, wirh

z= 3T 4 10000 + 95 4+ 53 = 10185

This value of the objective function ts prohibitively high: in this case, the "near-optimal® solution is actually
far from optimal

Supplementary Problems

A manufacturer receives an order from o large city for six doubledecker buses, 1o be delivered two at a time
over the next three months. Production data for the manufacturer are shown in Tuble 9.2,

Tuble 9-2
Months
i 2 3

Regular Production Capacity,
units 1 2 3
Cwvertime Production Capacity,
units 2 3 2
Regular Production Cost,
S10000 uni 15 | 43 | 40
COwvertime Production Cost,
SO0 unar 9 [ 47 | 45

Buses can be delivered 1o the ¢ity al the end of the same month in which they are assembled, or they ecan
be stored by the manufacturer, at a cost of 33000 per bus per month, for shipment during a later month
The manufacturer has no current inventory of these doubledecker buses and desires none after (he
completion of this contragl. Determine a production schedule that will meet the city’s demands al minimum
cost 1o the manufbciurer
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A drug company estimates demand (in millions of doses) for one of its saccines as follons Ogober, 71
November, 112, December, 125 January, 1.7; and February, 2 1. There o relatively litthe demand for the
vaccine duning the other montha, and company policy for supplying these demands is to have | million
doses in inventory at the end of February The vaccine takes four weeks 1o produce. <o no doses are available
for shipping during the month they are produced Once the vaccine 8 ready, however, it can either be
shipped immediately 1o customens or carried forward as inventory at a cost of 10§ per dose per month
Tradivonally, the company produces the vaccine only between August and December inclusively, Any vacoine
remaiming in imventory from the previous year i destroved on September |

The company’s production capacities (in millions of doses) and the antiopated production costs (in
cents per dose) for cach month of the upcoming production cycle are as follows

August September October November Devcember

Capacity 125 o 98 L1 55
Cost 63 i 78 2 4

Determine a production schedule that meets all demands at munimum total cost
Determine a minimum-cost shupping schedule for the transshipment problem depicted in Fig 9.3

X

315

Fig. 9-1

An automobile manufacturer has orders from Jocations & 6, and ™ for % 600 and 80 amits. respectively, of
a parncular model The production process consists in makmg the body enther at location 1 or 2 shippeng
the body either to location 3 or 4, where it is assembied onto the rest of the car: and then shipping the
entire umit 10 1he waiting customer, Production costs per body are $£31 4t location | and $480 at location
1 Assembly costs at locations 3 and 4 are 32256 and $22W, respectnely. Tramsportation costs (m dollars)
between locations are as follows:

L ocahions | 3 4 Locations S 5 7
| 4 W 1 | 2 &8 N
2 68 %2 1 $ H W

Production capacities at locattons | and 2 are 150 and 170 bodies, respectivedy. locations 3 and 4 can
anscmble all the bodies forwarded to them. Determine a production and shipping schedule that will meet
all demands at minimum cost. (Hint: Set up as a transshipment problem )
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.14 A rent-a-car company has an excess of cars in some cities and & shortage in others. In particular, cities |
and Y have surpluses of 15 and 12 cars, respectively, while cities 3, 4, and S need 7, 18, and 9 additional cars,
respectively. Cars can be shipped directly between locations, or they can be shipped through intermediate
atics where the company has agencies. Il shipping costs (in dollars per car) are as given in Tableau 14,
determine a minsmum-cost shippeng schedule for the rent-a-car company.

Cities I 2 3 4 s

I T R’ B 6

2 T = R B 73

3 1 « 17T B

4 & 3 N - B

5 6 B B 15 -
Tableau 14

915 A fast-food chain wants 10 build four stores in the Chicago arca. In the past, the chain has used sia different
comiruction companies, and, having boen satisfied with cach, has invited cach to bid on each job. The final
hids (in thousands of dollars) were as shown in Table 9-3.

Table 8-
Constrection Companics
! 2 1 4 ] 6
Store | 853 L] K75 K24 89 B6.7
Store 2 789 74 774 765 793 TR
Store 3 82 L8 K24 LT B1s 817
Store 4 E43 Kl §6.2 813 LR B5S

Since the fast-food chain wants 1o have each of the new stores ready as quickly as possible, it will sward
at most one job to a construction company. What assugnment results in minimum total cost to the fast-food
chain?

9.16 Solve Problem 1.21.
9.17  Find an exact solution to Problem 9.8 and compare it with the near-optimal itinerary obtained theremn.

%18  The following tableau is the (unsymmetnc) cost matrix for travel among a particular set of locations.
Determine a minimum-cost, traveling salesperson itinerary.

Citves 1 2 3 4 5
I «=s | L 3 L
2 . 2 L}
3 1 3 5 1
4 2 5 6 --- §
5 5 3 7 &6 ---
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Use the nearest-neighbor method 10 find a near-optimal itinerary for Problem 9.18.

Show that the branching process for the traveling salesperson problem creates two new problems, in one of
which link p - ¢ must be taken and in the other of which link p — ¢ must not be taken

Show by means of an example that an optimal itinerary for the traveling salesperson problem may not still
be optimal when the constramt that each location be viuted only once 18 dropped.



Chapter 10

Nonlinear Programming: Single-Variable Optimization

THE FROBLEM
A one-vaniable, unconstrained, nonlincar program has the form
optimize: 2= f(x) (1o.1)

where f(x) is a (nonlinear) function of the single variable x, and the search for the optimum (maximum
or minimum) is conducted over the infinite interval ( — oo, ). Il the scarch is restricted to a finite
subinterval [a, b], then the problem becomes

optimize: == f(x)
subject to: asx< b
which is a onc-vanable, constrained program.

(10.2)

LOCAL AND GLOBAL OFTIMA

An objective function f(x) has a local (or relatice) minimum at x, if there exists a (small) interval
centered at x, such that f(x) > fix,) for all x in this interval at which the function is defined. If
S(x) 2 fixg) for all x at which the function is defined, then the minimum at x, (besides being local) is
a global (or absolute) minimum. Local and global maxima are defined similarly, in terms of the reversed

inequality.

Example 10.1 The function graphed in Fig. 101 is defined only on [a, 5] It has relative minima at 4, x;, and x,.
relative maxima at x,, x,, and & a global minimum at x;; and global maxima at x, and b,

i

|
|
|
I
|
I
J
|

Fig. 10-1

Program (/0.7) secks a global optimum; program (/0.2) does too, insofar as it seems the best of the
local optima over [a, b]. It is possible that the objective function assumes even better values outside
[a, b]. but these are not of interest.
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RESULTS FROM CALCLLLS

Theorem 10.0: I [(x) 1s continuous on the closed and bounded interval [a, b). then f(x) has global
optima (both a maximum and a minimum) on this interval

Theorem 10.2:  If f(v) has a local optimum at x, and if f(x) is differentiable on a small interval centered
at Nge ﬂ'ﬂﬁ fwlxnl - “.

Theorem 10X Il fiv) s twice-differentiable on a small interval centered at v, and i [(x,) = 0 and
[“Ixg) > 0, then fix) has a local minimum at x,. If instead fix,) = Dand [ (x,) <0,
then fix) has a Jocal maximum at x,,

It follows from the first two theorems that if f(x) is continuous on [a, A1, then local and global optima
for program (/10.2) will oceur among points where () does nol exist, or among points where [ (x) = 0
(generally called stavionary or critical points). or among the endpoints x = @ and v = b (Se¢e Problems
10.1 through 10.3)

Since program (/0.7) s not restricted to a closed and bounded interval, there are no endpoints to
consider. Instcad, the values of the objective function at the stationary points and at points where ['(x)
does not exsst are compared 1o the hmiting values of fix)as v —= == It may be that neither himit exists
(consider f(x) = sin x). But if either limit does exist—and we accept = as a “limit™ here—and yields
the best value of fix) (the largest for a maximization program or the smallest for a minimization
program), then a global optimum for f(x) does not cxist. If the best value occurs at one of the finite
points, then this best value is the global optimum. (See Problem 104)

SEQUENTIAL-SEARCH TECHNIQUES

In practice, locating optima by calculus is seldom fruitful: either the objective function is not known
analytically, so that differentiation 1s impossible, or the stationary points cannot be obtained algebraically.
(See Problem 10.5.) In such cases, numerical methods are used to approximate the location of (some)
local optima to within an acceptable tolerance.

Sequential-search technigues start with a finite mterval in which the objective function s presumed
unimosdal, that is, the interval is presumed to include one and only one point at which f(x) has a local
maximum or munimum. The techmgues then systemaucally shrink the interval around the local optimum
until the optimum is confined 1o within acceptable himits; this shninking s effected by sequentially
evaluating the objective function at selected points and then using the unimodal property to eliminate
portions of the current interval.

Example 102 Figure 10-2 exhibits the values of the objective function at the pomts v, and v, If a local minimum
i known to be the only extremum in [« 4], then this mmimum must be to the left of v for fix) has begun to
mcrease by that point. and. by the unimodal property, must contimue 1o incresse 10 the nght of it Hence, the
subinterval (x.. b] can be duscarded.

® iy, flgl) -
s fin) @ -
-
L s i | i i i 1 I
a o i3 [ & LH 1L
if the search is for a if the search u for a e il f the s
ol g g - boval mimim - o for & minimum

Fig. 102 Fig. 10-3
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M a local mavimum i the sole extremum in [o. b then it must be located 10 the right of x,, and
the subinterval [a. v, ) can be ducarded

Specific sequential searches are considered in the three sections that follow.

THREE-POINT INTERVAL SEARCH

The interval under consideration is divided into quarters and the objective function evaluated at
the three equally spaced imtenor points. The interior point yielding the best value of the objective is
determined (in case of a tie, arbitrarily choose one point), and the subinterval centered at this point and
made up of two quarters of the current interval replaces the current interval Including ties, there are
10 possible sampling patterns; one of them is illustrated in Fig 10-3 (See Problems 106 and 10.7)

The three-point interval search is the most efficient equally spaced search procedure in terms of
achieving a prescribed tolerance with a minimum number of functional evaluations. It is also one of the
castest sequential searches 1o code for the compulter.

FIBONACCI SEARCH

The Fibonacei sequence, |F,) = 11,1, 2. 3, 8.8 13, 21, 34, 55... .\, forms the basis of the most efficient
sequential-scarch technique. Each number in the sequence is obtained by adding together the two
preceding numbers: exceptions are the first iwo numbers, F, and F,. which arc both 1.

The Fibonacc search is imitialized by determining the smallest Fibonaca number that satisfies
Fue 2 b~ a, where ¢ is a prescribed tolerance and [a. b] s the onginal interval of interest Set
€ = (b~ a) Fy. The first two points in the scarch are located Fy_ ¢ units in from the endponts of
[a, b), where Fy_ , is the Fibonacc number preceding F,. Successive points in the search are considered
one af a time and are positioned F.o' (f = N ~ LN < 3,..., 2) units in from the mewest endpoint of the
current interval. (See Problem 10.8) Observe that with the Fibonace procedure we can state in advance
the number of functional evaluations that will be required 1o achieve a cortain accuracy, morcover, that
number is independent of the particular unimodal function,

GOLDEN-MEAN SEARCH

A scarch ncarly as efficient as the Fibonacci scarch is based on the number (5 ~ 1) = 06180 - -,
known as the golden mean. The first two points of the scarch are located (0.6180Nb — a) units in from
the endpoints of the mitial interval [a. b] Successive points are considered one at a time and are
positioned 0.6180L, units in from the newest endpoint of the current interval, where L, denotes the length
of this interval. (See Problem 10.9.)

CONVEX FUNCTIONS

Scarch procedures are guaranteed to approximate global optima on a scarch interval only when the
objective function is unimodal there. In practice, one usually does not know whether a particular
objective function is umimodal over a specified interval. When a search procedure is applied in such a
situation, there is no assurance it will uncover the desired global optimum. (See Problem 10.11.)
Exceptions include programs that have convex or concave objyective functions.

A lunction f(x) is conrex on an interval 7 (finite or infinite) if for any two points x, and x, in J
and for all0 < 3 < |,

flax, 441 = 2dx) < af () + (1 = 3)fixy) (10.3)

If { 102.3) holds with the inequality reversed, then f(x) is concare. Thus, the negative of a convex function
1s concave. and conversely. The graph of a convex function is shown in Fig 10-4; a defining geometrical
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property is that the curve lies on or above any of its tangents. Convex functions and concave functions
are unimodal.

Theorem 104 1f f(x) is twice-differentiable on 7, then f(x) is convex on 7 if and only if f(x) 20
for all x in 7. It is concave if and only if f°(x) < 0 for all x in /.

Theorem 105 If f(x) is convex on ¥, then any local minimum on . is a global minimum on J_ If
f(x) is concave on f, then any local maximum on .f is a global maximum on .

I

)
afix )+ (1 = a}ix:)

flax, + (1 = a)sy)

fixz)

8 ]

If (10.3) holds with stricl inequality except at 2 = 0 and z = 1, the function is strictly conrex. Such
a function has a stnctly positive second derivative, and any local (and therefore global) minimum is
unique. Analogous results hold for strictly concave functions.

Solved Problems

10.1 Maximize: = x(3x — x) on [0, 20].

Here fix) = x(3= — x) is continuous, and ['(x) = $x — 2v. With the denvative defined everywhere. the
global maximum on [0, 20] occurs at an endpomt x = 0 or x = X0, or at a stationary point, where f'(x) = 0.
We find x = $=/2 a3 the only stationary point in [0, 20] Evaluating the objective function at each of these
points, we obtain the table

x l 0 Se2 20

.H.ﬂ! 0 6169 8584

from which we conclude that x* = 512, with z® = §1.69.

102 Maximize: == |x* —8/ on[—4,4]
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103

104

10.5

-3 ti-‘-"i
fihm|x? 8= f §=x* --'}ri_-;:svi
=3 JBsx
is a continuous function, with
x x<=.8
fi)ym{ =2x - Becxec 8
Ix ‘/ici

The derivative does not cuist &l 1 = _t..rilﬂl i s rero al v = ( all three points are in [ - 4, 4], Evaluating
the objective function at each of these points, and at the endpoints x = +4, we gencrale the table

' | -4 -8 0 8 4

o | s 08 0 %

from which we conclude that the global maximum on [ —4,4] is £* = § which s assumed al the three points
%= +dand x* = 0

Minimize: = = f(x) on [0, 1], where
ﬂll'{l x=0

x D<xxg1

Theorem 10,1 does not apply if the function is dscontinuous on the mterval of interest, as it s here
In fact, no bocal or global minkmum exists for this problem, since the function assumes arbitranly small
positive values but not the value rero.

Maximize = = xe "'

Here
flx)me™ = 20% " we () - 2%

which is defined for all x and which vanishes only at x = +1/,/2 Since x is unrestricted, the values of
the objective function at the stationary points,

I
izl /D m 2"V = 40429
V- 7
must be compared 10 the imiting values of f{x) as x -+ + =, which are both 0 in this case. Recording these
resuits,
x=-2 =2 /2 x-x

A

fm| 0 ~0429 0429 O
we see that a global maximum exists at x* = 1//2 and is :* = 0429,

Minimize: = = x sin 4x on [0, 3]
Here [(x) = sin 4x 4 dx cos dx, which is defined everywhere. The equation for the stationary ponts,

sindy + dvooadx = 0

cannot be solved algebraically, so that we are unable precmely to identily the stationary pownts in [0, 3]
However, 1n the case of simple functions like this one, 3 good deal can be kearned from a rough graph
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Fig. 10-5). It is seen that the stationary points altermate with the zeros of fix) (Rolle’s theorem), which are the
zeros of sin 4x. The global minimum of fix) on [0, 3] must be armaned in the subiterval [Te'8, 3], Le,

iy O L |

hecause that s the region in which the negative values of sin 4x are multiplied by the largest positive values
of x, Making the evaluations

7
f(Tn %) = :.-n- ~275
fillmlsinl2= <1.68]

we conclude that the global minimum s attained at the second local mmmimum of f1v), the one mear x = T &,
and not at the endpoint x = 1

oY I
I

i

oo u nimds :

I

i

]

]

]

0 ]
L] T
5.1 ] A T2

P I 5

I

i

Fig. 10-8
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106 Use the threc-point interval search to approximate the location of the global minimum of
fix) = x sin 4y on [0, 3] to within ¢ = 0.0].

As a result of the graphical analysis done in Problem 105, we restrict attention to the subinterval
[T= 8, 3] The global minimum occurs in this subinterval and the function is unimodal there.

First ireration; Dwiding [Ta %, 1) into quarters, we take x, = 28117, x; = 28744, and v, = 29372 as the
three intenior pomnts and calculate

rlitl‘- ¥, “4.t. =281 Tan 428117 = -2724
flxg) = xymndxy = JRT44 sin H(2RTH) = - 25197
fixjl=xyuindy, = 29372 sin 429372 = - 21426

Here, 1, is the mtenor point yiclding the smallest value of fix); so we take the subinterval centered at x|,
namely [72 K 2K744], as the new interval of inlerest.

Second iteration:  Dividing [T= '8, 28744] imto quarters, we have v, = 27803, v, = 28117, and 1, = 28430
as the three intenor points of this new interval Thus

Jixg) = xguindx, = 2TR0Y un 427803} = ~ 27584
Sx )= =272M (as before)
Jxg) = xysindy, = 28430 gn 42 K4I0) = — 2 /439

Of these intenor points, x, yiclds the smallest value of fixk so we take the subinterval centered at L
[7=/K 28117), as the new interval of interest,
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Third iteration: We divide [72/8, 28117] into quarters, with x, = 27646, x, = 27803, and x, = 27960 as
the three interior points. Then

Jixg) = xg sin dx, = 276486 sin 4{2.7646) = 27591
flng) = 27584 (as before)
!{Jq’ = iy 0N dy, = 1““.“1.“’ - —11“’

Here, x, is the interior point yielding the smallest value of the objective function; so the new interval of
interest is the one centered at it, namely [7=/8, 27803).

Fourth itevation: We divide [Tn/8, 27803] into quariers, with 3, = 27567, v, = 27646, and x, = 27724
a3 the three new intenor points. Now

Sixg) = xg sin dxg = 27567 sin 4(2.7567) = - 27554
fixg) = ~27591 (as before)
fixg) = xg sin dxy = 27724 sin 4(2.7724) = — 27602

Since xy is the interior point with the smallest value of f{(x), we take the subinterval centered at x,. namely
[2.7646, 2.7801], as the new interval of interest. The midpoint of this interval, however, is within the prescribed
tolerance, « = 001, of all other points in the interval; we therefore accept it as the location of the minimum.
That i,

ey, =277 with 1% = fixg) = 27602

Use the three-point interval search to approximate the location of the maximum of f(x)= x{5x - x)
on [0, 20] to within ¢= 1,

Since f7(x) = 2 < 0 everywhere, it follows from Theorem 104 that f(x) is concave, hence unimodal,
on [0, 20]. Therefore, the three-point interval search s guaranteed 10 converge 1o the global mavimum

First iteration: Dividing [0, 20] into quariers, we have x; = §, x; = 10, and x, = 15 as the three interior
points. Therefore

Six,)= x,(%n —x,) = §%= - 5) = 514

fixs) = x5(5% — x3) = 10($x ~ 10) = $7.08

fixy) = xy(Sm — x3) = 1552 - 15) = 1062

Since x; is the intenor point generating the greatest value of the objective function, we take the interval
[S. 15]. centered at x,, as the new interval of interest.

Second iteration: We divide [ 5, 15] into quanters, with x, = 7.5, x; = 10, and x, = 12.5 as the three interior
points. So

Jixg) = x (52 — x,) = (7.5)5x ~ 7.5) = 61.56

Sixg) = 5708 (as before)

fixy) = x5(5% — x,) = (125K5% — 12.5) = 40.10

As x, is the mterior point yielding the largest value of f(x), we take the interval [5, 10], centered at x,, as
the new interval of interest.

Third ireration: We divide [ 5, 10] into quarters, with x, = 625, x, = 7.5, and x, = 875 as the new interior
poinis. So

Sixg) = (6.25)5n ~ 6.25) = 59.11

fix) =615 (as before)

Six.) = (RT5)S5x — £75) = SOK8

As x, yields the largest value of f(x), we take the interval [6.25, 8.75), centered at x,, as the new interval
of interest.
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Fourth ltevation: Draiding [6.25, 8.75] into quarters, we gencrate x, = 6875, 1, = 7.5 and x, = 8125 as
the new intenor points. Thus

Sing) = (6E7SK Sn — 6.87%) = 60.73
fix,) = 6156 (as before)
fixg) = (B.125)4 Sm — K.1295) = 61.61

Now xg 15 the intenor point yielding the largest valoe of the objective function, so we take the subinterval
centered al xy. namely [7.5, 8.75]. as the new mmerval for consideration. The midpoint of this interval,
however, is within the prescribed tolerance, ¢ = 1, of all other points in the mterval, hence we take

X* =y, = R)2S with :* = fixg) = 6161

Redo Problem 10.7 using the Fibonacc: search.
Initial points:  The first Fibonacci number such that Fl) 2 20 -0k F. = 21 Westt N =7,

b—s 20-0
i o = BT
b 2 2

and then position the first two points in the search
For = [ }09524) = 1238 units
in from each endpoint. Consequently,
=0+ 1238 = 1218 xp= 20 = 1238 = 762

flxy) = (1238)(Sx ~ 12.38) = 41.20
Sixg) = (7.62)8x ~ 7.62) = 6163

which are plotted in Fig. 10-6(a). Using the unimodal property, we conclude that the maximum must occur
10 the left of 1238, and we reduce the interval of interest to [0, 12.38)

First iteration: The next-lower Fibonacal number (F, was the last one vsed) 5 F, = 8. 30 the neaxt pont
in the search is positioned

Fyo' = 8{09524) = 7619 units
in from the newest endpoint, 1238 Thus

= 1238~ 7619 = 4761
fixy) = (47610 Sx ~ 4.761) = 5212

Adding this point to the retained portion of Fig 10-6(a), we generate Fig. 10-6(b), from which we conclude
that the maximum must oocur in the new interval of interest [4.761, 12.38).

Second ireration: The next-lower Fibonacol number now s F; = 5. Thus

Ny = 4.761 + Foo= 4761 + H09524) = 9.5
fixg) = (9523452 — 9.523) = 5890

Adding this point to the retained portion of Fig. 10-6(h). we obtain Fig 10-8ic). from which we conclude
that the new interval of interest is [4.76], 9.523)

Third iteration: The next-lower Fibonacc: number now is F; = 3. Hence

[ixy) = (6.666K Sz — 6.668) = 60.27

Adding this point 1o the retained portion of Fig 10-6(c), we obtained Fig. 10-6(4), and 1t follows from the
unimodal property that the new interval of interest is [6.666,9.523]
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Fourth iteration: The next-lower Fibonacci number now is Fy = 1 Hence

Xq = 6,666 + 209524) = 8571
fi(xg) = (B5T1)N 5 — 8.571) = 61.17

Adding this poist 10 the retained portion of Fig. 10-6{d ), we obtained Fig. 10-6{¢), from which we conclude
that [6.666, 8.571] is the new interval of interest. The midpoint of this interval, however, is within ¢ = | (in
fact, within € = 09524) of every other point of the interval (Theoretically, the midpoint should coincide
with x,. the small apparent discrepancy armses from roundofl ) We therefore accept x; as the location of the
Matmuim. L.

= xy, = 762 with t* = fix,)=6163
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Redo Problem 10.7 using the golden-mean search
Initial points:  The length of the initial interval is L, = 20, 30 the first two points in the search are positioned
(O6IR0N20) = 1236 umts
in from each endpoint. Thus
X, =04+ 123 =123% =)0 =123 =T6
Slx,) = (1236) 5 — 12.36) = 41 38
flxg) = (T64)5m — T6d) = 61,64

The points (x,, f(x,)) and (xg, fx;)) are very close to the points shown in Fig 10-6(a). It follows from the
unimodal property that the maximum must occur to the left of 1236 hence we retain [0 12.36] as the new
interval of interest.

First irevation: The new interval has length L; = 12 36, 30 the next point in the search is positioned 061801 ;
units in from the newest endpoint. Therefore,
Xy = 1236 ~ (0.6180)12.36) = 4722
Sixy) = (AT2IN 8= ~ 4.722) = 5188
When this new point s added. Fig 10-6(b) applies, and we determine [4. 722, 12.36] as the new interval of
mlerest
Second ireravion: Ly = 1236 — 4722 = 7638, thus
Xo = 4722 4 (O6180)7 638) = 9442
fixg) = (94424 5= —~ 9440) = 59.16
Now the pattern n that of Fig. 10-6(c), from which we conclude that [4722 9.442) is the new interval of
interest
Third iteration: L, = 9442 — 4722 = 4720; thus
Xy = 9442 — (OB180)4.720) = 6525
fixs) = (65285)3n ~ 6.529) = 992
Now the pattern » that of Fig 10-6{d), from which we conclude that [6.525, 9.442] is the new interval of
nterest
Fourth itevation: [, = 9442 ~ 6525 « 2917, hence
Xy = 6525 4 (DHIBON29IT) = L3285
Sixg) = (BI2E) S — K12%) = 61 .46
With this new point, we reach the pattern of Fig 10-64¢), and find [6.525, 8.375] as the new interval of interest.
Notice that this new interval s of length less than 2¢ = 2, but that the included sample point, x,, is not
within « of all other points in the mterval Therefore, another iteration is required.
Fifeh itevavion; [, =B 18 — 6525 « | ROY; therefore
Nyom BN~ (OLGIRONIROY) = 7214
Jixs) = (7214)5n ~ 7.214) = 61.28
This new point determines [, x,] = [7.214, . 325] as the new interval of interest. Now, however, the interior
point v, = 764 s within € = | of all other points in the interval so we take 1 as the Jocation of the maximum.
That
¥ -y w704 with = flxg) = 61.64

Compare the efficiencics of the three scarch methods in locating the maximum of xSz — x) on
[0, 20).

Each method succeeded m approximating the location of the mavmum, x* = 52727 = 755, (o within
« = |, as required. The Fibonace: search was the most efficient (see Problem 10.8), achieving the desired
accuracy with six functional evaluvanons. The three-pomt interval scarch (see Problem 10.7) and the
golden-mean search (see Problem 10.9) required nine and seven functional evalustions, respectively,
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10.11 Redo Problem 106 without first constncting the interval [0, 3] to a subinterval on which the
function is unimodal Discuss the result

Applying the three-point interval search to f(x) = « sin 4x on [0, 3] directly, we generate sequentially
the entrics 1o Table 10-1. It follows that

x* = 120 with P fx®)= -12038
Table 10-1
Intenor Points fix) = x sin dx
Current Interval
a (] 3 [ta) Jib) fled

[0, 3] a7s LS 225 01058 —-04191 09273
[0.75, 2.25) 1125 1.5 LE7S = 1. 100 ~ 04191 1.7%
[0.75, 1.5) 09178 1.125 L3 ~05158 = 1100 - 1126
[1.1251.5) 1.219 1.313 140 = |.203 ~1.126 =861 1
(1125, 1.313) LI 1219 1.266 - 172 - 1.203 L
(1172 1.266]) 1196 1L.219 1.243 - 1,193 - 1.203 - 1.201
[1.196, 1.24}] 1.208 1219 1.231 - 1.199 - 1.2 "N =123
[1.219. 1.243]) 1.225 1231 120 - 1.203 50 —-1.200 %4 - 1.2028
[1.225.1.237)

It s apparent from Fig 10-5 that the search procedure has converged to the local minimum near 3= /8,
and not 1o the global minimum on [0, 3] that was found in Problem 106 A similar result would have
occurred had we applied the Fibonaccl search or golden-mean search 1o the entire interval [0, 1]
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Derive the Fibonacei search algorithm.

If the Last interval under consderation. # . ;. 1 10 be as large as possible yel contain an approximation
1o a hocal optimum good 1o within «, then the search points used 1o gencrate this inferval must be positoned
as shown by the arrows in Fig. 10-T(w). The midpoint of this mterval is the final approxmation. Now, 7,
w itsell obtained from a larger mterval, 75 ;. by climination of a portion of the larger mterval. based on
the unimodal property. To imply Fig 10-%a) for an wrbitrary wvimodal fumction, #, . must have the
symmetrical form extubited m Fig 10-7(b), where again the arcows indicate the locations of search points
or endpoints of the onginal interval. Either the lefi-hand one-third or the right-band one-third of Fig. 10-T(h)
is eliminated o vield Fig. 10-Ta). Figure 10-7(b), however. i itsell the result of adding one search point.
Before this point was added, 7, . ; must have haud the form of Fig. 10-7c) or that of Fig. 10-7id)

Either possibility for ./, _ ; is obtained from a larger interval. 7y o by elimmation of a portion of this
larger interval, bused on the unimodal property. To imply Fig 10-%) or 10-Tudh 7 ., had to have
the form exhibited in Fig 10-7(c). Either the left-hand subinterval or the nighi-hand subintersal of Fig
10-T(¢) b eliminated to gencrate 7, . .. Figure 10-Tie), bowever, i the result of adding one scarch point
Before this point was added, 7y, must have had the form of Fig 10-7 ) or that of Fig. 107 g)

Continuing in this manner and denoting the kength of #, by L wefindthar Ly =2 . L, .= .
Ly g=58. Ly =% Ly i = |3, and s0 on. Since the coctlicients are part of the Fibonace sequence.
we have

L\ |-,'" '.1 _I-",I d I.:'-" 1 !—.‘F“ i

But N ts chosen such that Fye = b = i Therefore, L, 15 the inital imterval, and we have generated (in reverse
order) the steps of the Fibonacer search,

Derive the golden-mean scarch algorithm.
From (/) of Problem 10,12, L, = F,e and L; = F, ¢ Then if N ik large. Problem 10.26 gives

e L L ", ' = 00180
l—r F., hv=a L

so that L, = 06180/, [dental Feasoning shows thal. provided N is large enough. the same approvimation
15 valid for any two successive intervaly in the Fibonaco search. 1e. £, = 061800, which is the defiming
equation for the golden-mean scarch

Supplementary Problems

Find all local and global optima for fivi = v" = 65" « 9y = b on (o) [ 3L M [1. ) 0 [ =1, §)
Find all local and global optima for fixy = v* = 40" « 60 < do + 1 on (b [00 3] b [0 2] e [0, =)

Find all losal and global optima for fixd = v+ v " oo (@ 2 L b= 2 06 () [510] (Hine In parts
(uh and (B), x = 0 s handled hike an infinne endpaint )

Show that fix) = v = 6x° + 9% + 6 1 stnetly concave on i — = 21 and strictly convex on (X © )
Determne mtervals on which fiv) = v + dv | s concave or conver

Lse the three-point interval search 1o approvimate to within ¢ = 0.1 the location of the global minimum o
10, 2] of the function of Problem 1018 (Hint: Proceed as if the interval were [0, 2]
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1021

nxn
10.24
10.25

Approximate the location of the global mavimum on [0, 2] of f(x) = x* sin x, using a three-pomnt search of
the unrestricted interval with five functional evaluations (ie, five search points) How good i this
approvimation”

Redo Problem 10.19 with a Fibonace search.

Redo Problem 1020 with a Fibonaco search. (Hint- A total of five search points requires that the first two
be placed Fue' in from the endpoints of the original imterval. Thus N = 6 for determining «'.)

Redo Problem 10.19 with a golden-mean search
Redo Problem 10.20 with a golden-mean search
Show that the ath term of the Fibonacci sequence is

r-_‘_[(“_v’. -(ﬂ)]

R L 2
(Hinr: Verify that the given expression satisfies the appropriate recursion relation and initial conditions )
From Problem 1025, derive

tim 222 -(' ":'ﬁ)" - 06180 .-

== F_.'



Chapter 11

Nonlinear Programming: Multivariable
Optimization without Constraints

The present chapter will wery largely consist in a generahization of the results of Chapter 10 to the
case of more than one varble However, only the analog 1o (10,1},

optimize: == [(X) where Xex, %5....51 (1.1

will be treated, and not the analog to (/0.2). Moréover, we shall always suppose the optimization in
(41.1) 10 be a maximization; all results will apply 1o a minimization program il f(X) s repliced by — f(X).
Sce Problems 11.2 and 11,3

LOCAL AND GLOBAL MAXIMA
Definition:  An e-neighborhood (¢ > 0) around X is the set of all vectors X such that
X=-X"X-X=tx, =20+ =80+ +i(x, -V 5

In geometrical terms, an e'u:i;hhorhmd around X is the interior and boundary of an n-dimensional

sphere of radus £ centered nt
An objective function f(X) has a local maximum at X if there exists an e-neighborhood around X
such that (X} < f(X) for all X in this e-neighborhood at which the function 15 defined. If the condition

is met for every positive € (no matter how large). then [(X) has a glebal maximum at X

GRADIENT VECTOR AND HESSIAN MATRIX
The gradient vector V[ associated with a funchion f(x,, x,. ..., x.) having first partial derivatives
15 defined by
L A A 1
v;-l’tj.i.r T"'.l--’AI
Ox; Ox3 ix,
The notation V7 | signifies the value of the gradient at X. For small displacements from X in various

directions, the direction of maximum increase in f(X) s the direction of the vector Vf |, (See Problem
1L7)

Example 1.9 For f(x,, x5 x;} = Ixix; — xdxd, with X =[1. 2 3],

6, xy B{1W.2) 12
V[ =] 3xi = Zuyx; whence Vilg=| A1y -22)3" | =] 103
-3 — 323 — 10K

Therefore, w1 [1, 2, 3]", the function increases most rapidly in the direction of [12. - 105, - 108]".

The Hessian matrix associated with a function f{x,, x,, ..., x,) that has second partial dernivatives is

21 i
Hr-—_-[ s | hj=1L2....m

T a
ax, 0%,

182
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The notation H | signifies the value of the Hessian matrix at X. In preparation for Theorems 11.4 and
11.5 below, we shall need the following:

Definition: An n = n symmetric matrix A (one such that A =A") is negative definite (negative
semi-definite) if XTAX 15 negative (nonpositive) for every n-dimensional vector X = 0,

Theorem 11.1:  Let A = [a,;] be an n x n symmetric matrix, and define the determinants

gy gy ity
Ay= +lay ay ayl 0 A,=(=1)""det A

dyy gy dyy

dyg  slya
Ay =layl A;=-

21 M2
Then A s negative definite if and only if 4, A5, ..., A, are all negative; A 15 negative

semi-definite if and only il A4, A., ..., A, {r < n) are all negative and the remaining A’s
are afl zera,

Example 11.2  For the function of Example 11.1,

B, b, ] 12 (41 1]
H,=|6x, =2x3 —6xx; whence Hilzg={ 6 =% —108
a -ﬁ-'l::!.'i fxdx ] — JOg — 73
For H 4. A, = 12 > 0, s0 that H, is not negative definite, or even negative semi-definite, at X.

RESULTS FROM CALCULUS

Theorem 11.2:  If f{X) is continuous on a closed and bounded region, then [(X) has a global maximum
{and also a global minimum) on that regon.

Theorem 11.3:  If f(X) has a local maximum (or a local minimum) at X* and if V/ exists on some
e-neighborhood around X*, then Vfiy. = 0

Theorem 11,38 I /(X)) has second partial denvatives on an e-neyghborhood around X*, and fVf|x. =0
and H|x. 1s negative definite, then f(X) has a local maximum at X*,

It follows from Theorems 11.2 and 1 1.3 that a continuous f{X) assumes iis global mazximum among
those points at which V f does not exist or among those points at which ¥ = 0 (stationary points}—unless
the function assumes even larger values as X'X — . In the latter case, no global maximum exists, (See
Problem 11.1.)

Analytical solutions based on calculus are even harder to obtain for multivariable programs than
for single-variable programs, and so, once again, numerical methods are used to approximate (local)
maxima 10 within prescribed lolerunces.

THE METHOD OF STEEPEST ASCENT

Choose an mitial vector X, making use of any prior information about where the desired global
maximum might be found. Then determine veciors X, X5, X, ... by the rerative relation

Kooy =X+ 40 Vi, (11.2)

Here 47 1s a positive scalar which maximizes f(X, + 4 V[ |y, ). this single-vanable program is solved by
the methods of Chapter 10. 1t is best if A represents a global maximum; however, a local maximum
will do, The iterative process lerminates if and when the differences between the values of the objective
function at two successive X-vectors is smaller than a prescribed tolerance. The last-computed X-vector
becomes the final approximation to X*, (See Problems 11.4 and 11.5))
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THE NEWTON-RAPHSON METHOD

Choose an initial vector X, as in the method of steepest ascent. Vectors X,, X, X, .. then are
determined iteratively by
x...|'x|_"erFK-]_IFfix. [f.lr.j.:

The stopping rule 15 the same as for the method of steepest ascent. (See Problems | 1.8 and 11.9.)

The Newton-Raphson method will converge 1o a local maximum if H, is negative definite on some
e-neighborhood around the maximum and il X, lies in that e-neighborhood.
Remark 1: If H, is negative definite, H; ! exists and is negative definite.

If Xg 15 not chosen correctly, the method may converge to a local minimum (see Problem 11.10) or it
may not converge 4t all (see Problem 11.9). In either case, the iterative process is terminated and
then begun ancw with a better initial approximation,

THE FLETCHER-POWELL METHOD

This method, an eight-step algorithm, is begun by choosing an initial vector X and prescribing a
lolerance €, and by setting an n x n matrix G equal to the identity matrix. Both £ and G are continually
updated until successive values of the objective function differ by less than ¢, whereupon the last value
of X is taken as X"

STEP |: Evaluate m = f(X) and B = V/|5.

STEP 2: Determine A* such that f(X + A4GB) is maximized when ; = i* Set D = *GB.

STEP 3: Designate X + D as the updated value of X.

STEP 4: Calculate fi = f(X) for the updated values of X If § — 2 < ¢, go 10 Step 5 if not, go to Step 6.
STEP 5- Set X* = X, f(X*) = fi, and stop,

STEP 6. Evaluate C = V[ for the updated vector X, and set ¥ = B - C

STEP 7: Calculate the n x n mairices

i - (srv)ov
L_(DW)DD and M= ( ol JGYYIG

STEP 8: Designate G + L + M as the updated value of G. Set x equal 1o the current value of §, B
equal to the current valug of C, and return to Step 2

HOOKE-JEEVES' PATTERN SEARCH

This method s a direct-search algorithm that utilizes exploratory moves, which determine an
appropriate direction, and pattern moves, which accelerate the search. The method is begun by choosing
an initial vector, B = [b, by, ..., b,1", and step size, b

STEP I: Exploratory moves around B are made by perturbing the components of B, in sequence, by
4+ h units. I either perturbation improves (i.e., increases) the value of the objective function
beyond the current value, the initial value being f(B), the perturbed value of that component
15 retained; otherwise the onginal value of the component is kepl. After each component has
been tested in turn, the resulting vector is denoted by C. If C = B, go 1o Step 2; otherwise
go to Step 3.

STEP 2: B is the location of the maximum to within a tolerance of h. Either h is reduced and Step 1
repeated, or the search is terminated with X* = B

STEP 3; Make a pattern move to a temporary vector T = 2C — B (T is reached by moving from B
to € and continuing for an equal distance in the same direction. )
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STEP 4. Make exploratory moves around T similar to the ones around B described in Step 1. Call
the resulting vector S. If § = T, go to Step 5, otherwise go to Step 6.

STEP 5. Set B = C and return to Step 1.
STEP6: SetB=C,C=8 and return to Step 3.

A MODIFIED PATTERN SEARCH

Hooke-Jeeves’ pattern search terminates when no perturbation of any one component of B leads to
an improvement in the objective function. Occasionally this termination is premature, in that perturbations
of two or more of the components simultancously may lead to an improvement in the objective function.
Simultaneous perturbations can be included in the method by modifying Step 2 as follows:

STEP 2 Conduct an exhaustive search over the surface of the hypercube centered at B by considering
all possible perturbations of the components of B by kk units, where k = —1,0, 1. For a
vector of n components, there are 3" — | perturbations to consider. As soon as an
improvement is realized, terminate the exhaustive search, set the improved vector equal to
B, and return to Step 1. If no improvement is realized, B is the location of the maximum to
within a tolerance of h. Either h is reduced and Step | repeated, or the search is terminated
withX*=HR

CHOICE OF AN INITIAL APPROXIMATION

Each numerical method starts with a first approximation to the desired global maximum. At times,
such an approximation is apparent from physical or geometrical aspects of the problem. (See Problem
11.12) In other cases, a random number generator is used to provide different values for X. Then f(X)
is calculated for each randomly chosen X, and that X which yields the best value of the objective function
is taken as the initial approximation. Even this random sampling procedure implics an initial gucss of
the location of the maximum, in that the random numbers must be normalized so as to lie in some fixed
interval. (See Problem 11.4)

CONCAVE FUNCTIONS

There is no guarantee that a numerical method will uncover a global maximum. It may converge
to merely a local maximum or, worse yet, may not converge at all. Exceptions include programs having
concave objective functions.

A function f(X) is convex on a convex region & (see Chapter 2) if for any two vectors X, and X,

faX, + (1 - 2)X;) S af(X,) + (1 = a) f(X;) (114

[compare (10.3)]. A function is concave on # if and only if its negative is convex on #. The convex
region & may be finite or infinite.

Theorem 11.5: I f(X) has second partial derivatives on &, then f(X) is concave on @ if and only if
its Hessian matrix H, is ncgative semi-definite for all X in #.

Theorem 116 If f(X) is concave on &, then any local maximum on # is a global maximum on #.

These two theorems imply that, if H, is negative semi-definite everywhere, then any local maximum

yields a solution to program (//./). If H, is negative definite everywhere, then f(X) is strictly concave
(everywhere), and the solution to program (//1./) is unique.

- N Y N e B T T e e 1
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Solved Problems

Maximize: = = x,(x; — 1) + xy(x} - 3).

Here fix,, x5 %50 = x,0x; = 1)+ x,(8] = 3. The gradient vector, ¥f = [x; = 1, x,, Ix] = 3]7, exists
everywhere and s 2ero only at

X, =[0.1.1)' and  X;=[01 ~1]"

We have fiX;)= =2 and fi(X;) =2 But f{x,, v, vy} becomes arbitranly large as v, (for instance) does
s0; hence no global maximum cxists. The vector X; i not even the site of a local manimum: rather, it s 4
saddle point, as s X,

Minimize: = = (x, = /5) + (x; = 7)* + 10,
Multiplying this objective function by — |, we obtain the equivalent mavimization program
maximize: = =(x; = /5 = (x; =2 = 10

for which ¥z = —2{x, — /% x; = 2]". Thus there is a single stationary point, x; = & x; = = at which
== —10. Now, as x| + v} = . = becomes arbitrarily small; consequently, =* = —10 5 the global
maximum, and =* = + 10 is the global minimum for the onginal minimization program. The minimum s,
of course. also assumed as ¥} = /3 = 2236 x? =2 = 11416

Minimize: : = sin x;x, — cos (x; — x,).
Muluiplying the obyective function by — 1, we obtain the equivalent masimization program
Maximiee: == —sin X, x; + Cosly, — ¥,)
Here [f(x,, x;) = —sin xyx; + cos (x, — x;) and

FI = [— l.',.t'l.'ll.'l:.,t, — 'Ill'lttl - t:’
=Ny C0% Xy Xy + SN (% = Ngh
which exists everywhere. Stationary points therefore satisfy
—Xy CO% X Xy = M0 (%, = ;)=

=X, COS N N = smiy, = 3,)=0

Although a complete solution to system (/) cannot be obtained algebraically, it is possible 10 find 2 partial
solution that suffices for the present program. Observe first of all that. for all v, and ¥,

()

L XM S Isin vy xyl + feos iy, = Al s )+ ) =2

Hence. if a stationary point can be found at which iy, x3) = X that point is necessanly the site of a
global maximum. Now. it s clear tha ( /) will be satisfied of cos v vy and sin iv, = x ) separately vanish. ie. if

1
XXy -(l-b 1)! and X = Xy mnm
where & and n arce integers. Trying & = 1 and an = 0, we find that

M Iz Iz
I(JI‘\'I :)t =%in a +cmil=)

and our search is over. The original minimization program then has the solution :* = — 2. attained a1
af = xt = 3n2 (and clsewhere).



CHAP. 11] MULTIVARIABLE OPTIMIZATION WITHOUT CONSTRAINTS 187

114  Use the method of steepest ascent (o
minimeze: :-lx,—ﬂi"+{x,-t}’+lﬂ
Going over 10 the equivalent program
maimize = ~(x; = /5P ~ (x; - 2)* = 10 n
we require a starting program solution, which we obtain by a random sampling of the objective function
over the region — 10 < x,, x; < 10. The sample points and corresponding =-values are shown in the table

below. The maximum z-entry is - 36.58, occurring at X, = [6.597, 5891]7, which we take as the initial
approaimation to X*. The gradient of the obpective function for program (/) is

VS _[-ﬂln - v'li'l]

-x!;“'l‘}
1, K5 -9 9.201 92% AW EAll 202 =817y =81 - 5.7
L - 1099 — K0S =154 T4 891 ~ 9948 -5 6914 Lisd 00210
| =1440 1442 -908] -7 -8B 2194 =139 -M1) =182 ~ 54 48
S ——
Firt itevarion.

6597 -6597 - /9] _[6597 -T2
x'“”"‘"[im]"""‘[ -.ﬂsjﬂ-.g}]- mt-iml]
F(Xg + AVf|g )= — (6597 — 87224 — /5) — (5891 — 54990 — m)’ ~ 10

= —106.34" + 10634 — 36.58

Using the analytical methods described in Chapter 10, we determine that this function of i assumes a (global)
muximum al 48 = 05 Tha,

Ny Xo H A5V = ;::: ] [;uu]

with f(X,) = ~ 10.00. Since the difference between f(X,) = — 36.58 and f(X,) = — 10,00 is significant, we
continue iterating.
Second ieration.
SR e ey i
FOX; + A9[1y, )= ~(2236 + 000014 — /5)" ~ (3142 ~ 0.00084 — x)* - 10
= ~(6.5004 ~ 6.3824 + 10910

U'sing the analytical methods described in Chapter 10, we find that this function of 4 has s (global) maximum

atl A7 = 04909, Thus,
Xy = X, + 48 ¥y, = m+m:m] [1141

1142 = 0.0008(0.4909)

Since X, = X (1o four significant figures), we accept X* = [2.236, 1.142]", with #* = ~ 10,00, as the solution
te program (/) The solution to the original minimization program is then X* = [2.236 1142)", with
2® = + 1000 Compare this with the results obtained in Problem 11.2
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1S  Use the method of steepest ascent 1o
Maximize: == —§0 X, X; + 008 (x; — x;)
to within a tolerance of 0.05
Here

T_f- -t;m:;.t,—lhlt.—.‘lﬂ
- 008 XN Xy 4+ Ih'[ll - %3

From a random number search of the region — 1 < v, %, < 1, we get X, = [ ~07548 05303)". with

SiXy) = 06718,

Farrt itevation.
Vs = ~0.5303 cos [( ~0.T54EN0.5301)] ~ sin (- 07548 — 0 5303) 4 0471
- 0.7548 cos [( ~0.7548)X0.5303)] + sin (~0.7548 ~ 0.5303) - 02643

—~0.75%48 o471 ~0.7548 « 047114
e+ ¥ '[ 05301 [ uml] [ 05303 ~ n:un]

SiXg + AVflg) = —sin [( 07548 + 04TILANO.5303 - 0.26434)]
+ 008 [( = 07548 + 04T11d) = (0.530) - 0.26434))
= = gin [~ 04003 + 044904 ~ 01 24547) + cos (— | 285 « 0.73844)

Using the golden-mean search on [0, K] we determine that this funcuon of « has 3 mavimum at »2 = 1.7
Thus,

~07848 + 04711(1.7)]  [0.04607
% ':""v”‘*'[ uml-mmﬂ] [
with f(X,) = 09987, Since

FUX,) = fiXy) = 09957 — 06715 = 03242 > 005
we continoe ierating

Second iteration.

v ~0.08099 cos [(0.04607H008099)) — sin (004607 — 0.08099)
=1 004607 cos [(0.04607H0.0R099)] + san (004607 — 0.08099)

o - 0046 08
= D080 98
DINA60T ~ D06084
Ny +aVfy, -[nmﬂ -ﬂmm]
fIX, + A¥f]y,) = =sin [(0.04607 — 0046082008099 — 0.080984)]

+ cos [(0.046 07 — 0.046 084) — (008099 — 0.080084))
= = uin (0003731 — 0007 4634 + 0003 T324%) + cos ( - 003492 + 0034 904)

Using the golden-mean search on [0, §]. we determine that this function of 4 has a mavimum at 47 = 1. Thus,

004607 — 0.04608(1) 0.0000
X;=X, + 4 T”ll = [nm'ﬂ = 00RO 9%( 1 '] 3 [ﬂm]
with f(X;) = 1.000 Since

S = X)) = 1000 — 09957 = 00043 < 0.0%
we take X* = X, and :* = 000

116 Is the maximum found in Problem 11.5 a global maximum?
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.7

1.8

For the objective function [{x,, ;) = —sin x;x; + cos{x, — x:), the Hessian matrin is nor negative
semi-defimte cverywhere. Indeed,

‘.f,l'
i 3
= XA KKy —cos(x, — x,)
A}
1

and the nght-hand side is positive for x; = x; = /#/2 Thus fix,, x;) & not concave everywhere, and the
question rermams open. Referring to Problem 11.3, we see that the global maxmum actually s z* = 1. so
that 2* = 1.0 must be only a local maximum,

Derive the method of steepest ascent,
For any fined vecior X and any unit vector U, the directional derftative,
D f(R) = ¥f g U
gives the rate of change of f(X) at X in the direction of U. Since
ViU = |Vf U cos = (V]| cos i

the greatest fncrease in f(X) occurs when @ = ), 1e., when U is in the same direction as V. Therefore, any
(small) movement from X in the direction of ¥ ] will, initially, increase the function over ((X) as rapidly
as possible, The vector 4 ¥ (14 represents a displacement of this kind, The best value of 2 is the one that
maximizes f(X + A ¥ g the value of the function afer the displacement.

Use the Newton-Raphson method 10
maximize: z= —(x; — /57 —(x; — =) - 10
to within a tolerance of 0.05.

From Problem 114 we take the initia] approximation X, = [6.597, $591]7, with (X} = - 3658 The
gradient vector, Hessian mainx. and inverse Hessian matrix for this obgective function are, respectively,

=3, = /5) -2 0 . [-05 o
'i" = v = =
d [ —x; — %) ] M [ 0 -2 % 0 —05

for all x, and x.,

Firsr itevation,

~26.597 - /%) —8722
¥ - ¥ =
Mhe=| _xsuo1 —n) ] [-—5.4?9

Xo=Xo~ (Hlx,) ' Vflx,
[ 6,597 —i1.5 1] 8T 2236
“lam | | 0 o5 -sa09 |42
with (iX,) = — 10.04. Since

FiX,) = f(Xy) = — 10,00 — (— 36.58) = 26.58 = 005

We continue ileraling
Second iteration.

-22236 — . /5)| [ —00001
Vil £
Ilx, [ —3.142 — x) I l n.ml

Xy =X; = (Hyly, ) "'V,

2236] [-05 0 -00001] [2236
1142 0 05§ 00008]| |3i42
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with f(X,h= — 10N Sioce ((Xa0 — F(X b= 0 < 005, we take X* = X, = [2.2%6, 314277, with z* =
FiX,) = =000
Use the Newton-Raphson method to
maximize: 2= —§in X, Xy + 008 (X; — xy)
to within a tolerance of (.03,

The pradiemt vector and Hesstan matris for this objective function are

Xy e08 X, X; —sin(x, — x,)
Y= ¥ )]
— &y Co8 ¥, Xy #in (v, — ¥
¥ . . : .
i %3 8i0 XX — C08 (X; — &) —008 X Uy 4+ X Nq S0 X X, + C0SHN. — X (N
f OO K K e NN K XXy O IX — Xy o wn i vy — o8y, — xyh

From Problem 115 we sppropriste the initial approximaton X, = [ —07548 0.5303]7
First itevatian.  Substiuning (he components of X, info (/) and (%), we obtain

04T ~(3914 04832 o L3B8  —13.3
Wb = L u.:r.-lj] Hylx. = [--u.m: -u.!ruan] ()" = [ STER] m.'nr]
Then
Il = x“ - ‘Hft‘l..]- .?r}h
~0.7548 1388 —133 o4 — 108!
(L5303 - 13.31 178 | —0.2had 49 650
Ohacrve that X bs not clode to X, which suggests (hot the numerical scheme s nol converging. Tn this case,
Theorem 111 shows that H, [y, s not negative definite, hence X, was not chosen sufficignily close 1o o
mazimum to giarantee convergence of the Newton-Raphson method Therefore, rather thaf continuing to
ieriute, it bs wiser to begin the method anew with a beller approximation 1o 4 maxmum. |
A improved initial approsimaiion can be obtamed in two wave. First, we cotld wse o om number
generator ta provide additional valoes for X until a betler approsimation i found Second, we could use
the method of steepest asoent for one ileration with the current X, and then use the resulting vector Lo atan

the Newton-Raphson method. Adopting the second approach, we obtatn from Problem |15 the improved
siartimy vector |

(04607 _
X, = [E.!Jm ﬂ-l with f(X;) = 09957

[NVew) fire itevarion.  Substiluting x; = W06 07 and x, = 0OS0H mta () and (7L we 11hl*n

vri -004608] 11,9994 — (1IN0 584 B ) —1001 . 00005895
T o8008 Fi%e T D000 SE8 K — 1094 £1%e DO00SKE S — 1.001

Then {
X.=Xs- 'Hrihj lv].h‘. H

| DMs a7 — 1.0 0000 5595 || - 004608
Cjooso%e | |ooo0sses 1001 || —00808k| |0

With £(X,}= . Since
X, — F(Xo) = L0000 — 0.9957 = 00043 < 0.0
we take X* = X, = [0.0]" and =* = f(X,) = |

Use the Newton-Raphson method to
moximing! == —iinx; s + cos (g — Xa)

to within a tolerance of 0,05, starung with X, = [4.5, 1.6].
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1.

The gradient vector and Hessian mainx for this objoctive Tunction arc given by (/) and {2) of Problem
119,

First iterarion.
- [— 1.6 cos [(4.8)(1 6] — sin (4.8 — I.m} I [ —[l.lllsh]
e T a8 cos [(4.8)1.65) + sin (48 — 1.6) — (8893
3520 6393 | 05572 01504
H't"‘=[ﬁ.]ﬂ] :3.f.sl (Hylxad ™" = Ilhu.mu 008279
Then -

X = Xo — (Hylx) " ¥/ly,

48 05572 —01504 [ —02186] [4.788
“lee| T | —oas0a 008279 | —0s89) 1,641

with F{X,) = —2000. Now, f{X;) = — L9%3; so even though X, s close 1o X, we have
FiX) = fiXg)

and the riertrons are tending toward & minimum rather than a maximom. (Notice that H |y, is not negative
definrte; in fact, it 5 positive defmite ) A different vahie for X, must be used, similar to the one determimed
in Problem 115, if the Newton-Raphson method is to succeed

Solve Problem 1.14 to within (025 km by the Fletcher-Powell method,

Problem 114 & equivalent to a masimtzution program with objective lunction

[(X)= =+ xd = flx; =300)F + (x; — 4000 - /(x; = 700)° + {x; — 300) i
and pradient vector
V- .,_.‘tf + x5 Sy - 300) 4 (xy —~400) L S(x; - TOON + (%7 — 00y (2
."I.: ."-: - ‘m} .|: - }m

Ve e e =000 £ (v, — 4007 (v, - 700 + (x; — 3001
To indtialize the Fleicher-Powell method, we sel & = 025 and
I 0
G [_u t]

and choose X = [400, 20077, which from Fig. 1.4 appears 10 be a pood approximation to the optimal location
of the refinery.

STEP |
1= {(X) = (400, 200)
= — 400 + (2000 — (1009 + ( —2000* — ./(—300)* + (—100)* = —987.05
=0, 39295
B=%¥fjz= ;
L [ u.mm]
STEP 2

; 400 1 O] ~039296 ) T400 — 0.392 904
Ot (.l[:!m] . i[ﬂ IE 0763 ¢-t]_ 4 qzlﬂ + 0763 4di
= — /400 — 0.392564)° + (200 + 0,763 4441
~ /(100 = 0392964 ) + {200 + 0.763444)°

= (=300 = 0.392964F + (—100 + 0.76344d)°
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Muking & threepoing intersal search of [1), 4257, we determime 2% = 2123 Therelore,

O -0m9256] [ —83504
n-ﬁ;n.ﬂus:[u 'I m]“].[ uua]

i*n_[m]Jrl-ﬂ}ﬂHJ_" e
= | 200 162235 || a3
whigh we take os the updated X' X = [316.50, 362231

STEP 4

LTEP 2.

A= [iX) = f(M6.50, I622) = ~410,76
F—w= — U076 — {—URT08) = %29 = 025
STEP &
. T X7
€= ¥fly -[ {mmlﬂ#J
STEP 2

¥ .n_c.["”“l“J

- (071 207 ~0.32] 74
nreied |

A assd |- | oTeboN

=32 TS
076028

| ] — L Sl
- = — i)
T g umzu[ 121 ][ 3,504, 16223

i Tl —1RMT) [ dA4Tl B0 dET
15031 T L=isT (1T

DY = [ -B3.504, IEH‘J][ Jur E5021

1

= 13547 oh 3149
I of -032175
¥ = [ =A13F] 75, =\ s
YGY = [ =032 EU.THIH]\-H |I_ 017650 28 kbS] 55

- |
TR

-1 [0 Of—03n7s 10
e i - 0,321 75,0760 28]
mmssl_n II u?m:-j_'[ S mj][n 1]

- 010352 —024462 - 3189 035897
B6E] 55| —0.244 A2 STROI L35H92  —DN4H1]

Y'e

STEP M.

Gotona|t W[ s —nur] [-ousies  eissw) [ o029 -m8n
0| ~O0187  I7R2) |7 | 0AsE9? —nsdEIN | | -WEE 17536

which we uke s the updated G We obo update = — $il76 amd

§ o [~ 207
T e

STEP 2.

; F1630] [ 41388 —#SR [ —0oTH 7
‘”t“l‘n'”(l_mj"\_-mm 17536 malmﬁ

. j.([m.su BT )
62T » AESML
m IR - eeTE) o (36125 4 693044
— o IRE) — 30040 5 (3777 4 oS
= =383 50 = VAT o (A2D3 4 a950MLY
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Making 4 threg-pasint mulerval search of (U, 19], we determine A" = .25 Theselom,

47 Hah BT ={L07] M7 5
D = 1*GB = (125} ‘]-[ o ]

~H9R28 17536 Q031594 HsR&0

STEM A
% pa| 1680 —asexi| _[ 3o
nd23 B BER0 e

which we take as the npdated X

STER 4
M i8] d {300 G TA09D = — ISR
fl=ds =PI =976 = LR < D25

STEMS

- ¥ IHIH -
Xr=X [_WLIHIE wred X% )= = — 91055

Thus Problem 114 i solved by 5% = SIS ko of = 37092 km, with 2* = &« 910358 bm.

112

1.3

.14

Show that the maximum located by the Elewcher: Powell method m Problem 1111 & in lact the
desired global masimum.

Im wiew of Theorem 106, df sufices B0 show iRl FiX), a6 gieen by (/0 af Froblem | LI, & comcave
everyahere Indeed w@ feed only show (Rl the fuac@on

aiX) = /5T + ]

m concare gverye bere since (X 15 the sum of three funcisons of this type, and the sum of comcave hinctao
B A cOnsaee fumotien. Now,

I'I II o | i L..‘ 1
Bt T T s
I'{‘ " TEll" .‘I'_| .rl _.ij.:

which. by Thearsm 11, B negative ssmi-defnite sverywhesre Thes. by Thearem |15 @l X) B concave
everywhene

Dénve the Mewton-Raphson method

Supposc thar an approsomason X, 0 o setooary poast of [{X) has been detormamed: w¢ wish io find
a dearby poamt. X, . that furneshes an even betier approsmation. Expanding the vector ¥ 0 a Taylor
werict about X, we have

\-‘Hw._l—'"_r:lLTE:tlui"ln._.—!i]T i n

[ The reader should verfy that the (th row of (7) i the onhpary moltivadable Taylor sertex for ©F,7x]
Thus ¥y, will enndsh s the sxeond order i amnadl guse g,

which ik peecicely the Mewnon-Raphison fomnul,

Lise the madificd Heoke-Jeeves' pattern search 1o
maximize: == 3x, 4 De, 4 x, =~ 0020} 4 2f + 1 — 325 —002x x;)

We arbitcarily begsn with b = § and B = [0, 0.0]7. Then filg= -21124
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STEP |
fi0+ 10,0 = — 29652 (an improvement)
FILO 4+ 1, 0) = 208060 (an improvement]
fil, L0+ 1= =267 {an improvement)

Set € = [1. 1.1]7, with f{C) = —2067.70,

STEP 3 :
T=XLL1"-([00o)"=(222]

STEE 4:

fi2+ 1,2, 2= —BBLG0 (an improvement over — 2067 )
3,24 1,2 = —41680 (an improvement)
L3 2+ lh= = 11810 {animprovement)

Sei § = [3,3,3)%.
STEPG SetB=[11 1" and C =[3.3 3] with fiCr= <118.]0
STEP 1
Tw 53] =[L1,1]" =[555]
STEP 4

Fis+ 1,55 = ~9R641E (not an improvement over — 114 ill]I
fis =155 = =1T8T6.2 (pot an improvemeni )

S35+ 1,3 = =9R0p428 inol an improvemend ) [
SI5,5=1,% = =278752 (not an improvement)
(5554 1) = —986383  (not an mmprovement )

e ————

(5,55 — 1= —27867.7 (nol an improvement)
STEP X SetB=[33 1] with fiBj = —11E.10,
STEP |. .

Ji3+ L3, 3= — 153486 (not an improvement)
F3=1%3 = —417TH (oot an improvement)
N3+ L) = —15586 (nol an improvement)
3,3 =1 3= —4d16HW (nol an improvement) :
FLAY 4+ 1= — 15350 (nol ap improvernem)

L33 —1)= —4162%0 (pot an improvernent)
Set € =[3.3.3)

STEP r: We sequennially evaluaie the objective at all ponts obtained from B by perturbing one or more
of the components of B by either 1 or —1, There are 26 possible pn‘turbui:'r-:-ét. exchuding the
null perturbation. Functional evaluattons cease if and when one yields a value larger than
fiB) = —11%10. As shown in Table 11-1, this occurs a1 [22.4]". T . we update
B=[224]" with f{(B)= —1370
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STEP [

STEP 3:

STEP 4.

MULTIVARIABLE OPTIMIZATION WITHOLUT CONSTRAINTS

Table 11-1

£ <; Xy | SN X Xy)
2 2 2 — 152290
2 2 3 —~BE6.20
2 2 4 =13.70
2 3 .

4 4 3

4 4

fi2+ 1,2 4)= 06 (an improvement)

Jid2+ L.
iy 21,

4) = — 1356 (not an improvement)

4) = 1144  {an improvement )

fid, 1.4+ 1) = = 200266 (not an mprovement)

fild, L4—11==511106 (nol an improvement)

Set € = [3. 141", with f(C) = 1144,

T=20314]" - [224)" =[4.0,4]

fld+ L4 =
4 —1,0,4) =
fid.0+1,4) =
40— 1,4) =
fid0 4+ 1=
fl4.0.4 - 1) =

Set § = [4,0,3]7,

~6163.72 (not an improvemen! aver | 1.44)
10,12 [(mot an improverment)

— 689,32  (not an improvement)

=693.20 (ot oo improvement)

—B165 72  (not an improvement)

1212 (an mmprovement)

STEP6: SetB=[31.4])" and C = [40, 3]". wath j(C) = 1212

ATEP 2

ATEP <

STEF 5

T

= 4,037 -3 1.4]7 =[5 -1.2]7

fi§+1, =12 = =19556 (not an improvement over 12,12)

fis—1 —1,21= —4240 ({nof an improvement)

fiS, =11, 2)= —1990.12 (0ol an improvernend )
fif. =1 = 1.2} = —219348 (not an improvement)
fi%, —1,24 1)= —290298 (no! an improvement)
fis, =1,2 = 1} = < 1RI0.58  (nol an improvement)

SasS=[5%-12)"
Sct B = [4.0.3]7. with

JiB) = 12,12

195
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Table 11-2

.fh.. A g l-_ll

-
-
-
[
-
=

~ 1028.68
- 51938
12

= 1017.76
~ S11.06
1144

— X84 60
— 41690
(.60
—42.18
1112

- 68138
— 3840

— 689,20
= 1066
204
—ROS.46
~ 198012
~2585.22
- 6163.72
— 199128
- 289898
~ 618448
— 218548
= 313218
—6512.68

LM LA TR U L e e b b e s e B e B e el el el L Tl T Tad N
Bk b el ot o s 0D D R R e o 00D b R e == B2 3

B B e e b e el B e R B e B e ek P e el B e e b B e B

STEP |- Esploratory moves around B yield f(4,1.3) = 1330, an improvement. Set € = [4, 1, 177, with
fiC) = 1330,

STEP 3
T=2413]" -[40,3]" =[4,2,3]"

STEP 4. Ewploratory moves around T do not vield any improvemenis. Set S = [4, 2, 3]7.

STEP $: Set B=[4,1,3]", with f(B) = 1330

STEP | Easplorstory moves around B do not yvick! any improvement. Set € = [4,1, 31", with (1C) = 12.30,
STEP 2 Aishown in Table 11-2. none of the 26 perturbations of B yields an improvement in the current

value of the ohjective function, f(B) = 11,30 Therefore, B = [4, 1, 3]7 is the best integral solution
{because & = 1, and we staricd ot the intogor point &) = xy = x5 = 0} 1o the ii\?n program,

To mprove this approximation, we reduce h sequentially 10 0,1, 001, and G001, beginning the algorithm
ancw each time with the latest B The results are exhibited in Table 11-3 We take 57 = 1825, x1 = 2447,
and & = 2946, with z® = 1756, as the optimal solution,

Table 11-3

Final Vector

h Xy Xy Xy :

| 4 1 3 1330
0 9 L4 N | 16,88
0o 389 a# | 2R 17.54
G001 | 3825 | 2847 | 2946 | IT56
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Supplementary Problems

Solve Problems 11.15 through 11.23 numerically, using either o random number generator of & reasonabile
guess to provide an initial approximation. Wherever possible, also solve analytically.

118

1L16

117

1118
.19
11.20

11.21

1.2

.23

1124

masimize == —(2x, —5° —(x; — 3 — (5x, — 2

minimize: == x| + J(x; = 1)* 4 x3

MIMMEEE 2= — i X sn xg an s, + x)
maximize == (x ¢ 2edje D
maximize: p= <y — x50 = {xy = 1] = 1 =00%x] + &1 + &) = 16)

maximize: = —{x; = /5 =(x; =n}f =10
with: x, and x, inoiers

| Hint: See Problem 11.12)
Mimimire the Resemhrock funcrion, z = (1 — x,)° + 100x, — 550°

Census figures for a midwestern town are a5 follows:

Yeur 1930 1940 1950 19640 1970

Papulation 4983 TIY 11023 16445 24532

Based on these data, an estimate for the population in 1980 is required.
(1) Assume that the population growth s exponential and follows a curve of the form N = 4™, where N
denoies the popuolition and ¢ denotes lime
(2} At any given census year T, there may be a discrepancy between the actual value of N given by the
data and the theoretical value N = A¢™". Designute this error as e ¢g,
1'1 iy = "Wﬁl e '*P- 138
(3] Determine the constants A and jm so thit
Ciave + Cloan + i'fnn + P:-.!:an * l":f-'a
1 mrmimized.
(4) Using these constants, evaluate the theoretical exponential curve (often called the leasr-squares
exponentiol curve) at t = 1980 and take that number (¢ be the estimated population for 1950,

Show that the quadratic function

L n
H'.'—?l-"":-"'* q E E u-‘:.'tj

with symmetne coefhicienl matrix A, s concave if and only if A s negative semi-definite.



Chapter 12

Nonlinear Programming: Multivariable
Optimization with Constraints

STANDARD FORMS

With X = [x,. Xs..... &, 1", standard form for nonlinear programs containing only equality con-
strainis is

maumize: = = [(X)
subject L. g,(X) = 0
g:(X) =0 (121)

fulX)=0

with: m < n ifewer constrmmis than vanables)

As i Chapter 11 minmmzation programs are converted mto maximization programs by muoltiplying the
objective function by — L.
Standard form for nonlinear programs containing only ineguality constraints is either

maxmize: == [(X)
subject te:  g,(X) < 0
q: (X1 =0 (12.2)

or

maximire: == f{X)

subject 1 g,(X)s 0

d:lx) =0
(i2.3)

.48 < 0

with: X =0

The two forms are equivalent: (122} goes over mto (12 1) (withm = p) under the substilution X = U — ¥,
with UZz0 and ¥V = 0 on the other hand, (12.3) s just (/2.2) in the special case p=m + n and
e (X)) = —x; (i=1,2,... .0 Form (/23) s appropniate when the solution procedure requires
nonnegative varnbles, In (J2.7), (12.2% or (12.3), 1 5 a nonlincar function, but some of all of the ¢'s

may be linear
Nonlinear programs not i standard form are salved either by putting them in such form (see

19%
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Problems 127, 12.10, and 12.11) or by suitably modifying the solution procedures given below for
programs i standard form (see Problems 12.8, 12.9, and 12.12)

LAGRANGE MULTIPLIERS
To solve program (/2.7), first form the Lagrangian funciion

-
Lix, X X Ay A i) = [(X) = ¥ LX) (12.4)
i=1
where 4, (i = 1, 2., ... m) are {unknown) constants ealled Lagrange multipliers. Then solve the system of
n 4 m equalions
a0 Uslido...n)
l"-'J
(12.5)
oL

Theorem 12.1: [ a solution to program (12.1) exists, it 15 contained among the solutions to system
({2.5), provided [(X) and @(X) (i=1,2,....m) all have continuous first partial
derivatives and the m = n Jacohian matrix,

%
has rank e at X = X%

{See Problems 12.1 through 12.5) The method of Lagrange multiphers is equivalent to using the
constraint equations to eliminate certain of the x-vanables from the objective function and then solving
an unconsirmned maximization problem m the remaiming x-variables,

NEWTON-RAPHSON METHOD

Sinee Lix,, Xy o000 X0 gy Ay e ooy dg ) = L{ZE) is nonlinear, it is usually impossible to solve [12.5)
analyvtically. However, since the solutions 1o (/2.5) are the staonary points of L(Z), and since (Theorem
11.3) the maxima and minima of L{Z) occur among these stationary points, it should be possible 10 use
the Newton-Raphson method (Chapter 11) 1o approximate the “right™ extremum ol LiZ). that is, the
one that corresponds to the optimal selution of (/2./). The iterative formula applicable here is

Ziyy =1L, —(H,ly) 'VLig, (12.6)

(See Problem 12.3,)

This approach 5 of limited value because, as in Chapter 11, it is very difficult to delermine an
adequate Z,. For an incorrect 2. the Newton-Raphson method may diverge or may converge to the
“wrong” extremum of L{Z). It 1s also possible (see Problems 12.1 and 12.4) for the mzthod to converge
when no optimal solution exists.

PENALTY FUNCTIONS

An alternative spproach to solving program (/2.7) involves the unconstrained program

L
maximze: = f(X) - ¥ pgiiX) (12.7)
i=1
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where p, > 0 are constants (still to be chosen) called penalty weights. The solution to program (12.7) is
the solutson to program (/2./) when each g(X) =0, For large values of the py, the solution to (12.7)
will have each g(X) near zero (o avond adverse effects on the objective function from the terms pg (X}
and as each p, — x, each g,(X) = 0. {(See Problem 12.6,)

In practice, this process cannot be accomplished analytically except in rare cases. Instead, program
(12.7) is solved repeatedly by the modified pattern search described in Chapter 11, each time with either
a new set of increased penalty weights or a decreased step size. Each pattern search with a specified set
of penalty weights and a given step size is one phase of the solution procedure. The starting vector for
u particular phase is the final vector from the phase immediately preceding it Penalty weights for the
first phase are chosen small, often 1/50 = 0.02; the first step size generally is taken as 1.

Convergence of this procedure is affected by the rates at which the penalty weights are increased
and the step size 15 decreased. Decisions governing these rates are more a matter of art than of science.
(See Problem 12.7))

KUHN-TUCKER CONDITIONS

To solve program (/2.1), first rewrite the nonnegativity conditions as —x, =0, —x, <0,
cove =%, = 0, 80 that the constraint set is m + n inequality requirements each with a less than or equals
sign. Next add slack vanables 2, |, x2,,,.. ., %3, . we respectively, to the lefi-hand sides of the constraints,
thereby converting each inequality into an equality. Here the slack vanables are added as squared terms
te guarantee their nonnegativity. Then form the Lagrangian function

L=fX)—- ¥ 4lgd¥)+ 2.1 - Y Al—x+x3.] (12.8)

=1 =,

where i, A;..... Amiqdre Lagrange multipbiers. Finally solve the system

AL

= { (j=12...,2n 4+ m) (12.9)
0x;
oL
- ='l:l {"= Illl"¥m+ﬂl Ilz'fﬂ}
i
4 =0 (i=1L2....m+n (12.1hH

Equations ( /2.9) through ( 12.11) constitute the Kuhn-Tucker conditions for program (72.2) or (12.3).
The first two sets, (/2.9) and (12.10), follow directly from Lagrange multiplier theory; set (/2.11) is
known as the constraint qualification. Among the solutions to the Kuhn-Tucker conditions will be the
solution to program (/2.3) i f{X)and cach g,(X) have continuous first partial denvatives. (See Problem
12.10.)

METHOD OF FEASIBLE DIRECTIONS

This is a five-step algorithm for solving program (/2.2), The method is applicable only when the
feasible region has an interior, and then it will converge to the global maximum only if the initial
gpproximation is “near” the solution (see Problems 12,13 and 12.14). The feasible region will have no
interior if two of the inequality constraints have arisen from the conversion of an equality constraint
{see Problem 12.11).

STEFP I Determine an initial, feasible approximation to the solution, designating it B,
STEP 2: Solve the following hincar program for the variables . d,, .. ., door
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ETEP 3:
STEP 4:

STEP 5:
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maximize s=d, ..

arl 3 7
sut-jmm;—f_‘ri d, - j:'-r d,—--a—'_'r_ dy+ dysys 0

(i A 0xsly (X' m

4 k]

'jF‘.! d, + {‘g‘ dy +:00+ '_g'i_ d,+kid,,, < —g,B)

CxXly X;ln X n (12.12)

":'| 1 ﬁ EE

t__"J ﬂl +l”1 d:"""""hﬂ; If."-"k_:d.._,,lﬂ "H!ln]

X, lg OXaslm (X lm

a & G
iy d. + Hp d _;_.,,+:"..... d, +kd, ., < —g,B)
-] 1 . ¥ ’
ixilg txslg Xnlm

withh d;<s1 (j=12,...,n+1)

Here k, (i = 1,2,...,p) is 0 if g(X) is linear and | f g{X) 15 nonlinear.
Id,,, =0 then X* = B; if noL go 10 Step 4

Set D =[d,. d,....4,]". Determine a nonnegative value for 4 that maximizes [(B + £D)
while keeping B + 4D feasible; designate this value as 2%,

Set B=B + i*D and rétum 1o Step 2.

(See Problems 12,13 through 12.15)
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Solved Problems

maximize; z=2x, + x,%; + 3x;
subject to; i + x; =1

It s apparent that for any large megative x, there is a large negative x, such that the constraint equation

is sutisfied, But then = = v, x; — = There is no global maximum.
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MINIMIZE. I =X, + X; + X3
subject to: x] + x, =13
X+ 3y 4+ ey =7
The given program is equivalent 1o 1he unconstrained minimization of

r=dxi4x, 49

which obviously has a solution. We may therefore apply the method of Lagrange multipliers to the originul
prograom standardized as

maximize: == —%; — X3 — %;
subjectto: x¥ + %, =3 =0 i1
'II\ +3.1]+II||-I?-'D

Here, fix,. x5, %) = —x; — X3 — %y, 0 = 3 |variables), m = 2 {constrainis],

H'I""'l" :‘-:1 .1111 = -I; + \:J i ] ﬂ]l.lfl-"ll .'l.:] - I* + 1.‘: 4 1[.] -1
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I'he Lagrangmn funation (s then
L "I-.'l:1 iy - T\j ".I;l{'ﬂ-: I . ]'] - j"'“l $- a'l.: i 2.'1 = ‘l':'

amd system (/2.5) becomes

3
‘_Lnu-lu}l..i,—i:-ﬂ ()
Fxy
T
L= 1=y =3, =0 (3)
x5
o M
__.g.-t—h,t:-:l} 14
'l.l..j
2{, =—{x +x:-H=0 5
LAy
1 A
f_ w =fxy, + 3.4 2y =T)=0 (%)
I"l".]
Successively solving (4) for 4, (3) far 4y, (2) for x, (5) for x, und (8) for x,, we abtain the bnigue solution
3=—|1.5 ﬂl_—u.j'\-.‘L —u.ﬁ "::—LH l.l'lﬂ.t..:l-'ﬂ?ul “Hh ]

Ta =Xy =Xy =Xy m =(—05) = 275 — (=0375) = = LY75

Since the first partial derivatives of flx,, xg xa) a0 5 oo ) and g,0x,, ¥y x50 are all eontinuois, and
sinee [

din gy oay

3 dx; édxy fn, [j_,;t i n]
gy Py f.g.ﬂ_.r I 2

dx, @xy; My

is of rank 2 everywhere (the lust two columns are linearly independent everywhere), e Xy = =03,
vy = 275, xy = 0375 i the optimal solution 1o program (/) or no optimal solution exits. ing feasible
points in the region around ( —0.5, 275, —0.375), we find that this point is indeed the iocation of & (globul)
masimum for program (/). Therefore, it 13 also the locavon of & global minimum for the ﬂr;&inll program,
with =% = —(— LS} = L.R75

= =(=147%) = LE?S

MAXIige. = o S0y o+ Ay)
subject to:  —x,x3 + xix3 =35

As in Problem 12.2, i1 is possible to establish in advance that an optimal solulien exists. Indeed, by
inspection, the point v, = 2,57 x; =0 x, = 7/2 satisfies the constraimt equation n.nd makes ¢ = I:
therefore it must represent & global maxmum.

Let us apply the method of Lagrange multipliers io this problem. The Lagrangan I'umpmn here i

L o= sin(x,n; + ¥a) — d{njx — xpxi - 5
st that the Lagranginn equaticons e

i
e = N, 00 (X, Xy 4= XNy)— 1-4.1-'|.'|-|i'-1| 4 -"Qg-l-'i = )
L

['ef ;
- o= Ny cos (X + X0+ dixx] =0
I,E:-
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i

'L X

— = 0% (3,X; + 1) — 24, x{%, =0
I..lllq,

il. ba

==l -l -5 =0

A

As these eguations cannotl be golved algebraically, we go over to the Newton-Raphson approach. The
gradient vector and Hessinn mutrix of the Lagrangian function are

Xy 008 (X, Xy 4 Xy) = 2y xd + 4 xd
Xy €08 (X, Xy + X3b+ 3d, 6, %3

YI =
€08 {x, X3 + x3) — 2,57,
~{xixi - wx -9
= . =
- i3 WA Xy + Ky = 28] | | |
__________ | |~ -, <" = o N S Y Lo | FL =
GO X Xs + uy) | —~xf sin fx, N3 + N3} + Bk x 0y | |
ll -"Cj-'f:f.lh‘l'l'il:-+ l'_'|.|=+'.1-'.nT§ 1 | '
'-:h.
—————————— e e s e i e 3 e e i i
— mpEmixxy + oay) = Adyway | —w mRde,ay, + Ay | =—sElxxg + xy) - --i,'lﬂ-l
—————————— T PR A
. 2pyad = &} | Awyxd | —2ix, | O

(The superdiagona! entnes of the symmetric matrix have been omitted to save space. ) Arbitrarly taking
Zy=[—101,2517
we calculate as follows (rounding all computations to four significant figures).

Firsy iteration.

13.57 -13.50 4,068 9003 135
Vil = = 3071 Holy = 4068 —=69597 09975 =3
. ~ 44929 b 9003 09978 —299% -
—23% 135 -3 -3 0

DOST3T  NO3KES  0U318 003194
by | 003R45 _00B206 01531 —D038R9
Wlzd "=l gimg  oasai 02641 009044

003194 003889 -0.09044 040

Hence
Z,=2,—(Hlp) 'V, = [-09388, 08931, 2279, 0.2353)"
Secomd feration.
1579 —3.236 154 1,128 1047
v 06503 - 154  —2058 09309 2247
lee =1 _og1s8 2T M 008 —1.406 —4018
02479 1047 —2247 —4018 0
0807 2 1224 1418 a1ig)
M, ) 1.224 1.574 2300 0099
Whelz L 418 2 3% 2404 ~0.1569

001391 -0.0996% —0.1569 003573
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Hence
LomZ, ~ (Hylp) 'V0g, =[- 1064, 06190, 2,046, 001545]7
Continuing in this manner. we obtain successively
Z, = [— 1053, 0.5067, 2089, 0.001 36977
L, = [~ 1053, 04982, 2005, 0.000009]7
Zy = [ - 1053, 04981, 2005, 0]"

As the components of Z have stabilized 10 three significant figures, we take x = — L0S, 3 = 0495,
x} = 210, and i, = 0, with

#* = gn (xTad + x§) = 1.00

Observe that the Newton-Raphson method has converged 1o a different global maximam from the one
originally identified.

Disregarding Problem 12,1, use the Newton-Raphson method to
maximize: = 2x, 4 xx; + Ix,
subject o 3] + x; =3

Here, L = (2x, + x,x;: + dxg) = d){x] + &3 = 3). Therefore,

VoL=| x,+3-. H; = | o0 -1

Arbitrarily taking Z, = [1. 1, 177, we caleulate:

First fieration,
| =2 | =1 ; -] 2 ~
Vil =| 3 Hilg, = I n -1 'HIJI-*_"‘&. R TR |
1 -2 =1 0 = e g
and 2, = 2y = (Mg Vil = [1/3, 10/, 10/3]"
Secomd iferarion,
L] | -2 3 =2 N B 9 f -9
Yily = 0 Hyly, -j i 7 — (Hglg) L o ﬁ 6 =d =
—4/9 -3 =3 L] - =i -9
] Lo=Z, = (H ) 'V, =[2/2,8/3 11/3)7

Continuing for two more lierations, we obiain
&y = [0:6333, 26, 3.633]"
Z, = [D.:6330, 2599, 1.631)"

As the components of Z huve stabilized to three significant Bgures, we take x7 = 0,633, x% = 260, and
A% = 363, with

eyl +xixt+3xl=107
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12.6

e

Fig. 12-1

By expressing = as a (cubi) function of x; alone, we can easily sec that in this parbicular case the
Mewton-Raphson method has converged an a local maximunm.

Give a geometncal argument for the method of Lagrange multipliers in three dimensions.

Refer to Fig. 12:1. The problem is 10 maximize a function f{x,. x;, x,) along the space curve @ in which
the two surfaces

-|]‘1'r!'|. '.'_-.. ﬁ]j ) and -ﬂ':‘t:. '-';. f.'rll = [}

imtersect. Lel P be the point of ¥ al which the maximum is attained. From Problem 11.7, we know that the
gridient of [ must have 2 rero projection on the tangend to @ at P; otherwise a small displacement along
the curve would produwce an even larger funciional vilue Thes Vil must lie in the normal plane to the
curve at P, But then this vector is expresable as a lincar combinatnon of the two surface normals at P, Vg, 1,
and Ya,lp: that s

where Low [ — &gy = Agils
The three scalar equations represented by (/) are the first three Lagrangian equations (/2.5) the
remaining two Lagrangian equations merely restate the requirement that P aclually lie on %.

Use the penalty function approach to
maximize; 7= =4 =3{1 =x,)* = (1 = x3)*
subject to: 3x, + x; =35
Here (12.7) becomes
maximize; #= =4 = ¥ =5, = (1 = x5 = p,(3x; + x; =5

This unconstrained maximization program in the two vanables 1, and x; is sufficently simple that it may
be solved analytically. Setting V4 = 0, we obtain

(14 3p e, 4 pivg =1+ 3p,
Ippxg A0+ vy = |+ Spy
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Solving these equations for x; and x; in lerms of p,, we obfain

X =Xy = - . a
S T P TF R ]

Since the Hessian matrix
H'_=|:"ﬁ"lHF| "'ﬁi’r ]
- bp, -2 = 2p

is negative definite for every positive value of p,, # s a strictly concave function, and its sole stationary poimt
must be a global maximum. Therefore, letting p, - +© we obtain the optimal solution 1o the original

program:

3 5
Hy == —=Xx} x;—-i-.r;

Fl
with:* @ =4 = 1 =x]) = {1 =)} = —425

Use the penalty function approach to
minimize: == (x; — ) + (= 1)F +1
subject to;  x] + X3 + X3 = 16
Putting this program in standard form, we have

maximbre ze <(x;, — %) = [83 = 1P = |

]
subjecttoc x} + 3+ x} — 16=10 ¢
For program (/), {12.7) becomes
maximize 2= =(x; = 5 = (x5 = 1P =1 = pyix} + 53 + x5 — 1607 (o)
Phasw |, We sl p, =002 in {2} and consider the program
maximize 2= —(x, — x;)* = (5, = 1)F = | — 00« + x} + 53 — 16)* {3)

Arhitrarily selecting [0,0, 0]" as our initial vector, and setting b = 1, we apply the modified pattern search
{Chapier |1} to program (7). The result after 7% functional evaluations is [1, 1, 117, with

filLi, )= =1 and g, (LL1)= <13

Phase 2. Since gyl 1, 1) = <13 # 0, the constraint in program (/) =& not gatisfied. To improve this
situation, we increase p, in (2) to 0.2 and consider the progeam

maximize: = —(x; — x2)* — (x5 — 1P =1 = 02x} + x5 + 53— 16)° (4

Tauking [ 1, 1. 1]" from Phase | as the initial approximation, we apply the modified pattern search 1o (4)
still keeping & = 1. The result remains [ 1. 1, 117, indicating that the construint cannot be satisfied in integers.

Phase 3. Since increasing p, did not improve the current solution, we return 1o program (F), reduce b (o
0.1, and make & new pattern search, again with [1, 1, 1]7 as iitial approximation, The result is [1.5, 1.5, 17",
with

fOL5 151 =1  and @15 15 1) =01875

Continuing in this manner, we complete Table 12-1. Using the results of Phase 9, we conclude that
af = 1496, x7 = 1496, x7 = 1003, with z* = + 1000, approximates the optimal solutiop to the original
MINIZANON program.
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Table 12-1
Final Vector X
Phase " h 1y X3 Ty fiX) i,(X)
1 002 | 1 I 1 [ -l =13
2 0.2 1 I 1 [ = - 11
i no2 | ol 1.5 1.5 | -1 01575
4 02 0.l |5 1.5 [ —1 01875
5 nor | oaong | 49 1.5 i — | W) —06a21
i 02 ! 0 |49 1.5 101 — 1,000 —Q013
;. 02 | 000 1496 | 1496 | 1002 | —1.000 — (38
8 2 | Do b496 | 1496 | LO03 | — 100D 0,001 2
g 20 | 0001 | 1496 | 149 | 1003 | —1.000 000132

By ispection, the exiact solution is
154/
k] = 5] m A = | 491 =1

with z* = |, Thus the penalty function approach has vielded a resuli good 10 four significant figures.

maximize; = —xfx3 — xjxj—1
subjectto; x; + 2 + ;-4 =0
Xy = =0
with:  all vanables integrai
The penalty function method 15 applicable 1o this integer program, provided that the pattern search

starts from an integral first approximation, say [0,0,0]", and employs h = | throughout. Using it, we
generale Table 12-2 and find % = |, ¥4 = =27, 51 = 19, with z* = = 1091

Table 12-2
] | | Final Vector X ’
i | I |,
Phase | p, ps | h X, Xy | % f(X) iy (X) g,(X)
| 1 i 1
1 jl 002 ooz | 1 | 4 0ol o0 -] 0 —-19
2 1 T 4 02 i | 4 0| o0 I | 0 9
i ‘I 002 L. 1 -1 | 12 — 146 )| -7
4 | D032 2 | 1 - 11 I7 . 11! iy 2
5 | 3 200 o I ~34 |19 - 938 6 0
0 | M 200 1 1 1|l w 1091 0 0

Diesicribe how the penaliy function approach can be modified 1o solve program (12.7) if nonnegativity

conditione are ndded

Regume the initial approximation to have only nonncgative components. Then restrict exploratory
moves 1o vectors satisfying the nonnegotivity conditions, This can best be sccomplished by penaltzing 1he
objective hinction whenever the nonnegativity conditions are violated. That is, fIX) i evaluated as a
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prohibitively lirge negative number, perhaps — | « 10*", whenever any component of the perturbed vector
X is negative
1L10 Solve the following program by use of the Kuhn-Tucker conditions:
minimize: 2= x] + 5x§ 4 10x3 - 4x,x; + 6x,x, — 12y3x; — 2%, + 10x;3 + 5x,
subject toc x, + vy + x5, 24
with: all variables nonnnegative
First transforming into svstem (/2.0 and then introducing sguared slack variables, we obtamn

I'I'I-llilﬂ'liﬂ . . .-f - i'li — Iu'-"-; 4 ‘IIIJ i htl"] - Il“l"..l + :."'_ — “}.'I.J - 5!]

subjectto:  —x; — Qg — %, +4 + &f =0
- X + x1 =

— X3 +xi =)

- Xy +xi=0

For this progrom, the Lagrangion function i
L= —x] — Sxd — 10 +dwyx; — Gryxy + Vxgx, + 2x, = 10x; — Sxy
—dyl—x — 2xy — a4+ x]) = Aol —x, + x3) = Al — x5 + 7)) — Aol —x;y 4 xd)
Taking the derivatives indicated m (/295 and (12.10), we have

aL

=25, ANy bRy 2 A Ay =0 i
TI‘

L ST SNLPYNET SIS Y T S i2)
ixy

XL i

- =20, — 6% + 125~ S+ A, + i =m0 (E)
X4

&

& o Hhid=0 )
CXa

.

o S, R (5)
II’

A

;E:::——Iijﬂhg‘u ‘ﬂ]
(lp

-f"=—1.a.,:,=u (7)
i Xs

f.l-='t+1‘1+3.1_-":_4‘=u )
TAJ

f‘L =xy~xi=0 #)
LR

;E' -_t‘.—j.:-l} (1)
fﬂ]

!

O s <k (n

Fi'
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These equations can be simplified. Sel
5= X4 (I

Equatitons i4) through {7} imply respectively that either 4, or x,, either 4. or x., either 4, or x,, and gither
Agy OF Xy, cquals zero, But, by (¥ through (12), x,, x5 %, and 5. are zero if and only il 5, x,, 3, and x,
are respectively rero. Thus, {4) through (7) and (¥) through (12) are equivalent to the system

£ny =10
L1y =
l.:l.l (3
£yl ={)

;4.1_1 - u'

There are 16 soletions to this system,
One of these solubions s 5, = 4; =y = x, = [ Substituting these values into (8), (7 (2), and (3), and
simplifving. we pet the lingar system

£+ Lxy - 4
"-:r'a'I F 41? . |i.| L _J
4y, = Iﬁ.'!.'l - 2.!'.. = [i)

"ﬁ.‘l*' Il‘l_ ﬂ.] '+1‘H 5

which has the unique solution x; = 2941, x; = 05294, 4, = 1764, and 4, = 14.53, These results are listed
in raw 10 of Tahde §2-3, {Boldface entrisi in the table correspond (o solutions of (£3).)

A second solution of (14) i85, = 8 = 33 = xy = 0, Substituting these values into (8), (), (2}, and (7).
and simplifying, we get the lineur syslem

G .4
£y + Ay = -]
iy . ;-,.'ﬂ' 5

which has no solution, as indicated in row 16 of Table 12-3. The other 14 possibilities are handled similarky,
and the results wre also listed in Table 12-3,

The only row in Table 12-3 having nonnegative entries for oll vanables, as required by the Kuhn-Tucker
conditions, is row [0, Now, since 2 = f((X) and

"|‘x1 L 'E.— :I; ‘[1“

have continncus first partial denvanves, one of the solutions 10 the Kubn-Tucker conditions must reflect
the optimal solution of the maximizatton program. But the Kuhn-Tucker conditions here have a unique
solution! Consequently, v} = 2941, 1% = (L5294, x% = 0, giving r* = 1235 for the onginal minimization
program

1211 Transform the following program into system (/2.3
mimimize: = 12x] 4+ 28x% + 55.2x3 — 5.6x,x; — 5.6x,x,
+ 23x, %y +23xyx, — F2xaxy — 12054,
subject Lot x4+ x4+ Xy = 0000 o
9x, 4 Tx; + 10x; = 80000 (2

with: all variabies nonnegative



Multiplying the objective funciion by — 1. we oblain

maximize: == —12x7 — 2Bx3 — $5.2x5 + Sbxx;
3 iﬁ"‘:"l g L"I]jj _ . ﬂljli * Il‘:llﬂ_ +' 1.?_.:le
The equality constramn! is equivalent to the /wo megqualites
I.:-ﬁ::"‘.t-‘ﬂ“}lm aﬂl —ll—.:;-jii—’ﬂm

Hence the complete =1 of constrimts can be given as

xy — 10000 < 0
Ky + 10000 < 0
~9x, — Txy — 10x, + 80000 < 0

X+ Xy +

—Xy — Xp—
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Table 12-3
iy e ay Xy Xy LY i
L] L] {1 (] 11.5 =3 =55 —4
0 0 0 1 -5 -3 o -15
o 0 s i 175 i ~55 ~d
] 0 f 1l 1 0 0 -3
1] = 1,643 (1] 1] (1] —4.643 =303 = 1632
i 2 [ 17 (1] =1 [l =2
0 ~34 13 i 0 0 ~028 —425
] -2 10 5 0 0 o —4
0. 3809 (] i ] 1436 —-21238 — 5881 ]
1.764 i i 14.53 Ta4] 534 i i
-32 0 188 i 6.3 0 -23 ]
6 0 -8 1 1 i o 0
6,623 —HTIR i i 0 1.567 09855 L}
13 =18 ] —34 0o ? 0 0
BS 63 -8 0 ] i 4 0
1] ] (1] (1]

(E}]

i

Expressions (J) and (4), augmented by nonnegativity conditions on the variables, represent standard form

for this problem.
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The problem mow can be solved by uiilizing the Kuhn-Tucker conditions {see Problem 1233) Another
solution procedure 15 given in Problem 12.12

1212 How may the penalty [unction be used to solve Problem 12,117

The second constraint, (2) of Problem 12,11, ¢an be converted into an egquality by subtracting a surplus
variable. xy, from iis lefi-hand side. Then the system composed of (1), (/) and () can be solved by the
penilty function approdch s modified in Problem 129,

1213 Use the method of feasible directions to

maximire: =X, + %,
subjoct to:  xx, = 2y, = 3
3Ix 4+ = M

with: all vanables nonnnegative
Put into standiurd form (422}, the program s

maximize: =z =x, +x;

subjecttor xpxy — 2%, — 350
Iy e, =2 <0
-X| =0

i

Here, f(X) =%, + x5 0,(X) = %%, — 2%; — 3, 00X) = 3x;, + 2x; — 24, 9,(X) = —x, and g (X} = —x;

ef & f
ey =
r:.l'. I'I:

|.|'Hf| = ‘_.Ihi':f_l__vE 5
i ‘.. ll?l.: :
I;-H_: _ ! t:l‘.r_l = I
r't. l".::

i u

W =1 i LI
I'.'fl :'Jl:].

I-' It

-HI. -0 "Ja .
r't. f'."i-:

Furthermore, g,{X]) is uvonlincar, while g X)L g(X), and g,0X) are all lingar; therefore, &, = | and
by = &y = by =0in program (/2.12)

STEP I We arbetrarily mitialze B as [1, 17", which is feasible.
STEFP 2. Whh this B, program (12.17) becomes



STEP 3

STEP 4

STEP §

STEP 2

STEP 3
STEP 4

STEP X

MULTIVARIABLE OPTIMIZATION WITH CONSTRAINTS [CHAP. 12

maximize; == dy

subject ty —dy — oy +dy 5 0
dy— dy +dy5 4
M, 4+ 2, <19

~d, < |
- dy < 1
with: < 1
iy s 1
dy < 1
Itx solution ind; = 1, d; =0, 4, = |
iy =1#0
D =[1.0]", hence

'ﬂ:]”[:.])-m CE i

which becomes arbiirarily large as » tends 10 . To keep [| + 4 1] feasible, however,
4 can be no greater than 4 i the first constrammt in program (/) is 1o be satisfied, and
no greater than 19/3 i the second constrami is to be satisfied. Thus, 4* = 4,

*=[1J+4o]-L]

With this updated B, program {1.2.12) becomes
mavmize =,
whigct to:  —d, - dy+d, 50
di+ My +dy <0
W, + U, =7

-, =5
- ds <1
with: d, <1
s =1
;=1
lssolution is oy = |, dy= = 1/2. d, = 1/2.
dy=1/220
D=l -4" %0

r([:]"“"[:i])- {5+ 1= bij=t+ 4

which becomes arbitrarily large as 4 tends 10 @, To keep [54 & 1 = |4]" leasible, however, i
can be no greater than 1.5 if the second constramt in program (/) is 1o be satished. and no greater
than 2 if the nonpegativity constraint on t; = 10 be satished. (The other two constraints in
program (/) are satishied for any nonnegative choice of 4.) Thus, A% = 2

S HE RN
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1214 Show that the solution found in Problem 12,13 is not optimal.

MULTIVARIABLE OPTIMIZATION WITH CONSTRAINTS

Table 124
Xy I X3 I‘| II]' !l I:-r'| A
| ]
| [ 1 0 | 4
g | ;| =t | 3 2
T (4 | o | I
] 0 - i j 531373
THASTS DAY 3T ] 0 1] '

Continuing in this manner, we complele Table 12-4, It follows that 57 = 764575, =% = (L5301 373, with
o fixy x¥) = THA5T5 4 05333 < KTTI2

The seeond constrainl of the original program may be wntten as

|

:5”-E

which shows that if x, = 0 then =z < 12, On the other hand, if x; =0, then 2 = x; < 12, [t follows that the
global maximum is =* = 12, seomed at of = 0 v? = 12 The solution oblained 1n Problem 12,13 is only a
locally constrained maximum; the method of feasible directions would have located the global maximum

had B inittally been chosen closer 1o [0, 12]7,

1215 Interpret graphically the method of feasible directions.

The method of feasible directions produces a direction I along which one can move from B, the current
best approvimation to X*, o as 10 achiove a better volue of the ohjective function. Such a move 15 possible

\
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only (fd, ., = 0 and then i* represents the maximal step size that can be ken Figure I!a-"-' illustrutes the
solution procedure For the caleulutions m Problem 1203

Supplementary Problems

Pul programs 1116 through 12.20 in standard form.

L6 maximire, = = xje" "N

subject to;, 2x 4 xj = ID

.17 minimize: 2 =ix, = [}¥ + x}

subject to; xf + ximd

12.1% maximine: o= 6x, — 2x) &+ 2x,x, — I
subject o x, + 152

with!  all variablés nonnegative

1219 minimize: = Mxi = l4a3 + 40x; — M v, — M0 + Maox,
subect fe 11x; + %y 4 12, = 1000
0+ Xy= Al

with:  all vartables nonncgative

12 maximaE: o= daa, 4 e
suhisci iy 22+ xj=4
.’u'r’;-| _ j

with: all vanables nonnegative

Solve Problems 1221 through 12.23 analytically by Lagrange multipliers and then numencally by either the
Newion-Raphson methad or the penalty function approach

1221 Problem 12,17

12.22 minmIEE =X, N+,

subject to: %7 4 x4+ 1) = |

12.23 MAKImIZEE = 3] + 2.0,
subject (o0 4af + = 16

dxs o+ Ak, =28

1224 Find the point an the parabola ¥ = 4x thai & closesi (o the pomt (1.1,

1135 Tlse Lagrange multipliers 1o solve Problem 1220 withowt the nonnegativity conditions. Bussd on the reault,
solve the problem with the nonnegativity conditions
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1226 Solve Problem 1216,

1227 mimmize: == xi + x] + x}
subjectiz xx;x; =13
X+ Xpo— %= 3§
1228 Solve Problem 12.27 with the additional constraint that all variables be mtegral.
1229 MAKmEZe = =x; + 1g + 0 + XXy + X, %,
subjectto: xf + 2l +x3 =25

E"'-l + Id‘r t ?-T_r - jﬁ
with: all vartables nonnegative

1230 mimmize = xTxi + odxd 4 1
subjectto: &y + 2%, + Ixy =4
Xy = 1¥

131 Solve Problem 12.18.
1232 Solve Problem 11.19.

123}  Use the Kuhn-Tucker conditions to solve the program given in Problem 1211

Solve Problems 12.34 and 12.35 by the penalty funcuion approach.

1234 minimize: = {x, — 2 +ix; = 1)}
subject le: x; — 2x, = —|
X;+d3sd
1235 mazimize: == Inll + x,) + 2In(l + x;)
subject tor x, + x; <2

with: 2l varables nonnegative

215

(Hint: Simplify the problem by masimizing ¢ und establishing beforehand that the consiraint must hold

with equality.)

Lise the methind of feasible directions 1o solve Problerns 12,36 and 12,37,

1236 minimize = (x; = 2 4 (xy = 2
subtect to: x; + 2x, 5 3
fx, = 5, 210

with: x, and x. nonnegative

1237 maximize == x, + 3x,
subpct i xyx; 2 3
xi+xisge

with, =, and x, nonnegative



Chapter 13

Network Analysis

NETWORKS

A nerwork 1s a set of poinis. called nodes, and a set of curves, called branches (or arcs or links), that
connect certain pairs of nodes. Only those networks will be considered here in which & given pair of
nodes 15 joined by at most one branch. We denote nodes by uppercase letters and branches by the nodes
they connect.

Example 131 Figure (31 & o network consisting of five nodes, labeled A through E, and sin Branches defined
by the curves AR, AC, AD, BC, CI), and DE.

A branch is orfented if it has a direction associated with it Schematically, directions are indicated
by arrows. The arrow on branch AB in Fig. 13- signifies that this branch is directed from 4 to B. Any
movemenl along this branch must onginate at 4 and terminate at B; movement from B 1o A is nol
permitied.

Two bmnches are conmected i they have a common mode, In Fig 131, bronches AR and AC arc
connected. but branches AB and CD are not connected. A park is a sequence of connected branches such
that in the alternation of nodes and branches no node is repeated. A network is conmecred if Tor each
pair of nodes i the network there exists at least one path joiming the pair. If the path s unique for each
pair of nodes, the connected network is called a tree. Equivalently, a tree s 2 connected network having
one more node than branch.

Exampie 13.2 In Fig 13-1, |ED, DA, AR} is a path, But the sequence of connected branches [CA, AD, DC, CB)
is not a path, as node © ocours in it twice. The network s connected, and remains connected even il branches DA
and AR are deleted. IT, however, DE were deleted, the network would not be connected, sinoe there would not be
a path Enking D with E. Becouse D and € are joined by three paths, the network is not a tree

Fig. 13-1

216
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MINIMUM-SPAN PROBLEMS

A mimmum-span problem invelves a set of nodes and g set of proposed branches, none of them
oriented. Each proposed branch has a nonnegaiive cost associated with it. The objective 15 to construct
a connecied network that contains all the nodes and is such that the sum of the costs associated with
those branches actually used 15 a mimimum. We shall suppose that there are enough proposed branches
1o ensure the existence of a solution

It 15 not hard 10 see that a minimum-span problem s always solved by a tree. (I iwo nodes in a
connected network are joined by two paths, one of these paths must contain a branch whose removal
does not disconnect the network. Removing such a branch can only lower the total cost.) A minimal
spanning tree may be found by intially selecting any one node and determining which branch incident
on the selected node has the smallest cogt. This branch is accepted as part of the final network, The
network 1s then completed ileratively. At each stage of the ilerative process, attention is focused on those
nodes already linked together. All branches linking these nodes to unconnected nodes are considered,
and the cheapest such branch sdentified. Ties are broken arbitranly. This branch is accepted as part of
the final network. The iterative process lerminates when all nodes hiave been linked. (See Problems 13.1
and 13.2)

If the costs are oll distinct {this can always be brought about by infinitesimal changes), it can be
proved that the mimnimal spanning tree 1s unigue and 15 produced by the above algorithm for any choice
of the starting node.

SHORTEST-ROUTE PROBLEMS

A shortest-route problem involves a connected network having a nonnegative cost associated with
each branch. One node is designated as the source, and another node is designated as the sink. (These
terms do not here imply an orientation of the branches of the network; they merely suggest the direction
in which the solution algorithm will be applied.) The objective is to determine a path joining the source
and the sink such that the sum of the costs associated with the branches in the path is @ mimmum,

Cheapest-puth problems are solved by the following algonthm. in the application of which all ties
are 1o be broken arbitrarnly.

STEP 1+ Construct o master list by tabulating under each node, in ascending order of cost, the branches
incident on it. Esch branch under o given node is written with that node as its first node.
Omit [rom the list any branch having the source as its second node or having the sink as its
first node.

STEP 2: Star the source and assign it the value 0. Locate the cheapest branch incident on the source
and circle it. Star the second node of this branch and ussign this node a value equal to the
cost of the branch. Delete from the master list all other branches that have the newly starred
node as second node.

STEP 3: I the newly starred node is the sink, go to Step 5. I not, go 1o Step 4,

STEP 4: Consider all starred nodes having uncircled branches under them in the current master list,
For each ome, add the value assigned to the node to the cost of the cheapest uncircled branch
under 1t. Denote the smallest of these sums as M, and circle that branch whose cost contributed
10 M. Star the second node of this branch and assign it the value M. Delete from the master
hist all other branches having this newly starred node as second node. Go to Step 3.

STEP 5: z* 1s the value assigned to the sink. A minimum-cost path is obtained recursively, beginning
with the sink, by including in the path each arcled branch whose second node belongs to
the path,

{See Problems 13.3 and 13.4.) From the operation of Step 4, we can see that the set of circled branches
produced by the algorithm constitutes a subtree of the original network, having the property that the
unique distance (cost) in the subtree between the source and another node is equal to the shortest
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distance between these two nodes in the original network. In general, however, the subtree will not span
the network,

MAXIMAL-FLOW PROBLEMS

The objective in a maximal-flow problem is to develop a shipping schedule that maximizes the
amount of material sent between two points. The point of origin is called the source; the destination is
called the sink. Various shipping lanes exist which link the source and sink directly or via intermediate
lescations called junctions. It is assumed that junctions cannot store material; that is, any material arriving
at a junction is shipped immediately to another location.

A maximal-flow problem can be modeled by a network. The source, sink, and junctions are
represented by modes, while the branches represent the conduits through which matenal is transported.
Associated with each node N and each branch NM emanating from N is a nonnegative number, or
capacity, representing the maximum amount of material that can be shipped through N M from N.

Example 133 Figure 13-2 &5 a network having 4 as the source, I as the sink, and 8 and € as juncuons. The
eapacities of each branch for flows in the two directions are mdicated near the ends of the branch. Note that T units
can be shipped from 4 to C along AL, but 0 units can be shipped in the opposite direction: this asymmetry allows
us, if we wish, to define an orientation of AC. In contrast, flows along BC can move in either direction. with a
capacity of § umats enther way,

Fig. 132

Maximal-flow problems are solved by the following algorithm:

STEP | Find a puth from source to sink that cun accommodate a positive flow of matenal If none
exists, go to Step 5.

STEP 2: Determine the maximum flow that can be shipped along thes path and denote 1t by k

STEP 1. Decrease the direct capacity (ie., the capacity in the direction of flow of the k units) of each
branch of this path by k and increase the reverse capacity by k. Add k units 1o the amount
defivered 1o the sink.

STEP 4: Go o Swep 1

STEP 5: The maximal flow 1s the amount of material delivered 1o the sink. The optimal shipping
schedule is determined by companng the onginal network with the final setwork. Any
reduction in capacity sigmifies a shipment.

iSee Problems 13.6 and 13.7.)
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FINDING A POSITIVE-FLOW PATH

The difficult aspect of the maximal-low algorithm is Step | identifying a path from source to sink
with positive flow capacity. To discover such a path, first connect to the source all nodes that can be
reached by a single branch having positive flow capacity in the forward direction (the direction out of
the source). Connect these nodes 1o all new nodes that can be reached by single branches having positive
forward capacities. Continue this process until either the sink is reached—in which case an appropnate
path has been identified —or no new nodes can be reached from existing ones and the sink has not been
reached —in which case no appropriate path exists. (See Problem 13.5.)

Solved Problems

131 Solve the minimum-span problem for the network given in Fig. 13-3. The numbers on the branches
represent the costs of including the branches in the final network.

Fig. 133

We arbitranly choose A as our starting node and consider all branches incident on it; they are AE, 48,
AD, and AC, with costs 10, 2, |, and 4, respectively. Since AD i the cheapest, we add this branch to the
solution, as shown in Fig 13-4{a) Nodes A and D are now connected.

We next consider all branches incident on either 4 or D that connect to other nodes. Such branches
are AE, AB, AC, DB, DE, DF, DG, and DC, with costs 10, 2, 4, 1, 7, 10, 7, and 4, respectively. Since DB is
the cheapest to include, we adjoin it to Fig 13-8(a) and obtain Fig 13-4(b). The connected nodes are now
A, B and D

We next consider all branches incident on A, B, or D that connect 10 other nodes. These are AE, AC,
DE, DF, DG, and DC, with costs 10. 4, 7, 10, 7, and 4. The cheapest branch of interest is cither AC or DC.
We arbatrarily select DC and adjoin it to Fig. 13-4(b) to obtaia Fig. 13-4(c)

Continuing in this manner, we oblain sequentially Figs. 13-4(d) through 13-4(/) Figure 134(f)
contains all the nodex, hence it is 8 mmimal-span network. The mintmum cost for connecting the network is

Pel+l+d4+)4+345m]?

132 The National Park Service plans to develop a wilderness area for tourism. Four locations in the
area are designated for automobie access. These sites, and the distances (in miles) between them,
are listed in Table 13-1. To inflict the least harm on the environment, the Park Service wants (o
minimize the miles of roadway required to provide the desired accessibility. Determine how roads
should be built to achieve this objective
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Fig. 134

Table 11
Park Wild | Magestic | Sunset The

Entrance Falls Rock Poim Meadow
Park Entrance 71 19.% 19.1 257
Wild Falls 71 K3 16.2 132
Majestic Rock 19.5 L (L8 52
Sunset Point 191 16.2 151 172
The Meadow 25.7 132 52 172
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Fig. 136

This is a minimum-span problem. The nodes are the four locations to be developed and the park
enirance, while the proposed branches are the possible roadways linking the sites. The costs are the milcages.
The complete network is shown in Fig 13-5 where cach site is represented by the first letter of its name.

We arbitranily select Park Entrance as the mitial node. The costs of the branches incident on this node
are listed in the first row of Table 13-1. Since the lowest cost is 7.1, we add the branch from Park Entrance
o Wild Falls 1o the network,

We next consader all branches joining either Park Entrance or Wild Falls to a new site. These are the
branches from Park Fatrance 10 Majestic Rock, Sunset Pomnt, and The Meadow, as well as those from Wild
Falls 1o the same three sites. Of these, the cheapest branch is the one from Wild Falls 10 Majestic Rock: so
we adjoin it 1o the network,

We next consider all branches 1o either Sunset Point or The Meadow from either Park Entrance, Wild
Falls, or Majestic Rock. Of these, ihe branch from Majestic Rock to The Meadow has the smallest coat; w
it too is added to the network,

At this stage, the only unconnected sate 1 Sunset Point. The cheapest branch linking Sunset Poant to
any other site s the one from Wild Falls. Adjoining this branch 1o the network, we arrive it Fig 13-4,
having a minimal cost of

*mT]4+83+52+ 162 = MEmi

An individual who lives in Ridgewood, New Jersey, and works in Whippany, New Jerscy, secks
a car route that will minimize the morning dnving time. This person has recorded drniving times
(in minutes) along major highways between different intermediate cities; these data are shown in
Table 13-2. A blank entry signifies that no major highway directly links the corresponding points.
Determine the best commuting route for this individual.

Table 132

Ridgewood

Orange

Troy Hills

Rudgewood

n

Clifvon

12

17

n

Troy Hills

Bk

17

17

Paruppany

Whippany

2

17
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This situation may be modeled as a shoriest-route problem. The nodes are the cities, the branches are
the connecting highways, and the costs associated with the branches are the travel times The source is

Ridgewood, and the sink is Whippany.

STEP |- The master list is shown in Fig 13-7(a), with each city represented by the first letter in its name.
Branches CR and TR are absent under C and T, respectively; these appear. as RC and RT, under
the source only. Similarly, no branches are Hsted with the sink as finst node

STEP 2 We star the source node, R, and assign 1 the value 0. The cheapest branch leaving R 1s RO s0
we star C and assign it the value 1K the cost of RC. We aircle branch RC and then delete from
Fig 13-Tia) all oaher branches whose second node s C. e OC and 7TC. The new master list s

Fig 13-7(h)
& c o T r w
RC 18 CO 12 OC 12 TP 4 PT &
RT ¥ CT 28 OT 17 TW 17 PW 1)
ow 2 TO 17
T 2
(2)
R  C*(l8 0 r ’ w
O 12 Or 17 ™ & M
RT 2 €T 3 ow 2 7Tw 17 PW 11
™ 1N
(b}
R* ) C* (8 0 () T r w
EPEPII R L
ow R TW 17 PW I
R* i C* (18) ™ o P W
-aw v TP 4 AW
™ 17
()
CC(®) O (0 T 0N Pt e "

@- ow e @ D mou
le)
R* ) C* (i) O° (W) roan P (M) W um

@ EOED

wn
Fig. 13.7
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STEFP 4 The starred nodes are R and C. The sums of interest are 0 + 32 = 12 under R, obtained by adding
the value of R 1o the cost of RT, and 18 + 12 = 30 under C, obtained by adding the value of C
1o the cost of C'0. Since 30 i the smaller sum, we arcle CO, star 0, assign O the valoe 30, and
defete from Fig. 13-7(4) all other branches having 0 as second node, ie., 70O, The result s Fig.
13-Tic)

STEP 4 The starred nodes are R, C, and 0. The sums of interest are 0 + 32 = 32 under R, 15 + 28 = 46
under C, and 30 + 17 = 47 under 0. The smallest sum is 32 hence we arcle RT, star T, assign
T the value 32, and delete from Fig 13-7(c) all other branches with second node 7. The result
s Fig 13-7(d)

STEP 4. The only starred nodes having uncircled branches under them in the current master list, Fig.
13T(d) are O and T For these nodes. the sums of interest are 30 + 32 = 62 and 32 + 4 = 36,
respectively, Therefore, we circle TP, star P, assign P the value 36, and delete all other branches
with second node P, of which there are none. The new master list s Fig 13T(e)

STEP 4° The only starred nodes having uncircled branches under them in the new masier list are O, T,
and P. The suma of interest are, respectively, M) + 12 = 62,32 4+ 17 = 49, and 36 + 11 = 47 Since
47 is the smallest, we circle P, star W (the sink), assign W the value 47, and delete from Fig.
13-Tte) all other branches having W as second node. The result is Fig. 137( /)

STEP 5° The mmimum driving time from Ridgewood 10 Whippany is 2* = 47 min. To identify the optimal
path, we search Fig 137(f) for a circled branch having W as second node; 1t s PW.
Next we search for a arcled branch having P as second node: il is TP. Then we search for a
crcled branch having T as sccond node; it s RT. Since R & the source, the desired path is
|RT. TP, PW)

A manufacturing concern has been awarded a contract to produce casings. The contract is for
4 years and it is not expected to be renewed. The production process requires a specialized machine
which the concern does not have. The concern can buy the machine, maintain it for the 4 years of
the contract, and then sell it for scrap value; or it can replace the machine at the end of any given

year by a new model New models require less mainienance than older ones. Estimated net
mnmmtmwhﬂummmtmmh buying a machine in the
beginning of year | and trading it in at the beginning of year j is given in Table 13-3, with all
figures expressed in thousand-dollar units.

Table 133

[ R
-

g -

RS

Determine a replacement policy that will minimize the total operating cost for the machine over
the life of the contract.

This problem can be solved by dynamic programming. alternatively, it can be modeled as a
shortest-route problem on an oriented network. We let nodes ¥, ., ¥, represent the begnnings of the years
of the contract, and ¥, the beginming of the fifth year. An oriented branch from ¥, to ), signifies purchase
of a machine at the beginning of year i and trade-in of scrapming of the machine at the beginning of year
J. The cost associated with cach branch is the net operating cost. The network is shown in Fig 138
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136

The master list for this onemed network is @mven in Fig 13-9a) Applying the cheapest-path algonthm
o it, we oblun successively Figs 13-%hi through [3-9(c). From Fig 13-%¢)

o* = 45 (thousand dollars)
The optimal puth s found as ¥, ¥y ¥ ¥l Thes puith represents the policy of buying o machine at the

begmmmg of yvear 1, irmding it i for & new machme at the begmning of year 1, and fnally scruppng the
2-yeur-old machine at the beginning of vear 5.

In Fig 1310, identify a path from source A4 to sink G that cun accommodate positive flow,

Fig. 1310

We begin with the source and find all nodes that can be reached directly from A along branches allowing
positive fow out of A. They are 8. E, and F, as [ndicated in Fig. 13-11{a), Next we consider thess three aew
rides f..in.mawcij.'

Focusing on B irst, we wentify ofl nodes ngr shown in Fig. 13-11(a} that can be reached from £ ulong
branches gllowing postive low oot of B There are nong such. Focusimg on K, we see that 4, B, and O oin
be reached along branches allowing positive flow out of E; but since A and B already appear in Fig. 13-11{a).
only C is added. From F. nodes A and D can be reached along branches allowing positive flow; but since
A already appears in Fig 13-1He), we add only node 0. The result is Fig, 13-11ih),

We now considee nodeés © and D successively, Foousing on O first, we determine that A, B, E, and D
all con be reached directly from C along branches with positive flow out of C. Since each of these nodes
already appears in Fig 13-11{b), we moke no adjustments 1o i and consider next node 0. From D, we can
reach A and G along branches allowing positive flow. Since only G is new, we adjoin 1t to Fag 13-114b),
abtaining Fig 13-110) I follows from this tasi ligure that [AF, FD. DG 6 a path from source 1o sink that
cun sevommodate o postive flow (of 1 unit)

Determine the maximal flow of material that can be sent from source 4 to sink P through the
metwork shown m Fig 13-2

One path from source io sink 15 the branch 4D linking these two nodes directly. 1t can accommodate
H units, Shipping this amoont, we deliver 8 units to [), decrease the capacity of AD by 8, and mcrease the
capacty of 4 by K The resulling netwaork is shown i Fig. 13-12(a).

Apather path from source to sink that can accommodate positive flow is {4, CB, BD). The mazimum
amounat of matenal that can be sent along this path is 4 units, the capacity of BD. Making sech a shipment.
we increase the supply a1 D by 4units 10 § 4 4 = 12 Semultapcously, we decrease the capacitics of AC, €8,
and BD by 4 unity and incrense by this sume amouent the capaetics of C4, BC, and DR Figure 13.12(a)
then becomes Fig 131200
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11X

Path | AC, CD] in Fig 13-12(k) can accommodate 3 units from 4 10 D. Making this shipment, we
merease the supply a0 D by Junnts 1o 12 + 3 = 15, and decrease the capacaties of AC and CD by 3. We also
merease by 3 uniis the capacines of CA and DO, The new network s Fig 13-12(¢).

Path |AB, BC. CD} in Fig 13-12(c) can accommodate 7 units from source to sink. Making this shipment,
we increise the supply at 0 1o 15 + 7 = 22 units, and decrease the capacities of A8, BC, and €D by 7. We
also increase by 7 units the capacities of BA, CB, and DC. The result is Fig 13-12(d).

There is no path from source o sink in Fig. 13-12(d) than permits positive flow. Therefore, the
maximum amount of maierial that can be semt from A to D is 22 units, To determine the opumai
shipping schedule, we compare Fig 13-12(d) with Fig 13-2 We note the lollowiog reductions in capacity:
7 unite from A to B, 8 units fom A o 0, 7 units feom 4 lo O, 4 units from B 1o 0, 3 unils from 8 to C,
and 10 units from O to 1. These reductions, considered a3 shipmenis, constitule the optimal shipping
schodule

Explain the significance of increasing the reverse capacities. as stipulated in Step 3 of the
maximal-flow algonthm.

Increasing these capacittes allows for flows im the reverse directions at a fater stage m the
algorithm. Such potential fows are necessary 1o correct a previously designated flow which proves 1o be
nonoplimal,

An example i given by Problem 136 In the second iteratioh, it was determined that path
|AC, CB. BD | could accommodite o direct fow of 4 units, Using this path. however, @5 pol optitnal; it was
found thar the optimal schedule ships 3 unis from B 10 © and mithing from © to B, Nonetheless, shipping
4 units from C 10 B and then incrcasing the capacity from B to © by 4 units allowed one to correct this
errar Liter in the wlgorithm. Indeed. the Inst step in the iterative solution called for a shipment of 7 units
along [ AB, BC, €D}, But ilus shipment could not have been made had the capaeity of BC not been increased
from it orgingl valiue of 5 Effectively, thus 7-unit Aow from B 10 C corrects the previous nonoptimal flow
of 4 units from C 1o B, leaving & net flow of 3 units along 3C in the direction of C.

Supplementary Problems

solve the minumum-span problem for the network shown in Fig. 13-13

8
Fig. 13-1}
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i139 salve the munimum-span problem for the setwork shown m Fig. 1314

Fig. 13-14

1310 Find the minimume-cost path connecting A and L in the network of Frg. 13-14

1311 Determine the masimum amount of materal that can be shipped from H to A through the network shown
in Fig. 13-13, assuming that the numbers on the brinches represent the flow capacitics in both directions

1302  Determimne the manimum amount of material that can be shipped from A to K through the network shown
in Fig. 13-14, assuming that the numbers on the branches represent the fow capacities in hoth directions,

1313}  Solve the maximul-flow problem for the network shown in Fig. 1315 A s the source and J 18 the sink.

o
i) . |
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8 0 10 # s F Al
& 1] i
= | I 0
L) i v
L
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G i5 3 Al
) A0 |
Q

Fig. 1315
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14 Resolve Problem 1311, m addinon (o I, node B 15 4 source,
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1318 A shipping company must move 50 umits of a product from Los Angeles 1o New York. Table 13-4 gives
transportation costs (in dellars per wnit) between the company’s virious depots; blank entrics in the table
signify that shipments cannol be made directly between corresponding depots. Findd the cheapest shipping
schedule. Solve first as a shortest-route problem, then, as a check, solve 4s a trunsshipment problem.

LLIb A construetion firm has collected data on dump trucks, as shown in Table |3-5 {dollar amounisi,

1x17

Table 13-4
Lo San | 5t Mew
Angeles | Francsio Phoenis Laramie Louis | Chicago York
Los Angeles i b f k] 23
San Francisco 7 22 | 17 36 iS5
Phoenis B 12 . T4 23 7
Larame 17 14 L] 19
- .
5t Lowss LY 25 l 1 14 0
Chicaga I 7 9 14 13
-N.:w Yok ] "1'5- ‘;5 T e | "y 20 13

Table 13-5
Age in Yeary
I
01 i [Fa ] s s
Mointenanoe Cosi TN 50 1 ST 770 L]
Liwt Revenue for
Down Time S{K RO l 1201 B0 1000
- — = =2 1
Yeur-Emd Trade-In
Value 1 s (K B0 L] 35043 2500
e |

No dump truck is kept more than § years. Determine a replacement policy for a dump truck currently 2
years old, that will minsmaze the tolal cpernting cost over the pext 9 years. Assume that new trucks cost
21000 and only new 1rucks are purchased as replacements. Solve first as a shoriest-route problem, then
check your solution with dynumic programming. {Hini: Take ¥, as the beginning of the penod. Then ¥,
theeugh ¥, are the beginning of the next 9 years, and ¥, représents the day the current truck was purchased,

¥, m ool negded.)

A cur through a network having a source and a sink is any st of onened branches that containg at least
ome branch from every path from source to sink. The cut ralue 15 the sum of the flow capacities in the
specified directions of the branches comprising the cut. For the network of Fig. 13-16, which of the three
indicated sets of branches are cuts, and what are the cul values?
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lal

ib}

i)

Fig. 13-16

1318 The max-flow, min-cur fheorem states that for any nelwork with a single source and 4 single sink the maximsm
flow through the network equals the minimum cut value in the network. Using this theorem and the results
of Problem 1117, determine an upper bound on the flow through the network of Fig 1314

1319 Find a cut through Fig 13-10 that has valoe 1. Using the max-flow, mm-cut theorem and the resalt of
Problem 13-3, conclude that the maximum flow through the network s | umt



Chapter 14

Project Planning Using PERT/CPM

PERT/CPM

A project 13 a set of activities 1o be performed in a specilic sequence to completion. An activity 15 a
1ask (o be executed wing time and resources. The objective of project managemenl 15 to mimimize the
total project tme subjpect 1o the resource constraints. The two techmigques widely used in project
management are CPM (Cntical Path Method) and PERT (Project, Program Evaluation and Review
Technique). Although the two terms PERT and CPM are wsed mterchangeably today, historically
CPM was based on deterministic times while PERT was based on probabilistic times. In this chapter,
project scheduling through PERT CPM s discussed in the following order: Construction of the Network
{Arrow) Diagram; Critical Path Computations for CPM; Critical Path Computations for PERT; and
Project Time vs Project Cos,

CONSTRUCTION OF THE NETWORK (ARROW) DIAGRAM

The network diagram represents a project in that it shows the precedence relationships of the
activities of the project along with activity trmes. The activities, which consume time and resources, are
represented by “arrows™ The precedence relntionships of the activities are indicuted through “evenis™
{nodes). Events are just points in time, represented by circles. They do not consume any resources; they
signify the beginning of some activities and the ending of some other activities,

Consider the following diagram in which an sctivity (L /) with duration D, ; is represented by an
arrow between two events or nodes ¢ (tanl) and / (head). Usually the activities are named by letters (such
as A, B. elc.), while the events are¢ denoted by numbers (such as 1. 2, eic.).

e 0

Sometimes in a network diagram it is necessary to use dummy activities, which consume no time or
resources, represenied by dotted arrows,
Ihe purpose of the dummy activity can be one of the following:

{a) 1o represent an actvity uniguely as below:

A
i >
B ‘-“Ill
Hoib sctivities A and B Activily A = evenm 1, 1)
afe represemed by Actlvity B = events (1. 23

evens 1. 2)

231
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{h) 10 represent precedence relationships exactly as below:

(O—==0)——{]

Both activities O and 1 Activity U is preceded by both A sl B
are individually preceded b ol Activity [ in precedied by B only,
activities A and B

Example 14.1 Construct 8 network dimgram for a project consisting of the mllowing activities

Actvity | Tmmediate Predecessons)

A =

H

C A B

D R

E B

F B

G D

F and G are the terminal activitics of the project.
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CRITICAL PATH COMPUTATIONS FOR CPM

Through computations performed on the neiwork (arrow) diagram (chart), CPM provides the
following:
(@) start and completion times for cach event
(b) critical and noncritical activities
{¢) total float and free float times for activities.

Example 14.2 Suppose the project in Example 141 has the following activity times:

Activity | Time (Days)
3

5

-~ | =

Al m|lo|n|lm]| >

(4) Find the critical path

(b) What is the project completion time?
{c) Compute the total foats (slacks) and free floats for the activities.

The cnitical path computations are performed in two passes—/orward and backward. In the forward
pass, starting with a time of 0 for the first event, the computations proceed from left to right up to the
final event. The forward pass computations provide the carliest start (ES) times for the events, These
times are entered in squares in the immediate vicinities of the corresponding events.

For any activity (L, /), let ES, denote the carliest start time of event L

s8] O——O [=

Then ES;=ES + D,
In Example 14.2, consider activity A (1, 2).
ES;-ES. +D..;-ﬂ+4-4
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If more than one activity enters an event, the earlicst start time for that event is computed as follows:
ES, = max \ES; + D}, Tor all | entering into /.

This is because the event cannot start until the entering activities are completed.
In Example 142, consider event ). The two entering activities into event 3 are A (1. 3) and Dummy

(2 3).
ES, = max (S, + D}, i=1.2
= max (ES, + D, , ES; + Dy ;)
=max |0+ 34 +0} =4
Proceeding in a similar fashion, the earliest start times for all events are computed as shown below:
ES,=ES; 4+ Dy =4 + 6= 10

ES, = max (ES, + D, 5}, i=34
= Max IES,. L3 ﬂl‘g;Es‘ -+ D«I.ll = [Max :"l' + 5. “] + T: = TT
ES, = max [ES, + D, ,).i=4,5

=max [ES, + D, .. ES; + Dy ) =max {10 4+ 9.17 4 8} = 2§

This ends the forward pass computations, giving a project completion time of 25 days
In the backward pass. starting with the final node, the computations proceed from right to left up
to the beginning event, The backward pass computations provide the latest completion (LC) tmes for
the events. These times are entered in semicircles in the immediate vicimties of the corresponding events.
For any activity (i. /). let LC, denote the latest completion time of event |,

L, L,
ES, G} D i ) ] |FES,

Then LC, = LC,- D,

To get started, the latest completion time of the final event in the backward pass 1s assumed to be the
carliest start time of that event in the forward pass.
In Example 14.2, consader activity F (5, 6).

LC, = ES, = 2§
LC&'LC.-D,_.-ZS-S-IT

17
17

iz

]
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IT more than one activity leaves an event, the latest completion time for that event 15 compuled as follows:
LC, =mn [LC, — D}, for all j leaving from i,
4

This will ensure progress in meeting the project completion time.

In Example 14.2, consider event 4. The two leaving activities [rom event 4 are E {4, 5) and G (4, 6).
L{.‘zmj:“ :LCI_B‘.;}' j=5.ﬁ

=min {LCy = Dy . LCy — Dy 4]
=min [17-7,25 -9 = 10
Proceeding in a similar fashion, the latest completion times {or all events are completed as shown below:
Ly =LC,— Dy s=171-5=12

LC, =min (LC;— Dy ;4. i=3.4
d

= ml.ﬂ. :Lf‘] -Dl_jl LE] ¥ ﬂ]."-]

LC, =min {LC,—D, ), j=23
!

= min | LC; — Dy ;. LCy; — D, ,)
=mini{4-412-3}=0
This ends the backwurd pass compuiztions, confirming the projeci start time of 0.
Alter completing the critical path (forward pass and backward pass) computations, the complete

network dizgram appears as in Fig. 14-1. This enables us to determine the critical activities of the project.
An acuvity (i, /1 1s sad to be critical, if and only if it satishes all the conditions given below:

l. E§ =LC
2. ES=LC,
 ES, - E5,=LC, - LC, =D,

Fig. 14-1. Critical path by CPM
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Application of the above conditions to Example 14.2 indicates the following activities 1o be critical:
B, D, E, and F. In other words, activities B, D, E, and F form the critical path. In terms of events,
I-2-4-5-6 is the critical path. The project completion time is 25 days. [t must be noted that a critical
path is a continuous path starting with the first event and ending with the last event It is shown in bold
line. Also, in some cases, it is possible to have multiple critical paths. Now, we can define the slack or
total float for an actvity (i, j) as follows:

Slack = Total Float = TF, , = LC,— ES, — D, ,

The total float for an activity is the difference between its maximum available time (LC, — ES;) and its
duration (D, ;). It signifies the time by which an activity can be delayed without delaying the project. A
zero slack for an activity indicates that it cannot be delayed without delaying the project and hence it
15 called a critical activity, On the other hand, a positive slack for an activity means that it can be delayed
by the length of the slack without delaying the project and hence it is called a noncritical activity.

In Exumple 14.2, consider the total floats for activities C (3, 5) and D (2, 4):

.A.I:‘tllfi!f C: TF,_, = LC,_ - ES_, - D:_,_':r IT—4—-5=8
Activity C has a positive slack indicating it 1s noncritical.
Activity D! TF ,=LC, —ES; — D, ., =10—-4—6=0

Activity D has a zero slack indicating it is critical

Similarly the total floats for all the other activities in Example 14.2 can be computed.

There is yet another float called free Aoat, which is useful in considering project time vs project cost.
Free float for an activity (i, j) is the difference between its available time (based on carliest start times)
and its duration. It 15 given as follows:

FF ,=ES; - E5; - D
In Example 14.2, consider the [ree floats for activitics A (1, 3) and E (4, 5k

ﬁﬂii‘il}'ﬂl -FFL_"ES]"'ES|""HL}'F4"Q‘J-I
Aﬂi'ﬂlff E; FF*_!_“:-ES-; = Eﬁ. --ﬂ'..l_q_- I7T=10=T=0

Similarly the free floats for all the other activities in Example 14.2 can be calculated.
The above calculations are summarized in Table 14-1.

Table 14-1 Critical path calculations including floats

Activity | Duration Total Floar (Stack) Free Float

L) b, Es, | LG, | ES) | TH,;=LC, - E5 =D, | Critical | FF ;= B8, — ES, — I}
A (L3 3 0 12 4 12-0—-3m9 - 4=0=3=]
B (1.2) 4 0 4 4 4-0-4=0 Yes 4=0—-4=0
C (35 5 ] 17 17 17T-4-5=8 - 1IT—4-5=8
D (24) b 4 10 10 0-4-6=0 Yes W-4-6=0
E {4, 5) 7 10 17 17 1T-1W0-7=0 Yes 1T=10-7=0
F (56) L 17 25 25 5-17-8=0 Yes 25=17-8=0
G (4, 6) 9 10 25 25 B-10=9=8 - 5<10=9=6
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CRITICAL PATH COMPUTATIONS FOR PERT

The network diagrams for PERT and CPM are identical except for the activity times. The time
estimates for CPM are deterministic, while those for PERT are probabilistic. In PERT, each activity
has the followirg three tme estimates:

g = oplimistic time estimate under the best of conditions
b = pessimistic time estimate under the worst of conditions
m = most likely (probable) time estimate under normal conditions

The probabilistic nature of the sctivity times is described by the beta distrnibution whose mean and
variance are given befow:

Mean: E(D, ;) =(a + b+ 4m)j6

Vanance: gl = [(b = a)/6]

Example 14.3 Suppose the following estimates of actuvily times (days) are provided for Example 14.1.

Activity Optaimistic () Most Likely (m) Pessamistic {b)
A I i 5
B 3 4 5
e | 4 d & 6

s _+.,_
D 3 5 7

_ E R i ___5- i - & 13
F : “ 1 - 10 ]
O : B ] _--;L'

fo)  Deterrmine the expected completion time and variance for the project
(h)  What is the probability that the praject will be completed within 20 days? 23 days?

Activity (i, /) | Expected Time E(D, ;) | Vanance o],
Al N 3 04444
w2 4 o
{'{3.;_""_ . 5 00111
D2 4) 5 04444
E {4. 5 7 1.7777
F (5. 6) 7 1.0009
G4, E:-I._H_ o JH-‘ o 02444
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Cntical path u B, D. E. F.

[CHAP. 14

(@) Expected project completion time = E{T) = E{(Ty) + EiTp) + BTy ) + EiTy) =445+ 74+7=23

Project variance = o = gf + af + o] + af = 01111 4+ 04444 4 L7777 + | = 32322

(b} Probahility that the project completion time T < 20 days
K=
ETNn=2
7= m- |.E3
P _-;!.T? - “'.I__—“?-! _——
PIT<20)=PZ<C)=PMZ< —1.64) = 00503 (from normal distribution tables)

Probahility that the project completion time T < 25 duys!

K =25
EiTy=23
a = | B}
cE—RN _B-D ¢
a 1LE3

PT=X=M2=<C)=PMZ< —1.09)=0862] (from normal disinbution tables)

PROJECT TIME VS PROJECT COST

The “nommal” time for an activity can be reduced by using increased resources. The limit beyond
which an actwity ime cannot be shortened is tmown as the “crash limiL" Let D and C represent the
normal time (duration) and normal cost for an activity, while D' and C° denote the crush time
(duration) and crash cost for the same activity, Then the “crash limit” for an activity is the difference

between its normal time und its crash time,
Crash Limit = D — D'
Assuming a strght hine cost-duration relationship,
Slope = (C' = C)/{D — [¥ ) = Crash cost per umi time.
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Ciosl

Durution -

The project completion time can be reduced by reducing the normal tmes of critical activities.
Reducing the critical activity with the minimum cost—duration slope will yield the minimum cost. This
enftical activity can be reduced up to the “crash limit.”

This does not guarantee that the project time will also be reduced by the same length, since the
above reduction may have led 10 a new critical path. To find whether a new critical path may occur,
check whether o positive free lout of any non-critical activity becomes zero. By reducing the duration
of the critical activity by one time unit, compute the new frec floats of the non-critical activities; check
which ones have reduced their old positive free floats by one unit; of these, the onc with the smallest
old positive free float gives the positive free float limit. Thus for a critical activity,

reduction limit = min {crash limit, positive free float Limit)
Continue to proceed in the above fashion until all eritical activities in the latest critical path are at their
crash limits.

Example 14.4 Consider the following arrow disgram with activily times given wn days:

The normal and crash data for this progect are as follows;

Activity | Normal Time (Days) | Crash Time (Daysj | Normal Cost (3) | Crash Cost (5)
A 4 3 BD 105
B 6 4 180 230
C ¥ § 200 10
(B 10 ] 1500 530
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{(w) Find the cnitical path.
(k) Find the project completion time and the corresponding cost.
() I we want o complete the project in I8 daxs, find the best crash time and enst.

o 5
0 "'@"

{a) Critical path is B, C, D.

bl Project completion time = 24 days
Project cost = B0 + 180 + 200 + 350 = $810

{¢) From the given data, construct the following crash time cost table,

Crash Cost/Day

Activity (i, /3 | Crash Limit (D — D) C" = Cyib— 0
AL 3 4-3=| (105 — B0)(4 — 3) = 25
Bil2) b—d=1 (250 — 180)(6 —4) = 35
i3 B-5=13 (320 — 28 — 5) = 40
D3 4 0 —6=4 (530 — 350)/(10 — 6) = 45

From the ¢ritical path caleulations, we have the following mformation:

Activity (1, ) ALYy B(L2) C(23) D34
C riical - ¥es yes ves
Free Float (FF) i

Since the critical activity B has the lowest “crash cost per day,” it becomes the first candidate for crash. The length
by which B can be reduced s found as follows:

reduction limit = min |crash limit, positive FF limit] = min {2, 10] = 2

Hence. crash activity B by 2 duys.
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From the critical path calculations, we have the following information:

Critical path is still B, C, D

Project completion time = 22 days

Project cost = K10 + (2K15) = S50
Activity (1. /) ALY B(LY) C@Y DY
Critical - you yes yes

Free Float (FF) L} - - -

Since the crash limit for critical activity B is reached, consider critical activity C with the next lowest “crash cost
per day™ for crash. The length by which C can be reduced is found as follows:

reduction limit = min [crash limit, positive FF limit} = min (), 8} = 3
Hence, crash activity C by 3 days.

19

19
4
From the critical path calculations, we have the following information:
Critical path is still B, C, D
Project completion time = 19 days
Project cost = 580 + (1440) = $1000
Activity (4, J) ALY B(LY C@y DR
Critical - yed yes yo

Free Float (FF) 5 - - -
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Since the crash limit for critical activity C is resched, consider critical activity D with the next lowest “crash cost
per day” for crush. The leagth by which D can be reduced s lound as follows:

reduction limit = min {crash limit, positive FF limit} = min {4, 5] = 4

Although we can reduce D by 4 days, it is only necessary to reduce it by | day 1o reach our priject completion
goal of 18 days. (Note: the propect completion time from the previous critical path calculations is 19 days.)

From the critical path calculstions, we have the following information
Cncal path wsstll B, C. D
Projection completion time = 18 days
Project cost = [000 < (1 H45) = 51045

Solved Problems

141 The ABC Manufactunng Company is considering the construction of a new lactory building The
following list shows the project activities, precedence relationships, and time estimates:

Immediate
Activity | Description Predecessor(s) Time

A Problem definition 1 k)
B Preliminary study of costs and constraints A 3

= _ET I Analysis of problems in existing building i
D Incu;purnt'mn of requirements in new building | 5
E Detailed drawings of new building B C [
F Contractor building 8 prototype D E 9
G Cost analysis E 5
H Engincers reviewing feasibility G -’I ]
1 Contractor building the faﬂnrjr_“ o B _‘_G, F 5
] Building inspection I, H | 8
K Final plant layout J _4___
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(@) Develop a CPM network for this project.
(b) Fdentify the cntical path.
(¢) Compute the total and free floats for the activities.

(b) Critical paths arc A. B, E, F, 1, J, K and A.C, E.F, 1.1, K.

)

I8

/i2\

n

M. 12

21
2

M2

241

Activity Duration Total Float (Slack) Free Floa
(ki) b, ES, | LC, | ES; | TF =LC,~ES~D,, | Critikal | FFK =ES,~ES~D,

A(L2) ) L] 3 3 3-0-3=0 Yes J~0~-)=0
B3 3 3 ] [ b=31-3=0 Yes 6-31-1=0
C(.4) 3 3| 6| s 6-3-3=0 Yes 6-3-3=0
D48 3 [} 12 12 12-6-3=1 - 12-6-5=1
E (%5 ] L] 2 12 12-6-6=0 Yes 2-6~-6=0
F (6,%) “ 30 I TR I T A-12-9=0 Yes A-12-9=0
G5 -] I2 2 17 A=-12-5=4 - 17T-12-5=0
H (7.9 3 17 26 26 W-17T-1=6b WH—1T—1= 6
1 (K9 5 2 26 26 %-21-3=0 Yeu -2-5=0
19, 10) 6 w | 2| »n N-26-6=0 Yes R=26-6=0
K (10, 11) 4 322 | 36 | 3% 6-32-4=0 Yo ¥~ -4=0
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142  An industrial project has the following data

Activity Immediate Predecessoris) Duration (Weeks)
A - 5
B 5
C B 2
D AC 2
E A C 3
F AC [
G B 2
H B 7
I E 13
1 E.D fi
K F,G H 4
L H 5
M i K. L 5

| and M are the terminal activities of the project.

(a) Develop a network diagram and find the critical path.

(k) Compute the total and free floats for the activities.

fa)

Critical path s B, C, E L

[CHAP. 14
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ih)
Activity | Duration Total Float (Slack) Free Float
() b, ES, | LC, | ES, | TE,=LC,~ES,-D,, | Critikal | FE,=ES,-ES-D,,
ALY 5 0 7 7 71T=0=35=2 1-0-35=2
B(,2) 5 0 S s §-0-8=0 Yes $-0-5=0
CiLy d $ 7 7 71=5-2=0 Yesu 1=-5-2=0
D% 2 7112 10 12-7-2=1 0=-7-2=1
F{}4) 3 7110 10 0-7-3=0 Yo 10-7-3=0
F(3.7) 1 7114 | 12 4-7-1=6 12-7=1=4
G2n 2 b 4 ¥ 4-5-2=1 - 12-5-21=%§
H (2. 6) 7 5 13 12 13-5~-T=1 12-5-~-7=0
14,9 13 0 | 23 | 23 | 23-10-13=0 Yes 2-10-13=0
Ji5.8) 6 o | 18 | 1?7 18-10-6=2 - 17=10-6=1
K(7.§) 4 12 | I8 17 8=12-4=2 1712 -d=]
L (6, 8) 5 i2 I8 | 17 B-12-5=1 17-12-%=0
M (89 5 17 21 3 2=1T=5=| =171 =5=1|

143  Draw a PERT network diagram for a construction project with the activity information given

below:
Duration (Weeks)
Activity Pmﬁ:n Optimistic (a) Most Likely (m) Pessimustic (h)
A 7 16 28
B A 4 19 25
C 10 16 n
D B 7 13 »
E B C 13 19 13
F B 9 22 33
G D, E - 7 19
H F.G 13 19 49
I BC 13 25 n
J LH 7 13 19
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() Identify the critical path.

(b} Determine the probability of compicting the project in two vears (104 weeks)

Activity (L j) | Expected Time E(D, ) | Vanance o]
AL 2) 16.5 1228
B Y 175 1225
Ci24) 1845 2025
D35 16 25
E (4. 5) 2033 L
F 3. 6) hA R S
G (5,6) RS (B
Hi6T) 23 1o
14,7 b3 ] 16
Ji1.%) 13 4

16513y A s SS Y 38 f
(L) u nlal| 533 43S0

OIET, 15 /18

BM|»

Crncal path s A, C. E. G H, ).

R ALY

th)  Probability that the product completion time 7' < 104 weeks

A= 104
E(T) =995

)

[CHAP 14
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o =gy 407 +0f + 05405 +0;
= 12254 2025 4 111 + 6254+ 36+ 4 =399
= /8996 = 9.44

- = L]
=L K= ET) _ 104 -99.8 044
a 348

PT<)=m Pz < Cl=Plz<04d)=017

¢

ifrom normal distnibution tables)

144 The project of constructing & small bridge in Wilmington, Pennsylvania consists of 10 major
activities, Information pertaining 1o the project is given below:

ta)
ihi
fed

Activity Optimistic {a) | Maost Likely (m) Pesmimishic (b)
A | 3 , _“; - 8
B 4 I 7 10
C 4 : 9 14
D ] ! 10 [ 20
E 1 | 3 ; 5
F 3 i 9
G 4 | 5 12
H b : 8 10

Develop a PERT network for this project
Find the critical path.
Compute the probability of completing the project in 29 weeks.

{u)

Activity (4] | Expected Time E(D ) | Vardance ol
ALY 3 |
B(X3 7 1
CiLé 9 278
D3 5 3 5.44
E (4, 6) 3 (.44
F (4. 5) (L] 1

i G5 & . . 1;3
H6 T 8 044
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(k)

12 21
12 N nx

. 1 21

14 n

Critical path is A. B, D, G.
(c) Probability that the project completion ume T < 16 weeks:

K =36
EiT)=29

dmalrojichral=1+14+54+ 1 B=922

e /912 =34

] e
)

C 2130

PiTs W eP:<C)e Pz <23) =099 (from normal distrnibution tables)

145 Fusion Engincering Inc. is designing a new product for welding two different alloys. The company
has limited time and resources to complete the project. The following activity information is
available.
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Normal
Immediate Time Normal Crash Crash Time
Activily Predecessor(s) {Days) Cost ($) Cost/Day (5) (Days)
A - 4 400 125 3
B A 5 500 200 4
C A 4 520 150 2
D B 3 00 225 2
E c 3 255 100 2
F H..E el 4 600 175 2

(@) Draw the project network.

tb) Find the critical path.

{c) Find the project completion time and the corresponding cost,

{ly What 1s the total cost, if the project deadline 1s 13 days?

{¢) Assume the project deadline to be 10 days. The company has to bear $170 for each day of
delay. Find the optimal number of days 1o crash the project.

fa)

k)
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Critical path s A, C. E, F.
i) Project complenion time = 15

Project cost = 400 + BOO 4+ 520 4 600 + 255 4 600 = 3175

{d) From the given data, construct the following crash time-cost table.

Crash Limit Crash Cost/Day
Activity (7, ) (D~ D) Days {Given) §
AL d=1=1 125
B3 f—dm] 200
Ci(24) 4-2m2 150
D3 8) 1=1=| 228
E (45 1-2=1 100
F (3.06) §—-21=2 175

From the crincal path calculations. we have the following information.

Activity (i f) A(L2) B(2Y) C24 D6 E5S Fi(56) Dummy (3. 5)

Critical yos : yes - ¥es yes

Free Float (FF) 0 L] 2
Since the normal project compléetion time s 15 days and the required project completion time is 13 days,
we have 1o crush one or more critical activities for a total of 2 days. The two lowest “crash cost per day”™
critical activities E and A have crash Hmits of 1 day each for a total of 2 dayy.

reduction himit = min [crash imit, positive FF limit] = mm (2, 2] = 2

Hence, crash activitics E and A by one day each
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From the entical path calculations, we have the following mformation.
Critical path i still A, C, E. F.

Project completion time = |3 days

Project cost = 3175 + (1N100) + (1K125) = $3400
Activity (L /) A(L2) BY) Cia49 DAE E@S F(56) Dummy() 5
Critical yes . e 2 =l - '
Free Floal (FF) o ' : . 1

(¢) Since the above project completion time is 13 days and the new project deadline is 10 days, we will
try 1o crash the project for a total of 3 days. Since the crash limits for critical activities E and A are
reached, consider critical activity C with the next lowest “crash cost per day ™ for crash. The length by

which C can be reached is found as follows
reduction limit = min [crash Kmit, positive FF limit) = min {2, 1] = |

Hence, crash activity C by one day.

Lo

From the critical path calculations, we have the following information.
There are two critical paths: A, C, E, F (old) and A, B, F (new)

Project completion time = 12 days
Project cost = 3400 + (1) 150) = 33550

Activity (1, /) ALY B} C4 D6 E@LS5 F(56 Dummy(dS$)

Cntical yes yes yes : yes yes yes
Free Float (FF) . : - | P . ~

Note that after the previous step, A and E have reached their crash limits while C has 1 day remaining. As
there are two critical paths, the possible crashes are shown below:

Activity -1 BC F

Crash Cost/Day (5) ' 300, 10 | 200

Remaining Crash Limit (Days) L1 |
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Hence, one alternative is 1o reduce B and T
reduction limit = min |crash limit. positive FF limit] = min (1, 1] = |
Thus we can reduce B and C by | day each. However, the additional cost per day due to the crashing of
B (5200) and € ($150) is $3%30, which is more than the cost of delay, $170,
The other alternutive is to reduce F.
reduction limit = min {crash hmit, positive FF bmit] = min |1, 1] = |
Thus we can reduce F by | day. However, the additional cost per day due 1o the crashing of F is $200,
which is morz than the cost of delay, $170.
Hence, the previous step provides the optimal crashing solution,

Project completion time = 12 days
Cost of delay = (delay time) = (cost of delay/day) = (12 — 10) = 170 = S340.

[CHAP. 14

Project cost = 3550 + 340 = L3890,
146 An clectrical engineering project has the lollowing activity information:
Immediate Normal Normal Crash Crash
Activity Predecessor(s) Time (Days) Cost (%) Time (Days) Cost (5)

A - 14 1 D) 10 1400
B - 16 1200 11 1650
C - 20 20000 14 2720
D A,B.C 15 3000 10 4250

(a) Draw the network diagram. Find the critical path, total cost, and total time.

(b) If the budget limit is $200 per day for any additional cost due to crashing, find the optimal
project completion time and the corresponding cost.
fc) W the total budget for this project is $8000 with no limit on daily spending. what is the
shortest possible project time?

Lin)

ol
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Critical puth is C, D.
Project completion ume = 335 days
Project cost = 57200

{b) From the given dats, construct the following crash time-cost wble,

Activity Crash Limit {Days) Crash Cost/Day (3
(Lj} ={D-D") | = =Cb-D)
ALD) 4 =10=4 | {1400 — 1000)/4 = 1)
Bl 4) 6-11=5 (1650 — F200)/5 = 90
Cil3) W-14=56 {2720 — 2000)6 = 120
D4, 5 15-10=35 Jl (4250 — 3000)/§ = 250

From the critical path caleulations, we have the following information.

Activity (i, j) A(L2) B(L4 C(LY D45 Dummy(L4 Dummy(3 4)
Cratical ¥R yiEi yes
Free Float (FF) 0 4 - 6

Stnce the critical activity C has the lowest “crash cost per day,” it becomes the first candidare for crash.
Note that the crash cost per day for C 15 5120, which 15 less than the budget lmit of 5200 per day for any
additional cost due Lo crashing. The length by which C can be reduced s found as follows:

reduction limit = min {crash limit. positive FF limit] = min (6,4} =4

Henee. crash activity © by 4 days,

@31
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From the critical path calculations, we have the following information.

There are two critical paths: C, D (old) and B, D} (new)

Project completion time = 31 days
Project cost = 7200 + (4)(120) = §7680

[CHAP, 14

Activity (i, ) ALYy BilL4) CiL3 D45 Dummyi(Z4) Dummy(34)

Critical - yies ves yes - yes
Free Float (FF) o - - - 2
Wote that afier he previous siep, the remaining crash limit for C is T days. As there are two eritical paths, the
possible crashes are shown below:
Activity B C D
Crash Cost/Day ($) 90,120 | 250
Remaining Crash Limil {Days) 42 L

Hence one alternative is to reduce B and C.
Reduction limit = min [crash limit, positive FF lmit} = min {2,2] =2

Thus we can reduce B and C by 2 days ench. However, the addinonal cost per day due 1o the crashing of
B ($90) and C (5120) is $210 which exceeds the budget limit of $200 per day for any additional cost due to

crashing.
The other alternative is 1o reduce D,

Reduction limit = min [crash limit, positive FF limit] = min [5, 2] = 2

Thus, we can reduce D by 2 days. However, the additional cost per day due 1o the erashing of [ is $250
which exceeds the budget limit of $200 per day for any additional cost due to crashing. Hence, the previous

step provides the optimal crashing solution.

Praject completion time = 31 days
Project cost = $T680
(c)

Alternative [a:

Crash activities B and C by 2 days sach,
Project completion time = 29 days

Project cost = T6E0 4 (IN210) = SEI00 > 5SRO0
Thus, Altermative 1a is infeasible

Alternative Ib:

Crash activities B and C by one day each.
Praject completion time = 30 days

Project cost = TES0 + (1) 210) = §TRN < §3000
Thus, Alternative 1b is feasible.

Alrermative Ja:

Crash activity I) by 2 days

Project completion time = 29 days

Project cost = TGRD + u]{zm]- SEIRD > SEO00
Thas, Alternative 2a is infeasible.
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Alernative 2b:

Crash activity D by one day.
Project compiction time = 10 days

Project cost = T680 + (I M29) = $7930 < 5000

Thus, Alternative 2b is feasible.
OF the two feasible alternatives 1b and 2b, alternative 1b is optimal, since it has lower project cost.

The results of Part (¢) are summarized in the following table.

PROJECT PLANNING USING PERT/CPM
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Alicrmatve Ia Ih 2a ]
Crash Activity (Activities) Band C Band C D D
Crash Time (Days) 2 duys cach | day each 2 days I day
Project Completion Time 29 0 b W
{Days)
Project Cost ($) THED + (IN210) | 7680+ (2IN210) | T6SD 4+ (2N2S0) | TR0+ (1H250)
= K100 > RO00 w TR0 < OO0 = K180 2 KOO0 = T9 30 < $000
Feauble you e
Optimal yeu
Supplementary Problems
47 Develop a network diagram for a project having the following precedence relationships:

Activity A ] C D E F G H 1 J K

Immediate

Predecessor(s) A AR C.D D E EF G H L)

148 Construct a network diagram for the project consisting of activities A, BT, L described below:

Concurrent activities A and B begin the project.
Concurrent activities C and D succeed A;
Concurrent activitses E and G succeed B
Activity F succeeds both C and E,
Activity H succeeds both C and D,
Activities | and ) succeed G
Activity K succeeds H and F,
Activity L succeeds | and J;

Activities L and K complete the project.

149  Consider the project in Problem 14.7 with the following activity durations:

Activity A

B C

D E F

G

H 1

Duration (Days) 3

2 5

7 3 4

13 L]

10
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(@) Draw a CPM network diagram and find the critical path.
ihi  The project must be completed in 30 days, Do you anticipate difficulty in meeting the deadline? Explam.
{e) Can activity H be delayed without delaying the project?
() Can activity E be delayed withowt delaying the project?

[CHAP, 14

For the following arrow diagram identify the critical path and calculate the total and free foas for each

activity.

The saftwane solution diviston a1 Mastek Inc. has been working on an application which on development
would have a large market. In order to remain market leaders and mnovators of new products, they have
1o complete this project us soon as possible. The division manager resorts to the use of PERT in the scheduling
of the project activities, The following table depicts the iformation on the activities:

Duration (Days)
Immediate
Activity | Predecessoris) | Optimistic (o) | Most Likely (m) | Pessimistic (b)
A 2 3 4
b A 2 4 6
C A 4 5 12
D A 1 ] 5
E B 2 2 2
F B i fs 9
G C 5 7 15
H EGD 4 8 12
1 D [ 15 18
] EF G D 3 4 ]

iay  Find the eritical path and the expected project completion time through a PERT network diagram.
thy  What is the probability that the project will be completed within 30 days?
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12 Consder Problem 147, Suppose the activity durations are probabilistic as given in the table below:

Activity Optimistic (@) | Most Likely (m) | Pessimistic (b)
A 1 3 §
B I 2 3
C 3 3 13
(4] L ] 7 1]
E rJ 3 4
F | 4 13
G 4 | 12
H (] 13 14
| 2 ] 10
J i 1 1
K 9 10 17

ta) Calculate the expected time and vanance for each activity,
(b) Find the cntical path.
ic)  Determine the expected project completion Lime.

(4) The scheduled completion date for the project is Feb S If you plan to start the project on Jan |, find
the probability that you will complete the project by then. Should you start the project earlier?

141}  Consider a construction project with the following data on precedence relationships, durations, and costx

Immediate Normal Time | Normal Cost | Crash Time | Crash Cost
Activity | Predecessor(s) (Days) % [ TDayy) (5)
- 6 120 4 170
B - 4 120 2 20
c A 3 198 2 70
D A 4 20 2 $20
E B, C 7 700 4 107§
F D, ¥ L} 650 2 1100
G 3 10 1600 6 2300

F and G are the terminal activities of the project.
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ta)  Find the cntical path

%) Find the project completion time and the corresponding cost.
() Suppose it s required 1o complete the project in 22 days Find which activities to crash and by how
much. 10 vield the minimum project cost,

I Conssder the following information for a manufactunng systems projct:

Immediate Normal Time Crash Time | Normal Cost | Crash Cost
Activity | Predecessor(s) (Weeks) {Weeks) 15 %
A 12 {1 So0n 0000
B A 10 B 140000 170000
& B 2 9 120000 1 =0 000
D A 9 K L] OO
E D 12 n RULLLY S50
F C.E 3 5 LY =0 ()
L ¥ F L] (] B 00 LA L]

() Diraw the network diagram and find the critical path.

ik Find the project completion time and the corresponding cost,
teh I the company wants 1o complete the project in 41 weeks. find the optimal ¢rash time and cost.




Chapter 15

Inventory Models

INVENTORY

Inventory is an idle stock of items for future use. The two key issues in inventory models are the
quantity (how much) and the timing (when) of the orders. The objective is to minimize the total inventory
cost consisting of carrying (holding) cost and ordering cost.

An inventory model may be of independent demand or dependent demand. In an independent
demand model, the demand for an item is independent of the demands for other items in inventory. In
a dependent demand model, the demand for an item is dependent upon the demands for other items in
inventory. Usually end-products (finished goods) are examples of independent demand inventonies while
assembly-components are examples of dependent demand inventories. In this chapter, we will deal with
independent demand inventory systems.

FIXED ORDER QUANTITY MODELS

In this type of model. the quantity (how much) of the order is fixed while the timing (when) of the
order varies.

Determination of fixed order quantities

We will consider optimal order quantities, known as economic order quantities (EOQ), for the
following three cases:

(i EOQ for purchasing
()  EOQ for production
(i)  EOQ for quantity discounts

(1) Economic order quantiry (EOQ) for purchasing
In this model, total anmual inventory cost (TC) is determined as
TC = annual carrying cost + annual ordering cost = (Q/2)C + (D/Q)S

where D = annual demand (units per year)

= quantity ordered (units per order)

C = unit carrying cosl per year

= holding rate (R) x unit acquisition cost or unit price ()
§ = ordering cost (dollars per order)
TC = 1otal annual inventory cost (dollars per year)

350
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To find EOQQ. set the derivative of TC with respect 1o @, equal to zero and solve for Q;
EOQ = Q* = ,/(2D5)/C (1)
Number of orders per vear (frequency of ordering) = F = D/Q*.
Example 15.1 Given demand D = 420 items per year, ordering cost § = 545 und carrying cost € = 515 per unit,
find EOQ and F
Q% = /(2D5Y/C = /[A420H45)]/15 = 50.20 units

F o= D/Q" = 420/50.11 = 837
(1)  Economic order gquantity (EOQ) for production
In this model, the annual total invemtory cost is determined as

TC = annual carrying cost + annual setup cost = (@/2)(p — d)/p]C + (D/Q)§
where d = demand rate (units per time period)

p = production rate (units per time period)
§ = setup cost ($)
Q' [(p - d)/p] = average inventory level (units)
To determune EOQ, set the denvative of TC with respect to @, equal (o zero and solve for @

EOQ = 0* = /[(2DS)/ClLp/p — d)] ()

Example 152 Given annual demand D = 20000 units; daily production rate p = 160 umits; daily usage rate
d = B0 umits; setup cost § = S120 umit helding cost per year C = 20%, of unil manufacturing cost per year $4.00;
lind EOCx

Q" =/ [2120 0000 120),/(0.204.00) 1L 160, 160 — 80)] = 346410 units
Assuming the production rote p i larger than the demand rate d, mximumn ineentory [, 5 computed os Tollows

I.l‘P—J]?_-\/}EP_-J_
4 C »r

where (3 p = length of produchon run or production run time
Then annual total inveniory cost s determined as
T P
| Q@

(i)  Economic order quanticy (EOQ) for quantity discounts

In the previous two cases, the unit purchasing cost or the unit production cost (P) is constant and
hence is not considered. However, il quantity discounts or price breaks are offered for large order
quantities, P will depend upos order quantity. Thus in this model, P should also be considered in the
total cost equation as follows:

TC = annual carrying cost + annual ordering cost + annual acquisition cost
For instantaneous delivery, TC is given by
TC = (Q/2)C + (D/Q)S + (D)P
and the EOQ is determined by formula (/).
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For gradual delivery, TC s given by
TC = (Q/2)(p ~ d)p]C +(D/Q)S + (D)P

and the EOQ 15 determined by formula ()
The price reductions are usually offered in a series of ranges, as illustrated in the price list of the
following cxample.

Example 15.3

Order quantity Price per unit (F)

1w 119 542
120 to 169 41
1704 40

The following approach s recommended in determining the order quantity with the lowest annual total
cost:

STEP |- Compute the EOQ using each of the unit prices,

STEP 2: Determune which EOQs of Step | are feasible.

STEP 3: The feasible EOQ corresponding to the lowest unit price is the admissible EOQ.
STEP 4: Compute TCs for the admissible FOQ and for quantities at lower unit price breaks.
STEP 5 The quantity with the lowest TC is the optimum.

Determination of order points (OP)

The above FOQ models dealt with one key issue of inventory models, namely “how much”™ to order.
The other issue of “when™ to order will be handled by the OP models. It is time to order when the
inventory level falls 1o OP, which is determined by

OP = EDDLT + 8§
where

EDDLT = expected demand during lead time
Lead time = time between points of order and receipt —

SS = Safety Stock = Buffer stock to prevent stockouts, when actual demand excecds expected
' demand

Since it s difficult to evaluate the stockout cost, we will set the order point at some specified customer
service level, which is the probability that a stockout will not occur,

There are two types of demand during lead time (DDLT) distributions: a discrete DDLT distribution
for a small number of units and a continuous DDLT distnbution for a large number of units. Solved
Problem 15.11 exemplifies the simpile method of finding the order point and safety stock for a discrete
DDLT distnbution, based on sufficient past data. Also, a Poisson distribution may be assumed to describe
a discrete DDLT distnbution, as illustrated in the Solved Problem 15.12.

On the other hand, for a continuous DDLT random variable, we assume a normal distribution. The

order point is given by
OP = EDDLT + Za,,
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where EDDLT = mean of demand during lead time
Z = number of standard deviations from the mean
a, = standard deviation of demand during lead time

In developing OP models, we assume the lead time to be stable without seasonal patterns. There are
three cases which contribute to vanability of demand during lead time: vanable demand (with constant
lead time); vanable lcad time (with constant periodic demand); variable demand and vanable lead time.

Case 1@ Demand s varuable and kad time s constant
OP=d/ + Za,, *

where
d = average penodic demand
{ = lead nme duration
o, = standard deviation of periodic demand

8, f = a, . unce the standard deviation of demand during lead time s the square root of 2307 ) which is the wum of
¢ penodic demand vanances

Caw 2: Demand s constant and lead time s vanable;

OPF = d/ <+ 2da,
whete / = average lead time
o, = standard deviatwon of the lead time

d = periodic demand
Carve 3: Both demand and lead time are vanable

OP=d7 + £y u;'f' « d*a?

Inventory shortage

Since shortage cost is a function of the shortage amount, it 15 necessary 1o know the average number
of units short. Assume that the demand during lead time has a normal distnbution. Then,

E'"} = EIH]H‘,
where  Ein) = average number of umits short dunng lead time
E(Z) = standardized number of units short {from unit normal less function tables)

ay = standard deviation of demand duning lead time.
Average number of units short per year E(N) is determuned as follows:
E(N) = E({D Q)

FINED ORDER PERIOD MODELS

So far we dealt with fixed order quantity models based on EOQ and OP concepts, that s, to order
the amount of EOQ when the inventory level hits the amount of OP. In such models, the order quantity
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is fixed while the order interval vanes. However, the fixed order period models deal with ordermg vaned
amounts at fixed intervals of ime. Consider the case where demand is vanable and lead time 1s constant.
Assume that the demand follows a normal distribution. Then the order quantity is given by

Q*=d(T+/)+ Zap T+ (=1
where 7, = standard deviation of demand

T = fixed order period

# = lead time duration

I = amount of mventory on hand

SINGLE PERIOD MODELS

The above fixed order quantity models and fixed order period models are useful when the remaming
inventory of one order cycle can be forwarded to the nexi order cycle. However, some items such as
perishable commodities and dated materials cannot be forwarded 1o the next order cycle or face a penalty
for carryover. The objective of the single period model 15 to minimize the costs of oversiock and
understock. This is achieved when the order quantity satisfes the following optimum service level
cguation:

Service fevel = C/(Cy. + Cg)

where C, = understock cost = revenue/unit — cost/umt

overstock cosl = cost/unit + carrying cost/unit — salvage value /unit

-
=l
]

Solved Problems

151 Consider an inventory system with the following data: annual demand for & particular item s
1500 units; carrying cost of one unit is $0.15; ordering cost is $15. Determine: (¢) economic order
quuntity; () number of orders per year; (¢) total inventory cost per year.

Given: = [5300; § = %15 and C = §0L15
(e} Economic order quantity:

T 15
E. al I-r-uls = \/;‘_13‘!:_'”' = 547.72 unns
¥ C 0.15

ihy  MNumber of orders per year
Foo DQ¥ = 1500/547.72 = 274
(¢} Totwal inventory cost per year:

& i} T.72 ]
¢ P o 32005+ Y s 4108 + 41,08 = $82.16
3 - e 2 54172
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The ABC Retail Company has the following data available for one of its items; D = 10000 units;
5 = 520,00, C = 25%, of the acquisition cost $25.00, Find: (a) economic order quantity; (5) number
of orders per year, (c) total mventory cost,

Giiven: D = 10000 § = 52000k € = (025 = 25) = ¥6.25.
(g Economit order quantity
g% = ll'lws - -"2‘ !u_nmam = 75298 units
vCO v &5
by ™Number of orders per year: F = D/0" = 10000/ 15298 = 39,53
ird  Total inventory cost:
E' C+ 25298 Tl

IC . i 6.2 20 = 790,56 + 790,55 = $1581.14
o 2 ¥ 25208 ¥

Amenchem Corporation supplies West Engineering Company with a chemical at the rate of 5500
barrels per day and a price of $19.10 per barrel West Engineering uses the chemical at the rate
of 2200 barrels per day and 550000 barrels per year. The ordering cost 1s $3250 pqr year and the
holding cost i1s 237 of the pricc per barrel per year. Find: (a) EOQ; (b) TC at EOQ; (¢}
number of production days per order; (d) maximum storage capacily for the chemical

Chivon: D = 550000, § = $3250; C = (0.2519.10); p = S50k 4 = 2200
(a) Economiac order quantity:

208 2(350000)3250 5500
[0S p__ [550000) _ = 3532447 barrels

"= V O p=d V (025(19.10) (5500 — 2200)

(b} Annual total mveniory cost

Q= Qs

= C+
3§ A
T2 47 (5500 — 2200 S50 0060
= 3534 '-{E il ¥ }lﬂ.lﬂllg.!ﬂ]- 4 ‘ﬂ_ 52
2 S5O0 1532447

= 5060230 + S0602.30 = 5101 204.60

{e} Number of production days per order: 0*/d = (35324.47)/(2200) = 6.1 days
{d) Maximum storage capacity:

Ly={p = dXQ*/p) = (5500 - 220038 124.47/8500) = 21 194.68

Lincoln Electronics produces 300 transistors per day, which go into mventory. It supplies 150
transistors per day to Murphy Radios, The annual demand is 37 500. The inventory holding cost
is 5025 per transistor per year and the setup cost per production run is 5200, Find: (a) BOQ:
(b} production run length; (¢) number of production runs per year; (d ) maximum mventory level

Given: D = 37 500k p = 3 f = 150; § = $200: C = 50,25
{a) Economie production quantity:

fips p [237500)200 300

= 10954.45 units
N Cr—d N B35 00— 150 -

EI

(b} Run length: 0*/p = 10954.45/300 = 365! days
{r) Number of runs per year D/Q* = 37 500/ 1095445 = 142
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155

15.6

(d) Maximum inventory level

DS p-d | [237 500)300) (300 — 150) |
'-'JZ%T e m

Precision Tools Inc. sells pistons to Best Motor Co. as per following price list:

Order quantity Price per unit (P)

1-209 £2 %0
W00-619 2%
B0+ 200

The annual demand is estimated to be 15000 pistons per year. The carrying costs are 257, of the
unit price and the ordering costs are 56.50. Assume instantancous delivery. Find: (a) EOQ; (b)
optimum TC; (c) time between orders.

Given: D = |5000; § = $6.50; C = (025KP)
The EOQ s computed for each unit price:

(S, [OSTNAR ;
Qham= c 025250 55897 pistons (infeasible)

DS [A15000)6:50 : :
thm-ﬁg‘ m.— 582.35 putons (feasible)

#El ﬁl.’tm
ﬂ?“...- —c--l mﬁl—lmmm]

(@) The feasible EOQ of 624.50, corresponding to the lowest unit price of $2.00, is the admissible EOQ.
Since there is no lower unit price break, the optimal quantity is 624.50.
(4) The corresponding optimum TC i found as fallows:

Q* b

m,_“-“—}—”mm+ %mq- (15000)2.00 = $30 31225

fc) Time between orders = Q*/D = 424.49/15000 = 00416 year = 15 days
The Princeton Soup Company buys 90 000 containers each year from the Trenton Can Company.

The ordenng cost is $90. The carrying cost per container per year is assumed to be 20%, of the
unit price. The discount price schedule is as follows:

Order quantity Price per unit (P)
1 1o 10000 $0.4%

10000 1o 20000 038

20000 + 0.3%
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Assuming instantancous delivery, find: (@) EOQ: (h) optimum TC (¢) number of orders per year:
() time between orders.

Given' D = 90000 § = S90.00; " = (020§ F)
The E(OX) s compuied for cach umit price

Oic = 8 [xe0000)%0
o ¢ =V 020x04%)
L 205 O0) )

Q% sn 1'{. c 'Umlﬂ-“i

2DS 2190 000) 90 ~0e _
% s = / \/llllllﬂﬂ 3%) = 1521278 conmtamners infeasible)

= 13141641 contamers iinfcauble)

= 145949 91 containers (feasuble)

The Ley quantities 1o examine are 14 59993 and 20000

l'!‘--‘e.|I ('+;$ = ime

1459991 " S0
ICosm™ 3 WO2INDRK) 1459993 W e R0 R = S35 W e

TCop pps = m?niﬂ:lﬂ}!l - :zﬂ = (V0000034 = $32 60500

The lowest TC 15 53260500 corresponding 1o the unit price of $0,.35

W EOQ = 20000

(M Optinum TC = $32605.00

() Number of orders = D Q% = %0000 20000 = 4 §

) Time between orders = 0° D = 20000 Y0000 = 022 year & 80 days

157  The Wizard Computers, Inc. purchases S000 hard drives per vear for use an its computers. Each
order costs $70.00, The inventory holding cost is 25%, of the unit price. The supplier has provided
the following price hst:

Order quantity Prce per unn (F)

1 to 49 S50
00 1o 649 &5 0
60+ 4250

Assuming instantancous delivery, find (a) optimal order quantity; (b) optimal TC.

Citven: ) = S000; § = ST000: ¢ = (025K P)
The EOQ is computed for cach unit price:

o mey = " J o vt ib = 236,64 units {aible)

25000) 70 - .
Qs o = ‘fm J (035K45.00) = 249 44 umts (infeanibic )

2DS hmm ’
?'mm'fr' - m“_‘l”’ = 25668 umits (infeasible )
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The key quanntities 1o examine sre 23664, 500, and 650, a1 unit prices of 850, §45, and $42.50 respectively
Q.

- oo
C==.C+-—8+(D)P
2 g
LY S00CH
TCisgom= =5 (025K30) + _ - T0 + (S000)S0) = $252 958,04

500 $000
FCuson =~ O25085) + 0 + (S000§4S) = $228 512.

2 O ﬁf'.:’ (0.25)42.50) 4 Hﬁ? 70 + (SC00K42.50) = $216 49) 59

The lowest TC s $216 491 59 corresponding to the unit price of $42 50,

la} Optimal order quantity = 630 units
(H Optimum TO = 311649159,

I58 The Edison Electronics Warehouse stocks tool kits for personal computers, One of the popular
kits. *Basic,” has an annual demand of 10000, The ordering costs are 5150.00 and the carrying
costs are 257, of the unit price. The price guotation from the supplier is given below:

Crrdder quantiiy 1 Price per unit ()
TSN P TV S SRARC—
1 1o B99 [ 51550
0 1y 1459 | 14.00
| 500 + | 13.50

Find (a) EOG; (h) optimal TC.

Given: D = 10000, § = $15000; C w (0.25)(P).
The EQQ s computed for each unit price:

. Jns

¢ ¢
. fuoeonso o
Q-n Al ‘.fl'nlﬁﬂlfim! - {feasible)

2 10 000)1 50
0%y = v'{ A = 92582 (feasible)

(0.2514)

{2010 000y 150

T T = 94281 (infeasible
L) LAE0 Vllln‘.:flﬂll-fﬂj {un I

The key quantities to examing are 92582 and 1500, at unit prices of $14.00 and $13.50.

D
IC=" - Co S+ ()P
¢

92542 V000
. = — (D25H 14) + — (1500 + (1O0D0K 14) = $143 24037
T 3 | H14) 92552 { 14}

| SR} 100D
TCiys a0y = =N (0.25)11.5) + "0 {1500 + (10000K 13,50) = $13% $31.25
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The bowest TC 15 5138 531,15 correspooding 1o the umit prce of $13.50.

{a) EOQ = 1500 units
(bt Optimal TC = $138 531.25

159  Pertech Computers [nc. needs 50000 CPUs for its computers annually, and uses them at the rate
of 350 per day. The ordering costs are $550 and the carrying costs are 407, of the umit pnce.
Hilda Business Machines supplies the CPUs at the rate of 650 per day as per the following price
list; i

Order quantity Price per unit ()
1t 2994 §20,00
300 10 3999 19.60
000 4 19.40

Assuming gradual delivery, find: {a) EOQ; {b) optimum TC: (¢} number of {'-rdcnj per year; {d)
time between orders; (¢) maximum inventory level.

Given: D= 30000 § = 555 C = {040KPx p= 65k d = 340,
The BEOO) s computed for each unit price:

0* = Jflﬂi'-‘ [
vV C p-d
_E_ﬁ.___.
o0 = [:usummsm i = 1859.51 CPUs (infeasible)

v (0.40)20.00) (650 — 150)

[2450000)550 650
fiwoo = | o 2019.60) (650 = 3898.70 CPUs (feasible
o v (040K 19.60) (650 — 350) § (feasible)

[230000)550 650
v (0.40)(19.40) (650 — 350)

@livam = = 391874 CPUs {infeasible)

The kev quantines to examing are: J898 70 and 4000,

i
re=2 P" "r:+£s+mu=
2 p Q"
IRYE.T0 (650 — J50) SOHO0
. D0H 19600 + —— 550 4 {50000) 19.50
2 650 VB 389870

= $904 107.28

Hﬂ ]51]
z : Em }“}m“qmi N ﬂﬁﬁﬂ + fSﬂ'.'l'?-'m

= $S84 03807

?frtnf.m“

H‘iil.iﬂ| -

The lowest TC = $984 038.07 corresponding to the unit price of §15.40.

fal  EOA) = 4000 CPLs
iby Mimimum TC = $9841038.07.
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(el Number of orders per year:
Dg® = 50000, 4000 = 12.5 orders| yéar
() Time between orders:
Q% D = 400050000 = (L0F year = 29 days
e} Manmum mventory level;

, 205p—d  [H50000)550 (630 — 350)
= i =

~ f = I1R08.65 CPUs
YVC p v (040K 19.40) 650

The lowest TC is $32605.00 corresponding to the unit price of $0.35.

1510 In Problem 157, assume gradual delivery. If daily supply and usage rates are 3 and 20
respectively. find {a) optimal order guantity; (5) optimal TC

Given: D = 5000 § = 570 € = (D25} Py p = Mk ol = 20
The EOQ s compuled for each umit price:

28
Q' w II - r
Vv C p—d
Q.'q.u iy = { X i N = 40958 {feasible)
v (0L 25) 50,00) (20 — 20)
5000070 0 ) ,
L' 5 - = 412.0% {infeasihle )
Qlasom = | (0.25%45) (30 — 20)
Cas00m70 30 .
08 i = s — 444,58 (infeasible)

\ (0.25442.50) (30 - 30)
The key quantities to examine are: 409.88, 500, and 630 al unit prices of $3), 345, and 4250 respectively.
-2 270G, T suiitye
oy Q

. 409 88 (30 - 20 000 :
Ty \ = 'm:r_f-nim+m“nm+|sm-unmn=ﬂf~1 707.83

500 (30 - 2 5
T 00 = 1{;:“ m‘mm.l'ﬁlf-ﬁm,} + E‘:m; + (S000H45) = $226637.50

650 (30 - 20 5000
: { . '{ﬂ.z‘::bl'-i!.5m+ &% (70) + (S000M42 500 = $214 189.50

e lowest TC 11 S214 189,50 corresponding o the unit price of $42.50,

T{-HJ s =

{a) Optimal order quantity = 30 units
(b} Optimal TC = 5114 189,50,

1511 The CDM Manulactunng Company produces and stocks item XYZ to satisly future customer
demands. The following histonical data are available: averuge demand per day is 164 units,
average production lead ume 15 6 days, and the frequency distribution of actual DDLT 1s given
below.
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Adult DDLT Frequency

61-70
TI-B0
Bl1-90
91-100
101-110
111-120
121-130

—
tad Bk LM =l == o8 S

The company desires a 907, service level during lead time. Find: (a) order point; (b) safety stock.

i} Construct the cumalative probability table:

Service Level
Actual DDLT Probability (Cumulative Probability)
61-70 0 0
T1-B0 2/39 = 231 23]
§1-90 11739 = 282 513
91-100 7/39 =119 92
101-110 5/39=_128 X0
=120 4/39 = 103 813
i21-130 ¥ =0Mm 10K

(i) Draw the cumulative probability graph (Fig. 15-1)

{a) From the graph, OP = 113 units (corresponding 1o & %", service level)
ibi 58 = OP — EDDLT = OP — {average daily demand) {average lead time)
= 113 = {16005} = 17 units

1512 The demand during lead time (DDLT) for automobile bearings at the Madison Manufacturing
Company follows a Poisson distribution with a mean of 3.2 Find the order poimt for a service
level of 994

From Poisson distribution tables, the cumulative probabilithes for a mean of 3.2 are given below:

DDLT

0 I 2 i 4 5 fi 7 B L 10

32 0041 | QI71 | 0380 | 0603 | 0781 | 0895 | 0955 | 0983 | 0994 | 0998 100

To assure a service level of 992, OP = B {which gives an aclual service level of 99.4% )

15.13 Based on past experience, the management of Star Sports Stadium uses the normal distribution
{mean = 100 standard deviation = 20) to describe the lead4time demand for a pew brand ol
beverage botiles. Find the order point for a service level of 907,
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1.0

ogon |-

Service Level
B 6

W ™ W W W L i® 1%
Assipoty 'Y
Fig 15-1

Given: EDDLT = 100 bottles, o, = 20 bottles
Z = 1.28 for a service bevel of 090 (from unit normal distnbution tables)

OP = EDDLT + Zeoy, = 100 + 1. 28020) = 126 bottles (Fig. 15-2)

1514 The daily demand for beer at the Brown Bottle Pub follows a normal distribution with a mean
of 50 liters and a standard deviation of 15 hters. The lead time is 10 days. For a desired service
level of 957, find: (@) order point; (b) safety stock.

Givenn d = S0 0,= 15 and 7 = 10 Z = 1.65 for a service level of 095 (from unit normal distribution tables)
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In this problem, demand s vanable and lead time s constant

OP = d/ + Za, /7 = (SOK10) + (165N 15K, 10) = $78.27 liters (Fig. 15-3)
SS = Za,./ 7 = 7827 liters

095

i
ALl mn

Fig, 15-3

15158 The daily demand for a plumbing part follows a normal distribution with a mean of 20 units and
a standard deviation of § units. If the lead time s a constant | week and the OP s 160 units,
find the stockout probability dunng lead time.

Given OF = 1600 d = Mt o, = % 7 = Tdayn
In this problem, demand s vanable and lead nme is constant

i
0 15

Fig 154

OP =t + Lo, !

Substituting. 160 = (20X7) + (ZNSK, 7) we obtain Z = 1.51
From unit normal distribution Lablex, the service kevel = D9MS for Z = 1.51 (Fig 154)
Hence, the stockout probability during lead time = | — 09MS = 00645

1516 The daily demand for raw material for an automatic machine is a constant 50 units. The lead
time follows & normal distnbution with a mean of § days and a standard deviation of 2 days.
Find the OP for a service level of 95°

Givend = S/ = Ko, = 2 and Z = 165 for & service bevel of 095 (from unit normal distribution tables)
In this problem. demand s constant and lead time is vanable.

OP = di + Zds,
- SX8) + | 65(%0)2 = 56 units (Fig 155)
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15.17

15.19

s

) 545
Fig. 155

The daily demand for cheeseburgers at Burger Barn follows a normal distribution with a mean
of 1000 and a standard deviation of 100. The lead time s also described by & normal distribution
with a mean of 8 days and a standard deviation of 2 days. Find the OP for a service level of 967,

Given: d = 1000 o, = |0 / = 8: ¢, = 2 Z = 1.75 for a service level of 0.96 (from wnit normal distribution
tahles),
In this problem, both demand and lead tme are vanable.

LT

8000 11538

Fig. 15-6

OF = df + Z,/0i¢ + d°a?

= (1000K8) + 1.75, (100K + (1000)*(2) = 11 535 units (Fig- 15-6)

The annual demand for an automobile spare pan is 1500 units and the order quantity 15 150
umits, The lead time demand follows a normal distribution with a standard deviation of 20 unilts,
IT the desired service level is 90°,, find: (o) the expected number of umits short per cycle; (b the
expected number of units short per vear.

Givery D = 1300 0 = 18} g, = 20k 2 = 1.7% for a service level of 009 (from unit normial distribution tables)
E{Z) = 0045 for £ = 1.28 (from onn nomal loss funcuion wbles) (See Table 15-1)

(al Ein) = E{€)ay, = (00380 20) = 0.96
5 EIN) = Ein)(D/@} = 0.96( 1500/ 150} = %.b units

The Big and Tall Apparel Shop estimates the annual demand for one of its name brand jeans 1o
be 1800, The order quannty is 100 jeans at a time. The lead time demand is descnibed by a normal
distribution with a standard deviation of 12 jeans. The expected number of jeans short per year
is 18, Find the lead time service level and the safety stock associated with this shorage.

Given; D = 1800; 0 = 1Mk EiN] = 1% a,, = 12
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Table 151 Unit Normal Loss Function Values and Service Levels

Service Service Service

£ EiZ) Level 4 E(Z) Level F 4 E(Z) Level
-2 « 3000 00062 1§ | 006d1 08749 165 | 0006 | 09508
=100 | 20085 00228 120 | (0Sel (5549 L70 | 001K3 | 09554
-1.50 | 1529} (0668 123 | 00506 | DX944 1.7 | 00162 | 09599
- 100 | 10833 0.1 587 130 | 00455 09032 LED | 00143 | 09641
050 | 006978 03085 135 | 00409 | 09115 185 | 00126 | 09678
0 03989 0 5000 140 | 00367 09192 190 | 00111 09713
050 | 01978 06915 145 | 00328 09265 195 | 00097 | 09744
100 | G0si 08413 150 | Q0293 09332 pd 00085 09773
105 | 00757 08531 1.55 | 00261 09394 2. 00020 | 09938
LID | 00686 08643 160 | 002N ne4s2 JOo | 00004 | 099K7

Expected number of units short per year will be determined as follows
EiN = EindiD @)

Substuituting. I8 = E{nk 800 100L we obtain Ein) = |
We know, Einl = EiZ)o,,
Substinuting, | = Ei£N12) we obtain E(Z) = 008}

Using unt normal loss function tables, for E(Z) = 0083, the service level s 08413 or 8413 The
corresponding 2, which represents the number of standard deviations between the OP and the mean of the
Icad time demand distnibution. is 1.00 (from the same tables). (See Table 1513

Safely stock = Za, = 1012 = 12 jeans

The McDonald Dairy Farm believes the daily demand for its milk follows a normal distribution
with a mean of 100 gallons and a standard deviation of 10 gallons. If the lead time 15 a constant
| day and the desired service level 1s 95°_ find: (@) safety stock; (b) order point: (¢) average amount
of stockout: (d) probability of a stockour.

Given: d = 100 @, = 10 / = | day.
In this problem, demand is variable and lead tme s constan,

0es

1
LY 1is50

Fig. 157

(W) S8 =Za,, ¢ whete Z = 165 (from unit normal distnbution tables) corresponding to the service level
of 098

Hence safety stock = L6S(10N, 1) = 165 gallons
(b} OP=df + Zoy, ¢ = (100K1) + (LESHION, = 1165 gallons (Fig. 15-T)
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15.21

15.22

1523

(e} Average amount of stockouwt:
Ein) = El£a, = ElZ)0,./¢ (for constanl lead time)

where E(Z) = 0021 from unil pormal Joss function tobles, corresponding 1o the service level
of 0.95 or Z of 1.65. (See Table 15-1.)

Hence, Elm) = (0021010),/1) = 0.21 gallons

{dy Probahility of a stockout: 1 — service level = | -- 0.95 = .05,

The datly vsage of stationery at the Bank of Teaneck follows a normal distribution with a mean
of 8 boxes and a standard deviation of 3 boxes. The bank places orders at fixed time intervals of
8 days with a lead time of 3 days. If the inventory on hand is |5 boxes and the desired service
level is 99°_. find: (a) order quantity; (h) safety stock

Givend=%a,=% T=%¢=3%1=15%Z =233 for a service level of 0.99 (from unit normal distribution
tahles).
This is a fived interval order problem

tal  Order quantity:
Q* = diT+ )+ Foy, T+ 7 = =88 + 31+ 2333 /84 3 —15=96.18 boxes

b}y Safery stock: 2o,/ T+ ¢ = 2018 boxes

The daily consumption of ground beel at the Burger Palace fast food restaurant for its burgers
follows a normal distnbution with a mean of 250 pounds and a standard dewiation of 20 pounds.
The restaurant places orders of 2000 pounds for ground beel at fixed intervals of 7 days with a
lead time of 2 days I the amount on hand 15 355 pounds, find the stockout probability.

Given: d = 250; ¢, = 20, Q0 = 2000; | = 355, T 7./ = 2.
This 4 a fixed interval order problem.
Q* =T+ )+ Za,JTHI -1
2000 = 25T 4 2) + Z(20),/7 + 2 = 355
£=175

From unit normal distribution tables, for £ = 175, the service level = (096, Henee, stockout probability =
| — 0.96 = (4,

A small rural store buys freshly made cookies at a cost of $2.75 per pound and sells them at a
price of $4.00 per pound. The unsold cookies are salvaged at $1.00 per pound. The daily demand
foflows a normal distnbution with a4 mean of 95 pounds and a standard deviation of 15 pounds.
If the order is placed once a day, find the order quantity. Ignore the carrying costs.

Given: p=9%a,= 15
Understock cost Cy = revenue — cost = 3400 — $2.75 = §1.25 per pound
Dwerstock cost: o = cost — salvage valoe = $2.75 — $1.00 = $1.73 per pound

Service level = O G + Cg) = 1.25/{1.25 + 175} = 04166

The corresponding Z = <021 (from unit normal distribution tables).
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[ |
04166
= WA e
Fig. 15.8
Order quantiny Q= p+ Lo, =95+ (~021K15) = 91 85 pounds (Fig. 15-8)
1524 The daily demand for a specialty flower bouguet at a florist is given by the frequency distnbution
below:
Demand 0 I i L 4 5 [ 7
Frequency ] 13 9 M £ 15 7 .
The revenue and cost per unit are S10.00 and S500 respectively. The carrving cost and salvage
value per unit are $0.25 and S4.00 respectively. Find the daily stocking level
{, = revenue = cost w 1000 < S00 = $500
Co = cont = carrying cost — salvage valise = SO0 + 025 — 400 = §) 25
Service level = € (C + Gl = 500 (500 + 1.25) = 080
Demand 0 i 2 3 3 s | » 1
Frequency N 13 19 >4 o 5 1 2
Probability | (8 1100 | (13 000 | (09 1100 | (24 0000 | 220000 | S 1 | (7 1oy | 2 1m
00727 01182 0 02182 02 0.1 56 00636 | 00182
Cumulative
probability 00727 0. 1918 03636 5518 07818 (9% 0988 1000
In order 1o assure 4 service level of 307 _ the duily stocking should be 5 pwhich gives an actual service level
ol 9182}
1525 A small mom and pop restaurant desires a daily service level of 807, for its steaks. If the demand

during lead time (DDLT) for steaks follows a Posson distnbution with a mean of 8, find the
order point.

Civen: Servce level = X0°
From Porson distnbution tables, the cumulative probabilities for a mean of ¥ are given below:
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Demand

Mean

JNOM) | 003 | 014 ) o042 | 00 | 91 | 303 | 453 [ F93 | T | Bl6 | B4R | 936

1527

15.18

1529

1530

153

1532

1533

1534

lan order 10 asdure a service level of 807, the order point level should be 10 (which gives an actual service
of B1.6%.).

Supplementary Problems

The Fun Bicycle Shop estinmntes the snnual demand lor ils £X bicycles lo be 3%4, The cairying coal per
hike is $20 for g year. The ordering cost is 380 per order. Determine: (a) EOQQ; (b) annual carrying and
ordering costs; (¢) number of ordérs per year.

The Royal Liquor Store has an annual demand of 10000 cases for Red Star beer. A case of beer costs the
store 35.00. The ordermg cost is $25.00 per order and the carrying cost 8 207 of the cost of beer. Determine
the pllowing: {a} economic order quantity; (b) number of orders per year; {¢) annual total cost.

A distributor of office equipment has beea using EOC)} polices for its items. The carrying cost for one of its
items has been 257, of its cost and the corresponding EOQ = 100, If the carrying cost increases to 307, of
its cost, find the new EOOQ

Thomas Electric company produces 650 sockets per day, which go into inventory, The demand for the
sockets averages 200 sockets per day and about 30000 sockets per year. The setup cost for production is
5§25 and the holding cost per year for each socket s $0.75. Find: (@) economic production lot size; (b) TC
at EDCY, (¢) number of production runs per year: {4} run time

The Midwest Tire Manufacturing Company produces 1200 tires per day, which go mto inventory, The
average daily demurd is 400 tires and the annual demand 15 about 100000 tires. The unit coyt of production
i 810, the carrying cost is 2%, of the producthon cost and the setup cost b $100.00. Find: (4) sconomic
production lot size; (B) TC st EOQ; {c) number of production runs per year, (4) production run time;
fee} maximum inventory level

For Problem 1530, find the optimal production loi szes and corresponding 1otal costs for the following
daily production rates: (a) 8O0G; (k) 1600.

The General Machine Company produces component K for vacuum cleaners at the rate of 1000 units per
day. The average daily and annual demandy are 500 and 200000 units respectively, The cost per unit is
5100 annual carrying cost is M0 of the item cost; production setup cost is 315000, Determine the lollowing
{a) optimal production lot size, (b) number of preduciion runs per year, (¢} length of production run;
(o} manimum mventory level; (g) annual total cosi.

Agsuming instantancous delivery for Problem 159, find (o} EOQQ; (#) minimum T,

The David's Grocery Store buys 900 units of a particular item from the Goliath's Wholesale Company. The
ardering costs are 1200 and the carrving costs are 237 of the unil price. The discount price structure s



1538

15.36

1537

159

15.40
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s Tollows:

Drder quantity Price per unit (P)

199 £8.00
100 b B9 7.30
QD - 7.0

Assuming (nstantaneous delivery, find (a) EOQ; (b) optimum TC.

The Eat'n Go Fast Food Restaurant uses $200 packages of mustard per year. The ordering cost is $26. The
carrying cosi per package per year ts 25%, of the unit price. The discount pnce is given below:

Order quantity Price per unit (P)
1 1o 100 $3.50
101 1o 300 5820
30l to 750 $8.00
751+ §7.50

Assuming instantaneous delivery, find: (@) EOGC), (b) optimum TC.

For Prablem 155 sssume produs| delivery. Let the daily production and demand rates be 300 and 50
respectively. Find: (a) EOQ), (b) optimum TC.

For Problem 156 assume gradual delivery. Let the daily production and demand rates be 3000 and 300
respectively. Find (a) EOCY (b) optimum TC; (c) number of orders per vear; (o) time between orders;
(¢} maximum inventory level

For Problem 1534 assume gradueal delivery. Let the daily production and demand rates be 10 and &
respectively. Find (a) EOQ; (b) optimum TC

For Problem 158 assume a gradual defivery. Let the daily production and demand rates be 210 and 70
respectively. Find (a) EOQY; (b) optimum TC

In order 1o satisly future customer demands, the Mornistown Manufacturing Company produces and stocks

component ABC. The past data are as follows: average demand per day is 130 units, average production
lend time i5 § days, and the frequency distribution of actual DDLT is given below:

Actual DDLT Frequency
A00- 399
400 - 499 16
S00- 599 0
600699 15
TO0- 7949 14
BOCH- 899 B
QO 3

The company desires an 857, service level during lead time. Find: {a) order poimnt: (b) safely stock.
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1541

1542

1543

1545

1546

1549

15.50

1551

I5.52

1553

15584

The demand during lead time { DDLT) for sutomobile muffiers at the Ssperior Auto Repair Shop is described
by a Poisson distnbution with a mean of 1.3, Find the order point for & service level of 95%,

Based on past data, the Baltimore Bottling Co, uees the normal distribubion (mean = 5000 standard
deviation = 300) 1o describe the leadtime demnand for its medium size beverage bottles. Find the order pomnl
for o service level of 907

The duily demand for chocolate e cream at the Sweet & Cool Store has a normal distribution with & mean
of 80 gallons and a standard deviation of 10 gallons. The store uses un OF of 440 gallons. Assuming a
constant lead time of 5 days, find the risk of a stockoul during lead tme.

Consider Problem 1543, If the desired service level is 96%,. find: () order point i b) safety stock.

The dwily demand for one-inch diameter steel bar for the Metuchan Machme Shop 15 a constant 250 feei,
The lead time follows a normal distribution with a mean of 10 days and a standard deviation of 3 days.
Find the order point for o serviee level of 90%,

The daily demand for tacos &t Taco King follows a normal distribution with a mean of 400 and a standard
deviation of 40. The lead time also follows a normal distribution with a mean of 10 days and a standard
deviation of 2.5 days. Find the order point for a service level of 85%,

The annusl demand for a vacuum cleaner component is 500 units and the order quanuty s 50 units. The
lcad time demand s descnibed by a normal distibution with a standard deviation of 7 units. If the desired
service level is #5%,, find: (a) the expected number of units short per cyele; (b) the expected number of units
short per wear.

The THNR Retail Owler has an annoal demand of 390 units for 1% Hero T-shirts. Orders are placed for
150 units at a ume. The expecied number of umits short per year is 40, Assume the lead time demand is
described by a normal distributon with a standard deviation of 200 Find: (a) lead time service level; (b) the
safely sock,

The Tasty lee Cream Co, believes the daily demand for the vanilla finvor follows a normal distribulion with
a mean of 70 gallons and o standard deviation of § gallons. 1 the lead tme is 0 constant 1 day and the
desired service level is 90°,, Ind: (a) safety stock] (b) reorder point, (¢} average amount of stockout,
fd) probability of a sockout.

A small publishing company places orders for its printing ink in lixed intervals of & days. The duwly
consumption of ink follows a normal distnbution with a mean of 20 gallons and a standard deviation of 2
gallons. The current inventory on band s 3 gallons. The lead tume s 3days. IT the desired risk of a stockout
i 1% find (a) arder size: th) safery stock

The All News newspaper company places orders for blue ik at fived time intervals of 9 days with a lead
time of 3 days. The dmly consumption follows a pormal distribution with a mean of 10 and a standard
deviation of 5 blue ink containers. If the on-hand inventary is 36 conainers and the desired service level is
9k, find: (@) order quantity: (k) safety stock

In Problem 1550, find the rish of a stockout if the thvemtory on hand at the tme of order i3 2 and the
order size is 183

In Problem 15.51, assume the order guantiiy and on-hand mvemtory are 1230 and 20 containers respectively,
Find the stockout prokability,

The Fresh Bake Shop makes caker ut a unit gost of 56 a1 the beginmng of cach week and gells them at o
urit pnce of §12 during the week. The unscld cakes are salvaged at 52 per unit at the end of the week. The
weekly demand 15 described by a normal distribubion with a mean of 125 and a standard deviation of 16,
Find the order quantity, ignoring the carTying costs,
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The historical data for the datly demand for boves of freshly made chocolate chip cookies at the Beverly
Bakery are as follows:

Demand (Boxes) | 1 | 2 | 3 | 4 | §$ | &6 | 7T 18R |9 | 10

Frequency 213461271513 11L]1

The understock and overstock costs are $4 and §1 respectively per bou,

Find the optimal daily stocking level

1556 Consider problem 1555 If the shortage and excess costs are $6 and $2 respectively per box. find the optimal

1557

1558

1559

15.60

daily stocking level

The daily demand for smoked salmon at the local delt ts given by the frequency distribution below:
Demand 0|1 2 3 4 L] 6|7 |3
Frequency | 5 | 8 | 10 | 12 1} 1|9 |6 |3

The revenue and cost per unit are $20 and $10 respectively. The carrying cost and salvage value per unit
are $0.50 and $7 respectively. Find: (o) service level: (b) daily stocking level

The New Deli prepares fresh salads every day at @ unit cost of $2.25 and sells them ai a unit prce of $4.75,
Fifty percent of the unsold salads are salvaged at a local restaurant for $2.50 and the remaming ones are
scrapped. The carrying costs are $0.15 per salad. The frequency distnbution of daily demand i given below:

Demand 0 | 2 3 4 £ [ 7

Frequency 10 20 25 17 | .10 08 | 06 04

Find the optimum daily stocking level

Assume the same revenue and cost data as in Problem 1557 Find the daily stocking level for smoked
salmon, if demand = described by the Poisson distribution with a mean of £0 pounds per day.

The Mount S1. Aane Ski Store has § snowboards for rental. The probability distribution of daily demand
s given below:

Demand 0 I 2 3 4 5 6 7 5 9

Frequency | 03 | 07 | 10 | as | 2 | s | o8 | o7 | a0 | 05

The understock cost is $40. Find the upper and lower bounds of the overstock cost for the present inventory
level 10 be optimum.



Chapter 16

Forecasting

FORECASTING

Forecasting 15 predicting or estimating the future value of a varable. Quantitative forecasting
technigues such as regression methods and smoothing methods will be discussed in this chapter.

REGRESSION METHODS

Regression methods deal with establishing a mathematical relationship between independent and
dependent variables. The variable that s to be estimated is called the dependent variable while the
variable that helps in the esimation is called the independent vanable. Simple regression deals with a
linear relationship between one dependent and one independent variable. Multiple regression deals with
one dependent variable and two or more independent variables.

SIMPLE LINEAR REGRESSION

Consider the linear regression equation Y = a + bX, where Y is the dependent variable, X s the
independent variable, o is the vertical axis intercept, and b is the slope of the straight line. The values
of constants @ and b are obtained as follows:

=Et*‘_’£j'_~£._f£_x'.'_ h=n2',xy—}:xz_v

d = =
R~ (Txp nY = (T xP

where x is the independent vaniable data. y is the dependent variable data, and » is the total number of
observations. Using the above values of « and b in the linear regression equation ¥ = a + bX, ¥ can be
estimated for o future value of X. This ample linear regression is also called causal lincar regression.

If the data are a time series. the independent variable 1s the time period and the dependent variable
15 the variable to be forecasted, such as sales. Such a relationship, known as time series linear regression
or trend ling, 18 expressed as ¥V = a + bT, where T 15 the ime penod.

COEFFICIENTS OF CORRELATION AND DETERMINATION

The coefficient of correlation (r) 15 a relative measure of the relationship beiween the dependent
variable v and the independent vanable x. 1t 15 computed as follows:

o W xy -y x3y
VInEx - E ¥ - )
where —1 < r =< +1. A perfect relationship exists, when r= +1.
I he coclicient of determination is the square of the coefficient of correlation. This 18 a measure of
the proportion of variance in the dependent vanable y that can be explained by the independent vanable

x. Note that 0 < r* = 1. For example, if r* = 009, the independent variable explains 90%, of the vanation
in the dependent varable.

281
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STANDARD ERROR OF ESTIMATE

The standard error (deviation) of estimate (forecast) is a measure of the dspersion or scatter of the
past data around the trend (regression) line
It is given by the following equation:

o Xy -uly-bEy
\,‘l n=-2

SPECIAL CASE: LOGARITHMIC (EXPONENTIAL) MODELS

The logarithmic or exponential models are used for data depicting growth with no sign of leveling
off. Nonlincar functions of the exponential models can be transformed into hinear functions as follows:

(1 W= an'
Taking common loganthms on both sides, log W = log 4 + (log B\
Substituting ¥ =log W.u=log A and h=logB. ¥ = u + bX

D WeaeH ™
Taking natural logarthms on both sides, log, W = (a + bX)log, ¢ =a + bX
Substituting ¥ =log M. ¥ = a <+ hX

After determuning @ and b in the usual manner, the parameters 4 and B can be found through
antilogarithma

MULTIPLE REGRESSION

Consider the multiple regression equation Y = b, + b X, = b X. = -+ B X, where Y ois the
dependent vanable. X, X X, .. X, are the independent variables, and b by bo. .. b are the
coelhivients

SMOOTHING METHODS

One way of removing random vanations m o time senes s to smooth it Two commonly used
smoothing methods are moving averages and exponential smoothing

MOVING AVERAGES

The moving average method finds the forecast for a particular time period by averaging the data
values of the most recent n periods in the time series. Mathemabically, the moving average is calculated
as follows
¥ tlatest n data values)

"

MA(n) =

For example, MA(T) would imply a three-peniod moving average

WEIGHTED MOVING AVERAGES
The weighted moving averages method uses different weights for the most recent n data values.
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EXPONENTIAL SMOOTHING
Exponential smoothing finds the new forecast by taking the weighted average of the immediately
preceding actual and forecast values. The basic exponential model 15 as follows:
F,=aA,., 4+ (1l —2)F_, or F=F_,+a(4,.,—F_))

where ¥, = forecast valve for period 1
F, ., = lorecast value for period r — |
A, ., = actual value for penod 1 - |
7 = smooth constant (0 <z < 1)

EXPONENTIAL SMOOTHING WITH TREND
(TREND-ADJUSTED EXPONENTIAL SMOOTHING)

Trend-adjusied exponential smoothing makes wse of both an exponentially smoothed component
(5) and a trend component (7). The new forecast is obtained through the following equations:

5.,.‘——'!.4,4"“ —3}[5.—4 + 'il':i}
I=pS, = 5,0+ (1 - BT,
Fioy=8+T. Fa=§+kT,
where §, is the smoothed forecast value in period 1, T, is the trend estimate value in period 1, 4, is the
actual value in period 1. # is the exponential smoothing constant (0 £ 2 < 1), fis the trend smoothing
constant (0 < B < 1), F,., 18 the forecast value in period ¢ + |, and F, ., is the forecast value in period
t+ k.

Since the calculation of the first esumate of trend T, needs the first two actual values, the com-
putational procedure starts with = 2 {not with r = 1) as follows:

5;=4;
?-;':4]_}"1

Si=aA; (1 - a)8; + Ty)
Iy= M5 — §)+ (1 = f)f,

B a4+ (] —afS ., + T-y)
L=BS =5 )+ -/T_,

FORECAST ACCURACY

The three most commonly used measures of [orecast accuracy are the mean absolute deviation
(MAD), the sum of squared errors (SSE), and the mean squared error (MSE). These are defined as follows:

MAD =% |A, - E|/n
SSE=% (4, ~ F)
MSE = ¥ (A, — F)¥/n

where A, 15 the actual value of time 1 and F, is the forecast value at time 1. The difference between actual
value and forecast walue (4, — F)) 15 called forecast error.
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FORECASTING TIME SERIES WITH MULTIPLICATIVE MODEL

The underlying data patterns of a time series consist of trend, cyclical, seasonal, and random

components. A trend exhibits the long-range upward or downward direction of the time series data. A
cycle shows a long-term wavehke data pattern that repeats itself Scasonality is a shortsterm repetitive
data pattern. The random component accounts for the irregular changes due 1o many different factors
that cannot be explained.

The multiplicative model is given below:
y,:]:!f:.xs,xﬂ*

where ¥, = actual time series value

T, = trend component
€, = cychcal component
5, = seasonal component

R, = random component

Procedure to develop time series forecast for data with seasonality:

Compute seusonal indices, to measure the degree of differences among scasons, as follows:

{a) Isolate the trend-cycle of the duta by calculating moving averages, where number of periods
equals number of seasons, The resulting moving averages, with no seasonal and almost no
random variations, are as follows:

MA, =T x C
(b} Calculate the ratio of the time series to the moving average as below:
e L HEGRNNN
MA, Mg B o
{¢) Calculate the average of the above ratios for each season, which is a measure of scasonal

differences with almost no random vanations.

(d) Adjust the above average ratios to obtain seasonal indices (S1), where the average seasonal index
is 1. For example, for quarterly data, multiply each seasonal index by 4 (sum of the unadjusted
seasonal mdices).

=% R,

Nore: I the time senes contains no discernible cyclical component, use regression analysis mstead
of moving averages in step (a).

The multiplicative model without the cyclical component is as follows:
y=1 %35 x R,

Since linear regression gives the trend of the data, calculate the ratio of the time series to the regression
line as follows:

¥ _ Tx8 xR,

= HRI
L4 T, H

Continue with steps (c) and (d).
Use the seasonal indices 1o deseasonalize the data. That is, remove the effect of season from the time
series, by dividing each time series value by the corresponding seasonal index.

Obtain a linear regression equation of the form 7, = a + bt for the descasonalized data. This will
represent the trend component of the multiplicative model.
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4. LUse the above trend equation to predict future trend values,
5. Multiply the above trend values by the corresponding seasonal indices to obtain the forecasts as

follows:
E=T xSl

Note:  In the multiplicative model, estimating trend and seasonality components poses no problems.
However, estimating the cyclical component is a judgment call, since it is based on the
economic or industry activity level

Solved Problems

16.1  The following data represent the relationship between the dependent variable —Sales Revenue in
millions of dollars ( v)—and the independent vanables —Number of Sales Representatives (x,) and
Product Price § (x.)

Sales Revenue Mumber of Sales Product Price
Year (§ millions) Representatives (5)
1 1.2 25 0.95
2 1.5 25 (93
3 20 23 092
4 135 26 090
5 4.1 3 .87
[ 5.6 28 185

{a) If the Compuny intends to increase the number of sales representatives to 30, use causal linear
regression to forecast next vear's sales revenue. (b) If the Company plans to decrease the product
price to S0.82 next vear, forecust next year’s sales revenue using causal linear regression.
(¢} Compare the results of parts (@) and (b) using the ceefficient of determination,

fap Causal linear regression based on number of sales representatives:

Number of Sales | Sales Revenue (y)

Representatives (x,) | (millions of dollars) ] v X,
&3 1.2 H25 |44 LI}

25 | 1.5 625 223 375

25 20 625 4.} SO0

26 15 76 12.25 910

28 4.1 T4 16,80 1148

28 56 TB4 3136 1568
e S I o ———. — —
Sum 157 119 4119 ob.11 4801

INEy—IxIxy 4119%179) - 157480.0)

u : = 253169
nE - (Zx,F 6(4119) — 1577
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JNMExy-Xx Xy 64801 - 157(17.9)

= | (RIS
nEt, —{Ex.j’ 6(4119) - 157 .
¥Yemag+hX = =2530169 + 1LOIRSYX
I X=3 ¥=-253169 + |.ORI530) = $7.128 millions
(h)  Causal hinear regression based on product price;
Product Price Sales Revenue [ )
$ ix;) {millions of dollars) x3 & e |

nes 1.2 09025 144 1140
(x93 L5 (186449 224 1. 395
naz 20 1, B 410 18400
(190 35 0l 1225 150
(L87 41 {17568 1681 1567
(L85 b 7224 1136 4. 76l
Sam 542 17.9 45032 | AR1I 15.852

E Xy~ L Xy TNy .. ﬂﬂil_'l_iiilj_—_!ﬁ[]ils_l 432112

HE:- —{¥ x,)* 6(4.9032) — 5424

NExy—Tx; Xy _6l15852) - 54179
nE = (X ) 6(4.9032) — 542°

V=4 bX =432112 - W4.5327X

- 44 5317

If N; =082, ¥=412112 —4453270582) = $6.694 millicrns
(el I the coeficient of determination for Parts (o) and (b) are r] and r] respectively, then

_ AExgy-Esky
q[nEI*—iitul’]InEF X 5]

e ol480.1) — 157(179) — 09282

 [6(4119) — ISTTI[6(68.11) ~ 17.97]

vl = (09282 = 08616

- ﬂEs:J Et:Zr —_—
JnES - E o E Y - € 0]
ri = { ~0.9807)° = 0.9618

Simce ri = ri, the model of Part (b) s more rellable.

16.2 The following data represent the industry sales (x) and Corporation ABC's annual sales (y) of
toddler clothes:
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Indusiry Sales (x) ABC's Sales (y)
Year ($ millions) ($ millions)
1 1103 105
2 1250 117
3 1047 110
4 055 101
5 045 a7
6 403 92
7 1025 104
B 1170 11é

{a) If the industry estimate of next year's sales is 51300 millions, forecast ABC's annual sales for
next year using causal linear regression. (b) Compute the correlation cocfficient and interpret its
meaning. (¢) How much of the variation in ABC's sales 15 explained by industry sales? (d) Find
a 95% confidence interval estimate for next year's sales,

(at Causal iineaur regression

Tndustry Sales (=) ABRCTs Sales { v) x? 2 Xy
1103 105 I 216604 11025 115815
1250 117 | 562 S0 |3 6RY 146 250
1087 110 1 203 309 12 100 120670
955 101 212023 10204 Ph455
G495 a7 K93025 G409 91 6635
93 92 Bl15408 H464 Bi07a
1025 104 1 050625 [OR16 106 6L
1170 116 | 36 900 13456 135720

Sum B448 B4l 9022 502 89 6 B96 251

LTy - ExXay_9022502(842) ~ BA4B(R96251)

= = = = 313294
n"?; —lL\i’ M9 022 502) — (B448)°
g nEfxy-YXx¥y ﬂﬂ%ﬁlj—mﬂ{ﬂ-ﬂl_
nE ol = (L xy  B(9022302) — (B448)°
Y=a+hX = 313298 + 0.07X
Ir X = 1300, ¥ = 33208 4 007(1300) = $122.33 millions

ik} Coeflicient of correlation:

HT'_:.I L'I:EJ. .
JINE X — @ I T ¥ — (& 7]
MEH‘HII—EMHEM"]

r= - = (L93%7
809022 502) — BA4B2[8(39 160) — BA2]°

F-=

A correlation coefficient of 0,9597 indicates a very strong and positive relationship between industry sales
and ABCs sakes
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(e} Coefficient of determination:
o= (09597 = 09210 or 92.1%
The above determination cocfficient indicates that 921, of the vamation in ABC's sales 15 explained by
industry sales
(d) Conlidence interval:
imterval estimate = K., 1 (S L

where Vi = Yo = $12233

From tables, for 6 (n — 2) degrees of freedom and 957, confidence interval, + = 2447

- 2660
n—2 8-1 !

5, [E¥—aZy-tTny \/m 160 — 31.3298(842) — 0.07(596 251}
v
mterval estimate = ¥, + nS;) = 12233 + 2447(2669) = $115.799, 3128861 millions

The following data are available on the relationship between interest rate and ABC's bond price:

Interest Rate ABC's Bond Price
Time Period % (x) per Share § (y)
| 302 Q08 5
2 im Ph 4
3 297 1014.3
4 296 10172
5 299 10132
6 303 10026

{a) Find a causal linear regression equation to predict ABCs bond price per share bused on
interest rate. (b) Calculate the correlation coefficient and interpret its value. (c) If the interest rate
is expected to be about 3.2%, next period, find a 99°, confidence interval estimate for ABC's bond
price per share. (d) Compute the determination coefficient and interpret its value

ia) Causal linear regression eguation:

Time Interest Bond
Period Rawe ", (x) Price/Shire § (v) K > Ky
i an2 9E.5 91204 Q7 N2 25 Y5470
2 ENiE] Y964 0| R 992 E1196 9092
3 297 1014.3 B2 1 028 B 49 012471
4 2.96 L] e E.Tol6 1034 69584 Jol10912
5 29 10132 B4 1026 57424 029 464
f 3.0 L] 9.1 Bim I 005 206, 76 JOATHTR
Sum 18 fl2.2 £4.0045 6085 09654 18125391
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164

HMHHJ."I ~ I8(18125.291)

- IN25.1
6(S4.004%) - (18)° S
Gl1812529)) = IR[6042 2)
bw — e = = 272708
HHMI-HI}'

Ye=a+bX = |IE25]158 - 2T2708X
id Correlation coefficient:

- Al ! R O

Thnnmhlinnmdlﬁml—llmrpmhmhmwnd the direction of relationship between
independent (interest rates) and dependent (bond price per share) vanables The strength of the relationship
is indicated by the absolute value of r (|~ 0945 =« 0.945) The direction of the relationship is given by the
sign of r (negative). Hence, in this problem r = — 0945 shows a strong negative relationship between interest
rate and bond price per share. As interest rate increases, decreases, the bond price per share decreases, increases.

{¢) Confidence interval
interval estimate = ¥__. + n(S;)
where Voess = ¥z = IB25.158 — 272.708{1.1) = $979.76
From tables, for 4 (n — 2) degrees of freedom and 99, confidence interval (1% vignificance level), 1 = 4604

S, = ﬁmm_s_d_- Illililtﬂﬂ.!l + ﬂl'ﬂlﬂl IJ'.S.IIH - 3112

i-—l
interval estimate = ¥, + HSy) = 97976 + 4604(1.112) = $965.4), 399409
(d) Determination coefficient:

e (-0M5) =089 or R9IYL
The coefficient of determination gives the amount (¥9.3%) of vanation in y that is explained by x. Hence,
in this problem the interest rate eaplains §59.37, of the vanation in bood price per share.

(@) Using the dats of Problem 16.1, forecast next year's sales revenue using time series linear
regression with time as the independent vanable. (b) Find the coefficient of determination.

fa) Time series lincar regression:

Year (x) Sales () ! ¥ xy
| 1.2 ] 144 1.2
F | 15 4 11 i0
l 2 9 4.00 60
4 15 16 1285 140
5 41 23 1681 205
t 56 3o .36 RET ]
Sum 2 179 1] BRI 3

EXFEy-ExTay 91(179) - 2(R3)
nEX (T o091) - 21
b nExy-XxXy L 783 - 2179
nEe - (X 6(91) - 21°

¥Yoa+bY = 0147 « 004X
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Next year's sales forecast (¥;):
¥; = —0.147 + 0.894(7) = $6.111 millions
(b) Coefficient of determination:
o= nExy—ExTy )
VInZ e —ExPInEy - T2
e ( _ 6(78.3) — 21(17.9) )2 —
W/ [6(91) — 217%[6(68.11) — 17.9%]

The following ar¢ the data from the Predicasts Basebook on computer scrvices employment (=
thousands):

Lad

Year 1 2 3 4 5 6 7 8 9| Wl 11| 2| 1

Employ | 271 | 304 | 337 | 365 | 416 | 476 | 542 | 589 | 631 | 676 | 740 | 775 | 792

(a) Find the time series linear regression equation and the forecast for next year's compuss
services employment. (b) Compute the cocflicient of correlation and the coefficient of determms
tion. (¢) Find a 95% confidence interval estimate for next year’s forecast.

(a) Time series linear regression:

x y x* ¥ xy
1 271 1 73441 271
2 304 4 92146 608
3 337 9 113569 1011
4 365 16 133225 1460
5 416 25 173056 2080
6 476 36 226576 2856
7 542 49 293 764 3794
8 589 04 346921 4712
9 631 81 398161 5679
10 676 100 456976 6760
11 740 | 121 547600 8140
12 775 144 600625 9300
13 792 | 169 627 264 10296
Sum 91 6914 821 4083596 56967
2 F oo i 3 i
,_Zx z}-’ T x X (xy) _ BI9(6914) — 9L(696T) _ o
ny x*— (X x)? 13(819) — 912
b ?{E x:r,— X x;g ” 13(56967) — 91{6391& 470824
ny x*— (X x)* 13(819) — 91°¢
Y =ua+ hX =202.269 + 47.0824X
Yo = Yo =202.269 + 47.0824(14) = 861.423 (in thousands)

(b) Coefficient of correlation (r) and coefficient of determination (r®):
. nyxy—YXxxy _ 13(56967) — 91(6914)
JIEX @M E Y — (E 07 JTI3(819) — 917][13(4083 594) + 69147]
r? = (0.993)* = 0.986

=099z
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16.6

(¢) Confidence interval;
interval estimate = Y., + t(Sg),
where ¥t = Fo = 861423
From tables, for 11(n — 2) degrees of freedom and 95%;, confidence interval (5% significance level), t = 2.201.
5 = \/}: y'—aZy—bTxy i \/H}'ss 596 — 202.269(6914) — 47.0824(56967)
n—2 13-2
interval estimate = ¥ _,, + t(Sg) = 861.423 + 2.201(16.418) = 825.287, 897.559 thousands

= 16418

Find next year’s forecast using time series linear regression for the following data on yearly arrivals
by foreigners (in millions) from the Predicasts Basebook:

1 2 3 4 5 6 7 8 9 10 11

994 | 11.25 | 11.98 | 1091 | 8.83 | 1040 | 890 | 10.26 | 11.64 | 13.80 | 15.10

Time Arrivals by
(x) Foreigners () x? ¥ xy
1 9.94 1 98.8036 9.94
2 11.25 4 126.5625 22.50
3 11.98 9 143.5204 35.94
4 1091 16 119.0281 43.64
5 8.83 25 779689 4415
6 10.40 36 108.1600 62.40
i/ 8.90 49 79.2100 62.30
8 10.26 64 105.2676 82.08
9 11.64 81 135.4896 104.76
10 13.80 100 190.4400 138.00
11 15.10 121 228.0100 166.1
Sum 66 123.01 506 1412.4607 771.81

L_EXETy-TxE(x) _S06(12301) - 66(77181) _

9.342
ny x*— (X x)? 11(506) — 66
- ny xy-— Z X3y " 11(771.81) — 66{123.92 - 0307
nY x*— (¥ x)? 11(506) — 66°

Y=a+bX =9342 + 0307X

Next vear’s forecast (¥,,): ¥, = 9.342 + 0.307(12) = 13.026 (in millions)

16.7

(@) Find the time serics log-linear regression equation for the following data in the form:
In(Y) = a + bX. (b) Find the coefficient of correlation. (¢) Find the next period’s forecast.

Period (x) 1 2 3 - 5 6

Demand in $ thousands (y) | 45 48 50 53 57 62
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ta) Time series linear regressjon:

Period (x) Demand () y' = oy} | x* ivy 8
1 45 1807 | 14,493 1807
2 48 1871 4 14985 1.742
3 S0 1912 9 153044 11.736
4 53 1970 | 16 | 15761 | 15880
g 47 4043 25 16 346 20215
4] &2 4127 £\ 17082 24.782
Sum 21 i Ty 91 93821 M 142

t‘E} —III{]‘] ) 'H{.j-'-']}-—"lfﬂdlﬂ:l

= 173
Y - (T &91) — 217
> ' — {3
b nExy—E IEly = 84, 142) .H.JTM_EN:
Ay 2l - (L x &91) - 217

¥ =In{Y) = 3738 + 0.062X
Taking antilogarithms of both sides, ¥ = g! 70 * 00020
ih) Coelficient ol correlation:
. ny o —EtEu . HH#H‘I_::HE_‘{"H - 0,99
JOEY —E L P - & ¥ )] [ﬁm} + 2 [6093.921) — 2373]
(e} Mext period’s forecast (1)
Yo =gt AR IOEHT o 4 172 o S64.848 thousands

168 (a) Using the duta of Problem 16.5, find the time senes log-linear regression equation in the form:
log ¥ =a + bX. (b) Find the coefficient of determination. (¢) Find next year's forecast

(a)  Time series log-linear regression:

X ¥ y=logly) | # vy xy’

| 271 2433 I 5914 2433

2 304 2483 4 | 6165 4966

3 337 2524 9 | 6389 7583

4 365 2562 16 6565 10249

5 416 2H19 25 K60 13.095

6 | 476 2678 % | 7170 16,066

7 542 2734 9 | 747 19.138

8 589 2770 o | 761 | 22161

9 631 2800 81 | T7R40 | 25200

10 HTR 2R3 {11 8,009 28.200

11 Tl 2R64 121 B.232 31562
12 775 2889 144 | R348 4672

13 92 2899 169 R.403 ITHRY
Sum 91 6914 3509 AL 954K 253107
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Ty =YX xXix')  BI19(35094) - 91{253.107)

= - - = 2411
“ nE x* - (T a¥ 13(819) - 917
- ’ " 5
- Yayr-%Fax¥ » I:lfliii_l]‘r}_ qu:__._man i
n¥ x? = (X ) [3(819%) - 91°

Fi=logl¥) = L413 + (L0409.X
Taking antiloganthms of both sides,
Y o= 10740000 P00 o 28R B21(1.0080)"
i) Coetficient of determination (F);
nix -LaLY = ORI =N ____ o
VOES =T = (X r¥]  JD13619) - 97 I013(95048) ~ 35.0947]
rf = 0982

F =

Yo, = Y, = 258.821(1.0988)'* = $967.967 thousands

169 Company XYZ's annual sales are represented by the following multiple regression model:
Y=13504+ 009X, + 0.15X, + 07X,
where ¥ = Company XYZ's sales in millions of dollars
X, = industry sales in millions of dollars
X, = advertising expenditures in thousands of dollars
X, = disposable mcome per houschold in thousands of dollars
ri = 085S
(a) Deternmine next year's sales in millions of dollars, if X, = 1200, X, = 216, and X, = 29
() Interpret the meaning of r*.

(@) ¥ =350+ 009X, + 015X, + O7X,
Fo= 35 + 00912000 + 0IS216) + 07029)
¥ = 51957 millions

{h) The mdependent variables X, X,, and X, explain 85%, of the variation in the annual sales ¥ of
Company XYZ.

16.10 A hypothetical stock pncing model is given as [ollows:
Y= 165 + 267X, + 0.03X, — 0.5X,

whire Y = stock price
X, = dividends
X, = S&P 500 index
X, = inlerest rate

Forecast the stock price ¥, if X, = §1, X, = 720, and X, = 8.3%,

¥ =165 + 267X, + 003X, - 0.5X,
V=165 + 267(1) + 00XT20) + 05E.3) = SH0.6S5

16.01 The total cost (in thousands of dollars) of a manufacturing company is given hy
¥ =15+ 12X +04X°
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where Y is cost in thousands of dollars per period and X is production in thousands of units pes
period. Find the total cost, if the production plan is 15000 units for the next period.

¥Y=15412X +04x?
If X =15000, ¥ =15+ 1.2(15) + 0.4(15)*> = $123 thousands

Company XYZ's multiple regression model is as follows:
S, = 35.864 — 34.943P + 0.195¢

where S, is annual sales revenue in millions of dollars, P, is the price of the product, and ¢ is tims
in years. Forecast the sales revenue for the seventh year (S-), if P; = $0.82.

S, = 35.864 — 34.943P, + 0.195¢
If P, =50.82and t =7, §; = 35.864 — 34.943(0.82) + 0.195(7) = $8.576 millions

Consider the data of Problem 16.1. A firm has formulated a new regression model to estimat=
sales revenue. The new mocdel has a 1-year lag between sales revenue and the number of salss
representatives, as follows:

S, = —5.708 + 0.24R,_, + 0.737t

where §, is annual sales revenue in millions of dollars, R,_, is the number of sales representatives
at t — 1 time period, and ¢ is time in years. Forecast sales revenue at t = 7.

Iff=7.R-,-_|=R6=23,

S, = —5.708 + 0.24R,_, + 0.737t
S, = —5.708 + 0.24(28) + 0.737(7) = $6.171 millions

Consider the data of Problem 16.1. Find the 959, confidence interval estimates for next year's
sales revenue based on (a) number of sales representatives; (b) product price.

(a) Confidence interval for sales revenue based on number of sales representatives:
From tables, for 4 (n — 2) degrees of freedom and 95%, confidence interval (5% significance level), t = 2.77¢
Ty -aYy—bIxy
n—2
where Sy=179.3 3> =68.11, % x,y = 480.1, a = —25.3169, b = 10815

Bp=

=0.717

\/68.11 + 25.3169(17.9) — 1.0815(480.1)
S, = :
6—2
From Part (a) of Problem 16.1, we have
Yo =Y, =7128
interval estimate = Y, + #(Sg) = 7.129 + 2.776(1.717) = $5.139, $9.119 millions

(b) Confidence interval for sales revenue based on product price:
interval estimate = ¥, + 1(Sg)
From tables, for 4 (n — 2) degrees of freedom and 95% confidence interval (5% significance level), t = 2.776

g _\/Ef—aZ}—bEry
n—2
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16.15

16.16

16.17

where Ty=1T0. vV =681, 5 xy = 15852, am 432112, b = —44.5327
| — 33 . TG
S‘& = r&N 1 =43201M 'Jl_+ A4 532T(IS R h-ﬂ.'u‘SE
v 6-2
From Part (&) of Problem 16.1, we have
T = ¥ = 6694

interval estimate = ¥, + H{5;) = 6694 + 2776{0.75) = 34612, $8776 nullions

For Problem 16.2, estimate the upper and lower limuts for next vear's annual sales, given 997,
confidence interval,

interval estimate = Y, £ 1(S;)

From tables, for & (n — I) degrees of freedom and 99%, confidence interval, r = 31.707.
Tri-aX)y-bTaxy

e LA
" wlll n—2
where T y=R2 Y P =80160,F vy = 896251, a= 313298 b =007
¥} — JORRA2) — 007
s, = /usm L3 us;u_ :: 007(8IR2SE) _ , oo
x p—

From Parl (a) of Problem 162, we have
Yoer: = ¥y = 12233

interval estimare =y, + 0(Sg) = 12233+ 3707(2669) = S$11244, $13222 millions

Conuder the following data for the demand of cotton shirts (in thousands of units) over the past
5 penods.

Period: 1 2 3 4 h]

Demand: g 11 1 12 13

Compute the 3- and 3-period moving average forecasts for the sixth period.
The 3-periad moving average forecast (F.)
.‘!+."4+4! 10+!:+|5

F, = e = ~=1L7 (in thousands}

The 5.period moving uverage forecast (F.):
A+ Ay + Ay + A+ A 9+11+104+12+13
5 b

=

= 11 {in thousnnds)

The following time series shows the weekly sales (number of units) of a product over the past 8
weeks.

Week: 1 p 3 4 5 6 1 8

Sales; 32 34 35 i3 36 35 37 i5

{a) Compute the 2- and 4-period moving average forecasts. (b} Which averaging period resulis
in the least MAD (Mean Absoluie Deviation). (¢) Forecast for the next week based on the answer
to Part (k)
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{al
MA(2) MM“’i

Week Actual Value Forecast (F)) Abzolute Ermor Forecast (F)) Absalute Error
| a2
2 34
i 15 3o F
4 33 3.5 1.5
3 36 30 20 315000 230
] 15 45 ns M50 .50
7 17 355 1.5 M7S 125
H kL LL A 1.0 15.25 023

Sum S 550

(1 Fy=13+ MH}2=13
(2 F,o=(124M+354 104 =134

(b} MADN2-period) = §56 = 142 MADI4-period) = 554 = 138
MA(4) provides the least MAD

(6} Fy= (364 35+ 37+ 35)/4 = 3878

16.18 Consider the following two time series data sets A and B

Period I F 3 4 5 6 7 L]

L

10

Set A 10 12 9 10 1 20 19 23 |20 | W

Set B 15 13 15 16 16 14 16 15 17 6

{a) Compute the 3-, 5-, and 7-period moving averages for time series A and B and find the
respective forecasts for the eleventh period. () Which one of the above averaging periods provides
the most accurate forecasts [or each lime series? (Lise MSE.)

{a)
Actual Forecasts (F ) Set A Actual Forecusts (F,): Set B
Yialue Yalue
Period Set A MAID) | MA(S) | MA(T) S B MA(3) | MAS) | MA(T
1 1o 15
2 12 13
3 9 15
4 10 10,33 16 1413
5 i 10,33 16 14.67
[ .} 10,00 10,40 14 15.67 1500
7 19 1367 12 4 I6 15333 1480
8 3 1667 1380 13.00 15 151 1540 15.00
9 1] 67 16,60 14,86 17 1506 | 5.40 15.060
1] ] | 2067 18,60 16,00 16 16.00 | 5,60 1557
Re 1.3 20,660 17.71 Ky 16.00 15.60 1571
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Set A: usmg MA(N). Fy, = (23 + 20 4 2113 = 2133
using MALSL Fyp oo (20 4 19 4 23 4+ 20 + 21)5 = 2060
using MA[TYL Fyy = (104 114+ 20+ 19+ 23+ 20+ 217 = 1771

Set B uwsing MAUIL Fy o= (15 < 17 = 16§ = 1600

usig MAGSL F =(H £ 16+ 15 + 17 + 16)5 = 1560
asing MA(T) Fy, = (16 = 16 + 14 + 16 + 15 + 17 + 16)/7 = 1571

ik} Time Senes A:

297

MA MAlSy MAiR)
Adtoal
Prtisal Vidue | Forecist Ervae (Erroe )’ Fonacisl Errast (Erros)! Faotecast Ervos {Error)®
1
i 1] J
- r |
| N
d Bih TiR k| 0% il
5 i ] (TR DaT [1 44
h b | (16 1] 0] FWH ) (k] a6 ¥1lb
¥ I | 1387 533 IEdd 124 L1, 414
¥ s I B 11 (AL 40l 135 92 Bl 1300 i LAt}
i b [} Ha? (i O bt 14 114 14,54 L4 M4t
1 b Wik RE nel s 1 £ T ] 1.0 1540
S i 160 &7 ] 27164 151 4%
MSE(-period) = 169677 = 2424
MSE(S-peniod) = 237685 = 47.53
MSE{7-period) = 1514573 = 50.48
For time series A, the averaging period of 3 results in the least MSE,
Time seres B
LEETRT MY K MALT)
Astual
Pariod Yalue I orevias Earon (Eivor ) Farecas Errost [ Ertae) Fosecaal Tarra {Error)®
A e - ———— " - N —— —
i 15
i 13
¥ 15
4 i 1413 1.87 bl
5 TR T £ 133 1.4
& i | e a2l Im L 1. |4
T [ 4.8 087 .44 14 W) I3 (T
¥ T T+ | 11 1540 ~ 40 14 1500 o i
i i? LETE ] 20 .6 1580 1.6 1.5 15.00 1k & Wy
10 14 (L1 Lt 1] LiE ] 150 0 L RE 1557 043 LN}
S 1= 313 404

MSE{3.period) « 11.89/7 = | 70
MSE(S-period) = 5325 = 1.06
MSE(7-period} = 4,183 = 1,39

For time series B, the averaging period of 3 results in the least MSE,

Use the data in Problem 16.16 10 compute a 3-period weighted moving average forecast for the

nexi period, il the chronological weighting factors are 1/6, 2/6, and 3/6.
Fo= A, i)+ A, _(2/6) + A,_ ,(3%6)
Fo= A 16) + AG2/0) + Ad3I6) = 1N1/6) + 12(2/6) + 1H3/6) = 1217
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Refer 1o the data of Problem 165, (a) Find a 3-penod weighted moving average forecast for the
next year using the same weighting factors of 1/3 e¢ach. (b) Compute a S-penod weighted moving
average lorecast for the next yvear, if the chronological weighting factors are 1/9, 29, 39, 2/9, and
19

i F=A_ 3+ A 13+ A, (13
Fiom Ay (10 + A, 413) + A1)
= (A + Az 4 A3 = (740 + 775 4 79233 = 769 {in thousands)
(F) E=A.009)+ A, 2+ A, 39+ 4,429 + A4, . (1)
Fig= Agd L% o+ Ayol290 4 Ay 1390+ A (29 + dg4(1/9)
= G319 + 6TH(29) + T3 W) + TTS(29) + TON1/9) = T27.22 (in 1housands)

Lise again the data of Problem 16.5 to find a 5-period weighted moving average forecast for the
next vear, if the chronological weighting factors are — 29, —4/9, 39, 5/9, and 7/9.

E=A, (=29 + 4 d=49+4, 39 +4 59+ 4, (79
}.:‘ ] "’.J-'. '-: ll” L "‘HL{ -'il.lil‘ e “lrrir"'ul * AJEL"‘;J * r‘lIJI-? q'.l
= 68 =29 4 676( —49) 4 T 39} + TTS59) + TOAUT9) = BEL.56 iin thousunds)

Refer to the data of Probiem 16.7. Use the exponential smoothing technique 1@ lorecast next
month's demand for 2 = 0.1 and # = 0.3, (Assume the first month's forecast equals 45.)

Demend Forecists Forecusts

Monihk i4,) {2 =01) (x=01)
i 45
F 3 48 45,00 S 500
3 &0 45.30 45.90 .
4 53 451 47.13 |
4 LY 46449 4K B9 !
[ 6l 47.54 5132

Farecasts for seventh month:

,F““I 1 + 2(A, r"rl':l,
Given 2= 0.1 F = F + WA, — F5) = 4758 + 0,162 — 47.54) = S48.99 thousands
Givena=0% F.=F4+ 034, — F)= 5132 + Q462 — 51.32) = $54.52 thousands

Consider the following sales data:

Period i | 2 3 4| 5

Sales 360 | 327 375 4058 3496

L

{a} Compute the exponent smoothing values for the above data using x = 0.1, 0.3, 0.5, 0.7, and
0.9; and find the respective lorecasts for the sixth period. (b) Which  has the Jowest MAD (Mean
Absolute Deviation)?
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(a)
Forecasts (F))
Sales
Period (4,) ax =01 2=103 a=035 2=07 a=09
1 360
2 327 360.00 360.00 360.00 360.00 360.00
3 375 356.70 350.10 343.50 336.90 330.30
4 405 358.53 357.57 359.25 363.57 370.53
3 396 363.18 371.80 382.13 392.57 401.55
E 366.46 379.06 389.07 394.97 396.56
Forecasts for the sixth period:
F=F_, 4+a(A-;—E_y)
Given 2 = 0.1:  Fy = Fs + 0.1(45 — F5) = 363.18 + 0.1(396 — 363.18) = 366.46
Given 2 = 0.3; Fg = Fg + 0.3(A5 — F5) = 371.80 + 0.3(396 — 371.80) = 379.06
Given o = 0.5: Fo=F5 + 0.5(A; — F5) = 382.13 4 0.5(396 — 382.13) = 389.07
Given oo = 0.7; Fs = Fs + 0.7(As — F5) = 392.57 + 0.7(396 — 392.57) = 394.97
Given 2 = 0.9: Fy = Fs + 09(As — F5) = 401.55 + 0.9(396 — 401.35) = 396.56
(b)
a=01 2=03 =035 =07 x=09
Absolute Absolute Absolute Absolute Absolute
Peniod | Sales E Error E Error F, Error F; Errar E Frror
1 360
2 327 360,00 33.00 360.00 33.00 360.00 33.00 360,00 33.00 360,00 33.00
3 375 356,70 1830 350.10 2490 343.50 31.50 336.90 3810 330.30 44,70
E 405 358.53 46.47 357.57 4743 35925 4575 363.57 41.43 37053 1447
5 396 3163.18 32.82 371.80 2420 38213 13.87 392,57 343 40155 5.55
Sum 130.59 129.53 124,12 11596 117.32

16.24

MAD(z = 0.1) = 130.59/4 = 32.65
MAD(x = 0.5) = 124.12/4 = 31.03
MAD(x = 0.9) = 117.72/4 = 29.43

MAD(z = 03) = 129.53/4 = 32.38

MAD(x = 0.7) = 115.96/4 = 28.99

The « value of 0.7 has the lowest mean absolute deviation (MAD = 28.99).

Refer to the data of Problem 16.18. (a) Compule the exponential smoothing values for time series
A and B using z = 0.1 and 0.9; and find the respective forecasts for the eleventh period. (b)) Which
« provides the most accurate forecasts for each time series? (Usc MSE.)
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(i)
| Actual 'i Forecasis (F iz Sel A Actual Forecasts {Fj' Set R
Value {4, ) Value (4, ) H -
Period | Sel A a=10] 2 =109 Sct B . g=IL] =09
v 10 15 :
2 12 100 1200 13 | 1500 1500
i 9 10.20 11.80 E | 14.80 1120
4 | 10 1008 9.28 16 1482 14.82
4 I 10,07 593 16 14.94 15,48
6 20 1016 1089 14 | 1505 j 15.99
7 14 1114 1%.04 16 1495 | 1420
] 21 1193 1801 15 1506 | 31582
9 b1 13.04 2260 17 1508 | a5
w {2 1374 | 2026 6 1525 | 681
. e 1447 | 2093 F e
Forecasts far eleventh period —Sat A
FaF.y+aid.—F.y) .
Given 2 =01: F, = Fjg+ DlAdyy = Fig)= 30 4 01{2] - 13.74) = 1447
ﬁhfﬂ A= ﬂ"? -F'” = F|n + ﬂ.ﬁa“-ln - FH.J = ."ﬂ.?ﬁ- T ﬂ?-t!l x Iﬁ:ﬁl ] ﬂ.“ﬂ
Forecasts for eleventh penod—>5et B:
Given 2 =01 F, = Fy+01{4,, — Fp) = 1525 + 0116 — 1525) = 1533
Given 3 =09 £, = Fy+ 0% A, — Fi) = 1681 + 09(16 - 1681) = 1608
ik} Time Semes A
Y %= 09 |
J‘llﬂml Y T |
Period | Value | Forecas i: Error | (Error)® | Forecast | Error | (Errog)’
N EEE—— - - .ﬁl.. -1 ..._
| i |! '
2 12 1000 2 4.00 10,00 200
3 9 10.20 - 1.20 1.44 1180 - 280
4 10 1008 | —0.08 0.01 9.28 072
5 1l 10,07 093, 086 9.93 107 |
[ 20 10,16 954 S6E1 1089 911
7 e 1114 ! 7K 6178 1904 =09
8 ] b1 11.93 107 | 122854 19.01 3199
9 20 134 696 4844 22.60 260
10 } 21 13.74 726 | 527 2026 074 |
Sum ! 3ER61 "[

M5E(z = (11)=388419 = 411K,

MSEiz=09)= 115749 = IL%

Since the MSF for 2 = 1.9 12 smaller than the MSE for = 1. 1. # = 0.9 provides hetter forecasts than = = L]

for time senes A,
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Time Series B;

= ().] x=09
Actual
Period | Value Forecast | Error | (Error)* | Forecast Error | (Error)?
1 15
2 13 15.00 —-2.00 4.00 15.00 —2.00 4.00
3 15 14.80 0.20 0.04 13.20 1.80 3.24
4 16 14.82 16.00 1.39 14.82 1.18 1.39
5 16 14.94 1.06 1.12 15.88 0.12 0.01
6 14 15.05 —1.05 1.10 15,99 —1.99 3.96
7 16 14.95 1.05 1.10 14.20 1.80 3.24
8 15 15.06 —0.06 0.00 15.82 —(.82 0.67
9 17 15.05 1.95 3.80 15.08 1.92 3.69
10 16 15.25 0.75 0.56 16.81 —0.81 0.66
Sum 13.11 20.86
MSE(z = 0.1) = 13.11/9 = 1.46; MSE(x = 0.9) = 20.86/9 = 2.32

Since the MSE for a = 0.1 is smaller than the MSE for « = 0.9, 2 = 0.1 provides better forecasts than
x = 09 for time series B.

16.25 Company PQR has accumulated the following historical sales data with some missing information,
as shown below:

Dec. Jan. Feb. | Mar. | Apr. May Jun.

Forecast (in thousands) 380 350 340

fActual (in thousands) 320 360 350

Use exponential smoothing with « = 0.5 for answering the following questions. (a) Find the sales
forecasts for March and June. (b) Find the actual values for March and April. (¢) It has been
found that the actual sales in December was wrongly entered as 320 instead of the correct 384.
Find the forecast for June.

(a) If forecast in December is F, and actual value in December is 4,
Fataren = Fa = F5 + 2(A4; — F3) 4 380 + 0.5(360 — 380) = $370 thousands
Frune = Fz = Fg + 2(Ag — Fg) = 340 + 0.5(350 — 340) = $345 thousands
(b) The actual value in March (4,) can be determined as follows:
Fs=F, +%(A, — Fy) = Fy + 2A, — aFy = aA, + (1 — a)F,
(or) pAy=F — (1 —a)F,
(or) As = [Fs — (1 — a)F]/x = [350 — 0.5(370)]/0.5 = $330 thousands
Similarly, actual value in April (A45) is given by:

As = [Fs — (1 — 2) Fs]/x = [340 — 0.5(350)1/0.5 = $330 thousands
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(¢) The exponential smoothing model is given by
Foi=FK+oad —F)=24,+(l -2k
Substituting t + 1 = 7 for June,
Frone = Fr = 2dg + (1 — &) F,
=gdg+ (1 — x)[ads + (1 — x)F5]
=gAd, +2(l —2) A5 + (1 — 2)°Fs
=gd, +a(l —a)As + (1 —a)’[2d4. + (1 —2)F,]
=ad, + ol —a)As + 2(1 — 2?4, + (1 — 2)°F,
and so on. As a result,
a = adg + 2l — ) Ag + al(l = 2?4, + a(l — 2)°Ay + (1 — )4, + a(l — ) A, + o1 — 2)°F,
Using the data from the table (with actual sales in December = 320), sales forecast for June:
F; = 0.5(350) + 0.5%(330) + 0.5%(330) + 0.5*(360) + 0.5°4, + 0.5°(320) + 0.5°F,
Using the data from the table (with actual sales in December = 384), corrected sales forecast for Juns
72 = 0.5(350) 4 0.5%(330) + 0.5%(330) + 0.5%(360) + 0.5°4, + 0.5%(384) + 0.5°F,
i —F, =0.5%384) — 0.55(320) = 0.5%(384 — 320) =1
F=Fi+1
From Part (a), F. = 8345
Thus, F4 = 345 4+ 1 = $346 thousands

Refer to Problem 16.25. Suppose the company uses a 5-month moving average technique to
forecast sales. What is the new forecast for June?

The 5-month moving average for May (F):
Fo=(A, + 4A; + 45 + Ay + A5)/5
where A4, = 320, 4, = 360, and F; = 340
340 =(320 + 4, + 360 + Ay + A5)/5
(or) A, +360 + A, + A5 = 5(340) — 320 = 1380

Thus, A, + A5+ A, + A5 = 1380
The 5-month moving average for June (F):

F-Ir = '(A.z + A3 + A4 + AS -+ Aﬁ}ﬁ
where A, + A3 + A, + Ay = 1380 and 44 = 350
F, = (1380 + 350)/5 = $346 thousands

Refer to the data of Problem 16.6. (a) Compare a 3-point moving average forecast and z=
exponential smoothing forecast with x = 0.7. Using MSE over the past 8 periods, find which on=
provides better forecasts. (b) What is the forecast for next year?
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(a)
Moving Average Exponential Smoothing
AP=3 a=0.7
Actual
Value Forecast Squared Forccast Squared
Time (4,) (F) Error Error (F,) Error Error
1 9.94
2 11.25 9.940
3 11.98 10.857
4 10.91 11.057 0.147 0.022 11.643 0.733 0.537
5 8.83 11.380 2.550 6.503 11.130 2.300 5.290
6 10.40 10.573 0.173 0.030 9.520 0.880 0.774
i 8.90 10.047 1.147 1.316 10.136 1.236 1.528
8 10.26 9.377 0.883 0.780 9.271 0.989 0.978
9 11.64 9.853 1.787 3.193 9.963 1.677 2.812
10 13.80 10.267 3.533 12.482 11.137 2.663 7.092
11 15.10 11.900 3.100 9.160 13.001 2.099 4.406
Sum of squared errors (SSE) 33936 23417
Mean squared crrors (MSE = SSE/8) 4.242 2.927

Exponential smoothing (x = 0.7) provides better forccasts because it has the lcast MSE.
(b) F,,=F, +aflA;; —F,)=13001 +0.7(15.1 — 13.001) = 14.47 millions

1628 Refer to the data of Problem 16.23. Usc the cxponential smoothing with trend model with « = 0.7
and ff = 0.3 to forecast sales for the next three periods. (Start the analysis from period 2 and
assume S, = 327 and T, = —33.)

Actual Value S T
Period (A,) ix=0.7) (B=103) F,
1 360
2 327 327.0010 — 33,001
3 375 350.7013) —15.99% | 294,007
4 405 383.91 173 334.71
5 396 392.00 1.57 382.68

(1) 8. = A4, =327
(2 I =A,— A, =327 —360= =33

(30 8; =074, + (1 =078, + T5) =0.7(375) + 0.3(327 — 33) = 350.7

@ I =03(5; —8;) + (1L —03)T; = 0.3(350,7 — 327) + 0.7(—33) = — 1599
5 £ =8+ T, =327T-33=2%

F, =S, + Ty = 392 + 1.57 = 39357
Fy =Sy + 2Ty) = 392 + 2(1.57) = 395.14
Fo =5, + 3(Ty) = 392 + 3(1.57) = 396.71

1629 Refer to Problem 16.28. (¢) Repeat the procedure with o = 0.3 and f = 0.7. (b) Comparc the
results with those of Problem 16.28, with respect to forecast errors (mean absolute deviations).
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(a)
Actual Value S I
Period (4,) (x=0.3) (f=0.7) F,
l 360
2 327 327.004" —33.000%
3 375 318.30% — 1599 | 294,00
4 403 333.12 5.58 302.31
5 396 35589 17.61 338.70
(1: §: = A, =327
Q) Ty=A;— A, =327 -360= —33
(3); S5 =034 + (1 — 0348, + T3) = 0.3(375) + 0.7(327 — 33) = 3183
(4): Ty =0.7(S; — S2) = (1 — 0T, = 0.7(318.3 — 327) + 0.3(—33) = —15.99
(5: F, =8, + T, =327—33=294
F. = 8.+ T; = 355.89 + 17.61 = 393.57
Fo=8, +2(T;) = 35589 + 2(17.61) = 395.14
Fy= 8, + 3T3) = 392 + 3(1.57) = 396.71
(b)
Actual Value E Absolute E Absolute
Period (4,) (x=07.=103) Error (x=03,8=07) Error
1 360 - - -
2 327 = = — =
3 375 28400 81.00 294.00 81.00
4 405 334.71 70.29 302.31 102.69
5 396 382.68 13.32 338.70 57.30

Mean Absolute Deviation (MAD), given 2 = 0.7 and fi = 0.3;
(81 + 70.29 + 13.32)/3 = 54.87
Mean Absolute Deviation (MAD). given = 0.3 and f# = 0.7:
(81 + 102,69 + 57.3)/3 = 80.33
Thus the model with 2 = 0.7 and § = 0.3 provides better forecasts than the model withx = 0.3 and § = 0.7.

16.30 Refer to the data of Problem 16.7. Use exponential smoothing with trend to forccast next months
demand for z = 0.1 and i = 0.1 and 0.5. (Start the analysis from period 2 and assume S, = 4.
and T, = 4, — 4,.) What role does f play?

Demand S, T
Month (4,) (x=0.1) (f=0.1) F,
1 45
2 48 48.00"1 | 3'00121
3 50 50.90°% 2,99t 51.00¢
4 33 53.80 298 33.89
5 57 56.80 298 56.78
6 62 60.00 3.00 59.78

(1) 85 = Ay =48

{2. :=-'11‘“Al:3

(3): 8, = 0145 + (1 — 0.0)(Ss + T3) = 0.1(50) + 0.9(48 + 3) — 50.9
@): Ty = 0.1(S; — S5) + (1 — 0.1) 7 = 0.1(509 — 48) + 0.9(3) — 2.99
G): F, =S, + T, =48 + 3 =S5
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Forecast for nest month's demand

Fy =5, + Ty = 60 + } = $63 thousands

Demand 5 T
Month (4, (=01 | (F=01) | F,
I 45
2 48 43_{1’:“ | ]_ml-"J
3 50 &nag't ol L 5100
4 a3 53T 831 53850
5 57 56.71 293 56.68
6 62 50,88 105 S9.64

|,|1 51 ’ .*] -45

4:?' r— .il—.{.-:'l

(35 5y = 01A; + (1 =01KS, + Tal = D150} + 0948 + 3} = 509
(8 T) = 5T, — S + (1 — 0517; = OH509 — 48) + 0.503) = 295
(50 Fo=8;+ T =309 % 295 = SLES

Forecast for next month's demand:
F.=5, + T, = 5088 4 105 = $62.93 thousands
Large values of §f give more weight 1o recent changes (short-term) and less waght 1o past changes (long-term)

in irend.

16.31 The following table shows the forecasts by three models for the data of Problem 16.23, Which
models would vou prefer based on SSE and MAD?

Forecast Values

Actual Value Model 1 Model 2 Model 3

360 353 343 157

27 i3l 358 345
375 3oy 330 im
405 395 37 407
196 i 403 401

Consider Maodel 1
MAD = (360 = 353] + |327 — 331 + [375 = 369 + [405 — 395] + |396 — 91|15 = 6.4
SSE = (360 — 353)F 4 (327 = 3310 + (375 — 369)° + (405 — 395)° + (396 — 391)" = 226
Consder Model 2:
MAD = (|360 — 33| + |327 - 358] < |375 < 3300 + M0O5 = 371] + |396 — 403)5 = 6.8

SSE = 17% 4+ 317 4451 & 34T 4 71 = 44B0
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Consider Model 3:
MAD = (|360 — 357| 4 |327 — 345| + [375 — 379| + |[405 — 407] + |396 — 401[)/5 =6
SSE = (360 — 357)% + (327 — 345)% + (375 — 379)% + (405 — 407)% + (396 — 401)* = 366

We would prefer Model 1 based on SSE and Model 3 based on MAD.

16.32 Consider the following time series data on quarterly sales for a corporation from the Valuek
Publication:

(a) Find the 4-quarter centercd moving average values for the above data. (b) Calculate season

Quarterly Sales (in millions of dollars)
Year Q, Q. Qs Q.
1 25.8 334 38.6 34.1
2 25.1 40.6 43.1 42.6
3 37.7 54.5 56.1 47.2

indexes for the 4 quarters.

(a)

4-Quarter
4-Quarter Moving | Centered Moving
Time Period | Sales (S millions) Average Average
1 Q, 25.8
1 Q, 334
329750
1Q; 38.6 32.8881%
32.800
1 Q. 34.1 33.700
34.600
2Q, 25.1 35.163
35.725
2Q, 40.6 36.788
37.850
2Q, 43.1 39.425
41.000
2Q. 42.6 42.738
44475
3Q, 377 46.100
47.725
3Q, 54.5 48,300
48.875
3Q; 56.1
3Q, 47.2
(1) (238 + 334 + 38.6 + 34.1)/4 = 32,975
(2) (32,975 + 32.8)/2 = 32888
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(i)
Time | 4-Oparter Centered
Period | ¢ | Sales{y) | Moving Average (MA} | 3/MA
i
1Q, | 258
1Q, : 134
10, 3 18.6 1) BAR 1.174
1 Q. 4 W1 33,700 1102
10y ! 5 23.1 35163 aTa
2Q, | & 406 16,788 1.104
2Q; | 7 411 0425 1093
2Q, | 8 426 427 oag7
), 4q 17.7 46.100 (LESE S
3, 10 b 48300 1124
LR S 11 .1
1Q, | 12 472
1
¥ car Quarier | Cumrter 2 Luarter 3 Crunrter 4 ; Tatal
1 ' 1.174 1012
z 0714 110 1.093 0997
3 BB 1.128
Crunrterly :
avernge 1 766 1.116 1.1335 RS | 402
I e ! ! LT
Seusonal 1
Index (513 0.7622'" LAl L1279 09998 | 4
(e U766 x 3 4,00) = 07632
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1633 Refer to Problem 16.32. {a) Using the seasonal indexes, compute the descasonalized values for
vear 3, (b) If the trend Line for descasonalized time senes is 7, = 27.672 + 18724, find a quarterly
forecast for next year based on the trend. (¢) Assuming the data set has no cyclical pattern, what
are the forecasts for year 47 (d) Il the cychical values for year 4 are assumed to be 1.012, 0.984,
0.979, and (0941 respectively, what are the forecasts for vear 47

(a) Deseasonalized Value = Actual Value/Seasonal Index = y/SL

Time Perntod Sales (v} | Descasomalized Vidues ( w/51)
iy n7 7622 49.46 (in millions of dollars)
10, 54.5 11104 | 49.88 (in millions of dollars)
1Q, 56.1 1.11719 49.74 {in millions of dollars)
1Q, 472 09995 | 47.22 fin millions of dollars)

ihy Descosonalized Tromd Forecnst: T = 27672 + LT

A0 Fy=27672 + LET13} = 5201 (im millions of dollars)
40y Fig=1T472 + LATH 4) = 5388 (in millions of dollars)
4 Qy Fiy=2T672 4+ LET215) = 5575 (in millions of doilars)
4 Qg Fiy = 17672 < LET2(16} = 57.62 (in millions of dollars)
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fel I no cyclical parterns exist; Forecusi = Deseasonalized Trend Forecast = Sensonul Index

FORECASTING

40 Fiy=5201 » 07632 = W64 (in millions of dollars)
4 Qg Foy= 3588 & 11104 = S953 (in plions of dollars)
4Qy Fy=5575 = 11279 = 6288 (in millions of dollars)
A4 Qy Fip=5762 « 05995 = 5159 (in rflions of dollars

{d) Forecast = Trend = Seasonal Index =« Cyelical Factor

40Q, Fy= 52000 x 07622 % 1012 = #0.12 (in millions of dollars)
A0, Fiy= 5388 » 11104 « 0984 = SBET (in millions of dollars)
A0y Fio=5575 » L1279 « 0979 = 61.5 (in millions of dollars)
40 Fipm= 5T62 = 09995 « 0094] = S4L1% (in millians of dollars)

[CHAP. 16

The ABC Video Store wants Lo forecast the number of video rentals each day, based on the
previous three-week data given below:

Day Week | Week 2 Week 3
Sunday 310 i Ird | 315
Monday 105 132 117
Tuesday 121 125 130
Wednesday 136 129 135
Thursday IE8 205 196
Friday 303 292 113
Saturday 422 414 403

(@) 1f the finear trend fine from regression analysis for the above data is ¥ = 1953142 + 3075X.
compute the seasonal indexes. (h) Assuming the data set has no cyclical pattern, forecast the
number of daily rentals for the next 3 days. (Use the above regression equation for the

deseasonalized trend forecast.)

fal

Mumber of Video Trend Line
Week Day Renizls {y) (Y Wy
i Sun B3l 198 g 15834
Mon 105 20046 0521
Tue | 20d.54 592
Wied 10 07.62 6SS
Thu 158 210,69 ga2
Fri 303 2137 L.417
Sail 432 216,54 1.946
2 Sun i 219.92 I 46
Mon 132 209 0592
Tue 115 226,07 551
Wed I 22914 563
Thu 205 aann L883
Fn 292 235.29 1,241
Sal 414 238.37 1.737
3 Sun 115 24144 1.305
Mon 117 24452 478
Tue 1 30 24754 0ns2s
Wed 115 250,67 0539
Thu 156 233,75 a7r2
Fri 113 5682 1.219
Sa1 403 ime 1.551

{1 19531424 3075 1) = 19839

12k 3019839 = . $63
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Week Sun Mon Tue Wed Thu Fn Sai Sum
I 1.563 [ 82 0502 (.655 [.5%2 1417 1.946
2 1.46 0,592 n.553 (1563 853 1241 1.737
1 1.305 a7 0528 0539 01772 1219 1551
Weeklv
average 43 0.53 0.557 0.586 (849 1292 1.745 70013
- O Ml o AT
Seasonal
Index (51} 1.442'% E s 0557 L5386 L.849 1.292 1.744 T

EXE (LG8 & Ld60 + LUE)NT = 1ddd
(4 1443 = (7700330 = | 442

(b} WM no cychical patterns exsst, Foreeast = Trend Forecast = Seasonal Index
Fiee = [ 1953142 4 3.075(22)] x (1.442) = 379.19
Fi o = [ 1953142 + 3.075(23)] % (0.530) = 14100
Forue = [ 1953142 + 3.075(24)] = (0.557) = 149.90

1635 The deseasonalized sales forecasts (in thousands of umis) and the seasonal indexes for the 4
quarters of the next vear are as follows:

Q i ﬂl Q, Q.
Descasonalized Sales | 792 801 796 787
Seasonal Index 1.842 1.134 1.211 L ]

Find the corresponding seasonalized quurterly sales forecasis.
Seasonalized Forecas! = Seasonal Index  Descasonalized Forecast

Fyy = 0842 = 792 = 666864 (in thousands of units)
Fgs = 1134 » RO = 908334 (in thousands of units)
Fgy = 1.211 = 796 = 963,956 iin (housands of units)
Fos = 0813 = TE7 = 6MEM iin thousands of units)

16.36 Refer 10 Problem 16.33. If cyclical factors exist and their values for the next 4 quariers are (0982,
0.992, 0.989, and 1.015, respectively, forecast next year's quarterly sales.

If cyclical faciors exist, Forecast = Seasona] ladex » Cydlical Factor = Deseusonalized Forecast

Figs = 0842 = ONE2 » 792 = 654.860 (in thousands of uniis)
Fos = 1134 « (0992 » 801 = 91067 (in thousands of units)
Fgs = 1211 = 0985 = 796 = 953,352 {in thousands of unils)
Foe = 0F13 = 1015 = 787 = 649428 (in thousands of unils)
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Supplementary Problems

Refer 1o the data of Problem 16.7. The marketing manager of the company finds the advéiusng expenses
to be closely related 1o the demand. The advertsing expenses are as lollows

Period 1

P

ez

Advertising Expenses 2 | |2 |28

ithousands of §)

. e

{a) Forecast next period's demand using simple lincar regression, if the company pland 10 increase its
advertimng expenses o X000 next period. {5 Find the coeflivient of corrclation and the coclicent of
determinntion.

Refer to the data of Problem 16.7. (a} Find the tune sertes linear equation and the forecast for next period’s
demand. () Calculnie the coeffivient of determinaton

Compare the results of Problems 16.7, 1637, and 16.38, Which model would youw choose? Why?

Refer 1o the data of Problem 1618 (a) Find the time scries linear regression equation and/the neat penod
forecast for each time senies A and B (b) Calculate the cocficient of determination for gach time seres

Refer 1o the data of Problem |6.32. Find the time series linear regresion equalion and the farecasts for next
4 guarters’ sales. [

In Problem 1637, find a 95%, confidence inferval estimate lor nedt penod’s demand
In Problem 16.38, find a 95", confidence interval estimate for neat period’s demand
In Problem 1641, ind 3 999, confidence interval estimute for next guarter's sales.

For the data of Problem 165, develop the time series log-linenr regression equation in the form
It Y} = a + bX and find the cocllicien] of determination

Compare the results of Problems 165, 16K, and [164% Which model would you prefer? Why!

For the data of Problem 16.7, find the time series log-linear regression equation in the form log ¥ = a 4 bX
amd find the coeflicient of determination. What is the forecast for the next period?

Refer 1o the data of Problem 16.5. The quadratic regression model for the data is as lollows:
¥ = 20753 « M98T + 0I5T*

where ¥ is the computer services employment in thousands and T is the tume i vears, Forecas next year's
compuler services employment,

Refer 1o the dats of Problem 1616 Compare a J-period moving average forecast and A expunential
smoothing lorecast with z = 0.9. Using MAD. find which one provides better forecasts. "-'h'hqt is the forecast
lor next period?

Consider the datp of Problem 16.34. {g) Compare the moving average {orecasts for the Id.\rg 10y days, psing
averaging periods of 3, 3, and 7 days. Which one of the above three averaging periods has the least MAD?
(k) Esttmate the pomber of video rentals for the next day, usimg the averagng pertod fmmﬁ?un {a)

Consider the data of Problem 16.M, (a) Compare the exponential smoothing forecasts for the last 10 days,
using a = 0.1, 0.5, and 09 (Assume the forecast for Wednesday of week 2 to be 129.) Which 2 value gives
the least MAD over the last 10 days? (b) Find the forecast for the next day, wsing the ':.imm Part {a)
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S5

856

1657

Compare the results of Problem 16.50 with those of Problem 16.51. Which method would you choose? Why?

Refer to the data of Problem 16.17. Compare the exponential smoothing forecasts for x = 0.2, 0.4, and 0.6.
Which x has the lowest MAD?

Refer to the data of Problem 16.17. Compute a 3-period weighted moving averages forecast for next week,
if the chronological weighting factors are 1/6, 2/6, and 3/6.

Refer to the data of Problem 16.30. Use exponential smoothing with trend to forecast next month’s demand
forx=0.1 and § =03,

Compare the demand forecasts of Problems 16.30 and 16.55, with respect to MSE (Mean Squared Error).

For Problem 16.41, calculate the seasonal indexes, using the regression equation.



Chapter 17

Game Theory

GAMES

A game 1s 3 competitive situation among N persons or groups, called plavers, that s conducted
under a prescribed set of rules with known payoffs. The rules define the clementary activities, or mores,
of the game. Different players may be allowed different moves, but each plaver knows the moves avanlable
to the other plavers.

If one player wins what another player loses, the game is called a zero-sum game. A fwo-person game
is & game having only two players. Two-person, zero-sum games. also called marriv games. will be the
only type of games considered in this chapter.

STRATEGIES -

A pure strategy is 3 predetermined plan that prescnibes for a player the sequence of moves and
countermoves he will make during a complete game. In a matrin game, either player has a finite set of
pure strategies, although their number may be enormous. Player [ (1) knows player II's (1's) set. but
he does not know for sure which element of the set 11 (1) has picked at the commencement of a given
play of the game. Thus, a complete characterization of the game 1s provided by its payoff marrix, Table
17-1, which gives the amount g, won by player I from player 11 when | plays his ith pure strategy. A,.
and 11 plays his sth pure strategy, B,. (The matrix of payofls to player Il is the negative of the above
matrnix.)

Table 17-1 Table 17-2
Plaver 11 Plaver 11
B, B, B, 1 F | ¥
= A, i Wiz #ia - | ) -3 4
A; TR T e B | 2 -3 4 =5
E s 2t i : t k| 4 =X 6
Aa ey L e

Example 17.1  Consider the game in which two plavers umultancouly reveal |, 2. or 3 fingers each. If the sum of
the revealed fingers is even, player 1l pays to player | the sum in dollars. of the sum s odd, player | pays to player
Il the sum in dollars

For this very simple two-person, zero-sum game, the pure strategies can be wdentified with the individual moves
(This could not be done for, say, ticktackioe. in which a ungle pure strategy mught run: =1l he moves first to the
cenier, | will move 1o the upper nghi-hand corner; if he then moves to the lower nghi-hand corner, | will . . . .%)
Furthermore, both plavers have the same set of pure strategies. [ 1. 1 3. The payoff mairin s given in Table 17-2

The obpective in game theory is to determine a “best ™ strategy for a given plaver under the assumption

that the opponent is rational and will make intelbgent countermoves. Consequently. if one player always
chooses the same pure strategy or chooses pure strategies in a fixed order, his opponent will in time

Copyrighted Material
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recognize the pattern and will move 1o defeat it. if possible. Generally, therefore, the most effective strategy
15 a mixed strotegy, defined by a probability distribution over the set of pure strateges. For the game
of Table 17-1, a mixed strategy for player | will be specified by a probability vector

X=[x,%.. . %]

where x, (i = 1,...,m) is the proportion of time (i, the relative frequency or probability) that 4, is
chosen. Similacly, o mixed strategy Tor player T1 will be designated by

Y=[yprnnd

where y (J = 1,...,n}is the probability that 8, is chosen. As probabilities, the x; and y; arc nonnegative,
with

Example 17.2 In the game of Example 17.), if player | always shows 3 fingers, plaver II can defeat that pure
strategy by always showing 2 fingers, If player 1 sdopis the set sequence of pure strategies 3, 3,2, 5,3, 2. 3.3,2,
player 11 can defeat it with the sequence 2,2, 3,2 2 3, 2 2 5.....

if player 1 adopts the mixed strategy X = [1/6. 1/3, 1/2]", then player | plans 10 show | finger one-sixth of the
time, 2 fingers one-third of the time, and 3 fingers one-half of the ime. To implement the sirategy, player | could
10ll one die before each play. f the die showed a ! (having probability 1/6), he would show | finger; if the die
showed a 2 or 3 (having probability 2/6 = 1/3), he would show I fingers: if the dic showed 4. 5 or 6 (having
probability 36 = 1/2), he would show 3 fingers.

STABLE GAMES

Supposc that the players of the game defined by Table 17-1 are restricted 10 using pure strategics.
Write:

m; = maxaimum value of the minimum gain to player |

= maximum (minimum |g,,!) (17.1)
R PR T TR

my; = minimum value of the maximum loss to player 1l

= minimum (maximum |g, |} (i17.2)

f=1.....m P=hl,....m

If player 1 plays the row that yields the maximum in ({7./)—the maximin strategy—Nhe is assured of
winning an amount m;, al worst; whereas, by playing another row, he could win less than m,. (Equivalently,
under the maximin strategy, player [ loses —m, ar worst.) Analogously, if player 11 plays the column
that vields the minimum in (/7.2}—the minimax strategy—his assured loss (which is I's gain) will be m,,
at warst. We shall say that these two strategies satisfy the minimax criterion.

Now, by their definitions,

m; = g (17.3)

for any matrix game, If m; = m,,, then player 1 would only worsen his position by departing from the
maximin strategy, and player 11 would only worsen This position by deparuing from the minimax strategy.
Such a game is stable, and the strategies prescribed by the minimas criterion are oprimal for the two
players. Furthermore, both players can agree as to what a play of the game is worth (to player 1), namely,

I._ il
G = my = my,
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The number G* is called the value of the game; it is the amount paid by player 11 10 pln;@:r | when both
players hive used their optimal stralegies,

In summary: Every stable game has a unique value, and an optimal (pure) strategy l'qr either plaver
(Note that the optimal strategies need not be unigue.)

LUNSTABLE GAMES

|
When the ineguality holds in (7.3), the game is unstable, and the pure strategies dictated by the
minimax criterion are no longer optimal The fundamental result in the theory of matm: games i3 that,
when mixed strategies are andmitted, unstable games also have a solution—i.e, optimal mau:pﬁ and a
value — provided that the random payofl is replaced by its expecred value.

Under mixed strategies (defined by the probability vectors X for player [ and Y I'u¢ player II, the
payvofl from I 1o 1 45 0 random variable having expected value

(L] [ ]
EXY)=Y ¥ a,xy (17.4)
i=y =1

Analogous to (/7.J) and (/7.2), write:

M; = maximum value of mimmum expecied gain 1o player |

max {min E(X, Y)} {17.5)
LY %

M,; = mimmum value of maximum expected loss to player 11

= mun (max L{X, ¥)) (17.6)
¥ X

in which X and ¥ run through all m-dimensional and all n-dimensional probability vectoss, respectively.
Then we have the

Minimax theorem: For any game matnx, there exist optimal strategies X* and Y* such that
E{?&“'. T‘} - +“[ - J““ ol G‘

In other words, any matrix game has a value. Observe that stable games are also covered by the minimax
theorem, since a pure sirategy 15 a special mined strategy that has a single nonzero componenp! (equal to 1)

SOLUTION BY LINEAR PROGRAMMING

The optimal strategies guaranteed by the minimax theorem, as well as the value nI'{]In: game, can
be caleulated via linear programming The optimal strategy for plaver 11 1 incorporated in the solution
of the following lincar program:

maximize: = —¥..q
subject 100 g,,0 + g+ F Fiwde = Vaey S 0
@y + @b+ lnde— Yar: S0
..... Gy e R e T AT (172.7)
Par¥1 FHatFs + o F V= Yary S0
Y1+ L SR ¥ =1
with: v, va ..., }, NONDEgative
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Here G* = 2, , and ¥* = [, ¥%.. ... va]". By initially increasing cach g,, by the same positive amount
(this leaves unchanged the nature of the game). we can force g, > 0. Then the expected gan to player
I is also nonnegative. Since this quantity is represented by v, ., in program (/7.7), it follows that all
variables can be restncted 10 nonnegative values under such circumstances. Equivalently, y, ., can be
replaced by the difference of two, new, nonnegative variables. The optimal sirategy for player | is the
probability vector whose components are the solution to the duel of program (/7.7). (See Problem 17.9.)

Whenever a player has only two pure strategies, the optimal strategy for that player can be
determined graphically. (See Problem 17.10.) If both players have exactly two pure strategies, then the
optimal strategics are

!I-- "3. _'_I-!. - - 'll_ill : "?3]
TR [Tl [Tl 1) TR [Thel [T8at [T
- Wiy = Wi 2 - @iy — @21 (17.9)
iy ¥l =2 = 0n i+ 02— —In
with
G* = T~ haln (17.10)
Wy T3 —d— i
{See Problem 17.7.)
DOMINANCE

A pure strategy P is dominated by a pure strategy Q if. for each pure strategy of the opponent’s, the
payoll associated with P is no better than the payoll associated with Q. Since a dominated pure strategy
can never be part of an optimal strategy, the corresponding row or column of the game matrix may be
deleted a priori.

Solved Problems

17.1  Construct a payoff matrix for the following game. Each of two supermarket chains proposes to
build a store in a rural region that is served by three towns. The distances between towns are
shown i Fig. 17-1. Approximately 45 percent of the region's population live near town A, 315
percent live near town B, and 20 percent live near town C. Because chain | is larger and has
developed a betier reputation than chain 11, chain | will control a majority of the business
whenever their situations are comparable. Both chains are aware of the other’s interest in the

Fig. 17-1
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region and both have completed marketing surveys that give identical projections. If both chains
locate in the same town or equidistant from a town, chain [ will control 65 percent of the business
m that town. If chain | is closer to a town than chain 11, chain T will control 90 percent of that
town's business. If chain [ is farther from a town than chain 11, it will still draw 40 percent of
that town's business, The remaining business under all circumstances will go to chain I1.
Furthermaore, both chains know that it is the policy of chain | not to locale in towns that are
too small, and town C falls into this category.

There dre two players of this game, chain | and chain 11, Player | has two pure stralegies: 4, (locale
in town Aj and A, (locate in town By, Player [l has three pure strategies: B, (locate in town A), B, (locate
in town B) and B, (locate in town C) We take the payolls 1o chain | to be the percentages of
business in the region that will fall to chain I, sccording to the marketing surveys. Since such percentage
point increase or decrease presenis an identical decrease or increase, respectively, for chain 11, this & a
IWO-PETSON, ZErC-SUM gIme.

If both chamns locaie in the same town, then player | will receive 65 percent of the busimess from the
entire region. Thus, g,, = @;; = 65. If chain 1 locates in town A while chain 1 locates in town B, then player
I is closer 1o town A than player I, but player 1} is closer to both towns B and C than player L Consequently,

player T will capiure
(0200 45) + (0.400(0.35) + (040020} = 0,625

or 625 percent of the region’s business. Therefore, g,; = 625 If chain 1 locates in town B and cham 11
logates in town C, then player | is closer to towns. A and B, while player 11 is closer to town €. Consequently,
player | wall have

(0.90)(0.45) + (0.90M0.35) + (040){020) = 080

or B0 percent of the region’s businesa. Therefare, gy = B0 Similarly, g, = 80 and g,, = 67.5. These results
are collected i Table 17-3, which is the payoll rmatnx for this game.

Table 17-3
Player 11

B, B B

R R 625 80
E A, | 675 65 80

Construct a payeff marrix for the following game. A barrel contains equal numbers of red and
green marbles, Plaver | randomly selects one marble and inspects it for color without showing
it to player I1. If the marble is red, playver 1 says, *1 have u red marble,” and demands §$1 from
player 11 If the marble is green, either player | suys, "The marble is green.” und ipays player 11
$1. or player | bluffs by saying, “ The marble s red,” and demands 51 from plaver I1. Whenever
player | demands $1, player 11 either can pay or can challenge player I's claim that the selected
marble 15 red. Once challenged, player | must show the marble 1o player IL I it is indeed red,

player 11 pays player 1 §2; if it iz not red, player | pays plaver 11 $2
Player | has only two pure strategies; namely,
A Toclum the marble’s actual color,
Ay To claim the marble red whether or not it is red.

[Mote that I's pure strategies are nol identical with his moves, which are (1) 1o elaim red and (i) 10 claim
green.] Player [T also has just two pure strategies; (hese are

8, To believe player L
B, To behieve if the ¢laim s green and to challenge il the claim is red.
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17.3

17.4

Since each person wins what the other loses, this is & tWo-persan, 2ero-sum gams,

In this game, the payoffs associated with the pure strategies are random vanables we replace them by
their expected values. Thus, g, , 1 the expected gain to player 1 if player | claims the true color of the chosen
marhle and player 11 believes. Since half the nme the marble i1s red and half the time it is green,

The payoll g5 s the expecied pain to player 1 when player | claims the true color of the marble and player
Il challenges if red is claimed. Since the marble has probability 1,2 of being cither color, half the time there
will be no challenge, and hall the time player 11 will challenge and lose. Therelare,

e =11+ 42 =1
Similarly,
gu=1 gn=4-D+4H=0
These results are collecied in Table 17-4, which s the payoflf matrix for the game.

Table 174
Player 11

Player |
S
=

Determine whether any pure strategies in the game of Table 17-3 can be discarded through
dominance.

Player I cun discard A, (locating in town A), since the payolls from this strategy aee always less than
or edual to the corresponding payolls from A, Player I ¢an discard both B, and B, as inferior (0 B, (mote
that the payoffs to pliyer 1] are the ncgatives of those gven in Table 17-3 for player [). With the first row and
the first and third colomns deleted. the payoll matrix consists of a single eniry. Thus A, and B, are optimul
strategics. Both supermarkel chatns should locate in town B, Chain | will control 65 percent of the region's
business, with the remaming 33 percenit gomng to chain 1L

Let G denole the game matnx obtained from matrix G by eliminating dominated rows and
columns. Show that G is stable if and only if G is stable.

It sufficed 1o consider the case in which the first row of G is dominated by the second row, If g, , and
gy, are the (wo row minima (indicated by circles below),

Fre M3 " @ Fig Y Wia

........................................

then ¢, < gy, Als0, gy, € g3, (by dominance). Hence,

This means that the maximum of the row minima in G is the same as the maximum of the row minima in
G, Le. my = my,

Further, i row | contains a column maxmum of G—say. g, ,—it follows from dominance that g,, = g,
is also o column maxmum, Conseguently, the minimum of the column maxima in G is the same as the
miriim i of the column muaxima in G, Le, my; = my. We concluds thiat

My = iy, if and only if frip = My
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17.5 Is the game of Table 17-3 stable?
Yos, by Problems 17.3 and 17.4

17.6  Is the game of Table 17-4 stable?

Here, m; = 0 < 12 = m;;, the game is unstable

17.7  Find the optimal strategies for both players of the game of Table 17-4.

As determmed in Problem 17.6, the game is unstable and hence not solvable in pure strategics. Since
this game involves exactly two pure strategies for cach player, the optimal (mixed) strategies are given by

(178 and {17.9) ns
0-1 2 |
i - - a = -] I = x7 =
A= To—am-i1-3 o9 g
0 - (1/2) | 2
i — S = - T::I— .
A= oso-am-1.3 =3

Accordingly, player 11 should believe player | one-third of the time, while challenging player | the other

two-thirds of the time if player T claims & red marble, Player | should claim the true colgr of the marble

two-thirds of the time, while bluffing the other third of the time f the marble is green. The nel result will

be, by (17 1), an expected gain of

_ (oH0) = 12yt
D+=D-={l/2=1 3

to player [ each time the game is played. The expected payoll 1o player [T ix the negative af this amouni.

dollar

178 Find optimal strategies for both players of the game defined by the payoffs given an Table 17-5.

Table 17-5 Table 17-6
Player 11 Player 11
B, B, B, B, B, B, B, B, B,
L A ¥ O =i 0 & ~Ml IS 3 =2 |4 6
g [ 4 | -4 - S T = s | <a 3 el =
| 4 ¥ =t =l ¥ =1 E | A = T
A, g =% =3 =1 =i

Pure strategy B, s dominated by B, {and by B, ), 30 it can be elimmated Once it 15, then A, is dominated
by 4,; hence A, also can be discarded. The resulting payofl matrix is Table 17-6, for which
m==3< =| =my,
As the game is not stable, the optimal strategies {for both players are mived strategies incorporated in
the solution of program (/7.7). For the payoifs in Table 17-6. this program becomes
maximize, == —y,
subject 1! 3y, — 2y; =4y, + 6y — ¥, <0
—d4y, +2y;— Py =By =y, <0
-3 =2p - H-nsl
it i+ at+t N =1
with: v, ¥y, ¥y, and y, nonnegative

i1
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Since y, is unrestricied, we eet y, & V. — Ve, Where hboth p; and v, are nonoegative vanahled (see Chapler
2). The initial simplex tableau is Tableau 1, with slack variables vy, ¥jo. and y;, and artificial variable y,,.
Five iterations of the simplex algorithm yield Tableau 6. Tt follows that the optimal strategy for player 11
{with y§ = 0 because B, i5 not used] is

¥ o= [y7, 61 3 05 817 = [0, 7/60, 7/10,0, 11/60]"

The optimal stratégy for player I (with x§ = 0 because 4, is not used) is given in terms of the dual solution
{3ee Chapler 4) as

X* = [x%, x3, x4, 2317 = [1/15, 1/5,0, 11/15]°

The value of the game is

= F oy |
Sl mY——= —
"=y =yi—yi=0 e
that is. player | can expect to lose 29/15 units to player 11 a1 each play, provided both players use their
opumal strategies.
J ¥y ¥ Fs ¥y | ) ¥y ¥s  Fio 't ¥is
| ] 0 ] i | | L] ] 0 -M
¥a 1] 3 =2 =4 B —1 | 1 0 i [ {
i L] =4 2 =1 -—-B -1 | i 1 0 i i
FTT ﬂ ﬂ - 1‘ — 1 - 1 on I I ﬂ u I u ﬂ
ix —M ] | l I 0 L] 1 0 0 1 |
(zy— oy 0 L 0 1 1 -1 0 0 ] ()
-1 =1 -1 -1 0 0D o 0 ] —1
Tablean 1
Fu Fa ¥a ¥y ¥ Ja Yo Yio Y
Vs 12O L] I 0o 0 115 -1/ —1/60 | 11/60
¥y -1/12 | 0 L] 0 O 4715 3y 1T T60
¥s 43 0 0 L =1 ! 1/15 1/5 145 | 29715
Y3 12 0 I L] L] -1/ 1/ R IN] 710
LI | 0 i o 0 115 1/5 115 1 2915

Tablesu &

179 (@) Denve a linear program for the optimal strategy for player | in the matric game defined by
Tabie 17-1. (h) Show that this program is the symmetric dual of (/7.7), the program for player
IT's optimal strategy.

{a) Let X* denote the maximizing X in (7.5} Then (/7.5) is equivalent to the following two conditions:
(i} E(X*, Y) = M, for all probability vectors ¥,
(i} I x.., > M, there is no probability vector X that satisfies
EX.Y) Z Xa4y

for all probability vectors ¥
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Condition (1) says that player I is guaranteed an expected return of at least M, if he plays X¥; condition
(ii) says that no other stratcgy gives player I a larger minimum expected return. From (i) and (ii). =
follows that the program

Maximize: 2 = X4
subjectto: E(X,Y) = x,; (Y arbitrary)

in the variables Xy, ..., Xu, X, has the solution [x%,..., x%, M,]". However,

EXX,Y) = i (i gijxi)})‘z-’fnq (320, Xy=1 =
=1

=1

If and only if

iy

Gy¥i 2 Xpey (U=12,...,n) (3)
i=1

i=

Indeed, relation (2) is just the convex combination (Chapter 2), with weights y;, of relations (3
Conscquently, program (/) may be rewritten as

minimize; z = —Xp+
subjectto; g% F@aiXs + 7 F i Xm = Xp—q =10
g12%) + ¢aoXa + "+ Gna Xy — Xy =0
................................... (4
JinXy T G20 X3 1 * ok Guaa — Xy =10
Xy Madeeerg Xy =]
with: x,, x,,..., X, nonnegative

where we have changed the maximization to a minimization and have included the restrictions on the
probabilities x;.

In program (¥) above, replace x,, ., by x,-; — X,, 42, where the new x,, ., and x_ ., are¢ nonnegativs
variables. Also, replace the equality constraint by

—1
1

v

X T Ky R,

x1+x;+"'+xm

v

Make the analogous replacements in program (17.7). Then program (4) falls into form (4./) and program
(£7.7) falls into form (4.2), wherein

X =[x X0 000y Xty xm'l:lr W=[y),00--0sYnsn .'r’n——z]r

gi1 g2 Goi =1 4l 0 0
f12 G2z gmz =1 1 0 0
B o e
Yin  G2n e =1 +1 0 0
—1 =1 &= 0 0 =1 == |
L+t 41 == 41 0 0 | +1_ e 5

17.10 Use a graphical method to determine an optimal strategy for player I in the game defined by

Table 17-7.

|
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Table 17-7
Player 11
B, B, i,
T | A p . S
Fliag | & =1 1
[

For this game, program (4) of Problem 17.%a) becomes
minimize: = —ix,
subject 1o 2x, —he; — x50
—dx; + 53— 5320 (h
X+ X3 =1
with:  x; and x; nonncgative
Before this program can be solved graphically, it must be reduced 1o a system involving just two vanabiles.
The equality constraint can be rewritien as

i =0 Hi, =g =

Fig. 17-2
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Then the nonnegativity of x; 15 guaranteed by requiring
P | 2

Substituting (1) into the constraints of system ( /), replacing the nonnegativity condition on x, by the new
constramt (7L and going over to 0 maximization program, we obtain:
TRAXIMIZE:

subgpect 1o

F=-Xj
8xy—x26
-, —xy21
i, + x5
X = |
with: x, >0

()

The graphical solution 10 program (4) 15 shown in Fig. 17-2
=12 s=l-xt=12

The value of the game is :* = x} = -2

Supplementary Problems

1711 Determine whether each matrix game, as defined below by the payoffs 10 the row plaver, » stable.
Then find both optimal strategies and the value of the game

B, B B
B, 8, By B,
A 1 0 -6
A, I -1 =1 - R [ - 2
A, 0 =2 X L A —2 0 0
{a) ()
B, B, B,
B, B: B, By
A, 2 f 1
Ay 1 -1 1 0 Ay ! 4 f
] ir)
B, B
H: H] H! H‘
A, -1 =
-"-. _: _I _: H |"|:| u :
4 | 8 =Y. = ol LY S
4, | -3 R | | -3 |
(eh (W
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=12

=13

17.18

Solve Problem 17.1 if chain T controls 70 percent of a town's business whenever both chains locate in the
same town or are equidistant from a town.

Solve Problem 17.1 if the region is scrved by four towns situated along a straight highway as shown in Fig.
17-3. Approximately 15 percent of the population live near town A, 30 percent near town B, 20 percent near
town C, and 35 percent near town D; each town is large enough for both chains to consider locating in it.

Town \ _ 5 miles m . 3miles  /Town) _  7miles [ Town
Fig. 17-3

Devise a method for implementing strategy X* of Problem 17.8.

Army A wishes to truck supplies to a border outpost which is expecting an attack by army B within hours.
The nearest supply depot is connected to the outpost by two separate roads, one running through forests
and the other over flatlands. A supply convoy moves faster over the flatlands route but enjoys better
camouflage on the forest route. The convoy must take one route or the other,

Army B anticipates a supply effort along one of the routes, and plans to hinder it with air strikes. It
has available a single squadron of airplanes, which cannot be divided. If army B sends its airplanes above
the forest route and finds army A there, army B will have time for four strikes against the convoy. Il army
B sends its planes above the flatlands route and army A is using that route, army B will have time for three
strikes. If armyv B sends its plancs over the wrong route, valuable time is lost. Once it realizes its error and
locates the convoy on the other route, army B will have time for two strikes on the flatlands route, but time
for only one strike on the forest route (because of the added difficulty in finding the convoy through the
trees). Determine the optimal strategies of the two armies.

A Blue Army and a Red Army arc contesting two airfields, valued at 20 and 8§ million dollars, which are
both under the control of the Red Army. The Blue Army is charged with attacking cither or both airfields
and inflicting maximum damage (measured in dollars) 1o the facilities. 1t is the task of the Red Army to
minimize this damage. To achieve their respective objectives, each army can assign its full force to one of
the two airfields or it can divide its force in half and cover both airfields with reduced capacity.

A facility will expericnce 25 percent damage if it is attacked and defended at full force, but only 10
percent damage if it is attacked and defended at half force. If a facility is attacked at full force but defended
at half force, it will expericnce 50 percent damage. Any facility attacked either at half force or full force but
not defended will experience complete destruction. A facility that is not attacked, or one that is attacked at
half force but defended at full force, will experience no damage. Determine optimal strategies for both armies.

Two ranchers have brought a dispute over a 6-vard-wide strip of land that separates their properties to a
referee. Both claim the strip as entirely their own. Both ranchers are aware that the referee will ask each
party to submit a confidential proposal for settling the dispute fairly and will then accept that proposal
which gives the most. If both proposals give equally or not at all, the referee will split the difference, setting
the boundary in the middle of the 6-yard width. Determine the ranchers’s best proposals. if proposals are
restricted to integral amounts.

Cigarette bootleggers use two routes for moving cigarettes out of North Carolina, Interstate 95 or back
roads. Both routes are known to the police, but because of personnel limitations they can patrol only one
of these routes sufficiently at any one time—a fact well known to the bootleggers.

Police estimate that the average load of contraband traveling on Interstate 95 is worth $1000 to the
bootlegger il it reaches New York. The back roads limit the size of vehicles somewhat, so the average load
of contraband traveling this route is worth only $800 if it reaches its destination. Any contraband discovered
by the police is confiscated and the bootlegger is fined. For cigarettes traveling [-93, the loss to the bootlegger
averages $700; the loss on cargo traveling the back roads averages $600. Furthermore, the police estimate
that they intercept only 40 percent of the contraband traffic traveling 1-95 when they are patrolling
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the highway, and 25 percent of the traffic traveling the back roads when they patrol there. Determine an
optimal patrol strategy for the police if its objective is 1o minimize the bootleggers’ gains.

With one day left before elections, both candiates for Governor have targeied the same three cities as crucial
and potentally worth a last visit. Since no visit is useful unless sufficient advance work has been completed
by the candidate’s staff, plans must be made by each candidate prior to knowmng the opposition’s choice.
Polls commissioned by both sides show identical projections. Table 178 gives the estimated gain (in
thousands of votes) for candidate | resulting from each combination of last-day wvisits. Which aty should
each candidate choose 1o visin?

Table 178
Candidate 11
To City 1 To Ciny 2 To City 3
% | ToCity1 12 -9 14
i To City 2 —& 7 12
A To City 3 i ~10 10

A game 18 fair if G* = 0. A game s symmetric i both players have the same number of pure strategies and
if, for all { and J, the gain to player | from his ith pure strategy and Il jth pure strategy 5 equal to the gain
to player 11 from his ith pure strategy and I's jth pure strategy. Prove that any symmetnic game is fur.

In a well-known gambling game, player | holds a red ace and a black deuce, while player 11 holds a red
deuce and a black three Simultaneously, both players show one card of their chaice. If the cards match
in color, player | wins; otherwise player Il wins. The payoffs are determined by the following ula: If player
1 shows the ace, the players exchange the difference (in dollars) of the amounts shown on the two cards (sce
counts as onek, f player | shows the deuce, the players exchange the sum (in dollars) of the amounts shown
an the iwo cards. Player 1. noting that be can win either §1 or 35 or lose either $1 or ¥4, reasons that the
game & fair. 1s it?



Chapter 18

Decision Theory

DECISION PROCESSES

A decision process is a process requiring either a single or sequential set of decisions for its completion.
Each allowable decision has a gain or loss associated with it which is codetermined by external
circumstances surrounding the process, a feature which distinguishes (hese processes from the processes
treated in Chapter 19. The set of possible circumstances, known as the states of nature, and a probability
distribution governing the occurrence of each state arc presumed known. Both the set of allowable
decisions and the set of states of nature will be assumed finite (an assumption not made in the more
elaborate theory).

We denote the allowable decisions by Dy, D,, ..., D, the states of nature by §,, §,,....8,: and the
return associated with decision D; and state S; by g;; (i=1.2,...,m:j=1,2,...,n). A process requiring
the implementation of just onc decision is defined completely by Table 18-1. This payoff table is known
as a gain matrix whenever the entries g;; are in terms of gains to the decision maker. Losses are then
represented as negative gains.

Table 18-1 Table 18-2
States of Nature States of Nature
5 5 S s, 5,
E
D, 911 g2 Gin 2 D, 60 660
,E b, [ER g2z G2n g D, — 100 2000
= 2
§ | | e
c Dm Gmi1 Y2 [

Example 18.1 A major energy company offers a landowner $60000 for the exploration rights to natural gas on a
certain site and the option for future development. The option, if exercised, is worth an additional $600000 to the
landowner, but this will occur only if natural gas is discovered during the exploration phase. The landowner, believing
that the energy company’s interest is a good indication that gas is present, is tempted to develop the ficld herself.
To do so, she must contract with local outfits with expertise in exploration and development. The initial cost is
$100000, which is lost if no gas is found. If gas is discovered, however, the landowner estimates a net profit of 2
million dollars.

The decisions for the landowner are D, (to accept the energy company’s offer) and D, (to explore and develop
on her own). The staics of nature are §, (there is no gas on the land) and §, (there is gas on the land). The gains
(in thousands of dollars) to the landowner for each combination of events are given in Table 18-2.

It remains to specify or estimate the probabilities attached to the two states of nature, P(S,) and P(S,).

Although Table 18-1 is identical in form to Table 17-1, there are significant differences between
decision processes and matrix games. In a decision process. only the decision maker is capable of making
rational decisions: nature is not. The actual state of nature in existence at any given time is a random
event, but the underlying probability distribution cannot be considered a “mixed strategy,” designed to
inflict losses on the decision maker. Furthermore, we generally rule out any randomness in the decision

325
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maker’s choice; he or she is restricted to one or another “pure strategy”™ D, . ... D,. Because of these
differences, optimal game strategies tend, for decision processes, 10 be oo conservaltive,

NAIVE DECISION CRITERIA

The minimax (or pessimistic) criterion 15 10 select the decision that minimizes the magimum possible
loss to the decision maker. In terms of a gain matrix, it 1s the decision that maximizes the minimum
possible gain. The aptimistic criterion 18 1o choose the decision that maximizes the possible gain. The
middle-of-the road criverion is to select that decision for which the average of the maximum and mmimum
gains s greatest, (See Problems 181 and 18.2)) As mone of these three criteria is based on the probable
state of nature, they are considered inferior to other criterin that are so based. Two probabilistic
criteria will now be gven.

A PRIORI CRITERION

The a priori (or Bayes') criterion 15 10 select the decision that maximizes the expected gain. (See
Problems [18.3 and 184.)

A POSTERIOR! CRITERION

Il an imperfect experiment can be conducted that provides information on the true state of
nature, then data from this expenment may be combined with the initial prebabilitics of the various
states 0 vield an updated probability distribution. Designate the outcome of the experiment by # and
assume that the rebability of the experiment is given by the conditional probabilities P(A]85,),
PNS,), . ... P(018,). The updated (or a posteriori) probabilities of the states—P(S, (), P(S;10), . . ., P(S,10)
—are determined from Bayes’ theorem (Problem [8.5). The a posteriori critenion is to select the decision
that maximizes the expected gain with respect to the updated probability distribution. (See Problems
186 and 18.7.)

DECISION TREES

A decision tree is an oriented tree (see Chapter 13) that represents a decision progess. The nodes
designate points in time where (i) one or another decision must be made by the decision maker, or (ii)
the decision maker is faced with one or another state of nature, or (1) the process terminates. Directed
out of & node (i) is a branch for each possible decision; directed out of a node (ii) s a branch for each
possible state of nature. Under each branch the probability of the corresponding event is written, when
defined. (See Problems 183 and 18.6)

Decision trees are useful in determining optimal decisions for complicated processes. The tech-
nique is to begin with the terminal nodes and sequentially to move backwards through the network,
calculating the expected gains at the intermediate nodes. Each gain is written above jts correspond-
ing node. A recommended decision is one that leads to a maximum expected gain, Decisions that turn
out to be nonrecommended have their corresponding branches crossed out. (See Problems 188 and
189.)

UTILITY

The wrility of a payofl is its numerical value to a decision maker. Since no decision criterion is
applicable unless all payoffs are quantified in identical units, the first step in analyzing any decision
process is to determine the utility of all nonnumenc payoffs. (See Problem 18.12.)
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A common utility is monetary worth, whereby cach payoff (¢.g., a new house) is replaced in the gain
matrix by its dollar value. Monetary worth, however, is not always appropriate. A payoff of 2 million
dollars is twice that of 1 million dollars, yet the former may not be worth twice the latter to a decision
maker. The first million may be more valuable than the second million. In cases where dollars do not
reflect the true worth of one payoff relative to another payoff, or where dollars are not a convenient
guantification unit, other utilities must be used.

LOTTERIES

A lottery ¥ (A, B; p) is a random event having two outcomes, 4 and B, occurring with probabilities
pand 1 — p, respectively.

VON NEUMANN UTILITIES

The following four-step procedure is used to determine von Neumann utilities for a finite number of
payoffs.

STEP I: List the payoffs in decreasing order of desirability: e, e, .. . , e,. Here, ¢; is at least as desirable
as ¢;if i < j.

STEP 2: Arbitrarily assign finite numerical values u(e,) and u(e,) to payoffs e; and e,, respectively,
such that u(e,) > u(e,).

STEP 3: For each payoff ¢; ranked betwcen ¢, and e, in desirability, determine an equivalence
probability p; having the property that the decision maker is indifferent between obtaining e;
with certainty and participating in the lottery #(ey, e,: p;).

STEP 4: Let u(e;) = pu(e;) + (1 — p;)u(e,) be the utility of payoff e;.

Step 3 is highly subjective. The value of p; for each payoff e¢; (j = 2,3,...,p — 1) is an individual
determination that may change drastically from one person to another or even for the same person at
two different times. The resulting utilities, therefore, quantify the relative worths of payoffs to a particular
decision maker at a particular moment. However, for a rational individual, it may always be expected
that the order of the p’s, and therefore of the u'’s, will be the same as the order of the ¢’s. (See Problems
18.10 and 18.12.)

A utility is normalized if u(e;) = 1 and u(e,) = 0, making the utilitics identical to the equivalence
probabilities.

Solved Problems

18.1 Determinc recommended decisions under each naive criterion for the process described in Example
18.1.

The gain matrix for this process is Table 18-2. The minimum gain for decision D, is 60, while that for
D, is —100. Since max {60, —100} = 60 is the gain associated with D,, D, is the recommended decision
under the minimax criterion

The largest entry in the matrix is 2000, the gain associated with D,. Therefore D, is the recommended
decision under the oplimistic criterion.

The averages of the maximum and minimum gains for D, and D, are, respectively,

660+60= 2000+{-—1@=950

360 and
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Since max {360, 950) = 950 is assocuted with Dy, D, is the recommended decision under the middie-of-the-
road eriterion

Determine recommended decisions under each naive criterion for the following decision process. A
dress buyer for a large department store must place orders with a dress manufacturer 9 months
before the dresses are needed. One decision is as (o the number of knee-length dresses to stock.
The ultimate gain to the department store depends both on this decision and on the fashion
prevailing 9 months later. The buyer’s estimates of the gains (in thousands of dollars) are given
in Table 18-3.

Table 18-3
5y Knee lengths  §,: Knee leagths 8, Knee lengths
wre high are ire mot
fashion acceptable acceplable
Dy Cirder none — 50 L] B
Dy Drder o bitle - 10 30 35
D, Order moderately il 45 =30
B Order w lot LI 40 — 45

The minimum gains for decistons D) through D, are, respectively, — 50, — 10, — 30, and —435. Since the
maximum of these four amounts is — 10, & gain associated with [y, D, is the recommended decision under
the minimax criterion

The maximum gun s 80, associnted with both D) and By, Hence, either &y or [ is the recommended
decision under the optimistic eriterion.

The averages of the maximum and minimurn gains for 0 through Dy, respectively, are 15, 12.5, 15, and
17.5, Since the maximum of these averages is asyoctated with [, [y b the recommended decision under the
middie-of-the-road criterion

Determine the recommended decision under the a priori criterion for the process of Example 1.1,
if the landowner estimates the probability of finding gas as 0.6.

With P(§;) = 0.6, it follows that P(5,) = | — 06 = 04, Using the data in Table 18-2, we calculate the
expected gain from [}, as

E(G)) = (60){04) + (660)(0.6) = 420
and the expected gain from D, as
E(Gy) = { — 100)(0.4) + (2000)(0.6) = 1160
Since the maximum of these two amounts, 1160, is associated with D, D, is the recommended decision
under the a prioei critenon.

This decision process is represented by the decrsion tree in Fig. 18-1. The expected gain of the process,
1160 al node B, 5 carried back from node D,

Determine the recommended decision under the a priori criterion for the degision process
described in Problem 18.2, if the buyer estimates P(S,) = 0.25, P(§,) = 0,40, and P(S,) = 0.35,
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Fig, 18-1

Lsing the data from Table 18-3, we caleulate the expected gains for decisions D, through [, respectively,
as
EiG,) = (—3){0.25) + (OM040) + (BOWD.35) = 153
E{G:) = (= 1000.25) + (30)(040) + (35M0.35) = 21.75
EiG) = (60}D.25) + (45)(0.40) 4 (—30)(035) = 225
E(G) = (80){(0.25) + (400(040) + ( —45){0.35) = 2025
Since the maximum of these expected gans, 22.5, is associated with Dy, Dy is the recommended decision

ander the @ priori criterion,
The process is represented by the decision tree in Fig 18-2

S —ar(F)

155 [

o
D
ns
(A)
o,
N

Fig. 18-2



330

185

186

DECISION THEORY [CHAP. 1%

State and prove Bayes' theorem.

Consider & sample space ¥ consisting of all possible outcomes of a conceptual experiment (€.
predicting the state of nature at o particular time). If A and B are two events (subsetd) of &, then the
conditional probability of A given that B has occurred and the conditional probability of B pven that 4
has occurred are defined by

P(A o B} = P{EIP(A|B) = PLAIP(B]A) il
where A B is the intersection of A and B. Solving ( /), we obtamn
A BIP(B)
Pr4)
in which il = assumed that Pr4) = (L Equation {2 s the gmple form of Bayes™ theorem.

The more usual form is obtaned by ntroducng a set of mutually excluseve events, {H,, H.. ... H}
whose union is . Then

PiBiA) =

Pidl=HMA~H)+PAnH)+ - + P4~ H)
= FA|HPH,) + PLALHPH + 0 4+ PLAINLPIEH,) )]
Substituting (3) imto (7 and choosing B = i, we haw

AP,
P A) = 'Pt-ﬂH]FI' 1) “"

Y PLA|HPIH,)

‘I-'!]

Loosely speaking, Bayes® theorem, (4), evaluates the probability of the “cause™ H, given the “effect™ A.

The landowner in Example 18.1 has soundings taken on the site where natural is suspected,
at a cost of S30000, The soundings indicate thal gas 15 not present, but the test §s not & perfect
one. The company conducting the soundings concedes that 30 percent of the time the test will
indwate no gas when gas in fact exists. When gas does not exist, the test is accurate 90 percent
of the time. Using these data, update the landowner's inibal estimate that the probability of finding
gas i5 0.6 and then determine the recommended decision under the a pasteriori criterion.

Initially, P(5,) = 06, P(S,) = 0.4 Lez1 #, designate the event that soundings indicate no gas. Then the
reliability of the test is given by the conditional probabilities P, [S,) = 090 and P(#,|5,] = 0.30, Bayes’
theorem, (4) of Problem 18.4, gives the updated probabilities as

0y POSSIPS) _omes 2
ik PUO ISP+ PUOLISPUS,)  (090)04) + (DID)0E) 3

e

1
HHIFﬂ-.! = !- == HS.'"LI = j

The o posterior) gain matrix is obtained from Table 18-2 by subiracting 3 (thousand dollars) (rom
each entry, thereby reflecting the cost of the test. The expected gains (in thousands of dollr) for decisions
D, and Dy, respectively, in terma of the updated probabilities are :

E(G, |t,) = (60 — 30)(%) + (660 - 301} = 230
E(G;18,) w { =100 - 30)(§) + (2000 — 30)i}) = 570

fince the maximum expocted gain is associated with Dy, B, is the recommiended dacinion unﬁlf the a pasterior
eriterion.
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Fig. 18-3

Figure 18-3 is the decision trec for this process. The probability that the soundings indicate no gas,
P(8,). is unity, since the result of the experiment is known.

Solve Problem 18.6 if the soundings had indicated that gas was present.
Designate the event that soundings indicate gas by 6,. From the data of Problem 18.6,
P(6,|S;) =0.10 P(0,]85) = 0.70

The initial probabilities are P(S,) = 0.4, P(8,) = 0.6; therefore, the updated probability distribution is

PS,16,) = — _P(8;18)P(Sy) o 0.109)04)  _ 0.087
P(6,]S,)P(S,) + P(0;]S,)P(S,) (0.10)(0.4) + (0.70)(0.6)

Again each entry in the original gain matrix, Table 18-2, must be reduced by 30 (thousand dollars) to
reflect the cost of the test. Then the expected gains (in thousands of dollars) for decisions D, and D, with
respect to the latest probability distribution are

E(G,],) = (60 — 30)(0.087) = (660 — 30)(0.913) = 577.8
E(G,|6,) = (—100 — 30)(0.087) + (2000 — 30)(0.913) = 1787.3

Since the maximum expected gain is associated with Ds, D, is the recommended decision under the a posteriori
criterion,

Figure 18-4 is the dccision tree for this process. The probability that the soundings indicate gas is
present, P(f,), is unity, since the result of the experiment is known.

What is the recommended decision if the soundings discussed in Problems 18.6 and 18.7 have
not been taken but are only being considered.

This is now a two-stage decision process. First the landowner must decide whether to conduct soundings,
and then she must decide whether to accept the energy company’s offer. Write

D, = the decision to conduct soundings
Dy, = the decision not to conduct soundings
0, = the event that soundings indicate no gas
1, = the event that soundings indicate gas
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The decision tree for the process 15 Fig 18-5, which 5 essentially a composite of Figs. 18-1, 183, and 18-4.
The main differences are in P{f,) and P{8,) These probabilites are no longer 1, as they were in Figs. 18-3
and 18-4, becawse the resuit of the soundings i5 unknown. The states 5, and 5; are, however, a disjoint,
exhaustive set ol outcomes; hence, from (3) of Problem 18.5 and the data provided in Problems 186 and 18.7.

Pifl,) = PO, 18, P(8,) + P(D,18;0P(S;) = (0.90)(0.4) 4 (0.30)(0.6) = 0.54

1160

Piflg) = PLO;|50PI5;) + P0G S0PS) = (10y(04) + (0.700(0.6) = 0,46
With these probabilities, the expected gain at node [ is

(5700{0.54) + (1787.3){0.46) = 1130

et
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Since node B has a larger expected gain than node [, I is recommended over Dy The recommended
decisions, therefore, are not 1o conduct soundmgs amd not 1o accept the offer of the energy company. Instead
the landowner should begin exploning the land on her own immediately.

Observe thatl the recommended deasion s Iy regardless of whether soundings are taken and regardless
of the outcome of the wundings il they are conducted. Thus, the soundings have no effect on the final
decision and represent only an expense. This is reflected in the fact that the difference between the expected
gains a1 nodes B and | in Fig. 18-5 is preascly the cost of the test

A city 15 considering replacing its fleet of mumicipally owned, gasoline-powered automobiles by
electric cars. The manufacturer of the electne cars claims that the city will experience significant
savings over the life of the fleet if it converts, but the city has its doubts. If the manufacturer is
correct, the city will save 1 million dollars. If the new technology is faulty, as some critics suggesi,
the conversion will cost the city $450000. A third possibility is that neither situation will occur
and the city will break even with the conversion. According to a recently completed consultant’s
report, the respective probabilities of these three events are 0.25, 045, and 0.30,

The city has before it a pilot program that if implemented would indicate the potential cost
OF SaVings in a conversion 1o electne cars, The program involves renting three electric cars for 3
months and running them under normal conditions. The cost to the city of this pilot program
would be 350000. The city's consultant believes that the results of the pilot program would be
sigmfcant but pot conclusive; she submits Table 13-4, a compilation of probabilities based on
the experience of other cities, 10 support her contention, What actions should the aty take if it
wanis (o maximize expecied savings’

Table 18-4
A pilot pregram will indicate

Savings Wo Change A Loss
i -5 Saves Money 0.6 03 .l
" Breaks Even 04 04 0.2
28 | Loses Money 0.1 05 0.4
~ =

This 15 a two-stage process. First the city must deade whether to conduct the pilot program. and then
it musl decide whether to convert its fleet 1o electne cars, Set

0y = the decsion not 1o conduct the pilol program

Dy, = the decision 1o conduct the pilot program

i1, = the event that the pilol program indicales 4 savings

f}y = the evenl that the pilol program ndicates neither a savings por a loss

ft, = the event that the pilol program indicales a loss

D, = the decision 1o convert 10 electric cars

D, m the decsinn not 1o convert (o electric cars

&, & Lhe state that electric cars are cheaper to run than gasoline models

5, = the state that elecine cars cost the same to run a5 gasoline models

§; = the state that electric cars are more expensive to run than gasoline models

The gain matnx (in thousands of dollars) s
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The initial probability distribution for the states has P(8,) = 0.25, P(S,) = 0.30, and P(S) = 0.45.
If the pilot program is not conducted, the initial probability distribution is not updated, and the expece=s
gains for Dy and D, are, respectively,

E(G,) = (1000)(0.25) + (0)(0.30) + (—450)(0.45) = 475
E(G,) = (0)(0.25) + (0)(0.30) + (0)(0.45) =0

Since the maximum expected gain is associated with D, D, is the recommended decision under the a 7rues

criterion.
If the pilot program is conducted, all entries in the gain matrix must be reduced by 50 to refiect the
cost of the test. It follows from Table 18-4 that

P(0,|S,)=0.6 P(6,]|8;) =04 P(6,|8;) =01

P(0,|5,) =03 P(6,]5;) =04 P(6,]|5;) =05

P(6,]|5,) =0.1 P(05]8,) =02 P(85|5;) =04
Using Bayes® theorem, (4) of Problem 18.5, we obtain

. (£:6)(025) = 0.4762
(0.6)(0.25) = (0.4)(0.30) + (0.1)(0.45)

. (0.4)(0.30)

6,) = = 03810
P(Sa181) (0.6)(0.25) + (0.4)(0.30) + (0.1)(0.45) B

_ aHnas) = 0.1429 3
(0.6)(0.25) + (0.4)(0.30) + (0.1)(0.45)

P(5:10,) =

td

P(S8;16,) =

P(5,10,) = - (03(025) =0.1786 >
g (0.3)(0.25) + (0.4)(0.30) + (0.5)(0.45)

- (0.4)(0.30) -
(0.3)(0.25) + (0.4)(0.30) + (0.5)(0.45)

(0.5)(0.45) B
(0.3)(0.25) + (0.4)(0.30) + (0.5)(0.45)

P(S,10,) = = (.2857 (S

P(S,10,) = 0.5357 s

(0.1)(025) - -
(0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45)
(0.2)(0.30) N
(0.1)(0.25) + (02)(0.30) + (0.4)(0.45)
(0.4)(0.45) s
(0.1)(0.25) + (0.2)(0.30) + (0.4)(0.45)

P(Sdoa) =

P(S,|0,) = 0.2264 -.a

792 &

P(S5]0,) =

To within roundoff errors, each set of three probabilities sums to 1.
If the result of the pilot program is 0,, the updated probabilities are given by (/) through (3), and e
expected gains for decisions D, and D, are, respectively,

E(G,|8,) = (950)(0.4762) + (—50)(0.3810) + (—500)(0.1429) = 361.9  E(G,|0,) = —50

The recommended decision under the a posteriori criterion is D,.
If the result of the pilot program is #,, the updated probabilities are given by (4) through (6), anc ==
expecled gains for decisions D, and D, are, respectively,

E(G,|8,) = (950)(0.1786) + (—50)(0.2857) + (—500)(0.5357) = —112.5  E(G.|fy) = —50

The recommended decision under the ¢ posteriori criterion is Ds.
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1 the result of the pilot program i 0, the updated probabilitics are given by (7) through (%), and the
expected gains for Dy and D, are, respectively,

EiG,10,) = (950)(0.0943) + { —SON0.2264) + ( —500)(0.6792) = -261.3 E(Gs|0,) = =50

The recommended decision under the a posteriosi criterion is Dy,

The dectsion tree for this process is Fig. 18-6, wheren the results obtained so far appear on the unlettered
nodes and the branches keading to and from those nodes. The expected gains af nodes B E, F, and G are
the gams associated with the succeeding nodes il the recommended decisions are taken.

I follows from (3) of Problem 18.5 that

Hl‘hl‘ = F{ﬂllsllp{sf} 4= HE.ELTHS;I + Hﬂlrsl"ﬁsli
= (06I0I5) + (DAMDIN + (DIN0A5) = 0.315

Piiy) = PUOLIS, IPIS) + PUOLIE)PLS,) + POy IS, PS:)
= {03)0.25) + (04003 + (O5){0.45) = 0,430

P{fi:) = PIl,i5,)P(S,} + PUO,IS:OP(S;) + P(0,]5,07(S,)
= (0.1H0.25) + (0.2)0.30) + (DANDA5) = 0.265

Then the expected guin 2t node © is
{361.900.315) + ( —30)(0.420) + {— 50)(0.265) = 79,75

Since this value is greater than the expected gain al node B, the decision leading to node C, namely D, is
the recommended one. The city should conduct the pilot program and then convert to electrically powered
wehicles only i the pilor program has indicated 2 savings. This soletion to the problem is represented in
Fig 1%-6 by the subtree made up of all paths from node A that are not blocked by a cross,

Devise a situation in which the gains listed in Table 18-2 do not realistically reflect the actual
worth of the payofls to the landowner in Example 18.1. Show how the von Neumann utility
function can be used o correct the ineguilies.

The pavoffs in descending order of preference are
iy, = szﬁlﬁ]{m i.": = ml.m fy = S’mm} £y = _simm

If §100000 represents the entire life savings of the landowner, then losing it would be catastrophic. Avoiding
such a loss might be more important 1o the landowner than winning 52000000, yet this preference is not
reflected in the raw dollar figures of the pavoffs. Furthermore, $660000 might be enough money to satisfy
all the lundowner's earthly wants, Two million dollars is obvipusly better; but it might not be three times
as valuahble, as suggested by the raw numbers,

The landowner might set the utility of ¢; a1 100 and that of ¢, 0t —1000 to reflect the fear of losing
her life savings After much introspection, she might find that she is indifferent between receiving ¢, with
certamty and participating in the lottery #'e,, e, 0.999). Then the utiity of ¢; would be

wey) = (0.99%uie,) + (1 — 0.99%uie,) = (L999)(100) + (0,001 ) - 1000) = 98.9

The landowner might also find that she &5 indifferent between receiving €, with certainty and participating
in the lotiery #4e), 2,; (095, Then the utility of e, is

uley) = (0.95)le) + (1 = 0.95he,) = (0.95)(100) + (D.05)( — 1000) = 45

The gain matrix for the decision process in terms of these utilities is Table 18-5.
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Talsle 18-85
5, §
n, 45 989
p, | -1000 100

Determine the recommended decision under the @ priori criterion for the landowner in Example
I8.1, if the gain mairix 1s given by the utilities in Table 18-5 and il the landowner estimates the
probabality of gas being present as (16,

With P{S,) = 04 and P(5,) = 0.6, the expected gans for Dy and D, are, respectively,
EiG,) = (45 04) 4 (DEIO6) = TT7 34 EiGs) = | — 1000)04] + (100){0.6) = — 340

The recommended dectsion 15 [, Contrast this resualt wath the result of Problem 18,3

A woman has a ticket to a football game on a day for which the weather bureau predicts rain
with a likelihood of 40 percent. She can stay home and watch the game on television, the preferable
choice under rainy conditions, or she can go to the stadium, the preferable choice under dry
conditions. Which decision should she make?

Designate the decision to go to the stadium by D, and the decision 1o stay home by D, The states of
nitare are 5, (it will rain) and 5; (it will not rain), with P(5;} = 04, P{5;) =0.6. The four possible
combinations of events, listed in descending order of desraldlity to the woman, are

¢,: Goes to the stadium and it does not rain
¢:. Stays home and it rains

¢y Stays home and it does not rain.

gy Goes to the stadium and it cuns

The individunl guantifies her levels of xatisfaction for ¢, and ¢, ot 100 and 0, respectively. Aler careful
consideration, she feels thut she would be indifferent 1o having ¢, occur with certainly or participating in
the lottery e, e, DBS). She els the equivalence probability lor ey ot py = (LS. Therefore,

wiry) = (0850 100) + (0.150) = 85 ey d = (050 100) + (0.5)00) = 50

The gain matrix in terms of ulilities for this process becomies

i 05
p, | 0 100
p, | 85 50

The expected gains for decisions D, and D, are, respectively,
Eifs,) = (0004) + (10 (0.6) = 60
EiG,) = (851(0.4) = (S0)(0.6) = 64

Since E{(;) is greater than E(G ), the recommended decision under the a prion criterion s 0. the woman
should stay home.

Solve Problem 18.4 il the department store’s utility for money s given by Fig. 18-7.

Since the monetary amounis in Tabke 18-3 do mot reflect the relative worth 1o the siore of the various
payolfs, we replace each amount by 1ts utility, oblamning Table 18-6.
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p, | 000 038 043
p, | 072 o083 oo

Wiath P(5,) = 025, Pi(5;) = 04, P(5;) = D35, the expected gains are

E(G,) = (0)(0.25) + (0.15)0,4) + (1)(0.35) = 0410
E(Gy) = (0.09)(0.25) + (0.38)(D.4) + (0.43)(0.35) = 0.325
E(G,) = (0.72)(0.25) + (0.53)(D.4) + (0.02){0.35) = 0.399
E(G,) = (1)(0.25) + (0.48)(0.4) + (0)(0.35) = 0442

The recommended decision under the a priord criterion s now D,

The cerrainty eguivalent of a decision with monetary payoffs is a dollar amount € having a wtility
equal to the expected utility of that decision. Determine the certainty equivalents for each of the
decisions in Problem [18.13

The expected wiility for [, was determined in Problem 1813 to be 0,410, Using Fig. 187, we estimale
w33 000) = 0.410; hence ©, = $33000.

Similarly, we estimale the certalnty equivalents of [y, Dy, apd Dy as €, = 524000, Oy = 532000, and
Oy = $36000, respectively.

The risk premium for a decision with monetary payolfs is the amount R by which the expected
dollar gain from that decision exceeds the certanty equivalent of the decision. Determine the risk
premiums for each of the decisions in Problem 18,13

The expected dollar gains for D, through D, were obtained m Problem 8.4 as $15 500, $21 750, $22 500,
and 520250, respectively. Taking the differences between these amounts and their corresponding certainty
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“ 18.17

18.18

i8.19

18.21

equivalents as determined in Problem 18.14, we find that

R, = 15500 — 33000 = —$17 500
R, = 21750 — 24000 = —$2250
R, = 22500 — 32000 = —$9500
R, = 20250 — 36000 = —S15750

Supplementary Problems

Determine recommended decisions under each naive criterion for the following decision process. In the fall, a
farmer is offered $50 000 for his orange erop, which will be harvested in the beginning of the following year.
If the farmer accepts the offer, the money is his, regardless of the quality or quantity of the harvest. If the
farmer does not accept the offer, he must sell his oranges on the open market after they are harvested.
Under normal growing conditions, the farmer can anticipate receiving $70 000 on the open market for his
harvest. If he experiences a frost, however, then much of his harvest will be ruined, and he can anticipate
receiving only 515000 on the open market.

A manufacturer must decide whether to extend credit to a retailer wishing to open an account with the firm.
Past expericnce with new accounts shows that 50 percent arc poor risks, 30 percent are average risks, and
20 percent are good risks. If credit is cxtended, the manufacturer can expect to lose 530000 with a poor
risk, make $25000 with an average risk, and make $50000 with a good risk. If credit is not extended, the
manufacturer neither makes nor loses money, since no business is transacted with the retailer. Determine
the recommended decision under the a priori criterion.

A corporation is considering a new production process that, if efficient, will save the corporation $350 000
a year for the next 5 years. If it is not efficient, the amount of lost sales plus the expense of converting to
the new process and then reconverting to the old will come to $925 000. Determine the recommended decision
under the a priori criterion if the company feels that the new process has an 80 percent chance of being
efficient.

Determine the recommended decision under the a priori criterion for the process of Problem 18.16 if, in the
past, the farmer has lost much of his harvest to frost one out of every 7 years.

Assume that prior to making a decision, the manufacturer described in Problem 18.17 pays $1000 for a
credit rating report on the retailer, The report rates the retailer as a poor risk, but the manufacturer knows
that the rating procedure is not totally reliable. The credit bureau concedes that it will rate an average risk
as a poor risk 30 percent of the time, and it will rate a good risk as a poor risk 3 percent of the time. It
will rate a poor risk correctly 90 percent of the time. Based on these data, determine the recommended
decision for the manufacturer under the a posteriori criterion.

The corporation of Problem 18.18 has a third option available to it; namely, to integrate one stand-alone
phase of the new process into its current process and test its efficiency before deciding whether to convert.
The cost of testing the stand-alone phase is $125000, of which $75000 is recoverable if the new process is
adopted. If the stand-alone phase is not efficient, then an additional $25 000 in sales is lost during the test.

If the entire new process is efficient, then the stand-alone phase should operate efficiently with probability
0.99. If the entire new process is not efficient, the stand-alone phase could still operate efficiently, and the
company estimates this would happen with probability 0.6. Construct a decision tree for the entire decision
process and determine the recommended actions.
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The presadent of a firm in a highly competitive industry believes that an employee of the company 1s providing
confidential information to the competition. She is W percent certain that this informer is the trensurer of
the firm, whose conticts have been extremely valuable in obtaining financing for the company. If she fires
him and be is the informer, the company gains $100 000, IT be is fred but is not the informer, the company
loses his expertise and still has an informer on the stafl, for a net loss 1o the company of $300000. If the
president does not lire the treasurer, the company |oses $300000 whether or not he i the informer, since
in either case the informer s still with the company,

Before deciding the fate of the treasurer, the pressdent could order lie detector tests, Ta avoid possibile
lawsuits, such tests would have 1o be admimstered to all company employees, at a total gost of S30000,
Another problem is that lie detector tests are not definitive. If a person is lying, the test will reveal it %0
percent of the time: but if 4 person i not lying the test will indicate it only 70 percent of the time. What
actions should the president take?

A food processar is conssdering the introduction of a new line of instani lunches. On a natlonal basls, the
company estimates 4 net profit of 50 million dollars if the product is highly successful, & aet profit of 20
million dollurs if it i moderately soccessful, and a loss of 14 million dollars if it i oot seccessful. If the
company does not introduce ihe hine, its research and development cosis totnling 3 million dollars musi be
written off as a loss. Current estimates place the probability of high suceess at 0.1 and the probability of
mioderale spocess at 0.4

Prior 1o introducmg it on a natonal level, the company could test market the line on & regional bass.
The cost of such o test would be one million doltars. Although the test results would be sienificant, they
would not be conclusive; the reliability of such a test is given by the conditional probabilities in Table 18-7,
What should be the processor's decisions?

Table 18-7
Test resulis will indicate
High Moderale No
Success Success Success
Highly
Successiul .6 04 1]
- E
' | Moderately
-E ‘! Suocessful 0.2 LN a2
) Mot
Successful il 03 R

Determine the maximam amoun! of money the city m Problem 189 should be willmg 10 pay for the pilot
program. (Hinr: The value of a test is the difference between the expected gain of the process if the lest is
conducted @ mo cost and the expecied gnin of the process il no testing s conducted.)

Determine the maximum amount of money that the president m Problem 1822 should be willing to pay
for he detector tests Construct o tree for the process.

Solve Problem 1823 if the processor's utility for money is given by Fig. 18-8,

Derive utilities for the dollar outcomes ¢, = $5000, ¢; = $000, ¢; = SI000, ¢, = B2000, and ¢y = 51000 of
e )= 100, ufeg) = =¥, and the equivalence probabilities we p; = 09, p; = 0.7, and p, =02

Determine the cermmty equivalent and the risk premium for the recommended decisions in Problem 18,26,
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A decision maker iy risk-seeking wilh respect 1o a decision process over a specified range of payofis if his or
ber utility Tunction o x) 15 strictly convex (iLe, u"(x)} > 0) over that range. The decision maker i3 risk-dverse
if wix) is strictly concave (e, u(x) < 0) over that range. If wix) is a straight line (Le. w™(x) = 0) on tha
range, the decision maker 18 risk-indifferent there. Determine the risk attitudes of the processor in Problem

18.26.

From the definittons of concave and convex functioms given i Chapter 1] and the fact that enlity functions
increase monotonically. show that risk premiums are positive for a nsk-averse decision maker and negative
for a risk-secking decision maker

A regrer matnix 5 8 gaim matrx in whaich the elements of each column have been dimimshed by the largest
element of that column, Give the regret matrix corresponding to Table 18-3,

Solve Problems 18,1 and 183 using the regret matny instead of Table 18-2. Therehy vernify that recommended
decisions with a regret matein need not be the same as those with & gain matrin under moive criterin, but
the two matrrces always yield the same recommended decision under the a prior criterion.



Chapter 19

Dynamic Programming

MULTISTAGE DECISION PROCESSES

A multistage decision process 1s a process that can be separated into a number of sequential steps,
or stages, which may be completed in one or more ways. The options for completing the stages are called
decisions. A policy s a sequence of decisions, one for each stage of the process.

The condition of the process at a given stage is called the srare at that stage. cach decision effects
a transition from the current state 1o a state associated with the next stage. A multistage decision process
1% fimite il there are only a finite number of stages in the process and a finite number of states associated
with cach stage.

Many multistage decision processes have returns (costs or benefits) associated with cach decision,
and these returns may vary with both the stage and state of the process. The objective in analvzing such
processes 1 (o determing an optimal policy, one that resulis in the best total return.

Example 19.1 In Problem |15, the process of determining how much 10 invest m cach opportunity m onder to
manimize the total return o a three-stage decndon process. Consideration of opportunity | constitules stage |
(= 1.2, 3) The state of the process at stage | is the amount of funds sull available for investment at stage L For
stage 1, the beginning of the process, there are 4 units of money avaiable, hence the state is 4 For stages 2 and 3,
the states can be @, 1, 2, 3, or d, depending on (he allocations (deciaons) at previous stages. The dociuon at slage
i b repeesented by the varable x,; the posaible values of 5, are the integers from 0 10 the state st stage § inclusive

An optimal policy for the process is determined in Problem 19.1.

A multistage docision process is dererministic if the outcome of cach decsion (in particular, the state
produced by the decision) is known exactly.

A MATHEMATICAL PROGRAM
The mathematical program
optimize: = = fi(x,)+ falxa) + -+ fix,)
subjecito; x; + X3+ -+ X, <h (19.1)
with: all varables nonnegative and integral

in which £ (x,) fylxh ..., filx,) are known (nonkinear) functions of a single vanable and b 1 a known
nonnegative integer, models an important class of multstage decision processes. Here the number of
stages is o Stage | involves the specification of decision variable x,, with a resulting contnbution f,(x,)
to the total return; etc. The states are 0, 1,2, .. ., b, representing possible vialues for the number of units

available for allocation. All stages after the first have these same states associated with them; stage |
has the single state b,

Exampie 192 Program (/900 with n = 3 and & = 4, models Problem 113,
342



CHAP. 19) DYNAMIC PROGRAMMING X

DYNAMIC PROGRAMMING

Dynamic programming 1s an approach for optimiang multstage decision processes. It s based on
Bellman's pnnciple of optimality

Principle of optimality. An optimal policy has the property that, regardless of the decisions taken to
enter a particular state in a particular stage, the remaining decisions must constitule an optimal policy
for leaving that state.

To implement this prnciple, begin with the last stuge of an n-stage procoess and determine for cach
state the best policy for leaving that state and completing the process, assuming that all preceding stages
have been completed. Then move backwards through the process, stage by stage. At each stage, determine
the best policy for keaving cach state and completing the process, assuming that all preceding stages
have been completed and making use of the results already obtained for the succeeding stage. In doing
s0, the entries of Table 19-1 will be calculated, where

w & the stute variable, whose values specify the states
m (i) = optimum return from completing the process beginning at stage j in state u
d {u) = decivion taken at stage J that achieves m(u)

Table 19-1
7]
0 | 2 3

i lw)

Last sage
()
m, (W)

Next-1o-last stage
d,. _plul
ik

First stage
o ylard

The entries corresponding 1o the kst stage of the process, my(u) and d (w), are generally straightforward
to compute. (Sec Problems 19.] and 19.3) The remaining ¢ntres are obtained recursively; that i, the
entrics for the fthstage (j = 1,2...., 8 — 1) are determined as functions of the entrics for the (j + 1)st
stage. The recursion formula is problem dependent, and must be obtained anew for each different type
of multistage process. {Sec Problems 19.5 and 198)

For simplicity, Table 19-1 has been drawn as though each stage had the same set of states. While
this can always be brought about artifictally (by suitably penalizing the return functions m,), it is often
more natural to use different state variables, cach with its own range of values, for the different stages.
Such use, of course, in no way alters the application of the principle of optimality. (See Problems 19.24
and 1925)

The dynamic programming approach is particularly well suited 1o those processes modeled by system
(191 -provesses in which each decision pays off separately, independent of previous decisions. For
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system (79.1), the values of m,(u) for u =0, 1,..., b are given by the formula

m,(u) = optimum { f,(x)} (19.2
0=x=<u

The recursion formula is (see Problem 19.1)

my(u) = optimum { fi(x) + m;, (u — x)} (19.3)

Fl
D=x<u

for j=n—1,n—2,...,1.1In(19.2), the decision variable x [which is denoted x, in (/9.1)] runs through
integral values, as does x (=x;) in (/9.3). That value of x which yields the optimum in (19.2) is taken
as d,(u), and that value of x which yields the optimum in (/9.3) is taken as d,(u). If more than one value
of x yields either optimum, arbitrarily choose one as the optimal decision. The optimal solution to
program (19.1) is z* = m,(b), the optimal return from completing the process beginning at stage 1 with
b units available for allocation. With z* determined, the optimal decisions xT, x%,...,xy are found
sequentially from

x¥ =d;(h)

x§ = dafb —x1)

X% =ds(b — xf — x3) (19.4)
¢ =db—xt—xf——xt )

DYNAMIC PROGRAMMING WITH DISCOUNTING

If money carns interest at the rate i per period, an amount P(n) due n periods in the future has the
present (or discounted) value

P(0) = «"P(n) where o= —I— (19.3)
14

Discounting, the replacement of all dollar sums in the future by their present values, is often
incorporated in those multistage decision processes in which the stages represent time periods and the
objective is to optimize a monetary quantity. In the solution by dynamic programming, the recurrence
formula for m(u), the best return beginning in stage j and state w, involves terms of the form m;. (y).
the best return beginning in stage j + ¢ (¢ time periods after stage j) and state y. [See, for example.
(19.3).] 1M m; . (y) is multiplied by «‘, where o is the above-defined discount factor, then m;. (y) is
discounted to its present value at the beginning of stage j. It follows that m,(u) will be discounted to
the beginning of stage 1, which is the start of the process. (See Problem 19.10.)

STOCHASTIC MULTISTAGE DECISION PROCESSES

A multistage decision process is stochastic if the return associated with at least one decision in the
process is random. This randomness generally enters in one of two ways: either the states are uniquely
determined by the decisions but the returns associated with one or more states are uncertain (see Problem
19.11) or the returns are uniquely determined by the states but the states arising from one or more
decisions are uncertain (see Problem 19.12).

If the probability distributions governing the random events are known and if the number of stages
and the number of states are finite, then the dynamic programming approach introduced earlier in the
chapter is useful for optimizing a stochastic multistage decision process. The gencral procedure is to
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optimize the expected value of the return. (For an exception, see Problem 19.13.) In those cases where
the randomness occurs exclusively in the returns associated with the states and not in the states arising
from the decisions, this procedure has the effect of transforming a stochastic process into a deterministic

one.

POLICY TABLES

For processes in which randomness exists in the states associated with the decisions, a policy—in
particular, an optimal policy—may be exhibited as a policy table, similar to Table 19-2. Here, d(a,)
(j=1.2 Jmk=1,2,...,r) denotes the decision at stage j if the process finds itself in state a,. (See

§ .

Problem 19.13.)

Table 19-2
States
a, a, e a,

1 dy(ay) dy(a;) picts d,(a,)
8|2 | dia) dila) - dia)
21 0| dfe) e d,(a,)

Solved Problems

19,1 Determine an optimal policy for Problem 1.15 (see Example 19.1).

We begin by considering the last stage of the process, stage 3, under the assumption that all previous
stages, stages 1 and 2, have been completed. That is, allocations to investments | and 2 have been made
(although, at this time, we do not know what they are), and we are to complete the process by allocating
units of money to investment 3. Since we do not know how many units were allocated to the first two
investments, we do not know how many units are available for investment 3; we must therefore consider
all possibilities. There will be either 0, 1, 2, 3, or 4 units available.

No matter how many units of money are available at stage 3, it is clear from the definition of f3(x) in
Table 1-2 that the best way to complete the process is to allocate all the available units to investment 3.

The same conclusion follows from applying (19.2). Thus,
ms(4) = max {f3(0). f3(1), f3(2), f5(3), f3(4)}
=max {0,1.4,5,8} =8 with di(4) =4
ms(3) = max {f3(0), fa(1) f3(2). f3(3)]
=max {0,1,4,5} = with  dy(3)=3
ma(2) = max { f3(0). f3(1), f2(2)}
=max {0, 1.4} =4 with d;(2) =2
ms(1) = max {f3(0), fs(1)} =max {0,1} =1 with dy(1)=1
m4(0) = max {f3(0)} = max {0} =0 with d;(0) =0

These results give us the first iwo rows in the tabular solution, Table 19-3.
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Table 19-3
W
o i 2 i 4
mylu) L1 1 4 5 B

o yiw) 0 1 2 3 4

moiu) 0 1 4 & K
o lul o I 0 L 0
L s 9
dyin) T IR ; .1 2

Hlvm;mﬂrwmpiwmimﬁhmplnmlhmmwlhhﬂ
complcted (although, at this ume, we do not know how) Since we do not kanow how ﬂljl unils were
aliocated 10 investment 1, we do not know how many units are available for investment 2, we must therefore
comisder all posubelities.

One posabslity is that 4 units are avallable at stage 2, which presupposes that no units were allocated
1o investment 1, Now, all or some of these 4 units can be allocated 10 investment 2 with! the remainder
nnhhhianupiHrdlhmlmnﬂnnudmmI.ﬂummi’_&l:l.u&lhtmm
4—2a umhutn:ﬂ:ﬂ:hﬂ.:llﬂmhwmndrhndlhbmmhﬁwlm
4 ~ x units arc at hand; namcly, my4 — x}. The total retum, therefore, is fiix) + m,(4 — x) and the value
uf'li!-ll.l2.!4th:mnmlh-mﬂm“mﬂ:mnllmﬁ-l¢mﬂ1mh4mm
available. Formula (/9.3), with j = 2 and u = 4, simply formalizes this conclusion.

w 4] = man |00 4 m (8 — O) F01) + myld — 10, FA20 + myld — 20 fil3) + my(4 = 33 Fd) + w4 — 4))
smar(0+81+83-46+1,7+0]=8 with Jdyd)=0

Sirnilarly treating the other posubilities a1 stage 1, we obtain:

my ) = max | f00) + myd3 =00, f00) + myl3 = 1), fA2) + my(3 = 20, fl 3+ myi3— 3]
smax D451 +434 1640 =b with diilj =13

moA2) = man | f500) + myl2 = 0, £{1) + myf2 = 1), f3(2) + myi2 = 2)]
=m0 +d 1+ L340]=d4 with Jdy2i=0

sl 1) = max | f(0) + my{l =00, fo{l)+ m,il = 1}
smat 04+ L1 +0=1 with dyl)=1 {breaking the tie arbitranily)

m0) = max [ f(0) ¢ my0 ~0)] = max (040 =0 with J,(0)=0

Collecting the calculations for stage 2, we obtain the third and fourth rows of Table 19-3

Having completed stage 2. we now tum to stage |. There is only one state asociated with this stage,
=4
o (4) o man | £, (00 4 mo(d = 0N £00) 4+ ma(d = 1) fi(2) 4 myid < 2k £10) 4 mfd = 3), £(4) + my(4 - 4))

=man [0+ 8 2+6, 5+ b+ 1, T+0j=9 with 4y =2
With these data we complete Table 19-3

The maximum return that can be realined from this three.stage investment program beginmng with 4

units 1 m,(d)= 9 units. To achieve this return. allocate d,(4) = 2 units 10 investmen! |, leabing 4 — 1 = 2
units for stage 2 But d(2) = 0, indicating that no units should be expended at this stage if only 2 units are
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19.2

available Thus, 2 units remaim Tor stage 3. Since dy(2) = Z, both wnits should be allocated to investment 1
These conclusions are formalized by equations (19.4). The optrmal policy, therefore, is 10 allocale 2 units
to investment I, 0 uoats 1o investment 2, and I umits 1o investment 3,

An independent trucker has 8 m” of available space on a truck scheduled to depart for New York
City. A distnbutor with large quantitics of three different appliances, all destined for New York
City, bas offered the trucker the following fees to transport as many items as the truck can
accommodate:

Fee, Volume,
Applance | §/item | m’fitem

i 32
i 58 3

How many items of cach appliance should the trucker accept to maximize shipping fees without
exceeding the truck's available capacity?

This problem cun be viewed as a three-stage process, involving allocations of space o appliances I, 1L
and 1L, respectively. It can be modeled by program (J9./), with n =3, b =8, if x, () = 1, 2, 3) 15 defined a3
the mumber of cublc meters of appliance | to be shipped, and i fx,). the return from allocating x, 10 dtage
S, s defined by Table 19-4. The state at a given stage is the number of cubie meters of space still unoccupied.

Table 194

f
file) O |1 2| |8 | 55|66 |77 |88
&1 64
N 0] of 0| 6| 0| 58 | 58 | 58 | 52

iy (0] o| o] 2| 32| %

The first row of Table 19-4 is straightforward, smce cach additional cubsc meter allocated to applicance
| brings an additional $11 return. To generate the second row of ihe table, note that cach appliance 11
oceupies Im’, 5o that until at keast I m’ of space n available, no item of this type can be shipped and no
return realized. If 3, 4, or S m? {s allocated 1o appliance 11, oaly one item can be accommaodated, for & net
retarn of $32 106, 7 or 8 m” is allocated, then two items can be shipped, for a net return of $64. A similar
analysts holds for appliunce 11l No return ks nealised uvatil o1 least S m? is allocated 10 it and if 5, 6, 7, or
8 m® is allocared, then only ooe apphiance 111 can be shipped, for a net return of §58,

The model, program (9.1}, is solved by use of (19-2) and {/9.7), exactly as in Problem 19.1. The results
are exhibited in Table 19-5 all tiex were broken by choosing the smallest maximizing x as d(w). Table 19-5
shows that the beut total return the trucker can obtain, starting stage | with 8 m? of available space, is
m,(§) = $9]. To achieve this, 3m” [4,(%) = 3] must be allocated 1o appliance 1. keaving 5 m’ for the following
stages No volume should be allocated 1o appliance 11 [d(5) = 0], lcaving 3 m® for siage 3, all of which
shoukd be assigned 1o applrance Tl [dy(5) = 5]. In terms of items, the trucker should Lake three items of
appliance [ and one item of applisnce 111
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Table 19-5

0 1 2 3 4 $ ] 7 8
mylu) 0 0 0 0 0 58 58 58 55

dy(u) 0 0 (] 0 0 5 5 5 5

mylu) 0 0 0 n n &% ] (5] L 1]

&L | 0 | 0 | @ 3 3 a 6 6 3
m (u) L TL o | sea ; 9]
d,(w) 3

Convert the following program into system (/9./k
maximize: == 11y, + 32y, + 58y,
subjectto: ¥, + Iy, + Sy, <8 i)
with: all vanables nonnecgative and integral

This program s & mathematcal model for Problem 19.2 of we deugnate y; (j = 1. 1, 3) as the number
af items (in contrast 1o the number of cubsc meters) of appliance | 1o be shipped. Tlujhn.rmmnhn
maoxdels the volume himitation, the coefhicient of y; beang the volume per item of apphance j. As was shown
in Problem 19.2, a mathematical model for this program in the form of (19 /)—which has wuit corfficients
in the inequality constraint—is obtained if new vanables v, are defined 10 denote the number of cubs: meters
of cach apphance to be shipped. We then have

maximize == f{x,) + fHix;) + fi(x;)
subject o x; 4+ x; + x, =8 12
with:  all vaniables noaocgative and integral
where the return functions f{x) are defined by Table 19-4,
Observe that (/) s ot taken nto the form (/9.1) by the lincar tramformation
Xy =K Xy =y, Xy = Sv,

Although this transformation produces the desired type of objective function and the desired type of

inequality constraint it maps the set of nonnegative integer potnts (¥,. ¥y vy) into a sbset of the noanegative
inleger poinls (x,, Xy, x,). One needs precisely the functions fix) defined tn Problem 19.2 1o make possible
the cxpansion of this subset into the whole set.

Convert the following program into system (/¥./)
maximize: == g, (¥, )+ g ¥ + @yl yy) + @dul ya)
subject to: 2y, + s+ 6y, + Yy, 59
with: all variables nonnegative and integral
where the gdy) (j = 1, 2. 3, 4) are defined in Table 19-6
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Table 19-6

‘4
g1(y) 0 4 8 11 14 17 9|21 22 23

g:(») 0 2 4 6 8 10 12 14 16 18

galiy | 0 L |2 3] 6|31 |18 |20 296 | 26

g4(y) 0 1 7 9 14 | 16 | 21 | 23 | 25 | 77

Mimicking the approach used in Problem 19.3, we think of y; as tae number of items of product j to be
shipped in a certain truck. Table 19-6 then represents a schedule of shipping fees, while the lincar constraint
models the limitation on the total volume that can be accommodated. 9 units. The coefficient of y; in this
constraint is interpreted as the volume occupied by one item of product j (see Table 19-7).

Table 19-7
Product 1 2 3 4
Volume/Item 2 1 6 3
We now designate new variables x; (j = 1, 2, 3. 4) as the number of units of volume of product j (o be

shipped. Program (/) is equivelent to the following program of the form (/8.1):
maximize: z = fi(x;) + fa(x2) + f3(x3) + falxe)
subjecttor x; +x; +x3+x, <9 (2)
with: all variables nonnegative and integral

where f(x;) denotes the return from allocating x; units of volume to product j. These functions are derived
from Tables 19-6 and 19-7; for example,

Jf4+(7) = return from shipping 7 units of volume of product 4

return from shipping 2 items of product 4, since cach item of product 4 requires 3 units of volume
=ga(2) =7
Continuing 1 this fashion, we complete Table 19-8.

Table 19-8

Sfix) 0 0 4 4 8 8 11 11 14 14

falx) 0| 2| 4 6 8 10 | 12 | 14 | 16 | I8

i |o|lolotolwe | o 4.1 21 41 1

Ju(x) 0 0 0 1 1 1 i 7 7 9
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Establish a recursion formula analogous to (19.3) for the following problem. A small firm can
manufacture up to four computers weekly, and has agreed to deliver in each of the next 4 weeks
three, two, four, and two computers, respectively. Production costs are a function of the number
of computers manufactured, and are given (in thousands of dollars) as follows:

Units Produced. x 0 | 2 3 4

Cost, f(x) 4 13 19 27 32

Computers can be delivered to customers at the cnd of the same week in which they are
manufactured, or they can be stored for future delivery at a cost of $4000 per week. Because of
limited warehouse [acilities, the company can store no more than three computers at a time
Current inventory is zero, and the firm desires no inventory at the end of week 4. How
many computers should the firm manufacture in each of the next 4 weeks to meet all demands
at a minimum total cost?

As shown in Chapter 9, production problems of this sort are modeled as transportation problems. Suck
models do not have the form (/9.7); hence (/9.3) is not applicable. Production problems are, however.
multistage decision processes that can be solved by dynamic programming.

The present production problem is a four-stage process, with stage j representing the jth week
(j= 1, 2.3.4). The state u at stage j is the number of computers in inventory at the beginning of week j. Lex

m(u) = the minimum cost of completing the production schedule beginning at stage j in state u
di{u) = the production schedule for stage j that achieves mu)

D; = the demand in stage j
I{u) = the inventory cost charged against stage j when the state is u

fAx) = the cost of producing x computers in stage j

Consider the case where the company enters stage j with u computers in inventory. The company mas
produce any number of computers up to its capacity during this stage, provided the sum of its productios
level and its inventory level is at least as large as the demand D;. Any amount in excess of D; is stored =
inventory for the next stage. In particular, if x computers arc produced in stage j, a production cost fi(x
is incurred. The u units in stock generate a storage cost of I)(u), for a total cost in period j of fix) + I{u:
This leaves u + x — Dj units in inventory for stage j + 1, and the minimum cost for completing the process
at that point is m;, (4 + x — D). Hence the total cost for completing the process beginning at stage j wits
a production schedule of x units is fi(x) + [(u) + m;, ;(u + x — D;). The best decision for stage j with =
units in stock is to produce that amount x which minimizes this cost. Accordingly, for j = 1,2, 3,

miu) = mxm UAx) + Iuw) + mys (u + x — D))}

= Iw) + min { fi(x) + my.(u + x — D))}

wherein x runs through the values 0, [, 2, 3, 4. To guarantee that
O=su+x—D;<3 (storage capacity)

we set m; (1) equal to a prohibitively large penalty cost, M, whenever u < 0 or u > 3.

For the problem at hand, both the inventory costs and the production costs are independent of 1=
stage. and are given respectively by I(u) = 4u (thousand-dollar units) and f(x) = f(x), as defned in the
production cost table. The demands are D, =3, D, = 2, D, =4, and D, = 2. Relation (/) simplifies to

miu)=4du+ min {f(x)+mpu+x— D)) 2
x=0,1.2,3.4
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19.6

Solve the problem formulated in Problem 19.5.

There are either zero, one, lwo, or threc compulers in stock at the beginning of week 4. Since no
inventory is desired at the end of week 4, the optimal decision at stage 4 is to produce only that portion of
the fourth week’s demand, D, = 2, that cannot be met from inventory. Difficulty ariscs only if the incoming
inventory is three computers, which exceeds the demand. To prevent this situation in the final policy, we
assign it a very high penalty cost to completion, 1000 (thousand-dollar units). The cost to completion for
all other states is the holding cost of the current inventory plus the production cost of the shortfall between
demand and inventory. Thus,

my(3) = 1000

my(2) = storage cost of two computers and production cost of zero computers
=4(2)+4=12 with dy2)=0

my(l) = storage cost of one computer and production cost of one computer
=4+ 13=17 with dy1)=1

m,(0) = storage cost of zero computers and production cost of two computers
=40)+19=19  with d,(0)=2

Collecting these results, we have the first two rows of Table 19-9. The remaining entries are obtained by
stepwise application of (2) of Problem 19.5, for j = 3,2, 1. Again, M = 1000 is used to rule out impossible
mventory states,

Table 19-9
7
0 1 2 3

my(u) 19 17 12 1000
d (1) 2 1 0
(1) 51 30 46 44
d(u) 4 3 2 1
ms(u) 70 68 63 66
d,(u) 2 1 0 0
my(u) 97
d,(u) 3

It follows from Table 19-9 that the minimum production cost for completing the entire process beginning
at stage 1 with 0 units in inventory is

my(0) = $97000

To achieve this, the company must produce d,(0) = 3 computers in the first week, all of which are shipped
immediately to customers. The company then cnters week 2 with an inventory of zero. and must produce
d,(0) = 2 computers, which again just meets demand. The optimal production level for stage 3 with zero
computers in inventory is d4(0) = 4, thereby exactly meeting demand; and the optimal production level for
stage 4 with zero computers in storage is d4(0) = 2. Thus. the optimal policy is to produce exactly the
number of computers needed to satisfy the demand and never te have any in inventory.
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A manufacturer has an order from a railroad for 12 diesels 1o be delivered three per year for the
next 4 yeurs Production datu are displayed in Table 19.10. Dhesels can be deli al the end
of the same year in which they are produced, or they can be stored by the manufacturer, at a
cost of $30000 per dicse] per year, for shipment during & later year. Currently ulacturer
has onc dicsel in stock and would like to build this inventory to three at the end of four years.
Determine a production schedule which will meet all requirements at a minimmum fotal cost

Table 19-10 '
]
Yean
| : 3 4
Production Capacity
(regular shift) I 2 i a i
Production Capaaity
{overtime shifi) 2 2 k| 2
Cost per Dncsel
{regular <hifi) 5350000 $370000 $295 000 !-lhll:ll.'!
Cost per Diesel :
(overtime ahifi) $375 000 SAC0 000 430000 Slﬁ‘!th

We solve this problem by dynamic programmmg. wieng the notaion and recumadn Formula (1)
developed in Problem 195 There are four stapes (years) lo conmder, with the being the
specifications of the production levels for the stapes. The production capacity a1 each sage is the sum ol
the capacities for the regular and overtime shifts for that year. Sctteng () = M. » very penalty cast,
if & level x cannol be et o stage |, we reformulate the productson data as Table 19-11, with all costs given
in thousand-dollar units.

Table 19-11

J
Jix} | 0 | 350 | 725 | Hoo | M M M

fx) | 0 | 30 | 40 | 1140 | 1540 | M M
fHixy | o | 95 | 0 | 1ss | 1615 | 2065 | 2478
Sax) | 0 | 420 | 840 | 1260 | 1es0 | 2148 | 2610

A final invemory of three diesels B mowt easily enaured by increasing the demand in ihe last sape by
three. Thus, D, = D, = D; = 3, while ), = & The maximum posuble mventory al any o five deewels,
schicved at the end of stage 3 under conditions of manmum production at all sages. . we fake
the states to be w=0, 1. 2, 5, & & and define /ju) = W (independent of J). Alo we sef m;. (u) = M
{(j= 1,2 ) whenever u> Soru<i |

Srage 4 o w dicechy are in wock ar the beginning of this suage. :hﬂthlhﬂﬁluthrpﬂd!h thousand
dollars, Then the mimimum-cost dectson for completing the process s 1o musufacture

du) =Dy, —~u=b-u
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195

dicsels at a coat of [06 — vl The munimuim codl 1o completion is
mgin) = 0u + fi6 — ul
These arc the entries in the first two rows of Tablke 1912

The remainder of Table 19-12 & obtaned from the recursion formula, (/) of Problem 19.5, in which the
minimization s over x =0, _ & Tees for dy(2) d (1) and J;(0) were broken by choosing the smaliest
mintmizing x in cach case. 11 is soen that the mimmum tolal cost 1o complete the process i m,(1) = $5 630000,
To acheeve this cokl, 3 production run of two diesels 1 required lor stage 1 [d,i1) = 2], leaving nothing in
storage; a production run of three diesels 1 required for stage 3 [J,(0) = 1], beaving nothing o storage. a
peoduction run of five digsels & necessary for slage 3 [d,(0) = 5], leaving two dieiels in inventory; and a
peoduction run of fTour dicsch m reguired for the laa stage [d,(2) = 4],

Table 1912

e

gl =510 2175 1740 1350 Sl N

L&
—_

dylu) b 5 i i

mylu) | 3785 | 3385 | 29%S | 2620 | 2255 | 15%0

[
-

d il 5 4 3

miu) | 4925 | 4555 | arss | ams | a7 | osies

d;lu) 3 2 2 2 I 0
m) | o0 | S680 | oo |

|
d, () 2 ' ’

Establish a recursion formula for solving the following problem by dynamic programming. A vending
machine company currently operales a 2-year-old machine at a certain location. Table 19-13 gives
estimates of upkeep, replacement cost, and income (all in dollars) for any machine at this location,
as functions of the age of the machine.

Table 19413
AgE, W
0 I 2 3 4 3
Income, fiwh 10000 | 9500 | 200 | 500 | 700 | 6100
Mamtenance. Wiu) 100 ax §00 | 2000 | 2800 | 3300
Replacement, Rix) el AS00 | 4200 | 4900 | 5300 | 5900

As a matter of policy, no machine is ever kept past its sinth anniversary and replacements are
only with new machines. Determine a replacement policy that will maximize the total profit from
thix one location over the next 4 years
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This equipment replacement problem is a four-stage process, with each stage representing a year in the
time period under consideration. The states at a given stage arc the possible ages of the machine entering
that stage. i.e., u = 1,..., 5. Al each stage, the decision variable has only two values, which may be denotec
KEEP (retain the current machine) and Uy (replace the current machine with a new machine). Define

m{u) = the maximum profit to be achicved beginning at stage j in state u
d{u) = the decision at stage j that achicves m(u)

and let the functions [{u), M(u), and R(u) be defined by Table 19-13. If the company enters stage j with =
u-year-old machine and decides to Keep the machine, it will cost the firm M(u) to maintain the machine.
for a yearly profit of I{u) — M(u). The firm will then enter the next stage with a (u + 1)-year-old machine.
and the best profit it can achieve with it (and its possible successors) is m. ,(u + 1). Thus, the overall profit
to completion is

Iu) — M(u) + mye(u+1) (7

If instead the company decides to sell the u-year-old machine at stage j and to Buy a ncw machine, it incurs
a replacement cost of R(u). The new machine is 0 years old. so it will generate income /(0) and cost M(0
to maintain. The yearly profit would be I(0) — M(0) — R(u). The firm then enters the next stage with =z
1-year-old machine, and the best subsequent profit it can achieve is m;. ((1). In this case, the overall profi:
to completion is

1{0) — M(0) — R(u) + m;, (1) 2
The optimal decision at stage j produces the larger of the quantitics (/) and (2); that is.

m{u) = max {J(u) — M(u) + m; . (u+ 1), 10) — M(0) — R(u) + m;-, (1)} (3

Solve the problem formulated in Problem 19.8.

We observe that, beginning stage 1 with a 2-vear-old machine, it is impossible to enter stage |
(j=1,...,4) with a machine older than j + 1 or of age j. Therefore, we will set m{u) = — M, a very large
negative return, whenever u > j+ 1 or u = j.

Srage 4 Formula (3) of Problem 14.8 also holds for j = 4 if we define ms(u) = 0. Thus,

ms(5) = max (/(5) — M(5), I{0) — M(0) — R(5)}

= max {6100 — 3300. 10000 — 100 — 5900} = 4000  with  d,(5) = BUY
my(d) = —M
ma(3) = max {1(3) — M(3), I(0) — M(0) — R(3)}

= max {8500 — 2000, 10000 — 100 — 4900} = 6500 with ds(3) = KEEP
my(2) = max {1(2) — M(2), I(0) — M(0) — R(2)}

= max {9200 — 800, 10000 — 100 — 4200} =8400 with  d.(2) = KEEP
my(1) = max {I(1) — M(1), I(0) — M(0) — R(1)}

= max {9500 — 400, 10000 — 100 — 3500} = 9100 with di(1) = KEEP

These results constitute the first two rows of Table 19-14.

The remaining entries in Table 19-14 are obtained by sequential application of the recursion formula
for j = 3,2, 1, with returns from impossible states penalized as previously stipulated. It follows from Table
19-14 that the company can achieve a maximum total profit of $30900 over the next 4 years, beginning
with a 2-year-old machine. To do so, it should keep the current machine for one more vear, then buy a new
machine and keep it for the remainder of the time period.

Solve the problem described in Problem 19.8 if the objective is to maximize the total discounted
profit over the next 4 years under an cffective interest rate of 10 percent per annum,
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Table 19-14
]
| 2 3 4 3

mglu) 9100 %400 6500 -M 4000
dafu) KEEF KLy Kilr
mylu) | 17500 | 14900 -M 13200 | -M
i {w) Kire (4 “ae Y
myle) | 24000 -M 22 500 -M -M
dilu) Kur e BLY
o (u) £ne 30900
dyfu) s KEEP

Without discounting. the recurmon lormula for the optimal profil is (7) of Problem 195, In terms of
prosent values for stage ). the formuls becomes

miu) o max (Hu) = Miu) + am;, e + 10, 10) = M(0) — Riu) + am;, (1)} ()
1
e L
v oa0
We solve (/) by the same procedure as employed in Problem (9.9, The solution is presented in Tuble

1915 Comparing with Table 19-14, we sec that in this caw discounting has not changed the optrmal
policy —it is soll xine, suy, e, Kisr—but has reduced 1he oplimal profit 1o 526777,

Table 19-15
1Y
i 2 3 4 b
m iu) 9100 400 6500 - M 4000
diw) Kitp KErP KEEP ree BUY

mylu) 16736 14 30% -M 12373 -M

dylw) KEEP KEEP muy

my(u) | 22108 -M 20218 - M -M
ol glai) Ko Ve BLY

mlu) 2677

dy(w) KIEP
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19.11 Eight bushels of oranges are to be distributed among three stores. The demand for oranges at

gach store is random, according to the probability distributions shown in Table 19-16. The profit
per sold bushel at stores 1, 2, and 3 is §18, $20, and S21. respectively. Determine the number of
bushels (constrained to be an integer) that should be allocated to each store to maximize expected
total profit.

Table 19-16
Demand Probabilitics
Bushels Store 1 Store 2 Store 3
0 0.1 0 0.1
1 0.2 0.2 0.3
2 0.3 0.6 0.2
3 0.2 0 0.2
4 0.1 02 0
3 0.1 0 0.2

This is a three-stage decision process. with stage j representing a delivery of oranges to store j. Ths
states for cach stage are u = 0. 1.. ... & representing the numbers of bushels available for delivery to a stors
There is no tandomness in the state resulting from any decision—if 2 bushels are allocated to =
store, then that store will stock 2 bushels—but there is randomness in the return from any state, With Z
bushels in stock, a store may sell either 0. 1, or 2 bushels, with each possibility generating a different prof:
Consequently., we maximize expected total profit rather than total profit. We define

fi{x) = the expected profit from allocating x bushels to store j
m () = the maximum expected total profit beginning at stage j in state u

d,(u) = the decision taken at stage j that achieves m(u)

The values of the payoff functions (in dollars) are exhibited in Table 19-17. A typical calculation—say, tha:
of fi(3)—follows; With 3 bushels allocated to it, store 1 makes a profit of §0 if 0 bushels are sold; $18 if !
$36 if 2; $54 if 3. The respective probabilities of the first three of these events are, from Table 19-16, 0.1, 0.2
and 0.3. The probability of the fourth event is the probability that the demand will equal or exceed 3 bushel=
02+ 01+ 01=04 Thus,

Fi(3)=(0)(0.1) + (18)(0.2) + (36)(0.3) + (54)(0.4) = 36
In terms of these fi(x), we have a formally deterministic problem that is covered by the model (/9.
Applying the dynamic programming technique. we generate Table 19-18. The optimal policy is to allocar=

3 bushels of oranges to store 1, 2 bushels to store 2, and 3 bushels to store 3, for an expected total pro=
of $111.90.

Table 19-17

filx) 0 1620 | 28.80 | 3600 | 39.60 | 4140 | 4140 | 4140 | 4140

£, | 0 | 2000 | 3600 | 4000 | 4400 | 4400 | 4400 | 4400 | 44.00

fax) | 0 | 1890 | 3150 | 39.90 | 44.10 | 4830 | 48.30 | 48.30
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Table 19-18

mlu) o 1890 | 3150 | 3990 | 4410 | 4830 | 4830 | 4830 | 4530

L)
N
ks
L]
A
L
LF ]

o yw) n |

LACT 0 2000 | 3890 | %4990 | 6750 | 7590 | 8010 | 8430 | 30

dylm) 0 | | 2 2 4 2 2 1
u;tﬂj - & & & e = - - FE llrm
of (u) . . . .y o 3

1912 A person has 3 (thousand-dollar) units of money available for investment in a business opportunity
that matures in | year. The opportunity s risky in that the return s ¢ither double or nothing.
Based on past performance, the likelihood of doubling one’s money is 0.6, while the chunce of
lowng an investment is 0.4 Determine an mvestment strategy for the next 4 years that will
maximize expected total holdings at the end of that period, if money carned one year can be
reinvested wn a later year and of investments are restricted (0 unit amounts,

This ¢ a four-stage process, with cach stage representing a year. The states are the amounts available for
mvestment: iy = 0 1, .. 24 (the last obtained by investing all available funds esch year and having the
investment double cach time) for stage & wy =0, ..., 12 for stape 3wy = 0.1, ... 06 For slage 2 u, = )
for mage | Randommness here ogcurs in the state indueed by & particular dectsion. For example, if one has
1 units (e, the present state 1 3) and decades 1o invest 2 units, then the succeeding stale s erther 5 or |,
depending on whether the mvested amoust i doubled of i Jost. Write

m fu,) = the maximum expected holdings at the end of the peocess, starting in state w, al stage |
dju,) = the amounl invested al stage f that achicves mfu,)

If one enters stage j with i, units, then x units (x = 0, 1, ..., u,) may be invested, leaving w, — x unily in
reserve. If 1he invesiod amount doubles, there will be

x4y —x)=my = x
units available for the next stage; il the invested anils are lost. then only the reserve of (u, — x) units will

be available for the next stage. The best retumn from that poiat i cither m, . (u, + ¥) o1 m,, ,{u, — x), the
expoected value of this best geturm being

nhr..qt-* * ." * M‘. jl"I - -t]
The optimal choice for x is that amount which maximizes the above expression

® fu) = manimom [Qbm, . (v, + x) + Odm,, (0, — x)] irn

=R,

Equation (1), the recursion formula for the process, bolds for j = 1, 2 % nt alw holds for j = 4, under the
end condition myiu) = u 1 s obvious that since m, is 3 hinear, mereasing functhon, so are my, . ., m,. Indeed,
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carrying out the maxmmization in (/1. we readily oblain
) = 1 2w, ot ylony) = (1.2V 1, myfig) = (1.2)"u; my )= (21,
with of for)) =, [} = 4.3, 2 1) Thus the optimal cxpected holding is
m A= (120%3) = 62208 units

chianed by nvesting all avaslable units cach year of the provess. Note that such an policy results
i either 48 units Or O wnits a1 the end of 4 years, depending on whether all knves double or one
insestment i completely lost. Nonctheless, the expecred return under that policy i .

(ASN0.0)* & (0M[1 = (0.6)"] = 6.2208 units

where (065" i the probabibty that all four mvestments are sucoessful and 1 —lMJ‘h:hepmhhhuthu
Al least one mvestment fab,

Solve Problem 19,12 1 the objective 15 to maximize the probability of accumulating holdings of
at keast 5 (thousand-dollar) units after 4 year

This problem deals nol with the expected nadwe of the return but rather with the
retwrn is of a certain sise. For example, if the investor adopts the policy of investing all a
cach stage, then, as was shown in Problem 1912, the probabslity that be or she cads up withiS or more units
w (06)* = 01296, The question e can that value be bettered by another choice of policy? |

The states and stages are as defined i Problem 19.12. Winte |

£ = the event of fimishing the process with 5 or more wnits

mju,) = the probabsiity of E given that the state ar stage j o w, and an optimal pobcyis followed
from stage | onwands

dfu;) = the amount invested af stage | that achieves mju;)
I s voits (x =01, w)) are invested at stage /. then, s im Problem 1912,
Pl = u;» x)= 08 Hi,..-u*-.ﬂum

By the rules of conditional probabilities [(7) of Problem 185, with M, = “double™ and M} = “nothing ")
the expretdon :

b, , (0 + x) = Odm. (v, = x)
represents the probability of E given u. the decision x. und an optimal continuation from stage | + | Hence,
HJ.‘J,'MM [&h’.]t"" I}f‘o—h,. l.‘h',"'jr] {f}

i 1 L1
for j = ), L 1 Formally, this i identical to the difference equation obtained in Problem 1912, howewer, &
new end condition applics
Conditsoning on Lbe outcome of the final invesiment decuson, we have

mgluy) = marimum [06PU, + x = 5) + 04Pu, — 1 = 9))

=g ™

II'I‘I.I'.[J" + U] i

With the ad of Fig 19-1, we carry oot the maximirathion m (J), obtuining

0 -1 g :l:':.l.l
mlu) =06 w,=24 with d )= " “: 53 )
I =564 0 ig=S.6....24

where the wnallent optunal investment f (i, ) has boen tedicated

Tahle 19:19 presents the solution of (/) wbject to the ead condition (1) Again, oaly the smallest d {u,)
i listed in the event of a te I is soen that the maumum probabidity for sccumulating at least $ units of
money in 4 years i 0.7056, A policy table, of the form of Table 192, for realizing this maximum probabdity
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Fig. 19-1

may be composed by extracting rows K 4, 6, and 2 of Table 19-19. Either table shows that under this
particular optimal policy the investor finbes with 0, 1, or § units, the probability of the last event being
(.7086. Alternative optimal pohicies exist which allow the mvestor to accumulate more than § units, but
alwayy with a probability of 0.7056 for § or more unilx

Table 1919

0 1 2 : | 4 S| 6 n” 24
il a a 0 0.6 06 1 I Eee 1 Lee |
 uy) 0 0 0 2 ! 0|0 . 0 0
gy 0 0 036 e 0s4 | 1 1 1
dylusy) 0 0 ! 0 1 0|0 | - 0
mylu,) 0 06 | 054 0648 | 084 | | I
dyluy) 0 1 2 1 0 0|0
) 07056
o tuiy ) 1

19.14 The manulacturer of a space shuttle for NASA has the capability to produce at most two shuttles
cach year. It takes a full year to manufacture a shuttle, but since orders are not placed by NASA
until July, for delivery in December, the manufacturer must set the production schedule prior 1o
knowing the exact demand. This demand will be for either one shuttle, with probability 0.6, or
two shuttles, with probability 0.4. Any shuttle ordered but not delivered incurs a penalty cost of
1.5 million dollars and must be delivered the following vear, taking priority over any new orders
in the future. Production costs arc a function of the number of shutthes made, with the cost of
one shuitle sct at 10 million dollars and the cost of two shuttles set at 19 million dollars.
Overproduction can be stored for future delivery, at a cost of 1.1 million dollars per shuttle per
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year, and Is limited by company policy to a maximum of | shuttle. Determine a production
schedule for the next 3 years that will minimize expected total cost, if the current inventory is
zero shuttles.

We view this as a four-stage process, with stages 1, 2, and 3 representing the next 3 years in the planninz
horizon, respectively, and stuge 4 representing the delayed production of those shuttles ordered in year :
but not delivered. The states are the possible inventories at the beginning of a stage: they range from a low=
of —2 (signifying two shuttles ordered but not delivered) to a high of 1. We set

i

u = the number of shuttles in inventory (n= -2, —1,0,1)
mgu) = the minimum expected cost for completing the process beginning at stage j in state u
di(u) = the production in stage j that achieves m(u)

D = the yearly demand [P(D = 1) = 0.6, P(D = 2) = 04]
f(x) = the cost of producing x shuttles in 1 year

If the firm enters stage j (/= 1,2,3) with w = 0, | shuttles in inventory and decides to produce
additional shuttles (x =0, 1, 2) in that stage, it incurs a carrying charge of 1.1u on its inventory and
production cost f(x) for the new shuttles, for a yearly expenditure of

J(x) + Llu (i

e

The total number of shuttles available for delivery at the end of the year is u + x, which leaves u + x — D
shuttles in inventory for the following stage. The minimum cost of completing the process from that poin:
is m;, ((u+ x — D). Since D = 1 with probability 0.6 and D = 2 with probability 0.4, the minimum expected
cost Lo completion beginning with stage j + 1 is

0.6m;. (u+x—1)+04dm;, ,(u+x—2) (2
Therefore, the minimum expected cost to completion from stage j is the minimum, with respect to x, of the
sum of (7) and (2):

mfu)=1Llu+ min [f(x)+ 0.6m;. (u+ x— 1)+ 04m;.,(u + x — 2)] 3

x=0.1.2

foru=0,1and j= 1,2 3. Here we agree that mf3)= +M for all j.

If the firm enters stage j with u= —2 or u = — |, then it had a shortfall of —u shuttles from ths
previous stage and is subject to a penalty cost of —1.5u. A decision to produce x shuttles, where x must be
at least as great as —u to satisfy the previous shortfall, results in a production cost of f(x). The resulting

cost to the company in stage j is

f(x) = 1.5u (£}
Continuing the analysis as in the case u = 0, 1. we obtain the recursion formula
myu)=—15u+ min [f(x)+06m; (44 x—1)+04m; . ,(u+ x—2)] (3
foru=—2, —1 and j = 1,2, 3. We can replace (3) and (5) by the single relation
mfu)=g(u) + min [f(x)+0.6m;.  (u+x—1)+04m;_,(u+ x—2)] (&
E= —Myea.. 2
foru=—2,...,1and j =123, provided we define

1l.ly wu=0
= i and -i=4M
gi) {— 150 wu<0 - fi-n=+

The stepwisc solution of (6), extended to j =4 with the end condition ms(u) =0, is given in Table
19-20. The minimum expected cost is 42.24 million dollars, achieved by the optimal policy shown in Tabls
19-21.
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Table 19-20 Table 19-21
" Inventory levels
I—_- g ? 0 l -2 —1 0 1
my(u) 22 11.5 0 L1 2 ;lz 2 2 ; 0
dy(u) 2 | 0 0 = i i ? (I) g

ms(u) 37.7 251 14.6 5.7

d‘),(l{} 2

[ 5]
-
=

my(w) | 5214 | 393 | 2826 | 199

da(u) 2 2

o5
L=

m,(u) £ae Vet 42.24
d’{u)J J

19.15 A Presidential nominee has reduced the field of possible Vice Presidential running mates to three
people. Each of these candidates has been rated on a scale from 1 (lowest) to 10 (highest); person
| received 10 points, person 2 received 8 points, and person 3 received 5 points. The probability
of person i (i = 1, 2, 3) accepting the jth (j = 1, 2, 3) offer to run for Vice President (assuming
the first j — 1 offers, to other people, were declined) is denoted by p;;, where

b2

Py =035 pi2 =02 P1a=0
p2; =09 P2z =05 P23 =02
Py =1 ps>» =08 p; =04

In what order should the three potential running mates be offered the Vice Presidential nomination
if the Presidential nominee wants to maximize the expected number of points?

It is assumed that no person is asked more than once, and that each time a candidate declines, another is
asked. until either one candidate accepts or all have declined. We then have a three-stage process, with stage
j representing the jth position in the asking order. We take the states to be the sets of people still unasked.
Stage 1 then has the single state

stage 2 has the three states
Uy ={1,2} o = {1, 3} Uzs = {2, 3}
and stage 3 has the three states
Uy, = {1} Us, = {2} Uss{3}
We set

m{(Uy) = the maximum expected number of points achievable starting at stage j in state Uy, given
that there was no acceptance in previous stages

d{U;) = the person 1o ask in stage j in order to achieve m;(Uy)

V; = the point-value of person i
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For this problem, the recursion lformuls 1
mAUg) = man [Kp, « (F = pyim,. iUy = {0})] t

(14
that &, o i stage | person | 1 asked and accepts, the payolf is 1; whereas, if that ind declines, the
best continuation i [rom the state comisting of the remaining unasked persoms. F (1) bolds for
J= 1L 2 3 f we deline s (U3 = 01t ks soen that the present problem i a stochastie verdon of Problem 19.25.

Stage §
myily,) = 100) = O Wy ) =1
mylUys) = 8402) = 1.6 with dyflyz) = 2
mly,) = 504) = 20 with dy(lyy) = 3
Seage 2
() o max (1000.2) 4 (1 = 0.2pmry (U3}, §O5) + (1 = DShey(Uy,))
= mar |2+ (OKNT6LL + (O5N0) =4 with dx(Un) -3
milUsg) = max 11002) + (1 = 02my(Us,l 408) + (1 — O8)myUy)]
= man |2+ (OEN20L4 + (02)0)] = 4 with PRIENES
my(Uy ) = max (800.5) + (1~ 0 Spmry(Lly,h S(0.8) < () — O8pmyLys)|
- max {4 + (0SH2L 4+ (02N18)) = § with dyllys) = i
Stage |

MUy, ) = max 1083 < (1 = 0.8)myUy ) SO9) 4 (1 = 09my(Uyy) SU1)+ (1 = Dima(ly, )
=max |5+ (0SNS5 T2 + (0IN4), 5+ 04))
-4 with dy(Uy) =2

The optimal policy is to ask person 2 first; if that person declines, then 1o ask person 3 [dy{L;;) = 3], and
il that person declings, then (o ak person | The expected pumber of points from such a ; in 16

Supplementary Problems

David Jeremy, a conified public acoountant, has offers from three diflerent chients for his pes Fach chient
woukd ke Mr. Jeremy 1o work for him on & full-time basisg howewver, each chient is walling 1o employ Mr,
Jeremy for as many days of the week a5 he &5 prepared 1o give, for the fees shown in T 19-22 How
many days should Mr Jeremy devote to each chient to mavimize his weekly mcome? i

Tabde 19-22
Number of
Dhaxs Clhem 1§ Clent 2. § Chent 3. 5
0o (i} (i} 0
1 100 124 150
2 250 24 ki
k) 'l LYs 4iny
4 25 o 550
1 00 625 650
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19.17

19.18

19.19

19.20

"

19.22

1913

19.24

Redo Problem 19.16 under ihe addivonal constraini that Mr. Joremy work at beast | day per woek for cach
client, (MHim: Penalize the possibality of working 0 days for any client.)

A cargo barge capable of transporting up to 10 tons of material has requests from four companies 10 carry
thesr merchandise from St Louis 10 New Orleans. Each company can supply as much merchandne as the
barge captuin is willing 10 acoept. The merchandme must be shipped in unit amounts;, Table 19.23 gives the
shipping foes

Tabde 19-23
Weight of
Merchandise, | Shipping Fee,
Company 10ns /ilem $/item
I I 10
1 2 25
m 3 45
v 4 60

How many items ol each company's merchandise should the barge caplam accept 1o maxmmaeze the lotal
shipping foes without excoeding the barge's capacity?

Use dynamic programming 1o solve Problem 116, under the additional construint that games be produced
in whole aumbers. (Him® Count time in half-hour unite)

mavimize: @ o= Sx 4 Sxd 4 Ay
subpecttor 3y +day + x5 11
with:  all varuabies pooncgative and integral

Use dynamic programming o solve Problem 1K

Use dynamic programming to solve Problem 9.10.

Obtain & recursion formula for, and then salve, the problem described in Problem 198 o in addibon W
either keeping the current machine or buying a new model, the company may alio purchase a used maching
younger than its current model. Take the cost of replacing & wyear-old machine by an x-ycar-old machine
10 be the difference beiwoen the costs of ther moplacement by a new machine. For caample, the cost of
replacing @ 3-year-old maching by a I-year-old machine is 54900 — $3500 = $1400,

Establivh a recwrsion formada for, and then slve, the following problem. A small constroction company curreatly
has a 1-year-obd damp truck. Estmates of its upheep, replacement coats, and 1he revenwes it can be expected
1o generale, logether with amilar data for new trucks that may be purchased in the future, are given in
Table 19-24; all amounts are 10 units of $1000 Tracks are never kept more than 3 years, and replacements
wre only with new modeh, Determine a maximum-profit replacement policy for this company over the pext
§ years
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Table 19-14

Age Reverive Upkeep | Replicement
Gt | 3 | | w2
3 A 35
Q 21 i 6
Mew | 2 19
Model 2 17 11 26
3 16
Next 0 i | 1 [
1 17 7 I8
Years 2 s 12 26
Model - » o -
Model 0 22 2 7
Tor Weats 1 19 8 19
Hence ! 17 12 24
3 . - 17
Model : | B y 2
Three Years 5 1 -
Hande 2 | 1 2
3 ri ¥
Model - : s
:""' Yoo | o 14 10 2
m 3 Livas L }!

Solve the 3 » 3 asssgnment problem, with cost matnx
Jobs
1 2 3

| €1 €i3 £y3
2 L1 L3 £33

z 3 €39 €3z Lt

isee Chapter %), by dynamic programming. For larger matnees, would this approach nival the Hunganan
method?

Solve Problem 19.7 with discounting. ff the effective interest raic 15 7 percent per amnium.
Solve Problem 19.23 with discounting, il the effective interest rate i § percent per annum

Solve Problem 19,11 with the additonal consideration that any unsold oranges spoil, resalting in a loss of
815 per bushel,

A person has S2000 available for investment and two opportunities, A and B, Both opportusities are risky,
the possible vearly returns per each S1000 invested and the probabilitics of realizing these refurns are given

in Table 19-25,
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Table 19-25
Return, § Probabilily
ELLLY] 04
A
{ uo
J000 02
" S . P
ELLH] 14

Determine an nvestment sirategy for the next 3 years that will maximize expecied final holdings, if the
person s restneied 1o either one S1000 investment or a zero investment each year.

Solve Problem 19.291f the objective is to maximize the probability of accurnulating at least $5000 after 3 years.

An ofl company hus 8 units of money available for explorstion of three sites. I oil = presemt at a site, the
prebability of finding 1t is a function of the funds allocated for exploring the site, as detailed in Table 19-26.

Table 19-26
Units Allocated
0 l - 3 i 5 b T L
st |0 [0 o1 |o2]03]os|or]os |1
Hite 2 0 1R 02 03 n4 b a7 0y l
Sie3 | 0 [ 01 |01 |02 |03 | 05|08 |09 |1

The probabilitics that ol exists at the sites are 04, 0.3, and 0.2, respectively. How much money should be
alloepted 1w exploration of each site lo maximize the probebility of discovering ml?

A department manager has 4 weeks 10 complele a project that requires 10 umits of work. The department
has six people who can be assigned 1o the project cach week, The costs {im thousand-dollar umts) and the
work that can be accomplished depend on the number of people assigned (o the project each week, as follows:

People
Awsigned 0 |

(]
Ll
i
L Y
o

Work Units
Completed 0 2 4 f 7 9 10

Bl
.
e
—
=2
=
bdl

Cost LE 1

Onge assigniments are made for the week, the Vice Pressdent for Operations may franslfer people (o johs
outside of the department. This happens ofien enough that the department manager must take the possibility
mta account m allocating personnel. Although the vice president never pulls everyone from a project. there
s 8 20 percent chance of losing one person whenever two or more are assigned to the same project, and a
10 percent chance of losing two people f three or more are assigned to a project. Any person transferred
from the department for the week is not charged against the department, and returns 1o the department al
the end of the week., Detemine an optimal policy for asigning people 1o this one project over the next
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4 weeks that will minimize expected total cost to the department yet guarantee that the project will be
completed on time.

A manufactunng firm has placed an order for 3 new production facility that will be installed in 4 years.
Until that time, it must use the current facility, which includes a particularly woublesome machine. Each
year a decision 15 made whether to keep the existing machine in the facility or 1o replage it with o new
model. The cost data for such machines are as follows: (1) A u-year-old machine costs (500 + 10u*) dollars
to operate for one year, (1) An operable u-year-old machine has n salvage value of (200 < 30w} dollars; an
inoperable machine has no slvage value, (3) The cost of & new machine j years in the future is (300 + 1005)
dollars, (4) The probability that a machine will experience i catastrophic Iilure which i beyond repair is
0.75, regardless of the age of the machine. Tt is assumed that a entastrophe can occur only at the very end
of the vear.

Determine an optimal replacement policy for this piece of equipment over the next 4 years if the current
machine is | vear old,

A gomputer firm has the capability 1o manufacture as many as four computers each week. The demand for
compulers is varable, bang governed by the probability distnbutions given in Table 19-27.

Table 19-27
Demand

0 1 2 3 4 5

0 61 02 O 02 ©
01 01 ©02 05 al
02 04 02 01 0

Werka
T Bl
(=R -]

Production costs are a function of the number of computers manufactured and are given (in thousands of
dollars) as follows:

Units Produced | 0 1 2 3 4
Cost 0 18 30 44 5%

Computers can be delivered to customers at the end of the week of manufacture, or they can be slored for
futdre delivery st a cost of S4000 per computer per week. Ovrders that are not filled during the week they
are placed incur a penalty cost of $2000 per companter per weck and must be filled as soon a8 possible during
the following weeks. How many computers should the firm produce in the next 3 weeks to minimize expected
total cost of sitisfying demand, if the current inveniory is rero?

An electronic system consists of three components in series. The components function independently of one
another, and each component must function if the system as a whole is to function. The reliability of the
system {the probability that it will function) can be improved by mstalling severnl paraflel units in one or
more of the components. The probability that a component will function depends on the number of parallel
unity installed, aceording 1o Tahle 1928,

The cost for each unit is $100 for component 1, $200 for component 2, and $300 for component 3.
Determine how many units of each component should be designed into the system to maximize the reliability,
il the cost of the components is not to exceed S1000. (Hini; This problem is deterministic, despite the fact
that the return is a probability, Choose as the objective function the loganthm of the reliability, and take
as the state at stage | the number of hundred-dollar cost units that may be spent for units of component j.)
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Table 19-28

Units in Parallel

R e | R« 4 | 5

|
|
Component | | 040 | 064 | 078 | 087 | am

Component I 050 075 | 088 ie4 097

Component 3 060 | 084 | 0G94 | 057 | 059

A eontractor needs three different components (o complete a project by its due date. Three subconiractors
are available to manufacture cach of these components. The probabality that a subcontractor will deliver
an ordered component by the due date i listed in Table 19-25,

Tuble 19-29

Compousent 1 Component 2 Component 3

Subcontracior | L83 fial 91
Subcontractor 2 .59 g3 RS
Subcontracior 3 091 0na3 093

Determine an optimal assigament palicy that will maximize the probability of all components being deliveresd
by the due date, if no subcontractor can be swarded more than one job. (Nint: Maximize the logarithm of
the probability, proceeding as in Problem 19-25.)

Determme a recursion formula for the following problem. A physician wishes 1o raise a pauent's level of a
pariicular antibody &t leasl & units over a d-day penod by prescribing plis for the panent to take each
evening. The actual amouni of antibody absorbed by the patient, which is a function of the number of pills
taken, s limited 1o 8 maxmum of 3 units per day. The absorption rates, slong with the probabilites that
the patient will expenence a reaction severe enough 1o keep him from work the following day, are given in
Table 1%9-30, Determine a dosage schedule for the patient that will achieve the prescribed level of antibody
with the mimmum gapecied number of workdays lost.

Table 19-30

Daily Dospge

of Pills { [ 4 1 4 3 6 7
Units of Antibody

Absorbed 0 09 1.7 24 29 30 in 30
Probability of

Missing Work

the Next Day 0O 008 015 03 0% 070 095 |

Dieterming o revursion formula for the follirwing problem, A sontractor has two projects that must be completed
in § days. Project | still requires 16 amls of work and project 2 needs 23 units of work. The contractor
employs five crews full-time, at a cost of $1000 per day per crew, and, at any time, can subconiract work
to outside crews at a cost of 31500 per day per crew, The wnits of work sccomplished on each project are
a function of the number of crews assigned to the project, ad shown in Tahble 1931 Crew schedules are wet



368

1939

DYNAMIC PROGRAMMING [CHAP. 19

cach evening for the next day, and always imclode assipnments For all five of the conir ' % own orews
However, 10 percent of the time, one of the contractor’s crews will call in sick the following day, in which
event that crew is nol paid for the day. Subconiracted crews are never sick. Praject | has priority; so that
if & crew calls in sick, proect 1 is still guaranteed its assignment of contractor’s erews, uplesy that assigament
was five. In that case, project | recewves only four contractor’s crews. No more than siv crows are ever
assipned to a single project on any day, and once a crew armives at a project if stays there lor the entire day.
How may the contricior complele both projscts in Uhe prescnbed time st minimum expected cost?

Table 19-31

Number of
Crews Assmgned 0O 1 2 3 4 5 f

|
Work Completed, '
Project | 0 1 19 LT 35 42 30 |
Work Completed, |
Project 2 fl I 1.9 28 3.7 4.5 w5

[t the recursion formula for the following problem. A Presidential candidate for 4 major-pdrty nominafion
needs 100 electaral votes 1o clinch the nomination. There are five winner-take-all primaries remaining. and
the candidate has 10 umits of money avuilable to spend on them. The probability of winning & primary i
i Tunction of the money spent on it as shown in Table 19.32. '

Table 19-32
Units of Money Spent
0 ! 2 |3 4 5 6 "
Primary | | 010 | 015 | 025 | 03§ | 044 | D4R | 054 | 06D
Proary2 | 015 | 021 | 027 | 040 | 045 | 051 | 036 | 08
Primary 3 | 005 | 012 | 017 | 022 | 027 | 031 | 035 | 03
Primary 4 02 | 025 | 03 038 | 045 052 | 039 | 067
Primary § | 017 | 022 | 029 | 030 | 032 | 044 | Q51 | 055

The probability of winning any primary does not increase if more than 7 units of money are allocated 1o
it There are §9 votes at stake in primary 1, 69 votes in primary 2, 52 votes in primary 1, 38 votes in primary
4, and 21 votes in primary 5. Determine a poicy for maximizing the candidate’s chances of Winming at least
1041 votes, '



Chapter 20

Finite Markov Chains

MARKOV PROCESSES
A Markor process consists of a set of objects and a set of states such that

(i) at any given time each object must be in 4 state (distinct objects need not be in distinct states);

(i) the probability that an object moves from one state to another state (which may be the same as
the first state) in one time period depends only on those two states.

The integral numbers of time periods past the moment when the process is started represent the stages
of the process, which may be finite or infinite. Il the nember of states is finite or countably infinite, the
Markov process is @ Markoe chain. A finite Markov chain 15 one having a finite number of states.

We denote the probability of moving from state § to state § in one time period by p,,. For an N-state
Markov chain (where N is a fixed positive integer), the N x N matrix P = [p;,] is the stochastic or
transition matrix associated with the process. Necessanly, the elements of each row of P sum to unity.
Furthermore,

Theorem 20.1:  Every stochastic matrix has 1 as an eigenvalue (possibly multiple), and none of the
cigenvalues exceeds | in absolute value.

iSee Problems 20,14 and 20.12) Because of the way P s defined, it proves converuent in this chapter 1o
indicate N-dimensional ve<tors as row vectors, with matrices operating on them from the right. According
to Theorem 201, there exists a vecior X # 0 such that

AP=X
This left eigenvector s called a fixed point of P.

Example 201 Census data divide households into cconomically stabie and cconomucally depressed populations.
Over a 10-year penod the probability of a stable household remaiming stable is 092, while the probability of a stable
household becoming depressed is 0,08, The probability of a depressed household becoming stable is 0.03, while the
probability of a depressed household remaining depressed 15 097,

Il we designate evonomc stability as state | and economic depression as state 2, then we can model this process
with a two-state Markov chain, having the transition matrix

(92 008
0ox 097

POWERS OF STOCHASTIC MATRICES

Denote the nth power of @ matrix P by P*= [pi7]. If P is stochastic, then pl}' represents the
probability that an object moves from state / 1o state § in # ume peniods. (5ee Problem 20.12) It follows
that P* is also a stochastic matrix.

Denote the proportion of objects in state | al the end of the nth time period by xJ™, and designate

X m [yt Ii“-u-hF co s X0

369
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the distriburion vecror for the end of the nth time period. Accordingly,
X% o [0 20 axfl]

represents the proportion of objects in each state al the beginning of the process. X' is related 10 X'
by the equation

Illl - xmlpl II:.HI ”,

(Seec Problems 206 and 20.7) In wnting (20./), we implcitly identify the probability p, with the
proportion of objects in state | that make the transition to state j in one time period.

ERGODIC MATRICES
A stochastic matrix P is ergodic if lim P exists; that is, if each pf}’ hus a limit as n — &, We denote

=

the limit matrix, necessarily a stochastic matrix, by L. The components of X', defined by the equation
X'*= =X, {20.2)

are the limiring state distributions and represent the approximate proportions of objects in the various
states of a Markov chain after a large number of time periods. (See Problems 20.6, 20.8, and 20.9.)

Theorem 20.2: A stochastic matrix is ergodic if and only if the only eigenvalue 4 of magnitude 1 is 1
itsell and, if 2 = | has multiplicity k, there exist k linearly independent (left) eigenvectors
associnted with this eigenvalue,

{Sec Problem 2005.)

Theorem 20.3:  If every eigenvalue of a matrix P yields linearly independent (left) eigenvectrs in number
equal to its multiplicity, then there exists a nonsingular matrix M, whose rows are left
eigenvectors of P, such that D = MPM ™' is a diagonal matnx. The diagonal elements

of D are the eigenvalues of P, repeated according to multiplicity.

(See Problem 20.33) We adopt the convention of positioning the eigenvectors corresponding to 1 = |
above all other eigenvectors in M. Then, for a diagonalizable, ergodic, N x N matrix P with 2 = | of
multiplicity &, the limit matrix L may be calculated as

= -

(20.3)

L=M limD™M=M"" ' ; M

0

The disgonal matrix on the right has k 1's and (N ~ k) 0's on the main diagonal. (See Problem 20.5.)

REGLLAR MATRICES

A stochastic matrix is regular if one of its powers contains only positive clements. (See Problems
2003 and 204.)
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Theorem 204:  If 4 stochastic matrix is regular, then 1 is an eigenvalue of multiplicity one, and all other
sigenvalues /4, satisfy |4, < 1.

Theovem 20.5: A regular matrix 15 ergodic

If P is regular, with limit matrix L then the rows of L are identical with one another, each being
the unigue left eigenvecior of P sssociated with the eigenvalue 4 = 1 and having the sum of its components
equal 1o unny. (See Problem 20.13.) Denote this eigenvector by E,. It follows directly from (20.2) that
il P is regular, then, regardless of the imital distnbution X™',

X = E, {201.4)
{Seze Problems 20,6, 20.7, and 20.11.)

Solved Problems

200 Formulate the following process as @ Markor chain. The manufacturer of Hi-Glo toothpaste
currently controls 60 percent of the market in a particular city, Data from the previous year show
that 88 percent of Hi-Glo’s customers remained loyal to Hi-Glo, while 12 percent of Hi-Glo's
customers switched to rival brands In addition, 85 percemt of the competiion’s cusiomers
remained loyal (o the competition, while the other 15 percent switched 10 Hi-Glo. Assuming that
these trends continue, determune Hi-Glo's share of the market (a) in § years and (#) over the long
run.

We take state | to be comsumption of Hi-Glo toothpaste and state 2 to be consumption of a nval
brand. Then p, . the probability that & Hi-Glo consumer remains loyal 1o Hi-Glo, i 088, p, ,, the probahility
that a Hi-Glo consumer switches to another brand, is 012; py,. the probability that the consumer ol another
brand switches to Hi-Gio, 1s (015; and p,,. the probabibty that the consumer of another brand remains
loyal 1o the competition, iz 0.5, The stochastic matrix defined by these transition probabilities is

p 0Es 012
015 D85

The inttial probabilny distribution vector is X' = [(L60, 0.40), where the components )" = 0.60 and
xf" = 0,40 represent the proportions of people initially in states 1 and 2. respectively.

2.2 Forpudate the following process as a Markoy chaim, The traiming program for production
supervisors al & particular company consists of two phases. Phase |, which involves 3 weeks of
classroom work, 18 followed by phase 2, which s a 3-week apprenticeship program under the
direction of working supervisors. From past experience, the company expects only 60 percent of
those beginning classroom training to be graduated into the apprenticeship phase, with the
remamming 30 percent dropped completely from the traming program. Of those who make u to
the apprenticeship phase, 70 percent are graduated as supervisors, 10 percent are asked (o repeat
the second phase, and 20 percent are dropped completely from the program. How many
supervisors can the company expect from 1ts current traimng program if it has 45 people in the
classroom phase and 21 people in the apprenticeship phase?

We consader one time persod 1o be 3 weeks and define stutes 1 through 4 as the conditions of being
dropped. a classroom trainee, wn apprentice. and a supervisor, respectively. T we assume that discharged
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individuals never reenter the training program and that supervisors remain supervisors, then the transitics
probabilities are given by the stochastic matrix

1 0 0 O

P 04 0 06 O
02 0 01 07

0 0 o0 1

There are 45 + 21 = 66 people in the training program currently, so the initial probability vector is

X(m — [0, 45,’366' 21/66- 0]

Is the stochastic matrix
P 0.88 0.12:|
0.15 0.85
regular? ergodic? Calculate L = lim P, if it exists.

n—+ag

Since each entry of the first power of P (P itself) is positive, P is rcgular and, therefore, ergodic. Hemee
the limit exists. The left eigenvector corresponding to A = 1 is given by

0.88 0.12

= [XyyXy or 0.12x; —0.15%, =0
0.15 0.35} Ly, x2] ' ;

[x5, —\'3]|:

Adjoining the condition x; + x, = 1 and solving, we obtain
E\[x,, x;] =[5/9,4/9]

It follows that

L liig Pra| 2 WP
i 59 4/9

Is the stochastic matrix

P=[O 1}
04 06

regular? ergodic? Calculate L = Lim P", if it exists.

n—+x

Since each entry of
P = 0.40 0.60
0.24 0.76
is positive, P itself is regular and, therefore, ergodic; hence L exists. Solving

0 1
Xy, X2 =[x, X; or x, —04x, =0
wml| gy o | = Do  ~ 04z,

together with x; + x, = 1, we find E, = [2/7, 5/7] and

2 i
L=[ /7 5'.?:|
2/7 517
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0.5 15 the stochastic matng

! 0@ 0

04 0 06 O
P=102 0 o1 o7
B0 0 0 |

regular? ergodic? Calculate L = lim P, if it exists.

Rather than caise P to successively higher powers to dscertiin whether it is regular. Jet us instead
determine 112 cigenvalues by solving the charscieristic equation:

4 -4 e i : . ‘ |
a2 6 Gi<d oy U=t A=

Thus, 4, = | idouble moot), 4y = 0.1, &y = i By Theorem 20.4, P is not regular. However, by Theorem 20.2,
P is ergodic, since it possesses the two linearly independent left eigenveciors

(1,0,0,0] and [0.0,0,1]
corresponding 1o £, = 1. As an ensy calculatton shows, the leli eigenveciors
[-20,9,-7] and [45 -3021)

respeclively cormespond 10 45 and &y,
Theorem 203 now tells us that P s diagonalizable, with

1 0 o i 1 0 0 0
00 o | 0 1 0 O
Ml 55 & wd D=lo o of o
d 5 < A 00 O
Calculating
I i} ] 0
M- - 81 715 10415 35
2 18 18 0
i] 1 1] 0
we obtain from | X7
1 ] [ (0 1 0 0 O 1 0 0 0 1 n o o
Lo|®A5 TS s 3as)e 1 o 0 00 0 [ B/15 © 0 715
“lam 19 i g 00 o|)-=-2 0 9 -7 2% 0 0 19
] 1 [ i} 0 0 0 4 § =3 2 i 0 o !
206 Solve the problem formulated in Problem 20.1
06477 03523
el X = Xpe < {}.ﬁﬂ,l.l.#ﬂ[ = [0.5644, 04352
2 L N oasos 05506 =" !

After § years, Hi-Glo's share of the market will have declined 10 5648 percent.
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(b) Tt follows from the results of Problem 20.3 that P is ergodic, with limit matrix L. Hence,

59 4/9

X = RO = [0.60,0.40]|
5.9 4;’9

] =[5/9,4/9] = E,

Over the long run, Hi-Glo's share of the market will stabilize at 5/9, or approximately 55.56 percent.

20.7

208

20.9

20.10

Solve the problem formulated in Problem 20.1, if Hi-Glo currently controls 90 percent of the
market.

0.6477 03323

(@) X1 = XOP3 = [0.90, 0.10][
0.4404 0.5596

J = [0.6270, 0.3730]

After 5 years, Hi-Glo will control approximately 63 percent of the market.
(h) Since P is regular, the limiting distribution remains the left eigenvector of P associated with 4 = 1,

Xl — E, =[5/9, 4/9]

Solve the problem formulated in Problem 20.2.

Using (20.2) and the results of Problems 20.2 and 20.5, we have

il 0 0 O
. _ 815 0 0 7/15 .
() — XU, = ] 21/ j — 3
X XYL = [0, 45/66, 21/66, 0] 20 0 0 79 [0.4343, 0,0, 0.5657]
0 0 0 |

Therefore, eventually, 43.43 percent of those currently in training (or about 29 people) will be dropped from
the program, and 56.57 percent (or about 37 people) will become supervisors.

Solve the problem formulated in Problem 20.2, if all 66 people are currently in the classroom
phase of the training program.

Now X% =[0, 1, 0, 0], and so

1 0 0 0
g/15 0 0 7/15
X@=XOL=[0,100] J o oo |=[81500715]
0 0 0 1

Therefore, 8/15 of the 66 people in training (or about 35 people) will ultimately be dropped from the program
with the remaining 31 people eventually becoming supervisors. Comparing this result with the result o
Problem 19.8, we see that the limiting distributions are influenced by the initial distributions, the ustz
situation whenever a stochastic matrix is ergodic but not regular,

Construct the state-transition diagram for the Markov chain of Problem 20.2.

A state- transition diagram is an oriented network (see Chapter 13) in which the nodes represent stats
and the ares represent possible transitions. Labeling the states asin Problem 20.2, we have the state-transitios
diagram shown in Fig. 20-1. The number on each arc is the probability of the transition.
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20.11

Fig. 20-1

A sewing machine operator works solely on one phase of the production process for a particular
design of clothing. This phase requires exactly half an hour per garment to complete. Every 30 min
a messenger arrives at the operator’s table to collect all garments the operator has completed and
to deliver new garments for the operator to sew. The number of new garments that the messenger
carries is uncertain: 30 percent of the time the messenger has no garments for the operator; 50
percent of the time the messenger has only one garment to leave; 20 percent of the time the
messenger has two garments for the operator. However, the messenger is instructed never to leave
the operator with more than three unfinished garments altogether. (Unfinished garments that
cannot be left with the operator, as a result of this policy, are taken to another operator for
processing.) Determine the percentage of time that the operator is idle, assuming that any
unfinished garments on the operator’s table at the end of a work shift remain there for processing
by the operator on the next business day.

We can model this process as a three-state Markov chain by letting the states be the number of unfinished
garments on the operator’s table just before the messenger arrives, We designate the states as 1, 2, and 3,
respectively, representing 0, 1, and 2 unfinished garments; the stages are the half-hour interarrival intervals.

If the operator has one unfinished garment at the beginning of a stage (just before the messenger arrives)
and if the messenger leaves one garment (with probability 0.5), then one garment will be completed by the
beginning of the next stage, leaving the operator again with one unfinished garment: hence, p,, = 0.5. If the
operator has two unfinished garments at the beginning of a stage and if the messenger arrives with erther
I or 2 new garments (with probability 0.5 + 0.2 = 0.7). then the messenger will leave only one garment, and
at the beginning of the next period the operator will have two unfinished garments remaining, since one will
have been processed during the period. Therefore, p;5 = 0.7. Considering all other possibilities in the same
fashion, we generate the stochastic matrix

08 02 0
P=|03 05 02
0 03 07

All the elements of P* arc positive, so P is regular. The left eigenvector associated with 4, = 1 and
having component-sum unity is found to be

9 6 4
E1= P D
16719 19

Since P is rcgular, this vector is also X'®). Over the long run, the operator starts a stage in state 1 (no
unfinished garments remaining) 9/19 of the time, The messenger then arrives and, with probability 0.3, leaves
no new garments for processing, thereby rendering the operator idle. Thus the operator is idle

9
~_(0.3) = 0.1421
19

or approximately 14 percent of the time.
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Afier | yearn Afer 1 yemrs
Stable an Stable

20,12 Venfy that, for the stochastic matrix defined in Example 20.1, p|’ represents the probability of

20,13

moving from state { to state j in two time periods,

There are two ways for 3 stable houschold to remam stable after 20 years, as shown i Fig 20-2{a):
gither it remaims stable throughowt the first 10 years and throoghout the second 10 vears or it becomes
depressed after 10 years and then reverts to stabulity afler another 10 years. The probability that a stable
household will remain stable over one time period s 0.92; hence the probability that it will remain stable
over two time peniods 1s (0.92){0.92). The probability that a stable household will become depressed in 10
years i 008, and the probability that a depressed houschold will become stable over the mext 10 years s
0.03; 5o the probabiity of both events happening 1o the same houschold is (0.08)(0.03). Thus, the probability
that a stuble household will be stable afier two time penods is

(0.92)(0.92) + (O08H(0.03)

which v exactly the (1, 1}-clement of P?,

Figure 20-2(b} depicts the ways a depressed household can become stable over two time penods. The
probability that it becomes stable over the first time period and then remains stable over the next time
period s (0:03)(0.92), The probability that it remains depressed over the firsi time period and then becomes
sinble over the next tme penod s (097){0.03). Thus, the probability that either one of these two situations
OIS 1%

(OOA092N + (DST)003)
which is exactly the (2, 1)-clement of P. The other two cases are handled similarly.

Prove that of P is regular, then all the rows of L = lim P* are identical

Giiven L = lim P, it is also true that L = lim P*'. Consequently,
L = kim P* = lim (P 'P) = (lim P""'/P = LP

which implics thist every row of L i a lefi elgenvector of P corresponding 1o 4 = 1.
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Now, P being regular, all such eigenvectors are scalar multiples of a single vector. On the other hand,
L being stochastic, cach of its rows sums to unity. It follows that all rows are identical.

20.14 Prove that if 4 1s an eigenvalue of a stochastic matrix P, then |A] < 1.

LetE = (e, e5....,e5]" be a right eigenvector belonging to 4. Then PE = AE, and considering the jth
component of both sides of this equality, we conclude that

N
5 Péy = Ag; (1)
k=1

Let ¢; be that component of E having the greatest magnitude; ie.,
le;| = max {|e], [ea],.. .. |eyl} (2)

By definition, E # 0, so that |e;| = 0. It follows from (/), with j set equal to i, and (2) that

1

N N N
|Alle;] = |Ag;| = Z Puty | = Z Pulex| < e Z pix = leil
k=1 k=1 k=1

and the result | 4] < 1 follows immediately.

Supplementary Problems

In Problems 20,15 through 20.21, determine whether the given matrices are stochastic. If so, determine whether
they are regular or ergodic, or neither. Calculate their limiting values, if these exist.

) 0 0 1 I 0 0
2015 | ° OJ 2018 | 05 03 02 2021 021 079 0
e B L1 0 o0 017 035 048
[05 03 02 10 0 0
2016 |05 05 0 s |2 98 003
i 0 0 1 0
s 0 03 0 07
(1 0 o0 (01 08 01
017 |0 =1 B 2020 |09 0 0.1
0 0 -1 02 02 06

2022 Find the proportion of households that ultimately are classified as economically stable, if the data in Example
20.1 remain valid over the long run.

20.23 A recently completed survey of subscribers to a travel magazine shows that 65 percent of them have at least
one airline credit card. When compared with a similar survey taken 5 years ago, the data indicate that 40
percent of those individuals who did not have an airline credit card subsequently obtained one, while 10
percent of those who carried such cards 5 years ago no longer do so. Assuming that these trends continue
into the future, determine the proportion of subscribers who will own airline credit cards (a) in 10 years,
and (k) over the long run,
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An mirline with & 7: 15 o.M, commuter Right between New York City and Washington, D.C.. does not wanl
the flight 1o depart lute 2 days in & row. If the flight leaves late one day, the airline makes a special effort
the next day to have the flight leave on time, and secceeds 90 percent of the time. If the Might was not late
m leaving the previous day, the airline makes no special arrangements, and the flight departs as scheduled
60 percent of the time. What percentage of the time s the flight late in departing?

Grapes in the Sonoma Valley are classified as either superior, average, or poor. Following a superior harvest,
the probatlities of having a superior, avérage, and poor harvest the next year are 0, 0.8, and 0,2, respectively,
Following an average harvest, the probabilities of a superior, average, and poor harvest are 0.2, 0.6, and
0.2 Following a poor harvest, the probabilitics of a supenor, average, and poor harvest are 0.1, 08, and
0.1. Determine the probabilities of a superior harvest for each of the next 5 years, if the most recent harvest
Wl average.

The genaine ward of a hospital lists its patients as bedridden or ambulatory. Historical data indicate thai
over a l-week period, 30 percent of all ambulatory patients are discharged, 40 percent remain ambulatory,
und 30 percent are remanded to complete bed rest. During the same period, 30 percent of all bedridden
patients become ambulatory, 20 percent remain bedridden, and 30 percent die, Currently the hospital has
100 patients i s geriatric ward, with 30 bedridden and T ambulatory. Delerming the status of these
putignts (@) after 2 weeks, and (b) over the long run. (The status of o discharged patienl does not change il
the patient dics.)

The owners of a large block of rental apartments in Chicago s considering as its operating agent a real
estate management firm with an excellent record in Boston, Based on ratings of good, average, and poor
for the condition of buildings in Boston under the firm's control, it hus been documented that 30 percent
of all buildings that begm a vedr in good condition femun in good condition at the end of the vear, with
the other 50 percent deteriorating to average condition. Of all buildings that begin a year n average
condition, 30 percent remain in average condition at the end of the year and M percent kre upgraded to
good condition, Of all buildings that begin a year in poor condition, 90 percent remain in poor condition
afier 1 vear, while the other 10 percent are upgraded 10 good condition. Assuming that these trends will
prevadl for Chicago also if the firm 5 hired, determine the condition of apartments onder the firm's
management that can be expected over the long run.

A state in a Markov chain is absorbing if no objects can leave the state once they enter it. Find all absorbing
states for the Markov chains defined by the matrices given in (a) Problem 3015 (b) Problem 20018, (<)
Problem 2019, and (d) Problem 20.21.

Prove that the stochastic matrix for a Markov chain that has at least one absorbing state cannot be regular,

From the definition of matrix multiphication. verify that the product of two stochastic matnices of the same
order is iself stochastic.

Show that U = [, 1, 1., .., 1]is a left eigenvector of P', the transpose of an arbitrary stochastic matrix P.
Using the result of Problem 20.31, prove that every siochastic mairix P has 2 = | as an cigenvalue
Prove Theorem 20,3,

Show by cxample that the converse 1o Theorem 204 is not vahd.



Chapter 21

Markovian Birth-Death Processes

POPULATION GROWTH PROCESSES

A population is a set of objects having a common characteristic. Examples include individuals affected
with measles, automobiles waiting at a toll plaza, and inventory in a warchouse. A large number of
decision processes are concerned with analyzing and controlling the growth of a population.

We designate the number of members in a given population at time 1 by N(t). The states of a growth
process are the various values N(1) can assume; these are generally the nonnecgative integers. The
probability that N(1) equals a specific nonnegative integer n is denotad by pli)

A birth occurs whenever a new member joins the population; a death occurs whenever a member
leaves the population. A pure birth process is one that experiences oaly births, no deaths; a pure death
process is one that experiences only deaths, no births.

Example 21.1 A college advertines for candidates for the position of Acsdemic Dean, with a closing date for
receiving applications specified. If no processing of applications i undertaken until the closing date and of no
applications are withdrawn by the candidates themselves, then the process of recerving applications is a pure birth
process up 10 the closing date. If no applications are accepted after the closing date, then the process of reducing
the pool of applications under active consideration through evaluation and elimination is 8 pure death process. If
apphications are processed during the same period they are received, the process is a binth-death process. In all cases,
the population is the st of compleied applications uader active conssderation.

Definition: A function f(1) is o(Ar), read “little oh of A" if

. S(Ar)
Ry >

Such a function tends to zero at a faster rate than the first power cf its argument. Il f(¢) and g(t) are
cach o{Ar), so are J(1) + git) and f()p(r)
Example 1.2 The function ({1 = 1’ i o{As), since

tim A o i (A1) =0
w=0 At YRt ]

But sin i # of Af ). bociuse
o ) 190

' | -

GENERALIZED MARKOVIAN BIRTH-DEATH PROCESSES

A population growth process is a Markov process (see Chapler 20) if the transition probabilities
for moving from one state to another depend only on the current state and not on any of the past history

e e el oa o b o U Rk
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experienced by the process in reaching the current state More formally, a generalised Markovian
birth-death process satisfies the following eriterin

The probability distributions governing the numbers of births and deaths in a specific time interval depend on
the lengih of the interval but not on its siarting point.

The probability of exactly one birth in a time interval of length Az, given a populaion of nmembers at the
beginning of the interval, 1s 4, A0 + of&t), where &, is o constant, possibly different for differest values of n
The probability of exactly ooe death in a time interval of length A, given & population of n members al the
beginning of the interval, 1§ p M0 + of At), where g, is & constant, possibly different for dil'l':rt,l values of n.

The probability of more than omne hirth and the probability of more than one death in a time interval of length
Al are both o{ Al

These cnteria imply, in the limit as Ar approaches zero, the Kolmogorov eguations for the state
probabihities:

dp it . )
j:: = (g t f)Pull) + fysPasill) + AgeyPu-altl =12,
JT:” = —dapolt) + pipilr) 210

{See Problem 21.6.)

LINEAR MARKOVIAN BIRTH PROCESSES

A linear Markovian birth process is a Markovian pure birth process in which the probubility of a
birth in a small time interval is proportional to both the current number of members in the population
and the length of the interval. That is, for all n, g, = 0 and 4, = ni. The constant of proportionality 4
is the birth rate or arrival rate, The solution to (21.1), for an imitial population of one member, is

~ bww— <0 2
{H—r P le m=1.2..) (21.2)

pdt)= 0 {m=10)

The expected size of the population at time ¢ is E[N(1)}] = . Il the population is initinlized with N{(0)
members, then its expected size at time ¢ 18

E[N(1)] = N(0)e (21.3)

{See Problem 21.1.)

LINEAR MARKOVIAN DEATH PROCESSES

A linear Murkovian death process is a Markovian pure death process in which the probability of a
death in a small time interval is proportional to both the current size of the population and the length
of the interval. That is, for all m, 4, = 0 and u, = ap. The constant of proportionality u isthe dearh rate.
The solution 1o (21.1), for an initial population of N{(0). is

(mm)r.._.“ — MO [ < N(D)]
p =4\ n

0 [n= N{DY]

(21.4)
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The expected s1mg of the population at tirne 1 is
E[N{(1)] = N(U)e ™ (24.3)
{See Problem 21.3.)

LINEAR MARKOVIAN BIRTH-DEATH PROCESSES

A linear Markovian birth-death process is a Markovian birth-death process in which, for all o,
£, = n4 and p, = np. The solution to (21.1), for an mittal population of one member, 15

! - s =1,2...
e {[ ADICE — sOILsO T (=12 -
rit) {n =0)
where
e — 1] A ]
it 2 AR _ and ﬂﬂ——-—irn?,,;, 7

The expected size of the population at time 15 E[N{1)] = ¢ 7*" If the population is initialized st N(0)
members, then its expected size ot time 1 is

E[N(1)] = N{D)e'* 21.7)

{S¢e Problem 21.5.)

It is clear that the hnear birth-death process includes the linear birth process and the linear death
process as the special cases p = (and 2 = 0, respectively. Another important property, which is suggesied
by (21.7), 15 contamed in the lollowing remark [see Problem 21.9(h)].

Remark: A linear Markovian birth-death process with parameters £ and u and an mitial population
N{0) is equivalent to the sum of N{0) concurrent but independent processes, each with
parameters 4 and g and an initial population 1.

Example 21.3  Find the state probabilities pi*'r) for the linear Markovian birth process beginning with a populaticn
of 2

The two mdependent subprocesses each have the state probabilities given by (2/.2), The overall process will
be in state n il the first subprocess is in state () and the second i in state n, or if the first is m state | and the secord
ie in state m— 1, or ., .. Thus,

P = poldpdt) + pyO0p, (D) + - + pAOPolt) \hd)
Lising (21.3) in (21.8), we lind

< fh— ANl —e P e ™  (n=23...)
.,"m-—{
" i im=0 1

POISSON HBIRTH PROCESSES

A Poisson birth process is a Markovian pure birth process in which the probability of a birth in any
smaldl time interval 1s independent of the size of the population. That is, for all n, i, = 4 and g, = 0. In
such u process, new arrivals to the population are not created by current members; rather, they enter
the population from without, as did the completed applications in Example 21.1. New members can
enter the population even when the current state 1s 0, a marked difference from the linear Markovian
birth situation.
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The solution to (21.7), for an initial population of 0, is

)= e n =012, (21.9)
n

If the population is initialized at N(0) members, the solution to (21.]) is

(j.t)" -N{O}e — it

— [n= N0
paft) =4 [n— N(O)]! L ) (21.10)
0 [1n < N(0)]
The expected size of the population at time 1 is
E[N(t)] = N(O) + it (2117
(See Problem 21.2.)
Definition: A discrete random variable N has a Poisson distribution, with parameter x > 0, if
PN=m=2e= (=012..) (21.12)
n!

The expected value of N is E(N) = .
Definition: A continuous random variable T has an exponential distribution, with parameter fi > 0. if
P(T<i)=1—eM (t=0) (21.13
The expected value of T"1s E(T) = 1/5.

We may summarize (2/.9) and (21.10) by saying that, in a Poisson birth process with birth rate .
N(t) — N(0) has a Poisson distribution, with parameter /t. Furthermore, in such a process, the interarrira
time, which is the time between successive births, has an exponential distribution, with expected valos
1/A. (See Problem 21.8.) Conversely,

Theorem 21.1: If the interarrival time is exponentially distributed, with expected value 1/f, then the
number of arrivals is a Poisson birth process, with birth rate 2 = .

POISSON DEATH PROCESSES

A Poisson death process is a Markovian pure death process in which the probability of a death =
any small time interval is independent of the size of the population. That is, for all n, 2, =0 and p, = =
The solution to (27.1), for an initial population N(0), is

(0 [n > N(0)]

(Fr)r\-'lﬂl-ﬂe = i
pu(t) ={ [N(0) — n]!

NiQ)

= z pu([) (n=10)

n=1

[1 <n< N(©O)]

\
(See Problem 21.4.)
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POISSON BIRTH-DEATH PROCESSES

A Poisson birth-death process is a Markovian birth-death process in which both the probability of
a birth and the probability of a death in anv small time interval are independent of the size of the
population. That is, for all n. 4, = 4 and pu, = u Such processes form the basis of queueing theory and

are developed i Chapter 23

2.1

F4 B

2.3

Solved Problems

A linesir Markovian birth process imtialized a1 one member expeniences an average hourly birth
rate 4 = 2 Determine the probability of having o population larger than 3 afier | h, and the

expected size of the population at that time
With £ =2 new births per member per hour and with 0 = | b, (212} pives

pall) =10 paill = {1 - N1 =0117
pili=(l—e e ¥ = 01358 paili=(1 —e e ? = 0101

The probability of having morz than three members in the population after | b i then
=0+ 0135 +0117+0100) = 0647
The expacted sire of the populition at that time s given by (21.3) as

E[N{(1)] = 1" = 7.189 members

Solve Problem 21.1 if the process 15 a Posson birth process.

With NiDi= 1, r = 1 h, and A = 2 births per hour, {21.5{) grves

=i

Pal1) =0 i';'[liﬂ:.t'*nll!?l

=il = f

—' 2 :|='l -1':-
_nﬂll—mr = 135 pall) 1!1* 071

The probability of having morz than three members in the population after | h is then
I —i0 + 0135 + 0271 +0.271) = 0323
The expoected size of the population at that time is given by Eq. (2177} as

EINII)] =1 + 2(1) = } members

A lincar Markovian death process mmitialized at 10 members expensnces an average weekly deaih
rate y = (16, Determine the probability of having a population of at least eight members after 3

days, and the expected size of the population at that time.
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With Nid) = 10, 1 = (3/7) week, and u = (06 deaths per member per woek, (J1/1.4) givel

10 y .
peld 7] = ( 8 :h- NN ] — g PRI W o AS0.12TE)D ~ O.7733Y = 0. 296

0 : :
puld T = (L }c"'“-“-"’ T = 1 ANITHUEY - IONDO9REN ) — 0.7T33) = 0. 224

Al

Piol3/7) = (l b PR -t AT M0 o O 07645(1 — 0.7733)° = 0076

The probability of having cight or more members in the population after 3 days 15 therefore
0206 < 0.224 + D76 = (L5956
The expected size of the population =i that bme is given by (2 5) as

E[N{ITI] = 106" ™880 = 773 o

214 Solve Problem 21.3 if the process is a Poisson death process.
With Vi0y = 10, 1= (377 week, and p = (kb deaths per week, (70, /) gives

llﬂ.ﬁ‘”..-l'.-"l b= 1o

: o BRI o T3
(10 — 10y

F|I’.|!3'1I ]

({06373
(10 — oy

pul3/7) = 270N o ) 1988

TE-N
F._{.!Tl o [lﬂ.ﬁj{ 31” o = ifF By AT ey ﬂm&&
(i - K I

The probability of having eight or more members in the population after 3 days is then
00256 + 01988 + 07733 = 09977

To calculate the expected value of N{3/7) the remaining state probabilites for + = 3/7 are needed.
Equation (21, 14) gives these. to four decimals, as

|
Thus, |

E[N{3/TI] = INQ.IT33) + 900.1988) 4 &00.0256) + T00022) + &0.0001) + HO) + -+ + (Y
= 9 74 members |

ILS A biologist observes the growth of bacteria strands in a culture and finds that both the probability
of the birth of a strand and the probability of the death of a strand are proportional to the number
of strunds in the culture and 10 elapsed time. On the average, each strand produces u new strand
every Th and dies after 30 h. How many strands should be expected in & culture 1 week, if
the population 15 mtialzed at one strand? i
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Taking one day as the unit of time, we have N{ll) = 1,
i= ;{Ed] = 1428571429 births per imember por day

andd

1
= m!l-ﬂ = (LY deaths per member per diwy

It follows from (2773 that the expected sice of the population afier 7 dayvs s
E[N(T)] = 13 4285714287080 = 97953 164 strands

216 Derive the Kolmogorov equations, (21.1).

The size of the population at time ¢ + Ar, Nz 4+ Af), s governed by the size al time 1, N{r). together
with whatever changes (births and /or deaths) occur in the interval i, ¢ < Ar], Thos, forn 2 1,

PIN(r + At} = n} = P{NIr}) = n and there are 0 barths and 0
deaths in (r,r + Ar]}

+

PiNir) = nand there are | hirth and |
death in{r, 1 + Ai}]

+
FiNit) = n — | and there are | birth and 0
deaths in {1, 1 + Ar]}

-

I NG =+ 1 and there are 0 births and 1
death (i, 1 + Ar]]

b 3

Pla combination of events involving
more than 1 birth or more than | death
in(t.r + Ar]}

ar
Pil =Ay=g+bh4ec+=d+e i
Utilizing the notion of conditional probability (see Prohlem 18.5), we have
a = PIN{1) = n] x P{0 births and 0 deaths in At} V() = n}

By the fundamental assumptions, the probability of zero births in a ume interval of leagth Ar is, 10 within
o{Ar), | minus the probability of exactly one birth; given state n al the beginning of the interval, this latter
probability equils 2, At + ol Ar). Henee, the probalsility of zero births is

1 — A A1+ o(At)
and, under the same conditions, the probability of zero deaths is

| = p Ar 4 olAt)
Moreaver, births occur independently from deaths. Therelore,

i1.m= Fuﬂ} X [’ " 1'..&]" - Mmﬂ[l = -ﬂu‘.‘r E nimﬂ
= pdI[1 = (4, + pi, D] + ofAr)
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Reasoning in similar fashion, we obtain

b = o(At)
¢ = Py 1(0)(4n_ 1 A1) 1 0(AL)
d = p,—1(6) (4o + 1 B1) + 0(Al)
e = o(At)

and (/) becomes

Pt + Af) = p (1) + [— (4 + 808 + Ape 1Pp—1(8) + fys1Pas (D) JAL + 0(AL) (2

Transposing p,(t) to the left-hand side of (2), dividing through by Atf, and letting Ar — 0, we obtain the
Kolmogorov equations forn=1,2,....

The case n = (} requires separate consideration. since no deaths are possible in state 0. Carrying ous

the analysis as above, we readily obtain the remaining Kolmogorov equation.

(a) Derive (21.6) and (b) generalize to the case of an arbitrary initial population N(0).

(@) With 7, =ns and p, = nu, the Kolmogoroy equations, (2/.7), become

dp,(t . = . i
I:?r( ) = —nl~ + wWpf) + (n+ Dup, (D) + (n— Dap,_4(D)
forn=1,2,...,and
dpy(1) -
= r .
= jip4(t)

One way of solving these equations is by replacing them with a single partial differential equarios
for the probability generating function

Fiz,t) = ) plt)"

=0

The procedure is as follows. Multiply (7) by 2" sum over all n (n=1.2,...), and add the resu’:
10 (2), giving, after rearrangement,

o e d t i e} L .
b p”f“f” ==+ ) np D+ Y (n+ Dpey @+ 4 Y (n— Dp,_ ()" =

n=9a d n=1 =10 n=1

But, from differentiation of (3).

)

= dpft) ,  @F(z)
dr

n=1} 61
2 cF(z ¢
3 mpit = Ez' )
w1 0z
i dF(z,n)
Z (n_: I)pn—j(?’)q”:__,]
n=a Gz
= ¢F(z. 1)
Z (n — Dp,_ j(B)2" = 2* T
n=1 Z
Hence, (4) becomes
6F(z, 1) y , o GF(2, 1) "
—=[—(A+mz+p+4it] = (3
af ¢z
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Solving this partial diffierential equation by separation of vanables, we find that one solution is

((‘ : :i)r T

o442

where ¢ 1 an arbitrary function of one variable To determing g, we note that, for an initial population
of one member, p(0) = | and p0) = 0 {n # 1} hence

The general solution fo (5) W

Fiz, = ¥ pi0j* == (")

=i

Applving this initial condition to (6), we obtun

f)

Serting

we have, Inversely,

I |
e
whereupon (X may be wrilien as
e —1
Hy) = i’_‘"— i (L
Then (6) becomes
_ Lk - wd Jh—n
4=
-]

Fiz, 1) = - -

[T

L — 1) 4 Sf — et ]
[4 ™% — g — za[e"** = 1]

Finally, we need 1o cxpand Fiz, r)in powers of 2, therehy obtaining p.(1) as the cocfficient of . Set

which simplics to

Flz. 1) = on

,ll':ﬂ'll s l] i{‘,dd - 1] i _,_J,H.Il-l i
i a2 T2 -
e e e e
Then
! it} + zmit} e |
Fiz )= —— = [} + 2 P
- [ri) + 'mm}[I = ::lrIJ ({2)
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Iy wieww of the geametiic series

i17) gives
Flz.i=rt) + ¥ [rioisir) + mir}][sir)]'=*
m )

It 15 easily venfied algebraically that
riths(t) + mif) = [1 — Aed][1 — sie))

Hence,
Fiz.0) = 1) + I (01— A0~ sl (13)

The coefficients in (15] given 1216}, _
i) One readily verifies that any power of a solution to (5) above is imelf & solution. In particular,

&z, 1) = [Fiz )"
where Fiz. r) s given by (/1) or (/3), 15 a solution; and this solution satisfies the mitial condition
Oz, 0) = [Fiz, 0" w MO

[see (7)) Thus, Bz, () is the generating function of the state probubilities for a population initialized
ul Ni0) members. The fact that @ equals FY'™ implies that the random varable corresponding o @
[ie, the population with initinl siee N(0)] is expressible as the sum of N(0) independent random
varuibles, each corresponding 10 F [ie, Ni0) populations with mitial size 1]. This i8 the additivity
property remarked on earlier in this chapter.

Show that the interarrival time in a Posson birth process with birth rate £ is exponentially
distnbuted with parumeter 4.

Designate the time of the first birth by T, a random variable. The population will still have its initial
sive, NI, at time ¢ il and only if T > ¢. Hence, by (27,10,

P(T<ty=1—=PT>r=1-P[N(t) = NOJ]
=1 =—pynlt) =1—2" ¥

Le- T has an exponential dstribution, with parameter +. Now, the prohability distnbution governing births
in a time interval i indepeadent of the starting point of the interval (the first assumption of a generakized
Muarkovian berih-death process) and independent of the state of the process (the basic Poisson assumption L
Consequently, T nlso measures the time from now until the next birth. In particular, if now is this birth, T
measures the micrarmval time.

A lincar Markovian birth process, with birth rate A, begins with n population N(0) = 1. (a) Find
the expected time until the population size first equals i (= 2,3, .} (b) Is the time calculated
inn () the same as the time at which the expected size of the population becomes equal 1o a?
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{a) The population first reaches n i the mfinitesimal time iterval (r, ¢ + dr] if and only if the state s n — |
at time 1 [with probability p, . ()] and 1here s exactly one birth in {1, r + di] [with probability in — 1)4
dt + oddt)]. Hence, the desired expected value is

L En—l.'l
1P, i~ 1 dr = - ¥ -
ir

dj=y |

(The caleolation is most easily effocted by multiplying the Kolmogorov equation for dp, dr by 1,
intcgrating by parts, using {2/.2) with the sabstitution 7 = | — ¢ *' to cvaluaie the integral of pii)
and solving the resulting difference equation, ) The revult has a simple imerpretation: The expected time
te the first birth is 1/4 Now the population is 2, with an effective hirth rate 24 hence, the expected
sddmional vme 1o the next bicth i 1724 And 0 on,

b} According lo (21.3), the expected size of the population equals n when

which i5 not the same a3 the expected time found n (ak For large n

L] ll
} -—wlan+y
j=1 J

wherey = Q8772187 « - is Euler's comsianl. Hence, the percent difference between the two limes hecomes
very small.

Supplementary Problems

A finear Markovian birth process imtialized at one member experiences an average daily birth rate £ = 0.3
Determine the probabidity of having a population larger than five members after | week, What is the expected
sze of the population at that tme? What would the expecred size of the population be afier | week if in
began with 10 members?

Solve Problem 21100 4 = 06
Solve Problem 2110 if the process is a Poisson birth process.

A lincar Markovian birth process initialized at 15 members has an average hourly birth rate 7 = 0.1, What
is the expected size of the populntion after 3 h?

A car compuny judges that, in the rapge 40000 10 WO000 cars, siles for 0 new model follow o linens
Markovian birth procesa. If, on the average, every 50 new cars on the roud gencrates one new buyer cach
day. hovw many new madels can the compuny eapact o sell 8 days after it sells it A00NRR vehicle?

An advertisement for salespeople is placed in 8 newspaper by a depariment store. Based on previous
experience, the store expects applications to wrrive according 10 a Poisson distribution al an average rale
of two per duy, for as long as the ad rons. How many deys should the ad run il the store wants to gugrinlee
with 98 percent certamiy that it will receive at least sia apphcations?

Each Monday moring, 15 min before the scheduled opening of a local bank, patrons line up at the door
1o transact business. The arnval pattern nppears to follow o Poisson distribution, with & = 40 customers per
howr, Determine the probability that there are fewer than five pople in line @1 opening time, assuming that no
patron leaves the line once he or she arrives
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A linear Markovian death process mitialized at five members experiences an avernge duly desth rate g = 0.1,
Determine the probability of having fewer than three members in the population afier a week. What is the
eapecied size of the population at that time?

Solve Problem 2117 if g = 0.2,
Solve Problem 2117 if the process is a Powsson death process

It is the practice on election day to allow anyone to vote who is on hne at the tme polls are scheduled 10
close. At & particular polling place, the time it takes an individual to vote appears to follow an exponential
distribution, with an expected valve 1.5 mm, What is the probability that it will take more than 12 min o
pecommodate those waiting to vote at the scheduled closing. if the line numbers eight pm#i [Hinr: Theorem
211 extends to Poisson death processes )

A linear Markovian birth-death process initialized at one member has a daily averape hitth rate 2 = 005
and a daily average death rate g = (.03, Determine the probability that the population will be extinct after
4 days.

Solve Problem 2021 if both 4 and g are doubled,

The population growth of an endangered species appears to follow & lincar Markovian birth-death process.
On the average, two members of the species produce one offspring every other year. The average life span
of 0 member of the species is 3| years. What is the expected sire of the population in 20 yeass, il 1he current
population numbers 1007

Derive (21.9) by first solving the Kolmogorov equations for py(t) and then successively foe pyir). pait), - ..
Solve Problem 219 for a Poisson birth process. Assume an initial population of zero,

Two independent Poisson birth processes run concurrently, Show that the result is & Poissga birth process,
with & birth rate that is the sum of the two birth rates.



Chapter 22

Queueing Systems

INTRODUCTION

A gueusing process consists in customers arnving al a service [acility, then waiting in a line (guens)
if all servers are busy, eventually recetving service, and finally departing from the facility. A queneging
syxfem 15 a set of customers, a set of servers, and an order whereby customers armve and are processed.
Figure 22-1 depicts several queueing systems

A gueueing system is a birth-death process with a population consisting of customers either waiting
for service or currently in service. A birth ocecurs when a customer arrives at the service facility; a death
occurs when a customer departs from the facility. The state of the system is the number of customers
m the facility.

QUEUE CHARACTERISTICS

Queucing systems are characterized by five components: the arrival pattern of customers, the service
pattern, the number of servers, the capucity of the facility to hold customers, and the order in which
customers ure served.

ARRIVAL PATTERNS

The arrival pattern of customers is usually specified by the interarrival time, the time between
successive customer arrivals 1o the service [acility. It may be deterministic (Le., known exactly), or it may
be 4 random variable whose probability distribution s presumed known. It may depend on the number
ol customers already in the system, or it may be state-independent.

Also of interest 15 whether customers arnve singly or in batches and whether balking or reneging is
permitted. Balking occurs when an arriving customer refuses to enter the service faclity because the
queue 5 100 long. Reneging occurs when a customer already in a quene leaves the queue and the facility
because the wuit is too long. Unless stated to the contrary, the standard assumption will be made that
all customers arrive singly and that neither balking nor reneging occurs,

SERVICE PATTERNS

The service pattern 15 usually specified by the service rime, the time required by one server 1o serve
one customer. The service lime may be deterministic, or 1t may be a random vanable whose probability
distribution is presumed known. It may depend on the number of customers already in the facility, or
it may be state-independent. Also of interest is whether a customer is attended completely by one server
or. as in Fig. 22-1(d), the customer requires a sequence of servers. Unless stated to the contrary, the
standard assumption will be made that one server can completely serve a customer.

91
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SYSTEM CAPACITY

The system capacity is the maximum number of customers, both those in service and those in the
queue(s), permitted in the service facility at the same time. Whenever a customer arrives at a facility
that is full, the arriving customer is denied entrance to the facility. Such a customer is not allowed to
wait outside the facility (since that effectively incrcases the capacity) but is forced to leave without
receiving service. A system that has no limit on the number of customers permitted inside the facility
has infinite capacity; a system with a limit has finite capacity.

QUEUE DISCIPLINES

The queue discipline is the order in which customers are served. This can be on a first-in, first-out
(FIFO) basis (i.e., service in order of arrival), a last-in, first-out (LTFO) basis (i.e., the customer who
arrives last is the next served), a random basis, or a priority basis.

KENDALL’S NOTATION

Kendall's notation for specifying a queue’s characteristics is v/w/x/y/z, where v indicates the arrival
pattern, w denotes the service pattern, x signifies the number of available servers, y represents the system’s
capacity, and z designates the queue discipline. Various notations used for three of the components are
listed in Table 22-1. Il y or z is not specified, it is taken to be 20 or FIFO, respectively.

Example 22.1 An M/D;2/5/LIFO system has exponentially distributed interarrival times, deterministic service
umes, two servers, and a limit of five customers allowed into the service facility at any one time, with the last
customer to arrive being the next customer to go into service. A D/D/1 system has both deterministic interarrival
times and deterministic service times, and only one server. Since system capacity and queue discipline are not
specified, they are assumed to be infinite and FIFO, respectively.

Table 22-1
Queue Characteristic l Symbol Meaning
Interarrival time D Deterministic
or M Exponentially distributed
Service time E; Erlang-type-k (k = 1, 2....) distributed
G Any other distribution

FIFO First in, first out
LIFO Last in, first out

Queue discipline SIRO Service in random order
PRI Priority ordering
GD Any other specialized ordering

Solved Problems

22.1 Identify the customers, the servers, and those queue charuacleristics that are apparent. in a
single-lane, automatic car wash establishment.
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Customers are the cars entering the establishment for the purpose of being washed. A server is the
machinery that does the cleaning, and the single lane indicates one or more servers in series.

Generally, car washes operate on a first-come, first-served basis; so the gqueue discipline is FIFO. The
system capacity is the number of cars that can be safely handled on car wash grounds. If additional cars are
allowed to wait on public streets for eventual entrance into the car wash grounds, then the system capacity
1s infinite.

Identify the customers, the servers, and those queue characteristics that are apparent, in the billing
department of a large store.

Customers are the charges made by patrons of the store, after these charges are received by the billing
department but before they are completely processed. The servers are the individuals in the billing department
who do the processing.

Invoice processing often follows a LIFO gueue discipline in that the last charge received by the billing
department is placed on the top of the unprocessed pile and is then the first charge taken for processing by
an idle server, Generally, there is no limit to the number of charges that can be forwarded to the billing
department; hence the system capacity is infinite.

A new television set arrives for inspection every 3 min and is taken by a quality control engineer
on a first-come, first-served basis. There is only one engineer on duty, and it takes exactly 4 min
to inspect each new sct. Determine the average number of sets waiting to be inspected over the
first half-hour of a shift, if there are no sets awaiting inspection at the beginning of the shift.

This is a D/D/1 system, with television sets as customers and the engineer as the single server. The
interarrival time is exactly 3 min, while the service time is exactly 4 min.

Table 22-2 charts the history of the system over the first half-hour of operation. Only those instants a:
which a change occurs in the state of the system (through a customer arrival or a serive completion) are
surveyed. Observe that there are no customers in the queue from time 0 to 6, 7 to 9, and 11 to 12, for 2
total of 9 min. There is one customer in the queue from time 6 to 7, 9 to 11, 12 to 18, 19 to 21, and 23 o
24, for a total of 12 min. Similarly, there are two customers in the queue from time 18 to 19, 21 to 23

Table 22-2
Simulated Clock, Customer in
min Service Queue
0
3 #1
6 #1 #2
7 #2
9 #2 #3
11 #3
12 #3 #4
15 #4 #5
18 #4 #5, #6
19 #35 #6
21 #5 #6, #7
23 #6 #7
24 #6 #7, #8
27 #7 #8, #9
30 #7 #8, #9, #10
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124

and 24 to 30, for a total of 9 min; and three customers m the queve from time 30 10 30, for & total of 0 min.
The average length of the quene, which is the average number of sets waiting to be inspected, over the first
half-hour 15 then

9+ 1(12) + 29 + HO)
in

1 wet

Buses arrive for cleaning at a central depot in groups of five every hour on the hour, The buses
are serviced in random order, one at a time, Each bus requires 1] min to service completely, and
it leaves the depot as soon as it is clean. Determine (a) the average number of buses in the depot,
ih) the average number of buses waiting to be cleaned. and (¢) the average time a bus spends in

the depot.

This is & deterministic system, with buses as customers and the cleaning créw as the single server.
Arrivals oocur once an hour bul in batches: the service time is 11 min. A bus i 10 service while 1t is being
cleaned.

Table 22-3 charts the history of the system over a 1-h period, at the zpochs of arrivals and departures.
Since service is provided on a mndom ordering basis, the particular sequence shown is one of many possible
sequences for processing buses through the depot. The required statistics, however, are independent of the
sequence. Furihermore, singe the system renews itsell each hour, the stabstics that characterize the sysiem
over the first hour also are vald over the long run,

Table 22-3
Smulnted Clock, Customer m
min Service Qucug
] #d #3 ), M2, 5
11 # | #3 #2, #3
22 ] #3, #12
1i #3 #2
44 #2
25 : I'
1

fal There are five customers in the faclity from time 0 to 11, 4 customers from 11 te 22, 3 customers from
22 10 33, T costomers from 33 to 44, and 1 customer from 44 1o 55, each interval being 11 min. In
addition, there are no customers in the facility from time 55 to 60, or 5 min. The average number of
customers in the facility s then

SN+ 411+ 1)+ 2104+ WU + %)
b

= 175 bises

{h} The average number of customers in the gueoe, those buses waiting for but not yet in service, is

HID + 3100+ 200+ W)+ in)
1]

= | K3 buses

i) One buz, bus @4 1n Table 22-3, is in the system for 1] min, since it ts serviced 23 s0on a8 I arrives. A
second bus, bus # 1 in Table 22-3, waits for 11 min before i is serviced, so it s in the system for 22 min
Similarly, the other threg buses spend 1), 44, and 55 min, respectively, in the system. The average {ime
a buz spends in the depor is therefore

M+224+33 444455
2 =

33 min
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Table 224
Simulated Customers in Service

Clock
Miin:sec Berver | Server 11 Quewe
D00

3:54 Wl +

605 #1 #2

731 #l #2 #3

B84 #3 #2

K56 #1 w2 #d

9:01 w3 w2 wad us
13:08 #3 #d -

13:54 #4

14:25 #6 #4

19:25 #4

m P w ok E

004 #7

21:3 #7 #8

22:45 L L o
2534 #9 #h

%:31 wo
28:42 #9 #10 -

30:01 #9 210 #11
30:34 #11 210
32:40 1l i sl2

k k3 ¥) #ll 10 sl g1l
1534 #l2 10 :

35:42 212
.."_I:H i 3

42:26 #4

45:00 14

Simulate an M/D,2/3 system over the first 45 min of operation, il the mean interarnval time &
3 min and if it takes servers | and 1 exactly 5 and 7 mun, respectively, o serve a customer. Assume

that there are no customers i the system at the begmming.

If an exponentially distributed random vartable has 4 mean (expected value) of 3, then the distnbution
function, (21.13), has 13 as its parameter. Using a random number generator 1o create values (in minules
and -seconds) obeying such a1 distribution, we obfain: 354, 211, 1226, 1225 005, 524, &09, &:57, 1:14,
557, 119, X39, 0552, B:54, 249, We take successive valoes to be the imterarrival times of successive
customers, Thus, customer # | enters the system 3 mim and 54 & after the process begons, customer # 2 en