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Preface 

Beginning Physics I I  : Waves,  Electromagnetism, Optics and Modern Physics is 

intended to help students who are taking, or are preparing to take, the second half 
of a first 

year 

College Physics 

course that is quantitative in nature and focuses on 
problem solving. From a topical point of view the book picks up where the first 
volume, Beginning Physics I :  Mechanics and Heat leaves off. Combined with volume 
I it covers all the usual topics in a full year course sequence. Nonetheless, Beginning 
Physics I I  stands alone as a second semester follow on textbook to any first 

semes- 

ter text, or as a descriptive and problem solving supplement to any second semester 
text. As with Beginning Physics I ,  this book is 

specifically 

designed 

to allow students 
with relatively 

weak 

training in mathematics and science problem solving to quickly 
gain quantitative reasoning skills as well as confidence 

in 

addressing the subject of 
physics. A background in High School algebra and the rudiments of trigonometry is 
assumed, as well as completion of a first course covering the standard topics in 
mechanics and heat. The second chapter of the book contains a mathematical 
review of powers and logarithms for those not familiar or comfortable with those 
mathematical topics. The book is written in a “user friendly” style so that those 
who were 

initially 

terrified 

of physics and struggled to succeed 

in 

a first 

semester 

course can gain mastery of the second semester subject matter as well. While the 
book created a “coaxing” ambiance all the way through, the material is not 
“ watered down ”. Instead, the text and problems seek to raise the level of students’ 
abilities to the point where 

they 

can handle sophisticated concepts and sophisticated 
problems, in the framework of a rigorous noncalculus-based course. 

In particular, Beginning Physics I I  is structured to be useful to pre-professional 
(premedical, predental, etc.) students, engineering students and science majors 
taking a second semester 

physics 

course. It also is suitable for liberal arts majors 
who are required to satisfy a rigorous science requirement, and choose a year of 
physics. The book covers the material in a typical second semester of a two semester 
physics course sequence. 

Beginning Physics I I  is also an excellent support book for engineering and 
science students taking a calculus-based physics 

course. 

The major stumbling block 
for students in such a course is not calculus but rather the same weak background 
in problem solving skills that faces many students taking non-calculus based 
courses. Indeed, most of the physics problems found in the calculus based course are 
of the same type, and not much more sophisticated than those in a rigorous non- 
calculus course. This book will thus help engineering and science students to raise 
their quantitative reasoning skill 

levels, 

and apply them to physics, so that they can 
more easily handle a calculus-based course. 

ALVIN HALPERN 
ERICH ERLBACH 
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To the Student 

The Preface gives a brief description of the subject matter level, the philosophy and 
approach, 

and 

the intended 

audience for this 

book. 

Here we wish to give the 

student 

brief advice on how to use the book. Beginning Physics I 1  consists of an inter- 
weaving of text with solved problems that is intended to give you the 

opportunity 

to 
learn 

through 

exploration and 

example. The most effective way to gain mastery of 
the subject is to go through each problem 

as 

if it were an integral part of the text 
(which it is). The last section in each chapter, called Problemfor  Review and Mind 
Searching, gives additional worked out problems that both review and extend the 
material in the 

book. 

It would be a 

good 

idea 

to try to solve these problems on your 
own before looking at the solutions, just to get a sense of where you are in mastery 
of the 

material. 

Finally, there are 

supplementary 

problems at 

the 

end of the 

chapter 

which given only numerical answers. You should try to do as many of these as 
possible, since problem solving is the 

ultimate 

test of your knowledge in physics. If 
you follow this regime faithfully you will not only master the subject but you will 
sense the 

stretching 

of your intellectual capacity 

and 

the development of a new 
dimension in your ability. Good luck. 
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Chapter 1 

1.1 PROPAGATION OF A DISTURBANCE IN A MEDIUM 

In our study of mechanics we considered 

solids 

and fluids that were at rest or in overall motion. In 
thermodynamics we started to explore the internal behavior of large 

systems, 

but for the most part 
addressed 

equilibrium 

states where there is a well defined 

pressure 

and temperature of our system. In 
our study of transfer of heat (see, e.g., Schaum’s Beginning 

Physics 

I, Chap. 17), we discussed 

the 

transfer of thermal energy 

within 

a medium, 

from 

a “hot region” to a “cold region”. In the case of 
convection 

this 

transfer 

took place by the actual movement of physical matter, the more energetic 
molecules (hot gas or liquid), 

from 

one location to another; in the case of conduction, it took place by 
means of transference of thermal energy 

from 

one layer of molecules to an adjacent layer and then on to 
the next 

layer, 

and so on, without the displacement of the 

physical 

matter itself over macroscopic 
distances. In the present chapter we will discuss the transfer, not of thermal energy, but rather of 
mechanical 

energy, 

through a solid, 

liquid 

or gas, by means of wave motion-also a process in which 
the physical matter itself does not move 

over 

significant distances beyond their initial positions, 

while 
the energy can be 

transferred 

over large distances. 

The transferred 

energy 

can carry information, so that 
wave motion allows the transfer of information over 

large 

distances 

as well. 
Of course, one way to communicate information over distance is to actually 

transfer 

matter from 
one location to another, such as throwing stones in 

coded 

sequences 

(e.g., three stones followed by two 
stones, etc.). This means of communication is very limited and cumbersome and requires a great 
amount of energy 

since 

large objects have 

to be given significant 

kinetic 

energy 

to have 

them 

move. 

Instead, we can take advantage of the inter-molecular forces 

in 

matter to transfer 

energy 

(and 
information) from molecular layer to molecular layer and region to region, without the conveyance of 
matter itself. It is the study of this 

process 

that constitutes the 

subject 

of wave motion. 

Propagation of a Pulse Wave Through a Medium 

Consider a student holding one end of a very long cord under tension S,  with the far end attached 
to a wall. If the student suddenly snaps her hand upward and back down, while keeping 

the 

cord under 
tension, a pulse, something like that shown 

in 

Fig. 

1-l(a) will appear to rapidly 

travel 

along the cord 
away 

from 

the student. If the amplitude of the pulse 

(its 

maximum vertical displacement) 

is not large 
compared to its length, the pulse will travel at constant speed, U, until 

it 

reaches the tied 

end of the cord. 
(We will discuss 

what 

happens when it hits the end later in the chapter). In general, 

the 

shape of the 
pulse 

remains 

the same as it travels 

[Fig. 

1-l(b)], and its size diminishes 

only 

slightly 

(due to thermal 
losses) as it propagates along the cord. By rapidly shaking her hand in 

different 

ways, the student can 
have 

pulses 

of different shapes [e.g., Fig. 1-l(c)] travelling down the cord. As long as the 

tension, 

S ,  in 
the cord is the same for 

each 

such snap, and the amplitudes are not large, the speed of all 

the 

pulses in 

the cord will be the same no matter what their shapes [Fig. 1-1(4]. 

Problem 1.1. 

(a) For the cases of Fig. 1-1, in what direction are the molecules of the cord moving as the pulse 

passes 

by? 

(b) If actual molecules of cord are not travelling 

with 

the pulse, 

what 

is? 

(c) What qualitative explanation can you give for this phenomenon? 

1 
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Tension S 

I 1 , I 

d I 
I I 

I 

I 4 , 
I 
I 
I 

I 

I , I 

After hand snap j 

, 
I 
I I 

I 
I 

I 

I 

t I 

I A- Tension S 

%, 

I , 
L=vr. 

(b) A time t later 

v- Tension S 

After a more complex hand snap 

A time t later 

Fig. 1-1 

Solution 

(a) We can understand the motion of the cord molecules as the pulse approaches a point in the cord and 
passes by. First the molecules at a given horizontal point on the cord move upward, until the 
maximum of the pulse 

passes 

the point, at which 

time 

the molecules are at the maximum vertical 

displacement (the amplitude); then the molecules 

move 

back 

down until 

they 

return to their normal 
position as the pulse 

passes 

by. Thus the molecules 

move 

perpendicular to the direction in which the 
pulse 

moves. 

(b) The shape of the pulse 

travels 

as one set of molecules 

after 

another go through the vertical motion 
described 

in 

part (a). The pulse carries energy-the vertical 

kinetic 

energy 

of the moving molecules, 
and the associated potential energy due to momentary stretching of the cord, in the pulse 

region. 

(c) As the tension in the cord is 

increased 

forces between 

adjacent molecules 

get 

stronger, resisting the 
effort to pull the cord apart. When the student snaps the end of the cord upward the adjacent mol- 
ecules are forced upward as well, and so are the next 

set 

of molecules and the next 

set, 

and so on. All 
the molecules in the cord don’t 

move 

upward at the same instant, however, 

because 

it takes some time 
for each succeeding 

set 

of molecules to feel the resultant force 

caused 

by the slight motion of the prior 
set 

away 

from them. 

While 

the successive groups of molecules are being 

pulled 

upward, the student 

snaps her hand back down, so the earlier molecules are reversing direction and moving back down. 
The net effect is that successive sets of molecules down the length of the cord start moving upward 

while further back other sets are feeling the pull back down. This process 

causes 

the pulse to, in effect, 

reproduce itself over and over again down the cord. 

The pulse in the 

cord 

is an example of a transverse wave, where molecules move to and fro at right 
angles to the 

direction 

of propagation of the wave. Another type of wave, in which the molecules 
actually move to and fro along 

the 

direction 

of the 

propagation 

of the wave is called a longitudinal 
wave. Consider a long 

straight 

pipe with air in it at some pressure P, and a closely fitting piston at one 
end. 

Suppose 

a student suddenly pushes the 

piston 

in and pulls it back out. Here the molecules of air 
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first 

move 

forward along the tube and then back to their 

original 

positions, 

while the wave pulse 

travels 

in a parallel 

direction 

[Fig. 

1-21. (Since it is hard to visually 

display 

the 

longitudinal pulse, we indicate 
its location by showing a shaded area in the 

figure, 

darker meaning greater displacement). 

This 

air pulse 
is a primitive 

example 

of a sound wave. Longitudinal sound waves also 

occur 

in liquids 

and solids, as 
one experiences by hearing sound under water or by putting ones ear to a railroad track. 

Problem 1.2. 

(a) Drawing analogy from the transverse wave in Problem l.l(a), describe the pulse that you 

would 

expect occurs when the student jerks the piston in and out, in the piston-tube arrangement 
described above in 

the 

text. 

(b) Describe the pulse 

from 

the 

point of view of changing pressure 

in 

the tube. 

(c) What in the transverse wave of Fig. 1-l(a) behaves 

in 

a manner analogous to the pressure 

in 

the 
longitudinal wave ? 

Solution 

(a) Aside from the different nature of the intermolecular forces 

in 

the two cases 

(solid 

vs. gas), the simi- 
larities are considerable. Just as the molecules 

in 

the cord first communicate upward motion and then 
downward motion, the air molecules 

in 

the tube first communicate motion away 

from 

the piston and 

then motion toward the piston. The maximum displacement of the molecules 

away 

from 

their normal, 
or equilibrium, positions represents the amplitude of the pulse. A reasonable speculation is that the 
longitudinal pulse 

travels 

with 

some definite 

velocity 

(characteristic of the air) along the tube, and 

maintains its shape, with some diminution in amplitude due to thermal losses. 

Note. This is in 

fact 

what 

actually does happen. 

(b) When the piston is first 

pushed 

in it 

compresses 

the air between the piston and the layer of air in the 
tube not yet moving, so there is a small 

increase 

in pressure, AP, above the ambient pressure of the air, 
P. This increase drops rapidly to zero as the compression reverts to normal density as the air mol- 
ecules further along move 

over. 

As the piston is pulled 

back 

to its 

original 

position a rarefaction occurs 

as molecules rush back against the piston but molecules further along the tube have not yet had time 
to respond, so there is a small 

decrease 

in pressure, AP, that again disappears as the molecules further 

on come back to re-establish normal density. 

The displacement of the transverse pulse of Fig. 1-l(a) is 

always 

positive 

(as is the displacement of the 
longitudinal wave in part (a) above), while the “pressure wave”, AP, described in (b) above, first 

goes 

positive, drops back through zero to become 

negative, 

and then returns to zero. One quantity in the 

(c) 

Fig. 1-2 
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transverse wave that behaves analogously is the vertical velocity of the molecules of the cord. This 

transverse velocity (not to be confused with the velocity of propagation of the pulse) is first positive 
(upward), then becomes zero at maximum amplitude, and then turns negative (downward), becoming 
zero again after the pulse passes by. AP behaves exactly the same way. Indeed, from this analogy, we 
can surmise that the change in pressure is zero where the air molecules are at maximum displacement 
from their equilibrium position, just as the velocity is zero when the cord molecules are at maximum 

displacement . 

These results 

can 

be illustrated by examining two graphs 

representing 

either the transverse 

pulse in the 
cord or equally well the 

longitudinal 

pulse in the 

tube. 

In 

Fig. 1-3(a) we show a graph 

representing 

at a 
given instant of time, and 

on 

some arbitrary scale, the vertical displacement from equilibrium of the 
molecules of the 

transverse 

pulse in the 

cord 

of Problem l.l(u). Figure 1-3(b) then represents, at the 
same 

instant 

of time, and with the 

same 

horizontal 

scale but arbitrary vertical scale, a graph of the 
vertical (transverse) velocities of the 

corresponding 

points along the cord. The displacements 

and veloci- 
ties of the 

various 

points 

in the 

cord 

in these “snapshot” graphs 

also 

shows the “real time” behavior 
that any 

one 

point 

in the 

cord 

would have as the 

pulse passed 

by. 
Equally well, Fig. 1-3(u) can 

represent, 

at a given instant of time, and 

on 

some arbitrary scale, a 
vertical plot of the 

longitudinal 

displacement 

of gas molecules from their 

normal 

(or equilibrium) posi- 
tions, with the 

horizontal 

representing the various equilibrium 

(if no pulse were passing) positions 

along 

the 

tube. 

For this case, Fig. 1-3(b) can then represent, at the 

same 

instant, and 

on the 

same 

horizontal 

but arbitrary vertical scale, the 

changes 

of pressure (AP) at corresponding 

points 

along the tube. 

Again, 
as with the 

cord, 

we note that for our pulse moving through 

the 

tube to the 

right, 

the graphs 

of the 
various 

points 

in this 

snapshot 

of the pulse also 

represent 

the behavior 

at a given point 

along 

the tube, 

as the pulse passes by in real time. We see that AP is positive at the 

front 

(right-most) end 

of the pulse, 
first increasing and then decreasing to zero 

(normal 

pressure) as 

the 

maximum vertical longitudinal 
displacement passes by, then turning negative, first increasingly negative and then decreasingly negative, 

Displacement from equilibrium 

+ 
Transverse velocity in cord or 

pressure 

variation, 

Af, in tube 
, I Same fixed 

time 

t 
I 

Fig. 1-3 
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until reaching zero (normal pressure) as the pulse 

completely 

passes 

the given point. The same graph 
can also represent the longitudinal velocities of the moving air molecules, and we see that the velocities 
of the air molecules at various points along the tube behave like AP at those points. 

Velocity of Propagation of Waves 

Using the laws of mechanics, it is possible to derive 

the 

actual velocities of propagation of waves 
such as transverse waves 

in 

a cord or rope and longitudinal waves in a gas, 

liquid 

or solid. 

We 

will not 
do that here (but we will do one case in a problem later on). Instead, we will use qualitative arguments 
to show the reasonableness of the expressions for the velocities. Consider first the case of transverse 
waves in a cord. What are the factors that would 

affect 

the velocity of propagation? First we note that 
the more quickly a molecule responds to the change in position of an adjacent molecule, the faster the 
velocity of propagation would be. The factor in a cord that impacts the most on this property is how 
taut the cord is, or how much tension, S,  it is under. The greater the tension the stronger the intermolec- 
ular forces, and the more quickly 

each 

molecule 

will move 

in 

response 

to the motion of the other. Thus 
increasing S will increase the velocity of propagation, U,. On the other hand, the more massive the cord 
is, the harder it will be for it to change its shape, or to move up and down, because of inertia. The 
important characteristic, however, is not the mass of the cord as a whole, 

which 

depends on how long it 
is, but rather on a more intrinsic property such as the mass 

per 

unit length: p. Then, increased p means 
decreased U,. The simplest formula that has these characteristics would be U, = S/p. A quick 

check 

of 
units shows that S/p = N - m/kg = (kg m/s2)m/kg = m2/s2. By taking the square root we get units of 
velocity so we can guess: 
For transverse waves in a cord 

v, = (S/p)1’2. 

As it turns out, this is the correct result. (Our qualitative argument allows the possibility of a dimen- 
sionless multiplication factor in Eq. ( l . l ) ,  such as 2, J2 or n, but in a rigorous derivation it turns out 
there are none!) 

Similarly, 

in 

obtaining the propagation velocity of sound in a solid, consider a bar of length, L, and 
cross-sectional area, A .  The strength of the intermolecular forces are measured by the intrinsic stiffness, 
or resistance to stretching, of the bar, a property which does not depend on the particular length or 
cross-section of our sample. 

We 

have already come across a quantity which measures 

such 

intrinsic 
stiffness independent of L and A :  the Young’s modulus of the material, Y ,  defined as the stress/strain 
(see, e.g., Beginning 

Physics 

I, Chap. ll.l), and which has the dimensions of pressure. Thus the larger Y ,  

the larger up for the bar. As in the case of the cord, there is an inertial factor that impedes rapid 
response to a sudden compression, and the obvious intrinsic one for the bar is the mass/volume, or 
density, p. (Note that the mass per unit length would not work 

for 

the bar because it depends on A, and 
we have already eliminated dependence on A in the stiffness 

factor). 

Again, 

we try 

stiffness/inertia 

= Y /  
p, but this has the dimensions of (N/m2)/(kg/m3) = m2/s2. This is the same as the dimensions of S/p for 
transverse waves in a cord, so we know we have to take the square root to get 

velocity: 

For longitudinal waves 

in 

a solid 

up = ( Y / p ) ” 2  (1.2 

For a fluid the bulk modulus, B = (change in pressure)/(fractional change in volume) = I Ap/(AV/V) 

replaces Y as the stiffness factor, yielding: 

For longitudinal waves 

in 

a fluid 

U, = (B/p)”2 (1 .3)  

As with Eq. ( I J ) ,  for transverse waves in a cord, these last two equations turn out to be the correct 
results, without any additional numerical coefficients, 

for 

longitudinal waves in a solid or fluid. 
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Problem 13. 

(a) Calculate the velocity of a pulse in a rope of mass/length p = 3.0 kg/m 

when 

the tension is 25 N. 

(6) A transverse wave in a cord of length L = 3.0 m and mass M = 12.0 g is travelling at 60oO cm/s. 
Find the tension in the cord. 

Solution 

(a) From Eq. ( 2 . 2 )  we have: 

up = (S/p)'/' = [(25 N)/(3.0 

kg/m)]1/2 

= 2.89 m/s. 

(b) Again 

using 

Eq. ( 2 . 2 )  we have: 

S = pup2 = (M/L)u,' = C(0.012 kg)/(3.0 m)](60 m/s)2 = 14.4 N. 

Problem 1.4. 

(a) If the speed of sound in water is 1450 

m/s, 

find the bulk modulus of water. 

(b) A brass rod has a Young's modulus of 91 - 109 Pa and a density of 8600 kg/m3. FinG the velocity 
of sound in the rod. 

Solution 

(a) Recalling that the density of water is loo0 kg/m3, and using Eq. (1.3), we have: 

B = (1450 m/s)'(lW kg/m3) = 2.1 x 109 Pa. 

(b) From Eq. (2.2): 

up = [(9l x 109 

Pa)/(8600 kg/rn3)]'l2 

= 3253 

m/s. 

Problem 1.5. Consider a steel cable of diameter D = 2.0 mm, and under a tension of S = 15 kN. (For 
steel, Y = 1.96 - 10" Pa, p = 7860 kg/m3). 

(a) Find the speed of transverse waves 

in 

the cable. 

(6) Compare the answer to part (a) with the speed of sound in the cable. 

Solution 

(a) We need 

the 

massflength, 

p = pA, where A is the cross-sectional area of the cable, A = nD2/4. From 
the data for the cable: 

p = (7860 kg/m3)(3.14)(0.0020 m)2/4 = 0.0247 

kg/m. 

Substituting into Eq. (2 .1 )  we get: up = [(l5 . 103 N)/(0.0247 kg/rn)]'/' = 779 m/s, 

(b) The speed of longitudinal (sound) waves is given by Eq. (1.2), which 

yields: 

up = C(1.96 10'' Pa)/(7860 kg/m3)]1'2 = 4990 

m/s, 

which is 6.41 times as fast as the transverse wave. 

Problem 1.6. 

(a) Assume the cable in Problem 1.5 is loo0 m long, and is tapped at one end, setting up both a 
transverse and longitudinal pulse. Find the time delay between the two pulses arriving at the other 
end. 

(6) What would the tension in the cable have to be for the two pulses to arrive together? 
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Solution 

(a) We find t ,  and t ,  , the respective 

times 

for 

the transverse and longitudinal pulses to reach the end: 

t ,  = (1000 m)/(779 m/s) = 1.28 s; t ,  = (1000 

m)/(4990 

m/s) 

= 0.20 s. 

At = t ,  - t ,  = 1.08 S .  

(b)  Here the speed of the two pulses 

must 

be 

the same so, as noted in Problem l.S(b), the new transverse 
speed must be 6.41 times 

faster 

than before. 

Since 

the linear 

density, 

p, does not change significantly, 
we see from Eq. (2.2) that the tension must increase by a factor of 6.41, = 41.1. Thus, the new tension 

is 

S' = 41.1(15 kN) = 617 kN. 

1.2 CONTINUOUS TRAVELLING WAVES 

Sinusoidal Waves 

We 

now 

re-consider 

the case of the student giving a single snap to the end of a long cord (Fig. 1-1). 
Suppose, instead, she moves the end of the cord up and down with simple harmonic motion (SHM), of 
amplitude A and frequencyf= 4271,  about the equilibrium (horizontal) position of the cord. We choose 
the vertical (y) axis to be coincident with the end of the cord being 

moved 

by the student, and the x axis 

Travelling wave when pt. x=O is oscillating vertically 

with 

SHM. Snapshot 

at 

I=[,, 

I' 

I 
Four snapshots of the travelling of (b): at to, fO+T/4, r0+T/2 and 1,+37'/4 

Fig. 1-4 
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to be along the undisturbed cord, as shown in Fig. l-qa). Let y,(t) represent the vertical position of the 
point on the cord corresponding to the student’s end (x = 0) at any time t. Then, assuming y, = 0 (and 
moving upward) at t = 0 we have: y, = A sin (at) for the simple harmonic motion of the end of the 
cord. 

Note. Recall that in 

general 

for 

SHM, y = A cos (ot + 60), where 60 is an arbitrary constant that 
defines 

where 

in the cycle we are at t = 0. Choosing 8, = 0 corresponds to being at 
maximum positive 

displacement 

at t = 0, while choosing 8, = 3n/2 gives us our present 

result . 

Every change in position of the cord at the student’s end is propagated to the right 

with 

the velocity 
of propagation, u p .  This means that at any horizontal point x along the cord the molecules of cord will 
mimic 

the 

same up 

and down motion as the student initiated at the end point (x = 0), and with 

the 

same amplitude, A (if we ignore thermal losses). Let us call y,(t) the vertical 

position 

of the cord at a 
definite horizontal position, x, along the cord, at any time t. y,(t) will mimic 

what 

y, was at an earlier 
time t’: 

Y A t )  = Yo(t’) (1.4) 

where ( t  - t’) is the time interval it takes for the signal to go from the end (x = 0) to the point x of 
interest. 

Since 

the signal 

travels 

at speed up we must have: x = u,(t - t’), or (t  - t’) = x/up * t‘ = 

t - x / u p .  Finally, 

recalling 

our expression 

for 

y,(t), and using our expression 

for 

t’ in 

Eq. 

( 2  A), we get: 

yJt)  = A sin [o(t - x/up)] 

Note that Eq. (1.5) gives us the vertical 

displacement 

of any point x along the cord, at any time t. It thus 
gives us a complete description of the wave motion in 

the 

cord. As will be seen below, this 

represents 

a 
travelling wave moving to the 

right 

in the cord. This result 

presumes, 

of course, that the cord is very 
long and we don’t 

have 

to concern ourselves with what happens at the other end. Eq. (2.5) can be 
reexpressed by noting that cu(t - x/up) = ot - (w/u,)x. We define 

the 

propagation constant for the wave, 
k as: k = o / u p ,  or: 

up = o / k  ( 2  -6) 

Recalling that the 

dimensions 

of o are s-’ (with the usual convention that the dimensionless quantity, 
at, is to be in radians for purposes of the sine 

function), 

we have 

for 

the dimensions 

of k :  m? In terms 
of k ,  Eq. (2 .5)  becomes : 

(2.7) y,(t)  = A sin (of - k x )  

Eqs. (1.5) and (2 .7)  indicate that for any fixed position x along the cord, the cord exhibits SHM of the 
same amplitude and frequency 

with 

the term in 

the 

sine function involving 

x acting as a phase constant 
that merely shifts the time at which the vertical motion passes a given point in the cycle. 

Eqs. (2.5) and (2.7) can equally well represent the longitudinal waves in a long bar, or a long tube 
filled with 

liquid 

or gas. In that case y,(t) represents the longitudinal displacement of the molecules 

from 

their equilibrium position at each equilibrium position x along the bar or tube. Note that y, for a 
longitudinal wave represents a displacement along the same direction as the x axis. Nonetheless, the to 
and fro motion of the 

molecules 

are completely analogous to the up and down motion of molecules in 
our transverse wave in a cord. 

It is worth recalling that the 

period 

of SHM is given by: 

T = l / f= 2 n / o  (1.8) 

and represents the time 

for 

one complete vertical cycle of the SHM in our cord (or to and fro motion for 
our longitudinal waves). 

Eq. (2.7) can also be 

examined 

at a fixed time t for 

all 

x. In what 

follows 

we will use the example of 
the 

transverse 

wave in the cord, since 

it 

is easier to visualize. For any fixed t ,  Eq. (1.7) represents a 
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snapshot in 

time 

of the shape of the cord. Clearly 

for 

fixed t this 

represents 

a sinusoidal wave in the 
variable x. The spatial periodicity of this wave, i.e. the 

length 

along the x axis that one moves to go 
through one complete cycle of the wave, is 

called 

the wavelength: 1. Since a sine wave repeats when its 
argument (angle) 

varies 

through 211, we see that for fixed t in Eq. (1.7), the sine wave will repeat when 
x 

(x 

+ A) with k 1  = 211. Rearranging, we get: 

1 = 2 4 k  (1  *9) 

which is 

the 

spatial analogue of Eq. (1.8) for 

the 

period. The dimensions 

of 1 are meters, as expected. A 
snapshot of the cord (at a moment t when y, = A )  is shown in Fig. l-qb). 

Problem 1.7. A student holds one end of a long cord under 

tension 

S = 10 N, and shakes it up and 
down with SHM of frequencyf= 5.0 Hz and amplitude 3.0 cm. The velocity of propagation of a wave in 
the cord is given as up = 10 m/s. 

(a) Find the 

period, 

T ,  the angular frequency, a, and wavelength, 1, of the wave. 

(b) Find the 

maximum 

vertical displacement 

of any point on the cord. 

(c )  Find the maximum 

vertical 

velocity and vertical 

acceleration 

of any point on the cord. 

Solution 

(a) T = l /f= 0.20 s; o = 2nf = 6.28(5.0 Hz) = 31.4 rad/s. To get 1 we use Eqs. (2.6) and (2.9): k = o / u ,  = 

(31.4 s-')/(lO m/s) = 3.14 m-'; 1 = (2n)/k = 2.0 m. 

(6) Assuming no losses, the amplitude, A, is the same everywhere along the cord, so A = 3.0 cm. 

(c) Noting that all the points on the cord exercise SHM of the same frequency and amplitude, and recalling 
the expressions 

for 

maximum 

velocity and acceleration (Beginning 

Physics 

I, Chap. 12, Eqs. 

12.10b,c) 

we have: umax = wA = (31.4 s-')(3.0 cm) = 0.942 m/s; amax = 0 2 A  = (31.4 s -  ')2(3.0 cm) = 29.6 m/s. 

Problem 1.8. 

(a)  Re-express 

the 

travelling 

wave equation, Eq. (1.7) in terms of the period T and the wavelength, A. 

(6) Find an expression 

for 

the 

velocity of propagation, up,  in terms of the wavelength, 1, and frequency, 

"f 

Solution 

(a) Recalling that o = 27cf = 2n/T, and that 1 = 2n/k, Eq. (2.9), we have, substituting into Eq. (2.7): 

y = A sin (27ct/T - 2nx/1) = A sin [2n(t/T - x/1)] (4 
(6) From Eq. (1.6) we have: U,, = o/k = 27cf/(2n/l), or: 

U , = A f  (ii) 

Eq. ( i i )  of Problem (1.8) is a very general 

result 

for all travelling 

sinusoidal waves and can be 
illustrated 

intuitively 

by examining 

the 

travelling 

wave in 

Fig. 

1-4(b). Consider the cord at point e in 
Fig. 1-4(b). At the instant shown 

(time 

t = 0) ye  = 0. As the wave moves to the 

right 

a quarter of a 
wavelength 

the 

crest 

originally 

at point d is now above point e, so the cord at point e has moved to its 
maximum 

positive 

position which is $ of the period of SHM, T .  When 

the 

wave moves another a 
wavelength 

the 

position 

originally 

at point c arrives at point e, so the cord at point e is 

now 

back 

at 
equilibrium, corresponding to another 3 period. After moving another wavelength 

the 

wave originally 
at point b is over point e, so the cord at point e is 

now 

at its negative 

maximum, 

corresponding to 
another $ period. 

Finally, 

when the 

last 

quarter wavelength has moved 

over, 

the wave originally at 
point a is now 

over 

point e, and the cord at point e is 

now 

back 

to the 

equilibrium, 

completing 

the final 
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a of the SHM period. Clearly, then, the wave has moved a distance R to the right in the time of one SHM 

period, T.  So, speed = distance/time, or: 

(1.10) 

Of course, we have been assuming that Eq. (1.5), or equivalently, Eq. (1.7), represents a travelling wave 
moving to the right with 

velocity 

u p .  In the next problem we demonstrate that this actually follows from 
the wave equation itself. 

up = A/T = Af 

Problem 1.9. Show by direct mathematical analysis that Eq. (1.7) is a travelling wave to the right with 
velocity: vp = w/k = I$ 

Solution 

Consider the wave shown in Fig. l-qb), which 

represents 

a snapshot at time, t, of a cord with a wave 

obeying Eq. (1.7). We consider an arbitrary point, x ,  along the cord corresponding to a particular position 
on the wave 

form, 

and ask 

what 

is the change in position, Ax,  along the cord of the chosen vertical point on 
the wave form in a new snapshot of the cord taken a short time, At, later. 

Since a given vertical position corresponds to a definite “angle” or phase of the sine wave, we have 
from 

Eq. 

(1.7), Ax and At obey: [or - kx]  = [o(t + At)  - k(x + Ax) ] .  Canceling 

like 

terms we get: 

o A t  - kAx = O=Ax/At  = w/k (0 

Since Ax represents the distance the chosen point on the wave form moves 

in 

a time At, we have Ax/At 
represents the speed 

of 

the chosen point on the wave 

form. 

Furthermore, since o/k is a positive constant, all 
points on the wave form move at the same speed (as expected), and in the positive x (to the right) direction. 

This speed is just the velocity of propagation, so up = Ax/At or, up = o / k  = A .  the desired 

result. 

Problem 1.10. 

(a)  Consider the situation in Problem 1.7. If the student shakes the cord at a frequency of 10 Hz, all 
else 

being 

the same, what is the new wavelength of the travelling wave? 

(b)  Again assuming the situation of Problem 1.7, but this time the tension in the cord is increased to 40 
N, all else 

being 

the same. What is the new wavelength? 

(c )  What is the wavelength if the changes of parts (a) and (b) both take place? 

(d) Do any of the changes in parts (a), (b), (c)  affect the transverse velocity of the wave in the cord? 
How? 

Solution 

(a) The velocity of propagation remains fixed if the tension, S, and mass per 

unit 

length, 

p, remain the 
same. 

Therefore, 

if we use primes to indicate the new frequency and velocity we must have: U, = Af= 
A”. For our casef’ = 10 

Hz 

so, from Problem 1.7, up = 10 m/s = A’f’ = A’ (10 Hz)*A’ = 1.0 m. (Or, 

starting from the situation in Problem 1.7,f= 5 Hz and A = 2.0 m for fixed up,  if the frequency doubles 
the wavelength 

must 

halve, giving 

A’ = 1.0 m.) 

From Eq. (1.1), U, increases as the square root of the tension, S .  Here the tension has doubled from the 
value 

in 

Problem 1.7, so the new velocity of propagation is U; = (J2)up = 1.414(10 m/s) = 14.1 m/s. 

Since the frequency 

has 

remained 

the same we have: 

(b )  

t(, = A’f‘ 14.1 m/s = A’(5.0 Hz) == A’ = 2.82 m. 

(c) Combining the changes in (a) and (b), we have: 

U; = A’f‘=. 14.1 m/s = A’(l0 Hz)*A’ = 1.41 m. 

(d) As can be seen 

in 

Problems 1.7, the transverse velocity and acceleration are determined by o and A. In 
none of parts (a), (h), or (c) is A affected. In part (b) w = 2nf is not changed either, so no change in 
transverse velocity and acceleration takes place. In parts (a) and (c) the frequency has doubled, so w 
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doubles as well. Then, the maximum transverse velocity, cmaX doubles to 1.88 m/s, and the maximum 
transverse acceleration quadruples to 118 m/s2. 

Problem 1.11. Using the analysis of Problem 1.9, find an expression for a travelling sinusoidal wave of 
wavelength A and period T ,  travelling along a string to the left (along the negative x axis). 

Solution 

As usual we define k = 2 4 2  and o = 2n/T for our wave travelling to the left. From Eq. (i) of Problem 

1.9 we see that if the phase of our sine wave had a plus instead of minus 

sign, 

[i.e., was ot + kx], then our 
analysis of the motion of the wave motion would 

lead 

to: Ax/At  = - o / k .  This corresponds to a negative 

velocity: up = - o / k .  The wave equation itself is then: 

y,(t) = A sin (or  + k x )  ( i )  

This wave clearly has the same period of vertical motion at any fixed point on the string, and the same 

wavelength, as a wave 

travelling 

to the right [Eq. ( I  .7)] with the same A,  k ,  and o. 

Problem 1.12. Two very long parallel rails, one made of brass and one made of steel, are laid across 
the bottom of a river, as shown in 

Fig. 

1-5. They are attached at one end to a vibrating plate, as shown, 
that executes SHM of period T = 0.20 ms, and amplitude A = 19 

pm. 

Using the speeds of sound 
(velocities 

of 

propagation) given in Problem 1.4 for water and brass, and in Problem 1.5 

for 

steel: 

(a) Find the wavelengths of the travelling 

waves 

set 

up in each rail and in the water. 

(b) Compare the maximum longitudinal displacement of molecules 

in 

each rail and in water to the 
corresponding wavelengths. 

(c) Compare the maximum longitudinal velocity of the vibrating molecules in each rail and in water to 
the corresponding velocities of propagation. 

Soh tion 

(a) For each material, up = A ,  withf= 1/T = 5000 s - ’ .  For steel 

[from 

Problem lS(b)], L + ~ , ~  = 4990 

m/s, 

so A, = (4990 m/s)/(5000 s-’) = 0.998 m. For brass [from Problem I.qb)], cp, b = 3253 m/s, so = 

3253/5000 = 0.651 m. For water 

(from 

Problem 1.4(a))cp, = 1450 m/s, so A,,, = 1450/5000 = 0.290 

m. 

(b) For all 

cases, 

assuming 

no losses, the amplitude is 19 pm = 1.9 - 10-5 m, which is more than a factor 
of 104 

smaller 

than the wavelengths 

for 

all 

three cases. 

(c) For each 

case 

the maximum SHM velocity is U,,, = o A  = 27$A, which 

yields: 

L-,.,,~, = 6.28(5000 
s-’)(1.9 * lO-’) = 0.596 m/s. 

Again, 

these 

are very 

small 

compared to the propagation velocity in each 
material. 

River 

bank 

Brass-, 1.. ~, Water ~, ~, 

Vibrator 
plate Water 

Water 
2. . , , , , , , . , , . , . , , . , . , 

Steel 1 

Top view of rails under water 

Fig. 1-5 

Ribrer bank 
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Problem 1.13. Write the specific equation describing the travelling longitudinal wave 

in 

the steel 

rail 

of 
Problem 1.12. Assume .Y is measured from the vibrator end of the rail. 

Solution 

The general equation is given 

by 

Eq. (1.7). For steel U = 2nf= 6.28(5000 s - ’ )  = 31,400 s - ‘ ;  k = 

( 9 

This could also be obtained by substitution of appropriate quantities into Eq. (2.5) or Eq. (i) of Problem 1.8. 

2n/A = 6.28/(0.998 m) = 6.29 m-‘;  A = 1.9 * 10-’ m. Substituting into Eq. (1.9) we get: 

yx(f) = (1.9 x 10-’ m) sin [(31,400 s - ’ ) t  - (6.29 m-’)x] 

Problem 1.14. The equation of a transverse wave in a cord is given by: 

p,(t) = (2.0 cm) 

sin 

[2~/(0.040 s) + 2nx/(0.50 m)] 

(a )  Find the amplitude, wavelength and frequency of the 

wave. 

(6) Find the magnitude and direction of the velocity of propagation, vP. 

( c )  Find the maximum transverse velocity and acceleration of the 

wave. 

Solution 

(a)  We could compare Eq. (i) with Eq. (2.7), to get U and k, but Eq. (i) is given 

in 

a way that is more easily 
translated using Eq. (i) of Problem (1.8). There a comparison shows: 

T = 0.040 s *f= 1/T = 25 s -  ’; 
(h)  In magnitude, cp = Af= (0.50 rn)(25 s - ’ )  = 12.5 m/s; the direction is along the negative s axis, because 

of the plus sign 

in 

the argument of the sine function (see Problem 1.1 1). 

t’,,, = wA = 2nfA = 6.28(25 s -  “2.0 cm) = 3.14 m/s; a,,, = 0 2 A  = UO,,, = 

6.28(25 s-’)(3.14 m/s) = 493 m/s2. 

A = 2.0 crn; A = 0.50 rn. 

(c.) 

Energy and Power 

in 

a Travelling Sinusoidal 

Wave 

When a wave 

travels 

in 

a medium it carries energy. To calculate the energy 

in 

a given 

wave, 

and the 
rate at which energy 

transfers 

(power) from one point to another in the medium, we require a detailed 
knowledge of the wave and the 

medium 

in which 

it travels. For the case of a transverse sinusoidal wave 
travelling in a cord, or a longitudinal sinusoidal wave 

travelling 

in a rail or tube, it is not hard to 
calculate the energy 

per 

unit 

length and the power transfer across any point or cross-section. Consider 
the case of the wave in a cord of linear density p. As the wave 

travels, 

all 

the molecules 

in 

any length L 

of the cord are executing SHM of amplitude A and angular frequency CO, although they are all out of 
phase with 

each 

other. The total energy of SHM equals the maximum kinetic 

energy 

which, for 

a particle 
of mass rn, is just: $rnt12,,, where umaX is the maximum transverse velocity, U,,, = o A .  Since 

all 

the 
particles 

have 

the same maximum velocity, and the mass in a length L is p L ,  we have for the energy, E , ,  

in a length L of cord: E ,  = ~ ~ L C O ’ A ’ .  Dividing by L to get the energy 

per 

unit 

length, E = EJL,  we 
have : 

E = ~ ~ C O ’ A ’  (1.1 1 )  

To find the power, or energy 

per 

unit time passing 

a point in the cord, we just note that the wave travels 
at speed up,  so that in time t a length vpt of wave passes any point. The total energy 

passing 

a point in 
time r is then E U J .  Dividing by t to get the power, P, we have: 

(2.22) P = E U ,  = $ ~ M D ’ A ~ v ,  

Problem 1.15. Assume that the travelling transverse wave of Problem 1.14 is in a cord with p = 0.060 

kg/m* 
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(a) Find the energy 

per 

unit 

length in the wave. 

(b )  Find the power transferred across any point as the wave 

passes 

by. 

Solution 

(a) From Problem 1.14 we have A = 2.0 cm and o = 2nf= 6.28(25 Hz) = 157 s - I .  Applying Eq. (1.11) we 
have : 

E = i(0.060 kg/m)(157 s -  1)2(0.020 m)2 = 0.296 Jjm. 

(b)  Noting that P = E U , ,  and from Problem 1.14 that up = 12.5 m/s, we get: 

P = (0.296 

J/m)(12.5 

m/s) = 3.70 W. 

Problem 1.16. 

(a) How are Eqs. (1.11) and (1.12) modified 

for 

the case of a longitudinal sinusoidal wave in a rail or 
tube? 

(b) Find the energyflength and power of the longitudinal sinusoidal wave 

in 

the steel 

rail 

of Problem 
1.12, if the cross-sectional area is 20 cm2. The density of steel is 7860 kg/m3. 

Solution 

(a) From the derivation in the text, we see that the mass 

per 

unit length is needed for both E and P ,  

irrespective of whether the waves are transverse or longitudinal. For our rail or tube filled with 

fluid, 

the usual quantity given is the mass/volume or density, p. If the cross-sectional area of the rail or tube 
is labelled CA,  we have: p = pC,, and Eqs. (1.11) and (1.12) are still 

valid 

as written. 

(b) From Problem 1.12 we have for the steel rail: up = 4990 m/s, o = 2nf= 2n(5000 Hz) = 31,400 s - ’ ,  and 
A = 1.9 * lO-’ 

m. 

Noting that p = pCA = (7860 kg/m3)(2.0 * 10e3 m2) = 15.7 kgjm, and substituting 

into Eq. (1.11), we get: E = 4(15.7 

kg/m)(31,400 

s -  ‘)2(1.9 - 10-’ m)’ = 2.79 Jjm. Similarly, P = EC, = 

(2.79 J/m)(4990 m/s) = 13,900 W. 

It is important to note that the equations for 

travelling 

waves, Eqs. (1.5) or (1.7) describe 

ideal 

sinusoidal waves that are travelling 

forever 

(all 

times t )  and extend 

from 

x = - XI to x = + X I .  Real 
sinusoidal waves are typically 

finite 

in length, 

from 

several 

to hundreds of wavelengths 

long, 

and are 
called “wave trains”. Thus, if the student starts her SHM motion of one end of the cord at some instant 
of time t = 0, and stops at some later time, t f ,  Eqs. (1.5) and (1.7) do not exactly 

describe 

the cord at all 
times t and at all positions x. Still, 

for 

long wave trains, these equations do describe the wave motion 
accurately during those times and at those positions where the wave is passing by. 

1.3 REFLECTION AND TRANSMISSION AT A BOUNDARY 

Reflection and Transmission of a Pulse 

Until now we have assumed our cords, rails, 

etc., 

were very long so we did not have to deal 

with 

what happened when our wave hit the other end. In this 

section 

we consider what happens at such an 
end. Consider the long cord, under tension S ,  of Fig. 1-1, with the single 

pulse 

travelling 

to the right. 
Assume that the other end is tightly 

tied 

to a strong post. Figures 1-6(a) to (d) shows the cord at 
different 

times 

before 

and after the pulse 

hits 

the tie-down point. It is found that the pulse is reflected 

back, turned upside down, but with the same shape and moving at the same speed, 

now 

to the left. The 
amplitude will also be the same except 

for 

the thermal energy 

losses 

along the cord and at the end. 
There always will be some losses but we ignore them here 

for 

simplicity. 

This reversal of the pulse can 
be understood by applying the 

laws 

of mechanics to the end of the cord, but the mathematics is too 
complicated for presentation here. We can, however, give a qualitative explanation. 



14 WAVE MOTION [CHAP. 
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Fig. 1-6 

As the wave travels along the cord the molecules communicate their 

transverse 

motion, and associ- 
ated momentum and energy, to the 

next 

layer 

along the cord. In this way when the pulse 

passes 

a 
portion of the cord, that portion returns to rest while the next portion goes through its paces. As the 
pulse 

reaches 

the end 

of the cord it 

can’t 

transfer 

its upward momentum because that point is 

tied 

down. Instead, the cord near the end first 

gets 

stretched slightly upward, like a stiff spring, as the first 
half of the pulse 

reaches 

it and like a stiff spring almost instantaneously snaps down in response, 
sending the molecules in the opposite transverse direction. As the second half of the pulse arrives the 
cord near the 

end 

is stretched downward. Again almost instantaneously springing the molecules 

back 

up. In effect the cord near the end mimics the original updown snap of the student who originated the 
pulse at the other end, but this 

time 

it’s a down-up snap so the 

pulse 

is upside down, as shown. The 
newly created pulse 

then 

travels back 

along the cord with the same characteristic velocity of propaga- 
tion, U,. 

There is a nice way of visualizing the reflection 

process. 

We think of the 

tied 

down end of the cord 
as being a mirror, with the 

reflection 

of the cord and the 

pulse 

appearing to the right of the “mirror” 
point (dotted). 

Since 

this 

is merely a reflection and not real it is called the virtual pulse. This virtual 
pulse 

differs 

from 

a visual 

reflection 

of an object in a flat 

glass 

mirror 

only by its 

being 

upside 

down. In 
every other way it has the same properties as the visual image: it is as far to the right of the “mirror” 
point as the actual pulse is to the left, has the same shape, and is travelling to the left with the same 
speed as the 

real 

pulse 

is travelling to the 

right. 

The real 

pulse 

and virtual 

pulse 

reach 

the mirror point 
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at the same 

time. 

We then imagine that what happens next is that the 

real 

pulse continues on past 

the 

mirror as a virtual pulse, while what was originally the virtual pulse emerges to the left of the “mirror” 
point as the new real pulse. For the short time while the real and virtual pulses are passing the 

“mirror” 

point, parts of both are real and have equal and opposite 

displacements 

at the “mirror”point. The effect 
is that they cancel 

each 

other out at that point so that, as necessary, the end of the cord doesn’t move. 
This process is depicted in Fig. 1-6(e) to (9). This 

model 

actually 

gives an accurate 

representation 

of 
what 

actually 

happens 

to the 

cord 

upon 

reflection. 
If the far 

end 

of the 

cord 

were not tied down, but instead 

ended 

with a light frictionless loop around 
a greased pole, we would again get a reflected pulse, but 

this 

time it would not be upside 

down. 

This 

case is shown in Fig. 1-7(a) to (4. Again the 

mathematical 

demonstration 

of this 

phenomena 

is beyond 
the scope of the book 

but 

a qualitative 

explanation 

can 

be given. Here, as the pulse reaches the 

end 

there is no more 

cord 

to pick up the 

transverse 

momentum and 

energy of the pulse, so this time the 

end 

of the cord 

overextends 

upward 

before being whipped 

back 

down, 

as the 

front 

and back ends of the 
pulse deposit 

their 

transverse momentum and energy. The 

net effect is an updown snap that directly 
mimics the student’s original updown snap, and the right-side 

up 

pulse travels to the left, as 

shown. 

Again, we can use our “mirror” point approach to consider 

the 

reflection process. Here, however, the 
virtual 

pulse 

is right 

side 

up, just as a visual image in a flat mirror would be, and the 

overlap 

of the 

(4 I 

(4 I 

Real I Virtual 

v l v  

Virtual I Real 

(s) Real Virtual 

Fig. 1-7 

I 
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pulses as they 

pass 

the end point reinforce rather than cancel each other, leading to an exceptionally 
large amplitude at the end point, as expected. The situation in every other way is the same as for the 
tied down cord, and is depicted 

in 

Fig. 

1-7(e) to (9). 
In each of the 

two 

cases discussed, the pulse reflects 

off the barrier at the far end. In the 

first 

case we 

say the reflection 

is 

“ 180” out of phase”. This terminology originates not from the case of reflection of 
the single 

pulse, 

but rather from 

the 

case of 

reflection of a travelling sinusoidal wave as in 

Fig. 

1-4(6). At 
the tied down end the upside-down 

reflection 

for 

the pulse 

would 

be equivalent 

to a half wave-length, or 
180”, shift upon reflection in the travelling wave. The second 

case, 

with 

the “free” end, is a reflection 
that is “in phase”, since the sinusoidal wave just reflects back without a flip-over. 

The two cases are the extreme 

examples 

of possible boundary conditions. In one case the end is 
rigidly 

held 

down by the molecules of the bar to the right of it, so it cannot move at all; in the other 
case the end has no molecules to the right of it that exert any updown constraints of any kind. A more 
general 

case 

is somewhere in-between these 

two extremes. Consider the case 

of 

two long ropes, A and B, 
of linear densities p, and p b ,  respectively, attached as shown in Fig. 1-8(a), with the combination held 
under tension S .  A pulse is shown travelling to the right through the first 

rope. 

We 

can ask 

what 

happens when the pulse 

hits 

the interface? We would 

expect 

that part of the 

pulse 

will reflect off the 
interface 

back 

along rope A and that part will be transmitted to the 

right 

along rope B. This 

behavior 

is 
explored in the following 

problems. 

Problem 1.17. 

(a) 

(6) 

(c) 

For the situation in Fig. 1-8(a), assume that pa < pb. 

Describe 

qualitatively 

what 

happens to the pulse 

after 

it hits the interface. 

Describe 

qualitatively 

the height of the reflected and transmitted pulses. 

Describe 

qualitatively 

the speeds of the reflected and transmitted pulses. 

Solution 

(a) As the pulse 

hits 

the interface the molecules of the first rope suddenly find themselves 

conveying 

their 
transverse momentum and energy to a more massive material. This is somewhat like the case of the 
tied down barrier, discussed above but not as extreme. As a consequence we will get a reflected 

pulse 

180” out of phase. This time, 

however, 

the molecules to the right of the interface, 

in 

rope B, will pick up 
some of the transverse momentum and energy of the molecules in rope A, just as if someone had 

snapped that end of rope B up and down, and part of the pulse will be transmitted to rope B, and 
continue moving to the right. The transmitted pulse is in phase, 

since 

it  is a direct 

response 

to the 
transverse motion of the molecules in rope A. The reflected and transmitted pulses are shown (not to 
scale) in Fig. 

1-8(b). 

Before 

reaching 

the interface ’p,. 

S S 
I 

A L Cla j B  pb’pa 
- (0) 

I 

AAer hitting the interface j ’b,b “p,a 

After hitting the interface j 
, ’b.b ’ \‘p.a 
I ___) 

I I 

c------) c---c 

L A B pb’ pa L ’ > L  

Fig. 1-8 
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(b) Since the total available energy 

comes 

from the original 

pulse, 

and is now shared between the reflected 
and transmitted pulses, those two 

pulses 

will have diminished 

energy 

which 

will most visibly manifest 
itself in 

reduced 

amplitude of each 

pulse. 

Determining the exact distribution of energy 

in 

the two 
pulses is beyond the scope of this book. 

Once the pulses 

leave 

the interface 

they 

must travel 

with 

the characteristic velocities of waves in the 
respective 

ropes. 

The reflected wave will travel to the left with the same magnitude velocity as the 
incoming pulse, up, a = (S/pa)lI2. The transmitted wave will travel to the right 

with 

the velocity up, b = 

(s/pb)1’2. Since rope B is more massive than rope A, we have up, b < up, a .  

(c) 

Problem 1.18. Suppose in the 

previous 

problem 

rope A were more massive than rope B (pa > pJ. How 
would 

the 

answers to 

parts (a) to (c) change? Describe the length of the reflected and transmitted pulses. 

Solution 

(a) The new situation is depicted in Fig. 1-8(c). The only change in our answer to part (a) is that the 
reflected 

wave 

will be upright, or in phase. Here the molecules 

in 

rope B are more easily 

pushed 

up and 
down than those of rope A, and the conditions more closely correspond to the cord with the “free” 
end described 

earlier 

in the text. 

(b) Energy reasoning is the same, but amplitude of transmitted pulse 

might 

be larger. 

(c) The answer is basically the same, 

except 

that 

up, b > up, a .  

The initial and reflected 

pulses 

have 

the same length. The transmitted pulse is longer 

because 

the speed in 
rope B is larger and the front of the pulse 

moves 

further before the back 

hits 

the interface. 

Reflection and Transmission of a Sinusoidal Travelling Wave 

We now 

extend 

our discussion to travelling waves that reach an interface. 

Problem 1.19. Assume that a travelling 

sinusoidal 

wave of amplitude A = 0.40 cm, 

frequency 

f=  40 
Hz and wavelength 1 = 0.50 m is moving to the 

right 

in rope A of Fig. 

1-8(a). 

Rope 

B has a linear 
density twice that of rope A. Assume that we have a finite wave train many 

wavelengths 

long, 

but still 
small 

in 

length compared to the length of the ropes, and that it has not yet reached the interface. The 
common tension 

in 

the ropes is S = 200 N. 

(a) Find the 

velocity 

of propagation, up, a in rope A. 

(6) Find the linear 

density, 

pa , of rope A. 

(c) Find the 

velocity 

of propagation of a wave in rope B. 

Solution 

(a) up, a = Af = (0.50 mN40 Hz) = 20 m/s. 

(b) From Eq. (2.2): U:, a = S/pa 3 pa = (200 N)/(20 m/s)2 = 0.50 kg/m. 

(c) From the information given, & = 2pa = 1.00 kg/m =S up, b = (S/P)’/~ = [(200 N)/(1.00 kg/m)J’/2 = 14.1 
m/s. [or, equivalently, & = 2pa 3 up, b = up, JJ2 = (20 m/s)/1.414 = 14.1 m/s]. 

Problem 1.20. When the wave train of Problem 1.19 hits 

the 

interface, 

part of the wave will be reflec- 
ted and part will be transmitted through to rope B. Here we address only the transmitted wave. 

(a) What is the 

frequency 

and wavelength of the transmitted wave. 

(6) Assuming that half the 

energy 

of the incoming wave transmits and half reflects, find the amplitude 
of the transmitted wave. [Hint: See Problem 1.15, and Eq. (1.22).] 
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Solution 

The frequency will be the same in the transmitted as in the initial wave:fb =f,. This follows 

from 

the 

fact that the stimulating SHM comes from the incoming wave and the interface must move up and down 
at a common rate. Thus, f b  = 40 Hz. We can determine the wavelength from the requirement that: 
u p , b  = & A b .  Using Problem l.l9(c), we have: 1, = (14.1 m/s)/(40 Hz) = 0.35 m, a shorter wavelength 
than in rope A. 

The transmitted power must be half the power of the incoming wave, 

since 

half the incoming energy is 

reflected back. From Eq. (1.12), we have for the incoming wave: PI = ipoo2Afvp, , .  For the transmit- 

ted wave we have: P ,  = ipbo2A+up,  b where, o is common to both waves, p b  = 2 p a ,  and from 
Problem l.l9(c), v p , b  = up,JJ2.  We then have: P, = +PI Canceling 
o2 on both sides, and noting the relationships of the velocities and the linear 

densities, 

we have: 

2 A T 2 / J 2  = )A; .  

$&,o2A$uP,b = 

Substituting A, = 0.40 

cm, 

we get: A, = 0.238 cm. 

The statement (Problem 1.2qa)) that the transmitted frequency is the same as the incoming 

frequency 

can be rigorously demonstrated, and is a very general statement about waves moving across a boundary 
or interface. Whatever changes occur as a wave moves 

across 

a boundary from one medium to another, 
the frequency stays the same. 

Since 

the velocities of propagation typically change from 

medium 

to 
medium, fixed frequency 

implies 

the wavelengths must change in accordance with 

Eq. 

(2.20). 

1.4 SUPERPOSITION AND INTERFERENCE 

We now address the question of what happens when two waves pass 

the 

same 

point on a cord (or 
in any medium) at the same time. For all materials through which waves travel, as long as the ampli- 
tudes of the waves are small, we have 

what 

is 

known as the principle of superposition, which can be 
expressed 

generally 

as follows : 

The actual vector 

displacement 

of molecules 

from 

their equilibrium position, 

at any given 
location in a medium, at any instant of time, when more than one wave is 

travelling 

through that medium, is just the vector 

sum 

of the displacements that each wave would 
separately have 

caused 

at that same location at that same instant of time. 

For a sinusoidal wave travelling along a cord and its reflection 

from 

an interface, the displacements are 
in the same transverse y direction. 

Similarly, 

for 

sound waves in a long rail, 

the 

direct 

and reflected 
longitudinal displacements are again in the same longitudinal x direction. In a large 

body 

of water, 
however, one can imagine two or more waves, travelling in different 

directions, 

passing 

a single point. In 
that case 

the 

displacements 

can be in quite different 

directions. 

Even in a cord, if the cord is along the x 

axis, one could 

conceivably 

have 

one transverse wave travelling to the right 

with 

a displacement in the y 

4 

I 

I 

I , I 
Actual Actual 

( U )  Reinforcement (6) Cancellation 

Fig. 1-9 
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direction, and another wave travelling to the left with a displacement in the z direction. The actual 
displacement of the cord would then be the vector sum of the two displacements. 

Figures 

1-9 and 1-10 
show a variety of situations demonstrating the principle of superposition applied to two transverse 
waves in the y direction passing 

each 

other in a cord. In each 

case 

there are three pictures; the first two 
showing the individual waves and the last 

the 

combined (actual) wave at that instant. 
When two waves pass the same point in a medium 

they 

are said to interfere. If they correspond to 
long wave trains having the same wavelength, then certain regular patterns can appear, such as points 
that never 

move 

and points that move 

maximally. 

Such 

patterns are called interference patterns. In Fig. 
1-ll(a) to (d) we consider the case of two 

transverse 

sinusoidal 

waves of the same amplitude and wave- 
length travelling 

in 

opposite directions along a fixed portion of a cord. Each sub-figure has three pic- 
tures representing each wave separately and then the combined wave. The sub-figures are 4 of a period 
apart, corresponding to each wave having 

moved 

4 wavelength. The relative positions of the two waves 
therefore 

move 

wavelength 

apart from 

sub-figure 

to sub-figure. An examination of the actual 
“superimposed” wave for 

each 

of the 

four 

cases reveals some interesting features. 

First, there are some 
points on the cord that seem not to move at all as the waves pass 

each 

other (points a, b, c, d,  e)  while 
other points midway 

between 

them move 

up and down with double the amplitude of either wave 
(points a, B, y, 6). The actual wave motion of the cord is therefore not a travelling wave, since in a 
travelling wave every point on the cord moves up and down in succession. The wave caused by the 
interference of these two travelling waves is therefore 

called 

a standing wave. It has the same frequency 
since the points a, B, y, 6 move 

from 

positive 

maximum to  negative 

maximum 

in half a period, as with a 
point on either travelling wave alone. Also, the distance between successive positive 

peaks 

(or successive 
negative peaks) is exactly one wavelength. The points that don’t 

move 

are called nodes and the points 
that move 

maximally 

are called anti-nodes. The result 

shown 

can be 

derived 

mathematically 

by con- 
sidering the equations of the two waves and adding them, as shown in the following 

problem. 

Problem 1.21. Two long sinusoidal wave trains of the same amplitude and frequency are travelling in 
opposite directions in a medium 

(either 

transverse 

waves in a cord, or longitudinal waves in a rail or 
tube filled with 

fluid). 

Using the 

law of superposition find a mathematical expression 

for 

the resultant 
wave form. [Hint: sin (A f B) = sin A cos B & sin B cos A ]  

Solution 

Letting yx+  and y,-  represent the travelling waves along the positive 

and 

negative 

x axis, 

respectively 

we have: 

y , + ( t )  = A sin (ot - kx) and y , - ( t )  = A sin (ot + kx + 8,) 

where 8, is 

a 

constant 

phase which 

is included to account for the waves 

having 

been set up (initial 
conditions) so that 

different 

parts 

of the two waves 

happen 

to cross 

each 

other 

at a particular location x at 

a 

given 

time t. The 

choice 

of 8, will only affect the absolute 

positions 

of the nodes 

and 

anti-nodes, 

but not 
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V 
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Two sinusoidal travelling waves of same frequency passing each other in a single 
cord. For (U)-(& ( I )  shows wave travelling to the right; (2) shows wave travelling 
to the 

left; 

(3)  shows the actual shape of cord at that instant. Unperturbed cord with 
reference points shown in each diagram for reference. 

Fig. 1-11 
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any other characteristics of the resulting 

wave, 

so we choose O0 = 0 for 

simplicity. 

By the law of super- 
position, 

y,.(t) = y ,+ ( t )  + y , - ( t )  = A sin (ot - kx) + A sin (ot + kx) (9 

Using the trigonometric identity supplied 

in 

the hint, we have: 

y,(t) = A [sin o t  cos kx - sin kx cos o t ]  + A [sin ot cos kx + sin kx cos o t ]  (ii) 

Combining terms, we see that the second terms in each bracket cancel out to yield: 

y,(t) = 2A sin ot cos kx (iii) 

Problem 1.22. 

(a) Show that the 

result 

of Problem 1.22, Eq. (iii), is a standing wave and find the location and separa- 
tion of the nodes. 

(b)  Find the location of the anti-nodes, and the amplitude of wave motion at those points. 

(c) Interpret the behavior of the standing wave between any two 

nodes, 

and between those two nodes 
and the adjacent two nodes. 

Solution 

(a) This is clearly a standing wave since at each x for 

which 

cos kx = 0 we have an immobile point, or 
node, for 

all 

times 

t. Recalling that kx = 2nx/A, and that the cosine 

then 

vanishes 

at values of x for 
which: 2nx/1 = 4 2 ,  3n/2, 5n/2, . 

. 

. 

, we have nodes at: x = A/4, 31/4, 51/4, . 

. 

. 

The distance between 
successive nodes is thus A/2. 

(b) Similarly, the anti-nodes correspond to values of x for 

which 

we have the maximum possible 

wave 

amplitudes. Eq. (iii) of Problem 1.21 implies that for any given point x, the molecules 

oscillate 

in SHM 

of angular frequency o, and of amplitude: 

2A cos kx = 2A cos (2nx/A) (i) 

The cosine has alternating maximum 

values 

of f 1, and at the corresponding points, x, the molecules 
oscillate 

with 

SHM of amplitude 2A. The cos (2nxlA) = f 1 points occur at 2nx/A = 0, n, 2n, 3n, . . . , 
with 

positive 

values 

at even 

multiples 

of a and negative 

values 

at odd multiples of n. The correspond- 
ing 

values 

of x are: 0, A, 2A, 31, ... and A/2, 31/2, 51/2, respectively. The separation between adjacent 
anti-nodes, without reference to whether the cosine is f, is 1/2 (the same as the separation of adjacent 
nodes). Furthermore, comparing to part (a) the anti-nodes are midway 

between 

the nodes, and from 
node to next anti-node is a distance of A/4, 

(c) At the anti-nodes the equation of SHM are, from Eq. (i): 

yanti(t) = f 2 A  sin ot (ii) 

The only 

difference 

between 

the oscillations 

when 

the cosine is + 1 as opposed to - 1,  is that they are 
180” out of phase. As can be seen 

from 

Eq. 

(ii): when y = + 2A at one anti-node, y = - 2A, at the 
next anti-node, and so on. All the points between two adjacent nodes 

oscillate 

“in phase” with each 
other-that is they 

reach 

their positive 

maxima, 

given 

by Eq. (i), at the same time. The points between 
the next two nodes, also oscillate 

in 

phase with each other, but exactly 180” out of phase with the 
points between the first two nodes. The overall shape and behavior of the waves is illustrated in 

Fig. 

1-12, which depicts the “envelope” of the wave as each point varies 

between 

the maximum positive 

and negative 

transverse 

positions corresponding to the various positions along the cord. The vertical 
arrows at the anti-nodes are intended to depict the relative direction of transverse motion of points 
between adjacent pairs of nodes. 

Resonance and Resonant Standing Waves 

Many physical 

systems, 

when stimulated can be made to vibrate or oscillate 

with 

definite 

fre- 
qukncies. 

Examples 

are a simple pendulum of a particular length, a mass at the end of a spring, a tuning 
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Envelope of standing wave in a cord iV represent 

nodes 

and A anti-nodes along the axis of the cord (x axis). 
The two sine wave outlines correspond 

to 

the 

two maximum distortions of the cord from equilibrium and occur 
one-half period (T /2 )  apart. 

I 

Fig. 1-12 

fork, and a children’s 

swing 

in the park. In each of these 

cases 

there is a single “natural” frequency 
associated 

with 

the system. In other cases, 

such 

as a violin or guitar string, an organ pipe, or more 
complex structures such as a bridge or a building, many “natural” frequencies of vibration can occur. 
Such frequencies, which are characteristic of the particular system or structure, are called the resonant 
frequencies of the system. If one stimulates a system by shaking it with SHM of arbitrary frequency and 
low amplitude, the system will respond by vibrating at the stimulating frequency. The amplitude of the 
system’s responsive vibration to such stimuli will generally be quite small. 

However, 

if one stimulates 
the system at one of its resonant frequencies, one can stimulate huge amplitude oscillations, 

sometimes 

to the point of destroying the structure. This is true because, 

when 

stimulating a system at a resonant 
frequency 

it 

is extremely 

easy 

to transfer 

energy 

to the system. A simple 

example 

of such a transfer is a 
mother pushing a child on a swing while talking to a friend. If the mother times her pushes to always 
coincide 

with 

the moment the swing is moving down and away 

from 

her, 

the force 

she 

exerts 

does 
positive 

work 

on each push and therefore 

transfers 

energy 

to the swing, 

increasing 

its amplitude. If on 
the other hand, she is distracted by conversation and pushes 

slightly 

off frequency, 

she 

will sometimes 
push the swing while it is 

still 

moving 

toward her, 

hence 

doing negative work so that the swing 

loses 

energy. 

If 

there are as many times 

when 

the swing 

loses 

energy 

as when it gains 

energy, 

the amplitude of 
the swing will not build 

up. 

The same is true of stimulating any system by vibrating it at a given 
frequency. If the frequency is a resonant frequency, each stimulating vibration will reinforce the previous 
one and pump energy into the system. If the stimulating vibration has a frequency 

even 

a little off the 
resonant frequency, 

over 

time 

there will be as many vibrations that lose 

energy 

to the system as gain 
energy to it, as in the case of the mother pushing the swing. This is the reason that army troops are 
ordered to “break step” while marching across a bridge; if the troop’s “in-step” march is at the same 
frequency as one of the resonant frequencies of the bridge, the bridge could start to vibrate with 

ever 

increasing amplitude and actually 

break 

apart as a consequence. In the following problems we will 
determine the resonant frequencies of some simple 

systems. 

Problem 1.23. Consider a long cord of length L, massflength p, under tension S, tied 

rigidly 

to a post 
at one end with the other end tied to a variable 

frequency 

metal 

vibrator, which vibrates with SHM of 
amplitude less than 0.05 mm, as shown 

in 

Fig. 

l-l3(u). At certain frequencies it is found that standing 
waves 
These 
waves 

of very large anti-node amplitudes (possibly 

several 

centimeters 

or larger) appear in the cord. 
are called resonant standing waves. Find the only 

frequencies 

for 

which such resonant standing 
can occur. 

Solution 

In Problem 1.22 we saw that standing 

waves 

have their nodes separated by L/2, with anti-nodes 
midway 

between. 

For 

our cord 

under tension S, if resonant standing 

waves 

were to occur 

both 

ends 

of the 

cord 

would 

have to be nodes. 

This 

is true even at the vibrator end because the maximum transverse 
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displacement of the 

vibrator 

is negligible (< 1%) of the 

amplitude 

of the 

resonant 

standing 

wave. On this 
basis, we must 

have 

a whole number, n, of half wavelengths fit into the 

length 

L, or, n I / 2  = L. The allowed 

wavelengths, therefore, are : 

I ,  = 2L/n n =  1,2, 3 ,... . (0 

Since frequency and wavelength are related to the speed of waves in 

the 

cord: U, = IJ we have for the 
allowed frequencies : 

f ,  = uJA, = n(oP/2L) ( i i )  

From Problem 1.23, we note that the lowest 

possible 

frequency, called 

the fundamental, 

has 

the 

(1 .13~)  

value, 

recalling 

Eq. (1  . l ) :  

fF =fl = vd2L = (s/p)1’2/2L 

In terms of the fundamental the other allowed 

frequencies 

become: 

fn = nfF n = 1 , 2 , 3  ,.... (1.136) 

For completeness, we repeat Eq. (i) of Problem 1.23 for the corresponding wavelengths: 

A,, = 2L/n n =  1,2, 3, ... . ( I .  1 3c) 

The integer 

multiples 

of the fundamental frequency are called harmonics. Thus,fn is the nth harmonic, 
with the fundamental itself being the first harmonic. Another commonly used terminology is to call the 
successive frequencies, above the fundamental, overtones. Thus, for our vibrating cord, the first overtone 
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is the second harmonic, 

the 

second overtone is the 

third 

harmonic, etc. 

Recalling that up = ( S / P ) ~ ' ~  we 
can re-express Eq. (1.13b) as: 

(1 .134  

In 

Problem 

1.23 we found the only possible resonant frequencies that could exist in the cord. Using 
the 

ideas 

of reflection of waves, and of resonance discussed above, we now show that these all are, 
indeed, 

resonant 

frequencies of the 

cord. 

Consider again the cord 

of Fig. 1-13(u). As the 

vibrator 

exe- 
cutes 

its 

low amplitude 

oscillations 

it sends 

a continuous 

travelling 

wave down 

the 

cord. This 

wave 
reflects off the 

tied 

down 

end, 

travels back toward the vibrator 

with the 

same 

frequency and wavelength 
and then reflects a second time, again travelling to the 

right. The 

process then 

repeats 

many 

times with 
multiple reflections before the amplitude dies down. 

The 

even reflections (Znd, 4th, - - -) are travelling to 
the right while the odd reflections (lst, 3rd, - .) are travelling to the left. Since the 

vibrator 

keeps 
generating new waves which reflect back and forth, 

the 

actual shape 

of the 

cord 

at any instant is the 
sum of the overall superposition of the waves travelling to the 

right 

and the left. The 

overall 

wave 
travelling to the right is itself the sum of the newly generated wave and all the even reflected waves, 
while the overall wave travelling to the left is the 

sum 

of all the odd reflected waves. In general, the 
overall waves in either 

direction 

would be quite small. For example, the waves travelling to the 

right 

(original 

plus 

the 

multiple 

even reflections) would typically all be out of phase with one another. The 
superposition of these waves at any point on the 

string, 

at a given instant of time would, therefore, 
involve adding about as many positive as negative vertical displacements, yielding a net displacement, 
that would be almost negligible. The 

same 

would be true of the overall wave travelling to the left, being 
the sum of the multiple 

odd 

reflections. 
In order for the overall 

travelling 

waves in either 

direction 

to be large 

the 

multiple 

waves travelling 
in that direction 

have 

to all be travelling in phase with one another-crest to crest and trough to 
trough. 

The 

condition 

for this to happen is easy to see. Consider the even reflections; each wave travels 
a distance of 2L to undergo a double reflection. For the 

original 

wave and 

all 

the subsequent double 

reflections to be in phase, the 

distance 

2L has to correspond to a whole number of wavelengths. This 
would ensure that the 

crests 

of successive double reflections appear at the 

same 

place at the 

same 

time. 
(Note that there is a change of a half wavelength at each reflection, but since there are an even number 
of reflections the 

overall 

shift is a whole number of wavelengths and does not change 

the 

relative 
phases.) A similar 

argument 

holds for the odd 

reflected waves, which travel to the 

left; 

again 

these 
involve double reflections and we again must have a whole number of wavelengths fitting into 2L. Thus, 
for either case-travelling to the right or to the left-the condition for in-phase reinforcement of reflec- 
ted waves occurs at wavelengths that obey: nLn = 2L, where n is a positive integer, or equivalently: 
A, = 2L/n. This is the same result we obtained in Problem 1.23. Under these conditions 

we 

have, on net, 
a giant 

travelling 

wave to 

the 

right 

and a giant 

travelling 

wave to the left at essentially the same 
amplitude and wavelength, yielding a giant, or resonant, 

standing 

wave. Thus, 

the 

results 

of Problem 
1.23 do, in fact, represent 

the actual 

requirements 

for resonant 

standing 

waves. The 

envelope 

of the first 
three 

resonant 

standing 

waves for a cord of length L, such 

as 

that of Fig. 1-13(u), are 

shown 

in Fig. 
1-13(b) to (6) (as in Fig. 1-12, the vertical arrows 

indicate 

the relative direction of the 

transverse 

motion 

of molecules in the cord between successive pairs of nodes). 

Problem 1.24. A rope of length L = 0.60 m, and mass rn = 160 g is under tension S = 200 N. Assume 

that 

both 

ends 

are nodes, as in Problem 1.23. 

(a) Find 

the 

three 

longest resonant wavelengths for the 

rope. 

(b) Find 

the 

fundamental 

frequency and first two overtones for resonant 

standing 

waves in the rope. 

(c) How would the 

results 

to 

part (a) and (b) change if the 

tension 

in the 

rope 

were 800 N? 

Solution 

(a) The wavelengths obey 1, = 2L/n = (1.20 m)/n-longest wavelength = R ,  = 1.20 m; next longest = 

1, = 0.60 m; third longest = A3 = 0.40 m. 
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(b) From Eqs. (1.23) we see that we need the speed of propagation of the wave in the rope: up = (S/p) l12.  

Noting that p = m/L = (0.16 kg)/(0.60 m) = 0.267 

kg/m, 

we get: up = [(200 

N)/(0.267 

kg/m)]’’’ = 

27.4 m/s. Then, from Eqs. (1.13) we get: for our fundamental (1st harmonic),f, = (27.4 m/s)/(1.20 m) = 

22.9 Hz; for our first overtone (2nd harmonic),f, = 2f1 = 45.8 Hz; for our second overtone (3rd har- 
monic),f, = 3f, = 68.7 Hz. (The same 

results 

could be obtained directly 

fromf, 

= uP/1, .) 

If the tension, S, quadruples the velocity, up, doubles. Since the resonant wavelengths 

depend 

only 

on 

the length of the cord, they 

remain 

the same as in part (a). The corresponding frequencies, 

however, 

are 
proportional to up, and therefore 

all 

double as well. 

(c) 

Problem 1.25. Suppose that we have the exact situation of Problem 1.24, except that now the far end 
of the cord is not tied down, but has a frictionless loop free to slide 

on 

a vertical bar, as in Fig. 

1-7. 

Extending the kind of reasoning employed 

in 

Problem 1.23, what would the allowed resonant wave- 
lengths and frequencies 

be 

? 

Solution 

Since the far end is free to snap up and down without the constraining effect of any addition cord to 
the right, 

it 

should be an anti-node for any resonant standing waves that appear. The left end must again be 
a node. The standing wave 

envelope 

of the longest 

wavelength 

that fits this condition is shown in 

Fig. 

l - lqu) .  Recalling that the distance from an anti-node to the next node is 1/4, we have: A I  = 4L. The next 
possible situations are shown in 

Figs. 

1-14(b) and (c) from 

which 

we deduce: 1, = 4L/3, and 1, = 4L/5, 

where we label the successive 

wavelengths 

by the odd integer denominators. From this 

it 

is not hard to 
deduce that in general: 

A, = 4L/n n = 1, 3, 5 ,  ... (0 

and the allowed 

frequencies 

are: 

n =  1 ,3 ,5  , . . . .  (ii) 

Problem 1.26. 

(a) What is the relationship between the harmonics and overtones for the situation of Problem 1.25? 

(b) If in Problem 1.24 the far end of the rope were looped to slide 

freely 

without friction on a vertical 
greased bar, what would the change be for the answer to Problem 1.24(a)? 

(c) What would the corresponding change be 

for 

the answer to Problem 1.24(b)? 

Solution 

From Problem 1.25, Eq. (ii), the fundamental frequency isfl = ud4L. This is the lowest 

frequency 

for 

our “free end” cord, and therefore the first harmonic. The first overtone, which is the next allowed 
frequency, is now f3 = 3f1, which, by virtue of being three times the fundamental, is by definition the 
third harmonic. Similarly, the third overtone is the fifth harmonic, and so on. For this 

case 

we see that 
only the odd harmonics are allowed 

frequencies. 

The three longest 

wavelengths 

now obey 

Eq. (i) of Problem 1.25, and are therefore: A1 = 2.40 m; 

I, = 0.80 m; 1, = 0.48 m. 

The fundamental frequency is now: od4L = (27.4 

m/s)/(2.40 

m) 

= 11.4 Hz. Note that this is half the 
fundamental with the cord tied down. The first and second overtones are the third and fifth harmonics, 

respectively :f, = 3(11.4 Hz) = 34.2 H Z ; ~ ,  = 5( 11.4 Hz) = 57.0 Hz. 

In our discussion of resonant standing waves in a cord, we assumed there was an SHM vibrator 
stimulating the waves at one end. It is also possible to stimulate standing waves 

with 

a non-sHM stimu- 
lus, such as bowing (as with 

violin 

strings), 

plucking (as with guitar strings), or hammering (as with 
piano wires). In these 

cases 

each stimulating disturbance can be shown to be equivalent to a com- 
bination of many SHM standing waves over a broad range of frequencies. As might be expected, only the 
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resonant frequencies can absorb this 

energy 

efficiently, so the net effect is simultaneous 

creation 

of the 
allowed 

resonant 

standing waves with different 

amplitudes. 

Typically, only the first several allowed 
harmonics receive much energy. The exact distribution of energy among the 

harmonics 

depends 

on the 
details of the 

stimulating 

disturbance, 

and of the medium in which the disturbance 

takes 

place. If the 
stimulus is very short lived, the standing waves last only a short time as well, since their 

energy 

rapidly 

transfers itself to surrounding materials 

such 

as the air, and/or dissipates into thermal 

energy. 

The 

distinctive sound of different musical instruments, even when sounding 

the 

same note, 

is a 

function 

of 
the different 

amplitudes 

of the 

harmonics 

that are generated. 

This 

will be discussed further in the next 
chapter. 

The results we obtained for 

resonant 

transverse 

standing waves, have 

their 

counterpart in longitudi- 
nal waves, and we will briefly explore 

this 

case. For simplicity, we will consider 

the 

case 

of sound waves 
in the air in an organ pipe. Consider 

the 

organ pipe of length L, as shown 

in 

Figs. l-lS(a) and (b). In 
both cases one end of the 

pipe 

has 

an opening to the atmosphere 

(with 

a 

reed to help 

outside 

vibrations 
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enter 

the 

pipe). In Fig. 1-15(a) the 

far 

end 

of the 

pipe 

is 

open, 

and 

is therefore called an open organ 

pipe; 

in 

the 

case of Fig. 1-15(6), the far end of the pipe is closed and is therefore called a closed organ pipe. 
Following 

the 

reasoning 

of Problems 1.23 and 1.25, we would expect ends that are open to the atmo- 
sphere to be anti-nodes for the to and fro 

motion 

of the 

air 

molecules, while a sealed end would be a 
node 

for such 

motion. 

This 

turns 

out to be true for nodes at a 

closed 

end, 

but 

the anti-nodes 

at the 

open 

ends are actually slightly beyond the edges of the pipe, 

the 

extent depending on the cross-sectional area 

and other geometrical properties of the 

ends 

of 

the pipe. We will ignore 

this 

“end” effect in our simple 
analysis. For the case of the pipe open on 

both 

ends, the 

first few allowed standing waves are shown in 
Figs. 1-lqa) to (c). The wave envelope is shown just below the pipe, as 

a 

transverse representation 

of the 
to and fro 

motion 

of the molecules from their 

equilibrium 

positions 

at various 

points 

along the 

pipe. 
Since the 

distance 

between successive anti-nodes is always a half wavelength, we see that a whole 
number of half-wavelengths fit into the length, L, of the pipe, or the allowed wavelengths are: 

A, = 2L/n n = l , 2 , 3  ,.... ( 2 . 2 4 ~ )  

The allowed frequencies are then 

given 

by : 

fn = up/& = n(uJ2n) n = 1, 2, 3, ... (1.246) 

where up here represents 

the 

speed 

of sound in air. For the 

case 

of the pipe closed at one 

end, 

we have a 
node at that end, 

and 

an anti-node at the 

other 

end. This 

is similar to the case of transverse waves in a 
cord tied down at one 

end, 

and the other end free to move up 

and 

down, 

as discussed above. 

The 

first 
few allowed wavelengths for this case are shown in Figs. 1-17(a) to (c). As can be seen, a whole number 
of half-wavelengths plus 

a 

quarter-wavelength 

or, equivalently, an odd 

number 

of quarter-wavelengths, 
must fit into L, so that: 

A,, = 4L/n n = 1, 3, 5, ... (1.25a) 

and the 

allowed frequencies 

are then : 

fn = uJA, = n(u$4L) n = l , 3 , 5  ,.... (1.25b) 

Note that these are the 

same 

formulas 

as Problem 1.25, Eqs. (i), (ii), as expected. 

Problem 1.27. 

(a) In 

earlier 

discussions we showed that for travelling 

longitudinal 

waves in 

a 

fluid, the 

pressure 

variation, AP, was maximum when the 

displacement 

of the molecules was zero, 

and 

vice versa. 
Show that for standing waves the pressure anti-nodes 

occur 

at displacement nodes, and vice versa. 

(6) Given the results of part (a) show that our intuitive 

presumption 

that displacement 

anti-nodes 

in 
an organ pipe occur at the ends of the pipe open to the atmosphere makes sense. 
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Solution 

Consider a displacement 

node 

for an organ pipe, such as the middle one 

depicted 

in Fig. 1-16@). On 
either side of the 

node 

the air 

molecules are moving in opposite 

directions. 

When 

these molecules are 
rushing 

toward 

the node 

that create a maximum 

condensation, 

and a corresponding 

increase 

in pres- 

sure; when they are racing away from the 

node 

they create a maximum rarefaction, and a correspond- 
ing decrease in pressure. 

In 

effect, at the 

displacement 

nodes 

the 

air is squeezed together and pulled 
apart just like an accordion. No other 

points 

in the 

standing 

wave have such a drastic 

variation 

in 
pressure as do the 

displacement 

nodes, so these are pressure 

anti-nodes. 

On the 

other 

hand, 

on either 

side of a displacement 

anti-node, 

such 

as the middle one 

in Fig. 1-lqb), the 

air 

molecules are moving 

to and fro in the 

same 

direction 

with the 

same 

amplitudes, 

so no condensation or rarifications 

occur 

and A P  remains zero. Thus the 

displacement 

anti-nodes 

are pressure nodes. 

At the 

ends 

of the 

pipe 

that are open to the 

atmosphere 

the 

exposure 

to the 

equilibrium pressure 

of the 
air 

outside 

the 

pipes doesn't allow for the 

type 

of pressure 

variation, 

AP found in the 

large 

resonant 

waves in the pipe, so these locations are in effect nodes for AP. Since such 

nodes 

are anti-nodes for 

displacement, we have our result. 
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Problem 1.28. 

An open organ pipe is of length L = 6.0 ft. Find 

the 

wavelength of the 

fundamental 

and 

first two 
overtones. 

Find 

the 

fundamental 

frequency and those of the first two overtones. [Hint: Assume the speed of 
sound in air is 1100 ft/s]. 

If one end of the pipe is now closed, what changes does one have in the wavelengths and fre- 
quencies of parts (a) and (b)? 

Explain qualitatively why the 

tone 

of a trumpet drops when a mute is placed over the 

horn 

end? 

Solution 

(a) From Eq. (Z.Z4u), we have: A, = 2(6.0 ft)/n =- A I  = 12.0 ft; A 2  = 6.0 ft; A, = 4.0 ft. 

(6) From Eq. (2.246), we have:f, = uJA, = (1100 ft/s)/A, + Fundamental =fi = 91.7 Hz; first overtone = 

f2 = 2nd 

harmonic 

= 183 Hz; second overtone =f, = 3rd harmonic = 275 Hz. 
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(c)  From Eq. (2.25a), we have: A, = q6.0 ft)/n, odd n only * R ,  = 24.0 ft; A, = 8.0 ft; A, = 4.8 ft. Similarly, 
for 

the 

frequencies, 

f, = udd,  = (1 100 ft/s)/A,, odd n only Fundamental =fi = 45.8 Hz; first 
overtone =f3 = 3rd harmonic = 138 Hz; second 

overtone 

=f, = 5th harmonic = 229 Hz. 

(d) The trumpet is somewhat 

similar 

to an organ pipe in generating 

resonant 

standing waves. With the 
mute covering 

the 

horn we have moved to a closed pipe 

situation, 

and the 

fundamental 

drops in 
frequency. The resonant standing waves in the trumpet is what 

generates 

the 

sound wave that reaches 
our ear, so we hear 

the 

lowered frequency 

of the fundamental. 

Problems for Review and Mind Stretching 

Problem 1.29. A SHM travelling wave of period of T = 3.0 s and wavelength A = 30 m moves to the 
right in a long cord. The 

maximum 

transverse 

velocity in the 

cord 

is vmax = 2.5 cm/s, and the power 
transmitted by the wave is 0.60 W. 

(a) Find the velocity of propagation of the 

wave, 

U,. 

(6) Find the amplitude of the wave. 

(c) Find the mass per unit 

length 

of the cord, p. 

(d) Find the 

tension 

in the 

cord, 

S .  

Solution 

(a) From Eq. (2.20), up = Af = A/T = (30 m)/(3.0 s) = 10 m/s. 

(b) We can find the 

amplitude 

from the maximum transverse velocity: 

-nax = oA = 0.025 m/s. Recalli 
that o = 2n/T = 6.28/(3.0 s) = 2.09 s-l,  we have: (0.025 m/s) = (2.09 s - ’ ) A  * A  = 1.20 cm. 

(c)  We cannot obtain p from the 

expression 

for up, Eq. (1.1), unless we know S, which is not given. We do, 
however, 

have 

enough 

information to obtain p from 

the 

expression for the power, Eq. 

(1.22): 

P = jpo2A2u, * (0.60 W) = ip(2.09 ~-‘)~(0.0120 m)2(10 

m/s) 

* p = 191 g/m. 

(d) Now that we have p we can obtain S from Eq. (1 .1) :  

up = (S/p)’/’ * S = (0.191 kg/m)(10 

m/s)2 

= 19.1 N. 

Problem 130. When a musical instrument plays, it is almost 

invariably 

the fundamental 

frequency 
that dominates, and with which the human ear identifies the musical note. For a stringed 

instrument, 

such 

as 

a piano or base fiddle, the 

fundamental 

is given by Eq. (1.13a):fF = ( S / C ( ) ’ ’ ~ / ~ L .  

(a) For the case of a piano the “strings” are wire wound and of different 

lengths 

and thicknesses. 
Explain, using Eq. (1.13a), what 

this 

accomplishes 

and explain how a piano tuner “fine tunes” the 
piano. 

(6) If one bows a base fiddle string 

one 

can 

double the frequency by pressing a certain 

point 

on the 

string while bowing; 

where 

is that point? 

Solution 

(a) From Eq. (2.23~) we see that there are three 

variables 

that affect the 

fundamental 

frequency: 

the length 
and mass/length of the 

string, 

each 

of which decreases 

the 

frequency 

when it increases, and the 

tension 

which increase 

the 

frequency 

when it increases. The basic 

construction 

of the piano has strings of 
different 

lengths 

and thicknesses 

intended 

to generate 

different 

tones. 

The short thin strings 

have 

the 

highest 

frequencies 

while the 

longer 

thicker 

strings generate 

the lower 

notes. 

Without increased 

thick- 

ness of the long 

strings, 

the 

piano strings 

would 

have 

to be much 

longer 

to get the lowest frequencies. 
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In 

grand 

pianos the strings 

are on a horizontal frame, called the 

sound 

board, 

and the 

shape 

of the 
piano reflects the 

lengths 

of the 

strings; 

in an 

upright 

piano the 

strings 

are vertical and the differing 
lengths are hidden 

inside 

the piano. Once the lengths 

and thicknesses of the 

strings 

are set, 

the 

only 

variable is the 

tension, 

and 

a piano 

tuner 

can 

fine tune 

the 

frequencies by adjusting 

the 

tensions 

of the 
strings. 

(b)  The fundamental 

has 

a node at each 

end 

of the 

string 

and an anti-node at the 

midpoint. 

By pressing 
ones finger at the 

midpoint 

one 

forces that point to be a node, so that only the first harmonic and 
above 

can 

be heard. Since the first harmonic is half the wavelength it is double 

the 

frequency. 

Problem 1.31. A long tube has a close 

fitting 

piston initially all 

the way into the tube, and a tuning 
fork is vibrating just in front of the tube, as shown 

in 

Fig. 1-18(a). As the piston is slowly pulled 

back 

(to the left in the figure) the sound gets very loud as it passes the 13 cm, 41 cm, and 69 cm marks as 
measured 

from 

the right end of the tube. 

(a) What is the next point at which the loudness will rise? 

(b) Assuming that the speed of sound is 350 m/s, find the frequency of the tuning fork. 

(c) Assuming the tuning fork is replaced by one 

with 

double the frequency, 

what 

would 

the first 

three 

loud points have been as the 

piston 

was pulled out? 

Solution 

(a) The 

tube 

acts like 

a closed organ pipe with regard to resonant 

standing 

waves. The 

tuning 

fork has a 
definite frequency, and an associated definite wavelength. As the 

piston 

is pulled back, 

the 

first possible 

resonance 

occurs 

when a node is at the 

piston 

face and an anti-node is at, or just outside, 

the 

open end 

of the pipe-with the 

distance 

between node and anti-node 

corresponding 

to a quarter-wavelength 
(Fig. 1-18(b)). The second possible resonance 

should 

occur 

when the 

piston 

is moved sufficiently far 

Fig. 1-18 
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back so that a second node occurs between the piston and the open end of the pipe. 

Since 

the wave- 
length is fixed, one node remains at its original location, and the second node must be at the new 
position of the piston (Fig. l-l8(c)). The distance between the nodes is precisely a half-wavelength and 

from the given data corresponds to: 

I / 2=(41  cm)-(13 c m ) = 2 8 c m = > I = 5 6 c m .  (9 

The next 

resonance 

should occur when the piston is pulled sufficiently far 

back 

that a third node 
occurs, the other two nodes maintaining at their prior locations (Fig. 1-18(&). Again, we have 

from 

the 
given data: 

I/2 = (69 cm) - (41 

cm) 

= 28 cm => I = 56 cm (ii) 

This confirms our previous 

result, 

and makes clear that the next 

resonance 

will occur when the piston 
is pulled another 28 cm further in, or at the 97 

cm 

mark. Note that the first data point of 13 

cm 

is 1 cm 
short of a quarter wavelength, indicating that the anti-node is actually 1 cm outside the mouth of the 

Pipe. 

(b)  From Eqs. (i) and (ii), we have L = 56 cm, so: 

f = op/A = (350 

m/s)/(0.56 

m) = 625 Hz. 

If the frequency doubled to 1250 Hz, the wavelength 

would 

halve 

to 28 cm. Then a quarter-wavelength 
would be 7.0 cm. 

Assuming 

the anti-node is 

still 

1 cm outside the open end of the pipe, the first 
resonance occurs when the piston is at the 6 cm mark. The next two positions of the piston for 

resonance are half-wavelengths further in, at : 

(c) 

(6 cm) + (14 cm) = 20 cm, and at (20 cm) + (14 cm) = 34 cm. 

Problem 1.32. A cord of length L = 3.0 m and total mass rn = 400 g, is connected at one end to a 
vibrator, and at the other end to a very long and massive 

steel 

cable under tension S = 400 N. When 
the vibrator is turned on the cord is found to rapidly develop a large, stable, transverse standing wave 
consisting of five equal sections. The cable is observed to have a transverse travelling SHM wave to the 
right at 15 

m/s. 

(a) Find the wavelength and frequency of the standing wave 

in 

the cord. 

(6) Find the wavelength and frequency of the travelling wave 

in 

the cable. 

Solution 

(a) Since the cord vibrates in five sections, and each section has a node at each end so that it is a 
half-wavelength 

long, 

we have: 

4 2  = L/5 = (3.0 m)/5 = 0.60 m => I = 1.20 m. 

Knowing the wavelength, the frequency can now be determined from a knowledge of the speed of 

propagation up, in the cord. We have: 

u p , c  = (S//A)”~ = (SL/m)’’2 = [(400 “3.0 m)/(0.40 kg)]”’ = 54.8 m/s. 

f =  = (54.8 

m/s)/(1.20 

m) = 45.6 Hz. 

(b)  The frequency 

must 

be the same as the driving frequency of the cord which i s f =  45.6 Hz. The wave- 
length is now determined from the velocity of propagation in the steel 

cable, 

up, s = 15 m/s: 

I, = up, ,/f = (1 5 m/s)/(45.6 Hz) = 0.329 

m. 

Problem 1.33. Refer to Problem 1.32. Assuming that there are no losses of cord or cable wave 

energy 

to other forms (e.g., thermal, to surrounding air, etc.), 

find 

the power 

delivered 

by the vibrator to the 
cord if the amplitude of the travelling wave in the cable is 0.60 mm. 
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Solution 

Since no wave 

energy 

is lost to other forms, 

all 

the energy the vibrator pours into the cord stays as wave 
energy 

in 

the cord or the cable. 

Since 

the standing waves in the cord quickly 

become 

stable their total 
energy content is 

fixed; 

therefore, 

the power 

in 

the cord from the vibrator must equal the power transferred 
by the cord to the cable. This in turn equals the power 

in 

the cable wave, which is determined from Eq. 
(1.12): P = ipo2A2up. We have all the required information to obtain P except 

for 

the linear 

density 

of the 
steel 

cable. 

This can be determined by rearranging the formula for up, to obtain : 

p = S/up, s2 = (400 N)/(15 m/s)2 = 1.78 kg/m. 

P = q(1.78 kg/m)[6.28 x (45.6 Hz)j2(0.6O - 10-3 m)’(l5 m/s) = 0.394 W. 

Thus the vibrator transmits 0.394 W of power to the cord. 

Supplementary Problems 

Problem 1.34. 

(a) Find the velocity of propagation of a transverse 

wave 

in 

a long rubber hose of mass/length 0.23 kg/m 

when 

the 
tension is 88 N. 

(b) Find the wavelength of a travelling 

wave 

in the hose if the frequency is 9.0 Hz. 

(c) If the tension 

in 

the hose doubled, all else being the same, what 

would 

be the new answer to part b? 

Ans. (a) 19.6 m/s; (b) 2.18 m; (c) 3.08 m. 

Problem 135. 

(a) Compare the speed of sound in a tube filled with mercury and in a steel 

rail. 

[Date: = 196 GPa;  B,  = 26 
GPa; ps = 7.86 g/cm3; pm = 13.6 g/cm3]. 

(b) If the mercury and the steel 

rail 

are exposed to the same SHM vibration, and the wavelength of the wave in 
mercury is 30 cm, what is the frequency of the vibration, and what is the wavelength 

in 

the steel? 

Ans. (a)  up, = 4990 m/s, up, = 1380 m/s; (b) 4600 Hz, 1.08 m. 

Problem 136. 

(a) Assume that the mercury tube and the steel 

rail 

of Problem 1.35 are of equal length and are lined up alongside 
each other. A longitudinal pulse is stimulated in 

each 

at the same end at the same time. 

When 

the pulse 

in 

the 
steel 

reaches 

the other end the pulse 

in 

the mercury is 20 m behind. Find the length of the tube or rail. 

(b) Assume the rail is now placed end to end with the tube of mercury, and the steel just makes a tight fit into the 
end of the tube so it is 

in 

direct contact with the mercury at that end. A pulse starts at the other end of the 
mercury and reflects 

and 

transmits at the interface. Find the time 

lag 

time for 

the reflected pulse to reach the 
front end after the transmitted pulse 

reaches 

the far end of the rail. 

(c) Is the reflected 

pulse 

inverted 

or upright? 

Ans. (a) 27.6 m; (b) 0.0145 s; (c) inverted. 

Problem 1.37. A transverse wave in a long rope is given by: y = (0.44 cm) sin (90t + 15x) where x and t are in 

meters and seconds, 

respectively. 

(a) Find the amplitude, wavelength and frequency of the wave. 

(b) Is the wave 

travelling 

in 

the positive or negative x direction? 
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(c) What is the velocity of propagation of the wave? 

Ans. (a)  0.44 cm, 

0.419 

m, 14.3 Hz; (6) negative; (c) 6.00 m/s. 

Problem 1.38. 

(a)  Referring to the wave in Problem 1.37, find the maximum transverse velocity and acceleration of a point on 
the rope. 

(6) Assuming the tension 

in 

the rope is 80 N, find the massflength of the rope. 

(c) Find the energy 

per 

unit 

length associated with the wave, and the power transmitted by the wave across a 
given point in the rope. 

Ans. (a)  0.395 

m/s, 

35.5 m/s2; (b) 2.22 kg/m; (c) 0.173 J, 1.04 W. 

Problem 1.39. A longitudinal SHM travelling 

wave 

passes 

through a long tube filled with water. The maximum 
displacement of water molecules from their equilibrium positions is 2.0 mm, and their maximum velocity is k3.0 

m/s. 

When 

the water is replaced by ethyl alcohol a wave of the same frequency has a wavelength 

three 

quarters as 
long. [Data: Speed of sound in water is 1400 

m/s; 

specific 

gravity of ethyl alcohol is O.SlO]. 

(a)  Find the frequency and wavelength of the wave 

in 

water. 

(b) Find the speed of sound in ethyl alcohol. 

(c) Find the bulk moduli of water and ethyl alcohol, respectively. 

Ans. (a )  239 Hz, 5.86 m; (6) 1050 m/s; (c) 1.96 109 Pa; 0.893 - 109 Pa. 

Problem 1.40. Water waves near the shore give the appearance of being 

travelling 

transverse waves. Actually 

they 

are more closely 

described 

by a combination of transverse and longitudinal waves. This becomes apparent when 
one watches a small 

object 

floating in the water-it not only bobs up and down but also moves to and fro. The 

frequencies and wavelengths of these two simultaneous, but mutually perpendicular, waves are the same but their 
amplitudes, of course, need not be the same. 

(a)  If the observed 

crest 

to crest distance of the travelling water waves is 3.0 m and the speed of the waves toward 
the shore is 2.0 m/s, find the frequency of the waves. 

(6) If, for a floating object, the crest to trough distance is 

0.80 

m, and the to and fro motion has a maximum 
separation of 0.6 m, find the amplitudes of the transverse and longitudinal waves. 

(c) If the transverse and longitudinal waves are in phase (e.g., they both reach their maximum displacements at the 
same time) what is the actual maximum displacement of a floating object from its equilibrium position, and 
what is the actual path of the object? 

(d) If the waves were out of phase by 90” (e.g., transverse maximum when longitudinal is at equilibrium), qualit- 
atively 

describe 

the path of the floating object. 

Ans. (a)  0.667 Hz; (6) 0.4 m, 0.3 m; (c) 0.5 m, straight line at 53” to horizontal; (d) elliptical path. 

Problem 1.41. Consider the “virtual reflection” 

model 

used in 

the text to describe the behavior of a reflected wave 
at the end of a long cord that is either tied down or looped without friction. Draw to scale three wavelengths of a 

SHM wave nearing the end of the cord and the corresponding virtual reflection of those wavelengths 

beyond 

the end 
of the cord, for : 

(a)  the case of the end being 

tied 

down. 

(6) The case of the end free to move up and down without friction. 

[Hint: When the real and virtual waves meet at the end of the cord the superposition of the two must correspond 
to the actual behavior of that point on the cord.] 

Problem 1.42. A cord of p = 30 

g/m 

is tightly 

tied 

between 

two strong posts a distance 3.0 m apart, so that it is 
under a tension of 100 N. The cord is plucked so that resonant standing waves are set up. 

(a)  Find the three longest 

wavelengths 

that are allowed in the cord. 
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(b)  Find the corresponding frequencies. 

(c) The tension is now adjusted so that the new fundamental frequency corresponds to that of the second overtone 
in part (b ) ;  find the new tension. 

Ans. (a) 6.0 m, 3.0 m, 2.0 m; (b)  9.62 Hz, 19.2 Hz, 28.9 Hz; (c) 900 N. 

Problem 1.43. A cord of p = 30 g/m has a vibrator at one end with 

frequency 

f = 120 Hz, and the other end is 

connected to hanging 

weights 

over 

a frictionless 

pulley, 

as shown in 

Fig. 

1-19. The distance between the end of the 
cord in contact with the vibrator and the point of contact of the cord with the pulley is L = 1.2 

m. 

Both these 
points can be 

considered 

nodes for resonant standing waves. A mass of M = 8.0 kg is initially hanging from the 
cord, and this mass is slowly 

increased 

in tiny increments. 

(a) What are the five longest 

wavelengths 

for which 

resonant standing waves can possibly occur? 

(b) Find a formula relating the hanging mass M (in 

kg) 

to the wavelength A (in m) for the specific cord and 
frequency 

given. 

(c) As M rises above 8.0 

kg, 

find all 

the masses 

for 

which 

a resonant standing wave appears in the cord, and give 
the corresponding number of sections 

in 

which 

the cord vibrates. 

Ans. (a) 2.4 m, 1.2 my 0.8 m, 0.6 m, 0.48 m; (b)  A4 = (pf2/g)A’ = 44.1A2; (c) 10.2 kg (5), 15.9 kg (4), 28.2 kg 

(3), 63.5 kg (2), 254 kg (1). 

Problem 1.44. An open organ pipe has a 1st overtone frequency of 90 Hz, and a third harmonic wavelength of 
2.56 m. 

(a) Find the length of the organ pipe. 

(b) Find the speed of sound in the air. 

Ans. (a) 3.84 m; (b) 346 m/s. 

Problem 1.45. 

(a) Find the three longest resonant wavelengths. 

(b)  Find the frequency of the fifth overtone. 

Suppose the organ pipe of Problem 1.44 is closed at one end, and the same air conditions prevail. 

Ans. (a) 15.36 my 5.12 m, 3.07 m; (b) 248 Hz. 

Problem 1.46. A brass rod is firmly clamped at the center and when tapped at one end resonates longitudinally 

with a fundamental of 2000 Hz. 

(a) What characterizes the resonant standing waves at the rod ends? 

(b) What next 

higher 

frequency would you expect 

to be resonating under the conditions described, and why? 

Fig. 1-19 
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(c) What would the fundamental be if the rod were clamped at one end? 

(d) What would the next 

higher 

frequency 

be for the case of part (c)? 

Ans. (a) anti-nodes; (b) 6000 Hz, center point must be a node; (c) 1000 Hz, ( d )  3000 Hz. 

Problem 1.47. A closed organ pipe is measured to be one meter longer than an adjacent open organ pipe. It is 

found that the second overtone of the open pipe is the same frequency as the third overtone of the closed 

pipe. 

(a) 

(b) 

Find the length of the open pipe. 

Find the difference in the wavelengths of the fundamentals of the two pipes. 

Ans. (a) 6.0 m; (b) 16 

m. 

Problem 1.48. A variable frequency vibrator is held 

over 

a 3.0 m high open cylinder, as shown in 

Fig. 

1-20. The 

frequency starts out at 20 Hz and is slowly 

increased. 

A substantial rise 

in 

loudness first occurs at 28.0 Hz. The 

speed 

of 

sound in the air in the cylinder is 340 m/s. 

(a) Assuming the data given is correct to four decimal 

places, 

find 

the wavelength of the fundamental. 

(b) How far outside the opening of the cylinder 

does 

the anti-node of the fundamental occur? 

(c) As the frequency continues to rise when will the next rise in loudness occur? 

Ans. (a) 12.14 m; (b) 0.035 m; (c) 84 Hz. 

Problem 1.49. For the same cylinder as in Problem 1.48 the vibrator is replaced by a vibrating tuning fork of 

frequency 

100 

Hz. 

Water is slowly poured into the mouth of the cylinder and it is observed that at certain specific 

levels a strong increase 

in 

loudness occur. [Hint: Assume anti-nodes always occurs 0.03 m above the top of the 

cylinder.] 

(a) What is the wavelength corresponding to this frequency? 

(b) How high up in the cylinder 

does 

the water rise when the first loudness occurs? 

(c) What are the water heights 

for 

additional loud points? 

Ans. (a) 3.4 m; (b) 0.48 m; (c) Only one other water height, at 2.18 m. 

Fig. 1-20 
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2.1 MATHEMATICAL ADDENDUM-EXPONENTIAL AND LOGARITHMIC 

FUNCTIONS 

While exponentials and logarithms are not major mathematical tools in a second 

semester 

physics 

course, there are enough references to them to warrant a brief mathematical review here. We start with 
the exponential function : 

y = A" (2.1) 

where A is an arbitrary number. 

Integer Powers of a Number 

When the exponent, x, is a positive 

integer 

we have the usual powers of A :  A' = A ;  A2  = A - A ;  

A 3  = A - A - A ,  etc. By convention, A' = 1. For negative 

integers 

we define A - '  = 1 /A;  A - 2  = 1/A2 
and in general: A-"  = 1/A" = (l /A)". Clearly, by examination of a few simple 

examples, 

we have 

for 

any 
two non-negative integers: A" A" = A("+"); A" - A-" = A"-". These two can be combined into the 

single statement: 

(2.2) A" . A" = A("+") 

where 

now 

n and m are any positive, 

negative 

or zero integers. 

Problem 2.1. Show that for any two non-negative integers, n and m: 

(a) 

(6) 

(A")" = (A")" = A'". "1 

A" . A-" = A-"  . A" = A-("'")  

Solution 

(a) This can be shown by generalizable 

example. 

Consider the case n = 2 and rn = 3. Then: 
= A' - A2 - A' = A6; Similarly, (A3)2 = A 3  - A 3  = A6. Since n - rn = 6 we have our result. This 

reasoning works for 

all 

positive integers, 

n and rn. If n or rn is zero, the result 

follows 

from 

the defini- 
tion. 

(b) Again by example, consider n = 2 and rn = 3. Then: ( A 2 ) - 3  = (1/A2) - (1/A2) . ( l /Az)  = 1/A6 = A - 6 ,  
and so on. Again, the reasoning works for 

all 

positive integers 

and zero. 

The results of Problem 2.1 can be summarized as: 

(An)" = A(".  m) 

for any positive, 

negative 

or zero integers, n and rn. 

Fractional Powers of a Number 

= ; / A  and, in general, A''" = the 
nth root of A.  This means that: = A.  As for integers, it is understood that: A-' /"  = l/A1'" = ( 1 /  
A)"". The nth roots are defined 

for 

all 

positive 

numbers A,  but for n even 

this 

is not true for 

negative 

A 

(e.g., no number times itself equals a negative number, so square roots, n = 2, are not defined). We will 

We now turn to fractional powers. By definition, All2 = J A ;  

37 
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assume that A is 

positive 

when dealing with fractional powers. 

We 

now ask 

the question what do we 
mean by: A"/", where n is any integer and m is a non-zero integer. An obvious definition is: 

(2.4) 
A"/" = ( A n ) l / m  

For this to make sense, we must 

have 

that if n'/ml = n/m, A"'/"' = A"'", or, (A"')'/"' (A")'/". This is 

true, 

and we illustrate it 

for 

the simple example 

n' = 2n and m' = 2m. We must 

show 

that (A2")112m = (A")'/"'. 
Let B = A", and C = A2" = B2. Since C = B2, the 2mth root of C is, indeed, the mth root of B, and we 
have our result. For Eq. (2.4) to be a useful definition, it must 

also 

be shown 

that (All")" = (A")'/'". 

Problem 2.2. Show that (A'"''Y = (A")'/" = A"/" for any integer n, and non zero 

integer 

m. 

Solution 

Let A"" = B. We then have to show that: 

B" = ( A y "  (0  

Noting from the definition that B" = A, we substitute B" for A in the right side of Eq. (i), to get: 

( ~ n ) l / m  = [ ( ~ m ) " ]  = ( B m .  n ) l / m  = B ( m .  n/m) = Bn 
( i i )  

which is just the result, Eq. ( i ) ,  that we needed to prove. 

It can be demonstrated that Eqs. (2.2) and (2.3) are valid 

for 

any two positive or negative fractional 
powers, a and 6: 

. A b  = A ( a + b )  ( 2 . 5 ~ )  

A" * (2.5b) 

where we have 

generalized 

the definition 

of negative 

powers 

to include fractions: 

1/A" = A-" ( 2 . 5 ~ )  

Ceneral 

Powers 

of a Number and their Properties 

Powers of A can be 

defined 

not only 

for 

all 

proper and improper fractions as we have done, but 
more generally 

for 

all real 

numbers, including the myriad of numbers such as ,/2 and ?I, which are 
infinite non-repeating decimals, and correspond to points on a line 

(such 

as the x axis of a graph), but 
cannot be expressed as a fraction. For all 

such 

powers, Eqs. 

(2.5) hold. Returning, to our exponential 
function, Eq. (2.1): y = A", we see that for 

positive 

A, x can be any number on the real 

line, 

from 

- GO 

to cc, and that y takes on positive 

values 

which depend on A and x. There are two values of A that are 
most 

often 

used in dealing 

with 

powers. 

One is A = 10, which is particularly useful since 

for 

historical 

reasons numbers are most 

often 

expressed 

in "base 10 ", i.e., using the decimal system. (As most stu- 
dents now 

know 

from 

computer science courses, one can express numbers in the binary (base 2) system, 
and in fact any positive 

integer 

can be used as the 

base 

for 

the integer system). For the powers of 10 our 
exponential function 

becomes: 

y = 10". Every 

time 

x increases by a unit (x + x + l), y increases by a 
multiplicative factor of 10' = 10. It is this rapid increase 

in 

y with increasing x that characterizes an 
exponential function. Of course, if x is negative, 

every 

decrease 

in x by one unit 

causes 

y to decrease by 
a factor of 10, so that exponential decreases are drastic as well. Figure 2-l(a) and (6) shows 

graphs 

of the 
exponential function y = 10". 

The Logarithmic Function 

As x increases continuously from - CO to 00, y is 

always 

positive 

and increases continuously from 0 
to 00, passing through y = 1 when x = 0. Thus, for any positive y there is a unique number x for which 
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Fig. 2-1 

y = 10" holds. The logarithmic function "to the base 10" is then 

defined 

as: log,, y = x. As such, the 
base 

10 

logarithm is the inverse 

function 

to y = 10": 

y = l o x ~ l o g ~ ,  (y) = x (2.6) 

For example: log,, 

(1) 

= log,, (10') = 0; log,, (10) = log,, (10') = 1; log,, (100) = log,, (10') = 2; 
log,, 

(10o0) 

= log,, 

(103) 

= 3. Often 

it 

is understood that "log" stands for log,,, and the subscript is 
omitted. The logarithmic function can be 

shown 

to obey the following 

rules: 

log ( A  * B) = log ( A )  + log ( B )  ( 2 . 7 ~ )  

log (A") = 2 * log ( A )  (2.7b) 

for 

all 

positive 

A and B, and all z. It follows from Eqs. ( 2 . 7 ~ )  and (2.7b) that: 

log (A/B)  = log ( A )  - log (B)  ( 2 . 7 ~ )  

Problem 2.3. 

(a)  Show that for any two positive 

numbers, 

A and B, log ( A  + B) = log ( A )  + log (B) .  

(b)  Show that log (A') = z . log ( A )  for 

all 

positive 

A and any z. 

(c) Show that log (A /B)  = log ( A )  - log (B)  

(6) Using the results of parts (a)  and (b), find the following in terms of log (2) and/or log (3): log 

(8), 

log ( W ,  log (27), 1% (go), 1% (t>, log ($), log ($1. 

Solution 

(a) Since A and B are positive we know we can find real numbers a and b such that: A = 10" and B = lob. 
Then, log (A) = a, and log (B) = b. Next, we have: log (A + B) = log (10" * lob) = log ( lO("+b) )  = 

a + b = log (A) + log (B), which is the desired result. 

(b) Again, let A = lO", so that a = log (A). Then, A' = (1P)' = 10" '' =S log (A') = log (lP ") = a * z = z 
log (A), which is the desired result. 
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(4 log ( A / @  = log (A * B-l )  = log (A) + log p-’) = log (A) - 1 * log (B) = log (A )  - log (B). 

(4 log (8) = log (23) = 3 log 2; 
log (18) = log (2 * 9) = log (2) + log (32) = log 2 + 2 log 3; 

log (80) = log (8) + log (10) = log 8 + 1. 
log (4) = log (2-1) = - 1 * log 2 = -log 2, 

log (4) = log (2 - 3) = - 3 - log 2 
log (i) = log 3 - log (8) = log 3 - 3 log 2. 

log (27) = log (3j) = 3 log 3; 

Figure 2-2 shows a plot of x = log (y). Note 

that 

x is positive for y > 1 and negative for y < 1, proper- 
ties that follow directly from the behavior of the 

exponential 

function, y = 10”. Notice that the 

logarith- 

mic function compresses huge variations 

into 

smaller increments: log (10,OOO) = 4, log (lO0,OOO) = 5, 
log (l,OOO,OOO) = 6, and so on. This is the principle behind the 

logarithmic 

plot in which, for example, 
the 

horizontal 

axis for the 

independent 

variable is equi-spaced, as usual, while the vertical plot is on a 
“log scale ” where equi-spaced intervals correspond to equal multiplicative factors, such as powers of 10. 
Figure 2.3 shows a log scale plot of y = 10”. Note that on a log scale the vertical axis has no zero or 
negative values, so the origin is just an arbitrarily chosen positive number, e.g, y = 0.001 in the case of 
Fig. 2-3. Equal upward spacings correspond to a multiplicative factor (10 in our case) while equal 
downward spacings correspond to decreases by the same factor. 

Natural Exponential 

and 

Logarithm 

There is a number with special mathematical 

properties, 

called the naperian base, e, that is particu- 
larly useful for exponentials. The 

number 

e, like J2 and n, is a real number 

that 

cannot 

be expressed as 
a fraction. Its approximate value is: e = 2.7183. The 

exponential 

function using e is: y = ex, sometimes 
called the “natural” exponential function, and is often written as: y = exp (x). The inverse function, 
called the natural logarithm, is x = lo&(y). log, is often given the 

shorthand 

notation 

“ln” so that 
log, (y) is expressed as: In (y). The 

counterpart 

of Eq. (2.6) is then: 

(2.8) 

The basic rules for exponentials, Eqs. (2.5), hold for exp (x), as do the 

logarithmic 

rules, Eqs. (2.7), with 
“log” replaced by “In” in those expressions. 

y = ex = exp (x)- x = In (y) 

X 

0.8 1 

Fig. 2-2 
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Problem 2.4. 

(a) Find the values of exp (x) for x = 0, 1,2,  - 1, i, 9 (keep values to four place accuracy). 

(b) Find 

the 

values of In (z) for z = 1, 10, 102, 9. 
Solution 

(a) These 

results 

can be obtained from our approximate value of e given above, or more easily 

using 

the 
"ex" function on a good calculator. exp (0) = eo = l(exact); exp (1) = e' = e = 2.718; 

exp (2) = e2 = 7.389; exp ( - 1) = l/e = 0.3679; 

exp 

(4) = Je = 1.649; exp (3) = exp (1) exp (4) = 

(2.718)(1.649) = 4.482. 

(b) In (1) = 0; from In tables or calculator: In (10) = 2.303; In (100) = 2 In (10) = 4.605; In (4) = 

- In (2) = -0.6931. 

Problem 2.5. 

(a) Show that the natural and decimal logarithms are related 

by: 

In (A) = In (10) - log (A) 

(b) Use the 

results 

of part (a) to find In (8) and In (18) in terms of log 2 and 

log 

3. 

Solution 

(a) Let A = lO", and 10 = ea. Then: A = (ear. Using the rules for logarithms: 

In (A) = In [(ear] = x - In (e') = x . a (ii) 

We also have, however: 

log (A) = log (lOX) = x (iii) 

and In (10) = In (ea) = a ' ( i v )  

Substituting (iii) and ( io) into the right 

side 

of (ii) we get our result: In (A) = In (10) * log (A). 
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(b) In (8) = 3 . In (2) = 3 . In (10) . log2. Using the value of In (10) 
In (8) = 6.908 . log2. Similarly, In (27) = 3 . In (3) = 3 - In (10) * log 

2.2 PROPAGATION OF SOUND-VELOCITY, WAVE-FRONTS, 
REFRACTION, DIFFRACTION AND INTERFERENCE 

from Problem 2.4 we have: 
3) = 6.908 * log (3). 

REFLECTION, 

Sound Velocity in Air 

that the 

general 

formula for 

the 

velocity of propagation, v,, of longitudinal sound waves, was: 
In Chap. 1 we discussed the propagation of waves in 

different 

media. 

In the case of fluids we saw 

vp = (B/p)”2 (2.9) 

where B is the bulk modulus and p the density of the 

fluid. 

The bulk modulus is given by (see, e.g. 
Beginning 

Physics 

I, 

Chap. 11, Sec. 3) 

B = stress/strain = - A P / ( A V / V )  (2.1 0) 

where AP is the increase in hydrostatic pressure on the fluid and AV/V is the consequent fractional 
change in volume. 

Since 

the volume decreases 

as the 

pressure 

increases, 

the minus sign assures that B is 
positive. To calculate the 

bulk 

modulus for air we can reasonably 

assume 

that the 

ideal 

gas law 

holds: 

PV = nRT (2.1 1) 

Eq. (2.1 I )  gives us a relationship between P and V ,  and would 

allow 

us to calculate the actual value of B 
if we knew that T was constant during the 

compression 

(or rarefaction) of gas. We know from the study 
of heat and thermodynamics that a compression of a gas is generally 

accompanied 

by a temperature rise 
unless there is adequate time 

for 

heat 

to flow from 

the 

compressed 

gas to the surroundings so that a 
common temperature with 

the 

surroundings is maintained during the compression 

period, 

and the 
process is isothermal. In the case of longitudinal waves, the 

compressions 

and rarefactions at a given 
location are typically very rapid, so that there is no time 

for 

a significant amount of heat to flow to or 
from 

the 

surrounding air as the 

local 

air goes through its accordion-like 

paces. 

Indeed, under such 
conditions the process is adiabatic rather than isothermal. Thus, instead of Eq. (2.21), we can use the 
relationship between P and V for an ideal 

gas 

undergoing an adiabatic process (see, e.g., Beginning 
Physics I, Problem 18.9): 

P V y  = constant (2.1 2) 

where y is the ratio of the molar heat capacity at constant pressure to that at constant volume: y = 

cmol, P / C , , ~ . ~ .  Eq. (2.2 2) implies that a change in P must be accompanied by a corresponding change in V ,  

so we should have a relationship between AP and AV and hence an expression 

for 

B. Using the calculus 
it can be 

shown 

that for 

small 

A P :  

A P / A V =  -yP /V  (2.1 3)  

Substituting into Eq. (2.20) we get: 

(2.1 4 )  

From this, and the 

ideal 

gas law, it can be shown that: 

V, = [ yRT/M]1’2  (2.1 5 )  

where M is the 

molecular 

mass 

of the 

gas. 

We derive 

this 

result 

in the 

following 

problem. 

Problem 2.6. 

(a) Using 

Eqs. 

(2.9), (2.11) and (2.24), find an expression 

for 

the speed of sound in an ideal 

gas 

in terms 
of the temperature, T, and pressure P, of the gas. 
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Solution 

Substituting Eq. (2.24) into Eq. (2.9), we get: 

The ideal 

gas 

law, 

Eq. (Z.II), can be re-expressed in terms of the density, p, and the molecular 

mass, 

M, by 
recalling that: n = m / M ,  where n = number of moles 

in 

our gas, rn = mass of the gas. The molecular 

mass, 

M, represents the mass per 

mole 

of the gas 

(see, 

e.g., Beg. Phys. I, Problem 16.7). 

Then : PV = nRT = mRT/M (ii) 

Dividing both sides by V ,  and noting that p = m / V ,  we get: 

P = p R T / M  (iii) 

Substituting (iii) into (i)  we get: up = [yRT/M]’’2, which is the 

desired 

result, 

Eq. (2.15). 

Problem 2.7. Recall that y for monatomic and diatomic gases are approximately 5/3 = 1.67, and 
7/5 = 1.40, respectively. Also, the 

gas 

constant R = 8.31 J/mol K, and atmospheric pressure is 
PA = 1.013 - 105 Pa. 

(a) Calculate the velocities of sound in 

hydrogen 

and helium at P = P ,  and T = 300 K (27 “C). 

(b) Calculate the 

velocity 

of sound in air at P, at: T = 273 K, T = 300 K, and T = 373 K. Assume 
Mair = 29.0 kg/kmol. 

Solution 

(a) Using Eq. (2.15), and noting that helium is monatomic, with 

molecular 

mass 4.0 kg/km, we have: 

U ,  = [1.67(8310 J/kmol * K)(300 K)/(4.0 kg/krn~l)]’’~ = 1020 m/s. 

Similarly, for hydrogen, which is diatomic and has molecular mass 2.0 kg/kmol, we have: 

vp = [1.40(8310 J/kmol - KM300 K)/(2.0 kg/km~l) ]”~  = 1321 mjs. 

(b) Here, the dominant gases are oxygen and nitrogen, which are diatomic, so: 

up = [1.40(8310 J/kmol . K)T/(29.0 kg/krn~l)]”~ = 20T”’ m/s. 

Substituting our temperatures, we get: 

T = 273 K*v, = 330m/s; T = 300K-11, = 346m/s; T = 373 K - u p  = 386 m/s. 

It is 

interesting 

to note that the formula for the speed of sound in a gas, Eq. (2.15), is very similar to the 
equation for 

the 

root-mean-square velocity of the gas molecules 

themselves 

(see, e.g., Beg. Phys. I, 
Problem 16.12): urms = (3RT/M)’I2. 

Both 

the velocity 

of sound and the 

mean 

velocity of the 

molecules 

decrease 

with 

molecular mass 

and increase 

with 

temperature, and U, is slightly less than urmS for 

the 

same gas and temperature. 

Waves in Two and Three Dimensions 

In Chap. 1 all of the waves we considered 

were 

constrained to propagate in one dimension, such as 
transverse waves in a cord or sound waves in a rail or tube. Waves 

in 

bulk material such as air, tend to 
spread out in 

all 

available 

directions. 

A two-dimensional analogue of this 

is 

the 

ripple 

effect when a 
stone is 

tossed 

into the 

still 

water 

of a pond. The disturbance of the water 

surface 

at the point of contact 
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( h )  Expanding spherical wave-front (snapshot) 

\ 

Almost planer region. 
All molecules over region 

vibrate to and fro in unison. 

/ 
(c.) Magnification of small ”window patch“ on 

large 

spherical wave-front 

Fig. 2-4 

sends circular ripples 

moving 

out at the appropriate wave propagation speed 

for 

this 

system. 

The fact 
that the ripples are circular tells us that the disturbance is traveling at equal speed in all 

directions. 

This 
demonstrates that the speed and direction of the disturbance over the water 

surface 

has nothing to do 
with the speed and direction of the stone. Once a disturbance in any material is created, 

the 

wave 
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propagation of the disturbance is characteristic of the material through which the wave moves. If we draw 
an imaginary line through the crest (or trough) of one of the ripples at a given instant of time, we are 
looking at the same phase of the disturbance at all 

different 

locations on the water 

surface. 

Such a line is 
called a wave-front. If we plot this 

wave-front 

at many different instants of time we get a clear picture of 
how the disturbance moves through the water 

surface. 

For our water 

surface 

the motion of the wave- 
front mimics our own observation of the motion of the 

ripple. 

If a given point in our pond were 
disturbed with a constant frequency vibrator, the wave 

would 

consist 

of a continuous train of circular 
ripples and corresponding wave-fronts, 

with 

crests and troughs spaced 

equally 

from 

one another. Figure 
2-4(a) shows a pictorial display of the wave-fronts, 

with 

the origin as the location of the vibrator. 
This analysis can be extended to sound waves in three dimensions. Consider a medium 

such 

as air 
at rest; a disturbance (such as caused by a snap of the fingers) or a continuous simple harmonic vibra- 
tion (such as caused by a vibrating tuning fork) will have 

wave-fronts 

that travel 

in 

all 

directions with 
equal speed, just as the ripples in the water. In the case of the longitudinal sound waves 

in 

the still air at 
constant temperature, the disturbance propagates in three dimensions with constant velocity, so the 
wave-fronts 

now 

take the form of spherical shells-at least 

until 

they hit 

some boundary. A representa- 
tion of the wave-front of a spherical 

wave 

in 

three dimensions is shown in 

Fig. 

2-4(b) where, again, the 
origin 

is 

at the source of the disturbance. 

Note. The direction of propagation of the wave at any location is perpendicular to the wave front 
at that location. 

Energy and Power in Waves in Two and Three Dimensions 

In general, it is complicated and beyond the scope of this book to quantitatively describe wave 
motion in 

two 

or three dimensions. 

Nonetheless, 

there are a number of characteristics that can be 
described 

fairly 

easily. 

For example, 

for 

our water ripples, 

the 

energy 

of the wave in any small wave- 
front region, and the associated 

power 

transmitted through a unit 

length 

parallel 

to the 

wave-front, 

see 
Fig. 2-4(a), are being diluted as the circular wave-front expands to larger circumference. 

Since 

the cir- 
cumference of a ripple 

increases 

in 

proportion to its growing radius R,  the power per unit 

wave-front 

length must decrease as 1/R. 

A similar analysis can be made for our SHM sound waves in three dimensions. The energy and 
power of the wave, per unit area perpendicular to the direction of propagation of the wave [see, e.g., the 
small “window” in 

Fig. 

2-4(b)] now fall off as 1/R2. The power 

per 

unit 

area perpendicular to the 
direction of propagation is 

called 

the intensity, I ,  and is given by: 

I = PIA (2.16) 

where P is the power transmitted through a “window” concentric to the wave-front and of cross- 
sectional area A,  as shown schematically 

in 

Fig. 

2 - q ~ ) .  

Problem 2.8. A spherical sound wave emanates from a small 

whistle 

suspended from a ceiling of a very 
large room, emitting a single 

frequency 

simple 

harmonic wave. 

(a) If the power generated by the whistle is 0.0020 W ,  find the intensity of the spherical wave 1.0 m, 2.0 
m, and 3.0 m from the source. [Hint: Recall that the surface area of a sphere of radius r is 4zr2 1. 

(b) Find the power 

passing 

through an imaginary circular window of area 12.0 cm2, which is facing 
(parallel to) the wave fronts and at a distance of 3.0 m from the source. 
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Solution 

(a) All the power must pass through any imaginary concentric spherical shell, and by symmetry will flow 
out with equal intensity in all directions. For a spherical 

shell 

of radius T ,  the intensity 

would 

thus be: 
Z = P/A = P/(4nr2).  Substituting the value of P and the various T values into this relationship, we get: 

r = 2 m, Z = 0.0398 mW/m2; r = 1 m, Z = 0.159 mW/m2; T = 3 m, I = 0.0177 mW/m2. 

(b) Since Z represents 

power 

per unit 

area passing perpendicular to the imaginary window, we must have: 

P ,  = ZA = (0.0177 . 10-3 Wx12.0 10-4 m2) = 0.212 mW. 

Problem 2.9. 

(a) Assuming a simple harmonic disturbance in the 

water 

of a pond, how 

would 

you expect 

the ampli- 
tude of any given ripple to change with radius R as the ripple expands out? Ignore thermal losses. 

(b)  Repeat 

for 

the sound wave in Problem 2.8; If the wave amplitude were 0.20 mm at R = 1.0 m, what 
is the amplitude at R = 3.0 m? 

Solution 

(a) We recall 

from 

Chap. 1 that the power of a wave of a given frequency and velocity of propagation is 
proportional to the square of the amplitude. Since 

the 

power 

falls off as 1/R for 

the 

case 

of our circular 
ripples, the amplitude of the wave decreases as l/,/R. 

(b) In this 

case 

the power 

falls 

off as I/R2, so the wave amplitude falls off as 1/R. If the amplitude were 
0.20 mm at R = 1.0 m, then it  would be 1/3rd that amount, or 0.0667 mm, at R = 3.0 m. 

Plane Waves 

Another interesting result 

for 

our water 

ripples 

and our spherical sound waves is that at large 
distances 

from 

the source, 

a small portion of the circular (or spherical) 

wave-front 

looks almost like a 
straight line (or flat plane) at right 

angles 

to the direction of motion of the wave. For a spherical sound 
wave whose source is a long way off, the wave-front appears to be a planar surface perpendicular to the 
direction of motion of the wave, as long as we are observing a portion of the wave-front 

whose 

dimen- 
sions are small compared with the distance to the source. Thus, for 

example, 

the imaginary “window” 
shown in Fig. 2-4(c) is almost planar if the dimensions are small compared to the distance from the 
source of the wave. A wave moving through space in which the 

wave-front 

is 

planar is 

called 

a plane 
wave, and is characterized by the fact that every point on the planar wave-front is in phase at the same 
time. Thus, the air molecules are all 

vibrating 

in and out along the 

direction 

of motion of the wave 
(longitudinal) in lock-step at all 

points on 

the 

wave-front 

in the window of Fig. 2 - q ~ ) .  
Since all the points on a plane wave act in unison, 

the 

wave equation for 

such 

a wave is 

exactly 

the 
same as for our longitudinal waves in a long 

tube. 

Indeed, if x is along the direction of wave propaga- 
tion, then 

the 

wave-front 

is parallel to the (y, z )  plane. Under those circumstances our SHM sound wave 
is 

described 

by : 

dy,  z(x, t )  = A sin (27tt/T - 2nx/R) (2.1 7) 

where d y , z  represents 

the 

displacement 

of air molecules at any point (y, z )  on the wave-front, and at a 
distance x (measured from some convenient point) along the 

direction 

of wave propagation, at any time 
t .  A,  T and R are the amplitude, period and wavelength of the wave, and all three are constant for 

all 

y 

and z in our plane wave region. Thus d y , z  does not depend on y or z in our plane wave region. We note 
that in 

reality 

the 

amplitude A does 

decrease 

with increasing x but only 

slightly 

if we limit 

ourselves 

to 
changes in x that are small compared to the distance from the source of the 

wave-front. 
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Problem 2.10. Consider the spherical wave in Problem 20.8(b). 

(a) Could the portion of the wave 

passing 

through the imaginary window be considered a plane wave? 

(b) When the portion of the wave-front passing through the imaginary window, 

which 

is 3.0 m from 
the source, moves an additional 4.0 cm, how much larger is the area it will occupy? 

What will be the intensity of the wave of Problem 20.8(6) when 

it 

moves 

an additional 4.0 cm, as in 
part (b), above? 

(c) 

Solution 

The imaginary window is like a circular patch of radius less than 2 cm on a spherical 

surface 

of radius 
3.0 m. It therefore is, indeed, almost flat and a plane wave would be an excellent approximation to the 
part of the spherical wave passing through it. 

The new area would correspond to the equivalent window on a concentric spherical shell of radius 3.04 
m. 

Since 

the areas go as the square of the radius, the ratio of the window areas would be (letting a, 

and a, represent the areas at 3.00 m and 3.04 m, respectively): 

u2/a1 = r2,/r12 = (3.04/3.00), = 1.027 == a, = 1 . 0 2 7 ~ ~  = 12.3 cm’, or a 2.7% increase. 

Since the portion of the wave passing through the first 

window 

is precisely the portion of the wave 
passing through the second 

window, 

the new intensity will just be: I, = P , , / A , ,  where P, , ,  the power 
through the first 

window, 

was already calculated in Problem 2.8(b). Substituting in numbers we get: 

I, = (0.212 . 10-3 W)/(12.3 10-4 m2) = 0.172 W/m2. 

Note. This is only 

slightly 

less than I, = 0.177 W/m2, as calculated 

in 

Problem 2.8(a). 

Indeed, 

I, could 
have been calculated by noting that if the area has gone up by 2.7% the intensity must go down 
by 2.7% so: I, = 1,/1.027 = 0.172 W/m2. 

Problem 2.11. 

(a) Find an expression for the intensity of a sinusoidal planar sound wave traveling through air in 
terms of the density of air p, the angular frequency U, the amplitude A ,  and the velocity of propa- 
gation U,,, of the wave. 

(b) A sinusoidal planar sound wave travels through air at atmospheric pressure and a temperature of 
T = 300 K. The intensity of the wave 

is 

5.0 - 10-3 W/m2. Find the amplitude of the wave if the 
frequency 

is 

2000 Hz. (Assume the mean molecular mass of air is M = 29 kg/kmol and y = 1.40.) 

Solution 

From Eq. (2.22) and Problem 1.16 we have for the power P of the wave 

passing 

through a cross- 
sectional area CA perpendicular to the direction of propagation : 

( i) P = i p c ,  02A2Up 

From the definition, I = P/CA, and dividing we get: 

I = 4po2A2vp (ii) 

Recalling (Problem 2.6) that gas 

pressure 

is 

p = p R T / M ,  we have 

for 

air at atmospheric pressure: 

1.013 * 10’ Pa = p(8314 J/kmol)(300 

K)/(28.8 

kg/kmol), 

and p = 1.17 kg/m3. 

Similarly (Problem 2.6), up = [y~/p] ’ /~  = [1.40(1.013 
into (ii) above, we get: 

10’ Pa)/(1.17 

kg/m3)]”12 

= 348 m/s. Substituting 

5 . 10-3 W/m2 = i(1.17 kg/m3)(6.28)2(2000 H ~ ) ~ ( 3 4 8  m/s)A2 * A  = 3.94 - 10-’ m. 
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By examining a region of space where a sound wave can be approximated by a plane wave (or the 
corresponding two-dimensional 

region 

on the surface of a lake where a ripple wave can be approx- 
imated by a “straight line” wave-front) one can gain interesting 

insight 

into many wave phenomena. 
These wave phenomena are very similar to those associated with light waves, which we will be studying 
later on. They 

include 

: reflection, 

refraction, 

interference 

and diffraction. 

These 

are examined in the 
following 

sections. 

Reflection and Repaction of Sound 

When sound wave-fronts 

hit 

a barrier, such as the floor or a wall for the case of the whistle in 
Problem 2.9, or the side of a mountain or canyon wall 

for 

the case of a person making a noise in the 
great outdoors, part of the wave reflects and part is transmitted into the barrier. The part that is 
transmitted can penetrate deeply into the barrier material, or it can quickly 

lose 

amplitude with wave 
energy 

converting 

to thermal energy (absorption). The rate of absorption depends on such factors as the 
composition of the barrier, its elasticity and the frequency of the wave. The part of the wave that is 
reflected has diminished amplitude but the same frequency and velocity as the original wave, and hence 
the same wavelength. The echo we hear in a canyon is a consequence of such a reflection, and the time 
elapsed 

between 

emission 

of a sound and the echo we hear can be used to roughly 

measure 

the speed of 
sound in the air if the distances are known, or the distances if the speed of sound is known. 

Problem 2.12. 

(a) A man standing 3360 ft from a high cliff hits a tree stump with an axe, and hears the 

faint 

echo 

6.4 s later. What is the velocity of sound in the air that day? 

(b) A child standing with his parents somewhere 

between 

the two walls of a wide canyon shouts 
“hello”. They hear two loud echoes, 

which 

one parent times 

with 

a stop watch. The first 

echo 

arrived after an interval of 1.2 s, while the second 

arrived 

1.8 s later. How wide is the canyon? 
Assume the same speed of sound as in part (a). 

Solution 

(a) The sound created by the axe 

hitting 

the stump first travels the distance, x, to the cliff, where it is 
reflected and 

makes 

the return trip of the same 

distance 

to the man. We must 

then 

have 

that: 2x = U,?, 

where t is the elapsed time for the echo and up is the velocity 

of 

sound 

in air. Substituting the given 

values for x and t in the equation, we have: 

up = 2(3360 

ft)/(6.4 

S )  = 1050 ft/s. 

(b) The 

situation 

is shown 

schematically 

in Fig. 

2-5. 

The 

family is clearly not midway 

between 

the two 
walls because the echoes took different times. Letting x and y be the respective distances to the near 
and far walls, we have: 

2~ = u , t ,  = (1050 ft/~)(1.2 S) = 1260 ft =>x = 630 ft. 

k -- 
Y 1 -  X -1 

A short time after a 

child 

shouts 

Fig. 2-5 
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Similarly, we have : 

2y = upt2 = (1050 ft/s)(1.8 s + 1.2 S) = 3150 ft = 1575 ft. 

Then the distance between the walls 

is 

d = x + y = 2205 

ft. 

The reflection of sound is of great 

importance 

in modern high frequency detection devices. Sonar is used 
by submarines to find and map out objects at various 

distances 

from the 

sub. 

The 

time between emis- 
sion and detection of reflected sound pulses is measured, and from a knowledge of the speed of sound 
the distance to the 

object 

is determined. Ultrasound is used in medical imaging by detecting 

changes 

in 
tissue density in the 

body 

through examination 

of reflected and 

transmitted 

waves. 
In our discussion of the velocity of sound in air, we concluded that the velocity is temperature 

dependent, as shown in Eq. (2.15). In general, 

the 

layers 

of air 

above 

the 

ground are not at a constant 
temperature. 

Depending 

on circumstances, 

e.g. time of day or night, specific atmospheric 

conditions, 

etc., the layers of air near 

the 

earth's 

surface can be either 

colder 

or warmer than the layers above. 
Consider 

the 

portion of a sound wave emitted 

from 

the 

horn of a ship at sea. Part of the wave initially 
travels 

parallel 

to the surface of the sea, and to an observer at some 

distance 

from the ship the wave- 
fronts can be approximated by those of a plane wave traveling from the 

ship 

to the 

observer. 

Indeed, 

if 
the air is at a uniform temperature, a cross 

section 

of the 

wave-fronts 

in some 

local 

region would look 
something 

like 

that in Fig. 2.6(a). Suppose 

the 

wave passes a region where the 

temperature 

is higher at 
sea level and drops with increasing 

altitude. 

Eq. (2.15) indicates that the propagation velocity would be 
highest at sea level and decreasing 

upward. 

Then 

the bottom of a given wave-front would move faster 
than a point 

higher 

up and the wave-front would start to bend as shown in Fig. 2-qb). Since the 
direction of propagation of a wave is perpendicular to the wave-front, the wave velocity would start to 
develop an upward 

component 

and would therefore 

not 

carry as 

far along 

the 

sea 

surface. On the other 
hand, if the layers of air at the water surface were colder 

than 

those above, the 

speed of the wave-front 
near 

the 

surface 

would be less than that above, and we would get the effect shown in Fig. 2-qc). Here 
the net effect is that more of the wave-front from 

higher 

levels is pushed 

down 

toward the 

surface, 
ensuring that a substantial amount of wave energy would 

travel 

along the 

surface, and thus be audible a 

long way off. In general, when a wave travels through a medium of varying 

densities 

(for example, layers 

of air at different temperatures) 

the 

velocity of different parts of the wave-front are different, and the 
direction of propagation of 

the 

wave changes as a consequence. 

This 

is called refraction, and will be 
discussed in greater 

detail 

in our discussion of light waves. 

Fig. 2-6 

Interference and Dirractwn 

We can now examine 

interference 

and diffraction of sound waves. Interference was already 

encoun- 

tered in Chap. 1, and was used to demonstrate the 

formation 

of standing waves in a cord or a tube. 
Interference is the effect of having 

more 

than one wave passing a given point, and the possibility that 
the 

two 

waves will reinforce or weaken each other as a consequence of the 

phase 

difference between the 
waves. For the case of continuous waves, such as sinusoidal 

traveling 

waves, the 

ability 

of two waves to 
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completely 

cancel 

each 

other out at a given point over an extended 

time 

period (e.g. a node for standing 
waves) requires three things to be true: 

1. The frequencies of the two waves are the same. 

2. The amplitudes of the two waves are the same. 

3. The wave vibrations are in the same direction in 

space. 

The most important of these requirements is the first. If the frequencies are not identical (or almost 
so) then at any point in space the relative 

phases 

of the two waves would 

rapidly 

be changing due to the 
different 

frequencies 

and the positive or negative 

interference 

would average 

to zero over 

even 

short 
time 

intervals. 

Our second requirement is less important because 

even 

if the amplitudes are somewhat 
different and one does not get complete cancellation, the 

interference 

effect might 

still 

be quite signifi- 
cant. The third requirement does not come 

up 

in the 

context of sound waves in a tube, 

since 

the 

vibrations of all waves are constrained to be in the same direction. This is no longer true for waves 
traveling through space. 

Nonetheless, 

if the direction of vibrations of two waves passing a point make a 
relatively 

small 

angle with 

each other, one could still get substantial cancellation of the 

two 

waves- 
assuming of course that requirements 1 and 2 is satisfied. 

2.3 HUMAN PERCEPTION OF SOUND 

Intensity Scale of Sound Waves 

The human ear responds to the 

intensity 

of the sound waves hitting it with the perception of 
loudness. 

While 

the sense 

of loudness is a physiological and psychological 

response 

of human beings 
and varies somewhat from 

person 

to person (and therefore 

is 

not exactly the same as sound intensity), it 
is true that the human ear can perceive an exceptionally broad range of sound intensities. To describe 
that range it is useful to create a logarithmic scale 

called 

the 

decibel scale (db), which gives a quantitat- 
ive measure to “loudness”, which we label n, and define as: 

n = 10 log ( I / I o )  (2.28) 

where I is the 

intensity 

of sound and I. is a fixed reference 

intensity 

taken to approximate the lowest 
level of sound audible to a human being: I. = 1.0 . 1 0 - I 2  W/m2. It turns out that an intensity of about 
I = 1.0 W/m2 represents 

the 

highest intensity 

to which the ear can respond without feeling pain. Substi- 
tuting this 

intensity 

into Eq. (2.18) we obtain n = 10 log (l.O/l.O 1 0 - I 2 )  = 10 log (10”) = 120 db, so 
that the threshold of pain is 120 db. Note that because of the logarithmic scale 

each 

factor of 10 increase 
in intensity corresponds to an addition of 10 db. Thus a thousand-fold increase in noise corresponds to 
a thirty decibel 

increase 

in loudness level. 

Problem 2.13. A powerful 

firecracker 

is tossed in the air and explodes 5 m from a person 

walking 

nearby. The peak sound power 

generated 

by the explosion 

is 

16 

W. 

(a)  What is the intensity of sound that enters the persons ear? 

(b) To how many decibels 

does 

this 

correspond? 

(c )  At what distance r from the explosion 

would 

the person’s ear have to be if the sound was at the 
threshold of pain? 

Solution 

(a) We assume the energy 

disperses 

in 

a spherically symmetric shell away from the burst site, so 

Z = P/4nr2 = Z  = (16 W)/[12.56 - (5.0 m)’] = 5.09 . 10-’ W/m2. 

(h)  n = 10 log [(SO9 - 10-’ W/m2)/(1.0 - 1O-I’ W/m2)] = 107 db. 
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(c)  Here n = 120, so: 12 = log (I/Zo) + I  = I, - 1 0 I 2  = 1.0 W/m2. Then: 16 W = (1.0 W/m2)(12.56)r2, or 
r = 1.13 m. 

Problem 2.14. A symphonic passage produces a sound level at a person’s ear in the auditorium of 60 
db while a person 

speaking 

in the next row produces a sound level of 40 db at the same ear. 

What 

is the 
ratio of the 

intensities 

of the two sounds? 

Solution 

n~ - n2 = 10 log (II/ZO) - 10 log (Z2/10) = 10 log (11/12) 20 db = 10 log (Zt/Zz), or: It/Iz = 102. 

While human 

perception 

of loudness will approximately follow the decibel scale it does 

not 

exactly do 
so. Indeed, 

loudness 

perception 

is dependent on a variety of factors specific both 

to 

individuals 

in a 
species and 

the 

species as a whole. An important 

factor 

for human 

(and 

other) species is the frequency of 
the 

sound. 

The human 

ear is most sensitive to frequencies in the 

range 

1000-6000 Hz and people with 
the 

most 

acute hearing 

are able to detect sounds at I ,  intensity, or 0 db, at those frequencies. As the 
frequency drops below 1000 Hz 

this 

threshold 

of hearing rapidly rises to higher and higher intensities 
requiring about 30 db at 100 Hz and 100 db at 20 Hz-about the lowest frequency that 

human 

beings 
can 

hear. 

For frequencies higher than 6000 Hz the 

threshold 

intensity 

rises relatively slowly (about 20 
db) as the frequency reaches toward 12,000-15,000 Hz, 

and 

then rises more rapidly to about 100 db at 
20,000 Hz-about the highest frequency that human beings can 

hear. 

Thus, 

a 30 decibel sound at 40 Hz 
will be inaudible, while the same level sound at 1000 Hz will sound 

quite 

loud. 

As it turns out the 
threshold of pain is about 120 decibels at all frequencies from 20 to 20,000 Hz. It should be noted that 
few people can 

hear 

the full frequency range from 20 to 20,000 Hz, and most cannot 

hear 

even interme- 
diate frequencies at the lowest threshold intensities. 

Reverberation Time 

When a sound is emitted in a closed environment such as a room or auditorium it takes a certain 
amount of time for the intensity of the sound to 

dissipate. 

This is because the sound reflects off the walls 
and the 

people 

and objects in the 

room, 

and 

dies down only as a consequence of the absorption of some 
of the energy by each object at each reflection. The 

reverberation 

time is defined as the time it takes for 
the 

intensity 

of a given steady 

sound 

to 

drop 60 db (or six orders of magnitude in intensity) from the 
time the 

sound 

source 

is shut off. Reverberation times are important because if they are too long 
successive sounds 

run 

into one another and 

can 

make it 

difficult to 

make 

out 

speech (too much echo). 
For music the 

quality 

of the 

performance 

is negatively impacted if the reverberation time is too long or 
too short, the latter case corresponding 

to 

a thin or dry effect. Reverberation times depend on the total 
acoustic energy pervading the room, 

the 

surface areas of the absorbing 

materials 

and 

their absorption 
coefficients. The 

absorption 

coefficient of a surface is defined as the fraction of sound energy that is 
absorbed at each reflection. Thus, an open window has an 

absorption 

coefficient of 1 since all the 
energy passes out of it 

and 

none 

reflects back in. Heavy curtains have a coefficient of about O S ,  and 
acoustic ceiling tiles have a coefficient of about 0.6. Wood, glass, plaster, brick, cement, etc. have coeffi- 
cients that range from 0.02 to 0.05. A formula that gives good 

estimates 

of the reverberation time was 
developed by Sabine, a leading 

acoustic 

architect, 

and is given by: 

t ,  = 0.16V/A (2.29) 

where t, is the 

reverberation 

time (s), V is the volume of the 

room 

(m3) 

and 

A is called the absorbing 
power of the 

room. 

The 

absorbing 

power A is just the sum of the 

products 

of 

the areas of all the 
absorbing surfaces (m’) and 

their 

respective absorption coefficients. 
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Problem 2.15. 

Find the reverberation time 

for 

an empty auditorium 15 m wide by 20 m long by 10 m high. 
Assume that the ceilings are acoustic tile, the side walls are covered 

with 

heavy 

drapes, and that the 
floor and the 

back 

and front walls are concrete. Assume the following absorption coefficients: 
ceiling tiles, 0.6; drapes, 0.5; 

concrete, 

0.02. 

How would the answer to part (a) change if the auditorium were filled with 50 people, 

each 

with an 
absorbing power of 0.4. Assume no change in absorption of the floor. 

Solution 

We use Sabine’s formula, Eq. (2.29). The volume of the room is 15 x 20 x 10 = 3000 m3, so V = 3000. 
To get the absorbing power we multiply absorption coefficients by areas: 

A = 0.6(300) + 0.5(200 + 200) + 0.02(300 + 150 + 150) = 392. 

Then: 

The only change from part (a) is that the absorbing power A is increased by the contribution of the 
people: A = 392 + 0.4(50) = 412. Then: t ,  = 0.16(3000)/412 = 1.17 s. 

t ,  = 0.16(3O00)/392 = 1.22 S .  

Problem 2.16. If it were desirable to raise 

the 

reverberation time of the auditorium in part (b) of 
Problem 2.15 to 1.70 s, How 

many 

m2 of drapes would need to be removed if the walls behind 

them 

were concrete? 

Solution 

For t ,  to be 1.70 s, we must 

have 

an absorbing power A given by: 

1.70 = 0.16(3000)/A * A  = 282. 

If x is the number of m2 of drape that need to be removed, exposing a like amount of concrete, we 
have, 

recalling 

the absorbing power of Problem 2.15(b): 

412 - 0 . 5 ~  + 0.02~ = 282 * 130 = 0.48~ * X  = 271. 

Thus, 271 m2 of the original 400 m2 of drapes must be removed. 

Quality and Pitch 

In addition to loudness, humans can distinguish other sound factors related to frequencies and 
combinations of frequencies of sound. When a note on a musical instrument is 

played, 

the 

fundamental 
is typically accompanied by various overtones (harmonics, i.e., integer 

multiples 

of the fundamental) 
with differing 

intensity 

relative 

to that of the fundamental. The intensities of the harmonics will vary 
from instrument to instrument. The sound of harmonics is pleasing to the ear, and while the note is 
identified by the listener 

with 

the 

fundamental frequency, 

the 

same 

note from 

different 

instruments will 
sound differently as a consequence of the different harmonic content. The time evolution of the note 
also contributes to the 

different 

sounds. These 

different 

sound recognitions by the human ear are called 
the quality of the 

note. 

The 

pitch of a note is the human perception of the note as “high” or “low” and 
is closely related to the 

frequency 

but is not identical to it. The pitch 

involves 

human subjective 

sense 

of 
the sound. While a higher 

frequency 

will be perceived as a higher 

pitch, 

the same frequency will be 
perceived as having 

slightly 

different 

pitches when 

the intensity is changed : higher 

intensity 

yields lower 
pitch. Another difference 

between 

frequency 

and pitch 

is 

the perception of simultaneous multiple fre- 
quencies. As noted above, when the human ear hears a fundamental and harmonics it perceives the 
pitch as that of the fundamental. 

With regard to musical 

notes, 

it 

is found that certain combinations of notes have particularly 
pleasing sounds. The frequency of such notes are found to be close 

whole 

number ratio to each other. In 
particular two 

notes 

an octave apart are in the ratio of 1 to 2, and such 

notes 

are labeled with the same 
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letter. Thus, middle C on the piano, which corresponds to 264 Hz and the C an octave above (C’) is 528 
Hz while the C an octave below is 132 Hz. Similarly, 

the 

notes 

C, E, G form 

what 

is called 

a major triad 
in “the key of C”, having 

frequencies 

in the ratio of 4 to 5 to 6. Their actual frequencies are then: 
C = 264 Hz, E = 330 Hz, G = 396 Hz. Similarly, F, A, C’ and G, B, D‘ form major triads in 

the 

keys of 
F and G, with actual frequencies: F = 352 Hz, A = 440 Hz, C’ = 528 Hz, G = 396 Hz, B = 495 Hz, 
D’ = 594 Hz. All the 

main 

piano notes of the C octave can be determined 

from 

these 

triads, recalling 
that C = f C’ and D = fD’. The octave 

then 

has seven notes: C, D, E, F, G, A, B. If one starts with D 

and tries to make a major triad in “the key of D” new notes 

would 

be necessary. In general 

practice 

five 
new notes are added to the piano octave in part to address this problem: C’, D‘, F’, G’, and A’. The 
new scale is then: C, C’, D, D’, E, F, F’, G, G’, A, A’, B. In the diatonic scale in the key of C,  the 
original seven notes 

have 

the same frequencies 

as given above. A quick 

check 

shows 

that for 

the 

original 

seven, any two 

adjacent 

notes 

are either in the ratio of 9/8 or 10/9 or 16/15. The intervals between 
adjacent notes that have either of the first two ratios are called whole-note 

intervals, 

while those 

with 

the last ratio are called 

half-note 

intervals. 

The new notes are placed 

between 

those that have the 9/8 or 
10/9 ratios, so that all adjacent notes are approximately half-note 

intervals. 

Even with the 

added notes, 
if one tried to have 

the 

major triad in all keys many more notes 

would 

be necessary. To avoid 

this 

the 
equally tempered scale was created, in which all the twelve notes of the 

octave 

are tuned so that the 
ratio of any two adjacent notes are the 

same. 

Since there 

are twelve notes in the 

octave 

the adjacent 
notes must be in 

the 

ratio of the twelfth root of 2, (2)”12 = 1.05946, so that C’ = 2C, D’ = 2D, etc. By 
agreement 

the 

note A is taken as 440 Hz, and all the other notes are then 

determined. 

In this 

scale 

the 

notes have 

slightly 

different frequencies 

than in 

the 

diatonic scale. The advantage is that for 

this 

choice 

every note has a major triad, while the disadvantage is that the ratios are not exactly 4 to 5 to 6 for any 
key. In the key of C for 

example, 

the new frequencies are: C = 261.6 Hz, E = 329.6 Hz, G = 392.0 Hz, 
so the ratios are 3.97 to 5 to 5.95. Since the ear finds 

it 

more pleasing 

to have 

the 

ratios: 4 to 5 to 6, a 
piano tuned in the diatonic scale will sound better than the even tempered 

scale 

in the keys of C, F and 
G, but would sound worse 

in 

some 

other keys such as D, E, and A, etc. 

2.4. OTHER SOUND WAVE PHENOMENA 

Beats 

In discussing 

interference 

of waves we noted that it was necessary to have 

the 

same frequency 

if one 
was to have 

interference 

effects observable. 

Nonetheless, 

if we have 

two 

frequencies 

that differ only by a 
few Hz we can 

indeed 

detect 

“interference” effects that oscillate in time slowly enough to be easily 
detectable. Consider two sound waves of equal amplitude A ,  and slightly 

different 

frequenciesJ, andf, , 
traveling along the x axis. At a given point in space the actual disturbance of the air molecules 

from 

their 

equilibrium 

positions can be expressed as: x = A cos (2nf,t) + A cos (271f2t + 4), where 4 is 

the 

relative 

phase 

of the two 

waves at some arbitrary instant of time, t o .  Since 

the 

frequencies 

are different 
this 

relative 

phase 

is of no significance 

since 

the relative phases 

of the waves continually change as time 
goes on. We therefore simplify the mathematics by setting 4 = 0. Then: x = A[cos 271 fit)  + cos 271f2r)]. 

Using 

the 

trigonometric identity: cos O1 + cos 0, = 2 - cos [(O, - 02)/2] - cos [(O, + O,)/2], we get: 

(2.20) 

We let f= (fl +f2)/2, and Af = (f, -f2). Then f is the average of the two 

frequencies 

and is midway 
between them, while Afis the 

difference 

of the two frequencies. 

Since 

the frequencies are very close, the 
last cosine 

term 

on the right of Eq. (2.20) approximates the oscillation of either 

original 

wave, while the 
other cosine 

term 

represents 

a very slow oscillation at frequency 

Afl2. 

For example, iff, = 440 Hz 
(middle A on a properly tuned keyboard) andf, = 437 Hz (e.g., middle A on an out of tune keyboard), 
Afl2 would equal 1.5 Hz. Then, in 

Eq. 

(2.20) the expression: 2A cos [2nt(f1 

-f2)/2] 

can be thought of 
as a slowly varying amplitude for the “average” oscillation at f =  441.5 Hz. This 

variable 

amplitude 
reaches 

two 

maximal 

values: 

2A and (-2A) in each complete cycle. Each will correspond to a maximal 

x = 2A * cos [271t(f, -f2)/2] * cos [2nt(f1 +fi)/2] 
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loudness in the sound, called a beat. Since there are two 

such 

beats in 

each 

cycle of the A y 2  Hz 
oscillation, the number of beats 

per 

second is: 

A j =  ( j ,  -f2) Hz. In other words, the number of beats 
per 

second 

is 

just the difference of the two frequencies. Note that we have been assuming thatf, >f2 so 
that Af is positive. 

However, 

it 

doesn’t matter which is larger 

since 

cos (0) = cos (- 0). Thus, in our 
analysis we can more generally use A f =  If, -f2 I .  Because beats are most 

clearly 

audible as the 

fre- 

quencies are closest 

they 

are an excellent vehicle for tuning an instrument against a known standard 
frequency 

such 

as that of a tuning fork. 

Problem 2.17. 

(a) A piano tuner is testing 

middle 

A on the piano against a standard tuning fork 

with 

the exact 

frequency of 440 Hz. She 

hears 

four beats per second, and starts to decrease the tension 

in 

the 

piano cord. The beats 

increase 

to five per 

second. 

What is the 

frequency 

of the cord before and 
after 

her 

adjustment? 

(b)  What must 

the 

piano tuner do next to correctly tune the piano? 

Solution 

(a) The 

original 

frequency of the piano 

cord 

differed 

from the 440 Hz by 4 Hz, and 

was 

therefore either 
444 Hz or 436 Hz. To choose between these two we note that reducing 

tension 

in the cord 

drops 

the 

frequency. Since by decreasing 

tension 

the number of beats 

increased, 

she must have 

started with the A 
cord at lower frequency than the tuning fork and it got lower 

still. 

It therefore was at 436 Hz to start, 
and 

dropped 

to 435 Hz after the adjustment. 

(b)  She 

has 

to increase the tension 

slowly 

and listen 

to a 

decrease 

in the number of beats against the 
tuning fork. When the beats are no longer 

audible 

the cord 

is 

properly tuned. 

The Doppler Shii  

We now turn to a phenomenon we all 

recognize 

from 

every day life. When an ambulance or police 
car with its siren 

screaming 

approaches you 

it 

appears to have one pitch, but when 

it 

passes 

by and 
moves 

away 

from you the pitch seems 

to drop noticeably. 

Clearly 

the mechanical siren 

did not change, 
so what did? This change in 

pitch 

is an example of what 

is 

called the 

Doppler shift and is caused by 
motion of the source of a sound wave through the air (as in the example of the siren) or by the motion 
of the 

listener 

through the air. In the case of the source moving, the wave-fronts of successive crests of 
the sound wave are bunched 

up 

in the direction 

of motion through the air, while they are more separat- 
ed 

in 

the direction opposite to the motion. In either case 

the 

crests all move 

through the air with the 
characteristic propagation velocity of the 

medium, 

up.  Thus, if the 

source 

is moving 

toward (away 

from) 

the 

listener, 

the listener would detect 

shorter (longer) 

wavelengths 

or higher 

(lower) 

frequencies. 

The moving 

source 

situation is 

depicted 

in Fig. 2-7. We consider a source emitting a sinusoidal 
wave with frequency f, = 1/T. If the source is stationary (relative to the air) as in Fig. 2-7(a), two 
successive positive 

crests 

are emitted a time T (one period) apart, say at times to and to  + T.  The 

successive crests 

move 

off as spherical 

wave-fronts 

traveling 

at velocity U,, and at some later time 

would 

appear as depicted in the figure. The distance 

between 

the crests 

in any radial direction, including to the 
right and left in the figure, is just the wavelength, which is given as A, = u,T = upf l , .  If, on the other 
hand, the source were moving to the right 

with 

some velocity U, (typically 

much 

smaller 

than up) relative 
to the air, then the second 

crest 

emitted at time to  + T will be emitted 

from 

a location to the right of the 
one emitted at time t o .  The distance between 

the 

two points of emission 

would 

be x = U, T ,  as shown in 
Fig. 2-7(6). Once emitted, both wave fronts travel 

relative 

to the 

medium 

with 

the 

characteristic velocity 

U,, and again spread out as spherical shells, but the 

shells 

are of course no longer 

concentric. 

It is 

easy 

to see that the 

distance 

between 

the crests now depends on the direction in which one is interested. If a 
listener is off to the right (source traveling 

directly 

toward listener) 

the 

effective wavelength 

(crest 

to 
crest 

distance) 

will be: Aeff = u,T - U, T since 

the 

second 

crest 

is closer to the first by the 

distance 

x the 
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(b)  

Fig. 2-7 

source moved 

before 

emitting the second crest. 

Similarly, 

if the listener were off to the left (source 
moving 

away 

from listener) 

the effective wavelength 

would 

be 

Aeff = u,T + U, T ,  since the second crest 
was emitted a distance x to the right of the first 

crest. 

Combining these 

two 

cases, 

and redefining us so 
that it is 

positive 

(negative) 

when moving away 

from (toward) the listener, we have: 

(2.22) 

wheref, is the stationary source frequency and U, is 

negative 

for 

the 

source moving toward the listener. 
It should be noted that as long as the source keeps 

moving 

at constant velocity 

the 

previous 

discussion 
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will hold 

for 

all succeeding crests 

and the forward and backward traveling waves will indeed 

have 

wavelength A e f f .  Since 

the 

waves still 

travel 

with velocity 

up the effective frequency 

is 

justf,,, = up/Aeff, 
or Aeff = uP/feff. Substituting for Aeff in our formula and shifting 

terms 

around we get finally: 

(2.22) 

wherefe,, 

is 

the frequency 

heard by a stationary listener 

facing 

along the line of motion of the source,f, 
is the stationary source frequency and U, is 

positive 

(negative) for 

source moving 

away 

from 

(toward) the 
listener. 

f e f f  = CVp/(Up + u,)lfs 

Problem 2.18. A fire 

engine 

has a siren 

with 

a frequency of 1O00 Hz. The engine 

is 

hurtling down the 
street at 25 m/s in the direction of a pedestrian standing on the curb. Assume the speed of sound in air 
is 350 m/s, and that there is no wind 

blowing. 

(a) What is the 

frequency 

of the 

siren 

heard by the pedestrian as the 

engine 

approaches? 

(b) What is the frequency heard by the same pedestrian once the engine has passed by? 

Solution 

(a) Using Eq. (2.22) and noting that U,, = 350 m/s, U, = - 25 m/s,fS = loo0 Hz, we get: 

ferf = [(350 m/s)/(350 m/s - 25 m/s)](lOOO Hz) = 1077 Hz. 

(b) We again use Eq. (2.22), the only difference being that now U, = 25 m/s. Then: 

ferf = [350/375] ' 2000 = 933 Hz. 

We now consider the 

case 

where the listener is 

moving at some speed, uL,  relative to the air, toward or 
away from the source. If the listener 

moves 

toward the source the apparent speed 

with 

which the crests 
pass the listener 

is 

no longer up but up + uL. If the listener 

moves 

away from 

the source the correspond- 
ing 

velocity 

would 

be up - u L .  We redefine uL to be positive or negative 

for 

the listener 

moving 

toward 
or away from the source, respectively, so that we can always 

express 

the speed 

of the crests past the 
listener as: up + u L .  The wavelength is the distance between successive crests and is not affected by the 
motion of the listener. The wavelength is either A, (for a stationary source) or Aeff [as given by Eq. 
(2.21)] for a moving 

source. 

Considering the more general 

case 

of a moving 

source, 

the frequency heard 
by the listener 

would 

be:fL 

= (up + uL)/Aeff. Substituting from Eq. (2.21) for A e f f ,  we get: 

(2.23) 

where uL is 

positive 

(negative) for 

the listener 

moving 

toward (away 

from) 

the source, and U, is positive 
(negative) 

for 

the source moving 

away 

from 

(toward) the listener. The special 

case 

of the source not 
moving 

is 

obtained by setting U, = 0 in Eq. (2.23). Similarly, the special 

case 

of 

the listener not moving 

is 

obtained by setting uL = 0, reproducing Eq. (2.22). The use of Eq. (2.23) is illustrated in the following 

problems. 

Problem 2.19. Consider the case of Problem 2.18, except that now 

the 

listener 

is driving a car initially 
moving toward the fire engine 

with 

a speed of 15 m/s. 

(a) 

(b)  

Find the frequency heard by driver 

before 

passing 

the fire 

engine. 

Find the 

frequency 

heard by the driver after 

passing 

the 

fire engine. 

Solution 

(a) We use Eq. (2.23) with U, = -25 m/s (toward listener) and uL = 15 m/s (toward source), and again 
f, = loo0 Hz and U, = 350 m/s. Then, 

fL = [(350 

m/s 

+ 15 m/s)/(350 

m/s 

- 25 m/s)](lOOO Hz) = 1123 Hz. 



CHAP. 2) SOUND 57 

(b) Here the only difference in Eq. (2.23) is that both U ,  and uL change 

signs 

(away 

from listener 

and 

away 
from source, 

respectively): 

fL = [(350 - 15)/(350 + 25)](1000 Hz) = 893 Hz. 

Problem 2.20. Suppose in Problem 2.19 the automobile were moving at the 

same 

speed 

of 15 m/s but 
this 

time 

in the same direction as the fire engine. All else being 

the 

same: 

(a) Find the frequency heard by the driver 

before 

the fire engine overtakes the automobile. 

(b)  Find the frequency heard by the driver 

after 

the fire 

engine 

overtakes the automobile. 

(c) Suppose after the fire engine 

passes 

the 

automobile, the automobile speeds up to match the 

speed 

of the engine. What would 

be 

the frequency heard by the driver? 

Solution 

(a) Here the fire engine 

is 

traveling toward the listener who 

is 

traveling 

at a 

slower 

speed in the same 
direction, so, U ,  is 

negative 

(toward listener) while 

uL is negative 

(away 

from source), so we have from 

Eq. (2.23): 

fL = C(350 m/s - 15 m/s)/(350 

m/s 

- 25 m/s)](1000 Hz) = 1031 Hz. 

(b) Here the fire engine 

has 

passed the listener who is now following the fire engine at the slower speed of 
the automobile. Now U, is positive 

(away 

from listener), while uL is also positive 

(toward 

source), 

so we 
get: 

fL = [(350 + 15)/(350 + 25)](1000 Hz) = 973 

Hz. 

(c) We again 

apply 

Eq. (2.23), 

with the same 

sign 

conventions 

for U, and uL as in part (h). The 

only 

difference is that u1 is now 25 m/s. 

Then: 

fL = [(350 + 25)/(350 + 25)](1000 Hz) = loo0 Hz, 

the actual frequency of the source. 

Note that the answer to Problem 2.2qc) is a general result: If the source and listener are both moving in 
the same direction with the same 

speed, 

the listener 

hears 

the actual frequency of the 

source. 

The 
Doppler shift 

occurs 

in any medium 

in 

which waves travel and a comparable phenomenon occurs with 
light waves, although the formulas for 

light 

are somewhat different. 

Shock Waves 

In the Doppler shift we assumed that the velocity of the 

source 

(or listener) 

is less than the velocity 
of propagation of the wave through the medium. There are circumstances 

where 

that is not the 

case, 

such as the travel of a supersonic (faster than the 

speed 

of sound) jet aircraft (SST). When supersonic 
motion occurs a compressional wave, due to the object cutting through the air, is emitted by the 
traveling 

body 

and forms 

what 

is called 

a shock wave. The shock wave moves at a specific angle 

relative 

to the direction of motion of the object through the air, and can sometimes be of sufficient intensity to 
cause a loud booming sound, as in the case of an SST. To understand this phenomenon we consider an 
object 

moving 

to the 

right 

at supersonic speed tr through the air. As the 

object 

passes 

any point the 
disturbance of the air at that point expands out in a spherical ripple. 

Since 

the object 

travels 

faster 

than 
sound it is 

always 

beyond 

the shell of any previous ripple. 

This 

is 

shown 

in Fig. 2-8. The object is 
shown at its location at time t ,  while the ripples 

from 

earlier 

times 

t , ,  and t 2  are also shown. We draw a 
tangent line to the emitted 

ripples 

to get the wave-front of the 

shock 

wave, which makes an angle 8 with 
the direction of motion. If R is the radius of the ripple starting at time t,, after a time ( f 3  - t , )  has 
elapsed, and x is the distance the object has moved in that time 

interval, 

we can see from 

the 

figure 

that 
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X =  

R =  

0 =  

Fig. 2-8 

R / x  is the ratio of the opposite side to the hypotenuse of a right 

triangle 

with 

angle 8 as shown. Then: 

R / x  = uP/u = sin 8 (2.24) 

The direction of propagation of the shock wave is perpendicular to the wave-front and makes an angle 
(90" - 8) to the direction of motion of the object. Shock waves accompany speeding 

bullets 

as well as 
SSTs, and an example in a medium other than air is the bow wave of a speed boat in 

water. 

Problem 2.21. 

(a) A supersonic airliner creates a shock wave whose 

wave-front 

makes 

an angle of 65" with its direc- 
tion of motion through the air. Find the speed of the airliner, 

assuming 

the speed of sound in air is 
up = 350 m/s. 

(b) A bullet 

moves 

through the air at ZOO0 m/s. Find the 

angle 

the shock 

wave makes with the direc- 
tion of motion of the bullet. 

Solution 

(a) We have o d u  = sin 8 = 

o = odsin 8 = (350 m/s)/sin(65") = 386 

m/s 

(or 869 mph) 

(b) oP/o = sin 8 =E- sin 8 = 350/2000 = 0.175 a 8 = 10.1'. 

Problems for Review and Mind Stretching 

Problem 2.22. Find the expression 

for 

the velocity of propagation of a sound wave [replacing Eq. 
(2.15)J if the compression were isothermal rather than adiabatic. 

Soh tion 

From the ideal 

gas 

law, 

PV is constant for constant T, so: (P + APXV + AV) = PV,  which 

results 

in: 
PV + P A V  + V A P  + APAV = P V .  Canceling 

like 

terms on both sides and noting that for infinitesimal 
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changes in P and V the term APAV is negligible compared to the others, we get: PAV = - V A P  or: 
AP/AV = - P / V .  Then, from 

Eq. 

(2.20) the bulk modulus becomes: B = P. Comparing to Eq. (2.24) and 
recalling Eq. (2.9), Eq. (2.25) changes to: up = [RT/M]1/2. 

Problem 2.23. In the 

equally 

tempered scale 

(a) find 

the 

frequencies 

of the 

following 

notes: middle G, B, D, and D’ (one octave above D) and 

(b) What are the ratios in the major triad G to B to D’? [express as x : 5 : y ]  

Solution 

(a) Recalling that middle A = 440 Hz, we have: G = A/[(2)1/’2]2 = 440/(1.059,46)2 = 392 Hz; 
B = A * [(2)’’’2]2 = 493.9 Hz; D = G/[(2)’/’2]5 = 392/1.334,84 = 293.7 Hz: D’ = 2D = 587.4. 

~ / 5  = G/B = 392/493.9 * x = 3.97; 5/y  = B/D’ = 493.9/587.4 = 0.7937 3 y = 5.95. Thus, G to B to 
D = 3.97 to 5 to 4.95. 

(b) 

Note. This is the same as any other major triad ratio in the equally tempered 

scale 

since all 

the 
adjacent notes are related by the same multiplicative factor. 

Problem 2.24. Two pianos are tuned to different 

scales. 

One is the equally 

tempered 

scale 

and the 
other is the diatonic scale 

in 

the key of C. 

(a) What is the beat 

frequency 

when the note G is struck on both pianos? 

(b) What is the beat 

frequency 

when 

the note G‘ is struck on both pianos? 

Solution 

(a) From the text, G on the diatonic scale 

is 

396 Hz, while from Problem 2.23, G on the tempered 

scale 

is 
392 Hz. Since the beat 

frequency 

is 

just the frequency 

difference 

between 

the two notes, we have: beat 
frequency = 4 Hz. 

(b) Since 

in 

either scale G’ = 2G for an octave shift, the difference 

in 

frequencies 

is also doubled, so the 
beat frequency is now 8 Hz. 

Problem 2.25. Consider Problem 2.19, with the fire engine 

traveling 

down the street 

at 25 m/s toward 
the car which is traveling toward the engine at 15 m/s. As before, the engine’s loo0 Hz siren is blaring. 
Suppose a wind of 10 m/s were blowing in the direction from 

the 

engine 

to the car, all else being the 
same. 

(a) What is 

the 

frequency 

of the siren heard by the 

listener 

in the 

car as the 

engine 

approaches? 

(b) What is 

the 

frequency 

of the siren heard by the listener 

once 

the engine 

has passed by? 

(c) How 

would 

part (a) change if the wind velocity was 30 m/s (gale 

force 

wind). 

Solution 

(a) We still can use 

Eq. 

(2.23) if we recall that the velocities U, and uL in that equation represent the 
velocities of source and listener, 

respectively, 

relative 

to the medium in which the sound travels, 

namely 

the air. In Problem 2.19 the air was 

assumed 

to be still so the velocities 

relative 

to the ground and 

those relative to the air were the same. This is no longer the case 

when 

the mass of air is moving at 10 
m/s from fire engine toward car. In our present case we must consider the velocities as seen from the 
frame of reference at rest 

relative 

to the air. In that frame of reference the fire 

engines 

velocity 

relative 

to the air is still pointed toward the listener, so, with our sign convention: U, = -(25 m/s - 10 m/s) 
= - 15 m/s. The listener’s 

velocity 

relative 

to the air is still toward the source, so: uL = (15 m/s + 10 m/s) 

= 25 m/s. up, the velocity of propagation in sound waves in air is, of course unchanged, so 
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U, = 350 m/s. Substituting into Eq. (2.23) we get: 
fL = [(350 m/s + 25 m/s)/(350 m/s - 15 m/s)](100O Hz) = 1 1  19 Hz. 

(b) The only difference in Eq. (2.23) is that both U, and uL change signs (away from listener, away from 
source), so: 

fL = [(350 - 25)/(350 + 15)](1000 Hz) = 890 Hz. 

(c) The only difference is that the fire engine would appear to be going “backward” relative to the 

air, 

so U, would be positive. This 

automatically 

comes out of the equation: U, = - (25 m/s - 30 m/s) = 

+ 5 m/s. ut is still toward 

the 

engine and 

so: uL = (15 m/s + 30 m/s) = 45 m/s. Then:fL = [(350 + 45)/ 
(350 + 5HlOOO Hz) = 1113 Hz. 

Problem 2.26. A jeep travels 

in 

a canyon at a speed of 10 m/s perpendicular to the parallel cliff walls 
that form the canyon boundary. The jeep blows its 200 Hz horn as it passes 

the 

midpoint between 

the 

cliffs. An observer at rest on the canyon floor has an instrument which joins the two echoes into a single 
wave signal and re-emits 

their 

combined 

sound. What is the 

beat 

frequency 

heard from 

the 

instrument? 

Solution 

The two cliffs detect 

the 

same 

frequencies that a listener at rest near each cliff would hear. When the 
sound reflects off these cliffs it reflects the 

same 

frequency that hit the cliffs. For cliff 1, in front of the 

jeep, 

we have a Doppler shift in frequency given by Eq. (2.23) with uL = 0 and U, = - 10 m/s. Then, 

the 

reflected 
frequency for an observer at rest in 

the 

canyon is:f,, 

= (350 m/s)/(350 m/s - 10 m/sX200 Hz) = 206 Hz. 
For the 

other 

cliff, behind the 

jeep 

we again use Eq. (2.23) with uL = 0, but now U, = 10 m/s, so the reflected 
frequency is:f2, = 350/(350 + 10)(200 Hz) = 194 Hz. The beat frequency heard is therefore 206 - 194 = 12 
Hz. 

Supplementary Problems 

Problem 2.27. Using the 

fact 

that (6.5)”’ = 2.5495 and (6.5)3 = 274.625: 

(a) Find 

the 

value 

of (6.5)’14. 

(b) Find 

the 

value of (6 .5p5.  

(c) Find 

the 

value of (6.5)3/2. 

(d) Find 

the 

value of ( 6 ~ ) ~ . ~ ’ .  

Ans. (a) 1.5967; (b )  700.16; (c) 16.572; ( d )  438.49 

Problem 2.28. Reduce the following expressions to most simplified terms: 

(a) log [x3 . y -  1 / 2 / z ” ] ;  (b) In [xY+’/exp (yz)]. 

~ n s .  (a) 3 log x - (4)log y - n log z ;  (b) y In x + z In x - y z  

Problem 2.29. Suppose 

one 

defines a logarithmic 

function 

to an arbitrary base a: log, (x), where U is a positive 
number. 

(a) Find an expression for log, ( x )  in terms of log ( x )  [Hint: See Problem 2.5). 

(b) Find 

the 

value of log,,, (2). 

Am. (a) lO& (x) = log, (10) * log (x); (b) (4) log (2) 
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Problem 230. The velocity of sound in CO, at 300 K is found to be 270 m/s. Find the ratio of specific heats, y. 

Ans. 1.29 

Problem 231. A spherical sinusoidal sound wave has an intensity of I = 0.0850 W/m2 at a distance of r = 2.0 m 

from the source. 

(a) Find the intensity of the wave at r = 3.0 m and r = 4.0 m. 

(b) Find the total power transmitted by the spherical 

wave 

at r = 2.0 m, r = 3.0 m and r = 4.0 m. 

Ans. (a) 0.0378 W/m2, 0.0213 W/m2; (b) 4.27 W for all three cases. 

Problem 232. If the amplitude of the wave 

in 

Problem 2.31 is A = 0.450 mm at r = 1.0 m, find the amplitude at 
r = 2.0 m, 3.0 m, and 4.0 m. 

Ans. 0.225 mm, 0.150 mm, 0.113 mm 

Problem 233. Redo Problem 2.32 for the case of circular sinusoidal ripples in on the surface of a pond. 

Ans. 0.318 mm, 0.260 mm, 0.225 mm 

Problem 234. A sinusoidal plane-wave 

traveling 

through the air in the x direction has an intensity I = 0.0700 
W/m2 and an amplitude A = 0.0330 mm. The density of air is 1.17 kg/m3 and the velocity of propagation is 
U, = 350 m/s. 

(a) Find the frequency of the wave [Hint: See Problem 2.1 13. 

(b) Find the energy 

passing 

through a 3.0 cm by 4.0 cm rectangular window 

parallel 

to the (y - z) plane in a 15 s 
time interval. 

Ans. (a) 89.2 Hz; (b) 1.26 * 10-3 J 

Problem 235. 

(a) A woman faces a cliff and wishes to know how 

far 

away it is. She 

calls 

out and hears her echo 4.0 s later. If the 
speed of sound is 350 m/s 

how 

far is she from the cliff? 

(b) A surface ship uses sonar waves (high 

frequency 

sound waves) emitted below the water line, to locate sub- 
marines or other submerged 

objects. 

Testing 

the sonar using an object at a known distance of 4OOO m, the time 
interval between 

emission 

of the signal and its return is found to be 5.52 s. What is the speed of sound in 
seawater? 

Ans. (a) 700 m; (b) 1450 

m/s 

Problem 236. A person at a distance of 1200 m from an explosion 

hears 

an 80 db report. How close 

would 

the 
person have 

been 

to the explosion if the report were just at the threshold of pain? 

Ans. 12.0 m. 

Problem 2.37. A point source emits three distinct 

frequencies 

of 100 

Hz, 

loo0 Hz and 10,OOO Hz, 

each 

with 

the 
same power level. A student whose threshold of hearing is 0 db at loo0 Hz can just barely make out the loo0 Hz 
signal at a distance of 60 m from the source, but cannot hear the other tones at that distance. As the student moves 
closer to the source she 

first 

detects the 10,OOO Hz signal at 2.0 m from the source, and first detects the 100 Hz 
signal at 25 cm from the source. 

(a) What is the student’s threshold of hearing at 10,OOO Hz? 
(b) What is the student’s threshold of hearing at 100 Hz? 

Ans. (a) 29.5 db; (b) 47.6 db 
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Problem 238. A classroom 

has 

dimensions 

h = 5.0 m, w = 10 m, I = 7.0 m, and the 

reverberation 

time of the 
classroom when empty is 1.80 s. 

(a) Find 

the 

absorbing 

power of the 

room. 

(6 )  If a class of 20 students with 1 professor comes into the room, find the new reverberation time of the 

room. 

[Assume each 

person 

contributes 

an additional 

absorbing 

power of 0.4.1 

Ans. (a) 31.1; (b) 1.42 s 

Problem 239. For the 

classroom 

of Problem 2.38(a), assume 

the 

absorption coefficient for the walls is 0.05 and the 
absorbing power of the 

floor 

and furniture is 

8.0. What is the 

absorption 

coefficient of the 

ceiling? 

Ans. 0.21 

Problem 2.40. A specially constructed 

room 

has 

ceiling, floor and 

one 

pair 

of opposite walls acting 

as 

near-perfect 
sound reflectors (absorption coefficient zero). The remaining two opposite walls, of areas 30 m2 each and separated 
by a distance of 6.0 m, have absorption coefficients of 0.50. Assume that a single pulse of sound is emitted from one 
of these walls toward 

the 

other 

at 80 db, 

and 

assume that the pulse reflects back and forth between the 

two 

walls as 
a plane-wave. 

(a) Do a direct 

calculation 

of the 

reverberation 

time for this case (i.e., the time for the 

sound 

level to drop to 20 
db). Assume the speed of sound is 350 m/s. 

(b) What is the result one gets from Sabine's formula 

[Eq. 

(2.29)]? 

(c) Explain the 

discrepancy? 

Ans. (a) 0.34 s; (b) 0.96 s; (c) plane-wave model assumes 

shortest 

possible time between absorptions; 
realistically, much of the 

sound 

energy will bounce 

one 

or more times from the perfect reflecting 
surfaces for each reflection from the 

absorbing 

surfaces, so a longer time is involved 

Problem 2.41. 

(a) Show that in the 

diatonic 

scale in the key of C, the seven notes C, D, E, F, G, A, B indeed satisfy the 

condition 

that the 

ratios 

of frequencies of adjacent 

notes 

are either 9/8 or 10/9 or 16/15. 

(b) If the same seven notes are tuned to the 

equally 

tempered 

scale, what are the 

deviations 

of the frequencies 
above (or below) the 

diatonic 

scale values, in Hz and 

in 

percent of frequency? 

A ~ s .  (U) D/C = 9/8, E/D = 10/9, F/E = 16/15; G/F = 9/8, A/G = 10/9, B/A = 9/8, C'/B = 16/15; (b) C: 
(2.4 or 0.90/,), D: (3.3 or l.l?A~), E: (0.4 or 0.12%), F: (2.8 or O.8%), G: (4.0 or 1.0%), A :  0, B: (1.1 or 
0.2%) 

Problem 2.42. Using the 

results 

of Problem 2.41(b): 

(a) How many 

beats 

would one 

hear 

if D on the 

diatonic 

and even tempered scales were played simultaneously? 

(b) If one wished to tune 

the 

even tempered D note to the 

diatonic 

scale, would one 

increase 

or decrease 

the 

tension in the 

piano 

string? 

Ans. (a) 3.3; (b) increase 

Problem 2.43. When tuning fork A is struck at the 

same 

time as 

tuning 

fork B the 

beat 

frequency is 3 Hz. When 
tuning fork B is struck at the 

same 

time as tuning fork C the 

beat 

frequency is 5 Hz. 

(a) When tuning fork A is struck at the 

same 

time as 

tuning 

fork C what beat frequency is expected? 

(b) If tuning fork C has 

the 

lowest of the 

three 

frequencies, at 300 Hz, what are the possible frequencies of tuning 
forks A and B? 

Ans. (a) 8 Hz or 2 Hz; (b) B is 305 Hz and A is either 308 Hz or 302 Hz. 
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Problem 2.44. An ambulance with siren blowing travels at 20 m/s toward a stationary 

observer 

who hears a 
frequency of 1272.7 Hz. Assume the speed of sound in air is 350 m/s. 

(a) What is the actual frequency of the 

siren? 

(b) What is the frequency heard by the observer once 

the 

ambulance has passed? 

Ans. (a) 1200 Hz; (b) 1135 Hz 

Problem 2.45. An observer 

travels 

toward 

a stationary whistle of frequency 1200 Hz at a speed of 20 m/s. Assume 
the speed of sound 

in 

air is 

350 m/s. 

(a) What is the frequency heard by the 

observer? 

(b) What is the frequency heard by the observer after passing 

the 

whistle? 

Ans. (a) 1268.6 m/s; (b) 1131 Hz 

Problem 2.46. An observer 

travels 

north at 10 m/s and sees an ambulance 

traveling 

south at 10 m/s with siren 
blowing. The 

actual 

frequency of the siren is 1200 Hz. Assume the speed of sound in air is 350 m/s. 

(a) What is the frequency heard by the 

observer? 

(b) What is the frequency heard by the 

observer 

after passing the ambulance? 

Ans. (a) 1270.6 Hz; (b) 1133 Hz 

Problem 2.47. An automobile 

travels 

along 

a road 

parallel 

to railroad 

tracks 

at 60 ft/s. A train 

coming 

from 
behind is traveling at 90 ft/s and blows its whistle. After the 

train 

passes the 

automobile 

it blows its whistle again. A 
passenger in 

the 

car notes 

that the drop in frequency in the sound of the whistle from before passing 

the 

automobile 

to after is 80 Hz. Assume the speed of sound in air is 1 1 0 0  ft/s. 

(a) Find 

the 

actual frequency of the whistle. 

(b) What are the frequencies heard by the passenger before and after the 

train 

passes? 

Am. (a) 1457 Hz; (b) 1500 Hz (before), 1420 Hz (after) 

Problem 2.48. A supersonic 

airplane 

is heading due south and shock waves are observed to propagate in the 
directions 70" east of south and 70" west of south. 

The 

speed of sound in air is 350 m/s. 

(a) What is the 

angle 

made 

by the 

shock 

wave-fronts 

with the 

direction 

of travel of the airplane? 

(b) What is the speed of the 

airplane? 

Ans. (a) 20"; (b) 1023 m/s 

Problem 2.49. A bullet travels at five times the speed of sound. 

(a) What is the 

angle 

that the 

shock 

wave-front makes with the 

direction 

of travel of the 

bullet? 

(b) If the 

angle 

were half that value how many times faster than sound is the speed of the 

bullet? 

Ans. (a) 11.5"; (b) ten 



Chapter 3 

Coulomb’s Law and Electric Fields 

3.1 INTRODUCTION 

In previous chapters, we learned about the laws of mechanics, including 

how 

to determine the type 
of motion that occurred under the application of various kinds of force. The forces that we discussed 
were tensions in wires, normal and friction 

forces 

at surfaces, 

elastic 

forces 

of springs and the 

force 

of 
gravitation. Of these 

forces, 

only 

the gravitational force 

is 

“fundamental” in the sense that it does not 
arise as an application of a more basic 

underlying 

force. 

The other forces are all manifestations of two 
more basic and related 

forces 

between particles, 

known collectively as the electromagnetic interaction. 
In this chapter, we begin our investigation of the forces and applications of the electromagnetic inter- 
action. In a later chapter, we will discuss two additional fundamental interactions, both of which are 
associated 

with 

the nucleus of atoms, the “strong interaction” and the “weak interaction”. To the best 
of our current knowledge of the laws of nature, these four interactions (gravitation, electromagnetic, 
strong and weak) are all that are needed to understand the phenomena of nature of which we are aware. 
Even these 

four, 

however, 

are not totally distinct from each other, but appear instead, to be 

manifesta- 

tions of a deeper and more encompassing interaction. It is the hope of many physicists that sometime 

in 

the future we will be able to unify all of these interactions under one basic “Theory of Everything” 
(TOE). 

The electromagnetic interaction is comprised of two 

related 

forces 

that we will discuss separately, 
electric 

forces 

and magnetic forces. All interactions between atoms and molecules are actually 

different 

aspects of electromagnetic interactions, but they arise from 

complicated 

applications of the fundamental 
laws and require the ideas of quantum mechanics 

before 

they 

can be properly understood. Thus the 
forces of friction, 

tension, 

etc. 

are the subtle results of electromagnetic forces. Before we can consider 
how 

electromagnetism 

leads 

to those 

forces 

we must first 

discuss 

the basic 

ideas 

of each 

force. 

In the 
next three chapters we will discuss 

the 

basic 

concepts of electricity, and the subsequent chapters will do 
the same for 

magnetism. 

3.2 ELECTRIC CHARGES 

All material consists of particles that have a property called electric charge. These 

particles 

are 
either the nuclei of atoms, which are positively charged, or the electrons that surround the nuclei, which 
are negatively 

charged. 

All charged particles 

exert 

a force on each other called the electric force. Usually 
one cannot detect 

the 

charge easily because atoms, and even molecules (made up of two or more atoms), 
have an equal amount of positive and of negative charge in 

their 

natural state, leaving the material 
neutral. The charged nature of materials is 

evident 

when 

one succeeds 

in 

removing 

some charge of one 

polarity 

(sign) 

thus leaving the material charged with the other polarity. The simplest way to accomplish 
this is to rub together two materials (many different 

types 

of material can be used), such as amber with 
fur, or a plastic rod with a plastic 

sheet. 

In the 

process, 

one material becomes 

positively 

charged, while 
the other receives an equal amount of negative charge. This 

is 

an example of the Law of conservation of 
charge which requires that the total amount of charge remains 

unchanged. 

If one starts with uncharged 
materials the 

initial 

charge present is zero. Then the total charge after 

it 

has been separated must 

still 

add to zero, requiring that there be equal amounts of positive and negative charge present. 
When one separates the 

charge 

in this (or in any other) manner one can explore 

the 

force 

between 

the 

charges. 

The exact 

law 

for 

the magnitude and direction of this 

force 

will be 

discussed 

in 

the next 
section. 

Here 

we will discuss 

the 

force 

qualitatively. 

It is 

found 

that the force is one of attraction 
between charges of opposite polarity and of repulsion 

between 

charges 

of like 

polarity. 

Furthermore, 

64 
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the magnitude of the force 

decreases 

as the charges move further apart. Thus two positive (or two 
negative) charges repel 

each 

other while positive charges attract negative 

charges 

and vice versa. Once 
one has a sample of positive 

charge, 

one can determine whether a different charge is negative or positive 
by seeing 

whether 

it is attracted or repelled by the positive 

charge. 

It is by convention that the charge 
on the amber rod that has been rubbed with 

fur 

is considered negative. This 

convention results in the 
fact that nuclei are positively charged while electrons carry negative 

charge. 

Furthermore, all 

electrons, 

being 

identical 

particles, 

carry the 

same 

amount of negative 

charge. 

Nuclei 

of different atoms have 
different 

positive 

charge, 

but one of the building 

blocks 

of nuclei, the proton, has a definite 

positive 

charge which is equal and opposite to that of the electron. (The other building 

block 

of nuclei, the 
neutron, is 

electrically 

neutral, i.e. has zero 

charge.) 

Atoms are neutral because the number of electrons 
surrounding the 

nucleus 

equals the number of protons in the 

nucleus. 

Charge is 

measured 

in 

units of 
Coulomb (C), which is 

defined 

by an experiment 

in 

magnetism. Using this 

unit, the magnitude of the 
charge of an electron, 

labeled 

e, is 1.60 x lO-”C. 
In many materials, 

called 

conductors, there are some charges, 

usually 

electrons 

in the outer reaches 
of the atoms, which are free to move 

in 

the 

material. If the conducting material is uncharged, then the 
electrons are uniformly distributed in the material, with 

each 

electron being 

attracted to a fixed, posi- 
tively charged, nucleus. If other charges are inserted 

in 

the 

conductor, then 

the 

free charges move in 
response to the electrical 

forces 

that occur. 

Since 

it is 

the 

electrons 

that move, a piece of conductor can 
be given a negative charge by adding some electrons from 

elsewhere, 

or a positive charge by removing 
some electrons to another location. 

Problem 3.1. 

(a) If a conductor is charged with an amount of charge, Q, show that this charge is located on the 
surface. 

(b) If a charge Q approaches a neutral conductor (but doesn’t touch it), show that the conductor will 
be attracted by the charge Q. 

Solution 

(a) If the 

charge 

Q is negative it will consist of electrons 

that 

are free to move since we are considering 

the 

case of a conductor. 

These 

“extra” electrons will on net repel each 

other, 

and therefore move as far 
apart as possible. When the 

electrons 

reach 

the surface they can move no further 

and 

they will there- 
fore all be found 

distributed 

on the surface, leaving the 

interior 

neutral. 

Note that a similar effect 
occurs if the 

charge 

Q is positive. If the 

charge 

is positive 

it 

really means that some negatively charged 
electrons 

have 

been removed from 

the 

material, 

leaving a net positive charge on the 

material. 

Some 

of 
the 

remaining 

free electrons will move themselves to the 

interior 

of the 

material, 

attracted by the 
positive charge 

there, 

leaving the surface charged positively. (While it is less obvious than for the case 
of Q negative, in fact the 

electrons 

shift so that all of the net positive charge Q is on 

the 

surface, and 
again 

the 

interior remains neutral.) 

(b) This is best understood 

in 

two 

steps. First, when a charge Q approaches a neutral conductor it will 
exert a force on the 

charges 

within the 

conductor. 

If Q is negative the free electrons, 

having 

the same 

sign as Q, will be repelled, while if Q is positive 

the 

free electrons will be attracted. In 

either 

case, the 
free charges will move so that that part of the conductor near Q will contain an excess of charge of sign 
opposite to that of Q, while that part of the conductor far from Q will contain an equal 

charge 

of the 
same sign as Q. Given 

this 

fact, we reach step two 

in 

our reasoning. 

The 

charge 

near 

Q will cause 

the 

conductor to be attracted to Q while the 

charge 

far 

from Q will cause 

the 

conductor to be repelled 
from Q. The force of attraction will be larger than the force of repulsion since the charges that are 
attracted to Q are nearer to Q than the 

equal 

charges 

that are repelled, and the 

magnitude 

of the force 
is larger if the 

charges 

are nearer 

each 

other. 

Therefore, the net 

force will be one of attraction. 

Note. Although 

it 

is the free electrons that actually move in the 

conductor, 

the 

same result 

would be 
true if positive charges were free to move as well. Indeed, it is even more 

convenient 

to think of 
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either type of charge moving-so we can speak of “positive charges repelled” even if what 
really 

happens 

is that negative charges are attracted. We will often use this common language. 

Problem 3.2. Two conducting spheres are touching each other on an insulated 

table. 

A rod that is 
positively charged approaches the two spheres 

from 

the left, as in Fig. 3-l(a). 

(a) What is the charge distribution on the spheres while they are in contact with 

each 

other in the 
presence of the rod? 

(6) While the charged rod remains in place one separates the spheres. Will they 

be 

charged, and if so, 
with 

what 

polarity? 

While the charged rod remains in place and the spheres are touching, one “grounds” the far end of 
the second 

sphere, 

as in Fig. 3-l(6). This means that one provides a path by which charges can 
move to a large uncharged reservoir, 

such 

as the ground. After removing the grounding path, and 
then the charged rod, the spheres are separated. Will they be charged, and if so with 

what 

polarity? 

(c) 

Solution 

In the presence of the rod, positive charge will be 

repelled 

to the far 

side 

of the touching spheres and 
negative charge will accumulate on the near side, as shown in 

Fig. 

3-l(a). This is because electrons can 

move 

from 

one sphere to the other while 

they 

are in contact. Thus the nearer sphere will have an 

excess of negative charge and the sphere that is further away will have an excess of positive charge. 

If one now separates the two spheres they will retain their positive (further sphere) and negative (nearer 
sphere) charge. This is called charging by induction, since the rod 

induces 

the charges on the materials 

without actually transferring charge to them. 

When the spheres are touching in the presence of the charged rod, negative charges are induced on the 

near sphere, and positive charges are repelled to the far sphere and from there to the ground. 
(Remember the note after Problem 3.1 !) After one removes the grounding path, the touching spheres 

will contain a net amount of negative charge, most of which will be on the sphere near the rod. When 
the rod is removed, this negative charge will redistribute itself evenly over the surface of both spheres. 

If the spheres are then separated, each sphere will be negatively charged. This is an alternative way of 
charging by induction. 

Problem 3.3. Repeat Problem 3.2 if the charged rod touches the spheres. 

Fig. 3-1 
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I---- Conducting rod 

(a)  Electroscope 

uncharged 

( h )  Electroscope 

charged 

Fig. 3-2 

Solution 

(a) When the rod touches the spheres the positive 

charge 

redistributes itself over the surfaces of the rod 
and the spheres. Thus all three (rod and two spheres) become 

positively 

charged. 

(b) If one separates the spheres (either 

before 

or after 

removing 

the rod) each sphere will retain its positive 
charge. 

(c) When the rod touches the spheres that are grounded all the charge moves as far 

away 

as possible, 
which means that it 

moves 

to the ground. None of the objects will now 

have 

a charge. When one 
removes the ground and then the rod and then separates the spheres, no transfer of charge occurs, and 
the spheres will be uncharged. 

Problem 3.4. An electroscope is built by attaching two pieces of aluminum foil to a conducting rod 
and mounting the assembly in an insulated container, as in Fig. 3-2(a). 

(a) If the rod and foil is initially 

uncharged, 

what 

happens to the aluminum foil if one approaches the 
top of the rod with a positive charge? With a negative charge? 

(b) If the rod and foil initially contains some 

positive 

charge, what 

happens to the foil if one 
approaches the top of the rod with a positive charge? With a negative charge? 

Solution 

(a) Since there is initially no charge on the rod and foil, the two foil pieces will not exert any electrical 
forces on each other and they will both hang down vertically. If positive charge approaches the top of 

the rod, then 

negative 

charge will be attracted to the top of the rod (or equivalently, 

positive 

charge 
will appear to be repelled down the rod to the two foil pieces). Each of the foil pieces will become 
positively charged and they will repel 

each 

other. They will come to static equilibrium 

with 

the force of 

the earth’s gravity by moving apart as in Fig. 3-2(6). The same will be true for an approaching negative 
charge except that each foil piece will now be negatively 

charged. 

(b) If the rod and foils are initially charged with 

positive 

charge, then this positive charge will be distrib- 
uted 

over 

all 

the surfaces, 

including 

the foils. Each foil will therefore be positively charged, and the two 

foils will initially 

move 

apart as in Fig. 3-2(6). If one approaches the top of the rod with a positive 

charge, 

then 

more positive charge will be pushed to the foils, the electrical 

force 

will increase and the 
foils will move further apart. If one approaches the top of the rod with 

negative 

charge, 

some of the 
positive charge on the foils will be attracted to the top, and the charge on the foils will be reduced. 

Then the electrical 

force 

decreases, 

and the foils will move 

closer 

together. We see that this is a sensi- 
tive means of determining the sign of the charge on some materials, without transferring any of the 

charge from that material. 
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3.3 COULOMB'S LAW 

We are now 

ready 

to state the quantitative law which gives the 

force 

between two 

charged 

particles 

(Coulomb's law). Since 

force 

is a vector, we must give both the magnitude and the direction of the force. 
Suppose charge q1 is located at a distance r to the left of charge q 2 ,  as in 

Fig. 

3-3. The force on q2 due 
to the charge q1 has a magnitude given by: 

(3.4 1 F I = I k41q2/r2 1, where k = 1/4m0 = 9.99 x 109 N - m2/C2 

and where k and c0 are constants related as shown for later convenience. The direction of the force is 
along the line joining the 

charges. 

If the charges are of the same 

sign, 

then the 

force 

is one of repulsion, 
i.e. it is directed away from ql ,  while if the charges are of opposite sign then the force is one of attrac- 
tion, i.e. it is directed toward 41. Of course there will also be a force 

exerted 

by q2 on q l ,  which will have 
the 

same 

magnitude as the force on q2 but will be in the opposite direction. We see that we can 
calculate the magnitude of the 

force 

neglecting 

the signs of the 

charges, 

and then use our knowledge of 
the signs to determine the direction of the force. This is because a minus 

sign 

only 

reverses the direction 
of a vector. 

The formula for the magnitude of the force is identical in form to that for the gravitational force 
between two masses. That formula is given in 

Beginning 

Physics 

I, Chap. 5, Eq. (5.1), as F = Grn,rn2/r2. 
For the electrical 

force 

we use k instead of G and we use charges instead of masses. There is a major 
difference due to the fact that masses are always 

positive 

and that the gravitational force is always 
attractive. For the electrical 

force 

we can have both positive and negative 

charges 

resulting 

in either 
attractive or repulsive forces. 

Problem 3.5. An electron is at a distance of 0.50 x 10-lo m from a proton. [Data: e = 1.6 x 10- l 9  C;  
rn, = 9.1 x 10-31 kg; rn, = 1.67 x 10-27 kg; G = 6.67 x 10-" N - m2/kg2]. What is the electrical 
force 

exerted 

on the electron by the proton and what is the gravitational force 

between 

these particles? 

Compare the two forces. 

Solution 

UsingEq.(3.1),1 F e [  = ke2/rz = (9.0 x 109N mZ/C2)(1.6 x 10-'9C)z/0.50 x 10-'om)2 = 9.2 x 10-*N. 
Using the equation for the gravitational force we get that F ,  = Grn,rndr2 = (6.67 x 10-" N - m2/kg2) 
(9.1 x 10-31 kgN1.67 x 10-27 kg)/(O.50 x 10-l' m)' = 4.05 x 10e4' N. This is 4.4 x 10-40 times 

smaller 

than the electrical 

force. 

From this we can deduce that, on an atomic and molecular 

scale, 

gravitational 
forces are negligible compared to electrical 

forces 

and can almost invariably be neglected. 

Problem 3.6. Two charges are located on the x axis with q1 = 2.3 x 10-8 C at the origin, and with 
q2 = -5.6 x 10-8 C at x = 1.30 m (see Fig. 3-4). Find the 

force 

exerted 

by these 

two 

charges on a third 
charge of 4 = 3.3 x 10-8 C, which is located at: (a) x = 0.24 m on the x axis and (6) x = 1.55 m on the 
x axis. 

Attractive force if y, and qz 
are of opposite sign 

Repulsive force if q, and y2 
have the same sign 

Fig. 3-3 
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I -  
1.55 m 
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(a) We must calculate the force 

exerted 

by each charge on q, both in magnitude and in direction and then 
add the two forces to get the total force on q. Now, F , ,  = kqq,/rIq2 = 9.0 x lO’(2.3 x 10-8)(3.3 

x 10-8)/0.242 = 1.19 x 10-4 N. Since both charges are positive, the force on q is repulsive and points 

in the + x direction. Similarly, FZq = kqq,/r,,, = (9 x lO’K5.6 x 10-8)(3.3 x 10-8)/(1.30 - 0.24), = 

0.15 x 10-4 N. Since the charges are of opposite sign, the force on q is one of attraction. Since 4 2  is 

further out on the x axis than q, the force is again in the positive x direction. The total force is then 
(1.19 + 0.15) x lOW4 N = 1.34 x 10-4 N in the + x direction. 

(b) Using the same procedure as in part (a) we get F , ,  = (9.0 x 109)(2.3 x 10-8)(3.3 x 10-8)/(1.55)2 = 2.84 
x 10-6 N in the + x  direction, and F,! = 9.0 x 109(5.6 x 10d8)(3.3 x 10-8)/(1.55 - 1.3), = 2.66 

x 10A4 N. This force is again one of attraction. However, 

since 

q is to the right of q2 the force on q is 
to the left, in the - x  direction. The total force is therefore (2.66 - 0.03) x 10-4 N in the - x  direction. 

Problem 3.7. Solve 

Problem 

3.6 

for the case that q is on the y axis 

at 

y = 1.03 

m 

(see Fig. 3-5). 

Solution 

Again we calculate the two forces exerted on q. F , ,  = kqq,/rlq2 = 9.0 x lO’(2.3 x 10-8)(3.3 

x 10-8)/(1.03)2 = 6.44 x 10-6 N. Since the force is one of repulsion the direction is in the + y direction. 
To calculate F,,  = kqq,/r,,,, we must first 

find 

rZq. From the figure we see that r2, = (1.03, + 1.3,),/, = 

1.66 m. Then F,,  = 9 x 109(5.6 x 10-8)(3.3 x 10-8)/(1.66)2 = 6.05 x 10-6 N. This is a force of attraction, 

so it is directed along the line joining q with q2 and pointing toward 4, as in Fig. 3-5. To get F = F,, 
+ F,,, we use components to add the vectors. F, = 0 + F,, cos+ = (6.05 x 10-6)(1.3/1.66) = 4.74 x 10-6. 

F ,  = F , ,  - F,,  sin4 = 6.44 x 10-6 - (6.05 x 10-6)(1.03/1.66) = 2.69 x 10-6 N. Then (FI = (F,’ + F,2)112 
= 5.45 x 10-6 N. 

Since 

both components of F are positive, 

it 

points at some angle 8 above the x axis 
in the first quadrant, where tan 8 = F,/F, = (2.69/4.74) = 0.568 -+ 8 = 29.6’. 

q 1  = 2.3 

1.3 m I 

Fig. 3-5 
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Problem 3.8. A particle of charge Q = 4.1 x 10-6 C is 

placed 

at the 

origin. 

If one wants to exert a 
force of 6.3 x 10-6 N on the particle in the + x direction with a positive charge of 1.6 x 10-’ C where 
must 

the 

charge be placed? 

Solution 

Since F = kqQ/r2, we must 

have 

F = 6.3 x 10-6 N. Therefore 6.3 x 10-6 = (9 x 109) 

(1.6 x 10-’)(4.1 x 10-6)/r2 -, r 2  = 937 m2 -+ r = 30.6 m. Therefore, the charge must be 

placed 

at a distance 
of 30.6 m from the charge Q. To get the direction of the force in + x, the charge must be along the x axis. 
Furthermore, since both charges are positive, the force on Q is repulsive, and if F points in the positive x 

direction we require the other charge to be on the negative x axis (to the left of Q). The charge must 
therefore be at x = -30.6 

m. 

3.4 THE ELECTRIC FIELD-EFFECT 

The electrical 

force 

between 

two charges and the gravitational force 

between 

two masses are cases 
in 

which 

a force seemingly exists 

between 

objects 

that are not in contact with 

each 

other. This is called 
“action at a distance”. All common forces, 

such 

as friction, 

tension, 

normal, elastic, 

pushes, 

etc. 

cannot 
exist unless the 

bodies 

are in contact. It is 

much 

easier 

to understand the idea of “contact forces” than 
to understand how 

forces 

can exist without contact, as is seemingly the 

case 

for electrical 

and gravita- 
tional forces. For instance, if a mass 

moves 

and therefore 

its 

distance to another mass 

changes, 

does the 
force change instantaneously, or must there be a time 

lag 

to enable the second 

mass 

to realize that the 
first 

mass 

has moved. In order to avoid 

such 

problems it would be convenient if the electrical and 
gravitational forces could be viewed in an alternative fashion which would 

eliminate 

the 

need to think 
in terms of “action at a distance”. The alternative view, that accomplishes 

this 

objective, 

is to introduce 
the concept of a field. As this new concept 

developed 

over the years it became 

more than just a conve- 
nience, so that the modern view considers fields to be the 

required 

approach to the understanding of 
physical phenomena. 

We will develop the concept of a field in the case of the 

electrical 

force, 

but it is 

equally 

applicable 

to the gravitational force. In Chap. 6, when we discuss 

magnetic 

forces, 

we will automatically use the 
concept of a field in developing that subject. The idea is as follows. Consider two charges, 4 and Q, 

separated by a distance r .  Assume 4 is fixed at the 

origin 

of our coordinate system. A force is exerted on 
Q, and we have viewed this 

force 

as being 

exerted 

by the distant 4. Instead of this, we will think of that 
force as being 

exerted 

by a new entity, an “electric field”, which exists at every point in 

space, 

including 

the location of Q. In general, the electric field has both magnitude and direction, both of which can vary 
from point to point in space, as well as change from moment to moment. The electric field is thus a 
vector field, usually 

represented 

by the 

symbol 

E, which can vary 

with 

x, y ,  z, t .  As will be seen from 

the 

defining equation, Eq. ( 3 . 2 ~ )  below, 

the 

electric 

field for our simple 

case 

of a charge 4 at the 

origin 

will 
have magnitude kq/r2 for 

every 

point in space a distance r from 

the 

origin, 

and will have a direction 
radially 

away 

from 

(or toward) the 

origin 

if 4 is positive (or negative). It is the vector field, E at the 
position of Q that we can now consider to exert 

the 

force 

on Q just like a contact force. Most important 
the field that Q finds itself in does not depend on the value of Q at all. We no longer think of action at a 
distance, 

since 

the electric field exists at the location of Q. If Q moves to a different 

position 

then the 

field at this new position 

exerts 

a force on Q. Only a field at the 

same 

location as Q can exert a force on 
Q. We do not have to know 

how 

the 

field was established at the 

position 

of Q in order to know 

the 

force that the field exerts on Q, we only need to know its vector value. It is a separate question, that we 
will also have to discuss, as to how 

the 

field gets 

established, 

but once the field is established we know 
that the field at the position of Q can exert a force on Q. It is clear that if we had other charges at 
different locations in addition to 4, the electric field would be quite complicated. Furthermore, there 
may be other means of establishing an electric field as well. In this 

section 

we will concentrate on 
determining the effect of a field, E, on a charge Q that is at the 

position 

of E, and in the next 

section 

we 
will discuss the source of electric fields. We will only 

consider 

fields that stay constant in time, unless 
otherwise stated. 
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Suppose one has an electric field E at a certain position in space. If we now 

place 

a charge Q at that 

F = QE ( 3 . 2 ~ )  

point the electric field will exert a force on the charge, given by: 

This vector equation gives the magnitude of F as: 

IF1 = IQEl (3.26) 

The direction of F is the same as the 

direction 

of E if Q is positive, and opposite to E if Q is negative. 
The units for E are N/C (in the next chapter, after we define 

the 

potential in units of volts, we will show 
that an alternative unit 

for 

E is V/m). From the definition, 

Eq. 

(3.2), we see that the electric field can be 
thought of as the force 

per 

unit 

charge exerted on any charge at a point in 

space 

(see Problem 3.9). 

Problem 3.9. A charge of 2.3 x 10-4 C is 

in 

an electric 

field 

and feels a force of 0.34 N in 

the 

--x 

direction. What is the electric field at that point? 

Solution 

Using Eq. (3.2b), we get 

for 

the magnitude of E, I E I = I F / Q  I .  Therefore, I E I = (0.34 N)/(2.3 x lO-* C) 
= 1.48 x 103 N/C. Since the charge Q is positive, the electric field and the force are in the same direction, 
so E points in -x. We see from this that the field can be measured by placing a “test charge” at a point in 

space, and measuring the force on that charge. The field is then the force per unit charge. This is often used 
as the definition of E. 

Problem 3.10. An electric field exists in space. At the origin, the field is 735 N/C and points in the + x  

direction. At x = 3 m along the x axis, 

the 

field is 

404 

N/C and points in the - y  direction. 

(a) What force is exerted on a charge of 0.018 C when 

the 

charge is at the origin? When the charge is 
a t x = 3 ?  

(6) What force is exerted on a charge of -0.032 C when the charge is at the origin? When 

the 

charge 
is at x = 3? 

Solution 

(a) Using Eq. (3.2b), the magnitude of the force at  the origin is F = QE = (0.018 CM735 N/C) = 13.2 N. 
Since the charge Q is positive, the force is in the same direction as E, in the + x direction. At x = 3, the 
magnitude of the force is (0.018 (2x404 N/C) = 7.27 N, and the direction is - y (the direction of E). 

(b) Using the same reasoning, we get the force at the origin to have a magnitude of 1 F I = (0.032 (3735 
N/C) = 23.5 N. The direction is -x, since the charge is negative. At x = 3, the force has a magnitude 

of (0.032 C)(404 N/C) = 12.9 N. The direction of the force is +y, opposite to E, since the charge is 
negative. 

Problem 3.11. A uniform 

electric 

field exists in space, pointing in the + x  direction. The field has a 
magnitude of 546 N/C. At time t = 0, a charge of 1.6 x 10- l 9  C is 

located 

at the 

origin. 

(a) If the charge is positive and is 

initially 

at rest, 

describe, 

qualitatively, 

the motion that occurs. 

(6) If the charge is negative and is initially 

moving 

to the 

right 

with a velocity of 2.3 x 104 

m/s, 

describe 

qualitatively 

the 

motion that occurs. 

(c) For the 

case 

of part (b), where 

is 

the particle at t = 1.8 x 10-l’ s, if it has a mass of 9.1 x 10-3’ 
kg ? 

Solution 

(a) The force on the charge is 546 N/C(1.6 x 1 O - I 9  C) = 8.74 x 1O-I’  N. The direction is to the right on 
this 

positive 

charge. 

Since this force is 

constant, the acceleration is also constant. Therefore, we are 
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dealing with motion 

under 

constant acceleration. 

If 

the initial 

velocity is zero, 

then 

the position 

of the 
particle will be given by x = ($)at2, where a = F / m  = qE/m. 

For a negative charge, 

the 

force will be in the - x direction, 

and 

will still equal 8.74 x 10- l 7  N. Again, 
we have 

motion 

under 

constant acceleration. 

Here 

the initial 

velocity was to the 

right 

and the 

acceler- 
ation is to the left. Therefore 

the 

particle 

will slow down, 

stop, 

and then move to the left with increas- 
ing speed. 

The acceleration is a = F / m  = (-8.74 x 10-l' N)/(9.1 x 10-31 kg) = 9.60 x 1013 m/s2. Recalling that 
for constant acceleration x = uot + ($)at2, and using vo = 2.3 x 104 m/s and a = -9.60 x 1013 m/s2, 

then at x = 2.3 x 104(1.8 x 10-l') + (3K-9.60 x 1013)(1.8 x 10-'o)2 = 2.58 t = 1.8 x 10-'' s, 
x 10-6m. 

Problem 3.12. A uniform electric field exists in space, 

pointing 

in the - y  direction. The field has 

a 

magnitude of 546 N/C. At time t = 0, a 

negative 

charge 

of 1.6 x 10-l' C is located at the origin, and is 
moving in the 

positive 

x direction with a speed of 2.3 x 104 m/s. The 

charge 

has a mass 

of 9.1 x 10-31 
kg. Where 

is 

the 

particle 

at t = 1.8 x 10-8 s? 

Solution 

The force on the 

charge 

is 546 N/C(1.6 x 10-l9 C) = 8.74 x 10-l7 N. The direction is opposite to E 
for this negative charge, i.e. in the + y direction. Since the force is constant, the 

acceleration 

is also constant, 
and equals F/m = (8.74 x 10-l7 N)/(9.1 x 10-3' kg) = 9.6 x 10" m/s2 

in 

+ y .  Therefore, we are dealing 
with two-dimensional 

motion 

under 

constant acceleration. The particle will move in a parabola, as was 
discussed in the chapters on mechanics. We calculate 

the 

x and y motions 

separately. 

In 

x we have 

constant 

velocity, since there is no 

acceleration 

in that direction. 

Thus, 

at t = 1.8 x 10-l' s, x = (2.3 x 104 m/s) 
(1.8 x 1O-I' s) = 4.14 x 10d6 m. For y we use the 

equation 

for constant 

acceleration, 

with zero 

initial 

velocity, y = (+)at2 = (iM9.6 x 10'3)(1.8 x 10-'o)2 = 1.56 x 10-6 m. Thus, 

the 

particle 

will be located at 
(4.14 pm, 1.56 pm) at t = 1.8 x lO-'Os. 

3.5 THE ELECTRIC FIELWOURCE 

We have already stated that one source of an electric field is a 

charge, 

4. The charge 

establishes 

an 

electric field everywhere in space and we need a 

formula 

for the 

magnitude 

and direction of this field at 
any given point. 

Consider 

the charge 4 in Fig. 3-6. We desire 

the 

field at point P, which is at a 

distance 

r 
from 4 in the direction of the 

vector 

r. The 

magnitude 

of E is given by: 

E = k 14 I /r2 = ( 1/411cO) 14 I /r2 (3.3) 

and the 

direction 

is along the 

line 

joining q and the 

point 

P. If the charge 4 is positive, the direction is 
away from 4, and for 4 negative, the 

direction 

is toward 4 (see Fig. 3-6). At any 

point 

is space the electric 
field created by a 

charge points 

away from a positive charge, 

and toward 

a 

negative charge. 

Possible directions for E 

Fig. 3-6 
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Problem 3.13, A charge of 2.5 x 10-8 C is located at the origin. 

(a) What electric field (magnitude 

and 

direction) does this charge produce 

at a point on the x axis at 
x = 0.87 m? 

(b) Repeat for a point 

on 

the 

y axis at y = -0.79 m. 

(c) How would your answer change if the charge q were - 2.5 x 10- C? 

Solution 

(a) The 

magnitude 

is given by Eq. (3.3), E = kq/r2 = (9.0 x lO’X2.5 x 10-3)/(0.87)2 = 2.97 x 102 N/C. 

The 

direction is along 

the 

line joining 

q and P, which in this case is the x axis. Since the 

charge 

q is positive 
the 

direction 

is away from the 

charge. 

At P, which is to the right of q, this 

direction 

is the positive x 

direction. 

(b) The 

magnitude 

is E = (9.0 x lO’W2.5 x 10-8)/(0.79)2 = 360 N/C. 

The 

direction 

is along 

the 

line joining 
q and P which is the y axis. Since q is positive E points away from q which means 

the 

negative y 

direction, since P is below q. 

(c) If q is negative this 

does not 

affect the 

magnitude 

of E. The 

direction, 

however, is reversed. Thus, in (a) 

the field points 

toward 

q, or in 

the 

negative x direction, and in (b) the field points 

in 

the positive 

y 
direction. 

Problem 3.14. Consider a charge 4 at the origin and a charge Q at a distance r from q. Use the electric 
field approach to calculate the force on Q by the field established by q, and show that the result is the 
same as Coulomb’s Law for all possible polarities of q and Q. 

Solution 

Let us take 

the 

line joining 

the 

charges to be the x axis. The 

charge 

q establishes 

a 

field at the 

position 

of Q with a 

magnitude 

equal 

to k I q I /r2.  This field exerts 

a 

force on Q of magnitude I QE I = k I qQ I / r 2 ,  
which is the 

same 

as 

for Coulomb’s Law. 
To get the 

direction 

let us take each case separately. 

Suppose 

q is positive. Then 

the 

field at Q is in the 
x direction and away from q. If Q is also positive, the force is in the 

same 

direction 

as E, which is away 

from 

q, or repulsive, as 

required 

by Coulomb’s Law. If Q is negative the force is opposite to E, which is toward q, 

or attractive, 

as 

required 

by Coulomb’s Law. Now, 

suppose 

q is negative. Then 

the 

electric field is in the x 

direction, 

but 

toward 

q. If Q is positive, then 

the 

force is in the 

direction 

of E, and 

points 

toward 

q, as 
required by Coulomb’s Law for charges of opposite sign. If Q is negative, the force is opposite to E, and 
thus away from q again 

as 

required 

by Coulomb’s Law. Thus, 

as 

required, both approaches 

give the 

same 

result. 

Problem 3.15. A charge of 1.25 x 10-7 C is at a distance of 0.38 m from a second charge of 
- 5.3 x 10-7 C, as in Fig. 3-7. 

(a) What electric field do these charges 

produce 

at a point, PI, on 

the 

line joining 

the 

charges and 

midway between the charges? 

(b) What electric field do these charges 

produce 

at a point, P ,  , on 

the 

line 

joining 

the 

charges 

and at a 
distance of 0.28 m past the second charge? 

Solution 

(a) From Eq. (3.2), and the fact that forces add vectorially, we know 

the 

same 

is true of the fields set up by 
different charges. 

The 

field E, will be the 

vector 

sum 

of the fields produced by each charge. Now, 
\E, 1 = k l q ,  I/r12 = 9.0 x lO’(1.25 x lO-’ C)/(0.38/2 m)2 = 3.12 x 104 N/C. 

The 

direction 

is away 
from q1 along 

the 

line joining 

the 

charges 

(which is toward q2 since the 

point 

is between the charges). 
Also, I E, I = k l q ,  l / r 2 2  = (9.0 x lO’X5.3 x lO-’  C)/(0.19 m)’ = 1.32 x 105 

N/C. 

The direction is 
toward q 2 ,  which is the same direction as El. Adding these two fields gives E = 1.63 x 105 

N/C, 

since 
the two fields are in the 

same 

direction. 
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Fig. 3-7 

(b) Again, the field E, will be the vector sum of the fields produced by each charge. 

Now, 

I E, I = 

k l q ,  I/r12 = 9.0 x 109(1.25 x lO-’ C)/(0.38 m + 0.28 m)’ = 2.58 x 103 N/C. The direction is away 
from q ,  along the line joining the charges (which is also away from q2 since the point is past the second 

charge). 

Also, 

I E, 1 = k I q2 I / r 2 ,  = (9.0 x 109X5.3 x 10-7 C)/(0.28 m), = 6.08 x 104 N/C. The direction 
is toward q 2 ,  which is the direction opposite to E,. Adding 

these 

two fields 

vectorially 

gives 

E = (6.08 - 0.26) x 104 = 5.82 x 104 N/C, since the two fields are in the opposite direction. The direc- 
tion of the total field is toward the charges along the line joining the charges. 

Problem 3.16. Consider the same charges as in Problem 3.15. Calculate the electric field at a point, P, 
which is 0.38 m from the first charge along a line through q1 perpendicular to the line joining the 
charges, as in Fig. 3-7. 

Solution 

The field E is again the sum of E, and E,. First we calculate E, whose magnitude is k I 4 ,  I /r12 = (9.0 
x lO’X1.25 x 10-7 C)/(0.38 m)’ = 7.79 x 103 N/C. The direction is away 

from 

q, ,  or in the positive y 

direction as in the figure. 

Similarly, 

I E, I = (9.0 x lO’K5.3 x 10-7)/(0.382 + 0.38,) m2 = 1.65 x 104 N/C. 
The direction is along the line joining P and q2 , and toward q 2 ,  since 

q, 

is negative. This is shown in the 
figure. To get E, we must add these two vectors together. Thus E, = E, cos 8 = 1.65 x 104(c0s 45) 
= 1.167 x 104. Therefore, 

[ E l  = C(1.167 x 104), + (3.88 x 103)2]’/2 = 12.30 x 103 

N/C. 

This field is at an angle 4 with the x axis 
given by tan q5 = - 3.88/11.67 = -0.332, or q5 = - 18.4”, as in the figure. 

E ,  = E, - E, sin 8 = (7.79 x 103 - 1.65 x 104 sin 45) = -3.88 x 103. 

Problem 3.17. Two positive charges are located a distance of 0.58 m apart on the x axis. At the origin, 
the charge is 5.5 x 10-8 C, and at x = 0.58 the charge is 3.3 x 10-8 C. At what point is the electric field 
equal to zero? 

Solution 

The electric field is the vector sum of the fields 

from 

the two charges. For this vector sum to be equal to 

zero, the two fields must be equal in magnitude and opposite in direction. The only points where the fields 
are along the same line are points on the x axis. Therefore the point where the field is zero must be on the x 

axis. There are three regions on the x axis: to the left of the origin, 

between 

the charges and to the right of 
the second charge. In the region to the left of the origin the field from each charge is to the left, away from 

each (positive) charge. To the right of the second charge each field is to the right, again away from each 
charge. Therefore the fields cannot add to zero. Only in the region 

between 

the charges are the two fields in 

opposite directions, with the field from the charge at the origin to the right and the field from the second 
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charge to the left. Therefore the point of zero field must lie between the charges. The exact location is 

determined by the condition that the magnitudes must be equal. If the field is zero at x, then we must have 
that kq,/x2 = kq2/(0.58 - x ) ~ .  Then q1(0.58 - x ) ~  = q2 x2, or taking square roots, (0.58 - x) = f ( q 2 / q 1 ) 1 i 2 x .  

This means that 0.58 - x = k 0 . 7 7 ~ .  The two solutions are: x1 = 0.33 and x2 = 2.5. Only the first solution 
has the point between the charges and therefore E is zero at x = 0.33 m. 

Problem 3.18. In Problem 3.17, suppose the second 

charge 

was negative, -3.3 

x 10-8 C .  Where 
would the field be zero? 

Solution 

As in Problem 3.17 the point would have to be on the x axis in order that the two fields are parallel. 
However, the point cannot be between the charges, since, in that region, both fields point in the + x 

direction and cannot add to zero. 

Therefore 

the point must be either to the left of the origin or to the right 
of the second 

charge. 

In order for the two fields to have equal magnitude, the point must 

be 

nearer to the 

smaller charge than to the larger charge. In this problem that means that the point is to the right of the 
second charge. Suppose the point is at position x, which 

must 

be greater than 0.58 m. Then the equality of 
the magnitudes gives: kq,/x2 = k I q2 1 /(x - 0.58)2, or I q l / q 2  1 (x - 0.58)2 = x2. Taking square roots, we get: 

(5.5/3.3)’/2(x - 0.58) = + x  = 1.29(x - 0.58), giving x1 = 2.58 m and x2 = 0.33 m. Only x1 > 0.58, so the 
point of zero field must be x = 2.58 m. 

Problem 3.19. A charge of 2.8 x 1OP8 C is located at the 

origin. 

(a) At what point on the x axis 

must 

one place an equal positive charge so that the field at x = 0.53 m 
is 550 N/C in the 

positive 

x direction? 

(b)  At what point on the x axis 

must 

one place an equal negative charge so that the field at x = 0.53 m 
is 550 N/C in 

the 

positive 

x direction? 

(c) At what point on the x axis 

must 

one place an equal positive charge so that the field at x = 0.53 m 
is 550 N/C in the negative x direction? 

Solution 

(a) The field at x = 0.53 is the sum of the fields from the two charges. The field from the first charge is 
E ,  = kql/r12 = (9.0 x 109)(2.8 x 10-8)/(0.53)2 = 897 N/C, and is in the + x  direction. Therefore, the 
field from q2 must equal (897 - 550) N/C = 347 N/C, and be directed 

in 

the - x  direction. The second, 

positive charge must therefore be to the right of the point, i.e. at x > 0.53 m. Then kq,/(x - 0.53)2 = 

347, (x - 0.53)2 = (9.0 x 109)(2.8 x 10-8)/347 = 0.726, (x - 0.53) = k0.85, and x1 = 1.38 m x2 = 

-0.28 m. The only acceptable solution is x = 1.38 m. 

(b) Again, the field from the second charge must equal 347 N/C to the left. Since q2 is negative, the second 
charge must be to the left of the point, i.e. x < 0.53 m. Then, k(  q2 )/(OS3 - x)’ = 347, giving 
(0.53 - x) = k0.85, and x1 = -0.28, x2 = 1.38. Now, the only acceptable solution is x = -0.28 m, 

which is to the left of the point. 

(c)  Using the same analysis as in (a), the field from q1  is 897 N/C in the + x direction. In order to get 
E = 550 N/C in the - x  direction, we need E ,  = (897 + 550) in the - x  direction. Then the second 

positive charge must be to the right of the point at 0.53 m. Then kql/(x - 0.53)2 = 1447, 
(x - 0.53) = k0.42, and x1 = 0.95, x2 = 0.11 m. The correct answer 

is 

x = 0.95 m since we require 

x > 0.53. 

Problem 3.20. Suppose we have a ring of radius r, as in Fig. 3-8. Positive charge is uniformly distrib- 
uted along the 

ring, 

with a linear charge density of A C/m throughout its length. 

(a) Calculate the 

electric 

field produced by the charge on the ring at the center of the 

ring 

(point PI in 
the figure). 
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(b) Repeat for a point on the axis of the ring at a distance x from the plane of the ring (point P2 in Fig. 

(c )  If r = 0.15 m and 1 = 6.3 x 1 O V 8  C/m, what field is produced at the point x = 0.20 m? 

3-8). 

Solution 

Consider any small 

segment 

of the ring, of length Ad, which contains an amount of charge 1Ad. It will 
produce a field at the center of the ring pointing away from the point, and of magnitude k(lAd)/r2.  The 
same region of the ring on the other end of the diagonal will produce a field of the same magnitude but 
in the opposite direction. Thus the field produced by these 

regions 

will cancel. This is true for 

all 

opposite parts of the ring so that the total field produced by all the charges on the ring will add to 
zero. Thus the field at the center of the ring will be zero. 

Consider the two small 

segments 

at the top and at the bottom of the ring, 

each 

of length Ad. Each 
segment has a charge of AAd, and contributes a field AE at P, of magnitude AE = klAd/ (r2  + x'), since 
the distance L from the charge to the point is (r' + x2) ' I2 .  The direction of each field contribution is 
away 

from 

the charge, and therefore 

in 

the direction shown in the figure. 

When 

one adds these two 
contributions the components perpendicular to the axis of the ring will cancel, 

leaving 

only 

the com- 
ponents parallel to the axis. This will also be true for 

all 

other opposite pair segments of the ring and 
the net field which will be produced is one parallel to the axis and equal to the sum of the parallel 
components of the field due to all 

segments 

Ad. Each region of length Ad contributes a parallel com- 
ponent of [k1Ad/(r2 + x')] cos 8 = klAdx/ (r2  + x')~',, where we have used the fact that cos 8 = x/ 

(r2 + Thus, each regon of length Ad contributes the same parallel component of field at point 
P, in the positive x direction, and the total field is obtained by adding all the Ad contributions. Noting 
the 

Ad = 2nr, 

we have 

E = kl(2nr)x/(r2 + x2)3/2 and points along the axis of the ring (3.4) 

Substituting in 

Eq. 

( 3 . 4 ,  we get E = (9.0 x 109)(6.3 x 10-8 C/m)(2lc)(O.15 m) (0.20 m)/(0.15, + 
0.202)3/2 = 683 N/C. 

Problem 3.21. Consider a sphere of radius R, which is uniformly charged throughout its volume. 
Show, by symmetry arguments, that at a point, P,  outside the sphere, at a distance r from the center 
of the sphere (a) the field must point in the radial direction away from the center of the sphere (see 
Fig. 3-9) and (b)  the magnitude of the field depends only on r and not 

on 

any other coordinate of the 
point P.  
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Fig. 3-9 

Solution 

(a) At point P we draw a coordinate system x, y, z as shown. At this point the + y  directions are indistin- 
guishable from each other since the sphere appears identical 

from 

both directions. Thus if there is a 

field in one of those directions there should also be a field in the other, and therefore there cannot be a 
field in either direction. The same symmetry argument is applicable to the & z directions. The only 
possible direction for the field is therefore the x direction. 

Since 

the field must point away from 

positive 

charge, the field must be 

radially 

away 

from the center of the sphere. 

(b) All points at the same distance T from the center of the sphere are equivalent 

since 

the sphere appears 
identical to each point. Thus they must all have the same magnitude for the electric 

field, 

and the field 
cannot vary 

with 

any coordinate other than T. 

In fact we will show in the next section that the magnitude of the field outside the sphere is given by 
E = kQ/r2, where Q is the total charge 

on 

the sphere. This 

is the 

same 

field that would be produced by a 
point charge Q located at the center of the sphere. This result is the identical to the case of the 

gravita- 

tional force (Beginning Physics I, Section 5.3, Eq. (5.2)). 
In order to obtain the fields produced by other charge 

distributions 

we can 

make 

use of calculus to 
add the contributions from all the 

charges 

in the 

distribution. 

For instance, for a solid disk, with a 
surface 

charge 

distribution 

of 0, we could divide the disk into rings and add the field of each 

ring 

at a 
point 

along 

the 

axis (see Fig. 3-10). The field points along the positive x axis, since the contribution of 
each 

ring 

is in that direction. The field along 

the 

symmetry 

axis of a ring is given by Eq. (3.4). The radius 

Fig. 3-10 
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r varies from ring to ring while x stays fixed. Using calculus to add all the contributions results in a field 
of 

(3.5) E = 2 ~ k ( 1 [ 1  - x / (R2  + x ~ ) " ~ ]  = 2 ~ k ( 1 [ 1  - COS 01 

due to the entire disk. 

distance of x from the 

center 

of the 

rod 

(see Fig. 3-11) is given by 
Similarly, for a uniformly charged 

rod, 

of length 2L and linear 

charge 

density 

A, the field at a 

E = 2kLR[l /x(C + x ~ ) " ~ ]  = kQ[l /x(L2 + x ~ ) ~ ' ~ ]  = kQ COS 8/x2, (3.6) 

where Q = 2LR is the total charge on 

the 

rod. 

Problem 3.22. Consider a solid disk of radius R,  which is uniformly charged throughout its area with a 
charge density (I C/m2. 

(a)  Show that if the 

point, 

P, is at a distance x from 

the 

center 

of the 

disk, 

with x % R,  the field 
approaches the field of a point 

charge 

Q. 

(b)  Show that as 

the 

disk becomes 

very large ( R  >> x), the field approaches 

the 

value E = (1/2&,. 

Solution 

(a) The field is given by Eq. (3.5) E = 2nkaCl - x / (R2  + x2)'l2] = 2nkaC1 - 1/ (R2/x2  + 1)''2]. As x B R,  
R 2 / x 2  + 0, and the second term in the parenthesis approaches 1 .  We must use the binomial expansion 
for this term to see how 

it 

differs 

from 1 ,  and [1/(1 + R 2 / ~ 2 ) 1 / 2 ]  -P 1 - (1 /2)R2/x2 .  Then E + 2nka(1/2) 

( R 2 / x 2 )  = kQ/x2 ,  where Q = anR2 = totaI charge on disk, and x is the distance from the disk. This is 
the same as the field produced by a point charge Q at a distance of x from the charge. The same result 
can be obtained more easily by examining the field due to a ring of charge for x % r. From Eq. (3.4) we 

ignore r in the denominator to get E = kA(2nr)x/x3 = kq/x2  where q = 2nrA is the total charge on the 
ring. 

Since 

the disk can be thought of as a series of concentric rings, and x is the same for each ring, 

all 

the rings contribute kq/x2  when x 9 R, and the sum is just kQ/x2 where Q is the total charge on the 
disk. 

(b) We again use the formula for the field of a disk, E = 2nka[1 - x/(R2 + x ~ ) ' / ~ ] ,  but now we let R 9 x .  
Then the second term in the parenthesis approaches zero, and 

(3.7) E -+ 2nko = a/2eO, 

where we recall the definition, k = 1/(4n&o) 

The direction of the j e l d  is away from the large plane disk for a positive charge distribution. If the 
charge distribution is negative, the field would point toward the disk. Thus, along 

the 

symmetry axis of our 
uniform disk the field is perpendicular to the disk and does not 

depend 

on 

x, for x 4 R. 

Fig. 3-11 
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This 

second 

result can 

be extended to the field produced by any 

large 

uniform planar 

charge 

distribution 

along 

any 

line perpendicular to the 

plane. 

If one is near 

enough 

to the 

charge 

distribution, 

i.e. if x 6 R, where x is the 

distance 

to the 

plane 

and R is the closest distance of the line to the edge of 
the 

plane 

(see Fig. 3-12), then 

the 

field is given by E = 27rk0. Note that the planar charge 

distribution 

does 

not 

have to be disk 

shaped, 

as long as one 

is “far” from the edge (i.e. x < R). 

Problem 3.23. Two 

parallel 

plates, 

of area A, are separated by a distance d, as in Fig. 3-13. The 
distance d is much 

smaller 

than the 

linear 

dimension 

of the 

area. 

One plate 

has 

a positive 

charge 

density 

of 0, while the other has an equal negative charge 

density 

-0. 

(a) What is the electric field at a point, PI, between the plates which is not 

near 

the 

edge of the 

plates? 

(3 

/ 

-0 

Fig. 3-12 

Planer uniform 
charge distribution 

E = 27dto 

a 

0 

Pl 

Fig. 3-13 
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(b) What is the electric field at point P z  outside 

the 

negatively charged 

plate 

but 

much nearer to the 
plate 

than 

to the edge? 

Solution 

(a) The field close to the 

surface 

of the 

plate 

is given by Eq. (3.7) E = 0/2e0, as 

long 

as we 

are far from the 
edge of the 

plate. 

Each plate 

thus 

produces a 

field of the 

same 

magnitude. 

The field from the positively 
charged 

plate 

points 

away from the 

plate, 

and the field from the negatively charged 

plate 

points 

toward 

the 

plate. 

At point PI, both fields point 

toward 

the right, 

and the 

total 

field is therefore, 
E = a/2e, + a/2e0 = The field is the 

same 

everywhere in the region between the 

plates 

as long as 

one is not 

near 

the 

edges of the 

plates. 

This arrangement 

of charge is called a 

parallel 

plate capacitor, 

and is especially useful because it produces 

this 

uniform field. 

(b) Since the 

distance 

between the 

plates 

is very small the 

approximation 

E = a/2e0 for the 

magnitude 

of 
the field still 

holds. 

Here, the 

field from 

the 

positively charged 

plate 

points 

to the 

right, 

while the field 
from the negatively charged 

plate 

points 

to the left. The 

total 

field is therefore 

zero. 

3.6 THE ELECTRIC F I E L M A U S S ’  LAW 

We have learned 

that 

the 

electric field is a vector which can be specified by giving its 

magnitude 

and 

its 

direction. 

If the field varies from point 

to 

point 

in space, we would have to draw a vector of the 
appropriate magnitude 

and 

direction 

at each 

point 

in space 

to specify the field. There is another useful 
approach for picturing 

the 

electric field in space that gives one a new insight into the electric field. In 
this approach, we trace lines through 

space 

in such a way that 

as 

the line passes through a point it 
always aims in the 

direction 

of the electric field at that point. Such lines are called electric field lines. 
Thus one 

can 

always determine 

the 

direction 

of the electric field at a point in space by drawing 

the 

tangent 

to 

the 

electric field line going through 

that 

point. 

Since the 

tangent 

to any line allows for two 
possible directions, it is clear that the field lines we draw have to have a positive sense associated with 
them (just like the 

straight 

line axis on a graph). We will see that this 

picture 

of electric field lines will 
also 

permit 

us to determine 

the 

magnitude 

of the field at any point. 

Problem 3.24. Consider a point 

charge 

q located at the 

origin. 

Draw 

the electric field lines produced 
by this 

charge. 

How do these lines change if the 

charge 

is negative? 

Solution 

The field produced by the 

charge 

q has 

a 

magnitude 

of kq/r2 and points away from the 

charge 

at any 
point in space. The field lines must 

therefore 

be along 

the 

radii emanating from the charge. 

At any 

point 

in 
space 

the 

field lines are lines starting at the 

charge 

and radiating 

out along 

the 

radii. The direction of the 
lines is away from the 

charge. 

The 

lines are shown in Fig. 3-14. If the 

charge 

is negative, then 

the 

only 
change that has to be made is to have the 

arrows 

pointing along the 

lines toward the 

charge 

instead 

of away 
from the 

charge. 

We see in these simple cases that all the lines begin on positive charges and end 

on 

negative 
charges. There are no lines that start or end at other points, and no lines that close on themselves like 
circles do. This is the case for any electric field whose origin is a charge. If one 

has 

a collection of 
charges 

producing 

an electric field it will still be true that all lines begin and 

end 

on 

charges. At any 
point in space 

there 

is only one 

direction 

for the electric field, so there is only one line going through 
each 

point. 

It cannot happen that lines cross 

each 

other since at the point of crossing 

there 

would then 
be two directions for the electric field, which cannot 

happen. 

This 

insight will often allow us to 

draw 

a 
qualitative 

picture 

of the electric field for a collection of charges. 

First, 

however, we must develop 

one 

more 

concept 

which we will use to understand how to determine the magnitude of the electric field from 
these field lines. 
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Fig. 3-14 

Problem 3.25. Consider a point 

charge 

4 located at the 

origin. 

Assume that we draw a large 

number, 

N, of representative 

electric 

field lines emanating 

from 

the charge, 

uniformly distributed 

over 

space 

(e.g. 
see Fig. 3-14). 

(a) How 

many 

electric 

field lines pass 

through 

the closed sphere surrounding the charge 

at 

radius r? 

(b) What is the number of electric field lines per 

unit 

area 

that passes through the closed sphere at 
radius r? 

(c) If one equates 

the 

number 

of field lines drawn per area to the 

magnitude 

of the 

electric 

field at this 
radius, 

what 

would N (the total number of field lines 

drawn) 

have 

to be, in terms of the charge q? 

Solution 

(a) All the lines that are emitted from the charge pass through this closed area. This is because the lines 
are radial straight lines that do not stop anywhere within the sphere, and the sphere encompasses them 
all. Thus N lines 

pass 

through the closed sphere at any radius r. 

(b) At a radius r, the closed sphere has a surface area of 41tr2. Since the lines 

have 

been drawn uniformly 
over the sphere the number of lines per unit area of the sphere is the same everywhere and equals 
N/471r2. 

(c) The field produced by the charge 4 has a magnitude of (1/4mo)q/r2. Equating this to the number of 
lines 

per 

unit 

area, we get N/4ar2 = q/4ne0 r2, or N = 4/e0.  

Choosing N, the 

representative 

number 

of field lines drawn from 

the 

charge 

4, to equal q/e0 is 
particularly useful because we can now deduce the magnitude of the 

electric 

field at any 

point 

P at any 
distance R from the 

charge 

in terms of the lines/area at that point. 

The 

lines/area 

at a point P is defined 
as the number of lines passing through a small “window” centered on the 

point 

P and facing perpen- 
dicular to the field lines, divided by the small area of the window. For the case of a point on the sphere 
of radius r in Problem 3.25, we saw the 

lines/area 

is just N/4m0 r = q/4m0 t, which indeed is the 

correct 

electric field (as 

it 

must 

be since that is how we defined N in the first place). However, if we choose 

any 

point P at any 

distance 

R from 4, we can draw a sphere of radius R through P centered 

on 

4, and again 
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conclude that the 

lines/area 

is just N/4.rrR2 = 4 / 4 n ~ ~  R 2  which is the 

correct 

field at point P. It is not 
surprising that this 

works 

since the number of lines N, once 

chosen, 

is constant, and the 

number 

passing 

through a unit area decreases as 1/R2 with 

distance 

R from the point 

charge, 

q (since the surface area of 
a sphere goes up as R2). Since the 

electric 

field also falls as 1/R2, lines/area and field are proportional, 
and the 

proper 

choice 

of N makes 

them 

equal everywhere. If instead of a single charge we had two or 
more 

charges, 

the 

field lines would be much 

more 

complicated looking (curved 

rather than straight, 
some starting at a positive 

charge 

and ending on a negative 

charge 

with 

others wandering off to infinity, 
etc.). Nonetheless, 

it 

is still true that if one 

chooses 

the lines/area at one 

point 

to equal I E I then 

upon 

following the lines near that point to any other location, 

the 

lines/area 

at the new location will still 
equal I E I at that location. 

This 

property is 

at the heart of Gauss’s law, which we will now demonstrate. 
The lines/area (as defined above) when chosen to equal I E I, is called the flux density, and the 

number 

of 
lines passing through any given area is called the flux through that area. 

Note. Thinking in terms of lines/area is a very useful pictorial device for understanding 

the 

behav- 

ior of the 

electric 

field, but ultimately 

all 

the results 

we obtain are expressible directly in 
terms of the 

electric 

field E and do not depend 

on 

the artifact 

of lines that are 

drawn 

through space. 

In what follows, we will always 

assume 

that lines/area are chosen to equal I E I. 
Having defined flux as the number of lines 

passing 

through an arbitrary area, we now examine how 
to calculate 

such 

a flux when the area is not 

perpendicular 

to the lines. We will also define a positive or 
negative sense to the flux depending 

on 

whether the electric 

field points “outward” through the area or 
“inward” through the area, as defined below. In Fig. 3-15(a) we draw an electric field which is not 
perpendicular to a small 

area. 

We designate 

the 

area by a vector A whose direction is perpendicular to 

A 

I \ A  
w 

I I A€)\ Direction of 
q !  

I > ‘< * E  */ electric field 

Closed surface with 
small 

area 

A as 
part o f  it 

(6) 

Fig. 3-15 
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the area and whose magnitude is equal to the area. The direction of the arrow on the 

vector, 

which 
indicates the positive 

direction 

for 

the area, is arbitrary. If the small area is part of a closed 

surface 

(e.g., 
a spherical 

shell, 

a cylindrical 

shell, 

a rectangular 

shell, 

an egg-shaped 

shell, 

etc.) 

then the convention is 
that the little surface areas making up the 

closed 

surface 

are positive outward from 

the 

enclosure. 

In 
Fig. 3-15(b) we show the area A as part of such a closed 

surface. 

For the case of Fig. 3-15(a) the field 
lines 

clearly 

pass 

through the area A in the 

positive 

sense, 

so the flux is positive. If the field lines pointed 
in the opposite direction, i.e. to the left in Fig. 3-15(a), then 

the 

flux would be negative. To actually 
calculate the flux through the small area A,  we proceed as follows. If we cast the shadow of the area A 
on a plane perpendicular to the field lines, we would 

get 

the dashed area A ,  shown in the figure. As can 
be seen, the number of field lines 

passing 

through A and A ,  are identical. 

Since 

A ,  is perpendicular to 
the field lines, the magnitude of flux F passing through A ,  is just (lines/area) x A ,  or F = EA, ,  where 
E is the magnitude of the electric field at A. Note that the angle 8 between A and E is the same as the 
angle between A and A , .  It is not hard to see that the shadow area and original area are related by 
A ,  = A cos 8, so F = E A  cos 8. If 8 > 90” then cos 8 goes 

negative, 

and this corresponds to the field 
lines 

passing 

through A in the negative 

sense, 

so the formula holds quite generally: 

(3.8) 

Noting that E cos 8 is just the component of E parallel to A, we see that the flux through A is just the 
component of E along A times 

the 

magnitude of A :  F = EllA = E(cos 8)A. (This 

is 

an equivalent 

defini- 

tion of flux that needs no reference to “field lines per unit area” or other intuitive constructs). Eq. (3.8) is 
a general 

result 

for 

the electric flux, i.e. for 

the 

number of lines passing through a small area, since the E 
vector does not vary 

over 

the small area. It can be 

extended 

to a large area as well, giving flux = E(cos 
8)A, provided that neither E nor 8 varies 

over 

the area. If there is a variation of E or 8, then one has to 
divide the area into many small parts AA [as could be done with the surface of Fig. 3-15(b)], evaluate 
the flux for each part, and add all 

the 

flux together. Then flux = [E(cos 8)AAI. For a closed 

surface, 

if 
this sum is positive 

then 

net 

flux leaves the 

surface, 

i.e. more lines 

leave 

the surface than enter the 
surface. If the sum is 

negative, 

then on net more lines 

have 

entered 

the surface 

from 

outside than leave. 
Recalling Problem 3.25(c), we see that the flux through the 

spherical 

surface 

due to charge q is just the 
total number of lines, N = q/q,. 

F = E A  cos e 

Problem 3.26. Consider a closed 

surface 

of arbitrary shape, as in Fig. 3-16. Suppose a single charge Q1 
is located at some point within the surface, and a second 

charge 

Qz is located outside the surface. 

(a) What is the total flux 

passing 

through the 

surface 

due to the 

charge 

Q1 ? 

0 Q2 (4 

Fig. 3-16 
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(6) What is the total flux passing through the 

surface 

due to Q2 ? 

(c) If a charge Q is located at the center of a cube, Fig. 3-16(6), how 

much 

flux is 

passing 

through one 
side of the cube? 

Solution 

(a) All the lines 

leaving 

from (or converging on) the charge Q1 pass through this closed area. This is 
because the lines that start or end on the charge Q1 do not stop anywhere within the surface, 

and 

the 
sphere is closed. From earlier work we know that Q 1  has associated with it Q&, lines, and the flux 
through the closed 

surface 

is therefore Q1/gO. If the charge is positive the field lines will point away 
from the charge passing from the inside to the outside of the closed 

surface, 

and using our area 
convention the flux will be 

positive. 

If the charge is negative the field lines point inward and the flux 
will be negative. 

(h) Charge Q2 emits 

electric 

field lines. These 

lines 

are straight lines emanating out from Qz in all 

direc- 

tions. Some of these 

lines 

will not pass through any part of the surface of the closed 

surface 

and will 
therefore contribute nothing to the flux passing through the closed 

surface. 

Any line that enters the 
volume through one part of the surface must continue onward and eventually 

exit 

from the surface. 
The net number of lines entering the surface 

is 

therefore zero since any line that enters also exits. Thus 
any charge, such as Qz that is outside the closed 

surface 

contributes no net 

flux 

over 

the entire closed 
surface . 

(c) The six sides of the cube 

form 

a closed 

surface. 

Therefore 

the total flux through all six sides must equal 
Q / c O .  By symmetry, 

each 

side 

of the cube is equivalent, and an equal amount of flux passes through 
each 

side. 

Therefore, 

the flux passing through each 

side 

is 

Q / ~ E , .  

Problem 3.27. Consider a closed 

surface 

of arbitrary shape, as in Fig. 3-16. Suppose there are several 
charges with combined net charge Qin located at points within the surface, and several other charges 
with combined net charge Qou, located outside the 

surface. 

All these 

charges 

contribute to the total 
electric field and associated field lines. Find the flux through the 

closed 

surface 

due to the total electric 
field. 

Solution 

The electric field E T  at any point in space is just the vector sum of the electric 

fields 

due to all the 
charges inside and outside the surface. We also know that the flux through any small area A is just the 
component of ET parallel to A times A. Since the component of the sum of vectors is just the sum of the 
components, we have ETII = Ell (individual charges) and flux through A is (fluxes of individual charges 
through A). Since this is true for 

every 

small 

area A, we conclude that the total flux = sum of fluxes due to 
individual charges for our closed 

surface. 

The outside charges do not contribute anything to the net flux 
passing through this closed area, as we showed 

in 

the previous problem. Each inside charge qi contributes a 
flux qi/co where qi can be positive or negative. 

Since 

qi = Qin the flux through the closed 

surface 

will 

Recalling that the total flux due to E, is just 2 [E-,-(cos8)AAJ, where the sum is over the entire closed 

For any closed 

surface, 

equal QinlEo * 

surface, the result of the last 

problem 

leads 

to a powerful 

result 

known as Gauss’ law: 

1 [E(COS 8)AA) = Qi Jc0 (3.9) 

where E is the total electric field due to all charges in the universe 

(we 

have dropped the subscript T) and 
Qin is the total charge enclosed in the surface. 

From our development of Gauss’ law it is clear that it is a universal 

law 

that is true even in 
situations that are not particularly symmetrical. 

However, 

for 

cases 

of symmetry the law turns out to be 
very useful in calculating the 

electric 

field produced by distributions of charge. 

Gauss’ 

law is 

derived 

directly 

from 

the 

particular form of the relationship between a charge and the field it produces. In fact it 
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is an alternative formulation of this 

relationship. 

Testing the validity 

of Gauss’ law is equivalent to 
testing the form of Coulomb’s law which we used to define the electric field. 

The practical use of Gauss’ law in 

cases 

of symmetry 

involves 

choosing 

a particular imaginary 
closed 

surface 

(called 

a Gaussian surface) through which either the flux is zero or the field contributing 
to the flux is constant. In that case 

it 

is easy to evaluate the 

sum 

leading 

to the total flux. If part of the 
surface is chosen so that the field lines are parallel to it (i.e. E I A) then that part of the 

surface 

has 

zero 
flux passing through it. If part of the surface can be 

chosen 

as a planar region 

where 

the field is constant 
and perpendicular to the 

plane, 

then the flux will just equal the product of E and the area, EA. We will 
illustrate these 

cases 

in the following problems. 

Note. While we typically 

associate 

charges with discrete particles such 

as electrons and nuclei, 
from a macroscopic point of view net 

charges 

can often be thought of as distributed 
smoothly through space 

with 

a charge 

density 

(charge 

per unit 

volume) 

p, which can vary 
from location to location or be constant (uniform 

density) 

as the 

case 

may 

be. 

Problem 3.28. Consider a uniformly 

charged 

sphere of radius R.  The charge per 

unit 

volume 

is p. 

Calculate the field produced by this 

sphere 

at a point outside the 

sphere, 

i.e. for r > R.  

Solution 

Because of the symmetry we know that the magnitude of the field will be the same at all points at the 

same distance from the center of the sphere and the direction will be radially outward (or inward) from the 

center of the sphere. If we choose a closed concentric sphere of radius r as our Gaussian surface (see Fig. 
3-17), we know that the field will be the same at every point on the sphere. Furthermore we also know from 
symmetry 

(see, 

e.g. Problem 3.21) that the field will be along a radius drawn from the center of the sphere. 

This direction is perpendicular to the surface of the sphere at every point so that E is parallel to A, and cos 
8 = 1 in Eq. (3.9). Then the sum needed to calculate the flux through the closed sphere will just equal E 

multiplied by the surface area of the sphere. 

Since 

the surface area of a sphere is 4nr2, the total flux will 
equal E(4nr2). By Gauss’ law 

this 

total flux must equal the total charge within the Gaussian surface. 

Since 

the charged sphere is completely 

within 

the Gaussian surface, Qin will equal the total charge Q on the 

charged sphere. This total charge is just p times the volume of the charged sphere, or Qin = p(4/3)7rR3. 

Carrying through the mathematics, using 

Eq. 

(3.9), [E(cos @AA] = QiJgo,  we get 

E(4nr2) = Q/cO = p(4/3)nR3/&,, and E = pR3/(3&,r2) 

This is just the result we quoted in Problem 3.21. We will use Gauss’ 

law 

to calculate the field inside the 
sphere ( r  < R )  in a later problem. 

Charged 
sphere i 

/ Gaussian 
surface 

Fig. 3-17 
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Problem 3.29. A charge Q is 

placed 

at the center of a conducting spherical 

shell 

of inner radius R I  and 
outer radius R ,  (see Fig. 3-18). The sphere has no net 

charge. 

(a) Use Gauss’ law to find the 

electric 

field in the 

hollow 

spherical region 

of the 

sphere, 

r < RI. 

(b) Show, 

using 

your knowledge of conductors, that for a conductor in equilibrium (no moving 
charges) the electric field in the interior of the conductor is zero. 

(c) Use Gauss’ law to calculate 

the 

charge collected on the inner surface of the sphere (at RI) .  

(d) Calculate the field outside the 

sphere, 

i.e. for r > R ,  . 

(e) If the sphere had a net charge of Q’, what 

change, 

if any, 

would 

there 

be to the answers 

in 

parts (a), 

(c) and (d)? 

Solution 

(a) Because of the symmetry we know that E will be the same at all points at the same distance from the 
center of the sphere and will point radially. If we choose a closed 

spherical 

surface 

of radius r as our 
Gaussian surface 

(see 

Fig. 

3-18), we then know that the magnitude of the field will be the same at every 

point on this 

surface, 

and its direction is perpendicular to the surface at every point so that E is 
parallel to A. To get the field within the sphere we draw this Gaussian surface at r < R,. Then the sum 
[Eq. (3.9)] needed to calculate the flux through the closed sphere will just equal E multiplied by the 

surface area of the sphere. 

Again 

noting that the surface area of a sphere is 47cr2, the total flux will 
equal E(4nr2). By Gauss’ 

Law 

this total flux must equal the total charge within the Gaussian surface. 
Since the only charge within the sphere is Q, we have 1 [E(cos 0)AA) = Q/cO,  -rE(4nr2) = and 
E = Q / ( 4 n ~ ~ r ~ )  = kQ/r2 .  This is just the result we would 

get 

for 

a free charge Q. 

(b) Since conductors are filled with freely moving charges, if an electrical field existed in the interior, 
charges would be pushed or pulled and hence be moving. In equilibrium, the charges must arrange 
themselves on the surface of the conductor so that the net field (due to all the charges 

everywhere) 

is 

zero throughout the interior of the conductor. 

(c)  For this part we draw a Gaussian surface as a concentric spherical 

shell 

within 

the conductor, at r such 

that R ,  < r < R,. At every point on this surface the field is zero, 

since 

it 

is in the conducting region. 
Thus the total flux through the surface is zero. From Gauss’ 

law 

this 

means that the total charge 

within the sphere is zero. If we look inside the Gaussian sphere we note that there is a charge Q at its 

center and some other possible charge on the inner 

surface 

of the conducting sphere. For the total 
charge to be zero 

requires 

that the charge on the inner 

surface 

of the conducting sphere be equal to 

Gaussian surface 

[part (b)I 

Fig. 3-18 
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- Q .  Note that this means that the outer surface of the sphere has a charge of + Q ,  since the net charge 

on the conducting sphere was given as zero. 

(d) For this part we draw the Gaussian surface as a sphere with a radius, r, greater than R ,  . The total flux 
through the Gaussian surface will again equal E(4zr2). The total charge within the sphere is the charge 
at the center plus the charge on the conducting sphere. There is no net charge on the conducting 
sphere (although there is - Q  on its inner surface and + Q on its outer surface). Thus the total charge 

within the Gaussian surface is Q.  Using Gauss’ law gives E ( 4 z r 2 )  = Q/cO, or E = Q/4nc0 r2 = kQ/r2. 

(e) All of the charge Q‘ must appear on the surface of the conductor, and the arguments of part (b)  still 
hold. Thus nothing is changed about parts (a) or (c), since 

they 

depend only on the central charge and 
the fact that the field inside the conductor vanishes. Part (c), however, does tell us that since ( - Q )  
appears on the inner surface of the conductor, (Q’ + Q )  must appear on the outer surface. In part (d) 

the total charge within the Gaussian surface 

is 

changed to (Q + ( -  Q )  + Q + Q’) = (Q + Q’), since the 
conducting sphere now has a net charge Q’. Then the field outside the conducting sphere is 
E = k(Q + Q’)/r2.  

Problem 3.30. Consider a uniformly charged sphere of radius R.  The charge per unit volume is p. 

(a) Calculate the field produced by this sphere at a point inside the sphere (r < R). 

(b) If the charged sphere has a radius of 0.33 m, and carries a total charge of 8.6 x 10-6 C, calculate 
the field at Y = 0.10 m and at r = 0.40 m. 

Soh tion 

(a) Because of the symmetry we know that E will be the same at all points at the same distance from the 
center of the sphere. If we choose a closed sphere of radius r as our “Gaussian surface” (see 

Fig. 

3-19), 

we know that E will be the same at every point on the sphere. Furthermore we also know 

from 

symmetry that the field will be along a radius drawn from the center of the sphere. This direction is 
perpendicular to the sphere at every point so that E is parallel to A. To get the field within the sphere 
we draw this Gaussian surface at r < R.  As in 

previous 

problems with 

this 

symmetry, 

the flux through 
the closed sphere will just equal E multiplied by the surface area of the sphere, or F = E(4zr’) .  By 

Gauss’ law 

this 

total flux must equal the total charge within the Gaussian surface. This corresponds to 
a sphere of radius r < R.  This charge q will equal p times the volume of the Gaussian sphere, 

Gaussian 
surface 

Fig. 3-19 
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q = p(4nr3/3). Eq. (3.9) then yields: 

[E(cos 

@AA] = q / E o  4 E(4nr2) = q / E o  = p(4nr3/3)/&, and E = 

pr/3eO. The total charge on the charged sphere is Q = p(4nR3/3). Thus E = kQr/R3 (where we recall 
k = l / h E O ) .  The field therefore 

increases 

linearly from 

zero (at r = 0) until it 

reaches 

the edge of the 

sphere (at r = R). Then the field decreases as l/r2, as we saw 

in 

problem 3.28. 

(b) If the radius of the charged sphere is 0.33 m and the total charge is 8.6 x 10-6 C, then p = (8.6 x 10F6 
C)/[(4~/3)(0.33 m)3 = 5.72 x 10-5 C/m3. At r = 0.10 m, which is inside the sphere, the field will there- 

fore be E = pr/3c0 = 5.72 x 10-5(0.10)/3(8.8S x 1 O - I 2 )  = 2.16 x 105 N/C. At r = 0.40 m, which is 
outside the sphere, we use the formula developed 

in 

Problem 3.28, E = kQ/r2 = 9.0 x 109 (8.6 x 10-6)/ 

(0.40)2 = 4.8 x 105 N/C. 

Problem 3.31. Consider a long wire carrying a uniform charge per unit 

length 

of A. 

(a) Calculate 

the 

field produced by this wire at a distance of r from the axis of the wire. 

(6) If the 

charged 

wire has a charge per unit 

length 

of 5.6 x 10-6 C/m, calculate 

the 

field at I = 
0.10 m. 

Solution 

(a) Because of the symmetry we know that the field will be the same at all points at the same perpendicu- 
lar distance r from the axis of the wire. We also know from symmetry that the field cannot have a 

component along the direction parallel to the wire 

since 

there is no difference 

between 

the direction to 
the right or the left. Similarly, the field cannot have a component that circulates around the wire since 
there is no difference 

between 

the two directions of circulation. Therefore, 

for 

any point, the direction 

of the field must be along the line radiating out perpendicularly from the axis of the wire to that point. 
This direction is shown for 

several 

points in 

Fig. 

3-20. We choose as our Gaussian surface a cylinder of 
radius r and length L, with 

axis 

along the wire as in the figure. The closed 

surface 

is 

thus made up of 
two flat disks (end faces) and a cylindrical 

surface. 

On each 

disk 

the field is 

parallel 

to the surface and 
therefore E l. A (cos 8 = 0), and the flux through any point is zero. On the outer surface the field is 

perpendicular to the surface at every point so that E is parallel to A. Then the sum needed to calculate 
the flux through the outer surface will just equal E multiplied by the cylindrical 

surface 

area. That 
surface area is 27crL, and the total flux through the closed 

surface 

will equal E(2nrL). By Gauss’ law 

this total flux must equal the total charge within the Gaussian surface. 

The 

charge within the surface 

E r Outer surface 

Fig. 3-20 
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will equal the charge on the wire that is within the volume of the Gaussian surface, i.e. within a 
cylinder of length L. This charge Q will equal AL. We now use Eq. (3.9), [E(cos 8)AA) = Q / e O ,  to get 

E(2nrL) = Q/E,  = AIL/&, and E = A/2neOr. 

Substituting in the equation for A and r, we get: E = (5.6 x 10-6 C/m)/2~(8.85 x 10-12)(0.10 m) = 

1.01 x 106N/C. 

Problem 3.32. Consider a large planar plate carrying a uniform charge per 

unit 

area of 0, as in Fig. 

(a) Calculate the field produced by this 

plate 

at a distance of x from 

the 

plate. 

(b) If the charged plate has a charge per 

unit 

area of 2.1 x 10-6 C/m2, calculate the field at a distance 
x = 0.10 m. 

Solution 

3-21. 

Because of the symmetry we know that the field will be the same at all points at the same distance 1y 

from the plate as long as we are far 

from 

the edge of the plate. We also know from 

symmetry 

that the 
field cannot be along the direction 

parallel 

to the plate since there is no difference 

between 

any parallel 

direction. Therefore, the field must be along the direction perpendicular to the plane. We choose as our 

Gaussian surface the “pillbox” cylinder of base area A and length 

2x 

perpendicular to the plate, as in 
the figure. The closed 

surface 

has 

two flat caps of area A, one on each 

side 

of the plate, and a cylin- 

drical surface. On the cylindrical 

surface 

the field is parallel to the surface and therefore E I A 
(cos8 = 0), and the flux through this 

surface 

is zero. On the caps the field is perpendicular to the 
surface at every point so that E is parallel to A (cos8 = 1). The field is directed 

away 

from 

the positive 

charge on the plate, and is therefore to the left on the left plate and to the right on the right 

plate. 

In 

each 

case 

the field will be in the same direction as A, since we always choose A to point from the inside 
to the outside on the Gaussian surface. The flux through each cap will therefore equal EA, and the 
total flux through the closed 

surface 

will equal 2EA. By Gauss’ 

law 

this 

total flux must equal the total 

charge within the Gaussian surface. The charge within the surface will equal the charge on the plate 
that is within the volume of the Gaussian surface, 

i.e. 

within the cylinder of base area A. This charge Q 

will equal CA. We now use Eq. (3.9), [E(cos 8)AA] = Q/E, ,  to get 

E(2A) 

= Q/E,  = CA/&, and E = 

0 / 2 e 0 .  We see that the field is constant, independent of x as long as we are far 

from 

the edge of the 
plate. 

Substituting in the equation for C, we get: E = (2.1 x 10-6 C/m2)/2(8.85 x 10-l2) = 1.19 x 105 N/C. 

The examples 

in 

these 

problems illustrate the power of this 

technique 

in cases of appropriate sym- 
metry. More examples will be 

discussed 

in the 

supplementary problems. 

Problem 3.33. Consider a solid conducting object that has no net 

charge. 

Outside of the object there 
are charges and there are electric fields produced as a result of the presence of these 

charges. 

---- 
I \  

I \  I \  

I \  
I t  
I I 
I I 

E- I 
I I 7- 

--- 

1 1  Y“ 
I 

I 

-E 
I I 
I I 

Charged plate 

Fig. 3-21 
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Conducting 

surface 

Outside 

face 

parallel 

to surface of conductor 

Inside 

face 

parallel 

to surface of conductor 

Fig. 3-22 

(a) What 

can 

one say 

about the 

charge 

density 

in the conductor? 

(6) What must 

the 

direction 

of the 

electric 

field be just outside 

the 

conductor? 

(c) Use Gauss’ law to find an expression for the electric field at any 

point 

just outside the conductor. 

Solution 

(a) Since no charges can accumulate in the interior of the conductor, all charges appear on the surface, 
with some surface distribution a. Indeed o adjusts itself from point to point on the surface to ensure 
the field inside the conductor vanishes, as required 

for 

equilibrium [see Problem 3.29(b)]. 

(b) While the field vanishes 

in 

the interior of the conductor, just up to the surface, 

fields 

can exist at the 
surface and beyond. At the surface, 

however, 

the fields cannot have a component parallel to the 
surface, 

otherwise 

the surface charges would feel a force and be in motion. Thus, in equilibrium, the 
field at the surface (and just beyond) must be perpendicular to the surface. 

(c) We draw a tiny Gaussian “pillbox’ about the point of interest on the surface of the conductor. The 
pillbox is drawn with the cylindrical part perpendicular to the conductor surface 

(which 

for small 

enough region is almost planar), and with one end 

face 

of the pillbox 

in 

the conductor and the other 
end just outside, as in 

Fig. 

3-22. From part (b) the field just outside the surface is perpendicular to the 
end face of the pillbox so no flux passes through the cylindrical portion and the flux through the end 
face is just EA, where E is the field at the surface and A the area of the end face of the pillbox. From 
part (a) the field inside the conductor vanishes so no flux passes through the portion of the pillbox 

in 

the conductor. The total flux through the pillbox 

is 

thus EA. The charge enclosed by the pillbox 

is 

just 
aA, where a is the surface charge density at (and near) the point P. From Gauss’ law we have EA = 

aA/&, -, E = a/&,. Clearly 

for 

a positive the field points away from the conductor and for o negative 

it 

points toward the conductor. Remember that this result is true just outside the conductor. As we move 
away from the conductor the field changes both in magnitude and in direction. 

Problems for Review and Mind Stretching 

Problem 3.34. Two 

particles 

with equal 

charges, 

q, are located at the 

corners 

of an equilateral 

triangle 

of side r, as in Fig. 3-23. Find the electric field at the 

third 

corner 

if (a) both charges are negative and (b) 
q1 is positive and q2 is negative. 
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Y 

I 

b 
r 

41 42 

7 _. 

Fig. 3-23 

Soh tion 

(a) The 

magnitude 

of the field produced by each charge is 1 E I = kq/r2. The 

direction 

of E, is toward q ,  
and of E, is toward (I,, as shown. The sum of these two fields is in - y ,  and 

equals 

2[(kq/r2)  cos 
30°] = kq J 3 / r 2 .  

(b) Again, the 

magnitude 

of the field produced by each charge is /El = kq/r2.  The 

direction 

of E, is away 
from q ,  and of E, is toward q, , as 

shown. 

The sum of these two fields is in +x, and 

equals 

2[(kq/r2) 
sin 30’1 = kq/r2.  

Problem 3.35. Two square parallel 

plates 

are charged with a surface charge density of 4.7 x 10-6 
C/m2, with the top plate positive and the bottom plate negative. The plates are 6.2 mm apart, and have 
a side of 4.8 m, as shown 

in 

Fig. 

3-24. An electron enters the region 

from 

the left side, at the midpoint 
between the plates and moving 

parallel 

to them. It is deflected by the field within the plates so that it 
just misses the edge of the plate as it 

emerges 

out the other side. Assume that the field is uniform 
everywhere 

within 

the plates and zero outside of the plates. 

(a) What is the 

electric 

field within 

the 

plates? 

(b) What is the acceleration of the electron? 

(c) What was the initial velocity of the electron? 

Solution 

(a) The 

magnitude 

of the field produced by parallel 

plate 

capacitors 

was calculated in Problem 3.23 as 
I El  = Q / E ~  = (4.7 x 10-6 C/m2)/(8.85 x 10-l2) = 5.31 x 105 N/C. The direction is from the positive 
charge to the negative charge, which is in -y. 

The 

acceleration 

of the 

electron 

is F/m = eE/m = (1.6 x 10-l’ (2x531 x 10’ N/C)/(9.1 x 10-31 kg) 
= 9.34 x 10l6 m/s2. Since the 

electron 

has 

a negative charge 

the 

direction 

of the force (and 
acceleration) is opposite to that of the 

electric 

field and is in + y. 

(b) 

4.8 m 

+ o  Electron 
P - +--- 5 emerging 

Electron 
entering 

- 0  
Parallel plates, 

edge view 

Fig. 3-24 
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In the y direction 

the 

initial 

velocity is zero and the 

distance 

traveled before exiting 

the 

plates 

is 3.1 
mm = 3.1 x 10-3 m. For constant 

acceleration, 

we can 

calculate 

the 

time needed from y = (1/2)at2, or 
t = (2y/a)’/’ = [(2)(3.1 x 10-3)/(9.33 x 1016)J1/2 = 2.58 x 10-‘’ s. In 

the 

x direction, 

the 

electron 

travels at constant speed for a distance of 4.8 m during 

this 

same 

time. Then x = ut, and u = x/ 

t = (4.8)/(2.58 x 10-’’) = 1.86 x 10’’ m/s. Since the 

electron 

is accelerated upward 

the 

electron 

will 

exit near 

the 

upper plate. 

Problem 3.36. Four uniformly charged 

bars 

are arranged in a square of side 0.76 m, as in Fig. 3-25(a). 
Two 

adjacent 

sides have a positive charge of 4.9 x 10-’ C and 

the 

other 

two sides have the same 
negative charge. 

Calculate 

the 

field at the 

center 

of the 

square. 

Solution 

The field at the 

center 

is the sum of the fields produced by each of the 

four 

sides. The field from each 
side 

can 

be calculated from Eq. (3.6)’ E = kQ cos8/x2, where 8 and x for a typical side are shown in Fig. 
3-25(b). For each of the sides, x = 0.38 m and 8 = 45”. Therefore 

each 

side produces a field at the 

center 

whose magnitude is I E I = (9.0 x 109)(4.9 x lO-’)(cos 45°)/0.38)2 = 2.16 x 104. The 

direction 

of the field of 
each side is toward a negatively charged side and 

away 

from a positively charged side. Thus the fields from 
the 

right 

and 

from the left sides are both to the 

right 

at P, and those two, when added 

together 

produce 

a 
field of 4.32 x 104 N/C at P. Similarly, the fields from the top and bottom sides are both 

downward 

and 

add to 4.32 x 104 downward. Adding these two fields together 

results 

in a field of 
4.32 x 104$ = 6.11 x 104 N/C pointed 

towards 

the 

lower right corner. 

Problem 3.37. What electric field is produced by a long 

straight 

wire charged with a linear 

charge 

density of 1 C/m? 

Solution 

The field is the field produced by a rod of length L as we let the 

length 

L approach infinity. The field 
from a rod is given by Eq. (3.6), E = 2kLL/[x(L? + x ~ ) ” ~ ] ,  where L and x are shown in Fig. 3-25(b). As 
L 4 a, the 

numerator 

and denominator 

both 

approach infinity. We divide both numerator 

and 

denomina- 

tor by L in order to be able to evaluate 

the 

limit, and 

get E = 2kA/[x(l + (X/L)~)”~].  Now, as L 4 a, 
E -+ 2kA/x, which is the field of a long wire. The field points away from the wire for a positive A, and toward 
the wire for a negative A. This is the 

same 

result as in Problem 3.31, obtained using Gauss’ law. 

I‘ 

T 

Y 

Fig. 3-25 
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Problem 3.38. Two huge parallel plates are separated by a distance of 1.3 m. The left plate is charged 
positively, with 5.4 x 10-6 C/m2, 

and 

the right plate is charged negatively with 7.9 x 10-6 C/m2; see 
Fig. 3-2qa). Assume that the plates are large enough that the field is unaffected by the edges of the 
plate. 

(a) What is the electric field at a point to the left of the left plate? 

(6) What is the field at a point between the plates? 

(c) What is the field at a point to the right of the 

right 

plate? 

Solution 

(a) The field at any point is the sum of the fields produced by each of the plates. For a 

large 

plate the field 
of each plate is a / 2 ~ ,  everywhere, and pointing away 

from 

a positively 

charged plate and toward a 
negatively charged plate (Problem 3.32). Thus the field from the left plate equals E, = (5.4 
x 10-6)/2(8.8S x 10-l2) = 3.05 x 105 N/C and from the right plate the field is E, = (7.9 
x 10-6)/2(8.85 x 10-l2) = 4.46 x 105 N/C. In the region to the left of the left plate E, is to the left 

and E, is to the right. The sum of these 

fields 

is 

E = 1.41 x 105 N/C to the right. 

(b) In the region 

between 

the plates both E, and E, are to the right, so the field is E = 7.51 x 105 N/C to 
the right. 

(c) In the region to the right of the right plate E, is to the right and E, is to the left. The total field is 
therefore 1.41 x 105 N/C to the left. 

Problem 3.39. In 

Problem 

3.38, a large 

uncharged 

conducting plate 

is placed between the 

charged 

plates, see Fig. 3-26(6). 

(a) Show that the electric field is unchanged everywhere except within the 

conducting 

plate. 

(6) What is the 

surface 

charge density on the 

two 

surfaces of the 

conducting 

plate? 

Solution 

(a) The field at any point is the sum of the fields produced by the charges on each of the plates. On the 
conducting plate there will be charge on each of the two surfaces, but one will be positively charged 

Gaussian 
surface 

Caps 

=I 

Fig. 3-26 

4 
f' 
Y 

Conducting 
plate 

0, 
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and the other one will be 

negatively 

charged. The charges will be equal in magnitude since the plate 
has no net charge. Therefore the conducting plate will contribute no net field anywhere except 

within 

the conducting plate since each surface contributes an equal and opposite field. Thus the field is the 
same as it 

would 

be everywhere except within 

the conducting plate. 

In the region 

within 

the conducting plate the field must be zero. Let us draw a Gaussian surface as a 
cylinder 

with 

one cap within the conducting plate and the other cap between the left plate and the 
conducting plate, as in the figure. The only part of this 

surface 

that contributes to the flux is this last 

cap. On the inner cap the field is zero and on the outside surface of the cylinder the field is parallel to 
the surface. The field at the outer cap is 7.51 x 105 N/C to the right as in Problem 3.38(b). The area 

vector points out of the Gaussian surface 

which 

means to the left. Thus the flux through this surface 

is 

-7.51 x 10’ A, which is also the total flux. By Gauss’ 

law, 

this 

must equal the total charge within the 
Gaussian surface 

divided 

by E,,. This charge is aA/&,. Then a A  = -6.64 x 10-6 A, and 
a = -6.64 x 10-6C/m2 on the left side of the conducting plate, and a = +6.64 x 10-6C/m2 on the 
right 

side 

of the conducting plate. Note that this is just the special application of the general 

result 

relating the surface charge on a conductor to the field just outside (Problem 3.33) 

Problem 3.40. 

(a) Two equal charges, one positive and one negative are separated by a distance d. Sketch the electric 
field lines that result 

from 

this. 

(6) Repeat the above if both charges are positive. 

Solution 

Field 

lines 

originate on positive charges and terminate on negative 

charges. 

If there were only one 
charge present the lines 

would 

be straight lines along the radii 

from 

the 

charge, directed away from the 
positive (or toward the negative) charge. If both charges are present the lines from each cannot cross 
each other as we showed 

earlier. 

They 

must either bend out of each 

other’s 

way or connect to each 

other. In the case of the two equal but oppositely charged sources they 

easily 

connect to each other as 
is seen in Fig. 3-27(a). 

For two charges of the same polarity the lines cannot combine since 

they 

are both directed 

away 

from 

the charges. Thus they 

bend 

out of each 

other’s 

way as in 

Fig. 

3-27(b). 

Problem 3.41. A long 

cylinder 

of radius R is uniformly 

charged 

with a charge density p, as in Fig. 3-28. 

Fig. 3-21 
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( b )  

Fig. 3-28 

(a) Use Gauss’ law to calculate 

the 

electric field at a point outside 

the 

cylinder at a distance r from the 
axis of the cylinder, i.e. for T > R. 

(b) Repeat the 

above 

for a point within the cylinder, i.e. for r < R.  

Solution 

(a) We draw a Gaussian surface 

in 

the form of a cylinder of radius r and length L, as in Fig. 3-28(a). As in 
Problem 3.31, the field must always 

be 

in 

the radial direction perpendicular to the axis of the cylinder. 
Therefore the field is parallel to the surface on the two caps of the cylinder and those two surfaces do 
not contribute to the flux entering or leaving the surface. On the outer surface of the cylinder, the field 

is perpendicular to the surface (A is 

parallel 

to E), and the flux equals E A  = E(2nrL). By Gauss’ Law, 
this equals Qi,,/co, and Qin = p(nR2L). Then E = pR2/2c0 r. 

(b) In this case we draw a Gaussian surface as a cylinder 

with 

a radius r within the cylinder as in Fig. 
3-27(b). Again, the flux through the closed 

surface 

will equal E(2nrL), and must equal QiJco. In this 
case Qin = pzr2L, and therefore, E = pr/2c0. 

Supplemen tar y Problems 

Problem 3.42. A force of 1.6 N acts to the right on a charge of 3.8 x 10-6 C at the origin, due to another charge 
at x = 0.058 m. What is the other charge? 

~ n s .  -1.57 x 10-7 c 
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Problem 3.43. Two charges, q1 and q2 exert 

forces 

on a charge of 6.9 x 10-5 C which is located at the origin. The 
charge q 1  is -9.8 x 10-4 C and is located at x = 0.88 m. The total force on the charge is 603 N in the + x 

direction. 

(a) What force is exerted by q l ?  

(h) What force is exerted by q2 ? 

Ans. (a) 786 N, in +.U direction; (b) 183 N in - x  

Problem 3.44. In Problem 3.43 the charge q2 is located at x = 0.085 m. What is q 2 ?  

Ans. +2.12 x 10-6c 

Problem 3.45. An electric field at the origin has a magnitude of 845 N/C, and is directed at an angle of +65" with 

the negative x axis. A charge of magnitude 0.34 C is located at the origin. What are the x and y components of the 
force on the charge if the charge is: (a) positive and (b) negative? 

A ~ s .  ( U )  F ,  = - 121 N, F ,  = 260 N;  (b) F ,  = 121 N, F ,  -260 N 

Problem 3.46. A charge of -0.061 C is initially 

moving 

to the right 

with 

a velocity of 54 m/s. It is moving in an 
electric field of 888 N/C to the right, and has a mass of 0.72 kg. 

(a) What is the maximum distance the charge moves to the right? 

(h) What velocity does it have 

when 

it returns to the origin? 

(c) What velocity does it  have at x = 5.75 m? 

Ans. (a) 19.4 m (h) - 54 m/s; (c) k45.3 m/s 

Problem 3.47. A proton near the surface of the earth is in equilibrium under the force of gravity and the force of 
an electric field. What electric 

field is 

required? [m, = 1.67 x lOpZ7 kg] 

Ans. 1.02 x 10-7 N/C, upwards 

Problem 3.48. A charge of - 1.97 x 10-5 C produces an electric field of 740 N/C at the origin, in the + x  direc- 
tion. Where is the charge located? 

Ans. .Y = + 15.5 m 

Problem 3.49. Two charges, one at the origin and one at x = 1.6 m produce a field of 1.59 x 103 N/C at x = 9.1 1 
m. The charge at the origin has a charge of 1.1 1 x 10- C. 

How 

much 

charge does the second charge have? 

Ans. 2.44 x C 

Problem 3.50. Two charges, one at the origin and one at x = 1.6 m produce a field 785 N/C at x = 9.11 m. The 
charge at the origin has a charge of 1.11 x 10-' C. How much charge does the second charge have? 

A M .  - 2.62 x 10p6 C 

Problem 3.51. Three charges are at the corners of a square of side 2.0 m, as in 

Fig. 

3-29. The charges are q1 = 5.0 
x 10-6 C, 4, = 3.0 x 10-6 C, and q3 = -6.0 x 10-6 C. Find the field at the fourth corner, produced by: (a) q l ,  

(b) q 2 ,  (c) q3  and (d) all the charges together. 

Ans. (a) 5.62 x 103 N/C at 45" as shown; (b) 6.75 x 103 N/C in + y ;  (c) 1.35 x 104 N/C in --x; 

(d) 1.43 x 104 N/C at angle of +48" from - x  axis. 



CHAP. 31 COULOMB'S LAW AND ELECTRIC FIELDS 

E2 

97 

q ,  = 5.0 X 10" q2 = 3.0 x 10-6 

Fig. 3-29 

Problem 3.52. Two positive charges 

on 

the 

x-axis produce a total field of zero at the 

origin. 

One charge q1 has 

twice the 

charge 

of the 

other, 

i.e. q1 = 2q,. 

What 

is the ratio of the 

coordinates 

of the 

charges, 

xi/x2 ? 

Ans. -J2 

Problem 3.53. Two positive charges of 2.3 x 10-6 C are placed at 

diagonally 

opposite corners 

of a square of side 

3.6 m. 

(a) What field is produced by these two charges at the third corner? 

(b) Where should 

one 

place a third 

equal 

charge 

in order to get a field of zero at the origin? 

Ans. (a) 2.26 x 103 

N/C 

along the other 

diagonal; (b) 3.03 m from the 

third 

corner along the diagonal 

[direction of the field of part (a)] in the 

direction 

away from the 

square. 

Problem 3.54. Two 

equal 

and opposite 

charges 

& q, are located, respectively at & d / 2  on the x axis 

(they 

are 
separated by the small distance d). Assume that 

the 

distance 

d is small compared with any 

other 

distances 

in the 

problem, 

and 

that qd = p. 

(a) What is the 

electric 

field at a large 

distance 

r from the 

charges 

along the 

positive y axis? 

(b) What is the 

electric 

field at a large 

distance 

r from the 

charges 

along the 

positive x axis? 

Ans. (a) kp/r3  in - x direction; (b) 2kp/r3 

in 

+ x direction 

Problem 3.55. A ring of radius 0.96 m has a charge of -6.7 x 10-? C uniformly distributed 

along 

its circum- 

ference. What field does it produce at a point on its axis at a distance of 1.35 m from the 

plane 

of the 

ring? 

Ans. 1.79 x 103 

N/C 

pointing toward the ring 

Problem 3.56. Two 

long 

parallel 

wires, each containing the same positive charge of 3.8 x 10-6 C/m, are a dis- 
tance of 1.25 m apart. What 

electric 

field do they 

produce 

at a point 

located 

at a distance of 0.75 m from one wire, 

if that point is: (a) between the wires and (b) further 

away 

from the 

other 

wire? 

Ans. (a)  4.56 x 104 N/C, 

toward 

the 

further 

wire; (b) 1.25 x 10' N/C, away from both wires 

Problem 3.57. Two 

long 

parallel 

wires, each containing a charge of 3.8 x 10-6 C/m but of opposite sign, are a 

distance of 1.25 m apart. What 

electric 

field do they 

produce 

at a point 

located 

at 

a distance of 0.75 m from the 
positive wire, if that point 

is: 

(a) between the wires and (b) further away from the 

other 

wire? 

Ans. (a)  2.28 x 10' N/C, 

toward 

the 

negative wire; (b) 5.70 x 104 N/C, away from both wires 
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Problem 3.58. Two long parallel 

wires 

are a distance of 1.25 m apart. One wire has a positive charge of 

3.8 x 10-6 C/m. What linear charge density must the other wire have if the field is to be zero at a point located at 
a distance of 0.75 m from the first wire, if that point is: (a)  between the wires and (h)  further away 

from 

the other 

wire? 

Ans. (a) +2.53 x 10-6 C/m; (b )  - 1.01 x 10-’ C/m 

Problem 3.59. Three large parallel 

dielectric 

plates have surface 

charge densities of 1.3 x 1OP8 C/m2, 
-3.5 x 10-8 C/m2 and 2.9 x 10-’ C/m2. What electric field is produced at a point: (a) to the left of all the plates, 

(h)  between the first and second 

plates, 

(c) between the second and third plates and (d )  to the right of all the plates? 

Ans. (a) 395 N/C to the left; (b )  1.07 x 103 N/C to the right; (c) 2.88 x 103 N/C to the left; ( d )  395 N/C to 
the right 

Problem 3.60. A large dielectric plate has a surface charge density of 1.30 x 10-6 C/m2 and is parallel to a long 
wire that has a linear charge density of -9.8 x 10-’ C/m (see 

Fig. 

3-30). The plate and wire are separated by a 
distance of 0.035 

m. 

What magnitude electric field is produced at a point: (a) P , ,  at a distance of 0.020 m from the 
wire along the line perpendicular to the plate and (b) P, , at a distance of 0.40 m from the wire along a line 

parallel 

to the plate? 

Ans. (a)  9.55 x 10’ N/C to the right; (b )  8.57 x 104 N/C 

Problem 3.61. A charge of 2.3 x lO- ’  C is at the center of a tetrahedron (see Fig. 

3-31). 

What is the electric flux 
through one of the four 

sides? 

Ans. 6.50 x 103C . m2 

Problem 3.62. A spherical conducting sphere has a radius of 2.3 x 10-3 m and carries a uniform charge of 
3.5 x 10-8 C. it is surrounded by a concentric hollow conducting sphere of inner radius 0.055 m and outer radius 

0.075 

m. 

(a) 

(b )  

What is the electric field at r = 2.1 x 10-3 m? 

What is the electric field at r = 4.1 x 10-2 m? 

Fig. 3-30 

A 
Fig. 3-31 
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(c) What is the electric field at r = 6.1 x 10-2 m? 

(d) What is the electric field at r = 8.1 x 10-2 m? 

(e) What is the charge on the inner surface of the hollow sphere? 

Ans. (a) 0; (b) 1.87 x 105 N/C; (c) 0; (d) 4.80 x 104 N/C; (e) -3.5 x 10-8 C 

Problem 3.63. A charge Q is surrounded by a concentric hollow conducting sphere of inner radius 0.055 m and 
outer radius 0.075 m. At large r the field is measured to be E = 345/r2 N/C. 

(a) What is the charge Q? 

(b) What is the surface charge density on the inner 

surface 

and on the outer surface of the hollow sphere? 

Ans. (a) 3.83 x 10-* C;  (b) - 1.01 x 10-6 C/m', 5.42 x 10-7 C/m2 

Problem 3.64. A sphere of radius 0.055 m is uniformly charged at a density of 7.3 x 10-6 C/m3. 

(a) What is the total charge Q on the sphere? 

(b) What is the field at r = 0.044 m? 

(c) What is the field at r = 0.066 m? 

Ans. (a) 5.09 x lO- '  C;  (b) 1.21 x 104 N/C; (c) 1.05 x 104 N/C 

Problem 3.65. A sphere of radius 0.055 m is uniformly charged and produces a field of 2.5 x 104 N/C at a dis- 

tance of 1 m from the center of the sphere. 

(a) What is the total charge Q on the sphere? 

(b) What is the charge density in the sphere? 

(c) What is the field at r = 0.026 m? 

Ans. (a) 2.78 x 10-6 C;  (b) 3.99 x 10-3 C/m3; (c) 3.90 x 106 N/C 

Problem 3.66. An electric field is pointing in the + x direction, and is uniform 

with 

a magnitude of 467 N/C. What 
is the flux through a planar area of 7.3 x 10-2 m2 if the orientation of this area is: (a) in the yz plane; (b)  in the xy  

plane and (c)  at an angle of 18" from the yz plane (see, e.g. Fig. 

3-32)? 

Ans. (a) 34.1; (b) 0; (c) 32.4 

18"' 

Fig. 3-32 
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Problem 3.67. A long conducting wire carries a charge of 1 = 6.8 x 10- l 0  C/m, and has a radius of 0.45 

cm. 

It is 
surrounded by a long conducting hollow 

cylinder 

of inner radius 0.65 cm and outer radius 0.67 cm, that carries a 
charge of -1. 

(a) What is the electric field within the long wire? 

(b) What is the field between the wire and the cylinder, at r = 0.50 cm? 

(c) What is the field outside the cylinder? 

Ans. (a )  0; (b)  2.45 x 103 N/C; (c) 0 

Problem 3.68. A long conducting wire carries a charge of 1 = 6.8 x 10- l 0  C/m, and has a radius of 0.45 cm. It is 
surrounded by a long conducting hollow 

cylinder 

of inner radius 0.65 cm and outer radius 0.67 cm, that carries a 
charge of -4.5 x 10- l 0  C/m. 

(a) What is the electric field within the long wire? 

(b) What is the field between the wire and the cylinder, at r = 0.50 cm? 

(c) What is the field outside the cylinder, at r = 0.88 cm? 

Ans. (a) 0; (b) 2.45 x 103 N/C; (c) 470 N/C 



Chapter 4 

Electric Potential and Capacitance 

4.1 POTENTIAL ENERGY AND POTENTIAL 

In the 

previous 

chapter we learned about the force due to the 

electrical 

interaction and the electric 
field concept used to describe that force. The interaction is very similar to the interaction of masses 

with 

each other described by the gravitational interaction. Forces in general, as we learned in Chap. 6 of 
Beginning 

Physics 

I, Sec. 6.3, are able to do work, and the 

work 

that they do can be transformed into 
kinetic 

energy. 

For forces that are “conservative” the work done can be expressed in terms of a change 
in potential energy 

associated 

with those 

forces. In the case of the gravitational force due to the Earth, 
for 

example, 

the potential energy 

is 

given by U ,  = mgh 

near 

the surface 

of the earth (where the force of 
gravity 

is 

a constant) and, more generally, U ,  = -GrnM/r for greater distances r from the center of the 
earth. When some 

forces 

are conservative and others are not, the work-nergy theorem can be 
expressed as total work 

(non-conservative) 

equals the total change 

in 

kinetic energy plus 

the total 
change in potential energy (due to all 

conservative 

forces). We now 

consider 

the electrical force. 

Is this 
force also conservative, and, if so, what 

is 

its 

potential energy? 

Problem 4.1. By analogy to the 

force 

of gravitation (a) show that the 

electric 

force 

is conservative and 
(6) derive the formula for the potential energy of two 

charges, 

4 and Q, separated by a distance r. 

Solution 

(a) The force of gravity is given in magnitude by F, = GmM/r2, and is a force of attraction along the line 
joining the masses. The electrical 

force 

between charges 

q and Q is given 

in 

magnitude by Fe = kqQ/r2, 
and is a force along the line joining the charges. This force is attractive for charges of opposite sign and 
negative 

for 

charges 

of the same sign. 

When 

this force 

is attractive it is identical to the force of gravity 

if one interchanges charges for 

masses 

and the constant k for G. Therefore, 

it 

is clearly also conserva- 
tive just as the force of gravity is conservative. If the force is between charges of the same sign, so that 

the force is repulsive, the work done by the force is the same as would be done by the same charges if 
they 

were 

of opposite sign, 

except 

that the work is the negative 

of 

that done by the attractive force. 
Since the attractive force is conservative, the work however depends only on the starting and ending 
points and not on what happened in 

between. 

This will also be true of the repulsive 

force 

which 

is 

therefore also conservative. 

Therefore 

the electric 

force 

is conservative, and work can be written 

in 

the 
form of a change in potential energy. 

(b) By analogy with the force of gravity the potential energy can be written down immediately by substi- 
tuting k for G and -qQ for mM. We need the minus 

sign 

because for 

two positive 

charges 

the work is 
of the opposite sign to that two positive 

masses. 

The potential energy of two charges q and Q separated 
by a distance r is then given by: 

( 4 . 0  up = k Q / r  = (1/47cdqQ/r 

A quick examination of signs 

shows 

that this equation works for arbitrary sign 

charges. 

This formula can be used to calculate the potential energy for arbitrary sets 

of 

charges. 

This 

follows 
because 

energy 

is 

a scalar, and the total potential energy 

is 

determined 

by adding together, 

algebrai- 

cally, the potential energy 

between 

pairs of charges. 
We note that in Eq. (4.2) the zero of potential energy has been chosen when r 4 00. If the charges 

are of the 

same 

sign 

then the potential energy 

increases 

as the charges approach each other. This follows 
because an external force 

must 

do positive 

work 

in 

forcing 

the charges 

closer 

together against their 

101 
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mutual repulsion. 

When 

such charges are left to themselves 

they 

try 

to move to regions of lower poten- 
tial 

energy. 

This corresponds to the fact that the 

repulsive 

electrical force now 

does positive 

work 

by 
moving the charges further apart, thus causing a decrease in their potential energy. 

If 

the charges are of 
opposite sign then the potential energy becomes more negative 

(decreases) 

as the charges approach each 
other, and less negative 

(increases) 

as they are forced further apart. If left to themselves, 

these 

charges 

would 

move 

closer, seeking regions 

of lower potential energy. 

If we fix the position of one charge, Q, and allow 

the 

second charge, 

q, to move, 

then 

the potential 
energy will vary 

with 

the 

position of the second 

particle. 

One could say that the system 

changes 

its 
potential energy and that this change in potential energy depends on the change in the position of the 
second 

charge. 

We could 

associate 

a specific potential energy 

with 

each 

point in 

space 

in 

a manner 
similar to associating an electric field to each point in space. From Eq. (4.1) we note that this potential 
energy 

is 

proportional to the 

moving 

charge. 

The potential energy 

per 

unit 

charge, U&, then depends 
only on the position of the moving 

charge, 

as well as on the magnitude and sign of the stationary 
charge. 

Similarly, 

if one had many stationary charges, 

the 

potential energy of the entire system 

changes 

as the moving charge goes 

from 

one point to another, and is proportional to this 

moving 

charge. Again, 

the potential energy per charge depends only on the position of the moving charge and on the charac- 
teristics of the stationary charges. We can view this as a situation in which the stationary charges 
provide each point in 

space 

with 

a scalar 

value, 

called the 

potential, V, such that the potential energy of 
the system will equal qV if the moving charge is at that point in space. (We ignore here the potential 
energy 

between 

the fixed charges, which remains unchanged as the charge q moves.) The unit 

for 

poten- 
tial V is the volt (V), which is the same as J/C. As the charge 

moves 

there will be a change in potential 
energy, A U p  which will equal q times 

the 

change in the potential at each point. In summary: 

up = qv, ( 4 . 2 ~ )  

and AUp = qAV (4.2b) 

The quantity A V  is 

the 

“potential difference” between the two points, and depends on the stationary 
charges Qi that produce this potential at all points in space. It is independent of the characteristics of 
the moving 

charge, 

q, whose potential energy 

changes. 

The potential is related to the potential energy in 
the same manner that the electric field is related to the electric 

force. 

Whenever 

an electric field is 
produced by some 

set 

of charges, Qi, it acts as the source of the 

force 

distribution in space; it also can 
be thought of as the source of the potential distribution in space. If one places another charge, q, at 
some position in space, the electric field will exert a force of F = qE on the charge, and the system will 
have a potential energy of U, = q V ,  where E and V are the field and the potential at that point. The 
work done by the force F = qE in moving the charge q from one location to another is just 
-AUp = -qAV, from the usual relationship between work and potential energy. 

Clearly 

E and A V  are 
related 

in 

exactly the same 

way that F and AUp are related. This is discussed in greater detail in Sect. 
4.3. One can change E and V by changing the source charges, Qi and their 

position. 

Problem 4.2. Two charges, Q1 = 3.3 x 10-6 C and Q2 = -5.1 x 10-6 C are located at the 

origin 

and 
at x = 0.36 cm, 

respectively. 

A third charge, q = 9.3 x l O V 7  C, is moved 

from 

far away 

( r  = clo) to a 
point on the y axis, y = 0.48 cm. 

(a) What is the potential energy between q and Q1 at this point? 

(6) What is the potential energy between q and Q2 at this point? 

(c) What is the change in potential energy of the 

system 

as one moves q from 

far 

away 

to this point? 

(6) What is the potential difference between the point at 00 and this point? 

Solution 

(a) The potential 

energy 

between 

any two charges is kqQ/r. Thus the potential 

energy 

between 

4 and Q ,  is 
U ,  = (9.0 x 109K9.3 x l O - ’  ( 3 3 . 3  x 106 C)/0.48 x 10-’ m = 5.75 J. 
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(b) The distance between q and Q, is (0.36, + 0.482)’/2 cm = 0.60 cm. Thus the potential energy 

between 

q 
and Q, is U, = (9.0 x 109)(9.3 x 10-7 CX-6.3 x 10-6 C)/0.60 x 10-, m = -8.79 J. 

When q is 

far 

away 

the potential energy 

between 

q and each of the charges Q is zero. There is potential 
energy of the system 

between 

Q, and Q,, but that potential energy does not change as one moves q 

from point to point. As one moves the charge q to the final point the potential energy changes because 
of the interaction between q and the Q. The final potential energy is U, = 5.75 J - 8.79 J = -3.04 J. 
Therefore AU, = - 3.04 - 0 = - 3.04 J. 

(d) Since A V  = AUdq,  the potential difference is A V  = - 3.26 x 106 V. 

(c) 

4.2 POTENTIAL OF CHARGE DISTRIBUTIONS 

The previous problem illustrated how to calculate the potential energy 

in 

the case of two fixed point 
charges and a moving 

charge, 

and then 

how 

to use that potential energy 

to 

obtain the potential. We can 
clearly use this procedure to calculate 

the 

potential produced by any number of point charges at all 
points in space. We can thus calculate 

the 

potential produced by a collection of particles or by a 
distribution of charge. 

Problem 4.3. Calculate the potential produced by a point charge Q located at the origin at a point 
distant from 

the 

charge by r. 

Solution 

Our method is to calculate the potential energy, U,, at the desired point if one places a “test charge” q 

(4.34 

This is the potential produced by a single charge Q at a point that is distant from the charge by r .  If we 

(4.3b) 

at that point. Then the potential will equal UJq.  Using Eq. (U), we get U, = kqQ/r, and then: 

V = kQ/r = (1/4m0)Q/r 

have a collection of charges, Qi , then the potential will equal: 

V = k 1 QJri = (1/4ne,) 1 QJri 

Problem 4.4. A charge of 1.75 x 10-6 C is placed at the origin. Another charge of -8.6 x l O - ’  C is 
placed at x = 0.75 m. 

(a) What is the potential at a point halfway 

between 

the charges? 

(b) What is the electric field at that point? 

(c) If an electron is placed at that point, what 

force 

acts on it, and how 

much 

potential energy does it 
have? 

Solution 

The potential equals k QJri. Thus V = (9.0 x 109)[(1.75 x 10-6 C/0.375 m) + (-8.6 x l O - ’  

C/0.375 m)] = 2.14 x 104 V. Since V is a scalar we were able to add the values 

algebraically. 

To calculate the electric field we must calculate the magnitude and direction of the fields produced by 
each source and then add them vectorially. Thus E = E, + E,. Now I E, I = kQ,/r2 = (9.0 x 109)(1.75 
x 10-6 C)/0.375, = 1.12 x 105 

N/C. 

Since Q, is 

positive 

this 

field is directed along + x. Similarly, 
I E, I = (9.0 x 109)(8.6 x 10-7 C)/0.3752 = 5.50 x 104 N/C. 

Since 

Q, is 

negative, 

the field points 
toward Q, which is also in the + x  direction. Then the total field is 1.67 x 10’ N/C in +x. 

An electron has a charge of - 1.6 x 10-l9 C. Therefore the force on it is F = qE = (1.6 x 10-l9 C) 
(1.67 x 10’ N/C) = 2.67 x 10-l4 N. The direction is opposite to E since q is negative, so F is in -x. 

The potential energy 

is 

qV = (- 1.6 x 10-l’ CK2.14 x 104 V) = -3.42 x 10- l 5  J. 
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Problem 4.5. Refer to the two fixed charges of Problem 4.4. At what two points on the x axis is the 
potential zero? 

Solution 

If the 

point 

of zero 

potential 

is between the 

charges, 

and the 

distance 

from the origin 

to the 

point 

is x, 

then 

the 

first charge is at a distance of x and the second charge is at a distance (0.75 - x) from the 

point. 

The 

total 

field is k[Ql/x + Q2/(0.75 - x)] = 0. Q1 is positive and Qz is negative. Substituting for the 
charges, we get: (1.75 x 10-6/x) = 8.6 x 10-7/(0.75 - x). Then (0.75 - x) = 0.49x, 1 . 4 9 ~  = 0.75, x = 0.50 
m. If the 

point 

of zero 

potential 

is not between the 

charges, 

and the distance from the origin 

to the 

point 

of 
zero 

potential 

is x, then 

the 

first charge is at a distance of x and the second charge is at a distance (x - 0.75) 
from the 

point. 

(Recall that in Eq. (4.3a), r is always positive.) The total field is k[Ql/x + Q2/(x - 0.75)J = 0. 
Again, Q1 is positive and Q2 is negative. Substituting values for the 

charges, 

we get: (1.75 x 10-6/x) 
= 8.6 x 10-7/(x - 0.75). Then (x - 0.75) = 0.49x, 0 . 5 1 ~  = 0.75, x = 1.47 m. A quick check for finite points 
on the negative x axis shows that the 

potential 

cannot vanish there. Of course, 

the 

potential also 

vanishes at 
x--, +CO. 

Problem 4.6. Four equal charges of 5.7 x 10-’ C are placed on the corners of a square whose 

side 

has 

a length of 0.77 m. 

(a) What is the electric field at the center of the square? 

(6) What is the electric potential at the center of the square? 

(c) If one brought a charge of 6.8 x 10-’ C from 

rest 

at 00 to the center of the square, what is the 
change in the potential energy of the system? 

(d) How much 

work 

must 

be done by an outside force to bring in 

this 

charge? 

Solution 

All the 

charges 

produce 

fields of the 

same 

magnitude 

at the 

center, 

since they have 

the 

same charge 

and are equidistant from the 

center. 

The charges 

at opposite 

corners 

produce 

fields that are in opposite 
directions, 

thus 

canceling each 

other. The total field at the 

center 

is therefore 

zero. 

The 

potential 

at the 

center 

is the 

sum 

of the contribution from each of the 

four 

charges. Each charge 

produces 

the 

same potential, 

kq/r ,  where r is the 

distance 

from the 

corner 

to the 

center. 

Thus T = 

0.77/42 = 0.544 m. The total potential is therefore V = q9.0 x lO’H5.7 x 10-’ C)/0.544 = 3.77 x 104 
V. We see that 

the 

potential can 

be non-zero even at a point where the 

electric 

field is zero. 

The change in the 

potential 

is the difference between the 

potential 

at the 

center 

of the 

square 

and the 
potential at CO. Thus A V  = 3.77 x 104 - 0 = 3.77 x 104 V. The 

change 

in potential 

energy is 
qAV = (6.8 x 10-7 CK3.77 x 104 V) = 0.026 J. Thus the system gained 0.026 J of energy. (This makes 
sense since all 

the 

charges 

are positive so potential energy increases as 

the 

fifth charge is brought 
closer.) 

The work done by outside 

(non-conservative) 

forces equals 

the 

change in the 

total mechanical energy 
of the system. Since there is no change in kinetic energy, the 

outside 

work will equal 

the 

change 

in the 
potential energy, Woutsidc = 0.026 J. 

Problem 4.7. A total charge of 5.4 x 10d6 C is uniformly distributed along a ring of radius 0.89 m. 

(a) What is the potential at the center of the ring? 

(6) What is the potential at a point on the axis of the ring at a distance of 0.98 m from the plane of the 
ring? 

Solution 

(a) All the 

charge 

is located at a distance of r = 0.89 m from 

the 

center 

of the ring. Each part of the 

charge 

therefore 

contributes 

the 

same scalar potential 

at the 

center, 

and the total potential is kQ/r 
= (9.0 x 109)(5.4 x 10-6 C)/(0.89 m) = 5.46 x 104 V. 
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(b) Now all the charge is located at a distance of ( r2  + x2)1/2 = (0.892 + 0.982)1/2 = 1.32 m, and the poten- 
tial is (9.0 x lO’X5.4 x 10-6 C)/(1.32) = 3.68 x 104 V. 

Note how 

easy 

it is to calculate the potential in Problem 4.7 in comparison with 

finding 

the electric 
field in a comparable problem in Chap. 3. This, of course, is a consequence of the potential being a 
scalar while the field is a vector. 

4.3 THE ELECTRIC FIELD-POTENTIAL RELATIONSHIP 

We know that the electric field is the force per charge and the potential is the potential energy 

per 

charge. The force and the potential energy are related by the work-energy theorem, and therefore the 
electric field and the potential must be related 

in 

the same manner. We would 

like 

to develop that 
relationship in more detail at this time. It is useful to do this by considering an opposing force to the 
electric 

force. 

When an outside force 

(non-electric) 

F, is 

exerted 

on a charge in an electric field, and is adjusted to 
always be equal and opposite to the electric 

force, 

then the positive 

(negative) 

work 

done by that force 
in 

moving 

the charge from one location to another will equal the increase 

(decrease) 

in the electric 
potential energy of the charge. If no work 

is 

done by this outside force either because 

the 

force 

is zero 
(hence there is no electric field) or the force 

is 

perpendicular to the direction in which the charge moves, 
then there will not be any change in the electric potential energy of the charge. 

Therefore 

there is a 
change in potential energy 

(and 

a corresponding change in potential) only if there is a component of the 
electric field in the direction of motion. If one moves 

perpendicular 

to E [along Ad, in 

Fig. 

4-l(a)], there 
is no change in V. If one moves in the direction of E [along Ad,, in 

Fig. 

4-l(a)], then, 

for 

constant E, the 
change in potential energy 

is 

IF I d  = -4 I El Ad,, , and the change in potential will equal 
A V  = - IEl Ad. If the field is at an angle of 8 with the direction of motion (Ad in Fig. 4-1), then the 
change in potential will equal A V  = - I E I Ad cos 8. If the field is not constant, then one must 

divide 

the 
path into small 

segments 

over 

which the field can be 

considered 

to be a constant and add the contribu- 
tion from 

each 

segment. 

Thus, in general; 

A V =  - C l E l c 0 ~ 8 A d ,  (4.4) 

where the sum is evaluated along the path of the particle [see Fig. 4-1(b)]. We have already learned that 
for a conservative 

force 

the result of this 

calculation 

depends only on the beginning and ending points, 
so we can choose any path between 

those 

points that we want in evaluating the sum. 

This 

relationship 
can be used to calculate A V  between any two points if the field E is known along a path joining those 
points. 

Eq. 

(4.4) also shows that an equivalent 

unit 

for E is V/m. 

Problem 4.8. Two parallel 

plates 

carry a surface charge density of +a, respectively, and are separated 
by a small distance d. Assume that the size of the plates is always 

large 

compared with the distance to 
the plates. 

E- ? 
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What is the electric field in the region between the plates? 

What is the potential difference 

between 

a point on one plate and a point on the other plate (e.g. 
points P ,  and P ,  in Fig. 4-2)? 

Which 

plate, 

the positive 

or the negative 

plate, 

is 

at the higher potential? 

Solution 

We learned in the previous chapter that the field between the plates points from the positive plate to 
the negative 

plate, 

and has a constant magnitude of 

Since the field is constant and pointing along the direction perpendicular to the plates, we choose our 

path in two parts starting at the point PI as shown in 

Fig. 

4-2. Along path 1 we move 

parallel 

to the 
field to the second 

plate, 

and along path 2 we move along the second plate, perpendicular to E, until 

the final point. Along path 2 there is no A V  since we are moving perpendicular to E. Along path 1, 

1 A V  1 = 1 E 1 d = ad/&, . Thus the potential difference is, in magnitude, equal to ad/&, . 

Along path 1 the field is in the same direction as the displacement. 

Therefore, 

from Eq. (4.4, A V  = V, 

- V, = -ad/&,, and the potential decreases as we move from the positive plate (PI) to the negative 
plate ( P 2 ) ,  and the positive plate is at the higher potential, V,. This illustrates the fact that the potential 
always 

decreases 

as we move along the direction in which the field points. 

Since 

the field points away 
from positive charge and towards negative charge, the potential decreases as we move 

away 

from 

positive or toward negative 

charge. 

Problem 4.9. An isolated conducting sphere is charged with a total charge, Q, of 6.0 x 10-8 C, and has 
a radius of 1.35 m. 

(a) What is the field inside the sphere, and what is the field outside the sphere? 

(b) What is the potential at a distance r from the sphere, if r is outside the sphere? 

(c) What is the potential at the surface of the sphere? 

(d) What is the potential at a point r within the sphere? 

(e) If instead of a conducting sphere we had a thin uniform 

spherical 

shell 

of charge, again with no 
other charges 

nearby, 

how would 

the answers to (a)-(d) change? 

Solution 

(a) We learned in Chap. 3 that the field inside a conductor is zero, and that the field outside an isolated 
conducting sphere, where the surface charge is 

uniformly 

distributed, is the same as if all the charge 
were concentrated at a point at the center of the sphere. 

Therefore 

the field is kQ/r2 for r > R, and zero 
for r < R. 

0 -0 

Fig. 4-2 
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(b) The field outside the sphere is identical to that of a point charge located at the center of the sphere. 
The sum to be evaluated [Eq. (4.4)] for the case of the sphere is therefore just the result 

for 

a point 

charge, as long as we remain outside the sphere. Therefore the difference in potential between a point 
at r > R and a point at 00 is A V  = kQ/r. Since the potential at 00 is 

chosen 

to be zero, V = kQ/r. 

(c) At the surface r = R. Thus Vsurfacc = (9.0 x 109)(6.0 x 10-8 C)/1.35 m = 400 V. 

(d) The field inside the sphere is zero. 

Therefore 

if one moves 

from 

any point inside to any other point 
inside the sphere there will be no change in potential. The potential is the same everywhere 

within 

the 

sphere. At the surface the potential is 400 V, so the potential remains at 400 V for any other point 
r < R. 

(e )  By Gauss’ law 

(choosing 

concentric spherical surfaces of radius r < R )  since no charge is enclosed 
within the shell, the electric field will still be zero. The field outside could again be that of a point 

charge at the center so part (a) is unchanged. Similarly, the results of parts (b), (c) and (d) will be 
unchanged. 

Problem 4.10. A charge Q1 of 5.5 x 10-7 C is at the center of a conducting spherical shell that has an 
inner radius of 0.87 m and an outer radius of 0.97 m (see Fig. 4-3). The conducting sphere has a total 
charge of -2.3 x 10-7 C. 

(a) How much charge Qz is there on the inner surface of the conducting sphere, and how 

much 

charge 
Q3 is there on the outside surface? 

(b) By adding the contributions from 

all 

charges, 

calculate the potential at a point at a distance of 1.05 
m from the center. 

(c) By adding the contributions from 

all 

charges, 

calculate the potential at a point at a distance of 0.95 
m from the center. 

(d) By adding the contributions from 

all charges, 

calculate the potential at a point at a distance of 0.45 
m from the center. 

Solution 

(a) We know that in static equilibrium (no charges in motion) the electric field within the conducting shell 
is zero as it must be within any conductor. We draw a Gaussian surface at a radius within the conduc- 
tor, and note that the flux through that surface is zero, 

since 

the field is zero. 

Therefore 

the total charge 
inside that surface must be zero. The only charges inside the surface are on the inner surface of the 
shell and at the center. Therefore the charge on the inner surface 

must 

be Qz = - Q 1  = -5.5 x 10-’ 

Fig. 4-3 



108 ELECTRIC POTENTIAL AND 

CAPACITANCE 

[CHAP. 4 

C. The total charge on the 

sphere 

is given as -2.3 x 10-7 C which must equal Q2 + Q3 = -2.3 
x lO-’ = Q 3  + ( - 5 . 5  x lO-’), giving Q3 = 3.2 x 10-7 C. 

(b) We showed in the 

previous 

problems 

that the 

potential 

of a point 

charge 

is V = kQ/r. We also showed 
that 

the 

potential 

due to a uniform spherical surface charge 

distribution 

at a radius R is equal to 
= kQ/r if T > R, and Kmside = kQ/R if r < R.  In our problem 

there 

are three 

charge 

distributions: 

a point 

charge 

at the 

center, 

a surface charge at R = 0.87 m and another surface charge at R = 0.97 m. 
If T = 1.05 m then we are seeking the 

potential 

outside each charge distribution. The total potential 

is 
then V = V, + V2 + V3 = kQ,/r + kQ2/r + kQ3/r  = (9.0 x lO9)[(5.S - 5.5 + 3.2) x 10-7 mJ/(1.05 m) 
= 2.74 x 103 v. 

(c) At r = 0.95 m, we are outside of charges Q ,  and Q 2 ,  but within charge Q 3 .  Therefore V3 = kQ3/R3 = 

(9.0 x lO’X3.2 x 10-7 C)/0.97 m = 2.97 x 103 V. Furthermore, V, + V, = k(Q, + Q2)/r  = (9.0 x 10’) 
(5.5 - 5.5)  x 10-7/0.95 = 0. Thus V = 2.97 x 103 V. 

Note. We could 

also 

have 

derived this 

result 

from the fact that E is zero within the 

conducting 

sphere, 

and 

therefore the potential 

within the 

sphere 

is the same as 

it 

is on the 

outer 

(or 
inner) surface. On the outer surface 

the 

potential, 

from part (a) is k(3.2 x 10-7)/0.97, which 
is the 

same 

as we found. 

(d) At T = 0.45 m, we are outside of the 

point 

charge but 

inside the two surface charges. The potential 
from the 

point 

charge 

is kQ,/r = (9.0 x lO’K5.5 x 10-7 C)/0.45 m = 1.1 x 104 V. The potential 

from 

the surface charges is V2 + V3 = k(Q2/R2 + Q3/R3)  = (9.0 x 10’)[(-5.5 x 10-7/0.87) + (3.2 x 

10-7/0.97)] = -2.72 x 103 V. The total 

potential 

is then 1.1 x 104 - 2.72 x 103 = 8.29 x 103 V. 

We 

have 

seen in the previous problems how to calculate the potential if the electric field is constant, 
or if the electric field is produced by a point charge, or if the 

electric 

field is produced by a 

spherical 

surface distribution. For other cases, one must use one of two methods to evaluate the potential differ- 
ence 

between 

two points: (1) calculate the 

electric 

field everywhere along a path and then use the sum in 
Eq. (4.4) to calculate the 

difference 

in potential, or (2) use the charge distribution to calculate the 
potential at every point using Eq. (4.3b) and then calculate the difference between the potential at the 
points. We summarize some 

results 

from using such 

methods, together with 

the 

results 

we have 

already 

obtained. 

For a point charge, 

V = (1/47t&,)Q/r 

For a 

collection 

of charges, 

V = (1/47t&,) C QJri 

( 4 . 3 4  

(4.3b) 

For a 

spherical 

surface 

charge at radius R ;  

V = (1/4ne,)Q/r for r > R ( 4 . 5 4  

and V = ( 1/47t~,)Q/R for r < R (4.5b) 

For a long wire, 

A V  = V2 - Vl = -(A/2mo) In (r2/r1) 

for rl and r2 any two perpendicular distances from the wire. 

(r, R 4 L); 

For a long cylinder of length L with 

symmetric 

surface 

charge on the 

cylindrical 

portion at radius R 

I/ = -(A/2xeo) In (r/R‘) for r > R ( 4 . 7 4  

V = -(A/2ncO) In (RIR’) for r < R (4.7b) 
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where R’ is an arbitrary distance. It is often useful to set V = 0 at the radius of the cylinder, which is 
equivalent to setting R’ = R. 

For a large, uniformly charged infinitesimally thin 

plate 

of surface charge 

density 

6, 

A V =  V2 - V1 = - a ( I x J  - I x ~ ~ ) / ~ E O  (4.8) 

where I x2 I and I x1 I are perpendicular 

distances 

on either 

side of the 

plate, 

and I x1 I, I x2 I 6 L, where L 
is the 

distance 

to the 

edge 

of the plate. 

Problem 4.11. A coaxial 

cable 

(see Fig. 4-4) consists of a long, 

conducting 

wire, of radius R ,  with a 
linear 

charge 

density 

of A, and a long 

conducting 

coaxial cylindrical 

shell, with an inner 

radius 

R ,  and 
an outer radius R ,  , and with a symmetric linear 

charge 

density 

of -A. We assume 

the 

length 

to be 
much 

greater 

than any of the 

radial 

distances 

of interest. 

(a) What is the 

potential 

due 

to the 

cable 

at a point at a radial 

distance 

from the 

axis r, such that 
r > R , ?  

(b) What is the potential at a point within the outer cylindrical shell, at R ,  < r < R3 ? 

(c) What is the potential at a point between the wire and the 

cylinder 

at R ,  < r < R ,  ? 

(d) What is the potential at a point within the wire, at r < R , ?  

Solution 

(a) We use Eq. (4.74 for each of the three surface 

charges 

since 

the point in question is outside both 
cylindrical distributions. Then V = 0, since the total enclosed linear charge density is A - A = 0. 

(b) We note that the charge on the outer cylinder is all on the inner surface. This is because the field 
within the conductor is zero, and therefore, from Gauss’ law the total charge within a Gaussian surface 

must be zero. Then the charge on the inner surface 

must 

cancel 

the charge on the wire, and equal -A. 
Therefore the point within the cylinder is also outside all the charge distributions, and the result is the 
same as in (a), i.e. V = 0. 

(c) In this case the point in question is outside of the wire but within the surface distribution on the outer 
cylinder. 

Using 

Eq. (4.74 for the wire and Eq. (4.7b) for the cylinder we have for the potential: V = V, 
+ V2 = ( - A/2ne0) In (r/R’) - ( - A/2ae0) In (R,/R’) = ( -A/2na0) In ( r /R2)  (where we recall In (A /B)  
= In A - In B). 

(d) Since we are now within the inner conducting cylinder 

where 

the field is zero, the potential must equal 
its value at the surface. Thus, V = ( - A / ~ K E ~ )  In (R1/R2). 

Note. One could also get this result by adding the contributions of the two 

surface 

charge distri- 
butions. Then V = V ,  + V, = ( -A/2naO) In (R, /R‘)  - ( -n/2na0) In (R2/R’)  = ( -d/2na0) 

In (Rl/R2). 

Problem 4.12. Two 

large 

thin parallel plates 

are a distance D apart, and have surface 

charge 

densities 

Fig. 4-4 
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(T d 

d2 

I 

D 
D<< L 

Fig. 4-5 

of & cr, as in 

Fig. 

4-5. A large conducting plate, of thickness t ,  is placed 

with 

one side at a distance of d ,  
from the positive 

plate, 

as in the figure. The conducting plate 

has 

a charge density of 6’. 

(a) What is the surface charge distribution on the two sides of the conducting plate? 

(b) What is the difference in potential between 

the 

positive 

plate and the conducting plate? 

(c) What is the difference in potential between 

the 

positive 

and the negative plates? 

Solution 

(a) The field within the conducting plate must be zero, as it is within any conductor. Each charge distribu- 
tion produces a field of a/2&, pointing away from positive and toward negative charge. The field within 
the conductor has four contributions: (1) from the positive plate with charge distribution a, (2) from 

the negative plate with charge distribution -a, (3) from the side of the conducting plate near the 
positive charge with a charge distribution labeled al, and (4) from the other side of the conducting 
plate with a charge distribution a, = (a’ - a,). The fields produced are: E = E ,  + E ,  + E ,  + E ,  = 

(1/2~,)[a + B + a1 - (a’ - a,)] = (1/2&,)(2a + 20, - a’) = 0. Thus, a1 = (a’/2) - 6. On the other side 
of the plate the charge distribution is then a, = (a’/2) + a. (As a check we add a, + a2 to get a’.) 

(b)  To obtain the difference of potential between two points we calculate the field in the region 

between 

the points and, for a constant field perpendicular to the plates use the fact that AV = - E A x ,  where 
AV is the final-minus-initial potential as we move through Ax. In the region 

between 

the positive plate 

and the conducting plate, the field is E = [a - (a’/2)]/eO to the right. We get 

this 

result 

either by 
adding the field from 

all 

four distributions or by using Gauss’ law. By adding the contributions we get 
E = (1/2~,)[0 - (d/2 - a) - (a’/2 + a) - (-a)] = [a - (a’/2)]/eo. This field is to the right if the 
number is positive. Then the difference of potential between the positive plate and the conducting plate 
is given by AV = V c  - V ,  = - [a - (a’/2)]dI/&,, or V+ - V,  = [a - (a’/2)]/&,. 

Using the same procedure we obtain the field between the conducting plate and the negative plate to 

be E = [a + (a’/2)]/~, , Then the difference of potential between the conducting plate and the negative 
plate is given by A V  = V- - V, = - [a + (a’/2)]d,/eO . The difference of potential between the positive 

and the negative 

plates 

is therefore: V+ - V- = (V,  - V,) + ( V ,  - V - )  = [a - (a’/2)]dl/e0 + [a 

(c) 

+ (af/2)ld,/&o = (I/&,)[ 44 + d , )  + (a’/2)(d, - 4)l. 

4.4 EQUIPOTENTIALS 

In our discussion so far we have 

learned 

how 

to use information about the electric field to obtain 
the potential difference 

between 

two points. 

We 

now 

shift our attention to the reverse 

process, 

obtaining 
the electric field from a knowledge of the potential. At every point there is an electric field pointing in 
some direction. If we move to a different 

point 

along that direction, then the potential will change. 
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However, if we move to a different point perpendicular to that direction, the potential will not change. 
Thus, for 

example, 

for the uniform 

field between large parallel 

plates, 

for every plane 

perpendicular to E, 
the potential remains the same at every point in the plane. 

Even 

for 

non-uniform fields, if we continue 
moving 

from 

point to point, always in a direction perpendicular to the 

electric 

field at that point, we 
will sweep out a surface 

with 

all 

points on that surface at the same potential. This surface 

is 

called 

the 

“equipotential surface”. This idea can be used to obtain the direction of the 

electric 

field at any point if 
we know the potential everywhere in the 

region. 

We do this by sweeping out the various equipotential 
surfaces, and noting that the electric field lines are perpendicular to those 

surfaces. 

Once we have 

the 

direction of the 

electric 

field we can easily obtain its magnitude. We 

move 

a distance Ad in the direction 
of the electric field, between 

nearby 

equipotential surfaces and note the difference in potential. We 

know 

that along the direction of the electric field AV = -EAd, giving E = -AV/Ad. The minus 

sign 

means 
that E is 

positive 

in the 

direction 

that A V  is negative, i.e. E points from high to low potential. Thus, a 
knowledge of how V varies in a region around a point allows us to obtain the magnitude and the 
direction of the electric field at that point. 

Problem 4.13. The potential produced by a point charge is V = kQ/r.  Use 

this 

information to: (a) 

determine the shape of the equipotential surfaces, (b) determine 

the 

direction of the 

electric 

field at any 
point and (c) determine the actual value of the 

electric 

field at any point. 

Solution 

(a) The 

potential 

at a point at a distance r from the 

charge 

is given as V = kQ/r.  All other 

points 

at the 
same 

distance 

r from the 

charge 

have the 

same 

potential. Therefore the equipotential surface consists 

of all points 

equidistant 

from the 

source 

at a distance r. This is the surface of a sphere of radius r. The 
equipotential surfaces are 

therefore 

concentric spherical 

surfaces. 

(b) The 

direction 

of the electric field is perpendicular to the 

equipotential 

surfaces. That direction, for 
spheres, is in 

the 

direction 

of the 

radius. 

Thus the electric field must 

point 

along 

a radius. We know 
that it points from high to low potential. If Q is positive, then 

the 

potential 

decreases as r increases. 
Therefore 

the 

field points 

in 

the direction 

away from the 

charge, 

as 

we expected. For a negative charge 
the 

potential 

becomes less negative as r increases, which means that V increases 

as 

r increases. Then E 
points 

toward 

smaller 

r, or toward 

the 

center. 

(c) The 

magnitude 

and direction 

of 

E along a radius is given by I E I = AV/Ad,  if Ad is along 

the 

direction 

of 

the 

field. Here Ad = Ar. If we move along a radius 

from 

rl  to r 2 ,  the difference in potential is 
AV = V2 - V, = kQ(l / r2  - l / r , )  = kQ(r, - r2 ) / r1r2 .  For very small Ar = r2 - rl we can set rl  = rz = 

r in 

the 

denominator 

to get AV = - kQAr/r2. Then E = - AV/Ar  = kQAr/r2Ar = kQ/r2, as expected. 

Problem 4.14. Two large parallel plates carry charge distributions of +a. The positive plate is at 
x = 0, and the 

negative 

plate is at x = d, where x is 

measured 

perpendicular 

to the plates. The potential 
at any point can be 

shown 

to be given by I‘ = Vo(l - x/d) when 0 c x < d,  i.e. between the plates, and 
where Vo and 0 are the potentials at the positive and negative 

plates, 

respectively. 

(a) What are the equipotential surfaces? 

(b) What is the direction of the electric field at a point located at a distance x from 

the 

positive 

plate? 

(c) What is the magnitude of the 

electric 

field at this point? 

Solution 

(a) The 

potential 

at a point at a distance x from 

the 

positive plate is given as V = Vo(l - x/d). All other 
points at the 

same 

distance 

x from the 

plate 

have the 

same 

potential. 

Therefore the equipotential 

surface consists of all points 

equidistant 

from 

the plate 

at a distance x. This surface is a plane 

parallel 

to the 

plates. 

The 

equipotential 

surfaces are therefore 

planes 

parallel 

to the 

plates. 

(b) The 

direction 

of the electric field is perpendicular to the 

equipotential 

surfaces. That direction, for a 
plane 

parallel 

to the y-z plane, is in 

the 

direction 

of 

x. Thus 

the 

electric 

field must point 

along 

x. We 
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know that it points from high to low potential. The potential decreases 

from 

V, to zero as one 

increases x from zero to d.  Therefore the field is in the + x direction. 

(c) The magnitude of E is given by I E I = AV/Ax ,  if Ax is along the direction of the field. If we move along 
the field from x 1  to x 2 ,  the difference in potential is AV = V2 - V, = V,[(l - x 2 / 4  - (1 - x , /d ) ]  = 

Vo(xl - x2) /d  = - V, Ax/d .  Then I E I = V, Ax/dAx = Vo/d, as expected. 

Problem 4.15. The electric field lines 

for 

a particular situation are shown in Fig. 4-qa). Along the 
curved field line OACD the electric potential decreases 

linearly 

by 4.0 V every 3.0 m. At point A the 
potential, VA, is 40 V. 

(a) On the figure, draw the direction of the electric field at A. 

(6) Calculate the magnitude of the electric field at A. 

(c) Calculate the potential, Vc , at point C, which is 3.0 m from A. 

(6) Calculate the potential, V,, at point B which is 0.010 m along a line perpendicular to the field line 
through A. 

Solution 

(a) The field is tangent to the electric field line at any point. It points from high to low potential. Since the 
potential is decreasing as one moves along the line toward C, the field points in that direction. The 
direction is shown in 

Fig. 

4-6(6). 

(6) The magnitude of the field is equal to A V / A x  if one moves along the direction of E. When moving 
from A to C one is 

indeed 

moving in the direction of E, and AV/Ax  = 4.0 V/3.0 m = I E 1 = 1.33 V/m. 
Ordinarily this would be the average magnitude of E over the 3.0 m distance, but because the potential 

decreases 

linearly 

it 

is the actual magnitude at any point along the line. 

We can obtain V, from AV = V, - V, = -EAx = -(1.33 V/m)(3.0 m) = -4.0 V. Then V, = 40 (c)  
- 4.0 = 36 V. 

(6) Point B is along a direction perpendicular to the electric 

field. 

Therefore the potential does not change 
as one moves from A to B. Thus V, = V' = 40 V. 

The result that we have obtained for calculating the electric field from a knowledge of the potential 
everywhere can be 

written 

in 

a different 

form. 

If one moves a small distance Ax in the x direction from a 
given point, and the electric field makes an angle 8 with the x axis at that point, then the change in 
potential in that direction, AVx = -E cos 8 Ax = - - E X A x .  Thus E, = -AVx/Ax, where AVx is the 

Y \' 

Fig. 4-6 
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change 

in 

V as one moves in the x direction. Similarly, E, = - AV,/Ay, and E, = - AK/Az. If we have 
the 

three 

components 

of the vector E, then 

we 

have all the 

information 

needed to characterize E at that 
point. 

The 

vector, whose components 

are 

determined 

by calculating 

the 

rate of change of V in each 
direction (A V,/Ax, 

A 

V,/Ay, A K/Az), is called, in mathematical terminology, the gradient of V ,  and 
written as VV. Then our expression relating 

the electric 

field to the potential at every point in space 

can 

formally be expressed as E = - V V.  As you may have guessed this is a calculus 

relationship 

and 

allows 
one to carry out sophisticated analyses beyond the 

scope 

of this book. 

Problem 4.16. Fig. 4-7 shows the value of the 

electric 

potential 

at various 

points 

in the x-y plane. The 
potential at the origin is 75 V. At points 

along 

the 

x and y axes, at a distance of 0.65 m from the 

origin, 

the 

potentials 

are as shown. 

(a) Calculate 

the 

x and y components of the electric field at the 

origin. 

Assume the 

potential 

varies 
linearly with distance in both 

the 

x and y directions. 

(6) What is the 

magnitude 

and direction 

of the 

electric 

field at the 

origin? 

(c) What 

can 

one say 

about the electric field at other points 

near 

the origin? 

Solution 

(a) To get E,  we must calculate E,  = -AV.Ax  = -(65 - 75)V/0.65 m = 15.4 V/m. Similarly, E,  = 
-A%/Ay = -(80 - 75)V/0.65 m = -7.7 V/m. Thus the field has components in + x  and in -y  of 

15.4 V/m and 7.7 V/m, respectively. 

(b) E = (Ex2 + Ey2)'l2 = 17.2 V/m. If 0 is the angle of E below the positive x axis, we have tan0 = 

(c) Since the potential varies linearly in the region from - 0.65 

m 

to + 0.65 m in both the x and y 
directions, both E ,  and E ,  will be constant in that region. Thus E will be uniform for all points near 
the origin. 

I E,/E, I = 0.50 + 8 = 26.60. 

Problem 4.17. 

(a) Show that the surface of a conductor (in static equilibrium) is always an 

equipotential 

surface 
irrespective of the 

charge 

on the surface or of nearby charges. 

(6) Show that a hollow region inside a conductor that has 

no 

charges in it has no electric field in it as 
well. 

Y 

80 V I 
Origin = 75 V. 
Potentials are shown on x and 
y axis at 0.65 m from the origin. 

x 

Fig. 4-7 
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Fig. 4-8 

Solution 

(a) Consider the conductor shown in 

Fig. 

4-8 with 

surface 

S, and consider two points on the surface, a and 
b. We can use Eq. (4.4) along any path leading from a to b to obtain A V  = Vb - V,  , including the path 
shown through the conductor. For the path chosen, which is wholly in the conductor, E is zero 
everywhere 

along 

the path. Therefore, A V  = 0 -+ V, = V, . Since this is true for 

all 

points a and b on the 

surface, the surface must be an equipotential. (Indeed, the whole conductor is an equipotential, by the 
same argument.) 

(b) Consider the hollow 

in 

the conductor shown in Fig. 4-8(b). Suppose there were an electric field at any 
point c in the hollow. If we trace the electric field line through point c it would have to start at some 
point a on the inner surface and end at some other point b. This is because the electric field lines 

always start and end on charges or go off to infinity. 

Since 

the electric field points in the same direction 

everywhere on the field line from a to b, applying Eq. (4.4) to the path along the field line, cos0 is 
always equal to one and the sum must be a positive (non-zero) value. 

Therefore, 

Vb - V, # 0 and the 

surface cannot be an equipotential. Since we have just shown in part (a) that it must be an equipo- 
tential, our hypothesis that an electric field existed at point c cannot be true. Since point c was chosen 
arbitrarily, we must have E = 0 at all points in the hollow. (This implies that the hollow is also an 

equipotential region 

with 

the same value as the conductor.) This result is no longer true if a charge 

were placed in the hollow 

region. 

4.5 ENERGY CONSERVATION 

The potential energy 

associated 

with 

the electrical 

force 

can be used in the same manner as any 
other potential energy. We note that the potential energy of any charge is given by 4 V ,  and the change 
in potential energy that is used in 

most 

energy related 

problems is AU, = 4AV. A positive charge gains 
energy as it moves to a region of higher potential (AV positive) and, unless 

restricted 

by other forces, 
will tend to move to regions of lower potential. A negative charge, such as an electron, will lose 

energy 

as it 

moves 

to a higher potential (q negative and A V  positive), and therefore tends to move to a region 
of higher potential. When an electron moves through a difference of potential of one volt it gains or 
loses 41) = 1.6 x 10- l 9  J of energy. This amount of energy 

is 

called 

an electron-volt, or eV. If the 
electron 

moves 

through a difference of potential of x volts, the electron gains or loses x electron-volts of 
energy. This is a very convenient unit of energy to use whenever one discusses the motion of an electron, 
or other particle 

with 

a similar charge, since the energy 

the 

particle 

gains (loses) 

in eV is numerically 
equal to the difference of potential in volts through which it moves. 
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Problem 4.18. An electron 

moves 

from 

the positive to the negative 

terminal 

of a 9 V battery. How 
much potential energy 

did 

it gain or lose? 

Did 

it gain or did it lose potential energy? 

Solution 

The change in potential energy was 9 eV, since the electron 

moved 

through a difference of potential of 
9 volts. This corresponds to (9 eVK1.6 x 1O-I9 

J/eV) 

= 1.44 x J. Since the charge on the electron is 
negative, and the change in potential was also negative, the electron 

gained 

potential energy. This is in 
accordance with our discussion that negative charges tend to move to higher potentials in order to lose 
potential energy, and they 

gain 

potential energy 

in 

moving to lower potentials. 

Problem 4.19. We want to produce protons with a kinetic 

energy 

of 4.3 x 1O-l’ J. Through what 
difference of potential should we accelerate 

them 

in 

order to obtain that kinetic 

energy, 

assuming 

that 
they start from 

rest 

and that there are no other forces present? 

Solution 

Since 

only 

the electric 

force 

is present, and the electric 

force 

is conservative, we can use conservation of 
energy 

in 

this 

problem. If we start with a stationary proton, then the proton has no initial 

kinetic 

energy. 

The increase 

in 

kinetic energy must equal the decrease in potential energy. Thus the positively charged 
proton must move through a difference 

in 

potential that will result 

in 

the loss of 4.3 x 10- ’’ J. This means 
that it must move through A V  such that qAV = -4.3 x l O - ”  J, or A V  = (-4.3 x 10-” J)/1.6 x 10-19 C 
= - 2.69 x 104 V. Alternatively, we could 

have 

converted 4.3 x 10- ’’ J into eV by dividing by 1.6 x 10- 
J/eV, obtaining 2.69 x 104 eV. Then we can say that a proton must have fallen through a decrease of 
2.69 x 104 V to lose that amount of potential energy. 

Problem 4.20. A proton is 

moving 

directly 

toward a fixed nucleus containing 23 protons. The speed of 
the proton when it is at a distance of 5.8 x 10-9 m from the 

nucleus 

is 2.4 x 106 m/s. The proton has a 
charge of 1.6 x 10-19 C and a mass of 1.67 x 10-27 kg. 

(a) What was its kinetic and potential energy at this 

initial 

distance? 

(b) At what distance from the nucleus 

does 

the 

proton stop, i.e. what 

is 

the 

distance of nearest 
approach? (Assume 

the 

nucleus remains 

stationary.) 

Solution 

(a) The kinetic 

energy 

of the proton is (1/2)m,u2 = (0.5H1.67 x l O - ”  kgK2.4 x 106 m/s)’ = 4.81 x 10-l’ J. 
The potential energy is U ,  = kqQ/r = (9.0 x 109)(1.6 x 10-l9 C)(23 x 1.6 x 10-l9 C)/(5.8 x 10-9 m) 
= 9.14 x 10-l9 J. The total energy 

is 

therefore nearly all kinetic energy 

and equals 4.81 x 10-l’ J. 

(b) By conservation of energy, the total energy must be the same as the proton moves toward the nucleus. 
At the point of nearest approach, the kinetic energy is zero, 

since 

U = 0. Therefore, the potential energy 
must equal the original 

energy. 

Thus, kqQ/r = 4.81 x 1O-I’ J = (9.0 x 1O9X1.6 x 10-l9 C) 
(23 x 1.6 x 1O-l’ C)/r = 5.30 x 10-27/r. Then r = 1.10 x 10-” m. 

Problem 4.21. Four charged 

particles 

are placed at the corners of a square of side 0.39 m. The 

particles 

have 

charges 

of 2.3 pC, - 5.6 pC, 7.9 pC and - 1.3 pC as in Fig. 4-9. 

(a) How much 

work 

was 

done by outside forces to place those particles in their 

positions 

if they were 
originally very far away? 

(b) If an electron starts with no velocity very far away, what velocity does 

it 

have 

when it 

reaches 

the 

center of the square? (me = 9.1 x 10-31 kg) 
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-5.6 jlC 7.9 jlc 

2.3 jlC -1.3 FC 

Fig. 4-9 

Solution 

(a) We will assemble the 

particles 

one at a time. To place the first particle (2.3 pC) 

in 

place requires no 
work (W, = 0) since there are no forces present as yet. To place the next particle (- 5.6 pC) in place the 
outside work W2 must be equal to the 

change 

in potential energy. This 

equals 

W2 = kQ1Q2/r12 = (9.0 
x lO’K2.3 x 10-6 C)(-5.6 x 10-6 C)/0.39 m = -0.30 J. To place the next particle we must again 
supply 

the 

added potential 

energy. This 

additional 

potential 

energy is due to the 

interaction 

with both 
of the 

particles 

already in 

place. Thus W, = kQ3(Ql/r13 + Q2/~23) = (9.0 x lO’W7.9 x 10-6)[(2.3 
x 1Ob6/0.39J2) + (-5.6 x 10-6/0.39)] = -0.72 J. Similarly, to add the 

fourth 

particle requires 

work of W4 = kQ4(Ql/r14 + Q2/r2,+ + Q3/rS4) = (9.0 x log)(- 1.3 x 10-6)[(2.3 x 10-6/0.39) + (-5.6 
x 10-6/0.39J2) + (7.9 x 10-6/0.39)] = - 0.19 J. The total work is therefore Kotr, = W, + W2 + W, 

(b) With all 

the 

four particles 

in place, the 

potential 

at the 

center 

is V = V, + V2 + V, + V‘ = k(Q, + Qz 
+ Q3 + Q4)/r = (9.0 x 109)(2.3 - 5.6 + 7.9 - 1.3) x 10-6/0.195J2 = 1.08 x 10’ V. At a large 

distance, 

the 

potential 

is zero. Therefore 

the 

electron 

loses potential energy equal to 1.08 x 10’ eV. This is 
converted into kinetic energy. Then, (1/2)rno2 = (1.08 x 10’ eVX1.6 x 10-‘’ J/eV) = 1.73 x 10-l4 J. 
The mass of an electron is 9.1 x 10-31 kg, so u2 = 2(1.73 x 10-14)/9.1 x l O - , l  = 3.80 x 1OI6, and 
o = 1.9 x 108 m/s. 

+ W ,  -0.30 - 0.72 - 0.19 = -1.21 J. 

Problem 4.22. Two large, 

thin 

parallel plates, 

of length L, are perpendicular to the x axis and 

carry 

charge 

distributions 

of +a (as in Fig. 4-10). The positive plate is at x = 0, and the negative plate is at 
x = d. The 

potential 

at any 

point 

is given as I/ = V,(1 - x/d) for 0 < x < d, i.e. between the plates. An 
electron starts at the 

bottom, 

halfway between the 

plates, 

with an upward speed of uo . The 

electron 

just 

passes the end of the 

plate 

at the top. Assume that the field is uniform throughout 

the 

region between 
the plates, and the 

potential 

is as given above. 

Give 

your 

answers in terms 

of 

L, d, u o ,  CT and e (where e, 
as always, is the magnitude of the 

electron 

charge). 

(a) How much kinetic energy, A K ,  did the electron gain until 

it 

leaves the region between the plates? 

L 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i 
P 

d 

Fig. 4-10 
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(b) What is the x component of the velocity of the electron? 

(c) How 

much 

time does it 

take for 

the 

electron 

to move through the plates? 

Soh tion 

(a )  We will use conservation of energy to solve 

this 

part of the problem. The gain in kinetic 

energy 

A K  
must equal the loss in potential energy. This loss is equal to eAV = e(& - r/l) = e(V, - V,d/2) = 

eV,d/2. Thus the gain in kinetic 

energy 

is eVod/2. Recalling that the potential difference across the 

plates is just (V, - 0) = Ed = ad/&,, we have 

finally 

AK = ead2/2c,. 

( b )  The gain 

in 

kinetic energy 

is K ,  - Ki = (+)rn(uf2 - viz) = ( ~ ) r n ( v f x Z  + vfy2 - ciY2) where we recall uiX = 

0. Now, uy = oo does not change, so AK = (4)rnvfx2 and using our results in (a)  we get: cfx = 

[(e/m)ad2/&,] 1’. 

(c) Since U, does not change, the time to move a distance of L in y is t = L/o, . 

Note. If we wanted we could 

solve 

for V , ,  since we must also have ufx = at where 

acceleration 

a = 

1 (e/m)E 1 = (e/m)a/E,, and we can 

solve 

for 

t and insert in t = L/u, . 

4.6 CAPACITANCE 

We have seen that positive 

work 

is required by an outside force to separate opposite charges that 
were initially 

together. 

For instance, we may 

have 

two metal surfaces 

which were initially 

uncharged, 

and then 

remove 

negative charge from one surface 

and place this charge on the other surface. The first 
surface that lost 

negative 

charge 

becomes positively 

charged, 

and the other surface 

gains 

the same 

negative 

charge. 

The more charge that we transfer the harder it 

becomes 

to transfer 

the 

next unit 

of 
charge because of the Coulomb forces between the charges, and the more work we have to do to 
transfer additional charge. This work is manifested 

in 

the resultant 

potential energy of the 

final 

distribu- 
tion of charge. 

When a given distribution of charge is reached, we wish to be 

able 

to calculate the potential every- 
where in space. 

This 

will allow us to determine the energy necessary to bring another charge from one 
location to another. We 

know 

that each conductor surface will be an equipotential surface 

once 

charges 

have 

reached 

their equilibrium positions. Therefore each surface has its own 

potential and potential 
differences exist between 

the 

various 

surfaces. For a particular pair of conductors we label 

this 

potential 
difference AV. Since we can always set our zero of potential at our will, we can take one of the surfaces 
to have 

zero 

potential and the other to have a potential V which will equal AV. Therefore we will call 
the potential difference between the 

two 

surfaces 

V .  
Let us consider 

the 

case 

of two 

isolated 

conductors (labeled 1 and 2) with charge +Q on one and 
-Q on the other, and a potential difference V between 

them. 

Depending 

on the shape of the conductors 
and their 

positions 

relative 

to each other, the charges on the conducting surfaces will distribute them- 
selves with some 

definite 

(but not necessarily 

uniform) 

charge 

distribution, o1 and c2. In general, o1 and 
c2 will vary from point to point on the 

respective 

surfaces. 

In principle, 

the 

potential and electric field 
everywhere outside and on the conductors, can be determined by dividing 

the 

surfaces 

into tiny seg- 
ments and calculating 

the 

potential (or electric field) at any point by adding the contributions of all 

the 

electric 

charges 

in all 

the 

tiny segments. 

It is not hard to see that if we doubled (or halved, or tripled) 

the 

electrical 

charges 

in all segments on both surfaces we would not disturb the 

equilibrium 

on those 
surfaces, and furthermore the potential and electric field everywhere 

would 

also 

double (or halve, or 
triple) 

as 

a consequence. 

This 

is equivalent to saying that if we doubled the total charges (Q and -Q) on 
both isolated conductors (and waited 

for 

equilibrium 

to return), the 

potential 

V between them 

would 

double (as 

would 

the 

surface 

charge distributions c1 and c 2 ,  everywhere on the 

surfaces). 

From this we 
conclude that I/ is proportional to Q, as long as the 

geometry 

stays 

the same. 

Thus, if for 

example 

we 
transfer 

charge 

between one conductor and the other, V would 

increase 

in proportion to the 

increases 

in & Q on the 

surfaces. 

We can therefore 

write 

V = (l/C)Q, where 1/C is the constant of proportion- 
ality, or equivalently, Q = C V ,  and the constant C is called 

the 

capacitance of the 

system. 

This 

constant 
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C depends on 

the 

geometry of the conductors, their size, shape 

and 

position, but 

it does 

not 

depend on 
the charge on the plates. For any particular geometry we can calculate 

its 

capacitance 

by assuming a 
certain 

charge 

and 

calculating the 

resultant 

V .  Then C = Q / V ,  and for any 

other 

Q this ratio remains 
the same. The unit for capacitance is the farad (F). A capacitance of one 

farad 

is very large, and more 
common capacitances are pF (10-6 F) or pF (10-9 F). If we build a unit containing two conductors 
with relatively large surfaces close to each other 

(but 

not touching) we call this object a capacitor whose 
capacitance is C. The name derives from the fact that C represents the 

capacity 

of the two conductors to 
store charge on their surfaces per unit potential difference (per volt) between them. A large capacitance 
means that the 

capacitor 

holds a 

lot 

of charge per volt, while a small capacitance means that only a 
small amount of charge is held per volt. We will first discuss the 

calculation 

of capacitances for several 
specific geometries, and 

the 

use of these results. Then we will discuss the energy needed to charge 

a 

capacitor 

and 

the interpretations 

of these results. The most common capacitor geometry is that of two 
close parallel, conducting plates. 

Problem 4.23. A “parallel plate capacitor” consists of two parallel plates, of area A, separated by a 
small distance 

d 

and carrying 

charges of & Q (as in Fig. 4-11). Assume that the field is uniform 
throughout the region between the plates. 

(a) What is the field between the 

plates? 

(b) What is the 

potential 

difference between the 

plates? 

(c) What is the 

capacitance 

of this parallel plate capacitor? 

Solution 

(a) The field was calculated in Problem 3.23, and equals E = o/co. Ignoring edge effects, the surface 
charge, o, is uniformly distributed 

and 

U = Q/A, giving E = Q/cOA. This is a uniform field pointing 
from the positive to the negative plate. 

(b) As shown in Problem 4.8(b), the 

potential 

difference between the 

plates 

is just V = Ed = od/co = 
Qd/&,A. The positive plate is at the higher potential. 

(c) Using the 

results 

of (b), we get C = Q/V = Q/(Qd/coA) = cOA/d. 

Problem 4.23 shows that the capacity of a parallel plate 

capacitor 

can 

be written as 

C = A/d (parallel plate capacitor) (4.9) 

Note. The 

capacitance 

(ability to hold, or 

store, 

charge per volt) increases in proportion to the 
cross-sectional area of the plates, A. Thus 

doubling 

the area doubles 

C. The 

capacitance 

also varies in inverse proportion 

to 

the separation 

distance, d. Thus halving d doubles C as 
well. 

+P 

+ 
Fig. 4-11 
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Problem 4.24. A parallel 

plate 

capacitor has 

a capacitance of 2.5 pF and 

an 

area 

of 156 m2. 

What is the 

distance 

between the 

plates? 

If one 

applies 

a voltage of 75 V to the capacitor how much charge is collected on 

each 

plate? 

How much work is needed to move an 

additional 

charge 

of 1.8 x 10d8 C from the negative to the 
positive plate? 

Solution 

(a) The capacitance is given by C = eOA/d = 2.5 x 10-6 = (8.85 x 10-12)(156 m2)/d. 

Thus 

d = 5.52 x 10-4 m. 

(b) The 

charge 

is given by Q = CV = (2.5 x 10-6 FX75 V) = 1.88 x 10-4 C. 

(c) Since the 

charge 

we are moving is small compared to the 

charge 

already there the potential 

will hardly 
change 

as 

we move the 

charge. 

Therefore the 

work needed, which is just the 

increase 

in potential 
energy, will be given by AQV = (1.8 x 10-* CX75 V) = 1.35 x 10-6 J. 

Problem 4.25. A parallel 

plate 

capacitor 

is built from plates with areas of 888 m2 each 

and 

a separa- 
tion of 1.6 x 10-4 m. The maximum electric field that can exist in the 

capacitor 

before the air ionizes 
causing 

sparking 

is 3.1 x 106 V/m. 

(a) What is the 

capacitance 

of this 

capacitor? 

(b) What is the maximum voltage that can be applied to this capacitor? 

Solution 

(a) The 

capacitance 

is given by C = cOA/d = (8.85 x 10-'2)(888 m2)/(1.6 x 10-4 m) = 4.91 x 10-5 F. 

(b) The maximum electric field that the 

capacitor 

can stand 

before electrical breakdown is 3.1 x 106 V/m. 
The electric field is equal to Q/eOA = CV/eO A = 3.1 x 106. Thus V = (8.85 x 1O-I2)  (888 m2) 
(3.1 x 106 V/m)/4.91 x 1 O W 5  F = 496 V. This 

could 

have been derived 

more 

simply using the 

relation- 

ship that V = dE for a uniform field, giving V = (3.1 x 106 

V/m)(1.6 

x 10-4 m) = 496 V. 

Problem 4.26. A capacitor 

consists 

of two thin 

concentric 

hollow metal spherical shells of radii rl and 
r2 (rl  < r2) with charges Q and -Q, respectively 

(a) What is the 

capacitance 

of this capacitor? 

(b) Show that all the 

charges 

reside on the outer surface of the inner shell and the 

inner 

surface of the 
outer shell. 

Solution 

The 

potential 

produced 

by a uniform spherical shell of charge Q was calculated 

earlier 

and given by 
Eqs. (4.5): V = (1/4mO)Q/r for r > R and V = (1/471&o)Q/R for r < R. On the outer surface of the outer 

spherical shell the 

potential 

is zero, since we are outside of each shell and the 

potential 

is therefore 
V = V, + V2 = kQ/r + k(- Q)/r = 0, r 2 r2. On the outer surface of the 

inner 

shell the 

potential 

from 

sphere two is still -kQ/r2  but 

the 

potential 

from the 

first sphere is kQ/r, .  Thus V = kQ(l/r, - 1/r2), 
which is also 

the 

potential 

difference between the shells (since the 

potential 

at the second shell is zero). 
Then C = Q/V = 4m0/(1/rI - 1/r2). 

Since the 

potential 

is constant everywhere in the outer shell and beyond 

(actually 

zero) 

the 

electric field 
is zero everywhere in 

this 

region. Since E = c/e0 just outside 

a 

conducting 

surface, we have = 0 on 
the 

outside 

of the 

outer 

sphere, 

and all 

the 

charge, 

- Q, resides on the inside surface. Similarly, in the 
hollow region within the 

inner 

shell the 

potential 

is constant [(Eq. (4.5)] and the electric field again 
vanishes. Thus cr/eo on the 

inner 

surface 

vanishes 

as well, and the 

entire 

charge 

Q resides on the outer 
surface of the 

inner 

shell. 
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Problem 4.27. The two shells of Problem 4.26 have radii of 1.6 m and 1.8 m. 

(a) What is the 

capacitance 

of this arrangement? 

(b) How much voltage must be applied across 

the 

shells to store a charge of 3.7 x 10-8 C on the 
shells? 

Solution 

(a) The capacitance was derived in the previous problem and equals C = 4m,/(l/r, - 1/r2) = 4n(8.85 
x 10-*2)/[l/1.6 m - 1/1.8 m) = 1.60 x 10-9 F = 1.6 nF. 

(b) The charge is given by Q = C V ,  so V = Q/C = (3.7 x 10F8 C)/(1.6 x 10-9 F) = 23.1 V. 

4.7 COMBINATION OF CAPACITORS 

Capacitors have many applications in electrical circuits, both using constant sources of voltage such 
as 

batteries 

(Chap. 

3), and using time varying sources of voltage (Chap. 9) such as supplied by the 
electric utility. Often one-uses combinations of capacitors 

and 

we inquire into the result of making such 
combinations. 

There 

are 

two basic different ways in which one 

can 

combine capacitors. 

The 

two are 
called series and parallel combinations. We will see later 

that 

the 

same types of combinations 

can 

be 
applied to resistors as well. In what follows we will assume that the 

pair 

of close conductors 

constituting 

a capacitor is sufficiently far from the 

conductors 

making up the 

next capacitor, that we do not have to 
worry about “cross-capacitance” between the two capacitors. In addition, all connections between 
capacitors 

are 

made with conducting wire, and 

the 

conductors and 

wires so connected must all be at 

the 

same potential when we have equilibrium. For visual simplicity we will carry 

out 

our 

discussion in the 
context of parallel plate 

capacitors. 

First we discuss what is called the parallel connection of capacitors. Here one side of all the 

capa- 

citors are kept at a common potential by being connected to each other by a conducting wire, while the 
other sides of all the 

capacitors 

are 

kept at a (different) common potential by connection to a second 
conducting wire. This is illustrated in Fig. 4-12. Here 

the 

two sides of C1 (the symbol for a capacitor is 
-1 I-) are connected to points a and b by conducting wires and so are the two sides of capacitor C 2 .  If 
one 

has 

three capacitors 

in series one would connect C3 between the same two points. 

The 

left sides of 
the 

capacitors 

are thus at 

a common potential, 

and 

the 

right sides are at a different common potential. 
The 

potential 

difference across each capacitor is the same, since in each case it will equal I/a - Vb. This 

I I  
I I  

Fig. 4-12 
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is the defining characteristic of all parallel circuits: each branch 

has 

the same potential 

difference or 
voltage. We will use the 

next 

problem to develop 

the 

properties 

of a parallel 

circuit. 

Problem 4.28. Consider 

the 

two capacitors 

in Fig. 4-12, connected between a difference of potential, 
V = - v b .  

(a) What is the 

charge 

on the plates 

of each capacitor? 

(b) What is the total charge collected on 

the 

equipotential 

surfaces connected to points a and b? 

(c) If one replaced the two capacitors with a single capacitor, collecting the 

same 

charge 

between the 
two points, 

what 

capacitance 

would it have? 

(This 

is called the 

“equivalent” 

capacitor.) 

(d) If C1 = 2.3 pF and C2 = 5.7 pF, what is the equivalent 

capacitance 

of the 

combination? 

Solution 

(a) Q ,  = C, V and Q ,  = C, V ;  i.e., if V,  > V,, Q ,  and Q2 will appear on the left plates of 
respectively, 

while 

- Q ,  and - Q2 will appear on the right plates of C, and C2 . 

(b) The 

total 

charge is just the 

sum of Q ,  and Q, on side a and -(Q1 + Q,)  on side b. 

C ,  and C,, 

(c )  The 

equivalent 

capacitance would have 

to be charged to ( Q ,  + Q,)  when 

the 

potential 

difference across 
it is V .  Thus, C,,V = Q ,  + Q2 = C, I/ + C, V = (C, + C,)V. Dividing 

out 

by V we get: 

C,, = C, + C, (parallel combination) (4. I Oa) 

(d )  Using the 

given 

values 

for C, and C, we get C,, = (2.3 + 5.7) pF = 8.0 pF. 

If capacitor C, were also 

connected 

as shown 

in Fig. 4-12 the 

same 

reasoning as 

in Problem 4.28 

would lead to Ceq = C, + C, + C, . In general, for any number of parallel 

capacitors, 

(4.20b) 

The other possible way to combine two capacitors is in series. Consider 

the 

two capacitors 

in Fig. 
4-13. Here 

one 

plate 

of the first capacitor is connected to point a and the second plate is connected to 
the first plate of the next capacitor 

through 

point 

c. The second plate of the second capacitor is con- 
nected to point b. If there 

are 

more capacitors 

in series then 

the 

second is connected to the 

third 

and so 
on until 

the 

last 

is connected to point b. Now the 

potential 

across 

C, need not be the 

same 

as 

is the 

potential V 2  across C, , since V, = - Vb and 

points 

a and b are not 

connected. 

Indeed 

the 

total voltage between a and b is V = Vl + V,. If we examine the figure more closely, we note 
if the first plate of C ,  accumulates 

charge 

+Q1 (inserted or removed through 

point 

a), then 

the 

second 

plate of C ,  will have a charge of ( -Q1). This follows because if it did not, 

the 

electric field immediately 
outside 

the 

plate 

would not vanish, and charges would flow in the wire (through point c)  until 

the 

field 
vanished. 

This 

would occur when the 

charge 

is -Q1. From where did 

this 

-Q1 charge come? It 

must 

have come 

from 

the first 

plate 

of the second 

capacitor. 

In that case the second capacitor 

has 

the same 
charge as the first, +Q1 on 

its 

first plate. 

Using 

the same 

reasoning 

as 

for the first capacitor, we 

conclude that the 

second 

capacitor 

will have charge -Q1 on 

its 

second plate 

(where 

we presume that 
point b is connected to other parts of the 

circuit 

to or from which charges 

can 

flow). We are now ready 

- I/c, and V2 = 

I{ 
Fig. 4-13 
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to calculate the equivalent 

capacitance 

that we could use to replace C1 and Cz . 

Problem 4.29. Consider 

the 

two capacitors 

in series in Fig. 4-13. Calculate 

the equivalent 

capacitance. 

Solution 

We have just shown that each 

capacitor 

contains the same charge 

which we call Q. This is the 

charge 

which is supplied by the 

source 

of potential between a and b, and is the 

charge 

that will be on 

the 

equiva- 

lent capacitor that we can use to replace 

the 

combination 

of C, and C 2 .  Now V, = Q/C, and V2 = Q/C2. 
Then V = V, + V, = Q(l/C, + 1/C2) = Q/C,, . Thus 

(4.11a) 

The 

same 

reasoning as 

used in Problem 4.29 can be used to generalize to any number of series 

l/Ceq = 1/C, + 1/C, (seriescombination) 

capacitors : 

(4.1 1 b) 

Often we have situations in which a number of capacitors are used in a circuit, 

some 

in series and 
some in parallel. In many cases we can 

combine 

the results 

of Eqs. (4.1 0) and (4.2 1) to obtain an overall 
equivalent 

capacitance. 

Problem 4.30. Consider 

the 

combination 

of capacitors 

shown 

in Fig. 4-14(a). Here C, = 2.5 pF, C ,  = 

3.5 pF, C, = 5.6 pF and C4 = 1.3 pF. 

(a) What is the 

equivalent 

capacitance 

of C2 and C3 ? 

(b) What is the equivalent 

capacitance 

between points a and b?  

(c) If a voltage of 10.5 V were provided between points a and b, what charge would accumulate on the 
equivalent capacitance? 

(d) For case (c), what 

charge accumulates 

on capacitor 

C1? On capacitor C4 ? 

(e) What 

charge 

accumulates on capacitor 

C ,  ? On capacitor C ,  ? 

Solution 

(a) Capacitors C, and C, are in parallel 

(points 

c and d play the 

role 

of points a and b of Fig. 4-12). They 
can 

therefore 

be replaced with an equivalent 

capacitance 

of C,, = Cz + C3 = (3.5 + 5.6) pF = 9.1 pF 
[see Fig. 4-14(b)]. 

(b)  If we replace C ,  and C, with an equivalent 

capacitance 

C,, = 9.1 pF, we then have three 

capacitors 

in 
series. Using Eq. (4.11b), we get the final equivalent 

capacitance 

to be 1/Cf,,, = 1/C, + l/Ceq 
+ 1/C, = 1/2.5 + 1/9.1 + 1/1.3 = 1.28, and Cf, ,, = 0.78 pF [see Fig. 4-14(c)]. 

Fig. 4-14 
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(c) The voltage across Cf, ,, equals 10.5 V. Then 

the 

charge 

on the equivalent capacitor is Q = Cf, eqV = 
8.21 x 10-6C. 

(d) In a series circuit, the charge on each capacitor is the same and is equal to the 

charge 

on the 

equivalent 
capacitor. 

Thus 

the charge on both 

C ,  and on C,  is 8.21 x 10-6 C. 

(e) The 

total 

charge 

on the two parallel capacitors C2 and C ,  is the charge on C,, which equals 
8.21 x 10-6 C. This charge is distributed between C ,  and C,. To get the individual charge Q2 or Q3 
we need the voltage across each capacitor. We know that, for a parallel combination, 

the 

voltage 

across each capacitor is the same and is equal to the voltage across 

the 

equivalent capacitor. We can 
easily calculate the voltage across the equivalent 

capacitor 

V’ = Q/C,, = (8.21 x 10‘6 C)/(9.1 pF) 

= 0.90V.ThenQ2 = C2V’ = (3.5 x 10-6F)(0.90) = 3.16 x 10-6CandQ, = C,V’ = (5.6 x 10-6F)(0.90) 
= 5.05 x 10-6 C. Note 

that 

Q2 + Q3 = 8.21 x 10-6 C, as required. 

4.8 ENERGY OF CAPACITORS 

As stated previously, 

whenever 

we charge a capacitor we must do work to bring more positive 
charge to the plate that was already positively charged, and similarly to the negative 

plate. 

This work 

is 
converted into potential energy of the capacitor, which 

can 

be viewed as the energy stored by the 
charges that have been separated. As we will see, we can also take an alternative viewpoint that the 
effect of separating the 

charges 

is 

to produce an electric field in space, and that the accumulated energy 
is stored in these 

electric 

fields. 
If a capacitor is charged to a difference of potential V ,  then 

the 

work 

by an outside force that is 
needed to transfer an additional small 

charge 

AQ from 

the 

negative 

to the positive plate is 
(AQ)V = Q(AQ)/C. Using arguments similar to those 

used 

to calculate the potential energy of the spring 
(Beginning Physics I, Problem 6.Q we can show that the work needed to accumulate a charge of Q on 
the capacitor is W = (Q)Q2/C. Then the 

energy 

stored in a capacitor can be 

written 

as 

U ,  = ($)Q2/C = ( i )CV2  = ( f ) Q V  (4.12) 

Problem 4.31. Derive the expression 

for 

the electrical potential energy stored in a capacitor C with 
charge Q [Eq. (4.12)] 

Solution 

We know that when the 

capacitor 

is charged to some value qi the 

potential 

is given by 6 = qJC. The 
work necessary to bring the next increment of charge, Aq, across [so that 

the 

new plate charge will be 

(qi + Aq) and -(qi  + Aq)], is given by: AK = (Aq.  In Fig. 4-15 we show a plot of potential difference vs. 
charge for our 

capacitor, 

as 

well as the increment from qi to qi + Aq. Clearly, A& is just the area under the 
V vs. q curve between the 

adjacent 

dotted 

vertical lines. The 

total 

work done in bringing charges across, 

starting from q = 0 to q = Q is just the triangular 

area 

under the V vs. q curve between the origin and 
q = Q. This is just: W = ($)QV = ($)Q’/C = ( i ) C V 2  as indicated in Eq. (4.20). 

V 

t 

Fig. 4-15 
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Problem 4.32. A capacitor with C = 82.3 pF is charged to a voltage of 110 V. 

[CHAP. 4 

How much charge is accumulated on the capacitor? 

How 

much 

potential energy 

is 

stored in the capacitor? 

If the 

voltage 

on the capacitor is to be increased to 150 V, what additional work will have to be 
done? 

If the capacitor is discharged 

from 

150 V to 75 V, how much 

work 

can be done by the 

electric 

field 
on the 

moving 

charges? 

Solution 

(a) The charge on the capacitor is Q = CV = (82.3 pFXll0 V) = 9.05 x 10-3 C. 

(b) The potential energy is given by Eq. (4.12) as U, = ( f ) C V 2  = (ix82.3 x 10-6 FXllO V)2 = 0.50 J. 
(Alternatively, U, = ( f )Q2/C = (iK9.05 x 10- C)2/(82.3 pF) = 0.50 J). 

(c) The final potential energy is (1/2)(82.3 x 10-6)(150)2 = 0.93 J. The additional work is W = AU, = U,, 

(d) When the electric field does positive 

work 

the electric potential energy 

decreases 

by a like amount. 

- U,i = 0.93 - 0.50 = 0.43 J. 

Thus W = -AU, = U,i - U,, = 0.93 J - (jN82.3 x 10-6)(75)2 J = 0.70 J. 

Problem 4.33. Consider the combination of capacitors used in Problem 4.30, with 

the 

voltage 

of 10.5 
V between points a and b (Fig. 4-14). 

(a) What is the total potential energy stored in the combination? 

(b)  What is the 

energy 

stored on each of the capacitors? 

Soh tion 

(a) We showed that the equivalent capacitance of the combination between points a and b is 0.78 pF. 
Then the total energy stored is (i)C,, cq V 2  = (fM0.78 pF)(10.5)2 = 4.3 x 10d5 J. 

(b) For each capacitor we can use either U, = ($ )CV2  or U, = (i)QZ/C. On C ,  and C ,  we know that the 
charge is 8.21 x 10-6 C, so the energies are U,, = (fX8.21 x 10-6)2/2.5 pF = 1.35 x 10-5 J, and 
U,, = (+)(8.21 x 10-6)2/1.3 pF = 2.59 x 10-5 J. For C, and C3 we know that V’ = 0.90 V. Thus 

Up2 = ($)3.5 ~F)(0.90)~ = 1.4 x 10-6 J, and Up3 = (9x56 ~FX0.90)~ = 2.3 x 10-6 J. The total energy 
is then (1.35 + 2.59 + 0.10 + 0.23) x lO-’ J = 4.3 x 10-5 J, as we found in part (a). 

The energy that is stored in a capacitor can be viewed as the energy stored by the charge that has 
been separated. As a result of separating these 

charges, 

electric 

fields are established in space. We can 
therefore, 

alternatively, 

view the work done in separating the 

charges 

as the 

work 

required 

to produce 
these 

electric 

fields. The energy stored would 

then 

be 

viewed as the energy stored in these 

electric 

fields. 
We will illustrate this view by using a parallel plate capacitor as an example, but the result we derive 
will be valid for 

all 

situations in which electric fields are established. 

Problem 4.34. Consider a parallel 

plate 

capacitor whose 

plates 

have 

an area of A and are separated by 
a distance d. As shown 

previously 

the 

capacitance is given as C = c0A/d .  A difference of potential V is 
established between the 

plates. 

(a) Derive an expression 

for 

the 

energy 

stored in the capacitor in terms of the 

dimensions 

of the 
capacitor and the (constant) electric field within the capacitor. 

(b) Derive an expression 

for 

the 

“energy density” (the energy per 

unit 

volume) 

within the 

capacitor. 
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Solution 

(a) We know that the electric field within a parallel plate capacitor is E = V / d ,  and that the energy stored 
is U ,  = ($)CV2 = ( $ ) ( E ~  A/d)(Ed)2 = ( & ) ( E ~  E2)(Ad). 

(b) The volume 

within 

the capacitor is Ad. In this volume the electric field is given by the formula we used 
(again ignoring slight 

edge 

effects). Outside of this volume, the electric field is essentially 

zero. 

Thus the 
energy 

density 

is Up,, = ( 3 ) ~ ~  E2.  This is a general expression 

for 

the energy 

density 

(we will modify 

this 

slightly in the next section) 

U p d  = ( B E 0  E 2  (4.1 3) 

Problem 4.35. A parallel plate capacitor has a capacitance of 2.6 pF. The plates are separated by a 
distance of 0.63 mm. 

(a) If a voltage of 34 V is applied to the 

plates 

of the capacitor, calculate 

the 

energy 

stored in the 
capacitor. 

(b) Calculate the electric field within 

the 

capacitor. 

(c) Calculate the 

energy 

density within the 

capacitor. 

(4 Use the results of parts (a) and (b) to obtain the area A of the capacitor plates 

(e )  Calculate the energy stored in a cylindrical 

volume 

of base area A’ = 0.36 m2 extending 

from 

one 
plate to the other within 

the 

capacitor. 

Solution 

(a) The energy stored is (3)CV2 = ($)(2.6 pFH34 V)2 = 1.50 x 10-3 J. 

(b) The electric field within the capacitor is E = V/d  = (34 V)/(0.63 x 10-3 m) = 5.40 x 104 V/m. 

(c) The energy 

density 

is given by Upd = ( $ ) ( E ~ E ~ )  = (3)(8.85 x 10-12)(5.40 x 104)2 = 1.29 x 10-2 J/m3. 

(d) U ,  = Up,(Ad) -+ 1.5 x 10-3 J = (1.29 x 10-2 J/m2)(0.63 x 10-3 m)A -+ A = 185 m2. 

(e )  The volume of the cylinder is Ad = (0.36 m2)(0.63 x 10-3 m) = 2.27 x lOP4 m3. The energy stored in 
that volume is the energy 

density 

times 

the volume = 1.29 x 10-2(2.27 x 10-4) = 2.93 x 1OP6 J. 

4.9 DIELECTRICS 

So far we have 

discussed 

only cases 

in which charges establish 

electric 

fields and potentials in empty 
space or on conductors. If the 

region 

includes 

other, non-conducting materials, even when the materials 
are not charged 

(neutral), 

the 

atoms and molecules 

within 

that material 

may 

alter the fields that are 
otherwise produced. We 

have 

already 

seen that when neutral conductors are placed near free charges, 
the free charges in the conductors redistribute themselves on the 

surface 

and thereby produce fields of 
their 

own 

which must be added to the fields of the 

original 

charges. Unlike 

conductors other neutral 
materials do not have free charges and we must 

consider 

what mechanism might cause electrical 

effects 
to arise. 

Normal insulating materials consist of atoms and molecules that are composed of positively charged 
nuclei and negatively 

charged 

electrons 

that are tightly bound together with no loose outer electrons 
that are free to roam. In 

the 

presence 

of an electric field the 

positive 

and negative 

charges 

in the atoms 
and molecules are pulled in opposite directions. As a result, the atoms and molecules will become 
somewhat “polarized” with 

the 

positive 

and negative 

charges 

becoming 

slightly 

separated from 

their 

equilibrium 

positions. 

This 

separation is 

expected 

to be approximately proportional to the magnitude of 
the 

electric 

field as long as the field is not too large. The (slightly) separated charges will produce their 
own 

electric 

field which must 

be 

added to the field established by the 

original 

charges. 

In general 

this 

can lead to many 

complications, 

and we will consider 

only 

a special 

case 

in which the effect can be 
easily understood. 
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Consider a parallel 

plate 

capacitor 

which is filled with some insulating 

material. 

We call this 
material a “dielectric” since, as we will show, it will produce its own electric field in a direction 

opposite 

to 

the 

original 

field. If we place a surface charge 

distribution 

of _+ cr on 

the 

plates of the 

capacitor, 

this 

charge will produce 

an 

electric field of a/&, within the 

capacitor. 

The 

field will point from the positive to 
the negative plate. 

This 

field will cause a polarization of the 

material 

such 

that each atom will have its 
positive charge move closer to the negative plate (see Fig. 4-16). We will then have tiny “dipoles” 
throughout the material with positive charge to the left and negative charge to the right. 

In the 

interior 
of the dielectric the 

material 

remains uncharged 

since the shifting of negative charge slightly to the right 
from one 

parallel 

layer will be compensated by negative charge shifting into that layer from the next 
layer to the left. Only at the surfaces, next to the 

plates, 

will 

charge 

accumulate. 

On the left surface in 
Fig. 4-16 the 

electrons 

that shift to 

the 

right are not 

compensated 

for and a net positive charge appears; 
on the right surface negative charges moving from the layer just to the left of the surface accumulate on 
the surface, and cannot be compensated for by electrons moving further to the 

right. 

Since the bulk of 
the 

dielectric 

remains neutral, 

the 

net “polarization” charges on the two surfaces of the dielectric are 
equal 

and 

opposite. Thus 

the dielectric develops a surface charge next to each of the plates which is of 
opposite sign to 

the 

original charge 

on the plates. This is equivalent 

to 

an additional charge added to 

the plates which produces its own electric field in a direction 

opposite 

to 

the original field. The 

total 

field within the dielectric will therefore be reduced in this region. If the 

polarization 

is proportional to 
the field, then 

the 

new total field will be proportional to the field that would be produced in the absence 
of the dielectric material. We can 

then 

write that E = E,/K,  where E is the 

total 

field in the presence of 
the dielectric, E ,  is the field that would be present without the dielectric and K is the “dielectric 
constant” of the 

material. 

These dielectric constants vary from material 

to 

material, and 

some common 
examples are given in Table 4- 1. 

With this electric field the 

potential 

difference between the plates is I/ = Ed = E , ~ / K  = O ~ / K E ,  = 

Q ~ / A K E ~ ,  where cr and Q represent the free charge 

density 

and 

free total charge on the 

capacitor 

plates. 
Recalling that the 

capacitance 

without 

the dielectric is CO = cOA/d, we have I/ = Q / K C ,  = Q/C,  where 
C is the 

true 

capacitance 

in the presence of the dielectric. Thus C = KC, = K E , A / ~  = &A/d,  where E = 

K E ~  is called the “permittivity” of the 

material. 

(correspondingly, 

E,  is called the permittivity of free 
space.) Since K is always greater 

than 

1, the addition of a dielectric within a capacitor increases the 
capacitance by the 

factor 

K. 
The energy stored 

in 

the capacitor is still given by U, = ( i ) C V 2 ,  but 

both 

C and V are modified for 
a particular free charge Q on 

the 

plates. More 

charge 

is needed on each plate to produce 

the 

same 

+ 

t 

t 

+ 

t 

+ 

+ 

+ 

i 

I 

+ Charge L - Charge 

Fig. 4-16 
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Table 4.1. Dielectric Constants in 
Common Materials 

~~ 

Material Dielectric constant 

Vacuum 1 

Air 1.0005 

Teflon 2.1 

Mica 3-6 

Glass 5-10 

Paper 3.3 

Water 80.4 

potential difference. Correspondingly, 

the 

energy density within the dielectric is modified from its value 
in vacuum, and is given by Upd = (&E2. 

Problem 4.36. A parallel 

plate 

capacitor 

has plates with an 

area 

of 71 m2. The 

plates 

are separated by 
a distance of 0.63 mm and the capacitor is filled with a dielectric of dielectric constant K = 2.6. A 
voltage of 34 V is applied 

to 

the plates of the capacitor. 

Calculate 

(a) the capacitance of the capacitor, 
(b) the electric field within the 

capacitor, 

(c) the energy density within the 

capacitor, 

(d) the surface 
charge 

and 

charge density on 

the plates of the capacitor 

(the 

free charges) 

and 

(e) the surface charge 

and 

charge density on the 

dielectric layer near 

the plates. 

Solution 

(a) The capacitance is C = mO A/d = (2.6x8.85 x 10- 12)(71 m2)/(0.63 x 10-3 m) = 2.6 pF. 

(b) The electric field within 

the 

capacitor 

is E = V/d  = (34 VU(0.63 x 10-3 m) = 5.40 x 104 V/m. 

(c) The energy 

density 

is given by Upd = ($)(&E2) = (iX2.6 x 8.85 x 10-'2)(5.40 x 104)2 = 3.35 x 
J/m3. 

(d) The charge on the 

plates 

is Q = CV = 2.6 pF(34 V) = 8.84 x 10-5 C. The charge 

density 

is a = Q / A  
= 1.25 pC/m2. 

(e) The electric field within 

the 

capacitor 

is produced by two 

parallel 

charge distributions, 

that on 

the 

plates and that on the surface of the dielectric. Since the 

two 

distributions 

are of the 

opposite 

sign, 

the 
field produced is E = (a - bd)/&o = (Q - &)/A&, . Now from part (b) E = V / d  = 5.4 x 104 V/m and 
(a - a,)/(8.85 x 10-l2) = 5.4 x 104 -, a - go = 4.78 x 10-7 C/m2. Recalling a from part (d) we have 
a d  = 1.25 pc/m2 - 0.48 pc/m2 = 0.77 pC/m2. The total surface 

charge 

on the dielectric 

is then Q d  = 

a d A  = (0.77 x 10-6)(71) = 5-47 x i w 5  c. 

Problem 437. A potential difference of 25 V is maintained across the 

plates 

of a parallel 

plate 

capa- 
citor. 

The 

plates 

have an area of 43 m2 

and 

are separated by 1.56 mm. 

(a) What is the 

capacitance 

of the capacitor if it is filled with air? 

(b) How much energy is stored in this capacitor? 

(c) What is the energy stored in the capacitor if it is filled with a dielectric of dielectric constant 
IC = 1.9 and the potential is held fixed? 

(d) How much work is done when the dielectric is inserted between the 

plates? 

(e) How much charge is on the plates with and without the dielectric? 
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Solution 

(a) The capacitance is C = q ,A /d  = (8.85 x 10-l2)(43 m2)/(1.56 x 10-3 m) = 0.244 pF. 

(6) The energy stored = ( i ) C V 2  = (ix0.244 pF)(25 V)2 = 7.62 x 10-5 J. 

(c) The energy stored is changed because the capacitance is increased to xCO = 1.9(0.244 pF) = 0.464 pF. 
Then the energy stored is 1.44 x 10-4 J. 

(d) The work done is the change in the energy stored, which equals (1.44 - 0.76) x 10-4 J = 6.8 x 1OVs J. 
This work is done in the process of increasing the charge on the plates, as the dielectric is inserted, to 
keep the voltage across the capacitor fixed. 

(e) The charge in each 

case 

equals Q = C V .  For air, Q = (0.244 pF)(25 V) = 6.1 x 10-6 C. For the dielec- 
tric, Q = (0.464 pFK25 V) = 1.16 x 10-5 C. 

Problems for Review and Mind Stretching 

Problem 4.38. A square, of side 0.38 m, has a charge Q1 = 7.6 x 10-8 C at each of three corners, and a 
charge Q2 = -5.3 x 10-8 C at the fourth corner, as in Fig. 4-17. 

(a) What electric field is produced at the center of the square? 

(b) What potential is produced at the center of the square? 

(c) How much 

work 

must be 

done by an outside force to just remove Q2 to a very large distance 
(+ CO)? 

Solution 

(a) The magnitude of the field produced by each charge is IEI = kQ/r2. The directions of E from the Q1 at 
the two opposite corners are opposite and therefore 

cancel 

out. The direction of E, is toward q , ,  and 

has a magnitude of 1 E, 1 = (9.0 x 109)(7.6 x 10-8 C)/(0.38/,/2 m)' = 9.47 x 103 

V/m. 

The direction of 
E, is also toward y2 since 

Q2 

is negative, and has a magnitude of I E2J = (9.0 x 109)(5.3 x 

10-' C)/(0.38/,/2 m), = 6.61 x 103 V/m. The sum of these two fields is toward Q2, and equals 
(9.47 + 6.61) x 103 V/m = 1.61 x 104 V/m. This is the total field at the center of the square. 

(b) The potential at the center is the scalar sum of the potential due to each 

charge. 

It therefore equals 
V = 31/, + V, = k(3Q1 + Q2)/r  = (9.0 x 109)(3 x 7.6 - 5.3) x 10-8 C/(0.38/,/2 m) = 5.86 x 103 V. 

(c) To calculate the work needed to remove 

Q2 

far away, 

we must calculate the change in potential energy 
between the case of Q2 at infinity and at its present position. The change that occurs is that the 

potential energy 

between 

Q, and the three other charges becomes 

zero 

at my while the potential energy 

between the fixed three charges does not change. When Q2 is at its 

present 

position its potential energy 
equals the sum of kQ,Q,/r,, 

for 

each 

of the three charges. Two of the charges are at a distance of 0.38 
m from Q,, and the third charge is at a distance of 0.38,/2 m from 

Q,. 

Thus UPi = (9.0 x 109)(7.6 
x 10-' C)(-5.3 x 10-8 C)(2/0.38 m + 1/0.38,/2 m) = -2.58 x 10-4 J. The change in potential 
energy, which is the 

work 

that is needed, is 2.58 x 10F4 J. 

QI Q2 

91 QI 

Fig. 4-17 
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Problem 4.39. A dipole 

consists 

of a positive 

charge 

q at x = d/2 and a negative charge -q  at 
x = -d/2 (as 

in 

Fig. 

4-18). The dipole “moment”, p, is defined as p = qd, where d is the 

distance 

between the charges. 

(a) What is the 

potential 

produced 

by this dipole at a point 

on 

the 

x axis far from the 

dipole, 

i.e. at 
x p d? 

4 65 V a 

(b) What is the 

potential 

produced 

by this 

dipole 

at a point 

on 

the 

y axis? 

(c) What is the 

potential 

produced 

by this 

dipole 

at a point (x ,y)  far from the 

dipole, 

i.e. 
r = (x2 + y2)lI2 >> d? 

Solution 

(a) The potential is the sum of the potential from the two charges. Thus V = kq/(x - d / 2 )  - kq/(x + d/2).  
Combining by using the common denominator gives, V = kq[(x  + 4 2 )  - ( x  - d / 2 ) ] / [ ( x  + d/2)(x - d / 2 ) ]  
= kqd/(x2 - d2/4)  x k(qd)/x2 = kp/x2, since x 9 d.  In the numerator we were unable to neglect d 

compared to x ,  because the x canceled upon subtraction and we are left with d as a multiplicative 

factor, but in the denominator the x 2  term clearly dominates. 

(b) In this case the potential is V = k q / [ y 2  + ( ~ f / 2 ) ~ ] ~ / ~  - kq / [y2  + ( - d / 2 ) 2 ] ’ / 2  = 0. 

(c)  The distance from the charges to the point (x ,y )  is [(x - d/2)2  + y 2 ] 1 / 2  and [(x + d/2)2  + y2I1I2 for the 
positive and negative 

charges, 

respectively. 

For r & d, each of these is approximately equal to 
r = (x2  + y2)’l2, and we can use this approximation whenever we are not subtracting the two distances 

from each other. We can write I/ = k q [ l / [ ( x  - d/2)2 + y2]1/2 - l/[(x + d/2)2 + Combining 

using a common denominator we get V = [ k 4 / r 2 ] { [ ( x  + d/2)2 + y 2 ] 1 / 2  - [(x - d/2)2 + y 2 ] 1 / 2 } ,  where 
we have used the approximation that [ (x  f d/2)2  + y 2 ] 1 / 2  GZ ( x 2  + y2) l l2  = r in the denominator. Now, 
[ ( x  + d/2)2 + y2-y2 = [x2 + d x  + d2/4 + y 2 ] l / 2  Similarly, 

[ ( x  - d/2)2 + y 2 ] ’ / 2  = [ x 2  - dx  + d2/4 + ~ ’ 1 ’ ’ ~  x [ r 2  - dx]’l2 GZ $ 1  - dx/2r2).  V x (kq/r2) 
[ ( r  + dx/2r)  - (r - dx/2r)] = kqdx/r3 = k p  cos8/r2. This result gives us the correct answer for part 
(a) when 8 = 0 and for part (b) when 8 = 90”. 

x [ r 2  + d x p 2  x r(l + dx/2r2).  

Then 

Problem 4.40. A charge of Q1 = 4.35 x 10-8 C is at the 

center 

of a conducting 

spherical 

shell of inner 
radius r1 = 0.93 m and outer radius r2 = 1.07 m. The shell itself has a charge 

of 

Q’ = -7.55 x 10-* C. 

(a) What 

charge 

Qr is on the inner surface of the 

sphere 

and what 

charge 

Qz is on 

the 

outer surface? 

(b) What is the 

potential 

at r = 1.55 m? 

(c) What is the 

potential 

at r = 1.00 m? 

(d) What is the 

potential 

at r = 0.67 m? 

Y 

t 



130 ELECTRIC POTENTIAL AND CAPACITANCE [CHAP. 4 

Solution 

(a) The 

charge 

on the 

inner 

surface must equal 

Ql = -Q = -4.35 x 10-8 C 

in 

order 

that the field is zero 
within the 

conducting 

sphere. Then the charge 

on the 

outer 

surface 

must equal Qz = -3.20 x 10-8 C 
so that the total charge 

on 

the 

shell is Q’ = -7.55 x 10-8 C. 

(b) The 

potential 

at any 

point 

is the sum of the 

potential 

produced 

by the 

three 

charges: 

Q, Q1 and Q,. 
The 

potential 

from Q is kQ/r, and the 

potential 

from the 

charges 

on the 

surfaces is given by Eq. (4.5): 
(a) V = (1/47t&O)Q/r for r > R and (b) V = (1/4Z&O)Q/R for r < R. At r = 1.55 m we are outside of all 

the 

charge 

distributions, 

and the total potential 

is 

V = k(Q + Q1 + Q2)/r = (9.0 x 109X4.35 - 4.35 - 3.20) 

(c) At r = 1.00 m, we are outside of Q and Q1, but 

inside 

Q,.  Then V = k(Q + Ql)/r + kQ2/r2 = 0 + (9.0 

(d) At r = 0.67 m, we are inside Q1 and Q,, and V = kQ/r + k(Ql/rl + Q2/r2) = (9.0 x lO’H4.35 x 
10-8 C)/0.67 m + (9.0 x 109)(-4.35 x 10-8 C/0.93 m - 3.20 x 10-8 C/1.07 m) = - 106 V. 

x 10-’ C/1.55 = -186 V. 

x 109K-3.20 x 10-8 C)/1.07 = -269 V. 

Problem 4.41. The 

capacitance 

of two 

concentric 

spherical 

shells was calculated in Problem 4.26 as 
C = 4m0/(l/r1 - 1/r2). Show that as rl + r 2 ,  the 

capacitance 

approaches 

go A/d, where A is the surface 
area of the 

sphere 

and d = r 2  - r l .  

Solution 

The capacitance 

can 

be written as C = 4nc0 r l  r2/(r2 - rl). As rl  -+ r 2 ,  C + 4x6, r2 /d  = c0 A/d.  This is 
just 

the 

formula 

for a 

parallel 

plate capacitor 

of area A separated by d. Thus 

the 

two spherical surfaces 
behave like 

two 

parallel 

surfaces separated by d. 

Problem 4.42. A coaxial 

cable 

consists 

of an inner 

conducting 

cylinder 

of radius rl and a coaxial 
conducting 

cylindrical 

shell of inner 

radius 

r 2 .  Calculate 

the 

capacitance 

between the 

inner 

and outer 
cylinders for one meter of this 

cable. 

Solution 

We assume that the 

inner 

cylinder has 

a 

charge 

of + Q  and the 

outer 

cylinder has 

a 

charge 

of -Q. To 
calculate 

the 

potential difference 

between the 

cylinders 

we make use of the 

formulas 

given for charged 
cylinders in Eq. (4.7) for a 

long 

cylinder 

with surface 

charge 

at R: (a) I/ = -(A/2ne0) In (r/R‘) for r > R ;  (6)  

V = - ( A / ~ . / ~ K E ~ )  In (RIR’) for r < R. Here 1 = Q/L, and R‘ is an arbitrary radius, usually taken 

as 

R. The 
potential at rz will then 

equal 

V = Vl + V, = 0, since we get opposite 

contributions 

from the two surface 
charges using Eq. (4.74 for both. At r l ,  we must use Eq. (4.76) for V,, since we are now at r < r , .  Then 
V = - ( r l / 2 7 t ~ ~ )  In (rl/R’) - ( - I / 2 m O )  In (r2/R’) = (A/2mO) In (r2/rl) = (Q/2ze0L) In (r2/r1). The 

capacitance 

per unit 

length 

C/L = Q/VL = 27te0/ln (r2/r1). 

Problem 22.43. Several capacitors are connected 

as 

in Fig. 4-19(a). The capacitors have capacitance of: 
C1 = c6 = 2.5 pF, C2 = C, = C, = 1.5 pF, C ,  = 3.5 pF. The 

charge 

on 

C3 is Q3 = 5.3 x 10-6 C. 

(a) What is the equivalent 

capacitance 

between points a andf? 

(b) What is the difference of potential between points c and d? 

(c) What is 

the 

difference of potential between points b and e? 

(d) What is the difference of potential between points a andf? 

(e) What is the charge 

on 

each 

capacitor? 

Solution 

(a) We first calculate 

the 

equivalent 

capacitance 

of the 

three 

capacitors 

that are in series, C ,  , C, and C4. 
This is given by l/Ceq = 1/C, + l /C3 + l/C4 = 3(1/1.5 pF), or C,, = 0.50 pF. The circuit 

can 

then 

be 
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‘6 c4 

0.50 pF 

‘6 

+-I 
f -IT 

cbe 

redrawn 

as 

in Fig. 4-19(b). We then 

combine 

this capacitor 

and the 

parallel 

capacitor 

C ,  with an 
equivalent 

capacitor 

cb, of cb, = (3.5 + 0.5) pF, as in Fig. 4-19(c). Finally, we combine 

the 

three 

series 
capacitors in this figure to get the 

equivalent 

capacitance 

between a andS, C,, = 1/C, + l/cbe + 1/c6, 

giving Cof = 0.952 pF. 

(b) The 

potential 

difference between the 

points 

c and d is the 

potential 

across 

C, = Q3/C3 = (5.3 x 
10e6 C)/(1.5 x 10-6 F) = 3.53 V. 

(c) The 

potential 

difference between the 

points 

b and e is the 

potential 

across 

each of the 

parallel 

capa- 

citors 

Fig. 

4-19(b). The 

charge 

on the 0.50 pF capacitor is the same as 

on 

each of the 

three 

series 

capacitors, C,, C, and C,, which is 5.3 x 10-6 C. Thus Vbe = (5.3 x 10-6 C)/(0.50 x 10-6 F) = 

10.6 V. 

(d) The 

potential 

difference V,, will equal Q/C,, where Q is the 

common 

charge 

on each of the 

three 

series 
capacitors in Fig. 4-19(c). The 

charge 

on 

C,, can be calculated 

as 

Cbe&, = (4.0 x 10M6 FX10.6 V) 

= 4.24 x l O - ,  C. Then V,, = (4.24 x 10-’ C)/(0.952 x 10-6 F) = 44.5 V. 

In part (d) we already used the fact that Q1 = Q6 = Qbe = 4.24 x 10-’ c [Fig. 4-19(c)]. From Fig. 

4-19(a) we see that Qz = Q 3  = Q4 = 5.3 x 10-6 C. From Fig. 4-19(b) we see that Q ,  = C, vb, = (3.5 
x 10-6 FM10.6 V) = 3.71 x l O - ’  C. 

(e) 

Problem 4.44. In a certain region of space the equipotential surfaces are the 

surfaces 

of concentric 
spheres. The potential is given as V = - Vor/ro, where Vo = 38 V, is the potential at ro = 0.35 m and r is 
the distance from the center of the concentric 

spheres. 

(a) What is the direction of the electric field at a distance r from the 

center 

of the spheres? 

(b) What is the magnitude of the field at this 

value 

of r? 

(c) If a particle 

with 

a charge of 6.1 x lO-’ C and mass 9.3 x 10-l’ kg has a speed of 3.8 x 10’ m/s at 
t = 0.35 m, what 

is 

the speed of this 

particle 

when it reaches 

r = 2.8 m? 

Solution 

(a) The electric field lines are always perpendicular to the 

equipotential 

surface and 

point 

from high to low 
potential. 

The 

direction 

that is perpendicular to the 

surface 

of concentric 

spheres 

is the 

radial 

direction. 

Therefore the field points 

along 

a radius. Since the 

potential 

decreases as r increases (it becomes more 
negative), the field points away from the 

center 

(outward) 

along the radius. 

(b) The 

magnitude 

of the electric field is given by I E I = I AV/Ad I when Ad is along 

the 

direction 

of the 
field lines. To get I E l  we calculate V at T and at (r + At-) and subtract to get AV. This gives us 
I A V  I = (Vo/ro)[(r + Ar) - r] = V, Ar/ro.  Thus I E I = AV/Ar = Vo/ro, and 

the 

magnitude 

of E is con- 

stant throughout 

the 

region. 
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(c) We use conservation of energy in this part. This requires that the sum of the potential and kinetic 
energy be the same at both points. The potential energy is U = qV and the kinetic 

energy 

is K = 

($)mu’. Initially K = (3)(9.3 x 10-l5 kg)(3.8 x 105 m/s)’ = 6.71 x 10-4 J, and U, = q( - V,) = (6.1 

x 10-7C)(-38 V) = -2.32 x 10F5 J. At r = 2.8 m, U, = 4 -  Vor/ro) = (6.1 x 10-? C)(-38 x 2.8/0.35) 
= - 1.85 x 10-4 J. Then adding kinetic and potential energies, 6.71 x lOP4 - 2.32 x 10-5 
= - 1.85 x lOP4 J + K giving K = 8.33 x 10-4 J. Then uf = 4.23 x 10’ m/s. 

Note. Newton’s 

2nd 

law could 

be easily used to get this 

result 

only 

if the initial 

velocity 

were 
along a radius. Our result is quite general. 

Problem 4.45. A charge Q produces an electric field of magnitude I E 1 = kQ/r2 .  How 

much 

energy 

is 
stored by this 

electric 

field in a spherical 

shell 

at radius r and thickness Ar, where Ar < r? 

Soh tion 

Within this shell the electric field can be considered constant since r hardly 

varies. 

The energy 

density 

is given by U p d  = ( + ) E ,  E 2  = (~)~,[(1/4m,)Q/r~]’. For a thin shell the volume is equal to the surface area of 
the shell 

times 

the thickness of the shell, or volume = 4nr2Ar.  The energy stored equals u p d  x volume = 

QZAr/8m,  r2 .  

Problem 4.46. A parallel plate capacitor C is given a charge Q with air between the 

plates. 

The capa- 
citor is then 

isolated 

so that no charge can be added or removed 

from 

the plates. 

Then a dielectric, of 
dielectric constant IC, is inserted 

between 

the plates, 

filling 3 of the volume (see Fig. 4-20). 

(a )  What is the potential difference between the plates when there is air between the plates? 

(b) What is the potential difference between the 

plates 

when the 

dielectric 

material 

is between the 
plates? 

(c) What is the capacitance of the 

plates 

when the dielectric 

material 

is between the plates? 

Soh tion 

(a) The potential difference is V = Q/C. 

(b) The electric field is now produced by the charges on the plates and also by the polarization surface 
charges on the dielectric material. The charge on the dielectric material does not produce any field in 

the region outside of the dielectric 

since 

the two surfaces are oppositely charged and they add to zero 

outside the material. Within the material (as discussed in the text 

for 

the case of dielectric filling the 

U h c 

+Q 

I 

I 

I 

I 

I I 
I 

I 

I I 
I I 
I I 
I I 
I 

I 

I I 
I 

I 

I 

I 

I 

I 

I 

I 

I I 
I I 
I 

I 

I I 
I I 
I 

I 

I 

I 

I I 
I 

I 

I 

I 

I I 

-2 1;3d ; 



CHAP. 41 ELECTRIC POTENTIAL AND CAPACITANCE 133 

entire space) the electric field will be reduced to E,/rc, where E, = Q/tOA, the field for the dielectric 

free 

capacitor. If we now 

move 

along a line from the positive plate to the negative 

plate, 

the potential 
difference from a to b is E0(2d/3), and the potential difference from b to c is (E0/lc)(d/3). Then V = 

(c) The new capacitance is C’ = Q/V = C/(2/3 + 1/3rc). 

E,d(2/3 + 1 / 3 ~ )  = (Qd/tOA)(2/3 + 1 / 3 ~ )  = Q(2/3 + 1/3~)/C. 

Supplementary Problems 

Problem 4.47. A charge of 6.8 x 10-7 C is at a distance of 0.96 m from a second 

charge. 

The potential energy of 
the combination is -3.8 x 10-3 J. What is the charge on the other charge? 

A ~ ~ .  -6.0 x 10-7 c 

Problem 4.48. Three charges are at the corners of an equilateral triangle of side 2.5 cm. The charges 

have 

charge 
of 5.3 x 10-8 C, 

-6.9 

x 10-* C and -9.9 x 108 C. What is the total potential energy of the combination? 

~ n s .  - 7.5 x 10-4 J 

Problem 4.49. Two charges of 4 = 5.6 x 10-7 C are located on the x axis at x = k0.76 m. 

(a) What is the potential at x = 1.52 m on the x axis? 

(b) What is the potential at x = - 1.52 m an the x axis? 

(c )  What is the potential at y = 1.52 m on the y axis? 

(d) What is the potential at the origin, x = y = O? 

~ n ~ .  (a) 8.84 x 103 v; (b) 8.84 x 103 v; (cl 5.93 x 103 v; ( d )  1.33 x 104 v 

Problem 4.50. A charge of 5.3 x 10-7 C is located at the origin and a second charge of -4.5 x 10-7 C is on the x 

axis at x = 2.1 m. At what two points on the x axis is the potential equal to 500 V?  (Refer to Problem 4.5 

for 

a 
similar 

problem.) 

Ans. x = 1.073 m and x = -4.15 m 

Problem 4.51. A charge of 4.5 x 10-7 C is at x = -0.19 m and a charge of -5.3 x 10-7 C is at x = + 0.19 m. 
At what point or points on the y axis is the potential equal to -500 V? 

Ans. y = f 1.43 m 

Problem 452. A ring of uniformly distributed charge has a radius of 1.81 m and contains a total charge of 
6.5 x 10-7 c .  

(a) At what distance from the plane of the ring is the potential equal to 1100 V along the axis of the ring? 

(b) How much 

work 

must be done to move a charge of 3.8 x 10-7 C from this point to the center of the ring? 

Am. (a) 5.0 m; (6) 8.10 x 10-4 J 
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Problem 4.53. A large 

plane 

sheet has a 

surface 

charge density of 

3.7 x 10-' C/m2. Point a is at a 

distance 

of 2.1 
cm to the left of the sheet, point b is 1.1 cm to the left, point c is 1.1 cm to the 

right 

and point d is 2.1 cm to the 
right of the 

sheet. 

(a) What is the 

potential 

difference between points a and b, V,  - Vb ? 

(b) What is the 

potential 

difference between points b and c, Vb - V,  ? 

(c) What is the 

potential 

difference between points c and d,  V,  - V, ? 

Ans. (a) -20.9 V; (b) 0; (c) 20.9 V 

Problem 434. Two 

large 

parallel plane sheets 

are uniformly 

charged 

and separated by 5.6 cm. The sheet on the 
left has 

a 

surface charge density 

of 3.7 x 10-' C/m2 and the 

one 

on the 

right 

has a surface charge density 

of 
- 1.3 x 10-' C/m2. Point a is between the 

sheets 

at a 

distance 

of 1.2 cm from the left sheet, 

point 

b is between the 
sheets at a 

distance 

of 1.2 cm from the 

right 

sheet and point c is to the 

right 

of both 

sheets 

at a 

distance 

of 1.2 cm 
from the 

right 

sheet. 

(a) What is the 

potential 

difference between points a and b, V, - V,  ? 

(b) What is the 

potential 

difference between points c and 6, V,  - V, ? 

Ans. (a)  90.6 V;  (b) 50.2 V 

Problem 4.55. A charge of 6.2 x 10-' C is at the 

center 

of a 

charged 

conducting spherical 

shell of inner 

radius 

0.86 m and outer radius 0.91 m. At a 

distance 

of 1.00 m 

from 

the charge, the potential 

is 4.92 x 103 V. 

(a) What 

charge 

is on the 

sphere? 

(b) What is the 

potential 

on the 

surface of the 

sphere? 

(c) What is the 

potential 

at a 

point 

within the 

sphere 

at a 

distance 

of 0.50 m from the 

central 

charge? 

Ans. (a)  -7.33 x 10-' C; (b) 5.41 x 103 V; (c) 1.01 x 104 V 

Problem 456. A charge Q1 is at the 

center 

of a charged 

conducting 

spherical 

shell of inner 

radius 

0.54 m and 
outer radius 0.77 m that has 

a 

charge 

Q2. At a 

point 

0.40 m from the 

central 

charge, the potential 

is 985 V and on 
the 

sphere 

the potential 

is 880 V. 

(a) What is the 

charge 

Q1? 
(b) What is the 

charge 

Q2 ? 

Ans. (a) 1.80 x 10-' C; (b) 5.72 x 10-' 

C 

Problem 4.57. A long 

straight 

wire has 

a 

uniform charge of 6.3 x 10-' C/m. What is the difference of potential 
between a 

point 

a which is 0.62 m to the left of the wire and a 

point 

b that is 0.13 m to the 

right 

of the wire, i.e. 
what is V,  - V, ? 

Ans. -177 V 

Problem 4.58. Two 

long 

wires are parallel to each 

other, 

separated 

by a 

distance 

of 0.43 m, and have uniform 
charges of 1.9 x 10-' C/m and -7.3 x 10-' C/m, respectively. Point a is midway between the wires and point b is 
0.20 m 

from 

the 

negatively charged wire (and 0.63 m from the positively charged wire). What is the difference of 
potential V,  - V,? 

Ans. 46.3 V 
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Problem 4.59. Two long wires are each uniformly charged, with one along the x axis and the other along the y 

axis. The one along the x axis has a charge of 1.9 x 10-9 C/m, and the one along the y axis has a charge of 
2.5 x 10-9 C/m. Point a is at (0.15, 0.15), point b is at (0.45, 0.15), point c is at (0.15, 0.45) and point d is at (0.45, 
0.45). 

(a) What is the potential difference V, - V,  ? 

(b) What is the potential difference V,  - V,  ? 

(c) What is the potential difference V, - V,  ? 

Ans. (a) 49.4 V; (b) 37.6 V; (c) 87.0 V 

Problem 4.60. A long straight line 

carries 

a uniform charge of 6.6 x 10M9 C/m. A long conducting cylindrical 
shell, carrying a charge of -4.8 x 10-9 C/m is coaxial 

with 

the line and has an inner radius of 0.25 m and an outer 
radius of 0.27 m. Use R = 0.25 m for 

calculating 

the potential. 

(a) What is the linear charge density on the inner and on the outer surface of the cylinder? 

(b) What is the potential at r = 0.36 m? 

(c) What is the potential at r = 0.27 m, the surface of the cylinder? 

(d) What is the potential at r = 0.15 m? 

Ans. (a) - 6.6 x 10-9 C/m and 1.8 x 10-9 C/m; (b) - 11.8 V; (c) - 2.5 V; (d) 58.2 V 

Problem 4.61. A long wire has a uniform 

positive 

charge distribution along its length. 

(a) What are the equipotential surfaces 

for 

this wire? 

(b) In which direction does the electric field point? 

Ans. (a) cylindrical 

surfaces 

coaxial with 

the wire; (b) radially outward 

Problem 4.62. A long straight wire carries a charge of 4.9 x 10-' C/m. A short segment of insulating wire, of 
length 0.077 m, is parallel to the long wire, and carries a total charge of 6.8 x 10-6 C. How much work is needed to 
move this short wire 

from 

a distance of 5.3 m to 3.1 m from the long wire? 

Ans. 3.22 x lO-'J 

Problem 4.63. A dipole is at the origin, oriented along the x axis. The dipole moment is 6.7 x 10d9 C * m, with 
the positive charge on the positive x side. Two charges of f 5.0 x 10M6 C are separated by a distance of 0.39 m 
and placed along the x axis 

with 

the positive charge nearer the dipole at a distance of 2.10 m. Refer to Problem 4.39 
for the potentials. 

(a) What is the potential energy of the charges 

in 

this position? 

(b) If the charges are rotated by 90" and shifted so that the charges are now both at x = 2.10 m and y = k0.195 
m, what is the potential at this position? 

(c) How much work by an outside force was done to turn the charges? 

Ans. (a) 1.97 x 10-5 J;  (b) 0; (c) - 1.97 x 10-6 J 

Problem 4.64. A certain charge distribution gives a potential of V = -A/r4, where A is a positive constant and r 
is the distance from the origin. 

(a) What are the equipotential surfaces 

for 

this 

potential? 

(b) In which direction does the electric field point? 

(c) What is the magnitude of the electric 

field? 

(Hint: See Problem 4.13) 

Ans. (a) spherical surfaces 

centered 

on the origin; (b) radially in; (c) 4/rs 
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Problem 4.65. A proton has a speed of 6.0 x 106 m/s. The mass of a proton is 1.67 x 10-24 kg, and the charge is 
the same as on an electron (except that it is positive). 

(a) What is the kinetic 

energy 

of the proton in Joules and in eV? 

(6) If all the kinetic 

energy 

was 

gained by falling through a difference of potential, what difference in potential is 
required? 

Ans. (a) 3.01 x l O - I 4  J = 1.88 x 10’ eV; (b) 188 keV 

Problem 4.66. An electron is moving with constant speed 

in 

a circle around a proton. The centripetal force is 
supplied by the 

electrical 

force between the proton and the electron. The radius of the orbit is r = 0.53 x 10-lo 

(a) What is the potential energy of the system in eV? 

(b) Use the equation relating the (mass) x (centripetal acceleration) to the electrical 

force 

to deduce the kinetic 
energy of the electron in eV directly from the result of (a). 

(c) What is the total energy of the system 

in 

eV? 

(d) How much energy is needed to ionize the system, i.e. to remove the electron to a position at rest at infinity 
(total energy equal to zero)? 

Ans. (a) - 27.2 eV; (b) 13.6 eV; (c) - 13.6 eV; (d) 13.6 eV 

Problem 4.67. A particle, of mass 1.8 x 10-” kg and charge 1.6 x 10-l9 C is fixed to the origin. Another charge, 
of mass 

9.1 

x 10-3’ kg and charge - 1.6 x 10-19 C is 

initially 

at a distance of 9.3 x 10-l’ m from the origin and 
moving 

directly 

away 

from the origin 

with 

a speed of 5.14 x 10’ m/s. At what distance from the origin does this 
second 

particle 

stop and reverse its direction? 

Ans. 1.8 x l O P 9  m 

Problem 4.68. A capacitor is built out of two closely spaced concentric spherical 

shells 

separated by a distance of 
0.83 mm. The capacitance is 25 nF. What is the radius of the shells? 

(Refer 

to Problem 4.41.) 

Ans. 0.43 m 

Problem 4.69. A certain capacitor has an electric 

field 

of 2.85 x 10’ V/m when 

120 

V are across the capacitor. 

(a) What is the distance between the plates? 

(b) If the area of the plates is 33 m2, what is the capacitance of the capacitor? 

(c) What is the energy in the capacitor when the voltage across the capacitor is 120 V? 

(d) What is the electrical 

energy 

density 

in the capacitor at this voltage? 

Ans. (a) 0.42 mm; (6) 0.69 pF; (c) 5.0 x 10-3 J ;  (d) 0.359 J/m3 

Problem 4.70. Four capacitors are connected in 

series 

and a voltage of 12 V is connected across the circuit. The 
capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(6) What is the voltage across each capacitor? 

(c) What is the total energy stored in the system? 

Ans. (a) 0.416 pF; (b) 3.84 V, 2.00 V, 0.73 V, 5.42 V; (c) 3.0 x lO-’ J 

Problem 4.71. Four capacitors are connected in parallel and a voltage of 12 V is connected across the circuit. The 
capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(b) What is the charge stored on each capacitor? 

(c) What is the total energy stored in the system? 

Ans. (a)  11.5 pF; (b) 15.6 pC, 30 pC, 

82 

pC, 

11 pC; (c) 8.28 x 10-4 J 



CHAP. 41 ELECTRIC POTENTIAL AND CAPACITANCE 137 

Problem 4.72. 
The capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(b) What is the charge stored on each capacitor? 

(c) What is the total energy stored in the system? 

Four capacitors are connected as in 

Fig. 

4-21 and a voltage of 12 V is connected across the circuit. 

Ans. (a) 2.55 pF; (b) 10.5 pC, 20.1 pC, 26.9 pC, 3.6 pC; (c) 1.84 x 10-4 J 

Problem 4.73. A capacitor filled with air has a capacitance of 25 pF. What capacitance would the capacitor have 
if it were filled with paper? 

Ans. 82.5 p F  

Problem 4.74. An air filled capacitor has a capacitance of 25 pF. If 1/4 of its volume 

were 

filled with paper, what 
capacitance would it have? (See Problem 4.46.) 

Ans. 30.3 pF 

Problem 4.75. An air filled capacitor has a capacitance of 25 pF, and a constant voltage of 18 V is across the 
capacitor. 

(a) How much charge is stored on this capacitor? 

(b) If the capacitor were filled with paper, and the voltage remained the same, 

how 

much 

charge would be stored 
on the capacitor? 

(c) How much energy is stored in the system in each case? 

Ans. ( U )  4.5 x 10d4 C;  (b) 1.49 x 10-3 C;  (c) 4.05 x lO-’  J, 1.34 x 10-’ J 

Problem 4.76. A capacitor has an area of 91 m2 and the plates are separated by 0.86 

mm. 

We 

want the capacitor 

to have a capacitance of 25 pF. What must be the dielectric constant of the material filling the capacitor to give this 
capacitance ? 

Ans. 26.7 

1.3 pF 

0.92 pF 

Fig. 4-21 



Chapter 5 

Simple 

Electric 

Circuits 

5.1 CURRENT, RESISTANCE, OHM’S LAW 

We have learned previously that an electric field exerts a force on charged particles. If there is an 
electric field in a material that has free charges (those not held 

tightly 

to the nuclei) 

then 

those 

charges 
will be induced to move. In the 

previous 

chapters we noted that when charges are placed on a conduc- 
tor the charges will quickly 

move 

to the surface in such a way that the field will be 

reduced 

to zero 
within 

the 

conductor, thus achieving 

electrical 

equilibrium. Indeed, if there were an electric field in the 
conductor, the “free” charges 

would 

keep moving, 

so the vanishing of the electric field is a requirement 
for 

equilibrium. 

Furthermore, as we saw, a consequence of the vanishing of the electric field in the 
conductor is that the entire conductor is an equipotential region. 

Suppose, 

however, 

we never 

allow 

equilibrium to be reached. For example, suppose we insert charge on one side of the conductor and let 
charge escape 

from 

the 

other side in a continuous way so that the conductor can never 

reach 

equi- 

librium. In this 

case 

we can maintain an electric field in the conductor and charges will be continuously 
moving due to the 

force 

caused 

by the electric field. Also, there will now be a potential difference 
between the 

two 

ends of the conductor, with the electric field pointing from 

high 

to low potential, as we 
learned 

previously. 

As the 

charges 

are pushed by the electric field from one end to the other, positive 
work is done, and the potential difference 

represents 

the electrical energy lost per unit 

charge that 
completes 

the 

trip. 

To maintain the steady flow of charges 

therefore 

requires 

an external source of 
energy that in effect takes 

charges 

leaving 

one end and brings 

them 

back 

to the other end, thus repleni- 
shing 

the 

lost electrical energy. 

The external 

source, 

in effect, maintains a net positive-negative charge 
separation between the 

two 

ends of the conductor, which of course is what 

causes 

the 

potential differ- 
ence (and associated 

electric 

field) to be maintained. 
There are many external sources of energy that can maintain the charge separation in a steady way. 

A battery, which we will discuss later in this chapter uses chemical 

means 

to separate charges. An 
electric 

generator 

uses magnetic fields to generate 

electric 

potentials in a manner to be discussed in a 
later chapter. The important point is that we can produce diflerences of potential which can be sustained 
between two 

points, 

and which will cause 

electric 

fields to exist 

within 

conductors. The free charges in 
the conductor will then continuously move through the potential difference 

(voltage) 

and the external 
source of energy will have to continually supply charges to replenish 

those 

that have 

moved 

away 

and 
maintain the 

voltage. 

The energy 

per 

unit 

charge supplied by the external source 

in 

maintaining the 
voltage is called 

the 

EMF (“electromotive 

force”-although 

it 

is not a force, but the 

name 

has stuck for 
historical 

reasons), 

and it is the EMF that replenishes 

the 

electrical energy lost as the charges 

flow 
within 

the 

conductor. In a steady state situation the external energy 

supplied 

per unit 

charge returned 
to the front end of the conductor exactly equals the electrical 

energy 

per unit 

charge expended in 
moving a unit charge through the conductor (from front to back). 

Hence 

the 

EMF equals the 

voltage 

across the conductor. 
Suppose that we have a wire, with a uniform 

cross-sectional 

area A and a length L, as in Fig. 5-1 
and that there 

is 

an EMF that maintains a difference of potential Vl - V2 across the ends of the wire. If 
V, is greater than V 2 ,  there will be an electric field within 

the 

wire pointing from Vl to V 2 ,  i.e. to the 
right in the 

figure. 

This will exert a force on the charges in the conductor which is to the right 

for 

positive 

charges 

and to the left for 

negative 

charges. 

Consequently, if there are free positive charges they 
will move to the 

right 

and if there are free negative charges they will move to the left. In either case 

the 

electric 

force 

does positive 

work. 

In general, if we move 

positive 

charges 

to the right then the right 

side 

will tend to become positively charged and the left side will tend to become 

negatively 

charged. 

Simi- 

larly, if we move 

negative 

charges 

to the left, the right 

side 

will still 

tend 

to become 

positively 

charged 

and the left side 

negatively 

charged. 

We therefore 

see 

that positive 

charge 

moving 

to the right has the 

138 
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L 

Fig. 5-1 

same effect as negative charge moving to the left. In both cases we are in effect transporting positive 
charges to the 

right. 

By convention it is usual to talk as if positive charge is moving, even if in fact it is 
negative charge that is moving in the opposite direction. If the moving “positive” charge is removed 
when it 

reaches 

the end 

(by 

the source of EMF) and returned to the front, then there will be a steady 
flow of positive charge from the high to the low potential side of the wire. The amount of charge that 
flows through the wire per 

second 

is called 

the current. The symbol we use for current is I, and the unit 
is ampere (one ampere is one coulomb/s). By our convention, the direction of the current is the direction 
of flow of positive 

charge. 

As noted above, 

this 

means that the current always flows from 

high 

to low 
potential irrespective of whether the charges that are really 

moving 

are positive or negative. Of course, 
for 

positive 

charges 

the current is 

actually 

in 

the same direction as the charges that are moving while for 
negative 

charges 

the current is flowing in the direction opposite to the direction in which the charges 
are moving. In conductors we always 

have 

current carried by electrons that are negatively charged, but 
there are materials in which the flow contains positive 

charges 

or both positive and negative 

charges. 

Mathematically, the current is defined as 

I = Aq/At (5-1) 

where Aq is the effective positive 

charge 

passing 

a cross-section of the conducting wire in the time At, 

and the direction of I is the direction of flow of positive 

charge. 

It can easily 

be 

shown 

that the current flowing into one end of a conducting wire (say 

the 

left end in 
Fig. 5-1) must 

be 

the same as the current flowing out the 

right 

side. 

If the current flows were even 
slightly 

imbalanced 

there would 

be 

a build up of charges and associated 

electric 

field that would 

rapidly 

return the currents to equality. This turns out to be true even if the wire is quite long, and even when we 
are dealing 

with 

time varying 

currents (a later chapter) unless those 

time 

variations are extremely rapid. 
By similar 

reasoning 

we see that the current is the same at every 

position 

along the wire, even if the 
cross-sectional area of the wire is different at different 

locations. 

Problem 5.1. A current consists of electrons that are moving to the left. The magnitude of the current 
is 3.4 A. 

(a) What is the 

direction 

of the current? 

(b) If the charge on each 

electron 

is 

1.60 x 10-l9 C,  how 

many 

electrons 

are passing through the area 
of the wire per second? 

Solution 

(a) Since the electrons are negatively charged the current flows in the direction opposite to the electrons. 
Therefore, the current flows to the right. 

(b) The amount of charge transported per second equals the current, and I = 3.4 A = 3.4 C/s. If there are 
n electrons transported per second, there would be ne coulombs transported per second. Thus 

I = ne = n(1.60 x l O - I 9  C) = 3.4 A, and n = 2.13 x 1019 electrons/s. 

Since the potential difference across a wire is just the work done by the electric field in the wire in 
moving a charge from one end to another, we expect that increasing the potential difference will cause a 
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corresponding increase 

in 

the electric field. The electric 

field, 

in 

turn, exerts the force on the free charges 
in the wire (the electrons) that causes the current to flow. The larger the electric field the larger the 
current we should get. Thus, increasing the potential difference across a wire will increase the current. 
For a given potential difference, we would 

expect 

that the amount of current would depend on the 
material the wire 

is 

made of, as well as on such factors as the cross-sectional area and length of the wire. 
For some materials we expect the current to be small 

since 

they may 

be resistant to the flow of current. 
We define a quantity called the resistance of the wire, R,  as the ratio of voltage across the wire to the 
current flowing through the wire, R = V / I ,  or V = IR. The wire itself is 

called 

a resistor. The unit 

for 

R 
is V / A  which we call an ohm (Q). It is not necessarily true that R will be a constant, independent of I 
and V ,  and there are many cases 

where 

R does vary. 

However, 

for most ordinary conducting materials 
and for ordinary currents, R is very nearly a constant. We 

call 

such materials ohmic materials, because 
they 

satisfy 

Ohm’s law that R = V / I  is a constant, or in other words, the current is 

directly 

proportional 
to the voltage, 

with 

R as the constant of proportionality: 

V = IR  (5-2) 

Unless stated to the contrary we will discuss 

only 

ohmic materials in the remainder of this chapter. The 
symbol that we use for a resistor is -. 

Problem 5.2. A certain resistor has a current of 1.8 A when a potential difference of 120 V exists across 
the resistor. 

(a) What is the resistance of the resistor? 

(6) If the potential difference is only 50 V, what current will flow in the resistor? 

Soh tion 

(a) The resistance is R = V / l  = (120 V)/(1.8 A) = 66.7 R. 

(b) The current is I = V / R  = (50 V)/(66.7 R) = 0.75 A. 

As stated earlier, we expect the resistance to depend on the dimensions of the conductor as well as 
on the material from which 

it 

is made. For instance, if we double the cross-sectional area A of the wire, 
we would 

expect 

to double the current since 

this 

is 

equivalent to having two adjacent wires of the same 
material and length with the same voltage across them, each of cross-sectional area A, and hence each 
carries the same current and the total current is the sum of the two currents. Thus, from Ohm’s 

law, 

the 
resistance 

halves 

when 

we double the area and R is inversely proportional to the area. If we double the 
length, d, of the wire 

(keeping 

the same potential difference) then we can think of the wire as made up of 
two identical segments 

with 

the same current flowing. Then the potential difference across each segment 
would be equal, and have one half of the potential difference across the whole 

wire. 

From Ohm’s 

law 

half the voltage 

with 

the same current means half the resistance. Thus the whole 

wire 

has double the 
resistance as does each 

half, 

and the resistance 

is 

directly 

proportional to the length. Thus R a (d/A) ,  or 

R = pd/A, (5-3) 

where the constant of proportionality, p, depends on the material being 

used 

and has the dimensions of 
Q - m. This quantity p is called the resistivity of the material. For ohmic materials, p is a constant. 
Materials that conduct electricity very easily 

have 

low resistivities 

and materials that resist the flow of 
current have 

high 

resistivities. 

There is a tremendous range of values 

for 

resistivities 

between 

good 
conductors and good insulators. In fact, there are materials that have zero 

resistivity 

at low enough 
temperatures, and these materials are called superconductors. In Table 5.1, we list the of resistivity of 
some materials. 

While 

Ohm’s 

law 

has been 

expressed 

as a relationship between potential difference and current, 
underlying this is the relationship between the electric field in a wire and the consequent rate of flow of 
the charges. For a uniform 

wire 

of length d and cross-section A under potential difference V ,  the electric 
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Table 5.1 Values of Resistivity of Materials 

Material Resistivity (Sr . m) 

Metals : 

Silver 

Copper 

Gold 

Aluminum 

Tungsten 

Steel 

Lead 

Mercury 

Semiconductors : 
Pure carbon 

Pure germanium 

Pure silicon 

Insulators : 

Amber 

Mica 

Teflon 

Quartz 

1.47 x 10-8 

1.72 x 10-8 

2.44 x 10-8 

2.63 x 1OV8 

5.51 x 10-8 

20 x 10-8 

22 x 10-8 

95 x 10-8 

3.5 x 10-5 

0.60 

2300 

5 x 1014 

10~1-1015 

7.5 x 10i7 

1016 

field along the wire 

is 

constant and we have I/ = Ed. Then from Ohm’s law and Eq. (5.3) we have 
Ed = Ipd/A, or E = p(I/A).  We 

define 

the current density J as the current/unit cross-section area so: 

J = I /A ,  (5-4) 

and we get: 

E = p J  (5-5) 

which is actually a more fundamental statement of Ohm’s 

law 

in 

terms of the electric field, and does not 
depend on the dimensions of the wire but only on the nature of the material of which it is made. 

Problem 5.3. A resistor is made from pure carbon, and has a length of 0.21 m. The resistance of the 
resistor is 25 0. 

(a) What is the cross-sectional area of the resistor? 

(b) If the voltage across the resistor is 100 V, find the current density. 

(c)  Find the electric field. 

Solution 

(a) The resistivity of carbon is 3.5 x 10-5 R - m. Therefore, 

using 

R = p d / A  = 25 R = (3.5 x 10-5 R . m) 
(0.21 m)/A, we get A = 2.94 x l O - ’  m2 = 2.94 x 10-’ mm2. 

(6) From Ohm’s 

law 

V = ZR -, Z = (100 V)/(25 a) = 4 A. Using the results of part (a), J = (4A)/(2.94 
x 10-7 m2) = 1.36 x 107 A/m2. 

(c) Ed = I/ -, E = (100 V)/(0.21 m) = 476 V/m; or, using 

Eq. 

(5.5)’ E = p J  = (3.5 x lOP5 Sr - mK1.36 x 
107 A/m2) = 476 R . A/m = 476 V/m, as before. 
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Problem 5.4. 

(a) A resistor, of length L and area A has a resistance R.  If the 

same 

volume 

of material is doubled in 
length, 

what 

is the 

new resistance? 

(6) If the same voltage 

is 

applied 

to both resistors, 

how 

are the currents related? How are the current 
densities related? How are the 

electric 

fields related? 

Solution 

(a) The volume is AL and remains the same. 

Therefore, 

for 

our new resistor, A’L’ = AL = A’(2L), and 
A’ = 4 2 .  Then R’ = @’/A’ = p ( 2 L ) / ( A / 2 )  = 4pL/A  = 4R. Thus the resistance is quadrupled. 

(b) Since the resistance quadrupled, the currents are related by I’ = I/4. Furthermore 
Ed = E’d‘ = E’(26) -+ E’ = E/2 ,  so the electric field is halved. 

Lastly, 

J’ = Z’/A‘ = (Z/4)/(A/2) = 1/2A 
= J / 2 .  

The mechanism by which resistance is produced in a material can be thought of as follows. When 
the free electrons are accelerated by the force of the 

electric 

field their velocity increases in the direction 
of the force. If there were no other interactions, then the velocity would continue to increase 

until 

the 

electron 

leaves 

the wire. This, of course, 

is 

not what happens in an ohmic material. 

(Such 

situations can 
occur in a vacuum, but even in vacuum 

tubes, 

which were the 

first 

means for 

providing the “non-linear” 
elements of modern technology, charges were slowed down by accumulated “space charge” near the 
electrodes.) In solid materials the electrons collide 

with 

the atoms of the material and with any impu- 
rities in the material and thereby 

lose 

energy 

and momentum to the material. Under normal conditions, 
this 

results 

in 

electrons that, on average, acquire a constant “drift” velocity in the direction of the force 
which they maintain throughout their 

travel 

in the 

material. This drift 

velocity, 

U,, increases 

linearly 

with 

the 

electric 

field, and hence 

with 

the voltage across the 

resistor. 

We can calculate 

the 

current in 
terms of this 

drift 

velocity 

if we know the density of free electrons in the material. 

Problem 5.5. At a certain voltage across a resistor the electrons 

develop 

a drift 

velocity, 

U,, in the 
direction opposite to the electric field. There are n free electrons/m3 in the material, and the 

cross- 

sectional area of the 

resistor 

is A .  

(a) Find an expression 

for 

the 

current produced by these 

electrons 

in terms of n, e, U, and A.  

(6) Find an expression 

for 

the resistivity 

of this material in terms of n, e, U, and the electric field E .  

Solution 

The current is defined as the amount of positive charge passing through the area A per 

second. 

The 
amount of positive charge will be equal to the number of electrons passing through the area, times the 
charge on an electron, except that it will be in the direction opposite to the direction of motion of the 

electron, since the electron has negative charge. During a time At, the number of electrons that pass 
through a given cross-sectional area will be all those that are near enough to the area to reach 

it 

in 

the 
time Ar. Since the electrons travel a distance u,At in 

this 

time, 

the number of electrons passing through 
A are all the free electrons in an imaginary 

cylinder 

of length uDA~ and area A. Since n is the number of 
electrons per 

unit 

volume 

and the volume of the cylinder is AuDAt, we have that the number passing A 

in 

time 

At equals nAu,At, and the charge passing through the area is neu,At. Thus the current is 
Z = Aq/At = n e h D ,  and the direction of the current is in the direction of the electric 

field. 

The resistance of the resistor is R = V / I  = Ed/ l  = Ed/neAuD, where we have used the result of part (a). 

From Eq. (5.3) we also have R = p d / A  and equating the two expressions we get p = E/neuD. If the drift 
velocity is proportional to the electric field, then this ratio, uD/E = p (the mobility of the electrons) is 

constant and p = l/nep, or Q = l/p = nep, where Q is called the conductivity of the material. 
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5.2 RESISTORS IN COMBINATION 

As in the case of capacitors we often 

build 

circuits 

with a combination of resistors. There are two 
basic ways to connect two resistors, in series and in parallel. 

We 

will discuss 

each 

case separately 

and 
then discuss combinations of many resistors. 

If resistors are connected in series, as in Fig. 5-2, it 

is 

clear 

that each 

resistor 

carries the same 

current as the other resistors. 

This 

is because any charge entering one resistor in series will exit 

from 

that resistor and then must enter the next 

resistor. 

Since 

the voltage across a resistor equals I R  and the 
resistors do not necessarily 

have 

the same resistance, there will be different 

voltages 

across each 

resistor. 

In the next 

problem 

we calculate the equivalent 

resistance 

of several 

resistors 

connected 

in series. 

Problem 5.6. Two resistors R ,  and R, are connected in series as in Fig. 5-2(a). What is the 

equivalent 

resistance of these 

resistors? 

Solution 

The voltage across the combination is V = V,  - V,  = (V ,  - V,) + (V, - V,) = V, + V,, where V, is the 
voltage across R ,  and V, is the voltage across R , .  We also know that the current is the same in the two 
resistors, and we call this current 1. The equivalent resistance will be V/I = R = (V, + VJ/I = Vl/Il 

+ VZ/I2 = R ,  + R ,  or R = R ,  + R , .  It is not hard to see that this can be extended to any number of 
resistors 

in 

series: 

R , ,  R ,  , R , ,  . . . and we have: 

(5-3) Re, = R ,  + R ,  + R ,  + . . 

. 

= 1 Ri (resistors in series) 

It makes 

sense 

that the 

equivalent 

resistance 

is greater than any individual 

resistor 

since the 

current 
has to overcome the resistance of each 

resistor 

before the 

current reaches the end of the series. In the 
case of parallel 

resistors, 

shown 

in Fig. 5-2(6), the opposite is true. In this case the current that comes 
from 

the 

source of potential can go through one of two paths, and the 

equivalent 

resistance 

should be 
reduced 

because 

there are two paths that are available. 

This 

is shown in the 

next 

problem. 

Problem 5.7. Two resistors, R I  and R ,  are connected 

in 

parallel 

as in Fig. 5-2(b). Calculate the equiva- 
lent 

resistance 

of these 

resistors. 

Note. We assume that the wires leading up to the resistors 

themselves 

have 

negligible resistance. 

Solution 

In this 

case, 

both resistors are connected 

between 

points a and b, so that the voltage across each is 

V,  - V, = V = V, = V, . This is true for all 

parallel 

circuits-the voltage is the same across all the elements. 
Since the current through each individual resistor 

is 

Ii = V/Ri and the resistances can be different, the 
current in each 

resistor 

can be 

different. 

The current flowing out of point a divides into two paths, with 
some of the current flowing along path one through R ,  and the remainder along path two through R , .  

V I- 

Fig. 5-2 
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Therefore, I, + I, = I, and noting I = V/R,, , I, = V/R, and I, = V / R , ,  we get (dividing out the 

common 

V): 

If we have more 

than 

two resistors in parallel a similar 

analysis 

leads 

to: 

l/Req = 1/R, + 1/R2 + 1/R3 + . . .  = 1 1/Ri (5-46) 

There are major practical 

differences 

between 

connecting resistors in series and in parallel in a 
circuit. In a series connection, the current is the same for 

all 

the elements. 

If the current is 

reduced 

to 
zero in one of the 

resistors 

because the resistor 

“burns out” (i.e., no longer 

allows 

charges through-in 
effect becoming a resistor 

with 

an infinite 

resistance), 

then the current will become 

zero 

in all the 
resistors. 

Therefore 

one avoids connecting light bulbs or other devices in series, 

because 

if one of them 
burns out they will all go out. For the same reason, a fuse is connected in series. A fuse is a device which 
has very low resistance, and is made of material that will melt (i.e. burn out) when the current gets too 
high. The fuse burns out before other wires or resistors burn out or get so hot that nearby objects 

catch 

fire. When the fuse burns out all current ceases 

in 

the series 

circuit. 

For parallel connections, the current 
flowing through any parallel path i is V / & ,  and, for a fixed potential difference, 

this 

current is not 
affected by adding or subtracting other parallel 

resistors. 

The current flowing into the 

parallel 

circuit 

increases as additional resistors are connected 

between 

the same points, and the additional current is 
just the current flowing through that added resistor. The equivalent 

resistance 

will decrease 

because 

more current will flow for the same voltage. 
It is important to note that Figs. 5-2(a) and 5-2(b) represent 

only 

parts of what is called a circuit. 
For example, in Fig. 5-2(a) the current leaving point c presumably 

travels 

through other wires and 
through a source of EMF which drives 

the 

current through these additional wires connected 

back 

to 
point a. Fig. 5-3(a) and 5-3(b) show very simple 

closed 

circuits for the cases 

of Fig. 5-2(a) and (b). Since 
in these 

simple 

cases 

no other resistors appear in the circuit the EMF equals the 

voltage 

across both 
resistors in each 

case. 

The voltage 

represents 

the electrical 

energy 

lost/unit 

charge moving through the 
resistors [from a -, b -, c in 5-3(a) and from a + b in 5-3(b)] while the EMF is the non electrical 

energy/ 

unit charge delivered by the source of EMF (as charges pass through) to replace 

the 

lost electrical 

energy. As long as the source of EMF keeps 

supplying 

energy 

we have a “steady state” situation in 
which the current will keep flowing. EMF is discussed in more detail in the next 

section. 

Problem 5.8. Consider the series portion of a circuit 

shown 

in Fig. 5-4. The current in the 

circuit 

flows 
from a to b and is 2.3 A. 

(a)  What is the 

equivalent 

resistance? 

(b) What is the voltage across the entire circuit? Which point, a or b, is at the 

higher 

potential? 

(c) What is the 

voltage 

across each resistor? 

+ 

EMF = (&= V) 

(Lo 

Fig. 5-3 

” I 

E M F = ( P =  V) 
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R,= 60 R 

o b  

R,= 25 R 

R,=4QR R 2 = 6 Q R  R,= 25 R 

a e  2 e b  

Fig. 5-4 

I 

Solution 

The 

equivalent 

resistance is the sum of all the resistances, or Re, = 40 + 60 + 25 = 125 f2. 

The voltage across 

the 

entire 

circuit is Vto,,,, = IR,, = (2.3 A)(125 Q) = 288 V. Since the current flows 

from a to b, and 

the 

electric field does positive work in pushing charges through 

the 

resistors, energy is 

lost as 

the 

charges move through. 

Thus 

the potential 

at a is higher (by 288 V) than 

the 

potential 

at b. 

The voltage across each resistor is IRi.  Thus V ,  = (2.3 A)(40 f2) = 92 V, V ,  = (2.3 AX60 Cl) = 138 V 

and V ,  = (2.3 AM25 0) = 58 V. 

Note. Adding the voltages gives 92 + 138 + 58 = 288 V, which is the voltage we calculated in 
part( b). 

Problem 5.9. Three resistors are connected 

in 

parallel, 

as in 

Fig. 

5-5. The potential difference 

between 

a and b is 75 V. 

(a) What is the equivalent 

resistance 

of this circuit? 

(b) What is the current flowing 

from 

point a? 

(c) What is the current in each resistor? 

Solution 

(a) The equivalent resistance is given by 1/Req = C (l/Ri) = 1/40 + 1/60 + 1/25 = 0.817, or Re, = 12.2 Q. 

(b) The 

total 

current 

is I,,, = V/Req .  Thus I,,, = 6.13 A. 

(c) The 

current 

in each resistor is Zi = V/Ri. Thus I, = (75 V)/(40 f2) = 1.88 A, I, = (75 V)/(60 Q) = 1.25 
A, I, = (75 V)/(25 Q) = 3.0 A. [The total 

current 

is 1.88 + 1.25 + 3.0 = 6.13 A, as in part(b).] 

Problem 5.10. Consider the combination of resistors 

shown 

in Fig. 5-qa). The voltage drop from a to 
b is 82 V. 

(a) Calculate the 

equivalent 

resistance 

of the circuit. 

(b) How 

much 

current is flowing through R I ?  

(c) How much current is flowing through R ,  ? 

(d) How much current is flowing through R ,  ? 
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R,  = 40 R R2=60R 
C 

a 

R,=40R 
C 

a .  

R,=40R 

21.3 R f 
bw R,= 40 R 

(4 

Fig. 5-6 

(e) What is the voltage across R4 ? 

solutioo 

We must combine 

resistors 

part by part. First we note that R2,  R ,  and R4 are in series. We can 
therefore replace them with an equivalent 

resistance 

of 60 + 25 + 60 = 145 R, as in Fig. 5-qb). This 
resistance is now in 

parallel 

with R,, and we can 

combine 

these two 

to get 1/R = 1/25 + 
1/145 = 0.0469, and R = 21.3 Q, as in Fig. 5-6(c). Now, 

this 

resistance is in series with R I  and R,, 

giving a final equivalent resistance of R,, = 40 + 21.3 + 40 = 101.3 R. 

The current flowing through R, is the total current flowing from a to b [e.g., Fig. 5-6(c)]. Thus I, = 

I = V/R, ,  = (82 V)/(101.3 R) = 0.809 A. 

The current flowing through R ,  equals 

the 

voltage 

between c and f divided by R,. The 

voltage 

between c and f can be most easily calculated using Fig. 5-qc). Here 

the 

current 

in each 

part 

of the 
series circuit is 0.809 A. Therefore V,, = (0.809 AX21.3 R) = 17.2 V. Then I ,  = (17.2 V)/(25 R) = 

0.690 A. 

The 

current 

flowing through R ,  is the 

same 

as the 

current 

flowing through 

each 

resistor 

in the series 
R, , R, and R,, which is the 

current 

in the 

equivalent 

145 R resistor in Fig. 5-qb). That current is 
V,,/145 = I, = (17.2 V)/(145 R) = 0.119 A, 

The 

voltage 

across 

R, equals I, R,. Now I, = I, = 0.1 19 A. Therefore V, = (0.1 19 AN60 R) = 7.12 V. 

5.3 EMF AND ELECTROCHEMICAL SYSTEMS 

We mentioned previously that, in order to maintain a potential difference 

between 

two points in the 
presence of a current, there must 

be 

a non-electrical source of energy 

replenishing 

the energy 

lost 

by the 
charges moving through that potential difference. The energy supplied/unit charge by this source is 
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called the EMF, whether the 

means 

for providing the EMF is chemical, magnetic, mechanical or any 
other process. The 

symbol 

that we use for an EMF is 8. 
Let us examine in more 

detail 

the 

mechanism of an EMF. Basically any 

source 

of EMF is a device 
in which positive and negative charges are separated. 

The 

two 

ends of such a device are called terminals. 
On one terminal positive charge will accumulate and on the other 

terminal 

negative charge will accu- 
mulate. 

The 

positively charged 

terminal 

is called the anode and 

the 

negatively charged 

terminal 

is the 
cathode. This 

separated 

charge 

will establish an 

electric 

field within the source of EMF that points from 
the anode to the 

cathode. 

This 

field, in turn, 

exerts 

a 

force on positive charges within the device tending 
to push them back through the device toward the cathode, 

and 

a 

force on negative charges 

tending 

to 

push them back through the device to the anode. In order to keep the positive charges 

on 

the positive 
terminal 

and 

the 

negative charges 

on 

the negative terminal, 

the 

device-the source of EMF-exerts 

a 

non-electrical force that opposes the electrical force and continues 

to 

push 

positive charges 

toward 

the 
anode 

and 

negative charges to the cathode 

through 

the 

device. The flow of positive charges 

through 

the 

device is analogous to pushing water upward through a vertical pipe. As water moves upward to the 
top (the “anode” side) the force of gravity tries to push the water back to the 

bottom 

(the 

“cathode” 
side). To keep 

the 

water 

moving upward, 

a 

“non-gravity” force, such as that provided by a 

pump, 

must 

push 

upward 

against 

gravity. In 

the 

case of our source of EMF, this “other” force may derive from 
chemical interactions as in a 

battery, 

from magnetic forces as in an electric generator or from some 
other mechanical source. Just as in the water case, where the gravitational 

potential 

energy of the 

water 

is increased as the 

water 

is forced upward, this other force causes the 

charges 

to flow to the 

anode, 

increasing 

the 

electrical potential energy and hence causing a 

potential 

difference between the anode 
and the cathode. Assuming no 

thermal 

losses as the charges move through the device to the anode, we 
must have, by conservation of energy, that the potential difference is equal to the EMF of the source. If, 
outside 

the 

device, the 

anode 

is connected back to 

the 

cathode, then a current 

will flow through 

this 

“external” part of the circuit from the anode to the 

cathode. 

An example of such 

a 

circuit would be 
connecting 

points 

a and c in Fig. 5-2(a) to the 

anode 

and cathode 

respectively of the device. This is 
shown 

in 

Fig. S-3(a). The 

charges 

lose electrical energy moving from the high to the low terminals 
through the 

external 

circuit, 

and are 

then 

forced by the non-electrical force back to the 

anode 

through 

the EMF device thus replenishing their electrical energy. (The analog for our water system would be 
water flowing back downward 

through 

a 

set of other pipes and 

then 

returning through the 

vertical pipe 
with the pump.) The 

potential 

difference established between the 

terminals 

when no current flows 
(because no wire has been connected between the 

terminals) 

is called the “open circuit EMF”. 
If we connect a single wire of resistance R between the terminals, then current will be made to flow 

through that resistance by the voltage, V ,  that is established 

across 

the 

terminals. If this wire were the 
only resistance in the 

circuit, 

then the current 

that flows would equal I = V / R  = EMF/R. In practice, 
however, there is also some heat loss within the 

source 

of EMF due to the 

thermal 

agitation 

of mol- 
ecules as 

the 

charges 

flow within the source. In 

this 

case it is no longer true that EMF = V ,  because 
some non-electrical energy is lost in the form of thermal energy. To a 

good 

approximation, 

this loss is 
proportional to the current, so EMF = V - Ir, where r is the proportionality 

constant. 

As can be seen; 
r has 

the 

same dimensions as 

resistance and is called the “internal resistance”, Rint, of the 

source, 

and 
treated like any other resistance. If no current flows through the source, 

then 

the potential 

difference 
across 

the 

source 

is just equal to the 

open 

circuit EMF of the source, since there is no voltage drop due 
to the 

current 

across 

the internal resistance. However, if current flows in the external 

circuit, 

the 

same 
current will also flow in the 

source 

and a voltage drop of Vinl = IRint will occur 

across 

the internal 

resistance Rint. The voltage applied to the rest of the circuit will then 

equal 

B - IRint. A common 
source of EMF is a 

battery, 

which uses chemical forces and hence chemical energy to force the 

current 

through 

the 

battery 

from cathode to anode. 

Problem 5.11. A battery 

has 

an open circuit EMF of 2.0 V and an internal resistance of 0.94 R. A 
resistance of 22 R is connected between the 

terminals 

of the battery as in Fig. 5-7. 

(a) What is the 

current 

flowing through 

the 

resistance? 
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Rint = 0.94 R 

I I F = 2.0 v 

Fig. 5-7 

(6) What is the potential difference across the terminals of the battery when the resistance is con- 
nec t ed ? 

Solution 

(a) The E M F  produced by the source will cause current to flow through the series 

circuit 

of R and Rint .  
Thus the current will be (2.0 V)/(22 + 0.94 a) = 0.087 A. 

(b) The potential difference across the terminals of the battery will equal the EMF minus the voltage drop 
across the internal resistance. Thus V = V,  - V, = 2.0 - (0.94K0.087) = 1.92 V. 

Problem 5.12. A resistance, R,  is connected to a battery and the current that flows is 

measured. 

When 

R = 40 R, the current is 0.240 A, and when R = 60 a, the current is 0.162 A. What is the EMF of the 
battery and what is its internal resistance? 

Solution 

When R = 40 Q, the current will equal I, = 0.240 A = 8/(40 + Rin,), or 8 = (0.240 AX40 + Rin, 0). 
Similarly, when R = 60 R, d = (0.162 AM60 + RinJ R. These are two equations in the two unknowns, d and 

Rint,  which can be easily 

solved, 

since they 

both give the d in terms of Rint. Thus 0.162(60 + Ri,J = 

0.240(40 + R,,,) 4 Ri,,(0.240 - 0.162) = 9.72 - 9.60 = 0.12, Rint = 1.54 R. Then, d = 0.162(60 + 1.54) = 

9.97 v .  

Within a source of EMF the 

charges 

are made to flow in a direction opposite to the electric 

force. 

This means that work 

must 

be 

done in separating the charges 

within 

the source. This work 

must 

come 

from some source of energy: chemical, 

mechanical, 

nuclear, 

solar, etc. As noted, in the case of a battery 
the source is chemical, and the energy stored in the battery is reduced 

whenever 

the 

battery supplies 
current to an external circuit. In due time that energy 

is 

exhausted and the battery must either be 
replaced or “recharged”. In recharging a battery, energy 

must 

be delivered 

to the chemicals 

within 

the 

battery and be stored in the form of chemical 

energy 

of the molecules of the medium. To add energy 
requires that current must flow within the battery from 

the 

positive 

to the negative 

terminal, 

which is 
opposite to the direction in which it flows when the battery is discharging. To accomplish 

this 

one uses a 
different source of EMF, such as a generator, and applies a voltage across the terminals of the battery 
from 

this 

external 

source which will try to force current to flow in the desired 

direction. 

If the EMF of 
the external source is greater than the EMF of the battery, then current will flow in the direction 
determined by the external source. In that case the battery will receive energy and, if the battery is of the 
type that can be recharged, that energy will be stored in the battery. 

Problem 5.13. A battery with EMF 6.0 V and internal resistance 1.6 Q, is 

being 

recharged 

from 

a 
generator with an EMF of 8.2 V and internal resistance 2.1 R, as in Fig. 5-8. 
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I 

(a) How much current flows in the circuit? 

(b) How long does it take for 15,000 C of charge to be 

transferred 

to the battery? 

(c) How much work is done during this time? 

Solution 

(a) The external EMF attempts to send current from its 

positive 

terminal in the direction of I in the figure. 
The battery attempts to send current in the opposite direction. Since the external EMF is greater than 
the EMF of the battery, the current will flow in the direction shown. The total EMF that is responsible 
for the current flow is the difference 

between 

the two EMFs, and equals (8.2 - 6.0)V = 2.2 V. The total 

resistance 

in 

the circuit 

is 

(1.6 

+ 2.1)R = 3.7 R. The current is therefore I = 2.2 V/3.7 R = 0.595 A. 

(b) The total charge that flows is 4 = I t  = (0.595 A)t = 15,000 C. Therefore, t = (15,000 C)/(0.595 A) = 25, 
210 s = 7.0 h. 

(c) The work done in 

moving 

a charge q through an EMF, 8, is 48. Thus the work done in moving 15,000 
C through the battery EMF of 6.0 V is (15,000 CX6.0 V) = 90,000 J = 90 kJ. 

Note. The work 

supplied 

by the external source was (15,000 CN8.2 V) = 123 kJ. The difference 

in 

these amounts was dissipated in the two internal resistors. The amount of heat dissipated 
in a resistor can easily be calculated as will be discussed 

in 

a future section. 

5.4 ELECTRIC MEASUREMENT 

To measure currents and voltages 

in 

circuits 

we need an instrument that is sensitive to the flow of 
current. Such an instrument is a galvanometer which detects the effect of current in a magnetic field that 
we will discuss in a later chapter. The deflection of the needle of the galvanometer depends on the 
current flowing through the galvanometer. Both ammeters (that measure currents) and voltmeters (that 
measure voltages) make use of the galvanometer as the basic measuring tool. 

Ammeters 

To measure the current in a circuit, it is obvious that one must place the measuring instrument in 
series 

within 

the circuit so that the same current flows in the meter as in the circuit. It would seem that 
the current read on the meter will then equal the current in the circuit. There is, however, a slight 
complication. Consider the circuit of Fig. 5-9. Here a source of EMF causes a current I to flow through 
a resistor R. The current will be I = V/R. If we wish to measure this current, we would have to place an 
ammeter in 

series 

with 

the resistor, R. The ammeter itself, however, has resistance, RA. Therefore, if we 
place the ammeter in the circuit in series 

with 

R, the current will change to I = V / ( R  + RA), which is 
what the ammeter will measure. 

(We 

can correct for this if we know R and R A ,  but we would 

prefer 

to 
be able to take the measurement at face 

value,) 

In order to minimize the effect of the ammeter on the 
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,- Ammeter 

Fig. 5-9 

current we must 

build 

our meters to have a very small 

resistance 

compared with the resistance R in the 
circuit we are measuring. Thus ammeters must 

always 

have small resistances 

to be accurate in their 
measurements. 

Problem 5.14. In the circuit of Fig. 5-9, the EMF is 2.5 V, the 

resistance 

R is 25 0, and the ammeter 
has a resistance of 0.32 R. 

(a) What current flows in the circuit if the ammeter is not present? 

(b) What current does the ammeter measure when placed in the circuit? 

(c) In terms of R and R A ,  what correction must 

be 

applied 

to the measurement to get the current in 
the absence of the meter? 

Solution 

(a) The current is I = V / R  = (2.5 V)/(25 Q) = 0.10 A. 

(b) 

(c )  

The current is I, = V / ( R  + RA) = (2.5 V)/(25 + 0.32)R = 0.0987 A. 

Using the relationship that I = V / R  and I, = V / ( R  + RA) and dividing, we get I / I ,  = (R + R,)/R, or 
Z = Z,(R + R,)/R. Substituting in our values of R and RA and the measured value 

from 

part (b), we 
indeed get the result of part (a). Try it. 

To construct an ammeter from a current sensitive galvanometer one must know the current, I,,,, 
at which the galvanometer obtains full-scale deflection. If one uses this galvanometer itself in 

series 

in 

the circuit, then the maximum current that can be measured is I,,,. In order to use this galvanometer 
to measure larger currents one places 

this 

galvanometer in 

parallel 

with 

another, smaller 

resistance, 

so 
that only a small 

fraction 

of the current flows through the 

galvanometer. 

The maximum 

deflection 

on 
the galvanometer will then still 

occur 

when 

I,,, flows through the galvanometer, but this occurs when 
the current flowing through the parallel 

circuit 

is much greater than I,,, . This low 

parallel 

resistor 

also 
ensures that the overall 

resistance 

of the ammeter is also small. The following 

problem 

illustrates this 

phenomenon. 

Problem 5.15. Consider the galvanometer in Fig. 5-10, which can be connected to be in parallel 

with 

various resistors by the switch S.  Current enters on the left and flows through the galvanometer and any 
one of the parallel 

resistors 

that is 

connected 

by the switch. The galvanometer has a resistance RG = 3.2 
R, and has its maximum 

deflection 

at a current of 2.0 x 10F2 A. 

(a) What resistance RA is 

required 

to build an ammeter whose 

maximum 

deflection 

occurs 

at a current 
of 0.20 A ?  What is the resistance of this ammeter? 

(b) What resistance RB is 

required 

to build an ammeter whose 

maximum 

deflection 

occurs at a current 
of 2.0 A ?  What is the resistance of this ammeter? 
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Fig. 5-10 

(c) What resistance Rc is 

required 

to build an ammeter whose 

maximum 

deflection 

occurs at a current 
of 20 A ?  What is the resistance of this ammeter? 

Soh tioo 

(a) To build an ammeter with a maximum deflection when a current of 0.20 A enters 

the 

ammeter, the 

current 

through 

the galvanometer 

must be 0.020 A at this 

point. 

Then the current through the parallel 

resistor R A  must be 0.18 A so that the total current in the 

parallel 

circuit 

is 0.20 A. The voltage 

across 

the 

parallel 

paths is the 

same 

for both 

the 

elements, i.e. for R ,  and for R A ,  and therefore V, = V, = 

Z,R, = Z A R A  = 0.02q3.2) = 0.18RA, giving RA = 0.36 R. The resistance of this 

parallel 

circuit 

is 
1/R = 1/3.2 + 1/0.36, R = 0.32 R. 

(b) Using the 

same 

procedure as 

in part (a), but with I, = 2.0 A, we get R ,  = (0.020 AX3.2 R)/(1.98 
A) = 0.032 R. The 

resistance 

of the 

parallel 

circuit 

is then 1/R = 1/3.2 + 1/0.032, giving R ,  = 0.0317 R. 

(c) Using 

the 

same procedure as 

in part (a), but with I ,  = 20 A, we get & = (0.020 AX3.2 a)/ (20 A) 
= 0.0032 R. The resistance of the 

parallel 

circuit 

is then 1/R = 1/3.2 + 1/0.0032, giving R,  = 0.0032 R. 

Voltmeters 

We 

now 

turn our attention to the question of constructing a voltmeter 

from 

a current sensitive 
galvanometer. We realize that for an instrument to measure the voltage 

between 

two 

points, for instance 
the voltage across a resistor R, we must 

connect 

the instrument between 

those 

two points. This means 
that a voltmeter must be connected 

in 

parallel with 

the circuit 

element 

whose voltage 

we seek. This is 
shown 

in 

Fig. 

5-1 1. The voltmeter will then read the same voltage as exists 

across 

R, i.e. VA - V,, . Since 
the galvanometer we are using to construct a voltmeter is sensitive to current, we are really 

measuring 

the current flowing through the voltmeter. If the voltmeter 

consists 

of a resistor R' in series 

with 

the 
galvanometer, then the current in the galvanometer will equal I = V,/(R' + RG) = V,/Rv. Thus I/ = 

" " 
R 

Fig. 5-11 
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Problem 5.16. A voltmeter is constructed to operate in various voltage 

ranges 

by using a switch to 
select the resistance that is 

placed 

in series with 

the galvanometer. In Fig. 5-12, the galvanometer has a 
resistance of 3.2 R and has maximum 

deflection 

at a current of 0.020 A. 

What resistance, RA is 

needed 

so that the voltmeter will have a maximum 

deflection 

at a voltage of 

10 V? 

What resistance, RB is 

needed 

so that the voltmeter will have a maximum 

deflection 

at a voltage of 
100 V? 

What resistance, R,  is needed so that the voltmeter will have a maximum 

deflection 

at a voltage of 
1 0 3  v? 

Solution 

The current through the galvanometer must be 0.02 A when the voltage across the circuit is 10 V. 
Since V = I ( R A  + RG), R A  + RG = (10 V)/(0.02 A) = 500 R = 3.2 + RA and RA = 496.8 R 

For this range, the current through the galvanometer must be 0.02 A when the voltage across the 
circuit is 100 V. Since V = I(RB + RG), RB + RG = (100 V)/(0.02 A) = 5000 R = 3.2 + R B ,  and RB = 

4997 R. 

For this range, the current through the galvanometer must be 0.02 A when the voltage across the 
circuit is 103 V. Since V = I(& + RG), R, + RG = (103 V)/(0.02 A) = 50,000 R = 3.2 + R, and Rc = 

49,997 R z 50,000 a. 

In Fig. 5-11, the voltage across the resistor had a certain value V before we attached the voltmeter. 
Usually, the resistor 

is 

part of a larger 

circuit 

which supplies 

a certain current to the resistor 

in 

the 
circuit. If we attach the voltmeter, we are inserting a parallel path for the current, and some of the 
current will flow through the voltmeter instead of the resistor. Then the voltage across the resistor will 
be 

reduced 

as a result of this 

diminished 

flow through R. Thus, the insertion of the voltmeter can 
change the voltage that we are trying to measure. In order to minimize 

this 

change, 

we require that very 
little current be diverted through the voltmeter. This can be accomplished by making the resistance of 
the voltmeter very large compared to R. If this is not the case, one has to correct the reading to account 
for the effect of the voltmeter. 

Problem 5.17. In Fig. 5-11, current of 0.020 A enters point a from the left. Assume 

this 

current remains 
the same whether or not the voltmeter 

is 

in the circuit. The resistance R = 25 R, and Rv = 2500 R. 

(a) Without the voltmeter 

in 

the circuit, 

what 

is the voltage across the resistor, R ?  
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(b)  With the voltmeter in the circuit, 

what 

is the voltage across the circuit? 

(c) In terms of R and R,,  how 

would 

we correct a reading on the voltmeter to give us the voltage 

in 

the absence of the voltmeter? 

Solution 

(a) The voltage across R is I,R = (0.02 AM25 Q) = 0.50 V. 

(b) Now the voltage across R is the voltage across the parallel circuit of R and R , .  Thus Re, = (1/R 
+ l/R,,)-' = 24.75 $2. Then V = (0.02 

AX24.75 

Q) = 0.495 V. 

(c )  With the voltmeter in place, the voltage reading is V' = I[(RR,)/(R + R,)], since Re, = (RR,) / (R 
+ R,). Without the voltmeter, the voltage is V = IR .  Then V / V '  = ( R  + R,) /R,  -+ V = V'(R 
+ R,)/R,. [Check to see if this is correct by substituting in for part (b)  to get the result of part (a).]  

Now suppose we have a resistor in a circuit and we want to measure both the current through the 
resistor and the voltage 

across 

the resistor, in order to determine 

its 

resistance 

which is V/I .  We know 
that we should place the ammeter in series with the resistor so it has the 

same 

current as the 

resistor. 

Similarly we know that we should place the voltmeter in parallel 

with 

the resistor so that it will measure 
the same voltage as is across the resistor. We cannot simultaneously do both of these 

things, 

as can be 
seen from 

Fig. 

5-13. Here we have 

connected 

the ammeter A in series 

with 

the resistor 

R. The current 
flowing through the resistor 

from 

a to b also flows through the ammeter from b to c. Now we try to 
connect the voltmeter across R. One side is obviously attached to a, but we have a problem 

with 

the 
other side. If we connect it to point b then 

it 

will indeed be across R, and measure 

the 

voltage 

across R.  
However, the ammeter will then no longer 

be 

in series with R,  and will measure the current flowing 
both through R and through the voltmeter. If we connect the end of the voltmeter to point c, then the 
ammeter will remain 

in 

series with 

R and measure only the current through R,  but the voltmeter will be 
across the series combination of R and the ammeter and measure the voltage across both. There is no 
way to avoid 

this 

if one uses this 

circuit, 

and we must make the appropriate corrections if we know R A  

and R, .  

Problem 5.18. In the circuit of Fig. 5-13, the 

meters 

have the following resistances: 

R A  = 3.2 R, R ,  = 

2500 SZ.  These 

meters 

are used to measure 

the 

resistance 

of the 

resistor, 

by simultaneously 

measuring 

I 
and V .  

If no corrections are made, what is the resistance R in terms of the measured I and V ?  

If the voltmeter 

is 

connected 

to point b, what 

is 

the corrected 

value 

of R in 

terms 

of the measured I 
and V ,  and the resistances of the meters? 

If the voltmeter 

is 

connected 

to point c, what is the corrected 

value 

of R in terms of the 

measured 

I 
and V ,  and the resistances of the meters? 

If the readings on the meters 

for 

case 

(b)  are I = 0.21 A and V = 10.3 V, what is the resistance R? 

What would the uncorrected 

value 

of R be? 

1"\ \ R 

Fig. 5-13 



154 SIMPLE ELECTRIC CIRCUITS [CHAP. 5 

(e) If for case (c) the current was adjusted so the ammeter 

read 

the same 

value I = 0.21 A, what 

would 

the 

reading 

on the 

voltmeter 

be? What 

would the uncorrected value of R then be? 

Solution 

R = V/Z. 

If the voltmeter is connected to b, then 

the 

voltage 

on the 

voltmeter 

is the 

voltage 

across 

R. The 
current in the 

ammeter, 

however, is the current in the parallel 

circuit 

of R and R,. Thus I = V/R, ,  = 

V(l/R + l/Rv). Thus 1/R = Z/V - 1/R,, which we can use to get R. 

Now the current read 

on 

the ammeter 

is the current in R. The voltage on the 

voltmeter 

is the 

voltage 

across 

the 

series circuit of R and R A .  Thus V = Z(R + RA), and R = ( V / I )  - R A .  

For case (a), 1/R = (0.21 A)/(10.3 V) - 1/2500 Q = 0.0200, R = 50.0 R. From part (a) the 

uncorrected 

value 

would 

be R = V/I = 10.3/0.21 = 49 R. 

We have V = Z(R + RA) = (0.21 AM50 R + 3.2 R) = 11.2 V; the 

uncorrected 

value of R would be 
R = V/Z = (11.2 V)/(0.21 A) = 53 a. We see clearly that the 

measuring 

instruments can have 

an effect 
on the measurements and we must be careful to check that they do not give us incorrect 

results. 

It is clear that the 

ideal 

way to measure a resistance is to use meters that do not draw any 

current 

when they are in the circuit. 

This 

would be a case of a null measurement where the result depends 

on 

adjusting a dial 

until 

the meter reads 

zero. An example of a null measurement is the 

equal 

arm balance 
used to measure weights. Here 

one 

adjusts the position 

of the 

known 

weight until 

there 

is no deflection 
of the 

arm, 

and determines the unknown weight from the position of the 

known 

weight. The corre- 
sponding 

instrument 

that is used to measure 

resistance 

using a null 

method 

is the Wheatstone bridge. 
This can be used to measure an unknown 

resistance 

by adjusting 

known 

resistances until the current in 
a galvanometer is zero. The circuit for the Wheatstone 

bridge 

is shown in Fig. 5-14. Here, 

the 

unknown 

resistor is X, and the other (known) 

resistors 

M, N and P are adjusted so that no current flows through 
the galvanometer G when the EMF is 

applied 

to the circuit. 

This 

means 

that no current flows through 
G, between points b and c, when both switches are closed. For no 

current 

to flow in the 

galvanometer, 

there 

must 

be no voltage difference between points b and c. Therefore 

placing 

the galvanometer between 
those 

points 

does not 

disturb the 

circuit, 

and the currents and voltages that existed before connecting G 

are maintained. 

Then 

no adjustments are necessary for the 

resistance 

of the 

galvanometer. 

The oper- 

ation of the bridge is the 

subject 

of the next problem. 

Problem 5.19. In 

the 

Wheatstone bridge 

of Fig. 5-14, the switch S ,  is closed and the EMF is applied to 
the circuit. If the current in the galvanometer is zero when S2 is closed, and the voltage 

across 

points 

a 
and b is V ,  what 

is: 

(a) the current in the 

resistor 

N? in the 

resistor 

M? 

a 

1 Y (When S ,  closed) 

d 

Fig. 5-14 
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(b) the current in the resistor P? in the resistor X ?  

(c) the resistance X in 

terms 

of the 

resistances 

M ,  N and P? 

Solution 

(a) There is no current in G. Therefore, 

all 

the current that flows through N also flows through M, and the 
two can be considered to be in series. Then the current in N and in M is I, = V / ( N  + M). 

(b) Using the same analysis as in (a), the resistors P and X are in 

series 

and the current through both is 

(c) The difference in potential between point b and point d is M I ,  = M V / ( M  + N). Similarly, the differ- 
ence 

in 

potential between point c and point d is XI, = X V / ( P  + X). But 

these 

differences 

are equal 
since there is no potential difference 

between 

b and c. Thus M V / ( M  + N) = X V / ( P  + X ) .  Cross multi- 
plying we get: X(M + N) = M ( P  + X ) ,  or X N  = M P ,  X = M P / N .  In 

using 

the bridge one has known 
adjustable resistors M, P and N ,  and adjusts one or more of them 

until 

the bridge is “balanced” i.e. 
until there is no current in the galvanometer. 

I ,  = V / ( P  + X ) .  

5.5 ELECTRIC POWER 

We mentioned 

previously 

that the work that is done within 

the 

source of EMF is available to the 
external circuit. We can easily 

calculate 

where this 

energy 

is dissipated, either in the 

form 

of work or 
heat. When a positively, 

charged 

particle moves 

from the anode to the cathode (or a negatively 

charged 

particle 

moves 

from 

the cathode to the 

anode), 

the electrical energy 

that the 

particle 

loses 

equals q V ,  
where q is the 

charge 

on the 

particle 

and V is the difference of potential through which the 

particle 

moves. The rate at which the 

energy 

is lost, 

the 

power, equals P = A(qV)/At = V(Aq/At)  = V I .  This 
power is available 

for 

work 

(turning a motor) or for heat (in an electric heater or light 

bulb). 

This 
derivation of the 

power 

available 

was not dependent on the 

circuit 

containing only 

ohmic 

elements. 

It is 
universally 

true. 

In fact it is true even for 

time 

varying 

currents and voltage at any instant of time. Thus, 

P = I V  (5-5) 

If the circuit contains only ohmic resistors, we can easily express 

the 

power loss in the resistors. 

If 

(5-6) 

In these 

formulas, 

the current I is the current through the resistor R,  and the voltage V is the voltage 
across the resistor R.  For parallel or series 

circuits 

the power will differ from 

resistor 

to resistor, but for 
each resistor the power will equal 12R or V 2 / R  using its own current and voltage. The total power will 
equal the sum of the power of each element, which will be the 

same 

as I’R,, = V2/Req, with I and I/ 

the total current and voltage 

for 

the circuit. This power 

is 

dissipated in 

the resistors as heat. We can 
understand the dissipation 

process 

as one in which the 

particles 

transfer energy 

to the material of the 
resistor via the collisions that produced the resistance in the 

first 

place. 

This energy that is 

transferred 

to 
the material heats up the material. If the resistor 

gets 

sufficiently hot, the material will emit visible light, 
as in the filament of an incandescent 

light 

bulb. 

we have a potential difference V across a resistance R, then V = IR and 

P = IV = I(IR) = 12R = V 2 / R  

Problem 5.20. In the 

circuit 

segment 

of Fig. 5-2(b), the 

voltage 

across the 

circuit 

is 

55V. If R I  = 25 R 
and R ,  = 35 a, calculate (a) the current in each resistor; (b)  the power 

dissipated 

in each resistor and (c )  
the 

power 

dissipated 

in the equivalent 

resistance. 

Compare the 

answer 

to this 

with 

the sum of the 
answers 

to 

(b). 

Solution 

(a) The voltage across each resistor is 55 V. Thus the current for 

each 

resistor 

is I = V / R .  Then I, = 

(55 V)/(25 n) = 2.2 A, and I ,  = (55  V)/(35 n) = 1.57 A. 
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(b) Since the voltage across 

each 

resistor 

is the 

same, 

the 

power in each 

resistor 

can 

be calculated using 

P = V’/R.  Thus P ,  = (55 V),/(25 Q) = 121 W, and P ,  = (55 V)’/(35 Q) = 86.4 W. Alternatively, we 

could have used P = f 2 R ,  using the 

current 

appropriate to each resistor. 

Then 

P ,  = (2.2 A),(25 Q) 
= 121 W, and P ,  = (1.57 A),(35 Q) = 86.4 W. 

(c) The 

equivalent 

resistance is Re, = (25)(35)/(25 + 35) = 14.6 Q. The 

total 

power is therefore P,,, = 
(55),/14.6 = 207.4 W. This 

equals 

the 

sum of P, + P ,  = 121 + 86.4. 

Problem 5.21. In the 

circuit 

segment 

of Fig. 5-4, the current entering the circuit 

is 

2.1 A. Calculate (a) 

the 

voltage 

across each resistor, 

(6) the 

power 

dissipated 

in each 

resistor 

and (c) the power 

dissipated 

in 
the 

equivalent 

resistance. 

Compare the 

answer 

to this with the sum of the answers to (6). 

Solution 

(a) The voltage across 

each 

resistor 

is V = f R  = (2.1 A)R, since the 

current 

is the 

same 

through 

each 
resistor. Thus V, = (2.1 AN40 Q) = 84 V, V, = (2.1 AN60 Q) = 126 V, V, = (2.1 AN25 Q) = 52.5 V. 

(b) The power dissipated in each resistor can be calculated using f 2 R  or V 2 / R  for each resistor. 

Thus 

PI = (2.1 A)’(40 Q) = 176.4 W (or P ,  = 842/40 = 176.4), P, = (2.1 A),(60 a) = 264.6 W, P ,  = 

(2.1 A),(25 Q) = 110.25 W. 

(c) The 

equivalent 

resistance is Re, = (40 + 60 + 25) = 125 $2. The 

total 

power is therefore P,,, = 

(2.1 A)2(125) = 551.25 W. This 

equals 

the 

sum of P ,  + P ,  + P, = 176.4 + 264.6 + 110.25 = 551.25 W. 

Problem 5.22. Refer to Problem 5.10, in which we solved 

for 

the equivalent resistance 

of the circuit in 
Fig. 5-6, as well as the current in each 

resistor. 

Use the 

results 

of that problem to calculate (a) the total 
power 

developed 

in the circuit and (b) the 

power 

developed 

in each 

resistor. 

Solution 

(a)  The 

equivalent 

resistance of the 

circuit 

was calculated to be Re,  = 101.3 a. Therefore, the 

total 

power 
developed in the circuit is V~,,/Req = (82 V)’/(101.3 a) = 66.4 W 

(b) The 

current 

in each 

resistor 

is: 

I ,  = 16 = 0.809 A 

I ,  = I ,  = I, = 0.119 A 

I ,  = 0.690 A 

Then : 

P ,  = (0.809 A),(40 Q) = 26.6 W 

P ,  = (0.119 A),(60 Q) = 0.85 W 

P ,  = (0.119),(25) = 0.35 W 

P ,  = (0.119)2(60) = 0.85 W 

P ,  = (0.690),(25) = 11.9 W 

P6 = (0.809)2(4Q) 26.2 w 
The 

total 

power, calculated by adding 

the 

power 

in each resistor 

equals 

P,,, = 66.4 W, as in part (a). 

Problem 5.23. A light bulb is rated at 60 W, 120 V. Assume that this bulb is an ohmic resistance. 

(a) What is the 

resistance 

of the bulb? 

(b) If one applies a voltage of 75 V to the bulb what 

power 

is developed 

in 

the 

bulb? 
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(c) If three bulbs, rated at 25 W, 40 W and 60 W, are connected in series and 120 V is imposed across 
the entire circuit, how much power is developed in each bulb? 

Solution 

(a) The rating of the bulb means that, if 120 V is across the bulb, 

then 

60 

W is developed 

in 

the bulb. 

Since 

P = V2/R ,  R = V’/P = (120 V)’/(60 W) = 240 R. 

(b) The power is V 2 / R  = (75 V),/(240 R) = 23.4 W. It is clear that this bulb will be very dim since 

only 

23.4 W is developed, rather than the rated 60 W. 

(c) The three bulbs are in 

series 

and therefore 

they 

have 

the same current, but not the same voltage. In 
order to calculate the power, we need to calculate the resistance of each bulb, as well as the common 
current. To calculate 

each 

individual resistance, 

we use the rating of the bulb, 

which 

states that, if 120 
V is across the resistor, it will develop the rated wattage. Thus, the rated wattage will equal (120 V), /R.  

Then, R I  = (120)2/25 = 576 Q, R ,  = (120)2/40 = 360 R, R ,  = 240 0. To calculate the current we use 
the fact that Re, = (576 + 360 + 240) = 1176 R, and calculate I = V J R e q  = 0.102 A. Then, PI  = 

I’R, = (0.102 A)2(576 R) = 6.00 W, P, = (0.102),(360) = 3.75 W, P, = (0.102),(240) = 2.50 W. The 
total power 

developed 

is 12.25 W. This could have been calculated 

using 

P = IV = (0.102 AM120 
V) = 12.24 W. 

Problem 5.24. An air conditioner is rated at 1.0 kW, 120 V. 

(a) How much current does it draw? 

(b) If the air conditioner is run for 3.0 h, how much energy is used? 

Solution 

(a) The power is P = IV = 1.0 x 103 W = 4120 V), so I = 8.33 A. 

(b) The power is the energy used per 

unit 

time, 

P = AE/At .  If the power is constant, then 
A E  = PAt  = (loo0 WX3.0 h x 3600 s/h) = 1.08 x 107 J. This could also be calculated in mixed units 
by noting that the power developed 

was 

1.0 kW and was used for three hours, thus consuming 3 kW-h 
of energy, 

where 

one kW-h (kilowatt-hour) is the energy 

consumed 

for 

one hour at a rate of one kW. 
This is actually the unit of energy used by the electric 

utilities 

in billing their customers for 

electrical 

energy. The conversion to Joules is 1 kW-h = 3.6 x 106 J. 

Problems for Review and Mind Stretching 

Problem 5.25. A solenoid consists of wire wound around a cylinder of radius 0.36 m. If the wire is 
made of tungsten, of radius r = 0.34 cm, and has 2500 turns, what is the resistance of the solenoid? 

Solution 

The resistance is given by R = pL/A.  For tungsten, p = 5.51 x 10-* R-m. The area is 
A = Zr’ = ~(0.0034 rn), = 3.63 x l O - ’  m2, and L = (2500 turnsX2~X0.36 m) = 5.65 x 103 m. Thus 
R = (5.51 x 10-* R - mX5.65 x 103 m)/(3.63 x lO-’ m’) = 8.6 R. 

Problem 5.26. In the circuit of Fig. 5-15, the resistors have resistances of: R I  = 25 R, R ,  = 45 R, 
R3 = 150 R, R ,  = 78 R, R, = 18 R, R ,  = 55 R. The current through R ,  is I ,  = 0.98 A. 

(a) What is the equivalent resistance of the circuit? 

(b) What are the currents in each resistor? 

(c) What is the EMF of the battery? (Assume zero internal resistance.) 
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Fig. 5-15 

Solution 

(a) R ,  and R ,  are in 

parallel 

and we can combine them as a single 

resistance 

with R = (R ,R2) / (R1  
+ R,)  = (25 QM45 Q)/(25 + 45)R = 16.1 Q. Similarly, R ,  and R ,  are in parallel 

with 

each 

other and 
can be combined as a single 

resistor 

with 

R = (150 QW78 Q)/(lSO + 78)R = 51.3 S Z ,  The two resistors, 
R ,  and R6 can be similarly combined into R = (55 RH18 Q)/(55 + 18)R = 13.6 Q. These three resist- 
ances are now in series, 

yielding 

a final equivalent resistance of Re, = (16.1 + 51.3 + 13.6)R = 81 Q. 

(6) Since I, = 0.98 A, V, = (0.98 A)(25 S Z )  = 24.5 V. Since R ,  is parallel to R , ,  it has the same voltage, and 
then I, = (24.5 V)/(45 Q) = 0.54 A. The current through the parallel combination (and the current from 
the battery and through each of the other parallel combinations) is therefore I = 0.98 + 0.54 = 1.52 A. 
The voltage across R ,  and across R ,  is therefore V, = V, = (1.52 AK51.3 S Z )  = 78.0 V. Then I, = (78.0 
V)/(150 Q) = 0.52 A, and I, = (78.0 V)/(78 0) = 1.00 A. Similarly, the voltage across R ,  and across R ,  
is v5 = V6 = (1.52 AX13.6 a) = 20.7 v. Thus, 1, = (20.7 V)/18 0) = 1.15 A and 16 = (20.7 v)/(55 a) 
= 0.37 A. 

(c) The EMF equals ZtotReq = 123 V.(This could also have been calculated as the sum of the voltages 

across the three parallel 

circuits, 

V = 24.5 + 78.0 + 20.7 = 123 V.) 

Problem 5.27. For the 

same 

circuit 

as in Problem 5.26, calculate (a) the total power 

consumed 

and (b)  
the power 

in 

each 

of the resistors. 

Solution 

(a) The total power consumed is 12Req = (1.52 A),(81 Q) = 187 W. Alternatively P = IV = (1.52 A) 
(123 V) = 187 W (or P = V2/Req  = (123),/81 = 187 W). 

(b) For each 

resistor 

we can use either I’Ri or IiF or VZR,. We will use different equations for the various 
resistors in order to demonstrate the use of each equation. 

P ,  = Z12R, = (0.98 A)’(25 n) = 24.0 W 

P ,  = I, V, = (0.54 AH24.5 V) = 13.2 W 

P ,  = V,,/R, = (78.0 V),/(lSO a) = 40.6 W 

P, = I,’R, = (1.00 A)’(78 a) = 78.0 w 
P ,  = I ,  V, = (1.15 AW20.7 V) = 23.8 W 

P6 = V6’/R6 = (20.7 v),/(55 12) = 7.8 w 
If we add these together, we get Ptot = 187 W, as in (a). 
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Problem 5.28. A battery has an EMF of d = 26 V, and is connected to a series 

circuit 

of two resistors, 
R1 = 35 R and R ,  = 17 0. 

(a) What is the current in R ,  and the voltage across R1 ? 

(b) If one tries to measure the current by placing an ammeter 

with 

an internal resistance of 2.3 R in the 
circuit, 

what 

is 

the current read on the ammeter? 

(c) If one tries to measure the voltage 

across 

R1 by placing a voltmeter which has an internal resist- 
ance of 150 Cl across R , ,  what voltage 

is 

read 

on the voltmeter? 

(d) If one tries to calculate the 

resistance 

of R1 by 

using 

the measured 

current and voltage, 

what 

resistance 

would 

be calculated? By what 

percentage 

does this differ from 

the actual R ,  ? 

Solution 

(a) The 

equivalent 

resistance of the circuit is (35 + 17)Q = 52 R. Thus 

the 

current 

is I = (26 V)/(52 R) 
= 0.50 A. The voltage across R, is V, = (35 RX0.50 A) = 17.5 V. 

(b) If one places an 

ammeter 

in series with R ,  and R,, the total resistance is now (RI  + R ,  + RA) = 
54.3 R. The 

current 

read on the ammeter is therefore I = (26 V)/(54.3 R) = 0.48 A. 

(c) If one places a voltmeter across RI, then that voltmeter will be in parallel with R,. The equivalent 
resistance of this parallel circuit will be R = (35 RNl50 n)/(35 + 150)R = 28.4 R. This is in series with 
R,, and 

the 

equivalent 

resistance of the whole circuit is now (17 + 28.4) = 45.4 R. The 

current 

is 
therefore (26 V)/(45.4 R) = 0.57 A. This is the 

current 

flowing 

through 

the 

equivalent 

parallel resistance 
also. The voltage read on the voltmeter is therefore V = (0.57 AX28.4 R) = 16.3 V. 

(d) If one 

uses 

the measured values as 

the 

current through the 

resistor and 

the 

voltage across 

the 

resistor, 
one would obtain 

that 

R = V/Z = (16.3 V)/(0.48 A) = 34.0 R. This is a bit different from the 

actual 

value of R ,  which is 35 R. The percentage difference is (35 - 34)/35 = 0.029 = 2.9%. 

Problem 5.29. In the circuit 

shown 

in Fig. 5-16, the resistances are R ,  = 45 SZ,  R2 = 58 R, R, = 99 0, 
R, = 103 R and R, = 66 R. The power 

dissipated 

in the circuit is 185 W. 

(a) What is the current in the circuit? 

(b) What is the voltage across the circuit? 

< I 

Fig. 5-16 
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Solution 

(a) We first calculate the equivalent resistance of the circuit. R I  and R ,  are parallel, and can be 

replaced 

by a resistance of (45 RX58 R)/(45 + 58)Q = 25.3 R. Similarly, R,  and R ,  can be 

replaced 

with 

a 
resistance of (66)(103)/(66 + 103) = 40.2 R. The two are in 

series with 

R, and the equivalent 

resistance 

of the entire circuit is Re, = (25.3 + 99 + 40.2) = 164.5 52. The power equals P = Z2R,, = 185 W, and 

therefore I’ = (185 W)/l64.5 $2) = 1.12, and I = 1.06 A. 

(b) The voltage is V = ZR,, = (1.06 AN164.5 R) = 174 V. (Alternatively, P = V2/R , ,  and V 2  = PR,, = 

185(164.5) = 3.04 x 104, and V = 174 V.) 

Supplementary Problems 

Problem 5.30. A certain wire has a diameter of 0.55 mm, and contains 8.5 x 1028 free electrons/m3. If the wire has 

a current of 3.1 A, what is the drift 

velocity 

of the electrons? 

~ n s .  9.5 x m/s 

Problem 5.31. A long wire carries a current of 3.6 A when 12 V are placed across the wire. The wire has a length 

of 25 m and its cross-section 

has 

a radius of 0.30 

mm. 

(a) What is the resistivity of the material of the wire? 

(b) What is the current density 

in 

the wire? 

(c) How much charge passes through a cross-section of the wire in 3.3 minutes? 

Ans. (a) 3.8 x 10-8 R - m; (b) 1.27 x 10’ A/m2; (c) 713 C 

Problem 5.32. A wire, with a square cross-section of side 

0.21 

mm, 

is made of copper. How long must the wire be 

to provide a resistance of 0.35 R? 

Ans. 0.90 m 

Problem 5.33. 

the 2.0 R resistor and (c) the power 

dissipated 

in the 1.0 R resistor. 

In the circuit shown in 

Fig. 

5-17, calculate (a) the current in the 10 R resistor; (b) the voltage across 

Ans. (a) 1.0 A;  (b) 1.33 V ;  (c) 0.44 W 

Problem 5.34. In the series 

circuit 

unit shown in Fig. 

5-18, R I  is a “60 W” bulb, R, is a “40 W” bulb and R, is a 
“ I 0 0  W” bulb. A current flows such that the voltage across R ,  is 120 V. Calculate (a) the current in R I ;  (b) the 
power 

dissipated 

in R ,  and (c) the voltage 

between 

the points a and b. 

3.0 R 3.0 R 

10 R 

1.0 R 2.0 R 

d =12v 

Fig. 5-17 



CHAP. 51 SIMPLE ELECTRIC CIRCUITS 161 

Fig. 5-18 

Ans. (a) 0.33 A; (b) 16 W; (c) 248 V 

Problem 5.35. Two equal resistors are connected 

in 

parallel. 

(a) Case 1 : When a difference of potential of 120 V is connected across the resistors, the total power 

dissipated 

is 
240 

W. 

What is the resistance of each resistor? 

(b) Case 2: When each resistor carries a current of 2.0 A, the total power 

dissipated 

is 480 W. What is the 
equivalent resistance of the parallel circuit? 

Ans. (a) 120 R; (6) 30 

Problem 5.36. In the circuit 

unit 

shown in Fig. 5-19, the current entering the circuit is 3.0 A, in the direction 
shown. The potential at point a is zero. Calculate (a) the potential difference across R ,  ; (b) the current in R ,  ; (c) the 

potential of point c and (d) the total power 

dissipated 

in the circuit. 

A ~ s .  (U) 300 V; (b) 2.0 A; (c) -440 V; (6) 1320 W 

Problem 537. In the circuit unit shown in Fig. 5-20, a difference of potential of 180 V exists 

between 

points a and 
b, with V,  < V,. 

(a) In which direction does the current flow in 

resistor 

RI,  and in which direction do the electrons move in R,?  

(b) What is the current in R ,  ? 

(c) What power is dissipated 

in 

R ,  ? 

(6) How much potential energy does each 

electron 

lose when it passes 

through R, ? 

Am. (a) from b to a, from a to b; (b) 1.13 A; (c) 114 W; (6) 1.26 x 10-” J 

Problem 538. In the circuit shown if Fig. 5-21, the circuit elements 

have 

the following 

values: 

R, = 3.0 R, R ,  = 

2.5 R, R, = 1.5 R, C, = 1.0 pF, C, = 4.0 pF, C3 = 2.0 pF. The battery produces an EMF of 12 V. After the 

capacitors have been fully charged, no current flows through the capacitors, but a steady current flows through the 
resistors. The voltage 

between 

points b and c is 8.0 V. 

R I  = 7 0 R  

R, = 140R 

Fig. 5-19 

R,  = 8 0 R  

2 R,  = 70 R R, = 90 R 

Fig. 5-20 
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c 

Fig. 5-21 

(a) What is the 

voltage 

between points a and b? 

(b) What is the 

current 

in 

R, ? 

(c) What is the 

resistance 

of R, ? 

(d) What is the 

charge 

stored 

on C ,  ? 

(e) What is the 

charge 

stored 

on C,? 

Ans. (a) 4.0 V; (b) 2.0 A; (c) 6.0 R; (d) 1.6 x lO- '  C; (e) 6.4 x 10-6 C 

Problem 539. In the 

Wheatstone 

bridge 

discussed in Problem 5.19, the fixed, known 

resistors 

have values: 
M = 500.1 Q, N = 333.4 R. If the bridge is balanced when P is adjusted to 1.386 x 10' Q, what is the resistance of 
the 

unknown 

resistor? 

Ans. 2.079 x 103 Q 

Problem 5.40. A battery 8,  is used to charge a second battery 6,, as in Fig. 5-22.8, = 12.2 V, 8, = 9.0 V and 

its 

internal 

resistance 

is 0.96 Q. The variable 

resistor, 

R, is adjusted to make 

the 

current equal 

to 0.35 A. 

(a) What is the 

resistance 

of R? 
(b) What is the 

potential 

difference between the 

terminals 

of 8, while it is being charged? 

(c) How long must one 

charge 

the battery 

in order to deliver a total of 6500 J of energy to the battery? What 
fraction of that will be stored 

as 

chemical energy in the battery? 

Ans. (a) 8.18 Q; (b) 9.34 V; (c) 1.98 x 103 s = 0.552 h; 96.3% 

Variable resistor 

Fig. 5 2 2  
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Problem 5.41. An ammeter is constructed using a galvanometer that has a resistance of 15.1 R and a maximum 
deflection at a current of 0.100 A. The circuit used to enable measurements at ranges of 1.00 A, 10.0 A and 100 A is 
shown in 

Fig. 

5-23. One of the terminals of the ammeter is point a, and the other terminal is chosen 

for 

the range 
needed. What are the resistance 

values 

needed for 

R,, R2 and R ,  ? 

Am. R ,  = 0.0168 R, R2 = 0.151 R, R ,  = 1.51 R 

Problem 5.42. A voltmeter is constructed using a galvanometer that has a resistance of 15.1 R and a maximum 
deflection at a current of 1.21 x l O - ,  A. The circuit used to enable measurements at ranges of 1.00 V, 3.0 V and 10 

V is shown in Fig. 5-24. One of the terminals of the voltmeter 

is 

point a, and the other terminal is chosen for the 
range needed. What are the resistance 

values 

needed for 

R I ,  R 2  and R, ? 

Ans. R ,  = 811 R, R2 = 1653 R, R ,  = 5785 R 

r =  15.1 R 

a b c d 
100 A 10.0 A 1.00 A 

Fig. 5-23 

r =  15.1 R R, 

a b C d 
1.0 v 3.0 V 10 v 

Fig. 5-24 



Chapter 6 

Magnetism-Effect of the Field 

6.1 INTRODUCTION 

In previous chapters, we learned about forces 

exerted 

by one mass on another mass (gravitational 
force) and by one charge on another charge (electrical 

force). 

Experimentally 

we find that there is also a 
force 

exerted 

by one moving charge on another moving charge (in addition to the electrical force). This 
force is the magnetic force. The most common occurrence of this 

force 

is when two magnets attract (or 
repel) 

each 

other, but this attraction (or repulsion) is due to subtle properties of the materials, which we 
will leave to a later chapter. 

In 

discussing 

the magnetic force, 

we will use the concept 

of 

a magnetic field, for which we use the 
symbol B. The magnetic field is a vector, and is the 

link 

between the two 

moving 

charges 

that interact 
with 

each 

other. One of the 

charges 

is the source of the field, and this field, in turn, has the eflect of 
exerting a force on the second 

moving 

charge. 

Thus, the 

magnetic 

field has two aspects: (1) its effect-to 
exert a force on a moving charge and (2) its source-the origin of the field, which can be another 
moving 

charge, 

or possibly there may be another means of producing the field. These 

two 

aspects 

are 
totally independent of each other and therefore we will discuss 

each 

in a separate chapter. 
The unit 

for 

a magnetic field is a tesla (T) in our system. A more common unit which is widely used 
in 

practice 

is the gauss (G). One gauss equals 10-4 tesla. The strength of the 

magnetic 

field near the 
surface of the earth is approximately one gauss. 

Note that in general a magnetic field can vary 

from 

point to point in space, and can also change 
from 

moment 

to moment. For the present we will assume that the 

magnetic 

field remains constant in 
both space 

(uniform 

magnetic 

field) and time. 

6.2 FORCE ON A MOVING CHARGE 

In this chapter the efect of the magnetic field, B, will be 

discussed. 

This means 

that we ask 

ourselves 

the following question. Given a magnetic field produced by some 

means, 

which is not necessarily of 
concern to us, what is the force, F, that this field, B, exerts on a charge, q, moving 

with 

a velocity, v ?  

Note. We have to find a vector, F, that results 

from 

some interaction of a scalar, q, and two 
vectors, v and B. This is depicted in Fig. 6-1. 

We seek to know the magnitude and direction of the as yet unknown 

force, 

F, that the magnetic 
field B exerts on the charge q moving 

with 

velocity v when the angle between the 

vectors 

v and B (when 

Constant B 
a 

Particle moving through magnetic field 

(4 

Fig. 6-1 

B 
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their two tails are touching) is 4. We do this 

in 

two steps. First we discuss 

the 

magnitude, 

and then we 
discuss 

the 

direction 

of the force. 

Magnitude of the Force 

The formula for the magnitude of the force is: 

IF1 = lqoB sin 61 

We 

have 

used absolute value 

signs, 

since 

the magnitude is always 

positive. 

The sign of 4 does not 
affect the magnitude of the force. It will, however affect the direction of the force. Note that the force is 
zero when the angle 4 = zero or 180°, i.e. when the velocity and the 

magnetic 

field are along the same 
line. Also, the largest 

force 

occurs 

when s in4 is f 1 ,  i.e. when the velocity is perpendicular to the 
magnetic field (see Fig. 6-2). 

Problem 6.1. 

(a) A charge of 2 x 10-6 C is moving 

with 

a velocity of 3 x 104 m/s at an angle of 30" with a magnetic 
field of 0.68 T. What is the magnitude of the force 

exerted 

on the charge? 

(b) What is the magnitude of the force if the charge were -2  x 10-6 C? 

(c) What is the magnitude of the force if the angle 4 were 150°? 

Solution 

(a) Substituting q = 2 x 10-6 C, U = 3 x 104 m/s, 4 = 30" and B = 0.68 T 

into 

Eq. (6.2), we get 
1 F I = (2 x 10-6)(3 x 104)(sin 30")(0.68) = 0.0204 N. 

(b) Since only the absolute value of each variable enters, the answer is the same as for part (a). 

(c) Since [sin 150'1 = sin 30°, the answer is still the same. 

Problem 6.2. A charge of 3 x 10-5 C is at the origin 

in 

Fig. 6.3. There is a uniform 

magnetic 

field of 
0.85 T pointing in the positive x direction. Calculate the magnitude of the 

force 

exerted 

on the charge if 
it is 

moving 

with 

a velocity of 2 x 105 in the direction (a) from A to B ;  (b) from A to E ;  (c) from D to A ;  
(d) from A to F ;  and (e) from A to H. 

Solution 

In all five cases, pi3 = (3 x 10-5)(2 x 105)(0.85) = 5.1 N. The difference between each case is the value 
of sin 4. Thus, the solution for each case is 

Fig. 6-2 
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Fig. 6-3 

(a) sin 4 = 0 and therefore I F I = 0 N. 

(b) sin 4 = 1 and therefore I F I = 5.1 N. 

(c) sin 4 = 1 and therefore I F I = 5.1 N. 

(6) 4 is 45" so sin 4 = 0.707 and therefore I F 1 = 3.61 N. 

(e) 4 is 90°, sin 4 = 1 and therefore I F I = 5.1 N. 

Direction of the Force 

The 

direction 

of the 

force is 

perpendicular to both v and B, and it is therefore necessary to consider 
the 

problem 

in three dimensions. The 

solution 

is done in two steps. First 

one 

determines the 

line along 
which the force acts 

and 

then one determines the proper direction along 

that line. 
The 

two 

vectors v and B can be considered as forming a plane. In Fig. 6-4, we draw 

the 

plane 

formed by a 

combination 

of vectors v and B. The 

direction 

that is perpendicular to this 

plane 

we call 
the 

normal 

to the 

plane. 

You 

can 

picture 

placing the palm of your 

right-hand 

in this 

plane 

containing 

Y 

Z 

Fig. 6 4  
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both v and B. The normal is the direction perpendicular to your palm. On Fig. 6-4, we also draw this 
normal direction for 

this 

combination of v and B. This normal direction is the line along which the force 
vector lies. This direction is perpendicular to both v and B. We 

now 

have 

to choose between the two 
possible directions along this line. This is done by using the “right-hand rule”. There are many different 
ways of applying a right-hand rule, and if you already know a particular method, you should continue 
to use that method. Here is one method that you can use. For the case of a positive 

charge, 

when 

the 
vectors v and B are tail to tail, curl the fingers of your right-hand in the direction from v to B with your 
thumb perpendicular to the other fingers. Your thumb then points in the direction of the force. If the 
charge is 

negative, 

then the direction is 

reversed. 

Note. Both the magnitude and the direction of the magnetic 

force 

are completely analogous to the 
magnitude and direction of the 

vector 

torque discussed in Chap. 10, Section 10.3 when we 
replace r and F in that chapter by (qv) and B. 

Problem 6.3. Determine the direction of the force in Problems 6.l(a), (b) and (c). 

Solution 

The orientation of v and B is shown in Fig. 6-5 (a). Both v and B are in the 

plane 

of the 

paper. 

The 
perpendicular to the 

paper 

is the line going 

in 

and out of the 

paper. 

Curling the 

fingers of our right- 

hand from v to B, we see the 

perpendicular 

thumb points out of the 

paper. 

Thus the 

direction 

of the 
force is out of the 

paper. 

We use a dot, 

reminding 

us of the 

point 

of an arrow, to indicate 

that 

the 

force 
is out of the 

paper. 

The only 

change 

from (a) is that the sign of the charge is negative. Therefore, we reverse the 

direction 

of F, and it is now into the 

paper. 

We use a cross, 

reminding 

us of the 

cross 

hair 

at the back of an 
arrow, to indicate that the force is into the 

paper. 

Suppose that the 

directions 

of v and B are as shown in Fig. 6-5 (6). Rotating our fingers through 

the 

150” angle from v to B, the 

thumb 

points 

into the 

paper. 

Thus, the direction 

of the force is into the 
paper. 

Problem 6.4. Determine the direction of the 

force 

in 

Problem 6.2. 

Solution 

(a) Since the 

magnitude 

of the force is zero, there 

is 

obviously no 

direction 

needed. 

(b) v is in the y direction, 

and 

B is in the x direction. 

The 

plane formed by these vectors is the x-y plane. 
The normal to this plane is the z direction 

(either 

+ z  or -z) .  We use the 

right-hand 

rule 

to choose 

B 

9 
(Thumb points 
out of paper) 

(4 

Fig. 6-5 
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Y 

t 

J 

Fig. 6-6 

between + z  and - z .  Rotating from the positive y direction 

(the 

direction 

of v) to the positive x 

direction (the direction of B) our thumb points in the - z direction. 

This 

is the 

direction 

of F. 

v is in the - z  direction, and B is in the x direction. The plane formed by these vectors is the x-z plane. 
The mrrnal to this 

plane 

is the y direction 

(either 

+ y  or -y). We use the 

right-hand 

rule to choose 
between + y  and -y. Rotating our fingers from the negative z direction (the direction of v) to the 
positive x direction 

(the 

direction 

of B) our hand now pushes in the - y  direction. 

This 

is the 

direction 

of F. 

v is in the x-y plane, at an angle of 45" with the positive x axis, and B is in 

the 

x direction. The plane 
formed by these vectors is the x-y plane. 

The 

normal 

to this plane is the z direction 

(either 

+ z or - z). 

We use the 

right-hand 

rule to choose between +z  and - z .  Rotating from v to the positive x direction 
(the 

direction 

of B) our thumb points into the 

paper, 

which is the - z  direction. 

This 

is the 

direction 

of 

F. 

v is in the y-z plane, at an angle of 45" with the positive z axis, and B is in the x direction. The plane 
formed by these vectors is shown in Fig. 6-6 (plane ABGH). The normal to this 

plane 

is parallel to the 
direction DE (or ED). We use the 

right-hand 

rule 

to choose between DE and ED. Curling our fingers 

from the 

direction 

of v toward 

the 

positive x direction 

(the 

direction 

of B) our hand now pushes in the 

DE direction. 

This 

is the 

direction 

of F. 

6.3 APPLICATIONS 

If the magnetic force is the only force exerted on 

a 

moving charged particle, then the particle will 
move with constant speed. This is because the force is always perpendicular to the 

direction 

of the 
motion, 

and 

a 

force perpendicular to the velocity only changes the 

direction 

and not the magnitude 

of 
the 

motion. 

To change the magnitude of the velocity, one needs a force that is parallel to the velocity, 
which the magnetic force does not provide. The force, and 

thus the 

acceleration, is also perpendicular to 
B. Suppose that, in addition, 

the 

magnetic field is also 

perpendicular 

to the 

initial 

velocity. The 

entire 

motion 

(both 

v and a) are now in the plane perpendicular to B, with v and a each having constant 
magnitude. This is exactly what is needed to produce circular motion at constant speed. The 

centripetal 

force needed for the circular motion is supplied by the magnetic force. The 

magnitude 

of the magnetic 
force must equal the centripetal force required and we can therefore say that 

qoB = rno2/R (6.2) 

or R = mo/qB (6.3) 



CHAP. 6) MAGNETISM-EFFECT OF THE FIELD 169 

This is a formula for the radius of the 

circle 

traversed 

by the particle of mass, rn, charge, q, moving 
with a velocity, U, in a perpendicular magnetic field, B. There are many applications of this 

relationship. 

The circular motion that a magnetic field can create is useful in many diverse 

areas. 

We will discuss 
some of these applications below. 

Applications of Circular Motion 

If one has a charged particle of unknown sign, one can use the circular motion created by a 
magnetic field to determine the sign of the 

charge. 

Suppose one has a charged 

particle 

moving 

upward, 
as in 

Fig. 

6-7, in a magnetic field that is directed into the paper. The resultant circular path of the 
particle 

could 

be either path 1 or path 2, depending on whether the force is in the direction of F, or 
F2. If the charge is positive, then the right-hand rule shows that the force is in the direction of F, and 
the particle 

moves 

along path 1. On the other hand, if the charge is negative, 

the 

force 

is reversed and 
points in the direction of F2 causing the particle to move along path 2. Thus, by making the 

particle 

go 
in a circle in a perpendicular magnetic field, one can determine the sign of the 

charge. 

Problem 6.5. A particle, 

with 

a charge equal to that of an electron is moving in a circle of radius 5 cm 
in a magnetic field of 0.2 T. What momentum does this particle have? 

Solution 

Using 

Eq. 

(6.3), R = mu/@, one gets that the momentum, p, which is mu equals p = mu = 4BR. Thus, 
p = 1.60 x lO-I9 (0.2)(0.05) = 1.60 x 10-21. 

Problem 6.6. Two negatively 

charged 

particles, 

each with a charge equal to that of an electron are 
moving in a circle 

with 

the same velocity. The circular motion is due to a perpendicular magnetic field 

of 0.2 T. One of the particles is a charged atom of carbon with approximately 12 times the mass of a 

hydrogen atom, and the other is a charged atom of unknown mass. The radius of the 

circular 

path of 
the carbon atom is R, , while that of the unknown atom is R, . 

(a) Show that one can get the unknown mass by measuring 

the 

ratio of the 

two 

radii. 

(b) If R, = 1.33RC what is the unknown atom? 

Solu tion 

(a) R, = m,u/qB, and R, = rn,u/qB 

Thus R,/R, = m,/m, 

(b) mu = 1.33mC = 16 hydrogen masses, so the unknown atom is oxygen. 

This 

problem 

illustrates 

the principle 

behind 

the operation of a mass 

spectrometer. 

In practice, a mass 
spectrometer typically does not have the particles 

moving 

with the 

same 

speed. 

Instead, each 

particle 

gains 

its 

speed 

by being 

accelerated 

from 

near rest through the same 

difference 

of potential, V .  This is 
illustrated in Problem 6.7. 

Path 1 Path 2 

x x x x x x x ~ : x x  4 

Fig. 6-7 
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Problem 6.7. The two charged particles 

in 

the previous 

problem 

are accelerated through a difference of 
potential, V ,  and then they 

travel 

in a perpendicular magnetic field, B. 

(a) Derive an expression 

for 

the ratio of the two radii of their circular paths. Figure 6 4 a )  illustrates 
the geometry. 

(b) In this 

case, 

what would 

RJR,  be? 

Solution 

(a) At a the charges have no velocity. As they 

travel 

to point b, they 

lose 

potential energy equal to eV 
since b is at a higher potential and the charges are negative. This lost potential energy is converted to 

kinetic 

energy, 

so that at b the particles 

have 

a kinetic 

energy 

of 

K E  = (+)mu2 = er/ ,  or U' = 2eV/m 

U = J 2 e ~ / m  

Each 

particle 

enters the magnetic field region 

with 

the velocity corresponding to its 

mass, 

and is then 

turned into a circular path with the appropriate radius. Thus, from 

Eq. 

(6.3) and with q = e 

R2 = m2u2/q2B2 = m2(2eV/m)/e2B2 = 2V(m/e)/B2 

R2B2 = 2Vm/e  and m = eR2B2/2V 

The ratio of the masses is therefore 

mu/mc = (R,/RJ2. 

(b) Again, by measuring the ratio of the radii, one can get the ratio of the masses. 

Since 

we are assuming 
that the unknown mass is oxygen, Ru/Rc = ,/@ = 1.15. 

There are many other uses to which one can put the 

ability 

of the magnetic field to produce circular 
motion. For instance, 

nearly 

all particle 

accelerators use magnetic fields to make particles return to an 
area where 

they 

are accelerated. There is often only one small 

region 

where particles 

are given an 
increase in speed, as a result of a parallel 

electric 

field, and the 

circular 

motion created by the magnetic 

holes 

(a)  

Electric field 

x x x ~ x x x  

x x x x x x  4 
Pote'ntial + 41 - 9 

difference + 4,  
x 

x 

XRX x 

x 

- 4  

Segment of solid r Current I 
conductor 

(4 

Fig. 6 8  
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field causes the particles to return to this 

region 

regularly 

and receive additional kinetic 

energy, 

as 
shown 

in 

Fig. 

6-8(b). 
Another application is in the “Hall Effect”, which is used to determine the sign of the 

charges 

that 
produce currents in various solid conductors. Here, one deflects the moving 

charges 

in an electric 
current in the direction of the magnetic force. If a current is flowing to the right, 

this 

could be 

the result 
of positive 

charges 

moving 

to the right, or of negative 

charges 

moving 

to the left. For a perpendicular 
magnetic field, for instance a field going into the paper, both the 

positive 

and the negative 

charges 

are 
deflected upward, since a negative 

charge 

moving in 

a direction opposite to a positive charge has the 
same direction 

for 

the force. 

This 

is illustrated in Fig. 6-8(c). Thus, the magnetic field will deflect the 
conducting charges upward and one can 

detect 

the sign of the charge by determining whether 

positive 

or negative charge has gathered at the top. If positive charge is at the top, and negative at the bottom, 
then the top surface will be at a higher potential than the bottom, as we learned 

from 

a the case of a 
parallel plate capacitor. The opposite potential difference 

would 

result 

if negative 

charges 

gathered 

at 
the bottom. By this method, it has been determined that in some 

materials, 

called 

semiconductors, there 
are cases of positive as well as negative 

charge 

conductors. 
Another interesting phenomenon occurs if the magnetic field is not perpendicular to the 

velocity 

vector. In that case one can resolve 

the 

velocity vector into one component which is 

parallel 

to the 
magnetic field and another component that is perpendicular to the magnetic field (see Fig. 6-9). The 
parallel component will be 

unaffected 

by the 

magnetic 

field since there is no force produced by B on a 
parallel 

velocity. 

The perpendicular component, however will be 

deflected 

into a circular path. circling 
the direction of the magnetic field. The resultant motion will be a spiral around the field direction (see 
the figure). There are many 

cases 

in which this actually happens, 

such 

as when particles in the “solar 
wind” meet the magnetic field in the earth’s atmosphere. 

Velocity Selector 

In the previous 

problems 

there were cases of only a magnetic 

force, 

and some cases of both electri- 
cal and magnetic 

forces 

acting on the 

particles. 

But 

in the region 

in 

which the electrical 

force 

was active 
(when the particles were accelerated by the difference of potential), there was no magnetic 

force, 

and in 
the region of the magnetic 

force 

(the circular motion) there was no electrical 

force. 

By using a com- 
bination of both electric and magnetic fields, we can produce a mechanism to separate out particles of a 
particular velocity. This is known as a velocity selector, and is shown 

in 

Fig. 

6-10, and described 

in 

the 
following 

problem. 

Problem 6.8. The particle, of charge 4, is moving 

with 

velocity, v, in a region between two 

charged 

parallel 

plates 

a distance d apart, that produce a uniform 

electric 

field, 

E. A uniform 

magnetic 

field, B, 
pointing into the 

paper, 

also exists 

in 

this region. 

Fig. 6-9 
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+ + + + + t  

Fig. 610 

(a) For what 

velocity, 

v, will the electrical and magnetic 

forces 

be 

equal and opposite, thus canceling 
each 

other’s 

effect? 

(b) Find the velocity when V = 100 

volts, 

d = 2.0 cm and B = 0.5 T. 

Solution 

(a) The electrical 

force, 

FE, will equal qE and point in the direction of E (for 

a 

positive charge). 

The 
magnetic force, F,, will equal quB, and point in the direction opposite to FE. Thus, the two will cancel 
if their magnitudes are equal. This is also true for 

a 

negative 

charge, since the direction of both forces 
changes. 

Therefore 

there will be no net 

force 

if 4 E  = quB, or E = uB. 

Note. For a 

velocity 

of U = E / B  there is no force to deflect the particle, and it will travel 

in 

a 

straight line. If the particle has a 

bigger 

velocity 

than this, 

then 

the magnetic force will 
exceed the electrical 

force, 

and the particle will be deflected 

in 

the direction of the mag- 
netic 

force. 

Similarly, 

if the velocity is smaller than this velocity, then the magnetic force 
will be less than the electrical 

force 

and the particle will be deflected 

in 

the direction of the 
electrical 

force. 

Thus only 

particles 

with 

this particular velocity will be undeflected, and 

they can be easily 

selected 

out from the rest. We can choose the velocity we want by 
varying E ,  simply by changing the potential difference across the two plates, 

which 

is 

producing the electric field. 

(b) Remembering that the electric field produced by two 

parallel 

plates 

is V / d ,  where d is the distance 
between the plates, we have 

U = E / B  = V / d B  = 100 V/(2 x 10-2 m)(0.5 T) = 104 m/s. 

6.4 MAGNETIC FORCE ON A CURRENT IN A WIRE 

Whenever current flows in a wire, one has charge that is moving. If a segment of the wire is in a 
magnetic field, then the 

magnetic 

field will exert a force on that segment of the wire. To obtain this 

force 

one has to determine how to adjust the formula for a single 

moving 

charge to accommodate a current 
in a wire. The answer to this is that all one has to do is to substitute 1L for 40 in the equation for 

the 

force. 

Here, 

I is the current flowing in the wire, and L is a vector 

whose 

magnitude is the length of the 
segment of the wire, and the direction of L is the direction of the current. We can see this 

intuitively 

by 
noting that in a small 

time 

At the amount of charge passing a point in the wire is q = IAt. If this charge 
moves 

with 

an average 

velocity 

U, it will cover a distance L = udt. Thus 4/1 = L/u or qu = IL. There- 
fore, the magnitude of the force on a segment is given by (see Fig. 6-1 1) 

IF1 = IILB sin + I  (6.4) 

The direction of the force 

is 

calculated 

by the same procedure that was used for a single 

charge. 

The 
force is perpendicular to both L and B, and therefore normal to the plane containing those vectors. We 
use the right-hand rule to choose the correct direction along this normal, where the direction of the 
current replaces 

the 

direction of v. 
The force 

calculated 

in this manner is the force on that segment of wire, of length L, carrying the 
current I .  Each 

segment 

of the wire is affected separately by the magnetic field, and we can separately 
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x B  

calculate the magnitude and direction of the force on each 

segment. 

To get the total force on the wire 
we would then add together, vectorially, the forces on each 

segment. 

This is illustrated by the next 
problem. 

Problem 6.9. Consider a wire abcd, in the shape shown in 

Fig. 

6-12 which 

is 

in a magnetic field B 
pointing out of the paper. The current is 1.5 A, the magnetic field is 0.3 T and the lengths are L ,  = 0.5 
m and L2 = L,  = 0.8 m. 

(a)  Calculate the force (magnitude and direction) acting on segment ab. 

(b) Calculate the force (magnitude and direction) acting on segment bc. 

(c) Calculate the force (magnitude and direction) acting on segment cd. 

(d) Calculate the force (magnitude and direction) acting on the wire abcd. 

Solution 

Using 

Eq. 

(6.4), the magnitude of the force is IFl] = ZL,B since $I = 90". The direction is perpendicular 

to L, (to + y )  and to B (out of the paper) and thus in the x direction, either + x  or -x. Using our 
right-hand rule, (we rotate our fingers 

from 

L, to B) and our thumb then points in the + x  direction, 
which is therefore the direction of F,. For the magnitude we get F ,  = (1.5 A)(O.5 m)(O.3 T) = 0.225 N. 

Applying the same formula to segment bc, we get the magnitude of the force to be IF,  1 = ZL, B. The 
direction of the force is perpendicular to L, (to +x) and to B, and thus in the y direction. To choose 
between _+y, we use our right-hand rule and find that F, is in the -y direction. For the magnitude we 
get F, = (1.5 AXO.5 mX0.3 T) = 0.360 N. 

Applying the same formula to segment cd, we get the magnitude of the force to be I F, I = IL, B. The 

direction of the force is perpendicular to L3 (to - y )  and to B, and thus in the x direction. To choose 
between +x, we use our right-hand rule and find that F, is in the - x  direction. The magnitude ofF, 
is the same as F,. 

Fig. 6-12 
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(d) The force on abcd is the vector sum of the forces on the three segments. 

Since 

F ,  and F ,  are in 
opposite directions and of equal magnitude, they 

cancel 

each 

other when added together. Thus 

Ftots, = F, + F, + F, = F, = 0.3 N in the - y  direction. 

Problem 6.10. Consider a cube, with a side of 0.5 m, as shown in Fig. 6-13. A current of 2 A is flowing 
along the x direction. Calculate the 

force 

(magnitude and direction) on the segment ab when the mag- 
netic field of 0.3 T points in (a) the x direction; (b) the -y direction. (c) the direction from a to h ;  and (d) 
the direction from a to c. 

Solution 

Using Eq. (6.4), the magnitude of the force is I F ,  I = 0 since 4 = 0. 

Now the angle 4 = 90", and therefore IF I = ZLB = 2(0.5)(0.3) = 0.3 N. To get the direction, we note 

that L and B are in the x-y plane and the normal to that plane is the z direction. To choose between 
- +z, we apply the right-hand rule, curling our fingers from L to B. Our perpendicular thumb then faces 
the -z  direction, which is the direction of F. 

The angle between L and B is still 90" (not 45") since ah is in the y-z plane, 

which 

is perpendicular to 

the direction of L (the x direction). Therefore I F I = 0.3 N. Getting the direction is somewhat harder. 
The plane of L and B is now abgh whose normal is along the diagonal ed (or de). Using the right-hand 
rule the thumb faces the direction ed, which is the direction of F. 

The angle 

between 

L 

(ab) and B (ac) is now 45". Thus 1 F 1 = 2(0.5)(0.3) sin 45 = 0.212 N. The plane of L 
and B is now the x-z plane 

whose 

perpendicular is the y direction. The right-hand rule 

selects 

between 

-ky. Rotating our fingers 

from 

L to B, our thumb faces in the -y direction which is therefore the 
direction of F. 

Problem 6.11. Consider an equilateral triangle, 

with 

a side of 0.5 m, as shown in Fig. 6-14. A current of 

2 A is 

flowing 

around the triangle 

in 

the direction shown. Calculate the force (magnitude and direction) 
on each segment of the triangle, and on the 

whole 

triangle when 

a magnetic field of 0.3 T points in the 
direction ab. 

Solution 

Along ab, the force is zero, 

since 

ab is along the direction of B. 

t 

Fig. 6-13 
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c' 

a b 

Fig. 6-14 

Along ac, the force is I F I = 0.5 (2) (0.3) sin 60" = 0.26 N. The plane containing L and B is the plane of 
the paper whose normal is in or out of the paper. The right-hand rule gives the correct direction as into the 

paper. 

Again, along cb, the force is I F I = 0.5 (2) (0.3) sin 60" = 0.26 N. The plane containing L and B is the 
plane of the paper whose normal is in or out of the paper. The right-hand rule gives the correct direction as 

out of the paper. 

Adding 

these 

forces vectorially gives 

F = 0. 

Problem 6.12. Consider a circular metal disc, 

which 

is free to rotate about its center. The bottom of 
the disc 

is 

in 

contact with a pool of liquid mercury as seen 

in 

Fig. 6-15. A battery is connected between 
the center of the disc and the pool of mercury, so that a current flows vertically downward from the 
center to the mercury. If a magnetic field is established in the direction out of the paper, what motion, if 
any, will the disc undergo? 

Solution 

Because we have current flowing downward in the bottom of the disc, we have a case of current in a 

magnetic 

field. 

The magnetic force will be perpendicular to L (which is downward) and to B (which is out of 

the paper) and will therefore point in the horizontal direction. The right-hand rule 

determines 

that the 

direction is to the left. Since the disc is not free to move 

from 

its position 

(it 

is only free to rotate), the only 

possible motion is a rotation about its center. On the lower half of the disc there is a force to the left, and 

there is no force on the top of the disc. The disc will therefore rotate in the clockwise direction. This is an 
example of a very crude electromagnetic motor. 

6.5 MAGNETIC TORQUE ON A CURRENT IN A LOOP 

We have seen 

in 

Problem 6.11, that the magnetic field did not exert a net force on a triangle in 

which current was 

flowing 

around the perimeter. This is an example of current flowing around a closed 
loop, where the net magnetic force will always be zero. However, even 

with 

no net force 

it 

is possible 

Fig. 6-15 
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that there will be a tendency 

for 

the coil to rotate, and this 

tendency 

is 

determined by the torque (or 
moment) which these 

forces 

exert 

on the coil. 

Let 

us examine the case of a rectangular coil, PQRS, 
whose 

sides 

are of lengths a and 6, and which carries a current I .  This coil is in a magnetic field which is 
constant throughout the area of the 

coil. 

In Fig. 6-16(a) the 

coil 

is pictured in three dimensions, while 
Fig. 6-1qb) shows 

the same 

coil 

projected 

on the x-y plane. The magnetic field is in the x direction. 

Problem 6.13. Find an expression 

for 

the torque, r, on coil PGRS in Fig. 6-16. A current, I ,  flows, as 
shown. 

Discuss 

the 

rotation of the coil. 

Solution 

We will first calculate 

the 

forces acting 

on 

each 

of the 

four 

sides of the coil, in order to determine 

the 

net force (which we know should be zero) and the torque which may be exerted. On each of sides PS and 
QR, the 

magnitude 

of the force is ZbB sin 4 [Fig. 6-16(b)]. The 

direction 

of the 

two 

forces are opposite to 
each other, since the 

current 

flows in the 

opposite 

direction 

for the 

two 

sides. For one of the sides the force 

is in the + z direction 

[out 

of the 

paper 

in Fig. 6-16(b)], and for the 

other 

side the force is in 

the 

opposite, or 

- z  direction. The line of action of these 

two 

forces is clearly the 

same 

and they exert 

no 

net torque on 

the 

coil. Thus any net torque will have to come from sides PQ and SR. The force exerted on each of these sides 

is IbB sin 90" and the 

directions 

are opposite to each other. The net force will therefore be zero, 

as 

we 
expected. However, the line of action of these two forces will not be identical 

and 

there 

will usually be a net 
torque. Let us calculate 

the 

direction 

of the forces and their line of action, 

and 

from this 

information 

we will 
then be able to calculate 

the 

torque. 

On side PQ 

the 

force will be perpendicular to PQ (the z direction) and to B (the x direction). 

The 

force 
is therefore in the f y  direction. Since the 

current 

in the coil is flowing in the 

direction 

PQRS, then using 

the 

right-hand 

rule gives a force in the - y  direction. For this same 

current 

direction, the 

force on side SR 
will be in the + y  direction. 

This 

is depicted in Fig. 6-17. The line of action for the force on PQ is the y axis, 
while the line of action for the force on side SR is the line parallel to the y axis, but at a distance of a sin 4 
from that axis. If we take 

the 

torque about the 

origin, 

only the 

force on SR will contribute and 

the 

torque 

will be r = F a sin 4 = IbB a sin 4 = IAB sin 4, where A = ab = the 

area 

of the coil. (Actually, 

the 

torque 

will be the 

same 

about any axis because the two forces producing 

the 

torque are equal in magnitude and 
opposite in direction, 

thus 

forming 

a couple; see Ibid., 9.2, p. 234). This torque will try to rotate the coil 

about the 2 axis in the 

counter-clockwise 

direction, until the plane 

of the coil is parallel to the y axis. At this 

point, 

the 

angle 4 is zero, and the torque is zero, Thus the coil will try to line up with its 

plane 

perpendicu- 

lar to the 

magnetic 

field. If the 

current 

direction of all the forces would have 
rotate the coil clockwise around the 
magnetic field the torque will be zero. 

in the coil had been in the 

opposite 

direction, 

from Q toP,then the 
been reversed, and 

the 

torque 

would have been in the 

direction 

to 
y axis. Again, when the 

plane 

of the coil is perpendicular to the 

T 

Fig. 6-16 
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It is useful to define a vector area for the coil, A, whose magnitude is A = ab, and whose direction is 
perpendicular to the plane of the coil. The +direction of A is determined by the right-hand rule. Curl 
the fingers of your right-hand around the coil 

in 

the direction of the current. Your thumb then points in 
the positive A direction. Thus 4 is the angle 

between 

A and B, as can be seen in Fig. 6-17. We see that 
in general the torque is given by 

I' = IAB sin 4 (6.5) 

where I' tends to rotate the coil in the same direction as rotating the vector A through 4 to B. When A 
is 

parallel 

to B, 4 = 0 and the torque is 

zero. 

We 

define 

a new vector, M, the magnetic dipole moment of the coil, 

whose 

magnitude is I A  and 
whose 

direction 

is the same as A (with 

the 

convention we defined 

earlier). 

If the 

coil 

consists 

of several 
turns, then each turn has a magnetic 

moment 

IA, and the entire coil has a magnetic moment N I A ,  
where N is the number of turns in the coil. The torque will turn the coil in the direction of making M 
point in the direction of B. 

For the case 

shown 

in Fig. 6-16, where 

the 

current flows from P to Q, the torque will rotate the coil 
in the counter-clockwise direction, until the plane of the coil is parallel to the y axis. At that point, the 
torque is zero. If the coil rotates past the y axis, then the torque will again try to align M with B, and 
the rotation will now be clockwise. Thus the torque will always be rotating the coil 

back 

to the equi- 
librium 

position, 

and we see that the coil is in stable equilibrium, when M is parallel to B. If the current 
were in the opposite direction, then M would point in the opposite direction (see Fig. 6-18). If the coil 
then starts in position (1) in the figure the torque would 

be 

clockwise, trying to rotate the 

coil 

further 
away from the y axis. If the coil starts on the other side of the y axis 

(position 

2 in the figure), the torque 
would 

be 

counter-clockwise, again 

rotating the coil away from 

the 

y axis. Of course, when the 

coil 

is 

precisely lined up with the y axis (4 = 180°), the torque is 

zero, 

and the coil is in equilibrium, but the 
equilibrium is unstable because any move away from the y axis will result in the coil continuing to 
rotate even more, rather than returning to the equilibrium position. After the coil has rotated 180", the 
coil will have its vector M pointing in the direction of B, and the coil will be in stable equilibrium. 

Although 

this 

result 

was derived 

for 

the special 

case 

of a rectangle, the result is valid 

for 

any coil 
shape, 

with 

the moment of the coil equaling M = N I A ,  and the torque on the coil equaling M B  sin#, 
with the usual 

counter-clockwise, 

clockwise 

conventions. 

It should be 

clear 

that this phenomenon of a torque on a coil can be used to build a motor, which 
will continuously rotate in 

the 

magnetic 

field. Such motors are built by constructing a coil 

from 

many 
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turns (to increase M and thereby, the torque), and suspending 

the 

coil 

on an axis 

in 

a constant magnetic 
field. The direction of the current in the coil is chosen to make the coil rotate in one particular direction, 
for instance clockwise. When the coil 

passes 

the y axis the direction of the torque would 

normally 

reverse, making the coil turn counter-clockwise. In order to prevent 

this 

from happening, 

we arrange to 
have the current direction reverse as the coil 

passes 

through the y axis, thus maintaining a clockwise 
torque. This is 

accomplished 

by the split 

in 

the rings where 

the current enters from the source of EMF 
(see Fig. 6-19). 

Problem 6.14. Consider a circular 

ring 

carrying a current of 2 A. The plane of the ring is at an angle of 
60" to the y z  plane, as shown in Fig. 6-20. The ring has a radius of 1.5 m, and is 

in 

a uniform 

magnetic 

field of 0.3 T pointing in the positive x direction. What torque is 

exerted 

on the coil? 

Fig. 6-19 
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Solution 

The magnitude of the torque is IAB sin 4 = 1.5 (m2) (0.3) sin60" where 60" is the angle between M 
and B. Thus the torque will equal 2.75 N - m. For the direction of current shown in the figure, the vector M 
points below the xz plane. Since the torque tries to align M with B, it will try to 

rotate 

the plane upward 
toward the yz plane. 

Another example of a torque exerted by a 

magnetic 

field is a 

charged 

particle 

which is spinning. 
Consider 

the 

case of a 

charged 

sphere spinning 

on its axis (see Fig. 6-21). Every part of the 

sphere 

is 
moving in 

a 

circle about the axis, and we therefore have charges going in concentric circles which make 
a 

current. 

This 

is like many different coils, all with planes 

perpendicular 

to the axis of rotation, or with 
area vectors parallel to the axis. For positive charge, 

the 

current 

is in the 

same 

direction 

as the velocity 
of the charge, 

and 

for the rotation in the figure, the area vector is vertically upward. For a negative 
charge, 

the 

current 

is opposite to the velocity, and 

the 

area 

vector would be vertically downward. 

The 

magnetic moment vector is in the 

same 

direction 

as the 

area 

vector, upward for positive charge and 

Fig. 6-21 
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downward for 

negative 

charge. 

In a magnetic field there will be a torque on this spinning sphere which 
tries to align 

the 

moment vector in the direction of B. Since spinning particles are like 

tiny 

spinning 
spheres, a charged spinning particle 

tries 

to rotate so that its spin 

axis 

is 

along the magnetic field. The 
direction of rotation about this 

magnetic 

field will be interchanged for 

positive 

and for 

negative 

par- 
ticles. This is part of the meaning when one talks about electrons 

with 

spin 

“up” or spin “down”. In 
both cases 

the 

spin axis aligns with 

a magnetic field, either parallel or anti parallel to B. 
The last example of magnetic moments in a magnetic field that we will discuss is that of a compass 

needle in a magnetic field. We will find out later that a bar magnet 

consists 

of many charged 

particles 

producing a circulating current about the axis of the magnet. The particles produce this current either 
because 

they 

are spinning in unison about parallel 

axes 

to the 

axis 

of the 

magnet, 

or because 

they 

are 
moving 

in 

orbit-like paths circulating the magnet 

axis. 

Thus a magnet is 

actually 

similar 

to a coil with a 
magnetic moment parallel to its axis. Magnets are often 

described 

by “poles” at each 

end. 

The direction 
of the moment of the magnet 

is 

from 

the south to the north pole of the magnet. The north pole 

is 

the 
end that tries to align itself facing north, when the magnet is free to rotate about a vertical 

axis 

through 
its center. 

Such 

a magnet is called a compass. This 

alignment 

is due to the magnet being 

affected 

by the 
Earth’s 

magnetic 

field. In any 

magnetic 

field, such as the intrinsic field of the earth, the magnet rotates, 
with the north pole of the 

magnet 

lining 

up parallel to the magnetic field. Since the Earth’s 

magnetic 

field points approximately due north, this use of the magnetic 

needle 

(compass) 

has been an ancient 
method of determining the northerly direction. 

Problems for Review and Mind Stretching 

Problem 6.15. An electron is in an upward, vertical 

magnetic 

field of 0.8 T. What horizontal velocity 

must the electron 

have 

(magnitude and direction) for the magnetic 

force 

to be 1.6 x 10-l3 N to the 
east ? 

Solution 

The magnitude of the force is I F I = I quB sin 41 I. Since B is vertical and v is horizontal, 4 = 90” and 
sin Q, = 1. Thus, 

1.6 x 10-13 = (1.6 x 10-19)~0.8)(1) (9 

Therefore, U = 1.25 x 106 m/s (ii) 

Since F is perpendicular to v, and they both are horizontal, v must be in the 

north-south 

direction. 

Suppose v is north. 

Then 

rotating 

v upward 

toward 

B would give east 

as 

the direction 

of F for a positive 
charge 

(right-hand 

rule). However, an electron has a negative charge, so the force on an 

electron 

moving 
north is to the west, which is not 

the 

direction 

we seek. Thus, 

the 

velocity must be south. 

Problem 6.16. A particle 

with 

a charge of 2 x lO-’ C is moving 

horizontally 

toward the 

east 

at point 
a, as shown in Fig. 6-22. The particle has a mass of 5 x 10-l5 kg and is 

moving 

with a velocity of 
4 x 104 m/s. We want to make this charge move 

in 

a circle through point b, which is 1.0 m south of a. 

What magnetic field (magnitude and direction) is required? 

Solution 

Since the circle is in 

the 

horizontal 

plane, the magnetic 

field must be vertical (either in or out of the 
paper). At point U, the (positively charged) 

particle 

is moving to the 

east, 

and the 

centripetal 

force needed to 
make 

the 

particle 

move in 

the 

desired circle must be to the 

south. 

Using the 

right-hand 

rule, we find that if 
the field is out of the 

paper, 

the 

force would be to the 

south, 

while 

if the field is into the 

paper 

the 

force is to 
the north. Thus, 

the 

direction of the field must be out of the paper. 
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The radius of the circle must be half of the distance between a and 6, or 

R = 0.5 m (i) 

Using R = rnu/qB 

B = rnu/qR = (5  x 10-1s)(4 x 104)/(2 x lO-'HO.5) = 0.2 T 

(ii) 

(iii) 

Problem 6.17. A metal rod of length 0.025 m, is free to roll along a railing as in Fig. 6-23. There is a 
uniform 

magnetic 

field of 0.03 T in the entire region, pointing into the plane of the railing, as shown. A 
current of 20 A is 

flowing 

through the railing and rod, as a result of the battery and resistor shown in 
the figure. 

(a) What force (magnitude and direction) 

is 

exerted 

on the rod? 

(b) If the polarity of the battery is 

changed, 

what change, if any, 

occurs 

to the force? 

Solution 

(a) The current is flowing from a to b in the rod. The magnitude of the force 

is: 

I F 1 = ZLB sin 4 = (20)(0.025)(0.3) sin 90" = 0.15 N (0 
The direction of the force 

is 

perpendicular to L 

(which 

points from a to b) and to B (which points into 

the paper), and is therefore along the direction of the railing. The right-hand rule (curl the fingers of the 
right-hand from L to B and then F is in the direction of the thumb) gives the direction of F to the 

right. 

(b) Changing the polarity of the battery reverses the direction of the current (and therefore L). The force is 
then reversed and is to the left. 

x 

x 

x 

x x 

x:x x 

Fig. 6-23 
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Problem 6.18. A coil 

with 

100 turns is free to rotate about an axis AA' as in 

Fig. 

6-24. There is a 
magnetic field of 0.05 T in the 

plane 

of the 

coil, 

as shown 

in 

the 

figure. The coil has an area of 0.07 m2 , 
and a current, I ,  of 2 x 10-3 A is made to flow in the coil in the direction shown. 

(a) Calculate the torque produced by the magnetic field on the coil 

while in 

this 

position. 

(6) Calculate the torque produced by the magnetic field on the coil if the coil rotates through an angle 
8 from 

this 

initial position. 

Solution 

The torque produced by the magnetic field is given by 

I r I = M B  sin 4, where 4 is the angle 

between 

M and B (0 

M = N I A  = (100)(2 x 10-')(0.07) = 0.014 (ii) 

and the direction is perpendicular to the plane of the coil. 

Using 

our convention (curl the fingers of the 
right-hand in the direction of I, and the thumb points in the direction of M), we get that M is into the 

paper. Thus 

rB = (0.014)(0.05)(1) = 7 x 10-4 N + m (iii) 

The torque tends to rotate the coil 

in 

the direction you get by rotating M to B. 
If the plane of the coil rotates by 0 then the angle 4 becomes (90 & 0). The torque, rB' is now 

rg = (0.014)(0.05) sin (90 _+ e) = 7 x i O +  COS e ( iv )  

Problem 6.19. In Problem (6.18) a wire along axis AA' can produce a restoring torque on the coil, 
given by I rR I = 7 x 10-4 8, where 8 is the 

angle, 

measured 

in radians, through which the coil rotates 
from the original 

position. 

The coil will be in equilibrium if the restoring torque is equal to the magnetic 
torque in magnitude and opposite in direction. 

(a) Calculate the restoring torque produced by the wire on the coil at angles of 5", 10" 15", 20", 25", 
and 30". 

(b) Calculate the current needed in the wire so that the magnetic torque equals, in magnitude, the 
restoring torque at each of those angles. 

II 
A' 

Fig. 6-24 
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(c) Plot a graph of the angle of equilibrium vs. current, using the data calculated in (a) and (b). 

Solution 

(4 I r R  I = 7 x 6, where the angle 6 is in radians 

Thus: 

6 (degree) 8 (radians) r R  

5 0.087 0.61 x 10-4 
10 0.175 1.22 x 10-4 
15 0.262 1.83 x 10-4 
20 0.349 2.44 x 10-4 
25 0.436 3.05 x 10-4 
30 0.524 3.67 x 10-4 

(ii) 

(iii) 

(14 

6 (degree) 6 (radians) 1 

5 0.087 0.87 x 10-6 
10 0.175 1.78 x 10-6 
15 0.262 2.71 x 10-6 
20 0.349 3.71 x 10-6 
25 0.436 4.81 x 10d6 
30 0.524 6.05 x 10-6 

Supplementary Problems 

Problem 6.20. A magnetic field of 0.3 T is in the x-direction. Calculate the force (magnitude and 

direction) 

on a 
charge of 3 x 10-5 C moving with a velocity of 3 x 106 m/s in the direction shown in Fig. 6-25. 

Am. (a) 27 N, into 

paper; 

(b) 0; (c) 13.5 N, into 

paper; 

(d) 13.5 N, into paper 
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Problem 6.21. A magnetic field of 0.3 T is out of the paper. Calculate the force (magnitude and direction) on a 
charge of 3 x 10-' C moving 

with 

a velocity of 3 x 106 

m/s 

in 

the direction shown in 

Fig. 

6-25. 

Ans. (a) 27 N, in + x  direction; (b) 27 N, in -y  direction; (c) 27 N, 60" below + x  axis; (d) 27 N, 60" above 

+ x  axis 
V 

t 

Fig. 6-25 

Problem 6.22. A particle with charge - 1.6 x 10- l 9  C is moving horizontally in the air above the earth with a 
speed of 7 x 104 m/s. 

It 

has a mass of 1.67 x 10-27 kg. What magnetic field (magnitude and direction) is needed so 
that the magnetic force 

cancels 

out the gravitational force of the earth? 

1.5 x 10- l 2  T, horizontal and perpendicular to v. (This illustrates that magnetic forces, 

for 

normal 
values of B, are very much larger than gravitational forces.) 

Ans. 

Problem 6.23. A vertical magnetic field of 0.3 T causes a charged particle, 

moving 

with 

a velocity of 3 x 105 m/s, 

to move in a circle of radius 0.01 m. What is the charge to mass ratio (q/rn) of this particle? 

Ans. 108 c /kg  

Problem 6.24. A magnetic field, coming out of the paper, causes a charged particle to move around a circle 

in 

a 
clockwise direction. Is the particle positively or negatively charged? 

Ans. positively charged 

Problem 6.25. A magnetic field, of 0.6 T, going into the paper, causes a charged particle to move in a horizontal 
circle. The particle has mass 1.67 x 10-27 kg and charge 1.6 x 10-l9 C. 

(a) How long does it  take for the particle to go once around the circle? 

(b) How many times 

per 

second 

does the particle go around the circle? 

Ans. (a) 1.33 x 10-7 s ;  (b) 7.4 x 106 Hz 

Problem 6.26. Two isotopes have 

masses 

of 9.87 x 10-26 kg and 9.97 x 10-26 kg, and each have a charge of 
1.6 x 10- l 9  C. They each move 

in 

a circle 

with 

a velocity of 5 x 106 m/s in a magnetic field of 0.5 T. After going 
through a semi-circle, 

they 

strike a screen perpendicular to their velocity. How far apart are they on this screen? 

Ans. 0.125 m 

Problem 6.27. Particles move through a velocity 

selector, 

in which 

the fields are E = 104 V/m and B = 0.5 T. 
Outside of the velocity 

selector, 

there is only the magnetic field of 0.5 T. The particles 

have 

a charge of 1.6 x 10-l9 

C, and a mass of 6.7 x 10-27 kg. 

(a) What is the velocity of those particles that leave the velocity selector? 

(b) What is the radius of the circle 

in 

which 

the particles move after 

they 

leave 

the velocity selector? 

(c) If the electric field is doubled, what is the radius of the circle 

in 

which 

the particles now move? 

Ans. (a) 2 x 104 m/s; (b) 1.68 x 10-3 m; (c) 3.35 x 10A3 m 

Problem 6.28. One wants to build a velocity 

selector 

to select 

particles 

with 

a speed of 6 x 106 

m/s. 

A magnetic 
field of 0.3 T is available. 

(a) What electric 

field 

is needed? 

(b) If the electric field is produced by parallel 

plates, 

spaced 2 mm apart, what voltage must be applied? 

(c) If one wants to select 

particles 

with half of this velocity, 

what 

voltage 

is needed? 

Ans. (a) 1.8 x 106 V/m; (b) 3.6 x 103 V; (c) 1.8 x 103 V 
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Fig. 6-26 

Problem 6.29. Consider a cube, 

with 

a side of 0.5 m, as shown in Fig. 

6-26. 

A magnetic field of 0.3 T points in the 

y direction. A current of 2 A flows along the direction ABCDE. Calculate the force (magnitude and direction) on (a) 

segment A B ;  (b)  segment B C ;  (c) segment C D ;  ( d )  segment D E ;  and (e )  the entire path ABCDE. 

Ans. (a) 0.3 N, + z direction; (b) 0; (c) 0.3 N, + x direction; (d)  0.3 N, - z  direction; ( e )  0.3 N, + x direction 

Problem 6.30. Consider a cube, 

with 

a side of 0.5 m, as shown in Fig. 6-26. A magnetic field of 0.3 T points in the 
- x direction. A current of 2 A flows along the direction ABCDE. Calculate the force (magnitude and direction) on 

(a) segment A B ;  (b) segment B C ;  (c) segment CD;  (6)  segment D E ;  and (e) the entire path ABCDE. 

Ans. (a) 0; (b)  0.3 N, + z direction; (c) 0.42 N, in y-z plane 45" above the - z  direction; (6) 0; 
(e )  F ,  = 0.3 N, F ,  = -0.3 N, F ,  = 0 

Problem 6.31. Consider a cube, 

with 

a side of 0.5 m, as shown in Fig. 6-26. A magnetic field of 0.3 T points in the 
- z  direction. A current of 2 A flows along the direction ABCDE. Calculate the force (magnitude and direction) on 
(a) segment A B ;  (b) segment B C ;  (c) segment C D ;  (6) segment D E ;  and ( e )  the entire path ABCDE. 

Ans. (a) 0.3 N, + y  direction; (b) 0.3 N, -x direction; (c) 0.3 N, + x  direction; (d) 0.3 N, - y  direction; ( e )  0 

Problem 6.32. A square plate of length 0.5 m, with a mass of 0.03 kg, is hinged and free to rotate about the z axis. 
Current flows along three edges in the direction shown 

in 

Fig. 6-27(a), 

and there is a magnetic field of 0.6 T in the 

-x  direction. For this current, the plate is in equilibrium at an angle, 8, of 30". 

(a) What is the direction of the net magnetic force on the plate? 

(b) By taking torques about the z axis, determine the current flowing along the edges, assuming that the center of 
gravity of the plate is at its center. 

Ans. (a)  + y  direction; (b) 0.5 A 

Problem 6.33. A square plate of length 0.5 m, with a mass of 0.03 kg, is hinged and free to rotate about the z axis. 
Current flows along three edges 

in 

the direction shown in Fig. 6-27(a), and there is a magnetic field of 0.6 T in the 
+ y  direction. For this current, the plate is in equilibrium at an angle, 8, of 30". 

(a) 

(b) 

What is the direction of the net magnetic force on the plate? 

By taking torques about the z axis, determine the current flowing along the edges, assuming that the center of 
gravity of the plate is at its center. 

Ans. (a )  + x  direction; (b) 0.25 A 
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Problem 6.34. An electron is orbiting about a proton with a speed of 3 x 107 m/s in a circle of radius 1.5 x 

10- l 0  m (see Fig. 6-28). 

(a) What current is moving in the circle? Is it 

clockwise 

or counter-clockwise? 

(b) What is the magnetic moment due to this current? 

(c)  Is the magnetic moment in or out of the paper? 

Ans. (a) 0.0051 A, clockwise; (b) 3.6 x 10-22 A - m2; (c) into 

Problem 6.35. A current of 2 A flows along the edges of the rectangle ABCD in Fig. 6-29. The sides of the 

rectangle are 0.06 m and 0.10 m, respectively. What torque is exerted on the rectangle by a magnetic field of 1.1 T, if 
the magnetic field points (a) in the x direction?; (b) in the y direction?; (c) in the z direction?; and (d) in the 
direction from D to B? 

Ans. (a)  0; (b) 0.0132 N - m, + z  direction; (c) 0.0132 N m, - y direction; (6) 0.0132 N - m, direction 
from A to C 

Fig. 6-28 
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Problem 6.36. A rectangular gate, of sides 2 m x 1.5 m, carries 1500 turns of wire 

with 

a current of 0.2 A along its 
edge. One wants the gate to swing open, with a torque of 90 N - m. What magnetic field is needed? 

Ans. 0.1 T 

Problem 637. A circular coil, of 2000 turns, and area 0.15 m2, carries a current of 0.3 A. It is in the earth's 
magnetic field of 1.6 x 10-' T, which we will assume is directed due north [see Fig. 6-3qa)l. 

(a) If the coil is in stable equilibrium 

in 

the x-y plane, does the current flow clockwise or counter-clockwise 

in 

the 
coil ? 

(b) If one turns the coil so that the plane of the coil makes an angle, 8 = 30" with the x-axis, as in 

Fig. 

6-30(b), 
what torque is exerted on the coil? 

Ans. (a) clockwise; (b) 1.87 x 10-' N - m 

V 

N 

W 4  ,E 

S 

(4 

Fig. 6-30 
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Chapter 7 

Magnetism-Source of the Field 

7.1 INTRODUCTION 

In the previous chapter, we learned about the effect of a magnetic field on a moving charge (or on a 
current carrying wire). In this chapter, we will discuss the origin of the magnetic field. We recall that the 
source of a gravitational field, which exerts a force on one mass, is another mass, and the source of an 
electric field, which exerts a force on one charge, is another charge. 

We 

will therefore not be surprised to 
find that one source of a magnetic field, which exerts a force on a moving 

charge, 

is another moving 
charge. Indeed, the basic 

origin 

of a magnetic field is a moving charge or an equivalent current in a 
wire. In a later chapter, we will learn that there is another basic source for a magnetic field, namely an 
electric field that varies 

with 

time. 

In this chapter we will develop the concepts and equations needed to 
understand the magnetic fields produced by moving 

charges. 

7.2 FIELD PRODUCED BY A MOVING CHARGE 

To obtain the magnetic field produced by a charge, 4, moving 

with 

velocity v, at a point located at a 
displacement r from 

the 

charge, we need a mathematical expression 

for 

the field in terms of q,  v and r. 
The geometry is shown in Fig. 7-1. In this 

figure, 

a charge, q, located at point a is moving 

with 

velocity 

v, as shown. We seek the magnitude and direction of the magnetic field at point b, displaced 

from 

point 
a by the vector r. Thus, the point b is at a distance r from 

point 

a along a line that makes an angle 4 
with the velocity v. As was the 

case 

with 

the force 

exerted 

by the magnetic field, we are looking for a 
vector 

(in 

this case 

B) which is formed 

from 

some combination of two 

vectors 

(in this 

case 

v and r) and a 
scalar q. And 

once 

again 

we will discuss separately the magnitude and the 

direction 

of this 

vector 

B. The 
results we express 

here 

were determined from a wide array of experimental 

studies 

of magnetic fields 
and their 

sources. 

Magnitude of the Field 

The formula 

for 

the magnitude of the field is: 

I B I = ( P ~ / ~ Z )  140 sin 4/r2 I ( 7 4  

where (p0/4n) is a constant which, 

for 

our system of units, is equal to 10-7 T - m/A. (The 4n is included 
for later convenience.) 

This 

formula, together with the prescription 

for 

finding 

the direction of the field, 
is known as the Law of Biot and Savart. 

We have used absolute value 

signs, 

since 

the magnitude is always 

positive. 

The magnitude of the 
field B does not depend on the sign of the charge nor on the sign of s in4 (which in any 

case 

is positive 
between 0" and 180"). The direction of the field will, however, be dependent on the sign of q. 

This formula tells us that the field is zero if 4 is 

zero. 

This occurs if the point b lies along the 

line 

of 
v, i.e. if the 

present 

path of the charge would carry it through the point b. In order for a magnetic field 

Fig. 7-1 

188 
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to be produced at a point b, that point 

must 

lie at some non-zero distance from 

the 

extended line 

of v. 
The largest 

magnetic 

field is produced when 4 is 90". This occurs when the point b is located along the 
line perpendicular to v at point a. 

The magnitude of B decreases as l/r2 with the distance from point a. This is reminiscent of the 
dependence of g and of E on the distance from their respective 

sources. 

As expected, the field increases 
with both q and U. Thus the field gets bigger for charges which move 

fast 

and for 

those 

that have a lot of 
charge. The field decreases as one goes to points that are further away 

from 

the charge and for 

those 

at 
smaller 

angles 

to the 

line 

along which the charge moves. 

Problem 7.1. 

(a) A charge of 2 x 10-6 C is moving with a velocity of 3 x 104 m/s when passing point a in Fig. 7-1. 
What is the magnitude of the field at point b if that point is at a distance of 2 x 10-3 m from point 
a at an angle $J of 30°? 

(b) What is the magnitude of the field if the charge were -2  x 10-6 coulomb? 

(c) What is the magnitude of the field if the 

angle 

$J were 150°? 

Solution 

(a) Substituting q = 2 x 10-6 coulomb, U = 3 x 104, 4 = 30" and r = 2 x 10-3 into Eq. (7.1), we get 
IBI = (10-7)(2 x 10-6)(3 x 104)(sin30")/(2 x 10-3)2 = 7.5 x 10-4 T. 

(b) Since only the 

absolute 

value of each variable enters, the answer is the same as for part (a). 

(c) Since sin 150" = sin 30°, the answer is still the same. 

Problem 7.2. A charge of 3.0 x 10-' C is at the origin in Fig. 7-2, moving in the positive x direction 
with 

velocity 

2.0 x 106 m/s. The length of each 

side 

of the cube is 2.0 x 10-3 m. Calculate the 

magni- 

tude of the field at (a) point B ;  (b) point E ;  (c) point H ;  (d) point C ;  and (e) point F .  

Solution 

In all five cases, (po/4n) qu = (10-7)(3.0 x 10-5)(2.0 x 10') = 6.0 x lO-'.  The difference between each 
case is the value of r and of sin 4. Thus, the solution for each case is 

(a) 4 = 0, sin 4 = 0 

and 

therefore I B I = 0. 

(b) 4 = go", sin 4 = 1 and r = 2.0 x 10-3. Therefore I B J  = 6.0 x 10-7(l)/(2.0 x 10-3)2 = 0.15 T. 

Y 

t 

Fig. 7-2 
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(c)  d, = go", sin d, = 1 and r = 2.0 x 10-3 (J2). Therefore I B 1 = 0.075 T. 

(d) d, = 45", sin 4 = 0.707 and r = 2.0 x 10-' (42). Therefore I B 1 = 0.053 T. 

(e) d, = 45", sin d, = 0.707 and T = 2.0 x 10- (J2). Therefore I B 1 = 0.053 T. 

Direction of the Field 

The direction of the field is perpendicular to both v and r, and it is therefore perpendicular to the 
plane containing both v and r. This is illustrated in 

Fig. 

7-3. Here, we call 8 the angle 

between 

v and r. 
Again, there are two 

possible 

directions which are perpendicular to this 

plane, 

and we need a rule to 
select the correct direction. Once again this 

is 

the right-hand rule. In this 

case 

we apply the rule by 
placing our fingers in the direction to rotate v into r, and our thumb will then point in the direction of 
B. In Fig. 7-3, we draw the plane of v and r, and the perpendicular to that plane. The two possible 
perpendicular direction are up and down. Using the right-hand rule 

selects 

the downward direction as 
the correct one. This is the correct answer if the charge 4 is 

positive. 

For a negative 

charge, 

the direction 
of B is 

reversed. 

There is a nice way to visualize 

this 

geometry. 

In Fig. 7-4 we draw the same vectors v and r. At the 
tip of r (point 6) we draw the plane through 6 that is perpendicular to the line of the vector v, cutting 
that line at point 0. Thus the line 

from 

6 to 0 is perpendicular to line aO, and equals r sin8. The 
magnetic field at 6 lies in 

this 

plane and is perpendicular to 6 0  at b. In fact, if one draws a circle 

in 

this 

plane, 

whose 

center is at 0 and whose 

circumference 

passes 

through point b, the direction of the mag- 
netic field at point b is tangent to the circle at that point. The circle through 6 is shown in the 

figure. 

It 

. .  
' .,-*' Plane of v and r 

Fig. 7-3 

Plane 

- YI = 

I t o v  

sin 0 

a 
Plane of v and r 

Fig. 7-4 
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is not hard to see that the magnetic field at any point on this circle, has a common magnitude and a 
direction tangent to the circle at that point. To determine which way the magnetic field points along the 
tangent (for instance, at b the direction 

could 

be either up or down), we use an equivalent right-hand 
rule to that defined 

above. 

Put the thumb of your right hand along the direction of v, and your fingers 
will circle around that line in the direction of B. In the case 

depicted, 

the direction 

of B at point b is 
down. At point b' the tangent to the 

circle 

is horizontal, and the 

magnetic 

field points to the 

right 

as can 
be seen by applying the right-hand rule. 

This 

picture is often very useful, since it shows that if one traces 
the magnetic field lines, 

(in 

a manner similar to tracing electric field lines), they 

form 

concentric circles 
around the direction of v. The direction of this 

circling 

is determined by the right-hand rule. 

Again, 

if 
the charge q is 

negative, 

we reverse the direction of B, which means that that the magnetic field lines will 
now 

be 

circling 

in the opposite direction. It is 

often 

useful to view the field lines by looking toward the 
charge along the direction of the velocity. This 

is 

shown in Fig. 7-5, where we view the charge coming 
out of the paper. The magnetic field lines are circles 

in 

the plane 

of the paper, with centers on the line of 

v. The direction of the field is tangent to the circle at any point, with the sense determined by the 
right-hand rule. In the case 

shown, 

the field lines 

circle 

in the 

counter-clockwise 

direction for 

a positive 
charge, and clockwise 

for 

a negative 

charge. 

Problem 7.3. Determine the direction of the field in Problem 7.2. 

Solution 

(a) Since the field is zero at B, there is obviously no direction to determine. 

(b) Here r is the vector from A to E. The plane 

containing 

v and r is the x-y plane, 

and 

the perpendicular 

to that plane is the _+z direction. If we place our fingers in the 

direction 

rotating 

v into r, our thumb 

points in the +z direction, which is therefore 

the 

direction 

of B. 

Alternatively, we could 

draw 

the 

view as seen by looking 

toward 

v, i.e. by looking 

down 

the 

x axis. 
This view is shown in Fig. 7-6(a). We draw a circle through E, with its 

center 

at A. The 

tangent 

to this circle 
at any 

point 

is the 

direction 

of B at that point. By the 

right-hand 

rule we know that the field lines circle in 

the counter-clockwise 

direction 

(for the positive charge). At E, the 

tangent 

to the circle, and therefore the 
direction of B, points 

toward 

H, or in the positive z direction. 

(c) Here it is simplest to use the 

alternate 

approach discussed in part (b). The same Fig. 7-6(a) also 
contains 

the 

point 

H. The circle through H, with center at A, is also 

shown 

in the figure. The 

tangent 

to this circle at H is perpendicular to AH and pointing in the 

direction 

ED, i.e. 45" below the positive z 

axis, as 

shown. 

(6) Again, we draw 

the 

plane 

that we see as we look 

toward 

v, but 

this 

time we draw 

the 

plane through 

point C [see Fig. 7-6(b)]. The point B is where 

the 

extension 

of the 

vector 

v pierces this 

plane. 

The 
circle centered on B and passing 

through 

C is shown in the figure, again with the field lines circling 
counter-clockwise. At C, the 

tangent 

to the circle is in the - y  direction, which is the 

direction 

of B. 

Charge coming 
out of paper 

- 

Fig. 7-5 
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Fig. 7-6 

(e)  The same drawing that we used for part ( d )  can be used for 

this 

part. The circle through F has a 
tangent at F which points in the positive z direction which is therefore the direction of B. 

Problem 7.4. A charge q 1  is moving with 

velocity 

v ,  along the positive x axis. Another charge q2 is 
moving with velocity v2 parallel to v1 at a distance d from q 1  as shown in Fig. 7-7(a). Find an expression 
for the magnitude of the magnetic force that q1 exerts on q 2 ,  in terms of ql ,  42, v l ,  v 2 ,  and d, and find 
the direction of this force. 

Solution 

Charge 4, produces a magnetic field at the position of q2 as we just learned. This magnetic field exerts 
a force on q 2  as we learned in Chap. 6. We therefore 

solve 

this problem in two steps. First we calculate the 
field B, 

To calculate the field produced by 4 ,  at the position of q 2 ,  we first calculate its magnitude. This is 

given by 1 B, at 1 = po ql( v ,  lsin 8/4nr2, where r = d and 8 is the angle 

between 

v ,  and r, which is 90" (r is 
the vector 

from 

point 1 to point 2). Thus, 

(7.2) 

To determine the direction of B, a1 we draw the view with v ,  coming out of the paper, as shown in Fig. 
7-7(b). The circle 

centered 

on the line of v ,  and going through q 2  is shown on the figure. The tangent to this 

circle at q 2  is in the - y direction, which is the direction of B, 
We now 

have 

to calculate the force 

exerted 

by B, at on q 2 .  This is also done by calculating separately 
the magnitude and the direction of the force. We recall 

from 

Chap. 6 that the magnitude of the force is, in 

general, given by Eq. (6.1): 

I F 1 = I quB sin 4 I 

produced by 4 ,  at the position of q 2 ,  and then we calculate the force that this field exerts on q 2 .  

I B, at 2 I (~0/4nXq, I v1 I / d 2 )  

2 .  

In our case, q = q 2 ,  U = tr2, B = E, 
for B, 

and 5, = 90" since the angle 

between 

B and v2 is 90". Substituting 

(7.3) 

To get the direction of the force, we recall that F is perpendicular to both v2 and to B, a, 2 .  Since B, at is in 
the - y direction and v2 is in the + .x direction, the plane containing both these 

vectors 

is the x-y plane. 
Using the right-hand rule (rotate v2 into B), we find that the direction of F is -2. Thus q 2  is being attracted 

to q1 via the magnetic 

force. 

in the equation, we get that 

I F I = I q 2  M d W ( q 1 u 1 / d 2 )  I = I (10/4n)q,q2 u10,/d2 I 

The above calculation was performed for the case of two positive charges moving parallel to each 
other in the same direction. In this case, we got an attractive force on q2 due to q l .  We can deduce 
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Fig. 7-7 

several 

generalizations 

from 

this example. 

Firstly, 

if we had calculated the force that q 2  exerts on 41, we 
would also have 

found 

an attractive force of the same magnitude. 

Secondly 

if one of the charges had 
been negative, then the force 

would 

have become repulsive, since 

either B, at (if 4, were negative) or the 
right-hand rule 

for 

F (if 4 2  were negative) 

would 

have been reversed. 

However, 

if both charges were 
negative, the force 

would 

still have 

been attractive. Thirdly, if the 

velocities 

of the charges had been in 
parallel, but opposite directions, then, for charges of the same sign, the force 

would 

be repulsive, 

since 

one of the velocity directions would 

be 

reversed. 
It is also important to note that, in addition to the magnetic 

force 

between 

the charges, there is also 
an electric 

force 

between 

the charges. In fact, the electric 

force 

will generally 

be 

much 

greater than the 
magnetic 

force, 

unless 

the velocities of the charges are comparable to the velocity of light. This is more 
fully explored in one of the supplementary problems. 

7.3 FIELD PRODUCED BY CURRENTS 

As we learned 

in 

Chap. 6, current flowing in a wire is equivalent to moving 

charge. 

There we 
discussed the force 

exerted 

on a current flowing 

in 

a small 

length 

of wire. We showed there that we 
could use the same formula that we used 

for 

a charge 4 moving 

with 

a velocity U, if we replaced 4v with 
IL, where L is the small, 

directed 

length 

of wire carrying current I .  The same is fundamentally true 
when one wishes to calculate the field produced by a current element L carrying current I .  However, 
any current element 

must 

be 

part of a continuous circuit, and each part of that circuit 

produces 

its own 

magnetic field at every point. The actual field at any point is the vector sum of the contributions from 
all elements of the circuit. 

This 

will clearly 

pose 

calculation problems, which we will have to discuss. 
To calculate the magnetic field produced by a current I flowing in a wire of length AL (since we are 

talking about a small portion of a longer wire we use the designation AL), we use the same formula that 
we developed in Sec. 7.2, replacing qv with IAL. Thus, the magnitude of the part of the field produced 
by this current element at a point located at a distance r from the element is (see Fig. 7-8) 

(7.4) 

where the terms 

in 

the formula have the same meaning as previously, and as labeled 

in 

the 

figure. The 
direction of the field is 

calculated 

in the same manner as for the moving 

charge, 

and would be into the 
paper for the case 

in 

Fig. 

7-8. 

I AB I = (p0/4n) I IAL sin +/r2 I 
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Fig. 7-8 

In order to calculate the field at this 

point, 

we would 

have 

to add together, vectorially, the contribu- 
tions from the entire 

length 

of the wire. This can be done for 

certain 

special cases without the use of 
advanced 

mathematics, 

but for the more 

general 

case, the use of calculus is needed. Let us discuss 

some 

special cases which are often used in practice. 

Fieldat the Center of a Current Carrying Ring 

Consider 

a 

ring, of radius R, which carries 

a 

current I, flowing in the clockwise direction in Fig. 7-9. 
We want to calculate the field at the center of the ring due to this 

current. 

We proceed by calculating 
the field produced by the 

segment 

AL at the center 

(point 

0). The magnitude of the field is AB = 

(po/4n) I IAL/R2 1, since the 

angle 

between AL and R is 90". This 

magnitude 

is the same 

for 

any segment 
of the ring, independent of the location of AL along the ring. The direction of the field is perpendicular 
to the plane of AL and R, which means that it is in or out of the plane of the ring. Using the right-hand 
rule, we determine that it is into the paper 

in 

the figure. Again, this 

direction 

is independent 

of the 
location of AL along the ring, so that every AL along the wire contributes the 

same 

AB, and in the same 
direction. To get the total magnetic field from 

all 

the AL, we have to add vectors which are all in the 
same 

direction, 

so we have 

only 

to add the magnitudes. The total field will therefore be B = 

(p0/4n) I IL/R2 I = (p0/h)l(2nR)/R2 = po 1/2R. Thus, in general, the field at the center of a 

ring 

is given 
by: 

B = po 1/2R (7.5) 

The direction (into the paper) can be deduced 

from 

the following right-hand rule. Wrap the fingers of 
your 

right 

hand around the circle in the direction of the current, and your thumb points in the direction 
of the field. 

Problem 75. 

(a) Calculate the magnitude and direction of the magnetic field at the 

center 

of the circle in Fig. 7-10, 
whose radius is 1.5 m and which carries 

a 

current of 2 A in the 

direction 

shown. 

(b) Suppose that instead of a single circle we had a tightly 

wound 

coil 

of N = 50 turns (same current, 
same 

radius); 

find B. 

Fig. 7-9 



CHAP. 71 MAGNETISM-SOURCE OF THE FIELD 195 

Fig. 7-10 

Solution 

(a) Using Eq. (7.5), B = poZ/2R = p0(2)/2(1.5) = 4n x 10-’/1.5 = 8.38 x lO-’ T. To get the direction, we 
wrap our fingers around the ring in the direction of I ,  and 

determine 

that the direction is to the right. 

(b) If the 

coil 

consists 

of N turns, all of the same radius and carrying the same current, we just 

add 

the 
contributions of each loop of the coil: 

B = Np0Z/2R = 5q8.38 x lO-’) = 4.19 x 10-5T (7.6) 

Field Along the Axis of a Ring 

In Fig. 7-11, we draw a ring, of radius R, carrying a current I in the direction shown. The current is 
out of the paper at the top, and into the paper at the bottom. Along the axis of the ring 

(the 

line 

OP), we 
seek the magnetic field produced by this current at an arbitrary distance, x, from the center of the ring, 
0. We choose a current element AL at the top of the ring, 

where 

the 

current is coming out of the paper. 
The field at P due to this 

element 

is 

I AB I = (p0/4z) I IAL sin 4 / r 2  I 

I AB I = (po/4z)IAL/(R2 + x2) 

(7.7) 

Here 4 is the angle 

between 

AL (out of the paper) and r, which is 90°, and r = d m .  Thus 

(7.8) 

The direction of the field is more difficult to visualize. It is shown if Fig. 7-11. This 

direction 

is clearly 
perpendicular to r and to AL, and conforms to the right-hand rule. Note that 8, the angle between R 
and r, is also the angle between B and the x axis. If we now 

consider 

an equivalent current element at 
the bottom of the ring, we get a field of the same magnitude and with a direction below the 

axis 

at the 

AL (out) 

AL (in) 

Fig. 7-11 
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same angle as this AB (see Fig. 7-11). If we add those two fields together, the vertical components will 
cancel and we will be left with 

only 

the horizontal components. This horizontal component will equal 
AB cos 9 

I AB, I = (po/4n)IAL COS 8/(R2 + x2), 

and with cos 8 = R / J m ,  we get 

Problem 7.6. Find an expression 

for 

the field due to a current carrying coil at any point along its axis 
of symmetry. 

Solution 

Using Eq. (7.9), and noting that for every 

segment 

in the upper part of the ring, there will be an 
opposite segment in the lower part which will cancel other components than the horizontal component, we 

have only to add together the horizontal components due to all the ALs around the loop. Since the magni- 
tude of B, is the same for 

all 

the segments, we can add them together very easily. 

Adding 

all 

the AL 
together gives the circumference of the circle, 2nR, and therefore 

B = (pO/4n)1(2nR)R/(RZ + x ~ ) ~ ’ ~  = poZR2/2(R2 + x ~ ) ~ / ~  (7.10) 

Again, 

for 

N turns in the coil, the field is multiplied by N .  The direction 

is 

along the axis to the right 

for 

the direction of current chosen. In general, the direction along the axis can be determined by the same 
right-hand rule as for the center of the circle. 

Note. Obtaining the magnetic field of the loop off the x axis is much harder, since we don’t 

have 

the 

symmetry 

that allowed us to solve the on axis 

problem. 

Problem 7.7. Calculate the magnitude and direction of the 

magnetic 

field at point P in Fig. 7-11, if 
R = 1.5 m, I = 2 A and x = 2 m. 

Solution 

Using Eq. (7.10), B = 4n x 10-7(2)(l.S)2/2(1.5z + 22)3/2 = 1.8 x 10-7 T. The direction is to the right. 

Problem 7.8. Two identical 

coils, 

each having 

1O00 turns, are separated by a distance of 1.6 m along a 
common axis, as in Fig. 7-12. For each 

coil 

R = 1.5 m and I = 2 A. Calculate the field at a point on the 
axis 

midway 

between the coils. 

R =  1.5m 

R =  1.6m 

P 
- 

R =  1.5 m 

N turns N turns 

Fig. 7-12 
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Soh tion 

For each coil, we can use Eq. (7.20) multiplying by N for the number of turns. Therefore, for each coil, 
B = 103 (411 x 10-7)(2)(1.5)2/2(1.52 + 0.82)3/2 = 5.8 x lO-* T. The direction is to the right. For both coils 
together, the field is 1.16 x lO-’ T. 

Field of a Long Strdght Wire 

Suppose that a long straight wire carries a current I to the 

right, 

as in Fig. 7-13(a). We want to 
know the magnitude and direction of the field produced by the 

current 

in this wire at a point 

located 

at 
a distance R from the wire. The 

method 

required 

is to take segments of length AL along 

the 

wire, 
calculate 

the 

field AB produced by that segment at the 

point 

and add the contributions from each 
segment together 

vectorially. 

We will carry out part of this process, then 

indicate 

how to complete 

it 

and then give the final answer. Choose a segment AL as shown. At point P, we calculate 

the 

magnitude 

of AB to be 

AB = (p0/4n)IAL sin O/r2 

The direction of the field is perpendicular to AL and to r, i.e. perpendicular to the 

paper, 

and by the 
right-hand 

rule 

the direction 

is into the 

paper. 

This direction 

is the 

same 

for 

all segments of the wire, so 
that we can 

deduce 

that the direction of the field of the 

entire 

wire will be in this 

same 

direction. 

However, the magnitude of the field from each 

segment 

will vary since r and sin 8 is different for each 
segment. To add up all the contributions from the segments 

requires 

the 

use of calculus. When we do 
this, we come up with the result that 

B = (po/4z)21/R (7.2 2) 

In this equation, I is the current in the wire and R is 

the 

perpendicular distance 

of the point P from the 
wire. The magnitude of the field depends 

only 

on these two variables. To get the 

direction 

of the 
magnetic field, we make use of the 

same 

picture 

that we developed for 

the 

direction 

of the 

magnetic 

field 
produced by a moving 

charge. 

The 

field lines are circles about the 

axis 

of the 

long 

wire. 

This is easiest to 
visualize if we draw the 

straight 

wire as 

coming 

out of or going into the 

paper, 

as in Fig. 7-13(b). The 
magnetic field lines are then circles in the 

plane 

of the paper, with their 

center 

at the wire. The magnetic 
field at any point is tangent to the circle through that point 

and 

the direction 

of circling is obtained 
from 

the 

right-hand 

rule, i.e. put your thumb in the direction of the 

current 

and the fingers circle in the 
direction of the 

magnetic 

field. 

Problem 7.9. A current of 4 A flows in a long, straight wire along the x axis in Fig. 7-14. Calculate the 
magnitude and direction of the magnetic field at the following corners of the 

cube, 

whose side is 0.8 m: 
(a) corner d; (b) cornerf; and (c) corner h. 

Solution 

(a) It is useful to draw a picture of the situation 

looking 

at the current coming out of the paper. We 
therefore draw Fig. 7-14(b), with the current coming out at the origin, and the sides bcgh and adhe in 

AL I 

0 \ 
8 \ 

I \ 

M e - - - -  

I \ 
I I 
I I 
I I 

I \ 

\ I 
I 

P 

P 

Fig. 7-13 
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f 

I 

b -  b x  
z f -  

Y 

t 

J 

Fig. 7-14 

the 

plane 

of the 

paper. 

We know that the 

magnitude 

of the field at any 

point 

is given by B = 
(p0/4z)21/R, where R is the 

perpendicular 

distance 

from the 

point 

to the 

line 

of current, which in 
our case means to the x axis. 

For corner d, I B I = 10-' (2)(4)/0.8 = 10-6 T, and the 

direction 

is tangent to the circle drawn with 
center at a and going 

through 

point 

d .  This circle is shown on the figure. It is seen from the figure that 
this 

tangent 

is in 

the 

-+y  direction at point d .  To choose between these two possibilities, we use the 
right-hand rule which tells us that the field lines circle the axis in a counter-cluckwise 

direction. 

There- 

fore the 

magnetic 

field at c is in the - y  direction. 

(b) For corner f the 

magnitude 

of B is also B = 10-6 T, since R is the 

same 

as for part (a), and the 

same 

circle drawn for part (a) also goes through 

point 

e. Note that the fact that point e is further out along 
the x axis is totally 

irrelevant 

to this 

calculation. 

The tangent 

to the field line at this 

point 

is in 

the 

+ z 

direction. 

(c)  For corner h the 

perpendicular 

distance 

to the x axis is 0.8J2, and the 

magnetic 

field is 
B = 7.07 x 10- T. The circle through h is also shown on the figure, and the 

tangent 

to that circle at h 
is at an angle of 45" below the + z  axis (the 

direction 

from e to 6). This 

direction 

is also 

shown 

on the 
figure. 

Problem 7.10. A current of 4 A flows in a long, straight wire out of the paper, as in Fig. 7-15. A charge 
of 2 x 10-4 C is located at point P, a distance of 3 mm from 

the 

wire. This 

charge 

is moving with a 
velocity of magnitude 4 x 106 m/s. Calculate 

the 

force exerted 

on 

the charge 

if the direction of its 
velocity is (a) into the paper; (b) to the right; and (c) upward. 

Fig. 7-15 
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The force 

exerted 

on the charge comes from the magnetic field produced by the current in the long 
straight wire. 

We 

will therefore 

first 

calculate the magnetic field produced by the wire at the position of 

the wire, i.e. at point P. The magnitude of the field is B = 10-' (2)(4)/3 x 10-3 = 2.67 x 10-4 T. 
Drawing the circle through P around the current, we find the direction of B to be upward. Note that 
this magnetic field exists at P whether or not there is a charge at this 

point. 

Since 

a moving charge 
does exist at P, the field exerts a force on this moving charge. This force depends on the magnitude and 
direction of v. 

The magnitude of the force is given by F = J q u B  sin 4 1. If v is into the paper, then 4 = 90", and 

F = 2 x 10-4 (4 x 106)(2.67 x 10-4) = 0.21 N. The direction of the force is perpendicular to the plane 
of v and B, so that it is either toward or away 

from 

the current line. Using the right-hand rule (rotating 
v into B) we find that the force is away from the current. 

Using the same value 

for 

B that we calculated in (a), and noting that 4 = 90", we get that F = 0.21 N 
again. The direction is now either into or out of the paper (perpendicular to v and B), and the right- 
hand rule chooses out of the paper. 

Here U is 

in 

the same direction as the magnetic field, so that 4 = 0. The force is therefore 

zero. 

Field in a Long Solenoid 

We now 

consider 

the field produced within a long, 

tightly 

wound 

solenoid. This 

case 

is depicted in 
Fig. 7-16. A wire is continuously wound around a long pipe with adjacent windings 

close 

to each other. 
This is similar to the case of the field produced by a ring along its 

axis, 

except 

that we have to add 
together the fields of many parallel rings. This calculation can be performed 

using 

the calculus. Further- 
more, we want to know the field everywhere 

within 

the solenoid, 

not just on its 

axis. 

This is an 
extremely dificult calculation, but can be derived 

using 

Ampere's law-see the 

next 

section. When this 

calculation is performed, we find that the field within a long solenoid is the same at any point within the 
solenoid, and is zero (or very small) outside the 

solenoid. 

The magnitude of the field inside 

the 

solenoid 

is given by I B I = po nl, where n is the number of turns per 

meter. 

The direction of the field is parallel to 
the axis 

with 

the direction 

given by the same right-hand rule used for the ring (the fingers 

circle 

in the 
direction of the current and the thumb points in the direction of the field). The result is the 

reason 

that 
solenoids are so very useful for producing magnetic fields. The field produced is uniform, with 

the 

same 

magnitude and direction everywhere 

within 

the solenoid. Furthermore, this uniform field does not 
depend on the radius of the solenoid, 

only 

on the number of windings 

per 

unit length. 

One can, for 
instance, 

wind 

several layers 

of turns, one on top of the other, to increase n, and each layer will contrib- 
ute the same field, independent of the radius (as long as the solenoid is truly long). 

Problem 7.11. Calculate the magnetic field produced by the 

solenoid 

in Fig. 7-16, if the current is 25 A, 
the radius of the winding is 3 cm, and if there are 700 turns per 

meter. 

Solution 

The magnitude of the field is B = po nl = (4n x 10-')(700)(25) = 0.022 T. The radius did not enter into 

the calculation. The direction, using the right-hand rule, is to the right. 

,-Tightly wound R-=L 

L 

Fig. 7-16 
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If the solenoid is not infinitely long, 

but 

the length is much 

greater 

than the 

radius, 

then the above result 

is still nearly true as long as one is not too near to the 

end 

of the windings. The field lines 

inside 

the 

solenoid are straight lines, parallel to the axis, until one approaches the 

ends. 

Outside the 

solenoid, 

the 

field is no 

longer 

zero, 

and the field lines are as shown in Fig. 7-17. This 

happens 

to be the same field 
line 

configuration 

as for 

a 

permanent 

bar magnet, which we have 

already 

described 

at the 

end 

of Sec. 
6.5 as consisting of many 

circulating 

currents. It 

is therefore 

not 

surprising 

that a bar magnet 

produces 

the 

same 

field as that of a 

solenoid. 

Note again that field lines form closed loops, 

unlike 

electric 

field lines that begin or end at a 

point 

charge. The fact that magnetic field lines don’t 

converge 

to or diverge from a 

point 

is a 

fundamental 

property of the 

magnetic 

field and can be stated as a 

general 

law: “Magnetic field lines never converge 
to a 

point 

or diverge 

from 

a 

point”. 

Composite Fields 

vector 

sum 

of the fields produced by each wire. This is illustrated by the following examples. 
If several wires each 

produce 

magnetic 

fields, then the actual magnetic field at any 

point 

is the 

Problem 7.12. Calculate 

the 

magnetic 

field produced by the 

two 

long parallel 

wires, each 

carrying 

a 

current of 25 A, which are separated by 0.6 m, as in Fig. 7-18. 

(a) At point P, between the two wires and at a 

distance 

of 0.2 m from the first wire. 

(6) At point Q, to the right of the wires, and at a 

distance 

of 0.4 m from the second wire. 

Solution 

The 

magnitude 

of the field from each wire is B = (p0/4nX2Z/R). Therefore, 

and 

B ,  = 10-7(2)(25)/(0.2) = 2.5 x lO-’T, 

B, = 10-7(2)(25)/(0.4) = 1.25 x 10-’T. 

The 

direction 

of 

B ,  is into the 

paper, 

whereas the 

direction 

of B2 is out of the 

paper. 

Adding the two 
vectorially, we get that B = (2.5 - 1.25) x 10- ’ T into the 

paper. 

Here B ,  = 10-7(2)(25)/(1) = 5 x 10-6 T, and B,  = 10-7(2)(25)/(0.4) = 1.25 x 10-’ 

T. 

The direction of 
both B ,  and B,  is into the 

paper. 

Thus 

B = (1.25 + 0.5) x 10-’ T = 1.75 x 10-’ 

T, 

into the 

paper. 

Fig. 7-17 
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Problem 7.13. Calculate the magnetic field produced by the long parallel wire carrying a current of 
25 A, and the ring carrying a current of 2.5 A, at the center of the ring. The center of the ring is 0.5 m 
from 

the 

wire, and the ring has a radius of 0.2 m. The currents are in the direction 

shown 

in Fig. 7-19. 

Solution 

The magnitude of the field from the wire is B = (p0/4n)(21/R). Therefore, 

B, = 10-7(2)(25)/(0.5) = 10-5T. 

The magnitude of the field from the ring at its center is B = pLo 1/2R, and therefore 

B, = 4n x 10-7(2.5)/(2)(0.2) = 7.9 x 10-6T. 

The direction of B, is into the paper, whereas the direction of B, is out of the paper. Adding 

these 

together 
vectorially gives B = (7.9 - 1) x 10-6 = 6.9 x 10F6 T out of the paper. 

7.4 AMPERE’S LAW 

In Sec. 7.3, we learned 

how 

to calculate the field produced by a current. In that formulation, we 
added together the contributions of the various 

segments 

of the wire to get the total field. As we saw, 
except 

for 

the simplest situations, obtaining the field is very difficult. There is a powerful 

general 

law 

relating the 

magnetic 

field and the current, which often gives insight into the behavior of the magnetic 
field, and, in certain circumstances, 

allows 

for 

the compete determination of the field without lengthy 
calculation. This relationship is given by Ampere’s law. This mathematical relationship between the 
current and the magnetic field is similar in spirit to Gauss’s 

law 

in electrostatics, but quite different 
mathematically. 

We 

will first 

show 

the basis 

for 

arriving at this 

law 

in a very special 

case, 

then 

state the 
law in general and apply it to calculating the magnetic fields of special current configurations. 

I = 2.5 A I 

Fig. 7-19 
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Fig. 7-20 

Consider the case of a long straight wire, as drawn in 

Fig. 

7-2qa).  We 

have 

already shown that the 
magnetic field circles around the wire. If we draw a circular path around the wire as shown, at a radius 
R,  the magnetic field at any point on this wire is the same as at any other point and has the value 
B = (po /h )21 /R .  Furthermore, the direction of B is tangent to the circle, and parallel to the AL seg- 
ments making up the circumference. If we add up all the BAL products around the circle, we get: 
[(p0/4z)21/R](2zR) = p o I .  What makes this interesting is the fact that it is generalizable to any shape 
closed path contour surrounding the wire, such as that of Fig. 7-2qb).  As shown 

in 

this figure, B is no 
longer tangent to the contour and indeed 

varies 

both in magnitude and in angle to the curve 

from 

point 
to point. Nonetheless, if we multiply 

the 

tangential component of B by AL for each infinitesimal 
segment, and add them up around the contour, the result is still p o I .  This 

is 

analogous to calculating 
the work done by a variable 

force 

as a particle 

moves 

along its path (Chapter 6, Section 6.2). We thus 
calculate the quantity ( B  cos 6AL) for each segment of the path, where 6 is the angle 

between 

B and AL. 
As you 

recall, 

this 

is the 

same 

as taking the component of B along AL at any point, and multiplying by 
AL. The contribution from 

each 

segment 

can be positive or negative, depending on whether 6 is less 
than or greater than 90”. To get Ampere’s law, we assume that the AL directions obey the right-hand 
rule 

with 

thumb pointing in the direction of the current and fingers 

circling 

in 

the direction of the AL’s. 

If we now add the contributions to ( B  cos 6AL) from all the segments of the path, then the sum will still 
equal p o I .  For any path around the wire, as long as it 

is 

a closed path, and it is directed by the 
right-hand rule, we get that the sum of ( B  cos 6AL) for the entire closed path will equal p o I .  If several 
currents flow in different wires going through the area enclosed by the path, each will contribute its own 
po I ,  and the sum of ( B  cos 6AL = B, AL) for the entire closed path will equal po Itotal, where Itotal is the 
total current flowing through the area enclosed by the path. Using the terminology of the calculus, we 
say that the line integral of B cos 8AL around a closed path equals the total current flowing through the 
area enclosed by that path. This very important result is Ampere’s law! 

lim AL + 0, B, AL = po Itotal 
closed loop 

(7.22) 

Ampere’s law is a very general 

result, 

valid 

in all 

circumstances 

of magnetostatics. It depends on the 
fact that, in contrast to the case of electric field lines in electrostatics, 

magnetic 

field lines do not start or 
end on charges. There are no point sources of magnetic field lines. Instead, magnetic field lines 

close 

upon themselves. The amount of magnetic field along these 

closed 

paths depends on the enclosed 
current, in the manner given by Ampere’s law. 

Note. If we were calculating the work due to a conservative 

force 

around a closed loop, we would 
get 

zero, 

in contrast to the non-zero result of Ampere’s law. In this 

regard, 

B behaves 

like 

a 
non-conservative “force ”. 
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In order to be able to use Ampere’s law to evaluate magnetic fields, one has to be able to evaluate 
the sum of ( B  cos 8AL) along some 

closed 

path. This is usually 

possible 

only for cases 

of special 

sym- 

metry, where one knows that the field has the same value at every point along the path. In that case, the 
sum is just equal to the value of B times the length of the path. This is 

similar 

to the case of Gauss’s 

law 

which can be used to evaluate the 

electric 

field in cases of special 

symmetry. 

We 

will discuss 

several 

such 

symmetry 

cases, 

where 

Ampere’s law is often used to evaluate the magnetic field. 

Long Straight 

Wire 

This case was actually used by us in deriving the simplest 

special 

case 

of Ampere’s law. We now use 
Ampere’s law to derive the field in 

this 

case 

just to introduce the 

technique 

that is generally used in 
applying Ampere’s law. 

In Fig. 7-20(a), the current in the wire is coming out of the paper. We draw the circle around this 
wire at a radius R,  and will use this 

circle 

as the path for adding up 

all 

the contributions to ( B  cos BAL). 
The symmetry of the problem immediately 

tells 

us 

that B has 

the 

same value at all points on the path, 
since 

each 

point at the same R looks identical to the wire. Furthermore, there cannot be a radial 
component to the magnetic field, or a component in or out of the paper, because the magnetic field has 
to be perpendicular to both the current direction and the displacement 

from 

a current element to a 
point of interest on the circle. Thus B must 

be 

everywhere 

tangent to the circle and B cos 8 will equal 
the constant B at every point on the path. The sum of ( B  cos BAL) along the whole 

circle 

will therefore 
be B(27cR), and, by Ampere’s law, 

this 

equals po I ,  or 

B(2nR) = p o I ,  or B = poI/2nR,  

which 

is 

the correct result. 

Coaxial Cable 

A coaxial cable consists of an inner solid conductor of radius R,, carrying current I out of the 
paper, and an outer, concentric hollow 

cylinder, 

of radius R 2 ,  carrying the 

same 

current I into the 

paper, the current being distributed uniformly around the cylinder, as in 

Fig. 

7-21(a). We will calculate 
the magnetic field produced by these currents in the region between the conductors ( R ,  c r < R2), and 
in the region outside both conductors (r > R2). Again, 

because 

of the circular symmetry, 

the 

field will be 
the same at all 

points 

at the same distance from the wires. Therefore, if we choose as our path a circle of 
radius r, centered on the axis of the wires, the field will be the same at all points on the path. Also, for 
the same reason 

discussed 

in the previous section 

the field is confined to the plane of the circle. In 

( b )  

Fig. 7-21 



204 MAGNETISM-SOURCE OF THE FIELD [CHAP. 7 

addition the field will not have a radial component since, by symmetry, 

this 

would imply 

field lines 
meeting at a point at the center of the circle 

which, 

as noted earlier, 

violates 

a key law of magnetic 
fields. Thus cos 8 = 1 everywhere along the circle. 

To evaluate the 

magnetic 

field between the wires, we draw a circular path of radius r between the 
wires (RI < r < R2) ,  as in Fig. 7-21(6). Evaluating (B cos 8AL) along this path gives B(2zr), which must 
equal po Ztotal ,  where Ztotal is the current flowing through the area enclosed by the path. Since r < R 2 ,  the 
only current flowing through this area is that in the inner conductor, which is I .  This, 

once 

again, gives 
that B = poZ/2zr .  

To evaluate the field outside of both cylinders, we draw a circular path with radius greater the 
R2(r > R2) ,  as in Fig. 7-21(c). Again, 

the 

sum of ( B  cos 6AL) along this path gives B(2nr), which must 
equal po Ztotal,  where Ztotal is the current flowing through the area enclosed by the path. Now, however, 
the circular path encloses both cylinders, and both currents flow through the enclosed area. Since the 
currents flow in opposite directions, 

the 

total current will be 

zero. 

Therefore, 

we find that B = 0 in 

this 

region. 

Problem 7.14. A coaxial 

cable 

consists 

of an inner conductor of radius 0.02 m and a thin outer con- 
ductor of radius 0.06 m. What current is 

needed 

in this cable to produce a magnetic field of 10-’ T at a 
point 

located 

at a distance of 0.03 m from the axis of the cable? 

Solution 

Since 

this 

point is located between the cylinders (0.02 < 0.03 < 0.06), we use the formula derived 
for that case B = poZ/2nr. Thus B = (4n x 10-7)(1)/2n(0.03), or 1OP6 = 2 x 10-7(Z)/0.03, 

which 

gives I = 

0.15 A. 

Problem 7.15. A special 

coaxial 

cable consists of an inner conductor of radius 0.02 m and an outer 
conductor of radius 0.06 m. The inner conductor carries a current of 2 A out of the paper, while the 
outer conductor carries a current of only 1.5 A into the paper. What is 

the 

magnetic 

field at (a)  a point 
between the cylinders, at a distance r from the axis; and (b) a point outside both cylinders at a distance r 
from 

the 

axis? 

Soh tion 

Since the two currents are not equal in magnitude, we cannot just use the previous result. Instead, we 
have to start with 

Ampere’s 

law 

and apply it to this 

case. 

We still 

have 

the circular symmetry, and can use a 

circular path to evaluate the sum of ( B  cos OAL). 

(a) For this 

case 

we use a circle 

with 

radius between 0.02 m and 0.06 m, with radius r .  The evaluation of 
the sum is identical to our previous 

case. 

The Ztota, in 

this 

case 

is just the current in the inner conduc- 
tor. This results 

in 

B = po 1/2nr = 4 x 10- ’ / r .  

(b)  For this 

case 

we use a circle 

with 

radius greater than 0.06 m, with radius r. The evaluation of the sum 
is identical to our previous 

case. 

The Zlola, in this case, 

however, 

is the current in both the inner and the 

outer conductor. The total current is therefore 0 - 1.5)A. This results 

in 

B = p,, ZtO,,J2nr = 10-7/r. 

Long Solenoid 

A different application of Ampere’s law is in the case of a very long solenoid, pictured in cross- 
section in Fig. 7-22, where we assume R << L, and we are interested in the part of the 

solenoid 

far 

from 

the 

ends. 

Here the current in the coils 

circling 

the solenoid, I ,  is coming out at the top and going in at 
the bottom. The symmetry that we have 

for 

this 

long solenoid 

requires 

that the field does not depend on 
the distance along the 

axis, 

since, 

for 

a long solenoid, every point along its length is identical. Further- 
more, if one draws a circle around the 

axis, 

the 

field does not depend on where one is on the 

circle. 

In 
fact it can depend only on the distance from the axis, r (we will see that it actually turns out to be 
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Fig. 7-22 

independent of r as well). At any point P, at a distance Y from the axis, the field cannot have a radial 
component for the same reason mentioned when we discussed a long straight wire. Similarly it cannot 
have a component tangent to the circle 

since, 

by symmetry, that would be the same everywhere along 
the circle and Ampere’s law 

would 

give a non-zero result 

even 

though no current flows through the 
circle. It has only a component along the direction of the axis. Thus the field lines 

within 

the solenoid 
are parallel to the axis of the solenoid. 

Problem 7.16. Use Ampere’s law to show that the magnetic field anywhere within the solenoid is the 
same as that along the axis of the solenoid, and therefore is uniform. 

Solution 

To show that the field is uniform, we choose a rectangular path PQST shown in 

Fig. 

7-22(a), where 

TS 
is along the axis. 

Since 

there is no radial component of the field, then, along the segments T P  and QS, there 

is no component of B along the path, and the contribution from 

these 

segments 

will be zero. 

Along 

the 
segments PQ and STY the field is parallel to the path, let us assume to the right. Then for 

segment 

PQ 

the contribution to ( B  cos 8AL) will be B,d ,  where B, is the field at a distance r from the axis, and d is the 

length of the path PQ.  For the segment ST, the contribution will - B,d ,  where B,  is the field at the axis, 
and the minus 

sign 

comes from 

the fact that we are moving along that path in a direction opposite to the 

field. The sum over the entire path is therefore (B,  - B,)d, which, by Ampere’s law must equal p0Itota,, 

where Ztotal is the current going through the area of PQST.  There is no current going through this area, 
since the only current in the problem exists in the wires 

circling 

the solenoid. Thus, 

(B ,  - B,)d = 0, and B, = B , .  

This shows that at all r within the solenoid the field is the same and equal to the value on the axis. 

Problem 7.17. 

Solution 

Use Ampere’s law to calculate the value of the uniform field within the solenoid. 

To calculate the magnitude of the field, we note that the field outside the solenoid will be very small as 
we go far 

away 

from the solenoid. We choose a path PQST,  shown in Fig. 

7-22(6), 

which has current 

flowing through it  in the direction out of the paper due to the coil 

lines 

at the top of the solenoid. 

We 

choose the segment PQ to be very far 

from 

the solenoid, so the contribution from that segment will be zero. 
The direction around the loop is chosen 

counter-clockwise 

by the right-hand rule. 

Again, 

the contribution 

from T P  and QS will be zero, and the only segment contributing a non-zero value is S T .  From this 

segment 

we get B,d as in the previous paragraphs. This must equal pOZtotal, where Ztotal is the current flowing 
through the area of T P R S .  The total current equals the number of wires between U and V times I ,  the 
current in each wire. This is ndl,  where n is the number of turns per 

meter. 

We therefore conclude that 

B ,  d = p, ndl, or B,  = p o  nl ,  

which is the result we quoted in Sec. 7.3. 
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Problem 7.18. A solenoid 

is 

made from 2000 windings on a length of 2 m. The radius of the solenoid is 
0.3 m. If the windings carry a current of 3 A, what is the magnetic field near the middle of the solenoid? 

Solution 

Since the length of the solenoid is much greater than the radius, it can be considered to be a long 
solenoid 

when 

one calculates the field far 

from 

the ends of the solenoid. Then the field is B = ponZ = 4n 
x 10-’(2000/2)(3) = 3.77 x 10-3T. 

Toroidal Solenoid 

A toroidal solenoid consists of wires wound around a toroid, which is a doughnut shape usually 
with a circular cross-section, as in Fig. 7-23. The mean radius of the toroid is r, We assume that the 
current flows into the paper on the outside of the toroid, and out of the paper on the inside of the 
toroid. In order to use Ampere’s law, we draw a circular path through the toroid at its mean radius, r .  
We will go around this 

circle 

in the counter clockwise direction, since the positive direction for current 
going through the area of this 

circle 

is 

out of the paper. Every point on this path is 

identical 

to any 
other point on the path, so the magnetic field along this 

direction 

will not vary as we move along the 
path. Furthermore, by arguments similar to those for the long 

solenoid, 

there is no component of B in 
the plane of any cross-section perpendicular to the 

solenoid. 

When 

we add all 

the 

contributions to the 
sum, we get B(2nr), where B is the component of the field along the path at the radius r. This must equal 
p o  times the current through the area. The only current in the problem is the current in the wires wound 
around the toroid. Only the wires on the inside of the toroid go through the area of our path, so the 
total current through the path is N I ,  where N is the total number of windings. Furthermore, this 
current is positive, 

since 

it is coming out of the paper, which is our positive direction. Equating the sum 
to the total current gives 

B(2nr) = po N I ,  or B = po NIl(2nr) 

This is the field within the toroid at a point located at a distance r from the axis of the toroid. Note 
that N/2nr is the number of turns per 

unit 

length, 

if the length is measured at the center of the ring. For 
a case where the radius of the cross-sectional area of the toroid is much less than the mean radius of the 
toroid, the toroid is nearly 

like 

a long solenoid, and the formula for 

the 

magnetic 

field is identical 

with 

the one for the solenoid. 

L A  

Fig. 7-23 
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Problem 7.19. A toroid has a mean radius of 1.5 m, and a circular cross section 

with 

a radius of 5 cm. 
There are 3000 windings on the toroid, carrying a current of 2 A. What is the 

magnetic 

field at (a) the 
center of the cross-section; and (b) within 

the 

toroid, just at the inner edge? 

Solution 

(a) The field is given by B = po NIl(2nr) = 411 x 10-7(3000)(2)/(2n)(1.5) = 9 x 104T. 

(b) Here, the radius of the path is (1.5 - 0.05) m = 1.45 m, so that B = 9.3 x 10-4T. This does not differ 
too much from the field at the center 

since 

the radius of the cross-section is small compared to the 

mean radius of the toroid. 

This case of the toroid illustrates 

the 

usefulness of Ampere's law for calculating the 

magnetic 

field, 
since, 

for 

this case, 

any other kind of calculation would be very difficult. 

Problems for Review and Mind Stretching 

Problem 7.20. In Fig. 7-24, a charge of - 6  x 10-4 C is moving up (in the + y  direction) with a 
velocity of 3 x 106 m/s. The charge is instantaneously at the point on the y axis at a distance of 1.5 m 
from the origin. What magnetic field does 

this 

charge produce (a) on the positive x axis, at a distance of 
2 m from the origin; and (b)  on the positive z axis, at a distance of 3.6 m from the origin? 

Solution 

(a) The formula for the magnitude of the field is 

I B I = (P,/474 I qu sin 4/r2 I (7 .1)  

Here r = (1S2 + 22)1/2 = 2.5, and sin4 = sin (180' - 4) = 2/2.5 = 0.8. Thus 

B = 10-7(6 x 10-4)(3 x 106)(0.8)/(2.5)2 = 2.3 x 10-5T 

The direction is obtained by drawing a circle about the y axis (the line of v), going through the point, 
as in the figure. The tangent to the point on the x axis is in the & z direction. Using the right-hand 
rule (thumb along v and the fingers curl around the circle), the direction is in -z,  i f q  were 

positive. 

Since q is negative, the correct direction is in + z. 

Y 

w s 

Fig. 7-24 

w s 

2 

Fig. 7-24 



208 MAGNETISM-SOURCE OF THE FIELD [CHAP. 7 

(b)  Here r = (1.5’ + 3.62)1/2 = 3.9 m, and sin # = sin (180’ - #) = 3.6/3.9 = 0.923. Thus 

B = 10-7(6 x 10-4)(3 x 106)(0.923)/(3.9)2 = 1.1 x lO-’T 

The direction is obtained by drawing a circle about the y axis (the line of v), going through the p 1 

as in the figure. The tangent to the point on the z axis is in the _+ x direction. Using the right-hand 

rule (thumb along v and the fingers curl around the circle), the direction is in +x, i f q  were 

positive. 

Since q is negative, the correct direction is in -x. 

Problem 7.21. In Problem 7.4, calculate the electric force 

between 

the two charges, and compare it 
with the magnetic force 

between 

the same charges. 

Solution 

In Problem 7.4, we calculated the force 

between 

two charges, q1 and q 2 ,  moving parallel to each other 

(0 

with 

velocities 

u1 and u 2 ,  and separated by a distance d .  The result 

was 

an attractive force of 

I L a g I  = ( ~ o / 4 n ) q , q ~  u 1 W 2  = 10-’qlq2 w J d 2  

To calculate the electric 

force, 

we use Eq. (3.1), 

1 L I = C~/(4~~, ) lqIq2/d2  = 9 x 109q142/d2 (ii) 

The ratio of these 

forces 

FmaJFelcc = 10-7 u,u2/9 x log = v1u,/(3 x 108)2. This is a small number, unless v 1  
and u2 are comparable to 3 x 108 m/s, which is the speed of light. 

Problem 7.22. Two identical coils, each having loo0 turns, are separated by a distance of 1.6 m along a 
common axis, as in 

Fig. 

7-25. For each coil R = 1.5 m and I = 2 A. The currents flow in opposite 

directions in the two coils, as shown. Calculate the field (a) at a point PI on the axis midway between 
the coils; and (b)  at the center P ,  of the first 

coil. 

Solution 

(a) For each 

coil, 

we 

can use Eq. (7.10) multiplying by N for the number of turns. Therefore, 

for 

each coil, 

B = 103 (4n x 10-7)(2)(1.5)2/2(l.52 + 0.82)312 = 5.8 x 10T4 T. The direction is to the right 

for 

the field 

from the first 

coil 

and to the left for the field from the second 

coil. 

For both coils together, the field is 
therefore 

zero. 

(b) For the first 

coil, 

B = 103 (4n x 10-7)(2)/2(1.5) = 8.38 x 10-4 T, and points to the right. For the 
second 

coil, 

B = 1O3(4n x 10-’)(2)(1.5)2/2(1.52 + 1.62)3/2 = 2.68 x 10-4 T. The direction of this field is 
to the left. Therefore, the total field is (8.38 - 2.68) x 10-4 = 5.7 x 10-4 T, to the right. 

Problem 7.23. Two long, straight, parallel wires carry the same current, I ,  in the same direction. Calcu- 
late the force on a one meter length of the second wire due to the magnetic field produced by the first 
wire, if the wires are separated by a distance of 1 m. 

R = 1.5 m 

Fig. 7-25 



CHAP. 71 MAGNETISM-SOURCE OF THE FIELD 209 

Fig. 

7-26 

Solution 

We draw the situation in 

Fig. 

7-26. The first wire produces a magnetic field of 

B = (p0/4n)21/R = 2 x lO-’I, and the direction is into the paper (7.1 1) 

The force on the length A L  (=  1) of the second wire is IALB = 2 x 10-712, and the direction is toward the 

first wire. This is actually the way we define the unit of current (ampere), and from the ampere we define the 

unit of charge (coulomb). The ampere is defined as the current needed in this setup so that a force of 
2 x 10-7 N is exerted on a 1 m length of the second 

wire. 

Fig. 

7-27 
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Problem 7.24. A special 

coaxial 

cable consists of three concentric cylinders, as in Fig. 7-27(a). The 
inner cylinder 

is 

a solid conductor, of radius 0.02 m. The outer two cylinders are thin conducting hollow 
cylinders, 

with 

radii of 0.06 and 0.10 m, respectively. The inner cylinder 

carries 

a current of 2 A out of 
the paper, the 

second 

carries a uniformly distributed current of 1.5 A into the paper, and the third 
carries a uniformly distributed current of 0.5 A into the paper. Calculate the 

magnetic 

field produced at 
(a) r = 0.03 m; (6) r = 0.07 m; and (c) r = 0.15 m. 

Solution 

We draw a circular path at r = 0.03 m, as in 

Fig. 

7-27(b). This circle lies between the two inner 
conductors. The sum along the path gives 2n(0.03)B, which we equate to p,,Ztotal. Only the inner 
conductor carries current through the area of the path, so that Zlotal = 2 A. Thus B = 47t x 10-7 

(2)/(2~)(0.03) = 1.33 x lO-’ T, and points counter-clockwise about the symmetry 

axis. 

We draw a circular path at r = 0.07 m, as in 

Fig. 

7-27(c). This circle lies between the two outer 

conductors. Again, the sum along the path, 2n(0.07)B, equals po ZIoCal, where is now 

the 

current in 
the two innermost conductors. This current equals (2 - 1.5) A out of the paper. Therefore, 

We draw a circular path at r = 0.15 m, as in Fig. 7-27(d). This circle lies outside of all the conductors. 
Again, the sum along the path, 2n(0.15)B, equals p0ZIotal, where ZIolal is now the current in all three 
conductors. This current equals (2 - 1.5 - 0.5) = 0. Therefore, B = 0. 

B = 47t x 10-7(0.5)/(27t)(0.07) = 1.41 x 10-6 T. 

Supplementary Problems 

Problem 7.25. A charge of 1.7 x 10-’ C is moving north with a velocity of 3 x 105 

m/s. 

What magnetic field 
(magnitude and direction) does it produce at a point due east which is 1.2 x 10-2 m away? 

Ans. 0.35 T, vertically down 

Problem 7.26. A charge of - 1.7 x 10-3 C is moving south with a velocity of 3 x 105 m/s. What magnetic field 
(magnitude and direction) does it produce at a point due west which is 1.2 x 10-2 m away? 

Am. 0.35 T, vertically up 

Problem 7.27. A charge of - 1.7 x 10-’ C is moving west 

with 

a velocity of 3 x 105 m/s. What magnetic field 
(magnitude and direction) does it produce at a point, P ,  which is reached by going north 1.2 x 10-2 m and then 

west by 0.9 x 10-2 m? (See Fig. 7-28.) 

Ans. 0.18 T, vertically up 

Problem 7.28. An elevator, carrying a charge of 0.2 C, is moving down with a velocity of 4 x 103 m/s. The 
elevator is 10 m from the bottom and 3 m horizontally from point P in Fig. 7-29. What magnetic field does it 
produce at point P ?  

Ans. 2.1 x 1 O P 5  T, out 
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Problem 7.29. One charged particle of -1.3 x 10-6 C is moving north with a velocity of 5 x 106 m/s. Another 
charged particle, of -2 x 10-6 C is moving south, on a parallel path, with a velocity of 3 x 106 m/s, at  a distance 

of 0.1 1 m (see Fig. 7-30). What force 

is 

exerted between 

the particles? 

Am. 3.22 x 10-4 N, repulsion 

Problem 7.30. A magnetic field at the center of a ring of radius 0.6 m, due to the current in the ring, is 1.2 x 10-4 
T. If there are 175 turns in the ring, what current is 

flowing 

in 

the ring? 

Ans. 0.65 A 

Fig. 7-30 
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Fig. 7-31 

r = 0.7 

Problem 7.31. Two 

identical 

coils, of radius 0.7 m, and having 1200 turns are parallel to each other on 

the 

same 

common axis, as in Fig. 7-31. They each carry a current of 0.8 A in the 

direction 

shown. Calculate the magnetic 

field produced by the 

two 

coils 

(a) at point P; (b) at point Q; and (c) at point S. 

Ans. (a)9.38 x 10-4T;(b) 6.09 x 10-4T;(c) 3.32 x 10-4T 

Problem 7.32. An overhead electric transmission line, supplying 

current 

to the 

houses 

on the street, carries 

a 
current of 2000 A. What is the 

magnetic 

field that this 

current 

produces on the street, 

4 m below the 

line? 

A m .  10-4T 

Problem 733. A long wire carries 

current 

into the 

paper 

at the 

center 

of a rectangle of sides 6 m x 8 m (Fig. 7-32). 
The current in the wire is 6 A. What 

magnetic 

field (magnitude and direction) is produced at (a) point P;  (6) point 

Q; and (c) point S? 

Ans. (a) 4 x 10-7 T, in - x  direction; (b) 3 x 10d7 T, in - y  direction; (c) 2.4 x 10-7 T, at an angle of 53" 
below the - x  direction 

Problem 734. Two 

long 

wires carry 

currents 

of 1.2 A into the 

paper. 

The 

wires are 0.2 m apart, as in Fig. 7-33. 
Calculate 

the 

magnetic 

field (magnitude and direction) that the wires produce at (a) point P; (b) point Q; and (c) 
point S .  

Ans. (a) 0; (6) 3.2 x 10-6 T, in -y direction; (c) 2.4 x 10-6 T, in + x  direction 

Fig. 7-32 
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Problem 7.35. Two long wires carry currents of 1.2 A, the first into the paper, and the second out of the paper. 

The wires are 0.2 m apart, as in Fig. 7-34. Calculate the magnetic field (magnitude and direction) that the wires 
produce at (a) point P ;  (b) point Q ;  and (c) point S.  

Am. (a) 4.8 x 10-6 T, in - y  direction; (b) 1.6 x 10-6 T, in + y  direction; (c )  2.4 x 10-6 T, in - y  

direction 

Fig. 7-34 

1 

Fig. 7-35 
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Problem 7.36. Two perpendicular wires carry currents of 2 A and 4 A, respectively, as in Fig. 7-35. Calculate the 
magnetic field (magnitude and direction) at points P and Q from the two wires. 

6.67 x 10-6 T out for P; 1.33 x 10-6 T in for Q Ans. 

Problem 7.37. A long solenoid is made by winding 

1500 

turns per meter on a radius of 0.3 m, and a second 

winding of 3500 

windings 

per meter 

on a radius of 0.5 m, as in 

Fig. 

7-36. Each winding carries a current of 2 A, and 

the direction of the current in the inner winding is shown on the figure. 

(a) Calculate the field inside the inner coil if (i) the currents flow in the same direction in both windings; and (ii) 
the currents flow in opposite directions in both windings. 

(b) Calculate the field in the region 

between 

the windings if (i) the currents flow in the same direction in both 
windings; and (ii) the currents flow in opposite directions in both windings. 

Ans. (a)  (i) 12.57 x 10-3 T to the left; (ii) 5.03 x 10-3 T to the right; (b) (i) 8.80 x 10-3 T to the left; 

(ii) 8.80 x 10-3 T to the right 

Problem 7.38. A long solenoid has a length of 7 m and has 8400 windings on it. The field inside is 2 x 10-3 T. 
What current is flowing 

in 

the windings? 

Ans. 1.33 A 

Problem 739. A coaxial cable consists of a long, 

solid 

inner cylinder of radius 0.02 m and a long, concentric, 

hollow, conducting cylinder of inner radius 0.08 m. The current is 5 A in the opposite direction in the two conduc- 
tors. What is the magnetic field at a radius of 0.03 m? 

~ n s .  3.33 x 10-5 T 

Problem 7.40. A coaxial cable consists of a long, 

solid 

inner cylinder of radius 0.02 m and a long, concentric, 
hollow, conducting cylinder of inner radius 0.08 m. The current is 5 A in the same direction in the two conductors. 

(a) What is the magnetic field at a radius of 0.03 m? 

(b) What is the magnetic field outside of both conductors, at a radius of 0.10 m? 

Ans. (a) 3.33 x 10-5 T; (b) 2 x 10-5 T 

_ - - - - _  

Inside in 

Between 

.ner 

wii 

winding 

ndings 

Fig. 7-36 
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Fig. 7-37 

Problem 7.41. A toroidal solenoid has a mean radius of 0.25 m. There are 800 windings around the solenoid, 
producing a magnetic field of 6 x 10-6 T at that radius. Figure 7-37 shows a cross-sectional view taken at the 
center of the toroid. The field is coming out 

at 

the left side, and going in at the right side. What current flows in the 
wire, and is the flow clockwise or counter-clockwise at the left? 

Ans. 9.4 x 10-3 A, counter clockwise 

Problem 7.42. A toroidal solenoid has a rectangular cross-section, of 0.01 m x 0.02 m, as in Fig. 7-38. The mean 
diameter of the toroid is 2.3 m. The current in the 7500 windings is 3 A, and flows clockwise around the left 
cross-section, as shown. Calculate the magnetic field (including the direction) at (a) the center of the rectangle (point 
P); and (b) the outer edge of the rectangle (point Q). 

Ans. (a) 3.91 x 10-3 T, in at the left; (b) 3.88 x 10-3 T, in at the left 

Q- 

Fig. 7-38 
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P 

Problem 7.43. What is the direction of the magnetic field at point P for the current configurations 

shown 

in Fig. 
7-39? 

Ans. to the right in all cases 

P 



Chapter 8 

Magnetic Properties of Matter 

8.1 INTRODUCTION 

In the previous chapter, we learned about the production of magnetic fields in space, due to moving 
charges and due to currents. We did not include the possibility that this magnetic field could change the 
properties of the material in which 

it 

was 

created, and result in having the material produce its own 
field, 

which 

has to be added to the original field. We had a similar situation in the case of electric fields, 
where the electric field induced a polarization of the material, which, in turn, produced its own electric 
field. 

Let 

us try to understand how a magnetic field can modify the properties of a material and induce a 
“magnetization” of the material to produce its own field. 

All material consist of a collection of atoms and molecules. These atoms, in turn, consist of posi- 
tively and negatively charged particles, 

held 

together mainly by electric forces. In order for a magnetic 
field to have any effect on these 

particles, 

the particles must be moving, since a magnetic force is exerted 
only on moving particles. There are two types of motion that exist for these 

particles, 

that we classify as 
orbital motion and spin. The orbital motion can be thought of as the motion that occurs when an 
electron circulates about a nucleus, 

similar 

to the way a planet circulates about the sun. Actually, 

with 

our present knowledge of quantum mechanics, we no longer consider the picture of electrons moving in 
orbits about the nucleus as being accurate, but such a picture still provides an intuitive guide that is 
useful and we will explore it. The circulating or orbiting electron has angular momentum and, indeed, 
even 

in 

quantum mechanics a certain amount of angular momentum is carried by the moving electrons, 
creating effective current loops. In many atoms, the angular momentum of the electrons averages to 
zero as does the current, while 

in 

others there is a net angular momentum and a net current. In addition 
to orbiting the nucleus, the electrons spin on their axes and, as a consequence, have an additional 
“spin” angular momentum and “spin” electric current loops. As with orbital motion, in many atoms 
the spin angular momentum of the various electrons averages to zero, while in others there is a net 
angular momentum and a net current. In either case, orbital or spin, magnetic fields can be 

set 

up by 
the atomic current loops, and an external magnetic field can exert 

forces 

on the electrons, and thereby 
modify their motion. It can be shown that, because of the concept of magnetic induction and Lenz’s law, 
which will be 

discussed 

in 

the next chapter, one effect of an external magnetic field is to induce currents 
and associated magnetic moments in the atoms of a material. These magnetic moments, in turn, 
produce their own magnetic fields, 

which, 

by Lenz’s law, are in a direction opposite to the original field. 
The materials in which this is the dominant effect are called diamagnetic materials, in the same manner 
as materials that produce electric 

fields 

opposed to the original electric field are dielectric materials. In 
general, such induced magnetic fields 

in 

an atom are very small and the external field is reduced by a 
tiny amount as a consequence of diamagnetism. While diamagnetism occurs in 

all 

atoms, i t  is often 
overshadowed by another effect of the external magnetic field on the electrons of an atom. This other 
effect only occurs in atoms in 

which 

there is a net orbital and/or spin angular momentum and a net 
effective current loop for the atom. Such an “effective” current loop gives the atom an definite overall 
magnetic dipole moment. As we learned in the previous chapter an external magnetic field exerts a 
torque on such a magnetic moment and the torque tries to line up the moment parallel to the magnetic 
field. The lined up moments will then produce their own magnetic field in the same direction as the 
original field, thus increasing the magnetic field. Materials in 

which 

this is the dominant effect are called 
paramagnetic materials. They are more common than diamagnetic materials, especially 

since 

they 

domi- 
nate in materials where both effects are present. Thus, while diamagnetism is present in 

all 

atoms, it 
dominates only in those atoms in which the orbital and spin angular moments average out to zero. In 

217 
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other atoms there 

is 

a permanent magnetic dipole moment set up by the 

net 

current loops and para- 
magnetism 

is 

dominant. Even so, while paramagnetism is stronger than diamagnetism, it is 

still 

a rela- 
tively small effect. This is because 

only 

some 

of the atoms with permanent moments line up with 

the 

external magnetic field. Thermal effects tend to fight 

against 

the alignment and assure that the net 
increase 

in 

magnetic 

field is not too strong. 
There is an important exception to this limitation. In some materials the field produced by the 

moment on one atom is strong enough to rotate the moment on another, neighboring atom and cause 

it 

to align itself with the first atom. This second atom, in turn, causes its neighbor to align its moment 
parallel 

with 

its own moment, and this can continue from atom to atom. In this manner, even in the 
absence of an external magnetic field, the magnetic moments will not be randomly aligned, but rather 
large groups of atoms will all 

align 

themselves 

together in a certain direction. These 

aligned 

regions 

are 
called 

magnetic 

domains and are huge on the atomic scale but still 

microscopic 

on the human dimen- 
sion. 

Usually 

there are many microscopic domains in a material and the direction of alignment of the 
various domains is random. Then the average magnetization of the entire material will still 

be 

zero in 
the absence of an external field, but will consist of many regions that are locally 

magnetized. 

An exter- 
nal 

magnetic 

field can then cause the domains to align 

themselves 

parallel 

to the magnetic field, 
resulting in a large magnetization, and the production of a field from this magnetization that adds 
greatly to the initial field. These materials are ferromagnetic materials. If one removes the magnetic field 
there will again be a tendency 

for 

the magnetic domains to randomize their 

directions. 

However, 

there 
will usually 

be 

some remaining net 

magnetization, which we call the remanent magnetization. If the 
remanent magnetization is large, there will remain a large “permanent ” magnetization, and the material 
has become a permanent magnet. Common magnets are made from iron which can be made to have a 
large remanence. 

The intrinsic magnets we discussed 

in 

the previous paragraph were assumed to tend to line up 
parallel to each other. While 

this 

is the usual situation there are cases 

where 

the neighboring moments 
tend to line up antiparallel to each other. The domains will then have moments are opposite directions. 
This requires materials in which the neighboring atoms are from 

different 

elements, with different 

moments. There can then be a net 

magnetic 

moment for 

the 

material which depends on the 

difference 

in 
the magnetic moments of these 

elements. 

We will not be discussing 

this 

rather exotic 

type 

of material 
any further. 

8.2 FERROMAGNETISM 

Certain materials, notably iron, nickel and cobalt, exhibit ferromagnetism at room temperature. 
This means that the magnetic interactions between 

the 

magnetic 

moments of neighboring atoms is 
strong enough, even at room temperature, to align the moments in the same direction. Since 

this 

coo- 
perative 

behavior 

results 

in “macroscopic” domains (on the atomic scale) 

in 

which 

the moments are 
aligned, 

the 

magnetic 

field produced by these domain moments can be quite large. If an external field is 
applied to the ferromagnetic material it has the effect of causing the domains of aligned moments to 
rotate and point in 

the 

same direction, the direction of the 

magnetic 

field. The maximum field that they 
can produce occurs if one is successful in 

aligning 

all 

the domains. When 

this 

condition is 

reached, 

the 
material is said to be saturated, and the field being produced is the saturation field. For iron, this 
saturation field is of the order of 1T. Once they have been aligned, 

they 

tend 

to remain 

aligned 

even if 
the external field that originally 

caused 

them 

to align is removed. The material has now 

become 

a 
permanent magnet. 

When the material is magnetized, there are many electrons that are all rotating in the same direc- 
tion, as in 

Fig. 

8-1. This is equivalent to a large amount of charge going around a circle 

in 

the 

same 
direction. Indeed, we will show 

in 

Sec. 8.3, that this 

is 

equivalent 

to a current flowing around the surface 
of the material, as in the case of a solenoid. The field produced by such a solenoid 

in 

the region outside 
the solenoid 

is 

shown 

in Fig. 

8-2. Indeed the field on the outside is 

nearly 

the same in shape as the 
electric field produced by oppositely 

charged 

particles 

located 

at the ends of the bar. We therefore 

often 
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talk of the bar as being 

composed 

of two opposite magnetic 

poles 

(the substitute for 

electric 

charges), 

one called a north pole and the other called a south pole. The north pole is the apparent source of 
magnetic field lines (as is a positive charge for 

electric 

field lines), and the south pole is a sink 

for 

the 
lines. In actuality the lines do not terminate at the poles, but continue in straight lines 

within 

the 
material, forming 

closed 

loops. The designation of north or south pole 

arises 

from 

the fact that the bar 
tends to line up in the magnetic field of the earth with 

the 

north pole 

facing 

in 

the northerly direction. 
The poles are designated as “north” and “south” poles, the north pole 

being 

positive, 

and the south 
pole 

being 

negative. 

There is, however, a big difference between the electrical 

case 

and the magnetic 
case. In the case of opposite electric 

charges 

at the ends of a bar, if one were to cut the bar in half, then 
one piece would 

be 

charged positively, 

and the other piece would be charged 

negatively. 

For the mag- 
netic 

case, 

if one divides the bar, then 

each 

piece would 

still 

be a (smaller) bar magnet, 

with 

its own 
smaller north and south pole. One never 

finds 

a piece of magnetic material with 

only 

a north pole, or 
only a south pole. Thus, these 

poles 

are just a convenient 

artifact 

for describing 

the magnetic field 
outside a magnet, 

unlike 

electric charges 

which are real and can be isolated. 

(While 

these magnetic 

“monopoles” do not seem to exist 

in 

nature, there are certain speculative 

theories 

that are currently 
under consideration which assume that magnetic monopoles might 

indeed 

exist. 

To date, no such 
monopoles have been observed.) Indeed, the absence of magnetic monopoles is often 

written 

as a prin- 
ciple 

in 

the same 

form 

as Gauss’ 

law 

for electrostatics. 

This law states that if we take the magnetic flux 
(the total number of magnetic field lines, which we will define more carefully later) through a closed 
surface, 

then 

the result will always equal zero, 

because 

there are no magnetic 

monopoles. 

For electro- 
statics, the result of taking the electric flux through a closed 

surface 

gives us a result proportional to the 
total charge enclosed by that surface. For magnetism, that total “charge” is zero. 

Nevertheless 

the use 
of the concept of magnetic 

poles 

is convenient 

in 

discussing 

the interaction of magnets with a magnetic 
field, and with other magnets. 

As we learned in Chap. 6, magnetic 

poles 

will tend to align 

themselves 

parallel 

to the magnetic field, 
with 

their 

magnetic 

moments in the same direction as the field. Since a magnet will line up in the 
magnetic field of the earth with the north pole of a magnet pointing north, this 

means 

that the earth’s 
magnetic field points in the northerly direction, 

with 

the magnetic field lines entering the earth at the 
magnetic North Pole and the lines emanating from the earth at the magnetic South Pole. If we think of 
the earth as the 

equivalent 

of a bar magnet, then the geometric North Pole of the earth is actually a 
magnetic south pole, 

where 

field lines enter. Indeed, the magnetic field of the earth bears a striking 
resemblance to the magnetic field of a bar magnet. 
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Fig. 8-2 

If one places two bar magnets near each other, we can consider one magnet as producing a mag- 
netic field, which then affects the other magnet. The magnetic field of a bar magnet is shown in Fig. 8-2, 

with the field emanating from the north pole and entering at the south pole. If one places another 
magnet in the region of this field, this 

second 

magnet 

will tend to line up parallel to the field, with 

its 

south to north direction in the same direction as the magnetic field. Thus, near the north pole of the 
first magnet, the second 

magnet 

will line up with the south pole nearer the 

first 

north pole. The north 
pole attracts a different south pole, and repels a north pole. Again, as in the 

case 

of electric 

charges, 

opposite poles attract, and similar 

poles 

repel each 

other. Near the sides of the first magnet, the mag- 
netic field is parallel to the magnet, but pointing in the direction from north to south. The second 

pole 

will therefore 

line 

up with its own 

poles 

pointing opposite to the poles of the first 

magnet. 

Again, 

the 
opposite poles are attracted to each other. Magnets tend to attract each other and to cling together with 
opposite poles near each other. 

If one puts a magnet near a piece of magnetic material, such as a needle, the magnet will cause the 
magnetic material to become magnetized with 

its 

moment parallel to that of the magnet itself. Thus the 
needle will have a south pole near the north pole of the magnet, and be attracted to the magnet. If the 
magnetic 

force 

of attraction is sufficiently great to overcome 

the 

force 

of gravity, the magnet will be able 

to lift up the needle. This explains 

the 

tendency 

of magnets to be able to locate and pick up pieces of 
magnetic material. 

8.3 MAGNETIZATION 

When we described the properties of a magnetic material, we talked about the microscopic inter- 
actions which gave rise to a “magnetization” of the material, which is the counterpart of polarization 
for 

electric 

fields. This magnetization arises 

from 

many small 

circulating 

currents, all circulating in the 
same 

sense 

about the direction of the external magnetic field. In some 

cases 

these 

circulating currents 
are due to the orbital motion of the electrons, but in 

most 

cases 

the source of the currents are the spins 
of the 

electrons. 

If we look at these currents as they fill space, the picture looks somewhat 

like 

what 

is 
shown in 

Fig. 

8-1. At any point within the interior of a uniform material in a constant external magnetic 
field, there are always adjoining current loops, one above and one below the point. Since the currents 
are circulating in the same direction, their directions are opposite at the top and at the bottom. Thus, at 
any point in the interior, there will be no net current flowing 

in 

any direction. Only at the edge of the 
material, where there is no cancellation 

from 

currents on the other side of the surface, will we have a net 
current. (We have 

met 

an analogous situation for 

dielectric 

materials, 

where the 

polarization of the 
charge does not produce net 

charge 

anywhere 

except 

at the surface.) The net current in the case of 
magnetic 

materials 

will be flowing around the 

surface 

of the material in the 

same 

circulatory direction 
as the individual currents. For a cylindrically shaped bar, with the external field along its 

axis, 

the 



CHAP. 81 MAGNETIC PROPERTIES OF MATTER 22 1 

current flowing around the surface is the same as that for a solenoid. Thus, the field produced by the 
magnetization of the uniform 

cylindrical 

bar is identical to that produced by a solenoid, uniform on the 
inside, and looking like 

Fig. 

8-2 on the outside. 
We now 

define 

the magnetization vector, M, of our material as the total magnetic moment per unit 
volume (We 

previously 

used M as the magnetic moment vector, so we shall use M as the magnetization 
vector). Thus, a material in a magnetic field can become 

magnetized, 

with 

a magnetization M = M/V. 
The magnetic field, B,, produced by the magnetic dipoles in the material is related to the magnetization 
in a straightforward way. We consider the case of the uniform 

cylindrical 

magnetic material, where, as 
we have 

seen, 

the effect of a uniform external field on the material is effectively the establishment of a 
surface current around the cylinder. This current creates its own field in the cylinder 

which 

mimics 

that 
of a solenoid. Recalling the equations for the field inside a solenoid, we have for our equivalent sole- 
noid: B,  = Bequiv = p, nI where n is the number of turns/unit length and I is the equivalent current in 
each turn. For a solenoid of length d and cross-sectional area A,  we have: B ,  = Bequiv = p, nl  
p,(N/d)I = p,NIA/dA where N is the total number of turns in the solenoid. Since I A  is the magnetic 
moment of each turn, N I A  = total magnetic moment. Since d A  = V, the volume of the solenoid, we 
have 

Note also that 

M = N I  = surface current/unit length. (8.4 

If our solenoid has a current equivalent to our magnetic cylinder we conclude that the extra field 
produced by the material is just poM with direction along the 

cylinder. 

We would therefore expect 

that 
the actual field that is produced in a material is the sum of the field that would 

be 

produced in the 
absence of the material, Bo , plus the field produced by the magnetization, po M. This can be written as 
B = B, + poM, or Bo/po = B/po - M. We define a new vector H, the magnetic intensity vector, as 
Bo/po = H. This magnetic intensity vector is a quantity that, in the absence of permanent magnets, is 
dependent on only the external currents that produce the magnetic field, and not on the magnetic 
moment currents of the atoms of the material that produce the magnetization field. The unit 

for 

H is 
A/m, as is the unit for M. While the above was derived for the special 

case 

of a uniform 

cylinder, 

one 
can indeed show that it is true in general that 

where H can be calculated from the external currents alone. In fact, the best way to write Ampere’s law 
is in terms of the magnetic intensity, as ( H  cos 8 AI,) = I e x t ,  where the sum is taken around a closed 
circuit, and the Iex ,  is the external current flowing through the circuit. The currents induced as magne- 
tization in the material are not included in this equation, only the external currents. This means that for 
all the cases that we were able to calculate the magnetic field using Ampere’s law, we can just as simply 
calculate the magnetic intensity, H, even in the presence of material that can be magnetized. If we find a 
method of converting from H to B, then we will also be able to calculate B in those cases. 

In general, 

except 

for 

material that becomes a permanent magnet, the magnetization is proportional 
to the magnetic field, and therefore to the magnetic intensity as well. We can therefore 

write 

that 

where x is called the magnetic 

susceptibility 

of the material. Then 

where p is the permeability of the material, IC, is the relative 

permeability 

of the material, and p = po 

IC,., with IC,. = 1 + x.  This means that for 

these 

materials, we can calculate B if we know H, merely by 
multiplying H by p. 
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For a 

vacuum, 

x is zero, K, is one, 

and 

p equals po.  The quantity po is sometimes called the 
permeability of free space. For a 

paramagnetic 

material, the magnetization 

is in the same direction 

as 

H 
(and as B), and therefore x is positive, IC, is greater than one, and p is greater than po.  For a 

dia- 

magnetic 

material, 

M is opposite to H ,  so x is negative, K, is less than 

one 

and 

p is less than po . (Since x 
is typically very small, K, and p are always positive and B is parallel to H . )  Table 8.1 lists some typical 
values of the magnetic susceptibility of diamagnetic and paramagnetic 

materials. 

Problem 8.1. 

(a) Calculate 

the magnetic 

field in 

the 

inside of a 

long air 

filled solenoid, with 150 turns per meter, 

and 

carrying 

a 

current 

of 2 A. 

(b) How 

does 

this change 

if the solenoid is filled with material that has a magnetic susceptibility of 
60 x 10-5? 

Solution 

(a) Using Ampere’s law we can calculate B within the solenoid. In Chap. 3 we used Ampere’s law for B in 
a vacuum 

in 

the form (B cos 8 AL) = poItotal, to get that the magnetic field inside the solenoid was 
B = p o d .  (Or we can use Ampere’s law 

for 

H in the form (H cos 6 AL) = Itotal, to get that H = n1.) 
Thus H = 150(2) = 300 A/m B = 4n x 10-’(300) = 3.7699 x 10-4 T. 

(b) With the material inside, H doesn’t change. However, 

now 

there is an additional magnetic field due to 
the induced surface current on the surface of the material. Given x = 6 x 10-4 and p = po(l + x )  we 
have B = pH = pnZ. Thus the field is altered by replacing po by p. Now p = po(l + x )  = 4n x 10-’ 
(1 + 6 x 10-4) = 4n x 10-7(1.0006). Then B = 4n x 10-7(1.0006)(300) = 3.7722 x 10-4 T, which is 
almost identical to the air filled solenoid. Only with ferromagnetic material, which 

has 

a very much 
higher equivalent magnetic susceptibility, will the magnetic field differ substantially from that of an air 
filled solenoid. 

Table 8.1. Magnetic Susceptibilities of 
Paramagnetic and Diamagnetic 

Materials 

Materials x = i C m - l  

Paramagnetic : 

Iron ammonium alum 

Oxygen, 

liquid 

Uranium 

Platinum 

Aluminurn 

Sodium 

Oxygen 

gas 

Diamagnetic : 

Bismuth 

Mercury 

Silver 

Carbon (diamond) 

Lead 

Rock salt 

Copper 

66 x l O - ’  

152 

40 

26 

2.2 

0.72 

0.19 

-16.6 x 10-5 

- 2.9 

- 2.6 

- 2.1 

- 1.8 

- 1.4 

- 1.0 
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Problem 8.2. A long solenoid has 1800 turns per meter, carrying a current of 2 A. It is filled with a 
paramagnetic material with x = 66 x 10-’. 

(a) What is the magnetic 

intensity, 

H ,  in the material? 

(6) What is the magnetic field, B, in the material? 

(c) What is the magnetization in 

the 

material? 
1 

(d) What surface current per unit length flows around the material? 

Solution 

(a) As we showed 

in 

Problem 8.1, the magnetic intensity 

inside 

a long solenoid is H = nl.  Thus, 
H = 1800(2) = 3600 

A/m. 

(b) We know that B = p H  = po(l + x)H = 411 x 10-7 (1 + 66 x 10-5)(3600) = 4.53 x 10-3 T. Since 
was very small, this is not very different than the field produced in a vacuum. 

(c) The magnetization, M = zH = 66 x 10-5(3600) = 2.38 A/m. 

(d) The surface current per unit length equals M, and therefore equals 2.38 A/m. 

Problem 8.3. A long solenoid has 150 turns/meter. If it 

is 

filled with air, it produces a magnetic field of 
0.05 T inside the solenoid. 

(a) How much current is 

needed 

to produce this 

field? 

(6) If it 

is 

filled with a ferromagnetic 

material, 

which has a relative 

permeability 

of 1.5 x 104, how 
much current is 

needed 

to produce the 

same 

field? 

Solution 

(a) We know that the magnetic field inside a long solenoid is B = po n l ,  and H = nl.  Thus I = B/po n = 

0.05/(4~ x 10-’)(150) = 265 A. 

(b) If we fill the solenoid 

with 

ferromagnetic 

material, we have H = nl and B = pLo K, H = 0.05. Thus 
I = H/n = B/po IC, n = Isir/~,  = 265/1.5 x 104 = 0.018 A. 

8.4 SUPERCONDUCTORS 

There is a special 

type 

of material that illustrates the 

idea 

of a surface current very vividly. It has 
been discovered 

since 

the beginning of the 1900s, that some 

materials, 

at sufficiently low temperatures 
lose 

all 

their resistivity. These 

materials are called superconductors. Any current flowing in these 
materials will not result 

in 

the absorption of any energy, 

since 

there is no resistance and the power 
absorbed is 12R = 0. These materials have another important property, known as the 

Meissner 

Effect, 
that they 

expel 

any magnetic field from 

their 

interior. They do this by setting up surface currents which 
themselves produce an exactly opposite field, and thereby cancel any field which tries to be established 
in its interior. Thus, a superconductor can be considered to be a perfect diamagnet. For instance, if one 
has a cylindrical bar of superconducting material, and puts this bar in a uniform 

magnetic 

field parallel 
to its 

axis, 

as in Fig. 8-3, a surface current will flow around the bar in the magnitude and direction 
needed to produce an opposite, canceling field. Then there will be no net field within the superconduc- 
tor. 

Problem 8.4. For a superconductor, calculate its magnetic susceptibility and its relative 

permeability. 
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_t__ 

t__ 

r 

Fig. 8-3 

Solution 

Since a superconductor can have no magnetic field in its interior, B = 0. But B = p,(H + M) = 0, 
implies that M = - H  = x H ,  or x = - 1. Thus, the susceptibility equals - 1. Since K, = 1 + x ,  K, = 0. 

Thus the relative 

permeability 

is 0. 

Problems for Review and Mind Stretching 

Problem 8.5. 

magnetic material with x = 66 x 10- ’. The mean radius of the toroid is 0.9 m. 

(a) What is the magnetic intensity, H ,  in the material, at  its mean radius? 

A toroidal solenoid has 18,000 turns carrying a current of 2 A. It is 

filled 

with 

a para- 

(b) What is the magnetic field, B, in the material, at its mean radius? 

(c)  What is the magnetization in the material, at its mean radius? 

(d) What total surface current flows around the toroid, assuming that the field is uniform inside? 

Solution 

( U )  As we showed in Problem 8.1, the magnetic intensity can be calculated 

using 

Ampere’s law 

for 

H .  
Applying 

this 

to a toroid, as we did in Chap. 7, we get that I .  = NI/2nr = 18,000(2)/(2)(~)(0.9) 

= 6.37 x 103 A/m. 

(b)  We know that B = p H  = po(l + x)H = 471 x l O - ’  ( 1  + 66 x 10-5)(6.37 x 103) = 8.01 T. Since x was 
very small, 

this 

is not very different than the field produced in a vacuum. 

( c )  The magnetization, M = xH = 66 x 10- (6.37 x 103) = 4.20 Ajm. 

( d )  The surface current per 

unit 

length 

equals M ,  and therefore equals 4.20 A/m. The total current equals 
2nflM) = 2~(0.9)(4.20) = 23.8 A. 

Problem 8.6. A bar magnet is brought near a superconducting cylinder, with its north pole facing the 

cylinder, as in Fig. 8-4. 

(a)  How will the superconducting cylinder be magnetized? 

(b )  Will the magnet attract or repel the cylinder? 
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L Superconducting cylinder 

Fig. 8-4 

Solution 

(a) The magnetic field of the bar magnet attempts to establish a magnetic field in the cylinder pointing 
away 

from 

the north pole. To prevent a magnetic field from entering the superconducting material, a 
surface charge will flow around the cylinder setting up a magnetic field in the opposite direction. Thus 

the end of the cylinder near the bar magnet will become a north pole. 

(b) Since 

like 

poles repel, 

the bar magnet and superconducting cylinders will repel 

each 

other. 

Supplementary Problems 

Problem 8.7. A long solenoid, with a radius of 0.6 m, has 2500 turns per 

meter, 

carrying a current of 3 A. It is 
filled with material having a relative 

permeability 

of 150. 

(a) What is the magnetic intensity, H ,  in the material? 

(b) What is the magnetic field, B, in the material? 

(c) What is the magnetization in the material? 

(d) What surface current per meter flows around the solenoid? 

Ans. (a) 7500 A/m; (b) 1.42 T;  (c) 1.13 x 106 A/m; (d) 1.13 x 106 A/m 

Problem 8.8. For the solenoid 

in 

Problem 8.7, calculate the flux through a cross-section of the solenoid. 

Ans. 1.61 Wb 

Problem 8.9. A long solenoid, with a radius of 0.6 m, has 2500 turns per 

meter, 

carrying a current of 3 A. It is 
filled with ferromagnetic material having a relative 

permeability 

of 1.5 x 104. If one removes the ferromagnetic 
material and it is replaced 

with 

air, how many turns per meter would the solenoid 

require 

to produce the same 
magnetic field? 

Ans. 3.75 x 10’ turns/m 

Problem 8.10. A certain material has a magnetization M of 2.5 A/m. The molecular 

weight 

of the material is 195, 
and the mass density of the material is 8 x 103 kg/m3. 

(a) What is the average magnetic moment per molecule in the material? 

(b) The standard unit 

for 

atomic magnetic moments is the Bohr magneton, pB = 9.274 x 10-24 A . m2, which is 
the smallest magnetic moment an atom can have. How many Bohr magnetons are in this 

average 

moment? 

(c) How can the average magnetic moment per 

molecule 

be less than pB ? 

Ans. (a) 1.11 x 10-28 A - m2; (b) 1.09 x lO-’; (c) Only a small fraction of the molecular 

magnetic 

moments line up and contribute to the magnetization. The vast majority remain random. Thus, the 
“average” over 

all 

molecules 

is very small. 
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Problem 8.11. A solenoid 

has 

1800 turns/m 

carrying 

a 

current of 2 A. The solenoid is filled with a 

magnetic 

material. It is found that the 

magnetic 

field, B, in 

the 

solenoid 

is 5 x 10e3 T. 

(a) What is the 

magnetic 

intensity, 

H, in the material? 

(b) What is the 

magnetization 

in 

the material? 

(c) What is the relative 

permeability 

of the magnetic material? 

Ans. (a) 3600 A/m; (b) 379 A/m; (c) 1.1 1 
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9.1 INTRODUCTION 

In the previous 

chapters, 

we learned about the effect of a 

magnetic 

field on 

a 

moving charge (or on 
a 

current-carrying 

wire), and about sources of magnetic fields. In this chapter we will explore 

further 

the 
effects that magnetic fields can 

have 

on the 

charges, 

and in particular on the 

charges 

in conductors. In 
Chap. 6 we saw that magnetic fields can 

exert 

forces on 

moving 

charges 

and on 

current-carrying 

wires. 
Here we will explore the effect the magnetic field can 

have 

on 

the charges in a wire, whether or not 

there 

is 

a 

current. We will see that when a wire moves through a 

magnetic 

field an EMF is generated in the 
wire, which has the ability to move 

charges 

through the wire. This 

means 

that it is possible to build an 
apparatus that makes use of magnetic effects to produce EMFs that drive electrical circuits 

connected 

to the apparatus. The apparatus is called a 

generator 

and, like 

a 

battery 

(described in Chap. 5),  it pumps 
positive 

charges 

within the apparatus toward 

the 

high-potential end 

of the apparatus, so that, in an 
external 

circuit, 

the charges 

produce 

a current 

flowing from the high- to the 

low-voltage 

terminals. 

As in 
a 

battery, 

the voltage 

produced 

by the 

generator 

on open 

circuit 

is its EMF. 
We start our discussion of how magnetic fields produce an EMF by examining wires moving 

through a 

magnetic 

field. The EMF produced in such 

moving 

wires is called motional EMF and can be 
understood by using concepts that we have 

already 

developed in the 

previous 

chapters. 

Next we intro- 
duce the situation where the wires are not moving, but instead the magnetic fields are changing. In such 
cases EMFs, called induced EMFs, can be produced 

in 

the 

wires. The 

generation 

of such EMFs, is the 
subject of Faraday’s law. As we shall see, Faraday’s law can be viewed as a 

generalization 

required 

by 
ideas about relative 

motion. 

When stated in the 

form 

of Faraday’s law, both motional EMF and 
induced EMF can be described by the same 

mathematical 

statement. 

9.2 MOTIONAL EMF 

The basic 

idea 

of motional EMF can be understood from the 

experiment 

illustrated 

in Fig. 9-1. 
Here, 

a 

nonmagnetic conducting 

bar is moving, with a velocity v, in a 

perpendicular 

magnetic 

field, B. 
Since 

a 

conducting 

bar contains charges that are free to move in the presence of forces, the force exerted 
on these 

charges 

by the magnetic field will cause 

them 

to move. For a velocity to the 

right 

and a 

EMF = Vba = EL 
b 
+ 

B 

field downward 

227 
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magnetic field into the plane of the paper, the 

force 

on positive charges will be F = quB, and will be 
directed up on the bar (toward b). Negative charges would 

experience 

a downward force (toward a). 

Thus, the result of the magnetic field is to drive 

positive 

charges toward b and negative charges toward 
a. As the charges accumulate at the ends of the bar, the positive 

charges 

at b will exert 

repulsive 

forces 

on any additional charges that the magnetic field tries to force in that direction, and the same will be 
true for the negative 

charges 

at a. An equilibrium will be 

established 

when 

the electrostatic force 

exerted 

by these charges balances the magnetic 

force 

exerted 

by the 

magnetic 

field. This occurs when the accu- 
mulated charges produce a uniform electrostatic field, E ,  inside the bar such that q E  = quB, or E = uB. 
The uniform 

electric 

field will produce a potential difference, Vba, between the ends of the bar, with the 
positively 

charged 

end (point b in 

Fig. 

9-1) at the higher potential. This potential difference 

tries 

to push 
positive charge away 

from 

the positive terminal and toward the negative 

terminal. 

The magnetic force 
counterbalances the electric 

force 

as long as the bar moves 

in 

the magnetic field, and the charges will 
not move 

within 

the bar. If one were to connect the terminals a and b with a resistor to form a circuit, 
this potential difference will cause a current to flow from b to a through the “external” part of the 
circuit, the resistor. This is 

the 

same effect as if the moving wire were replaced by a battery with an 
equivalent EMF in the circuit. Recall that the EMF of the battery represents the positive 

work 

done per 
unit charge by the chemical 

forces 

in the battery in moving 

positive 

charge from the negative to the 
positive 

terminal. 

The electrostatic charges oppose this motion in the battery and thus the charges gain 
electrostatic potential energy as they 

move 

to the positive 

terminal. 

This potential energy 

is 

lost 

as the 
charges move 

from 

the positive terminal back to the negative terminal through the external circuit. In a 
similar 

fashion, 

the moving 

wire through the 

magnetic 

field causes non-electrostatic forces (a com- 
bination of the wire and the magnetic 

field) 

to do work 

in 

pushing 

charges through the wire, opposed to 
the electrostatic field. Again the charges gain electrostatic potential energy, which they then lose as they 
move through the external circuit. In both the battery and the moving wire the EMF is positive 

from 

the lower to the higher potential, and equals the open-circuit potential difference 

between 

the terminals, 
Vba (Fig. 9-1). Recalling that for a wire of length L, with 

uniform 

electric 

field E, the potential difference 
is Vba = EL, and using our result E = uB, we have 

for 

our moving 

wire: 

If we complete the 

circuit 

with 

our resistor, 

with 

resistance 

R, then a current of magnitude Z = Vba/R = 

uBL/R will flow through the resistor from b to a. 

Note. Vba = EMF is 

strictly 

true only on open circuit. If a current flows, then the equation remains 
true only if there are no thermal losses 

(resistance) 

in the moving wire. If there is loss, due to 
a resistance r,  then EMF = Vba + Zr, as in the 

case 

of a battery with effective internal resist- 
ance r. 

Problem 9.1. A bar of length 0.8 m is 

moving 

to the 

right 

with 

a velocity of 500 m/s in a magnetic field 
of 0.3 T going into the paper (see Fig. 9-1). 

(a) What is the motional EMF produced? 

(b) Which end of the bar is at the high potential? 

(c) If the magnetic field pointed out of the paper, would the answer to (a) or (b) change, and if so, how? 

Solution 

(a) Substituting into Eq. (9.1), we get EMF = (500 m/s)(0.3 Tx0.8 m) = 120 V. 

( b )  Since the magnetic force on positive 

charges 

is up (from a to b), the high-potential 

end 

is 

b. 

( c )  The 

magnitude 

remains the same. 

The 

force on positive 

charges 

is now down (from b to a); therefore, 
the high-potential 

end 

is now a. 
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Problem 9.2. The bar in the previous 

problem 

is sliding with the same constant velocity along two 
frictionless conducting railings, 

connected 

to a 

resistor 

R of 60 a, as shown in Fig. 9-2. 

(a) What current flows in the resistor? 

(b) In what direction 

does 

the current flow through the bar? 

(c) How much 

power 

is absorbed in the resistor? 

Solution 

(a) The EMF is 120 V, as calculated in the 

previous 

problem. 

The current is (120 V)/(60 a) = 2 A. 

(b) The 

current 

flows through 

the 

external circuit (resistor) 

from b to a, so it flows from a to b in the 

bar. 

(c) The power is P = 12R (or I V )  = (2 Q), [or P = (2 AM120 V)] = 240 W. 

Problem 9.3. Referring to Problem 

9.2: 

(a) While the current I is flowing, calculate the magnitude and direction of the magnetic 

force 

on the 
bar. 

(b) What force 

must 

be exerted on the bar by some outside source to keep the bar moving at constant 
speed? 

(c) How 

much 

power must this 

outside force 

deliver? 

Solution 

(a) The induced 

current 

is 2 A. Current flowing in a length L in a magnetic field B experiences a force of 
F = ZLB sin 4 = (2 AX0.8 mM0.3 T) = 0.48 N. Here 4 is the 

usual 

angle between the 

direction 

of the 
current 

through 

L and the direction of B, which in this case is 90°, so sin4 = 1. The 

direction 

of the 
force is perpendicular to L and to B and therefore 

along 

the horizontal direction. 

By using the 

right- 

hand riile w e  Aetermine that the Airnotinn ir tn the lnft 

(b) The 

outside 

source 

must exert 

a counterbalancing force of 0.48 N in 

the 

direction 

to the 

right. 

(c) The power is given by Volume I formula 7.2, P = Fu = (0.48 NX5W m/s) = 240 W. This is positive, 
since the force is in the 

same 

direction 

as U. 

Problem 9.4. 

(a) Compare the answers to part (c) of Problems 9.2 and 9.3. Why are these the same? 

(b) What happens if the force 

pushing 

the bar [Problem 9.3(b)] were removed? 
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solution 

(a) From Problem 9.2(c) we note that energy 

is 

being dissipated 

in 

the resistor. The energy 

must 

be 
supplied by some 

source. 

The magnetic field does not 

deliver 

energy 

to the system 

since 

the force of the 
magnetic field on a 

moving 

charge 

is perpendicular to the velocity and hence does no work. The bar 
itself is moving at constant speed so its 

kinetic 

energy 

is constant. The only 

source 

of energy is there- 
fore the work done by the external source; this energy is completely 

dissipated 

as heat in the resistor. 
From an energy point of view, the magnetic field is the necessary agent 

for 

converting 

the energy of the 
external 

source 

into electrical 

energy 

that ultimately turns into thermal 

energy. 

(b) If the 

external 

force 

were removed, the magnetic 

force 

on the bar [Problem 9.3(a)] would be unbal- 
anced and the bar would slow down; this 

in 

turn would 

decrease 

the EMF in 

the 

bar and the current 
would also drop, until 

ultimately 

the 

bar would stop moving and the current would cease. From an 
energy 

point 

of view this corresponds to the kinetic 

energy 

of the bar being the only 

source 

of energy 
for 

dissipation 

in the resistor; when the 

kinetic 

energy 

drops to zero 

there 

is no more 

energy 

available 

and the current becomes zero. Again, the 

magnetic 

field acts as the agent-this time 

for 

converting 

the 
kinetic 

energy 

into electrical 

energy 

that ultimately turns into thermal energy. 

Another example of a motional EMF is the case of a 

single 

loop coil turning in 

a 

uniform magnetic 

field. Consider the rectangular coil abcd in 

Fig. 

9-3, which is rotating in the uniform 

magnetic 

field B. At 
the time when B is parallel t o  the plane of the coil, as in the figure, side ad is 

moving 

out of the plane of 
the paper, and side bc is moving into the paper. 

Both 

sides 

are moving 

perpendicular 

to the field, and 
will develop EMFs as a 

result 

of this motion. For side ad, the force on the free charges in 

this 

side 

will 
be up (from d to a) and therefore the induced EMF will drive current around the coil 

in 

a clockwise 

direction. On side bc, the force on positive 

charges 

is down (from b to c), and the induced EMF will also 
drive current around the coil 

in 

a clockwise direction. From Eq. (9.1), the EMF developed 

in 

each side 

is vBh, and t, = O(w/2), giving EMF = co(w/2)Bh. The total EMF is therefore oBwh = o B A ,  where A is 
the area of the coil wh. The other two sides will not contribute any EMF, since 

the 

magnetic 

force 

on 
charges in these 

wires 

are perpendicular to the wires and therefore do not contribute an EMF along the 
wire (i.e. no charges are pushed along the wires). The result of this 

calculation 

is that this rotating coil, 
in the position 

shown, 

produces a 

total motional EMF around the coil equal to o B A .  Although we 
derived 

this 

result for a 

rectangular coil, 

it 

is actually true for any other shape planar coil as well. As the 
angle 

between 

the plane of the coil and the magnetic field increases above zero, the component of the 
velocity of each 

side 

perpendicular 

to the magnetic field decreases and the EMF decreases correspond- 
ingly. We will discuss 

this 

further in 

a 

later section. 

However, 

we want to mention at this 

time 

that the 
above example is the basic 

configuration 

that is used to generate 

voltages, 

and is therefore the proto- 
type of a generator. 

h 

Fig. $3 
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A third 

example 

of a motional EMF is the case of a coil moving in the 

magnetic 

field produced by a 
bar magnet. 

Consider 

the bar magnet 

in Fig. 9-4(a), and the field it produces 

near 

its 

north pole. The 
field lines seem to come out of the pole, and spread out equally in all directions. A few lines coming 
from 

the 

edge of the pole are drawn in the figure. Consider 

the 

circular 

loop of wire going 

through 

points a and b. At every point 

on 

this 

loop the 

magnetic 

field has a longitudinal 

component 

along the 

direction of the axis of the 

magnet, 

and a component 

perpendicular 

to the axis of the 

magnet. 

The 

fields 
at a and b are shown in Fig. 9-4(b), with these two 

components 

clearly delineated. 

If the loop moved 
without 

tilting 

parallel 

to the axis of the 

magnet, 

then its 

velocity would be parallel to B, and this 
component of the field would not 

exert 

a force on the free charges 

moving 

with the coil. However, the 
B,  component 

does 

exert 

a force on the 

charges 

in the coil. At point a this force is out of the 

paper 

and 
at point b the force is into the 

paper. 

This 

force is 

in 

the direction driving charge 

around the coil in the 
direction of the arrows in Fig. 9-4(a). At any other point 

on 

the 

coil the force acts in the 

same 

manner, 

causing an EMF which induces 

current 

to flow around the coil. The 

magnitude 

of the force would be 
quB, , and the balancing 

electric 

field would be E = uB, . The EMF would therefore be uB,(2zr), where 
r is the radius of the coil. If one reverses the 

direction 

of the 

motion 

of the coil, the direction of the 
EMF will reverse. Also, if one reverses the 

direction 

of the 

magnetic 

field, by using a south pole, the 
direction of the EMF would also reverse. 

We now raise an interesting 

question. 

Suppose 

that instead of the bar magnet being fixed and the 
loop moving to the 

right, 

the 

loop is kept fixed and the magnet is moving to the left. Will there still be 
an induced EMF in the 

coil? 

If such an EMF exists, it clearly cannot be motional EMF, since the coil is 
not moving, and magnetic forces require a moving charge. If an EMF exists, it will therefore be due to a 
new phenomenon that we have not yet discussed. There is an 

interesting 

argument 

in favor of the 
existence of such an EMF. In Volume I Chap. 3, we learned that velocity has to be measured 

relative 

to 
some system that is considered to be at rest. It can 

be 

shown 

that the laws of mechanics, as stated by 
Newton, are applicable 

without 

modification 

in any 

inertial 

system that is not 

accelerating. 

The laws in 
an elevator that is moving at constant speed are identical to the laws in an elevator at rest. There is no 
mechanical 

experiment 

that can be done within the 

elevator 

that would allow a person to determine 
whether 

the 

elevator 

is moving and the 

building 

is standing still, or whether 

the 

elevator 

is standing still 
and the 

building 

is moving in the 

opposite 

direction. 

If we assume that it is also true that the 

person 

in 
the 

elevator 

cannot use an experiment in electricity and magnetism to distinguish between these choices, 
then we can 

show 

that there must be an induced EMF even if one moves the bar magnet rather than 

the 

loop. To show 

this 

let us attach a loop to the 

elevator 

(see Fig. 9-9, and a bar magnet to the 

elevator 

shaft. If the 

elevator 

moves and the 

building 

is at rest, 

there 

will be a motional EMF induced in the coil. 
On the other hand, if the 

building 

moves and the 

elevator 

is at rest, there will be no motional EMF 
induced in the coil. If no other EMF is induced 

in 

the 

coil, we will have determined 

through 

this 

experiment that the 

elevator 

is the 

moving 

system. Therefore, if we believe that the laws of physics do 
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not allow 

us 

to make such a determination, then there must be an EMF even if the magnet, rather than 
the coil, moves. 

While this is a very nice argument, it does not prove that such an EMF does indeed 

exist. 

The only 
way to find out if there is such an EMF is to do so experimentally, and we can carry out an easy 
experiment 

using 

our bar magnet and loop. We find that when we move the magnet instead of the loop 
in 

Fig. 

9-4(b) we get the identical EMF in the loop that we get when we move the loop. As long as the 
relative 

velocity 

of the loop and magnet 

is 

the same, we get an identical EMF. This new EMF is 
induced in the loop by the moving 

magnet 

(and associated 

magnetic 

field) and is therefore 

called 

the 
induced EMF; its characteristics are given by Faraday's law and are developed 

in 

the next 

section. 

9.3 INDUCED EMF 

Magnetic Flux 

Before we can state Faraday's law, we must develop the concept of magnetic flux. This is a concept 
which is 

similar 

to the concept of electric flux, developed in Chap. 3. Consider a small planar area A as 
shown in 

Fig. 

9-6(a). This area can be represented by a vector A that has a magnitude equal to the area, 
and a direction perpendicular to the plane of the area. Since there are two possible directions for A we 
have to make a choice. This was discussed in Sec. 6.5 for the case of a magnetic moment, and in Sec. 3.6 
for the case of electric flux. In those cases we were able to fix the positive direction of the area vector, 
either by noting the direction of the circulating current and using the right-hand rule (for the magnetic 
moment) or by choosing the vector to point from 

inside 

a closed 

surface 

to the outside (for 

electric 

flux 
in Gauss' law). 

Here, 

the positive direction is arbitrary, so we can choose it 

in 

either of the two possible 
directions. 

With 

this choice made, 

we define the magnetic flux that passes through the area in the 
positive direction as 

(9.2) 

where B is the magnetic field in the region and 8 is the angle 

between 

B and A. The flux therefore 
depends on three variables, B, A and 8. If 0, is positive, then the flux is 

passing 

through the area in the 
positive direction, and the 

reverse 

is true for 

negative 

a,,,. If the field is perpendicular to the 

plane 

of the 
area, then the angle 8 is o", and 0, has its maximum 

value 

of BA. If B is parallel to the plane of the 
area, then no flux passes through the area (8 = goo). The unit 

for 

magnetic 

flux is T - m2, which 

is 

given 
the name Weber 

(Wb). 

As in the case of electric flux one can visualize the magnetic flux by drawing 
magnetic field lines, with the number of field lines 

passing 

through a unit area perpendicular to the lines 
proportional to B at that location. By tracing field lines to other locations the number of field lines 

cp, = BA cos 8, 
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passing through unit perpendicular area at these locations will be proportional to B at that location 
with the same constant of proportionality. This follows because 

magnetic 

field lines 

never 

stop or start 
at a point but rather form 

closed 

loops. 

The total magnetic flux through any area is then just pro- 
portional to the total number of field lines through that area, again 

with 

the same proportionality 
constant [see Fig. 9-6(b) and (c)] .  Note that for a large curved 

surface, 

as in Fig. 9-6(c), one breaks the 
surface up into many small 

sections, 

each 

of which is almost planar. Then one applies Eq. (9.2) to each 
section and adds them up to get the total flux: 

QM = 1 BiAi cos Oi i (all 

subsections 

of S )  (9.3) 

Problem 9.5. A rectangular coil, 

with 

sides 

h = 0.5 m and w = 0.3 m, is in the y-z plane, as in Fig. 9-7. 

There is a uniform 

magnetic 

field B in the 

region 

of 0.25 T. Calculate the magnetic flux going through 
the coil in the + x direction, if the magnetic field points (see Fig. 9-7) in: (a) the + x  direction; (b) the 
- y  direction; (c) at an angle of 30" with the + x  axis, 

in 

the x-y plane; and (d) at an angle of 45" with 
the - x  axis, in the x-y plane. 

Soh tion 

(a) The 

direction 

of A is the positive x direction, 

since 

this 

is 

perpendicular to the plane of the area, and 
we want the flux in +x. Substituting into Eq. (9.2), we get @,,, = (0.25 TH0.3 rnWO.5 m) = 0.0375 Wb. 
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(b) Since the magnetic field is perpendicular to A, the flux is 

zero 

(i.e. no field lines 

pass 

through the area). 

(c) The angle between B and A is 30°, so @,,, = (0.25TK0.3 mXO.5 m)cos 30" = 0.0325 Wb. 

Nore. This is less than in part (a) because 

for 

the same density of field lines fewer pass through 
the area; indeed the cosine accounts for this reduction in flux. 

(6) The angle between B and A is 135", so am = (0.25 TMO.3 mHO.5 m)cos 135" = -0.0265 Wb. 

Note. Not only the number of field lines 

passing 

through the area is reduced, but they 

pass 

through in the opposite sense to our choice of positive A, hence the minus 

sign. 

Change in Flux 

Now that we have 

defined 

the magnetic 

flux, we are nearly 

ready 

to define Faraday's law. This law 
makes use of the change i n j u x ,  rather than the flux itself. The flux can be changed by altering any one 
(or several) of the three variables that enter into the definition of flux, B, A and 8. As usual the change 
means the final 

minus 

the initial, so that 

A 0  = - Oi, where we have dropped thesubscript m on the flux. (9.4) 

The following problem illustrates the calculation of changes in flux as one varies either the field, the 
area or the angle 

involved 

in the flux. 

Problem 9.6. A rectangular coil, 

with 

sides 

h = 0.50 m and w = 0.30 m, is 

in 

the y-z plane, as in Fig. 
9-7. There is a uniform 

magnetic 

field B in the region of 0.25 T, pointing in the + x direction. 

(a) Calculate the change in flux if the field increases to 0.30 T. 

(b )  Calculate the change in flux if the field decreases to 0.20 T. 

(c) Calculate the change in flux if the magnitude remains at 0.25 T, but its direction changes to the - y  
direction. 

(6) Calculate the change in flux if the magnitude remains at 0.25 T, but its direction changes to the -x  
direction. 

(e) Calculate the change in flux if the magnetic field does not change, but the width of the coil 
decreases to 0.1 m. 
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The initial and the final 

fields 

are both in + x. Substituting into Eq. (9.2), we get = (0.25 TK0.3 
mKO.5 m) = 0.0375 Wb, and Of = (0.30 T)(0.30 rnXO.50 m) = 0.045 Wb. Thus, A@ = Of - Oi = 0.045 
- 0.0375 = 0.0075 Wb. This change is an increase in the flux in the + x direction. 

Using the same technique as in (a), we find that Of = (0.20 TK0.30 mKO.50 m) = 0.030 Wb. Thus, 
A@ = Of - @i = 0.030 - 0.0375 = -0.0075 

Wb. 

This change is a decrease in the flux in the + x direc- 
tion. 

Here we must calculate the final flux using the new value of 8, which 

results 

in a final flux of zero. 
Thus, AO = Of - Oi = 0 - 0.0375 = -0.0375 Wb. This change is a decrease in the flux in the + x 

direction. 

The final flux in 

this 

case 

is -0.375 Wb, 

since 

the field has now 

changed 

to the - x  direction which is 
opposite to B (which we chose as the positive 

direction). 

Thus, AO = Of - Oi = -0.0375 - 0.0375 = 

-0.075 

Wb. 

This change is a decrease in the flux 

in 

the + x  direction. 

The change in flux is now due to a change in area. The final flux Of = (0.30 TWO.10 m)(O.SOrn) = 0.015 
Wb. Thus, A@ = Of - Oi = 0.015 - 0.0375 = -0.0225 Wb. This change is a decrease in the flux in 
the + x direction. 

We will be 

calculating 

many more examples of changes in flux in future problems. 

Faraday’s Law 

Now that we have 

defined 

the basic concepts needed for 

Faraday’s law, we are ready to state that 
law. This law 

says 

that 

whenever there is a change in flux within a circuit there will be an EMF induced 
in the circuit. This EMF depends on the time rate of change of the flux through the circuit 

E M F =  -A@fAt (9.5) 

where A@ is the change in magnetic flux through the circuit in a short time 

interval, 

At.  Eq. (9.5) is true 
no matter what the cause of the change in flux: the circuit 

moves, 

the magnetic field changes while the 
circuit stays fixed, or any combination of these. Thus, as we will see later (Problem 9.8), motional EMF 
is 

included 

in Faraday’s law. 

The minus 

sign 

in Eq. (9.5) is 

necessary 

to assure that the correct direction 
is given for the EMF. To understand the sign convention in Eq. ( 9 3 ,  consider Problem 9.6(a) (Fig. 9-7). 

Since the direction of A is to the 

right 

(positive 

x direction) A@ is positive when the flux increases to the 
right. The usual convention for 

positive 

circulation in a loop of area A is given by the right-hand rule: 
when the thumb of the right hand points in the direction of A then the fingers curl in the 

positive 

direction of flow in the loop. Without the minus 

sign 

in Eq. 

(9.5) this 

would 

imply 

that for A 0  positive 
the induced EMF would be in 

the 

direction t 3 s + o 3 U in 

the 

loop, causing a current to circulate in 
the same direction. In fact, the induced EMF for 

this 

case 

points in the opposite sense u + o 3 s 3 t .  At 
first 

glance 

it may seem that nature arbitrarily decided which way the EMF will act in the loop-that it 
could have just as easily been in the other direction [i.e. no minus 

sign 

in Eq. 

(9.5)], but that is not the 
case. 

Without the 

minus 

sign, 

crazy 

things happen that violate 

the 

foundations of physical 

law, 

includ- 

ing conservation of energy. 
The requirement of the 

minus 

sign is called 

Lenz’s law.. 

Problem 9.7. 

(a) Using the situation in Fig. 9-7 and Problem 9.6(a), show that without the minus sign in Eq. (9.5) we 
would 

get 

non-physical 

results. 

(b) Show that the same would 

be 

true in the case of Problem 9.5(4. 

(c) What is the connection between Lenz’s law and the conservation of energy? 
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Solution 

Here A 0  is positive to the right, so A@/At is to the right. As noted in the text, without the minus sign 
in Eq. ( 9 3 ,  the right-hand rule 

gives 

the induced EMF around the loop in the direction t -+ s --+ U -+ U. 

This EMF in turn creates a current in the same direction. Since a current in a loop creates its 

own 

magnetic field, the current itself will create additional flux through the loop. Again 

using 

the right hand 
rule to find the direction of this additional flux, we see that it points in the direction of the original A@, 
i.e. to the right. 

According 

to Eq. (9.5) (without the minus 

sign) 

this 

will cause a further EMF which 
will cause a further increase 

in 

current, which will cause further increase in flux, etc. In this way the 

current will continue increasing and so will the magnetic field without any source of energy 

beyond 

the 
source of the original A@, which could have 

been 

quite small. This kind of “perpetual motion” 
machine is clearly non physical. With the minus sign in Eq. ( 9 4 ,  however, the EMF is in the direction 
U -+ L: + s + t and the current produced is in the same direction. Now the right-hand rule shows that 

the extra flux through the loop induced by this current is to the left, and tends to reduce the original 
A 0  to the right. This in turn tends to decrease the EMF and the current rather than letting it increase 
in run-away fashion. 

In Problem 9.5(4 A@ is negative, so without the minus 

sign 

in 

Eq. (9.5) the right-hand side of the 
equation would be negative and the induced EMF and hence the induced current would be in 

direc- 

tion U --+ o --+ s -+ t .  By the right-hand rule 

this 

current produces a magnetic field (and flux) 

which 

is 
also negative through the loop. 

Again, 

the additional change in flux would 

increase 

the current in a 
perpetual motion way. On the other hand, if we had the minus sign in Eq. (9.5) the induced current 

would create a flux that was opposite to the original A@ tending to decrease the change in flux and 
hence damp down the current. 

Without the minus 

sign 

(Lenz’s law) 

we have a run-away increase in current in the loop. We will see 
later that a loop has magnetic energy that is proportional to 1’. If the current keeps 

increasing, 

so will 
this magnetic energy 

even 

though there is no source of energy, thus violating the law of conservation of 

energy. 

Lenz’s Law 

From Problem 9.7 we can now see the 

explicit 

meaning of the minus 

sign 

in Faraday’s 

law 

Eq. (9.5). 

A change in flux causes an induced EMF in a circuit, 

which, 

in 

turn causes an induced current in the 
circuit. If the change in flux is positive, then the induced current will flow in that direction that sets up 
an induced flux that is negative. If the change in flux is 

negative 

then 

the induced current will set up an 
induced flux that is positive. This means that the current will always flow in such a direction that 
opposes the change that created it in the 

first 

place. Lenz’s law thus states that the EMF produced by a 
changing flux is always in a direction to produce a current whose own flux is in the opposite direction 
to the 

initial 

change in flux. If one is careful about minus 

signs 

and the interpretation of positive and 
negative 

directions, 

one can use the minus 

sign 

in 

Faraday’s law to determine the direction of the 
current immediately. In practice, 

you 

will find it easier to determine just the magnitude of the 

induced 

EMF from Faraday’s law, and use Lenz’s law to find the direction of the induced EMF and current. As 
noted above if there 

actually 

is induced current flowing, then this 

induced 

current will itself induce an 
additional change in flux, @induced, which can further modify the EMF and the current. These effects will 
be discussed in the next chapter. In doing the problems in this chapter we will neglect this self induced 
change in flux (except 

for 

determining current directions by Lenz’s law) and include 

only 

the current 
induced by the 

externally 

caused changes in 

flux. We will illustrate Faraday’s law and the above pro- 
cedure for Lenz’s law in some more detail in the 

following 

problems. 

Applications 

Problem 9.8. A metal bar of length L slides along two railings 

with 

a velocity of v to the right, as in 
Fig. 9-8. A magnetic field of B is into the paper throughout the area. Show that by applying Faraday’s 
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law to the closed circuit shown in Fig. 9-9 one gets the same EMF as the motional 

EMF 

formula given 
by Eq. (9.1). 

Solution 

To use Faraday's law, we must calculate the change in flux per unit time. Consider the circuit of the 

bar and the stationary railings 

(circuit 

cabd). When the bar is in position cd, the flux equals B times the area 

A enclosed by circuit cabd, and is into the paper. After a time At, the bar has moved a distance LqAr, and 
there is an additional flux of BAA = B(uAtL). The change in flux is therefore A# = BvLAt. Since the magni- 
tude of the EMF is equal to A(D/At, we see that EMF = BuLAt/At = BuL, as we calculated previously 

using 

the concept of motional EMF. To get the direction of the EMF let us choose A into the paper. Then (Di and 
A# are both positive (into the paper), and so is A(D/At. -A#/At is therefore out of the paper, and by the 

right-hand rule the EMF is counter clockwise 

which 

is the same direction calculated 

using 

motional EMF 
(from d 4 c). 

We could also get the direction from Lenz's law 

using 

the following table: 

'initial into paper 
A' 

'induced 

Induced current 

into paper (since the flux increased) 
out of paper (by Lenz's law) 
around cabd (since must produce a field out of paper) 

Again, 

this 

direction is the same as the direction calculated using motional EMF. 

Y 

B 

* x 

Fig. 9-9 
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Problem 9.9. A circular loop, with area A = 0.24 m2, is in the x-z plane, as in Fig. 9-9. There is a 
uniform 

magnetic 

field B in the 

region 

of 0.25 T, pointing in the - y  direction. In all of the following 
parts, a change takes place 

in 

a time of 3.0 x 10-3 s. Calculate the induced EMF in each case and 
determine the direction of the induced current around the loop. (Remember that only 

this 

externally 

induced current is considered 

here, 

and we will neglect the additional current induced by the 

externally 

induced current.) 

(a) The field increases to 0.30 T. 

(b) The field reverses to the + y  direction. 

(c) The field stays fixed but the loop rotates about the 

x-axis 

so that point a moves up by 30". 

Solution 

(a) The initial and the final 

fields 

are both in - y .  We choose A to point downward as well. Substituting 
into Eq. (9.2), and noting 8 = 0, we get Oi = (0.25 T)(0.24 m2) = 0.060 Wb, and Qf = (0.30 TX0.24 
m2) = 0.072 Wb. Thus, A@ = Of - = 0.072 - 0.06 = 0.012 Wb. The magnitude of the induced EMF 
is therefore EMF = (0.012 Wb)/(0.0030 s) = 4.0 V. 

To get the direction, we make the following table 

@initial down 
A@ 

@induced up (by Lenz's law) 
Induced EMF (and current) 

(b) The initial and final fluxes are both 0.060 Wb, but the final flux is up, while the initial flux is down. 
This time choosing A as positive upward, A@ = Of - @, = 0.060 - (-0.060) = 0.12 

Wb. 

The magni- 
tude of the induced EMF is 

therefore 

EMF = (0.12 Wb)/(0.0030 s) = 40 V. 

To get the direction, we make the following table 

#initial down 
A@ 

@induced down (by Lenz's law) 
Induced EMF (and current) 

(c) Choosing A downward, we have af = (0.25 TX0.24 m2) cos 30" = 0.052 Wb, while #i = 0.060. Both go 
through the coil 

in 

the same downward direction. The change in flux is A# = af - af = 0.052 
- 0.060 = -0.0080 Wb. The magnitude of the induced EMF is therefore EMF = (0.0080 Wb)/(0.0030 
S) = 2.67 V. 

To get the direction, we make the following table 

@initial down 
A# 
@induced down (by Lenz's law) 
Induced EMF and current 

down (since the flux increased in the initial direction) 

around abcd (since must produce a field up) 

up (since the flux changed to the opposite direction) 

around adcb (since must produce a field down) 

up (since the downward flux decreased) 

around adcb (since must produce a field down) 

Problem 9.10. The circular coil 

in 

Fig. 

9-9 is rotating about the x-axis 

with 

an angular velocity of 130 
radian+, with point a moving upward from 

the 

position shown. The coil has an area of 0.24 m2 and is 
initially in the x-y plane. There is a uniform magnetic field B in the region of 0.25 T, pointing in the - y  
direction. Calculate the average EMF induced in the 

coil 

during a time of 5 x 10-3 s. 

Solution 

During the time of At = 5 x 10-3 s, the coil rotates through an angle of o A c  = 130At = 0.65 radians. 
The final 

flux 

is therefore the flux 

after 

point a has moved up through this angle. In Problem 9.5(c), we did 
this calculation for an angle of 30". Repeating that calculation for an angle of 0.65 rad, we get that Qf = 
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(0.25 TN0.24 m2) cosO.65 = 0.048 Wb. Also, Oi = (0.25 T)(0.24 m2) = 0.060 Wb. Thus AQ = Qf - Qi = 0.048 
- 0.060 = -0.012 Wb. 

Therefore, 

the magnitude of the EMF is (0.012 Wb)/(0.0050 s) = 2.4 V. 

To get the direction, we make the following table 

@initial down 
A@ 
@induced down (by Lenz’s law) 
Induced EMF and current 

up (since the downward flux decreased) 

around adcb (since must produce a field down) 

Problem 9.11. An elastic 

circular 

conducting loop, is at the equator of an air filled balloon, a hemi- 
spherical cross 

section 

of which is shown 

in 

Fig. 

9-10. The sphere has a radius of 0.60 m. There is a 
uniform 

magnetic 

field B in the region of 0.25 T, pointing in the + y direction. During a time of 
5.0 x 10-2 s, the balloon is deflated to a radius of 0.30 m. What is the average EMF induced in the coil 
during this time? 

Solution 

The initial 

flux 

is 

Oi = (0.25 TXzX0.60 m)’ = 0.28 Wb. The final flux is Qf = (0.25 T)(11)(0.30 
= 0.070 - 0.28 = -0.21 Wb, and the magnitude of the EMF = (0.21 m)’ = 0.070 Wb. Thus, A@ = Of - 

Wb)/(0.050 S) = 4.2 V. 

To get the direction, we make the following table 

@initial UP 
A@ 

@induced up (by Lenz’s law) 
Induced EMF and current 

down (since the downward flux decreased) 

around abcd (since must produce a field up) 

Problem 9.12. A long solenoid, with 2500 turns/m, and a cross-sectional area of 0.70 m2, carries a 
current of 2.0 A, in the direction shown in Fig. 9-11. Another wire is wound around the solenoid in the 
same direction, near its center, with 15 turns to form a coil. 

This 

coil 

is connected in a circuit containing 
a resistance of 3.0 a. The current in the solenoid 

is 

turned off in a time of 0.0030 s. 

(a) What average EMF is induced in the coil? 

Y 

‘ I B  I 
Fig. 9-10 
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I = 2 A  
3 0  

Fig. 9-1 1 

(b) What average current flows through the resistor? 

(c) Does the induced current flow through the resistor 

from 

a to b or from b to a?  

(d) How would the answer change if the coil were wound in the opposite direction to that of the 
solenoid ? 

Solution 

(a) Since 

for 

a long solenoid, the field is uniform 

inside, 

the flux through one turn of the second wire is 
# = BA, where B = ponZ = 4n x 10-7(2500)(2.0 A) = 6.28 x 10-3 T, and A is the cross-sectional of 
the solenoid and equals 0.70 m2. 

Note. A is also the area of a tightly wound second coil; however 

even 

if the area of the coil were 
larger than the area of the solenoid, the flux through a turn of the coil 

would 

still 

be the 
same, 

since 

the field of the solenoid is zero in the area between 

it 

and the coil. 
The flux through the entire coil is 15 times this amount, since there are 15 turns in the 

wire. Thus #i = 9.42 x 10-2 Wb. The final flux is 0. Thus, A# = #, - #i = 0 9.42 x 10-2 
Wb, and the magnitude of the average EMF = (9.42 x 10-2 Wb)/(0.0030 s) = 31.4 V. 

(6) Assuming that the coil itself has no resistance, the EMF = terminal voltage of the coil. From Ohm’s 
law the average current is V / R  = (31.4 V)/(3.0 0) = 10.5 A. 

(c) To get the direction, we make the following table 

@initial 

A# 

#induced 

Induced EMF 

to left (using right-hand rule) 

for 

current in the first wire on the solenoid 
to right 

(since 

the flux to the left decreased) 

to left (by Lenz’s law) 

from a to b through coil; then 6 is at a higher 

voltage 

than a and the 
current in the resistor is from b to a, and from a to 6 in the coil, 
assuring #induced is toward the left. 

(6) In 

this 

case the current would 

have 

to flow from U to 6 through the resistor (and 6 to a through the 
coil) to insure @induced is to the left. 

Problem 9.13. 
permeability of 1500. 

Repeat Problem 9.12 if the solenoid 

is 

filled with a magnetic material that has a relative 

Solution 

(a)  As in Problem 9.12 the field in the solenoid is uniform, and the flux through one turn of the second 
wire is # = BA. Now, however, B = pnZ = 4n x 10-7 (1500)(2500)(2.0 A) = 9.42 T ;  the area A is still 
the area of the now filled solenoid and equals 0.70 m2. The total flux in the second 

coil 

is then 15(0.70 

m’H9.42 T) = 99 

Wb. 

The final flux is 0. Thus, A# = Of - Qi = 0 - 99 Wb, and the magnitude of the 
average EMF = (99 

Wb)/(0.0030 

s) = 3.30 x 104 V. 

(6) The average current is again EMF/R = (3.3 x 104 V)/(3.0 Q) = 1.1 x 107 A. 
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(c)  To get the 

direction, 

we use the 

same 

table 

as in Problem 9.12(c) with the 

same 

result: the induced 

current is from b to a through 

the 

resistor 

to ensure that the induced flux is to the left (for the case of 
the coil wound in the 

same 

direction 

as the 

solenoid). 

(d) Same 

as 

in 9.13(d) 

Problem 9.14. A hollow, long 

solenoid 

has 

1500 turns/m, 

and 

carries 

a current of 3 A. At the 

center 

of 
the 

solenoid 

there 

is a small rectangle, of sides h = 0.020 m and w = 0.040 m, whose area is parallel to 
the axis of the 

solenoid, 

as 

in Fig. 9-12(a). In a time of 4.0 x 10-4 s, the 

rectangle 

rotates so that the 

plane is now perpendicular to the axis, as in Fig. 9-12(b). Calculate 

the 

average 

EMF induced in the 
rectangle during this time. 

Solution 

Since for a solenoid, 

the 

field inside is uniform, 

the 

flux through 

the 

rectangle 

is 0 = BA cos& where 
B = po nl = 4n x lO-'(l500)(3.0 A) = 5.65 x 10-3 T, and the field points 

along 

the 

axis to the left. The 

area 

of the 

rectangle 

is A = (0.020)(0.040)m2 = 8.0 x 10-4 m'. The flux through 

the 

rectangle 

is initially 

zero, 

since the 

area 

vector 

is perpendicular to the field (0 = 90"). After the 

rotation, 

0 = O", and the flux is 
Of = (5.65 x 10-3 TX8.0 x 10-4 m2) = 4.52 x 10-6 Wb. Then I EMFl = A0/At = (4.52 x 10-6 Wb)/ 
(4.0 x 10-4 s) = 1.13 x 1 0 - 3  v. 

Problem 9.15. A rectangle abcd is located at the 

origin, 

as 

in Fig. 9-13. A uniform magnetic field exists 
only in the first quadrant, and points into the paper. Calculate the direction of flow of the 

induced 

current, if (a) the field is increased; (b) the 

rectangle 

moves to the right; (c) the 

rectangle 

moves to the 
left; (d) side bc of the 

rectangle 

is pulled to the 

right 

while side ad is held fixed, and the rectangle's sides 
dc and ab are stretched 

without 

snapping; (e) the rectangle rotates in the 

plane 

about point a in the 
counter-clockwise 

direction 

; in the clockwise direction ; and (f) the rectangle rotates about the y-axis 
into the paper. 

Fig. 9-12 

Y 

4 

x x x x x x x x  

x x x x x x x x  

b 
* X  

Fig. 9-13 
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Solution 

To get the direction in each 

case 

we make the usual table: 

(a )  @initial 

A@ 

Induced current 
@induced 

(b)  @initial 

A@ 

Induced current 
@induced 

(c) @initial 

A# 

Induced current 
@induced 

(4 @initial 

A@ 

Induced current 
@induced 

in 

in (since the inward flux increased) 
out (by Lenz's law) 
counter-clockwise (ccw) SZ (since 

must 

produce field out) 

in 

0 (since the flux doesn't change) 

0 
0 

in 

out (since the inward flux decreased) 
in (by Lenz's law) 

clockwise (cw) (since must produce field in) 

in 

in 

(since 

the inward flux increased-area inside 

first 

quadrant increased 
out (by Lenz's law) 
ccw (since must produce field out) 

( e )  For either clockwise or counter clockwise rotation 

@initial in 
A# 

@induced in (by Lenz's law) 
Induced current 

out (since the inward flux decreased-part of the rectangle 

moves 

outside 
the first quadrant where there are no field lines) 

cw (since must produce field in) 

(f) @initial in 
A@ 

@induced in (by Lenz's law) 
Induced current 

out (since the inward flux decreased-the number of field lines through the 

rectangle 

decreases 

as the rectangle rotates (cos 8 effect)) 

cw (since must produce field in) 

9.4 GENERATORS 

We 

have 

previously mentioned 

that one can generate an EMF by rotating a coil in a magnetic field. 
In 

Fig. 

9-14(a), we have a tightly 

wound 

rectangular coil of area A rotating about the 

z-axis 

with 

an 
angular velocity o, in a magnetic field B which points in the + x  direction. In Fig. 9-14(b), we show 

this 

coil 

in 

projection. 

The flux through a single turn of the coil 

is 

given by BA cos 8, where 8 is the angle 
between the normal to the 

rectangle 

and the field. Assuming the position 

shown 

in (a) is at t = 0, 8 is 
zero, and then 8 changes as cut, i.e. 8 = at. Therefore we can write the flux as 0 = BA cos o t .  In order 
to calculate the EMF we would 

have 

to be able to calculate EMF = -A@/At at each instant of time. 
This can be easily done using 

calculus, 

with 

the result that 

EMF = o B A  sin ot 

Let us examine 

this 

result carefully. 

The EMF varies as sinot. This is sometimes 

positive 

and some- 
times 

negative. 

When the EMF is positive the current flows around the 

coil 

in the "positive" direction. 
This direction is defined by our choice of the positive A vector 

[Fig. 

9-14(6)]. The direction chosen 
implies that the positive direction for circulation around the coil 

is 

from 

a to b to c to d to a. This is 
because if you wind your fingers in that direction, your thumb points in the positive A direction. Note 
in the 

figure 

that EMF is 

positive 

when 

A makes an angle less than 180" with B, but turns negative 
when that angle 

is 

between 

180" and 360". A negative EMF will cause an induced current to flow in the 
direction adcb. The EMF produced in this manner will change its direction and then change back again 

(9.6) 
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Rotation 

about 

z axis 
Top view looking 

down from positive z axis 

(b) 

Fig. 9-14 

at an angular frequency o, or at a frequency f = o/2z and period T = 2 4 0 .  This is what we call an 
alternating voltage which produces an alternating current (AC). Thus, by rotating a coil in a 

magnetic 

field, we can easily generate an AC voltage. The magnitude of the voltage 

can 

be increased by construc- 
ting the coil out of many 

turns, 

N, of wire, in which case 

the voltage 

becomes 

EMF = o N B A  sin ot 

Generally 

the 

frequency 

used in the USA for AC is 60 Hz (in Europe they use 50 Hz). The time 

variation 

of the EMF [representing 

Eq. 

(9.6)] is shown 

in 

Fig. 

9-15(a). The rotating coil is the basic principle 
behind the AC generator. 

From Eq. (9.7) we see that the maximum terminal 

voltage 

that is 

generated 

is o N B A .  This 
maximum 

occurs 

when sin ot = 1, and the 

voltage 

varies 

between & wNBA. Instead of defining an AC 
voltage by this 

maximum 

value, we will see, in a later chapter, that one uses the “rms” or “root mean 
square” value, which, for 

a 

sinusoidal 

voltage, is just VmaJ J2 = 0.707 Vmax. This l/rms equals 120 volts in 
the USA, and 220 volts in much of Europe. 

(9.7) 

Problem 9.16. A generator is built to provide AC at f =  60 Hz, with 

a 

voltage 

of 120 V. If a 

magnet 

is 

used that has a 

magnetic 

field of 0.20 T, what 

area 

coil 

is required, if the coil contains 200 turns? 

Solution 

We know that EMF = o N B A  sin cot, and therefore V,,, = coNBA, and V,, = 0.707 o N B A .  Substitut- 
ing 

in 

the 

equation gives us that (recalling o = 2nf): 

120 V = 0.707(2n)(60 Hz)(200)0.20 T)A, A = 2.25 m2 

In practice, 

the 

utility companies produce much higher voltages, 

which they send on transmission lines to sub- 
stations, where the voltages are reduced before being transmitted to individual homes. 

It is 

also 

possible to construct 

generators 

that do not give rise to alternating current. To produce 

a 

DC voltage (DC means direct current, which was discussed previously in Chap. S), we add two modifi- 
cations. First, we reverse the connection to the outside wires every time the direction of the EMF in the 
coil reverses direction. 

Then 

the 

current will always move in the same 

direction 

in the outside 

circuit. 

The resultant EMF in the outside 

circuit 

will then take the form shown in Fig. 9-15(6). Secondly, we use 
several coils, which are wound around frames fixed on a 

common 

rotating shaft with the frames at fixed 
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EMF I 

t 

I ( c )  

Fig, 9-15 

angles to each other. Such 

a 

structure is called a turning “armature” (Fig. 9-16). Each 

coil 

will produce 
a 

voltage 

which reaches its maximum at a 

different 

time, 

and the total voltage will vary very little with 
time. Fig. 9-15(c) shows the voltage if there are four coils spaced at 45” from 

each 

other around the 
armature. 

9.5 INDUCED ELECTRIC FIELDS 

When we produce an EMF by induction as a 

result 

of a 

changing 

magnetic 

field with 

the 

circuit 

itself fixed, there are no magnetic forces on 

the 

charges 

in the 

circuit 

since the circuit is not moving. 

Y 

t 

Cross section of four coil armature 
seen from above (z axis) 

Fig. 9-16 
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What 

then 

exerts the 

force on the charges in the 

circuit 

that produces 

the 

EMF? The 

answer 

is that a 
new type of electric field is produced by the 

time 

varying magnetic 

field in the vicinity of the 

circuit 

that 
pushes the charges and creates the EMF. This 

electric 

field will be equal to what is required to create 
the EMF predicted by Faraday’s law as we go around the 

circuit. 

This 

new electric field is fundamen- 
tally different from 

the 

“electrostatic” field produced by point 

charges, 

because the field of point 

charges 

will do zero 

work 

as 

they push a charge around a closed circuit. 

This 

latter property is responsible for 
the fact that the “electrostatic” electric force of point charges is conservative. 

This 

new electric field will 
not be conservative, because an EMF in a stationary circuit 

means 

that net work will be done on 

charges that are moved around a closed circuit. The amount of work done per unit 

charge 

will, in fact, 
just equal 

the 

EMF. 
We can 

show 

that any changing 

magnetic 

field is a source of a non 

conservative 

electric 

field. Thus, 
Faraday’s law has 

profound 

implications for 

our concept of the electric field. We will see later on that a 
changing 

electric 

field will also be a source of a magnetic field. These two new sources of fields, when 
added to the 

previous 

sources, 

form the basis of the complete laws describing 

electro-magnetic 

fields, 
and the 

resulting 

equations are known as Maxwell’s equations. 

x x x  
B 

:: :: :: 
x x x  

x x x  
I I 

0.3 m 

Problems for Review and Mind Stretching 

As stated previously, in all the problems we include 

only 

currents induced by external 

changes 

in 
flux, and ignore 

any 

additional changes in current due to @)induced, the flux induced by currents 

them- 

selves. 

Problem 9.17. A square coil of side 0.10 m is moving to the right at a velocity of 5.0 m/s. It is 0.10 m 
from a region that contains a uniform magnetic field of 0.90 T into the 

paper, 

and extends for a distance 
of 0.30 m, as in Fig. 9-17. 

(a) What 

motional 

EMF is induced in the coil in the original position? Does 

the 

induced 

current flow 
clockwise or counter-clockwise? 

(b) What motional EMF is induced in the coil when the right side of the coil is in the field, while the 
left side is still outside? Does 

the 

induced 

current flow clockwise or counter-clockwise? 

I x  x x 
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(c) What motional EMF is induced in the coil 

when 

the entire coil is in the magnetic 

field? 

Does the 
induced current flow clockwise or counter-clockwise? 

(d) What motional EMF is induced 

in 

the coil 

when 

the right side is 

outside of the field while the left 
side is still 

in 

the field? Does the induced current flow clockwise or counter-clockwise? 

Solution 

(a) Since there is no motion within a magnetic field there is no induced EMF. 

(b) The EMF on the right 

side 

is EMF = vLB = (5.0 m/s)(O.10 mX0.90 T) = 0.45 V. The induced current 
flows 

counter-clockwise. 

(c) The EMF on the right 

side 

is still 0.45 V, but the induced EMF on the left side is also 0.45 V. Both 
EMFs point upward and tend to induce currents in opposite directions. Thus, they 

cancel 

each 

other 
and the net EMF in the coil is zero. 

(6) There is no EMF on the right 

side, 

and a clockwise EMF of 0.45 V on the left side. 

Problem 9.18. A long straight wire carries a current of 2.0 A as in Fig. 9-18. A small 

circular 

coil 

of 
diameter 0.20 m is located 

with 

its center at a distance of 5.0 m from 

the 

wire. Assume that the field 
within the coil 

is 

uniform, and has the value of the field at its center. 

(a) Calculate the flux in the coil. 

(6) If the current in the long wire decreases to 1.5 A in 0.0030 s, what 

average 

EMF is 

induced 

in the 
coil? 

(c) Will the induced current flow clockwise or counter-clockwise? 

Solution 

(a) The magnetic field is B = (po/2n)(I/r) = 2 x 10-7(2.0 A)/(5.0 m) = 8.0 x 10-8 T. The flux is 
BA = (8.0 x 10-8 TKnKO.10 m)' = 2.51 x 10-9 Wb, into the paper. 

(b) The new magnetic field is B = (2 x 10-')(1.5 A)/(5.0 m) = 6.0 x 10-' T, and the new flux is 
1.88 x 10-9 Wb. The change in flux is - 6.3 x 10-l' Wb, and the average EMF is (6.3 x 10-l' 
Wb)/(0.0030 S) = 2.1 x 10-7 V. 

To get the direction, we make the following table (c)  

@initial 

A@ 

Induced current 
@induced 

I 

in (since field is in) 
out (since the flux decreased) 
in (by Lenz's law) 
clockwise 

(since 

must produce @induced) 

Fig. 9-18 
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Fig. 9-19 

Problem 9.19. A bar is moving along a triangular track as seen in Fig. 9-19, with a velocity of 8.0 m/s. 
The bar is 6.0 m from the start of the track at time t = t o .  There is a uniform 

magnetic 

field of 0.80 T 
out of the paper in the entire region. 

Use 

the concept 

of induced EMF to solve 

this 

problem. 

(a) What is the average EMF induced in the 

circuit 

between t = to and t = to + 2 s? 

(6) What is the average EMF induced in the 

circuit 

between 

t = to and t = to + 1 s? 

(c) What is the average E M F  induced 

in 

the circuit 

between 

t = t o  and t = to + 0.25 s? 

(d) What is the average EMF induced in the 

circuit 

between 

t = to and t = to + 0.1 s? 

(e) Plotting EMF,, vs. time, determine the instantaneous EMF in the initial 

position. 

(f) In which direction does the induced current flow? 

Solution 

Starting from the initial position after 2.0 s the bar has moved 

16 

m. 

The sides of the triangle are then 
22 m and 11 

m. 

Initially, 

the sides of the triangle were 6.0 m and 3.0 m. The initial area is (6.0 mN3.0 
m)/2 = 9.0 m2 and the final area is 22(11)/2 = 121 m2. The initial flux is (9.0 m’X0.80 T) = 7.2 Wb and 
the final flux is (121 m2)(0.80 T) = 96.8 Wb. The change in flux is 96.8 - 7.2 = 89.6 Wb and the 
average EMF is (89.6 Wb)/(2.0 s) = 44.8 V. 

After 1s the bar has moved 

only 

8.0 m. The sides of the triangle are then 14 m and 7.0 m, 

giving 

an 
area of 49 m2, and a flux of 39.2 Wb. The change in flux is 39.2 - 7.2 = 32 Wb and the average EMF 
is (32 

Wb)/(l.O 

s) = 32 V. 

After 0.25 s the bar moved 2.0 m. The sides of the triangle are then 8.0 and 4.0 m, giving an area of 16 
m2, and a flux of 12.8 Wb. The change in flux is 12.8 - 7.2 = 5.6 Wb and the average EMF is (5.6 
Wb)/(0.25 S) = 22.4 V. 

After 0.10 s, the bar has moved 

0.80 

m. The sides of the triangle are 6.8 and 3.4 m, giving an area of 
11.56 m2 and a flux of 9.248 Wb. The change is flux is 9.248 - 7.2 = 2.048 Wb and an average EMF of 
(2.048 Wb)/(O.l S) = 20.5 V. 
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The instantaneous voltage is 19.2 V. 

(f) The current flows clockwise. 

Problem 9.20. A circular coil of radius 0.20 m is in a uniform magnetic field of B = 0.60 T coming out 
of the paper as in Fig. 9-20(a). In a time of 0.0020 s, the circle 

is 

deformed into a square with the same 
perimeter, Fig. 9-20(6). What EMF is induced in the coil, and in which direction will the induced 
current flow? 

Solution 

The initial flux is (0.60 T)(n) (0.20 m)* = 0.075 Wb. The new square will have sides of length h, such 
that 4 h = 2nr, or h = 2x(0.20)/(4) = 0.314 m and area (0.314)2 = 0.099 m2 giving a final flux <o, = 0.059 
Wb. The induced EMF is therefore (0.059 Wb - 0.075 Wb)/(0.0020 s) = - 8.0 V. 

To get the direction, we make the following table 

@initial out 
A@ 
@induced out (by Lenz’s law) 
Induced current 

in (since the flux decreased) 

ccw (since must produce field out) 

( U )  

Fig. 9-20 

( h )  
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I 

Fig. 9-21 

Problem 9.21. A circular coil, of radius 2.1 m carries a clockwise current of 2.0 A, as in 

Fig. 

9-21. A 
small circular coil at the center of the outside coil has a radius of 0.011 m. Assume that the magnetic 
field produced by the outside coil is uniform 

within 

the area of the small 

coil. 

The current in the outer 
coil 

increases 

at the steady rate AI/At = 3.0 x 10d2 A/s. What EMF is induced in the small coil? 

Soh t ion 

The field produced by the outer coil at its center is B = pOI/2r, and the flux in the small coil is Q, = 

p o  IA/2r, where A is the area of the small coil. 

The 

EMF then has magnitude A@/At = (poA/2r)(AI/At), since 

only the current changes in the problem. Thus, 

EMF = [(4n x 10-7)(n)(0.011 m)2/2(2.1 m)][3 x 10-2 A/s] = 3.41 x 10-l2 V. 

To get the direction, we make the following table 

'initial out 

A@ 
@induced in (by Lenz's law) 
Induced current 

out (since the flux increased) 

cw (since must produce field in) 

Problem 9.22. A long straight wire carries a current in the direction shown in 

Fig. 

9-22. A small 

coil 

is 
located to the right of the wire. In what direction would current be induced in this 

coil 

if it were moving 
(a)  toward the wire?; (b) away from the wire; and (c) parallel to the 

wire? 

0 

Fig. 9-22 
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(a) To get the 

direction, 

we make 

the 

following table 

@initial 

A@ 

@induced out (by Lenz’s law) 
Induced 

current 

in (since field is into the 

paper 

on the 

right) 

in (since the field increases as move toward wire) 

ccw (since must 

produce 

field out) 

(b) To get the 

direction, 

we make 

the 

following table 

@initial 

A@ 

@induced in (by Lenz’s law) 
Induced 

current 

in (since field is into the 

paper 

on the 

right) 

out (since the field decreases as move away from wire) 

cw (since must produce field in) 

(c) To get the 

direction, 

we make 

the 

following table 

@initial 

A@ 
Induced 

current 

0 

in (since field is into the 

paper 

on the 

right) 

0 (since the field does not change) 

Problem 9.23. The coil in 

Fig. 

9-14 has dimensions 0.60 m x 0.80 m, and is turning at frequency 60 Hz 
in a magnetic field of 0.50 T. The coil 

has 

an electrical 

resistance 

of 0.20 Q. 

(a) What is the current in the coil as a function of time? 

(b) What power is consumed in the 

coil 

as a function of time? 

(c) What is the magnetic moment of the coil 

as a 

function of time? 

(d) What torque is 

exerted 

on the coil by the magnetic field as a function of time? 

(e) What power 

must 

be exerted 

from 

the outside to keep the coil turning at a constant angular 
velocity? 

solutioo 

We learned 

in 

Sec. 9.4 that EMF = U S A  sin at = 2n(60 HzXO.50 TX0.60 mX0.80 m) sin [2n(60)tJ = 

90.5 sin 377t. Thus, 

the 

current 

is I = EMF/R = (452 A) sin 377t. The direction of the 

induced 

current 

is, as shown in Sec. 9.4, around the coil in the 

direction 

abcd. Of course, when I is negative, the 
meaning of this negative current is that it flows in the 

opposite 

direction. 

The power consumed is Z2R = (453 sin 377t)’ (0.20 Q) = (4.1 x 104 W)sin2 377t. 

The 

magnetic 

moment, 

M is I A  = (217 A m2) sin 377t. Since the positive current flows around abcd, 
the 

direction 

of the 

moment 

is the 

vector 

direction 

of A pictured in the figure. 

The torque is given by r = M B  sin8 = (217 A . m2)(sin2 377tX0.50 T) = (108 N - m)sin2 377t. The 
direction of the torque is in + z, which means that it 

opposes 

the 

rotation. 

The 

outside 

torque required to keep 

the 

coil rotating at constant speed is 108 sin2 377t in the - z 

direction. The power needed is or = 4.1 x 104 sin2 377t. This is just equal to the power consumed 

in 

the 

circuit. 

Therefore, 

the source 

of the 

power 

dissipated 

in the circuit 

is the 

source 

of the 

external 

torque that turns the coil. This 

could 

be a person 

turning 

a hand 

crank, 

a diesel engine 

turning 

a shaft 
connected to the coil, or a water 

paddle 

turned 

by a waterfall (hydroelectric power). 
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Supplementary Problems 

Problem 9.24. A conducting rod is moving to the left with a velocity of 8.0 m/s, 

in 

a magnetic field of 0.09 T, going 

into the paper, as in 

Fig. 

9-23. The rod has a length of 1.2 m. 

(a) What EMF is induced 

in 

the bar? 

(b) Which end of the bar is at the high potential? 

Ans. (a) 0.86 V; (b) a 

Problem 9.25. A coil abcd is in the y-z plane as in 

Fig. 

9-24. A bar magnet is parallel to the x-axis, to the right of 
the coil. What is the direction of the induced current in the coil if the magnet is moving (a) toward the coil; and (b) 
away from the coil? 

Ans. (a) abcd; (b) adcb 

Problem 9.26. Two coils are parallel to each other as in 

Fig. 

9-25. Coil 1 has a current I, in the direction shown. 
What is the direction of the induced current in coil 2, if (a) it 

moves 

toward coil 1; (b) it 

moves 

away from coil 1; 
and (c) if the current in coil 1 is turned off? 

Ans. (a) Opposite to I, ; (b) same as I, ; (c) same as I, 

Problem 9.27. In Fig. 

9-26, 

a magnetic field of 0.40 T is 

in 

the x direction. A five sided 

object, 

abcdef, with 
dimensions shown in the figure, is placed 

in 

the magnetic field. Consider the positive direction of the area vector 

for 

each side to be from inside the object to the outside. What magnetic flux goes through sides (a) abcd; (b) bcfi (c) 

abfe; and (d) cdef? 

Ans. (U) - 1.6 Wb; (b) 0 ;  (c) 1.6 Wb; (d) 0 

x x  x X " q f  

x x  X 

x x x  X 

x x x x x  

Fig. 9-23 

d 

;j 
Fig. 9-24 
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( 1 )  

Fig. $25 

Y 

t 

2m 

Fig. 9-26 

ProblemP.28. For the object 

in 

Fig. 9-26, the 

magnetic 

field 

of 0.40 T is changed to the + z direction. What is the 

magnetic flux through sides (a) ahcd; (b) bcfi (c) abfe; and (d) edef? 

Ans. (a) 0; jb) 0.8 Wb; (c) 0 

Y 

Fig. P.27 
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Problem 9.29. For the 

object 

in Fig. 9-26, the 

magnetic 

field of 0.40 T is now acting at an angle of 45" to the 
x-axis and parallel to the x-y plane, 

as 

in Fig. 9-27. What is the 

magnetic 

flux through sides (a) abcd; (b) bcf; and (c) 
abfe? 

A ~ s .  ( U )  - 1.13 Wb; (b) 0; (c) 2.26 Wb 

Problem 9.30. For the object in 

Fig. 

9-26, the 

magnetic 

field, of 0.40 T, is now at an angle of 30" to the x-axis and 
parallel to the x-y plane, as shown 

in 

Fig. 9-28. What is the 

magnetic 

flux through sides (a) abcd; (b) bcf; and (c) 
abfe? 

Am. ( U )  - 1.38 Wb; (b) 0; (c) 2.19 Wb 

Problem 931. In Fig. 9-29, a 

magnetic 

field, of 0.40 T, is 

in 

the x-direction. 

The field is increased to 0.45 T. What 
is the 

change 

in 

flux through circuit (a) abcd; (b) bcfi and (c)  abfe? 

Am. (U )  - 0.45 Wb; (6) 0; (c) 0.45 Wb 

Y 

t 

Fig. 9-28 

Y 

3m 

Z 4 m  

Fig. 9-29 
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Y 

7 

Fig. 9-34) 

Problem 932. In Fig. 9-29, a magnetic field, of 0.40 T, is 

in 

the x-direction. 

Side 

abfe is lifted up until it is 

parallel 

to the x-z plane, as in 

Fig. 

9-30. 

What is the change in 

flux 

through the circuit abfe? 

Ans. -3.6 Wb 

Problem 9.33. In Problem 9.28, the change in field occurred during a time of 4.0 x 10-3 s. What average EMF is 
induced, and in which direction does it tend to induce a current flow if abcd were a circuit? 

Ans. 112 V, direction adcb 

Problem 9.34. In Problem 9.28, the change in field occurred during a time of 4.0 x 10-3 s. What average EMF is 

induced, and in which direction does it tend to induce a current flow if now abfe were a circuit? 

Ans. 112 V, in direction aefb 

Problem 935. In Fig. 9-29, a magnetic field, of 0.40 T, is 

in 

the x-direction. It is 

reduced 

to zero in a time of 
4.0 x 10-4 s. What average EMF is induced, and in 

which 

direction will the induced current flow in (a) a circuit 
along abcd; and (b) a circuit along abfe? 

Ans. (a)  9000 V, direction abcd; (b) 9000 V, direction abfe 

Problem 9.36. In Problem 9.28, side abfe is lifted up in a time of 6.0 x 10-2 s. What average EMF is induced 

in 

circuit abfe, and in which direction will the induced current flow? 

Ans. 60 V, direction abfe 

Problem 937. In Fig. 9-26, the field of 0.40 T is changed in a time of 4.0 x 10-3 s. An average EMF of 150 V is 
induced 

in 

a circuit around abcd, with 

induced 

current flowing around the circuit 

in 

the direction abcd. 

(a) What was the change in flux that occurred? 

(b) What was the final magnetic field? 

Ans. (a )  0.6 Wb; (b) 0.25 T 
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Problem 9.38. A triangular coil, shown in Fig. 9-31, has a magnetic field of 0.20 T, into the 

paper. 

The triangle 
collapses to zero area in a time of 4.0 x 10-2 s. What 

average 

EMF is induced in the coil, and in which direction 
does 

the 

induced 

current flow? 

Ans. 21.9 V, direction abc 

Problem 9.39. A toroidal solenoid 

(Fig. 

9-32) has a mean 

radius 

of 2.1 m, and there are 1900 turns wound 

on 

its 

circular 

cross-section, 

of radius 0.020 m. Assume that the magnetic field is the 

same 

everywhere within 

the toroid, 
and equal to its 

value 

at the mean 

radius. 

The windings carry a current of 3.0 A. A small 

section 

of the 

toroid 

has 

a 

secondary 

winding 

of 10 turns, attached to a resistor, R, of 10 R. 

(a) What is the flux through one turn of the 

secondary 

coil? 

(b) If the current in the 

primary 

winding 

is increased to 3.5 A in 0.002 s, what current is induced in the 

secondary 

winding? 

(c) If the toroid is filled with a material of relative 

permeability 

150, what is the 

answer 

to part (b)? 

Ans. (a) 6.82 x lO-’ Wb; (b) 5.68 x lO-’ A; (c) 8.53 x 10-3 A 

Problem 9.40. A circular coil, of radius 1.6 m, carries a current of 4.0 A. At a point 

on 

its axis, 

at a distance of 0.90 
m, there is a small 

coil, 

of radius 0.15 m, with 150 turns of wire, as in Fig. 9-33. 

(a) What is the flux through the 

small 

coil, assuming the magnetic field 

is uniform throughout its area? 

(b) If the coil is turned by 90” in 1.3 x 10-’ s, what EMF is induced in it? 

(c) If the coil 

has 

a resistance of 15 R, what is the 

induced 

current 

in it? 

Ans. (a) 1.10 x 10-’ Wb; (b) 0.85 V ;  (c) 0.057 A 

b 

X X 

a’, 2.5 m 
x x x x x  

Fig. 9-31 

Fig. 9-32 
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Fig. 9-33 

Problem 9.41. A rectangular coil, 

with 

300 turns each of area 6.0 m2, rotates in a magnetic field of 0.90 T. It is 
connected to a circuit 

with 

a resistance of 15,000 Q. 

(a) What rms current flows 

if 

the coil rotates in the magnetic field at a frequency of 60 H z ?  

(b)  What rms current flows if the coil rotates in the magnetic field at a frequency of SO Hz? 

Ans. (a) 29 A; (b )  24 A 

Problem 9.42. Two coils are near each other, with the first 

coil 

connected to a source of current, and the second 

coil connected to a voltmeter. 

When 

the first 

coil 

has a current of 2 A, the flux through the second 

coil 

is 
1.3 x 10-4 Wb. If the current in the first 

coil 

is changed to 2.5 A in a time of 1.1 x 10-3 s, what 

voltage 

will be 

measured on the voltmeter? 

Ans. 0.030 V 



Chapter 10 

Inductance 

10.1 INTRODUCTION 

In the previous chapters, we learned about the creation of a magnetic field by a current in a wire, 
about magnetic flux, and about the EMF produced if the magnetic flux changes. It is clear that when- 
ever a circuit 

carries 

a current, I ,  a magnetic field is produced in space, and specifically in the area 
surrounded by the circuit. Thus there will be a certain amount of magnetic flux through the circuit, due 
to the current in the circuit itself. This flux depends on the magnetic field produced by the current, as 
well as on the 

geometry 

of the 

circuit. 

This magnetic 

field is always proportional to the current in the 
circuit, and therefore the flux through the 

circuit 

is proportional to the current as well. The flux will 
therefore be given by some factor times 

the 

current, where that factor will depend on the 

detailed 

geometry of the circuit. That factor is given the name self inductance, L. 
Similarly, if we have 

two 

circuits in close proximity, 

as in Fig. 10-1, the current in each will produce 
a magnetic field in the area of the other, and therefore a flux through the other circuit. The flux through 
each 

circuit 

is proportional to the current in the other circuit and the proportionality constants are 
called mutual inductances. We will first 

discuss 

self inductance and then address the issue of mutual 
inductance. 

10.2 SELF INDUCTANCE 

As was stated in the introduction, self inductance arises 

from 

the 

flux that a current circuit produces 
within its own area. The self inductance, which depends only on the 

geometry 

of the circuit, connects 
this flux with the current, and is defined as 

L = @ / I ,  or @ = LI (20.2) 

The terminology “self” inductance arises 

from 

the fact that it involves 

only 

the flux through a 
circuit 

caused 

by the current in that circuit itself. In general 

there 

may 

be additional flux through a 
circuit 

which 

originates from currents in other circuits or from permanent magnets. The self inductance 
is usually just called 

inductance, 

unless one wishes to distinguish 

it 

from the 

mutual inductance. The 

Circuit I 

Fig. 10-1 

257 

Circuit 2 
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unit 

for 

inductance is Wb/A, which is given the name henry. Practical circuits 

have 

inductance much 
smaller than one henry, more in the range of millihenries. The main use of the concept of inductance 
will be in circuits 

where 

the 

current changes, thus causing a proportional change in flux. This changing 
flux induces an EMF: 

EMF = -A@/At = - L(AI/At) (1 0.2) 

The fact that this EMF is “induced” by the changing flux is the source of the name inductance. The 
minus 

sign 

is a reminder of Lenz’s law, that the induced current tries to oppose the change in current. 
The procedure for calculating the self inductance is simple in principle, but in 

practice 

it may 

involve 

complicated 

calculations. 

The procedure is as follows. First, we calculate the magnetic field 
produced by a current, I, at every point within the area of the circuit. Then, using 

this 

field, we calculate 
the flux through the area of the 

circuit, 

taking account of the fact that the field is likely to vary 

from 

point to point in the area. Once we have 

calculated 

the flux through the area, we divide 

this 

flux by the 
current, resulting in the self inductance. The application of this procedure is best illustrated by some 
examples. 

Solenoid 

Suppose we have a long solenoid of length d which has n turns per meter, as in Fig. 10-2. We 

want 

to know the self inductance of the 

solenoid. 

Following the procedure outlined above, we first 

calculate 

the magnetic field inside the solenoid. This has previously been calculated to be B = ponl .  This field is 
uniform 

everywhere 

within the solenoid, 

and therefore 

the 

flux passing a single turn of the 

solenoid 

is 

just 0, = BA cos0 = ponIA. In the length, d, of the solenoid, there are nd turns, so the total flux is 
mT = p o  n21Ad through the circuit. The self inductance, L, of the solenoid is therefore 

L = po n2Ad ( 1  0.34 

and the inductance per 

unit 

length 

is 

Lld = p o  n2A (20.3b) 

Problem 10.1. 

(a) For the solenoid 

shown 

in Fig. 10-2, calculate the inductance per 

unit 

length 

if there are 180 
turnslm, and the radius of the solenoid is 0.60 m. 

(b) How does this answer change if the number of turns/m is 360? 

Solution 

(a) Using the formula that we just developed, we get L/d = 4x x l O - ’  (180)2(x)(0.60)2 = 4.6 x 10-2H. 

(b) The inductance varies as the square of the number of turnsflength, n ;  therefore L/d = 4 x (result of 
part a) = 18.4 x 10-’ H .  

,- n tumsim 
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Problem 10.2. For the solenoid 

shown 

in Fig. 10-2, calculate 

the 

inductance per 

unit 

length 

if there are 
180 turns/m, the radius of the 

solenoid 

is 0.60 m and the 

solenoid 

is filled with a material of per- 
meability of 5.2. 

Solution 

The field through the solenoid is now larger, as is the flux, so we expect 

an 

increase in the inductance. 
The formula that we just developed must be modified to account for the different material inside the 
solenoid. 

The 

magnetic 

field is modified by substituting p for po,  and with this one change, we get L/ 

d = pn2A. Thus L/d = 4x x lO-’ (5.2)(180)2(x)(0.60)2 = 2.4 x 10-’ H. 

Often an electric 

circuit 

will contain a solenoid, 

with 

the only significant magnetic 

field being pro- 
duced by the 

solenoid 

itself. In that case a knowledge of the self inductance of the 

solenoid 

is necessary 
in order to fully understand the 

response 

of the 

circuit 

to changes in current. 

Problem 10.3. A circuit contains a solenoid 

with 

an inductance of 3.0 mH, and carries a current of 
2.0 A. 

(a) How much flux passes through the solenoid? 

(b) If the current is increased to 4.0 A in a 2 s interval, what is the 

average 

EMF induced in the 
circuit ? 

Solution 

(a) We know that Q, = LI, so therefore Q, = 3.0 x 10-3(2.0) = 6.0 x 10-3 Wb. 

(b) EMFA,, = -AQ,/At = -(6.0 x 10-3 Wb - 3.0 x 1 O - j  Wb)/2.0 s = - 1.5 x 10-3 V. 

Problem 10.4. The circuit 

in 

the previous problem is 

changing 

its current at a steady rate of AI/ 
At = 0.15 A/s. How much EMF is induced in this 

circuit 

by this changing current? 

Solution 

We know that Q,=  LI, so therefore A@ = LAI, and AQ,/At = LAI/At. Thus, EMF = -A@/ 
At = -LAI/At = -3.0 x 1OP3(O.15) = -4.4 x lO-* V. The minus sign reminds us that, in accordance 
with Lenz’s law, the voltage is a “back EMF”, opposing the change in current. 

Problem 10.5. A circuit is changing 

its 

current at the rate of AI/At = 0.45 A/m, and produces a back 
EMF of 3.0 x 10-’ V. What is the inductance of the circuit? 

Solution 

As in the previous problem, EMF = -A@/At = -LAI/At. Therefore, 3.0 x 10-3 = L(0.45) or 

L = 6.7 x 1 0 - 3 ~ .  

Toroid 

To get the inductance of a toroid (Fig. 10-3), we follow the procedure developed 

previously. 

The 
field of a toroid at its mean radius, r, is B = po NI/2nr (see Chap. 7), where N is the total number of 
turns on the toroid. If the radius of the cross-sectional area is much less than the 

mean 

radius, r, then 
the field is practically 

uniform 

over 

the 

area of each turn. The flux through each turn is BA, and the 
total flux through all the turns of the toroid is N B A  = NA(po N1/2nr) = po N21A/2nr. Dividing by I 
gives 

L = po N2A/2nr ( 1  0 .44  
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Fig. 10-3 

as the inductance of the toroid. If the toroid is filled with material of permeability p, then 

L = pN2A/2xr. (10.4b) 

Problem 10.6. A toroid, of mean radius r = 1.1 m, has a cross-sectional area of 3.0 x 10-3 m2. 

(a) How many turns are needed if one wants to have an inductance of 8.0 mH? 

(b) If the toroid were now stretched out to form a straight solenoid, 

what 

would 

the inductance be? 

Solution 

(a) We 

showed 

that L = p,N2A/2nr .  Therefore 8.0 x 10-3 = 4n x 10-7(N2)(3.0 x 10-3)/2n(l.l), or 
N Z  = 1.47 x 107, or N = 3.8 x 103 turns. 

(6) The solenoid 

would 

have length 

d = 2nr, and the same small 

cross-section 

A. From Eq. (20.4a), 
LsoL = po n2A/d with n = N/d =E- L = p o N 2 A / d  = p0N2A/2nr which is the same as the inductance of 

the toroid so the inductance is the same. 

10.3 MUTUAL INDUCTANCE 

Whenever one has two circuits near each other, it will be possible 

for 

a current which exists in one 
circuit to produce flux through the second 

circuit. 

We define a mutual inductance between the two 
circuits in the same way that we define the self inductance for a single 

circuit. 

If 012 is the flux in circuit 
2 caused by a current I, in circuit 1, Then M12 is the factor that connect 

these 

two 

quantities, i.e. 

(012  = w 2 1 1  ( I  0.5) 

The exact 

value 

of M12 is determined by the 

geometrical 

relationship between 

the 

two circuits, 

just 
like the self inductance is determined by the geometry of the single 

circuit. 

If we manage to deduce the 
value of the mutual inductance, then we can always calculate the flux in 

circuit 

2 produced by the 
current in circuit 1. Furthermore, if the current in circuit 

1 

changes, then 

the flux in circuit 2 changes 
proportionally, which means that A@ = M12A1. Using Faraday’s law, we know that this change in flux 
produces an EMF in circuit 2, given by 

E M F =  -A@/At = -M,2AIl/At ( 1  0.6) 

Therefore, the mutual inductance is 

also 

the link 

between 

the induced EMF and the changing current in 
the other circuit. 

Note that if we were to consider the effect of a current in circuit 2 on circuit 1, we would obtain the 
analogous equations to Eqs. (10.5) and (10.6) by interchanging all subscripts 1 and 2. Then M , ,  would 
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be the mutual inductance and 02, the flux in 

circuit 

1 due to the current in circuit 2. It can be shown 
that 

Ml2 = M21 (10.7) 

so that there is 

only 

one mutual inductance for the two circuits. 

We 

can measure the mutual inductance 
by measuring the induced EMF produced in one circuit by a known rate of change in current in the 
other circuit. 

Problem 10.7. Two circuits are near each other, so that a current change in one circuit produces an 
induced EMF in the other circuit. The current in 

circuit 

1 is 3.0 A, and changes to 3.5 A in a time of 
2.0 x 10-2  s. The average EMF induced in the second circuit during this 

time 

is 3.4 V. What is the 
mutual inductance of the two circuits? 

Solution 

We know that EMF = -M12 AIJAt. Thus, 3.4 = M,,(O.5)/0.0020, or M1, = 0.014 H. 

To calculate the mutual inductance for a particular combination of circuits, the procedure is the 
same as for calculating the self inductance. First we calculate the 

magnetic 

field produced by the current 
I, in circuit 1 at the position of circuit 2. Using this field, we calculate the flux, O I 2 ,  enclosed by circuit 
2. The mutual inductance is then OI2/1,. We will follow this procedure in the examples below to 
calculate the mutual inductance for 

several 

special cases. 

Coil on Solenoid 

Problem 10.8. Consider a long solenoid, 

with 

n, turns/m wound on a radius r , .  This solenoid is part 
of circuit 1. Another coil 

is 

wound around the outside of the solenoid, with a total of N ,  turns. This is 
part of circuit 2. Find a formula for the mutual inductance between these 

circuits. 

The setup is shown in 
Fig. 10-4. 

Solution 

Following the definition 

of 

mutual inductance 

we first calculate the field produced in the region of 
circuit 2 by a current I ,  in circuit 1. This field is uniform and equal to B , ,  = ponlIl. Since the coil 

is 

wrapped tightly on the solenoid it has the same 

radius 

r , .  Each turn of circuit 2 thus 

has 

an 

area nr12, and 

Circuit 2 

Fig. 10-4 
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encloses 

a 

flux of B , ,  nr12. Therefore, the total flux through circuit 

2 

is a,, = N, B12 nr12 = po n , N ,  nr121,. 

Finally, M,, = @,,/I1 = po n,N,nr12. 

Note. The rest of circuit 

1 

would typically involve a 

single loop of wire and other circuit 

elements 

(not 
shown 

in 

the 

figure). The same is true of circuit 2. Some additional flux may 

pass 

through the 
single loop as well as other circuit 

elements 

further away. 

In general 

the 

flux through these is 
much 

smaller 

than that through the multiple 

wound 

elements 

that are close to each other, and 
we ignore 

these 

small 

additional contributions to flux in our considerations. 

Problem 10.9. A long solenoid 

has 

1800 turns/m, 

wound 

on a radius of 0.90 m. A second 

coil 

of 25 
turns is wound on top of this 

solenoid. 

The first 

winding 

carries 

a current of 2.0 A. 

(a) What is the flux through one turn of the second 

winding? 

(b) What is the mutual inductance of the two circuits? 

solution 

(a) The field produced by the current in 

circuit 

1 

is B,, = ponlZl = 4n x 10-7 (1800)(2.0) = 4.52 x 10-3 
T. The flux through one turn of the 

second 

winding 

is B12 nr2 = 4.52 x 10-3(n)(0.90)2 = 0.01 15 Wb. 

(b) The total flux through the 

second 

circuit 

is 25(0.115) = 0.288 Wb. The mutual inductance is 0.288/ 
2 = 0.144 H. Alternatively, we could 

have 

directly 

used the formula for 

the 

mutual inductance of this 
geometry 

from 

Problem 

10.8: M,, = ponlN,ar i  = 4n x 10-7 (1800)(25)(n)(0.90)2 = 0.144 H. 

Problem 10.10. Suppose the coil 

in 

Problem 

10.9 has a current of 3.0 A. How 

much 

flux is produced in 
the solenoid due to this current? 

solution 

We could 

proceed 

as in 

Problem 

10.9 and find 

the 

magnetic 

field everywhere 

in 

the solenoid 

due to the 
current in the coil, but 

this 

would be difficult since, unlike the field due to the current in the solenoid, 

the 

field produced by the 

coil 

varies 

in magnitude and direction at different 

locations. 

Instead, 

we take advan- 
tage of Eq. (20.7): M z l  = M 1 2 .  Then the flux through the 

solenoid 

(circuit 

2) is a,, = M2,Z2 = M , , Z ,  = 

0.1q3.0) = 0.432 Wb. 

Problem 10.11. A long solenoid has 1800 turns/m, wound on a radius of rl  = 0.90 m. A second 

coil 

of 
25 turns is wound on top of this 

solenoid, 

but at a larger radius of r2  = 1.6 m, as in 

Fig. 

10-5. The first 
winding 

carries 

a current of 2.0 A. 

(a) What is the flux through one turn of the second 

winding? 

(b) What is the mutual inductance of the two circuits? 

solution 

(a) The field produced by the current in 

circuit 

1 

is B,, = p o n , l ,  = 4n x lO- '  (1800)(2.0) = 4.52 x lO-' 
T. This field exists 

only 

within the 

first winding. Outside the 

radius 

of the first winding, the field is zero 
(see Sec. 7.4.3). The flux through one turn of the 

second 

winding 

is the s u m  of the fluxes within the 
radius rl and in 

the 

area between rl and r , .  Since the field is zero 

in 

that part of the area outside 

the 

first 

winding, 

this 

part of the area will not contribute anything to the 

sum. 

Therefore, 

the 

flux is just 
equal to the field inside 

the 

first 

winding, multiplied by the area of the 

first 

winding. This 

means 

that 
the flux equals B , ,  nr12 = 4.52 x 10-3(n)(0.90)2 = 0.0115 Wb, which is the same for 

whatever 

radius 

the 

second 

coil 

may have, provided 

it 

is greater than the radius of the first winding. 

(b) The mutual inductance is the ratio of the total flux divided by the 

primary 

current. This 

equals 

M12 = 
25(0.0115)/2.0 = 0.144 H. 
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Circuit 2 

Fig. 10-5 

Problem 10.12. A long 

solenoid 

has 

1800 turns/m, 

wound 

around a material of relative 

permeability 

xM = 150, at a radius of 0.90 m. A second coil of 25 turns is wound on top of this 

solenoid. 

The 

first 
winding 

carries 

a current of 2.0 A. 

(a) What is the flux through 

one 

turn of the 

second 

winding? 

(b) What is the mutual 

inductance 

of the two circuits? 

Solution 

(a)  The field produced by the current in circuit 1 is (recalling that p = xMp0)  B12 = p 1 Z l  = 4n 
x 10-7(150)(1800)(2.0) = 0.68 T. The flux through one turn of the second winding 

is 

B , ,  nr2 = 

0.68(~)(0.90)~ = 1.73 Wb. 

M12 = iV2 /Z1  = 25(1.73)/2.0 = 21.6 H. (b)  

Note. The results of (a)  and (b) are just those of Problem 10.9 multiplied by the relative permeability, 
q,, = 150. 

Coil on Toroid 

Consider the case of a toroid, which has a primary winding of N ,  turns, as in Fig. 10-6. The mean 
radius of the toroid is r, and the 

cross-sectional 

area of the toroid is A.  A secondary winding of N ,  turns 
is wound 

on 

top of the 

primary, 

as shown in the figure. We wish to calculate 

the 

mutual inductance of 
these two 

circuits. 

First we calculate 

the 

field produced by a current I ,  in the 

primary 

coil, in the region of the 
secondary coil. The field of a toroid at its mean radius is given by (see Sec. 10.2.2), B = p o N 1 1 / 2 m .  As 

noted 

earlier, 

if the 

radius 

of the 

cross-sectional 

area, 

A, is small 

compared 

to the 

mean 

radius, 

r, then 
the field will be nearly uniform within the toroid. Then 

the 

flux through 

one 

turn of the 

secondary 

winding will be CD = poN,I ,A /2nr ,  and the total flux through the N ,  turns of the 

secondary 

winding 
will be = po N N ,  I ,  A/2nr. Therefore, the mutual inductance will be M , , = po N ,  N ,  A/2nr. If the 
toroid is filled with material of permeability p, then the mutual inductance will be 

( I  0.8) M , ,  = p N , N ,  A / 2 m  

Problem 10.13. A toroid 

has 

550 turns, 

wound 

on a material of permeability 15, and has a mean 
radius of 2.5 m. A second coil of 25 turns is wound on top of this 

toroid. 

The 

cross-sectional 

area of the 
toroid is 0.56 m2, and 

the 

first winding carries a current of 2.0 A. 
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Primary A 
N ,  turns 

A 
mdary 
turns 

Fig. 10-6 

(a) What is the flux through one turn of the second 

winding? 

(b) What is 

the 

mutual inductance, M , ,  , of the 

two 

circuits? 

(c) Find the flux in the toroid when a current of 7.0 A flows in the 

secondary 

winding. 

Solution 

(a) The field produced by the current in circuit 1 is B , ,  = pN1Z,/2nr = 4n x lO-’ (15)(550)(2.0)/ 
(2nX2.5) = 1.32 x 10-3 T. The flux through one turn of the second winding is B,, A = 1.32 
x 10-3(0.56) = 7.39 x 10-4Wb. 

(b) M,, = N ,  m p ,  = ~ ( 2 . 3 2  x 10-3y2.0 = 9.24 x 10-3 H. 

(c)  In the case we just discussed in this problem, we calculated M12 , which is the ratio of the flux 

in 

circuit 

2 to the current in circuit 1. As in Problem 10.10, to calculate M,,, which is the ratio of the flux 

in 

circuit 1 to the current in circuit 2, would be much more difficult. Instead, we use the fact that M , ,  = 

M,, to get a,, = M2,1, = 9.24 x 10-3(7.0) = 6.47 Wb. 

Coil Near Long Wire 

Suppose the primary circuit 

involves 

a long straight wire, and the secondary circuit 

includes 

a small 
coil of area, A, with N, turns, located at a distance, r, from the wire (see Fig. 10-7). The long wire 
produces a magnetic field at the position of the small 

coil, 

and therefore, a flux through each turn of the 
coil. To calculate the mutual inductance of these two circuits, we again follow the 

prescribed 

procedure. 

Fig. 10-7 
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First we calculate the field produced by the primary circuit (the long wire) at the position of the second- 
ary circuit (the small coil). From Eq. (7.22) we know that this field is B , ,  = (p0/4n) 211/r. If the area of 
the coil is small enough so that all parts of the coil are at nearly the same distance, r, from the wire, 

then 

the field is uniform over this area, and the flux is just O,, = B12A. Then the mutual inductance will be 
M , ,  = M , ,  = N ,  012/11 = (po/4n)21,N,A/r11 = (p0/2n)N2A/r .  

Problem 10.14. A long straight wire carries a current of 3.0 A. A small rectangular coil, of sides 4.0 

cm x 3.0 cm, is located at a distance of 1.3 m from the wire, and contains 246 turns. 

(a) What is the flux through one turn of the rectangle? 

(b) What is the mutual inductance of the two circuits? 

Solution 

(a) The field produced by the current in the long wire is B,, = (po/4n)2I1/r = 10-7(2)(3.0)/(1.3) = 4.62 
x 1 O P 7  T. The flux through one turn of the coil is B , , A  = 4.62 x 10-7(0.040)(0.030) = 5.54 x 10-l' 

W b. 

(b) M , ,  = N2@/Z1 = 246(5.54 x 10-'O)/3.0 = 4.54 x 10-* H. 

Coil at Center of Loop 

Problem 10.15. 

inner coil (1) carries a current I , ,  find an expression for the flux through the large, outer coil (2). 

Suppose we have two concentric single loop circular coils, as in 

Fig. 

10-8. If the small, 

Solution 

We realize that this flux can be calculated from a,, = M , ,  I , ,  if we know M , ,  . It would be very 
difficult to calculate M , ,  directly by the methods we used in the previous 

examples, 

since 

the magnetic field 
of the inner circuit 

varies 

considerably within the area of the outer circuit. 

However, 

since 

we know that 

M , ,  = M , , ,  we can calculate M , ,  instead, 

using 

the techniques we have used in the previous 

examples. 

To 
calculate Mzl  we first note that coil 1 is very small and right at the center of large 

coil 

2. Therefore, to find 

the flux through coil 1 due to a current in coil 2, we need only 

find 

the magnetic field due to a current I ,  in 
coil 2 at the center of the coil. 

We 

have already done this in Chap. 7, and the result 

for 

a single loop is given 
by Eq. ( 7 4 ,  B,, = po Z2/2r2. Since the radius of the small 

coil, 

r , ,  is very small compared with r , ,  the 
radius of the outer coil, the field is nearly 

uniform 

over 

the area of the small 

coil. 

The flux through the 
single loop small 

coil 

is then a,, = B,,nr12 = poZ2nr12/2r2, and M , ,  = p0nrl2/2r, = M , ,  . Finally we get 
a,, = M , ,  I,  = po nr12Z,/2r,. 

L 

Fig. 10-8 
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Problem 10.16. Two 

concentric 

coils, of radii 0.80 m and 0.015 m, each have 250 turns. If the current 
in the 

inner 

coil changes 

at the 

average 

rate of 0.30 A/s, what is 

the 

average 

EMF induced in the outer 
coil? 

Solution 

The EMF in 

the 

outer coil is given by N ,  A(QI2/At = N ,  M,, AI,/At. We have just shown (Problem 
10.15) that for one turn of the inner coil, M,, = ponr12/2r, ; and therefore 

for 

N ,  turns, M,, = 

N , p o  nrl2/2r,. Then our EMF in the outer coil 

is: 

EMF = N 2 ( N , p o  nr12/2r2)AZl/At. 

Using 

the 

values 
given, we get that EMF = [2502(4n x 10-7)n(0.015)2/2(0.80)](0.30) = 1.04 x 10-5 V. 

10.4 ENERGY IN AN INDUCTOR 

Any circuit element that generates an inductance when current flows through it (e.g. a coil, a sole- 
noid, a toroid) is called an inductor. Whenever one 

has 

an inductor which initially 

has 

no 

current, it 
takes energy to make current flow in 

the 

inductor. 

This can be seen from 

the 

fact that if one 

wants 

to 
increase 

the 

current, a back EMF is produced which attempts to stop the increase. In order to increase 
the current, an external 

driving 

voltage must 

be imposed on the 

circuit 

to overcome 

the 

back 

EMF, and 
this 

voltage 

will do work 

against 

the resisting 

EMF. The voltage will continue to do work 

until 

the 

current reaches its final value, at which time 

the 

current is no longer 

changing 

and no back EMF is 
being produced. During the time that the current is building up from 

zero 

to its final value, however, 
work 

must 

be done on 

the 

inductor. 

The work can be calculated if we remember that the power 
delivered to a system is the current at that time, I, times 

the 

voltage, 

V, at that same time. The power, 
P = I V ,  is the rate at which energy is 

being 

delivered to the system, P = AW/At, where AW is the 
energy added to the system during the time interval, At. 

The voltage 

imposed 

on the 

inductor is the 

negative 

of the back EMF. Since the back EMF equals 
-LAI/At, the 

driving 

voltage must equal 

LAI/At, and then P = AW/At = LIAI/At. We must solve this 
equation to get the total work needed, i.e. the total energy added to the system. By using the 

methods 

of 
calculus, one can 

show 

that the result is the 

same 

no 

matter how one 

changes 

the current 

in the 
inductor. It is always true that the 

energy 

stored 

in an inductor by virtue of the current that we have 
induced to flow in the 

inductor 

is 

Energy = (&I2 (1 0.9) 

This 

result 

is similar to the case of storing energy in a capacitor by virtue of the 

charge 

that we have 
placed on the plates of the 

capacitor. 

There the energy 

was Energy = ($)Q2/C. We will make more use 
of these 

relationships 

in the 

future. 

Problem 10.17. A solenoid, with an inductance of 55  mH 

stores 

an energy of 3.0 J. How much 

current 

is flowing in the 

solenoid? 

Solution 

The energy 

equals 

(+)U2 = 3.0 = (4x55 x 10- 3)12, and therefore I’ = 109, and I = 10.4 A. 

Problem 10.18. A superconducting 

magnet 

carries 

a current of 500 A, and has a self inductance of 5.0 
H. While the wires in the 

magnet 

are superconducting, 

the 

current does not decrease, 

since there is zero 
resistance and no energy is being dissipated. If the wires are heated and lose their 

superconductivity, 

the 

current 

rapidly 

becomes reduced to zero. 

How 

much 

energy would be released in the 

process 

of 
reducing the current to zero? Where does 

this 

energy go? 

Solution 

heat (RZ2) since the wires now have 

resistance. 

The energy released equals (4)L.I’ = (4)(5.0)(500)2 = 6.25 x 10’ J. The energy would be dissipated as 
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We have shown that when current flows in an inductor, energy 

is 

stored, and we have interpreted 
this energy as being due to the current flow that we have induced in the inductor. There is another way 
to interpret this stored energy. 

Whenever 

current flows in an inductor, magnetic fields are set up in 
space, 

These 

magnetic 

fields are directly 

related 

to the currents, and the energy 

needed 

to set up the 
currents could equally well have been interpreted as the energy 

needed 

to set up the magnetic fields. 
This is analogous to the 

case 

of a capacitor, where the energy 

needed 

to charge the plates 

could 

equally 

well be interpreted as the energy needed to set up the electric fields due to these 

charges. 

Let 

us calculate 
the energy stored in the inductor in 

terms 

of the magnetic fields rather than in terms of the current. 
To carry out this calculation we will take the case of a long solenoid, as in Fig. 10-2. In the 

case 

of 

a 
solenoid we know that the magnetic field, B, equals p o n I  inside the solenoid, and is zero 

outside. 

We 

also 

calculated 

previously 

that the inductance per 

unit 

length 

of the solenoid is L/d = p o n 2 A .  The 
energy stored in 

length 

d is therefore E = (*)U2 = (*)pon2Ad12. But I = B / p o n ,  and therefore 

the 

energy equals ($)p0n2Ad(B/pon)2 = (3)B2(Ad)/po, where Ad is the 

volume 

of the length d of the 

sole- 

noid. Thus the energy density, or energy 

per 

unit volume, 

is 

Energy 

density 

= ($)B2/po  (2  0.2 0) 

In this 

form, 

the energy stored in 

the 

solenoid 

is considered as being due to the 

magnetic 

fields that 
have been set up in space. At any point in space, 

where 

there 

is a magnetic field, a certain amount of 

energy is stored. This energy equals the 

energy 

density 

times the 

volume 

of space 

being 

considered. 

Although this calculation was 

for 

the special 

case 

of a solenoid, 

the 

result 

is true for any other configu- 
ration as well. We have 

previously 

shown 

that the same general consideration holds for 

electric 

fields as 
well and indeed 

the 

electric field 

energy density 

is 

given by ( 3 ) ~ ~  E 2 .  In other words, 

wherever 

electric 

or 
magnetic fields exist 

in 

space, energy is being 

stored in the form of these fields. The total energy 

density 

at any point in 

space 

is 

the sum of the 

electric 

and the magnetic field energy 

densities. 

Since 

the units for 
energy 

density 

are the same irrespective of their source, this 

offers 

a means of comparing the relative 
magnitudes of electric and magnetic fields. Electric and magnetic fields with the same energy 

density 

can 
be 

considered 

to be comparable to each other. In fact, we will see that in 

electromagnetic 

waves, which 
we will discuss in a later chapter, the electric and the magnetic fields associated 

with 

the 

wave have 
equal energy 

densities. 

These 

considerations lend 

credence 

to the idea that these fields are real 

physical 

quantities that actually 

exist 

in space, and are not merely mathematical contrivances that make it 

easier 

to calculate the forces 

exerted 

by the electric and magnetic interactions. 

Problem 10.19. An electromagnetic wave in free space has an electric field of 100 V/m. If there is also a 
magnetic field associated 

with 

this 

wave, and the 

energy 

density 

of the magnetic field is the same as the 
energy 

density 

of the electric field, what is the magnitude of the 

magnetic 

field? 

Solution 

The energy density for the 

electric 

field is ( $ ) E ,  E2,  and the energy density for the 

magnetic 

field is 
($)B2/po.  Equating these two expressions gives ( i ) B 2 / p o  = ($)go E’, or B2 = po c0 E’ = (41c x 10-7)(8.85 
x 10-12~100)2  = 1.12 x 10-13. n u s ,  B = 3.33 x 10-7 T. 

10.5 TRANSFORMERS 

From what we have 

learned 

in 

the previous 

sections, 

it is 

clear 

that we can induce EMFs in one 
circuit by changing the current in another circuit. This forms the basis of the transformer, which is used 
to transform voltage 

in 

one circuit into a different 

voltage 

in 

a second 

circuit. 

We have already devel- 
oped the ideas 

for 

this 

in 

our discussion of the mutual inductance of two windings on a solenoid in Sec. 
10.3. In that case, 

all 

the magnetic flux established by the first 

winding, 

called 

the primary coil, passes 
through the turns of the other winding, 

called 

the secondary coil. In order to get large fluxes, it is useful 
to place 

ferromagnetic 

material within the solenoid that has a large 

permeability, 

such 

as iron. Using 
such a ferromagnetic material has another advantage. When one magnetizes 

the 

iron inside 

the 

solenoid 
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by applying a current to the primary winding, that iron, being 

ferromagnetic, 

will cause the rest of the 
iron atoms to align 

their 

magnetic 

moments in the same direction, and become 

magnetized 

as well. 
Furthermore, most of the flux will be 

confined 

within 

the core, so that a wire wound around one part of 
the core will experience the same flux as that wound around another part. It is then possible to wind the 
secondary coil on a different part of the iron core, not necessarily on top of the primary winding. It is 
even possible to bend the iron into a different shape, such as the often used shape shown in Fig. 10-9. 
Here, the primary winding, 

with 

NI turns, is wound on one side of the rectangular ring, and the 
secondary winding, 

with 

N 2  turns, is wound on the other side of the ring. This is a typical transformer. 
If one changes 

the 

voltage 

in the primary circuit, the current in the primary circuit will change, and 
therefore the flux. For a perfect transformer, the flux through one turn of the secondary is the same as 
the flux through one turn of the primary. 

Therefore, 

the total EMF developed in each winding will 
depend on the number of turns in that circuit. 

If one has DC in the primary, the current does not change, and there is no change in the flux. Then, 
there will be no EMF induced 

in 

the secondary. A transformer is useful only 

with 

currents that are 
changing, as with AC. In that case, 

it 

is possible to use a transformer to convert a voltage 

applied 

to the 
primary circuit into a larger or smaller 

voltage 

in the secondary circuit. This ability to easily convert 
(transform) voltages in AC, which is much more difficult for DC, is the main reason why AC is the 
primary source of power throughout the world. 

By analyzing the transformer shown in 

Fig. 

10-9 in more detail, one can relate the EMF induced 

in 

the secondary circuit and the applied voltage in the primary, V, to the 

relative 

number of turns in these 
circuits. The result is that: 

(20.2 2 )  

If N ,  > N , ,  then K > V,, and we will have a step-up transformer. This is useful, for instance if one 
wants to use an appliance built 

for 

220 volts 

in 

an area where 

only 

110 volts are available. If N ,  c N , ,  

then K < Vp, and we have a step-down transformer. This is used by power generating companies, 

who 

transmit power along transmission lines at very high 

voltages, 

and transform them down to safe levels 
before 

they 

enter one’s home. 

Problem 10.20. A power company generates 

electricity 

at a voltage of 12,000 V, and steps up this 
voltage to 240,000 V, using a transformer (transformer 1). The electricity 

is 

transmitted at this 

voltage 

to 
a substation, where 

it 

is stepped down to 8000 V (transformer 2) before 

being 

transmitted further. Before 
entering a house, the voltage 

is 

stepped down further to 240 V (transformer 3). What are the turns ratio 
of each of these five transformers? 

- 
> Secondary 
> N2 turns 
B 

____. 

Fig. 10-9 
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Solution 

The turn ratio N J N ,  = V J Q .  Therefore, (a)  for transformer 1, N J N ,  = 240,000/12,000 = 20; (b) for 
transformer 2, N J N ,  = 8000/240,000 = 1/30; and (c) for transformer 3 ,  N$N,  = 240/8000 = 3/100 = 0.030. 

Problems for Review and Mind Stretching 

Problem 10.21. A coaxial cable consists of an inner conductor of radius, R = 0.50 m, separated from a 
hollow outer conductor by a distance, AR = 0.0020 m, as in Fig. 10-10. The inner conductor carries a 
current, I = 5.0 A to the right, and the outer conductor carries the same current to the left. Consider the 
shaded region 

between 

the conductors, of length d.  At any point in this 

region, 

r is between 0.500 m and 
0.502 m. 

(a) What is the magnetic field at a point in the shaded region, at a distance r from the axis? 

(b) What is the flux through the shaded region of length d? 

(c) What is the self inductance of the length d of the coaxial 

cable, 

and the inductance per 

unit 

length 

of the cable? 

Solution 

In Sec. 7.4.2, we calculated the field produced by a coaxial cable in the region 

between 

the conductors. 
We found that B = po1/2nr.  Substituting in this equation gives, B = (471 x 10-7)(5.0)/2nr = 10-6/r T. 
Since r is between 0.500 and 0.502 m, the field hardly 

varies 

in this region 

and we can substitute either 

value to get B = 2.0 x 10-6 T. The direction of the field is out of the paper in the shaded region, 

since 

the field lines 

circle 

about the center conductor in this direction (the right-hand rule). 

In general the flux through the area is BA cos8, where 8 is the angle between B and the normal to the 
area. For our case 8 = O", and A = dAR. Thus, the flux, 0, is 0 = BdAR = (poZ/2nR)ARd = 

(poZ/2n)(AR/R)d = 4.0 x lO-' d. 

The self inductance, L, is 0 / Z  = (po Z/2nR)ARd/Z = (p0/2nR)ARd = 8.0 x 10- d. The inductance per 
unit length is L/d = (p0/2nR)AR = (p0/2n)(AR/R) = 8.0 x 10-" H/m. 

Note. A more accurate calculation, taking account of the variation of the field within the region 

between the inner and outer conductors of a coaxial 

cable 

yields 

the inductance per 

unit 

length 
to be L/d = (p0/2n) In (&/RI); this is valid 

even 

if the difference 

between 

R ,  and R ,  is large. 

Problem 10.22. An inductor with inductance L is connected in series 

with 

a resistor R.  A battery 
completes 

the 

circuit with terminal voltage 

Vo as shown in Fig. 10-11. At a certain instant, labeled t = 0, 
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R L 

I I 

' 1 ' 1  ' I  

the short circuit 

switch 

is closed eliminating the EMF of the battery. Assume the inductor coils 

have 

negligible 

resistance. 

(a) What is the voltage drop from b to c, Vbc, across the resistance 

before 

the switch 

is 

closed, 

and 
what 

is 

the voltage drop from a to 6, Kb ? Explain. 

(b) At the instant the switch is closed 

explain 

qualitatively 

what happens to the current and voltages 
across the two elements. 

Solution 

(a) Since there is a steady current I , ,  there is no change in flux and no EMF in the inductor. Therefore, 
since the inductor has zero 

resistance, 

K b  is zero. Thus the entire terminal voltage of the battery 

appears across the resistance and we have V,, = V, = IR  from Ohm's 

law. 

(b) When the switch is closed there is no longer a voltage 

between 

points U and c. The current through the 
resistance starts to collapse. If not for the inductor this 

collapse, 

by Ohm's law, 

would 

be essentially 

instantaneous. Because of the inductor the collapse in the current is immediately opposed by an 
induced EMF in the inductor. This EMF opposes the change in the current and thus tries to maintain 
the status quo. The collapse 

in 

current is thus slowed down and occurs over a finite 

time 

interval. 

. 

Problem 10.23. Referring to Problem 10.22(6), and assuming AI is the change in current in an infinites- 
imal 

time 

interval At after 

the 

switch is closed 

and I is the current during that time interval: 

(a) Following 

the 

reasoning behind 

Problem 10.22(b) what 

must 

the induced EMF in the inductor be 
in any infinitesimal 

time 

interval after 

the 

switch 

is closed? What is the direction of the EMF and 
what is the voltage K b  ? 

(b)  Find a relationship between L, R,  AI, I and At. 

Solution 

(a) Since 

immediately 

after the switch 

closing 

the voltage drops around the circuit are zero, and the 
voltage across the resistor is still vb, = ZR, where I is the current at any time t after the switch 

closed, 

the induced EMF in the inductor must take the place of the battery to support the current. The 
direction of the EMF is from a to b, since 

it 

opposes the decrease in current in that direction (Lenz's 

law), and has the magnitude EMF,, = - LAI/At for any infinitesimal 

time 

interval At. 
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Note. A i  is negative from a to b so the EMF indeed points 

from 

a to b. The 

voltage 

from 

a to b is 
opposite to the E M F  since the EMF points 

from 

higher 

to lower electrostatic 

voltage, 

as 

for a 
battery. 

In 

other 

words, the 

potential 

at b is 

higher 

than the 

potential 

at a, so <b = 

- EMF,, = LAZ/At (which is negative). 

(b) We must 

have 

K b  + V,, = 0 at every instant. So: 

LAI/At + R I  = 0 (0 

(In 

the 

infinitesimal time interval At immediately 

after 

the 

switch is closed, from t = 0 to t = At, this is 
LAi/At + RI, = 0.) Turning 

the 

equation 

around we have, in general, 

-(L/R)Ai/Z = At (ii) 

This 

equation 

can 

be solved using the 

calculus 

to give an expression for how the 

current 

falls to zero 
over time. While this will be discussed further 

in 

the 

next chapter, we note 

here 

that if L/R is large 

for 

a 
given At, A i / i  will be small and 

the 

current 

will fall slowly; if L/R is small then for the 

same 

time 

interval At, Al/Z will be larger 

and 

the 

current will fall more quickly. L/R is therefore called the 

time 

constant of the circuit. 

Problem 10.24. An inductor, with inductance L, is connected in series with a resistor, R. A battery 
completes the circuit with terminal 

voltage 

Vo, and causes a current I, to flow in 

the 

circuit, 

as in Fig. 
10-11. The 

voltage 

Vo is increased by an amount AVo. The 

current 

does 

not increase 

instantaneously 

since the inductor produces an induced EMF which tries to prevent 

any 

change 

in current. After a time 

At, however, the current has 

increased 

by AI, and the voltage 

across 

the resistor has increased 

by AV, 
where AV = RAI. This 

voltage, 

plus 

the voltage 

across 

the inductor, 

must 

equal 

the voltage AVo. 

(a) What is the 

magnitude 

of the 

average 

EMF induced in the circuit by the 

inductor 

during 

this 

time? 

(b) What is the ratio of this 

average 

induced 

EMF in the inductor to the voltage 

increase 

that appears 
across 

the 

resistor after this time? 

(c) If L = 10 mH and R = 100 SZ,  at what value of At would the 

average 

induced 

EMF across 

the 

inductor equal 

the 

change 

in voltage A V ?  

Solution 

(a) The 

average 

EMF induced by the 

inductor 

equals, 

in magnitude, LAZ/At. 

(b) The change in voltage 

across 

the resistor 

is A V  = RAZ. Thus EMFIAV = L(Ai/At)/(RAZ) = (L/R)/At. 

(c) If EMF = AV, then 

the 

ratio in part (6) is 1, and L/R = At = 1.0 x 10-4 s. Initially, 

all 

the increase 

in 
voltage of the 

battery 

appeared across the inductor, 

since the 

current 

has not 

yet changed, and there is 
therefore 

as 

yet no increase in voltage 

across 

the resistor. 

After a long time has 

elapsed, 

the current 

reaches its final constant value and there is no longer 

any 

change 

in current and therefore no voltage 
across 

the 

inductor. 

After a time equal to the 

time 

constant, the increase 

in voltage 

across 

the resistor 

approximately 

equals 

the voltage across the inductor. 

The time 

constant, 

L/R, is thus a measure of how quickly 

the 

circuit 

approaches its final value. The 
time constant will be discussed further 

in 

the 

next chapter. 

Problem 10.25. A long 

solenoid 

has 

300 turnslm, and is wound on a radius of 0.90 m. A smaller 

coil, 

of radius 0.60 m, is inside 

the 

solenoid, 

with its 

plane 

perpendicular 

to the axis of the 

solenoid, 

as in Fig. 
10-12. 

(a) Determine 

the 

mutual inductance between the 

solenoid 

and the 

coil. 

(b) If the 

coil 

is rotated by 90" in a time interval of 2.0 x 10-3 s while a current of 4.0 A is flowing in 
the 

solenoid, 

what 

is the 

average 

induced 

EMF 

in the coil during that time interval? 
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r 300 turndrn 

Fig. 10-12 

(a) The field established by the long solenoid is B = p o d ,  and is uniform 

within 

the solenoid. The flux 
through the small 

coil 

is 

0 = BA = ponl(nr2) ,  where r is the radius of the small 

coil. 

The mutual 

inductance M , ,  = M , ,  = M = 0 / Z  = ponZ(nr2)/f  = pon(nr2)  = (4n x 10-7)(300)n(0.60)2 = 4.26 is 
x 1 0 - 4 ~ .  

(b) Here the flux drops to zero 

since 

the coil 

becomes 

parallel 

to the flux lines in the solenoid. EMF = 

AO/At = @/At = MZ/At = 4.26 x 10-4(4.0)/2.0 x 10-3 = 0.852 V. 

Problem 10.26. A toroid with a mean radius of 1.2 m and a cross-sectional area of 0.050 m2, carries a 
current of 5.0 A in 750 turns. 

(a) What is the self inductance of this toroid? 

(6) How much 

energy 

is 

stored in the toroid? 

(c )  What is the energy density 

within 

the toroid? 

Solution 

(a) The inductance of a toroid was 

calculated 

in Sec. 10.2.2, and given by [Eq. (l0.4a)I as L = po N2A/2nr. 
Therefore, L = (4n x 10-7)(750)2(0.050)/2n(1.2) = 4.7 x 1 O P 3  H. 

(b)  The energy stored is [Eq. (10.9)J E = (1/2)LZ2 = 0.5(4.7 x 10-3)(5.0)2 = 0.059 J .  

(c) The energy 

density 

is [Eq. (10.10)] (1/2)B2/p0 = (1/2)(p0 NZ/2~r)~/p(, = 0.155 J/m3. This result 

could 

also have been obtained by taking the total energy (0.059 J) and dividing by the volume of the toroid 
(2lcrA = 0.38 m3), or 0.059/0.38 = 0.155. 

lnductor L 

I,, = 6 A 

Switch’ I 

Capacitor C 

Fig. 10-13 
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Problem 10.27. A current of 6.0 A is initially 

flowing 

through an inductor which has an inductance of 
0.15 H in a resistanceless 

circuit, 

as shown in Fig. 

10-13. The switch 

is 

thrown introducing a capacitor 
into the 

circuit. 

The capacitor has a capacitance of 1.22 x 10-3 f, and is initially 

uncharged. 

(a) What is the 

energy 

stored in the inductor initially? 

(b)  As the current flows into the capacitor, the capacitor becomes 

charged 

and the current decrease. 
When the current becomes 

zero, 

the 

capacitor is 

charged 

to its maximum. 

Assuming 

that no energy 
has been lost in this time, what is the 

voltage 

across the capacitor at this instant in time, and how 
much charge is stored on the capacitor? 

Soh tion 

(a) The energy stored in the inductor is (1/2)L12. 

Therefore 

Energy 

= 0.5(0.15)6.02 = 2.7 J. 

(b )  The inductor has no energy at this 

time, 

since 

the current is zero. All the energy is in the capacitor, and 
that energy is (1/2)CV2 = 2.7 J. Thus, V z  = 2.7(2)/1.22 x 10-3 = 4426, V = 66.5 V. The charge stored 

is Q = CV = 1.22 x 10-3 (66.5) = 0.081 C. Alternatively, one could 

have 

used Energy = ($)Q2/C = 2.7 
J, which also yields Q = 0.081 C. 

Supplementary Problems 

Problem 10.28. A coil has an inductance of 25 mH. 

(a) If the current in the coil is 2.0 A, what is the flux in the coil? 

(b) If there is a back EMF of 0.30 V, what is the average rate of change of the current? 

Ans. (a) 0.050 Wb; (h)  12 A/s 

Problem 10.29. A coil starts with a current of 5.0 A, which is changing at the rate of 0.90 A/s. This change 
produces a back E M F  of 0.030 V. 

(a) What is the inductance of the coil? 

(h)  What is the flux in the coil at the start? 

Ans. (a) 33 mH; (b)  0.167 Wb ' 

Problem 10.30. A length of 0.50 m of a long solenoid, 

with 

a cross-sectional area of 0.030 m2, has an inductance of 
0.080 H. How many turns/length are on the solenoid? 

Ans. 2060 turns/m 

Problem 10.31. A toroid has 1500 turns, a mean radius of 1.1 m, a cross-sectional area of 0.95 m2 and carries a 

current of 7.0 A. 

(a) What is the magnetic field at the mean radius? 

(h)  What is the inductance of the toroid? 

(a) 1.91 x 10-3 T; (h )  0.39 H Ans. 

Problem 10.32. A coil, with an inductance of 0.50 H, has a uniform magnetic field in its area of 0.40 m2. It carries 
a current of 0.50 A. What is the 

magnetic 

field in its area? 

Ans. 0.625 T 
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Problem 1033. A circuit, 

consisting 

of 

one coil, has an inductance of 5.0 mH and carries a current of 1.5 A. 

(a )  What is the flux through the coil? 

(b) If one increases the circuit to 15 coils, 

with 

the same current, what 

would 

be the flux through each coil? What 
is the flux through all 

15 

coils? 

(c) What is the inductance of the 15 

coils? 

Ans. (a )  7.5 x 10-3 Wb; (b) 0.113 Wb, 1.69 Wb; (c) 1.13 H 

Problem 10.34. Two coils are near each other, so that when one changes the current in the first at the rate of 
5.0 A/s, there is an EMF of 2.0 mV induced 

in 

the second. 

(a) What is the mutual inductance between the two coils? 

(b) What flux goes through the first 

coil, 

if there is a current of 8.0 A in the second coil? 

Ans. (a )  0.40 mH; (b) 3.2 x 10-3 Wb 

Problem 10.35. A long wire carries a current of 5.0 A. Nearby, there is a loop of area 0.80 m2, as in 

Fig. 

10-7. The 

mutual inductance between the wire and loop is 6.0 x 10- ’ H. 

(a )  What is the flux through the loop? 

(b) What is the average field within the loop? 

(c) What is the average distance between the wire and loop? 

Ans. (a )  3.0 x l O P 4  Wb; (b) 3.75 x 10-4 T; (c) 2.7 x 10-3 m 

Problem 10.36. A long solenoid has 500 turns/m, and produces a magnetic field of 4.0 x 1OP3 T inside the sole- 
noid. The solenoid has a cross-sectional area of 0.020 m2. 

(a )  What current is flowing in the wires? 

(b) What is the flux through the area of one turn of the solenoid? 

(c) If one winds 25 turns on the outside of the solenoid, what is the mutual inductance between the solenoid and 
the turns‘? 

Ans. (a) 6.4 A; (b) 8.0 x 10-’ Wb; (c) 3.1 x 10-4 H 

Problem 10.37. A toroid has 750 turns, and a secondary winding on the toroid has 25 turns. The cross-sectional 
area of the toroid is 0.0090 m2, and the mean radius is 0.72 m. 

(a )  What is the mutual inductance between the toroid and the secondary winding? 

(h) If one fills the toroid with material of magnetic permeability 75, what is the mutual inductance‘? 

( c )  If, in part (b), a current of 5.0 A in the toroid is removed 

in 

1.0 x 10-3 s, what 

average 

voltage 

is induced in the 
secondary? 

Ans. (a)4.69 x 10-’ H;(b) 3.5 x lO-’  H;(c) 17.6 V 

Problem 10.38. A small 

coil, 

of area 5.0 x 10-4 m2, is on the axis of a large 

coil 

at a distance of 2.1 m from the 

center of the large coil, as in Fig. 10-14. The large 

coil 

has a radius of 0.60 m, and contains 2000 turns. The large 
coil 

has 

a current of 10 A. 

(a )  What is the magnetic field at the center of the small coil? 

(6) If the field is uniform 

within 

the small 

coil, 

what 

is 

the flux in the small coil? 

(c) What is the mutual inductance between the coils? 

Ans. (a )  4.34 x 10-4 T; (b) 2.17 x 10-7 Wb; (c) 2.17 x 10-8 H 
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2000 turns 

ri 

\ ' I  2.1 m 

Fig. 10-14 

Problem 10.39. A coil with a single turn has a self inductance of 1.5 mH. A tightly 

wound 

coil of the 

same 

radius, 

but with 16 turns, 

is 

placed flush against 

the 

first coil. A current of 0.60 A flows through 

the 

first coil. 

(a) What is the flux through 

the 

area of the first coil? 

(b) What flux goes through 

the 

area 

of each turn of the 

second 

coil? 

(c) What is the 

mutual 

inductance 

between the 

coils? 

Ans. (a) 9.0 x 10-4 Wb; (b) 9.0 x 10-4 Wb; (c) 0.024 H 

Problem 10.40. A coil has a self inductance of 250 mH. 

How 

much work has to be done to cause a current of 
1.1 A to flow in the 

coil? 

Ans. 0.15 J 

Problem 10.41. A coil has a self inductance of 250 mH. How much work has to be done to increase 

the 

current 

from 1.1 A to 2.2 A? 

Ans. 0.45 J 

Problem 10.42. A coil, with an inductance of 150 mH, is carrying a current of 2.1 A. The 

current 

is reduced to zero 
in a time of 2.0 x 10-2 s. 

(a) How much energy was released to some 

external 

circuit? 

(b) What 

average 

power was applied to that external 

circuit? 

Ans. (a) 0.33 J; (b) 16.5 W 

Problem 10.43. A capacitor, with capacitance 2.0 x 10-3 f, is charged to 110 V. The capacitor is then 

connected 

to an inductor, 

of 

inductance 

0.20 H, and current begins to flow. The energy stored in the 

capacitor 

is transferred to 
the 

inductor. 

(a) How much energy is initially 

stored 

in the capacitor? 

(b) When the 

voltage 

is reduced to 50 V, what 

current 

is flowing in the inductor? 

(c) What is the maximum current in the inductor? 

Am. (a) 12.1 J; (b) 9.8 A; (c) 1 1  A 
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Problem 10.44. A toroid 

has 

an inductance of 0.15 H, and a volume of 0.80 m3. It carries a current of 0.50 A. 

(a) How much energy is stored in the toroid? 

(b) What is the 

average 

energy density in the toroid? 

(c) What is the 

average 

magnetic 

field in the toroid? 

Ans. (a)  1.88 x 10-2 J ;  (b) 2.34 x 10-2 J/m3; (c)  2.43 x 10-4 T 

Problem 10.45. An air 

conditioner 

is built to work at a voltage of 208 V. If a 110 V circuit is to be used to bring 
power to the air conditioner, 

does 

one need a step-up or a step-down 

transformer, 

and what ratio of turns is 
required? 

Ans. step-up with turns ratio of 1.89: 1 

Problem 10.46. A step-down 

transformer 

is used in 

Switzerland, 

where the 

voltage 

is 220 V, to run an American 
appliance 

rated 

at 110 V, 250 W. What is the turns ratio in the 

transformer? 

Ans. 1 : 2  

Problem 10.47. A transformer is built 

from 

a rectangular ring, as 

in 

Fig. 10-9. The iron 

core 

is not perfect (some 
flux lines leave the 

core), 

and the flux in the iron at the 

secondary 

is only 75% of the flux at the 

primary. 

If the turns 
ratio is N , / N ,  = 20, what is the 

voltage 

ratio V,/V,? 

Ans. 15 



Chapter I 1  

Time Varying Electric Circuits 

11.1 INTRODUCTION 

In Chap. 5,  we learned about the 

behavior 

of DC circuits, in which the only elements were batteries 
and resistors. We found that, at all times, the 

voltage 

across 

a resistor was V = RI, where R was the 
resistance of the 

resistor 

and I the 

current 

through the 

resistor. 

Since then we have learned about two 
other circuit elements, a capacitor and an inductor. An inductor 

has 

the property 

that it 

produces 

a 
back EMF if the 

current 

is changing, 

but 

does nothing 

if the 

current 

is steady. A capacitor 

has 

the 

property that there 

is 

no current flow through it, so that, in the 

steady 

state it acts like an open 

circuit. 

However, the 

capacitor 

can 

become charged as a result of current flowing towards 

its 

positive plate, and 
discharged 

as 

a result of charge flowing away from its positive plate. 

Therefore, 

current can flow in a DC 

circuit 

containing 

a capacitor, 

during 

the 

time that the 

capacitor 

is charging or discharging. While an 
inductor will not affect a DC circuit once a current has been established 

it 

will be of great importance 
during the time that the current is being turned on or off. Thus, both capacitors and inductors play an 
important role when the 

current 

is adjusting or transitioning to a steady 

state. 

Such phenomena are 
called the 

transient 

response 

of a circuit, and will be discussed in Sec. 11.2. 

Instead of having a battery 

supply 

a steady 

voltage 

and setting 

up 

a steady 

current 

(after the 

transient 

phenomena 

have stopped) 

we can 

have 

a generator 

supplying 

a constantly 

varying 

sinusoidal 

current (AC). Then we have to consider 

the 

response 

of all three 

circuit 

elements (resistor, capacitor 

and 
inductor) to this 

voltage. 

In 

this case, the inductor will have an important effect at all times, since the 
current is continually 

changing. 

Similarly, the capacitor will be continually 

charging 

and discharging, 
and it will not act 

as 

an open 

circuit 

for AC. In Sec. 11.3, we will discuss how to deal with these 

circuit 

elements when the current is sinusoidally varying. 

11.2 TRANSIENT RESPONSE IN DC CIRCUITS 

A DC circuit generally consists of a battery 

acting 

as the 

energy source, through its EMF, and 
causing a steady 

voltage 

to act 

across 

one or more 

resistors, 

capacitors 

or inductors. In the steady state, 
after all transient 

phenomena 

have stopped, 

there 

is no voltage across an inductor, since the 

current 

is 
no longer 

changing. 

There 

is a steady voltage across a capacitor, 

equal 

to Q/C, but 

there 

is no current 
flowing to or from 

the 

capacitor. The voltage across 

a resistor will equal V = RI. Steady state pheno- 
mena are fairly easy to treat, using these 

principles. 

Since transient 

phenomena 

are more complicated, 

we will treat only the simplest cases, consisting of a battery 

providing 

an EMF to series combinations of 
either R and C, or R and L, or L and C. We will ignore 

internal 

resistance 

in the 

battery 

so the EMF 
will equal 

the 

voltage across the terminals 

of the 

battery. 

Note. EMF of the 

battery 

relates to chemical energy and voltage to electrical energy. It is the 
voltage that is connected with the 

behavior 

of resistance, 

capacitance 

and inductance. Since 
the EMF and the terminal 

voltages 

are the same they are 

sometimes 

used interchangeably 
in 

text 

as a short hand. 

Resistor and Capacitor 

Consider 

the 

circuit 

shown in Fig. 11-1. A battery produces an EMF of V volts, and, after 

closing 

the switch S, the 

associated 

terminal 

voltage 

is applied to the series combination of R and C .  We seek to 
determine 

what 

happens 

during the 

time that the capacitor C is being charged 

through 

the 

resistor 

R. 
We know 

that, 

at the time that the switch is first closed (which we call time t = 0) there is no 

charge 

as 

211 
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IF 
R 

C 

V L- I---- 

Switch S 

( V  = EMF = Battery terminal voltage) 

Fig. 11-1 

yet on the capacitor, so that the voltage across the capacitor is zero. 

Therefore, 

all 

the terminal voltage 
of the battery will appear across the resistor, and there will be an initial current of I = V/R flowing in 
the circuit. This current will bring charge to the capacitor, which will begin to accumulate charge, and 
the voltage across the capacitor will increase as the charge increases. As voltage appears across the 
capacitor, the voltage across the resistor will decrease, 

since 

the 

sum of the voltage across the resistor 

and the capacitor will always equal V. 

V = VR + Vc = I R  + Q/C (1 1 . l )  

As the voltage across R decreases, less and less current will flow in the circuit, and the capacitor will be 
charging more slowly. The charging of the capacitor continues until the current decreases to zero, and 
all the voltage V appears across the capacitor. In this final state, the charge on the capacitor, Q f ,  will 
equal C V ,  and the current (and voltage across the resistor) will be 

zero. 

The situation at t = 0 and at 
t = tf is given by 

V = VRi = I iR,  Qi = 0, Vci = 0, Ii = V/R (1 1.2) 

V = Vcf = Qf/C, I 0, VRf = 0 (1 1.3) 

At other times, the current will be 

decreasing 

from 

its initial 

value 

to its final 

value 

of zero, while the 
charge on the capacitor will be 

increasing 

from 

zero to its final value of C V .  

Problem 11.1. A battery with an EMF of 12 V is connected to a series 

circuit 

consisting 

of a resistor of 
100 R and a capacitor of 0.25 mF. 

(a) What initial current flows in the circuit? 

(b) What final charge is on the capacitor? 

(c )  When the current is 0.080 A, what 

is 

the charge on the capacitor? 

Solution 

(a) Initially, all the voltage is across the resistor, so V = Zi R = 12 V = Zi (100 Cl), or Zi = 0.12 A. 

(b) Finally, all the voltage is across the capacitor, so V = Qf/C -3 12 V = Qf/(2.5 x 10-4 F), or Qf = 3 
x 10-3 c. 

(c) At all times V = V, + V, = 12 V. Here, V, = ZR = (0.080 AHlW a) = 8.0 V, so V, = 12 - 8 = 4 V and 

Q = CV = (2.5 x 10-4 F)(4 V )  = 10-3 C. 

During the time that the capacitor is charging, the current is decreasing to zero, while the charge is 
increasing to Q f .  To calculate how the current and charge depend on time it is 

best 

to use the methods 
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+ t  
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(4 

Time 

(b) 

Fig. 11-2 

of 

calculus. 

We can, however, 

get 

a qualitative understanding of the 

dependence 

by use of the graphs in 
Fig. 11-2. In Fig. 11-2(b), the charge on the capacitor is plotted as a function of the time. The charge 
starts at zero at the beginning, and approaches Q, as time 

increases. 

The rate at which the charge 
increases is the current (I = AQ/At), and this 

gets 

smaller 

and smaller as the current decreases 

with 

time. 

Therefore the slope 

of 

the curve 

gets 

smaller 

and smaller with time as is 

indeed 

the case 

for 

the curve 
drawn in Fig. 11-2(b). Similarly, in Fig. 11-2(u), we sketch the variation of the current with 

time. 

Here, 

the current starts at a value 

of 

Ii = V / R ,  and decreases to zero. 

Again, 

the curve 

in 

the figure 

depicts 

a 
decrease that gets 

slower 

with time, 

approaching zero at large 

times. 

Both 

of these 

curves 

are examples 
of what are called exponential decays. In an exponential decay the dependent variable 

[such 

as the 
current I, plotted on the vertical 

axis 

in Fig. 

ll-2(a)] decreases by a fixed multiplicative factor for 

each 

constant-step increase 

in 

the independent variable [e.g. for our example the time, t, plotted on the 
horizontal axis 

in 

Fig. 

11-2(~)]. As an example consider the case 

where, 

for 

each one second 

increase 

in t 
the current drops to 1/3 of its previous 

value. 

Then at t = 0 s: I = Ii ,  at t = 1, I = I J 3 ,  at t = 2 s, 
I = Ii/9, at t = 3 s, I = 13/27, etc. One way of expressing 

this 

mathematically is by the formula I = 

Ii(3)-"" where t' is a constant = 1 s. Recalling that any number to the zeroth power = 1, we have at 
t = 0, I = Ii 3 - O .  At t = 1 s, I = Ii 3- '  = I J 3 ;  at t = 2 s, I = Ii 3-2 = Ii/9; at t = 3 s, I = Ii 3 - 3  = 13/27 and 
so on. The behavior of exponential functions is 

discussed 

in 

some detail in Chap. 2. As implied 

there, 

any function A" (with A constant) can be 

re-expressed 

in 

terms 

of the natural exponential function. Thus 
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(3)-t't' = e-t'T for some constant z. Thus, in general, any exponentially 

decaying 

current can be 
expressed as : 

I = = Ii exp ( - t / z )  ( I  1.4) 

where z is the appropriate constant in seconds. 

Different 

values 

of z will control how fast I drops with 
each 1 s increase in t. For small z, I will drop rapidly 

because 

( t / z )  builds 

up 

fast. 

For large z, ( t / z )  builds 
up more slowly 

with 

increasing 

t. Indeed, the 

time 

t = z always corresponds to the time it takes for Z to 
drop to l/e of its original value, 

from 

Zi to ZJe = 0.368 Zi (i.e., I = Zi exp (- t / z )  = Ii exp ( -  1) = Zi/e). For 
these 

reasons 

z is 

called 

the time constant of the decay. 

Eq. 

(1 1.4) can be considered 

the 

prototype for 

all 

exponential decay situations we encounter in 

this 

chapter and elsewhere in the book. While the curve 
for the charge on the capacitor, Fig. 11-2(b), involves Q increasing, it really involves the same 

kind 

of 
exponential decay we have been discussing. Here we have: 

Q = Qr - Qf ~ X P  ( - t / z )  = QiCl - ~ X P  (-t/z)l (1 1.5) 

where we have substituted the 

decay 

from 

the constant final 

value, 

Qf,  so that at t = 0, Q = Qf - Qf = 

0. However, as time 

goes 

on, the 

term 

we subtract off decays 

exponentially 

leaving 

the value Qf as the 
final 

value 

for 

very large times. For the case of our simple 

circuit 

with 

the capacitor C and the 

resistor 

R 
(Fig. 11-1), the time constant z, for both I and Q is the same, and can be 

shown 

to be given by 

z = R C  (22.6) 

Problem 11.2. 

(a) Show that z = RC indeed 

has 

units 

of time. 

(6) If Zi = 3 A, and z = 0.80 s, find the 

value 

of I in Eq. (11.4) at t = 0, t = 1 s, and t = 2 s. 

(c) At what value of t  will the current of part (6) equal 1 A ?  

Soh tion 

(a)  RC = (volts/amps)(coulombs/volts) = (coulombs/amps) = coulombs/(coulombs/seconds) = seconds. 

(b)  I = (3.0 A) exp ( 4 0 . 8 0  s); at t = 0, I = (3.0 A) exp (0) = 3.0 A; at r = 1 s, I = (3.0 A) exp ( -  1/ 
0.80) = (3.0 A) exp ( -  1.25) = (3.0 AK0.287) = 0.860 A; at c = 2 s, I = (3.0 A) exp ( -  2/0.80) = (3.0 A) 
exp (-2.5) = (3.0 AK0.0821) = 0.246 A; where, in the last two 

cases 

we use a calculator. Note that 

exp ( -  2.5) = [exp ( -  1.25)12 as expected, so that each 1 s increase corresponds to a multiplicative 
decrease in I by the same factor of (0.287). 

(c)  1.0 A = (3.0 A) exp ( -  t/0.80 s), or: exp ( -  t/0.80 s) = 1/3 -+ exp (t/0.80 s) = 3 -+ t/0.80 s = 

In (3.0) -+ t = 0.80 s In (3.0) = (0.80 sW1.09) = 0.879 s, where we have used the natural logarithm func- 
tion on a 

calculator, 

to obtain In (3). 

Problem 11.3. A battery with an EMF of 12 V is connected to a series 

circuit 

consisting 

of a resistor of 
100 Q and a capacitor of 0.25 mF. 

(a) What is the time constant of the circuit? 

(b) How long does it take for the current to reach 1/2 of its 

original 

value? 

(c) What is the charge on the capacitor after a time of 0.01 s? 

Solution 

(a)  Using Eq. ( I  2.6), z = RC = (100 02x0.25 x 10-3 F) = 0.025 s. 

(b)  Using Eq. (11.4), I = Ii exp [ -(t/t)J, 0.5 Ii = Ii exp [-(t/z)J, 0.5 = exp [ - ( t / z ) J ,  -(t/0.025) = 

In (0.5) = -0.693, t = 0.0173 s. 
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As can be seen 

from 

the calculation, 

this 

time 

is t = 0.6937, and is called the “half-life” 

when 

applied to 
problems of decay. The half-life 7 , 1 2  is the time it takes to reach 1/2 of the final 

value, 

so in general 
7 1 / 2  = 0.6937. 

( c )  Using Eq. (11.5), Q = Qf(l - exp [ - ( t / z ) ] )  = CV(1 - exp [ - - ( t / r ) ] )  = 0.25 x 10-3 (12) 

(1 - exp [ -(0.01/0.025)]) = 9.9 x 10-4 C .  

The above discussion, 

related 

to Fig. 11-2 and Eqs. (1 1.4 and I 1 4 ,  concerned 

the 

case 

in which the 
capacitor was being 

charged 

(starting at time t = 0). The situation is very similar in the 

case 

of the 
discharge of a capacitor. Suppose a capacitor, with 

capacitance, 

C,  has been charged to a voltage, V .  If 
this capacitor is now 

allowed 

to discharge through a resistor, R,  as in Fig. 11-3 when one closes 

the 

switch, the charge decays 

exponentially 

to zero. This is 

illustrated 

in the 

next 

problem. 

Problem 11.4. A capacitor, with capacitance C = 25 pF, is initially 

charged 

to a voltage Vo = 12 V .  

The capacitor is then connected across a resistor R = 1500 0, and the capacitor is 

discharged 

through 
the resistor. 

(a) What is the initial 

charge, 

Qo,  on the capacitor? 

(b)  What is the initial current, I , ,  through the resistor, when the switch is closed? 

(c) What is the current in the resistor when only a of the initial charge remains on the capacitor? 

(d) What is the 

formula 

for 

the current as a function of time? Plot the current as a function of time. 

(e) At what 

time 

does the 

capacitor have 

only 

4 of the initial charge? 

Soh tion 

For a capacitor, Q = C V .  Therefore, 

initially, 

Qo = (25 x 10-6 FK12 V) = 3 x 10-4 C .  

When the circuit is closed the capacitor and resistor 

have 

the same voltage across them, V = (V ,  - Vb). 

Therefore, the initial 

voltage 

across 

the resistor is also 12 V, and the initial current in the resistor is 
I ,  = V / R  = (12 V)/(150052) = 8.0 x 10-3 A. 

If a of the initial charge remains on the capacitor, then the voltage across the capacitor is of the 
initial 

voltage, 

or (12 V)/4 = 3.0 V. The same voltage is across the resistor, so the current in the resistor 

is I = V / R  = (3.0 V)/(l500 52) = 2.0 x 10-3 A. This is, of course just 4 of the initial current. Thus, 
unlike the case of charging, current decreases 

with 

time 

in the same direct proportion to the charge on 
the capacitor: I = V / R  = Q/CR.  

Assuming that discharging obeys an exponential decay with the same time constant as charging, the 
formula for the current would be I = I ,  exp [ - ( t l z ) ] ,  where 7 = RC. In our case, this means that 
z = (1500 R)(25 x 10-6 F) = 0.0375 s. Thus, I = (8 x lOP3 A) exp [-(t/0.0375)]. This is plotted in 

Fig. 

11-4. 

h 

Fig. 11-3 
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(e) If Z = (d)Z,, then (d)Z, = I, exp [ -(t/0.0375)]. 

Thus 

ln(0.25) 

= - t/0.0375, or t = 0.052 s. 

[Equivalently, we would 

have 

Q = Qo exp (- t / z )  and Q = ( 1/4)Qo -+ exp( - t / z )  = 0.25, as before.] 

In summary, we have learned that for an R-C circuit, the currents, voltages and charges all 

move 

from 

initial 

to final 

values 

via an exponential exp [ -(t /z)],  where z = RC. 

Resistor and Inductor 

Consider the circuit 

consisting 

of a resistor, R, in 

series 

with 

an inductor, L, connected to a battery 
producing a voltage, V ,  through the switch, S, as in Fig. 11-5. Before the switch 

is 

closed, 

there is 
obviously no current flowing in the circuit. 

When 

we close the switch the battery will attempt to send 
current through the circuit. Without the inductance the current would instantly rise to I = V,,JR. 
Because of the inductance, however, we have a back EMF opposing the increasing current: 
EMF = -LAl/At; the faster the current tries to rise the greater the back EMF. Thus, when the switch 
is shut and the current tries to surge, it is stopped cold by a back EMF across L that instantly rises to 

Battery 
EMF ‘bat 
1 
-T 

f--- 

AI 
E M F = - L -  

At 

I -  
Fig. 11-5 
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be equal and opposite to the battery EMF. Therefore, the initial current will be zero as will the 

initial 

voltage across the resistor. Note that the electrostatic potential across the inductor, VL, tends to push 
charge through the inductance in 

the 

opposite sense to the EMF, as shown in Fig, 11-8. This is com- 
pletely analogous to the same situation in the battery. At t = 0 we thus have: 

Vbat = VL; VR = 0, or t = 0: Vbat = +LAI/At and I = VJR = 0 (1 1.7) 

From the laws of electrostatics, the sum of the electrostatic potential drops around the 

circuit 

must 
algebraically 

sum 

to zero, as a glance at Fig. 11-8 shows, the magnitudes of the voltages 

obey 

at all 
times : 

where 

(1 1.8) 

(1 1.9) 

Substituting into Eq. (11.8) we get for 

all times 

t :  

l/bal = LAI/At + IR  (11.10) 

Note. In magnitude, Vbat = EMF as long as we can ignore 

the 

internal resistance of the battery. 

From Eqs. (1 1.9) and (1 1.10) we see that AZ/At is 

positive, 

so current is 

building 

up in 

time, 

and will 
continue to rise 

until 

it reaches its final value. This final 

value 

is easy to calculate. 

When 

the current 
stops changing, 

there 

will be no back EMF and the voltage 

across 

the 

inductor will be zero. All the 
battery voltage 

is 

then 

across the resistor, and the current will equal V/R. At times between the 

initial 

and the final state, there will be 

voltage 

across 

both the inductor and the resistor, and both terms on the 
right of Eq. (11.10) will contribute. As can be seen, as the current increases, V ,  gets 

larger 

and VL gets 
smaller so the change in current, AI/At, gets 

smaller. 

This means that it takes longer and longer 

for 

the 

current to increase toward its final value. This 

is 

analogous to the 

rise 

of charge on a capacitor in an R, 

C circuit. as shown in Fig. 11-2(b). It should be no surprise that an exponential decay 

law 

again holds 
for our L, R circuit, 

this 

time with 

a time constant, 

z = L / R  (11.11) 

Thus, (letting Vbat = V )  we can show that VL exponentially 

decays 

according to: 

VL = V exp [ - ( t /z)]  

Then, from 

Eq. 

(1 1.8) : 

(11.12) 

and 

at 

VR = V - VL = 0 = V[l - exp(-t/z)] 

Z = VJR = ( V / R ) [  1 - exp(- t/z)] = (If)[ 1 - exp( - t/z)] 

(11.13) 

(1 1.14) 

t =  00, I =  V / R ,  VR= V ,  V L = O ,  A I / A t = O  (11.15) 

Note that the time constant does indeed 

have 

the dimensions of time. This is most easily 

deduced 

from 

the fact that LAZ/At has the same dimensions as RI (i.e. volts), so L/R has the 

dimension 

of Z/(AI/ 
At) = seconds. Furthermore, the formula is 

physically 

reasonable. 

Thus a larger L means an increased 
time constant, because 

larger 

L means a greater ability to stop the current from 

rising 

quickly. Simi- 

larly, 

larger 

R implies a smaller 

time 

constant, since the final current is smaller and easier to reach. 
Eqs. (I 1 .I 2) and (1 1.1 4) are plotted in 

Figs. 

1 l-qa) and (b). 

Problem 11.5. Consider the L-R circuit 

in 

Fig. 

11-5. Let L = 30 mH, R = 10 Q and V = 12 V. 

(U)  What is the final current? 

(b) What is the initial rate of change of current? 
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Time 

(b)  

Fig. 11-6 

When the current is 0.70 A, what is the voltage across the inductor? 

What is the time constant of the circuit? 

What is the current at t = 0.001 s? 

At what time will the current equal 1.0 A? 
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Solution 

(a) From Eq. (11.23), I ,  = V / R  = (12 V)/(lO a) = 1.2 A. 

(b) From Eq. (11.7), (AZ/AQi = V / L  = (12 V)/(0.03 H) = 400 A/s. 

(c) If I = 0.70 A, V, = IR = (0.70 AN10 f2) = 7.0 V, and V, = 12 V - 7 V = 5 V. 

(d) Using Eq. (1 1 . I  4), z = L/R = (0.03 H)/( 10 Cl) = 0.0030 s. 

(e) We use Eq. (11.12) and substitute t = 0.001 s: 

I = If(l - exp [ -(O.Ool/O.O03)] = (1.2 AN1 - 0.716) = 0.34 A. 

(f) Again using Eq. (12.12), I = Id1 - exp [ -(t/0.003 s)] -, (1.0 A) = (1.2 A)(1 - exp [-(t/0.003 s)]. There- 
fore, 1.0/1.2 = 0.833 = (1 - exp [-(t/O.W3)]), or 0.167 = exp [-(t/O.W3)]. Then In (0.167) = -t/0.003, 
or t = 0.0054 s. 

In a 

similar 

manner, 

if current is 

decreasing 

in 

an L-R circuit, 

it 

will decay 

exponentially 

with a time 
constant L/R. 

Capacitor and Inductor 

When we consider 

a 

circuit consisting 

of a capacitor and inductor alone, 

without 

a resistor, 

we are 
considering 

a 

fundamentally 

different problem than the two 

previous 

cases. The reason 

is 

that a 

resistor 

is an element that absorbs energy, converting 

it 

to heat, whereas the 

power 

supplied 

to a capacitor or 
inductor is used to store energy in these elements. In the case of a 

capacitor, 

the energy is stored in the 
form of potential energy of separated 

charges 

(or alternatively, in the 

form 

of energy stored in 

the 

associated 

electric 

fields), while for an inductor, the energy is stored in the form of moving 

charges 

(currents) (or alternatively 

in 

the form of energy stored in the associated 

magnetic 

fields). The energy is 
not dissipated, and remains in the system. Therefore, in the case of a pure L-C circuit, as depicted in 
Fig. 11-7, the energy due to the charges 

originally 

stored on the 

capacitor, 

and due to the currents do 
not decay 

away, 

rather they are interchanged, with the energy of the separated charges being converted 
to the energy of currents (moving charges), and vice versa. Unless there 

is 

some resistance (as there 

always is in 

real 

situations except in the case of superconductors), 

there 

will be an oscillatory situation, 
with a 

repetitive 

interchange 

of energy between the capacitor and the inductor ad infiniturn. The total 
energy Utotal (we use the symbol U for the energy as we did in thermodynamics to distinguish 

it 

from 

the 

symbol 

E that we use for 

the 

electric 

field) equals 

the 

sum 

of the capacitive and inductive energies, 
Uc + U L  . Thus, 

recalling 

the 

results 

of earlier 

chapters, 

(11.16) 

Consider the circuit in Fig. 11-7. We first close switch S1 while Sz is open, and charge 

the 

capacitor to a 
voltage V ,  and charge Qmax. We then open S,, with the capacitor charged, and close S, to permit the 

Fig. 11-7 
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capacitor to discharge through the inductor. Whenever current is flowing in the 

circuit, 

the capacitor is 

either 

charging 

or discharging. For positive I (clockwise in the figure), positive 

charge 

is leaving the 
positive 

plate 

and entering 

the 

negative plate, 

and for negative I, the positive 

charge 

is entering 

the 

positive 

plate 

and leaving 

the 

negative plate. 

When the current I is zero, 

the 

capacitor is instantaneously 
neither 

charging 

nor discharging, which means that it 

has 

reached 

its maximum 

(positive 

or negative) 
charge. 

This 

is similar to the 

case 

of simple harmonic motion (SHM) where the velocity is zero when the 
mass at the 

end 

of a spring is at its 

maximum 

positive 

or negative 

extension 

from equilibrium. 

Similarly, 
when the 

charge 

on the capacitor is zero, 

the 

voltage across the 

capacitor is zero (V = Q/C), and so is 
the 

voltage 

across the 

inductor. If there is no voltage 

across 

the 

inductor, then 

there 

is no back EMF, 
and AI/At is instantaneously 

zero, 

so the current is not changing and has 

reached 

a maximum 

positive 

or negative value. This 

shows 

clearly 

that when Q is 

zero, 

all the energy is in the inductor and equals 
($)L1iax. Also, when I = 0, all 

the 

energy is in the 

capacitor, 

and equals (,)Q:,JC. We can 

then 

rewrite 

Eq. (22.26) as 

Uto ta l=  ($)Q2/c + (,PI2 = ( f W : a x  = ($)QLJc (2 2 .I 7) 

To proceed 

further, 

we will make use of an analogy to the case of simple harmonic 

motion. 

There 

U,,, = ($)kx2 + (%)rnv2 = (f)vkax = ($)kA’ (with x,,, = A) (1 2.5) 

Here, o = Ax/At,  just like I = AQ/At in our circuit equation. Equations (22.17) and (12.5) are identical 
mathematical 

relationships, 

as can 

be seen if we associate Q with x, I = AQ/At with o = Ax/At,  k with 
1/C and rn with L. We can 

then 

use the 

results 

of simple 

harmonic 

motion 

to write 

equivalent 

equations 
for our circuit. 

This 

means 

that the charge and the 

current 

will undergo 

periodic 

sinusoidal behavior. 

Recalling that (for x = A at t = 0): 

we had that (Ibid. 

Eq. 

(22.5)) 

x = A cos or, U = - oA sin ot = Vmax sin at, we have from our analogy : 

Q = Qmax cos cot, I = -Imax sin cut = -oQmaX sin wt 

Similarly from U = +W(A2 - x2) l i2  we have 

I = +CU(Q;,, - Q’)”’ 

where w = becomes 

o = 1/-, f = 1/(27&E), T = 21@ 

This frequency,f, is called the 

resonance 

frequency of the 

circuit. 

(21.18) 

(22.19) 

(2  1.20) 

Problem 11.6. Use Eq. (22.27) to: (a) show that I,,, = oQ,,, [as used in Eq. (22.28)]; and (b) derive 
Eq. (12.29). 

Solution 

(a) From Eq. (11.17): ( i ) L I i a x  = (i)QLx -+ I,,, = (l/LC)Q,,, = oQ,,, . 

Problem 11.7. What capacitance is needed in an L-C circuit to provide an oscillation of 1.5 MHz if 
the 

inductor 

has an inductance of 0.3 mH? 

Solution 

Using Eq. ( 1 2 . 2 U ) ,  f =  1.5 x 106 Hz = (1/2n)/JLC, LC = ( 2 1 c ) ~ / f - ~  = 1.75 x 10-” s2,  C = 5.85 
x 10-8F  
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Problem 11.8. Consider the L-C circuit in Fig. 11-7. Let L = 30 mH, C = 10 p F  and V = 12 V. The 
capacitor is charged by closing 

switch 

S1, and when 

it 

is fully charged, S1 is opened and S2 is 

closed. 

The initial 

time 

is 

when S2 is closed. 

(a) What is the initial charge on the capacitor, and the initial current through the inductor? 

(b) What is the initial total energy of the circuit? 

(c) What is the maximum current in the circuit? 

(6) What is the frequency of oscillation of the circuit? What is 

the 

period 

of the oscillation? 

(e) What is the current in the circuit when the capacitor has a charge of 8 x 10-5 C? 

(f) Plot the voltage across the capacitor as a function of time. 

Solution 

(a) The initial conditions are that Z = 0, and the capacitor is fully charged. Thus, I i  = 0, Qi = Q,,, = 

CV = (10 x 10-6 FN12 V) = 1.2 x 10-4 C. 

(b) Using Eq. (22.22), U = constant = (f)Qk,,/C = 0.5(1.2 x 10-4 C)2/(10-5 F) = 7.2 x 10-4 J. 

(c) The maximum current occurs when the charge on the capacitor is zero. Using the energy equation, 
($)LIH,, = U = 7.2 x 10-4 J, Imp, = C(7.2 x 10-4 J)(2)/(30 x 10-' H)]'/2 = 0.22 A. 

(d) Using Eq. (22.20), o = l/,/LC = 1/[(30 x 10-3)(10-5)]1/2 = 1.83 x 103 s - l ,  f = o/2n = 291 Hz, 

(e )  The total energy is constant, and equals 7.2 x 10-4 J = (1/2)Q2/C + (1/2)LZ2 = 
0.5(8 x lO-' C)2/(10-5 F) + 0.5(30 x 10-3 H)12, or I2  = 0.0267 A2, I = 0.16 A. 

(f) The voltage across the capacitor is given by Q/C = (Q,,JC) cos ot = (12 A) cos ot. This is plotted in 
Fig. 11-8. 

T = i,y= 3.44 x 1 0 - 3  s. 

Let 

us 

briefly summarize what we have 

learned 

regarding 

transient phenomena in DC circuits con- 
taining various combinations of resistors, capacitors and inductors. Whenever 

resistors 

are present, the 
energy 

is 

dissipated 

by virtue of the absorption of energy by those 

resistors. 

This results 

in 

an exponen- 
tial 

decay 

toward the final 

value 

of all 

the 

relevant 

quantities (charges, currents, voltages, etc.), with a 
time constant whose magnitude is 

determined 

by the values of R, L and C. Whenever inductors and 
capacitors are together in a circuit, there will be an interchange of energy 

between 

these 

circuit 

elements, 

Time (MS) 

Fig. 11-8 
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resulting 

in 

an oscillation at a frequency determined by the 

values 

of the circuit 

elements. 

In the absence 
of a resistor, there will be no loss 

in 

energy, 

and there will be no decay in the 

charges, 

currents or 
voltages, 

merely 

an interchange at this 

frequency. 

In practice, 

there 

is always some resistance, which will 
then 

result 

in a decay of the oscillation. 

1 1 3  STEADY 

STATE 

PHENOMENA IN AC CIRCUITS 

So far in this chapter, we have 

discussed 

the transient phenomena that take place during the 

time 

that a circuit approaches a constant final state. In those 

cases 

the charges, 

currents and voltages 

no 

longer change after 

reaching 

this 

state. Those cases occur when the source of voltage is a battery or 
some other source of steady voltage. 

In 

this section 

we will discuss the phenomena that occur when the 
source of voltage is varying 

sinusoidally, 

as in the circuit of Fig. 11-9. In that case we expect that the 
variables of the circuit will also 

vary 

sinusoidally, after 

there has been sufficient time 

for 

the circuit 

to 
adjust to this state. In other words, although we expect transient phenomena to occur, 

these 

phenomena 
are expected to decay 

exponentially 

with time, and lead to a “steady state” in which all quantities that 
can vary are varying 

sinusoidally. 

This is 

indeed 

what 

we find happens. We will not discuss any details 
of the transient phenomena, and will discuss 

only 

the situation that results 

after 

sufficient time has 
elapsed that we reach the steady state. This time is usually short enough that the effect of the transients 
can be neglected. 

Whenever we have sinusoidal variation, we can express 

the 

variables 

as sine or cosine 

functions 

of 
time. The frequency,f, of the sinusoidal variation can be expressed in terms of an angular frequency, w,  

which simplifies the equations. Of course, 

the 

frequency 

can also be related to the period, T ,  by the 
relationshipf= 1/T. As a matter of convenience we will take the current to vary as i = I ,  cos wt. In 
this equation, as well as in 

future 

equations, we shall use the 

lower 

case 

(i) to represent something that 
varies 

with 

time, 

and the upper 

case 

( I )  to represent a constant. As we have seen previously (for example 
in simple harmonic motion), the factor in front of the cosine 

function, 

I , ,  represents 

the 

maximum value 

of the variable, i. This is 

the 

amplitude of the variation, and it represents the maximum 

value 

the 

variable can have. We shallsee later that there is another value of the 

variable, 

related 

to the magni- 
tude, known as the “RMS” value of the 

variable, 

which is often useful to use. Both 

the 

amplitude and 
the RMS values are constants, with I,,, = I,/,/2, and both are represented by upper 

case 

letters. 

In 
what follows we will examine a series R-L-C circuit 

driven 

by a sinusoidal EMF (e.g. Fig. 11-9). Since 
the current will be 

the 

same everywhere in the 

circuit 

at each instant of time, 

it 

is easiest to start with a 
simple sinusoidal description of the current and then to examine 

the 

related voltages across each 

element and combinations of elements. We will start with 

such 

a current through a simple 

resistor. 

Sinussoidal 
EMF of 
angular 

frequency 

0 = Znf‘ 

R 

L 

C 

Fig. 11-9 
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Resistor 

Consider a circuit such as that in Fig. 11-9 in which an AC voltage source produces a steady state 
current, i = I ,  cos cut through a resistor R.  We 

know, 

by the definition of the 

resistance, 

that the voltage 
across the 

resistor 

at any time is just the current times the resistance, or U = iR. Here U is the 

time 

varying 

voltage 

across the resistor, which will equal U = I , R  cos ot = Vo cos ot, where the maximum 
voltage across the resistor, V,, equals IoR. Because both i and U vary 

identically 

with time 

as cos at, we 
say that the 

two 

are “in phase”. This 

means 

that they both attain their 

maximum 

value 

at the same 
time, and both go through zero at the same 

time. 

We will see that this 

is 

true only 

for 

a resistor, while 
for capacitors and inductors, the voltage will not be in phase with the current. 

If we plot the current and voltage as functions of time, we get the familiar variation such as that 
seen in Fig. 11-10. The fact that they 

vary 

in phase 

with 

each 

other is easily seen on this graph, since the 
voltage at any time 

is 

just a fixed multiple of the current. 
There is another convenient way to represent the time variation of the current and voltage. This is 

especially useful for 

cases 

in which the 

variables 

are not in phase, and we will introduce this method 
here. The method is based on the 

same 

idea 

that was used in simple harmonic motion to describe the 
SHM. There we showed that for a particle 

moving 

around a circle at constant speed, 

the 

projection 

on 
any axis, and specifically on the x axis 

is 

one of SHM. In a similar manner if we picture a vector of 
magnitude I ,  rotating, at constant angular velocity o, about the origin, as in Fig. 11-11, the x- 

component of the vector 

varies 

sinusoidally. 

If the 

vector 

starts on the x axis at time 

zero, 

then 

the angle 
it makes with the x axis will be 8 = ot, and i = I ,  cosot. Thus, the x component of the rotating vector 
will give us the time 

varying 

current, i. Similarly, the vector 

representing 

the voltage 

will be a vector 
always at the same 

angle 

as the current, with a magnitude of RI , .  Being in 

phase 

means that the two 
vectors are at the same 

angle, 

and rotate about the origin 

together. 

When 

used in this way for 

electric 

circuits 

these 

“vectors” are called 

phasors. 

The general 

idea 

is that the projection on the x axis will give 
us the proper time variation, and that we can represent 

these 

currents and voltages as phasors rotating 
about the origin at the same o. 

The result 

for 

a pure resistance 

is: 

i = I ,  cos ot U = V ,  cos ot Vo = I , R  (2 2.21) 

Our next 

project 

is to calculate the energy absorbed by the 

resistor 

when the current is sinusoidal. 
To do this, we recall that the power used at any time is the product of current and voltage. 

Therefore 
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Current and voltage in 

a 

resistor 

Fig. 11-11 

p = iu = I ,  V, cos2 cot. This power is always positive, since cos2 o t  is always positive, even when cos ot 

is negative. Thus power is always being provided to the circuit, and the resistor is, at all times, absorb- 
ing energy. 

Problem 11.9. Calculate 

the 

time-average power absorbed by the resistor. 

Solution 

The average power will be the average of P,, = (I, V, cos2 or),, = I, V, (cos2 at),, over time. 

Since 

the 
cosine function repeats every 2n radians, it is adequate to get the average of cos2 ot over one complete 
cycle. 

To do this we recall that (cos2 or + sin2 or) = 1, and recognize that the averages of cos2 or and 
sin2 or over a complete cycle must be equal to each other. Then, noting that the average of a constant over 
time 

(such 

as ‘‘ 1 ”) is just the constant itself, we have (cos2 ot + sin2 at),, = 1, -+ (cos2 or),, + (sin2 ot),, = 

1, 3 2(c0s2 wt),, = 1, -+ (cos2 at),, = 1/2. The average power is therefore P,, = I, V,($). This can be 

rewrit- 

ten as P,, = (I , / , /2)(  V0/,/2) = I,,, V R M , ,  where, as noted earlier, I,,, = I,/J2 = 0.7071,, and VRM,  = 

V0/,/2 = 0.707V0. 

We have derived a very important result. We have shown that the average power in AC can be 
written in the same form as in DC, provided that we use RMS values for the 

current 

and 

voltage. Note 
that, since Vo = RI , ,  therefore VRMs = RIRMs, and we can therefore write 

(1 1.2) 

In most formulas used in AC circuits, the 

quantity 

we use for the “magnitude” of currents 

and 

voltages 
will be the RMS value, and therefore when we write just I or V we will 

refer 

to the RMS values. The 
term RMS actually 

stands 

for “root-mean-square”, which refers to the method used to 

determine 

its 

value. To get the RMS value of a variable, we have to take 

the 

square 

root 

(root) of the average (mean) 
of the square 

(square) 

of the 

quantity. 

Thus 

to 

get the RMS value of the current ( I ,  cos at), we first 
square 

the 

current 

( I o 2  cos2 ot), then take 

the 

average [ ( I o 2  cos2 at),, = IO2/2) ,  and then take 

the 

square 

root 

( = 10/,/2), which gives I,,,. 

Problem 11.10. An AC source of voltage produces a current of 2.0 A in a resistor of 100 a. 
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(a) What voltage 

is 

across the 

resistor? 

(b) What is the average 

power 

supplied 

to the resistor? 

(c) What is 

the 

peak voltage 

across the resistor? 

(6) What is the 

peak 

power supplied 

to the resistor? 

Solution 

(a) Since the current was 

given 

as 2.0 A, we can assume that this refers to the RMS current. Then the 
voltage (RMS) will equal V = IR = (2.0 AM100 a) = 200 V. 

(b) The average power is given by Eq. (22.38). P,, = Z2R = (2.0 A)2(100 a) = 400 W. Alternatively we 
could have used P,, = ZV = (2.0 AX200 V) = 400 W. 

(c) The peak voltage 

is 

V,, which 

is 

related 

to the RMS voltage by VRM,  = V0/,/2. Thus V, = VRMS(,/2) = 

2w1.414) = 283 V. 

(d) The power is given by iv (or i2 R). This is p = I, V ,  cos2 of = (,/21)(,/2V) cos2 of, whose 

peak 

value 

occurs when cos2 ot = 1. Thus the peak 

value 

of the power is 2ZV = 2(2.0 AK200 V) = 800 W. 

The case of a resistor 

is 

relatively simple because the voltage 

and the current are in phase. The other 
cases we will discuss are ones in which the current and voltage are not in 

phase, 

and we will now 

learn 

how to handle those cases. 

Capacitor 

Again we will assume 

(Fig. 

11-9) that a generator causes a sinusoidal current to flow through the 
capacitor given by i = I ,  cos or. When we refer to current flowing “through” the capacitor, we mean 
that charge is 

flowing 

toward one plate of the capacitor and away 

from 

the 

other plate. 

Note. Current flowing away 

from 

an initially 

positive 

plate includes discharging positive 

charge 
from that plate and then effectively charging that plate with 

negative 

charge; similarly 
current flowing toward an initially 

negative 

plate first neutralizes 

that plate and then 
charges 

it 

positively. 

Since the current is alternating between positive and negative 

values 

at a frequency o f f =  o/2n, the 
capacitor is alternately charging each plate positively and negatively. For purposes of sign convention 
for the voltage across the capacitor we define 

the 

“positive” plate as the one into which 

positive 

charges 

flow when the current is 

positive. 

Thus, if clockwise current is 

chosen 

as positive, the right 

side 

of the 
capacitor in Fig. 11-9 is the “positive” plate. Q is then defined as the 

charge 

on the “positive” plate. The 
voltage 

across 

the capacitor is 

defined 

to be from 

positive 

to negative plate and is always given as 
U = q/C, where U and q are the variable voltage and charge on the capacitor, and C is the constant 
capacitance of the capacitor. Both U and 4 will vary 

sinusoidally 

at the same 

frequency 

as the current. 
By our convention, when the positive charge is 

increasing 

on the 

positive 

plate, 

the current is 

positive. 

When the positive charge on that plate is decreasing, 

the 

current is negative. Just before 

the 

charge 
reaches its positive maximum value, the current is 

positive, 

and just after the maximum the current is 
negative. At the maximum, the current is temporarily zero. 

Since 

the capacitor voltage equals q/C the 
voltage and charge reach 

maximum 

at the same time. Thus, when 

the 

voltage 

reaches 

its peak, 

the 

current is zero. 

This 

is in contrast to the case of the resistor 

where 

the 

current and voltage 

reach 

their 

peak at the 

same 

time. 

In the 

case 

of 

the capacitor, the current and voltage are said to be 90” or n/2 out 
of phase, 

because 

the sine (or cosine) 

changes 

from 

maximum to zero 

in 

90”. Before the voltage 

reaches 

its positive peak, the current is 

positive 

but decreasing to zero. 

Therefore, 

the 

current reached its posi- 
tive 

peak 

before 

the voltage, and we say that the current “leads” the voltage, and the 

voltage 

“lags” 

behind the current. It is 

easy 

to verify that a voltage U = V, sin or has just the properties required. It 
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has 

the 

same 

frequency as the 

current, 

and it 

reaches a positive maximum when ot = 4 2  while the 
current 

already 

reached its 

maximum at ot = 0. We thus know that, for a capacitor, we can 

represent 

the voltage by U = V, sin ot if the 

current 

is given by i = I ,  cos ot. We must still develop 

the 

relation- 

ship between the 

magnitudes 

of the 

current 

and 

voltage. We expect that if the maximum current is 
increased then 

the 

maximum 

charge on the 

capacitor 

will increase proportionally, 

and 

therefore also 

the 

maximum voltage. Consequently, we can write that Vo = X c I o ,  where the 

constant 

of proportionality 
X ,  is called the capacitive reactance of the capacitor. Similarly, VRm = XcIRMS or V = X , I .  This 

capac- 

itive reactance 

depends 

on the capacitance 

and on 

the 

frequency. If X ,  is large, 

it 

means 

that it is easy 

to get a large voltage from a small current. 

This 

occurs 

for small capacitance C (since U = q/C) or for 
small f (since there is a long time to charge 

up 

before the current reverses). We are therefore not 
surprised to find that 

( 1  2.23) 

and Vc = I X C  = 1/(27CfC) ( 1  2 .24) 

uc = Voc sin ot = I , X ,  sin ot (1 1.25) 

Eq. ( 1  2.23) can be rigorously demonstrated using the 

calculus. 

In Fig. 11-12, we draw 

the 

current and 

voltage for the case of a capacitor, 

showing 

that they reach 
their 

peaks 

90” apart, with the 

current 

leading the 

voltage, i.e. reaching its positive peak earlier. While 
the magnitudes of the 

current 

and 

voltage are proportional to each other, it cannot be said that the 
current is proportional to the voltage since their 

peaks 

occur 

at different times. 
If we again 

represent 

the current 

by a rotating 

phasor 

so that its 

projection 

along the 

x axis will be 
I ,  cos ot, then 

the 

voltage can be represented by a phasor 90” behind 

it. 

The projection 

of the voltage 
phasor 

on 

the 

x axis will then be Vo sin ot. This is depicted in Fig. 11-13. 

Note that unless otherwise indicated, currents and uoltages in the 

problems 

will refer to RMS values 
(e.g. “find 

the 

current” means find IRMS, etc.) 

x c  = l /oC = 1/(2nfC), 

Problem 11.11. An AC source of voltage at a frequency of 1500 Hz produces a current of 2.0 A in a 
capacitor of 100 pF. 

(a) What is the 

reactance 

of the capacitor? 
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Fig. 11-13 

(b) What is the voltage 

across 

the capacitor? 

(c) What is the peak 

voltage 

across the 

capacitor? 

Solution 

(a) The reactance of a capacitor is 1/(2nfC) = 1/(2n)(1500 Hz)(lOO x 10-6 C) = 1.06 R. 

(b) The voltage across the capacitor is I/ = ZX, = (2.0 AX1.06 Q) = 2.12 V. 

(c) The peak voltage is VJ2 = 3.00 V. 

We now calculate 

the 

power consumption of the capacitor. Again, we know that at any instant the 
power 

equals 

the current 

times the 

voltage, 

p = iu = (I, cos ot)(Vo sin ot). In contrast to the case of the 
resistor, 

this 

power 

is not always positive. Indeed (see, e.g. Fig. 11-12), in the first and third quadrants 
(0" < ot < 90" and 180" < ot < 270") the power is positive since the 

sine 

and cosine have the same sign. 
However, in the 

second 

and fourth quadrants (90" < ot < 180" and 270" < ot < 360"), the power is 
negative, since the 

sine 

and cosine have opposite signs. The aoerage power is therefore 

zero. 

We can 
understand 

this 

result 

if we remember that it 

takes 

energy to charge a capacitor, 

but 

that energy is 
regained when the capacitor 

discharges. 

Therefore, 

as long 

as 

there 

is no resistor, 

the 

energy is alterna- 
tely stored and released, but none of it is dissipated as heat or otherwise 

transferred 

outside 

the circuit. 
A pure capacitor therefore 

does 

not consume 

any 

energy, 

and the 

average 

power supplied to a capacitor 
is zero. 

This 

result 

actually 

occurs 

whenever the current and voltage are 90" apart. 

Problem 11.12. An AC source of voltage at a frequency of 150 Hz produces a current of 2 A in a 
capacitor of 15 pF. 

(a) Write an expression for the current in the capacitor. 

(b) Write an expression 

for 

the voltage across the capacitor. 

(c) What is the average 

power 

consumed 

by the capacitor? 

(6) What is the 

peak power 

supplied to the capacitor? 

Solution 

(a) The current is given by i = I, cos ot = J2(1 cosot) = (2.83 A) cos (942t), assuming, as usual, that we 
arbitrarily set t = 0 when the current has its positive peak value. 
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(b) The voltage is given by V, sin of = ,/2( V sin of) = , /2(IX,) sin of = [J2(2.0 A)/&] sin of = (200 V) 
sin (942t). 

(c) The average power 

is 

zero. 

(d) The power 

is 

given 

by p = io = (I, cos ot)(Vo sin of) = 21V cos of sin of). To get the peak power, we 
must determine the maximum value of the expression 

[cos 

of sin of]. We cannot say that the 
maximum of cos of sin of is the maximum of the sine 

times 

the maximum of the cosine, 

since 

they 

don't 

reach 

their maxima at the same time. To get the correct answer, we make use of the trigonomet- 
ric relationship sin (2x) = 2 sin (x) cos (x), or sin (x) cos (x) = 0.5 sin (24.  With x = of, we therefore 
have [cos of sin of] = 0.5 sin ( 2 4 ,  and the maximum value of this is 0.5. Therefore, the maximum 
power is PMAX = 2IV(0.5) = 283 W. This shows that, although the average 

power 

is indeed 

zero, 

there 
can be large power inputs during each cycle. 

Capacitor and Resistor in Series (R-C Circuit) 

Let us now consider 

a 

case in 

which an AC generator 

produces 

a sinusoidal 

current through a series 
combination of a 

resistor 

and capacitor (see Fig. 11-14). The current 

is 

given by i = I, cos ot, and is 

the 

same in both circuit 

elements 

since they are in series. From the 

previous 

sections 

we know how to 
calculate the voltage 

across 

each 

of the circuit 

elements, 

and our task in this 

section 

is to learn how to 
combine 

these 

voltages 

and calculate 

the 

voltage across 

the whole circuit. The voltage 

across 

the 

resistor (U at point a minus t, at point b in the figure) will be oR = RI, cos ot, as shown in Eq. (22.36). 
(Recall that tlR and i are in phase.) Similarly 

the 

voltage across the capacitor 

(U at point b minus U at 
point c in the figure) is given by vC = & I ,  sin ot [Eq. (22.42), voltage 

lags 

current by 907. At any 
instant of time, the voltage 

across 

the entire circuit (t, at point a minus t, at point c in the figure) is just 
the 

sum 

of tlR + uc = RI, cos ot + X c I o  sin ot = uT, the total voltage. Adding 

these 

voltages 

by using 
trigonometric 

identities 

is possible, but 

complicated, 

and there is a 

simpler 

method making 

use of the 
phasor diagrams (see Fig. 11-15). If we draw the phasor for 

the 

current 

at the moment 

shown 

if Fig. 
ll-lS(u), then 

the 

phasor for 

the 

voltage across the resistor 

will be along 

the 

same direction, 

while the 
phasor for the voltage 

across 

the capacitor will lag by 90". The true total voltage, uT, is the sum of these 

R C 

w w 

a b 

Fig. 11-14 

I v , R  

Fig. 11-15 
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components. The actual voltages at time t are the projections, or components, of the phasors on the x 

axis. 

Since 

the 

x component of the sum of vectors is just the 

sum 

of the x components of the 

vectors, 

vT 
is just the x component of a new phasor which is the vector sum of the uOR and uoc phasors. This is 
shown in Fig. 11-15(b). From the 

figure 

we can see that (using the Pythagorean theorem) 

VOT = (VoR2 + VOc2)’’’ = Io(R2 + Xc2)1’2 = I. 2 

or in 

terms 

of RMS values 

(1 1 . 2 6 ~ )  

VT = (VR2 + vc2y2 = I(R2 + XC2)1l2 = I2 (1 1.26b) 

where 2 is called the “impedance” of the circuit 

and 

2 = (R2 + XC2)l l2  (1 1.27) 

The angle 4 in the figure is known as the “phase angle”, and represents the angle 

between 

the 

current 
and the 

voltage. 

In the 

case 

we are discussing, the voltage is seen to lag behind the current so we treat 
this 

angle 

as negative, and the 

angle 

is given by tan 4 = - Voc/VoR = - ( Io  Xc)/(Io XR) ,  or 

tan 4 = - X J R .  (1 1.28) 

Problem 11.13. Show that the formula for t an4  gives the correct result 

in 

the limit of a pure resistor 
or a pure capacitor. 

Solution 

For a pure resistor, tan 4 = - X J R  = 0, giving 4 = 0. For a pure capacitor, tan 4 = - X J R  = 

- X J O  = - CO, giving 4 = -90”. This is exactly what we know is the case for those situations. 

Problem 11.14. A circuit 

consists 

of a resistor, R = 300 R, in series 

with 

a capacitor with a reactance of 
400 R. The current is 2.0 A at a frequency of 500 Hz. 

(a) What is the capacitance of the capacitor? 

(b) What is the impedance of the circuit? 

(c) What is 

the 

voltage 

across the resistor? Across the capacitor? Across the series circuit? 

(6) What is the 

phase 

angle 

between the current and the total voltage? 

Solution 

(a) We know that X, = 1/(2nfC). Therefore C = 1/(2nflc) = 1/[(2n)(500)(400)] = 8.0 x lO-’ F. 

(b) The impedance is given by Eq. (12.4#), 2 = ( R 2  + X i ) ’ / *  = (3W2 + 4002)1/2 = 500 R. 

( c )  V, = ZR = (2.0 AX300 a) = 600 V. 

V, = ZX, = (2.0 A)(400 a) = 800 V. 

V, = I2 = (2.0 A)(500 0) = loo0 V. 

Note. V, does not equal the sum of V, + V,, since those voltages are not in phase. This is equiva- 
lent to the statement about vectors that the magnitude of the resultant vector is not equal 
to the sum of the magnitudes of the vectors that are being added. 

(d) We know that tan4 = - X J R  = -400/300 = -1.333. Taking the inverse tangent results in 
4 = -53.1”. 

Problem 11.15. A circuit 

consists 

of a resistor, R = 30 a, in 

series 

with 

a capacitor with a capacitance 
of 40 pF. A generator produces a voltage of 120 V at a frequency of 60 Hz across the 

series 

circuit. 
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(a)  What is the reactance of the capacitor? 

(6) What is the impedance of the circuit? 

(c) What is the current in the circuit? 

(d) What is the phase angle between the current and the total voltage? 

Solution 

(a) We know that X, = 1/(27tfC) = 1/[(27t)(60)(40 x 10-6) = 66.3 Cl. 

(6)  The impedance is given by Eq. (11.44), 2 = (R2  + X,2)1 '2  = (302 + 66.3')'/' = 72.8 R. 

(c )  V, = I 2  = 120 V = I(72.8 0). Therefore, I = 1.65 A. 

(d) We know that t a n 4  = - X J R  = -66.3/30 = -2.21. Taking the inverse tangent results in 
4 = -65.7'. 

We now turn our attention to calculating the 

energy 

absorbed in the 

circuit. 

The simplest way to 

analyze the situation is to note that we have already determined that a capacitor does not absorb any 
energy. 

Therefore, 

the 

total energy absorbed by the 

circuit 

is the 

energy 

absorbed by the 

resistor. 

The 

average 

power 

absorbed in the resistor is equal to P = Z2R, which is therefore 

the 

total average 

power 

supplied to the 

circuit. 

This can be rewritten in terms of the current and total voltage by substituting 
I = VT/Z for one of the currents, to give P = IVT(R/Z). Recalling that I ,  R = V,, and I ,  2 = VOT, and 
using 

Fig. 

11-15(6) to obtain R/Z  = cos 4, we finally get: 

P = I &  cos 4 (11.29) 

The formula for 

power 

is the same as in DC except 

for 

the factor cos 

4, which is appropriately called 

the 

power 

factor. 

Of course, since 

only 

the resistor absorbs energy we can write 

the 

average power directly 

as: 

P = I ~ R  = IVR = v,'/R ( I  1.30) 

We 

could 

have used 

our basic method for 

calculating 

average power, namely calculating the 

average of iu,, and we would 

have 

gotten the 

same 

results 

as Eqs. (1 I .29) and ( I  1.30). 

Problem 11.16. Calculate the 

average 

power 

in a series R-C circuit by averaging 

the 

time varying 
power. 

Solution 

We know that i = I, cos wt. We must 

write 

down a similar equation for uT.  We know that the 
magnitude of the total voltage is V, = I , Z ,  and that it lags the current by 4. Thus, the correct formula for 
uT is U, = V, cos (at + 4), where the lag of the voltage is included by virtue of the fact that 4 is negative. 

Since the power is i~, ,  we get p = i ~ ,  = (I, cos wt)[V, cos (wt + 4)] = I, V, (cos of) cos (at + 4). We must 
now average (cos wt) cos (ot + 4). Using the trigonometric relationship that cos (a + h) = cos (a) 

cos@) - sin (a) sin (b), we write cos (ot + 4) = (cos wt)(cos 4) - (sin 

wt)(sin 

4). If we multiply this by 
cos ot, the first term is cos2 ot cos 4, and we have already shown that cos' wt averages to i, and the 
second term has [cos wt sin ot sin 41, which we have 

shown 

averages 

to zero. 

Therefore, 

[(cos 

cot) cos (of 
+ +)Iav = (3) cos 4. Thus, P = [it+],, = I, V,(i)  cos 4 = IV cos 4, as we derived 

previously 

in a much 
simpler manner. 

Problem 11.17. In Problem 11.15, calculate (a)  the power in the resistor; (b) the power 

factor 

of the 

circuit; and (c )  the power in the entire circuit. 

Solution 

(a) The power 

in 

the resistor is 12R = (1.65 A)2(30 0) = 81.7 W. 
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(b) The power factor is cos4 = R/Z = 30/72.8 = 0.412. 

(c) The power 

in 

the circuit is the power in the resistor = 81.7 W. Alternatively, the total power is I V  
cos 4 = (1.65 

A)(120 

V)(0.412) = 81.6 W, which is the result of part (a) to within rounding errors. 

Problem 11.18. In a series R-C circuit, a generating voltage of 120 V at a frequency of 75 Hz produces 
a current of 1.5 A and uses energy at the rate of 50 W. Calculate (a) the impedance of the circuit; (b) the 
power factor of the circuit; (c)  the resistance of the resistor in the circuit; and (d) the capacitance of the 
capacitor in the circuit. 

Solution 

(a) The impedance is given by 2 = VT/I = (120 V)/(1.5 A) = 80 R. 

(b) The power factor is given by P = ZV, cos 4 = (1.5 AM120 V) cos 4 = 50 W. Thus cos 4 = 0.278. 

(c) In 

deriving 

Eq. (11.29) in the text, we showed that the power factor is also given by cos4 = R/Z. Thus 
0.278 = R/80, or R = 22.2 R. (Or, P = Z2R --* 50 W = (1.5)2R -+ R = 22.2 0.) 

(d) To get C we first must calculate X,. We know that 2 = (R2 + XC2)'l2 = 80 $2. Substituting for R and 
solving, 

yields 

X, = 76.9 R = 1/(27cfC). Then C = 27.6 pF. 

Pure Inductance 

We now turn our attention to the last of the three circuit elements we will discuss, the inductor (see 
Fig. 

11-16). 

Again 

we assume that an AC generator produces a current, i = I ,  cos of in the inductor. As 
we know, the inductor opposes changes in the current that flows through it, 

by 

producing a back E M F  
equal to ( -  LAI/At). Since this current is changing sinusoidally, there will be a corresponding sinusoidal 
back EMF. This back E M F  is balanced by the electrostatic voltage across the inductor, uL,  as shown in 
the figure. This voltage is large when the current is changing quickly, and zero when the current is 
instantaneously not changing. Whenever the current is at a positive maximum, as at time t = 0, the 
current is instantaneously not changing. This can be seen from the following argument. Before reaching 
the maximum the current is increasing, and after reaching the maximum the current is decreasing. At 
the maximum it 

is 

therefore neither increasing nor decreasing, but rather it is instantaneously not 
changing. Therefore, when the current is at  a maximum, the back E M F  and voltage are zero. This is 
also true when the current reaches its maximum negative value. It  is therefore clear that the voltage 
across the inductor is 

90" 

out of phase with the current. In order to determine whether the current leads 
or lags the voltage we will have to examine the situation in more detail. In Fig. 

11-16 

the current is 
positive when flowing from point a to point b through the inductor, and uL is positive for U ,  > v,. 
Suppose we are at a time when the current has reached its positive maximum (e.g. at t = 0), and as 
noted above, vL = 0. A short time later the current is smaller, and therefore AI is 

negative. 

The back 
E M F  opposes this change, and, indeed, for negative AI points from a to b, trying to stop the change 
from occurring. The opposing electrostatic voltage, uL,  will at this instant be negative (see Fig. 11-16). 
Since the voltage across the inductor at  time t = 0 is zero, and a short time later becomes negative, its 
positive peak occurred before t = 0, and it decreased to zero at t = 0 when the current just reached its 

Ai 
At 

UL' Ua- Ub' +L - 

- -  a 
r - 
i a  h 

4 

EMF = -LA!  mow for positive 
At 

Fig. 11-16 
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positive 

peak. 

The voltage therefore leads the 

current by 90". We can 

therefore 

write the 

voltage 

as 
U = Vo cos (at + 90") = - Vo sin wt. The current and voltage are plotted in Fig. 11-17. 

We must still obtain a 

relationship 

between the 

magnitudes 

of the 

current 

and the 

voltage. 

This 

is 
given by 

v, = I X ,  (1 1.31) 

where X, is called the 

inductive reactance. 

As always, this 

relationship 

is true for the amplitudes as well 
as for the RMS values. The inductive reactance is given by: 

x, = OL = 2njL (11.32) 

We can understand this 

relationship 

in the following manner. A large 

reactance 

means 

that, even for a 
small current, the back EMF is large. 

This 

is because LAI/At is large. If L is large, 

one 

would therefore 
expect a 

large 

X ,  . Furthermore, iff is large 

then 

the current changes 

is rapidly 

changing 

making 

AI/At 
large. 

This 

would also 

increase 

the EMF and therefore X,. This is exactly what 

the 

formula 

gives as the 
dependence of X ,  on L and on$ Eq. (1 1.32) can be derived 

rigorously 

using the 

calculus. 

Problem 11.19. In a 

circuit, 

a voltage 

of 120 V at a frequency of 75 Hz produces 

a 

current of 1.5 A in 
an inductor. 

Calculate 

(a) the reactance of the 

circuit; 

and (b) the 

inductance 

of the 

inductor. 

Solution 

(a) Since we aren't given the inductance, we can't use Eq. (22.32). Instead we use Eq. (22.32), and the 
reactance is given by X, = V,/Z = (120 V)/(1.5 A) = 80 R. 

(b) The reactance is given by X, = 2zfl = 80 R = 2a(75 Hz)L. Thus, L = 0.17 H. 

To represent 

the 

voltage 

across the 

inductor we can, 

once 

again, 

make 

use of the phasor diagrams. 
If the phasor for the current at time t is as shown in Fig. 11-18, then 

the 

phasor representing the voltage 
will be, as shown, 90" ahead of the current. As the voltage phasor rotates, 

the 

x component of this 
phasor will give the voltage, uL, across 

the 

inductor. 

The magnitude 

of the 

voltage 

phasor will be 
Vo = I .  X , ,  and the RMS voltage will be V = IX, . 
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Fig. 11-18 

We 

now 

turn our attention to calculating the power 

consumed 

by the inductor. To calculate 

this 

average 

power, 

we again 

have 

to write the instantaneous power, and calculate its average. The instanta- 
neous power is iv = ( I ,  cos of)( - Vo sin ot) = - Vo I ,  cos of sin of. To get the average we must take 
the average of cos ot sin ot, which we have 

previously 

shown 

to be 

zero. 

Thus, the average 

power 

consumed by an inductor is zero, just as the average power 

consumed 

by the capacitor was zero. The 
reason 

is 

that energy 

is 

stored in an inductor by the currents that are established, and this 

energy 

is 

released 

when 

the currents are decreased. No energy is dissipated in the process if the inductor is a pure 
inductor without any resistance. 

Inductor and Resistor in Series (R-L Circuit). 

Our next 

case 

is 

one in which a resistor and inductor are in series, again 

with 

a sinusoidal current of 
i = I .  cos of (see Fig. 11-19). Any real inductor has some amount of resistance, 

unless 

it is made from 
superconducting material. 

Such 

a real inductor can be considered as a pure inductance in series 

with 

a 
resistance, the case we are presently 

discussing. 

Applying 

our previously acquired knowledge, we know 
that the magnitude of the voltage 

across 

the resistor (measured from 

a to b) is VoR = Z,R and this 
voltage is in phase with the current, while the magnitude of the voltage across the inductor (measured 
from b to c)  is VoL = IoXL and this 

voltage 

leads 

the current by 90”. The phasors for 

the 

various 
voltages and for the current are shown in Fig. 11-20. As was the case 

for 

the R-C circuit, we can obtain 
the magnitude of total voltage VoT, (V at point a, minus V at point c )  by adding the phasors as if they 
were 

vectors, 

giving 

the total voltage as shown in the figure. From that figure we deduce that 

(1 2.33) 

VoT = I , Z ,  where 2 = (R2 + XL2)1’2 (1 1.34) 

( 1  1.35) tan 4 = VoL/VOR = X J R  

This is 

identical 

to the 

case 

of the R-C circuit, 

with 

the exception that X ,  replaces X ,  and that the 
formula for the phase angle 

is 

chosen positive 

rather than negative, to insure that 4 is positive, indicat- 
ing the fact that the 

voltage 

across the inductor leads the current. The same relationship expressed in 
Eqs. (I 1-33) and (1 1-34) hold 

for 

RMS values, i.e. by replacing I .  , VoT , VOR and VoL by I ,  VT , VR and VL , 
respectively. 

Fig. 11-19 
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Fig. 11-20 

Problem 11.20. Show that the average 

power 

consumed by an R-L circuit 

is 

given by P = IVT cos 4, 
the same relationship as for an R-C circuit [Eq. (22.29)] except 

with 

the R-L definition of 4. 

Solution 

We already proved that an inductor does not absorb any energy on the average. Thus, all the power 

consumption is due to the resistor, and that equals P = Z2R. Now V, = ZZ, so we can substitute Z = V./Z 
for one of the currents, giving P = ZV, R / Z .  From Fig. 11-20 we see that RI2 = cos 4. 

From problem 11.20 we see that cos 4 is again the power factor for an R-L circuit as it was for an 
R-C circuit. We can generally 

write 

that cos 4 = X / R ,  where X is the reactance of the circuit, and 
equals X ,  for a circuit 

with 

inductance and - X ,  for a circuit 

with 

capacitance. Similarly, 

the imped- 
ance can then be 

written 

as 2 = (R2 + X2)1/2, which will be valid 

for 

both R-C and R-L circuits. 
Additionally, we can write that the total voltage will vary 

with 

time 

as uT = VOT cos (wt + #), both for 
the case of the R-C and the R-L circuits, For the R-C circuit, 4 is negative, and in the R-L circuit, 4 is 
positive. 

We 

will find that we can extend 

these 

ideas 

to the last 

case, 

the R-L-C circuit 

also. 

Problem 11.21. A series R-L circuit has an inductance of 20 mH, and a resistance of 90 S Z .  There is an 
AC voltage of 120 V across the inductor at a frequency of 1500 Hz. Calculate (a) the reactance of the 
inductor; (6) the impedance of the circuit; (c) the current in the circuit; (d) the voltage across the 
resistor; (e) the voltage across the entire circuit; ($) the power factor of the circuit; (9) the average 
power 

consumed 

by the circuit; and (h) the maximum 

voltage 

across 

the inductor. 

Soh tion 

(a) The inductive reactance is X ,  = 2nfi = 2n(1500 Hz)(20 x 10-3 H) = 188 Q. 

(b) The impedance is 2 = (R2 + X,2) ' /2  = (902 + 1882)'/2 = 209 R. 

(c) The current can be deduced from the voltage across the inductor, V, = ZX,. Thus, 120 V = I(188 Q), 
or I = 0.64 A. 

(d) Now that we know the current, we can get the voltages 

everywhere. 

Specifically, 

V, = ZR = (0.64 AM90 
sz) = 57 v. 

(e)  V, = ZZ = (0.64 A)(209 52) = 134 V. 

(f) The power factor cos 4 = R/Z = 90/209 = 0.43. (The phase angle would be 4 = + @So.) 

(9) The average power is ZV, cos q!~ = (0.64 AM134 VX0.43) = 36.9 W. 
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(h) The maximum voltage across the inductor is V,, = ,/2(VL) = 170 V. 

Resistor, Inductor and Capacitor 

in 

Series 

(R-L-C Circuit) 

The last 

case 

that we will discuss 

is 

the circuit in which all three elements are in series 

(see 

Fig. 

11-21). Again, the current is i = I ,  cos o t ,  We can calculate the RMS voltages across each 

individual 

circuit 

element 

by using V = IR  for the resistor, and V = I X  for the inductor and for the capacitor. We 
also know that uR is in phase with the current, that uL leads the current by 90", and that uc lags 

the 

current by 90". We can therefore 

write 

the 

equations giving these 

respective 

voltages 

as functions of time 
as: 

VR = IOR cos 

uL = I ,  XL cos (ot + 90") = - I ,  XL sin ot 

U, = I , X ,  cos (ot - 90") = I , X ,  sin ot 

(21.36) 

To get the total voltage across the entire circuit, uT, we have to add these three voltages together at 
each instant of time. Again this can be done using trigonometric identities, but we will make use of the 
much simpler 

technique 

employing 

phasors that we have used for the other case. 

We 

will come to the 
conclusion that the total voltage can be written as uT = I ,  2 cos (cot + 4), with 2 and 4 determined 

from 

the phasor diagram (see Fig. 11-22). In this 

figure, 

we have 

again 

drawn the current phasor at some time 
t .  The phasor for VR is then in phase with the current, the phasor for VL is 90" ahead of the current, and 
the phasor for Vc lags the current by 90". To get the total voltage we must add all three phasors. We do 
this 

in 

two stages. First we add the 

two 

anti-parallel reactive phasors (VoL and Vac), giving VoL - Voc = 

Io(XL - X,) = I o X ,  where X = X ,  - X , .  This voltage either 

leads 

or lags VoR by go", depending on 
whether the inductive 

reactance 

is greater than or smaller than the 

capacitive 

reactance. 

In the figure we 
have drawn the case 

where 

XL > X , .  To get the total voltage phasor, VoT, we now add the phasor for 

Fig. 11-21 

Fig. 11-22 
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the 

voltage 

across the resistor, VoR to the ( VoL - V,,) phasor. From the diagram we can deduce that: 

VOT = [VOR~ + (VOL - = I , [R2 -k ( X L  - x ~ ) ~ ] ~ / ~  = I , [R2 + x2]1’2 (11.37) 

or VOT = I , Z ,  ( I  1.38) 

where Z = [ R 2  + X 2 ] 1 i 2 ,  and X = X ,  - X ,  (1  1.39) 

( I  1.40) 

Again, we can replace 

the 

magnitudes by RMS values 

in 

Eqs. 

( I  1.37) ( VoT, VoR , VoL , Voc, I , )  + ( VT , VR , 

tan 4 = ( X ,  - X,)/R 

v,, Vc, I )  

Problem 11.22. A series R-L-C circuit has an inductance of 20 mH, a capacitance of 30 p F  and a 
resistance of 40 R. Calculate the impedance and phase 

angle 

for this circuit 

at a frequency of (a) 120 Hz; 
and (b) 500 Hz. 

Solution 

The inductive reactance is X, = 2nft = 274120 HzK20 x 10-3 H) = 15.1 R. The capacitive reactance is 
X, = 1/(2njii) = 1/[(2n)(120 HzW30 x 10-6 F) = 44.2 R. The reactance is X, - X, = -29.1 R. The 
impedance is (40’ + 29.1’)”’ = 49.5 R. To get the phase angle, we use tan # = X/R = -29.1/ 

40 = -0.728, and 4 = - 36”. This means that the total voltage 

lags 

the current by 36”. 

The inductive reactance is X, = 2nft = 2n(500)(20 x 10-3) = 62.8 R. The capacitive reactance is 
X, = 1/(27cfC) = 1/[(2n)(500)(30 x 10-6) = 10.6 R. The reactance is X, - X, = 52.2 R. The impedance 
is (40’ + 52.2’)”’ = 65.8 R. To get the phase angle, we use t an4  = X / R  = 52.2/40 = 1.31, and 
# = 52.5‘. This means that the total voltage 

leads 

the current by 52.5”. 

Problem 11.23. A series R-L-C circuit has an inductance of 20 mH, a capacitance of 30 p F  and a 
resistance of 40 R. A generator, at a frequency of 120 Hz, provides a voltage of 220 V to the 

circuit, 

as in 
Fig. 11-21. 

(a) What current flows in 

the 

circuit? 

(b)  What is the 

voltage 

across: the resistor; the inductor; and the capacitor? 

(c) What power is consumed in the circuit? 

Solution 

(a) The situation is the same as in Problem 11.22 part (a), so X, = 15.1 R, X ,  = 44.2 R, Z = 49.5 R. The 
current is therefore I = V/Z = (220 

V)/(49.5 

a) = 4.44 A. 

(b) The voltage across the resistor is V, = ZR = 4.44(40) = 178 V. 
The voltage across the inductor is I/, = ZX, = 4.4q15.1) = 67.1 V. 
The voltage across the capacitor is V, = ZX, = 4.44(44.2) = 196 V. 

The power consumed can be calculated from P = Z2R, or from P = ZVT cos 4. Using the first formula 
we get P = (4.44 

A)2(40 

R) = 789 W. Using the second formula, and the fact that cos # = R / Z  = 40/ 

49.5, we get P = (4.44 A)(220 V)(40/49.5) = 789 W. 

(c) 

In Problem 11.22 we saw that the reactance ( X ,  - X,)  changes 

from 

negative 

to positive as the 
frequency 

increases. 

This 

means 

that there is some frequency at which the reactance is zero. 

This 

fre- 

quency is known as the “resonance frequency” of the circuit, and corresponds to the 

lowest 

possible 

impedance, 2, for a given R-L-C circuit, and therefore 

the 

largest 

current for a given generator voltage 
V .  This frequency can be shown to be given by: 

27th = 1/JLc  (1 1.41) 
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Problem 11.24. A series R-L-C circuit 

has 

inductance 

L, capacitance C and resistance R, and is con- 
nected to a generator 

producing 

a voltage V at a variable frequency5 

(a) What is the resonance frequency of the 

circuit, 

in terms of R, L and C? 

(b) Show that, as one variesf, the 

current 

reaches 

its maximum 

value 

at the 

resonance 

frequency. 

(c) Calculate the maximum current in the circuit as one variesf, in terms of R, L, C, V and5 

(d) What is the phase 

angle 

of the circuit at the 

resonance 

frequency? 

Solution 

(a) The 

resonance 

frequency has 

been defined as the frequency at which XL = X,. Therefore, 2nf, L = 
1/(2nf, C), or ( ~ z S , ) ~  = 1/LC, or 2nf, = CO, = l/&C, which verifies Eq. (1 1.41). 

(6) The current is given by I = VT/Z. Since V -  = V (the 

RMS 

magnitude) 

is fixed (it doesn’t vary withf), 
the 

maximum 

current occurs when Z is a minimum as one varies$ 

Now, 

2 = (R2  + X2)1/2, and R is 
fixed, so the 

minimum 

Z occurs when X2 is a minimum. Since X 2  is always 

positive, 

even though X 
can be negative, 

the 

minimum 

X is zero, which occurs when the circuit is at its 

resonance 

frequency. 

Thus the current is maximum at this 

frequency. 

(c)  At the 

resonance 

frequency, 

X is zero. The impedance is then 2 = R, and the current is V / R .  Note that 
the 

value 

of the 

resonance 

current does 

not depend 

on 

the 

value of the 

resonance 

frequency. 

(d) The phase 

angle 

is given by tan #J = X / R .  At the resonance 

frequency, 

X = 0, and therefore $I = 0. This 
means that the total voltage is in phase with the current at this 

frequency. 

This 

is shown in Fig. 11-23, 
where we draw the phasor diagram for the 

case 

of resonance. 

Problem 11.25. A series R-L-C circuit 

has 

an inductance L, a capacitance C and a resistance R, and is 
connected to a generator 

producing 

a voltage V at a variable frequencyf, as in Fig. 11-21. In terms of 
V, R, L and C ,  at the resonance frequency, find (a) the voltage across 

the 

resistor; 

(b) the 

voltage 

across 

the inductor; (c) the voltage 

across 

the capacitor; and (d) the power consumed by the circuit. 

Show 

that 
this 

power 

is a maximum as one 

varies 

the frequency. 

Solution 

(a) At the resonance 

frequency 

XL = X,, X = 0, 2 = R, and I = VT/R. The voltage 

across 

the resistor is 
therefore V ,  = IR = V, = V .  

(6) The voltage 

across 

the inductor is VL = IX, = (V/R)(2nfi). Butf= (*n,/LC) [Eq. (ZZAZ) ] ,  and there- 
fore V, = (v/RxJL~C). 

* vOc = I d r ,  

Fig. 11-23 
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(c) The voltage across the capacitor is IX,, which must equal the voltage across the inductor, since 
X, = X,. Calculating V, directly, V, = (V/R)[l/(2nfC)]. Using the fact tha t f=  (in-), we get that 

(d) The power consumed is 12R, or I V  cos 4. At the resonance 

frequency, 

I is at a maximum, as we 
showed earlier. 

Also 

since 

4 is zero, cos 4 = 1, which is the maximum possible 

value 

for 

the power 

factor. Since V and R do not vary with f, both I and cos 4 are at a maximum at the 

resonance 

frequency, and therefore the power is maximum at that frequency. 

v, = (W(J-L/C). 

Problem 11.26. A series R-L-C circuit 

has 

an inductance L = 20 mH, a capacitance C = 30 pF and a 
resistance R = 40 R, and is connected to a generator producing a voltage V = 120 V at a variable 
frequency f. 

(a) What is the 

resonance 

frequency 

of the circuit? 

(b)  At the resonance 

frequency, 

what 

is the 

voltage 

across the inductor? 

(c) At the resonance 

frequency, 

what is the voltage 

across the capacitor? 

( d )  At the resonance 

frequency 

of the circuit, 

what 

is the 

power 

consumed 

by the circuit? 

(e) At what 

frequency 

above the 

resonance 

frequency 

is the current equal to half its 

value 

at the 
resonance 

frequency? 

Solution 

From Eq. (22.42), the resonance 

frequency 

is given by 2nf= l / v / L c  = 1/[(20 x 10--3 
HX30 x 10-6 C)]'i2 = 1.29 x 103, andf=  205 Hz. 

The volta e across the inductor is V, = IX, = (VT/R)(2nfL), From Problem 11.25(h) this 

leads 

to V, = 

(V/R)(&) = (120 

V)/(40 

QK20 x 10-3 H/30 x 10-6 C)1'2 = 77.5 V. 

The voltage across the capacitor is IX,, which 

must 

equal the voltage across the inductor, since 
X ,  = X, . Therefore, V, = 77.5 V. 

The power consumed is P = 12R, or, since 4 = 0, P = I V  cos 4 = I V .  Recalling that at resonance 

V = I R  [Problem 11.25(a)], we get P = V 2 / R  = (120 V)'/(40 0) = 360 W. 

The current equals V / Z .  At resonance, the current is I, = V/R. If I = (i)Z,, then V / Z  = (i)V/R, or 
2 = 2R. Thus, ( R 2  + X2)'12 = 2R -+ R 2  + X 2  = 4R2 or X 2  = 3R2, and X = X, - X, = +R J 3  = 

2nfL - 4nfC. Substituting numbers, we get: 4043 = 271f(20 x 10 - 3  H) - 1/[(2nJ)(30 x 10-6 F)] 

= 69.3 = 0.126f- 5.31 x 103/1: This is a quadratic equation in f, after 

multiplying 

by f and 
rearranging, 

0.126f2 - 69.3f- 5.31 x 103 = 0. 

We use the formula for 

solving 

a quadratic equation x = [ - h  & J ( b 2  - 4nc)]/2u, to get, 
f =  { +69.3 +_ ,/[69.32 + 4(0.126)(5.31 x 103)]}/2(0.126) = (69.3 + 86.5)/0.252 = 618 Hz, 

since 

only 

the 

positive 

frequency 

makes sense. 

Problems for Review and Mind Stretching 

Problem 11.27. A battery has a voltage of 15 V, and is connected 

across 

a series R-C circuit with an 
initially uncharged capacitor. The initial current in the 

circuit 

is observed to be 7.5 x 1 O W 2  A, and the 
time constant of the 

circuit 

is 2 x 10-3 s. 

(a) What is the 

resistance 

of the resistor? 
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(b)  What is the capacitance of the capacitor? 

(c) What is the 

final 

charge that accumulates on the capacitor? 

(d) After a time of 1 O P 3  s, what is the current flowing, and what is the charge on the capacitor? 

Solution 

(a) Initially, 

all 

the voltage is across the resistor, and V, = Z,R = 15 V = (7.5 x 10-' A)R. Thus R = 

200 n. 

(h) The time constant equals RC = 2 x 10-3 s = (200 n)C. Therefore, C = 10-' F. 

(c) Finally, 

all 

the voltage 

is across the capacitor, and equals Qr/C = 15 V. Thus Qr = 1.5 x 10-4 C. 

(d)  At t = 10-3 s, Z = Zi e-('/') = 7.5 x 1OP2 e-('I2) = 4.55 x 10-2 A. The charge on the capacitor is Q = 

Qf(l  - e-("')) = 1.5 x 10-4 (1 - e-(112)) = 5.9 x IO- '  C. 

Problem 11.28. A battery with a voltage of 15 V is connected across a series L-R circuit. The final 
current flowing in the 

circuit 

is 2.5 A, and the 

time 

constant of the 

circuit 

is 

2.0 x 10-3 s. 

(a) What is 

the 

resistance 

of the resistor? 

(b) What is the inductance of the inductor? 

(c) What is the 

voltage 

across the 

inductor when the current is 1.5 A? 

(d) At what 

time 

is the current equal to 1.5 A ?  

Solution 

(a) Finally, 

all 

the voltage is across the resistor, and V, = I ,  R = 15 V = 2.5R. Thus R = 6.0 Q. 

(h) The time constant equals L/R = 2.0 x 10-3 s = L/6. Therefore, L = 1.2 x 10-' H. 

(c) When the current is 1.5 A, the voltage across the resistor is (1.5 AX6.0 n) = 9.0 V. Thus, the voltage 
across the inductor is 15 - 9.0 = 6.0 V. 

(d) When the current equals 1.5 A, Z = Z,(1 - exp [ - ( t / z ) ] )  = 2.5(1 - exp [ - ( t / z ) ] )  = 1.5. Then 
1.5/2.5 = 0.60 = (1 - exp [ - ( t l z ) ] ) ,  and 0.40 = exp [ - ( t / t ) ] ,  In 0.40 = - t / 7 ,  t = - 7  In 0.40 = 

1.83 x 1 0 - 3  S .  

Problem 11.29. An L-C circuit has an inductance of 25 m H  and a capacitance of 2.0 pF. The capac- 
itance is initially 

charged, 

and stores energy 

of 

1.25 x 10-4 J. 

(a) What is resonance 

frequency 

and the 

period 

of this circuit? 

(b) What is the 

initial 

charge on the capacitor? 

(c) What is the 

maximum 

current in the circuit? 

Solution 

(a) We know that the frequency 

is 

w/2n, where 

o = 1/- = [1/(25 x 10-3 HN2.0 x 10e6 
F)]''' = 4.47 x 103. Therefore,f= 4.47 x 103/2n = 712 Hz, and T = l / f= 1.40 x 10-3 s. 

(b)  The energy stored in the capacitor is (i)QiZ/C = 1.25 x 10-4 J. Thus Qi = [2(1.25 x 10-4 J) 
(2.0 x 10-6 F)]"2 = 2.24 x lops C. 

(c) The maximum current occurs when 

all 

the energy 

is 

in 

the inductor. Then, U = ( i )LZiax = 1.25 
x l O V 4  J = 0.5(25 x 10-3 H)ZiBX, or I,,, = 0.10 A.  

Problem 11.30. An R-C circuit has a capacitance of 20 pF and a resistance of 100 R. An AC generator 
supplies a voltage of 180 V to the circuit at a frequency,& The phase angle between the current and the 
voltage is measured to be 45". 
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(a)  What is the frequency of the voltage 

being 

supplied 

to the circuit? 

(b) What is the current in the circuit? 

(c) What is 

the 

voltage 

across the 

resistor 

in 

the circuit? Across the capacitor? 

(d) What power is being 

supplied 

to the circuit? 

Solution 

(a) The phase angle is given by t a n 4  = X, /R  = tan45” = 1. Thus X, = R = 100 R = l/oC. Thus, U = 

1/[(100)(20 x 10-6 F)] = 500, o r f =  79.6 Hz, 

(b) The current is V / Z ,  and Z = (Xc2  + R 2 ) 1 / 2  = 10042 R (since X, = R = 100 R). Thus, I = (180 V)/(141 
R) = 1.27 A. 

(c) We know that V ,  = ZR = (1.27 AN100 R) = 127 V, and V, = I X ,  = 1.27(100) = 127 V. 

(d) The power is Z2R = (1.27 A)’(100 R) = 162 J. Alternatively, P = IV, cos 4 = (1.27 AM180 V) 
COS 45” = 162 J. 

Problem 11.31. An R-L-C circuit is supplied by an AC generator with a voltage of 85 V at a frequency 
of 1500 Hz. The resistor has a resistance of 120 Q, the capacitor has a reactance of 90 R at this 
frequency, and the inductor has a reactance of 140 R at this 

frequency. 

(a)  What is the impedance of the 

circuit 

at this 

frequency? 

(6) What is the current in the circuit? 

(c) At what other frequency does one have the same current? 

Solution 

(a) The impedance is Z = ( R 2  + X 2 ) ’ / 2 ,  and X = X ,  - X ,  = 140-90 = 50 R. Thus, Z =  
(120’ + 502)”2 = 130 0. 

(b) The current is V / Z  = (85 V)/(130 R) = 0.65 A. 

(c) To get the same current at a different 

frequency, 

we require that the impedance 

have 

the 

same value as 
at the original frequency. 

Since 

the only quantity in Z that varies withfis X 2 ,  we can get the same Z if, 
at the new frequency, X + - X .  This means that instead of X = X ,  - X ,  = 50 R, we have X, 

- X ,  = - 50 R so now X ,  will exceed X ,  by 50 R. Denoting the new angular frequency as U’, we have 
that [l/(m’C) - 0’L) = 50. To solve 

for 

U’ we need L and C. Now L = X,/w = 140/2~(1500) = 

14.9 mH, and C = l/oX, = 1.179 pF. Therefore, 1/[(0’)(1.179 x lO-’)] - ~’(14 .9  x 10-3) = 50. This 
is a quadratic equation in U’, which we can solve, to get U’ = 6050, o r f =  963 Hz. We can check 

this 

result by calculating X ,  and X ,  at this frequency. This yields X ,  = 140 f2 and X, = 90 R, 
giving X = 90 - 140 = - 50, as desired. 

Problem 11.32. An R-L-C circuit is supplied by an AC generator and is in resonance at the 

frequency 

of radio station WINS (1010 on the AM dial). The inductance in the circuit 

is 

2.0 x 10-6 H, and the 
resistance is 0.80 0. The variable capacitor is tuned to resonance at this 

frequency. 

(a)  What is the capacitance at this 

frequency? 

(6) With 

this 

same 

capacitance, at what 

frequency 

does 

the impedance become 

twice as great as at 
resonance? 

Solution 

(a) The AM station numbers represent the frequency 

in 

kHz s o f =  1010 x 103 

Hz. 

The resonance 

fre- 

quency is given by o2 = l/LC. Thus, C = l /02L = 1/[(2n)(1010 x 103 Hz)12[2 x 10-6 H] = 

1.24 x 10-8 F. 
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(b) At resonance, 

the 

impedance 

is equal to the 

resistance, 

since 

X = X, - X c  = 0. Thus Z = 0.80 R. At 
the new frequencyf’, 2 = 2(0.80) = 1.6 R. Since 2’ = R 2  + X’, we have that X’ = 1.6’ - 0.8’ = 1.92, 
and X = +_ 1.39. There are two 

solutions, 

one for X = + 1.39 and one for X = - 1.39. Let us calculate 
the 

solution 

for 

X = + 1.39. Here, o’L - l/o’C = 1.39. When we substitute for L and C, we get a 
quadratic equation for a’, which we solve to get 0’ = 6.71 x 106, or f’ = 1067 kHz. Repeating 

for 

X = - 1.39 we get 0’ = 6.01 x 106, orf’ = 957 kHz. 

Supplementary Problems 

Problem 11.33. A battery is connected to a series combination of a resistor with R = 100 R and an uncharged 
capacitor with C = 25 pF After a long 

time 

the capacitor 

attains a charge of 2.25 x 10-4 C. 

(a) What is the time constant of the 

circuit? 

(b) What is the initial current in the circuit? 

(c) What is the current in the 

circuit 

after 

a time of 0.003 s? 

Ans. (a) 0.0025 s ;  (b) 0.09 A; (c) 0.0027 A 

Problem 11.34. A battery 

with 

a voltage of 12 V is connected to a series combination of a resistor and uncharged 
capacitor. The time constant of the 

circuit 

is 1.3 x 10-4 s, and the 

initial 

current is 0.15 A. 

(a) What is the 

resistance 

in the 

circuit? 

(b) What is the 

capacitance 

in the circuit? 

(c) What is the final 

charge 

on the capacitor? 

Ans. (a) 80 a; (b) 1.625 pF; (c) 1.95 x lO-’ C 

Problem 1135. A battery of 15 V is connected to a series combination of a resistor and uncharged 

capacitor. 

After 
a long time the capacitor attains a charge of 5.5 x lO-’ C. After a time of 0.0020 s the 

charge 

on the capacitor is 
2.0 x 10-5 c .  

(a) What is the 

capacitance 

in the circuit? 

(b) What is the 

time 

constant of the 

circuit? 

(c) What is the 

initial 

current in 

the 

circuit? 

(d) What is the 

resistance 

in the circuit? 

Ans. (a) 3.67 pF; (b) 4.42 ms; (c) 0.0125 A; (6) 1.20 kR 

Problem 11.36. A battery, 

of 

12 V, is connected 

across 

a series circuit 

consisting 

of a resistance of 100 R and an 
inductance of 0.30 mH. 

(a) What is the time constant of the 

circuit? 

(b) What is the final current in 

the 

circuit? 

(c) What is the current in the 

circuit 

after 

a time of 1.5 x 10-6 s? 

Ans. (a)  3 x 10-6 s; (b) 0.12 A; (c) 0.0472 A 

Problem 1137. A battery, 

of 

12 V, is connected 

across 

a series 

circuit 

consisting 

of a resistor and an inductor. The 
final current in 

the 

circuit 

is 0.60 A, and the 

circuit 

has 

a time constant of 4.0 x lO-’ s. 

(a) What is the 

resistance 

in the circuit? 
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(b) What is the inductance in the circuit? 

(c) What is the voltage across the inductor after a time of 4.0 x 10- s? 

Ans. (a) 20 R; (6) 0.80 mH; (c) 4.41 V 

Problem 11.38. A battery, of 50 V, is connected across a series 

circuit 

consisting of a resistor and an inductor. 
After 2.0 x 10-4 s, the current is 2.0 A and the voltage across the inductor is 20 V. 

(a) What is the time constant of the circuit? 

(6) What is the resistance 

in 

the circuit? 

(c) What is the inductance in the circuit? 

Ans. (a) 2.18 x 10-4 s; (b) 15 R; (c) 3.27 mH 

Problem 11.39. A capacitor with a capacitance of 0.20 pF is charged until it stores electrical 

energy 

of 3.0 x 10-’ 
J. It is then disconnected from the battery and connected to an inductor of inductance 0.50 mH. 

(a) What is resonance frequency of the circuit? 

(6) What is the energy stored in the inductor and the energy stored in the capacitor after a time equal to one 
quarter of a period 

(90°)? 

(c) What is the energy stored in the inductor and the energy stored in the capacitor after a time equal to one half 
of a period (l80”)? 

Ans. (a) 1.59 x 104 Hz; (b) Uc = 0, U L  = 3 x 10-’ J;  (c) Uc = 3 x lO-’ J, U L  = 0 

Problem 11.40. Consider the same situation as in Problem 11.39. At a time t after the capacitor is connected to 
the inductor the capacitor stores an energy of 1.3 x 10-’ J and the inductor stores an energy of 1.7 x 10-’ J. 

(a) What is maximum current in the circuit? 

(b) What is the maximum charge stored on the capacitor? 

(c) What is the smallest 

value 

oft? 

Ans. (a) 3.46 A; (6) 3.46 x lO-’  C; (c) 8.83 x 10-3 s 

Problem 11.41. A capacitor is charged until it stores electrical 

energy 

of 3 x 10-4 J holding a charge of 9 x 10-6 
C. It is then disconnected from the battery and connected to an inductor, and the resultant circuit has a resonance 
frequency of 2 x 106 

Hz. 

(a) What is the capacitance in the circuit? 

(b) What is the inductance in the circuit? 

(c) What is the charge on the capacitor after a time of one eighth the period? 

Ans. (a) 1.35 x 10-7 F; (b) 4.69 x 10-’ H; (c) 6.4 x 10-6 C 

Problem 11.42. A capacitor is first charged, then 

disconnected 

from the battery and then connected to an induc- 
tor. At a later time the current in the circuit is 0.05 A, and the capacitor has a charge of 8 x 10- C. The resonance 
frequency of the circuit is 400 

Hz. 

(a) What is the initial charge on the capacitor? 

(b) What is maximum current in the circuit? 

(c) At what time did the circuit 

have 

the given charge and current? 

Ans. (a) 8.24 x lO-’ C;  (6) 0.207 A; (c) 9.63 x lO-’ s 
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Problem 11.43. An AC generator, at a frequency 

of 

60 Hz, supplies a current of 0.50 A to a series 

circuit 

containing 

a 110 R resistor, and a 25 pF capacitor. (As usual, current and voltage are understood to be RMS values 

unless 

otherwise specified.) 

(a) What is the reactance (magnitude and sign) in the circuit? 

(b )  What is the impedance of the circuit? 

(c) What is the voltage across the capacitor? 

( d )  What is the voltage across the resistor? 

(e) What is the voltage of the generator? 

( f )  What power is consumed by the circuit? 

(9) What is the phase angle between the current and voltage in the circuit? 

Ans. (a)  - 106 R ;  (b) 153 R; (c) 53 V; ( d )  55 V; (e )  76.5 V; v) 27.5 W; (9) -44" 

Problem 11.44. An AC generator, at a frequency 

of 

60 Hz, supplies a current of 0.50 A to a series 

circuit 

containing 

a 110 R resistor, and a 0.30 H inductor. 

(a) What is the reactance in the circuit? 

(b) What is the impedance of the circuit? 

(c) What is the voltage across the inductor? 

( d )  What is the voltage across the resistor? 

(e) What is the voltage of the generator? 

( f )  What power is consumed by the circuit? 

(9) What is the phase angle between the current and voltage in the circuit? 

Ans. (a) 113 R; (b) 158 R; (c) 56.5 V; (d) 55 V; (e)  79 V; v) 27.5 W; (9) 46" 

Problem 11.45. An AC generator supplies 

power 

of 110 W to a series 

circuit 

containing a 120 R resistor, and a 
capacitor with a reactance of 50 R. 

(a)  What is the impedance of the circuit? 

(b)  What is the current in the circuit? 

(c) What is the phase 

angle 

between 

the current and voltage 

in 

the 

circuit? 

Ans. (U) 130 R; (b) 0.957 A; (c) - 22.6" 

Problem 11.46. A coil can be considered to be a resistance 

in 

series with 

an inductance. A particular coil has an 

resistance of 40 Q and an inductance of (1/4n) H. One can apply either a DC voltage or an AC voltage at 60 Hz, to 
the coil. 

(a)  If one applies a DC voltage of 120 V to the coil, 

what 

final 

current will flow? 

(b) If one applies an AC voltage of 120 V to the coil, 

what 

current (RMS) will flow? 

(c) What is the maximum voltage across the coil 

[for 

case 

(b)]? 

(d) Again, 

for 

the voltage of (b), what power is consumed in the circuit? 

Ans. (a) 3 A; (b)  2.4 A; (c) 170 V; (d) 230 W 

Problem 11.47. An AC circuit 

consists 

of two parallel 

resistors, 

R I  and R , ,  which are then in series 

with 

a capa- 
citor C, as shown 

in 

Fig. 

11-24. The voltage across R ,  is 105 V, and the frequency is 60 Hz. The circuit 

elements 

have the following values: R ,  = 75 R, R ,  = 90 R, C = 2.0 x lO- '  F. 

(a)  What is the 

power 

generated 

in resistor 

R,?  

(b) What is the current in 

resistor 

R I ?  
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60 Hz 

Fig. 11-24 

(c) What is the current in resistor R ,  ? 

(d) What is the voltage across the capacitor? 

(e) What is the voltage across the entire circuit? 

Ans. (a) 147 W; (b) 1.40 A; (c) 1.17 A; (d)  341 V; (e) 358 V 

Problem 11.48. An AC generator, at a frequency of 8.0 kHz, supplies a voltage of 20 V to a series 

circuit 

containing 
a 75 R resistor, a 0.30 mH inductor and a 0.25 pF capacitor. 

(a) What is the impedance of the circuit? 

(b) What is the current in the circuit? 

(c) What power is consumed by the circuit? 

(d) What is the phase angle between the current and the voltage? 

A ~ s .  (U) 98.9 S Z ;  (b) 0.202 A; (c) 3.07 W; (d) -40.7' 

Problem 11.49. A purely inductive coil 

with 

a reactance of 75 R is connected 

in 

series with 

a capacitor having a 
reactance of 25 R and a resistor 

with 

a resistance of 120 R. A current of 2.0 A flows in the circuit. 

(a) What is the voltage across the capacitor; the coil; and the resistor? 

(b) What is the impedance of the circuit? 

(c) What power is consumed by the circuit? 

(d) What is the voltage across the whole circuit? 

Ans. (a)  V, = 50 V, V, = 150 V, V, = 240 V; (b) 130 n; (c) 480 W; (d) 260 V 

Problem 11.50. A series 

circuit, 

consisting of a resistor R, an inductor L and a capacitor C, is connected to an AC 

generator producing a voltage of 200 V across the entire circuit. This results 

in 

a current of 4.0 A and a power 

consumption of 640 W. The reactance of the capacitor is 100 R, and is larger than the reactance of the inductor. 

(a) What is the voltage across the resistor? 

(b) What is the voltage across the capacitor? 

(c) What is the impedance of the circuit? 

(d) What is the voltage across the inductor? 

Ans. (a) 160 V ;  (b)  400 V ;  (c) 50 R; (d) 280 V 
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Problem 11.51. An AC generator 

supplies 

a voltage of 86 V to a series circuit 

containing 

a resistor, an inductor 
and a capacitor. The current in the 

circuit 

is 2.0 A, and the 

phase 

angle between the 

current 

and voltage 

is + 18". 

(a) What is the 

impedance 

of the 

circuit? 

(b) What is the 

resistance 

in the 

circuit? 

(c )  What is the 

reactance 

in the circuit? 

(d) What power is consumed by the 

circuit? 

Ans. (a) 43 R; (b) 40.9 R; (c) 13.3 R; (d) 164 W 

Problem 11.52. An AC generator 

supplies 

a voltage to a series circuit containing a 110 R resistor, a 0.30 mH 
inductor and a 0.25 p F  capacitor. 

(a) What is the 

resonance 

frequency of the 

circuit? 

(b) If the frequency being supplied is twice this 

resonance 

frequency, what is the 

impedance 

and phase 

angle 

of the 
circuit? 

Ans. (U )  1.84 x 104 Hz; (b) Z = 122 0, 4 = +25.6" 

Problem 11.53. An AC generator 

supplies 

a voltage of 8.0 V to a series circuit 

containing 

a resistor, an inductor 
and a capacitor. At the 

resonance 

frequency of 1.53 x 103 Hz, the 

current 

is 0.020 A, and the 

reactance 

of the 
capacitor is 1200 R. 

(a) What is the resistance in the 

circuit? 

(b) What is the 

inductance 

in the circuit? 

(c) What is the 

capacitance 

in the 

circuit? 

(d) What power is consumed by the 

circuit? 

Ans. (a) 400 R; (b) 0.125 H; (c) 8.67 x 10-* F; (d) 0.16 W 



Chapter 12 

Electromagnetic Waves 

12.1 INTRODUCTION 

In the previous chapters, we learned about the 

production 

of electric and magnetic fields in space, 
due to charges 

and 

due 

to currents, respectively. We then learned that an electric field would also be 
produced by a 

changing 

magnetic field. In 

this 

chapter, 

we will show that these laws are not yet com- 
plete, and require 

the 

addition 

of one 

further 

new concept, 

the 

concept of displacement current. With 
the 

addition 

of this concept, we will then summarize the laws for the 

production 

of electric and mag- 
netic fields in the form of the 

four 

Maxwell equations. 

In 

turn 

this will lead to the use of these equations 
to predict the existence and 

the 

properties 

of electromagnetic waves, which we will then 

discuss. 

12.2 DISPLACEMENT CURRENT 

In Chap. 7, we learned about the 

production 

of a magnetic field in space, due to currents in a wire. 
The law that we developed that must be followed is Ampere’s law, which states that when we go around 
a closed loop (such as 

a 

circle) and 

add 

together the 

component 

of the magnetic field along the loop 
times A1 (the infinitesimal length along 

the 

loop), 

i.e. B cos 8A1, this sum equals po times the 

current 

through 

the 

closed loop. Let us analyze this current in more detail. Consider 

the 

circular 

loop a in Fig. 
12-1 and 

a 

wire, w, with current I perpendicular to the 

loop. 

What 

do we mean by the 

current 

flowing 
through the 

loop 

a? A possible answer is that the 

current 

is that which flows through 

the 

area 

A, 

(shown in the figure) which is bounded by the loop. Since in our case the only current is in the wire, 
which passes through A,, the 

current 

through the 

loop is 1. A,, however, is not the only area 

bounded 

by the loop a. For instance, consider the cylindrical shaped surface formed by disk surface A, and 
cylinder surface A,. The 

combination 

of these two surfaces is bounded by loop a, just as 

area 

A, is. 
Indeed it is easy to see that there 

are 

an infinite number of surfaces bound by the 

loop 

a. This is 
generally true for any closed loop whether circular or not, whether in a plane or not. For the case of our 
loop a and our A, + A, combined surface bound by a we can see that there is no current flowing 
through 

area 

A,, and 

the 

current 

flowing through A ,  is just 

the 

current 

in the wire, 1. We therefore get 
the same current whether we use A, for the 

area, 

or the (A2  + A3)  surface for the 

area. 

It would 
therefore seem that there is no ambiguity about which surface bounded by the 

loop 

one should 

use. 
This is generally true 

as 

long as 

the 

wires don’t end, 

and, 

if they do end, then we know that for DC 

currents, 

there 

can 

be no current in such a wire and therefore no problem either. However, we do run 
into a problem if the wires terminate, 

and 

we have AC currents. Consider, for instance, a circuit with a 

rA3 

Fig. 121 

312 
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wire entering 

one 

plate 

of a capacitor. 

During 

the 

time that the 

capacitor 

is being charged, a current 
flows in 

the 

wire but no current flows from one 

capacitor 

plate 

to the 

other. 

This creates 

a situation in 
which a closed loop can 

bound 

one 

surface with current flowing through it and bound another surface 
with no current 

through 

it. This can be seen 

for the 

case 

depicted in Fig. 12-2. Here a wire w is carrying 
a current I to the 

capacitor 

plate during the 

time that the 

capacitor 

is being charged. We use the circle a 
as the closed loop and 

consider 

(B cos 8 AZ) around the 

loop. 

By Ampere’s law, this 

should 

equal the 

current 

through 

the area bounded 

by the curve. But 

the 

answer we get is quite different if we use the 
area A,, or the area A, + A,. For area A,, the 

current 

is I, the current in the wire, which flows through 
A,. For the 

area 

A2 + A,, we would get zero as the answer, since no 

current 

is flowing between the 
capacitor 

plates. 

We are thus faced with a dilemma, 

since 

we get contradictory answers for different 
surfaces bounded by the 

same 

loop. 

Which answer should we use in Ampere’s law? It would be nice if 
the 

current 

through any 

surface bounded by the loop were the same. The 

capacitor 

plate situation 

affords 

the 

opportunity to accomplish this by broadening 

the 

definition of current for Ampere’s law. We 
use the term conduction 

current, 

which is current 

conducted 

in a wire or some conducting medium, to 
distinguish 

it 

from the displacement current which we shall shortly define. Even though 

there 

is no 
conduction 

current 

between the 

capacitor 

plates, there is something 

there 

that is not present at area A,. 
That something is a changing electric field. Perhaps 

this 

changing 

electric field can be associated with a 
new “displacement” 

current 

that contributes to Ampere’s law in just 

such 

a way that the “current” 
through A, equals 

the 

current through 

A, in Fig. 12-2. Let us calculate how this 

could 

happen. 

We know that the field within a parallel plate 

capacitor 

is uniform and is equal to E = q/&gA, 
where q is the 

charge 

on the capacitor and 

A is the area of the capacitor. 

Strictly 

speaking, this 

is only 
true for the field within large plates, and 

the 

field varies as one 

approaches 

the 

edge of the plates. 
However, a more exact calculation shows that this won’t change our conclusions. If the 

capacitor 

is 
being charged, 

then 

both 

4 and E are changing, and we can write that AE/At = (Aq/At)/&,A = I/coA. 
Thus, 

I = A(AE/At) ( 1 2.1 a) 

If we define a “displacement current density” as 

J D  = &o(AE/At) ( 1 2.1 b) 

then we find that the 

current 

through 

surface A ,  is ID = JDA = I, the 

same 

result as for area A l .  The 
displacement current I, can 

also 

be written as ID = c0(AEA/At) = E ~ A Y / A ~ ,  where Y is the electric flux 
through 

the 

area. 

By modifying Ampere’s law to include displacement current, we eliminate 

the 

contra- 
diction 

that 

we had previously discussed. Ampere’s law would then 

state that 

(1 2.2) 

In 

the 

case of our wire and 

capacitor, 

I, = 0 through A,, while I = 0 through A,. While Eq. (12.2) 
eliminates our ambiguity, we must still demonstrate that it is true. We must find if this concept of 
displacement current 

predicts 

something 

new, and then test this prediction experimentally. 
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Fig. 12-2 
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Problem 12.1. Using Ampere’s law, calculate the magnetic field between circular parallel plate 

capa- 

citors, at a distance t from the center, when the 

capacitor 

is being charged at the 

rate 

of I coulombs/ 
second. 

Solution 

In Fig. 12-3, we draw the circular capacitor plates which are being charged. At a distance, r, from the 
center, we draw a circular path 

that 

we will use for Ampere’s law. The electric field points to the right if the 
left plate is positively charged, and 

that 

charge is being increased at the rate of I = Aq/At C/s. The electric 
field is uniform, and equal to q/eO A, and increasing at the rate of AE/At = (Aq/At)/e, A = I/e0 A, where A is 
the area of the plates. The displacement current density is equal to e,AE/At, and is uniform within the 
region. The magnetic field is the same at every point on the circular path, by symmetry. We go around the 
path in the direction shown, using the right-hand rule with our 

thumb 

in the direction of E, so our fingers 
curl about the path in this direction. Adding the magnetic field along the curve we get B cos0 
A1 = B(2nr). We must now calculate the total 

current 

going through this loop. There is no conduction 
current, so the only contribution comes from the displacement current. The total displacement current 
through this curve is J ,  A, = (E, AE/At)(nr2) = E,(I/E, A)nr2 = Z(nr2/A). By Ampere’s law, we therefore have 
that B(2nr) = poZ(nr2/A), or B = p,nZr/A. This shows that the field increases linearly with r as one moves 
from the center to the edge of the plate. This can, of course, be tested experimentally and the result agrees 
with prediction. 

Outside the capacitor plates, we can also calculate the field using Ampere’s law. In that case, the 
displacement current density would be (eOAE/At) within the plates, and zero outside the plates. The total 
current 

through 

the area would then be J,A = ( E ,  AE/At)A = I, giving B(2nr) = p, I ,  or B = p, 1/2nr, as for 
the field of a long straight wire. 

Problem 12.2. A rectangle abcd, with sides of 60 c m  x 80 cm, is in an electric field of 103 V/m directed 
into the paper, as in Fig. 12-4. The field is increasing at the rate of 300 V/m . s. 

(a) What is the displacement current 

through 

this area? 

(b) What is the direction of the component of the magnetic field along ab? 

Solution 

(a) The displacement current density is JD = &,AE/At, and is constant within the area. Since the field is 
increasing, AE/At is also into the paper, as is the direction of J D .  The displacement current is therefore 
J,A = E, A AE/At = 8.85 x 10- 12(0.48)(3 x 102) = 1.27 x 10-9 A, into the paper. 

(b) Since I ,  is into the paper, the positive direction for going around abcd is clockwise (a -+ b -+ c --* d). 
Ampere’s law states 

that 

B cos 8 A1 = + p,(Z + I,) = p, I,, in this case. Therefore, the components 
of B are in the positive direction of circling around the rectangle, and along ab the field is directed 
from a to b. 

Path 

LPlatesJ 

Fig. 12-3 
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Problem 12.3, For the same 

case 

as in Problem 12.2, what would the answers be if the rectangle were 
located in a region of dielectric constant 3.5? 

Solution 

Using the same reasoning that we used in defining the displacement current originally, but for a 
capacitor filled with a dielectric material of dielectric constant K, we would define the displacement current 
in this case as J ,  = EAE/At, where E = K E ~ .  Thus we need only replace e0 by E to get the answer for our 
problem. The 

current 

is therefore 1.27 x 10-9(3.5) = 4.45 x 10-9 A, and 

the 

direction 

is the 

same 

as 

for 
Problem 12.2. 

In order to determine whether 

the 

concept of displacement current is generally 

valid, 

we seek some 
prediction which is 

different 

with 

or without this 

concept. 

This is what 

Maxwell 

did after summarizing 
the laws of electricity and magnetism in the famous Maxwell equations. 

12.3 MAXWELL’S EQUATIONS 

We have already stated that, after 

including 

the displacement current, it is 

possible 

to summarize 
the laws 

governing 

the creation of electrical and magnetic fields in four fundamental equations. 
The first equation is Gauss’ law, which states that electric fields can be 

established 

by free charges. 
This law is written in terms of the 

electric 

flux that passes through a closed 

surface, 

and depends on the 
understanding that all 

electric 

field lines start at positive charges and end on negative charges (lines can 
also go to infinity, 

such 

as those of an isolated point charge, 

where 

they 

are presumed to land on 
opposite charges at that distance). By convention the number of electric field lines 

per 

unit area, the 
electric flux density, at a given point is 

chosen 

equal to the magnitude of the electric field at that point. 
As discussed in Chap. 3 it then equals the electric field at every other point as well. Gauss’ law then 
relates the total charge within a closed 

surface 

to the net number of electric field lines that pass through 
the surface. 

Gauss’ 

law 

can be 

written 

as 

(1 2.3) 

where YE = flux through an infinitesimal 

surface 

area A = E(cos 8)A with 8 the angle below E and the 
outward normal to the surface 

element 

A ,  and the sum goes 

over 

all 

elements 

A making up the closed 
surface. The sum over 

charges 

includes 

all charges within the closed surface. 

The second 

(Maxwell) 

equation is based on how 

this 

same concept 

applies 

to magnetic fields. We 
have 

learned 

that there are no magnetic monopoles that act as sources 

for 

a magnetic field. Therefore 
magnetic fields do not have 

poles 

where 

they 

begin or end. All magnetic field lines 

must 

therefore 

close 

on themselves. This means that any magnetic field line that passes through a closed 

surface 

must 

necessarily 

pass 

through the 

surface 

again 

in 

the opposite direction, in order to close on itself. This 
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means that the net total magnetic flux which passes through a surface 

is 

zero. 

This is written 

as 

C(D,=O (1 2.4) 

where (DB = (magnetic flux through an infinitesimal 

surface 

area A )  = B(cos8)A 

with 

8 the 

angle 

between B and the outward normal to the surface 

element 

A ,  and the sum goes 

over 

all elements 

A 

making up the 

closed 

surface. 

The third equation states that an electric field can also be produced by a changing magnetic flux. 
This is Faraday’s law, which can be written as 

1 E(COS @A1 = -A@,/At (1 2.5) 

where Al is an infinitesimal 

length 

along a closed 

curve, 

8 is the 

angle 

between E and the tangent to the 
curve at Al and the sum is taken over 

all 

the elements A1 of the closed 

curve, 

and the flux QB is the total 
magnetic flux through the area bounded by the curve. 

The fourth, and last equation, states that magnetic fields are created by currents, either conduction 
current or displacement current. This can be written in the 

form 

of Ampere’s law, including 

displace- 

ment current, as 

C B(COS @ A / =  po(I + ID) = po(I + E ~ A Y / E / A ~ )  (1 2.6) 

where A1 is again an infinitesimal 

length 

along a closed 

curve, 

8 is the angle 

between 

B and the tangent 
to the 

curve 

at AI, and the sum is taken over 

all 

elements 

of the closed 

curve. 

The current I is the total 
current passing through a surface bounded by the curve, and YE is the total electric flux through the 
same surface. 

These 

four 

equations are relationships 

between 

the electric and magnetic fields and their 

sources, 

charges and currents. The electric and magnetic fluxes are determined 

directly 

from the electric 

and 
magnetic fields and are not separate variables. Thus these equations tell us how to calculate the electric 
and magnetic fields that are produced by charges, both at rest and moving. The particular form that we 
have used for 

these 

equations is not the 

most 

useful for actual calculations, 

but 

is 

the easiest to under- 
stand conceptually. For purposes of calculations, 

these 

equations are expressed more formally in the 
language of the integral and differential 

calculus, 

which can then be solved 

for 

specific cases. 
We have 

written 

these 

equations for 

the 

case 

of free space, and not for 

the 

situation in which there 
is 

dielectric 

or magnetic material present. For the 

case 

of materials, one must modify these equations 
using the concepts of electric displacement (D) and magnetic intensity (H). We will not write down these 
modified equations, but will point out where 

changes 

occur in the solutions that we will discuss. 
These 

four 

equations constitute Maxwell’s equations, which are the fundamental laws 

governing 

the 

existence of electric and magnetic fields, which are jointly called 

electromagnetic 

fields. We see clearly 
from 

these 

equations that electric and magnetic fields are not really independent quantities, but are 
rather quantities that are bound together by these 

relationships. 

Changes in one produce or modify the 
other. These equations are remarkable in that, unlike 

Newton’s 

laws, they do not require fundamental 
modification as a result of the theory of relativity. In fact, the solutions to these equations gave rise to 
questions that required the theory of relativity 

for 

their resolution. Furthermore, the quantum theory 
also 

accepts 

these 

equations as the fundamental ones describing 

electromagnetic 

phenomena, requiring 
only a proper interpretation in light of the fundamentally new concepts of quantum mechanics. 

In order to give a complete description, in theory, of electromagnetic phenomena, we must add the 
laws that tell us what effect these fields have on objects. This is given by the statement that electric fields 
exert 

forces 

on any electrical 

charges, 

while magnetic fields exert 

forces 

on moving 

charges. 

The magni- 
tudes and directions of these 

forces 

were discussed 

previously 

in Chaps. 3 and 6. 

12.4 ELECTROMAGNETIC WAVES 

Maxwell 

was 

able to show that there were solutions to these equations that corresponded to waves 
propagating in free space, i.e. in regions 

where 

there are no charges or currents. These waves, which he 
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called electromagnetic waves (EM) had special properties, which could 

be 

derived from these 

equations. 
In all 

the 

waves previously 

discussed 

the 

wave was a consequence of the vibration of molecules of a 
medium about their 

equilibrium 

positions-their displacement-and the 

propagation of this 

dis- 

turbance with a velocity characteristic of the medium. In the 

case 

of electromagnetic waves the time 
varying quantity is not the displacement but rather the electric and magnetic fields at a point in space. 
Indeed, for 

electromagnetic 

waves one does not even need a medium-they can 

travel 

through empty 
space. 

Like 

ordinary waves, however, 

they 

do have a characteristic velocity which depends on the 
material the wave travels through and has an especially 

significant 

value in 

empty space. 

Maxwell 

was 
able to show that these waves were transverse, and that their 

speed, 

in free space was equal to 

For a wave traveling 

in 

the x direction, 

this 

means that the electric and magnetic fields associated 
with 

this 

wave are in the y-z plane. 

Indeed, 

one can show that these fields are also perpendicular to 
each other, and that their magnitudes are given by: 

E = CB (12.7) 

It is important to note that these 

results 

would 

not be true if one left out the 

term 

for displacement 

current. That EM waves exist 

is 

the 

strongest evidence that the 

displacement 

current should be included 
in Ampere’s law. Furthermore, Maxwell’s prediction that these 

electromagnetic 

waves travel 

with 

speed 

l/dGo, which numerically equals 3 x 108 m/s, matches the 

measured 

value for the 

speed of light. This 
quickly led to the 

realization 

that light 

consists 

of electromagnetic waves in a certain frequency 

range 

to 
which the eye is 

sensitive 

and can “see”. Approximately 22 years 

after 

Maxwell predicted 

the existence 
of these 

electromagnetic 

waves, and delineated their properties, Henry produced and detected 

these 

waves in the radio range of frequencies. 
If the medium 

in 

which this 

wave propagates is not free space, but rather a material with a dielectric 
constant IC and magnetic permeability icM , then the velocity of the waves will become 

(1 2.8) 

1 / J G  = c- 

U = l/J..,I1OEo = l/&. 

Problem 12.4. For an electromagnetic wave, traveling in a medium with dielectric constant 3.5, and 
magnetic 

permeability 

1.2, what 

is 

the speed of this 

wave? 

Solution 

Using Eq. (22.8), and knowing that 1/& = 3 x 108 m/s, we get v = 3 x 1 0 8 / d m )  = 

1.46 x 108 m/s. 

Problem 12.5. For an electromagnetic wave, traveling in the x direction in free space, the electric field 
has a magnitude of 1.5 V/m, and is 

in 

the y direction. What is the magnitude and direction of the 
magnetic field? 

Solution 

Using Eq. (22.7), the magnitude of B is B = E/c = (1.5 V/m)/(3 x 108 m/s) = 0.5 x 10-8 T. The direc- 
tion of the magnetic field is in the + z  direction, perpendicular to both B and the direction of propagation. 

Problem 12.6. For an electromagnetic wave, traveling 

in 

the 

- x  direction in free space, 

the 

electric 

field has a magnitude of 1.5 V/m, and is in the + y  direction. What is the magnitude and direction of the 
magnetic 

field? 

Solution 

Using Eq. (22.7), the magnitude of B is B = E/c = (1.5 V/m)/(3 x 108 

m/s) 

= 0.5 x 10-8 T. To get the 
direction we note that it can be shown that, in general, the three perpendicular directions, E, B and c, are 
related 

like 

v, B and F in the magnetic force on a charge. This means that if your fingers are in the direction 
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that rotates E into B, the thumb will point in the direction of the velocity, c. Therefore, the direction of B in 
our problem is in - z .  

Problem 12.7. For an electromagnetic wave, traveling in the +x direction in free space, the electric 
field has a magnitude of 1.5 V/m, and is 

in 

the + z  direction. What is the magnitude and direction of the 
magnetic 

field? 

Solution 

Using 

Eq. 

(22.7), the magnitude of B is B = E/c = 1.5/3 x 108 = 0.5 x 10-8 T. We know that the 

magnetic field must be perpendicular to both E and the velocity, c, and therefore 

is 

in the - t y  direction. We 
showed in Problem 12.6, that the three perpendicular directions, E, B and c, are related so that if your 
fingers are in the direction that rotates E into B, the thumb will point in the direction of the velocity, c. 

Applying 

this 

to our case, we see that the magnetic field is in the - y  direction. 

As noted, it can be demonstrated that light 

is 

one form of electromagnetic wave. The fact that a 
light wave travels 

with 

the speed 

predicted 

for 

an electromagnetic wave is one of the reasons that it 

was 

quickly 

suspected 

that this 

was 

true; given Maxwell’s theoretical 

result. 

How can one measure the 

speed 

of light? One method is illustrated in the next problem. 

Problem 12.8. Light 

passes 

through an opening in a rim of a notched wheel, as in Fig. 12-5. Light 
travels to a mirror at a distance of 5 x 104 m and is reflected back to the wheel. There are 50 notches in 
the wheel. At what angular speed 

must 

the wheel turn so that the reflected light 

passes 

through the 
adjacent opening? 

Solution 

The light that passes through one notch travels to the mirror and then 

back 

to the wheel in a time 

equal to 2L/c, where 

L 

is the distance to the mirror. During this same time, the wheel has to turn just far 

enough that the next notch is now in the position of the first notch. Since there are 50 notches on the wheel, 
the wheel has to rotate through 1/50 of a full rotation, or through an angle of 2n/50. The time that this 
takes is (2n/50)/o. Therefore (2n/50)/o = 2L/c, or o = (2n/50)c/2L = 2n(3 x lO8)/(5O)(2)(5 x 104) = 377 
rad/s. 

Just as in the case of sound waves, it 

is 

useful to consider 

electromagnetic 

waves that are sinusoidal. 
This means that if we take a picture of the wave at any time, the disturbance will vary 

sinusoidally 

in 
space along the direction of propagation. Furthermore, at any position is space, the disturbance will 
vary 

sinusoidally 

in time. 

As in the case of sound, one can have 

different 

shaped electromagnetic waves, 
such as spherical waves emitting from a local 

region, 

but far away they appear nearly planar over a 
region 

small 

compared to the distance from the disturbance. In such a region the light wave has the 
same value of electric and magnetic field at all points in the plane perpendicular to the direction of 
propagation, and varying 

in 

lock step. 

It is important to keep in mind that the disturbance associated 
with an electromagnetic wave is the electric and magnetic field along the wave. In Fig. 12-6, we show a 

Mirror 

Fig. 12-5 
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plane wave as it vanes in space at a 

particular 

instant of time. The wave is traveling 

in 

the positive x 

direction, and both the 

electric 

and magnetic fields are transverse to this 

direction. 

We draw 

the 

electric 
field in 

the 

y direction, 

and 

then the 

magnetic field must be in the z direction as we showed in the 
previous problems. This wave is said to be linearly polarized in the y direction, which is the 

direction 

of 
the electric field. The electric and magnetic fields have 

magnitudes 

that are related by E = cB at every 
point, and the wave travels with a velocity c. The 

distance 

between successive crests or between suc- 
cessive troughs is the wavelength, A, of the wave. The time that 

it 

takes 

for the wave to travel 

a 

distance 

of one wavelength is the 

period, 

T, of the wave, which is also the time for the wave to go from crest to 
crest at any given point in space. As with all waves, this leads to the 

relationship 

that c = A/T = A .  
where f is the frequency. 

Electromagnetic waves exist with wavelengths ranging from very small to very large 

(and 

corre- 

sponding frequencies from very large to very small). The 

various 

possible wavelength (and frequency) 
ranges 

constitute 

the electromagnetic 

spectrum. For small frequencies the wave is usually denoted by its 
frequency, and for short wavelength it is denoted by its wavelength. In Table 12.1, we list the frequency 
range 

for 

some common types of electromagnetic waves with small frequencies, and others with small 
wavelengths. In the 

next 

problem, we will complete the table. 

Problem 12.9. For the 

electromagnetic 

waves in the table, 

calculate 

the 

missing wavelengths and fre- 
quencies to complete 

the 

table. 

Table 12.1 Frequency Range of Common Types of 
Electromagnetic Waves 

Type of wave Frequency Wavelength (m) 

Power line 
AM radio 
FM radio 
Microwaves 
Infrared 
Visible 
Ultraviolet 
X-rays 
Gamma rays 

~~ ~~ 

60 
(0.5-1.5) x 106 
108 

109-101 1 

10 - 3-10 - 6 

(8-4) x 10-7 
4 x 10-7-10-9 
10- 8-10- 11 

< 10- l 1  



320 ELECTROMAGNETIC WAVES [CHAP. 12 

Table 12.2 Frequency Range of Common Types of Electro- 
magnetic 

Waves 

Type of wave Frequency (Hz) Wavelength 

(m) 

Power 

line 

AM radio 
FM radio 
Microwaves 
Infrared 
Visible 
U1 t raviolet 
X-rays 
Gamma rays 

60 
(0.5-1.5) x 106 
1 o8 
109- 101 1 

3 x 1011-3 x 1014 

3 x 1016-3 x 1019 
> 3  x 1019 

4 x 1O-I4-8 x 1014 
8 x 1014-3 x 1017 

5 x 106 
600-200 
3 
0.3-3 x 10-3 
10- 3-10-6 
(8-4) x 10-7 
4 x 10-7-10-9 
10-8-10-" 

< 10-" 

Solution 

The relationship between frequency and wavelength is c = IJ For power line 

frequencies 

of 60 Hz, the 
wavelength will be I = 3 x 108/60 = 5 x 106 m. For am radio, 

the 

wavelength will vary between 
A = 3 x 108/0.5 x 106 = 600 m and A = 3 x 108/1.5 x 106 = 200 m. Repeating 

this 

calculation for all the 

given frequencies 

allows 

us to complete 

the 

table 

where wavelengths are missing. Where 

wavelengths 

are 
given, we calculate 

the 

frequencies 

usingf= 3 x 108/A. For instance, 

in 

the case 

of infrared 

radiation, 

the 

frequency ranges 

from 

3 x 108/10-3 = 3 x 10" Hz to 3 x 108/10-6 = 3 x 1014 Hz. Table 12.1 then 
becomes as shown in Table 12.2. 

The limits given in the 

Table 

12.2 are only approximate, 

and 

the various 

types actually 

overlap 

considerably. For instance, microwaves and infrared radiation include the wavelengths around 10- m, 
and are identical waves irrespective of whether they are called microwaves or infrared. One usually 
distinguishes between them on 

the 

basis of how they were produced. If they were produced elec- 
tronically, they are called microwaves. If they are produced from heat, they are called infrared. Similar 
distinctions 

are 

made 

at the 

boundaries 

of the different types of radiation. All of these waves travel with 
a speed of c, all are 

transverse, 

and all carry 

perpendicular 

electric and magnetic fields with them. 

12.5 MATHEMATICAL DESCRIPTION OF ELECTROMAGNETIC WAVES 

As in the case of a sound wave (and any other type of wave), the 

disturbance 

that 

is carried by the 
wave varies with both time and space. A plane wave travels in one dimension with its disturbance 
depending only on time and 

the 

position along the direction 

of travel. Suppose 

the 

wave is traveling in 
the x direction. At any 

point 

x and 

instant 

t every point in the 

plane 

parallel to the y-z plane at that x, 
has 

the 

same disturbance. 

As time changes the 

disturbance 

at all points in this plane 

change 

in lock 
step, i.e in phase. 

The 

equation 

for the 

disturbance 

of a electromagnetic 

sinusoidal 

plane 

wave, traveling in the + x 
direction, is given in terms of its disturbance 

(an 

electric field in the y direction) by 

E = E0 COS 2 ~ (  ft - x/A) = E0 COS (at - kx), (1 2.9) 

where w=2nf and k = 2 n l A  (12.20) 

Here o is the 

angular 

frequency of the wave, and k is the "wavenumber" of the wave, and 

has 

units 

of 
m-'. E .  is the maximum value of the electric field, and is thus the amplitude of the wave. For a wave 
traveling in the - x direction, the equation for the electric field is 

(12.1 1 )  

This 

equation 

will suffice for any single plane wave, since we can 

choose 

the direction 

of travel to be the 
x direction. 

E = E .  COS 2 ~ ( f t  + x/A) = E .  COS (ot + k x )  

Problem 12.10. An electromagnetic 

plane 

wave is traveling in the x direction. 

The 

electric field is given 
by E = 1.5 cos (6 x 104t - 2 x 10-4x). Assume standard units. 
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(a) What is the 

amplitude 

of the wave? 

(6) What is the frequency of the wave? 

(c) What is the wavelength of the 

wave? 

Solution 

(a) The amplitude is the maximum electric field in the wave, which 

is 

given by the factor before the cosine 
function. Thus, the amplitude is E ,  = 1.5 V/m. 

(b) We can see by comparing the general formula [Eq. (12.9)] to the specific equation given in this 
problem, that a t  = 6 x 104t, or w = 6 x 104 rad/s. Then f = w/2a = 9.5 x 103 Hz. 

(c) Again, comparing the general equation to the specific numbers in our equation, kx = 2 x 10b4x, or 
k = 2 x 10-4 m-’. Then L = 2n/k = 2n/2 x 10-4, or 1 = 3.14 x 104 m. Note that this is consistent 
with the requirement thatfl = c = 3 x 108 m/s. 

Problem 12.11. An electromagnetic 

plane 

wave is traveling in the -x  direction. 

The 

electric field has 
an 

amplitude 

of 

2 V/m, and 

a 

frequency of loo0 Hz. Write down an 

equation 

for the wave as a 

function 

of time and distance. 

Solution 

The general equation for an electromagnetic 

wave 

traveling 

in the --x direction, is 

given 

by Eq. (22.9), 
E = E, cos 2n(ft + x/L) = E, cos (or + kx). In our case, E, = 2, f = 103 Hz, and L = c / f =  3 x 105 m. Thus 
this 

wave 

is given by E = 2 cos [2n(1000t + x/3 x 105)] = 2 cos (6.28 x 103t + 2.09 x lO-’x). 

Problem 12.12. An electromagnetic 

plane 

wave is traveling in the x direction. 

The 

electric field has 

an 

amplitude of 0.5 V/m, and a frequency of 2500 Hz. Write down an 

equation 

for the magnetic field 
component of the wave as 

a 

function of time and 

distance. 

Solution 

The general equation for the electric field of an electromagnetic 

wave 

traveling in 

the x direction, is 
given by Eq. (22.9), E = E, cos 274ft - x/A) = E ,  cos (of - kx). For the magnetic field part of the wave, we 
will have the same general equation, except that the amplitude will be different and the direction of the 
magnetic field given by the formula, will be in the z direction rather than the y direction. Then, B = B, 
cos2n(ft - x/L) = B, cos (wt - kx). In our case, E, = 0.5 V/m, f =  2500 Hz, I = c/ f=  1.2 x 105 m and 
B, = E,/c = 1.67 x 10-9 T. Thus the magnetic field of this wave 

is 

given by B = 1.67 x 10e9 
cos2a(2500t - x/1.2 x 105) = 1.67 x 10-9 cos (1.57 x 104t - 5.23 x 10-5x). 

While plane waves are particularly simple to describe (they are essentially one-dimensional) other 
relatively simple sinusoidal waves are also 

worth 

noting. 

One such wave is a cylindrical wave. In 

this 

case, the wave travels radially away from a 

straight 

line with the same speed in all 

radial 

directions. 

Now the 

surfaces 

of constant phase in the electric (or magnetic) fields are concentric cylinders about the 
line. Thus if one 

point 

on a 

given cylindrical surface corresponds 

to 

maximum amplitude (a crest) of 
electric field, all other 

points 

on 

the surface are also crests of the electric field. If the line, which is the 
symmetry axis for the 

concentric 

cylinders 

is along the z axis, then 

the 

electric and magnetic fields will 
depend only on x and y. Actually the 

magnitude 

of the fields depends only on the 

radial 

distance, 

r, 
from the line. The 

direction 

of the fields does 

depend 

on where in the x-y plane one is, and the 

direction 

of propagation is along 

the 

radial 

direction, which 

is different for different x, y positions. 

The 

overall 
effect, however, is much like the 

expanding 

ripple in 

a 

pond, 

except that it is now a cylindrical surface 
expanding at speed c rather than a circle. Another simple sinusoidal wave, discussed briefly in the 
context 

of 

sound waves, is the spherical wave. In this 

case 

the 

source 

of the electromagnetic 

disturbance 

is a small region approximated by a 

point, 

and 

the disturbance expands 

out in a 

spherical 

shell. These 
concentric 

spherical 

surfaces correspond to constant phase in the electric and magnetic fields. The 
directions of the fields are always tangent to the 

spherical 

surfaces and the 

direction 

of propagation is 
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Y 
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I C 

Fig. 12-1 

always radially outward. While the direction of the electric field thus depends on the point in space ( x ,  

y, z), the magnitude depends only on the radial distance, r, to the point. The spherical shells of constant 
phase will be expanding in all directions with the speed c, and 

the 

radial 

distance between shells of 

adjacent crests will be the wavelength of the wave. We will still have the relationship between frequency, 
wavelength and speed given by c = A& As a given spherical shell expands out at speed c, its surface area 
will continually increase, and the energy of the wave (we will discuss this energy in the next section) 
which is uniformly spread over the surface will pass through larger and larger surfaces. The intensity of 

, the wave, I, which is the energy per unit area perpendicular to the direction of propagation, therefore 
falls off. Since the area of a spherical surface is 47cr2, the intensity falls off as l/r2. The amplitude of the 
wave, A, is related to the intensity by I oc A2, and therefore A falls off as l/r. In Fig. 12-7, we draw the 
intersection of constant phase spherical shells (corresponding to successive crests) centered on the origin 
with the x-y plane. The intersections correspond to concentric circles, separated by the wavelength A. At 
every point of the spheres, the wave is moving radially outward with speed c. In the x-y intersection 
plane, the circles are moving outward with this same speed at each point. In particular, at point a, the 
wave is moving in the x direction with speed c. The direction of the electric field (the 

disturbance) 

is 
perpendicular to this direction, 

and 

in the y-z plane. Let us take it to be in the y direction. Then the 
magnetic field of the wave will be in the z direction. As one gets further 

and 

further 

away from the 
central 

point, 

the 

spheres have less and less curvature, 

and 

the 

wave begin to look more and more like 
plane waves (see e.g., Chap. 2 for an equivalent discussion for sound waves). 

The spherical wave has a mathematical form similar to the plane wave. A major difference is that 
the electric field is now a function of distance, r, from a 

point, 

rather than 

of x ,  and 

that 

the amplitude 
gets smaller as r increases. The 

magnitude 

of E is constant over the surface of the spherical shell, just 

as 

it is constant over the surface of the plane for plane waves. However, the direction varies over the 
spherical surface so that it is always perpendicular to the radial direction. The formula for the magni- 
tude of E is given by 

E = (A/r)  cos 2n(f t  - r/A) = (A/r )  cos (ot - kr) (1  2. 1 2) 

We will use this relationship later 

on 

when we discuss the energy and momentum carried by elec- 
t romagnetic waves. 

12.6 ENERGY AND MOMENTUM FLUX OF ELECTROMAGNETIC WAVES 

We already showed previously that electric and magnetic fields contain energy. The energy density 
was shown to be uE = q, E2/2  for electric fields and uB = B2/2po for magnetic fields. The electromagnetic 
energy of an electromagnetic wave is just 

the 

sum of the energies of its electric and magnetic fields. The 
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maximum 

energy 

is 

located at those points where the fields are at their 

maxima, 

which occurs at the 
crests of these waves. But 

these 

crests move with time 

at a speed of c, and therefore the energy 

is 

transported in the direction that the wave travels at this 

speed. 

An electromagnetic wave, therefore 
carries energy 

with 

it, just as do sound waves or other waves traveling through a medium, and in fact it 
also carries momentum. 

To calculate the 

energy 

carried by an plane electromagnetic wave we would 

proceed 

in two 

steps. 

First we would calculate the total energy contained between successive crests of an electromagnetic 
wave. Then we would 

calculate 

the average 

energy 

that this wave transports per 

unit 

area and time as it 
travels 

with 

speed 

c in the x direction, which is defined as the 

intensity, 

I ,  of this wave. 
The result 

is 

that: 

I = c2&0 E ,  Bo/2 = E ,  B0/2po = C E ~  Eo2/2  (1 2.13) 

where we have used the fact that E ,  = cBo. We 

see 

that the 

intensity 

of an electromagnetic wave is 
proportional to the amplitude squared, as was true for sound waves. 

This quantity is 

often 

assigned 

a direction, the direction of propagation, and called the average 
Poynting vector. This vector 

is 

the average 

of the instantaneous Poynting vector, S, whose magnitude is 
EB/po ,  and whose direction is perpendicular to E and B, and obeying 

the 

right-hand rule with finger 
curling from E to B. This is the direction of c, the propagation velocity. The Poynting vector, S, rep- 
resents the instantaneous energy transported through unit area per 

unit 

time 

by the wave. It is actually 
more general than that, representing 

the 

energy 

transport even if the fields do not represent waves. The 
unit 

for 

intensity 

is J/m2 - s = W/m2, since 

energy/s 

is power, 

or J/s = W. 

Problem 12.13. An electromagnetic plane wave is 

traveling 

in the x direction. The formula for the 
wave is given by E = (1.5 V/m) cos [(6 x 104 s - ' ) t  - (2  x 10-4 m-')x)]. Calculate the 

intensity 

of this 
wave. 

Solution 

The intensity of a wave is I = ceO EO2/2.  For the above wave, E, = 1.5 V/m, and therefore the intensity 
is I = 3 x lO'(8.85 x 10-12)(1S2)/2 = 3.0 x 10-3 W/m2. 

Problem 12.14. An 

electromagnetic 

plane 

wave is traveling in the x direction. The intensity of this 
wave is 5 x 10-3 W/m2. Calculate the maximum 

electric 

and magnetic fields of this wave. 

Solution 

The intensity of a wave is I = ceO EO2/2 = 5 x 10-3. Thus E, = [2(5 x 10-3)/(3 x lO'M8.85 
x 10-12)]1/2 = 1.94 V/m. The maximum magnetic field, B, is E,/c = 6.5 x 10-9 T. 

Problem 12.15. An electromagnetic 

spherical 

wave is traveling 

outward from a point source. The 
intensity of this wave is 5 x 10-3 W/m2, when the distance from the source is 2 m. Calculate the 
intensity of this wave when the distance is 5 m. 

Solution 

The intensity of a plane wave is I = ceO EO2/2. For a spherical wave, Eq. (22.22), at any point in space 
the amplitude is E,,, = A/r ,  instead of a constant. Therefore, the intensity of a spherical wave is given by 
Z = ~e,(A/r)~/2 = cs,A2/2r2. The intensity is therefore 

seen 

to decrease 

with 

distance from the source as 
1/r2. 

The intensity at r = 2 is given as 5 x 10-3, so that I, = 5 x 10-3 = (~e,A~/2)(1/2)~. The intensity at 
r = 5 is I, = (~&,A~/2)(1/5)~. Thus Z5/Z2 = (2/5), = 0.16, or I ,  = 0.16(5 x 10-3) = 8 x 10-4 W/m2. 

The l/r2 dependence of the 

intensity 

could 

have 

been derived 

in 

a different manner. The energy 

per 

unit time, or power, 

from 

the source travels 

away 

uniformly 

in all directions. 

All the 

power 

emitted by 
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the source flows through the surface of a sphere enclosing 

the 

source. 

For concentric spheres at radii rI  

and r 2 ,  the power 

is 

evenly distributed over a surface area of nri and nr; , respectively. The intensity, 
which is the power 

per 

unit 

area, is therefore dependent on the distance as l/r2, since we divide the 
power by the area to get the intensity. 

Problem 12.16. An electromagnetic 

spherical 

wave is 

traveling 

outward from a point source. The 
intensity of this wave is 5 x 10-3 W/m2, when the distance from 

the 

source 

is 2 m. Calculate the 
maximum 

electric 

field of this wave when the distance is 2 m and when the distance is 5 m. 

Solution 

For 

a 

spherical wave at any point in space the amplitude is E,,, = A/r ,  the maximum electric field at 
that distance. Therefore, the intensity of a spherical wave is given by I = ~e~(E,,,, ,)~/2. Since intensity 

decreases with distance from the source as l/r2, (Problem 

12.20), 

E,,, decreases as l/r. 
At r = 2, the intensity is given as 5 x 10-’ = 3 x 108(8.85 x 10 -“)E:,J2, so E,,, = 1.94 V/m, as 

obtained in Problem 12.19. To get E,,, at r = 5, we use the fact that E,,, depends on r as l/r, giving 

E ,  = ($)E,  = 0.q1.94) = 0.78 V/m. 

Whenever 

energy 

moves in 

a certain direction, there is also a certain amount of momentum in that 
direction. For instance, a particle 

with 

kinetic energy 

())mu2 has a momentum given by mu. One can 
show, 

using 

the equations of electromagnetic theory, that an electromagnetic wave also has momentum, 
but the calculation is not simple. We therefore 

present 

only the result 

of the calculation. We get that the 
average momentum density, which is just the average momentum per 

unit 

volume 

in the 

region 

where 

the plane wave exists is: 

momentum density = Sa,/c2 = E,B,/2c2p,  ( 2 2.2 4 )  

with the direction of S in 

the 

direction of the momentum of the wave. 
From Eq. (12.13) we see that the 

intensity 

I can be expressed as: 

Energy flux density = I*,  = S,, = E ,  B,/2po ( 1  2.1 5 )  

and the 

energy density 

(from earlier work) 

is just 

energy 

density 

= U = Sav/c = E ,  B,/2p0 c (12.16) 

Finally, the momentum that passes through an area A perpendicular to the 

direction 

of propagation in 
time At is given by: 

momentum flux density = Sav/c = E,Bo/2cp,  ( 2  2.7) 

These formulas give the average 

values 

for these 

quantities for a sinusoidal wave, where we have S 

is E .  B0/2p , .  If we replace E ,  B,/2 by E B  and S,, by S in Eqs. (22.14)-(22.17) we get the instantaneous 
values 

for 

the given quantities. 

Problem 12.17. Sun light above the earth’s atmosphere has an average 

intensity 

of approximately 1.4 
kW/m2. If this sunlight is absorbed by a solar panel 

with 

an area of 5 m2, oriented perpendicular to the 
radiation direction, calculate (a) the energy absorbed per second; (6) the momentum absorbed per 
second; and (c) the 

force 

exerted 

on the solar panel by the 

sunlight. 

Solution 

(a) The intensity of the electromagnetic wave is I = S,, = 1.4 x 103 W/m2. The total energy absorbed, per 
second, by the panel is I A  = 1.4 x 103(5) = 7 x 103 W. 

(b )  To get the momentum absorbed by this area per second, we multiply the momentum flux density by 
the area. Thus the momentum absorbed is (S,,/c)A = 1.4 x 103(5)/3 x 108 = 2.33 x l o p s  N. 
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(c) Whenever there is a change in momentum, there is a force 

causing 

this 

change in momentum. We 
know that for an object of mass m the force equals ma = mAu/At = Ap/At.  Thus, the force equals the 
rate of change of the momentum. If the radiation has a momentum flux of S/c,  then the solar panel is 
absorbing SA/c units of momentum per second. This is the rate at which the momentum of the wave is 
decreased. The panel 

exerts 

the force that causes this change in momentum which equals F = Ap/ 

At = SA/c = 2.33 x 10-’ N in the direction opposite to S. By Newton’s third law, there is a reaction 
force of the wave on the panel of equal magnitude. In effect, the sunlight 

exerts 

a force on the panel. 

This example 

shows 

how 

one can use sunlight 

in 

space 

to not only 

supply 

power but 

to exert a 
force on a spacecraft. The force that is 

exerted 

on the 

surface 

can best be characterized by the 

force 

exerted 

per 

unit 

area, or pressure, P = F/A. This “radiation pressure” equals, 

for 

a totally absorbing 
surface, (SA/c)/A = S/c  = momentum flux density. 

We 

will see in the supplementary problems that a 
totally reflecting 

surface 

is subject 

to twice this 

force 

(but it absorbs no energy). 
For electromagnetic waves in ordinary matter, all the above equations still 

apply, 

provided 

that we 
use e for e0 , and p for po . 

Problems for Review and Mind Stretching 

Problem 12.18. A parallel plate capacitor is 

being 

charged 

at a rate of 5 x 10-3 C/s. Calculate the 
displacement current between the 

plates. 

Solution 

We know that the answer has to be 5 x 10-3 A, since the current in Ampere’s law must be the same 

inside the plates as it is outside the plates. 

We 

will nevertheless 

perform 

the calculation to show that this is 
true. The electric field between the plates is V / d ,  where V is the potential difference across the plates, and d 
is the distance between the plates. 

But 

V = Q / C ,  and therefore E = Q/Cd.  Now C = c o A / d ,  giving 

E 

= 

Qd/A&, d = Q / A E , .  The displacement current is E ,  AAE/At = E, A(AQ/At)/eO A = AQ/At = I = 5 x 10- A. 

Problem 12.19. A lightning 

bolt 

produces a flash of light and associated 

peal 

of thunder. The light 

is 

an electromagnetic radiation traveling at the 

speed 

of electromagnetic waves, while the thunder is a 
sound wave traveling 

with 

a speed of 345 m/s. If an observer 

hears 

the 

thunder 7.5 s after 

he 

sees the 
lightning, 

how 

far away 

did the lightning strike? 

Solution 

If the distance is called D, then the time it takes the lightning to reach the observer is 0/3.0 x lO’, and 
the time 

for 

the thunder is D/345. The difference in time is 7.5 s, and equals D[1/345 - 1/3.0 x 10’1 = D/ 

345, since 3.0 x 10’ b 345. Thus 7.5 = D/345, D = 2.6 x 103 m. 

Note. The time 

for 

the light to travel 

this 

distance is 2.6 x 103/3.0 x 10’ = 8.7 x 1OP6 s, confirming 
our assumption that the full 7.5 s represented the time 

for 

the sound wave to reach the obser- 
ver. 

Problem 12.20. How far does 

light 

travel 

in one year? 

Solution 

The distance is ct = 3.0 x 10’ x [365 x 24 x 60 x 601 = (3.0 x 108 m/s)(31.536 x 106 s) = 8.95 
x 1031 m = 9.46 x 10’’ km. This distance is called a “light-year”. 
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Problem 12.21. A powerful 

laser 

produces an electromagnetic plane wave. The power given to the 
wave is 10 MW, and the light 

beam 

is confined to an area of 2 mm2. What is the intensity of the laser 
beam? 

Solution 

The intensity of any electromagnetic wave is the power 

passing 

unit area. Thus, the intensity of this 
beam is (1.0 x 10' W)/(2 x 10-6 m2) = 5 x 1012 W/m2. 

Problem 12.22. Sun light above the earth's atmosphere has an average 

intensity 

of approximately 1.4 
kW/m2. 

(a) What is the maximum 

electric 

and magnetic field in 

this 

wave? 

(b) What is the 

maximum 

force exerted 

by these fields on an electron 

moving 

with 

a velocity of 
106 m/s 

in 

this 

sunlight? 

Solution 

(a) The intensity is given by I = CE, EO2/2 = 1.4 x 103 W/m2. Thus E, = [2(1.4 x 103)/(3 x lO'X8.85 

(b) The maximum force (magnitude) exerted by the electric field on the electron is eE,  = (1.6 x 10-l9 
CX1.03 x 103 V/m) = 1.6 x 10-l6 N. The maximum 

magnetic 

force 

is eoB, = 1.6 x 10-l9 
(106)(3.4 x 10-6) = 5.4 x 10-l9 N $ electric 

force. 

x 10- l2)l1l2 = 1.03 x 103 V/m. The magnetic field is B, = E,/c = 3.4 x 10-6 T. 

Note. For the magnetic force on the electron to be the same as the electric 

force 

the electron would 
have to be traveling at exactly the speed of light-which is not possible according to the theory 
of relativity. 

Supplementary Problems 

Problem 12.23. The displacement current through an area of 5 x 10-4 m2 is 3 mA. What is the rate at which the 

electric field is changing in this region? 

Ans. 6.78 x 10" V/m s 

Problem 12.24. How long does it take for 

light 

to travel to (a) the moon; (b) the sun; and (c) a star at a distance of 
3 light years? 

Ans. (a) 1.27 s; (b) 497 s = 8.3 min; (c) 3 years 

Problem 12.25. In air, light 

travels 

with 

a velocity that is 0.03% 

smaller 

than in vacuum. What is the difference 

in 

time that it takes for 

light 

to travel 103 m in air and in vacuum? 

~ n s .  1.00 x 10-9s 

Problem 12.26. Water has a dielectric constant of 1.77 at the frequencies of visible 

light, 

and essentially no mag- 
netic properties. What is the velocity of light 

in 

water? 

Ans. 2.25 x 10' m/s 
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Problem 12.27, An electromagnetic wave is 

traveling 

in 

the + y direction with its electric field in the + x direction. 
What is the direction of the magnetic 

field? 

Ans. - z direction 

Problem 12.28. What is the frequency of an electromagnetic wave 

whose 

wavelength 

equals the diameter of the 
earth? 

Ans. 23.4 Hz 

Problem 12.29. An electromagnetic wave is given by E = 20 cos 2n(ft - 3.3 x 10-7x) in standard units. 

(a) What is the amplitude of the wave? 

(b) What is the wavelength of the wave? 

(c) What is the frequency of the wave? 

Ans. (a) 20 V/m; (b) 3.03 x 106 m; (c) 99 Hz 

Problem 12.30. Sunlight near the surface of the earth has an intensity of 1.1 x 103 W/m2. A lens, of diameter 6 
cm, concentrates the sunlight it collects onto a circle of diameter of 1.5 mm, as in Fig. 12-8. What is the intensity of 
the light at this 

small 

circle? 

Ans. 1.76 x 106 W/m2 

Problem 1231. A 100 watt light bulb is 25% efficient in converting electrical 

energy 

into light. What is the 
intensity of the light 

from 

the bulb at a distance of 2 m? 

Ans. 0.50 W/m2 

Problem 1232. Sunlight has an intensity of 1.4 x 103 W/m2. The light is totally reflected 

from 

a surface of area 
6.5 m2. 

(a) What is the force on the surface? 

(b) What is the radiation pressure on the surface? 

Ans. (a) 6.07 x 10-’ N; (b) 9.33 x 10-6 
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Problem 12.33. An electromagnetic wave has a frequency of 3 x 106 Hz, and an intensity of 1.8 mW/m2. 

(a) What is the amplitude of the wave? 

(b) What is the wavelength of the wave? 

(c )  What is the radiation pressure of the wave on a totally absorbing surface? 

Ans. (a) 1.16 

V/m; 

(b) 100 m; (c) 6 x 10-l’ kg - m/s 



Chapter 13 

Light and Optical Phenomena 

13.1 INTRODUCTION 

In the previous 

chapter 

we learned that light was one form of electromagnetic wave. As such it has 
a wavelength and frequency whose product 

equals 

the 

speed of propagation for all electromagnetic 
waves. This speed was predicted and verified to be c = 2.9979 x 108 m/s in vacuum (it is known to 
many more significant figures, but in our calculations we will generally use the value of 3.00 x 108 m/s). 
In a dielectric, the speed of light differs from its 

value 

in vacuum, giving rise to some of the 

phenomena 

we discuss in this and the next chapter. We will assume that the speed of light in vacuum equals c in our 
frame of reference, and defer to 

Chap. 

15 the question of what speed light would have in a frame of 
reference moving relative to us. The wavelength of visible light ranges roughly from 400 nm (violet) to 
800 nm (red). 

Discussions of optical 

phenomena 

are 

usually divided into two areas, 

“geometrical 

optics” and 
“physical 

optics”. 

In 

physical optics we treat 

the 

phenomena 

that arise due to 

the 

wave nature of the 

light, 

insofar 

as they produce 

the 

type of interference already discussed briefly in Chaps. 1 and 2, as well 
as other similar interference phenomena. We will discuss those effects in Chap. 14. In 

Chaps. 

12 and 13 
we will discuss geometrical optics, the 

phenomena 

that arise when light can be considered 

to 

be ade- 
quately described by rays traveling in straight lines (perpendicular to the wave fronts) that change speed 
in moving from one medium to another. 

This 

is the case as 

long 

as the 

objects 

through 

which the light 
travels have dimensions that are much larger than 

the 

wavelength of the wave. 
In Sec. 12.5 of the 

previous 

chapter 

we showed that in three 

dimensions 

waves can be spherical 
(near a point 

source) 

or cylindrical (near a line source) or planar (far away from the 

source). 

These 
descriptions refer to the geometrical shape of the wave front surfaces in space at any 

instant, 

i.e. the 
surface over which the electric and magnetic field displacements are everywhere in phase. For plane 
waves, these wave front surfaces are planes perpendicular to the 

direction 

of travel of the wave. The 

geometry is illustrated in Fig. 13-1. The 

distance 

between adjacent wave fronts is the wavelength, and 
has been exaggerated in size in the figure for clarity (typically 1 4  other human scale dimensions). As 
long as this wave continues to travel in the same medium, there will be no 

change 

in this pattern. 
However, if the wave encounters another medium, in which the speed is different, there will obviously be 
changes in the 

pattern. 

These changes are the subject of the 

remainder 

of this chapter. 

Fig. 13-1 

329 
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13.2 REFLECTION AND REFRACTION 

In 

Chap. 

1 we discussed what happens when a wave on 

a 

string encounters the 

end of the string. 
We found that the wave is reflected back along 

the 

string, 

either with a change in phase or without such 
a change. In that case, the wave had no opportunity to be transmitted past the 

boundary, 

since the 
string ended at that point. Furthermore, 

the 

string 

was one-dimensional, allowing for travel only along 
the axis of the string. We also considered the possibility of a wave on 

a 

string encountering a junction 

where the speed of the wave changes. In that case, we stated that the wave will be partially transmitted 
and partially reflected. The same general ideas are applicable for the case of a wave of light, with the 
additional generalization that the light waves can travel in three dimensions and 

are 

not 

restricted to 
one-dimensional travel. This was already discussed in 

Chap. 

2 in the context of sound waves and we will 
repeat it here in greater detail in the specific context of light waves. We will first discuss the case which 
is most nearly identical to the one-dimensional case of a wave on 

a 

string, 

namely the case of “normal 
incidence ”. 

Suppose we have a 

planar 

boundary 

between two materials in which light has a different speed, as 
in Fig. 13-2. We define a 

quantity 

called the “index of refraction”, n, in terms of the velocity of light in 
the material, U, relative to its velocity, c, in a vacuum: 

n = c/u (13.1) 

In Table 13.1 we list the index of refraction of some typical materials. 

Table 13.1 Indices of Refraction 

Material Index of refraction, n 

Vacuum 1 .o0o,oO0,0 
Air 1 .OOO,29 
Water 1.33 
Alcohol 1.36 

Diamond 2.42 
Glass 1.4-1.6 

In the figure, the incident wave is in vacuum, with a wavelength 1, and traveling in the direction of 
the 

normal 

to the 

surface. The reflected wave also travels in the direction normal 

to 

the surface, but 

Vacuum n = CJV 
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away from the surface, and has the same 

wavelength 

as the incident wave. Similarly the transmitted 
wave also travels in the direction normal to the surface, but with a different 

speed. 

Since in general 

U = A j =  A/T, it follows that if U changes A must change and our transmitted light wave will have a 
different 

wavelength, 

A’. The frequencies of the transmitted and reflected waves are the same as that of 
the incident waves since the rate of oscillation 

in 

the disturbance is precisely what 

is 

propagated from 
one location to the next. 

Since 

T = l/fis constant we can calculate 

the 

new wavelength as the distance 
traveled during one period, or 

A‘ = uT = uA/c = A/n (23.2a) 

We will show later that the speed of light 

in 

a material (or 

the 

speed 

of anything carrying mass or 
energy) 

is 

less than c, and therefore n > 1. Then A’ < A, as we have drawn in the figure. The relative 
intensity of the reflected and transmitted light can also be 

calculated 

in terms of the 

indices 

of refraction, 
by using Maxwell’s equations, but we will not concern ourselves 

with 

that calculation at this 

time. 

Although Fig. 13-2 is 

for 

a case 

in 

which the incident light 

was 

in a vacuum, 

this 

is 

not necessary. The 
same phenomena would 

occur 

if the incident material had index of refraction n, and the second 
material had index of refraction n , .  In that case 

we 

would 

have 

u2 = c / n ,  and U, = c /n , ,  so A, = u,T = 

u2A, /u ,  and 

( I  3.2b) 

The relative 

intensities 

would 

also change, but not the basic 

ideas. 

We 

now 

turn our attention to the 

case 

of a wave which is 

incident 

on the planar surface bounding 
the two regions, but not at normal incidence. 

Since 

the direction of propagation is always perpendicular 
to the wave front the orientation of the wave is 

completely 

determined 

by this 

direction. 

It is therefore 
convenient to draw a directed 

line 

segment 

along the direction of propagation called the “light ray” or 
just ray, and determine what happens to the ray at reflection and refraction. In Fig. 13-3, we show an 
incident wave represented by a ray whose direction of travel 

is 

at an angle 8, to the normal to the 
surface. The plane defined by the 

incident 

ray and the normal to the surface at the point of intersection 
with the ray is 

called 

the 

plane of incidence, 

which 

we have drawn as the plane of the figure. The 
incident ray is 

in 

a material with an index of refraction n,, so that its 

wavelength 

is A, = A/n,, where A is 
the wavelength 

in 

vacuum. 

The angle 8, between the ray 

direction 

and the direction of the normal is 
called the angle of incidence. When 

the 

incident 

wave impinges on the 

surface 

it 

is partially reflected and 
partially transmitted. We have drawn the reflected ray as traveling in a direction making an angle 8, to 
the direction of the normal, and the transmitted ray (called the 

refracted 

ray) traveling 

in 

a direction 
making an angle O2 to the normal. The incident 

ray, 

reflected ray, transmitted ray and normal to the 
surface as drawn in the 

figure 

all 

lie in the same 

plane, 

so the 

plane 

of reflection and plane of refraction 
are the same as the plane of incidence. The wavelength of the reflected ray is clearly A, since it is 
traveling in the same material as the incident 

ray. 

The refracted 

ray, 

however, 

has a different wave- 
length, A, = A/n2 ,  since it is in a different material with an index of refraction n 2 .  We 

have 

chosen 

n2 > n, in this 

figure, 

and therefore A 2  < A,, as drawn in the figure. We will use this 

figure 

to show that 
the angle of reflection equals the angle of incidence, i.e. : 

8, = 8, 

and that the angle of refraction is given by “Snell’s law”: 

n ,  sin O1 = n2 sin O2 

(23.3) 

(2  3.4) 

It is important to note, as can be seen from the geometry in the figure, that the angle of incidence, 
reflection and refraction also represent the angles that the wave fronts of the 

incident, 

reflected and 
refracted waves respectively make with the surface. 

Problem 13.1. Use 

Fig. 

13-3 to show that the angle of reflection equals the angle of incidence. 
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Fig. 13-3 

Solution 

The distance between adjacent wave fronts is the wavelength and is the distance traveled during one 
period. The width of the incident ray has been chosen so that when point A of the wavefront AB of the 
incident 

wave 

reaches 

the surface, point B is still one wavelength away from the surface. 

During 

the time of 
one period that it takes for this wavefront to reach the surface at C ,  the part of the wavefront that was 
reflected at A has traveled one wavelength to D. The wavefront of the reflected 

ray 

is now at CD. Both AD 
and BC are equal to one wavelength, and therefore equal to each other. Since right triangles ABC and CDA 

have a common hypotenuse, AC, as well as one equal side AD = BC, the other side 

is 

also equal by the 
Pythagorean theorem (AB = CD) and the two triangles are congruent. Therefore, 8, = 8,. 

Problem 13.2. Use Fig. 13-3 to show that n, sine,  = n2 sine, (Snell’s law). 

Solution 

As in the previous problem, we note that when 

wavefront 

AB of the incident 

wave 

reaches 

the surface 

at A, point B is still one wavelength away from the surface at C, so BC = Al.  During the time that it takes 
for this part of the wavefront to reach C, the refracted 

wavefront 

has traveled one wavelength 

from 

A to F 
in material 2. Thus, the distance AF will equal 1, = Al(nl/n,) from Eq. (13.2b). In right triangle AFC the 

angle ACF equals 8,. Then sin 8, = AF/AC = R,(n,/n,)/(AC). Similarly, in right triangle ABC, the angle 
BAC equals 8,, and sin 8, = BC/AC = A,/(AC). Dividing sin 8 ,  by sin 8, we get: sin B,/sin 8, = 

A,/[A,(n,/n,)] = n,/n,  or n, sin 8, = n, sin 8,. 
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In the figure we have 

assumed 

that n, < n,, and therefore A, > A, and 8, > 8,. The derivation of 
Snell's law could just as easily 

have 

been deduced 

from 

a figure in which n,  < n,, and therefore A, < 
A,. For the case of n, < n, which we used, the refracted ray was 

bent 

toward the normal (8, > 8,). If 
n, > n,, then the refracted 

ray 

would 

be bent 

away 

from 

the normal and 8, < 8,. The reflected ray is 
not dependent on the relative sizes of the indices of refraction, as is evident 

from 

Eq. 

(13.3) as derived in 
Problem 13.1. 

In deriving the relationship for the angles of reflection and refraction we used a figure in which the 
wave fronts were clearly 

depicted. 

In general, we do not need to draw the figures in such 

detail, 

and we 
usually draw only the direction of the incident, 

reflected 

and refracted 

rays, 

as shown in Fig. 1 3 - q ~ )  for 
n, < n, and in Fig. 13-4(b) for n, > n, , 

Problem 13.3. Light 

is 

incident from 

air to glass (n = 1.51). The light has a wavelength of 541 nm 
(1 nm = 1.0 x i O - 9  m) in air. 

(a) What is the wavelength of the light 

in 

the glass? 

(b) If the angle of incidence is 37", what are the angles of reflection and of refraction? 

(c) If the angle of incidence is 85", what are the angles of reflection and of refraction? 

Solution 

(a) The wavelength in the glass will equal A, = A/n, = (541 nm)/1.51 = 358 nm, since the wavelength 

in 

air 
is essentially the same as the wavelength 

in 

vacuum (n z 1). 

(b) The angle of reflection equals the angle of incidence, so 8, = 37". The angle of refraction can be calcu- 
lated using Snell's law, n, sin 8, = n, sin 8, -+ (1) sin 37" = (1.51) 

sin 

8, --* sin 8, = 0.399 -+ 8, = 23.5'. 

(c) The angle of reflection equals the angle of incidence, so 8, = 85". The angle of refraction can be 

calcu- 

lated using Snell's law, n, sin 0, = n2 sin 0, -+ (1) sin 85" = (1.51) sin 8, -+ sin 8, = 0.0.660 --* 8, = 

41.3'. 

We 

see 

in the last problem that, since n, < n,, the angle of refraction is less than the 

angle 

of 
incidence. This can be seen in general 

from 

Snell's law 

[Eq. 

(13.4)] which implies that n, < n, + sin 
8, < sin 8,. Thus, for any angle of incidence (0 I 8, I 90"), 0 I 8, I 90" as well. However, if n, < n,, 

then Snell's law 

implies 

sin 

8, > sine,, and for certain angles of 8, this will require 

sin 

8, > 1 and 
there will be no solution for 8,. This is investigated 

in 

the next 

problem. 

Problem 13.4. Light is incident 

from 

glass 

(n = 1.51) to air (n = 1). 

Fig. 13-4 
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If the angle of incidence is 37", what are the angles of reflection and of refraction? 

If the angle of incidence 

is 

85", is there a solution for the angle of refraction? 

What is the 

largest 

angle of incidence 

for 

which a solution exists 

for 

the angle of refraction? 

Derive a formula for the largest 

angle 

of incidence that produces a solution for e2,  in terms of the 
indices of refraction. 

Solution 

(a) The angle of reflection is always equal to the angle of incjdence, and therefore equals 37". The angle of 
refraction is given by n, sin 8, = n, sin 8, -+ (1.51) sin 37" = (1) sin 8, = 0.909 + 8, = 65.3'. 

(b) The angle of reflection is the same as the angle of incidence, and therefore equals 85". When we try to 
calculate the angle of refraction we find that (1.51) sin 85" = sin 8, = 1.50, which 

exceeds 

1, and there- 

fore 

there 

is no solution for 8,. 

(c) The largest 

value 

that we can have 

for 

sin 

8, is 1. This occurs when (1.51) sin 8, = 1, or sin 8, = 

1/1.51 = 0.662, 8, = 41.5'. At this angle of incidence, 8, will equal 90". 

(d) The largest 

value 

that we can have for 

sin 

8, is 1, which occurs when 8, = 90". At this angle of 
incidence, 

which 

is called the critical 

angle, 

8,, we have n, sin 8, = n2(1), or 

sin 8, = n2/n1 (23.5) 

This formula for the critical 

angle 

shows 

that, as noted earlier, 

such 

an angle 

exists 

only for 

the case 
of n, < n,, where sine, < 1. When light is incident at an angle greater than the critical 

angle, 

no light 

is 

refracted so all the light 

must 

be reflected. We call 

this case one of "total reflection". Total reflection 

is 

very useful for bending light at a surface without losing any of the energy to transmission through the 
surface. 

Problem 13.5. A transparent cylindrical 

bowl 

closed 

at both ends and sitting on its 

side 

is 

half filled 
with water (n = 1.33) with the other half containing air (n = l), as in 

Fig. 

13-5. A ray of light is directed 
to the center of the bowl 

from 

a source that can be rotated to point to the center 

from 

any angle 

Exit 

ray 

,- . 
Light source free 

to rotate on a 
concentric circle 

Cylindrical bowl 
cross section 

U 

Fig. 13-5 
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desired, as shown in the figure. We want light to exit the bowl at an angle of 25" above the air-water 
surface, as shown. 

(a) At what 

angle 

must 

one place the light 

source 

so that the light 

exits 

at this 

angle 

after 

reflection 
from the surface? 

(b) At what 

angle 

must one 

place the 

light 

source 

so that the light exits at this 

angle 

after refraction 

from the surface? 

(c) At what 

minimum 

angle with 

the vertical must one place the light 

source 

so that there is no 
refracted ray? 

Solution 

(a) The light 

must 

enter from the air side 

in 

order to exit as required 

after 

reflection. Since the angle of 
incidence 

equals 

the angle of reflection, the incident 

ray 

must 

make the same 

angle 

with 

the normal as 
the reflected ray. The normal direction is the vertical 

direction, 

and the angle of the reflected ray 

with 

the normal is therefore 65". The incident 

ray 

must make the same angle 

with the 

normal, 

namely 

65", 
and the angle 0' is therefore 25". 

Note. For reflection, we could 

have 

equated 

the anj$es between the rays and the surface 

instead 

of the 
angles between the rays and the normal, and gotten the correct 

answer. 

However, for refraction 

we must use the angles between the 

rays 

and the 

normal 

in 

Snell's law to get 

the 

correct answer, 

and it is advisable to always use these 

angles, 

even for reflection. 

(b) In this 

case 

the light 

is incident 

from 

the water 

onto the surface, and refracted into the 

air. 

The angle of 
incidence is labeled 8 in the figure, and the 

angle 

of refraction is 65". To obtain 8 we use Snell's law, 
(1.33) sin 8 = (1) sin 65" + sin 8 = 0.681 + 8 = 43.0". 

(c) The angle of incidence 

must 

equal 

the critical angle. There is a 

critical 

angle only for incidence from 

the water to the air, since 

we 

require that n, > n, . For that case, we need sin 8, = n2/n1 = 1/1.33 = 

0.752 -+ e, = 48.80. 

Problem 13.6. Light is incident 

on 

a 

prism of glass (n = 1.46) at an angle 4 with the surface, as shown 
in Fig. 13-6. The prism has 

base 

angles 

of 65", and the ray is refracted so that it moves parallel to the 
base 

within 

the prism. 

(a) Calculate the angle 6. 

(b) When the 

light 

leaves the prism its direction of motion is at an angle 6 from 

the 

incident direction. 

Calculate 

this 

"angle of deviation". 

Fig. 13-6 
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(c) If the 

angle 

at 0 were equal to 60" (instead of 65") all else being the 

same, 

what 

would the angle of 
deviation be? 

Solution 

(a)  At point A we draw the normal to the surface. The angle of incidence, 01, will equal 90" - 4. Since the 
path of the light in the prism is parallel to the base, the angle of refraction, 8,, will equal 
90 - 65 = 25". Using Snell's law, we have: (1) 

sin 

8, = (1.46) sin 25" = 0.617 + 8, = 38.1" + (b = 51.9". 

(b) We now draw the normal at point B where the light 

impinges 

on the second 

surface 

of the prism. 

Since 

the path of the light is parallel to the base, the angle of incidence is = 25". Using Snell's law again, 
we have (1.46) 

sin 

25 = (1) 

sin 

e,. Thus sin 0'' = 0.617 + 8; = 38.1". To get the angle of deviation we 
note that the angle CAB = 8, - 8, = 13.1". Similarly, the angle CBA will equal V2 - = 13.1". The 
angle of deviation, 6, is just the sum of these two angles, so 6 = 26.2". 

(c) Changing the angle at D does not alter the refraction at A. Thus the angle 4 is still equal to 51.9", and 
the angle CAB is still 13.1". But the angle of incidence at B, W,, is now 30" (instead of 25"), and 
therefore 

(1.46) 

sin 

30 = (1) 

sin 

@, = 0.73 -, @, = 46.9". Now, angle CBA = @, - 8; = 16.9". Then 

6 = 13.1 + 16.9 = 30". 

Problem 13.7. A source of light is located at a 

distance 

of 0.72 m below the 

surface 

of water (n = 1.33), 
as in Fig. 13-7. The light emerges at the 

surface 

after undergoing refraction 

at the surface. Show 

that 

all 
the emerging light is all within a circle at the surface, and calculate the radius of the circle. 

Solution 

Consider the ray SA from the source which 

impinges 

on the surface at A. It is refracted at this surface 
with an angle of refraction that is greater than the angle of incidence 

since 

the index of refraction of water is 
greater than that of air. If we choose rays with larger angles of incidence that impinge on the surface further 
from the point 0 which is vertically above the source, the emerging ray will be refracted further, until, at the 
critical angle of incidence, there will no longer 

be 

any emerging 

light. 

At that distance from 0 in 

all 

directions along the surface the light 

ceases 

to emerge. Thus the light is restricted to a region 

within 

a circle, 
whose radius is the distance OB from 0 at which the incident 

ray 

is at the critical 

angle. 

We 

note that 

OB = (OS) tan 8, , since angle OSB equals 8,. Thus the circle has a radius r = OB = (0.72 

m) 

tan 8,, where 
sin 8, = n2/n1 = 1/1.33 -+ 8, = 48.8", tan 8, = 1.14, r = 0.82 m. 

Fig. 13-7 
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Problem 13.8. A flat slab of glass, of thickness D, has an index of refraction of 1.41. Light is incident 
on the slab at an angle of 8, as shown in Fig. 13-8(a). Prove that the emerging 

ray 

is parallel to the 
incident 

ray, 

i.e. that 8” = 8 and show how one 

can 

calculate the displacement, 

d, of the 

emerging 

ray 

from the path of the 

incident ray. 

Then carry 

out the calculation for 8 = 18”, and D = 0.0192 m. 

Solution 

The angle of refraction at the bottom surface is given by (1) sin 8 = (1.41) sin 8’. Since the two sides of 
the slab 

are 

parallel, the angle of incidence at the top surface will equal the angle of refraction, 8’, at the 
bottom surface. Therefore the angle of refraction at the 

top, 

8”, is given by (1.41) sin 6’ = (1) sin 8” and from 
above this equals (1) sin 8. Thus 8“ = 6. 

To calculate the value of the displacement, we note from Fig. 13-8(b), that d = DE. In turn DE = DC 
cos 8, and DC = BC - BD. Further, BC = D tan 0 and BD = D tan 8’. Thus d = D(tan 8 - tan 8’) cos 8. If 
we are given 8, we can calculate 6’, and given D we can obtain the displacement d. For the numbers given, 
we get 8’ = 12.66”, tan 6 = 0.325, tan 8’ = 0.225, cos 8 = 0.951 and finally d = 1.83 x 10-3 m. 

13.3 DISPERSION AND COLOR 

Thus far we have 

assumed 

that the index of refraction of a 

material 

is a constant which does 

not 

depend on the wavelength of the light that is incident. 

This 

is 

true only 

for 

vacuum, where the speed c is 
the same 

for 

all wavelengths and therefore n equals 1 for all wavelengths. However, for 

materials 

there 

is 
a 

small 

dependence 

of the velocity of light, and therefore n, on the wavelength. This 

property 

is called 
“dispersion” since it can be used to disperse 

the 

various 

wavelengths that are included in a beam of light 
into different refractive paths, 

creating 

a 

“spectrum”. 
In Table 13.2 we list some typical values showing the variation of n with wavelength in a 

particular 

glass. 

Table 13.2 Variation of n with Wavelengtb 
~~ 

Color Wavelength in vacuum, nm Index of refraction, n 

Red 660 1.520 
Orange 610 1.522 
Yellow 580 1.523 
Green 550 1.526 
Blue 470 1.531 
Violet 410 1.538 

Fig. 13-8 
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As a result of the dispersion, 

white 

light refracted in 

a prism will be separated into its constituent 
wavelengths 

after 

passing 

through the prism. An example 

is 

given in the next 

problem. 

Problem 13.9. A prism 

is 

made out of glass 

whose 

index 

of refraction 

varies 

with wavelength 

as given 
in Table 13.2. The light enters the prism 

normally, 

as shown 

in 

Fig. 

13-9, and exits the prism at A at an 
angle #. Calculate the value 

for 

4 at the wavelengths given in the 

table. 

Solution 

For the geometry of this prism the light is incident on the glass-air 

surface 

at A at an angle of 
incidence 8 of 30". The angle of refraction is given by: n sin 30 = sin 8 , ,  where 4 = 90 - 8,. We use the 
values 

for 

n given 

in 

the table for the various wavelengths. At 1 = 660 

nm 

(red), 

we get sin 8, = (1.520) 
sin 30 = 0.760 -+ 8, = 49.46' + 4 = 40.53'. Doing the same at the other wavelengths, we find the values 
given in Table 13.3. 

We note that the spectrum ranges 

over 

angles from 40.53 to 39.74, a spread of 0.79", with the longest 
wavelengths deviated the least. It is generally the case that a 

prism 

deviates 

the wavelengths in this order, 
i.e. n increases as 1 decreases. 

One way to measure the variation of the index of refraction 

with 

wavelength accurately 

is to use the 
phenomenon of total reflection. This is illustrated in the next 

problem. 

Problem 13.10. A prism 

in 

the form of a half circle is made of glass. The prism 

can 

be rotated about 
the symmetry 

axis 

of the full cylinder, as shown in cross-section 

in 

Fig. 

13-10. Here point A is on the 
symmetry 

axis 

and is at the center of the circular cross-section. 

Light 

of a particular wavelength is 
incident at A after entering the prism 

shown. 

Because 

of the circular 

surface 

presented 

to the incident 
ray, 

light 

enters the prism at right 

angles 

for 

any orientation about point A. It then hits the planar 
surface at incident 

angle 

8, and refracts at larger angle 8,. Some 

light 

reflects at angle 8,. The prism is 
rotated about A until 8, = 90°, at which point the refracted 

ray 

disappears and the reflected ray has 

Table 133 Variation of 4 with angle 

Color Wavelength, nm Index # 

Red 660 1.520 40.53 
Orange 610 1.522 40.45 
Yellow 580 1.523 40.40 
Green 550 1.526 40.27 
Blue 470 1.531 40.05 
Violet 410 1.538 39.74 
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Normal z 

Fig. 13-10 

maximum intensity, giving total reflection. Determine 

the 

index of refraction from the angle 4 shown in 
the figure. 

Solution 

The angle of incidence at A is equal to 90 - 4. Thus n sin (90 - 4) = (1) sin 8,, and 8, = 90" at total 

reflection. Thus n sin (90 - 4) = n cos 4 = 1, giving n = l/cos 4. 

A rainbow is another case in which the 

variation 

of index of refraction with wavelength leads to a 
spectrum. The detailed 

analysis 

is quite 

complicated, 

and 

we will merely give one example which can 
show how this dispersion 

can 

lead to the effect. The 

rainbow 

is seen when light encounters 

a 

region of 
water drops and the light emerging from the drops is viewed from the general direction of the 

original 

light. In 

the 

next 

problem we investigate 

the 

angle at which the 

light 

returns in one possible such case. 

Problem 13.11. A ray of light is traveling 

horizontally, 

and 

is incident on 

a 

spherical droplet 

of water 
at a height of h above 

the 

center, as 

shown in Fig. 13-10. The light is first refracted into the 

water 

at A, 
then reflected at B, and finally refracted into the 

air 

at C. We ultimately wish to calculate 

the 

angle 

6, 
through which the light has been deviated. 

(a) Calculate 

the 

angle O2 through which the light has been refracted at A, in terms of n, the 

radius 

of 
the 

droplet 

R, and 

the 

parallel displacement, 

h, of the 

incident 

ray from the symmetry axis of the 
droplet. 

(6) Calculate 

the 

angle of incidence at B (angle ABO), and the 

angle 

of reflection (angle CBO), in terms 

(c) Calculate 

the 

angle of incidence at C (angle BCO) and the 

angle 

of refraction O f ,  in terms of O1 and 

8 2  * 

(d) Calculate 

the 

angle of deviation, 6, in terms of 8, and 8,. 

(e) For n = 1.33, and h/R = 0.66, calculate 

the 

angle 

6. 

cf) Does 

this 

angle of deviation increase or decrease if one increases the index of refraction 

slightly? 
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Soh tion 

(a) Using Snell’s law, (1) sin 8, = n sin 8, = (l)h/R (from triangle ADO). Thus, sin 8, = h/nR. 

(b) Triangle A B 0  is an isosceles 

triangle, 

since 

two sides are equal to radii of the circle. Thus, the base 
angles are equal, and the angle of incidence at B (angle ABO) equals 8,. The angle of reflection 

(angle 

CBO) equals the angle of incidence, or 8,. 

(c) Triangle OBC is also an isosceles 

triangle, 

with 

two equal sides as radii of the circle. 

Therefore 

the base 
angles are equal. Thus the angle of incidence at C (angle OCB) equals 8,. The angle of refraction, O f ,  is 

given by n sin 8, = (1) sin 8,. But we know from part (a) that n sin 8, = (1) sin 8,. Thus Of = 8,. 

(6) The angle AOC is composed of two equal angles each of which is the exterior angle to one of the 
isosceles triangles A B 0  or CBO. Those exterior angles are therefore 

each 

equal to 28, and the angle 

AOC equals 48,. The angle 6 equals this angle minus 28, (since 8, = 8,), so 6 = 48, - 28,. 

Note. Equivalently, angle ABC = 28,, 6 is 

less 

than this 

because 

the incident and final 

refracted 

rays 
are each tilted around each other relative to lines BA and BC, respectively, by (8, - 8,). Thus 

(e) For n = 1.33 and h / R  = 0.66, we have 

sin 

8, = 0.66 and sine, = 0.66/1.33 = 0.496 -+ 8, = 41.3’ and 
8, = 29.8”. Then 6 = q29.8) - 2(41.3) = 36.6’. 

(f) If n increases 

slightly, 

8, will decrease 

slightly. 

In that case, 6 will also decrease 

slightly, 

and the exiting 
ray will be bent somewhat more upwards in the figure. 

6 = 28, - 2(e, - 8,) = 48, - 28,.  

We 

see 

from this problem 

that if n varies 

with 

A, then 

the 

different 

colors will exit in slightly 
different 

directions. 

The violet, 

with 

a somewhat larger n, will be bent upwards more than the red. If a 
person on the ground looking at the droplets of water is at the correct angle to see the red 

light, 

the 
violet 

light 

will be bent too much 

for 

him to see (see Fig. 13-11). However, droplets that are lower 

in 

the 
sky will be at the correct angle 

for 

the violet light, and at that height, he will see violet and not red. 
Thus, there will be a spectrum, with the red on top and the violet on the bottom producing a rainbow. 
The arc of the rainbow is part of a circle. To understand this “arc” effect we note that the sun’s rays are 
essentially 

parallel 

over 

the whole 

region 

of sky that a person can see, since the sun is so far 

away. 

Thus 
all the droplets that can contribute red 

light 

to the eye of an observer do so along lines that make the 
same angle 6 with the direction of the sun’s rays, 

hence 

sweeping 

out a cone of half angle 6 about the 

Green 

Violet 

Fig. 13-11 
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sun's ray 

direction. 

The situation actually 

is 

more complicated, since we did not account for variations 
in h as light 

hits 

a single droplet, but the general 

idea 

is 

as has been discussed. 

Problems for Review and Mind Stretching 

Problem 13.12. Light 

is 

incident from 

air onto a flat boundary with material with 

index 

of refraction 
n = 1.68. The light is deviated through an angle of 6 = 28.3', i.e. the angle 

between 

the incident 

ray 

direction and the refracted 

ray 

direction 

is 28.3'. What is the 

angle 

of incidence? 

Solution 

We know that (1.00) sin 8, = (1.68) sin 8,. We are also given that 8, - 8, = 28.3'. Then 8, = 8, - 28.3, 
and sin 8, = (1.68) sin (8, - 28.3) = (1.68)[(sin O,)(cos 28.3) - (sin 28.3Wcos O,)] = 1.479 sin 8, - 0.796 cos 8,, 
where we have used the trigonometric identity for 

sin 

(A - B). Then 0.479 sin 8, = 0.796 
cos 8, + tan 8, = 1.66 -+ 8, = 59.0'. We can check on this 

result 

by calculating 8,. Since 

sin 

8, = 

(sin 59.0)/1.68 = 0.510 -+ 8, = 30.7, and S = 59.0 - 30.7 = 28.3 as required. 

Problem 13.13. Light is incident 

from 

water 

(n = 1.33) onto glass (n = 1.52) at an angle of incidence of 
30'. After traveling through the glass to the opposite parallel 

side, 

the light 

emerges 

into air (n = 1.00), 
as in Fig. 13-12. 

(a)  What is the angle of refraction, 02,  in the 

glass 

at the first 

surface? 

(b)  What is the angle of refraction, O,, with which the light is transmitted into the air at the second 
surface ? 

(c) Light is also reflected back into the 

water 

at the first 

surface 

(see Fig. 13-12). Show that additional 
light 

also 

re-enters 

the water 

from 

the 

glass, and that the 

angle 

with 

which the rays enter the water 
is the same 

for 

all rays. 

(d) Show that additional light 

is 

transmitted to the air from the glass, and that the angle 

with 

which 
the 

rays 

enter the air is the same for 

all 

the rays. 

Solution 

The angle of incidence 

is 

30', and therefore the angle of refraction is given by (1.33) sin 30" = (1.52) 
sin 8, -+ sin 8, = 0.4375 -+ 8, = 25.9'. 

Since the surfaces are parallel, the angle of incidence at the second 

surface 

equals the angle of refrac- 

tion at the first 

surface. 

Thus (1.52) sin 25.9" = (1.00) sin 8, + sin 8, = 0.4375 + 8, = 41.7'. 

The light that is reflected at the first 

surface 

is reflected 

at the angle of incidence of 30'. The refracted 
light, at an angle of 8,, after 

traveling 

through the slab, is partially reflected at surface 2, at the same 
angle 8,. When this light 

reaches 

surface 

1, part of it is reflected 

back 

into the glass, and part is 

transmitted into the water. The reflected part travels 

back 

to surface 2, where some of it is reflected 
back to surface 1. This process continues until the intensity is too small to consider further reflections. 

All the rays that return to surface 1 return at  an angle of incidence equal to 8,, since the back and 
forth reflections at surface 1 and at surface 2 all are at the same angle 8,. When light is transmitted 
back into the water as a result of refraction from the glass, the angle of refraction into the water is 

given by (1.52) sine, = (1.33) sine,, where 8, equals the angle of refraction into the water. But we 
know from the initial 

refraction 

that (1.33) sin 30 = (1.52) sin 8,, so that 8, = 30'. Thus all the rays 
from the glass enter the water at the same angle of 30'. 

The rays that reach 

surface 

2 after 

reflection 

from surface 1, as discussed 

in 

part (c) are incident at an 
angle of 8,. Since 

all 

the rays are incident at this same angle, 

they 

are all partially refracted into the air 
at the same angle, 8,. 
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Problem 13.14. Light is emitted from a source at a depth of D below the surface of water (n = 1.33). 
The light incident on the surface parallel to the normal emerges along the normal, while the light 
incident at a small angle to the normal is 

refracted 

at the surface. If one projects these two emerging 
rays backward, they meet at a point along the normal (see Fig. 13-13). The eye, 

when 

viewing 

the light 
from the source, projects these rays back automatically and thinks that the light came from the point of 
convergence. The distance of this point below the surface is called the “apparent depth” of the source. 

What is the angle of refraction for a ray incident on the surface at point B, at a small angle 8? 

What is the apparent depth that results from 

using 

a small enough angle that we can consider 
sin 8 z tan 8? 

If a swimming pool is actually 5.4 m deep, how deep does it look to someone looking straight 
downward into the pool from the outside? 

Solution 

The angle of refraction 8, is given by sin 8, = (1.33) 

sin 

8. 

The distance, r, between the normal and point B, can be calculated from triangle SAB to equal r = D 

tan 8. The same distance can be calculated from triangle S’AB to equal r = d tan 8,. Then D tan 0 = d 
tan 8,. In our small angle approximation, tan 8 x sin 8 and tan 8, z sin 8, so D sin 8 z d sin 8, = 

d(1.33) sin 8. Thus d = D/1.33 (or, more generally, d = D/n).  

For D = 5.4 m, the apparent depth d = (5.4 m)/1.33 = 4.06 m. This differs substantially from the actual 
depth. 

S 

Fig. 13-13 
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Problem 13.15. A right angle prism is made of a 

material 

of index of refraction n. One of the base 
angles is 33" and light is incident on 

the 

prism normal to the side adjacent to this angle (see Fig. 13-14). 

(a) What is the minimum value needed for n to get total reflection at A ?  

(b) For that n, will there 

also 

be total reflection at B? 

(c) What is the minimum value of n to give total reflection at both A and B? 

Solution 

The angle of incidence at A will equal the base angle, 8, = 33". To get total reflection this angle must 
be 2 8, , where sin 8, = l/n. The minimum value needed for n is therefore that value for which nmin = 

l/sin 33 = 1.84. Thus, the critical angle is 33". 

The angle of reflection at A is also 33", so from triangle BAD we see that the angle of incidence at B is 
90 - 2(33) = 24". This is less than the critical angle for this value of n, and therefore there will not be 
total reflection at the point B. 

To get total reflection at B we must have n large enough so 

that 

the critical angle equals 24". This 
requires n = l/sin 24" = 2.46. The angles of reflection, of, course, do not change as 

a 

consequence of 
changing n. 

Problem 13.16. Light is incident on an isosceles prism with index of refraction n, and apex angle A. 
The angle of incidence is such that the 

light 

travels in the prism parallel to the base, as in Fig. 13-15. 
The 

light 

exits at B, and 

the 

angle 

of deviation, 6, is the 

angle 

between the direction of this ray and the 
direction of the 

incident 

ray. 

(a) Show that the angle of incidence at D is the 

same 

as the angle of refraction at B, and that the angle 
of refraction at D is the 

same 

as the angle 

of incidence at B. 

I I 

Fig. 13-15 
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(b) Show that, at B, the angle of refraction is, O2 = 4 2 .  

(c) Show that, at B, the 

angle 

of incidence is, 8 ,  = (A + 4/2.  

(d) Show that the angle of deviation is given by sin[(A + S)/2] = n sin [A/2). 

Solution 

We already 

showed 

in Problem 13.6 that for 

the 

case 

of light in the 

prism 

parallel 

to the base of the 
prism, the angles BDC and DBC are equal. Thus both equal 8, , the 

angle 

of refraction at B. The angle 
of incidence at B, 8,, is given by sin 8, = n sin 8,, and the angle of refraction at D, 8 D ,  is also given by 

the 

same 

equation n sin 8, = sin8,. 

Therefore 

8, = O1. (We 

have 

already labeled this angle 

as 8, in 
the figure.) 

The angle BAC in the right 

triangle 

BAC equals 4 2 .  Angle ACB is therefore the complement of A/2. 
But 8, is also the complement of angle ACB (triangle FCB), and is therefore equal to 4 2 .  

The angle of deviation, 6, equals twice the 

base 

angles 

in triangle BED, so each of those 

angles 

equals 

6/2. But 8, equals 

angle 

EBC, and therefore 8, = 8, + 6/2 = (A + 6)/2. 

Using Snell's law at B we get sin[(A + 4/21 = n sin [A/2], as expected. 

Note. One can show that the angle of deviation is a 

minimum 

for this 

case, i.e. for the case where the 
light in the 

prism 

moves parallel to the base. 

Problem 13.17. In Problem 13.16 the apex angle of the prism is 60". Light of various wavelengths is 
incident on the 

prism, 

and, for each wavelength, the angle of incidence is adjusted so that the light in the 
prism moves parallel to the base. If the index of refraction is as given in Table 13.2 for those wave- 
lengths, calculate the angle of deviation for each wavelength. 

Solution 

For each 

wavelength 

we have sin[(A + 4/21 = n sin(A/2), as shown 

in 

the previous 

problem. 

Since 
A = 60", this equation becomes sin(30 + 6/2) = n sin 30 = 0.50 n. For red 

light 

of wavelength 660 nm, this 
becomes 

sin 

(30 + 6/2) = OSO(1.520) = 0.760 + (30 + 6/2) = 49.46", S = 38.9". We do the 

same 

calculation 

using the appropriate values 

for 

n for the other wavelengths. The results are given in Table 13.4. 

Table 13.4 Calculating the Angle of Deviation 

Color Wavelength, nm Index 6 

Red 660 1.520 38.9 
Orange 610 1.522 39.1 
Yellow 580 1.523 39.2 
Green 550 1.526 39.5 
Blue 470 1.531 39.9 

Violet 410 1.538 40.5 

Supplementary Problems 

Problem 13.18. Light is incident 

from 

water 

(n = 1.33) onto a 

material 

with 

n = 1.51. The angle of incidence is 25". 
What 

is 

the angle of refraction? 

Ans. 21.9" 
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Problem 13.19. Light is incident from a 

material 

with n = 1.51 at an angle of 25" onto another material. The light 
is 

refracted 

at an angle of 38.6". What is the index of refraction of the 

second 

material? 

Ans. 1.02 

Problem 13.20. Light in a 

material 

with an index of refraction of 1.57 is refracted into air, at an angle of refraction 
of 56". 

(a) What is the 

angle 

of incidence? 

(b) By what 

angle 

is the 

incident 

ray deviated, 

i.e. what is the 

angle 

between the 

path 

of the 

incident 

and the 
refracted rays? 

Ans. (a) 31.9"; (b) 24.1" 

Problem 13.21. Light is incident from water (n = 1.33) onto air, and the ray is thereby 

deviated 

by 19.7". What is 
the 

angle 

of incidence? 

Ans. 40.9" 

Problem 13.22. Light is incident on a 

right 

angle prism with one base angle 

equal 

to 53". The prism has an index 
of refraction of 1.48. If the 

light 

is incident 

parallel 

to the 

base, 

as in Fig. 13-16 (a) what is the 

angle 

of refraction at 
the first surface; (b) what is the 

angle 

of refraction at the 

second 

surface; 

and (c) by what 

angle 

is the 

incident 

ray 
deviated, i.e. what is the 

angle 

between the 

path 

of the 

incident 

and the final refracted rays? 

Ans. (a) 24.0"; (b) 19.4"; (c) 32.4" 

Problem 13.23. For the 

same 

prism as in 

the 

previous problem, the 

light has an angle of incidence 8, at the first 
surface and then 

angle 

8,' at the 

second 

surface. 

(a) What 

minimum 

angle 

of incidence is needed at the 

second 

surface in 

order 

to get total 

reflection? 

(b) At that angle of incidence at the second surface, what 

is 

the 

angle of refraction at the first surface? 

(c) At that angle of incidence at the second surface, what 

is 

the direction 

of incidence at the first surface? 

Ans. (a) 42.5"; (b) 5.5"; (c) 8.16" above 

the 

normal 

Problem 13.24. A fisherman sees a fish beneath him in a river at an apparent depth of 1.93 m. At what depth 
should 

he 

put 

his net? 

A m .  2.57 m 

Problem 13.25. Light is incident on a glass surface at an angle of incidence of 8. 

(a) If the index of refraction of the glass is 1.62, at what 

angle 

of incidence will the 

light 

have 

an angle of refraction 
of half that angle? 

(b) If the 

angle 

of incidence is 56", what index of refraction is needed to get an angle of refraction of half that size? 

Ans. (a) 71.8"; (b) 1.77 
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Fig. 13-16 

Problem 13.26. Light is reflected from 

a 

plane surface, from 

an angle of incidence of 34.1". The angle of deviation 
of the reflected light is the angle between the direction of the incident and the reflected rays. 

(a) What is the angle of deviation? 

(6) If the plane is rotated so that the angle of incidence 

increases 

by 11.4", by what 

angle 

does 

the angle of 
deviation 

decrease? 

Am. (a) 11 1.8" ; (b) 22.8" 

Problem 13.27. Light is refracted into a 45-45-90 prism, as shown in Figs 13-17. The light is incident at an angle 
of 45" at a 

point 

where 

the width of the prism, h, is 6.2 cm. The light 

reaches 

the back 

surface 

at a distance y below 
the projection of the original 

ray 

on the back 

surface, 

as in the figure. From the figure one can see that the distance 
y is given by y = h tan (9, - 9J. The index of refraction 

depends 

on 

wavelength as given in Table 13.2. For the two 
extreme 

wavelengths 

in 

the table, red and violet, calculate (a) the 

angle 

of refraction; (b) the distance y;  and (c) the 
vertical spread of the spectrum on the back 

surface. 

Ans. (a) 27.72" and 27.37'; (b) 19.29 mm and 19.70 mm; (c) 0.41 mm 

Problem 13.28. Light is incident on a 

glass 

surface 

at an angle of 60" to the 

normal. 

What must be the index of 
refraction so that the angle of deviation between the reflected and refracted 

rays 

is 90"? 

Ans. 1.73 

Problem 13.29. Light is incident 

from 

air onto a 

composite 

material 

made of a 

stack 

of three 

flat 

slabs of equal 
thickness d and indices of refraction of 1.3, 1.6 and 1.4. If the angle of incidence 

is 

30", find (a) the angle of refraction 
at the first interface 

surface; 

at the second 

interface 

surface; 

at the 

third 

interface surface; 

and (b) the angle of 
refraction into the air at the other side of the 

composite. 

Ans. (a) 22.6"; 18.2"; 20.9"; (b) 30" 

y = h tan (e,-e,) 

I 

Fig. 13-17 
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Problem 13.30. 
surface; the third surface; the fourth surface. 

Referring to Problem 13.29 what are the angles of reflection at the first 

surface; 

the second 

Ans. 30" ; 22.6" ; 18.2" ; 20.9" 

Problem 13.31. In Problem 13.30, consider the ray 

reflected 

off the back 

surface 

(fourth interface). 

(a) What are the angles of refraction of this "back" ray from the third surface, 

second 

surface 

and first surface? 

(b) What are the angles of deviation between the forward rays of Problem 13.29 and the backward rays of part (a), 

in each of the three slabs? 

Am. (a) 18.2", 22.6" and 30°, 

respectively; 

(b) starting from the "back" slab: 138.2", 143.6", 134.8" 

Problem 13.32. Referring to Problems 13.29 and 13.31, what is the lateral distance between the point of entry of 
the original ray through the first 

interface 

and the point of emergence of the back 

ray 

through the interface? 
Assume d = 0.50 cm. 

Ans. 1.13 cm 

Problem 13.33. Two plane mirrors are placed at right angles to each other so that light 

reflecting 

off one surface 
(over some range of angles) will have a second 

reflection 

off the second 

surface. 

For such a ray, having angle of 
incidence 8 with one surface, 

find 

the angle of deviation 

between 

the incoming ray and the second 

reflected 

ray. 

A m .  180" 

(for 

all such rays) 

Problem 13.34. For the prism of Problem 13.9 (Fig. 

13-9) 

white light 

is incident normally and is dispersed by the 
prism into a spectrum of colors. Find the angle of deviation of the dispersed 

light 

across the spectrum-from 

red 

to 
violet (Table 13.2Fif the apex angle of the prism is 30" (the case shown in the figure); 

35"; 

40". 

A m .  0.79; 

1.23"; 

3.65" 



Chapter 14 

Mirrors, Lenses and Optical Instruments 

14.1 INTRODUCTION 

Our discussion in the 

previous 

chapter showed 

how 

light 

is affected at the boundaries between 
materials of different 

index 

of refraction. In general, we saw that light 

is 

both reflected and refracted at 
such a surface. In this chapter we will show 

how 

these 

effects lead to instruments that can form 

images 

of objects, and how 

these 

images 

can be used in practice. 
In order to understand the effects that we will describe, we have to first understand how the eye is 

able to take the light that reaches it from an object and to determine from that light 

where 

the object is 
located. Suppose that one has a point source of light located at a distance d from the eye, as in Fig. 
14-1. The source sends out rays of light in all directions, some of which have been drawn in the figure. 
When 

these 

rays reach the eye, each of those that enter is moving in a slightly 

different 

direction. The 
eye has the physiological 

ability 

to trace these 

rays 

back 

to where 

they 

meet, 

and then assumes that the 
object 

is 

at that point of intersection. In the case shown in the figure, and in most other cases, this will 
give the true location of the source of light. 

However, 

if somehow the directions of the 

rays 

have 

been 
altered before 

they 

reach 

the eye, then the backward tracing that is done by the eye will result in an 
intersection of the 

rays 

at some 

different 

point, not at the actual source. This results 

in 

an “image” 
which is not at the 

position 

of the source, i.e. not at the “object”. We 

have 

already 

seen in the previous 
chapter that light 

from 

a source under water 

seems 

to come 

from 

an “apparent depth” which is nearer 
the surface than the actual source. This is one example of the formation of an image at some position 
other than at the source. As we will find in our discussion, there are two possible 

types 

of image, 

labeled 

“real” and “virtual”. In the case of a real image, 

rays 

from 

an object 

have 

been bent to actually 
converge on a point in space, and then to spread out again as they 

pass 

that point until 

they 

reach the 

eye. In that case, 

the 

rays really come from 

that point, although the 

original 

source (the object) is not at 
that point. For a virtual image, the eye traces the rays back to a point through which no rays actually 
pass. This was the 

case 

for 

the source under water. As we discuss specific examples 

this 

distinction will 
become 

clearer. 

We will first 

discuss 

images 

that are formed 

using 

the reflection of light as a means of bending the 
paths of the rays, 

such 

as occurs with a mirror. We will then discuss the use of refraction 

for 

the 

purpose 
of forming 

images, 

which is the basis 

for 

the properties of lenses. Some applications to actual instru- 
ments will then 

be 

discussed. 

d 

Fig. 14-1 
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14.2 MIRRORS 

When 

light 

from 

a source reaches a mirror it is reflected back into the region 

from 

which it came. 
None of the 

light 

reaches 

the region 

behind 

the mirror. Consider a source whose 

light 

reaches 

a plane 
(flat) mirror, as in Fig. 14-2. The region to the left of the mirror is the “object” region 

since 

the light 

originates in that region. It is also the “image” region, 

since 

any real 

image 

will be formed there as a 
result of the reflection 

from 

the 

mirror into that region. If an image is formed in the region to the 

right 

of the mirror, that image 

would 

have 

to be a “virtual” image, 

since 

the light 

never 

actually was 

found in 
that region. We will, in fact, find that a plane mirror normally forms a virtual image. 

In Fig. 14-2 we have drawn three examples of rays leaving the source (e.g. a point on an extended 
source) and being reflected by the mirror. For each we have used the fact that the angle of reflection 
equals the angle of incidence. 

(Recall 

that rays are perpendicular to the wave fronts, so the angle 
between the wavefronts and mirror equals the angle between the rays and the normal to the 

mirror.) 

Thus the central ray 

is 

reflected directly 

back, 

while 

the other two rays are reflected at angles that 
increase as their 

angles 

of incidence 

increase. 

The three reflected rays are moving in different directions 
and if they were to be viewed by an eye, the eye would 

trace 

the rays back 

till they 

meet. 

This is where 
the eye assumes 

the 

rays 

started and is the location of the image of the source. In the 

figure, 

we project 
these 

rays 

back 

and note that they 

meet 

at point I .  The distance of the source from the mirror is called s 
and the distance of the image 

from 

the mirror is 

called 

s’. (By convention the distance s’ is considered 
negative, 

since 

it is not in the 

region 

of the actual rays-sign conventions will be discussed 

below.) 

It is 
easy to see from the angles 

involved 

that I s’ I = s. 

Problem 14.1. Show that the point I is an image of the point source S and that the distance to the 
image 

in 

a plane mirror is equal to the distance from the source. 

Soh t ion 

The ray that is 

incident 

on the mirror in the direction of the normal is 

reflecting 

directly 

backward, and 
the projection of that ray back into the region behind the mirror is along the normal. The next 

ray 

that has 

been drawn is incident at the angle 8, and reflected at that same angle 8. All the angles of triangle SBA 
equal the corresponding angles of triangle IBA, and they 

have 

a common equal side, AB. Therefore, 

all 

corresponding sides in the two triangles 

have 

equal length, and SA = ZA. Since the same argument holds 
for any other rays (e.g. SC), all the reflected rays trace back to the same point I .  We thus indeed 

have 

an 
image and s = I s‘ I. 

We will introduce the following convention for the sign of lengths. Any object or image distance is 
positive if the object or image is in a region 

where 

light actually travels from the object 

or toward the 
image. If this is not the 

case, 

the distance is considered 

negative. 

For the case drawn in Fig. 14-2 this 

Virtual rays 

S Image 
S Source 

Fig. 14-2 
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means that any object or image distance is positive if the object or image is to the left of the mirror. Any 
object or image distance is 

negative 

if the object or image 

is 

on the other side of the mirror, where there 
is actually no light. (The question of how an object can be found in the region 

where 

there is no light-a 
“virtual” object-will be 

discussed 

in a later section. For the 

time 

being, 

we will always take the object 
distance to be positive, i.e. we will only consider “real” objects.) For the plane mirror we have 

therefore 

just proven that: 

s‘ = - s  (plane mirror) (24.2) 

This means that a plane mirror forms a virtual image at a distance behind the mirror equal to the 
distance of the object 

in 

front of the mirror. We have so far 

considered 

a single point of an object. 

Let 

us see 

how 

to handle the extended 

object. 

Consider the vertical arrow in Fig. 14-3, at a distance s in 
front of the mirror. It is 

clear 

from 

the previous 

discussion 

that each point of the arrow is 

imaged 

at the 
same distance behind the mirror, so that the arrow will not be 

imaged 

as a bent or leaning arrow. It is 
therefore 

sufticient 

to image just the head and tail of the arrow, and draw the image at that location. In 
the case of the plane mirror, we see that the head of the arrow is above the tail 

(which 

is located on the 
base 

line 

in the figure) both for the object and for the image. We call 

this 

an upright or erect 

image. 

If 
the image were below the base 

line 

(for the 

case of an object above the base 

line) 

then the image 

would 

be “inverted”. Furthermore, we see from the figure that the height of the image, y’, equals the height of 
the object, y, and there is neither 

magnification 

nor demagnification. We define 

the 

ratio of the 

image 

height to the object 

height 

as the magnification, 

defined 

as: 

= Y’/Y (2 4.2) 

where the heights are positive if they are above the base 

line 

and negative if they are below the base line. 
Thus an upright 

image 

has a positive 

magnification 

and an inverted 

image 

has a negative 

magnification. 

For the plane mirror y’ = y, and the magnification is one. 

Note. It is also true that M = -s’/s, since s’ = -s. We will show that for 

spherical 

mirrors and 
lenses 

this 

latter formula still gives the 

magnification. 

Thus : 

M = 1 for a plane mirror ( I  4.3) 

We see therefore that the image 

in 

a plane mirror looks the same as the object as far as the height is 
concerned. 

Let 

us investigate what a mirror does to the “left-right handedness” of an object. Consider 
Fig. 14-4, where we show a child 

(as 

seen from above) facing 

the 

mirror with outstretched right and left 
hands. The image 

is 

also shown, and is 

clearly 

facing the child, with 

the front of the head nearer the 
mirror than the back. 

We 

note, however, 

that the right hand of the 

child 

is the left hand of the image. 
Thus the image has a reversed appearance concerning right and left handedness. Letters are therefore 
reversed and difficult to read 

when 

viewed in a mirror. Therefore, if words are generally read on a 
mirror they should be 

written 

reversed 

in order to be readable in the mirror. That is why the lettering 

1’ - 
Fig. 14-3 
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Image of 
left hand 

Fig. 14-4 

on the 

front 

of an ambulance (which is generally read by cars that are ahead of the 

ambulance 

in their 
rear view mirrors) are often written reversed. 

Plane mirrors are very simple in their 

properties, 

but 

many illusions can be created with the 

images 

of simple plane 

mirrors. 

Consider the mirror 

in Fig. 14-5, which is made of a piece of plane glass which 
is somewhat silvered so that it reflects a 

substantial 

amount 

of light as well as 

transmitting 

light (a 
half-silvered mirror). A candle at a 

distance 

s in front of the glass is hidden from the direct view of 

Viewer 

Opaque 

cover 

I 

Candle 

Liquid 

Virtual 

image 

' Glass 

Fig. 14-5 
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persons 

in 

front of the glass, but its 

image 

can easily be seen by such viewers. If one places a 

beaker 

of 
liquid 

in 

back 

of the glass at the same 

distance 

s, the candle will be seen by these 

persons 

at the same 
position as the glass, i.e. one has created the illusion of a 

candle 

burning inside 

a 

liquid. 

Many “magic” 
tricks are performed in this 

manner. 

Problem 14.2. Show that a 

half-length 

mirror is sufficient to produce a full length 

image 

of a 

person 

standing in front of a 

mirror. 

Solution 

In order for someone to see a full image of him/her self in a mirror, light 

from 

the bottom and from 

the 

top of the 

person 

must 

reflect off the mirror and reach hisher eyes (see Fig. 14-6). Since the angle of 
reflection equals the angle of incidence, the light 

from 

the 

top of the person that reaches 

the 

eyes of the 
person 

must 

have 

reflected from a point on the mirror halfway between the top and the eyes. Similarly, the 
light that reaches 

the 

eyes of the person 

from 

the bottom must 

have 

reflected off the mirror at a point 
halfway between the bottom and the eyes. The length of mirror needed to see from top to bottom is 
therefore half of the 

height 

of the 

person. 

Note that this is independent of the 

distance 

between the 

person 

and the mirror. (If you don’t believe this, please try 

it 

out yourself with a mirror.) 

When there are two 

plane 

mirrors at an angle to each other, light 

from 

a source 

can be reflected 
from just one mirror (either one) and produce a 

virtual 

image 

in that mirror. It is also possible that 
light, 

after 

reflecting from one mirror, reflects from the second mirror also. This can produce another 
image. If the angle between mirrors is arbitrary, there can, in fact, be many reflections, each producing 
another image. Tracing rays can be very complicated 

in 

that case, but an alternative exists. When 

rays 

are reflected from one mirror, all the rays appear to come from a point at the image of the object 

in 

that 
mirror. Therefore, 

this 

image 

acts as the (virtual) 

object 

for 

an image 

in 

the second mirror. One need 
merely determine 

where 

an image is produced 

in 

the second mirror for an object 

located 

at the original 
image 

location 

in the first mirror. This can be continued back and forth between mirrors. An example 
for 

a 

special case 

follows. 

h \ 

h/2 

Fig. 14-6 
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Problem 14.3. Two mirrors are at an angle of 90” from 

each 

other, as shown in the top view in Fig. 
14-7(u). An object is placed at a 

distance 

s, from mirror 1, and s2 from mirror 2. 

(U)  Locate the image, I,, of the object in mirror 1. 

(b) Locate the image, 12, of the object in mirror 2. 

(c) Locate the image, 112, of the object that has been first reflected from mirror 1 and then from 
mirror 2. Do the same 

for 

the image, IZ1, that is 

formed 

by first reflecting from mirror 2 and then 
from mirror 1. 

(4 Draw a 

ray 

diagram locating the image 

from 

one of the double reflections. 

Solution 

(a) The image from mirror 1 is located at a distance s, behind mirror 1, and shown in the figure as I,. 

(b) The image from mirror 2 is located at a distance s, behind mirror 2, and shown in the figure as I , .  

(c) The image I,, is determined by first finding the image, I,, of the object in mirror 1, and then using this 
image as an object for mirror 2. I, is located at a 

distance 

s, above 

the 

plane of mirror 2, and s, 

behind mirror 1, as seen in the figure. The image of this in mirror 2 is at a 

distance 

s, below mirror 2, 
and labeled I,, in the figure. Similarly, to get I , , ,  one has to take 

the 

image, I,, in mirror 2 and use 
this as the object for mirror 1. This results in I,, being located at the same position as I,, . Note 

that 

this is true only for the case of mirrors that are at 

an 

angle of 90” with each other. For other angles 
multiple images are generally formed. 

(d) We can 

choose 

any two rays to trace out the 

double 

reflection, and then project these rays backward 
to 

locate 

the 

final image. This is done in Fig. 14-7(b). It requires care to draw 

this 

accurately and the 

procedure in part (c) is far preferable. 

Our discussion so far has been for 

plane 

mirrors. We now enlarge our view to include 

spherical 

mirrors. By this we mean mirrors that are shaped to be part of the surface of a 

sphere 

of some radius R. 
These 

spherical 

mirrors can be “concave” if the center of the sphere is on the object 

side 

[see Fig. 
14-8(u)] so that the inside 

surface 

of the sphere reflects light 

from 

the object, or “convex” if the center of 
the sphere is on the “negative” side [see Fig. 14-8(b)] so that the outside surface of the sphere reflects 
light 

from 

the object. In agreement 

with 

our previous 

convention, 

the concave 

surface 

is considered to 
have a positive 

radius, 

while the radius of the convex 

surface 

is considered to be 

negative. 

It is usual 

for 

the spherical mirror to be a 

symmetric 

portion of the surface of the sphere or cylinder, so that the rim of 

Fig. 14-7 
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Virtual 
region 

Reflecting 
surface 

Concave 

(4 

Real 
region 

Virtual region 1 
\ Object 

Reflecting 

Convex 

( b )  

Fig. 14-8 

the 

mirror 

is circular. 

The 

imaginary 

line through the center of the sphere and the center of the 

mirror 

is 
called the 

principal 

axis, as shown in Fig. 14-9(a) for the case of a 

concave 

mirror. 

We must 

determine 

how these mirror surfaces reflect the light. The 

normal 

to the surface at any 
point is the 

radius 

drawn 

from the 

center 

C to that point. 

Consider 

a 

series of incident 

rays 

that are 
parallel to the 

principal 

axis and hence to each 

other. 

We take 

each 

incoming ray and equate 

the 

angle 
of reflection to the angle of incidence to get the reflected ray. The result for five equally spaced rays are 
shown in the figure. We note that the 

three 

parallel rays 

closest to the 

principal 

axis (including 

the 

one 

along 

the 

axis which is reflected straight 

back) 

have 

reflected rays that intersect at nearly the 

same 

point 

on 

the 

axis, but the outer two rays cross 

the 

axis nearer to the 

mirror. 

The common point 

where the 
rays 

near 

the principal 

axis meet is called the focal point, and labeled F. We will show mathematically 
that all 

parallel 

rays near 

the 

central 

ray (the ray through 

point 

c), called paraxial rays, are reflected 
through 

nearly 

the same point, the 

focal point, 

and 

we will in general consider 

only 

rays for which this 
is true (the 

paraxial 

approximation). 

If a 

mirror 

is large 

enough 

that the rays further away cannot be 
neglected, then 

the mirror 

will not give us the imaging 

properties 

that we want, and the mirror is said to 
have “aberrations”. To avoid 

aberrations 

due 

to these 

non-paraxial 

rays, we would need a 

mirror 

formed in the 

shape 

of a 

paraboloid 

rather than 

a 

sphere. 

Such mirrors are used in large telescopes and 

\ 
Normal 

Normal 

Fig. 14-9 
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