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The popularity and explosive growth of numerical analysis today are further evidence 
that applications are still the leading source of inspiration for mathematical creativity. 
Whenever new mathematical ideas are developed i t  is usually new applications which have 
pointed the way. The electronic computing machine is itself an illustration of this, a 
response to an overwhelming need for faster computation. And the appearance of such 
machines has made it possible to meet the demands of today's applications, in many cases, 
by developing more sophisticated numerical methods. This is the pedigree of modern 
numerical analysis. I t  is the numerical aspect of the broad field of applied analysis. 

I t  would be a mistake, however, to draw too fine a boundary between our subject and 
what is called pure or abstract analysis. The borderline is a fuzzy one, as borderlines 
usually are, and materials from both sides frequently infiltrate the other. In earlier days 
i t  was commonplace for mathematicians to be expert a t  both the pure and the applied. 
Both have long since developed to a size which makes full acquaintance with even one 
impossible, and reasonable competence a t  both an arduous objective. In spite of this the 
applied mathematician, including the numerical analyst, must t ry  to keep aware of what is 
happening across the border. To this end it has been one of my objectives to provide 
occasional evidence of infiltration, a t  least in elementary ways. The treatment of Taylor 
series is one such example. The importance of these series in pure analysis is classical, 
but they are also valuable for computing functions, estimating error, and so on. Fourier 
series, orthogonal polynomials and perturbation series (just to mention a few) are other 
topics which are valuable on both sides of the borderline. The proof of the classical 
existence theorem of differential equations by "applied" methods is a beautiful illustration 
of how applications lead eventually to abstract theory. So, although our principal interest 
here is numerical mathematics, a number of topics usually relegated to other places will be 
presented briefly, because they are themselves useful in computation and, even more 
important, because they are a reminder of the fuzzy borderline and of the value of in- 
filtration in both directions. The numerical analyst is, after all, an  analyst. 

This book has been designed to serve as text for any introductory course in numerical 
analysis. There is adequate material for  a year course a t  senior or beginning graduate 
level. By omitting the more demanding theoretical parts i t  may also be used for a one term 
course a t  a more elementary level. The extensive collection of solved problems also permits 
use as a supplement to any standard textbook in the subject. It will even be useful as 
independent reading for students of science or engineering with an interest in numerical 
methods. 

Each chapter begins with a capsule summary of results to be obtained and methods to 
be illustrated. Ordinarily i t  is not expected that this summary will be completely self- 
explanatory. I t  should be viewed as a table of contents for that chapter. The details are 
fully presented among the solved problems and an abundant supply of supplementary 
problems is offered to test one's understanding. Answers to most of the supplementary 
problems have been provided. An often used procedure for evaluating a numerical method 
involves applying i t  to a problem for which the exact solution is known. This problem then 
serves as a "test case". Many such examples have been included. When they occur as 



supplementary problems it is the exact answer which is given. Needless to say, the nu- 
merical method should not be expected to produce this exact answer, which is given so that 
the computer may check the accuracy of his own result to whatever number of digits he 
desires. For certain problems no answer has been supplied. These offer a touch of realism, 
since in practice the computer must not only find an answer but decide for himself whether 
or not it is correct. 

I take this opportunity to express my gratitude to Dr. Donald Chand, who expertly 
programmed all the machine computations, to Dr. Martin Silverstein, who carefully read 
the manuscript and suggested numerous improvements, and to my publisher and his team. 

I have no doubt that, in spite of strenuous efforts, there remain errors of one sort or 
another. Numerical analysts are among the world's most error-conscious people, no doubt 
because they make so many. I will be pleased and grateful to hear from any reader who 
discovers errors. There is no reward except the exhilaration of continuing the search for 
the all-too-elusive "truth". 
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Chapter 1 

What Is  Numerical Analysis? 

THE ALGORITHM 

Our subject has been described in many ways, and the elementary examples which make 
up this first chapter bring out the essential parts of most descriptions. They are  intended 
as a preview of what lies ahead, providing a perspective from which the course of action 
may be best understood. To summarize these examples in advance, they suggest that 
numerical analysis involves the development and evaluation of methods for computing 
required numerical results from given numerical data. This makes i t  a part  of the modern 
subject of information processing. The given data are  the input information, the required 
results are the output information, and the method of computation is known as  the algorithm. 
These essential ingredients of a numerical analysis problem may be summarized in a flow- 
chart, Fig. 1-1. 

Fig. 1-1 

THE PRESENCE OF ERROR 

Output 
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Input 
Information 

The description just chosen is definitely applications oriented. It focuses our efforts 
on the search for algorithms. Frequently we will find that  several algorithms are available 
for producing the required output information, and we must choose between them. There 
are various reasons for preferring one algorithm over another, but two obvious criteria 
are speed and accuracy. Speed is clearly an advantage. Other things being equal the 
faster method surely gets the nod. The issue of accuracy will consume much of our energy, 
and i t  exposes a second major feature of our subject, the presence o f  error. Rarely will 
input information be exact, since i t  ordinarily comes from measurement devices of some 
sort. And usually the computing algorithm introduces further error. The output informa- 
tion therefore contains error from both these sources, as suggested in a second flow-chart 
(Fig. 1-2). An algorithm which minimizes error growth clearly rates serious consideration. 

Fig. 1-2 
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SUPPORTING THEORY 
Though our view of numerical analysis will be applications oriented, we will naturally 

be concerned with supporting theory. Often the theory to which we are led has intrinsic 
interest; i t  is attractive mathematics. Primarily however, theory is important to us because 
it contributes to the search for better algorithms. 
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Solved Problems 
1.1. Identify the input information, the algorithm and the output information in t,he prob- 

lem of computing the product 45 x 17. 
Needless to say this is an elementary problem, but  it  will serve a s  a painless first illustration. 

3 input information 

the 315 algorithm 
45 

765+output information 

The input information consists of the numbers 45 and 17. The algorithm is the familiar process of 
multiplication. The output information is the number 765.  If we assume the input exact, then 
since no error  is  introduced by the algorithm the output is also exact. No error  occurs anywhere 
in the problem. 

1.2. Compute the product of Problem 1.1 by the "Russian peasant algorithm". 
This method involves continually doubling one factor while halving the other, noting where the 

halving leaves a remainder. 
45 R 17 input information 
22 34 
11 R 68 

5 R 136 
algorithm 

2 272 
1 R 544 

765 4- output information 

The final step is the addition of those multiples of 17 on lines where remainders do occur. The 
output information is the same 765 in Problem 1.1. Why this method "works" can be discovered 
by patient but elementary investigations. The point of this problem is  t h a t  more than one algorithm 
is available for  computing a product. 

Two lengths X and Y are measured to be approximately X - 3.32 and Y - 5.39, 
the symbol -- representing approximate equality. Compute approximations to 
X + Y, X + ( . l )Y and X + (.01)Y by "three digit addition". 

This is again a n  elementary problem but i t  illustrates the presence of error  in computational 
mathematics. 

3.32 3.32 3.32 
5.39 0.54 0.05 - - - 

X + Y - 8.71 X + ( . l ) Y  - 3.86 X + ( .Ol )Y - 3.37 

Here all numbers have been kept a t  a uniform length of three digits, by rounding off whenever 
necessary and by supplying leading zeros whenever necessary. This is in the spirit  of modern auto- 
matic machine computation. Machines store and operate with numbers of a uniform length a s  we 
have done here. Usually machine length is six o r  more digits, not merely three, but  fo r  simple 
illustrations we shall often limit our numbers to  three digits. The action in this problem is sum- 
marized in Fig. 1-3. 

Input Information The Algorithm Output Information 

Three digit X + ( . l ) Y  - 3.86 
x + ( .Ol )Y - 3.37 

Fig. 1-3 
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1.4. Point out the sources of error in Problem 1.3 and note their size. 
Assume the input information, 3.32 and 5.39, correct to the three digits offered. With X and 

Y still representing the (unknown) exact values, the errors in input information are 

and neither error exceeds .005. There are also algorithm errors. In  approximating (.l)Y the algo- 
rithm makes a "roundoff" from .539 to .54, while in approximating (.01)Y i t  makes a roundoff from 
.0539 to .05, both errors being on the order of .001. 

1.5. Estimate the errors in output information due to the error sources indicated in 
Problem 1.4. 

Take X + Y first. From the equations in Problem 1.4 we easily find 

(X + Y) - 8.71 = (X - 3.32) + (Y - 6.39) = El + Ex 

so that  the difference between the (unknown) exact X + Y and its computed approximation 8.71 is 

IX + Y - 8.71/ 5 ,005 + .005 

or  . O l .  The second decimal place in our 8.71 is therefore open to slight suspicion. Notice that  algo- 
rithm errors play no part  in this "straight addition" problem. But now consider X 4- (.l)Y. Since 

(.l)Y = (.1)(E2+ 6.39) = (.1)E2 + .539 
we easily find 

X + (.l)Y - 3.86 = El + 3.32 + (.1)E2 + .539 - 3.86 = El + (.1)E2 - .001 

so that  the difference between the (unknown) exact X + (.l)Y and i ts  computed approximation 
3.86 is 

IX + (.l)Y - 3.861 5 ]Ell + ((.1)E21 + 1-.0011 5 .005 + .0005 + .001 

and does not exceed .0065. Here the .005 is an input error, the .0005 is  an  input error which has 
been multiplied by .l as the algorithm proceeds, and the .001 is an algorithm error (roundoff). In  
the same way we find 

X + (.01)Y - 3.37 = El + 3.32 + (.01)E2 + .0539 - 3.37 = El + (.01)E2 + .0039 

so that  the error in our computed 3.37 is 

IX + (.01)Y - 3.371 5 .005 + .00005 + .0039 

and does not exceed .009. In all our output information the second decimal place appears to be open 
to suspicion. This problem shows how even in a simple computation the question of error size is not 
easy to answer. Here we have estimates of the maximum error possible. In  Problem 1.6 we dis- 
cover that these estimates are too pessimistic. 

1.6. Suppose a new theoretical discovery shows the X and Y of Problem 1.3 to be square 
roots of 11 and 29. Instead of having to measure these two lengths, they can now 
be computed. (See a later chapter for methods of computing square roots.) Correct 
to six digits, X -- 3.31662 and Y - 5.38616. Recompute the required results of 
Problem 1.3 and compare the actual errors in output information of that  problem with 
the maximum possible errors computed in Problem 1.5. 

Using "six digit arithmetic" one easily finds 

X + Y - 8.70278, X + (.l)Y - 3.85524, X + (.Ol)Y - 3.37048 

A maximum error analysis as made in Problem 1.5 would now show these results to be correct to 
a t  least four decimal places. The actual errors in our Problem 1.3 computations can now be more 
accurately estimated. 

Actual error 

Maximum error 



WHAT IS NUMERICAL ANALYSIS ? [CHAP. 1 

The error in X + (.Ol)Y is f a r  less than the maximum. Realistic error estimation is one of the 
most difficult tasks of numerical analysis. Frequently, as  in this case, a problem for which the 
exact solution is known is used to test the behavior of error in an algorithm. 

Find the smaller root of the quadratic equation x2 - 20x + 1 = 0 using three digit 
arithmetic. 

The two roots are, according to a well-known theorem of algebra, 10 * 6 9 .  The smaller in- 
volves the minus sign. Limited to three digit arithmetic, our computation runs 

10 - fi - 10.0 - 09.9 = 00.1 

and serves a s  an excellent illustration of what happens when nearly equal numbers are subtracted. 
Though the numbers themselves may have three digit accuracy, some (perhaps all) of these digits 
will be lost in the subtraction. The main ingredients of this problem are summarized in Fig. 1-4. 
See Problem 1.8 for a better algorithm. 

Fig. 1-4 

Compute 10 - fi 
x2 - 20x + 1 = 0 by three digit 

arithmetic 
Input Information 

1.8. Noting the theoretical result 10 - fl = 1/(10 + m), use the expression on the 
right to compute the root required in Problem 1.7. 

Again limiting ourselves to three digit arithemetic, 

10 + 6 9  = 10.0 + 09.9 = 19.9 after which 1.00/19.9 = .0503 

Output Information 

Most modern computing machines position leading zeros in the results of multiplications and 
divisions, retaining a t  the same time the number of digits (in this case three) which represents 
machine capacity. In other words, for our division above we may consider the output a three digit 
number, ignoring the leading zero. Note, however, that  in the addition of 10.0 to 09.9 the leading 
zero is one of the three digits in action. The same was true in Problem 1.3 and this is typical of 
addition operations in modern machines. Fig. 1-5 now summarizes the ingredients of this 
computation. 

The Algorithm 

Compute 1/(10 + &% ) 
x2 - 20s + 1 = 0 by three digit 

arithmetic 

Fig. 1-5 

Notice that  supporting theory has offered us an alternative algorithm for the computation of 
this root. Error analysis will be omitted but our new result is correct to three decimal places, 
making i t  f a r  superior to that  of Problem 1.7. The new algorithm introduces much smaller algorithm 
errors. 

1.9. Compute the sum fi + V/Z + - . + m. 
Suppose we first obtain all square roots to two decimal places. Later an  algorithm for com- 

puting roots will be presented, but for  the present we may suppose them extracted from square 
root tables. The first few will be 1.00, 1.41, 1.73, 2.00, etc. The sum of these hundred numbers 
comes to 671.27. Clearly such a sum requires a t  least "five digit arithmetic" for  its computation. 
Since one hundred roundoffs have been made during the course of the algorithm the accuracy of 
our result is uncertain, but see the next few problems. The computation is summarized in Fig. 1-6 
below. 
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Obtain all square roots 
1, 2, . . . , 100 to two decimal places. 

Compute their sum by Sum - 671.27 

five digit arithmetic. 

Fig. 1-6 

1.10. Suppose the numbers XI, x2, . . ., XN are approximations to X I , X ~ ,  . . . , X N  and that 
in each case the maximum possible error is E. Prove that the maximum possible 
error in the sum XI + xz + . . + X N  is NE. 

This problem presents another example of supporting theory. Since 

x i - E  S Xi 5 x i + E  
it follows by addition tha t  

E x i - N E  S EXi 5 Ex i+  N E  

so tha t  -NE 5 EXi - Exi S N E ,  which is  what was to  be proved. 

1.11. In Problem 1.9 one hundred numbers, each correct to two decimal places, were sum- 
med. What is the maximum possible error in their sum? 

The error  in each number is a t  most .005. Applying Problem 1.10 with E  = .005 and N  = 100, 
we find N E  = .5. This suggests t h a t  the sum may not be correct to even one decimal place. (See 
also, however, Problem 1.12.) 

1.12. As further supporting theory a statistical argument, not reproduced here, suggests 
that when N numbers are summed the "probable error" is f l ~ ,  where E is again 
the maximum possible error of the N numbers involved. Apply this formula to find 
the "probable error" of the sum computed in Problem 1.9. 

With N  = 100 and E  = .005, probable error = f i ~  = 10(.005) = .05. This is more opti- 
mistic than the maximum error  estimate of .5 obtained in Problem 1.11. But  which estimate is 
nearer to the t ru th?  

1.13. For the sum in Problem 1.9, a new computation, in which all square roots are first 
found to five decimal places rather than only two, produces the sum 671.36385. 
Clearly this requires "eight digit arithmetic". Show by using Problem 1.10 that the 
error in this sum is a t  most .0005, making it correct to a t  least three decimal places. 
Then compare the actual error in our result of Problem 1.9 with the maximum and 
probable error estimates of Problems 1.11 and 1.12. 

With N  = 100 and E  = .000005 we have N E  = .0005, a s  suggested. The various errors 
are, therefore, 

actual error  - 671.36 - 671.27 = .09 

maximum possible error = .50 

probable error = .05 

One of our estimates was too pessimistic, the other too optimistic. In  this problem the availability 
of a machine capable of "eight digit arithmetic" has  allowed us to  check the accuracy of our 
simpler computation of Problem 1.9 and to study error  development. Not always, however, can a 
bigger machine be called upon, and the question of error  size in output information is often im- 
possible to answer with satisfaction. 

1.14. Given 

compute lim A, correct to three digits. 
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The following theorem of elementary analysis is an often used piece of supporting theory. 
"An infinite sequence A1,A,,A3, . . . in which the A, alternately increase and decrease, and f o r  
which the differences / A ,  - A n + l /  decrease monotonically to  zero, is a convergent sequence. More- 
over, \(limA,) - A,I 5 \A, - For  the present sequence this implies convergence, the 
existence of lirn A, and the fact t h a t  the difference between A, and lirn A, cannot exceed lln. Three 
digit accuracy allows a n  error of a t  most .0005 and we can achieve this accuracy by making 
l ln 5 .0005 and n 2 2000. This means t h a t  Azooo will be a n  approximation of sufficient accuracy. 
But  how does one compute this number? Suppose a n  eight digit computing machine is available. 
The various reciprocals may then be expressed a s  eight digit decimals, most of them requiring 
roundoffs. Summing 2000 such numbers could produce a fur ther  error  of 

which seems negligible. So we allow our eight digit machine to  compute this lengthy sum. The 
result, a f te r  rounding off to three digits, is: computed sum = .693. 

Notice t h a t  in this problem there is  no error in the input information. We a re  given the exact 
formula f o r  A,. All the errors  a r e  algorithm errors. F i r s t  we decide to  compute Azooo instead of 
lim A,. This can be viewed a s  truncating a n  infinite series a f te r  its 2000th term, and is  a n  example 
of what  is called a t~unca t ion  error. Truncation errors a r e  made when infinite processes a re  re- 
placed by finite processes. In  this problem, 

truncation error = lim A, - A,0oo 

and we have arranged to keep this less than .0005. Next, fur ther  algorithm error  enters when the 
reciprocals involved a re  approximated by eight digit decimals and those decimals a r e  summed. 
In  other words, we do not compute Azooo but  a n  approximation to it. This error is called the 
roundoff error, 

roundoff error = AzOo0 - computed sum 

and we have arranged to keep this less than .00001. Since the actual error  made is 

lirn A, - computed sum = (lim A, - Azooo) + (Azooo - computed sum) 

we see t h a t  actual error  = truncation error + roundoff error  

which is no surprise. This makes \actual error! 5 .00051, suggesting t h a t  our three digit result 
is  almost surely correct. The ingredients of this problem a r e  summarized in Fig. 1-7. 

eight digit arith- 
A, formula metic. Round re- 

sult to 3 places. 

Fig. 1-7 

1.15. Prove that if the following series is convergent, 

a1 - az + a s  - a4 + . . -  

all the ak numbers being positive, then the series 

is also convergent and represents the same number. 
This is  another example of supporting theory. Using A, and B, to  denote the nth partial sums 

of the two series, one easily finds A, - B, = ?+a,. Since the first series is  convergent, lim a, = 0 
and thus lirn A, = lim B,  as stated. 

1.10. Apply the theorem of Problem 1.15 to compute the lim A, of Problem 1.14, again to 
three decimal places. 

Our new algorithm will approximate Iim B, by one of the B, numbers. One easily finds 

B1 = and for  n > 1, 
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1 1 1  
a,) = - + 2 (-1)k - - 

2 k=2 2 k(k  - 1 )  

F o r  this sequence the theorem of Problem 1.14 guarantees t h a t  the difference between B, and 
lim B, cannot exceed 1 / 2 n ( n  + 1 ) .  F o r  three digit accuracy we require 

making 2 n ( n  + 1 )  2 2000, or  n 32. This means t h a t  B,, will be a n  approximation of sufficient 
accuracy. The difference lim B, - B,, will not exceed .0005. Roundoff error will also enter. I t s  
analysis is more difficult here than in Problem 1.14 and will be omitted. 

I f  we use eight digit arithmetic a s  in Problem 1.14, we may hope t h a t  roundoff errors  will not 
affect the third decimal place. Even so, since the actual error  will be a blend of truncation and 
roundoff errors, and since we require lactual error1 S .0005, it seems wise to  reduce truncation 
error  somewhat below the .0005 guaranteed by B32, and thereby to allow roundoff error  a t  least 
slight room. As our new algorithm, therefore, suppose we compute Bqo by eight digit arithmetic. 
The result tu rns  out to be, a f te r  rounding to three places, computed sum = .693. It agrees with our 
earlier result. But  the point of this problem is  tha t  B,, does just a s  well as  AzOo0! Our new algo- 
rithm is faster  than the first. The computation is summarized in Fig. 1-8. 

Compute B40 by 
eight digit arith- 

B, formula metic. Round re- 
sult to  3 places. 

Fig. 1-8 

1.17. Show that if x l ,  xn are approximations to X I ,  Xz with errors E l ,  Ez so that  X I  = X I  + E l  

and X Z  = 5 2  + E2, then 
X1X2 - ~ 1 x 2  - El E2 

XlX2 x, + - X2 

In words, the relative error of the product is approximately the sum of the relative 
errors of the factors. 

Since E,E2 is  small compared with either El or E2, 

XIXz  - x1x2 = Elx2 + E2xl + E1E2 - Elxz + Ezxl 

from which the required result follows upon division by X1X2. 

1.18. The number of correct, or significant, digits is closely related to the relative error. 
How does the number of correct digits in a product compare with the corresponding 
number for  the factors? 

F o r  two factors having about the same relative error, the preceding problem suggests t h a t  the 
product will have about twice t h a t  relative error. The number of correct digits of factors and 
product will then be nearly the same. Consider the product of the square roots of 2 and 3, for  
instance. For  factors with 2 ,  3 and 4 correct digits, we find 

and in each case the product has  close to the same accuracy a s  its factors. With more and more 
factors the relative error grows, very much a s  the actual error  grows f o r  sums. 
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Supplementary Problems 
1.19. Compute 45 X 17 "in your headJ' by the following algorithm: 17 X 9 X 10 X 4. (Do the multiplica- 

tions from left to right.) 

1.20. Compute 45 X 17 by the Russian peasant algorithm, doubling the 45 and halving the 17. (This is 
the opposite of the algorithm used in Problem 1.2.) 

1.21. Compute 11.982 to three decimal places by the "long division" algorithm. 

1.22. Compute 11.982 using the supporting theorg 
1 - = l + x + x 2 +  

1 - 2  
with x = .018. Which algorithm is faster, this one or that of Problem 1.21? 

1.23. If X - 3.32 and Y - 5.39 correct to two places, how large and how small might X t Y and 
XY actually be? How do 3.32 t 5.39 and (3.32)(5.39) compare with these extreme possibilities? 

1.24. Numbers are accurate to two places when their error does not exceed .005. The following square 
roots are taken from a table. Round each to two places and note the amount of the roundoff. How 
do these roundoff errors compare with the maximum of .005? 

( fi to three places 1 3.317 1 3.464 1 3.606 ( 3.742 1 3.873 1 4.000 ( 4.123 1 4.243 ( 4.359 1 4.472 1 

The total roundoff error could theoretically be anywhere from lo(- .005) to 10(.005). Actually what 
is the total? How does i t  compare with the "probable error" of f i ( . 0 0 5 ) ?  

fi to two places 

approx. roundoff 

1.25. Suppose N numbers, all correct to a given number of places, are to be summed. For about what 
size N will the last digit of the computed sum probably be meaningless? The last two digits? Use 
the probable error formula. 

1.26. Find the smaller root of the quadratic equation x2 - 202 + 2 = 0 ,  using three digit arithmetic. 
First t ry  an algorithm which uses 10 - 6 8 ,  and then an algorithm based on the supporting 

theory 10 - = 2/(10 + fi). Check both results by substitution into the quadratic equation. 

Which seems to be more accurate? 

3.32 

+.003 

1.27. Apply the theorem of Problem 1.14 to the sequence for which 

3.46 

-.004 

If we want lim A, correct to three decimal places, how large must n be chosen to make A, an ac- 
ceptable approximation? Show that this requires 

1 
\A, - An+ll = - 5 .0005 2 n + 1  - 

leading to n approximately 1000. Do not actually compute Alooo. 

1.28. Apply the theorem of Problem 1.15 to the sequence of Problem 1.27 to obtain a more rapidly con- 
verging sequence. Since a, = 1 / (2n  - I ) ,  show that  

The theorem of Problem 1.14 may be applied to give 

For three digit accuracy we want this less than .0005. Show that  this requires n 2 24 so that BZ4 
should be satisfactory. At  least, the truncation error will satisfy 

truncation error = (lim B, - B2,( 5 .0005 
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Compute BZ4 using four or more digit arithmetic to keep the roundoff error small. A table of recip- 
rocals will be helpful. You should obtain the approximation Bz, - .7857, and though this contains 
both truncation and roundoff errors it compares nicely with what is known to be the correct result 
(to four places): lim B, - .7854. 

Show that  if X - x = E, then fi - fi - ~ / 2 f i .  

Show that if X - x = E,  then In X - In x - E I X .  

Let xo be an approximate positive square root of Q,  and let s = (Q lx i )  - 1. Show that  the exact 
root is 

3 5s4 785 fi lii ~ , ( l + ~ ) l / 2  = x o [ l + z - $ + ~ - - + - -  ... 
16 128 256 I 

and apply this to obtain fi to six places. 

Let xo be an approximate positive square root of Q,  and let r = 1 - (x,2/Q). Show that  

and apply this to obtain &! to five places. Does this algorithm seem inferior or superior to that  
of the previous problem? 

If zo is an approximation to l l f i ,  the sequence defined by 

X ,  + 1 = 4xn(3  - Qx2) 
may sometimes be used to obtain improved approximations. If xN is a satisfactory approximation, 
then a - Q . zN; this produces fi without divisions. Apply this algorithm to find a square root 
of 2 to six places. 

Let xo be an approximate cube root of Q, and let s = (Q/x;)  - 1. Show that the exact root is 

and apply this to obtain to six places. 

Let xo be an approximate cube root of Q ,  and let r = 1 - (x:/Q).  Show that  

and apply this to obtain to six places. Does this algorithm seem inferior or superior to that  of 
the preceding problem? 

A sequence Jo,  J1 ,  J2,  . . . is defined by 
J , , ,  = 2 n J n  - J n - ,  

with J ,  = .765198 and J ,  = .440051 correct to six places. Compute Jz ,  . . ., J7 and compare with 
the correct values which follow. (These correct values were obtained by an altogether different 
process. See the next problem for explanation of errors.) 

correct J ,  1 .I14903 1 .019563 1 .002477 .000250 1 .000021 1 .000002 

Show that  for the sequence of the preceding problem, 

J ,  = 36767 J l  - 4581 Jo 

exactly. Compute this from the given values of J ,  and J1.  The same erroneous value will be ob- 
tained. The large coefficients multiply the roundoff errors in the given J ,  and J1 values and the 
combined results then contain a large error. 

To six places the number Jg  should be all zeros. What does the formula of Problem 1.36 actually 
produce? 



The Collocation Polynomial 

APPROXIMATION BY POLYNOMIALS 

Approximation by polynomials is one of the oldest ideas in numerical analysis, and still 
one of the most heavily used. A polynomial p(x) is used a s  a substitute for  a function y(x), 
for any of a dozen or  more reasons. Perhaps most important of all, polynomials are easy 
to compute, only simple integer powers being involved. But their derivatives and integrals 
are  also found without much effort, and are again polynomials. Roots of polynomial equa- 
tions surface with less excavation than for other functions. The popularity of polynomials 
as substitutes is not hard to understand. 

CRITERION OF APPROXIMATION 

The difference y(x) - p(x) is the error of the approximation and the central idea is, of 
course, to keep this error reasonably small. The simplicity of polynomials permits this 
goal to be approached in various ways, of which we consider 

1. collocation, 2. osculation, 3. least squares, 4. min.-max. 

T H E  COLLOCATION POLYNOMIAL 

The collocation polynomial is the target of this and the next few chapters. It coincides 
(collocates) with y(x) a t  certain specified points. A number of properties of such poly- 
nomials, and of polynomials in general, play a part  in the development. 

The existence and uniqueness theorem states that  there is exactly one collocation poly- 
nomial of degree n for arguments XO, . . . , x,, that  is, such that  y(x) = p ( ~ )  for these 
arguments. The existence will be proved by actually exhibiting such a polynomial in 
succeeding chapters. The uniqueness is proved in the present chapter and is a con- 
sequence of certain elementary properties of polynomials, such as 

The division algorithm. Any polynomial p(x) may be expressed as  

p(x) = (x-r)q(x) + IZ 
where r is any number, q(x) is a polynomial of degree n - 1, and R is a constant. This 
has two quick corollaries. 

The remainder theorem states that  p(r) = R. 

The factor theorem states that if p(r) = 0, then x - r is a factor of p(x). 

The limitation on zeros. A polynomial of degree n can have a t  most n zeros, meaning 
that  the equation p(x) = 0 can have a t  most n roots. The uniqueness theorem is an 
immediate consequence, a s  will be shown. 

Synthetic division is an economical procedure (or algorithm) for  producing the q(x) and 
R of the division algorithm. I t  is often used to obtain R, which by the remainder 
theorem equals p(r). This path to p(r) may be preferable to the direct computation of 
this polynomial value. 
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7. The product T ( ~ )  = ( X  - X O ) ( X  - xl )  - . . ( X  - xn) plays a central role in collocation theory. 
Note that it vanishes a t  the arguments X O , X I , .  . ., Xn which are  our collocation argu- 
ments. The error of the collocation polynomial will be shown to be 

y (x )  - p ( x )  = y ' " + " ( ~ ) n ( x ) l ( n + l ) !  

where depends upon z and is somewhere between the extreme points of collocation, pro- 
vided x itself is. Note that this formula does reduce to zero a t  X O ,  X I ,  . . . , Xn so that  p ( ~ )  
does collocate with y ( x )  a t  those arguments. Elsewhere we think of p ( x )  as an approxi- 
mation to y ( x ) .  

Solved Problems 
2.1. Prove that  any polynomial p ( x )  may be expressed as  

P ( X )  = ( x  - r)  4%) + R 
where r is any number, q(x )  is a polynomial of degree n - 1, and R is a constant. 

This is a n  example of the division algorithm. Let p(x) be of degree n. 

p(x )  = anxn + an-lxn- l  + - . .  + a. 

Then p(x) - ( x  - r )  anxn-1 = ql (x )  = bnF1xn-l  + 
will be of degree n - 1 or less. Similarly, 

q l ( x )  - ( x  - r )  bn-lxn-2 = q2(x )  = c , - ~ x " - ~  + 
will be of degree n - 2 or less. Continuing in this way, we eventually reach a polynomial qn(x) of 
degree zero, a constant. Renaming this constant R, we have 

~ ( x )  = (x - r )  [anxn-1 + bn-lxn-2 + . . a] + R = ( x  - r)  q (x )  + R 

2.2. Prove p(r) = R. This is called the remainder theorem. 
Let x  = r in Problem 2.1. A t  once, p(r) = 0. q(r )  + R. 

2.3. Illustrate the "synthetic division" method for performing the division described in 
Problem 2.1, using r = 2 and p ( x )  = x3 - 3x2 + 5x + 7. 

Synthetic division is merely a n  abbreviated version of the same operations described in Problem 
2.1. Only the various coefficients appear. F o r  the p(x)  and r above, the s tar t ing layout is 

r = 2 1 1 -3 5 'If----coefficients of p(x )  

Three times we "multiply by r  and add" to complete the layout. 

r = 2 1  1 - 3  5 7 
2 -2 6 

1 -1 3 13-the number R 

coefficients 
of 4%) 

Thus, q ( x )  = x2 - x  + 3 and R = f(2) = 13. This may be verified by computing ( x  - r )  q (x )  + R, 
which will be p(x) .  It is also useful to  find q(x )  by the "long division" method, s tar t ing from this 
familiar layout: 

Comparing the resulting computation with the "synthetic" algorithm just completed, one easily 
sees the equivalence of the two. 
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2.4. Prove that  if p ( r )  = 0,  then x - r is a factor of p(x ) .  This is the factor theorem. 
The other factor has degree n - 1. 

If p(r) = 0, then 0 = 0 q(x)  + R making R = 0. Thus, p(x) = ( x  - r) q(x). 

2.5. Prove that  a polynomial of degree n can have a t  most n zeros, meaning that p ( x )  = 0 
can have a t  most n roots. 

Suppose n roots exist. Call them r,, r2, . . ., r,. Then by n applications of the factor theorem, 

where A has degree 0, a constant. This makes it clear that there can be no other roots. (Note also 
that A = a,.) 

2.6. Prove that  a t  most one polynomial of degree n can take the specified values yk a t  given 
arguments xk, where k = 0,1, . . . , n. 

Suppose there were two such polynomials, pl(x) and p2(x). Then the difference p(x) = 
pl(x) - p2(x) would be of degree n or less, and would have zeros a t  all the arguments 2,: p(x,) = 0. 
Since there are n + 1 such arguments this contradicts the result of the previous problem. Thus, 
a t  most one polynomial can take the specified values. The following chapters display this polynomial 
in many useful forms. I t  is called the collocation polynomial. 

2.7. Suppose a polynomial p(x) of degree n takes the same values as  a function y (x )  for 
x = xo, xl,  . . ., x,. (This is called collocation of the two functions and p ( x )  is the 
collocation polynomial.) Obtain a formula for the difference between p ( x )  and y(x) .  

Since the difference is zero a t  the points of collocation, we anticipate a result of the form 

which may be taken as the definition of C. Now consider the following function F(x) :  

This F ( x )  is zero for x = x,, x,, . . . , x, and if we choose a new argument x , + ~  and 

then F ( X , + ~ )  will also be zero. Now F ( x )  has n + 2 zeros a t  least. By Rolle's theorem F'(x) then 
is guaranteed n + 1 zeros between those of F(x ) ,  while F"(x) is guaranteed n zeros between those 
of F1(x) .  Continuing to apply Rolle's theorem in this way eventually shows that  Fcn+"(x) has a t  least 
one zero in the interval from xo to x,, say a t  x = 5. Now calculate this derivative, recalling that  
the (n -I- 1)th derivative of p(x) will be zero, and put x equal to 5: 

This determines C, which may now be substituted back: 

Since x , + ~  can be any argument between xo and x, except for x,, . . ., x, and since our result is 
clearly true for so, . . . , x, also, we replace x , + ~  by the simpler x: 

This result is often quite useful in spite of the fact that the number 5 is usually undeterminable, 
because we can estimate y(n+l) ([ )  independently of 5. 
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The result p(x)  = 1 - x is immediate either by inspection or by elementary geometry. This is 
the collocation polynomial for the meager data supplied. 

Find a first degree polynomial which takes the values y(0) = 1 and y(1) = 0, or in 
tabular form 

The function y(x) = c o s i ~ x  also takes the values specified in Problem 2.8. Deter- 
mine the difference y(x) - p(x). 

Xk  

Y k  

By Problem 2.7, with n = 1, 
z-2 COS 4375 

Y ( X )  - P ( X )  = - 8 
x ( x  - 1 )  

Even without determining E we can estimate this difference by 

0 

1 

Viewing p(x )  as  a linear approximation to y(x ) ,  this error estimate is simple, though generous. 
At z = + i t  suggests an error of size roughly .3, while the actual error is approximately 
cos 1 3 7  - ( 1  - +) = .2. 

1 

0 

As the degree n increases indefinitely, does the resulting sequence of collocation poly- 
nomials converge to y(x) ? 

The answer is slightly complicated. For carefully chosen collocation arguments xk and rea- 
sonable functions y(x )  convergence is assured, as  will appear later. But for the most popular case, 
of equally spaced arguments xk ,  divergence may occur. For some y ( x )  the sequence of polynomials 
is convergent for all arguments x. For other functions, convergence is limited to a finite interval, 
with the error y ( x )  - p(x)  oscillating in the manner shown in Fig. 2-1. Within the interval of con- 
vergence the oscillation dies out and lim ( y  - p) = 0 ,  but outside that  interval y ( ~ )  - p(x) grows 
arbitrarily large as n increases. The oscillation is produced by the ~ ( x )  factor, the size being in- 
fluenced by the derivatives of y(x ) .  (For full details see: C. Lanczos, Applied Analysis,  page 352, 
Prentice-Hall, 1956.) This error behavior is a severe limitation on the use of high degree collocation 
polynomials. 

interval of 
convergence 

Fig. 2-1 
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Supplementary Problems 

2.11. Apply synthetic division to divide p (x )  = x3 - x2 + 2 - 1 by x - 1. Note that  R = f ( 1 )  = 0 ,  so 
that  ( x  - 1 )  is a factor of p(x) and r = 1  is a zero of f (x) .  

2.12. Apply synthet,ic division to p (x )  = 2x4 - 24x3 + 100x2 - 168x + 93 to compute p(1).  (Divide by 
( x  -- 1 )  and take the remainder R.) Also compute p(2) ,  p(3),  p (4)  and p(5).  

2.13. To find a second degree polynomial which takes the following values 

.*- 

we could write p (x )  = A + Bx + Cx2  and substitute to find the conditions 

0 = A,  1 = A + B + C ,  0 = A + 2 B + 4 C  

Solve for A ,  B and C  and so determine this collocation polynomial. Theoretically the same procedure 
applies for higher degree polynomials, but more efficient algorithms will be developed. 

2.14. The function y ( x )  = sin k ~ x  also takes the values specified in Problem 2.13. Apply Problem 2.7 to 

where [ depends on x. 

2.15. Continuing Problem 2.14, show that  

I 
This estimates the accuracy of the collocation polynomial p (x )  as an  approximation to y (x ) .  Compute 
this estimate a t  x = 4 and compare with the actual error. 

2.16. Compare y r ( z )  and p l (x )  for x = 4. 

2.17. Compare y M ( x )  and p"(x) for  x = Q. 

2.18. Compare the integrals of y ( x )  and p (x )  over the interval ( 0 , 2 ) .  

2.19. Find the unique cubic polynomial p (x )  which takes the following values: 

2.20. The function y ( x )  = 24 also takes the values given in the preceding problem. Write a formula for 
the difference y ( x )  - p (x ) ,  using Problem 2.7. 

2.21. What is the maximum of Iy(x) - p(x)j on the interval ( 0 , 3 )?  



Chapter 3 

Finite Differences 

FINITE DIFFERENCES 

Finite differences have had a strong appeal to mathematicians for centuries. Isaac 
Newton was an especially heavy user and much of the subject originated with him. Given 
a discrete function, that is, a finite set of arguments xk each having a mate yk, and supposing 
the arguments equally spaced, so that xk + 1 - xk = h, the differences of the yk values are 
denoted 

AYk = Yk+l - $/k 

and called first differences. The differences of these first differences are denoted 

and called second differences. In general, 

Anyk = A ~ - ' z J ~ + I  - An-'yk 
defines the nth differences. 

T h e  difference table is the standard format for displaying finite differences. Its diag- 
onal pattern makes each entry, except for the xk, yk, the difference of its two nearest 
neighbors to the left. 

xo yo 
AYo 

X I  yl A2yo 
Ayl a3y0 

$2 y2 a2y1 n4y0 
AY2 a3y 

X 3  y3 A2y2 
AY3 

X 4  y4 

Each difference proves to be a combination of the y values in column two. A simple example 
is a3y0 = y3 - 3y2 + 3 y l -  yo. The general result is 

k 

akyO = i = O  2 (- l ) i ( t )yk- i  

where (:) is a binomial coefficient. 

DIFFERENCE FORMULAS 

Difference formulas for elementary functions somewhat parallel those of calculus. 
Examples include the following. 

1. The differences of a constant function are zero. In symbols, 

AC = 0 

where C denotes a constant (independent of k). 
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2. For a constant times another function, we have 

A(C uk) = C auk 

3. The difference of a sum of two functions is the sum of their differences. 

A(% f V k )  = AUk + AVk 

4. The linearity property generalizes the two previous results to 

A(C1uk + C 2 ~ k )  = Cl Auk + C2 Avk 

where CI  and C2 are constants. 

5. The differences of a product are given by the formula 

~ ( u k  vk) = Uk Avk + V k t  1 Auk 

in which the argument k + 1 should be noted. 

6. The differences of a quotient are 

A ( u ~ / v ~ )  = (vk A U ~  - ~k ~ ~ k ) / ( ~ k + l ~ k )  

and again the argument k +- 1 should be noted. 

7. The differences of the power function are given by 

aCk = Ck(C - 1) 

The special case C = 2 brings ayk = yk. 

8. The differences of sine and cosine functions are also reminiscent of corresponding re- 
sults of calculus, but the details are not quite so attractive. 

 sin k )  = 2 sin 1/2 cos ( k  + 1/2) 

n(cos k )  = - 2 sin 112 sin ( k  + 112) 

9. The differences of the logarithm function are a similar disappointment. With 
xk = xo + kh,  we have 

 log xk) = log ( 1  + hlxk) 

When hlxk is very small this makes ~(logxk) approximately hlxk, but otherwise the 
reciprocal of x,  which is so prominent in the calculus of logarithms, is quite remote. 

10. The unit error function, for which yk = 1 at a single argument and is otherwise 
zero, has a difference table consisting of the successive binomial coefficients with alter- 
nating signs. The detection of isolated errors in a table of yk values can be based on 
this property of the unit error function. 

11. The oscillating error function, for which yk = ?I alternately, has a difference table 
consisting of the successive powers of 2 with alternating signs. 

12. Other functions of special interest will be studied in succeeding chapters, and the 
relationships between difference and differential calculus will be of continuing interest. 
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Solved Problems 

3.1. Compute up through third differences of the discrete function displayed in the xk, yk 
columns of Table 3.1. (The integer variable k also appears for convenience.) 

The required differences appear in the remaining three columns. Table 3.1 is called a difference 
table. Its diagonal structure has become a standard format  for  displaying differences. Each entry 
in the difference columns is  the difference of i ts  two nearest neighbors to  the left. 

Table 3.1 

Any such table displays differences a s  shown in Table 3.2. 

0 2 0  Yo 
AY 0 

1 X l  Y l  A2y0 
AY I A ~ Y O  

2 " 2  Y2 @Y 1 

b2y2 
A3y1 

3 2 3  Y3 
AY 3 

4 x4 Y4 

Table 3.2 

For example, Ay, = y l - y o  = 8 - 1  = 7 

- Ay, - Ago = 19 - 7 = 12, A2y0 - etc. 

3.2. What is true of all fourth and higher differences of the function of Problem 3.1? 

Any such differences a re  zero. This is a special case of a result to be obtained shortly. 

3.3. Prove that a3yo = y3 - 3yz + 32~1- yo. 

Either from Table 3.2 or by the definitions provided a t  the outset, 

*3y0 = A2y1 - A2yo = (y3 - 2y2 + y l )  - ( ~ 2  - ~ Y I +  Y O )  = Y3 - 3 ~ 2  + 3 ~ 1  - YO 

3.4. Prove that A4yo = y4 - 4y3 + 6yz - 4y1+ yo. 

By definition, A4yo = A3yl - 4 3 ~ ~ .  Using the result of Problem 3.3 and the almost identical 
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h a y l  - - y4 - 31d3 + 3 ~ 2  - Y I  

obtained by advancing all lower indices, the required result follows a t  once. 

3.5. Prove that  for any positive integer k ,  
k 

A ~ Y O  = (-1)' ( t )  a k - i  
I=O 

where the familiar symbol for binomial coefficients, 

k ! - - k (k  - 1) . - ( k  - i + 1) 
3 = i ! ( k - q !  i ! 

has been used. 
The proof will be by induction. For k = 1,2,3 and 4, the result has already been established, 

by definition when k is 1. Assume i t  true when k is some particular integer p: 

By advancing all lower indices we have also 

and by a change in the summation index, namely i = j + 1, 

It is also convenient to make a nominal change of summation index, i = j ,  in our other sum: 

(see Problem 4.5, page 24) and making a final change of summation index, j + 1 = i, 

Thus our result is established when k is the integer p + 1. This completes the induction. 

3.6. Prove that  for a constant function all differences are zero. 

Let yk  = C for all k. This is a constant function. Then, for all k, 

b y k  = y k + f - y k  = C - C  = 0 

3.7. Prove ~ ( C y k )  = C Ayk. 

This is analogous to a result of calculus. A(Cyk)  = C y k + l  - C y k  = C Auk. 

Essentially this problem involves two functions defined for the same arguments xk .  One func- 
tion has the values y,, the other has values xk = Cyk.  We have proved Azk = C Auk. 

3.8. Consider two functions defined for the same set of arguments x k .  Call the values of 
these functions uk and vk. Also consider a third function with values 
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where C 1  and CZ are two constants (independent of x k ) .  Prove 

A W k  = C l  A u k  + C Z A v k  

This is t h e  l ineari ty  property of the difference operation. 
The proof is direct from the definitions. 

Awk = w k  + 1 - w k  = ( C l u k  + 1 f C z v r  + 1) - ( C l u k  + C z v k )  

= C 1 ( u k +  1 - uk) f C 2 ( v k +  1 - vk) = C1 A u k  f C2 Avk 

Clearly the same proof would apply to sums of any finite length. 

3.9. With the same symbolism as in Problem 3.8, consider the function with values 
z k  = u k v k  and prove A x k  = u k  a u k  + v k  + 1 a u k .  

Again starting from the definitions, 

Azk = U k + l V k + l  - UkVk = U k + l V k + l  - U k V k + l  + U k V k + l  - UkVk 

- 
- ~ k + l ( ~ k + l - ~ k )  f ~ k ( ~ k + l - ~ k )  = U k A V k  + v k + l A U k  

The result A z k  = uk + A v ,  + vk A u k  could also be proved. 

3.10. Compute differences of the function displayed in the first two columns of Table 3.3. 
This may be viewed as a type of "error function", if one supposes that all its values 
should be zero but the single 1 is a "unit error". How does this unit error affect the 
various differences ? 

Some of the required differences appear in the other columns of Table 3.3. 

Table 3.3 

The error influences a triangular portion of the difference table, increasing for higher differences 
and having a binomial coefficient pattern. 

3.11. Compute differences for the function displayed in the first two columns of Table 3.4. 
This may be viewed as a type of "error function", each value being a roundoff error 
of amount one unit. Show that the alternating 5 pattern leads to serious error 
growth in the higher differences. Hopefully, roundoff errors will seldom alternate 
in just this way. 

Some of the required differences appear in the other columns of Table 3.4 below. The error 
doubles for each higher difference. 
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Table 3.4 

One number in this list is misprinted. Which one? 

1 2 4 8 16 26 42 64 93 
Calculating the first four differences, and displaying them horizontally for a change, we have 

1 2 4 8 10 16 22 29 
1 2 4 2 6 6 7 

1 2 - 2  4 0  1 

1 -4 6 -4 1 

and the impression is inescapable that  these binomial coefficients arise from a data error of size 1 
in the center entry 16 of the original list. Changing i t  to 15 brings the new list 

1 2 4 8 15 26 42 64 93 

from which we find the differences 

1 2 4 7 11 16 22 29 
1 2 3 4 5 6 7  

which suggest a job well done. This is a very simple example of data smoothing, which we treat 
much more fully in a later chapter. There is always the possibility that  data such as we have in our 
original list comes from a bumpy process, not from a smooth one, so that  the bump (16 instead of 15) 
is real and not a misprint. The above analysis can then be viewed as  bump detection, rather than 
as error correcting. 

Supplementary Problems 

3.14. Verify Problem 3.5 for k = 5 by showing directly from the definition that  

~~y~ = y 5  - 5v.4 + 1 0 ~ 3  - ~ O Y Z  + 5 ~ 1  - Y o  

3.13. Calculate up through fourth differences for the following y k  values. (Here i t  may be assumed that  
2, = k.) 

U k  - V k  Auk - Uk h V k  
3.15. Imitating Problem 3.9, prove that  A- - 

V k  V k t l  ?-'k 

k 

Y k  

0 1 2 3 4 5 6 

0 1 16 81 256 625 1296 



CHAP. 31 FINITE DIFFERENCES 21 

Calculate differences through the fifth order to observe the effect of adjacent "errors" of size 1. 

Use the linearity property to show that  if yk = k3, then 

b y k  = yk+l  - yk = 3k2+3k+ 1, A2yk = Ayk+l-AYk = 6k+61  A3yk = A2Yk+l-A2yk = 6 

Find and correct a single error in these yk values. 

Show that  if yk = k4, then A4yk = 24. 

yk 

Show that  if yk = 2k, then Ayk = yk.  

k 0 1 2 3 4 5 6 7  

0 0 1 6 24 60 120 210 

Show that  if yk = Ck, then b y k  = Ck(C-  1).  

Compute the missing yk values from the first differences provided. 

Yk 0 . 
AYk 1 2  4 7 1 1 1 6  

Compute the missing yk and Ayk values from the data provided. 

Yk . 6 .  

A ~ k  . 5 .  

A2y k 1 4 13 18 24 

Compute the missing yk values from the data provided. 

yk 0 0 0 6 2 4 6 0 -  

A Y ~  0 0 6 18 36 - 
A 2 ~ k  0 6 12 18 . 
A 3 ~ k  6 6 6 6 6 6  

Find and correct a misprint in this data. 

yk 1 3 11 31 69 113 223 351 521 739 1011 

By advancing all subscripts in the formula @yo = y2 - 2yl + yo, write similar expansions for 
A2y1 and A2y2. Compute the sum of these second differences. I t  should equal Ay3 - AyO = 
Y4 - Y3 - Y l  + Yo. 

Find a function yk for which Ayk = 2yk. 

Find a function yk for which ~ 2 y ~  = 9yk. Can YOU find two such functions? 

Continuing the previous problem, find a function such that  A2yk = 9yk and having yo = 0 ,  Y 1  = 1. 

Prove A(sin k )  = 2 sin 112 cos ( k  + 112). 

Prove A(cos k )  = -2 sin 112 sin ( k  + 112). 

Prove A(1og x k )  = log( l+  h / x k )  where xk = x0 + kh .  



Factorial Polynomials 

FACTORIAL POLYNOMIALS 
Factorial polynomials are defined by 

yk = ken) = k ( k - l ) . . . ( k - n S 1 )  

where n is a positive integer. For example, kC2) = k(k - 1) = k2 - k. These polynomials 
play a central role in the theory of finite differences because of their convenient properties. 
The various differences of a factorial polynomial are again factorial polynomials. More 
specifically, for the first difference, 

~ k ( n )  = nk(n-l) 

which is reminiscent of how "the powers of x" respond to differentiation. Higher differences 
then become further factorial polynomials of diminishing degree, until ultimately 

~nk(n )  n! 
with all higher differences zero. 

The binomial coefficients are related to factorial polynomials by 

and therefore share some of the properties of these polynomials, notably the famous 
recursion 

k + l  
+ 1 )  ( 1 )  = (E) 

which has the form of a finite difference formula. 

The simple recursion 
k(n+l) = ( k  - n)k(") 

follows directly from the definition of factorial polynomials. Rewriting i t  as 
k(n) = k(n+l)/(k - 4 

it may be used to extend the factorial idea successively to the integers n = 0, -1, -2, . . . . 
The basic formula & + n )  = n,7,+n-1) 

is then true for all integers n. 

STIRLING'S NUMBERS 
Stirling's numbers of the first kind appear when factorial polynomials are expressed in 

standard polynomial form. Thus 
kc") - - s Y ) ~  + . . . + SF)kn = 2 S:n)ki 
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the ,Sin' being the Stirling numbers. As an example, 

k'3' = 2 k - 3 k 2  + k3 

which makes Si3' = 2, S F )  = -3 and Si" = 1. The recursion formula 

- - y&"' sin+1) - 

permits rapid tabulation of these Stirling numbers. 

Stirling's numbers of  the second kind appear when the powers of k are represented as 
combinations of factorial polynomials. Thus 

kn = s (n )  k ( l )  + . . . + k(n) = s!n) k( i)  
1 

the sin) being the Stirling numbers. As an example, 

k3 = k ( l )  + 3k(Z) + k(3) 

so that si3' = 1 d 3 )  2 = 3 and sy' = 1. The recursion formula 

permits rapid tabulation of these numbers. A basic theorem states that each power of k 
can have only one such representation as a combination of factorial polynomials. This 
assures the unique determination of the Stirling numbers of second kind. 

REPRESENTATION OF ARBITRARY POLYNOMIALS 

The representation of arbitrary polynomials as combinations of factorial polynomials is 
a natural next step. Each power of k is so represented and the results are then combined. 
The representation is unique because of the basic theorem just quoted. For example, 

k2 + 2k + 1 = [k(2) + kc1)] + 2kc1) + 1 = k(') + 3 k ( l )  + 1 

Differences of arbitrary polynomials are conveniently found by first representing such 
polynomials as  combinations of factorial polynomials, and then applying our formula for 
differencing the separate factorial terms. 

The principal theorem of the chapter is now accessible, and states that: the difference 
of a polynomial of degree n is another polynomial, of degree n - 1. This makes the nth 
differences of such a polynomial constant, and still higher differences zero. 

Solved Problems 

4.1. Consider the special function for which yk = k (k  - l ) ( k  - 2) and prove Ayk = 3k(k  - 1). 

A Y ~  = Y k t  1 - Y k  

= (16 + l)k(k - 1) - k(k - l)(k - 2) 
= [(k + 1) - (k - 2)] k(k - 1) 
= 3k(k - 1) 

In tabular form this same result, for the first few integer values 
of k, is given in Table 4.1. Table 4.1 
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4.2. This generalizes Problem 4.1. Consider the special function 

yk = k ( k - l ) . . . ( k - n f  1)  = ken) 

(Note that the upper index is not a power.) Prove for n > 1, 
A y k  = nk(n-1)  

a result which is strongly reminiscent of the theorem on the derivative of the nth 
power function. 

Ayk = yk+l  - yk = [ ( k + l ) . - . ( k - n + 2 ) ]  - [ k . . . ( k - n + 1 ) ]  

= [ ( k + l )  - ( k - n + l ) ] k ( k - 1 ) - . . ( k - n + 2 )  = nk'n-1) 

4.3. Prove that if yk = then n2yk = n(n - l ) k (n -2 )  

Problem 4.2 can be applied to h y k  rather than to yk. 

~ 2 k ( n )  = ~ ~ k ( n )  = hnk(n-1) = n(n - l ) k ( n P 2 )  

Extensions to higher differences proceed just as  with derivatives. 

4.4. Prove ank(") = n ! and an+ lk(")  = 0. 

After n applications of Problem 4.2, the first result follows. (The symbol kc0) can be interpreted 
as 1.) Since n !  is constant (independent of k )  its differences are all 0. 

4.5. The binomial coefficients are the integers 

Prove the recursion 

Using factorial polynomials and applying Problem 4.2, 

( k  + l ) ( n + l )  k ( n + l )  Ak(n+l)  (n+ l ) k ( n )  k (n )  - - - 
- n !  = ( e )  

which transposes a t  once into what was to be proved. This famous result has already been used. 

4.6. Use the recursion for the binomial coefficients to tabulate these numbers up through 
k = 8. 

The first column of Table 4.2 gives (k) which is defined to be 1. The diagonal, where k = n, 
is 1  by definition. The other entries result from the recursion. The table is easily extended. 

Table 4.2 
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4.7. Show that  if k is a positive integer, then k'") and ( t )  are  0 for n > k .  [For n > k the 
symbol ( t )  is defined as k(") ln !] 

Note t h a t  k ( k +  1 )  = k(k - 1).  . . O .  For  n > k the factorial k(") will contain this 0 factor, and 
so will (t). 

4.8. The binomial coefficient symbol and the factorial symbol are  often used for non- 
integral k .  Calculate k'"' and (i) for  k = 112 and n = 2,3.  

k (2 )  = 1 ( 2 )  = 1(1 - 1) = -1 k(3 )  = 1 ( 3 )  = 1(1 - I)(+ - 2)  = H 
2 3 2 3 

k t 2 )  k ( 3 )  ( ) = - = q-1) = -1 (k) = - = q a )  = L 
2 !  2 4  3 !  6 8  1 G 

4.9. The idea of factorial has also been extended to upper indices which are not positive 
integers. It follows from the definition that  when n is a positive integer, k("+l)  = 
( k  - n)k(" ) .  Rewriting this as 

and using i t  as a definition of kc")  for n = 0,  -1, -2, . . . , show that  k(O) = 1 and 
Wn) = l l ( k  + n)(" ) .  

With n = 0 the first result is instant. For  the second we find successively 

1 1 1 1 k(-1) = -k(O) = - - k(-2)  = -----kc-1) = 1 - 1 
k t 1  k + 1  - ( k + l ) ( l ) '  k f 2  ( k +  2) (k+ 1)  - (k+2)(2) 

and so on. An inductive proof is indicated but  the details will be omitted. For  k = 0 it is occa- 
sionally convenient to define k ( 0 )  = 1 and to accept the consequences. 

4.10. Prove that  aidn) = nk("- ' )  for all integers n. 

F o r  n > 1, this has  been proved in Problem 4.2. For  n = 1 and 0 ,  i t  is immediate. For  n 
negative, say n = -p, 

This result is analogous to the fac t  t h a t  the theorem of calculus 

" if f (x) = zn, then f f ( x )  = nxn- " 

is also t rue f o r  all integers. 

4.11. Find ~ k ( - " .  

By the previous problems, Akc-l)  = -k(-2) = -ll(k + 2)(k  + 1). 

4.12. Show that  k (2 )  = -k + k2, W 3 )  = 21c - 3k2  + k3, kC4) = -6k + l l k 2  - 6k3 + k4. 

Directly from the definitions: k(2)  = k(k - 1) = -k + k2 

k(3)  = k(2)(k  - 2)  = 2k - 3k2 + k3 

k(4) = k(3)(k - 3) = -6k + Ilk2 - 6k3 + k4 
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4.13. Generalizing Problem 4.12, show that  in the expansion of a factorial polynomial into 
standard polynomial form 

k(n) = Sin)k  + . . . + S ? ) ] p  = S:n)E 

the coefficients satisfy the recursion 
, y + l '  = $2 - y&,(n) 

These coefficients are called Stirling's numbers of  the f i rs t  kind. 

Now compare coefficients of ki on both sides. They a r e  

,y) = ,:,; - din) 

fo r  i = 2, . . ., n. The special cases ,Sin+" = -nsin' and s?>~" = S F )  should also be noted, by 
comparing coefficients of k and kn+l. 

4.14. Use the formulas of Problem 4.13 to develop a brief table of Stirling's numbers of 
t h e  first kind. 

The special formula s:~'" = - - n ~ : ~ '  leads a t  once to column one of Table 4.3. F o r  example, 
since s:" is clearly 1, 

,q' = -s;l' = -1, , q 3 )  = -2s;21 = 2 

and so on. The other special formula fills the top diagonal of the table with 1's. Our main recursion 
then completes the table. For  example, 

and so on. Through n = 8 the table reads a s  follows. 

Table 4.3 

4.15. Use Table 4.3 to expand kC5). 

Using row 5 of the table, k(5) = 24k - 50k2 + 35k3 - 10k4 + k5. 
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4.17. As a necessary preliminary to the following problem, prove that  a power of k can 
have only one representation as a combination of factorial polynomials. 

Assume that two such representations exist for kp. 

Subtracting leads to 
0 = ( A 1  - Bl)k(')  + . + ( A ,  - Bp)k(P) 

Since the right side is a polynomial, and no polynomial can be zero for all values of k,  every power 
of k  on the right side must have coefficient 0. But kp appears only in the last term; hence A, must 
equal B,. And then kp-I appears only in the last term remaining, which will be ( A p - ,  - B p - l ) k ( ~ - l ) ;  
hence A P w 1  = B p - l .  This argument prevails right back to A l  = B1. 

This proof is typical of unique representation proofs which are frequently needed in numerical 
analysis. The analogous theorem, that  two polynomials cannot have identical values without also 
having identical coeffkients, is a classical result of algebra and has already been used in Problem 4.13. 

4.18. Generalizing Problem 4 . 1 6 ,  show that the powers of k can be represented as com- 
binations of factorial polynomials 

k n  = s ( n ) k ( l )  + . . . + S F )  k ( n )  = sen) k( i )  
1 1. 

and that the coefficients satisfy the recursion sin+" = s ip ,  '") + is:"'. These coefficients 
are called S t i r l i n g ' s  n u m b e r s  o f  the s e c o n d  k i n d .  

We proceed by induction, Problem 4.16 already having established the existence of such rep- 
resentations for small k. Suppose 

kn = S;n)k(l)  + . . . 
+ k ( n )  

and then multiply by k to obtain 

This is already a representation of kn+l, completing the induction, so that  we may write 

By Problem 4.17, coefficients of k(i)  in both these last lines must be the same, so that  

( n + l )  = (n) and s n + l  sn should also be noted, by com- for i = 2 , .  . . , n. The special cases sin+ = d n )  
paring coefficients of kc') and kcn+ 1). 

4.19. Use the formulas of Problem 4 . 1 8  to develop a brief table of Stirling's numbers of 
the second kind. 

sl leads a t  once to column one of Table 4.4, since s:" is clearly The special formula sin+" = '" 
1. The other special formula produces the top diagonal. Our main recursion then completes the 
table. For example, 

S F )  = si2) + 2si2) = ( I )  + 2(1) = 3, s(4) = s13) + 2sP) = ( 1 )  + 2(3) = 7 ,  
2 

and so on. Through n = 8, the table reads as  follows. 
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Table 4.4 

Use Table 4.4 to expand k5 in factorial polynomials. 
Using row 5 of the table, k5 = k c ] )  + 15k(2) + 25k(3)  + lOk(4) + kt5).  

Prove that  the nth differences of a polynomial of degree n a re  equal, higher differences 
than the nth being zero. 

Call the polynomial P(x),  and consider its values for a discrete set of equally spaced arguments 
xo, X I ,  x2, . . . . I t  is usually convenient to deal with the substitute integer argument k which we have 
used so frequently, related to x by xk -xo = k k  where h is the uniform difference between con- 
secutive x arguments. Denote the value of our polynomial for the argument k by the symbol Pk.  
Since the change of argument is linear, the polynomial has the same degree in terms of both x and 
k ,  and we may write it as  

Pk = a,  + alk  + a2kZ + . . - + ankn 

Problem 4.18 shows that each power of k can be represented as  a combination of factorial poly- 
nomials, leading to a representation of Pk itself as  such a combination. 

Applying Problem 4.2 and the linearity property 

A P ~  = bl + 2b2kc1) + . - 0  + nbnk(nPl) 

and reapplying Problem 4.2 leads eventually to AnP, = n!bn. So all the nth differences are this 
number. They do not vary with k and consequently higher differences are zero. 

Assuming that  the following yk values belong to a polynomial of degree 4, compute 
the next three values. 

A fourth degree polynomial has constant fourth differences, according to Problem 4.21. Cal- 
culating from the given data, we obtain the entries to the left of the line in Table 4.5. 

1 0 -./ 5 16 21 30 51 

-2 10 14 

4 4 

Table 4.5 

Assuming the other fourth differences also to be 4 leads to the entries to the right of the line 
from which the missing entries may be predicted: = 5, 2/8 = 26, u, = 77. 
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Supplementary Problems 
Compute the factorials: 6(3), 6c6), 6(7), (1 /3) (2) ,  (1 /3) (3) ,  (1/3)(4). 

Compute the factorials: 6(-1), 6(-2) ,  6(-3) ,  (1/3)(-11, (1 /3) ( -2) ,  (US)(-3) .  

Compute the binomial coefficients: (!), (:), (;), ( ' is),  ('i3), ( I f ) .  

Compute differences through fourth order fo r  these values of y, = kc4). 

Apply Problem 4.2 to express the first four  differences of y, = k(4)  in terms of factorial polynomials. 

Apply Problem 4.2 to express the first five differences of y, = Id" in  terms of factorial polynomials. 

Use Table 4.3 to express yk = 21c(3) - k(2)  + 4 k ( l )  - 7 a s  a conventional polynomial. 

Use Table 4.3 to express y, = kc6) + k(3)  + 1 a s  a conventional polynomial. 

Use Table 4.4 to express y, = $(2k4 - 8k2 + 3)  a s  a combination of factorial polynomials. 

Use Table 4.4 to express y, = 80k3 - 30164 + 3k5 a s  a combination of factorial polynomials. 

Use the result of the previous problem to obtain Ay, in terms of factorial polynomials. Then apply 
Table 4.3 to convert the result to a conventional polynomial. 

Use the result of Problem 4.32 to obtain Ay, and A2yk in terms of factorial polynomials. Then apply 
Table 4.3 to  convert both results to  conventional polynomials. 

Assuming tha t  the following y, values belong to a polynomial of degree 4, predict the next three 

Assuming t h a t  the following yk values belong to a polynomial of degree 4 ,  predict the next three 

values. 

values. 

y, 

What  is the lowest degree possible fo r  a polynomial which takes these values? 

WI 

k O 1 2 3 4 5 6 7  

1 -1 1 -1 1 

What is the lowest degree possible fo r  a polynomial which takes these values? 

k O 1 2 3 4 5  

y , 0 1 1 1 1 0  

Find a function y, for  which Ay, = kC2)  = k ( k  - 1). 

Find a function y, fo r  which Ay, = k(k  - l ) ( k  - 2). 

Find a function y, for  which Ayk = k2 = kC2)  + k"). 

Find a function y, for  which Ayk = k3. 

Find a function y, for  which Ayk = l l ( k  + l ) ( k  + 2). 



Chapter 5 

Summation 

Summation is the inverse operation to differencing, as integration is to differentiation. 
An extensive treatment appears in Chapter 17 but two elementary results are presented here. 

1. Telescoping sums are sums of differences, and we have the simple but useful 

analogous to the integration of derivatives. Arbitrary sums may be converted to 
teIescoping sums provided the equation ayk = x k  can be solved for the function yk. 
Then 

Finite integrat ion is the process of obtaining yr from 

where z k  is known. Since it obviously follows that 

finite integration and summation are the same problem. As in integral calculus, how- 
ever, there are times when explicit finite integrals (not involving 2) are useful. 

2. Summation by parts is another major result of summation calculus and involves the 
formula 

which resembles the corresponding integration by parts formula. 

Application of this formula involves exchanging one summation for a (presumably) 
simpler summation. If one of the 2's is known, the formula serves to determine the 
other. 

Infinite series may also be evaluated in certain cases where the partial sums respond 
to the telescoping or summation by parts methods. 
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Solved Problems 

5.1. Prove C nyk = yn - yo. 
k=0 

This is a simple but useful result. Since i t  involves the summation of differences, it  is usually 
compared with an analogous result of calculus involving the integration of a derivative. First 
notice that  

AYo = Y 1 -  Yo 

which illustrate the sort of telescoping s u m s  involved. In general, 

n- 1 x A Y ~  = ( ~ 1 - Y O )  + ( Y Z - Y I )  + ( ~ 3 - ~ 2 )  + ' '  ' + ( ~ n - ~ n - 1 )  = Y n  - YO 
k=O 

all other y values occurring both plus and minus. Viewed in a table of differences, this result looks 
even simpler. The sum of adjacent differences gives the difference of two entries in the row above. 

Similar results hold elsewhere in the table. 

, - n(n+l)(2n+l) 5.2. Prove l2 + 22 + . + n2 = i - 
6 i=l 

We need a function for which Ayi = i z .  This is similar to the integration problem of calculus. 
In this simple example, the yi could be found almost by intuition, but even so we appIy a method 
which handles harder problems just as well. First replace i 2  by a combination of factorial poly- 
nomials, using Stirling's numbers. 

Ayi = i 2  = i ( 2 )  + i ( l )  

A function having this difference is 
y,  = l i ( 3 )  + g i ( 2 )  

3 

as may easily be verified by computing Ayi. Obtaining yi from Ayi is called finite in tegra t ion .  The 
resemblance to the integration of derivatives is obvious. Now rewrite the result of Problem 5.1 as  
n 

Z a y i  = Y , + ~  - y 1  and substitute to obtain 
i=l  

1 
Evaluate the series iz (i + 

+ 2) . 
-1 

By an earlier result Ai(-1)  = (i+ l)(i+ 2)  . Then, using Problem 4.9, page 25,  to handle O ( - ' ) ,  

The series is defined as lim S, and is therefore equal to 1. 
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5.4. Consider two functions defined for the same set of arguments xk, having values u k  

and v k .  Prove 
n-1 n-1 

2 uiAVi = UnVn - UOVO - C Vi+lAUi 
i=O i = O  

This is called summation by parts and is analogous to the result of calculus 

The proof begins with the result of Problem 3.9, page 19, slightly rearranged. 

S u m f r o m  i = O  to i = n - 1 ,  

and then apply Problem 5.1 to the first sum on the right. The required result follows. 

m 

5.5. Evaluate the series ilZ" where -1 < R < 1. 
i=O 

Since A R ~  = Ri+l- Ri = Ri(R - I ) ,  we may pu t  ui = i and vi = Rf/(R - 1 )  and apply sum- 
mation by parts. Take the finite sum 

The last  sum is geometric and responds to a n  elementary formula, making 

Since nRn and Rn+ both have limit zero, the value of the infinite series is  l imSn = R l ( 1 -  R)z. 

5.6. A coin is tossed until heads first shows. A payoff is then made, equal to i dollars if 
heads first showed on the ith toss (one dollar if heads showed a t  once on the first toss, 
two dollars if the first heads showed on the second toss, and so on). Probability 
theory leads to the series 

I(:) + 2(&) + 3(8) + . . . = 9 i(a)i 
i=O 

for the average payoff. Use the previous problem to compute this series. 
w 

By Problem 5.5 with R = 112, 2 i(+)i = ( $ ) I ( $ )  = 2 dollars. 
i=O 

m 

5.7. Apply summation by parts to evaluate the series i2Ri. 
i=O 

Putt ing ui = i2, vi = RiI(R - 1) we find Aui = 2i + 1 and so 

The first of the two remaining sums was evaluated in Problem 5.5 and the second is geometric. 
So we come to 
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and letting n + finally achieve lim S, = (R  + R2)/(1-  R)3. 

A coin is tossed until heads first shows. A payoff is then made, equal to i2 dollars 
m 

if heads first showed on the ith toss. Probability theory leads to the series 2 i2($) i  
for the average payoff. Evaluate the series. i=O 

By Problem 5.7 with R = 4, x i2(+)i  = (4 +&)I($) = 6 dollars. 
i=O 

Supplementary Problems 
n n(n + 1) 

Use finite integration (as in Problem 5.2) to prove x i  = 1 + 2 + . + n = - 
i= 1 2 .  

n 
Evaluate x i3 by finite integration. 

i= 1 

n-1 An - 1 
Show that  x Ai = ---- by using finite integration. (See Problem 3.21, page 21.) This is, of 

i=o A - 1  
course, the geometric sum of elementary algebra. 

m 1 Evaluate by finite integration: izo 
(i  + l ) ( i  + 2)( i  + 3 )  

1  Evaluate 2 7 
z(i + 2) ' 

a 

Evaluate 2 i3Ri for -1 < R < 1. 
i=O 

Alter Problem 5.8 so that the payoff is i3. Use Problem 5.15 to evaluate the average payoff, which is 

Alter Problem 5.8 so that the payoff is $1 when i  is even and -1 when i  is odd. The average payoff 
m 

is x (- l ) i ($)i .  Evaluate the series. 
i= 1 

n 

Evaluate 2 log (1 + l l i ) .  
i=l 

N 

Evaluate 2 in in terms of Stirling's numbers. 
i= l  

a 

Evaluate 2 inRi. 
i=O 

Express a finite integral of Ayk = l lk  in the form of a summation, avoiding k = 0. 

5.23. Express a finite integral of byk = log k in the form of a summation. 



Chapter 6 

The Newton Formula 

The collocation polynomial can now be expressed in terms of finite differences and 
factorial polynomials. The summation formula 

is proved first and leads directly to the Newton formula for the collocation polynomial, 
which can be written as 

An alternative form of the Newton formula, in terms of the argument xk, may be ob- 
tained using x k  = xo + kh, and proves to be 

The points of collocation are X O ,  . . . , ~ n .  At these points (arguments) our polynomial takes 
the prescribed values yo, . . . , yn .  

Solved Problems 

and infer similar results such as 

A y 2  = A y o  + 2 A 2 y o  f n 3 y o ,  A"J/, = A 2  yo  f 2&"0 4- n 4 y o  

This is merely a preliminary to a more general result. The first result is obvious. For the 
second, with one eye on Table 6.1 below, 

Y ,  = y1 + AYI = ( Y O + A Y O )  + ( A ~ o + A ~ Y o )  

leading a t  once to the required result. Notice that this expresses y2 in terms of entries in the top 
diagonal of Table 6.1. Notice also that almost identical computations produce 

Ay,  = Ayo + 2A2yo + A3y0, A2y2 = k 2 y 0  + 2A3y0 + A4y0 

etc., expressing the entries on the " y ,  diagonal" in terms of those on the top diagonal. Finally, 

leading quickly to the third required result. Similar expressions for Ay,, &2y3, etc., can be written by 
simply raising the upper index on each A. 
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20 Yo 

2,  Y l  

2, Yz A'Y~ 

A2y2 A3y 1 23 Y3 
AY3 

2 4  Y4 

Table 6.1 

k 

6.2. Prove that for any positive integer k ,  yk = ( i )  A ~ ~ o .  (Here A O ~ O  means simply yo.) 
i=O 

The proof will be by induction. For  k = 1 , 2  and 3, see Problem 6.1. Assume the result t rue 
when k is some particular integer p. 

Y ,  = 5 (g) Aiyo 
t=o  

Then, a s  suggested in the previous problem, the definition of our various differences makes 

also true. We now find 

Problem 4.5, page 24, was used in the third step. The summation index may now be changed from 
j to i if desired. Thus our result is established when k is the integer p + 1, completing the induction. 

6.3. Prove that the polynomial of degree n, 
1 1 

pk = yo f kayo + - k ' 2 ' ~ 2 y o  + + - k ( n ) ~ n  2 !  n !  Yo 

takes the values pk = yk for k = 0,1, . . . , n. This iS Newton's formula. 
Notice first tha t  when k is 0 only the yo term on the right contributes, all others being 0. When 

k is 1 only the first two terms on the right contribute, all others being 0. When k is 2 only the first 
three terms contribute. Thus, using Problem 6.1, 

and the nature of our proof is indicated. In  general, if k is any integer from 0 to n, then kci) will 
be 0 for  i > k .  ( I t  will contain the factor k - k . )  The sum abbreviates to 

and by Problem 6.2 this reduces to y,. The polynomial of this problem therefore takes the same 
values a s  our yk  function for  the integer arguments k = 0 ,  . . . , n. (The polynomial is, however, 
defined for  any argument k.) 

6.4. Express the result of Problem 6.3 in terms of the argument x k ,  where xk = xo + kh. 

Notice first t h a t  

and so on. Using the symbol p ( x k )  instead of pk,  we now find 



THE NEWTON FORMULA [CHAP. 6 

which is Newton's formula in its alternate form. 

Find the polynomial of degree three which takes the four values listed in the y k  

column below a t  the corresponding arguments xk. 
The various differences needed appear in the remaining columns of Table 6.2. 

I 

Table 6.2 

Substituting the circled numbers in their places in Newton's formula, 

which can be simplified to 
p(xk)  = &[2xE - 272: + 1422, - 2401 

though often in applications the first form is preferable. 

Express the polynomial of Problem 6.5 in terms of the argument k. 
Directly from Problem 6.3, 

pk = 1 + 2k + i k ( 2 )  + Qk(3) 

which is a convenient form for computing pk values and so could be left as  is. I t  can also be 
rearranged into 

pk = 1 + ; k - i k z + $ k 3  

Apply Newton's formula to find a polynomial of degree four or less which takes 
yk values of Table 6.3. 

the 

Table 6.3 

The needed differences are circled. Substituting the circled entries into their places in Newton's 
formula, 

pk = 1 - 2k + :k(2) - i k ( 3 )  + 16k(4) 
24 

which is also pk = $(2k4 - 16k3 + 40k2 - 32k + 3) 

Since k = xk - 1,  this result can also be written as  
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Supplementary Problems 
Find a polynomial of degree four which takes these values. 

Find a polynomial of degree three which takes these values. 

Find a polynomial of degree two which takes these values. 

Find a polynomial of degree five which takes these values. 

x k 2  

Yk 

Find the cubic polynomial which includes these values. 

6 

0 1 0 0  

k = x k  

Yk 

(See also Problem 3.12, page 20.) 

8 1 0  

0 

6 

22 

Expressing a polynomial of degree n in the form 

pk = a ,  + a , k ( l  + a2k(2)  + . . . + ~ , k ( ~ )  

calculate Apk,  A2pk, . . . , Anpk. Then show tha t  the requirement 

p k = y k  k = 0 ,  . . . ,  n 

leads to Ap, = Aye, A2po = A2y0, etc. Next deduce 

4 

7 

29 

0 

1 

and substitute these numbers to obtain once again Newton's formula. 

Find a quadratic polynomial which collocates with y ( x )  = x4 a t  x = 0 ,1 ,2 .  

Find a cubic polynomial which collocates with y ( x )  = sin ( ~ ~ 1 2 )  a t  x = 0 ,1 ,2 ,3 .  Compare the two 
functions a t  x = 4. Compare them a t  x = 5. 

1 

2 

I s  there a polynomial of degree four  which collocates with y ( x )  = sin ( ~ ~ 1 2 )  a t  x = 0,1 ,2 ,3 ,4?  

2 

4 

I s  there a polynomial of degree two which collocates with y ( x )  = 2 3  a t  x = -1,0,  l ?  

5 

16 

3 

7 

Find a polynomial of degree four which collocates with y ( x )  = 1x1 a t  x = -2, -1 ,0 ,1 ,2 .  Where is  
the polynomial greater than y ( x ) ,  and where less? 

4 

11 

Find a polynomial of degree two which collocates with y ( z )  = 6 a t  x = 0 , 1 , 4 .  Why is Newton's 
formula not applicable? 

Find a solution of A3yk = 1 for all integers k with yo = Ayo = ~~y~ = 0. 



Operators and Collocation Polynomials 

OPERATORS 

The idea of an operator is used extensively in numerical analysis, often (and this will be 
our main use of them) to simplify the development of complicated formulas. Sometimes 
derivations are carried out optimistically, without excessive attention to logical precision. 
The results may be verified by other methods or checked experimentally. The specific 
operator concepts to be used are as  follows. 

1. The operator is defined by 
AYk = yk+ 1 - Y k  

We now think of A as an operator which when offered yk as an input produces y k + ~  - yk 
as an output, for all Ic values under consideration. 

The analogy between an operator and an algorithm (as described in Chapter 1) is 
apparent. 

2. The operator E is defined by 
Eyk = y k t  I 

Here the input to the operator is again yk. The output is z j k + ~ .  

Both A and E have the linearity property, that is, 

a(C1yk + C 2 ~ k )  = Cl AYk  $. CS Azk 

E(Clyh- f C Z X ~ )  = C I  Eyk + CS EXL 

where C1 and Cz  are any constants (independent of k). A11 the operators to be intro- 
duced will have this property. 

3. Linear combinations of operators. Consider two operators, call them L, and Lz, 
which produce outputs Llyk and Layr; from the input yk. Then the sum of these op- 

erators is defined as the operator which outputs L I Y ~  + L ~ y k .  

A similar definition introduces the difference of two operators. 
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More generally, if C1 and Cz are constants (independent of k) the operator 
CILl + CzL2 produces the output ClLlyk 4- Cd12yk. 

4. The product of operators L1 and L2 is defined as  the operator which outputs L1L2yk. 
A diagram makes this more clear. 

The operator L1 is applied to the output produced by Ls. The center three parts of the 
diagram together represent the operator L1L2. 

With this definition of product, numbers such as the C1 and Cz above may also be 
thought of as operators. For instance, C being any number, the operator C performs a 
multiplication by the number C. 

5. Equality of operators. Two operators L1 and LZ are called equal if they produce iden- 
tical outputs for all inputs under consideration. In symbols, 

LI = L2 if Llyk = Lzyk 
for all arguments k under consideration. With this definition a comparison of outputs 
shows a t  once that for any operators LI,  L2 and Lg, 

L1 + Lz = Lz + L1 

L1 + (Lz + Lx) = (L1 + Lz) + L3 
Ll(LZL3) = (LlLS)L3 

Ll(Lz + L3) = LlLz + L1L3 
but that the commutative law of multiplication is not always true: 

LlLZ + LzL1 

If either operator is a number C, however, equality is obvious from a comparison of 
outputs, CL1 = L1C 

6, Inverse operators. For many of the other operators we shall use, commutativity will 
also be true. As a special case, L1 and Lz are called inverse operators if 

LlLZ = LZLl = 1 
In such case we use the symbols 

- 1 - 1 
L1 = Lz = l/Lz, Lz = L1 = 1/L1 

The operator 1 is known as t h e  iden t i t y  operator and i t  is easy to see that it makes 
1 .  L = L 1 for any operator L. 

7. Simple equations relating A and E include, among others, 

E = 1 + ~  A~ = E 2 - 2 E + 1  
EA = AE a3 = E 3 - 3 E 2 + 3 E - 1  
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Two related theorems already proved earlier by other means appear as follows 
in operator symbolism. 

8. The backward difference operator V is defined by 

V Y k  = yk - y k - 1  

and i t  is then easy to verify that  
v E  = EV = a 

The relationship between V and E-I proves to be 

E-1 = 1-0 
and leads to the expansion 

- k = Yo + k ( 1 c f l ) - . . ( k + i - 1 )  
i = l  i! V"0 

for negative integers k.  

9. The central difference operator is defined by 
6 = E1/2 - E-1!2 

It follows that 6E1I2 = A. In spite of the fractional arguments this is a heavily used 
operator. Closely related is 

10. The averaging operator, which is defined by 
= +(El!S 4- E-l!2) 

and is the principal mechanism by which fractional arguments can be eliminated from 
central difference operations. 

COLLOCATION POLYNOMIALS 

The collocation polynomial can now be expressed in a variety of alternative forms, all 
essentially equivalent to the Newton formula of Chapter 6, but each suited to somewhat 
different circumstances. We discuss the following, which find use beginning with Chapter 12. 

1. Newton's backward formula 

represents the collocation polynomial which takes the values y k  for  k = 0, -1, . . . , -n. 

2. The Gauss forward formula may be obtained by developing the relationship between 
E and 6 and reads 

if the polynomial is of even degree 2n and collocation is a t  k  = n ,  . . . , n It becomes 

if the polynomial is of odd degree 212 + 1 and collocation is a t  k = -n, . . . , n + 1. 
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3. The Gauss backward formula may be derived in a similar way. For even degree i t  
takes the form 

k + i - 1  k  + i 
p k  = yo + 2 [( 2i - ) 6 2 i - 1 y - ~ ~ 2  + ( 2i ) ~ Z ~ Y O ]  

i= 1 

with collocation again a t  k = -n, . . . , n. One principal use of the two formulas of 
Gauss is in deriving 

4. Stirling's formula, which is one of the most heavily applied forms of the collocation 
polynomial. I t  reads 

and is a very popular formula. Needless to say, collocation is a t  k = -n, . . . , n. 

5. Everett's formula takes the form 

and may be obtained by rearranging the ingredients of the Gauss forward formula of 
odd degree. Collocation is a t  k = -n, . . . , n + 1. Note that  only even differences 
appear. 

6. Bessel's formula is a rearrangement of Everett's and can be written as  
k 

P k  = pYl12 + ( k  - : ) S ~ 1 , 2  + (i) PS2y1~2 + (:)(k - 4) ( 2 )  6 3 1 / i ~ z  

k + n - 1  k + n - 1  + . . + ( ,, ) p S 2 n y ~ ~ 2  + (ll[2n + l ] ) ( k  - +) ( 2n S2n+1y1~2 

7. The zigzag rule is a device for extracting a wide variety of other formulas from the 
familiar difference table layout. Only in unusual circumstances, however, will the 
standard formulas already listed prove inadequate. 

I Solved Problems 
7.1. Prove E = 1 +A.  

By definition of E,  E y k  = y k + , ;  and by definition of 1 + A ,  

( l + A )  = l S y k + A y k  = ~ k +  ( Y ~ + I - Y ~  = Y ~ + I  

Having identical outputs fo r  all arguments k ,  the operators E and 1  + A  are  equal. This result 
can also be written a s  A = E - 1.  

7.2. Prove E A  = AE.  

E h y ,  = E ( y k t l - y k )  = ~ k + ~ - y k + ~  and A E Y ~  = A y k + l  = Y k + z - Y k + l  

The equality of outputs makes the operators equal. This is an example in which the commutative 
law of multiplication is true. 
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7.3. Prove a2 = E2 - 2E + 1. 

Using various operator properties, 

A2 = ( E - 1 ) ( E - 1 )  = E2 - l * E  - ~ * l +  1 = E2 - 2E + 1 

k 
7.4. Apply the binomial theorem to prove Akyo = 2 (-l)i (:) yk- i .  

k 1-0 

The binomial theorem, (a + b)k  = 2 (:) ak-ibi, is valid as  long as  a and b (and therefore 
i=o  

a +  b) commute in multiplication. In the present situation these element8 will be E and -1 and 
these do commute. Thus, 

*k = ( E -  I)k = 5 (-I){ (!) Ek-f 
t=o 

Noticing that  Euo = y,, E2yo = y,, etc., we have finally 

which duplicates the result of Problem 3.6, page 18. 

Since E = 1 i- A, the binomial theorem produces EL = (1 + ~ ) k  = 2 (:) At. Applying this o p  
I = O  

erator to yo, and using the fact that  EkyO = yk, produces the required result a t  once. Note that  
this duplicates Problem 6.2, page 35. 

The backward diference is defined by Vyk = yk - yk-I = ~ y k - I .  Clearly i t  in- 
volves assigning a new symbol to yk - yk-I. Show that V E  = EV = A, E-' = 1 - V. 

Since these are true for all arguments k, we have V E  = EV = A = E - 1. 
Using the symbol E-1 for the operator defined by E-lyk = yk-l, we see that  EE-lyk and 

E-lEyk are both yk. In operator language this means that  these two operators are inverses: 
EE-1 = E-IE = 1. Finally, as  an exercise with operator calculations, 

7.7. Backward differences are normally applied only at  the bottom of a table, using neg- 
ative k arguments as shown in Table 7.1. 

I k x Y 

-4 3 - 4  ?d-4 
VY-3 

-3 5 - 3  'Y-3 V2v-2 
VY-2 v 3 y - I  

-2 x-2 'Y-2 V2y-1 
VY-1 V3yo V4y0 

-1 2 - 1  Y-1 v z y 0  
V Y O  

0 xo Yo 
\ 
Table 7.1 

since A = E v ,  we have An = (EV)'. But E and v commute, so the 2n factors an the 
may be rearranged t o  give An = vnE". ~ b p l y i n g  this to yk*  any^ = vnEngk = TT,~,~. 
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- k 

and that in general for k a negative integer, yk = yo + 2 k(k+l).--(k+i-1) v i y o .  
i = l  i ! 

Take the general case a t  once: yk = Eky,  = ( E - l ) - k y O  = ( 1  - V)-kyO.  With k  a negative in- 
teger the binomial theorem applies, making 

The special cases now follow for k = -1, -2, -3 by writing out the sum. 

7.9. Prove that the polynomial of degree n which has values defined by the following 
formula reduces to pk = y k  when k = 0, -1, . . . , -n. (This is Newton's backward 
difference formula.) 

The proof is very much like the one in Problem 6.3, page 35. When k is 0, only the first term on 
the right side contributes. When k  is -1, only the first two terms contribute, all others being zero. 
In general, if k  is any integer from 0 to -n, then k ( k  + 1). . ( k  + i - 1) will be 0 for i > -k. The 
sum abbreviates to 

-k k ( k + l ) . . . ( k + i - 1 )  piyo 
Pk = YO + 2 

i= 1 i! 
and by Problem 7.8 this reduces to yk. The polynomial of this problem therefore agrees with our 
yk function for k  = 0,-1, . . .,-n. 

7.10. Find the polynomial of degree three which takes the four values listed as yk below 
at the corresponding xk arguments. 

The differences needed appear in the remaining columns of Table 7.2. 

Table 7.2 

Substituting the circled numbers in their places in Newton's backward difference formula, 

Notice that  except for the arguments k  this data is the same as that  of Problem 6.5, page 36. 
Eliminating k by the relation xk = 10 + 2k,  the formula found in that  problem 

p(xk) = ~ ( 2 % ;  - 27x; 3 . 1 4 2 ~ ~  - 240) 

is again obtained. Newton's two formulas are simply rearrangements of the same polynomial. 
Other rearrangements now follow. 
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7.11. The central difference operator 8 is defined by 8 = Ell2  - E-l12 SO that 6yl lz  = 
yl - yo = Ayo = V y l ,  and so on. Observe that Ell2 and E-lI2 are inverses and that 
(Ei/')' = E, (E-'/')' = E-l. Show that Anyk = S " Y ~ + ~ / ~ .  

From the definition of 6 ,  we have 6E1/2 = E - 1 = A and An = SnEn12. Applied to yk, this 
produces the required result. 

7.12. In 8 notation, the usual difference table may be rewritten as in Table 7.3. 

Table 7.3 

Express 8y1/2,S2~0, S3y1/2 and s4yo using the A operator. 

By Problem 7.11, S Y , / ~  = Ayo, S2y0 = A'Y-1, S3y1/2 = A3y-1, s4y0 = A 4 ~ - 2 -  

7.13. The averaging operator is defined by p = :(Ell2 + EP1l2) SO that py1/2 = +(yl +YO) ,  
and so on. Prove p2 = 1 + $a2. 

Fi rs t  we compute 8 2  = E - 2 + E-1. Then p2 = &(E + 2 + E-1) = t ( S 2  + 4 )  = 1 + $ S 2 .  

7.14. Verify the following for the indicated arguments k: 

k = 0 , l  yk = yo + (:) S y w  

For  k = 0 only the yo terms on the right contribute. When k = 1 all r ight  sides correspond 
to the operator 

1+8E' /2  = l + ( E - 1 )  = E 

which does produce y,. For  k = -1 the last  three formulas lead to 

l - ~ E 1 / 2 +  82 = 1 - ( E - 1 ) +  ( E - 2 + E P l )  = E-l 

which produces yPl .  When k = 2 the last two formulas bring 

1 + 2SEl/2 + 6 2  + ~3E1/2 = 1 + 2(E - 1) + ( E  - 2 + E - l ) ( l  + E - 1) = E2 

producing y2. Finally when k = -2 the last  formula involves 

1 - 26E'/2+ 382 - 63El12 + 6 4  = 1 - 2(E - 1) + ( E  - 2 + E-1)[3 - ( E  - 1) + ( E  - 2 + E-l)]  = E-2 

leading to y-,. 

The formulas of this problem generalize to form the Gauss fo rward  formula. I t  represents a 
polynomial either of degree 2n 
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taking the values pk = y, for k  = -n,  . . . , n, or of degree 2 n  + 1  

taking the values pk = yk for k = -n, . . .,n + 1. (In special cases the degree may be lower.) 

7.15. Apply Gauss' formula with n = 2 to find a polynomial of degree four or less which 
takes the y k  values in Table 7.4. 

The differences needed are listed as usual. 

Table 7.4 

This resembles a function used in illustrating the two Newton formulas, with a shift in the 
argument k  and an  extra number pair added a t  the top. Since the fourth difference is 0 in this 
example, we anticipate a polynomial of degree three. Substituting the circled entries into their 
places in Gauss' formula, 

p,  = 3  + 5k + $ k ( k  - 1 )  + $(k  + l ) k ( k  - 1) 

If k  is eliminated b y  the relation xk = 6 + 2k,  the cubic already found twice before appears once 
again. 

Apply Gauss' forward formula to find a polynomial of degree four or less which 
takes the yk values in Table 7.5. 

The needed differences are circled. 

Table 7.5 

Substituting into their places in the Gauss formula, 

which simplifies to 
p,  = i ( 2 k ' - 8 k " + 3 )  
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Since k = xk - 3, this result can also be written a s  

p(zk) = 5(2x; - 24xE + 1 0 0 ~ :  - 168xk + 93) 

agreeing, of course, with the polynomial found earlier by Newton's formula. 

7.17. Verify that for  k = -1, 0, 1, 

and for  k = -2, -1, 0, 1,2,  

[CHAP. 7 

For k = 0, only the yo terms on the right contribute. When k = 1 both formulas involve 
the operator 

1 + 8E-1/2 + 82  = 1 + (1 -E-1 )  + ( E - 2 + E - 1 )  = E 

which does produce y,. For k = -1 both formulas involve 

1 - 8E-1/2 = 1 - (1 - E-1) = E-1 

which does produce yF1, Continuing with the second formula, we find for k = 2, 

1 + 2SE-112 + 382 + S3E-112 + S4  

= 1 + 2(1-E-1) + ( E - 2 + E - ~ ) ( 3 + l - E - 1 + E - 2 + E - ~ )  = E2 
and for k = -2, 

1 - 28E-112 + 82 - 83E-1/2 = 1 - 2(1-  E-1) + ( E  - 2 + E - l ) ( l -  1 + E-1) = E-2 

as required. 

The formulas of this problem can be generalized to form Gauss backward formula. I t  rep- 
resents the same polynomial as the Gauss forward formula of even order and can be verified as  above. 

k + i  k + i - 1  k k + i - 1  
7.18. Prove ( 2i ) + ( 2i ) = 5( 2i - ) . 

From the definitions of binomial coefficients, 

as required. 

7.19. Deduce Stirl ing's formula, given below, from the Gauss formulas. 
Adding the Gauss formulas for degree 2n term by term, dividing by two, and using Problem 

2n - 1 
This is Stirling's formula. 

7.20. Apply Stirling's formula with n = 2 to find a polynomial of degree four or less 
which takes the yk values in Table 7.6. 

The differences needed are again listed. 
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Table 7.6 

Substituting the circled entries into their places in  Stirling's formula, 

which is  easily found to be a minor rearrangement of the result found by the Gauss forward 
formula. 

7.21. Apply Stirling's formula to find a polynomial of degree four o r  less which takes the 
yk values in Table 7.7. 

The needed differences a re  circled. 

Table 7.7 

Substituting the circled entries into their places in Stirling's formula, 

which simplifies to pk = Q(2k4- 8k2+ 3) a s  with Gauss' forward formula. 

7.22. Prove aZiyo + (,k.+i) $ + I  S2i+1y1/~ = (4:;) SZiyl - (kii;l) SZiy0. 

The lef t  side becomes (using Problem 4.5, page 24)' 

where in the last  step we used 1 + 8E"Z = E 

7.23. Deduce Everett's formula from the Gauss forward formula of odd degree. 
Using Problem 7.22, we have a t  once 
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which is Everett's formula. Since i t  is  a rearrangement of the Gauss formula it is  the same poly- 
nomial of degree 2n + 1, satisfying p ,  = y k  for  k = -n, . . . , n + 1. It is a heavily used formula 
because of its simplicity, only even differences being involved. 

7.24. Apply Everett's formula with n = 1 to find a polynomial of degree three or less 
which takes the yr values in Table 7.8. 

The differences needed a re  listed a s  before. 

Table 7.8 

Substituting the circled entries in the appropriate places in Everett's formula, 

pk = 8k + z(k + l)k(k - 1) - 3(k - 1) - ik(k - l)(k - 2) 
which, of course, reduces to the result found earlier by Gauss' forward formula. 

7.25. Apply Everett's formula with n = 2 to find a polynomial of degree five or less which 
takes the yk values of Table 7.9. 

The needed differences a re  circled. 

k x k  Y k  S  S 2  8 S 4  

-2 0 0 
-1 

-1 1 -1 10 

@ 108 
0 2 @ 127 324 

@ 
1 3 @ 

569 
@ 

660 
2 4 704 1102 

3 5 
1671 

2375 

Table 7.9 

Substituting the circled entries into their places in Everett's formula, 

which can be simplified, using xk = k + 2, to P ( x ~ )  = 2; - - xi. 

7.26. Show that 

The left side corresponds to the operator 
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The r ight  side corresponds to  the operator 

so tha t  both sides a r e  the same. 

7.27. Show that Bessel's formula is a rearrangement of Everett's formula. 

Bessel's formula is 

By the previous problem i t  reduces a t  once to Everett's. 

7.28. Apply Bessel's formula with n = 1 to find a polynomial of degree three or less which 
takes the yk values in Table 7.10. 

Table 7.10 

The needed differences a r e  circled and have been inserted into their places in Bessel's formula. 
Needless to say, the resulting polynomial is the same one already found by other formulas. 

This can be verified to be equivalent to earlier results. 

7.29. Apply Bessel's formula with n = 2 to find a polynomial of degree five or less which 
takes the yk values in Table 7.11. 

The needed differences a re  circled. 

Table 7.11 
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Inserting the circled entries into their places in the Bessel formula, 

135 + + l Z ( k  - *) + k ( k  - 1) 
P k  = 

+ k(k--l! + 1 (324) (k  - t) 
2  2  2 3 

which can be simplified, using x k  = k  + 2, to the familiar p ( x J  = x i  - x> &. 

7.30. Illustrate the zigzag rule. 
The zigzag rule states that  polynomials which take specified values at given arguments can be 

constructed in a wide variety of ways, by first drawing a zigzag line from any yk value to a n  
adjacent first difference, then to a n  adjacent second difference, and so on. A t  each step there is a 
choice of two paths. An acceptable line is shown in Table 7.12. 

-3 x-3 Y - 3  
%'-5/2 

-2 X - 2  Y-2 S2Y-2 
816 -312 6%-312 - 1  x- 1 Y-1  S 2 u - 1  S4y - 1 

A+- 814 - 112 a32/ - 112 - 852/-1/2 o x o Y O  ---‘ s2yo - ~ ~ 2 1 0  

1  
S Y I ~ Z  ----- s 3 y 1 / ~  

X 1 Y  1 S2Y, 

2 
8 ~ 3 / 2  

$2 Y2 

Table 7.12 

Having chosen the line i t  is only necessary to multiply the differences encountered on t h a t  line 
' 

by suitable factors. In  this case, the result would be 

the general rule being tha t  af ter  the first two terms the upper index in the binomial coefficient 
increases af ter  a n  upwards zig but not a f te r  a downwards zag. With each step the polynomial then 
matches the data  yk  within a triangle determined by the diagonals running back from the highest 
difference reached. In  the above example the left (vertical) side of this triangle includes in suc- 
cessive steps ( Y - I ,  Y O ) ,  ( Y - 1 ,  Y O , Y ~ ) ,  ( Y - 1 ,  Y O ,  Y I ,  Y Z ) ,  ( Y - 2 ,  Y - 1 ,  YO,  Y I ,  Y Z )  and finally the full ~k column. 
The Newton and Gauss formulas a re  fur ther  illustrations of the zigzag rule. Our remaining 
formulas a re  obtained a s  averages of zigzag formulas, often rearranged. 

7.31. Diagram the zigzag paths for  our various formulas. 

Where a formula is obtained by averaging over two paths, only the differences which actually 
appear in the formula a re  shown. 

Newton Backward 

Newton Forward 

Gauss Backward 

* 
\ Gauss Forward 

Bessel 

Stirling 

Everett 
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Supplementary Problems 
Prove V = 8E-1'2 = 1 -E-1  = 1 - (1 +A)-'. 

Prove Ell2 = p + $8 and EP1l2 = p - $8.  

Two operators L1 and I;, commute if LlL2 = L2Ll. Show t h a t  p,  8 ,  E , A  and V all commute with 
one another. 

Prove p 8  = 4AE-1-k &A. 

Apply Newton's backward formula to  the following data, to  obtain a polynomial of degree four  in 
the argument k. 

Then use xk = k S 5 to convert to a polynomial in xk. Compare the final result with t h a t  of Prob- 
lem 6.7, page 36. 

Apply Newton's backward formula to find a polynomial of degree three which includes the follow- 
ing xk, ylc pairs. 

Using xk = k + 6, convert to a polynomial in xk and compare with the result of Problem 6.10. 

Show tha t  the change of argument x ,  = xo + k h  converts Newton's backward formula into 
VYO V2yo vny0 

p(x,) = yo + -(x-x,) -t ~ ( x - - x O ) ( x - x - ' )  + . . .  4- ~ ( ~ - x , , ) ' . . ( x - X - ~ + ~ )  h 

Apply Problem 7.40 to the data  of Problem 7.39 to  produce the cubic polynomial directly in the 
argument xk. 

Apply the Gauss forward formula to the da ta  below and compare the result with t h a t  of 
Problem 6.8, page 37. 

Apply the Gauss backward formula to the data  of Problem 7.42. 

Apply the Gauss backward formula to the data  of Problem 7.39, with the argument k shifted so 
that  k = 0 a t  x = 6. 

Apply the Gauss forward formula to  the data  below and compare the result with t h a t  of Problem 6.11. 
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Verify tha t  fo r  k = -1, 0 
I k  = Vo  + (:) 8 Y - l 1 2  

and tha t  fo r  k = -2, -1,0,1 

[CHAP. 7 

These can also be considered forms of Gauss backward formula, the degree of these polynomials 
being odd rather  than even. 

Apply Stirling's formula to the data  of Problem 7.42. 

Apply Stirling's formula to the data  of Problem 6.9. Choose any  three equally spaced arguments 
and let them correspond to k = -1,0,1. 

Apply Everett's formula to the data  of Problem 7.39, with the center pair of arguments correspond- 
ing to k = 0 and 1. 

Apply Everett's formula to the data  of Problem 7.45. 

Apply Everett's formula to the da ta  of Problem 6.9, page 37. 

Apply Bessel's formula to  the data  of Problem 7.49. 

Apply Bessel's formula to the data  of Problem 7.45. 

Write a zigzag formula based on the path shown 
in the adjacent diagram. For  which arguments 
will i t  take the prescribed yk values? (The path 
s tar ts  a t  yo and ends a t  @yo.) 

p g , S f ,  - ELf,S!Jk 
Prove 8 ( f k / g k )  = 

g k - 1 / 2 g k +  1/2  

V - f k ~ g k  - S 8 f k 8 g k  
Prove ~ ( f k l g k )  = gk-1 ,2gk+1 ,2  . 



Unequally-Spaced Arguments 

The collocation polynomial for unequally-spaced arguments X O ,  . . ., X ,  may be found in 
several ways. The Lagrange and Aitken methods, and also a determinant method, are 
presented in this chapter. The method of divided differences is given separately in 
Chapter 9. 

1. Lagrange's formula is n 

~ ( x )  = C Li(x)  yi 
i = O  

where Li(x)  is the Lagrange multiplier function 

having the properties 
L i ( ~ k )  = 0 for k + i, Li(Xi) = 1 

Lagrange's formula does represent the collocation polynomial, that  is, p(zk) = y k  for 
k = 0 ,  . . . , n. The function 

may be used to express the Lagrange multiplier function in the more compact form 

Li(x)  = T ( x ) / [ ( x  - xi) ,'(xi)] 

The closely related function 

is also popular and leads to a second compact representation of the Lagrange multiplier 
function, Li(x)  = F ,  (x ) lFi  (xi) 

3. Aitken's method is a third approach to the collocation polynomial for  unequally-spaced 
arguments. It produces this p(x)  through a sequence of lower degree collocation poly- 
nomials corresponding to various subsets of the arguments xo, . . . , x,. More specifically, 

2. A determinant form of the collocation polynomial p(x)  is 

p(x)  1 x  x2 . . xn 

ZJ, 1 x ,  x i  . . . %' 

y1 1 x ,  2: . . . x y  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

y, 1 xn x; . . . x: 

= 0 

since p(xk)  = yk for k = 0,  . . . , n. It finds occasional use, mostly in theoretical work. 
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represents the collocation polynomial of degree one for arguments xo and xk ,  while 

represents the collocation polynomial 
Ultimately, Aitken's method produces 

Po. 1 , . . n x )  = (l/[xn - 

[CHAP. 8 

of degree two for arguments XO,XI and x k ,  etc. 
p(x) in the form 

the details appearing in the problems. 

Solved Problems 

8.1. What values does the Lagrange multiplier function 

take a t  the data points x = XO, XI, . . . , Xn ? 

First notice that  the numerator factors guarantee Li(xk) = 0 for k # i, and then the denom- 
inator factors guarantee that  Li(xi) = 1. 

n 

8.2. Verify that the polynomial p (x )  = 2 Li(x) yi  takes the value yr a t  the argument 
i=n 

x k ,  for k = 0, . . . , n. This is ~ a ~ r a n ~ e ' s  f o r m u l a  for the collocation polynomial. 

By Problem 8.1, p(xk) = 2 Li(xk)  yi = Lk(xk )  yk = yk SO that Lagrange's formula does 
i=O 

provide the collocation polynomial. 

n 

8.3. With n(x) defined as the product T(X) = n (X -xi), show that 
i=O 

- - ~ ( $ 1  
Lk(x) (X - x k )  ilr(xk) 

Since ~ ( x )  is the product of n + 1 factors, the usual process of differentiation produces ~ ' ( 3 )  

as  the sum of n + 1 terms, in each of which one factor has been differentiated. If we define 

Fk(x )  = ( x  - xi) 
i# k 

to be the same as  ~ ( x )  except that the factor x - xk is omitted, then 

?il(x) = Fo ( x )  t - . . + Fn (2) 

But then a t  x = xk all terms are zero except F k ( x k ) ,  since this is the only term not containing 
x - x,. Thus 

d ( x k )  = F k ( x k )  = (xk - xo) .  . . (xk - xk-&xk - x k + ~ ) .  . .(xk - x,J 

d x )  - F k  ( x )  Fk ( x )  
and - - -  

( X  - xk)Tf(xk) ~ ' ( x k )  Fk ( ~ k )  
- L d x )  
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Show that the determinant equation 

also provides the collocation polynomial p(x ) .  
Expansion of this determinant using minors of the first row elements would clearly produce a 

polynomial of degree n. Substituting x = xk and p (x )  = yk makes two rows identical so tha t  
the determinant is  zero. Thus p(x,) = yk and this polynomial is  the collocation polynomial. As 
attractive a s  this result is, i t  is not of much use due to the difficulty of evaluating determinants 
of large size. 

Find the polynomial of degree three which takes the values prescribed below. 

The polynomial can be written directly. 

I t  can be rearranged into p ( x )  = &(-x3 + 9x2 - 8x + 12). 

Show that P O , L ( X )  = - represents the collocation polynomial of 

degree one for  arguments xo and xk .  

Direct evaluation of this simple determinant produces PO, (50)  = YO,  PO, ( xk )  = ~ k .  

mial of degree two for arguments X O ,  X I  and x k .  

Remembering tha t  po, ( x )  and peak ( x )  a r e  collocation polynomials, one easily finds 

Y O ( X ~  - 20) - Y O ( X ~  - 30) - 
 PO,^, k ( ~ 0 )  = - YO 

X k  - x1 

p0,1(x) x 1 - x  

Show that PO, l,k (x) = - 
pO,k(x)  Xk - X 

represents the collocation polyno- 

collocation polynomial of degree n for arguments X O ,  X I ,  . . . , xn. 
For  x = xk and k = 0, 1, . . . , n - 2 the first column entries of the determinant agree, with 

value yk. Evaluating the determinant produces po, I, , . , , , ( x k )  = yk a t  once. F o r  xn- we find 

PO, I , .  . .,n-2,n-1 ( x )  ~ n - I  - x 
Show that po, I , ,  . .,, ( x )  = 

p0,1 , . . . ,  n - % n ( x )  Xn -X  

and a t  x, the value y ,  is found by a similar computation. 

represents the 
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8.9. Describe Aitken's method for obtaining the collocation polynomial. 
This is an iterative method based on the previous three problems. It involves computing the 

entries in Table 8.1 by successive columns from left to right, given the two columns a t  the left and 
the one a t  the right. The final entry is the collocation polynomial. 

x 2  Y 2  Po, 2 (4 Po, I ,  2 (4 2 2  - x 

% 3  y 3  PO, 3 ( x )  PO, 1.3 ( x )  PO, 1,2,3 Xg - X 

.............................. ........................................ 
Table 8.1 

Each determinant to be evaluated may be lifted directly from this format. For example, the 
entry is obtained a s  the determinant 

p 0 , 1 ( x )  x1- % 1 ~ 0 . 3 ( ~ )  x 3 - x  1 
divided by x3 - xl. As an  additional convenience, the divisor is  the difference between the entries 
used in the rightmost column. 

8.10. Use Aitken's method to compute p(3 )  for the collocation polynomial which includes 
the xk, yk pairs in the first two columns of Table 8.2. 

The other entries in Table 8.2 are computed a s  described in Problem 8.9, with x = 3. 

Table 8.2 

For example, the third column entries are found a s  follows. 

The fourth column entries are then 

which is p(3).  Here six similar steps lead to the final result, The labor involved may be compared 
with that  of substituting x = 3 into the Lagrange formula which, of course, also produces 
p(3) = '712 since i t  represents the same cubic collocation polynomial. 
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Supplementary Problems 
8.11. Use Lagrange's formula to produce a cubic polynomial which includes the following x k ,  yk number 

pairs. Then evaluate this polynomial fo r  x = 2,3,5 .  

8.12. Apply Aitken's iteration to the data  of Problem 8.11, producing p(2),  p(3) and p(5) directly, where 
p(x)  is the cubic collocation polynomial. Results should, of course, agree with those of Problem 8.11. 

8.13. Use Lagrange's formula to produce a fourth degree polynomial which includes the following 
xk, yk number pairs. Then evaluate the polynomial fo r  x = 3. 

8.14. Apply Aitken's method to the data  of Problem 8.13, producing p(3) directly, where p(x)  is  the col- 
location polynomial of degree four. Compare with the result of Problem 8.13. 

8.15. Deduce Lagrange's formula by determining the coefficients ai in the partial fractions expansion 

(Multiply both sides by x - xi and let x approach xi as limit, remembering tha t  p(xi) = yi for  
Yi 

collocation.) The result is ai = 7. 
T (xi) 

3x2 + X + 1 
8.16. Apply Problem 8.15 to express a s  a sum of partial fractions 

2 3  - 6x2 + 112 - 6 

[Hint. Think of the denominator a s  ~ ( x )  for  some x,, x l ,  x, and then find the corresponding Y O ,  ~ 1 ,  ~ 2 .  

This amounts to regarding p(k)  a s  a collocation polynomial.] 

x2 + 6 x  + a s  a sum of partial fractions. 
Express ( x 2  - 1 ) ( x  - 4) (x  - 6 )  

8.18. Show that  x - xo ( x  - x0)(x  - x i )  ( X  - x,) . . . ( x  - xn- 
L,(x) = 1 + - + + .. .  + 

xo - x1 ( 2 0  - X I ) ( X O  - 22) (xo - X I ) .  . . (xo - xn) 

Similar expansions can be written by symmetry for  the other coefficients. 

8.19. Write the three-point Lagrange formula for  arguments xo, xo + E and xl and then consider the limit 
a s  E tends to 0. Show t h a t  

(x l  - x ) ( x  + x1 - 2xo) ( x  - xo)(x1- X )  

~ ( 4  = ( - X )  y (xO) + ( x l  - 5,) 
yt(x0) 

This determines a quadratic polynomial in terms of y(x,), y t (xo)  and y(x l ) .  

8.20. Proceed a s  in the previous problem, beginning with the Lagrange formula for  arguments 
xO, x0 + E ,  x1 - E,  x1 to represent a cubic polynomial in terms of y(xo) ,  y1(x0),  y ( x l )  and y1(x1).  

8.21. Determine Ao,  A ,  and A ,  so tha t  the "trigonometric polynomial" 

p(x) = A ,  + A l c o s x  + A , s i n x  

collocates with y ( x )  a t  xo, xl  and x,. 

8.22. Proceed a s  in Problem 8.21 but with p(x)  = A. + A ,  cos 2x + A ,  sin 2%. 
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DIVIDED DIFFERENCES 

The first divided difference between xo and XI is defined as 

with a similar formula applying between other argument pairs. 

Then higher divided differences are defined in terms of lower divided differences. For 
example, 

is a second difference, while 

- ZJ(X~, . . . , ~ n )  - Y(XO, . . ., xn-1) ?J(xo, XI, . . . , xn) - 
Xn - 30 

is an nth difference. In many ways these differences play roles equivalent to those of the 
simpler differences used earlier. 

A di.#erence table is again a convenient device for displaying differences, the standard 
diagonal form being used. 

The representation theorem 
n 

~ ( x o ,  XI, . . . , ~ n )  = 2 ~ilF?(xi) 
i=o 

where F;(x) is the Fi(%) function of the previous chapter, shows how each divided difference 
may be represented as a combination of yk values. This should be compared with a cor- 
responding theorem of Chapter 3. 

The symmetry property of divided differences states that such differences are invariant 
under all permutations of the arguments xk, provided the yk values are permuted in the same 
way. This very useful result is an easy consequence of the representation theorem. 

Divided differences and derivatives are related by 

Y(X, XO, . . . , ~ n )  = yen+') (t)l(n + 1) ! 
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ORDINARY FINITE DIFFERENCES 

In  the case of equally-spaced arguments, divided differences reduce to ordinary finite 
differences; specifically, 

~ ( x o ,  X I ,  . . . , x,) = ~ ~ y o l n !  hn 

A useful property of ordinary finite differences may be obtained in this way, namely 

For a function y ( x )  with bounded derivatives, all yn(x) having a bound independent of 
n, i t  follows that  for small h, 

lim Anyo = 0 

for increasing n. This generalizes the result found earlier for polynomials, and explains 
why the higher differences in a table are often found to tend toward zero. 

NEWTON'S DIVIDED DIFFERENCE FORMULA 

The collocation polynomial may now be obtained in terms of divided differences. The 
classic result is Newton's divided difference formula, 

the arguments xk not being required to have equal spacing. This generalizes the Newton 
formula of Chapter 6, and in the case of equal spacing reduces to it. 

Generalizations of our other formulas are  also possible, but are less frequently used. 
For example, 

X 1  + X - l  
p (x )  = yo + ( x  - xo) 2 

y(x1, xo, x-1) 

corresponds to Stirling's formula of degree two, and is the collocation polynomial for argu- 
ments X - I ,  X O ,  X I .  

The error y ( x )  - p(x) ,  where y ( x )  and p(x)  collocate a t  the arguments X O ,  . . . , X n ,  is still 
given by the formula obtained earlier, 

y ( x )  - p(x)  = y("+ I ) ( [ )  ~ ( x ) l ( n  + 1) ! 

since we are still discussing the same collocation polynomial p(x) .  An alternative form of 
this error, using divided differences, is 

y ( x )  - P ( X )  = y (x ,  X O ,  . . . , x,) ( X  - X O )  . . . ( X  - ~ n )  
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Solved Problems 
9.1. Compute divided differences through the third for the yk values in Table 9.1. 

The differences are listed in the last three columns. 

Table 9.1 

For example, 
5 - 2  - 

- 312 
312 - 1 - 

~ ( 2 , 4 )  = 4--2 ~ ( 1 , 2 , 4 )  = - 1/6 

9.2. Prove ~ ( X O ,  X I )  = y(x1, X O ) .  This is called symmetry of the first divided difference. 
This is obvious from the definition, but can also be seen from the fact that  

since interchanging xo with x1 and yo with y ,  here simply reverses the order of the two terms on 
the right. This procedure can now be applied to higher differences. 

9.3. Prove y(xo, X I ,  xz) is symmetric. 
Rewrite this difference as 

Interchanging any two arguments xi and xk and the corresponding y values now merely inter- 
changes the yj and gk terms on the right, leaving the overall result unchanged. Since any permuta- 
tion of the arguments xk can be effected by successive interchanges of pairs, the divided difference 
is invariant under all permutations (of both the xk and yk numbers). 

9.4. Prove that for any positive integer n, 
L 

Yi ( x o  1 . . . , x )  = 5 - 
i=o Fr(xi) 

where F:(xi) = ( x i  - xo)(xi - x l )  . . (xi - xi- l)(xi-xi+ 1). . - (xi  - x ) .  This generalizes 
the results of the previous two problems. 

The proof is by induction. We already have this result for n = 1 and 2. Suppose it true for 
n = k. Then by definition, 

~ ( 5 1 ,  . . ., x k  + 1) - ?/ (XI) ,  . . ., ~ k )  
~ ( ~ 0 t ~ 1 , . . . 1 ~ k + l )  = 

xk+l - x~ 
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Since we have assumed our result true for differences of order k, the coefficient of y, on the right, 
for i =  1,2, ..., k will be 

where it is understood that  the factor (x i  - xi) is not involved in the denominator products. But 
this coefficient reduces to 

1 - 1 - -  
( x ~ - x ~ ) . . . ( x ~ - x ~ + ~ )  F f + l ( x i )  

as  claimed. For i = 0 or i = k + 1 the coefficient of yi comes in one piece instead of two, but in 
both cases is easily seen to be what is claimed in the theorem with n = k + 1, that  is, 

9.5. Prove that  the nth divided difference is symmetric. 

This follows a t  once from the previous problem. If any pair of arguments is interchanged, say 
xi and xk ,  the terms involving y j  and yk on the right are interchanged and nothing else changes. 

9.6. Evaluate the first few differences of y (x )  = x2 and x3. 
Take y ( x )  = x2 first. Then 

Higher differences will clearly be 0. Now take y ( x )  = x3. 

Again higher differences are clearly zero. Notice that in both cases all the differences are symmetric 
polynomials. 

9.7. Prove that  the kth divided difference of a polynomial of degree n is a polynomial of 
degree n - k if k S n, and is zero if k > n. 

Call the polynomial p(x).  A typical divided difference is 

Thinking of xo as  fixed and xl  as the argument, the various parts of this formula can be viewed as  
functions of 2,. In particular, the numerator is a polynomial in X I ,  of degree n, with a zero a t  
xl = xo. By the factor theorem the numerator contains xl - xo as a factor and therefore the 
quotient, which is p(xo, x,), is a polynomial in xl of degree n - 1. By the symmetry of p(x0, x l )  i t  
is therefore also a polynomial in xo of degree n - 1. The same argument may now be repeated. A 
typical second difference is 

P(% x2) - ~ ( ~ 0 9  2 1 )  
P ( X O ,  x1, x2) = 

2 2  - 2 0  

Thinking of xo and x ,  as fixed, and x2 as the argument, the numerator is a polynomial in x2, of 
degree n - 1, with a zero a t  x2 = xo. By the factor theorem p(xo, x l ,  x2) is therefore a polynomial 
in x2 of degree n - 2. By the symmetry of p(xo, x l ,  x2) it  is also a polynomial in either so or x l ,  again 
of degree n - 2. Continuing in this way the required result is achieved. An induction is called for, 
but it is an easy one and the details are omitted. 



62 DIVIDED DIFFERENCES [CHAP. 9 

9.8. Prove that  Newton ' s  divided d igerenee  f o r m u l a  

p ( x )  = yo t ( x  - xo) y(x0, x1) + ( x  - xo)(x - X I )  y(x0, X I ,  x2) 

+ - .  - + ( x - x o ) ( x - x 1 ) . . . ( x - x n - 1 )  y(x0,. . . , x , )  

represents the collocation polynomial. That is, i t  takes the values p(xk) = yk for 
k =  0 , .  . . ,n .  

The fact that  p(xo) = yo is obvious. Next, from the definition of divided differences, and using 
symmetry, 

Z/k = YO f (xk - xo) ~ ( ~ 0 7  ~ k )  

y(xol 5,) = Y ( x O ,  X I )  + (5, - 2 1 )  ~ ( ~ 0 ,  X I ,  xk) 

For example, the second line follows from 

For k = 1 the first of these proves p(xl)  = yl.  Substituting the second into the first brings 

which for k = 2 proves p(x2) = y,. Successive substitutions verify p(xk )  = yk for each xk in 
its turn until finally we reach 

+ ... + (xn - xo)(xn - 4.. .(xn - % - I )  Y ( %  . . . , xn-1, xn) 
which proves p(xn) = yn. 

Since this Newton formula represents the same polynomial as the Lagrange formula, the two 
are just rearrangements of each other. 

9.9. Find the polynomial of degree three which takes the values given in Table 9.1. 
Using Newton's formula, which involves the differences on the top diagonal of Table 9.1, 

p(x)  = 1 + ( x  - 0)O + (X - O)(x - I)+ + ( x  - 0 ) ( x  - l ) ( x  - 2)(-A) 

which simplifies to p(x)  = A ( - x 3  + 9x2 - 8% + 12), the same result as  found by Lagrange's formula. 

Supplementary Problems 
9.10. Calculate divided differences through third order for  the following x,, y,  pairs. 

9.11. Find the collocation polynomial of degree three for the x,, y, pairs of Problem 9.10. Use Newton's 
formula. Compare your result with that  obtained by the Lagrange formula. 

Compute the third divided difference again. I t  should be the same number a s  before, illustrating the 

9.12. Rearrange the number pairs of Problem 9.10 as  follows: 

symmetry property. 

X k  

Yk 

4 1 6 0 

1 -1 -1 1 
J 
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Calculate a fourth divided difference for  the following yk values. 

Apply Newton's formula to find the collocation polynomial fo r  the data  of Problem 9.13. What  
value does this polynomial take a t  x  = 3? Compare your results with the Lagrange and Aitken 
methods. 

Show tha t  / 1 xo Yo 1 

For y ( x )  = ( x  - xo) (x  - x l )  - . . ( x  - x,) = ~ ( x ) ,  prove t h a t  

~(x,,, x l ,  . . ., xp)  = 0 for  p  = 0,1, . . ., n 

y(xO, x l ,  . . ., xn, X , X )  = 0 for all x , x  

Show tha t  

x2 + " - 2  + Y ( X Z ,  X I ,  xo, x-11 x - d x  - x,,)(x - X I ) ( %  - x-1) 

is another way of writing the collocation polynomial, by verifying 

p(xk )  = yk fo r  k = -2, -1, 0, 1, 2  

This is  a generalization of Stirling's formula fo r  unequal spacing. It can be extended to higher 
degree. Bessel's formula and others can also be generalized. 

Show t h a t  fo r  arguments which a r e  equally spaced, so tha t  x k + ~  - xk = h, we have 

y(xO,  x l ,  . . . , xn)  = Anyo/n! hn 

Divided differences with two or more arguments equal can be defined by limiting processes. F o r  
example, y(xo,  xo)  can be defined a s  lim y ( x ,  x,), where lim x  = xo. This implies tha t  

Y ( X )  - Yo 
y(xo, xo) = lim 

X - X o  
= Yf(xo)  

Verify this directly when y ( x )  = x2 by showing that  in this case y ( x ,  xo) = x  + xo so t h a t  
lim y(x ,  xo) = yl(xo)  = 2xo. Also verify i t  directly when y ( x )  = x3 by showing first t h a t  in this 
case y(x ,  xo) = x2 + xxO + x:. 
In the second divided difference 

Y ( X ,  $2)  - Y(x, ,  2 2 )  
y(x0, xt xz) = x  - X o  

the r ight  side may be viewed a s  having the form ( )  - ( )  with 2, considered a constant. If 
x  - X o  

lim x  = x,, we define 

Y ( X O ,  SO ,  x2) = lim Y ( X O ,  x ,  x2) 

This implies t h a t  y(x0,  X O ,  xp) = Y ' (x ,  2 2 )  1 x  = 20 

Verify this directly when y ( x )  = x3 by showing first tha t  in this case 

y(xo, x ,  x2) = x  + 2, + x ,  while y(x ,  x,) = x2 + X X ,  + x i  
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Argue as in the previous problem to prove 

Y ( x ~ ,  ~ 0 ,  . . . ,xn) = Y'(XO, . . ., xk-l, $ 3  xk+ 1, . . . ,xn) 1 2 = xk 
for k = 0, . . . , n. (By the symmetry of divided differences i t  is enough to treat the case k = 0.) 

Prove that  Newton's divided difference formula 

represents the collocation polynomial (that is, i t  takes the values p(xk) = gk for  k = 0, . . . , n)  in 
the following alternate way. From the definition of divided differences, for any argument x 
between xo and x,, 

y(x) = Yo + (2 - 00) ~ ( 5 9  50) 

Multiply the second equation by (x - xo), the third by (x - so)(% - xl), and so on, the last equation 
being multiplied by (x - xo)(x - x,) . (x - xA). Then add the resulting equations together. 
There is extensive cancellation, with the result 

i + (X - x,)(x - x,). "(x - x,-J y(x0, . . ., x,) + R 
where the "remainder term" R is 

R = y(x, XO, . . . , X,)(X - xO). . (X - 2,) 
When x is one of the arguments xk the first factor of R reduces to a derivative (by the previous 
problem) and the factor (xk - xk) makes R = 0. This proves p(xk) = gk and verifies Newton's 
formula. 

We now have two representations of the difference y(x) -p(x) where y(x) is a given function and 
p(x) the collocation polynomial, one being the R of the previous problem, the other being 

which we found earlier. These must, of course, be the same. Use this fact to prove 

which relates the divided difference to a derivative. 

Assuming continuity of 2/ and y(n+l), let all arguments approach xo in the previous problem to prove 

p+ "(x,) 
y(~fJ, x ~ 7  . ' . t XO) = 

(n+ I)! 
Here [ must lie between xo and x,. 

Problem 9.23 with one fewer argument shows that  
Y(~)(<) 

Y(x, $0, . . . , Xn-I) = 
n! 

Letting x = x, and rearranging arguments (symmetry permits this), 

where 5 lies between x, and x,. Compare this with the results of Problem 9.18 to obtain 
Any0 = y(n)(() hn. 

Show that  if the derivatives g(n)(x) have a bound independent of n, then for small h the differences 
of y will have limit zero for n -+ m .  This extends the simpler result for polynomials. 

For y(x) = log x we find y(n)(x) = (-l)n+l (n - I)! x-n. Show that  for small h the early differences 
of y will decrease, but higher differences will oscillate with increasing size. (So differences do not 
always have limit zero for n -t m .) 



Chapter I0 

Osculating Polynomials 

Osculating polynomials not only agree in value with a given function a t  specified argu- 
ments, which is the idea of collocation, but their derivatives up to some order also match 
the derivatives of the given function, usually a t  the same arguments. Thus for the simplest 
osculation, we require 

P ( x ~ )  = Y ( x ~ ) ,  pf(xk) = yf(xk) 

for k = 0,1, . . . , n. In  the language of geometry, this makes the curves representing our 
two functions tangent to each other a t  these n + 1 points. Higher order osculation would 
also require pff(xk) = yff(xk), and so on. The corresponding curves then have what is 
called contact of higher order. The existence and uniqueness of osculating polynomials can 
be proved by methods resembling those used with the simpler collocation polynomials. 

Hermite's formula, for example, exhibits a polynomial of degree 2n + 1 or  less which 
has first order osculation. It has the form 

where yt and $are  the values of the given function and its derivative a t  xi. The functions 
Ui(x) and Vi(x) are polynomials having properties similar to those of the Lagrange multi- 
pliers Li(x) presented earlier. In  fact, 

Ui (x) = [I- SL',(xi)(x - xi)] [Li(x)12 

Vi (x) = (X - xi) [Li(x)I2 

The error of Hermite's formula can be expressed in a form resembling that  of the collocation 
error but with a higher order derivative, an indication of the greater accuracy obtainable 

A method of undetermined coefficients may be used to obtain polynomials having higher 
order osculation. For example, taking p(x) in standard form 

and requiring p(xk) = y,, pf(xk) = y;, pU(xk) = y; for the arguments xo, . . . , x, leads to 
3n + 3 equations for the 3n + 3 coefficients ci. Needless to say, for large n this will be a 
large system of equations. The methods of a later chapter may be used to solve such a 
system. In certain cases special devices may be used to effect simplifications. 
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Solved Problems 
n n 

10.1. Verify that p(x)  = Ui ( x )  yi + 2 V i  ( x )  y,l will be a polynomial of degree 2 n  + 1 
i=O i = O  

or less, satisfying p(xk)  = yk, p'(xk) = y; provided: 

(a) U i ( x )  and V i ( x )  are polynomials of degree 2 n  + 1 

( b )  U i ( ~ k )  = 8 i k )  vi(~k) 0 

( c )  U i ( ~ k )  f 0,  V:(xk) = 8 i k  

0 for i i k  
where 8 i k  = 

1 for i =  k '  

The degree issue is obvious, since an additive combination of polynomials of given degree is a 
polynomial of the same or lower degree. Substituting x = xk we have 

and similarly substituting x = xk into pf(x), 

pf(xd = vL(~k)~k = Y ;  
all other terms being zero. 

10.2. Recalling that the Lagrangian multiplier Li(x)  satisfies Li(x,c) = 8 i k ,  show that 

meet the requirements listed in Problem 10.1. 

Since Li(x) is of degree n, its square has degree 2n and both Ui(x) and Vi(x)  are of degree 
2n + 1. For the second requirement we note that  Ui(xk) = Vi(xk)  = 0 for k # i, since Li(xk) = 0. 
Also, substituting x = xi, 

Ui(xi) = [Li(xi)]2 = 1, Vi(xi)  = 0 

so that  Ui(xk) = Sik and Vi(xk)  = 0. Next calculate the derivatives 

At once U;(xk) = 0 and V;(xk) = 0 for k # i because of the Li(xk) factor. And for x = xi, 
U;(X,) = 2L;(xi) - 2 ~ l ( x ~ )  = 0 since Li(xi) = 1. Finally, Vl(xi) = [Li(xi)]2 = 1. The Hermite for- 
mula is therefore 

n 

p(x) = B [I - ~ L ; ( X J ( X  - xi)] [ L ; ( X ) ] ~ Y ~  + ( x  - xJ[L;(x)]'YI 
i = O  

10.3. A switching path between parallel rail- 
road tracks is to be a cubic polynomial 
joining positions (0,O) and (4 ,2)  and tan- 
gent to the lines y = 0 and y = 2 ,  as 
shown in Fig. 10-1. Apply Hermite's 
formula to produce this polynomial. Fig. 10-1 

The specifications ask for a cubic polynomial matching this data. 
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With n = 1, we have 

and substituting into Hermite's formula (only the yl term need be computed since yo = y; = yi = O ) ,  

The significance of this switching path is, of course, that  i t  provides a smooth journey. Being 
tangent to both of the parallel tracks, there a r e  no sudden changes of direction, no corners. Since 
p"(0) and p"(4) a r e  not zero, there are, however, discontinuities in curvature. (But see Problem 10.7.) 

10.4. Obtain a formula for the difference between y(x) and its polynomial approximation 
P@). 

The derivation is very similar to that  fo r  the simpler collocation polynomial. Since y(x )  = p(x)  
and y l (x )  = p'(x) a t  the arguments x,, . . . , xn we anticipate a result of the form 

v ( x )  - P ( X )  = C[?r(x)I2 

where ~ ( x )  = ( X  - xO) .  . . ( x  - x,) as before. Accordingly we define the function 

F ( x )  = Y ( X )  - P ( X )  - C [ 4 x ) l z  

which has F ( x k )  = F f ( x k )  = 0 for  k = 0, . . . ,n .  By choosing any new argument x , + ~  in the in- 
terval between xo and xn, and making 

c = [y(xn+ I )  - P ( x ~ +  l ) I I [dxn+ d l2  
we also make F ( x n t l )  = 0. Since F ( x )  now has  n + 2 zeros a t  least, F' (x )  will have n + 1 zeros 
a t  intermediate points. It also has zeros a t  x,, . . ., xn, making 2n + 2 zeros in all. This implies 
that  F"(x)  has 2n + 1 zeros a t  least. Successive applications of Rolle's theorem now show tha t  
Ft"(x) has 2n zeros a t  least, Ft"'(x) has 2n - 1 zeros, and so on to F(Zn+z)(x) which is guaranteed 
a t  least one zero in the interval between xo and x,, say a t  x = [. Calculating this derivative, we get  

which can be solved for  C. Substituting back, 
y ( 2 n + 2 ) ( 5 )  

y ( x n + ~ )  - ~ ( x n + ~ )  = (Zn+2)!  [r(xn+1)l2 

Recalling t h a t  x,+ can be any argument other than xo, . . . , x, and noticing tha t  this result is even 
t rue fo r  xo, . . . , x, (both sides being zero), we replace x , + ~  by the simpler x: 

10.5. Prove that only one polynomial can meet the specifications of Problem 10.1. 
Suppose there were two. Since they must share common yk and y; values a t  the arguments xk, 

we may choose one of them as the p(x)  of Problem 10.4 and the other a s  the y(x) .  In other words, 
we may view one polynomial a s  a n  approximation to the other. But  since y(x )  is  now a polynomial 
of degree 2n + 1, i t  follows tha t  y(2n+2)([) is zero. Thus y(x )  is  identical with p(x), and our two 
polynomials a re  actually one and the same. 

10.6. How can a polynomial be found which matches the following data? 

X o  Yo Y,' Y;' 

1 Y l  y : Y:' 

In other words, a t  two arguments the values of the polynomial and its first two de- 
rivatives are specified. 

Assume for  simplicity that  xo = 0. If this is not true, then a shif t  of argument easily achieves 
it. Let 

p(z )  = yo + xy; + 4 x 2 ~ :  + Ax3 + Bx4 + Cx5 
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with A ,  B and C to be determined. A t  x = xo = 0 the specifications have already been met. A t  
x = x ,  they require 

4 Ax: + Bx, + CZ; = yl - yo - xlyA - -&x;y{ 

These three equations determine A ,  B ,  C uniquely. 

10.7. A switching path between parallel railroad tracks is to join positions (0,O) and (4 ,Z) .  
To avoid discontinuities in both direction and curvature the following specifications 
are made. 

Find a polynomial which meets these specifications. 
Applying the procedure of Problem 10.6, 

p(x) = Ax3 + Bx4 + C x 5  
the quadratic portion vanishing entirely. At xl = 4 we find 

6 4 A  + 256B + 1024C = 2,  48A  + 256B + 1280C = 0 ,  24A  + 192B + 1280C = 0 
1 

from which A = 401128, B = -151128, C = 241128. Substituting, p(x) = %@Ox3 - 30x4 + 3x5).  

Supplementary Problems 
10.8. Apply Hermite's formula to find a cubic polynomial which meets these specifications. 

This can be viewed as a switching path between non-parallel tracks. 

Apply Hermite's formula to find a polynomial which meets these specifications. 

Apply the method of Problem 10.6 to find a fifth degree polynomial which meets these specifications. 

This is a smoother switching path than that  of Problem 10.8. 
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Find two second degree polynomials, one having pl(0)  = p;(O) = 0 ,  the other having p2(4) = 2, 
~ h ( 4 )  = 0 ,  both passing through (2 ,  I ) ,  as shown in Fig. 10-2. Show that  pi(2) = ~ ; ( 2 )  so that  a pair 
of parabolic arcs also serves as  a switching path between parallel tracks, as  well as the cubic of 
Problem 10.3. 

Fig. 10-2 

Find two fourth degree polynomials, one having p,(O) = p;(O) = p;'(O) = 0 ,  the other having 
p2(4) = 2, p i (4)  = pg(4)  = 0 ,  both passing through ( 2 , l )  with py(2)  = pz (2 )  = 0 .  This is another 
switching path for which direction and curvature are free of discontinuities, like the fifth degree 
polynomial of Problem 10.7. Verify this by showing that first and second derivatives agree on both 
sides of (0 ,  O), ( 2 , l )  and ( 4 , 2 )  where the four pieces of track are butted together. 

From Hermite's formula for two point osculation derive the midpoint formula 

Show that  the error of the formula in Problem 10.13 is L4 y(4)( [ ) /384.  

Find a polynomial of degree four which meets the following conditions. 

Note that one of the y; values is not available. 

Find a polynomial of degree four which meets these conditions. 

Find a polynomial of degree three which meets these conditions. 



The Taylor Polynomial 

TAYLOR POLYNOMIAL 
The Taylor polynomial is the ultimate in osculation. For  a single argument xo the 

values of the polynomial and its first n derivatives are required to match those of a given 
function y(x). That is, 

pcij(x0) = ~ ( ~ ' ( x ~ )  for i = 0, 1, . . . , n 

The existence and uniqueness of such a polynomial will be proved, and are classical results 
of analysis. The Taylor formula settles the existence issue directly, by exhibiting such a 

The error of the Taylor polynomial, when viewed as an approximation to y(x), can be 
expressed by the integral formula 

Lagrange's error formula may be deduced by applying a mean value theorem to the 
integral formula. It is 

and clearly resembles our error formulas of collocation and osculation. 

If the derivatives of y(x) are bounded independently of n, then either error formula 
serves to estimate the degree n required to reduce ly(x) - p(x)l below a prescribed tolerance 
over a given interval of arguments x. 

Analytic functions have the property that, for  n tending to infinity, the above error of 
approximation has limit zero for all arguments x in a given interval. Such functions are  
then represented 

The binomial 
we have 

by the Taylor series 

series is an especially important case of Taylor series. For -1 < x < 1 

DIFFERENTIATION OPERATOR D 

The differentiation operator D is defined by 
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The exponential operator may then be defined by 

and the Taylor series in  operator form becomes 

The relationship between D and A may be expressed in either of the forms 

both of which involve "infinite series" operators. 

The Euler transformation is another useful relationship between infinite series op- 
erators. It may be written as  

(1  + E )  -l  = (112) [l - ( 1 1 2 ) ~  + (1/4)a2 - (1/8)a3 + . . . ] 
by using the binomial series. 

The Bernoulli numbers Bi are defined by 

Actually expanding the left side into its Taylor series we shall find BO = 1, BI = -112, 
BP = 116, and so on. These numbers occur in various operator equations. For example, 
the indefinite summation operator A - I  is defined by 

and is related to D by " 1 A = D-I ,z BiDf 
2=0 2 

where the Bi are  Bernoulli numbers. The operator D-I is the familiar indefinite integral 
operator. 

The Euler-Maclaurin formula may be deduced from the previous relationship, 

and is often used for the evaluation of either sums or integrals. 

The powers of D may be expressed in terms of the central difference operator 8 by 
using Taylor series. Some examples are the following. 
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Solved Problems 

11.1. Find the polynomial p ( x ) ,  of degree n or less, which together with its first n deriva- 
tives takes the values yo, y y ) ,  y r ) ,  . . . , y p )  for the argument XO.  

A polynomial of degree n can be written 

p(x) = a. + a,(% - xo) + . . . + an(x - xo)n 

Successive differentiations produce 

p( l ) (x )  = a ,  + 2a2(x - xo) + . . . + nan(x - xo)n-1 

P ( ~ ) ( X )  = 2a2 + 3 2a3(x - x,), + . . . + n ( n  - l )an(x  - xo)n-2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,........ 
I ) ( , ) ( % )  = n! a, 

The specifications then require 

p(x0) = a, = yo, p( l ) (xo)  = a ,  = y"), p(2)(xo) = 2a2 = yi2) ,  . . , P ( ~ ) ( x o )  = n !  an = 2 / ( n )  
0 0 

Solving for  the a, coefficients and substituting 
1 " 1 

p(x) = yo + y ; q x  - x0) + ' + -$I(,)(% - x0)n = 2 p y x  - xo)i n !  o i = o  

11.2. Find a polynomial p ( x )  of degree n, such that, a t  xo = 0, p ( x )  and ex agree in value 
together with their first n derivatives. 

Since for  ex derivatives of all orders a r e  also ex, 

yo y i l )  = ~ ( 2 )  = 
0 

. .. = ?din) = 

The Taylor polynomial can then be written 

" 1 1 1 1 
p(x) = x z x s  = 1 + x + - x 2 + - x 3 +  ... + - x n  

i=o  2 6 n !  

11.3. Consider a second function y ( x )  also having the specifications of Problem 11.1. We 
shall think of p ( x )  as a polynomial approximation to y ( x ) .  Obtain a formula for the 
difference y (x )  - p ( x )  in integral form, assuming y ( "+ l ) ( x )  continuous between xo and x. 

Here i t  is convenient to use a different procedure from t h a t  which led us  to  error estimates fo r  
the collocation and osculating polynomials. We s ta r t  by temporarily calling the difference R ,  

R = y(x)  - ~ ( 4  
or in full detail 

1 1 
R(x ,  so) = y(x)  - y(x0) - yr(x0)(x - xo) - 5 2 / r ' ( ~ o ) ( ~  - ~ 0 ) ~  - . . - - Y ( ~ ' ( x ~ ) ( x  - X O ) ,  

n! 

This actually defines R a s  a function of x and xo. Calculating the derivative of R relative to XO,  
holding x fixed, we find 

R'(x, X O )  = -Y'(xo) + Y ' ( x ~ )  - yt'(xo)(x - xo) + V " ( X O ) ( X  - ~ o )  

since differentiation of the second factor in each product cancels the result of differentiating the 
first factor in the previous product. Only the very last  term penetrates through. Having differen- 
tiated relative to x,, we reverse direction and integrate relative to  xo to recover R. 

R (x ,  xo) = - 5 $O y(n+I)(u)(x - u)n du + constant 

By the original definition of R,  R ( zo ,  xo) = 0 and the constant of integration is  0.   ever sing the 
limits, 
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which is known a s  a n  integral form of the error. 

11.4. Obtain Lagrange's form of the error from the integral form. 
Here we use a mean value theorem of calculus, which says tha t  if f(x) is  continuous and w(x) 

does not change sign in the interval (a, b) then 

where [ is between a and b. Choosing w(x) = (x -%,)a, we easily get 

where [ is between zo and x but otherwise unknown. This form of the error  is  very popular because 
of its close resemblance to the terms of the Taylor polynomial. Except f o r  a 6 in place of a n  x i t  
would be the term which produced the Taylor polynomial of next higher degree. 

11.5. Estimate the degree of a Taylor polynomial for the function y(x) = ez, with xo = 0, 
which guarantees approximations correct to three decimal places for -1 < x < 1. 
To six decimal places. 

By the Lagrange formula fo r  the error, 

lez-p(x)l = IRl 5 -L- (n + 1) ! 

For three place accuracy this should not exceed .0005, a condition which is satisfied for  n = 7 or  
higher. The polynomial 

7 

is therefore adequate. Similarly, fo r  six place accuracy IRI should not exceed .0000005, which will 
be t rue fo r  n = 10. 

a 
11.6. The operator D is defined by D = h -. What is the result of applying the successive ax 

powers of D to y(x)? 
We have a t  once Diy(x) = hi y(i)(x). 

11.7. Express the Taylor polynomial in operator symbolism. 
Let x - xo = kh. This is the symbolism we have used earlier, with x, now abbreviated to  x. 

Then direct substitution into the Taylor polynomial of Problem 11.1 brings 

A common way of rewriting this result is 

or in terms of the integer variable k alone a s  

11.8. A function y(x) is called analytic on the interval Jx - xol 5 r if as n + w, 

lim R(x, XO) = 0 
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for all arguments x in the interval. It is then customary to write y (x )  as an  infinite 
series, called a Taylor series 

" 1 
y ( x )  = lim p(x)  = gyAi)(x - 

i = O  

Express this in operator form. 

Proceeding just a s  in Problem 11.7, we find y ( x k )  = [.s i k i ~ i ]  yo. This is our  first "in- 
a=o 

finite series operator." The arithmetic of such operators is  not so easy to  justify a s  was  the case 
with the simpler operators used earlier. 

" 1  
11.9. The operator ekD is defined by ekD = 2 8 k'Di. Write the Taylor series using this 

operator. i = o  

We have a t  once y(xk )  = ekDyO. 

11.10. Prove eD = E. 
By Problem 11.9 with k = 1 and the definition of E, y ( x l )  = yl = E y ,  = eDyo making 

E = eD. 

11.11. Develop the Taylor series for y(x)  = In (1 + z), using xo = 0. 
The derivatives a r e  y( i ) (x )  = ( - l ) i+l ( i  - 1 )  ! / ( l  + x)i so t h a t  y(i)(O) = (-l)i+l(i - l)!. Since 

y(0)  = In 1  = 0, we have 

The familiar ratio test shows this to be convergent fo r  -1 < x  < 1. It does not, however, prove 
that  the series equals In ( 1  + z). To prove this let p(x) represent the Taylor polynomial, of degree 
n. Then by the Lagrange formula fo r  the error, 

For  simplicity consider only the interval 0  5 x  < 1. The series is applied mostly to this interval 
anyway. Then the error can be estimated by replacing [ by 0  and x  by 1 to give 1 In (1  + X )  - 

and this does have limit 0. Thus limp(%) = In (1 + x ) ,  which was our objective. P(X) I 5 n+l 

11.12. Estimate the degree of a Taylor polynomial for the function y ( x )  = In (1 + x ) ,  with 
20 = 0, which guarantees three decimal place accuracy for 0 < x < 1. 

By the Lagrange formula fo r  the error, 

Three place accuracy requires that  this not exceed .0005, which is satisfied for  n = 2000 or  higher. 
A polynomial of degree 2000 would be needed! This is an example of a slowly convergent series. 

11.13. Express the operator D in terms of the operator A. 

From eD = E we find D = In E = In (1 + A) = A  - aA2 + &A3 - LA4 4 + . . . 
The validity of this calculation is surely open to suspicion, and any application of i t  must be 

carefully checked. I t  suggests t h a t  the final series operator will produce the same result a s  the 
operator D. 



CHAP. 111 T H E  TAYLOR POLYNOMIAL 

Express y(x) = (1 + x)" as a Taylor series. 
For  p a positive integer this is the binomial theorem of algebra. For  other values of p  i t  is  the 

binomial series.  I t s  applications a re  extensive. We easily find 

y(i)(x) = p(p - 1) - ( p  - i + l )( l  + z)n-i = pci)(1 + x ) ~ - i  

where pci) is again the factorial polynomial. Choosing xo = 0  
y ( i ) (o )  = p ( i )  

and substituting into the Taylor series, 

where (:) is the generalized binomial coefficient. The convergence of this series to ~ ( x )  fo r  
-1 < x  < 1  can be demonstrated. 

Use the binomial series to derive the Euler transformation. 
The Euler transformation is an extensive rearrangement of the alternating series S = a,- 

a, + a2 - a, + . . . which we rewrite a s  

S = [ I - E + E 2 - E 3 + . . . ] a o  = [ l + E ] - ' a o  

by the binomial theorem with p = -1. The operator [ I  + El-' may be interpreted a s  the inverse 
operator of 1  + E. A second application of the binomial theorem now follows. 

Our derivation of this formula has been a somewhat optimistic application of operator arithmetic. 
No general, easy-to-apply criterion for  insuring its validity exists, but  see Problem 11.38 and 
applications given in Chapter 17. 

The Bernoulli numbers are defined to be the numbers Bi in the following series 

Find Bo, . . . , Blo. 

The Taylor series requires t h a t  y(i)(O) = Bi, but  i t  is easier in this case to proceed differently. 
Multiplying by ex - 1  and using the Taylor series fo r  ex,  we get 

x  = ( x  + 4x2 + 3x3 + . . )(BO + B1x + 4B2x2 + QB3x3 + . . .) 
Now comparing the coefficients of the successive powers of x, 

Bo = 1, B1 = -3, Bz = Q, B3 = 0, B, = -$, B5 = 0, 

B  6 -', - 42 B,=O, B ,=-$ ,  B 9 = 0 ,  B l o = &  

The process could be continued in a n  obvious way. 

Suppose A F ~  = yk. Then an inverse operator A - I  can be defined by 
Fk = A - ' Y ~  

This inverse operator is "indefinite" in that for given yk the numbers F k  are deter- 
mined except for an arbitrary additive constant. For example, in the following table 
the numbers yk are listed as first differences. Show that the number Fo can be chosen 
arbitrarily and that the other Fk numbers are then determined. 
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We have a t  once 

F1  = Fo + YO,  F2 = F1 + yl = Fo + Yo f Yl ,  F3 = Fg + Y2 = FO + YO + Y I  + Y2 

k - 1  

and in general Fk = F0 + yi. The requirements plainly hold for an arbitrary Fo, and the 
i=O 

analogy with indefinite integration is apparent. 

11.18. Obtain a formula for A-I  in terms of the operator D. 

The result eD = 1 + A suggests 

where D-I is an inde f in i te  in tegral  operator ,  an inverse of D. From the definition of Bernoulli 
numbers, 

As always with the indefinite integral (and here we also have an indefinite summation) the 
presence of an additive constant may be assumed. 

11.19. Derive the Euler-Maclaurin formula operationally. 

Combining the results of the previous two problems, we have 
k - 1  

Fk  = AP1yk  = Fo + Z yi 
i=O 

From the first of these, 
n- 1 

Fn - Fo = Z ~i 
i=O 

while from the second, 

so that finally, 

which is the Euler-Maclaurin formula. The operator arithmetic used in this derivation is clearly 
in need of supporting logic, but the result is useful in spite of its questionable pedigree, and in spite 
of the fact that  the series obtained is usually n o t  convergent.  



CHAP. 111 T H E  TAYLOR POLYNOMIAL 

Supplementary Problems 

Find the Taylor polynomials of degree n for  sin x and cos x, using xo = 0. 

Express the error  term in Lagrange's form, fo r  both sin x and cos x. Show t h a t  a s  n + m this 
error has  limit 0 fo r  any argument x. 

For  what  value of n will the Taylor polynomial approximate sin n: correctly to three decimal places 
fo r  0 < x < ~ / 2  ? 

For what  value of n will the Taylor polynomial approximate cos z correctly to three decimal places 
for  0 < x  < ~ / 2  ? To six decimal places? 

Express the operator A a s  a series operator in D. 

The functions sinh x and cosh x  a r e  defined by 
ex - e-x ex + e - x  

, cosh 5 = - s inhx  = ---- 2  

Show tha t  their Taylor series a re  

1 
sinh x  = 2 -Y--- x 2 i f l  

1  
cosh x  = 2 -- 224 

, = , ( 2 2 + l ) !  ' i = o  (2i)! 

Show by operator arithmetic that  8  = 2 sinh gD, p = cosh 4D. 

Use the binomial series to express A = $82 + a s  a series in powers of 6, through the 
term in S7. 

Combine the results of Problems 11.13 and 11.27 to express D a s  a series in powers of 8, verifying 
these terms through 6 7 .  

1 2 . 3 2  1 2 . 3 2 . 5 2  
l 2  83 + - D = 8 - -  2 4 . 5 !  S 5  - 

87 + - 0 .  

2 2 . 3 !  2 6 - 7 !  

Verify these terms of a Taylor series fo r  D 2 ,  

by squaring the result of Problem 11.28 and collecting the various powers of 8 .  

The formula of Problem 11.28,  if applied to yo ,  would require unlisted data  such a s  2/112, y312, etc. 

Modify this formula by multiplying by p / d m ,  which is 1,  to  obtain 

which may be applied directly to yo. 

k282 k2(k2 - 1)S4 kZ(k2 - l ) ( k 2  - 4)S6 
11.33. Verify: cosh k D  = 1 + + + + . . a  . 4 !  6! 
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c-inh kD - 11.34. Verify: : y ~  - k + 2 
slnh D 

11.35. Find terms through 86 of the Taylor series fo r  pS/D. 

11.36. Find terms through 86 of the Taylor series for  SlPD. 

11.37. Find terms through 86 of the Taylor series for  8'102. 

11.38. Consider the finite sum n- I  n - I  

Sn = 2 aktk  = 2 akA'Vk 
k=0 k=O 

where v k  = (1  - t k ) l ( l  - t ) .  Show t h a t  summation by parts leads to 

and since the first sum on the right is simply a, - a,, 

a ,  a,,tn "-1 

S,, = 4- -- 2 t k A a k  
1 - t  1 - t  l - t k = o  

Notice tha t  the last  term has the same form a s  the original sum, with Auk in place of ak.  Apply 
summation by parts  to this last term to obtain 

Continuing through r such summations by parts,  show tha t  

If fo r  n te:nding to infinity we have lim S ,  = S ,  show that  the last  term has limit zero, making 

If now r tends to infinity, and if it i s  assumed t h a f  the final t e rm has limit zero, then a generalized 
Euler formula appears. P u t  t = -1 to obtain the special case derived in Problem 11.15. We have 
here a test fo r  the validity of the Euler formula, namely, the convergence of the original sums to 
S and the vanishing in the limit of the final term exhibited. Unfortunately the la t ter  is not always 
easy to decide. Moreover, the Euler formula has also been found helpful when l imSn fails to exist. 



Chapter 12 

Interpolation and Prediction 

APPLICATIONS OF POLYNOMIAL APPROXIMATION 

Applications of polynomial approximation will now be presented systematically, pre- 
vious chapters having consisted almost entirely of supporting theory. 

1. Interpolation requires estimating the values of a function y(x) for arguments between 
XO,. . . , x, a t  which the values yo, . . . , yn are known. 

2. Inverse interpolation involves estimating the argument x which corresponds to a given 
value y(x), again assuming the values yo, . . . , y, are known. 

3. Subtabulation requires the interpolation of numerous values between each pair of argu- 
ments xi and xi+l. Often, for example, the original interval h of a table is reduced to 
h/10. 

4. Prediction involves estimating values of y(x) outside the interval in which the data 
arguments xo, . . . , x, fall. 

METHODS OF SOLUTION 

The methods used in solving such problems amount to substituting some polynomial 
approximation p ( x )  for the function y(x). The known values yo, . . . , yn may be introduced 
into any of our polynomial formulas (Newton, Everett, Taylor, etc.) which then becomes 
an algorithm to output an approximation to y(x). More specifically: 

The central diflerence formulas of Stirling, Bessel and Everett are the backbone of 
interpolation work, being used except for arguments very close to the beginning or end 
of a table. This is because they use data from both sides of the interpolation argument 
x, and in roughly equal amounts. "Common sense" suggests that  this is good practice 
and a study of the errors involved in interpolation provides logical support. It is 
unnecessary to choose the degree of the approximating polynomial in advance. One 
simply continues to fit differences from the difference table into appropriate places in 
the formula being used, so long as the computation seems to warrant. Since higher 
differences ordinarily tend toward zero (see earlier problems) the terms of our formulas 
ordinarily diminish to negligible size. 

The Newton forward formula is usually applied for interpolations near the beginning of 
a table. This is because i t  uses data only on the forward side of interpolation argument 
x, the only kind of data available in good supply. 

The Newton backward formula is the natural choice for interpolation near the end of 
a table, for reasons similar to those just mentioned. The two Newton formulas are 
especially useful in predictions (outside the data interval) since they then provide con- 
venient access to the nearest available data. 
The Lagrange fo~mula may also be used for interpolations. It does not require prior 
computation of the difference table, but has the disadvantage that  the degree of p(x) 
must be chosen a t  the outset. 
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5.  Aitken's method is a more popular alternative to the difference formulas. It does not 
require the degree of p ( x )  to be chosen a t  the outset. For inverse interpolations, where 
the yi values are almost certainly not equally spaced, this method is heavily used. 

6. Oscdat ing  polynomials and Taylor's polynomial also find occasional application to 
interpolation problems. 

INPUT AND ALGORITHM ERRORS 

Input and algorithm errors occur in all these applications. Their impact on the com- 
puted outputs can be estimated only up to a point. I t  is customary to identify three main 
error sources. 

1. Inpu t  errors arise when the given values yo, . . . , y n  are inexact, as experimental or com- 
puted values usually are. 

2. Truncat ion error is the difference g ( x )  - p(x) ,  which we accept the moment we decide 
to use a polynomial approximation. This error has been found earlier to be 

Though [ is unknown, this formula can still be used a t  times to obtain error bounds. 
Truncation error is one type of algorithm error. In prediction problems this error can 
be substantial, since the factor T ( X )  becomes extremely large outside of the interval in 
which the data arguments X O ,  . . . , xn fall. OccasionaIIy i t  seems useful to introduce 
modified differences, which are  combinations such as 

6:y0 = a2y, - C 6 3 0  

in which a second difference has been modified by attaching a small multiple of the cor- 
responding fourth difference. The process is also known as throwback of the fourth 
difference upon the second. (The idea could be applied to differences of other order as 
well.) Under some conditions i t  has been found that fourth degree polynomials can be 
replaced by second degree polynomials by use of such modified differences, the additional 
error involved (a second truncation error) being negligible. The simplification achieved 
in this way is attractive. 

3. Roundof  errors occur since computers operate with a fixed number of digits and any 
excess digits produced in multiplications or  divisions are lost. They are  another type 
of algorithm error. 

Solved Problems 

12.1. Predict the two missing values of yk. 

This is  a simple example, but  i t  will serve to remind us t h a t  the basis on which applications 
a r e  to be made is  polynomial approximation. Calculate some differences. 
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Presumably the missing yk values might be any numbers a t  all, but the evidence of these differences 
points strongly towards a polynomial of degree three, suggesting that  the six yk values given and 
the two to be predicted all belong to such a polynomial. Accepting this as the basis for prediction, 
i t  is not even necessary to find this collocation polynomial. Adding two more 1's to the row of third 
differences, we quickly supply a 5 and 6 to the row of second differences, a 16 and 22 as new first 
differences, and then predict y6 = 42, y, = 64. This is the same data used in Problem 6.12, page 
37, where the cubic collocation polynomial was found. 

12.2. Values of y(x) = fi are listed in Table 12.1, rounded off to four decimal places, 
for arguments x = 1.00(.01)1.06. (This means that the arguments run from 1.00 to 
1.06 and are equally spaced with h = .01.) Calculate differences to n h n d  explain 
their significance. 

The differences are also listed in Table 12.1. 

Table 12.1 

For simplicity, leading zeros are often omitted in recording differences. In this table all dif- 
ferences are in the fourth decimal place. Though the square root function is  certainly not linear, 
the first differences are almost constant, suggesting that over the interval tabulated and to four 
place accuracy this function may be accurately approximated by a linear polynomial. The entry 
A2 is best considered a unit roundoff error, and its effect on higher differences follows the familiar 
binomial coefficient pattern observed in Problem 3.10, page 19. In this situation one would ordinarily 
calculate only the first differences. Many familiar functions such as 6, logx, sinx, etc., have 
been tabulated in this way, with arguments so tightly spaced that  first differences are almost con- 
stant and the function can be accurately approximated by a linear polynomial. 

12.3. Apply Newton's forward formula with n = 1 to interpolate for d m .  

X - XO - 1.005 - 1.00 - 1 
Choosing i z  = 1 for a linear approximation we find, with k = - - - - 

h .01 2 '  

This is hardly a surprise. Since we have used a linear collocation polynomial, matching our 
y = fi values a t  arguments 1.00 and 1.01, we could surely have anticipated this midway result. 
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12.4. Identify the input information, the algorithm, and the output information for the 
computation of Problem 12.3. 

Only occasionally will we stop to display these typical ingredients of a numerical analysis prob- 
lem. They soon become obvious enough. For  this first application, however, i t  may be useful to  
emphasize them in the format  of Chapter 1. This is done in Fig. 12-1. 

Input  information Algorithm 

Fig. 12-1 

Output 
information 

12.5. What would be the effect of using a higher degree polynomial for  the interpolation 
of Problem 12.3? 

An easy computation shows the next several terms of the Newton formula, beginning with the 
second difference term, to  be approximately .00001. They would not affect our result a t  all. 

12.6. Values of y(x) = fi are listed in Table 12.2, rounded off to five decimal places, for 
arguments x = 1.00(.05)1.30. Calculate differences to as and explain their significance. 

The differences a r e  listed in Table 12.2. 

Table 12.2 

Here the error  pattern is more confused but the fluctuations of + and - signs in the last  three 
columns a re  reminiscent of the effects produced in Problems 3.10 and 3.11, page 19. It may be best 
to view these three columns a s  error  effects, not a s  useful information f o r  computing the square 
root function. 

12.7. Use the data of Problem 12.6 to interpolate for m. 
Newton's forward formula is convenient for  interpolations near the top of a table. With k = 0 

a t  the top entry xo = 1.00, this choice usually leads to diminishing terms and makes the decision 
of how many terms to use almost automatic. Substituting into the formula a s  displayed in Prob- 
lem 12.3, with k = (x - xo)lh = (1.01 - 1.00)/.05 = &, we find 

stopping with this term since i t  will not affect the fifth decimal place. Notice tha t  this las t  term 
uses the highest order difference which we felt, in Problem 12.6, to  be significant for square root 
computations. We have not trespassed into columns which were presumably only error effects. The 
value pk reduces to  

pk = 1.000000 + .004940 + .000048 + .000002 = 1.00499 
which is  actually correct to  five places. ( I t  is a good idea to ca r ry  a n  extra  decimal place during 
computations, if possible, a s  an effort to control "algorithm errors" described in Chapter 1. In  
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machine computations, of course, the number of digits is usually fixed anyway, so this remark 
would not apply.) 

12.8. Use the data of Problem 12.6 to interpolate for m. 
Here Newton's backward formula is convenient and most of the remarks made in Problem 12.7 

again apply. With k = 0 a t  the bottom entry xo = 1.30, we have k = ( x  - xo) lh  = (1.28 - 1.30)/.05 = 
-8. Substituting into the backward formula (Problem 7.9, page 43) 

we obtain p, = 1.1401'1 + (-5)( .02214) + (-&)(-.00045) + (-&)(.00003) 

= 1.140170 - .008856 + .000054 - .000002 = 1.13137 

which is also correct to five places. Exercises of this sort, in which the results can be checked by 
other means, are a useful device for testing algorithms. Often an  error analysis can be made, but in 
difficult problems controlled "test runs" of this sort may be the only available way of choosing a 
good algorithm among bad ones. 

12.9. The previous two problems have treated special cases of the interpolation problem, 
working near the top or near the bottom of a table. This problem is more typical in 
that data will be available on both sides of the point of interpolation. Interpolate 
for using the data of Problem 12.6. 

The central difference formulas are now convenient since they make i t  easy to  use data Inore 
or less equally from both sides. In Problem 12.20 we will see that  this also tends to keep the trunca- 
tion error small. Everett's formula will be used. (See Problem 7.23, page 47.) 

where higher order terms have been omitted since we will not need them in this problem. Choosing 
k = 0 a t  x, = 1.10, we have k = (x - x,) lh  = (1.12 - 1.10)/.05 = 5. Substituting into Everett's 

= .428952 + .000028 + A29286 + .000035 

the two highest order terms contributing nothing (as we hoped, since these are drawn from the error 
effects columns). Finally pk = 1.05830, which is correct to five places. Notice that  the three inter- 
polations made in Table 12.2 have all been based on collocation polynomials of degree three. 

12.10. The laboratory's newest employee has been asked to "look up" the value y(.3333) in 
table NBS-AMS 52 of the National Bureau of Standards Applied Mathematics Series. 
On the appropriate page of this extensive volume he finds abundant information, a 
small part of which is reproduced in Table 12.3. Apply Everett's formula for the 
needed interpolation. 

Table 12.3 
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Choosing x = 0 a t  xo = .33, we have k = ( x  - xo) lh  = (.3333 - .33)/.01 = .33. Writing 
Everett's formula through second differences in the form 

~k = ~ Y I  + ( 1   YO + E1a2yl - EoS2yo 

where E l  = ( I c : ' )  and E, = ( t) ,  the interpolator will find all ingredients available in tables. For 
k = .33, we find E l  = -.0490105, E o  = .0615395. Then 

p, = (.33)(.13545218) + (.67)(.13105979) 

+ (-.0490105)(.00002349) - (.0615395)(.00002365) 

= ,13250667 

This table was prepared with Everett's formula in mind. 

12.11. Use the following extract from the table of the arctangent function, NBS-AMS 26, to 
obtain arctan 2.682413 to an exotic twelve decimal places. 

arctan x 

We quickly find k = .413, look up E l  = .0641230, E o  = -.0570925, and compute 

E182yl - EoS2yo = .000 000 0006819 

leading to p, = 1.213 956 984631. 

12.12. Apply the Lagrange formula to obtain from the data of Table 12.2. 
The Lagrange formula does not require equalIy spaced arguments. I t  can of course be applied 

to such arguments as a special case, but there are difficulties. The degree of the collocation poly- 
nomial must be chosen a t  the outset. With the Newton, Everett or other difference formulas the 
degree can be determined by computing terms until they no longer appear significant. Each term is 
an additive correction to terms already accumulated. But with the Lagrange formula a change 
of degree involves a completely new computation, of all terms. In Table 12.2 the evidence is strong 
that a third degree polynomial is suitable. On this basis we may proceed to choose xo = 1.05, . . . , 
x3 = 1.20 and substitute into 

This agrees with the result of Problem 12.9. For equally spaced arguments the Lagrange coeffi- 
cients, like the Everett coefficients, are available in tables. 

12.13. The Aitken procedure has an advantage over Lagrange's formula. Like the difference 
formulas, it gives an indication of what degree polynomial to choose. Apply this 
method to find a 2 .  

Proceeding as described in Problems 8.6-8.9, pages 55-56, we obtain the results in Table 12.4. 

1.20 1.09544 1.05771 1.05830 1.05830 .08 

Table 12.4 

The entries on the upper diagonal serve as successive approximations to the result, so that  we 
may stop when we have the accuracy anticipated. Here the value 1.05830 once again appears. 
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12.14. The problem of inverse  interpolation reverses the roles of xk and yk. We may view 
the y k  numbers as arguments and the xk as values. Clearly the new arguments are 
not usually equally spaced. Given that fi = 1.05, use the data of Table 12.2, page 82, 
to find x. 

Since we could easily find x = (1.05)2 = 1.1025 by a simple multiplication, this is plainly 
another "test case" of our available algorithms. Since i t  applies to unequally spaced arguments, 
suppose we use Lagrange's formula. Interchanging the roles of x and y, 

With the same four xk, yk  pairs used in Problem 12.12, this becomes 

as expected. The same result can be found by Aitken's method. 

12.15. Apply Everett's formula to the inverse interpolation problem just solved. 
Since the Everett formula requires equally spaced arguments, we return x and y to their 

original roles. Writing Everett's formula as  

we have a fifth degree polynomial equation in k .  This is a problem treated extensively in a later 
chapter. Here a simple, iterative procedure can be used. First  neglect all differences and obtain 
a first approximation by solving 

1.05 = k(1.07238) + ( 1  - k)(1.04881) 

The result of this linear inverse interpolation is k = .0505. Insert this value into the 8 2  terms, 
still neglecting the 6 4  terms, and obtain a new approximation from 

1.0505 0505 
1.05 = k(1.07238) + ( ) (-.00050) + (1 - k)(1.04881) - (' ) (.00054) 

This proves to be k = .0501. Inserting this value into both the 62 and 6 4  terms then produces 
k = .0507. ~eintroduced into the 6 2  and S4 terms this last value of k reproduces itself, so we stop. 
The corresponding value of x is 1.1025 to four places. 

12.16. Interpolate for d m  and in Table 12.2. 
For these arguments which are midway between tabulated arguments, Bessel's formula has a 

strong appeal. First  choose k = 0 a t  xo = 1.10, making k = (1.125 - 1.10)/.05 = 1/2.  The Bessel 
formula (Problem 7.27, page 49) is 

if we stop a t  degree four. The odd difference terms disappear entirely because of the factor k - 3. 
Substituting, 

pk = 1.06060 + (-Q)(-.00052) + (A)(-.000015) = 1.06066 

with the 6 4  term again making no contribution. Similarly in the second case, with k = 0 now a t  
xo = 1.15, we again have k = 4 and find pk = 1.08397. By finding all such midway values, the 
size of a table may be doubled. This is a special case of the problem of subtabulation. Clearly any 
of our formulas may be applied to subtabulation, providing a more complete table of any desired 
density. Generally speaking, the Everett formula is as  convenient as any. 
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12.17. The problem of subtabulation can also be approached by means of a new difference 
operator A, associated with an interval ah, where h is the spacing of the given table. 
(Often a = 1/10.) Define A, = Ea-  1 and then show that 

Also compute A: as a series operator in powers of A. 

Since A, = Ea - 1 = (1 + A), - 1, the result for  A, follows quickly by the binomial theorem. 
Factoring out aA, the binomial theorem may again be applied. For example, 

6: = a4A4[ l  + . . . I  
only terms through fourth differences being explicitly shown. As usual, the validity of these series 
operators remains uncertain, and results obtained from them must be inspected with care. 

12.18. Apply Problem 12.17 to subtabulate Table 12.2 for the arguments x = 1.00(.01)1.05. 

Apply the operators A, and A to yo = 1.00000, with a = 1/5. We find, stopping a t  cubic terms, 

Amy0 = +(.02470) + s ( - .00059)  + &(.00005) = .00499 

A ~ Y O  = (.04)[(-.00059) - (.9)(.00005)] = -.000024 

= (.008)[.00005] = .000 0004 

We now have the layout shown in Table 12.5, higher differences being zero. 

Table 12.5 

The second difference column may be filled with -2.4 entries, after which first differences may 
be obtained, with the yk values following. The completed result is Table 12.6. 

Table 12.6 

The fact that  y(1.05) is incorrect by one unit in the last place shows that  in subtabulation work 
it is preferable to have the entries in the master table computed to one extra decimal place beyond 
what is ultimately required of the completed table. 
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12.19. In using a collocation polynomial p(x) to compute approximations to a function y(x), 
we accept what is called a truncation error, y(x) - p(x ) .  Estimate this error for our 
interpolations in Table 12.1, page 81. 

The formula for  truncation error  of a collocation polynomial was derived in Chapter 2 and is 

when the polynomial approximation is of degree n. For  Table 12.1 we found n = 1 suitable. The 
collocation points may be called xo and x,, leading to this error  estimate f o r  linear interpolation: 

Since h = .O1 and y(2)(x)  = -12-312 ,  4 we have 

k ( k  - 1) I Y ( X )  - ~ ( 4  I 5 (.0001) 

For k between 0 and 1, which we arrange for  any in- 
terpolation by our  choice of xo, the quadratic k(k - 1)  
has a maximum size of 114, a t  the m i d ~ o i n t  k = 112 
(see Fig. 12-2). This allows us to  complete our 
truncation error  estimate, 

I Y ( X )  - P ( X )  I 5 &(.0001) 

and we discover tha t  i t  cannot affect the fourth 
decimal place. Table 12.1 was prepared with linear 
interpolation in mind. The interval h = .!I1 was 
chosen to keep truncation error this small. Fig. 12-2 

12.20. Estimate truncation errors for our computations in Table 12.2, page 82. 
Here fo r  the most par t  we used Everett's formula fo r  a cubic polynomial. For  other cubic 

formulas the same error estimate follows. Assuming equally spaced collocation arguments 
X - I ,  X O ,  X I  and x2, 

( x  - x - l ) ( x  - xo)(x - x1)(x - x2) 
~ ( 4  - ~ ( 4  = 4 !  ~ ' ~ ' ( 5 )  

= ( k  + l ) k ( k  - l ) ( k  - 2)h4 ~ ( ~ ) ( t ) / 2 4  

The polynomial (k+l )k (k - l ) (k -2)  
has the general shape of Fig. 12-3. 
Outside the interval -1 < k < 2 
i t  climbs sensationally. Inside k = -1 
0 and < k this < 1 is i t  the does appropriate not exceed 9/16, par t  I"-"./ k = o  k = 2  

fo r  interpolation. We now have 
for  the maximum error in cubic 
interpolation, Fig. 12-3 

For this example h = .05 and y(4)(x)  = - ( 1 5 / 1 6 ) ~ - 7 / ~ ,  and hence ( y ( x )  - p(x)l 5 &(.00005) so 
that  truncation error has  not affected our five decimal place calculations. 

12.21. How large could the interval length h be made in a table of fi with a cubic formula 
still giving five place accuracy? (Assume 1 5 x.) 

This sort of question is naturally of interest to table makers. Our truncation error  formula 
can be written a s  

I Y b )  - P ( X )  I 5 (A) h4 

To keep this less than .000005 requires h4 < .000228, or very closely h < 118. This is somewhat 
larger than the h = .05 used in Table 12.1, page 81, but other errors  enter our computations, a s  
will be seen, and i t  pays to be on the safe side. 
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12.22. The previous problem suggests that TaWe 12.2, page 82, may be abbreviated to half 
length, if Everett's cubic polynomial is to be used for interpolations. Find the second dif- 
ferences needed in this Everett formula. 

The result is Table 12.7, in which first differences may be ignored. 

Table 12.7 

12.23. Use Table 12.7 to interpolate for y(1.15). 

With Everett's formula and k = 1/2, 

pk = a(1.09544) - &(-.00191) + &(1.04881) - &(-.00217) = 1.07238 

as listed in Table 12.2. This confirms Problem 12.21 in this instance. 

12.24. Estimate the truncation error for a fifth degree formula. 

Assume the collocation arguments equally spaced and a t  k = -2, -1, . . ., 3 as  in Everett's for- 
mula. (The position is actually immaterial.) 

g(x) - ~ ( 2 )  = s ? d ( n + 1 ) ( 5 )  = ( k +  2)(k+ l )k(k-  l ) ( k - 2 ) ( k -  3) 
( n f  I)! 720 h6Y%) 

The numerator factor, for 0 < k < 1, takes a maximum absolute value of 225164 at  k = 1/2, as  
may easily be verified, making 

12.25. For the function y(x) = fi, and 1 S x, how large an interval h is consistent with 
five place accuracy if Everett's fifth degree formula is to be used in interpolations? 

For this function, y(e)(x) = %~-11/2 S e. Substituting this into the result of the previous 
problem, and requiring five place accuracy, 

leading to h 5 116 approximately. Naturally the interval permitted with fifth degree interpolation 
exceeds that  for third degree interpolation, but see Problems 12.27-12.31 also. 

12.26. For the function y(x) = sin x, how large an interval h is consistent with five place 
accuracy if Everett's fifth degree formula is to be used in interpolations? 

For this function y(O)(x) is bounded absolutely by 1, so we need h o g *  h8 5 .000005, leading 
to h S .317. This is the equivalent of 18O intervals, and means that  only four values of the sine 
function, besides sin 0 and sin 90° are needed to cover this entire basic interval! 
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12.27. Illustrate the ideas of modified differences and throwback. 

Three typical terms of Everett's fifth degree formula are 

For k between 0 and 1 the factor ( 4  - k2)/20 varies only from .15 to .20. If this factor is approxi- 
mated by a constant C ,  then a modified second difference may be defined a s  

2 S,yl = S2y1 - CS4y1 

The other three terms of the Everett formula lead to a similar modified second difference, 

This is also described a s  throwback of the fourth difference upon the second. The same idea may 
be applied to any difference and to any formula but we continue with Everett's of degree five. 

12.28. Consider the following modified Everett formula 

and evaluate the error made in using this in place of Everett's formula of degree five. 

The difference between the two is 

12.29. Assuming fourth differences constant, simplify the error formula of the previous 
problem and discuss error behavior for  0 < k < 1. 

Denoting both fourth differences by S4y, we find after a slight effort, 

and denoting 12C - 2 by CY, 
ek = k ( k  - l ) ( k 2  - k + 0)64y/24 = Fk 84~124  

For small values of CY the factor Fk 
has the behavior shown in Fig. 12-4 
for 0 < k < 1. There are two minima 
and one maximum. The three ex- 
treme values of IFk\ can be equalized 
by a proper choice of a, and i t  is not 
hard to show that  in this way the k = 0 
maximum of IFk] is made a s  small as  
possible. By the usual method the 
center maximum is found to be of 

1 
height (1116 - a / 4 )  and the two 
minima of depth 2 1 4 .  Equating 
these leads to Fig. 12-4 

making C = .I839 approximately. With this choice for C ,  and still assuming fourth differences 
constant, we find 

1 ek 1 S 1 maxFk  1 84~124  = 
(6 - 

384 S4y 
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12.30. If fourth differences are not constant, which is what we expect, then the value of C 
suggested by the previous problem may still be as good a choice as any. Find the 
error e k  in such a case. 

The formula of Problem 12.28 still applies, and a direct evaluation shows that  

Thus if the fourth differences are absolutely less than 400 units in the last decimal place used, this 
error will be smaller than half a unit in that  place. The values given by the modified Everett 
formula will not then differ significantly from those given by the fifth degree formula. 

12.31. Prepare a table of y(x) = sinx with modified second differences suitable for five 
place accuracy. 

Problem 12.26 suggests the interval h = 18@ for fifth degree interpolation, but to keep fourth 
differences nearer to the level recommended by Problem 12.30, we use the slightly more conservative 
interval of 15O. This is also a little more convenient. Values of sin x a t  this interval are given in 
Table 12.8. A few extra values are included a t  the ends to fill out the fourth difference column. 
They are easy consequences of the symmetry of the sine function. 

Table 12.8 

Modified second differences are now computed from 
2 

&Y = 8 2 y  - .I839 6 4 y  

and suppressing the first and third differences we obtain Table 12.9. 

Table 12.9 

I x 

12.32. Use Table 12.9 to interpolate for sin 80". 
Using Everett's cubic formula with the modified second differences, and choosing k = 0 at 

x0 = 7 5 O ,  we find k = 1/3 at x = 80°, and so 
sin80° = +(1.00000) + 3(.96593) - -&(-.06919) - &(-.06656) = .98481 

which is correct to five places. 

2 sin x I 8, 
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12.33. A second source of error in the use of our formulas for the collocation polynomial 
(the first source being truncation error) is the presence of inaccuracies in the data 
values. The numbers yk, for example, if obtained by physical measurement will con- 
tain inaccuracy due to the limitations imposed by equipment, and if obtained by com- 
putation probably contain roundoff errors. Show that  linear interpolation does not 
magnify such errors. 

The linear polynomial may be written in Lagrangian form, 

where the yk a r e  a s  usual the actual data  values. Suppose these values a r e  inaccurate. With Y ,  
and Yo denoting the exact but unknown values, we may write 

Y o  = Y O  + eo, Y 1  = Y ,  + el 

where the numbers eo and el are the errors. The exact result desired is  therefore 

P = k Y l  + ( 1  - k ) Y o  

making the error of our computed result 

P - p = ke ,  + ( 1  - k )eo  

If the errors ek do not exceed E in magnitude, then 

for 0 < k < 1. This means tha t  the error  in the computed value p does not exceed the maximum 
data error. No magnification of error has  occurred. 

12.34. Estimate the magnification of data inaccuracies due to cubic interpolation. 
Again using the Lagrangian form, but assuming equally spaced arguments a t  k = -1 ,0 ,1 ,2 ,  

the cubic can be written a s  

As in Problem 12.33, we let Y k  = yk + ek ,  with Y k  denoting the exact data  values. If P again 
stands f o r  the exact result desired, then the error  is 

Notice tha t  for  0 < k < 1 the errors  e - ,  and e9 have negative coefficients while the other two have 
positive coefficients. This means t h a t  if the err& do n o t  exceed E in magnitude, 

which simplifies to 
I 

I P - p l  ( - k 2 + k + l ) E  = m k E  

Not surprisingly the quadratic magnification factor mk 
takes its maximum a t  k = 112, (Fig. 12-5), and so 
IP-pl 5 (514)E. The data  error E may be magnified 
by a s  much a s  514. This is, of course, a pessimistic 
estimate. In  certain cases errors may even annul one . - 

h: = u h : = l  
another, making the computed value p more accurate 
than the data  gk. Fig. 12-5 

12.35. What other source of error is there in an interpolation? 
One source which is very important to keep in mind, even though i t  is  often entirely out of one's 

control, is the continual necessity to make roundoffs during the carrying out of the algorithm. 
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Working to a limited number of digits, this cannot be avoided. Our various formulas, even when 
they represent exactly the same collocation polynomial, process the data  involved in differing ways. 
In  other words, they represent different algorithms. Such formulas accept the same input error  
(data inaccuracies) and may have the same truncation error, but  still differ in the way algorithm 
roundoffs develop. Algorithm errors  of this type a r e  the most difficult to  estimate. 

12.36. Describe how Taylor's series may be used for interpolation. 
Consider the function = ex. By Taylor's series, 

ex t t  z eX.et = e X ( l + t + + t 2 +  p a . )  

Assume the factor ex known. Truncating the series af ter  the t 2  term means a n  error (inside the 
parentheses) of a t  most (1/6)(h/2)3 where h is the interval a t  which arguments a r e  spaced in the  
table. This assumes tha t  interpolation will always be based on the nearest tabular entry. If 
h = .05 this error  is (125/48)10-6, or (2.6)lO-6. This means that ,  stopping a t  the t2 term, accuracy 
to five digits (not decimal places) will be obtained in the computed value of ex+t. F o r  example, using 
the data  of Table 12.10 the interpolation f o r  e2.71s runs a s  follows. With t = .018, 1 + t $ *t2 = 
1.01816 and 

e2.718 = e2.70(1.01816) = (14.880)(1.01816) = 15.150 

12.37. How can Taylor series interpolation be used for the function y(x) = sin x ?  

which is correct to  its full five digits. Our collocation polynomials would also produce this result. 

Since sin x and cos x a re  usually tabulated together, we may express 

sin (x 2 t )  = sin rc i t cos x - &t2 sin x 

x 

y = ex 

Here, of course, t is measured in radians. If the tabular interval is  h = .0001, a s  i t  is in 
NBS-AMS 36, of which Table 12.11 is a brief extract, then the above formula will give accuracy 

2.60 2.65 2.70 2.75 2.80 

13.464 14.154 14.880 15.643 16.445 

to nine digits, since (1/6)(h/2)3 is out beyond the twelfth place. 

1.0000 3414 70985 .5403 02306 

.8415 25011 .5402 18156 

Table 12.10 

12.38. Compute sin 1.00005 by the Taylor series interpolation. 
With x = 1 and t = .00005, 

1.0002 

1.0003 

sin 1.00005 = .8414 70985 f (.00005)(.5403 02306) - (Q)(10-s)(.8414 70985) = 3414 97999 

I 
A415 79028 1 .540134001 

.8116 33038 .5400 49840 

12.39. Apply Newton's backward formula to the prediction of in Table 12.2, page 82. 

With k = 0 a t  xo = 1.30 we find k = (1.32 - 1.30)/.05 = .4. Substituting into the Newton 

Table 12.11 

formula, 
p = 1.14017 + (.4)(.02214) + (.28)(-.00045) + (.224)(.00003) = 1.14891 

which is correct a s  f a r  a s  i t  goes. Newton's backward formula seems the natural  choice fo r  such 
prediction problems, since the supply of available differepces is greatest f o r  this formula and one 
may introduce difference terms until they do not contribute to the decimal places retained. This 
allows the degree of the approximating polynomial to be chosen as the computation progresses. 
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12.40. Analyze the truncation error in prediction. 

The truncation error of the collocation polynomial can be expressed as 

where the collocation points are a t  k = 0 ,  -1,  . . . , - n  as is the case when Newton's backward for- 
mula is used. For prediction, k is positive. The numerator factor grows rapidly with increasing 
k, more rapidly for large n, as Fig. 12-6 suggests. This indicates that truncation error will not be 
tolerable beyond a certain point, and that prediction far  beyond the end of a table is dangerous, 
as might be anticipated. The truncation error of a collocation polynomial is oscillatory between 
the points of collocation, but once outside the interval of these points i t  becomes explosive. 

Fig. 12-6 

12.41. Predict m 0  from the data of Table 12.2, page 82. 

With k = (1.50 - 1.30)/ .05 = 4 ,  

p = 1.14017 + (4 ) ( .02214)  f ( lo ) ( - .00045)  + (20)( .00003) = 1.22483 

while the correct result is 1.22474. Note also that  higher difference terms, which we believe to be 
error effects anyway, would only make the result worse because they are positive. 

12.42. Apply Hermite's formula to interpolate for y(1.05) from the following data. 

I t  is not uncommon for experimental work to yield measured values of both y and y'. (See the 
railroad switching Problem 10.3.)  Some computed tables also list both y and y'. Hermite's formula 
is appropriate in such cases. With n = 1 in this formula we need 

Substituting into Hermite's formula, 
n 

P ( X )  = B [ I  - 2 ~ , l ( x J ( x  - xi ) ]  [ ~ ~ ( x ) ] z y ~  + ( x  - X ~ ) [ L ~ ( X ) I ~ &  
i = O  

Since the original data were taken from the square root function which has been so prominent in 
these numerical "test runs", i t  is reassuring to have once again recovered correct to five places. 
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Supplementary Problems 

12.43. From the data  of Table 12.1,  page 8 1 ,  obtain and by linear interpolation, to  four  
decimal places. Would the second difference term affect the result? Would higher order terms? 

12.44. From the data  of Table 12.1 obtain by linear interpolation. Note t h a t  if Newton's forward 
formula is used (with k = 0 a t  x = 1.05)  no second difference would be available in this case. 

12.45. Interpolate f o r  in Table 12.2,  page 82 .  

12.46. Interpolate fo r  a 6  in Table 12.2. 

12.47. Apply Stirling's formula to  obtain a from the da ta  of Table 12.2.  Does the  result agree with 
tha t  of Problem 12.9? 

12.48. Apply Everett's formula to Table 12.2,  obtaining a 1  , a and a. This can be viewed a s  a 
direct subtabulation method. 

12.49. Apply Everett's formula to Table 12.3, page 83 ,  obtaining y( .315) .  

12.50. Apply Everett's formula to  the data  of Problem 12.11, obtaining arctan 2.6825 to  twelve decimal 
places. 

12.51. Apply the Lagrange formula to interpolate fo r  y(1 .50)  using some of the following values of the 
normal error  function, y ( x )  = e - x 2 W G .  

The correct result is .1295. 

12.52. Apply Aitken's method to find the value y(1 .50)  of Problem 12.51. 

12.53. Use Lagrange's formula to inverse interpolate fo r  the number x corresponding to y = .I300 in the 
data  of Problem 12.51. 

12.54. Apply the method of Problem 12.15, page 85 ,  to the inverse interpolation of Problem 12.53. 

12.55. Apply Bessel's formula to  obtain y(1 .30) ,  y (1 .50)  and y(1.70)  for  the da ta  of Problem 12.51. 

12.56. Apply the method of Problem 12.18, page 86 ,  to subtabulate the normal error  function for  
x = 1.00( .05)1.20.  Use the data of Problem 12.51. 

12.57. In  a table of the function y ( z )  = sin x to four  decimal places, what  is the largest interval h con- 
sistent with linear interpolation? (Keep truncation error well below .00005.) 

12.58. In  a table of y ( x )  = sin x to five places, what  is the largest interval h consistent with linear inter- 
polation? Check these estimates against familiar tables of the sine function. 

12.59. If Everett's cubic polynomial were used f o r  interpolations, ra ther  than a linear polynomial, how 
large an interval h could be used in a four  decimal place table of y ( x )  = sin x? In  a five place table? 

12.60. Will linear interpolation be adequate for  control of truncation error  in  Table 12.6, page 8 6 ?  

12.61. Show tha t  Everett's cubic provides adequate truncation error control f o r  the twelve place arctangent 
computation of Problem 12.11, page 8 4 .  
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In quadratic approximation with Newton's formula, 
the function k (k  - l ) ( k  - 2 )  appears in the truncation 
error estimate. Show that  this function has the shape 
indicated in Fig. 12-7 and that for 0 < k < 2 i t  does 
not exceed 2 f i 1 9  in absolute value. 

The function k (k2  - l ) ( k2  - 4 )  appears in the trunca- 
tion error estimate for Stirling's formula. Diagram 
this for -2 < k < 2 and estimate its maximum ab- 
solute value for -114 < k < 114, which is the inter- 
val to which use of this formula is usually limited. Fig. 12-7 

Show that  the relative maxima and minima of the polynomials 

k(k2 - l ) ( k z  - 4 ) ,  k(k2 - l ) ( k2  - 4)(k2 - 9 )  

increase in magnitude as their distance from the interval -1 < k < 1 increases. These polynomials 
appear in the truncation error for Stirling's formula. The implication is that  this formula is most 
accurate in the center of the range of collocation. 

Show that the relative maxima and minima of the polynomials 

( k  + l ) k ( k  - l ) ( k  - 2), ( k  + 2)(k  + l ) k ( k  - l ) ( k  - 2 ) ( k  - 3 )  

increase in magnitude with distance from the interval 0 < k < 1.  These polynomials appear in 
the truncation error for Everett's or Bessel's formula. The implication is that  these formulas are 
most accurate over this central interval. 

How large an interval h is consistent with interpolation by Everett's fifth degree formula if the 
function is y(x) = log x and five place accuracy , is  required? 

Prepare a table of square roots and modified second differences suitable for five place accuracy 
between x = 1 and x = 2 .  

Use the table prepared in Problem 12.67 to interpolate for m. 
Prepare a table of natural logarithms and modified second differences suitable for five place ac- 
curacy between x = 1 and x = 2.  

Use the table prepared in Problem 12.69 to interpolate for log 1.414. 

Estimate the magnification of data inaccuracies due to second degree interpolation. Follow the 
argument of Problems 12.33 and 12.34, with 0 < k < 1.  

Estimate the magnification of data inaccuracies due to fourth degree interpolation, again for 
O < k < l .  

Use Table 12.9, page 90,  to interpolate for sin 50° .  

Apply Stirling's formula to compute y(2.718) from the data of Table 12.10, page 92.  

Compute y ( f l )  from the data of Table 12.10, using Taylor series interpolation. (fi= 2.646 

approximately.) 

Compute sin 1.00015 from the data provided in Table 32.11, page 92.  

Show that the Taylor series interpolation 

log ( x  + t )  = log x + log (1 + t l x )  = log x + t l x  - t"2x2 + . . . 

may be truncated after the t 2  term with six decimal place accuracy for 1 < x, provided the tabular 
spacing is k = .01. 
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Use Newton's backward formula to predict m, \/140, from the data  of Table 12.2. 

Predict and fi from the data  of Table 12.7, page 88. 

Predict sin 105O and sin 120° from the data  of Table 12.8, page 90. 

Predict y(2.85) and y(2.90) from the data  of Table 12.10, page 92. 

Apply Hermite's formula to 

Apply Hermite's formula to 

interpolate fo r  sin 1.05 from the following data: 

I z I sin z I cos x I 

interpolate for  log 2.05 from the following data: 

X log l l x  1 

Estimate ~ ( 1 1 2 )  from the data of Problem 4.38, page 29, using the lowest degree polynomial. Also 
estimate y(312) and ~ ( 5 1 2 ) .  

Estimate y(1/2)  from the data  of Problem 4.35, page 29. Use various collocation polynomials. If 
the "true function" is y = cos T X ,  which polynomial does the best job? 

Diagram the error of the quadratic polynomial of Problem 6.14, page 37. Show tha t  the error equals 
zero a t  x = -3 a s  well a s  a t  the points of collocation. How can this be explained in terms of our 
collocation error  formula ~ ( x ) y ( 3 ) ( 5 ) 1 3 !  ? 

In  Problem 6.15, page 37, how can the zero error a t  x = 4 be explained in terms of the error  for- 
mula n ( ~ ) y ( 4 ) ( ~ ) / 4 !  ? 

Use the result of Problem 10.15, page 69, to estimate the missing y l ( l ) .  

Use the result of Problem 10.16, page 69, to estimate the missing y t t ( l ) .  

Use the result of Problem 10.17, page 69, to estimate the missing y'(0) and y l ( l ) .  



Numerical Differentiation 

APPROXIMATE DERIVATIVES 
Approximate derivatives of a function y(x) may be found from a polynomial approxi- 

mation p(x) simply by accepting p', pC2', P'~',  . . . in place of y', Y'~' ,  Y '~ ' ,  . . . . Our collocation 
polynomials lead to a broad variety of useful formulas of this sort. The three well-known 

follow by differentiation of the Newton Forward, Stirling and Newton Backward formulas 
respectively, in each case only one term being used. More complicated formulas are avail- 
able simply by using more terms. Thus 

comes from the Newton formula, while 

results from differentiating Stirling's. Other collocation formulas produce similar approxi- 
mations. For second derivatives one popular result is 

and comes from the Stirling formula. Retaining only the first term, we have the familiar 

SOURCES OF ERROR IN APPROXIMATE DIFFERENTIATION 
The study of test cases suggests that  approximate derivatives obtained from collocation 

polynomials be viewed with skepticism unless very accurate data are available. Even then 
the accuracy diminishes with increasing order of the derivatives. 

The basic difficulty is that  y(x) - p(x) may be very small while y'(x) -pr(x) is very 
large. In geometrical language, two curves may be close together but still have very dif- 
ferent slopes. All the other familiar sources of error are also present, including input 
errors in the yi values, truncation errors such as y'-p', yC2' - P'~' ,  etc., and internal 
roundoff s. 

The dominant error source is the input errors themselves. These are  critical, even when 
small, because the algorithms magnify them enormously. A crucial factor in this mag- 
nification is the reciprocal power of h which occurs in the formulas, multiplying both the 
true values and the errors which are blended together to make the yi data. An optimum 
choice of the interval h may sometimes be made. Since truncation error depends directly 
on h, while input error magnification depends inversely, the usual method of calculus may 
be used to minimize the combination. 
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Large errors should be anticipated in approximate derivatives based on collocation poly- 
nomials. Error  bounds should be obtained whenever possible. Alternative methods for 
approximate differentiation may be based upon polynomials obtained by least-squares or 
min-max procedures rather than by collocation. (See Chapters 21 and 22.) Since these 
methods also smooth the given data, they are usually more satisfactory. Trigonometric 
approximation (Chapter 24) provides still another alternative. 

Solved Problems 

13.1. Differentiate Newton's forward formula, 

The Stirling numbers may be used to express the factorials a s  powers, a f te r  which a n  easy 
computation produces derivatives relative to k. With the operator D continuing to represent such 
derivatives, Dp,, Dzp,, . . ., we use the familiar x = xo 4- kh to obtain derivatives relative to  the 
argument x.  

pt(x) = (Dpk) Ih ,  pC2)(x) -- (D2pk)lh2, 

The results a re  

1 
P ( ~ ) ( x )  = p (A4yo + . .) and so on. 

13.2. Apply the formulas of Problem 13.1 to produce p'(l) ,  p(2)(1) and ~ ' ~ ' ( 1 )  from the data 
of Table 13.1. (This is the same as Table 12.2, page 82, with the differences beyond 
the third suppressed. Recall that  those differences were written off as error effects. 
The table is reproduced here for convenience.) 

Table 13.1 

With h = .05, and k = 0 a t  so = 1.00, our formulas produce: 
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The correct results are, since ~ ( x )  = 6, y t ( l )  = 112, ~ ( ~ ' ( 1 )  = -114 and y(3)(1)  = 318. 

Though the input data  are  accurate to five decimal places, we find p t ( l )  correct to only three 
places, ~ ( ~ ) ( l )  not quite correct to two places, and p ( 3 ) ( l )  correct to only one. Obviously, algorithm 
errors a re  prominent. 

13.3. Differentiate Stirling's formula, 

Proceeding a s  in Problem 13.1, we find 

3k2 - 1 2k3 - k 
p l ( z )  = ; (apyo i- t s 2 y o  -I- ---S3pyo + -- a4y, + . . .) 

6 12 

p'4'(x) = 1 
D ( S 4 ~ ~  + . . .  ) and so on. 

13.4. Apply the formulas of Problem 13.3 to produce p'(1.10),  p(2)(1.10), and p ( 3 ) ( l . 1 0 )  from 
the data of Table 13.1. 

With k = 0 a t  xo = 1.10, our formulas produce 

02411 + .02357 
+ 

- - p 1 . 1 0  = 20 [- 2 

The correct results a re  y'(1.10) = .47674, y(2)(1 .10)  = u.2167, and ~ ( ~ ) ( 1 . 1 0 )  = .2955. 

The input data  were correct to five places, but our approximations to  these first three deriva- 
tives a re  correct to roughly four, three, and one place respectively. 

13.5. The previous problems suggest that  approximate differentiation is an inaccurate 
affair. Illustrate this further by comparing the function y(x) = e sin (x le2)  with the 
polynomial approximation p ( x )  = 0. 

The two functions collocate a t  the equally spaced arguments x = ie2n for  integers i. For  a 
very small number e ,  the approximation is extremely accurate, y ( x )  - p ( x )  never exceeding e .  
However, since y r ( x )  = ( l l e )  cos (xle2) and p r ( x )  = 0, the difference in derivatives is enormous. 
This example shows tha t  accurate approximation of a function should not be expected to mean ac- 
curate approximation of its derivative. See Fig. 13-1. 

Fig. 13-1 
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Problems 13.1, 13.3 and 13.23 suggest three 
approximations to y'(xo) using only first dif- 
ferences, 

y1- yo y1- y-1 yo - y-1 
h 2h ' h 

Interpreted geometrically, these are the 
slopes of three lines shown in Fig. 13-2. 
The tangent line a t  xo is also shown. I t  
would appear that the middle approxima- 
tion is closest to the slope of the tangent x -  1 x o 2 1  

line. Confirm this by computing the trun- 
cation errors of the three formulas. Fig. 13-2 

Newton's forward formula, truncated after the first difference term, leaves the truncation error 

with x = xo + k h  as  usual. I t  is helpful here to consider k as  a continuous argument, no longer 
restricting i t  to integer values. Assuming y(2)( f )  continuous, we then find the error of our deriva- 
tive formula (by the chain rule) for k = 0. 

yl(xo) - pl(xo) = - (h/2)   to) 

Note that  for k = 0 the derivative of the troublesome ~ ( ~ ) ( f )  factor is not involved. Similarly for 
Newton's backward formula, 

Y'@,) - p'(x0) = (h/2)  ~ ( ~ ' ( 5 0 )  

With Stirling's formula we receive an unexpected bonus. Retaining even the second difference 
term in our approximation we find that  a t  k = 0 i t  disappears from pl(x).  (See Problem 13.3.) 
Thus we may consider the middle approximation under discussion as arising from a second degree 
polynomial approximation. The truncation error is then 

I t  is true that  the symbol ( probably represents three distinct unknown numbers in these three 
computations. But since h is usually small, the appearance of h2 in the last result, compared with 
h in the others, suggests that this truncation error is the smallest, by an  "order of magnitude". 
This confirms the geometrical evidence. 

Apply the middle formula of Problem 13.6 to approximate y'(1.10) for the data of 
Table 13.1. Find the actual error of this result and compare with the truncation 
error estimate of Problem 13.6. 

This approximation is actually the first term computed in Problem 13.4: y'(1.10) - .4768. The 
actual error is, to five places, 

~ ' ( 1 . 1 0 )  - 4768 = .47674 - .47680 = -.00006 

The estimate obtained in Problem 13.6 was -h2y(3)(5)/6. Since y(3)(x)  = # x - ~ / ~ ,  we exaggerate 

only slightly by replacing the unknown 5 by 1, obtaining - h 2 ~ ( ~ ) ( 5 ) / 6  - -(.05)2(1/16) = -.00016. 
This estimate is generous, though not unrealistic. 

Convert the formula for p'(xo) obtained in Problem 13.3 to a form which exhibits the 
yk values used rather than the differences. 

We have k = 0 for this case, making 

1 1 
1 - --(y-2 - 8 ~ - I  + 8 ~ 1 -  Y P )  

pl(xo) = ,[&(yl - Y - I )  - G ( ~ 2  - 2 ~ 1  + 2 ~ - 1  - Y - 2 ) 1  - 12h 
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Estimate the truncation error in the formula of Problem 13.8. 
Since the formula was based on Stirling's fourth degree polynomial, 

y ( x )  - p ( x )  = h5(k2 - 4)(k2  - l ) k z j ( 5 ) ( ~ ) / 1 2 0  

Differentiating as  in Problem 13.6 and putting k = 0 ,  y f ( x0 )  --p'(xo) = h4y (5 ) (~ ) /30 .  

Compare the estimate of Problem 13.9 with the actual error of the computed result 
in Problem 13.4. 

To five places the actual error is 

~ ' ( 1 . 1 0 )  - ~ ' ( 1 . 1 0 )  = .47674 - .47660 = .00014 

while the formula of Problem 13.9, with ~ ( ~ ' ( 1 )  substituting for  the unknown y ( 5 ) ( [ )  and causing a 
slight exaggeration, yields 

h 4 ~ ( ~ ) ( $ ) / 3 0  - ( .05)4(7/64)  = .0000007 

Surely this is disappointing! Though the truncation error has  been essentially eliminated by using 
differences of higher order, the actual error  is greater. Clearly another source of error is dominant 
in these algorithms. I t  proves to be the input errors of the yi values, and how the algorithm mag- 
nifies them. For  brevity we shall include this in the term roundoff error. 

Estimate the roundoff error behavior for the formula ( y l  - y-1)/2h. 
As before, let Y ,  and Y - l  be the exact (unknown) data  values. Then Y 1  = y l +  el and 

Y - ,  = y - ,  + e - ,  with el and e - ,  representing data  errors. The difference 

el - e P l  Y1- y-1 Y ,  - Y-1 - 
- - 

2 h  2 h  2 h  

is then the error in our output due to input inaccuracies. If el and e - ,  do not exceed E in magnitude, 
then this output error is a t  worst 2 E / 2 h ,  making the maximum roundoff error E l h .  

Apply the estimate of Problem 13.11 to the computation of Problem 13.7. 
Here h = .05 and E = .000005, making E l h  = .00010. Thus roundoff error in the algorithm 

may influence the fourth place slightly. 

Estimate roundoff error behavior for the formula of Problem 13.8. 
1 

Proceeding just as  in Problem 13.10, we find - - ( e - ,  - 8 e P l  i- 8el - e,) fo r  the error in the 
12h 

output due to input inaccuracies. If the e, do not exceed E in magnitude, then this output error is 
a t  worst 18E/12h,  i.e., maximum roundoff error = (3 /2h )E .  The factor (312h) is the magnification 
factor, a s  ( l l h )  was  in Problem 13.11. Note t h a t  for  small h ,  which we generally associate with high 
accuracy, this factor is large and roundoff errors in the input information become strongly magnified. 

Apply the estimate of Problem 13.13 to the computation of Problem 13.4. Then com- 
pare the various errors associated with our efforts to compute yr(l . lO). 

With h = .05 and E = .000005, (312h)E = .00015. The various errors  a r e  grouped in Table 13.2. 

In the first case roundoff error has  helped, but in the second case i t  has hurt. Plainly, the high 
magnification of such errors  makes low truncation errors pointless, except fo r  extremely accurate 
data. 

Formula 

(Y1 - Y - d I 2 h  

- 8~ - 1 + 8 ~ 1  - y2)/12h 

Table 13.2 

Est. trunc. error 

-.00016 

.0000007 

Actual error 

-.00006 

.00014 

Max. R.O. error 

*.00010 

*.00015 - 
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13.15. Estimate the truncation error of the formula 

obtainable from Problem 13.3 by stopping after the second difference term. 

Here i t  may be convenient to follow a different route to the truncation error, using Taylor series. 
In particular 

y1 = yo + hy;l + +hzyh" -t +h3yb3) + A h 4  y(4)( f1)  

so tha t  adding these up and then subtracting 2yo we find 

Unfortunately [, is probably not the same a s  t2, but  fo r  an estimate of truncation error suppose we 
replace both fourth derivatives by a number y(4) which remains open f o r  our choice. For  complete 
safety we could choose y ( 4 )  = max Iy(4)(x)\  over the interval involved, leading to an upper bound ' 

for the magnitude of truncation error, but  conceivably other choices might be possible. We now have 

1 truncation error = y r )  - - 82 - h"~ - 

13.16. Apply the estimate in Problem 13.15 to the computation of Problem 13.4. 

The computation of ptz) ( l . lO)  in Problem 13.4 was actually made by this formuIa 

p(2)(1.10) = 6*yo/hz = -.21600 

since higher difference terms contributed nothing. The result has already been compared with the 
correct y"(1.10) = -.21670. The truncation error estimate of Problem 13.15, with 

Y ( ~ ) ( x )  = - ( 1 5 / 1 6 ) ~ - ~ / ~  - -15116 

suggests a slight exaggeration . 

truncation error - 1/5120 = .00020 

The actual error is -.00070, again indicating t h a t  truncation is not the major error  source. 

13.17. Estimate the roundoff error of the formula 82yo lh2  

Proceeding a s  before, we find the output error due to input inaccuracies to be ( l lh2)(e l  - 2eo + e-,) 
where the ek are  the input errors. If these do not exceed E in  magnitude, then this can be a t  worst 
(4 lhz )E;  thus the maximum roundoff error = (4Ih"E. 

13.18. Apply the formula of Problem 13.17 to the computation of Problem 13.4, page 99, and 
compare the actual error of our approximation to 2~(~)(1.10) with truncation and round- 
off estimates. 

As before h = .05 and E = .000005, making (4 /h2 )E  = .00800. 

The magnification factor (4/hz) has a powerful effect. Our actual results confirm t h a t  roundoff 
has been the principal error  source in our approximation of y(2)(1.10), and it has  contributed only 
about 90 of a potential 800 units. 

Actual error Est.  truncation error Max. R.O. error 

.00020 2.00800 
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13.19. Estimate roundoff error for the formula Y ' ~ ' ( x o )  a4y0lh4 obtained in Problem 1 3 . 3 .  

In terms of yk values this formula becomes ( Y - ~  - 4 y - l  + 6yo  - 4y l  + y2)lh4 and involves a n  
error due to data  inaccuracies of amount ( c - ~  - 4e - l  + 6e,  - 4el + e,)lh4. If the ek do not exceed 
E in magnitude, this cannot exceed (16/h4)E.  

We made no attempt to use this formula in Table 13.1 because fourth differences were only error  
effects. With h = .05 and E the usual .000005, roundoff error might have come to 12.8 anyway, 
completely obscuring any meaningful result. To approximate fourth derivatives excessive data  ac- 
curacy is required. 

13.20. Find a minimum value of y ( x )  given the data in Table 1 3 . 3 .  

Fi rs t  we compute the differences which a r e  also shown in Table 13.3. 

Table 13.3 

A polynomial of degree two seems to be indicated. Stirling's formula with k = 0 a t  xo = .70 
becomes 

p, = .6138 + k(.00075) + +k2(.0049) 

The derivative relative to k is Dpk = .00075 + k(.0049) and becomes zero a t  k = -.153. Inserted 
into the polynomial, the minimum value is found to be .6137. The corresponding argument is  
x = .70 - ( .153)(.05) = .692. These values y (x )  actually come from y ( x )  = ex - 2x which has a mini- 
mum of close to .6137 a t  x = log 2 = .693. 

13.21. By Problems 1 3 . 1 5  and 1 3 . 1 7  we find the combined truncation and roundoff errors 
of the approximation 

y ( 2 ) ( ~ o )  - ( l lh2)(y i  - 22j0 + Y - I )  

to have the form Ah2 + 4 E l h h h e r e  A = j ~ ( ~ ) ( [ ) / l 2 1 .  What choice of h will mini- 
mize this combination? 

The derivative relative to h is 2 A h  - 8Elh3. This is zero for  h4 = 4E/A,  or h = (4E/A)"4. 
For  the square root function and five place accuracy, this recommends h = .13 so tha t  a wider  
spacing than tha t  of Table 13.1, page 98, would be more suitable for  this formula. Of course, the 
combination we have minimized does not represent the exact error, only a n  approximation to it, but  
this theoretical result certainly comes a s  a surprise. Actual computations bring the following 
results. 

Table 13.4 

It is  a t  least clear t h a t  the accuracy does not improve indefinitely a s  h diminishes. A t  h = .08 
we find a perfect result, af ter  which roundoff errors  begin to obscure things. 



104 NUMERICAL DIFFERENTIATION [CHAP. 13 

13.22. In the right circumstances (accurate data and an interval h not too small) a more 
sophisticated formula for numerical differentiation may be justified. Apply Problems 
11.29 to 11.32, page 77, to approximate the first four derivatives of y(x) = sin x a t  ' 

x = 714 from the data of Table 13.5. 

x sin x S 82 S 3  S 4  S 5  S6 S7 S 8  

0 .ooooo 0000 0 
25882 -1764 120 

7~112 .25882 -1764 120 -7 
24118 -1644 113 

27/12 .50000 -3407 233 -18 
20711 -1411 9 5 - 3 

3 ~ 1 1 2  .70711 -4819 328 -21 -2 
15892 -1083 74 -5 

47/12 .86603 -5902 402 -26 
9990 -681 48 

5 ~ 1 1 2  .96593 -6583 450 -36 

3407 -231 12 
r I 2  1.00000 -6814 462 

Table 13.5 

Fi rs t  we use Problem 11.30, with k = 0 a t  x = 7~14. 

y1(7/4)  = ( l / h ) D y o  = (12/~)( .183020 + .002078 + .000028 - .000003) = .70711 

the .000003 actually being important! Next, by Problem 11.29, 

y ( 2 ' ( d 4 )  = (1/h2)D2yo = ( 1 2 / ~ ) ~ ( - . 0 4 8 1 9 0  - .000273 - .000002) = -.70719 

Then using Problem 11.31, 

~ ( ~ ) ( 7 ~ / 4 )  = (l /h3)D3yo = (12/7~)3(-.012470 - .000211- .000002) = -.70683 

Finally, by Problem 11.32, 

Since all results should be .70711 a p a r t  from sign, diminishing returns a r e  again apparent. 

Supplementary Problems 
13.23. Differentiate Newton's backward formula, obtaining p l (x ) ,  P ( ~ ) ( X )  and P ( ~ ) ( x )  through fourth 

differences. 

13.24. Apply the formulas of the previous problem to produce pf(1.30), p(z)(1.30) and p(3)(1.30) from the 
data of Table 13.1, page 98. 

13.25. Differentiate Bessel's formula, obtaining derivatives up  to p(5 ) (x )  in terms of differences through 
the fifth. 

13.26. Apply the results of the previous problem to produce p', p(2)  and p(3) a t  x = 1.125 from the data  
of Table 13.1, page 98. 

13.27. Find the truncation error of the formula fo r  p'(x) obtained in Problem 13.25, using k = +. Estimate 
i t  by using = 1. Compare with the actual error. 

13.28. Find the maximum possible roundoff error  of the formula of the previous problem. compare the 
actual error  with the truncation and roundoff error  estimates. 
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Show tha t  Stirling's formula of degree six produces 

P ' ( ~ o )  = ( l l h ) ( d ~ y o  - Q d 3 ~ y 0  + 
Show that  the truncation error  of this formula is -h6y(7)(c)/140. 

Convert the formula of the previous problem to the form 

p1(x,) = ( 1 / 6 0 h ) ( - ~ - ~  + 9 ~ - 2  - 4 5 ~ - I  + 4 5 ~ 1  - 9 ~ 2  4- Y ~ )  
and prove t h a t  the maximum roundoff error is 11E/6h.  

Find the argument corresponding to y' = 0 in Table 13.6 by inverse cubic interpolation, using 
either the Lagrange or Everett formula. (See again Problem 12.14 and 12.15.) Then find the cor- 
responding y value by direct interpolation. 

Table 13.6 

Ignoring the top and bottom lines of Table 13.6, apply Hermite's formula to find a cubic polynomial 
fitting the remaining data. Where does the derivative of this cubic equal zero? Compare with the 
previous problem. (Here the data correspond to y ( x )  = sin x and so the correct argument is ~ 1 2 . )  

The normal distribution function y ( x )  = ( l /&)e-z2/2  has  a n  inflection point exactly a t  x = 1. 
How closely could this be determined from each of the following four  place data  tables independently? 

From Problems 13.6 and 13.11 we find the combined truncation and roundoff errors of the approxi- 
mation y'(xo) - (1 /2h)(Yl  - Y - 1 )  

to be of the form Ah2 + E / h  w!ere A = l y (3 ) (~ ) /61 .  Find the interval h for  which this is a mini- 
mum. Show that  f o r  the square root function and five place accuracy this interval is smaller than 
that  of Table 13.1, page 98. Using a table of square roots to five decimal places, verify these com- 
puted results fo r  y'(1). The exact derivative is .5. 

h .10 .05 .O1 I 

From Problems 13.9 and 13.13 we find the combined truncation and roundoff errors  of the approxi- 

to have the form Ah4 + 3E/2h  where A = ( y ( 5 ) ( ~ ) / 3 0 ( .  For what  interval h will this be a minimum? 
Compute your result for  the square root function and five place accuracy. 

Apply the formula of Problem 13.35 to compute approximations to y f ( l ) ,  using five place values of 
the square root function and various intervals h. Compare with the theoretical prediction of tha t  
problem. 

Use a five place table of sines (radian measure) to determine the best interval h fo r  approximating 
the second derivative of y ( x )  = sin x a t  x = 1.00 by the formula of Problem 13.21. The correct 
derivative is, of course, y(2)(1)  = - sin 1 = -34147. What interval h does the the result of Prob- 
lem 13.21 recommend? 
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13.38. Show that  the truncation error of the formula yc4)(xo) = 84yOIh4 is h2y(e)([)/6.  

13.39. Show tha t  the maximum roundoff error  of the formula in Problem 13.38 is 16Elh4. 

13.40. Show by using Taylor series that  the truncation error of the formula 

is y t ( xo )  - F ( h )  = A h 2  + O(h4) 

where A = -y(3)(x0) /6  and the last  term represents the remainder series, which include no lower 
degree terms than h4. Then replace h by h /2  

y t ( x0 )  - F ( h / 2 )  = Ah214 + O(h4) 

and eliminate the A term to obtain 

yt(x0) = 4 F ( h / 2 )  - F ( h )  + O(h4) 
3 

Notice tha t  in this way a n  approximate differentiation formula of fourth order accuracy is  ob- 
tained by combining two results from a formula of second order accuracy. 

13.41. Apply the same type of argument used in Problem 13.40 to show t h a t  the truncation error of the 
formula 

F l ( h / 2 )  = 
4 F ( h / 2 )  - F ( h )  

3 

and tha t  elimination of B leads to  
16F1 (h /2 )  - F ,  ( h )  

yt(x0) = 15 
- + O(h6) 

The formula 
16F1 (h12) - F 1  ( h )  

F 2  (h /2 )  = 
15 

thus has sixth order accuracy. The argument may again be reapplied to  obtain formulas of suc- 
cessively greater accuracy. The overall process is known a s  extrapolation to  the  l imit  and will be 
presented in fur ther  detail fo r  the integration problem studied in the next chapter. 

13.42. The various approximations computed during a n  extrapolation to the limit algorithm a r e  usually 
displayed a s  follows 

I 

h /4  F(h14) F l ( h / 4 )  F 2 ( h / 4 )  

h /8  F (h I8 )  F 1  ( h / 8 )  F 2  (h18) F 3  (h /8 )  

more entries being added a s  needed. The general formula is 

22k F,-, ( h /2k )  - Fm-I (hl2k-1) 
Fm(h /2k )  = 

22k - 1 

Develop this table through the h / 4  entries fo r  the following data. 

What is your best estimate of yt(l.O)? 

s i n x  

4 F ( h )  - F ( 2 h )  - -Yz + 8 ~ 1  - 8 ~ - 1  + y-z 
Show tha t  F l ( h )  = - 

3 12h 

.564642 .717356 .783327 A41471 391207 .932039 .985450 1 

F(qh)  - q2 F(h) + O(h4). 13.44. Show tha t  fo r  any  constant q, yt(xo) = - q2 



Chapter 14 

Numerical Integration 

The importance of numerical integration may be appreciated by noting how frequently 
the formulation of problems in applied analysis involves derivatives. It is then natural 
to anticipate that the solutions of such problems will involve integrals. For most integrals 
no representation in terms of elementary functions is possible, and approximation becomes 
necessary. 

POLYNOMIAL APPROXIMATION 

Polynomial approximation serves as the basis for a broad variety of integration for- 
mulas, the main idea being that if p(x) is an approximation to y(x), then 

and on the whole this approach is very successful. In numerical analysis integration is 
the "easy" operation and differentiation the "hard" one, while the reverse is more or less 
true in elementary analysis. The best-known examples are the following. 

1. Integrating Newton's forward formula of degree n between xo and x, (the full range of 
collocation) leads to several useful formulas, including 

for n = 1,2 and 3. The truncation error of any such formula is 

and may be estimated in various ways. A Taylor series argument, for example, shows 
this error to be approximately - h3y(2)([)/12 when n = 1, and approximately - h5y(4)([)/90 
when n = 2. 

2. Composite formulas are obtained by applying the simple formulas just exhibited re- 
peatedly to cover longer intervals. This amounts to using several connected line seg- 
ments or parabolic segments, etc., and has advantages in simplicity over the use of a 
single high degree polynomial. 

3. The trapezoidal rule, 

lr Y(X) dx - Jh[yo + 2y1 + . . . + 2 7 ~ n - I  + yn] 
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is an elementary, but typical, composite formula. It, of course, uses connected 
line segments as the approximation to y(x) .  Its truncation error is approxYmately 
-(xn - ~ o ) h ~ y ( ~ ) ( [ ) / 1 2 .  

Simpson's rule, 

is also a composite formula, and comes from using connected parabolic segments as the 
approximation to y(x) .  It is one of the most heavily used formulas for approximate inte- 
gration. The truncation error is about - ( x ,  - x0 )h~y (~ ' ( t ) / 180 .  

Romberg's method is based upon the fact that the truncation error of the trapezoidal 
rule is nearly proportional to h2. Halving h and reapplying the rule thus reduces the 
error by a factor of 1/4. Comparing the two results leads to an estimate of the error 
remaining. This estimate may then be used as a correction. Romberg's mdthod is a 
systematic refinement of this simple idea. 

More complex formulas may be obtained by integrating collocation polynomials over 
less than the full range of collocation. For example, Simpson's r u l e  with co r rec t i on  
t e r m s  may be derived by integrating Stirling's formula of degree six, which provides 
collocation a t  x -3,  . . . , x3, over just the center two intervals x-1 to XI, arid then using 
the result to develop a composite formula. The result is 

1:' y (x )  d x  (h /3)[y0  + 491 + 2y2 + . . . + yn] 

- (h/90)[a4yl + S4y3 + . + S4yn-I] 

+ (h/756)[S6yl + S6y3 + . . . + S6yn-I] 
the first part of which is Simpson's rule. 

The trapezoidal rule with correction terms is obtainable in similar fashion by inte- 
grating Bessel's formula of degree five over just the center interval and then developing 
a composite formula from the result. It reads 

of which the first part is the trapezoidal rule. 

Gregory's formula also takes the form of the trapezoidal rule with correction terms. 
It may be derived from the Euler-Maclaurin formula by expressing all derivatives as 
suitable combinations of differences to obtain 

and again the first part is the trapezoidal rule. The Euler-Maclaurin formula itself 
may be used as an approximate integration formula. 

Taylor's theorem may be applied to deveIop the integrand as a power series, after 
which term by term integration sometimes leads to a feasible computation of the 
integral. More sophisticated ways of using this theorem have also been developed. 
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10. The method of undetermined coefficients may be used to generate integration for- 
mulas of a wide variety of types for special circumstances. Filon's formula for inte- 
grals involving periodic functions may be produced in this way, rapidly oscillating 
integrands being one example of special circumstances requiring separate treatment. 

ERROR SOURCES 

The usual error sources are present. However, input errors in the data values yo, . . . , yn 
are not magnified by most integration formulas, so this source of error is not nearly so 
troublesome as i t  is in numerical differentiation. The truncation error, which is 

for our simplest formulas, and a composite of similar pieces for most of the others, is now 
the major contributor. A wide variety of efforts to estimate this error has been made, 
but room for improvement remains. A related question is that of conveqgence. This asks 
whether, as continually higher degree polynomials are used, or as  continually smaller inter- 
vals h, between data points are used with lim h, = 0, a sequence of approximations is 
produced for which the limit of truncation error is zero. In many cases, the trapezoidal 
and Simpson rules being excellent examples, convergence can be proved. Roundoff errors 
also have a strong effect. A small interval h means substantial computation and much 
rounding off. 

These algorithm errors ultimately obscure the convergence which should theoretically 
occur, and i t  is found in practice that  decreasing h below a certain level leads to larger 
errors rather than smaller. As truncation error becomes negligible, roundoff errors ac- 
cumulate, limiting the accuracy obtainable by a given method. 

Solved Problems 

14.1. Integrate Newton's formula for a collocation polynomial of degree n. Use the limits 
xo and x, which are the outside limits of collocation. Assume equally spaced arguments. 

This involves integrating a linear function from xo to x,, or a quadratic from xo to x,, and so on. 
See Fig. 14-1. 

Fig. 14-1 

The linear function certainly leads to +h(yo + y l ) .  For the quadratic 

pk = yo + kAyo + +k(k - l)A2yo 

and easy computation produces, since x = xo + kh, 



110 NUMERICAL INTEGRATION [CHAP. 14 

For the cubic polynomial a similar calculation produces 

= h(3yo + $Aye + $h2y0 + #A3yo) = (W~)(YO + 3 ~ 1  f 3762 ~ 3 )  

Results for higher degree polynomials can also be obtained in the same form 

S" p(x) dx  = Ch(c,y,  + . . . + cnyn) 
xo 

and values of C and ci for the first few values of n are given in Table 14.1. Such formulas are called 
the Cotes formulas. 

7 32 12 32 7 

41 216 27 272 27 216 41 

Table 14.1 

Higher degree formulas are seldom used, partly because simpler and equally accurate formulas are 
available, and partly because of the somewhat surprising fact that  higher degree polynomials do 
not always mean improved accuracy. 

14.2. Estimate the truncation error of the n = 1 formula. 

For this simple case we can integrate the formula 

directly and apply a mean value theorem as follows, obtaining the exact error. 

where h = xl  - xo. The application of the mean value theorem is possible because ( x  - x0)(x - x l )  
does not change sign in (x,, x,) .  The continuity of y(2)(5) is also involved. For n > 1 a sign change 
prevents a similar application of the mean value theorem and many methods have been devised to 
estimate truncation error, most having some disadvantages. We now illustrate one of the oldest 
methods, using the Taylor series, for the present simple case n = 1. First  we have 

Using an indefinite integral F ( x ) ,  where F 1 ( x )  = y(x) ,  we can also find 

presenting the truncation error in series form. The first term may be used as  an error estimate. 
I t  should be compared with the actual error as  given by -(h3/12)y(2)(6) where xo < 5 < X I .  
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Estimate the truncation error of the n = 2 formula. 

Proceeding as  in the previous problem, we find first 

+k[yo + 4y1 + y,] = &h[yo + 4(y0 + hyl, + ;t-h2yi2) + Qh3yh3) + &h4y?) + - a )  

+ (yo  + 2hyh + 2hzyc)  + $h3yi3) + gh4yi4) + . . a ) ]  

= Qh[6yo + 6hyh + 4h2yc)  + 2h3 ( 3 )  + 5h4 ( 4 )  + Y o  G Y o  . . . I  
The integral itself is 

= 2hy0 + 2hzyI, + $ h 3 y r )  + 2h4 ( 3 )  + Lh5y(4) + . . . 
3 Yo 15 0 

and subtracting, 

y(x)  dx - +h[yo + 4yl + y$ = - &h5yi4) + 
we again have the truncation error in series form. The first term will be used as  an approximation. 
I t  can also be shown that the error is given by -(h5/9O)y(4)(5) where xo < < x2. (See Problem 
14.71.) 

A similar procedure applies to the other formulas. Results are presented in Table 14.2, the first 
term only being shown. 

truncation error 

-(h3/12) y(2) 

-(h5/90) y(4) -(9h9/1400) y(8) 

3 -(3h5/80) y(4) 8 -(2368h11/467,775)y(10) 

Table 14.2 

Notice that formulas for odd n are comparable with those for the next smaller integer. (Of 
course, such formulas do cover one more interval of length h,  but this does not prove to be signifi- 
cant. The even formulas are superior.) 

Derive the t rapezoidal  ru le .  
This ancient formula still finds application, and illustrates very simply how the formulas of 

Problem 14.1 may be stretched to cover many intervals. The trapezoidal rule applies our n = 1 
formula to successive intervals up to x,. 

This leads to the formula 

which is the trapezoidal rule. 

Apply the trapezoidal rule to the integration of fi between the arguments 1.00 and 
1.30. Use the data of Table 13.1, page 98. Compare with the correct value of the 
integral. 

We easily find 

The correct value is $[(1.3)3/2 - 11 = .32149 to five places, making the actual error .00002. 
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Derive an  estimate of the truncation error of the trapezoidal rule. 

The result of Problem 14.2 may be applied to  each interval, producing a total truncation error  
of about 

Assuming the second derivative bounded, m < y(2) < M ,  the sum in brackets will be between nm 
and n M .  Also assuming this derivative continuous allows the sum to be written a s  n y ( 2 ) ( [ )  where 
xo < [ < x,. This is because y (2 ) ( [ )  then assumes all values intermediate to  m and M. It is also 
convenient to call the ends of the interval of integration xo = a and x ,  = b, making b - a = nh. 
Putting all this together, we have 

truncation error - - 

Apply the estimate of Problem 14.6 to our square root integral. 

With h = .05, b - a = .30, and y (2 ) (x )  = -2-31214, truncation error  - .000016 which is 
slightly less than the actual error of .00002. However, rounding to five places and adding this 
error estimate to our computed result does produce .32149, the correct result. 

Estimate the effect of inaccuracies in the yk values on results obtained by the trape- 
zoidal rule. 

With Y ,  denoting the t rue values, a s  before, we find &h[eo + 2el + .. . + 2enPl + en] a s  the 
error due to inaccuracies ek = Y k  - yk.  If the ek do not exceed E in magnitude, this output error  is  
bounded by + h [ E  + 2 ( n  - l ) E  + El = ( b  - a ) E .  

Apply the above to the square root integral of Problem 14.5. 

We have ( b  - a ) E  = (.30)(.000005) = .0000015, so t h a t  this source of error is negligible. 

Derive Simpson's rule. 

This may be the most popular of all integration formulas. It involves applying our n = 2 
formula to successive pairs of intervals up to x,, obtaining the sum 

( h / 3 ) ( ~ 0  + 4 ~ 1  + Y ~ )  + ( h / 3 ) ( ~ 2  + 4 ~ 3  + ~ 4 )  + . . . + ( h / 3 ) ( ~ n - z  + 4 ~ , - 1  + Y,) 

which simplifies to  
(h /3 ) [y0  + 4 ~ 1  + 2 ~ 2  + 4 ~ 3  + + 2 ~ , - 2  + 4 ~ , - 1  + Y,] 

This is Simpson's rule. It requires n to be a n  even integer. 

14.11. Apply Simpson's rule to the integral of Problem 14.5. 

which is correct to five places. 

14.12. Estimate the truncation error of Simpson's rule. 
The result of Problem 14.3 may be applied to each pair of intervals, producing a total trunca- 

tion error of about 
-(h5/90)[yF1 + y (4 )  2 + . . . + 

Assuming the fourth derivative continuous allows the sum in brackets to  be written a s  ( n / 2 ) y ( 4 ) ( ~ )  
where xo < 5 < x,. (The details a re  almost the same a s  in Problem 14.6.) Since b - a = n h ,  

( b  - a)h4 
truncation error - - - 180 ~ ' ~ ' ( 5 )  
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14.13. Apply the estimate of Problem 14.12 to our square root integral. 

Since y'4)(x) = -(15/16)x-'7/2, truncation error - .00000001 which is minute. 

14.14. Estimate the effect of data inaccuracies on results computed by Simpson's rule. 
As in Problem 14.8, this error is found to be 

and if the data inaccuracies ek do not exceed E in magnitude, this output error is bounded by 

&hE[1 + 4(4n)  + 2 ( & - 1 )  + 11 = ( b - a ) E  

exactly as for the trapezoidal rule. Applying this to the square root integral of Problem 14.11 we 
obtain the same .0000015 as in Problem 14.9, so that once again this source of error is  negligible. 

14.15. Compare the results of applying Simpson's rule with intervals 2h and h and obtain 
a new estimate of truncation error. 

Assuming data errors negligible, we compare the two truncation errors. Let E l  and E2 denote 
these errors for the intervals 2h and h, respectively. Then 

El = - ( b  - a)(2h)4 ( b  - a)  ha 
180 ~ ( ~ ' ( h ) ,  E~ = - 180 ~ ( ~ ' ( 5 2 )  

so that  E 2  - E1/16 .  The error is reduced by a factor of 16 by halving the interval h. This may 
now be used to get another estimate of the truncation error of Simpson's rule. Call the correct 
value of the integral I ,  and the two Simpson approximations A l  and A,. Then 

I = A ,  + E l  = A ,  + E ,  - A ,  + 16E2 

Solving for E z ,  the truncation error associated with interval h is E ,  - ( A ,  - A1) /15 .  

14.16. Use the estimate of Problem 4.15 to correct the Simpson's rule approximation. 
This is an elementary but very useful idea. We find 

I = A ,  + E ,  - A ,  + (A ,  - ~ , ) / 1 5  = (16A2 - A l ) / 1 5  

14.17. Apply the trapezoidal, Simpson, and n = 6 formulas to compute the integral of 
sin x between 0 and d 2  from the seven values provided in Table 14.3. Compare with 
the correct value of 1. 

Table 14.3 

x 

sin x 

The trapezoidal rule produces .99429. Simpson manages 1.00003. The n = 6 formula leads to 

$[41(0)  + 216(.25882) + 27(.5) + 272(.70711) + 27(.86603) + 216(.96593) + 41(1)] = 1.000003 

Clearly the n = 6 rule performs best for this fixed data supply. 

- 

0 7 / 1 2  27/12 37/12 4 ~ 1 1 2  57/12 r/2 

.OOOOO .25882 .50000 .70711 .86603 .96593 1.00000 

14.18. Show that to obtain the integral of the previous problem correct to five places by 
using the trapezoidal rule would require an interval h of approximately ,006 radians. 
By contrast, Table 14.3 has h = 4 2  - .26. 

The truncation error of Problem 14.6 suggests that  we want 

( b  - a)hz  y ( 2 ) ( 5 )  f --- 
12 

("/2)h2 < .000005 12 

which will occur provided h < .006. 
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14.19. What interval h would be required to obtain the integral of Problem 4.17 correct to 
five places using Simpson's rule? 

The truncation error of Problem 14.12 suggests 

( b  - a)h4 (~/2)h4 v'"((5 G <' 

180 180 -. .000005 

or h < J.5 approximately. 

14.20. Prove that the trapezoidal and Simpson's rules are conve~gent.  

If we assume truncation to be the only source of error, then in the case of the trapezoidal rule 

where I is the exact integral and A the approximation. (Here we depend upon the exact representa- 
tion of truncation error  mentioned a t  the end of Problem 14.2.) If lim h = 0 then assuming ~ ( 2 )  
bounded, lim ( I  - A) = 0. (This is the definition of convergence.) 

For  Simpson's rule we have the similar result 

If lim k = 0 then assuming y(4) bounded, lim ( I  . -A)  = 0. Multiple use of higher degree formulas 
also leads to convergence. 

71/2 

14.21. Apply Simpson's rule to the integral sin r dx, continually halving the interval 
h in the search for greater accuracy. 

Machine computations, carrying seven decimal places, produce the results in  Table 14.4. 

approx. integral 

.99999970 

r r J l28  .99999983 (best) 1 nJ2048 .99999870 1 
Table 14.4 

14.22. The computations of Problem 14.21 indicate a durable error source which does not 
disappear as h diminishes, actually increases as work continues. What is this error 
source ? 

For  very small intervals h the truncation error  is  small and, a s  seen earlier, data inaccuracies 
have little impact on Simpson's rule for  any interval h. But small h means much computing, with 
the prospect of numerous computational roundoffs, This error source has not been a major factor 
in the much briefer algorithms encountered in interpolation and approximate differentiation. Here 
i t  has become dominant and limits the accuracy obtainable, even though our algorithm is convergent 
(Problem 14.20) and the effect of data  inaccuracies small (we a r e  saving eight decimal places). This 
problenz emphasizes the importance of continuing. search for  briefer algorithms. 

14.23. Develop the idea of Problem 14.15 and 14.16 into Romberg's method of approximate 
integration. 

Suppose that  the error  of a n  approximate integration formula is proportional to hn. Then two 
applications of the formula, with intervals IL and 2h,  involve errors 

making E2 - El/%. With I = A 1  + E l  - A z t -  E2 a s  before, we soon find the new approximation 
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For n = 4 this duplicates Problem 14.16. For n = 2 i t  applies to the trapezoidal rule in which 
the truncation error is proportional to hz. I t  is not hard to verify that  for n = 2 our last formula 
duplicates .Simpson's rule, and that  for n = 4 i t  duplicates the Cotes n = 4 formula. I t  can be 
shown that  the error in this formula is  proportional to hn+z and this suggests a recursive colnputa- 
tion. Apply the trapezoidal rule several times, continually halving h. call  the results Al,  A2, A3, . . . . 
Apply our formula above with n = 2 to each pair of consecutive A,. Call the results B1,  B,, B3, . . . . 
Since the error is now proportional to h4 we may reapply the formula, with n = 4, to the BI. The 
results may be called C1,  C2, C3, . . . . Continuing in this fashion an array of results is obtained. 

The computation is continued until entries a t  the lower right of the array agree within the re- 
quired tolerance. 

14.24. Apply Romberg9s method to the integral of Problem 14.21. 
The various results are as follows. 

Convergence to the correct vaIue of 1 is apparent. 

14.25. More accurate integration formulas may be obtained by integrating a polynomial 
over less than the full range of collocation. Integrate Stirling's formula over the 
two center intervals. 

Up through sixth differences Stirling's formula is 

Integration brings, since x - xo = kh and dx =J h dk, 

More terms are clearly avail- 
able by increasing the degree of 
the polynomial. Stopping with the PbJ/ 

second difference term leaves us 
once again with the starting com- 
bination of Simpson's rule, in the 
form ( h / 3 ) ( ~ - ~  + 4yo + y l ) .  In 
this case the integration has ex- 
tended over the full range of col- 
location, as in Problem 14.1. With 
the fourth difference term we inte- 
grate over only half the range of 
collocation (Fig. 14-2). Fig. 14-2 
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As more differences a re  used y ( x )  and p(x) collocate a t  additional arguments, but the integra- 
tion is  extended over the center two intervals only. Since these a re  the intervals where Stirling's 
formula has the smallest truncation error  (Problem 12.64, page 95) ,  i t  can be anticipated t h a t  a n  
integration formula obtained in this way will be more accurate. This extra accuracy is, however, 
purchased a t  a price; in application such formulas require yk values outside the interval of 
integration. 

The truncation error of this formula may be estimated by the Taylor series method used in 

23h9 y c S ,  + . . . . Problem 14.6, and proves to be approximately - - 
113,400 0 

14.26. Use the result of Problem 14.25 to develop the Simpson rule with correction terms. 

We make n / 2  applications centered a t  x l ,  x3,  . . where n is even. The result is 

This can be extended to higher differences if desired. 

The truncation error  of the result will be approximately n / 2  times tha t  of the previous problem 
23(xn - xo)h8 

and can be written as  - 
226.800 Y : ~ '  + . . . 

14.27. Apply Problem 14.26 to the data of Table 13.5, page 104. 
Since Simpson's rule was  applied to this data  in  Problem 14.17 and gave 1.00003, we need only 

ii -1 
the correction terms. The fourth differences yield -.- 

32 90 
(.00120 i- .00328 + .00450) which come to 

-.000026, and sixth differences prove to be negligible. Applying this correction makes 

s i n x  dx = 1.00000 

which is correct. Notice that  a number of values of sin x outside the interval of integration con- 
tribute to this result. 

14.28. Integrate Bessel's formula over the center interval. 
Writ ing Bessel's formula a s  

pk = r u l / z  + ( k  - + ) S Y ~ , ~  + ( i )  P S ~ Y ~ I I  + ( i )  ( 1 ~  - & ) & s 3 ~ ~ / 2  + ( k  1') r s 4 y ~ / 2  + . . 
integration leads to 

Again more terms a re  available if 
wanted. Stopping before the sec- 
ond difference term leaves us  once P 

again with the s tar t ing com- 
bination of the trapezoidal rule, 
(yo f yl)/2h. In  this case integra- 
tion extends over the full range of 
collocation, from xo to x,. With 
the second and fourth difference 
terms included, we integrate over x P 2  % - I  xo  2 1  X2 

only one fifth the range of colloca- 
tion (Fig. 14-3). Fig. 14-3 
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If more differences a re  used y ( x )  and p(x) would collocate a t  additional arguments, but  the inte- 
gration would extend over the center interval only. Since this is where Bessel's formula has the 
smallest truncation error (Problem 12.65, page 95) ,  we may expect a n  accurate result. Again, how- 
ever, values of y, outside the interval of integration a r e  the price we pay. 

The truncation error  can be found to be approximately .0007h9y:x) + . . . . 

14.29. Develop the trapezoidal rule with correction terms. 
There a re  several formulas meeting this description. To obtain one of them we apply the pre- 

vious problem n times from x, to x,. 

l l h  + ----[S4y0 + 2S4y1 + 2S4y2 + . . . + 2 S 4 ~ n - 1  -i- S4yn] 
1440 

and higher difference terms are  available if desired. The last  result may be simplified by summing 
the differences. One easily finds t h a t  

S2yo + 2S2y1 + . . . + 2S2yn-l + S'Y, = ~ P S Y ,  - ~ F S Y O  

with similar expressions for  the other differences. As a result, 

s h 
p(x) dx = Z [ ~ o  + 2y1 + 2y2 + . . . + 2y,-1 + Y,] 

.To 
h l l h  191h 

- - i P S y ,  - p S y o l  + - [ P S ~ Y ,  - P S ~ Y O I  - 60,480 w 5 y n  - 1 8 ~ ~ ~ 1  
12 720 

The truncation error if fifth difference terms a re  used is approximately .0007(x,, - xo)hxyAx). 

14.30. Apply the previous problem to the data of Table 13.5, page 104. 
The trapezoidal rule was used in Problem 14.17 and managed .99429, so we need only the cor- 

rection terms. They a re  

which simplify to .005647 and .000070 respectively. Apply these corrections to get  

sin x d x  = 1.00001 

14.31. Derive Gregory's formula. 
This is another form of the trapezoidal rule with correction terms and can be derived in many 

ways. One way begins with the Euler-Maclaurin formula (Problem 11.19, page 7 6 )  in the form 

more terms being available if needed. Now express the derivatives a t  x, in terms of backward dif- 
ferences and the derivatives a t  xo in terms of forward differences (Problems 13.1 and 13.23). 
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The result of substituting these expressions is 

and again more terms can be computed if needed. This is Gregory's formula. I t  does not require 
glC values outside the interval of integration. 

14.32. Apply Gregory's formula to the data of Table 13.5, page 104. 
The trapezoidal rule produced .99429. The correction terms generate 

h h 19h 3h - - (-.22475) - -(-.08347) - --(.00963) - -(.00635) 
12 24 720 160 

fifth difference terms being negligible. The total correction is .00572 and added to .99429 again 

gives us ri2 sin x d x  = 1.00001. 

64.33. Apply the Euler-Maclaurin formula itself to the same integral. 
As given a t  the start  of Problem 14.31, this formula adds to the trapezoidal rule various end 

corrections in the form of derivatives. These correction terms are, in the present example, 

and bring the same .00572 total as in Problem 14.32. 

14.31. Apply Taylor's theorem to evaluate the error function integral 

for x = ,5 and x = 1, correct to four decimal places. 

For x = .5 this produces .5205, and for x = 1 we find .8427. The character of this series assures 
that the error made in truncating i t  does not exceed the last term used, so we can be confident in 
our results. The series method has performed very well here, but i t  becomes clear that  if more 
decimal places are wanted or if larger upper limits x are to be used, then many more terms of this 
series will become involved. In such cases i t  is usually more convenient to proceed as in the next 
problem. 

14.35. Tabulate the error function integral for x = 0(.1)4 to six decimal places. 

We adopt the method which was used to prepare the fifteen place table of this function, 
NBS-AMS 41. The derivatives needed are 

H1(x)  = ( 2 / f i ) e - z Z ,  H ( ~ ) ( x )  = -2xH1(x) ,  H ( ~ ) ( x )  = - 2 x H ( 2 ) ( ~ )  - 2H1(x)  
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The Taylor series may be written a s  

H ( x  + h )  = H ( x )  + hH1(x )  + . . + $ ~ ( n ) ( ~ )  + R 

where the remainder is  the usual R = h n + l H ( n + l ) ( [ ) l ( n  + I ) !  . Notice t h a t  if M denotes the sum of 
even power terms, and N the sum of odd power terms, then 

H ( x + h )  = M + N ,  H ( x - h )  = M - N  

For  six place accuracy we use terms of the Taylor series which affect the eighth place, because the 
length of the task ahead makes substantial roundoff error growth a possibility. With H ( 0 )  = 0 ,  
the computation begins with 

only the odd powers contributing. Next we put  x = .I and find 

H(6) ( .1 )  = -.HH(5)(.l) - 8H(4)(.1) = -13.227432 

leading to 
M = .I1246291 - .00111715 + .00000555 - .00000002 = .11135129 

Since H ( x  - h )  = M - N ,  we rediscover H ( 0 )  = 0 which serves a s  a check on the correctness of 
the computation. We also obtain 

Table 14.5 

The process is now repeated to obtain a check on H( . l )  and a prediction of H(.3). Continuing in 
this way one eventually reaches H(4) .  The last  two decimal places can then be rounded off. Correct 
values to six places a re  given in Table 14.5 fo r  x = 0(.5)4. In  NBS-AMS 41 computations were 
carried to 25 places, then rounded to 15. Extensive subtabulations were then made for  small x 
arguments. 

I l l u s t r a t e  the method  of unde termined  coef ic ients  for deriving approximate inte- 
gration formulas, by a p p l y i n g  it t o  the derivation of Simpson's rule. 

In  this method we aim directly fo r  a formula of a pre-selected type. F o r  Simpson's rule the 
choice 

s-hh 
Y ( X )  d x  = h ( c - I Y  -1  + GOYO + ~ 1 ~ 1 )  

is convenient. The selection of the coefficients c, can proceed in many ways, bu t  fo r  Simpson's rule 
the choice is made on the basis t h a t  the resulting formula be exact when y ( x )  is any of the first 
three powers of x. Taking y ( x )  = 1 ,  x and x2 in turn, we a re  led to the conditions 

x 

H l z )  

4 which yield eel = cl = 9, co = making 

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

.520500 I342701 .966105 .995322 .999593 .999978 .999999 1.000000 
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Applying this result to successive pairs of intervals between xo and x, again generates Simpson's 
rule. 

As a bonus, this result also proves to be exact for y(x)  = 23,  as  is easily seen from the sym- 
metries. This means by addition that  i t  is also exact for any polynomial of degree three or less. 
For higher degree polynomials there is an error term. 

14.37. Apply the method of undetermined coefficients to derive a formula of the type 

1' Y ( ~ )  d x  = h(aoyo + aly l )  + h2(b0y; + bly:) 

With four coefficients available, we t ry  to make the formula exact when y(x )  = 1,x,x2,  and x3. 
This leads to the four conditions 

1 = a, + a ,  

which yield a, = a ,  = 4, b, = -bl = A. The resulting formula is 

which reproduces the first terms of the Euler-Maclaurin formula. A great variety of formulas may 
be generated by this method of undetermined coefficients. As in the examples just offered, a little 
preliminary planning and use of symmetry can often simplify the system of equations which 
ultimately determines the coefficients. 

14.38. Integrals involving oscillatory functions often require special treatment. Develop 

the Filon formula for 

The method of undetermined coefficients may be applied. As a simple example, just to illustrate 
the method, we choose i2v y(2) s i n s  dx - Aly(0)  + A d , )  + A3y(2n) 

Requiring that  this be exact for y ( x )  = 1, x ,  and x2, we obtain 

0 = A l  + A 2 + A 3 ,  -27 = a A z +  2nA3, - 4 2  = i?A2+ 4$A3 

Solving for the coefficients, A ,  = 1, A ,  = 0, A 3  = -1; then 

Filon has developed the more general result 

ib y(x )  sin k x  dx - h [ A  y(a) cos ka - A y(b) cos kb + BS + CT]  

where 2nh = b - a and 

1 sin 2kh 2 sin2 k h  = A = 1 + cos2 k h  sin 2kh -- 4 sin k h  4 cos k h  c = - - --- 
k h  2k2h2 k3h3 ' k2h2 k3h3 ' k3h3 k2h2 

n 

S = - y(a.) sin ka - y(b) sin kb + 2 2 y(a + 2ih) sin (ka  + 2ikh) 
i= 0 

n 

T = 2 y[a + (2i - l ) h ]  sin [ka + (2i - l ) k h ]  
i=l 

The truncation error proves to be 
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2 i i  

14.39. Apply Filon's formula to 1 log (1 + 2) sin 10% ds.  

Results using from 4 to 256 points a r e  listed in Table 14.6. Corresponding results for  Simpson's 
rule a re  included for  comparison. Note tha t  the Filon formula with four points excels the Simpson 
formula with 128, and tha t  Filon with 16 points wins out over Siinpson with 256 points. Clearly 
there is something to be said fo r  giving oscillatory integrals special attention. Note also the 
fluctuation in sign of the early Simpson approximations. This is due to the fact  tha t  so few points 
are  within each period of sin 10% tha t  their location has a major effect on the result. The correct 
result to eight places is -.19762761. 

points 

64 

128 

256 

4096 

Filon Simpson 

Table 14.6 

Supplementary Problems 

14.40. Integrate Newton's formula for  a collocation polynomial of degree four and so verify the n = 4 
row of Table 14.1, page 110. 

14.41. Verify the n = 6 row of Table 14.1. 

14.42. Use the Taylor series method to obtain the truncation error estimate fo r  the n = 3 formula a s  
listed in Table 14.2, page 111. 

14.43. Use the Taylor series method to verify the truncation error  estimate f o r  the n = 4 formula. 

14.44. Apply various formulas to the following limited data  supply to approximate the integral of y(x). 

Use the trapezoidal rule, applying correction terms. Also use the n = 6 formula of Table 14.1. How 
much confidence do you place in your result? Does i t  appear correct to  four  places? (See the next 
problem.) 

14.45. The data  of Problem 14.44 actually belong to the function y(x) = 11%. The correct integral is, 
therefore, to  four  places, In 2 = .6931. Has any  approximate method produced this?  

14.46. Use the truncation error estimate fo r  the trapezoidal rule to predict how tightly values of y(x) 
must be packed (what interval h) fo r  the trapezoidal rule itself to  achieve a correct result to four  
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14.47. Suppose the data  of Problem 14.44 augmented by the inclusion of these new number pairs: 

Reapply the trapezoidal rule to the full data  supply. Use this result a s  A,, the corresponding result 
in Problem 14.44 a s  dl, and the formula of Problem 14.23 to obtain still another approximation 
to I .  I s  i t  correct to  four  places? 

14.48. Apply the trapezoidal rule with correction terms (see Problems 14.29, 14.31, 14.33) to the full  data  
supply now available for  y(x) = l lx .  

14.49. Apply Simpson's rule to the data  of Problem 14.44. Will correction terms a s  in Problem 14.26 be 
needed? If so, apply them. 

14.50. Use the truncation error  estimate for  Simpson's rule to predict how many values of y(x), or how 
small a n  interval h, will be needed for  this rule to  produce In 2 correct to  four  places. 

14.51. How small a n  interval h would be required to obtain In 2 correct to  eight places using the trape- 
zoidal rule? Using Simpson's rule? 

14.52. Apply the Euler-Maclaurin formula (Problem 14.31) up  through fifth derivative terms to evaluate 
In 2 to  eight decimal places. The correct value is  .69314718. (Try h = .l.) 

14.53. From the following data  estimate y(x) dx a s  best a s  you can. I' 

How much confidence do you place in your results? Do you believe them correct to three places? 

14.54. The data  of Problem 14.53 were taken from the exponential function y(x) = ex. The correct integral 

is, therefore, to three places, exdx = e2 - 1 = 6.389. Were any of our formulas able to produce 
this result? 

14.55. From the following data, estimate y(x) dx a s  best as  you can. J5 

14.56. The data  of Problem 14.55 correspond to y(x) = logx. The correct integral is, therefore, to  two 

places, i5 log x dx = 5 log 5 - 4 = 4.05. Were any of our formulas able to produce this result? 

x 

y(x) 
L 

14.57. Calculate So1 & correct to  seven places by any  of our approximate methods. The correct 

value is 714, or to seven places .7853982. 

1 1.5 2 2.5 3 3.5 4 4.5 5 

0 .41 .69 .92 1.10 1.25 1.39 1.50 1.61 

14.58. Calculate fI2 \/I - t sin2 t d t  to four  decimal places. This is called a n  elliptic integral. I ts  

correct value is 1.4675. Use any of our approximate integration formulas. 

How much confidence do you place in your results? 

14.59. Show t h a t  to  four  places [ I 2  4 1  - 4 sin2 t d t  = 1.3506. 
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Use one of our approximate integration formulas to verify 

dx f" sin2 x + t cosz x = 3.1415927 
the exact value being T. 

Apply the Taylor series method a s  in Problem 14.34, page 118, to compute the sine integral 

for  x = 0(.1)1, to five decimal places. The refined procedure used in Problem 14.35 is not neces- 
sary here. (The last result should be S i (1 )  = .94608.) 

Apply the Taylor series method a s  in Problem 14.35 to compute the sine integral fo r  x = 0(.5)15, 
to five decimal places. The final result should be Si(15)  = 1.61819. 

Apply the Taylor series method to compute G s i n  x dx to eight decimal places. t1 
Apply the Taylor series method to compute ( 1  x to four  decimal places. 

Compute the total arc  length of the ellipse x2 + yz/4 = 1 to six decimal places. 

By adding (h/140)S6y3 to the n = 6 formula of Table 14.1, page 110, derive Weddle's rule, 

The coefficients in this formula a re  simple, so that ,  in spite of the extra truncation error introduced, 
i t  is popular. 

Apply Weddle's rule to the data of Table 13.5, page 104. 

Use the method of undetermined coefficients to derive a formula of the form 

which is exact for  polynomials of as  high a degree a s  possible. 

Use the method of undetermined coefficients to derive the formula 

proving i t  exact for  polynomials of degree up through four. 

Use the method of undetermined coefficients to derive 

proving it  exact fo r  polynomials of degree up through five. 

Derive a n  exact expression for the truncation error of our n = 2 formula by the following 
method. Let 

h 
F ( h )  = $* y ( z ) d x  - 3 [ ~ ( - h ) + 4 ~ ( 0 ) + ~ ( h ) l  

Differentiate three times relative to  h ,  using the theorem on "differentiating under the integral 
sign" 

to obtain 
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Notice t h a t  F1(0)  = F(2)(0) = F(3)(0)  = 0. Assuming y(4)(x) continuous, the mean value theorem 
now produces F(3) (h)  = -$hzy(4)(8h) 

where 8 depends on h and falls between -1 and 1. We now reverse direction and recover F(h)  by 
integration. It is convenient to replace h by t  (making o a function of t). Verify tha t  

F ( h )  = - - ( h  - t )z t2y(4)(et)  dt ; J h  

by differentiating three times relative to h to recover the above F(3)(h). Since this formula also 
makes F(0)  = F'(0) = F(2)(0) ,  i t  is the original F(h). Next apply the mean value theorem 

b ib f ( t )  d t )  dt = d 8  S f ( t )  dt 
a 

with a < < b, which is valid fo r  continuous functions provided f ( t )  does not change sign between 
a and b. These conditions do hold here with f ( t )  = -t'-'(h - t)2/3. The result is 

This is the result mentioned a t  the end of Problem 14.3, page 111. The early parts  of this proof, 
in which we maneuver from F ( h )  to its third derivative and back again, have a s  their goal a rep- 
resentation of F ( h )  to which the mean value theorem can be applied. (Recall t h a t  f ( t )  did not change 
sign in the interval of integration.) This is often the central difficulty in obtaining a truncation 
error formula of the sort just achieved. 

14.72. Modify the argument of Problem 14.71 to obtain the formula given a t  the end of Problem 14.2, 
page 110, truncation error = -(h3/12)y(2)([) 

for the n = 1 formula. The same procedure can be used to produce the truncation errors listed in 
Table 14.2, page 111. 

14.73. Show t h a t  the Filon formula fo r  n = 1 is the result of approximating y(x )  by a polynomial p(x)  
collocating with y(x)  a t  x = 0, 7, and 2r, and then integrating p(x) sin kx. 

14.74. Apply the Filon formula to &2n e-x sin 10% dx. This integral can be evaluated by elementary 

methods and equals (10/101)(1- e-10). Compare the accuracy of the Filon and Simpson formulas 
for the same number of points. 

14.75. Evaluate e-z3 dx correct to  six places. s,' 
14.76. Derive expressions for  a(h) ,  b(h), c(h)  in the formula 

z t h  

y (x )  e-kx dx - h[a(h)  y (x  - h )  + b(h) y (x )  + c(h) y(x  + h)]  

by replacing y(x )  by a second degree collocation polynomial. 

14.77. Apply the formula of Problem 14.76 to  the  test case Yhh e-kx d z ,  

14.78. Apply the formula of Problem 14.76 to  the test case x e - l d x .  I' 
14.79. Apply the formula of Problem 14.76 successively a t  X I ,  XB, . . . , x ~ ~ - ~  to  produce a composite for-  

b 

mula for  y(x )  e-*x dx where a = x ,  and b = 22,. 

14.80. Apply the formula of Problem 14.79 with diminishing h to obtain three place accuracy for  



Gaussian Integration 

CHARACTER OF A GAUSSIAN FORMULA 

The main idea behind Gaussian integration is that  in the selection of a formula 

i t  may be wise not to specify that the arguments xi be equally spaced. All the formulas of 
the preceding chapter assume equal spacing, and if the values y(xi)  are obtained experi- 
mentally this will probably be true. Many integrals, however, involve familiar analytic 
functions which may be computed for any argument and to great accuracy. In such cases 
i t  is useful to ask what choice of the xi and Ai together will bring maximum accuracy. It 
proves to be convenient to discuss the slightly more general formula 

in which w ( x )  is a weighting function to be specified later. When w ( x )  = 1 we have the 
original, simpler formula. 

One approach to such Gaussian formulas is to ask for perfect accuracy when y(x)  is one 
of the power functions 1, x ,  x2, . . . , x2"-'. This provides 2n conditions for determining the 
2n numbers xi and Ai. In  fact, 

Ai = J b  w ( x )  L ~ ( x )  ax  
a 

where Li(x) is the Lagrange multiplier function introduced in Chapter 8. The arguments 
XI, . . . , x, are the zeros of the nth degree polynomial p,(x) belonging to a family having the 
orthogonality property 

lY W ( X )  pn(x)pn,(x)  d~  = 0 for ~ I L  i n 

These polynomials depend upon w ( x ) .  The weighting function therefore influences both the 
Ai and the xi but does not appear explicitly in the Gaussian formula. 

Hermite's formula for an osculating polynomial provides another approach to Gaussian 
formulas. Integrating the osculating polynomial leads to 

but the choice of the arguments xi as the zeros of a member of an orthogonal family makes 
all Bi = 0. The formula then reduces to the prescribed type. This suggests, and we 
proceed to verify, that a simple collocation polynomial a t  these unequally-spaced arguments 
would lead to the same result. 

Orthogonal polynomials therefore play a central role in Gaussian integration. A study 
of their main properties forms a substantial part  of this chapter. 
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The truncation error of the Gaussian formula is 

where ~ ( x )  = (x - xl) . . (x - x,). Since this is proportional to the (2n)th derivative of ~ ( x ) ,  
such formulas are exact for all polynomials of degree 2n - 1 or less. In the formulas of 
the previous chapter i t  is y(")(() which appears in this place. In a sense our present for- 
mulas are twice as accurate as those based on equally-spaced arguments. 

PARTICULAR TYPES OF GAUSSIAN FORMULAS 

Particular types of Gaussian formulas may be obtained by choosing w(x) and the limits 
of integration in various ways. Occasionally one may also wish to impose constraints, such 
as specifying certain xi in advance. A number of particular types are presented. 

1. Gauss-Legendre formulas occur when w(x) = 1. This is the prototype of the Gaussian 
method and we discuss i t  in more detail than the other types. It is customary to nor- 
malize the interval (a, b) to (-1,l). The orthogonal polynomials are then the Legendre 
polynomials 

with Po(x) = 1. The x i  are the zeros of these polynomials and the coefficients are 

Tables of the xi and Ai are available, to be substituted directly into the Gauss-Legendre 
formula 

Various properties of Legendre polynomials are required in the development of these 
results, including the following. 

J x k ~ . ( s ) d x  = o for k = ~ ,  . . . ,  n - I  
- 1 

P,,(x) has n real zeros in (-1,l) 
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Lanczos' estimate of truncation error for Gauss-Legendre formulas takes the form 

where I is the approximate integral obtained by the Gaussian n-point formula. Note 
that the 2 term involves applying this same formula to the function x y'(x). This 
error estimate seems to be fairly accurate for smooth functions. 

Gauss-Laguerre formulas take the form 

the arguments xi being the zeros of the nth Laguerre polynomial 

dn 
Ln (x )  = eZ -(e-"x") 

dxn 

(n !)2 
and the coefficients Ai being Ai = 

x,[L:, ( x , ) ] ~  

The numbers xi and Ai are available in tables. 

The derivation of Gauss-Laguerre formulas parallels that of Gauss-Legendre very 
closely, using properties of the Laguerre polynomials. 

Gauss-Hermite formulas take the form 

the arguments xi being the zeros of the nth Hermite polynomial 

dn 
H,(x) = (- l )nex2 (ecx2)  

The numbers xi and Ai are available in tables. 

Gauss-Chebyshev formulas take the form 

the arguments X i  being the zeros of the nth Chebyshev polynomial T,, ( x )  = cos (n arccos x) .  

Gauss-Lobatto formulas take the form 

the xi being the zeros of PA-t(x) and where 

Note that the endpoints x = have been prescribed as two of the n + 1 arguments. 
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6. Chebyshev formulas take the form 

l: y(x) d x  - (21n) 5 V(XI) 
i=l 

and have equal coefficients. 

7. The two-point formula 

where y. 2 - - ? - ~ ( n - i -  "(-1) + (-1)"-i-I y(n-i-lI(l), uses values of y(x) and its derivatives 
only at the endpoints of the interval of integration. 

Solved Problems 
THE GAUSSIAN METHOD 
15.1. Integrate Hermite's formula for an osculating polynomial approximation to y(x) at  

arguments X I  to x,. 
Here it  is convenient to delete the argument x, in our osculating polynomial. This requires only 

minor changes in our formulas of Chapter 10. The Hermite formula itself becomes 
n 

p(x) = 2 [ I  - ZL; (X , )  (x - Z ~ ) ] [ L ~ ( Z ) ] ~ ~  + (z - z , ) [ ~ ~ ( z ) ] z y ~  
i= 1 

where L,(x)  = Fi(x) /Fi (x i )  is the Lagrange multiplier function, Fi (x )  being the product Fi (x )  = 
lJ ( x  - x,). Integrating, we find 

where Ai  = w ( z ) l - 2 ~ ( ~ ) ( x - x ~ ) ] [ L ~ ( ) ] ~ d x ,  Bi = ~ b ~ ( ~ ) ( z - x i ) [ L i ( 2 ) ] z d z  

15.2. Find the truncation error of the formula in Problem 15.1. 
Surprisingly enough, this comes more easily than for  formulas obtained from simple collocation 

polynomials, because the mean value theorem applies directly. The error  of Hermite's formula 
(Problem 10.4, page 67), with n in place of n + 1 because we have deleted one argument, becomes 

Multiplying by w ( z )  and integrating, 

Since w ( x )  is to be chosen a non-negative function, and [ ~ j x ) ] '  is surely positive, the mean value 
theorem a t  once yields 

for  the truncation error. Here a < e < b, but a s  usual e is not otherwise known. Notice tha t  if 
y(x)  were a polynomial of degree 2n - 1 or less, this error term would be exactly 0. Our formula 
will be exact for  all such polynomials. 
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Show that  all the coefficients BI will be 0 if 

~ b w ( x ) ~ ( x ) x k c i x  = 0 for / c = o , I ,  . . . ,  n-1 

By Problem 8.3, page 54, ( x  - x i )  L i (x )  = ? r ( x ) / a ' ( ~ ~ ) .  Substituting this into the formula for  Bi, 

But Li(x)  is a polynomial in x  of degree n - 1, and so 

Define orthogonal functions and restate the result of Problem 15.3 in terms of 
orthogonality. 

Functions f,(x) and f2 (x)  are  called orthogonal on the interval (a, b) with weight function w ( x )  if 

Lb ~ ( 2 )  f1(x) 1 2 k )  dx = 0 

The coefficients Bi of our formula will be zero if ~ ( x )  is orthogonal to xp for  p = 0,1,  . . . , n - 1. 
By addition ~ ( x )  will then be orthogonal to any polynomial of degree n- 1 or less, including the 
Lagrange multiplier functions Li(x) .  Such orthogonality depends upon and determines our choice 
of the collocation arguments xk, and is assumed for  the remainder of this chapter. 

b  

Prove that  with all the Bi = 0, the coefficients Ai reduce to Ai = w(x)  [L i ( x )12dx  
and are therefore positive numbers. 

A ,  = ib w(x)[Li (x)]2dx  - 2h\(xi) B~ reduces to the required form when Bi = 0. 

b  

Derive the simpler formula Ai = 1 w(s )  L ~ ( x )  d x .  

The result follows if we can show that  w ( x )  Li(x) [L,(x)  - 11 dx = 0. Jb 
But Li(x)  - 1 must contain ( x  - xi) a s  a factor, because Li(xi) - 1 = 1 - 1 = 0. Therefore 

with p(x) of degree n - 1 a t  most. Problem 15.4 then guarantees t h a t  the integral is zero. 

The integration formula of this section can now be written as 

J w(x)  Y ( X )  d x  - 2 Ai  xi) 
i= 1 

where Ai = w(x)  Li (x)  d x  and the arguments x,  are to be chosen by the ortho- lb 
gonality requirements of Problem 15.3. This formula was obtained by integration 
of an osculating polynomial of degree 2n - 1 determined by the yi and yl values a t  
arguments xi. Show that  the same formula is obtained by integration of the simpler 
collocation polynomial of degree n - 1 determined by the yi values alone. (This is 
one way of looking a t  Gaussian formulas; they extract high accuracy from polynomials 
of relatively low degree.) 
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n 

The collocation polynomial is p(x) = 2 Li(x) y(x,) so t h a t  integration produces 
i=l 

as suggested. Here p(x) represents the collocation polynomial. In  Problem 15.1 i t  stood for  the more 
complicated osculating polynomial. Both lead to the same integration formula. (For  a specific ex- 
ample of this, see Problem 15.25.) 

GAUSS-LEGENDRE FORMULAS 
15.8. The special case w(x)  = 1 leads to Gauss-Legendre formulas. It is the custom to use 

the interval of integration (-1,l). As a preliminary exercise, determine the argu- 
ments xk directly from the conditions of Problem 15.3 

1 

S _ l n ( z ) ~ k d ~ = O ,  k = O , l ,  . . . ,  n - 1  

for the value n = 3. 
The polynomial a(%) is then cubic, say ~ ( x )  = a + bx + cx2 + 23. Integrations produce 

2a + +c = 0, 2 b  + 2 = 0, 3a + gc = 0 3 5 

which lead quickly to a = c = 0, b = -315. This makes 

T(x) = 23 - (315)s = (x + m )x(x - dm) 
The collocation arguments a re  therefore xk  = -m, 0, m. 

Theoretically this procedure would yield the x k  for  any value of n but  i t  is quicker to use a more 
sophistfcated approach. 

15.9. The Legendre polynomial of degree n is defined by 

1 dn 
P,(x) = - -(x" 1)n 2"n! dxn 

with Po(x) = 1. Prove that for k = 0,1, . . . , n - 1 

making P,(x) also orthogonal to any polynomial of degree less than n. 

Apply integration by parts k times. 

1 2" + l  (n !)2 
15.10. Prove L1 xn P. ( x )  dx = (zn + ! . 

Taking k = n in the preceding problem, 
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This last integral responds to the treatment 

dn 2n(2n-2) . . . 2  so tha t  xn -(x2 - l ) n  dx  = 2n!  $, dxn (2n+ 1 ) ( 2 n -  1 ) .  . 3  

Now multiply top and bottom by 24272 - 2 ) .  . .2 = 2 n n !  and recall the definition of P n ( x )  to obtain, 
a s  required. 

1 2 15.11. Prove 1, [Pn(x)J2 d x  = . 
Splitting off the highest power of x in one P n ( x )  factor, 

Powers below xn make no contribution, by Problem 15.9. Using the preceding problem, we have 

15.12. Prove that  for  rn Z n, S-: P,,(x) P.(x) d x  = 0. 

Writing out the lower degree polynomial, we find each power in i t  orthogonal to the higher 

degree polynomial. In particular with m = 0 and n f 0 we have the special case 

15.13. Prove that  Pn(x )  has n real zeros between -1 and 1. 

The polynomial ( x 2  - l ) n  is of degree 2n and has multiple zeros a t  21. I t s  derivative therefore 
has one interior zero, by Rolle's theorem. This first derivative is also zero a t  2 1 ,  making three 
zeros in all. The second derivative is then guaranteed two interior zeros by Rolle's theorem. It also 
vanishes a t  & I ,  making four zeros in all. Continuing in this way we find t h a t  the nth derivative is 
guaranteed n interior zeros, by Rolle's theorem. Except for a constant factor, this derivative is the 
Legendre polynomial P n ( x ) .  

15.14. Show that  for the weight function w(x )  = 1, T ( X )  = [2n(n!)2/(2n) !]Pn(x). 

Let the n zeros of P,(x) be called x,, . . . , x,. Then 

12% !2/(2n) ! ]  Pn ( x )  = ( x  - x,) .  . . ( x  - x,) 

The only other requirement on ~ ( x )  is that  i t  be orthogonal to zk for  k = 0, 1 ,  . . . , n - 1. But this 

follows from Problem 15.9. 

15.15. Calculate the first several Legendre polynomials directly from the definition, noticing 
that only even or only odd powers can occur in any such polynomial. 

P,,(r) is defined to be 1. Then we find 
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1  d  P 1 ( x )  = - -(x2 - 1) = z  1  d3 
P3 (x )  = - -(x2 - 1)s = 35x3  - 3%) 

2  dx 48 dx3 

1  d2 1  d4 
P z ( z )  = - -(xZ - = 4(3x2 - 1)  P4 ( x )  = --- 

8 ax2 
- ( x2  - 1)4 = 9(35x4 - 30x2 + 3) 16.24 dx4 

Similarly, 

P 5 ( x )  = &(63x5 - 70x3 + 15z) p7 ( x )  = &(429~7 - 693x5 + 315x3 - 35x) 

and so on. Since (x2  - l ) n  involves only even powers of x, the result of differentiating n times will 
contain only even or only odd powers. 

15.16. Show that xn can be expressed as a combination of Legendre polynomials up through 
P,(x). The same is then true of any polynomial of degree n. 

and so on. The fact  tha t  each P k ( x )  begins with a non-zero term in xk allows this procedure to con- 
tinue indefinitely. 

15.17. Prove the recursion for Legendre poIynomiaIs, 

The polynomial xPn(x)  is of degree n + 1, and so can be expressed a s  the combination (see 
Problem 15.16) n+ 1 

xPn(x)  = 2 ciPi(x) 
i = O  

Multiply by P k ( x )  and integrate to find 

all other terms on the right vanishing since Legendre polynomials of different degrees a re  ortho- 
gonal. But  fo r  k < n - 1 we know P n ( x )  is also orthogonal to  xPk(x) ,  since this product then has 
degree a t  most n - 1. (See Problem 15.9.) This makes ck = 0 fo r  k < n - 1 and 

xP,(x)  = C ,  + Pn+ 1 (x) + c,,P,, ( x )  + en-1 Pn-1 ( x )  

Noticing that,  from the definition, the coefficient of zn in P,(x) will be (2n)! /2n(n!) ' ,  we compare 
coefficients pf xn+l in the above to find 

from which en+,  = ( n  + 1)1(2n + 1) follows. Comparing the coefficients of xn, and remembering 
that  only alternate powers appear in any Legendre polynomial, brings cn = 0. To determine c,-1 

we return to our integrals. With k = n -  1  we imagine Pk(x )  written out a s  a sum of powers. 
Only the term in xn-1 need be considered, since lower terms, even when multiplied by x ,  will be 
orthogonal to  Pn ( x ) .  This leads to  

and using the results of Problems 15.10 and 15.11 one easily finds = nl(2n + 1). Substituting 
these coefficients into our expression for  xPn(x)  now brings the required recursion. As a bonus we 
also have the integral 

n 2 - - 2n 
x  P,- ( x )  P ,  ( x )  dx = - - 

2 n + 1 2 n - 1  4nz - 1 
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15.18. Illustrate the use of the recursion formula. 

Taking n = 5, we find 

P ,  ( x )  = x  P ,  ( x )  - %P, ( z )  = A(Z3lx6  - 315x4 + 105x2 - 5)  

and with n = 6,  

P ,  ( s )  = 9 x  P ,  ( x )  - $P5 ( x )  = &(4Z9x7 - 693x5 + 315x3 - 35x) 

confirming the results obtained in Problem 15.15. The recursion process is  well suited to  automatic 
computation of these polynomials, while the differentiation process of Problem 15.15 is not. 

15.19. Derive Christoffel's identity, 

(t-215 (2i+l )p i (x )p i ( t )  = ( n + l ) [ ~ . + l ( t ) ~ , ( x )  - ~ ~ ( t ) ~ . + l ( x ) l  
i=O 

The recursion formula of Problem 15.17 can be multiplied by P, ( t )  to  obtain 

(2i + 1)x  Pi ( x )  Pi ( t )  = (i + 1 )  Pi+ ( x )  Pi ( t )  + iPi- 1 ( x )  Pi ( t )  

Writing this also with arguments x  and t reversed (since i t  is t rue  fo r  any x  and t)  and then sub- 
tracting, we have 

( Z i + l ) ( t - x ) P , ( x ) P , ( t )  = ( i + l ) [ P i + l ( t ) P i ( x )  - P i ( t ) P i + , ( x ) ]  - i j P i ( t ) P i - l ( x )  - P i - l ( t ) P i , ( x ) ]  

Summing from i = 1  to i = n ,  and noticing the "telescoping effect" on the right, we have 
n 

( t - x )  2 ( 2 i + l ) P i ( x ) P i ( t )  = ( n + l ) [ P n + l ( t ) P , ( x )  - P n ( t ) P n + 1 ( x ) ]  - ( t - x )  
i= 1 

The last term may be transferred to the left side where i t  may be absorbed into the sum a s  a n  
i = 0  term. This is the Christoffel identity. 

115.20. Use the Christoffel identity to evaluate the integration coefficients for the Gauss- 

Legendre case, proving Al; = 
2 

n PL ( x k )  Pn- I ( x k )  ' 

Let xk be a zero of P,(x). Then the preceding problem, with t  replaced by x k ,  makes 

Now integrate from -1 
the right, and we have 

The recursion formula 
alternative 

to 1. By a special case of Problem 15.12 only the i = 0 term survives on 

with x  = xk makes (n + l )Pn+, (xk )  = -nPn-l(xk)  which allows us the 

By Problems 15.6 and 15.14 we now find 

leading a t  once to the result stated. 
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Prove that  ( 1  - x 2 ) P ; ( x )  + nxPn(x) = n P n - l ( x ) ,  which is useful for simplifying the 
result of Problem 1 5 . 2 0 .  

We first notice tha t  the combination ( 1  - x2)PA + nxPn is a t  most of degree n +  1 .  However, 
with A representing the leading coefficient of P n ( x ) ,  i t  is easy to  see t h a t  xn+l comes multiplied by 
-nA  + n A  and so is not involved. Since P n  contains no term in xn-1, our combination also has  
no term in xn. I t s  degree is a t  most n -  1 and by Problem 15.16 i t  can be expressed a s  

n-1 

( 1  - x2) PL ( x )  + n x  P, ( x )  = 2 ci P i  ( x )  
i = o  

Proceeding a s  in our development of the recursion formula, we now multiply by P k ( x )  and inte- 
grate. On the r ight  only the kth term survives, because of the orthogonality, and we obtain 

Integrating the first integral by parts ,  the integrated piece is zero because of the  factor (1 - x2). 

For k < n -  1 both integrands have P n ( x )  multiplied by a polynomial of degree n - 1 or less. 
By Problem 15.9 all such ek will be zero. For  k = n - 1 the last integral is covered by the Problem 
15.17 bonus. In  the first integral only the leading term of P n P l ( x )  contributes (again because of 
Problem 15.9) making this term 

Using Problem 15.10, this now reduces to 

Substituting these various results, we find 

which completes the proof. 

2(1 - xi) 
15.22. Apply Problem 1 5 . 2 1  to obtain Ak = n2[Pn-1 ( x k ) I 2 '  

Putt ing x = xk,  a zero of P ,  ( x ) ,  we find ( 1  - 2E)F'k(xk) = n P n -  , (xk) .  The derivative factor 
can now be replaced in our result of Problem 15.20, producing the required result. 

15.23. The Gauss-Legendre integration formula can now be expressed as 

where the arguments xk  are the zeros of Pn(x) and the coefficients Ak are given in 
Problem 1 5 . 2 2 .  Tabulate these numbers for n = 2 , 4 , 6 ,  . . . , 1 6 .  

For  n = 2 we solve P, (x )  = 4(3x2 - 1 )  = 0 to obtain xk = f = a.57735027.  The two 
coefficients prove to be the same. Problem 15.22 makes A k  = 2 ( 1 -  Q ) / [ 4 ( 4 ) ]  = 1.  

For  n = 4 we solve P, (x )  = Q(3536' - 30x2+ 3 )  = 0 to find x i  = (15 2 2 G ) / 3 5 ,  leading 

to the four  arguments xk = *[(lFj f 2 f i ) / 3 5 I 1 / 2 .  

Computing these and inserting them into the formula of Problem 15.22 produces the x k , A k  
pairs given in Table 15.1 below. The results for  larger integers n a r e  found in the same way, the 
zeros of the high degree polynomials being found by the familiar Newton method of successive 
approximations. (This method appears in a la ter  chapter.) 
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Table 15.1 

15.24. Apply the two point formula to x v J 2 s i n  t d t .  

The change of argument t = ~ ( x  + 1)/4 converts this to our standard interval a s  

d x  + 1)  dx - sin ---- S1 - 1 , 4 

and the Gaussian arguments xk = 2.57'735027 lead to y(xl) = .32589, y(x2) = .94541. The two 
point formula now generates (~/4)(.32589 + .94541) = .99848 which is  correct to almost three 
places. The two point Gaussian formula has produced a better result than the trapezoidal rule 
with seven points (Problem 14.17, page 113). The error  is two-tenths of one per cent! 

It is amusing to see what  a one point formula could have done. F o r  n = 1 the Gauss-Legendre 

result is, a s  one may easily verify, s: , y(x) dx - 2y(0). For  the sine function this becomes 

which is correct to  within about ten per cent. 

15.25. Explain the accuracy of the extremely simple formulas used in Problem 15.24 by ex- 
hibiting the polynomials on which the formulas are based. 

The n = 1 formula can be obtained by integrating the collocation polynomial of degree zero, 
p(x) = y(xl) = y(0). However, i t  can also be obtained, and this is  the idea of the Gaussian method, 
from the osculating polynomial of degree 2n - 1 = 1, which by Hermite's formula is y(0) + xy'(0). 
Integrating this linear function between -1 and 1 produces the same 2y(0), the derivative term 
contributing zero. The zero degree collocation polynomial produces the same integral a s  a first 
degree polynomial, because the point of collocation was the Gaussian point. (Fig. 15-1 below.) 

Similarly, the n = 2 formula can be obtained by integrating the collocation polynomial of 
degree one, the points of collocation being the Gaussian points 

where r = m. This same formula is obtained by integrating the osculating polynomial of degree 
three, since 



The polynomial of degree one performs so well, because the points of collocation were the Gaussian 
points. (Fig. 15-2) 

Fig. 15-1 Fig. 15-2 

osculating collocation 

osculat ing 
collocation 

15.26. Apply the Gaussian four point formula to the integral of Problem 15.24. 
4 

I 

Using the same change of argument, the four point formula produces Aiyi = 1.000000, 
i = l  

I 1 I 

correct to six places. Comparing with the Simpson 32 point result of 1.0000003 and the Simpson 64 
.point result of .99999983, we find i t  superior to either. 

-1 r ,  = 0 1 -1 x, = -r 0 x 2 = r  1 

15.27. Adapt the truncation error estimate of Problem 15.2 to the special case of Gauss- 
Legendre approximation. 

Combining Problems 15.2, 15.11 and 15.14, we find the error to  be 

This is not a n  easy formula to apply if the derivatives of y(x) a re  hard to compute. Some further  
idea of the accuracy of Gaussian formulas is, however, available by computing the coefficient of 
y(2n) for  small n. 

n = 2 E = . 0 0 7 4 ~ ( ~ )  
n =, 4 E = .00000032~(8) 
n = 6 E = 1.5(10-l2)y(12) 

15.28. Apply the error estimates of Problem 15.27 to the integral of Problem 15.24 and 
combare with the actual errors. 

After  the change of argument which brings this integral to our standard form, we find 

ly(4)(x)I < ( ~ / 4 ) ~ ,  l ~ ( ~ ) ( x ) l  < ( ~ / 4 ) 9  

For n = 2 this makes our error estimate E = (.0074)(.298) = .00220, while fo r  n = 4 we find 
E = (.0000003)(.113) = .00000003. The actual errors  were .00152 and, to six places, zero. So our. 
estimates a re  consistent with our results. 

This example offers a favorable situation. The sine function is  easy to integrate, even by ap- 
proximate methods, because its derivatives a re  all bounded by the same constant, namely 1. The 
powers of ~ / 4  do enter with the change of argument, but they actually help in this case. The next 
example deals with a familiar function whose derivatives do not behave so favorably. 

15.29. Apply the Gauss-Legendre formula to l "210g  (1 + t )  d t .  

The correct value of this integral is  

(1 + x/2)[log (1 + ~ / 2 )  - 11 + 1 = .856590 

to six places. The change of argument t = ~ ( x  + 1)/4 converts the integral to 

S:l log [l + -1 dz 
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The fourth derivative of the new integrand is ( ~ / 4 ) 5 [ - 6 / ( l  + t)4].  In  the interval of integration this 
cannot exceed 6(rr/4)5, so the truncation error  cannot exceed 6 ( ~ / 4 ) ~ ( . 0 0 7 4 )  if we use the two point 
Gaussian formula. This is six times the corresponding estimate fo r  the integral of the sine func- 
tion. Similarly, the eighth derivative is ( i~ /4 )9[ - -7 ! / ( l  + t )8 ] .  This means a truncation error  of a t  
most (~ /4 )9 -7 ! ( .0000003)  which is 7 !  times the corresponding estimate fo r  the integral of the 
sine function. While the successive derivatives of the sine function remain bounded by 1 ,  those of 
the logarithm function increase a s  factorials. The difference has a n  obvious impact on the trunca- 
tion errors of any of our formulas, perhaps especially on Gaussian formulas where especially high 
derivatives a re  involved. Even so, these formulas perform well. Using just two points we obtain 
.858, while four  points manage .856592 which is off by just two units in  the last  place. The six 
point Gaussian formula scores a bullseye to six places, even though its truncation error  term in- 
volves y ( l z ) ( x ) ,  which is approximately of size 1 2 ! .  For contrast, Simpson's rule requires sixty- 
four points to  produce this same six-place result. 

The function log ( 1  + t )  has a singularity a t  t = -1. This is not on the interval of integration, 
but it  is close, and even a complex singularity nearby could produce the slow kind of convergence 
in evidence here. 

15.30. How does the length of the interval of integration affect the Gaussian formulas? 
b - a  For  a n  integral over the interval a 5 t f b, the change of argument t = a + - 

2 
( x  + 1)  pro- 

duces the standard interval -1 ' x 1. I t  also makes 

The effect on truncation error is in the derivative factor, which is  

[ ( b  - ~ ) / 2 ] * ~ + 1  y(2n)(t)  

In  the examples just given b - a was ~ / 2  and this interval l'ength actually heIped to reduce error, 
but with a longer interval the potential of the powers of b - a to magnify error is clear. 

15.31. Apply the Gaussian method to ( 2 / 6 )  S4 e P 2 d t .  

p- - - --- - - - - 

For larger n the results agree with tha t  for  n = 10. This suggests accuracy to six places. We have 
already computed this integral by a patient application of Taylor's series (Problem 14.35, page 118) 
and found i t  to equal 1 ,  correct to six places. For  comparison, the Simpson formula requires 32 
points to achieve six place accuracy. 

The higher derivatives of this error function a re  not easy to estimate realistically. Proceeding 
with computations, one finds the n = 4,6,8,10 formulas giving these results: 

15.32. Apply the Gaussian method to J 4  q-dt. 

n 

approximation 

The n = 4,8 ,12,16 formulas give the results 

4 6 8 10 

.986 1.000258 1.000004 1.000000 

I approximation 1 6.08045 6.07657 6.07610 6.07600 1 
This suggests accuracy to four places. The exact integral can be found by a change of argument 
to be g [2 f i  + Q ] ,  which is 6.07590 correct to five places. Observe t h a t  the accuracy obtained here 
is inferior to tha t  of the previous problem. The explanation is tha t  our square root integrand is 
not a s  smooth a s  the exponential function. I t s  higher derivatives grow very large, like factorials. 
Our other formulas also feel the influence of these large derivatives. Simpson's rule f o r  instance 
produces these values: 
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Even with a thousand points i t  has  not managed the accuracy achieved in the previous problem 
with just 32 points. 

no. of points 

Simpson values 

15.33. Derive the Lanczos estimate for  the truncation error of Gaussian formulas. 
1 

The relation [ x y ( x ) ] ' d x  = y(1)  + y(-1) holds exactly. Let I be the approximate integral s- , 

16 64 256 1024 

6.062 6.07411 6.07567 6.07586 

of y ( x )  obtained by the Gaussian n point formula, and I* be the corresponding result f o r  [xy(x)] ' .  
Since [xy (x ) ] '  = y ( z )  + xy t ( x ) ,  

n 

I* = I + 2 Aiz iy1(x i )  
I=1 

so tha t  the error  in I* is 
n 

Calling the error in I itself E, we know tha t  

E = Cny(2n)(e1),  E* = C , ( X Y ) ( ~ ~ + ~ ) ( O ~ )  

for suitable el and e2 between -1 and 1. Suppose el = O 2  = 0. On the one hand ( x y ) ( M f  1 ) (0 ) l (2n ) !  
is the coefficient of x2n in the Taylor series expansion of ( x y ) ' ,  while on the other hand 

leading directly to [xy (x ) ] '  = . . . + ( 2 n  + 1 ) ~ ( 2 ~ ) ( 0 ) ~ 2 n l ( 2 n )  ! + . . . 
from which we deduce (xy)(2n+l)(O) = ( 2 n  + l)y(2n)(O) 

Thus E* = (272 + 1 ) E  approximately, making 

This involves applying the Gaussian formula to x y l ( x )  as well a s  to y ( x )  itself, but i t  avoids the 
often troublesome calculation of y(2n)(x).  Putting 8,  = e ,  = 0 is the key move in deducing this 
formula. This has  been found to be more reasonable fo r  smooth integrands such a s  tha t  of Problem 
15.31, than for  integrands with large derivatives, which seems reasonable since y'2n)(el)ly(2n)(62) 
should be neariy 1 when y(2n+l) is small. 

15.34. Apply the error estimate of the previous problem to the integral of Problem 15.31. 
For n = 8 the  Lanczos estimate is .000004 and is identical with the actual error. F o r  n = 10 

and above, the Lanczos estimate correctly predicts a six place error  of zero. If applied to  the 
integral of Problem 15.32, however, in which the integrand is very unsmooth, the Lanczos estimate 
proves to  be too conservative to be useful. The limits to the usefulness of this error formula a re  
still to be determined. 

OTHER GAUSSIAN FORMULAS 
15.35. What are  the Gauss-Laguerre formulas? 

These formulas for  approximate integration a r e  of the form 

f e - x ~ ( ~ ) d ~  - i= j: 1 ~ i ~ ( r i )  

the arguments xi being the zeros of the n th  Laguerre polynomial 
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and the coefficients A, being 

The truncation error is E = --- (n!)2 y:2n)(B) 
( 2 n )  ! 

These results a r e  found very much a s  the similar results for  the Gauss-Legendre case. Here 
the weight function is w ( x )  = e - x .  The n point formula is  exact fo r  polynomials of degree up to 
2 n  - 1. Arguments and coefficients a re  provided in Table 15.2. 

Table 15.2 

15.36. Apply the Gauss-Laguerre one point formula to the integration of e-". 
Since L l ( x )  = 1  - x ,  we have a zero a t  x1  = 1. The coefficient is A ,  = l I [ L ; ( l ) ' ] *  which is also 

1. The one point formula is therefore 

In this case y ( x )  = 1  and we obtain the exact integral, which is 1. This is no surprise, since with 
n = 1  we are  guaranteed exact results for  any polynomial of degree one or less. In fact  with 
y ( x )  = a x  + b  the formula produces 

Jrn e - x ( a x + b ) d x  = y(1)  = a + b  

which is the correct value. 
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15.37. Apply the Gauss-Laguerre method to i e c x  sin x dx. 

The exact value of this integral is easily found to be *. The smoothness of s inx ,  by which is 
meant the boundedness of i ts  derivatives, suggests t h a t  our formulas will perform well. The error  
estimate of ( n ! ) 2 / ( 2 n ) ! ,  which replaces y(2n) by its maximum of 1, reduces to 11924 for  n = 6 and 

n 

suggests about three place accuracy. Actually substituting into Ai sin xi brings the results 
i= l  

15.38. Apply the Gauss-Laguerre method to X m ( e T t l t )  dt. 

n 

z 

The unsmoothness of y ( t )  = l l t ,  meaning t h a t  i ts  nth derivative 

y ( n ) ( t )  = ( - l ) n n !  t - ( n t l )  

2 6 10 14 

.43 .50005 .5000002 .50000000 

increases rapidly with n ,  does not suggest overconfidence in approximation formulas. Making 
change of argument t = x + 1, this integral is converted into our standard interval a s  

so t h a t  our error formula is somewhat pessimistic. 

the 

and the error formula becomes 

E = [ ( ~ ~ ! ) ~ / ( 2 n )  !] [ (2n )  ! l e ( s  + 1)2n+ 11 

which reduces to (n! )2 / e ( e  + 1)2n+l. If we replaced e by 0 to obtain the maximum derivative this 
would surely be discouraging, and yet no other choice nominates itself. Actual computations with 
the formula A ,, 

5 A i / ( x i  + 1)  
e i = l  

bring these results: 

I approximation 1 .21 .21918 .21937 .21938 1 
Since the correct value to five places is .21938 we see tha t  complete pessimism was unnecessary. 
The elusive argument 6 appears to increase with n. A comparison of the actual and theoretical 
errors allows s to be determined: 

In this example the function y ( x )  has a singularity a t  x = -1. Even a complex singularity near 
the interval of integration can produce the slow convergence in evidence here. (Compare with Prob- 
lem 15.29.) The convergence is more rapid if we move away from the singularity. F o r  example, 
integration of the same function by the same method over the interval f rom 5 to m brings these 
results: 

1 approximation 1 .001147 .0011482949 .0011482954 1 

The last  value is almost correct to ten places. 
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15.39. What are  the Gauss-Hermite formulas? 

These a r e  of the form 

the arguments xi being the zeros of the n th  Hermite polynomial 

and the coefficients Ai being 

Ai = 2n+l n !  f i / [ H L ( x i ) ] z  

The truncation error is 

These results a r e  found very much a s  in the Gauss-Legendre case. Here the weight function is 
w(x) = e-2'. The n point formula is exact fo r  polynomials up  to degree 212 -- 1. Arguments and 
coefficients a r e  provided in Table 15.3. 

Table 15.3 

15.40. Apply the Gauss-Hermite two point formula to the integral J - = e - x 2 x 2 d s .  

An exact result can be obtained, so we first compute 

d2 
H z ( % )  = ex2 - ( e - X 2 )  = 4x2 - 2 

ds2  

The zeros of this polynomial a re  xk  = k f i 1 2 .  The coefficients Ai are  easily found from the formula 
in Problem 15.39 to be &/2. The two point formula is therefore 

With y ( x )  = x2 this becomes e - x 2  x 2 d x  = &/2 which is the exact value of the integral. 
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15.41. Evaluate correct to six places S-: e-" sin2 x dx. 

The Gauss-Hermite formula produces these results: 

- - -- 

This appears to suggest six place accuracy, and the result is actually correct to six places, the 
exact integral being & ( I  - e-')I2 which is to  eight places .56020228. 

n 

approximation 

15.42. Evaluate correct to three places, J [ e - x 2 1 \ / ~ ]  dx. 
- m 

2 4 6 8 10 

.748 .5655 .GO255 .560202 .560202 

The square root factor is not so smooth a s  the sine function of the preceding problem, so we 
should not expect quite so rapid convergence, and do not get it. 

1 approximation 1 .I45 .I51 .I5202 .I5228 .I5236 .I5239 1 
The value 2 5 2  seems to be indicated. 

15.43. What are  the Gauss-Chebyshev formulas? 

These a r e  of Gaussian form with w ( x )  = l l m ,  

the arguments xi being the zeros of the nth Chebyshev polynomial 

T n  ( x )  = cos ( n  arccos x )  

Contrary to appearances this actually is  a polynomial of degree n, and its zeros are  

xi = cos [(2i - l ) d 2 n ]  

A11 coefficients Ai a r e  simply nln.  The truncation error  is 

E = 2 ~ y ( ~ ~ ) ( e ) / 2 ~ ~ ( 2 n ) !  

15.44. Apply the Gauss-Chebyshev formula for  n = 1 to verify the familiar result 

For  n = 1 we find T , ( x )  = cos (arccos x) = x .  Since there is just one zero, our formula col- 
lapses to  ay(0 ) .  Since the Gaussian formula with n = 1 is exact fo r  polynomials of degree one o r  
less, the given integral is exactly n y(0)  = rr. 

15.45. Apply the n = 3 formula to ll (x4/d=) dx. 

Directly from the definition we find T 3 ( x )  = 4x3 - 32 SO tha t  x ,  = 0 ,  x2  = 6 1 2 ,  x3  = - 6 1 2 .  
The Gauss-Chebyshev formula now yields (n /3 ) (0  + + A) = 3 ~ 1 8  which is also exact. 

PRESCRIBED ARGUMENTS OR COEFFICIENTS 
15.46. Derive an integration formula of the form 
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which will be exact for as high degree polynomials as possible. 
A procedure similar to that  used for  our other Gaussian formulas would also suffice here, but 

the method of undetermined coefficients will be used instead. This method is capable of generating 
any of the Gaussian formulas and serves a s  a n  alternate approach. The present example illustrates 
the general procedure. Here we have six unknown arguments and coefficients, so we ask exactness 
for  y(x) = 1,x,  . . . ,x5. 

2 = A ,  + A 2  + A ,  + A,  

These equations a r e  linear in the Ai but nonlinear in x, and x2. 

Introduce the familiar polynomial 

T ( X )  = ( X  - X 1 ) ( X  - x ~ ) ( x  + 1 ) ( ~  - 1) = X 4  + C1x3 + C2x2 + C32 + c4 
First  notice tha t  ~ ( 1 )  = T(-1) = 0 because of the prescribed arguments. This implies 

1 + C 1 + C z + C 3 + C 4  = 0 

Next multiply the first five equations above by C4, C3, C2, C1, 1 and add. Since r (x1)  = n(xz) = 0 ,  
we obtain 2 + 3C2 + 2C4 = 0. Using the same multipliers on the last  five equations brings 
gCl + +C3 = 0. We now have four  linear equations fo r  the Ci and solve them to get C1 = Cs = 0,  

C 2 - - - Q ,  C4 = + making 
T ( X )  = #5x4 - 6x2 + 1) = $(x - 1)(x + 1)(5x2 - 1) 

The missing arguments a re  therefore xl = m, x2 = --m. With these in our hands the original 
set of six equations is linear. Solving the first four fo r  the coefficients Ai, we find Al  = A2 = 9, 
A,  = A, = Q. Finally we may write our formulas a s  

15.47. What are the Gauss-Lobatto formulas? 
These have the form 

where the xi are  the zeros of PL-, (x)  = 0 and the coefficients a re  

Ai = 2/n(n - 1)[P, -1(z i ) ]2  

The previous example produces the n = 4 formula. The truncation error  can be shown to be 

15.48. Derive an integration formula of the form 

which will be exact for polynomials of degree up to three. 
Again we illustrate the method of undetermined coefficients. Requiring exactness fo r  

~ ( x )  = 1, x, x2,x3 leads to 

2 = 3A, 0 = A(x,  + x2 + x3), $ = A(%: +xi + xz), 0 = A(x; + xi + x!) 
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With ~ ( x )  = (x - xl)(x - x2)(x - x3) = x3 + C1x2 + C2x $; C3 

we multiply the above equations by C3, C2, Cl, 1 and add to get 2C3 + gC1 = 0 since "(xi) = 0. 
Also, by comparing the two forms of ~ ( x ) ,  

C1 = -(xl + xz + x3), C2 = X ~ X Z  + 21x3 + 22x3, C3 = - x ~ x ~ x ~  

I t  is now clear tha t  A = 3 and C1 = 0. For  the rest i t  is convenient to use the classical relation- 
ships between the various symmetric functions. For  example, 

2(xlz2 + XIX3  f ~2x3) = (xl + X2 + ~ 3 ) ~  - (x: + X$ + x:) 
3 ~ ~ ~ ~ x 3  = (21 + 2 2  + x3)(x1x2 + ~ 1 x 3  + ~2x3) - (x: + x i +  x;)(x1 + ~2 + ~ 3 )  + (x: + X: + x:) = o 

become in this example 2 2C2 = C1 - 1, -3C3 = -c1c2 + C1 

SO tha t  C2 = -;t- and C3 = 0. This makes "(x) = x3 - Jx and the required arguments a re  
0, *m. The integration formula is then 

$11 Y(X) dx - $ [ y ( - m )  + ~ ( 0 )  + ~ ( a ) ]  

15A9. What are  the Chebyshev formulas? 

and a re  to be exact for  polynomials of degree n or less. Notice t h a t  all values of the function y(x) 
receive the same weight,  2/n. The arguments xi a re  not so easily described. A few a r e  listed in 
Table 15.4. F o r  n = 8 and n > 10 no formula of this type exists, the analysis leading to fewer 
than n real zeros fo r  ~ ( x ) .  

Table 15.4 

15.50. Derive an integration formula which uses o n l v  t h e  e n d p o i n t s  of the interval of inte- 
gration, values of the integrand and its derivatives being combined a t  these points. 

Such a formula may be obtained by using a "two point Taylor theorem" which provides an 
approximating polynomial of degree 2n-  1 which agrees with y(x) and its first n - 1 derivatives 
a t  c l .  The following alternate derivation using Legendre polynomials is also of interest. I t  begins 
with a familiar succession of integrations by parts,  the result of which is 

The Legendre polynomials Pn(x) now play another useful role. Taking v(x) = 2nn!Pn(x)l(2n)! we 
find v(n)(x) = 1, so tha t  

with truncation error (-l)n 2nn! 
E =  

(2n) ! 
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In Problem 15.59 a proof tha t  

~ : ' ( 1 )  = ( - l ) n + ' P : ) ( - 1 )  = ( n  + i)! l ( n  - 2 3 !  2ii!  

is outlined. Using these values 

15.51. Simplify the truncation error formula of the preceding problem. 
After  n integrations by parts, we have 

since all integrated terms vanish a t  both limits. Since (x2 - l ) n  does not change sign in the interval 
of integration, the mean value theorem may be applied. We find 

E = [2nn! l ( 2 n )  !] ~ ( ~ ~ ) ( e )  

The remaining integral was evaluated in Problem 15.10, page 130,  and we have 

Our formula is exact for  polynomials of degree 2 n  - 1  or less, which is reasonable since 2 n  values 
of y ( 2 )  and i ts  derivatives are  being used. 

15.52. Apply the n = 3 formula to JT" sin t d t .  

Computing the coefficients, we have the formula 

The usual change of argument t = a ( %  + 1 ) / 4  presents us once again with 

J:, I sin : ( x  + 1 )  d x  

making y ( x )  = ( ~ 1 4 )  sin ( r i /4 ) (x  + 1 ) .  We easily find Y o  = - (a /4 )3 ,  Y 1  = ( ~ / 4 ) ~ ,  Y 2  = n14 making 

i;/2 

sin t dt - L[- ( r i /4 )3  15 f 6 ( ~ / 4 ) ~  -k 1 5 ( n / 4 ) ]  

which reduces to .99984. The error  formula of Problem 15.51 produces E = 32 sin 91525, and if 
the maximum of sin 6 is used we obtain a very conservative estimate compared with the actual 
error of .00016. The value of e in this case is actually very near zero. 

15.53. Show that the n = 3 formula just used corresponds to integration of a polynomial 
p(x )  which matches the ~ ( x ) ,  yf(x), and P ( x )  values a t  1 and -1. 

I t  is not hard to verify that  the required polynomial is 

p ( x )  = & [ ( x  + 1 ) 3 ( 3 ~ 2 -  9 ~  + 8)yl  -- ( X  - 1 ) 3 ( 3 ~ 2 +  9% + 8 ) ~ - 1  

- (Z + ( x  - 1 ) ( 3 x  - 5)y; - ( X  + l ) ( x  - lI3 ( 3 2  + 5 ) ~ ' l  

+ ( x  + 1)"x - 1 ) ' y y  + ( 2  + 1)2 ( x  - 1 ) 3 p ; ]  

This may be derived by methods of Chapter 10 ,  which also handles problems involving still higher 
derivatives. Integration of p ( x )  now brings the formula of the previous problem. 
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Supplementary Problems 

[CHAP. 15 

Prove that  PA(%) = X P A - ~ ( X )  + n P n T I ( x ) ,  beginning a s  follows. From the definition of Legendre 
polynomials, 

1  d" PA ( x )  = -- -[n(x2 - 1)"-1 (2x ) ]  
2nn! dxn 

Apply the theorem on the nth derivative of a product to find 

Prove tha t  ( 1  - x2)pi2 ' (x)  - 2xPA ( x )  + n ( n  + l ) P n  ( x )  = 0, a s  follows. Let z  = ( 2 2  - 1)n. Then 
z' = 2nx(x2 - l ) n - l ,  making ( 2 2 -  1)z' - 2nxz = 0. Repeatedly differentiate this equation, obtaining 

( 2 2  - 1 ) d 2 )  - (2n  - 2)m'  - 2nz = 0 

( x 2  - 1 ) d 3 )  - (2n - 4 ) s ~ ' ~ )  - [2n + (2n - 2)]z1 = 0 

($2 - 1 ) d 4 )  - (2n  - 6)xz(3)  - [2n + (2 ,  - 2)  + (2n  - 4 ) ] ~ ( ~ )  = 0 
and ultimately 

( 2 2  - l ) z (n+2)  - ( 2 n  - 2n - 2)xz(n+1) - 12n + (2n  - 2)  + ( 2 n  - 4 )  + . . . + (2n - 2n)]z(n)  = 0 

which simplifies to 
( 2 2  - l )z(n+2) + 2xdn+ 1) - n ( n  + l ) x ( * )  = 0 

Since Pn ( x )  = z(n)/2nn!,  the required result soon follows. 

Differentiate the result of Problem 15.21, page 134, and compare with Problem 15.55 to prove 

xPC ( x )  - PA- ( x )  = nPn ( x )  

Use Problem 15.21 to prove that  for  all n, P n ( l )  = 1 ,  Pn(-1) = ( ~ 1 ) ~ .  

Use Problem 15.54 to prove Ph(1)  = +n(n + I ) ,  PA(--1) = (-1)" + 'P,', (1) .  

Use Problem 15.54 to show that  

phk' (z)  = x  P:?~ ( x )  + (n + k  - 1 )  P ~ ? ~ ~ ) ( X )  

Then apply the method of summing differences to verify 

~ i " ( 1 )  = ( n  + 2)(4) / (2  . 4 ) ,  p F ' ( 1 )  = ( n  + 3) (6 ) / (2  4  6 )  

and in general PFl(1)  = (n + k)(2k)/2kk ! = ( n  + k )  !l(n - k )  ! 2kk ! 

Since Legendre polynomials are either even or odd functions, also verify t h a t  

~ ? ) ( - 1 )  = (-1)n+k P F ) ( I )  

Use Problems 15.54 and 15.56 to prove PA+l(x )  - PA_,(x) = (2n  + l ) P n ( x ) .  

The leading coefficient in P n ( x )  is, a s  we know, A n  = (2n) ! /2n(n! )2 .  Show tha t  i t  can also be written 

Compute the Gauss-Legendre arguments and coefficients for  the case n = 3, showing the argu- 

ments to be xk = 0, and the coefficients to be 819 for xk = 0 and 519 for  the other arguments. 
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Verify these Gauss-Legendre arguments and coefficients for  the case n = 5: 

Apply the three point Gaussian formula of Problem 15.62 to the integral of the sine function, 

i T i 2 s i n  t d t .  How does the result compare with tha t  obtained by Simpson's rule using seven points 

(Problem 14.17, page 113)? 

Apply the Gauss-Legendre two point formula (n = 2 )  to d t  and compare with the 
exact value 712 - 1.5708. 

Diagram the linear collocation and cubic osculating polynomials which lead to the n = 2 formula, 
using the function y ( t )  = 1 / ( 1 +  t2) of Problem 15.65. (See Problem 15.25.) 

Apply the n = 4 formula to the integral of Problem 15.65. What  is the actual error? Try apply- 
ing the error estimate of Problem 15.27, page 136, to this integral. How good is the estimate? Also 
apply the error estimate of Problem 15.33. Which works best? 

Apply the n = 6 and n = 8 formulas to the integral of Problem 15.65. 

n/2 

How'closely do the n = 2,4 ,6 ,  and 8 formulas verify eosz d x  - .6736 to  four places? 
1 + x  

How closely do our formulas verify x Z d x  - .7834 to  four places? Also apply some of our i1 
formulas for  equally spaced arguments to this integral. Which algorithms work best? Which a re  
easiest to apply "by hand" ? Which a re  easiest to program for  automatic computation? 

As in Problem 15.70 apply various methods to esin 2 d x  - 3.1044 and decide which algorithm 
is best for  automatic computation. 

Compute Laguerre polynomials through = 5 from the definition given in Problem 15.35. 

Find the zeros of L 2 ( x )  and verify the arguments and coefficients given in Table 15.2, page 139, 
for  n = 2 .  

Use the method of Problem 15.9 to prove tha t  L,(x) is orthogonal to any polynomial of degree less 
than n, in the sense tha t  im e - x  L,(x) p ( x )  d x  = 0 

where p ( x )  is any such polynomial. 

Prove tha t  ~ m e - ~ ~ ~ ( x )  d x  = (n!)2 by the method of Problems 15.10 and 15.11. 

Apply the Gauss-Laguerre two point formula to obtain these exact results: 

Find the exact arguments and coefficients for  three point Gauss-Laguerre integration. 
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15.78. Use the formula of the previous problem to verify 

i= e - x x 4 d x  = 4 ! ,  e - z x 5 d x  = 5 !  

15.79. Apply the n  = 6 and n = 8  formulas to the "smooth" integral h e-x  cos x  d x .  

15.80. Apply the n  = 6 and n  = 8 formulas to  the "unsmooth" integral im e - x  log (1  + x)  dx .  

15.81. Show t h a t  correct to four  places, e - ( = +  l f z )  d x  - .2797. 

15.82. Compute Hermite polynomials through n  = 5  from the definition given in Problem 15.39. 

15.83. Show tha t  the Gauss-Hermite one point formula is e-x2 y ( s )  d x  - G y ( 0 ) .  This is exact 

for polynomials of degree one or less. Apply it  to y ( x )  = 1. 

15.84. Derive the exact formula for  n = 3  Gauss-Hermite approximation. Apply it to the case 
y (x )  = x4 to obtain a n  exact result. 

15.85. How closely do the four  point and eight point formulas duplicate this result? 

s-: e-"' cosx dx = - 1.3804 

15.86. How closely do the four and eight point formulas duplicate this result? 

s.: , - X ~ - I I X ~ ~ ~  = f i / 2 e 2  - .I1994 

15.87. Show tha t  correct to  three places, 1; [ e - ~ ~ / ( l  + sl)] dx - 1.343. 

15.88. Evaluate correct to  three places, C W  e-:"2 d m  dx.  

15.89. Evaluate correct to three places, S-: e-12 log ( 1  + 2 2 )  dx .  

15.90. Apply the Gauss-Chebyshev n = 2 formula to the exact verification of 

15.91. Find the following integral correct to three places: [(cos x , / d w l  dx .  
- 1 

15.92. Find the following integral correct to two places: ( , / z z / d s )  dx .  

15.93. If all temperatures a r e  given equal weight and five readings a r e  to be used in a 24 hour period 
stretching from midnight to  midnight, what  times should be chosen for  the most accurate mean tem- 
perature determination? (Use a five point formula with coefficients equal, a s  in Problem 15.49.) If 
the readings a t  these times a re  4 0 ° ,  6 0 ° ,  80° ,  90° and 7 0 ° ,  what  is the mean predicted? 

15.94. Referring to Problem 15.93, if only three readings a re  to be used, what times a r e  best? 

- 1  

15.95. Show tha t  fo r  n = 1  the formula of Problem 15.50 becomes y ( s )  d x  - y(-1)  + ~ ( 1 ) .  Also 
- 1 

show t h a t  this corresponds to integration of a polynomial p(x)  which has p(1) = y(1)  and P( -1 )  = 
Y( -1 ) .  
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15.96. Show that  for  11. = 2 the formula of Problem 15.50 becomes 

y(x) dx - y(-1) + y(1) - $[y1(-1) - ~ ' ( l ) ]  

Also show tha t  this corresponds to integration of a polynomial p(x) which matches the y(x) and 
yl(x) values a t  1 and -1. 

15.97. Apply the preceding problem to lT" sin t at .  

15.98. Apply the formula of Problem 15.96 to 1: [1/(1 + x2)] dx. 

In Problems 15.99-15.105, evaluate the integrals. 

. a / 2  

15.99. , 41 - t sin' t d t  

15.102. Arc length of the ellipse x' + (y2/4) = 1. 

(4 places) 

(4 places) 

(7 places) 

(6 places) 

(4 places) 

(4  digits) 

.77/'2 
COS x 

15.lO5.JO m l m  (1 - c-'OOq ax 



Singular Integrals 

It is unwise to apply the formulas of the preceding two chapters blindly. They are all 
based on the assumption that the function y (x )  can be conveniently approximated by a poly- 
nomial p ( ~ ) .  If this is not true then the formulas may produce poor, if not completely 
deceptive results. It would be comforting to be sure that  the following application of 
Simpson's rule will never be made, 

but less obvious singular points have probably been temporarily missed. Not quite so 
serious are the efforts to apply polynomial-based formulas to  functions having singularities 
in their derivatives. Since polynomials breed endless generations of smooth derivatives, 
they are not ideally suited to such functions and poor results are usually obtained. 

PROCEDURES FOR SINGULAR INTEGRALS 

A variety of procedures exists for dealing with singular integrals, whether for singular 
integrands or for infinite range of integration. The following will be illustrated. 

Ignoring the singularity may even be successful. Under certain circumstances i t  is 
enough to use more and more arguments x ,  until a satisfactory result is obtained. 

Series expansions of all or part of the integrand, followed by term by term integration, 
is a popular procedure provided convergence is adequately fast. 

Subtracting the singularity amounts to splitting the integral into a singular piece which 
responds to the classical methods of analysis and a nonsingular piece to which our ap- 
proximate integration formulas may be applied without anxiety. 

Change o f  argument is one of the most powerful weapons of analysis. Here i t  may 
exchange a difficult singularity for a more cooperative one, or i t  may remove the 
singularity completely. 

Differentiation relative to  a parameter involves imbedding the given integral in a family 
of integrals and then exposing some basic property of the family by differentiation. 

Gaussian methods also deal with certain types of singularity, as reference to the previous 
chapter will show. 

Asymptotic series are also relevant, but this procedure is treated in the following chapter. 
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Solved Problems 
16.1. Compare the results of applying Simpson's rule to the integration of fi near 0 and 

away from 0. 
Take first the interval between 1 and 1.30 with h = .05, since we made this computation earlier 

(Problem 14.11, page 112).  Simpson's rule gave a correct result to five places. Even the trapezoidal 
rule gave a n  error  of only .00002. Applying Simpson's rule now to the interval between 0 and .30, 
which has the same length but includes a singular point of the derivative of 6, we obtain 

1°'3fidx - .10864. Since the correct figure is .10954, our result is not quite correct to three 

places. The error  is more than a hundred times greater than for  a n  interval of the same length 
but away from the singular point. 

16.2. What is the effect of ignoring the singularity in the derivative of 6 and applying 
Simpson's rule with successively smaller intervals h? 

Polya has proved (Math. Z., 1933) tha t  fo r  functions of this type (continuous with singularities 
in derivatives) Simpson's rule and others of similar type should converge to the correct integral. 
Computations show these results: 

I l l h  1 8 32 128 512 1 

The convergence to 213 is slow but does appear to be occurring. 

16.3. Determine the effect of ignoring the singularity-and applying Simpson's rule to the 

following integral: ( 1 /6 )  dx = 2. l1 
Here the integrand itself has  a discontinuity, and an infinite one, but  Davis and Rabinowitz 

have proved (SIAM Journal, 1965) tha t  convergence should occur. They also found Simpson's rule 
producing these results, which show tha t  ignoring the singularity is sometimes successful: 

I 

approx. integral 1.84 1.89 1.92 1.94 1.96 1.97 

The convergence is again slow but  does appear to be occurring. A t  current computing speeds 
slow convergence may not be enough to rule out a computing algorithm. There is, however, the 
usual question of how much roundoff error  will affect a lengthy computation. F o r  this same integral 
the trapezoidal rule with h = 114096 managed 1.98, while application of the Gauss 48 point for- 
mula to quarters of the interval (192 points in all) produced 1.99. Even in the presence of singu- 
larity the Gauss formula seems to be more efficient. 

16.4. Determine the result of ignoring the singularity and applying the Simpson and 

Gauss rules to the following integral: 
1 

sin ; d 5  - ,6347. 

Here the integrand has an infinite discontinuity and is also highly oscillatory. The combina- 
tion can be expected to produce difficulty in numerical computation. Davis and Rabinowitz (see 
preceding problem) found Simpson's rule failing, 

and the Gauss 48 point formula doing no better. So the singularity cannot always be ignored. 

l l h  

approx. integral 

64 128 256 512 1024 2048 

2.31 1.69 -.60 1.21 .72 .32 
1 



152 SINGULAR INTEGRALS [CHAP. 16 

16.5. Evaluate to three places the singular integral 1' (ez/f i )  dx. 
Direct use of the Taylor series leads to 

After the first few terms the series converges rapidly and higher accuracy is easily achieved if 
needed. Note tha t  the singularity I/& has been handled a s  the first term of the series. (See also 
the next problem.) 

16.6. Apply the method of "subtracting the singularity" to the integral of Problem 16.5. 
Calling the integral I, we have 

The first integral is elementary and the second has no singularity. However, since (eZ- l)/& 
behaves like & n e a r  zero, i t  does have a singularity in i ts  first derivative. This is enough, a s  we 
saw in Problem 16.1, to make approximate integration inaccurate. 

The subtraction idea can be extended to push the singularity into a higher derivative. F o r  
example, our integral can also be written a s  

l + x d X  + l1 e x - I - x  
clx 

dz 
Further  terms of the series for the exponential function may be subtracted if needed. The first 
integral here is  813, and the second could be handled by our formulas, though the series method 
still seems preferable in this case. 

16.7. Evaluate the integral of Problem 16.5 by a change of argument. 
The change of argument, or substitution, may be the most powerful device in integration. 

- 1  

Here we let t = & and find I = 2 et'dt which has no singularity of any kind, even in i ts  
JO 

derivatives. This integral may be evaluated by any of our formulas or by a series development. 

16.8. Evaluate correct to six decimal places, 1' (cos x)(log x) dx. 

Here a procedure like that  of Problem 16.5 is adopted. Using the series for  cos x, the integral 
becomes 

Using the elementary integral 

the integral is replaced by the series 

1 1 + - _ _ -  1  -1 + --- - --- l t  
3'2! 5"! 726! 9%! 

which reduces to -.946083. 

16.9. Evaluate 1 Ja i s i n - d t  by a change of variable which converts the infinite 
t2 

interval of integration into a finite interval. 
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Let x = l l t .  Then the integral becomes sin (x" dx which can be computed by various i1 
approximate methods. Choosing a Taylor series "expansion leads to 

J1 sin ( ~ 2 )  dx  = 

which is .310268 to six places, only four  terms contributing. 

Show that  the change of variable used in Problem 16.9 converts 1' d t  into a 

badly singular integral, so that  reducing the interval of integration to finite length 
may not always be a useful step. 

With x = l l t  we obtain the integral S1 :sin $ dx  encountered in Problem 16.4, which 
0 

oscillates badly near zero, making numerical integration nearly impossible. The integral of this 
problem may best be handled by asymptotic methods to be discussed in the next chapter. 

Compute Jrn i s i n  ns ds by direct evaluation between the zeros of sin s, thus 

developing part  of an alternating series. 
Applying the Gauss 8 point formula to each of the successive intervals (1,2),  (2,3), and so on, 

these results a r e  found: 

I Interval 1 Integral I Interval ( Integral I 

The total is  -.11094, which is correct to five places. 

This method of direct evaluation for an interval of infinite length resembles in spirit the 
method of ignoring a singularity. The upper limit is actually replaced by a finite substitute, in 
this case ten, beyond which the contribution to the integral may be considered zero to the accuracy 
required. This same procedure was actually involved in Chapter 14, where the error integral was 
found to equal 1 to six places, fo r  upper limit 4. The value for  infinite upper limit is exactly 1, 
a s  may be proved by methods of elementary analysis. 

Compute J e - X '  lIX2 dz by differentiation relative to a parameter. 

This problem illustrates still another approach to the problem of integration. We begin by 
imbedding the problem in a family of similar problems. For  t  positive, le t  

Since the rapid convergence of this singular integral permits differentiation under the integral 
sign, we next find 

Now introduce the change of argument y = tlx, which allows the attractive simplification 

Thus F( t )  = Ce-2t and the constant C may be evaluated from the known result 
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The result is e-x2 - t2/x2 dx = .hfi e-2t  

For  the special case t = 1, this produces .I19938 correct to six digits. 

Supplementary Problems 

16-13. Compare the results of applying Simpson's rule with h = 4 to 1' x dx and i' x log x dx. 

16.14. Use successively smaller h intervals for  the second integral of Problem 16.13 and notice the con- 
vergence toward the exact value of -114. 

16.15. Evaluate to three places by series development: (sin X ) / X ~ / ~  dx. i1 
16.16. Apply the method of subtracting the singularity to the integral of Problem 16.15, obtaining a n  

elementary integral and an integral which involves no singularity until the second derivative. 

16.17. Ignore the singularity in the integral of Problem 16.15 and apply the Simpson and Gauss formulas, 
continually using more points. Do the results converge toward the  value computed in Problem 
16.15? (Define the integrand a t  zero a s  you wish.) 

16.18. Evaluate e c X  logx dx correct to  three places by using the series for  the exponential function. s,' 
16.19. Compute the integral of the preceding problem by ignoring the singularity and applying the Simpson 

and Gauss formulas. Do the results converge toward the value computed in Problem 16.18? 
(Define the integrand a t  zero a s  you wish.) 

16.20. Use series to show tha t  

16.21. Verify t h a t  to four  places [e-x2/(1 + x2)] dx = .6716. s," 
16.22. Verify tha t  to four  places e-r log x dx = -.5772. t * 
16.23. Verify tha t  to four places e-r - 1'2 dx = ,2797. s," 
16.24. Verify tha t  to four places e-z&dx = .8862. s," 
16.25. Verify tha t  to four  places [l/d-] dx = 1.772. s,' 
16.26. Verify tha t  to four  places (sin x)(log sin x) dx = -.3069. 
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16.27. Apply the method of differentiating relative to a parameter to the integral 

F( t )  = [ e - 3  cos tx dx 

obtaining Ff ( t )  = -(tl2) F(t)  and F( t )  = Ce-t2/4. Evaluate the constant C. Finally let t = r 
to obtain 

FG) = e-zY cos r x  dx 
correct to six places. 

16.28. Evaluate the following integral, which arose in a problem of lubrication engineering, to three figures: 

COS X (1 - e-nx) dx 

Treat  the cases n = 10, 50, and 100. 

I n  Problems 16.29-16.35, evaluate the integrals a s  indicated. 

(4 digits) 

16.30. f e-z zn-1 dx = T(n) (5 places) n = 1(.1)2 

cos x 
16.34. lm dx 

(4 places) 

(4 places) 

(4 places) 

(4 places) 

(7 places) 



Chapter 17 

Sums and Series 

REPRESENTATION OF NUMBERS AND FUNCTIONS AS SUMS 
Addition is surely the most popular arithmetical operation. The representation of 

numbers and functions as  finite or infinite sums is one aspect of this popularity and has 
proved to be very useful in applied mathematics. Numerical analysis exploits such rep- 
resentations in many ways, including the following. 

T h e  telescoping method makes i t  possible to replace long sums by short ones, with ob- 
vious advantage to the computer. The classic example is 

1  1 1 1 -+- 1 +-+ . . . = ( I - & ) + ( + - & ) +  . . .  + = I - -  
1 . 2  2 . 3  3 . 4  + n(n + 1) (: n i l )  n + 1  

in which the central idea of the method can be seen. Each term is replaced by a 
difference. Our formulas for finite differences are helpful in bringing this about. 

Rapidly  convergent infinite series play one of the leading roles in numerical analysis. 
Typical examples are the series for the sine and cosine functions. Each such series 
amounts to a superb algorithm for generating approximations to the function represented. 

Acceleration methods have been developed for  more slowly converging series. If too 
many terms must be used for the accuracy desired, then roundoffs and other troubles 
associated with long computations may prevent the attainment of this accuracy. Ac- 
celeration methods alter the course of the computation, or in other words, they change 
the algorithm, in order to make the overall job shorter. 

T h e  Euler  transformation is a frequently used acceleration method. This trans- 
formation was derived in an earlier chapter. I t  replaces a given series by another 
which often is more rapidly convergent. 

T h e  comparison method is another acceleration device. Essentially the same a s  the 
method of subtracting singularities, i t  splits a series into a similar, but known, series 
and another which converges more rapidly than the original. 

Special methods may be devised to accelerate the series representations of certain 
functions. The logarithm and arctan functions will be used as illustrations. 

T h e  Bernoulli polynomials are given by 

with coefficients Bi determined by 

for k = 2,3,  etc. Properties of Bernoulli polynomials include the following. 
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J B ~ ( x )  d x  = o for i > o 
0 

Bi(1) = Bi(O) for i > 1 

The  Bernoulli numbers bi are defined by 

bi = (-1)'+'B2i 
for i = 1,2 ,  eta. 

Sums  of  integer powers are related to the Bernoulli polynomials and numbers. Two 
such relationships are  

5. The  Euler-Maclaurin formula may be derived carefully and an error estimate obtained 
through the use of Bernoulli polynomials. It may be used as an acceleration method. 
Euler's constant 

C = lim ( 1  + 112 + 113 + . . + lln - log n] 

can be evaluated using the Euler-Maclaurin formula. Six terms are enough to produce 
almost ten decimal place accuracy. 

6. Wallis' product for  T is 
2 . 2 . 4 . 4 . 6 . 6 . .  . 2 k * 2 k  

~ 1 2  = lim 1.3.3.5-5.7.-.(2k-l)(2k+fj 

and is used to obtain Stirling's series for large factorials, which takes the form 

the bi still being Bernoulli numbers. The simpler factorial approximation 

is the result of using just one term of the Stirling series. 

7. Asymptotic series may be viewed as still another form of acceleration method. Though 
usually divergent, their partial sums have a property which makes them useful. The 
classic situation involves sums of the form 

n 

S, , (X)  = C ailxi 
i = O  

which diverge for all x as n tends to infinity, but such that 

lim xn [f ( x )  - Sn(x)] = 0 

for x tending to infinity. The error in using Sn(x)  as an approximation to f ( x )  for large 
arguments x can then be estimated very easily, simply by looking a t  the first omitted 
term of the series. Stirling's series is a famous example of such an asymptotic series. 
This same general idea can also be extended to other types of sum. 

Integration by parts converts many common integrals into asymptotic series. For 
large x this may be the best way for evaluating these integrals. 
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Solved Problems 

THE 

17.1. 

17.2. 

17.3. 

17.4. 

TELESCOPING METHOD 
n 4-1 

Evaluate 2 log - 
i=2 i ' 

This is  another telescoping sum. We easily find 
n i - 1  n 

= x [log ( i  - 1)  - log i ]  = - log n 
i=2 i=2 

The telescoping method is of course the summation of differences a s  discussed in Chapter 5. 
h 

The sum x v i  can be easily evaluated if yi can be expressed a s  a difference, fo r  then 5 yi = 
b i=a 

AYi = Y b f l  - Ya.  
i=a  

n 

Evaluate the power sum x i4. 
i=l 

Since powers can be expressed in terms of factorial polynomials, which in turn can be ex- 
pressed a s  differences (see Chapter 4), any such power sum can be telescoped. In  the present example 

Other power sums a re  treated i n  similar fashion. 

Evaluate 2 (i2 + 34 + 2). 
i=l 

Since power sums may be 
easy bonuses. F o r  example, 

n n 

evaluated by summing differences, sums of polynomial values a r e  

n 1 iZ i(i + l)(i + 2) . 
This can also be written a s  a sum of differences. Recalling the factorial polynomials with neg- 

1  ative exponent, of Chapter 4, we find -- - - 1 - - 1  
2i(i + 1)  2(i  + l ) ( i  + 2)  i ( i  + l ) ( i  + 2)  

and i t  follows tha t  

1  the given sum telescopes to  - - 1  
4 2 ( n + l ) ( n + 2 ) '  

m 1  - - 1  
In  this example the infinite series is  convergent and x - 

i l i ( i + l ) ( i + 2 )  4 '  

" 3 
17.5. Evaluate x i(i+3). 

i=l 
Simple rational functions such a s  this (and in Problem 17.4) a r e  easily summed. Here 

* 3  
The infinite series converges to x - = 1116. 

,=,  2 0  + 3)  
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RAPIDLY CONVERGENT SERIES 
How many terms of the Taylor series for sin x in powers of x are needed to provide 
eight place accuracy for all arguments between 0 and ~ / 2 ?  

Since the series sin x = x (-l)ix2i+ll(2i + l ) !  is alternating with steadily decreasing terms, 
i = O  

the truncation error  made by using only n terms will not exceed the (n + 1)st term. This important 
property of such series makes truncation error  estimation relatively easy. Here we find 
(~/2)15/15! - 8 10-10 so tha t  seven terms of the sine series a r e  adequate fo r  eight place accuracy 
over the entire interval. 

This is a n  example of a rapidly convergent series. Since other arguments may be handled by 
the periodicity feature of this function, all arguments a re  covered. Notice, however, t h a t  a serious 
loss of significant digits can occur in argument reduction. For  instance, with x - 31.4 we find 

sin x - sin 31.4 = sin (31.4 - 1 0 ~ )  - sin (31.4 - 31.416) = sin (-.016) - -.016 

In  the same way sin 31.3 - -.I16 while sin 31.5 - .084. This means t h a t  although the input data  
31.4 is  known to three significant figures the output is not certain even to one significant figure. 
Essentially i t  is the number of digits to the r ight  of the decimal point in the argument x which 
determines the accuracy obtainable in sin x.  

How many terms of the Taylor series for er in powers of x are needed to provide 
eight place accuracy for all arguments between 0 and I?  

m 

The series is the familiar eZ = x xili!  . Since this is  not a n  alternating series, the truncation 
i = O  

error may not be less than the first omitted term. Here we resort to a simple comparison test. 
Suppose we truncate the series af ter  the xn term. Then the error  is  

and since x < 1 this error  will not exceed 

so tha t  i t  barely exceeds the first omitted term. For  n = 11 this error bound becomes about 
2 .10-9  so t h a t  a polynomial of degree eleven is  indicated. For  example, a t  x = 1 the successive 
terms a r e  a s  follows: 

and their total is  2.71828184. This is wrong by one uni t  in  the l as t  place because of roundoff errors. 

The error  could also have been estimated using Lagrange's form (Problem 11.4, page 73), 
which gives 

E = - -  ecxn+l w i t h O < [ < x  
(n + 1) ! 

17.8. Compute e-lo to six significant digits. 

This problem illustrates an important difference. For  six places we could proceed a s  in  Problem 
17.7, with x = -10. The series would however converge very slowly, and there is trouble of 
another sort. In  obtaining this small number a s  a difference of larger numbers we lose digits. 
Working to eight places we would obtain e-10 - .00004540 which has only four  significant digits. 
Such loss is  frequent with alternating series. Occasionally double-precision arithmetic (working to 
twice a s  many places) overcomes the trouble. Here, however, we simply compute el0 and then take 
the reciprocal. The result is e-10 - .0000453999 which i s  correct to  the last  digit. 
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In Problem 1 4 . 3 4 ,  page 1 1 8 ,  the integral (2/fi)r c t 2 d t  was calculated by the 

Taylor series method for x = 1 .  Suppose the series is used for larger x ,  but to avoid 
roundoff error growth no more than twenty terms are to be summed. How large 
can x be made, consistent with four place accuracy? 

The n th  term of the integrated series is  2xzn-l/&(2n - l ) ( n  - 1)  ! a p a r t  f rom the sign. Since 
this series alternates, with steadily decreasing terms, the truncation error  will not exceed the first 
omitted term. 

Using 20 terms we require t h a t  (2/\ /;;)x41/41 2 0 !  < 5 10-5. This leads to x < 2.5 ap- 
proximately. F o r  such arguments the series converges rapidly enough to meet our stipulations. 
For  larger  arguments i t  does not. 

ACCELERATION METHODS 
Not all series converge as rapidly as those of the previous problems. From the 
binomial series 

1 / ( 1  + x 2 )  = 1 - x2 + x4 - x6 + . - 
one finds by integrating between 0 and x that 

arctan x = x - $x3 + 3x5 - 3x7 + . a . 

At x = 1 this gives the Leibnitz series 

=/4 1 I - + + * - + +  . . .  

How many terms of this series would be needed to yield four place accuracy? 

Since the series is  alternating with steadily decreasing terms, the truncation error  cannot 
exceed the first term omitted. If this term is  to be .00005 or less, we must use terms out to  about 
1/20,000. This comes to 10,000 terms. In  summing so large a number of terms we can expect round- 
off errors  to accumulate to  100 times the maximum individual roundoff. But  the accumulation could 
grow to 10,000 times tha t  maximum if we were unbelievably unlucky. A t  any ra te  this series does 
not lead to a pleasant algorithm for  computing s / 4 .  

Apply the Euler transformation of Chapter 11 to the series of the preceding problem 
to obtain four place accuracy. 

The best procedure is  to sum the early terms and apply the transformation to the rest. F o r  
example, to five places, 

~ - Q + I -  . . .  -- & = .76046 

The next few reciprocals and their differences a re  a s  follows: 

The Euler transformation is  
m 

yo - Y 1  + y2 - + . . . = z ( - l ) i ~ i ~ 0 / 2 i + ' 1  =  YO - $Ago + &i2Uo - " '  

i=O 
and applied to our table produces 

.02381 + .00104 + .00008 + .00001 = .02494 
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Finally we have 

7r/4 = 1 - 4 + 4 - 3 + . .. = .76046 + .02494 = .7854 

which is  correct to four places. In all, fifteen terms of the original series have seen action rather 
than 10,000. The Euler transformation often produces superb acceleration like this, but i t  can also 
fail. (See Problem 11.38, page 78, fo r  a possible criterion of effectiveness.) 

17.12. Compute d 4  from the formula 

714 = 2 arctan ;5 + arctan 3 + 2 arctan 4 
working to eight digits. 

This illustrates how special properties of the function involved may be used to bring accelerated 
convergence. The series 

arctan x = x - 4x3 + bx5 - bx7 + . . . 
converges quickly for  the arguments now involved. We find using no more than five terms of the 
series: 

2 arctan 4 = .39479112, arctan 3 = .14189705, 2 arctan 4 = .24870998 

with a total of .78539815. The last  digit should be a 6. 

17.13. Show that  power series for logarithms converge slowly fo r  large arguments. 

The familiar identity 

can be integrated from 0 to x, with the result 

1 1 1 1 1 + x  - -log- - x + - x 3  + - % 5  + . . .  + - x 2 n - l  + R  t2n 
3 5 ,, where R , = $ - d t  2 1 - x  2 n  - 1 

For x2 < 1 we find 1 / (1  - t2)  6 1 / ( 1 -  xz),  making IRnl 6 lx12n+l/(2n + 1)(1  - 22). As n increases, 
lim Rn = 0 and the series obtained does represent the logarithm function. Moreover, for  
-1 < x < 1 the quotient ( 1  C % ) / ( I  - x )  assumes all positive values so tha t  theoretically any real 
logarithm is  computable from the series. Using x = Q, the series produces 

log 2 = 2(* + & + &+ & + . . . )  - .693147 

six terms being adequate fo r  six place accuracy since lRsl 6 ~1*1l3/13  - 5. 
Computations were carried to eight digits, finally rounded to six, so tha t  roundoff errors could 

not possibly influence the result. For  1x1 < 1 /3  the series is  rapidly convergent. However, fo r  
x = 2 /3 ,  which leads to log 5, almost twenty terms a r e  needed, and a s  x nears 1 the series begins 
to resemble the divergent 1 + + + 8 + 3 + . . This corresponds to the fact  tha t  logarithms grow. 
without bound a s  their arguments increase. The series converges very slowly for  such arguments 
and roundoff error  accumulation becomes a serious factor. Other series, such as  the one for  
log ( 1  + x) ,  are  slower still. 

17.14. Devise an  accelerated method for  computing logarithms of large arguments. 

Let (1  + x ) / ( l  - x)  = p2/(p2 - 1) .  Then 

1 1 l + x  
log P = 2 log (p2 - 1)  + - log ----- 

2 1 - x  

and since x = 1/(2p2 - I ) ,  we can use the series of Problem 17.13 to get 

1 1 1 
log p = - log ( p  - 1)  + - log ( p  + 1)  + --- 1 + . . .  

2 2 2p2 - 1 + 3(2p2 - I)3  
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If we restrict x to the interval 0 < x < 1, which costs us nothing since negative x lead to 
logarithms of reciprocals, then pz > 1 .  If p is a prime greater than 2, this series expresses 
log p as  a combination of logarithms of smaller integers (since p + 1 will be even and can be 
factored) plus a rapidly convergent series. The truncation error  of this series can be estimated 
by comparison with a geometric series. The remainder beyond the term lIn(2p2 - l ) n  is 

As an example take p = 3. Then 2p2- 1 is  17, and using log 2 = .693147, 

only these terms contributing since R5 < 1/(7  288.1,400,000) - 3 .  10dlO. 

Similar efforts produce log 5 ,  log 7 ,  and so on, the series converging faster  a s  p gets larger. 
Logarithms of composite integers may be found by additions, and numbers which are  not integers 
may be handled by splitting off the integral part.  For  example, if N = I + D ,  where I is  the 
integer par t  of N, then log N = log I + log (1  + DII).  The first logarithm may be found by the 
method of this problem and the second responds to the series of Problem 17.13. 

rn 

would be needed to evaluate the series correct to 17.15. How many terms of C 
three places ? i = l  

Terms beginning with i = 45 are  all smaller than .0005, so t h a t  none of these individually 
affects the third decimal place. Since all terms a re  positive, however, i t  is  clear that  collectively 
the terms from i = 45 onward will affect the third place, perhaps even the second. Stegun and 
Abramowitz (Journal of SIAM, 1956) showed tha t  5745 terms a re  actually required for three place 
accuracy. This i s  a good example of a slowly convergent series of positive terms. 

17.16. Evaluate the series of Problem 17.15 by the "comparison method", correct to three 
places. (This method is analogous to the evaluation of singular integrals by subtract- 
ing out the singularity.) 

The comparison method involves introducing a known series of the same rate  of convergence. 
For  e x a m ~ l e .  

We will prove later tha t  the first series on the right is 7216. The second converges more rapidly 
than the others, and we find 

with just ten terms being used. Subtracting from 7216 - 1.64493 makes a final result of 1.07695, 
which can be rounded to 1.077. 

17.17. Verify that the result obtained in Problem 17.16 is correct to a t  least three places. 

The truncation error of our series computation is  

The first series on the right will later be proved to be 74/90, and the second comes to a t  least 
1.08200. This makes E < 1.08234 - 1.08200 = ,00034. Roundoff errors cannot exceed 1 1 . 5 .  10W6 
since eleven numbers of five place accuracy have been summed. The combined error  therefore does 
not exceed .0004, making our result correct to  three places. 
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1 
17.18. Apply the comparison method to iz i2(i2 + 

This series was summed directly in the preceding problem. To illustrate how the comparison 
method may be reapplied, however, notice t h a t  

Direct evaluation of the last  series brings $ + & + & + + & + * ' - which comes to .51403. 
Subtracting from 74/90 we find 

which agrees nicely with the results of the previous two problems, in which this same sum was 
computed to be .56798 with an estimated error of .00034. The error  estimate was almost perfect. 

1 
17.19. Evaluate x p to four places. 

i = l  

The series converges a little too slowly for  comfort. Applying the comparison method, 

The first series on the r ight  is telescoping and was found in Problem 17.4 to  be exactly 114. The 
last may be summed directly, 

m 

and comes to .04787. Subtracting from 1.25, we have finally 2 119 = 1.20213 which is correct 
i= 1  

to four places. See Problem 17.41, page 170, for  a more accurate result. 

THE BERNOULLI POLYNOMIALS 
17.20. The Bernoulli polynomials Bi(x) are defined by  

Let Bi(0) = Bi and develop a recursion for these Bi numbers. 
Replacing x by 0 ,  we have 

k-l Bi k-1 k 
with ek = 2 --- This makes k!ck = 2 ( i )  Bi.  Comparing the coefficients of t in the 

i=o  i!(k - i) ! ' i = o  

series equation above, we find tha t  

Written out, this set of equations shows how the B,  may be determined one by one without difficulty: 

Bo = 1 

Bo + 2B1 = 0 

Bo + 3B1 + 3B2 = 0 

Bo + 4B1 + 6B2 + 4B3 = 0 

etc. The first several Bi are  therefore 
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Bo = 1, B1 = -112, B2 = 116, B3 = 0, B4 = -1130, B5 = 0, B,  = 1142 

and so on. The set of equations used can also be described in the form 

( B  + l ) k  - Bk = 0 for  k = 2,3,  . . . 
where i t  is understood t h a t  af ter  applying the binomial theorem each "power" Bi i s  replaced by Bi. 

17.21. Find an explicit formula for the Bernoulli polynomials. 

From the defining equation and the special case x = 0 treated above, 

1 k 1 
Comparing the coefficients of tk on both sides makes - Bk(x) = 2 Bk-i ';--;- xi or  

k !  i = o  t ! ( k -2 ) !  

The first several Bernoulli polynomials a re  

B0(x) = 1 B3(x) = ~3 - t ~ 2  + 45 

B1(x) = 2 - 3  B4(x)  = 2 4  - 2x3 + x2 - 30 

B2(x) = x2 - x + Q B,(x) = 2 5  - i x4  + 9x3 - Qx 

etc. The formula can be summarized a s  Bk(x)  = ( x  + B)k where once again i t  is  to be understood 
that  the binomial theorem is applied and then each "power" Bi i s  replaced by Bi. 

17.22. Prove that B ~ ( x )  = iB i -~(x ) .  
The defining equation can be written a s  

Differentiating relative to x and dividing through by t ,  

But the defining equations can also be written a s  

and comparing coefficients on the right, B: (X)  = iBi-l(x)  fo r  i = 1,2, . . . . Notice also t h a t  the 
same result can be obtained instantly by formal differentiation of Bi(x) = ( x  + B){. 

17.23. Prove B,(x + 1) - Bi(x) = ixi-'. 

Proceeding formally (even though a rigorous proof would not be too difficult) from ( B  + l ) k  = 
i .  i 

Bk, we find B (i) ( B  + l ) k  xi-k = 3 (i) Bk xi-k or 
k = 2  k=2 

From the abbreviated formula fo r  Bernoulli polynomials (Problem 17.21), this converts im- 
mediately to  Bi(x + 1) - Bi(x) = ixi-1. 

17.24. Prove Bi(1) = B,(O) for i > 1. 

This follows a t  once from the preceding problem with x replaced by zero. 
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17.25. Prove that  J Bi(a) dx = 0 for i = 1 , 2 ,  . . . . 
By the previous problems 

17.26. The conditions of Problems 17.22 and 17.25 also determine the Bernoulli polynomials, 
given Bo(x) = 1. Determine Bl(x) and B2(x) in this way. 

From B;(x) = Bo(x) i t  follows tha t  Bl(x) = x + C1 where C1 i s  a constant. For  the integral 
of Bl(x) to be zero, C1 must be -112. Then from B;(X) = 2B1(x) = 2% - 1 i t  follows t h a t  Bz(z)  = 
x2 - x + C2. For  the integral of B,(x) to be zero, the constant Cz must be 116. In this way each 
B,(x) may be determined in its turn. 

17.27. Prove B2i-1 = 0 for i = 2 , 3 ,  . . . . 
Notice t h a t  

t t Biti f ( t )  = - + -  = - t . e t + l  - = Ro + 2 -  
e t - - 1  2 2 e t - 1  i=2  2 !  

is  a n  even function, tha t  is, f ( t )  = f(-t). All odd powers of t must have zero coefficients, making 
Bi zero for  odd i except i = 1. 

17.28. Define the Bernoulli numbers bi. 

These a re  defined a s  bi = (-l)i+l BZi for  i = 1,2,  . . . . Thus 

a s  is  easily verified af ter  computing the corresponding numbers Bi by the recursion formula of 
Problem 17.20. 

17.29. Evaluate the sum of pth powers in terms of Bernoulli polynomials. 
Since, by Problem 17.23, ABi(x) = Bi(x + 1) - Bi(x) = ixi-1, the Bernoulli polynomials pro- 

vide "finite integrals" of the power functions. This makes i t  possible to telescope the power sum. 

m 

17.30. EvaIuate the sums of the form Ilkzi in terms of Bernoulli numbers. 
k=l 

I t  will be proved later  (see chapter on trigonometric approximation) tha t  the function 

F,(x) = B,(x), 0 5 x < 1 

F, (x m) = F(x) ,  for m an integer 

known a s  a Bernoulli function, having period 1, can be represented a s  
m 

F n ( x )  = (- l)n/2+ 1 . 2/(2rr)" . 2 (cos 2rrkx)lk" k=1 
for even n, and a s  w 

F,(x) = (- 1)("+')/2 . 2/(2r;)n . 2 (sin 2rrkx)lkn 
k = l  

when n is odd. For  even n, say n = 2i, we put x = 0 and have 
m 
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m m 

In  particular, x l lk2  = 7216, 2 llk4 = ~4190,  etc. 
k=l k=l 

17.31. Show that all the Bernoulli numbers are positive and that they become arbitrarily 
large as i increases. 

00 CO 

Noting t h a t  1  < 3 llk2i S llk2 = rr2/6 < 2 ,  we see t h a t  
k=l k=l 

In  particular all the bi a r e  positive and they grow limitlessly with increasing i. 

( 2 ~ ) ~ ~  17.32. Show that as i increases, lim ----- z(zi)  ! '1 = 1. 

This also follows quickly from the series of Problem 17.30. All terms except the k = 1  term 
approach zero for  increasing i, and because l lxp  i s  a decreasing function of x, 

1  
so that ,  if p > 1, 

1  
kP k=2 P - 1  

As p increases (in our case p = 2i) this entire series has limit zero, which establishes the required 
result. Since all terms of this series a r e  positive, i t  also follows t h a t  bi > 2(2 i ) ! / (2~)2 i .  

THE EULER-MACLAURIN FORMULA 

17.33. Use the Bernoulli polynomials to derive the Euler-Maclaurin formula with an error 
estimate. (This formula was obtained in Chapter 11 by an operator computation, but 
without an error estimate.) 

We begin with an integration by parts, using the facts t h a t  B i ( t )  = Bo(t)  = 1  and B 1 ( l )  = 
-B1(0) = 1/2. 

r l  r l  

Again integrate by par t s  using B ; ( t )  = 2B,( t )  from Problem 17.22 and B2(1) = Bz(0) = b ,  to find 

The next integration by parts  brings 

But since B 3 ( l )  = B3(0) = 0 ,  the integrated term vanishes and we proceed to 

since B , ( l )  = B4(0)  = B4 = -b2.  Continuing in this way, we develop the result 
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Integrating Rk by parts  the integrated par t  again vanishes, leaving 

Corresponding results hold for the intervals between other consecutive integers. Summing, we 
find substantial telescoping and obtain 

( - I )% ( Z , - l ]  - 5 i J," ~ ( t )  d t  + $ (YO + yn) - igl ( 2 i ) !  [ Y ~ ,  
i = O  

with an error of 

where F S k ( t )  is the Bernoulli function of Problem 17.30, the periodic extension of the Bernoulli 
polynomial Bm( t ) .  The same argument may be used between integer arguments a and b rather  than 
0 and n. We may also allow b to become infinite, provided tha t  the series and the integral we en- 
counter a re  convergent. In this case we assume tha t  y ( t )  and its derivatives all become zero a t  
infinity, so t h a t  the formula becomes 

17.34. Evaluate the power sum i4 by use of the Euler-Maclaurin formula. 
i = O  

In this case the function y ( t )  = t 4 ,  SO tha t  with k = 2 the series of the preceding problem 
terminates. Moreover, the error Ek becomes zero since ~ ( ~ ) ( t )  is zero. The result is 

a s  in Problem 17.2. This is an example in which increasing k in  the Euler-Maclaurin formula leads 
to a finite sum. (The method of Problem 17.29 could also have been applied to this sum.) 

1 1  1 
17.35. Compute Euler's constant C = lim + 3 + . . . + - - log n assuming conver- n I 

gence. (See also Problem 17.86, page 175.) 
m 

Using Problem 17.1, this can be rewritten a s  C = 1 + [+ + log F] . i = 2  

The Euler-Maclaurin formula may now be applied with y ( t )  = llt  - log t + log ( t  - 1) .  Actu- 
ally i t  is  more convenient to sum the first few terms directly and then apply the Euler-Maclaurin 
formula to the rest  of the series. To eight places, 

Using 10 and - a s  limits, we first compute 

J-1 [lit - log t + log ( t  - I ) ]  d t  = ( 1  - t )  log - 
t - 1  I -  lo  

the first term coming from the upper limit by evaluation of the "indeterminate form". Next 

all values a t  infinity being zero. Summing the five terms just computed, we have C - .57721567. 
Carrying ten places and computing only one more term would lead to the better approximation 
C - .5772156650 which is itself one unit too large in the tenth place. 
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In this example the accuracy obtainable by the Euler-Maclaurin formula is limited. After  a 
point, using more terms (increasing k) leads to poorer approximations to Euler's constant rather  
than better. In other words, we have used a few terms of a divergent series to obtain our results. 

(-l)i+ 1 b, 2i + g To see this we need only note t h a t  the i th  term of the series is (2i)(2i - l j  [m - ] and 

that  by Problem 17.31 the bi exceed 2(2i)!l(2n)Zi which guarantees the unlimited growth of this term. 
Divergence is more typical than convergence for  the Euler-Maclaurin series. 

17.36. A truck can travel a distance of one "leg" on the maximum load of fuel i t  is capable 
of carrying. Show that if an unlimited supply of fuel is available a t  the edge of a 
desert, then the truck can cross the desert no matter what its width. Estimate how 
much fuel would be needed to cross a desert 10 "legs" wide. 

On just one load of fuel the truck could cross a desert one leg wide. With two loads available 
this strategy could be followed: Loading up, the truck is driven out into the desert to  a distance 
of one-third leg. One-third load of fuel is  left in  a cache and the truck returns to  the fuel depot 
just a s  its fuel vanishes. On the second load i t  drives out to the cache, which i s  then used to fill 
up. With a full load the truck can then be driven one more leg, thereby cross a desert of width 
(1 + a) legs, a s  shown in Fig. 17-1. With three loads of fuel available a t  the depot two trips can 
be made to establish a cache of 615 loads a t  a distance of 115 leg out into the desert. The third 
load then brings the truck to the cache with (415 + 615) loads available. Repeating the previous 
strategy then allows a journey of 1 + 4 + & legs, a s  shown in Fig. 17-2. 

Depot 
?cache 

I F i r s t  

Depot 

Fig. 17-1 Fig. 17-2 

A similar strategy allows a desert of width to be crossed using 

n loads of fuel. Since this sum grows arbitrarily large with increasing n, a desert of any width 
can be crossed if sufficient fuel is available a t  the depot. 

To estimate how much fuel is needed to cross a desert ten legs wide, we write 

and apply the approximation of Problem 17.35: 

1 1 1 1 + + 3 . .  + - - log(2n) + C - ?(logn + C) 
2n - 1 

1 1 1 = - l o g n + l o g 2 + - C  - - l o g n + . 9 8  
2 2 2 

This reaches ten for  n equal to almost 100 million loads of fuel. 

WALLIS' INFINITE PRODUCT 

17.37. Obtain Wallis' product for T .  

Repeated applications of the recursion formula 

sinn x dx = LT" sinn-2 x dx for  n > 1 n 

available in integral tables, easily brings the results 

2k 2k - 2 lrI2 
sinZk+l z dx = -.- .. .  -. 

2 k + l  2 k - 1  : sin x dx 
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Evaluating the remaining integrals and dividing one result by the other, rl2 sinzk x dx 
iT - - - 2 . 2 . 4 . 4 * 6 . 6  . . .  2k.2k 
2 1 ° 3 . 3 . 5 * 5 . 7  . . .  (2k-1)(2k+1) 

sin2kt f' x dx 

The quotient of the two integrals converges to 1 a s  k increases. This can be proved a s  follows. 
Since 0 < sin x < 1, 

s in2k+lxdx  6 c" sin.. x dx 6 sinzk-1 x dx 

Dividing by the first integral and using the original recursion formula, 

so tha t  the quotient does have limit 1. Thus 

which is Wallis' infinite product. 

17.38. Obtain Wallis' infinite product for 6. 
Since lim 2kl(2k + 1) = 1, the result of the previous problem can be written a s  

iT - 
22.42 . . . (2k - 2)2 2k 

2 
= lim 32 ' 52 . . . (2k - 1)2 

Taking the square root and then filling in  missing integers, we find 

from which Wallis' product follows a t  once in  the form 

22k (k !)2 = lim --- 
(2k) ! fi 

This will be needed in the next problem. 

STIRLING'S SERIES FOR LARGE FACTORIALS 
17.39. Derive Stirling's series for large factorials. 

In the Euler-MacIaurin formula let y(t) = log t and use the limits 1 and n. Then 

l o g 1  + l o g 2  + + l o g n  = n l o g n  - n + i l o g n  

This can be rearranged into 
(-l)ibi 

l o g n !  = ( n + + ) l o g n  - n + c - 
i= (2i)(2i - I)+-1 

where 

To evaluate c let n -, m in the previous equation. The finite sum has limit zero. The integral, 
since F2k+l is  periodic and hence bounded, behaves a s  l /nZk and so also has limit zero. Thus 
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nl  en 
c = lirn log nn+1/2 = lirn log an 

(n! )2e2n  (272) ! e2n 
A simple artifice now evaluates this limit. Since an - n2n+l , azn = (2n)2n+112 we find 

2 
ffn l i m a n  = lim- = lirn 

"2n 

by Wallis' product fo r  6. Thus c = log 6. Our result can now be written a s  the Stirling series 

the error  being E n  
F 2 k + 1 ( t )  

dt. For  large n this means t h a t  the logarithm is  near 

zero, making n !  - &nn + 112 eVn. 

17.40. Approximate 20! by Stirling's series. 
1 For  n = 20 the series itself becomes & - - + . + . - .00417 to five places, only one 

term being used. We now have 

log 20! - .00417 - 20 + log 6 + 20.5 log 20 - 42.33558 

This is correct to almost five digits. More terms of the Stirling series could be used for  even greater 
accuracy, but i t  is important to realize that  this series is  not convergent. As k is increased beyond 
a certain point, fo r  fixed n ,  the terms increase and the error E grows larger. This follows from the 
fact  (see Problem 17.31) tha t  bk > 2 ( 2 k ) ! l ( 2 ~ ) 2 k .  AS will be proved shortly, the Stirling series is 
an example of a n  asymptotic series. 

17.41. Compute f: lli3 to seven places. 
i=l 

Sum the first nine terms directly to find 2 l l i 3  = 1.19653199. With f ( t )  = l l t3 the Euler- 
Maclaurin formula now involves i = l  

and the total i s  1.2020569. This improves the result of Problem 17.19. 

ASYMPTOTIC SERIES 
17.42. Define an asymptotic series. 

n 
Let S,,(x) = 2 aixi. If for x + 0, lirn [ f ( x )  - Sn(x)] lxn  = 0 fo r  any fixed positive integer n ,  

i=O m 

then f ( x )  is  said to be asymptotic to x aixi a t  zero. This is represented by the symbol 
i=O 

With x replaced by x - xo the same definition applies, the series being asymptotic to f ( x )  a t  x,. 

Perhaps the most useful case of all is  the asymptotic expansion a t  infinity. If for x + m, 

lirn x n [ f ( x )  - S,(x)] = 0 
n 

where now &(x) = 2 ailxi, then f ( x )  has an asymptotic series a t  infinity, and we write 
i=O 
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The idea can be fur ther  generalized. If,  fo r  example, 

then we also say tha t  f ( x )  has the following asymptotic representation: 

Note tha t  none of these series i s  assumed to converge. 

17.43. Obtain an asyn~ptotic series for  ( e - t / t )  d t .  l 
Successive integrations by par t s  bring 

and so on. Ultimately one finds 

where R, = ( - l ) n n !  ( e c t l t n + l )  d t .  Since lR,I < n ! e - x / x n + l ,  we have f 
so tha t  a s  x -+ m this does have limit 0 .  This makes ex f ( x )  asymptotic to the series and by our 
generalized definition 

Notice that  the series diverges fo r  every value of x. 

17.44. Show that  the truncation error involved in using the series of the preceding problem 
does not exceed the first omitted term. 

The truncation error is preciseIy R,. The first omitted term is ( - l ) n f 2  e - x n ! / x n f l  which is 
identical with the estimate of R ,  occurring in Problem 17.43. 

17.45. Use the asymptotic series of Problem 17.43 to  compute f (5) .  

We find 
e5 f (5)  ;= .2 - .04 + .016 - .0096 + .00746 - .00746 + . . .  

after  which terms increase. Since the error  does not exceed the first term we omit, only four  terms 
need be used, with the result 

f (5 )  - e-5 i .166)  - .00112 

with the last  digit doubtful. The point is, the series cannot produce f (5 )  more accurately than this. 
For larger x arguments the accuracy attainable improves substantially, but is still limited. 

17.46. Use the series of Problem 17.43 to compute f(10). 
We find, carrying six places, 

el0 f ( 1 0 )  = .1 - .O1 + .002 - .0006 -t .00024 - .000120 + .000072 

- .000050 + .000040 - .000036 + .000036 - . . .  
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after  which the terms increase. Summing the first nine terms, we have 

f ( l 0 )  - e-10(.091582) - .0000041579 

with the last digit doubtful. In the previous problem two place accuracy was attainable. Here we 
have managed four places. The essential idea of asymptotic series is tha t  fo r  increasing x argu- 
ments the error tends to zero. 

17.47. Prove that  the Stirling series is asymptotic. 

With n playing the role of x and the logarithm the role of f(x) (see Problem 17.39), we must 
show that  

Since F 2 k + l ( t )  repeats, with period 1, the behavior of B 2 L + l ( t )  in the interval ( 0 , l )  i t  is  bounded, 
say IF1 < M. Then 

In2k-1Enl < n2"-'M/2k(2k + l)n2k 

and with increasing n this becomes arbitrarily small. 

17.48. Find an asymptotic series for I= e-tq2 dt. 

The method of successive integrations by parts  is again successful. Firs t  

and continuing in this way we find 

where R, = 1 - 3  5 .  - . (2n - 1 )  . The remainder can be rewritten a s  

Since both remainders a re  positive, it  follows tha t  

1 3 5 . . . ( 2 n  - 1) e-z2,2 
Rn < Z ~ n  t 1 

This achieves a double purpose. I t  shows that  the truncation error  does not exceed the first omitted 
term. And since i t  also makes lim f " 2 / % 2 n - l ~ ,  = 0 ,  it proves the series asymptotic. 

1'7.49. Compute mJI'= e-t"2 d t  by the series of Problem 17.48. 

With x = 4 we find 

G e - 8  [.25 - .015625 + .002930 - ,000916 + .000401 - .000226 

+ .000155 - .000126 + .000118 - .000125 + . . . I  
to the point where terms begin to increase. The result of stopping before the smallest term is 

y~ Jx ef2/z d t  - oooo633266 
4 

with the 2 digit in doubt. This agrees nicely with our results of Problem 14.35, page 118. In- 
dependent c~niputat ions which confirm one another a re  very reassuring. Note the difference in 
ilie~hods in  these two problems, and the simplicity of the present computation. 
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17.50. Find an asymptotic series for  the sine integral. 

Once again integration by parts  proves useful. First 

af ter  which similar steps generate 

which can be proved asymptotic a s  

sin t cos x cos t 
x 

the series 

c o s x  s i n s  2 ! c o s x  3 ! s i n x  _,- . .  + ---- - -- - 
x xz x3 x4 

in previous problems. 

17.51. Compute Si(l0). 
Putting x = 10 in the previous problem, 

Si(l0) - -.083908 - .005440 + .001678 + .000326 - ,000201 

- .000065 + .000060 + .000027 - .000034 - .000019 

af ter  which both the cosine and sine terms s ta r t  to grow larger. The total of these ten terms 
rounds to -.0876, which is correct to four places. 

Supplementary Problems 
n 

17.52. Express a s  a sum of differences and so evaluate (i2 - 3i + 2). 
i= l  

n 

17.53. Express as  a sum of differences and so evaluate 2 i5. 
i = l  

1 
17.54. Express a s  a sum of differences and so evaluate Z - 

i= l  i(i+ 2) ' 

17.55. Evaluate the sum in Problem 17.53 by the Euler-Maclaurin formula. 

17.56. Evaluate the sum in Problem 17.52 by the Euler-Maclaurin formula. 

17.57. How many terms of the cosine series a re  needed to provide eight place accuracy for  arguments 
from 0 to ~ / 2 ?  

17.58. Show tha t  
- 

Yo  - Y1 + Yz - " '  - 

- - 

where the Bi are  Bernoulli numbers. 
result .785398. 

Apply this to the Leibniz series for  714 to obtain the six place 

1 1 1  17.59. Apply the Euler transformation to evaluate 1 - - + - - - + . . to four places. 
f i f i f i  

17.60. Use the Euler transformation to evaluate 1 - $ + & - & + . . . to eight places, confirming the 
result .91596559. 
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1 1 1 17.61. Use the Euler transformation to show tha t  1 - - + - - - + . to four places equals .0757. 
log 2 log 3 log 4 

17.62. Apply the Euler transformation to log 2 = 1 - 4 + Q - 4 + & - . , , confirming our six place 
result of Problem 17.13. 

- 
17.63. For  how large an argument x will twenty terms of the series 

produce four  place accuracy? 

17.64. How many terms of the cosine series cos x = 1 - ?s2 + Lx4  - ... 
2 

are needed to guarantee 
4 !  

eight place accuracy for  the interval from 0 to  a /2?  

17.65. F o r  how large a n  argument x will twenty terms of the series 

arctan x = x - 9x3 + 9x5 - $57 + . . . 
produce six place accuracy? 

2 3  2 5  27  
17.66. For  the series sinh x = x + - + - + - + . . estimate the truncation error in terms of the first 

3 !  5! 7 !  
term omitted. (See Problem 17.7 fo r  a possible method.) For  how large a n  argument x will twenty 
terms be enough for  eight place accuracy? 

17.67. Compute log 3 by the method of Problem 17.13. 

17.68. Compute log 1 - 1  by the method of Problem 17.13. 

17.69. Compute log 5 and log 7 by the method of Problem 17.14. 

17.70. Compute log 7 7 = log [7(1  1 ) ]  by combining results of the previous two problems. 

17.71. Apply the comparison method of Problem 17.16 to compute x l / ( G +  i+ 1)  t o  three places. (Use 
m i= 1  

l / ( i  + 1)i  = 1 a s  the comparison series.) 
i = l  

m 

17.72. Compute x l / ( i 3  + 1)  to three places by the comparison method using the result of Problem 17.19. 
i =  1 

m 

17.73. Compute 2 l l ( i2  + 2i + 2)  to  three places by the comparison method. (See Problem 17.54.) 
i = l  

m 

17.74. Compute Z i2/(i4 + 1) to three places by the comparison method. 
i= l  

17.75. Determine the first ten bi numbers from the recursion of Problem 17.20. 

17.76. Write out BB(x)  through Blo(x)  from the formula of Problem 17.21. 

17.77. Prove ix+ Bi(x)  dx = xi. 

17.78. Determine B3(x)  and B4(x)  a s  in Problem 17.26. 

17.79. What  polynomials are  determined by the conditions 
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m 

Use Problem 17.30 to evaluate 2 l l k p  fo r  p = 6 ,  8 and 10,  verifying the results a6/945 ,  r s /9450  
and ~"3193,555 .  k=l  

ex + e-2 - ( 2 d 2  
Show tha t  x - 1 + B l  - - ( 2 ~ ) ~  + B3 ( 2 ~ 3 ~  . . . 

2 !  B24! 6 !  

Replace x by i x  in the preceding problem to get 

22i(22i - 1 )  
Use the  identity tan x = cot x - 2 cot 22 to prove tan  x = Bix2i- 1. 

( 2 i ) !  
n 

Use the Euler-Maclaurin formula to prove 2 i3 = n2(n + 1)2/4.  
i = O  

n 

Use the Euler-Maclaurin formula to  evaluate 2 (i2 + 3i + 2 ) .  Compare with Problem 17.3. 
i = l  

Use the Euler-Maclaurin formula to show tha t  

where C is Euler's constant and F l ( t )  is  the periodic extension of B l ( t ) .  This proves the conver- 
gence of Sn and also allows estimation of the difference between S, and C for  large n. 

By applying the Euler-Maclaurin formula, show t h a t  

and use this to evaluate Euler's constant C. Show tha t  as  k increases, the sum on the r ight  becomes 
a divergent series. A t  what point do the terms of this series begin to grow larger? 

Referring to Problem 17.36, show t h a t  a desert of width five legs requires more than 3000 loads of 
fuel. 

m 

Compute 3 
k=l  

Compute 
k=1 

Evaluate - 

l lk5I2 to six places. 

1/(21c - 1)2 to three places. 

- 1 + l - L + 1 - . . - exactly. 
4 9 16 25 

Evaluate the sum of Problem 17.90 exactly. 

m 

Show tha t  the Euler transformation converts 2 (-1/2)k  into a more rapidly convergent series. 
k=0 

m 

Show tha t  the Euler transformation converts 2 ( -1 /3)k  into a more slowly convergent series. 
k=0 

How accurately does the Stirling series produce 2 !  and a t  what point do the terms of the series 
s ta r t  to increase? 

Derive the asymptotic series 
1 3 3 . 5 . 7  . ' .  $ sin t2 ,t = 22 2"s 25x9 1 

and use i t  when x = 10, obtaining a s  much accuracy as  you can. 
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17.97. Derive the asymptotic series 

and use i t  when x = 10, obtaining a s  much accuracy a s  you can. 

50 1 
17.98. Evaluate to five places, kgl (k + l)(2k + l) 

17.99. Evaluate to five places, 5 1 
,=, (k + 1)(2k + 1)(5k + 2) ' 

17.100. Transform the series 

and evaluate S to four places. into the series S = 2- 5 - 
3 ,=, (2k + 1)2 

m 

17.101. Evaluate x l l r l ,  where the r, a r e  the successive positive roots of t a n x  = x. 
k=l 

m 1  1 1  m 

17.102. Let A, = x - = 5 + - + . . and then evaluate S = 2 Anln.  
k=2 kn 3" n=2 

* 1 
17.103. Compute m. 

" k - 1  
17.104. Compute kzl 7. 
17.105. Compute 2 1 

k=l  k(4k2 - 1 ) '  

17.106. The Euler numbers E,, are  defined by 

with El  = 1 and Eo = 0. Compute E2, E,, E, and E5. 

1 1 1  
17.107. Evaluate to four  decimal places: 1 - - + - - - + . . . . 

33 53 73 

1 1 1  
17.108. Evaluate to five decimal places: 1 - - + - - - + . . . 

35 55 75 

1 1 1  
17.109. Evaluate to six decimal places: 1 - - + - - - + . 

37 57 77 

1 
17.110. Compute lim + . . . + - - ' log n ] .  

272-1 2 

17.111. Compute % k 
. k=1(4k2-1)2 '  

* 12k2 - 1 
17.112. Compute 2 

k X 1  k(4k2- 1)'' 

17.113. Evaluate these two seriks. 
1 + + - 1 + ' + ~ - ~ + ~ + 1 - r +  2 5 7 4 9 1 1 6  . . .  
1-1-1+1- ' -1+ ' - " - '+  . . '  

2 4 3 6 8 5 1 0 1 2  



Difference Equations 

DEFINITIONS 

The term difference equation might be expected to refer to an  equation involving dif- 
ferences. However, an  example such as 

which quickly collapses to ? J ~ + P  = 0, shows that  combinations of differences are not always 
convenient, may even obscure information. As a result, difference equations are  usually 
written directly in terms of the yk values. As an example take 

where ak and bk are given functions of the integer argument k. This could be rewritten a s  
Ayk = (ak - l)yk + bk but this is not normally found to be useful. In summary, a difference 
equation is a relation between the values yk of a function defined on a discrete set of argu- 
ments xk. Assuming the arguments equally spaced, the usual change of argument xk = 
xo + k h  leaves us with an  integer argument 1c. 

A solution of a d<fSerence equat ion will be a sequence of yk values for  which the equation 
is true, for some set of consecutive integers k. The nature of a difference equation allows 
solution sequences to be computed recursively. In the above example, for instance, y r + ~  
may be computed very simply if yk is known. One known value thus triggers the computa- 
tion of the entire sequence. 

T h e  order  of a dif ference equat ion is the difference between the largest and smallest 
arguments k appearing in it. The last example above has order one. 

ANALOGY TO DIFFERENTIAL EQUATIONS 

A strong analogy exists between the theory of difference equations and the theory of 
differential equations. For  example, a first order equation normally has exactly one solu- 
tion satisfying the initial condition yo = A. And a second order equation normally has 
exactly one solution satisfying two initial conditions yo = A, yl = B. Several further 
aspects of this analogy will be emphasized, such as  the following. 

1. Procedures for finding solutions are  similar in the two subjects. First  order linear 
equations a re  solved in terms of sums, as  the corresponding differential equations are  
solved in terms of integrals. For example, the equation yk + 1 = zyk + c k  4 1 with 
yo = co has the polynomial solution 

2/11 = c,,xn -t C.,x"-' + . . .  + c,, 
Computation of this polynomial recursively, from the difl'erence equation itself, is known 
as Horner's method for evaluating the polynomial. I t  is more economical than the 
standard evaluation by powers. 
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2. The digamma function is defined a s  

where C is Euler's constant. I t  is one summation form of the solution of the first 
order difference equation 

a+(x) = l l (x  + 1) 

This also gives i t  the character of a finite integral of l l (x  + 1). For  integer arguments 
n, i t  follows that  

+(n) = 2 Ilk  - C 
k = l  

This function plays a role in difference calculus somewhat analogous to that  of the 
logarithm function in differential calculus. Compare, for instance, these two formulas: 

E 1 - 0 )  - +(a) d x - - log ( b  + 1) - log (a + 1) 
(k + a)(k + b) b - a  ' Jm (X +a)(x + b) b - a  

Various sums may be expressed in terms of the digamma function and its derivatives. 
The above is one example. Another is 

which also proves to be ~ ~ 1 6 .  

The gamma function is related to the digamma function by 

3. The linear homogeneous second-order equation 

has the solution family ' 2 ~ ~  = cluk + c~vk 

where uk and vk are themselves solutions and cl, c2 are arbitrary constants. As in the 
theory of differential equations, this is called the principle of superposition. Any solu- 
tion of the equation can he expressed as  such a superposition of uk and vk, by proper 
choice of cl and cz, provided the Wronskian determinant 

is not zero. 

4. The case of constant coefficients, where a l  and a2 are constants, allows easy determina- 
tion of the solutions uk and vk. With rl and r2 the roots of the characteristic equation 

r2 + a l r  + a2 = 0 

these solutions are 
uk = r:, vk = r; when a: > 4a2 

uk = rk, vk = krk when a: = 4a2, 7.1 = rz = r 

'16k = Rk sin k0,  vk = Rk cos kB when a: < 4a2, r.1, r2 = R(cos 0 * i sin 0) 
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The analogy with differential equations is apparent. The Wronskian determinants of 
these u k ,  VIC pairs are  not zero, and so by superposition we may obtain all possible solu- 
tions of the difference equation. 

The  Fibonacci numbers are  solution values of 
yk+2 = yk+l + ?-jk 

and by case 1 above may be represented by real power functions. They have some ap- 
plications in information theory. 

T h e  non-homogeneous equation 
yk+2 + algki-1 + a2Yk bk 

has the solution family yk cluk + C 2 V k  + Yk 

where u k ,  v k  are  a s  above and Y k  is one solution of the given equation. This is also 
analogous to a result of differential equations. For certain elementary functions bk i t  
is possible to deduce the corresponding solution Y k  very simply. 

For higher order equations theoretical results are direct generalizations of those just 
presented for  the second order case. 

Initial value problems require the solution of a difference equation of order n, 
taking specified values a t  n consecutive (initial) arguments. Such solutions may be 
computed directly, using the difference equation as a recursion. If the character of 
the solution function is to be displayed analytically, then procedures similar to those 
used for  differential equations may be followed. For  the Fibonacci numbers, for  
example, one first finds the solution family 

where r ~ ,  r2 = +[l * fi]. The initial conditions yo = 0, y~ = 1 then determine cl = 
-C2 = l/fi. 

Boundary value problems require the solution of a difference equation of order n, 
with various values specified in the vicinity of two separated arguments. 

Non-linear equations can seldom be solved in analytic form, but direct, recursive com- 
putation of solution sequences proceeds just as with linear equations. 

IMPORTANCE OF DIFFERENCE EQUATIONS 
Our interest in difference equations is two-fold. First,  they do occur in applications. 

And second, numerous methods for the approximate solution of differential equations in- 
volve replacing them by difference equations as  substitutes. 

Solved Problems 

FIRST ORDER EQUATIONS 
18.1. Solve the first order equation yk+l  = kyk  + k2 recursively, given the initial con- 

dition y~ = 1. 

This problem illustrates the appeal of difference equations in  computation. Successive yk 

values a r e  found simply by doing the indicated additions and multiplications, 
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and so on. Initial value problems of difference equations may always be solved i n  this simple recur- 
sive fashion. Often, however, one wishes to know the character of the solution function, making 
an analytic representation of the solution desirable. Only in  certain cases have such representations 
been found. 

18.2. Given the functions a k  and bk,  what is the character of the solution of the linear first 
order equation yk + = akyk + bk with initial condition yo = A ? 

Proceeding a s  in the previous problem, we find 

etc. With p,  denoting the product p, = aoal-  . .a,-,, the indicated result appears to be 

This  could be verified formally by substitution. As in the case of linear first order differential equa- 
tions, this result is  only partially satisfactory. With differential equations the solution can be 
expressed in terms of an integral. Here we have a sum. In certain cases, however, fur ther  progress 
is  possible. I t  is  important to notice tha t  there i s  exactly one solution which satisfies the difference 
equation and assumes the prescribed initial value yo = A. 

18.3. What is the character of the solution function in the special case a k  = r, b k  = O ?  
Here the result of Problem 18.2 simplifies to the power function y,  = Am. Such power func- 

tions play an important role in the solution of other equations also. 

18.4. What is the character of the solution function when ak = r and b k  = 1, with 
y o = A = l ?  

Now the result of Problem 18.2 simplifies to 

y,  = r n + m - I +  . . .  + 1 = ( r n t l - l ) l ( r - 1 )  

18.5. What is the character of the solution function of y k + l  = xyk + c k + l  with yo = A = C O ?  

This problem serves as  a good illustration of how simple functions a re  sometimes best evaluated 
by difference equation procedures. Here the result of Problem 18.2 becomes 

y ,  = coxn + clxn-1 + . . . + c, 

The solution takes the form of a polynomial. Horner's method for  evaluating this polynomial a t  
argument x involves computing y,, y2, . . ., yn successively. This amounts to n multiplications and n 
additions, and is equivalent to rearranging the polynomial into 

y ,  = cn + X ( C , - ~  + . . . + x(c3 + x(c2 + x(c l  + xco ) ) ) )  

I t  is more efficient than building up the powers of x one by one and then evaluating 1: 
polynomial form. 

+ ' yk + l with 18.6. What is the character of the solution of yk t l  = 7 
yo= I ?  

the standard 

nitial value 

Here the p ,  of Problem 18.2 becomes p, = n ! / x n ,  while all bk = 1. The solution is therefore 
expressible a s  1 1 

Yn /Pn  = xny,/n! = 1 + x + - x 2  2 + . . .  + 7 x n  n .  

so tha t  fo r  increasing n, lim xnynln!  = ex. 
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18.7. What is the character of the solution of yk+ 1 = [l - x2/(k + y,  with Z J O  = 1 ? 
Here all the bk of Problem 18.2 a r e  zero and A = 1, making 

yn = pn = ( 1  - x2)(1 - ~ 2 / 2 ~ ) ( 1  - ~ ~ 1 3 ~ ) .  . . ( 1  - x2In2) 

This product vanishes fo r  x  = * I ,  *2, . . ., en. For  increasing n  we encounter the infinite product 
m 

lim yn = n [1  - x2/(k  + 
k = O  

which can be shown to represent (sin xx) /ax.  

THE DIGAMMA FUNCTION 
18.8. The method of summing by "telescoping" depends upon being able to express a sum 

as a sum of differences, 
n n 

That is, i t  requires solving the first order difference equation 

Ayk = yrc+ I - yk = bk 

Apply this method when bk = l / ( k  + I), solving the difference equation and evaluating 
the sum. 

m 

S ta r t  by defining the digamma function a s  + ( x )  = 2 - C where C is Euler's con- 
i = 1  2(2 + x )  

stant. Directly we find for  any x  f -i, 

When x  takes integer values, say x  = k ,  this provides a new form for  the sum of integer reciprocals, 
since 

We may also rewrite this a s  

so tha t  the digamma function for  integer 
arguments is a familiar quantity. I ts  be- 
havior is shown in Fig. 18-1, and the logarith- 
mic character for  large positive x  is no sur- 
prise when one recalls the definition of Euler's 
constant. In a sense * ( x )  generalizes from 
$ ( n )  much a s  the gamma function generalizes 
factorials. 

I I 
Fig. 18-1 

n 

18.9. E.v.aluate the sum l / ( k  + t )  for arbitrary t.  
k = 1  

From Problem 18.8, for any x ,  + ( x  + 1 )  - + ( x )  = l / ( x  + 1). Replace x  by k  + t - 1  to obtain 

*(k + t )  - +(k + t  - 1 )  = l / ( k  + t )  

Now we have the ingredients of a telescoping sum and find 
n 



DIFFERENCE EQUATIONS [ C H A P .  18 

18.10. Evaluate the series 2 l l ( k  + a)(k  + b)  in terms of the digamma function. 
k = 1  

Using partial fractions, we find 

Now applying the previous problem, this becomes 

1 
S, = - a [ $ ( n  + a)  - $(a)  - \c(n + b) + $(b)]  

From the series definition in Problem 18.8 i t  follows after a brief calculation t h a t  

so tha t  for  n + .o this difference has limit zero. Finally, 

5 1 - - $ ( b )  - $(a)  
k = l  ( k  + a ) ( k +  b)  - lim sn  - b - a  

18.11. Find formulas for $'(x), $") (x ) ,  etc., in series form. 
m 

Differentiating the series of Problem 18.8 produces \cl(x) = 2 l l ( k  + x)2. Since this converges 
k =  1 

uniformly in x on any interval not including a negative integer, the computation is valid. Repeating, 
m m 

$ t 2 ) ( ~ )  = 8 -2! l (k  + x)3, ~ c . ( ~ ) ( x )  = 2 3 ! / ( k  + x)4, etc. 
k = l  k = l  

m 

In  particular, f o r  integer arguments, Problem 17.30 makes \cl(0) = 2 l lk2 = a216 after  which we 
lose one term a t  a time to obtain k = 1  

( 1  = ( 6  - 1 ( 2  = ( 6  - 1 - 1 4  and in general $'(n) = ($16) - 1 - 1/4 - . . . - 1 /n2 

" 2 k f l  18.12. Evaluate the series 2 
k = l  k(k  f 1)" 

This fur ther  illustrates how sums and series involving rational terms in k may be evaluated in 
terms of the digamma function. Again introducing partial fractions, 

The first two terms cannot be handled separately since the series would diverge. They can, however, 
be handled together a s  in Problem 18.10. The result is 

Other sums of rational terms may be treated in similar fashion. The digamma function and i ts  
derivatives have been tabulated so tha t  results such a s  those obtained a re  readily evaluated. 

w 1 
18.13. Evaluate the series 2 

+ 2, + . . + k 2 .  k = 1  

Summing the squares as  in  Problem 5.2, page 31, we may replace this by 
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Since no one of these three series is  individually convergent, we do not t reat  each separately. 
Extending the device used in the problem just solved we may, however, rewrite the combination a s  

- - -6[+(1) - m)] + 12[+(+) - $(O,] 

where Problem 18.10 has been used twice in the last  step. Finally, 

18.14. Show that d(x) = r'(x + l)lr(x + 1) also has the property Ad"(%) = 1/(x + I), where 
r(x) is the gamma function. 

The gamma function is defined for  positive x  by 

Integration by parts  exposes the familiar feature 

r ( x + l )  = 2 I y x )  

and then differentiation brings r f ( x  + 1)  = x r f ( x )  + r ( x ) ,  or 

from which the required result follows upon replacing z by x  + 1. 

Since +(x + 1)  - +(x)  = 1 / ( x  + I ) ,  we find tha t  

where A is  a constant, and where x  is restricted to a discrete set with unit spacing. The same 
result can be proved for  all x  except negative integers, the constant A being zero. 

LINEAR SECOND ORDER EQUATION, HOMOGENEOUS CASE 

18.15. The difference equation gk.2 + alyk + I + a2yk = 0 in which al and a2 may depend 
upon k, is called linear and homogeneous. Prove that if uk and vk are  solutions, then 
so are CIUI; + C 2 v k  for arbitrary constants c l  and c2. (It is this feature that identifies 
a linear homogeneous equation. The equation is homogeneous because z j k  = 0 is a 
solution.) 

Since u k + ~  + alu,+, + a2uk = 0  and wk + 2  + a,wk, + a,w, = 0 ,  i t  follows a t  once by 
multiplying the first equation by el, the second equation by e,, and adding tha t  

18.16. Show that for al and a2 constant, two real solutions can be found in terms of elemen- 
tary functions. 

Firs t  suppose a; > 4a2. Then we may take 

where rl and r2  are  the distinct real roots of the quadratic equation r2 + a,r + a2 = 0. To prove 
this we verify directly t h a t  

uk+z + a l u k + ,  + a2uk = r k ( r 2 + a l r + a 2 )  = 0  

where r  is either root. The quadratic equation involved here is known a s  the characteristic equation. 
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Next suppose a: = 4a2. Then the characteristic equation has only one root, say r ,  and can be 
rewritten a s  

r 2  + air + az  = (r + = 0 

Two real solutions a re  now available in  
uk = r k  V, = krk 

The solution uk may be verified exactly a s  above. As for  vk, 

since both parentheses a re  zero. 

Finally suppose a: < 4a2. Then the characteristic equation has complex conjugate roots 
Reki@. Substituting, we find 

R2e*i2e + alRe*i@ + a2  = Rycos 20 % i sin 26) + a,R(cos 6 C i sin 8) + a2  

= (R2 cos 28 + a l R  cos e + a,) C i(R2 sin 2e + a,R sin e) = 0 

This requires tha t  both parentheses vanish: 

R2 cos 2e + alR cos e + a2 = 0, R2 sin 2e + alR sin e = 0 

We now verify tha t  two real solutions of the difference equation a r e  

uk = Rk sin k~ v, = Rk cos ke 
For  example, 

u k t 2  + a , ~ , + ~  + a2uk = R k t 2  sin (k + 2)e + a,Rk+l sin (k + l ) e  + azRk sin ke 

= Rk(sin ke)(R%os 2s + a lR cos e + a,) 
+ Rk(cos ke)(R2 sin 2e + a lR sin 6) = 0 

since both parentheses vanish. The proof for  v, i s  almost identical. 

I t  now follows tha t  for  a ,  and a2 constant, the equation y,, , + alyk + + azyk = 0 always has  
a family of elementary solutions yk = cluk + C2vk. 

18.17. Solve the difference equation yk t 2  - 2A yk t 1 + yk = 0 in terms of power functions, 
assuming A > 1. 

Let y, = r k  and substitute to find tha t  r2 - 2Ar + 1 = 0 is necessary. 

One of these power functions grows arbitrarily large with k, and the other tends to zero, 
since rl > 1 but 0 < rz < 1. (The fact  tha t  r, = A - dA2-1 < 1 follows from (A - = 
A2 + 1 - 2A < A2 - 1 after  taking square roots and transposing terms.) 

18.18. Solve the equation ykt2 - 2ykt 1 + y k  = 0. 

Here we have a; = 4az = 4. The only root of r 2  - 2r + 1 = 0 is  r = 1. This means t h a t  
uk = 1, vk = k a re  solutions and t h a t  yk = cl + c,k is a family of solutions. This is hardly sur- 
prising in view of the fact  that  this difference equation may be written a s  A2yk = 0. 

Now a: < 4a2. The roots of the characteristic equation become 

Re'@ = A % id- = cos 6 ? i sin 

where A = cos e and R = 1. Thus uk = sin ke, vk = cos ke and the family of solutions 

yk = c, sin ke + cz cos ko 
is  available. 

The vk functions, when expressed a s  polynomials in A, a re  known a s  Chebyshev polynomials. 
For  example, 

v O = l ,  v l = A ,  v 2 = 2 A 2 - 1 ,  . . .  
The difference equation of this problem is the recursion for  the Chebyshev polynomials. 
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18.20. Show that  if two solutionss of yk+ ,  + a l y k +  + a2yk = 0 agree in value a t  two con- 
secutive integers k, then they must agree for all integers k. (Assume an # 0.) 

Let uk and vk be solutions which agree in value a t  k equal to m and m + 1. Then their dif- 
ference dk = uk - vk is  a solution (by Problem 18.15) for which d, = dm+ = 0. But then 

from which i t  follows tha t  dm+,  = 0 and dm-l = 0. In the same way we may prove dk to be zero 
for k > m + 2 and for  k < m - 1, taking each integer in its turn. Thus dk is  identically zero 
and uk  - vk (The assumption a, # 0 merely guarantees tha t  we do have a second order difference 
equation.) 

18.21. Show that  any solution of yk+2 + a l y k + l  + anyk = 0 may be expressed as a combina- 
tion of two particular solutions u k  and vk, 

provided that  the Wronskian determinant zoii = 
U k - 1  Vk-1 

We know t h a t  cluk + c2vk is a solution. By the previous problem it will be identical with the 
solution yk if i t  agrees with y, for  two consecutive integer values of k. In order to obtain such 
agreement we choose k = 0 and k = 1 (any other consecutive integers would do) and determine 
the coefficients cl and c, by the equations 

c1u0 + c,vo = yo, C l U l  + C,Vl = Y1 

The unique solution is  c, = (ylvo - yovl) /wl ,  c, = (youl - y l ~ ~ o ) / ~ l  since w1 # 0. 

18.22. Show that  if the Wronskian determinant is zero for one value of k ,  i t  must be iden- 
tically zero, assuming uk,vk to be solutions of the equation of Problem 18.20. Apply 
this to the particular case of Problem 18.16, to prove wk f 0. 

We compute the difference 

AWk = ( ~ k + l v k - v k + l % )  - ( u k ~ k - l - v k u k - l )  

- - v ~ ( - ~ ~ u ~ ;  - a 2 2 1 k - 1 )  - - a2vk-1) - UJcVk-  1 + vk?*k- 

= (a2 - l ) w k  = W k + l  - W k  

from which i t  soon follows that  wk = ak,wo. Since a, f 0, the only way for  wk to be zero is  to have 
wo = 0. But  then w k  is  identically zero. 

When w ,  is identically zero, i t  follows t h a t  uk /vk  is  the same a s  ~ ~ - ~ / v ~ - ~  for  all k ,  that  is, 
uk /vk  = constant. Since this is  definitely not t rue for  the u k , v k  of Problem 18.16, wk cannot be 
zero there. 

18.23. Solve by direct computation the second order initial value problem 

y k + 2 =  y k + l $ y k ,  y 0 = o 1  y l = l  

This fur ther  illustrates the simplicity of difference equations in actual computation. Taking 

k = 0,1,2,  . . . we easily find the successive yk values 1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,  . . . which 
are  known a s  Fibonacci numbers. The computation clearly shows a growing solution but does not 
bring out its exact character. 

18.24. Determine the character of the solution of the previous problem. 
Following the historical path mapped in Problems 18.15, 18.16, etc., we consider the characteris- 

tic equation r2 - r - 1 = 0. 

Since a: > 4a2, there are  two real roots, namely r l , r 2  = ( 1  ) 6 ) / 2 .  All solutions can there- 
fore be expressed in the form 
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To satisfy the initial conditions, we need cl + c2 = 0 and cl 

18.25. Show that  for the Fibonacci numbers, lim (yk f l lyk)  = (1 + f i ) / 2 .  
For  such results i t  is  convenient to  know the character of the solution function. Using the 

previous problem we find af ter  a brief calculation, 

and ( 1  - 6 ) / ( 1 +  fi) has absolute value less than 1, so t h a t  the required result follows. 

18.26. The Fibonacci numbers occur in certain problems involving the transfer of informa- 
tion along a communications channel. The capacity C of a channel is defined a s  
C = lim (log yk)lk, the logarithm being to base 2. Evaluate this limit. 

Again the analytic character of the solution yk is needed. But  i t  is available, and we find 

making 

C = lim 
2 

18.27. Find the solution of y k + ~  + yk = 0 satisfying the initial conditions yo= 1, y1= 0. 
Here we have a,  = 0, a2 = 1, making a: < 4a2. The characteristic equation i s  r2 + 1 = 0 

and has roots r = Ci = e* i ( r l"  = Re'ie, making R = 1 and s = 7712. The solutions can therefore 
be written in the form 

yrc = cluk + c2vk = cl sin (rrk/2) + c2 cos ( rk l2)  

This could a l se -bmr i t t en  a s  yk = A cos (ak/2 + B). Either way the initial conditions determine 
the remaining constants, and for the initial values given we a re  led to yk = cos k?r/2. The solution 
is  periodic. 

18.28. Under what circumstances will all solutions of ykt 2 + alykt 1 + a2yk = 0 have limit 
0 for k becoming infinite? (Assume al, an constant.) 

Clearly this requires that  the numbers rl,r2 or R 'of Problem 18.16 have absolute value less 
than 1. In other words, all roots of the characteristic equation r2+ air + a2 = 0 must have ab- 
solute value less than 1. 

THE NON-HOMOGENEOUS CASE 
18.29. The equation yk+2 + alykt I + a2yk = bk is linear and non-homogeneous. Show that 

if u k  and vk  are solutions of the associated homogeneous equation (with bk replaced by 
0 )  with nonvanishing Wronskian, and if Y k  is one particular solution of the equation 
as i t  stands, then every solution can be expressed as  yk = cluk + C 2 V k  + Y k  where 
cl and c2 are  suitable constants. 
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With y, denoting any solution of the non-homogeneous equation, and Y k  the particular solution, 

Y ~ + z  + alYk+l f aeYk = bk 

Y k + 2  + alY,+l + a z Y k  = bk 

and subtracting, dk+2 f a ~ d k + ~  $ = 0 

where dk = y k -  Yk .  But this makes dk a solution of the homogeneous equation, so tha t  d,  = 
cluk + c2wk Finally, yk = cluk + c,vk + Y ,  which is  the required result. 

18.30. By the previous problem, to find all solutions of a non-homogeneous equation we may 
find just one such particular solution and attach i t  to the solution of the associated 
homogeneous problem. Follow this procedure for yk+z - y k + ~  - yk = Axk.  

When the term bk is a power function, a solution can usually be found which is  itself a power 
function. Here we t r y  to determine the constant C so that  Y k  = Cxk. 

Substitution leads to Cxk(x2 - x - 1) = Axk ,  making C = Al(x2 - x - 1). All solutions a re  
therefore expressible a s  

A x k  

Should x2 - x - 1 = 0, this effort fails. 

18.31. For the preceding problem, how can a particular solution Y k  be found in the case 
where x2 - x - 1 = O? 

Try to determine C so that  Y ,  = Ckxk. 

Substitution leads to Cxk[(k  + 2)x2 - ( k  + l ) x  - k ] ,  = A x k  from which C = Ali2x" x ) .  This 
makes Y k  = Akxkl(2x2 - x) .  

18.32. For what sort of bk term may an elementary solution Y k  be found? 
Whenever bk i s  a power function or a sine or cosine function, the solution Y, has similar char- 

acter. Table 18.1 makes this somewhat more precise. If the Y ,  suggested in  Table 18.1 includes a 
solution of the associated homogeneous equation, then this Y ,  should be multiplied by li until no 
such solutions are  included. Further  examples of the effectiveness of this procedure will be given. 

- 

Axk 

kn 

sin A k  or cos A k 

knxk 

xk sin A k  or xk cos A k  

C x  k 

C" + Clk + C2k' + . . .  + C,kn 

C1 sin A k  + Cq cos A16 

&(Go + Clk + C2k2 + . . . + C?,kl') 

x"Cl sin A k  + C2 cos A k )  

Table 18.1 

The "national income equation" is y k + ~  - 2ayk+ 1 + ayk = I where 0 < a < 1. As- 
suming a and I constant, solve this equation and find the limiting national income for 
increasing k. 

The characteristic equation for  the associated homogeneous problem is r 2  - 2ar + a = 0 and 
has complex roots 

T = a 5 d G  = a -C id= = & e " ~  
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where cos 6 = 6 and sin e = G. The solution of the national income equation is  therefore 

yk = c l ( f i ) k  sin kg + ~ , ( f i ) ~  cos k8 + Y ,  

To determine Y ,  we note that  b ,  = I is constant, so that  Y k  = Y ,  also a constant, is suggested by 
Table 18.1. Substituting we find Y ( 1 -  a) = I ,  and the completed solution i s  

Since 0 < a < 1 ,  i t  follows easily tha t  lim yk = I / ( l  - a )  with yk itself oscillating above and 
below this limit during the approach. 

18.34. Solve the equation y k i - 2 -  2yk + I + yk = 1 with Y O  = 1 and y~ = 0. 
The associated homogeneous equation was solved earlier, in  Problem 18.18. Recalling that  

result, we may now write yk = C ,  + cpk + Y k .  

Since bk = 1 is again a constant, we might anticipate a constant Y,. However, a constant is 
included in the homogeneous solution, and so is a constant multiplied by k. Accordingly we t r y  
Y k  = Ck2 and substitute to find C((k  + 2)2 - 2(k + 1)2 + k21 = 1 which is  t rue provided C = 112. 
Thus 

Since our difference equation can be written a s  h2yk = 1, this quadratic could have been guessed 
a t  once. The initial conditions lead to y, = 1 - $k + $kz. 

BOUNDARY VALUE PROBLEMS 
18.35. Show that  the equation y k t z  + yk = 0 has one solution satisfying the boundary con- 

ditions y~ = y~ = 0 if N is odd, and infinitely many if N is even. 
The solution family is  y, = c, sin ( ~ k I 2 )  + c2 cos (7k/2). 

The condition yo = 0 requires c, = 0. Thus y~ = c1 sin (rN12) = 0. If N is  odd this requires 
cl = 0 ,  and y, =-- 0 becomes the only solution of the boundary value problem. If N is even any 
constant cl serves, and the family of solutions y, = cl sin ( ~ k / 2 )  exists. This alternative is  char- 
acteristic of homogeneous boundary value problems (which always have the solution yk = 0). 

18.36. For the difference equation of the previous problem show that  one solution satisfies 
the boundary conditions yo = A, y~ = B if N is odd, and that there is no solution a t  
all if N is even, unless A cos ( x N / 2 )  = B, in which case infinitely many exist. 

The boundary conditions require c2 = A and c, sin (nN/2)  + A cos (?rN/2) = B. 

If N is odd, we find c, = B/[sin ( r N / 2 ) ]  and the solution is  uniquely determined. If N is even, 
then the boundary values A and B must satisfy A cos (iiNl2) = B or the condition a t  k = N 
cannot be met by any solution. If A and B do meet this requirement, however, any  constant cl will 
serve. This alternative i s  characteristic of non-homogeneous boundary value problems. The solution 
will be uniquely determined precisely when the associated homogeneous problem has only the solu- 
tion yk = 0. This occurs here for  N odd. (See Problem 18.35.) And there will be no solution a t  all 
in  the case where the associated homogeneous problem has infinitely many solutions (N even), unless 
the boundary values meet a special requirement, and then both problems have an infinity of solutions. 

18.37. Find all solutions of the homogeneous boundary value problem 

y,+" ( L - 2 ) y , + 1  t z j ,  = 0 

with yo = Y N  = 0. Assume 0 < L < 4. (Such problems occur in the study of psycho- 
metrics.) 

The characteristic equation is  r2 + ( L - 2 ) r  + 1 = 0 ,  and since 0 < L < 4 the roots a re  

with cos e = 1 - &L. The solutions are  therefore 

yk = cl sin k8 + C n  cos k8 
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The first boundary condition requires yo = c2 = 0. The second makes yN = c, sin NO = 0 which 
can usually be satisfied only by making cl = 0, leading to the ever-present solution of homogeneous 
problems, yk - 0. 

The interest lies, however, in the circumstances under which still other solutions will exist. 
What is required in this example is  tha t  sin Ne = 0, since then cl is  arbi t rary and we have the 
family of solutions yk = cl sin ke. But  sin Ne i s  zero only f o r  Ne = n7, where n is an integer. 
This may be converted into a requirement concerning the parameter L which occurs in the difference 
equation itself. We find 

L = 2 - 2 cos = 2 - 2 cos (nalN) = 4 sin2 (naI2N) 

Though n may be any integer, the integers 1, . . ., N exhaust the possibilities and we have shown 
that  the values (known a s  eigenvalues) 

L, = 4 sin2 (np/2N), n = 1, 2, 3, . . ., N 

lead to families of solutions (known a s  eigenfunctions) 

For  other L values, only the solution yk r 0 exists. (See Problem 18.80.) 

NON-LINEAR EQUATIONS 

18.38. If (21 = 1 and 0 < k ,  solve the nonlinear equation & k t 1  = 1 + 1 / & k  and find 
lim Qk for  k becoming infinite. 

Let Qk = yk + llyk and substitute to find yk + = yk + + yk which is the difference equation 
of the Fibonacci numbers. We need only refer back to Problem 18.25 to find. Qk and lim Qk. 

18.39. Solve the non-linear equation P k  + I = P k / ( l +  Pk) by. a change of variable. (This 
equation arises in population genetics.) 

Let yk = l/Pk and substitute to obtain y k +  = yk + 1 which is linear. 

I t  follows easily t h a t  yk = yo + k, making Pk P O / ( l  + kPo). 

HIGHER ORDER EQUATIONS 
18.40. Solve the difference equation y k t 4  - A4yk = f k .  

As with second order equations, we first solve the associated homogeneous equation. The search 
for  power functions yk = rk quickly leads to the characteristic equation 

r 4  - A4 = (r2-A2)(r2 + A 2 )  = 0 

with the possibilities r = * A ,  CAi .  This suggests the functions 

yk = clAk + c2(-A)k + c3Ak sin (ak/2) + c4Ak cos (rrk12) 

which can be verified to  be solutions of the homogeneous equation. To satisfy the given equation, 
this may now be augmented by adding one particular solution Yk. Again following Table 18.1, 
page 187, such a solution can be found by a method of undetermined coefficients. For  instance, 
suppose 

f k  = Pz(k)  = h(3k2- 1) 

Then Yk = Clk2 + C2k + C3 will be a solution provided 

C1(l - A4)k2 + [8C1 + C2(l - A4)]k + j 16C1 + 4Cz + C3(l - A4)] = ik2 - 4 
a s  we find upon substitution. Comparing coefficients leads to 

where B = 1 - A4. (For  A = 1, a higher degree polynomial is  needed.) The functions 

yk = clAk -t c2(-A)k + c3Ak sin (akI2) + c4Ak cos (7rk/2) + Yk 

can be verified a s  solutions of the given equation. Four initial conditions would be sufficient to 
determine the a t  present arbitrary constants ci. 



190 DIFFERENCE EQUATIONS [CHAP. 18 

18.41. Solve the equation of Problem 18.40 when f k  = 2k. 

Let Y k  = C 2k and substitute to  obtain C(16 - A4) = 1 so t h a t  one solution is Y k  = 
Zkl(16 - A 4 )  provided A # 2. Adding this to the solution of the homogeneous equation already 
found, we have a four  parameter family of solutions, a s  may easily be verified. The case A = 2 
responds to  the supposition Y k  = Ck 2k. 

18.42. Solve the equation of Problem 18.40 when f k  = F cos ok. 

Let Y k  = C1 cos wk + C2 sin wk and substitute to obtain, af ter  application of a familiar 
trigonometric identity, 

(cos wk)[Cl(cos 4w - A4) + C2 sin 4w] + (sin wk)[- C1 sin 4w + C2(cos 4w - Ad)] = F cos wk 

Matching coefficients of cos wk and sin ok now brings 

C1 = F(cos 4w - A4)lD, C2 = ( F  sin 4w)lD 

where D = sin24w + (cos 4w - A4)2. Using this C1 and C2, the Y k  function may be added to the 
solution of the homogeneous equation. The case where D = 0 must be handled in a slightly 
different way. 

18.43. Solve yk + 3  $ yk = 0. 
The characteristic equation is  73 + 1 = 0, with roots r = -1, cos ( ~ 1 3 )  f i sin ( ~ 1 3 ) .  

The solutions a r e  therefore yk = el(-l)k + c2 sin (?ik/3) + c3 cos (akI3). 

18.44. Solve Yk+4 + A4yk = 0. 

The characteristic equation is r*l+ A 4  = 0, with roots r = A ( f  1 f i ) l f i .  

irk 3ak 
The solutions a re  yk = Ak + c2 cos - + c3 sin -- + c4 cos 4 4 

Supplementary Problems 
18.45. Given yk+l = rYk + k and yo = A ,  compute yl ,  . . . , y4 directly. Then discover the character 

of the solution function. 

18.46. Given yk + = -yk + 4 and yo = 1, compute yl ,  . . . , y4 directly. What  i s  the character of the 
solution function? Can you discover the solution character for  arbi t rary yo? 

18.47. If  a debt is  amortized by regular payments of size R, and is  subject to  interest ra te  i, the unpaid 
balance is  P ,  where Pk + = ( 1  + i)Pk - R. The initial debt being Po = A, show t h a t  Pk = 

A ( 1 +  i)k - R 
(1 + i ) k  - 1 . Also show tha t  to reduce Pk to  zero in  exactly n payments (Pn = 0 )  i 

we must take R = A i / [ l  - ( 1  + i ) -n] .  

18.48. Show t h a t  the difference equation yk + = (k  + l ) y k  + ( k  + 1)  ! with initial condition yo = 2 has 
the solution yk = k ! (k  + 2).  

18.50.. Apply Horner's method of Problem 18.5 to evaluate p ( ~ )  = 1 + x + x2 + . . - + x6 a t  x = 112. 

18.51. Adapt Horner's method to p(x) = x - x3/3! + x5/5!  - x7/7! + x9/9!  . 
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18.52. Show t h a t  fo r  k > 0, ( k  + l ) y k +  + ky ,  = 2k - 3 has the solution yk = 1 - 2lk. 

18.53. Show tha t  the nonlinear equation yk+ = &/(I  + yk)  has the solutions yk = CI(1-k Ck) .  

18.54. Solve the equation Ayk = ( l l k  - l ) y k  with initial condition yl = 1. 

18.55. Compute $(3)(0) ,  $(3)(1)  and $(3) (2)  from the results in Problem 18.11, page 182. What  general re- 
sult is indicated for  integer arguments? 

m 

18.56. Evaluate z l l k ( k  + 2) in terms of the $ function. 
k=1 

m 

18.57. Evaluate llkZ(k + 2)2, using Problem 18.55. 
k=1 

18.58. Compute $(1/2)  to three places from the series definition, using a n  acceleration device. Then com- 
pute $(3/2) and $(-112) from &(x)  = l l ( x  + 1). 

18.59. What  is the  behavior of $ ( x )  as x approaches -1 from above? 

m 

18.60. Evaluate z 1/P3(x)  where P 3 ( x )  is  the Legendre polynomial of degree three. 
k=1 

m 

18.61. Evaluate 2 1 / T 3 ( x )  where T 3 ( x )  = 4x3 - 32 and is the Chebyshev polynomial of degree three. 
k=l 

m 

18.62. Evaluate 2 1/P4(x)  where P4(x)  is  the Legendre polynomial of degree four. 
k=l 

18.63. Given yk + 2  + 3yk+ + 2yk = 0 with initial conditions yo = 2, y ,  = 1, compute y,, . . . , y1o directly. 

18.64. Solve the preceding problem by the method of Problem 18.16, page 183. 

18.66. Find the solution family of y k f  - yk = 0. Also find the solution satisfying the initial conditions 
yo = 0, y1 = 1. 

18.68. Solve 4 y k + ,  + 4yk+l + yk = k2 with Y O  = 0 ,  ~ 1 =  0. 

18.69. Show tha t  the solutions of yk+% - 2 ~ , + ~  + 2yk = 0 are 

yk = c l ( f i ) ,  sin (xk14) + c 2 ( f i ) ,  cos (rk14) 

18.70. Solve 2yk+2 - 5y,+, + 2yk = 0 with initial conditions y,=O, yl = 1. 

18.72. Solve y k + ~  - 4 y k f 1  + 4yk = sin k + 2k with initial conditions yo = y1 = 0. 

18.73. For what values of a a r e  the solutions of yk t2  - 2yk+ + ( 1  - a)yk = 0 oscillatory in  character? 

18.74. Solve y,,, - 2yk+l  - 3y, = P2(k)  where P,(k) is the second degree Legendre polynomial, and 
yo = y1 = 0. 

18.75. What is  the character of the solutions of y k + ~  - 2ayk+ + ayk = 0 fo r  0 < a < I? For  a = I? 
For a > l ?  





Differential Equations 

T H E  CLASSICAL PROBLEM 

Solving differential equations is one of the major problems of numerical analysis. This 
is because such a wide variety of applications lead to differential equations, and so few can 
be solved analytically. T h e  classical initial value problem is to find a function y (x )  which 
satisfies the first order differential equation y f  = f ( x ,  y)  and takes the initial value 
~ ( X O )  =yo. A broad variety of methods have been devised for the approximate solution of 
this classical problem, most of which have then been generalized for  treating higher order 
problems as well. The present chapter is focused on solution methods for  this one problem. 

The method of isoclines is presented first. Based upon the geometrical interpretation 
of y f ( x )  as the slope of the solution curve, i t  gives a qualitative view of the entire solu- 
tion family. The function f(x,  y )  defines the prescribed slope a t  each point. This "di- 
rection field" determines the character of the solution curves. 

The historical method of Euler involves computing a discrete set of yk values, for 
arguments xk, using the difference equation 

yktl  = yk + h f ( x k ,  yk) 
where h = x k f  I - xk. This is an obvious and not too accurate approximation of yf  = 
f ( x ,  y )  and, although too slow for the actual production of accurate solutions, provides 
a very satisfactory proof of the basic existence theorem. This theorem guarantees the 
existence of a unique solution of the classical problem under very reasonable hypotheses 
on f ( x ,  y). The proof by Euler's method is a very famous and instructive contribution 
of numerical method to analysis. An infinite sequence of approximate solutions, ob- 
tained by Euler's method, is proved to be convergent, its limit function being the exact 
solution of the differential problem. 

More efficient algorithms for computing solutions are then developed. Polynomial ap- 
proximation is the basis of the most popular algorithms. Except for certain series 
methods, what is actually computed is a sequence of values yk corresponding to a discrete 
set of equally spaced arguments xk,  as in the Euler method. Most methods are essen- 
tially equivalent to the replacement of the given differential equation by a difference 
equation. The particular difference equation obtained depends upon the choice of 
polynomial approximation. 

The Taylor series is heavily used. If f(x,  y )  is an analytic function the successive deriv- 
atives of y (x )  may be obtained and the series for y (x )  written out in standard Taylor 
format. Sometimes a single series will serve for all arguments of interest. In  other 
problems a single series may converge too slowly to pkoduce the required accuracy for 
all arguments of interest, and several Taylor series with different points of expansion 
may be used. The eventual truncation of any such series means that the solution is 
being approximated by a Taylor polynomial. 
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Runge-Kutta methods were developed to avoid the computation of high order deriva- 
tives which the Taylor method may involve. In  place of these derivatives extra values 
of the given function f (x ,  y)  are used, in a way which essentially duplicates the accuracy 
of a Taylor polynomial. Their simplicity makes these methods very popular. The 
most common formulas are 

k~ = h f (x, Y )  

k2 = h f ( x + + h , y + + k l )  

but there are numerous variations. 

Predictor-Corrector methods involve the use of one formula to make a first prediction 
of the next yk value, followed by the application of a more accurate corrector formula 
which then provides successive improvements. Though slightly complex, such methods 
have the advantage that from successive approximations to each yk value an estimate 
of the error may be made. A simple predictor-corrector pair is 

yk+ 1 - yk + hut 

yk+l - yk + +h(yL+yL+1) 

the predictor being Euler's formula and the corrector being known as the modified 
Euler formula. Since yL = f ( x k ,  yk)  and yi+l  = f ( x k +  l ,  yk+ l )  the predictor first esti- 
mates yktl.  This estimate then leads to a y;+1 value and then to a corrected yk+i. 
Further corrections of y f  + l  and yk+l ~ ~ c c e ~ ~ i ~ e l y  can be made until a satisfactory result 
is achieved. Then the process may be repeated to produce other y values one by one. 

The Milne method uses the predictor-corrector pair 

y k + ~  - yk-3 + (4h/3)(2uL-2 - ' 1 ~ 1 - 1  + 2&) 

~k + i - yli- i + ( h / 3 ) ( ~ ;  + I + 423; + ~ J L -  1 )  

in which Simpson's rule is easily recognized. I t  requires four previous values 
(yk, yk-I, yk-2, yk-S) to prime it. These must be obtained by a different method, often 
the Taylor series. 

The Adams method uses the predictor-corrector pair 

yk+l - gk + (h/24)(55yL - 59yL-I + 37yL-2 - 9yL-3) 

yk+ 1 - ~ j k  + (h/24)(9yL+ 1 + 19yL - 5&1+ Y L - 2 )  

and like the Milne method requires four previous values. 

SOURCES OF ERROR 

The methods just described involve either replacing the given problem by a substitute 
problem or accepting a truncated series in place of the solution. The errors so committed 
are all loosely referred to as trz~ncation errors. When the differential equation is replaced 
by a difference equation a local truncation error is made with each forward step from k to 
k + 1. These local ' h o r s  then blend together in some obscure way to produce the accumu- 
lated truncation error. I t  is usually not possible to follow error development through an 
algorithm for solving differential equations with any realism, but certain rough estimates 
are within reach. For this reason our treatment of this matter will a t  times be fairly 
intuitive, more or less suited to the quality of the results obtainable. 
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For the Runge-Kutta, Milne and Adams algorithms we find that  truncation error 
depends upon the fifth derivative of y(x). In this sense these methods are of the same 
accuracy, equivalent to using fourth degree Taylor polynomials. The idea of mop-up is an  
outgrowth of truncation error estimation. For the Adams method, for example, the pre- 
dictor error El and corrector error EZ are related by 19E1- -25132. This may be exploited 
to deduce EZ - 19(P- C)/270 where P and C are the first predicted and last corrected 
values. This suggests that  the correct value is C + Ez or C + (19/270)(P - C). The last 
term is the mop-up term. The idea involved here has been used earlier in Romberg's method, 
and is called extrapolation to the limit. 

Convergence to the exact solution of the differential equation is a desirable feature in 
any method. This means that  as the method is continually refined (more and more terms 
of a series being used, or  smaller and smaller intervals h between successive arguments) 
the sequence of approximate solutions obtained must converge to the exact solution. The 
Taylor series method is convergent provided that  the function f(x, y) has enough continuous 
derivatives. More specifically, if each value yk+l is computed from a Taylor polynomial 
based a t  argument xk (so that  the polynomial is changed a t  each step) then the computed 
solution can be brought as  close as  we please to the exact solution by choosing the argu- 

e ments xk close together. Other variations of the Taylor method may also be proved con- 
vergent. As usual, convergence proofs deal with truncation error only, ignoring the issue 
of roundoff. The Runge-Kutta method is convergent under conditions similar to those 
required for the Taylor method. Predictor-corrector methods are convergent if f(x, y) 
satisfies a Lipschitz condition. This is proved by obtaining a difference equation for the 
error and solving this equation by the techniques described in Chapter 18. 

The relative error of an approximation is the ratio of error to exact solut,on value, and 
is usually hard to estimate realistically. It is often of greater importance than the error 
itself, since if the exact solution grows larger then a larger error can probably be tolerated. 
Even more important, if the exact solution diminishes then errors must do the same or they 
will overwhelm the solution and computed results will be meaningless. The simple problem 
y' = Ay with y(0) = 1, for which the exact solution is y = eAx, serves as a popular test 
case for tracing relative error in our various methods. One hopes that  the conclusions 
reached will have some relevance in the use of the same methods on the general equation 
Y' = f(x, Y). 

A method is called relatively stable if any single error made in applying the method to 
y' = Ay has an effect which imitates the exact solution behavior. Focusing in this way on 
a single error, we have an easier task than a full analysis of relative error would involve. 
If no single error propagates through the computation in a way which would overwhelm 
the true solution, then we have reason for cautious optimism. Of course, errors will be in- 
troduced in each step of the computation, and there will be a natural cumulative effect 
which a study of relative stability will not reveal. The Taylor and Adams methods prove 
to be relatively stable. The Milne method, however, is unstable, since when A is negative 
each single error is magnified exponentially while the exact solution decays. This method 
is not recommended for equations with decreasing solutions. Computational evidence in 
support of this will be provided. 

Roundoff error is also present in these algorithms, as almost any computer will realize 
without being reminded. It proves to be even more elusive than truncation error, and little 
success has rewarded the few efforts which have been made to study its effects. 
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Solved Problems 
THE METHOD OF ISOCLINES 

19.1. Use the method o f  isoclines to determine the qualitative behavior of the solutions of 
yf(x) = xy1I3. 

This equation can of course be solved by elementary methods, but  we shall use i t  a s  a test 
case for  various approximation methods. The method of isoclines i s  based on the family of 
curves yl(x) = constant which a r e  not themselves solutions but  a r e  helpful in determining the 
character of solutions. In this example the isoclines a re  the family xy"3 = M where M i s  the con- 
s tant  value of yf(x). Some of these curves a re  sketched (dotted) in Fig. 19-1, with M values in- 
dicated. Where a solution of the differential equation crosses one of these isoclines, i t  must have 
for  its slope the M number of tha t  isocline. A few solution curves a re  also included (solid) in 
Fig. 19-1. Others can be sketched in, a t  least roughly. 

Fig. 19-1 Fig. 19-2 

Accuracy is  not the goal of the isocline method, but rather  the general character of the solution 
family. For  example, there is symmetry about both axes. One solution through (0,O) and those 
above i t  have a U shape. Solutions below this a re  more unusual. Along y = 0 different solutions 
can come together. A solution can even include a piece of the x axis. One such solution might enter 
(0,O) on a descending arc, follow the x axis to (2,O) and then s ta r t  upwards again a s  shown in 
Fig. 19-2. The possible combinations of line and arc  a re  countless. Information of this sort is often 
a useful guide when efforts to compute accurate solutions a r e  made. 

19.2. Apply the method of isoclines to y'(x) = -xy2. 
Fig. 19-3 shows several iso- 

clines and the solution which 
passes through (0,2). Since there 
is symmetry relative to both axes, 
only one quadrant is presented. 
Here i t  i s  convenient to  also in- 
dicate the curve along which yff(x) 
is zero. I t  is  y = 112x2 and, of 
course, changes in the sigp of cur- 
vature take place along this curve. 
Solutions with maxima along the 
y axis, and tending to zero with in- 
creasing x, appear to be indicated, 
although this  is  not a t  once ob- 
vious from the differential equa- 
tion itself. (Here again we have 
a case where elementary methods 

' - - - - y = 1/2$ 

M = O  
I I 
1 2 

easily produce the solution and 
confirm these results.) Fig. 19-3 
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THE EULER METHOD 
19.3. Illustrate the simplest Euler method for computing a solution of 

This is perhaps the original device for  converting the method of isoclines into a computational 
scheme. I t  uses the formula 

,,+I - v, = f k + '  y l d x  - hy;, 
=k 

which amounts to considering y' constant between xk and xk+,. It also amounts to the linear par t  
of a Taylor series, so tha t  if y, and y; were known exactly the error  in y k + ,  would be $h2y(2)([) .  
This is  called the local t runcat ion  error,  since i t  i s  made i n  this step from xk to xk+,. Since i t  i s  
fairly large, i t  follows tha t  rather small increments h would be needed for  high accuracy. 

The formula is  seldom used in practice but serves to indicate the nature of the task ahead and 
some of the difficulties to be faced. With xo, yo = 1 three applications of this Euler formula, using 
h = .01, bring 

y,  - 1 + (.01)(1) = 1.0100 

Near x = 1 we have y ( 2 )  = y1I3 + &xy-2/3(xy1/3) - 
413, which makes the truncation error  in  each step 
about .00007. After  three such errors, the fourth 
decimal place is already open to suspicion. A 
smaller increment h is necessary if we hope for  
greater accuracy. The accumulation of truncation 
error is fur ther  illustrated in Fig. 19-4 where the 
computed points have been joined to suggest a 

/ 
exact solution 

solution curve. Our approximation amounts to fol- 
lowing successively the tangent lines to  various 
solutions of the equation.' As a result the approxi- 
mation tends to follow the convex side of the solu- (1,l) 
tion curve. Notice also t h a t  Euler's formula is a xo 21 2 2  5 3  

nonlinear difference equation of order one: yk + , = 
y,, + kxky;/3. Fig. 19-4 

19.4. Illustrate the concept of convergence by comparing the results of applying Euler's 
method with h = .lo, .05 and . O 1  with the corre,ct solution y = [ (x2  + 2)/3I3l2. 

Convergence refers to the improvement of approximations a s  the interval h tends to zero. 
A method which does not converge is of doubtful value a s  a n  approximation scheme. Convergence 
for  the various schemes to be introduced will be proved later,  but a s  circumstantial evidence the 
data of Table 19.1, obtained by Euler's method, a re  suggestive. Only values for  integer x arguments - 
are included, all others being suppressed for  brevity. 

h = .10 h = .05 h = . O 1  Exact 

2.72 2.78 2.82 2.83 

25.96 26.48 1 26.89 1 27.00 

Table 19.1 



Fig. 19-1 
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Fig. 19-2 

Accuracy is not the goal of the isocline method, but rather the general character of the solution 
family. F o r  example, there is  symmetry about both axes. One solution through (0,O) and those 
above i t  have a U shape. Solutions below this a r e  more unusual. Along y = 0 different solutions 
can come together. A solution can even include a piece of the  x axis. One such solution might enter 
(0,O) on a descending arc, follow the x axis to (2,O) and then s ta r t  upwards again a s  shown in 
Fig. 19-2. The possible combinations of line and a rc  a re  countless. Information of this sort is often 
a useful guide when efforts to compute accurate solutions a r e  made. 

Apply the method of isoclines to y'(x) = -xyz. 

Fig. 19-3 shows several iso- 
clines and the solution which 
passes through (0,2). Since there 
is symmetry relative to  both axes, 
only one quadrant is presented. 
Here i t  is  convenient to also in- 
dicate the curve along which yU(x) 
is zero. It is y = 1/2x2 and, of 
course, changes in the sigp of cur- 
vature take place along this curve. 
Solutions with maxima along the 
Y axis, and tending to zero with in- 
creasing x, appear to be indicated, 
although this  is  not a t  once nh- 

R of width 2W and height Z B W .  (rig. ~ J - V . ,  -.----- - . .. 
tinuous in R i t  is  uniformly continuous there, which means tha t  there is  a 6 > 0 such t h a t  ( ~ y l ,  311 - 

f(x2, yz)l < E whenever (x,, y,) and (x2, yz) a r e  points in R with lx, - x,] < 6, ly, - y,l < 6. The num- 
ber 6 depends upon E but  not upon the  points involved. Now choose h to be the smaller of the two 
numbers 6 and SIB and apply the Euler method. Noticing tha t  the diagonals of R have slopes of 
B and -B, and recalling Jfjx, y)\ < B, i t  is  clear t h a t  no segment of the polygon achieved in this way 
can be steeper than these diagonals. Accordingly the chain cannot touch these diagonals except a t  
(x,,, yo). As we follow its progress to the r ight  i t  must therefore eventually reach the r ight  side of 
R a s  shown in the diagram, since the only thing which could stop the Euler  method would be to reach 
a point where f(x, y) is  undefined, and this does not happen in R. (The chain can similarly be ex- 
tended to the left of (x,y,) by using negative h.) Call this chain p(x). Then 

- -- 
vious from the differential equa- 
tion itself. (Here again we have 
a case where elementary methods 

and p'(x) fails to exist a t  the corner points. But  now 

1 pl(x) - f(x, p(x)) ( = ( f(xk,yk) - f(x, P(x)) 

-'---- y = 1/222 

I 
M = 0  

1 I 
2 

fo r  each segment of the chain since 

I X  - xkl < h < 6 ,  - ~ k (  < Bh 

easily produce the solution and 
confirm these results.) 

Fig. 19-3 

So the continuity of f(x, y) i s  enough to guarantee the existence of a function, here a polygon chain, 
which satisfies the differential equation with accuracy e, a t  least in  the local neighborhood of the 
initial point. W e  now proceed t o  extend this  result. 
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19.6. Show that if f ( x ,  y )  also satisfies the Lipschitz condition 

L being a positive number, then two functions Yl ( x )  and Y ~ x )  which satisfy the dif- 
ferential equation with errors C ,  and C ,  respectively, 

1 Y : ( x )  - f ( x ,  Y , ( x ) )  1 < E l ,  I Y ; ( x )  - f (x ,Y , (x) )  l < €2 

in the rectangle R of the previous problem, will not differ by more than the following 
amount for  Ix - x01 4 W :  

We focus on the interval xo 6 x  6 xo + W ,  the argument fo r  the left side of R being similar. 
Except a t  a finite set of points where Y l  and Y ,  may be permitted to have corners, like the polygon 
chains just produced, we have 

I y ; ( x ) - Y ; ( x ) I  I f ( x , Y l ( x ) ) - f ( x , Y , ( x ) ) I  + €1 + eq 

" L I Y 1 ( x )  - Y,(x)I + e ,  + e ,  

Let d(x)  = Y l ( x )  - Y,(x). Then except a t  possible corners of Y 1  o r  Y,, 

Idf(x)I 6 Lld(x)I + el + e ,  

First  suppose t h a t  d(x)  is  never zero in the interval, say i t  remains positive. Then 

d  Multiplying by e-Lx and using - [e-Lxd(x)] = [dl(x)  - L d(x)]e-Lz, we can integrate between 
dx 

xo and x  in  spite of the finite jumps possible in d f ( x ) ,  to  find 

.which easily rearranges into the required result. F o r  d(x)  always negative, we may reverse the 
roles of Y l  and Y ,  and find the same result. 

But  i t  i s  also possible that  d(x)  is  zero for  certain arguments. If it were identically zero then 
the required result would be t rue trivially. Suppose tha t  d(2) is  not zero. By i ts  continuity d(x) 
remains nonzero for  some interval about 2  but, since we a r e  concerned with the case t h a t  d(x)  
vanish somewhere, let x*: be its first zero on one side or  the other of 2. Since d(x)  does not vanish 
between x* and 2,  we may apply the first case considered with 2  and x* in place of x  and x,. 

This is  a stronger inequality than was required, so tha t  the required result holds in all cases. 

19.7. Prove that the equation y' = f ( x ,  y )  with ~ ( X O )  = yo has an exact solution for the 
interval Ix - xol W ,  provided f (x ,  y )  is continuous and satisfies the Lipschitz condi- 
tion. (Continuity alone guarantees existence but a more strenuous proof is involved.) 

This is, of course, the existence theorem. Choose a monotone sequence of positive numbers 
en with lim E~ = 0. Then by Problem 19.5 we know t h a t  a corresponding sequence of polygon chains 
p,(x) may be constpcted over the indicated interval such that,  except a t  the finite set of corners, 

This sequence of functions pn(x) is  uniformly convergent, for  since all polygon chains may be 
started from (so, yo) the inequality of Problem 19.6 makes 
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which is uniformly small for  sufficiently large n and m. Since a uniformly convergent sequence 
of continuous functions has a continuous limit function, we now have 

lim P,(x) = Y ( X )  
with y(x )  continuous. 

Next we show tha t  this y(x )  is  a n  exact solution of the differential equation. Notice that  

so t h a t  the uniform convergence of pn(x) to  y ( x )  also guarantees 

lim f ( x ,  P,(x)) = f ( x ,  Y ( x ) )  
uniformly. Because of this, 

Finally we return to 1 P A  ( x )  - f ( x ,  ~ ~ ( 4 )  1 < en 

and integrate each side from zo  to x. Though pn(x)  has corners, i ts continuity is enough to produce 

In  the limit this becomes Y ( X )  = Yo + J-1 f ( t .  ~ ( t ) )  a t  

follow a t  once. We have now proved t h a t  a solution of this initial value problem does exist. We 
have also proved that  the Euler method produces a sequence of functions pn(x)  which converge to 
this exact solution y ( x )  a s  the spacing h between xk arguments approaches zero (forcing 6 and E 

to zero with it). 

19.8. Prove that  the exact solution found in Problem 19.7 is unique. 

Suppose two solutions existed, say y l ( x )  and yz(x).  They could then be considered suitable func- 
tions Y l ( x )  and Y 2 ( x )  for  the inequality of Problem 19.6, with € 1  = €2 = 0 and Y1(xo)  = Y ~ ( x o )  = YO. 
Thus l y l ( x )  - y2(x)j f 0 and the two solutions a re  identical. 

19.9. Estimate the difference between p n ( x )  and y(x ) .  
En 

By the same inequality, Jpn(x )  - y(x)l 6 -[eLIZ-zol - 11. L 
Comparing this with lp;(x) - f(x,p,(x))l 5 en, we a r e  reminded that,  quite naturally, there 

is  a difference between how accurately p,(x) approximates the solution y ( x )  and how accurately its 
derivative approximates the function f ( x ,  y).  

THE TAYLOR METHOD 
19.10. AppIy the Iocal Taylor series method to obtain a solution of y' = xyl f3,  y(1) = 1 cor- 

rect to three places for arguments up to x = 5. 

Generally speaking the method involves using p(x + h )  in place of y(x  + h), where p(x )  is  the 
Taylor polynomial for argument x. We may write directly 

accepting a local truncation error of amount E = h5y(5)([)/120. 

The higher derivatives of y ( x )  are  computed from the differential equation: 

y ( 2 ) ( 2 )  = &52y-1/3 + y113, y(3)(%) = - $x3y -1  + xy-1!3 ,  y (4 ) (x )  = 154y-513  - 2X2y-1 + y- l f3  
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The initial condition y (1 )  = 1 has  been prescribed, so with x = 1 and h = .1 we find 

Next apply the Taylor formula a t  x = 1.1 and find 

The second of these serves a s  a n  accuracy check since it  reproduces our first result to five place 
accuracy. (This is  the same procedure used in Chapter 14 for  the error function integral.) Continu- 
ing in this way, the results presented in Table 19.2 are  obtained. The exact solution is again 
included for  comparison. Though h = . l  was used, only values fo r  x = 1(.5)5 a r e  listed. Notice 
that  the errors  a re  much smaller than those made in the Euler method with h = .01. The Taylor 
method is  a more rapidly convergent algorithm. 

- - 

Table 19.2 

Taylor result 

1.00000 

1.68618 

2.82846 

4.56042 

7.02123 

10.35252 

14.69710 

20.19842 

27.00022 

Error  Exact result 

1.00000 

1.68617 

2.82843 

4.56036 

7.02113 

10.35238 

14.69694 

20.19822 

27.00000 

Apply the Taylor method to y' = -xy2  to obtain the solution satisfying y ( 0 )  = 2.  
This solution was illustrated in Fig. 19-2 which shows its qualitative behavior. 

The procedure of the preceding problem could be applied. Instead, however, a n  alternative wiU 
be illustrated, essentially a method of undetermined coefficients. Assuming convergence a t  the 

m 

outset, we write the Taylor series y ( x )  = .x a&. Then 
a=O 

m 

yz(x)  = ( 5  a=o a x )  ( a )  = ( - )  , yf(z) = x i a p - 1  
k=O t=0 i= 1 

Substituting into the differential equation and making minor changes in the indices of summation, 

Comparing coefficients of xi makes a ,  = 0 and 
j - 1  

( j  + l ) a j + l  = - 2 a ia i - l - i  for  j = 1,  2,  . 
i=O 

The initial condition forces a ,  = 2,  and then we find recursively 

and so on. The recursion can be programmed so t h a t  coefficients could be computed automatically 
a s  f a r  a s  desired. The indicated series i s  

Since the exact solutign is  easily found to be ~ ( 2 )  = 2 / ( 1 +  xz),  the series obtained is no surprise. 
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This method sees frequent application. The principle assumption involved i s  tha t  the solution 
does actually have a series representation. In  this case the series converges only for -1 < x  < 1. 
For -112 < x  < 112 only six terms a r e  needed to give three place accuracy. In  the previous problem 
a new Taylor polynomial was used for  each value computed. Here just one such polynomial i s  
enough. The issue is one of range and accuracy required. To proceed up to x  = 5, f o r  example, 
the earlier method can be used. In  fur ther  contrast we may also note t h a t  in  Problem 19.10 poly- 
nomials of fixed degree a re  used and the convergence issue does not arise explicitly. Here in Prob- 
lem 19.11 we introduce the entire series into the differential equation, assuming y(x )  analytic in  the 
interval of interest. 

RUNGE-KUTTA METHODS 
19.12. Find coefficients a, b, c, d ,  m, n, and p  in order that the Runge-Kutta formulas 

kl = h f ( x ,  Y )  

kz = h f ( x + m h ,  y + m k l )  

k3 = h f (x+nh,  y + n k 2 )  

k4 = h f ( x + p h , y  + p k s )  

y (x  + h) - y (x )  - a h  + blce + cks  + dk4 

duplicate the Taylor series through the term in h4. Note that the last formula, though 
not a polynomial approximation, is then near the Taylor polynomial of degree 4. 

We begin by expressing the Taylor series in  a form which facilitates comparisons. Let 

F1 = f x  + f f y ,  F2 = f x x  + 2ffxy + f 2 f y y ,  F3 = f z x x  + 3ffxxy + 3f2fxyy + f 3 f y U y  

Then differentiating the equation y' = f ( x ,  y) ,  we find 

Y ( ~ )  = fi + f yy '  = f x  + f y f  = F1 

yC3) = f,, + 2 f f x y  + f 2 f y y  + f y ( f z  + f f J  = Fz + f yF1  

y ( 4 )  = f xxx + 3ffxxy + 3f2fxyy + f 3 f Y Y Y  + f y  ( f x x  + 2ffXY + f2 fy , )  

+ 3 ( f ,  + f f , ) ( f x y  + f f y y )  + f 3 f x  + f f y )  

= F3 + f yF2  + 3 F , ( f X y  + ff,,) + f i ~ l  
which allows the Taylor series to be written a s  

Y ( X  + h )  - Y ( X )  = hf + Qh2F1 -4- &h3(F2+ f y F 1 )  

+ 21;Ih4[F3 + fYF2 + 3 ( f x y  + f f y y ) F l  + f i ~ l ]  + . . . 
Turning now to the various k values, similar computations produce 

k1 = hf 

k ,  = h[f + mhFl  + +m2h2F2 + &m3h3F3 + . . . ]  
k ,  = h[f + nhFl + frh2(n2F2 + Zmnf,  F1)  

+ Qh3(n3F3 + 3m2nfyF2 + 6mn2(fxy + ff,,)F1) + . . .] 
k p  = h[f + phFl + frh2(p2F2 + 2 n p f y F l )  

+ &h3(p3F3 + 3n2pfyF2 + 6np2(f,, + ff,,)Fl + 6mnpf,2F1) + . . .] 
Combining these a s  suggested by the final Runge-Kutta formula, 

y(x + h )  - y(x )  = ( a +  b  + c  + d ) h f  i- ( b m  + cn+ dp)h2F1 

+ #bm2 + cn2 + dp2)h3F2 + Q(bm3 + en3 + dp3)h4F3 

+ (cmn + dnp) h3 f y  F l  + fr(cm2n + dn2p) h 4 f y  F z  

+ (cmn2 + dnp2)h4(fxy + f fyy)Fl  + d m n p h 4 f i ~ ,  + . - .  
Comparison with the Taylor series now suggests the eight conditions 

a + b + c + d  = 1 cnzn + dnp = 116 

bm + cn + dp = 112 cmn2 + dnpz = 118 

bm2 + cn2 + dp2 = 113 cm2n + dn2p = 111 2  

bm3 + cn3 + dp3 = 114 dmnp = 1/24 
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These eight equations in seven unknowns are actually somewhat redundant. The classical solution 
set is 

m = n = 112, p = 1, a = d = 116, b = c = 113 

leading to the Runge-Kutta formulas 

k1 = h f ( ~ , ~ ) ,  k2 = h f ( x + f r h ,  y+frk , ) ,  k ,  = h f ( x + + h ,  y++k,),  k4 = h f ( x + h ,  y + k 3 )  

y ( x  + h )  - y ( x )  + Q(k l  + 2k2 + 2k,  + k,) 

I t  is of some interest to notice that for f ( x ,  y) independent of y this reduces to Simpson's rule applied 
to y f ( x )  = f ( x ) .  

19.13. What is the advantage of Runge-Kutta formulas over the Taylor method? 
Though approximately the same as  the Taylor polynomial of degree four, these formulas do 

not require prior calculation of the higher derivatives of y ( x ) ,  as the Taylor method does. Since the 
differential equations arising in applications are often complicated, the calculation of derivatives 
can be onerous. The Runge-Kutta formulas involve computation of f ( x ,  y) a t  various positions 
instead, and this function occurs in the given equation. The method is very extensively used. One 
disadvantage is that  errors are not so easy to watch. In the Taylor method there is the chance to 
continually check back on values computed earlier. Here perhaps the best opportunity i s  to observe 
the individual k numbers. Should they differ violently, a reduction in the size of h is  probably 
indicated. 

19.14. Apply the Runge-Kutta formula to y' = f(x, y) = xy"? y(1) = 1. 
With so = 1 and h = .1 we find 

from which we compute 
y ,  = 1 +"&(.1 + .21344 + .21368 + ,11378) - 1.10682 

This completes one step and we begin another with x ,  and yl in place of xo and yo, and continue in 
this way. Since the method duplicates the Taylor series through h4, it  is natural to expect results 
similar to those found by the Taylor method. Table 19.3 makes a few comparisons and we do find 
differences in the last two places. These are partly explained by the fact that  the local truncation 
errors of the two methods are not identical. Both are of the form Ch5, but the factor C is not the 
same. Also, roundoff errors usually differ even between algorithms which are algebraically iden- 
tical, which these are not. Here the advantage is  clearly with the Runge-Kutta formulas. 

I Taylor / ~ u n g e - ~ u t t a  I Exact x 

19.15. Illustrate variations of the Runge-Kutta formulas. 
Defining 

k ,  = h f ( x j y )  

k ,  = h f (x  + m h ,  y + m k , )  

k ,  = h f [ x  + n h ,  y + rk ,  + ( n  - r)k ,]  

k ,  = h f [ x + p h ,  y + ~ k , + t k ~ + ( p - s - t ) k ~ ]  

y (x  + h )  - y ( x )  + a k ,  + bk, + ck ,  + dk4 

4 14.69710 

5 27.00022 

Table 19.3 

14.69693 

26.99998 

14.69694 

27.00000 
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we again t r y  to make y(x  + h) a duplicate of the Taylor series through the term in h4. The quantities 
ki may be expanded into series a s  before, leading to a series for  y(x  + h) .  The details will be omitted, 
but comparison of coefficients with those of the Taylor series requires tha t  

a + b + c + d  = 1 c m r  + dnt + d m s  = 116 

bm + c n  + d p  = 112 c m n r  + d p n t  + d m p s  = 118 

bm2 + cn2 + dp2 = 113 cm2r + dnz t  + dm% = 112 

bm3 + cn3 + dp3 = 114 d m r t  = 1/24 

These eight conditions involve ten undetermined constants, leaving two degrees of freedom for  meet- 
ing the specification tha t  terms through h4 be duplicated. The choices m = n = 112, p = 1, r = 112, 
s = 0, t = 1, a = d = 116 and b = c = 113 lead to our earlier formulas. In the Gill me thod ,  which 
has seen heavy use since i t  minimizes the number of memory locations required during implementa- 
tion, the choices a re  a s  follows: 

In the Ralston method, which minimizes a bound on the truncation error  term, 

m = .4 r = ,15875964 a = .I7476028 

n = .45573725 s = -3.05096516 b = -.55148066 

p = l  t = 3.83286476 c = 1.20553560 

d = .I7118478 
and other combinations a re  clearly possible. 

CONVERGENCE OF THE TAYLOR METHOD 

19.16. The equation y' = y with y(0) = 1 has the exact solution y(x) = ez. Show that  the 
approximate values yk obtained by the Taylor method converge to this exact solution 
for h tending to zero, and p fixed. (The more familiar convergence concept keeps h 
fixed and lets p tend to infinity.) 

The Taylor method involves approximating each correct value yk + ,, by 

For the present problem all the derivatives a re  the same, making 

When p = 1 this reduces to the Euler method. In any case i t  is  a difference equation of order one. 
I t s  solution with Y ,  = 1 is  

But by Taylor's polynomial formula, 

with [ between 0 and 1. Now recalling the identity 

we find for  the case a > r > 0, 
ak - rk < (a -r )kak-1  

Choosing a = e h  and r  a s  above, this las t  inequality becomes 
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the last  step being a consequence of 0 < < 1. The question of convergence concerns the behavior 
of values computed for  a fixed argument x  a s  h tends to zero. Accordingly we put  xk = kh and 
rewrite our last result a s  

Now choose a sequence of step sizes h, in such a way that  X ,  reoccurs endlessly in  the finite argu- 
ment set of each computation. (The simplest way is  to continually halve h.) By the above inequality 
the sequence ~f Y k  values obtained a t  the fixed x ,  argument converges to the exact exr a s  hp. The 
practical implication is, of course, tha t  the smaller h is  chosen the closer the computed result draws 
to the exact solution. Naturally roundoff errors, which have not been considered in this problem, 
will limit the accuracy attainable. 

19.17. How does the error of the Taylor approximation, as developed in the previous prob- 
lem, behave for a fixed step size as k increases, in other words as the computation is 
continued to larger and larger arguments? 

Note tha t  this is  not a convergence question, since h is fixed. It is  a question of how the error, 
due to  truncation of the Taylor series a t  the term hp, accumulates as  the computation continues. 
By the last  inequality we see tha t  the error contains the t rue solution a s  a factor. Actually i t  is 
the relative error  which may be more significant, since i t  is  related to the number of significant 
digits in our computed values. We find, 

relative error = 

which, for  fixed It, grows linearly with xk. 

19.18. Prove the convergence of the Taylor method for the general first order equation 
y' = f ( x ,  y) with initial condition y(xo) = yo under appropriate assumptions on f(x, 3). 

This generalizes the result of Problem 19.16. Continuing to use capital Y for  the approximate 
solution, the Taylor method makes 

1 1 
Y,.,, = Y k  + hY; + z h2yP' + . + - ~QY:'' 

P !  

where all entries Y F' are  computed from the differential equation. For  example, 

and suppressing arguments for  brevity, 

i t  being understood tha t  f and its derivatives a re  evaluated a t  zk, Y ,  and that  Y k  denotes the com- 
puted value a t  arguments x,. The other Y? are  obtained from similar, but more involved, formulas. 
If we use y ( x )  to  represent the exact solution of the differential problem, then Taylor's formula 
offers a similar expression for  y(xk + 

provided the exact solution actually has such derivatives. As usual [ is between xk and x k + l .  In  
view of y f ( x )  = f (x ,  y ( x ) ) ,  we have 

yr(xk) = f ( ~ k t  Y ( x ~ ) )  
and differentiating, 

~ J " ' ( x ~ )  = f X ( x k ,  Y ( x ~ ) )  + f y  (xk ,  ~ ( x k ) ) f ( x k ,  ~ ( x k ) )  = f f ( ~ k r  Y ( x ~ ) )  

and so on. Subtraction now brings 
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We will further assume that f(x,  y )  is such that  

I Y ' ~ ' ( x ~ )  - Y?) I = I f ( i - l ) ( ~ k t  y (xk ) )  - f ( i - l ) ( ~ k l  Y k )  1 L I y(xk)  - Y k  1 
This can be proved to be true, for instance, for i = 1, . . ., p if f ( x ,  y) has continuous derivations 
through order p + 1. This same condition also guarantees that  the exact solution y ( x )  has continuous 
derivations through order p + 1, a fact assumed above. Under these assumptions on f ( x ,  y) we now 
let dk = y(xk)  - Y k  and have 

where B is a bound on 1 yp+l(x) 1 .  For brevity, this can be rewritten a s  

Idk+ll + ldkl + P 

where 

eka - 1 
We now prove that ldkl ' P ,  

The numbers a and P are positive. Since the exact and approximate solutions both satisfy the 
initial condition, do = 0 and the last inequality holds for k = 0. To prove i t  by induction we 
assume it for some non-negative integer k and find 

eke - 1 ( 1  + a)eka - 1 e(k+l)a - 1 
Idk+ll ' ( l fa)P-----  + P  = P < P a a: 

the last step following since 1 + a: < ea. The induction is therefore valid and the inequality holds 
for non-negative integers k. Since a = Lh + ~h < Mh where e tends to zero with h, we can replace 
L by the slightly larger M and obtain 

with the usual change of argument x ,  = x,+ kh,  so that convergence is again like hp. 

19.19. What does the result of Problem 19.18 tell about the error for fixed h as the computa- 
tion continues to larger arguments xk? 

The result is adequate for proving convergence, but since the exact solution is unknown i t  does 
not lead a t  once to an estimate of the relative error. Further error analysis and an extrapolation 
to the limit process have been explored. Some details are given in Elements of Numerical Analysis 
by Peter K. Henrici, Wiley, 1964. 

19.20. Are Runge-Kutta methods also convergent? 
Since these methods duplicate the Taylor series up to a point (in our example up to the term in 

h4), the proof of convergence is similar to that just offered for the Taylor method itself. The details 
are more complicated and will be omitted. 

T H E  PREDICTOR-CORRECTOR METHOD 
19.21. Derive the modified Euler formula yk + 1 - yk + +h(yj, + yk + 1 )  and its local trunca- 

tion error. 
The formula can be produced by applying the trapezoidal rule to the integration of y' as  follows. 
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By Problem 14.72, page 124, the error in this application of the trapezoidal rule to y1 will be 
-h3y(3)([)/12, and this i s  the local truncation error. (Recall tha t  local truncation error refers to  
error introduced by the approximation made in the step from x, to x,,,, t h a t  is, in  the integration 
process. Effectively we pretend tha t  y, and earlier values a re  known correctly.) Comparing our 
present result with tha t  for  the simpler Euler method, we of course find the present error sub- 
stantially smaller. This may be viewed a s  the natural  reward f o r  using the trapezoidal rule rather  
than a still more primitive integration rule. I t  is also interesting to note t h a t  instead of treating 
y' a s  constant between X, and xk t l ,  SO t h a t  y(x) is  supposed linear, we now essentially t reat  y' as 
linear in this interval, so t h a t  y(x) is supposed quadratic. 

Apply the modified Euler formula to the problem Y' = x P 3 ,  ~ ( 1 )  = 1. 
Though this method is seldom used for  serious computing, it serves to illustrate the nature 

of the predictor-corrector method. Assuming yk and y; already in hand, the two equations 

a re  used to determine yl,+ and y & +  l. An iterative algorithm much like those to be presented in 
Chapter 25 for  determining roots of equations will be used. Applied successively, beginning with 
k = 0, this algorithm generates sequences of values yk and y&. It is  also interesting to recall a 
remark made i n  the solution of the previous problem, tha t  essentially we a r e  treating y(x) a s  though 
i t  were quadratic between the xk values. Our overall approximation to y(x) may thus be viewed a s  
a chain of parabolic segments. Both y(x) and y'(x) will be continuous, while yl'(x) will have jumps 
a t  the "corner points" (x,, y,). 

To trigger each forward step of our computation, the simpler Euler formula will be used a s  a 
predictor. It provides a first estimate of Y ~ , + ~ .  Here, with x, = 1 and h = .05 i t  offers 

The differential equation then presents us with 

y1(1.05) - (1.05)(1.016) - 1.0661 

Now the modified Euler formula serves a s  a corrector, yielding 

y(1.05) - 1 + (.025)(1 + 1.0661) - 1.05165 

With this new value the differential equation corrects y'(1.05) to 1.0678, af ter  which the corrector 
is  reapplied and produces 

y(1.05) - 1 + (.025)(1 + 1.0678) - 1.0517 

Another cycle reproduces these four  place values, so we stop. This iterative use of the corrector 
formula, together with the differential equation, is  the core of the predictor-corrector method. One 
iterates until convergence occurs, assuming i t  will. (See Problem 19.35 f o r  a proof.) I t  is  then 
time for  the next step forward, again beginning with a single application of the predictor formula. 
Since more powerful predictor-corrector formulas a re  now to be obtained, we shall not continue 
the present computation further. Notice, however, t h a t  the one result we have is only two units 
too small in  the last place, verifying tha t  our corrector formula is  more accurate than the simpler 
Euler predictor, which was barely yielding four  place accuracy with h = .01. More powerful 
predictor-corrector combinations will now be developed. 

19.23. Derive the "predictor" formula y k + ~  - yk-3  + :h(2yL-2 - 3;-1 + 2yi). 
Earlier (Chapter 14) we integrated a collocation polynomial over the entire interval of colloca- 

tion (Cotes formulas) and also over just a par t  of t h a t  interval (formulas with end corrections). 
The second procedure leads to more accurate, if more troublesome, results. Now we integrate a 
collocation polynomial over more than i t s  interval of collocation. Not too surprisingly, the resulting 
formula will have somewhat diminished accuracy, but i t  has an important role to play nevertheless. 
The ~olvnomial  

satisfies p, = y& for  k = -1,0,1. It is a collocation polynomial f o r  yl(x) in the form of Stirling's 
formula of degree two, a parabola. Integrating from k = -2 to  k = 2, we obtain 
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With the usual change of argument x  = xo + k h  this becomes 

S2 p ( x )  d x  = $h(2y; - yh + 2 y L  ,) 
2 - 2  

Since we a r e  thinking of p ( x )  a s  a n  approximation to z/ '(x),  

Since the same argument applies on other intervals, the indices may all be increased by k -  1 to  
obtain the required predictor formula. It is  so called because i t  allows the y2 to  be predicted from 
data  for  smaller arguments. 

19.24. What is the local truncation error of this predictor? 
It may be estimated by the Taylor series method. Using zero a s  a temporary reference point, 

yk = yo + (kh)yL + +(kh)2yr '  + Q ( k h ) 3 y r )  + & ( k h ) 4 y F )  + & ( k h ) 5 y ~ 5 )  -t 0 . .  

i t  follows tha t  yz  - y-2 = 4hyh + $ h 3 y r )  + Gh5y:) + .. . 

Differentiation also brings 

y i  = y& + ( k h ) y r )  + $(kh)ZyF)  + Q(kh)3yi4) + & & k h ) 4 ~ r )  + . . . 
from which we find 2y; - y6 + 2 y 1 1  = 3yh + 2 h 2 y f )  + &h4yi5)  + . . . 
The local truncation error is therefore 

14 
( y ,  - Y - ~ )  - $h(2yi  - yb + 2 y L l )  = 45h5yF) + . . . 

of which the first term will be used a s  a n  estimate. For  our shifted interval this becomes 

E, - f i h s y ( 5 )  
45 k - 1  

Compare the predictor error with that  of the "corrector" formula 

y k t i  yk-I i $ h ( y i - l + 4 ~ L + y L + ~ )  

This corrector is actually Simpson's rule applied to y l ( x ) .  The local truncation error is therefore 

by Problen~ 14.71, page 123. Thus E ,  - -28E, where the difference in the arguments of y t 5 )  has 
been ignored. The corrector seems considerably more accurate. 

Use the preceding problem to correct the corrector formula by extrapolation to the 
limit. 

If local truncation error  only is  considered, then writing 

with P and C denoting the predictor and corrector results, i t  follows that  

making E, - ( P  - C)/29.  This now allows 

g,,, - C + E ,  - C + ( P - C ) / 2 9  

the last term being known as  a "mop-up". Because of the fact  that  only local truncation error 
has been considered, this last formula for  y k + ,  should be viewed with a t  least slight skepticism. 
However, i t  is worth remarking tha t  i t  actually has local truncation error of order h6. I t  is another 
example of extrapolation to the limit. 
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19.27. The Milne method uses the formula 
y k t i  - yli-3 + $h(2yk-2-yL-1+2.1J1) 

as a predictor, together with 
yk+l - yk-1 + ~ I ~ ( y ~ + l i 4 y ~ + y ~ - l )  

as a corrector. Apply this method using h = .2 to the problem y' = -xy2, y(0)  = 2. 

The predictor requires four previous values, which i t  blends into y k + l .  The initial value 
y(0)  = 2 is one of these. The others must be obtained. Since the entire computation will be based 
on these s tar t ing values, i t  is  worth an extra  effort to get them reasonably accurate. The Taylor 
method or Runge-Kutta method may be used to obtain 

y ( 2 )  = y1 - 1.92308, y(.4) = y, - 1.72414, y(.6) = y,  - 1.47059 

correct to five places. The differential equation then yields 

correct to five places. The Milne predictor then manages 

y4 - yo + $(.2)(2& - y& t 2yI)  - 1.23056 

In the differential equation we now find our first estimate of y4, 

The Milne corrector then provides the new approximation, 

yq - y, + $(.2)(-1.21142 + 4 y j  + y;) - 1.21808 

Recomputing y' from the differential equation brings the new estimate y; - -1.18698. Reapplying 
the corrector, we next have 

y4 - y ,  + +(.2)(--i.18698 + 4y i  t- y!J - 1.21971 

Once again applying the differential equation, we find 
yi  - -1.19015 

and returning to the corrector, 
y1 - y, + Q(.2)(-1.19015 + 4y; + & )  - 1.21950 

The nes t  two rounds produce 

and since our last  two estimates of y, agree, we can stop. The iterative use of the corrector formula 
and differential equation has proved to be a convergent process, and the resulting y, value is actually 
correct to four  places. In this case four  applications of the corrector have brought convergence. 
If h is  chosen too large in  a process of this sort, an excessive number of iterative cycles may be 
needed for  convergence, or the algorithm may not converge a t  all. Large differences between pre- 
dictor and corrector outputs suggests reduction of the interval. On the other hand, insignificant 
differences between predictor and corrector outputs suggests increasing h and perhaps speeding up 
the computation. The computation of y,  and y; may now be made in the same way. Results up to  
z = 10 are  provided in Table 19.4. Though k = .2 was used, only values for  integer arguments 
a re  printed in the interest of brevity. The exact values are  included for  comparison. 

z 1 y (correct) 1 y (predictor) 1 Error  I y (corrector) 

Table 19.4 
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19.28. Discuss the error of the previous computation. 

Since the exact solution is known for  this test case, i t  is  easy to see some things which would 
usually be quite obscure. The fifth derivative of y ( x )  = 2 / (1+ x2) has  the general behavior shown 
in Fig. 19-7. 

19.29. Derive the Adams predictor formula 

The large fluctuations between 0 and 1 

As in Problem 19.23, we obtain this predictor by integrating a collocation polynomial beyond the 
interval of collodation. The Newton backward formula of degree three, applied to  y'(x) is  

would usually make i t  difficult to use our 
truncation error  formulas. For  example, 
the local error  of the predictor is 1 4 h 5 ~ ( ~ ) / 4 5  
and in our first step (to x = .8) we actually 
find the predictor in error  by -.011. This 
corresponds to y(5) - -100. The local cor- loo- 

rector error  i s  -h5y(5)/90 and in the same 

where a s  usual xk  = x0 + kh.  Integrating from k = 0 to k = 1 (though the points of collocation 
are  k = 0 ,  -1, -2, -3), we obtain 

y'5' 

In terms of the argument x and using p(x )  - y l ( x ) ,  this becomes 

first step the error  was actually -.00002. x 
This corresponds to y(5) - 6. This change 
of sign in y(5) annuls the anticipated 
change i n  sign of error between the pre- -loo- 

dictor and corrector results. It also means 
that  an attempt to use the extrapolation 
to the limit idea would lead to worse re- 
sults rather  than better, in this case. The 
oscillating sign of the error a s  the computa- 
tion continues will be discussed later. 

Fig. 19-7 

Since the same reasoning may be applied between xk  and x k t l ,  we may raise all indices by k to  
obtain the first result required. The second then follows by writing out the differences in  terms of 
the y values. 

19.30. What is the local truncation error of the Adams predictor? 

The usual Taylor series approach leads to E = 251hSy(5)/720. 

19.31. Derive other predictors of the form 

Varying the approach, we shall make this formula exact for  polynomials through degree four. 
The convenient choices a re  y ( x )  = 1, ( x  - x k ) ,  ( x  - xk)2, ( X  - xk)3 and ( x  - x ~ ) ~ .  This leads to the 
five conditions 
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'which may be solved in the form 

a. = 1 - al - a2 62 = &(37 - 5a1 + 8a2) 

bo = &(55 + gal + 8a2) b, = A ( - 9  + a,) 

bl = &(-59 + 19a, + 32a,) 

with a ,  and a2 arbitrary. The choice al = a, = 0 leads us  back to the previous problem. Two 
other simple and popular choices a r e  a ,  = 1/2, az = 0 which leads to 

with local truncation error  707h5y(5)/2160. 

Clearly, one could use these two free parameters to fur ther  reduce truncation error, even to 
order h7, but another factor to be considered shortly suggests t h a t  truncation error is not our only 
problem. It is also clear that  other types of predictor, perhaps using a y k P 3  term, a r e  possible, 
but we shall limit ourselves to the abundance we already have. 

19.32. Illustrate the possibilities for other corrector formulas. 
The possibilities a r e  endless, but suppose we seek a corrector of the form 

Yk+l - aoYk + alY,~-i + azYk-2 + h [ c ~ k + l  + boy;, + b i ~ h - 1  + bz~h-21 

for which the local truncation error i s  of the order h5. Asking tha t  the corrector be exact f o r  
y(x)  = 1, (x - xk) ,  . . . , ( x  - x ~ ) ~  leads to the five conditions 

involving seven unknown constants. I t  would be possible to make this corrector exact fo r  even 
more powers of x, thus lowering the local truncation error still further. However, the two degrees 
of freedom will be used to bring other desirable features instead to the resulting algorithm. With 
a. = 0 and a ,  = 1 the remaining constants prove to be those of the Milne corrector: 

Another choice, which matches to some extent the Adams predictor, involves making al = a, = 0 ,  
which produces the formula 

Yk+ 1 
- Yk + &h(gyfc+ 1 + I ~ Y L  - 5ylk-1 + Y; -2 )  

If a, = 213, az = 113, then we have a formula which resembles another predictor just illustrated: 

Yk+l - $(2?dk-l f yk-2) f &h[25Yk+l t glyk f 4 3 ~ L - l  + 9 ~ k - 2 i  

The various choices differ somewhat in their truncation errors. 

19.33. Compare the local truncation errors of the predictor and corrector formulas just 
illustrated. 

The Taylor series method can be applied a s  usual to produce the following error estimates. 
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Corrector: y k + l  = yk + &h(9y;+,  + 19yL - 5 y ; - ,  + y;- ,)  - 19h5y(5)/720 

In  each case the corrector error  is  considerably less than tha t  of i t s  predictor mate. It is  also of 
opposite sign, which can be helpful information in a computation. The lower corrector error  can be 
explained by its pedigree. It uses information concerning y ;+ l  while the predictor must take the 
leap forward from yk.  This also explains why the burden of the computation falls on the corrector, 
the predictor being used only a s  a primer. 

For  each pair of formulas a mop-up term may be deduced. Take the Adams predictor and the 
corrector below it ,  the first pair above. Proceeding in the usual way, considering local truncation 
errors only and remaining aware t h a t  results so obtained must be viewed with some skepticism, 
we find 

I = P + E l  C + E 2  

where I i s  the exact value. Since 19E1 - --251E,, we have E 2  - (19 /270 ) (P-  C ) .  This is the 
mop-up term and I - C + (19/270)(P - C )  is the corresponding extrapolation to the limit. Once 
again i t  must be remembered tha t  y(5) does not really mean the same thing in both formulas, so 
tha t  there i s  still a possibility of sizable error  in this extrapolation. 

19.34. Apply the Adams method to y' = -xy2 with y(0) = 2, using h = .2. 
The method is  now familiar, each step involving a prediction and then a n  iterative use of the 

corrector formula. The Adams method uses the first pair of formulas of Problem 19.33 and leads 
to the results in  Table 19.5. 

y (predicted) x 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Error  y (correct) 

2.000000 

1.000000 

.400000 

.200000 

.I17647 

.076923 

.054054 

.040000 

.030769 

.024390 

.019802 

y (corrected) Er ror  

- 
-133 

-158 

-28 

-G 

-2 

-1 

- 

- 
- 

Table 19.5 

The error behavior suggests that  h = .2 is adequate for  six place accuracy for  large x, but t h a t  a 
smaller h (say . l )  might be wise a t  the start.  The diminishing error i s  related to the fact  (see Prob- 
lem 19.44) tha t  for  this method the "relative error" remains bounded. 

19.35. Prove that, for  h sufficiently small, iterative use of a corrector formula does produce 
a convergent sequence, and that  the limit of this sequence is the unique value Y k + l  
satisfying the corrector formula. 

We are  seeking a number Y k +  with the property 

Y k + l  = h c f ( x k + l r  Ilk+*) + ' . '  
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the dots indicating terms containing only previously con~puted results, and so independent of Y,+ ,. 
Assume a s  usual that  f ix,  y )  satisfies a Lipschitz condition on y  in some region R. Now define a 
sequence 

yto), yc11, ytej, . , , 

subscripts k + 1 being suppressed for  simplicity, by the iteration 

y ( i )  = hc f (x , t  ,, yci-1)) + . . . 

and assume all points ( x k t l ,  Y ( i ) )  are  in R. Subtracting, we find 

y ( i + l )  - y ( i )  = hc[ f ( s ,+  ,, y")) - f'( x ,  + I, y ( i p l ) ) ]  

Repeated use of the Lipschitz condition then brings 

Now choose h  small enough to make ihcKl = r < 1, and consider the sum 

For 72 tending to infinity the series produced on the right is dominated (apart  from a factor) by the 
geometric series 1 + r + r2  -t . . . and so converges. This proves tha t  Y ( n )  has a limit. Call this limit 
y, t 1 .  

Now, because of the Lipschitz condition, 

and i t  follows that  lim f ( x k t l ,  Y ( n ) )  = f ( xk+ l ,  ITh + l ) .  We may thus let n tend to infinity in the 
iteration 

y ( n )  = hc f ( s k t , ,  V 7 ~ - l ) )  + . . . 
and obtain a t  once, a s  required, 

To prove uniqueness, suppose Z k + ,  were another value satisfying the corrector formula a t  

xk + Then much as  before, 

for  arbi t rary i. Since /hcK/  = r < 1, this forces Y k t 1  = Zk+,. Notice tha t  this uniqueness result 
proves the correct Y k t l  to be independent of Y t o ) ,  that  is, independent of the choice of predictor 
formula, a t  least for  small h. The choice of predictor is therefore quite free. I t  seems reasonable 
to use a predictor of comparable accuracy, from the local truncation error point of view, with a 
given corrector. This leads to an attractive "mop-up" argument as  well. The pairings in Problem 
19.33 keep these factors, and some simple esthetic factors, in mind. 

CONVERGENCE OF PREDICTOR-CORRECTOR METHODS 

19.36. Show that  the modified Euler method is convergent. 
In this method the simple Euler formula is used to make a first prediction of each yk+ 1 value, 

but then the actual approximation is  found by the modified formula 

Y k t l  = Y k  + +h[yL.+l+ Y',] 

The exact solution satisfies a similar relation with a truncation error  term. Calling the exact solu- 
tion y ( x )  as before, we have 

y(xk+l )  = ?/(xk) + &hLv'(xk+ 1 )  + Y ' ( x ~ ) ]  - & h 3 ~ ( 3 ) ( ~ )  

the truncation error term having been evaluated in Problem 19.21. Subtracting and using d, fo r  
y ( x k )  - Y k ,  we have 

/d,+,l ldkl + & h L [ ; d k + l i  + Idk'] + &h3B 

provided we assume the Lipschitz condition, which makes 

: y 1 ( x k )  - YL1 = If(xkr ~ ( x k ) )  - f ( x k ,  Y k ) ]  Lldkl  
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with a similar result a t  argument k + 1. The number B is  a bound for  ly (3)(x) l ,  which we also assume 
to exist. Our inequality can also be written a s  

Suppose no initial error  (do = 0 )  and consider also the solution of 

with initial value Do = 0. For  purposes of induction we assume Idk] 6 Dk and find as  a consequence 

so t h a t  Idk+ll 5 D k + l .  Since do = Do the induction is complete and guarantees Idk] L Dk fo r  posi- 
tive integers k. To find Dk we solve the difference equation and find the solution family 

with C a n  arbi t rary constant. To satisfy the initial condition Do = 0 ,  we must have C = (h2BI12L) 
so tha t  

To prove convergence a t  a fixed argument xk  = xo+ k h  we must investigate the second factor, 
since a s  h tends to  zero k will increase indefinitely. But  since 

Thus a s  It tends to zero, lim Y k  = y ( x k ) ,  which is the meaning of convergence. Our result also 
provides a measure of the way truncation errors propagate through the computation. 

19.37. Prove the convergence of Milne's method. 

The Milne corrector formula is  essentially Simpson's rule and provides the approximate values 

Y k + i  = Yk-1 + & h [ Y k + I  f 4YL f Yk-l] 

The exact solution y ( x )  satisfies a similar relation, but with a truncation error  term 

1 5 ( 5 )  [) y k t l  = y k P l  + Q h [ ~ h + ~  + ~ Y L  + ~ h - 1 1  - ggh Y ( 

with [ between x k - ~  and xk+, .  Subtracting and using dk = y ( x k )  - Y k ,  

Idk+ll " ldk-il + +hL[ldk+l l  + 4141 + 14-i l l  + $h5B 

with the Lipschitz condition again involved and' B a bound on y(5)(x) .  Rewriting the inequality a s  

( 1  - Q h L )  (d,+,l 5 i h ~ ( d ~ l  + ( 1  + Q h L )  ldk_,l + &h5B 

we compare i t  with the difference equation 

Suppose initial errors of do and dl .  We will seek a solution Dk such t h a t  do 5 Do and dl 6 Dl.  
Such a solution will dominate Idkl, tha t  is, i t  will have the property Idkl 6 Dk for non-negative 
integers k. This can be proved by induction much as  in the previous problem, fo r  if we assume 
Idk-l( 6 Dl;-l and ldkl 6 Dk we a t  once find t h a t  ldk+,l D k + ,  also, and the induction is already 
complete. To find the required solution the characteristic equation 
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may be solved. I t  is  easy to discover that  one root is  slightly greater than 1, say r,, and another 
in the vicinity of -1, say r2. More specifically, 

The associated homogeneous equation is solved by a combination of the kth powers of these roots. 
The non-homogeneous equation itself has  the constant solution -h4B/180L. And so we have 

Let E be the greater of the two numbers do and dl. Then 

will be a solution with the required initial features. I t  has  Do = E, and since 1 < r1 i t  grows 
steadily larger. Thus 

Idk] 6 ( E  + h 4 ~ / 1 8 0 ~ ) r :  - h4B1180L 

If we make no initial error, then do = 0. If also a s  h is made smaller we improve our value Y1 
(which must be obtained by some other method such a s  the Taylor series) so t h a t  dl = O(h), then 
we have E = O(h) and a s  h tends t o  zero so does dk. This proves the convergence of the Milne 
method. 

19.38. Generalizing the previous problems, prove the convergence of methods based on the 
corrector formula 

We have chosen the available coefficients to make the truncation error  of order h5. Assuming 
this to be the case, the difference dk = y(xk)  - Y k  is  found by the same procedure just employed 
for  the Milne corrector to satisfy 

where T is the truncation error term. This corrector requires three s tar t ing values, perhaps found 
by the Taylor series. Call the maximum error of these values E ,  so t h a t  Idk\ E for  k = 0,1,2. 
Consider also the difference equation 

2 

( 1  - l ~ l h L ) D ~ + ~  = (lai] + hLlbil)Dk-i + T 
i=O 

We will seek a solution satisfying E f Dk fo r  k = 0,1,2. Such a solution will dominate Idkl. For, 
assuming IdkPil f D k P i  fo r  i = 0,1,2 we a t  once have Idk+ ,( Dk+ This completes a n  induc- 
tion and proves Idkl Dk fo r  non-negative integers k. To find the required solution we note t h a t  
the characteristic equation 

2 

( 1  - (clhL)+ - 2 (\ail t hl (b i j ) r z - i  = 0 
i=O 

has a real root greater than one. This follows since a t  r  = 1 the left side becomes 

which is surely negative since a. + al + a2 = 1, while for large r the left side is surely positive if 
we choose h small enough to keep 1 - lclhL positive. Call the root in  question r,. Then a solution 
with the required features is 

Dk = ( E  - T / A ) T ~  + T I A  

since a t  k = 0 this becomes E and a s  k increases i t  grows still larger. Thus 

\ y ( z k )  - Y k j  f ( E  - T I A ) ~ ;  + T I A  

As h tends to  zero the truncation error  T tends to zero. If we also arrange tha t  thh initial errors  
tend to zero, then lim y ( z k )  = Y k  and convergence is  proved. 
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RELATIVE ERROR 

[CHAP. 19 

Analyze relative error behavior in the Euler method, using y' = Ay with y(0) = 1 
as a test case. 

The simplest Euler method makes 

Y k t l  = Y k  + h f ( x k , Y l i )  = ( l + A h ) Y k  

if we choose the linear equation suggested above. The exact solution satisfies 

Y k t l  = ( l + A h ) ~ k  + 
where T is the truncation error term and equals Jh2A2y($), with [ between xk and x k f l .  For  the 
error dk = yk - Y k ,  therefore, 

, dk+ = (1  + Ah)dk + Qh2A2y(t) 

Dividing by y k + l ,  and assuming hA small, we find approximately 

rk+l  - rk $ *h2A2 

where rk is the relative error dklyk.  This may be solved for  

r ,  - ro -L Qkh'Az = r o  + +(xk - xo)hA 

with xk = xo + kh a s  usual. The behavior suggested for relative error is a linear growth, pro- 
portional to the interval over which we integrate. 

There is  another popular way of appraising relative error, taking a somewhat different point 
of view. Ignoring the truncation error introduced a t  each step, we ask how an earlier error 
propagates. This may be answered by removing the truncation error  term and solving for  dk in 
the form 

dk - d o ( l + A h ) k  - d,eAhk 

where do is  the earlier error. Since the exact solution i s  yk = e*hk, we find the error behaving just 
a s  the solution does. If A is positive both increase exponentially, while if A is negative both appear 
to decrease exponentially, the relative error in  both cases holding firm. The above analysis includ- 
ing each local error, though i t  also involves approximations, suggests t h a t  this last view may be 
optimistic. Though the effect of each individual error  may not affect the relative error, the presence 
of new errors in each step has a natural cumulative effect. As we compare other methods with this 
simplest Euler method, however, we shall find relative error sometimes behaving much more badly. 
A method in which the effect of each individual error is a n  imitation of solution behavior is called 
relatively stable. 

Analyze relative error behavior for the modified Euler method. 
Proceeding as  in  the preceding problem, we find 

( 1  - *Ah)dk+ 1 = (1  + $Ah)dk - &h3A32/(5) 

Dividing by (1 - QA h)yk+ ,, and assuming Ah small, 

rk+ 1 - l.k - Lh3A3 
1 L 

with rk again representing the relative error. Solving, we find 

r k  - r ,  - Akh3A3 = ro - &(xk - xO)h2A3 

which again suggests tha t  relative error grows like x ,  - xo. 

The other approach suggested in the previous problem notes tha t  an initial error do, assuming 
no other errors  committed. would make 

so that  once again the effect of each individual error is a n  imitation of the exact solution. The 
modified Euler method is therefore relatively stable. 

19.41. Analyze relative error in the Taylor series method. 
Still using the special linear equation y' = A y ,  we have 
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for a Taylor polynomial of degree p. The exact solution satisfies 

Yk+l  = TYk + T 

Subtracting and ignoring the error  T, we have d k +  = rdk ,  leading to 

d ,  - d,rk - dOeAhk 

The error dk again behaves like the exact solution, a t  least insofar a s  the initial error do i s  con- 
cerned. The Taylor method is therefore relativeIy stable. 

19.42. Analyze relative stability for the Milne method. 

Here the burden falls on the corrector formula 

Y k + 1  = Y k - I  f i h ( Y L t l  f 4Y(, + YL-1) 

For the case y' = A y  the error dk is easily found to satisfy 

( 1  ~ g A h ) d k + ~  = + ~ h d ~  + ( 1  + $Ah)d, - I  + T 

Proceeding by a n  alternative path to tha t  used in the previous problems, we find the solutions of 
this equation to be 

dk = q r :  + C ~ T ~  

where T is  neglected so tha t  we may concentrate on the effect of a single 'error.  The numbers r l  
and r2 are  roots of the characteristic equation 

and a re  r l  = 1  + A h  + 0(h2) ,  r 2  = -1 h 4 A h  + O(h2) 

The error dk may now be written a s  

where do is  an initial error. This makes the relative error take the form 

Now i t  is possible to see the long range effect of the individual error do. If A is  positive then dk  
behaves very much like the exact solution yk ,  since the extra term involving cz tends to  zero. The 
relative error remains bounded in this case and Milne's method is stable. If A  is  negative, however, 
the extra term refuses to  disappear. Indeed it  becomes the dominant term. The relative error  
becomes a n  unbounded oscillation and the computation produces nonsense beyond a certain point. 
In this case Milne's method is  unstable. 

19.43. Do the computations made earlier confirm these theoretical predictions? 
Referring once again to Table 19.4, page 209, the following relative errors  may be computed. 

Though the equation y' = -xyz is  not linear its solution is decreasing, a s  that  of the linear equation 
does for  negative A .  The oscillation in  the above data  is  apparent. The substantial growth of rela- 
tive error  is also apparent. 

19.44. Analyze relative stability for the Adams corrector 

The usual process in this case leads to  

( l - & A h ) d l i + ,  = ( I + % A h ) d k  - &Ahdk- ,  + & A h d k - ~  + T 



. ------ ....= SnacL ~uluclon IS yk = e A h k ,  we find the error behaving just 
a s  the solution does. If A is positive both increase exponentially, while if A is negative both appear  
to  decrease exponentially, the relative error  in  both cases holding firm. The above analysis includ- 
ing each local error, though i t  also involves approximations, suggests t h a t  this last view may be 
optimistic. Though the effect of each individual error  may not affect the relative error, the presence 
of new errors  in  each step has a natural cumulative effect. As we compare other methods with this 
simplest Euler method, however, we shall find relative error  sometimes behaving much more badly. 
A method in which the effect of each individual error  is a n  imitation of solution behavior is  called 
relatively stable. 

19.40. Analyze relative error behavior for the modified Euler method. 
Proceeding as  in  the preceding problem, we find 

rk+l - ~k - -1-h3A3 
.I 2 

with r, again representing the relative error. Solving, we find 

rk - ro - r k h 3 A 3  = r0 - &(xk - x0)h2A3 
1" 

which again suggests that  relative error  grows like x ,  - x,. 

The other approach suggested in the previous problem notes t h a t  an initial error do,  assuming 
no other errors committed, would make 

so that  once again the effect of each individual error  is an imitation of the exact solution. The 
modified Euler method is therefore relatively stable. 

19.41. Analyze relative error in the Taylor series method. 

Still using the special linear equation y' = A y ,  we have 

19.46. The following example of Todd (MTAC, Jan. 1950) illustrates relative instability in 
a remarkable way. Attempt a solution of y" = -y by using the approximation 

Using h = .I ,  this becomes 

.oly> y - 2yn + y,-1 - h ( l n + z -  41n+1 6 ~ n -  (?In-1 ' ~ n - 2 )  

and the differential equation is  replaced by 
y,+z = l 6 ~ , + ~  - 2 9 . 8 8 ~ n  + 1616,-1 - ~ n - 2  

F o u r  s tar t ing values a r e  needed and Todd uses 0 ,  sin . l ,  sin .2, and sin .3 rounded t o  five places. 
The results a r e  given in Table 19.6, with the  exact solution y(x) = sin x and the error  included 
for comparison. 

Er ror  

- 

.3 

.4 

.5 

.6 

.7 

.8 

computed ~ ( x )  

- 
x 

.o 

sin x 

0 

Table 19.6 

.29552 

.38942 

.47943 

.56464 

.64422 

.71736 

d 

.38934 

.47819 
,54721 

.40096 
-2.67357 

- 
.00008 
.00124 
.01743 
.24326 

3.39093 
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The explanation is  this. The difference equation being used has characteristic equation 

with two real roots near 13.94 and .072 and two complex roots cos 6 * i sin e ,  where sin 6 - .0998. 
The solution of the difference equation is therefore 

yn  - A(13 .94)n  + B( .072)n  + G cos no + D sin no 

The solution we a re  af ter  is the sine term. This represents the exact solution. If we could avoid 
roundoffs in the s tar t ing values and if sin 6 had come out exactly .1 then we would find 4 = B = 
C = 0 and D = 1, giving us this exact result. But  this is  asking too much, and the coefficient A 
in particular proves to be small but not zero. This term rapidly develops and overwhelms the t rue 
solution. The ratio of our last two computed values is 3.390931.24326 - 13.93, showing t h a t  these 
values a re  almost entirely due to this first term. 

Supplementary Problems 
19.47. By considering the direction field of the equation y' = xz - y" deduce the qualitative behavior of 

i ts  solutions. Where will the solutions have maxima and minima? Where will they have zero 
curvature? Show tha t  fo r  large positive x we must have y ( x )  < x .  

19.48. For  the equation of the preceding problem t ry  to estimate graphically where the solution through 
( - 1 , 1 )  will be fo r  x = 0. 

19.49. By considering the direction field of the equation y' = - 2 x y ,  deduce the qualitative behavior of 
i ts  solutions. 

19.50. Apply the simple Euler method to y' = -xy" y ( 0 )  = 2 ,  computing up to x = 1 with a few h 
intervals such a s  .5, 2 ,  .I, .01. Do the results appear to converge towards the exact value y ( 1 )  = I?  

19.51. Apply the "midpoint formula" y k + l  - y k P l  + 2h f ( x k , y k )  to y' = -xzj2, y ( 0 )  = 2, using h = .1 
and verifying the result y ( 1 )  - .9962. 

19.52. Apply the modified Euler method to y' = -xy2,  y ( 0 )  = 2 and compare the predictions of y ( 1 )  
obtained in the last three problems. Which of these very simple methods is  performing best fo r  the 
same h interval? Can you explain why? 

19.53. Apply the local Taylor series method to the solution of y' = -xy2,  y ( 0 )  = 2 ,  using h = 2 .  Com- 
pare your results with those in the solved problems. 

19.54. Apply a Runge-Kutta method to the above problem and again compare your results. 

19.55. Apply other predictor-corrector combinations than those of Milne and Adams. Do you find tenden- 
cies toward error  oscillations of increasing size? 

19.56. Apply the Milne predictor-corrector method to y' = xy1'3, y ( 1 )  = 1 ,  using h = . l .  Compare re- 
sults with those in  the solved problems. 

19.57. Apply the Adams predictor-corrector method to the above problem and again compare results. 
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19.58. Apply two or  three other predictor-corrector combinations to Problem 19.56. Are there any sub- 
stantial differences i n  the results? 

19.59. Apply various methods to y' = x2 - y2, y(-1) = 1. What  is  y(0)  and how close was your estimate 
made in Problem 19.48? 

19.60. Apply various methods to y' = -2xy,  y(0)  = 1. How do the results compare with the exact solu- 
tion y = e-x2? 

19.61. Show t h a t  Milne's method applied to y' = y with y(0)  = 1 ,  using h = .3 and carrying four  
decimal places, leads to the following relative errors. 

This means tha t  the computation has steadily produced almost four  significant digits. 

x 

Rel. error 

19.62. Show tha t  Milne's method applied to y' = -y  with y(0)  = 1 ,  using h = .3 and carrying five 
decimal places, leads to the following relative errors. 

1.5 3.0 4.5 6.0 

.00016 .00013 .00019 .00026 

I Rel. error I 0 -.0006 .0027 p.0248 1 
Though four  almost correct decimal places a r e  produced, the relative error has  begun i t s  growing 
oscillation. 

19.63. Prove the relative instability of the  midpoint method, 

Y k + l  Y k - 1  + 2 h f ( ~ k , Y k )  

Show t h a t  this formula has a lower truncation error than the Euler method, the exact solution 
satisfying 

Yk+l  = Yk- i  f 2 h f ( x k t ~ k )  + $ h 3 ~ ( 3 ) ( 0  

F o r  the special case f ( x ,  y )  = A y ,  show t h a t  
d k f l  = dk- i  + 2hAdk 

ignoring the truncation error  term in order to focus once again on the long range effect of a single 
error  do. Solve this difference equation by proving the roots of r2 - 2 h A r  - 1 = 0 to  be 

F o r  small h A  these a re  near  ehA and -e-hA and the solution is 

Setting k = 0 ,  show tha t  do = cl + c,. Dividing by yk ,  the relative error  becomes 

Show tha t  fo r  positive A this remains bounded, but t h a t  fo r  negative A it grows without bound a s  
k increases. The method i s  therefore unstable in this case. 

19.64. The results in  Table 19.7 below were obtained by applying the midpoint method to the equation 
y' = -xy2 with y(0)  = 2. The interval h = .I was used, but only values f o r  x = .5(.5)5 a r e  
printed. This equation i s  not linear, but calculate the relative error  of each value and discover 
the rapidly increasing oscillation forecast by the analysis of the previous linear problem. 
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Table 19.7 

19.65. Analyze relative error for the other corrector formulas listed in Problem 19.33, page 211. 

xk 

.5 

1.0 

1.5 

2.0 

2.5 

19.66. Sometimes the Adams predictor is used without a corrector. How will relative error behave? 

Computed yk 

.I799 

.I850 

.0566 

.I689 

-.0713 

19.67. If the Milne predictor were used without a corrector, how would relative error behave? 

Computed yk 

1.5958 

.9962 

.6167 

.3950 

.2865 

Exact y k  

.2000 

.I509 

.I176 

.0941 

.0769 

19.68. Would use of the Adams predictor, without correction, be a convergent algorithm? (Let h approach 0.) 

19.69. Would use of the Milne predictor, without correction, be a convergent algorithm? 

Exact yk 

1.6000 

1.0000 

.6154 

.4000 

.2759 

has truncation error h5y(5)([) /720,  while the similar predictor 

yk+,  - yk i- $h(- yk + 3ykP1)  + &h2(17y;I + 7 ~ 2 - 1 )  

has truncation error 31h5y(5)([)/6. These formulas use values of the second derivative to reduce 
truncation error. 

x 

3.0 

3.5 

4.0 

4.5 

5.0 

19.71. Apply the formulas of the preceding problem to y' = -xy2, y (0 )  = 2,  using h = .2. One extra 
starting value is required, and may be taken from an earlier solution of this same equation, say 
the Taylor series. 

19.72. As a test case compute y ( ~ / 2 ) ,  given y' = d m ,  y(0)  = 0 ,  using any of our approximation 
methods. 

19.73. Use any of our approximation methods to find y(2) ,  given y' = x - y,  y(0)  = 2. 

' - YO--x27d4) 19.74. Solve by any of our approximation methods y - + X 2 y 4 ) ,  ~ ( 1 )  = 1 UP to x = 2. 

2xy  + eY y(1)  = 0 up to x = 2. 19.75. Solve by any of our approximation methods y' = -- 
a2 + xey ' 

2 2  + y 
19.76. Solve by any of our approximation methods y' = -- y(1)  = 0 up to x = 2. 2 y  - 2 '  

19.77. An object falling towards the earth progresses, under the Newtonian theory with only the gravita- 
tional attraction of the earth considered, according to the equation (also see Problem 20.23, page 233) 

where y = distance from the earth's center, g = 32, R = 4000(5280), H = initial distance from the 
earth's center. The exact solution of this equation can be shown to be 

t = ( ~ 3 / ~ / 8 y ) [ d y l ~  - ( y /H)2  + + arccos (2y lH  - I ) ]  
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the initial speed being zero. But apply one of our approximation methods to the differential equa- 
tion itself with initial condition y(0) = H = 237,000(5280). At what time do you find that y = R? 
This result may be interpreted as the time required for the moon to fall to earth if it  were stopped 
in its course and the earth remained stationary. 

19.78. A raindrop of mass m has speed v after falling for time t .  Suppose the equation of motion to be 

dvldt  = 32 - cv2/m 

where c is  a measure of air  resistance. I t  can then be proved that  the speed approaches a limiting 
value. Confirm this result by directly applying one of our approximate methods to the differential 
equation itself for the case c lm = 2. Use any initial speed. 

19.79. A shot is  fired upwards against air resistance of cvz. Assume the equation of motion to be 

dvldt  = -32 - cv2/m 

If c lm = 2 and v(0) = 1, apply one of our methods to find the time required for the shot to reach 
maximum height. 

19.80. One end of a rope of length L is carried along a straight line. The path of a weight attached to 
the other end is  determined by (see Fig. 19-8) 

y1 = - y / d m -  
The exact solution may be found. However, use one of our approximation methods to compute the 
path of the weight, starting from (0, L). Take L = 1. 

Fig. 19-8 



Differential Problems of Higher Order 

SOLUTION METHODS 

Three types of algorithm for attacking higher order differential problems will be 
presented. 

1. Systems of first order differential equations, such as 

y! - - f i ( x , y l ,  . . . ,  Y,), i = l ,  . . . ,  n 
occur in a wide variety of applications. They are to be solved simultaneously for the 
functions y l ( x ) ,  . . . , yn(x) .  

Th,e classical initial value problem also requires 

yi(xO) = Ai, i =  1, . . . ,  n 

and is a direct generalization of the initial value problem of the preceding chapter. 
The various algorithms developed in that  chapter apply almost without modification to 
the generalized problem. Each formula we used to obtain y ( x )  now becomes a set 
of formulas for obtaining y l (x ) ,  . . ., yn(x) .  This will be illustrated with the Taylor, 
Runge-Kutta, and Adams methods. 

A higher order diflerential equation may be replaced by a system of first order 
equations. As a simple example, the second order equation 

Y" = f ( x ,  Y ,  Y ' )  

becomes the system Y ' = P ,  P ' = ~ ( ~ , Y , P )  

The two functions y ( x )  and p(x)  are now pursued simultaneously. Initial conditions 
such as y(xo)  = A, yr(xo)  = B become y(xo)  = A, p(xo) = B so that  we have once 
again the generalized initial value problem above. 

Systems o f  higher order equations may be replaced by first order systems by treating 
each equation as in the preceding paragraph. In this way any initial value problem 
can be attacked using the methods developed in the previous chapter for the classical 
problem. This is the most popular approach to  complicated systems. 

2. Infinite series methods may be adapted somewhat to provide alternative approaches to 
some low order differential systems. A typical example is the Bessel equation 

x2y" + x y' + ( x2  - n2)y  = 0 

Near x = 0 certain solutions become singular. Series of the type 
m 

may be used to represent the entire solution family. (For some values of the parameter 
n further modifications are required.) The number p must be determined and is not 
always an integer. 
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Perturbation series provide a second important example of series adaptation. They 
have been applied with particular success to the representation of periodic solutions of 
second order equations. The van der Pol equation is the prototype for this method: 

y" - p(1 -y2 )y f  + y = 0 

For = 0 it  has simple, trigonometric solutions. This suggests the perturbation series 

x ( t )  = xo(t) + px1(t) + ,U2x2(t) + . . 
when p is small, the coefficient functions xi( t )  to be determined by substitution into the 
differential equation. 

3. Equations of special type sometimes warrant the search for special algorithms. One 
such instance is the second order equation 

y" = F ( x ,  y )  

in which y' does not appear explicitly. Such equations are common in trajectory prob- 
lems and elsewhere. The method of  Numerov,  based on the formula 

is convenient here, since it avoids bringing yr artificially into the computation, as would 
happen if we used the usual process for replacing this second order equation by a system 
of two first order equations. 

Solved Problems 

20.1. Illustrate the Taylor series procedure for  simultaneous equations by solving the 
system xr ( t )  = y( t ) ,  yr ( t )  = - x ( t )  with x(0)  = 0 and y(0)  = 1. 

Direct substitution into the Taylor series 

requires previous computation of the higher derivatives. But  these a re  readily available from the 
differential equations. 

- - yf  = -x,  x f l l  = - f - x  - -y, etc. 

y l l  = - -Y,  Y f f '  = - - yf = x ,  etc. 

The results a re  x ( t )  = t  - Q t 3  + . . - y( t )  = 1 - Bt2 + + . 

which could have been anticipated since the exact solution is x ( t )  = sin t ,  y( t )  = cost. F o r  more 
complicated equations, or for  three or more simultaneous equations, a similar procedure may be 
followed. The method of undetermined coefficients may also be used i n  some cases, leading to 
recursions f o r  the coefficients of both series. 

20.2. Discuss Runge-Kutta formulas for simultaneous first order equations. 
Let the equations be 

? d f  = ~ I ( X , Y , P ) ,  P' = f z ( x , y , p )  
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with initial conditions y(xo)  = yo, p(x,) = po. The formulas 

may be shown to duplicate the Taylor series for both functions up through terms of order four. 
The details are identical with those for a single equation and will be omitted. The formulas of Gill 
and Ralston may be extended in a similar way. For more than two simultaneous equations, say n, 
the extension of the Runge-Kutta method parallels the above, with n sets of formulas instead of 
two. For an example of such formulas in use see Problem 20.7. 

20.3. Write out the Adams type predictor-corrector formula for the simultaneous equa- 
tions of the preceding problem. 

Assume that  four starting values of each function are available, say 760, y l ,  YZ ,  u3 and PO, p i ,  Pz, P3. 
Then the predictor formulas 

y k + l  - yk + A h ( 5 5 ~ ;  - 5 9 ~ ; - 1  + 3 7 ~ ; - 2  - 9 ~ ; - 3 )  

pk+l - pk + A h ( 5 5 p i  - 59pi-1 + 3 7 ~ L - 2  - ~ P L - 3 )  

may be applied with 
76; = f l  ( xk ,  ?lk, pk), P; = f 2  ( ~ k ,  Yk,  pk) 

The results may be used to prime the corrector formulas 

Y k + l  - Yk f &&976;+1 f 19Y', - 5yk-1 + Y;-2)  

pk+l pk + & h ( g ~ L + l $  1 9 p k -  5 ~ ' , - 1 +  PL-2)  

which are then iterated until consecutive outputs agree to a specified tolerance. The process hardly 
differs from that for a single equation. Extension to more equations or to other predictor-corrector 
combinations is  similar. One may even use different formulas for y  and p separately but this 
seems fancy. 

HIGHER ORDER EQUATIONS AS SYSTEMS 
20.4. Show that a second order differential equation may be replaced by a system of two 

first order equations. 
Let the second order equation be y" = f ( x ,  y ,  y'). Then introducing p = y' we have a t  once 

y' = p, p' = f (x ,  y ,  p). As a result of this standard procedure a second order equation may be treated 
by system methods if this seems desirable. 

20.5. Show that the general nth order equation 
yCn) = f ( x ,  y, y', yt2),  . . . , ycn-l))  

may also be replaced by a system of first order equations. 
For convenience we assign y ( x )  the alias y l ( x )  and introduce the additional functions yZ(x) ,  . . . , Y ~ ( z )  

Then the original nth order equation becomes 

These n equations are of first order and may be solved by system methods. 



226 DIFFERENTIAL PROBLEMS O F  HIGHER ORDER [CHAP. 20 

20.6. Replace the following equations for the motion of a particle in three dimensions 

= f l(t ,X,Zj,X,xr,y' ,zf) ,  y"= f z ( t , x , y , z , x ' , y ' , z ' ) ,  2'' = f3 ( t ,X ,Z j ,Z ,x ' , y r , z ' )  

by an equivalent system of first order equations. 

Let x' = u ,  y' = v ,  z' = w be the velocity components. Then 

u ' = f l ( t r x , y , x , ~ , v , w ) ,  v ' = f 2 ( t , x , y , ~ , u , v , w ) ,  w ' = f 3 ( t t x , y , z , 2 ( . , v , w )  

These six equations a r e  the required first order system. Other systems of higher order equations 
may be treated in  the same way. 

20.7. Compute the solution of van der Pol's equation 

y" - (.1)(1- y2)y' + y = 0 

with initial values y ( 0 )  = 1, y ' (0 )  = 0 up to the third zero of y(t) .  Use the Runge- 
Kutta formulas for two first order equations. 

An equivalent first order system is 

Y' = P = f l W ,  Y ,  P) 

P' = -Y + (.l)(l - y2)p = f z ( t ,  y,  P )  

Choosing h = .2, computations produce the following results to  three places. 

k ,  = (.2)(0) = 0 ,  1, = (.2){-1 + (.1)[1- 1 ] ( 0 ) }  = -2 

k ,  = (.2)(-.I) = w.02, l2 = (.2){-1 + ( . l ) [ l - I ] ( - . I ) }  = -2 

k - ( 2 - 1  = 0 2  1, = (.2){--99 + (.1)[.02](-.I)} - -.I98 

k,  - (.2)(-.198) - -.04, 1, = (.2){-(.98) + (.1)[.04](-,198)) - -.I96 

These values now combine into I 

The second step now follows with n = 1, and 
the conlputation is  continued in this way. Re- 
sults up to t = 6.4 when the curve has crossed - 
below the y axis again a re  illustrated i n  Fig. 
20-1, in which y and p values serve as  coordinates. 
This "phase plane" is often used in the study of 
oscillatory systems. Here the oscillation (shown 
solid) is growing and will approach the periodic 
oscillation (shown dotted) a s  x tends to infinity. 
This is proved in the theory of nonlinear oscilla- 
tions. Fig. 20-1 
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HIGHER ORDER EQUATIONS SOLVED BY SERIES 
20.8. Obtain a series solution of the linear equation y" + (1 + x2)y = ex in the neighbor- 

hood of x = 0. 
m 

Let the series be y(x )  = 2 aixl and substitute to obtain 
i=O 

which can be converted by changes of indices to  

Comparing coefficients of the powers of x brings a2 = ( 1  - ao)/2, a, = ( 1  - a,)/G and then the 
recursion 

( k +  2)(k+ l ) a k t z  = -ak - ak-2 + l l k !  

which yields successively a, = -a0/24, a, = -a,/24, a6 = (13ao - 11)/720 and so on. The numbers 
a. and a ,  would be determined by initial conditions. 

A similar series could be developed near any other argument x,  since the ingredients of our 
differential equation a r e  analytic functions. Such series may be adequate fo r  computation of the 
solution over the interval required, or if not, serve to generate s tar t ing values fo r  other methods. 

20.9. Obtain a series solution of the nonlinear equation y" = 1 + y2 in the neighborhood of 
x = 0,  with y(0)  = yr(0) = 0. 

The method of the preceding problem could be used, but the alternative of computing the higher 
derivatives directly will be illustrated once again. We easily compute 

and so on. With the initial conditions given these a r e  all zero except for  y(6), and by Taylor's 
theorem y = +x2 + &x6 + - . . 

20.10. Obtain a series solution of Bessel's equation x2y" + xy' + ( x2  - n 2 ) y  = 0 near x = 0. 

This is  a n  example of series development a t  a singular point. A t  x = 0 the differential equa- 
tion does not allow y" to be computed from lower order derivatives. A ~ r o c e d u r e  which is effective 
seeks a solution in the form 

m m 

y = xp ,): azxi = 2 aixP+i 
2=0 i=O 

where p is  not necessarily a positive integer. Differentiating brings 

and a change of index manages 
m m 

x2y = 2 a k X ~ + k + 2  = 2 aiP2xP+i 
k=O i = 2  

Substituting into the differential equation and making all coefficients of powers of x equal zero, 
we find 

ao(p2-n3) = 0 ,  a l (p2- -n2+2p+1)  = 0 

and then for i > 1 the recursion 

a i [ ( p  + i ) 2  - n2] + ai-2 = 0 
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The first equation determines p, since choosing a. = 0 would simply shift  a ,  into the role of a,. 
Here p = * n  and two solutions of the  assumed form seem to be imminent. Taking p = n, we 
next encounter 

(2n + l ) a l  = 0 

and since we may assume n to be positive this forces al = 0. The recursion then shows all odd 
coefficients to be zero and determines all the even ones in terms of a,. I n  fact,  

-a0 -a2 - a4 a2 = - 
2(2n + 2) ' a4 = - 4(2n+ 4) '  a6 = - 

6(2n + 6 )  

and so on, from which i t  i s  not hard to deduce tha t  fo r  sn = 1,2, . . . 
azm = (-l)maol[22mm! ( n  + l ) ( n  + 2) .  . - ( n  + m)] 

For  integer n the choice a. = 1/2nn! defines J,(x): 

If n is not a n  integer the choice p = -n leads to a second solution independent of J,(x), and having 
a singularity of order x F n  a t  the origin. If n is  a n  integer the choice p = -n leads to a multiple 
of Jn(x) ,  and a second solution may be found by the change of variable y = v Jn(x). It also proves 
to be singular a t  x = 0. 

20.11. Determine the convergence interval for the series of the preceding problem and use 
the series to compute Jo(x)  for k = 0(1)6. How many terms are required for four 
place accuracy ? 

The ratio test involves calculating the limit of the ratio of consecutive terms, which is  in this 
case aix2 x2 

lim - = lim - 0 
ai-2 ( p  + i ) 2  - n2 - 

This proves convergence for  all arguments x. The series fo r  n = 0 becomes 

and is alternating with (after a while) decreasing terms. Thus the truncation error  does not exceed 
the first term not used. A t  x = 1 only four  terms a r e  needed, 

At  x = 2 six terms suffice, 

20.12. Show that the change of variable y = x l f i  converts Bessel's equation to 

Eleven terms a r e  adequate up to x = 6, producing these results: 

For large x this resembles x" + x = 0 which suggests that x may be asymptotically 
like sin x or cos x. 

x 

JO (4 

and substituting into Bessel's equation easily find the required result. 

0 1 2 3 4 5 6 

1 .7652 .2239 -.2601 -.3971 -.I776 .I506 
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20.13. The result of the previous problem may be developed into an asymptotic series for 
Bessel functions. In the case of J o ( x )  the series is 

where 
12.32 + 

1 2 . 3 2 . 5 2 . 7 2  1 2 . 3 2 . 5 2 . 7 2 . 9 2 . 1 1 2  
P o ( x )  1 - - - + . . .  

2 ! ( 8 ~ ) ~  4 ! ( 8 ~ ) ~  6 ! ( 8 ~ ) ~  

Use this series to recompute Jo(6). How many terms are needed? 

First,  the two asymptotic series yield 

P o ( 6 )  - 1 - .00195 + .00009 - .99814, Qo(6 )  - -.02083 + .00034 - -.02049 

after which J 0 ( 6 )  - .32574[(.99814)(.48137) + (.02049)(-.87653)] - .I507 

so t h a t  two or three terms of the asymptotic series bring essentially the same result as  eleven terms 
of the Taylor series, even a t  x = 6. For  larger  arguments the asymptotic series is  clearly superior. 

PERTURBATION SERIES 
20.14. The equation x"(t) + x + , U X ~  = 0 has a family of periodic solutions if ,U = 0. This 

suggests attempting a power series development of the form 

in the search for  a periodic solution for small values of p. Show that  this procedure 
is unsuccessful. 

To be definite, suppose we add the initial conditions 

x ( 0 )  = A, x l (0 )  = 0 

with A to  be determined. Substituting the series into the differential equation and equating co- 
efficients of the powers of p leads to a sequence of simpler equations for  the determination of the 
functions x,(t) .  

q + x o  = 0 ,  x ; '+x l  = -x:, . . .  
The initial conditions translate into 

Solving our equations successively we find first 

xo = A cos t 
3 and then, since xo = $A3 cos t + &A3 cos 3t ,  

x ,  = -8A3t sin t - &A3(cos t - cos 3 t )  

But xl is  not periodic! And i t  seems unwise to  continue a process which generates non-periodic ap- 
proximations to a n  anticipated periodic solution, particularly when a n  alternative is  available. 
(See the next problem.) 

20.15. Approximate the periodic solutions of the equation of the preceding problem by the 
perturbation method. 

Let T = w t .  The equation becomes 

u 2 y ( T )  + ~ ( 7 )  + /Lx3(T) = 0 

the dots meaning derivatives relative to T .  Introduce the power series 

X ( T )  = ~ ~ ( 7 )  + pxl(T) + ,U2x2(7) + ". 
w = W O  f pw1 + ,U2w2 + . . . 
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Substituting and equating the coefficients of the powers of p, we have the following system: 
i 

o;yo + x,, = 0 

a;& + X I  = -2w0w1x'd - 53, 

w; Y2 + x2 = -(2w002 + w ~ ) x ; ;  - 2 ~ ~ ~ ~ ~ y  - Q X ~ X ~  

................................................ 
The initial conditions a re  the same a s  before, and in addition we have 

xi(7 + 277) = ~ ~ ( 7 )  

since the idea i s  to find a solution of period 2 ~ / w  in  the argument t. Solving the first equation, me 
find xo = A  COST, wo = 1 which convert the second equation to .. 

x1 + xl = (2wl - 2A2)A cos r - $A3 cos 37 since (cos t)3 = cos 3t + 2 cos t 

Unless the coefficient of cos T is made zero, this equation will lead to  non-periodic terms. Accordingly 
we choose ol = 3A2/8 and soon obtain 

xl = &A3(- cos 7 + cos 37) 

Similar handling of the third equation then leads to  

x( t )  = ( A  - &pA3 + Z p 2 A 5 )  cos wt + (&pA3 - & p 2 ~ 5 )  cos 3wt + & p 2 ~ 5  cos 5wt + . . ' 
- - l + a A 2 - = 2  4 

8 p  z s sPA + . a .  

and more terms a r e  computable if desired. Notice tha t  the frequency w is  related to the amplitude 
A ,  unlike the situation f o r  the linear case p = 0. 

Apply the perturbation method to van der Pol's equation 

It is  known t h a t  for  p Z 0 one periodic solution exists. To find i t  le t  T = w t ,  converting the 
equation to .. 

w2 y - pw(1- yqjr + y = 0 

Again introduce the series 
~ ( 7 )  =  YO(^) + P Y I ( ~ )  + P ~ Y Z ( ~ )  + . 

and substitute into the differential equation. Equating coefficients brings 

w;ij0 + yo = 0 

0; jjl + y1 = -2wow1 $0 + wo(1- Y ; )& 

'0; & + yZ = -(2wooz + o;)Vo - 2wow1V1 + w 1 ( l -  I@;,, - ~ ~ O Y O Y , ~ ,  + wo(1- Y ; ) Y ,  

.............................................................................. 
The periodicity condition requires yi(7 + 277) = yi(7), and we can also set the initial condition 
i ( 0 )  = 0, or i i ( 0 )  = 0, which amounts to  choosing 7 = 0 when y is a t  its maximum or  minimum 
value. Using these conditions the first equation yields 

with A still arbitrary. Substituting into the second equation, 

v1 + y1 = 2alAo cos 7 + A,($A; - 1)  sin 7 + AA; sin 37 

To avoid non-periodic "resonance" terms in the solution, we must have 

w l ~ o  = 0 ,  A,(*A; - 1)  = o 
The choice A. = 0 would lead nowhere, since yl would simply assume the role of y,. Accordingly 
we choose wl = 0 ,  A ,  = 2. This leads us  to  

yo = 2 cos 7, yl = A 1  cos 7 + B1 sin 7 - a sin 37 
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The condition i,(0) = 0 forces B,  = 314, and A, will be determined in the next step. Substitu- 
tion into the third equation next brings . . 3 

y, + yz = ( 4 w 2 + i ) c o s 7  + 2A1 s in7  - s c o s 3 ~  + 3A1sin3r  + i c o s 5 r  

and we choose a:, = -1116, Al = 0 to remove the resonance terms in cos T and sin 7. Solving for  
YZ, we get 

y, = A, cos T + B2 sin r + & cos 37 - & cos 57 

The condition &(o) = 0 forces B, = 0. The next step would produce A2 = -118, and so the solu- 
tion series a re  

5 
y(t) = (2 - hP2) cos ~t + f P  sin wt + A ?  cos 3 d  - iP sin 3wt - ,lr2'cos 5wt + . . . 

with more terms available if desired. This y ( t )  and i ts  accompanying yf(t) = p(t) correspond to 
the dotted curve in Fig. 20-1. I t  is not, of course, a t rue circle, but is very close to one. The period 
is  27lw - 6.32, which is greater than 2 r  and not f a r  from the 6.40 computed for the growing 
oscillation of Problem 20.7. 

20.17. Apply the perturbation method to Duffing's equation 

xt'(t) + x =  ax - bx3 - CX' + F cost) 

obtaining a solution with the period 2~ of the "forcing term" F cos t. 
Though the period of the solution is known in this case, i t  pays to be open-minded about the 

phase. In  other words, if we let t = 7 + p then g(0) = 0 can again be required since i t  will serve 
to determine the phase p. The series 

can now be substituted into the differential equation, with results .. 
xo + xo = 0 

.. 
x, + x, = -ax, - 3bxixl - c;, - Fp,  sin (7 +pa)  

Using &(o) = 0, we a t  once find xo = A. cos T; substituting, 
.. 
xl + x, = -(aAo + $bA; - F cos po) cos 7 + (cAo - F sin po) sin T - i b ~ ;  cos 37 

The periodicity condition x1(r + 2 ~ )  = xl(r) again requires t h a t  the terms in cos T and sin T be 
absent. Accordingly, 

aAo f $bA; - F cospo = 0, cAo - F sin po = 0 

from which we find sin po = cAoIF, and the equation 

G A ~  + (aAo + $bA:)2 = 1 

for  Ao. Solving for  x,(T) and using ;,(o) = 0 then brings 

x, = A 1 c o s r  + & ~ A ; C O S ~ T  

The third equation is next treated in the now familiar way, and determines 

3 b2A 3cb2Ai 
A, = - 

128(a + z b ~ i  + c tan pa) ' = - 128(a + f b ~ :  + c tan po)F cos pa 

before going on to the xz term. The solution is 

x(t) = (Ao + p4,) cos ( t  - p, - ~ p , )  + &abA; cos 3(t - pa - P P ~ )  + . . . 
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A SECOND ORDER EQUATION WITHOUT y' 

20.18. Derive Numerov's formula 

for solving y" = F(x,  y). 

Notice that in this case y' does not appear explicitly in the differential equation, and that  the 
above formula exploits this fact by also omitting y' terms. We proceed by the method of undeter- 
mined coefficients. 

y k t l  = A y k  + Byk- l  + h 2 ( C F k + ~ + D F k + E F k - , )  + R 

and matching powers of h through the fourth on both sides of Numerov's formula, 

These may be solved for A = 2, B = -1, C = 1/12, D = 516, E = 1/12. The fifth powers of h 
also match voluntarily. If we pretend that  all factors designated as y(6) are the same, we also 
obtain the error estimate R = -h6y(6)/240. 

20.19. Apply Numerov's formula to the simple equation y" = y with initial conditions 
y(0)  = 1, y'(0) = -1. 

The exact solution function is clearly y(x) = e-x. However, to illustrate Numerov's method 
we proceed as with a problem of unknown solution. Two starting values are needed. The first is 
y(0)  = yo = 1. The second may be found by series expansion of y (x ) .  Using the differential equa- 
tion to produce higher derivatives, we easily find, with h = .5 for a simple if crude approximation, 

Since yk+l  occurs on both sides, our main formula has the nature of a corrector. To prime i t  we 
ignore the F,,, term on the first round and use 

Yk+l  - 2Yk - Yk-1 + &h2(10Fk+Fk-1) 

as a predictor. With k = 1, for example, 

y, - 1.2130 - 1 + h(6.065 + 1 )  - .3602 

Now applying the complete formula, 

y2 - 2130  + &(.3602 + 6.065 + 1 )  - ,3677 

Reapplying the complete formula, 

y2 - 2130  + &(.36W + 6.065 + 1 )  - .3678 

Another cycle again produces .3678, so we stop. The correct value is e-1 - .36788, so our y2 is 
close. The process now moves to the computation of y3, beginning with the predictor, but the path 
is clear and our illustration may stop here. For an accurate solution truncation error must be 
diminished, by decreasing h, and roundoff error reduced, by carrying more than four places. 
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Supplementary Problems 
The equations 

x l ( t )  = - 2 x / d m ,  y f ( t )  = 1 - 2 y 1 d m  
describe the path of a duck attempting to swim 
across a river by aiming steadily a t  the target  posi- 
tion T. The speed of the river is  1, and the duck 
speed is  2. The duck s ta r t s  a t  S, so tha t  x (0 )  = 1 
and y(0)  = 0. (See Fig. 20-2.) Apply the Runge- 
Kutta formulas fo r  two simultaneous equations to 
compute the duck's path. Compare with the exact 
trajectory y = - x3I2). HOW long does i t  take 
the duck to reach the target?  Fig. 20-2 

Solve the preceding problem by the Adams predictor-corrector method. 

Apply the Milne method to Problem 20.20. 

The classical inverse square law for  an object falling toward a n  at t ract ing gravitational mass (say 
the earth) is  

y"(t) = -gR2/y2 

where g is  a constant and R is the earth's radius. This has the well-known and somewhat sur- 
prising solution 

t = (H312/8y) [ d y l ~  - ( y l H )  + 4 arccos (2y lH  - I ) ]  

where H is  the initial altitude and the initial speed is zero. Introducing the equivalent system 

y' = p, p' = -gR2/y2 

apply the Runge-Kutta formulas to compute the velocity p( t )  and position y ( t ) .  When does the fall- 
ing object reach the earth's surface? Compare with the exact result. (If miles and seconds a r e  
used a s  units, then g = 3215280, R = 4000 and take H to be 200,000 which i s  the moon's distance 
from earth. This problem illustrates some of the difficulties of corhputing space trajectories.) 

Apply the Adams method to Problem 20.23. 

Apply the Milne method to Problem 20.23. 

Apply Numerov's method to Problem 20.23. This method was devised for  problems of this sort. 

Show t h a t  the solution of yy" + 3 ( ~ ' ) ~  = 0 with y(0)  = 1 and y f ( 0 )  = 114 can be expressed a s  

Show tha t  x2y" - 2x2y' + (& + x2)y = 0 has  a solution of the form 

and determine the coefficients if the condition lim = 1 is  required for  x approaching zero. 
6 

Apply the Runge-Kutta formulas to 

y f  = -12y + 92, 2' = l l y  - IOz 

which have the exact solution 
y = 9e-X + 5e-21~,  2 = lie-X - 5e-21" 

using y (1 )  - 9e-1, z(1) - l l e - 1  a s  initial conditions. Work to three or four  decimal places with 
h = .2 and carry the computation a t  least to x = 3. Notice tha t  11y/9z,  which should remain close 
to one. bezins to oscillate badly. Explain this by comparing the fourth degree Taylor approxima- - -  .--- 

7 - 
tion to e-21" (which the ~ u n ~ e l ~ u t t a  method essentially uses) with the exact exponential. 
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20.30. Use the perturbation series method to obtain the periodic solution of Rayleigh's equation 

x'l - + i l l ( x1 )3  + X = 0 
through the term in p2. 

20.31. Solve the "hard nonlinear spring" oscillation x" + ( 1  + p 2 ~ 2 ) ~  = 0 by the perturbation series 
method, with initial conditions x (0 )  = A and ~ ' ( 0 )  = 0. 

20.32. Solve the "soft nonlinear spring" oscillation x" + ( 1  - , u ~ x ~ ) x  = 0 as in the preceding problem. 

20.33. As a test case use any of our approximation methods to compute y ( x )  from x = 0 to x = 1, given 

y" = -2yy1, y(0)  = 0 ,  y'(0) = 1 

20.34. Use one of our approximation methods to compute x (1 )  and y ( l ) ,  given 
$11 - - -2x + y, 4 0 )  = 1, x'(0) = 0 

y" = -2y + x ,  y(0)  = 0 ,  y1(0) = 1 

20.35. Use one of our methods to obtain y ( l ) ,  given 

( 1  - x2)y" - xy' + 25y = 0, y(0)  = 0 ,  y'(0) = 5 

20.36. Use one of our methods to obtain y ( l ) ,  given 

( 1  -x2)y1'  - xy' f 16y = 0 ,  y(0) = 1, y l (0)  = 0 

20.37. Compute y(.25), y(.50), y(.75) and y ( l ) ,  given 

(1 - x2)y" - 2xy' f 6y  = 0 ,  y(0)  = -.5, yl (0)  = 0 

20.38. Compute y(.25), y(.50), y(.75) and y ( l ) ,  given 

( 1  - x2)y1l - 2xy' + 20y = 0 ,  y(0)  = .375, y l (0)  = 0 

20.39. The equations r" - r(e1)2 = - 2 1 ~ 2 ,  re" + 2r'e1 = 0 ,  describe the Newtonian orbit of a particle in  
an inverse square gravitational field. If t = 0 a t  the position of minimum r (Fig. 20-3), and 
r ( 0 )  = 3 ,  e(0)  = 0 ,  r f ( 0 )  = 0 ,  e'(0) = Q, then i t  can be shown t h a t  the orbit is the ellipse r = 
9 / (2  + cos 0) .  Ignoring this known, exact result, integrate the system by one of our approximation 
methods. A t  what  time T do you return to the initial position and speed? (This problem may serve 
as  a test case fo r  the accuracy of orbital computations under circumstances which do not permit 
exact analytic solution.) 

Fig. 20-3 Fig. 20-4 

20.40. A dog, out in  a field, sees his master walking along the road and runs  toward him. Assuming t h a t  
the dog always aims directly a t  his master, and t h a t  the road is  straight,  the equation for  the dog's 
path is (see Fig. 20-4), 

xy" = c d 3 + o z  
where c is the ratio of the man's speed to the dog's. I t  is  possible to solve this equation exactly, 
but proceed by one of our approximation methods. If c = 112, the man s ta r t s  a t  (0,O) and the dog 
a t  ( l , O ) ,  where does the dog catch his master? 



Least-Squares Polynomial Approximation 

THE LEAST-SQUARES PRINCIPLE 

The basic idea of choosing a polynomial approximation p(x) to a given function y(x) in 
a way which minimizes the squares of the errors (in some sense), was developed first by 
Gauss. There are several variations, depending on the set of arguments involved and the 
error measure to be used. 

First of all, when the data are discrete we may minimize the sum 
N 

S = [yi - a. - alxi - . . . - a,xrI2 
i = O  

for  given data xi, yi and m < N. The condition m < N makes i t  unlikely that  the polynomial 

can collocate a t  all N data points. So S probably cannot be made zero. The idea of Gauss is 
to make S as  small as we can. Standard techniques of calculus then Iead to the normal 
equations, which determine the coefficients aj. These equations are 

N N 

where s k  = xf , tk = yixik. This system of linear equations does determine the aj 
i = O  i = O  

uniquely, and the resulting aj do actually produce the minimum possible value of S. For 
the case of a linear polynomial 

p(x) = Mx + B 

the normal equations are easily solved and yield 

In order to provide a unifying treatment of the various least-squares methods to be 
presented, including this first method just described, a general problem of minimization 
in a vector space is considered. The solution is easily found by an algebraic argument, 
using the idea of orthogonal projection. Naturally the general problem reproduces our p(x) 
and normal equations. It will be reinterpreted to solve other variations of the least-squares 
principle as we proceed. In most cases a duplicate argument for the special case in hand 
will also be provided. 
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Except for very low degree polynomials, the above system of normal equations proves 
to be ill-conditioned. This means that, although it does define the coefficients aj uniquely, 
in practice it may prove to be impossible to extricate these aj. Standard methods for solv- 
ing linear systems (to be presented in Chapter 26) may either produce no solution a t  all, 
or else badly magnify data errors. As a result, orthogonal polynomials are introduced. 
(This amounts to choosing an orthogonal basis for the abstract vector space.) For the 
case of discrete data these are polynomials Pm,~(t) of degree m = 0,1,2, . . . with the 
property 

N 

2 Pm, N (t) Pn, N (t) = 0 
t = O  

This is the orthogonality property. The explicit representation 

will be obtained, in whicli binomial coefficients and factorial polynomials are prominent. 

An alternate form of our least-squares polynomial now becomes convenient, namely 

with new coefficients ak. The equations determining these ak prove to be extremely easy 
to solve. In fact, 

N 

These ak do minimize the error sum S,  the minimum being 

where Wk is the denominator sum in the expression for ak. 

APPLICATIONS 
There are two major applications of least-squares polynomials for discrete data. 

Data smoothing. 

By accepting the polynomial 

p(x) = a0 + alx + - . + a d r n  

in place of the given y(x), we obtain a smooth line, parabola or other curve in place of 
the original, probably irregular, data function. What degree p(x) should have depends 
on the circumstances. Frequently a five-point least-squares parabola is used, correspond- 
ing to points (xi, yi) with i = k - 2, k - 1, . . . , k + 2. It leads to the smoothing formula 

~ ( x k )  ~ ( x k )  = yk - (3/35)S4yk 

This formula blends together the five values yk-2. . . . , yk+2 to provide a new estimate to 
the unknown exact value y(xk). Near the ends of a finite data supply, minor modifica- 
tions are required. 
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The root-mean-square error of a set of approximations Ai to corresponding true 
values Ti is defined as 

N 

RMS error = [C (Ti - A ~ ) ~ / N ] ~ ' ~  
i = O  

In various test cases, where the Ti are known, we shall use this error measure to estimate 
the effectiveness of least-squares smoothing. 

Approximate differentiation. 

As we saw earlier, fitting a collocation polynomial to irregular data leads to very poor 
estimates of derivatives. Even small errors in the data are magnified to troublesome 
size. But a least-squares polynomial does not collocate. I t  passes between the data 
values and provides smoothing. This smoother function usually brings better estimates 
of derivatives, namely, the values of p'(x). The five-point parabola just mentioned leads 
to the formula 

~ ' ( x k )  - P ' ( x ~ )  = (1/10h)(-2yk-~ - yk-I -I- Yk+ I 4- 2 y k t ~ )  

Near the ends of a finite data supply this also requires modification. This formula 
usually produces results much superior to those obtained by differentiating collocat,ion 
polynomials. However, reapplying it  to the p'(xk) values in an effort to estimate y"(xk) 
again leads to questionable accuracy. 

CONTINUOUS DATA 

For continuous data y(x)  we may minimize the integral 

Y ( X )  - aoPo(x) - ' ' ' - a m P m  (x)I2 dx 

the Pj (x )  being Legendre polynomials. (We must assume y(x)  integrable.) This means that 
we have chosen to represent our least-squares polynomial p(x) from the start in terms of 
orthogonal polynomials, in the form 

The coefficients prove to be 
ak = 2kt' S-: y(x)  PI ( s )  dx 2  

For convenience in using the Legendre polynomials, the interval over which the data y(x)  
are given is first normalized to ( -1 , l ) .  Occasionally it is more convenient to use the inter- 
val ( 0 , l ) .  In this case the Legendre polynomials must also be subjected to a change of 
argument. The new polynomials are called shifted Legendre polynomials. 

Some type of discretization is usually necessary when y(x)  is of complicated structure. 
Either the integrals which give the coefficients must be computed by approximation methods, 
or the continuous argument set must be discretized a t  the outset and a sum minimized rather 
than an integral. Plainly there are several alternate approaches and the computer must 
decide which to use for a particular problem. 

Smoothing and approximate differentiation of the given continuous data function y(x)  
are again the foremost applications of our least-squares polynomial p(x). We simply accept 
p(x) and pT(x) as substitutes for the more irregular y(x)  and y'(x). 

A generalization of the least-squares principle involves minimizing the integral 
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where w ( x )  is a non-negative weight function. The Qk(x) are orthogonal polynomials in 
the generalized sense 1 w ( x )  Q j  (x) Q&) dx = 0 

for  j # k. The details parallel those for the case w ( x )  = 1 already mentioned, the coeffi- 
cients ak being given by lb W ( X )  ~ ( x )  Q ~ x )  dx  

a k  = 

The minimum value of I can be expressed as 

where W k  is the denominator integral in the expression for ak. This leads to Bessel's 

m 

and to the fact that  for m tending to infinity the series x W,a: is convergent:. If the 
k=n 

orthogonal family involved has a property known as complete&ess and if y(x)  is sufficiently 
smooth, then the series actually converges to the integral which appears in Zmin. This means 
that  the error of approximation tends to zero as  the degree of p ( x )  is increased. 

CHEBYSHEV POLYNOMIALS 

Approximation using Chebyshev polynomials is the important special case w ( x )  = 
l l d m  of the generalized least-squares method, the interval of integration being nor- 
malized to ( -1 , l ) .  In this case the orthogonal polynomials Qk(x)  are the Chebyshev poly- 
nomials 

Tk ( x )  = cos ( k  arccos X )  

The first few prove to be 

T o ( x )  = 1, T l ( x )  = X ,  T z ( x )  = 2x2 - 1,  T ~ ( x )  = 4x3 - 3x 

Properties of the Chebyshev polynomials include 

T,(x) = 0 for x  = cos [ ( Z i  + 1 ) - ~ / 2 n ] ,  i = 0, 1, . . . , n - 1 

T ,  ( x )  = ( - l ) i  for  x  = cos ( i~ ln ) ,  i = 0, 1, . . . , n 
An especially attractive property is the equal-error property, which refers to the oscillation 
of the Chebyshev polynomials between extreme values of r l ,  reaching these extremes a t  
n + 1 arguments inside the interval ( -1 , l ) .  As a consequence of this property the error 
q ( x )  - p(x)  is frequently found to oscillate between maxima and minima of approximately 
"E.  Such an almost-equal-error is desirable since i t  implies that  our approximation has 
almost uniform accuracy across the entire interval. For an exact equal-error property see 
the next chapter. 
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The powers of x may be expressed in terms of Chebyshev polynomials by simple manip- 
ulations. For example, 

1 = To, x = TI, x2 = 1 ,(To + Tz), x3 = (1/4)(3T1+ TQ)  

This has suggested a process known as economization of  polynomials, by which each power 
of x in a polynomial is replaced by the corresponding combination of Chebyshev polynomials. 
It is often found that  a number of the higher degree Chebyshev polynomials may then be 
dropped, the terms retained then constituting a least-squares approximation to the original 
polynomial, of sufficient accuracy for many purposes. The result obtained will have the 
almost-equal-error property. This process of economization may be used as  an approximate 
substitute for direct evaluation of the coefficient integrals of an approximation by Chebyshev 
polynomials. The unpleasant weight factor w ( x )  makes these integrals formidable for 
most y(x). 

Another variation of the least-squares principle is to minimize the sum 

the arguments being xi = cos [(2i + l )n /2N] .  These arguments may be recognized as the 
zeros of TN(x ) .  The coefficients are easily determined using a second orthogonality property 
of the Chebyshev polynomials, 

The approximating polynomial is then, of course, 

p(x) = a. T o  ( x )  + . . - 4 a, T ,  ( x )  

This polynomial also has an almost-equal-error. 

Solved Problems 

DISCRETE DATA, THE LEAST-SQUARES LINE 
N 

21.1. Find the straight line p(x) = Mx + B for which (yi - M x ~  - B)2 is a minimum, the 
i = O  data (xi ,  yi) being given. 

Calling the sum S, we follow a standard minimum-finding course and set derivatives to zero. 

Rewriting we have 
( N  + l ) B  t ( B x i ) M  = By i ,  ( B x , ) B  + ( 9 x 3 4 4  = Pxiy i  

which a re  the "normal equations". Introducing the symbols 

so = N + 1 ,  s, = Ex i ,  s, = Bx;, to = Byi ,  t l  = Bx iy i  
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these equations may be solved in the form 

To show that sos2 - s ;  is  not zero, we m y  first notice that squaring and adding terms such as  
(xo - leads to 

0 < ,= ( x i -  xj)2 = N .  2x5 - 2 2 xixj 
% < I  i < j  

so that sos2 - s; becomes 

Here we have assumed that  the xi are not all the same, which is surely reasonable. This last in- 
equality also helps to prove that the M and B chosen actually produce a minimum. Calculating 
second derivatives, we find 

Since the first two are positive and since 

the second derivative test for a minimum of a function of two arguments B and M is satisfied. The 
fact that the first derivatives can vanish together only once, shows that  our minimum is an absolute 
minimum. 

21.2. The average scores reported by golfers of various handicaps on a difficult par-three 
hole are as follows: 

Find the least-squares linear function for this data by the formulas of Problem 21.1. 

Handicap 

Average 

Let h represent handicap and s = ( h  - 6)/2. Then the xi are the integers 0 ,  . . ., 9.  Let 76 rep- 
resent average score. Then s~ = 10, sl = 45, s~ = 285, to  = 41.5, t 1  = 194.1 and so 

6 8 10 12 14 16 18 20 22 24 

3.8 3.7 4.0 3.9 4.3 4.2 4.2 4.4 4.5 4.5 

This makes y - p(x)  where p(x )  = .09x + 3.76 - .045h + 3.49. 

21.3. Use the least-squares line of the previous problem to smooth the reported data. 
The effort to smooth data proceeds on the assumption that  the reported data contain inac- 

curacies of a size to warrant correetion. In this case the data seem to fall roughly along a straight 
line, but there are large fluctuations, due perhaps to the natural fluctuations in a golfer's game. 
(See Fig. 21-1 below.) The least squares line may be assumed to be a better representation of the 
true relationship between the handicap and' the average scores than the original data are. It 
yields the following smoothed values. 

Handicap 

Smoothed y 

6 8 10 12 14 16 18 20 22 24 

3.76 3.85 3.94 4.03 4.12 4.21 4.30 4.39 4.48 4.57 
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4 , 6  
Average score 

4.4 - 

4.2  - 

4.0 - 

3.6 I I 
I I I 

6 8 10 12 14 16 18 20 I 
22 24 

Fig. 21-1 

21.4. Estimate the rate a t  which the average score increases per unit handicap. 
From the least-squares line of Problem 21.2 we obtain the estimate .045 strokes per unit 

handicap. 

21.5. Obtain a formula of the type P(x)  = AeMx from the following data. 

Let y = log P ,  B = log A. Then taking logarithms, log P = log A + Mx which is  equivalent 
to  y ( x )  = M x  + B.  

We now decide to make this the least-squares line f o r  the (xi ,  yi)  data points. 

i l  
Since so = 4 ,  sl = 10, s, = 30, to = 10.48, t l  = 28.44, the formulas of Problem 21.1 make M - .45 
and B - 1.5. The resulting formula is  P = 4.48e.455. 

It should be noted tha t  in this procedure we do not minimize B [P(xi )  - PiI2, but instead choose 
the simpler task of minimizing B [ y ( x i )  - y,]2. This is a very common decision in such problems. 

DISCRETE DATA, THE LEAST-SQUARES POLYNOMIAL 
21.6. Generalizing Problem 21.1, find the polynomial p ( x )  = a0 + alx + . . + amxn"or 

N 

which S = [yi - a. - alxi - . . . - %xTl2 is a minimum, the data ( x i ,  yi) being 
i=O 

given, and m < N. 
We proceed a s  in the simpler case of the straight line. Setting the derivatives relative to 

a,,, a,, . . . , a,, to zero produces the rn + 1 equations 

where k = 0, . . . , m. Introducing the symbols sk = 2 x;, t,, = 2 yix;, these equations may be 
i=O i=O rewritten a s  

and a r e  called normal equations. Solving for  the coefficients ai, we obtain the least square polynomial. 
We will show t h a t  there is  just one solution and tha t  i t  does minimize S. F o r  small integers m, 
these normal equations may be solved without difficulty. For  larger m the system is  badly ill- 
conditioned and an alternative procedure will be suggested. 
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21.7. Show how the least-squares idea, as just presented in Problem 21.6 and earlier in 
Problem 21.1, may be generalized to arbitrary vector spaces. What is the relationship 
with orthogonal projection? 

This more general approach will also serve a s  a model for  other variations of the least-squares 
idea to be presented later in this chapter, and focuses attention on the common features which all 
these variations share. F i r s t  recall that  in Euclidean plane geometry, given a point y and a line 
S, the point on S closest to  y is  the unique point p such t h a t  is  orthogonal to  S, p being the 
orthogonal projection point of y onto S. Similarly in Euclidean solid geometry, given a point 21 
and a plane S ,  the point on S closest to y is  the unique point p such tha t  i s  orthogonal to  all 
vectors in S. Again p is the orthogonal projection of y. This idea is  now extended to a more gen- 
eral vector-space. 

We a re  given a vector y in a vector space E and are  to find a vector p in a given subspace S 
such tha t  

I I Y - P I I  < I I Y - - ~ I I  
where q is  any other vector in S and the n o r m  of a vector v i s  

llvll = G) 
parentheses denoting the scalar product associated with the vector space. We begin by showing 
that  there is  a unique vector p for  which y - p is  orthogonal to  every vector in  S. This p is called 
the orthogonal projection of y. 

Let eo, . . . , em be an orthogonal basis fo r  S and consider the vector 

Direct calculation shows tha t  ( p ,  e,) = ( y ,  ek )  and therefore ( p  - y ,  ek)  = 0 for  k = 0, . . . , m. It 
then follows tha t  ( p  - y ,  q )  = 0 for  any q in  S ,  simply by expressing q i n  terms of the orthogonal 
basis. If another vector p' also had this property (p' - y ,  q )  = 0, then i t  would follow t h a t  for  any 
q in S ( p  - p', q)  = 0. Since p - p' i s  itself in  S ,  this forces ( p  - p', p - p') = 0 which by required 
properties of any scalar product implies p = p'. The orthogonal projection p is  thus unique. 

But now, if q is  a vector other than p in S,  

Since the last  term is zero, p - q being in S ,  we deduce that  1 1  y - pll < Ily - qll a s  required. 

21.8. If uo, u,, . . .,urn is an arbitrary basis for S, determine the vector p of the preceding 
problem in terms of the uk. 

We must have ( y  -,p, uk) = 0 or ( p ,  u,) = ( y ,  u k )  for  k = 0, . . . ,m. Since p has the unique 
representation p = aouo + alul  + . + amurn, substitution leads directly to  

for k = 0, . . .,m. These a re  the normal  equations for the given problem, and a re  to be solved for  the 
coefficients ao, . . .,a,. A unique solution is guaranteed by the previous problem. Note t h a t  in the 
special case where the u,, ul, . . . , u, a r e  orthonormal, these normal equations reduce to  ai = ( y ,  ui) 
a s  in the proof given in Problem 21.7. 

Note also the following important corollary. If y itself is  represented i n  terms of a n  orthogonal 
basis in E which includes U O ,  . . .,urn, say 

y = aouo + a,u,  + . . . + a,u, + a,,, urn + + . . 
then the orthogonal projection p, which is  the least-squares approximation, is available by simple 
truncation of the representation af ter  the a,u, term: 
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21.9. How is the specific case treated in Problem 21.6 related to the generalization given 
in Problems 21.7 and 21.8? 

The following identifications must be made. 

E : the space of discrete real-valued functions on the set of arguments X O ,  . . . , xN  

S : the subset of E involving polynomials of degree rn or less 

y : the data function, having values yo, . . . , yN 

N 

(v,, v 2 )  : the scalar product 2 v , (x , )  v2 (x i )  
i=O 

N 

llv112 : the norm 2 [v(x i )]2  
i=O 

uk : the function with values x f  

p : the polynomial with values pi = a. + a l x i  + . . . + alnxY 

With these identifications we also learn that  the polynomial p of Problem 21.6 is  unique and 
actually does provide the minimum sum. The general result of Problems 21.7 and 21.8 establishes 
this. (For  a n  alternate proof of these facts, see also Problems 21.118-120.) 

21.10. Determine the least-squares quadratic function for the data of Problem 21.2. 
The sums so, s,, sgt to, and t ,  have already been computed. We also need s, = 2025, s, = 15,333, 

t, = 1292.9 which allow the normal equations to be written 

After some labor these yield a. = 3.73, a ,  = .ll, a ,  = 7.0023 so tha t  our quadratic function is  
p(x) = 3.73 + . l l x  - .0023x2. 

21.11. Apply the quadratic function of the preceding problem to smooth the reported data. 
Assuming tha t  the data  should have been values of our quadratic function, we obtain these 

values: 

I Smoothedy 1 3 . 7 3  3.84 3.94 4.04 4.13 4.22 4.31 4.39 4.46 4.53 1 
Handicap 

These hardly differ from the predictions of the straight line hypothesis, and the parabola correspond- 
ing to our quadratic function would not differ noticeably from the straight line of Fig. 21-1, page 
241. The fact  tha t  a2 is so small already shows that  the quadratic hypothesis may be unnecessary 
in  the golfing problem. 

6 8 10 12 14  16 18 20 22 24 ( 

SMOOTHING AND DIFFERENTIATION 

21.12. Derive the formula for a least-squares parabola for five points (xi, yi) where i = k - 2, 
k-1,  k, k + l ,  k S 2 .  

Let the parabola be p ( t )  = a. + a,t + a2t2 where t = ( x  - x k ) l h ,  the arguments xi being as- 
sumed equally spaced a t  interval h. The five points involved now have arguments t = -2, -1,0,1,2.  
For this symmetric arrangement the normal equations simplify to 
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5ao + 10a2 = Byi 

10al = Btiyi 

10ao + 34a2 = zt:yi 

and are easily solved. We find first 

3 from which a0 = ~k - S4yk 

Substituting back we also obtain 

And directly from the middle equation 

21.13. With y(xk) representing the exact value of which yk is an approximation, derive the 
smoothing formula y(xk) - y k  - 4 a4yk. 

The least squares parabola for  the five points (xkP21 yk--2) to (xk  + 2 ,  yk+2) is  

3 At the center argument t = 0 this becomes p(xk)  = a. = yk -%S4yk by Problem 21.12. 
Using this formula amounts to accepting the value of p on the parabola a s  better than the data 
value yk. 

Differences through the fourth also appear in Table 21.1, as  well a s  (3 /35)~4y .  Finally the bot- 
tom row contains the smoothed values. 

21.14. The square roots of the integers from 1 to 10 were rounded to two decimal places, 
and a random error of -.05, -.04, . . . , .05 added to each (determined by drawing cards 
from a pack of eleven cards so labeled). The results form the top row of Table 21.1. 
Smooth these values using the formula of the preceding problem. 

21.15. The smoothing formula of Problem 21.13 requires two data values on each side of xk 

for producing the smoothed value p(xk). I t  can not therefore be applied to the two 
first and last entries of a data table. Derive the formulas 

Xk 

yk 

SY 

S2Y 

S3Y 

S4Y 

(3/35)S4y 

P ( X L )  

for smoothing end values. 

1 2 3 4 5 6 7 8 9 10 

1.04 1.37 1.70 2.00 2.26 2.42 2.70 2.78 3.00 3.14 

33 33 30 26 16 28 8 22 14 

0 -3 -4 -10 12 -20 14 -8 

-3 -1 -6 22 -32 34 -22 

2 -5 28 -54 66 -56 

0 0 2 -5 6 -5 

1.70 2.00 2.24 2.47 2.64 2.83 

Table 21.1 
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If we let t = ( x  - x2)lh,  then the quadratic function of Problem 21.12 is the least-squares 
quadratic for the first five points. We shall use the values of this function a t  xo and xl as smoothed 
values of y .  First 

p(xo) = a ,  - 2a1 + 4a2 

and inserting our expressions for the ai ,  with k replaced by 2, 

P ( X O )  = & [ 6 2 ~ 0  + 1 8 ~ 1 -  6 ~ 2  - 1016, + 6 y 4  
- 1 
- Y O  + 7 0 [ ( - 1 4 ~ 0  + 4 2 ~ 1 -  4 2 ~ 2  + 1 4 ~ 3 )  + ( 6 ~ 0  - 2 4 ~ l +  36y2 - 24y3 + 6y4 ) ]  

which reduce to the above formula for ~ ( x , , ) .  For p(x l )  we have 

P ( X A  = a0 - a1 -t a2 

and insertion of our expressions for the ai again leads to the required formula. At the other end 
of our data supply the change of argument t = ( x  - ~ , + ~ ) / h  applies, the details being similar. 

21.16. Apply the formulas of the preceding problem to complete the smoothing of the y 
values in Table 21.1. 

We find these changes to two places: 

y(x , )  - 1.04 + Q(-.03) + &(.02) - 1.03 ~ ( x N - ~ )  - 3.00 + 3 ( - 2 2 )  - $(-.56) - 2.99 

y ( x l )  - 1.37 - $(-.03) - +(.02) - 1.38 y ( x N )  - 3.14 - &(-22 )  + $(-.56) - 3.14 

21.17. Compute the RMS error of both the original data and the smoothed values. 
The root-mean-square error of a set of approximations At corresponding to exact values Ti  is  

defined by 
1 / 2  

RMS error = [: ( ! f i  - A ~ ) Z / N ]  
i = O  

In the present example we have the following values: 

p(x,)  1.03 1.38 1.70 2.00 2.24 2.47 2.64 2.83 2.99 3.14 

The exact roots are given to two places. By the above formula, 

RMS error of yi - ( .0108/10)1/2 - .033 

RMS error of p(xi)  - (.0037/10)1f2 - .019 

so that  the error is  less by nearly half. The improvement over the center portion is greater. If 
the two values a t  each end are ignored we find RMS errors of .035 and .015 respectively, for a 
reduction of more than half. The formula of Problem 21.13 appears more effective than those of 
Problem 21.15. 

21.18. Use the five point parabola to obtain the formula 

for approximate differentiation. 
With the symbols of Problem 21.13 we shall use yt (xk) ,  which is the derivative of our five 

point parabola, as an approximation to the exact derivative a t  xk. This again amounts to assuming 
that our data values yi are approximate values of an exact but unknown function, but that the five 
point parabola will be a better approximation, especially in the vicinity of the center point. On the 
parabola 

p = a ,  + a l t  + a2t2 
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and according to plan, we calculate pl(t) a t  t = 0 to be a,. To convert this to a derivative relative 
to  x involves merely division by h, and so, recovering the value a, found in Problem 21.12, and taking 
pl(x) a s  a n  approximation to yl(x), we come to the required formula. 

21.19. Apply the preceding formula to estimate y'(x) from the yr values given in Table 21.1. 
A t  x2 = 3 we find 

1 
y1(3) - - (-2.08 - 1.37 + 2.00 + 4.52) = .307 

10 

and a t  x3 = 4, yf(4) - L(-2.74 - 1.70 + 2.26 + 4.84) = .266 
10 

The other entries in  the top row shown below are  found in the same way. The second row was 
computed using the approximation 

found earlier from Stirling's five point collocation polynomial. Notice the superiority of the present 
formula. Er rors  in  data  were found earlier to be considerably magnified by approximate dif- 
ferentiation formulas. Preliminary smoothing can lead to better results, by reducing such data  

I yf(x) by collocation 1 .31 .29 .20 .23 .I8 .14 1 

errors. 

21.20. The formula of Problem 21.18 does not apply near the ends of the data supply. Use 
a four point parabola a t  each end to obtain the formulas 

yf (x)by leas t squares  

Four points will be used rather than five, with the thought tha t  a fifth point may be rather  f a r  
from the position xo or  xN where a derivative is required. Depending on the size of h, the smoothness 
of the data  and perhaps other factors, one could use formulas based on five points or more. Proceed- 
ing to the four  point parabola we let t = (x - xl)/h so tha t  the first four  points have arguments 
t = -1,0,1,2. The normal equations become 

4ao + 2a, + 6a2 = yo + yl + y2 + y3, 2ao + 6a, + 8a2 = -YO + y2 + 2 ~ 3 ,  

.31 .27 .24 .20 .18 .17 

6a0 + 8a1 + 18a2 = yo + yz + 4y3 
and may be solved for  

20a0 -- 3yo + l l y ,  + 9y2 -- 3y3, 20a1 = -11~0 + 3 ~ 1  + 7 ~ 2  + ~ 3 ,  4a2 = YO - YI - YZ + Y3 

With these and yt(x0) = (a, - 2a2)/h, yl(xl) = a,/h the required results follow. Details a t  the 
other end of the data  supply are  almost identical. 

21.21. Apply the formulas of the preceding problem to the data of Table 21.1. 

We find 1 
yl( l )  - 20 [-zl(1.04) + 13(1.37) + 17(1.70) - 9(2:.00)] - .35 
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Similarly yt (9)  - .16 and y'(10) - .19. The correct values a re  .50, .35, .17 and .16. The poor results 
obtained a t  the endpoints a re  fur ther  evidence of the difficulties of numerical differentiation. 
Newton's original formula 

1A4y0 + . . . yf(x,) - - & A ~ Y ~  + &A3y0 - 

produces from this data  the value .32, which is worse than our .35. A t  the other extreme the cor- 
responding backward difference formula manages .25 which i s  much worse than our .19. 

21.22. Apply the formulas for approximate derivatives a second time to estimate yU(x) ,  
using the data of Table 21.1. 

Now applying the same formulas to the y f ( x )  values will produce estimates of y t f ( x ) .  For  example, 

We have already obtained estimates of the first derivative, of roughly two place accuracy. They 
a re  a s  follows. 

i 

which is  half again a s  large a s  the correct -.022. Complete results from our formulas and correct 
values a r e  a s  follows. 

x 

y l ( x )  

I -y" (computed) 1 .011 .021 .028 .033 .033 .026 .019 .004 .012 -.032 1 

1 2 3 4 5 6 7 8 9 10 

.35 .33 .31 .27 .24 .20 .18 .17 .16 .19 

Near the center we have a n  occasional r a y  of hope, but a t  the ends the disaster is evident. 

21.23. The least-squares parabola for seven points leads to the smoothing formula 
2 

~ ( x L )  yk - +s4uli - 21 s 6 u k  

(The derivation is requested as  a supplementary problem.) Apply this to the data of 
Table 21.1. Does i t  yield better values than the five point smoothing formula? 

A row of sixth differences may be added to Table 21.1: 

40 -115 202 -242 

Then the formula yields y(4)  - 2.00 - q(w.05) - &(.do) - 1.98 

y(5)  - 2.26 - $(.28) - &(-1.15) - 2.25 

and similarly y(6)  - 2.46, y(7)  - 2.65. These a re  a slight improvement over the results from the 
five point formula, except for  y(4)  which is slightly worse. 

ORTHOGONAL POLYNOMIALS, DISCRETE CASE 

21.24. For large N and m the set of normal equations may be badly ill-conditioned. To 
see this show that  for equally spaced xi from 0 to 1 the matrix of coefficients is 
approximately 

112 

113 
. . . . . . . . . . . . . . . . . .  

1 + 1 l / ( m  + 2) 

if a factor of N is deleted from each 
order m + 1. 

113 . . .  l l ( m + l )  

114 . . . l l(m + 2) 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

l l(m + 3)  . . . l I ( 2 m  + 1) 

term. This matrix is the Hilbert matrix of 
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For  large N the area under ~ ( x )  = xk between 
0 and 1 will be approximately the sum of N rectangu- 
l a r  areas. (See Fig. 21-2.) Since the exact area is 
given by a n  integral, we have 

Thus sk - NI(E+ I ) ,  and deleting the N we have 1 
a t  once the Hilbert matrix. This matrix will later X o  2 1  $2 X N  

be shown to be extremely troublesome for  large N .  Fig. 21-2 

21.25. How can the Hilbert matrices be avoided? 

The preceding problem shows t h a t  the normal equations which arise with the  basis 1, x ,  . . ., xm 
and equally-spaced arguments involve a n  approximately Hilbert matrix, which is troublesome. It 
is  computationally more efficient to find a n  orthogonal basis so t h a t  the corresponding normal equa- 
tions become trivial. A convenient orthogonal basis is constructed in  the next problem. It is  inter- 
esting to  note tha t  in developing this basis we will deal directly with the Hilbert matrix itself, not 
with approximations to it ,  and t h a t  the system of equations encountered will be solved exactly, thus 
avoiding the pitfalls of computing with ill-conditioned systems. (See also Chapter 26.) 

21.26. Construct a set of polynomials P m , ~ ( t )  of degrees m = 0,1,2, . . . such that 
N 

Such polynomials are called orthogonal over the set of arguments t .  

Let the polynomial be 

P,,,,(t) = 1 + clt + c 2 W  + . . . + emt(m) 

where t ( i )  is  the factorial t ( t  - 1 ) .  . . ( t  - i + 1). We first made the polynomial orthogonal to ( t  + s ) ( ~ '  
for  s = 0 ,  1, . . . , m- 1, which means tha t  we require 

N 

2 (t+s)(S'P,*,(t) = 0 
t=O 

Since 
( t  + s)(s)  P,,,(t) = ( t  + s ) ( ~ )  + e,(t + s ) ( s + l )  + . . . + c,,(t + s ) ( ~ + ~ )  

summing over the arguments t  and using Problem 4.10, page 25, brings 

which is to be zero. Removing the factor ( N  + s + l ) ( S +  I ) ,  the sum becomes 

and setting N")ci = ai this simplifies to 

for  s = O,l, . . .,m-1. The Hilbert matrix again appears in this set of equations, but  solving the 
system exactly will still lead us  to a useful algorithm. If the last  sum were merged into a single 

quotient i t  would take the form Q(4 
( s  + m + 1)  c m + l )  

with Q(s) a polynomial of degree a t  most m. 

Since Q(s) must be zero a t  the m arguments s = 0, 1, . . . , m- 1, we must have Q(s)  = C d m )  
where C is  independent of s. To determine C we multiply both the sum and the equivalent quotient 
by ( s  + 1) and have 
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C S ( ~ )  
s + 2 ( s + 2 ) . . . ( s + m + l )  

which must be t rue fo r  all s except zeros of denominators. Setting s = -1, we see tha t  
C = m !I[(-I)(-2) . . . (-m)] = (-1)m. We now have 

The device which produced C now produces the ai. Multiply by ( s  + m +  l ) ( m + l )  and then set 
s = - i - 1  to  find for  i = 1 ,  ..., m 

(-1)i i !  ( m  - i) ! ai = (-1)m (-i - 1)(nz) = ( m  + i ) ( m )  

and then solve for  ai = (-1)i 
( m  + 4'") = (T) ( m  ; i )  ( m - i ) ! i !  

Recalling t h a t  ai = ciN(i),  the required polynomials may be written a s  

What  we have proved is t h a t  each Pm,N(t) is  orthogonal to the functions 

1, t  + 1, ( t  + 2)( t  + 1),  . . . , ( t  + m - l)(m-l) 

but in  Problem 4.18, page 27, we saw t h a t  the powers 1, t ,  t2, . . ., tm-1 may be expressed a s  com- 
binations of these, so tha t  Pm,N(t)  i s  orthogonal to each of these powers a s  well. Finally, since 
P,,, (t)  is a combination of these powers we find Pm,N ( t )  and Pn,N(t) to be themselves orthogonal. 
The first five of these polynomials a re  

21.27. Determine the coefficients a k  so that 

(with t = ( x  - xo)lh) will be the least-squares polynomial of degree m for the data 
( x t ,  y t) ,  t = 0,1, . ., N. 

Setting derivatives relative to the ak equal to zero, we have 
N 

aSlaa, = -2 2 [ y ,  - a, Po, ,,, ( t )  - . . . - am P,, ( t ) ]  P,,, ( t )  = o 
t=O 

for  k = O , l ,  . . . ,m .  But by the orthogonality property most terms here a r e  zero, only two 
contributing. 

N 

2 [ ~ t  - ~ k ~ k , N ( t ) ]  P k , ~ ( t )  = 0 
t=o 

Solving for  a,, we find N 

2 Y ~ P L , N ( ~ )  
t=O 

ak = N 
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This is one advantage of the orthogonal functions. The coefficients a, are  uncoupled, each appearing 
in a single normal equation. Substituting the a, into p(x), we have the least-squares polynomial. 

The same result follows directly from the general theorem of Problems 21.7 and 21.8. Identify- 
ing E, S, y, (w,,v,) and 11w!1 exactly a s  before, we now take uk = Pk,N(t) SO t h a t  the orthogonal 
projection is  still p = aouo + . . . + amurn. The kth normal equation is (u,, u,)a, = ( y ,  u,) and 
leads to the expression for a, already found. Our general theory now also guarantees tha t  we 
have actually minimized S, and tha t  our p(x) is  the unique solution. An argument using second 
derivatives could also establish this but is not now necessary. 

Show that  the minimum value of S takes the form x y,2 - x Wkai where 
N t=O k=O 

Wk = C P:*,(t). 
t=o 

Expansion of the sum brings 

m m 

The second term on the right equals -2 2 ak(Wkak)  = -2 2 WkaE. The last term vanishes by 
k=O k=0 

the orthogonality except when j = k, in  which case i t  becomes B Wkai .  Putting the pieces back 
together, k=o 

N m 

Smi, = B Y? - B Wk a2k 
t=O k--0 

Notice what happens to the minimum of S a s  the degree m of the approximating polynomial is 
increased. Since S is non-negative, the first sum in Smi, clearly dominates the second. But  the 
second increases with m, steadily diminishing the error. When m = N we know by our earlier 
work tha t  a collocation polynomial exists, equal to yt a t  each argument t  = 0,1, . . ., N. This re- 
duces S to zero. 

Apply the orthogonal functions algorithm to find a least-squares polynomial of degree 
three for the following data. 

- - -- - 

The coefficients a, are  computed directly by the formula of the preceding problem. For  hand 
computing, tables of the W k  and Pk,N(t) exist and should be used. Although we have "inside in- 
formation" t h a t  degree three is  called for, i t  is instructive to go slightly further. U p  through 
m = 5 we find a,, = 2.2276, a ,  = -1.1099, az = .1133, as = .0119, a4 = .0283, a5 = -.0038; and 
with x = t, 

By the nature of orthogonal function expansions we obtain least-squares approximations of various 
degrees by truncation of this result. The values of such polynomials from degree one to degree five 
are  given in Table 21.2 below, along with the original data. The final column lists the values of 
y(s )  = ( x  + 50)3/105 from which the data  were obtained by adding random errors  of size up  to .lo. 
Our goal has  been to recover this cubic, eliminating a s  much error  a s  we can by least-squares 
smoothing. Without prior knowledge tha t  a cubic polynomial was our target,  there would be some 
difficulty in  choosing our approximation. Fortunately the results do not disagree violently af ter  
the linear approximation. A computation of the RMS errors shows tha t  the quadratic has, in this 
case, outperformed the cubic approximation. 
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Given 
data  

- 
- 

- 
Table 21.2 

Correct 
results 

CONTINUOUS DATA, THE LEAST-SQUARES POLYNOMIAL 
21.30. Determine the coefficients ai so that 

will be a minimum, the function P,(x) being the kth Legendre polynomial. 
Here i t  i s  not a sum of squares which is to be minimized but a n  integral, and the data  a r e  no 

longer discrete values yi but a function y(x) of the continuous argument x. The use of the Legendre 
polynomials is  very convenient. A s  in the previous section i t  will reduce the normal equations, 
which determine the a,, to a very simple set. And since any polynomial can be expressed a s  a com- 
bination of Legendre polynomials, we a re  actually solving the problem of least square polynomial 
approximation for  continuous data. Setting the usual derivatives to zero, we have 

arida, = -2 S (y(x) - aoPo (x) - . . - amprn (x)] P,  (x) dx = o 
1 

for k = O,l ,  . . .,m. By the orthogonality of these polynomials, these equations simplify a t  once to  

Each equation involves only one of the a, so t h a t  
1 1, ~ ( x )  p ,  (x) dx 

a,  = 
2k + ' y(z) PI  (x) dx = 7 s - ,  

Here again i t  i s  t rue that  our problem is a special case of Problems 21.7 and 21.8, with these 
identifications: 

E : the space of real-valued functions on -1 a x 6 1 

S : polynomials of degree m or less 

y : the data  function y(x) 

(v,, v.,) : the scalar product 
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These problems therefore guarantee that our solution p(x) is unique and does minimize the integral I. 

21.31. Find the least-squares approximation to y(t) = t2 on the interval (0,l) by a straight 
line. 

Here we are approximating a parabolic arc by a line segment. First  let t = ( x  + 1)/2 to obtain 
the interval ( -1 , l )  in the argument x. This makes y = ( x  + 1)2/4. Since Po ( x )  = 1 and Pl ( x )  = x ,  
the coefficients a. and a, are 

and the least-squares line is y = + Po ( x )  f + Pl ( x )  = 8 + fr x = t - 1. 6 

Both the parabolic arc and the line are shown in Fig. 21-3. The difference between y values on 
the line and parabola is t2 - t  + 9, and this takes extreme values a t  t  = 0, 112 and 1 of amounts 
116, -1112 and 116. The error made in substituting the line for the parabola is  therefore slightly 
greater a t  the ends than a t  the center of the interval. This error can be expressed as 

and the shape of P2(x )  corroborates this error behavior. 

Fig. 21-3 Fig. 21-4 

21.32. Find the least-squares approximation to y(t) = sint  on the interval ( 0 , ~ )  by a 
parabola. 

Let t = T ( X  + 1) /2  to obtain the interval ( -1 , l )  in the argument x. Then y = sin [ ~ ( x  + 1)/2]. 
The coefficients are 

a2 = ;I, 1 
sin [ ~ ( x  + 1)/2] - 2 (3x2 - 1) dx = a (1 - 5) 

so that the parabola is  

The parabola and sine curve are shown in Fig. 21-4, with slight distortions to better emphasize the 
over and under nature of the approximation. 
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21.33. What are the "shifted Legendre polynomials"? 

These result from a change of argument which converts the interval ( - 1 , l )  into ( 0 , l ) .  Let 
t = ( 1  - x ) / 2  to effect this change. The familiar Legendre polynomials in the argument x then 
become 

Po = 1 P, = +(322- 1 )  = 1 - 6 t  + 6t2 

and so on. These polynomials a re  orthogonal over ( 0 , l )  and we could have used them a s  the basis 
of our least-squares analysis of continuous data  in place of the standard Legendre polynomials. 
With this change of argument the integrals involved in our formulas fo r  coefficients become 

The argument change t = (x + l ) / 2  might also have been used, altering the sign of each odd 
degree polynomial, but the device used leads to a close analogy with the orthogonal polynomials fo r  
the discrete case developed in Problem 21.26. 

21.34. Suppose that an experiment 
produces the curve shown in .5- Y 

Fig. 21-5. I t  is known or sus- .4 - 
pected that the curve should be 
a straight line. Show that the .3 - 
least-squares line is approxi- 
mately given by y = .21t + .11, .2 - 

which is shown dotted in the 
diagram. . I -  

Instead of reducing the interval I I 
to ( - 1 , l )  we work directly with the I I I I I I I I I I I t  
argument t and the shifted Legendre .5 1 

polynomials. Two coefficients a re  
needed, Fig. 21-5 

Applying Simpson's rule now makes a. - .214 and al - p.105. The resulting line is  

Since y ( t )  is  not available in analytic form, these integrals must be evaluated by approximate 
methods. Reading from the diagram, we may estimate y values a s  follows. 

y = .214 - .105(1-2t )  = .21t + .11 

and this appears in Fig. 21-5. An alternative treatment of this problem could involve applying the 
methods for  discrete data  to the y values read from the diagram. 

t 

CONTINUOUS DATA, A GENERALIZED TREATMENT 

21.35. Develop the least-square polynomial in terms of a set of orthogbnal polynomials on 
the interval (a, b) with non-negative weight function w(x). 

The details a re  very similar to those of earlier derivations. We a r e  to minimize 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

.10 .17 .13 .15 .23 .25 .21 .22 .25 .29 .36 

by choice of the coefficients ak, where the functions Q L ( x )  satisfy the orthogonality condition 
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for  j # k. Without stopping for  the duplicate argument involving derivatives, we appeal a t  once 
to Problems 21.7 and 21.8, with the scalar product 

( v l j  v2)  = [ 4%) vl@)  v d x )  d x  

$ w b )  d x )  Qk (4 d x  
and other obvious identifications, and find ak = . With these ak the least- sb ~ ( 4  Q: (2) dx  

squares polynomial is  p(x)  = a,  QO(x)  + - - . + amQm(x). 

21.36. What is the importance of the fact that ak does not depend upon m? 

This means tha t  the degree of the approximation polynomial does not have to be chosen a t  the  
s ta r t  of a computation. The a, may be computed successively and the decision of how many terms 
to use can be based on the magnitudes of the computed ak. In  non-orthogonal developments a change 
of degree will usually require t h a t  all coefficients be recomputed. 

21.37. Show that the minimum value of I can be expressed in the form 
m b 

Lb ~ ( 5 )  y2(x) dx - W. a: where Wk = 1 w(s) QZ*(X) ds 
k=O 

Explicitly writing out the integral makes 

m m 

The second term on the right equals -2 2 a k ( W k a k )  = -2 2 W k  a:. The last  term vanishes by 
k=O k=O 

m 

the orthogonality except when j = k, in which case i t  becomes 3 W k  a:. Putt ing the pieces back /. b m k=O 
together, J w ( x )  y2(x)  d x  - 2 w k a Z .  

a k=O 

21.38. Prove Bessel's inequality, 2 W k  a: 5 J W(X) y2(x) dx. 
k=O a 

Assuming ~ ( x )  ' 0, it follows tha t  1 2 0 so that  Bessel's inequality is a n  immediate con- 
sequence of the preceding problem. 

m 

21.39. Prove the series 2 W k  a2k to be convergent. 
k=O 

I t  is  a series of positive terms with partial sums bounded above by the integral i n  Bessel's 
inequality. This guarantees convergence. Of course, it is  assumed all along that  the integrals 
appearing in our analysis exist, i n  other words tha t  we a re  dealing with functions which a r e  in- 
tegrable on the interval (a ,  b ) .  

21.40. Is it true that as m tends to infinity the value of I,,i, tends to zero? 
With the families of orthogonal functions ordinarily used, the answer is yes. The process is  

called convergence i n  the mean and the set of orthogonal functions is  called complete. The details 
of proof a r e  more extensive than will be attempted here. 
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APPROXIMATION WITH CHEBYSHEV POLYNOMIALS 
21.41. The Chebyshev polynomials are defined for  -1 x 6 1 by Tn(x)  = cos (n arccos x). 

Find the first few such polynomials directly from this definition. 
For  n = 0 and 1 we have a t  once To(x)  = 1, T l ( x )  = x. Let A = arccos x. Then 

T 2 ( x )  = cos2A = 2cos2A - 1 = 2x2 - 1 

T ,  ( x )  = cos 3A = 4 cos3 A - 3 cos A = 4x3 - 3x, etc. 

21.42. Prove the recursion relation T n + l ( x )  = 2x Tn(x) - T n - l ( x ) .  

The trigonometric relationship cos ( n  + l ) A  + cos ( n  - l ) A  = 2 cos A cos n A  translates directly 
into T n + l ( x )  + T n P l ( x )  = 22 T,(x). 

21.43. Use the recursion to produce the next few Chebyshev polynomials. 
Beginning with n = 3, 

T4  ( x )  = 2x(4x3 - 3x)  - (2x2 - 1)  = 8x4 - 8x2 + 1 

T 5 ( x )  = 2x(8x4- 8x2 + 1) - (4x3 - 3%) = 16x5 - 20x3 + 5x 

T6  ( x )  = 2x(16x5 - 20x3 + 5x)  - (8x4 - 8x2 + 1) = 32x6 - 48x4 + 18x2 - 1 

7'7 ( x )  = 2x(32x6 - 48x4 + 18x2 - 1)  - (16x5 - 20x3 + 5%) = 64x7 - 112x5 + 56x3 - 7 x ,  etc. 

0 m + n  

21.44. Prove the orthogonality property d 2  m = n z O .  

r m=n=O 
Let x = cos A a s  before. The above integral becomes 

AT (cos mA)(cos n A )  dA = sin ( m  + n ) A  sin (m - n ) A  " 
2 ( m  + n )  + 2,m-n,  1, = o 

for  m # n. If m = n = 0 ,  the result T is  immediate. If m = n P 0, the integral is 

sin n A  cos n A  ir cos2 n~ d A  = [&( + A ) ] "  = .I2 
0 

21.45. Express the powers of x in terms of Chebyshev polynomials. 
We find 1 = T o  x4 = 9(3To + 4T2 + T4)  

x = T I  x5 = &(lOT1 + 5T3 + T5) 
x2 = #TO + T2)  x6 = &(lOTo + 15T2 + 6T4 + T 6 )  

2 3  = &(3T1 + T 3 )  x7 = &(35Tl + 21T3 + 7T5 + T7)  

and so on. Clearly the process may be continued to any power. 

21.46. Find the least-squares polynomial which minimizes the integral 

By results of the previous section the coefficients ak a r e  

1 ' Y(') dx. The least-squares polynomial i s  aoTo(x)  + except for  a. which is a0 = 
. . - + amT, (x ) .  
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21.47. Show that T,(x) has n zeros inside the interval (-1,l) and none outside. What is 
the "equal ripple" property? 

Since T ,  ( x )  = cos no, with x = cos e and -1 6 x 1, we may require 0 6 e f T without 
loss. Actually this makes the relationship between 6 and x more precise. Clearly T,(x) is  zero for 
e = (2; + 1 ) ~ / 2 n ,  or 

xi = cos [ ( Z i  + l ) ~ / Z n ] ,  i = 0, 1, . . . , n - 1 

These are n distinct arguments between -1 and 1. Since T,(x) has only n zeros, there can be none 
outside the interval. Being equal to a cosine in the interval (-1, I ) ,  the polynomial T,(x) cannot 
exceed one in magnitude there. I t  reaches this maximum size a t  n+ 1 arguments, including the 
endpoints. 

T X )  = ( - 1 )  a t  x = cos i ~ l n ,  i = 0 ,  1, . . ., n 

This oscillation between extreme values of equal magnitude is known as the equal ripple property. 
This property is illustrated in Fig. 21-6 which shows T z  ( x ) ,  T 3  ( x ) ,  T 4  ( x )  and T 5  (2). 

Fig. 21-6 

21.48. In what way does the equal ripple property make the least-squares approximation 

superior to similar approximations using other polynomials in place of the T L ( x )  ? 

Suppose we assume that, for the y(x )  concerned, the series obtained by letting m, tend to infinity 
converges to y ( x ) ,  and also that it converges quickly enough so that  

In other words, the error made in truncating the series is essentially the first omitted term. Since 
T,+ (x) has the equal ripple property, the error of our approximation will fluctuate between a,+ , 
and -a,+l across the entire interval ( -1 , l ) .  The error will not be essentially greater over one 
part of the interval compared with another. This error uniformity may be viewed as a reward for 
accepting the unpleasant weighting factor 1 / d s  in the integrals. 

21.49. Find the least-squares line for y ( t )  = t2 over the interval ( 0 , l )  using the weight 
function lid-. 

The change of argument t = ( x  + 1)/2 converts the interval to ( -1 , l )  in the argument x ,  and 
makes y = i ( x 2  + 2x + 1). If we note first the elementary result 

\. p = o  

0 p = l  
dx = 1' (cos A). d A  = 

TI2 p = 2 

then the coefficient a. becomes (see Problem 21.46) a. = $(& + 0 + 1) = 8; and since y(x )  T1(x)  
is  4(x3  + 2x2 + x ) ,  we have a, = a(0  + 2 + 0 )  = +. The least-squares polynomial is  therefore, 
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There is  a second and much briefer path to this result. Using the results in  Problem 21.45, 

y (x )  = B(frT, + 4 T 2  + 2T1  + T o )  = 8 To  + 4 TI + Q T 2  

Truncating this af ter  the linear terms, we have a t  
once the result just found. Moreover we see tha t  the 
error is, in  the case of this quadratic ~ ( x ) ,  precisely 
the equal ripple function T 2 ( x ) / 8 .  This is, of course, 
a consequence of the series of Chebyshev polynomials 
terminating with this term. F o r  most functions the 
error will only be approximately the first omitted 
term, and therefore only approximhtely a n  equal rip- 
ple error. Comparing the extreme errors here 
(118, -118, 118) with those in Problem 21.31 which 
were (116, -1112, 116), we see t h a t  the present ap- - 

proximation sacrifices some accuracy in the center for  
improved accuracy a t  the extremes plus the equal rip- 
ple feature. Both lines a r e  shown in Fig. 21-7. Fig. 21-7 

21.50. Find a cubic approximation in terms of Chebyshev polynomials for  y(x) = sin x. 

The integrals which must be computed to obtain the coefficients of the least-squares polynomial 
with weight function w ( x )  = 1/d1--.2 are  too complicated in  this case. Instead we will illustrate 
the process of economixation of polynomials. Beginning with 

sin x - 1 1 x - - x 3 +  -x5 
6 120 

we replace the powers of x by their equivalents in terms of Chebyshev polynomials, using Problem 
21.45. 

The coefficients here a r e  not exactly the a k  of Problem 21.46 since higher powers of x from the sine 
series would make fur ther  contributions to  the T I ,  T 3  and T5 terms. But  those contributions would 
be relatively small, particularly fo r  the early T k  terms. F o r  example, the 2 5  term has altered the 
T l  term by less than one per cent, and the x7 term would alter it by less than .O1 per cent. In  con- 
t ras t  the 2 5  term has altered the T 3  term by about six per cent, though x7 will contribute only about 
.02 per cent more. This suggests tha t  truncating our expansion will give us  a close approximation 
to the least-squares cubic. Accordingly we take for  our approximation 

The accuracy of this approximation may 
be estimated by noting t h a t  we have 
made two "truncation errors", first by 
using only three terms of the power 
series for  sin x and second in dropping 
T , .  Both affect the fourth decimal place. 
Naturally, greater accuracy i s  avail- 
able if we seek a least-squares polyno- Present 

error 
mial of higher degree, but even the one I 

we have has accuracy comparable to 1 

that  of the fifth degree Taylor polyno- 
mial with which we began. The errors 
of our present cubic and the Taylor 
cubic, obtained by dropping the x5 term, 
a r e  compared in Fig. 21-8. The Taylor 
cubic i s  superior near zero but  the 
almost-equal-error property of the (al- 
most) least-squares polynomial is evi- 
dent and should be compared with T5 ( x ) .  Fig. 21-8 
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21.51. Prove that for m and n less than N, 

N-1 
0 m Z n  

C T r n ( x i ) T n ( x i )  = N/2 m = n # O  
i=O 

N m = n = O  

where xi = cos Ai = cos [(2i  + l ) d 2 N ] ,  i = 0, 1, . . . , N - 1. 

From the trigonometric definition of the Chebyshev polynomials, we find directly 
N - 1  N -  1 N - 1  

x T ,  (xi)  !!',(xi) = 2 cos m A i  cos n A i  = - x [cos (m + n ) A i  + cos (m - n)Ai]  
i=o i=o 2 t=o 

Since cos ai = (+ sin -&a)[h sin a ( i -  -&)I both cosine sums may be telescoped. I t  is  simpler, how- 
ever, to note t h a t  except when m + n or m - n is zero each sum vanishes by symmetry, the angles 
Ai being equally spaced between 0 and ~ r .  This already proves the result fo r  m Z n. If m = n Z 0 
the second sum contributes N/2, while if m = n = 0 both sums together total N. It should be 
noticed tha t  the Chebyshev polynomials a re  orthogonal under summation a s  well a s  under integra- 
tion. This is often a substantial advantage, since sums are f a r  easier to compute than integrals of 
complicated functions, particularly when the factor appears in  the la t ter  but  not in the 
former. 

21.52. What choice of coefficients a k  will minimize 

C  xi) - aoTo (xi)  - ' ' ' - a m  Trn (xi)]' 
X i  

where the xi are the arguments of the preceding problem? 
With proper identifications i t  follows directly from Problems 21.7 and 21.8 tha t  the orthogonal 

B Y (xi) Tk (xi) 
projection p = aoTo + . . . $ amT, determined by ak = provides the minimum. 

B [ T ,  (xi)] 

Using Problem 21.51 the coefficients a r e  

For  rn = N - 1 we have the collocation polynomial for  the N points (xi ,  y(xi)) and the minimum 
sum is zero. 

21.53. Find the least-squares line for y ( t )  = t2 over ( 0 , l )  by the method of Problem 21.52. 

We have already found a line which minimizes the integral of Problem 21.46. To minimize the 
sum of Problem 21.52, choose t = ( x  + 1)/2 a s  before. Suppose we use only two points, so tha t  
N = 2. These points will have to be xo = c o s ~ / 4  = 116 and xl = cos 3 ~ 1 4  = -1/fi. Then 

and the line is  given by p(x) = # T o  + & T I  = 8 + +x.  This is the same line a s  before, and using 
a larger N would reproduce i t  again. The explanation of this is simply t h a t  y itself can be rep- 
resented in the form y = aoTo + alT1  + a2T2 and, since the T ,  are  orthogonal relative to both 
integration and summation, the least-squares line in either sense is also available by truncation. 
(See the last paragraph of Problem 21.8.) 

21.54. Find least-squares lines for y ( x )  = x3 over ( -1 , l )  by minimizing the sum of Problem 
21.52. 

In this problem the line we get will depend somewhat upon the number of points we use. F i r s t  
take N = 2, which means that  we use xo = -xl = 1/fi a s  before. Then 

a. =  xi + x:) = O , a1 = x s  XG 4 
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Choosing N = 3 we find xo = f i / 2 ,  xl = 0, xz = - 6 1 2 .  This makes 

Taking the general case of N points, we have xi = cosAi and 
.. N-1 

by the symmetry of the Ai in the first and second quadrants. Also, 

Since the Ai a r e  the angles d 2 N ,  3n/2N,  . . ., (2N - 1)n /2N,  the doubled angles a re  T I N ,  
3?;lN, . . ., (2N - 1)aIN and these a re  symmetrically spaced around the entire circle. The sum of 
the cos 2Ai  is therefore zero. Except when N = 2,  the sum of the cos 4Ai  will also be zero so t h a t  
ai = 314, fo r  N = 2. F o r  N tending to infinity we thus have trivial convergence to  the line 
p(x)  = 3 T l / 4  = 3x14. 

If we adopt the minimum integral approach, then we find 

which leads to the same line. 
The present example may serve a s  fur ther  elementary illustration of the Problem 11.52 

algorithm, but the result is  more easily found and understood by noting t h a t  y = x3 = $ T I  f &T,  
and once again appealing to the corollary in Problem 21.8 to obtain 3 T l / 4  or 3x14 by truncation. 
The truncation process fails for N = 2 since then the polynomials To,  T,, T z ,  T 3  a r e  not orthogonal. 
(See Problem 21.51.) 

21.55. Find least-squares lines for y(x) = Ixi over (-1,l) by minimizing the sum of Problem 
21.52. 

With N = 2 we quickly find a .  = l / f i ,  a l  = 0. With N = 3 the results a .  = 1 / f i ,  a ,  = 0 
are just a s  easy. For  arbi t rary N ,  

where I is  (N - 3) /2  fo r  odd A', and ( N  - 2 ) / 2  fo r  even N .  This trigonometric sum may be evaluated 
sin [ n ( l +  l ) l N ]  

by telescoping or otherwise, with the result a ,  = N sin (n12N) ' 

It is a fur ther  consequence of symmetry t h a t  a1 = 0 fo r  all N .  For  N tending to infinity i t  
now follows tha t  

lim no = Iim l l ( N  sin ;ilZN) = 2/r  

As more and more points a re  used, the 
limiting line is approached. Turning to the 
minimum integral approach, we of course 
anticipate this same line. The computation 
produces 

1 

a = ( x / ) ~ x  = 2ln 

1 
I 

a = l ( / d  = 0 -1 1 

and so we a re  not disappointed. The limit- 
ing line is the solid line in  Fig. 21-9. Fig. 21-9 

21.56. Apply the method of the previous problems to the experimentally produced curve of 
Fig. 21-5, page 253. 

For  such a function, of unknown analytic character, any of our methods must involve dis- 
cretization a t  some point. We have already chosen one discrete set of values of the function for  use 
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in Simpson's rule, thus maintaining a t  least in spirit the idea of minimizing an integral. We 
could have used the same equidistant set of arguments and minimized a sum. With the idea of 
obtaining a more nearly equal-ripple error, however, we now choose the arguments xi = cos Ai = 
24  - 1 instead. With eleven points, the number used earlier, the arguments, xi = cos A i  = 
cos [ ( 2 i +  l ) ~ / 2 2 ]  and corresponding t i  as well as yi values read from the curve are as  follows. 

The coefficients become 
1 2 

a, = , Byi  - .22, al = i i B x i y i  - . l l  

making the line p(x)  = .22 + . l l x  = .22t + . l l  which is almost indistinguishable from the earlier 
result. The data inaccuracies have not warranted the extra sophistication. 

Supplementary Problems 

Find the least-squares line for this data. 

21.57. The average scores reported by golfers of various handicaps on a par-four hole were as, follows. 

21.58. Use the least-squares line of the preceding problem to smooth the reported data. 

Handicap 

Average 

21.59. Estimate the rate a t  which the average score increases per unit handicap. 

6 8 10 12 1 4  16 18 20 22 24 

4.6 4.8 4.6 4.9 5.0 5.4 5.1 5.5 5.6 6.0 

21.60. Find the least-squares parabola for the data of Problem 21.57. Does i t  differ noticeably from the 
line just found? 

21.61. When the xi and yi are both subject to errors of about the same size, i t  has been argued that  the 
sum of squares of perpendicular distances to a line should be minimized, rather than the sum of 
squares of vertical distances. Show that this requires minimizing 

1 s = -  1 + M2 ,X ( ~ i -  Mxi -B)' 
1=0 

Then find the normal equations and show that  M is determined by a quadratic equation. 

21.62. Apply the method of the preceding problem to the data of Problem 21.57. Does the new line differ 
very much from the line found in that  problem? 

21.63. Find the least-squares line for the three points (x,, yo), ( x l ,  y l )  and (x2, y2) by the method of Problem 
21.1, page 239. What is true of the signs of the three numbers y(xi) - yi? 
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21.64. Show t h a t  fo r  the data  1 ; 1 ;; ;; ;; ;; 1 
the introduction of y = log P and computation of the least-squares line f o r  the (xi, yi) data pairs 
leads eventually to  P = 91.9~ -.434. 

21.65. Find a function of type P = A e M Z  for  the data  1-1 
21.66. Show t h a t  the least-squares parabola fo r  seven points leads to  the smoothing formula 

~ ( x k )  - Yk - &(9s4~k + 2S6~k) 
by following the procedures of Problems 21.12 and 21.13. 

21.67. Apply the preceding formula to smooth the center four  yi values of Table 21.1, page 244. Compare 
with the correct roots and note whether or not this formula yields better results than the five point 
formula. 

21.68. Use the seven point parabola to derive the approximate differentiation formula 

Apply the preceding formula to estimate y'(x) for  x = 4, 5, 6 and 7 from the yi values of Table 
21.1, page 244. How do the results compare with those obtained by the five point parabola? (See 
Problem 21.19.) 

The following a re  values of y(x) = xz with random errors of f rom -.lo to .10 added. (Er rors  were 
obtained by drawing cards from a n  ordinary pack with face cards removed, black meaning plus 
and red minus.) The correct values Ti are  also included. 

xi 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
I 

Apply the smoothing formulas of Problems 21.13 and 21.15. Compare the RMS errors of the original 
and smoothed values. 

Apply the differentiation formula of Problem 21.18, page 245, fo r  the center seven arguments. 
Also apply the formula obtained from Stirling's polynomial (see Problem 21.19). Which produces 
better approximations to y'(x) = 2x? Note tha t  in  this example the "true" function i s  actually a 
parabola, so t h a t  except fo r  the random errors  which were introduced we would have exact results. 
Has the least-squares parabola penetrated through the errors to any  extent and produced informa- 
tion about the t rue yf(x)? 

What is  the least-squares parabola for  the data  of Problem 21.70? Compare i t  with y(x) = x2. 

Use the formulas of Problem 21.20 to estimate y'(x) near the ends of the data  supply given in 
Problem 21.70. 

Estimate y"(x) from your computed y'(x) values. 

The following a re  values of sin x with random errors of -.I0 to  .10 added. Find the least-squares 
parabola and use i t  to compute smoothed values. Also apply the method of Problem 21.13, page 244, 
which uses a different least-squares parabola for  each point, to  smooth the data. Which works 
best? 

x 

sin x 

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 

-.09 .13 .44 .57 .64 .82 .97 .98 1.04 
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21.76. A simple and ancient smoothing procedure, which still finds use, is  the method o f  moving averages. 
In this method each value yi is replaced by the average of itself and nearby neighbors. For example, 
if two neighbors on each side are used, the formula is  

Pi = $(Y~-z  + Yi-1 + 9i + Y i t l  Yi+z) 
where pi is the smoothed substitute for yi. Apply this to the data of the preceding problem. Devise 
a method for smoothing the end values for which two neighbors a re  not available on one side. 

21.77. Apply the method of moving averages, using only one neighbor on each side, to the data of Problem 
21.75. The formula for interior arguments will be 

p. i = - a ( ~ i - I  f Zli $ Yi+l) 

Devise a formula for  smoothing the end values. 

21.78. Apply the formula of the preceding problem to the values y(x) = x3 below, obtaining the pi values 
listed. 

Show that  these pi values belong to a different cubic function. Apply the moving average formula 
to the pi values to obtain a second generation of smoothed values. Can you tell what happens a s  
successive generations are computed, assuming that  the supply of yi values is augmented a t  both 
ends indefinitely? 

What happens if higher generations of smooth values are computed endlessly? I t  is easy to see 
that excessive smoothing can entirely alter the character of a data supply. 

21.79. Apply the method of moving averages t o  smooth the oscillating data below. 

21.80. Use orthogonal polynomials to find the same least-squares line found in Problem 21.2. 

y, 

21.81. Use orthogonal polynomials to find the same least-squares parabola found in Problem 21.10. 

~ ~ 0 1 2 3 4 5 6 7 8  

0 1 0 - 1  0 1 0 - 1  0 

21.82. Use orthogonal polynomials to find the least-squares polynomial of degree four for the square root 
data of Problem 21.14, page 244. Use this single polynomial to smooth the data. Compute the RMS 
error of the smoothed values. Compare with those given in Problem 21.17. 

21.83. The following are values of ez with random errors of from -.I0 to .I0 added. Use orthogonal 
polynomials to find the least-squares cubic. How accurate is this cubic? 

x 

y 

21.84. The following are  values of the Bessel function J,(x) with random errors of from -.010 to .010 
added. Use orthogonal polynomials to find a least-squares approximation. Choose the degree you 
feel appropriate. Then smooth the data and compare with the correct results which are also provided. 

0 .I .2 .3 .4 .5 .G .7 .8 .9 .lo 

.92 1.15 1.22 1.44 1.44 1.66 1.79 1.98 2.32 2.51 2.81 

x 

y(x) 

Correct 

0 1 2 3 4 5 6 7 8 9 10 

.994 .761 ,225 -.253 -.400 -.I70 .I61 .301 .I77 -.094 -.240 

1.00 .765 .224 w.260 -.397 -.I78 .I51 .300 .I72 -.090 -.246 
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Find the least-squares line for y(x) = x2 on the interval (-1,l). 

Find the least-squares line for y(x) = x3 on the interval (-1,l). 

Find the least-squares parabola for y(x) = 
I 

1 .8 1 I 
x3 on the interval (-1,l:I. 

Find approximately the least-squares pa- 
rabola for the function in Fig. 21-10, evalu- 
ating the integrals by Simpson's rule. This 
curve should be imagined to be an experi- 
mental result which theory claims ought to 

I 

-1 
have been a parabola. 

I 

Fig. 21-10 

Show that  the Chebyshev series for arcsin x is  
4 

arcsinx = - ( T l + + ~ 3 + & ~ 5 + & ~ , + . . . )  
T 

by evaluating the coefficient integrals directly. Truncate after T3 to obtain the least-squares cubic 
for this function. Compute the actual error of this cubic and compare with the first omitted term 
(the T5 term). Notice the (almost) equal-ripple behavior of the error. 

Find the least-squares l!ine for y(x) = x2 on the interval (-1,l) with weight function w(x) = 
l/d1--.2. Compare this line with tbe one found in Problem 21.85. Which one has the equal-ripple 
property? 

Find the least-squares parabola for y(x) = 23 on the interval (-1,l) with weight function 
w(x) = l l ( 1 7 .  Compare this with the parabola found in Problem 21.87. 

Represent y(x) = e - x  by terms of its power series through x7. The error will be in the fifth 
decimal place for x neal* one. Rearrange the sum into Chebyshev polynomials. How many terms 
can then be dropped without seriously affecting the fourth decimal place? Rearrange the truncated 
polynomial into standard form. (This is another example of economization of a polynomial.) 

Show that  for y(x) = T,(x) = cos (n arccos x) = cos nA i t  follows that  yr(x) = (n sin nA)l(sin A). 
Then show that  (1 - xS:)y1' - xy' + n2y = 0, which is the classical differential equation of the 
Chebyshev polynomials. 

Show that  S,(x) = sin (n arccos x) also satisfies the differential equation of Problem 21.93. 

Let U,(x) = S, (x)/fi- and prove the recursion U,+ 1 (x) = 2xUn(x) - UnPl (x). 

Verify that  Uo (x) = 0, iY1 (x) = 1 and then apply the recursion to verify U2(x) = 22, U3(x) = 
4x2- 1, U4(x) = 8x3 - 4 . ~ ,  US(%) = 16x4 - 12x2 $1, U6(x) = 32x5 - 32x3 + 62, U7(x) = 64x6 - 
80x4 + 24x2 - 1. 

Prove Tm + ,(x) + Tm-, (x) = 2T, (x) T,(x) and then put m = n to obtain 

T,, (x) = 2 ~ :  (x) - 1 

Use the result of Problem 21.97 to find T,, T16 and T32' 

1 1 
Prove -Th = 2TnP1 + .-T;-, and then deduce 

n n - 2 

T;,, , = 2(2n + 1)(T2, + T,,-, + - .  . + T2) + 1,  Ti, = 2(2n)(T2,-, + T2n-3 + . . . + TI) 
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21.101. Economize the rqsult In ( 1  + x )  - x - 4x2 + Qx3 - 4x4 + gx5 by rearranging into Chebyshev 
polynomials and then retaining only the  quadratic terms. Show t h a t  the  final result In ( 1  + x )  - 
&. + g x  - 3x2  has  about the same accuracy a s  the fourth degree p a r t  of the original approximation. 

21.102. Economize the polynomial y ( x )  = 1 + x + 4x2  + Qx3 + Ax4, first representing i t  a s  a combina- 
tion of Chebyshev polynomials, then truncating to two terms. Compare the result with 1 + x + 9x2, 
considering both a s  approximations to ex. Which i s  the better approximation? I n  what  sense? 

21.103. Show tha t  the change of argument x = 2 t  - 1 ,  which converts the interval to ( 0 , l )  in terms of t ,  
also converts the Chebyshev polynomials into the following, which may be used instead of the 
classical polynomials if the interval ( 0 , l )  is  felt  to be more convenient. 

T; ( 2 )  = 1, T; ( x )  = 2 t  - 1 ,  T ; ( X )  = 8t2 - 8 t  + 1 ,  T: ( x )  = 3253 - 48t2 + 18t - 1 ,  etc. 

Also prove the recursion T;+,( t )  = (4 t  - 2 )  T:( t )  - T&,( t ) .  

21.105. Show tha t  the same line found with N = 2 in Problem 21.53 also appears fo r  arbi t rary N. 

21.106. Use the method of Problem 21.52, page 258, to obtain a least-squares, parabola fo r  y ( x )  = x3 over 
( - 1 , l )  choosing N = 3. Show t h a t  the same result is obtained for  arbi t rary N and also by the 
method of minimizing the integral of Problem 21.91. 

21,107.. Find the least-squares parabolas fo r  y ( x )  = 1x1 over ( - 1 , l )  and for  arbi t rary N. Also show tha t  
as  N tends to infinity this parabola approaches the minimum integral parabola. 

21.108. Apply the method of Problem 21.52 to the experimental data  of Fig. 21-i0,  page 263. Use the result 
to compute smoothed values of y ( x )  a t  x = - 1(.2)1. 

21.110. The following table gives the number y of students who made a grade of x on a n  examination. To 
use these results a s  a standard norm, smooth the y numbers twice, using the smoothing formula 

21.109. Smooth the following experimental data  by fitting a least-squares polynomial of degree five. 

t 

21.111. Find the least-squares polynomial of degree two for  the following data  Then obtain smoothed values. 

I 

1.12 

0 5 10 15 20 25 30 35 40 45 50 

I t  is  assumed t h a t  y = 0 for  unlisted x values. 

x 

x 

y 

y 

100 95 90 85 80 75  70 65 

40 35 30 25 20 15 10 5 

6el 0 13 69 147 208 195 195 126 130 

93 75 54 42 30 34 10 8 1 
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21.112. Approximate the following data by a least-squares polynomial of degree five. Then use this poly- 
nomial to obtain smoothed vaIues. 

21.113. Approximate y ( x )  = 4 / ( 2  + x )  in the interval ( 2 , 6 )  by a least-squares polynomial of degree five. 
Use orthogonal polynomials. 

21.115. The following data are obtained from y ( x )  = x4 + 3x3 + 2x2 + x + 5 by adding random errors 
of up to five units in the last place. Show that  a fourth degree polynomial provides the best least- 
squares approximation to the given data and find this polynomial. 

21.114. Given the following data, use orthogonal polynomials to find the best approximation by a least- 
squares polynomial. What degree is best? 

21.116. Try to solve the preceding problem without using orthogonal polynomials, solving the normal equa- 

x 

y 

tions by elimination. How good a result is obtained? 

.4 .5 .6 .7 .8 .9 1.0 

-.9435 p.9996 -.9362 -.7284 p.3517 .2164 .9998 

21.118. Show that  the determinants [ S o  s1 . . .  s k - ~  1 

21.117. Find the least-squares polynomial of degree two for these data: 

are all positive for k = 1,  2 ,  ..., N + 1, the elements si being defined in Problem 21.6. 

X 

y 

Begin by defining the polynomial ( s o  s1 . . .  
sk I 

-3 -2 -1 0 1 2 3 

-.71 -.01 .51 .82 .88 .81 .49 

in which the determinant Dk accumulates an extra row and column. Multiply the bottom row by 
xi and sum over i to obtain for j < k, 

IS,, S1 . . .  sk I 
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since the bottom row now duplicates some other row. However, if j = k we obtain 
N 

the entries in  the bottom row being the sums computed just previously. Now S k ,  being a sum of 
squares, cannot be zero unless pk(xi) = 0 for  all xi. But this is impossible fo r  k < N + 1 unless 
the polynomial pk(x)  is identically zero. This fact  now allows you to prove each Dk positive in its 
turn. F i r s t  note tha t  pl(x)  contains the term sox and so is not identically zero. Therefore S 1  > 0. 
But Dl = so > 0 ,  and from S 1  = DlD2 i t  follows t h a t  D, > 0. Next notice tha t  p2(x) contains the 
term D2xZ and so is not identically zero. Therefore S ,  > 0. From S2 = D2D3 now deduce D3 > 0. 
This argument may be continued step by step until you have proved DN+l > 0. After  tha t  the rea- 
soning fails since the polynomial P ~ + ~ ( X )  could vanish a t  all the xi without being identically zero, 
and this prevents the conclusion S N +  > 0. 

In  a similar way multiply the bottom row of the determinant pk(x)  by pk(x) itself and sum over i. 
The result may be called S k  and is  

21.119. Prove tha t  the normal equations of Problem 21.6 have a unique solution, using Problem 21.118. 

21.120. Prove tha t  the ai determined by the normal equations do actually minimize S ,  a s  defined in Problem 
21.6. 

= DkDk+l 
N 

s k  = 2 p;(xi) = 
i=O 

In  addition to the vanishing of first derivatives, a sufficient condition for  a minimum of a 
function of a,, a,, . . . .  am is that  all determinants 

I SagaO SaOal . . .  Saga, 1 

. . .  S o  S 1  S k 

. . .  81 S 2  Sk+l 
. . . . . . . . . . . . . . . . . . .  
S k - 1  S k  . , .  S 2 k - l  

0  0  . . .  Dk+l  

for  n = 0,1,  .... m be positive. Here Sajak denotes the partial derivative a2S/(aaj aa,). But  compute 
N 

d2Sl(aaj auk) = 2 2 x f f  = 2 ~ j + ~  
i=O 

and show tha t  A ,  = 2,+lDntl 

so tha t  A o , A l ,  . .  . , A m  a r e  positive by Problem 21.6. This proves tha t  you have a relative minimum. 
Since the normal equations have only one solution, however, this relative minimum is the absolute 
minimum. 



Min-max Polynomial Approximation 

DISCRETE DATA 
The basic idea of min-max approximation by polynomials may be illustrated for the 

case of a discrete data supply xi, yi where i = 1, . . . , N. Let p(x)  be a polynomial of degree 
n or less, and let the amounts by which it misses our data points be hi = ~ ( x i )  - yi. Let 
H be the largest of these "errors". The min-max polynomial is that particular p(x)  for 
which H is smallest. Min-max approximation is also called Chebyshev approximation. The 
principal results are as follows. 

The  existence and uniqueness of the min-max polynomial for any given value of n may 
be proved by the exchange method described below. The details will be provided for the 
case n = 1 only. 

The equal-error property is the identifying feature of a min-max polynomial. Calling 
this polynomial P ( x ) ,  and the maximum error 

E = max (P(xi) - y(xi)l 

we shall prove that P ( x )  is the only polynomial for which P(xi) - ~ ( x i )  takes the extreme 
values tE a t  least n + 2 times, with alternating sign. 

The exchange method is an algorithm for finding P ( x )  through its equal-error property. 
Choosing some initial subset of n + 2 arguments xi, an equal-error polynomial for these 
data points is found. If the maximum error of this polynomial over the subset chosen 
is also its overall maximum H, then i t  is P(x) .  If not, some point of the subset is ex- 
changed for an outside point and the process repeated. Eventual convergence to P ( x )  
will be proved. 

CONTINUOUS DATA 
For continuous data y (x )  i t  is almost traditional to begin by recalling a classical theorem 

of analysis, known as  the Weierstrass theorem, which states that for  a continuous function 
y (x )  on an interval (a,  b )  there will be a polynomial p(x) such that 

in (a,  b) for arbitrary positive G In other words, there exists a polynomial which approxi- 
mates y (x )  uniformly to any required accuracy. We prove this theorem using Bernstein 
polynomials, which have the form 

n 

Bn(x )  = p,ky(kln) 
k = O  

where y(x) is a given function and 
p,, = (;) x k ( l  - x)"* 

Our proof of the Weierstrass theorem involves showing that lim B,(x) = y (x )  uniformly for 
n tending to infinity. The rate of convergence of the Bernstein polynomials to y (x )  is often 
disappointing. Accurate uniform approximations are more often found in practice by 
min-max methods. 
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The essential facts of min-wax methods somewhat parallel those for the discrete case. 

1. The min-max approximation to y(x), among all polynomials of degree n or less, mini- 
mizes the max Ip(x) - y(x)l for the given interval (a, b). 

2. I t  exists and'is unique. 

3. I t 'has  an equal-error property, being the only such polynomial for which p(x) - y(x) 
takes extreme values of size E, with alternating sign, at  n + 2  or more arguments in 
(a, b) .  Thus the min-max polynomial can be identified by its equal-error property. In 
simple examples it may be displayed exactly. An example is the min-max line when 
yU(x) > 0. Here 

P(x)  = Mx + B 

The three extreme points are a, x2 and b. Ordinarily, however, the exact result is not 
within reach, and an exchange method must be used to produce a polynomial which 
comes close to the equal-error behavior. 

4. Series of Chebyshev polynomials, when truncated, often yield approximations having 
almost equal-error behavior. Such approximations are therefore almost min-max. 
If not entirely adequate by themselves, they may be used as inputs to the exchange 
method which then may be expected to converge more rapidly than it would from a more 
arbitrary start. 

Solved Problems 

DISCRETE DATA, THE MIN-MAX LINE 

22.1. Show that for any three points (xi, Yi) with the arguments xi distinct, there is exactly 
one straight line which misses all three points by equal amounts and with alternating 
signs. This is the equal error line or Chebyshev line. 

Let y ( x )  = M x  + B represent an arbitrary line and let hi = y(xi) - Yi = yi - Yi be the 
"errors" a t  the three data points. An easy calculation shows that, since yi = M x i S  B, for any 
straight line a t  all 

( x 3  - x , )Y~ - (x3 - x l ) ~ z  + ("2 - x 1 ) ~ 3  = 0 

Defining p1 = x3 - x,, p2 = x3 - x l ,  P3 = x,  - x l ,  the above equation becomes 

Ply1 - PzYz + P3Y3 = 0 

We may take i t  that xl < x ,  < x ,  so that  the three p's are positive numbers. We are to prove 
that there is one line for which 

hl  = h ,  h ,  = -h, h ,  = h 

making the three errors of equal size and alternating sign. (This is what will be meant by an 
"equal error" line.) Now, if a line having this property does exist, then 
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and substituting above, 
P l ( Y l +  h)  - PdY2 - h) + PdY3 + h) = 0  

Solving for h, 

This already proves that  a t  most one equal error line can exist, and that  i t  must pass th.rough the 
three points ( x l ,  Y 1  + h),  (x2,  Y 2  - h),  (x3,  Y 3  + h) for the value h  just computed. Though normally 
one asks a line to pass through only two designated points, i t  is easy to see that  in this special 
case the three points do fall on a line. The slopes of PIP2 and P2P3 (where P l , P 2 ,  P ;  are the three 
points taken from left to right) are 

( Y 2  - Y 1  - 2h)l(x2 - x l )  and (Y, - Y z  + 2h)/(x3 - x2) 

and using our earlier equations these are easily proved to be the same. So there is exactly one 
equal error, or Chebyshev, line. 

22.2. Find the equal error line for the data points 
( 0 , 0 ) ,  ( 1 , 0 ) ,  and ( & I ) .  

First we find P 1 = 2 - 1 ~ 1 ,  p 2 = 2 - 0 = 2 ,  
p3 = 1  - 0  = 1, and then compute 

,- 

h  = - (W) - ( N O )  + (W) = - I  
1 + 2 + 1  4  

----I--% 
The line passes through (0 , -1/4) ,  (1 ,1 /4 ) ,  and 'I/ (2 ,3 /4 )  and so has the equation y(x) = $x  - 4. 
The line and points appear in Fig. 22-1. Fig. 22-1 

22.3. Show that the equal error line is also the min-max line for the three points (xi, Yi). 
The errors of the equal error line are h, -h, h. Let hl,  h,, h, be the errors for any other line. 

Also let H be the largest of lhll, lhzl, Ih,l. Then using our earlier formulas, 

where ? d l ,  y2, y3 here refer to the "any other line". This rearranges to 

and the first term being zero we have a relationship between the h  of the equal error line and the 
h,, hz, h, of any other line, 

h  = Plhl - P2h2 + P3h3 
P1 + Pz + P 3  

Since the p's are positive, the right side of this equation will surely be increased if we replace 
h , ,  h,, h, by H ,  -H, H respectively. Thus jhj 5 H, and the maximum error size of the Chebyshev 
line, which is Ihl, comes out no greater than that  of any other line. 

22.4. Show that no other line can have the same maximum error as the Chebyshev line, so 
that the min-max line is unique. 

Suppose equality holds in our last result, lhl = H. This means that  the substitution of H, -H, H 
which produced this result has not actually increased the size of Plhl - Pzh2 + &h3. But this can be 
true only if hl ,  hz, h, themselves are all of equal size H and alternating sign, and these are the 
features which led us to the three points through which the Chebyshev line passes. Surely these are 
not two straight lines through these three points. This proves that  the equality Ihl = H identifies 
the Chebyshev line. We have now proved that  the equal error line and the min-max line for three 
points are the same. 
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22.5. Illustrate the exchange method by applying it  to the following data. 

We will prove shortly that there exists a unique min-max line for N points. The proof uses 
the exchange method, which is also an excellent algorithm for computing this line, and so this 
method will first be illustrated. I t  involves four steps. 

S t e ; ~  1. Choose any three of the data points. (A set of three data points will be called a triple. 
This step simply selects an initial triple. I t  will be changed in step four.) 

S t e p  2. Find the Chebyshev line for this triple. The value h for this line will of course be com- 
puted in the process. 

S t e p  3. Compute the errors a t  all data points for the Chebyshev line just found. Call the 
largest of these hi values (in absolute value) H. If Ihl = H the search is over. The Chebyshev 
line for the triple in hand is  the min-max line for the entire set of N points. (We shall prove this 
shortly.) If Ihl < H proceed to Step 4. 

S t e p  4 .  This is  the exchange step. Choose a new triple as  follows. Add to the old triple a 
data point, a t  which the greatest error size H occurs. Then discard one of the former points, in 
such a way that  the remaining three have errors of alternating sign. (A moment's practice will 
show that  this is always possible.) Return, with the new triple, to Steps 2 and 3. 

To illus.;rate, suppose we choose for the ini- 
tial triple 

(0, 0) (1, 0) (2, 1) I / 

consisting of the first three points. This is the 
triple of P r ~ b l e m  22.2, for which we have 
already found the Chebyshev line to be y = 
+x - with h = -114. This completes Steps 
1 and 2. Proceeding to Step 3 we find the errors 
a t  all five data points to be -4, t, -&, 3, 4. 

I I I I I I x 
This makes H = h.d = 314. This Chebyshev line 1 2 3 4 5 6 7  

is an equal error line on its own triple but it I 
misses the fourth data point by a larger amount. 
(See the dotted line in Fig. 22-2.) Fig. 22-2 

Moving therefore to Step 4 we now include the fourth point and eliminate the first to obtain 
the new triple 

on which the errors of the old Chebyshev line do have the required alternation of sign (114, -114, 314). 
With this triple we return to Step 2 and find a new Chebyshev line. The computation begins with 

so that the line must pass through the three points (1, 3/10), (2, 7/10), and (6,23110). This line is  
found to be y = +x -A. Repeating Step 3 we find the five errors -A, &, -&, &, -&; and since 
H = 3110 = Ihl, the job is done. 

The Chebyshev line for the new triple is  the min-max line for the entire point set. I ts  maximum 
error is 3/10. The new line is shown solid in Fig. 22-2. Notice that  the Ih( value of our new line 
(3110) is larger than that  of the first line (114). But over the entire point set the maximum error 
has been reduced from 314 to 3/10, and i t  is the min-max error. This will now be proved for the 
general case. 
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22.6. Prove that the condition Ih] = H in Step 3 of the exchange method will be satisfied 
eventually, so that the method will stop. (Conceivably we could be making exchanges 
forever.) 

Recall tha t  af ter  any particular exchange the old Chebyshev line has  errors  of size (hl, (hl, H on 
the new triple. Also recall that  lhl < H (or we would have stopped) and t h a t  the three errors  
alternate in sign. The Chebyshev line for  this new triple is  then found. Call i ts  errors on this new 
triple h*,-h*, h*. Returning to the formula f o r  h in Problem 22.3, with the old Chebyshev line 
playing the role of "any other line", we have 

h::: = P I ~ I  - P,h, + P&3 

P1 + P2 + P3 

where hl, h,, h3 a r e  the numbers h, h, H with alternating sign. Because of this alternation of sign 
all three terms in the numerator of this fraction have the same sign, so t h a t  

Ih*l = Pllhl + Pzlhl + PBH 

P l  + P z  + P 3  

if we assume t h a t  the error  H is a t  the third point, just to be specific. ( I t  really makes no difference 
in  which position i t  goes.) In any event, Ih*l > Ihl because H > (hl. The new Chebyshev line has  
a greater error  size on i t s  triple than the old one had on its triple. This result now gives excellent 
service. If i t  comes a s  a surprise, look a t  it this way. The old line gave excellent service (h= 114 
in our  example) on its own triple, but poor service (H = 314) elsewhere. The new line gave good 
service ( h  = 3/10) on i ts  own triple, and just a s  good service on the other points also. 

We can now prove tha t  the exchange method must come to a stop sometime. For  there a r e  
only so many triples. And no triple is  ever chosen twice, since a s  just proved the h values increase 
steadily. A t  some stage the condition Ihl = H will be satisfied. 

22.7. Prove that the last Chebyshev line computed in the exchange method is the min-max 
line for the entire set of N points. 

Let h be the equal error  value of the last  Chebyshev line on i ts  own triple. Then the maximum 
error size on the entire point set is  H = Ihl, or we would have proceeded by another exchange to 
still another triple and another line. Let h,, h,, . . . , h, be the errors  f o r  any other line. Then 
Ih, < max lhil where hi is restricted to the three points of the last  triple, because no line out- 
performs a Chebyshev line on its own triple. But  then certainly (h(  < max lhil fo r  hi unrestricted, 
for  including the rest of the N points can only make the r ight  side even bigger. Thus H = IhJ < 
max (hi[ and the maximum error of the last Chebyshev line is the smallest maximum error  of all. 
In  summary, the min-max line fo r  the set of N points is a n  equal error  line on a properly chosen 
triple. 

22.8. Apply the exchange method to find the min-max line for the following data. 

The number of available triples is G(31,3) = 4495, so tha t  finding the correct one might seem 
comparable to needle-hunting in haystacks. However, the exchange method wastes very little time 
on inconsequential triples. Beginning with the very poor triple a t  x = (0,1,2) only three ex- 
changes a r e  necessary to produce,the min-max line y(x) = .38x - .29 which has coefficients rounded 
off to two places. The successive triples with h and H values were a s  follows: 

- 

Triple a t  x = 

h 

H 

(0,1,2) (O,l,24) 30) (9,24,30) 

.250 .354 -1.759 -1.857 

5.250 3.896 2.448 1.857 
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Note tha t  in  this example no unwanted point is  ever brought into the triple. Three points a re  
needed, three exchanges suffice. Note also the steady increase of (hl, a s  forecast. The thirty-one 
points, the min-max line, and the final triple (dotted vertical lines show the equal errors) appear in  
Fig. 22-3. 

Fig. 22-3 

DISCRETE DATA, THE MIN-MAX POLYNOMIAL 
22.9. Extend the exchange method to find the min-max parabola for the data below. 

The data  a r e  of course drawn from the function y = 1x1 but  this simple function will serve 
to illustrate how all the essential ideas of the exchange method carry over from the straight line 
problems just treated to the discovery of a min-max polynomial. The proofs of the existence, 
uniqueness and equal error  properties of such a polynomial a r e  extensions of our proofs fo r  the 
min-max line and will not be given. The algorithm now begins with the choice of a n  "initial 
quadruple" and we take the first four points, a t  x = -2, - 1 , 0 , 1 .  For  this quadruple we seek a n  
equal error parabola, say 

p,(x) = a + bx + cx2 

This means tha t  we require p(xi) - y i  = * h  
alternately, or 

a - 2 b + 4 c - 2  = h 

a -  b - t  c - 1  = - h  \ 

Solving these four  equations, we find a = 114, 
b = 0 ,  c = 112, h = 114 so tha t  p,(x) = & + 4x2. 
This completes the equivalent of Steps 1 and 2 ,  
and we turn to Step 3 and compute the errors  
of our parabola a t  all five data  points. They a re  
114, -114, 114, -114, 114 so that  the maximum 
error on the entire set (H = 114) equals the 
maximum on our quadruple (JhJ  = 114). The 
algorithm is  ended and our first parabola is 
the min-max parabola. I t  is  shown in Fig. 22-4. Fig. 22-4 
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22.10. Find the min-max parabola for the seven points y = 1x1, x = -3(1)3. 

This adds two more points a t  the ends of our previous data supply. Suppose we choose the 
same initial quadruple as before. Then we again have the equal error parabola p,(x) of the preced- 
ing problem. I ts  errors a t  the new data points are 714 so that  now H = 714 while lhl = 114. 
Accordingly we introduce one of the new points into the quadruple and abandon x = -2. On the 
new quadruple the old parabola has the errors -114, 114, -114, 714 which do alternate in sign. 
Having made the exchange, a new equal error parabola 

must be found. Proceeding as in the previous problem we soon obtain the equal error h2 = -113 
and the parabola p2(x) = Q(1 + x2). I ts  errors a t  the seven data points are 113, -113, -113, 113, 
-113, -113, 113 so that  H = Ihl = 113 and the algorithm stops. The parabola p2(x) is the min-max 
parabola. The fact that all errors are of uniform size is a bonus, not characteristic of min-max 
polynomials generally, as the straight line problems just solved show. 

CONTINUOUS DATA, THE WEIERSTRASS THEOREM 
n 

22.11. Prove that p g )  ( k  - nx) = 0 where p z )  = (E) xk( l  - x ) " - ~ .  
k=O 

The binomial theorem for integers n and k ,  

is an identity in p and q. Differentiating relative to p brings 

n 

Multiplying by p and then setting p = x ,  q = 1 - x,  this becomes n x  = 2 k P z !  Using the same 
k=O 

p and q in the binomial theorem itself shows that 1 = E p z  and so finally 

n 

z p : ) ( k - . l z x )  = n s - n x  = 0 
k=O 

22.12. Prove also that p:) ((k - n ~ ) ~  = nx(1 - x). 
k=O 

A second differentiation relative to p brings 

Multiplying by p2 and then setting p = x,  q = 1 - x,  this becomes 

n ( n  - 1)x2 = 2 k(k - 1)~:) 
k=O 

from which we find 

Finally we compute 
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22.13. Prove that if d > 0 and 0 4 x 4 1, then 

where 8' is the sum over those integers k for which I(k/n) - xl d. (This is a special 
case of the famous Chebyshev inequality.) 

Breaking the sum of the preceding problem into two parts  

n x ( 1  - x )  = 8 ' p z )  ( k  - nx)2  + 8" p g )  ( k  - nx)2 

where 8" includes those integers k  omitted in  8 ' .  But then 

the first of these steps being possible since 8" is non-negative and the second because in 8' we find 
16- nxl 2 n d .  Dividing through by n2d2, we have the required result. 

22.14. Derive these estimates for 8' and 8": 

The function x ( l  - x )  takes its maximum a t  x  = 112 and so 0  6 x ( 1 -  x )  6 114 fo r  0  6 x  6 1 .  
The result fo r  8' is thus a n  immediate consequence of the  preceding problem. But  then 
8" = 1  - 8' ' 1  - (1 /4nd2) .  

22.15. Prove that if f (x) is continuous for  0 4 x 6 1, then lim PZ) f ( k h )  = f (x) m i -  
k = O  formly as n tends to infinity. 

This will prove the Weierstrass theorem, by exhibiting a sequence of polynomials 

which converges uniformly to f ( x ) .  These polynomials a r e  called the Bernstein polynomials fo r  
f ( x ) .  The proof begins with the choice of a n  arbi t rary positive number E. Then for  lx' - xi < d, 

I f  ( x ' )  - f ( % ) I  < €12 

and d  is independent of x by the uniform continuity of f ( x ) .  Then with M denoting the maximum of 
I f ( % ) ! ,  we have 

lBn(x)  - f ( x ) !  = I 8 P:) [ f ( k l n )  - f ( x ) l  I 

with k l n  in  the 8" par t  playing the role of x'. The definition of 8" guarantees Ix l -  xi < d .  Then 

for  n sufficiently large. This is the required result. Another interval than ( 0 , l )  can be accom- 
modated by a simple change of argument. 
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22.16. Show that in the case of f(x) = x2, Bn(x) = x2 + x(1- x)ln so that Bernstein poly- 
nomials are not the best approximations of given degree to f(x). (Surely the best 
quadratic approximation to f(x) = x2 is x2 itself.) 

Since the sum 2 k 2 p 2 )  was found in Problem 22.2, 
TI n  

1  x ( 1 -  x )  B n ( x )  = 2 p z )  f ( k l n )  = ph;) k2ln2 = - [n(n - 1)x2 + n x ]  = x2 + - 
k=o k=o n2 n 

as required. The uniform convergence for  n tending to infinity is  apparent,  but  clearly B n ( x )  does 
not duplicate 22. We now turn to a better class of uniform approximation polynomials. 

CONTINUOUS DATA, THE CHEBYSHEV THEORY 
22.17. Prove that if y(x) is continuous for a 4 x " b, then there is a polynomial P(x) of 

degree n or less such that rnax IP(x) - y(x)l on the interval (a, b) is a minimum. In 
other words, no other polynomial of this type produces a smaller maximum. 

Let p ( x )  = a0 + a l x  + + anxn by any polynomial of degree n or less. Then 

depends on the polynomial p ( x )  chosen, t h a t  is, it depends upon the coefficient set (a,, a,, . . . , an )  
which we shall call d  a s  indicated. Since M ( d )  is a continuous function of d  and non-negative, it 
has a greatest lower bound. Call this bound L. What  has to  be proved is  t h a t  fo r  some particular 
coefficient set A ,  the coefficients of P ( x ) ,  the lower bound L is  actually attained, tha t  is, M ( A )  = L. 
By way of contrast, the function f ( t)  = llt  fo r  positive t has greatest lower bound zero, but  
there i s  no argument t fo r  which f(t) actually at ta ins  this bound. The infinite range of t is of 
course the factor which allows this situation to occur. In our problem the coefficient set 6  also has 
unlimited range, but we now show tha t  M(A)"= L nevertheless. To begin, let a; = Cbi fo r  
i = 0, 1 ,  . . . , n in such a way tha t  B ba = 1. we' may also write d  = C ~ I .  Consider a second 
function 

m(5) = rnax 1 b, + b lx  + . . . + bnxn 1 
where rnax refers a s  usual to  the maximum of the polynomial on the interval (a, b).  This is a con- 
tinuous function on the unit sphere Bb: = 1. On such a set (closed and bounded) a continuous 
function does assume i ts  minimum value. Call this minimum p. Plainly p 5 0. But  the zero value 
is  impossible since only p ( x )  = 0 can produce this minimum and the condition on the bi temporarily 
excludes this polynomial. Thus > 0. But then 

Now returning to M ( d )  = rnax Ip(x) - y (x ) l ,  and using the fact  t h a t  the absolute value of a dif- 
ference exceeds the difference of absolute values, we find 

M ( d )  m ( 6 )  - rnax ly(x)l 

Cp - rnax ly(x)l 

If  we choose C > (L + 1 + rnax ]y (x ) l ) IP  = R, then a t  once M ( d )  2 L + 1. Recalling t h a t  L is 
the greatest lower bound of M ( d ) ,  we see t h a t  M ( d )  is  relatively large for  C > R and t h a t  i t s  
greatest lower bound under the constraint C 6 R will be this same number L. But  this constraint 
is equivalent to Ba: R, so tha t  now i t  is  again a matter of a continuous function M ( 6 )  on a 
closed and bounded set (a'solid sphere, or ball). On such a set the greatest lower bound i s  actually 
assumed, say a t  d  = A .  Thus M ( A )  is  L, and P ( x )  is a min-max polynomial. 

22.18. Let P(x) be a min-max polynomial approximation to y(x) on the interval (a, b), among 
all polynomials of degree n or less. Let E = rnax ly(x) - P(x)l, and assume y(x) is 
not itself a polynomial of degree n or less, so that E > 0. Show that there must be at  
least one argument for which y(x) - P(x) = E, and similarly for -E. (We continue to 
assume y(x) continuous.) 

Since y ( x )  - P ( x )  is  continuous for  a  6 x  6 b ,  i t  must attain either iE somewhere. We a re  
to prove tha t  i t  must achieve both. Suppose tha t  i t  did not equal E anywhere in ( a ,  b). Then 
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where d is positive, and so 

But this can be written a s  

-E + 3d y(x) - [P(x) - Jd] 5 E - $d 

which flatly claims t h a t  P(x) - Jd ap.piwximates 
y(x) with a maximum error  of E - i d .  This 
contradicts the original assumption t h a t  P(x)  
itself i s  a min-max polynomial, with maximum 
error of E. Thus y(x) - P(x) must equal E 
somewhere in (a, b). A very similar proof 
shows it  must also equal -E. Fig. 22-5 illus- 
t ra tes  the simple idea of this proof. The error 
y(x) - P(x) fo r  the min-max polynomial cannot 
behave a s  shown solid, because raising the curve - - 
by Jd then brings a new error curve (shown 
dotted) with a smaller maximum absolute value 

I 
of E - Jd, and this is  a contradiction. Fig. 22-5 

22.19. Continuing the previous problem, show that  for n = 1, approximation by linear 
polynomials, there must be a third point a t  which the error ly(x) - P(x)l of a min- 
max P ( x )  assumes its maximum value E. 

Let y(x) - P(x) = E(x)  and divide (a, b) into subintervals small enough so t h a t  fo r  x,, x, 
within any  subinterval, 

lE(xl)  - E(x2)l &E 

Since E(x)  is continuous for  a 6 x '- b, this can surely be done. I n  one subinterval, call it Z I ,  we 
know the error reaches E ,  say a t  x = x+. It follows tha t  throughout this subinterval, 

making E(x)  5 BE. Similarly, i n  one subinterval, call i t  Z2, we find E ( x - )  = -E, and therefore 
IE(z)I 5 -JE.  These two subintervals cannot therefore be adjacent, and so we can choose a point 
ul between them. Suppose that  I ,  is  to the left of I, .  (The argument is  almost identical f o r  the 
reverse situation.) Then u ,  - x has the same sign a s  E(x)  in each of the two subintervals discussed. 
Let R = max lul - x1 in  (a, b). 

Now suppose tha t  there is no third point a t  which the error  is  *E. Then in all but  the two 
subintervals just discussed we must have 

max IE(x)j < E 

and since there a r e  finitely many subintervals, 

max [max lE(x)j ] = E* < E 

Naturally E* '2 4E since these subintervals extend to the endpoints of Z1 and Z2 where IE(x)l 2 $E. 
Consider the following alteration of P(x) ,  still a linear polynomial: 

P"(x) = P(x) + e(ul - X )  

If we choose e small enough so tha t  eR < E - 
E* 6 &E, then P*(x) becomes a better ap- 
proximation than P(x). For, 

ly(x) - P*(x)1 = IE(x) - c(ul-x) /  

so tha t  in  Zl  the error  is  reduced but is still a- 
positive while in  I, i t  is increased but  remains 
negative; i n  both subintervals the error size has  
been reduced. Elsewhere, though the error size 
may grow, i t  cannot exceed E* + ER < E ,  and 
so P*(x) has a smaller maximum error than 
P(x). This contradiction shows tha t  a third -E- 
point with error  *E must exist. Fig. 22-6 illus- 
t ra tes  the simple idea behind this proof. The Fig. 22-6 
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error curve E ( x )  cannot behave like the solid curve (only two * E  points) because adding the linear 
correction term E(U,  - x )  to P(x )  then diminishes the error by this same amount, leading to a new 
error curve (shown dotted) with smaller maximum absolute value. 

22.20. Show that for the P(x)  of the previous problem there must be three points at  which 
errors of size E and with alternating sign occur. 

The proof of the previous problem is already sufficient. I f ,  for  example, the signs were 
+, +, -, then choosing ul  between the adjacent + and - our P*(x)  is  again better than P(x) .  The 
pattern +, -, - is  covered by exactly the same remark. Only the alternation of signs can avoid the 
contradiction. 

22.21. Show that in the general case of the min-max polynomial of degree n or less, there 
must be n + 2 points of maximum error size with alternating sign. 

The proof is  illustrated by treating the case n = 2. Let P(x )  be a min-max polynomial of degree 
two or less. By Problem 22.18 i t  must have a t  least two points of maximum error. The argument 
of Problems 22.19 and 22.20, with P(x)  now quadratic instead of linear but  with no other changes, 
then shows t h a t  a third such point must exist and signs must alternate, say +,-,+ just to be 
definite. Now suppose t h a t  no fourth position of maximum error  occurs. We repeat the argument 
of Problem 22.19, choosing two points ul and u,  between the subintervals I,, 12, and I,  in which the 
errors *E occur, and using the correction term ~ ( u ,  - x)(u2 - x ) ,  which agrees in sign with E ( x )  in 
these subintervals. No other changes a r e  necessary. The quadratic P*(x) will have a smaller 
maximum error  than P(x ) ,  and this contradiction proves that  the fourth -CE point must exist. The 
alternation of sign is  established by the same argument used in Problem 22.20, and the extension 
to higher values of n is entirely similar. 

Prove that there is just one min-max polynomial for each n. 
Suppose there were two, Pl ( x )  and Pz (x ) .  Then 

-E ' y(x)  - Pl ( x )  5 E ,  -E 5 y(x)  - P,  ( x )  f E 

Let P3(x )  = &(PI  + P2). Then 
-E 5 y(x)  - P,(x)  5 E 

and P3 i s  also a min-max polynomial. By Problem 22.21 there must be a sequence of n + 2 points 
a t  which y(x)  - P 3 ( x )  is alternately *E. Let P 3 ( x + )  = E .  Then a t  x+ we have y  - P3 = E, or 

Since neither term on the left can exceed E, each must equal E. Thus P l ( x + )  = P,(x+). Similarly 
P l ( x - )  = P,(x-).  The polynomials P,  and P2 therefore coincide a t  the n +  2 points and so a re  
identical. This proves the uniqueness of the min-max polynomial fo r  each n. 

Prove that a polynomial p(x) of degree n or less, for which the error y(x) - p(x) takes 
alternate extreme values of +-e on a set of n + 2  points, must be the min-max 
polynomial. 

This will show tha t  only the min-max polynomial can have this "equal error" feature, and i t  is 
useful in finding and identifying such polynomials. We have 

P(x)  being the unique min-max polynomial. Suppose e > E. Then since 

p - P  = ( Y - - P ) + ( ~ - - Y )  

we see that,  a t  the n -I- 2 extreme points of y  - p, the quantities P - p and y - p have the same sign. 
(The first term on the r ight  equals e a t  these points and so dominates the second.) But the sign of 
y  - p alternates on this set, so the sign of P - p does likewise. This is n + 1 alternations in  all and 
means n + 1 zeros for  P - p. Since P - p is of degree n or less it  must be identically zero, making 
p = P and E = e.  This contradicts our supposition of e > E and leaves us  with the only 
alternative, namely e = E. The polynomial p(x) is  thus the (unique) min-max polynomial P(x) .  
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CONTINUOUS DATA, EXAMPLES OF MIN-MAX POLYNOMIALS 
22.24. Show that on the interval (-1, l)  the min-max polynomial of degree n or less for 

y (x )  = xn+' can be found by expressing xn+l as a sum of Chebyshev polynomials and 
dropping the Tn+ ( x )  term. 

Let 
~ n + l  = ~ o T o ( ~ )  + + a n T n ( x )  + a n + l T n + l ( x )  = p(x) + a n + l T , + l ( x )  

Then the error is E ( x )  = %n+l - ~ ( 2 )  = % + I  T n + l ( x )  

and we see tha t  this error  has alternate extremes of -Can+, a t  the n-t 2  points where T n + ,  = t-1. 
These points a r e  xk = cos [kn / (n  + 1)], with k  = 0, 1 ,  . . . , n + 1. Comparing coefficients of xn+l 
on both sides above, we also find t h a t  an+ = 2-n. (The leading coefficient of Tn+ l ( x )  is 2". See 
Problems 21.42 and 21.43.) The result of Problem 22.23 now applies and shows tha t  p(x) is  the 
min-max polynomial, with E = 2-n. As illustrations the sums i n  Problem 21.45, page 255, may be 
truncated to obtain 

n = 1, x2 - I T  2 0 error = Tz /2  

n  = 2, 23  - % T I  error = T3/4 

n = 3 ,  x 4 - & ( 3 T o + 4 T 2 )  error  = T4/8 

n  = a, x5 - &(lOT1 + 5T3) error = T5/16 

and so on. Note tha t  in  each case the min-max polynomial (of degree n or less) is actually of 
degree n  - 1. 

22.25. Show that in any series of Chebyshev polynomials aiTi(x) each partial sum Sn is 
i=O 

the min-max polynomial of degree n or less for the next sum S n + l .  (The interval is 
again taken to be (-1, I) .)  

Jus t  a s  in  the previous problem, but with y(x )  = Sn+ ( x )  and p(x) = S n ( x ) ,  we have 

The result of Problem 22.23 again applies. Note also, however, t h a t  S n - l ( x )  may not be the min- 
max polynomial of degree n  - 1  or  less, since anTn + an+lTn+l i s  not necessarily a n  equal ripple 
function. ( I t  was in the previous problem, however, since an was zero.) 

22.26. Use the result of Problem 22.24 to economize the polynomial y (x )  = x - Qx3 + &x5 
to a cubic polynomial, for the interval (-1,l).  

This was actually accomplished in Problem 21.50, page 257, but we may now view the result 
in a new light. Since 

1 1  169 5  1 x  - -x3 + -x5 = 
6  120 192 128 1920 T 5  

- T I  - -T3 + -  
the truncation of the T ,  term leaves us  with the min-max polynomial of degree four or less fo r  
YW,  namely 

169 5  
P ( x )  = 192% - ( 4 x 3  - 32) 128 

This is  still only approximately the min-max polynomial of the same degree for  sin x. Fur ther  
truncation, of the T 3  term, would not produce a min-max polynomial fo r  y(x ) ,  not exactly anyway. 

22.27. Find the min-max polynomial of degree one or less, on the interval (a, b), for a func- 
tion y (x )  with yrr(x)  > 0. 

Let the polynomial be P(x)  = Mx + B. We must find three points xl < x2 < x3 in ( a ,  b )  f o r  
which E ( x )  = y(x )  - P ( x )  attains i t s  extreme values with alternate signs. This puts x2 in  the 
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interior of (a ,  b) and requires E1(x2)  to  be zero, or yr(x2) = M. Since y" > 0 ,  y' is  strictly increas- 
ing and can equal M only once, which means tha t  x2 can be the only interior extreme point. Thus 
x ,  = a and x3 = b. Finally, by the equal ripple property, 

with x2 determined by y1(x2) = [y (b)  - y ( a ) ] / ( b  - a).  

22.28. Apply the previous problem to y(x)  = -sin x on the interval (0,712). 

We find M = -2177 first; and then from y f ( x Z )  = M ,  x2 = arccos (2/77). Finally, 

B = -+d1-(4/?iz) + ( l h )  arccos (2177) 

and from P ( x )  = Mx + B we find 

sin x - 22/77 + gd-) + (11,) arccos ( 2 1 ~ )  

the approximation being the min-max line. 

22.29. Show that P(x)  = x2 + Q is the min-max cubic (or less) approximation to y ( x )  = 1x1 
over the interval (-1,l). 

The error  is  E ( x )  = 1x1 - x2 - Q and takes the extreme values -A ,  9, -Q, Q, -Q a t  x = 
-1, -4 ,0 ,4 ,1 .  These alternating errors  of maximal size E = Q a t  n + 2 = 5 points guarantee (by 
Problem 22.23) t h a t  P ( x )  is the min-max polynomial of degree n = 3 or  less. 

22.30. Use the function y ( x )  = ex on the interval (-1,l) to illustrate the e x c h a n g e  method 
for finding a min-max line. 

The method of Problem 22.27 would produce the min-max line, but  fo r  a simple first illustration, 
we momentarily ignore t h a t  method and proceed by exchange, imitating the procedure of Problem 
22.5. Since we a r e  af ter  a line, we need n + 2 = 3 points of maximum error  -tE. Try x = -1, 0, 1 
for a n  initial triple. The corresponding values of y(x )  are  about .368, 1, and 2.718. The equal error  
line for  this triple is easily found to be 

with errors h = 2.272 on the triple. Off the triple, a computation of the error  a t  intervals of .1 
discovers a maximum error  of size H = .286 (and negative) a t  x = .2. Accordingly we form a 
new triple, exchanging the old argument x = 0 for  the new x = .2. This retains the alternation 
of error  signs called for  in Step 4 of the exchange method a s  presented earlier, and which we 
a re  now imitating. On the new triple y(x )  takes the values .368, 1.221, and 2.718 approximately. 
The equal error  line is found to be 

p2(x) = 1.1752 + 1.264 

with errors  h = %278 on the triple. Off the triple, anticipating maximum errors near x = .2, 
we check this neighborhood a t  intervals of .O1 and find an error  of .279 a t  x = .16. Since we a r e  
carrying only three places, this is the best we can expect. A shift  to the triple x = -1, .16, 1 
would actually reproduce p2(x). 

Let us  now see what the method of Problem 22.27 manages. With a = -1 and b = 1 i t  a t  
once produces M = (2.718 - .368)/2 = 1.175. Then the equation yr(x2) = ex2 = 1.175 leads to  
x2 - .16, after  which the result B = 1.264 i s  direct. The line is  shown in Fig. 22-7 below, with 
the vertical scale compressed. 
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Fig. 22-7 

22.31. Use the exchange method to find the min-max quadratic polynomial for y(x) = ex 
over (-1,l). 

Recalling tha t  truncation of a series of Chebyshev polynomials often leads to nearly equal- 
ripple errors  resembling the first omitted term, we take a s  our initial quadruple the four  extreme 
points of T,(x), which a r e  x = el, The parabola which misses the four  points 

alternately by *h proves to have i t s  maximum error  a t  x = .56. The new quadruple (-1, -.5, .56, 1) 
then leads to a second parabola with maximum error a t  x = -.44. The next quadruple is  
(-1, p.44, .56, 1) and proves to be our last. I t s  equal-ripple parabola is, to five decimal places, 

p(z) = .55404x2 + 1.13018~ + .98904 
and its maximum error both inside and outside the quadruple is H = .04502. 

Supplementary Problems 

DISCRETE DATA 

Show t h a t  the least-squares line for  the three data  points of Problem 22.2, page 269, is y(x) = 
+x -4. Show t h a t  its errors a t  the data  arguments a re  Q, Q, Q. The Chebyshev line was found 
to be y(x) = 4% - & with errors of -&, &, -4. Verify t h a t  the Chebyshev line does have the 
smaller maximum error  and the least squares line the smaller sum of errors squared. 

Apply the exchange method to the average golf scores in Problem 21.2, page 240, producing the 
min-max line. Use this line to compute smoothed average scores. How do the results compare with 
those obtained by least squares? 

Apply the exchange method to the data  of Problem 21.5, page 241, obtaining the min-max line and 
then the corresponding exponential function P ( x )  = AeMx.  

Obtain a formula y(x) = M x  + B f o r  the Chebyshev line of a n  arbi t rary triple (z,, y,), (x2, y,), 
(x3,y3). Such a formula could be useful in  programming the exchange method for  machine 
computation. 



CHAP. 221 MIN-MAX POLYNOMIAL APPROXIMATION 

Find the min-max parabola for the five points y = 23,  

x = 0(1/4)1. 

Show tha t  if the arguments xi a r e  not distinct, then 
the min-max line may not be uniquely determined. 
For  example, consider the three points (0,  O ) ,  (0 ,  I ) ,  ('.',I) - 

and (1,O) and show t h a t  all lines between y = 3 and 
y = Q - x have H = 4. (See Fig. 22-8.) 

Find the equal error parabola fo r  the four  points 
(0, O ) ,  ( ~ 1 6 ,  1/2),  ( d 3 ,  6 1 2  ), and (z-12, 1) of the curve (0,O) 
y = sin x. 

Fig. 22-8 

Y 

- - - - - - - - - - y = ~  
2 

\ 
\ 
\ 

\\ 1(1,0) 
X 

\ 
\ Y = r - x  a 

Use the exchange method to obtain the min-max parabola f o r  the seven points y = cosx, x = 
0 ( ~ / 1 2 ) ~ / 2 .  What  is the maximum error lhl of this parabola? Compare its accuracy with tha t  of 
the Taylor parabola 1 - +x2. 

Extend the exchange method to obtain the min-max cubic polynomial fo r  the seven points 
y = sin x,  x = O(?r/12)~/2. What  is the maximum error J h l  of this cubic? Compare its accuracy 
with tha t  of the Taylor cubic x - Qx3. 

CONTINUOUS DATA 

Find the min-max polynomial of degree five or less fo r  y(x )  = x6 on the interval ( -1 , l ) .  What  i s  
the error? 

What  is the min-max polynomial of degree two or less for y ( x )  = T o  + T I  + T ,  + T ,  and what  is  
its error? Show t h a t  To + T I  is  not, however, the min-max line fo r  y(x ) ,  by showing tha t  the error  
of this approximation is not equal-ripple. 

Find the min-max polynomial of deg,ree five or less fo r  y ( x )  = 1 - +x2 + &x4 - &x6 and what is  
its error? (The interval is (-1, I).)  

Apply Problem 22.27, page 278, to find the min-max line over (0,  ~ 1 2 )  for  y(x )  = - cos x. 

Does the method of Problem 22.27 work for  y ( x )  = 1x1 over (-1, I ) ,  or does the discontinuity in  
y'(x) make the method inapplicable? 

Use the exchange method to find the min-max line fo r  y(x )  = cos z over (0,  ~ / 2 ) .  Work to three 
decimal places and compare with t h a t  found by another method in Problem 22.44. 

Use the exchange method to find the min-max parabola for  y ( x )  = cos x over (0,  ~ 1 2 ) .  [You may 
want to use the extreme points of T,(x) ,  converted by a change of argument to  the interval (0, ~ / 2 ) ,  
a s  a n  initial quadruple.] 

Find a polynomial of minimum degree which approximates y(x )  = cos x over (0,  ~ / 2 )  with maximum 
error .005. Naturally, roundoff error  will limit the precision to which the polynomial can be 
determined. 

Prove tha t  the min-max polynomial approximation to f ( x )  = 0 ,  among all polynomials of degree 
n with leading coefficient 1, is 21-nTn(x). The interval of approximation is taken to be ( - 1 , l ) .  
This is  covered by Problems 22.17 to  22.23, but ca r ry  out the details of the following historical 
argument. Let 

p(x)  = xn + a,xn-1 + . . . + an 

be any  polynomial of the type described. Since T n ( x )  = cos (n arccos x) ,  we have 

max 121-n T,,(x)I = 21-n 

Notice t h a t  this polynomial takes i t s  extreme values of +-21-n alternately a t  the arguments 
xk = cos kn/n,  where k = 0 ,  1, . . . , n. Suppose tha t  some polynomial p(x)  were such t h a t  

max jp(x)l < 2lPn  
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and let 
P ( x )  = p(x )  - 21-n T ,  ( x )  

Then P ( x )  is  of degree n - 1 or less and i t  does not vanish identically since this would require 
max lp(x)I = 21-n. Consider the values P ( x k ) .  Since p(x )  i s  dominated by 2 l P n T n ( x )  a t  these 
points, we see tha t  the P ( x k )  have alternating signs. Being continuous, P ( x )  must therefore have 
n zeros between the consecutive xk .  But this is impossible fo r  a polynomial of degree n - 1  or less 
which does not vanish identically. This proves tha t  max Ip(x)j 2 21-n. 

22.50. Values of y(x) = e( t+2) /4  are  given in the table below. Find the min-max parabola fo r  this data. 
What is  the min-max error? 

22.51. What is the minimum degree of a polynomial approximation to ez on the interval ( - 1 , l )  with maxi- 
mum error  .005 or less? 

22.52. The Taylor series for  In ( 1  + x )  converges so slowly tha t  hundreds of terms would be needed for  
five place accuracy over the interval ( 0 , l ) .  What  is  the maximum error of 

p(x )  = .999902x - A97875 x2 + .3l765O x3 - .I93761 x4 + .O85569 x5  - .Ol8339 x6 

on this same interval? 

22.53. Approximate y ( x )  = 1  - x  + x2 - 2 3  + 2 4  - 2 5  + x6 by a polynomial of minimum degree, with 
error not exceeding .005 in ( 0 , l ) .  

22.54. Continue the previous problem to produce a minimum degree approximation with error a t  most .l. 



Approximation by Rational Functions 

COLLOCATION 
Rational functions are quotients of polynomials, and so constitute a much richer class 

of functions than polynomials. This greater supply increases the prospects for accurate 
approximation. Functions with poles, for instance, can hardly be expected to respond 
well to efforts a t  polynomial approximation, since polynomials do not have singularities. 
Such functions are a principal target of rational approximation. But even with non- 
singular functions there are occasions when rational approximations may be preferred. 

Two types of approximation will be discussed, the procedures resembling those used for 
polynomial approximation. Collocation a t  prescribed arguments is one basis for selecting 
a rational approximation, as i t  is for polynomials. Continued f~actions and reciprocal 
differences are the main tools used. The continued fractions involved take the form 

which may be continued further if required. I t  is not too hard to see that  this particular 
fraction could be rearranged into the quotient of two quadratic polynomials, in other words, 
a rational function. The I, coefficients are called reciprocal differences, and are to be 
chosen in such a way that  collocation is achieved. For the present example we shall 
find that 

- x, - X l  x, - X, 

P1 - y2-YI1 p, - 3il = 
X, - XI X, - Xl  

with similar expressions for p, and p,. The term reciprocal difference is not unnatural. 

MIN-MAX 
Min-max rational approximations are also gaining an important place in applications. 

Their theory, including the equal-error property and an exchange algorithm, parallels that  
of the polynomial case. For example, a rational function 

can be found which misses three specified data points (xi, yi) alternately by eh.  This R(x) 
will be the min-max rational function for the given points, in the sense that  

max IR(xi) - yil = h 

will be smaller than the corresponding maxima when R(x) is replaced by other rational func- 
tions of the same form. If more than three points are specified, then an exchange algorithm 
identifies the min-max R(x). The analogy with the problem of the min-max polynomial is 
apparent. 
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Solved Problems 

THE COLLOCATION RATIONAL FUNCTION 
23.1. Find the rational function y ( x )  = l l ( a  + bx)  given that y(1)  = 1 and y ( 3 )  = 112. 

Substitution requires a + b = 1 and a + 3b = 2,  which force a = b = 112. The required 
function is  y(x )  = 2/(1 + 2). This simple problem illustrates the fact  t h a t  finding a rational 
function by collocation is equivalent to  solving a set of linear equations for  the unknown coefficients. 

Also find rational functions yz(x) = 
M x  + B and y3(x) = c + d l x  which 
have y ( 1 )  = 1 and y(3)  = 112. 

The linear function yz (x )  = (5 - x) /4  
may be found by inspection. For  the other 
we need to satisfy the coefficient equations 
c + d = 1, 3c + d = 312 and this means 
tha t  c = 114, d = 314, making y3(x) = 
( x  + 3)/4x. We now have three rational - 
functions which pass through' the three --- . 
given points. Certainly there a r e  others, -. 

\ 

but in a sense these a re  the simplest. A t  \ 

x = 2 the three functions offer us  the in- 
\ 

terpolated values $, 5 and 8. Inside the 
\ 
\ 

interval (1,3)  all three resemble each other \ 
to some extent. Outside they differ vio- \ 
lently. (See Fig. 23-1.) The diversity of \ 

rational functions exceeds tha t  of poly- I 
\ 

nomials, and i t  i s  very helpful to  have 
knowledge of the type of rational function 'I 

required. Fig. 23-1 

23.3. Suppose i t  is known that y (x )  is of the form ~ ( x )  = (a + bx2)l(c + ax2). 
y (x)  b y  the requirements y(0)  = 1, ~ ( 1 )  = %, ~ ( 2 )  = i. 

Substitution brings the linear system 
a = e, a + b = $(c + d ) ,  a + 4b = +(c + 4d) 

. . .  
4 5 x  

Determine 

Since only the ratio of the two polynomials is  involved one coefficient may be taken to be 1, 
unless i t  later proves to be 0. Try  d = 1. Then one discovers t h a t  a = b = c = 112, and y(x )  = 
( 1  + x2)1(1 + 2x2). Note t h a t  the rational function y2(x) = 10/(10 + 6% - x2) also includes these 
three points, and so does y3(x) = ( x  + 3) / [3(x  + I ) ] .  

CONTINUED FRACTIONS AND RECIPROCAL DIFFERENCES 
X 

23.4. Evaluate the continued fraction y = 1 + - a t  x = 0,  1 and 2. 
-3 +- 

-213 
Direct computation shows y(0) = 1 ,  y(1) = 213 and y(2) = 519. These a r e  again the values 

of the previous problem. The point here is  t h a t  the structure of a continued fraction of this sort 
makes these values equal to the successive "convergents" of the fraction, t h a t  is, the parts  obtained 
by truncating the fraction before the  x and x - 1 terms and, of course, a t  the end. One finds easily 
tha t  the fraction also rearranges into our y3(x). 

23.5. Develop the connection between rational functions and continued fractions in the 
case y (x )  = (ao + a ~ x  + a2x2)l(bo + blx + b2x2) 

We follow another historical path. Let the five data  points (xi,  yi) fo r  i = 1, . . ., 5 be given. 
For  collocation a t  these points, 
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for  each xi, gi pair. The determinant equation 

clearly has  the required features. The second row is  now reduced to 1 , 0 , 0 , 0 , 0 , 0  by these operations: 

Multiply column 1 by yl and subtract from column 2. 

Multiply: column 3 by y,  and subtract from column 4. 

Multiply column 5 by y,  and subtract from column 6. 

Multiply column 3 by x ,  and subtract from column 5. 

Multiply column 1 by xl and subtract from column 3. 

Expand this determinant by i ts  second row and then 

divide row 1 by y - y,, 

divide row i by yi - y,, fo r  i = 2 , 3 , 4 , 5 .  

x - 5 1  
Introducing the symbol pl (xx l )  = - the equation may now be written as  

Y - Y 1 '  

The operation is now repeated, to  make the second row 1,0,0,0,0:  

Multiply column 1 by P l ( ~ 2 ~ 1 )  and subtract f rom column 2. 

Multiply column 3 by pl(x,xl) and subtract f rom column 4. 

Multiply column 3 by xp and subtract from column 5. 

Multiply column 1 by x2 and subtract from column 3. 
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Expand by the second row, and then 

divide row 1 by p1(xx l )  - P 1 ( x 2 x 1 ) ,  

divide row i by pl(xi+ l x l )  - p l ( x 2 x l ) ,  for i = 2 , 3 , 4 .  

An additional step is  traditional a t  this point, in order to assure a symmetry property of the p quan- 
tities to be defined. (See Problem 22.6.)  

Multiply column 1 by y l  and add to column 2 .  

Multiply column 3 by y l  and add to column 4. 

2 - 2 2  
Introducing the symbol p2(xxlx,) = + y l ,  the equation has now been reduced to 

pl(xx1) - p1@2x1) 

Another similar reduction produces 

where 

Finally, the last reduction manages 

where 

We deduce that  p4(xx lx2x3x4)  = P 4 ( x 5 x 1 x 2 x 3 ~ 4 ) .  The various pi's just introduced are called reciprocal 
differences of order i, and the equality of these fourth order reciprocal differences is equivalent 
to the determinant equation with which we began, and which identifies the rational function we 
are seeking. 

The definitions of reciprocal differences now lead in a natural way to a continued fraction. 
We find successively 
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where, in the last denominator, the equality of certain fourth differences, which was the culmination 
of our extensive determinant reduction, has finally been used. This is  what makes the above con- 
tinued fraction the required rational function. (Behind all these computations there has been the 
assumption that  the data points do actually belong to such a rational function, and that the algebraic 
procedure will not break down a t  some point. See the problems for exceptional examples.) 

23.6. Prove that reciprocal differences are symmetric. 

For first order differences it is a t  once clear that  pl(xlx2) = pl(x2xl). For second order differ- 
ences one verifies first that 

from which i t  follows that  in p2(x1x2x3) the xi may be permuted in any way. For higher order 
differences the proof is  similar. 

23.7. Apply reciprocal differences to recover the function y(x) = 1/(1+ x2) from the x ,  y 
data in the first two columns of Table 23.1. 

Various reciprocal differences also appear in this table. For example, the entry 40 is obtained 
from the looped entries as  follows 

From the definition given in Problem 23.5 this third difference should be 

but by the symmetry property this is the same as what we have. The other differences are found 
in the same way. 

Table 23.1 

The continued fraction is constructed from the top diagonal 

5 - 0  
y = I +  

2 - 1  
-2 + 

5 - 2  
-1 - 1 + 

x - 3  
0 - (-2) + - 

0 - (-1) 

and easily rearranges to the original y(x) = 1/(1+ 5 2 ) .  This test case merely illustrates the con- 
tinued fractions algorithm. 
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By substituting successively the arguments x = 0 ,1 ,2 ,3 ,4  into this continued fraction i t  is  
easy to see that  a s  the fraction becomes longer it  absorbs the (x, y) data  pairs one by one. This 
fur ther  implies tha t  truncating the fraction will produce a rational collocation function for  a n  
initial segment of the data. The same remarks hold for  the general case of Problem 23.5. I t  should 
also be pointed out tha t  the zeros in. the last column of the table cause the fraction to terminate 
without a n  x - x4 term, but that  the fraction in hand absorbs the (x5, y5) data pair anyway. 

23.8. Use a rational approximation to interpolate for tan 1.565 from the data provided in 
Table 23.2. 

The table also includes reciprocal differences through fourth order. 

x 

The interpolation then proceeds a s  follows. 

tan x 

1.53 

1.54 

1.55 

1.56 

1.57 

tan  1.565 - 24.498 + 1.565 - 1.53 

.0012558 + 1.565 - 1.54 

1.565 - 1.55 
-24.531 + 

1.565 - 1.56 
2'7266 + -.3837 

24.498 
.0012558 

32.461 v.033 
.0006403 2.7279 

48.078 -.022 
,0002245 

-.4167 
1.7145 

92.631 -.0045 
.0000086 

1255.8 

which works out to 172.552. This result is  almost perfect, which is  remarkable considering how 
terribly close we a re  to the pole of the tangent function a t  x = a/2. Newton's backward formula, 
using the same data, produces the value 433, so i t  is easy to see t h a t  our rational approximation 
is a n  easy winner. I t  is  interesting to notice the results obtained by stopping a t  the earlier dif- 
ferences, truncating the fraction a t  i ts  successive "convergents". Those results a re  

Table 23.2 

so tha t  stopping a t  third and fourth differences we find identical values. This convergence is  re- 
assuring, suggesting implicitly that  more data  pairs and continuation of the fraction a re  unnec- 
essary, and tha t  even the final data  pair  has served only a s  a check or safeguard. 

23.9. It is possible that  more than one rational function of the form in Problem 23.5 may 
include the given points. Which one will the continued fraction algorithm produce? 

As the continued fraction grows i t  represents successively functions of the forms 

Our algorithm chooses the simplest form (left to right) consistent with the data. See Problem 
23.4, 23.15 and 23.16 for  examples. 

23.10. Given that  y(x) has a simple pole a t  x = 0, and is of the form used in Problem 23.5, 
determine it from these ( x ,  y) points: (1,30), (2, lo), (3,5), (4,3). 

Such a function may be sought directly s tar t ing with 
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It may also be found by this slight variation of the continued fractions algorithm. The table of 
reciprocal differences 

leads to the continued fraction 

which collapses to 

MIN-MAX RATIONAL FUNCTIONS 

23.11. How can a rational function R ( x )  = l l ( a  + bx) which misses the three points (xi ,  yi), 
( X Z ,  yz) and (x3,  g3) alternately by r h  be found? 

The three conditions 

= h, -h, h for  i = 1 , 2 , 3  Y i  -- 

can be rewritten a s  a(yl  - h) + b(yl  - h)xl  - 1 = 0 

a(y2  $ h) + b ( y 2  + h)x2  - 1 = 0 

a(y3 - h) + b ( y 3  - h)x3 - 1  = 0 

Choosing the root with smaller absolute value, we substitute back and obtain a and b. ( I t  is not 
hard to show tha t  real roots will always exist.) 

Eliminating a and b ,  we find t h a t  h is  determined by the quadratic equation 

23.12. Apply the procedure of Problem 23.11 to these three points: (0, .83), (1,1.06), (2,1.25). 

y i  - h ( Y I  - h ) x ~  -1 

yz + h (YP + ~ ) X P  -1 

y3 - h ( ~ 3  - h)x3 -1 

The quadratic equation becomes 4h2 - 4.12h - .I30 = 0 and the required root is h = -.03. 
The coefficients a and b then satisfy .86a - 1 = 0, 1 . 0 3 ~  + 1.03b - 1 = 0 and a r e  a - 1.16, b - -.19. 

= O 

23.13. Extending the previous problem, apply an exchange method to find a min-max 
rational function of the form R = l / ( a  + bx)  for these points: (0, B3), (1,1.06), 
(2,1.25), (4,4.15). 
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Our method will be a close parallel to earlier exchange methods. Let the triple of the previous 
problem serve a s  initial triple. The equal error rational function for  this triple was found t o  be 
R , ( x )  = 1/(1.16 - .19x). A t  the four  data  points its errors may be computed to be -.03, .03, -.03, 
1.65 and we see tha t  R l ( x )  is very poor a t  x = 4.  For  a new triple we choose the last three points, 
to  retain alternating error signs. The new quadratic equation is 

making h = .07. The new equations for  a and b are  

making a + 1.265 and b - -.255. The errors  
a t  the four data  points a r e  now .04, .07, -.07, 
.07; and since no error  exceeds the  .07 of our 
present triple we stop, accepting 

R2(x )  = l l (1.265 - .255x) 

23.14. The data points of the preceding problem were chosen by adding random "noise" of 
up to five per cent to values of y(x) = 4/(5 - x). Use R2(x) to compute smoothed 

as the min-max approximation. This is the 
typical development of a n  exchange algorithm. 
Our result i s  of course accurate only to a point, 
but the data  themselves a r e  given to only two 
places so a greater  struggle seems unwarranted. 
It is  interesting to notice tha t  the computation 

values and compare with the correct values and the original data. 
The required values a re  as  follows, with entries a t  x = 3 added. 

Values of R, (x )  2.00 4.08 

Correct values of y (x )  1.00 1.33 2.00 4.00 

is  quite sensitive. Rounding the third digit 5's 
in our R 2 ( x ) ,  fo r  instance, can change R2(4 )  by 
almost half a unit. This sensitivity is due to 

Only the error  a t  x = 4 is sizable, and this has  been reduced by almost half. 

x 
1 

The influence of 

the pole near x = 5. Both R l ( x )  and R 2 ( x )  are  
shown in Fig. 23-2. Fig. 23-2 

the pole a t  x = 5 is  evident. Approximation by means of polynomials would be f a r  less successful. 

Supplementary Problems 
23.15. Find directly, a s  in Problem 23.1, page 284, a function y (x )  = l / ( a  + bx)  such tha t  y(1)  = 3 and 

y(3)  = 1. Will our method of continued fractions yield this function? 

23.16. Find directly a function y (x )  = l / ( a  + bx + cx2) such tha t  y (0 )  = 1,  y (1 )  = 112 and ~ ( 1 0 )  = 114. 
Will our method of continued fractions yield this function? 

23.17. Use the continued fractions method to find a rational function having the following values. 

X 

?J 

0 1  2 3 4 

-1 0 3 /5  415 15/17 
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23.19. Find a rational function with these values: 

23.18. Use the continued fractions method to find a rational function having the following values. 

23.20. Find a rational function with these values: 

x 0  

y 

(The symbol *m refers to a pole a t  which the function changes sign.) 

1 9 19 

0 1 / 2  8.1 18.05 

23.21. Find a rational function with the values given below. Interpolate fo r  y(1 .5 ) .  Where a re  the "poles" 
of this function? 

23.22. Find the min-max function 
R ( x )  = l / ( a  + b x )  

for y ( x )  = x2 - 1 on the interval ( - 1 , l ) .  

23.23. Use a n  exchange method to find the min-max approximation R ( x )  = l l ( a  + bx) to y ( x )  = eZ on the 
interval ( 0 , 3 ) .  

23.25. Find a rational function which includes these points: 

x - 1 0 1 2 3  

y m 4 2 4 7  

23.24. Develop a n  exchange method for  finding the min-max approximation R ( x )  = (a  + b x ) / ( l  + d x )  fo r  
a set of points ( x i ,  y,) where i = 1,  . . . , N. Apply i t  to the following data. 

23.26. Find a rational function which includes these points: 

x 

y 

23.27. Find a rational function which includes the following points. Does the function have any real poles? 

0 1 2 3 4 5 

.38 .30 .16 2 0  .I2 .10 

23.28. Interpolate for  y(1 .5 )  in the table below, using a rational approximation function. 

Use R ( x )  to smooth the y values. How close do you come to y ( x )  = 1 / ( x  + 3 )  which was the parent 
function of this data, with random errors added? 
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23.29. Find a rational function, in the form of a cubic polynomial over a quadratic, including these points: 

91 
23.30. Approximate y  = eZ by the rational function 

m 
2 ajxj 

j=O 
( x )  = , bo = 1  

so that r ( x )  and y(x )  have as many equal derivatives as  possible a t  x = 0. Take m = n = 2. 

23.31. Work Problem 23.30 with m = 3, n = 1. 

23.32. Work Problem 23.30 with m = 1, n = 3. 

23.33. Work Problem 23.30 with m = 0 ,  n = 4. 

23.34. For m = 4, n = 0 the approximation of Problem 23.30 would be the familiar 1  + x  + *x2 + Ax3 + 
A x 4 .  Compare the maximum errors of these five approximations to e* over (-1, l ) .  

23.35. Work Problem 23.30 for y(x )  = cos x ,  using only even powers of x.  For m = 4, n = 0 the result 
is, of course, 1  - 5212 + 54/24. Treat the two cases m = n = 2 and m = 0, n = 4. 

23.36. Work Problem 23.30 for y(x )  = sin x. For m = 5, n = 0 the result is, of course, x  - 5316 f x5/120. 
Treat the two cases m = 3, n = 2 and m = 1, n = 4. 

23.37. Let y(x )  have the Chebyshev series y(x)  = +co + 2 cj T j ( s )  and attempt the rational approxi- 
j=1  mation 

m 

in such a way that  the error expansion 

2 bi T i  ( x )  
i=O 

has zero coefficients in the numerator for T o ( % ) ,  . . ., T,+,(x). Show that  the aj and bj are deter- 
mined by the system of equations 

1  
a. = - 2 bici 

2 i=o 

1  
aj = 2 , ~ b i ( c l i - i l + c j + i ) ,  j = l ,  . . . ,  m f n  

a=O 

where a j  is zero for j > m, provided this system has a solution. 

23.38. Apply the preceding problem to y(x )  = ex  with m = n = 2. 
a. + a,x + a2x2 

23.39. ' Find the min-max approximation to ex on ( - 1 , l )  of the form r ( x )  = 
+ b,x + b2xZ . What is 

the maximum error? 

23.40. Compare the maximum errors of the rational approximations to ex over ( - 1 , l )  obtained in Problems 
23.30, 23.38 and 23.39. 



Chapter 24 

Trigonometric Approximation 

DISCRETE DATA 
The sine and cosine functions share many of the desirable features of polynomials. They 

are  easily computed, by rapidly convergent series. Their successive derivatives a re  again 
sines and cosines, the same then holding for integrals. They also have orthogonality prop- 
erties, and of course periodicity, which polynomials do not have. The use of these familiar 
trigonometric functions in approximation theory is therefore understandable. 

A trigonometric s u m  which  collocates with a given data function a t  2L + 1 prescribed 
arguments may be obtained in the form 

27r 
y(x) = tao + 5 (a* cos kx  + bk sin --- 2" k x )  

k=1 2L + 1  

a slightly different form being used if the number of collocation arguments is even. An 
orthogonality property of these sines and cosines, 

N 277 . 2x 0  if j # k  
sin iJ?i 1% sin - 

x=o N + l  kx  = { ( N + 1 ) / 2  if j =  k i  0 
N 27r 27r C sin - jx cos - N + l k x  = 0 
.=, N + 1  

i 0 if j#Ic 
2 x  27r 5 cos- jx cos - N + l  

k x  = (N+1) /2  if j = k + O ,  N + l  
.=o N + 1  

N + 1  if j = k = O ,  N + 1  

allows the coefficients to be easily determined a s  

2  2L 277 
brc = C y(x) sin --- 2L + 1  

kx, k = l , 2  , . . . ,  L 
2L + I  x=O 

These coefficients provide the unique collocation function of the form specified. For an even 
number of collocation arguments, say 2L, the corresponding formula is 

L- l  / X y(x) = &ao + 2 arc cos - kc + bk sin 
k = l  L 

with 
T 

ak = '5' y(2) cos kc,  k  = 0, 1, . . . , L 
x=o 
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Least squares approximations for the same discrete data, using the same type of trig- 
onometric sum, are obtained simply by truncation of the collocation sum. This is a famous 
and convenient result. As observed in Problem 21.8, page 242, it is true of other 
representations in terms of orthogonal functions. What is minimized here, in the case 
of 2L + 1 arguments, is 

2 L  

S = C [~(x) - TM(x)]~  
x = o  

where TM(x) is the abbreviated sum (M being less than L) 
M 27T 

TM (x) = &Ao + C (A* cos ---- 2L + 1 
kx + Bk sin --- 

k = l  2L 4- 1 

The result just stated means that to minimize S we should choose Ak = ak, Bk = bk. The 
minimum value of S can be expressed as  

S m i n  = 
2 L t 1  C (a", 2 ,=,+I 

For M = L this would be zero, which is hardly a surprise since then we have once again the 
collocation sum. 

Periodicity is an obvious feature of trigonometric sums. If a data function y(x) is not 
basically periodic, i t  may still be useful to construct a trigonometric approximation, pro- 
vided we are concerned only with a finite interval. The given y(x) may then be imagined 
extended outside this interval in a way which makes it periodic. 

Odd and even functions are commonly used as extensions. An odd function has the 
property y(-x) = -y(x). The classic example is y(x) = sinx. For an odd function of 
period P = 2L, the coefficients of our trigonometric sum simplify to 

4 L-' 2x 
ak = 0, bk = p C y(x) sin - kx 

x = 1  P 

An even function has the property y(-x) = y(x). The classic example is y(x) = cos x. For 
an even function of period P = 2L, the coefficients become 

4 L-1  2n 
- C y(x) eos p kx, 
p .=l 

These simplifications explain the popularity of odd and even functions. 

CONTINUOUS DATA 
Fourier series replace finite trigonometric sums when the data supply is continuous, 

much of the detail being analogous. For y(x) defined over ( 0 , 2 ~ ) ,  the series has the form 
m 

$ (ak cos kt + sin kt) 
k = l  

A second orthogonality property of sines and cosines, 

JZ5sin jt coskt dt = O 

( 0  if j i k  

~ Z c o s  jt cos kt dt = 7: if j = k f 0  

2~ if j = k = O  
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allows easy identification of the Fourier coefficients as 

, = (114  J y ( t )  cos k t  d t ,  p, = ( 1 1 ~ )  J y( t )  sin k t  d t  

Since the series has period 2 ~ ,  we must limit its use to the given interval (0,2x) unless y (x )  
also happens to have this same period. Nonperiodic functions may be accommodated over 
a finite interval, if we imagine them extended as periodic. Again, odd and even extensions 
are the most common, and in such cases the Fourier coefficients simplify much as  above. 

Fourier coefficients are related to collocation coefficients. Taking the example of an odd 
number of arguments we have, for example, 

which is the trapezoidal rule approximation to 

cos 2. jx dx  L 

in which a change of argument has been used to bring out the analogy. 

Least-squares approximations for the case of continuous data are obtained by truncation 
of  the Fourier series. This will minimize the integral 

where 
M 

T M ( ~ )  = +Ao + ( A ,  cos k t  + Bk sin k t )  
k=l 

In  other words, to minimize I we should choose A, = a,, B, = P,. The minimum value of 
I can be expressed as  

m 

Convergence in the mean occurs under very mild assumptions on y ( t ) .  This means that, 
for M tending to infinity, I,in has limit zero. 

APPLICATIONS 

The two major applications of trigonometric approximation in numerical analysis are: 

Data smoothing. Since least squares approximations are  so conveniently available by 
truncation, this application seems natural, the smoothing effect of the least squares 
principle being similar to that  observed for the case of polynomials. 

Approximate differentiation. Here too the least-squares aspect of trigonometric ap- 
proximation looms in the background. Sometimes the results of applying a formula 
such as 

y (x )  - A[- 2y (x  T 2)  - y (x  - 1) + y (x  + 1)  + 2y (x  +2)1 

derived earlier from a least-squares parabola, are further smoothed by the use of a 
trigonometric sum. The danger of oversmoothing, removing essential features of the 
target function, should be kept in mind. 
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The Lanczos sigma factors , = [sin ( ~ k l n ) J l ( ~ k l n )  

provide a way of accelerating the convergence of some Fourier series, the sequence of 
partial sums 

n-1 

yn(t) = &ao + 2 a, cos kt + pk sin kt 
k= 1 

being replaced by the sequence of functions 
n-1 

s,(t) = &ao + uk(a, cos kt + pk sin k t )  
k=l  

The function sn(t) also proves to be smoother than yn(t), which suggests still another 
possible smoothing algorithm. The result 

establishes s;(t) as a finite difference approximation to y;(t) and leads to the use of sigma 
factors in approximate differentiation. 

Solved Problems 

TRIGONOMETRIC SUMS BY COLLOCATION 

24.1. Prove the orthogonality conditions 

277 2a 0 if j + k  or j = k = O  5 sin Nii jx sin ----- 
x=o N + 1  

N 277 2n C sin - 
N + l  

jx cos - N + l k x  = 0 
x=o 

277 27r 5 cos - jx cos - ( N +  1)/2 if j = k z o 
.=, N + 1 N + l  

N + 1  i f j = k = O  

for j + k g N .  

The proofs are by elementary trigonometry. As an example, 

27 27 
+ 

jx sin A kx = L [ ~ ~ ~  - sin - N + l  2 N + l  
(j - k)x - cos - N + l  

and each cosine sums to zero since the angles involved are symmetrically spaced between 0 and 2r, 
except when j = k # 0, in which case the first sum of cosines is  (N + 1)/2. The other two parts 
are proved in similar fashion. 
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24.2. For collocation a t  an odd number of arguments x = 0,1, . . . , N = 2L, the trigonomet- 
ric sum may take the form 

277 
+a0 + C ak cos ----- " ( 2 L + 1  k = l  

Use Problem 24.1 to determine the coefficients a k  and b k .  

2a To obtain aj  multiply by cos --- 
2 L  + 1 

jx and sum. We find 

2 2L  2a . 
a, = B Y ( X )  cos --- 2 L + 1 3 x ,  j = O , l  , . . . ,  L 

2 L  + I x=, 

since all other terms on the right a r e  zero. The factor 112 in y(x )  makes this result t rue also for  
277 

j = 0. To obtain b j  we multiply y ( x )  by sin - 
2 L  + 1 

jx and sum, getting 

Thus only one such expression can represent a given y(x ) ,  the coefficients being uniquely determined 
by the values of y ( x )  a t  x  = 0,1,  . . . , 2 L .  Notice tha t  this function will have the period N + 1. 

24.3. Verify that, with the coefficients of Problem 24.2, the trigonometric sum does equal 
y(x) for x = 0,1, . . . ,2L. This will prove the existence of a unique sum of this type 
which collocates with y(x) for these arguments. 

Calling the sum T ( x )  fo r  the moment, and letting x* be any one of the 2 L  + 1 arguments, sub- 
stitution of our formulas for  the coefficients leads to 

2a + sin k z  sin - kx* 
2 L  + 1 2 L  + 1 

- - 
27 1c(x - x")  

2 L  + 1 .=, 
in which the order of summation has been altered. The last sum i s  now written a s  

which is possible because of the symmetry property 

257 2L + k ( x  - x":) = cos - cos - 2u ( 2 L  + 1 - k ) ( x  - s" )  
2 L  + 1 

of the cosine function. Filling in the k = 0 term, we now find 

But the term in brackets is zero by the orthogonality conditions unless x  = x*, when i t  becomes 
2 L  + 1. Thus T ( x * )  = y ( x a ) ,  which was to be proved. 

24.4. Suppose y(x) is known to have the period 3. Find a trigonometric sum which in- 
cludes the following data points and use it to interpolate for  ~ (112 )  and ~(312) .  
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Using the formulas of Problem 24.2, we find 

a ,  = $(0 + 1 + 1)  = %, a l  = %[cos ( 2 ~ 1 3 )  + cos ( 4 ~ / 3 ) ]  = -3,  
bl = %[sin ( 2 ~ 1 3 )  + sin ( 4 ~ / 3 ) ]  = 0 

so t h a t  y ( x )  = 3 - 8 cos $ 7 ~ .  We now easily compute ~ ( 1 1 2 )  = 1 / 3  and y (3 /2 )  = 413. 

24.5. For an even number of x arguments (N + 1 = 2L) the collocation sum is 

with collocation a t  x = 0,1, . . . , N. The coefficients are found by an argument almost 
identical with that of Problems 24.1 and 24.2 to be 

1 2 L - 1  
X 

bi = E ~ Y (  x) sin-jx, L j = 1, . . ., L - 1  

Once again the function y(x) is seen to have the period N + 1. Apply these formulas 
to the data below, and then compute the maximum of y(x). 

We find L = 2 and then a, = $(2 )  = 1, a ,  = -$(-I) = --+, a2 = A(-l f 1 )  = 0, bl = Q(1) = A. 
The trigonometric sum is  therefore 

y ( x )  = 4 - 4 cos ~ T X  4 sin 2p-x 

The maximum of y ( x )  is  then found by standard procedures to  be y(312) = &(l+ a). 

TRIGONOMETRIC SUMS BY LEAST SQUARES. DISCRETE DATA 
24.6. Determine the coefficients Ak and Bk SO that the sum of squares 

2L 

s = C [Y(x) - T,(x)I2 = minimum 
x=o 

where T,(x) is the trigonometric sum 
M 2n 

T ~ ( x )  = +A0 + k=l ( A ~ C O S -  kx + Bk sin --- 

and M < L. 
Since by Problem 24.3 we have 

L 

r ( x ,  = +a0 + B (ak  cos 
k=l  

the difference i s  

Squaring, summing over the arguments x,  and using the orthogonality conditions, 

2 L + 1  
i- ---- B (4 + b ; )  

2 k=M+l  
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Only the first two terms depend upon the Ak and Bk, and since these terms a r e  non-negative the 
minimum sum can be achieved in only one way, by making these terms zero. Thus for  a minimum, 

Ak = ak ,  Bk = bk 
and we have the important result t h a t  truncation of the collocation sum T(x) a t  k = M produces 
the least squares trigonometric sum (This is  actually another special case of the genera1 
result found in Problem 21.8, page 242.) We also find 

Since a n  almost identical computation shows t h a t  

this may also be expressed in the form 

As M increases this sum steadily decreases, reaching zero for  M = L ,  since then the least squares 
and collocation sums a re  identical. A somewhat similar result holds f o r  the case of an even number 
of x arguments. 

24.7. Apply Problem 24.6 with M = 0 to the data of Problem 24.4. 

Truncation leads to  T o ( x )  = 213. 

ODD OR EVEN PERIODIC FUNCTIONS 
Suppose y(x) has the period P = 2L, that  is, y(x + P) = y(x) for all x. Show that  
the formulas for  aj and bj  in Problem 24.5 may be written as 

Since the sine and cosine also have period P ,  i t  makes no difference whether the arguments 
x = 0, . . . ,2L-1 or the arguments -L+l, . . . , L are  used. Any such set of P consecutive argu- 
ments will lead to  the same coefficients. 

Suppose y(x) has the period P = 2 L  and is also an  odd function, that  is, y(-x) = 

By periodicity, y(0) = y(P) = y(-P). But since y(x )  i s  a n  odd function, y(-P) = -y(P) also. 
This implies y(0) = 0. In  the same way we find y(L)  = y(-L) = -y(L)  = 0. Then in the sum for  
a j  each remaining term a t  positive x cancels its mate a t  negative x ,  so tha t  all aj  will be 0. In  the 
sum for  bj  the terms for  x and -x are  identical, and so we find b j  by doubling the sum over positive x. 

Find a trigonometric sum T ( x )  for the function of Problem 24.5, assuming i t  ex- 
tended to an  odd function of period P = 6. 

By the previous problem all a j  = 0 ,  and since L = 3, 

27r 
= ' 3 (sin + sin 2") 3 = 2 / f i ,  bZ = 3 (sin - 3 + sin k )  3 = 0 

making T ( x )  = ( 2 1 6 )  sin (7rd3). 
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24.11. If y(x) has the period P = 2 L  and is an  even flxnction, that  is, y(-x) = y(x), show 
that  the formulas of Problem 24.8 become 

The terms for  e x  in the formula fo r  bi cancel in  pairs. I n  the aj formula the terms for  x = 0  
and x = L may be separated a s  above, a f te r  which the remaining terms come i n  matching pairs 
for  ax. 

24.12. Find a T(x) for  the function of Problem 24.5 assuming i t  extended to an  even function 
of period 6. (This will make three representations of the data by trigonometric sums, 
but in different forms. See Problem 24.5 and 24.10.) 

All b j  will be zero, and with L = 3 we find a. = $, al = 0 ,  a2 = -$, as = 0  making T ( x )  = 
Q ( l  - cos QTX) .  

CONTINUOUS DATA. THE FOURIER SERIES 

24.13. Prove the orthogonality conditions 

2a 0 if j + k  
sin jt sin k t  dt 

if j = k + O  

J sin jt cos k t  dt = 0 
0 

127 if j =  k =  0 
where j, k = 0,1 ,  . . . to infinity. 

The proofs a r e  elementary calculus. For  example, 

sin jt sin k t  = +[cos ( j  - k ) t  - cos (j + k ) t ]  

and each cosine integrates to zero since the interval of integration is  a period of the cosine, except 
when j  = k  f 0 ,  in  which case the first integral becomes #2n).  The other two parts  a re  proved 
in similar fashion. 

24.14. Derive the coefficient formulas 

of the Fourier series 
m 

~ ( t )  = *a0 + (ak cos kt + Pk sin k t )  
k=l 

These are called the Fourier coefficients. As a matter of fact all such coefficients in 
sums or series of orthogonal functions are frequently called Fourier coefficients. 

The proof follows a familiar path. Multiply y ( t )  by cos jt and integrate over ( 0 , 2 ~ ) .  All terms 
but one on the r ight  a re  zero and the formula fo r  cuj emerges. The factor 4 i n  the  a0 term makes 
the result t rue also for  j  = 0. To obtain pj we multiply by sin jt and integrate. Here we a re  as- 
suming t h a t  the series will converge to y ( t )  and tha t  term by term integration is  valid. This is  
proved, under very mild assumptions about the smoothness of y ( t ) ,  in the theory of Fourier series. 
Clearly y ( t )  must also have the period 2 ~ .  
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Obtain the Fourier series for y ( t )  = It], -T 6 t " T .  

Let y ( t )  be extended to an even function of period 2n. (See solid curve in  Fig. 24-1.) The limits 
of integration in our coefficient formulas may be shifted to ( -a ,a)  and we see that  all P j  = 0. 
Also cue = a ;  and for  j  > 0 

Thus 
cos 3t cos 5t ~ ( t )  = I - +-+  --+ . . .  

2 a 3L 5 2  i 

Fig. 24-1 Fig. 24-2 

Obtain the Fourier series for y ( t )  = t, - x  < t < T .  

Extend ~ ( t )  to an odd function of period 2 r .  (See Fig. 24-2.)  Again shifting to limits (-n, T )  

we find all ej = 0, and 

p, = t sin t t = 2 ( - 1 ) i - l / j  

Thus 

Notice t h a t  the cosine series of Problem 24.15 converges more rapidly than the sine series. This 
is  related t o  the fact  tha t  the y ( t )  of tha t  problem is continuous, while this one is  not. The smoother 
y ( t )  is, the more rapid the convergence. Notice also tha t  a t  the points of discontinuity our sine series 
converges to zero, which is the average of the left and r ight  extreme values (n and -a) of y ( t ) .  

t  - t ) ,  0 6 t 6 Ti 

Find the Fourier series for y ( t )  = 
t ( n  + t ) ,  - x  t ' 0 

Extending the function to a n  odd function of period 2 r ,  we have the result shown in Fig. 24-3.  
Notice t h a t  this function has no corners. A t  t = 0 i ts  derivative is  a from both sides, while both 
yl (n)  and yl(-rr) a r e  -a SO tha t  even the extended periodic function has no corners. This extra  
smoothness will affect the Fourier coefficients. Using limits (-n, n )  we again find all a, = 0, and 

2 ST tG - t )  sin j t  d t  

4 f s i n  j t  dt = 4 ( 1  - cos j ~ )  
j2 T j 3  

The series is therefore 

The coefficients diminish a s  reciprocal cubes, which makes 
for very satisfactory convergence. The extra smooth- 

I 
ness of the function has proved useful. Fig. 24-3 



302 TRIGONOMETRIC APPROXIMATION 

24.18. Show that for the Bernoulli function 

F,  (x) = B, (x), 0 < x < 1; F,  ( x  * m) = F, (x ) ,  m an integer 

B,(x) being a Bernoulli polynomial, the Fourier series is 

when n is even, and 
m 

Fn (x) = [ 2 / ( 2 ~ ) ~ ]  C (sin 2xkx)/kn 
k = 1  

when n is odd. This result was used in Problem 17.30 of the chapter on sums and 
series. 

Since Bl(x) = x - +, the series fo r  Fl(x) may be  found directly from the coefficient formulas 
to  be 

F1 (z) r= -(llp)[(sin 2sx) l l  + (sin 4nx)/2 + (sin 6n%)/3 + . . .] 

we soon find F2 (x) = [ 2 / ( 2 ~ ) ~ ]  [(cos 2 ~ x ) l l  + (cos 4vx)/Z2 + (cos 6~-x)/32 + . . . ] 
The next integration makes 

[CHAP. 24 

F3 (x) = [ 2 / ( 2 ~ ) ~ ]  [(sin 2ax)ll  + (sin 4 ~ x ) / 2 ~  + (sin 6 ~ x ) / 3 3  + . . ] 
and a n  induction may be used to complete a formal proof. (Here it is useful to  know t h a t  integra- 
tion of a Fourier series term by term always produces the Fourier series of the integrated function. 
The analogous statement for  differentiation i s  not generally true. For  details see a theoretical 
treatment of Fourier series.) 

24.19. How are  the collocation coefficients of Problem 24.5, or of Problem 24.2, related to 
the Fourier coefficients of Problem 24.14? 

There a r e  many ways of making the comparisons. One of the most interesting is  to  notice t h a t  
in Problem 24.5, assuming y(x) to have the period P = 2L, we may rewrite aj a s  

and this is  the trapezoidal rule approximation to the Fourier coefficient. 

Similar results hold for  bj and Pi  and for  the coefficients in  Problem 24.2. Since the trapezoidal 
rule converges to  the integral fo r  15 becoming infinite, we see t h a t  the collocation coefficients con- 
verge upon the Fourier coefficients. (Here we may fix the period a t  277 for  convenience.) F o r  a n  
analogy with Chebyshev polynomials see Problems 21.53 to 21.55. 

LEAST SQUARES. CONTINUOUS DATA 

24.20. Determine the coefficients Ak and Bk SO that  the integral 

I = J" [ ~ ( t )  - TM (t)12 d t  
0 

M 

will be a minimum where T, ( t )  = +A0 + (Ak cos kt + Bk sin kt ) .  
k = l  

More or  less a s  in Problem 24.6, we first find 
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M 

y(t)  - TIM ( t )  = *(aO - A o )  -I- 3 [(alc - A k )  cos k t  + (Pk  - B k )  sin kt]  
k=l 

m 

+ 2 (ak cos k t  + Pk sin k t )  
k=M+l 

and then square, integrate and use the orthogonality conditions to get 

For a minimum we choose all A k  = ak, Bk  = Pk SO that  

Again we have the important result that truncation of the Fourier series a t  k = M produces the 
least squares sum T M ( t ) .  (Once again this is a special case of Problem 21.8.) The minimum inte- 
gral may be rewritten as  

As M increases, this diminishes; and i t  is proved in the theory of Fourier series that I,,, tends to 
zero for M becoming infinite. This is called convergence in the mean. 

24.21. Find the least squares sum with M = 1 for the function y ( t )  of Problem 24.15. 

Truncation brings T 1 ( t )  = a12 - (418) cost. This function is  shown dotted in Fig. 24-1. 
Notice that  it smooths the corners of y( t ) .  

SMOOTHING BY FOURIER ANALYSIS 

24.22. What is the basis of the Fourier analysis method for smoothing data? 

If we think of given numerical data as  consisting of the true values of a function with random 
errors superposed, the true functions being relatively smooth and the superposed errors quite un- 
smooth, then the examples in Problems 24.15 to 24.17 suggest a way of partially separating func- 
tions from error. Since the true function is smooth, its Fourier coefficients will decrease quickly. 
But the unsmoothness of the error suggests that  its Fourier coefficients may decrease very slowly, 
if a t  all. The combined series will consist almost entirely of error, therefore, beyond a certain 
place. If we simply truncate the series a t  the right place, then we are discarding mostly error. 
There will still be error contributions in the terms retained. Since truncation produces a least 
squares approximation, we may also view this method as least squares smoothing. 

24.23. Apply the method of the previous problem to the following data. 

Assuming the function to be truly zero a t  both ends, we may suppose i t  extended to an odd 
function of period P = 40. Such a function will even have a continuous first derivative, which 
helps to speed convergence of Fourier series. Using the formulas of Problem 24.9, we now compute 
the bj .  
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The rapid decrease is  apparent, and we may take all b j  beyond the first three or four to be largely 
error effects. If four  terms a re  used, we have the trigonometric sum 

TrX 
30.04 sin - - 

20 
271% 3nx 

3.58 sin - + 1.35 sin - - 
20 20 

4nx 
.13 sin - 20 

The values of this sum may be compared with the original data, which were actually values of 
y ( x )  = x(400 - x2)/100 contaminated by artificially introduced random errors. (See Table 24.1). 
The RMS error  of the given data  was 1.06 and of the smoothed data  3 0 .  

given 

4.3 

8.5 

10.5 

16.0 

19.0 

21.1 

24.9 

25.9 

26.3 

27.8 

correct 

Table 24.1 

smoothed 

4.1 

8.1 

11.9 

15.5 

18.6 

21.4 

23.8 

25.8 

27.4 

28.7 

given x 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

correct smoothed 

29.5 

29.8 

29.3 

28.0 

25.8 

22.4 

18.0 

12.6 . 
6.5 

21.24 Approximate the derivative yr (x )  = (400 - 3x2)/100 of the function in the preceding 
problem on the basis of the same given data. 

F i r s t  we shall apply the formula 

derived earlier from the least squares parabola fo r  the five arguments 2-2, . . . , x+2. With similar 
formulas fo r  the four  end arguments, the results form the second column of Table 24.2. Using this 
local least squares parabola already amounts to local smoothing of the original x ,  y data. We now 
attempt fur ther  overall smoothing by the Fourier method. Since the derivative of an odd function 
i s  even, the formula of Problem 24.11 is appropriate. 

1 a j  = 20 [y l (o)  + yf (20)  eos j71 + 1 y f ( r )  eos ~ j x  
10 .=, 20 

These coefficients may be computed to be 

Again the sharp drop i s  noticeable. Neglecting all terms beyond j = 4, we have 

Trx 
4.81 cos - - 

20 
2nx 

1.05 cos 20 + 37ix 
.71 cos - - 

20 
47Tx .05 cos - 
20 
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Computing this for z = 0, . . ., 20 produces the third column of Table 24.2. The last column gives 
the correct values. The RMS error in column 2, after local smoothing by a least squares parabola 
is .54, while the RMS error in column 3, after additional Fourier smoothing is .39. 

local Fourier local Fourier correct 

.4 

-3 

-1.1 

-1.9 

-2.8 

-3.7 

-4.7 

-5.7 

-6.8 

-8.0 

Table 24.2 

THE LANCZOS SIGMA FACTORS 
24.25. Some Fourier series of important functions converge very slowly. Derive the sigma 

factors, which are a means of accelerating convergence, and consequently of data 
smoothing. 

Imagine y( t )  approximated by a truncation of its own Fourier series, 
n-1 

yn(t) = +aO + 3 a k  cos k t  + pk sin k t  
k = 1  

The Lanczos idea is to replace the approximate value yn(t) by the average of yn(t) between t - (n ln )  
and t + (&). This is  an extension of the smoothing by moving averages procedure introduced 
earlier and i t  leads us to 

n- 1 
- - 

sin ks 

- n-l sin (nk ln )  
- iaO + kzl ak ln  (ak cos k t  + Pk sin k t )  

This is  identical in form with y,(t), except that each term is now multiplied by the factor uk = 
[sin (z-kln)]l(nk/n).  We take uo to be 1. 

24.26. Apply the sigma factors to the square-wave function 
1 f o r O < x < x  

0 for T <  x <2a 
with y ( t  + 2 ~ )  = y( t ) .  

This has discontinuities a t  all multiples of T ,  and so we do not expect fast  convergence of the 
Fourier series, which proves to be 

1 + s i n 5 t  + . . ]  
2 7T 5 

as may easily be found from the coefficient formulas of Problem 24.14. This series does converge 
to the square-wave function fo r  all t except the multiples of a ,  where it converges to a. Truncating 
to fourteen terms produces 
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t  + - .  . + - sin 25t 
25 

The sigma factors then bring 
I 

Both functions appear in Fig. 24-4(a).  Notice that the sigma factors have both smoothed the ap- 
proximation, by reducing the size of the oscillation, and accelerated the convergence, that  is, brought 
the approximation closer to the true function y(x) = 1. I t  is also interesting to observe that  s2 , ( t )  
is a truncation of the Fourier series of the function in Fig. 24-4(b), in which the corners of the 
square wave have been slightly blunted. 

( b )  
Fig. 24-4 

24.27. The result of differentiating a Fourier series generally converges more slowly than 
the original series, if a t  all. Differentiate the series for the square-wave function and 
apply sigma factors to the result. 

The formal derivative series is  
\ 

( ~ / T ) ( c o s  t  + COS 3t + COS 5t  + ' . .) 
which converges only a t  the odd multiples of ~ 1 2 ,  even though the true f ' ( t )  is zero everywhere 
except a t  multiples of T .  Introducing sigma factors, we have 

2 sin ( ~ / 2 m )  cos + . . . + sin ( 2 m  - l ) ~ / 2 m  
~: rn ( t )  = ; [ = / Z r n  cos ( 2 m  - l ) t  ( 2 m  - l ) ~ / 2 m  1 

if we stop a t  k = n - 1 = 2 m  - 1. As m increases, this can be shown to approach zero everywhere 
except a t  the multiples of 7, where i t  becomes infinite. This is an accurate representation of f ' (x ) ,  
so that sigma factors can even convert a divergent series into one which converges to the required 
function. The general form of &(t) for large m is  shown in Fig. 24-5(a).  I t  may be helpful to point 
out that  s2,(t) is actually the truncated Fourier series of the function shown dotted in Fig. 24-5(b).  

Fig. 24-5 
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24.28. Show that &(t) = yn(t + 
- yn(t so that the derivative of the smoothed 

2 d n  
function is a finite difference approximation to yA(t). 

The result follows by direct differentiation of the integral which defined sn( t )  in Problem 24.25. 
Note tha t  the finite difference involved is taken over a full period of the  first term omitted from the 
Fourier series fo r  y(t).  If this term is considered a s  representing the error  of yn( t ) ,  then the interval 
chosen uses points of equal error and presumably leads to a better approximation to yk(t) .  This i s  
another way of viewing the smoothing effect of sigma factors. 

Supplementary Problems 
Apply the method of Problem 24.2, page 297, to the data  below. 

Derive the coefficient formulas of Problem 24.5, page 298. 

Apply the method of Problem 24.5 to the following data. 

p 
Use the result of Problem 24.6, page 298, to obtain least square sums To(%)  and T l ( x )  fo r  the data  
of Problem 24.29. 

Imitate the argument of Problem 24.6 to  obtain a somewhat similar result fo r  the case of a n  even 
number of x arguments. 

Apply the preceding problem to the data  of Problem 24.31. 

Extend the data  of Problem 24.29 to an odd function of period 8. Find a sum of sines to represent 
this function. 

Extend the data  of Problem 24.29 to a n  even function of period 8. Find a sum of cosines to  rep- 
resent this function. 

Show t h a t  the Fourier series fo r  y(x )  = lsin xi, the "fully rectified" sine wave, is 

Show tha t  the Fourier series fo r  y ( x )  = x2 fo r  x between -n and rr, and of period 2n, i s  

m m 

Use the result to evaluate the series Z (-l)k-11k2 and 2 1/k2. 
k=l k=l 

m 

Use the Fourier series of Problem 24.15, page 301, to evaluate 1/(2k - 1)2. 
k=l 
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24.28. Show that  Z(t) = yn(t + ~ l n )  -- yn(t - ~ l n )  
2 n l n  

so that  the derivative of the smoothed 

function is a finite difference approximation to yA( t ) .  

The result follows by direct diffeirentiation of the integral which defined s n ( t )  in Problem 24.25. 
Note tha t  the finite difference involved is taken over a full period of the first term omitted from the  
Fourier series fo r  y ( t ) .  If this term is considered a s  representing the error  of y n ( t ) ,  then the interval 
chosen uses points of equal error and presumably leads to a better approximation to y a ( t ) .  This i s  
another way of viewing the smoothin.; effect of-sigma factors. 

Supplementary Problems 
Apply the method of Problem 24.2, palge 297, to the data  below. 

Derive the coefficient formulas of Problem 24.5, page 298. 

Apply the method of Problem 24.5 to  the following data. 

p 
Use the result of Problem 24.6, page 298, to obtain least square sums To(%)  and T l ( x )  fo r  the data  
of Problem 24.29. 

Imitate the argument of Problem 24.6 to obtain a somewhat similar result fo r  the case of a n  even 
number of x arguments. 

Apply the preceding problem to the data  of Problem 24.31. 

Extend the data  of Problem 24.29 to  an odd function of period 8 .  Find a sum of sines to  represent 
this function. 

Extend the data  of Problem 24.29 to a n  even function of period 8. Find a sum of cosines to  rep- 
resent this function. 

Show t h a t  the Fourier series fo r  y ( x )  = lsin xi, the "fully rectified" sine wave, is 

cos 2% cos4x cos 6x  . . . 
1.3 3.5 5.7 1 

Show tha t  the Fourier series fo r  y ( x )  = x2 fo r  x between -T and T, and of period 2 ~ ,  i s  

m m 

Use the result to evaluate the series 8 ( - l )k-I lk2  and 1Ik2. 
k=l k=l 

m 

Use the Fourier series of Problem 24.15, page 301, to evaluate 8 1 / (2k  - 1)2. 
k=l 
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24.40. Use the Fourier series of Problem 24.16 to show tha t  s /4 = 1 - 113 + 115 - 117 + - . . 

24.41. Use the series of Problem 24.17 to evaluate 1 - 1/33 4- 1/53 - 1/73 + - .  . . 

24.42. What is  the four  term least-squares trigonometric approximation to the function of Problem 24.37? 
What  is the two term least-squares approximation? 

24.43. Apply Fourier smoothing to the following data, assuming t h a t  the end values a re  actually zero 
and extending the function as  a n  odd function. Also t r y  other methods of smoothing, or combina- 
tions of methods. Compare results with the correct values y(x) = x(1- x) from which the given 
data  were obtained by the addition of random errors  of up to twenty percent. The arguments a r e  
x = 0(.05)1. 

.OO, .06, .lo, .11, .14, .22, .22, .27, .28, .21, .22, .27, .21, .20, .19, .21, .19, .12, .08, .04, 00 

24.44. Apply the differentiation formulas obtained from five point least-squares parabolas to  the data  of 
the previous problem to estimate y'(x). Then apply Fourier smoothing to the results. Compare the 
RMS errors of both sets of numbers. Also apply the Lanczos sigma factors to  the results of Fourier 
smoothing. I s  the RMS error  fur ther  reduced or not? 

24.45. Find a least-squares approximation of the form 

24.46. Find a least-squares approximation of the form 
6 

y - &a, + (aj cos jx + bj sin jx) 
j= 1 

y(x) - a s i n x  + b sin3x + c sin52 
for  the following data. 

for  the following data, where x = sk/12. 

x 

Y 

0° 30° 60' 90' 120° 150° 180° 

0 5 8 9 8 5 0 

find the least-squares approximation of form 
M 

y - +a, + (aj cos jx + b j  sin jx) 
j=1 

24.47. Given the data  

for  M = 1,2,3,4.  What  do you guess the t rue function should be? 

x 

y 

0 2 ~ / 9  4a/9 6a/9 8s/9 10s/9 1 2 ~ / 9  1 4 ~ / 9  1 6 ~ 1 9  

3.0004 5.7203 3.1993 -1.0981 -3679 2.9890 4.0985 1.1477 -.I882 

24.48. Given the da ta  

x 

y 

0 2v/7 4s/7 6s/7 8s/7 1 0 ~ / 7  12x17 

1.0004 -.I190 1.5987 .2115 -.6567 -.3514 -1.6824 
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find the least-squares trigonometric approximation of most suitable degree M. 
M 

y - l a  + (aj cos jx + b j  sin jx) 
0 j= l  

If this awroximation is used for smoothing, what  is  the maximum correction i t  makes? 

1 o < x < 7 7  
24.49. Show tha t  the F ~ r i e r  series for  y(x) = is 

-1 n < x < 2 ~  

What  is the least-squares approximation of form a sin x + b sin 3x? 

24.50. Find the Fourier series fo r  y(z) = ( ~ * x  - x3)/12 on (+,a). 

24.51. Find the Fourier series fo r  y(x) = ( ~ 3  - 37x2 + 272x)/12 on the interval ( 0 , ~ ) .  

1 1  1 
24.52. Use Problem 24.50 to evaluate 1 - 3 + 3 - - -t . . . . 

73 

1 1 1  
24.53. Use Problem 24.50 to evaluate 1 + 3 - 53 - ;i;j + . . . . 

24.54. Find the Fourier cosine series for  y(x) = [2$(x - ~ ) 2  - (x - T ) ~  - 7~4/15]/4S on the interval (0, T). 

24.55. Find the Fourier cosine series fo r  y(x) = [x4 - 2a*x2 4- 7 ~ ~ / 1 5 ] / 4 8  on the interval (0, a). 

1 1  
24.56. Evaluate the series 1 + - + - . . . . 24 34 

1 1  
24.57. Evaluate the series 1 - 24 + 3 - . . . . 



Chapter 

Nonlinear Algebra 

ROOTS OF EQUATIONS 

The problem treated in this chapter is the ancient problem of finding roots of equations 
or of systems of equations. The long list of available methods shows the long history of 
this problem and its continuing importance. Which method to use depends upon whether 
one needs all the roots of a particular equation or only a few, whether the roots are real 
o r  complex, simple or multiple, whether one has a ready first approximation or not, and so on. 

The iterative method solves x = F(x) by the recursion 

Xn = F(xn-1) 

and converges to a root if JF'(x)J 4 L < 1. The error en = r - xn, where r is the exact 
root, has the property 

en Fr(r) en-1 

so that each iteration reduces the error by a factor near Fr(r). If Fr(r) is near 1 this 
is slow convergence. 

The a2 process can accelerate convergence under some circumstances. It consists of the 
approximation 

which may be derived from the error property given above. 

The Newton method obtains successive approximations 

to a root of f(x) = 0, and is unquestionably a very popular algorithm. If f'(x) is com- 
plicated, thebrevious iterative method may be preferable, but Newton's method con- 
verges much more rapidly and usually gets the nod. The error e, here satisfies 

This is known as quadratic convergence, each error roughly proportional to the square 
of the previous error. The number of correct digits almost doubles with each iteration. 

is a special case of Newton's method, corresponding to f(x) = x2 - Q. I t  converges 
quadratically to the positive square root of Q, for Q > 0. 
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The more general root-finding formula 

is also a special case of Newton's method. I t  produces a pth root of Q. 

Interpolation methods use two or more approximations, usually some too small and 
some too large, to obtain improved approximations to a root by use of collocation 
polynomials. The most ancient of these is based on linear interpolation between two 
previous approximations. I t  is called regula falsi and solves f(x) = 0 by the iteration 

The rate of convergence is between those of the previous two methods. A method based 
on quadratic interpolation between three previous approximations XO,XI, xz uses the 
formula 

the expressions for  A, B, C being given in Problem 25.18. 

Bernoulli's method produces the dominant root of a real polynomial equation 

provided a single dominant root exists, by computing a solution sequence of the dif- 
ference equation 

aoxk + alxk-1 + ' ' ' + anxk-n = 0 

and taking lim (xk+Jxk). The initial values x-,+I = - . . = x-1 = 0, xo = 1 are usually 
used. If a complex conjugate pair of roots is dominant, then the solution sequence is 
still computed, but the formulas 

'k+ lXk- -2  - 'k-lxk r2 -2r cos 4 - xi-1 - X k X k - 2  ' - X k X k - 2  

serve to determine the roots as  rl, r 2  - ~ ( C O S  4 f i sin 4).  

Deflation refers to the process of removing a known root from a polynomial equation, 
leading to a new equation of lower degree. Coupled with Bernoulli's method, this per- 
mits the discovery of next-dominant roots one after another. In practice i t  is found 
that continued deflation determines the smaller roots with diminishing accuracy. 
However, using the results obtained a t  each step as  starting approximations for 
Newton's method often leads to accurate computation of all the roots. 

The quotient-difference algorithm extends Bernoulli's method and may produce all 
roots of a polynomial equation, including complex conjugate pairs, simuItaneously. I t  
involves computing a table of quotients and differences (resembling a difference table) 
from which the roots are then deduced. The details are somewhat complicated and may 
be found in Problems 25.25 to 25.32. 

Sturm sequences offer another historical approach to the real roots of an equation, 
again producing them more or less simultaneously. A Sturm sequence 

fo(x), fl(x), . . ., fn(x) 
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meets five conditions as listed in Problem 25.33. These conditions assure that the num- 
ber of real zeros of fo(x) in the interval (a, b) is precisely the difference between the num- 
ber of sign changes in the sequence f o (a), f 1 (a), . . . , f (a) and the corresponding number 
in fo(b), f (b), . . . , fn(b). By choosing various intervals (a, b)  the real zeros can there- 
fore be located. When fo(x) is a polynomial, a suitable Sturm sequence may be found by 
using the Euclidean algorithm. Letting f ,  (x) = f,'(x), the rest of the sequence is 
defined by 

fo(x) = f l ( ~ ) L l ( ~ )  - f2 (4  

Like the deflation and quotient-difference methods, Sturm sequences can be used to 
obtain good starting approximations for Newton itkrations, which then produce highly 
accurate roots a t  great speed. 

SYSTEMS O F  EQUATIONS 

Systems of equations respond to generalizations of many of the previous methods, and 
to other algorithms as  well. We choose three. 

1. The iterative method, for example, solves the pair of equations 

x = F(x, Y) Y = G(x, Y) 

by the formulas ~n = F ( x ~ - I ,  yn-I) yn = G(xn-I, yn-I) 

assuming convergence of both the xn and yn sequences. Newton's method ~o lves  

f(x, Y) = 0 g(x, Y) = 0 

through the sequences defined by 

xn = xn-l + hn-1 yn = yn-I+ kn-1 

with h n - ~  and determined by 

fs(~n-1, yn-1)hn-1 + fy(~n-1, yn-1)kn-1 = -f(xn-l, yn-1) 

gs(~n-1, yn-1)hn-I + gy(~n-1, yn-1)kn-1 = - g(~n-1, yn-1) 

2. The method of steepest descent replaces the root-finding problem by an equivalent prob- 
lem of minimization. For example, solving 

is clearly equivalent to minimizing 

Beginning a t  an initial approximation (xo, yo), we select the next approximation in the 

where S,O and Syo are the components of the gradient vector a t  (XO, yo). Thus progress 
is in the direction of steepest descent. The number t may be chosen to minimize S in 
this direction. Similar steps follow. Often this method is used to provide initial ap- 
proximations to the Newton algorithm just described above. 
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3. Bairstow's method produces complex roots of a real polynomial equation p ( x )  = 0 by 
applying the Newton method to a related system. More specifically, division of p ( x )  
by a quadratic polynomial suggests the identity 

p(x) = (x2 - u x  - v )  q(x) + r(x) 
where r (x )  is a linear remainder 

r(x) = b n - I  (u, V) (X - U) + bn (u, V )  

The quadratic divisor will be a factor of p ( x )  if we can choose u and v so that 

b,-1 (u, V )  = 0, brl (u, v) = 0 

This is the system to which Newton's method is now applied. Once u and v are known, 
a complex pair of roots may be found by solving 

Solved Problems 

THE ITERATIVE METHOD 
25.1. Prove that if r is a root of f(x) = 0 and if this equation is rewritten in the form 

x = F ( x )  in such a way that IFr(x)l 6 L < 1 in an interval I centered a t  x = r ,  then 
the sequence x, = F(x,-I) with xo arbitrary but in the interval I has lim x, = r. 

provided both x and y are close to r. Actually it is this Lipschitz condition rather than the more 
restrictive condition on F1(x)  which we need. Now 

Ixn - rl = I F ( X , ~ - ~ )  - F(r)i f L ~ X , - ~  - r !  

so that, since L < 1, each approximation is a t  least as good as its predecessor. This guarantees 
that all our approximations are in the interval I ,  so that nothing interrupts the algorithm. Apply- 
ing the last inequality n times, we have 

lx, - rl 6 L n ! x o  - rl 
and since L < 1, lim x, = r .  

The convergence is illustrated in Fig. 25-1. Note that choosing F(xnPl )  as the next s, amounts 
to following one of the horizontal line segments over to the line y = x. Notice also that  in Fig. 
25-2 the caHe IF1(x)l 7 1 leads to divergence. 

r  

Fig. 25-1 Fig. 25-2 
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25.5. Apply extrapolation to the limit to the computation of Problem 25.2. 

Using x,,, x l l  and x12, the formula produces 

which is  once again Leonardo's value. With this extrapolation, only half the iterations are needed. 
Using i t  earlier might have made still further economies by stimulating the convergence. 

25.6. Using extrapolation to the limit systematically after each three iterations, is essen- 
tially what is known as Steffensen's method. Apply this to Leonardo's equation. 

The first three approximations x,, x1 and x2 may be borrowed from Problem 25.2. Aitken's for- 
mula is  now used to produce x3: 

The original iteration is now resumed as in Problem 25.2 to produce x4 and x5: 

x,  = F(x3)  = 1.367918090, 2 5  = F ( x J  = 1.369203162 

Aitken's formula then yields x,: 

The next cycle brings the iterates 
, . 

= 1.368808080, 2 ,  = 1.368808120 

from which Aitken's formula manages x9 = 1.368 808 108. 

25.7. Show that other rearrangements of Leonardo's equation may not produce convergent 
sequences. 

As an example we may take x = (20 - 2x2 - x3)/10 which suggests the iteration 

x,  = (20 - 2 x i p 1  - x ; _ , ) / l o  

Again starting with xo = 1, we are led to the sequence 

X I  - 1.70 x3 - 1.75 x5 - 1.79 x, - 1.83 

and so on. I t  seems clear that alternate approximations are headed in opposite directions. Com- 
paring with Problem 25.1 we find that  here F 1 ( r )  = (- 4r  - 3r2)/10 < -1,  confirming the computa- 
tional evidence. 

THE NEWTON METHOD 
f ( x n - l )  for solving f ( r )  = 0. 25.8. Derive the Newton iterative formula X n  = xn- I  - f'o 

Beginning with Taylor's formula 

f(r) = f ( ~ , - ~ )  + (r - x,- ,)  f'(x,-1) + &(r-  ~ n - i ) ~ f " ( t )  

we retain the linear part, recall that  f (r )  = 0 and define x,  by putting i t  in place of the remaining 
r to obtain 

0 = f ( x n - l )  + (2 ,  - 2 , - 1 )  f'(x,-1) 

f(xn-1) 
which rearranges a t  once into r - x,  = x n P 1  - - f t ( xn - I )  
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25.9. What is the geometric interpretation of 
Newton's formula? I \ 

I t  amounts to using the tangent line to y = 
f ( x )  a t  2,-I in place of the curve. In Fig. 25-3 

ll = f(x) 
it  can be seen that  this leads to 

f (x,- 1 )  - 0 
= f '(xn-1) 

X n - I  - X n  

which is once again Newton's formula. Similar 
I 

steps follow, as suggested by the arrow. Fig. 25-3 

25.10. Apply Newton's formula to Leonardo's equation. 

With f ( x )  = 5 3  + 2x2 + 10% - 20 we find f l ( x )  = 3x2 + 42  + 10, and the iterative formula 
becomes 

Once more choosing x ,  = 1 ,  we obtain the results in Table 25.2. 

The speed of convergence is  remarkable. In four iterations we have essentially Leonardo's value. 
In fact, computation shows that 

f(l.368 808 107) - - .000 000 016 

n 

xn 

which suggests that the Newton result is the winner by a nose. 

1 2 3 4 

1.411 764 706 1.369 336 471 1.368 808 189 1.368 808 108 

25.11. Explain the rapid convergence of Newton's iteration by showing that the conver- 
gence is "quadratic". 

Table 25.2 

Recalling the equations of Problem 25.8 which led to the Newton formula, 

we subtract to obtain 
0 = ( r  - x,) f ' ( ~ , , - ~ )  + +(r - x,-d2f"(t) 

or letting e, = r - x,, 
0 = e,fl(x,-,) + +e:-l f"(0 

Assuming convergence, we replace both x , - ~  and 5 by the root r and have 

Each error is  therefore roughly proportional to the square of the previous error. This means that  
the number of correct decimal places roughly doubles with each approximation, and is  what is  
called quadratic convergence. I t  may be compared with the slower, linear convergence in Problem 
25.3, where each error was roughly proportional to the previous error. Since the error of our 
present xs is  about .00000008, and [ f " ( r ) ] / [2 f ' ( r ) ]  is about .3, we see that  if we had been able to 
carry more decimal places in our computation the error of x4 might have been about two units in 
the fifteenth place! This superb speed suggests that the Newton algorithm deserves a reasonably 
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accurate first approximation to trigger it ,  and t h a t  its natural  role is the conversion of such a 
reasonable approximation into a n  excellent one. In fact, other algorithms to be presented a re  
better suited than Newton's for the "global" problem of obtaining first approximations to all the 
roots. Such methods usually converge very slowly, however, and it seems only natural to  use them 
only a s  a source of reasonable first approximations, the Newton method then providing the polish. 
Such procedures a re  very popular and will be mentioned again a s  we proceed. I t  may also be noted 
that  occasionally, given a n  inadequate first approximation, the Newton algorithm will converge 
a t  quadratic speed, but not to the root expected! Recalling the tangent line geometry behind the 
algorithm, i t  is easy to diagram a curve for  which this happens, simply putting the first approxima- 
tion near a maximum or minimum point. 

25.12. Show that the formula for determining square roots, 

is a special case of Newton's iteration. 

With f(x) = x2 - Q, i t  is clear t h a t  making f(x) = 0 amounts to  finding a square root of 
Q. Since ff(x) = 2x, the Newton formula becomes 

Apply the square root iteration with Q = 2. 

Choosing xo = 1, we find the results in Table 25.3. Notice once again the quadratic nature of 
the convergence. Each result has  roughly twice a s  many correct digits a s  the one before it. Fig. 
25-4 illustrates the action. Since the first approximation was on the concave side of y = x2- 2, 
the next is  on the other side of the root. After  this the sequence i s  monotone, remaining on the 
convex side of the curve a s  tangent lines usually do. 

Table 25.3 Fig. 25-4 

xEP1 - Q 
25.14. Derive the iteration x, = xn-1 - for finding a pth root of Q. 

px;:: 

With f(x) = xp - Q and f'(x) = pxp-1, the result is  a t  once a special case of Newton's method. 

25.15. Apply the preceding problem to find a cube root of 2. 

With Q = 2 and p = 3, the iteration simplifies to 2, = (2n-1 + - : ) .  
2%- 1 

Choosing x, = 1, we find x l  = 413 and then 

xz = 1.263 888889, x, = 1.259 933 493, x, = 1.259 921 049, x5 = 1.259921 049 

The quadratic convergence is  conspicuous. 
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INTERPOLATION METHODS 

25.16. This ancient method uses two previous approximations, and constructs the next ap- 
proximation by making a linear interpolation between them. Derive the "regula 

The linear function 

clearly has y = f (x)  a t  a and b. I t  vanishes a t  
the argument c given in the regula falsi. This 
zero serves as our next approximation to the root 
of f (x)  = 0, so effectively we have replaced the 
curve y = f (x)  by a linear collocation polyno- 
mial in the neighborhood of the root. It will also 
be noticed in Fig. 25-5 that  the two given ap- 

a proximations a and b are on opposite sides of the 
exact root. Thus f (a)  and f(b) have opposite signs. I 
This opposition of signs is assumed when using 
regula falsi. Accordingly, having found c, to re- 
apply regula falsi we use this c as either the new 
a or the new b, whichever choice preserves the 
opposition of signs. In Fig. 25-5, c would become 
the new a. In this way a sequence of approxima- 
tions x,, xl,  x,, . . . may be generated, xo and x1 
being the original a and b. Fig. 25-5 

25.17. Apply regula falsi to Leonardo's equation. 

Choosing xo = 1 and x1 = 1.5, the formula produces 

and so on. The rate of convergence can be shown to be better than the rate in Problem 25.2 but 
not so good as that  of Newton's method. 

25.18. A natural next step is to use a quadratic interpolation polynomial rather than a linear 
one. Assuming three approximations xo,xl, xz are in hand, derive a formula for a 
new approximation x3 which is a root of such a quadratic. 

I t  is  not hard to verify that  the quadratic through the three points (xO, yo), (xl, yl) ,  (x2,y2),  
where y = f (x ) ,  can be written as  

where h = x - x,  and A, B, C are 
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Solving p(x)  = 0 for  h ,  we of course find 

but this is  better written a s  
h = -2C/(B * d m )  

to avoid loss of significant digits in subtraction. Here the sign which makes the denominator larger  
in absolute value should be chosen. If the root involved is complex, this may indicate t h a t  the three 
given approximations a re  not close enough to the root. Otherwise we have 

x3 = x 2 + h  = 
2C 

x2 - 
B * 4-c 

for a next approximation. The process may then be repeated with all subscripts advanced by one. 

BERNOULLI'S MIETHOD 
25.19. Prove that  if the polynomial of degree n 

p ( x )  = aoxn + alxn-' + . . . + an 

has a single dominant zero, say rl, then it may be found by computing a solution 
sequence for the difference equation of order n 

U O X ~  + alxlc-l + . ' . -t G X k - n  = 0 
and taking liim ( x k + d x k ) .  

This difference equation has p(x )  = 0 for  i ts  characteristic equation and i ts  solution can there- 
fore be written a s  

xk = c,r! + c2r; + . . . + cnri 

If  we choose in.itia1 values so that  c1 # 0, then 

and since r ,  is the dominant root, 

lim ( r i / r l )  = 0, i = 2, 3, . . . , 12 

making lim ( X ~ , + ~ / X ~ )  = r ,  as claimed. I t  can be shown using complex variable theory t h a t  the 
- initial values x-,+, = . . . - x - ,  = 0, xo = 1 will guarantee cl f 0. 

25.20. Apply the Bernoulli method to the equation x4 - 5x3 + 9x2 - 7x + 2 = 0. 

The associated difference equation is 

X k  - 5 ~ ~ - ~  + 9 x k P 2  - 7xk-3 + 2 x k P 4  = 0 

and if we take the initial values x - ~  = x P 2  = X - I  = 0 and xo = 1, then the succeeding xk a r e  
given in Table 25.4. The ratio x k +  ,/xk is also given. The convergence to r = 2 i s  slow, the ra te  
of convergence of Bernoulli's method being linear. Frequently the method is used to generate a 
good s tar t ing approximation for  Newton's or Steffensen's iteration, both of which a re  quadratic. 

Table 25.4 
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25.21. Modify the Bernoulli method for the case in which a pair of complex conjugate roots 
are dominant. 

Let rl and r2 be complex conjugate roots. Then lril < lrll for i = 3,  . . .,n, since the r l , r 2  
pair is dominant. Using real starting values, the solution of the difference equation may be 
written as 

xk = clr:  + c2rk + . . . + cnr,k 

where cl  and c2 are also complex conjugate. Let r1 = reib = i 2 ,  el  = aei* = Z2 with r > 0 ,  a > 0 
and 0 < + < a so that  rl is  the root in the upper half plane. Then 

All terms except the first have limit zero; and so for large k, xk - 2ark cos (k+ + e ) .  We now use 
this result to determine r and +. First we observe that  

as  may be seen by substituting for xk from the previous equation and using the identities for cosines 
of sums and differences. Reducing the subscripts, we also have 

xk - 2rcos+  x k P 1  + r2xk -2  - 0 

Now solving these two simultaneously, 

4 - x k + l x k - l  X k t l X k - 2  - ' k -  l X k  
r 2  - , - 2 r  cos @ - 

~ 2 k - 1  - X k x k - 2  d - 1  - xkXk-2 

The necessary ingredients for determining rl and r2 are now in hand. 

25.22. Apply Bernoulli's method to Leonardo's equation. 
The associated difference equation is  xk = -2xk-I  - 10xk- ,  + 2 0 ~ ~ - ,  and the solution se- 

quence for initial values x _ ,  = x _ ,  = 0 ,  x,, = 1 appears in Table 25.5. Some approximations to 
r 2  and -2r cos + also appear. The fluctuating 2 signs are an indication that  dominant complex 
roots are present. This may be seen by recalling the form of the xk as given in Problem 25.21, 
namely xk - 2ark cos (k@ + 0) .  AS k increases, the value of the cosine will vary between *1  in a 
somewhat irregular way which depends on the value of +. 

-2r cos 5 

3.3642 

3.3696 

3.3692 

3.3686 

3.3688 

Table 25.5 

From the last approximations we find 

r cos @ - -1.6844 r sin @ = * dr2 - ( r  cos @ ) 2  - * 3.4313 

making the dominant pair of roots r l r z  - - 1.6844 -t 3.4313i. Since Leonardo's equation is  cubic, 
these roots could also be found by using the real root found earlier to reduce to a quadratic equa- 
tion. The Bernoulli method was not really needed in this case. The results .found may be checked 
by computing the sum ( -2)  and product (20 )  of all the roots. 

DEFLATION 
25.23. Use the simple equation x4 - l o x 3  + 35x2 - 50x + 24 = 0 to illustrate the idea of 

deflation. 
The dominant root of this equation is exactly 4. Applying the factor theorem we remove the 

factor x - 4 by division, 
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The quotient is the cubic 2 3  - 6x2 + 11% - 6 and we say that  the original quartic polynomial has 
been deflated to this cubic. The dominant root of the cubic is  exactly 3. Removing this factor, 

we achieve a second deflation, to the quadratic x2 - 3% + 2 which may then be solved for the re- 
maining roots 2 and 1. Or the quadratic may be deflated to the linear function x - 1. The idea of 
deflation is that, one root having been found, the original equation may be exchanged for one of lower 
degree. Theoretically, a method for finding the dominant root of an equation, such as  Bernoulli's 
method, could be used to find all the roots one after another, by successive deflations which remove 
each dominant :root as  i t  is  found, and assuming no two roots are of equal size. Actually there are 
error problems which limit the use of this procedure, as  the next problem suggests. 

25.24. Show that if the dominant root is not known exactly, then the method of deflation 
may yield the next root with still less accuracy, and suggest a procedure for  obtain- 
ing this second root to the same accuracy as the first. 

Suppose, for simplicity, that the dominant root of the previous equation has been found correct 
to only two places to be 4.005. Deflation brings 

and the cubic x3 - 5.99522 + 10.99s - 5.985. The dominant zero of this cubic (correct to two places) 
is  2.98. As far as  the original quartic equation is  concerned, this is incorrect in the last place. 
The natural procedure a t  this point is to use the 2.98 as the initial approximation for a Newton 
iteration, which would rapidly produce a root of the original equation correct to two places. A 
second deflation could then be made. In practice i t  is  found that  the smaller "roots" require sub- 
stantial correction, and that  for polynomials of even moderate degree the result obtained by 
deflation may not be good enough to guarantee convergence of the Newton iteration to the desired 
root. Similar remarks hold when complex conjugate roots a -t bi  are removed through division by 
the quadratic factor x2 - 2ax + a2 + b2. 

THE QUOTIENT-]DIFFERENCE ALGORITHM 
25.25. What is a quotient-difference scheme? 

Given a polynomial aoxn + alxn-1 + . . - + a ,  and the associated difference equation 

consider the solution sequence for which x - , + ,  = = x - ~  = 0 and xo = 1. Let q: = x ~ + ~ / x ~  
and d! = 0 .  Then define 

q:+l = 
d + l l d q  + dljc = 9; + 1 - q i  + dl;: 

where j = 1 , 2 ,  . . . , n - 1 and k = 0 , 1 , 2 ,  . . . . These various quotients (9)  and differences (d) may 
be displayed as in Table 25.6. The definitions are easily remembered by observing the rhombus- 
shaped parts of the table. In a rhombus centered in a (q) column the sum of the SW pair equals 
the sum of the NE pair. In a rhombus centered in a (d) column the corresponding products are 
equal. These are the "rhombus rules". 
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Table 25.6 

25.26. Compute the quotient-difference scheme for the polynomial x2 - x - 1 associated - - 
with the. Fibonacci sequence. 

The results appear in Table 25.7. 

Table 25.7 

25.27. What is the first convergence theorem associated with the quotient-difference scheme? 

Suppose no two zeros of the given polynomial have the same absolute value. Then 

for k tending to infinity, where rl,r2, . . ., r ,  are in the order of diminishing absolute value. For 
j = 1 this is Bernoulli's result for the dominant root. For the other values c~f j the proof requires 
complex function theory and will be omitted. I t  has also been assumed h,ere that  none of the 
denominators involved in the scheme is  zero. The convergence of the q's to the roots implies the 
convergence of the d's to zero. This may be seen as follows. By the first of the defining equations 
of Problem 25.25, j + l  

d:+1 - Pk - - -  Tj + I + - < 1 
d! 9:+1 'I 

The d: therefore converge geometrically to zero. The beginning of this convergence, in the present 
problem, is evident already in Table 25.7, except in the last column which will be discussed shortly. 
In this table the (q) columns should, by the convergence theorem, be approaching the roots (1 * 6 ) / 2  
which are approximately 1.61803 and -.61803. Clearly we are closer to the first than to the second. 
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25.28. How can a quotient-difference scheme produce a pair of complex conjugate roots? 

The presence of such roots may be indicated by (d)  columns which do not converge to zero. 
Suppose the column of d: entries does not. Then one forms the polynomial 

pj = 2 2  - Ajx + Bj 
where for k ten.ding to infinity, 

The polynomial will have the roots rj and rj;cl which will be complex conjugates. Essentially, a 
quadratic factor of the original polynomial will have been found. Here we have assumed that  the 
columns of and d C 1  entries do converge to zero. If they do not, then more than two roots have 
equal absolute 'value and a more complicated procedure is needed. The details, and also the proofs 
of convergence claims just made, are given in National Bureau of Standards Applied Mathematics 
Series, vol. 49.  

25.29. What is the row-by-row method of generating a quotient-difference scheme and what 
are its advantages? 

The column-by-column method first introduced in Problem 25.25 is  very sensitive to roundoff 
error. This is the explanation of the fact that the final column of Table 25.7 is not converging to 
zero as  a d column should, but instead shows the typical start  of an error explosion. The following 
row-by-row method is less sensitive to error. Fictitious entries are supplied to fill out the top two 
rows of a quot,ient-difference scheme as  follows, starting with the d i  column and ending with d:. 
Both of these t~oundary columns are to consist of zeros for all values of k. This amounts to forcing 
proper behavior of these boundary differences in an effort to control roundoff error effects. 

The rhombus ~wles are then applied, filling each new row in its turn. I t  can be shown that  the 
same scheme found in Problem 25.25 will be developed by this method, assuming no errors in either 
procedure. In the presence of error the row-by-row method is  more stable. Note that  in this method 
i t  is not necessary to compute the xk. 

25.30. Apply the row-by-row method to the polynomial of the Fibonacci sequence, x2 - x - 1. 
The top two rows are filled as  suggested in the previous problem. The others are computed by 

the rhombus rules. Table 25.8 exhibits the results. The improved behavior in the last (q)  column 
is apparent. 

Table 25.8 
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25.31. Apply the quotient-difference algorithm to find all the roots of 

The roots of this equation are exactly 1, 2, 3, and 4. No advance information about the roots 
is, however, required by this algorithm, so the equation serves as  a simple test case. The quotient- 
difference scheme, generated by the method of Problem 15.29, appears as  Tabl'e 25.9. 

Table 25.9 

Clearly the convergence is slow, but the expected pattern is emerging. The (d)  columns seem headed 
for zero and the (9) columns for 4 , 3 , 2 , 1  in that  order. Probably i t  would be wise to switch a t  this 
point to Newton's method, which very quickly converts reasonable first approximations such as  
we now have, into accurate results. The quotient-difference algorithm is  often used for exactly this 
purpose, to prime the Newton iteration. 

25.32. Apply the quotient-difference algorithm to Leonardo's equation. 
Again using the row-by-row method, we generate the scheme displayed in Table 25.10. 

Table 25.10 

The convergence being slow, suppose we stop here. The second (d)  column hardly seems headed 
for zero, suggesting that  rl and r2 are complex, as  we already know anyway. The next (d)  column 
does appear to be tending to zero, suggesting a real root which we know to be near 1.369. The 
Newton method would quickly produce an accurate root from the initial estimate of 1.3642 we now 
have here. Returning to the complex pair, we apply the procedure of Problem 25.28. From the 
first two (q) columns we compute 
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so that  A ,  - -3.3642 and B1 - 14.6033. The complex roots a r e  therefore approximately given by 
x2 + 3 . 3 6 4 2 ~  + 14.6033 = 0 which makes them r l ,  rz  - -1.682 5 3.431i. 

Newton's method using complex arithmetic could be used to improve these values, but a n  alter- 
native procedure known a s  Bairstow's method will be presented shortly. Once again in this problem 
we have used the quotient-difference algorithm to provide respectable estimates of all the roots. 
A method which can do this should not be expected to converge rapidly, and the switch to a quad- 
ratically convergent algorithm a t  some appropriate point is  a natural  step. 

STURM SEQUENCES 
Define a Sturm sequence. 

A sequence of functions f o ( x ) ,  f l ( x ) ,  . . ., f n ( x )  which satisfy on an interval (a ,  b) of the real 
line the conditions: 

1. each fi(x) is continuous 

2. the sign of f n (x )  is constant 

3. if f i ( r )  = 0 then f i - l ( r )  and f i + l ( r )  .' 0 

4. if f i  ( r )  = 0 then f i - l  ( r )  and f i  + ( r )  have opposite signs 

5. if fo(r) = 0 then for  h sufficiently small 

is called a Sturm sequence. 

Prove that  the number of roots of the function fo (x )  on the interval (a,  b )  is the dif- 
ference between the number of changes of sign in the sequences f o (a) ,  f I (a) ,  . . . , f n (a)  
and fo(b) ,  f l ( b ) ,  - ., fn(b)*  

As x  increases from a to b the number of sign changes in the Sturm sequence can only be 
affected by one or more of the functions having a zero, since all a r e  continuous. Actually only a 
zero of fo(x) can affect it. For, suppose fi(r) = 0 with i # 0 ,  n. Then by properties 1 ,  3 and 4 the 
following sign patterns a r e  possible fo r  small h. 

In all cases there is  one sign change, so tha t  moving across such a root does not affect the number 
of sign changes. By condition 2 the function fn(x) cannot have a zero, so we come finally to  f o (x ) .  
By condition 5 we lose one sign change, between f o  and fl ,  a s  we move across the root r. This 
proves the theorem. One sees that  the five conditions have been designed with this root counting 
feature in mind. 

If fo (x )  is a polynomial of degree n with no multiple roots, how can a Sturm sequence 
for enumerating its roots be constructed? 

Let f , (x)  = fh(x) and then apply the Euclidean algorithm to construct the rest  of the sequence 
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where f i ( x )  is  of degree n - i and the L i ( x )  are  linear. 

The sequence f o ( x ) ,  f , ( x ) ,  . . ., f , ( x )  will be a Sturm sequence. To prove this we note first tha t  
all f i ( x )  a r e  continuous, since f o  and f l  surely are. Condition 2  follows since f ,  i s  a constant. Two 
consecutive f i ( x )  cannot vanish simultaneously since then all would vanish including f ,  and f l  and 
this would imply a multiple root. This proves condition 3. Condition 4 is  a direct consequence of 
our defining equations, and 5  i s  satisfied since f l  = f i .  

If the method were applied to a polynonlial having multiple roots, then the simultaneous van- 
ishing of all the  f i ( x )  would give evidence of them. Deflation of the polynomial to remove multiplic- 
ities allows the method to be applied to find the simple roots. 

25.36. Apply the method of Sturm sequences to locate all real roots of 

Denoting this polynomial f o ( x ) ,  we first compute its derivative. Since we a r e  concerned only 
with the signs of the various f i ( x ) ,  i t  is often convenient to  use a positive multiplier to  normalize 
the leading coefficient. Accordingly we multiply fk (x )  by 114 and take 

The next step is to divide f o  by f l .  One finds the linear quotient L, (x )  = x - .6 which is  of no 
immediate interest, and a remainder of -.565x2 + .759x - .23. A common error  a t  this point is  to  
forget tha t  we want  the negative of this remainder. Also normalizing, we have 

Dividing f ,  by f ,  brings a linear quotient L2(x )  = x  - .4566 and a remainder whose negative, af ter  
normalizing, is 

f 3 ( x )  = x - .6645 

Finally, dividing f 2  by f ,  we find the remainder to be -.0440. Taking the negative and normalizing, 
we may choose 

f 4 @ )  = 1 

We now have our Sturm sequence and a r e  ready to search out the roots. It i s  a simple matter  to  
confirm the signs displayed in Table 25.11. They show t h a t  there is one root in  the interval ( -1 ,  O), 
one in ( 1 , 2 )  and two roots in  ( 0 , l ) .  Choosing more points within these intervals, all roots may be 
more precisely pinpointed. As with the quotient-difference algorithm, however, it is wise to  shift  
a t  a certain point to a more rapidly convergent process such a s  Newton's. A method which provides 
first estimates of the locations of all real roots, a s  the Sturm method does, is  uneconomical fo r  the 
precise determination of any one root. In  this example the roots prove to be -.5, .5, .8 and 1.6. 

Table 25.11 

changes 

25.37. Show that Newton's method will produce all the roots of the equation in the previous 
problem provided sufficiently good initial approximations are obtained. 

Fig. 25-6 below exhibits the qualitative behavior of this polynomial. Clearly any first approxi- 
mation xo < -.5 will lead to a sequence which converges upon this root, since such an xo is  already 
on the convex side of the curve. Similarly any xo > 1.6 will bring convergence to the largest root. 
Roots t h a t  a re  close together ordinarily require accurate s tar t ing approximations. The sinl- 
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plicity of the roots in this example 
may be ignored in order to see how 
a m o r e  o b s c u r e  p a i r  m i g h t  be 
separated. From the diagram i t  is ap- 
parent that  an xo slightly below .5 will 
bring convergence to .5, while an so 
slightly ibove .8 will bring convergence 
to .8, since in both cases we start on the -1 2 
convex side. Notice that  starting with 
x0 = .65, which is midway between two 
roots, means following an almost hori- 
zontal tangent line. Actually i t  leads to 
xl - 5, after which convergence to the -5.- 

root a t  1.6 would occur. This sort of 
thing can occur in a Newton iteration. Fig. 25-6 

SYSTEMS OF EQUATIONS, ITERATIVE METHODS 

25.38. Derive the formulas for  solving f ( x ,  y )  = 0, g ( x ,  y )  = 0, 

yn = y n - 1  + k n - 1  
where h and k satisfy 

These formulas are known as  the Newton method for  solving two simultaneous 
equations. 

Approximate f and g by the linear parts of their Taylor series for the neighborhood of 
( 2 , - 1 9  yn-1): 

This assumes that  the derivatives involved exist. With (s, y) denoting an exact solution, both left 
sides vanish. Defining x = xn and y = yn as the numbers which make the right sides vanish, we 
have a t  once the equations required. This idea of replacing a Taylor series by its linear part i s  
what led to the Newton method for solving a single equation in Problem 25.8. 

25.39. Find the intersection points of the circle x2 + y2 = 2 with the hyperbola x2 - y2 = 1. 
This particular problem can easily be solved by elimination. Addition brings 2x2 = 3 and 

x - k1.2247. Subtraction brings 2y2 = 1 and y = *.7071. Knowing the correct intersections makes 
the problem a simple test case for Newton's method. Take xo = 1, yo = i. The formulas for deter- 

and with n = 1 become 2h, + 2ko = 0 ,  2ho - 2ko = 1.  Then ho = -ko = 114, making 

The next iteration brings 2.5h1 + 1.5kl = u.125,  2.5h1 - 1.5k1 = 0 making hl = m.025, k l  = -.04167 
and 

x2 = x1 + hl = 1.2250, y2 = yl  + k1  = .7083 

A third iteration manages 2.45h2 + 1.4167k2 = -.0024, 2.45h2 - 1.4167k2 = .0011 making hz = 
-.0003, k2 = -.0012 and 

x3 = x2 + h2 = 1.2247, g3 = y2 + kz = .7071 
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The convergence to the correct results is  evident. I t  can be proved that  for sufficiently good initial 
approximations the convergence of Newton's method is quadratic. The idea of the method can easily 
be extended to any number of simultaneous equations. 

25.40. Other iterative methods may also be generalized for  simultaneous equations. For 
example, if our basic equations f(x, y )  = 0, g(x, y) = 0 are rewritten as 

x = F(x,Y), Y = G(x, Y) 

then under suitable assumptions on F and G, the iteration 

will converge for  sufficiently accurate initial approximations. Apply this method to 
the equations x = sin (x + y), y = cos (x - y). 

These equations are already in the required form. Starting with the uninspired initial ap- 
proximations x ,  = yo = 0, we obtain the results given below. Convergence for such poor starting 
approximations is by no means the rule. Often one must labor long to find a convergent rearrange- 
ment of given equations, and good first approximations. 

.54 .984 .932 .936 .935 .935 

A METHOD OF STEEPEST DESCENT 
25.41. What is the idea of a steepest descent algorithm? 

A variety of minimization methods involves a function S ( x ,  y )  defined in such a way that  its 
minimum value occurs precisely where f ( x ,  y )  = 0 and g(x ,  y )  = 0. The problem of solving these 
two equations simultaneously may then be replaced by the problem of minimizing S ( x ,  y). For 
example, 

S ( x ,  Y )  = [fb, y)I2 + b ( x ,  y)I2 

surely achieves its minimum of zero wherever f = g  = 0. This is  one popular choice of S ( x ,  y).  
The question of how to find such a minimum remains. The method of steepest descent begins with 
an initial approximation ( x , , ~ , ) .  At this point the function S ( x ,  y )  decreases most rapidly in the 
direction of the vector 

- gradient S ( X ,  ~ ) 1 ~ ~ ~ ~  = l-Sm -SJ lxO?10 
Denoting this by -grad S o  = [-S,,, -S,,] for short, a new approximation ( x l ,  y,) is now obtained 
in the form 

X l  = x,  - tS,o, Y1 = Yo - tS,o 

with t chosen so that  S ( x l ,  y l )  is  a minimum. In other words, we proceed from (x,, yo) in the direc- 
tion -grad S o  until S  starts to increase again. This completes one step and another is begun a t  
(x,, y l )  in the new direction -grad S1. The process continues until, hopefully, the minimum point 
is found. 

The process has been compared to a skier's _ _ - -  . 
return from a mountain to the bottom of the I 

/ ,-- \ 
\ 

valley in a heavy fog. Unable to see his goal, he / / --- \ \ 
starts down in the direction of steepest descent 
and proceeds until his path begins to climb again. 
Then choosing a new direction of steepest descent, 
he makes a second run of the same sort. In a bowl- 
shaped valley ringed by mountains it is clear that 
this method will bring him gradually nearer and 
nearer to home. Fig. 25-7 illustrates the action. , 
The dotted lines are contour or level lines, on ----/ 

which S ( x ,  y )  is  constant. The gradient direction 
is  orthogonal to the contour direction a t  each Fig. 25-7 
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point, so we always leave a contour line a t  right angles. Proceeding to the minimum of S ( x ,  y)  
along this line means going to a point of tangency with a lower contour line. Actually i t  requires 
infinitely many steps of this sort to reach the minimum, and a somewhat uneconomical zig-zag 
path is followed. 

25.42. Apply a method of steepest descent to solve the equation of Problem 25.40: 

x = sin (x + y), y = cos (x - y) 

Here we have 

S = f 2  + g2 = [ x  - sin ( x  + y)]2 + [ y  - cos ( x  - y)]2 

making $9, = [ x  - sin ( x  + y)] [l - cos ( x  + y)]  + [Y - cos ( x  - Y ) ]  [sin ( x  - y)] 

+S, = [ x  - sin ( x  + y)]  [-cos ( x  + y)]  + [y  - cos ( x  - y)]  [I  - sin ( x  - y)]  

Suppose we choose xo = yo = .5. Then -grad S o  - [.3, .6]. Since a multiplicative constant can 
be absorbed in the parameter t ,  we may take 

x1 = .5 + t ,  y1 = .5 + 2t 

The minimum of S(.5 + t, .5 -t- 2 t )  is now to be found. Either by direct search or  by setting S f ( t )  to 
zero, we soon discover the minimum near t = .3, making xl = .8 and yl = 1.1. The value of 
S ( x l ,  y l )  is  about .04, so we proceed to a second step. Since -grad S1 - [.5, -.25], we make our 
first right angle turn, choose 

x p  = .8 + 2t ,  y2 = 1.1 - t 

and seek the minimum of S ( x 2 ,  y2). This proves to be near t = .07, making x,  = .94 and y2 = 1.03. 
Continuing in this way we obtain the successive approximations listed below. The slow convergence 
toward the result of Problem 25.40 may be noted. Slow convergence is typical of this method, 
which is often used to provide good starting approximations for  the Newton algorithm. 

- - - -- - - - -- - 

The progress of the descent is suggested by path A in Fig. 25-8. 

25.43. Show that a steepest descent method may not converge to the required results. 
Using the equations of the pre- 

vious problem, suppose we choose the 
initial approximations xo = yo = 0. 
Then -grad S o  = [ O ,  21, so we take 
xl = 0 and yl = t. The minimum of 
S(0,  t )  proves to be a t  t = .55 = yl 
with S ( x l ,  y,) = .73. Computing the 
new gradient, we find -grad S1 - 
[-.2,0]. This points us westward, 
away from the anticipated solution 
near x = y = 1. Succeeding steps 
find us traveling the path labeled B 
in Fig. 25-8. Our dificulty here is  \ 
typical of minimization methods. 
There is a secondary valley near 
x = -.75, y = .25. Our first step has 

I 
left us just to the west of the pass 
or saddle point between these two 
valleys. The direction of descent a t  
(0, .55) is therefore westward and the Fig. 25-8 
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descent into the secondary valley continues. Often several starting points must be used before a 
minimum is found. 

25.44. What are some variations of the descent method? 

One may use his imagination in devising variations. A popular algorithm avoids the gradient 
computation and makes alternate steps in the directions of the x and y axes. Ideally perhaps one 
should seek a curve which is  an orthogonal trajectory of the contour or level lines S ( x ,  76) = constant, 
but this involves solving a differential equation. Taking steepest descent steps of fixed length, 
instead of proceeding until S begins to increase, is the equivalent of using Euler's method to solve 
this differential equation. Clearly there is  no scarcity of descent algorithms. 

QUADRATIC FACTORS. BAIRSTOW'S METHOD 
25.45. Develop a recursion for the coefficients b k  in 

q(x) = boxn-' + . . + bn-2 ; r ( x )  = bn-l(x -u) + bn 

when q(x) and r(x) are defined by 

Multiplying out on the right and comparing the powers of x, we have 

bo = a. 

b1 = a ,  + ubo 

b, = a k + ~ b k - l + ~ b k - 2  k = 2, ..., n 

If we artificially set b- ,  = b-, = 0,  the last recursion holds for k = 0,1,  . . . n. The bk depend 
of course upon the numbers u and v.  

25.46. How may the recursion of the previous problem be used to calculate p(x)  for a com- 
plex argument x = a + bi? (Assume the ak are real.) 

With u = 2 a  and v=-a2-b, ,  wehave x 2 - u x - v = O  so that  

p(x) = bn-l(x - 2a) + b, 

The advantage of this procedure is that  the bk are found by real arithmetic, so that no complex 
arithmetic occurs until the final step. In particular, if bn-, = bn = 0 then we have p(x)  = 0. 
The complex conjugates a 2 bi are then zeros of p(x). 

25.47. Develop Bairstow's method for using the Newton iteration to solve the simultaneous 
equations bn-~(u ,  v )  = 0, bn(u ,  v )  = 0. 

To use Newton's iteration, as  described in Problem 25.38, we need the partial derivatives of 
bn-l and b, relative to u and v.  First taking derivatives relative to u, and letting ck = a b k + l l a ~ ,  
we find c-, = C - I  = 0, c, = bo, c ,  = b,  + uco, and then 

The last .result is  actually valid for k = O , l ,  . . . , n - 1. Thus the ck are computed from the b, 
just as  the bk were obtained from the a,. The two results we need are 

Similarly taking derivatives relative to v and letting dk = abk+2/dv, we find d- ,  = d-l  = 0, then 
dl = b1 f ud,, after which 

dk = bk $. ~ d k - 1  f vdk-2 
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The latter holds for k = O , l ,  . . . , n - 2. Since the ck and dl, therefore satisfy the same recur- 
sion with the same initial conditions, we have proved ck = dk for k = 0,1, . . . , n - 2. In particular, 

and we are ready for Newton's iteration. 

Suppose we have approximate roots a* bi of p(x) = 0, and the associated quadratic factor 
x2-UX-v of p(x). This means we have approximate roots of bn-I = bn = 0 and are seeking 
improved approximations u + h, v + k. The corrections h and k are determined by 

These are the central equations of Newton's iteration. Solving for h and k, 

25.48. Apply Bairstow's method to determine the complex roots of Leonardo's equation cor- 
rect to nine places. 

We have already found excellent initial approximations by the quotient-difference algorithm (see 
Problem 25.32): uo - -3.3642, vo - -14.6033. Our recursion now produces the following bk 
and ck: 

The formulas of Problem 25.47 then produce h = 7.004608, k = -.007930 making 

Repeating the process, we next find new b, and ck: 

- - -  

These bring h = -.000 000 108, k = -.000 021 852 

u ,  = -3.368 808 108, v, = -14.611 251 852 

Repeating the cycle once more finds b, = b, = h = k = 0 to nine places. The required roots are now 

21, X2 = +u * id- = -1.684404054 2 3.431331350 i 

These may be further checked by computing the sum and product of all three roots and comparing 
with the coefficients of 2 and 20 in Leonardo's equation. 
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Supplementary Problems 
Apply the method of Problem 25.1 to the equation x = e-Z to find a root near x = .5. Show that  
starting with so = .5, the approximations x,, and xll agree to three places a t  .567. 

Apply the Aitken acceleration to earlier approximations computed in the previous problem. When 
does i t  produce three place accuracy? 

Rewrite the equation x3 = x2 + x + 1 as x = 1 + 11% + 11x2 and then use an iteration of the sort 
in Problem 25.1 to find a positive root. 

Apply Newton's method to the equation of Problem 25.49. How many iterations are needed for 
three place accuracy? For six place accuracy? 

Apply Newton's method to the equation of Problem 25.51. 

Find the square root of 3 to six places. 

Find the fifth root of 3 to six places. 

Show that  Newton's method applied to f(x) = l /x  - Q = 0 leads to the iteration x, = 
~ , - ~ ( 2  - QX,-~)  for producing reciprocals without division. Apply this iteration with Q = 
e - 2.7182818, starting with xo = .3 and again starting with xo = 1. One of these initial ap- 
proximations is not close enough to the correct result to produce a convergent sequence. 

Apply regula falsi to the equation of Problem 25.49, starting with the approximations 0 and 1. 

Apply the method of Problem 25.18 (quadratic interpolation) to the equation of Problem 25.49. 

Apply the quadratic interpolation method to Leonardo's equation. 

Use Bernoulli's method to find the dominant (real) root of the Fibonacci equation x2 - x - 1 = 0. 

Apply Bernoulli's method to the equation of Problem 25.31. 

Apply Bernoulli's method to find a dominant pair of complex conjugate roots of 

4x4 + 4x3 + 3x2 - x - 1 = 0 

Use the quotient-difference method to find all the roots of the equation of Problem 25.36. 

Use the quotient-difference method to locate all the roots of the equation of Problem 25.62. 

Use a Sturm sequence to show that  36x6 + 36x5 + 23x4 - 13x3 - 12x2 3- x + 1 = 0 has only four 
real roots, and to locate these four. Then apply Newton's method to pinpoint them. 

Use a Sturm sequence to show that  288x5 - 720x4 + 6 9 4 9  - 321x2 + '71% - 6 = 0 has five closely 
packed real roots. Apply Newton's method to determine these roots to six places. 

Use the iterative method to find a solution of 

x = .7 sin x 4- .2 cosy, y = .7 cos x - .2 sin y 
near (.5, .5). 

Apply Newton's method to the system of the preceding problem. 

Apply Newton's method to the system x = x2+ yZ, y = 2 2 -  y2 to find a solution near (.8, .4). 

Apply the method of steepest descent to the system of the previous problem. 

Apply the method of steepest descent to the system of Problem 25.67. 

Given that 1 is an exact root of x3 - 2x2 - 5% + 6 = 0, find the other two roots by deflation to a 
quadratic equation. 
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25.73. Find all the roots of x4+ 2x3+ 7x2- 11 = 0 correct to six places using a deflation method sup- 
ported by the Newton and Bairstow iterations. 

25.74. Apply the Bairstow method to xd - 3x3 + 20x2 + 442 + 54 = 0 to find a quadratic factor close 
to x2 + 2x + 2. 

25.75. Find the largest root of x4 - 2.03799 - 15.424522 + 15.6696% + 35.4936 = 0. 

25.76. Find two roots near x = 1 of 2x4 + 16sa + $2 - 74% + 56 = 0. 

25.77. Find any real roots of 9 = x + 4. 

25.78. Find a small positive root of xl.8"2 = 5.2171% - 2.1167. 

25.79. Find a root near x = 2 of x = 2 sin x. 

25.80. Find a complex pair of roots with negative real part  for xl - 3x3 + 20x2 + 442 + 64 = 0. 

25.81. Find a solution of the system 
x = sin x cosh y, y = cos x sinh y 

near x = 7, y = 3. 

25.82. Solve the system 2 4  + 9 - 67 = 0, 03 - 3xy2 + 35 = 0 near x = 2, y = 3. 

25.83. Find the minimum for positive x of y = (tan x)/x2. 

25.84. Where does the curve y = e-2 log x have an inflection point? 

x2 53 $4 
25.85. Find the smallest positive root of 1 - x + - - - + - - . . . = 0. 

(2!)2 (3!)2 (4!)2 

25.86. Find the maximum value of y(x) near x = 1, given that sin (xy) = y - x. 

25.87. Find to twelve digits a root near 2 of & - x = 10. 

25.88. Find the smallest real root of e-2 = sin x. 

25.89. Split the fourth degree polynomial x4 + 5x3 + 3x2 - 5x - 9 into quadratic factors. 

25.90. Find a root near 1.5 of x = 4- sin x. 

25.91. Find all the r0ot.s of 2x3 - 13x2 - 22% + 3 = 0. 

25.92. Find a root near 1.5 of x6 = x4 + x3 + 1. 

25.93. Find two roots near x = 2 of x4 - 5x3 - 12x2 + 76% - 79 = 0. 



Linear Systems 

SOLUTION OF LINEAR SYSTEMS 
Solving linear systems may very well be the foremost assignment of numerical analysis. 

Much of applied mathematics reduces to a set of equations, or linear system, 

with the matrix A and vector c given, and the vector x to be determined. An extraordinary 
collection of algorithms for achieving this has been developed, of which we select three 
methods to be presented in this chapter. The variety of algorithms indicates that the ap- 
parently elementary character of this problem is deceptive. There are many pitfalls. 

1. Gaussian elimination is by far  the most heavily used algorithm. It involves replacing 
equations by combinations of equations, in such a way that a triangular system is 
obtained. 

X I  + ff12X2 + ' ' f ff1.n-1Xn-1 $ fflnxn = c ; 

After this the components XI, . . . , xn of the vector x are easily found, one after the other, 
by a process called back-substitution. The last equation determines xn, which is then 
substituted in the next-last equation to determine xn-I, and so on. 

The Gauss algorithm is also used to prove the fundamental theorem of l inear algebra, 
which deals with the question whether or not a solution exists. The main part of this 
theorem guarantees a unique solution of Ax = c precisely when the corresponding 
homogeneous system Ax = 0 has only the solution x = 0. Both systems, as well as 
the coefficient matrix A, are then called nonsingular. When Ax = 0 has solutions other 
than x = 0, both systems and the matrix A are singular. In this case Ax = c will 
have either no solution a t  all or else an infinity of solutions. Singular systems have 
their principal application in eigenvalue problems. Generally speaking the algorithms 
of this chapter, except those designed for eigenvalue problems, should not be applied 
t o  singular systems, since unavoidable roundoff errors can easily have an effect equiv- 
alent to the replacement of the given, singular system by an "almost identical" non- 
singular system. A computed "solution" may then be produced where, for instance, 
none actually exists. 

2. The Gauss-Seidel method is another heavily-used algorithm. It resembles the iterative 
methods for finding roots of nonlinear equations. The given system is reshaped in the 
form 
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often by solving the ith equation for x,. An initial approximation to all the xi now 
allows each component to be corrected in its turn, and when the cycle is complete to 
begin another cycle. Under certain circumstances the algorithm is convergent and 
competes with Gaussian elimination. I t  is a typical member of the broad class 01 

3. Relaxation methods, in which the residual vector 

is used as a measure of how well the approximate solution vector x'"' satisfies the system 
and how large the next correction to each component should be. If R has small com- 
ponents then the system is almost satisfied by x("). I t  is important to notice, however, 
that  the difference 

A-1R = x ( n )  - A-lc 

between xCn) and the exact solution vector A-lc  (where A-I is the inverse matrix) may 
still have large components, even though R is small. This will occur for ill-conditioned 
systems. In spite of this flaw relaxation methods are popular, since the residual vector 
R is an accessible measure of accuracy while finding A-I is usually a much larger com- 
putational affair. 

None of these methods should be used blindly. The presence of pitfalls, a s  suggested 
above, should be kept in mind. Applying any method to a singular system may lead to 
results already described. But nearly-singular systems, often called unstable or ill- 
conditioned, can cause just as  much trouble. Such systems are extremely sensitive to small 
changes in the components of A and c, which cause large changes in the solution vector x. 
The instability may be so severe that  even ordinary roundoff errors are enough to dis.tol*t 
the solution, and make i t  useless, or to replace the given system by an "almost identical" 
singular system. Fortunately, if severe instability is present evidence of i t  often appears 
during the course of a soIution algorithm. Unfortunately, this evidence is not always 
recognized in time. Moreover, for extremely large systems the algorithms involve millions 
of arithmetical operations, and the accompanying internal roundoffs may have an effect 
very much like that  of instability, even in a stable system. 

MATRIX INVERSION 
Matrix inversion is a companion problem to the solution of linear systems. If a matrix 

A-I can be found such that A-'A = I, then the solution of A x  = c will be z = A-'c for 
any vector c. Of the abundant supply of inversion methods three will be illustrated. 

1. Gaussian elimination may be applied to the system 

A X  = I 

treating the columns of I simultaneously as so many c vectors, with the columns of X 
the corresponding solution vectors. Naturally, X = A-l. 
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2. An exchange method first solves some equation, say the ith, for some component, say 
xk ,  and then uses the result to eliminate xk from the remaining equations. The effect 
can be viewed as an exchange of the roles of s and xk. After n such exchanges in an 
n X n system the roles of the x  and c vectors have been completely reversed and the 
system appears as  A-lc = x. 

3. An iterative method is based on the identity 

A-' = ( I + R + R 2 +  - - . ) B  

where R = I - BA. If B  is a sufficiently good first approximation to A-', the series will 
converge and the partial sums produce better and better approximations. 

EIGENVALUE PROBLEMS 

Eigenvalue problems require that we determine numbers A such that the linear system 
Ax = Ax will have solutions other than x  = 0. These numbers are called eigenvalues. 
The corresponding solutions, or eigenvectors, are also of interest. We choose four methods 
of approach. 

1. The characteristic polynomial of a matrix A  has as its zeros the eigenvalues of A. 
A direct procedure, resembling Gaussian elimination, for finding this polynomial will 
be presented. Finding its zeros, by the algorithms of nonlinear algebra (Chapter 25), 
each in its turn may be substituted for A in the given system Ax = Ax. This now 
becomes a singular system, and any solution may be multiplied by an arbitrary constant 
to form another solution. Accordingly, we may specify the value of some component, 
perhaps X I  = 1, and then solve the reduced system by the methods just presented for 
linear systems. 

2. The power method generates the vectors 

where V is an almost arbitrary starting vector, and produces the dominant eigenvalue 
with its eigenvector. For large values of p it proves that x(*) is nearly an eigenvector 
corresponding to the dominant 

, X ( ~ " l ' A X ( ~ ) / X ( ~ ) T X ( ~ )  

where T denotes the transposed vector. This formula for A is known as the Rayleigh 
quotient. Modifications of this process lead to the absolutely smallest and to certain 
next-dominant eigenvectors. 

3. The Jacobi method subjects a real, symmetric matrix A  to a sequence of simple trans- 
formations which do not alter the eigenvalues. Each transformation is based on a 
rotation matrix 

cos 4, -sin 4, 
Ok = [ sin cp, cos cp, 

and after n such steps A will have been transformed into 

By proper selection of the 4, this approaches diagonal form with the eigenvalues on the 
diagonal. The eigenvectors are the columns of 01 0 2  0 3  a . . 

4. The Givens method uses similar transformations to reduce A  to triple diagonal form, 
and achieves this in a finite number of steps. It  then generates the characteristic 
polynomial in a way which simultaneously provides a Sturm sequence for finding the 
real roots. The eigenvectors then follow easily from the product of the rotation 
matrices. 
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COMPLEX SYSTEMS 
Complex systems may be exchanged for equivalent, and larger, real systems. Thus, 

comparing real and imaginary parts- of 

( A  + iB) (x  + iy) = a + ib 

leads to [.* -:I(:) = (:) 
to which our real algorithms apply. The inversion problem 

( A  +iB)(C+iD) = I 

responds to similar treatment. Eigenvalue problems could also be approached in this way, 
but alternatives which avoid increasing the size of the system seem preferable. (See Prob- 
lem 26.45 and 26.46.) 

Solved Problems 
GAUSSIAN ELIMINATION 

26.1. Illustrate the method of Gaussian elimination for solving linear systems. Use the 
following equations. 

X I  + +xZ + Q x ~  = 1 

This method is one of the oldest, and still perhaps the best, for the treatment of linear systems. 
Its objective is to reduce the matrix of coefficients on the left to a triangular form in which the main 
diagonal (NW to SE) consists of ones, with all coefficients below the diagonal zero. This is achieved 
by replacing the given equations by suitable combinations of themselves. First  the largest coefficient 
in absolute value is located, and brought to the upper left corner by interchanges of equations and 
columns. This coefficient is called the first pivot. In the present example i t  is already in place. 
The first equation is then divided through by the pivot, reducing the main diagonal entry to one. 
In the present example this coefficient is already a one. Now the remaining coefficients in column 
one are reduced to zero. Multiply the first equation by Q and subtract from the second; then multiply 
the first equation by Q and subtract from the third. The result is  this new system: 

This completes the first stage of the elimination algorithm and we now apply the same process 
to the smaller system which results from deleting the new first row and column. Although we should 
begin by locating the absolutely largest coefficient and bringing i t  to the upper left corner of the 
reduced matrix, for this miniature system i t  is not worth the bother. (The use of large pivots is a 
device intended to reduce roundoff error accumulation in the treatment of large systems. Here 
our system is  tiny and we are doing our computations exactly.) With 1/12 as  our second pivot the 
second stage of the elimination algorithm produces these two equations, 
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The third stage merely involves reducing the last pivot to one and we then have the triangular 
system 

2, + 4x2 + Qx3 = 1 

Having triangularized the original system, the Gaussian algorithm now discovers the "un- 
knowns" xl, x2, x, by back substitution. Beginning with the last equation we find successively 

This combination of triangularization plus back substitution is  known as Gaussian elimination. 
In serious applications the computations will not usually be done in exact fractional form, and 
using the absolutely largest coefficient in each stage as  the pivot is of some importance. 

26.2. Approximately how many multiplications and divisions are performed in carrying 
out the Gauss algorithm for a set of n equations? 

Counting just these operations, ignoring additions and subtractions, is justified by the remark 
that these are the time-consuming and error-producing parts of the algorithm. If we also focus 
our attention on the coefficient matrix, ignoring the right hand side of our equations, then the 
count runs as  follows. To reduce the first pivot to 1 requires n - 1 divisions across the pivot row. 
Then to reduce the other elements in the pivot column to 0's requires a similar n - 1 multiplications 
per element. The total is (n-  1)2 operations. Similar counts for the successively smaller steps 
which follow lead to the grand total of 

For large n this is approximately Qn3 which is  commonly used as an indicator of the size of the 
problem. Recalling that  roundoff error accumulation is roughly dependent upon the square root 
of the number of operations, one sees that  even for n = 7 errors may be multiplied by factors of 
ten, losing perhaps one significant digit. In the treatment of large systems error growth is a sub- 
stantial factor. 

26.3. Rework Problem 26.1 under the assumption that a computer capable of carrying 
only two significant digits a t  a time is to do the computations. Since any computer 
has some limit to the number of digits it can carry, this will illustrate by overemphasis 
what happens to some extent in any such computation. 

The given equations are now replaced by these: 

Using 1.0 as pivot, one step now leads to 

.08x2 + .08x3 = -.50, .08x2 + .09x3 = -33 

The coefficients .08 and .09 appear to only one significant digit since they come to us as differences 
such as .33 - .25 and .20 - .11. This loss of digits in subtraction is  common and troublesome. If 
we once again omit the exchanges involved in bringing the largest coefficient of .09 into pivot 
position (which in this case would actually lead to more roundoffs and poorer results), then after 
a second step we have 

1 . 0 ~ ~  + 1 . 0 ~ ~  = -6.3, .01x3 = .17 

after which back substitution brings 

x3 = 17, x2 = -23, xl = 7.0 

Comparing with the correct results (30, -36, 9) we see sizable errors. The severe limitation on our 
computer, coupled with the fact that  the matrix of coefficients in this system is one of the family 
of Hilbert matrices (see Problem 21.24, page 247) which are notoriously troublesome, makes this 
example a dramatic illustration of what can happen. Ordinarily one should not expect error to be 
quite so overwhelming. 
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26.4. Define residuals and show how they may be used in a method of successive approxima- 
tions to the solution of a linear system. 

Let the given system be 

z aikxk - ci = o i = 1 ,2 .  . . . , n  
k=1 

and suppose t h a t  X I ,  X2,  . . . , Xn a r e  approximations to the xk. The numbers 
n 
2 aikXk - ci = Ri 

k=l 

are called the residuals associated with these approximate values. F o r  the correct xk all residuals 
are  zero. Let hk = xk - X k  and subtract the above equations to find 

This system of equations has the same matrix of coefficients aik a s  the original system. Repeating 
the Gaussian algorithm we may solve for  the corrections hk a t  little cost, only the right hand sides 
requiring treatment. Since the hk a r e  (hopefully) small, the issue of roundoff error  may not be 
so troublesome a s  before and the values X k  + hk will usually be improved approximations. 

Apply the method of Problem 26.4 to the system of Problem 26.3. 
Fi rs t  the residuals a re  computed: 

R 1  = 7.0 - 12 + 5.7 - 1.0 = 0.0 

R2 = 3.5 - 7.7 + 4.3 - 0.0 = 0.1 

R 3  2.3 - 5.8 + 3.4 - 0.0 = -0.1 

Actually, the order of computation in R 1  is  not immaterial here. Different orders produce differing 
results. Proceeding with what we have, the system to solve i s  a s  follows. 

l.Ohl + .50h2 + .33h3 0.0 

.sohl f .33h2 + .25h3 = -0.1 

.33h1 + .25h2 + .20h3 = 0.1 

The Gaussian algorithm retains the first equation and exchanges the other two for  these: 

l.Ohl + 1.0h2 = -1.3, l .0h3 = 20 

The corrections a r e  therefore h3 = 20, h2 = -21, h1 = 4 making the new approximations xl  = 37, 
x2 = -44, x3 = 11. Comparisons show tha t  even under the severe conditions imposed here (a bad 
matrix and a two-digit computer) there has been substantial improvement. The thought of repeating 
the process naturally arises, and ordinarily i t  might be worth pursuing. Here, however, our 
two-digit computer finds the new residuals to be all zero, which blocks fur ther  progress. The fac t  
that  all residuals may be zero to two digits without the solution being correct to  two digits, should 
be carefully noted. Generally speaking small residuals and small errors go together, but fo r  some 
matrices the relationship is disappointingly loose. 

Prove the fundamental theorem of linear a l g e b r a ,  which states that the system 
n 

2 a i k x k  = ci has a unique solution precisely when the associated homogeneous sys- 
k=l n 

tern C a i k x k  = o has only the zero solution, x k  = O for  all k. 
k=1 

Apply the Gauss algorithm. If i t  can be continued to the end, producing the triangular sys- 
tem with 1's along the main diagonal, then back substitution produces a unique solution. If all the 
ci a r e  0 ,  then this unique solution has all the xk equal to  zero also. But  suppose the algorithm 
cannot be continued to the expected triangular end. This happens when a t  some point all candidates 
for  the role of next pivot a r e  zero. To be definite, say the algorithm has  reached the form 
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with the left sides zero beyond this point. Then in the homogeneous case, where all ci = 0, we may 
choose . . ., x, a t  random, after which the other xk are determined. But in the general case, 
unless ci+l, . . . , c, happen to be zero, there are inconsistencies and no solution is possible. If 

. . ., c, do equal zero, then once again we may choose . . . , x ,  a t  random, after which the 
other xk are determined. The unique solutions claimed in the fundamental theorem therefore exist 
precisely when the Gaussian algorithm may be completed. When i t  can not be completed there is 
either no solution a t  all, or else there is an infinite set of solutions. 

THE GAUSS-SEIDEL ITERATION AND OVER-RELAXATION 
26.7. Occasionally it is convenient to use a method other than 

the Gauss elimination algorithm for solving a linear sys- 
tem. Illustrate the iterative method using the following 
problem. A dog is lost in a square maze of corridors 
(Fig. 26-1). At each intersection he chooses a direction 
at random and proceeds to the next intersection, where he 
again chooses a t  random and so on. What is the prob- 
ability that a dog starting a t  intersection i will eventually 
emerge on the south side? 

Suppose there are just nine interior intersections, as shown. 
Let P1 stand for the probability that  a dog starting a t  intersection Fig. 26-1 

1 will eventually emerge on the south side. Let Pz, . . .,P9 be similarly defined. Assuming that  
a t  each intersection he reaches, a dog is as  likely to choose one direction as  another, and that  having 
reached any exit his walk is over, probability theory then offers the following nine equations 
for the P,. 

P I  = i(O $ 0 f P 2 $  P4) P4 = &(PI + 0 + P5 f P7) P7 = $(P4 f 0 f Pa + 1) 

P2 = &(O + PI f P3 f P5) P5 = &(P2 + P4 + P6 + Pa) P8 = &(P5 + P7 + Pg + 1) 

P3 = &(O f P2 + 0 $ P6) P6 = &(P3 f P5 + 0 f Pg)  Pg = &(P6 + P8 f 0 + 1) 

Leaving the equations in this form, we choose initial approximations to the Pk. I t  would be possible 
to make intelligent guesses here, but suppose we choose the uninspired initial values Pk = 0 for 
all k. Taking the equations in the order listed we con~pute second approximations, one by one. 
First P1 comes out zero. And so do P,, P,, . . ., P,. But then we find 

P,  = & ( O + O f O + l )  = & P8 = ~ ( O $ & f O + l )  = 3- 1 6  P, = ~ ( O $ - L + O + l )  4 1 6  = 

and the second approximation to each Pk is in hand. Notice that in computing Pa and P9, the newest 
approximations to P,  and P ,  respectively have been used. There seems little point in using more 
antique approximations. This procedure leads to the correct results more rapidly. Succeeding ap- 
proximations are now found in the same way, and the iteration continues until no further changes 
occur in the required decimal places. Working to three places, the results of Table 26.1 are obtained. 
Note that P5 comes out .250, which means that one-fourth of the dogs starting a t  the center should 
emerge on the south side. From the symmetry this makes sense. All nine values may be substituted 
back into the original equations as  a further check, to see if the residuals are small. 

Iteration 

10  

Pl pz p ,  p4 p5 P6 p ,  pa p9 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 .250 .312 .328 
0 0 0 .062 .078 .082 .328 .394 .328 

.016 .024 .027 .lo6 .I52 .I27 .375 .464 .398 

.032 .053 .045 .I40 .I96 .I60 .401 .499 .415 

.048 .072 .058 .I61 .223 .I74 .415 ,513 .422 

.058 .085 .065 .I74 .236 .I81 .422 .520 .425 

.065 .092 .068 .I81 .244 .I84 .425 .524 .427 

.068 .095 .070 .I84 .247 .186 .427 .525 .428 

.070 .097 .071 .I86 .249 .I87 .428 .526 .428 

.071 .098 .071 .I87 .250 .I87 .428 .526 .428 

Table 26.1 
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26.8. Under what circumstances may one expect the iterative method of the previous prob- 
lem to converge to a correct solution? 

There is no single easy-to-apply condition for  convergence, suitable f o r  all situations. But  
there a r e  several known results, adequate fo r  certain types of matr ix which often arise. With the 
system written in the form x = Bx  + c, fo r  example, and x  the vector to  be determined, if all the 
elements of B are  non-negative (such a matrix is  called a non-negative matrix) and if the initial 
approximation vector xo is such tha t  each of its components is no greater than the corresponding 
component of Px,, then the iterations increase monotonically to a solution. This is the situation 
in Problem 26.7, with x  = ( P I ,  P,, . . ., P,) and xo the zero vector. 

Again, if the system is  written in the form A x  = b ,  then convergence is  assured f o r  any xo 
if A  is a symmetric positive, definite matr ix (all i t s  eigenvalues positive). An important special 
case of this is the "dominant diagonal" matrix, in which the diagonal element of each row exceeds 
the sum of absolute values of all other elements of tha t  row. Such a matrix can be proved positive 
definite. The A  matrix of Problem 26.7 also qualifies in  this respect, a s  may be seen by rearrange- 
ment of the system. 

26.9. What is a relaxation method? 

Any method in which a new approximation is  obtained from the previous approximation and 
its residuals, may be called a relaxation method. The central idea is  tha t  the residuals a re  used 
as  indicators of how large the corrections should be. The Gauss-Seidel iteration can be viewed a s  
a relaxation method under this fair ly  broad definition. For, let each equation be divided by i ts  
(dominant) diagonal element. Call the matrix of coefficients A  and suppose it split into 

where L  has the same lower triangle a s  A  but is  otherwise zero, Z is the unit matrix, with diagonal 
1's but otherwise zero, and U has the same upper triangle a s  A  but is otherwise zero. Then the 
Gauss-Seidel method may be expressed in matrix form as 

where c is the vector formed from the ci and x  is the vector formed from the x,. The term Lx (n+l ) ,  
in spite of i ts  superscript, involves only known quantities since L  has  lower triangular form and 
the relevant par ts  of x (n+l )  will have been computed. The expression in brackets i s  closely related 
to  the residual vector A x ( n )  - c. (These various vectors a re  usually taken in matrix algebra to be 
column vectors and we shall so consider them here. To save space however, all vectors, when 
printed explicitly, will be printed a s  rows of numbers rather  than a s  columns. This will not be a 
serious obstacle.) 

26.10. What is over-relaxation? 

Let the Gauss-Seidel algorithm be modified a s  follows. 

X(n+l )  = X ( n )  + W [ C  - Lx (n+l )  - % ( n )  - U X ( n ) ]  

The factor w is  available for  speeding convergence. I t  has  been found, i n  par t  on the basis of 
experimental evidence, tha t  for  suitably chosen w the number of successive approximations needing 
to be computed may be reduced by a factor of 100 in some cases. The modification is called 
over-relaxation. 

26.11. Apply an over-relaxation method to the system of Problem 26.7. 
Noting the slow but  steady growth of the approximations, suppose we arbitrarily choose 

w = 1.2. Then we find zeros generated a s  before until we come to 

Succeeding approximations are  found in the same way and a re  listed in  Table 26.2 below. Notice 
tha t  about half a s  many iterations a re  needed. 
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I Iteration 1 P1 P2 P3 P4 P5 Pg P7 Ps P9 

Table 26.2 

UNSTABLE OR ILL-CONDITIONED SYSTEMS 
26.12. What is meant by instability or ill-conditioning of systems? 

The term stability is used in a standard way. Stated loosely, a system of equations is  called 
stable if relatively small changes in the coefficients produce correspondingly small changes in the 
solution vector. Given two systems, 

A x = c  B y = d  
if the elements of A and B differ by little, and those of c and d  differ by little, then for a stable 
system the elements of the solution vectors x  and y will also differ by little. When this is not true 
the system is called unstable or ill-conditioned. A more precise definition of stability involves the 
concept of norms of vectors and matrices. The norm of a vector x  = (xl, . . ., x,J is usually 
defined as 

This is the Euclidean norm. The corresponding Euclidean norm of a matrix A with elements air< 
is defined as 

Other norms are also used. The details are extensive and may be found elsewhere. 

26.13. Compare the solutions of these two midget systems: 
x - y  = 1 x - y  = 1 

The corresponding solution vectors are 

(100,001; 100,000) and (-99,999; -100,000) 

and differ violently in spite of the almost identical coefficients in the system. The instability here 
is easy to interpret. Each system may be viewed as an effort to determine a position ( x ,  y) as  the 
intersection of two almost parallel lines, as  shown in Fig. 26-2. Naturally even a slight shift of 
either line can provoke a violent move of the intersection. Such systems occur often in astronomical 
problems, where nearly parallel lines cannot always be avoided, and must be carefully handled. 
In more substantial systems the cause of instability may not be so easily explained, and even the 
presence of instability has often been undetected, erroneous results having been accepted as  correct. 

l Y  
towards 

, f (100,001; 100,000) 

Fig. 26-2 
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26.14. Show that for a stable system, changing the coefficients by small amounts A&+ and 
the components of the vector c by small amounts ACi, suggests the system 

for the amounts Axj by which the solution will be altered. 
In the given system we replace the old entries by the new and have 

n 

(aij + Aai j ) (x j  S A x j )  = ci S Aci 
j = 1  

Multiplying out and ignoring Aaij Ax j  products, then recalling that  the x j  satisfy the original system 
x a i j x j  = ci, we have the required result. Because of the omitted products this determines the 
j 

Axj  only approximately. 

Apply the previous problem to compare the solutions of these systems: 

xl + 4x2 + $XS  = 1 1 . 0 ~ 1  + . 5 0 ~ 2  + . 3 3 ~ 3  = 1 

& X I  + Q X Z  + 4x3 = 0 . ~ O X I  + . 3 3 ~ 2  + 25x3 = 0 

$xl + ax2 + &x3 = o .33x1 + . 2 5 ~ 2  + 20x3 = o 
As can be seen, the only change is the replacement of 8 by .33. The correction system of the 

previous problem becomes, using the exact solution found in Problem 26.1 to obtain the right hand 
column, 

A X ,  + 4 AX,  + $ Ax3 = -.03 

* A x l  + & A x 2  + & A x 3  = .12 

Q Axl  + $Ax2 + & Ax3 = -.lo 

which may be solved exactly to yield the solution (-7.59, 42.12, -40.50). Obviously the "corrections" 
are not small, so that the very use of the procedure of Problem 26.14 has doubtful validity. Even 
so, we have here very strong evidence that  the original system of equations is  unstable. I t  may 
be recalled that  in Problem 26.3 and 26.5 we found some difficulty in solving this system on a 
two-digit computer. 

Show that the system 

in which the coefficients form what is known as Wilson's matrix, is badly unstable. 
The solution is (1,1,1,1) .  If the vector on the right is changed to (32.1, 22.9, 32.9, 31.1) then 

the solution is (6, -7.2, 2.9, -.I). If the vector on the right is  changed to (32.01, 22.99, 32.99, 31.01) 
then the solution is  (1.50, .18, 1.19, .89). The changes in the solution are substantially greater then 
the changes made in the system itself. 

MATRIX INVERSION BY ELIMINATION 
26.17. Show how the Gauss elimination algorithm may be extended to produce the inverse 

of the coefficient matkix A, that is, the matrix A-I such that AA-I = I. 
The system of Problem 26.1 may serve as  an illustration. In that  problem the column vector 

on the right side was (1,0,O), which we now call U1.  Similarly let U2 and U3 be the column vectors 
(0 ,1 ,0 )  and (0,0,1) .  Essentially we now solve three linear systems a t  once, the right sides being 
these three column vectors. The starting point is the rectangular array 

1 + * 1 0 0  

+ * & 0 1 0  

Q * & 0 0 1  
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the left half of which is the matrix of coefficients A, the right half being the unit matrix I. Choosing 
the upper left 1, as first pivot, the first Gaussian step now leads to the new array 

1 * 1 0 0  

1 - 1 1 0  0 1 - 
1 2  1 2  2 

4 -1 0 1 -  
1 2  45 3 O 

each of the last three columns being treated as Ul was treated in Problem 26.1. Choosing the 
diagonal as  second pivot (the three &'s make it very hard in such a short computation to obey 
our rules and choose the slightly larger 4/45), a second Gaussian step produces 

1 1  I 2 3 1 0 0 

0 1 1 -6 12 0 
1 

O o m I  - I 6 -1 1 

and the new coefficient matrix a t  the left is  in triangular form. Back substitution could now be used 
to yield the three solution vectors XI, X,, X3 corresponding to U1, U,, U,. 

However, a further continuation of the Gauss algorithm is popular. Subtracting half of row two 
from row one produces 

1 0 -4 4 -6 0 

and column 2 has become U,. The third Gaussian step now follows and is extended to convert 
column 3 into U,. 

1 0 0  9 -36 30 

This is the final array. Back substitution is  now trivial and shows that the last three columns are 
X,,X, and X3. The inverse matrix is therefore 

as  may easily be verified. Note that  in this algorithm the method of Gaussian elimination converts 
the array [A, I ]  into [I, A-11. 

26.18. Apply the inverse matrix to solve a linear system. 
Knowing A-1, we may a t  once write the solution of the system Ax = c in the form z = A-lc 

from which the components of x are found by matrix multiplication. For example, the system 

appeared in Problem 26.15. Its exact solution was claimed to be (-7.59, 42.12, -40.50). This solu- 
tion can now be found directly from 

-36 

x = [-.: 192 

30 -180 180 - . lo  

For instance, x1 = (9)(-.03) + (-36)(.12) + (30)(-.lo) = -7.59 and similarly for x, and x,. 
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26.19. When is i t  convenient to compute the inverse matrix? 
If several systems of equations, having the same coefficient matrix A but different c vectors, 

must be solved, then i t  becomes economical to find the inverse matrix first. Finding A-1 is  the 
equivalent of solving three systems, but its possession then allows other systems to be solved a t  the 
cost of only a few multiplications and additions. Occasionally other reasons for computing A-1 
may exist. 

MATRIX INVERSION, THE EXCHANGE METHOD 

26.20. Derive the formula for making an exchange step in a linear system. 
Let the linear system be A x  = c, or 

n 

aikXk = ci, i = 1, . . .  , n  
k=l 

The essential ingredients may be displayed as in this array for n = 3. 

We proceed to exchange one of the "dependent" variables (say c,) with one of the independent 
variables (say x3). Solving the second equation for x3, x3 = (c2 - aZlxl - a22x2)/a23. This requires 
that the pivot coefficient a,, not be zero. Substituting the expression for x3 in the remaining two 
equations brings 

The array for the new system, after the exchange, is as follows. 

2 1  $2 C 2  

This may be summarized in four rules: 

1. The pivot coefficient is replaced by its reciprocal. 

2. The rest of the pivot column is  divided by the pivot coefficient. 

3. The rest of the pivot row is divided by the pivot coefficient with a change of sign. 
alkaim 

4. Any other eoefficient (say a,,) is replaced by a,, - -- where aik is the pivot coefficient. 
ai k 

26.21. Illustrate the exchange method for finding the inverse matrix. 

Once again we take the matrix of Problem 26.1. 

2 1  2 2  x3 
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For error control i t  i s  the practice to choose the largest coefficient for the pivot, in this case 1. 
Exchanging el  and x,,  we have this new array: 

Two similar exchanges, of c3 and x3, then of c2 and x2, lead to the two arrays shown below. In each 
case the largest coefficient in a c row and an x column is used as  pivot. 

Since what we have done is to exchange the system c = A x  for the system x = A - l c ,  the last 
matrix is A - 1 .  

MATRIX INVERSION, AN ITERATIVE METHOD 

26.22. Derive the formula A-1 = (I + R + R2 + - - ) B  where R = I - BA. 
The idea here is  that  B is an approximate inverse of A, so that  the ,residua1 R has small ele- 

ments. A few terms of the series involved may therefore be enough to produce a much better 
approximation to A-1. To derive the formula note first that ( I  - R)(Z + R + R2 + . - a )  = I  provided 
the matrix series is  convergent. Then I  + R + R2 + . . . = ( I  - R)-1 and so 

which reduces to A-1. 

26.23. Apply the formula of the preceding problem to the matrix 

1 10 

A = [: : i] 
assuming only a three-digit computer, perhaps a slide rule, is available. Since any 
computer carries only a limited number of digits, this will again illustrate the power 
of a method of successive corrections. 

First  we apply Gaussian elimination to obtain a first approximation to the inverse. The three 
steps, using the largest pivot available in each case, appear below along with the approximate 
inverse B which results from two interchanges of rows, bringing the bottom row to the top. 

.1 1 .I .1 0 0 

2.0 0 1.0 0 1 0 

2.7 0 1.7 -.3 0 1 

Step 1 

1 0 0 .427 2.43 -1.43 

Step 3 

0 1 .037 .I11 0 -.0371 

0 0 -.260 .222 1 -.742 

1 0 .630 -.I11 0 .371 

Step 2 

Lp.854 -3.85 2.85 _] 
The Matrix B 
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Next we easily compute 
.003 .020 .003 

R = I - B A  = 

after  which RB, B + RB, R2B = R(RB) and B + RB + R2B a r e  found i n  t h a t  order. (Notice t h a t  
because the elements in R2B are  so small, a factor of 10,000 has been introduced for  simplicity in 
presentation.) 

,001580 -.001400 .001400 

-.000143 -.000143 ,000143 

-.003140 -.007110 .007110 

R B  
I 

Notice t h a t  except in the additive processes, only three significant digits have been carried. Since 
the exact inverse is  

i t  can be verified t h a t  B + R B  + R2B is  a t  faul t  only in  the seventh decimal place. More terms of 
the series formula would bring still fur ther  accuracy. This method can often be used to improve 
the result of inversion by Gaussian elimination, since t h a t  algorithm i s  f a r  more sensitive to 
roundoff error  accumulation. 

EVALUATION OF DETERMINANTS 
26.24. Direct evaluation of a determinant of order n requires the computation of n !  terms. 

This is prohibitive except for the smallest integers n. How can the Gauss elimination 
algorithm produce the value of a determinant more economically? 

From the properties of determinants no step in the Gauss algorithm alters the value of the 
determinant of the coefficient matrix except division by each pivot element and interchanges of 
rows or columns. The determinant of the resulting matrix is  1, since this has  a zero lower triangle 
and diagonal ones. The value of the original determinant is  therefore the product of the pivots, 
modified in sign if a n  odd number of column and row interchanges have been made. The size of the 
evaluation job has thus been reduced to the order of n3/3. 

26.25. Find the determinant of the coefficient matrix of Problem 26.1. 
The pivots were 1, 1/12 and 11180. Their product is 112160. No rows or  columns were inter- 

changed, so there is no modification of sign. This small determinant partly accounts for  the 
troublesome character of this matrix. A zero determinant would result f rom a zero pivot, and 
would mean non-uniqueness of the solution, or non-existence. (See Problem 26.6.) A small deter- 
minant suggests tha t  in  some sense we a r e  close to this singular case. 

26.26. Evaluate the determinant of the matrix A in Problem 26.23. 
One easily finds directly for  this small matrix tha t  the determinant equals -7. The three pivots 

used in our elimination algorithm were 10, 2.7 and -.26. Their product is -7.02, which i s  reason- 
able since we were limited to three digit arithmetic. Note t h a t  since two interchanges of rows were 
required to bring the bottom row to the top, no modification of sign need be made. 
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EIGENVALUE PROBLEMS, THE CHARACTERISTIC POLYNOMIAL 
26.27. What are eigenvalues and eigenvectors of a matrix' A ? 

A number X for which the system A x  = Xx or ( A  - XZ)x = 0 has a nonzero solution vector x 
is  called an eigenvalue of the system. Any corresponding nonzero solution vector x is called an 
eigenvector. Clearly, if x is an eigenvector then so is  C x  for any number C. 

26.28. Find the eigenvalues and eigenvectors of the system 

which arises in various physical settings, including the vibration of a system of three 
masses connected by springs. 

We illustrate the method of finding the characteristic polynomial directly and then obtaining 
the eigenvalues as roots of this polynomial. The eigenvectors are then found last. The first step 
is to take linear combinations of equations much as in Gaussian elimination, until only the x3 
column of coefficients involves A. For example, if E l ,  E ,  and E 3  denote the three equations, then 
-Ez + XE3 is  the equation 

X l  - 2x, + ( 1  + 2X - Q)x3 = 0 

Calling this E4,  the combination E l  - 2E2 + XE4 becomes 

4x,  - 52, + (2  + X + 2x2 - X3)x3 = 0 

These last two equations together with E 3  now involve X in only the x3 coefficients. 

The second step of the process is to triangularize this system by the Gauss elimination algorithm 
or its equivalent. With this small system we may take a few liberties as to pivots, retain 

X I  - 2x2 + (1  + 2X - @)x3 = 0 

as our first two equations and soon achieve 

(4 - 10X + 6X2 - X3)x3 = 0 

to complete the triangularization. To satisfy the last equation we must avoid making x ,  = 0 ,  
because this a t  once forces x2 = x1 = 0 and we do not have a nonzero solution vector. Accordingly 
we must require 

4 - 10X + 6h2 - X 3  = 0 

This cubic is  the characteristic polynomial, and the eigenvalues must be its zeros since in no other 
way can we obtain a nonzero solution vector. By methods of an earlier chapter we find those 
eigenvalues to be X 1  = 2 - fi, A, = 2,  X 3  = 2 + fi in increasing order. 

The last step is  to find the eigenvectors, but with the system already triangularized this involves 
no more than back substitution. Taking X I  first, and recalling that  eigenvectors are determined 
only to an arbitrary multiplier so that  we may choose x3 = 1, we find z, = fi and then xl = 1. 
The other eigenvectors are found in the same way, using X 2  and AS. The final results are 

In this case the original system of three equations has three distinct eigenvalues, to each of which 
there corresponds one independent eigenvector. This is the simplest, but not the only, possible out- 
come of an eigenvalue problem. I t  should be noted that  the present matrix is both real and sym- 
metric. For a real, symmetric n X n matrix an important theorem of algebra states that 
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THE POWER METHOD 
26.31. What is the power method for producing the dominant eigenvalue and eigenvector of 

a matrix? 
Assume that  the matrix A is  of size n X n, with n independent eigenvectors V 1 ,  V 2 ,  . . . , V n  and 

a truly dominant eigenvalue X I :  lhll > lh21 2 . . - ' IhnI. Then an arbitrary vector V can be ex- 
pressed as a combination of eigenvectors, 

V = a l V l  + a2V2 + - + anVn 
I t  follows that 

A V  = a l A V 1  + a2AV2  + . . . + anAVn = alAIVl + a2A2V2 + . . + anAnVn 

Continuing to multiply by A we arrive a t  

A"V = a1h'; V 1  + a2h; V 2  + . . . + anhZV, = X :  [ a l V ,  4- a2(h2/X1)pV2 + . . + an(An/hl)PVn] 

provided a l  Z 0 .  Since h1 is  dominant, all terms inside the brackets have limit zero except the 
first term. If we take the ratio of any corresponding components of A p + V  and A P V ,  this ratio 
should therefore have limit hl.  Moreover, h;pApV will converge to the eigenvector a l V 1 .  

26.32. Apply the power method to find the dominant eigenvalue and eigenvector of the 
matrix used in. Problem 26.28: 

y 2 -1 01 

Choose the initial vector V = ( 1 , 1 , 1 ) .  Then A V  = ( 1 , 0 , 1 )  and A2V = (2 ,  - 2 ,2 ) .  I t  is  con- 
venient here to divide by 2, and in future we continue to divide by some suitable factor to keep the 
numbers reasonable. In this way we find 

A7V = 499, -140, 99), ABV = ~ ( 3 3 8 ,  -478,338) 

where c is  some factor. The ratios of components are 

and we are already close to the correct h1 = 2 + fi - 3.414214. Dividing our last output vector 
by 338, i t  becomes ( 1 ,  -1.41420,l)  approximately and this is close to the correct (1 ,  -@, 1)  found 
in Problem 26.28. 

26.33. What is the Rayleigh quotient and how may i t  be used to find the dominant 
eigenvalue ? 

The Rayleigh quotient is  xTAx/x*x, where T denotes the transpose. If A x  = Ax this collapses 
to h. If A x  - Ax then i t  is conceivable that  the Rayleigh quotient is approximately A. Under 
certain circumstances the Rayleigh quotients for the successive vectors generated by the power 
method converge to hl.  For example, let x be the last output vector of the preceding problem, 
(1 ,  -1.41420, 1 ) .  Then 

and the Rayleigh quotient is 3.414214 approximately. This is  correct to  six decimal places, suggest- 
ing that  the convergence to h, here is more rapid than for ratios of components. 

26.34. Assuming all eigenvalues are real, how may the other extreme eigenvalue be found? 
If A x  = Ax, then ( A  - qZ)x = ( h  - q)x .  This means that  A - q is  an eigenvalue of A - qZ. 

By choosing q properly, perhaps q = A,, we make the other extreme eigenvalue dominant and the 
power method can be applied. For the matrix of Problem 26.33 we may choose q = 4 and consider 

r - 2  -1 01 
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Again taking V = ( 1 , 1 , 1 )  we soon find the Rayleigh quotient -3.414214 for the vector (1 ,  1.41421, 1 )  
which is essentially ( A  - 4Z)sV. Adding 4 we have ,585786 which is the other extreme eigenvalue 
2 - fi correct to six places. The vector is also close to (1 ,  fi, I ) ,  the correct eigenvector. 

26.35. How may the absolutely smallest eigenvalue be found by the power method? 

If A x  = Ax, then A - l x  = h-1%. This means that  the absolutely smallest eigenvalue of A can 
be found as the reciprocal of the dominant of A-1 .  For the matrix of Problem 26.33 we first find 

Again choosing V = ( 1 , 1 , 1 )  but now using A-1  instead of A ,  we soon find the Rayleigh quotient 
1.707107 for the vector (1 ,  1.41418, 1 ) .  The reciprocal quotient is .585786 so that  we again have this 
eigenvalue and vector already found in Problem 26.28 and 26.34. Finding A-1  is ordinarily no 
simple task, but this method is sometimes the best approach to the absolutely smallest eigenvalue. 

How may a next dominant eigenvalue be found by a suitable choice of starting 
vector V?  

Various algorithms have been proposed, with varying degrees of success. The difficulty is  
to sidetrack the dominant eigenvalue itself and to keep i t  sidetracked. Roundoff errors have spoiled 
several theoretically sound methods by returning the dominant eigenvalue to the main line of the 
computation and obscuring the next dominant, or limiting the accuracy to which this runnerup can 
be determined. For example, suppose that in the argument of Problem 26.31 it  could be arranged 
that the starting vector V is such that  a ,  is  zero. Then hl and V 1  never actually appear, and if h, 
dominates the remaining eigenvalues i t  assumes the role formerly played by h1 and the same reason- 
ing proves convergence to h, and Vz .  With our matrix of Problem 26.32 this can be nicely illus- 
trated. Being real and symmetric, this matrix has the property that  its eigenvectors are orthogonal. 
(Problem 26.28 allows a quick verification of this.) This means that V ~ V  = a l v ; v l  so that  a ,  
will be zero if V is  orthogonal to V 1 .  Suppose we take V = ( - 1 , 0 , 1 ) .  This is  orthogonal to V , .  
At once we find A V  = ( - 2 , 0 , 2 )  = 2 V ,  so that  we have the exact h2 = 2 and V z  = ( - 1 , 0 , 1 ) .  
However, our choice of starting vector here was fortunate. 

I t  is  aImost entertaining to watch what happens with a reasonable but not so fortunate V ,  say 
V = (0 ,  1,  1.4142) which is also orthogonal to V l  as required. Then we soon find A3V - 
4.8(-1, .04, 1.20) which is something like V ,  and from which the Rayleigh quotient yields the 
satisfactory h2 - 1.996. After this however, the computation deteriorates and eventually we come 
to A2OV - c( i ,  -1.419, 1.007) which offers us good approximations once again to X 1  and V 1 .  
Roundoff errors have brought the dominant eigenvalue back into action. By taking the trouble to 
alter each vector A P V  slightly, to make i t  orthogonal to V l ,  a better result can be achieved. Other 
devices also have been attempted using several starting vectors. 

26.37. Show how a next dominant eigenvector may be found by a reduction of the matrix A. 
Let the dominant eigenvector V 1  be normalized so that its first component is one. Then 

V ,  = (1 ,  x,, . . ., 2,). Let r be the top row of the matrix A ,  that  is, r = ( a l l ,  . . . , a l n ) .  Form the 
matrix 

a l ,  . . . 

B = ( a  . . . a )  = V l  r 

Xnall xxalz 

Let the next dominant eigenvector be X2 and normalize its eigenvector so that  its first component 
is 1. (If V ,  or V ,  has a zero first element, then a different element may be normalized and the cor- 
responding row r of matrix A is used.) Then since A V l  = XIVl and A V ,  = h2V,, we find by 
considering only the row r of these products that r V 1  = hl,  r V ,  = X 2  This is a consequence of the 
normalizations. But then 
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Thus X2 is  an eigenvalue and V1 - V2 an eigenvector of A - B. Since A - B has all zeros in its top 
row while V1 - V2 has first component zero, both the first row and first column of A - B may be 
deleted. Let A2 be this reduced matrix. We then determine the dominant eigenvalue and vector of 
A2 and by attaching a zero first component get a vector which we call 2, .  Finally V,- V1 must be 
a multiple of Z1, say V2 = V1 + aZ1, and multiplying by the row vector r we find a = (Az - Xl)lrZl. 
Further reductions may be made to obtain other eigenvalues. 

26.38. Apply the reduction method to the matrix of Problem 26.28, page 348. 
Using A - 3.4142 and V1 - (1 ,  -1 .4142, l )  with the row vector r = (2 ,  -1, O ) ,  we soon find 

the reduced matrix 

Applying the power method with starting vector V = (1 ,  I ) ,  we compute A ~ V  - c(-.7071,1) after 
which there are no further changes to four places. As usual c is some constant of no interest to 
us. The Rayleigh quotient applied to this last output vector makes A, - 2.000000, correct to six 
places. And with Zl = (0 ,  -.7071,1) we compute a = -2.00002. Finally V2 - (1 ,  .00001, -1.00002) 
which, like our input approximation to V1, is  correct to four places. 

As a brief example of how the reduction may be continued, we take X2 = 2 and normalize 
( -7071 , l )  to the vector (1 ,  -1.4142). The matrix A2 is then reduced as  follows: 

Deleting the first row and column, we have the new reduced "matrix" As = [.5858]. Needless to 
say its eigenvalue is .5858 and we may choose ( 1 )  for its eigenvector. Attaching a leading zero we 
have ( 0 , l )  and computing a coefficient similar to the above a ,  namely, (.5858 - 2) / -1  = 1.4142, 
obtain (1 ,  -1.4142) + 1.4142(0,1) = (1,O) a s  a new eigenvector of A, belonging to X3 - .5858. The 
last step is to repeat our procedure for getting an eigenvalue of A. Attaching another leading zero 
brings Z2 = (0 ,1 ,O) .  Then a = (.5858 - 3.4142)l-1 = 2.8284 and finally 

JACOBI'S METHOD 
26.39. A basic theorem of linear algebra states that a real symmetric matrix A has only real 

eigenvalues and that there exists a real orthogonal matrix 0 such that 0- 'A0  is 
diagonal. The diagonal elements are then the eigenvalues and the columns of 0 are 
the eigenvectors. Derive the Jacobi formulas for producing this orthogonal matrix 0 .  

In the Jacobi method 0 is obtained as  an infinite product of "rotation" matrices of the form 
cos+ -sin g 

0 1  = [ sin + cos g I 
all other elements being identical with those of the unit matrix I .  If the four entries shown are in 
positions ( i ,  i), ( i ,  k ) ,  ( k ,  i )  and ( k ,  k ) ,  then the corresponding elements of O i l A O ,  may easily be 
computed to be 

b,, = aii cos2 + + 2aik sin g cos g + a,k sin2 g 

bki = bik C= (akk - aii)  sin + cos g + aik(cos2 + - sin2 #) 

bkk = aii sin2 g - 2a, sin g cos g + akk cos2 g 

Choosing qi such that  tan 2g = 2aikl(a,  - akk)  then makes bik = bki = 0 .  Each step of the Jacobi 
algorithm therefore makes a pair of off-diagonal elements zero. Unfortunately the next step, while 
it creates a new pair of zeros, introduces nonzero contributions to formerly zero positions. Never- 
theless, successive matrices of the form 0,-10,-lAO102, and so on, approach the required diagonal 
form and 0 = O1O2. .  . 



CHAP. 261 LINEAR SYSTEMS 

26.40. Apply Jacobi's method to A = / -1 2 -1 1 .  
L o -1 2J 

With i = 1,  k = 2 we have t a n  2@ = -210 which we interpret to  
cos + = sin g = 1 / f i  and 

mean 2@ = ~ 1 2 .  Then 

Next we take i = 1, k = 3 making tan 2+ = - f i / - 1  = fi. Then sin g - .45969, cos + - .88808 
and we compute 

.88808 0 .45969 .88808 0 -.45969 .63398 7.32505 

0 1 0 I A 1 [  0 1 0 ] = [  -.32505 3 -.62797 

p.45969 0 .88808 .45969 0 .88808 0 p.62797 2.36603 

The convergence of the off-diagonal elements toward zero is  not startling, but  a t  least the decrease 
has begun. After  nine rotations of this sort we achieve 

in which the eigenvalues found earlier have reappeared. We also have 

I .50000 .70710 .50000 

0 - O,O,. .  .Og = .70710 .OOOOO -.70710 

.50000 -.70710 .50000 

in which the eigenvectors a r e  also conspicuous. 

GIVENS' METHOD 

26.41. What are the three main parts of Givens' variation of the Jacobi rotation algorithm 
for a real symmetric matrix? 

In  the first p a r t  of the algorithm rotations a re  used to reduce the matr ix to triple-diagonal 
form, only the main diagonal and i t s  two neighbors being different from zero. The first rotation 
i s  in the (2,3) plane, involving the elements a,=, a,,, a,, and a,,. It is easy to verify t h a t  such a 
rotation, with + determined by tan  + = a13/a12, will replace the a13 (and a,,) elements by 0. Suc- 
ceeding rotations in  the (2 , i )  planes then replace the elements ali and ail by zero, fo r  i = 4, . . .,n. 
The @ values a r e  determined by t a n  @ = alila&, where a;2 denotes the current occupant of row 1, 
column 2. Next i t  is the tu rn  of the elements a,,, . . ., azn which a r e  replaced by zeros by rotations 
in the (3,4),. . ., (3, n) planes. Continuing in this way a matrix of triple-diagonal form will be 
achieved, since no zero t h a t  we have worked to create will be lost in a later rotation. This may be 
proved by a direct computation and makes the Givens' reduction finite whereas the Jacobi diagonali- 
zation is  a n  infinite process. 

The second step involves forming the sequence 

f o ( h )  = 1,  f i ( h )  = ( A  - ai) f i - l ( h )  - ~ ? - l f i - ~ ( h )  

where the 2s and p's a r e  the elements of our new matrix 

a, p1 0 . . .  0 

P z  . . .  
B = 

P n - 1  
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by expanding along the last column, 

and Po = 0. These f i (h )  prove to be the determinants of the principal minors of the matrix XI- B ,  
as  may be seen from 

where D has only the element - P i - ,  in its bottom row and so equals D = f i -2(A) .  For i = n 
we therefore have in f , ( X )  the characteristic polynomial of B .  Since our rotations do not alter the 
polynomial, it is  also the characteristic polynomial of A. 

f i b )  = 

Now, if some pi are zero, the determinant splits into two smaller determinants which may be 
treated separately. If no Pi is zero, the sequence of functions f i ( A )  proves to be a Sturm sequence 
(with the numbering reversed from the order given in Problem 25.33, page 325). Consequently the 
number of eigenvalues in a given interval may be determined by counting variations of sign. 

X - a1 -P1 0 . . . 0 

-PI - a2 - P 2  ... 0 

0 -P2 A - a3 . . . 0 

. . . . . .  - P i - 1  

... - "I 

Finally, the third step involves finding the eigenvectors. Here the diagonal nature of B makes 
Gaussian elimination a reasonable process for obtaining its eigenvectors U j  directly (deleting one 
equation and assigning some component the arbitrary value of 1) .  The corresponding eigenvectors 
of A are then Vj = O U j  where 0 is  once again the product of our rotation matrices. 

26.42. Apply the Givens' method to the Hilbert matrix A = 112 1/3 1/4 . r li2 1131 

For this small matrix only one rotation is  required. With tan + = 213 we have cos + = 3 1 6  
and sin + = 2 / m .  Then 

B = 0-1.40 = (1 /13)  

and we have our triple-diagonal matrix. The Sturm sequence consists of 

if we ignore the factor 1/13, which means using 13B 
in place of B itself and 1 = 13X. An easy computa- 
tion then yields the 2 signs shown in Table 26.3 and 
reveals two roots between 0 and 1 and another be- 
tween 7 and 8. The Newton process may be used 
to refine these roots. For example, the initial ap- 
proximation 1 = 0 leads quickly to 1 = .028815 
and Al = .002217. To find the eigenvector for A,, 
we have B U 1  = XIU1. Using u,, up ,  u3 for the com- 
ponents of U 1 ,  this means 

~1 + (13/6)u2 

Table 26.3 

= .028815 ul  

and if we delete the last equation and set u ,  = 1, U l  = (-2.23095, 1, -4.30548). Finally, 
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which may be normalized as  desired. In finding eigenvectors directly i t  is often profitable to t ry  
deleting different equations, since roundoff errors can have a heavy influence on computations of the 
length required here when larger matrices are involved. I t  should be noted that such systems are 
over-determined (there are more equations than unknowns since one component may be assigned 
a t  random) so that methods for treating such systems may be in order. 

COMPLEX SYSTEMS 
26.43. How can the problem of solving a system of complex equations be replaced by that 

of solving a real system? 
This is almost automatic, since complex numbers are equal precisely when their real and 

imaginary parts are equal. The equation 

is a t  once equivalent to 
A x - B y  = a, A y + B x  = b 

and this may be written in matrix form as  

A complex n X n system has been replaced by a real 2n X 2n system, and any of our methods for 
real systems may now be used. I t  is  also possible to replace this real system by the two systems 

of size n X n with identical coefficient matrices. This follows from 

Using these smaller systems slightly shortens the overall computation. 

26.44. Reduce the problem of inverting a complex matrix to that of inverting real matrices. 
Let the given matrix be A + i B  and its inverse C +  iD. We are to find C and D such that  

(A + iB)(C + iD) = I .  Suppose A is  nonsingular so that  A-1 exists. Then 

as may be verified by direct substitution. If B is  nonsingular, then 

as may be verified by substitution. If both A and B are nonsingular, the two results are of course 
identical. In case both A and B are singular, but (A + iB) is  not, then a more complicated procedure 
seems necessary. First  a real number t is determined such that  the matrix E = A + tB is  non- 
singular. Then, with F = B - tA, we find E + iF = (1 - it)(A + iB) and so 

This can be computed by the first method since E is nonsingular. 

26.45. Extend Jacobi's method for finding eigenvalues and vectors to the case of a 
Hermitian matrix. 

We use the fact that a Hermitian matrix H becomes diagonalized under a unitary trantforma- 
tion, that  is, U-'HU is a diagonal matrix. The matrices H and U have the properties HT = H 
and UT = U-1. The matrix U is to be obtained as  an infinite product of matrices of the form 
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= [ cos, - sin e-ie 

sin + eiO cos $6 I 
all other elements agreeing with those of I .  The four elements shown are in positions (i, i), (i, k), 
(k, i) and (k, k). If the corresponding elements of H are 

then the (i, k) and (k,i) elements of U-1HU will have real and imaginary parts equal to zero, 

(d - a) cos @ sin @ cos e + b cos2 + - b sin2 + cos 2e  - c sin2 @ sin 2e  = 0 

(a - d) cos @ sin + sin e - c cos2 + + b sin2 @ sin 20 - c sin2 @ cos 20 = 0 

if @ and e are chosen so that  

tan e = c l b ,  tan 2@ = 2 ( b  cos e + c sin @ ) / ( a  - d) 

This type of rotation is  applied iteratively as  in Problem 26.39 until all off-diagonal elements have 
been made satisfactorily small. The (real) eigenvalues are then approximated by the resulting 

. . . .  diagonal elements, and the eigenvectors by the columns of U = U1 U2 U, 

26.46. How may the eigenvalues and vectors of a general complex matrix be found? As- 
sume all eigenvalues are distinct. 

As a first step we obtain a unitary matrix U such that  U-1AU = T where T is  an upper 
triangular matrix, all elements below the main diagonal being zero. Once again U is  to be obtained 
as  an infinite product of rotation matrices of the form U1 shown in the preceding problem, which 
we now write as 

The element in position (k, i) of U i l A U ,  is then 

To make this zero we let y = Cx, x = l/dlfIC12 which automatically assures us that U1 will be 
unitary, and then determine C by the condition air;C2 + (aii - akk)C - aki = 0 which makes 

Either sign may be used, preferably the one that  makes ICI smaller. Rotations of this sort are made 
in succession until all elements below the main diagonal are essentially zero. The resulting matrix is  

t l l  t12 . . .  tl, 

T = - 1  = [ j . . . . . . . . . . . . . . . .  

where U = UIUz . . UN. The eigenvalues of both T and A are the diagonal elements tii. 

We next obtain the eigenvectors of T, as  the columns of 

1 W l z  W13 . . .  
. . .  

W =  ........ 
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The first column is already an eigenvector belonging to t,,. To make the second column an eigen- 
vector belonging to tZ2 we require tllw12 + t12 = t 2 2 ~ 1 2  or ~ 1 2  = t12/(t22 - t l l )  assuming tll Z tz2. 
Similarly, to make the third column an eigenvector we need 

In general the wik are found from the recursion 

with i = k - 1, k - 2, . . . , 1 successively. Finally the eigenvectors of A itself are available a s  the 
columns of UW. 

Supplementary Problems 
26.47. Apply the Gauss elimination algorithm to find the solution vector of this system: 

w + 22 - 12y + 82 = 27 

5w + 4x + 7 y  - 22 = 4 

-3w + 72  + 9y  + 52 = 11 

6w - 122 - 8y + 32 = 49 

26.48. Apply the Gauss elimination algorithm to find the solution vector of this system: 

33x1 + 16x2 + 72x3 = 359 

-242, - 102, - 57x3 = 281 

-82, - 4x2 - 17x3 = 85 

26.49. Suppose it has been found that the system 

1.72, + 2.32, - 1.523 = 2.35 

1 . 1 ~ ~  f 1 . 6 ~ ~  - 1 . 9 ~ ~  = -.94 

2.72, - 2.22, + 1.52, = 2.70 

has a solution near (1,2,3).  Apply the method of Problem 26.4 to obtain an improved approximation. 

26.50. Apply Gaussian elimination to the system which follows, computing in rational form so that  no 
roundoff errors are introduced, and so getting an exact solution. The coefficient matrix is the 
Hilbert matrix of order four. 

X l  + (1/2)x, f (1/3)x, + (1/4)x4 = 1 

(1/2)x1 + (1/3)x2 + ( 1 1 4 ) ~ ~  + (1/5)x4 = O 

(1/3)x1 + (1/4)xz + ( 1 1 5 ) ~ ~  + (1/6)24 = 0 

(1/4)x1 + (1/5)x2 + ( l /6 )x3  + (1/7)x4 0 

26.51. Repeat the preceding problem with all coefficients replaced by decimals having three significant 
digits. Retain only three significant digits throughout the computation. How close do your results 
come to the exact solution of the preceding problem? (The Hilbert matrices of higher order are 
extremely troublesome even when many decimal digits can be carried.) 

26.52. Apply the Gauss-Seidel iteration to the following system. 

-22, + x, = -1 

2 1  - 22, + 2 3  - - 0 

x 2 - 2 x 3 +  X 4  = 0 

x3 - 2x4 = 0 
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Start  with the approximation x, = 0 for all k, rewriting the system with each equation solved for  
its diagonal unknown. After making several iterations can you guess the correct solution vector? 
This problem may be interpreted in terms of a random walker, who takes each step to left or right 
a t  random along the line of Fig. 26-3. When he reaches an end he stops. Each sk value represents 
his probability of reaching the left end from position k. We may define xo = 1 and x5 = 0, in 
which case each equation has the form - 22, + x , + ~  = 0, k = 1, . . ., 4. 

I I I I I I 

0 1 2 3 4 6 

step length ' 
Fig. 26-3 

26.53. Does over-relaxation speed convergence toward the exact solution of Problem 26.52? 

26.54. Apply the Gauss-Seidel method to the system 

x, = ( 3 1 4 ) ~ ~ - ,  + ( 1 / 4 ) ~ , + ~  k = 1, . . . ,19 

x,, = 1, 220 = 0 

which may be interpreted a s  representing a random walker who moves to the left three times a s  
often as to the right, on a line with positions numbered 0 to 20. 

26.55. The previous problem is a boundary value problem for a difference equation. Show that  its exact 
solution i s  xk = 1 - (3,- 1)/(320 - 1). Compute these values for  k = 0(1)20 and compare with 
the results found by the iterative algorithm. 

26.56. Apply over-relaxation to the same system. Experiment with values of w. Does under-relaxation 
(w < 1) look promising for this system? 

26.57. Apply any of our methods to the following system: 

x, f x2 + xs + X, + X5 = 1 

x, 4 2x2 + 3x3 + 4x4 + 5x5 = 0 

x, + 3x2 + 6x3 + lox, + 15x5 = 0 

xl + 4x2 + loxs + 202, + 35x5 = 0 

XI f 5x2 15x3 + 352, 70x5 = O 

26.58. Try to apply the Gauss-Seidel iteration to the system of Problem 26.16, page 343. S tar t  with the 
initial approximation x, = 0 for all k. 

26.59. Invert the coefficient matrix of Problem 26.47 by the elimination algorithm of Problem 26.17. 

26.60. Invert the same matrix by the exchange method. 

26.61. Apply both the elimination and the exchange methods to invert the coefficient matrix of Problem 
26.48. Use three-digit arithmetic. 

26.62. Invert the coefficient matrix of Problem 26.52 by any of our methods. 

26.63. Try to invert the Hilbert matrix of order four (see Problem 26.50) using three-digit arithmetic 
(slide rule accuracy). 

26.64. Try to invert Wilson's matrix (see Problem 26.16, page 343) by any of our methods using three- 
digit arithmetic. 

26.65. Try to apply the method of Problem 26.22, page 346, to the Hilbert matrix of order three, using 
three-digit arithmetic. 
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26.66. Apply the method of Problem 26.22 to the results of Problem 26.61. Does i t  appear to converge 
toward the exact inverse? r-58 -16 -1921 

26.67. Evaluate the determinant of the coefficient matrix of Problem 26.47. 

26.68. Evaluate the determinant of the coefficient matrix of Problem 26.48. 

26.69. What is the determinant of the Hilbert matrix of order four? 

26.70. Apply the method of Problem 26.29, page 349, to find the eigenvalues and eigenvectors of Ax = Ax 
where A is the Hilbert matrix of order three. Use rational arithmetic and obtain the exact char- 
acteristic polynomial. 

26.71. Referring to Problem 26.70, apply the same method to 

(2 - x)x, - 2 2  = 0 

-xl + (2 - A)x2 - 5 3  = 0 

-xz + (2 - x)x3 - 5 4  = 0 

-53 f (2 - X)x4 - 2 5  = 0 

-2, + (2-x)x5 = 0 

26.72. Use the power method to find the dominant eigenvalue and eigenvector of the matrix 

y 2 -1 
O O 1  

26.73. Use the power method to find the dominant eigenvalue and eigenvector of the Hilbert matrix of 
order three. 

26-74. Apply the reduction method of 'Problem 26.37, page 351, to the matrix of Problem 26.72, deter- 
mining all the eigenvalues and vectors. 

26.75. Apply the reduction method to the Hilbert matrix of order three. 

26.76. Apply Jacobi's method to the Hilbert matrix of order three. 

26.77. Apply Jacobi's method to the matrix of Problem 26.72. 

26.78. Apply Givens' method to the matrix of Problem 26.72. 

26.79. Apply Givens' method to the Hilbert matrix of order four. 

26.80. Solve the system x, + ix, = 1 

-ixl + xz + ix3 = 0 

-ixz + Xg = 0 

by the method of Problem 26.43, page 355. 

26.81. Apply the method of Problem 26.44 to invert the coefficient matrix in Problem 26.80. 

26.82. Apply Jacobi's method, as outlined in Problem 26.45, to  find the eigenvalues and vectors for the 
coefficient matrix of Problem 26.80. 

26.83. Apply the algorithm of Problem 26.46 to the matrix A = 

-1 
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26.84. Apply the algorithm of Problem 26.46 to the real but nonsymmetric matrix A = / 1 2 3 ~  1 3 5 . 

26.85. Solve the system 6 . 4 3 7 5 ~ ~  + 2 . 1 8 4 9 ~ ~  - 3 . 7 4 7 4 ~ ~  + 1 . 8 8 2 2 ~ ~  = 4.6351 

2.13562, + 5 . 2 1 0 1 ~ ~  + 1 . 5 2 2 0 ~ ~  - 1.12342, = 5.2131 

- 3 . 7 3 6 2 ~ ~  + 1 . 4 9 9 8 ~ ~  + 7.642123 + 1 . 2 3 2 4 ~ ~  = 5.8665 

1.86662, - 1 . 1 1 0 4 ~ ~  + 1 . 2 4 6 0 ~ ~  + 8 . 3 3 1 2 ~ ~  = 4.1322 

26.86. Find all the eigenvalues of this system: 

42 + 2y + z = Xx 

22 + 411 + 22 = Xy 

x + 2y + 42 = Xz 

26.87. Find all the eigenvalues and eigenvectors of this system: 

26.88. Invert Pascal's matrix. 

26.89. Invert the following matrix: 

26.90. Invert the following matrix: 5 + i  4 + 2 i  

1 0 + 3 i  8 + 6 i  

-41 68 -17 
26.91. Find the largest eigenvalue of to three places. 

26.92. Find the largest eigenvalue of I 5i 3 0 I and the corresponding eigenvector. 

26.93. Find the extreme two eigenvalues of 1 -:I. 



Chapter 27 

Linear Programming 

THE BASIC PROBLEM 
A linear programming problem requires that a linear function 

be minimized (or maximized) subject to constraints of the form 

where i = 1, . . . , m and j = 1, . . . , n. In vector form the problem may be written as 

H ( x )  = cTx = minimum, Ax 6 b, 0 6 x 

An important theorem of linear programming states that the required minimum (or maxi- 
mum) occurs a t  an extreme feasible point. A point (xl, . . . , xn) is called feasible if its co- 
ordinates satisfy all n + m  constraints, and an extreme feasible point is one where a t  
least n of the constraints actually become equalities. The introduction of slack variables 
Xn+ I, . . . , Xn+m converts the constraints to the form 

for i = 1, . . . , m. I t  allows an extreme feasible point to be identified as one a t  which n or 
more variables (including slack variables) are zero. This is a great convenience. In special 
cases more than one extreme feasible point may yield the required minimum, in which case 
other feasible points also serve the purpose. A minimum point of H is called a solution point. 

The simplex method is an algorithm for starting at some extreme feasible point and, 
by a sequence of exchanges, proceeding systematically to other such points until a solution 
point is found. This is done in a way which steadily reduces the value of H. The exchange 
process involved is essentially the same as that presented in the previous chapter for 
matrix inversion. 

The duality theorem is a relationship between the solutions of the two problems 

cTx = minimum, A x  " b, 0 6 x 

yTb = maximum, yTA " cT, 0 6 y 

which are known as dual problems, and which involve the same aij, bi and cj numbers. The 
corresponding minimum and maximum values prove to be the same, and application of 
the simplex method to either problem (presumably to the easier of the two), allows the 
solutions of both problems to be extracted from the results. This is obviously a great 
convenjence. 
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TWO RELATED PROBLEMS 

1. Two-person games require that R choose a row and C 
"payoff" matrix: - 

all a12 . . . aln 

a21 a 2 2  . . . azn 
. . . . . . . . . . . . . . . . .  
am1 am2 . . . Umn 

- 
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choose a column of the following 

The element aij where the selected row and column cross, determines the amount which 
R must then pay to C. Naturally C wishes to maximize his expected winnings while R 
wishes to minimize his expected losses. These conflicting viewpoints lead to dual 
linear programs which may be solved by the simplex method. The solutions are called 
o p t i m a l  s t r a t e g i e s  for the two players. 

2. Overdetermined systems of linear equations, in which there are more equations than 
unknowns and no vector x can satisfy the entire system, may be treated as linear pro- 
gramming problems in which we seek the vector x which in some sense has minimum 
error. The details appear in Chapter 28. 

Solved Problems 

THE SIMPLEX METHOD 

27.1. Find xl and x2 satisfying the inequalities 

0 ' X l ,  0 4 xz ,  - X 1  + 2x2 ' 2, X I  + xz ' 4, X I  ' 3 

and such that the function F = xz - X I  is maximized. 
Since only two variables a re  involved i t  is convenient to interpret the entire problem geometri- 

cally. In  an xl ,  x2 plane the five inequalities constrain the point (x, ,  x2) to fall  within the shaded 
region of Fig. 27-1. In  each case the equality sign corresponds to (x,, x,) being on one of the five 
linear boundary segments. Maximizing F subject to these constraints is equivalent to finding t h a t  
line of slope one having largest y-intercept and still intersecting the shaded region. I t  seems clear 
tha t  the required line L1 i s  1 = x2 - xl and the intersection point ( 0 , l ) .  Thus, for  a maximum, 
x1 = 0,  x2 = 1, F = 1. 

Fig. 27-1 
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27.2. With the same inequality constraints as in Problem 27.1, find (XI,XZ) such that  
G = 2x1 + xz is a maximum. 

We now seek the line of slope -2 and having largest y-intercept while still intersecting the 
shaded region. This line Lz  is 7 = 22, + x2 and the required point has  x1 = 3, xz = 1. (See 
Fig. 27-1.) 

27.3. Find yl, y2, y3 satisfying the constraints 

0 L y1, 0 yz, 0 6 y3 

y1-yz-y341, -2y1-yz4-1 

and minimizing H = 2y1 + 4y2 + 3y3. 
Interpreting the entire problem geometri- 2/2 

cally, we find tha t  the five inequalities constrain 
the point (y,, y2, y3) to fall  within the region pic- 
tured in Fig. 27-2. This region is  unbounded in 
the positive yl, yz, y3 directions, but is  otherwise 
bounded by portions of five planes, shown shaded. 
These planes correspond to equality holding in 
our five constraints. Minimizing H subject to 
these constraints is equivalent to finding a plane 
with normal vector (2,4,3) having smallest inter- 
cepts and still intersecting the given region. It 
i s  easy to discover tha t  this plane is 1 = 2y1 + 
4yz + 3y, and the intersection point is (&,0,0). Fig. 27-2 

27.4. List three principal features of linear programming problems and their solutions 
which are illustrated by the previous problems. 

Let the problem be to find a point x with coordinates (xl, x,, . . ., x,) subject to the constraints 
0 5 x, A x  4 b and minimizing a function H ( x )  = eTx = P cixi. Calling a point which meets all 
the constraints a feasible point (if any such exists), then: 

1. The set of feasible points is  convex, tha t  is, the line segment joining two feasible points consists 
entirely of feasible points. This is  due to the fact  that  each constraint defines a half-space and 
the set of feasible points is the intersection of these half-spaces. 

2. There a re  certain extreme feasible points, the vertices of the convex set, identified by the fact  
that  a t  least n of the constraints become equalities a t  these points. In  the two-dimensional 
examples, exactly n = 2 boundary segments meet a t  such vertices. In  the three-dimensional 
example, exactly three boundary planes meet a t  each such vertex. For  n 2 3 it is  possible, 
however, tha t  more planes (or hyperplanes) come together a t  a vertex. 

3. The solution point is  always a n  extreme feasible point. This is  due to the linearity of the func- 
tion H(x) being minimized. (It is possible tha t  two extreme points a re  solutions, in which case 
the entire edge joining them consists of solutions, etc.) 

These three features of linear programming problems will not be proved here. They a re  also 
t rue if H(x) is to be maximized, or if the constraints read A x  2 b. 

27.5. What is the general idea behind the simplex method for  solving linear programs? 
Since the solution occurs a t  a n  extreme feasible point, we may begin a t  some such point and 

compute the value of H. We then exchange this extreme point for  i ts  mate a t  the other end of a n  
edge, in  such a way tha t  a smaller (in the case of a minimum problem) H value is obtained. The 
process of exchange and edge-following continues until H can no longer be decreased. This ex- 
change algorithm is  known as  the simplex method. The details a r e  provided in the following 
problem. 
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27.6. Develop the simplex method. 

Let the problem be 

0 6 X ,  A x  5 b, H(x) = CTX = minimum 

We first introduce slack variables x,+ ,, ..., xn+, to make 

Notice that  these slack variables, like the other xi, must be non-negative. The use of slack variables 
allows us t o  identify an extreme feasible point in anather way. Since equality in A x  5 b now 
corresponds to a slack variable being zero, an extreme point becomes one where a t  least n of the 
variables x,, .. .,x,+, are zero. Or said differently, a t  an extreme feasible point a t  most m of 
these variables are non-zero. The matrix of coefficients has become 

... r all a12 - . .  a,, 1 0 

. . .  a21 a22 . . .  a,, 0 1  0 O l  
. . .  ... La,, a,, a,, o o 1J 

the last m columns corresponding to the slack variables. Let the columns of this matrix be called 
v,, v2, . .  .,v,+,. The linear system can then be written as 

Now suppose that  we know an extreme feasible point. For simplicity we will take i t  that  
xm+ ,, ..., x,+, are all zero a t  this point so that  X I ,  ..., x, are the (at  most nz) nonzero variables. 
Then 

xlvl + x2v2 + ' . . + xmvm = b (1 

and the corresponding H value is 

Hi = X,C, + ~ 2 ~ 2  + + xmcm 

Assuming the vectors vl ,  .... v,  linearly independent, all n + m vectors may be expressed in terms 
of this basis: 

.... v j = v l j v l + ~ ~ ~ + v m ~ v ,  ( j = l ,  n + m )  (3) 

.... ... Also define hi = vljcl + + vmjcm - cj ( j  = 1, n + m) (4 

Now, suppose we t ry  to reduce H1 by including a piece pxk, for k > m and p positive. To preserve 
the constraint we multiply (3) for j = k by p, which is  still to be determined, and subtract from 
( I )  to find 

(2, - pvlk)vl + (x2 - pv2,)v2 + - . . + (x,  - pv,k)v, + pvk = b 

Similarly from (2) and (6) the new value of H will be 

The change will be profitable only if hk > 0. In this case i t  is  optimal to make p a s  large as  passible 
without a coefficient xi - pvik becoming negative. This suggests the choice 

the minimum being taken over terms with positive vik only. With this choice of p the coefficient of 
c, becomes zero, the others are non-negative and we have a new extreme feasible point with H value 
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which is definitely smaller than HI .  We also have a new basis, having exchanged the basis vector 
v ,  for the new vk. The process is now repeated until all hj are negative, or  until for some positive 
hk no vik is positive. In the former case the present extreme point is  as good as any adjacent 
extreme point, and it can further be shown that  i t  is as good as any other adjacent or not. In the 
latter case p may be arbitrarily large and there is no minimum for N. 

Before another exchange can be made all vectors must be represented in terms of the new 
basis. Such exchanges have already been made in our section on matrix inversion but the details 
wiII be repeated. The vector vl is to be replaced by the vector vk. From 

V k  = V l k V 1  + ' . ' + V,kVm 

we solve for v l  and substitute into (3) to obtain the new representation 

Also, substituting for v l  in (1)  brings 

xi - ( x ~ / v ~ ~ ) v ~ ~  for i f 1 
= 

~ i l ~ l k  for i=E  

Furthermore, a short calculation proves 

This entire set of equations may be summarized compactly by displaying the various ingredients as 
follows: 

X I  V l l  8 1 2  . . . "1,ntm 

5 2  V21  V22  . . . V2,ntrn 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Calling v lk  the pivot, all entries in the pivot row are divided by the pivot, the pivot column becomes 
zero except for a 1 in the pivot position, and all other entries are subjected to what was formerly 
called the rectangle rule. This will now be illustrated in a variety of examples. 

27.7. Solve Problem 27.1 by the simplex method. 

After introducing slack variables, the constraints are 

-xl + 2x, + Xs = 2 

x , + x ,  f x ,  = 4 

with all five variables required to be non-negative. Instead of maximizing x2 - x1 we will minimize 
xl - x,. Such a switch between minimum and maximum problems is always available to us. Since 
the origin is an extreme feasible point, we may choose xl = x2 = 0, x3 = 2 ,  x4 4, 2 5  = 3 to start. 
This is very convenient since it amounts to choosing v3,  v4 and v, as our first basis which makes all 
v,, = atj. The startin.: display is therefore the following: 
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Basis I b v l  v, w3 v4 v5 

Comparing with the format in Problem 27.6, one finds the six vectors b and v,, . . . , v5 forming 
the top three rows, and the numbers H, h,, . . ., h5 in the bottom row. Only h, is positive. This deter- 
mines the pivot column. In this column there are two positive vi, numbers, but 212 is less than 411 
and so the pivot is  v,, = 2. This number has been circled. The formulas of the previous problem 
now apply to produce a new display. The top row is  simply divided by 2, and all other entries are 
subjected to the rectangle rule: 

The basis vector v, has been exchanged for v, and all vectors are now represented in terms of 
this new basis. But more important for this example, no hi is  now positive so the algorithm stops. 
The minimum of x, - x, is -1 (making the maximum of x, - x1 equal to 1 as  before). This minimum 
is achieved for x, = 1, x, = 3, x, = 3 as  the first column shows. The constraints then make 
2, = 0, x, = 0 which we anticipate since the xi not corresponding to basis vectors should always be 
zero. The results xl = 0, x, = 1 correspond to our earlier geometrical conclusions. Notice that  
the simplex algorithm has taken us from the extreme point (0,O) of the set of feasible points to the 
extreme point (0, l)  which proves to be the solution point. (See Fig. 27-1.) 

27.8. Solve Problem 27.2 by the simplex method. 
Slack variables and constraints are the same as  in the previous problem. We shall minimize 

H = -22, - x,. The origin being an extreme point, we may start  with this display: 

Both h, and h, are positive, so we have a choice. Selecting hl = 2 makes v13 the pivot, since 
311 is less than 411. This pivot has been circled. Exchanging v5 for v l  we have a new basis, a 
new extreme point and a new display. 

1 0 1 

Basis 

v, 

Now we have no choices. The new pivot has been circled and means that  we exchange v4 for 
v2 with the following result: 

b vl vz VQ v4 v5 

2 -1 2 1 0 0 
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Now no hj is  positive, so we stop. The minimum is -7, which agrees with the maximum of 7 
for 2x1 + x2 found in Problem 27.2. The solution point is a t  xl = 3, x2 = 1 which also agrees with 
the result found in Problem 27.2. The simplex method has led us from (0,O) to (3.0) to (3, l) .  The 
other choice available to us a t  the first exchange would have led us around the feasible set in the 
other direction. 

27.9. Solve Problem 27.3 by the simplex method. 
With slack variables the constraints become 

- 2 ~ 1  - Y2 + y5 = -1 
all five variables being required to be positive or zero. This time, however, the origin ( y l  = vz = 
y,  = 0) is  not a feasible point, as  Fig. 27-2 shows and as  the enforced negative value y,  = -1 
corroborates. We cannot therefore follow the starting procedure of the previous two examples 
based on a display such as  this: 

Basis I b v ,  v z  v ,  v4  v5 

The negative value y5 = -1 in the b column cannot be allowed. Essentially our problem is that  
we do not have an extreme feasible point to start  from. A standard procedure for finding such a 
point, even for a much larger problem than this, is to introduce an artificial basis. Here it will be 
enough to alter the second constraint, which contains the negative b component, to 

One new column may now be attached to our earlier display. 

But an extreme feasible point now corresponds to y4 = y6 = 1, all other y j  being zero. This makes 
i t  natural to exchange v 5  for v ,  in the basis. Only a few sign changes across the v ,  row are required. 

Basis 

v4 

b v l  v 2  v3 v4 v5 ~6 

1 1 -1 -1 1 0 0 

The last row of this starting display will now be explained. 

Introducing the artificial basis has altered our original problem, unless we can be sure that  y6 
will eventually turn out to be zero. Fortunately this can be arranged, by changing the function 
to be minimized from H = 2y1 + 4y2 + 3y3 as i t  was in Problem 27.2 to 

H* = 2y1 4yz + 3y3 + W y 6  

Basis 

* A  

where W is such a large positive number that  for a minimum we will surely have to malce equal 
to zero. With these alterations we have a starting H value of W .  The numbers Itj may also be com- 
puted and the last row of the starting display is  as shown. 

We now proceed in normal simplex style. Since W is large and positive we have a choice of 
two positive hj  values. Choosing hl leads to the circled pivot. Exchanging v.5 for vl brings a new 
display from which the last column has been dropped since v ,  is  of no further interest: 

b V I  V 2  V 3  V 4  215 V G  

1 1 -1 -1 1 0 0 
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Since no hi is positive we a re  already a t  the end. The minimum i s  1, which agrees with our geo- 
metrical conclusion of Problem 27.3. Moreover, from the first column we find yl = 112, y4 = 112 
with all other yi equal to zero. This yields the minimum point (& 0,O) also found in Problem 27.3. 

27.10. Minimize the function H = 2y1  + 4y2 + 3y3 subject to the constraints yl - y, - y3 6 

-2, -2yi - yz 4 -1 ,  all yj being positive or zero. 
Slack variables and a n  artificial basis convert the constraints to 

and much a s  in  the preceding problem we soon have this s tar t ing display: 

The function to be minimized i s  

Basis 

v6 

v7 

and this determines the last  row. There a re  various choices fo r  pivot and we choose the one circled. 
This leads to  a new display by exchanging v7 fo r  v2 and dropping the v, column. 

b "Jt 212 213 3 4  v5 216 217 

2 -1 1 1 -1 0 1 0 

1 2 0 0 0 -1 0 1 

A new pivot has  been circled and the final display follows. 

3W W - 2  2 W - 4  W - 3  - W  - W  0 0 

7 -3 0 0 -3 -1 

The minimum of H* and H is 7 ,  and i t  occurs a t  ( O , l ,  1). 

THE DUALITY THEOREM 
27.11. What is the duality theorem of linear programming? 

Consider these two linear programming problems. 

Problem A Problem B 

cTx = minimum yTb = maximum 

X ' O  y'0 

A x  ' b YTA 6 cT 

They a r e  called dual problems because of the many relationships between them, such a s  the 
following. 

(1) If  either problem has a solution then the other does also and the minimum of cTx equals the  
maximum of yTb. 

( 2 )  For  either problem the solution vector is found in the usual way. The solution vector of the 
dual problem may then be obtained by taking the slack variables in order, assigning those in  the 
final basis the value zero, and giving each of the others the corresponding value of -hi. 

These results will not be proved here bu t  will be illustrated using our earlier examples. The 
duality makes i t  possible to obtain the solution of both problems A and B by solving either one. 
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27.12. Show that Problem 27.1 and 27.3 are dual problems and verify the two relationships 
claimed in Problem 27.11. 

A few minor alterations are involved. To match Problem 27.1 and A we minimize x ,  - x2 
instead of maximizing x2 - xl. The vector cT is  then (1, -1). The constraints are rewritten as  

which makes 1 -2 

For Problem B we then have 

yTA = 
- 2 ~ 1  - Y2 

which are the constraints of Problem 27.3. The condition yTb = maximum is also equivalent to 

yT(-b) = 2yl + 4y2 + 3y3 = minimum 

so that  Problem 27.3 and I3 have also been matched. The extreme values for both problems proved 
to be 1, which verifies relationship (1) of Problem 27.11. From the final simplex display in Problem 
27.7 we obtain xT = (0 , l )  and yT = (B, 0,O) while from the computations of Problem 27.9 we find 
yT = (+, 0,O) and xT = (0, I), verifying relationship (2). 

27.13. Verify that Problem 27.2 and 27.10 are duals. 
The matrix A and vector b are the same as  in Problem 27.12. However, we now have cT = 

(-2, -1). This matches Problem 27.2 with A and 27.10 with B. The final display of Problem 27.8 
yields XT = (3 , l )  and yT = (0,1,1) and the same results come from Problem 27.10. The common 
minimum of cTx and maximum of yTb is  -7. 

SOLUTION OF TWO-PERSON GAMES 
27.14. Show how a two-person game may be made equivalent to a linear program. 

Let the payoff matrix, consisting of positive numbers aij, be 

by which we mean that  when player R has chosen row i of this matrix and player C has (independ- 
ently) chosen column j ,  a payoff of amount aij is then made from R to C. This constitutes one play 
of the game. The problem is  to determine the best strategy for each player in the selection of rows 
or columns. To be more specific, let C choose the three columns with probabilities pl,p2,p3 re- 
spectively. Then 

PI, ~ 2 ,  ~3 0 and PI + PZ + ~3 = 1 

Depending on R's choice of row, C now has one of the following three quantities for his expected 

Let P be the least of these three numbers. Then, no matter how R plays, C will have expected 
winnings of a t  least P on each play and therefore asks himself how this amount P can be maximized. 
Since all the numbers involved are positive, so is  P; and we obtain an equivalent problem by letting 

and minimizing F = xl + x, + x3 = 1/P 
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The various constraints may be expressed as  xl, x2, x3 2 0 and 

This is the type A problem of our duaIity theorem with cT = bT = (1,1,1). 

Now look a t  things from R's point of view. Suppose he chooses the three rows with probabili- 
ties ql, q,, q3 respectively. Depending on C's choice of column he has one of the following quantities 
as his expected loss, 

q1a11 + qza2, + q3a31 ' Q 

where Q is the largest of the three. Then, no matter how C plays, R will have expected loss of no 
more than Q on each play. Accordingly he asks how this amount Q can be minimized. Since Q > 0, 
we let 

YI = d Q ,  ~2 = d Q ,  ~3 = q3lQ 

and consider the equivalent problem of maximizing 

The constraints are y1, yz, y3 5 0 and 

This is the type B problem of our duality theorem with c T  = b T  = (1,1,1). We have discovered that 
R's problem and C's problem are duals. This means that the maximum P and minimum Q values 
will be the same, so that  both players will agree on the average payment which is  optimal. I t  also 
means that  the optimal strategies for both players may be found by solving just one of the dual 
programs. We choose R's problem since it avoids the introduction of an artificial basis. 

The same arguments apply for payoff matrices of other sizes. Moreover, the requirement that  
all aij be positive can easily be removed since, if all aij are replaced by aij+ a, then P and Q are 
replaced by P + a and Q + a. Thus only the value of the game is changed, not the optimal strategies. 
Examples will now be offered. 

27.15. Find optimal strategies for both players and the optimal payoff for the game with 
matrix 

Instead we minimize the function -G = - yl - y2 - y3 subject to the constraints 

all yj including the slack variables y4, y5,y6 being non-negative. Since the origin is an extreme 
feasible point, we have this starting display: 

Basis 

v4 

v5 

b wl w2 v3 v4 vg 216 

1 0 1 1 1 0 0 

1 1 0 2 0 1 0 



CHAP. 271 LINEAR PROGRAMMING 

Using the indicated pivots we make three exchanges as follows, 

From the final display we deduce that the optimal payoff, or value of the game, is 5/6.  The optimal 
strategy for R can be found directly by normalizing the solution yl = 115, y2 = 315, y3 = 215. The 
probabilities q l ,  q2, q3 must be proportional to these y j  but must sum to 1. Accordingly, 

q1 = 116, q2 = 316, q3 = 216 

To obtain the optimal strategy for C we note that  there are no slack variables in the final basis so 
that putting the -hj in place of the (non-basis) slack variables, 

Normalizing brings p1 = 316, p2 = 116, p, = 216 

If either player uses the optimal strategy for mixing his choices the average payoff will be 5/6 .  
To make the game fair, all payoffs could be reduced by this amount, or C could be asked to pay this 
amount before each play is made. 

27.16. Find the optimal strategy for each player and the optimal payoff for the game with 
matrix 

Notice that  the center element is  both the maximum in its row and the minimum in its column. 
It is  also the smallest row maximum and the largest column minimum. Such a saddle p o i n t  iden- 
tifies a game with p u r e  strategies.  The simplex method leads directly to this result using the saddle 
point as pivot. The starting display is  as  follows: 
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The optimal payoff is the negative reciprocal of -a, that is, the pivot element 2. The optimal 
strategy for R is found directly. Since y1 = 0, y2 = 4,  y3 = 0, we normalize to obtain the pure 
strategy 

91 = 0, 92 = 1, 93 = 0 

Only the second row should ever be used. The strategy for C is  found through the slack variables. 
Since v4 and v6 are in the final basis we have x, = x3 = 0, and finally xz = -h5 = 4. Normalizing, 
we have another pure strategy 

p, = 0, p, = 1, P3 = 0 

Supplementary Problems 
27.17. Make a diagram showing all points which satisfy the following constraints simultaneously. 

0 ' x,, 0 6 x,, x, + 22, 6 4, -Z1 + x2 5 1, 2, + 2 2  3 

27.18. What are the five extreme feasible points for the previous problem? At  which extreme point does 
F = x, - 2x2 take its minimum value and what is that  minimum? At  which extreme point does 
this function take i ts  maximum value? 

27.19. Find the minimum of F = x, - 22, subject to the constraints of Problem 27.17 by applying the 
simplex method. Do you obtain the same value and the same extreme feasible point as  by the 
geometrical method? 

27.20. What is the dual of Problem 27.19? Show by using the final simplex display obtained in that  prob- 
lem that  the solution of the dual is  the vector yl = 113, yz = 413, y3 = 0. 

27.21. Find the maximum of F = x, - 22, subject to the constraints of Problem 27.17 by applying the 
simplex method. (Minimize -F.) Do you obtain the same results as  by the geometrical method? 

27.22. What is the dual of Problem 27.21? Find its solution from the final simplex display of that  problem. 

27.23. Solve the dual of Problem 27.19 directly by the simplex method, using one extra variable for an 
artificial basis. The constraints should then read 

- 2 ~ 1  - YZ - Y3 + Y5 - Y6 = -2 

with y4 and y5 the slack variables. The function H = 4y1 + y2 + 3y3 is  to be minimized. From the 
final display recover both the solution of the dual and of Problem 27.19 itself. 

27.24. Minimize F = 22, + x, subject to the constraints 

32, + x2 2 3, 4x1 + 3x2 2 6, XI + 22, 2 2 

all xi being non-negative. (The solution finds x, r 3/5, x, = 615.) 

27.25. Show geometrically that  for a minimum of F = x, - x, subject to the constraints of Problem 27.17 
there will be infinitely many solution points. Where are they? Show that  the simplex method pro- 
duces one extreme solution point directly and that  i t  also produces another if a final exchange of 
v, and v, is made even though the corresponding hi value is  zero. The set of solution points is the 
segment joining these extreme points. 

27.26. Minimize F = xl + x4 subject to the constraints 

2x1 + 2x2 + 2, " 7 xz + x4 I- 1 

22, + x, + 2x3 5 4 xz + x3 + x4 = 3 

all xi being non-negative. (The minimum is zero and i t  occurs for more than one feasible point.) 
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Find optimal strategies and payoff fo r  the game 

A = [:I 
using the simplex method. [The payoff is  2.5, the strategy for  R being (&&) and that  fo r  C being 
(1/4,3/4).] 

Solve the game with matrix 0 3 -4 

A = [-: : :j 
showing the optimal payoff to be 1017, the optimal strategy for  R to be (5114, 417, 1/14) and t h a t  f o r  
C to be the same. 

Solve the following game by the simplex method. 

0 1 

Find the min-max cubic polynomial fo r  the following function. What  is the min-max error  and 
where is i t  attained? 

Find the min-max quadratic polynomial fo r  

~ ( x )  = 1/[1 + (4.1163x)2], x = 0(.01)1 

as well a s  the min-max error  and the arguments a t  which i t  is attained. 

What  is the result of seeking a cubic approximation to the function of the preceding problem? 
How can this be forecast from the results of tha t  problem? 

Maximize xl - x, + 2x3 subject to 
x1 + x, + 3x3 + 2 4  6 5 

Xl + x, - 4x4 f 2 
and all xk I-- 0. 

Solve the dual of the preceding problem. 

Maximize 2x1 + x, subject to 

xl - x, 6 2 ,  xl + x, 6 6, xl + 22, A 

and all xk 0. Treat  the cases A = 0, 3, 6, 9, 12. 

Use linear programming to find optimum strategies fo r  both players in  the following game. 

[-46 -:I 
Solve a s  a linear program the game with payoff matrix [: ;I . 
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27.38. In a battle between red and blue forces each side sends aircraft to locations A and B. Assuming 
that  equal forces draw and that a superior force annihilates its opposition without losses, the 
payoff matrix for various dispositions of forces is  as  follows. (Blue has a total of six aircraft and 
red has five.) Convert to a linear program and solve. 

27.39. Convert to a linear program and solve: 1 2  7 4 1 .  

27.40. In one version of the game of Morra each player exposes 1, 2 or 3  fingers and simultaneously tries 
to predict how many his opponent will expose. Let 1 , 3  mean, for example, that  he exposes 1  finger 
and predicts that  his opponent will expose 3. The following payoff matrix is  determined by the 
rule that  if only one player predicts correctly he collects according to the number of fingers show- 
ing. Use linear programming to find the optimal strategies. 



Overdetermined Systems 

NATURE OF THE PROBLEM 

An overdetermined system of linear equations takes the form 

Ax = b 

the matrix A  having more rows than columns. Ordinarily no solution vector x will exist, 
so that the equation as written is meaningless. The system is also called inconsistent. 
Overdetermined systems arise in experimental or computational work whenever more results 
are generated than would be required if precision were attainable. In a sense, a mass 
of inexact, conflicting information becomes a substitute for a few perfect results and one 
hopes that good approximations to the exact results can somehow be squeezed from the 
conflict. 

TWO METHODS OF APPROACH 
The two principal methods involve the residual vector 

R = A x - b  

Since R cannot ordinarily be reduced to the zero vector, an effort is made to choose x in 
such a way that  r is minimized in some sense. 

1. The least-squares solution of an overdetermined system is the vector x which makes the 
sum of the squares of the components of the residual vector a minimum. In vector 
language we want 

RTR = minimum 

For m equations and n unknowns, with m > n, the type of argument used in Chapter 
21 leads to the normal equations 

(al ,  a l )x l  + . . + (al ,  a,)x, = (a l ,  b )  

which determine the components of x. Here 

is the scalar product of two column vectors of A. 

2. The Chebyshev or min-max solution is the vector x for which the absolutely largest 
component of the residual vector is a minimum. That is, we t ry  to minimize 

r = max ( J r l J ,  . . .,\rm\) 

where the ri are the components of R. For m = 3, n = 2 this translates into the set of 
constraints 
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with r to be minimized. This now transforms easily into a linear programming prob- 
lem. Similar linear programs solve the case of arbitrary m and n. 

Solved Problems 
LEAST-SQUARES SOLUTION 
28.1. Derive the normal equations for finding the least-squares solution of an overdeter- 

mined system of linear equations. 

Let the given system be 
a11x1 + a12x2 = bl  

a21x1 + a22x2 = b2 

a31X1 + a32x2 = b3 

This involves only the two unknowns xl  and x2 and is  only slightly overdetermined, but the details 
for larger systems are almost identical. Ordinarily we will not be able to satisfy all three of our 
equations. The problem as i t  stands probably has no solution. Accordingly we rewrite i t  as 

the numbers 7-1, r2, r3 being called residuals, and look for the numbers x l ,  x2 which make r: + r; + r," 
minimal. Since 

r: + ri + r," = (ah + a:, + &x: + (af2  +ai2 + ag2)xi 

f 2(alla12 f a21a22 + a31a32)x1x2 - 2(a l lb l  + ~ 2 1 ~ 2  + a31b3)x1 

- 2(a12bl + az2b2 + a32b3)x2 + (b:  + bg + b:) 

the result of setting derivatives relative to xl  and x2 equal to zero is the pair of normal equations 

and so on. These are the scalar products of the various columns of coefficients in the original system, 
so that  the normal equations may be written directly. For the general problem of m equations in 
n unknowns (m > n) ,  

al lxl  + - .  . + al,xn = bl  

~ 2 1 x 1  + 0 .  ' + aznxn = b2 
......................... 
amlx l  + . . + amnxn = bm 

an almost identical argument leads to the normal equations 
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This is a symmetric, positive definite system of equations. 
It is also worth noticing that the present problem again fits the model of our general least- 

squares approach in Problems 21.7 and 21.8, page 242. The results just obtained follow a t  once as  
a special case, with the vector space E consisting of rn-dimensional vectors such as, for instance, 
the column vectors of the matrix A which we denote by a l ,  a2 ,  . . . , a n  and the column of numbers bi 
which we denote by b .  The subspace S is  the range of the matrix A,  that  is, the set of vectors A x .  
We are looking for a vector p in S which minimizes 

and this vector is  the orthogonal projection of b onto S, determined by (p - b,  uk) = 0, where the 
u, are some basis for S. Choosing for this basis uk = a k ,  k = 1, . . . , n, we have the usual rep- 
resentation p = xla l  3- ... + xnan (the notation being somewhat altered from that of our gen- 
eral model) and substitution leads to the normal equations. 

28.2. Find the least-squares solution of this system: 
X 1  - x z  = 2 
X l  + X 2  = 4 

2x1 + X 2  = 8 

Forming the required scalar products, we have 

for the normal equations. This makes xl = 2317 and x2 = 817. The residuals corresponding to 
this x1 and x2 are rl = 117, r2 = 317 and r3 = -2 /7 ,  and the sum of their squares is 217. The 

root-mean-square error is therefore p = m. This is smaller than for any other choice of 
x ,  and x,. 

28.3. Suppose three more equations are added to the already overdetermined system of 
Problem 28.2: 

Find the least-squares solution of the set of six equations. 

Again forming scalar products we obtain 12x1 = 38, 12x2 = 9 for the normal equations, making 
x ,  = 1916, x ,  = 314. The six residuals are 5, -1,  -11, 8,  7 and -4, all divided by 12. The RMS 

error is p = m. 

28.4. In the case of a large system, how may the set of normal equations be solved? 
Since the set of normal equations is  symmetric and positive definite, several methods perform 

very well. The Gauss elimination method may be applied, and if its pivots are chosen by descending 
the main diagonal then the problem remains symmetric to the end. Almost half the computation 
can therefore be saved. 

CHEBYSHEV SOLUTION 
28.5. Show how the Chebyshev solution of an overdetermined system of linear equations 

may be found by the method of linear programming. 
Once again we treat the small system of Problem 28.1, the details for larger systems being 

almost identical. Let r be the maximum of the absolute values of the residuals, so that  Irll ' T ,  

Ir,] 6 r ,  Ir,l 5 r .  This means that  rl 5 r and -rl r ,  with similar requirements on r2 and r,. 
Recalling the definitions of the residuals we now have six inequalities: 

a l l x l  + a12x2 - b ,  5 r -a l lx l  - a12x2 + bl f r 

az lx l  + az2x2 - b2 f r --a2,xl - a2,x2 + b2 f r 

a31xl + a3,x2 - b3 5 r -a31%, - C L ~ ~ X ~  + b3 f r 
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If we also suppose that  xl and x2 must be non-negative, and recall that  the Chebyshev solution is  
defined to be that  choice of x,,  x2 which makes r minimal, then i t  is  evident that  we have a linear 
programming problem. I t  is convenient to modify it slightly. Dividing through by r and letting 
x l l r  = y, ,  x2 / r  = y2,  l l r  = y3, the constraints become 

and we must maximize y3 or, what is  the same thing, make F = -y3 = minimum. This linear 
program can be formed directly from the original overdetermined system. The generalization for 
larger systems is almost obvious. The condition that the xj be positive is  often met in practice, 
these numbers representing lengths or other physical measurements. If i t  is not met, then a 
translation z, = x, + c may be made, or a modification of the linear programming algorithm may 
be used. 

28.6. Apply the linear programming method to find the Chebyshev solution of the system 
of Problem 28.2. 

Adding one slack variable to each constraint, we have 

with F = - y3 to be minimized and all y j  to be non-negative. The starting display and three 
exchanges following the simplex algorithm are shown in Table 28.1. The six columns corresponding 
to the slack variables are omitted since they actually contain no vital information. From the 
final display we find yl = 10 and y2 = y3 = 3.  This makes r = 1 / y 3  = 113 and then xl = 1013, 
x,  = 1. The three residuals are 1 / 3 , 1 / 3 ,  -113 so that  the familiar Chebyshev feature of equal 
error sizes is again present. 

Basis I b v1 v2 v3 Basis 

Basis ( b vl v2 v3 

-8 , 0 3 0  
Table 28.1 
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Apply the linear programming method to find the Chebyshev solution of the over- 
determined system of Problem 28.3. 

The six additional constraints bring six more slack variables, ylo, . . ., Y15. The details are very 
much as  in Problem 28.6. Once again the columns for slack variables are omitted from Table 28.2, 
which summarizes three exchanges of the simplex algorithm. After the last exchange we find 
y 1  = 1313, y2 = 1, y3 = 413. So r = 314 and x, = 1314, x2 = 314. The six residuals are 2, 0, -3, 
3, 3 and -1, all divided by 4. Once again three residuals equal the min-max residual r ,  the others 
now being smaller. In the general problem n+ 1 equal residuals, the others being smaller, identify 
the Chebyshev solution, n being the number of unknowns. 

Basis 

9 4  

v5 

v6 

v7 

v8 

v9 

Vl0 

v11 

v12 

v13 

v14 

v15 

Basis - 
v 4  

v5 

v6 

v7 

v8 

"'3 

v10 

"'1 

v12 

"'13 

14 

v15 

Basis 

Basis - 
v4 

v5 

v6 

v7 

v8 

"'3 

v2 

v1 

v12 

v13 

v14 

v15 

Table 282 

28.8. Compare the residuals of least-squares and Chebyshev solutions. 
For an arbitrary set of numbers xl, . . ., x, let lrlmax be the largest residual in absolute value. 

Then r: + . + r i  ': m lrliax so that  the root-mean-square error surely does not exceed lrl,,,. 
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But the least-squares solution has the smallest RMS error of all, so that,  denoting this error  by p, 

p 6 Irlmax. In  particular this is  t rue when the xj a r e  the Chebyshev solution, in  which case lrlmax is 
what we have been calling r. But the Chebyshev solution also has the property tha t  i t s  maximum 
error is smallest, so if Ipl,,, denotes the absolutely largest residual of the least-squares solution, 
Irlmax 5 lPImax Putting the two inequalities together, p 6 r 5 lplmax and we have the Chebyshev 
error bounded on both sides. Since the least-squares solution is often easier to find, this las t  result 
may be used to decide if i t  is worth continuing on to obtain the fu r ther  reduction of maximum 
residual which the Chebyshev solution brings. 

28.9. Apply the previous problem to the systems of Problem 28.2. 
We have already found p = m, r = 113 and lpl,,, = 317 which do steadily increase a s  

Problem 28.8 suggests. The fact  tha t  one of the least-squares residuals i s  three times a s  large a s  
another already recommends the search for  a Chebyshev solution. 

28.10. Apply Problem 28.8 to the system of Problem 28.3. 

We have found p = m, r = 314 and Jplma, = 11/12. The spread does support a search 
for  the Chebyshev solution. 

Supplementary Problems 
28.11. Find the least-squares solution of this system: 

Xl  - Xg = -1 2x1 - Xg = 2 

XI  + xz = 8 2x1 + xz = 14 

Compute the RMS error of this solution. 

28.12. Compare Ipl,,,, with p fo r  the solution found in Problem 28.11. 

28.13. Find the Chebyshev solution of the system in Problem 28.11 and compare i t s  r value with p and 
I~ lmax .  

28.14. Find both the least-squares and Chebyshev solutions fo r  this system: 

x1 + Xg - Xg = 5 X l  + 2x2 - 2x3 = 1 

2x1 - 3x2 + x3 = -4 4x1 - xg - 2 3  = 6 

28.15. Suppose it is known t h a t  -1 6 xi. Find the Chebyshev solution of the following system by first 
letting x j  = xi + 1 which guarantees 0 6 zj.  Also find the least-squares solution. 

2x1 - 2x, + x3 + 2x4 = 1 -2x1 - 2x, + 3x3 + 3xq = 4 

x, + x2 + 2x3 + 4x4 = 1 -xl - 3xg - 3x3 + xq = 3 

x, - 3x2 + x3 + 2x4 = 2 2x1 + 4xg + x3 + 5x4 = 0 

28.16. Find the least-squares solution of this system: 

xz = 0 . lx l  + .1x, = .1 
What  is  the RMS error? 
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28.17. Find the Chebyshev solution of the system in Problem 28.16. 

28.18. Four altitudes x,, x2,x3, x4 are  measured, together with the six differences in altitude, a s  follows. 
Find the least-squares values. 

x ,  = 3.47, x, = 2.01, X, = 1.58, ~4 .43 

28.19. A quantity x is measured N times, the results being a,, a,, . . .,a~. Solve the overdetermined system 

x = ai i = l ,  . . . ,  N 

by the least-squares method. What  value of x appears? 

28.20. Two quantities x and y a r e  measured, together with their difference x - y and sum x + y. 

x = A ,  y = B, x - y  = C, x + y  = D 

Solve the overdetermined system by least-squares. 

28.21. The three angles of a triangle a re  measured to be A,, A,, A,. If x l ,  x2, x3 denote the correct values, 
we a re  led to the overdetermined system 

x1 = A, ,  x, = AS, T - x1 - x2 = A 3 

Solve by the method of least-squares. 

28.22. The two legs of a r ight  triangle a re  measured to be A and B, and the hypotenuse to  be C. Let 

L,, L, and H denote the exact values, and let xl  = L:, x, = L;. Consider the overdetermined system 

2, = A,, X 2  = B2, 2 ,  + X2 = C2 

and obtain the least-squares estimates of xl and x2. From these estimate L,, L2 and H.  



Boundary Value Problems 

NATURE OF THE PROBLEM 

A boundary value problem requires the solution of a differential equation or system in 
a region R, subject to various extra conditions on the boundary of R. Applications generate 
a great variety of such problems. The classical two-point boundary value problem of ordi- 
nary differential equations involves a second order equation, an initial condition and a 
terminal condition: 

y" = f(x,y,y'), Y(U) = A, ~ ( b )  = 

Here the region R is simply the idterval (a, b) and the boundary consists of the two end- 
points. A classical problem of partial equations is the Dirichlet problem, which requires 
that the Laplace equation Txx + Tvg = 0 

be satisfied inside some region R of the xy plane and that T(x, y) assume specified values on 
the boundary of R. These two examples merely represent the two broad classes of bound- 
ary value problems. 

METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 

The available algorithms for the approximate solution of ordinary boundary value 
problems include the following, among others. 

1. The superposition principle may be used if the equations are linear. As an example, 
to solve 

Y" = q(x)y, ~ ( a )  = A, ~ ( b )  = B 
one could first use the methods of Chapter 19 (Taylor, Runge-Kutta, etc.) to solve the 
two initial value problems 

y'l' = 4(x) Y,, yl(a) = 1, y:(a) = 0 

Y; = ~ ( x ) Y , ,  y2(') = O, = 

after which y(x) = C1 yl(x) + c, y2(~)  

and the boundary conditions determine the constants CI and Cz. 

2. Replacement by a matrix problem is also possible when the equations are linear. As an 
example, replacing yf'(xk) by a second difference converts the equation y" = q(x) y into 
the difference equation 

yk-i - (2 + h2qk)yk + yk+l = 0 

Subdividing the interval (a, b) into equal parts, using the arguments xo = a, XI, . . . , Xn, 

x,+l= b, we may then require that the difference equation hold for k = 1, . . . , n, with 
yo = A and yn+l = B. The resulting system of n equations may then be treated by the 
methods of Chapter 26. 
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The garden-hose method provides a simple and popular approach to nonlinear problems. 
It proceeds through successive approximations, very much like the root-finding algo- 
rithms of Chapter 25. As an example take the classical two-point problem above. First 
we solve the initial value problem 

Y" = f(x,y,y'), ~ ( 4  = A, yf(a) = M 
for some arbitrary choice of M. The terminal value obtained depends upon the choice 
of M. Call it F(M). Then what we want is F(M) = B, and to achieve this will require 
successive corrections to the initial choice of M. Each new M value brings a new initial 
value problem, to be solved by the methods of Chapter 19. As with root-finding there 
are several ways for choosing the corrections to M, including a Newton method 

The calculus of variations establishes the equivalence of certain boundary value prob- 
lems with problems of optimization. To find the function y(x) which has y(a) = A, 
y(b) = B and makes 

maximum (or minimum), one may solve the Euler equation 

subject to the same boundary conditions. There are also direct methods for maximizing 
the integral, which may therefore be considered as methods for solving the Euler 
equation with its boundary conditions. The equivalence may be exploited in either 
direction. 

Dynamic programming provides another approach to the above optimization problem, 
and hence to the boundary problem also. For fixed b and B i t  notes that the optimum 
value of the integral (maximum or minimum) depends upon a and A. Call the optimum 
value f[a, A].  Now consider the larger problem of determining f[X, Y] for various X 
and Y values. Approximating the integral in a simple way leads to the recursion 

f[X, Y] - Opt {ha F [ X ,  Y,y'(X)] + f[X + h, Y + hy'(X)I) 

which may then be used to work backward from X = b, Y = B. 

METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 
Here the solution algorithms depend heavily on the type of problem. The variety of 

problems is much greater than with ordinary equations and only a few classical cases are 
discussed here. 

1. The parabolic problem 

Tt = T,,, T(0, t) = T(1, t) = 0, T(x, 0) = f(x) 
is the prototype of diffusion problems. The equation must be satisfied inside the semi- 
infinite strip 0 6 x 1, 0 4 t. On the boundaries of this strip T(x, y) is prescribed. 
Though this prototype can be solved by elementary series methods (Fourier series), a 
finite difference algorithm suitable for more troublesome problems will be illustrated. 
Replacing derivatives by simple differences, the basic equation becomes the difference 
equation 

Tm,n+l = hTm-l,n + (1 -2X)Tm,n + hTm+l,n 
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where x, = mh, t, = nk and A = klh2. A rectangular lattice of points (x,, t,) thus 
replaces the strip. The difference equation allows each T value to be computed from 
values a t  the previous time step, with the specified initial values f(x,) triggering the 
process. For proper choices of h and k (tending to zero) the method converges to the 
correct solution. The computation for  small h and k proves to be strenuous, and nu- 
merous variations of this algorithm have been invented in an  effort to reduce the size 
of the job. The implicit methods are foremost and involve a succession of matrix 
problems. Free boundary problems are  among the more troublesome modern extensions 
of the prototype just presented and require that  the location of part  of the boundary be 
determined as  part  of the problem. 

2. The elliptic problem 
T, ,+T, ,=O,  O ' x ' l ,  O L y " 1  

is the Dirichlet problem already mentioned. Also solvable by series methods, i t  has 
inspired various finite difference and other methods of solution which may be applied 
to less cooperative problems of the same general sort. For example, using differences 
in place of the derivatives easily leads to the difference equation 

which requires each T value to be the average of its four nearest neighbors in the 
square lattice (x,, y,). Writing this difference equation a t  each interior lattice point 
brings a linear system of N equations, where N is the number of such points. The 
system must be solved by the methods of Chapter 26. Convergence to  the correct solu- 
tion can be proved. The method can be adapted to other equations, to regions with 
curved or unknown boundaries and to more dimensions. Other methods, including the 
solution of equivalent optimization problems, also exist. 

3. The hyperbolic problem 
Utt = Uss, - c4 < X < a ,  0 ' t 

is the prototype of wave propagation problems. Finite difference methods can also be 
adapted to solve such problems, but the best methods involve some understanding of 
the theory of hyperbolic equations, including characteristic curves, and are omitted here. 

Solved Problems 

LINEAR ORDINARY DIFFERENTIAL EQUATIONS 

29.1. Find a solution of the second order equation 

satisfying the two boundary conditions 

ell ~ ( a )  + clzy(b) + c ~ s ~ ' ( a )  + c14yf(b) = A 

With linear equations, we may rely upon the superposition principle which is  used in -solving 
elementary examples by analytic methods. Assuming tha t  elementary solutions cannot be found 
for  the above equation, the numerical algorithms of a n  earlier chapter (Runge-Kutta, Adams, etc.) 
may be used to compute approximate solutions of these three initial value problems for  a 6 x 5 b.  
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The required solution is then available by superposition, 

Y ( X )  = C l ~ l ( 4  + C 2 ~ 2 ( 5 )  + Y ( x )  

where to satisfy the boundary conditions we determine C1 and C2 from the equations 

In this way the linear boundary value problem is solved by our algorithms for initial value problems. 
The method is  easily extended to higher order equations or to linear systems. We assume that  the 
given problem has a unique solution and that  the functions y l ,  y2, etc., can be found with reasonable 
accuracy. The equations determining C1, C2,  etc., will then also have a unique solution. 

29.2. Show how a linear boundary value problem may be solved approximately by reducing 
it  to a linear algebraic system. 

Choose equally spaced arguments xi = a + jh with xo = a and X N + ~  = b. We now seek to 
determine the corresponding values y j  = y(xj) .  Replacing yt l (xi )  by the approximation 

the differential equation L ( y )  = r ( x )  of Problem 29.1 becomes, after slight rearrangement, 

(1  - + h ~ ~ ) y ~ - ~  + (-2 + h2qj)yj + (1  + + h p j ) y j t l  = h2rj 

If we require this to hold a t  the interior points j  = 1, . . . , N, then we have N linear equations in 
the N unknowns y l ,  . . ., yN,  assuming the two boundary values to be specified as yo = y(a)  A ,  
y N + l  = y(b)  = B. In this case the linear system takes the following form, 

where a = 1 - h i ,  Pi = - 2  + h2qj, yj = 1 + +hpj 

The band matrix of this system is typical of linear systems obtained by discretizing differential 
boundary value problems. Only a few diagonals are nonzero. Such matrices are easier to handle 
than others which are not so sparse. If Gaussian elimination is used, with the pivots descending 
the main diagonal, the band nature will not be disturbed. This fact can be used to abbreviate the 
computation. The iterative Gauss-Seidel algorithm is also effective. If the more general boundary 
conditions of Problem 27.1 occur these may also be discretized, perhaps using 

This brings a system of N + 2 equations in the unknowns YO,  . . . , Y N +  1. 

In this and the previous problem we have alternative approaches to the same goal. In both 
cases the output is  a finite set of numbers yj .  If either method is reapplied with smaller h, then 
hopefully the larger output will represent the true solution y (x )  more accurately. This is  the ques- 
tion of convergence. 
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29.3. Show that for the special case 

the method.of Problem 29.2 is convergent. 

The exact solution function is  l / ( x )  = (sin x)(sin 1). The approximating difference equation is 

and this has the exact solution 
yj = [sin (axjlh)] 1 [sin (alh)]  

for the same boundary conditions yo = 0 ,  y,,, = 1. Here xi = jh and cos a = 1 - Qh2. These 
facts may be verified directly or deduced by the methods of our section on difference equations. Since 
lim (culh) is one for h tending to zero, we now see that  lim yj = y(x j ) ,  that  is, solutions of the dif- 
ference problem for decreasing h ,  converge to the solution of the differential problem. In this 
example both problems may be solved analytically and their solutions compared. The proof of 
convergence for more general problems must proceed by other methods. 

29.4. Illustrate the reduction of a linear differential eigenvalue problem to an approximating 
algebraic system. 

Consider the problem 
Y" + Xy = 0 ,  y(0) = y(1) = 0 

This has the exact solutions y(x )  = C sin nm, for n = 1,2, . . . . The corresponding eigenvalues 
are X ,  = n2~2.  Simply to illustrate a procedure applicable to other problems for which exact solu- 
tions are not so easily found, we replace this differential equation by the difference equation 

Requiring this to hold a t  the interior points j  = 1, . . . , N, we have an algebraic eigenvalue problem 
Ay = Xh2y with the band matrix 

1 

all other elements being zero, and yT = (y,, . . . , yN).  The exact solution of this problem may be 
found to be 

Yj = sin nnxj with X ,  = (41h2) sin2 ( n ~ h / 2 )  

Plainly, as h tends to zero these results converge to those of the target differential problem. 

NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS 

29.5. What is the garden-hose method? 

Given the equation y" = f (x ,  y,  y'), we are to find a solution which satisfies the boundary 
conditions y(a)  = A, y(b) = B. 

One simple procedure is to compute solutions of the initial value problem 

for various values of M until two solutions, one with y(b) < B and the other with y(b) > B, b v e  
been found. If these solutions correspond to initial slopes of MI and M2,  then interpolation will sug- 
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gest a new M value between these and a better 
approximation may then be computed (see Fig. 29-1). 
Continuing this process leads to successively better 
approximations and is  essentially the regula falsi 
algorithm used for nonlinear algebraic problems. 
Here our computed terminal value is  a function of 
M ,  say F ( M ) ,  and we do hav'e to solve the equation 
F ( M )  = B. However, for each choice of M  the cal- 4 
culation of F ( M )  is  no longer the evaluation of an - 
algebraic expression but involves the solution of an 
initial value problem of the differential equation. 

29.6. How may the garden-hose method be refined? 

I 

Instead of using the equivalent of regula falsi, we may adapt Newton's method to the present 
problem, presumably obtaining improved convergence to the correct M  value. To do this we need to 
know F f ( M ) .  Let y ( x , M )  denote the solution of 

+ 

and for brevity let z (x ,  M )  be its partial derivative relative to M. Differentiating relative to M  
brings 

2" = f y @ ,  Y ,  Y')Z + f y . ( x ,  2/,1/')zt ( 1 )  

( a  Ib 

Fig. 29-1 

if we freely reverse the orders of the various derivatives. Also differentiating the initial conditions, 
we have 

z (a ,  M )  = 0, z t (a ,  M )  = 1  

Let M I  be a first approximation to M  and solve the original problem for the approximate solution 
y ( x , M 1 ) .  This may then be substituted for y  in equation (1 )  and the function z ( x , M l )  computed. 
Then F f ( M )  = x(b, M I ) .  With this quantity available the Newton method for solving F ( M )  - B = 0 
now offers us the next approximation to M: 

With this M2 a new approximation y (x ,  M,) may be computed and the process repeated. The method 
may be extended to higher order equations or to systems, the central idea being the derivation of an 
equation similar to ( I ) ,  which is called the variational equation. 

OPTIMIZATION 

29.7. Reduce the problem of maximizing or minimizing F [ x ,  y, y'] dx to a boundary 
value problem. lb 

This is the classical problem of the calculus of variations. If the solution function y ( x )  exists 
and has adequate smoothness, then i t  is required to satisfy the Euler differential equation F,  = 
(d /dx )Fy , .  If boundary conditions such as  y (a )  = A, y (b )  = B are specified in the original op- 
timization problem, then we already have a second order boundary value problem. If either of these 
conditions is omitted, then the variational argument shows that F,. = 0 must hold a t  that end 
of the interval. This is called the natural boundary condition. 

29.8. Minimize 1' (y2 + ~ ' 5  dx subject to y(0) = 1. 

The Euler equation is  2 y  = 2 y f f  and the natural boundary condition is y r ( l )  = 0. The solution 
is now easily found to be y  = coshx - tanh 1  sinh x  and i t  makes the integral equal to tanh 1, 
which is  about .76. In general the Euler equation will be nonlinear and the ga *den-hose method 
may be used to find y ( x ) .  
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29.9. What is the dynamic programming approach to this same kind of optimization 
problem? 

The optimum value (maximum or minimum) we are seeking clearly depends on a and A. Denote 
i t  by f [ a , A ] .  The idea of dynamic programming is  to imbed this problem in the larger problem of 
finding f [ X ,  Y ]  for arbitrary X and Y .  In other words we now t ry  to solve a whole family of 
optimization problems a t  once, with differing initial conditions y ( X )  = Y. Suppose we leave this 
initial point and travel along a straight line segment to [ X +  h ,  Y + hy l (X)] .  I f  we approximate 
our basic integral over this subinterval by h F [ X ,  Y ,  y l ( X ) ] ,  then 

the optimum being relative to y t (X) .  This amounts to saying that if we start  out from ( X ,  Y )  in the 
optimum direction y t ( X )  and then follow up by taking an optimum path from the new initial point, 
we will have achieved our objective. Essentially we obtain an expression for f [ X ,  Y ]  in terms of 
f [ X +  h, Y + h y t ( X ) ] ,  which corresponds to a shorter interval of integration. Clearly f[b, Y ]  = 0 ,  
since our integral is certain to be zero when both its limits are b. 

As a first step toward the solution we take the above equation a t  X equal to b - h. Writing p for 
y l ( X ) ,  this is 

f [ b - h , Y ]  - O p t { h . F [ b - h , Y , p ] )  

since f [b ,  Y + hp] is  zero. For arbitrary Y this determines both the optimum value f [ b  - h, Y ]  and 
the optimum direction p[b - h, Y ] .  Next we take X = b - 2h and have 

f [b  - 2h, Y ]  - Opt { h  F [ b  - 2h, Y ,  p] + f [ b  - h, Y + h p ] )  

With the last term determined in the previous step, this now yields both f [b  - 2h, Y ]  and the op- 
timum direction p[b - 2h, Y ] .  In this way the computation works backward to the required f [ a , A ]  
value. 

29.10. Compare the variational and dynamic programming approaches to the optimization 
problem. 

In the variational approach the emphasis is on the optimum curve y(x) .  Once this is in hand, 
the value f ( a ,  A )  may be computed. The principal difficulty lies in the search for y(x )  by successive 
approximations. If the garden-hose method is  used, the usual questions of stability and conver- 
gence arise. Moreover, much of the intermediate numerical data may be valueless; only the final 
output is  significant. (This apparent waste may be reduced in some cases by integrating from 
right to left.) In the dynamic programming approach the direct outputs are the optimum value of 
the integral for various initial points and the optimum direction a t  each such point. This has the 
advantage that all information produced is of conceivable value, and the disadvantage that  the 
solution function y ( x )  is  available only through the direction field p [ X ,  Y ] .  

29.11. Solve Problem 29.8 by dynamic programming. 
For simplicity we choose h = 114. Since f(1,  Y )  = 0 ,  our first equation is 

f [3/4, Y ]  - Min { (1 /4 ) (Y2  + p2)) 

In general we might now have to evaluate (1 /4 ) (Y2  + pz) for various p values and find the minimum 
by inspection. Here, however, elementary considerations enforce p[3/4, Y ]  - 0 and then f [3/4, Y ]  - 
(1/4)Y2. Note that  the result p - 0 is the equivalent of the natural boundary condition y l ( l )  = 0. 
The next step finds 

f[1/2, Y ]  - Min { (1 /4 ) (Y2  + p2) + f [3/4, Y  + (1 /4 )p] )  

In a more troublesome problem we would again have to compute the expression in braces for 
various p values and find the minimum by inspection. Here, however, elementary calculus yields 

corresponding to p[1/2, Y ]  - -4Y/17 - -.24Y. Similarly we find 

with p[1/4, Y ]  - -.43Y; and finally 

f [0,  Y ]  - Min { (1 /4 ) (Yz  + p2) + f [1 /4 ,  Y + ( 1 / 4 ) p ] )  - .83Y2 

with p[O, Y ]  - -.58Y. Comparing with the exact results of Problem 29.8, we have f [0 ,1]  - .83 
where the correct value is  nearer .76, and p[O, 11 - -.58 where the correct value is - tanh 1 - -.76. 
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THE 
29.12. 

29.13. 

The errors  a r e  due to the discretization. A smaller h value would bring improvement. 
In  this problem i t  has  been possible to obtain f ( X ,  Y )  explicitIy for  any  Y ,  due to the elementary 

character of the functions involved. Ordinarily the Y argument must also be discretized and, f o r  
each X ,  f (X ,  Y) computed for  a range of Y values before going on to a n  earlier X.  

DIFFUSION EQUATION 
Replace the diffusion problem involving the equation 

aT/dt = a(d2Tldx2) + b(8Tldx) + cT 

and the conditions T(0, t )  = f ( t ) ,  T(1, t )  = g(t) ,  T (x ,  0) = F(x)  by a finite difference 
approximation. 

Let x,  = m h  and t ,  = n k ,  where X M +  = 1. Denoting the value T ( x ,  t )  by the alternate 
symbol T,,,, the approximations 

aT1at - (Tm,,+1-Tm,,)lk, aT1ax - (T,+i,,-Tm-i,,)I2h, 

a 2 ~ / a x 2  - (T,+~, ,  - 2Tm,, + T , - ~ , , ) I ~ ~  
convert the diffusion equation to 

T,,,+, = X(a-+bh)T,-,,, + [ I - h ( 2 a + c h 2 ) ] T m , ,  + h(a++bh)T,+,,, 

where X = k/h2, m = 1,2, . . ., N and n = 1,2, . . . . Using the same initial and boundary condi- 
tions above, in  the form To,, = f ( t , ) ,  T,+,,, = g(t,) and T,,, = F(x,), this difference equation 
provides a n  approximation to each interior Tm,,+l value in  terms of i ts  three nearest neighbors a t  
the previous time step. The computation therefore begins a t  the (given) values for  t = 0 and 
proceeds first to  t = k ,  then to t = 2k, and so on. (See the next problem for  a n  illustration.) 

Apply the procedure of the preceding problem to the case a  = 1, b = c = 0, f(t) = 
g(t)  = 0, F(x )  = 1  and 1 = 1. 

Suppose we choose h = 114 and k = 1/32. Then X = 112 and the difference equation 
simplifies to  - 

Tm,n+l - +(Trn-1.n + Tm+i,n) 

A few lines of computation are  summarized in Table 29.l(a). The bottom line and the side columns 
a re  simply the initial and boundary conditions. The interior values a r e  computed from the difference 

equation line by line, beginning with the looped @ which comes from averaging i ts  two lower 
neighbors, also looped. A slow trend toward the ultimate "steady state" in  which all T values a re  
zero may be noticed, but  not too much accuracy need be expected of so brief a calculation. 

For  a second t r y  we choose h = 118, k = 11128, keeping = 112. The results appear in 
Table 29.l(b). The top line of this table corresponds to the second line in Table 29.l(a) and is in  
fact a better approximation to T ( x ,  1/32). This amounts to a primitive suggestion tha t  the process 
is s tar t ing to converge to the correct T ( x ,  t )  values. 

In  Table 29.l(c) we have the results if h = 114, k = 1/16 a r e  chosen, making X = 1. The dif- 
ference equation for  this choice is  

- 
Tm,n+l - T m - ~ , n  - Tm,n + Tm+ I,, 

The s ta r t  of a n  explosive oscillation can be seen. This does not a t  all conform to the correct solu- 
tion, which is known to decay exponentially. Later we shall see t h a t  unless X 5 1/2 such an ex- 
plosive and unrealistic oscillation may occur. This is a form of numerical instability. 
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29.14. What is the truncation error of this method? 

As earlier we apply Taylor's theorem to the difference equation, and find that  our approximation 
has introduced error terms depending on h and k. These terms are the truncation error 

subscripts denoting partial derivatives. In the important special case a = constant, b = 0, we 
have T,, = aTXx,, so that  the choice k = h2/6 (or h = 116) seems especially desirable from this 
point of view, the truncation error then being O(h4). 

29.15. Show that the method of Problem 29.12 is convergent in the particular case 

dT/dt = d2Tldx2, T(0, t) = T(T, t) = 0, T(x, 0) = sinpx 

where p is a positive integer. 

The exact solution may be verified to be T(x ,  t )  = e-pZt sin px. The corresponding difference 

and the remaining conditions may be written 

This finite difference problem can be solved by "separation of the variables". Let T,,, = u,v, 
to obtain 

(v,+ 1 - v,)/w, = X([u,+ 1 - 2% + U ~ ~ ~ ] ~ U , )  = - XC 

which defines C. But comparing C with the extreme left member we find i t  independent of m,  and 
comparing it with the middle member we find i t  also independent of n. It is therefore a constant 
and we obtain separate equations for urn and v ,  in the form 

These are easily solved by our difference equation methods. The second has no solution with 
uo = U M +  = 0 (except urn identically zero) unless 0 < C < 4, in which case 

urn = A cos ern + B sin cum 

where A and B are constants, and cosa = 1 - &C. To satisfy the boundary conditions, we must 
now have A = 0 and CY(M + 1) = j ~ ,  j being an integer. Thus 

u, = B sin [mjal(M f 1)] 

Turning toward v,, we first find that  C = 2(1- cos C Y )  = 4 sin2 (jn/[2(M + I ) ] )  after which 

I t  is now easy to see that choosing B = vo = 1 and j  = p we obtain a function 

Tm,n u,v, = [I - 4h sin2 (pn/2[M + l])In sin (mpn/[M + 11) 

which has all the required features. For comparison with the differential solution we return to the 
symbols x, = mh, t, = nk. 

,,/Ah:! 
T,,, = [l - 4X sin2 (ph/2)] sin px, 

As h now tends to zero, assuming = klh2 is kept fixed, the coefficient of sin px, has limit e-pZtn 
so that  convergence is  proved. Here we must arrange that the point (x,, t,) also remain fixed, which 
involves increasing m and n as h and k diminish, in order that the T,,, values be successive ap- 
proximations to the same T(x ,  t). 

29.16. Use the previous problem to show that for the special case considered an explosive 
oscillation may occur unless h 4 9. 

The question now is  not what happens as  h tends to zero, but what happens for fixed h as the 
computation is continued to larger n arguments. Examining the coefficient of sin pa, we see that  
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the quantity in brackets may be less than -1 for  some values of A, p and h. This would lead to an 
explosive oscillation with increasing t,. The explosion may be avoided by requiring tha t  A be no 
greater than 112. Since this makes k 5 h2/2 the computation will proceed very slowly, and if 
results fo r  large t arguments a re  wanted i t  may be useful to use a different approach. (See the 
next three problems.) 

29.17. Solve Problem 29.13 by means of a Fourier series. 

This is  the classical procedure when a is constant and b = c = 0. We first look for solutions of 
the diffusion equation having the product form U(x) V(t). Substitution brings V'IV = U"IU = 
--a2 where a is  constant. (The negative sign will help us satisfy the boundary conditions.) This 
makes 

V = Ae-a2t, U = B cos ax + C sin ax 

To make T(0, t) = 0, we choose B = 0. To make T(1, t) = 0, we choose = nr where n is a 
positive integer. Putting C = 1 arbitrarily and changing the symbol A to A,, we have the functions 

Ane-n2+t sin nax, n = 1,2,3,  . . . 
each of which meets all our requirements except fo r  the initial condition. The series 

m 

T(x, t )  = 2 A,e-nZvzt sin ni;x 
n=l 

if i t  converges properly will also meet these requirements, and the initial condition may also be 
satisfied by suitable choice of the A,. For  F ( x )  = 1 we need 

T(x,O) = F(x)  = 2 A, s innax  
n = l  

and this is achieved by using the Fourier coefficients fo r  F(x), 

A, = 2 i1 F(x) sin nax dx 

The partial sums of our series now serve a s  approximate solutions of the diffusion problem. The 
exact solution used in Problem 29.15 may be viewed a s  a one term Fourier series. 

29.18. Show how the equation of Problem 29.12 may be replaced by a system of ordinary 
differential equations. 

Using the same finite difference approximations as  in Problem 29.12, but leaving the time 
derivative alone, we obtain the system 

T k ( t )  = (alh2 - blZh)T,-I + (- 2alh2 + c)T, + (alh2 + bl2h)T,+ 

where T, (t) = T(x,, t )  and m = 1, . . . , M. Using the boundary conditions a s  needed, this is  a n  
initial value problem involving M equations in the unknown functions TI, . . . , TM. Any of our 
methods for  dealing with such systems may be applied. 

29.19. If a, b, c are constants show that  the system of the preceding problem may be solved 
as an algebraic eigenvalue problem. 

Actually, any  linear system of differential equations with constant coefficients may be ap- 
proached by eigenvalue methods. Take the two equations 

y' = ay + bx, x' = cy + dz 

a s  a simple example. The same considerations apply to larger systems a s  well. Look for  solutions 
of the exponential form 

y = zcehx, x = veA5 

Substitution brings the equations a u +  bv = XU, c u +  dv = Xv for  u and v. Suppose X I  and h2 
are  distinct eigenvalues corresponding to u1, vl and u,, v2 respectively. Then 

y = AulehlX $ Bu2eA@, x = AvleXIZ + ~ v ~ e ~ 2 ~  

The initial conditions on y and x then determine A and B. Degenerate cases (multiple eigenvalues) 
respond to special treatment. 
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29.20. What is an "implicit" finite difference method? 

As a simple example consider the problem 

already discussed in Problem 29.13. With the same approximations a s  before except for 

aT/at - (Tm, ,  - T,,,-l)/k 

Applied first a t  n = 1, the right side of this equation involves known initial values and the left 
side three unknowns. Using m = 1, . . ., M, we have a linear system of M equations to determine 

up to T,,,. Solving this system we are ready for a second step with n = 2. Each new line is  
thus obtained as  a unit, by solving a linear system. The advantage is that now there proves to be 
no stability restriction on the size of A, and the horizontal lines may be more widely separated. 

29.21. Use the implicit method together with a variable time step to solve the f ree boundary 
problem 

Tt = T, for 0 6 t ,  0 6 x 6 X(t) where X(0) = 0 

Problems such as this arise in change of state circumstances, such as the freezing of a lake or 
the melting of a metal. The position of the boundary between solid and fluid is not known in advance 
and must be determined by the solution algorithm. One algorithm uses 

( T m - ~ , n  - 2Tm,n Tm+ 1,n)/hz = (Tm,n - Tm,n-J/kn 

in  place of the diffusion equation and 

in place of the first two boundary conditions. The remaining (free) boundary condition is  equivalent to 

To see this, temporarily let f ( t )  = t - T(x,  t )  d x  and differentiate to find 

X ( t )  

f'(t) = 1 - X 1 ( t )  T [ X ( t ) ,  t] - S T r  ( x ,  t )  dz = 
0 

= 1 - T,[X( t ) , t ]  + Tx(O, t )  = X f ( t )  

Since f(0) = X(0)  = 0, i t  follows that  f ( t )  X ( t ) .  

We next replace this condition by the discretization 
n-1 

n h  = tn-I  + kn - ,B Ti,,-lh 
a=1 

Each step of the computation now consists of determining k ,  from this last equation (by the fact 
that  n steps of size h must reach the boundary) and then the T,,, values from a linear system. 
Since To,, = 0 the first step brings kl  = h,  To ,  = h,  T l l  = 0 from the boundary conditions alone. 
But then k2 = h, and the equations 

yield To,,  = h(2 -I- h ) l ( l  + h) ,  T,, , = h / ( l  + h). Choosing h = .l, for example, To,,  - .I91 and 
T I , ,  - .091. Of course, T2,* = 0. The third step finds k ,  = .109, after which the equations 

determine To,,  = .275, T I , ,  = .175, T2,,  = .084. Again, T3, ,  = 0. The computation of k ,  = .I44 
now begins step four .  Since h is kept fixed, the increasing kn values suggest an upwards curving 
boundary with tn = k l  + . - 0  + kn, X( tn )  = nh. The convergence of this algorithm for h + 0 has 
been proved by Douglas and Gallie (Duke, 1955). 
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THE LAPLACE EQUATION 
29.22. Replace the Laplace equation 

d 2 T / d x 2  + d 2 T / d y 2  = 0, 0 6 x 4 1, 0 4 y 1 

by a finite difference approximation. If the boundary values of T ( x ,  y) are assigned 
on all four sides of the square, show how a linear algebraic system is encountered. 

The natural  approximations a r e  

a2T/ax2 - [ T ( x  - h, y )  - 2 T ( x ,  y )  +- T ( x  + h ,  y ) ] lh2  

a2Tlay" [ T ( x ,  y - h )  - 2 T ( x ,  y) + T ( x ,  y + h)] lh2 

and they lead a t  once to  the difference equation 

T ( x ,  y )  = ( 1 / 4 ) [ T ( x  - h ,  y )  + T ( x  + h ,  y )  + T ( x ,  Y - h )  + T ( x ,  y + h ) ]  

which requires each T value to be the average of i ts  four nearest 
neighbors. Here we focus our attention on a square lattice of points 
with horizontal and vertical separation h. Our difference equation 
can be abbreviated to  

Tz = (1 /4)(TA + T B  + T c  + T D )  

with points labeled a s  in Fig. 29-2. Writing such a n  equation for  
each interior point Z (where T is unknown), we have a linear system 
in which each equation involves five unknowns, except when a 
known-boundary value reduces this number. Fig. 29-2 

29.23. Apply the method of the previous problem when T ( x ,  0) = 1, the other boundary 
values being 0. 

For  sin~plicity we choose h so tha t  there a re  only nine interior points, a s  in Fig. 29-2. 
Numbering these points from left to  right, top row first, our nine equations a r e  these: 

T I  = (1 /4)(0  + T 2  + T 4  + 0 )  T 6  = (1 /4 ) (T3  + 0 + T 9  + T 5 )  

T 2  = (1 /4)(0  + T 3  + T 5  + T I )  T 7  = (1 /4 ) (T4  + T n  + 1 + 0) 
T 3  = (1 /4)(0  + 0 + T 6  + T 2 )  T n  = ( l / 4 ) ( T 5  + T 9  + 1 + T7) 

T 4  = (1 /4 ) (T l  + T5 + T7 + 0 )  T ,  = (1 /4 ) (T6  + 0 + 1 + T 8 )  

T 5  = (1 /4 ) (T2  + T 6  + T 8  + T4) 

The system could be rearranged for  Gaussian elimination, but  a s  i t  stands the Gauss-Seidel itera- 
tion seems natural. Star t ing from the very poor initial approximation of zero for  each interior Ti  
the successive results given in Table 29.2 are  obtained. Ten iterations bring three place accuracy 
for this linear system. (For  a discussion of convergence of the Gauss-Seidel iteration see Problem 

.016 ,024 .027 .lo6 .I52 

.032 .053 .045 .I40 .I96 

.048 .072 .058 .I61 .223 

.058 .085 .065 .I74 .236 

.065 .092 .068 .I81 .244 

.068 .095 .070 .I84 .247 

.070 .097 .071 .I86 .249 

.071 .098 .071 .I87 .250 

Table 29.2 

26.8, page 341.) 

Iteration 

0 

1 

2 

T I  T 2  T S  T4  T 5  T 6  T7  T 8  T 9  

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 .250 .312 .328 

0 0 0 .062 .078 .082 .328 .394 .328 
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A CONVERGENCE PROOF 
29.24. Prove that  the linear system encountered in Problem 29.22 will always have a unique 

solution. 
The point is that ,  since we base our approximation on this system, i t  is important t h a t  i t  be 

non-singular. Denoting the unknown interior values T I ,  . . . , T,, we may rewrite the system in the 
form N 

2 aik T k  = bi 
k=l 

(1 )  

where the bi depend upon the boundary values. If all boundary values were zero, then all bi would 
be zero also: N 

2 aik T k  = 0  
k=l 

(2)  

By the fundamental theorem of linear algebra (Problem 26.6, page 339) the system (1 )  will have a 
unique solution provided tha t  (2) has only the zero solution. Accordingly, we suppose all boundary 
values a re  zero. If the maximum T k  value occurred a t  an interior point 2, then because of T z  = 
(1 /4) (TA + T B  + T ,  + T D )  i t  would also have to occur a t  A ,  B, C and D ,  the neighbors of 2. Simi- 
larly this maximum would occur a t  the neighboring points of A,  B, C and D themselves. By con- 
tinuing this argument we find tha t  the maximum T k  value must also occur a t  a boundary point, 
and so must be zero. An identical argument proves tha t  the minimum T k  value must occur on the 
boundary, and so must be zero. Thus all T k  in system (2 )  a r e  zero and the fundamental theorem 
applies. Notice t h a t  our proof includes a bonus theorem. The maximum and minimum T k  values 
for  both (1 )  and (2 )  occur a t  boundary points. 

29.25. Prove that  the solution of system ( 1 )  of Problem 29.24 converges to the corresponding 
solution of Laplace's equation as h tends to zero. 

Denote the solution of (1 )  by T ( x ,  y, h )  and t h a t  of Laplace's equation by T ( x ,  y ) ,  boundary values 
of both being identical. We are to prove tha t  a t  each point ( x ,  y )  a s  h  tends to zero, 

lim T ( x ,  y,  h )  = T ( x ,  Y )  

For convenience we introduce the symbol 

By applying Taylor's theorem on the right we easily discover t h a t  for  F = T ( x ,  y) ,  ( L [ T ( x ,  y)]l 6 

Mh4/6 where M is an upper bound of / Txxxx/  and I T,,,,j. Moreover, L [ T ( x ,  y,  h)]  = 0 by the defini- 
tion of T ( x ,  y,  h) .  Now suppose the origin of x ,  y  coordinates to be a t  the lower left corner of our  
square. This can always be arranged by a coordinate shift, which does not alter the Laplace 
equation. Introduce the function 

where A is an arbi t rary positive number and D is  the diagonal length of the square. A direct com- 
putation now shows 

L [ S ( x ,  y,  h ) ]  = 2h2A/D2 + O(Mh416) 

so tha t  fo r  h  sufficiently small, L [ S ]  > 0. This implies that  S  cannot take i ts  maximum value a t  
an interior point of the square. Thus the maximum occurs on the boundary. But  on the boundary 
T ( x ,  y,  h )  = T ( x ,  y )  and we see tha t  S is surely negative. This makes S everywhere negative and 
we easily deduce that  T ( x ,  y,  h )  - T ( x ,  y )  < A. A similar argument using the function 

proves t h a t  T ( x ,  y )  - T ( x ,  y,  h )  < A. The two results together imply IT,(x, y, h )  - T ( x ,  y)I < A 
for  arbitrarily small A, when h is  sufficiently small. This is  what convergence means. 

29.26. Prove that  the Gauss-Seidel method, as applied in Problem 29.23, converges to the 
exact solution T ( x ,  y, h) of system ( I ) ,  Problem 29.24. 

This is, of course, a n  altogether separate matter from the convergence result just obtained. 
Here we a re  concerned with the actual computation of T ( x ,  y, h )  and have selected a method of suc- 
cessive approximations. Suppose we number the interior points of our square lattice from 1 to N 
a s  follows. F i r s t  we take the points in the top row from left to right, then those in the next row 
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from left to right and so on. Assign arbitrary initial approximations TP a t  all interior points, 
i = 1, . . ., W .  Let the succeeding approximations be called TF We are to prove 

lim = Ti = T(x, y, h) 

as n tends to infinity. Let S; = T-  Ti. Now i t  is our aim to prove lim Sr = 0. The proof is based 
on the fact that  each Si is the average of its four neighbors, which is true since both Taand Ti have 
this property. (At boundary points we put S equal to zero.) Let M be the maximum @ I .  Then, since 
the first point is  adjacent to a t  least one boundary point, 

ISil 6 i [ M  + M + M + 0] = 2 M 

And since each succeeding point is  adjacent to a t  least one earlier point, 

ISi+II 5 f [ M + M + M + / S [ l ]  

Assuming for induction purposes that  IS;\ [1 - (&)i]M we have a t  once 

5 2 M  + i [ l - (&)i ]M = [1-(i) i+l]M 

The induction is already complete and we have IS& 6 [I - (&)N]M = (YM which further implies 

IS;( 5 (YM, i = 1, . . . , N 

Repetitions of this process then show that  ISaI 5 ( Y ~ M ,  and since a < 1 we have lim Sy = 0 as  
required. Though this proves convergence for arbitrary initial c, surely good approximations 
T x l l  be obtained more rapidly if accurate starting values can be found. 

MORE GENERAL PROBLEMS 
29.27. Adapt the previous method to the case of a curved boundary. 

A variety of procedures have been suggested for handling curved boundaries. Suppose the 
boundary passes between lattice points as  shown in Fig. 29-3, leaving points A and B outside. With 
h small the known values a t  E and F could simply be assigned to points A and B, or even to Z 
itself if this is closer. For the more fastidious a linear interpolation may be adequate, making 

Since TE and TF are known boundary values these formulas may be added to our linear system, 
which then has two more equations and two more unknowns TA and TB. (These unknowns are of no 
great interest to us since they are a t  exterior points.) Such a pair of equations will correspond 
to any interior point Z with two exterior neighbors. The case of just one exterior neighbor is 
handled in the same way (see Fig. 29-4). 

Fig. 29-3 Fig. 29-4 

29.28. Adapt the previous method when the values of 8Tldy are known along the horizontal 
parts of the boundary instead of the values of T itself. 

The simplest device is  to use the approximation 

JTlJy - (TA-Tz)Ih 
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with points labeled as  in Fig. 29-5. This determines the boundary value T ,  in terms of TA.  For 
greater accuracy the parabolic formula 

aT/ay - (- TB + 4TA - 3Tz)/2h 

may be used instead. Similar formulas apply if aT/ax is given along vertical boundary segments. 
Often in applications the normal derivative aTlan is given along a curved boundary. An interpola- 
tion procedure may again be used to handle this case. From Fig. 29-6 we have 

TB - T P  - d(aT/an),, T p  - Tz  - r(Tc - T,) 

and putting these together, 
T B  - ( 1  - r ) T Z  + rTc + d(aT/dn), 

This introduces a new equation to our linear system and the additional unknown TB. 

Fig. 29-5 Fig. 29-6 

29.29. Extend the finite difference method to the Poisson equation d 2 T l d x 2  + a2Tldy2  = f ( x ,  y ) .  

The difference equation becomes T Z  = (1 /4 ) (TA + TB + T ,  + T,) - (1/4)h2fz and leads to an 
algebraic system much as  before. Other generalizations may similarly be made. 

29.30. Reduce the eigenvalue problem d2Tldx2  + d 2 T l d y 2  = AT with suitable boundary con- 
ditions to an algebraic problem. 

The finite difference equation becomes T Z  = (1 /4 ) (TA + TB + T ,  + T D )  - ( 1 / 4 ) h 2 ~ T z  and leads 
to a matrix eigenvalue problem. 

29.31. What is the equivalent optimization problem? 

Most boundary value problems are equivalent to a problem of optimization. In this case a 
function T ( x ,  y )  which makes 

JJ (T: + T ; )  dx d y  = minimum 
R 

and takes prescribed values on the boundary curve of the region R, must also satisfy the Laplace 
equation T,, + T,, = 0 inside R, assuming that  i t  has adequate continuity properties. The prob- 
lem of minimizing the integral may then substitute for the differential boundary value problem. 
One procedure might be to introduce finite difference approximations to the derivatives, replace the 
integral by a summation over a lattice of points covering R, and tackle the resulting problem by 
the methods of calculus. Another procedure, known as a direct method of the calculus of variations, 
uses analytic approximations. The method of dynamic programming provides still another 
approach. 
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THE WAVE EQUATION 
29.32. Apply finite difference methods to the equation 

a2u a2u 
at2 ax2 

= F[ t ,  X ,  U ,  Ut, U,] - .o < x  < w,  O 6 t 

with initial conditions U(x,  0)  = f ( x ) ,  Ut ( x ,  0)  = g(x). 
Introduce a rectangular lattice of points x,  = mh, t, = nk. At t = n = 0  the U  values are 

given by the initial conditions. Using 

au U ( X ,  t  + k )  - U ( X ,  t )  - - 
at k 

a t  t = 0  we have U ( x ,  k )  - f ( x )  + kg($). To proceed to higher t levels we need the differential 
equation, perhaps approximated by 

which may be solved for U ( x ,  t + k). Applied successively with t = k ,  k  + 1 ,  . . . , this generates 
U  values to any t level and for all x,. 

29.33. Illustrate the above method in the simple case F = 0,  f(x) = x2, g(x)  = 1. 

The basic difference equation may be written (see Fig. 29-7) "1 
where h = klh. For = 1 this is  especially simple, and re- 
sults of computation with h  = k  = .2 are given in Table 29.3. 
Note that  the initial values for x  = 0  to 1 determine the U  
values in a roughly triangular region. This is  also true of the 
differential equation, the value U ( x ,  t) being determined by in- 
itial values between ( x  - t, 0 )  and ( x  + t ,  0). (See Problem 29.34.) Fig. 29-7 

.6 1.00 1.20 

.4 .52 .64 .84 1.12 

.2 .20 .24 .36 .56 .84 1.20 

0 .OO .04 .16 .36 .64 1.00 

t l x  0 .2 .4 .6 .8 1.0 

Table 29.3 

29.34. Show that the exact solution value U(x ,  t )  of Utt = U,,, U(x ,  0 )  = f(x), Ut(x,  0 )  = g(x)  
depends upon initial values between ( x  - t ,  0 )  and ( x  + t, 0). 

For this old familiar problem, which is  serving us here as  a test case, the exact solution is 
easily verified to be 

U ( x ,  t )  = f ( x  + t ,  + f ( x  - t, + iytt g(D a?[ 
2 

and the required result follows a t  once. A similar result holds for more general problems. 

29.35. Illustrate the idea of convergence for the present example. 
Keeping h = 1, we reduce h  and k  in steps. To begin, a few results for h  = k  = .l appear 

in Table 29.4. One looped entry is a second approximation to U(.2, .2) so that  .26 is presumably 
more accurate than .24. Using h  = k  = .05 would lead to the value .27 for this position. Since 
the exact solution of the differential problem may be verified to be 

U(x ,  t )  = x2 + t2 + t  
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we see that  73.2, .2) = .28 and that for diminishing h and k our computations seem to be headed 
toward this exact value. This illustrates, but by no means proves, convergence. Similarly, 
another looped entry is a second approximation to U(.4,  .4) and is better than our earlier .64 because 
the correct value is  .72. 

Table 29.4 

29.36. Why is a choice of h = klh > 1 not rec- 
ommended, even though this proceeds 
more rapidly in the t-direction? 

The exact value of U ( x ,  t)  depends upon ini- 
tial values between ( x  - t, 0 )  and ( x  + t, 0). If 
A > 1 the computed value a t  ( x ,  t )  will depend 

( ,y9F;/ 1 \\\:I;,\ ,, 
only upon initial values in subset AB of this in- / \ \ 
terval. (See Fig. 29-8.) Initial values outside AB \ 

could be altered, affecting the true solution, but I 
( z - t , O )  A B ( *+t ,O)  

not affecting our computed value a t  ( x ,  t). This 
is unrealistic. Fig. 29-8 

Supplementary Problems 
29.37. Solve the equation y" f y1 + x y  = 0 with y (0 )  = 1 and y(1)  = 0 by the method of Problem 

29.1. 

29.38. Solve the previous problem by the method of Problem 29.2. Which approach do you find more 
convenient? 

29.39. Solve y" + & + y = eZ with y(0)  = 0 and y(1)  = 0. 

29.40. Apply the method of Problem 29.4 to y" + hy = 0 with y(0)  = 0 and y l ( l )  = 0. Prove conver- 
gence to the exact solution y = sin ( 2 n  + l ) ( r x / 2 ) ,  h, = [ ( 2 n  + l ) (a /2)]2 .  

29.41. Apply the method of Problem 29.4 to obtain the largest eigenvalue of y" + Axy = 0 with 
y(0)  = y(1)  = 0. 

29.42. Apply the method of Problem 29.5 to y" = y2 + ( Y ' ) ~ ,  y(0) = 0 ,  y(1)  = 1. 

29.43. An object climbs from ground level to height 100 feet in one second. Assuming an atmospheric 
drag which makes the equation of motion y" = - 32 - .I@, what was the initial velocity? 

29.44. An object climbs from (0 ,  0 )  to (2000, 1000) in one second, distances being in feet. If the equations 
of motion are 

x t t ( t )  = - . l f i  cos a, yl '( t)  = - 32 - . l f i s i n  a: 

where v2 = (x1)2 + (y1)2 and a = arctan (y' lx ') ,  find the initial velocity. 
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29.45. Find the function y(x )  which minimizes [xy2 + ( Y ' ) ~ ]  dx  and satisfies y(0) = 0 ,  y(1) = 1. Use 
the method of Problem 29.7. 

29.46. Apply the dynamic programming method of Problem 29.9 to the previous problem. Compare the 
results of the two methods. 

A vehicle flying a t  altitude 100 miles and speed 1000 miles per hour is to climb to altitude 150 miles 
and reduce speed to 900 miles per hour. This maneuver is  to be achieved in minimum time. With 
(x, y)  denoting position and ( u , v )  velocity components, the equations of motion may be written as  

z t = u ,  y t =  V ,  ut = 1000 cosy, v t  = 1000 sin y 

where the figure 1000 represents the thrust available and y is the angle of the thrust. We also 
have these boundary conditions: 

x(0) = 0 y(0) = 100 u(0)  = 1000 v(0)  = 0 

y ( T )  = 150 u ( T )  = 900 v ( T )  = 0 

In the calculus of variations approach, Lagrange multipliers X I ,  X 2 ,  X 3 ,  X 4  are introduced and the 
Euler equations make X 1  and X 2  constant, with 

The natural boundary conditions hl = 0 and 

1000(X3 cosy + X 4  sin y) = 1 a t  t = T 

are also obtained. If the constants C1, C2, X 2  were known, then y(t)  could be determined and the 
equations of motion could be integrated. Unfortunately, however, these three constants and also 
the time of flight T are not known. In their place we have four terminal conditions, a t  time T.  
Use a method of successive approximations to find the optimum time T and the optimum path, as 
well as  the optimum control function y ( t )  which tells how to steer the vehicle. This problem nicely 
illustrates the difficulties of optimization. 

29.48. Apply the method of Problem 29.12 to the case a = c = 1, b = 0, I = 1, f ( t )  = g(t)  = 0 ,  F ( x )  = 
x(1-  x).  Diminish h, obtaining successive approximations until you feel you have results correct 
to two decimal places. Use h = 112. 

29.49. Repeat the previous problem with x = 1/6. Are satisfactory results obtained more economically 
or not? Try x = 1. 

29.50. Apply the method of Problem 29.20 using X = 1. Is two place accuracy obtained more economically 
than in the previous two problems? Also t ry  = 2. 

29.51. Apply the method of Problem 29.18. Does it seem more or less effective than the other methods 
just applied? 

29.52. Show that replacement of derivatives by simple finite differences converts the two dimensional dif- 
fusion equation T ,  = T,, + T,, into 

T,,rn,n+l = ( 1  - 4X)T~,m,n 4- X(T,+l,m,n + Tt-I,,,, + Ti,m+l,n f T,,m-I,,) 

and obtain a similar approximation to the three dimensional diffusion equation T ,  = T,, 4- T,, + T,,. 

29.53. Obtain an approximate solution of T ,  = T,, in the "triangular" region 0 6 t, 0 x 6 X ( t )  = t 2  

where T(0,  t )  = t and T ( X ,  t )  = 0. Use the variable k method of Problem 29.21. 

29.54. Apply the method of Problem 29.22 when T(x,O) = x ( 1 -  x ) ,  the other boundary values being 0. 
Assume I = 1. Use the Gauss-Seidel iterative method to solve the linear system. First t r y  h = 114, 
then the more ambitious h = 118. How accurate do you believe your results to be? 

29.55. Find an approximate solution to Laplace's equation in the region 0 6 x,  0 6 y, y 5 1 - x2 with 
T(0,  y )  = 1 - y, T ( x ,  0 )  = 1 - x and the other boundary values zero. Use the simplest method for 
handling curved boundaries, merely transferring boundary values to nearby lattice points. Try 
h = 114 and h = 118. How accurate do you think your results are? 
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29.56. Solve the previous problem with the first boundary condition replaced by T,(O, y) = 0. 

29.57. Suggest a simple finite difference approximation to T,, + T,, + T,, = 0. 

29.58. Adapt the method of Problem 29.32 using = 1 to solve 

Utt = U,,, U(0,  t )  = U(1,  t)  = 0 ,  U(x ,  0 )  = s i n ~ x ,  U t ( x ,  0 )  = 0 

Compare results with the exact solution U ( x ,  t )  = (cos rt)(sin r x ) .  

29.59. Prove the convergence of the algorithm used in the previous problem by comparing the exact solu- 
tions of both the differential and difference problem for decreasing h. 

29.60. Solve in the form of a Fourier series: 

Utt = U,,, U(0, t )  = U(1,  t )  = 0, U(x,O) = x ( 1 -  x ) ,  U , (x ,  0 )  = 0 

29.61. Adapt the method of Problem 29.32 to the two dimensional wave equation Utt = U,, + U,,. 

29.62. The boundary value problem y f f  = n(n - l ) y l ( x  - 1)2, y(0) = 1, y(1) = 0 has an elementary solu- 
tion. Ignore this fact and solve by the garden-hose method, using n = 2. 

29.63. Try the previous problem with n = 20. What is the troublesome feature? 

29.64. The boundary value problem y f ' -  n2y = -n2l( l -  e - n ) ,  y(0) = 0 ,  y(1) = 1 has an elementary 
solution. Ignore this fact and solve by one of our approximation methods, using n = 1. 

29.65. Try the previous problem with n = 100. What is the troublesome feature? 

29.66. Solve by the finite difference method: y(4) + y = L with y(0) = yf(0)  = y(1) = y f f ( l )  = 0. This is  
the beam deflection problem with uniform load L, the beam being imbedded (in concrete) a t  x = 0 
and simply supported a t  x = 1. Let L = 160,000. Choose h = .05. 

29.67. Repeat the previous problem with h half as large. 

29.68. The boundary value problem T t  = T,,, T ( x ,  0 )  = 0 ,  T(0 ,  t )  = 1 in the quarter-plane x > 0 ,  t > 0 
represents the warming of a semi-infinite solid, initially a t  temperature zero, when a constant tem- 
perature of T = 1 is applied and maintained a t  the surface x = 0. An elementary solution can be 
found, but proceed by one of our approximation methods. 

29.69. Work the previous problem with boundary condition T(0,  t )  = sin t replacing T(0,  t )  = 1. Again 
use one of our approximation methods. 

29.70. The boundary value problem 

Utt+U,,,, = 0 ,  O < x ,  O < t ,  U(x ,O)=Ut(x ,O)=U, , (O, t )=O,  U ( O , t ) = l  

represents the vibration of a beam, initially a t  rest on the x axis, and given a displacement a t  
x = 0. This problem can be solved using Laplace transforms, the result appearing as  a Fresnel 
integral which must then be computed by numerical integration. Proceed, however, by one of our 
finite difference methods. 



Chapter 30 

Monte Carlo Methods 

RANDOM NUMBERS 

Random numbers, as the term is normally used, are not numbers generated by a random 
process such as the flip of a coin or the spin of a wheel. Instead they are  numbers gen- 
erated by a completely deterministic arithmetical process, the resulting set of numbers 
having various statistical properties which together are called randomness. A typical 
mechanism for generating random numbers is 

X n + l  = r x n ( m o d N )  

An initial element xo is repeatedly multiplied by r, each product being reduced modulo N. 
For certain choices of r and N the resulting sequence XO, XI, x2, . . . is fairly evenly distributed 
over (0, N), contains about the expected number of upward and downward double runs 
(13, 69, 97 for example) and triple runs (09, 17, 21, 73 for  example) and agrees with other 
predictions of probability theory. Such modular multiplicative methods may be the most 
heavily-used random number generators a t  present. With decimal computers 

Xn+  1 = 7' xn (mod los), xo = 1 

is quite satisfactory, while with binary computers a good choice is 

xn+ = (8t - 3) x, (mod 29, xo = 1 
with t some large number. 

APPLICATIONS 

Monte Carlo methods solve certain types of problems through the use of random num- 
bers. Although in theory the methods ultimately converge to the exact results, in practice 
only modest accuracy is attainable. This is due to the extremely slow rates of convergence. 
Sometimes Monte Carlo methods are used to obtain good starting approximations for 
speedier, refinement algorithms. Two types of application are offered. 

1. Simulation refers to methods of providing arithmetical imitations of "real" phenomena. 
In a broad sense this describes the general idea of applied mathematics. A differential 
equation may, for example, simulate the flight of a missile. Here, however, the term 
simulation refers to the imitation of random processes by Monte Carlo methods. The 
classic example is the simulation of a neutron's motion into a reactor wall, its zigzag 
path being imitated by an  arithmetical random walk. (See Problems 30.2 and 30.4.) 

2. Sampling refers to methods of deducing properties of a large set of elements by study- 
ing only a small, random subset. Thus the average value of f(x) over an  interval may 
be estimated from its average over a finite, random subset of points in the interval. 
Since the average of f(x) is actually an integral, this amounts to a Monte Carlo method 
for  approximate integration. As a second example, the location of the center of gravity 
of a set of N random points on the unit circle may be studied by using a few hundred 
or  a few thousand such sets as a sample. (See Problem 30.5.) 



MONTE CARL0 METHODS [CHAP. 30 

Solved Problems 
30.1. What are random numbers and how may they be produced? 

For  a simple but informative first example begin with the number 01. Multiply by 13 to obtain 
13. Again multiply by 13, but discard the hundred, to obtain 69. Now continue in  this way, mul- 
tiplying continually by 13 modulo 100, to produce the following sequence of two digit numbers. 

After  77 , the sequence begins again a t  01. 

There is  nothing random about the way these numbers have been generated, and yet they a re  
typical of what a re  known a s  random numbers. If we plot them on a scale from 00 to 99 they show 
a rather  uniform distribution, no obvious preference for  any par t  of the scale. Taking them con- 
secutively from 01 and back again, we find ten increases and ten decreases. Taking them in triples, 
we find double increases (such a s  01, 13, 69) together with double decreases occurring about half 
the time, a s  probability theory suggests they should. The term random numbers is  applied to  
sequences which pass a reasonable number of such probability tests of randomness. Our sequence 
is, of course, too short to stand up  to .&ests of any sophistication. If we count triple increases (runs 
such a s  01, 13, 69, 97) together with triple decreases, we find them more numerous than they should 
be. So we must not expect too much. As primitive a s  i t  is, the sequence is  better than what  we 
would get by using 5 a s  multiplier (01, 05, 25, 25, 25, . . . which a re  in no sense random numbers). 
A small multiplier such a s  three leads to 01, 03, 09, 27, 81, . . . and this long upward run  i s  hardly 
a good omen. It appears that  a well-chosen large multiplier may be best. 

30.2. Use the random numbers of the preceding problem in a simulation of the movement 
of neutrons through the lead wall of an atomic reactor. 

For  simplicity we assume t h a t  each neutron entering the wall travels a distance D before col- 
liding with a n  atom of lead, tha t  the neutron then rebounds in a random direction and travels 
distance D once again to i ts  next collision, and so on. Also suppose the thickness of the wall is 3 0 ,  
though this i s  f a r  too flimsy for  adequate shielding. Finally suppose tha t  ten collisions a re  all a 
neutron can stand. What  proportion of entering neutrons will be able to escape through this lead 
wall? If our random numbers a re  interpreted a s  directions (Fig. 30-1) then they may serve to predict 
the random directions of rebound. Star t ing with 01, for example, the path shown by the broken 
line in Fig. 30-2 would be followed. This neutron gets through, af ter  four  collisions. A second 
neutron follows the solid path in Fig. 30-2, and af ter  ten collisions stops inside the wall. I t  is now 
plain t h a t  we do not have enough random numbers fo r  a realistic effort, bu t  see Problem 30.3. 

Fig. 30-1 Fig. 30-2 
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30.3. How may a more extensive supply of random numbers be produced? 
There a re  quite a few methods now available, but  most of the best use the modular multiplica- 

tion idea of Problem 30.1. For  example, the recursion 

xn+ I = 79 x, (mod los), xo = 1 

generates a sequence of length 5.10s-3 having quite satisfactory statistical behavior. It is  suitable 
for  decimal machines. The recursion 

xn+ = (8 t - 3) x, (mod 29, xo = 1 

generates a permutation of the sequence 1, 5, 9, . . . , 2s - 3, again with adequate statistical behavior. 
It is  suitable fo r  binary machines. The number t is arbi t rary but  should be chosen large to avoid 
long upward runs. In  both these methods s represents the standard word length of the computer 
involved, perhaps s = 10 in a decimal machine and s = 30 or 40 in a binary machine. 

30.4. Continue Problem 30.2 using a good supply of random numbers. 
Using the first sequence of Problem 30.3 on a ten digit machine ( s  = lo) ,  the results given 

below were obtained. These results a re  typical of Monte Carlo methods, convergence toward a 
precision answer being very slow. It appears tha t  about twenty-eight percent of the neutrons will 
get through, so t h a t  a much thicker wall is  definitely in order. 

- 

r ~ u m b e r  of trials 1 S ~ O O  10,000 15,000 20,000 1 

30.5. Suppose N points are selected at  random on the rim of the unit circle. Where may 
we expect their center of gravity to fall? 

Percent penetration 

By symmetry the angular coordinate of the center of gravity should be uniformly distributed, 
that  is, one angular position is a s  likely a s  another. The radial coordinate is more interesting and 
we approach i t  by a sampling technique. Each random number of the Problem 30.3 sequences may 
be preceded by a decimal (or binary) point and multiplied by 2 ~ .  The result is a random angle 8, 
between 0 and 277, which we use to specify one random point on the unit circle. Taking N such 
random points together, their center of gravity will be a t  

N N 

X = (1IN) cos ei, Y = (1IN) Z sin e, 
i = l  i= 1 

28.6 28.2 28.3 28.4 

and the radial coordinate will be r = d m .  Dividing the range 0 5 r 5 1 into subintervals 
of length 1/32, we next discover into which subinterval this particular r value falls. A new sample 
of N random points is then taken and the process repeated. I n  this way we obtain a discrete ap- 
proximation to the distribution of the radial coordinate. Results of over 6000 samples fo r  the cases 
N = 2, 3 and 4 a re  given in Table 30.1 below. The columns headed Freq give the actual frequency 
with which the center of gravity appeared in each subinterval, from the center outward. Columns 
headed Cum give the cumulative proportions. F o r  the case N = 2 this cumulative result also 
happens to be exactly ( 2 1 ~ )  arcsin (r12) which serves a s  a n  accuracy check. Note tha t  we seem to 
have about three place accuracy. 
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Freq Cum Exact 

n = 3  

Freq Cum 

[CHAP. 30 

n = 4 

Freq Cum 

Table 30.1 

30.6. Solve the boundary value problem 

by a sampling method which uses random walks. rn 
This is an example of a problem, with no obvious statistical 

flavor, which can be converted to a form suitable for Monte Carlo 
methods. The familiar finite difference approximations lead to a 
discrete set of points (say the nine in Fig. 30-3) and a t  each of 
these points an equation such as  

T5 = (1 /4 ) [Tz  + T4 + T6 + T g ]  

which makes each T value the average of its four neighbors. This 
same set of nine equations was encountered in Problem 26.7, page 
340, each unknown standing for the probability that  a lost dog will Biz Fig. 30-3 
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eventually emerge on the south side of our diagram, reinterpreted as  a maze of corridors! Though 
a sampling approach is hardly the most economical here, i t  is  interesting to, see what i t  manages. 
Starting a fictitious dog a t  position 1, for example, we generate a random number. Depending on 
which of the four subintervals (0, 114), (114, 1/2), (112, 314) or (314,l) this random number occupies, 
our dog moves north, east, south or west to the next intersection. We check to see if this brings 
him outside the maze. If i t  does not, another random number is generated and a second move 
follows. When the dog finally emerges somewhere, we record whether i t  was a t  the south side or 
not. Then we start a new fictitious dog a t  position 1 and repeat the action. The result of 10,000 
such computer samples was 695 successful appearances a t  a south exit. This makes the probability 
of success .0695 and should be compared with the result .071 found by the Gauss-Seidel iteration. 
The latter is more accurate, but the possibility of solving differential boundary value problems by 
sampling methods may be useful in more complicated circumstances. 

30.7. Illustrate approximate integration by Monte Carlo methods. 
Perhaps the simplest procedure is the approximation of the integral by an average, 

where the xi are selected a t  random in (a, b ) .  For example, if we use just the first five random 
numbers of Problem 30.1, all preceded by a decimal point, then we have 

J o  

where the correct result is  112, and we also find x2dx - .36 where the correct result is 113. i1 
For the same integrals, with N = 100 and using the longer sequences of Problem 30.3, the results 
.523 and .316 are obtained, the errors being about five percent. This is  not great accuracy, but in 
the case of integration in several dimensions the same accuracy holds and Monte Carlo methods 
compete well with other integration algorithms. 

Supplementary Problems 
Generate a sequence of twenty random numbers using x , + ~  = rx,(mod loo), selecting your own 
multiplier r. Use these numbers to simulate three or four neutron paths as  in Problem 30.2. 

Using a sequence of the sort in Problem 30.3, simulate 1000 neutron paths as in Problem 30.4. 
Repeat for lead walls of thickness 50 ,  10D and 200. How does the shielding efficiency seem to grow? 

Simulate 1000 random walks in a plane, each walk being twenty-five steps long, steps having equal 
lenaths. Let each walk start  a t  (0,O) and each step be in a random direction. Compute the average 
distance from (0,O) after 4, 9, 16 and 25 steps. 

Approximate this integral using random numbers: sin x dx. r 
Approximate this integral using random numbers: 

Golfers A and B have the following records: 

Score 

A 

B 

80 81 82 83 84 85 86 87 88 89 

5 5 60 20 10 

5 5 10 40 20 10 10 
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The numbers in the A and B rows indicate how many times each man has shot the given score. 
Assuming they continue this quality of play and that A allows B four strokes per round (meaning 
that B can subtract four strokes from his scores), simulate 1000 matches between these men. How 
often does A defeat B? How often do they tie? 

The exposed cards are replaced and this completes one play. If many such plays are made, how 
often should each man win? The answer can be found by elementary probability, but simulate the 
actual play by generating three random numbers a t  a time, determining suits according to this 
scheme: 

30.14. A, B and C each has an ordinary pack of cards. They shuffle the packs and each exposes one card, 
a t  random. The three cards showing may include 1, 2 or 3 different suits. The winner is  decided 
as follows: 

Suit is S H D C 

Number of suits showing 

Winner is 

30.15. A baseball batter with average .300 comes to bat four times in a game. What are his chances of 
getting 0, 1, 2, 3 and 4 hits respectively? The answer can be found by elementary probability 
but proceed by simulation. 

1 2 3 

A B C  

30.16. In the "first man back to zero" game two players take turns moving the same marker back and 
forth across the board. 

The marker is  started a t  0. Player A starts and always moves to the right and B to the left, the 
number of squares moved being determined by the throw of one die. The first man to stop on zero 
exactly is the winner. If the marker goes off either end of the board the game is  a tie, the marker 
is returned to 0 and a new game is started by player A. What are the chances of A winning? The 
answer is not so easy to find by probability theory. Proceed by simulation. 

30.17. The integers 1 to N are arranged in a random order. What are the chances that  no integer is  in its 
natural place? This is the famous "probleme des rencontres" and is solved by probability theory. 
But choose some value of N and proceed by simulation. 

30.18. Generate three random numbers. Arrange them in increasing order x ,  < x2 < x3. Repeat many 
times and compute the average x l ,  average x2 and average x,. 

30.19. Suppose that  random numbers y  with non-uniform distribution are required, the density to be 
f(y). Such numbers can be generated from a uniform distribution of random numbers x by equating 
the cumulative distributions, that  is, 

For the special case f(y) = e - Y ,  show how y may be computed from x.  

30.20. For the normal distribution f ( y )  = e-g2/& the procedure of the preceding problem is  trouble- 
some. A popular alternative is to generate twelve random numbers x ,  from a uniform distribution 
over (0, I), to sum these and, since a mean value of zero is often preferred for the normal dis- 
tribution, to subtract six. This process depends upon the fact that  the sum of several uniformly 
distributed random numbers is close to normally distributed. Use it to generate 100 or 1000 numbers 

Then check the distribution of the y  numbers generated. What fraction of them are in the intervals 
(0, I), (1,2), (2,3), and (3,4)? The corresponding negative intervals should have similar shares. 



Answers 

CHAPTER 1 

153, 1530 and then 765 

765 

1.018 

1 + .018, only two terms being needed. 

Near the middle of the possible range. 

-.009 

N = 100, N = 10,000 

First method yields only one digit, second gives three. 

Exact value is E/(G + fi). 
Exact value is In [ I  + (Elx)]. 

1.414214 

1.414214, slower convergence 

1.414214 

1.259921 

1.259921, slower convergence 

.114904, .019565, .002486, .000323, .000744, .008605 

.008605 

Computed Js * .119726. 

CHAPTER 2 

2.11. (x - 1)(x2 + 1) 

2.12. 3, -3, 3, -3, 3 

2.13. p(x) = 2x - x2 

2.15. Est. max. error = .242; actual error = .043. 

2.16. y' = 1.11, pf = 1 

2.17. y" = -1.75, p" = -2 

2.18. 4/r,  413 

2.19. y = x + 7x(x - 1) + 6x(x - l)(x - 2) 

2.20. v(x) = x(x - l ) (x  - 2)(x - 3) 

2.21. 1 

CHAPTER 3 

3.13. Fourth differences are all 24. 

3.14. A5yo = A4y1 - a4yo and now use our result for fourth differences. 

U k t l  U k  - vkUk + 1  - Ukvk t 1 
3.15. - - - , etc. 

v k + l  vk v k + l " J k  

Problems 

3.16. Fifth differences are 5, 0, -5. 



ANSWERS TO SUPPLEMENTARY PROBLEMS 

Change yz to 0. 

1 ,  3, 7,  14, 25, 41 

~ y ,  = 0,1,5 ,18,36,60;  yk = 0,0,1,6,24,60,120 

A2ylc = 24,30,36; Auk = 60,90,126; Idk = 120,210,336 

Change 113 to 131. 

A ~ Y ~  = y3 - 216~ + vl;  A2y2 = y4 - 2163 + 1d2 

3k 

4", (--2)k 

Q [4k - (-2)k] 

Apply the identity fo r  the  sine of a difference. 

Apply the identity fo r  the cosine of a difference. 

CHAPTER 4 

120, 720, 0 ,  -219, 10127, -80181 

1/7, 1156, 11504, 314, 9/28, 271280 

20, 1, 0 ,  -119, 5/81, -101243 

Fourth differences a r e  all 24. 

4Id3), 12k(2),  24k, 24 

5k(4) ,  2Ok(3), 60k(2), 120k, 120 

2k3 - 7k2 f 9k - 7 

k6 - 15k5 f 85k4 - 224k3 + 271k2 - 118k + 1 

gk(4) + 4k(3) + 2k(2) - 2 k ( l )  + 1 

3kc5) - 25k(3) + 75k(2) + 53k(l )  

Ay,, = 53 + 135k + 90k2 - 90k3 + 15k4 

A2yk = 150 - 30k - 180k2 + 60k3 

31, 129, 351 

10, 45,126 

2 

4 

k(3) /3  

k (4 ) /4  

1 ,&33)  + Lk(2) 

Ik tZ)  + k(3)  + l k ( 4 )  
2 4 

- l / ( k  + I )  

CHAPTER 5 

5.9 +[(n + 1)(2) - l ( 2 )  1 
5.10. nyn + 1)V4  

5.11. Use the  fac t  t h a t  Ai = A [ A i / ( A  - I ) ] .  

5.12. Use the fact  t h a t  (L) = i ( k ) / k !  = ~ [ i ( ~ + l ) / ( k  + I ) ! ] .  

5.13. 114 

5.14. 314 

5.15. ( R 3  + 4R2 + R ) l ( l -  R)4 

5.16. 26 

5.17. -113 

5.18. log (n + 1) 
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5.21. Denote the sum by S,(R). Then Sn+ (R) = R S i  (R)  which may be used to compute each sum in 
its turn. 

CHAPTER 6 

6.8. [(x - 2) (x  - 4)/64] [8 - 4(x  - 6 )  + ( X  - 6 ) ( x  - 8)] 

6.9. 1  + x  + &x(x - 1)  

6.10. 6  + 1 8 ( x - 3 )  + 9 ( x - 3 ) ( x -  4)  + ( x  - 3 ) ( x - 4 ) ( x  - 5)  

6.11. Degree 4  suffices, x ( x  - I)[* - $(x  - 2)  + &(x - 2) (x  - 3)]  

6.12. 1  + x  + g x ( x  - 1 )  + & X ( X  - 1)(x  - 2)  

6.14. 7x2 - 6 x  

6.15. &x3 - 2x2 + i x ;  collocation at x  = 4,  but not a t  x  = 5. 

6.16. No, degree 3  

6.17. No, degree 1  

6.18. (7x2 - x4)/6; greater in (-2, -1) and ( 1 , 2 )  

6.19. (7x - x2)/6; arguments a r e  not equally spaced. 

6.20. y, = Qk(k  - l ) ( k  - 2)  

CHAPTER 7 

7.38. 1  + 2k + 2k(k  + 1)  + $ k ( k  + l ) ( k  + 2) + 3 k ( k  + l ) ( k  + 2) (k  + 3 )  

7.39. 120 + 60k + 12k(k + 1 )  + k ( k  + l ) ( k  + 2)  

7.41. 2x - 3x2 + x3 

7.42. 1 - k  - k ( k  - 1 )  + +(k + l ) k ( k  - 1)  + &(k + l ) k ( k  - l ) ( k  - 2)  

7.43. 1  + k  - ( k  + l ) k  - +(k + l ) k ( k  - 1 )  + &(k + 2)(k + l ) k ( k  - 1 )  

7.44. 24 + 36k + 9k(k  - 1 )  + ( k  + l ) k ( k  - 1 )  

7.45. 1  - +k(k - 1 )  + &(k + l ) k ( k  - l ) ( k  - 2)  

7.47. 1  - k2 + i ( k  + l ) k 2 ( k  - 1 )  
3 

7.48. With k  = 0  a t  x  = 1,  y = 2  f g k  + -&k2. 

7.49. 60k - 24(k - 1 )  + 4(k + l ) k ( k  - 1)  - 3k(k - l ) ( k  - 2)  

7.50. 1  - Q [ ( k  + l ) k ( k  - 1 )  - k ( k  - l ) ( k  - 2)]  + $ [(kz - 4)(k2 - l ) k  - (k2  - l ) k ( k  - 2)(k  - 3)]  

7.51. 4k - 2(k - 1 )  + &[(k2 - l ) k  - k ( k  - l ) ( k  - 2)] 

7.52. 42 + 36(k - 4) + % k ( k  - 1 )  + ( k  - +)k(k - 1)  

7.53. 1  - +k(k - 1 )  + &(k 4- l ) k ( k  - l ) ( k  - 2)  

7.54. Add (ki3) a6y0 to the formula in Problem 7.30; 2 - 3  to xs. 

CHAPTER 8 
( x  - 1 ) ( x  - 4 ) ( x  - 6 )  - x(x  - 4) (x  - 6 )  X ( X  - 1 ) ( x  - 6 )  - x(x  - 1 ) ( x  - 4 )  

8.11. 15 + -24 60 
; y(2)  = -1, y(3) = 0 ,  y(5)  = 1  

-24 
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sin&(x-xl)  sin$(x-x2) sin +(x - xo) sin +(x - x2) sin $(x - xo) sin Q(x - xl) 
sin +(x, - xl) sin f(xo - x2) " + sin &(xl - xo) sin +(xl - x2) " + sin t ( x2  - xo) sin $(x2 - xl) Y2 

sin (x - xl) sin (x - x,) sin (x - xo) sin (x - 2,) sin (x - x0) sin (x - xl) 
8'22' 

sin (xo - xl) sin (xo - x,) 
+ sin (xl - xo) sin (xl - x2) + sin (xz - xo) sin (x2 - xl) 2/2 

CHAPTER 9 

9.10. Firs t  order, -2, 213, -1; second order, 213, -113; third order, -116. 

9.11. 1 - 2x + $X(X - 1) - QX(X - l)(x - 4) 

9.12. Firs t  order, 213, 0, -113; second order, -113, 113; third order, -116. 

9.13. -1 

9.14. 16x + 8x(x - 1) - 3x(x - 1)(x - 2) - X(X - l ) (x  - 2)(x - 4); ~ ( 3 )  = 84 

CHAPTER 10 

10.8. 2x2 - x3 10.12. pl(x) = x3(4 - x)/16, p2(x) = 2 - (4 - ~ ) ~ x / 1 6  

10.9. x4 - 4x3 + 4x2 10.15. x4 - 2x2 + 1 

10.10. 3x5 - 8x4 + 6x3 10.16. 2x4 - x + 1 

10.11. p,(x) = $x2, p2(x) = 2 - $(4 - x)2 10.17. x3 - x2 + 1 

CHAPTER 11 

sin x = x - x3/3! + x5/5! - x7/7! + ... to  odd degree n 

cosx = 1 - x2/2! + x4/4! - x6/6! + 0 . .  toevendegreen  

-1- sin 5 xnill(n + 1) ! for  both functions 

CHAPTER 12 

12.43. 1.0060, 1.0085, no 

12.44. 1.0291 

12.45. 1.01489 

12.46. 1.12250 

12.47. 1.05830 

12.48. 1.05356, 1.06302, 1.06771 

12.49. .I2451559 

12.50. 1.213967600118 

12.51. .I295 

12.52. .I295 

12.53. 1.4975 

12.54. 1.4975 

.1714, .1295, .0941 

.2420, .2299, .2179, .2059, .I942 

.02 

.006 

.25, .12 

Not quite 

About 1 

About h = 1 for x > 1. 

1.05830 

.34643 

514 

.76604 
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15.150 

14.097 

,841552021 

1.16190, 1.18322, 1.20419, 
the last being 3 units off. 

1.20419, 1.22390, 
both being somewhat in error. 

Correct values are .96126 and .85717. 

17.288, 18.174, 
both correct to five digits. 

.86742 

.71784 

931128, 1331128, 1251128 

1 - 2x 

Error = x4 - 7x2 + 6x;  
6 = 0 explains the zero error. 

Fortunate value of 5 
0 

24 

0 and 1 

CHAPTER 13 
4k3 + 18k2 + 22k + 6 

V4yo  hpl = vyo + ( k  + f) v 2 y 0  + 3k2 +66k + 
v3y0  + 24 

h3p(3) = S3ylI2 + ( k  - &)pS4y1/2 + &(k2- k ) 8 5 ~ 1 / 2  
h4p(4) = pS4yIl2 + (k  - +)S5yll2 

h5p(5) = 852/112 

.4714, -.208, .32 
Predicted error approx. 10-9; actual error .0000045. 
Max. r.0. error is about 2.5Elh; for Table 13.1 this becomes .00025. 

Exact result is x = ~ 1 2 ,  y = 1. 

1.57 
h3 = E / 2 A  

h5 = 3E/8A;  about h = .ll 
Theoretical best h is about .l3. 
.540300, compared with the correct value .540302. 

CHAPTER 14 

h - f i l l 0 0  

A ,  = .69564, A ,  = ,69377, (4.4, - A2)/3 = .69315 

.69315 

.6931, no corrections needed. 

h = .14 

fill04 trapezoidal, .014 Simpson. 

Exact value is ~ / 4  = .7853982. 

Correct value is 1.4675. 

.03088860 

9.688448 

a _ ,  = a ,  = 7/15, a. = 16/15, bo = 0 ,  b-,  = -bl = 1/15 

.807511 
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14.76. a(h) = e-k(x-h)[(2s2 - 3s + 2)  - ( s  + 2 ) e - 2 ~ ] / 2 ~ 3  = c(-h) 
b(h) = 2epkX[(s - 1)es + ( 8  + 1)e-s]/s3, where s = kh 

14.77. Gives the exact result [e-kcz-h) - e-k(x+h)] lk .  

14.78. Use Ic = 1 ,  x = 112, h = 112 to obtain exact result 1 - 2e-l. 

CHAPTER 15 
15.64. 1.00002 

15.65. 1.5 

15.72. L o  = 1 ,  L ,  = 1 - x ,  L 2 =  2 - 4 x + x 2 ,  L3  = 6 - 1 8 ~ + 9 ~ 2 - % 3 ,  
L 4  = 24 - 96x + 72x2 - 16x3 + 84 ,  L, = 120 - 6 0 0 ~  + 600x2 - 200x3 + 25x4 - x5 

15.79. Exact value is .5. 
15.80. Correct value to five places is  59634. 

15.82. H ,  = 1 ,  H I  = 22, H z  = 4x2 - 2,  H 3  = 8x3 - 12x, H4  = 16x4 - 48x2 + 12, H 5  = 32x5 - 160x3 + 1202 

15.84. [ & / 6 ] [ ~ ( -  d%) + y ( m )  + 4 y ( 0 ) ] ;  3 6 1 4  
15.88. 2.128 15.98. 413, the exact value being r12. 
15.89. .587 15.99. 1.4675 
15.91. 2.404 15.100. 1.3506 
15.92. 3.82 15.101. Exactly r 

15.93. 0200, 0730, 1200, 1630, 2200; 68O 15.102. 9.688448 

15.94. 0330, 1200, 2030 15.103. .8862 

15.97. About .991, the exact value being 1. 15.104. 1.772 

CHAPTER 16 

16.13. .5 and -.23, compared with 
the exact values .5 and -.25. 

16.15. 1.935 

16.18. -.797 

16.27. Exact value is 4 fi e-r2/4. 

16.29. Exact value is ~ 1 2 .  

16.30. I'(n) 

CHAPTER 17 

16.31. Exact value is  m. 
16.32. Exact value is rI2.  

16.33. Exact value is r. 

16.34. Exact value is d 2 e .  

16.35. .0915633 

3 2n + 3 17.73. .577 
17.54. - - 

4 2 ( n + l ) ( n + 2 )  17.74. 1.1285 

17.79. Qi = xi 

17.87. After four terms; 
17.59. .6049 this method yields C - .5769. 

17.63. About x = .7. 17.95. After seven terms. 

17.64. At most eight. 17.97. Almost produces the correct value - 
.04546 to five places. 

17.65. About x = .7. 
%2n + 1 17.98. .37653 

17.66. ------ (2n + 2)2 . about x = 10. ( 2 n + 1 ) !  ( 2 n + 2 ) 2  - x 2 '  17.99. .03436 

17.67. 1.0986 

17.68. .0953 

17.69. 1.6094 and 1.9459 

17.70. 2.0412 

17.100. 3225  

17.101. Exact value is 1/10. 

17.102. 1 - C ,  where C is Euler's constant. 

17.103. Exact value is  112. 
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Exact value is 1. 

Exact value is 2 log 2 - 1. 

5, 61, 1385, 50,521 

Exact value is n3El/24 2 ! = $132. 

Exact value is ~ 5 E ~ / 2 ~  4 !  = 5n5/1536. 

Exact value is n'E3/2s 6 ! = 61~71256 720. 

Exact value is +C + log 2, where C is Euler's constant. 

Exact value is 118. 

Exact value is 2 log 2. 

Exact values are :log 2 and 4 log 2. 

CHAPTER 18 
1 k 

( 1  - r ) 2  
except when r  = 1. yk = [ a + - I r k + - - -  (1  - r)2 ' 

1, 3, 1, 3, etc.; 2 - (-1)k; (yo - 2)(-l)k + 2 

Let yk = ( k  - I ) !  A ( k )  to obtain yk = ( k  - I ) !  (2k-  1) for k > 0. 

127164 

a2/12 - 11/16 

$(1/2)  = .0365, $(3/2)  = .7032, $(-112) = 1.9635 

I t  takes arbitrarily large negative values. 

$$(O) - ++(rn) - ++(-dm 
+$(O) - ++(dm) - &$(-dm) 
5(-1)k - 3(-2)k 

A + B(-l)k 

A4k + B3k + ( a  cos k + b sin k)l(a2+ bz), where 

a = cos 2 - 7 cos 1 + 12, b = sin 2 - 7 sin 1 
A = (3a - a cos 1 - b sin l ) / (a2 + b2) 

B = (-4a + a cos 1 + b sin l ) l (a2 + b2) 

[-4(-1/2)k + 2k(-1/2)k t 3k2 - 8k + 41/27 

(2/3)[2k - (1/2)k]  

[5k(- cos ks  - sin ks )  + 2k]/41, cos e = -g, sin e = + 
a < O  
Q(3k) - l ( - l ) k  - 8k2 - 1 

1 6  8 1 6  

Oscillatory, linear, exponential 

*[l - ( - l ) k ]  

sin (k - 10)r/3 
0, 1, 2, 2, 1, 0 ,  0, 1, 2, 2, 1 or 1 -+ sin 1or/3 
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18.93. 13k/2 cos ke ,  13k/2 sin ke ,  s = arctan 312 

18-94. 2k - L ( - 2 ) k  - 3kZ - 4k - 20 
1 2  3 

18.95. ai = ( - l ) i2 i t ( i )aol i !n( i )  

18.98. 3.359886 

CHAPTER 19 

19.72. Exact value is 1. 

19.73. 1.4060059 

19.74. Exact solution is  x3y4 + 2 y  = 3%. 

19.75. Exact solution is x2y + xes = 1. 

19.76. Exact solution is log ( x2  + y2)  = arctan ylx .  

19.77. 4 days, 18 hours, 10 minutes 

19.78. 4 

19.79. Exact value is Q arctan &. 
19.80. Exact solution is x = - d m  + log ( 1  + e ) / y .  

CHAPTER 20 

20.23. See Problem 19.77. 

20.28. a ,  = a ,  = 1, k2ak - (2k  - l ) a k - ,  + ak- ,  = 0 for k > 1 

20.29. Fourth degree Taylor approximation to e-21h is 6.2374 compared with the correct .C14996. 

20.33. Exact solution is  y = tanh x. 

20.34. x (1 )  = .325, y(1)  = 1.056 

20.35. Exact value is 1. 

20.36. Exact value is 1. 

20.37. Exact solution is 4(3x2 - 1).  

20.38. Exact solution is  &(35x4 - 30x2 + 3). 

20.39. Exact value is 1 2 ~ l f i .  

20.40. Exact solution is  y = Qx3/2 - ~ 1 ' 2  + 9; dog catches master a t  (0, 213). 

CHAPTER 21 

21.57. y = .07h + 4.07 

21.58. 4.49, 4.63, 4.77, 4.91, 5.05, 5.19, 5.33, 5.47, 5.61, 5.75 

21.59. .07 

21.60. No. 

21.62. Very little. 

21.63. They alternate. 

21.65. A = 84.8, M = -.456 

21.67. 5 point formula does better here. 

21.69. Results are almost the same as from five point formula. 

21.85. p (x )  = 113 

21.86. p(x)  = 3x15 

21.87. p(x)  = 3x15 

21.88. p(x) = .37 + .01x - .225(3x2 - 1) /2  

21.90. p(x)  = 112 

21.91. p (x )  = 3x14 

21.92. Drop two terms and have 1.266016 - 1.1303T1 + .2715TZ - .0444T3 + .0055T4 - .0005T5. 

21.102. (81 + 72x) /64;  over ( -1 , l )  this is only slightly worse than the quadratic. 

21.106. 3x14 
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2 4 21.107. Min. integral parabola is p = - + - (3x2 - 1) .  
$7 3~ 

21.109. .001, .125, .217, 2 8 8 ,  .346, .385, .416, .438, .451, ,459, .466 

21.110. -.8, 19.4, 74.4, 143.9, 196.6, 203.9, 180.2, 143.4, 126.7, 118.4, 
112.3, 97.3, 87.0, 73.3, 56.5, 41.8, 33.4, 26.5, 15.3, 6.6, 1.2 

21.111. 5.045 - 4 . 0 4 3 ~  + 1.009x2 

21.112. -.0530P0 + .2024P, - .0568P2 - .00486P3 + .00508P4 - .00209P5. 
Smoothed values a r e  1.310, 1.236, 1.098, .868, .514, .017, -.602, -1.263, -1.793, -1.908. 

21.113. p = .6931 + .2383P,(s) + .05457P2(s) + .01124P3(s) + .002205P4(s) + .000421P5(s), 
where x = 4s + 2 and the shifted Legendre polynomials a re  used. 

21.114. Degree 3; T 3  ( x )  is the t rue function. 

21.115. x4 + 2.9875x3 + 2.0188x2 + .9915x + 5.0010 

21.116. Extremely poor, because of the ill-conditioning. 

21.117. 306  + .200x - .102x2 

CHAPTER 22 

22.34. P = 4.44e.45x 

22.38. p = ( 1  - 18x + 48x2)/32; h = 1/32 

22.41. ( lOTo + 15T2 + 6T4)/32; 1/32 

22.42. T o  + T I  + T2;  1 

22.43. - T ,  - T ,  + & T,; 1123,040 

22.44. p = 2x177 - 1.10525 

22.45. Method fails, x ,  becoming the point of discontinuity. 

22.46. p = -2xln + 1.105 

22.50. 1.6476 + .4252x + .0529x2; .0087 

22.51. Degree 4. 

22.52. Not more than .000005. 

22.53. Degree 4. 

22.54. Degree 2. 

CHAPTER 23 

3 / x ;  no, the  method produces 4 - x. 

90/(90 + 97x - 7x2) ;  no, the method produces (20 + 7x) / (20 + 34x1. 

(x2 - 1)/(x2 + 1 )  

xZl(1-t x )  

( X  + l ) / ( x  + 2)  

1 4 2  - x2) 

-112 

4 ( 1 -  x + x2)/(1+ x )  

12(x+ 1 ) / ( 4 - x 2 )  

(x2 + X + 2)/(x2 + X + 1 )  

l / ( s i n  1'30') - 38.201547 

(1680 - 2478x + 897x2 - 9 9 ~ 3 ) / ( 1 4 0  + 24% - 17x2) 

(12 + 6 x  + x2)/(12 - 6 x  + x2) 

(24 + 18x + 6x2 + x3)/(24 - 6 x )  
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23.32. (24 + 6x)/(24 - 18x + 6x2 - x3) 

23.33. 1 / ( 1 -  x + gx2 - Qx3 + A x 4 )  

23.34. .01, .004, .004, .01, .05 

23.35. ( 1  - &x2)/(1+ h x 2 ) ;  1 / (1+ 3x2 + &x4) 

'723 23.36. ( x  -=)/(l +g); % / ( I +  Qx2 + h x 4 )  

23.38. (1.00002 + .50198x + .08262x2)/(1 - .49762x + .08061x2) 

23.39. E = 368999 10-4, a, = 1.00007255, a,  = .50863618, a2 = .08582937, b, = .49109193, b2 = .07770847 

23.40. ,004, .00019, .000087 

CHAPTER 24 
a. = 1.6, a ,  = -3472, a2 = .5608, b1 = .6155, b2 = ,3683 

a, = 2, a ,  = -1, a, = a3 = 0, b, = 6 1 3 ,  b2 = 0 

.8; .8 - 3472 cos ( 2 ~ x 1 5 )  + .6155 sin ( 2 ~ x 1 5 )  

To(x)  = 1; T,(x)  = 1 - cos (axI3) + ( 6 1 3 )  sin ( ~ ~ 1 3 )  = y(x)  

[(fi + 2)/2] sin ( ~ ~ 1 4 )  + [(fi- 2)/2] sin ( ~ ~ 1 2 )  

1 - + cos T X  

~ ~ 1 1 2  and $16 

iP18 

a3132 

a = 9.285, b = .333, c = .048 

ai= 6.945, 2.797, -.112, -.047, -.065, .020, .011; bj = .476, -.015, -.126, .097, w.028, .010 

2 + cos x + 3 sin 2x 

aj .0003, .0002, .0000, 1.0002; bj = 1.0000, -.0002, .0001; 
max. correction is three units in fourth place. 

(4la)(sin x + Q sin 3x)  

bk = (- l )k+l/k3 

b ,  = 111~3 

Exact value is $132. 

Exact value is 3 ~ 3 6 1 1 2 8 .  

a, = 0, ak = 11764 for k > 0 

a,, = 0 ,  ak = (-l)k+llk4 for k > 0 

Exact value i s  19~41360. 

Exact value is 7~41720. 

CHAPTER 25 
25.51. About 1.839. 

25.52. Two; three; .567143 

25.53. 1.83929 

25.54. 1.732051 

25.55. 1.245731 

25.60. 1.618034 

25.69. x = .772, y = .420 

25.72. 3 and -2. 

25.74. x2 + 1.9412~ + 1.9537 

25.75. 4.3275 

25.76. 1.123106 and 1.121320 
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CHAPTER 26 
26.52. Exact solution is .8, .6, .4, .2. 

26.54. Exact solution is given in Problem 26.55. 

26.57. Exact solution is 5, -10, 10, -5, 1. 

26.59. Exact inverse is 

26.64. Exact inverse is 

-6 

C being any constant. 

5 -10 10 -5 1 
-10 30 -35 19 -4 

10 -35 46 -27 6 

-5 19 -27 17 -4 

1 -4 6 -4 1- 

26.89. - [ l5 7;i] l5 -70 588 -630 
64 

63 -630 

CHAPTER 27 
27.18. (0, O), (0, I ) ,  (2/3,5/3), (2, I ) ,  (3,O); max. of 3 at (3,O); min. of -813 a t  (2/3, 513). 

27.19. See Problem 27.18. 

27.20. -4y1 - y2 - 3y3 = max.; yl, yz, y3 non-negative; -yl + 2/2 - Y3 -L 1, - 2 ~ 1 -  V2 - -2 

27.21. See Problem 27.18. 
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4y1 + y2 + 3y3 = min.; y,, y2, y3 non-negative; yl - y2 f y, 1 ,  2y1 + y2 4- y3 -2; 
solution a t  (O,0,1).  
See Problems 27.18 and 27.20. 

x ,  = 315, x2  = 615 
Extreme solution points a r e  (0 ,  1 )  and (213, 513). 

Payoff is 2.5; R(1/2 ,  1 /2) ,  C(1/4,  314). 

37 16 + Z x  + F x 2  + h x 3 ;  1.3125; -2, -1, 0 ,  1 ,  2 

1.04508 - 2.47210~ + 1.52784~2; .04508; 0 ,  .08, .31, .73, 1 
Same result; five positions of maximum error. 
Max. = 4.4 for  x = (4.4,0,0,.6). 

Min. (5y1 + 2y2)  = 4.4. 

Max. I 0 2 2 10 10 

318, 518 
R(1/3 ,  2 /3) ,  C(213, 1/31 
Blue (419, 0 ,  119, 0 ,  4 /9 ) ,  Red (1118, 8/18, 8/18, 1 /18)  

R ( 0 ,  1,  O ) ,  C(1 ,  0,  0 )  
0 ,  0 ,  5/12, 0 ,  4/12, 0 ,  3/12, 0 ,  0 for  both players. 

CHAPTER 28 
28.11. x ,  = 3.90, x2 = 5.25, error  = .814 28.19. 

28.12. p = 3 1 4 ,  (e/,,, = 1.15 28.20. 

28.16. x ,  = p.3278 = x,, error = .3004 28.21. 

28.17. x ,  = -1/3 = x2 28.22. 

28.18. 3.472, 2.010, 1.582, .426 

CHAPTER 29 

The average (Hat)/N. 

x = ( A + C + D ) / 3 ,  y = ( B - C + D ) / 3  

xi = A i  + + ( r - A l - A z - A , )  

L: = A Z - D ,  L; = B Z - D ,  HZ = C ~ + D  
where D = &(A2 + B2 - C2) 

T ( x ,  Y ,  x )  = Q [ T ( x  + h, y,  x )  + T ( x  - h, y, z) + T ( x ,  y + h, z) + etc.] 
m 

U = 2 A, sin n r x  cos n ~ t ,  where A, = 4 eosna (6 - 
n=1 

y = ( x  - l ) ,  

A near-singularity a t  x = 0 

y = ( 1  - e-nx) l ( l  - e-n) 

A near-singularity a t  x = 0 

Partial answer is  (1/4,396),  (112, 839), (314, 706). 

Partial answer is  (1 /4 ,391) ,  (112, 832), (314, 702). 

s/2 fi 
Exact solution is 1 - ( 2 1 6 )  S KU2 &. 

0 

)[,, e-u2 sin ( t  - 2) du. Exact solution is (2/< 

z l  fi 
Exact solution i s  1 - [cos (u2) + sin (J)] du. 

0 

CHAPTER 30 
Theoretical values a r e  2,3 ,4  and 5 steplengths. 
Exact value is 2. 
Theoretical values a r e  1/16, 9/16, 6/16. 
Theoretical values a r e  .2401, .4116, .2646, .0756, .0081. 
For N + .o the thgoretical value i s  l / e .  
Theoretical values a re  114, 112, 314. 
y = -log ( 1  - x )  or equally well y = -log x .  
Theoretical values a re  .3413, .1359, .0215, .0013. 
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Acceleration of convergence, 6-8, 156,160-163, 296, 
303-306, 310, 314, 315, 332 

Adams method, 210, 212, 217-219, 221, 223, 
225,233, 384 

Aitken's a2 process, 310, 314,315, 332 
Aitken's interpolation, 53-57, 80, 84, 85, 94 
Algorithm, 1, 2 
Analytic function, 70, 73-75 
Approximation, 

Chebyshev, 267-282, 375-381 
collocation, 10, 34, 40, 41, 125, 129, 130, 

135, 136, 207, 210, 235, 237, 250, 258, 
283-293, 296-298, 311, 318 

continued fractions, 283-291 
least-squares, 16, 98, 235-266, 280, 294, 295, 

298, 299, 302-305, 307-309 
min-max, 10, 267-283, 289-292 
osculating, 10, 65-70, 125, 128-130, 135, 136 
polynomial, 10, 34-79, 107, 193, 235-266 
rational, 283-292 
Taylor, 70-78 (see also Taylor polynomial, 

Taylor series) 
trigonometric, 57, 98, 165, 293-309 

Artificial basis, 367, 368, 370, 372 
Asymptotic series, 157, 170-173, 175, 176, 229 

Back substitution, 334, 338, 344, 348, 349 
Bairstow's method, 313, 325, 330, 331, 333 
Bernoulli numbers, 71, 75-76, 157, 165-170, 174 
Bernoulli polynomials, 156, 157, 163-167, 174, 302 
Bernoulli's method, 311, 319-322, 332 
Bernstein polynomials, 267, 274, 275 
Bessel functions, 223, 227-229, 262 
Bessel's formula, 41, 49-52, 79, 94, 95,108, 116, 117 
Bessel's inequality, 238, 254 
Binomial coefficients, 15, 18, 22, 24, 25, 29, 34, 

35, 42-52, 75, 78 
Binomial series, 70, 77, 160 
Binomial theorem, 42,164, 273 
Boundary value problems, 

for  difference equations, 179,188,189, 192 
for  differential equations, 382-400, 404, 405 
free boundary, 392 

Calculus of variations, 383, 387, 388, 396, 399 
Central differences (see Difference) 
Characteristic equation, 178, 183-190, 214-220, 319 
Characteristic polynomial, 336, 348, 349, 354, 359 
Chebyshev, 

approximation (see Approximation and Min-max) 
formulas, 128, 144 
-Gauss quadrature, 127,142,148 
inequality, 274 
line, 268-272, 280, 281 

Chebyshev (cont.) 
polynomials, 127, 142, 184, 191, 238, 239, 255-259, 

263,264, 268, 278, 280, 302 
series, 263, 292 

Christoffel identity, 133 
Collocation, 10, 34, 40, 41, 53 (see also 

Approximation) 
Completeness, 238, 254 
Composite formulas, 107, 108, 124 (see also 

Simpson and Trapezoidal rules) 
Continued fractions, 283-291 
Convergence, 

in the mean, 254, 295, 302 
of collocation polynomials, 13  
of methods for  differential equations, 195, 

197-201, 204-206, 213-215, 385-400 
of quadrature formulas, 109, 114 
of root-finding algorithms, 310-331 
of series, 6, 9, 32, 33, 70, 71, 74-78, 159-163, 

228,256 
Cotes formulas, 110, 111, 115, 207 

Data smoothing (see Smoothing) 
Deflation, 311, 312, 320, 321, 326, 332 
Desert-crossing problem, 168, 175 
Determinant, 53, 55, 63, 265, 266, 285-287, 

289, 347, 359 
Diagonalization, 336, 344, 352, 353 
Difference, 15 

backward, 40,42,43 
central, 40, 44-52, 71, 77, 78 
divided, 58-64 
equations, 29, 33, 177-192, 193, 311, 319-321, 358, 

382-384, 386, 389, 390, 393, 396, 397 
formulas, 15-25 
forward, 15, 17-21, 34-37, 59, 71, 74 
modified, 80, 89, 90, 95 
of polynomial, 23, 28 
table, 15-20, 42, 44 

Differential equations, ordinary, 
boundary value problems, 382-389 
Euler method, 193, 197-200 
existence theorem, 193, 198-200 
method of isoclines, 193, 196, 219 
predictor-corrector methods, 194, 195, 206-215, 

219-221, 225 
systems, 223-234 
Taylor and Runge-Kutta methods, 193-195, 

200-206, 209, 219-221 
Differential equations, partial, 383, 384, 389-400 
Differentiation, approximate, 382-389 

by difference methods, 97-106, 218,247 
by Fourier method, 295, 296, 304-308 
with simultaneous smoothing, 237, 245-247, 261 

Diffusion equation, 383, 389-392, 399 
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Di-gamma function, 178, 181-183, 191 
Digital computers, 2 
Direction field, 193, 196, 219 
Dirichlet problem, 382, 384, 393-395 
Discretization, 237, 259, 385, 389, 392 
Divergent series (see Asymptotic series and 

Euler-Maclaurin formula) 
Division algorithm, 10, 11 
Dog and his master problem, 234 
Dual problem, 361, 368-370 
Duck-river problem, 233 
Duffing's equation, 231 
Dynamic programming, 383,388, 389,396, 399 

Economization, 239, 257, 263, 264, 278 
Ei~enfunct ion,  189, 192 
~ i i e n v a l u e ,  189, 192, 334, 336, 337, 341, 348-355, 

359, 360, 386, 391, 396, 398 
Elliptic integrals, 122 
Equal-error property, 238, 239, 256, 257, 260, 

263, 267-283, 289, 290 
Equations, roots of, 310-333 
Equidistant data, 15, 34-52 
Error ,  1 , 2  

detection of isolated, 20, 21 
in least-square approximation (see RMS error) 
input, 80, 91, 92, 95, 97, 99, 101-103, 109, 112 

of collocation polynomials, 12-14, 59 
of osculating polynomials, 65, 67 
probable, 5, 8 
relative, 7, 195, 205, 206, 212, 216-219, 221 
roundoff, 3, 4, 6, 8, 19, 80, 91, 101-105, 109, 

114, 119, 160, 162, 195, 198, 205, 323, 
334, 335, 338, 339, 347, 351,355 

truncation, 6, 80, 87, 88, 93-97, 100-113, 116, 
120-124, 126, 128, 136, 139, 141-145, 159, 162, 
171, 172, 194, 195, 197, 203-208, 210-216, 
220, 221,228, 229, 232, 256, 257 

Er ror  function, 118,119,137 
Euclidean algorithm, 312, 325 
Euler-Maclaurin formula, 71, 76, 108, 117, 118, 

120, 122, 157, 166-169, 173, 175 
Euler numbers, 176 
Euler's algorithm, 80, 82, 92, 109 
Euler's constant, 157, 167-168, 175, 178, 181 
Euler's method, in differential equations, 193, 

197-200, 330 
Euler's transformation, 71, 75, 78, 156, 160, 161, 

173-175 
Everett's formula, 41, 47-50, 79, 83-90, 105 
Exchange method, 267-273, 279-282, 290, 291,336, 

345-346, 361, 363-368, 370, 371, 378 
Extrapolation to the limit, 106, 195, 206, 208, 210, 

212, 314, 315 

Factorial polynomials, 22-29 
Factor theorem, 10, 12 
False position (see Regula falsi) 
Feasible point, 361-367 
Fibonacci numbers, 179, 185-186, 189,192, 322, 

323, 332 

Filon's formula, 108, 120, 121, 124 
Finite differences (see Differences) 
Finite integration, 30, 31, 33 
Fourier analysis, 

applied to  smoothing, 303-309 
differentiation, 304, 306-308 
finite, 293-300 
infinite series, 294, 295, 300-309, 383, 391, 400 

Functions, approximation of (see Approximation) 
Fundamental theorem of linear algebra, 334, 339, 

340, 394 

Game theory, 362, 369-374 
Gamma function, 178,181, 183 
Garden-hose method, 383, 386-388,400 
Gauss, 

elimination method, 334-340, 343-348, 354, 357, 
377, 385, 393 

formulas, 40, 41, 44-52 
quadrature formulas, 125-149 
-Seidel iteration, 334, 340, 341, 357, 358, 385, 

393-395, 399, 405 
Gill method, (differential equations), 204, 225 
Givens method, 336, 353-355, 359 
Gradient methods, 328-330 
Gravitation, 221, 222, 233, 234 
Gregory's formula, 108, 117, 118 

Hermite formula (osculation), 65-69, 93, 96, 105, 
125,. 128 

Hermite-Gauss quadrature, 127,141,142,148 
Hermite polynomials, 127, 141, 148 
Hermitian matrices, 355, 356 
Hilbert matrix, 247, 248, 338, 354, 357-359 
Horner's method, 180,190 

111-conditioned problems, 236, 241, 247, 248, 335, 
342, 343 

Implicit methods, 384, 392 
Infinite product, 181 
Information, 1,  2 
Initial value problems, 

for  difference equations, 179-181, 185-191, 214, 
215, 217 

for  differential equations, 193, 197-234 
Instability (see 111-conditioned problems and 

Oscillations of error) 
Integration, approximate, 107-155 

by Gaussian methods, 125-149 
by Monte Carlo methods, 401, 405 
of singular integrals, 150-155, 162, 171-176 

Interpolation, 
direct, 79-84, 87-96, 288, 291, 297, 298, 395 
inverse, 85 
subtabulation, 85, 86 

Inversion of matrices, 335, 336, 343-347, 355, 
358-360 

Iterative methods, 310-315, 327-328, 332, 336, 
340, 341 

Jacobi's method, 336, 352-353, 355, 359 

Lagrange multipliers, 54, 65, 66, 125, 128, 129, 399 
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Lagrange's formula, 53-54, 57, 79, 84,85, 91, 
94, 105 

Laguerre polynomials, 127, 138-139,147 
Laguerre-Gauss quadrature, 127,138-140, 147,148 
Lanczos error estimate, 127, 138 
Lanczos u factors, 296, 305-308 
Laplace equation, 382, 393-396, 399 
Least-squares, 

polynomial approximation, 235-266 
solution of overdetermined system, 375-377, 

379-381 
trigonometric approximation, 294, 295, 298, 299, 

302-305, 308, 309 
Legendre polynomials, 126, 130-134, 143-146, 191, 

237, 251-253 
Legendre-Gauss quadrature, 126, 130-138, 146-147, 

151,153, 154 
Linear, 

algebraic systems, 334-360 
programming, 361-374, 376-379 

Lipschitz condition, 195, 199, 206, 213, 313 
Lobatto-Gauss formula, 127, 143 
Loss of significant digits, 4 

Matrix problems, 
complex, 337, 355-357 
eigenvalues, 336, 348-355 
inversion, 335, 336, 343-347, 358, 359 
linear systems, 334, 335, 337-343, 382, 385, 392 

Milne's method, 209-210, 214-215, 217, 219, 220, 
221, 233 

Min-max, 
polynomial approximation, 267-282 
rational approximation, 283, 289-292 
solution of overdetermined system, 375, 377-381 

Modified differences ( see  Difference) 
Modular multiplication, 401-403, 405 
Monte Carlo methods, 401-406 
Morra, 374 
Multiple integrals, 405 

Nearly-singular (see Ill-conditioned) 
Newton, 

-Cotes quadrature formulas, 110, 111,115, 207 
formulas, 34, 43, 59, 62, 64, 79, 81-84, 92-96, 

98, 100,104, 107,110,121, 210, 288 
iteration method, 310-313, 315-317, 319, 321, 

324-333, 354, 383, 387 
Non-equidistant data, 53-64, 125 
Nonlinear equations, roots of, 310-333 
Norm, 242, 243, 250, 252, 342 
Normal equations, 235, 239, 241-244, 246-251, 266, 

375-377 
Nuclear reactor problems, 401-403, 405 
Numerical analysis, 1 
Numerov's method, 224, 232, 233 

Operators, 38-52, 70, 71, 86 
Optimum control problem, 399 
Ordinary differential equations (see Differential 

equations) 
Orthogonal functions, 129, 293, 294, 296, 300 
Orthogonal polynomials, 125, 126, 236-239, 247-258, 

262,265 

Orthogonal projection, 235; 242-243, 250, 252, 254, 
258, 377 

Orthonormal set, 242 
Oscillations, 226, 234, 256, 306 

of error, 233, 238, 389-391 
Overdetermined systems, 362, 375-381 
Over-relaxation, 341, 342, 358 
Oversmoothing, 262 

Partial differential equations, 383, 384, 389-400 
Partial fractions, 57, 182 
Periodic functions, 109, 224, 229-231, 293-309 
Perturbation methods, 224, 229-231, 234 
Phase plane, 226 
Pivot, 337, 338, 344-348, 365-368, 370, 371, 377, 385 
Pole, 283, 288, 291 
Polynomial approximation (see Approximation) 
Positive-definite matrix, 341 
Power method, 336, 350-352, 359 
Prediction, 29, 80, 92, 93, 96 
Predictor-corrector methods, 194, 195, 206-215, 

219-221, 225 
Probable error, 5, 8 
Propagation of error, 216-219 

Quadratic convergence, 310, 316, 317, 319 
Quadrature (see Integration) 
Quotient-difference algorithm, 311, 312, 321-325, 

331, 332 

Ralston method, 204, 225 
Random numbers, 401-406 
Random walk, 358, 401-406 
Rate of convergence ( see  Acceleration of 

convergence and Convergence) 
Ratio test, 74 
Rational approximation, 283-292 
Rational function, 158 
Rayleigh quotient, 336, 350-352 
Reciprocal differences, 283-289 
Rectangle rule, 345, 365, 366 
Recurrence relations, 22, 23, 26, 27, 132, 133, 163, 

179-180, 184, 255, 263, 264, 310, 330, 383 
Regula falsi, 311, 318, 332 
Relative error, 7, 195, 205, 206, 212, 216-219, 221 
Relative stability, 195, 216-218, 221 
Relaxation methods, 335, 341, 342 
Remainder theorem, 10, 11 
Residual, 335, 339-341, 375-380 
RMS error, 237, 245, 250, 261, 262, 304, 305, 308, 

377, 379, 380 
Rolle's theorem, 131 
Romberg's method, 108,114, 115,195 
Roots of equations, 310-333 
Roundoff error (see Error)  
Runge-Kutta methods, 224-226, 233, 382, 384 

Saddle point, 329, 371 
Sampling, 401, 403-406 
Scalar product, 242, 243, 250, 251,254, 376, 377 
Series, (see also Taylor series) 

accelerating convergence of, 156,174,176 
asymptotic, 170-173 
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Series (cont.) 
evaluated by telescoping, 30, 31, 33, 156, 158, 163 
perturbation, 224, 229-231,234 
rapidly convergent, 156,159-160, 174 

Sigma factors, 296, 305-308 
Significant digits, 7 
Simplex method, 361-374, 378 
Simpson's rule, 108, 109, 112, 114-116, 119-122, 124, 

137,138,147,208, 214, 253, 260,263 
Sirnulation, 401, 402, 405, 406 
Simultaneous equations, 

differential, 223-234 
linear algebraic, 334-360 
nonlinear algebraic, 312, 313, 327, 332 

Singular integrals, 150-155 
Singular systems, 334, 336 
Smooth and unsmooth functions, 127,136-138, 148, 

150, 301, 303 
Smoothing, 

by differences, 20, 21 
by Fourier methods, 295, 303-308 
by least-squares polynomials, 236, 237, 240, 

243-2452 250, 251, 260-262, 264 
by min-max methods, 280, 290 
by moving averages, 262 

Square-wave function, 305,306 
Stability, 

of linear systems, 335, 342, 343 
relative, 195, 216-218, 221 

Steepest descent, 312, 328-330, 332 
Steffensen's method, 315, 319 
Stirling's formula, 41, 46-52, 59, 63, 79, 94-95, 

99-101, 105, 108, 115, 207, 246, 261 
Stirling's numbers, 

first kind, 22, 26, 27, 98 
second kind, 23, 27, 28, 31 

Stirling's series for factorials, 157, 169-172, 175 
Strategy, in game theory, 362, 369-374 
Sturm sequence, 311,312,325-327,332,336,354 
Subtabulation, 85, 86 
Successive approximations (see Iterative methods) 
Summation, 30-33, 156-176 

by parts, 30, 32, 78 
by telescoping, 30, 156, 158, 165, 167, 173, 181 

Superposition principle, 178, 382, 384, 385 
Supporting theory, 1 

Symmetric functions, 61 
Synthetic division, 10, 11, 14 

Taylor polynomial, 70, 72-78, 80, 193, 200-205, 
216, 257, 281, 315 

Taylor series, 70, 92, 95, 106, 107, 110, 116, 119, 
121, 123, 137, 138, 152-154, 159, 193, 195, 
200-203, 208, 211, 215, 216, 219, 221, 223, 
224-228, 233, 282, 327, 382 

Taylor's theorem, 108, 118, 390, 394 
Telescoping method, 30, 31, 33, 156, 158, 163 
Throwback, 80, 89 
Trapezoidal rule, 107-109, 111, 112, 114, 115, 117, 

118, 121, 122, 151, 206, 207, 295, 302 
Triangular matrix, 334, 337-339, 341, 344, 

347-349, 356 
Trigonometric approximation, 57, 98, 165, 293-309 
Triple diagonal matrix, 336, 353, 354 
Truncation error (see Error) 
Tschebycheff (see Chebyshev) 

Undetermined coefficients, method of, 65, 67, 68, 
109, 119, 120, 123, 143, 144, 189, 224, 227, 
232,284 

Unequally-spaced arguments, 53-64, 125 
Uniform approximation, 238, 267-282 
Uniform convergence, 199, 267,274, 275 

Van der Pol equation, 224, 226,230,231 
Variational equation, 387 
Variations, calculus of, 383, 387, 388, 396, 399 
Vector space, 235,236, 242, 243, 377 

Wallis' product, 157, 168-170 
Wave equation, 397-398 
Weddle's rule, 123 
Weierstrass approximation theorem, 267, 273-275 
Weight function, 125, 238, 255-257, 263 
Wilson's matrix, 343, 358 
Wronskian determinant, 178,179,185-186 

Zeros of polynomials, 
methods for finding, 310-333 
number of, 10,12,131,266,282,312 

Zig-zag rule, 41, 50, 52 


	NUMERICAL ANALYSIS
	Preface
	CONTENTS
	1 What Is Numerical Analysis?
	2 The Collocation Polynomial
	3 Finite Differences
	4 Factorial Polynomials
	5 Summation
	6 The Newton Formula
	7 Operators and Collocation Polynomials
	8 Unequally-Spaced Arguments
	9 Divided Differences
	10 Osculating Polynomials
	11 The Taylor Polynomial
	12 Interpolation and Prediction
	13 Numerical Differentiation
	14 Numerical Integration
	15 Gaussian Integration
	16 Singular Integrals
	17 Sums and Series
	18 Difference Equations
	19 Differential Equations
	20 Differential Problems of Higher Order
	21 Least-Squares Polynomial Approximation
	22 Min-max Polynomial Approximation
	23 Approximation by Rational Functions
	24 Trigonometric Approximation
	25 Nonlinear Algebra
	26 Linear Systems
	27 Linear Programming
	28 Overdetermined Systems
	29 Boundary Value Problems
	30 Monte Carlo Methods
	Answers to Supplementary Problems
	INDEX

